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Abstract

Over determined systems of partial differential equations may be studied using differential-elimination
algorithms as a great deal of information about the solution set of the system may be obtained from the
output. Unfortunately, many systems are effectively intractable by these methods due to the expression
swell incurred in the intermediate stages of the calculations. This can happen when, for example, the
input system depends on many variables and is invariant under a large rotation group, so that there is
no natural choice of term ordering in the elimination and reduction processes.

This article describes how systems written in terms of the differential invariants of a Lie group action
may be processed in a manner analogous to differential-elimination algorithms. The algorithm described
terminates and yields, in a sense which we make precise, a complete set of representative invariant
integrability conditions which may be calculated in a “critical pair” completion procedure. Further,
we discuss some of the profound differences between algebras of differential invariants and standard
differential algebras. We use the new, regularised moving frame method of Fels and Olver [11, 12] to
write a differential system in terms of the invariants of a symmetry group. The methods described have
been implemented as a package in MAPLE.

The main example discussed is the analysis of the 2 + 1 d’Alembert-Hamilton system,

Usw +uyy —uzz = f(u), 1)

ui+u§—u§ = 1.

We demonstrate the classification of solutions due to Collins [7] for f # 0 using the new methods.

* Email address: E.L.MansfieldQukc.ac.uk



1 Introduction

Consider the n + 1 d’Alembert-Hamilton system [14],

Ugywy, + Uggzy + oo+ Ugpa, — Uy = f(u), @)

wr o+l 4. ul —up = 1,
which is invariant under the usual action of the Poincaré group in (x, t)-space. One of many
questions one can ask about (2) is, “for which choices of the arbitrary function f does a
solution exist?” In [14] it is shown that f necessarily takes the form f(u) = ¢'(u)/g(u) where

g is a polynomial of degree at most n. Exact solutions are known if

m
flu)=—, m=0,1,2,...,n,
u
when for example u = \/2? + ...+ 22, (m # 0), or u = z; if m = 0, and it is conjectured

that f must in fact be of this more restricted form for solutions, smooth in some domain, to
exist [8].

Algorithms which determine the consistency of over determined systems, and yield either
a characteristic decomposition, or an involutive basis or differential Grobner basis form
are known and implemented [3, 17, 19, 23, 35, 39] and have proved useful in applications
(cf. [22, 24] and references therein). Such algorithms will, in principle, find the necessary
conditions that f must satisfy, along with a great deal of other information about the solution
space. However, when they are applied to the system (2) for n > 3 the expression swell
is enormous. The conditions on f are not found within the available memory, and the
intermediate expressions contain so many summands that little insight is to be had. One
reason is thought to be that there is no natural choice of term ordering which can be used
in the elimination and reduction calculations as the independent variables appear on an
equal footing, a consequence of the invariance of the system under the Poincaré group. If
this is the case, then in order to calculate integrability conditions systematically with a
reasonable chance of success, it may be helpful to first “divide out” the symmetry. More
generally, the solution space of invariant systems has a structure by virtue of the fact that the
group acts on it. This structure is often exploited in applications such as the integration of
invariant ODEs, or the design of numerical approximations which preserve some important
qualitative feature. Analysing a system in terms of this structure seems likely to improve our
understanding of the solution spaces of physically important or mathematically interesting

examples.



The central idea explored in this article is to write the system in terms of the invariants
of the group action and to perform a Grobner basis type calculation on the invariantised
system. The following simple example from the classical literature illustrates the idea in

essence. The Halphen-Darboux system of ordinary differential equations ([1], p. 336)

dw1
— = wows — wi(ws + w3)
dt
d’lUQ
wr = wyws — we(w; + ws3) (3)
dw3 ( 4 )
— wiwe — ws(wy +w
T 1W2 3w 2
is invariant under permutations of the w;. One generating set of invariants of the permutation
group is
S$1 = Wi+ wg + ws
S2 = WiW2 + Waw3 + Wi1W3 (4)
S3 = Wi1Waws

In terms of the dependent variables sq, s9, s3 the system is

d81 N

a -7

d$2

22— _6 )
dt S3 ( )
ds

d—153 = —4s183 + 52

Eliminating s3 from the third equation using the second and then eliminating s, using the

first equation, we obtain the system in the desired triangular form

d81
— =0
S9 + 2dt
d81
683_@ = 0 (6)
d381 d81 2 d281
— - 4s, —— =
AT 6<dt) g 0

The analytic solutions of systems (5) and (6) are the same. The ordinary differential equation
for s; is the Chazy equation, whose solutions are well understood [6], and thus all the
invariants can be written down in terms of solutions of the Chazy equation. Finally, the w;

are obtained from the s; as the roots of the cubic

w? — s;w? + sqw —s3 = 0.

In this article we are concerned with differential systems which are invariant under a Lie

group. Amazingly, complete sets of differential invariants, the relations between them, and



maximal sets of invariant differential operators, are unknown for even the most physically
significant groups such as as the Euclidean, Poincaré and symplectic groups acting on R™ in
the standard way, for n > 3 ([30] p. 173, although some are known [13]). Despite this, a
theory for analyzing over determined systems of such invariants is not premature. Based on a
profound understanding of the Cartan Equivalence Method, Fels and Olver have formulated

a new, regularised version of the so-called moving frame algorithm which yields

the construction and classification of differential invariants and invariant differen-
tial operators on jet bundles ...complete classifications of generating systems of
differential invariants, explicit commutation formulae for the associated invariant
differential operators, and a general classification theorem for syzygies of the higher

order differentiated differential invariants. [12]

The chief advantages of the Fels and Olver method are, that the method applies to systems
in both the usual and the exterior calculus, the moving frame can be obtained in examples
other than those already calculated by Cartan himself, and many of the formulae, used here
in the analysis of over determined systems of invariants, involve only the group infinitesimals,
that is, the associated Lie algebra. This last point means that a great deal of the calculation
can be performed automatically using commercial computer algebra systems such as MAPLE
[28]. A brief outline of the Fels and Olver moving frame, adequate for the purposes of this
article, is given in §3.

Section §3 concludes with a discussion of the profound differences that exist between the
standard differential algebras and algebras of invariants.

The systematic search for integrability conditions is at the heart of, or at least embedded
implicitly into, algorithms which seek to complete an over determined differential system to
either a characteristic decomposition form, or an involutive basis, or a differential Grobner
basis. We restrict our discussion to the Kolchin-Ritt algorithm which is the simplest of the
differential-elimination algorithms. In §2 an introduction to the Kolchin-Ritt algorithm, and
the nature of its output, is given.

Because the invariant differential operators do not commute, and for a variety of other
reasons to be explained later, the generalisation of the Kolchin-Ritt algorithm to invariantised
differential systems is not completely straightforward. We begin the discussion in §4 where
a naive translation of the Kolchin-Ritt algorithm is carried out on a simple example. This

shows some of the features that need to be taken into account for a differential-elimination



algorithm on systems of invariants to be robust and effective in practice. We take for our

main example, discussed in §5, the system

Ugp + Uyy + U, = [(u),

2 2 4 2
Uy +uy +u; = 1,

(7)

which is invariant under the Euclidean group. This example reveals further features. The
method developed yields “complete information” for this system in the sense that we show
that no further integrability conditions exist.

In §6 we give the technical details necessary for an implementation of an invariantised
Kolchin-Ritt algorithm for general systems of polynomial type. We assume that the induced
action of the Lie Algebra is of rational type and the moving frame is of polynomial type.
The algorithm described terminates and yields, in a sense which we make precise, a complete
set, of representative invariant integrability conditions which may be obtained in a “critical
pair” completion procedure. The notions of coherence and a “Buchberger second criterion”
for our algorithm are discussed, as is the role of the so-called “differential syzygies of the
frame”. Some conjectures are made for further study. We conclude with a comparison with
the earlier method of Lisle [21] and a brief description of an implementation of our methods

in Maple.

2 The Kolchin-Ritt Algorithm

The Kolchin-Ritt algorithm is one translation to nonlinear differential systems of Buchberg-
er’s algorithm for a Grébner basis [2, 10] of a set of polynomials. Much of the power of
Grobner bases can be harnessed for differential systems, allowing one to obtain “complete”
sets of integrability conditions for many classes of differential systems, and many useful prop-
erties of the e ptiompmce of the  ystem may be deduced fegthe output of this and related
algorithms. In this section the concepts and formulae needed to explain the Kolchin-Ritt
algorithm are given briefly. They will be adapted to invariantised differential systems in §6,
so some detail is required. For the full set of formulae and further details we refer to [23].
The Kolchin-Ritt algorithm has been implemented, and the manual of the computer algebra
package diffgrob2, [25] contains many examples of how the output may be used. For a
simple discussion of the algorithm and its many applications for linear systems see [22]. A

brief discussion and examples of the algorithm on nonlinear systems may be seen in [26].



More recent advances in the analysis of this and related algorithms, with a variety of both
practical and theoretical innovations, have been given by [3, 19]. In particular, the paper
by E. Hubert, in the language of Kolchin, gives the most recent, and rigorous results. The
MAPLE library package diffalg implements these innovations. A different development,
pioneered by G. Reid [35] and his co-workers, which is applicable to systems not necessarily
of polynomial type, has its roots in classical methods of analysis of differential systems by
Riquier and Janet. These classical methods have the Kolchin-Ritt algorithm embedded,
albeit implicitly. A third strand of algorithms which seek to complete a system of PDE
to involutive form, and which is based on the Cartan-Kahler theory for exterior differential
systems, has been implemented [17, 39]. Despite the variety of methods available, it is the
author’s belief that anyone developing an algorithm which analyses systems of PDE expressed
in the invariants of a group action would benefit by first understanding how a translation of

the Kolchin-Ritt algorithm might look, and the pitfalls that can arise.

2.1 Differential Polynomials

We consider systems of partial differential equations that can be regarded as polynomials in
some unknown functions u!,..., u?, their derivatives u% where

ol Klye

7
Oxkr .. Oxkn

(8)

(S
U =

and the independent variables z;,..., z,, over C.
Definition 2.1. We denote the set of all such differential polynomials (d.p.’s) by R,,,.

In the sequel, we will not hesitate to use complex numbers or complex changes of variables
where these are expedient. Further, when manipulating nonlinear systems of differential
equations, expressions can factor and then one considers one factor or the other to be zero
separately. This requires, in general, that the dependent variables are analytic functions
of their arguments. Hence we assume that all expressions are complex differentiable over
the complex field. When manipulating polynomials in a computer algebra environment,
however, further considerations apply, and we must assume that all coefficients belong in a
computable extension of the integers. The issues involved are subtle but far-reaching, and
we refer the reader to [16], Chapter 3.

Remark: There are two styles of multi-index notation K for derivatives as in equation (8),

in current use. One is an element of N, so that K = (K, ..., K,) while the second is of the



form of a string of integers between 1 and p, in which case K; is the number of 1’s appearing
in the string K, and so forth. For both notations, |K| = K;+...+K,. In the second notation,
the sum of two multi-indices K and L is given by their concatenation K L. This second style
of index is useful when considering possibly non-commutative differential operators, which
is the case in this article, and mirrors the index notation in use in undergraduate calculus

texts, and so we use it here.

2.1.1 Orderings

All the calculations required for differential elimination algorithms depend upon an ordering
on the derivative terms.
Definition 2.2. The traditional total degree ordering based on u' < u? < ... < u? and
1 < Ty < ...< T, is given by

ug > u%

if [Z] > |K],

else |L|=|K|, u® > uP,

else |L|=|K|, a=pand L; > Kj,

else |L|=|K|, a=8, Li=K,..., Li1=K,;1, L; > K,

for some j such that 2 < j <n —1.

There are many orderings, a complete classification is given in [37]. Each is suited to a
different purpose; lexicographic orderings yield elimination ideals, while “total degree” or-
derings are used to obtain both integrability conditions and the “Initial Data” for formal
power series solutions to converge [34]. Orderings on the derivative terms need to satisfy

two compatibility conditions in order for reduction processes to terminate:

1. u? < u’?( implies that US‘L < u?{L’ (9)
2. uje < ey for |I] #0.

It is assumed that expressions in the derivative terms are greater than expressions in the
independent variables. In all that follows, we assume that the term ordering is specified.

Remark: In modern parlance, the derivative term u$ has order |K|, the term degree being
reserved for the highest power to which the highest derivative term appearing in an equation
is taken. However, most of the definitions and results for over determined systems are based
on those for polynomial systems, by direct analogy of u$ with the monomial x¥. Hence this

use of the term degree in describing term orderings.



Definition 2.3. The highest derivative term relative to the term ordering occurring in a
d.p., f, is denoted HDT(f). This is denoted by some authors as the “leader” or “leading
derivative term”, or “principal derivative”, and is the analogue of “tip” or “initial” in the
(non)-commutative algebra literature.

The highest power of the HDT(f) occurring in f is denoted Hp(f).

The highest coefficient, Hcoeff(f), is defined to be coeff(f, HDT(f)!?(/)). Some authors
denote this as the “leading coefficient”.

The separant of f is the highest coefficient of 0f/0x; for any i (cf. [42]).

2.2 Pseudo-reduction and cross-differentiation

Formulae for pseudo-reduction and cross-differentiation may be found in [25]. Here we give
a brief discussion and some simple examples.

A pseudo-reduction of a d.p. f by G = {g1, g2, ..., 9k} C Ry effects elimination from f
of any terms that are derivatives of the HDT(g;), for some i € {1,...,k}. A simple example
will illustrate our meaning. Suppose one wishes to reduce the equation f = ugyy — Ugetly = 0
by the equation g = uyu,, — u2 = 0. We have that the highest derivative term in g is ug,.

Then a (one-step) pseudo-reduction of f with respect to g is given by

[ =y uyf—g—z. (10)

Definition 2.4. The pseudo-normal form of f with respect to a set G is obtained when
no further pseudo-reduction with respect to any member of G is possible, and is denoted
normal?(f, G).

Theorem 2.5. [22] The compatibility requirements that an ordering on the derivative terms
must satisfy (§2.1.1), ensure that reduction to pseudo-normal form is achieved in a finite
number of steps when automated on a computer.

Pseudo-reduction leads to the build-up of differential coefficients in simplification calcula-
tions. For a set of d.p.’s G, we collect in the set S(G) all the factors by which a d.p. may be
multiplied during some pseudo-reduction process, and are therefore assumed to be non-zero.
This set represents, in some sense, the set of singular integrals, see for example [42].
Definition 2.6. For a finite system of d.p.’s G, define S(G) to be the multiplicative set
generated by factors of the highest coefficients and separants of the elements of GG, that is,

the set of all expressions that can be obtained by multiplying together a finite number of



such factors.

Definition 2.7. The diffSpolynomial or cross-derivative of two d.p.’s is obtained first by
differentiating the two equations so that their highest derivative terms become equal, then by
cross-multiplying by the highest coefficients, and subtracting. For equations with different
highest unknowns, we take their diffSpolynomial to be zero.

Example 2.8. If fi = ugug, — u§ and fo = uy,, then in a lexicographic ordering based
on z < y, we have HDT(f;) = u,, and HDT(f;) = u,,, and thus diffSpolynomial(f;, f2) =
0f1/0y+2u, f>. But in an ordering based on y < =z, then diffSpolynomial( f1, f2) = 8 f1/0y*—
u,0% fo /012

2.3 Characteristic Sets and Differential Grobner Bases

The purpose of differential elimination algorithms is to find, in some sense, complete sets of
integrability conditions that allow one to deduce the existence, or nonexistence, of certain
types of equations which are differential consequences of the given system. In this section
we first define what is meant by the set of all differential consequences, which is called the
ideal of the given system. We then define both a characteristic set and a differential Grobner
basis. It is the reduction property of these sets that allows the information we seek to be
readily deduced. For a simple discussion of the kinds of results that can be obtained, see
[22].
Definition 2.9. Given a finite set of differential polynomials, ¥ C R, ,, we define the ideal
I(X) to be all those expressions that can be obtained from the elements of 3 by differentiating
and adding, and multiplying by arbitrary elements of R, ,, a finite number of times. If the
system is linear, we allow multiplication by polynomials in the variables z1,...,z, over C
only, that is, we maintain linearity.
Definition 2.10. A differential Grébner basis (DGB) of I(X) is defined to be a set of gener-
ators G of I(X) such that every element of I(3) pseudo-reduces to zero with respect to G.
A DGB of a system of PDES depends on the ordering of derivative terms. A characteristic
set is a subset of the ideal which has the same reduction property but is not necessarily a
basis[36].

The algorithm we discuss here, the Kolchin-Ritt algorithm, is a simple translation of

Buchberger’s algorithm for a Grébner basis for an algebraic polynomial ideal [4, 10].



Algorithm Kolchin-Ritt
Input:  a finite basis F' = {fi1, fo,..., fn} for the differential ideal I(F)

a term ordering
Output: G
G:=F
pairset:= {{ fi, fi} | fi, fr € G}
while pairset # {}
for {fi, fx} in pairset do
pairset:=pairset minus {{f;, fx}}
m :=normal?(diffSpoly(f;, fx), G)
if m#0do
pairset:=pairset union {{f;, m} | fi € G}
G := G union {m}

Theorem 2.11. [23] The Kolchin-Ritt algorithm terminates. The set G = Kolchin-Ritt(F')
satisfies I(G) = I(F) and if S(G) N I(G) = 0 then for all g € I(G), there exists s € S(G)
such that sg pseudo-reduces to 0 with respect to G.

This algorithm, along with various extensions of it, was implemented in MAPLE [25]. The
theorem shows the limitations of the Kolchin-Ritt algorithm in calculating a DGB when one
begins with, or obtains en route, an equation where the coefficient or separant of the highest
derivative contains differential terms. Indeed, the condition S(G) N I(G) = () encodes the
fact that these coefficients are assumed to be non-zero. If an expression is found which
implies one of the elements of S(G) is zero, then the algorithm must be re-run with the
relevant element of S(G) included at the outset. If an expression is found in which the
highest derivative term occurs in a factor raised to a power, then the condition fails. More
generally, when seeking all solutions, including singular solutions, of a system, one needs to
systematically set each element of S(G) to zero in a branching calculation.

See [3, 19] for a more sophisticated discussion of differential elimination algorithms in
terms of radical ideals and ideal decompositions, and improved results.

Our major example in this article is a system containing an unspecified function of the

dependent variable. While the theory of DGBS is not developed for such systems, nevertheless
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one can perform calculations with them in a natural way. Consider the system

u§+u§—1:0, Ugy + Uyy — f(u) =0, (11)

Derivative terms in f(u) are considered to be “differential parameters” in the calculations,
and conditions obtained only in the derivatives of f are actually consistency conditions for
the system. If during the course of the calculation we obtain two or more conditions in the
derivatives of f only, it is then quite natural to want to calculate a DGB for the system of
consistency conditions, with f as the unknown, and u as the independent variable. This
does not lead to any inconsistencies; the entire calculation is in two separate pieces, which
do not interfere with one another. To date, diffgrob2 is the only package which can process
systems containing arbitrary functions of a dependent variable.

Example 2.12. For the system (11), the output G of the Kolchin-Ritt algorithm is,

(e = 1) (e + 1) (fu + f)2fuf + fuu) = 0,
(e = 1)*(us + 1)*(fu+ /%) = 0,
Use + f(uz —1) =0, (12)
uy+ul—1 = 0,
Uy — ful = 0.

The second equation is in S(G) N I(G), so the output fails the condition given in the
output statement of the algorithm. In fact, the condition f, + f? = 0 is implied by the given
set, and is the consistency condition for a solution to exist. Extensions of the Kolchin-Ritt
algorithm will, in this case, correct the problem [25]. In §4, we show how dividing out the

symmetry, the Euclidean group, gives the equation that f must satisfy literally in one line.

3 The Moving Frame Method

The discussion here is brief, to fix the notation and record the formulae needed in the sequel.
We provide a simple expository example which will be needed for §4. We refer the reader to
the original articles [11, 12] for details and proofs, and for an exposition of the moving frame

method for exterior differential systems, for right group actions, and pseudo-group actions.
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3.1 Group actions

We begin with a specified smooth left group action
GxM— M, (g,2) — gez, (h,gez) > (hg)ez

on the manifold M by a Lie group G. Our interest is particularly in the case when M is
X x U, where X is the space of independent variables and U the dependent variables. We
take the dimension of X to be p and the dimension of U to be gq.

Example 3.1. The Euclidean group E(2) = SO(2) x R? acts on R? x R as follows,

B cos(f) —sin(0) Ty a
(6, (a,6)) « (21, 32) = sin(f)  cos(f) Ty " b (13)

0, (a,b)eu= u
Definition 3.2. The left reqularisation of a group action is the map
Gx(GxM)—Gx M, (g, (h,2)) = (gh,gez)
and the left fundamental lifted invariants are
w(h,z) =h ez
They are invariants since
gew(h,z) =w(gh,gez) =h g \gez =h"tez =w(h,z2).

We adopt the notation that the lifted invariants obtained from the independent variables
x are labelled y and those from the dependent variables u are labelled v.

Example 3.1(cont) For the Euclidean group action above, the lifted invariants are

cos(#) sin(6) T —a
—sin(f) cos(6) Ty —b (14)
v = (6, (a,b)) Leu =u

(Y1,92) = (0, (a, b)) o (21, 22) =

3.2 Prolongation formulae

We assume the group action to be infinitely differentiable so that by using implicit differen-

tiation we obtain an action by G on the jet bundle J"(M) — M for all n > 0.
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Definition 3.3. The higher order left fundamental lifted invariants are obtained by implicit
differentiation of the lifted invariants defined in Definition 3.1.12.

Example 3.1(cont) For the Euclidean group action above, we obtain

Uy, = €088 ug, +sinfu,,

Uy, = —sinfug, + cosbug,
Uyryy = c08% 0 Uz, + 28in6 cos 0 Uy, 4, + sin? 0 Ugyzy (15)
Vyrys = (cos?0 — sin? 0)ug, 4, + sin 6 cos O(Uz, 2, — Usye,)
Uyoys = Sin? 0 ug,p, — 25in 6 cos O Uy, 4, + €08% 0 Uy,

In fact, the higher order lifted invariants can be obtained recursively.

Definition 3.4. The lifted invariant differential operators are

D(yl: .. '7yj—17F7 Yj+1, - - ':yp)
E(F) = 16
i(F) D(yi,---,Yp) (16)

In fact, & = 0/0y;, and we have vk; = Ejvg. Note that the &; are linear, first order

operators which commute and obey the product rule.

With the group action comes an action of its Lie algebra. For a one-parameter subgroup
g(€) C G such that g(0) = e, the identity element, set xz(e) = g(€) oz, u(€) = g(€) su. Then
we define §;, j =1,...,pand ¢%, a=1,...,¢ and K a multi-index, to be such that

331(6) = X + 6& -+ 0(62)

u®(e) = u®+ed®+ O(e?) (a7)
9IKlye
#);) = U+ e +0().

The £’s and ¢’s are called the infinitesimals of the group action and classically depend only on
(z,u). Again by iterative use of the chain rule, we may obtain recursion formulae for the ¢%.
These formulae and their derivation can be found in textbooks on symmetries of differential
equations cf. [31]. Further, they have been implemented in virtually every computer algebra
system as part of Lie’s algorithm to find symmetries of differential equations. A review of
the software packages available has been given by W. Hereman in [20], (Vol. III, Chapter
13).

Example 3.1(cont) Considering the Euclidean group of our running example, we have for

the translations x; — x; +e€ that §; = (5;- and ¢x = 0 for all K. For the rotation parametrised

13



by 6 we have

&1 = —T9, & = 1, ¢ =0,
¢1 = —Ug,y, ¢2 = Ug,, (18)

¢11 == _2uw1w27 ¢12 = uwlzl - uw2z27 ¢22 = 2“%1:82-

3.3 Moving frames

Definition 3.5. A moving frame is a G-equivariant map,
p:M—G,  plgez)=gp(z).

A moving frame will exist if and only if the group action is free and regular. For sufficiently
high n, a prolonged group action on J"(M) will be locally free provided the action on M is
locally effective. We refer the reader to [12] for the considerable technical details.

We next show how to construct a local moving frame in the open neighbourhood /. Take
a submanifold I C U which is transverse to the group orbits. We take ¢ to be small enough
so that each orbit intersects U at most once. For z € U take k € K and h € G such that
z = hek. The moving frame p : Y — G is then defined by p(z) = h. The conditions
guaranteeing existence and uniqueness of £ and h, and thus that p is well-defined, are that
the group action is regular and free, respectively. The map p is equivariant since if 2’ = gez
and z = hek then 2/ = ghek and thus p(gez) = p(2') = gh = gp(2).

Definition 3.6. If the cross-section K is defined by a set of equations, these are known as
the normalisation equations.

If the normalisation equations take the form gez = k then p(z) = ¢g~!. In practice, the
frame gives equations for the group parameters in terms of the co-ordinates on the manifold
M. “Evaluating on the frame” then means using these specific values of the group parameters
in the lifted variables.

Example 3.1(cont) In our running example of the action of E(2) on J(R? x R), if we take

the normalisation equations
= Oa Y2 = Oa Uyl = 07
then the frame is given by

(1, Tay 1y gy, Ugy) = (6, (a,0)) = (arctan (—“—) ,(ml,x2)> . (19)

Ugy

14



3.4 Invariants

Evaluating the remaining unnormalised higher order lifted invariants on the frame leads
to the fundamental normalised differential invariants I of the group action on M. Any
ordinary differential invariant is a function of these.

Definition 3.7. I% is defined to be v% evaluated on the frame. Further, J' is defined to be
y; evaluated on the frame.

Example 3.1(cont) In our running example, substituting (19) into (15) yields the invari-

ants
Iy, = u
I, = 0
b= () 0
I, = (uiumw1 U Uy Ugy 3y + U2 Ugyzy) /15
Lo = ((u2, — v2))Uaizs — Uy Usy (Uggey — Ugizy)) /13
Iy = (U2, Ugiz; + 2Ug, UgyUsyzy + Uiy Ussay) /I3

Note that Iy + Ipg = Vy,y, + Vypyy = Ugyz, + Usge, verifying that the Laplacian is invariant.
This is an example of the Fels—Olver—-Thomas replacement theorem [12] (Theorem 10.3),
which states

Theorem 3.8. If F(z;, u(;gj) is an ordinary differential invariant then
F(zi,ug) = F(J',I¢).

This is because an ordinary differential invariant takes the same functional form when
written in terms of the corresponding fundamental lifted invariants, which is unaffected by
evaluation on the frame. While this theorem seems a tautology, in practice it can seem
remarkable. The Fels-Olver-Thomas Replacement theorem means that obtaining the in-
variantised version of a differential system is virtually trivial, at least symbolically. The
situation is in stark contrast to that involving discrete symmetries, where considerable effort
employing the elimination properties of Grobner bases must be used, and the Hilbert basis
of polynomial invariants must be known explicitly in advance. For a recent paper detailing
the ideas involved for systems with discrete symmetries, see [15].

Similarly, evaluating the &£; operators on the frame leads to a complete set of invariant
differential operators.

Definition 3.9. The fundamental invariant differential operator D; is the operator &; eval-

uated on the frame.
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Example 3.1(cont) In the running example this leads to

1 1
Dl =7 (uwZle - U’wlD$2) ’ DQ =7 (uwlle + uw2D$2) :
I I,

Note that Dyu =0 = I, Dyu = I, but D2u =0 # I4;.

3.5 Correction terms for Invariantised Differentiation

Despite the fact that vk; = vk, we have in general that I, # D;Ig. By their definition,
the invariants I are left unchanged by permutations within the index K. However, the D;
do not commute.

Definition 3.10. The correction terms My are defined by
DIy = Ig; + Mg;. (21)

We further define M} to be such that D;J* = 6% 4 M.
The M, are not invariant under permutations in the index Kj. In [12] can be found the

proofs that there exists an r x p “correction matrix” K such that

M = ) & (DK
rl (22)

Mg, = ) k(DK
k=1

where, k is the index for the Lie algebra generators and dim(G) = r. The notation & ()
means the infinitesimal of the xkth group generator acting on z;, lifted and then evaluated
on the frame. Similarly, qﬁ?(,n(l ) means the infinitesimal action of the xth group generator
acting on u% lifted and then evaluated on the frame. Since the group action is given a priori,
these functions are readily calculated using the prolongation formulae.

The matrix K is found by combining these formulae with the normalisation equations.

For example, if the first s of the lifted independent variables and a further r — s of the

lifted derivatives are normalised to be constants, then from D;(J*) = 0, i = 1,...,s and
D; (I%g) =0,¢=1,...,7 — s we may solve for the K} from the pr linear equations
r
Y LK = i, i=1,....,8j=1,....p
| w=1 (23)
Zg{)%m(I)K? = —I%j b=1,....r—s;j=1,...,p
k=1
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The existence and uniqueness of the solution of these equations is due to the transversality
of the cross-section defining the frame. Unfortunately, the converse is false; the existence of
K does not guarantee that the normalisation equations yield a bona fide moving frame.

Example 3.1(cont) In our running example, the correction matrix is given by,

1 0 —I/I
K 11/1s (24)
0 1 —In/l

Definition 3.11. More generally, let the equations giving the moving frame be
Ua(y;, v%) =0, A=1,....r, |[K|<N

say. Then 1, (J7, I%) = 0 will also hold, by definition of the J7, I%. Both versions will be
denoted as normalisation equations.

The correction matrix for these more general normalisation equations is calculated as
follows. Let the variables actually occurring in the ¢, be X = {y;,,v%;}. Define J to be the
Jacobian of 1 evaluated on the frame with respect to the variables X'. Let ® be the matrix

whose entries are the j,, ¢%; evaluated on the frame, and let T be the total derivative matrix

(6%, Ii:;), where |[K| < N and 6% is the Kronecker delta, evaluated on the frame. Then [32]

K=-TJ (&)} (25)
We give an example in §5. We then have that
D;(a(J7, 1)) =0,  forall 5, \. (26)

From the recursion formulae for the induced action of the Lie Algebra, the formulae for
the correction terms M ; and the correction matrix K above, we have the following theorem.
Theorem 3.12. If the normalisation equations are of polynomial type, and the induced
action of the Lie Algebra is of rational type, then the correction terms are rational. Moreover,

the multiplicative set generated by factors of the denominators is finitely generated.

3.6 Generating invariants and syzygies

The set £ = {u%} has a well-known differential structure. It is in one-to-one correspondence
with a finite number of copies (one for each «) of N?, where the p-tuple of integers corresponds
to the multi-index of differentiation. Each component of £ is generated by u® using the

differential operators 0/0x;, j = 1,...,p. Further, these differential operators commute. By
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contrast, the invariant differential operators do not commute, in general, and D;/% need not
even be of polynomial type. In fact for the examples studied in this article, the D;I% are
rational expressions in the invariantised derivatives.

Secondly, the normalisation equations define identities on the invariants.

Definition 3.13. If the normalisation equations are of the simplest form, where certain of
the y;, v® and v§ are set to be constant, then we say that the corresponding J7, I* and
I are the highest normalised invariants. For more general normalisation equations, we say
an invariant is a highest normalised invariant if it is the the “highest derivative term” of
some normalisation equation according to some (specified) ordering on the derivatives and
independents. The set of highest normalised invariants will be denoted by HNZ.

If (J°,I¢) = 0 is a normalisation equation, then D;y(J), I%) = 0 for all j i.e. the
equations (26) hold. Hence, if I} = c is a normalisation equation, then D;I§ = 0 and so it
is not possible to obtain I, by differentiating Iz. Note that the invariants I, j =1,...,p
are not necessarily zero; this follows from the definition of the If. Further, it is not possible
to obtain Iy by differentiating I where Jk = K; the term simply does not appear as it is
cancelled by the relevant correction term.

In a computer algebra environment, where invariantised derivatives are manipulated sym-
bolically, “evaluating on the frame” is achieved by simplifying with respect to the normali-
sation equations. Thus if the normalisation equations are of polynomial type, an algebraic
Grobner basis for the normalisation system is calculated and then simplification is effected
by calculating the unique normal form. One can assume without loss of generality that the
normalisation equations are already an algebraic Grobner basis for the ideal they generate.
Not all Grobner bases are appropriate as normalisation equations, however. The solution
surface must be a single component of the correct dimension. Further, normalisation equa-
tions such as (Ix)? = 0, for example, can lead to serious problems such as undetected zero
leading coefficients. Thus the ideal formed by the normalisation equations must at least be
prime. The precise conditions needed on the normalisation equations for them to be suitable
for computation in a symbolic environment is a topic for further study. In the meantime, we
make the following standing assumption.

Standing assumption We will assume that the normalisation equations are linear in the
highest normalised invariants that is, their highest derivative terms.

Under this assumption, one can think of the set of invariantised derivative terms as a
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“lattice with holes”; the normalised invariants never appear in any calculation.

Because of these “holes”, we need to include additional generating differential invariants,
given in the next theorem, to obtain all invariants in terms of the generators and their
derivatives. A classical theorem due to Tresse [40] states that all differential invariants can
be obtained as functions of a finite number of invariants and their invariant derivatives. The
following theorem gives precisely what they are.

Theorem 3.14. ([12], Theorem 13.4) The set given by
{7115, | T I* ¢ HNT Iz e HNT,j=1,...,p } (27)

is the fundamental generating set of differential invariants.

Another major difference between the sets {u%} and {I%} is the existence of nontrivial

SYzygies.
Definition 3.15. If I§, I are two generating differential invariants, and indices K, M are

such that I, = I, then
Dicl§ — Dol = My — M3 (28)

is called a fundamental differential syzygy of the third kind. Syzygies of the first and second
kind are actually the equations (26).
Example 3.1(cont) For our running example, the generating set of differential invariants
is

{1o, Iz, I, }

and the syzygy between [, and [y; is

DIIIQ —_ D2111 = (1121 — 111122 + 2[122)/12

3.7 The “differential structure” of the set of invariants

Summarizing from the previous section, the “differential structure” of the set {J', I | i, o, K}

differs from that of {z;,u% |i, o, K} in the following ways.

1. There are functional relations between the invariants, given by the normalisation equa-

tions.

2. The invariant differentiation operators may not commute.
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3. D;I% may not be of polynomial type. If the induced action of the Lie algebra is rational
and the normalisation equations polynomial, then the correction terms will be rational.

Further, the denominators belong to a finitely generated multiplicative set.

4. More than one generator may be required to obtain the full set of invariants under

invariant differentiation.
5. There may be nontrivial differential syzygies.

Differential elimination algorithms are analysed by means of an algebraic model of a
differential system. For non-invariantised differential systems one considers an ideal of some
differential ring to be the model, and theorems are known that enable the output of the
algorithm at hand to be stated and proved precisely. By contrast, the construction of a

useful algebraic model for invariantised systems appears to be an open problem.

4 Invariantised Differential Systems — a simple example

Consider the system
wy +ur = 1,
Using the Fels—Olver-Thomas Replacement theorem and the moving frame calculated in the

previous section, the system can be written as

L+ 1 = f(),

(30)
12:]_,

where we are assuming the positive value of the square root. The calculation for the other
choice is entirely analogous. Using (21), (22) and the correction matrix (24), we have from
I, =1 that

Iy=0, Ip=0. (31)

We can now simplify the correction matrix (24) to be

10 —I
K=— H (32)
01 0

We next use Iy = 0 in order to simplify the system (30) to
Ill - f([()) = O, IQ —1= 0 (33)
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If we cross differentiate these two equations, and simplify using (31,33), we obtain
Dyl — f(lo)) = DIl — 1) = = f'(Io) — f(Io)* =0
or
f'(u) + f(u)® = 0.

Hence
1
flu)=0 or ﬂw=u+c

where ¢ is a constant. The equation that f must satisfy for a solution to exist is found

to be precisely the syzygy between the two generating invariants I;; and [, evaluated on
the system. Since there are no more integrability conditions that can be calculated by
cross differentiation and simplification, we have the output of an algorithm analogous to the
Kolchin Ritt algorithm to be
Li—f(l) = 0
IL—-1 =0
f'(lo) + f(Ih)* = 0.

It is clear that every higher order differential invariant can be evaluated on solutions of the
system by applying the invariant differential operators to an element of the output system.
What we have not demonstrated is that different paths of differentiation in the calculation
of these higher order invariants will not lead to further compatibility conditions.

Comparing the output of the algorithm on the invariantised system to that of the original
system, it appears that the ordinary differential equation for u, the third equation of the
system (12) is lost. However, from the equations I1; = f(u), I1o = I = 0, we can obtain

by linear algebra expressions for the u,,,; using (20). This yields

Upey = f(u)(1—uz,)

Usyzy = —f(U)Ug,Us,

Uppo, = f(u)(1—ug,)
From here the general solution to the system is easily found, showing a fortiori that no
further compatibility conditions exist. This final section of the calculation is the “inverse”
part of the problem, where we use our knowledge of the values of the invariants on solutions
of the system to calculate the values of the usual derivatives on the system.

There are several points that even this simple example highlights:
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1. denominators in the correction matrix K could be be zero on solutions of the system.
2. the invariantised system could be incompatible with the normalisation equations.

Thus the normalisation equations must be chosen with care. The theories that analyze
the correctness and termination of the Kolchin-Ritt algorithm assume that all differential
expressions are of polynomial type. Denominators in the correction matrix K mean that all
cross-differentiation and simplification formulae need to be modified to make the result of

all calculations to be of polynomial type.

5 The 2+ 1 d’Alembert-Hamilton System

In this section we show the calculations for a more significant example. Our first aim is to

find all possible f for which the system [7, 14]

Uy + Uyy + €Uy, = f(u),

(34)
uh +ul +eul = 1,

with €2 = 1, is consistent. The sign of € is not significant for the symbolic calculations
performed here, and the transformation z — iz takes one to the other. For convenience, we
take ¢ = 1. The example demonstrates several problems that need to be taken into account

when designing an invariantised Kolchin Ritt algorithm.

5.1 Calculations using the invariantised system

We consider the six-dimensional Euclidean group E(3) of translations and rotations acting
on R? in the usual way, with the dependent variable u as an invariant. The system (34) is
invariant under this group action. First the complete set of generating differential invariants
and the invariant differential operators are calculated. Then integrability conditions for the
invariantised system are calculated. The method used to do this in a systematic way which
may be implemented on a computer are developed into algorithms in §6. The ordinary
differential equation that f(u) must satisfy for (7) to be consistent, as well as equations for
the invariants on solutions of the system are found. From these the equations for the second,
third and higher order derivatives of u on solutions can be determined using only linear
algebra. The entire calculation can be performed using a commercial computer package

such as MAPLE with only a modicum of internal memory. By contrast, the analysis of the
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system (34) using techniques from differential algebra (in the usual derivative terms) was
intractable, due to intermediate expression swell.

We build a representation of SO(3), the rotation part of the Euclidean group on R?, near
the identity element by taking the product of rotations. Set

cos(#) —sin(f) 0
B = sin(0) cos(f) 0
0 0 1

(cos(¢) 0 —sin(w)\
B, = 0 1 0

\sin(z[}) 0 cos(w))

(1 0 0 )

By = 0 cos(x) —sin(y)

\0 sin(x) cos(X))

and set

A= BlB2B3.

The translation part of the group leaves invariant the derivatives of u. Thus, we must nor-
malize the translation part of the group using the independent variables. Only the rotation
part of the group needs to be lifted to the derivatives and the normalisation of the rotation
parameters must involve the derivatives of wu.
Remark on notation It is convenient at times to refer to z, y and z as z1, x5 and z3 in
summation formulae, and to denote derivatives and other subscripted variables only by the
numerical part of the index. Thus, for example we refer to the lifted derivative operator
corresponding to d/0x by &, while vy, is denoted v;;, and so forth.

Using the fact that det(A) = 1 and AT = A~ the lifted derivative operators &; are given
by the ith component of A7(V), or

£.F) = Y AL(VE),
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so that, for example,

ve = (—sin(@) cos(x) — cos(f) sin(¢)) sin(x))u,
(cos(8) cos(x) — sin(#) sin(v)) sin(x))u, + cos(¥) sin(x)u,
vsg = (sin(f)sin(x) — cos(f) sin(v)) cos(x))u,
) cos(x)uy + cos(1) cos(x)u,

(— cos(#) sin(x) — sin(@) sin (¢

The first five normalisation equations are
yi=0,i=1,2,3, UQZO, ’U3:0

The translation part of the group is normalised to be translation to (z,y, z) and the first

two rotation parameters are given by

U U
§ = arctan | < |, = arctan | ———— 35
(Ux) v (,/ui—i—ui) (35)

Substituting for § and v into v; yields the differential invariant of order one,

I = \/ui +ul +ul

To obtain an equation for the rotation parameter x we need to consider the action of E(3)
on the second order derivative terms. Recall this is achieved by operating on u recursively

using the &;. Since our action is linear, we have

3 3
=2 Ak

k=1 (=1

Back substituting for 6 and ¢ into the v;; yields one invariant, namely
Ity = (UdUag + 2Uglylgy + Uty + 2y Uyty, + U0, + 2uglisls,) /1T, (36)

The selection of the sixth normalisation equation is crucial to the remainder of the cal-
culation. Taking for example vy3 to be zero leads to incompatibilities when considering the
invariantised version of the system (34); on solutions of the system the denominators of some
entries in the associated correction matrix K are zero. The normalisation equation chosen
was

2U22 — V33 = 0.

There will be many compatible choices. Solving for the angle x at this point of the calculation

is unproductive. The expression involves nested radicals and is too unwieldy to give any
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significant insight. We will need the expression for x only in the later stages of our exposition.
It is helpful to simplify the equation for x using information gained from processing the
invariantised system symbolically, and this we now proceed to do.

In some respects the first object to be calculated should be the correction matrix K.
This can be done completely symbolically for various normalisation equations giving a first
insight into which normalisation equations might be compatible and useful. It must always
be checked, however, that the normalisation equations define a bona fide moving frame. We
use the formula (25). In constructing J, ® and T below we need consider only those derivative
terms actually appearing in the normalisation equations, namely the y; and vs, vs, v92 and
vs33. The kth row of the matrix ® consists of the group infinitesimals &, &, &3, @a, @3, Do
and ¢33 for the kth group parameter, lifted and then evaluated on the frame. In lifting and
evaluating an expression on the frame, all occurrences of x, y and z are replaced by zero, as

are u, and u,. Further, all occurrences of I33 are replaced by 215,. Hence in this example,

)

(100000 0

0100 0 0 0

0010 0 O 0
Pd—

0001 0 2, 0

0000 I, 0 2@

\0000 0 —26s 21y

The matrix J is the Jacobian of the normalisation equations evaluated on the frame;

(1 \
0
0
0
0
Lo =y

The third ingredient T needed for the correction matrix K is the total derivative matrix

o O o O O

0
0
0
1
0
0

o = O O O O
N O O O O O

o O O o = O
o O O = O O

evaluated on the frame. Thus T is given by

1 0 0 Ly ILis Lo Iigs
T=| 0 1 0 Iy I3 Iy Iss
0 0 1 Iyg 2l Iys I333
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Finally the 3 x 6 correction matrix is

T
( 1 0 0 \
0 1 0
0 0 1
I I I
o _ 37
Iy Iy o o
I I I
2.[122 B _[123 2[12]22 B 113 2 B 2.[22]13
2Dy — Iigs 21599 + I 21595 — I3z
\ 6]23 6]23 6123

It can be seen that this correction matrix contains third order invariants, while our system
is second order. Performing cross differentiation and reduction calculations with this correc-
tion matrix on the invariantised system, in a naive translation of the Kolchin-Ritt algorithm
to invariantised derivatives using invariantised differentiation, will result in infinite loops
when carried out automatically by computer. The reason for this is the lack of compatibility
of any term ordering with invariantised differentiation (cf. §2.1.1).

The key new idea of the invariantised Kolchin-Ritt algorithm is to take all the equations
defining the system and differentiate them to the order of the derivative terms appearing
in the correction matrix. This will be one order higher than the derivative terms appearing
in the normalisation equations. An algebraic Grobner basis or characteristic set is then
calculated, using a term ordering which depends on the total degree of differentiation. If
an equation of order lower than those used to obtain it algebraically is discovered, this is
differentiated and the new equations added and a new Grobner basis calculated. The matrix
entries of K are then reduced using the final Grobner basis. Only then does one calculate
cross-derivatives of equations of order greater than those appearing in the normalisation
equations. A precise statement of the algorithm appears in the next section.

Using the Replacement Theorem, the system (34), lifted and evaluated on the frame is
Iy + 315 = f(1o), L =1 (38)

where we have taken the positive square root. The case I; = —1 is entirely analogous. Using

(21), (22) and with K as in (37) we have from D;(l; —1) =0, j = 1,2, 3 that
Iy =1y =1;3=0.

26



Differentiating these and also 3155 — f(Iy) = 0 three different ways and calculating an alge-

braic Grobner basis on the set of all equations obtained thus far yields the condition
1815 +9f' +5f=0 (39)

This last condition is differentiated three different ways to obtain three new third order
equations. The final Grobner basis obtained using the term ordering f < f' < f" < I; <
Iyp < Io3 < I1g < L1z < 11 < Ipop < I9o3 < I933 < I333 < l192 < T123 < I112 < Iy13 < L1y 18

f"+3ff'+ 2 =0,
L -1=0, 3Inp—f=0,
1812, + 9f'+5f2 =0,

I, =0, L3 =0, L1 =0

Lo (2f' 4+ f?) =0, (40)
[I3 + 61331509 = 0, J'Ta93 — 3fIz3l50 = 0, 61231993 — fl202 = 0,
Ipzs + In90 = 0,  I333 + Io23 = 0,
6l —3f' — f>=0, L+ fls=0, 6li33—3f +f>=0
L2 =0, I3 =0, Iy =0.

The ordinary differential equation for f has for its solution,

1 1 1
, or .
U+ c u+c  u-+co

f=0,

Taking factors and recalculating Grobner bases leads to several cases. Those with f = (0 and
thus I3 = 0 are unacceptable, as then K will have zero denominators. The case f = 0 needs
to be calculated separately.

In the case 2f' + f? = 0, there are no further compatibility conditions, and the three
conditions for I5o3, 999 are equivalent.

In the case Iy99 = 0, f # 0, there is one further compatibility condition. Calculating the
invariantised diffSpolynomial between I333 = 0 and I»33 = 0, to obtain two equations for
15333 yields, after simplification,

f'+f2=0o.

It is worthwhile noting that this particular diffSpolynomial is none other than the funda-
mental syzygy between the two fundamental invariants I333 and Ipz3 (cf. §3.5) evaluated on

the system.
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5.2 The “inverse problem”

The final step is to calculate the value of the usual derivative terms from knowledge of the
higher order invariants. This is where we must “bite the bullet” of the nonlinear equations for
the group parameters. The strategy is first to obtain the expression for the group parameter
X evaluated on the system, which is more manageable.

The invariants I;; are v;; = &;E;(u) evaluated on the frame. The angles 6 and 1) are given
by (35). The equation for the rotation angle x is 2v9o — v33 = 0. Further, we have I;; = 0,
Iy = I3 =0, I3 = G(u) and 3l = f(u), where G(u)?> = —(9f" + 5/?)/18. Thus we have
six equations in the six u;; and the angle x. It can be observed by direct calculation that
I; (36) is independent of x, while I, = H;sin x + Hycos x and I;3 = Hysinx + Hj cos x,
where the H; are expressions in the u;;, u; only. The remaining expressions are linear in
sin(2y) and cos(2x). The strategy employed was to solve I1; =0, H; = Hy = 0, Is3 = G(u)
and 3l = f(u) for uyy, uie, uis, ugs and wugsz in terms of wugg, uy, uz, us and sin(2y),
cos(2x). The result was back substituted into 2vey — v33 = 0. Simplifying the result using
sin?(2x) + cos?(2x) = 1 and u? + u2 + u2 = 1 yielded an equation of the form

Asin(2x) + Beos(2x) +C =0

where
A = 6G(u)(ui(ul + 1)+ u2(ul — 1)) — 2uguyu, f(u)
B = f(u)(ui(ul+ 1) +ul(ul — 1)) + 12uzuyu,G(u)
C = 3(u +uy) Quyy + f(u)(uy — 1))
Then
) —AC + BV A%+ B2 — (? BC — AV A? + B2 — (C?
sin(2y) = YER:T , cos(2x) = yER:? (41)

is a suitable solution for x. The denominator factors to be (uy — 1)*(u2 + u2)(36G* + f?)

which is zero if f satisfies 2f' + f? = 0, in which case f = 2/(u + ¢).
If 2f' 4+ f2 =0, then B =iA and we have

A? 4 C? A2 —C?

SAC cos(2x) = Yol

We can obtain the third order derivatives of u using

sin(2y) = — (42)

3

ip = > Aue(I)Ajk(I)Aps(I) Ipgs,
£,k,s=0

where all the entries of A are evaluated on the frame. This uses the fact that AT = A~1L.
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521 f'+f2=0,f#0

We have G(U)2 = 2f2/9 Then 1111, 1112, 1113, 1222, 1223, 1233, 1333 are all Zero, while
Loz = —G(u) f(u), Lige = —f(u)?/3, L33 = —2f(u)?/3. Further, we may take f(u) = 1/u.
Obtaining the expression for ugg = u,,, yields

Uyyy = —3%. (43)

This is an ordinary differential equation for u as a function of y. Similarly, v will satisfy the
same ordinary differential equation in terms of x or z obtained by substituting x or z for y
in (43), as can be proved directly by performing a similar calculation as above but obtaining
expressions for all second order derivatives of u in terms of u,, or u,, respectively.
Thus we obtain
Vi) o, Vi)

Uyy = , u, = T —+ Y'2(.’L', Z) (44)

Xi(y,2) + Yi(z,2) + Zi(x,y) = o’ (45)
Xo(y, 2) + Yao(z,2) + Zo(z,y) = 2 (46)

Using these last three equations and the fact X;, =Y;, = Z; , = 0, it is relatively straight-

forward to solve for u using repeated differentiations and decoupling. The result is
u? = 117 + ey’ + €332° + C1aTY + €13T2 + Co3yz + 1T + Y + 3z + ¢

where

C11 + Cag + 33 =2

and cq is free, and the remaining coefficients may be determined in terms of the ¢; by direct

substitution into the system (7) and then equating coefficients.

5.2.2 2f'+f2=0,f#0

In this case, we no longer have 10 equations for the 10 third order invariants, merely 9,
indicating a family of solutions depending on an arbitrary function of a single argument.
It is not difficult to display such a solution family. Without loss of generality we may take

f(u) = 2/u and then the system (7) is invariant under the scaling symmetry,
v = 20, + Y0y + 20, + u0,.
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The Lie symmetry reduction of the system is then
u(z,y,z) = zw(ty, ta), where t; = z/z, ty = y/z
and

’LU% + w% —+ (w —tiwy — t2w2)2 = ]., (47)
(1 + E)wiy + 2titowis + (L +13)wee = 2/w (48)

In fact, (48) is a differential consequence of (47). This can be seen easily if we apply the

Legendre transform. Following [9], (Vol. II, page 32ff), we set

tl = Vg, tg = Uy
wy; = ¢7 wg =11,
v+ w =110+ ton
W11 = PUpy, Wiz = —PUgy, W2 = PUgge
1
= .2
VppUnn — Vgy

then equations (47,48) become

¢ +nt+0d =1 (49)
(1+ U;)Uvm — 20yUyVgn + (1 + Uﬁ)vw = 2(Ugptny — U;n)/(ﬁb% + 1y — ) (50)

It is simple to show that (49) is a solution of (50) and thus it suffices to solve (47) by the
method of characteristics, [9] (Vol. II, Ch. II, §3), leading to a family of solutions with one

arbitrary function of one argument.

5.3 Discussion

The solutions demonstrated in the previous section show a fortiori that no further compat-
ibility conditions exist. Further, they show that all the information necessary to obtain the
solution is in the invariantised system. It is not necessary to do more calculations other
than those needed in the inverse problem, that of writing the invariantised system in terms
of the original variables. For the examples illustrated here, the output of the invariantised

Kolchin-Ritt algorithm to be elaborated in the next section, is “complete” in some sense.
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6 An invariantised Kolchin-Ritt procedure

In this section we describe an algorithm which calculates an invariant integrability condition
arising from each “critical pair path”, a concept we define in §6.2, for a large class of input
systems, normalisation equations and group actions.

Recall our standing assumptions are that the normalisation equations are of polynomial
type, and are linear in the highest normalised invariants. Further, the induced action of the
Lie Algebra must be of rational type. These imply that the D;I§% are rational. Moreover,
the denominators are products of a finite number of expressions which can be determined at
the outset. These must be non-zero on the system being studied.

First we discuss the compatibility of term orderings with invariant differentiation. We
then discuss the analogues of cross differentiation and reduction calculations. We then detail

an analogue of the Kolchin-Ritt algorithm which avoids all known difficulties.

6.1 Invariantised differential polynomials

The Fels—Olver-Thomas Replacement Theorem in §3.4 gives an easy translation from dif-
ferential polynomials to their expression in terms of the invariants. Thus we may speak
of invariant(ised) differential polynomials, and we may order the invariant derivatives in a
completely analogous way.

Definition 6.1. Given u' < u? < ... < u? and z; < 23 < ... < 1, the traditional total

degree ordering ttdeg on the differential invariants is given by

I% >ttdeg 17

if |[K| > |L],

else |[K| > |L|, u® > v,

else |K| > |L|, o« = and K; > Ly,

else |[K|>|L|, a=0, Ky=1Ly, ..., Kj_1=Lj_, K; > L;
for some j such that 2 < j <p—1.

By interchanging the first two criteria in the above we obtain a mixed elimination, total

degree ordering. More generally, we may take a partition on the dependent variables P;,
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j=1,...,r and define an ordering mtdeg by

1% >mtdeg 1]

if u® € P;, Uﬁepj, and 7 > j

else i = j and |K| > |L|,

else i = j, |K|=|L|, u® > u?,

else |K| =|L|, a = and K; > Ly,

else |[K|=|L|, a=08, K1=1Ly, ..., Kj_1=L;j 1, K; > L;
for some j such that 2 < j <p.

In what follows, we will assume that the term ordering 7 is one of the above. Such term
orderings are said to be total degree term orderings.

Given an ordering which is compatible with differentiation, as described in the conditions
(1) and (2) in §2.1.1, it is not the case that its invariant analogue will be compatible with
invariant differentiation. The problem can be seen by examining the formula (21). The
terms Mg, contain by construction invariants of order NV 4+ 1 where NV is the order of the
normalisation equations, as well as the invariantised infinitesimals of the group action of
order |K|. Thus, if |J|, |K| < N, and I < I, it may not be true that D;Ig < D;I§.
However, we have the following result.

Theorem 6.2. If |J|, |K| > N, then we do obtain compatibility,
Iy <17 = DIy < D,I}
provided the term ordering is a total degree term ordering.

Definition 6.3. We denote the set of all invariant(ised) differential polynomials (i.d.p.’s)
obtained by invariantisation of the differential ring Iz, , to be Z, ,.
Definition 6.4. Given an i.d.p., we may speak of its highest invariant derivative term, which
we denote THDT, the coefficient of the highest invariant derivative term which we denote
IHcoeff, and so forth, (cf. §2.1) and we do so without further comment.

In addition, we need to define the highest monomial of an i.d.p.
Definition 6.5. The head of f is defined to be Head(f) = IHcoeff(f)«IHDT(f)HP(/),
The highest monomial, THmon(f), is defined recursively as follows: if f is a monomial,
I[Hmon(f) = f, else IHmon(f) = IHmon(Head(f)). In the algebraic Grébner basis litera-

ture, the highest monomials are often referred to as “initials”, “leaders” or “tips”.
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Recall the normalisation equations are given by a set of equations ¥y (J7,I%) = 0, A =
1,...,r= dim(G), |[K| < N.
Definition 6.6. We denote by N the set of normalisation equations, while recall HNZ is
the set of highest derivative terms of the normalisation equations. We call the set HNZ the
set of highest normalised invariants.

Example 6.7. If the moving frame equations are
yi =0, ve = 0, vg = 0, 2099 — 33 =0

then the normalisation equations are J'=0, i=1,2,3, I, = 0, Is = 0 and 2I5, — I33 = 0. In an
ordering with y, < y3 the highest normalised invariants are Iy, I3 and I33.

Remark: In a computer algebra environment, invariantisation consists of translating each
term u% to I5, by virtue of the Fels-Olver-Thomas translation theorem, and then simplifying
with respect to the normalisation equations. The simplification is effected by computing a
reduced algebraic Grobner basis of the normalisation equations and then the unique normal
form is given as the simplification. There is no loss in generality in assuming that N is a

reduced Grobner basis for the algebraic ideal it generates.

6.2 Invariantised cross differentiation and reduction formulae

The pseudo-reduction and cross-differentiation formulae are easily translated to formulae for
invariantised differential polynomials using the Fels-Olver-Thomas replacement theorem, the
only additional twist being that we need to take numerators, and we speak of the pseudo-
reduction of an i.d.p. f with respect to the i.d.p. g, and the diffSpolynomial of two i.d.p.s.
However, the result may not exist, or be well-defined. The following discussion identifies the
conditions under which these calculations may be performed with confidence.

Because the invariant derivative operators do not commute, it is necessary to distinguish
paths of differentiation in the various formulae.
Definition 6.8. A path of differentiation is a sequence {(K7,..., K})} in the integer lattice
NP where each component is an increasing sequence in N and for each ¢ there is a unique j
such that K! < K/t

We take one integer lattice, N»“ for each dependent variable u®.
Definition 6.9. A point (Kj,..., K),) in the lattice N> is said to be associated with the

invariant I where K is the multi index consisting of K; 1’s, K, 2’s, and so forth.
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Recall that by construction, the invariantised derivative terms Ij are symmetric in
the index K, that is, I1o» = I5; and so forth, and thus the identification of the point
(Ky,...,K,) € N»® with I is well-defined. It is the correction terms My in the invariant
differentiation formula that are not symmetric in their indices, leading to path dependent
invariant differentiation.

Definition 6.10. We say two paths of differentiation in N** with the same beginning and
end points are comparable if one may be deformed to the other through paths of differen-
tiation without ever passing through a lattice point associated with a highest normalised
invariant (HNT).

Definition 6.11. Given two i.d.p.’s fi, fo such that IHDT(f;) = I%,, IHDT(f2) = I%., let
L', L? be the unique indices of least order such that K'L' = K?L?. Then we call I%,,, the
least common invariant derivative term of f; and fo and denote it by LCD(f1, f2).

Suppose we are given two i.d.p.’s fi, fo whose highest invariant derivative terms are
associated to the same dependent variable u®. Calculating the invariantised diffSpolynomial
of fi, fo will not be possible if the path of differentiation of one IHDT to the LCD(fi, fo)
must go through a highest normalised invariant, HNI (see Figure 1). In this case, it is not
then possible to obtain two equations for LCD( fi, f2); what happens is that the HNI never
appears as it is immediately simplified by the normalisation equations (this simplification is
built into the invariantised differentiation formulae) and therefore the derivatives of the HNI

do not appear either.

Lo l
HNI

I, ® o—@ £CD(f1,f2)

THDT(f,)

L e IHDT(f2)

[ @ @ @ @ @—
u L oLn L haa Lion

Figure 1: The diffSpolynomial(fi, f2) does not exist.

However, diffSpolynomials of derivatives of the f; may exist. Depending on the locations

of the HNI in the lattice, for any two i.d.p.’s f1, fo, there may be several diffSpolynomials
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Figure 2: diffSpolynomials may be path dependent

of derivatives of the f; on non-comparable paths of differentiation. The situation is in
stark contrast to that of the non-invariantised case, where diffSpolynomials of derivatives of
differential polynomials lead to no new integrability conditions.

In higher dimensions, there may be several diffSpolynomials of the f; themselves that are
not comparable. This is illustrated in Figure 2, where two non-comparable paths taking
HDT(f;) to LCD(f1, f2) exist.

The same considerations occur for the reduction of one i.d.p. with respect to another.
Reductions may be path dependent, or may not exist at all.

All these difficulties exist only for equations whose highest derivative terms I satisfy
|K| < N+1 where N is the order of the normalisation equations. The next definition makes
precise the region of the lattices where we may experience these kinds of difficulties.
Definition 6.12. We define N* to be order of the normalisation equations whose IHDT’s

are invariantised derivatives of u®;
N® =max{ -2, |[K|| Iy € HNT}. (51)
The map Norder : Z, , — Z is given by
Norder(f) = N%,  where HDT(f) = I (52)

for some K.
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Note that the map Norder depends on the dependent variable u* occurring in the highest
derivative term of the argument.

Definition 6.13. We define the order of an invariantised derivative term to be,
ord(Ig) = K], (53)

and by extension, the order of an i.d.p. to be the order of its highest invariant derivative

term. Finally, we say an i.d.p. f is N-bounded if
ord(f) < Norder(f) + 1,

and we say a set A of i.d.p.’s is N-bounded if for all f € A, f is N-bounded.

We can summarise the discussion in this section by the following
Theorem 6.14. Analogues of pseudo-reduction and cross differentiation may not exist, or
may be path dependent, for A'-bounded invariant differential polynomials.

The N-bounded invariantised differential polynomials need to be handled carefully. It
will be necessary to modify the Kolchin Ritt algorithm to take into account the difficulties
experienced in this “inner region” of the lattice.

The IKolRitt algorithm we describe in §6.3 will calculate a representative diffSpolynomial
for every “critical path pair”. Next we define this notion. The first definition we make is
the analogue of the concept of a critical pair as it is standardly used in the computational
algebra literature.

Definition 6.15. Two i.d.p.’s whose highest invariants are associated with the same depen-
dent variable u®, are said to be a critical pair provided at least one diffSpolynomial or a
diffSpolynomial of a derivative of them, may be calculated.

Because of the path-dependence of diffSpolynomials, the notion of a critical pair needs to
be extended to include the path of differentiation.

Definition 6.16. Let two not necessarily distinct i.d.p.’s f; and f, of a given system, be a
critical pair, and let P, and P, be paths of differentiation from their respective IHDT’s to

some common derivative term I DT. We say that
(P, P5) ~ (P, Py) (54)

if one path pair may be deformed to the other through paths of differentiation, keeping their
endpoints equal, without passing though any highest normalised invariant. The equivalence

class of such a path pair is said to be a critical path pair for f; and f.
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This equivalence relation partitions, in some sense, the set of diffSpolynomials that may
be calculated for a given system. Figure 3 in §7.2 shows how a nontrivial diffSpolynomial
between a single i.d.p. and itself may arise. Note that diffSpolynomials are not constant on
these partitions. We will conjecture that provided at least one diffSpolynomial from each

partition pseudo-reduces to zero, then they all will.

6.3 The Procedures

Typically we are given ¥, a set of differential polynomials, and the action of the Lie Group
G on the independent and dependent variables. The invariant differentiation formulae mean
that we need only the infinitesimal action of the group on these variables. The choice of
the normalisation equations N' must be compatible with the system ¥ as well as providing
a bona fide moving frame. From this information, we may easily compute the set HNZ,
the map Norder and the correction matrix K. In what follows, we assume that these initial
calculations have been done.

In the following procedures, the function simplify with respect to a set of polynomials C
refers to the process of finding an algebraic Grobner basis of C and taking the unique normal

form.

6.3.1 Procedure Inner

This first procedure is for i.d.p.’s which are A-bounded. The difficulties outlined above
mean that diffSpolynomial and pseudo-reduction calculations are not appropriate. Thus, we
revert to a primitive form of “differential Grobner basis” calculation, in which equations are
differentiated but algebraic Grobner bases calculated, as though the differential equations
were polynomials with each derivative term regarded as a separate indeterminant. Several
differential elimination algorithms use a prolong and algebraic simplification mechanism (cf.
[5, 39]). The path dependence of the calculations is incorporated by performing all possible
differentiations.

We have observed that invariantised differentiation may introduce denominators into our
polynomials, and these need to be removed. Repeated invariantised differentiation leads to
a build up of factors of denominators of elements of the matrix K. These must be assumed
to be non-zero when evaluated on the input system, and hence in the following we remove

all such factors in the simplification processes.
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In algebraic Grobner basis algorithms, it is standard that “new” conditions are recognised
by their highest monomials not belonging to the current set of highest monomials ZN, known

in the commutative algebra literature as the “initial set”.

Procedure Inner(A, 7, ’C’, "Pouter’)
Input: an N-bounded set A C Z,,

a total degree termordering 7

Output:  two sets C, Poyter C Ly g

N :=max{N?}; C:={}; Pouter :={};
IN :={} P:=A
while P # {} do
IN :=ZIN U{IHmon(f) | f € P};
for j from 0 to N do M, :={f € P| ord(f) =7}

P=1k
for n from 0 to N
for f € M,

for j top
g := simplify (numer(D;(f)),C);
if g = 0 then next j
if ord(g) > Norder(g) + 1 then
Pouter := Pouter U {9}
if ord(g) < n then
P:=PU{gh
if Norder(g) > ord(g) > n then
Mord(g) = Mord(g) U {9}
C := Grobner Basis(C U Mg U... UMy U Poyter, T)
P :=PU{f €C|IHmon(f) ¢ N, ord(f) < Norder(f)+ 1}

The output sets of the Inner procedure, C, and Py, satisfy the following properties,

by construction.
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Theorem 6.17. The output set C is N-bounded and a Grobner basis. For all f € C and all
j =1,...,p, either D;(f) reduces to zero with respect to C, or ord(D;f) > Norder(f) + 1.
For all f € Pyyter, ord(f) > Norder(f) + 1.

The set Pouer are those integrability conditions found en route which are either not
N-bounded or on the boundary of the N-bounded region. This set may contain non N-
bounded elements if the mtdeg ordering is used, in which case conditions with a different

highest unknown, and thus a different value under the map Norder, may result.

6.3.2 The Outer Procedure

The Outer procedure is the obvious direct translation of the Kolchin Ritt algorithm for
invariantised polynomials, and is valid in the outer region only. There is one new twist, which
is we perform algebraic simplifications with respect to a set A of A/'-bounded polynomials.
In some sense, we are finding a characteristic set “relative” to A, which will of course be the
output of the Inner procedure.

In this algorithm, the diffSpolynomial calculated is the standard one, obtained by taking
straight line paths of integration from the IHDT’s of f; and f; to their least common deriva-
tive term. The function normal?(e,C) means the normal form with respect to differential

pseudo-reduction by elements of the set C.

Procedure Outer(B,7,A,'C’, Pipner’)
Input: a set B C Z,, such that ord(f) > Norder(f) + 1, all f € B
an N-bounded set A C Z,,

a total degree term ordering 7

Output:  two sets C, Pinner C Zpq

Pinner = {};
C .= B;
pairset:={{f;, f;} | fi, f; € B, fi # f;}
while pairset# {} do
for {{fi, f;}} € pairset do
pairset:=pairset \{ {fi, f;}}
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m := normal?(diffSpolynomial( f;, f;),C)
m := simplify(m, Pipner U A)
if m # 0 then
if ord(m) < Norder(m) + 1 then
Pinner := Pinner U {m}
if ord(m) > Norder(m) + 1 then
pairset:=pairset U{ {f,m} | f € C}
C:=Cu{m}

By construction, the output of the Outer procedure is two sets C and Pj,per of i.d.p.s
satisfying the following result.
Theorem 6.18. The (pseudo)-reduction of all invariantised standard diffSpolynomials of
elements of C with respect to C and A is either zero or is an element of Pj,,.,, and every

element of Pj,er satisfies ord(f) < Norder(f) + 1.

The elements of P, are those integrability conditions found en route whose order places

them in the N-bounded region or on its boundary.

6.3.3 The IKolRitt Procedure

Finally the invariantised Kolchin Ritt procedure IKolRitt combines the Inner and Quter
procedures. It can be seen as a translation of Buchberger’s algorithm for completion of
polynomial systems to a Grobner basis where there are two regions, an inner and an outer.
In the inner region, algebraic Spolynomials and reductions are calculated, with all equations
differentiated to one plus the order of the normalisation equations, while in the outer region,
differential Spolynomials and differential pseudo-reductions are calculated. Because it is
possible that the inner calculation finds integrability conditions in the outer region, and
the outer calculation finds integrability conditions in the inner region, the inner and outer

procedures loop until no further integrability conditions are found.

Procedure IKolRitt (X%, 7, C’)
Input: a finite set ¥ C 7,

a total degree term ordering 7
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Output: asetC CZ,,

P =%
A:={f e€Xord(f) < Norder(f)+1}
B:=X\A

while P # {} do
Inner(A,7, A’ Aputer’)
B := simplify(B, A) U Auter
Outer(B,7,A4,’B,)P’);

A:=AUP;
B:=B\P;
C:=AUB;

As written here, the procedure is hopelessly inefficient. With careful bookkeeping, how-
ever, (diff)Spolynomials will not be calculated more than once.
Theorem 6.19. The IKolRitt procedure terminates by the usual arguments involving Dick-
son’s lemma (a simple discussion of these arguments is given in [22]).
Theorem 6.20. If the group action is trivial, the IKolRitt procedure reduces to the Kolchin-
Ritt algorithm.
Proof: If there are no normalisation equations then for every f € Z,,, Norder(f) = —2
and so ord(f) > Norder(f) + 1. Hence the sets A and Ay, calculated in IKolRitt are
identically empty. Since the differential operators are the usual 9/0z;, IKo1lRitt reduces to
the Kolchin Ritt algorithm.

It can happen that the group action is not trivial but that the normalisation equations are
in terms of differential parameters appearing in the system (this can happen in classification
problems). In this case the sets A and Ayyer calculated in IKolRitt are identically empty.
However, if the differential operators are non-commutative, IKolRitt will not reduce to the
Kolchin Ritt algorithm.

Just as for the Kolchin-Ritt algorithm, it is possible to collect those nontrivial expressions
by which i.d.p.’s are multiplied during the course of a pseudo-reduction calculation. These
will be the IHcoeffs and separants of the i.d.p.’s given or obtained en route. These expressions

are assumed to be nonzero. Setting these by turn to zero and recalculating the algorithm
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leads to a branching calculation which seeks the so-called singular solution varieties. See
[19] for a rigorous discussion of a branching algorithm for characteristic set decomposition

of differential ideals.

7 Discussion concerning properties of the output

In this section we discuss the property of coherence, which is the central concept leading to
output properties of several differential elimination algorithms, including the Kolchin-Ritt
algorithm. Then we discuss the role of the normalisation equations and the syzygies defined
in §3.6. We end with some brief remarks concerning the Buchberger second criterion, which

is used to eliminate unnecessary cross-differentiation calculations.

7.1 Coherence

By construction, the output G of standard Kolchin Ritt algorithm has the property that
for all pairs of differential polynomials in GG, their diffSpolynomial pseudo-reduces to zero
with respect to G. From this property, known as coherence, the output statement of the
Kolchin Ritt algorithm can be deduced. We examine the analogous property for invariantised
systems. Recall the notion of a critical path pair from §6.2.

Theorem 7.1. The output of the IKolRitt procedure has the property that at least one
diffSpolynomial for every critical path pair class (pseudo-)reduces to zero.

Proof: By construction, the standard diffSpolynomial of every pair of equations in the outer
region pseudo-reduces to zero with respect to the output, and such pairs of equations have
only one critical path pair class. Consider next an i.d.p. f; in the inner region and an i.d.p.
f2 in the outer region. An integrability condition may be obtained by differentiating f; to
the boundary of the inner region; this occurs in the course of the Inner procedure. This
derivative is passed to the input system of the Outer procedure, and so a diffSpolynomial be-
tween fy and the derivative of f; will be calculated. Since all possible paths of differentiation
of fi to the boundary are calculated, a diffSpolynomial from each critical path pair class will
be calculated in this way. We remark that it is possible that every path of differentiation of
f1 to the boundary passes through an HNI, so that no integrability condition with f, exists.

The same arguments can be made for two i.d.p.’s in the inner region.

For the standard Kolchin Ritt algorithm, it is sufficient to calculate the minimal (stan-
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dard) diffSpolynomial for each pair of equations given or obtain en route. That is, it is not
necessary to calculate diffSpolynomials of derivatives of the members of the input system.
The reason is that the reduction to zero of the diffSpolynomial of any derivatives is guaran-
teed, provided all the minimal diffSpolynomials reduce to zero[23]. We give here a conjecture
of the analogous result for IKolRitt.

Conjecture 1 The output system of IKolRitt has the property that every diffSpolynomial
of every critical path pair, (pseudo-)reduces to zero.

In the outer region, calculation of pseudo-reductions, cross derivatives and so forth, are
not affected by the non-commutativity of the differential operators provided one is using a
total degree term ordering. This is because the correction terms are bounded by the order
of the normalisation equations. Hence proofs of properties of output that depend only on
the highest order terms should be adaptable to the invariantised procedures. Hence we make
the following definitions and conjecture.

Definition 7.2. For an arbitrary set of i.d.p.’s, G C I, ,, define
O(G) = {f € G|ord(f) > Norder(f)}

Further, let I(G) denote the set of all i.d.p.’s obtainable from G by invariant differentiation,
taking numerators, adding, and multiplying by elements in Z, , a finite number of times. Fi-
nally we denote by S(G) the multiplicative set generated by all factors of highest coefficients
and separants of elements of G.

Conjecture 2 If C denotes the output of IKolRitt, then for all f € I(O(C)) there exists
s € S(C) such that sf pseudo-reduces to 0 with respect to C.

7.2 The role of the normalisation equations and syzygies

The normalisation equations are used to simplify algebraically the input system during the
invariantisation process, and also the result of every invariant differentiation, and thus they

are effectively additional constraints on the input system.

Theorem 7.3. There are two ways in which IKolRitt can yield an inconsistency. The first
is that the input system is inconsistent. The second is that the normalisation equations are

inconsistent with the input system.

As stated in (3.6), one big difference between invariantised and non-invariantised systems
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is the existence of nontrivial syzygies. We discuss next how IKolRitt interacts with these
and the role they play in the analysis of the input system.

The syzygies of the moving frame, given by (26) and (28), are the fundamental compati-

bility conditions of the frame itself, and must hold irrespective of any additional constraints
imposed by the system of i.d.p.’s under consideration. The syzygies must be zero when
evaluated on this system. In particular, if the correction matrix K is simplified with respect
to the system being analysed (to prevent multiple reductions of elements of the correction
matrix K which are introduced with every invariant differentiation), then the normalisation
equations need to be added to the system to prevent loss of information.
Definition 7.4. We say a syzygy is relevant to a set of i.d.p.’s if there exist two (not nec-
essarily distinct) equations fi, fo in the set so that the left hand side of the syzygy (28) is
expressible in terms of IHDT(f;) and THDT(f;). This will be the case when, for example,
the IHDTs are ¢y, I, and I$, I} are fundamental generating invariants, or vice versa.

An example of how IKolRitt computes a relevant syzygy on the input system is shown
in Figure 3. In this example, the two fundamental invariants are F'I;, F'I,, and the syzygy

as evaluated on the system is computed as the diffSpolynomial of derivatives of f.

A
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Figure 3: How a relevant syzygy between the fundamental invariants F'I;,F' I, evaluated on the system may

be computed by IKolRitt.

Conjecture 3 DiffSpolynomials evaluated on inequivalent critical path pairs differ by a
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relevant syzygy. Further, every relevant syzygy (pseudo)-reduces to zero with respect to the
output of IKolRitt.

Even if Conjectures 1, 2 and 3 are proven, it is not clear that a completeness property
similar to that for the non-invariantised algorithm can be readily deduced. As far as the
author is aware, no results in differential algebra, commutative algebra or non-commutative
Grobner basis theories apply. Further analysis of the IKolRitt procedure awaits more

experience with applications and examples, as well as theoretical developments.

7.3 The Buchberger Second Criterion

If the set P,y calculated in the Inner procedure is not output in simplified form, then a
much larger number of diffSpolynomials need to be calculated in the Quter procedure. Thus,
in order to improve the efficiency of the algorithm, one would want P, to be inter-reduced.
However, at least on the face of it, this could lead to possible diffSpolynomials not being
calculated. To see this, consider the diffSpolynomials of an i.d.p., fi, in the inner region
with fo (say) in the outer region. If some derivative of f; does not appear in the output
of Inner procedure, one of the (path-dependent) diffSpolynomials of f; with fo may not be
calculated.

In order to output inter-reduced sets from the Inner procedure with impunity, as well
as for a major efficiency advantage in the Quter procedure, what is required is a version of
the Buchberger second criterion (2] (Proposition 5.70) appropriate for invariantised systems.
The original Buchberger second criterion is implemented as a standard feature in algebraic
Grobner basis packages as it eliminates the calculation of Spolynomials which may be guar-
anteed to lead to no new information. In its simplest form suitable for i.d.p.’s, this criterion
would look like:

if {f1, f} and { fo, f} have been “treated” and the index of differentiation associated
with IHDT( f) divides the index of differentiation associated with LCD(f1, f2), then
the pair {f1, fo} does not need to be “treated”.

In the implementation of IKolRitt discussed in the next section, it is assumed that this
criterion is valid in the Outer procedure. The reason is that the correction terms are of
order strictly less than the highest derivative terms, and thus the proof of such a criterion

should not be affected. Further, we assume that outputting inter-reduced sets from the
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Inner procedure leads to no loss of information.

8 Conclusions, comparisons and implementation

In this article we have shown that many problems arise when trying to analyze a Grobner
basis type procedure for nonlinear differential equations, written in terms of invariants of
a Lie group action. Despite these problems, the methods are a worth-while addition to
the applied mathematician’s armory. The potential of the method to obtain both an in-
crease in efficiency and a substantial decrease in expression swell over the non invariantised
Kolchin-Ritt algorithm is excellent: the invariantised procedure is able to analyze the 2 + 1-
d’Alembert-Hamilton system in seconds (see §8.2.2) whereas the non-invariantised calcu-
lation is intractable. There are several reasons why improvements might hold for general

classes of systems.

1. The normalisation equations are effectively extra conditions, making the system more
over determined, and therefore more tractable. Indeed, the input system has been
projected down to a space with fewer variables, namely, the transversal I of the moving

frame (§3.3).

2. The fundamental syzygies of the normalisation equations evaluated on the system in-

troduce additional integrability conditions, leading to further simplifications.

3. Judicious choice of the normalisation equations can lead to substantial simplification of

the input system when it is invariantised. In particular, nonlinearities may be removed.

Thus, the choice of normalisation equations is crucial. Not only must they be compatible
with the input system, but they should be chosen to simplify the input system as much as
possible. Further, their order should be as small as possible to minimize the calculations of

the Inner procedure.

8.1 Comparison with the method due to Lisle

In [21], Lisle introduced a “moving frame” of operators which corresponds to the set of
invariant operators {D;|j = 1,...,p} used here. The over determined systems considered
were rewritten as polynomials in terms of the form DI and a completion to standard form

algorithm was given, denoted “frame standard form algorithm”. With hindsight, in terms of
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the concepts used in this article, the examples discussed had normalisation equations which
ensured that none of the difficulties with defining diffSpolynomials and pseudo-reductions
arose. A major efficiency problem with the Lisle method is that extensive use of the commu-
tation formulae for the D; is needed. This problem is completely avoided in the procedure
IKolRitt since it uses differential polynomials composed of the I which are invariant under
permutations in the index K, whereas the D I* are not.

Lisle’s application was the classification of Lie symmetries of differential equations con-
taining arbitrary functions of the dependent and independent variables. The over determined
system is for the infinitesimals, and the symmetry group of the over determined system is
the equivalence group of the equation [33]. Indications are that Lisle’s ideas will lead to large
gains in efficiency in computing the classification [27]. The use of the methods described in

the current article should lead to further gains in efficiency.

8.2 Implementation

The procedures given in §6.3 have been implemented as a package Indiff in MAPLE V5!
The implementation assumes that the above conjectures concerning the applicability of Buch-
berger’s second criterion are true. We give here two small examples with brief explanations,
to show how the package may be used. The group prolongation code called by Indiff is
that of Desolv, written by Khai The Vu [41] who was inspired by the remarkable muMATH
programme LIE by Alan Head [18].

8.2.1 Example 1: invariant differentiation

This first example (taken from [29]) shows invariant differentiation and derivation of the

moving frame for the equiaffine group acting on the variables (z,u(z)) as

(x + a,u(z))
(z, u(z) + b)
(z,u(z)) = ¢ (az,u(z)/a)

(z + Bu(z), u(z))
| (z,u(z) + d7)

1See the URL http://www.ukc.ac.uk/ims/maths/people/E.L.Mansfield.html for information on how to obtain the code

and manual.

47



The first step is to load the package Indiff and enter the names of all variables. The
independent variables are denoted vars, the dependent variables ukns, and the group
parameter names by GroupP. This last is not necessary from a programming point of
view, but is a necessary aid for the human user. The symmetry group action is given in
infinitesimal form. The (x,4)th element of XiPhis is the infinitesimal of the xth group
parameter on the sth variable of the concatenated list vars, ukns. The invariant deriva-
tive term I§ is denoted In[u®,K], while the operator D; is calculated using the function

£ Idiff(£f,3);.

> restart:with(Indiff);

[HNI, IKolRitt, IdSpoly, Idiff, Idiffparse, Invariantize, Iorthreduceall, Ireduce,
Ireduceall, Kmat]

> vars:=[x]:ukns:=[u] :GroupP:=[a,b,alpha,beta,deltal:
> XiPhis:=matrix([[1,0],[0,1], [x,-u(x)], [u(x),0],[0,x]1]);

1 0
0 1
XiPhis = z  —u(z)
u(z) 0
L 0 r .

The normalisation equations, Negs, are the invariantised moving frame equations. The
function HNI calculates the set HNZ, denoted by the global variable HNI1list, and infor-
mation to calculate the map Norder is collected in the global variable DegDiffTable. The
function Kmat calculates —K.

> Negs:=[In[x],In[u,[1],Inlu,[1]1],In[u,[1,1]1]1-1,In[u,[1,1,1]1]1]:

> HNI([[1],[ull,ttdeg):

> KmatQ);

1
1 00 —g Inu,[l,l’l,l] 1

We show the invariant differentiations of each of 1111, ..., I111111. Since I11 is a normalised

invariant, its derivative is zero.

> for j from 3 to 6 do Idiff(In[u,[1$j1],1) od;
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Ing,,1,1,1,1)

Inu,[l 1,1,1,1,1] —5I"u, [1,1,1,1]2

77777

I, 1, 1,101,110 = TIng 1,1, 1,0 T, 11,1,1,1,1)

To actually see what the invariants and the moving frame equations are in terms of
derivatives of u, and to verify that Neqs determines a bona fide moving frame, the MAPLE
library package PDETools [dchange] written by E. Cheb-Terrab is useful. We first enter the

variable transformation,

(1+p6)(z—a) pB(ulz) D)
a

a

tri={y = ,v(y) = —ba(z—a) + (ulz) — b) a}

The translation parameters are normalised to be (a,b) = (z,u). Calculating the first three
lifted derivatives to find suitable equations for the rest of the moving frame, the first is,
> mnormal(dchange (tr,diff (v(y),y), [x,u(x)1));

C 25— (2 @)
15 80— (2 u(@)

If we take v, = 0 as the first equation, we obtain § = u,. Continuing, we see that the

normalisation equations as given in Negs yields a bona fide moving frame:

Y B 1 1 38—5311(37)
ﬁame.—é—%u(x)aa_W’ﬂ__gm

Using dchange and frame, one may now calculate the fourth order and higher invariants.

For example,

> dchange (tr,diff (v(y),y$4), [x,u(x)]) :subs(frame,%) : In[1111] :=factor (%) ;

b 1 =B u(@)’ +3 (G u() (g u()
1111 -— 3 (86—;211(:);))(8/3)

Similarly one may obtain the invariant derivative operator, which is u;xl/ 36/ Oz, and the

formulae (55) may be confirmed.

8.2.2 Example 2: analysis of an invariantised system

This second example shows the output of IKo1Ritt on the system (7) with f(u) = 2/u. The

same information as for Example 1 must be entered. The result of Kmat () is the negative of
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(37). We verify a selection of the normalisation equations have zero derivatives, and enter
the invariantised system directly, having first ascertained that I;; is zero on the system.
The argument [[1,3,2], [u]l] of HNI and IKolRitt indicates that an ordering based on
r < z < y is required. The set Xset consists of those expressions by which an i.d.p. is
multiplied in the course of a pseudo-reduction. These must be non-zero. The NonZero set

are those expressions which may be removed if they occur as a factor.

> restart:with(Indiff):
> vars:=[x,y,z] :ukns:=[u] :GroupP:=[k1,k2,k3,thetal,theta2,theta3]:
> XiPhis:=matrix([[1,0,0,0],[0,1,0,0],[0,0,1,0],[-y,x,0,0],[-2,0,%,0],
[0,-z,y,0]11):
> Negs:=[In[x],In[y],In[z],In[u,[2]],In[u, [3]],
2%In[u, [2,2]11-In[u, [3,3]1]1]:
> HNI([[1,3,2],[ul]l,ttdeg):

> Kmat():

> seq(factor(Idiff(Neqgs([6],j)),j=1..3);
0,0,0

> gl:=In[u, [1]]-1:

> Idiff(gl,1);
Iny, (1,1

> g2:=3%In[u, [1]1*In[u, [2,2]]-2:
> TIKolRitt([gl,g2]1,[[1,3,2],[ul]l,ttdeg,’C’,info= {’Xset’},
NonZero={In[u, [11});

the Xset is generated by {In[u,[1], In[u,[2, 311}

(I, (215 I, (35 T, 1) — 1, 2104, 2, 9) — Iy, (3,3, 3 Ing, [ 1Ny, [3,3) — 4,
16 Iny, (2,3 + Iny, (3,3 Inu, 1,25 I, 1,30 T, (1,15
Iny [2,2,2) = 3 Iny, || Iny,[2,3] TNy, [2,2,3], — 1Ny, [2,2,2] — 1Ny, (2,3, 3),
Iny, [2,2,3) + Iny,[3,3,3), 16 Iny, [1,2,2] + 3 Iny, [3,3°,
21ﬂu,u,z3]+'31huJ13]InuJ3;ﬂ,161ﬂu,u,&3]+'151ﬂu,p,ﬂ2,Iﬂu,u,Lzb

Iny 11,1,3) I, [1,1,1]]

The IKolRitt calculation took 22.64 seconds on a 500MHz Pentium III processor having
512Mb RAM, with MAPLE V5 running under Red Hat Linux 6.0.

50



Acknowledgements

The author is indebted to Peter Olver who explained the moving frame method in a series of
informal seminars at the Mathematical Sciences Research Institute, Berkeley, answered many
questions and supplied a much needed more general formula for the correction matrix than
that given in the original papers. The hospitality of the Mathematical Sciences Research
Institute, Berkeley, where the research for this this paper was carried out, is gratefully
acknowledged. In particular the author is grateful to Michael Singer who co-chaired the
special semester in “Symbolic Computation in Geometry and Analysis” at the MSRI during
the fall of 1998, for his encouragement and support. The author also thanks Peter Clarkson,
Karin Gatermann, Ed Green, Evelyne Hubert and Greg Reid, for their helpful discussions
concerning the research described here. Finally the author thanks the referees and the Editor

for extensive comments on the exposition.

References

[1] M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse
Scattering L.M.S. Lect. Notes Math., vol. 149 (C.U.P., Cambridge, 1991).

[2] T. Becker and V. Weispfenning, Grébner Bases, Graduate Texts in Mathematics,
Springer Verlag, New York, 1993.

[3] F. Boulier, D. Lazard, F. Ollivier and M. Petitot, Representation for the radical of a
finitely generated differential ideal, in: A. Levelt, ed., Proc. ISSAC ’95 ACM Press,
New York, 1995.

[4] B. Buchberger, Applications of Grébner bases in non-linear computational geometry,
in: J.R. Rice, ed., Mathematical Aspects of Scientific Software, IMA Volumes in Math-
ematics and its Applications, 14 (Springer-Verlag, New York, 1988) 52-80.

[6] G. Carra-Ferro, Groebner bases and differential algebra in: L. Huguet and A. Poli, Eds.,
Proceedings AAECC, Lect. Notes Comp. Sci., 356 (1989) 129-140.

[6] P.A. Clarkson and P.J. Olver, Symmetry and the Chazy Equation, J. Diff. Eq. 124
(1996) 225-246.

o1



[7] C.B. Collins, Complex potential equations I, Math. Proc. Cambridge Philos. Soc. 80
(1976), 165-187.

[8] C.M. Cosgrove, private communication, 1991.

[9] R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience Publications,
John Wiley, New York, 1962.

[10] D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms, Undergraduate Texts
in Mathematics, Springer Verlag, New York, 1992.

[11] M. Fels and P.J. Olver, Moving Coframes I, Acta Appl. Math. 51 (1998) 161-213.
[12] M. Fels and P.J. Olver, Moving Coframes II, Acta Appl. Math. 55 (1999) 127-208.

[13] W.IL. Fushchich and I.A. Yegorchenko, Second order differential invariants of the rotation
group O(n) and of its extensions: E(n), P(1,n), G(1,n), Acta Appl. Math. 28 (1992)
69-92.

[14] W.I. Fushchich, R.Z. Zhdanov, I.A. Yegorchenko, On the reduction of the nonlinear
multi-dimensional wave equations and compatibility of the d’Alembert-Hamilton sys-

tem, J. Math. Anal. App. 161 (1991) 352-360.

[15] K. Gatermann and F. Guyard, Grébner bases, invariant theory and equivariant dynam-

ics, J. Symb. Comp. 28 (1999) 275-302.

[16] K.O. Geddes, S.R. Czapor and G. Labahn, Algorithms for Computer Algebra, Kluwer
Academic Publishers, Boston 1992.

[17] D. Hartley and R.W. Tucker, A constructive implementation of the Cartan Kahler
theory of exterior differential systems, J. Symb. Comp. 12 (1991) 655-667

[18] A.K. Head, LIE, a PC program for LIE analysis of differential equations, Comp. Phys.
Commun. 96 (1996) 311-313.

[19] E. Hubert, Factorisation free decomposition algorithms in differential algebra, J. Symb.

Comp., 29 (2000) 641-662.

[20] N.H. Ibragimov [Ed.|, CRC Handbook of Lie Group Analysis of Differential Equations,
Volumes 1-3, CRC press, Boca Raton 1995.

52



[21] I.G. Lisle, Equivalence Transformations for Classes of Differential Equations, PhD The-
sis, University of British Columbia, 1992.

[22] E.L. Mansfield and P.A. Clarkson, Applications of the differential algebra package
diffgrob2 to classical symmetries of differential equations, J. Symb. Comp. 23 (1997)
517-533.

[23] E.L. Mansfield and E.D. Fackerell, Differential Grobner bases, preprint 92/108, Mac-
quarie University (1992).

[24] E.L. Mansfield, G.J. Reid and P.A. Clarkson, Nonclassical reductions of a 3+1 cubic
nonlinear Schrédinger system, Comp. Phys. Comm. 115 (1998) 460-488.

[25] E.L. Mansfield, diffgrob2: A symbolic algebra package for analyzing systems of PDE
using MAPLE, preprint M94/4, Exeter University, 1994.

[26] E.L. Mansfield, The differential algebra package diffgrob2, MapleTech 3 (1996) 33-37.

[27] E.L. Mansfield, Computer algebra for the classification problem, in: N.H. Ibragimov,
K.R. Naqvi, E. Straume, Eds, Modern Group Analysis VII, Mars Publishers, Trondheim,
1999. pp211-217.

[28] M.B. Monagan et al, Maple Programming Guide, Springer Verlag, New York, 1996.

MAPLE and MAPLE V are registered trademarks of Waterloo Maple Inc.

[29] P.J. Olver, Classical Invariant Theory, London Mathematical Society Student Texts 44,
Cambridge University Press, Cambridge, 1999.

[30] P.J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, Cam-
bridge, 1995.

[31] P.J. Olver, Applications of Lie Groups to Differential Equations, Second Edition,
Springer Verlag, New York, 1993.

[32] P.J. Olver, private communication, 1998.

[33] L.V. Ovsiannikov, Group Analysis of Differential Equations, [Trans. W.F. Ames| Aca-
demic Press, New York, 1982.

53



[34] G.J. Reid, Algorithms for reducing a system of PDEs to standard form, determining
the dimension of its solution space and calculating its Taylor series solution, Furo. J.
Appl. Math. 2 (1991) 293-318.

[35] G.J. Reid, A.D. Wittkopf and A. Boulton, Reduction of systems of nonlinear partial
differential equations to simplified involutive forms, Fur. J. Appl. Math. 7 (1996) 604
635.

[36] J.F. Ritt, Differential Algebra, Dover Pub., New York, 1950.

[37] C.J. Rust and G.J. Reid, Rankings of partial derivatives, in: W. Kiichlin, Proc. ISSAC
‘97 (ACM Press, New York, 1997) 9-16.

[38] J. Schii, W.M. Seiler and J. Calmet, Algorithmic Methods for Lie Pseudogroups, in
Proc. Modern Group Analysis: Advanced Analytical and Computational Methods in
Mathematical Physics, [Ed.] N. Ibragimov, M. Torrisi and A. Valenti, Kluwer, Dordrecht
1993.

[39] W.M. Seiler, Applying AXIOM to Partial Differential Equations, Preprint, Universitit
Karlsruhe, 1995.

[40] A.M. Tresse, Sur les invariants différentiels des groupes continue de transformation, Acta

Math. 18 (1894) 1-88.

[41] Khai T. Vu, Computer Algebra and Symmetry: the package Desolv, PhD Thesis,
Monash University, 1998.

[42] D. Zwillinger, Handbook of Differential Equations, Second Edition, Academic Press,
Boston, 1992.

54



