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1. Introduction

Consider the following problems:

(a) Let M ⊂ R
3 open and N ⊂ R

4 open; let D1 be a smooth rank 2 distribution on M , and D2 a smooth rank 2 distribution
on N . We wish to investigate whether there exists an immersion f : M → N that maps D1 to D2, i.e. such that ∀p ∈
M, ∀v ∈ T p M: v ∈ D1(p) ⇒ T p f (v) ∈ D2( f (p)). Restricting M and N if necessary, let ω = (ω1,ω2,ω3)T be a coframe
on M such that D1 = {ω3 = 0}, and let Ω = (Ω1,Ω2,Ω3,Ω4)T be a coframe on N such that D2 = {Ω3 = Ω4 = 0}. An
immersion f : M → N will map D1 to D2 (in the precise sense defined above) if and only if

f �

(
Ω3

Ω4

)
=

(
c
d

)
ω3

where c,d are smooth R-valued functions on M with c2 + d2 �= 0. Equivalently, we wish to investigate the existence of
a smooth mapping f : M → N such that

f �

⎛
⎜⎝

Ω1

Ω2

Ω3

Ω4

⎞
⎟⎠ =

⎛
⎜⎝

a1 a2 a3
b1 b2 b3
0 0 c
0 0 d

⎞
⎟⎠

(
ω1

ω2

ω3

)
,
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with the matrix function

V =
⎛
⎜⎝

a1 a2 a3
b1 b2 b3
0 0 c
0 0 d

⎞
⎟⎠

taking values in the set of real 4 × 3 rank 3 matrices. Note that the matrix function V can be written as V = U J , where

J =
⎛
⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞
⎟⎠

and U is a matrix function on M with values in the subgroup

G =
{(

A B
0 C

)
| A, C ∈ GL(2,R)

}

of GL(4,R).
(b) Let M, N, D1, D2 as in (a), and assume now given a Riemannian metric g1 on D1 and a Riemannian metric g2 on D2.

We wish to investigate whether there exists an immersion f : M → N that maps D1 to D2 and g1 to g2, i.e. such that
∀p ∈ M, ∀v ∈ T p M: v ∈ D1(p) ⇒ T p f (v) ∈ D2( f (p)), and such that ∀p ∈ M, ∀v, w ∈ T p M: g2(T p f (v), T p f (w)) =
g1(v, w). Restricting M and N if necessary, let ω = (ω1,ω2,ω3)T be a coframe on M such that D1 = {ω3 = 0} and such
that g1 = ω1 ⊗ ω1 + ω2 ⊗ ω2, and let Ω = (Ω1,Ω2,Ω3,Ω4)T be a coframe on N such that D2 = {Ω3 = Ω4 = 0} and
such that g2 = Ω1 ⊗ Ω1 + Ω2 ⊗ Ω2. An immersion f : M → N will map D1 to D2 and g1 to g2 (in the precise sense
defined above) if and only if

f �

(
Ω3

Ω4

)
=

(
c
d

)
ω3

and

f �

(
Ω1

Ω2

)
=

(
a1 a2
b1 b2

)(
ω1

ω2

)
+

(
a3
b3

)
ω3

where c,d are smooth R-valued functions on M with c2 + d2 �= 0 and a1,a2,a3,b1,b2,b3 smooth R-valued functions
on M with(

a1 a2
b1 b2

)
∈ O (2,R).

Equivalently, we wish to investigate the existence of a smooth mapping f : M → N such that

f �

⎛
⎜⎝

Ω1

Ω2

Ω3

Ω4

⎞
⎟⎠ =

⎛
⎜⎝

a1 a2 a3
b1 b2 b3
0 0 c
0 0 d

⎞
⎟⎠

(
ω1

ω2

ω3

)
,

with the matrix function

V =
⎛
⎜⎝

a1 a2 a3
b1 b2 b3
0 0 c
0 0 d

⎞
⎟⎠

taking values in the set of real 4 × 3 rank 3 matrices having upper-left 2 × 2 block in O (2,R). In this problem as well
V can be written as V = U J , where

J =
⎛
⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞
⎟⎠

and U is a matrix function on M with values in the subgroup

G =
{(

A B
0 C

)
| A ∈ O (2,R), C ∈ GL(2,R)

}

of GL(4,R).
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(c) Let (M, gM) be a Riemannian manifold of dimension m, and (N, gN) a Riemannian manifold of dimension n, with
m < n; does there exist an isometric immersion f : M → N , i.e. a C∞ map f such that f � gN = gM ? Re-expressing the
problems in terms of suitable adapted coframes (and restricting M and N if necessary), and letting Ω = (Ω1, . . . ,Ωn)T

be a coframe on N such that gN = ∑
i Ω

i ⊗ Ω i , and ω = (ω1, . . . ,ωm)T a coframe on M such that gM = ∑
i ω

i ⊗ ωi ,
it is easy to see that f : M → N is an isometric immersion if and only if there exists a matrix-valued function V on
M satisfying V T V = I and such that f �Ω = V ω. Note that if m and n were equal, this problem would become the
standard Riemannian isometry problem. Note also that any real n × m matrix V satisfying V T V = I can be written as
V = U J , where U ∈ O (n) and J = (e1 . . . em), where ek denotes the kth basis vector in the canonical basis of R

n .
(d) With (M, gM) and (N, gN ) as in (c), assume we now wish to investigate whether there exists a smooth mapping

f : M → N such that f � gN = α2 gM , for some smooth function α : M → R
� . In other words, we are interested in con-

formal immersions of M into N . Letting Ω and ω be the same coframes as in (c), it is easy to see that f : M → N is
a conformal immersion if and only if there exists a matrix-valued function V on M satisfying V T V = α2 I for some
smooth function α : M → R

� and such that f �Ω = V ω. Here again, any real n × m matrix V satisfying V T V = α2 I can
be written as V = U J , where U ∈ C O (n) = {αÛ | α ∈ R

�, Û ∈ O (n)} and J = (e1 . . . em), where ek denotes the kth basis
vector in the canonical basis of R

n .

The problems described in (a), (b), (c), and (d) are all instances of the following general problem:

(P) Let G be a Lie subgroup of GL(n), let M, N be open subsets of R
m,R

n , respectively with m < n; let W and V be
real vector spaces of dimension m and n, respectively; let ωM be a W -valued smooth one-form on M , and ΩN a
smooth V -valued one-form on N; assume ωM(q) is onto W , ∀q ∈ M , and ωN (q) onto V , ∀q ∈ N; let J : W → V be a
monomorphism. Assume given a representation of G on V , and, viewing V as a G-module, denote the corresponding
operation G × V → V by (g, v) �→ g · v . Does there exist an immersion f : M → N such that f �ΩN = λ · JωM , where
λ : M → G is a C∞ mapping on M with values in G?

Our objective in this paper is to show that Cartan’s method of equivalence [1,3,5] can be extended, with suitable modifi-
cations, to address this class of problems, yielding necessary conditions for a solution to exist. We will treat the sufficient
conditions for the existence of a solution to this problem in a future paper. Note that Problem (P) with m = n is exactly the
problem addressed by Cartan’s method of equivalence. Also, in order to facilitate the comparison of our proposed extension
to Cartan’s method of equivalence, we have tried to keep our notation as close as possible to that used in the standard
Refs. [3,5] on Cartan’s method of equivalence.

2. Extending Cartan’s equivalence method

2.1. Principal bundles, coframes, and structure equations

As with Cartan’s equivalence method, the first major simplification is afforded by lifting the problem to the principal
bundle of coframes. Consider then the principal G-bundles M × G and N × G with left G-action given by g1 · (q, g2) =
(q, g1 g2), and canonical surjections πM : M × G → M , pM : M × G → G and πN : N × G → N , pN : N × G → G . Let (êi)

m
i=1 be

a basis of W , and let (ei)
n
i=1 be a basis of V such that ei = J êi , ∀i ∈ {1, . . . ,m}; denote by ( f j)n

j=1 the basis of V � dual to
(ei)

n
i=1. We denote by 〈·, ·〉 the duality pairing between V � and V . On M × G we define the V -valued one-form ω by

ω = pM · Jπ�
MωM ,

and, on N × G , the V -valued one-form Ω by

Ω = pN · π�
NΩN .

We define the real-valued smooth one-forms (ωi)n
i=1 on M × G and (Ω i)n

i=1 on N × G by

ω =
n∑

i=1

ωiei, Ω =
n∑

i=1

Ω iei .

The following result is the key result on which the proposed extension rests:

Theorem 1. There exists an immersion f : M → N and a C∞ map λ : M → G such that f �ΩN = λ · JωM if and only if there exists a
left-equivariant C∞ map f̂ : M × G → N × G such that f̂ �Ω = ω.

Proof. Assume first that there exists a left-equivariant C∞ map f̂ : M × G → N × G such that f̂ �Ω = ω. Note that it follows
from left-equivariance of f̂ that πN ◦ f̂ = f ◦ πM for some C∞ map f : M → N . We have:
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f̂ �Ω = ω ⇔ f̂ �Ω|x = ω|x, ∀x ∈ M × G,

⇔ (
f̂ �(pN · π�

NΩN )
)∣∣

x = (
pM · Jπ�

M(ωM)
)∣∣

x,

⇔ [
(pN ◦ f̂ ) · (πN ◦ f̂ )�ΩN

]∣∣
x = (

pM · Jπ�
M(ωM)

)∣∣
x,

⇔ [
( f ◦ πM)�ΩN

]∣∣
x = (

(pN ◦ f̂ )−1 · pM · Jπ�
M(ωM)

)∣∣
x,

⇔ π�
M( f �ΩN )|x = (

(pN ◦ f̂ )(x)
)−1 · pM(x) · Jπ�

M(ωM)|x, ∀x ∈ M × G.

By left-equivariance of f̂ , it follows that ∀x ∈ M × G , ∀g ∈ G:(
(pN ◦ f̂ )(g · x)

)−1 · pM(g · x) = (
(g · pN ◦ f̂ )(x)

)−1 · g · pM(x)

= (
(pN ◦ f̂ )(x)

)−1 · pM(x),

in other words, the G-valued mapping x �→ ((pN ◦ f̂ )(x))−1 · pM(x) on M × G factors through the projection πM . There
therefore exists a C∞ map λ : M → G such that ((pN ◦ f̂ )(x))−1 · pM(x) = λ ◦ πM(x), ∀x ∈ M × G . Hence:

f̂ �Ω = ω ⇒ π�
M( f �ΩN ) = (λ ◦ πM) · Jπ�

MωM

⇔ π�
M( f �ΩN ) = π�

M(λ · JωM)

⇔ f �ΩN = λ · JωM ,

by virtue of πM being a submersion. Conversely, assume there exists a C∞ map f : M → N and a C∞ map λ : M → G such
that f �ΩN = λ JωM . Defining f̂ : M × G → N × G by f̂ (q, g) = ( f (q), g · (λ(q))−1), we obtain:

f̂ �Ω|(q,g) = f̂ �(pN · π�
NΩN )|(q,g)

= (pN ◦ f̂ ) · (πN ◦ f̂ )�ΩN |(q,g)

= (pN ◦ f̂ )(q, g) · ( f ◦ πM)�ΩN |(q,g)

= g · (λ(q)
)−1 · π�

M(λ · JωM)|(q,g)

= g · (λ(q)
)−1 · λ(q) · Jπ�

M(ωM)|(q,g)

= g · Jπ�
M(ωM)|(q,g)

= ω|(q,g), ∀(q, g) ∈ M × G,

and left-equivariance of f̂ is immediately verified. �
The key simplification afforded by Theorem 1 lies in the fact that the dependence on the group-valued function is

removed; instead, the group itself is introduced through the product spaces. At this point, the problem is reduced to pulling
back a family of one-forms to a given family of one-forms. It is important to note that since m < n, the family of linear
forms (ωi(q))n

i=1 is linearly dependent ∀q ∈ M × G , whereas the family of linear forms (Ω i(q))n
i=1 is linearly independent

∀q ∈ N × G . Furthermore, ∀q ∈ M × G , exactly m of the linear forms (ωi(q))n
i=1 form a linearly independent family in

Tq(M × G). We can exploit this redundancy in the ωi by effecting a first reduction of the structure group G . For every
(n − m)-tuple of indices (i1, . . . , in−m) satisfying 1 � i1 < i2 < · · · < in−m � n, and for every q ∈ M , we define the subset
Gq,(i1,...,in−m) of G as follows:

Gq,(i1,...,in−m) = {
g ∈ G | ωi1 (q, g) = · · ·ωin−m (q, g) = 0

}
.

Proposition 1. ∀q ∈ M, Gq,(m+1,...,n) is a Lie subgroup of G independent of q ∈ M, and denoting it by G0 , for every (n − m)-tuple of
indices (i1, . . . , in−m) satisfying 1 � i1 < i2 < · · · < in−m � n, Gq,(i1,...,in−m) is independent of q ∈ M and is either empty or a right
coset of G0 .

Proof. By Cartan’s theorem [4], it will be sufficient to show that Gq,(m+1,...,n) is a closed subgroup of G . The fact that
Gq,(m+1,...,n) is a closed subset of G follows immediately from continuity of the one-forms ωm+1, . . . ,ωn on M × G . Further-
more:

ω =
m∑

i=1

(π�
Mωi

M)pM · ei

=
n∑ m∑

(π�
Mωi

M)〈 f j, pM · e〉e j,
j=1 i=1
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and therefore, since (ωi
M)m

i=1 is a coframe on M and πM is a submersion, we obtain, ∀q ∈ M:

Gq,(m+1,...,n) = {
g ∈ G | 〈 f j, g · ei〉 = 0, ∀i = 1, . . . ,m, ∀ j = m + 1, . . . ,n

}
.

Note that it follows from the above characterization of Gq,(m+1,...,n) that:

g ∈ Gq,(m+1,...,n) ⇔ g · ei ∈ span(e1, . . . , em), ∀i = 1, . . . ,m.

Furthermore:

1. ∀g1, g2 ∈ Gq,(m+1,...,n) , ∀i = 1, . . . ,m, ∀ j = m + 1, . . . ,n, 〈 f j, g1 g2 · ei〉 = 〈 f j, g1 · (g2 · ei)〉 = 0, as follows from the above
characterization, which implies g1 g2 ∈ Gq,(m+1,...,n);

2. 1 ∈ Gq,(m+1,...,n) since 〈 f j, ei〉 = 0, ∀i = 1, . . . ,m, ∀ j = m + 1, . . . ,n;

3.

g ∈ Gq,(m+1,...,n) ⇔ g · ei ∈ span(e1, . . . , em), ∀i = 1, . . . ,m,

⇔ ei ∈ span(g−1 · e1, . . . , g−1 · em), ∀i = 1, . . . ,m,

⇔ span(g−1 · e1, . . . , g−1 · em) = span(e1, . . . , em)

⇔ g−1 ∈ Gq,(m+1,...,n),

as follows immediately from the above characterization of Gq,(m+1,...,n) .

This shows that G0 = Gq,(m+1,...,n) is a Lie subgroup of G and is independent of q ∈ M . Consider now Gq,(i1,...,in−m); either
it is the empty set or there is an element g(i1,...,im) of G acting on V through an automorphism permuting ei1 and em+1,
ei2 and em+2, . . ., ein−m and en , and leaving all other ei fixed; in the latter case,every g ∈ Gq,(i1,...,in−m) can be written as
g = g(i1,...,im) g0 where g0 ∈ G0. Hence, Gq,(i1,...,in−m) is either empty or a right coset of G0. �

The key idea at this point is to reduce the original problem to one involving only the subgroup G0; by reducing the
structure group of the bundles to G0, the problem does become simpler. The next result, the proof of which follows directly
from the definitions, shows that the existence of a solution to the original problem, involving G , implies the solution of a
similar problem, involving G0. Note that there is a natural left action of G0 on N × G , inherited from the left action of G
on N × G , and that for each (n − m)-tuple of indices (i1, . . . , in−m) satisfying 1 � i1 < i2 < · · · < in−m � n and for which
G(i1,...,in−m) is non-empty, M × G(i1,...,in−m) is a (trivial) principal G0-bundle over M .

Remark. In all that follows, we denote by ρ0 the dimension dim(G0) of G0.

Proposition 2. Assume f̂ : M × G → N × G is G-left-equivariant and satisfies f̂ �Ω = ω. Then, for each (n − m)-tuple of indices
(i1, . . . , in−m) satisfying 1 � i1 < i2 < · · · < in−m � n and for which G(i1,...,in−m) is non-empty, the restriction of f̂ to M × G(i1,...,in−m)

(denoted by the same symbol) is G0-left-equivariant and satisfies f̂ �Ω = ω|M×G(i1,...,in−m)
.

By virtue of this proposition, we can reduce the original problem to one on M × G(i1,...,in−m) . By virtue of the fact that the
pullback operation and exterior derivative commute, it follows from Theorem 1 and Proposition 2 that a necessary condition
for the existence of a C∞ map f : M → N and a C∞ map λ : M → G such that f �ΩN = λ JωM is that there exist, for every
(n − m)-tuple of indices (i1, . . . , in−m) such that 1 � i1 < i2 < · · · < in−m � n and for which G(i1,...,in−m) is non-empty, a

G0-left-equivariant C∞ map f̂ : M × G(i1,...,in−m) → N × G such that f̂ �dΩ = dω|M×G(i1,...,in−m)
. We shall therefore investigate

the structure equations of the quasi-coframes ω and Ω , on M × G(i1,...,in−m) and N × G , respectively. We have:

dω = d(pM · J · π�
MωM)

= dpM ∧ Jπ�
MωM + pM · Jπ�

M dωM

= dpM · (pM)−1 ∧ ω + pM · Jπ�
M dωM .

Letting G0 denote the Lie subalgebra of G associated with the Lie subgroup G0 of G , dpM · (pM)−1 is a G0-valued C∞ one-
form on M × G0, invariant under the right action of G0 on M × G0. Let (aρ)ρ be a basis of the Lie algebra G of G such that
the first ρ0 elements form a basis of the Lie subalgebra G0. Then there exist right-invariant Maurer–Cartan forms (μρ)ρ on
G0 such that

dpM · p−1
M =

∑
aρ p�

M(μρ).
1�ρ�ρ0
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The representation of G0 on V induces a representation of the Lie algebra G0 on V , i.e. a Lie algebra homomorphism
G0 → Hom(V , V ). We therefore obtain:

dω =
∑

1�ρ�ρ0

aρ p�
M(μρ) ∧ ω + pM · Jπ�

M dωM .

Since ωM = ∑m
i=1 ωi

M êi is such that ωM(q) is onto W for all q ∈ M , and M is m-dimensional, there exist uniquely defined
C∞ functions ci

jk on M such that

dωi
M =

∑
1� j<k�m

ci
jkω

j
M ∧ ωk

M , 1 � i � m,

and therefore

Jπ�
M dωM =

∑
1� j<k�m

1�i�m

[
(ci

jk ◦ πM)π�
Mω

j
M ∧ π�

Mωk
M

]
J êi

=
∑

1� j<k�m
1�i�m

[
(ci

jk ◦ πM)π�
Mω

j
M ∧ π�

Mωk
M

]
ei .

We now express π�
Mω

j
M ,π�

Mωk
M in terms of ω = ∑n

i=1 ωi ei . Note that

ω = pM · Jπ�
MωM ⇔ Jπ�

MωM = p−1
M · ω

⇔
m∑

i=1

(π�
Mωi

M)ei =
n∑

i=1

ωi p−1
M · ei .

Hence, ∀1 � j � m:

π�
Mω

j
M =

〈
f j,

m∑
i=1

(π�
Mωi

M) ei

〉

= 〈 f j, Jπ�
MωM〉

= 〈pM · f j,ω〉.
It follows therefore that

pM · Jπ�
M dωM =

∑
1� j<k�m

1�i�m

(ci
jk ◦ πM)

(〈pM · f j,ω〉 ∧ 〈pM · f k,ω〉)pM · ei

=
∑

1�r<s�m
1�t�m

γ t
rs〈 f r,ω〉 ∧ 〈 f s,ω〉et

=
∑

1�r<s�m
1�t�m

γ t
rsω

r ∧ ωset

where the functions γ t
rs , called torsion coefficients, are given ∀1 � t � m,1 � r < s � m by:

γ t
rs =

∑
1� j<k�m

1�i�m

(ci
jk ◦ πM)〈 f j, p−1

M · er〉〈 f k, p−1
M · es〉〈p−1

M · f t , ei〉. (1)

We now consider the group action on V ⊗ ∧2 V � induced from the group action on V . The following result is a direct
consequence of the definition of torsion coefficients given in Eq. (1), and it highlights a desirable property of the restriction
of the torsion coefficients to M × G0.

Proposition 3. Consider the smooth function γ = ∑
γ t

rset ⊗ f r ∧ f s defined on M × G0 with values in V ⊗∧2 V �; we have, ∀q ∈ M,
∀g, ĝ ∈ G0:

g · γ (q, g′) = γ (q, gg′).
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Proof. We have, ∀q ∈ M , ∀g, ĝ ∈ G0:

g · γ (q, ĝ) =
∑

γ t
rs(q, ĝ)g · et ⊗ g · f r ∧ g · f s

= g ·
(∑

ci
jk(q)〈 f j, ĝ−1 · er〉〈 f k, ĝ−1 · es〉〈ĝ−1 · f t, ei〉et ⊗ f r ∧ f s

)
= g ·

(∑
ci

jk(q)〈ĝ · f j, er〉〈ĝ · f k, es〉〈 f t , ĝ · ei〉et ⊗ f r ∧ f s
)

= g ·
(∑

ci
jk(q)

(〈 f t , ĝ · ei〉
)
et ⊗ (〈ĝ · f j, er〉

)
f r ∧ (〈ĝ · f k, es〉

)
f s

)
= g ·

(∑
ci

jk(q)ĝ · ei ⊗ ĝ · f j ∧ ĝ · f k
)

= g ĝ · γ (q, e),

where e denotes the identity element of G0. Using once more the same chain of equalities with different arguments yields
g ĝ · γ (q, e) = γ (q, g ĝ), proving the desired result. �

The structure equations for Ω are given by:

dΩ = d(pN · π�
NΩN )

= dpN · p−1
N ∧ Ω + pN · π�

N dΩN ;
since dpN · p−1

N is a G -valued C∞ one-form on N × G , invariant under the right action of G on N × G , there exist right-
invariant Maurer–Cartan forms (Πρ)ρ on G such that

dpN · p−1
N =

∑
1�ρ�dim(G)

aρ p�
N (Πρ),

and since ΩN = ∑n
i=1 Ω i

N ei is such that ΩN (q) is onto V , ∀q ∈ N , and N is n-dimensional, there exist uniquely defined C∞
functions C i

jk on N such that

dΩ i
N =

∑
1� j<k�n

C i
jkΩ

j
N ∧ Ωk

N , 1 � i � n,

and since Ω = pN · π�
NΩN , we have π�

NΩN = p−1
N · Ω , and the structure equations for Ω can be rewritten as:

dΩ =
∑

aρ p�
N (Πρ) ∧ Ω +

∑
Γ t

rs〈 f r,Ω〉 ∧ 〈 f s,Ω〉et

=
∑

aρ p�
N (Πρ) ∧ Ω +

∑
Γ t

rsΩ
r ∧ Ω set

where the torsion coefficients Γ t
rs are given, ∀1 � t � n, 1 � r < s � n, by

Γ t
rs =

∑
1� j<k�n

1�i�n

(C i
jk ◦ πM)〈 f j, p−1

M · er〉〈 f k, p−1
M · es〉〈p−1

M · f t , ei〉. (2)

Let now f̂ : M × G0 → N × G be a G0-left equivariant map such that f̂ �Ω = ω; then:

ω = f̂ �Ω ⇒ dω = f̂ �dΩ

Hence, letting aρ · e j = ∑n
i=1 ai

jρei , we can identify aρ ∈ G with
∑n

i, j=1 ai
jρei ⊗ f j ∈ V ⊗ V � � Hom(V , V ). We therefore

obtain:

ω = f̂ �Ω ⇒ dωi =
∑

1� j�m
1�ρ�ρ0

ai
jρ p�

M(μρ) ∧ ω j +
∑

1� j<k�m

γ i
jkω

j ∧ ωk

=
∑

1� j�m
1�ρ�ρ0

ai
jρ(pN ◦ f̂ )�(Πρ) ∧ ω j +

∑
1� j<k�m

(Γ i
jk ◦ f̂ )ω j ∧ ωk, i = 1, . . . ,m;

by Cartan’s lemma, this in turn implies∑
1�ρ�ρ0

ai
kρ

[
(pN ◦ f̂ )�(Πρ) − p�

M(μρ)
] +

∑
1� j�m

[
(Γ i

jk ◦ f̂ ) − γ i
jk

]
ω j =

∑
1� j�m

bi
jkω

j, i,k = 1, . . . ,m.

with bi = bi .
kj jk



642 A.-R. Mansouri / Differential Geometry and its Applications 27 (2009) 635–646
Remark. Since (aρ)
dim(G)
ρ=1 is assumed to be basis of the Lie algebra G such that (aρ)

ρ0
ρ=1 be a basis of the Lie subalgebra G0,

we have that ∀ρ ∈ {1, . . . , ρ0}, ai
jρ = 0 whenever i > m and j � m; furthermore, it follows from the characterization of the

subgroup G0 of G that we can assume without loss of generality that ∀ρ ∈ {ρ0 + 1, . . . ,dim(G)}, ai
jρ = 0 for 0 � i, j � m.

2.2. Torsion absorption

We have, for any family (ν
ρ
k ) 1�k�m

1�ρ�ρ0

of smooth R-valued functions on M × G0:

∑
1� j�m

1�ρ�ρ0

ai
jρ

(
p�

M(μρ) +
∑

1�k�m

ν
ρ
k ωk

)
∧ ω j =

∑
1� j�m

1�ρ�ρ0

ai
jρ p�

M(μρ) ∧ ω j −
∑

1� j<k�m
1�ρ�ρ0

(ai
jρν

ρ
k − ai

kρν
ρ
j )ω j ∧ ωk.

Let Vm denote the vector subspace of V spanned by e1, . . . , em; we identify its dual V �
m with the vector subspace of V �

spanned by f 1, . . . , f m . Define the vector space homomorphism

L : G0 ⊗ V �
m → Vm ⊗

2∧
V �

m

by:

L
( ∑

1�k�m
1�ρ�ρ0

ν
ρ
k aρ ⊗ f k

)
= −

∑
1�i�m

1� j<k�m
1�ρ�ρ0

(ai
jρν

ρ
k − ai

kρν
ρ
j )ei ⊗ f j ∧ f k.

Denoting −∑
1�ρ�ρ0

(ai
jρν

ρ
k − ai

kρν
ρ
j ) by (L(ν))i

jk , we therefore obtain:

dωi =
∑

1� j�m
1�ρ�ρ0

ai
jρ

(
p�

M(μρ) +
∑

1�k�m

ν
ρ
k ωk

)
∧ ω j +

∑
1� j<k�m

[
γ i

jk − (
L(ν)

)i
jk

]
ω j ∧ ωk, i = 1, . . . ,m.

For torsion absorption, we need to solve as many of the equations

γ i
jk − (

L(ν)
)i

jk = 0, i = 1, . . . ,m, 1 � j < k � m, (3)

on M × G0 as possible. Similarly, we have, for any family (ν̂
ρ
k ) 1�k�m

1�ρ�ρ0

of smooth R-valued functions on N × G:

dΩ i =
∑

1� j�m
1�ρ�ρ0

ai
jρ

(
p�

N (Πρ) +
∑

1�k�m

ν̂
ρ
k Ωk

)
∧ Ω j +

∑
1� j<k�m

[
Γ i

jk − (
L(ν̂)

)i
jk

]
Ω j ∧ Ωk

+
∑

m+1� j�n
1�ρ�ρ0

ai
jρ p�

N (Πρ) ∧ Ω j +
∑

1� j�n
ρ0+1�ρ�dim(G)

ai
jρ p�

N (Πρ) ∧ Ω j

+
∑

1� j�m<k�n

Γ i
jkΩ

j ∧ Ωk +
∑

m+1� j<k�n

Γ i
jkΩ

j ∧ Ωk, i = 1, . . . ,n.

In this case we need to solve as many of the equations

Γ i
jk − (

L(ν̂)
)i

jk = 0, i = 1, . . . ,m, 1 � j < k � m, (4)

on N × G as possible, that is, we need to absorb the torsion coefficients Γ i
jk with coefficients i, j,k ranging from 1 to m

only. In the special case that all the torsion coefficients in Eqs. (3) and (4) can be absorbed, we have the following result:

Theorem 2. Assume there exists a unique family (ν
ρ
k ) of smooth R-valued functions on M × G0 such that all of the equalities in (3) are

satisfied, and a family (ν̂
ρ
k ) of smooth R-valued functions on N × G such that all of the equalities in (4) are satisfied; if, after torsion

absorption for the dω- and dΩ-structure equations, we have the structure equations

dωi =
∑

1� j�m
1�ρ�ρ0

ai
jρθρ ∧ ω j, i = 1, . . . ,m,

dΩ i =
∑

1� j�n

ai
jρΘρ ∧ Ω j +

∑
1� j�m<k�n

Γ i
jkΩ

j ∧ Ωk +
∑

m+1� j<k�n

Γ i
jkΩ

j ∧ Ωk, i = 1, . . . ,n,
1�ρ�dim(G)
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where, for each ρ ∈ {1, . . . , ρ0}, θρ is a smooth one-form on M × G0 , and for each ρ ∈ {1, . . . ,dim(G)}, Θρ a smooth one-form on
N × G, and if the left-equivariant C∞ map f̂ : M × G → N × G satisfies f̂ �Ω = ω, then:

f̂ �Θρ = θρ, ∀ρ ∈ {1, . . . , ρ0}.

Proof. By Proposition 2, left G-equivariance of f̂ implies left G0-equivariance of the restriction of f̂ to M × G0 (which we
denote by the same symbol); it follows therefore that:

f̂ �Ω = ω ⇒
∑

1� j�m
1�ρ�ρ0

ai
jρθρ ∧ ω j =

∑
1� j�m

1�ρ�dim(G)

ai
jρ f̂ �(Θρ) ∧ ω j, i = 1, . . . ,m,

⇔
∑

1� j�m
1�ρ�ρ0

ai
jρ

(
θρ − f̂ �(Θρ)

) ∧ ω j −
∑

1� j�m
ρ0+1�ρ�dim(G)

ai
jρ f̂ �(Θρ) ∧ ω j = 0, i = 1, . . . ,m,

and since ai
jρ = 0 for ρ � ρ0 + 1 and 1 � i, j � m, we obtain∑

1� j�m
1�ρ�ρ0

ai
jρ

(
θρ − f̂ �(Θρ)

) ∧ ω j = 0, i = 1, . . . ,m,

from which it follows that there exists a family (α
ρ
k ) of smooth R-valued functions on M × G0 such that

θρ − f̂ �(Θρ) =
m∑

k=1

α
ρ
k ωk, ρ = 1, . . . , ρ0,

and by the assumption that there is a unique family (ν
ρ
k ) that satisfies all the equalities in (3), we must have α

ρ
k = 0 for all

k,ρ , which gives the desired conclusion.

Remark. Theorem 2 is the counterpart of the “unique torsion absorption” theorem in Cartan’s method of equivalence and its
importance lies in the fact that the necessary condition f̂ �Θρ = θρ leads in turn to the necessary condition f̂ �dΘρ = dθρ

which can be exploited through the integrability conditions ddω = 0 and ddΩ = 0, exactly along the lines of what Gardner
[3] calls an “abstract computation.”

2.3. Structure group reduction

We now study the case when not all of the torsion coefficients can be absorbed. As with Cartan’s equivalence method,
the goal is to normalize the torsion and reduce the structure group to the isotropy subgroup of the normalized value
(compare with [3], Chapter 4).

Consider the G0-action on G0 induced from the G0-action on Vm under the identification aρ �→ ∑
ai

jρei ⊗ f j . If, for

g ∈ G0 and aρ ∈ G0, we let g · aρ = ∑
ατ

ρaτ , g · ei = ∑
Ar

i er , and g · f j = ∑
B j

k f k , then, under the identification of g · aρ

with g · (∑ai
jρei ⊗ f j), we have:

g ·
(∑

ai
jρei ⊗ f j

)
=

∑
ai

jρ Ar
i B j

ker ⊗ f k =
∑

ατ
ρar

kτ er ⊗ f k,

which yields the equality∑
ατ

ρar
kτ =

∑
ai

jρ Ar
i B j

k.

Proposition 4. The mapping L : G0 ⊗ V �
m → Vm ⊗ ∧2 V �

m is a homomorphism of G0-modules.

Proof. We have, ∀{νρ
k } ⊂ R, ∀g ∈ G0:

L
(

g ·
(∑

ν
ρ
k aρ ⊗ f k

))
= L

(∑
ν

ρ
k g · aρ ⊗ g · f k

)
=

∑
(ai

jρ Ar
i B j

s Bk
t ν

ρ
k − ai

kρ Ar
i Bk

s B j
t ν

ρ
j )er ⊗ f s ∧ f t

=
∑

(ai
jρν

ρ
k − ai

kρν
ρ
j )g · (ei ⊗ f j ∧ f k) = g · L

(∑
ν

ρ
k aρ ⊗ f k

)
.

which proves the desired result.

It follows that the quotient mapping ξ : Vm ⊗ ∧2 V �
m → Vm ⊗ ∧2 V �

m/Im(L) is also a homomorphism of G0-modules. The
following result is a direct consequence of this observation and of Proposition 3:
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Proposition 5. Restricted to each fiber of M × G0 , the Vm ⊗∧2 V �
m/Im(L)-valued function ξ ◦γ , where γ = ∑

γ t
rset ⊗ f r ∧ f s with

γ t
rs defined in (1), is a homomorphism of G0-modules. Hence, restricted to each fiber of M × G0 , ξ ◦ γ takes values in an orbit of the

action of G0 on Vm ⊗ ∧2 V �
m/Im(L).

Consider now the projection pm : V ⊗ ∧2 V � → Vm ⊗ ∧2 V �
m defined by

pm

( ∑
1� j<k�n

1�i�n

bi
jkei ⊗ f j ∧ f k

)
=

∑
1� j<k�m

1�i�m

bi
jkei ⊗ f j ∧ f k.

Note that pm is not necessarily G0-equivariant; this leads us to define the subgroup G�
0 of G0 by:

G�
0 = {

g ∈ G0 | 〈 f i, g · e j〉 = 0, ∀ 1 � i � m, m + 1 � j � n
}
.

By G�
0-equivariance of pm , it follows that, restricted to each fiber of N ×G , the Vm ⊗∧2 V �

m/Im(L)-valued function ξ ◦ pm ◦Γ ,
where Γ = ∑

Γ t
rsΩ

r ∧ Ω set with Γ t
rs defined in (2), is also a homomorphism of G�

0-modules.

Definition 1.

1. The Vm ⊗ ∧2 V �
m/Im(L)-valued function τ = ξ ◦ γ on M × G0 is called the intrinsic torsion of the quasi-coframe ω.

2. The Vm ⊗ ∧2 V �
m/Im(L)-valued function Υ = ξ ◦ pm ◦ Γ on N × G is called the intrinsic torsion of the quasi-coframe Ω .

3. Problem (P) is called regular if ∀τ0 ∈ τ (M × G�
0) ∩ Υ (N × G), τ−1(τ0) is a submanifold of M × G�

0 submersing onto M ,
and Υ −1(τ0) a submanifold of N × G submersing onto N .

Remark. Let Gτ0
0 denote the isotropy subgroup of τ0 in G�

0; Proposition 5 implies that τ−1(τ0) and Υ −1(τ0) inherit a
Gτ0

0 -action from the G�
0-action on M × G�

0 and N × G , respectively.

Theorem 3.

(a) If τ (M × G0) ∩ Υ (N × G) = ∅, then there is no solution to Problem (P),
(b) Assume Problem (P) is regular; if τ (M × G�

0) ∩ Υ (N × G) �= ∅ and τ0 ∈ τ (M × G�
0) ∩ Υ (N × G), and if there exists a smooth

G-left-equivariant map f̂ : M × G → N × G that satisfies f̂ �Ω = ω, then the restriction f̂ |τ−1(τ0) : τ−1(τ0) → Υ −1(τ0) of f̂ to

τ−1(τ0) is Gτ0
0 -left-equivariant and satisfies f̂ |�

τ−1(τ0)
Ω|Υ −1(τ0) = ω|τ−1(τ0) .

Proof. Assume τ (M × G0) ∩ Υ (N × G) = ∅ and assume that there exists a smooth G-left-equivariant map f̂ : M × G →
N × G that satisfies f̂ �Ω = ω. We must then have f̂ �dΩ = dω, which then implies ξ ◦ γ = ξ ◦ pm ◦ Γ ◦ f̂ , which implies
τ (M × G0) ∩ Υ (N × G) �= ∅, which contradicts the assumption; this proves (a). To prove (b), note first that it follows from
the proof of (a) that ∀τ0 ∈ τ (M × G�

0) ∩ Υ (N × G), f̂ |τ−1(τ0)(τ
−1(τ0)) ⊂ Υ −1(τ0). The desired result follows trivially by

restriction of the forms on both sides of the equality f̂ �Ω = ω to τ−1(τ0).

Remark. Under the condition of (b) of Theorem 3, Problem (P) leads to Problem (Pτ0 ): Find a Gτ0
0 -left-equivariant map

ĝ : τ−1(τ0) → Υ −1(τ0) such that ĝ�Ω|Υ −1(τ0) = ω|τ−1(τ0) . As with Cartan’s method of equivalence, the goal is to reduce the
structure group as much as possible. When the structure group is reduced to the identity, no group parameters are involved
anymore and no Lie algebra-compatible torsion absorption is feasible; the intrinsic torsion of the quasi-coframes is then the
same as their torsion. In the simplest case, that of constant torsion, equality of corresponding torsions of the quasi-coframes
provides the desired necessary conditions. When the torsions are not constant, the problem is to identify the functional
dependencies between them. This is done exactly as in Cartan’s method of equivalence, as detailed in [3,5].

3. Examples

We illustrate the proposed extension to Cartan’s equivalence method on two examples:

(a) Let M ⊂ R
3 an open subset of R

3 with coordinates (x, y, z), and let N ⊂ R
4 an open subset of R

4 with coordinates
(X, Y , Z , W ). Consider the rank 2 distribution D1 on M defined by dz − (x dy − y dx) = 0, and the rank 2 distribution
D2 on N defined by dZ = dW = 0. Does there exist an immersion f : M → N that maps D1 to D2? In order to express
this problem in terms of suitable adapted coframes, we define the one-forms

ω1
M = dx, ω2

M = dy, ω3
M = dz − (x dy − y dx),
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on M , and the one-forms

Ω1
N = dX, Ω2

N = dY , Ω3
N = dZ , Ω4

N = dW ,

on N . As seen in Problem (a) of Section 1, we need to consider the subgroup

G =
{(

A B
0 C

)
| A, C ∈ GL(2,R)

}

of GL(4,R). Proceeding as detailed in Section 2, we have a structure equation of the form

dω =
⎛
⎜⎝

dω1

dω2

dω3

dω4

⎞
⎟⎠ =

⎛
⎜⎝

� � � �

� � � �

0 0 � �

0 0 � �

⎞
⎟⎠ ∧

⎛
⎜⎝

ω1

ω2

ω3

ω4

⎞
⎟⎠ +

⎛
⎜⎝

� � � �

� � � �

0 0 � �

0 0 � �

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞
⎟⎠π�

M

⎛
⎝dω1

M

dω2
M

dω3
M

⎞
⎠

=
⎛
⎜⎝

� � � �

� � � �

0 0 � �

0 0 � �

⎞
⎟⎠ ∧

⎛
⎜⎝

ω1

ω2

ω3

ω4

⎞
⎟⎠ +

⎛
⎜⎝

� � � �

� � � �

0 0 � �

0 0 � �

⎞
⎟⎠

⎛
⎜⎝

0
0

π�
M(2 dx ∧ dy)

0

⎞
⎟⎠

for ω on M × G , and a structure equation of the form

dΩ =
⎛
⎜⎝

� � � �

� � � �

0 0 � �

0 0 � �

⎞
⎟⎠ ∧

⎛
⎜⎝

Ω1

Ω2

Ω3

Ω4

⎞
⎟⎠

for Ω on N × G . The subgroup G0 of G fixing ω4 to 0 is given by

G0 =
{(

A B
0 C

)
| A, C ∈ GL(2,R), C upper triangular

}
.

It follows from the characterization of G0 that there exists a smooth non-vanishing function a on M × G0 such that
π�

M(2dx ∧ dy) = aω1 ∧ ω2; hence, the structure equation for ω on M × G0 becomes (omitting ω4):

dω =
(

� � �

� � �

0 0 �

)
∧

(
ω1

ω2

ω3

)
+

(
� � �

� � �

0 0 �

)( 0
0

aω1 ∧ ω2

)
,

from which it follows that the ω-structure equation has a non-vanishing torsion term (aω1 ∧ ω2) which cannot be
absorbed in the (truncated) Maurer–Cartan matrix due to the presence of the zero block; hence, that torsion is in-
trinsic. On the other hand, the Ω-structure equation has zero intrinsic torsion. Applying Theorem 3, we are led to a
contradiction. Hence, there exists no immersion f : M → N mapping distribution D1 to distribution D2.

(b) Let M ⊂ R
2 an open subset of R

2 with coordinates (x, y), and let N ⊂ R
3 an open subset of R

3 with coordinates
(X, Y , Z). Consider the rank 2 distribution D1 on M defined by T M itself, and the rank 2 distribution D2 on N defined
by dZ − Z dX = 0. Consider the Riemannian metric g1 on D1 defined by g1 = dx2 + dy2, and the (sub-)Riemannian
metric g2 on D2 defined by g2 = (1 + Y 2)2 dX2 + dY 2. Does there exist an immersion f : M → N that maps D1 to D2
and such that the Riemannian metrics are preserved, i.e. such that f � g2 = g1? In order to express this problem in terms
of suitable adapted coframes, we define the one-forms

ω1
M = dx, ω2

M = dy,

on M , and the one-forms

Ω1
N = (1 + Y 2)dX, Ω2

N = dY , Ω3
N = dZ − Z dX,

on N . As seen in Problem (b) of Section 1, we need to consider the subgroup

G =
{(

A B
0 c

)
| A ∈ O (2,R), c ∈ R

�

}

of GL(3,R). Note that the subgroup G0 of G fixing ω3 to 0 is G itself. Proceeding as detailed in Section 2, we have a
structure equation of the form

dω =
(dω1

dω2

dω3

)
=

(
� � �

� � �

0 0 �

)
∧

(
ω1

ω2

ω3

)
+

(
� � �

� � �

0 0 �

)( 1 0
0 1
0 0

)
π�

M

(
dω1

M

dω2
M

)

=
( 0 α �

−α 0 �

)
∧

(
ω1

ω2

3

)

0 0 � ω



646 A.-R. Mansouri / Differential Geometry and its Applications 27 (2009) 635–646
for ω on M × G , with α (the pullback, via pM , of) a Maurer–Cartan form on O (2;R), and a structure equation of the
form

dΩ =
( 0 μ �

−μ 0 �

0 0 �

)
∧

(
Ω1

Ω2

Ω3

)
+

(
A B
0 c

)(−2Y dX ∧ dY
0
0

)

for Ω on N × G , with μ the (pullback, via pN , of) a Maurer–Cartan form on O (2;R). We have:

dX ∧ dY ≡ 1

1 + Y 2
Ω1 ∧ Ω2 mod Ω3,

and, with the parametrization(
A B
0 c

)
=

( cos t − sin t b1
sin t cos t b2

0 0 c

)
,

we can write the Ω-structure equation as:

dΩ =
( 0 μ �

−μ 0 �

0 0 �

)
∧

(
Ω1

Ω2

Ω3

)
+

⎛
⎝− 2Y

1+Y 2 cos tΩ1 ∧ Ω2 + (0 mod Ω3)

− 2Y
1+Y 2 sin tΩ1 ∧ Ω2 + (0 mod Ω3)

0

⎞
⎠

=
( 0 λ �

−λ 0 �

0 0 �

)
∧

(
Ω1

Ω2

Ω3

)
+

⎛
⎝ (0 mod Ω3)

(0 mod Ω3)

0

⎞
⎠ ,

where

λ = μ −
(

2Y

1 + Y 2
cos t

)
Ω1 −

(
2Y

1 + Y 2
sin t

)
Ω2.

Since the one-form α is uniquely determined, it follows from Theorem 2 that if there did exist an immersion with the
desired properties, λ would have to pull back to α under a left-equivariant map. However, we have:

dα = d(dt) = 0,

dλ ≡ 2

1 + Y 2
Ω1 ∧ Ω2 mod Ω3,

i.e. α is closed whereas λ is not. We conclude that there cannot exist an immersion f : M → N that maps D1 to D2
and such that the Riemannian metrics are preserved.

4. Conclusion

In this paper, we have proposed an extension of Cartan’s method of equivalence to immersions; more specifically, we
have shown how the basic steps in Cartan’s method, starting with the encoding of the desired geometric structures in terms
of suitable moving coframes, can be carried out in order to find obstructions to the existence of immersions between given
geometric structures. It would be interesting to relate the results on Riemannian immersions that could be obtained with
the method proposed here to known results on Riemannian immersions [2].
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