
Theoretical and Mathematical Physics, 151(3): 843–850 (2007)

DIFFERENTIAL EQUATIONS UNIQUELY DETERMINED BY

ALGEBRAS OF POINT SYMMETRIES

G. Manno,∗ F. Oliveri,† and R. Vitolo∗

We continue to investigate strongly and weakly Lie remarkable equations, which we defined in a recent

paper. We consider some relevant algebras of vector fields on R
k (such as the isometric, affine, projective,

or conformal algebras) and characterize strongly Lie remarkable equations admitted by the considered Lie

algebras.
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1. Introduction

One of the fundamental achievements in the geometric theory of differential equations (DEs), both
ordinary (ODEs) and partial (PDEs), is the theory of symmetries [1]–[5]. Symmetries of DEs are (finite
or infinitesimal) transformations of the independent and dependent variables and derivatives of the latter
with respect to the former with the further property that solutions are sent into solutions. Knowing the
symmetries of a DE can allow computing some of its solutions or transforming it into a more convenient
form; in the case of an ODE, it can allow reducing the order, determining the integrating factor, and so on.
There is a distinguished class of symmetries, those coming from a transformation of the independent and
dependent variables: point symmetries. In this paper, we focus our attention on them.

Associated with the problem of finding the symmetries of a DE is the natural “inverse” problem
of finding the most general form of a DE admitting a given Lie algebra as a subalgebra of infinitesimal
point symmetries. A way leading to the solution of this problem is to classify all possible realizations
of the given Lie algebra as an algebra of vector fields on the base manifold. The second step is to find
differential invariants Ii of the realization under consideration (see, e.g., [6]). Then, as is well known [5],
under suitable regularity hypotheses, the most general DE admitting a given Lie algebra as a subalgebra of
point symmetries is given locally by Fµ(I1, I2, . . . , Ik) = 0, where the Fµ are arbitrary smooth functions.

In this paper, we specialize the above problem as follows: we wish to find a unique DE that admits
a given Lie algebra as a subalgebra of its point symmetries. An aspect of this problem was considered
in [7], where we started from a given DE and found necessary and sufficient conditions for it to be uniquely
determined by its point symmetries. Following the terminology already used in [7]–[9], we say that such a DE
is Lie remarkable. A similar problem was also considered by Rosenhaus [10]; in fact, among various results,
he proved that the equation of vanishing Gaussian curvature of surfaces in R

3 is the unique second-order
equation admitting the projective algebra of R

3 as point symmetries.
This paper is organized as follows. In Sec. 2, we introduce a DE of order r as a submanifold of a

suitable jet space (of order r), which is a manifold whose coordinate functions of a chart can be interpreted
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as “independent” and “dependent” variables and the derivatives of the latter with respect to the former
up to the order r. We then introduce two distinguished types of Lie remarkable equations: strongly and
weakly Lie remarkable equations. Strongly Lie remarkable equations are uniquely determined by their point
symmetries in the whole jet space; in contrast, weakly Lie remarkable equations are equations that do not
intersect with other equations admitting the same symmetries. We then recall the main results obtained
in [8]: we report necessary and sufficient conditions for an equation to be strongly or weakly Lie remarkable.

In Sec. 3, we find strongly Lie remarkable equations associated with isometric, affine, projective, and
conformal algebras of R

k, where R
k is provided with metrics of various signatures. Because we start

from concrete, not abstract, algebras, we do not have the problem of realizing them as vector fields. In
particular, with regard to the affine algebra in R

k, we recover the homogeneous second-order Monge–Ampère
equations [11], and in R

3 also a third-order PDE that, to our knowledge, has not been previously described
in the literature. Also, in the case of the conformal algebra in R

3, we recover an interesting second-order
PDE, i.e., the equation for a surface u(x, y) with the square of the (scalar) mean curvature equal to the
Gaussian curvature.

2. Theoretical framework

We recall some basic facts about jet spaces (see [3], [4], [12] for more details) and the basic theory of
DEs determined by their Lie point symmetries [7]. All manifolds and maps are assumed to be C∞. If E is
a manifold, then we let χ(E) denote the Lie algebra of vector fields on E. Also, for the sake of simplicity,
all submanifolds of E are embedded submanifolds.

Let E be an (n+m)-dimensional smooth manifold and L be an n-dimensional embedded submanifold
of E. Let (V, yA) be a local chart on E. The coordinates (yA) can be divided into two sets, (yA) = (xλ, ui),
λ = 1, . . . , n and i = 1, . . . , m, such that the submanifold L is locally described as the graph of a vector
function ui = f i(x1, . . . , xn). In what follows, Greek indices range from 1 to n and Latin indices range from
1 to m unless otherwise specified.

The set of equivalence classes [L]rp of submanifolds L having a contact of order r at p ∈ E is called the
r-jet of n-dimensional submanifolds of E (also known as extended bundles [4]) and is denoted by Jr(E, n).
If E is endowed with a fibration π : E → M , where dim M = n, then the rth-order jet Jrπ of local sections
of π is an open dense subset of Jr(E, n). We have the natural maps jrL : L → Jr(E, n), p �→ [L]rp and
πk,h : Jk(E, n) → Jh(E, n), [L]kp �→ [L]hp , k ≥ h.

The set Jr(E, n) is a smooth manifold whose dimension is

dimJr(E, n) = n + m
r∑

h=0

(
n + h − 1

n − 1

)
= n + m

(
n + r

r

)
(1)

and whose charts are (xλ, ui
σ), where ui

σ ◦ jrL = ∂|σ|f i/∂xσ, 0 ≤ |σ| ≤ r. On Jr(E, n), there is a
distribution (the contact distribution) generated by the vectors

Dλ
def=

∂

∂xλ
+ uj

σλ

∂

∂uj
σ

,
∂

∂uj
τ

,

where 0 ≤ |σ| ≤ r − 1, |τ | = r, and σλ denotes the multi-index (σ1, . . . , σr−1, λ). The vector fields Dλ are
the (truncated) total derivatives. Any vector field Ξ ∈ χ(E) can be lifted to a vector field Ξ(r) ∈ χ

(
Jr(E, n)

)

that preserves the contact distribution. In coordinates, if Ξ = Ξλ∂/∂xλ + Ξi∂/∂ui is a vector field on E,
then its k-lift Ξ(k) has the coordinate expression

Ξ(k) = Ξλ ∂

∂xλ
+ Ξi

σ

∂

∂ui
σ

, (2)
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where Ξj
τ ,λ = Dλ(Ξj

τ ) − uj
τ ,βDλ(Ξβ) with |τ | < k.

A differential equation E of order r on n-dimensional submanifolds of a manifold E is a submanifold
of Jr(E, n). The manifold Jr(E, n) is called the trivial equation. An infinitesimal point symmetry of E is
a vector field of the type Ξ(r) that is tangent to E . Let E be locally described by {F i = 0}, i = 1 . . . k, with
k < dimJr(E, n). Then finding point symmetries amounts to solving the system

Ξ(r)(F i) = 0

whenever F i = 0 for some Ξ ∈ χ(E).
We let sym(E) denote the Lie algebra of infinitesimal point symmetries of the equation E . By an

rth-order differential invariant of a Lie subalgebra s of χ(E), we mean a smooth function I : Jr(E, n) → R

such that for all Ξ ∈ s, we have Ξ(r)(I) = 0. The problem of determining the Lie algebra sym(E) is called
the direct Lie problem. Conversely, given a Lie subalgebra s ⊂ χ(E), we consider the inverse Lie problem

of characterizing the equations E ⊂ Jr(E, n) such that s ⊂ sym(E) [2], [13].
In what follows, we analyze the inverse Lie problem. We start with the definition and main proper-

ties, contained in [7], of DEs that are uniquely determined by their point symmetries, which we call Lie

remarkable DEs.

Definition. Let E be a manifold, dimE = n + m, and let r ∈ N, r > 0. An l-dimensional equation
E ⊂ Jr(E, n) is said to be weakly Lie remarkable if E is the only maximal (with respect to the inclusion)
l-dimensional equation in Jr(E, n) for any θ ∈ E admitting sym(E) as subalgebra of the algebra of its
infinitesimal point symmetries and is said to be strongly Lie remarkable if E is the only maximal (with
respect to the inclusion) l-dimensional equation in Jr(E, n) admitting sym(E) as subalgebra of the algebra
of its infinitesimal point symmetries.

Of course, a strongly Lie remarkable equation is also weakly Lie remarkable. There are some direct
consequences of this definition. For each θ ∈ Jr(E, n), let Sθ(E) ⊂ TθJ

r(E, n) denote the subspace generated
by the values of infinitesimal point symmetries of E at θ. We set S(E) def=

⋃
θ∈Jr(E,n) Sθ(E). In general,

dimSθ(E) may change with θ ∈ Jr(E, n). The inequality

dim sym(E) ≥ Sθ(E) (3)

holds for all θ ∈ Jr(E, n), where dim sym(E) is the (real-vector-space) dimension of the Lie algebra of
infinitesimal point symmetries sym(E) of E . If the rank of S(E) is the same at each θ ∈ Jr(E, n), then S(E)
is an involutive (smooth) distribution.

A submanifold N of Jr(E, n) is an integral submanifold of S(E) if TθN = Sθ(E) for each θ ∈ N .
Of course, an integral submanifold of S(E) is an equation in Jr(E, n) that admits all elements in sym(E)
as infinitesimal point symmetries. The points of Jr(E, n) of maximal rank of S(E) form an open set of
Jr(E, n) [7]. It follows that E cannot coincide with the set of points of maximal rank of S(E). The following
theorems [7] can be proved.

Theorem 1. 1. A necessary condition for the differential equation E to be strongly Lie remarkable is

that

dim sym(E) > dim E .

2. A necessary condition for the differential equation E to be weakly Lie remarkable is that

dim sym(E) ≥ dim E .
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Sufficient conditions, which prove useful in computing examples and applications, were also established
in [7].

Theorem 2. 1. If S(E)|E is an l-dimensional distribution on E ⊂ Jr(E, n), then E is a weakly Lie

remarkable equation.

2. If S(E) is such that dim Sθ(E) > l for any θ /∈ E , then E is a strongly Lie remarkable equation.

The next theorem [7] gives the relation between Lie remarkability and differential invariants.

Theorem 3. Let s be a Lie subalgebra of χ
(
Jr(E, n)

)
. If the r-prolongation subalgebra of s acts

regularly on Jr(E, n) and the set of rth-order functionally independent differential invariants of s reduces

to a unique element I ∈ C∞(
Jr(E, n)

)
, then the submanifold of Jr(E, n) described by ∆(I) = 0 (in

particular, I = k for any k ∈ R) with ∆ being an arbitrary smooth function is a weakly Lie remarkable

equation.

Several examples of strongly and weakly Lie remarkable equations were provided in [7]. We recall some
of them.

1. The equation of minimal surfaces in R
4 or R

5 is neither strongly nor weakly Lie remarkable, but it
is weakly Lie remarkable in R

3 and R
6 if we remove singular equations.

2. The equation of an unparameterized geodesic on a complete simply connected Riemannian two-
dimensional manifold E is strongly Lie remarkable if and only if E has a constant Gaussian curva-
ture.

3. The equation uxxuyy − u2
xy = κ is weakly Lie remarkable if κ �= 0, but it is strongly Lie remarkable

if κ = 0.

4. Some higher-order Monge–Ampère equations [14] are weakly Lie remarkable if we remove singular
subsets.

3. Strongly Lie remarkable equations determined by Lie algebras
of vector fields on R

k

In what follows, we consider only scalar PDEs, i.e., according to our notation, we restrict our attention
to the case m = 1. We let I(Rn+1), A(Rn+1), P(Rn+1), and C(Rn+1) denote the respective isometric,
affine, projective, and conformal algebras of R

n+1 with the metric g =
∑n

i=1 ki dxi ⊗ dxi + du ⊗ du, where
ki, i = 1, . . . , n, are nonvanishing real constants (to simplify the notation in what follows, we use the
respective variables x and y instead of x1 and x2 in the case where n = 2). Even if the algebras I(Rn+1)
and C(Rn+1) depend on ki, we still let the same symbols denote them. For instance, I(R4) can represent
both the Euclidean and the Poincaré algebra for suitable values of ki. For each of the previous algebras,
we determine strongly Lie remarkable PDEs of various orders associated with them.

We first study the case of the algebra I(Rn+1). To explain how the methods presented in Sec. 2 work,
we calculate in the case of R

3 endowed with the metric k1 dx⊗dx+k2 dy⊗dy+du⊗du. For the remaining
algebras, we only give the results with some useful comments.

3.1. The case of I(Rn+1). The algebra I(Rn+1) has the dimension (n+1)(n+2)/2. By Theorem 1,
strongly Lie remarkable equations can then be of the first order. By statement 2 in Theorem 2, to obtain
them, we must construct the matrix M =

(
Ξ(1)j

i

)
of the one-prolongations of the isometries characterized
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by the vector fields

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 =

∂

∂u
,

Ξ4 = k2y
∂

∂x
− k1x

∂

∂y
, Ξ5 = u

∂

∂x
− k1x

∂

∂u
, Ξ6 = u

∂

∂y
− k2y

∂

∂u
.

(4)

We must then see whether the rank of this matrix is five on J1(R3, 2) except for a four-dimensional subman-
ifold where the rank decreases. Such a submanifold is then the sought strongly Lie remarkable equation.
More precisely, the matrix M is given by

M =





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

y − k1

K2
x 0

k1

k2
uy −ux

u 0 −k1x −k1 − u2
x −uxuy

0 u −k2y −uxuy −k2 − u2
y





.

The rank of this matrix is five except on the submanifold

1 +
u2

x

k1
+

u2
y

k2
= 0, (5)

which describes the vanishing of the infinitesimal area element, where the rank decreases. The generalization
to arbitrary n is straightforward. The strongly Lie remarkable equation in this case is

1 +
n∑

i=1

u2
xi

ki
= 0. (6)

Of course, for Eqs. (5) and (6) to be nonempty, we must require that not all ki are positive.

3.2. The case of A(Rn+1). The algebra A(Rn+1) has the dimension n2 +3n+2. By Theorem 1, we
see that a strongly Lie remarkable equation can be of the second or third order if n = 2 and of the second
order if n ≥ 3. The infinitesimal generators of this algebra are

∂

∂a
, a

∂

∂a
, a

∂

∂b
(7)

for all a, b ∈ {x1, x2, . . . , xn, u}. We see that the strongly Lie remarkable second-order equation in J2(R3, 2)
is the homogeneous Monge–Ampère equation

uxxuyy − u2
xy = 0, (8)

which describes surfaces of R
3 with the vanishing Gaussian curvature.

Moreover, there also exists a strongly Lie remarkable equation of third order in J3(R3, 2) with the local
expression

u3
xxu2

yyy + u2
xxxu3

yy + 6uxxuxxxuxyuyyuyyy − 6uxxxuxxyuxyu
2
yy −

− 6uxxuxxxuxyyu
2
yy − 6u2

xxuxyuxyyuyyy − 6u2
xxuxxyuyyuyyy −

− 8uxxxu3
xyuyyy + 9uxxu2

xxyu
2
yy + 9u2

xxu2
xyyuyy +

+ 12uxxxu2
xyuxyyuyy + 12uxxuxxyu

2
xyuyyy − 18uxxuxxyuxyuxyyuyy = 0. (9)
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To our knowledge, Eq. (9) has not been previously described in the literature; nevertheless, we are
currently unable to interpret it geometrically or physically. Further investigations are in progress.

It now remains to find the equations in J2(Rn+1, n) with n ≥ 3. In this case, we still have a strongly
Lie remarkable equation for each n, namely,

det
(

∂2u

∂xi ∂xj

)
= 0, (10)

i.e., the second-order homogeneous Monge–Ampère equation in n variables [11].

3.3. The case of P(Rn+1). The algebra P(Rn+1) has the dimension n2 + 4n + 3. Its infinitesimal
generators are

∂

∂a
, a

∂

∂a
, a

∂

∂b
, a

( n∑

i=1

xi ∂

∂xi
+ u

∂

∂u

)
(11)

for all a, b ∈ {x1, x2, . . . , xn, u}. We now realize that we must seek strongly Lie remarkable equations in
the same jet spaces that we considered in the preceding subsection. Furthermore, we must also discuss the
case of an equation in J3(R4, 3). We realize that Eqs. (8)–(10) are also strongly Lie remarkable in this case

and that there are no strongly Lie remarkable equations in J3(R4, 3). In fact, the prolongations of vector
fields (11) at each point of J3(R4, 3) span a subspace of at most dimension 20. Because the dimension of
the sought equation is 22, by Theorem 1, we have no chance to find a strongly Lie remarkable equation.

3.4. The case of C(Rn+1). The algebra C(Rn+1) has the dimension (n+2)(n+3)/2. We must seek
second-order strongly Lie remarkable equations. We start with n = 2. The infinitesimal generators of this
algebra are the generators in (4) together with

1
2

k1x
2 − k2y

2 − u2

k1

∂

∂x
+ xy

∂

∂y
+ xu

∂

∂u
,

xy
∂

∂x
+

1
2

k2y
2 − k1x

2 − u2

k1

∂

∂y
+ yu

∂

∂u
,

xu
∂

∂x
+ yu

∂

∂y
+

1
2
(u2 − k1x

2 − k2y
2)

∂

∂u
,

x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
.

(12)

Before computing strongly Lie remarkable equations, we recall some basic notions of the theory of
surfaces in R

3. We consider the metric k1 dx ⊗ dx + k2 dy ⊗ dy + du ⊗ du on R
3, where the ki are nonzero

real constants. Then the (scalar) mean curvature H of a general surface u = u(x, y) is

H =
1
2

(k2 + u2
y)uxx − 2uxuyuxy + (k1 + u2

x)uyy

(k1k2 + k2u2
x + k1u2

y)3/2
, (13)

and the Gaussian curvature G is

G =
uxxuyy − u2

xy

(k1k2 + k2u2
x + k1u2

y)2
. (14)
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Analyzing the rank of the matrix of two-prolongations of vector fields (4) and (12), we then realize that the
unique second-order equation that is strongly Lie remarkable with respect to the conformal algebra is

G = H2. (15)

Remark. By a direct computation, we realize that a unique second-order scalar differential invariant
I of the algebra formed by I(R3) with the addition of homotheties of R

3 is I = H2/G. Then I = k, where
k is a constant, is a weakly Lie remarkable equation by Theorem 3. Therefore, we could seek strongly Lie
remarkable equations among the equations I = k. In fact, from the above discussion, we realize that I = 1
is just the sought strongly Lie remarkable equation.

We now analyze the case n = 3. We must now seek strongly Lie remarkable equations in the jet space
J2(R4, 3). In this case, we see that we have no strongly Lie remarkable equations. In fact, the prolongations
of vector fields forming the algebra C(R4) at each point of J2(R4, 3) span a subspace of at most dimension
12. Because the dimension of the sought equation is 12, by Theorem 1, we have no chance to find a strongly
Lie remarkable equation. We obtain the same negative result for the algebra C(Rn+1) with n > 3.
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