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Preface

I first became enamoured of the Fels and Olver formulation of the moving
frames theory when it helped me solve a problem I had been thinking about for
several years. I set about reading their two 50-page papers, and made a 20-page
handwritten glossary of definitions. I was lucky in that I was able to ask Peter
Olver many questions and am eternally grateful for the answers.

I set about solving the problems that interested me, and realised there were
so many of them that I could write a book. I also wanted to share my amazement
at just how powerful the methods were, and at the essential simplicity of the
central idea. What I have tried to achieve in this book is a discussion rich in
examples, exercises and explanations that is largely accessible to a graduate
student, although access to a professional mathematician will be required for
some parts. I was extremely fortunate to have six students read through various
drafts from the very beginning. The comments and hints they needed have been
incorporated, and I have not hesitated to put in a discussion, example, exercise
or hint that might be superfluous to a professional.

There is a fair amount of original material in this book. Even though some
of the problems addressed here have been solved using moving frames already,
I have re-proved some results to keep both solution methods and proofs within
the domain of the mathematics developed here. I love coming up with simpler
solutions. In particular, the variational methods developed in Chapter 7 are
my own. The theorem on moving frames and Noether’s Theorem, which was
discovered and proved with Tania Gonçalves, particularly pleases me. The
application of moving frames to the solution of invariant ordinary differential
equations is also new. I was particularly chuffed to solve the Chazy equation
using relatively simple calculations, see Chapter 6. Theorem 5.2.4 allowing
one to write down the curvature matrices in terms of a matrix representation
of the frame was published earlier in Mansfield and van der Kamp (2006), and

ix
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there are some fun exercises giving new applications. Finally some minor (and
not so minor) errors in the original papers have been corrected.

The natural setting of the problems that interested me did not fit well with
the language of differential geometry in which all discussions of moving frames
were couched, so I set about casting the calculations into ordinary undergrad-
uate calculus in order to explain it in my papers and then to teach it to my
students. It was clear that a major benefit of Fels and Olver’s formulation of the
central concept was that it actually freed the moving frame method from the
confines of differential geometry; that it could apply equally well to differential
difference problems, to discrete problems, to all kinds of numerical approxi-
mations and so on. In any event, there are serious problems with that language
as an expository tool.† Thus when I decided to write up my notes into a book,
I was clear in my own mind that I was not going to use the exterior calculus as
the primary expository language. Nevertheless, it is important to have available
coordinate-free expressions if we are not to suffer ‘death by indices’. What I
wanted was a language that offered concrete models of objects like smooth
functions, vectors and vector fields, capable of use in both finite and infinite
dimensional spaces, that was linked in an open, explicit and well-defined way
to multivariable calculus, and for which there was a good literature where the
central significant theorems were proved properly. The language I needed, and
use, is that of Differential Topology. I learned this subject twice, first at the
University of Sydney in lectures given by M. J. Field, and then at the Univer-
sity of Wisconsin, Madison, in a year long course given by Dennis Stowe. I am
extremely grateful to them both. The notation and language that I use in this
book is what they both independently taught me, which has stood me in good
stead my whole career.

A huge contribution to the theory of moving frames, as they can be studied
rigorously in a symbolic computation environment, has been made by Evelyne
Hubert. One of the main benefits of the Fels and Olver formulation of moving
frames is that much of the calculation can be done symbolically in a computer
algebra environment. The fact that one can have a symbolic calculus of invari-
ants, without actually solving for the frame, is what turns this theory from the
merely beautiful to the both beautiful and useful; this is the hallmark of the
best mathematics. From the point of view of rigorous symbolic computation,
though, there were problems, in particular with the need to invoke the implicit
function theorem because this is a non-constructive step. Evelyne Hubert and
Irina Kogan (Hubert and Kogan, 2007a) provide algebraic foundations to the
moving frame method for the construction of local invariants and present a

† Don’t get me started.
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parallel algebraic construction that produces algebraic invariants together with
the relations they satisfy. They then show that the algebraic setting offers a
computational solution to the original differential geometric construction.

A second problem solved by Evelyne Hubert was the lack of a theory to
analyse the differential systems resulting from invariantisation, since these
involve non-commuting differential operators. Indeed, none of the edifice of
mathematics that had been produced to study over determined differential
systems rigorously was applicable, although an equivalent theory was needed
for the applications (Mansfield, 2001). In a beautiful exposition (Hubert, 2005),
the web of difficulties was pulled apart, the necessary concepts and results were
lined up in order, and the required theory was developed.

A third problem solved by Hubert was that of proving that a certain small,
finite set of syzygies, or differential relations satisfied by the invariants, gen-
erated the complete set of syzygies (Hubert, 2009a). This was important since
the theorem written down by Fels and Olver turned out to be false in general.

Finally, Hubert finds a set of generators of the algebra of differential invari-
ants that are not only simple to calculate but simple to conceptualise (Hubert,
2009b).

To give an exposition of these papers at the level I wrote this volume
would require another volume, with a substantial expository section on over
determined systems. However, the papers are accessible and I commend them
to the reader.

When I started to view the material from the point of view of my target
audience, primarily people wanting to use the methods but not having learnt
(nor wanting to learn) Differential Geometry, and also graduate students, I
came to realise that the subject involves a significant range of mathematics that
could not realistically be assumed knowledge. Brief but necessary remarks on
topics from transversality to foliations to jet bundles, and on calculations in
Lie algebras and the variational calculus, all swelled to much longer expository
sections than I anticipated. One central classical theorem for which I could not
find a decent modern exposition of the proof was Frobenius’ Theorem, so I
have outlined the proof in a series of exercises. The outline is based on that
given in lectures at the University of Wisconsin, Madison, by Dennis Stowe, to
whom I acknowledge my debt.

In writing this book I have tried to steer a course through the material that
is both honest and pragmatic. If being rigorous would have involved too long
a detour, I chose computation of examples and discussion over rigour; it is
more insightful to discuss the meaning rather than the proof of a result when
there is a good text that can be consulted for further reading. Where I do give a
proof, though, I aimed for the proof to follow rigorously from the established
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base of knowledge. Interestingly, sometimes not even the cleanest, simplest
proofs reveal the inner truth: the full understanding of theorems can only be
achieved after a range of examples can be computed. I give many exercises,
hints, and details in my own calculations to help my readers to two levels of
computational expertise: first, to be able to correctly work simple examples
that can be done by hand or performed interactively with a computer algebra
package, and second, to be able to write a computer program to do his or her
own larger examples.

I wish to thank Peter Olver, Evelyne Hubert, Peter Hydon and Francis Vali-
quette, who sent me comments. I had some great discussions with Gloria Marı́
Beffa, resulting in several beautiful examples that are described in the text.
Peter van der Kamp’s insistence on in-depth detail for his own understanding
of moving frames made this a much better book. Tania Gonçalves, Richard
Hoddinott, Jun Zhao and Andrew Wheeler worked through the exercises; read-
ers can thank them for the hints and for amplified discussions in various places.
I road tested the very first set of notes on Emma Berry and Andrew Martin
whose comments helped me see things from my target audience’s point of
view.

As ever, I wish to thank my dear husband Peter Clarkson who supported
me in a million different ways when the going got tough. I have faced and
overcome some extraordinary obstacles in order to have a mathematical career;
I have my father Dr Colin Mansfield, my PhD thesis supervisor Dr Edward
Fackerell (Sydney), and my mentor Professor Arieh Iserles (Cambridge) to
thank for their extraordinary timely support. Words cannot express how lucky
and how grateful I feel to have such stalwart friends and fellow travellers.

The author would like to acknowledge the Engineering and Physical
Sciences Research Council (UK) grant, ‘Symmetric variational problems’
EP/E001823/1.



Introduction to invariant and
equivariant problems

The curve completion problem

Consider the ‘curve completion problem’, which is a subproblem of the much
more complex ‘inpainting problem’. Suppose we are given a partially obscured
curve in the plane, as in Figure 0.1, and we wish to fill in the parts of the curve
that are missing. If the missing bit is small, then a straight line edge can be a
cost effective solution, but this does not always give an aesthetically convincing
look. Considering possible solutions to the curve completion problem (Figure
0.2), we arrive at three requirements on the resulting curve:

� it should be sufficiently smooth to fool the human eye,
� if we rotate and translate the obscured curve and then fill it in, the result

should be the same as filling it in and then rotating and translating,
� it should be the ‘simplest possible’ in some sense.

The first requirement means that we have boundary conditions to satisfy as well
as a function space in which we are working. The second means the formulation
of the problem needs to be ‘equivariant’ with respect to the standard action
of the Euclidean group in the plane, as in Figure 0.3. This condition arises
naturally: for example, if the image being repaired is a dirty photocopy, the
result should not depend on the angle at which the original is fed into the
photocopier.

All three conditions can be satisfied if we require the resulting curve
to be such as to minimise an integral which is invariant under the group
action, ∫

L(s, κ, κs, . . . ) ds, (0.1)

1



2 Introduction

Figure 0.1 A curve in the plane with occlusions.

?

Figure 0.2 Which infilling is best?

completecomplete

rotate

rotate

Figure 0.3 The solution is equivariant.

where s is arc length and κ the Euclidean curvature,

κ = uxx

(1 + u2
x)3/2

,
d

ds
= 1√

1 + u2
x

d

dx
(0.2)

and ds =
√

1 + u2
x dx.

The theory of the Calculus of Variations is about finding curves that minimise
integrals such as equation (0.1), and the most famous Lagrangian in this family
is

L[u] =
∫

κ2 ds. (0.3)
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The main theorem in the Calculus of Variations is that the minimising curves
satisfy a differential equation called the Euler–Lagrange equation. There are
quite a few papers and even textbooks that either ‘prove’ or assume the wrong
Euler–Lagrange equation for (0.3), namely that the minimising curve is a circle,
that is, satisfying κ = c. The correct result, calculated by Euler himself, is that
the curvature of the minimising curve satisfies

κss + 1

2
κ3 = 0, (0.4)

which is solved by an elliptic function. Solutions are called ‘Euler’s elastica’
and have many applications. See Chan et al. (2002) for a discussion relevant to
the inpainting problem.

While Euler–Lagrange equations can be found routinely by symbolic com-
putation packages, and then rewritten in terms of historically known invariants,
this process reveals little to nothing of why the Euler–Lagrange equation has
the terms and features it does. The motivating force behind Chapter 7 was to
bring out and understand the structure of Euler–Lagrange equations for vari-
ational problems where the integrand, called a Lagrangian, is invariant under
a group; the groups relevant here are not finite groups, but Lie groups, those
that can be parametrised by real or complex numbers, such as translations and
rotations.

One of the most profound theorems of the Calculus of Variations is Noether’s
Theorem, giving formulae for first integrals of Euler–Lagrange equations for
Lie group invariant Lagrangians. Most Lagrangians arising in physics have such
an invariance; the laws of nature typically remain the same under translations
and rotations, also pseudorotations in relativistic calculations, and so on, and
thus Noether’s Theorem is well known and much used.

If one calculates Noether’s first integrals for the variational problem (0.3),
the result can be written in the form,

 c1

c2

c3

 =



1√
1 + u2

x

− ux√
1 + u2

x

0

ux√
1 + u2

x

1√
1 + u2

x

0

xux − u√
1 + u2

x

uux + x√
1 + u2

x

1


 −κ2

−2κs

2κ

 (0.5)

where the ci are the constants of integration. The first component comes from
translation in x, the second from translation in u and the third from rotation in
the (x, u) plane about the origin. The 3 × 3 matrix appearing in (0.5), which
I denote here by B(x, u, ux), has a remarkable property. If one calculates the
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induced action of the group of rotations and translations in the plane, that is,
the special Euclidean group SE(2), on B, componentwise, then one has

B(g · x, g · u, g · ux) = R(g)B(x, u, ux), for all g ∈ SE(2)

where R(g) is a particular matrix representation of SE(2) called the Adjoint
representation. In other words, B(x, u, ux) is equivariant with respect to the
group action, and is thus an equivariant map from the space with coordi-
nates (x, u, ux, uxx, . . . ) to SE(2). The equivariance can be used to under-
stand how the group action takes solutions of the Euler–Lagrange equations to
solutions.

Equivariant maps are, in fact, the secret to success for the invariant calculus.
They are denoted as a ‘moving frame’ and are the central theme of Chapter 4. In
Chapter 7 we prove results that give the structure of both the Euler–Lagrange
equations and the set of first integrals for invariant Lagrangians, using the
symbolic invariant calculus developed in Chapters 4 and 5. The fact that
the formula for Noether’s Theorem yields the very map required to establish
the symbolic invariant calculus, used in turn to understand the structure of the
results, continues to amaze me.

Curvature flows and the Korteweg–de Vries equation

Consider the group of 2 × 2 real matrices with determinant 1, called SL(2),
which we write as

SL(2) =
{(

a b

c d

)
| ad − bc = 1

}
.

We are interested in actions of this group on, say, curves in the (x, u) plane,
that evolve in time, so our curves are parametrised as (x, t, u(x, t)). Suppose
for g ∈ SL(2) we impose that the group acts on curves via the map

g · x = x, g · t = t, g · u = au + b

cu + d
.

Using the chain rule, we can induce an action on ux and higher derivatives, as

g · ux = ∂(g · u)

∂(g · x)
= ux

(cu + d)2
,

and

g · uxx = ∂(g · ux)

∂(g · x)
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and so on. It is then a well-established historical fact that the lowest order
invariants are

W = ut

ux

, V = uxxx

ux

− 3

2

u2
xx

u2
x

:= {u; x}.

The invariant V is called the Schwarzian derivative of u and is often denoted
as {u; x}. This derivative featured strongly in the differential geometry of a
bygone era; it is used today in the study of integrable systems. The reason is
as follows. The invariants V and W are functionally independent, but there is
a differential identity or syzygy,

∂

∂t
V =

(
∂3

∂x3
+ 2V

∂

∂x
+ Vx

)
︸ ︷︷ ︸

H

W.

The operator H appearing in this equation is one of the two Hamiltonian
operators for the Korteweg–de Vries equation, see Olver (1993), Example 7.6,
with V = u/3. Thus, if W = V , that is if ut = ux{u; x}, then V (x, t) satisfies
the Korteweg–de Vries equation.

In fact there are many examples like this, where syzygies between invariants
give rise to pairs of partial differential equations that are integrable, with one
of the pair being in terms of the invariants of a given smooth group action.
Another example of such a pair is the vortex filament equation and the non-
linear Schrödinger equation. In that case, the group action is the standard action
of the group of rotations and translations in R3. We refer to Mansfield and van
der Kamp (2006) and to Marı́ Beffa (2004, 2007, 2008a, 2008b) for more
information.

The essential simplicity of the main idea

For many applications, what seems to be wanted is the following:

given the smooth group action, derive the invariants and their syzygies
algorithmically, that is, without prior knowledge of 100 years of differential
geometry, and with minimal effort.

To show the essential simplicity of the main idea, we consider a simple set
of transformations of curves (x, u(x)) in the plane given by

x �→ x̃ = λx + k, u �→ ũ = λu, λ �= 0. (0.6)
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The induced action on tangent lines to the curves is given by the chain rule:

ux �→ dũ

dx̃
= dũ

dx

(
dx̃

dx

)−1

= λux

λ
= ux

and so ux is an invariant. Continuing, we obtain

uxx �→ uxx

λ
, uxxx �→ uxxx

λ2

and so on. Of course, in this simple example, we can see what the invariants
have to be. But let us pretend we do not for some reason, and derive a set of
invariants.

The basic idea is to solve two equations for the two parameters λ and k. If
we take x̃ = 0 and ũ = 1, we obtain

λ = 1

u
, k = −x

u
. (0.7)

We give these particular values of the parameters the grand title ‘the frame’. If
we now evaluate the images of uxx , uxxx , . . . under the mapping, with λ and k

given by the frame parameters in equation (0.7), we obtain

uxx �→ uxx

λ
�→ uuxx, uxxx �→ uxxx

λ2
�→ u2uxxx, . . . .

We now observe that the final images of our maps are all invariants. Indeed,

u2uxxx �→ (λu)2
(uxxx

λ2

)
= u2uxxx

and so on. The method of ‘solve for the frame, then back-substitute’ has
produced an invariant of every order, specifically

In = un−1uxx . . . x︸ ︷︷ ︸
n terms

.

It is easy to show that any invariant can be expressed in terms of the In. Indeed,
if F (x, u, ux, . . . ) is an invariant, then

F (x, u, ux, uxx, . . . ) = F
(
λx + k, λu, ux,

uxx

λ
, . . .

)
(0.8)

for all λ and k. If I use the ‘frame’ values of the parameters in equation (0.8), I
obtain

F (x, u, ux, uxx, . . . ) = F (0, 1, ux, uuxx, . . . ) = F (0, 1, I1, I2, . . . ).

Since any invariant at all can be written in terms of the In, we have what is
called a generating set of invariants.
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But that is not all. If I use the same approach on the derivative operator

d

dx
�→ d

dx̃
=
(

dx̃

dx

)−1 d

dx
= λ

d

dx
�→ u

d

dx

then the final result,

D = u
d

dx

is invariant, that is,

D �→ ũ
d

dx̃
= u

d

dx
= D.

Differentiating an invariant with respect to an invariant differential operator
must yield an invariant, and indeed we obtain

DI1 = I2, DI2 = I3 + I1I2 (0.9)

and so on.
Equations of the form (0.9) are called symbolic differentiation formulae.

The major advance made by Fels and Olver (Fels and Olver, 1998, 1999) was
to find a way to obtain equations (0.9) without knowing the frame, but only the
equations used to define the frame, which in this case were x̃ = 0, ũ = 1.

If we now look at a matrix form of our mapping,

 x̃

ũ

1

 =
λ 0 k

0 λ 0
0 0 1

 x

u

1


and evaluate the matrix of parameters on the frame, we obtain ‘the matrix form
of the frame’,

�(x, u) =


1

u
0 −x

u

0
1

u
0

0 0 1

 .
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Going one step further, if we act on this matrix �(x, u), we obtain

�(̃x, ũ) =


1

ũ
0 − x̃

ũ

0
1

ũ
0

0 0 1



=


1

u
0 −x

u

0
1

u
0

0 0 1




1

λ
0 − k

λ

0
1

λ
0

0 0 1



= �(x, u)

λ 0 k

0 λ 0
0 0 1

−1

.

What this result means is that ‘the frame’ is equivariant with respect to the
mapping (0.6).

The miracle is that the entire symbolic calculus can be built from the equiv-
ariance of the frame and ordinary multivariable calculus, even if you do not
know the frame explicitly, that is, even if you cannot solve the equations giving
the frame for the parameters.

The one caveat is that not any old mapping involving parameters can be
studied this way; the mapping (0.6) is in fact a Lie group action, where the Lie
group is the set of 3 × 3 matrices


λ 0 k

0 λ 0
0 0 1

 | λ, k ∈ R, λ > 0


(amongst other representations) which is closed under multiplication and inver-
sion.

Not all group actions are linear like (0.6), and since we do not need to assume
linearity for any of the theory to be valid, we do not assume it. However, often
the version of a theorem assuming a linear action is easier to state and prove,
and so we tend to do both.
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Overview of this book

My primary aim in writing this book was to bring the theory and applications
of moving frames to an audience not wishing to learn Differential Geometry
first, to show how the calculations can be done using primarily undergraduate
calculus, and to provide a discussion of a range of applications in a fully detailed
way so that readers can do their own calculations without undue headscratching.

The main subject matter is, first and foremost, smooth group actions on
smooth spaces. Surprisingly, this includes applications to many seemingly
discrete problems. The groups referred to in this book are Lie groups, groups
that depend on real or complex parameters. In Chapter 1 we discuss the basic
notions concerning Lie groups and their actions, particularly their actions as
prolonged to derivative terms. Since there is a wealth of excellent texts on
this topic, we cruise through the examples, calculations and basic definitions,
introducing the main examples I use throughout.

The following two chapters give foundational material for Lie theory as I
use and need it for this book. I could not find a good text with exactly what was
needed, together with suitable examples and exercises, so I have written this
myself, proving everything from scratch. While I imagine most readers will
only refer to them as necessary, hopefully others will be inspired to learn more
Differential Topology and Lie Theory from texts dedicated to those topics.

In Chapter 2, I discuss how multivariable calculus extends to a calculus on
Lie groups; this is mostly an introduction to standard Differential Topology for
the particular cases of interest, and a discussion of the central role played by
one parameter subgroups. The point of view taken in Differential Topology, on
‘what is a vector’ and ‘what is a vector field’, is radically different to that taken
in Differential Geometry. The first theory bases the notion of a vector on a path,
the second on the algebraic notion of a derivation acting on functions. There are
serious problems with a definition of a vector field as a derivation.† On the other
hand, the notion of a vector as a path in the space, which can be differentiated at
its distinguished point in coordinates, is a powerful, all purpose, take anywhere
idea that has a clear and explicit link to standard multivariable calculus. Further,
anyone who has witnessed a leaf being carried by water, or a speck of dust
being carried by the wind, has already developed the necessary corresponding
intuitive notion. Armed with the clear and useful notion of a vector as a path,
everything we need can be proved from the theorem guaranteeing the existence
and uniqueness of a solution to first order differential systems. So as to give

† Not the least problem is that the chain rule needed for the transformation of vectors does not
follow from this definition alone, which can apply equally well to strictly algebraic objects.
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those well versed in one language insight into the other, we give some links
between the two sets of ideas and the relevant notations.

In the second chapter on the foundations of Lie theory, Chapter 3, we discuss
the Lie bracket of vector fields and Frobenius’ Theorem and from there, the
Lie algebra, the Lie bracket, and the Adjoint and adjoint actions. The two
quite different appearances of the formulae for the Lie bracket, for matrix
groups and transformation groups, are shown to be instances of the one general
construction, which in turn relies on the Lie bracket of vector fields in Rn. While
many authors simply give the two different formulae as definitions, I was not
willing to do that for reasons I make clear in the introduction to that chapter.

Chapters 4 and 5 are the central chapters of the book. The key idea under-
lying the symbolic invariant calculus is a formulation of a moving frame as
an equivariant map from space M on which the group G acts, to the group
itself. When one can solve for the frame, one has explicit invariants and invari-
ant differential operators. When one cannot solve for the frame, then one has
symbolic invariants and invariant differential operators. This is the topic of
Chapter 4, which introduces the distinguished set of symbolic invariants and
symbolic invariant differentiation operators used throughout the rest of the
book. Chapter 5 continues the main theoretical development to discuss
the differential relations or syzygies satisfied by the invariants, and introduces
the curvature matrices. These are well known in differential geometry, and we
discuss the famous Serret–Frenet frame, but they have other applications; in
particular, they can be used to solve numerically for the frame. Both chapters
have sections detailing various applications and further developments; sections
designated by a star, *, can be omitted on a first reading.

From this firm theoretical foundation, a host of applications can be described.
The two most developed applications in this book are to solving invariant
ordinary differential equations, and to the Calculus of Variations. In fact, there
is a long history of using smooth group actions to solve invariant ordinary
differential equations; normally one would think of this theory as a success
story, with little more to say. However, we describe in Chapter 6 just how much
more can be achieved with the new ideas. Similarly, the Calculus of Variations
is a classical subject that one might think of as fully mature. In Chapter 7, the
use of the new ideas throws substantial light on the structure of the known
results when invariance under a smooth group action is given.

The three applications that pleased me the most were solving the Chazy
equation, finding the equations for a free rigid body without any mysterious
concepts, and the final theorem of the book, showing the structure of the first
integrals given by Noether’s Theorem. All three came out of trying to develop
interesting exercises for this book.
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Other applications to discrete problems, to functional approximations or
numerical integration problems, remain to be developed in the research liter-
ature to the same level as those I have written about here. These are some of
my favourite applications, but I ran out of time and space. Another application
I wanted to include was the extension of the Fels and Olver reformulation of
the moving frame to pseudogroups (Cheh et al., 2005; Olver and Pohjanpelto,
2008; Shemyakova and Mansfield, 2008). This, too, will have to wait for a
second volume.

How to read this book . . .

. . . is with pencil, paper and symbolic computation software. The only way to
see the magic is to do it.
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Actions galore

1.1 Introductory examples

A symmetry of a function is a coordinate transformation which leaves the
function invariant. Consider the function r(x, y, z) =

√
x2 + y2 + z2 which is

the distance of a point (x, y, z) ∈ R3 from the origin. This function is invariant
under rotations about the origin. Indeed, consider a rotation matrix R : R3 →
R3. First note that RT R = I3, the 3 × 3 identity matrix. Setting x = (x, y, z)T

and X = (X, Y,Z)T = Rx, then

x2 + y2 + z2 = xT x

= xT RT Rx

= (Rx)T Rx

= XT X

= X2 + Y 2 + Z2.

Next consider τ = τ (x, y, z, t) known as ‘proper time’, arising in the theory
of special relativity, given by

c2τ 2 = c2t2 − x2 − y2 − z2

where c is the speed of light, assumed to be a constant. Symmetries of τ

include rotations in the space variables (x, y, z). Since both x2 + y2 + z2 and
t are invariant under rotations in the space variables, τ is invariant.

Pseudorotations are also symmetries of τ . These can be described in a variety
of ways. If we set y and z to be invariant and restrict our attention to (x, t)
space, then a pseudorotation g(v) is given by(

x

t

)
�→ g(v) ·

(
x

t

)
,

12
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where g(v) is the matrix,

g(v) =


1√

1 − v2/c2
− v√

1 − v2/c2

− v/c2√
1 − v2/c2

1√
1 − v2/c2

. (1.1)

The parameter v is the velocity of the new coordinate system relative to the first,
and is assumed to be in the range v ∈ (−c, c). Note the pseudorotation varies
smoothly with v. We have that the inverse transformation (g(v))−1 equals g(−v)
and the identity transformation is g(0), that is, with v = 0. The composition of
velocities is non-linear, however; indeed,

g(v) · g(w) = g(ξ (v,w)) (1.2)

where

ξ (v,w) = v + w

1 + vw/c2
. (1.3)

If v, w ∈ (−c, c) then ξ (v,w) ∈ (−c, c), so the group composition law respects
the restriction on the parameters. Another representation of the set {g(v) | v ∈
(−c, c)} is {ḡ(α) | α ∈ R}, where

ḡ(α) =
(

cosh α c sinh α
1
c

sinh α cosh α

)
.

The relationship between the two representations is

g(v) �→ ḡ(α), tanh(α) = −v/c. (1.4)

The composition law is simpler in the second representation;

ḡ(α) · ḡ(β) = ḡ(α + β). (1.5)

Exercise 1.1.1 Show equation (1.2) holds with ξ (v,w) given in (1.3), and
that equation (1.5) also holds. Show that the relationship (1.4) sends one
composition law to the other. Hint: set cosh α = 1/

√
1 − v2/c2, sinh α =

−v/(c
√

1 − v2/c2) and use the addition rule for tanh.

Similar remarks hold for pseudorotations in the (y, t) and (z, t) planes.
The set of all linear coordinate transformations of (x, y, z, t) space that can

be written as a finite composition of rotations and pseudorotations is a subset
of the Lorentz group.
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Definition 1.1.2 Let 	 be the diagonal matrix with diagonal entries being
(−1/c2, 1, 1, 1). The Lorentz group is defined to be the set of 4 × 4 real invert-
ible matrices A such that

AT 	A = 	.

Definition 1.1.3 A group G is a set such that

� there is a map, called the product map,

µ : G × G → G.

We refer to the fact that the product µ maps into G as the closure property.
� The map µ satisfies the associative law,

µ(g1, µ(g2, g3)) = µ(µ(g1, g2), g3).

� There is an element e called the identity such that

µ(e, g) = µ(g, e) = g, for all g ∈ G

and,
� each g ∈ G has an inverse, denoted g−1, such that

µ(g−1, g) = µ(g, g−1) = e.

We write the group as (G,µ) when we need to specify the product. Where the
product is clear from the context, we write µ(g1, g2) as g1g2.

Definition 1.1.4 If the order of multiplication does not matter, so that g1g2 =
g2g1 for all g1, g2 ∈ G, we say that G is a commutative group.

Standing assumption The groups we consider in this book are Lie groups,
groups whose elements depend in a smooth way on parameters, which in this
book are real or complex numbers. Parameters from other fields such as the
quarternions can also be used. A generic group element of a Lie group is written
as g = g(a1, . . . , ar ) when we wish to highlight the independent parameters
on which g depends. A rigorous definition of a Lie group is given in the next
chapter.

Lie groups can arise as symmetry groups of sets of functions. If the set of
functions is the solution set of a differential system, then we speak of the Lie
group of symmetries of the system. More generally, we consider symmetries
of differentiable geometric structures. In this chapter we define the basic terms
we use and give a range of examples that will be used in later chapters.
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The simplest Lie group is the set of real numbers with addition as the group
‘product’, (R,+), so µ(x, y) = x + y. The identity element is zero, and the
inverse of an element is its negative. A second Lie group is (R+, ·), where R+

denotes positive numbers and the group product is the standard multiplication.
These two groups are essentially the same group because there is an invertible
map

f : (R,+) → (R+, ·)

that maps ‘products’ in (R,+) to the corresponding product in (R+, ·),

f (x + y) = f (x)f (y).

Of course, f is the exponential map. We formalise this notion of ‘being the
same group’ by defining an isomorphism.

Definition 1.1.5 Two groups (G,µG) and (H,µH ) are said to be isomorphic,
if there is an invertible map

f : G → H

satisfying

f (µG(g1, g2)) = µH (f (g1), f (g2)), for all g1, g2 ∈ G.

We write G ≈ H and say that ‘f respects the group product’.

The next simplest Lie groups to describe are matrix groups. These are sets
of square matrices and the product is always the usual matrix multiplication.
Since this product is known to be associative, to test whether a set of matrices
is a group, we need to check

(i) closure, that is, the product of two elements in the set is itself in the set,
(ii) that the identity matrix of the relevant dimension is in the set, and

(iii) not only that elements of the set are invertible, that is, their determinants
are non-zero, but also that their inverses are in the set.

We denote the set of all n × n matrices whose components are real numbers by
Mn(R), and the set of invertible n × n matrices whose entries are real numbers
by GL(n, R). Similarly, the set of invertible n × n matrices whose entries are
elements of the field F is denoted GL(n, F) or simply GL(n) if the field is
obvious from the context. All matrix groups are subgroups of GL(n, F) for
some F and some n.
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Remark 1.1.6 Another notation that we will use for Mn(F) is gl(n, F), for
reasons that will be become apparent in Chapter 3. If V is a vector space, the
set of linear maps taking V to itself will be denoted gl(V ).

Exercise 1.1.7 Consider G = R+ × R, with group product

µG((x, a), (y, b)) = (xy, a + b)

and the group

H =
{(

x a

0 1

)
| x ∈ R+, a ∈ R

}
,

with µH being matrix multiplication. Show that both G and H are groups.
Although as sets G and H are in one-to-one correspondence, show that they
are not isomorphic as groups. Hint: first show that if two groups are isomorphic
and one of them is commutative, then so is the other.

Definition 1.1.8 For a square matrix A = (aij ), we fix the following notations.
The determinant of A is denoted det(A). The complex conjugate of A is Ā =
(aij ). The transpose of A is AT = (aji). A Hermitian matrix satisfies ĀT = A.
A symmetric matrix satisfies AT = A. The n × n identity matrix is denoted In.

Example 1.1.9 The special linear group is

SL(n, R) = {A ∈ Mn(R) | det(A) = 1} . (1.6)

The general element has n2 real parameters satisfying one condition, so
SL(n, R) has dimension n2 − 1. The condition det(A) = 1, which is poly-
nomial in the parameters, defines a smooth surface in the parameter space
Rn2

.

More generally, if S is any n × n real matrix, then the set

G(n, S) = {A ∈ GL(n, R) | AT SA = S} (1.7)

is a Lie group. An example is the Lorentz group (Definition 1.1.2).

Exercise 1.1.10 Prove G(n, S) is a group. Show by example that S need be
neither invertible nor symmetric, although these are the usual examples. If in
(1.7), the matrix S is the identity matrix, then the group is O(n), the orthogonal
group. Specifically,

O(n) = {A ∈ GL(n, R) | AT A = In}
SO(n) = {A ∈ GL(n, R) | AT A = In, det(A) = 1}. (1.8)
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Let K be the diagonal matrix such that K1,1 = −1 and Kj,j = 1 for j > 1.
Prove O(n) = SO(n) ∪ K · SO(n).

Similarly, if S is an n × n complex matrix, then the set

{A ∈ GL(n, C) | ĀT SA = S} (1.9)

is a Lie group.

Example 1.1.11 The special unitary group SU (n, C) is the set of n × n

matrices with complex components satisfying both

Ū T U = In, det(U ) = 1.

It can be shown that

SU (2, C) =
{(

α β

−β̄ ᾱ

)
| α, β ∈ C, αᾱ + ββ̄ = 1

}
.

In other words, the general element of SU (2) depends on three real parameters:
the condition αᾱ + ββ̄ = 1 can be written as α2

1 + α2
2 + β2

1 + β2
2 = 1 where

we have set α = α1 + iα2 and β = β1 + iβ2. Thus, in the four dimensional real
parameter space with coordinates (α1, α2, β1, β2), the group SU (2, C) is the
unit sphere.

Lie groups of the form (1.7) and (1.9) are smooth surfaces (r dimensional,
where r is the number of independent parameters describing the group ele-
ments) when viewed as sets in parameter space.

Definition 1.1.12 (Working definition) A Lie group is a group, which as a set is
a smooth surface † in RN for some N . Moreover, as functions of the parameters
describing the surface, the product map µ and the inverse map g �→ g−1 are
smooth.

The rigorous definition requires a Lie group to be a manifold, that is, locally
Euclidean. We will discuss the rigorous definition in detail in Chapter 2.

Definition 1.1.13 A set T of invertible maps taking some space X to itself is a
transformation group, with the group product being composition of mappings,
if,

(i) for all f , g ∈ T , f ◦ g ∈ T ,
(ii) the identity map id : X → X, id(x) = x for all x ∈ X, is in T , and

(iii) if f ∈ T then its inverse f −1 ∈ T .

† More technically, a submanifold.
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The associative law holds automatically for composition of mappings, and thus
does not need to be checked. Matrix groups are groups of linear transformations
since matrix multiplication and composition of linear maps coincide. We will
assume that elements of transformation groups are smooth and are parametrised
by either real or complex numbers, in a smooth way. This means that they are
smooth when considered as maps of two sets of parameters, namely the group
parameters and the independent variables of M .

Sets of transformations defined only on open sets of some space X can fail
to be a group strictly as defined above; there are then technical difficulties with
both closure and associativity when domains and ranges do not match, as in
the next example.

Example 1.1.14 Let x and y be real variables and consider the map

(x, y) �→
(

x

1 − εx
,

y

1 − εx

)
.

We assume that ε is sufficiently close to zero so that no zero denominators
result in our local domain of interest; note the restriction on ε depends on
the point being mapped. Although ε parametrises a transformation of (x, y)
space, we think of ε ∈ R itself as acting on (x, y) space, so that we write the
transformation as

(x, y) �→ ε ∗ (x, y). (1.10)

We have in this case that

ε2 ∗ (ε1 ∗ (x, y)) = (ε1 + ε2) ∗ (x, y), (1.11)

where again, we need to restrict domains so that no zero denominators appear.

A set of invertible mappings such as that given in Example 1.1.14 is called
a local Lie transformation group. See Olver (1993), Section 1.2 for the full
technical definition. For the set of mappings given in Example 1.1.14, the
identity transformation is parametrised by ε = 0 and the transformation inverse
to ε∗ is (−ε)∗, but since the domain of each transformation is different, we need
to weaken the definition of closure to ‘the composition of any two elements in
the group is in the group, on the domain where the composition is defined’.

1.2 Actions

Given a (local) Lie group, we will be studying their actions, that is, their pre-
sentations as a group of transformations of some given space M . The simplest
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actions are linear actions, and the theory of such actions is the same as the
theory of representations of the group.

Definition 1.2.1 If M is a vector space, a representation of the group G is a
map R : G → GL(M) such that

R(gh) = R(g)R(h).

Exercise 1.2.2 Show that if e ∈ G is the identity element in G, then R(e) is
the identity matrix, and that R(g)−1 = R(g−1). Hint: for any element g ∈ G,
ge = g.

Remark 1.2.3 The word representation is restricted, by common convention,
to presentations in the form of a matrix group, which act on M linearly. Thus
for representations, M is assumed to be a vector space.

Exercise 1.2.4 Let G = SL(2) and M = R3. Show that the map(
a b

c d

)
�→
 a2 ab b2

2ac ad + bc 2bd

c2 cd d2


where ad − bc = 1 is a representation of SL(2) in GL(M).

Definition 1.2.5 We say the group G acts on the space M if there is a map

α : G × M → M, (1.12)

satisfying either

α(g2, α(g1, z)) = α(g2g1, z), (1.13)

or

α(g2, α(g1, z)) = α(g1g2, z). (1.14)

Actions obeying (1.13) are called left actions while actions obeying (1.14) are
called right actions.

Exercise 1.2.6 Show that if α(g, .) is a left action then α(g−1, .) is a right
action, and vice versa.

One can define similarly a local Lie group action where the restrictions on
the domains are noted.

In order to distinguish left from right actions, we will use the following
notation. A left action will be denoted as

∗ : G × M → M
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and thus (1.13) becomes gh ∗ z = g ∗ (h ∗ z). A right action will be denoted as

• : G × M → M

and thus (1.14) becomes gh • z = h • (g • z).
The image of a point under a general action is denoted variously as

g · z = z̃ = F (z, g). (1.15)

The different notations are used to ease the exposition, depending on the context.

Solution to Exercise 1.2.6 Given a left action g ∗ z, define g • z = g−1 ∗ z.
Then

h • (g • z) = h−1 ∗ (g−1 ∗ z) = (h−1g−1) ∗ z = (gh)−1 ∗ z = (gh) • z

showing g • z is a right action as required. The other case is similar.
It is not always obvious whether a given action is left or right.

Exercise 1.2.7 Is the local action of SL(2) on R given by

x �→ g · x = ax + b

cx + d
, ad − bc = 1 (1.16)

left or right? Show that

h · ax + b

cx + d
= a(h · x) + b

c(h · x) + d

implies a right action, while

h · ax + b

cx + d
= a2

ax+b
cx+d

+ b2

c2
ax+b
cx+d

+ d2

is a left action, where

h =
(

a2 b2

c2 d2

)
, a2d2 − b2c2 = 1.

The answer of whether a right or left action is implied by (1.16), depends on
the interpretation of the symbol x, whether it is viewed as a coordinate function
on R or an element of R itself. But which is which? (See section 1.3.1.)

Blanket assumption We will assume that the space M on which G acts is
a smooth space and that the map defining the action, (g, z) �→ α(g, z), is also
smooth in both g and z.

Remark 1.2.8 Right actions are often denoted by m �→ m · g, particularly
in algebra texts discussing permutation groups. One then has (m · g) · h =
m · (gh). Since in this book we are mostly doing calculus and not abstract
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algebra, we stick with the notion of the group action being a function on M

and thus write it on the left hand side of its argument.

Example 1.2.9 A group acts on itself by left and right multiplication. The
equations (1.13) and (1.14) are then the associative law for the group product.

Exercise 1.2.10 Show that G × G → G given by

(g, h) �→ g−1hg

is an action of G on itself. This is called the ‘adjoint’ or conjugation action.

Definition 1.2.11 Two group actions αi : G × M → M , i = 1, 2 are equiva-
lent if there exists a smooth invertible map φ : M → M such that

α2(g, z) = φ−1α1(g, φ(z))

for all g ∈ G.

Exercise 1.2.12 Let f : R → R be any invertible map, and define µ : R ×
R → R given by µ(x, y) = f −1(f (x) + f (y)). Show (R, µ) is a group and
thus defines an action of R on itself. Clearly, this action is equivalent to addition.
Generalise this by taking invertible maps f : (a, b) ⊂ R → R. A large number
of seemingly mysterious non-linear group products on subsets of R can be
generated this way. By considering f = arctan, show the product

x · y = x + y

1 − xy

is equivalent to addition.

A matrix group in GL(n, R) acts on the n dimensional vector spaces V as a
left action

A ∗ v = Av

or a right action

A • v = AT v,

where v is given as an n × 1 vector with respect to some fixed basis of V .

Exercise 1.2.13 Show the two right actions, A • v = AT v and A • v = A−1v
are not equivalent in general. That is, show that there does not exist, in general,
a matrix φ such that A−1 = φ−1AT φ for all A. Hint: the matrix φ must be
independent of A for equivalence to hold.
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Our next example concerns non-linear actions of SL(2) on the plane. We
will use these actions in many examples in the rest of this book.

Example 1.2.14 There are three inequivalent local actions of SL(2, C) on the
plane C2 (Olver, 1995). If the coordinates of C2 are taken to be (x, y) and the
generic group element is

g =
(

a b

c d

)
, ad − bc = 1

then the actions are as follows:

action 1

x̃ = ax + b

cx + d
, ỹ = y (1.17)

action 2

x̃ = ax + b

cx + d
, ỹ = y

(cx + d)2
(1.18)

action 3

x̃ = ax + b

cx + d
, ỹ = 6c(cx + d) + (cx + d)2y. (1.19)

Keeping track of where repeated compositions of these maps are and are
not defined is tedious. Usually one introduces a new point, ∞, and extends the
definition of the action on x as follows:

x̃ = ax + b

cx + d
, x �= −d

c

−̃d/c = ∞

∞̃ = a

c
.

Exercise 1.2.15 Which of these three actions of SL(2) is equivalent to the
standard linear action,

x̃ = ax + by, ỹ = cx + dy,

at least on some open set of C2? Hint: consider the induced action on
(x/

√
y, 1/

√
y).
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1.2.1 Semi-direct products

Suppose G and H are two Lie groups such that G acts on H , that is, g ∗ h ∈ H

for all g ∈ G and h ∈ H , for some left action ∗, satisfying

g ∗ (h1h2) = (g ∗ h1)(g ∗ h2) for all g ∈ G, h1, h2 ∈ H

eG ∗ h = h for all h ∈ H
(1.20)

where eG is the identity element of G. In words, the left action of each g ∈ G

is a homomorphism of H and eG∗ is the identity map on H .

Exercise 1.2.16 Show that each g ∈ G acts as an isomorphism. Show by
example that the second condition in (1.20) is necessary for this to be true.

Definition 1.2.17 Suppose the action of G on H satisfies (1.20). The semi-
direct product G � H is defined to be, as a set, G × H , but with group product
·� given by

(g1, h1) ·� (g2, h2) = (g1g2, h1(g1 ∗ h2)).

Exercise 1.2.18 Prove that the semi-direct product is associative. What is the
identity element of G � H and the inverse of (g, h)? Hence prove G � H is a
group.

The usual example is where G is an n × n real matrix Lie group and H =
(Rn,+), the group of n × 1 column vectors under addition. There is then the
standard left action of G on H and the semi-direct product is represented by

G � Rn ≈
{(

A v
0 1

)
| A ∈ G, v ∈ Rn

}
. (1.21)

Indeed we have (
A v
0 1

)(
B w
0 1

)
=
(

AB v + Aw
0 1

)
as required.

Example 1.2.19 Recall the definition of the special orthogonal group SO(n)
given in Exercise 1.1.10. The semi-direct product SO(n) � Rn is called the
special Euclidean group, denoted SE(n), and is the transformation group gen-
erated by rotations and translations. Similarly, SA(n) = SL(n) � Rn is called
the special affine group.
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1.3 New actions from old

Given an action of G on M , there are induced actions on products of M , the set
of functions defined on M , the tangent space of M and hence the set of vector
fields on M , and so forth. We will start with the simplest of these and work our
way up.

1.3.1 Induced actions on functions

The set of smooth functions mapping M to RN is denoted C∞(M, RN ). A left
action G × M → M induces a right action on C∞(M, RN ) given by

g • (f1(z), . . . , fN (z)) = (f1(g ∗ z), . . . , fN (g ∗ z)). (1.22)

This is a right action because

h • (g • f (z)) = h • f (g ∗ z) = f (g ∗ (h ∗ z)) = f (gh ∗ z) = gh • f (z).

Similarly, an action is induced on functions defined only on restricted domains
in M; the domain of g • f will be g−1 ∗ domain(f ).

In particular, since coordinates are functions mapping M to R, we have that
a left action on M becomes a right action on the coordinates xi :

xi(g ∗ z) = g • xi(z).

The image of a coordinate function under the action is denoted variously as

g • xj = x̃j = Fj (z, g), (1.23)

compare (1.15).
Consider the transformation group given in Example 1.1.14. The induced

action on functions is given by

ε • f (x, y) = f (ε ∗ (x, y)) = f (̃x, ỹ).

Thus

ε • x

y
= x̃

ỹ
= x/(1 − εx)

y/(1 − εx)
= x

y
.

Definition 1.3.1 A function f : M → R is said to be an invariant of the action
G × M → M if

f (g ∗ z) = f (z), for all z ∈ M. (1.24)
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Exercise 1.3.2 Consider the conjugation action of a real matrix group M on
itself, given by (A,B) �→ A−1BA. Show that the functions trn : M → R given
by trn(B) = trace(Bn), for n ∈ N, are invariants for this action.

Exercise 1.3.3 The action on C∞(M, RN ) we have defined in equation (1.22)
is an example of the following construction. Let G act on both M and N and
let M(M,N ) be the set of maps from M to N . If both these actions are left
actions then there is an induced right action of G on M(M,N ) given by

(g · f )(x) = g−1 · f (g · x). (1.25)

Show this is a right action. Show this is the same action on functions as described
above in the case that N = Rn and g · n = n for all g ∈ G, n ∈ N . How should
the action on M(M,N ) be defined if G acts on the left on M and the right on
N , to obtain a right action on M(M,N )? In the case N = M , the action (1.25)
is often called a ‘gauge action’.

1.3.2 Induced actions on products

Definition 1.3.4 The product action induced on the N -fold product of M with
itself, M × · · · × M (N terms) is given by

g · (z1, . . . , zN ) = (g · z1, . . . , g · zN ). (1.26)

Example 1.3.5 The group generated by rotations and translations in Rn is
known as the Euclidean group and is denoted E(n). If n = 2, the standard
action is

g(θ,a,b) ∗
(

x

y

)
=
(

cos θ − sin θ

sin θ cos θ

)(
x

y

)
+
(

a

b

)
. (1.27)

The product action on two or more copies of R2 amounts to considering the
simultaneous action on two or more points in the plane. Two invariants of the
product action are

In,m = (xn − xm)2 + (yn − ym)2, Jn,m = xnym − xmyn (1.28)

where (xn, yn), (xm, ym) ∈ R2 and in fact any invariant of this group action is a
function of the In,m and the Jn,m. We will prove this in Section 4.7.

Definition 1.3.6 An N -point invariant of the action G × M → M is an invari-
ant of the product action on the N -fold product of M with itself.

These invariants are also known as joint invariants.
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Exercise 1.3.7 Recall the local projective action of SL(2) on R,

x �→ (ax + b)/(cx + d) = x̃,

where ad − bc = 1. Take the product action on (x, y, z,w) space, that is,

(x, y, z,w) �→ (̃x, ỹ, z̃, w̃).

Show that the cross ratio

(x − z)(y − w)

(x − y)(z − w)

is a 4-point invariant.

1.3.3 Induced actions on curves

If G acts on M , s is a real parameter and s �→ γ (s) ∈ M is thus a curve in M ,
the induced action on the curve is defined pointwise,

(g ∗ γ )(s) = g ∗ γ (s),

see Figure 1.1. Since the action is smooth and invertible, it will not introduce
cusps or self-crossings into curves that do not have them to begin with. As
simple as this looks, it is probably one of the most important induced actions
in this book because the applications are so widespread; the curve might be
a solution curve of a differential equation, it might be a path of a particle in
some physical system or a light ray in an optical medium, it might be a ‘tangent
element’, and so on.

Exercise 1.3.8 Show a matrix group acting linearly on a vector space V , on
the left, induces an action on the set of lines passing through the origin of V . If
the dimension of V is 2, show the induced action on the slope m of a line is

m̃ =
(

a b

c d

)
• m = (c + dm)/(a + bm).

Hint: consider the induced action on y/x.

If the curve is differentiable, we obtain an induced action on the first and
higher order derivatives, called the prolonged action, discussed in the next
section 1.3.4.
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g
γ(s)

γ(s)

γ (s)

γ (s)

Figure 1.1 Euclidean action on smooth curves in the plane.

1.3.4 Induced action on derivatives: the prolonged action

Suppose there is an action of the group G in the plane with coordinates (x, y).
If we take a curve in the plane given by y = f (x), so that we consider y to be
a function of x, then there is an induced action on the derivatives yx , yxx and
so forth, called the prolonged action.

To illustrate, we look in detail at the action in Example 1.3.5. To ease the
notation, we denote the generic image of this action as

g(θ,a,b) ∗
(

x

y

)
=
(

x̃

ỹ

)

g(θ,a,b) · dy

dx
= ỹx

g(θ,a,b) · d2y

dx2
= ỹxx

(1.29)

and define the action on yx to be

g(θ,a,b) · dy

dx
= dỹ

dx̃
= dỹ/dx

dx̃/dx
, (1.30)

by the chain rule (which is, in one dimension, also known as implicit differen-
tiation). Thus

ỹx = sin θ + cos θyx

cos θ − sin θyx

.
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Similarly,

g(θ,a,b) · d2y

dx2
= d2ỹ

d(̃x)2
= ỹx̃ x̃ = 1

dx̃/dx

d

dx

dỹ/dx

dx̃/dx

so we have

ỹxx = yxx

(cos θ − sin θyx)3
.

Since
ỹxx

(1 + ỹx
2)3/2

= yxx

(1 + y2
x )3/2

(1.31)

we say that yxx/(1 + y2
x )3/2 is a differential invariant (see Definition 1.3.11).

This quantity is in fact the Euclidean curvature of the path x �→ (x, y(x)) in the
plane.

Exercise 1.3.9 For the action of SL(2) on (x, u) space given by

x̃ = x, ũ = au + b

cu + d
, ad − bc = 1

show that

uxxx

ux

− 3

2

u2
xx

u2
x

(1.32)

is invariant under the prolonged action. This expression is known as the
Schwarzian derivative of u with respect to x and is often denoted {u; x}.

More generally, we are concerned with q smooth functions uα that depend
on p variables xi . The derivatives of these will be denoted using a multi-index
notation, e.g.

uα
1112222 = ∂7

∂x3
1∂x4

2

uα

or

uβ
xxyyy = ∂5

∂x2∂y3
uβ.

We consider these derivative functions as functionally independent coordinates
of a so-called jet space, denoted J (X × U ), or J for short, where X is the
space whose coordinates are the independent variables, and U the space whose
coordinates are the dependent variables. A differential equation is thus a surface
in J . If we restrict the order of the derivative to be n, we denote the resulting
space by J n(X × U ). Points in J (X × U ) have coordinates

z = z(x1, . . . , xp, u1, . . . , uq, u1
1, . . .).
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Readers interested in the rigorous formulation of jet spaces as fibre bundles
should consult, for example, Saunders (1989). However, it is not necessary
to know the considerable technical details that are involved in order to apply
group actions to differential equations effectively. Indeed, a solid grasp of the
multivariable chain rule is far more important.

Our interest is in functions, like the Schwarzian above, that depend on a
finite number of derivatives and are smoothly differentiable with respect to
those arguments (away from any zeros in denominators).

Definition 1.3.10 We will denote by A the algebra of smooth functions on
J (X × U ), that depend on finitely many arguments.

The operator ∂/∂xi extends to an operator on A called the total differentia-
tion operator

Di = D

Dxi

= ∂

∂xi

+
q∑

α=1

∑
K

uα
Ki

∂

∂uα
K

. (1.33)

We assume we are given a smooth left action of an r dimensional Lie group
G on the space X × U , where X is the space of independent variables and U

is the space of dependent variables. By prolongation we will get a right action
on the derivatives uα

K , where K is the multi-index of differentiation, which is
calculated using the chain rule of differentiation; a right action since the uα

K are
coordinates of the relevant jet bundle. The prolonged action will be denoted
variously as

g • uα
K = ũα

K = Fα
K (z, g),

compare (1.15) and (1.23). This right action then extends to an action on A, as
in Section 1.3.1.

Definition 1.3.11 Given a smooth action G × X × U → X × U , a differential
invariant is an element of A which is invariant under the induced prolonged
action.

The prolonged action is given explicitly by

g • uα
i..j = D̃i · · · D̃jF

α(z, g), (1.34)

where

D̃i = D

Dx̃i

=
p∑

k=1

(D̃x)ikDk (1.35)
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and the coefficients are obtained from the Jacobian matrix of the coordinate
transformation x �→ x̃,

(D̃x)ik = ((Dx̃)−1)ik.

Explicitly, we have

Dx̃ =


∂x̃1

∂x1
· · · ∂x̃1

∂xp

...
. . .

...
∂x̃p

∂x1
· · · ∂x̃p

∂xp

 (1.36)

and note the fact that the Jacobian of the inverse map is the inverse of the
Jacobian.

Example 1.3.12 Consider the action of the Euclidean group SE(2) on the
(u, v) plane given by,(

ũ

ṽ

)
=
(

cos θ − sin θ

sin θ cos θ

)(
u

v

)
+
(

a

b

)
.

Assume u = u(x, t) and v = v(x, t). Since x and t are both invariant, we have
D̃x = Dx, D̃t = Dt and hence the prolonged action is

g •
(

uK

vK

)
=
(

cos θ − sin θ

sin θ cos θ

)(
uK

vK

)
.

Example 1.3.13 For the group SL(2) acting on the variables (x, t, u(x, t)) as
t̃ = t and (

x̃

ũ

)
=
(

a b

c (1 + bc)/a

)(
x

u

)
(1.37)

where (a, b, c) are the coordinates of g ∈ SL(2) near the identity e = (1, 0, 0),
we have courtesy of the chain rule that(

Dx

Dt

)
=
(

a + bux 0
but 1

)(
D̃x

D̃t

)
and thus

D̃x = 1

a + bux

Dx, D̃t = Dt − but

a + bux

Dx.

Note that even though t̃ = t , it is not the case that D̃t = Dt . From equation
(1.34) it now follows that

ũx = D̃xũ, ũxx = D̃x
2
ũ, ũt = D̃t ũ,
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which yields

ũx = ac + ux(1 + bc)

a(a + bux)
, ũxx = uxx

(a + bux)3
, ũt = ut

a + bux

.

It can be checked that this is a right action.

1.3.5 Some typical group actions in geometry and algebra

By and large, group actions in geometry and algebra are induced from linear
actions on vector spaces.

If G is a matrix Lie group in GL(n) and V is an n dimensional vector space
with basis e1, . . . , en, then there is the standard left action of G on V with
respect to the given basis given by

A · ei =
n∑

j=1

aij ej , A = (aij ) ∈ G (1.38)

and extended linearly.
We have already seen the induced action on products, and the induced left

action on V × V × · · · × V is just that. The induced left action on the tensor
product, V ⊗ V which has basis {ei ⊗ ej } is given by

ẽi ⊗ ej = ẽi ⊗ ẽj ,

and extended linearly. Thus if A is a matrix in the group acting on V , with
matrix form (aij ), then there is a listing of the basis elements of V ⊗ V such
that the matrix form of A ⊗ A is given by a11A · · · a1nA

...
. . .

...
an1A · · · annA

 .

Restricting ourselves to the space of symmetric tensors, S2(V ), with
basis { 1

2 (ei ⊗ ej + ej ⊗ ei)}, or antisymmetric tensors, 	2(V ), with basis
{ 1

2 (ei ⊗ ej − ej ⊗ ei) | i �= j}, the induced action on V ⊗ V given above takes
these subspaces to themselves and thus we obtain actions on these subspaces.
Similar remarks apply to spaces of n-fold symmetric and antisymmetric tensors,
denoted Sn(V ) and 	n(V ).

Remark 1.3.14 The set of n-fold symmetric tensors, Sn(V ), should not be
confused with the unit sphere in V in the case n = dim(V ).
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Similarly, given linear actions by the same group, but on two different vector
spaces V and W , we obtain induced actions on V × W and V ⊗ W .

More interesting is the induced action on the dual V ∗ of V . The simplest
way to think of the dual is as the space of coefficients (a1, a2, . . . , an) of a
generic element of V , v = a1e1 + a2e2 + · · · + anen. The group acts on this
element as

ṽ = a1ẽ1 + a2ẽ2 + · · · + anẽn.

Expanding out ẽi using equation (1.38) above, we obtain by collecting terms,

ṽ = ã1e1 + ã2e2 + · · · + ãnen.

Then a = (a1, . . . , an) �→ ã = (ã1, . . . , ãn) is a right action.

Exercise 1.3.15 Show that if g has matrix A with respect to the basis ei ,
i = 1, . . . , n, so that ẽi =

∑
j
Aij ej , then ã = aA.

Similarly, we have actions induced on the dual of Sn(V ). A typical element
in Sn(V ) is written as a symbolic polynomial in the ei ; since the products are
symmetric, this makes sense. Applying the action to the ei , expanding and
collecting coefficients leads to an action on the coefficients, and hence on the
dual of Sn(V ). One of the most important examples of this construction, at least
historically for a physicist, is the induced actions of SU (2) on the coefficients
of a generic homogeneous polynomial of degree 2 and above. We refer the
reader to Fässler and Stiefel (1992), Section 4.3.1, where the details are given
in full. It is well worth the student’s while, from a general educational point
of view, to understand the details of the calculations not only of this induced
group action but also those of the Clebsch–Gordan Theorem, which gives the
decomposition into direct summands of a tensor product of these actions.

Other types of actions induced from linear actions in vector spaces are those
on sets of lines or planes passing through the origin in V .

Example 1.3.16 Consider the set of straight lines passing through the origin
in Rn+1. Then any linear map sends one line to another. Such a line intersects
the unit sphere in two antipodal points. The set of pairs of antipodal points on
an n-sphere is called the n dimensional projective space, Pn. Thus a group of
matrices acting in Rn+1 induces an action on Pn. This space is not linear and
so neither is the induced action.

Exercise 1.3.17 Just as groups of matrices induce actions on straight lines
through the origin, so they induce actions on sets of planes through the origin.
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Consider the (2n) × (2n) matrix,

J =
(

0 In

−In 0

)
where In is the n × n identity matrix and 0 the n × n zero matrix. Given a
subspace W of R2n, define

W⊥ = {v ∈ R2n | vT Jw = 0, for all w ∈ W }.
If W = W⊥ then W is called a Lagrangian subspace. Show that the dimension
of any Lagrangian space is n. The symplectic group Sp(n) is the set of 2n × 2n

matrices A such that

AT JA = J.

Show that Sp(n) is a group, and that it maps the set of Lagrangian spaces to
itself, that is, if W = W⊥ and A ∈ Sp(n), then AW = (AW )⊥.

1.4 Properties of actions

Not all group actions are of interest. To define a moving frame, the main
subject of this book, we need an action to be free and regular at least in the
neighbourhood of our space where we want the frame. Freeness means that if
g · z = z, then g = e, the identity element. Regularity relates to how the group
orbits ‘foliate’ the space.

Definition 1.4.1 Let G act on M and let z ∈ M . The orbit of z is the set of
points in M that are the image of z under the group action,

O(z) = {g · z | g ∈ G}.

If we write the space M as a union of orbits of a Lie group action, we
have what is known as a foliation of M , with each orbit being a leaf of
the foliation. In general, the leaves will not all have the same dimension, see
Figure 1.2.

A regular foliation of an n dimensional space has the property that there
exists a local coordinate transformation and an integer r such that the leaves
are mapped to the set of planes

{(k1, k2, . . . , kn−r−1, zn−r , . . . , zn},
where the ki are constants. For example, if the group action is translation in
the last r coordinate directions, the orbits are already planes. For the action
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Figure 1.2 The orbits of the action x̃ = exp(α)x, ỹ = exp(−α)y foliate the plane.
The origin is a fixed point and the foliation is not regular there.

shown in Figure 1.2, a foliation map exists in a disc around any point in R2

except the origin, that is, there is a coordinate transformation that straightens
out the orbits. If the orbits all have the same dimension, then the foliation
they yield is said to be regular. More is required for an action to be regular
however.

Most actions are not free and regular, but they can often be extended in
various ways so that they become free and regular, at least for worthwhile
portions of the extended space. In particular, this is true for prolongation actions,
provided the action you start with is locally effective on subsets. Here we look
in detail at these concepts.

The first notion we define is the isotropy group of a subset S of M . The
notion of an isotropy group is ‘dual’ to that of a fixed point or invariant set.
It answers the question, given a set, which elements of the group fix that set?
Note that not every element of S is a fixed point of the isotropy group, but it
needs to map to another element of S.

Definition 1.4.2 [Isotropy groups] For S ⊂ M define the isotropy group of
S to be GS = {g ∈ G | g · S ⊂ S} = {g ∈ G | g · z ∈ S,∀z ∈ S}. The global
isotropy group of S is defined to be

G∗
S = ∩z∈SGz = {g ∈ G | g · z = z,∀z ∈ S}.

Exercise 1.4.3 For the group of translations and rotations in the plane, what is
the isotropy group of an arbitrary given point? (Hint: rotate your point and then
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translate it back to itself.) What if that point is the origin? What is the isotropy
group of a circle in the plane? What is the global isotropy group of a circle in
the plane?

Definition 1.4.4 A discrete subgroup of a Lie group G is a subgroup which,
as a set, consists of isolated points in G.

Definition 1.4.5 (Free and effective actions) A group action on M is said to
be:

free if Gz = {e}, for all z ∈ M

locally free if Gz is a discrete subgroup of G, for all z ∈ M

effective if G∗
M = {e}

locally effective if G∗
U is a discrete subgroup of G

on subsets for every open subset U ⊂ M.

Exercise 1.4.6 Show the standard action of the Euclidean group on the plane
is effective but not free. If you induce the action on curves and prolong, at what
degree of prolongation does the action become free?

Remark 1.4.7 A theorem of Ovsiannikov (Ovsiannikov, 1982, see also Olver,
2000) guarantees that the prolongation of actions, which are locally effective on
subsets of X × U , will be locally free on an open dense subset of J n(X × U)
for sufficiently large n. For results for product actions, see Boutin (2002) and
Olver (2001a), Example 3.1.

Definition 1.4.8 A group action is regular if

(i) all orbits have the same dimension,
(ii) for each z ∈ M , there are arbitrarily small neighbourhoods U(z) of z such

that for all z′ ∈ U(z), U(z) ∩ O(z′) is connected.

Locally, a regular action has orbits that foliate the space in a regular way, with
one additional condition (ii) above, see Figure 1.3.

An example of an action satisfying (i) but not (ii) in Definition 1.4.8 is
pictured in Figure 1.4. The group is (R,+) and acting on the punctured plane,
R2 \ {(0, 0)}; the orbits are the integral curves of the flow shown. The action
is not regular at those points lying on the periodic orbit P . Indeed, for every
z ∈ P , the intersection of arbitrarily small neighbourhoods U(z) with orbits of
points z′ /∈ P have infinitely many components.

The next notion we require is that of the transversality of surfaces in our
space M . Figure 1.5 illustrates the concept for curves in the plane.
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all
different
orbits

Figure 1.3 A regular action foliates the space with orbits, all of the same dimen-
sion. Moreover, each orbit intersects the neighbourhood in a single connected
component.

P

z

z

Figure 1.4 An action which is not regular at points z ∈ P where P is the periodic orbit.

(ii)(i)

Figure 1.5 The two curves at (i) intersect transversally as at every intersection
point the two tangent spaces of the curves span the tangent space of the plane.
The two curves at (ii) are not transverse as the span of the tangent spaces at the
intersection has dimension less than that of the ambient space.
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Definition 1.4.9 We say two smooth surfaces K and O contained in Rn, of
dimensions α and β respectively, 0 ≤ α, β ≤ n, α + β ≥ n, intersect transver-
sally if for every z ∈ K ∩ O, the tangent spaces TzK and TzO, viewed as
subspaces of TzR

n, satisfy

TxK + TxO = TxRn;

in words, the span of the two tangent spaces is the full tangent space at every
point of intersection.

If the action is regular, then locally there exists a smooth cross section K,
see Figure 4.1, such that for the orbits O(z),

(i) dim K + dim O(z) = dim M ,
(ii) for z ∈ K, K ∩ O(z) is a single point,

(iii) K is transverse to the group orbits; that is, for z ∈ K, the direct sum of the
tangent spaces of K and O(z) at the point z is the whole of TzM .

As we will show in Chapter 4, the cross section K is the moving frame that is
the subject of this book.

1.5 One parameter Lie groups

The easiest way to analyse a group action in detail is to examine the action of
its one parameter subgroups.

Definition 1.5.1 A one parameter Lie subgroup of a Lie group G is a path
t �→ h(t) ∈ G such that

h(0) = e

h(t)h(s) = h(t + s), for all s, t ∈ R
(1.39)

Example 1.5.2 In G = C \ {0}, with the usual product, let h(t) = eit . This is
a one parameter subgroup as h(t)h(s) = eiteis = ei(t+s), and h(0) = 1.

Exercise 1.5.3 Show that if α ∈ C is non-zero, then h(t) = eαt is a one param-
eter subgroup of C \ {0}. Plot the curves in C for various α.

Exercise 1.5.4 Let G = R+ × R with group product given by

(c, d)·(a, b) = (ac, cb + d).

Show h1(t) = (1, βt) and h2(t) = (eαt , 0) are both one parameter subgroups.
For arbitrary α, β ∈ R, α �= 0, show the general form of the one parameter
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Figure 1.6 The one parameter group {exp(it) | t ∈ R} in the complex plane.

subgroups is

h3(t) = (eαt , β(eαt − 1)/α).

To each one parameter subgroup h(t) we can associate a vector vh at the
identity element of G, the tangent vector to path at t = 0,

vh = d

dt

∣∣∣∣
t=0

h(t), (1.40)

see Figure 1.6. In Chapter 2, we will clarify and prove the important theorem,

Theorem 1.5.5 One parameter subgroups of a group G are in one-to-one
correspondence with tangent vectors at the identity element of G.

In interpreting this theorem, we distinguish h(t) from, say, h(2t), even
though the images of the curves are the same. Unless otherwise stated, the
parametrisation is an intrinsic component of a one parameter subgroup. Differ-
ent parametrisations can be distinguished by their value at t = 1.

For matrix groups, tangent vectors of one parameter subgroups can be easily
computed. Indeed, if A(t) = (aij (t)), then A′(t) is the matrix A′(t) = (a′

ij (t)).

Example 1.5.6 Let G = O(3) = {A ∈ GL(3, R) : AT A = I }, that is, the
group of 3 × 3 orthogonal matrices. Let the one parameter subgroup h(t) be
given by

h(t) =
 cos t − sin t 0

sin t cos t 0
0 0 1

.

Then the associated tangent vector is

vh = d

dt

∣∣∣∣
t=0

h(t) =
 0 −1 0

1 0 0
0 0 0

.
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Exercise 1.5.7 Show that

h(t) =

 cosh(µt) + α

µ
sinh(µt)

β

µ
sinh(µt)

γ

µ
sinh(µt) cosh(µt) − α

µ
sinh(µt)


is a one parameter subgroup of SL(2), that is, not only h(s)h(t) = h(s + t) but
also det h(t) = 1, provided µ2 = α2 + βγ . Show

vh =
(

α β

γ −α

)
.

Show that any tangent vector at the identity of SL(2) has this form, that is, has
zero trace. Hint: differentiate det(A(t)) − 1 = 0 with A(0) = I2.

1.6 The infinitesimal vector fields

A rigorous discussion of the ideas in this section requires the concepts discussed
in Chapters 2 and 3. Fortunately, for many applications the calculation of
derivatives and tangent vectors is well defined from the context. The informal
discussion here is for these cases.

Definition 1.6.1 If h(t) is a one parameter subgroup of G acting on M , so that
vh is as defined in equation (1.40), and supposing that differentiation on M is
defined, then the infinitesimal action of h(t) at z ∈ M is the vector

vh · z = d

dt

∣∣∣∣
t=0

h(t) · z.

The infinitesimal vector field is the map,

z �→ vh · z,

giving a vector at every point z (see Figure 1.7).

Note that ‘the infinitesimal action’ is not a group action; rather the vector
fields represent the associated Lie algebra, which is defined in Chapter 3.

Exercise 1.6.2 For a one parameter matrix group h(t) acting linearly on the left
(right) of a vector space V , show the infinitesimal action is simply left (right)
multiplication by the matrix vh. Hint: the product rule holds for the matrices.

Exercise 1.6.3 For a one parameter matrix subgroup h(t) ⊂ G acting by left
(right) multiplication on G, show the infinitesimal action is simply left (right)
multiplication by vh.
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M

z

h(t) · z

vh · z

Figure 1.7 The infinitesimal action of a one parameter Lie group gives a vector field on M .

Example 1.6.4 Given a matrix Lie group G, the adjoint or conjugation action
of a one parameter Lie subgroup t �→ H (t) ∈ G on all of G is

Ã(t) = H (t)−1AH (t).

Since H (t)−1H (t) ≡ I and H (0) = I , we have that (H−1)′(0) = −H ′(0) =
−vH , and so the infinitesimal action is

d

dt

∣∣∣∣
t=0

Ã(t) = AvH − vH A = [A, vH ].

If near z ∈ M we have coordinates z = (z1, . . . , zn), then h(t) · z =
(z̃1(t), z̃2(t), . . . , z̃n(t)) and the infinitesimal action is calculated component-
wise. In the particular case of a prolonged action inJ (X × U ), the infinitesimal
action is calculated on the coordinates uα

K as

vh · uα
K = d

dt

∣∣∣∣
t=0

ũα
K (t).

Example 1.6.5 For the one parameter subgroup of SL(2) given in Exercise
1.5.7, and the first of the actions of SL(2) given in Example 1.2.14,

x̃ = ax + b

cx + d
, ỹ = y, ad − bc = 1

we have that

vh · (x, y, yx) = (2αx + β − γ x2, 0, 2yx(γ x − α)).
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The first two components follow directly from the group action as given, while
the third component follows from the prolonged action which is

ỹx(t) = 1

µ2
yx(µ cosh(µt) − (α − γ x) sinh(µt))2

where we have used µ2 = a2 + bc to simplify the expression.

Exercise 1.6.6 Consider the one parameter subgroup of SL(2) given in Exercise
1.5.7, and the third of the actions of SL(2) given in Example 1.2.14. Calculate
the infinitesimal action at (x, y, yx).

Recall for a function f on M we defined the induced action on f to be
(g · f )(z) = f (g · z) (Section 1.3.1).

Definition 1.6.7 For a differentiable function f defined on M and a one
parameter group h(t) acting on M , we define the infinitesimal action on f to
be

(vh · f )(z) = d

dt

∣∣∣∣
t=0

f (h(t) · z).

Thus if f : M → R and if in coordinates z = (z1, z2, . . . , zn) then

(vh · f )(z) =
∑

i

∂f

∂zi

vh · zi . (1.41)

Looking again at Example 1.6.5, for a given real valued function
f = f (x, y, yx) we have

(vh · f )(x, y, yx) = (2αx + β − γ x2)
∂f

∂x
+ 2yx(γ x − α)

∂f

∂yx

.

Proposition 1.6.8 If f : M → R is an invariant of the group action G × M →
M , then for every one parameter subgroup h(t) ⊂ G, vh · f ≡ 0.

Exercise 1.6.9 Prove Proposition 1.6.8. Hint: f (h(t) · z) ≡ f (z).

Definition 1.6.10 If vh · f ≡ 0 for every one parameter subgroup h(t) ⊂ G,
we say that f satisfies the infinitesimal criterion for invariance.

Let us look in detail at the infinitesimal action for a multiparameter group.
Suppose that a1, a2, . . . , ar are the parameters of group elements near the
identity element e, and that (z1, . . . zn) are coordinates on M .

Definition 1.6.11 Given a differentiable group action G × M → M , the
infinitesimals of the group action are defined to be the derivatives of the z̃i
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on M with respect to the group parameters aj evaluated at the identity element
e, and are denoted as

∂z̃i

∂aj

∣∣∣
g=e

= ζ i
j . (1.42)

Definition 1.6.12 Given a group action of G on M = X × U , the infinitesimals
of the prolonged group action are defined to be the derivatives of the ũα

K with
respect to the group parameters aj , evaluated at the identity element e, and are
denoted as,

∂x̃i

∂aj

∣∣∣
g=e

= ξ i
j ,

∂ũα

∂aj

∣∣∣
g=e

= φα
,j ,

∂ũα
K

∂aj

∣∣∣
g=e

= φα
K,j . (1.43)

Keeping track of indices rapidly becomes tedious and so we usually compile
the infinitesimals in table form, with one row for each group parameter and one
column for each coordinate:

xi uα uα
K

aj ξ i
j φα

,j φα
K,j

Exercise 1.6.13 For the action in Example (1.3.12), show that the table of
infinitesimals is

x t u v uK vK

α 0 0 −v u −vK uK

a 0 0 1 0 0 0
b 0 0 0 1 0 0

A one parameter subgroup h(t) induces a path in the parameters as t �→ aj (t),
j = 1, . . . , r near the identity element. Then defining αj , j = 1, . . . , r by

d

dt

∣∣∣∣
t=0

aj (t) = αj , (1.44)

the chain rule yields

vh · zi =
r∑

j=1

ζ i
j α

j .

Moreover for a differentiable function f defined on M we have

(vh · f )(z1, . . . zn) =
∑

i

∂f

∂zi

vh · zi =
∑

j

(∑
i

ζ i
j

∂f

∂zi

)
.

Definition 1.6.14 For a differentiable group action G × M → M , with group
parameters a1, a2, . . . , ar near the identity element e, and z= (z1, . . . , zn)∈M ,
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the infinitesimal vector corresponding to the group parameter aj is defined to
be

vj =
n∑

i=1

ζ i
j

∂

∂zi

, (1.45)

and hence

vh =
∑

j

αj vj . (1.46)

For readers unfamiliar with differential operators as vectors, see Section
2.2.2.

The infinitesimal action of a prolonged one parameter subgroup h(t) is, for
αj given in (1.44),

vh · xi =
∑

j

ξ i
jα

j

vh · uα =
∑

j

φα
,jα

j

vh · uα
K =

∑
j

φα
K,jα

j .

(1.47)

The prolonged infinitesimal action on functions is obtained by applying
Definition 1.6.7 to functions on the prolonged space,

(vh · f )(xi, u
α, uα

K ) =
∑

j

αj

(∑
i,α,K

ξ i
j

∂f

∂xi

+ φα
,j

∂f

∂uα
+ φα

K,j

∂f

∂uα
K

)
(1.48)

while the infinitesimal vector corresponding to the j th group parameter aj

defined in (1.45), for a prolonged action is

vj =
∑
i,α,K

ξ i
j

∂

∂xi

+ φα
,j

∂

∂uα
+ φα

K,j

∂

∂uα
K

. (1.49)

Exercise 1.6.15 Consider the third of the SL(2) actions in Example 1.2.14,

x̃ = ax + b

cx + d
, ỹ = 6c(cx + d) + (cx + d)2y, ad − bc = 1.

Take local coordinates near the identity to be (a, b, c) so that e = (1, 0, 0).
Verify the table of infinitesimals,

x y yx

a 2x −2y −4yx

b 1 0 0
c −x2 6 + 2xy 4xyx + 2y
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Show that this table, together with equation (1.47) for the one parame-
ter subgroup in Exercise 1.5.7, yields the results of Exercise 1.6.6. Hint:
(α, β, γ ) = (α1, α2, α3).

Remark 1.6.16 Applying Definition 1.6.10 to the prolonged action is the
first step of Sophus Lie’s algorithm for calculating the symmetry group of a
differential equation. This algorithm is discussed in detail in textbooks, for
example Bluman and Cole (1974), Ovsiannikov (1982), Bluman and Kumei
(1989), Stephani (1989), Olver (1993), Hydon (2000) and Cantwell (2002),
and we refer the interested reader to these.

The infinitesimals and infinitesimal operators defined above are all with
respect to given coordinates on M and given parameters describing the group
action. Coordinates are the reality of applying the theory and writing software,
but it is also important to have the geometric point of view developed in the
next two chapters. The full importance of the infinitesimal vectors will become
apparent in Chapter 3.

1.6.1 The prolongation formula

Given a prolonged action, it is not necessary to calculate ũα
K in order to calculate

the infinitesimals φα
K,j .

In the simplest case where we have u = u(x), that is, one dependent and
one independent variable, we can obtain the infinitesimal action on yx without
calculating ỹx as follows. Observe that

∂ũx

∂gj

= ∂

∂gj

(
dũ

dx

/dx̃

dx

)
=
(

dx̃

dx

)−2 (dx̃

dx

∂

∂gj

dũ

dx
− dũ

dx

(
∂

∂gj

dx̃

dx

))
=
(

dx̃

dx

)−2 (dx̃

dx

d

dx

∂ũ

∂gj

− dũ

dx

d

dx

∂x̃

∂gj

)
since derivatives with respect to x and the gj commute. Evaluating this at g = e,
when dx̃/dx = 1, yields

φ[x],j = d

dx
φ,j − ux

d

dx
ξj , (1.50)

where we have denoted by [x] the particular index of differentiation on u whose
infinitesimal we are considering. Note that the derivative operators in equation
(1.50) are total derivatives. This is important since typically ξ and φ depend on
the dependent variables.
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Exercise 1.6.17 Adapt the calculation above to show that in the case u = u(x),
and K = [x . . . x], with |K| terms, Kx = [xx . . . x], with |K| + 1 terms,

φKx,j = d

dx
φK,j − uKx

d

dx
ξj . (1.51)

Exercise 1.6.18 Extend the calculation of the previous exercise to show that if
u = u(x, y), K = [x . . . xy . . . y], Kx = [xx . . . xy . . . y], then

φKx,j = D

Dx
φK,j − uKx

D

Dx
ξx
j − uKy

D

Dx
ξ

y

j (1.52)

where

ξx
j = ∂

∂gj

∣∣∣
g=e

x̃, ξ
y

j = ∂

∂gj

∣∣∣
g=e

ỹ

and

D

Dx
= ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux

+ uxy

∂

∂uy

+ · · · = ∂

∂x
+
∑
K

uKx

∂

∂uK

is the total derivative operator in the x direction. Find the matching formula for
φKy,j .

The formula (1.52) is a recursion formula satisfied by the φK,j in the case of
two independent and one dependent variables. A more general result follows.

Theorem 1.6.19 The φα
K,j in terms of the ξ i

j and φα
,j is

φα
K,j = DK

(
φα

,j −
∑

i

uα
i ξ i

j

)
+
∑

i

ξ i
j u

α
Ki, (1.53)

where DK is the total derivative of index K , uα
i = ∂uα/∂xi and uα

Ki = ∂uα
K/∂xi .

Exercise 1.6.20 Verify the table of infinitesimals given below for the action

x̃ = ax + b

cx + d
, ũ(̃x) = u(x),

where ad − bc = 1, in two different ways: by calculating φK,j directly from
ũK , and by using the formulae above

x u ux uxx uKx

a 2x 0 −2ux −4uxx −2(|K| + 1)uKx

b 1 0 0 0 0
c −x2 0 2xux 4xuxx + 2ux (|K| + 1)(2uKx + |K|uK )

where |K| is the length of K .
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The proof of Theorem 1.6.19 follows from iterative use of the chain rule.
These formulae and their derivations can be found in every textbook on symme-
tries of differential equations, for example Olver (1993) or Bluman and Kumei
(1989), in a seemingly endless variety of notational styles. It is well worth
taking the time to calculate a selection of prolongations of infinitesimals, not
only to be sure which index is which in the preferred notation, but then also to
implement it in the preferred computer algebra system. The software will be
needed to do the calculations in Chapter 4.

Exercise 1.6.21 Implement the prolongation formulae, equation (1.53). The
input will be lists of dependent and independent variables, the infinitesimals ξi

and φα and an index of differentiation K . The output will be φα
K .

Remark 1.6.22 Virtually every computer algebra system has a package that
implements Lie’s algorithm to find symmetries of differential equations, and all
these have, of necessity, implementations of the prolongation formulae buried
in them. A review of the software packages available has been given by W.
Hereman in Ibragimov (1996), Chapter 13; one recent package is Carminati
and Vu (2000).

1.6.2 From infinitesimals to actions

We now state the major theorem of this section, that the one parameter group
action can be derived from the infinitesimals, at least for small t .

Theorem 1.6.23 The solution of the differential system

d

dt
z̃i = ζ i (̃z), i = 1, . . . , n

z̃
∣∣
t=0 = z

(1.54)

yields a (local) one parameter transformation group whose infinitesimals are
ζ i .

Typically the system can be solved only for t in an interval about 0, in which
case a local action results. The proof of this theorem is given in Chapter 2.
In the particular case of a prolonged action, the theorem is written as
follows.
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z1 = z( )

z1 (δ) = z( + δ)

δ +
δ

z = z(0)

Figure 1.8 The one parameter group condition for a transformation group means:
if a point z ‘flows’ for ‘time’ ε and then for ‘time’ δ, it arrives at the same point as
if it flowed for ‘time’ δ + ε.

Theorem 1.6.24 The solution of the differential system

d

dt
x̃i = ξ i (̃x, ũ), i = 1, . . . , p

d

dt
ũα = φα (̃x, ũ), α = 1, . . . , q

(̃x, ũ)
∣∣
t=0 = (x, u)

(1.55)

yields a one parameter transformation group whose infinitesimals are ξ i and
φα .

Note that the xi and the uα appear on the same footing in the ordinary
differential system (1.55). It is only when the induced action on the derivatives
is calculated that the uα are taken to be functions of the xi .

Remark 1.6.25 In applications where t is one of the existing independent
variables, we set the group parameter to be ε.

The existence and uniqueness of the solution to first order ordinary differ-
ential systems with given initial values is the key result, not only to obtain
(̃x, ũ) but to prove the one parameter group property holds. To describe this
property for a transformation group, we need some notation. Set z̃(ε) = z1. If
we now take z1 as our new initial value, we obtain the curve δ �→ z̃1(δ). The
one parameter group action property is then (see Figure 1.8)

z1 = z̃(ε) =⇒ z̃1(δ) = z̃(ε + δ).

A full discussion is given in Chapter 2.
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Typically, it is the infinitesimals that are given in an application, not the
group action. Since it is hard to integrate systems like (1.55), we will be trying
to avoid this integration step as much as possible. One of the great features
of the moving frame theory is that so many of the calculations can be done
with only the infinitesimals. In addition, it is important to ask yourself, for
the particular application at hand, ‘if the integration step can only be handled
approximately, does an approximate solution suffice?’

The uniqueness of the solution of the differential system implies that if you
start with a one parameter group action, obtain the infinitesimals, and then
integrate, you obtain the same one parameter group you started with. If you
do not start with an action satisfying the one parameter group property, then
the solution of the system is a reparametrisation of the group action that does
satisfy it.

Exercise 1.6.26 Consider the scaling transformation x̃ = λ2x which is an action
of (R+, ·), whose identity element is λ = 1. Differentiating x̃ with respect to λ

at λ = 1 yields the infinitesimal ξ = 2x.
What to do: integrating the system dx̃/dt = 2x̃ with initial condition x̃ = x

at t = 0 yields x̃ = exp(2t)x. Show this is a reparametrisation of the scaling
transformation that satisfies the one parameter group property.
What not to do: integrating the system dx̃/dλ = 2x̃ with initial condition x̃ = x

at λ = 1 yields x̃ = exp(2(λ − 1))x. Show this is not a group action of (R+, ·).

The purpose of the next exercise is to give the reader a taste of the skulldug-
gery required to solve a typical differential system and verify Theorem 1.6.24
in practice. These infinitesimals arose in a study of non-classical reductions
of the equation ut = uxx + f (u), for f (u) a cubic (Clarkson and Mansfield,
1993).

Exercise 1.6.27 Find the group actions corresponding to the given infinitesi-
mals,

x t u

ε 3µ tan(µx + κ) 1 −µ2(3u + b) sec2(µx + κ)

where µ, κ and b are constants. (Since t is here an independent variable,
we use ε for the group parameter.) Verify the group action property, and
show that I = exp(−3µ2t) sin(µx + κ) and J = (3u + b) tan(µx + κ) are
invariants.
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Solution to Exercise 1.6.27 We need to solve

x̃ε = 3µ tan(µx̃ + κ)
t̃ε = 1
ũε = −µ2(3ũ + b) sec2(µx̃ + κ)

together with x̃(0) = x, t̃(0) = t , ũ(0) = u. The first two equations are easily
integrated to give

sin(µx̃ + κ) = exp(3µ2ε) sin(µx + κ), t̃ = t + ε.

Back-substituting ε = t̃ − t into the first expression and rearranging terms,
we obtain that exp(−3µ2t) sin(µx + κ) = exp(−3µ2̃t) sin(µx̃ + κ), in other
words,I is an invariant. To verify the group action property for the variable x, set
x1 = x̃(ε). Note that sin(µx1 + κ) = exp(3µ2ε) sin(µx + κ) and sin(µx̃1(δ) +
κ) = exp(3µ2δ) sin(µx1 + κ) and thus

sin(µx̃1(δ) + κ) = exp(3µ2δ) sin(µx1 + κ)
= exp(3µ2δ) exp(3µ2ε) sin(µx + κ)
= exp(3µ2(ε + δ)) sin(µx + κ)
= sin(µx̃(ε + δ) + κ)

so that x̃1(δ) = x̃(ε + δ) as required (for small enough δ and ε). Verifying the
flow condition for the variable t is trivial and is left to the reader. To simplify
the integration of the third equation, note that x̃εε = 3µ2 sec2(µx̃ + κ )̃xε and
thus the third equation becomes

3ũε

3ũ + b
= − x̃εε

x̃ε

which is easily integrated to give

c = x̃ε(3ũ + b) = 3µ tan(µx̃ + κ)(3ũ + b)

where c is a constant of integration. Thus the quantity J = tan(µx̃ + κ)(3ũ +
b) is an invariant; this necessarily has the same value for all values of ε, so we
obtain

tan(µx̃ + κ)(3ũ + b) = tan(µx + κ)(3u + b).

Solving this for ũ and back-substituting for x̃ in terms of ε and x yields the
desired expression for ũ(ε) in terms of ε and the initial position, (x, t, u). Veri-
fying the group property using this expression is, however, not recommended.
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Instead, we use the invariant J . We have

tan(µx̃1(δ) + κ)(3ũ1(δ) + b) = tan(µx1 + κ)(3u1 + b)
by invariance of J

= tan(µx̃(ε) + κ)(3ũ(ε) + b)
as x1 = x̃(ε), u1 = ũ(ε)

= tan(µx̃(ε + δ) + κ)(3ũ(ε + δ) + b)
by invariance of J

= tan(µx̃1(δ) + κ)(3ũ(ε + δ) + b)

using the group property for the variable x in the last step. Thus ũ1(δ) =
ũ(ε + δ) as required. The invariance of J can also be checked directly by
noting that dJ /dε ≡ 0, and similarly for the other invariant. We leave this to
the reader. �



2

Calculus on Lie groups

In this chapter we examine briefly the details of the technical definition of a Lie
group. This chapter can be skipped on a first reading of this book. Eventually,
however, taking a small amount of time to be familiar with the the concepts
involved will pay major dividends when it comes to understanding the proofs
of the key theorems.

By definition, Lie groups are locally Euclidean, so we can use tools we know
and love from calculus to study functions, vector fields and so on that can be
defined on them. Thus, we study differentiation on a Lie group. There are at least
three important cases to consider. The first involves understanding the intrinsic
definition of tangent vectors. These ideas inform every other understanding of
a tangent vector, so we do that first. A second and simpler line of argument is
strictly for matrix presentations, while a third treats tangent vectors as linear,
first order differential operators. We will need all three.

The major theorem we prove is that the set of tangent vectors at any given
point g ∈ G is in one-to-one correspondence with the set of one parameter
subgroups of G. After a discussion of the exponential map in its various guises,
we end the chapter with a discussion of concepts analogous to tangent vectors,
one parameter subgroups and the exponential map for transformation groups.

2.1 Local coordinates

The technical definition of a Lie group is that it is a smooth, locally Euclidean
space, such that the multiplication and inverse maps are smooth. In this section,
we describe what this all means.

Up close, every small enough piece of an n dimensional Lie group looks
like a piece of Rn in the sense that one has coordinates, as in Figure 2.1. Thus
we say that Lie groups are locally Euclidean.
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g

Figure 2.1 Near every g ∈ G, one can define a system of coordinates centred at g.

Definition 2.1.1 A chart or coordinate map for the Lie group G, is given by
an invertible map

φ : U(g) −→ φ(U (g)) ⊂ Rn,

where U(g) ⊂ G is a neighbourhood of g and φ(U (g)) is an open subset of Rn

for some n. If in addition, φ(g) = 0, we say the chart is centred at g ∈ G.

Remark 2.1.2 A subset U of Rn is open if for every x ∈ U , there is an ε > 0
such that the ε-ball, Bε(x) = {y ∈ Rn | |x − y| < ε} is contained wholly within
U . This requirement relieves us from considering singularities of coordinate
maps which occur at the boundaries of their domains of definition, as well as
ensuring that the image of the coordinate map is fully n dimensional.

The best known example of a locally Euclidean space which is not globally
Euclidean is the the surface of a sphere; think of the globe. (What are the
coordinate maps for the surface of the earth?) Unsurprisingly, the coordinate
maps are known as charts and the set of all possible charts is called an atlas.

In addition to coordinate charts existing about every point g ∈ G, we also
need the charts to be smoothly coherent in the following sense.

Definition 2.1.3 We shall call a set of charts {(Uj , φj ) | j ∈ J } for an n

dimensional space M a smooth atlas if

(i) ⋃
i∈J

Ui = M

and
(ii) for all i, j ∈ A such that domain(φi) ∩ domain(φj ) �= ∅, then the inter-

change map,

φj ◦ φ−i
i : φi(domain(φi) ∩ domain(φj )) ⊂ Rn−→Rn,
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is smooth, that is, infinitely differentiable, according to the standard defi-
nitions given in several variable calculus.

One consequence of the definition is that the dimensions of the image space
of the coordinate maps are all the same.

Definition 2.1.4 A space with a smooth atlas is called a smooth manifold.

The second part of the definition of a Lie group is that multiplication maps
and the inverse map are smooth.

Definition 2.1.5 Given h ∈ G, left multiplication by h is defined by

Lh : G−→G, g �→ hg

while right multiplication by h is defined by

Rh : G−→G, g �→ gh.

Definition 2.1.6 We say left multiplication is a smooth map provided for every
h ∈ G and every pair of coordinate maps φi , φj satisfying

Lhdomain(φi) ∩ domain(φj ) �= ∅,

that the map φj ◦ Lh ◦ φ−1
i is smooth, according to the standard definitions of

smoothness in several variable calculus, on its domain of definition.

The definitions for right multiplication and the inverse map to be smooth are
similar. Since multiplication is smooth, it follows that given coordinates near the
identity, we obtain coordinates near any element of the Lie group using left or
right multiplication. If U(e) is a neighbourhood of e ∈ G, then U(g) = g·U(e)
is a neighbourhood of g. Moreover, if φ : U(e)−→Rn is a coordinate map, then
φ ◦ g−1 is a coordinate map for U(g). One can also use right multiplication;
this will yield a different chart in general.

Definition 2.1.7 A Lie group G is a smooth manifold which is also a group,
such that the multiplication and inverse maps are smooth.

Example 2.1.8 The unit circle, S1 ⊂ C is a Lie group with multiplication,

exp(iθ ) exp(iψ) = exp(i(θ + ψ)).

For exp(iθ ) ∈ S1, and 0 < ε < π , take

U(exp(iθ)) = {exp(iψ) | |θ − ψ | ≤ ε}
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φ

g

0

Figure 2.2 φ : U(g)−→φ(U(g)) ⊂ R, φ(g) = 0.

φ

Figure 2.3 φ : U(g)−→φ(U(g)) ⊂ R
2, φ(g) = 0.

and then the coordinate map φ centred at θ is given by (see Figure 2.2)

φ(exp(iψ)) = ψ − θ.

Exercise 2.1.9 Consider the coordinate maps given in Example 2.1.8 above.
For coordinate maps φ0 and φ1 centred at θ0 and θ1 in S1 ⊂ C respectively,
whose domains have non-trivial intersection, show that the interchange map is
a translation,

φ1 ◦ φ−1
0 (ψ) = ψ + θ0 − θ1.

Example 2.1.10 The two dimensional torus, S1 × S1, is a Lie group, with the
product multiplication,

(exp(iθ), exp(iϕ))·(exp(iχ ), exp(iψ)) = (exp(i(θ + χ )), exp(i(ϕ + ψ))).

Exercise 2.1.11 Define a neighbourhood and a coordinate chart for any element
of S1 × S1, see Figure 2.3.

Example 2.1.12 Elements of the Lie group SL(2, R) near the identity are given
by  a b

c
1 + bc

a


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since a is close to unity and is therefore non-zero. Coordinates in this neigh-
bourhood of the identity I2, centred at I2, are then (for example)

φ :

 a b

c
1 + bc

a

 �→ (a − 1, b, c) ∈ R3.

Exercise 2.1.13 Write down coordinates for a neighbourhood of any element
of SL(2, R) by first using left (or right) multiplication to take the given element
to the identity, followed by a coordinate map at the identity. Given two such
charts, what is the interchange map?

Exercise 2.1.14 Write down coordinates for elements of SO(3) near the identity,
using both Euler angles and the Cayley parametrisation (Fässler and Stiefel,
1992, page 83).

2.2 Tangent vectors on Lie groups

Using the system of coordinates we can talk about tangent vectors on G. Given
the wealth of ways Lie groups present themselves, the naive view of a tangent
vector as an arrow sitting on a surface is not particularly helpful, unless you
happen to have a surface such as a two dimensional torus. Instead, the best way
to think of a tangent vector is in terms of paths; to obtain a tangent vector, take
a smooth path and differentiate it.

In standard Differential Topology, one differentiates the image of the path
under a coordinate map, since differentiation of a path in Rn is well defined.
But it is enough to think of the path itself as representing the vector; this is the
so-called intrinsic definition of a vector. For Lie groups in their matrix repre-
sentation, one can describe tangent vectors using matrices, taking advantage
of the fact that the set of n × n matrices is a linear space. Finally, we look at
tangent vectors as first order differential operators. These last two descriptions
are particularly useful in applications.

Definition 2.2.1 A smooth path with basepoint g ∈ G is a map γ : [−ε, ε] ⊂
R−→G for some ε > 0, such that γ (0) = g, and wherever γ maps into
the domain of a coordinate map φ, then φ ◦ γ is a smooth curve in Rn

(Figure 2.4).

While we have defined a path as a map, we also speak of its image
γ ([−ε, ε]) ⊂ G as being the path, depending on the context.

If γ : t �→ γ (t) ⊂ U(g) ⊂ G is a path with basepoint g ∈ G, and φ is a
coordinate map centred at g, then φ(γ (t)) is a path with basepoint 0 ∈ Rn.
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g

φ

R
n

φ(γ(t))

γ(t)

Figure 2.4 A coordinate map centred at g takes each path through g to a path through 0.

γ1
g

γ2

φ(γ1 )
φ(γ2 )φ

v

Figure 2.5 Paths are equivalent at g if their tangent vectors at φ(g) are equal.

The path φ ◦ γ has a tangent vector at 0 ∈ Rn given by v = (φ ◦ γ )′(0). The
idea is to think of a vector at g as a curve based at g, and to differentiate it
in coordinates to produce a traditional vector when necessary. Unfortunately,
more than one path at g leads to the same v in Rn. In order to have a technically
rigorous definition of a tangent space, we need to view as equivalent all paths
giving the same vector in Rn under the same coordinate map. The equivalence
relation is pictured in Figure 2.5.

Definition 2.2.2 Two paths γ1, γ2 ⊂ U(g) both with basepoint g, that is,
satisfying g = γ1(0) = γ2(0), are said to be equivalent at g, γ1 ∼ γ2, if for
some coordinate map φ with g ∈ domain(φ),

d

dt

∣∣∣∣
t=0

φ ◦ γ1 = d

dt

∣∣∣∣
t=0

φ ◦ γ2.

Note that part of the definition of equivalence is that their basepoints, γi(0)
are equal. The equivalence class of γ is denoted [γ ].

Paths that are equivalent in one coordinate chart are equivalent in every coor-
dinate chart; since φ1 ◦ γ = (φ1 ◦ φ−1) ◦ φ ◦ γ , the result follows by applying
the chain rule.
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Definition 2.2.3 The tangent space at g ∈ G, denoted TgG, is the set of all
equivalence classes of smooth paths γ with basepoint g = γ (0).

Theorem 2.2.4 The tangent space TgG is a linear space.

Indeed, let φ be a coordinate map centred at g, that is, φ(g) = 0. If γ1, γ2

are paths with basepoint g then define γ1 + γ2 to be the path

φ−1(φ ◦ γ1 + φ ◦ γ2)

and for k ∈ R, define kγ to be the path

φ−1(kφ ◦ γ ).

Note that γ1 + γ2 and kγ have their basepoints at g.

Exercise 2.2.5 Check that if γ1 ∼ γ ′
1 and γ2 ∼ γ ′

2 then (γ1 + γ2) ∼ (γ ′
1 + γ ′

2).
Similarly, if γ ∼ γ ′ then (kγ ) ∼ (kγ ′). Conclude that addition and multiplica-
tion by a scalar are well defined on equivalence classes. Hence prove Theorem
2.2.4.

If M and N are manifolds and f : M → N is a map, then a smooth path γ

on M maps to a path f ◦ γ on N .

Definition 2.2.6 We say f is differentiable at x ∈ M if the tangent map

Txf : TxM → Tf (x)N, [γ ] �→ [f ◦ γ ]

is well defined (Figure 3.6). If Txf exists for every x ∈ M , we say f is
differentiable on M and write the tangent map as Tf : T M → T N , where
Tf (v) = Tx(v) for v ∈ TxM .

In coordinates, f is differentiable at x if for every differentiable path γ

based at x ∈ M , the path f ◦ γ is differentiable on N . The tangent map is then

d

dt

∣∣∣∣
t=0

γ (t) �→ d

dt

∣∣∣∣
t=0

f (γ (t)).

Recall that for G to be a Lie group, left multiplication (Definition 2.1.5)
must be a smooth map.

Exercise 2.2.7 Show that

γ ∼ γ ′ =⇒ h·γ ∼ h·γ ′.

Conclude that left multiplication induces a map

TgLh : TgG−→ThgG, [γ ] �→ [h·γ ].
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γ
x

f ◦ γ[γ]

[f ◦ γ]

f
f (x)

Figure 2.6 The definition of the tangent map Txf , which sends the vector [γ ] at
x to the vector Txf ([γ ]) = [f ◦ γ ] at f (x).

If h is sufficiently close to the identity so that hg ∈ U(g), then we can use the
same coordinates to examine both γ and h·γ . Then TgLh (defined in Exercise
2.2.7) is represented by the Jacobian of φLhφ

−1:

d

dt

∣∣∣∣
t=0

φ ◦ Lh ◦ γ (t) = D(φ ◦ Lh ◦ φ−1)
d

dt

∣∣∣∣
t=0

(φ ◦ γ )(t).

Similar remarks apply to right multiplication and the inverse map.

2.2.1 Tangent vectors for matrix Lie groups

If the Lie group is represented by matrices, then since the space Mn(R) (Mn(C))
of n × n matrices with real (complex) coefficients is linear, we can differentiate
a path in Mn without needing a coordinate map:

d

dt

∣∣∣∣
t=0

(aij (t)) = (a′
ij (0)).

Thus, for example, differentiating paths in SO(2), we obtain

d

dt

∣∣∣∣
t=0

(
cos θ (t) − sin θ (t)
sin θ (t) cos θ (t)

)
=
(− sin θ (0) − cos θ (0)

cos θ (0) − sin θ (0)

)
θ ′(0)

where multiplication of a matrix by a scalar is understood to be

c(aij ) = (caij ).

For a matrix group, the tangent map to left multiplication T LA is still actually
left multiplication by A, since

d

dt

∣∣∣∣
t=0

AB(t) = A
d

dt

∣∣∣∣
t=0

B(t)

for every path B(t) in the group.
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Exercise 2.2.8 Show that the tangent space at the identity of the Lie group
SO(2) is

Te(SO(2)) =
{(

0 −c

c 0

)
| c ∈ R

}
.

Hint: let c = θ ′(0). Show that the tangent space at an arbitrary element of
A ∈ SO(2) is given by

TA(SO(2)) =
{
A·
(

0 −c

c 0

)
| c ∈ R

}
=
{(

0 −d

d 0

)
·A | d ∈ R

}
.

Show that TA(SO(2)) is a linear space.

Exercise 2.2.9 From A(t)A(t)−1 = I , find a formula for (A−1)′(t) in terms
of A′(t). Note that taking the inverse and differentiation are not commutative
operations. If A(0) = I , show (A−1)′(0) = −A′(0). Hint: the product rule is
valid for matrices.

Exercise 2.2.10 Prove that the tangent space at the identity of SU (2) consists
of matrices of the form (

a b

−b −a

)
,

where Re(a) = 0. Hint: recall from Example 1.1.11 that A ∈ SU (2) means that

A =
(

α β

−β α

)
with αα + ββ = 1. Differentiate α(t)α(t) + β(t)β(t) = 1 at t = 0, and set
α(0) = 1, β(0) = 0, α′(0) = a and β ′(0) = b.

Exercise 2.2.11 The unitary group U (n) is the set of n × n invertible complex
matrices given by

U (n) = {U ∈ GL(n, C) | Ū T U = In}.

Prove that the tangent space at the identity of U (n), which is denoted u(n), con-
sists of matrices which satisfy the equation AT + A = 0. Show this set of matri-
ces is a vector space. What is its dimension? Hint: differentiate U (t)T U (t) = In

with respect to t and set A = U ′(0).
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2.2.2 Some standard notations for vectors and tangent maps
in coordinates

Vectors understood as paths is the all purpose notion from which all the others
derive. In Rn, that is, in coordinates, one can calculate the derivative of the path
to obtain the standard notion of a vector as an element of Rn together with a
base point. Usually the basepoint is implicit.

If we have a vector V (z) at every point z ∈ U ⊂ Rn, then the basepoint for
the vector V (z) is z, and we say the map z �→ V (z) is a vector field.

There are three standard notations for vectors in coordinates. The first is as
a row vector, used for graphical purposes.

Example 2.2.12 Plot the vector field on R2, given by V (x, y) = (−y, x) and
show it is the infinitesimal action of the usual action of SO(2) in the plane.

A second notation is as a column vector, used when doing multivariable
calculus. For example, the derivative of a function f : R2 → R2 in the direction
of the vector V (x, y) = (−y, x)T is

Df (V ) =
(

f 1
x f 1

y

f 2
x f 2

y

)(−y

x

)
. (2.1)

Exercise 2.2.13 To see how (2.1) relates to the definition of a tangent map,
let γ (t) = (cos(t)x − sin(t)y, sin(t)x + cos(t)y), so that (d/dt)|t=0 γ (t) = V .
Compare (2.1) with (d/dt)|t=0 f (γ (t)) expressed as a column vector.

The third notation is as a differential operator. Thus V (x, y) = (−y, x) is
represented by

V (x, y) ≡ −y∂x + x∂y.

More generally,

(V1(z), . . . , Vn(z)) ≡ V1∂z1 + · · · + Vn∂zn
.

We then have that the derivative of a function f : M → R in the direction V is
V (f ).

Exercise 2.2.14 Show V (f ) = Df (V ), where on the left, V is in operator
notation, while on the right, V is a column vector.

Remark 2.2.15 Some authors take the operator notation for a vector as the
starting point for the definition of a vector as a derivation on the set of smooth
functions C∞(M, R) to itself (where ‘smooth’ means, in effect, that a derivation
can act). A derivation V is a linear map satisfying V (fg) = V (f )g + f V (g).
This definition lacks the intuition and the computational ‘nous’ inherent in the
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‘vectors as curves’ view, and hides from view the multivariable calculus needed
to compute anything.

There are times, however, when the operator notation has a computational
advantage. If a function F is an invariant of a group action and V is the
infinitesimal action, then with V in operator notation, we have V (F ) = 0. In
other words, we can write the condition for F to be invariant as a differential
equation. Further, the operator notation will prove extremely useful in calcu-
lating the Lie bracket of two vector fields discussed in the next chapter.

We next consider the tangent map in coordinates. We already saw an example
in Exercise 2.2.13 which we now generalise. Consider f : M → N in some
coordinate chart, and suppose V is expressed as a column vector. Then the
tangent map Txf is given by the Jacobian of f evaluated at x.

Definition 2.2.16 If the map f is given in local coordinates as

x = (x1, x2, . . . , xn) �→ (f 1(x), f 2(x), . . . , f m(x))

then the Jacobian of f evaluated at x is the matrix

Df (x) =


f 1

x1
f 1

x2
· · · f 1

xn

f 2
x1

f 2
x2

· · · f 2
xn

...
...

. . .
...

f m
x1

f m
x2

· · · f m
xn

 .

Indeed, if V = γ ′(0) = (γ ′
1(0), . . . γ ′

n(0))T , then

d

dt

∣∣∣∣
t=0

f (γ (t)) = Df γ ′(0) =


f 1

x1
f 1

x2
· · · f 1

xn

f 2
x1

f 2
x2

· · · f 2
xn

...
...

. . .
...

f m
x1

f m
x2

· · · f m
xn




γ ′
1(0)

γ ′
2(0)
...

γ ′
n(0)

 (2.2)

by the chain rule.
Calculating tangent maps is a little trickier in operator notation. We use

the fact that if χ : N → R is a scalar function, then V (χ ) = Dχ(V ) (Exercise
2.2.14) and thus

(Df (V ))(χ ) = Dχ(Df (V )) = D(χ ◦ f )(V ) = V (χ ◦ f ).

For example, if V = v1∂x + v2∂y is a vector on R2 and f : R2 → R2, then by
the chain rule,

(Df (V ))(χ ) = V (f ◦ χ )
= ((v1f

1
x + v2f

1
y )∂f 1 + (v1f

2
x + v2f

2
y )∂f 2 )χ

= (V (f 1)∂f 1 + V (f 2)∂f 2 )χ.

(2.3)
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It can be seen that the change of basepoint is encoded in the indices of the new
operators.

Exercise 2.2.17 Let X = ∂x and Y = x∂x be vectors at x ∈ R. Show that if
f : R → R is the exponential map, f (x) = y = exp(x), then Df (X) = y∂y

and Df (Y ) = y log(y)∂y .

2.3 Vector fields and integral curves

To prove the main theorems of this chapter and the next, we will need the notion
of an integral of a vector field.

The idea of a vector field is familiar to anyone who has seen a weather map
depicting, at each point in some region of the earth’s surface, the direction
and magnitude of the wind. Both the direction and magnitude vary smoothly
over the region, and it is not hard to imagine that a speck of dust, dropped
into the atmosphere at some point, will be carried along by the wind and thus
trace out a path parametrised by time t . This path is called the flowline or
integral curve of the vector field passing through the initial point, where the
speck was released. The set of such paths represents the intuitive notion of
the integral of the vector field. In this section we consider vector fields whose
components do not depend explicitly on time. Such vector fields are called
autonomous.

Remark 2.3.1 Non-autonomous vector fields can be converted to autonomous
ones by extending the base space M to M × R, setting t to be the new coor-
dinate, and extending vectors V to (V, 1) (row notation) or V + ∂t (operator
notation). Thus the theorems we describe here can be extended to the non-
autonomous case.

Vector fields are maps from M to the tangent bundle of M , which we now
define.

Definition 2.3.2 The tangent space of a manifold M is

T M =
⋃
z∈M

TzM.

Coordinate charts (U, φ) on M extend to coordinate charts on T M ,
with [γ ] ∈ TzM mapping to (φ(z), (d/dt)|t=0 φ(γ (t))) ∈ Rn × Rn where n =
dim(M).

Remark 2.3.3 It is not true in general that the tangent space to a manifold M

is the product M × Rn. The standard counterexample is the two dimensional
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sphere; if T S2 were equal to S2 × R2, then there would exist a vector field
on S2 which is everywhere non-zero; this is famously false by the ‘hairy ball
theorem’ (Munkres, 1975, Theorem 10.4).

Definition 2.3.4 A vector field on the manifold M is a map

V : M → T M, V (z) ∈ TzM.

On the space M itself, at any given point, a vector is an equivalence class
of curves, so a vector field gives a class of curves at every point. Under a
coordinate map, a vector field can be represented in the traditional way by an
arrow at every point. Vectors are also denoted as v or X.

Example 2.3.5 Show that there exist everywhere non-zero vector fields on Lie
groups. Hint: show there is an everywhere non-zero vector field by taking a
vector V at the identity and considering the map g �→ TeRg(V ). This implies
that for Lie groups, T G = G × Rr where r = dim(G) (Hirsch, 1976, Exercise
4, page 92).

Definition 2.3.6 A flowline or integral curve of a vector field V on M is a
path � : s �→ M such that for every s ∈ R, V (�(s)) ∼ �(s) (recall Definition
2.2.2). A flowline for V satisfying �(0) = z is denoted by either s �→ �V

s (z) or
if V is understood, by s �→ �(z, s).

Remark 2.3.7 It can happen that integral curves are not defined for all s ∈ R,
in which case the vector field is said to generate only a partial flow. As an
example, consider the vector field on R given by V (x) = x2∂x , for which
�V

s (x) = x/(1 − sx). Thus one can prove only that a flow exists for s in some
open interval about 0 ∈ R.

Integral curves for a vector field, with intrinsically defined vectors, are
depicted in Figure 2.7. A coordinate map φ, with domain U , maps V to a vector
field V on φ(U ) ⊂ Rn, depicted in Figure 2.8, by taking

V (φ(z)) = d

dt

∣∣∣∣
t=0

φ(γ (t)), V (z) = [γ ].

A vector field is continuous if its components in any coordinate system
are continuous functions. We state the theorem guaranteeing existence and
uniqueness of integral curves of continuous vector fields in its usual form, that
is, in coordinates. The integral curves on M are obtained by pulling back the
flowlines guaranteed by the theorem for the vector field in Rn, via the coordi-
nate maps. Uniqueness of the flowlines means that integral curves in different
coordinate patches match up, so that they can be continued over all of M .
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)ii()i(

Figure 2.7 Flowlines for an intrinsic vector field on M are everywhere tangent
to representative paths at their base points. In (i) arbitrary representative paths of
vectors are shown. In (ii), the flowlines themselves represent the vectors at every
point (some shown in bold for illustrative purposes).

Figure 2.8 Flowlines for a vector field in R
2.

Theorem 2.3.8 (EUSODE) Given a continuous vector field V in an open
neighbourhood U ⊂ Rn, then for each x ∈ U , there exists a unique integral
curve s �→ �(x, s), for s in some open interval about 0 ∈ R, such that

(i) (d/ds)�(x, s) = V (�(x, s)),
(ii) �(x, s) is once more continuously differentiable with respect to x than the

components of V ,
(iii) �(x, 0) = x for all x.
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Γ(x, s)

x

Γ(Γ(x, s), r)
s

r

r + s

Γ(x, r + s)

Figure 2.9 The ‘flow equation’, �(�(x, s), r) = �(x, r + s).

Remark 2.3.9 Theorem 2.3.8 is the Existence and Uniqueness of Solutions
of (first order) Ordinary Differential Equations (EUSODE) with a given initial
value. The best proofs require only continuity of the components of V and
use the Arzela–Ascoli Theorem, see for example Brown (1993), Theorem 1.1.
The significance of this result, its utility and the depth of its proof, cannot be
overestimated.

Theorem 2.3.10 Integral curves for a vector field V satisfy the flow equation,

�(�(x, s), r) = �(x, r + s),

that is, if you flow for time s, and then flow for time r , the result is the same
as flowing for time r + s (Figure 3.9). If the flows are only partial, we need to
assume that �(x, r + s) is defined.

Proof The flow equation follows from the fact that the two curves

γ1 : r �→ �(�(x, s), r), γ2 : r �→ �(x, s + r)

both satisfy the same differential equation and the same initial condition, and
hence are the same curve:

γ1(0) = �(�(x, s), 0) = �(x, s) = γ2(0),

d

dr
γ1(r) = d

dr
�(�(x, s), r) = V (�(�(x, s), r)) = V (γ1(r)),

d

dr
γ2(r) = d

dr
�(x, s + r) = V (γ (x, s + r)) = V (γ2(r)). �

The flow equation means that integral curves of vector fields on M define
actions of the Lie group (R,+) on M . Partial flows define only a local group
action. This does not help to find the integral curves of course, but it does
mean that a rich source of actions is available for finding counterexamples to
conjectures concerning how orbits of actions are embedded in M .
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2.3.1 Integral curves in terms of the exponential
of a vector field

If the vector field is analytic, then its flow can be understood in terms of a series
expansion as follows. Writing the vector field v in operator notation, so that for
any analytic function f , the functions v0(f ) = f , v(f ), v2(f ) = v(v(f )) and
so on are defined, we further define exp(tv) for t ∈ R to be the operator given by

exp tv(f ) =
∞∑

n=0

1

n!
tnvn(f ). (2.4)

Note the value x ∈ M at which these expressions are evaluated is implicit.
Assuming the series converges and can be differentiated term by term, it is
straightforward to show that

d

dt
exp tv(f ) = v (exp tv(f )) ,

since v is linear. Since further exp(0)(f ) = f , we suspect that exp tv(f ) is the
value of f on the integral curve of the vector field of v at time t , with initial
value being the implicit x. The next theorem gives the explicit relationship
between exp tv and �v

t .

Theorem 2.3.11 The series exp tv(f ) is the Taylor series of f ◦ �v
t , since

dn

dtn

∣∣∣
t=0

f ◦ �v
t = vn(f ) (2.5)

for all n > 0 and for n = 0 we have v0(f ) = f = f ◦ �v
0 .

Taking f to be the coordinate functions xi yields the integral curve in
coordinates. By and large, it is often far easier to solve the differential system
for the flow given in Theorem 2.3.8 than it is to sum the series into closed form.
But for analytic vector fields, useful information for small t can be obtained.

Exercise 2.3.12 Show the series (2.4) converges and can be differentiated term
by term, provided both f and the components of v are analytic. Hint: Taylor
series for analytic functions converge and can be differentiated term by term.

Exercise 2.3.13 The constant vector field v = ∂x defined on the real line has for
its flow, �v

t (x) = x + t . Show that exp(tv)(f ) is the Taylor series of f (x + t)
based at x.

Exercise 2.3.14 The linear vector field v = ax∂x defined on the real line has
for its flow, �v

t (x) = exp(at)x. Verify equation (2.5) for n = 1, 2 and 3 for
arbitrary analytic f . Taking f (x) = x show that the series is indeed the Taylor
series for exp(at)x based at x.

Exercise 2.3.15 Prove Theorem 2.3.11.
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e = (1, 0)

(α, β)

h3 (t)

Figure 2.10 The curve t �→ h3(t) in G.

2.4 Tangent vectors at the identity versus one
parameter subgroups

We can now state and prove the following major theorem.

Theorem 2.4.1 Let G be a Lie group. There is a one-to-one correspondence
between one parameter subgroups of G and tangent vectors at the identity
e ∈ G.

A one parameter subgroup h(t) ⊂ G satisfies h(0) = e and thus defines a
path through e. Hence, these subgroups define tangent vectors in TeG. It is the
converse of the theorem that requires proof: given any v ∈ TeG, there is a unique
one parameter subgroup hv(t) whose tangent at e is v. The map v �→ hv(t) is
called the exponential map and is discussed in greater detail in the next section.

Example 2.4.2 Recall Exercise 1.5.4. For every tangent vector v = (α, β)
at the identity e = (1, 0), there is a one parameter subgroup hv(t) such that
h′

v(0) = v. The path traced out by h3 in G, and its corresponding tangent vector
at t = 0 is depicted in Figure 2.10.

Note (d/dt)|t=0 h3(t) = (α, β) is valid for all α �= 0, and (d/dt)|t=0 h1(t)) =
(0, β). Thus, for any vector v ∈ R2, we have a one parameter subgroup hv(t)
passing through e with tangent vector v at t = 0. The theorem proved in this
section is that this subgroup is unique. Note: there are infinitely many paths
through e with tangent vector (α, β). Only one of them is a one parameter
subgroup.

Proof The proof of Theorem 2.4.1 hinges on the fact that left (or right)
multiplication by h maps any vector v ∈ TeG to a vector in ThG. Indeed, given
[γ ] ∈ TeG then for any h ∈ G, we have T Lh([γ ]) = [h·γ ] ∈ ThG. Denote by

X[γ ] : G−→T G, g �→ [g · γ ]

the vector field defined by left multiplication of the vector [γ ] (Figure 2.11).
Next, note the components of X[γ ](g) vary smoothly with g, i.e. are dif-

ferentiable, because group multiplication is assumed to be smooth. Applying
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e·
h1 ·

U(e)
h2 ·

h3 ·

R
n

φγ

γ

γ γ

Figure 2.11 The vector field created by left multiplication of a vector at e.

Theorem 2.3.8, we obtain �(e, s), the flow line of X[γ ] satisfying �(e, 0) = e.
Then we claim that

h(s) = �(e, s) (2.6)

is a one parameter subgroup of G. Since h(0) = e by construction, we need
only to prove that

h(s)·h(r) = h(s + r).

Let

γ (t) = �(e, t), |t | < ε, ε > 0

represent the tangent vector at e of the path h(s). For any fixed s there are
two paths at h(s) which represent the vector h′(s), namely t �→ h(s)·γ (t)
and t �→ �(�(e, t), s). Similarly for fixed r we have two paths represent-
ing the vector of the flowline at h(r)·h(s), namely t �→ h(r)·h(s)γ (t) and
t �→ �(�(�(e, t), s), r). But this last is equal to t �→ �(�(e, t), s + r) which
also represents the vector of the flowline at h(r + s). Since vectors which are
equal have the same basepoint, it must be that h(r)·h(s) = h(r + s).

Finally since a flowline through a point is unique, there is a unique one
parameter subgroup for each v ∈ TeG. �

2.5 The exponential map

Definition 2.5.1 The map v �→ hv which sends a vector in TeG to the one
parameter subgroup hv , constructed in the last section and which satisfies, in
coordinates,

d

dt

∣∣∣∣
t=0

hv(t) = v

is called the exponential map.
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If G is a matrix Lie group and A ∈ TeG, then the vector field XA constructed
in the previous section is simply

XA : G → T G, XA(g) = Ag,

since if A = (d/ds)|s=0γ (s), then (d/ds)|s=0(γ (s)g) = Ag as the product rule
holds for matrix multiplication. The one parameter family associated to A,
found in the previous section, solves the differential equation,

d

dt
h(t) = Ah(t), h(0) = I.

The solution is given formally as

h(t) = I + tA + 1

2
t2A2 + 1

3!
t3A3 + · · · + 1

n!
tnAn + · · · (2.7)

and thus unsurprisingly, we write

h(t) ≡ exp(tA).

Exercise 2.5.2 Show from the series expansion (2.7) that exp((r + s)A) =
exp(rA) exp(sA). Hint: calculate

d

dt

∣∣∣∣
t=0

exp((s − t)A) exp(tA)

assuming term-by-term differentiation and the product rule hold.

Exercise 2.5.3 The matrices

f1 =
(

0 1
−1 0

)
, f2 =

(
i 0
0 −i

)
, f3 =

(
0 i

i 0

)
are all in TeSU (2). Find exp(tfi), i = 1, 2, 3, and verify that each forms a one
parameter subgroup of SU (2).

The exponential map provides a map

exp : TeG → G, exp(v) = hv(1),

also called, for better or worse, the exponential map. There exists δ > 0 suf-
ficiently small, such that exp is injective on the set of vectors with norm less
than δ. This provides one means of obtaining coordinates for G centered at e.

2.6 Associated concepts for transformation groups

Given a transformation group T , it is not always obvious which Lie group G

lies behind it, in the sense that T is a presentation of G. If the transformations
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are only local, the problem of deciding, for example, what is the manifold of
T , is even worse. Fortunately, we can define concepts analogous to tangent
vectors and the exponential map, staying within the conceptual framework of
transformations on a space M .

Recall that a transformation groupT is a group whose elements are invertible
maps of a specified space M to itself. The action of T on M is evaluation; for
h ∈ T ,

T × M → M, (h, z) �→ h ∗ z = h(z).

The group product is composition of mappings, and the identity element of T
is the identity map on M , id|M . A path h(t) ⊂ T based at the identity, so that
h(0) = id|M , yields for every z ∈ M a path in M based at z, denoted variously
as

h(t) ∗ z = h(t)(z), ht (z) or h(t, z)

according to context to ease the exposition. Thus a path h(t) ⊂ T through the
identity yields a vector field on M ,

z �→ d

dt

∣∣∣∣
t=0

h(t)(z) ∈ TzM.

If M has local coordinates z = (z1, . . . , zn), we have

d

dt

∣∣∣∣
t=0

h(t)(z1, . . . , zn) = (ζ1(z), . . . , ζn(z))

for some functions ζi is the vector field in coordinates; these are the infinites-
imals which are the components of the ‘infinitesimal action’ discussed in
Section 1.6.

Definition 2.6.1 We say two paths in T based at the identity transformation
are equivalent if the vector fields they generate on M are equal; in coordinates,
if their infinitesimals are equal.

Conversely, given a vector field V on M , the flow map z �→ �V
t (z) yields

a one parameter transformation group hV (t) = �V
t on M . Indeed, applying

Theorem 2.3.8, we have

hV (s) ◦ hV (t) = �V
t (�V

s ) = �V
t+s = hV (s + t)

by the flow condition. The flow may generate only a local one parameter
transformation group, since hV (t) may not be defined for all t , only for t

sufficiently close to 0. By the uniqueness of the flow maps given by Theorem
2.3.8, we have proved the following theorem, analogous to Theorem 2.4.1.
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Theorem 2.6.2 Equivalence classes of paths in the (local) Lie transformation
group T based at the identity transformation are in one-to-one correspondence
with (local) one parameter subgroups of T .

An example of a one parameter flow obtained by integrating the infinitesimal
vector field is given in Exercise 1.6.27.

Definition 2.6.3 The space of vector fields on M is denoted X (M). The subset
of vector fields generated by the transformation group T is denoted XT (M).

Theorem 2.6.4 If M is a manifold and T a transformation group on M , then
both X (M) and XT (M) are vector spaces.

Proof Vector fields are maps ζ : M → T (M), and each TxM is a vector space.
Thus the set of vector fields X (M) with addition and scalar multiplication
defined point wise is also a vector space.

To show XT (M) is a vector space, let ζ1, ζ2 ∈ XT (M) be the infinitesimals
for the paths h1(t), h2(t) ⊂ T based at the identity map. Then ζ1 + ζ2 is the
infinitesimal for the path h1(t) ◦ h2(t) ⊂ T , while if k ∈ R, then kζ is the
infinitesimal for the path h(kt) ⊂ T . �

It is now hopefully clear that:

the object analogous to TeG for a transformation group T is XT (M), since
it is a vector space whose elements generate the one parameter subgroups
of T .

We can now write down a rigorous definition of the infinitesimal action,
given for one parameter Lie groups in Definition 1.6.1.

Definition 2.6.5 If the element v ∈ TeG is represented by a path γ (t) in G

based at the identity e, that is, γ (0) = e and γ ′(0) = v, then the group action
G × M → M defines a map

TeG → X (M), v �→ Xv

where

Xv(x) = d

dt

∣∣∣
t=0

γ (t) · x ∈ TxM

and which we will call the infinitesimal action of G on M . The vector field Xv

is called the infinitesimal vector field corresponding to the path γ (t) ⊂ G.
A similar definition holds for an element v ∈ XT (M).
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Note the infinitesimal action is not actually an action of either G or TeG

on M . However, the flow of the so-called ‘infinitesimal vector fields’ gives the
action.

Exercise 2.6.6 Show that Xv is well defined, that is, does not depend on which
representative path γ for v is used.

If we apply the Theorem 2.6.2 to the action of a Lie group on itself, given by
left multiplication, then we obtain Theorem 2.4.1. Using right multiplication
leads to the same theorem, although the vector fields to integrate are different.
More interesting is applying the above to the conjugation (or adjoint) action
(see Exercise 1.2.10),

G × G → G, (g, h) �→ g−1hg,

a typical example is considered in the next exercise.

Exercise 2.6.7 Suppose that G is a matrix group with identity I , so that the
product rule for differentiation holds. Let A(t) be a path in G based at I , and
consider

B(t) = A(t)−1B0A(t), B(0) = B0.

Show

�

d

dt
B(t) = [B,A(t)−1A′(t)] (2.8)

where [P,Q] = PQ − QP is the usual matrix bracket, see also Example
1.6.4, and

� A(t)−1A′(t) ∈ TIG for all t .

Bracket equations like equation (2.8) arise for example in mechanics, the most
famous example being the spinning top. Thus, solving the system B ′(t) =
[C(t), B(t)] where B(t) ∈ G and C(t) ∈ TIG, involves solving the simpler
system A′(t) = A(t)C(t) for A(t); one then has B(t) = A(t)−1B0A(t).

For further reading on Lie groups, see Gilmore (1974) and Tapp (2005).
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From Lie group to Lie algebra

In the previous chapter, we discussed the tangent structure on a Lie group, and
the relationship between the set of one parameter subgroups and the tangent
space TeG at the identity element. The most striking feature of the tangent
space at the identity of a Lie group is the existence of a natural product,
called a Lie bracket, so that TeG is an algebra; the Lie algebra of the Lie
group.

Since Lie groups arise in different formulations, so does the appearance of
the bracket in the Lie algebra. However, they all follow from the one formula for
the Lie bracket of two vector fields on Rn which we consider in the first section.
The geometric formulation looks unusable in practice, so we ‘deconstruct’ it
to make it easily computable, prove some of its properties and discuss the
all important Frobenius Theorem. We then derive the Lie algebra bracket for a
general Lie group in Section 3.2, giving details in the two main cases of interest,
matrix groups in Section 3.2.1 and transformation groups in Section 3.2.2.
Although many authors simply give the formulae for the Lie bracket in these two
cases as the definition of the Lie bracket, and readers only needing to compute
can skip straight to these formulae, it is both interesting and helpful to know
that in fact they are both instances of the same geometric construction. Since
so many of the proofs are straightforward if one knows about the underlying
construction and almost impossible if one does not, leaving out the basic
underlying structure of the Lie bracket would have been counterproductive.

In Section 3.2.2 we discuss the so called Three Theorems of Lie, as originally
formulated for transformation groups. Their historical significance is immense
and they inform all and any understanding of a Lie group action. We then prove
an important formula that will be central in proving the symbolic formulae for
the differentiation of invariants in Chapter 4.

Finally in Section 3.3 we examine the Adjoint action of both matrix and
transformation groups on their Lie algebras. A beautiful application of the latter

73
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will appear in Chapter 7 where we discuss variational methods and Noether’s
Theorem.

Notation†

A generic vector field on a manifold will be denoted X or Y .
An infinitesimal vector field will be denoted v or w.
The infinitesimal vector field corresponding to the group parameter a will

be denoted va .
The vector field obtained by the action of a one parameter group h will be

denoted vh.
An element of TeG will be denoted v or w.
A generic point in M or Rn will be denoted z. In many applications, z will

denote the generic point (x, uα, uα
K ) in a jet bundle.

3.1 The Lie bracket of two vector fields on Rn

Recall that if X is a vector field on Rn, then the flowline or integral curve of X

passing through z is denoted t �→ �X
t (z) and satisfies

�X
0 (z) = z,

d

dt
�X

t (z) = X(�X
t (z)),

and �X
t �X

s = �X
t+s ; see Theorem 2.3.10, and Figure 2.9.

Definition 3.1.1 If γ (s) is a path in Rn based at z, so that

γ (0) = z, γ ′(0) ∈ TzR
n,

then the Jacobian of the flow map �X
t is

D�X
t : TzR

n → TyRn, y = �X
t (z)

and is defined by

D�X
t (γ ′(0)) = d

ds

∣∣∣
s=0

�X
t (γ (s)).

Thus, if a vector field X = (X1, X2) on R2 has integral curves t �→
�X

t (z1, z2) = (F1(z1, z2, t), F2(z1, z2, t)), then with vectors represented as

† It was not possible to please all my colleagues regarding notation for vectors and vector fields,
since the notations in use are mutually exclusive. Some authors use X and Y for g · x and g · y,
others use X and Y for infinitesimals. Many use V for a vector field, while others reserve V to
denote the scalar corresponding to potential energy, and instead use f for a field. The language
used here is consistent with textbooks in Differential Topology and Olver (1993).
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columns,

D�X
t (γ ′(0)) =


∂F1

∂z1

∂F1

∂z2

∂F2

∂z1

∂F2

∂z2

(γ ′
1(0)

γ ′
2(0)

)
.

Exercise 3.1.2 Using �X
−t�

X
t (z) = �X

0 (z) = z, deduce using the chain rule(
D�X

t

)−1 |z = D�X
−t |�X

t (z)

We will also need the Jacobian of a vector field. In theory, this lies in T (T M),
the tangent bundle of the tangent bundle. In practice, we note that the derivative
of a path of vectors in Rn can be identified with a vector in Rn.

Definition 3.1.3 Given a vector field X : M → T M on M , and a path s �→ γ (s)
on M based at z, the Jacobian of the vector field X in the direction γ ′(0) is
defined to be

DX(γ ′(0)) = d

ds

∣∣∣
s=0

X(γ (s)).

Example 3.1.4 Representing vectors as columns, the vector field X =
(X1(z1, z2), X2(z1, z2))T on R2 has Jacobian in the direction γ ′(0) =
(γ ′

1(0), γ ′
2(0))T given by

DX(γ ′(0)) = d

ds

∣∣∣
s=0

(
X1(γ (s))
X2(γ (s))

)
=


∂X1

∂z1

∂X1

∂z2

∂X2

∂z1

∂X2

∂z2

(γ ′
1(0)

γ ′
2(0)

)
.

Exercise 3.1.5 Noting differentiation with respect to the flow parameter t and
the coordinates zi on M commute, and assuming X is a differentiable vector
field, show

d

dt

∣∣∣
t=0

D�X
t (γ ′(0)) = DX(γ ′(0)).

Now let two vector fields X and Y be given, with integral curves �X
t (z) and

�Y
t (z) respectively through a given point z. Consider Figure 3.1, which shows

the integral curve �X
t (z) and the vectors Y (z) and Y (�X

t (z)). The map (D�X
t )−1

takes any vector at the point �X
t (z) to a vector at z. Define

V (t) = (D�X
t )−1Y (�X

t (z)). (3.1)

Then V (t) is a path of vectors based at z, with V (0) = Y (z). The Lie bracket
of X and Y is, by definition, the derivative of V (t) at t = 0.
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Figure 3.1 Construction of the Lie bracket of the vector fields X and Y .

Definition 3.1.6 (Lie bracket of vector fields) If X and Y are vector fields
defined in a neighbourhood of z and X has an integral curve t �→ �X

t (z) through
z, then the Lie bracket [X, Y ] at z is defined to be the vector

[X, Y ](z) = d

dt

∣∣∣
t=0

(D�X
t )−1Y (�X

t (z)). (3.2)

The formula (3.2) requires serious ‘deconstruction’ before we can do any-
thing with it. For example, it is not apparent that [X, Y ](z) = −[Y,X](z),
although this turns out to be true. Also, it seems that we need to find the inte-
gral curves for X in order to calculate [X, Y ], which fortunately turns out to be
false for differentiable vector fields.

The deconstruction process requires the vector fields to be at least once
continuously differentiable, while the proofs of the properties of the bracket
require higher orders of differentiability. To keep the exposition simple, we will
assume that the vector fields we consider are smooth.

Theorem 3.1.7 If X and Y are smooth vector fields, then

[X, Y ](z) = DY (X(z)) − DX(Y (z)). (3.3)

Proof Define V (t) as in equation (3.1). We seek [X, Y ] = V ′(0). We have then

D�X
t V (t) = Y (�X

t (z)). (3.4)

The left hand side is the product of a matrix D�X
t and a vector V (t), while the

right hand side is the composition of Y with �X
t . Thus applying d/dt to both

sides, by the product rule on the left hand side and the chain rule on the right,
we obtain (

d

dt
D�X

t

)
V (t) + D�X

t V ′(t) = DY (X(�X
t (z))),
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where we have used (d/dt)�X
t (z) = X(�X

t (z)). Since derivatives with respect
to space and time coordinates commute, we have

d

dt
D�X

t = D
d

dt
�X

t = D(X(�X
t )) = (DX)(D�X

t )

where the last equality follows from the chain rule. Thus,

D�X
t V ′(t) = DY (X(�X

t (z))) − DX(Y (�X
t (z))) (3.5)

where we have used equation (3.4) to simplify the final term. At t = 0,
�X

t is the identity map, and thus so is its Jacobian map, while by defi-
nition, V ′(0) = [X, Y ](z). Hence, setting t = 0 in equation (3.5) yields the
result. �

First let us calculate equation (3.3) in coordinates, representing X and Y as
column vectors. If

X(z) =

 f1(z)
...

fn(z)

 , Y (z) =

 g1(z)
...

gn(z)

 (3.6)

and if γ (s) is a path based at z so that γ ′(0) = (z′
1(0), . . . , z′

n(0))T is a vector
at z, then

DX(γ ′(0)) = d

ds

∣∣∣
s=0

X(γ (s))

=



∑
j

∂f1

∂zj

z′
j (0)

...∑
j

∂fn

∂zj

z′
j (0)



=


∂f1

∂z1
· · · ∂f1

∂zn
...

. . .
...

∂fn

∂z1
· · · ∂fn

∂zn


 z′

1(0)
...

z′
n(0)


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and hence the Lie bracket

[X, Y ](z) =
∂g1

∂z1
· · · ∂g1

∂zn
...

. . .
...

∂gn

∂z1
· · · ∂gn

∂zn


 f1

...
fn

−


∂f1

∂z1
· · · ∂f1

∂zn
...

. . .
...

∂fn

∂z1
· · · ∂fn

∂zn


 g1

...
gn

 .

(3.7)

Exercise 3.1.8 Given two vector fields on R3 with coordinates (x, y, z)
expressed as column vectors, X = (y2 + x, z, x3)T and Y = (9z2, 2x + 1, x2 +
y2)T , show that

DX =
 1 2y 0

0 0 1
3x2 0 0

 , DY =
 0 0 18z

2 0 0
2x 2y 0


and hence that [X, Y ] equals

(18x3z − 9z2 − 2y(2x + 1), 2(x + y2) − x2 − y2,

2x(x + y2) + 2yz − 27x2z2)T .

Definition 3.1.9 Representing the vector fields X and Y in (3.6) as operators,

X =
∑

fi

∂

∂zi

, Y =
∑

gi

∂

∂zi

,

define the product XY to be the operator (XY )(φ) = X(Y (φ)) for any suffi-
ciently smooth function φ (we assume the domains of φ, X and Y are such that
X(Y (φ)) makes sense).

It is a straightforward calculation to check that the right hand side of equation
(3.7), in operator form, is given by

[X, Y ] = XY − YX (3.8)

since the second order derivative terms always cancel.

Exercise 3.1.10 Expressing the vector fields in Exercise 3.1.8 as operators,
so that X = (y2 + x)∂x + z∂y + x3∂z and Y = 9z2∂x + (2x + 1)∂y + (x2 +
y2)∂z, verify

XY − YX = (18x3z − 9z2 − 2y(2x + 1))∂x

+ (2(x + y2) − x2 − y2)∂y

+ (2x(x + y2) + 2yz − 27x2z2)∂z

which is [X, Y ] in operator form.
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The formula (3.8) allows easy proofs of the following properties of the Lie
bracket of vector fields.

Theorem 3.1.11 The Lie bracket of smooth vector fields

(i) is skew symmetric, [X, Y ] = −[Y,X],
(ii) is bilinear, [aX1 + bX2, Y ] = a[X1, Y ] + b[X2, Y ] where a, b ∈ R,

(iii) satisfies the Jacobi identity,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0. (3.9)

Moreover,

(iv) if f and g are differentiable functions from the domain of the vector fields
X and Y , to R, then

[f X, gY ] = fg[X, Y ] + f X(g)Y − gY (f )X, (3.10)

where (f X)(z) = f (z)X(z).

Exercise 3.1.12 Prove Theorem 3.1.11.

Definition 3.1.13 Suppose there exists a differentiable function f from the
domain of the vector field X to the domain of vector field X′, such that

X′(f (z)) = Df (X(z)).

Then we say that X and X′ are f -related.

We showed in Section 2.2.2 how to calculate Df (X(z)) in coordinates. It is
not the case that the image of a vector field under a Jacobian map is always a
vector field; if f (z1) = f (z2) then it is necessary that Df (X(z1)) = Df (X(z2)),
otherwise Df (X) is not well defined (is multi-valued).

Theorem 3.1.14 Suppose f is a differentiable function from the domain of the
vector fields X and Y to the domain of vector fields X′ and Y ′ such that both

X′(f (z)) = Df (X(z)), Y ′(f (z)) = Df (Y (z)).

Then

[X′, Y ′](f (z)) = Df ([X, Y ])(z). (3.11)

In words, if X and X′ are f -related, and Y and Y ′ are f -related, then [X, Y ]
and [X′, Y ′] are f -related.

Proof To differentiate X′(f (z)) = Df (X(z)) in the direction of Y , we use the
chain rule on the left and the product rule on the right, as Df is a matrix. We
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(i) [X, Y ] = 0 (ii) [X, Y ] = 0

z
ΓX
t (z)

ΓY
s (z)

ΓY
s ΓX

t (z) = ΓX
t ΓY

s (z)

z
ΓX
t (z)

ΓY
s (z)

ΓY
s ΓX

t (z)
ΓX
t ΓY

s (z)

Figure 3.2 Flows commute if and only if their Lie brackets are zero, Theorem 3.1.16.

then obtain

DX′(Df (Y )) = D2f (X, Y ) + Df (DX(Y ))) (3.12)

where D2f (X, Y ) in coordinates is a vector whose ith component is

Y T Hessian(f i)X =
∑
k,�

∂2f i

∂zk∂z�
XkY �

where f i(z) is the ith component of f (z). It can be seen that D2f (X, Y ) =
D2f (Y,X) as the partial derivatives commute. Similarly,

DY ′(Df (X)) = D2f (X, Y ) + Df (DY (X))). (3.13)

Subtracting equation (3.13) from (3.12) yields

DX′(Y ′) − DY ′(X′) = Df (DX(Y ) − DY (X)),

the desired result. �

Example 3.1.15 Let R have the coordinate (x), and set X = ∂x and Y = x∂x to
be two vector fields on R. Let f : R → R be the exponential map, f (x) = y =
exp(x). Then [X, Y ] = X, and using Exercise 2.2.17, X′(y) = y∂y , Y ′(y) =
y log(y)∂y and

[X′, Y ′](y) = X′(y) = Df (X(x)) = Df ([X, Y ](x))

as required.

Theorem 3.1.16 Given vector fields X and Y , then [X, Y ] = 0 if and only if
�X

t �Y
s = �Y

s �X
t . In words, the bracket of X and Y is identically zero if and only

if the flows they define commute; see Figure 3.2.

Proof First assume [X, Y ] ≡ 0. Then
(
D�X

t

)−1 (
Y (�X

t (z))
)

is a constant,
which can be obtained by its value at t = 0. Now �X

0 (z) = z for all z, so
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D�X
0 is the identity map, and thus

Y
(
�X

t (z)
) = D�X

t

(
Y (z)

)
for all z and t . Now consider the map,

G : (s, t) �→ �X
s

(
�Y

t (z)
)
. (3.14)

Then

∂G

∂t


t=t0

= D�X
s Y
(
�Y

t0
(z)
)

= Y
(
�X

s �Y
t0

(z)
)

= Y (G(s, t0)).

So for fixed s, G(s, t) satisfies the definition of the integral curves for Y , namely,

d

dt
G(s, t) = Y

(
G(s, t)

)
with initial condition

G(s, 0) = �X
s (z).

Thus,

G(s, t) = �Y
t

(
�X

s (z)
)
. (3.15)

Comparing (3.14) and (3.15) we have proved the flows commute.
Conversely, assume �Y

s �X
t = �X

t �Y
s . Differentiating both sides with respect

to s at s = 0 yields Y (�X
t (z)) = D�X

t (Y (z)) so that(
D�X

t

)−1
Y
(
�X

t (z)
) = Y (z).

The right hand side is independent of t , so that differentiating again with respect
to t yields [X, Y ] ≡ 0. �

We will use the result in the following exercise in Section 4.6.

Exercise 3.1.17 Show that [X, Y ] = −Y if and only if

�X
s �Y

exp(−s)t = �Y
t �X

s .

Hint: adapt the proof of Theorem 3.1.16. Generalise the result to the case
[X, Y ] = λY .

We can extend Theorem 3.1.16 to sets of pairwise commuting vector fields,
which we assume to be linearly independent. Thus, suppose X1, X2, . . . , Xk
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are pointwise linearly independent vector fields defined near z with

[Xi,Xj ] = 0, i, j = 1, . . . , k.

Define

φ : (t1, . . . , tk) �→ �X1
t1

· · · �Xk

tk (z),

with φ(0) = z. Then, by the commutativity of the flows, we have

∂φ

∂tj
= Xj (φ(t)).

Hence φ represents an invertible transformation from a neighbourhood of 0 ∈
Rk to a surface in Rn containing z. On this surface, we can use (t1, . . . , tk) as
coordinates, and in these coordinates,

Xi ≡ ∂

∂ti
.

The surface is called an integral element of the vector fields Xi .
It is not necessary for vector fields to pairwise commute for an integral

element to exist. The necessary and sufficient condition is given in the Frobenius
Theorem which we discuss next.

3.1.1 Frobenius’ Theorem

This theorem is a key ingredient in understanding how the orbits of a group
action foliate the space on which the group acts, so we investigate it in detail.
We assume linearly independent, and in particular non-zero, vector fields, but
not just for simplicity, it is the case we need.

Definition 3.1.18 Suppose X1, . . . , Xk are linearly independent vector fields
on U ⊂ Rn such that for each i, j there exist functions c�

ij : U → R so that

[Xi,Xj ](z) =
k∑

�=1

c�
ij (z)X�(z). (3.16)

Then we say the vector fields X1, . . . ,Xk are in involution.

Pairwise commuting vector fields are in involution, as are their linear com-
binations with variable coefficients, by Theorem 3.1.11 (iv).

Exercise 3.1.19 In R3 with coordinates (x, y, z), show that X1 = y∂x − x∂y,
X2 = z∂x − x∂y are not in involution.
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Figure 3.3 Three elements of a 2-plane field in R
3.

φ

Figure 3.4 The image of a k-plane field under a foliation chart map φ.

Definition 3.1.20 Let X1, . . . ,Xk be linearly independent vector fields defined
on U ⊂ Rn. Let P (z) ⊂ TzM be the k dimensional plane spanned by the Xi at
z. Then the set

P = {P (z) | z ∈ U} ⊂ TUM

is called the k-plane field generated by the Xi , illustrated in Figure 3.3. If the Xi

are in involution, we say P is involutive, and by virtue of Frobenius’ Theorem
below, we also say P is integrable.

Frobenius’ Theorem provides a ‘trivialisation’ of an involutive k-plane field
in the form of a foliation chart map. The foliation map sends the k-plane field
P to the trivial k-plane field tangent to the parallel planes, Rk × (cm+1, . . . , cn)
where the ci are constants, see Figure 3.4. In other words, there is a change
of coordinates such that in the new coordinates one can take for a basis of the
plane field the vectors ∂i = ∂/∂ti , for i = 1, . . . , k.
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φ

Figure 3.5 The preimage of a coordinate k-plane under the foliation map φ is a
surface to which the k-plane field is tangent.

Definition 3.1.21 The coordinates (t1, t2, . . . , tk) such that a basis for a given
involutive k-plane field is ∂i = ∂/∂ti , for i = 1, . . . , k, are called canonical
coordinates for that plane field.

Remark 3.1.22 Classical methods to solve invariant ordinary differential
equations often relied on finding these coordinates. The use of moving frames
makes this difficult step unnecessary. Canonical coordinates are important from
the theoretical point of view. They give a clear picture of how group orbits foliate
a space, locally, near a point where the action is non-singular.

The preimage under φ, of the parallel planes giving the k-plane field in the
canonical coordinates, are the integral elements of the vector fields Xi , that is,
are surfaces to which the Xi are tangent, see Figure 3.5. These surfaces can
then be seen to foliate the space in the same way that parallel planes foliate Rn.

Exercise 3.1.23 Consider R3 \ {0}, with coordinates (x, y, z). Let X and Y be
two linearly independent vector fields that are orthogonal to the radial vector
field r = x∂x + y∂y + z∂z. Show that X, Y are in involution. What are the
integral surfaces? Hint: show DX(Y ) − DY (X) is also orthogonal to r.

Theorem 3.1.24 (Frobenius’ Theorem) Suppose that the vector fields
X1, . . . , Xk are in involution in U . Let P be the k-plane field defined by the Xi .
Then for each z ∈ U there exists a neighbourhood U (z) ⊂ U about z, and a
diffeomorphism φ : U (z) → Rn such that {P (y) | y ∈ U (z)}, the k-plane field
generated by the Xi , is given by

P (y) = (T φ)−1
∣∣
φ(y)(R

k × {0}) (3.17)

for all y ∈ U (z). The map φ is called a foliation chart for P .



3.1 The Lie bracket of two vector fields on Rn 85

z X(z)

Flowlines for X

W

Figure 3.6 Diagram for claim 2, proof of Frobenius’ Theorem.

Proof Suppose such a diffeomorphism exists. Define

Yi = (T φ)−1
∣∣
φ(y)

∂

∂zi

, i = 1, . . . , k

where (z1, z2, . . . , zn) are the coordinates on Rn. Then by Theorem 3.1.14, we
have [Yi, Yj ] = 0. Since the Xi are linear combinations of the Yi , the involutivity
condition follows from Theorem 3.1.11 (iv).

The converse is proved by induction on k. If k = 0, there is nothing to prove.
If k = 1, then the result follows from the existence and uniqueness of integral
curves of vector fields, Theorem 2.3.8, see Exercise 3.1.25.

Let �t be the flow map for X1.
Claim 1 The flow �t determined by X1 preserves the set of k-planes {P (z) | z ∈
U},

T �tP (z) = P (�t (z)) (3.18)

where T �t is the tangent map to �t (recall in coordinates T �t is D�t , the
Jacobian of �t ), see Exercise 3.1.26.
Claim 2 Let W be an n − 1 dimensional surface through z such that
� : (−ε, ε) × W → U (z), (s, y) �→ �s(y), is a diffeomorphism onto a neigh-
bourhood U (z) of z, see Figure 3.6. Let P̄ (y) = P (y) ∩ TyW . Then any set
of vector fields spanning the set of planes {P̄ (y)} satisfies the involutivity
condition, equation (3.16), see Exercise 3.1.27.
Claim 3 The foliation chart ψ for {P̄ (y)} on W , which exists by the inductive
step, can be extended to a foliation chart on U (z) ≈ (−ε, ε) × W . Indeed, set
φ(�ty) = (t, ψ(y)), see Exercise 3.1.28. �
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z

X(z)

w

Flowlines for X

W

φ

W

z̄

P (z̄)

(s, w)

(0, w)

Figure 3.7 Diagram for Exercise 3.1.25. The 1-plane field is the set of tangent
spaces to the flowlines.

Exercise 3.1.25 Prove the existence of a foliation chart in the case of a
single non-zero vector field X. Hint: let W be a plane through z such that
X(z) /∈ TzW . Then any point z̄ in a neighbourhood of z is of the form x = �s(w)
for some w ∈ W and some s ∈ R. Consider the map φ(�X

s (w)) = (s, w) taking
a neighbourhood U (z) onto (−ε, ε) × W for some ε > 0, see Figure 3.7. We
have P (z̄) = RX(z̄) and Tφ(P (z̄)) = R × {0} ⊂ T(s,w) ((−ε, ε) × W ). The fact
that φ is a foliation chart, that is, satisfies equation (3.17), follows from

R · d

ds
φ(�X

s (w)) = R · T φ(X(�X
s (w)) = T φ(P (z̄)). (3.19)

Exercise 3.1.26 Let X1, . . . , Xn satisfy the involutivity condition, equation
(3.16), let P (z) be the k-plane spanned by the Xi at z, and let �t be the flow
map of X1. Let

ui(t) = D�t (Xi(�t (z))).

Then ui(0) = Xi(z). Use Theorem 3.11 to show that

d

dt

∣∣∣
t=s

ui = D�s([X1, Xi](�s(x))).

Hence show that ui satisfies a first order linear system of differential equations,
whose solution exists by the Fundamental Existence and Uniqueness Theorem
for ordinary differential equations. Show that ui(t) ∈ P (�t (z)) follows from the
uniqueness of the solution and the initial conditions, and hence prove Claim 1.

Exercise 3.1.27 Prove Claim 2. Hint 1: it suffices to find one set of vector
fields spanning the set {P̄ (y) | y ∈ U (z)} satisfying the involutivity condition.
Hint 2: set X′

i(y) = Xi − αi(y)X1 for some function αi : U (z) → R.
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Exercise 3.1.28 Prove Claim 3. Hint: adapt the proof from Exercise 3.1.25, but
using equation (3.18) proved in Claim 1 in (3.19) in place of the one parameter
flow condition.

3.2 The Lie algebra bracket on TeG

In the previous section, we defined the Lie bracket of vector fields on Rn. Here
we consider the Lie bracket of vector fields on a manifold, specifically, our Lie
Group G, which is used to define a Lie bracket on TeG. We then consider the
details for matrix Lie groups and transformation groups.

Exercise 3.2.1 Let X and Y be vector fields defined on a manifold M . In
each coordinate patch, [X, Y ] can be defined using the method of the previous
section. Show that [X, Y ] is well defined as a vector field on the whole of M .
Hint: Use Theorem 3.1.14 with f = φi ◦ φ−1

j .

Definition 3.2.2 Given v, w ∈ TeG, the Lie bracket [v,w] ∈ TeG is obtained
as follows.

Step 1 Extend v and w to vector fields v̂, ŵ on all of G by left multiplication:
if v = (d/ds)|s=0γ (s) ∈ TeG then

v̂(g) = d

ds

∣∣∣
s=0

g · γ (s) ∈ TgG,

and similarly for ŵ.
Step 2 Calculate [̂v, ŵ].
Step 3 Define

[v,w] = [̂v, ŵ](e) ∈ TeG, (3.20)

that is, the Lie bracket of the vector fields v̂, ŵ evaluated at the identity
element.

Theorem 3.2.3 The Lie bracket on TeG is skew symmetric, bilinear, and sat-
isfies the Jacobi identity.

Proof The first two properties follow trivially from that of the Lie bracket of
vector fields. In order to prove the Jacobi identity, we note that by construction,
the vector field v̂ constructed in Step 1 above is Lg-related to itself for all
g ∈ G, where Lg : G → G is left multiplication by g. By Theorem 3.1.14, we
have

[̂v,w] = [̂v, ŵ]. (3.21)
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Since for v, w, r ∈ TeG we have [̂v, [ŵ, r̂]] + [ŵ, [̂r, v̂]] + [̂r, [̂v, ŵ]] = 0,
applying (3.21) yields [̂v, [̂w, r]] + [ŵ, [̂r, v]] + [̂r, [̂v,w]] = 0. Evaluating
this last at the identity element yields the result. �

Remark 3.2.4 Note that the Lie algebra bracket is not associative. The Jacobi
identity replaces associativity in any calculation.

Definition 3.2.5 The Lie algebra g associated to a Lie group G is defined to
be TeG, the vector space of tangent vectors based at the identity element of G,
together with the bracket g × g → g, (v,w) �→ [v,w] defined in (3.20).

The next definition collects standard names for some classical Lie algebras.

Definition 3.2.6 The Lie algebra associated with GL(n) is denoted gl(n), the
Lie algebra associated with SL(n) is denoted sl(n), the Lie algebra associated
with SO(n) is denoted so(n), and so forth. We denote by gl(V ) the set of all
linear maps from the vector space V to itself.

In the next section, we will prove that gl(n, F) = Mn(F), the set of all linear
maps from Fn to itself.

More generally, an algebra L whose product is bilinear, skew symmetric and
satisfies the Jacobi identity, is called a Lie algebra, in which case the product
is called a bracket, even when there is no apparent Lie group G for which
L = TeG.

We give now some important definitions of the Ad, ad actions, and also for
Lie algebra homomorphisms and representations. These will be illustrated in
the next two subsections, where we discuss the details of the Lie bracket for
matrix Lie algebras and the concepts analogous to Lie algebra and Lie bracket
for transformation groups.

There is an important action of G on g induced by the conjugation action,
G × G → G, (g, h) �→ g−1hg.

Definition 3.2.7 Let γ (t) be a path based at e so that [γ ] ∈ TeG = g. Then
define the Adjoint action Ad of G on g by

Ad : G × g → g, [γ ] �→ [g−1γg]. (3.22)

Remark 3.2.8 The conjugation action is also called the adjoint action of G on
itself.

Further details of the Ad action for the specific case of matrix Lie alge-
bras is given in equation (3.26), and for transformation groups in Definition
3.3.1.
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Exercise 3.2.9

(i) Show Ad is well defined, that is, if in coordinates γ ′
1(0) = γ ′

2(0) then

d

dt

∣∣∣∣
t=0

g−1γ1(t)g = d

dt

∣∣∣∣
t=0

g−1γ2(t)g.

(ii) Show Ad is a right action.
(iii) Show Adg : g → g, given by Adg(v) = Ad(g, v) is a linear map.
(iv) Show g · [x, y] = [g · x, g · y]. Hint: use Theorem 3.1.14.

Definition 3.2.10 If g, h are Lie algebras with Lie brackets [ , ]g and [ , ]h
respectively, and φ : g → h is a linear map, we say that φ is a Lie algebra
homomorphism if for all x, y ∈ g,

φ([x, y]g) = [φ(x), φ(y)]h.

If in addition h = gl(V ) where V is a vector space and [A,B]h = AB − BA,
the usual matrix Lie bracket, we say that φ is a representation of g. A Lie
algebra homomorphism φ is said to be an isomorphism if φ is a bijection. A
Lie algebra representation is said to be faithful if it is injective.

Since g is a vector space, the set gl(g) of linear maps g → g is well defined.
The Ad action induces a representation of g in gl(g), also called the adjoint
representation.

Definition 3.2.11 Let v ∈ g = TeG be represented as a path γ (t) through
e ∈ G, and let w ∈ TeG. Then we define the adjoint representation of g in gl(g)
to be

adv : g → g, adv(w) = d

dt

∣∣∣∣
t=0

Adγ (t)(w).

Exercise 3.2.12 Show adv is well defined. Hint: apply standard arguments
from multivariate calculus in coordinates.

Theorem 3.2.13 For v, w ∈ g = TeG,

adv(w) = [v,w]. (3.23)

Proof Let v, w ∈ g = TeG be extended to vector fields v̂, ŵ on G as in the
definition of the Lie bracket, so that [v,w] = [̂v, ŵ](e). Then representing v

by (d/dt)|t=0 �v̂
t , we have

adv(w) = d

dt

∣∣∣∣
t=0

(D�v̂
t )−1ŵ(�v̂

t (e)) = [v,w]. �
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Remark 3.2.14 For an arbitrary Lie algebra, not necessarily equal to TeG

for some Lie group G, equation (3.23) is taken as the definition of the adjoint
action of the Lie algebra on itself.

Exercise 3.2.15 Prove that ad : g → gl(g), ad(x) �→ adx , is a linear map, that
is, ad(x + y) = adx+y = adx + ady = ad(x) + ad(y), and ad(λx) = adλx =
λadx = λad(x). Show further that ad is a representation of g by showing that

ad([x, y]) = ad[x,y] = adxady − adyadx = ad(x) ◦ ad(y) − ad(y) ◦ ad(x).

3.2.1 The Lie algebra bracket for matrix Lie groups

Theorem 3.2.16 If G is a matrix group and A, B ∈ g, then

[A,B] = AB − BA,

the standard matrix bracket.

Proof For A, B ∈ TeG, extending these to vector fields Â, B̂ on all of G by
left multiplication yields

Â(g) = gA, B̂(g) = gB

where the products gA, gB are obtained by the standard multiplication of
matrices. Recalling the discussion in Section 2.5 (where Â was denoted XA,
we have changed the notation to ease the exposition), we have

�Â
t (g) = g exp(tA)

and thus

B̂(�Â
t (g)) = g exp(tA)B.

Now

D�Â
t (γ ′(0)) = d

ds

∣∣∣
s=0

�Â
t (γ (s)) = γ ′(0) exp(tA)

and thus the inverse of D�Â
t is right multiplication by exp(−tA). Hence

(D�Â
t )−1B̂(�Â

t (e))) = exp(tA)B exp(−tA).

Finally, we have

[A,B] = d

dt

∣∣∣
t=0

exp(tA)B exp(−tA) = AB − BA

as required. �
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There is an enormous literature on matrix Lie algebras, solvable, nilpotent
and semi-simple Lie algebras, the classification of semi-simple Lie algebras,
their representations, root spaces, and so forth. The examples we describe here
will be used in the later chapters, and give an idea of the kinds of calculations
we will be needing.

Exercise 3.2.17 Consider the group G = SL(2) of 2 × 2 matrices with deter-
minant 1. Show that an arbitrary element in a neighbourhood of the identity
is

g(a, b, c) =
 a b

c
1 + bc

a

 .

By differentiating g with respect to the parameters at the identity, that is, a = 1,
b = c = 0, show that a basis for TeG = sl(2) is

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
. (3.24)

Hint: adapt the argument of Exercise 2.2.10; see also Exercise 1.5.7. This basis
is sometimes called the Chevalley basis and the names h, e and f are standard,
although there are many others in use, particularly in the physics literature. A
common one is

J− =
(

0 0
1 0

)
, J+ =

(
0 1
0 0

)
, J 0 = 1

2

(
1 0
0 −1

)
.

These are sometimes labelled as J− ( 1
2

)
and so on, to indicate that the dimension

of the representation is 2
(

1
2

)+ 1.
Since the Lie bracket is bilinear, it suffices to give a ‘multiplication table’

for the basis elements. In this case show

[ , ] h e f
h 0 2e −2f
e −2e 0 h
f 2f −h 0

where for example the (1, 2) entry means [h, e] = 2e.

Exercise 3.2.18 Show that the map φ : sl(2) → gl(3) given by

φ

(
a b

c −a

)
=
−2a −c 0

−2b 0 −2c

0 −b 2a


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is a faithful representation of sl(2). That is, φ is linear, injective, and
φ([A,B]) = φ(A)φ(B) − φ(B)φ(A) for all A, B ∈ sl(2), see Definition 3.2.10.

Exercise 3.2.19 The group SL(3) is the group of 3 × 3 matrices with determi-
nant equal to 1. Write the generic element as

g =
 a b c

d e f

h k �

. (3.25)

Solving det(g) = 1 for �, back-substituting into g and then differentiating with
respect to the parameters at the identity, a = e = 1, b = c = d = f = h =
k = 0, yields a basis for sl(3). For example, the basis elements corresponding
to the parameters a and h are

v(a) = ∂g

∂a

∣∣∣∣
id

 1 0 0
0 0 0
0 0 −1

 , v(h) =
0 0 0

0 0 0
1 0 0


respectively. Find all eight basis elements and construct the Lie bracket mul-
tiplication table. How many copies of sl(2) can you find inside sl(3)? Hint: a
less obvious one is the adjoint representation of sl(2) constructed in Example
3.2.27.

Exercise 3.2.20 Find a basis and the Lie bracket multiplication table for the
Lie algebra of the group SE(2) of rotations and translations in the plane, by
considering its standard matrix representation,

g(θ, a, b) =
 cos θ − sin θ a

sin θ cos θ b

0 0 1

 .

Exercise 3.2.21 Let I2 be the 2 × 2 identity matrix and let J be the 4 × 4
matrix

J =
(

0 I2

−I2 0

)
.

Define the symplectic group Sp(2) to be the set

Sp(2) = {A ∈ GL(4) | AT JA = J }.
Show that Sp(2) has dimension 10 and that the Lie algebra Te(Sp(2)) = sp(2)
is given by

sp(2) = {X ∈ gl(4) | XT J + JX = 0}.
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Hint: adapt the proof of Exercise 2.2.11. Show that a typical element of sp(2)
has the form (

A B

C −AT

)
where A is an arbitrary 2 × 2 matrix and B and C are both symmetric, that
is, B = BT and C = CT . Hence write down a basis for sp(2). Consider the
six dimensional subgroup H of Sp(2) that fixes the vector (1 0 0 0)T under
left multiplication. Show that the Lie algebra h of H sends (1 0 0 0)T to zero
under left multiplication. Write down a basis for h and construct its Lie bracket
multiplication table as in Example 3.2.17. Show h = a ⊗ b where a ≈ sl(2),
b is a solvable Lie algebra (see Definition 4.6.7) containing an element that
commutes with all of h and if x ∈ a, y ∈ b then [x, y] ∈ b.

Exercise 3.2.22 Let I2 be the 2 × 2 identity matrix and let S be the 4 × 4
matrix

S =
(

0 I2

I2 0

)
.

Define the orthogonal group O(4) to be the set

O(4) = {A ∈ GL(4) | AT SA = S}.
Show that O(4) is a group of dimension six. Show that the Lie algebra TeO(4) =
o(4) is given by

o(4) = {X ∈ gl(4) | XT S + SX = 0}.
Show that a typical element of o(4) has the form(

P λK

µK −P T

)
where

K =
(

0 −1
1 0

)
, λ, µ ∈ R

and P is an arbitrary 2 × 2 real matrix. Hence write down a basis for o(4).

Exercise 3.2.23 Exercise 3.2.22 continued. Show that φ1, φ2 : sl(2) → o(4)
given by

φ1(A) =
(

A 0
0 −AT

)
, φ2

(
a b

c −a

)
=
(

aI2 bK

−cK −aI2

)
are representations of sl(2). Show that any element in o(4) can be written
in the form φ1(A) + φ2(B) for some A, B ∈ sl(2). Show that φ1(sl(2)) ∩
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φ2(sl(2)) = {0}. Show that [φ1(A), φ2(B)] = 0 for all A, B ∈ sl(2). Conclude
that

o(4) ≈ sl(2) ⊕ sl(2).

Exercise 3.2.24 Show that R3 is a Lie algebra with bracket being the standard
vector cross product. Construct the Lie bracket multiplication table. Show that
a change of basis to make the table the same as that for sl(2) requires complex
coefficients. Is R3 isomorphic to either of sl(2, C) or sl(2, R)? Is C3 with the
vector cross product isomorphic to either of sl(2, C) or sl(2, R)?

The Ad action, see Definition 3.2.7, is readily calculated for matrix groups.
Since the product rule of differentiation holds for matrices, we have for fixed
g ∈ G that

Adg : g → g, Adg(B) = g−1Bg. (3.26)

Exercise 3.2.25 Let G = SL(2). Calculate Adg on the standard basis of sl(2)
given in Exercise 3.2.17, for generic g.

Exercise 3.2.26 Show directly from Definition 3.2.11 that if g is a matrix Lie
algebra then

adA(B) = [A,B],

thus confirming Theorem 3.2.13 for matrix Lie algebras.

In the next example, a matrix representation of the adjoint action of sl(2) on
itself is calculated.

Example 3.2.27 Let g = sl(2). Considered as a vector space, sl(2) is three
dimensional. So, gl(g) can be viewed as the set of 3 × 3 matrices. Recall the
basis for sl(2) given in Example 3.2.17. Let

h ↔
 1

0
0

 , e ↔
 0

1
0

 , f ↔
0

0
1

 .

Looking at the Lie bracket multiplication table for sl(2), we need the matrix
representing adh to be such that

adh

1
0
0

 =
 0

0
0

 , adh

 0
1
0

 =
 0

2
0

 , adh

0
0
1

 =
 0

0
−2

 ,
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and thus

adh =
 0 0 0

0 2 0
0 0 −2

 .

Similarly,

ade =
 0 0 1

−2 0 0
0 0 0

 , adf =
 0 −1 0

0 0 0
2 0 0

 .

It can be checked that

[adh, ade] = ad[h,e] = ad2e = 2ade

and so forth.

Recall the definition of a faithful representation.

Definition 3.2.28 A representation φ : g → gl(V ) is said to be faithful if
ker φ = {0}, that is, if φ(x) = 0 implies x = 0.

A faithful representation can always be constructed, a result known as Ado’s
Theorem. The construction begins with the adjoint representation as this rep-
resentation exists for every Lie algebra. Clearly adx is the zero map if and
only if x ∈ g commutes with every element of g, so the challenge in con-
structing a faithful representation is to include such elements, see de Graaf
(2000).

3.2.2 The Lie algebra bracket for transformation groups, and
Lie’s Three Theorems

In Section 2.6, we argued that given a transformation group T acting on a
manifold M , then the concept analogous to the tangent space at the identity
element is the subspace XT (M) of the set of all vector fields X (M) on M .

We briefly recall the construction of XT (M). Let γ (t) be a path based at the
identity of T ; this is a set of smooth invertible maps of M parametrised by t ,
such that γ (0) = id|M , the identity map on M . Then γ (t) induces a vector field
X on M as follows:

z �→ X(z) = d

dt

∣∣∣∣
t=0

γ (t)(z).
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The set of all such vector fields for all paths based at the identity in T is denoted
by XT (M). In Section 2.6 we proved that XT (M) is a vector space, and that the
induced flows were in T .

The central content of Section 3.1 can be summed up as the following
theorem.

Theorem 3.2.29 The space of vector fields X (M) on M is a Lie algebra with
the bracket being the Lie bracket defined in (3.2).

The first theorem we prove in this section is known as Lie’s Second Theorem.

Theorem 3.2.30 (Lie’s Second Theorem) If T is a transformation group of
M , then the vector space XT (M) is closed under the Lie bracket of vector fields,
and hence is a Lie algebra.

Proof If X, Y ∈ XT (M) then �X
t , �Y

s ∈ T for s, t near 0. Hence

h(s, t) = (�X
t

)−1
�Y

s �X
t ∈ T

and h(0, t) = idM , for all t near 0. Therefore

∂

∂s

∣∣∣
s=0

h = (D�X
t

)−1
Y (�X

t ) ∈ XT (M).

Since XT (M) is a vector space over R and therefore is closed under limiting
processes,

d

dt

(
D�X

t

)−1
Y (�X

t ) ∈ XT (M)

and in particular, [X, Y ] ∈ XT (M). �

It is important to realise that the dimension of a Lie algebra of vector fields
has nothing to do with the dimension of the space on which they are defined;
this will be become clear when we look at the examples below. First of all,
the vector space X (M) is said to be an ‘infinite dimensional’ Lie algebra since
we allow the vector fields to have coefficients that vary with x. For example if
M = R and we restrict to analytic vector fields, then writing the generic vector
field f (x)∂x in terms of the Taylor coefficients of f , it can be seen that a ‘basis’
of the analytic part of X (M) is given by {xn∂x | n = 0, 1, 2, . . . } (this is not
really a basis since, while every analytic vector field has an expression of the
form

∑
ajx

j ∂x , not every such sum is analytic, since convergence in an open
interval on R is required).

Transformation groups arising as symmetries of differential equations have a
finite dimensional part depending only on constants, the number of independent
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constants giving the dimension of the finite part of the group, and an ‘infinite
dimensional’ part depending on functions. These functions will be solutions
of a partial differential system which may be null (that is, an empty set). The
infinitesimals corresponding to the finite dimensional part generate a finite
dimensional Lie algebra, as in Exercise 3.2.32, while those depending on
functions generate a Lie pseudogroup, see for example Olver and Pohjanpelto
(2008).

Sophus Lie, in his investigation of the transformation group T that maps
the set of solutions of a given differential equation to itself, arrived at a method
that allowed him to calculate XT (M), the set of infinitesimal symmetry vector
fields, even when the direct calculation of T itself was intractable, see Remark
1.6.22. His so-called second key theorem concerning XT (M) is stated above.
The third theorem can be stated as follows.

Theorem 3.2.31 (Lie’s Third Theorem) Given a Lie algebra L of vector
fields on M , then there is a transformation group T such that L = XT (M).

The local transformation group T is generated by the flows of the infinitesi-
mal vector fields XT (M), see for example Ovsiannikov (1982).

The concept of a Lie algebra is now so familiar to us that it is easy to be
blasé about Lie’s results, even to miss the point. For the fact is that a symmetry
group of a differential equation typically involves highly non-linear actions.
Yet the infinitesimal vector fields of these actions not only form a vector space
but any basis {Xi} satisfies the relations

[Xi,Xj ] =
∑

k

cijkX
k

where the cijk , if they are not constant, depend only on those functions appearing
explicitly in the Xi ; there is no other dependence on the variables as would
generally be the case. At the time, this must have seemed incredible, and if you
think about it, it still is.

Exercise 3.2.32 For the SL(2) action acting on M = R,

x̃ = ax + b

cx + d
, ad − bc = 1,

the infinitesimal symmetry vector fields are

va = 2x∂x, vb = ∂x, vc = −x2∂x, (3.27)

so that XT (M) is the three dimensional real vector space 〈va, vb, vc〉R. Note
thatXT (M) is three dimensional even though M = R is one dimensional. Show
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the table of Lie brackets is

[ , ] va vb vc

va 0 −2vb 2vc

vb 2vb 0 −va

vc −2vc va 0

Show that the change of basis

vh = −va, ve = −vb, vf = −vc

yields a multiplication table exactly the same as the standard one for sl(2) given
in Exercise 3.2.17, with

vh ↔ h, ve ↔ e, vf ↔ f.

Hence in this case, XT (M) is isomorphic to sl(2).

Example 3.2.33 Consider the projective action of SL(3) acting on the plane
as

x̃ = ax + bu + c

hx + ku + �
, ũ = dx + eu + f

hx + ku + �
, (3.28)

where

det

 a b c

d e f

h k �

 = 1. (3.29)

Solving equation (3.29) for �, back-substituting into equations (3.28) and then
differentiating (̃x, ũ) with respect to the parameters at the identity, a = e = 1,
b = c = d = f = h = k = 0, yields the infinitesimal vector fields to be

va = 2x∂x + u∂u

vb = u∂x

vc = ∂x

vd = x∂u

ve = x∂x + 2u∂u

vf = ∂u

vh = −x2∂x − xu∂u

vk = −xu∂x − u2∂u.

(3.30)

Note that the representation of the Lie algebra sl(3) generated by these vector
fields is eight dimensional, even though the space on which they act is two
dimensional.
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Exercise 3.2.34 Show that the multiplication table for the representation of sl(3)
represented as vectors as given in equation (3.30) above, and that for the matrix
representation, Exercise 3.2.19, is exactly the same under the identification of
basis elements

va ↔ −v(a), vb ↔ −v(b), . . .

Explain the origin of the minus sign. Hint: one is a left and one a right action.

Since XT (M) is a Lie algebra, its basis satisfies the involutivity condition
needed to apply Frobenius’ Theorem. Hence the orbits of a transformation
group action foliate the space M on which it acts. Where the vector fields are
linearly independent as elements in T M , the orbits have the dimension of the
Lie algebra.

Exercise 3.2.35 Consider the vector fields X = ∂x , Y = x∂x − y∂y − 2z∂z in
(x, y, z)-space. Show that [X, Y ] = X and thus by Frobenius’ Theorem, the
orbits of the transformation group foliate (x, y, z)-space with two dimensional
surfaces away from the origin where Y = 0. Show the integral surfaces, also
known as leaves of the foliation, are given by z = cy2 where c is a non-zero
constant. Hint: y2/z is an invariant of both flows.

3.2.2.1 Prolongations of Lie algebras of vector fields
Prolonging vector fields leads to the same Lie algebra (Olver, 1993, Theorem
2.39) In effect, the prolongation yields another representation of the original
Lie algebra on an enlarged space.

Exercise 3.2.36 Prolonging the vector fields (3.27) to (x, u, ux, uxx) space
yields

pr(2)va = 2x∂x − 2ux∂ux
− 4uxx∂uxx

pr(2)vb = ∂x

pr(2)vc = −x2∂x + 2xux∂ux
+ (2ux + 4xuxx)∂uxx

.

(3.31)

Show that the Lie bracket multiplication table for the pr(1)vj is the same as for
the vj . Hint: the variables x, ux and uxx are viewed as independent variables
for this calculation, since they are independent coordinates on the prolonged
space. Show that the Lie bracket multiplication table for the pr(n)vj is the same
as for the vj , for all n, see Exercise 1.6.20 for the infinitesimals.

Since prolonging an action leads to involutive vector fields on ever higher
dimensional spaces, there is a chance that for high enough prolongations, the
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orbits will foliate the space with surfaces the same dimension as the group, at
least in substantial parts of the space. This is one of the conditions we will need
for a moving frame, discussed in Chapter 4, to exist.

3.2.2.2 An important formula
In this section, we prove a formula needed for the proof of Theorem
4.5.5 in Chapter 4. Let coordinates near the identity e of G be given by
g = g(a1, a2, . . . , ar ) where r is the dimension of the group. Recalling Defini-
tion 1.6.11, the infinitesimals at z = (z1, . . . , zn) with respect to these coordi-
nates are

ζ i
j (z) = ∂

∂aj

g · zi

∣∣∣
g=e

,

so that for any path γ (t) in G based at the identity, we have

d

dt

∣∣∣
t=0

γ (t) · zi =
∑

k

ζ i
j (z)a′

j (0).

The question is, what can we say about

d

dt
γ (t) · z, t �= 0?

As usual, we investigate by considering the SL(2) action on R,

x̃ = ax + b

cx + d
, ad − bc = 1.

We will be looking at elements close to the identity and thus we may take d =
(1 + bc)/a since a will be close to unity. In coordinates given by (a, b, c), the
identity element is (a, b, c) = (1, 0, 0) = e and we know that the infinitesimals
are 

∂

∂a
x̃

∂

∂b
x̃

∂

∂c
x̃


∣∣∣
e
=
 2x

1
−x2

 .
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It can be readily checked that

∂

∂a
x̃

∂

∂b
x̃

∂

∂c
x̃


=



d −b
cd

a

−c a −c2

a

0 0
1

a


 2x̃

1
−x̃2

 (3.32)

where d = (1 + bc)/a. Interestingly, the derivatives with respect to the group
parameters at a point g of the orbit other than the identity, are a linear combina-
tion of the infinitesimal vector fields at that point, and this linear transformation
depends only on g. The two questions are, is this always so, and what is the
matrix of group parameters appearing in equation (3.32)? The answer to the
first question is ‘yes’. In this section we will prove a formula for the matrix
which involves right multiplication on the group. We will need this formula in
the next chapter.

Given a Lie group G, recall right multiplication is the action of G on itself
given by

G × G → G, (h, g) �→ Rh(g) = gh.

Looking at SL(2) in local coordinates near the identity, we have

R(a,b,c)(α, β, γ ) = (A,B,C) = (aα + cβ, bα + dβ, aγ + cδ)

where δ = (1 + βγ )/α. The Jacobian of R(a,b,c) at the point (α, β, γ ) is then

T(α,β,γ )R(a,b,c) =



∂A

∂α

∂A

∂β

∂A

∂γ

∂B

∂α

∂B

∂β

∂B

∂γ

∂C

∂α

∂C

∂β

∂C

∂γ



=


a c 0
b d 0

−cδ

α

cγ

α
a + βc

α

 .

It can be checked that the matrix of group parameters appearing in equation
(3.32) is given by

(TeR(a,b,c))
−T .
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In words, evaluate T(α,β,γ )R(a,b,c) at (α, β, γ ) = (1, 0, 0) and take the inverse
transpose.

The result we will prove is the following.

Theorem 3.2.37 Let (a1, a2, . . . , ar ) be coordinates about the identity element
e = (0, 0, . . . , 0) in G, and let h ∈ G be in the coordinate chart domain. Then
for each coordinate zi of z,


∂g · zi

∂a1
...

∂g · zi

∂ar


∣∣∣
g=h

= (TeRh)−T

 ζ i
1(h · z)

...
ζ i
r (h · z)

 . (3.33)

Proof Since the argument is the same for each coordinate of z, we sup-
press the indices on z and the corresponding index on the infinitesimal ζ .
Set Rh(a1, . . . , ar ) = (A1, . . . , Ar ) where Ai = Ai(a1, . . . , ar ) so that h =
(A1, . . . , Ar )|e. Then by the chain rule,

ζj (h · z) = ∂

∂aj

(g · h · z)
∣∣∣
g=e

=
(∑

k

∂(g · h · z)

∂Ak

∂Ak

∂aj

) ∣∣∣
g=e

so that

(ζ1(h · z), . . . , ζr (h · z)) =
(

∂(g · h · z)

∂A1
, . . . ,

∂(g · h · z)

∂Ar

) ∣∣∣
g=e

TeRh

=
(

∂(g · z)

∂a1
, . . . ,

∂(g · z)

∂ar

) ∣∣∣
g=h

TeRh.

Rearranging yields the result. �

Another way to understand the proof is as follows. Let g(t) be a path in G.
Then for either a left or a right action,

d

dt

∣∣∣
t=s

g(t) · z = d

dt

∣∣∣
t=s

g(t)g(s)−1 · (g(s) · z) = v · (g(s) · z) (3.34)

where

v = d

dt

∣∣∣
t=s

(g(t)g(s)−1) ∈ TeG.
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Now

d

dt

∣∣∣
t=s

(g(t)g(s)−1) = d

dt

∣∣∣
t=s

Rg(s)−1 (g(t))

= Tg(s)Rg(s)−1
d

dt

∣∣∣
t=s

g(t)

= (
TeRg(s)

)−1
g′(s),

using the result of Exercise 3.2.38. This second proof of Theorem 3.2.37
concludes by noting that since the infinitesimals are the coefficients, with
respect to some coordinate basis of TeG of the vector d/dt |t=0g(t) · z ∈ TzM ,
the map induced on them will be the transpose of the linear map on TeG with
respect to that basis.

Exercise 3.2.38 Use Rg−1Rg = Rgg−1 = Re which is the identity map, to show
that

(TeRg)−1 = TgRg−1 .

Exercise 3.2.39 Consider the action

x̃ = ax + b

cx + d
, ũ(̃x) = u(x), ad − bc = 1.

Calculate the infinitesimals φ[x],a , φ[x],c, φ[x],c, where

φ[x],a = ∂

∂a

∣∣∣
e
ũx

and similarly for b and c, where e is the identity element given by (a, b, c) =
(1, 0, 0), for the induced action on ũx , and verify

∂

∂a
ũx

∂

∂b
ũx

∂

∂c
ũx


= (TeR(a,b,c))

−T

φ[x],a (̃x, ũ, ũx)
φ[x],b (̃x, ũ, ũx)
φ[x],c (̃x, ũ, ũx)



where (TeR(a,b,c))
−T is the same matrix appearing in equation (3.32). Do the

same for the induced action on ũxx , thus verifying Theorem 3.2.37 for these
two cases.

3.2.2.3 Lie’s First Theorem
We have discussed Lie’s Second and Third Theorems above. We now briefly
state and prove Lie’s First Theorem for completeness. Let G be a local Lie
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group with parameters (a1, . . . ) such that the identity element corresponds to
ai = 0, for all i. We note the general statement of the theorem is not restricted
to groups with finitely many parameters. Let the multiplication law be given,
in parameter form, as

µ : ((a1, . . . ), (b1, . . . )) �→ (µ(a, b)1, . . . ) = µ(a, b).

Recall the definition of left multiplication,

La : G → G, b �→ ab.

and that of its tangent map,

d

dt

∣∣∣
t=0

La(b(t)) = Tb(0)La(b′(0)).

The associative law, µ(a, µ(b, c)) = µ(µ(a, b), c) can be written as

La(Lb(c)) = Lµ(a,b)(c)

and the chain rule gives

TbLa ◦ TeLb = TeLµ(a,b). (3.35)

Setting

A(a) = TeLa, ψ = La

into (3.35) yields ‘Lie’s first equation’,

Tbψ = A(ψ(b))A(b)−1. (3.36)

Note by Exercise 3.2.38, A(a) = TeLa has an inverse. Thus, Lie’s first equation
is the infinitesimal form of the associative law, in some sense.

Lie’s First Theorem starts with equation (3.36) and gives conditions under
which a group multiplication law can be constructed.

Theorem 3.2.40 (Lie’s First Theorem) Let G be a smooth space and fix a
point ‘0’∈ G. Assume for all b ∈ G, there exists a linear, bijective map A(b) :
T0G → TbG. If for all a ∈ G, equation (3.36) has a solution ψ = ψa : G → G

satisfying ψa(0) = a, then G is a (local) Lie group with multiplication law
µ(a, b) = ψa(b) and identity element 0.

If G is described by parameters (a1, . . . ) then 0 can well be the point given
by ai = 0, all i. If the space G is infinite dimensional, then the tangent spaces
TaG need to be interpreted in some appropriate way, and the existence and
uniqueness of solutions of first order differential equations need to be proven
to hold.
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Proof We show the four properties needed for G to be a group.

� The property of closure under the multiplication law is guaranteed by the
hypothesis that ψa maps into G.

� To show 0 is the identity, by hypothesis, µ(a, 0) = a for all a. To show
µ(0, b) = b, we show that ψ0 is necessarily the identity map. Invoking the
existence and uniqueness of solutions of first order differential equations, we
note that both the identity map and ψ0 solve the differential equation (3.36)
with the same boundary condition ψ0(0) = 0 = id|G(0), and hence are the
same function.

� To show the associative law, we note that both ψa ◦ ψb and ψµ(a,b) solve the
differential equation (3.36) with the same value at 0,

ψa ◦ ψb(0) = ψa(b) = µ(a, b) = ψµ(a,b)(0)

and hence are the same function. Thus

µ(a, µ(b, c)) = ψa(ψb(c)) = ψµ(a,b)(c) = µ(µ(a, b), c).

� Finally, given a ∈ G we need to exhibit an inverse a−1 ∈ G such that
µ(a, a−1) = 0 = µ(a−1, a). Considering equation (3.36) and noting the
assumptions on A(a), we see that for any solution ψ , Tbψ has an inverse for
all b and hence ψ is invertible at least locally near 0. Taking the inverse of
both sides of equation (3.36), noting that (Tbψ)−1 = Tψ(b)ψ

−1 and setting
β = ψ(b) yields

Tβψ−1 = A(ψ−1(β))A(β).

In other words, ψ−1 satisfies Lie’s first equation. If ψ = ψa , then for a

sufficiently close to 0, we can define a−1 = ψ−1
a (0), so that ψ−1

a = ψa−1 . It
is straightforward to check that a−1 has the required properties. �

Exercise 3.2.41 Fill in the details of the proof of the associative law. Note that
b in equation (3.36) is a dummy variable, while that in both ψa ◦ ψb and ψµ(a,b)

is fixed.

3.3 The Adjoint and adjoint actions for
transformation groups

In this section, we consider the Adjoint action Ad of a transformation group T
on its Lie algebra XT . We will use the formulae proved here in Chapter 7.

Astute readers will have realised that we have already used the analogues of
the Ad and ad actions, given in Definitions 3.2.7 and 3.2.11, for transformation
groups, in the proof of Theorem 3.2.30.
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Definition 3.3.1 Given a transformation group T acting on M , the induced
Adjoint action Ad of G on X (M) is

(g,X) �→ Adg(X), Adg(X)(x) = T g−1X(g · x)

where T g : T M → T M is the tangent map of g considered as a map g : M →
M .

Recalling that a vector field is a map X : M → T M such that the base point
of X(x) is x, we have that the diagram

T M
Tg→ T M

Adg(X) ↑ ↑ X

M
g→ M

(3.37)

commutes.
Thus, for a vector field given in column vector notation, we have given

coordinates z = (z1, z2, . . . , zn) and with g · z = z̃ = (z̃1, z̃2, . . . , z̃n),

Adg(f)(z) =


∂z̃1

∂z1
· · · ∂z̃1

∂zn
...

. . .
...

∂z̃n

∂z1
· · · ∂z̃n

∂zn


−1 f1( z̃ )

...
fn( z̃ )

 = ∂z̃

∂z

−1

f( z̃ ) (3.38)

where the last line defines the matrix ∂z̃/∂z, the Jacobian of the map z �→
g · z = z̃, which is of course, the map T g in coordinates.

Exercise 3.3.2 If X = f (x)∂x and g · x = x̃, show Adg(X) = f ( x̃ )∂x̃ .

For a vector written in operator notation, the Ad action of G on a vector field
is, given coordinates z = (z1, z2, . . . , zn) and with g · z = z̃ = (z̃1, z̃2, . . . , z̃n),

Adg

(∑
i

fi(z)
∂

∂zi

)
=
∑

fi( z̃ )
∂

∂z̃i

. (3.39)

Indeed,

Adg

(∑
i

fi(z)
∂

∂zi

)

= (f1( z̃ ), . . . , fn( z̃ ))


∂z̃1

∂z1
· · · ∂z̃n

∂z1
...

. . .
...

∂z̃1

∂zn

· · · ∂z̃n

∂zn


−1

∂

∂z1
...
∂

∂zn


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= (f1( z̃ ), . . . , fn( z̃ ))


∂z1

∂z̃1
· · · ∂zn

∂z̃1
...

. . .
...

∂z1

∂z̃n

· · · ∂zn

∂z̃n




∂

∂z1
...
∂

∂zn


=
∑

fi( z̃ )
∂

∂z̃i

.

Of particular interest is the Ad action restricted to the infinitesimal vector
fields. We first verify that Adg is an action on XT (M) as given in Definition
3.2.7, and prove some of Exercise 3.2.9 for the particular case of transformation
groups.

Lemma 3.3.3 Let T be a transformation group, and let v ∈ XT (M) be an
infinitesimal vector field. For g ∈ T ,

Adg(v) ∈ XT (M).

Proof Let �v
t be the flow on M induced by v. Then g−1�v

t g is a path in T , and,
at t = 0, is the identity map. Hence

Adg(v) = T g−1vg = d

dt

∣∣∣
t=0

g−1�v
t g ∈ XT (M). �

Lemma 3.3.4 For g, h ∈ T , v ∈ XT (M), and assuming a left action of T on
M ,

Adh

(
Adg (v)

) = Adgh (v) .

Proof Using diagram (3.37) twice, we have

T M
T h→ T M

Tg→ T M

Adh(Adg(X)) ↑ Adg(X) ↑ ↑ X

M
h→ M

g→ M

and

Adh

(
Adg (v)

)
(z) = T h−1

∣∣
h·z
(
Adgv

)
(h · z)

= T h−1
∣∣
h·zT g−1

∣∣
g·(h·z)v(g · (h · z))

= (T g ◦ T h)−1
∣∣
(gh)·zv((gh) · z)

= T (gh)−1
∣∣
(gh)·zv((gh) · z)

= Adgh (v) (z). �
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Since T g is a linear map, then Adg is linear onXT (M). Lemma 3.3.3 implies
that for any basis vi , i = 1, . . . ,r for XT (M), where r = dim T ,

Adg(
∑

i

αivi) =
∑

i

αiAdg(vi) =
∑
i,j

αiAd(g)ij vj (3.40)

for some r × r matrix Ad(g). We next investigate the properties of Ad(g) and
how to compute it.

Lemma 3.3.5 The map g �→ Ad(g) ∈ GL(r), defined in equation (3.40), is a
representation of T .

Proof Let g, h ∈ G.∑
i,k

αiAd(gh)ikvk =
∑

i

αiAdghvi

=
∑

i

αiAdhAdgvi

=
∑
i,j

αiAd(g)ijAdhvj

=
∑
i,j,k

αiAd(g)ijAd(h)jkvk

=
∑
i,k

αi(Ad(g)Ad(h))ikvk

where we have used the linearity of Adh in the third line. �

If we write ∑
i,j

αiAd(g)ij vj =
∑

i

α̃ivi

then writing α = (α1, . . . , αr )T as a column vector, we have

α̃ = Ad(g)T α. (3.41)

To calculate Ad(g), it can be easier to obtain the action on the αi using the
form of the Adjoint action given in equation (3.39).

Example 3.3.6 For the SL(2) action

x̃ = ax + b

cx + d
, ad − bc = 1

with infinitesimal vector fields

v = (α + βx + γ x2)∂x,
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we obtain

Adg(v)(x) = (
α + βx̃ + γ x̃2

) ∂

∂x̃

=
(

α + β

(
ax + b

cx + d

)
+ γ

(
ax + b

cx + d

)2
)(

∂x̃

∂x

)−1
∂

∂x

= (
α(cx + d)2 + β(ax + b)(cx + d) + γ (ax + b)2

) ∂

∂x

= (̃
α + β̃x + γ̃ x2

) ∂

∂x

so that α̃

β̃

γ̃

 = Ad(g)T

 α

β

γ

 =
 d2 bd b2

2cd ad + bc 2ab

c2 ac a2

 α

β

γ

. (3.42)

Exercise 3.3.7 Show that for the SL(2) action,

x̃ = ax + b

cx + d
, ũ = 6c(cx + d) + (cx + d)2u, ad − bc = 1

that Ad(g) is the same as that given in equation (3.42) for the action in Example
3.3.6. Explain.

Exercise 3.3.8 For a matrix Lie group G ⊂ GL(n) acting linearly on Rn, the
infinitesimal vector fields are the constant vector fields,

Va(x) = ax, x ∈ Rn, a ∈ g.

Show the Adjoint action is

Adg(Va)(x) = g−1agx.

What is Ad(g) in the case G = Sp(2)?

Exercise 3.3.9 For the action of the Euclidean group acting on R2,(
x̃

ũ

)
=
(

cos θ − sin θ

sin θ cos θ

)(
x

u

)
+
(

a

b

)
,

the infinitesimal vector fields are

v = α(−u∂x + x∂u) + β∂x + γ ∂u (3.43)
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for arbitrary constants α, β, γ . Show that β̃

γ̃

α̃

 = Ad(g(θ, a, b))T

β

γ

α


=
 cos θ sin θ a sin θ − b cos θ

− sin θ cos θ b sin θ + a cos θ

0 0 1

β

γ

α

 .

Obtain the Adjoint representation another way by adapting the method
of Exercise 3.3.8; consider the standard representation of the Euclidean
group,

R(g(θ, a, b)) =
 cos θ − sin θ a

sin θ cos θ b

0 0 1

 ∈ GL(3)

with Lie algebra 
 0 −α β

α 0 γ

0 0 0

 | α, β, γ ∈ R

 (3.44)

and a linear action on R3 restricted to the plane {(x, y, 1) | x, y ∈ R}. Show
that both methods yield the same Ad(g). Hint: the use of the same names
for the arbitrary constants in (3.43) and (3.44) is deliberate; it indicates the
isomorphism between the two presentations of the Lie algebra.

We come now to the main computational result we will need in the sequel,
concerning the Ad action as induced on XT (M), which is essentially equation
(3.40) in matrix form.

Theorem 3.3.10 Let coordinates on M be z = (z1, z2, . . . , zn), and g · z =
z̃ = (̃z1, z̃2, . . . , z̃n). Denote the Jacobian matrix of the group action as

∂z̃

∂z
=



∂z̃1

∂z1

∂z̃1

∂z2
· · · ∂z̃1

∂zn

∂z̃2

∂z1

∂z̃2

∂z2
· · · ∂z̃2

∂zn
...

...
. . .

...
∂z̃n

∂z1

∂z̃n

∂z2
· · · ∂z̃n

∂zn


. (3.45)
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Let (a1, a2, . . . , ar ) be coordinates on G, or the independent parameters for T ,
and let the infinitesimal vector field with respect to the coordinate ai be given
as

vi(z) = ζ i
1(z)

∂

∂z1
+ · · · + ζ i

n(z)
∂

∂zn

.

Let the matrix �(z) be given by

�(z) =


z1 z2 . . . zn

a1 ζ 1
1 (z) ζ 1

2 (z) . . . ζ 1
n (z)

a2 ζ 2
1 (z) ζ 2

2 (z) . . . ζ 2
n (z)

...
...

...
. . .

...
ar ζ r

1 (z) ζ r
2 (z) . . . ζ r

n (z)

.

Let Ad(g) be the r × r matrix giving the Ad action on XT (M) with respect to
the basis 〈v1, v2, . . . , vr〉 of XT (M) used to write down �, that is, Adg(vi) =∑

j
Ad(g)ij vj . Then

Ad(g)�(z) = �(̃z)

(
∂z̃

∂z

)−T

. (3.46)

Proof Multiplying both sides of equation (3.46) on the right by

∇T =
(

∂

∂z1
,

∂

∂z2
, . . . ,

∂

∂zn

)T

,

the ith component of the right hand side is the definition of Adg(vi), while the
ith component of the left hand side is, by construction, Ad(g)ij vj . These are
equal by the definition of Ad(g). �

Example 3.3.11 For the action

x̃ = x, ũ = au + b

cu + d
, ad − bc = 1,

consider the prolonged action on (u, ux, uxx) space. The prolonged action
is

ũx = ux

(cu + d)2
, ũxx = uxx

(cu + d)2
− 2

cu2
x

(cu + d)3
.
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The infinitesimal vector fields corresponding to the parameters (a, b, c) are

va = 2u
∂

∂u
+ 2ux

∂

∂ux

+ 2uxx

∂

∂uxx

vb = ∂

∂u

vc = −u2 ∂

∂u
− 2uux

∂

∂ux

− 2(u2
x + uuxx)

∂

∂uxx

so that

�(u, ux, uxx) =


u ux uxx

a 2u 2ux 2uxx

b 1 0 0
c −u2 −2uux −2(u2

x + uuxx)


Next we have

∂ (̃u, ũx, ũxx)

∂(u, ux, uxx)
=



1

(cu + d)2
0 0

−2cux

(cu + d)3

1

(cu + d)2
0

−2c((cu + d)uxx − 3u2
x)

(cu + d)4

−4cux

(cu + d)3

1

(cu + d)2


.

The matrix Ad(g) is more or less that given in equation (3.42), adjusted to the
basis we are using here,

Ad(g) =


a b c

a ad + bc 2bd −2ca

b cd d2 −c2

c −ab −b2 a2

.

It is straightforward to check that

Ad(g)�(u, ux, uxx) = �(̃u, ũx, ũxx)

(
∂ (̃u, ũx, ũxx)

∂(u, ux, uxx)

)−T

.

Exercise 3.3.12 Prolong to (u, ux, uxx, uxxx, uxxxx) space the action of Exam-
ple 3.3.11. Check that

Ad(g)�(u, . . . , uxxxx) = �(̃u, . . . , ũxxxx)

(
∂ (̃u, . . . , ũxxxx)

∂(u, . . . , uxxxx)

)−T

.
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Finally, we recall that the induced adjoint action of XT (M) on X (M) is, for
v ∈ XT (M) with flow g(t) = �v

t and w ∈ XT (M), given by

adv(w) = d

dt

∣∣
t=0Adg(t)(w) = [v, w], (3.47)

the standard Lie bracket of vector fields.

Exercise 3.3.13 Prove equation (3.47). Hint: compare the formulae for the
definitions of the Adjoint action and the Lie bracket of vector fields.

The adjoint action ad clearly restricts to an action of XT (M) to itself, and
is the same as what was defined earlier as the adjoint action of any Lie algebra
on itself.
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Moving frames

In this chapter we can begin our study of the invariant calculus. The concept
from which all else derives is that of a moving frame. We use the definition and
construction as detailed by Fels and Olver (1998, 1999). Although the term
‘moving frame’, or ‘repère mobile’ is associated with Élie Cartan (1953), the
idea was used, albeit implicitly, long before. A pre-Cartan history of the subject
is given by Akivis and Rosenfeld (1993), and the Fels and Olver papers have a
more recent historical overview. The definition of a moving frame used here has
the major advantage that it can be applied to both smooth and discrete problems.
In particular, there is no need for any of the paraphernalia of Differential
Geometry such as exterior calculus, frame bundles and connections.†

4.1 Moving frames

The original problem solved by moving frames was the equivalence problem,
‘when can two surfaces be mapped one to the other, under a coordinate trans-
formation of a particular type?’ It turns out there are many problems which
can be formulated this way. One is the classification problem of differential
equations. If you have a differential equation to solve and a database of solved
equations, it is only sensible to ask, is there a coordinate transformation that
takes my equation to one of the solved ones? Viewing differential equations
as surfaces in (x, u, ux, uxx, . . . ) space, you might then apply moving frame
theory. The computational complexities might be considerable, but at least you
have an idea of how you might proceed.

Computer vision experts study a discrete version of the equivalence problem:
given a digital image, can you match it to one of a database? Of course, the
image you have and the image in the database will not be exact matches, there

† Unless, of course, Differential Geometry is your application.

114
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K

k

z

h

All different

orbits

O(z)

Figure 4.1 A local foliation with a transverse cross section.

may be a rotation involved or some kind of distortion, but since they are pictures
of the same object, you want the computer to recognise they are equivalent up
to some well defined ‘distortion group’.

In later chapters, we will see other uses of moving frames. The applications
all involve the fact that a moving frame defines local coordinates that provide
a ‘divide and conquer’ mechanism for studying the problem at hand.

Moving frames exist when and where the group action is free and regular,
see Definition 1.4.8. Under quite general conditions, there are ways and means
of getting the group action you have to be free and regular on an extension of
your space if it is not already, so the condition is not as restricting as it sounds.

If the action is free and regular in some domain �, then the following will
be true; see Figure 4.1: For every x ∈ �, there is a neighbourhood U of x such
that the following hold.

� The group orbits all have the dimension of the group and foliate U .
� There is a surface K ⊂ U which crosses the group orbits transversally (see

Definition 1.4.9), and for which the intersection of a given group orbit with
K is a single point. The surface K is called the cross section.

� If O(z) denotes the group orbit through z, then the group element h taking
z ∈ U to {k} = O(z) ∩ K is unique.

The cross section K will not be unique. It is usually chosen to make the
calculations as simple as possible.

Definition 4.1.1 The map ρ : U → G which takes a point z ∈ U to the unique
group element ρ(z) ∈ G such that

ρ(z) · z = k, {k} = O(z) ∩ K, (4.1)

is called the right moving frame relative to the cross section K.
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K
hg 1

k

g ∗ zh

g

z

O(z)

Figure 4.2 Construction of a right moving frame using a cross section.

The element h in Figure 4.1 is ρ(z). If the action is left, then the map ρ is
right equivariant, that is,

ρ(g ∗ z) = ρ(z)g−1.

Indeed, looking at Figure 4.2, we see that the group element taking g ∗ z to k

has to be hg−1. If the action is right, then the map ρ satisfies

ρ(g • z) = g−1ρ(z).

The inverse of the right moving frame is called the left moving frame.
More generally, we have the following definition.

Definition 4.1.2 Given a group action G × M → M , a moving frame is an
equivariant map ρ : M → G.

We have the following table.

left action right action

right frame ρ(g ∗ z) = ρ(z)g−1 ρ(g • z) = g−1ρ(z)
left frame ρ(g ∗ z) = gρ(z) ρ(g • z) = ρ(z)g

The conditions on the group action for the above construction to be valid
typically hold only locally, and thus a moving frame can be constructed only
locally. In general, it will not be possible to construct a moving frame in a neigh-
bourhood of every point on a manifold: no moving frame can be constructed in
the neighbourhood of the origin of R2 for the rotation group SO(2).

We summarise the discussion as a theorem.



4.1 Moving frames 117

K

z θ

Figure 4.3 The construction of a moving frame for rotations in the plane.

Theorem 4.1.3 If a group action is free and regular in � ⊂ M , then for every
x ∈ � there is a neighbourhood U of x such that there exists a moving frame
on U .

In practice, we do not wish to study the details of the foliation of the space by
the group orbits. We need a way to derive the frame knowing only the formulae
for the group action. Thus, we use the following procedure. We define the
cross section K as the locus of a set of equations ψk(z) = 0, k = 1, . . . , r .
The number of equations, r , equals the dimension of the group. In order to
obtain the group element that takes z to K, we solve the so called normalisation
equations,

ψk (̃z) = 0, k = 1, . . . , r. (4.2)

The frame ρ(z) therefore satisfies

ψi(ρ(z) ∗ z) = 0, i = 1, . . . , r.

If the solution is unique on the domain U , then ρ is a right frame, one that satis-
fies ρ(g ∗ z) = ρ(z)g−1 or ρ(g • z) = g−1ρ(z). One chooses the normalisation
equations to minimise the computations as much as possible for the application
at hand. A fuller discussion appears in Section 4.2.

Example 4.1.4 Consider the usual action of SO(2) in the plane,(
x̃

ỹ

)
= Rθ

(
x

y

)
=
(

cos θ − sin θ

sin θ cos θ

)(
x

y

)
,

refer to Figure 4.3. If we set U = R2 \ {(0, y) | y ≤ 0}, that is, we remove the
origin and the negative y-axis from the plane, then the action is free and regular.
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Taking the normalisation equation to be x̃ = 0, then ρ(x, y) is the rotation that
takes the point (x, y) to the positive y-axis, which is the cross section K to the
orbits. The generic element z ∈ U has coordinates (x, y). Specifically, we have

ρ(x, y) =


y√

x2 + y2
− x√

x2 + y2

x√
x2 + y2

y√
x2 + y2

 .

To verify that ρ is equivariant, let Rt be a rotation matrix with angle t . Then

ρ(Rt ∗ (x, y)) =


sin(t)x + cos(t)y√

x2 + y2
−cos(t)x − sin(t)y√

x2 + y2

cos(t)x − sin(t)y√
x2 + y2

sin(t)x + cos(t)y√
x2 + y2



=


y√

x2 + y2
− x√

x2 + y2

x√
x2 + y2

y√
x2 + y2

 ·
(

cos t sin t

− sin t cos t

)

= ρ(x, y)R−1
t

as required. If we solve the normalisation equation for the group parameter
θ , namely, x̃ = cos(θ )x − sin(θ )y = 0, we obtain ρ not in matrix form, but
parametric form,

ρ(x, y) =
 arctan

(
x

y

)
y �= 0

0 y = 0

with the usual caveats on the definition of the arctan function to make ρ

continuous on U . To verify that ρ in this formulation is equivariant, note that

ρ(Rt ∗ (x, y)) = ρ(cos(t)x − sin(t)y, sin(t)x + cos(t)y)

= arctan

(
cos(t)x − sin(t)y

sin(t)x + cos(t)y

)

= arctan

(
(x/y) − tan t

1 + (x/y) tan t

)

= arctan

(
x

y

)
− t
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using the addition formula for tan. Since RtRs = Rt+s , we see that on the
parameter level, group multiplication is addition and thus the inverse of an
element’s parameter is its negative.

Exercise 4.1.5 Redo the calculations for Exercise 4.1.4 above but using
the cross section K = {(x, 0) | x > 0}, so that the normalisation equation
is ỹ = 0.

Example 4.1.6 Consider now the special Euclidean group SE(2) of rotations
and translations acting on curves in the plane, and the induced action on its
tangent lines, depicted in Figure 1.1. The induced action on derivatives is called
the prolonged action detailed in Section 1.3.4. If the curve γ (s) has coordinates
(u(s), v(s)), the prolonged action takes place in (u, v, us, vs, uss, . . . )-space;
as many derivatives as make sense for the curve you have. The curve must be
at least once differentiable, and then the prolonged group action is free on an
open domain. The generic group element has parameters (θ, (a, b)) where θ is
the angle of rotation and (a, b) is the vector of translation. The calculations are
much easier if the ‘inverse’ action is taken, namely(

ũ

ṽ

)
=
(

cos θ sin θ

− sin θ cos θ

)(
u − a

v − b

)
.

This is now a right action. Since the curve parameter s is invariant, the prolon-
gation action is simple to calculate. We obtain(

ũJ

ṽJ

)
=
(

cos θ sin θ

− sin θ cos θ

)(
uJ

vJ

)
where J is the index of differentiation. Let us take the cross section K to be the
coordinate plane, u = 0, v = 0 and vs = 0. Thus the normalisation equations
are

ũ = 0, ṽ = 0, ṽs = 0. (4.3)

The action of the frame defined by these equations on a curve is depicted
in Figure 4.4. Solving equations (4.3) for the group parameters in terms of
(u, v, us, . . . ) yields

a = u, b = v, θ = arctan

(
vs

us

)
. (4.4)

This is the frame in parameter form, valid on an open domain that excludes,
say, the line {(us, 0) | us ≤ 0} in the (us, vs)-plane. In matrix form, the frame is
obtained by substituting the values of the parameters on the frame into a matrix
representation of the generic group element. For the standard representation of
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u

v

z

0

ρ(z)

Figure 4.4 The action of the standard Euclidean frame group element, defined by
ũ = 0, ṽ = 0 and ṽs = 0, at the point z = (u, v, us, vs ).

SE(2) (see equation (1.21)) we obtain

ρ(u, v, us, vs, . . . ) =


us√

u2
s + v2

s

− vs√
u2

s + v2
s

u

vs√
u2

s + v2
s

us√
u2

s + v2
s

v

0 0 1

 . (4.5)

To verify that this is equivariant, we act on the components of ρ with a generic
group element which we take to have parameters (α, (k1, k2)); it is not a good
idea to take the same parameter names as those used to calculate the frame.
Then

ρ (̃u, ṽ, ũs, . . . ) =



ũs√
ũs

2 + ṽs
2

− ṽs√
ũs

2 + ṽs
2

ũ

ṽs√
ũs

2 + ṽs
2

ũs√
ũs

2 + ṽs
2

ṽ

0 0 1



=
 cos α − sin α k1

sin α cos α k2

0 0 1

−1

ρ(u, v, us, . . . )

which is the equivariance of a right frame for a right action.

Exercise 4.1.7 Show that taking the usual Euclidean action in the above
example results in the inverse of the frame calculated above, with the same
normalisation equations. Verify its equivariance.
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e1e2

Figure 4.5 An orthonormal vector ‘frame’ attached to a curve in the plane.

z2
z1

z3

gz3

z1

z2

Figure 4.6 Euclidean motion on sets of points in the plane.

Example 4.1.6 provides a nice illustration of the relationship between the
Fels–Olver frame and Cartan’s frame of vectors at each point of the curve. If
we look at the columns of the rotation part of the matrix form of ρ, we see that
they form the unit tangent and unit normal of the curve, depicted as e1 and e2 in
Figure 4.5. Cartan’s frame consists of this pair, as well as the point of the curve
at which they sit. The rotation angle of our frame is that required to rotate the
vector pair ((1, 0), (0, 1)) to the vector pair (e1, e2).

Example 4.1.8 Consider now Euclidean motion on sets of points in the plane,
see Figure 4.6. Let the point zi have coordinates (xi, yi). Again, let us consider
the inverse action, (

x̃i

ỹi

)
=
(

cos θ sin θ

− sin θ cos θ

)(
xi − a

yi − b

)
.

Taking the normalisation equations,

x̃1 = 0, ỹ1 = 0, ỹ2 = 0

and solving for the three group parameters, we obtain

a = x1, b = y1, θ = arctan

(
y2 − y1

x2 − x1

)
. (4.6)

We leave it to the reader to define the domain of validity of the frame.
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Remark 4.1.9 The frame given by equation (4.6) works regardless of the
number of points in the plane we consider. In particular, it can be used in the
study of Euclidean motions on piecewise linear curves in the plane.

Remark 4.1.10 Actions on sets of points in M is equivalent to considering the
product action on M × · · · × M , see Section 1.3.2. Further examples appear in
Section 4.7.

In the above examples, we have looked at two different actions induced from
the standard Euclidean group action on the plane, one on curves and one on
sets of points. It is not possible to define a frame for the standard action on the
plane itself. One of the requirements of the construction of the frame given at
the start of the chapter is that the group orbits foliate the space, and that these
orbits have the same dimension as the group. Since the Euclidean group has
dimension three and the plane has dimension two, this is impossible. Thus, it
is necessary to find a larger space on which to act.

The examples and exercises in this and subsequent sections may give the
impression that one can always solve the normalisation equations for the frame
in explicit detail. Unfortunately, this is not true in general, although it is sur-
prising just how often one can solve them. As we go through the theory and
applications of moving frames, we will always be asking, how much informa-
tion can we obtain without solving for the frame. The answer is: a great deal,
as we shall see.

4.2 Transversality and the converse to Theorem 4.1.3

Given a free and regular group action on �, we constructed above moving
frames in the neighbourhood of any point. Let us now consider the converse: if
a moving frame exists, is the group action free and regular?

Suppose we have a smooth equivariant map ρ : M → G. We first show the
action is free. Let h ∈ G be an element of the isotropy group of z. Then, for
example, if we have a left frame for a left action, hρ(z) = ρ(h ∗ z) = ρ(z).
Multiplying these equations on the right by ρ(z)−1 yields h = e, the identity
element. Similar remarks hold for the other cases.

Next we consider the conditions for regularity. Since by hypothesis the
action is free and smooth, the orbits foliate the space by the Frobenius Theorem,
Theorem 3.1.24. The cross section to the orbits for the moving frame as we
constructed above can be described as the set K = {z ∈ M | ρ(z) = e}. This
set is non-empty, since if ρ(z) = g say, then g−1 ∗ z ∈ K. Further, each orbit
intersects with K at most once; if not, there exists z ∈ K and g ∈ G, g �=
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K

Figure 4.7 Group orbits all tangent to K; a nowhere transverse frame.

e, such that g ∗ z ∈ K. But then by definition, e = ρ(g ∗ z) = gρ(z) = g, a
contradiction.

Finally, we need to show there exists a transverse cross section to the orbits.
To show the orbits are transverse to K, we need to demonstrate that for any
z ∈ K,

TzK + TzO(z) = TzM,

see Definition 1.4.9. Unfortunately, this is not true in general for the K given
above.

Example 4.2.1 Consider the action of (R,+) on the plane whose orbits con-
sist of the cubic curves depicted in Figure 4.7. The action is x̃ = x + ε, ỹ =
(ε + y1/3)3. Now let ρ(x, y) = −y1/3, obtained by solving the normalisation
equation ỹ = 0. This is a right equivariant mapping since ρ (̃x, ỹ) = −ỹ1/3 =
−(ε + y1/3) = ρ(x, y) − ε. The set K = {(x, y) | ρ(x, y) = 0} = {(x, 0)}, is
the x-axis, to which every orbit is tangent, not transverse. However, it is appar-
ent that a transverse cross section exists arbitrarily close to K.

Arbitrary surfaces can always be deformed locally to be transverse to a
foliation. The foliation in Figure 4.8 is given by the action x̃ = exp(−t)x,
ỹ = exp(t)y, t ∈ R, which is both free and regular on R2 \ {(0, 0)}. The circle
C drawn in the figure can be deformed so that near any point on the deformed
circle, the orbits are transverse to it, but this cannot be achieved simultaneously
for all points. The inability to have simultaneous transversality is due to the
existence of orbits arbitrarily close to C that do not intersect with it, no matter
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K

Figure 4.8 The cross section K cannot be deformed so as to be transverse to the
foliation simultaneously at every point.

how C is deformed. Note that this ‘cross section’ does not define a global frame
as most orbits intersect it either twice or not at all, but on certain open sets of
R2 \ {(0, 0)} it does define a local frame.

A proper discussion of the existence, at least locally, of a transverse cross
section would take us too far afield into Differential Topology. However, the
key words are hopefully clear: transversality is generic, which means that we
can deform the cross section to one that is transverse, at least locally.

Looking more closely at the use of normalisation equations to define a frame,
we see that we must solve

ψk(g ∗ z) = 0, k = 1, . . . , r

for the r group parameters that describe the Lie group near its identity ele-
ment. Writing the solution to these equations as g = ρ(z) which gives the
frame ρ, requires the application of the inverse function theorem, for which
a necessary condition is that the derivative of the map ψ : G → Rr , where
� = (ψ1, . . . , ψr ) and z is regarded as a multidimensional parameter, has
non-zero determinant on the cross section. ‘Non-zero determinant’ is an open
condition on z, and thus � will typically be invertible on an open piece of
the cross section {z | �(z) = 0}: in general, we will only be able to define
frames locally by this method. The right equivariance of the frame is a con-
sequence of the uniqueness of the solution that the inverse function theorem
provides. Indeed, since both ρ(h ∗ z) and ρ(z)h−1 solve ψk(g ∗ (h ∗ z)) = 0,
k = 1, . . . , r , uniqueness implies they must be equal.
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However, transversality requires more than solvability of the normalisation
equations, as Example 4.2.1 shows.

Why is transversality so important and desirable? Look again at Figure 4.1
at the start of this chapter. If K is transverse to the orbits, then ρ defines local
coordinates as follows. Since the group element that sends z to K is unique,
each O(z) ∩ U can be given the same coordinates as that of the group about its
identity element. Moreover, the element {k} = O(z) ∩ K = ρ(z) · z tells you
which orbit you are on. Thus, assuming a right frame ρ for a left action, the map

ϕ : U → G × K, z �→ (ρ(z), ρ(z) ∗ z) (4.7)

is invertible on its image. Transversality guarantees the derivative of ϕ is also
invertible, and so is a genuine coordinate transformation, or diffeomorphism.
We will be using these coordinates in just about every application in this book.

If the frame is not transverse, then the map ϕ given in equation (4.7) will
not be a diffeomorphism. Consider the frame in Example 4.2.1. Since K is the
x-axis, it suffices to take the x-component of ρ(z) · z, so that

ϕ(x, y) = (−y1/3, x − y1/3).

The Jacobian map of ϕ is easily seen to be non-invertible when y = 0, that is,
on K. Replacing the normalisation equation with ỹ = c yields the frame to be
ρ(x, y) = c1/3 − y1/3 and ϕ(x, y) = (c1/3 − y1/3, x + c1/3 − y1/3) which has
invertible Jacobian in a neighbourhood of the line y = c.

The Morse–Sard Theorem (see Hirsch, 1976) can be used to show that the
transversality of the frame is the generic situation, and can always be achieved
by altering the constants ci in the normalisation equations ψi(z) = ci , perhaps
on a smaller neighbourhood than the one we started with. We summarise this
discussion as a theorem.

Theorem 4.2.2 Let the normalisation equations be ψi( z̃ ) = ci , and let Dg�

denote the Jacobian of the map � = (ψ1, . . . , ψr ) with respect to the group
parameters. If the determinant

Dg� |g=e

regarded as a function of z is non-zero on the locus K = {z | ψi(z) = ci, i =
1, . . . , r}, so that the implicit function theorem may be applied, then the map
ρ : G → M defined by ψi(ρ(z) · z) = ci is a moving frame on a neighbourhood
of K. Moreover, the surface K can be assumed to be transverse to the group
orbits for generic ci .

In all that follows, we will assume that the orbits are transverse to the cross
section that defines the frame.
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Remark 4.2.3 For algebraic actions, one can dispense with the inverse function
theorem, see Hubert and Kogan (2007a, 2007b) replacing its role in the theory
with results from commutative algebra. This means that well-defined algorithms
can be developed and algebraically certified for studying moving frames and
their applications in a symbolic computing environment.

4.3 Frames for SL(2) actions

We now turn our attention to the three non-linear actions of SL(2) in the plane,
given in Chapter 1. None of these actions is free as they stand, so we need to
extend the space on which they act in some way. We will use these frames in
examples all through the book.

Example 4.3.1 To calculate the frame for the action (1.17), as induced on
curves (x(s), y(s)) in the plane, we take normalisation equations,

x̃ = 0, x̃s = 1, x̃ss = 0.

Near the identity element, the group parameter d = (1 + bc)/a. Solving the
normalisation equations for the three independent group parameters yields

a = 1√
xs

, b = − x√
xs

, c = xss

2(xs)3/2
.

In matrix form, the moving frame is

ρ(x, xs, xss, . . . ) =


1√
xs

− x√
xs

xss

2(xs)3/2

2x2
s − xxss

2(xs)3/2

 . (4.8)

The choice of the positive square root is to ensure that ρ is the identity element
on the cross section K.

Since the normalisation equations, which define the cross section, include
x̃s = 1, the frame is defined in a neighbourhood of (x, y, xs, ys, . . . )-space
where xs �= 0. It can be seen by examining the group action on xs ,

x̃s = xs

(cx + d)2
,

that the group action leaves the coordinate slice, xs = 0, invariant, and in fact
is singular there (see Olver (2000) for a discussion of the singularities of group
actions).

Exercise 4.3.2 Which equivariance equation is satisfied by the frame (4.8)?
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Exercise 4.3.3 Suppose instead one induces the action (1.17) on curves
parametrised as (x, y(x)) in the plane. Calculate the frame for the normali-
sation equations,

x̃ = 0, ỹx = 1, ỹxx = 0.

Explain why it is not possible to have a normalisation equation of the form
y = c.

Exercise 4.3.4 Calculate frames for curves given as (x(s), y(s)) and as (x, y(x))
for the SL(2) actions, (1.18) and (1.19). Hint: in order to have an equation for
the group parameter b, it is necessary to have a normalisation equation of the
form x̃ = c. One always chooses the simplest possible form of the constants
involved, usually either 0 or 1; in this case, x̃ = 0 is recommended.

4.4 Invariants

One can think of the transverse moving frame, defined in U with cross section
K ⊂ U , as providing local coordinates, sometimes called a local trivialisation,
of the manifold, as discussed in Section 4.2. For a right frame, the coordinate
transformation is given by

ϕ : U → G × K, z �→ (ρ(z), ρ(z) · z).

The leaves of the foliation given by the group orbits are parametrised by the
group parameters, while ρ(z) · z yields the element O(z) ∩ K. We show in this
section that K has coordinates given by invariants of the group action.

Theorem 4.4.1 If ρ is a right frame, then the quantity I (z) = ρ(z) · z is an
invariant of the group action.

Proof For a left action we have

I (g ∗ z) = ρ(g ∗ z) ∗ (g ∗ z) = (ρ(g ∗ z)g) ∗ z = (ρ(z)g−1g) ∗ z

= ρ(z) ∗ z = I (z).

For a right action, ρ(z) • z is similarly invariant; since g • (h • z) = (hg) • z,
we have

ρ(g • z) • (g • z) = (gρ(g • z)) • z = (gg−1ρ(z)) • z = ρ(z) • z.

So, we write both cases simply as ρ(z) · z. �

Definition 4.4.2 The map z �→ I (z) = ρ(z) · z is called the invariantisation
map. Other notations in use are ι(z) and ῑz.
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Solving normalisation equations always yields a right frame, so that eval-
uating z̃ = g · z with g = ρ(z) in parameter form yields an invariant. This is
true whether we consider z in coordinates or not; even though the parity of the
action is opposite for z and its coordinates, the equivariance changes to match.
Thus, if z = (z1, z2, . . . , zn) and the normalisation equations are z̃i = ci for
i = 1, . . . , r , where r is the dimension of the group, then the components of

ρ(z) · z = (c1, . . . , cr , I (zr+1), . . . , I (zn))

where

I (zk) = g · zk

∣∣
g=ρ(z)

are all invariants.
We note that the I (zk) are all functionally independent. For if there were an

expression of the form F (I (zk)) ≡ 0, then by back-substituting for the I (zk)
their expressions in terms of the zi , we would have that the zi were functionally
dependent, a contradiction.

Seeing is believing, so we turn our attention to considering the invariants
for the examples considered in the previous section.

Example 4.4.3 For the rotation group in the plane, Example 4.1.4, the calcu-
lation looks like

g · z
∣∣
g=ρ(z)

= ((cos θ )x − (sin θ )y, (sin θ )x + (cos θ )y)
∣∣
θ=arctan(x/y)

= (0,
√

x2 + y2).

The first component is zero because the normalisation equation is x̃ = 0; the
frame is defined to be the group element that sends the first component of
z̃ to zero. The second component of ρ(z) · z is evidently invariant. Moreover,
looking at Figure 4.3, it is clear that the intersection of an orbit passing through
the point (x, y), with the positive y-axis, is the point (0,

√
x2 + y2). In this

simple case, the coordinates provided by the frame are essentially the usual
polar coordinates.

Example 4.4.4 Consider next the Euclidean action on sets of points in the
plane, Example 4.1.8. Calculating ρ(z) · z means back-substituting in g · z the
specific values of the parameters that determine the frame, equation (4.6), in
the z̃i = g · zi . Doing this yields I (z1) = (0, 0), as expected, since these are the
first two normalisation equations, and then

I (z2) = (
√

(x2 − x1)2 + (y2 − y1)2, 0)
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and

I (z3) =
(

(x3 − x1)(x2 − x1) + (y3 − y1)(y2 − y1)√
(x2 − x1)2 + (y2 − y1)2

,

(y3 − y1)(x2 − x1) − (x3 − x1)(y2 − y1)√
(x2 − x1)2 + (y2 − y1)2

)
.

Each component of I (z2) and I (z3) is an invariant. The second component
of I (z2) is zero since that is the third normalisation equation. The geometric
interpretation of the non-trivial invariants are as functions of lengths, angles
between two line segments that meet at a point, and areas of triangles, all
of which are evidently invariant under the Euclidean group action on the
plane.

Example 4.4.5 Looking at the Euclidean action on curves in the plane, Figure
4.4, Example 4.1.6, the frame in parameter space is given in equation (4.4). The
coordinates are (s, u, v, ux, vx, uxx, . . . ). The invariants are the components of

(g · s, g · u, g · v, g · us, g · vs, g · uss, g · vss, . . . )
∣∣∣
g=ρ

=
(

s, 0, 0,

√
u2

s + v2
s , 0,

ussus + vssvs√
u2

s + v2
s

,
ussvs − vssus√

u2
s + v2

s

, . . .

)
.

Exercise 4.4.6 The radius of any circle in the plane is invariant under transla-
tions and rotations, and hence the radius of an osculating circle to a curve,
pictured in Figure 4.9, is a Euclidean invariant. The Euclidean curvature
of a curve at a point is the reciprocal of the radius of the osculating cir-
cle there. If the curve is parametrised as (x, y(x)), then show the curvature
is

κ = yxx

(1 + y2
x )3/2

.

Hint: let the equation of the circle be c(x) =
√

r2 − (x − xc)2 + yc where r is
the radius and (xc, yc) its centre. Then there are three equations for the three
unknowns, r , xc and yc, namely y0 = y(x0) = c(x0), yx = cx and yxx = cxx

evaluated at the point of contact (x0, y0).

Exercise 4.4.7 Consider the inverse Euclidean action on curves in the
plane, but this time described by (x, y(x)), so that the action takes place in
(x, y, yx, yxx, . . . )-space. Let the normalisation equations be

x̃ = 0, ỹ = 0, ỹx = 0.
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–1
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1
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211–2–

x

Figure 4.9 Two osculating circles, at x = 0 (blue) and at x = 0.5 (in black), on
the parabola (x, x2) drawn in green. Note the osculating circles do not necessarily
lie on only one side of the curve.

Show that the frame is given by

a = x, b = y, θ = arctan yx

and that

ỹxx

∣∣∣
g=ρ

= I (yxx) = yxx

(1 + y2
x )3/2

which is the Euclidean curvature defined in the previous exercise. Find I (yxxx)
and I (yxxxx) explicitly.

Definition 4.4.8 For any prolonged action in (xi, u
α, uα

K )-space, the specific
components of I (z), the invariantised jet coordinates, are denoted

Ji = I (xi) = x̃i

∣∣
g=ρ(z), I α

K = I (uα
K ) = ũα

K

∣∣
g=ρ(z) (4.9)

which is the original Fels and Olver notation. More recently, some authors have
denoted these as ι(xi), ι(uα

K ) or ῑxi , ῑuα
K .

Explicit expressions for these invariants in terms of the original variables
can often be obtained even when the frame is not known explicitly. This is
because the frame dependent invariants I (zk) may be related to historically
known invariants using the Fels–Olver–Thomas Replacement Theorem (Fels
and Olver, 1999, Theorem 10.3) which states the following.
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Theorem 4.4.9 If f (z) is an invariant then

f (z) = f (I (z)).

Proof Substitute g = ρ(z) into f (z) = f (g · z). �

An important corollary is the following.

Theorem 4.4.10 (Replacement Theorem) Any invariant is a function of the
I (zk). In particular, the set {Ji, I

α, I α
K}, defined in Definition 4.4.8, is a complete

set of differential invariants for a prolonged action.

Example 4.4.11 To show the power of the Replacement Theorem, consider
the action induced on curves by the group of Euclidean motions in 3-space. We
take a curve parametrised as u = (u(s), v(s), w(s)). The action leaves the curve
parameter s invariant, so s̃ = s, and sends ũ = Ru + a where R ∈ SO(3) and
a ∈ R3 is the constant vector of translation. Let the normalisation equations be

ũ = ṽ = w̃ = 0, ṽs = w̃s = 0, w̃ss = 0.

Using the notation of Definition 4.4.8, we have Iu = I v = Iw = 0, I v
1 = Iw

1 =
0 and Iw

11 = 0. We do not solve for the frame explicitly in order to calculate
the other Iα

K . Instead, we apply the Replacement Theorem to obtain the Iα
K

in terms of historically known invariants. Thus, from the invariant |us | where
us = (us, vs, ws), we obtain√

u2
s + v2

s + w2
s =

√
(Iu

1 )2 + (I v
1 )2 + (Iw

1 )2 = |Iu
1 |,

applying the normalisation equations. This solves for Iu
1 up to a sign. Another

known invariant is the curvature, κ = |us × uss |/|us |3/2. Applying the Replace-
ment Theorem and the normalisation equations yields an expression for I v

11 in
terms of κ and |us |. Finally, applying the method to the invariant determinant
τ = (us × uss) · usss/κ

2 which defines τ , the torsion of the curve, yields an
expression for Iw

111. The curvature and torsion form a complete set of invariants
for the Euclidean action on curves in 3-space; any other invariant is a function
of these and their derivatives with respect to s. Thus, the remaining Iα

K can
all be obtained by differentiation and replacement. Further details appear in
Section 5.4.

The Replacement Theorem implies that expressing any invariant in terms of
the Iα

K is achieved by simple substitution. This process is called invariantisation.
In a computer algebra environment, invariantisation is achieved by substitution
of the normalised invariants followed by simplification with respect to the
normalisation equations. For a discussion of the subtle issues that arise in this
context we refer to Mansfield (2001).
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Our final example in this section will prove important in the applications in
later chapters.

Example 4.4.12 If we consider left multiplication on any matrix Lie group,
prolonged to the tangent space T G, we obtain

G × T G → T G, h ∗ (g, g′) �→ (hg, hg′).

Taking the normalisation equation g̃ = e, then the frame is given explicitly
by

ρ(g, g′) = g−1.

Moreover the components of

I (g, g′) = g−1g′ ∈ g

are invariants under left multiplication.

4.5 Invariant differentiation

This section relates purely to moving frames for prolonged actions. We investi-
gate not only invariant differential operators but the formulae for the invariant
differentiation of the invariants Iα

K .
The method for obtaining invariant differential operators is similar to that

of obtaining differential invariants.

Example 4.5.1 A simple example is provided by the scaling action in the plane,

x̃ = λx, ũ = u/λ, λ > 0

and prolonged to curves parametrised as (x, u(x)). With the normalisation
equation x̃ = 1 on the domain {(x, u, ux, . . . ) | x > 0}, the frame is λ = 1/x.

The invariant differential operator is then

D = d

dx̃

∣∣∣
λ=1/x

= dx

dx̃

d

dx

∣∣∣
λ=1/x

= x
d

dx
.

To see this is invariant, note that

x̃
d

dx̃
= x̃

dx

dx̃

d

dx
= x

d

dx
.

Evaluating ũ on the frame leads to the invariant xu = ũ|λ=1/x . Since

d̃ku

dxk
= λ−(k+1) dku

dxk
,
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we have invariants

Ik = d̃ku

dxk

∣∣∣
λ=1/x

= xk+1 dku

dxk

where we have suppressed the index u on Iu
k = Ik as there is only one dependent

variable. It is interesting to compare I1 with DI0, and more generally, Ik+1 with
DIk . It is trivial to verify

DIk = (k + 1)Ik + Ik+1,

and thus we see that even though

d

dx

dku

dxk
= dk+1u

dxk+1
,

the same is not true for their invariantised counterparts,

DIk �= Ik+1. (4.10)

Since to obtain DIk we first invariantise dku/dxk and then differentiate, while
to obtain Ik+1 we first differentiate and then invariantise, equation (4.10) says,
‘differentiation and invariantisation do not commute’.

Definition 4.5.2 A set of distinguished invariant operators is defined by
evaluating the transformed total differential operators on the frame. They are

Dj = D̃j

∣∣∣
g=ρ(z)

,

where the D̃j are given in Chapter 1, equation (1.35).

By an argument similar to the Replacement Theorem, Theorem 4.4.9, any
invariant differential operator can be written in terms of theDj and the symbolic
invariants Ji = ι(xi), I

α = ι(uα) and Iα
K = ι(uα

K ). The Dj are linear derivations
on functions of Ji , Iα and Iα

K , that is, they are linear operators and the product
rule holds. As we shall see, in general,

[Dj ,Dk] �= 0

and as Example 4.5.1 shows,

Dj I
α
K = D̃j

∣∣∣
g=ρ(z)

ũα
K

∣∣∣
g=ρ(z)

�=D̃j ũ
α
K

∣∣∣
g=ρ(z)

= ũα
Kj

∣∣∣
g=ρ(z)

= Iα
Kj .

This motivates the following definition.

Definition 4.5.3 The correction terms Nij and Mα
Kj are defined by

Dj Ji = δij + Nij , Dj I
α
K = Iα

Kj + Mα
Kj , (4.11)

where δij is the Kronecker delta.
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It follows from their definition that the invariants Iα
K are left unchanged

by permutations within their index K . The correction terms, however, are
not invariant under permutations in their index, because the operators do not
commute.

In order to understand the formulae for the correction terms, we need to
recall the infinitesimals of the group action in Section 1.6. If the parameters of
the group in a neighbourhood of the identity element are a1, . . . , ar where r is
the dimension of the group, then the group infinitesimals with respect to these
parameters are

ξ
j

i = ∂x̃j

∂ai

∣∣
g=e

, φα
K,i = ∂ũα

K

∂ai

∣∣
g=e

.

These are functions of xi , i = 1, . . . , p, uα , α = 1, . . . , q, and uα
K .

Definition 4.5.4 Given ξ
j

i = ξ
j

i (x, uβ ), define ξ
j

i (I ) = ξ
j

i (J, Iβ ) and similarly
φα

K (I ) = φα
K (J, Iβ, I

β

L ), that is, where the arguments have been invariantised.

Theorem 4.5.5 There exists a p × r correction matrix K such that

Nkj =
r∑

�=1

Kj�ξ
k
� (I ), Mα

Kj =
r∑

�=1

Kj�φ
α
K,�(I ) (4.12)

where � is the index for the group parameters and r = dim(G). If the action on
the base space is left and the frame is right, then K is given by

Kj� = D̃jρ�( z̃ )
∣∣∣
g=ρ(z)

= ((TeRρ)−1Djρ)� (4.13)

where ρ = (ρ1, . . . , ρr )T is in parameter form and Rρ : G → G is right mul-
tiplication by ρ.

Proof To show the result for the Mα
Kj , we apply the chain rule to D̃j I (z)

evaluated at g = ρ(z). The proof for the Nkj is entirely similar. Writing

ũα
K = Fα

K (a1, . . . , ar , x, uβ, . . . )

where the ai are the group parameters (near e), we have by definition that

D̃jF
α
K = Fα

Kj .

Assuming a right frame, we have

Iα
k = Fα

K (ρ1, . . . , ρr , x, uβ, . . . ).

If the frame is left, then one must use ρ−1 in place of ρ in Fα
K to obtain the

invariant Iα
K ; we leave this case to the reader.



4.5 Invariant differentiation 135

Applying the chain rule, we have

D̃j

∣∣∣
g=ρ

I α
K =

r∑
�=1

(
∂Fα

K

∂g�

) ∣∣∣
g=ρ

(
D̃jρ�

) ∣∣∣
g=ρ

+ (D̃jF
α
K

) ∣∣∣
g=ρ

. (4.14)

The second summand of equation (4.14) is Iα
Kj by definition. By Theorem

3.2.37, we have(
∂Fα

K

∂g1
(g, z), . . . ,

∂F α
K

∂gr

(g, z)

)T ∣∣∣
g

= (TeRg)−T �α
K (g · z),

where z = (x, uβ, . . . ) and by definition(
∂Fα

K

∂g1
(g, z), . . . ,

∂F α
K

∂gr

(g, z)

)T ∣∣∣
g=e

= �α
K (z),

the vector of infinitesimals of the group action on the uα
K coordinate with respect

to the group parameters (a1, . . . , ar ).
Hence the first summand of equation (4.14) is

r∑
�=1

�α
K,�(I )

(
TeR

−1
ρ Djρ

)
�

where �α
K,�(I ) is defined in Definition 4.5.4 above. This proves one of the

expressions for K. Finally, we note that ρ(g ∗ z) = ρ(z)g−1 implies

D̃jρ(g ∗ z) = D̃jRg−1 (ρ(z)) = TρRg−1D̃jρ(z)

by the chain rule. Evaluating this at g = ρ and using the result of Exercise
3.2.38, we have proved the equality of the two expressions for the components
of K. �

The rows of K will take on additional significance in Chapter 5.
It is of great computational importance in the applications that the matrix K

can be calculated without explicit knowledge of the frame. All that is required
are the normalisation equations {ψλ(z) = 0, λ = 1, . . . , r} and the infinitesi-
mals. Suppose the n variables actually occurring in the ψλ(z) are ζ1, . . . , ζn;
typically m of these will be independent variables and n − m of them will be
dependent variables and their derivatives. Define T to be the invariant p × n

total derivative matrix

Tij = I

(
D

Dxi

ζj

)
.

Also, let � denote the r × n matrix of infinitesimals with invariantised argu-
ments,

�ij =
(

∂(g · ζj )

∂gi

∣∣∣
g=e

)
(I ).
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Furthermore, define J to be the n × r transpose of the Jacobian matrix of the
left hand sides of the normalisation equations ψ1, . . . , ψr , with invariantised
arguments, that is

Jij = ∂ψj (I )

∂I (ζi)
.

Using the above defined matrices, which are easily calculated, the correction
matrix can be obtained as follows.

Theorem 4.5.6 The correction matrix K, which provides the error terms in the
process of invariant differentiation in Theorem 4.5.5 is given by

K = −TJ(�J)−1,

where T, J and � are defined above.

Proof We compute the invariantisation of the equations

Diψλ(ρ(z) · ζ ) = 0 (4.15)

where ζ = ζ1, . . . , ζn are the actual arguments of the ψ�. The invariantised nor-
malisation equations are functions of both the variables ζl and the coordinates
of the frame ρj (z). Since the latter depend on the former we have to be careful.
We separate the different dependences by writing ψp(ρ(z) · ζ ) = �p(ζ, ρ(z)).
Here the ψ are functions of n variables, whereas the � depend on n + r

variables. Thus from equation (4.15) we obtain

r∑
j=1

Diρj (z)
∂�λ(ζ, ρ(z))

∂ρj (z)
+

n∑
l=1

Diζl

∂�λ(ζ, ρ(z))

∂ζl

= 0.

We use the chain rule once more and write

∂�λ(ζ, ρ(z))

∂ρj (z)
=

n∑
l=1

∂ρ(z) · ζl

∂ρj (z)

∂ψλ(ρ(z) · ζ )

∂ρ(z) · ζl

.

The theorem is proved by invariantisation of the different terms, that is, replace
z by z̃ (ζ by ζ̃ ) and evaluate at g = ρ(z). �

To calculate K in practice, it is easier to use labelled rows and columns for
the intermediate matrices �, J and T rather than indices.

Example 4.5.7 Consider the prolongation of the SL(2) action on (x, t, u(x, t))
space,

x̃ = x, t̃ = t, ũ = au + b

cu + d
.
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The table of infinitesimals is


x t u ux ut uxx · · ·

a 0 0 2u 2ux 2ut 2uxx · · ·
b 0 0 1 0 0 0 · · ·
c 0 0 −u2 −2uux −2uut −2u2

x − 2uuxx · · ·

.

If we take the normalisation equations ũ = 0, ũx − 1 = 0 and ũxx = 0, then
the ψ� are ψ1(u, ux, uxx) = u, ψ2(u, ux, uxx) = ux − 1 and ψ3(u, ux, uxx) =
uxx , so the arguments ζi are u, ux and uxx , and the invariantised nor-
malisation equations are I u = 0, Iu

1 = 1 and Iu
11 = 0. Thus, selecting the

appropriate columns of the table of infinitesimals and invariantising, we
obtain

� =


u ux uxx

a 0 2 0
b 1 0 0
c 0 0 −2

.

The Jacobian matrix is the identity matrix,

J =


ψ1(I ) ψ2(I ) ψ3(I )

Iu 1 0 0
Iu

1 0 1 0
Iu

11 0 0 1

,

and

T =
( u ux uxx

x 1 0 Iu
111

t I u
2 Iu

12 Iu
112

)
.

Hence

−K =
( a b c

x 0 1 − 1
2Iu

111

t 1
2Iu

12 Iu
2 − 1

2Iu
112

)
.

Using K to calculate symbolic invariant derivatives, we have using the formula
(4.12), that

DxI
u
2 = Iu

12 + ( a b c

0 −1 1
2Iu

111

) 2Iu
2

0
0

 a

b

c

= Iu
12,
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where we use the row of K corresponding to x since we are calculating Dx of
something, and the column from the table of infinitesimals corresponding to ut

since we are calculating a derivative of Iu
2 = I (ut ).

Exercise 4.5.8 Example 4.5.7 continued. By calculating the infinitesimals for
uxt , uxxx , uxxxx and uxxt , show that

DxI
u
12 = I u

112

DxI
u
112 = I u

1112 − 2Iu
12I

u
111

DxI
u
111 = I u

1111

Dt I
u
111 = I u

1112 − Iu
12I

u
111.

Exercise 4.5.9 Consider the third of the SL(2) actions in Example 1.2.14.
The table of infinitesimals is given in Exercise 1.6.15. Using the normalisation
equations x̃ = 0, ỹ = λ, ỹx = 0, where λ is an arbitrary constant, show the K

matrix is

−K =


a b c

x
3

2λ2
I

y

11 1
1

2λ
I

y

11

t − 1

2λ
I

y

2 + 3

2λ2
I

y

12 0
1

2λ
I

y

12

.

Exercise 4.5.10 Using the code written for Exercise 1.6.21, implement the
formula for both K given in Theorem 4.5.6, and hence the symbolic differenti-
ation formulae, in Theorem 4.5.5. Your input will now include the normalisation
equations. You will need as a subroutine an invariantisation procedure, to cal-
culate φα

K (I ) from φα
K . You also need to be able to simplify expressions with

respect to the normalisation equations with invariantised arguments, that is, the
ψi(I ).

An examination of the formulae for the Mα
Kj shows that even when |K|

is less than the order of the normalisation equations, Mα
Kj may contain terms

whose order is up to one more than the order of the normalisation equations.
Further, the Mα

Kj will cancel the Iα
Kj term if Iα

K is a normalised invariant, that is,
if ũα

K = c is a normalisation equation. The consequences of the existence and
formulae for the Mα

Kj are discussed in Chapter 5. In particular, examples there
will show that the invariants Iα

K are not necessarily the result of differentiating
some other quantity.

Since the invariant operators do not in general commute, Mα
jK �= Mα

Kj . For
this reason, the index on the Mα

jK is not of the form of an element in Np; it
is important to keep track of the order in which the differential operators are
applied.

The commutators of the invariant derivative operators can be calculated
using only the K matrix and the infinitesimals of the group action. The following
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formula is taken from Fels and Olver (1999), Equation 13.12. Denote the
invariantised derivatives of the infinitesimals ξ by

�k
li = D̃iξ

k
l (̃z)
∣∣∣
g=ρ(z)

.

Then we have

[Di ,Dj ] =
∑

k

Ak
ijDk, Ak

ij =
r∑

l=1

Kj l�
k
li − Kil�

k
lj . (4.16)

The proof of equation (4.16) uses the formula for the Lie bracket of vector
fields and ∂x̃i/∂gj = ξ i

j (x̃i). It is not necessary to implement it if you have
implemented the symbolic invariant differentiation formulae. Simply calculate
[Di ,Dj ]Iw where w is an invariant dependent variable introduced for the
purpose. The coefficient of Iw

k will be Ak
ij .

Exercise 4.5.11 Consider the action of SE(2) on the plane,(
x̃

ỹ

)
=
(

cos θ sin θ

− sin θ cos θ

)(
x − a

y − b

)
and let u = u(x, y) be an invariant. Take the normalisation equations x̃ = 0,
ỹ = 0, ũx = 0. Show that

Dx = uy√
u2

x + u2
y

D

Dx
− ux√

u2
x + u2

y

D

Dy
, Dy = ux√

u2
x + u2

y

D

Dx
+ uy√

u2
x + u2

y

D

Dy

and that

[Dx,Dy] = Iu
11

Iu
2

Dx + Iu
12

Iu
2

Dy.

Calculate Iu
11, I u

12 and Iu
2 explicitly and verify the result both directly and

using the symbolic differentiation formulae. Note the error matrix for these
normalisation equations is

K =
( a b θ

x −1 0 Iu
11/I

u
2

y 0 −1 Iu
12/I

u
2

)
.

4.5.1 Invariant differentiation for linear actions
of matrix Lie groups

If the action of a matrix Lie group G ⊂ GL(n, R) is the standard left multipli-
cation on Rn, or more generally is the standard affine action of G � Rn on Rn,
it is not necessary to put coordinates on G in order to calculate the error terms
Mα

Kj in Dj I
α
K = Iα

Kj + Mα
Kj .
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Consider first linear actions, and suppose for a curve u(s) ⊂ Rn that g · u =
gu, and that the parameter s is invariant. Then if

ui = di

dsi
u(s)

we have that

g · ui = gui .

Let u(N) denote the derivatives of u up to order N , where N is such that G acts
freely and regularly on some open subset of smooth curves and their derivatives
up to order N . By definition, if ρ = ρ(u(N)) is a right frame, taking the space
of smooth curves in Rn to G, then

ι(uk) = ρuk,

and for any g ∈ G we have

ι(uk) = ρg−1guk. (4.17)

Differentiating equation (4.17) with respect to the curve parameter s and setting
g = ρ, we obtain

d

ds
ι(uk) = ι(uk+1) + ρsρ

−1ι(uk). (4.18)

Thus the error term in the invariant differentiation of ι(uk) is precisely
ρsρ

−1ι(uk). Comparing equation (4.18) with equations (4.12) and (4.13), and
noting that the invariantised infinitesimal of the action on uk is ι(uk), we see
that K is indeed the invariantised Jacobian of the frame, not in coordinate form,
but in matrix form.

The solution of the following exercise is discussed in detail in Lemma 5.2.1.

Exercise 4.5.12 Since the action is left and the frame is right, we have ρ(g ·
u(N)) = ρ(u(N))g−1. Hence show that the components of ρsρ

−1 are invariants.
Further, show ρsρ

−1 ∈ TeG = g.

Applications of equation (4.18) are detailed in Section 5.5, where the affine
case is discussed.

4.6 *Recursive construction of frames

There are several cases where a frame can be defined recursively, that is, where
the frame can be written as a product of frames for lower dimensional group
actions. This topic was explored by Kogan (2000a, 2000b). In this section we
consider first the simplest case, and then generalise in various ways.
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ΓX
t

x

ΓY
s (x)

ΓX
t (x)

ΓX
t ΓY

s (x) = ΓY
τ (s ,t )Γ

X
t (x)

ΓY
s ΓX

t (x)

Figure 4.10 If [X, Y ] = λY , then the flow of the vector field X maps flowlines of
Y to flowlines of Y .

Consider the two parameter group action

x̃ = x, ũ = exp(ε)u + k (4.19)

of scaling and translation. The infinitesimal action is

vε = u∂u, vk = ∂u

and

[vε, vk] = −vk.

This is the simplest example of a solvable group, which we define below
and which is one of the main examples where a frame can be defined recur-
sively. Prolonging the action to (x, u, ux, uxx. . . . )-space, the group orbits are
two dimensional except along the plane u = ux = uxx = · · · = 0. By Exercise
3.1.17, with Y = vk and X = vε , we have

�X
s �Y

exp(−s)t = �Y
t �X

s . (4.20)

This implies that the flow map �X
t of X maps the flowline of Y through x to the

flowline of Y through �X
t (x). For this to be true, we need �X

t �Y
s = �Y

τ (s,t)�
X
t ,

see Figure 4.10. And indeed we have τ (s, t) = exp(t)s. This can be verified in
this simple case by noting

�X
t �Y

s (u) = �X
t (u + s) = exp(t)(u + s) = �Y

exp(t)s�
X
t (u)

which is equivalent to equation (4.20).
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flowlines of X lie
in K

KK

flowlines of Y

Figure 4.11 The cross section K′ comprises flowlines of X; the flow of X maps
the set of flowlines of Y to itself.

Let the transformation group T be that generated by the flows of both X

and Y , that [X, Y ] = λY , and that X and Y are linearly independent (non-
zero). Suppose the action of T is free and regular. Then we can take a cross
section K for T which defines a frame ρ. We will show that this can be
written as a product of frames for the actions given by the flows of X and Y

alone.
The first step is to use the flow of the vector field X to create a cross section

K′ = ∪t�
X
t (K)

for the flow of the vector field Y ; consider Figure 4.11.
We first prove that we can define a frame for T recursively using K′, and

then generalise to other intermediate cross sections.
By the Frobenius Theorem, the orbit O(z) of T through any one point z

where the action is regular is a two dimensional surface, and the intersection
of that surface with K will be a single point, which we will call k; see Figure
4.12.

Assume the action is a left action. Then a right frame for T for points on
O(z) is a map ρ : O(z) → T such that ρ(g ∗ z) = ρ(z)g−1. Since K′ is a cross
section for the Y action, there is a �Y -equivariant map ρY : O(z) → {�Y

t | t}
such that k′ = ρY (z) ∗ z ∈ K′. Then since K′ is an orbit of X there is a unique
�X

s such that �X
s (k′) = k. Define ρX(k′) = �X

s . We thus have

ρ(z) = ρX(k′) · ρY (z), k′ = ρY (z) ∗ z. (4.21)

Reversing the process just described, we have that given a frame ρY for the
action of the flow of Y relative to the cross section K′, and a frame for the flow
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ΓX
s (k)

O(z)

k

k

z

ρX (k )

ρY (z)

ΓY
t (k)

Figure 4.12 Defining a frame recursively. On the orbit O(z) of z, we have {k} =
K ∩ O(z) and ρ(z) = ρX(k′)ρY (z), where k′ = ρY (z) ∗ z.

k

z

g

ρY (z)

ρY (g ∗ z)g 1

ΓX
t (k)

k

flowlines of Y

Figure 4.13 Diagram for the proof of equivariance in the case g = �X
s , some s.

of X restricted to the cross section K′, we may use equation (4.21) to define a
frame for T . (We remove the need for K′ to consist of flowlines of X below.)

Lemma 4.6.1 The recursively defined right frame (4.21) is equivariant.

Proof We assume the action is left. To prove that ρ is equivariant, that is,
ρ(g ∗ z) = ρ(z)g−1, there are two cases to consider. The first is g = �Y

s , which
follows from

ρY (g ∗ z) = ρY (z) · g−1, and ρY (g ∗ z) ∗ (g ∗ z) = ρY (z) ∗ z.

For the second case, g = �X
s , consider Figure 4.13. Even though ρY (g ∗ z) �=

ρY (z) in general, indeed equality holds only if the X and Y flows commute, we
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k

ΓX
t (k)

K
X |K

Figure 4.14 Generalising the intermediate cross section. If the projection of X|K′

to TK′ is non-zero, the induced flow on K′ can be used to define ρX .

still have g−1ρY (g ∗ z) = ρY (z)g−1 since both these group elements take g ∗ z

to k′ and the action is free. We then have

ρ(g ∗ z) = ρX(k′)g−1ρY (g ∗ z) = ρX(k′)ρY (z)g−1

as required. �

Finally, we remove the need for the intermediate cross section to be com-
posed of flowlines of X. Consider Figure 4.14, where we have depicted the
vector field X restricted to the proposed new intermediate cross section K′.
Provided the projection of X|K′ to the tangent space TK′ of K′ is non-zero,
there will be an induced flow onK′ that can be used to define ρX onK′. We leave
it to the reader to check that the frame thus defined satisfies the appropriate
equivariance condition.

From the discussion in Section 4.4, we know that the cross section for the
flow of Y has coordinates that are invariants of that flow. Thus, the action of
�X induces an action on those invariants. Consider again the simple scaling
and translation action, equation (4.19). By the theory we have developed,
there will be a scaling action on the translation invariants. These are ux , uxx ,
uxxx , . . . and the induced scaling action is

ũx···x = exp(ε)ux···x.

The frame ρX is then a frame for this induced scaling action.

Exercise 4.6.2 Show that translation does not induce an action on the scaling
invariants of the action (4.19). Thus show that a recursive frame cannot be
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defined for the action (4.19) by first using a frame for the scaling action
followed by one for the translation action.

Exercise 4.6.3 Suppose that the action of T is right, not left. How does this
affect the formula for the recursively defined frame?

Exercise 4.6.4 Consider the two parameter Lie group with infinitesimal vector
fields

va = x∂x − 2∂y

vb = x log x∂x − 2(1 + log x)∂y.

These arise as the infinitesimals of the symmetry group of the ordinary differ-
ential equation

yxx + 1

x
yx + ey = 0 (4.22)

see Cantwell (2002), Example 8.2. Show that

[va, vb] = va.

Show that one parametrisation of the group action is

x̃ = axb, ỹ = y − 2 log(ab) − 2(b − 1) log x

with identity element (b, a) = (1, 1), and deduce that the group is G = R+ �

R+ (or (C \ {0}) � (C \ {0}), depending on whether x and y are real or complex
variables) with product

(β, α) · (b, a) = (βb, aαb).

Hint: the action on x and y will be a right action while the group product refers
to a left action of G on itself. Show that a matrix representation of this group
is given by

(b, a) →
(

b log a

0 1

)
.

Show that

D = x
d

dx

is an invariant differential operator for the flow of Y = va , and that the differ-
ential invariants of the flow of Y are functions of

x2 exp y, xn dn

dxn
y, n = 1, 2, . . .
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Show that the flow of X = vb induces an action on the invariants of the flow
of Y = va . The normalisation equations x̃ = 1 and ỹ = 0 yield the frame, in
parameter form,

b = x exp(y/2), a = exp(−x log x exp(y/2)).

Show that the frame can be obtained recursively and write the frame in matrix
form as a product. Note: we will use moving frames to integrate equation (4.22)
in Chapter 6.

There are several ways in which the above discussion can be generalised.
The first is to the case where the transformation group T can be expressed as
the product of two subgroups, T = GH such that if g is the Lie algebra of G
and h is the Lie algebra of H then

[x, y] ∈ h, for all x ∈ g, y ∈ h. (4.23)

Then the action of G maps orbits of H to orbits of H. One can then define a
right frame for T as ρ = ρGρH.

Remark 4.6.5 If equation (4.23) holds, we say that h is an ideal of the Lie
algebra of T .

Exercise 4.6.6 In Section 1.2.1 we defined the semi-direct product of two
Lie groups. Consider the special affine group SA(2) = SL(2) � R2 given in
Example 1.2.19. Use the standard representation given in equation (1.21) to
write down a basis for sa(2). Prove the subalgebra corresponding to R2 is an
ideal of sa(2). Consider the space (x, u, v). Assume x is invariant, taking the
standard linear action (

ũ

ṽ

)
=
(

a b

c d

)(
u

v

)
+
(

k1

k2

)
(4.24)

where ad − bc = 1, setting u = u(x) and v = v(x) and prolonging the action
to (u, v, ux, vx, uxx, vxx)-space, so the action becomes free and regular, show
that the SL(2) part of the group takes the set of orbits of the translation group R2

to itself, and further induces an action on the translation invariants. Obtain the
frame as a product and show it is equivariant. Hint: the calculations are much
easier if the inverse action is taken, see Example 4.1.6; in this case ρ = ρR2ρSL(2)

since the action is now a right action. Use the standard representation in equation
(1.21) to write the frame ρ as a matrix product.

A second generalisation is to the case where the group is solvable.
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Definition 4.6.7 A Lie group G is said to be solvable if there is a basis v1,
v2, . . . , vr for its Lie algebra g such that

[vi , vj ] =
∑

k≥max{i,j}
cijkvk. (4.25)

We also say the Lie algebra g is solvable.

Since 〈vk, vk+1, . . . , vn〉 generates an ideal of 〈vk−1, vk, vk+1, . . . , vn〉 for
each k = 2, . . . , n, a frame for a free and regular action of G can be written as
an n-fold product.

The standard example of a solvable group is that of invertible upper triangular
matrices. In fact, any solvable group can be represented by a matrix group whose
elements are upper triangular.

Exercise 4.6.8 Show that the Lie group of real invertible 3 × 3 upper triangular
matrices has Lie algebra

g =

 a1 a2 a3

0 a4 a5

0 0 a6

 | ai ∈ R

 .

Let the basis elements wi be defined by a1 a2 a3

0 a4 a5

0 0 a6

 =
∑

i

aiwi .

Find a change of basis such that the new basis satisfies equation (4.25).

Exercise 4.6.9 Consider the three vector fields on (x, y)-space,

w1 = (y − xy2)∂y

w2 = 1
2x2y2∂y

w3 = y2∂y.

(4.26)

Note x is invariant under the action induced by the flows of the vector fields.
Show these generate a solvable Lie algebra by finding a change of basis, to vi ,
i = 1, 2, 3 that satisfies equation (4.25). Obtain the action on y generated by the
vi . To make the action free and regular on some domain, prolong it suffuciently,
to (x, y, yx, yxx, yxxx, . . . )-space, and obtain a frame for the action. Show that
the group underlying the action can be represented as the subgroup of the set
of invertible 3 × 3 upper triangular matrices, given by

 exp(t) s r

0 1 0
0 0 1

 | r, s, t ∈ R

 .
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Show that v1 and v2 induce a flow on the invariants of the flow of v3, and that
v1 induces a flow on the invariants of the flows of both v2 and v3. Hence show
that a matrix representation of your frame for this action can be written as a
triple product.

A classical theorem of the subject is that an ordinary differential equation
of order n with a solvable symmetry group of dimension n can be integrated
by quadratures. A moving frame demonstration of this theorem will be given
in Chapter 6, together with a far simpler integration procedure. One of the joys
of the moving frame approach is that the solvability of the symmetry group is
much less important for success in integrating an ordinary differential equation
than in the classical theory.

4.7 *Joint invariants

This section concerns invariants for actions on sets of points, sets of curves
and so on, in other words, for the product action. Invariants of product actions
are called N -point invariants and were defined in Definition 1.3.6. Moving
frames were used to find N -point invariants for the Euclidean action in Exam-
ple 4.4.4. Differential invariants for such actions involving more than one
dependent variable are called joint invariants. They are obtained by the same
process as described earlier, by evaluating the transformed variables on a chosen
frame.

Example 4.7.1 Consider the action on smooth curves in (u1, u2, . . . )-space,
given by

s̃ = s, ũi = exp(a)ui + b, i = 1, 2, . . .

where a, b ∈ R and where the action on each dependent variable is the same.
For the normalisation equations

ũ1 = 0, ũ1,s = 1

the frame is exp(a) = 1/u1,s , b = −u1/u1,s and the joint invariants are

I k = uk − u1

u1,s

, I k
1 = uk,s

u1,s

, I k
11 = uk,ss

u1,s
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and so on. For the normalisation equations ũ1 = 0, ũ2 = 1, the frame is
exp(a) = 1/(u2 − u1), b = −u1/(u2 − u1) and the joint invariants are

I k = uk − u1

u2 − u1
, I k

1 = uk,s

u2 − u1
, I k

11 = uk,ss

u2 − u1

and so on.

It can be seen that the set of joint invariants includes the N -point invariants.
In this next well-known example, we show that the solution of Liouville’s

equation is a joint invariant of the standard SL(2) action.†

Example 4.7.2 Liouville’s equation is

uxt = α exp(βu),

where α and β are non-zero constants that can be changed by scaling u and x.
We consider the product action on (f, g) by SL(2),

(f̃ , g̃) =
(

af + b

cf + d
,
ag + b

cg + d

)
, ad − bc = 1,

x̃ = x, t̃ = t , and where the key trick is to set f = f (x), g = g(t). The solution
of Liouville’s equation is then the lowest order joint invariant. The restricted
dependences of f and g yield, for any frame,

0 = I
f

K, K = 11 · · · 1 22 · · · 2︸ ︷︷ ︸
n

n > 0

0 = I
g

K, K = 11 · · · 1︸ ︷︷ ︸
m

22 · · · 2 m > 0.

If the normalisation equations are

f̃ = 0, f̃x = 1, g̃ = 1

then the invariant derivatives of the lowest order invariants are
∂

∂t
I

f

11 = −2I
g

2

∂

∂x
I

g

2 =
(
I

f

11 + 2
)

I
g

2 .

Hence the equation satisfied by I
g

2 is

∂2

∂x∂t
log I

g

2 = −2I
g

2 .

† This example was calculated after listening to a lecture by Ian Anderson given in Sommerøy on
the problem of deciding when a partial differential equation was Darboux integrable.



150 Moving frames

Setting u = log I
g

2 yields a solution of Liouville’s equation with α = −2 and
β = 1. Calculating the invariant I

g

2 explicitly, by solving for the frame, yields
the well-known solution.

We leave it to the reader to find joint invariants of other actions, and the partial
differential equations satisfied by the joint invariants. The inverse problem, that
of deciding when a partial differential equation can be solved in terms of the
joint invariants of some (unspecified) Lie group action, is related to the problem
of deciding when a differential equation is Darboux integrable.
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On syzygies and curvature matrices

In Chapter 4, Section 4.5, we introduced the moving frame for a prolonged
action, and in particular considered the distinguished set of invariant differ-
ential operators {Dj } that the frame yields, as well as the formulae for the
differentiation of the symbolic invariants, Iα

K .
The existence of the correction terms Nij and Mα

Kj in the formulae

Dj Ji = δij + Nij , Dj I
α
K = Iα

Kj + Mα
Kj

has profound consequences for the study of invariant differential systems. In
this chapter, we consider the main features of the ‘landscape’ of the invariant
calculus. In particular, we consider finite sets of generators of the differen-
tial algebra of invariants, and the functional and differential relations, called
syzygies, that they satisfy.

For simple normalisation equations, naive ‘lattice diagrams’ can be drawn
that show the location of generating invariants and syzygies, and we show how
to draw these. The theorems guaranteeing explicit finite sets of generating sets
of generators and syzygies in terms of the normalisation equations, obtained by
Hubert (2009a), are subtler to state and prove than were originally thought; the
statements in the original Fels and Olver (1998, 1999) papers were proved later
to hold only for so-called minimal frames (Definition 5.1.4). Simpler to obtain
are the generators found as components of the correction matrix K, given in
Theorem 4.5.6, and syzygies found as the components of the ‘Maurer–Cartan
equation’, Proposition 5.2.8, satisfied by these generators. For applications
we consider, these syzygies suffice; at the time of writing, it is not known
whether these form a complete set of generators for the set of syzygies or
not.

The second part of the chapter is devoted to the curvature matrices

Qi = Di� · �−1

151
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where � is a matrix representation of the frame. These matrices provide a
computational link between a differential system and its invariantisation. For
example, they allow Lie group based numerical integrators to be used to inte-
grate ordinary differential equations numerically, as explained in Chapter 6.
The major result we prove is that the matrices Qi can be calculated for any
given representation of the Lie algebra of the group, using only the infinitesi-
mals of the group action and the normalisation equations. In particular, it is not
necessary to solve for the frame.

The curvature matrices are well known in Differential Geometry. We exam-
ine in depth the most famous example, the Serret–Frenet frame for the action
of the special Euclidean group on curves in R3, and show how the classical
results appear in the symbolic invariant calculus notation. We then consider
some results for linear actions on curves in Rn induced by a matrix Lie group.

Notation Throughout this chapter, we continue with the notation used in
earlier chapters. We will assume that the Lie group G acts on the space with
local coordinates

(x1, x2, . . . , xp, u1, u2, . . . , uq).

The xk are the independent variables, uα = uα(x1, x2, . . . , xp) and the action
is prolonged to the jet space with local coordinates

(. . . , xk, . . . , u
α, . . . , uα

K, . . . )

where K denotes the multi-index of differentiation with respect to the xk and
where the ‘. . . ’ will be left implicit. The normalisation equations are denoted as

ψj (xk, u
α, uα

K ) = 0, j = 1, . . . , r = dim(G).

The frame is denoted as ρ. The invariantisation map is given as

ι(F (xk, u
α, uα

K )) = F (g · xk, g · uα, (g · uα
K ))|g=ρ = F (Jk, I

α, I α
K ),

and the distinguished invariant differential operators are

Dk = D̃k|g=ρ,

where D̃k is defined in equation (1.35).

5.1 Computations with differential invariants

To best appreciate the major differences between the set of derivative terms {uα
K }

and the set of their corresponding invariants {Iα
K}, we recall first some simple
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uα uα
x uα

xx uα
xxx

uα
y uα

xy

uα
xy yuα

y y

uα
xxy

∂

∂y

x

Figure 5.1 The ‘differential structure’ of {uα
K | |K| ≥ 0}.

facts. For a given smooth function u, the set {uα
K} can be obtained by acting

with differentiation operators on the ‘fundamental’ set {uα}, α = 1, . . . , q of
dependent variables. Every derivative term uα

K is generated by applying the
derivative operators ∂/∂xi the requisite number of times. As coordinates of a
prolonged space, they are independent; there are no functional relations between
them. Furthermore the only differential relations between the uα

K are of the form
DKuα

LM = DMuα
LK for indices K , L and M , all of which are consequences of

the fact that the operators commute. This situation is represented in Figure 5.1.
By contrast, we have the following.

(i) For fixed α, the set {Iα
K | |K| ≥ 0} may not be generated by Iα under

invariant differentiation. Indeed, Iα may be normalised to a constant.
In general more than one generator will be needed to obtain the complete
set, {Iα

K}, under invariant differentiation.
(ii) The invariant differential operators may not commute.

(iii) There are functional relations between the invariants, given by the nor-
malisation equations.

(iv) Non-trivial differential relations, known as syzygies, may exist.

Further, when computing with invariant derivatives symbolically, the following
is also important.

(v) Invariant derivatives of the Iα
K may not be of polynomial type. If the normal-

isation equations are polynomials and the infinitesimals are rational, then
the correction terms are rational. Their denominators consist of products
of a finite number of factors which can be determined in advance.

We now look at these items in turn, beginning with the question of generators
of the algebra of differential invariants. We know from Theorem 4.4.10 that
any differential invariant can be written in terms of the Ji and the Iα

K .
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Definition 5.1.1 We denote by I the algebra generated by the set

{Ji, I
α
K | i = 1, . . . , p ; α = 1, . . . , q; |K| ≥ 0}.

Since any function of invariants is invariant, the set I consists of invariants.
Further, invariant differential operators take differential invariants to invariants.
Since any invariant differential operator can be written in terms of the Dj ,
j = 1, . . . , p and the elements of I, then assuming the correction terms are
rational, I is a differential algebra with respect to the Dj .

Definition 5.1.2 We say that the finite subset Igen ⊂ I is a set of generators
if any element I ∈ I can be written as a function of the elements of Igen and a
finite number of their invariant derivatives.

A classical theorem (Tresse, 1894) states that a finite set of generators exists.
Since we have the formulae (4.11), a first result is that a set of generators is
given by the (non-normalised) Jk and those Iα

K with |K| ≤ 1 + |ψ |, where |ψ |
is the order of the normalisation equations.

Example 5.1.3 Consider the action of SL(2) � R2 on curves x �→
(u(x), v(x)) ∈ R2 given by(

ũ

ṽ

)
=
(

a b

c d

)(
u

v

)
+
(

k1

k2

)
, ad − bc = 1

where x̃ = x is the curve parameter. Since the single independent variable is
invariant, we have D = d/dx. Take the normalisation equations to be

ũ = ṽ = 0, ũx = ṽxx = 0, ṽx = 1,

so that Iu = I v = 0, Iu
1 = I v

11 = 0 and I v
1 = 1. Since there is only one inde-

pendent variable, the diagram of invariants analogous to Figure 5.1 is also
one dimensional; there is one diagram for each dependent variable. They look
like

v:

u:

Iv111 Iv111100

0

1

0 Iu111Iu11

D

D

The arrow in the diagram does not mean that DI u
11 = Iu

111, but rather that Iu
111

can be obtained in terms of DIu
11 and other invariants. From the normalisation

equations, we see that the equations for the group parameters that define the
frame involve at most second order quantities. Hence, since Iu

11 is the second
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order quantity evaluated on the frame, it is a second order invariant. Similarly,
both I u

111 and I v
111 are third order invariants. The table of infinitesimals is



x u v uK vK

k1 0 1 0 0 0
k2 0 0 1 0 0
a 0 u −v uK −vK

b 0 v 0 vK 0
c 0 0 u 0 uK

.

The K matrix is

K =
( a b c k1 k2

x 0 −Iu
11 −I v

111

Iu
11

0 −1
)

.

Thus, we have the invariant differentiation formulae,

DI u
11 = Iu

111, DIu
111 = Iu

1111 − Iu
11I

v
111

and

DI v
111 = I v

1111 − I v
111

Iu
11

Iu
111

and so forth, and since the derivative of an nth order invariant is of order n + 1,
we see that I v

111 and Iu
11 generate all the Iα

K by invariant differentiation.

Example 5.1.3 above is an example of a minimal moving frame (see Hubert
2009a, Section 4.2). We give a working definition here.

Definition 5.1.4 (Working definition) A minimal frame for a prolonged Lie
group action is obtained by using normalisation equations that solve for as
many group parameters as possible at every order of prolongation.

The next example contrasts the ‘landscape of invariants’ given by a minimal
frame and a non-minimal frame for a simple group action.

Example 5.1.5 Consider the simple situation when the action on curves in the
plane parametrised by x �→ (x, u(x)) is

x̃ = λx, ũ = u.

The lowest possible order normalisation equation is x̃ = 1, yielding the frame,
λ = 1/x. The invariants are

I u = u, Iu
1 = xux, . . . I u

n = xn dnu

dxn
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(i) Iu1Iu D

(ii) Iu 1 Iu111Iu11
D

Figure 5.2 Diagrams of invariants for Example 5.1.5.

where we have used Iu
n to denote Iu

1···1 with n 1s in the index. Since the invariant
differential operator is

D = 1

x

d

dx
,

we have that Iu is the single generator. The diagram of invariants is given in
Figure 5.2 (i).

But suppose that we take the normalisation equation to be ũx = 1. The
frame is now λ = ux . We distinguish the system of invariants obtained with
this second frame, from those of the previous frame, by â (a ‘hat’). We have

Ĵ = xux, Î u = u, Î u
n = 1

un
x

dnu

dxn

and the invariant differential operator is now

D̂ = 1

ux

d

dx
.

The diagram of invariants is given in Figure 5.2 (ii). The diagram indicates that
in addition to Ĵ , we need two additional generators, Î u and Î u

11 (recall Î u
1 = 1).

But we also have two syzygies, namely

D̂Ĵ = 1 + Î u
11Ĵ , D̂Î u = 1.

It can be seen that a minimal set of generators is thus Î u and Ĵ , that we cannot
reduce the number of generators further, and that we have still the one relation
on the generators.

It should not be assumed that invariants Jk play the role of the independent
variables in the standard differential rings. The above Example 5.1.5 serves as
a warning. Indeed, the invariant derivative of the invariant corresponding to the
independent variable, Ĵ , is in terms of the second order invariant Î u

2 .
We now look at some higher dimensional examples. The first example

illustrates the fact that invariant differential operators may not commute.

Example 5.1.6 If the group is SO(2) � R2 acting on the independent variables
as (

x̃

ỹ

)
=
(

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

)(
x − a

y − b

)
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with the dependent variable u = u(x, t) being an invariant, then a moving
frame

ρ(x, y, u, ux, uy, . . . ) = (arctan(−ux/uy), (x, y))

is obtained from the normalisation equations x̃ = 0, ỹ = 0, ũx = 0. Thus

J1 = 0, J2 = 0, I u = u, Iu
1 = 0

while the invariants corresponding to uy , uxx are

Iu
2 =

√
u2

x + u2
y

I u
11 = u2

yuxx − 2uxuyuxy + u2
xuyy

u2
x + u2

y

.

The right hand sides of these can be checked independently to be invariants.
Applying the Replacement Theorem, Theorem 4.4.9, verifies the left hand
sides.

The two invariant differential operators obtained by evaluating ∂/∂x̃ and
∂/∂ỹ on the frame are

D1 = 1√
u2

x + u2
y

(
uy∂x − ux∂y

)
D2 = 1√

u2
x + u2

y

(
ux∂x + uy∂y

)
.

These operators do not commute. In fact,

[D1,D2] = Iu
11

Iu
2

D1 + Iu
12

Iu
2

D2.

Despite the fact that Iu
1 = 0 and thus D1I

u
1 = 0, the invariant Iu

11 is not zero.
As an example of the correction terms arising with invariant differentiation, we
have that

D1I
u
11 = Iu

111 − 2
Iu

11I
u
12

Iu
2

which is not of polynomial type. In Figure 5.3, we show the ‘differential
structure’ of the set of invariants. In this example there are two generating
invariants, namely I u and Iu

11: it is not possible to obtain Iu
11 from Iu using

invariant differentiation; note both Iu
1 and Du

1 are zero.

Because the formulae for the correction terms are so complex, it seems a
difficult question to say in advance just what the smallest set of generators and
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Iu Iu110

Iu2

Iu111

Iu12

Iu122Iu22

Iu112

D1

D2

D1

D2

Figure 5.3 The ‘differential structure’ of {Iα
K | |K| ≥ 0} for Example 5.1.6.

relations are, for a given frame. The difficulty is compounded when one has
normalisation equations for cross sections that are not coordinate planes, and
in particular that are non-linear.

Drawing lattice diagrams of invariants and calculating symbolic invariant
derivatives is a good way to begin to investigate which of the Iα

K may be
generators. Two distinguished sets are the following.

Definition 5.1.7 We denote by I0 the set of zeroth invariants,

I0 = {ι(xj ) = Jj , ι(u
α) = Iα |j = 1, . . . , p, α = 1, . . . , q}.

Further, we denote by E the set of edge invariants,

E =
{
ι

(
∂ψk

∂xj

)
| k = 1, . . . , r, j = 1, . . . , p

}
.

If the normalisation equations are for a cross section that is a coordinate
plane, then the edge invariants can be located easily on the lattice diagram of
invariants; if a normalisation equation is ũα

K = c for some constant c, then its
corresponding edge invariants are Iα

Kj , for j = 1, . . . , p. For minimal frames,
the edge invariants give an easily visualised generating set of differential
invariants. The following result is proved for example in Hubert (2009a),
Theorem 4.2.

Theorem 5.1.8 If the normalisation equations ψk = 0, k = 1, . . . , r , give a
minimal frame, then I0 ∪ E form a generating set of differential invariants.

Theorem 5.1.8 is false if the frame is not minimal. However, many useful
frames are not minimal. Hubert proves a generalisation of Theorem 5.1.8
which removes the requirement of minimality. The statement of the result uses
concepts from the theory of over determined differential systems, and the proof
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uses results from non-commutative differential algebra. The result is important
not least because it leads to a generating set of syzygies, the subject of Section
5.1.1. The next theorem, Theorem 5.1.9, also due to Hubert (Hubert, 2009b,
Theorem 4.2) is useful in applications.

Theorem 5.1.9 Suppose the normalisation equations ψk = 0, k = 1, . . . , r ,
yield a frame for a regular free action on some open set of the prolonged space
with coordinates (xj , u

α, uα
K ). Then the components of the correction matrix

K, given in Theorem 4.5.6, together with I0, given in Definition 5.1.7, form a
generating set of differential invariants.

Theorem 5.1.9 means that once we have calculated the correction matrix
K, which we need to do in order to use the symbolic differentiation formulae,
then we have already calculated a relatively small set of generating differential
invariants.

5.1.1 Syzygies

We now turn to the general question of relations and syzygies. In the previous
section we noted that the set of invariants I is an algebra.

Definition 5.1.10 A syzygy S on the set I is a function of finitely many
elements of I that is identically zero when written in terms of the coordinates
(xk, u

α, uα
K ). The set of syzygies of I is denoted S(I).

Syzygies are often written as an identity or equation of the form

S(Jk, I
α, I α

K ) = 0,

where S has a finite number of arguments. In terms of a finite set of generators
{σ1, . . . , σN } of I, a syzygy is an identity of the form

S(σk,DKσk) = 0

with a finite number of invariant derivatives of the σk appearing as arguments
of S.

There are two distinguished sets of syzygies.

(i) The first is the set of invariantised normalisation equations. Since the frame
ρ solves the equations ψ(ρ · xk, ρ · uα, ρ · uα

K ) = 0, then by construction,
ψ(Jk, I

α, I α
K ) = 0. If the dimension of G is r , we will have r normalisation

equations which solve for the r parameters and hence r = dim(G) of these
relations.
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(ii) The second distinguished set is the infinite set of symbolic invariant differ-
entiation formulae,

Dj Ji = δij + Nij , Dj I
α
K = Iα

Kj + Mα
Kj ,

where δij is the Kronecker delta.

Since functions of syzygies are again syzygies, and invariant derivatives of
syzygies yield syzygies, the set S(I) is a differential algebra. Since we can
multiply a syzygy by an invariant and still obtain a syzygy, we say that S(I) is
a module over I.

As with I, we seek a small finite set of generators of S(I). A complete
set of generators of the syzygy module for edge invariants (Definition 5.1.7)
is given by Hubert (2009a), Theorem 5.14. This theorem requires concepts
from the theory of over determined differential systems and non-commutative
differential algebra to state and prove, so we concentrate instead on a discussion
of the main types of syzygy and examples.

Two interesting kinds of syzygy are the following.

(i) If Iα
Ki is a normalised invariant but Iα

K is not, then in the equation DiI
α
K =

Iα
Ki + Mα

Ki , the term Iα
Ki must cancel. In terms of the lattice diagram, these

syzygies arise when an invariant maps into a ‘hole’ in the diagram of
invariants, as in Figure 5.2 (ii) where DÎ u = 1, or in Figure 5.3 where
D1I = 0.

(ii) If p > 1, another interesting kind of syzygy is possible. Let Iα
J , Iα

L be
two (generating) differential invariants, and let indexes K , M be such that
JK = LM . In the two equations forDKIα

J andDMIα
L , the term Iα

JK = Iα
LM

must cancel, and then

DKIα
J − DMIα

L = Mα
JK − Mα

LM (5.1)

is a syzygy.

Example 5.1.6 continued Consider Figure 5.4. There are two paths of dif-
ferentiation from a generator to Iu

112. Taking the two symbolic differentiation
formulae from Iu and Iu

11 to Iu
112 and cancelling the Iu

112 term yields

D2
1D2I

u − D2I
u
11 = 1

I2

((
Iu

11

)2 + 2
(
Iu

12

)2 − Iu
11I

u
22

)
.

Since D2I
u = Iu

2 , D1(Iu
2 ) = Iu

12 and D2(Iu
2 ) = Iu

22, the syzygy can be written
in terms of the generators Iu and Iu

11 in the form

D2(Iu)
(
D2

1D2I
u − D2I

u
11

)− ((Iu
11

)2 + 2D1D2(Iu) − Iu
11D2

2(Iu)
)

= 0,
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Iu Iu110

Iu2

Iu111

Iu12

Iu122Iu22

Iu112
D1

D2

D1

D2

Figure 5.4 Visualising a syzygy for Example 5.1.6; two paths leading to Iu
112 from

generators yield a syzygy.

where recall that the order of differentiation matters. A different set of genera-
tors and their syzygies for this example is obtained as follows. The correction
matrix K for this action is

K =


a b θ

x −1 0 −Iu
11

Iu
2

y 0 −1 −Iu
12

Iu
2


and hence by Theorem 5.1.9 we can take σ0 = Iu, σ1 = Iu

11/I
u
2 and σ2 = Iu

12/I
u
2

to be a set of generators. The syzygies between σ0 and σ2, and between σ1 and
σ2, are

D2(σ0)D1(D2(σ0)) − σ2 = 0
D1(σ2) − D2(σ1) + σ 2

1 + σ 2
2 = 0.

5.2 Curvature matrices

We consider first the simplest one dimensional case, that of a curve s �→ z(s) ∈
U where U is the domain of the moving frame ρ : U → G. Then the image of
the curve under the frame yields a curve in G, s �→ G, given by s �→ ρ(z(s)),
see Figure 5.5.

Recall from Definition 1.2.1 that an n dimensional matrix representation R
of a group G is a map G → GL(n, R) such that R(g)R(h) = R(gh). Note that
this implies that if e is the identity element of G, then R(e) is the identity matrix
and further R(g−1) = R(g)−1. Let �(z) denote the matrix �(z) = R(ρ(z)).
Then �(s) is a path in the matrix representation space of G.

Lemma 5.2.1 Given a group action on U , let s �→ z(s) ∈ U be a path and
assume that the parameter s is invariant under the group action, so that d/ds

is an invariant operator. Further, suppose the frame is given in matrix form, �.
If � : U ⊂ M → G is a right frame for a left action, then
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cross section

K

Orbits

ρ(s)
k(s)

z(s)

Figure 5.5 A right moving frame on a curve parametrised by s in U yields a path
ρ(s) in G.

(i) the components of the matrix �s�
−1 are invariants, and

(ii) �s�
−1 : U → g.

Proof The first follows, setting z = z(s), from(
d

ds
�(g · z)

)
�(g · z)−1 =

(
d

ds
�(z)g−1

)
g�(z)−1 =

(
d

ds
�(z)

)
�(z)−1

since the generic group element g is independent of s. To see the second, note
that

d

ds
�(z(s)) ∈ T�(z(s))G

and hence right multiplication by �(z)−1 yields the result. (Recall for a matrix
group, the tangent map induced by right multiplication is simply right multi-
plication.) �

We leave it to the reader to work out the corresponding invariant matrices
for a left frame or a right action.

Lemma 5.2.1 generalises to images of � on surfaces in U , with d/ds replaced
by the invariant derivative operators Di .

Definition 5.2.2 We define the curvature matrices

Qi = (Di�)�−1, i = 1, . . . , p. (5.2)
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Exercise 5.2.3 Show that the components of the curvature matrices Qi are
invariant, and that Qi : U → g.

Theorem 5.2.4, from Mansfield and van der Kamp (2006), provides a new
significance for the correction matrix K; its rows are the coordinates of the
curvature matrices, when expressed as a linear combination of the relevant
basis of the Lie algebra.

If the coordinates near e in G are (a1, a2, . . . , ar ), then differentiating
R(a1, a2, . . . , ar ) with respect to ai at e, we obtain

ai = dR(g)

dai

∣∣∣
g=e

, i = 1, . . . , r (5.3)

which span a matrix representation of the Lie algebra g of G induced from the
representation R of G.

Theorem 5.2.4 The curvature matrices Qi can be constructed in a matrix
representation of g, induced from a representation R of G, with basis {ai}
defined in (5.3), using only the normalisation equations and the infinitesimal
action. Indeed,

Qi =
∑

j

Kijaj

where K is the correction matrix given in Theorem 4.5.6.

Remark 5.2.5 It is implicit in the statement of Theorem 5.2.4 that the param-
eters aj used to calculate the matrices aj are the same as those used for the
infinitesimal action and hence in the calculation of K. In practice, given a
faithful representation, one checks that the Lie bracket multiplication table for
the −aj (note the minus sign) is the same as that for the Lie bracket of the
infinitesimal vectors. The change of sign is due to the change of parity in the
action of G, which is left for the action of G on itself, but right for the action
on functions on M .

Proof Choose g ∈ G arbitrary with z̃ = g ∗ z. On the one hand we have

D̃iR(ρ( z̃) )
∣∣∣
g=ρ(z)

= D̃i(R(ρ(z)))R(g)−1
∣∣∣
g=ρ(z)

= Qi

and on the other hand

D̃iR(ρ( z̃ ))
∣∣∣
g=ρ(z)

=
r∑

j=1

D̃iρj ( z̃ )
dR(ρ( z̃ ))

dρj ( z̃ )

∣∣∣
g=ρ(z)

=
r∑

j=1

Kijaj
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using the first expression for Kij given in equation (4.13), and noting ρ(ρ(z) ∗
z) = e. �

We demonstrate the theorem in two examples where the result can be
checked since we know the frame explicitly.

Example 5.2.6 Consider the action of SL(2) on (x, u(x)) space given by

x̃ = x, ũ = au + b

cu + d
, ad − bc = 1

prolong it to (x, u, ux, uxx, . . . ) space and take the frame ũ = 0, ũx = 1 and
ũxx = 0. Then the frame is

a = 1√
ux

, b = − u√
ux

, c = uxx

2u
3/2
x

, (5.4)

and

K= ( a b c

x 0 −1 1
2Iu

111

)
.

In matrix form, we have

g(a, b, c) =
(

a b

c (1 + bc)/a

)
and thus

aa =
(

1 0
0 −1

)
, ab =

(
0 1
0 0

)
, ac =

(
0 0
1 0

)
.

Inserting the frame parameters in equation (5.4) into g(a, b, c) to obtain �, we
obtain directly that

�x�
−1 =

 0 −1
1

2

(
uxxx

ux

− 3

2

u2
xx

u2
x

)
0


=
(

0 −1
1
2Iu

111 0

)
= 0aa + (−1)ab + 1

2Iu
111ac

= Kxaaa + Kxbab + Kxcac.

.

Exercise 5.2.7 Verify the details in the following. Consider the action of SL(2)
on (x, u) space given by

x̃ = ax + b

cx + d
, ũ = 6c(cx + d) + (cx + d)2u, ad − bc = 1
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prolong it to curves on this space, that is, to (x(s), u(s), xs, us, xss, . . . ) space
and take the frame x̃ = 0, ũ = 0 and x̃s = 1. We have

K= ( a b c

x − 1
2I x

11 −1 − 1
6Iu

1

)
and

a = 1√
xs

, b = −x(s)√
xs

, c = −1

6
u(s)

√
xs.

Using the same matrix representation of SL(2) as in the previous example,
inserting the values of a, b and c on the frame to yield � and calculating �s�

−1

both directly and using Theorem 5.2.4, yields

�s�
−1 =

(− 1
2I x

11 −1

− 1
6Iu

1
1
2I x

11

)
(5.5)

where the Replacement Theorem can used to produce the invariantisation of
�s�

−1 when it is given in terms of (x, u, xs, . . . ).

It can happen that the infinitesimal vector fields of a transformation group
are known, but not the group action, much less a matrix representation of the
group. This is the case when investigating symmetry groups of differential
equations using Lie’s algorithm. Given the Lie bracket multiplication table of
the infinitesimal vector fields, a matrix representation of the Lie algebra can
always be constructed, a result known as Ado’s Theorem; further, the construc-
tion has been implemented (de Graaf, 2000). Applications of Theorem 5.2.4
to partial differential equations will be given in Section 5.6, and applications
to invariant ordinary differential equations will be given in Chapter 6. The
analogue of Theorem 5.2.4 in terms of the infinitesimal vector fields, without
reference to a matrix representation, is given in Section 6.7.

The following proposition generalises a result, well known in many dif-
ferent contexts, to the case of non-commuting invariant differential opera-
tors. In Differential Geometry, this result is essentially the structural for-
mula for the Maurer–Cartan form (Choquet-Bruhat and DeWitt-Morette,
1982, page 208), while in physical gauge theories, it is the zero curvature
equation.

Proposition 5.2.8 The curvature matrices (5.2) satisfy the syzygy

Dj (Qi) − Di(Qj ) = ([Dj ,Di]�)�−1 + [Qj ,Qi]. (5.6)

Exercise 5.2.9 Prove Proposition 5.2.8. Hint: ��−1 = 1 implies Dk(�−1) =
−�−1Dk(�)�−1.
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If p > 1, the components of equation (5.6) yield first order syzygies of the
symbolic invariants.

Example 5.2.10 We take the group SO(2) � R2 with representation

R(a, b, θ )−1 =
 cos θ sin θ −b sin θ − a cos θ

− sin θ cos θ −b cos θ + a sin θ

0 0 1


acting on (x, t, u(x, t))-space as t̃ = t and(

x̃

ũ

)
=
(

cos θ sin θ

− sin θ cos θ

)(
x − a

u − b

)
.

Since we use the inverse action we take the inverse of the standard representa-
tion. The generators of the matrix representation of the Lie algebra are

aa =
 0 0 −1

0 0 0
0 0 0

 , ab =
0 0 0

0 0 −1
0 0 0


and

aθ =
 0 1 0

−1 0 0
0 0 0

 .

If we take the normalisation equations x̃ = 0, ũ = 0 and ũx = 0, the correction
matrix is

K =
( a b θ

x 1 0 Iu
11

t 0 Iu
2 Iu

12

)
and hence

Qx =
 0 Iu

11 −1
−Iu

11 0 0
0 0 0

 , Qt =
 0 Iu

12 0
−Iu

12 0 −Iu
2

0 0 0

 .

Setting these into equation (5.6), from the (1, 3) component we can deduce that[
Dx,Dy

] = −I u
11I

u
2 Dx,

if we had not calculated it already, while the (2, 3) and (1, 2) components yield
respectively

DxI
u
2 = Iu

12, Dt I
u
11 − DxI

u
12 = Iu

2 (Iu
11)2.
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These last two combine to yield the syzygy between the generators, Iu
2 and Iu

11,
namely

Dt I
u
11 = (D2

x + (Iu
11)2
)
Iu

2 . (5.7)

Other fully worked examples can be found in Mansfield and van der Kamp
(2006). Applications of syzygies will appear in Section 5.6 and in Chapter 7.

5.3 Notes for symbolic computation

In a symbolic computing environment, one often wants to simplify invariant
expressions with respect to the invariantised normalisation equations and more
generally the syzygies. Typically the normalisation equations are polynomials
in their arguments, and then, in order to obtain well-defined reduction processes,
one must assume that the normalisation equations are an algebraic Gröbner
basis for the algebraic ideal they generate. It should be borne in mind, however,
that not all Gröbner bases are suitable to define a frame. The solution space
of the equations � = 0 needs to be a unique surface of dimension equal to
that of the ambient space less the dimension of the group. But this is not
enough; normalisation equations such as (I1)2 = 0 will lead to undetected zero
coefficients of leading terms, and even zero denominators. So, the normalisation
equations need to form a prime ideal.

For a given term ordering on the set {Iα
K | |K| ≥ 0}, a normalisation equation

ψ(Ji, I
α, I α

K ) = 0 (containing terms other than Jj , j = 1, . . . , p) will have a
leading invariant term. This term is called a ‘highest normalised invariant’.
Denote the set of such highest normalised invariants by HNI . Similarly, we
may take an ordering on the terms Jj , j = 1, . . . , p and obtain from those
normalisation equations not containing any of the Iα

K , a set HJ of highest
normalised invariants deriving from the independent variables.

Simplification problems noted above are eliminated if we assume that the
elements of HNI and HJ occur linearly in the normalisation equations. In
this case standard simplification procedures have the effect of eliminating the
highest normalised invariants from all results of all calculations.

Simplifying with respect to differential syzygies in a well-defined way is
a much harder problem. To begin with, depending on the group action, the
correction terms Mα

Kj may not be of polynomial type. If the group action is
rational and the normalisation equations are polynomials, the correction terms
may contain denominators. Fortunately, the multiplicative set generated by
factors of the possible denominators can be determined in advance; they are
the factors of the denominators appearing in the matrix K.
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N T

B

γ(t)

Figure 5.6 An orthonormal ‘frame’ of vectors defined at every point of a curve in
R

3; T is the unit tangent, while N and B lie in the plane normal to T .

The difficulties of forging a theory of differential algebra for the symbolic
invariant calculus, that gives well defined simplification processes in a symbolic
computation environment, for large classes of Lie group actions, were overcome
by Hubert (2005). The difficulty that sets the invariant calculus apart from earlier
work in differential algebra (Hubert, 2000) is the existence of non-commuting
differential operators. An exposition of Hubert’s 2005 paper is beyond the
scope of the present book, but it is important to be aware of the difficulties of
reduction processes in symbolic computation, and the existence of a solution.

5.4 *The Serret–Frenet frame

This classical example concerns the linear action of the Euclidean group SE(3)
of rotations and translations on curves in R3. Since an element of SO(3) is
equivalent to an orthonormal basis of R3, and since the tangent space at a
point of a curve is isomorphic to R3, one can think of the moving frame,
as a map from the jet space on curves to SO(3), literally as a ‘frame’ of
orthonormal vectors at each point of the curve, see Figure 5.6. This conflation
of the classical and modern concepts of frames applies particularly to examples
arising in Differential Geometry.

We will first derive the Serret–Frenet equations and then show how they
may be obtained using Theorem 5.2.4. This example is thus one of several
we calculate to demonstrate Theorem 5.2.4. In this particular case, calculating
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everything needed to apply the theorem looks more complicated than obtaining
the Serret–Frenet equations directly, mainly because we are giving complete
details in this pedagogic example, and using the opportunity to show how the
new and the classical ideas are related.

Remark 5.4.1 The value of Theorem 5.2.4 is not that it can be used to reproduce
well-known results. The value lies in that the curvature matrices can be obtained
algorithmically in a symbolic computation environment once the action and the
normalisation equations are given; no geometric insight is needed. Algorithmic
methods allow one to play with the normalisation equations and representations
to find those that offer particular computational advantages in the application
at hand.

The method shown in this example can be adapted to a wide variety of linear
Lie group actions acting on tangent spaces.

Notation We use 〈v, w〉 for the scalar product of vectors v and w, and ‖ v ‖ =√
〈v, v〉.
Let a curve s �→ γ (s) ⊂ R3 be given. If s is arc length, then we have

〈γ ′(s), γ ′(s)〉 = 1 (5.8)

for all s. This follows from the three dimensional Pythagoras Theorem, which
implies �s2 ≈ (�x)2 + (�y)2 + (�z)2. The standard definitions of T , N and
B, the tangent vector, the normal vector and the binormal vector at some fixed
point on the curve, are

T = γs, N = γss

‖γss‖ , B = T × N.

From equation (5.8) we have ‖T ‖ = 1 and 〈T ,N〉 = 0, so that the three vectors
T , N and B form an orthonormal set, see Figure 5.6.

Definition 5.4.2 The definition of the Euclidean curvature of the curve γ (t) ⊂
Rn at each point is

κ = ‖γt × γtt‖
‖γt‖3

. (5.9)

The torsion is

τ = 〈γt × γtt , γttt 〉
‖γt × γtt‖2

. (5.10)

For a curve parametrised by arc length s, T = γs satisfies 〈T , T 〉 = 1, so that

κ = ‖Ts‖ = ‖γss‖, (5.11)
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while the torsion becomes

τ = 1

κ2
〈T × Ts, Tss〉. (5.12)

Exercise 5.4.3 Prove that the curvature and torsion are differential invariants
of the standard action of SE(3) on curves in R3.

Theorem 5.4.4 The Serret–Frenet equations for a curve parametrised by arc
length are

Ts = κN

Ns = −κT + τB

Bs = −τN.

(5.13)

Proof The first equation follows from the definition of the curvature κ . To
obtain the other two Serret–Frenet equations, we first note that from 〈T , T 〉 = 1
we have ‖Ts‖2 + 〈Tss, T 〉 = 0. Differentiating Ts = κN yields

Ns = 1

κ
Tss − κs

κ
N (5.14)

so that 〈Ns, T 〉 = −κ . Next,

〈Ns, T × N〉 = 1

κ2
〈Tss, T × Ts〉 = τ,

while 〈N,N〉 = 1 implies 〈Ns,N〉 = 0. Since any vector is determined by its
components in the directions T , N and B, the second Serret–Frenet equation
results. The third follows from the first two by noting that Bs = Ts × N + T ×
Ns . �

Exercise 5.4.5 Show using equation (5.14) that 〈Tss, N〉 = κs .

Exercise 5.4.6 If the curve is not parametrised by arc length, so that 〈γt , γt 〉 = v

is not necessarily unity, show that

Tt = vκN

Nt = −vκT + vτB

Bt = −vτN

where

T = γt

‖γt‖ , N = B × T , B = γt × γtt

‖γt × γtt‖ .

If we put T , N and B to be the columns of a matrix g, we have that

g = (T N B) ∈ SO(3). (5.15)
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The matrix in equation (5.15) is known as the classical Serret–Frenet frame.
Indeed, since the columns are orthonormal, gT g = I3, the 3 × 3 identity matrix,
so that g−1 = gT . Also,

g−1gs =
 0 κ 0

−κ 0 τ

0 −τ 0

 ∈ so(3) (5.16)

by the Serret–Frenet equations. This provides a different proof that κ and τ are
rotation invariants.

Our aim in the rest of this section is to show how equation (5.16) is of the
form ρsρ

−1 = A where A is given by Theorem 5.2.4.
The standard left action of SE(3) = SO(3) � R3 in R3 is

(R, v) ∗ x = Rx + v

and this prolongs to curves x(s) ⊂ R3 as

(R, v) ∗ (x, xs , xss , . . . ) = (Rx + v, Rxs , Rxss , . . . )

since

d

ds
(Rx + v) = Rxs

and so forth. Thus the induced action on the matrix g = (T N B) where the
vectors T , N and B are columns is

(R, v) ∗ g = (R, v) ∗ (T N B) = (RT RN RB) = Rg

and similarly,

(R, v) ∗ gs = (R, v) ∗ (Ts Ns Bs) = (RTs RNs RBs) = Rgs.

In other words, the action on the vectors associated with the curve is precisely
that of left multiplication of the group SO(3) on itself, and the prolonged action
is the same as that induced by left multiplication on the tangent space of the
group T SO(3). This is precisely the case considered in Example 4.4.12. In
that example, we defined a frame ρ(g) = g−1 from the normalisation equation
g̃ = e, and so ρ is ‘our Serret–Frenet frame’. Since (g−1)s = −g−1gsg

−1, it
follows that ρsρ

−1 = −g−1gs .
We now restrict our attention to the action on the coordinates xs , ys and zs

and their derivatives, that are equivalent to that for the frame ρ(g) = g−1 above.
We will then show that ρsρ

−1 is indeed the negative of the matrix appearing in
the Serret–Frenet frame equations.

In the case at hand, the normalisation equation g̃ = e amounts to T̃ =
(1 0 0)T and Ñ = (0 1 0)T , from which B̃ = (0 0 1)T follows. In terms of
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the original curve x = (x, y, z), we have since T = (xs ys zs)
T that the three

normalisation equations for the three rotation parameters, giving ‘our’ Serret–
Frenet frame, are

ỹs = z̃s = z̃ss = 0. (5.17)

Let θab be the parameter of rotation about the origin in the (a, b)-plane, and vab

the associated infinitesimal vector field. The infinitesimal vector fields of the
rotation group are

vxy = y∂x − x∂y

vxz = z∂x − x∂z

vyz = z∂y − y∂z

(5.18)

so that the table of infinitesimals is


s x y z ys zs zss

θxy 0 y −x 0 −xs 0 0
θxz 0 z 0 −x 0 −xs −xss

θyz 0 0 z −y zs −ys −yss

.

The matrix K is thus

K =
( θxy θxz θyz

s
I

y

11

I x
1

0
I z

111

I
y

11

)
.

The Lie bracket multiplication table for the infinitesimal vector fields is

[ , ] vxy vxz vyz

vxy 0 vyz −vxz

vxz −vyz 0 vxy

vyz vxz −vxy 0

(5.19)

If we take a faithful representation of this Lie algebra to be

Axy =
 0 −1 0

1 0 0
0 0 0

 , Axz =
 0 0 1

0 0 0
−1 0 0

 , Ayz =
0 0 0

0 0 −1
0 1 0


we note its Lie bracket table

[ , ] Axy Axz Ayz

Axy 0 −Ayz Axz

Axz Ayz 0 −Axy

Ayz −Axz Axy 0

(5.20)



5.4 *The Serret–Frenet frame 173

is the negative of the Lie bracket table for the vector fields, (5.19). Hence by
Theorem 5.2.4 and noting Remark 5.2.5, we have

ρsρ
−1 = Ksθ(xy)Axy + Ksθ(xz)Axz + Ksθ(yz)Ayz

=



0 −I
y

11

I x
1

0

I
y

11

I x
1

0 −I z
111

I
y

11

0
I z

111

I
y

11

0


.

If s is arc length, then ρT = (1 0 0)T = (I x
1 I

y

1 I z
1 )T by the Fels–Olver–Thomas

Replacement Theorem, so we have I x
1 = 1. Next, since

ρN = ρTs/κ = ρ(xss yss zss)
T = 1

κ
(I x

11 I
y

11 I z
11)T = (0 1 0)T

we have κ = I
y

11 (and also I x
11 = 0, which follows as well from the invariant

differentiation formulae applied to I x
1 = 1). Finally,∣∣∣∣∣∣

xs ys zs

xss yss zss

xsss ysss zsss

∣∣∣∣∣∣ =
∣∣∣∣∣∣

I x
1 0 0

I x
11 I

y

11 0
I x

111 I
y

111 I z
111

∣∣∣∣∣∣ = I x
1 I

y

11I
z
111.

Hence

τ = I x
1 I

y

11I
z
111

(I y

11)2
= I z

111

I
y

11

.

Thus

ρsρ
−1 =

 0 −κ 0
κ 0 −τ

0 τ 0


as promised.

Exercise 5.4.7 Redo the calculation above but with a scaling action s̃ = λs on
the curve parameter. Use the normalisation equation I x

1 = 1. Can this be used
to mimic the effect of s being the arc length, or are additional equations still
required? Hint: does the invariant I x

11 = 0?

We will use the result of the next exercise in Section 5.6.

Exercise 5.4.8 Redo the above calculation but this time applying Example
4.4.12 to the full rotation and translation group, SE(3). Use the normalisation
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equations x̃ = ỹ = z̃ = 0, that is, the generic point on the curve is translated to
the origin, as well as those used previously, given in equation (5.17). Suppose
that not only is the curve parametrised by (arc length) s, but also that it evolves
in time t . Taking s̃ = s, t̃ = t , show the matrix K is now

K =


kx ky kz θxy θxz θyz

s −I x
1 0 0

I
y

11

I x
1

0
I z

111

I
y

11

t −I x
2 −I

y

2 −I z
2

I
y

12

I x
1

I z
12

I x
1

I z
112

I
y

11

− I z
12I

x
11

I x
1 I

y

11


where the ki is the group parameter for translation in the ith direction. Show
that if s is arc length, so that I x

1 = 1, then I x
11 = I x

12 = 0. Using the standard
representation of SE(3) in GL(4), find ρtρ

−1 and calculate the components of

∂

∂t
ρsρ

−1 − ∂

∂s
ρtρ

−1 = [ρtρ
−1, ρsρ

−1].

Since both t and s are invariant, we have Dt = ∂/∂t and Ds = ∂/∂s. Show
that the resulting syzygies can also be obtained via the invariant differentiation
formulae. Draw the diagrams of invariants similar to that in Figure 5.3 for this
action and frame; there will be one for each of x, y and z, but the invariants
I x

1K may all be determined in terms of the others by virtue of I x
1 = 1 when s is

arc length. Show that the generating syzygies can be written in the form

∂

∂t

 I x
1

κ

τ

 = H

 I x
2

I
y

2

I z
2

 (5.21)

where H is a matrix of differential operators with respect to s only, whose
coefficients depend only on κ , τ and I x

1 , and their derivatives with respect to s

only.

Exercise 5.4.9 There is a different frame for the Euclidean action on curves
in R3 called the normal frame. The vector T is the same as for the Serret–
Frenet frame, but there is a different choice of N and B such that setting
g = (T N B) ∈ SO(3), one has

g−1gs =
 0 −k1 −k2

k1 0 0
k2 0 0

 . (5.22)

Let x be a point on the curve, and consider the rotation in the plane normal
to T about the point x, that is, about the origin in TxR

3, that takes the Serret–
Frenet frame ρSF to the normal frame ρN. Show ρNρ−1

SF is a rotation in the (y, z)
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plane about the x-axis. Show the associated rotation parameter θ (s) satisfies
a differential equation, θs = τ , and that k1 = κ cos θ , k2 = κ sin θ . Can the
normal frame be obtained via normalisation equations which are functions of
xs , ys , zs , and their derivatives?

5.5 *Curvature matrices for linear actions

In this section we examine linear actions of matrix Lie groups acting on curves
in Rn. Our study of this case was begun in Section 4.5.1; we repeat the basic
facts for convenience.

We denote the curve as a column vector u = (u1(s), u2(s), . . . , un(s)
)T

and
take the affine action of G � Rn as

(g, v) · u = gu + v.

If we denote the nth derivative of u with respect to s as

dnu
dsn

= un

then

(g, v) · un = gun, n > 0.

We recall from Section 4.5.1 the formula for the symbolic differentiation of the
invariantised derivatives ι(uk). If ρ is a frame so that ρuk = ι(uk), then equation
(4.18) gives

d

ds
ι(uk) = ι(uk+1) + ρsρ

−1ι(uk). (5.23)

Typically, the translation part of the affine group action is normalised by
ũ = 0, and one then is restricted to considering the linear action of G on ui ,
i ≥ 1. The frame ρ that one considers is then an equivariant map on the space
of first and higher order derivatives of the curve, to G.

The main idea of this section is to show how one might go about choosing the
remaining normalisation equations so that ρsρ

−1 has the property that its non-
constant components are functionally distinct invariants. The main example we
investigate is G = Sp(2). The result for Sp(n), n ≥ 2, amongst other examples,
is detailed in Marı́ Beffa (2008a).

Exercise 5.5.1 Let the Lie group G be of the form

G = {A ∈ GL(n) | AT SA = S} (5.24)
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for some specified n × n matrix S. Show that the scalar functions

uT
k Su�

where k, � > 0, are differential invariants. Further, if we define the n × n matrix
U as

U = (u1 u2 . . . un

)
, (5.25)

then

UT SU

has all its components invariant. If ρ is a frame for the action, so that ι(U ) = ρU ,
show that

ι(U )T Sι(U ) = UT ρT SρU = UT SU. (5.26)

If ST = −S then show that
d

ds

(
uT

k+1Suk

) = uT
k+2Suk.

Consider G = Sp(2) ⊂ GL(4, R) where Sp(2) is the symplectic group
defined in Exercise 3.2.21. The symplectic group is of the form in equation
(5.24), where S = J and where J is the 4 × 4 matrix

J =
(

0 I2

−I2 0

)
and I2 is the 2 × 2 identity matrix. We have J T = −J and thus all the results
of Exercise 5.5.1 hold.

If the matrix U is given as in equation (5.25), with n = 4 since Sp(2) ⊂
GL(4), then the normalisation equations giving a frame for the action on curves
impose conditions on the entries of ι(U ). Since the dimension of Sp(2) is ten,
we need ten conditions.

Exercise 5.5.2 Setting

U = (u1 u2 u3 u4
)

and

κ1 = uT
2 Ju1, κ2 = uT

3 Ju2, κ3 = uT
4 Ju3,

show

UT JU =


0 −κ1 −κ ′

1 −(κ ′′
1 − κ2)

κ1 0 −κ2 −κ ′
2

κ ′
1 κ2 0 −κ3

κ ′′
1 − κ2 κ ′

2 κ3 0

 = κ,
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where we have denoted d/ds by a prime, ′, and where this defines the matrix κ .

To begin the normalisation process, we set the first four normalisation equa-
tions to be ũ1 = (1 0 0 0)T . This means that

ι(u1) =


1
0
0
0


and since ι(U ) = ρU satisfies

ι(U )T J ι(U ) = UT JU = κ, (5.27)

we obtain conditions on the next column, ι(u2) of ι(U ). Doing the calculation
reveals that we may choose all but one of the components of ũ2 to be zero, but
that we must have that ι(u3

2) = −κ1 for equation (5.27) to hold. Hence we take
the next three normalisation equations to be

ũ1
2 = ũ2

2 = ũ4
2 = 0

and obtain

ι(u2) =


0
0

−κ1

0

 .

Setting this into equation (5.27) reveals conditions on the third and fourth
columns, ι(u3) and ι(u4) of ι(U ). Specifically, we must have

(
ι(u3) ι(u4)

) =


−κ2

κ1
−κ ′

2

κ1

ι(u2
3) ι(u2

4)
−κ ′

1 −κ ′′
1 + κ2

ι(u4
3) ι(u4

4)

 ,

where

ι(u2
3)ι(u4

4) − ι(u2
4)ι(u4

3) = κ ′
1κ

′
2

κ1
+ κ2

κ1

(
κ2 − κ ′′

1

)− κ3. (5.28)

We have three undetermined components of ι(U ) and three remaining nor-
malisation equations to be chosen. So far, we have not looked at the form
that ρsρ

−1 takes, and to do this we note that we have both equation (5.23)
to satisfy, and that ρsρ

−1 ∈ sp(2). The form that elements of sp(2) take was
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calculated in Exercise 3.2.21; they depend on ten parameters and are of the
form

ρsρ
−1 =


a1 a2 b1 b2

a3 a4 b2 b3

c1 c2 −a1 −a3

c2 c3 −a2 −a4

 .

Setting this together with the elements of ι(U ) obtained so far into equation
(5.23), we obtain

a1 = a3 = c2 = 0, a2 = − ι(u4
3)

κ1
, b2 = ι(u2

3)

κ1
, c1 = κ1. (5.29)

We now take note that we want the components of ρsρ
−1 to be either constant or

functionally independent invariants. Taking into account equations (5.28) and
(5.29), we may choose two more normalisation equations from the components
of ũ3,

ũ4
3 = 0, ũ2

3 = κ1.

Inserting all the above information and choices, into equations (5.23), (5.27)
and (5.28) we have that ι(u4

4) is determined, indeed we have

ι(u4
4) = −κ2κ

′′
1

κ2
1

+ κ2
2

κ2
1

+ κ ′
2κ

′
1

κ2
1

− κ3

κ1

and that

c3 = − ι(u4
4)

κ1
, a4 = − ι(u2

4)

κ1
+ 2

κ ′
1

κ1
.

With all this, we have that so far

ρsρ
−1 =



0 0 − κ2

κ2
1

1

0
1

κ1

(
2κ ′

1 − ι(u2
4)
)

1 b3

κ1 0 0 0

0
1

κ3
1

(
κ2κ

′′
1 − κ2

2 − κ ′
2κ

′
1 + κ3κ1

)
0 − 1

κ1

(
2κ ′

1 − ι(u2
4)
)


where b3 may be determined from a fifth order invariant using equation (5.23).
In order to have that the non-constant components of ρsρ

−1 are functionally
distinct, the tenth and final normalisation equation is taken to be

ũ2
4 = 2κ ′

1.
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Finally, one has that

b3 = − κ2
1

(
ι(u2

5) + κ2 − 3κ ′′
1

)
κ2

2 + κ ′
1κ

′
2 − κ2κ

′′
1 − κ1κ3

while the other fifth order invariants are determined to be

ι(u1
5) = κ3 − κ ′′

2

κ1
ι(u3

5) = 2κ ′
2 − κ ′′′

1

ι(u4
5) = − 1

κ2
1

(
κ ′

3κ1 + κ2κ
′′′
1 − 2κ2κ

′
2 − κ ′′

2 κ ′
1 + κ3κ

′
1

)
.

It follows from equation (5.23) that the sixth and higher order invariants may
be determined from κ1, κ2, κ3 and ι(u2

5) and their derivatives.

Exercise 5.5.3 Verify the calculations detailed above. Find an expression
for ι(u2

5) in terms of κ1, κ2, κ3 and κ4 = uT
5 Ju4. Hint: use the Replacement

Theorem. Conclude that κ1, κ2, κ3 and κ4 are a finite set of generators and write
ρxρ

−1 in terms of them.

Marı́ Beffa (2008a) goes on to notice that setting kj to be the (j + 1)st order
differential invariant appearing in ρsρ

−1, then

ρsρ
−1 =


0 0 k2 1
0 0 1 k4

k1 0 0 0
0 k3 0 0


and then shows that in general, for G = Sp(2n) for a suitable choice of nor-
malisation equations, one may obtain the beautiful result,

ρsρ
−1 =



k2 1 0 0
1 k4 1 0

0
. . .

1 k2n−2 1
0 0 1 k2n

k1 0 0
0 k3

. . . 0
0 k2n−1


.
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5.6 *Curvature flows

As ever, the favourite example comes from an SL(2) action. For the projective
action

x̃ = x, t̃ = t, ũ = au + b

cu + d
, ad − bc = 1,

the generating invariants are

I u
111 = {u; x} = uxxx

ux

− 3

2

(
uxx

ux

)2

, I u
2 = ut

ux

.

Setting V = Iu
111, W = Iu

2 , the syzygy is

∂

∂t
V =

(
∂3

∂x3
+ 2V

∂

∂x
+ Vx

)
W. (5.30)

The operator on the right hand side of equation (5.30) is well known as one
of the Hamiltonian operators associated with the Korteweg–de Vries equation;
if the function u(x, t) satisfies the equation V = W , that is, ut = ux{u; x}, then
v = V/2 satisfies the Korteweg–de Vries equation,

vt = vxxx + 6vvx.

This example is one of many that go under the general name ‘curvature
flows’. The picture is that of curves u(x) in the plane evolving in such a way
that if two curves are related by a group action at time t = 0, then so are the
curves after time t (see Figure 5.7),

(g · u1 = u2)
∣∣∣
t=0

=⇒ g · u1 = u2 for all t.

The first key idea involves the signature curve of a curve under a moving
frame.

Definition 5.6.1 Given a Lie group G, an action of G on a manifold M , and a
right moving frame ρ : U → G with domain U ⊂ M , the signature curve of a
curve γ (s) ⊂ U is the image of γ under ρ.

All curves equivalent to γ under the group action have the same signature.
One can think of the signature as being the projection of the curve onto the cross
section K used to define the frame ρ. Since this cross section has coordinates
which are the invariants of the action, another way to think of the signature is
as the invariantised curve in invariant space.

Exercise 5.6.2 Consider the group SE(2) of translations and rotations in
the (x, u)-plane. A smooth curve in the plane s �→ (x(s), u(s)) yields a curve
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g•

g•

time t time t

γ

g · γ

γt
g · γt

Figure 5.7 An invariant evolution of curves commutes with the group action.

s �→ (x(s), u(s), xs, us, xss, uss, . . . ) in the prolonged space, and hence a curve
in the space of Euclidean invariants, s �→ (κ, κs, . . . ), where

κ = ussxs − xssus

(u2
s + x2

s )3/2
.

Plot s �→ (κ, κs) where κ is Euclidean curvature for parabolas s �→ (s, αs2 +
βs + γ ) for various α, β and γ . What do you notice? What are the signature
curves for circles? ellipses?

Exercise 5.6.3 For the standard linear action of SE(3), of rotations and trans-
lations in (x, y, z)-space, plot the signature curves s �→ (κ, τ ) for a selection
of curves in 3-space, including spirals, under the Euclidean group SE(3); see
Definition 5.4.2 for definitions of the curvature κ and the torsion τ .

To ease the exposition, we describe the calculation of the curvature flow
equation in the simplest case, curves on the plane. Suppose that a curve γ (s) =
(x(s), u(s)) is evolving in time, and that we have a group action on (x, u)
which we prolong to some suitably high order. Then so will the signature curve
evolve. If the evolution commutes with the group action, then we can study the
evolution of one in terms of the other. To incorporate the time dependence on γ ,
we could write γ t (s) = (xt (s), ut (s)), or equivalently (s, t) �→ (x(s, t), u(s, t)),
which is simpler. The evolution of curves is then a system of partial differential
equations for x and u. We set t̃ = t and treating x and u as depending on both s

and t , can prolong the action to obtain an action on derivatives of x and u with
respect to time.
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Since there are two independent variables, the error matrix K will have two
rows from which we obtain the entries to the matrices

Qs = �s�
−1, Qt = �t�

−1.

Calculating

∂

∂t
Qs = ∂

∂s
Qt + [Qt ,Qs]

as in Proposition 5.2.8 leads to syzygies between the ‘spatial’ invariants
obtained by invariantising pure s-derivatives of the dependent variables, and
the ‘time’ invariants obtained by invariantising their pure t-derivatives.

The particular feature of the normalisation equations for moving frames
applied to flows on spaces of curves, is that they involve only the dependent
variables and their s-derivatives. In the case of curves in the plane parametrised
as (x(s), u(s)), typically there will be one generating invariant for each of x and
u, I x

J and Iu
K , say. One then finds that the syzygies can be written in the form

∂

∂t

(
I x
J

I u
K

)
= H

(
I x

2

Iu
2

)
(5.31)

where H is a matrix of operators depending only on powers of ∂/∂s, the
generating s-derivative invariants, I x

J and Iu
K , and their s-derivatives.

Let the spatial derivative invariants be generated by

I x
J = η, Iu

K = κ.

A curve evolution which commutes with the group action is standardly of the
form, after invariantisation,

I x
2 = F(η, ηs, . . . , κ, κs, . . . )

I u
2 = G(η, ηs, . . . , κ, κs, . . . )

(5.32)

and inserting this into equation (5.31) yields a system of partial differential
equations for the generating spatial invariants. If there are more spatial deriva-
tive generators than one for each dependent variable, the syzygies between them
need to be included in the system. This system is denoted as the ‘curvature flow
equations’ induced by the flow on curves given by equation (5.32).

Thus the Korteweg–de Vries equation is the curvature flow corresponding to
the flow on curves given by ut = ux{u; x}; this latter equation is called, perhaps
unsurprisingly, the ‘Schwarzian KdV’ equation. Note that reparametrising
(x, u(x)) as (x(s), u(s)) is unnecessary when x is invariant under the group
action.

The second most famous example involves the Euclidean action of curves in
R3. Here the flow on curves is the vortex filament equation, and the curvature
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flow is solved in terms of the non-linear Schrödinger equation. Details are given
in Mansfield and van der Kamp (2006).

A third beautiful example† is given by examining the standard action of
SL(2) � R2 on curves in R2. We now look at the details of this example. The
action is s̃ = s, t̃ = t and(

ũ

ṽ

)
=
(

a b

c d

)(
u

v

)
+
(

k1

k2

)
, ad − bc = 1.

The normalisation equations we take are

ũ = ṽ = ṽs = ũss = 0, ũs = 1.

The matrix of infinitesimals is



u v

k1 1 0
k2 0 1
a u −v

b v 0
c 0 u


and the error matrix is

−K =


k1 k2 a b c

s 1 0 0
Iu

111

I v
11

I v
11

t I u
2 I v

2 Iu
12

Iu
112

I v
11

I v
12

.

We consider the case I v
11 = 1. This is equivalent to considering curves (v, u(v))

under the projective action, and taking the curve parameter v to be the ‘equi-
affine arc length’. Setting

1 = I v
11, κ = Iu

111,

the syzygy between I v
11 and I v

2 becomes

∂2

∂s2
I v

2 + 2κI v
2 + 3

∂

∂s
Iu

2 = 0,

which is solved by

I v
2 = κs

I u
2 = −1

3
(κss + κ2).

(5.33)

† This example was worked out with Gloria Marı́ Beffa.
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This system, together with I v
11 = 1, is our flow on curves; to obtain it explicitly

in terms of u and v, one needs to solve for the frame and evaluate the invariants
as functions of u and v.

Putting equations (5.33) into the syzygy between Iu
111 and Iu

2 yields the
curvature flow equation,

0 = κt + 1

3
κ5s + 5

3
κsκ

2 − 5

3
κκsss − 5

3
κsκss . (5.34)

A simple rescaling of variables, s �→ x, t �→ 3t , κ �→ −2y shows that this is
in fact the famous Sawada–Kotera equation (Ablowitz and Clarkson, 1991,
page 52),

0 = yt + y5x + 10yxyxx + 10yyxxx + 20y2yx.

Thus far all three curvature flow equations described are well known inte-
grable equations possessing Lax pairs, an infinite number of conservation laws,
soliton solutions, and so forth. In fact, if the flow on curves is integrable, then
so is the curvature flow equation, and vice versa, in the sense that if one has an
infinite number of conserved quantities then so does the other. This is proved
in Mansfield and van der Kamp (2006) by showing that the conservation laws
factor through the syzygies. The formulation of the syzygies in terms of a
matrix H, as in equation (5.31), is pivotal to the discussion.

Much more can be said about moving frames and partial differential equa-
tions. We refer the reader to the recent papers of Marı́ Beffa (2004, 2007, 2008a,
2008b).
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Invariant ordinary differential equations

We have seen that a group action on a space M induces an action on curves
in M and a prolonged action on their tangents and higher order derivatives.
Consider now the set of solution curves to an ordinary differential equation,
or ODE for short, �(x, u, ux, . . . ) = 0. If G is a symmetry group of �, then
there is an induced action on the set of solution curves, that is, the action
maps solution curves to solution curves. We say two solution curves are equiv-
alent if there is a group element mapping one curve to the other. This is
shown in Figure 6.1, which also shows how the frame projects an equivalence
class of curves to one curve on the cross section K, drawn here as a surface
in M .

The first main result of this chapter is that the moving frame reduces the
equation �(x, u, ux, . . . ) = 0 to the system,

�(J, Iu, I u
1 , . . . ) = 0

D� = Q�
(6.1)

where recall J = ι(x), I u
K = ι(uK ), where the first equation is the invariantisa-

tion of � = 0 obtained using Theorem 4.4.9,

D =
(

dx̃

dx

)−1 d

dx

∣∣∣
g=ρ

is the invariantised operator, Q is the curvature matrix defined in equation (5.2)
and � is a faithful matrix representation of the frame ρ. Recall that Q can be
obtained in terms of the symbolic invariants knowing only the infinitesimal
action and the normalisation equations, using Theorem 5.2.4.

The first equation solves for how the components of Q depend on the
independent variable x, so the second equation is an equation for �. The system
(6.1) is thus triangular: the first equation is independent from the second, and
the solution of the first is needed to solve the second.

185
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projected

curve I(z(x))

K
g

solution
curves z(x)

ρ(z(x))

Figure 6.1 The moving frame on the solution curves of an ODE.

Once we have solved for the frame ρ, the function u is obtained from
u = ρ−1 · Iu. To make the calculations tractable, often we need to reparametrise
the variables so that the independent variable is an invariant. This ensures that
no tricky differential operators are introduced in the equation for the frame.
Moreover, we are free to choose the parametrisation to simplify the reduced
system as much as possible.

Classical reduction methods are at their most powerful when the symmetry
group is solvable, and in this case, the classical reduction process leads to a
solution of the ODE by quadratures. Moving frames can be used to advantage
in this case since the equation for �, the matrix representation of ρ, can be
chosen to be triangular.

But moving frames can be used to handle cases where classical methods
give only partial information. To show the power of the ideas while keep-
ing the calculations tractable, we study equations invariant under SL(2). This
group is semi-simple, the opposite of solvable, and in these cases we see the
advantage of a moving frame approach. Note that Stephani (1989), Chapter 7,



6.1 The symmetry group of an ODE 187

gives a method to solve SL(2)-invariant ODEs of order 2 or less. The method
here is for SL(2) invariant ODEs of order greater than 2. We give a mov-
ing frames proof of Schwarz’ Theorem and then solve the Chazy equation
using moving frames. This last equation was solved by Clarkson and Olver
(1996) in a tour de force, and the methods there do not generalise to other
symmetry groups.

In the final section of this chapter, we discuss how the calculations may
be performed using only the vector field presentation of the Lie algebra of
the symmetry group, that is, without knowing the group action or a faithful
matrix representation. This is important since it is these vector fields that are
normally given by symmetry software packages. Integrating the vector fields
to obtain the group action, and then finding a matrix representation, can be
difficult computations.

6.1 The symmetry group of an ordinary
differential equation

Definition 6.1.1 A group G is said to be a symmetry group of an ordinary
differential system � = 0, if the induced action on sufficiently smooth curves
maps the set of solution curves of � = 0 to itself.

The group action also induces a map on the equations themselves,

g · �i(x, u, ux, . . . ) = �i(g · x, g · u, . . . ).

If each �i is a differential invariant of the prolonged action of G, then G is a
symmetry group of � = 0. More generally, G is a symmetry group of � = 0
if there is an invertible matrix (or non-zero function in the case of a single
equation) µ(g, x, u, ux, . . . ) such that

�(g · x, g · u, . . . ) = µ(g, x, u, ux, . . . )�(x, u, ux, . . . ) (6.2)

in which case we say that � is a relative invariant system.

Example 6.1.2 The solution space of uxx = 0 is the set of non-vertical straight
lines in the plane. The well-known symmetry group of this equation is the eight
dimensional SL(3) acting as

g · x = ax + bu + c

hx + ku + �

g · u = dx + eu + f

hx + ku + �

(6.3)
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where

g =
 a b c

d e f

h k �

 (6.4)

has determinant 1. It is straightforward to check both that

ũxx = −
(

hx + ku + �

ch − a� + (bh − ak)u + (ck − b� + (ak − bh)x)ux

)3

uxx

and that the line αx + βu + γ = 0 maps to another, α̃x + β̃u + γ̃ = 0.

Exercise 6.1.3 In Example 6.1.2, calculate the induced action on the coeffi-
cients α, β and γ .

If h(t) is a one parameter subgroup of G, then setting g = h(t) into equation
(6.2), differentiating with respect to t at t = 0, and evaluating the result on the
surface � = 0 in (x, uα, uα

K )-space, yields the infinitesimal criterion for h(t)
to be a symmetry of � = 0, namely

(vh�)|�=0 = 0 (6.5)

where

vh =
∑
α,K

(
ξ∂x + φα∂uα + φα

K∂uα
K

)
,

and where, from Definition 1.6.12,

∂x̃

∂aj

∣∣∣
g=e

= ξj ,
∂ũα

∂aj

∣∣∣
g=e

= φα
,j ,

∂ũα
K

∂aj

∣∣∣
g=e

= φα
K,j (6.6)

are the infinitesimals of the group action. Recall the infinitesimal action
on the derivatives uα

K is obtained via the prolongation formula given in
Section 1.6.

Lie’s algorithm (see Remark 1.6.16) for finding the symmetry group of a
differential system finds all possible vh · x = ξ (x, u) and vh · uα = φα(x, u),
such that equation (6.5) holds. For systems, there are some subtleties involved
in whether equation (6.5) implies � is a relative invariant system (Olver, 1993,
Section 2.6).

Example 6.1.4 Consider the equation

� : yxx − 2

y
y2

x − 1

x
yx − 1

x
y2 = 0. (6.7)
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v φξ

v1
1
xy

− 1 −
y

x

v2 −x2 +
x

y
3xy − 2

v3 − 1
x

y2

x
v4 x −xy2

v5 x3 x3y2 − 2x2y

v6 0 −xy2 + y

v7 0 x2y2

v8 0 y2

Figure 6.2 The infinitesimals for the symmetry group of equation (6.7).

Lie’s algorithm yields ξ and φ depending on eight different constants, and
thus the symmetry group has dimension eight; the coefficient of each constant
gives a different basis element for the Lie algebra. Figure 6.2 gives ξ and φ

for each basis element. Taking the fourth symmetry vector v4 = x∂x − xy2∂y ,
prolonging it to order 2 and applying it to � yields

[(x∂x − xy2∂y − (y2 + 2xyyx + yx)∂yx

−2(2yyx + xy2
x + xyyxx + yxx)∂yxx

]�
= −2(1 + xy)�

as required. We leave it as an exercise for the reader to verify the other seven
symmetry vectors. We note that not all software implementing Lie’s algorithm
finds all eight symmetry vectors for this example.

Remark 6.1.5 It is a theorem that if a second order ordinary differential equa-
tion �(x, y, yx, yxx) = 0 has an eight dimensional symmetry group, then there
exist coordinates X = X(x, y), Y = Y (x, y) such that the equation becomes
YXX = 0. See for example Ibragimov (1992).

6.2 Solving invariant ordinary differential equations
using moving frames

In this section we give a detailed outline of how to solve an invariant ordinary
differential equation, given a symmetry (sub)group of dimension less than the
order of the equation. In fact, we need also to assume that the prolonged action of
the symmetry group is free and regular in some domain in (x, u, . . . , dnu/dxn)
space where n is the order of the equation and where the domain includes
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solution curves to the equation.

Step 0
We are given an ordinary differential equation with symmetry group G. If the
independent variable is not invariant under the action of G, we reparametrise
solution curves to

x = x(s), u = u(s), ux = us

xs

, . . .

and set s̃ = s. This ensures

Ds = d

ds
.

Thus the equation � = 0 can be written in the form

F (x, xs, . . . , u, us, . . . ) = 0,

where we have used F instead of � to distinguish the reparametrised equation
from the original. The variable s will not appear explicitly in this equation.

Exercise 6.2.1 Show the chain rule yields

d

dx
= 1

xs

d

ds

and hence that

dy

dx
= ys

xs

,
d2y

dx2
= 1

xs

d

ds

(
1

xs

dy

ds

)
= xsyss − ysxss

x3
s

.

Find d3y/dx3 in terms of x, y and their derivatives. Note: in this context, the
chain rule is also known as implicit differentiation.

The equation F = 0 is invariant under arbitrary reparametrisations, s̃ =
f (s), and we may take a companion equation,

Fc(s, x, xs, u, us, . . . ) = 0

in order to have a well-determined system. The companion equation can be
thought of as fixing the parametrisation. It turns out that we do not actually
need to solve it, thus we may choose it so as to ease the calculations provided the
resulting system has the correct dimension of solution space. The companion
equation needs to be compatible with the equation being solved and the choice
of companion equation is justified at the end of the calculation. If the system
F = 0, Fc = 0 has the same dimension solution space as � = 0 we say the
companion equation is compatible, otherwise not.
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Step 1
We suppose now that F = 0 is of order at least that of the dimension of the
group, and that η = I x

K0 and σ = Iu
J 0 are the generating invariants for some

multi-indices K0 and J 0, so that the equation takes the form,

0 = F (I x, I x
1 , . . . , I u, I u

1 , . . . ) = F(η, ηs, . . . , σ, σs, . . . ).

Note that s will not appear explicitly. This rewrite uses Theorem 4.4.9, the
Replacement Theorem, as well as the symbolic differentiation formulae to write
higher order invariants in terms of η and σ and their derivatives. Similarly, the
companion equation becomes

0 = Fc(s, η, ηs, . . . , σ, σs, . . . ).

If the frame is such that more than one invariant is needed to generate the set
{I u

L | |L| ≥ 0} or the set {I x
L | |L| ≥ 0}, then syzygies between the generating

invariants need to be included in the differential system for the invariants.
If x is an invariant, then one does not need a companion equation, and η will

not appear.
We thus obtain a system of ODEs I (�) = 0, namely F = Fc = 0, for the

generating invariants.

Step 2
Solving I (�) = 0 for the generating invariants, we obtain the entries of the
curvature matrix Q as functions of s.

Step 3
Next, we solve the equation �s = Q�, equation (5.2), for �(s), and from this
we obtain the frame ρ(s) in parameter form.

Step 4
Once we have ρ on solutions of the invariantised equation, we obtain x and u

and indeed all the derivatives of u from

x(s) = ρ−1(s) · I x(s)
u(s) = ρ−1(s) · Iu(s)

us(s) = ρ−1(s) · Iu
1 (s)

uss(s) = ρ−1(s) · Iu
11(s)

...

(6.8)

where the action, ·, is the one relevant for that jet coordinate. Note that the
initial data for the ρs = Qρ equation yield initial data for x, u, us and so on. A
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close look at Figure 6.1 reveals that some redundancy in the initial data required
by the moving frame solution method will exist.

Discussion
We observe the following.

� We do not need to solve the companion ODE for x explicitly.
� We do not need to know what the I x

K and Iu
K are as explicit expressions of

the derivatives of u and x.
� To obtain F = 0 from � = 0 we need only the normalisation equations. To

obtain Q we need know only the infinitesimal action and the normalisation
equations.

� We can obtain x and u numerically from knowing ρ numerically.

We discuss the implications of our method for symbolic and numeric compu-
tation in more detail in Section 6.6.

6.3 First order ordinary differential equations

We illustrate the method outlined above on a simple first order equation. See
Cantwell (2002), Chapter 6, for an excellent discussion of using symmetries to
integrate first order ordinary differential equations. Here we show how moving
frames and the method introduced in this chapter contribute to the topic.

Consider the ordinary differential equation

xy2
x − 3yyx + 9x2 = 0. (6.9)

First order equations are equivalent to vector fields and the flow of the corre-
sponding vector field will be a symmetry of the equation. Finding that particular
symmetry action is equivalent to solving the equation, so one looks for an addi-
tional symmetry, either using look-up tables such as that in Cantwell (2002),
page 158, or by inspection. Only a single one parameter group action is needed
for a first order equation. If the action is a translation in either the independent
or dependent variable, the ODE may be integrated immediately by quadratures.
We discuss these cases at the end of this section for completeness.

For equation (6.9) a suitable symmetry group action is

α · x = exp(2α)x, α · y = exp(3α)y (6.10)

so α ∈ G = (R, +). Since x is not invariant, we reparametrise to x = x(s),
y = y(s) and the equation becomes

x

(
ys

xs

)2

− 3y
ys

xs

+ 9x2 = 0. (6.11)
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Taking the normalisation equation to be x̃ = 1 (we leave it to the reader to work
out the domain of the frame) the error matrix is

K =
(

1

2
I x

1

)
,

the invariant operator is D = d/ds, and we have DI y = I
y

1 − 3
2I x

1 I y . Taking
the companion equation to be I x

1 = 1, the invariantised equation is(
d

ds
I y

)2

− 9

4
(I y)2 + 9 = 0.

This is easily solved, as it is separable, and the general solution is

I y = y0

2
exp( 3

2 s) + 2

y0
exp(− 3

2 s)

where y0 �= 0 is a constant of integration. There are also two special solutions
I y ≡ ±2.

The matrix representation of the group is

exp(α) → (exp(α)) ∈ GL(1).

Solving

�s = K� = ( 1
2I x

1 )� = ( 1
2 )�

gives � = (ρ0 exp(s/2)) where ρ0 is a constant. Hence looking at the general
solution of the invariantised equation,

x(s) = ρ−1 · I x = ρ−1 · 1 = 1

ρ2
0

exp(−s),

y(s) = ρ−1 · I y

= 1

ρ3
0

exp(− 3
2 s)

(
y0

2
exp( 3

2 s) + 2

y0
exp(− 3

2 s)

)
= 2

ρ3
0y0

exp(−3s) + y0

2ρ3
0

.

Eliminating s, we have

y = kx3 + 1

k
, k = 2ρ3

0

y0
(6.12)

and it is easily checked that this is the general solution to equation (6.9). This
family of cubics is plotted in Figure 6.3 for real x and y.

Obtaining the solutions to (6.9) corresponding to I y ≡ ±2 yields y =
±2x3/2, which form the envelope to the family of cubics, also plotted in Figure
6.3. This curve is mapped to itself under the group action; restricting to real
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–4

–2

2

4

y

211–2–

x

Figure 6.3 The solution curves for real x and y to equation (6.9).

x and y, it consists of three orbits of the action, since the origin is a fixed
point.

Note that we needed only the normalisation equation, the infinitesimals and
the explicit group action. We did not need to solve for the frame from the
normalisation equations, nor did we need explicit expressions for I y and I x

1 in
terms of x and y, nor did we need to solve the companion equation I x

1 = 1 for
x to obtain the (implied) parametrisation.

Exercise 6.3.1 Obtain the action induced on the solution curves by (6.10) given
in equation (6.12) or, equivalently, find the induced action on the constants of
integration.

Finally we note that if a first order ordinary differential equation
�(x, u, ux) = 0 is invariant under the group action x̃ = x + ε, then it is of
the form ux = f (u) which can be solved implicitly by quadratures,∫

du

f (u)
= x + c

so moving frames are not required in this case. Similarly if �(x, u, ux) = 0
is invariant under ũ = u + ε then it is of the form ux = f (x), with solution
u(x) = ∫ x

f (t) dt .

Remark 6.3.2 The classical method of integrating an ODE invariant under a
one parameter group action involves finding the coordinate system in which
the group action is translation, the so-called canonical coordinates guaranteed
by Frobenius’ Theorem. One of the joys of the moving frame method is that
the need to solve for the canonical coordinates is removed.
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6.4 SL(2) invariant ordinary differential equations

In this section we consider ordinary differential equations invariant under the
actions of SL(2) listed in Example 1.2.14. For ODEs invariant under the first
action, we give a moving frame proof of Schwarz’ Theorem. An example of an
ODE invariant under the third action is the Chazy equation, which is considered
in Section 6.4.2.

6.4.1 Schwarz’ Theorem

Consider the first of the SL(2) actions listed in Example 1.2.14, but with the
independent variable invariant, which is

x̃ = x, ũ = au + b

cu + d
, ad − bc = 1.

The generating invariant is

{u; x} = uxxx

ux

− 3

2

(
uxx

ux

)2

(6.13)

also known as the Schwarzian derivative of u with respect to x.

Theorem 6.4.1 (Schwarz’ Theorem) The general solution of

{u; x} = F (x),

where {u; x} is defined in (6.13), is given by

u(x) = ψ1(x)

ψ2(x)
(6.14)

where the ψi are independent solutions of

ψxx + 1

2
F (x)ψ = 0. (6.15)

The formula for the general solution can be verified directly. However, the
use of moving frames allows one to derive it, and hence we can adapt the proof
we give here to solve a multitude of similar problems.

Proof Since the independent variable is invariant, there is no need to
reparametrise. Take the normalisation equations to be

ũ = 0, ũx = 1, ũxx = 0,

and then in the standard matrix representation of sl(2) we have,

Q =
 0 −1

1

2
Iu

111 0

 ,
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as was calculated in Example 5.2.6. Since the invariantised ordinary differential
equation is

Iu
111 = F (x)

we have that the equation for the frame is

�x =
 0 −1

1

2
F (x) 0

 �.

Setting

� =
(

σ1 τ1

σ2 τ2

)
we obtain

σ1,x = −σ2, σ2,x = 1

2
F (x)σ1

so that

σ1,xx + 1

2
F (x)σ1 = 0

and similarly for the τi . That is, both σ1 and τ1 satisfy equation (6.15). Taking
σ1 and τ1 to be two non-zero independent solutions of (6.15) with Wronskian
σ1,xτ1 − σ1τ1,x equal to one, we have that

�−1 =
(−τ1,x −τ1

σ1,x σ1

)
.

Hence,

u(x) = ρ(x)−1 · Iu

= −τ1,xI
u − τ1

σ1,xI u + σ1

= − τ1

σ1

as Iu = 0. �

Exercise 6.4.2 Show that the Wronskian σ1,xτ1 − σ1τ1,x is a constant when
σ1 and τ1 both satisfy ψxx + 1

2F (x)ψ = 0, and that it may be taken equal to
one without loss of generality. Hint: consider the constants of integration u(0),
ux(0) �= 0 and uxx(0) in terms of σ1(0) �= 0, σ1,x(0) and τ1(0).
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Exercise 6.4.3 Use the method of moving frames to find the analogue of
Schwarz’ Theorem for

({u; x})x + {u; x} = F (x).

Hint: first solve wx + w = F .

6.4.2 The Chazy equation

The Chazy equation is

uxxx = 2uuxx − 3u2
x

and more generally,

uxxx = 2uuxx − 3u2
x + α(6ux − u2)2 (6.16)

which arises in many contexts (Ablowitz and Clarkson, 1991). One form of
the general solution was written down by Chazy, who gave no hint as to how he
found it. Another form of the solution was obtained using Lie symmetry theory
by Clarkson and Olver (1996). The form of the solution found by symmetry
methods differs from that written down by Chazy. A straightforward application
of moving frames yields the Clarkson and Olver form of the solution. It is not
known whether Chazy’s form of the solution can be found by a different choice
of the normalisation equations.

The equation (6.16) is invariant under the action of SL(2), given by

x̃ = ax + b

cx + d

ũ = 6c(cx + d) + (cx + d)2u

where ad − bc = 1, which is the third of those listed in Example 1.2.14. The
infinitesimal action in table form is

x u

a 2x −2u

b 1 0
c −x2 6 + 2xu

Since the action does not leave x invariant, we reparametrise. Thus we set
x = x(s) and u = u(s) with the same group action as above but adding now
s̃ = s. The invariant differential operator is then d/ds. Taking the normalisation
equations,

x̃ = 0, x̃s = 1, ũ = 0
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we have in the standard matrix representation of SL(2) that

d

ds
� = −


1

2
I x

11 1

1

6
Iu

1 −1

2
I x

11

 �, (6.17)

which was calculated in Exercise 5.2.7. We take the companion ODE to be

I x
11 = 0,

a choice which will be vindicated by the calculations which follow; that is,
we obtain a three dimensional set of solutions. The invariantisation of the
reparametrisation of equation (6.16) is then

d2

ds2
Iu

1 + (4 − 36α)(Iu
1 )2 = 0

showing that Iu
1 is an elliptic function of s. Next, if (σ1, σ2)T is the first column

of �, then equation (6.17) implies that

σ1,ss = 1

6
Iu

1 σ1.

A linear Schrödinger equation whose potential is an elliptic function is a Lamé
equation (Whittaker and Watson, 1952). So, two independent solutions of this
Lamé equation with Wronskian equal to one yield ρ. Using equations (6.8)
then yields the solutions of the Chazy equation, without having solved for Iu

1

or I x
11 in terms of u(s) and x(s).

Remark 6.4.4 To show equations (6.8) are consistent with the actual expression
for � given in equation (5.5) and calculated in Exercise 5.2.7, we note that the
frame in matrix form is,

� =


1√
xs

− x√
xs

−1

6
u
√

xs

1

6
(xu + 6)

√
xs

 . (6.18)

We then have

x(s) = ρ−1 · I x = ρ2,2I
x − ρ1,2

−ρ2,1I x + ρ1,1
= −ρ1,2

ρ1,1
= x(s)

using I x = 0 and

u(s) = ρ−1 · Iu

= 6(−ρ2,1)(−ρ2,1I
x + ρ1,1) + (−ρ2,1I

x + ρ1,1)2Iu

= 6(−ρ2,1)(ρ1,1)
= u(s)
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since both I x = 0 and Iu = 0 from the normalisation equations. The consis-
tency is clear.

To show the necessity of reparametrisation, it is instructive to apply the
moving frame reduction method to the Chazy equation in the original variables,
(x, u(x)). Using the normalisation equations,

x̃ = 0, ũ = 0, ũx = 1

the frame in matrix form is,

ρ =

 −
(

ux − u2

6

)1/4

x

(
ux − u2

6

)1/4

u

6

(
ux − u2/6

)−1/4 −(1 + xu/6)
(
ux − u2/6

)−1/4

 .

The invariant differential operator is

D = 1(
ux − u2/6

)1/2

d

dx

and the generating invariant is

Iu
11 = uxx − uux + u3

(ux − u2/6)3/2
.

Using the Replacement Theorem on equation (6.16) yields

Iu
111 = 36α − 3

and we also have,

DIu
11 = Iu

111 − 3

2
(Iu

11)2 − 1.

Thus, we obtain the invariantised equation,

DIu
11 + 3

2
(Iu

11)2 − 36α + 4 = 0

which superficially has the form of a Ricatti equation in terms of this particular
generating invariant. Unfortunately, the coefficient in the invariant differential
operator renders the equation highly non-trivial to solve.

6.5 Equations with solvable symmetry groups

It is a classical theorem that an ordinary differential equation of order n,
with a solvable symmetry group of dimension n, can be integrated by quadra-
tures. Here we show how moving frames greatly simplifies the calculations
involved.



200 Invariant ordinary differential equations

The classical method involves reducing the ODE by one group parameter at
a time, and the order of reduction is the same as that used when computing the
frame as a product in Section 4.6. However, using the moving frame solution
method one parameter at a time is not the route recommended here. A better way
is to use the fact that a solvable Lie algebra has a faithful representation using
upper triangular matrices. Then the curvature matrix will be upper triangular,
leading to a triangular system to solve for ρ.

We show what happens by integrating equation (4.22),

yxx + 1

x
yx + ey = 0

whose solvable symmetry group was found in Exercise 4.6.4; we repeat it here
for convenience. The group is G = R+ � R+, the action is

x̃ = axb, ỹ = y − 2 log(ab) − 2(b − 1) log x

with identity element (b, a) = (1, 1), and an upper triangular matrix represen-
tation of this group is given by

(b, a) →
(

b log a

0 1

)
. (6.19)

Using the moving frame reduction method, finding the exact solution of this
non-linear equation involves three straightforward integration steps. Since the
independent variable is not invariant, we reparametrise to x = x(s), u = u(s)
and set s̃ = s. If we take the normalisation equations to be x̃ = 1, ỹ = 0, we
have that

K = ( a b

s −I x
1 I x

1 + 1
2I

y

1

)
.

Taking the companion equation to be I x
1 = 1, we have from d/ds I x

1 = 0 that
I x

11 = − 1
2I

y

1 , and also

d

ds
I

y

1 = I
y

11 − 2 − I
y

1

and hence the invariantisation of the reparametrised equation becomes

d

ds
I

y

1 + 1
2 (I y

1 )2 + 2I
y

1 + 3 = 0.

Thus

I
y

1 (s) =
√

2 tan

(
s0 − s√

2

)
− 2.

Using the faithful matrix representation of the group given in equation (6.19)
above, a basis for the Lie algebra needed to calculate Q in the equation for �
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is, using equation (5.3),

ab =
(

1 0
0 0

)
, aa =

(
0 1
0 0

)
,

and thus using Theorem 5.2.4, the equation for � becomes, with I x
1 = 1,(

bs (log a)s
0 0

)
=
(

1 + 1
2I

y

1 −1
0 0

)(
b log a

0 1

)
.

It can be seen that the equations for a and b separate. With the value of I
y

1

obtained above, we have

b(s) = b0 cos

(
s0 − s√

2

)
and

log a(s) = cos

(
s0 − s√

2

)[
a0 +

√
2 log

(
sec

(
s0 − s√

2

)
+ tan

(
s0 − s√

2

))]
.

From the group multiplication law and group action formulae given in
Exercise 4.6.4 we have

(b, a)−1 = (b−1, a−1/b),

and thus

x(s) = ρ(s)−1 · I x = a(s)−1/b(s)(I x)1/b(s) = exp(−(log a(s))/b(s))

and

y(s) = ρ(s)−1 · I y = I y − log
(
b(s)−1a(s)−1/b(s))− 2(b−1 − 1) log I x

= 2 log b(s) + 2(log a(s))/b(s).

That this is a solution of equation (4.22) above for x positive can be verified
by direct substitution. Solutions for x negative can be obtained by noting that
the equation is invariant under (x, y) �→ (−x, y). We note that we appear to
have three constants of integration, s0, b0 and f0, for a second order equation.
The third has been introduced by the freedom in setting where on your solution
curve you take s = 0. However, it should be noted that in fact there are three
values needed to determine the two initial points (x0, y0) and (x0, yx(x0)),
namely x0, y0 and yx(x0).
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6.6 Notes on symbolic and numeric computation

Here we summarise what is known that would allow the method to be imple-
mented in a symbolic and numerical computation environment.

(i) The reduced equation is obtained via the Replacement Theorem 4.4.9,
which needs only the normalisation equations.

(ii) Given the infinitesimal vector fields, a faithful matrix representation of
the finite dimensional part of the Lie algebra can be obtained by Ado’s
Theorem. This has been implemented by de Graaf (2000). However, in
practice the matrices obtained can be unwieldy.

(iii) By Theorem 5.2.4 the matrix

A = ρsρ
−1

can be calculated knowing only the normalisation equations and the
infinitesimal action, in the faithful representation at hand.

(iv) Equations of the form

�s = A(s)�

with A(s) ∈ g where g is a matrix Lie Algebra can be solved numerically
keeping ρ ∈ G using geometric integrators, in particular the ‘Magnus’ or
‘Lie group integrators’ (Iserles et al., 2000). There is the possibility of
choosing both the normalisation equations, the companion ODE and the
representation to adapt the ‘shape’ of A to ease the integration.

(v) Applying equations (6.8) requires knowing the group action, not just the
infinitesimals. If you know only the infinitesimal action, which is how
symmetry groups of DEs are given by symbolic software, then the group
action can be obtained by integration of the system (1.54), see Theorem
1.6.23.

6.7 Using only the infinitesimal vector fields

In this section we give the vector field counterpart to Theorem 5.2.4, and apply
it to calculation of the moving frame reduction solution. The calculation of a
faithful matrix representation of the Lie algebra can thus be avoided, but the
resulting equation for ρ may be, conceptually at least, significantly harder to
solve.

Theorem 6.7.1 Suppose G × M → M is a smooth left group action,
(a1, . . . , ar ) are local coordinates on G, (z1, . . . , zn) are local coordinates
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on M and

ζ i
j (z) = ∂g · zi

∂aj

∣∣∣
g=e

are the infinitesimals of the action with respect to these coordinates. If h(s) is
a path in G and h(s) · zi = z̃i , then

d

ds
z̃i =

∑
�

(
TeR

−1
h

d

ds
h

)
�

ζ i
� (̃zi) . (6.20)

If h(s) = ρ(z(s)) where ρ is a right moving frame for the action, then

d

ds
z̃i =

∑
�

Ks�ζ
i
� (̃zi(s)) (6.21)

where K is given in Theorem 4.5.5.

Proof The starting point is Theorem 3.2.37 which we now briefly recall: given
(a1, a2, . . . , ar ) coordinates in some domain in G, and letting h(s) ∈ G be a
path in that chart domain, then for each coordinate zi of z ∈ M ,

∂g · zi

∂a1
...

∂g · zi

∂ar


∣∣∣
g=h

= (TeRh)−T

 ζ i
1(h · z)

...
ζ i
r (h · z)

 . (6.22)

Since the argument is the same for each coordinate of z, we drop the subscript.
Setting h(s) · z = z̃(s) and h(s) = (a1(s), . . . , ar (s)),

d

ds
z̃(s) =

∑
k

a′
k(s)

∂

∂ak

(̃x(s))

=
∑
k,�

a′
k(s)
(
TeR

−T
h(s)

)
k�

(ζ�( z̃(s))

=
∑
k,�

((
TeR)−1

h(s)

)
�k

a′
k(s)
)

ζ�( z̃(s))

=
∑

�

(
TeR

−1
h(s)

d

ds
h(s)

)
�

ζ�( z̃(s)).

(6.23)

This proves equation (6.20). Finally, to obtain equation (6.21), we set h(s) =
ρ(z(s)) into equation (6.20), and use the rightmost formula for K in equation
(4.13). �

Equation (6.21) is essentially the differential equation for the frame ρ, not in
the matrix form �s = Q�, but with ρ viewed as an element of a transformation
group. While the matrix equation has r = dim(G) constants of integration,
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equation (6.21) has initial data ρ(0) · zi . Thus, it is still necessary to solve the
ordinary differential system giving the general group action.

Applying Theorem 6.7.1 to the coordinates x and u, whose infinitesimals
with respect to a� are denoted by ξ� and φ� respectively, we obtain

d

ds
x̃(s) =

∑
�

(
TeR

−1
ρ

d

ds
ρ

)
�

ξ�(̃x(s))

=
∑

�

Ks�ξ� (̃x(s))

d

ds
ũ(s) =

∑
�

Ks�φ�(̃u(s)).

(6.24)

For the application we consider in this chapter, namely the solution of Lie
group invariant ODEs, we know how the matrix K varies as a function of the
invariant independent coordinate s once we have solved the invariantised ODE
system. One then uses equations (6.24) to obtain the frame ρ(x(s), u(s), . . . ),
and the ODE system in Theorem 1.6.24 for each group parameter to obtain the
general group action. Finally, one can write down the general solution to the
original invariant ODE system.

Example 6.7.2 As ever we consider the SL(2) action

x̃ = x, ũ = au + b

cu + d
, ad − bc = 1.

Since x is invariant, we can take s = x. The infinitesimals are

φa(x, u) = 2u, φb(x, u) = 1, φc(x, u) = −u2.

Suppose that we know only the infinitesimals and not the group action, that we
do not know a faithful matrix representation of the Lie algebra, and we have
forgotten Schwarz’ Theorem. The generic one parameter group action is the
solution of the ordinary differential equation

u̇ = α(2u) + β + γ (−u2) (6.25)

where α, β and γ are arbitrary constants, using Theorem 1.6.24 for each
independent group parameter. Since we can see that φa is the infinitesimal
of a scaling action and φb the infinitesimal of a translation, we can guess
that ũ = 0, ũx = 1 are appropriate normalisation equations. Adding ũxx = 0
yields

K = ( a b c

x 0 −1 1
2Iu

111

)
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which can be obtained using only the infinitesimals and the normalisation
equations. Applying equation (6.24) we obtain

d

dx
ũ = ( a b c

0 −1 1
2Iu

111

) 2ũ

1
−ũ2

 a

b

c

or

d

dx
ũ = −1 − 1

2Iu
111ũ

2. (6.26)

Suppose we wish to solve the ODE, {u; x} = 2 exp(x), which invariantises to

I u
111 = 2 exp(x). (6.27)

Setting equation (6.27) into equation (6.26) with initial condition ũ(x) = u,
and solving, yields an expression ũ(x) = F (x, u) = ρ(x) · u in terms of Bessel
functions. Solving this expression for u (which equals ρ−1(x) · ũ(x)) and setting
ũ(x) = I u(x) gives the desired solution. Since Iu(x) ≡ 0 we obtain

u = Y0(2)J0(2 exp(x/2)) − J0(2)Y0(2 exp(x/2))

Y1(2)J0(2 exp(x/2)) − J1(2)Y0(2 exp(x/2))
.

This is indeed a solution of {u; x} = 2 exp(x) as can be verified directly. The
general solution is (au + b)/(cu + d); obtaining this requires one to solve for
the group action, equation (6.25) above.
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Variational problems with symmetry

The Calculus of Variations is a classical subject with major applications in
physics and engineering, and a long history of development. The variational
method converts the problem of finding a curve or surface that minimises or
maximises an integral functional, such as

(x, u(x)) �→
∫ b

a

L(x, u, ux, . . . ) dx

in the case of curves in the plane, to the problem of solving a differential
equation, called the Euler–Lagrange equation.

For many problems, there is a Lie group invariance to the integral that arises
naturally from the physical model being considered. The aim of this chapter is
to use the calculus of invariants developed in Chapters 4 and 5 to gain insight
into the role the symmetry plays in the calculation and analysis of the solution
set of the Euler–Lagrange equation.

The introductory part of this chapter puts in one place everything we will
need for the applications of moving frames that we consider. Recent accessible
texts include van Brunt (2004) and MacCluer (2005), but older ones are still
‘gold’, such as Courant and Hilbert (1953).

7.1 Introduction to the Calculus of Variations

In this brief introductory section on the Calculus of Variations we collect
together the computational methods and results needed to study variational
problems with symmetry.

In the first set of problems we consider, it is desired to find some curve
(x, u(x)) that minimises or maximises an integral,

(x, u(x)) �→ L[u] =
∫ b

a

L(x, u, ux, uxx, . . . ) dx

206
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on some interval [a, b] ⊂ R. The integrand L(x, u, ux, . . . ) dx is called the
Lagrangian. We say L dx is one dimensional since the integral is with respect
to the single coordinate x, and that L dx is of order n if the highest derivative
of u appearing in L is dnu/dxn (but see Exercise 7.1.3).

Remark 7.1.1 It is important to note that it is the whole integrand, L dx, not
just the function L, which gives the variational problem

∫
L dx. Considering

only the function can lead to serious errors in both computation and theory.

Blanket assumption We will assume our Lagrangians to be smooth functions
of a finite number of arguments, and that the functional analytic properties of the
curves on which we evaluate L[u] are sufficient to ensure the calculations that
follow are valid. In particular, we assume that we can interchange integration
and differentiation, and that the extremal curves we seek have a sufficient
number of smooth derivatives. An accessible text which considers the most
important functional analytic niceties in the context of applications is MacCluer
(2005).

If we suppose that the particular curve (x, u(x)) extremises L[u], then for a
variation u(x) �→ u(x) + εv(x) we will have

0 = d

dε

∣∣∣
ε=0

L[u + εv]

= d

dε

∣∣∣
ε=0

∫ b

a

L(x, u + εv, ux + εvx, uxx + εvxx, . . . ) dx

=
∫ b

a

(
∂L

∂u
v + ∂L

∂ux

vx + ∂L

∂uxx

vxx + · · ·
)

dx

=
∫ b

a

[(
∂L

∂u
− d

dx

∂L

∂ux

+ d2

dx2

∂L

∂uxx

+ · · ·
)

v

+ d

dx

(
∂L

∂ux

v + ∂L

∂uxx

vxx −
(

d

dx

∂L

∂uxx

)
v + · · ·

)]
dx

=
∫

E(L)v dx +
[

∂L

∂ux

v + · · ·
]b

a

(7.1)

where d/dx is a total derivative operator. We have assumed that we may inter-
change integration and differentiation, and then used integration by parts.
The last line defines the Euler–Lagrange operator E for one dimensional
Lagrangians, namely

E(L) =
∑

k

(−1)k
dk

dxk

∂L

∂uk

, uk = dk

dxk
u. (7.2)
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Since equation (7.1) holds for any variation v, we may take a variation that
satisfies v(a) = v(b) = vx(a) = · · · = 0 and obtain that

∫ b

a
E(L)v dx = 0 for

all variations with support interior to the domain [a, b]. It is then a result,
called the Fundamental Lemma of the Calculus of Variations, that E(L) is
identically zero for all x ∈ (a, b). In other words, a necessary condition for a
curve to extremiseL[u] is the differential equation E(L) = 0. Curves satisfying
E(L) = 0 are said to be extremal curves for the variational problem

∫
L dx.

The calculation of the Euler–Lagrange equation is thus in two parts:

� the calculation of

d

dε

∣∣∣
ε=0

L[u + εv],

� integration by parts.

The boundary or endpoint terms in (7.1) that accumulate as we perform the
integration by parts play a vital role when considering problems without specific
boundary conditions; if boundary conditions for the extremal curves are not
specified by the application, then the so-called natural boundary conditions
will apply. For example, if u(a) is unspecified then v(a) is free, and so the
coefficient of v(a) in the endpoint terms must be zero on an extremal; in the
case of a first order Lagrangian, this is ∂L/∂ux |x=a = 0, which is a condition
on u and its derivatives at x = a.

The endpoint terms will also play a vital role in deriving Noether’s Theorem
in both the classical and invariantised cases, see Section 7.2.

In general, Euler–Lagrange equations are seriously non-linear and it is
important to be able to investigate the solution set graphically, see for example
Exercise 7.1.2.

Exercise 7.1.2 Show the Euler–Lagrange equation for

L[u] =
∫ 10

0
uu2

x + sin(x)u2 dx

is u2
x − 2u sin x + 2uuxx = 0. Show there exists a solution satisfying u(0) = 1,

u(10) = 4. Hint: plot the solutions satisfying u(0) = 1 but with varying ux(0),
and use a ‘shooting argument’, that is apply the Intermediate Value Theorem
to the function y �→ u[y](10) where u[y] is a solution satisfying u[y]

x (0) = y. Is
there more than one solution satisfying these boundary conditions?

Exercise 7.1.3 Show that if a Lagrangian L dx satisfies

L(x, u, ux, uxx) = d

dx
W (x, u, ux) = ∂

∂x
W + ux

∂

∂u
W + uxx

∂

∂ux

W,
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then E(L) is identically zero. Generalise the result to arbitrary order
Lagrangians. Explain. Hint: can the integral

∫
L dx change with variations

to u inside the domain? Hence show that if two Lagrangians L1 and L2 differ
by a total derivative, then their Euler–Lagrange equations will be equal. In this
case we say L1 and L2 are equivalent; show this is indeed an equivalence
relation. Formulate a definition of the order of a Lagrangian that is well defined
on equivalence classes.

Exercises 7.1.4 and 7.1.7 give simple examples of how Euler–Lagrange
equations behave under changes of variable. The general result can be seen in
van Brunt (2004), Section 2.5, or Olver (1993), Theorem 4.8.

Exercise 7.1.4

(i) If L = L(f (u), f ′(u)ux), show that

Ef (u)(L) = Eu(L)f ′(u),

where Ef (u)(L) means the Euler–Lagrange equation obtained by varying
f (u).

(ii) If L = L(ux, uxx) and w = ux , so that L = L(w,wx), show that

Eu(L) = − d

dx
Ew(L).

More generally,† show that if w = A(u) where A is a linear differential
operator, then

Eu(L) = A∗Ew(L),

where A∗ is the adjoint of A; see Definition 7.3.2.

If the Lagrangian depends on more than one dependent variable, then an
Euler–Lagrange system is obtained, one equation for each dependent variable.

Exercise 7.1.5 Generalise the above calculation in equation (7.1) to obtain
the Euler–Lagrange system for a Lagrangian depending on more than one
dependent variable, say uα , α = 1, . . . , q so that

L dx = L(x, uα, uα
x , . . . ) dx,

namely,

Eα(L) =
∑

k

(−1)k
dk

dxk

∂L

∂uα
k

, uα
k = dk

dxk
uα, α = 1, . . . , q. (7.3)

† This generalisation was pointed out to me by Peter Hydon.
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Hint: calculate

d

dε

∣∣∣
ε=0

L[uα + εvα]

and note the vα are independent variations.

Multivariable variational problems arise in the study of mechanical systems.
Exercise 7.1.6 is the classic example.

Exercise 7.1.6 Even after all these years, still the best illustrative multivari-
able example is the two body problem with Newtonian gravity, also known
as Kepler’s problem. If the earth is at (xe(t), ye(t), ze(t)) and the sun is at
(xs(t), ys(t), zs(t)), then setting x = xe − xs, y = ye − ys and z = ze − zs, the
Lagrangian is L dt where

L = 1
2

(
x2

t + y2
t + z2

t

)− k

(x2 + y2 + z2)1/2
,

where k is a constant. Show that

Ex(L) = −xtt + kx

(x2 + y2 + z2)3/2
,

and similarly for Ey(L) and Ez(L). First integrals of this system will be con-
structed in Exercise 7.2.7.

The point of the next exercise, 7.1.7, is to show that information is neither
lost nor gained by reparametrisation of the Lagrangian.

Exercise 7.1.7 Consider a Lagrangian L(x, u, ux, uxx) dx and change the
parametrisation of the sought curve from (x, u(x)) to (t, x(t), u(t)); noting
that dx = xt dt and

d

dx
= 1

xt

d

dt
,

we obtain

L[u] =
∫

L dx = L̃[x, u] =
∫

L

(
x, u,

ut

xt

,
1

xt

d

dt

ut

xt

)
xt dt =

∫
L̃ dt,

where the last equality defines L̃. Show that

xtE
x(L̃) + utE

u(L̃) = 0, (7.4)

where L̃ is considered as having two dependent variables x and u both depend-
ing on t . Show further that

Eu(t)(L̃) = xtE
u(x)(L)
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where the differential operators used to calculate Eu(t) are powers of d/dt , and
the differential operators used to calculate Eu(x) are powers of d/dx. Note:
equation (7.4) is a simple example of Noether’s Second Theorem; for
Lagrangians invariant under an infinite dimensional group, in this case t̃ = τ (t)
for an arbitrary smooth function τ , the Euler–Lagrange equations satisfy a
differential identity.

Next, we need to consider variational problems with constraints. The main
results are as follows. If you seek a curve that minimises L[u] = ∫ L dx

amongst those curves that satisfy also
∫

G(x, u, ux, . . . ) dx = A where A is a
constant, then a necessary condition on the minimising curve (x, u(x)) is that
u(x) satisfies the system

Eu(λ0L − λG) = 0,

∫
G dx = A (7.5)

where λ0 ∈ {0, 1}, the constant λ is called the Lagrange multiplier, and λ0 and
λ are not both zero. Problems where λ0 = 0 are called abnormal; they occur
when the extremising curves also extremise

∫
G dx. Such extremal curves are

called rigid extremals, see van Brunt (2004), Section 4.2.
The new parameter λ, which is free in the differential equation, is evaluated

by calculating the integral constraint.

Exercise 7.1.8 Find the extremal of

L[u] =
∫ π

0
u2

xx dx

subject to u(0) = uxx(0) = 0, u(π ) = uxx(π ) = 0 and∫ π

0
u2 dx = 1.

Hint: write the equations for the constants of integration in matrix form, and
consider the determinant of the matrix.

If the constraint is not an integral constraint, but must hold at each point of
the curve, so that G(x, u, ux, . . . ) = 0 for all x, then the result is as follows:
the necessary condition on the curve is that it satisfies the system

Eu(λ0L − λ(x)G) = 0, G = 0 (7.6)

where λ0 ∈ {0, 1}, the function λ(x) is now a function also called the Lagrange
multiplier, and λ0 and λ are not both identically zero. See van Brunt (2004),
Section 6.2, for a discussion of the abnormal case where λ0 = 0.
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Remark 7.1.9 The function λ may, in principle, be eliminated from the
system (7.6) using standard techniques from differential algebra to produce the
differential equation for u, but this will produce Euler–Lagrange equations that
are too high order. Any constants of integration that can be absorbed into the
Lagrange multiplier λ(x) should be discarded as artefacts. This is because the
curve not only satisfies G = 0 but also cG = 0 for any constant c, and so forth.

The next exercise shows the need to absorb constants of integration for λ to
obtain the correct Euler–Lagrange equations.

Exercise 7.1.10 Suppose a second order Lagrangian L(x, u, ux, uxx) dx is
given, and that we wish to reparametrise the problem to (s, x(s), u(s)) where s

is the Euclidean arc length, that is, where x2
s + u2

s = 1, see Figure 7.1. Show
that the Euler–Lagrange equation Eu(x)(L) = 0 for L dx is equivalent to the
equation obtained by eliminating λ(s) from the system

Ex(s)(L̃) = 0, Eu(s)(L̃) = 0, u2
s + x2

s = 1,

where

L̃ ds = [L(x, u, us/xs, uss/x
4
s )xs − λ(s)(x2

s + u2
s − 1)

]
ds.

The Lagrangian L̃ ds is obtained by inserting into L dx not only dx = xs ds but
both ux = us/xs and

uxx =
(

1

xs

d

ds

)2

u

and then simplifying with respect to the constraint x2
s + u2

s = 1, and its dif-
ferential consequence xsxss + ususs = 0. Hint: calculating 0 = xsE

x(s)(L̃) +
usE

u(s)(L̃) (see Exercise 7.1.7) yields

0 = 2λs + d

ds

(
us

d

ds

(
D4(L)

x3
s

)
+ 3D4(L)

uss

x3
s

)
,

where D4(L) is the derivative of L with respect to its fourth argument. The
constant of integration can be absorbed into λ. Putting λ into Ex(s)(L̃) = 0
yields −usE

u(x)(L) = 0 after simplifying with respect to u2
s + x2

s = 1 and its
differential consequences.

7.1.1 Results and non-results for Lagrangians
involving curvature

There are an amazing number of fallacious arguments and results appear-
ing in the literature, including textbooks published by reputable mathematical
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∆u

∆x

∆s

x

u

Figure 7.1 If s is Euclidean arc length, x2
s + u2

s = 1.

publishers, concerning Lagrangians involving Euclidean curvature and
Euclidean arc length. Since we will be considering these Lagrangians in some
depth, we take a moment to sort out the false from the true.

We recall that the Euclidean curvature of a curve (x, u(x)) is

κ = uxx

(1 + u2
x)3/2

and in terms of a parametrised curve (x(t), u(t)) it is

κ = uttxt − xttut

(x2
t + u2

t )3/2
. (7.7)

Lagrangians involving curvature typically set the curve parameter to be s which
is arc length; this is the parameter for which

x2
s + u2

s = 1, (7.8)

see Figure 7.1. In this case, we have

κ = ussxs − xssus = uss/xs = −xss/us

since ususs + xsxss = 0. Most importantly, we have

ds =
√

1 + u2
x dx (7.9)

and equivalently,

d

ds
= 1√

1 + u2
x

d

dx
. (7.10)

The most famous Lagrangian involving curvature is

L[u] =
∫

κ2 ds =
∫

u2
xx

(1 + u2
x)5/2

dx. (7.11)

Since the Lagrangian involves uxx and is not a total derivative, the Euler–
Lagrange equation will be of order 4 in u (see Exercise 7.1.3), and hence will
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involve κss ; in particular, it is not κ = c. Even though straight lines, that is,
curves which satisfy κ = 0, are indeed solutions, they are not the only ones.

Theorem 7.1.11 (Euler) The Euler–Lagrange equation for the variational
problem given in equation (7.11) is

κss + 1
2κ3 = 0. (7.12)

Remark 7.1.12 Solutions of equation (7.12) are called Euler’s elastica. Recent
applications are to the inpainting problem (Chan et al., 2002), draping of fabric
(Cerda et al., 2004), hot air balloon design, non-linear splines in numerical
analysis (Hoschek and Lasser 1993), and computer vision (Mumford 1994).

To see the fallacy in various results appearing in the literature that we discuss
below, it is vitally important to be convinced of Theorem 7.1.11.

Exercise 7.1.13 Prove Theorem 7.1.11.
Method 1 The result can be proved by direct calculation using the right hand
form of the Lagrangian in equation (7.11), with the standard Euler–Lagrange
operator, that is (7.2) with x as the independent variable, and then recasting
the result in terms of κ and d/ds by back-substituting for uxxxx , uxxx and uxx

in terms of κss , κs , κ , ux and u (these last two factor out at the end). The
calculation is lengthy but can be achieved using computer algebra software.
Method 2 Another method is to include the constraint (7.8), and to consider
the Lagrangian

L̃ = [f (κ) − λ(s)(x2
s + u2

s − 1)
]

ds,

where f (κ) = f (uss/xs) = κ2. Calculating 0 = xsE
x(L̃) + usE

u(L̃) yields
0 = 2λ + f (κ) + usd/ds (fκ/xs) where the constant of integration has been
absorbed into λ. Setting this into Ex(L̃) = 0 or Eu(L̃) = 0 and using both
κ = uss/xs = −xss/us will, with effort, yield the result.
Method 3 Prove equation (7.18) and confirm the details of the discussion
following.

Exercise 7.1.14 Show that the Euler–Lagrange equation with respect to the
dependent variable u for

L[u] =
∫

(α + βκ2) ds (7.13)

where α and β are constants, is

κss + 1

2
κ3 − α

2β
κ = 0. (7.14)
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(x, u(x))

θ

slope is ux

Figure 7.2 The angle θ = arctan(ux ) satisfies θs = κ , the Euclidean curvature of
the curve, if s is Euclidean arc length.

The fallacious arguments involve the following line of reasoning. Consider
θ = arctan(ux), depicted in Figure 7.2. Then if s is the Euclidean arc length,

d

ds
θ = 1√

1 + u2
x

uxx

1 + u2
x

= κ.

Since
∫

κ2 ds = ∫ θ2
s ds, and the Euler–Lagrange equation of the second ‘is

easily seen to be θss = 0’, the extremal curves for
∫

κ2 ds are claimed to be
κ = θs = c where c is a constant. Thus, circles are taken to be the extremal
curves for this problem. However, it can be seen that κ = c is not a solution
of the actual Euler–Lagrange equation, (7.12), unless c = 0. Further, θss = 0
is only third order, not fourth, in u. Similarly, ‘spirals of Cornu’, satisfying
κ = αs + β, with α and β both constant, are incorrectly derived as extremals
of the variational problem, ∫

(θ2
s − λθ ) ds (7.15)

for a ‘beam that minimises bending energy,
∫

κ2 ds, subject to having fixed
amount of total angular change’, so that λ is the constant Lagrange multiplier
for the integral constraint,

∫
θ ds = k for some constant k. In fact, the Euler–

Lagrange equation for (7.15) with respect to u is

κss + 1
2κ3 − λθκ = 0.

It is readily seen that κ = θs = αs + β is not a solution of the actual Euler–
Lagrange equation unless α = β = 0.

Since the method of substituting κ = θs and using s as a standard indepen-
dent variable gives the wrong answer, there must be a fallacy and the question
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is, where? A first look at the derivation reveals one problem, that it is θ , not
u, that is being varied. However, θ is a function of ux , so varying with respect
to θ and varying with respect to u should be equivalent in some sense, see
Exercise 7.1.4. This accounts for the order of the purported Euler–Lagrange
equation being too low. However, the real place where the above arguments
fail is that the constraint x2

s + u2
s = 1 on the parameter s has been ignored. The

constraint shows in equations (7.9) and (7.10), where one can see that there
are ‘hidden’ occurrences of ux in the Lagrangian θ2

s ds which will add extra
terms to an Euler–Lagrange equation. Incidentally, the constraint itself shows
that x = s cannot hold without u being identically constant; there is no way
to ‘pretend’ that s and x are in some way equivalent. Further, equation (7.10)
means one cannot pretend that s is equivalent to a free parameter t , for which
d/dt is independent of u.

7.2 Group actions on Lagrangians and Noether’s
First Theorem

One of the most spectacularly useful and deep results of the Calculus of Vari-
ations is Noether’s Theorem. In fact, there are two theorems, one for finite
dimensional Lie group actions which leads to conservation laws, and one for
infinite dimensional pseudogroup actions, which leads to syzygies or differen-
tial relations, on the system of Euler–Lagrange equations. Noether proved the
results in their general form (Noether (1918); modern proofs with complete
formulae and a full discussion are given in Olver (1993), Section 4.4; also
Theorems 5.58 and 5.66.

The simplest version of the finite dimensional result is that if a Lagrangian
in one independent variable is invariant under a one parameter group action,
then the Euler–Lagrange system will have a first integral which can be written
down from knowledge of the infinitesimal group action alone.

Definition 7.2.1 If g · (x, uα) = (̃x, ũα) is a Lie group action, then for the
variational problem L[uα] = ∫ b

a
L(x, uα, uα

x , . . . ) dx, we define

g · L[uα] = L̃[ũα] =
∫ b

a

L(̃x, ũα, ũα
x , ũα

xx, . . . )
dx̃

dx
dx,

where ũα
K is the standard prolonged action on uα

K and

d

dx
= ∂

∂x
+
∑

α

uα
x

∂

∂uα
+ uα

xx

∂

∂uα
x

+ · · ·

is the total derivative operator.
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It can be seen that the transformation of Lagrangians involves not only that
of the function L but also that of dx; this is the reason why Lagrangians are
not functions but integrands. If a Lagrangian is invariant under a one parameter
group action with infinitesimals,

d

dε

∣∣∣
ε=0

x̃ = ξ,
d

dε

∣∣∣
ε=0

ũα = φα,
d

dε

∣∣∣
ε=0

ũα
K = φα

[K]

then

0 = d

dε

∣∣∣
ε=0

L(̃x, ũα, ũα
x , . . . )

dx̃

dx

= ∂L

∂x
ξ +

∑
α

∂L

∂uα
φ + ∂L

∂uα
x

φα
[x] + · · · + L

dξ

dx
.

A standard argument, strongly reminiscent of the calculation of E(L) but
keeping track of the boundary terms performed earlier, (7.1), and using the
recurrence relations derived in Exercise 1.6.17 for the infinitesimals, proves
the following results.

Theorem 7.2.2 (Noether, simplest case) If the order one Lagrangian
L(x, uα, uα

x ) dx is invariant under the induced one parameter group action
on (x, uα) with infinitesimals

d

dε

∣∣∣
ε=0

x̃ = ξ (x, u),
d

dε

∣∣∣
ε=0

ũα = φα(x, u), α = 1, . . . , q

where ε is the group parameter, then

0 =
∑

α

Eα(L)(φα − uα
x ξ ) + d

dx

(
Lξ +

∑
α

∂L

∂uα
x

(φα − uα
x ξ )

)
. (7.16)

Hence a first integral of the Euler–Lagrange system {Eα(L) = 0} is

Lξ +
∑

α

∂L

∂uα
x

(φα − uα
x ξ ) = k

where k is a constant.

Noether’s Theorem for higher order Lagrangians in the one dimensional case
is given in Exercise 7.2.8. Since these are identities for all curves (x, u(x)), if
u is a solution of E(L) = 0, the expression inside the total derivative must be
constant on that solution, and hence is a first integral of E(L) = 0. The power
of even these simplest cases of Noether’s Theorem can now be appreciated;
knowing only the infinitesimals, the first integral can be computed symbolically
with no effort at integration at all.
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Exercise 7.2.3 Consider the group action

x̃ = exp(ε)x + k, ũ = exp(2ε)u

where ε and k are the group parameters. Show the general form of a Lagrangian
invariant under this action is

L
(
σ,Dσ,D2σ, . . .

) 1√
u

dx,

where

σ = ux√
u

, D = √
u

d

dx
.

By applying Noether’s Theorem for each independent parameter, find two first
integrals of E(L) = 0 where

L dx = u2
x

u3/2
dx.

Hence show that solutions of E(L) = 0 are of the form u(x) = (αx + β)4

where α and β are constants, without using any integration. Show that the
group action induces an action on the solution curves, that is, induces an action
on the constants of integration.

Exercise 7.2.4 Show that

x̃ = x, ũ = exp(ε)u

sinh(ε)u + exp(−ε)

is a one parameter group action. Find the induced action on ux . Show that
ux/(u(u − 2)) is an invariant, and thus write down the general form of a
Lagrangian which is invariant under the action.

Exercise 7.2.5 Show that if a Lagrangian is of first order and satisfies ∂L/∂x =
0, so that L dx = L(u, ux)dx, then an integral of E(L) = 0 is

L − ux

∂L

∂ux

= k.

Apply the result to
√

1 + u2
x dx. What is the result for a second order Lagrangian

satisfying the same condition? Hint: the Lagrangian is invariant under the action
x̃ = x + ε, ũ = u.

Exercise 7.2.6 The brachistochrone is a curve which is extremal for the
variational problem

L[u] =
∫ (

1 + u2
x

u

)1/2

dx.
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Show that the curve satisfies

u(1 + u2
x) = k

where k is a constant. Using the substitution ux = tan ψ(x), show that

x = −k( 1
2 sin(2ψ) + ψ) + c

u = 1
2k(1 + cos(2ψ)),

where c is a constant, and hence sketch the brachistochrone as a curve in the
(x, u) plane parametrised by ψ .

Exercise 7.2.7 Consider the two body (Kepler’s) problem in Exercise 7.1.6.
Show that the Lagrangian is invariant under four different one parameter
actions, namely, translation in t , and rotations about the x-axis, the y-axis
and the z-axis. Applying Noether’s Theorem to each of the one parameter
actions in turn, show that the Euler–Lagrange system has four first integrals,

E = 1
2 (x2

t + y2
t + z2

t ) + k

(x2 + y2 + z2)1/2

νx = zyt − yzt

νy = xzt − zxt

νz = yxt − xyt

where E and the νi are constants. The first comes from translation in time and
is conservation of energy. The next three come from the rotation actions and
comprise conservation of angular momentum. Show that an extremal curve
t �→ (x(t), y(t), z(t)) lies on a plane through the origin normal to (νx, νy, νz).
Show that the group action sends solutions of the Euler–Lagrange system to
solutions, and induces an action on the constant E and on the vector (νx, νy, νz)
(in fact E is invariant). By rotating the coordinates, we can assume the solution
lies on the plane z ≡ 0, that is, (νx, νy, νz) = (0, 0, ν). Write the reduced system
of equations, that is with z ≡ 0, in terms of ρ = x2 + y2 and θ = arctan(y/x)
and the constants k, E and ν. Hint: calculate ρtt and use conservation of
energy to simplify. Note: the fact we obtain an autonomous ODE for the
rotation invariant ρ means that the ‘reduced’ Euler–Lagrange system still retains
two symmetries; one rotational symmetry as well as translation in time. The
other two rotational symmetries have been ‘normalised’ by selecting the plane
containing the solution.

Exercise 7.2.8 (Noether’s Theorem, higher order Lagrangians) Suppose
that the one dimensional but arbitrary order Lagrangian

L(x, u, ux, uxx, . . . ) dx
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is invariant under a one parameter group action induced by ε · (x, u) = (̃x, ũ)
with infinitesimals

d

dε

∣∣∣
ε=0

x̃ = ξ (x, u),
d

dε

∣∣∣
ε=0

ũ = φ(x, u).

Show that

0 = QE(L) + d

dx

(
Lξ +

∑
m=1

m−1∑
k=0

(−1)k
(

dk

dxk

∂L

∂um

)(
dm−1−kQ

dxm−1−k

))
where Q = φ − uxξ and

um = dm

dxm
u.

Hence deduce the first integral of E(L) = 0 given by the symmetry. By con-
sidering the group action to be translation in x, with infinitesimals φ = 0 and
ξ = 1, show that uxE

u(L) is a total derivative when ∂L/∂x = 0, specifically,

uxE(L) = d

dx

(
L −

∑
m=1

m−1∑
k=0

(−1)k
(

dk

dxk

∂L

∂um

)
um−k

)
. (7.17)

Exercise 7.2.9 Use Exercise 7.2.8 to extend the result of Theorem 7.2.2 to nth
order Lagrangians with more than one dependent variable.

7.2.1 Moving frames and Noether’s Theorem, the appetizer

In this section, we explore Noether’s Theorem for the most famous Lagrangian
involving Euclidean curvature and arc length. We find, amazingly, that the
formulae for Noether’s first integrals calculate a representation of a frame.

Using the right hand form of the Lagrangian in equation (7.11), the three
first integrals of equation (7.12), obtained by evaluating the integral obtained
in Exercise 7.2.8 for the one parameter group actions corresponding to each
independent group parameter in turn, can be written in the form

 c1

c2

c3

 =



1√
1 + u2

x

− ux√
1 + u2

x

0

ux√
1 + u2

x

1√
1 + u2

x

0

xux − u√
1 + u2

x

uux + x√
1 + u2

x

1


 −κ2

−2κs

2κ

 (7.18)

where the ci are the constants of integration. The first component comes from
translation in x, the second from translation in u and the third from rotation in
the (x, u) plane about the origin.
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Let us denote by B = B(x, u(x)) the 3 × 3 matrix appearing in equation
(7.18). Remarkably, B is equivariant with respect to the Euclidean action.
Further, using the invariant differential operator, d/ds, the matrix B−1Bs is
invariant, indeed, we have

B−1Bs =
 0 −κ 0

κ 0 0
0 1 0

 . (7.19)

Differentiating equation (7.18) with respect to s, and using (7.19) to simplify,
yields another proof of Theorem 7.1.11, that is, extremal curves for (7.11)
satisfy equation (7.12).

Exercise 7.2.10 Show that the 3 × 3 matrix, denoted as B(x, u), appearing in
equation (7.18) is equivariant with respect to the standard action of SO(2) � R2

on curves on the plane. Indeed, show that

B(x cos θ − u sin θ + a, x sin θ + u cos θ + b)

=
 cos θ − sin θ 0

sin θ cos θ 0
a sin θ − b cos θ b sin θ + a cos θ 1

B(x, u)

= R(θ, a, b)B(x, u),

where the last equation defines R(θ, a, b). Show that (θ, a, b) �→ R(θ, a, b) is
a matrix representation of SO(2) � R2. Compare it to the Adjoint representa-
tion obtained in Exercise 3.3.9. Show that if ρ is the frame for the standard
action of SO(2) � R2 on curves in the plane, determined by the normalisation
equations x̃ = ũ = ũx = 0, then B = R(ρ)−1. Since in this case the Ad rep-
resentation is faithful, the group action can be used to simplify the integration
problem.

There are several important consequences of the equivariance of the matrix
B. The first is that an explicit induced group action on the first integrals is
obtained. This result was known in infinitesimal form, see for example, Olver
(1993), page 341. The second important remark is that B is, by definition, a
frame for the Euclidean action on curves in the plane, since it is an equivariant
map from the space on which the group acts to (a matrix representation of)
the group. Thus the formula giving the first integrals via Noether’s Theorem
has calculated a frame without any input of moving frame theory. Indeed,
the invariants in equation (7.18) are historical while the formulae for the first
integrals are in the original coordinates; they are blind to any knowledge of the
invariants.



222 Variational problems with symmetry

If we regard κ as known once we have solved the invariantised Euler–
Lagrange equation, the three components of equation (7.18) together with
x2

s + u2
s = 1 can be viewed as four equations for four unknowns, x, u, xs and

us . In this particular case, it is possible to solve for u in terms of x, the ci and
κ with a single integration, see Exercise 7.2.11.

Exercise 7.2.11 Consider the three components of equation (7.18) as three
equations for x, u and ux in terms of the ci and κ . Show that

c2
1 + c2

2 = κ4 + 4κ2
s .

Relate this equation to a first integral of the Euler–Lagrange equation, κss +
1
2κ3 = 0, and deduce there is an equation for the ci in terms of initial data
chosen for the Euler–Lagrange equation. Show further that u can be obtained
with a single integration by finding an algebraic consequence of the equations

that does not contain xs or us . Hint: set xs = 1/

√
1 + u2

x and us = ux/

√
1 + u2

x

into the components of equation (7.18) together with x2
s + u2

s = 1 and eliminate
us , xs .

Equation (7.18) and the results of Exercise 7.2.10 are not flukes, but rather
an example of a general result, see Theorem 7.4.1.

7.3 Calculating invariantised Euler–Lagrange
equations directly

In the following, we find the Euler–Lagrange equation of an invariant
Lagrangian such as (7.11) directly in terms of the invariants. This problem
was considered by Kogan and Olver (2003) using a variational tricomplex.
Here we show how the result can be achieved using the invariant calculus
developed in Chapters 4 and 5. We use computations that are the direct ana-
logues of those in the standard case and which explicitly include constraints
such as the parameter being arc length. While there will be a computational
advantage in high order cases to use the invariant calculus, the main advantage
is in understanding the form the Euler–Lagrange equation takes; the syzygies
between the invariants plays a significant role, as we shall see.

We saw earlier that givenL[u] = ∫ L dx, the two steps that calculate E(L) =
0 are

(i) calculate

d

dε

∣∣∣
ε=0

L[u + εv]

(ii) integrate by parts.
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In the simplest case of unconstrained invariant independent variables, there are
three steps to calculate E(L) = 0 directly in terms of the invariants:

(i) calculate an invariantised analogue of

d

dε

∣∣∣
ε=0

L[u + εv]

(ii) apply a syzygy
(iii) integrate by parts.

If the independent variables are constrained, for example the curve parame-
ter is Euclidean arc length, or are not invariant, there are an additional two
preprocessing steps,

(i) reparametrise so that the independent variables are both invariant and
unconstrained, this means that the former independent variables are now
dependent variables,

(ii) include any constraints into the Lagrangian with a Lagrange multiplier. It
is also possible to include companion equations, which effectively fix the
parametrisation, as constraints; chosen with care, these can dramatically
simplify the calculations.

The companion equations need to be compatible in the sense that the system
comprising the resulting Euler–Lagrange system and the companion equa-
tions have the same solution set as the original Euler–Lagrange system. Just
as when we used this technique in Chapter 6, companion equations can
be used symbolically and need never actually be solved, nor do they need
to be realised in the original variables; only their invariantised forms are
needed.

Remark 7.3.1 Although the computations that follow can be adapted to non-
commuting invariant operators, reparametrisation ensures the resulting Euler–
Lagrange equations are differential equations employing standard derivative
operators.

In what follows, we will need to use the adjoint of the differential operators
defining the syzygies.

Definition 7.3.2 If A is the differential operator

A(f ) =
∑
K

AK

d|K|

dxK
,
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where AK are functions of the independent variables and K is the (multi)index
of differentiation, we define the adjoint of A, denoted by A∗, to be

A∗(f ) =
∑
K

(−1)|K| d|K|

dxK
(AK f ) .

The adjoint operator satisfies∫
fA(g) =

∫
A∗(f )g + B.T.s

where ‘B.T.s’ stands for boundary terms.

Exercise 7.3.3 Let P [u] = P (x, u, ux, . . . ) and define DP to be the operator
such that

DP (Q) = d

dε

∣∣∣∣
ε=0

P [u + εQ].

Show that E(P ) = D∗
P (1).

7.3.1 The case of invariant, unconstrained independent variables

To begin with, assume we have a single invariant, unconstrained independent
variable x and a single dependent variable, u.

To obtain the invariantised analogue of

d

dε

∣∣∣
ε=0

L[u + εv],

we introduce τ , a dummy invariant independent variable, and take a clue from
the observation that

d

dε

∣∣∣∣
ε=0

L[u + εv] = d

dτ

∣∣∣∣
uτ =v

L[u].

Since both τ̃ = τ , and x̃ = x, by construction and hypothesis, we have

Dτ = d

dτ
, Dx = d

dx
,

[
d

dτ
,

d

dx

]
= 0. (7.20)

We take the moving frame with respect to the x derivatives of the dependent
variable only, and assume the frame is chosen so that there are only two
generating invariants, one ‘in the τ direction’, I2 = ι(uτ ) and one in the x

direction (this requirement will be relaxed later),

σ = ι(uK )

where K is an index of differentiation in the independent variable x only. The
syzygy between σ and I2 can be written as

Dτ σ = HI2 (7.21)
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where H is an operator with coefficients that are functions of σ and its deriva-
tives with respect to x.

The outline of the process of finding the Euler–Lagrange equations directly
in terms of the invariants is as follows. Since τ is an introduced dummy variable,
the invariant Lagrangian will be a function of σ and its derivatives with respect
to x. Hence we have

d

dτ

∫
L(x, σ,Dxσ,D2

xσ, . . . ) dx

=
∫ (

∂L

∂σ
+ ∂L

∂Dxσ
Dx + · · ·

)
Dτ σ dx

=
∫ (

∂L

∂σ
− Dx

∂L

∂Dxσ
+ D2

x

∂L

∂D2
xσ

+ · · ·
)
HI2 dx + B.T.s

=
∫

H∗
(

∂L

∂σ
− Dx

∂L

∂Dxσ
+ D2

x

∂L

∂D2
xσ

+ · · ·
)

I2 dx + more B.T.s

=
∫

H∗Eσ (L)I2 dx + the B.T.s

where ‘B.T.s’ stands for boundary terms and Eσ (L) is the Euler–Lagrange
operator applied to L treated as a function of σ and its x derivatives. To do the
calculation, we have used equation (7.20) in the first line, performed a first set
of integration by parts and then used equation (7.21) in the second, and finally
a second integration by parts in the third line, so that H∗ is the standard adjoint
of the operator H. We now note that I2 has the factor uτ (this follows from the
Replacement Theorem) which is the independent variation in the dependent
variable. It follows from the Fundamental Lemma of the Calculus of Variations
that the coefficient of Iu

2 must be zero,

H∗
(

∂L

∂σ
− Dx

∂L

∂Dxσ
+ D2

x

∂L

∂D2
xσ

+ · · ·
)

= 0 (7.22)

and thus this is the sought for invariantised Euler–Lagrange equation. We have
thus proved the following theorem.

Theorem 7.3.4 If L[u] = ∫ L(σ, σx, . . . ) dx is a variational problem for pla-
nar curves (x, u(x)) where σ is the generating invariant of a group action on
curves such that x̃ = x, then the Euler–Lagrange equation is

H∗Eσ (L) = 0 (7.23)

where H is the operator in the syzygy (7.21).

Example 7.3.5 For our first set of examples, we take our old friend the SL(2)
action,

x̃ = x, ũ = au + b

cu + d
, ad − bc = 1
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with the normalisation equations

ũ = 0, ũx = 1, ũxx = 0.

The generating invariant is Iu
111 which we know is the Schwarzian derivative,

{u; x} and thus we set

σ = uxxx

ux

− 3

2

u2
xx

u2
x

.

As in the derivation above, we introduce the dummy independent variable τ ,
to obtain a new invariant I2 = ι(uτ ) = uτ/ux , with the syzygy,

Dτ σ = HI2 = (D3
x + 2σDx + σx

)
I2. (7.24)

The adjoint of H is

H∗ = −D3
x − 2σDx − σx = −H.

Following the calculation above for L(σ, σx, . . . ) dx the Euler–Lagrange equa-
tion is H∗Eσ (L) = 0. Thus, for example, for L dx = σ 2 dx, we obtain the
Euler–Lagrange equation

0 = H∗(σ ) = −σxxx − 2σσx − σxσ = −σxxx − 3σσx

which can also be verified directly. Note that since σ is a third order invariant,
we expect the Euler–Lagrange equation to be of order 6, that is in terms of
σxxx , and this we obtain. Further, we see that the terms in the Euler–Lagrange
equation that are additional to Eσ (L) come from the syzygy (7.24), as promised
earlier.

Exercise 7.3.6 Find the Euler–Lagrange equations for the Lagrangians σ dx,
σ 2

x dx and xσ 2 dx. Comment on the order of the Euler–Lagrange equation for
σ dx. Hint: see Exercise 7.1.3.

It is not hard to see how to generalise the calculation to more than one
dependent variable. The new twist is that the syzygy (7.24) becomes a matrix
equation. Since τ is a dummy variable used to effect the variation, the frame is
obtained with respect to the x derivatives of the dependent variables only. Thus,
if the generating x-derivative invariant of uα is denoted σα and ι(uα

τ ) = Iα
2 , for

α = 1, . . . , q, then the syzygy between the σα and the Iα
2 can be written as

Dτ

 σ1
...

σq

 =

H11 H12 · · · H1q

...
...

. . .
...

Hq1 Hq2 · · · Hqq


 I 1

2
...

I
q

2

 . (7.25)
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Example 7.3.7 Suppose we take the product SL(2) action on sets of pairs of
curves in the plane, (x, r(x), s(x)),

x̃ = x, r̃ = ar + b

cr + d
, s̃ = as + b

cs + d
, ad − bc = 1

with the normalisation equations, r̃ = 0, r̃x = 1, s̃ = 1, so that the generators
with respect to the x derivatives are

χ = ι(rxx), η = ι(sx).

Set I r
2 = ι(rτ ) and I s

2 = ι(sτ ). Then the syzygies can be put in the form

Dτ

(
χ

η

)
=
(
D2

x + 2η + χx + (2 + χ )Dx −2
ηDx + 2η + ηχ Dx − χ − 2

)(
I r

2

I s
2

)
where Dx = d/dx. Following the line of calculation above, we obtain for the
Lagrangian, L dx = L(x, χ, η, χx, ηx, . . . ) dx,

d

dτ

∫
L dx =

∫
Eχ (L)Dτχ + Eη(L)Dτ η dx + B.T.s

=
∫ [

(D2
x + 2η + χx + (2 + χ )Dx)∗Eχ (L)

+ (ηDx + 2η + ηχ )∗Eη(L)
]
I r

2

+ [−2Eχ (L) + (Dx − χ − 2)∗Eη(L)
]
I s

2 dx + B.T.s

so that the Euler–Lagrange system is, in matrix form,

0 =
(
D2

x + 2η − (2 + χ )Dx −ηDx − ηx + 2η + ηχ

−2 −Dx − χ − 2

)(
Eχ (L)
Eη(L)

)
.

To generalise the calculation of the invariantised Euler–Lagrange system
to the general case of p invariant, unconstrained independent variables and q

dependent variables, one uses the syzygies between all the generating invariants
σi = ι(uαi

Ki
) for i = 1, . . . , N and the ι(uα

τ ), α = 1, . . . , q, as above, but now
the new twist is that there are additional generating syzygies between the
σi . These need to be included as constraints, each with its own Lagrange
multiplier function, in the Lagrangian: this last generalisation includes the case
of more than one generating invariant per dependent variable. We leave this
straightforward generalisation to the reader to explore.

7.3.2 The case of non-invariant independent variables

We next consider the case of non-invariant independent variables. Suppose we
have x = (x1, . . . , xp), and x̃i �= xi for at least one i. Introduce t = (t1, . . . , tp)
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and reparametrise the surface described by (x1, . . . , xp, u1(x), . . . , uq(x)) to
be given instead by

(t1, . . . , tp, x1(t), . . . , xp(t), u1(t), . . . , uq(t)).

Actually, only as many new parameters are needed as there are non-invariant xi .
We assume that t̃i = ti for all i in order to obtain invariant independent variables.
The main benefit is that the resulting differential equations will have derivative
operators in the ∂/∂ti and thus can be treated by standard methods. Thus the
original independent variables become dependent variables. The twist is that
we may introduce ‘companion equations’ for the xi ; these may be thought
of as fixing the parametrisation in some sense. They are chosen to simplify
the calculations but care must be taken to ensure no loss of solutions results.
The companion equations are then taken to be constraints on the reparametrised
Lagrangian. Just as when we integrated invariant ordinary differential equations
using this exact same mechanism in Chapter 6, we will not need to solve the
companion equations in order to solve the resulting Euler–Lagrange system,
nor will we need to know even what they look like in the original variables;
it is enough to show that the resulting solution set has the same dimension
solution space as the original Euler–Lagrange system. If companion equations
are not used, the Lagrangian will be invariant under a pseudogroup of coordinate
changes and then by Noether’s Second Theorem, the Euler–Lagrange equations
will not be independent but will satisfy a differential relation.

Example 7.3.8 We consider another old friend, the SL(2) action under which
the Chazy equation, equation (6.16), is invariant. Recall this action on (x, u(x))
is given by

x̃ = ax + b

cx + d
, ũ = 6c(cx + d) + (cx + d)2u, ad − bc = 1. (7.26)

Set x = x(t), u = u(t), and introduce the dummy variable τ so that

Dτ = d

dτ
, Dt = d

dx
,

[
d

dτ
,

d

dt

]
= 0. (7.27)

Taking the normalisation equations to be

x̃ = 0, ũ = 0, ũt = 1

we obtain generating t-derivative invariants,

κ = Iu
11 = ι(utt ), η = I x

1 = ι(xt )

τ -derivative invariants,

I x
2 = ι(xτ ), I u

2 = ι(uτ )
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and syzygies

Dτ

(
κ

η

)
=
(
D2

t − 1
3η + κDt + κt

1
3

ηκ + ηDt Dt − κ

)(
Iu

2

I x
2

)
.

Suppose we have a Lagrangian that is invariant under the action in equation
(7.26). Taking η = 1 for the companion equation (a choice that needs to be
vindicated in the example at hand; particular Lagrangians may need a different
choice), we reparametrise and apply Theorem 4.4.9, the Replacement Theorem,
and obtain a variational problem of the form

L[κ, η] =
∫

[L(κ, κt , . . . ) − λ(t)(η − 1)] dt

where we have already used the equation η = 1 in the arguments of L, and
where λ(t) is the Lagrange multiplier function. We now follow the calculation
above to obtain

∂

∂τ
L[κ, η] = ∂

∂τ

∫
[L(κ, κt , . . . ) − λ(t)(η − 1)] dt

=
∫ [

Eκ (L)Dτ κ − λDτ η
]

dt + B.T.s

=
∫ [

Eκ (L)
(
D2

2 − 1
3 + κDt − κt

)
Iu

2 + 1
3I x

2

)
− λ(t)

[
(κ + Dt ) Iu

2 + (Dt − κ) I x
2

]
dt + B.T.s

=
∫ [(

D2
t − 1

3 − κDt

)
Eκ (L) + (λt − κλ)

]
Iu

2

+ [ 1
3Eκ (L) + κλ + λt

]
I x

2 dt + more B.T.s

where we have already set η = 1 in the syzygy operator; it makes no difference
to the final result to do so at this stage. Since Iu

2 and I x
2 are the independent

variations, the Euler–Lagrange equations are the coefficients of Iu
2 and I x

2 in the
final integrand. The two equations can be solved for λ and λt and the equation
for λt can be written as

D2
t E

κ (L) − Dt (κEκ (L)) + κtE
κ (L) + 2λt = 0.

We now note that ∂L/∂t = 0 since when a Lagrangian is reparametrised the
new independent variable never appears explicitly. Thus by the final result of
Exercise 7.2.8, equation (7.17), the term κtE

κ (L) is a total derivative. Thus
we can integrate this last equation in order to eliminate the derivative on λ;
the constant of integration is absorbed into λ as an artefact, see Remark 7.1.9.
In this way, two equations for λ are obtained, so λ can be eliminated, and we
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obtain the invariantised Euler–Lagrange equation to be

(
D2

t − κ2 − 2
3

)
Eκ (L) − κL + κ

∑
m=1

m−1∑
k=0

(−1)k
(

dk

dtk

∂L

∂κm

)
κm−k = 0

where

κm = dm

dtm
κ.

Once κ(t) is known, the methods of Section 6.4.2 or Section 7.4 can be used to
obtain the extremals in terms of (x(t), u(t)).

7.3.3 The case of constrained independent variables
such as arc length

It can happen that the independent variable is invariant but nevertheless is
not a free parameter. This is the case for Euclidean arc length. These kinds
of problems can also treated by reparametrisation, and the inclusion of the
appropriate constraint in the Lagrangian.

The prototypical examples are Lagrangians for curves (x, u(x)) in the plane
which are invariant under the Euclidean group SE(2). We have that s̃ = s

but that s is constrained, in the sense that s satisfies x2
s + u2

s = 1. Variational
problems with this Euclidean symmetry take the form,

L[x, u] =
∫

L(κ, κs, . . . ) ds.

Remark 7.3.9 We do not consider Lagrangians depending explicitly on the
parameter s. Any Lagrangian given initially in the (x, u, ux, . . . ) coordinates
and rewritten in terms of κ and ds will not depend explicitly on s. We note arc
length is an integral, not a differential, invariant.

If we take the normalisation equations

x̃ = 0, ũ = 0, ũs = 0

the generating invariants are

σ = Iu
11 = ι(uss), η = I x

1 = ι(xs).

The replacement rule gives κ = (Iu
11I

x
1 − I x

11I
u
1 )/(I x

1 )3, and the arc length con-
straint becomes I x

1 = 1. Since here, DsI
x
1 = I x

11, the curvature

κ = Iu
11 = σ when I x

1 ≡ 1.
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Introducing the dummy independent variable τ we obtain two new generating
invariants,

Iu
2 = ι(uτ ), I x

2 = ι(xτ )

and syzygies

Dτ

(
κ

η

)
= H

(
I u

2

I x
2

)
(7.28)

where

H =

D2
s − ηs

η
Ds −

(
κ

η

)2

−2
κηs

η2
+ κs

η
+ 2

κ

η
Ds

−κ

η
Ds

 . (7.29)

We consider the constrained Lagrangian,

L =
∫

[L(κ, κs, . . . ) − λ(s)(η − 1)] ds.

Setting

κm = dm

dsm
κ,

the calculation of the invariant Euler–Lagrange system is as follows:

DτL =
∫ ∑

m

∂L

∂κm

dm

dsm
Dτ κ − λ(s)Dτ η

=
∫

Eκ (L)Dτ κ − λ(s)Dτ η + B.T.s

=
∫

Eκ (L)
[(
D2

s − κ2
)
Iu

2 + (κs + 2κDs)I
x
2

]
− λ(s)

[−κIu
2 + D2I

x
2

]+ B.T.s

=
∫ [

(D2
s − κ2)Eκ (L) + κλ

]
Iu

2

+ [κsE
κ (L) − 2(κEκ (L))s + λs

]
I x

2 + more B.T.s,

where we have already set η ≡ 1 in the operator H; it makes no difference
to the end result to do so at this stage. Thus the Euler–Lagrange system is, in
addition to η ≡ 1,

0 = (D2
s − κ2)Eκ (L) + κλ,

0 = κsE
κ (L) − 2

[
κEκ (L)

]
s
+ λs.

(7.30)
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Since L does not depend explicitly on s, by equation (7.17) in Exercise 7.2.8,
κsE

κ (L) is a total derivative (setting κ for u and s for x; the proof is unaffected
by the constraint on s). Hence we can integrate the second equation, absorb
the constant of integration into λ as in the non-invariantised case, and then
eliminate λ; see Exercise 7.1.7 and Remark 7.1.9. In this way we obtain the
differential equation for κ that is equivalent to the Euler–Lagrange equation
with respect to u. The result after collecting terms is

(
D2

s + κ2
)
Eκ (L) + κ

[
−L +

∑
m=1

m−1∑
k=0

(−1)k
(

dk

dsk

∂L

∂κm

)
κm−k

]
= 0. (7.31)

Once κ(s) is known, the methods of Chapter 6 can be used to obtain the extremal
curves in (x, u) space.

Exercise 7.3.10 Verify the following using both the formula (7.31) and directly;
the use of computer algebra is strongly recommended for the latter.

Lagrangian Euler–Lagrange equation
κ2 ds 2κss + κ3 = 0
κ2

s ds −2κssss − 2κ2κss + κκ2
s = 0

κ2
ss ds 2κ6 + 2κ4κ

2 − 2κκsκ3 + κκ2
ss = 0.

where κm is the mth derivative of κ with respect to s.

Exercise 7.3.11 If L ds = κsκ
2 ds, show both Eκ (L) and Eu(L) are identically

zero. Explain.

7.3.4 The ‘mumbo jumbo’-free rigid body

I have always been struck by the high level of jargon and the strange, awkward
and mystifying definitions, constructions and calculations that surround the
mathematical treatment of a rigid body. Here we show how the three steps
used above, namely, calculate the variation, apply a syzygy, and integrate by
parts, make calculating the Euler–Lagrange equations for a rigid body both
straightforward and painless.

It is always important, when studying a physical problem, to divide the
physics from the mathematics. The assumptions about the model, and the
derivation of the Lagrangian for the model, are physics. The rest is mathematics.
Suppose the rigid body is composed of particles of mass mα located at xα(t).
The physics of any body made up of such particles, not subject to any forces,
is that the Lagrangian is given by

L dt =
∑

1
2mα 〈ẋα, ẋα〉, dt (7.32)
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where ẋ = dx/dt and 〈x, x〉 is the standard inner product. Implicit in this
Lagrangian is that the equations of motion will be invariant under translation
in time and space, because those actions leave the Lagrangian invariant. The
calculations that follow are greatly simplified if the origin of space time is set
to be such that ∑

mαxα(0) = 0. (7.33)

This can be achieved by the constant translation,

xα(t) �→ xα(t) − 1∑
mα

∑
mαxα(0).

Remark 7.3.12 If the body is viewed as continuous, the sum in equation (7.32)
can be replaced by an integral over the volume of the body, with mα replaced by
ρ(x)dx, where ρ(x) is the density at x, but as this makes no essential difference
to what follows we consider the simpler finite sum.

If we take the dependent variables in L dt to be the components of the xα ,
then the Euler–Lagrange equations give simply that ẍα = 0. But these are not
the equations for a rigid body! For a rigid body, and this defines ‘rigid body’,
we have

xα(t) = g(t)xα(0) + a(t) (7.34)

where g(t) is a path in SO(3) and a(t) a path in R3, and both g(t) and a(t) are
the same for all particles. The Euler–Lagrange equations for a rigid body are
those obtained by considering the parameters of g and a to be the dependent
variables in the Lagrangian.

We now note that the inner product 〈x, x〉 can be written, considering x to
be a column vector, as

〈x, x〉 = xT x = trace
(
xxT
)
.

The right hand form is the most convenient for the mathematics. Using it, the
Lagrangian is written as

L dt =
∑

1
2mαtrace

(
xαxT

α

)
dt. (7.35)

Setting equation (7.34) into (7.35), we obtain

L = trace

(
ġ(t)

[∑
α

mαxα(0)xα(0)T
]

ġ(t)T
)

+ 〈 ˙a(t), ˙a(t)
〉

where we have used equation (7.33) to eliminate two terms. Denote by

M =
∑

α

mαxα(0)xα(0)T
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the 3 × 3 matrix appearing in the Lagrangian; we have both MT = M and
dM/dt = 0. This is not quite the classical ‘inertia tensor’ but it is the matrix
that appears naturally so we stick with it.

The only time dependent variables now appearing in the Lagrangian are the
group parameters appearing in g and a, and these are the dependent variables
of the dynamical problem.

The Euler–Lagrange system for the the vector a(t) is trivially seen to be ä =
0, so a(t) = ta1 + a0 where ai are constant vectors. The more interesting task
is to obtain the Euler–Lagrange system for g(t). We first note that trace(A) =
trace(B−1AB) and hence setting A = g−1ġ and noting that for g ∈ SO(3) we
have gT = g−1 and hence AT = −A, we obtain

L[g] = −
∫

trace (AMA) dt. (7.36)

We now have a Lagrangian that is invariant for the action of G = SO(3) on
itself given by left multiplication, since for the constant element h ∈ G, we have
g−1ġ = (hg)−1d(hg)/dt . The components of A are the differential invariants
of the group action. We now seek the Euler–Lagrange system directly in terms
of these invariants.

Let ε be the dummy variable used to calculate the variation. Setting B =
g−1gε , we have that

d

dε
A = d

dt
B + [A,B]

where the last summand is the standard matrix Lie bracket. This gives us the
syzygy we need to employ the methods developed above. We then have,

d

dε
L = −

∫
trace

(
d

dε
AMA + AM d

dε
A
)

= −
∫

trace

((
d

dt
B + [A,B]

)
MA + AM

(
d

dt
B + [A,B]

))
= −

∫
trace

(
B
[
−M d

dt
A + MA2 − d

dt
AM − A2M

])
dt

+ B.T.s

where we have used trace(AB) = trace(BA) for any square matrices A and B

and

trace

(
dA

dt

)
= d trace(A)

dt
.

A simple calculation shows the following.

Lemma 7.3.13 If B and X are 3 × 3 matrices, and trace(BX) = 0 for all skew
symmetric matrices B, then X is symmetric, XT = X.
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Applying the Lemma and noting MT = M and AT = −A, we conclude
that

−M d

dt
A + MA2 − d

dt
AM − A2M = 0

is the desired Euler–Lagrange system for A. We can simplify the equation by
noting that since M is symmetric, we can write it in the form

M = UT 	U, 	 =
λ1 0 0

0 λ2 0
0 0 λ3

 , U ∈ SO(3)

where U is the matrix whose columns are the orthonormal eigenvectors of M.
Setting Ā = UTAU we have then

−	
d

dt
Ā + 	Ā2 − d

dt
Ā	 − Ā2	 = 0. (7.37)

Finally we note that since Ā is skew symmetric, we have

Ā =
 0 K3 −K2

−K3 0 K1

K2 −K1 0


and we can write the Euler–Lagrange equations in terms of the Ki and the
eigenvalues λi by considering the components of equation (7.37). To obtain the
classical free rigid body equations, however, we need to convert from M to the
classical inertia tensor J ; the relationship of J to M is

J = χ

1 0 0
0 1 0
0 0 1

− M, χ =
∑

α

mα 〈xα(0), xα(0)〉 .

Thus,J andM are both diagonalised by the same matrix U and the eigenvalues
of J , usually denoted as I1, I2 and I3, are related to the λi by

Ij = χ − λj , χ = λ1 + λ2 + λ3.

Thus (K1,K2,K3) is indeed what is known as ‘the angular velocity of the body’
and the equations we obtain are the classical ones,

dK1

dt
= I3 − I2

I1
K2K3

dK2

dt
= I1 − I3

I2
K1K3

dK3

dt
= I2 − I1

I3
K1K2.
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Once A has been obtained, the rotational motion of the body, given by g(t),
is obtained by integrating g−1ġ = A, that is,

ġ = Ag

for g. Integration methods that guarantee the numerical solution g is an element
of SO(3) are available, see Celledoni et al. (2008).

It is clear that aspects of the method above apply to Lagrangians that are
functions of g−1gt for any Lie group; we leave the investigation of these as an
open problem.

7.4 Moving frames and Noether’s Theorem, the main course

In Section 7.2.1, we saw that the first integrals of a particular Lagrangian
invariant under a Euclidean group, as obtained using Noether’s Theorem, could
be written using the inverse of a matrix representation of a frame, and a vector
of invariants. In this section, we give a general formula for the vector of
invariants and prove that the particular matrix representation is always the
Adjoint representation, discussed in Section 3.3.

The theorem is important because it reveals the structure of the first inte-
grals, in terms of how the surfaces that correspond to them are arranged into
equivalence classes under the group action.

Theorem 7.4.1 Suppose we have a frame ρ for the action G × M → M ,
where M = JN ((x, uα)) and x is invariant, such that the generating invari-
ants are κα , one for each dependent variable.† Let the invariant Lagrangian∫

L(κα, κα
x , . . . ) dx be given. Introduce the dummy variable t to effect the

variation, and suppose that

d

dt
L dx =

∑
Eα(L)Iα

2 dx + d

dx

[∑
α,J

I α
2J Cα

J

]
, (7.38)

for some expressions Cα
J in the invariants, is obtained after integration by parts;

here Iα
2 = ι(uα

t ), J is an index with respect to the x variable only, Iα
2J = ι(uα

tJ ).
Note that equation (7.38) defines the vector Cα = (Cα

J ). Let (a1, a2, . . . , ar ) be
coordinates of G about the identity e and let vi , i = 1, . . . , r be the corre-
sponding infinitesimal vector fields. Let Ad be the Adjoint representation of G

with respect to these vector fields. Denote the matrices of infinitesimals, one

† This requirement will be relaxed later.
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for each dependent variable, as

�α =



uα
J

...

aj · · · ∂

∂aj

∣∣∣
e
g · uα

J · · ·
...


and set �α(I ) = ρ · �α to be the componentwise invariantisation of �α . Then
the r first integrals obtained via Noether’s Theorem can be written in vector
form as

Ad(ρ)−1
∑

α

�αCα = c.

Proof The key idea is to conflate the dummy variable t with a group parameter
ai , say. The first implication is that since the Lagrangian is invariant, the right
hand side of equation (7.38) is identically zero; this follows from differentiating
both sides of g · L dx = L dx with respect to ai . Thus on solutions of the Euler–
Lagrange equations Eα(L) = 0, we have that

ci =
∑
α,J

I α
2J Cα

J (7.39)

where ci is a constant. The remainder of the proof consists in expressing the
Iα

2J in terms of the infinitesimals relevant to the group parameter ai .
We first consider the case of a single dependent variable, and show how to

generalise to more than one uα at the end of the proof.
First note that applying Ad(g) to

d

dt
=
∑
K

utK

∂

∂uK

at g = ρ yields

(I2 I12 · · · ) = (ut uxt · · · )

(
∂ (̃u, ũx, . . . )

∂(u, ux, . . . )

)T ∣∣∣
frame

. (7.40)

Second, since t is identified with a group parameter ai , the derivative term utK

is identified with the infinitesimal φi,K (taking t = 0), so that (ut uxt · · · ) is the
ith row in the matrix of (uninvariantised) infinitesimals for u, which is �(z),
where z = (u, ux, . . . ). Thus, equation (7.40) can be written as

(I2 I12 · · · ) = �i(z)

(
∂z̃

∂z

)T ∣∣∣
frame

, (7.41)
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where �i is the ith row of �. Next we use equation (3.46), which is the matrix
form of what is essentially the definition of the Adjoint representation Ad, and
which we repeat here for convenience,

Ad(g)�(z) = �(̃z)

(
∂z̃

∂z

)−T

. (7.42)

Rearranging equation (7.42) and setting g to be the frame ρ yields

�(z)

(
∂z̃

∂z

)T ∣∣∣∣
ρ

= Ad(ρ)−1�(I ).

Thus for t = ai we have

(I2 I12 · · · ) = (Ad(ρ)−1�(I )
)
i
.

Inserting this last into equation (7.39) and writing c = (c1 c2 · · · cr )T yields

c = Ad(ρ)−1�(I )C.

If there is more than one dependent variable, so that u = (u1, u2, . . . , uq), the
proof above goes through setting � to be the concatenated matrix

� = (�1 �2 · · · �q
)
,

C to be the concatenated vector,

C =


C1

C2

...
Cq

 ,

and z to be (z1, z2, . . . , zq) where zα = (uα, uα
x , . . . ). �

Example 7.4.2 For the action of SL(2) on (x, u(x)) given by

x̃ = x, ũ = au + b

cu + d
, ad − bc = 1

with normalisation equations ũ = ũxx = 0, ũx = 1, the generating invariant
is ι(uxxx) = {u; x}, the Schwarzian derivative. For Lagrangians of the form∫

L(σ, σx, . . . ) dx where σ = {u; x}, the result is

c =
 a2 −ac −c2

−2ab ad + bc 2cd

−b2 bd d2


︸ ︷︷ ︸

Ad(g)−1

∣∣∣∣
frame


∂2

∂x2
Eσ (L) + σEσ (L)

−2
∂

∂x
Eσ (L)

−2Eσ (L)

 (7.43)
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where recall the frame is

a = 1√
ux

, b = − u√
ux

, c = uxx

2(ux)3/2
, ad − bc = 1.

The first row yields the first integral with respect to the translation parameter
b, the second yields that with respect to the scaling parameter a and the third is
with respect to the projective parameter c. Thus, the precise form of the Adjoint
representation in (7.43) is with respect to the basis vb, va , vc in that order and
hence this is the order that needs to be taken in calculating the rows of the
invariantised infinitesimal matrix. The details of the calculation for the vector
of invariants, as given by Theorem 7.4.1 for the Lagrangian L(σ, σx, σxx) dx,
are as follows. The invariantised infinitesimal matrix needed is

�(I ) =


u ux uxx uxxx uxxxx

b 1 0 0 0 0
a 0 2 0 2σ 2σx

c 0 0 −2 0 −8σ

.

With

I2J = ι(utx · · · x︸ ︷︷ ︸
|J | terms

),

the boundary terms coming from the integration by parts process after perform-
ing the variational derivative on the Lagrangian is,

B.T.s =
∑

J

I2JCJ

where

C =



I2
d2

dx2
Eσ (L) + σEσ (L)

I12 − d

dx
Eσ (L) −

(
∂L

∂σx

− d

dx

∂L

∂σxx

)
σ − ∂L

∂σxx

σx

I112 Eσ (L) − 4
∂L

∂σxx

σ

I1112
∂L

∂σx

− d

dx

∂L

∂σxx

I11112
∂L

∂σxx


,

and all other CJ being zero. It can be seen that �(I )C yields the vector of
invariants above.
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The next exercise is the analogue of Exercise 7.2.11 for the above Example.

Exercise 7.4.3 Consider equation (7.43) as three equations for u, ux and uxx by
considering σ to be known once the Euler–Lagrange equation is solved. Show
that there is an equation relating the ci to a first integral of the Euler–Lagrange
equation. Indeed, if the vector of invariants is written as (I1, I2, I3)T , show that

4I1I3 + I 2
2 = 4c1c3 + c2

2.

Show that to obtain u, it is necessary to integrate only a first order Ricatti
equation where the only non-constant coefficient can be incorporated into the
independent variable, specifically,

I3ux = −c1u
2 + c2u + c3.

Exercise 7.4.4 Consider the one parameter group action,

α ·
(

x

y

)
=
(

cosh α sinh α

sinh α cosh α

)(
x

y

)
in the plane. Show that the infinitesimal vector field is v = y∂x + x∂y and that
the adjoint action Ad(α)(v) = v for all α. Conclude that the first integral of
the Euler–Lagrange equations of any Lagrangian for curves (x(t), y(t)) in the
plane, ∫

L(t, x, y, ẋ, ẏ, . . . ) dt

invariant under this action is itself invariant. Verify the result on an example.

Further results appear in Gonçalves and Mansfield (2009). It is not hard
to see how to generalise Theorem 7.4.1. If there is more than one generating
invariant per dependent variable, then any syzygies between them need to be
incorporated into the Lagrangian as constraints, each with its own Lagrange
multiplier. Similarly, if there is an arc length constraint, or a companion equation
is used following reparametrisation, then these need to be incorporated in the
same way. The Lagrange multipliers will appear in C and need to be eliminated
using (first integrals of) the Euler–Lagrange equations.

Finally, we note that we do not give a formula for the boundary terms
appearing in equation (7.38) in terms of the generating invariants, leaving this
part to be achieved by symbolic computation. Converting the methods given
here to code that can take as input Lagrangians that are polynomial (say) in
their arguments is straightforward, once the symbolic differentiation formulae
have been coded.
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