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Elizabeth L. Mansfield

This project concerns applications of continuous (Lie) group actions on function approximation

spaces. The single most important application envisaged in the course of the grant is to variational

problems which have an inbuilt symmetry – specifically, to embed conservation laws exactly into

numerical code.

Variational problems are endemic throughout physics and engineering.

“Principles of optimisation such as minimum time, minimum flow resistance and mini-

mum power expenditure have been invoked through the history of science and common

speech . . . The deterministic success of these principles has become so routine that suc-

cess is taken for granted.” A. Bejan, Shape and Structure, from Engineering to Nature,

Cambridge University Press, Cambridge, 2000.

Variational problems with a continuous symmetry group have guaranteed conservation laws. The

PI has been concerned about automatically embedding conservation laws into numerical code ever

since speaking to a Met Office mathematician, (Ian Roulstone, now at Surrey). She was told that

the reason the Met Office failed to predict the 1987 hurricane was decided, after due investigation,

to be that the relevant numerical models did not preserve potential vorticity.

The 1987 Hurricane: code that incorporated potential vorticity could have predicted it

Potential vorticity is a conservation law arising via Noether’s Theorem from the particle rela-

belling symmetry; a rather subtle and seemingly non physical pseudogroup action. It is not at all
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obvious how to incorporate into a numerical model, in a bona fide way, such a conservation law. If

one stops to think about it, it is not obvious how to incorporate even a simple conservation law like

angular momentum. Even now, how to solve numerically the rigid body equations is still a subject

of active research (even though Euler found the equations in the 1700’s!) albeit as a prototype

problem. While incorporating potential vorticity exactly into numerical code is a “holy grail”, along

the way there should be a wide range of applications whose impact is assured although the specifics

can only be conjectured at present.

As computers become faster, it becomes feasible to use code that in earlier times would have

been deemed too expensive in time and memory required. This is the premise of the growing field

of geometric integration, which offers significantly improved qualitative information (at a minimum)

in the numerical integration of differential systems.

1 Mathematical Background

The project builds on classical Calculus of Variations and modern function approximation methods.

The main novel techniques used are moving frames and discrete variational methods. The overall

context is geometric integration, an increasingly hot topic in numerical analysis.

Moving Frames

Sophus Lie famously introduced and applied smooth group actions to differential systems from

the early 1870s to the late 1890s. Tresse used the invariants of such actions to study the equivalence

problem for ordinary differential equations in a prize-winning essay in 1896. This extraordinary work

has assumed new importance in the search for on-line symbolic integrators of nonlinear ordinary

differential equations, such as Maple’s dsolve. Cartan famously applied the notion of a moving

frame to solve higher dimensional equivalence problems in differential geometry, relativity, and so

on (1920s and 1930s). Moving frames were further developed and applied in a substantial body of

work, within differential geometry and using mostly exterior differential calculus as the preferred

language, see for example papers by Bryant, Green and Griffiths (1970s and 1980s).

A breakthrough in the understanding of moving frames came in a series of papers by Fels and

Olver in 1998 and 1999, which provide a coherent, rigorous and constructive moving frame method

free from any particular set up, and hence applicable to a huge range of examples, from classical

invariant theory to numerical schemes. There have already been applications to discrete spaces; to

computer vision (for example, [4]) and to invariant numerical schemes [11].

To date the main application of moving frames to function approximation is the multi-space

construction [17] with which the PI has some experience [14].

Discrete Variational Methods . . .

Variational principles are a central concept in the analysis of physically important models, and

for systems described by differential expressions, the Calculus of Variations is a mature subject.

The systematic study of Lagrangians and the derivation of Euler-Lagrange operators for difference

systems is relatively recent, dating from the 1980’s (Maeda and Kuperschmidt).

A variational calculus is formulated in terms of an “exact differential complex”; the most famous

example of this concept is the grad-curl-div sequence of operators. Exactness means that if one

operator in the sequence sends an expression to zero, then that expression is in the image of the
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previous operator in the sequence. Thus, if the curl of a vector field is zero, then locally it is the

gradient of a function. The extended sequence grad-curl-div-Euler Lagrange-Helmholtz is still exact,

and is known as the continuous variational complex.

It is now recognised that for a stable numerical scheme, it is important to mimic this exactness.

“In many contexts it is not enough that the numerical scheme be close to the original

problem in a quantitative sense for it to inherit stability . . . the exactness properties

of discrete differential complexes and their relation to differential complexes associated

with the PDE are crucial tools in establishing the stability of numerical methods.”[1]

. . . and function approximation

The complexes used by Arnold, Falk and Winthur [2] involve polynomial function spaces of

various kinds. These are related to constructions of so-called “Whitney forms” [3] which at low

order are in fact simplicial approximations coming from classical algebraic topology. There is a

lot of research activity in the general area of “discrete differential forms”, for example by Marsden

and his co-workers, and more under the titles “mimetic methods”, “finite volume” and others, with

problems in the numerical solution of Maxwell’s equations being a big motivating factor.

Also of interest are splines, wavelets and frames [6]. A student of the PI, Jun Zhao, has developed

a discrete variational calculus for spline based approximations.

. . . and Noether’s Theorem: The Challenges

One of the most important applications of having a precisely formulated variational structure is

Noether’s Theorem. This result allows one to deduce conservation laws from symmetries, illustrated

schematically in Figure 1. The application of Noether’s Theorem consists in the smooth classical

case of a recipe for manipulating differential equations. The challenge is thus, what should replace

this when we have only columns of numbers?

Symmetry Conservation LawNoether’s Theorem

Figure 1: Challenge One: What replaces the black box for numerical data?

Some examples studied in physics and engineering are

Symmetry Conservation Law

Translation in time Energy

Translation in space Linear momentum

Rotation in space Angular momentum

Particle relabelling Potential vorticity

The list shows that the symmetries often involve actions in the base space; but the base space is

what is discretised! This intellectual challenge is illustrated in Figure 2.

3



A
sy

m

metry is
a

S
M

O
O

T
H act

io
n

o
n

a
sm

o
ot

h

space. . .

C
an’t

m
ov

e

if
the

dots

are

fix
ed

Figure 2: Challenge Two: what replaces group actions on the base space after it is discretised?

Solutions to the challenges The solution to the Challenges is to induce the group action on

the moments used in the function approximations. This works because you can replace expressions

in standard differential terms by expressions in moments in the formulae that Noether’s Theorem

gives you. Specifically: the PI’s idea in (Track record, [3]) was to replace the “web” of concepts

and their relationships that underpin the proof of Noether’s Theorem, with an analogue suitable

for the function approximation space at hand. This is illustrated schematically in Figure 3. The

top diagram is the part of the variational complex used to derive Noether’s Theorem for smooth

differential Lagrangians [15]. The second is the analogue for Finite Element developed by the PI

in discussion with Reinout Quispel. The analogue builds on work by Douglas Arnold (Minnesota)

and co-workers, who show that the relevant concepts in the left half of the web have meaning for

users of Finite Element approximations. Approximations that fit the left half are guaranteed to be

numerically stable [1]. The right half gives the structure needed for the variational calculations. The

proof of Noether’s Theorem requires the join of the two halves.
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Figure 3: Conceptual pattern matching to create a variational complex

All in all, the interpretation and implementation of the extremely theoretical result in (Track

record, [3]) for particular function spaces and their numerical representation, is needed. This is the

part that needs work: from intuiting how to solve a problem to actually carrying it out in a practical

way is a large step requiring new ideas, time and resources.

Geometric Integration is concerned with the idea that discretisations should inherit the struc-

ture of the original model; the idea is philosophically attractive and increasingly popular. “Structure”

includes concepts like symmetry, a symplectic form, or first integrals [13]. There are two approaches

to the numerical solution method for variational problems with a Lie group symmetry:
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• The first is to study a related discrete variational problem, one that has both the correct con-

tinuum limit and the group invariance built in from the start. By virtue of a discrete Noether’s

theorem, this ensures the existence of a matching discrete conservation law with no further effort on

the part of the programmer. A recent paper where this principle is applied (by bona fide numerical

analysts and physicists) is [7].

• The second is to consider the general class of invariant differential systems, which include Eu-

ler Lagrange equations arising from an invariant Lagrangian. Such systems can be analysed using

moving frames which provide a “divide and conquer” solution mechanism. The pieces are (i) the

evolution of the invariants, and (ii) an evolution in the group of the form,

ρs = Aρ (1)

where A is in the relevant Lie algebra whose components are invariants, and s is an independent

variable. Some applications, especially in integrable systems, are concerned only with the evolution

of the invariants, while others, such as mechanics (e.g. spinning tops) are concerned solely with

the evolution in the group. But in general, both evolutions are important. The classical Lie group

reduction techniques work for one-dimensional continuous group actions and more generally, solvable

Lie groups, while the PI has shown that moving frames work, in principle, for arbitrary Lie symmetry

groups (Track record, [1]).

The numerical integration of equations of the type (1) have been intensively studied [10]. How-

ever, the results thus far are for the initial value problem, while variational problems tend to be

boundary value problems.

2 Long term Aims of the line of research of this Project

This project is the first step to achieving these long term aims:

Aim 1 Commercial numerical code that incorporates conservation laws of variational systems exactly,

by virtue of incorporating the symmetries that give rise to the conservation laws, into the

corresponding discretised variational model. Please see the Impact Plan.

Aim 2 Commercial numerical code that incorporates the foliated nature of the solution set of a Lie

group invariant differential equation exactly, by virtue of incorporating the symmetries that

give rise to the foliation, into the discretisation.

First must come the mathematics, then “in principle” code with worthwhile examples, then efficient

code. Specifically, what is needed first are coherent, accessible, practical and philosophically well

grounded accounts to be developed and written of

1. the mathematics of Lie group actions on function approximation spaces, for example, those

used in Arnold et al’s discussion of the Finite Element method [2],

2. the theorems yielding discrete versions of Noether’s Theorem, in particular how they may be

understood in the computational sense

3. the solution of equations of the type (1) when the components of A are known only in terms

of a given function approximation space.
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3 Programme and Methodology

The proposal mostly is about achieving short term objectives that will help achieve Aim 1 above.

The logical order of events is as follows:

Obj. 1 Develop and write a coherent, practical account of Lie group actions on function approximation

spaces. Investigate examples of invariants and relations the invariants satisfy, and how these

invariants are used. This is necessary because the PI couldn’t find one.

Obj. 2 Develop and write a coherent and practical account of the application of moving frames to

obtain new theorems about invariants of Lie group actions on function approximation spaces.

Obj. 3 Develop and then write a coherent and practical account of the analogue of Noether’s Theorem

for finite element discretisations of variational problems.

Obj. 4 Investigate in detail worthwhile examples, complete with coding and computer generated re-

sults and graphics.

Obj. 5 Write and make publically available, code that works on a variety of inputs that uses the new

ideas developed during the course of the project.

While there is a theoretical account of Noether’s Theorem for finite element discretisations of

variational problems, (Track record, [3]), it is far from being practical. A whole second set of ideas

is needed.

The PI and PDRA will collaborate on solving the mathematical problems inherent in Objectives

1-3. The PDRA will then work on Objectives 4 and 5 while the PI concentrates on communicating

the mathematical results to an audience broader than that of the immediate research papers. Finally,

the calculations on practical examples will be communicated.

3.1 Relevance to Academic Beneficiaries

The academic beneficiaries will be researchers in a wide range of engineering and mathematical

fields.

Increasingly, researchers are looking for ways of how to include into a discretisation, a wide

variety of geometric structures enjoyed by the continuous mathematical models. Symmetries abound

in nature, such as translation in time and space, rotation in space, pseudo-rotations in space-time,

with scaling symmetries, particle relabelling symmetries and so forth also common. Usually, these

symmetries are built into the continuous mathematical models but not their discretisations, because

no-one knows how to do it, at least, not algorithmically.

Symmetries of finite difference variational problems have been well investigated in the last decade,

the most general results to date being in [9], but have been mainly taken up by people interested in

integrable systems.

The idea to build symmetry into more sophisticated numerical schemes for variational problems

is starting to be taken up by numerical analysts and physicists, see for example [7]. This project

proposes to develop a largely algorithmic approach to incorporating into discretisation schemes

currently in use, those conservation laws arising from symmetries for variational problems. This

includes a wide variety of conservation laws for physical problems.

6



While rooted in classical applied analysis, the project builds on work which has appeared only in

the last 10 years. The seminal papers by Fels and Olver [8] on the moving frame method appeared

in 1998-99, while the Kogan and Olver paper [12] on the invariantized variational complex appeared

in 2004. The PI’s paper on Noether’s theorem for finite difference and finite element Lagrangians

appeared in 2006 (Track record, [4]), while her simplified derivation of invariant Euler Lagrange

equations is to appear (Track record, [1]).
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