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Abstract

Given a geometry defined by the action of a Lie-group on a flat manifold, the Fels—Olver moving
frame method yields a complete set of invariants, invariant differential operators, and the differential
relations, or syzygies, they satisfy. We give a method that determines, from minimal data, the
differential equations the frame must satisfy, in terms of the curvature and evolution invariants that
are associated to curves in the given geometry. The syzygy between the curvature and evolution
invariants is obtained as a zero curvature relation in the relevant Lie algebra. An invariant motion
of the curve is uniquely associated with a constraint specifying the evolution invariants as a function
of the curvature invariants. The zero curvature relation and this constraint together determine the
evolution of curvature invariants.

Invariantizing the formal symmetry condition for curve evolutions yield a syzygy between dif-
ferent evolution invariants. We prove that the condition for two curvature evolutions to commute
appears as a differential consequence of this syzygy. This implies that integrability of the curvature
evolution lifts to integrability of the curve evolution, whenever the kernel of a particular differential
operator is empty. We exhibit various examples to illustrate the theorem; the calculations involved
in verifying the result are substantial.
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1 Introduction

Much has been written about the connection between geometry and integrability. Indeed, many
integrable equations have been shown to describe the evolution of curvature invariants associated
to a certain movement of curves in a particular geometric setting [3, 4, 8, 13, 22, 26]. Some of
the literature might give the impression that integrability arises from intrinsic properties of the
underlying geometry. As was pointed out clearly in [22] this is not the case. However, it is easier to
detect the integrability of the curvature evolution than that of the curve evolution, cf. [5].

Therefore the question arises whether integrability of the curvature evolution can be lifted to
imply the integrability of the motion of the curve [14]. Hasimoto [8] showed that the invariant
function ¢ = kexp(i [ 7), where k and 7 are the curvature and torsion of a curve v in Euclidean
three space, evolves according to the integrable nonlinear Schrédinger equation

) 1
Y = z(¢zz + §¢|1/1|2); (1)
provided that the curve v evolves according to the vortex filament equation

Yt = Ke€s3, (2)

which relates the velocity of the curve to the bi-normal vector of the Serret—Frenet frame. Sub-
sequently, Langer and Perline [14] translated the hierarchy of generalized symmetries of (1) to a
hierarchy of commuting geometric curves, thereby establishing the integrability of equation (2) it-
self. Thus it seems that assigning to a curve its curvature functions gives rise to pairs of equivalent
integrable equations [15].

In recent papers the lifting of integrability has been assumed. For example, in [4] it is remarked,
“in view of the equivalence between the integrable equations for the curvature and the invariant
motion, the motion law should also be integrable”. Again, in [2] we find, “geometric evolutions
would also be integrable in the sense that their associated curvature evolutions are, given that these
determine the curve up to the action of the group”. Moreover, in [12] it is stated, “We’ll say such
a flow is integrable if it induces a completely integrable system of PDE for curvature and torsion”.
However, such statements need justification, and more precision as to what aspects of integrability
are meant. We will take the existence of symmetries to be the signature of integrability and we will
demonstrate the lifting of integrability in this precise way.

The method of moving frames provides a powerful tool to study geometric properties, i.e., prop-
erties invariant under the action of a transformation group. This technique was introduced by
Darboux, who studied curves and surfaces in Euclidean geometry, and was greatly developed by
Cartan who used it in the context of generalizing Klein’s Erlangen program. The formulation of
the method by Fels and Olver [6, 7] placed Cartan’s constructions on a firm algebraic foundation.
Their approach lead to new applications that would not have been envisioned by Cartan, such as to
computer vision and numerical schemes that maintain symmetry [24].

The Fels—Olver moving frame method provides a generating set of invariants together with a
maximal set of invariant differential operators and the differential relations, or syzygies they satisfy.
These data are all obtained with respect to a specific frame, which depends on a choice of submanifold
which is transverse to the group orbits. One advantage of the method is its accessibility. In section
82 we describe the ideas in the simplest possible language, the main tool being the chain rule
of multi-variable calculus. More importantly, the method describes algorithmically what to do



in any particular application and the calculations we require can be performed in a rigorous and
straightforward way using symbolic software packages [1, 18].

The purpose of this paper is twofold. Firstly, in section §3 we present a method that provides the
evolution equation for the curvature invariants of a curve, moving in a geometry which is given by
the local action of a Lie-group on a manifold. The equation for the curvature invariants of a curve
derives from a syzygy between sets of invariants. This is a zero-curvature condition in the relevant
Lie-algebra and can be written in the form

Ky = HItJ (3)

where H is a (matrix) differential operator, k are the curvature invariants and I; are the generating
evolution invariants (see §2.3). Our contribution is to provide, from minimal data, the differential
equations the frame satisfies using methods suitable for symbolic computation. These are obtained
without solving for the moving frame, which, in general, is the central computational problem. The
main result in §3, Theorem &, is thus of independent interest.

The actual curvature evolution equation is obtained from relation 3 by specifying a constraint

It = F[H]a

where F' is a (vector) function of the curvature invariant and their derivatives. This constraint is an
invariant description of the evolution of the curve. Thus, one does not have to know the curvature
invariants explicitly to obtain their evolution. However, there is a price to pay. From our point of
view the filament equation is rather symbolic when one neither knows the curvature function s, nor
knows how to calculate the frame p = (e1, e2, e3). Within our approach there are two cases where an
explicit form for the curve evolution may be obtained. Either one is able to solve the normalization
equations (§2.2) for the frame, or one can use the Fels—Olver—Thomas replacement theorem (§2.3) to
obtain the invariants in terms of classically known invariants of the group action. In either case the
explicit expression for the curvature invariants provides the Miura transformation from the curve
evolution to the curvature evolution.

The constraint might lead to an integrable equation for the curvatures. In section §4, we answer
the question whether integrability can be lifted: Suppose that a curvature evolution is integrable,
what can one say about the motion of the curve? This is the second purpose of the paper. As we
take the existence of infinitely many commuting symmetries to be the signature of integrability,
our approach is to compare the symmetry conditions of both evolutions. The invariant form of the
symmetry condition

Dt1 Uy, — DtZ’U.t1 =0

becomes a relation between the evolution invariants
C(Ily, It,)) = Dy, It, + My, — DIty — My, =0, (4)
with correction terms M (see §2.3). For two invariant curve evolutions, specified by
I, = Fik], i =1,2, (5)

the relation (4) gives a condition on the functions F;, which is called the symmetry condition and is
denoted as

C(Itl ) It2) I —F, =0. (6)



We show that the symmetry condition for curvature evolutions k:; = HF;, i = 1,2 appears as a
differential consequence of (6), that is

Dtllﬁltg — Dt2:‘it1 - [Dtl,Dt2]I€ = HC,

evaluated at the constraints (5). This implies that integrability does not necessarily lift from the
curvature evolution to the curve evolution. However, most commonly studied integrable curvature
equations are homogeneous polynomials or rational functions of the differential invariants. Since in
these classes the kernel of the differential operator H is empty, pairs of integrable equations result,
cf. [15]. In order to illustrate the scope of the theorem and the power of the method, we include, for
several geometries, the explicit calculations that one would need to perform in the absence of the
general result.

2 Moving frames a la Fels and Olver

In this section we briefly describe the Fels and Olver moving frame formulation [6, 7], in the language
of undergraduate calculus. We give those details necessary to understand the proof of the main
theorem of the next section, Theorem 8. We provide two expository examples which will be used in
the sequel.

2.1 Group actions and prolongation

We are concerned with ¢ functions u® that depend on p variables z;. New functions are obtained
by differentiation and these will be denoted using a multi-index notation, e.g.

2 0,
U2 = 5 oo —U-
0x10z,

We consider all functions as independent and let them be the co-ordinates of a space M. Points in
M will be denoted by z = (z1,...,zp,ul,...,ul,ul,...). In other words, M is the jet bundle of the
(p + q)-dimensional fibered manifold X x U where X is the space of independent variables and U is
the space of dependent variables.

We will denote by A the ring of smooth functions on M, that depend on finitely many arguments.
To indicate functional dependence of f € A we simply write f(z). The action of 6%1, extends to an
action on A by the total differentiation operator

D=2 +i2ua~i (7)
'_633,- o Kz@u?('

We assume we are given a smooth left action of an r-dimensional Lie group G on the manifold
X x U. By prolongation we will get a left action on M, which is calculated using the chain rule of
differentiation. The action * : G x M — M satisfies gh x 2 = g x h x z. A right action on A is then
given by e : G x A — A; ge f(2) = f(g*2).

The image of a point under the action is denoted variously as

gxz=2=F(z,9)
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or in terms of the co-ordinate functions as
g.xj:fj:Fj(zag)a gou?{:u%:Fﬁ(z,g)

The different notations are used to ease the exposition, depending on the context. The property of
x being a left action (or e being a right action acting component-wise on vector valued functions) is
equivalent to F'(g * z,h) = F(z, hg).

The prolonged action is given explicitly by

geui ;=D;---D;F*(z,9), (8)

Q..

where

D; (D)1 Dy (9)

[
M=

=~
Il

1

and the coefficients are obtained from the Jacobian matrix (Dxz)g = (D;iZr) L.

The group elements g € G will be given in co-ordinates g = (91, ...,9,). With the group action
comes an action of its Lie algebra, obtained by formally expanding the group around its identity
e € G. Let g(€) C G be any one parameter subgroup of G such that g(0) = e. Using the chain rule
and Taylor’s formula we obtain

- ~ 0% dgi(e)
S e; 9gi(€) lg(e=e de

where g;(€) are the co-ordinates of g(e¢). Thus the infinitesimal generator of any one parameter
subgroup is a linear combination of ‘basic’ infinitesimal generators. Their components are called
the infinitesimals of the group action with respect to the i-th group parameter. A commonly used
notation is

o;
C(2) =

5],1( ) 691

They classically depend only on (x,u). By iterative use of the chain rule, we may obtain recursion
formula for the prolonged infinitesimals

N
g:e7 ¢,z(z) - agl

(10)

g=e

N Dz
¢K,i(z) = 6911{

(11)
g=e
in terms of the §;; and ¢%. The recursion formula and its derivation can be found in textbooks on
symmetries of differential equations cf. [7, Theorem 2.36]. Further, they have been implemented in
virtually every computer algebra system as part of Lie’s algorithm to find symmetries of differential
equations. A review of the software packages available has been given by W. Hereman in [11], (Vol.
ITI, Chapter 13).

In the examples we will give names to every component of x and u. We also use the names of
the components in the (multi)index instead of their numbers. For example in Example 1 we take
p = q = 2. The components of z and u will be 1 = 2, 2o = ¢, u' = u and 42 = v. And instead of
U2y We Write vgpy.



Example 1. The Euclidean group E(2) = SO(2) x R? acts on the variables (z,t,u,v) with g =

(a,a,b) as
(ﬂ) (cosa —sina)(u) (a)
=) =1 & + :
v sina cosa v b

leaving x and t invariant. Therefore we also have D\; = D,, ﬁt = D; and hence the prolonged

action is simply given by
of UK \ _ [ cosa — sin o UK
g vk / \ sina cosa VK

The nonzero infinitesimals of the Euclidean group are

Pia(?) = =0k, Pka(2) =uk, ¢4(2) =1, ¢3(2) =1

Example 2. The second example is the group SL(2) acting on the variables (z,t,u(z,t)) ast =t

and
( ) ( ) (1+I;Jc)/a ) ( " ) (12)

where (a, b, c) are the co-ordinates of g € SL(2) near the identity e = (1,0,0). Formula (9) yields
the following differential operators

W

g 1 — but
D, = D,, D;=D;— .
a + buy, t P a + bu,
From equation (8) it now follows that
— _ac+uz(1+be) —— Ugz — Ut
Upg = —————— Ugz = =, U =
a(a + bug) (a + buy)3? a+ buy

It can be checked that this is a right action. A table of infinitesimals is given below.

ER Uz Uzza
alr —u —2u, —3ug, —Auypn
blu 0 —ug —BUplhyy —AUpUppe — ?mfm
c|0 =z 1 0 0

The entry in the (7,y) place is the infinitesimal action corresponding to the i-th group parameter on
the component y of z.
2.2 Constructing a moving frame

We use the Fels—Olver definition of a moving frame, and their approach to constructing them. This
does not depend in any way on the presence of a frame bundle.
Definition 1. A left moving frame is a left G-equivariant map,

p:M—=G,  plg*z)=gp(z),



and a right moving frame is a right G-equivariant map,

p:M =G, plgxz)=p(z)g "

A moving frame will exist if and only if the group action is free and regular. In our case the
(sufficiently high) prolongation of the group action on M will be locally free provided the action on
X x U is locally effective. We refer to [7] for the technical details.

The construction of a local moving frame in a neighborhood U proceeds as follows. Let K C U
be a sub-manifold which is transverse to the group orbits. We take U/ to be small enough so that
each orbit intersects K at most once, cf. Figure 1. Usually the cross-section K is the locus of a set
of equations ¥(z) =0, k =1,...,r, and then the so-called normalization equations for the frame
are Yr(2) =0, k =1,...,r. Solving these equations for the group parameters in terms of z yields a
right frame.

Cross—section

Different
Orbits

Figure 1: Construction of a right moving frame using a cross-section

Geometrically, the construction is as follows. For z € U, take k € K and h € G such that
k = h* z. The right moving frame p : Y — G is then defined by p(z) = h, and the left frame by
p(z) = h=1. The right frame p is right equivariant since p(g * 2) = hg™! = p(2)g~! and a similar
remark holds for the left frame, which is left equivariant.

One can think of the Fels—Olver moving frame as providing, locally, a trivialization of the mani-
fold, i.e., when the frame is a right frame

p: U—GxK, z = (p(2), p(2) * 2)

is a trivialization of U.

In the expository examples one can solve the normalization equations for the group parameters.
In general, this will not be possible. However, to obtain the evolution of curvature invariants we do
not need the frame to be known explicitly. This will be made clear in §3.

Example 1 (cont.) As normalization equations for the Euclidean group we choose

@=0, ©=0, ,=0. (13)



These equations yield a right moving frame, mapping z € M to p(z) € G which has group parameters

p(z) = | —arctan (U_W> _ Ulg + VU UVp — Vg
us) EE E T

A left moving frame is then given by the inverse p~!(z) which has parameters

(arctan (Z—) ,u,v) . (14)

Considering the rotational part of the group we note that at g = p(z) the rows of

cos(a) —sin(a) \ _ 1 Uy Uy (15)
sin(a)  cos(a) Sz + 02\ v Ug
are the orthonormal vectors e; and e» attached to the curve v = (u,v) drawn in Figure 2.

€2

Figure 2: An orthonormal frame attached to a curve in the plane.
Note that we could also have started by defining the action of G on M to be the ‘inverse’ action

. cosa sina u—a
T\ —sina cosa v—>b '

The normalization equations (13) would then have yielded the moving frame (14) as a right moving
frame.

R N

Example 2 (cont.) For the matrix action of SL(2) on (z,u), we can take the normalization

equations
z=0, u=1, uy = 0. (16)

The right frame is then given by

Ug

p(z) = (u, —x,m) _ (17)



2.3 Invariants and syzygies

In the sequel we assume that p(z) is a right moving frame. The normalized differential invariants
Ji, I%, I are defined by evaluating the transformed dynamical variables on the frame. They are the
components of
I(z) = p(2) * .
Since
g (p(2) x2) = plg*2)x (g% 2) = p(2)g ™" * (g*2) = p(2)g ™ g* 2 = p(2) * 2,

the function I(z) is an invariant. The specific components of I(z) are denoted

o a _ o
Ji=z Ig =uf

’ 9=n(2)’ 9=p(z)

We can deal with these objects abstractly. However, explicit expressions for them in terms of the
original variables can often be obtained. When the frame is known explicitly this is done by direct
computation. The next theorem shows how the frame dependent invariants defined above may be
related to known invariants, a procedure that will be illustrated in Example 4 of §4.

An important result is that any differential invariant is a function of the above invariants. This
is a consequence of the Fels—Olver—Thomas replacement theorem [7, Theorem 10.3], which states:
Theorem 2. If f(z) € A is an ordinary differential invariant then

f(2) = f1(2))-

This is true since in particular the action of g = p(z) € G leaves f(z) invariant. As a corollary the
set {J;, I*, 1%} is a complete set of invariants.

The set of co-ordinates functions {u$%} can be obtained by acting with differentiation operators
on the ‘fundamental’ set of dependent variables {u®}. Similarly the above complete set of invariants
can be obtained by acting with invariant differential operators on a (finite) fundamental set of
invariants.

Definition 3. A maximal set of invariant operators is defined by evaluating the transformed total
differential operators on the frame. They are
’ Hg=p(z)’
interpreted as derivations on A.
One should be careful with the order of differentiation and substitution. In general we have that

@ o (63

Dl =Dj| u Dju, =ug, =12,
K Hg=p(z) lo=n(2) 7 Dy 9=p(2) Kilg=p(2) K
This motivates the following definition.
Definition 4. The correction terms N;; and Mg are defined by
DjJi = 5” + Nij; D]II% = I?(] + M?(j’ (18)

where d;; is the Kronecker delta.
It follows from their definition that the invariants are left unchanged by permutations within
their index. The correction terms, however, are not invariant under permutations in their index.



Proposition 5. ([7, Equation (13.8)]) There exists an p X r correction matriz K such that
Nii =Y Kijkej(I(2), Mg, =) K¢ ;(1(2)) (19)
j=1 =1

where j is the index for the group parameters and r = dim(G).

This result can be proved by application of the chain rule to D;I(z) evaluated at g = p(z). It
then follows that K is given by

Kij = Eﬂj(i)‘

Its rows will take on additional significance in §3.

The matrix K can be calculated without explicit knowledge of the frame. All that is required
are the normalization equations and the infinitesimal group action. Suppose the variables actually
occurring in the 1) (z) are

9=p(2)

C' _ Tk;» 1<i< m,
T v, m<i<n.
Define T to be the invariant p X n total derivative matrix
T,L:{dla]“ ]-SJSma
J LG, m<j<n.
Also, let ® denote the r x n matrix of invariant generators
¢K.71( ): m<j<n.

Furthermore, define J to be the invariant n x r transpose of the Jacobian matrix of ¢, that is

ov; (1) :

B #}w, 1<i<m,

dij =9 ow(n
oI’

m<i<n.

Using the above defined matrices, which are easily calculated, the correction matrix can be obtained
as follows.

Theorem 6. (Olver, [25]) The correction matrix K, which provides the error terms in the process
of invariant differentiation in Proposition 5, is given by

K=-TJ®J))!
Proof. We compute the invariantization of the equations
Dipa(p(2) * ) = 0. (20)

The invariantized normalization equations are functions of both the variables (; and the co-ordinates
of the frame p;(z). Since the latter depends on the first we have to be careful. We separate the
different dependencies by writing 1, (p(2)*() = ¥,((, p(z)). Here the ¢’s are functions of n variables,
whereas the ¥’s depend on n + r variables. Thus from equation (20) we obtain

- 8% 0UA(G,p(2) _
];D,pj( + ZD,C acl =0.

10



We use the chain rule once more and write

0UA(C, p(2)) _ i dp(z) * G Oa(p(z) * €)
9p;(2) — Opj(z)  Op(2)xG

The theorem is proved by invariantization of the different terms, that is, replace z by z (¢ by ¢) and
evaluate at g = p(z). O

In a computer algebra environment, invariantization is achieved by substitution of the normalized
invariants and simplification with respect to the normalization equations. For a discussion of the
subtle issues that arise in this context we refer to [17]. In the meantime, we suppose that the
simplification can be done by substitution of certain invariants that are highest with respect to a
specified ordering. The set of such highest normalized invariants will be denoted by H. Note that
H is a subset of {pe(;,i=1,...,n}.

A classical theorem due to Tresse [27] states that all differential invariants can be obtained as
functions of a finite number of invariants and their invariant derivatives. We have the following
theorem.

Theorem 7. ([7], Theorem 13.4) The set given by

{J9, 1%, 1%, [Tk € HI\H (21)

is a generating set of differential invariants.

This set is not necessary minimal, as will be shown in the examples. A major difference between
the set {D;,z;,u*} and the set of invariant differential operators with the generating invariants
is the existence of nontrivial syzygies. Let I§, I be two (generating) differential invariants, and
indexes K, M are such that I¢x = If;,;. Then

DrlI§ —Dylf = MG — M7y, (22)

is a (fundamental) syzygy, [7].

Example 1 (cont.) Since we have calculated a frame explicitly, the invariants can easily be
expressed in terms of original variables. The components of p(z) x z are the normalization equations

I* = p(z) e u =0, I" =p(z) ev =0, IY = p(z) e v, =0,
and the invariant functions

Uz UK + Vg VK UpVK — VpUK
U 2 2 u T x v T i
Iy = Vug + vz, Igx = ————, Ig = —F———

/12 2
uy + vg

The invariant operators are simply D, = D, and D; = D;. Let us calculate the K matrix. We have
0 0 I¥ 100
u u v x
T:(Iﬁ Ovwa IT), =1 0 0 |, J=101 0],
L Loy In 01 0 0 01
and hence I
v u u 0
«=-(EE Eon) (23)

11



The correction terms are, for a € {u,v},i € {z,t},

I3ilk
Iv
T

I.1%
My, = My, = -2k,

The generating set of differential invariants is {I, Iy, I}*, I¥, I}/, I?,, I%, } and we have the following
fundamental syzygies.

Iv I?
DtI;L_,DzItu = - w;ut )
x
Iv Iv
I::}}t — DwIt’U = —m_lz'ut , (24)
JY % — [V, [%
DiIY, — D I = W

It is seen that the generating set is not minimal since the invariant I, may be removed using the
second syzygy. For later reference, we note that the system may be written in the form (3), with
p=1rI, v=1I

T’
2
BBy oM o Vo 42
(N) = DwV+VDw+ v2 ,Dm V,Dw v? (Izl>
t I If

D, iy
v

(25)

On the left hand side we have used subscript ¢ to denote invariant time-differentiation and similarly
on the right hand side v, denotes D,v (which in this example is equal to D,v).

Example 2 (cont.) Since we have only one dependent variable we will omit the upper index. Using
the constructed moving frame we obtain the invariants

2

_ Ugpg _ Ulggy — TUgUggz + 3TUL,

I$$ - 3 b I.’E$$ - 5
(u — zuy) (u — zuy)

Ut

, L=—.
U — Ty
The invariant operators are found by substituting the frame into the transformed differentials (9).

They are
1 TUt

D, = ——D,, Dy =Dy + D,. (26)
U — TUg U — TUg
Using the matrices
0 -1 0 1 00
T:(1 (LI”>, =1 0 0 ], J=1 01 0 ],
0 I Iot 0 0 1 001

we calculate the K matrix
K — 0 -1 -I,, _
L, 0 —Iy
The generating set of invariants is {J;, Iy, Is4, I }. Using the correction terms

My, = 0, Mot = _3It-[xza Mz = ItIzza

12



we find the syzygies

I;—D,I; = 0,
Dl — Dyl —4L1,,. (27)

By eliminating I,; we get
D2Izz = (Di - 4Izm)-[ta

which is an equation in the form (3).

3 Evolutions in the Lie-algebra

In section §2 we have shown, using the Fels—Olver moving frame method, that the syzygies between
the invariants can be obtained without solving for the frame. With regard to curves there are certain
invariant functions that play a special role, the curvature invariants. In this section we show how
these can be obtained from the infinitesimals and the K matrix only. Subsequently the evolution of
the curvature invariants is easily understood in terms of an evolution in the Lie algebra of G.

Any sufficiently smooth curve on X x U will prolong to a curve in M. Suppose the curve is
s +— 2(s), and this lies in U where a moving frame is defined. Then the frame provides a curve in
G, s = G, given by s — p(z(s)), see figure 3.

*. Cross—section

p(s)
FEOI

Different
Orbits :

Figure 3: A right moving frame for a curve parametrized by s

Consider the 1 + 1-dimensional case (x,t) — z(z,t) where the two independent variables z and
t are invariant and the operators D, and D, are thus invariant and commutative. When the group
G is given as a matrix group, then the maps

g Qp = (Dop(2)) p(2) ", t= Q= (Dep(2)) plz) "

are curves in the Lie algebra g of GG, whose entries are invariants of the group action. The matrix
Q, is called the curvature matriz and its entries the curvature invariants. Viewing ¢ to be ‘time’,
the entries in Q; will be called evolution invariants.

13



We will show how to calculate these special invariants without knowing the moving frame p(z)
explicitly. The evolution of the curvature invariants is governed by a so called zero-curvature equation
[9],

[Dt - Qt:Dz - Qw] =0. (28)

Here, the meaning of curvature in this phrase is not connected to that of the curve, but refers to
the fact that the manifold is flat. In this section we treat a more general setting where the invariant
operators do not necessarily commute. Thus the group may act non-trivially on the independent
variables.

A n-dimensional matrix representation R of a group G is a map G — GL(R") such that
R(g)R(h) = R(gh). Note that this implies that R(e) is the identity matrix and R(g~') = R(g)*.
By differentiating with respect to the group co-ordinates gi,--- g, at the identity e, we obtain the
infinitesimal generators

o = R
’ dg; lg=e

which span the Lie-algebra g of G.
Let ¢ denote the matrix ¢ = R(p(2)). We define the curvature matrices

Q;=Dio)o™",i=1,...,p (29)

The next theorem provides a new significance for the correction matrix K; its rows are the co-
ordinates of the curvature matrices, when expressed as a linear combination of the relevant basis of
the Lie algebra.

Theorem 8. The curvature matrices Q; can be constructed in the matrix representation of g with
basis {a;}, using only the normalization equations and the infinitesimal action. Indeed,

Q; = Z Ki;a;
J

where K is the correction matrix given in §2.3.
Proof. Choose g € G arbitrary with 2 = g * z. On the one hand we have

DR(E)| _ . = DiRGEIRG™)| _
= DiREIREG | _
= 09;
and on the other hand
- U dR(p(z
DzR(p(E)) ‘g:p(z) = ]Z:; Dipj (E) % |g=p(z)
since p(p(z) * z) = e. -
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The following proposition generalizes the zero-curvature equation (28) to include the case of non-
commuting invariant differential operators and is essentially the structural formula for the Maurer-
Cartan form.

Proposition 9. The curvature matrices (29) satisfy the syzygy

D;(Qi) — Di(Q;) = ([P, Dile)e™" +[Qj, Qil- (30)
Proof.
D;j(Qi) - Di(Q;) = D'(D'(Q)Q_l)—Di(Dj(Q)Q_l)
= D;Di(0)o™! — DiDj(0)e~" + Di(0)Dj(0™") — D;j(e)Di(e™")
= [D.WD](Q) ! +[QJ= i)
as go ! = 1 implies Dy (0™ ') = —0 '"Di(0)o . O

The commutators of the invariant derivative operators can be calculated using only the K matrix
and the infinitesimals of the group action. The following formula is taken from [7, Equation 13.12].
Denote the invariantized derivatives of the infinitesimals £ by

= = Dira(3)

9=p(2)

Then we have

,
[Di,Dj] = AfDi, Al =) KuEf — KaEj. (31)

Remark 10. We will denote the curvature invariants that appear in the matrix Q, by the vector
k. If the normalisation equations do not involve time-derivatives then it is always possible to rewrite
the syzygy (30) in the form

ke = HIy, (32)

where H is a invariant matrix differential operator involving curvature invariants only. This is done
by replacing Iyx; by Dy; Iix — Myx; repeatedly.

Example 1 (cont.) The matrix

cosa —sina a
R(g)=| sina cosa b (33)
0 0 1

provides a representation of E(2). The infinitesimal generators of the Lie algebra are

0 -1 0 0 01 0 00
ag=11 0 0 ),aa=| 00 0 |,a3=( 0 0 1
0 0 O 0 00 0 00
The K matrix (23) is used to calculate the curvature matrices
0 Lo /Iy I 0 I/ I; -1
Q= L/l 0 0 |, Q=| -In/ly 0 =L (34)
0 0 0 0 0 0
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and their commutator
LI

00
0 0 0

Therefore from the matrix equation (30) we get the three equations

I I
2 (i) -2 (3) - o

I

DIy - Du(T) = -2t
13
I I

DoL) = I 2t

which are equivalent to the syzygies (24) obtained previously. With x = I¥, /I%, v = I¥ these can

be written as )
K _( D% D,yD, I
(5),= (%8 ™) (%) @)

which should be compared with the system (25).

Recall that the rows of the rotational part of p are the vectors e; and e along the curve, see
equation (15). Suppose now that v = 1; since I* = e; - D,y this corresponds to parameterizing the
curve by arc-length. Expressing the evolution of  in terms of I} yields

Dik = (D2 + kD, 'k + k)Y (36)
The same equation is obtained from equation (25) since I = 1 implies that I¥, = I% = 0. One

may recognize the recursion operator for the modified Korteweg-De Vries equation 47. Thus an
integrable evolution equation is obtained when one imposes the constraint I = k.

Example 2 (cont.) The infinitesimal generators in the Lie-algebra g are given by
(1 0 (01 (0 0
“=lo -1 )" oo0)"®m7 1 0)
Using the K matrix we get
_ 0 -1 _ I 0
Qz - ( _Imz 0 ) ’ Qt - ( _Izt _It ) "

By using equation (31), or the frame, we have [D;, D;| = 2I;D,. Equation (30) becomes
Dth - Dth = _ZIth + [Qt; Qz]

and provides the syzygies (27).
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4 Lifting Integrability

In this section we answer the question whether integrability of a curvature evolution does lift to
the motion of its curve. We take the existence of infinitely many generalized symmetries to be the
signature of integrability. Therefore we aim to show, in general, that a symmetry of the curvature
evolution gives rise to a symmetry of the curve evolution.

Suppose we have given two evolutions of curves,

ug; = Pj[u], j=1,2.
Here [u] denotes dependence on u as well as on z;-derivatives of u. We have the following identity
(D1, Dy, — Dy, Dy, — [Dyy, Dy, ])u = 0. (37)

We first look at (37) in the usual coordinates and then compare the calculations in the invariantised
setting. The vanishing of the commutator [Dy,, Dy,] = 0 yields

Dtlutz - thutl = 07 (38)

which is the lowest order syzygy between time-derivatives of evolution variables. This identity in
the differential algebra gives us a condition on the functions P;. In practise one has to verify that

(Dy, Py) — (D, Pr) =0. (39)

Utq =P Utg =P

If it vanishes indeed, we say that the curve evolutions commute. This condition is called the sym-
metry condition. To evaluate the expressions one uses the trivial syzygies Dxu = uk (there are no
correction terms) and the vanishing of the commutators

[D¢,, D] = 0.

Next we will consider curve evolutions that are invariant under a given group action. The lowest
order syzygy involving invariant time derivatives of the fundamental evolution invariants is

C(It1 ) Itz) = Dt1[t2 - thItl + Mt2t1 - Mt1t2 =0. (40)

Note that the correction terms may depend on the evolution invariants and space derivatives thereof,
but not on their time-derivatives. Suppose that two invariant evolutions of a curve are given by

It,' = E[’i]a i=12, (41)

where the F; depend on the curvature invariants and their invariant derivatives. Let H be the matrix
differential operator, see Remark 10, such that the time evolutions of k, denoted k¢, = Dy, Kk, are
given by

ke, = HF;, i=1,2. (42)

The invariant symmetry condition is now given by

D, F: — (D, F; M, — M, =0 43
(D, F3) —— (D, F1) m2=HFz+( tats trts) roer, 0 (43)
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or, for short, by

C(ItUItz) L,=F; =0.
This is the same condition as condition (39), but now written in terms of invariants.
Theorem 11. The symmetry condition for two curvature evolutions (42) is a differential conse-
quence of the symmetry condition on the curve evolutions (41). We have that

DtlHItz - Dt2HIt1 - [Dtl,th]K/ = HC(Itl,It2).

Proof. We look at both sides as differential expressions in the operators D,, D;, and D;, acting on
function of k, I, and I;,. Note that for example I;,;, does not appear in such an expression and
every k¢, has been replaced by HI;,. We know that both sides vanish identically in the differential
algebra of invariants. Since we can expand both identities into the form

HDtlltz + = 0.

where the dotted terms do not depend on Dy, I,, both sides are equal as differential conditions on
the invariants functions Iy, = F;. O
When the action of the Lie-group neither depends nor acts on the variables ¢; and ¢, and no
evolution variables appear in the normalisation equations we can make the connection between the
symmetry condition (38) and its invariantised form (40) more explicit. In this case the evolution
invariants Iy, will depend linearly on the original evolution variables uy, .
Let the Lie-group action be given by

u® =F%z,9), a=1,...,q.

Suppose that the variables appearing in the normalisation equations are (; = uy’; where ¢; and t»
do not appear in K* for any ¢. Then the p x p Jacobian matrix D7 is

M 0 0
Dz = U1 1 0
(] 01

Here M is the (p— 2) X (p— 2) matrix M = A+ BC with A,’j = 8miFj, B, = u;?‘ and Caj = 6uaFj,
and the vg, k = 1,2 are given by (vg); = >, u Coj. The inverse of this Jacobian matrix is given
by
~ Mt 00
Dz = —’UlM_1 1 0
—’UQM_1 0 1

Hence the transformed time-derivative operators are
Dy, =Dy, —vxM~'D,. (44)

Applying such an operator to the transformed variables @ and then evaluating on the frame g = p(2)
gives us the matrix relating the evolution invariants and the evolution variables.
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Proposition 12. We have
I, =R 'uy, i=1,2,

where R is a matrix of functions of u$% with ¢; not in the index K.

From equation (44) we also know that the invariant operators Dy, equal Dy, up to some correction
term which is a linear operator in the D, with coefficients that are linear in the I;,. Therefore the
identities (38) and (40) are related by

R_l (Dtlutz - ‘DtlutZ) = Dt1-[t2 - th-[t1 + Mt2t1 - Mt1t2

by linearity of the derivations.

Theorem 11 implies that integrability does not necessarily lift from the curvature evolution to the
curve evolution. However, most commonly studied integrable curvature equations are homogeneous
polynomials or rational functions of the differential invariants. Since in these classes the kernel
of the differential operator H is empty, pairs of integrable equations result, cf. [15]. In order to
illustrate the scope of the theorem and the power of the method, we include, for several geometries,
the explicit calculations that one would need to perform in the absence of the general result.

It can be seen in the examples that verifying the equation in Theorem 11 can involve substantial
calculations. In particular, the fact that the operator H factors out of the left hand side is remarkable.

Another useful observation is that the explicit formulas for the curvature invariants provide a
Miura-type transformation between the curve evolution and the curvature evolution. This will also
be illustrated in the following examples.

Example 3. One example is provided by the group SL(2) acting as & = x,t = t and

- au+b

= — —be=1.
u ot d’ ad — be

The transformation relating the Schwarzian KDV equation (46) to the KDV equation (45) arises

naturally in this context.
When we take & = uz —1 = U5, = 0 as the normalization equations and take a, b, ¢ as co-ordinates

of the group, we have
0 —1 1L,
K= .
( _%Izt _It %Iwzt )

and, using the same basis for s[(2) as in Example 2, we get

_( o0 -1 _( i -1 >
Qz N ( %Ima:w 0 )’ Qt N ( %Iz:ct %Izt ’

and Y )
5 (Tgge — It I I
— s \Llzxt tlzzz xt .
[Qt, Qw] ( %Ia)t-[www %(Itlw:cz - Iwwt) )
Equation (30) gives the following syzygies
Dolyy = Ipws — Liliga,
DIy = Iy,
Dilpye — Dolywr = Ipgpals.
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We eliminate I;; and I, and denote I, = k to get kK = HI;, where
H:Dg + kDy + Dk
is one Hamiltonian operator of the KDV equation
Kt = Kggz + 3KKz, (45)

which is famously integrable. When we impose the constraint I; = & this implies that x evolves
according to KDV. Let us find out what the motion of the curve is. Using the moving frame,

_ 1 —u Ugp
p= Uz Sz 2gnSug )’
we obtain explicit expressions for the invariants,

2
Uy Upge OSU
L=—t, k= Clw

Ug Uy 2 w2’

Writing the constraint I; = &k in terms of the original co-ordinates we get the Schwarzian KDV
equation,
3u2,

ut:'uzz'z_iu
x

; (46)

which is also well known to be integrable. Thus k = {z,u}, the Schwarzian derivative, provides the
Miura transformation between SKDV and KDV.

We compare the symmetry conditions on the different levels. Two different motions of the curve
are given by different choices for the evolution invariant I; as a function of the curvature invariant.
The curve moves in different time-directions t1,ty by us;, = u,F;, ¢ = 1,2. The condition on the
functions F; and F5 for these evolutions to commute is

0 = WUtyty — Ugpty
= Dy, (ugpF1) — Dy, (ugF)
= Dy(ugFo)Fy +uy Dy, F1 — Dy(ug F1)Fy — up Dy, Fy
= uy(Dg, Fy — Dy Fy — Fi1 D, F> + F3D, Fy).

The symmetry condition for the curvature evolutions, x;, = H F;, to commute becomes

0 = K’tth - '%tztl
= D,HF, — Dy HF,
= HDy,F\+ H(F)D,Fy + D, H(Fy)Fy — HDy, Fy — H(F1)D F> — D, H(Fy)F>
= H(Dy, F> — Dy, Fy — FiD,F5 + F> D, F),
where the last step can be verified by direct, albeit lengthy, computation, verifying Theorem 11.
The KDV equation has a recursion operator R = HD!. We can use this operator to write down

the symmetries of SKDV. The constraint I; = D; 19"~ !k, makes k evolve according to a symmetry
of KDV: ky = R"k;. Therefore we have

Uy = uzDz_lﬁi"_lmz,
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where £ = {z,u} is a symmetry of SKDV. Generating the symmetries this way is easier than by
using the recursion operator for SKDV given in [28].

Example 2 (cont.) Although we do not know whether there is an integrable equation that arises
as the curvature evolution of a curve moving in the geometric setting of the matrix action of SL(2)
on (x,u), still Theorem 11 implies that if it is in a class of equations where the kernel of H = D2 —4x
is empty, then the motion of its curve is integrable as well. The invariant evolution operators are,

cf. equations (26),

XUt
Dy, = Dy, + ————D,,

U — TUy,
which commute with each other but not with D,. We impose constraints I;;, = F;, i = 1,2 to
describe the curve moving in different time #; directions. The motions of the curves u;, = (u— xuw) i
commute when

0 = wgypy — Utory
= Dy, (u—zuz)F1 — Dy, (u — 2ug ) Fo
= (u—2zug)((Dy, + xF>D,)Fy — (Dy, + xF1D,)F>)
= (u—2ug)(Dy, F1 — Dy, F3).

Using the relation [D,, Dy,] = 2F;D,, it can be verified that
th (D - 4H)It1 - Dtl (D - 4/43)],52 = (Di - 4/4&) (Dt2F1 - Dt1F2);

supporting Theorem 11.

Example 2 (cont.) It is also possible to have non commuting operators Dy,. Take different
normalisation equations;

Then
R=u—2u,, H=D>—-D,(k)— 4k,

with ¥ = I,,. The commutators are
[Dty, Dr,] = (14, Do (Lt,) — 11, Do (11,)) Dz [Da, D] = (21, — Do (1)) Do
According to Theorem 11 we have
Dy, HF, — Dy, HFy — (Fi Dy (Fy) — F3Dy(F1))D, (k) = H(Dy, Fo — Dy, Fy + F1 Dy (Fy) — F>D,(Fy))

for arbitrary functions F;. This can be verified by using the expressions for the operators in the
original variables, or, by using the above commutation relations. There are algorithms available for
processing differential systems given in terms of non-commutative derivations [10, 16]. In general,
when a frame cannot be constructed explicitly, this is the only option.

Example 1 (cont.) For the Euclidean action on the plane, after parameterizing by arc-length, we
have obtained the syzygy k; = RI, with

R = D, (D, + kD, k),
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cf. equation (36). The operator D, is a Hamiltonian operator and J = D, + kD, 'k is a symplectic
operator for the MKDV equation

Kt = Kggz + ;Kzn:w (47)

cf. [28].
However, to avoid the use of D!, we prefer to write the syzygy as x; = HI?, where

1

We consider two different curve evolutions given by I}* = F;, ¢ = 1,2. The motion can be written
in terms of frame vectors as

1
Y = Fier + ED:c(Fi)ez-

We know from Q;, see equation (34) that

Dy, ( Zl ) = (k+Dm%Dz)(Fi)( ©2 )

2 —e€1

Therefore the curves commute when
1
0 = Dgyy — Dy, = Cer + EDE(C)G%

where
Dm(Fl)DgF2 - D, (Fg)DgFl

C=DyF, — Dy F, — F,D,Fy, + F1D,Fy — >

Using formula (48) for H and the evolutions of &, it can be verified that indeed we have
Dt2 Kt — Dt1 K, = H(C),

in agreement with Theorem 11.
Under the constraint I} = %KZZ, or I = D,k, the curvature k evolves according to the MKDV
equation (47). If one imposes, in succession, the constraints

I =R" 1k, m=1,2,....

then their corresponding curvature evolutions are the symmetries of MKDV, namely &;,, = R" k.
The curve evolutions defined by the constraints form a hierarchy as well. The lowest order (m = 1)
constraint yields the following evolution for the curve

1
Ve = 5[43261 + Kgea, (49)

which is called the planar filament equation. Using the recursion operator of MKDV to generate its
higher symmetries is easier than the procedure given in [15].

Since the frame is known explicitly, it is easy to write equation (49) in terms of the original jet
co-ordinates. By elimination of the second co-ordinate v using the constraint u? +v? = 1 we get for
u the equation

3 uzuZ,

Ut = U + =
e T 9T —u2

(50)
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These kind of scalar equations, i.e., third order equations linear in the highest derivative term, are
classified with respect to integrability. Indeed, the above equation appears in the list [21, equation
4.1.14]. The explicit expression for the curvature, that is

k= (ug Dy — tgg)\/1 —u2,

provides the Miura transformation that transforms equation (50) into MKDV. Yet other descriptions
of the same geometric flow can be given, see equations (53) and (54) in [4].

Example 4. We consider the motion of curves in 3 dimensional Euclidean space. The Cayley
representation of SO(3) is given by the matrix

9% +9i—95—95 209192 —g09s)  2(9193 + 9og2)
R(g) = 2(9192 + gogs) 92 —gi+93 -9  2(9293 — 90g1) ,
2(g19s — 9092)  2(9293 + 9o91) 9% — 91 — 93 + 93

where g2 + g7 + g3 + 92 = 1. Let us write the vector of translation as V(g) = (g4, g5, g¢) and define
the action of the Euclidean group E(3) = SO(3) x R* on v = (u,v,w) by

g*7=R(g)(y—V(9))-
A representation of the group E(3) is given by

( R(()g) Vig) >

The normalization equations [* =I* =I" = I = I’ = I}, = 0 yield

0 « 0 -IY 0 a c¢ It
| - 0 7 0 | —a 0 b -I
L=l 0 -0 o0 ’ Q=1 . o —I?
0o 0 0 O 0 0 0 O
where I v v v o, 1v - [oe
— _ _ 1ot _ 1ot _ taails = 1ot
Equation (30) yields, after elimination of ¢,
K _( Dy +71D,'r —7D; 'k a
), -kD;'t1 D, +rkD;'k b )
Setting I to 1 and writing a, b, and ¢ in terms of the generating evolution invariants yields
a K+ D, %Dz —T u
b | =| 7+i(sD,+D,7)1D, 1(D2-7?) ( Ii" ) , (52)
¢

c %Dm D,

where we have eliminated I} = 1D, I
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The rotation part of our frame p, which has not been calculated explicitly, is related to the
standard Serret—Frenet frame (eg, e, e3)”, that is, the i** row of R(p) equals e;. Therefore we have

I =e1 - v, I =es- vy, I =es3- .

From the normalization equations we obtain v, = I¥e;. Hence having I¥ = 1 corresponds to z
being arc-length. In terms of the Serret—Frenet frame the curve evolution is

1
v = Ij'e; + EDm(IZ‘)eQ + IVes.

In this equation I} and I} must be given in terms of x and 7 and their derivatives for the curve
evolution to be invariant under the group action.

One integrable equation of this form is v, = kes, called the filament equation, see [14]. This
equation is equivalent to the constraints Ij' = 0,I = k. If v evolves according to the filament
equation, then x and 7 evolve according to

(53)

An explicit form for the filament equation in terms of the original variables can be obtained
from the explicit expressions for the frame dependent invariants , I}* and I}*. Without knowledge
of the frame these can be obtained using the Fels—Olver—Thomas replacement rule from the known
classical invariants. In this case the normalization equations yield

|7z| = I;:
|'7wx7m:c| = I;}‘I;}z,
Yz o Yoz X Vowz) = I LpIpee,
/AR D S A
Ve xul* = LI+ L%,
Yo (Vee X1) = LILIL°.

More directly one can use the well known explicit expression for the Serret—Frenet frame,

X
€1 = Yo €2 = Toz > 63=M-
|'7wm| K
When the third co-ordinate w is eliminated using |v,| = 1 the filament equation v = vz X Yaz,

written in co-ordinates, is

_vm(l —u2) + Ugp Uy Uy

Uy = 5 5 ’
V1—ui —v; (54)
o = Uz (1 — 02) + VpyUz Uy

—u2 — 2
V1—ui —vi
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The Miura transformation from equation (54) to equation (53) is provided by the explicit formulas
for the curvature invariants

\/u + U:%z uwmuz 'U:czuz)Z

K = 3 5 )
V1—ui -2
S UgpgVgp — VpzUyg (U:c:cwvwz - 'U:cwwua:z) V 1- u% - U?D

\/ 1-— ’U/% - ’Ug U%w + ’U%w - (uz‘zvm - vzz‘uz‘)z

The operator H is now a 2 x 2 matrix. We have
() (%)
Tt; It,'

i D,k + (D2 —72)1Dm —(DyT + 7Dy)
B 7Dy + D7+ D, (TD —|—Dw7') D, Dw%(Di—TQ) ’

with

This operator is related to the Hamiltonian operator P given in [19, Theorem 2], in the case of zero
curvature, by interchanging the columns. We impose constraints

N\ _(F .
()-(6) -2
The corresponding curve t;-evolutions commute when
1
0= th')’l — Dtl’YQ = 0161 + EDw(Cl)ez + 0263,

where we have used Q, and equation (52) to find

C, = F3D,F, — FD,Fs+ G1D,Gs — GoD,G1 + 2%((:11)%1?2 — G>D,F))
1
+§(Dz(F1)DiF2 - D,(F3)D.F),
Cy, = FD,Gi— FiD,Gs + 2%(D$(F2)DﬁF1 — D,(F\)D*F,)
2 1
—2(G2D F, —G1D,F) + e — (D (F2)D3G1 — Dy (Fy)D3Gs).

Theorem 11 tells us that

B Ey _ C1
oot g )-oar (& )=m(g).

To verify this requires quite a lengthy calculation. In particular, the integrability lifts from equation
(53) to equation (54). A recursion operator for equation (53) was given in [2]. Similar to the planar
case, this recursion operator can be used to write down the higher symmetries of the curve evolution
(54) easily.
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Example 5. Given an evolution equation, integrable or not, it is sensible to ask whether it arises
as the curvature evolution for a curve moving in some geometry. However, this may happen in
more than one way. We illustrate this by proving that any scalar evolution equation that allows a
potential form arises both as the curvature evolution of a projected curve on the line and as the
curvature evolution of a scaled curve on the line. By Theorem 11, these curves are integrable if the
curvature evolution is integrable.

Suppose that a scalar equation for x can be written as

ki = D, F[k], (55)

for some F' which is a function of k and its z-derivatives. Then the equation has a potential form.
The potential form of equation (55), obtained from the transformation k = v,, is given explicitly by

vy = Flv,).
For example, the potential form of Burgers’ equation k; = D, (k, + k2) is
Vg = VUpgp + Vg.

We first consider a curve u(z) moving on the line where the geometry is given by Z = z, & = gu.
As a representation of the group (RT,-), we have R(g) = g. We impose the normalization equation
@ = 1, which yields the right-moving frame p = 1/u. Among the invariants of the action we have
I, = uz/u and I; = ug/u. The curvature matrices are scalars, i.e., @, = —I,, Qs = —I;. Since
these commute, equation (30) yields D;I, = D.I;, which is of the form (55). We write I, = &
and I; = F[k]. Thus, equation (55) arises as the curvature evolution for the a scaled curve, whose
evolution is given by
us = uF [“—””] . (56)
u
Next we consider curves u(z) moving on the line where the geometry is given by = z, 4 =
u/(1 — gu). As arepresentation of the group (R, +) we have R(g) = e?. We impose the normalization
equation u = 1. This yields the right-moving frame p = (1 — u)/u. Among the invariants of the
action we have I, = u,/u? and I; = u;/u®. The curvature matrices are Q, = —I, and Q; = —I;;, and
we arrive to equation (55) again, however with different curvatures invariants I, = k and I; = F[k].
Therefore, equation (55) also describes the curvature flow of a projective curve moving on the line
where the evolution of the curve is given by

Uy
w=w'F 2] (57)
Note that equation (57) is equivalent to the potential form of the equation by the invertible trans-
formation v = —1/u.

In the following table we present the curve evolutions whose curvatures evolve according to Burg-
ers’ equation (or the heat equation if a = 0), the Korteweg-De Vries equation and the nonlinear
diffusion equation. Other equations which have a potential form include the modified KDV equa-
tion, the Sawada-Kotera equation and the Kaup-Kupershmidt equation. Their scaled and projective
curve evolutions can be obtained directly from (56) and (57).
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Curvature flow scaled curve projective curve
2 2 2
u u a
Kt = Kgg + akgk Up = Ugg + (@ —1)—= Up = Ugp — 2—2 + -2
Uu u  2u
3 2 3 2
UggpUy u au Uggp Uy u au
Kt = Kggg + QKzK utzuxzw_3—+2_g+__z Ut:uzww_6—+6_g+__§
U 2 u U 2u
Ko u? ut 3
ke =Dy — Ut = Ugg— — U Ut = Ugg— — 2U
K u? u?
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