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Abstract

Given a geometry defined by the action of a Lie-group on a flat manifold, the Fels—Olver moving
frame method yields a complete set of invariants, invariant differential operators, and the differential
relations, or syzygies, they satisfy. We give a method that determines, from minimal data, the dif-
ferential equations the frame must satisfy, in terms of the curvature and evolution invariants that are
associated to curves in the given geometry. The syzygy between the curvature and evolution invari-
ants is obtained as a zero curvature relation in the relevant Lie-algebra. An invariant motion of the
curve is uniquely associated with a constraint specifying the evolution invariants as a function of the
curvature invariants. The zero curvature relation and this constraint together determine the evolution
of curvature invariants.

Invariantizing the formal symmetry condition for curve evolutions yield a syzygy between different
evolution invariants. We prove that the condition for two curvature evolutions to commute appears
as a differential consequence of this syzygy. This implies that integrability of the curvature evolution
lifts to integrability of the curve evolution, whenever the kernel of a particular differential operator is
empty. We exhibit various examples to illustrate the theorem; the calculations involved in verifying
the result are substantial.
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1. Introduction

Much has been written about the connection between geometry and integrability. In-
deed, many integrable equations have been shown to describe the evolution of curvature
invariants associated to a certain movement of curves in a particular geometric setting
[2,6,11,17,20,24]Some of the literature might give the impression that integrability arises
from intrinsic properties of the underlying geometry. As was pointed out cleafirthis
is not the case. However, it is easier to detect the integrability of the curvature evolution
than that of the curve evolution, ¢B].

Therefore the question arises whether integrability of the curvature evolution can be
lifted to imply the integrability of the motion of the cunj&2]. Hasimoto[6] showed that
the invariant functiony = x exp( | ), wherex andt are the curvature and torsion of a
curvey in Euclidean three space, evolves according to the integrable nonlineéad8ader
equation

) 1
V=i (wxx + 2w|w|2) : (1)
provided that the curve evolves according to the vortex filament equation

Vi = Kke3, (2

which relates the velocity of the curve to the bi-normal vector of the Serret—Frenet frame.
Subsequently, Langer and Perlifi?] translated the hierarchy of generalized symmetries
of (1) to a hierarchy of commuting geometric curves, thereby establishing the integrability
of Eq.(2) itself. Thus it seems that assigning to a curve its curvature functions gives rise to
pairs of equivalent integrable equatidis].

In recent papers the lifting of integrability has been assumed. For examp#, itris
remarked, “in view of the equivalence between the integrable equations for the curvature
and the invariant motion, the motion law should also be integrable”. Agaj@8irwe find,
“geometric evolutions would also be integrable in the sense that their associated curvature
evolutions are, given that these determine the curve up to the action of the group”. Moreover,
in [10] itis stated, “We’ll say such a flow is integrable if it induces a completely integrable
system of PDE for curvature and torsion”. However, such statements need justification, and
more precision as to what aspects of integrability are meant. We will take the existence
of symmetries to be the signature of integrability and we will demonstrate the lifting of
integrability in this precise way.

The method of moving frames provides a powerful tool to study geometric properties,
i.e., properties invariant under the action of a transformation group. This technique was
introduced by Darboux, who studied curves and surfaces in Euclidean geometry, and was
greatly developed by Cartan who used it in the context of generalizing Klein’s Erlangen
program. The formulation of the method by Fels and OJ4¢5] placed Cartan’s construc-
tions on a firm algebraic foundation. Their approach lead to new applications that would
not have been envisioned by Cartan, such as to computer vision and numerical schemes that
maintain symmetry22].

The Fels—Olver moving frame method provides a generating set of invariants together
with a maximal set of invariant differential operators and the differential relationszpr
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gies they satisfy. These data are all obtained with respect to a specific frame, which depends
on a choice of submanifold which is transverse to the group orbits. One advantage of the
method is its accessibility. In Secti@we describe the ideas in the simplest possible lan-
guage, the main tool being the chain rule of multi-variable calculus. More importantly, the
method describes algorithmically what to do in any particular application and the calcula-
tions we require can be performed in a rigorous and straightforward way using symbolic
software packag€gd,16].

The purpose of this paper is twofold. Firstly, in Sect@nwe present a method that
provides the evolution equation for the curvature invariants of a curve, moving in ageometry
which is given by the local action of a Lie-group on a manifold. The equation for the
curvature invariants of a curve derives from a syzygy between sets of invariants. This is a
zero-curvature condition in the relevant Lie-algebra and can be written in the form

Ky = HI[, (3)

whereH is a (matrix) differential operatok, are thecurvature invariants and I, are the
generatingvolution invariants (See Sectio.3). Our contribution is to provide, from min-
imal data, the differential equations the frame satisfies using methods suitable for symbolic
computation. These are obtained without solving for the moving frame, which, in general,
is the central computational problem. The main result in Se@jdrheorem 8, is thus of
independent interest.

The actual curvature evolution equation is obtained from rela®my specifying a
constraint

I, = F[«],

whereF is a (vector) function of the curvature invariant and their derivatives. This constraint
is an invariant description of the evolution of the curve. Thus, one does not have to know
the curvature invariants explicitly to obtain their evolution. However, there is a price to
pay. From our point of view the filament equation is rather symbolic when one neither
knows the curvature functiom, nor knows how to calculate the frame= (e1, e, e3).
Within our approach there are two cases where an explicit form for the curve evolution may
be obtained. Either one is able to solve the normalization equations (S&d)dior the
frame, or one can use the Fels—Olver—-Thomas replacement theorem (2ed)ttorobtain
the invariants in terms of classically known invariants of the group action. In either case the
explicit expression for the curvature invariants provides the Miura transformation from the
curve evolution to the curvature evolution.

The constraint might lead to an integrable equation for the curvatures. In Ségtien
answer the question whether integrability can be lifteghpose that a curvature evolution
is integrable, what can one say about the motion of the curve? This is the second purpose
of the paper. As we take the existence of infinitely many commuting symmetries to be
the signature of integrability, our approach is to compare the symmetry conditions of both
evolutions. The invariant form of the symmetry condition

Dllulz — Dlzutl =0
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becomes a relation between the evolution invariants
C(Iy. It,) = Dy 1ty + My, — Diylyy — My, =0, 4)
with correction terms M (see Sectio.3). For two invariant curve evolutions, specified by
I, = Fil«],i=12, (5)

the relation(4) gives a condition on the functior, which is called the symmetry condition
and is denoted as

C(Iyy, Izz)|1,i:F,~ =0. ©)

We show that the symmetry condition for curvature evolutiopns= HF;, i = 1, 2 appears
as a differential consequence(6), that is

Dl‘thz — DIZKtl - [Dtl’ DZ‘Z]K = HC,

evaluated at the constrain{t). This implies that integrability does not necessarily lift from
the curvature evolution to the curve evolution. However, most commonly studied integrable
curvature equations are homogeneous polynomials or rational functions of the differential
invariants. Since in these classes the kernel of the differential opéfasaempty, pairs of
integrable equations result, §L.3]. In order to illustrate the scope of the theorem and the
power of the method, we include, for several geometries, the explicit calculations that one
would need to perform in the absence of the general result.

2. Moving frames a la Fels and Olver

In this section, we briefly describe the Fels and Olver moving frame formulptisi
in the language of undergraduate calculus. We give those details necessary to understand
the proof of the main theorem of the next section, Theorem 8. We provide two expository
examples which will be used in the sequel.

2.1. Group actions and prolongation

We are concerned witlh functionsu® that depend op variablesy;. New functions are
obtained by differentiation and these will be denoted using a multi-index notation, e.qg.

W2 0° 2
112 8x%8xz

We consider all functions as independent and let them be the co-ordinates of a&pace
Points inM will be denoted by, = (x1, ..., xp, ul, ... ul, u% ...). In other wordsM is

the jet bundle of thef + ¢g)-dimensional fibered manifol®d x U whereX is the space of
independent variables aridis the space of dependent variables.
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We will denote by.A the ring of smooth functions oM, that depend on finitely many
arguments. To indicate functional dependenc¢ &f A we simply write f(z). The action
of T?c, extends to an action oA by the total differentiation operator

9 4 3
Di=_—+3 S u 7
"= o +a=1 L K% (7)

We assume we are given a smooth left action of~-alimensional Lie groups on the
manifold X x U. By prolongation we will get a left action oW, which is calculated using
the chain rule of differentiation. The actien: G x M — M satisfiesgh xz = g« h x z.
A right action onA is then given by : G x A — A; ge f(z) = f(g* 2).

The image of a point under the action is denoted variously as

gxz=2=F(z,¢)
or in terms of the co-ordinate functions as
gexj=Xj=Fjz,8), geuf=u% =Fg(z,g)

The different notations are used to ease the exposition, depending on the context. The
property ofx being a left action (o8 being a right action acting component-wise on vector
valued functions) is equivalent #(g * z, h) = F(z, hg).

The prolonged action is given explicitly by

g.u?] = bi...bjFa(Za g)7 (8)
where
~ p ~
D; = (Dx)iDx ©)
k=1

and the coefficients are obtained from the Jacobian maliriy{ = (D;%) L.

The group elemenig e G will be given in co-ordinateg = (g1, - . . , g-)- With the group
action comes an action of its Lie-algebra, obtained by formally expanding the group around
its identity ee G. Let g(¢) C G be any one parameter subgroup®such thafg(0) = e.

Using the chain rule and Taylor’s formula we obtain

r az
— 9i(e)

dgi(e)

2
de + O(€9).

e=0

7=z+c¢

g(e)=e

whereg;(¢) are the co-ordinates gfe). Thus the infinitesimal generator of any one param-
eter subgroup is a linear combination of ‘basic’ infinitesimal generators. Their components
are called thenfinitesimals of the group action with respect to ti¢h group parameter. A
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commonly used notation is

8)~Cj
S],l(z) = ?31

ou“

0gi

. 9hR) =

g=e

(10)

g=e

They classically depend only om, (). By iterative use of the chain rule, we may obtain
recursion formula for the prolonged infinitesimals

=
9k

Pk .i(2) = 02;

(11)

g=e

interms of the; ; andg*;.. The recursion formula and its derivation can be found in textbooks
on symmetries of differential equations d2]], Theorem 2.36]. Further, they have been
implemented in virtually every computer algebra system as part of Lie’s algorithm to find
symmetries of differential equations. A review of the software packages available has been
given by W. Hereman if9], (Vol. Ill, Chapter 13).

In the examples we will give names to every componentofdu. We also use the names
of the components in the (multi)index instead of their numbers. For example in Example 1
we takep = ¢ = 2. The components afandu will be x; = x, xp = £, u! = u andu? = v.
And instead 012, We Write v,y

Example 1. The Euclidean grouf(2) = SO(2) x R? acts on the variables (t, u, v) with
g=(a,a,b)as

i CoSa —Sin« u a

3] = | sina cosa AV E
leavingx andt invariant. Therefore we also have, = D,, D, = D, and hence the pro-
longed action is simply given by

Ug CoSa —Sina UK
ge VK ~ | sina cosa VK
The nonzero infinitesimals of the Euclidean group are

Pra(d) = —vk, ko) =uk, ¢, =1 ¢4)=1

Example 2. The second example is the groSip(2) acting on the variables (z, u(x, 1))
ast =tand

X a b X
<ﬁ> - <c(1+bc)/a> <u> (12)
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where @, b, ¢) are the co-ordinates @f € SL(2) near the identity e= (1, 0, 0). Formula
(9) yields the following differential operators

Do=—L p. D=p--2_p
YT a4 bu, T atbu, t
From Eq.(8) it now follows that
_ac+uy(1+ bc) _ Uy - uy
Uy=———"" ", Upy="+—"7, U=——
* ala + bu,) T (a4 buy)3 "7 a4+ buy

It can be checked that this is a right action. A table of infinitesimals is given below.

X u Uy Uxx Uxxx
a X —u — 2y — 3y — At

u 0 —ui —3uyltyy —Au i — 3u)2(x
c 0 X 1 0 0

The entry in the i y) place is the infinitesimal action corresponding to ik group
parameter on the componenof z.

2.2. Constructing a moving frame

We use the Fels—Olver definition of a moving frame, and their approach to constructing
them. This does not depend in any way on the presence of a frame bundle.

Definition 1. A left moving frame is a leftG-equivariant map,

p:M— G, p(gxz)=gp(2),

and aright moving frame is a rightG-equivariant map,

piM— G, plg*z)=p()g

A moving frame will exist if and only if the group action is free and regular. In our case the
(sufficiently high) prolongation of the group action phwill be locally free provided the
action onX x U is locally effective. We refer tgb] for the technical details.

The construction of a local moving frame in a neighborhtxqatoceeds as follows. Let
K C U be a sub-manifold which is transverse to the group orbits. Weltakebe small
enough so that each orbit intersektat most once, cfig. 1L Usually the cross-sectidgis
the locus of asetof equatiofig(z) = 0, k = 1, ..., r,and then the so-calle@rmalization
equations for the frame are/(z) = 0,k = 1, ..., r. Solving these equations for the group
parameters in terms afyields a right frame.

Geometrically, the construction is as follows. kot U, takek € K andh € G such that
k = h x z. Therightmoving framep : Y — G isthendefined by(z) = &, and thdeft frame
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Cross—section

Different
Orbits

Fig. 1. Construction of a right moving frame using a cross-section.

by p(z) = h~L. The right framep is right equivariant sincg(g * z) = hg™* = p(z)g~* and
a similar remark holds for the left frame, which is left equivariant.

One can think of the Fels—Olver moving frame as providing, locally, a trivialization of
the manifold, i.e., when the frame is a right frame

p:U—>GxK, z— (p(z), p(z) *2)

is a trivialization of!/.

In the expository examples one can solve the normalization equations for the group pa-
rameters. In general, this will not be possible. However, to obtain the evolution of curvature
invariants we dawor need the frame to be known explicitly. This will be made clear in
Section3.

Example 1 (cont.). As normalization equations for the Euclidean group we choose
=0, v=0, v,=0. (13)

These equations yield a right moving frame, mappirg M to p(z) € G which has group
parameters

v UUy + VUx UVy — VU
o) = | — arctan(x> ,— x2 )2“ xz ; .
Uy \/ux + g \/ux +g
A left moving frame is then given by the inverpe(z) which has parameters

(arctan(ll:x) U, v) . (14)




1302 E.L. Mansfield, PH. van der Kamp / Journal of Geometry and Physics 56 (2006) 12941325

€

Fig. 2. An orthonormal frame attached to a curve in the plane.

Considering the rotational part of the group we note thgtatp(z) the rows of

COS () — sin () 1 Uy Uy (15)

sinf) cos@) | \/uZ+12 \ —vx iy
are the orthonormal vectoeg ande; attached to the curve = (u, v) drawn inFig. 2

Note that we could also have started by defining the actighaf M to be the ‘inverse’

action

u cosx Sin« u—a

/) \ —sina cosa v—>b ]’
The normalization equatior§&3) would then have yielded the moving frartiet) as aright
moving frame.

Example 2 (cont.). For the matrix action ofL(2) on (x, u), we can take the normalization
equations
x=0, u=1 u,=0. (16)

Theright frame is then given by

p(@) = (u —x, xu:‘)‘_ u) : (17)

2.3. Invariants and syzygies

In the sequel we assume thdt) is a right moving frame. Theormalized differential
invariants J;, I*, I% are defined by evaluating the transformed dynamical variables on the
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frame. They are the components of

1(z) = p(2) * z.

Since
ge(p(z)*2) =p(g*2)*(g+2) = p(z)g tx(g%2) = p(2)g Tg* 2z = p(z) * 2z,

the functioni(z) is an invariant. The specific components¢f) are denoted

],‘ = xi|g=p(z) s [% = u‘}‘( e=p(2) .
We can deal with these objects abstractly. However, explicit expressions for themin terms
of the original variables can often be obtained. When the frame is known explicitly this is
done by direct computation. The next theorem shows how the frame dependent invariants
defined above may be related to known invariants, a procedure that will be illustrated in
Example 4 of Sectiod.
An important result is that any differential invariant is a function of the above invariants.
This is a consequence of thels—Olver-Thomas replacement theorem ([5], Theorem 10.3),
which states:

Theorem 2. If f(z) € A is an ordinary differential invariant then

f2) = f(()).

Thisistrue since in particular the actiongof p(z) € G leavesf(z) invariant. Asacorollary
the set{J;, I, I} is a complete set of invariants.

The set of co-ordinates functiofsy } can be obtained by acting with differentiation oper-
ators on the ‘fundamental’ set of dependent variald&s. Similarly the above complete

set of invariants can be obtained by acting with invariant differential operators on a (finite)
fundamental set of invariants.

Definition 3. A maximal set ofnvariant operators is defined by evaluating the transformed
total differential operators on the frame. They are

Dj= D, ,
! He=p(2)

interpreted as derivations of.

One should be careful with the order of differentiation and substitution. In general we have
that

o

o
Ukj

PET T empe) Klgmp) 7 7 Kl g=p() g=n(2)
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This motivates the following definition.

Definition 4. The correction terms N;j andM% are defined by
DjJi =8ij+Nij’ Dj]% ZI%J-—{-M%]-, (18)
whereg;; is the Kronecker delta.
It follows from their definition that the invariants are left unchanged by permutations

within their index. The correction terms, however, ave invariant under permutations in
their index.

Proposition 5. ([5], Equation (13.8)) There exists an p X r correction matrix K such that
r r
Ni =Y Kig j(1@), Mg =Y Kijdg (1) (19)
j=1 =1
where j is the index for the group parameters and r = dim(G).

This result can be proved by application of the chain rul®té(z) evaluated ag = p(z).
It then follows thaK is given by

K;; = Dip i(2)
g=p(z2)

Its rows will take on additional significance in Sectign

The matrixK can be calculated without explicit knowledge of the frame. All that is
required are the normalization equations and the infinitesimal group action. Suppose the
variables actually occurring in thg, (z) are

X, 1<i<m,
Gi=19 o

uKi,m<z§n.

DefineT to be the invarianp x n total derivative matrix

(Skjia 15]5””5
Tij=19 o :
IKJ'i’ m < j<n.

Also, let®@ denote the: x n matrix of invariant generators

¢(1x<jj7i(l), m< j<n.

{ék,.,,-(l), 1<j<m,
ij =
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Furthermore, defing to be the invariant x r transpose of the Jacobian matrixyof that
is
ay;i(1)
alk

Jij =
j il
w’a(),m<l§n.
o

,1<i<m,

Using the above defined matrices, which are easily calculated, the correction matrix can be
obtained as follows.

Theorem 6. (Olver, [23]) The correction matrix K, which provides the error terms in the
process of invariant differentiation in Propositiorb, is given by

K = -TJ(@J))™ .

Proof. We compute the invariantization of the equations

Dy (po(z) * ¢) = 0. (20)

The invariantized normalization equations are functions of both the varigbkesd the
co-ordinates of the frame;(z). Since the latter depend on the first we have to be careful.
We separate the different dependencies by wrifip@o(z) * ¢) = ¥, (¢, p(z)). Here they’s

are functions of variables, whereas thie's depend om + r variables. Thus from Eq20)

we obtain

S D S P g
/( ) =1 34—1

We use the chain rule once more and write

0 (5 p(2)) _ Z 9(2) * &1 0y.(p(2) * ©)
9j(2) — pj(x) )b

The theorem is proved by invariantization of the different terms, that is, replagé (¢
by ¢) and evaluate af = p(z). O

In a computer algebra environment, invariantization is achieved by substitution of the
normalized invariants and simplification with respect to the normalization equations. For a
discussion of the subtle issues that arise in this context we ref@btoln the meantime,
we suppose that the simplification can be done by substitution of certain invariants that are
highest with respect to a specified ordering. The set of gighest normalized invariants
will be denoted byH. Note thatH is a subset ofpe ¢;,i =1, ..., n}.

A classical theorem due to Tre488] states that all differential invariants can be obtained
as functions of a finite number of invariants and their invariant derivatives. We have the
following theorem.
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Theorem 7. ([5], Theorem 13.4) The set given by
LI TG € HY —H (21)

is a generating set of differential invariants.

This set is not necessary minimal, as will be shown in the examples. A major difference
betweenthe s¢D;, x;, u*} and the set of invariant differential operators with the generating
invariants is the existence of nontriviakygies. Let I, I be two (generating) differential
invariants, and indexes, M are such thal{, = I¢,,. Then

Dklj —Dul] = Mg — My y (22)

is a(fundamental) syzygy, [5].

Example 1 (cont.). Since we have calculated a frame explicitly, the invariants can easily be
expressed in terms of original variables. The componentgz0#« z are the normalization
equations

“=pi)eu=0, I'=p(z)ev=0, I}=p(z)evy=0,

and the invariant functions

/ + 2 I _ uqu + UxUK U — UxVK — UxUK
X K — :
Vu? + v2 Vu? 4 v?

The invariant operators are sim@}, = D, andD; = D,. Let us calculate th& matrix.
We have

I“O VE OOI}I: 100
T=|("' ™ =100 y=[|010],
Il Il lelxt 010 001
and hence
v /1" 1* 0
K=_ xx/x X ) (23)
Lo/ 1P TP

The correction terms are, fare {u, v}, i € {x, t},

M = —]¢ Lilk Vo= — IUIK_
e TR

1 1

u
MKi
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The generating set of differential invariants(is, I, I}*, 1%, I, I, I',} and we have the
following fundamental syzygies.

1

v gJv
XX If

DII)L: _Dxltu - — VAR
I, - Dy =&l (24)

JU e v qu
Dt I)lc}x _ DX I)?t — Ixx ,HI? Xt Zxx .

Itis seen that the generating set is not minimal since the invafjamtay be removed using
the second syzygy. For later reference, we note that the system may be written in the form
(3), withu = 1%, v=1¥,

xXXx°

2
w) _ (Db +aD e D2 oup, -5 (1 -
v/, D, _% Ve

On the left hand side we have used subsartptdenote invariant time-differentiation and
similarly on the right hand side, denotesD, v (which in this example is equal 1B, v).

Example 2 (cont.). Since we have only one dependent variable we will omit the upper
index. Using the constructed moving frame we obtain the invariants

2
Uy Ullyxx — XUyxlyxy + 3xU%T, Uy
= 3 Ixxx = 5 5 I =
(u — xuy) (u — xuy)

Ly .
U — XUy

The invariant operators are found by substituting the frame into the transformed differentials
(9). They are

D, = u—lxuxDx’ D,:D,~|—Mfu;uxDx. (26)
Using the matrices
0-10 100
T:(éiﬂjﬁj), »=[100]|, J=|010],
001 001

we calculate th& matrix

K= 0-1-1I
“\L 0 —I4)°
The generating set of invariants{i, I;, I,;, I.,}. Using the correction terms

M = 07 My = _Slllxx, My = It Iy,
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we find the syzygies

L — Dxlt = O’

(27)
Dt[xx - Dxlxt = _4Itlxx~

By eliminatingZ,, we get
Dol = (D)% - 4Ixx)lty

which is an equation in the fori3).

3. Evolutions in the Lie-algebra

In Sectior2 we have shown, using the Fels—Olver moving frame method, that the syzygies
between the invariants can be obtained without solving for the frame. With regard to curves
there are certain invariant functions that play a special role, the curvature invariants. In this
section, we show how these can be obtained from the infinitesimals akdrtiarix only.
Subsequently the evolution of the curvature invariants is easily understood in terms of an
evolution in the Lie-algebra af.

Any sufficiently smooth curve ol x U will prolong to a curve inVf. Suppose the curve
iss — z(s), and this lies irl{ where a moving frame is defined. Then the frame provides a
curve inG, s — G, given bys — p(z(s)), seeFig. 3.

Consider the X 1-dimensional casex(r) — z(x, tr) where the two independent vari-
ablesx andt are invariant and the operatatg and D, are thus invariant and commutative.
When the grougs is given as a matrix group, then the maps

x> Qr = (Dep@)p)E 1 Q= (Dip(2))p(z)

are curves in the Lie-algebgpaof G, whose entries are invariants of the group action. The
matrix Q, is called thecurvature matrix and its entries theurvature invariants. \liewing ¢
to be ‘time’, the entries iQ; will be calledevolution invariants.

%, Cross—section

p(z(s))

/ //;7' 'z( s) \

e

Different
OFM

Fig. 3. Aright moving frame for a curve parametrizedsby
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We will show how to calculate these special invariants without knowing the moving
frame p(z) explicitly. The evolution of the curvature invariants is governed by a so called
zero-curvature equation7],

[Dl - Ql» Dy — Qx] =0. (28)

Here, the meaning of curvature in this phrase is not connected to that of the curve, but refers
to the fact that the manifold is flat. In this section we treat a more general setting where the
invariant operators do not necessarily commute. Thus the group may act non-trivially on
the independent variables.

An n-dimensional matrix representati@of a groupG isamapG — GL(R") such that
R(g)R(h) = R(gh). Note that this implies thaR(e) is the identity matrix an®(g~1) =
R(g)~L. By differentiating with respect to the group co-ordinages. . . g, at the identity
e, we obtain the infinitesimal generators

~_ dR(g) o
a = ,i=1...r
dgi g=e

which span the Lie-algebraof G.
Let ¢ denote the matriy = R(p(z)). We define theurvature matrices

=Dio)o Y i=1...,p (29)

The next theorem provides a new significance for the correction mi&trits rows are
the co-ordinates of the curvature matrices, when expressed as a linear combination of the
relevant basis of the Lie-algebra.

Theorem 8. The curvature matrices Q; can be constructed in the matrix representation of g
with basis {a;}, using only the normalization equations and the infinitesimal action. Indeed,

Q=Y Kya;
J

where K is the correction matrix given in Section2.3,

Proof. Chooseg € G arbitrary withZ = g x z. On the one hand we have

biR(P®)|g:p(z) = bi(R(p(Z))R(gil)Ng:p(z) = bi(R(p(Z)))R(g)iﬂg:p(z) =Q;

and on the other hand
p
=) Kja;
g=p(@)  j=1

dR(p(2))

DiR(())|g=p(c) = Z biri@ =375
J

sincep(p(z) * z) = e. O
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The following proposition generalizes the zero-curvature(E8) to include the case of
non-commuting invariant differential operators and is essentially the structural formula for
the Maurer-Cartan form.

Proposition 9. The curvature matrices (29) satisfy the syzygy

Di(Q) — Di(Q;) = (D}, Dilo)o * +1Q;. Qi (30)

Proof.
Di(Qi) — Di(Q;) = D;(Di(e)o™) — Di(D;(0)o™ )
= D;Di(e)e* — DDj(e)e * + Di(0)Dj(e ™) — D;(e)Dile ™)
=[D;, Dil(0)o™* + 19}, Q/]

! = 1impliesDi(o™) = —0 Di(o)o™t. O

aspo™

The commutators of the invariant derivative operators can be calculated using only
the K matrix and the infinitesimals of the group action. The following formula is taken
from ([5], Equation 13.12). Denote the invariantized derivatives of the infinitesimals

& by
E]kl = Z)i%‘k,l(Z)lg:p(z)-
Then we have

,
[Di. Dj] = LDy, Al =Y K;&) — K Ef,. (31)
=1

Remark 10. We will denote the curvature invariants that appear in the m&iby the
vectork. If the normalisation equations do not involve time-derivatives then it is always
possible to rewrite the syzyd0) in the form

k; = HI,, (32)

whereH is a invariant matrix differential operator involving curvature invariants only. This
is done by replacind;x; by Dy;Lik — Mik; repeatedly.

Example 1 (cont.). The matrix

cosa —Sina a
R(g)=| sina cosa b (33)
0 0 1
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provides a representation 6{2). The infinitesimal generators of the Lie-algebra are

0-10 001 000
ap=]100]|,a2=]000]|,a3=[001
00O 000 000

TheK matrix (23)is used to calculate the curvature matrices

0 IN/IY-IY 0 /I -1
Q=|-rry o o |.o=|-r/m o -r (34)
0 0 o 0 0 0

and their commutator

oo n 1/

QQx— Q=001 —ILI/IY
00 0

Therefore from the matrix Eq30) we get the three equations
Dy(I) = DulI}) = — -

o
IU IM
vy — JU 2
DX(II)_ Ix[_ XX 1

u
I

which are equivalent to the syzygi€24) obtained previously. Witk = I, /I¥, v = I¥
these can be written as

K DL D, 1D, I
— v v ; , (35)
v/, D, —« I
which should be compared with the systé).

Recall that the rows of the rotational paridire the vectorg; ande; along the curve, see
Eq. (15). Suppose now that= 1; sincel¥ = e1 - D,y this corresponds to parameterizing
the curve by arc-length. Expressing the evolutior af terms of1; yields

Dk = (D)ZC + kD7 e + KZ)I,” (36)

The same equation is obtained from E2p) sincel¥ = 1 implies that’¥, = I¥, = 0. One
may recognize the recursion operator for the modified Korteweg—De Vrie@EThus
an integrable evolution equation is obtained when one imposes the congtraint,.
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Example 2 (cont.). The infinitesimal generators in the Lie-algelgrare given by

(10 (o1 (o0
"= o-1) %" oo) BT \10)

Using theK matrix we get

0. — 0 -1 0, = I, O
T _Ixx 0 ’ T _Ixt _It '
By using Eq.(31), or the frame, we havd],, D;] = 2I,D,. Eq.(30) becomes

D;Qx — Dy Qs = =219, + [Qr, Oi]

and provides the syzygi¢27).

4. Lifting integrability

In this section we answer the question whether integrability of a curvature evolution
does lift to the motion of its curve. We take the existence of infinitely many generalized
symmetries to be the signature of integrability. Therefore we aim to show, in general, that
a symmetry of the curvature evolution gives rise to a symmetry of the curve evolution.

Suppose we have given two evolutions of curves,

;= Pilul, j=1.2
Here ] denotes dependence oras well as on;-derivatives of.. We have the following
identity

(DtlDZZ - DIZDtl - [Dll’ th])u = 0 (37)

We first look at(37) in the usual coordinates and then compare the calculations in the
invariantised setting. The vanishing of the commutai®y [ D;,] = 0 yields

Dtlutz — Dlzutl = O, (38)

which is the lowest order syzygy between time-derivatives of evolution variables. This
identity in the differential algebra gives us a condition on the functi®ndn practise one
has to verify that

(D11P2)|u,l=P1 - (Dt2P1)|u,2=P2 =0. (39)

If it vanishes indeed, we say that the curve evolutions commute. This condition is called the
symmetry condition. To evaluate the expressions one uses the trivial syZygies- ug
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(there are no correction terms) and the vanishing of the commutators
[Dtjv D)Ci] =0.

Next we will consider curve evolutions that are invariant under a given group action.
The lowest order syzygy involving invariant time derivatives of the fundamental evolution
invariants is

C([tlz Itz) = 'D,l],Z - thltl + Mlztl - Mtltz =0. (40)

Note that the correction terms may depend on the evolution invariants and space derivatives
thereof, but not on their time-derivatives. Suppose that two invariant evolutions of a curve
are given by

I, =Fl«d, i=12 (41)

where theF; depend on the curvature invariants and their invariant derivativesH Lbet
the matrix differential operator, see Remafk such that the time evolutions of denoted
ki, = Dyk, are given by

K, = HF;, i=1,2. (42)
The invariant symmetry condition is now given by
(Dry F)le,=tF1 — (Diy F1)lii,=HF, + (Mipty — Mis)l1,=F, =0, (43)

or, for short, by
C(Itl’ It2)|1,l.=Fi =0.
This is the same condition as conditi(89), but now written in terms of invariants.

Theorem 11. The symmetry condition for two curvature evolutions (42) is a differential
consequence of the symmetry condition on the curve evolutions (41). We have that

DllHIIZ - Dl‘zHIl‘]_ - [Dtl, th]K = HC(Il]_v Ilz)'

Proof. We look at both sides as differential expressions in the oper@ar®;, andD,,
acting on function of, 7;, and I,,. Note that for exampld;,,, does not appear in such

an expression and every, has been replaced ¥I,. We know that both sides vanish
identically in the differential algebra of invariants. Since we can expand both identities into
the form

HDZ‘:LIIZ + B 0

where the dotted terms do not depend®yY;,, both sides are equal as differential conditions
on the invariant functiong, = F;. O
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When the action of the Lie-group neither depends nor acts on the variableds, and
no evolution variables appear in the normalisation equations we can make the connection
between the symmetry conditig@8) and its invariantised forrd0) more explicit. In this
case the evolution invariantg will depend linearly on the original evolution variables.

Let the Lie-group action be given by

%iZF'i(ng)v i:l,...,p—2,
;jztj, j=12,
n*=F*z,¢2,a=1...,q.

Suppose that the variables appearing in the normalisation equation&—até;(",- wherer;
andr, do not appear ik’ for anyi. Then thep x p Jacobian matrixD5 is

MOO
Dx=|v110
vy 01

Here M is the (p — 2) x (p — 2) matrix M = A + BC with A;; = 3, F}, Bje = u¥ and
Coj = 0« Fj, and thev, k = 1,2 are given by §x); = >, ug Coj. The inverse of this
Jacobian matrix is given by

M1 00
Dx = —uM110
—szﬁ1 01

Hence the transformed time-derivative operators are
Dy, = D, —uM™D,. (44)

Applying such an operator to the transformed variablesd then evaluating on the frame
g = p(z) gives us the matrix relating the evolution invariants and the evolution variables.

Proposition 12. We have in this case
L =R, i=12
where R is a matrix of functions of uk with t; not in the index K.
From Eq.(44)we also know that the invariant operat@s equalD,; up to some correction

term which is a linear operator in tHe, with coefficients that are linear in tm;. Therefore
the identitieg38) and (40)re related by

Ril(Dtlutz - Dtlutz) = Dllltz - thltl + Mtztl - Mt]_tz

by linearity of the derivations.
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Theoreml1 implies that integrability does not necessarily lift from the curvature evolu-
tion to the curve evolution. However, most commonly studied integrable curvature equations
are homogeneous polynomials or rational functions of the differential invariants. Since in
these classes the kernel of the differential operAtsrempty, pairs of integrable equations
result, cf.[13]. In order to illustrate the scope of the theorem and the power of the method,
we include, for several geometries, the explicit calculations that one would need to perform
in the absence of the general result.

It can be seen in the examples that verifying the equation in Theadsran involve
substantial calculations. In particular, the fact that the opetafactors out of the left hand
side is remarkable.

Another useful observation is that the explicit formulas for the curvature invariants pro-
vide a Miura-type transformation between the curve evolution and the curvature evolution.
This will also be illustrated in the following examples.

Example 3. One example is provided by the groSp(2) acting asc= x, 7 = t and

b
p= MO e =1
cu+d

The transformation relating the Schwarzian KDV K46) to the KDV Eq. (45) arises
naturally in this context.

When we take: = u, — 1 = u,, = 0 as the normalization equations and take, c as
co-ordinates of the group, we have

0 -1 3l
K - 1 1 .
_jlxt _It jlxxt

and, using the same basis f#(2) as inExample 2 we get
0 -1 —ir, —1
Qx == 1 ) Qt - 12 " 1 ! )
jlxxx 0 élxxt jlxt

o = Ilee)  Lu
%Ixt Ixxx %(ltlxxx - xxt)

and

[Qt7 Qx] = (

Eq. (30) gives the following syzygies

Dxlxt = Ixxt — IZIX)CX1
Dxlt = Ixt,
Dtlxxx - Dxlxxt = Lixx Iy



1316  E.L. Mansfield, PH. van der Kamp / Journal of Geometry and Physics 56 (2006) 12941325
We eliminatel,; and I, and denotd,,, = « to getk; = HI,, where
H =Df+KDx+DxK

is one Hamiltonian operator of the KDV equation
Ki = Kyxx + KKy, (45)

which is famously integrable. When we impose the constriigt « this implies thatc
evolves according to KDV. Let us find out what the motion of the curve is. Using the
moving frame,

( 1 —u Uy )

p = 5 ) )

SUx Suy 22Uy S uy

we obtain explicit expressions for the invariants,

2

Us Uxxx UL,

It = —, K = —_ 772_
Uy Uy 2 us

Writing the constraintl; = « in terms of the original co-ordinates we get the Schwarzian
KDV equation,

3 ufx
2u,’
which is also well known to be integrable. Thus= {x;u}, the Schwarzian derivative,
provides the Miura transformation between SKDV and KDV.

We compare the symmetry conditions on the different levels. Two different motions of
the curve are given by different choices for the evolution invariaiais a function of the

curvature invariant. The curve moves in different time-directiang by u;, = u, F;, i =
1, 2. The condition on the functiong; and F» for these evolutions to commute is

(46)

Ut = Uxxx —

0= Ut — Utrty
= th(uxFl) — D,l(usz)
= Dy(uxF2)F1 + uxDy, F1 — Dx(ux F1)F2 — uy Dy F2
= uy(Dy,F1 — Dy F2 — F1DxF2 + F2Dy F1).

The symmetry condition for the curvature evolutiong= HF;, to commute becomes

0 =kne, — Kty
= D,HF1 — D,HF,
= HD,F1+ H(F2)DxF1+ Dy H(F2)F1—HDy F> — H(F1)DxF2 — Dy H(F1) F2
= H(DtlFZ — Dy Fr— F1DFo + F>D, Fy),
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where the last step can be verified by direct, albeit lengthy, computation, verifying Theorem
1L

The KDV equation has a recursion operalbr—= HD;l. We can use this operator to
write down the symmetries of SKDV. The constraift= D;lm"*lxx makesk evolve
according to a symmetry of KD\, = R"«,. Therefore we have

Uy = uXD;liR’“lKX,

wherex = {x;u} is a symmetry of SKDV. Generating the symmetries this way is easier
than by using the recursion operator for SKDV giverjidf].

Example 2 (cont.). Although we do not know whether there is an integrable equation that
arises as the curvature evolution of a curve moving in the geometric setting of the matrix
action of SL(2) on (x, u), still Theoremllimplies that if it is in a class of equations where
the kernel ofH = D§ — 4k is empty, then the motion of its curve is integrable as well. The
invariant evolution operators are, cf. E@6),

.xu[’-
Dl,‘ = Dl‘,‘ + DXa
U — XUy
which commute with each other but not with.. We impose constraints, = F;, i = 1,2

to describe the curve moving in different timedirections. The motions of the curves
u;; = (u — xuy)F; commute when

0= Ut — Utrty
= Dy, (u — xuy)F1 — Dy (u — xuy) F2
= (u — xuy)((Dyy, + xF2Dy)F1 — (D, + xF1Dy) F?)
= (u — xuy)(D, F1 — Dy, F2).

Using the relation®,, D;] = 2F;D; it can be verified that
Dy, (D? — &)1, — Dy, (D? — 46)1,, = (D? — 4k)(Dy, F1 — Dy, F2),
supporting Theorerthl.

Example 2 (cont.). It is also possible to have non commuting operafys Takedifferent
normalisation equations;

X=l=u,+1=1
Then

R =u — xu,, HZD)ZC—'DX(K)—4K,
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with « = I,,. The commutators are
[Dtls th] = (Itlpx(ltz) - IIZDX(IIJ_))DX’ [Dx» Dl,‘] = (ZII,' - DX(II,'))DX~

According to Theoremi1lwe have
Dy, HF> — D, HF1 — (F1Dx(F2) — F2Dy(F1))Dx(x)
= H(Dt1F2 - thFl + Flpx(FZ) - FZDX(F].))

for arbitrary functiongF;. This can be verified by using the expressions for the operators in
the original variables, or, by using the above commutation relations. There are algorithms
available for processing differential systems given in terms of non-commutative derivations
[8,14]. In general, when a frame cannot be constructed explicitly, this is the only option.

Example 1 (cont.). For the Euclidean action on the plane, after parameterizing by arc-length,
we have obtained the syzygy = 11/, with

R = D(Dy + «D; k),

cf. Eq.(36). The operatoD, is a Hamiltonian operator anbl= D, + «D; 1« is asymplectic
operator for the MKDV equation

Kt = Kyxx + ngKx, 47
cf. [26].
However, to avoid the use d¥; 1, we prefer to write the syzygy as = HI*, where
H = Dy(k + DX%DX) (48)

We consider two different curve evolutions giveny= F;, i = 1, 2. The motion can be
written in terms of frame vectors as

1
Vi = Fie1 + ;Dx(Fi)eZ

We know fromQ;, see Eq(34)that

D, <1> = (K+Dxlnx)(m< “ ) .
e2 K —e1

Therefore the curves commute when

1
0= thytl - Dtl)/tz = Ce1 + ;DX(C)EZ’
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where

D, (F1)D2F; — D,(F2)D?Fy
; .
K

C=DyF1— DyFo— FoDyF1+ F1DF) —

Using formula(48) for H and the evolutions of, it can be verified that indeed we have
DIZKI:]_ — Dth[Z = H(C),

in agreement with Theoredil.
Under the constraing’ = %/{2, or I} = Dy«k, the curvaturer evolves according to the
MKDV Eq. (47). If one imposes, in succession, the constraints

=R, m=12....

then their corresponding curvature evolutions are the symmetries of MKDV, naiely
R k.. The curve evolutions defined by the constraints form a hierarchy as well. The lowest
order (n = 1) constraint yields the following evolution for the curve

1
Ve = 5!6261 + Kkxez, (49)

which is called the planar filament equation. Using the recursion operator of MKDV to
generate its higher symmetries is easier than the procedure gij&Es].in

Since the frame is known explicitly, it is easy to write equat{df) in terms of the
original jet co-ordinates. By elimination of the second co-ordinatising the constraint
u% + vf = 1 we get foru the equation

2
XX 50
e (50)
These kind of scalar equations, i.e., third order equations linear in the highest derivative
term, are classified with respect to integrability. Indeed, the above equation appears in the
list ([19], equation 4.1.14). The explicit expression for the curvature, that is

n 3 uu
Ut = Uxxx T 5
2

k= (UyDy — txy)y/1—u?

X

provides the Miura transformation that transforms &) into MKDV. Yet other descrip-
tions of the same geometric flow can be given, see &§.and (54)n [2].

Example 4. We consider the motion of curves in 3 dimensional Euclidean space. The
Cayley representation ¢fO(3) is given by the matrix

g+82—g5— g5 2(s182—g0g3)  2(g183 + g0g2)
R(g)=| 2(g182+8083) 85— g5+85— 85 2(go83—gog1) |.
2(e193 — g082)  2(g283+ gog1) €85 — &5 — g5+ 43
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whereg? + g2 + g5 + g3 = 1. Let us write the vector of translation #$g) = (ga. gs, g6)
and define the action of the Euclidean graif8) = SO(3) x R3ony = (u, v, w) by

gxy =Ry —V(9)

A representation of the grouf(3) is given by

R(g) V(g)
o 1 )

The normalization equationt$ = I’ = [V =I? = [Y = I, = 0 yield

0 « 01 0 ac-1I
-k 07 O —a 0 b -1}
LQ=lo0-t00 |" U= | cpo-rv
0 00 O 0O 00 O
where
B O ORI R L0 ey i1 -
e Iy I I LT

Eq. (30)yields, after elimination of,

K Dy + D7t —D7 a
v) | —«Di't Di+xDlc)\b)

Setting/¥ to 1 and writinga, b, andc in terms of the generating evolution invariants yields
a K+ DX%DX -7 "
t
b |=|1+iDs+ Div)iD, (D2 -1?) P (52)
t
C %Dx Dx
where we have eliminatetf = 1D, 1"

The rotation part of our frame, which has not been calculated explicitly, is related
to the standard Serret-Frenet franag €2, ¢3), that is, the — th row of R(p) equalse;.
Therefore we have

Ii=e1-ye, Il=e2 vy, IV=e3 yx
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From the normalization equations we obtgin= I¥e¢1. Hence havind¥ = 1 corresponds
tox being arc-length. In terms of the Serret—Frenet frame the curve evolution is

1
)/t = 1;46‘1 + ;Dx(lt”)ez + Itweg

In this equation/;' and I;” must be given in terms of andt and their derivatives for the
curve evolution to be invariant under the group action.

One integrable equation of this formjis = ke, called the filament equation, sge].
This equation is equivalent to the constraifjts= 0, I, = «. If y evolves according to the
filament equation, then andt evolve according to

Kt = —%DX‘EKZ

(53)
T = Dy(x + %Kz —12).

An explicit form for the filament equation in terms of the original variables can be
obtained from the explicit expressions for the frame dependent invakadfsand 7;”.
Without knowledge of the frame these can be obtained using the Fels—Olver—Thomas re-
placement rule from the known classical invariants. In this case the normalization equations
yield

lyxl = I,

[yx X yaxl = I)Lctl)lc)x’

Va o (e X Vo) = LD LY
vil? =102+ 12 4 102,

lye x mil? = L2(IP% + 1),
Vao (Vox X yo) = IEIL 1.

More directly one can use the well known explicit expression for the Serret—Frenet frame,

y.x.x VX X y.xx
€1 = Vx, €2 = , = .
[Vl K

When the third co-ordinate is eliminated usingy,| = 1 the filament equatiop, = y, x
yxx, Written in co-ordinates, is

2
_ V(1 — ux) + UxxUxVx
2 2
1—us—vs
2
uxe(1— vx) + Uxx UxlUx

2_ 2
1—us—%

Uur =

’

(54)

t =



1322 E.L. Mansfield, PH. van der Kamp / Journal of Geometry and Physics 56 (2006) 12941325

The Miura transformation from E¢54)to Eq.(53)is provided by the explicit formulas for
the curvature invariants

K= \/”)%x + U,%x — (UxxVx — Uxxux)2
o — 2 _ .2 ’
V31—us—vs
_ UxxUx — UxxlUx _ (uxxxvxx - Uxxxuxx) V 1- M)% - U)%

1-— M)ZC — U)ZC szcx + v_%_x - (uxxvx - Uxxux)z

The operatoH is now a 2x 2 matrix. We have

with
< Dk + (D? — 1?)1D, —(DyT + er)>
H= .

1Dy + Dyt + Dyi(zD, + D,7)1D, D, 2(D? - 12)

This operator is related to the Hamiltonian operatagiven in (18], Theorem?), in the
case of zero curvature, by interchanging the columns. We impose constraints

I Fi\ o
! = , L= 1, 2
I;I_U G;

The corresponding curvg-evolutions commute when

1
0= Dyy1 — Dyyy2 = Cre1 + ;Dx(C1)€2 + Coes,

where we have use@, and Eq.(52) to find

C1=FD.,F\— F1D.,Fo + G1D,G2 — G2D,G1 + Zf(GlDXFZ — G2D,Fy)
+ 5(D(F1)D2F — D(F2) D?Fy),
Cz = F2D,G1 — F1D,G2 + 25(D.(F2) D?F1 — D,(F1) D?Fy)
2
+ 5(G2D F1 — G1D, F2) + 5(D(F2)D2G1 — Dy(F1)D?G>).

Theoremlltells us that

Fr F> Cy
thH —_ Dl‘lH == H .
G1 Go C»
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To verify this requires quite a lengthy calculation. In particular, the integrability lifts from
Eqg. (53) to Eqg. (54). A recursion operator for Eq53) was given in[18]. Similar to the

planar case, this recursion operator can be used to write down the higher symmetries of the
curve evolution54) easily.

Example 5. Given an evolution equation, integrable or not, it is sensible to ask whether
it arises as the curvature evolution for a curve moving in some geometry. However, this
may happen in more than one way. We illustrate this by proving that any scalar evolution
equation that allows a potential form arises both as the curvature evolution of a projected
curve on the line and as the curvature evolution of a scaled curve on the line. By Theorem
11, these curves are integrable if the curvature evolution is integrable.

Suppose that a scalar equation #&azan be written as
Kk = Dy Flx], (55)

for someF which is a function of and itsx-derivatives. Then the equation hagaential
form. The potential form of Eq(55), obtained from the transformation= v,, is given
explicitly by

vy = Flvy].
For example, the potential form of Burgers’ equatior= D, (k. + «2) is
Vr = Vyx + vf.

We first consider a curva(x) moving on the line where the geometry is given by
% = x, it = gu. As a representation of the grouR, -), we haveR(g) = g. We impose
the normalization equatiom = 1, which yields the right-moving frame = 1/u. Among
the invariants of the action we have = u,/u andl; = u,/u. The curvature matrices are
scalars, i.e.Q, = —1I,, Q; = —I,. Since these commute, E(BO) yields D;I, = D. I,
which is of the form(55). We write I, = « and I, = F[«]. Thus, Eq.(55) arises as the
curvature evolution for the a scaled curve, whose evolution is given by

uy =ukF {E} . (56)
u

Next we consider curves(x) moving on the line where the geometry is given by
X =x,u =u/(1— gu). As arepresentation of the group,(+) we haveR (g) = 5. We im-
pose the normalization equatien="1. This yields the right-moving frame= (1 — u)/u.
Among the invariants of the action we hake= u,/u? andl, = u,/u?. The curvature ma-
trices areQ, = —I, andQ, = —I,, and we arrive to Eq55) again, however with different
curvatures invariants. = « andl; = F[k]. Therefore, Eq(55)also describes the curvature
flow of a projective curve moving on the line where the evolution of the curve is given by

Uy = u’F [%} . (57)
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Note that Eq.(57) is equivalent to the potential form of the equation by the invertible
transformation = —1/u.

In the following table we present the curve evolutions whose curvatures evolve accord-
ing to Burgers’ equation (or the heat equation it 0), the Korteweg—De Vries equation
and the nonlinear diffusion equation. Other equations which have a potential form include
the modified KDV equation, the Sawada-Kotera equation and the Kaup-Kupershmidt equa-
tion. Their scaled and projective curve evolutions can be obtained directly(86)rand
(57).

Curvature flow scaled curve projective curve
uf 2 g
Kt = Kxx + akxk Uy =ty + (@ —1)—= Uy =gy — 25+ 5%
3 2

UxxUx u au 3 2

Kt = Kyxx + akxck Ut = Uxxx — 3 = + Zﬁ + E f U = Uxxx — 67“*‘;“)( + 6% + %Z%
Ky ”2 ut 3
K’:D"fz U=y — — U Up = Uy —2u
us Uy
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