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Introduction

System of differential equations are at the core of exact sciences, those disciplines
readily quantified and modelled mathematically. Perhaps the most famous examples
of systems of partial differential equations are Einstein’s gravitational field equations
and Maxwell’s equations for the electromagnetic field. Many papers have considered
special cases of these equations, with specified boundary conditions, symmetries or
asymptotic behaviour. These papers rely on insight into the structure of the equations
with the additional conditions. There has been to date no coherent method, with the
notable exception of the use of symmetries, to analyse a general system of partial
differential equations, not requiring extensive training in advanced methods of pure

mathematics.

The algorithm presented in this thesis is a generally applicable, practical method that
can be applied to all systems met in physics, engineering and applied mathematics.
The theory from which the algorithm evolved, the concept of Grobner bases for poly-
nomial ideals, has proven its power, flexibility and utility. Some of the applications
for Grobner bases that have analogues in differential algebra are examined, and are

found to be valid in context of differential ideals.

Consider a set of equations F' = {f; = 0,..., f. = 0}, where the f; are polynomial

in the variables {z1,...,2,}, the functions {u!,... u"} and the derivative terms

o Pledyt
{Do‘uz = “ } A typical example of such an equation would be f = u,,u2 —3yu,,,

oz

1ii
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where subscripts denote partial derivatives. A solution to the set of equations F' will
also be a solution to any equation obtained from the given set by taking derivatives,
sums, and products with other differential polynomials. The set of all such equations
is called the ideal generated by the set { f1,..., f.}. There is no need to be confined to
the original set of equations; one can operate with any set of equations that generates

the same ideal. Such a set of generators is called a basis.

When seeking a solution to a system of differential equations, one looks for equa-
tions implied by the given set that are in some sense simplest. “Simplest” describes
those equations with the least number of unknown functions involving derivatives
with respect to the smallest number of variables. A Grobner basis for an algebraic
polynomial ideal has the property that it contains a least element with respect to
some ordering on the set of polynomials. Grobner bases solve this and many other
questions; herein lies the motivation to modify Buchberger’s algorithm for differential

ideals.

Buchberger’s original definition of a Grobner basis of a polynomial ideal is a basis
with the property that every element of the ideal reduced to zero with respect to that

basis. Not every basis is a Grobner basis.

In 1950, J. F. Ritt defined a characteristic set of a differential ideal as a “lowest”,
“strictly increasing” sequence of differential equations in the ideal. Note the definition
presupposes an ordering on the set of equations. He proved that pseudo-reduction of
every member of the differential ideal with respect to a characteristic set necessarily
yields zero. The similarity of this property to Buchberger’s definition of a Grobner
basis is striking. Buchberger’s algorithm to generate a Grobner basis for a polynomial

ideal also depends upon an ordering on the set of polynomials.

The algorithm given in this thesis developed from a true differential adaptation of

Buchberger’s algorithm, during which a number of problems were met. The main



problem is that algebraically, differential ideals do not have the property used by
Buchberger to prove termination of his algorithm. To guarantee termination of
the differential algorithm, pseudo-reduction is substituted for reduction, but pseudo-
reduction has several implications. The first is that some of the properties of Grébner
bases only hold up to a set of differential coefficients when translated to differential
Grobner bases. The second implication is that these differential coefficients must not
lie in the ideal. This is because pseudo-reduction involves multiplying by such terms

before reduction.

These provisos imply the output of the algorithm cannot be guaranteed to be a
differential Grobner basis for the ideal generated by the input equations. Nevertheless,
for a large number of systems, including all linear systems, the output is indeed a
differential Grobner basis. For other systems, it is necessary to show the differential

coeflicients lie outside the ideal.

It is possible to use Buchberger’s algorithm for differential systems in a strictly alge-
braic way. After prolonging the equations to some degree, one then regards all deriva-
tive terms of that degree or lower as separate indeterminates. While the method does
not require attending to the differential coefficients discussed above, one does not
know in advance the degree of prolongation needed to obtain a complete differential
Grobner basis and the calculation for even simple examples is too large for medium
range computers, because the number of indeterminates grows quickly as the prolon-
gation degree increases. A comparison of the algebraic and differential methods is
given in Chapter 5, in which Example 8 shows a system that utilizes both methods

to advantage.

The intersection of the algebraic and differential theories occurs for those systems of

equations that are linear (as differential equations), in one unknown, with constant

coefficients. These equations can be regarded as polynomials in the operators B
T

over R, with the unknown function acting merely as an argument; alternatively one
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can use the Laplace operator to transform the equations into polynomials. Every
differential ideal consisting of such equations corresponds to a polynomial ideal, and
vice versa. In this case, a differential Grobner basis for such an ideal transforms into

a Grobner basis for the corresponding polynomial ideal, and vice versa.

Apart from finding the least element in the ideal with respect to some ordering,
there are a number of ways in which differential Grobner bases can be used. One can
systematically eliminate a subset of the unknowns or differentiations with respect to a
subset of the variables, to see what the given equations imply in the lower dimensional
setting. In many cases it is then possible to solve the system “form the bottom up”,
much as one solves a linear system by putting it into echelon form. In fact, the echelon
form of a linear (algebraic) system is an example of a Grobner basis for a system of
polynomials of degree one. Differential Grobner bases yield a basis for the equations
in the differential ideal that depend only on the unknowns and variables of interest.
Thus the algorithm can be used to attempt to generate Pommaret’s “resolvents” and
“cascade decomposition” of the differential ideal ([42, 17].) This theory is discussed
fully in Chapter 4 under the title of ellimination ideals.

Another problem that can be solved by differential Grébner bases, is the problem of
finding the ideal of compatibility conditions, also called the resolvent system. One
can go further, and find the compatibility conditions for the ideal of compatibility
conditions, and so forth. The entire sequence of such compatibility ideals, or resol-
vent systems, is called the Janet resolution. This sequence can be compared to the
algebraic syzygy resolution of a polynomial ideal. In fact, in the case of systems
of equations that are linear, with one unknown and with constant coefficients, the
resolution of the system is precisely the dual of the chain of syzygy modules of the
corresponding algebraic system in the operators. Chapter 4 contains the method
whereby the differential Grébner basis calculation can be utilized to generate the

resolution of the differential ideal.
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The theoretical foundations, the characterisation theorem for differential Grobner
bases, and the algorithms are presented in Chapter 2. The algorithms in this thesis
have termination and correctness proved for systems of equations that are polynomials
in variables, the unknowns and their derivatives, over R or C. Examples are discussed

in Chapter 3.

Other ways to use the algorithm are discussed in Chapter 5. It is possible to view some
systems containing transcendental functions of the unknowns as being differential
polynomials, since their defining differential equations are polynomial. For example,
the differential equation defining u = sin(x) is u,, +u = 0. When arbitrary functions
of the unknowns are involved, the algorithm terminates leading to equations that must
be satisfied by the arbitrary functions if a solution is to exist. In solving equations, it
is efficacious to seek factors and then set the factors to zero, since the factors will give
rise to simpler equations. This is the first step to writing the ideal as an intersection
of simpler ideals, whose generators are irreducible, and where at least one factor of
an equation in the ideal is already in the ideal. Such ideals are called prime ideals.
The difficulty in dealing with differential ideals is that a differential ideal generated
by a single irreducible polynomial will not necessarily be prime. A first step towards
finding the prime decomposition of a differential ideal is given here by describing a

branching generalization of the differential Grébner basis algorithm.

The final chapter, Chapter 6, is concerned with formal integrability and involutivity,
and the relation of these concepts to differential Grobner bases. We show that dif-
ferential Grobner bases satisfy the first condition of being formally integrable. The
second condition requires an extra condition: transversality of the loci of the equa-

tions, in the relevant jet bundle.

We then find an equivalent formulation of involutivity that involves the symbol equa-

tions themselves rather than the kernel of the symbol. In this equivalent formulation,
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the obstructions to involutivity are syzygies of the symbol equations provided the sys-
tem is integrable. The differential Grobner basis algorithm is thus used to calculate
all integrability conditions, and can be adapted to calculate symbolic syzygies, just as
Buchberger’s algorithm can calculate algebraic syzygies. The highest multiplication
needed in the algorithm at any stage of a “symbolic” Janet Resolution provides the

answer to how much differentiation is needed in order to make the system involutive.

The algorithm to generate a differential Grobner basis as presented in this thesis
has been implemented as a package in MAPLE™ for the Macintosh and for Apollo
Workstations (UNIX). A “User’s Manual”, a short description of each procedure and a
complete listing of the code appear in the Appendices. The longer examples described

in Chapters 3, 4 and 5 were calculated with this package.

The idea that Buchberger’s algorithm was adaptable to the differential case, and the
realization that syzygy and resolution were similar concepts belong to the supervising
professor Dr. E. D. Fackerell, who was stimulated by a comparison of algebraic
calculations in the Bayer and Stillman programme Macaulay with the description
of the linear Janet sequence in Stormark ([53]). The precise formulation, proofs
and implementation of the algorithm, and the theorems concerning involutivity and
integrability are the work of the author. A list of further research directions appears

in the Appendix. Other unsolved problems can be found in Ritt’s Appendix ([43].)
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Chapter 1

GROBNER BASES IN
POLYNOMIAL RINGS

This chapter consists of a discussion of concepts, theorems and examples relevant to
the study of Grobner bases in algebraic polynomial rings, to serve as an introduction
to the thesis. The chapter concludes with a discussion of applications and extensions

that are of interest to people concerned with differential equations.

1.1 Polynomial Rings

Let x1, 2o, ..., 2, be a fixed set of indeterminates, and fix a field [F, of constants and
coefficients, taken to be one of @, R or C, for convenience. If a = (g, as,...ay,)
is an n-tuple of non-negative integers (i.e. a multi-index) we write the monomial
term x7'x5? ... xS as x®. In this notation, multiplication of monomials is given
by the addition of the multi-indices, which are added like vectors, i.e. component-
wise: z%2% = 2P where a + 3 = (a1 + B1,. .., + 3,). (Components of multi-

indices are italicized so that the components of the multi-index «, namely a;q, as, . ..



can be distinguished from two distinct multi-indices oy, as.) The polynomial ring

«

Flx1, 22, ..., x,] is the set of all finite sums having the form Yc,x®, where ¢, € F.

Sums and products in F[zq, zo, ..., z,] have the usual formulae:

Z Cax™ + Z dox® = Z(Ca +dy)x”,
(Z caxo‘).(z cpr’) = Z( Z CaCp’)

6 atp=6
An ideal I of a ring R is a subset of R such that

lL.agelandayel = a1 —ay el

2. aclandre R=—=racl.

The subset B = {by,ba,...,b,} of I is a basis of [ if every element of I can be written
in the form riby + roby + -+ - + r,by,, where r; € R. We write I = (by,ba, ..., by)r,
and say [ is generated by B.

Example 1 (a polynomial ideal). The subset I of F[x,y, z| consisting of all poly-

nomials of the form
pi(@,y, 2).a® + pa(,y, 2).y

where py and py are arbitrary polynomials, is an ideal of Flx,y,z]. The ideal I is

generated by {x* y}, that is, {x% y} is a basis for I, and we write [ = (2%, y)f.

1.2 Orderings on Monomials

All the operations and calculations we shall perform on polynomials require knowledge
of the “leading monomial”, the coefficient of the leading monomial, and so forth.

There are many ways of deciding which is the leading monomial, all of which require



a total ordering on the set of monomials. The ordering on the monomials must be

compatible in the sense that
2o > 1 = 2% 2% > 202

where «, 3,6 are multi-indices. The monomial 1 = 2° is the least monomial in any
polynomial ring. We define the most important orderings in use today, and how to

obtain more general orderings.

LEXICOGRAPHIC ORDER

In the lexicographic order we have z® > 2 if there exists an ¢ such that a; = [,
as = f9,...,a; > ;. This order has the property that any monomial involving
x1,To,...,Ti_1 is greater than any monomial free of xq,xs,...,z;_1. In the lexico-
graphic order, if the leading monomial of a polynomial is free of x1,xs,...,2;_1, then

so is every monomial in that polynomial.

INVERSE LEXICOGRAPHIC ORDER

In the inverse-lexicographic order we have z® > 2 if there exists an i such that
ay = B, a1 = Bp-1,...,0; > ;. This order has the property that any monomial
involving x,,x,_1,...,%,_; is greater than any monomial free of x,,x, 1,...,T,_;.
In the inverse lexicographic order, if the leading monomial of a polynomial is free of

TpyTp_1,--.,Ty_i. then so is every monomial in that polynomial.

Any ordering on the indeterminates generates a “lexicographic” ordering with respect

to the ordering on the indeterminates.

TOTAL DEGREE ORDER
If @ = (aq,a9,...,q,) is a multi-index then |a| = a3 + as + -+ - + «, is called the
degree of a. In the total degree ordering we say x® > 2z if |a| > |3], or if |a| = |3

then there exists an i such that oy = 81,0 = Ba, ..., > [3;.

LA discussion of the various terminologies dealing with term orderings in use in the Grébner basis
literature is given by Sit [49], “Some comments on Term-Ordering in Grébner Basis Computations”.
He points to imprecisions in labelling term-orderings; the terminology given here follows Bayer.



REVERSE-LEXICOGRAPHIC ORDER

In the reverse lexicographic ordering we say @ > 2” if |a| > |3] or if |a| = |3] then
there exists an i such that a,, = 8,, a1 = Bn_1, ..., a1 < f;. Within a given degree,
any monomial not divisible by z,, is greater than any monomial divisible by z,,. If
a polynomial p is homogeneous (that is, every monomial term has the same degree)
and x, divides its leading monomial, in the reverse lexicographic ordering, then x,

divides p.

Example 2 (leading monomials for different orderings). Consider the polyno-
mial p = 22 —xy3z +y+ 23 + 23y +y°. We have the following table of orderings and

leading monomials:

Ordering Leading monomaial
lexicographic 3y

total degree 2

inverse lex 22

reverse lex Yo

WEIGHTED ORDERS

It is possible to attach a series of weights to the indeterminates in order to obtain more
general orders. We do this in the following way. Take an r x n matrix of non-negative
integers (A!),x, (where n is the number of indeterminates), and a multi-index «, and

form the vector (Alay, ..., Ala;). (Repeated indices are summed.) Then say 2 > 2

if there exists an i such that Aoy = AL S, Abay = ALG,, ..., Alay > ALB,.

With this notation, the lexicographic order corresponds to the n x n identity matrix.

The inverse lexicographic order corresponds to the matrix (non-specified entries are



Z€ro):

1

The total degree order corresponds to the (n + 1) x n matrix (non-specified entries

are zero):

1

The reverse lexicographic order corresponds to the n x n matrix (all entries left of

the off-diagonal are 1, entries to the right of the off-diagonal are zero):

1

1

To see this last matrix gives the reverse-lexicographic order, call the matrix for the
reverse lexicographic order A and consider A(a), A(3) for some multi-indices o and
(. Then the first components A(a)1, A(); are the degrees of « and 3, as desired. If
Ala); = A(B)1 and A(a)es > A(B)2 so that ag +ao+ -+ apn =1+ Pa+ -+ By
and oy + g + -+ a1 > PB1+ PBo+ - + By_1, then adding «a,, to both sides
of the inequality and subtracting |3| from both sides we obtain «,, < [3,, and so

forth. (Note that it is not possible for two distinct multi-indices o and (3 to satisfy

la| = |6], an = Bn, ..., a2 = B2 and a;y # (1.)



Other references for admissible orderings are [44], [48] and [56].

1.3 Reduction

In Buchberger, Collins and Kutzler ([11]) one reads (where f, g and u are polynomials,

and a is a field element):

“The basic notion of Grobner bases theory is polynomial reduction. Roughly
f reduces to g modulo F'iff g results from f by subtracting a suitable mul-
tiple a.u.h of a polynomial h € F such that g is lower in an “admissible

ordering” than f.”

We give an example and then a precise definition.

Example 3 ( reduction of a polynomial by another polynomial). Consider
two polynomials p; = xy* — 2.2x + 9> and py = 2 — y*> +y. We reduce p, with respect
to pa. In the inverse lexicographic order (so that z > y > x) the leading monomial
in py is z. The reduction is given by the formula py + 2.x.py = 2xy + y3 — xy?. It is
necessary for the leading monomial of po to divide a term in py for a reduction to be
possible. Since z is eliminated, we cannot reduce py further with respect to ps in the

wverse lexicographic ordering.

Suppose instead we are using the lexicographic ordering. Then the leading monomial
in pa s y2. The polynomial p; can be reduced at two terms, namely at xy* or y3. The
reductions at each term are given respectively by py + x.ps and py 4+ y.p2. Reducing at
both these terms yields vy +yz — zo +y?. Continuing, we reduce the y* term yielding
—zx +xy+yz+y—+ z. There are no further reductions possible in the lexicographic

ordering. Clearly different orderings determine different reductions.



The coefficient of a monomial term ¢ in a polynomial p is the sum of the field coeffi-
cients of that monomial term, and we denote it by coeff(t,p). We have to make this
definition because it is possible to write each polynomial in many different ways. For

example, we can write 22 + y* as (3/7)z? + y* + z + (4/7)x* — 2.
A monomial term is said to occur in a polynomial if its coefficient is not zero.

The coefficient of the leading monomial term in a polynomial p is called the highest
coefficient and is denoted Hcoeff(p). The leading monomial term is denoted Hmon(p).
The H stands for highest. This is because L could stand for both leading and lowest!
In addition H works in German (haupt) and French (haut).

Let two polynomials p; and p, be given. Let the leading monomial of py, Hmon(ps)
divide some monomial ¢ in p;, so that 7.Hmon(py) = ¢t. Then the reduction of p; by

po at the term ¢ is given by
p1 — (coeff(t, p1)/Hcoeff(ps)).27 .py
We say p; is reduced with respect to po when no further reductions of p; by p, are
possible. The reduced polynomial is denoted by
p1 remainder po.

By following the calculations in completely reducing a polynomial p with respect to

a set of polynomials F' = {f, fo,..., f-}, we obtain an expression of the form
p=g1fi1+ gafo + -+ grfr + (p remainder F').

We define p quotient f; to be g;. The remainder is denoted normalForm(p, F').

We say a polynomial p is in normal form if it is reduced with respect to a set F' of

generators of an ideal, i.e., if p is reduced with respect to each member of F'.

A normal form is not unique. Consider the example in F[z,y] with p = 2%y and

F = {2* + y* xy}. Reducing p with respect to the second member of F yields zero,



while reducing p with respect to the first member of F yields —y3.

Recall now the definition of an ideal I C F[zy, 2o, ..., z,], generated by a basis B =
{f1, f2, ..., f-}. Every element of the ideal can be written in the form Xp;. f; where p; is
an arbitrary polynomial in F[xq, zs, ..., z,]. This suggests that every element of I will
reduce to zero with respect to the elements of B. However, this is false. Consider the
ideal I C Flxz,y] generated by {x*+y?, xy}; the leading monomials in the lexicographic
or total degree orders are x? and zy respectively. Then p = y(2?+y*)—x(zy) =y> € I
but no element of B reduces p. The problem is clearly that the leading terms have

been cancelled by the choice of polynomial coefficients of the basis elements in p.

1.4 “S” polynomials

Let two polynomials f; and f; be given with leading terms Hmon(f1), Hmon(f2) and
leading coefficients Heoeff( f1), Hcoeff( f2), respectively. Let the monomial LCM be the
least common multiple of Hmon(f;) and Hmon(f3). Then the “S” polynomial of f;
and fs is given by

fleQ = HCOGfF(fQ)(LCM/HmOH(f1>)f1 — Hcoeff(fl)(LCl\/I/Hmon(fg))fg

The “S” polynomials of the basis elements B are precisely those ideal elements for

which reduction with respect to B might fail to yield zero.

Buchberger’s aim was to find a basis with respect to which every element of I reduces

to zero. Such a basis is called a Grobner basis.

1.5 Algorithm (Buchberger)

INPUT: A set of generators B = {f1, fa,..., f} for an ideal I C Flxy, zo,. .., x,]



OUTPUT: A Grobner basis for [

Set P = {{fi, fu} | fi, fr € B,i # k}

while P # (), do

{fis fx} a pair in P

b= P\{{fi, Jx}}

h = fiSfx

h' := normalForm(h, P)

if A’ # 0 then
P=PU{{/W} | f € B)
B:=BU{KN}

Theorem 1 (Buchberger)([2]).

(1) the algorithm terminates

(2) if fiS fr remainder B =0 for each pair f;, fi € B, then B is a Grobner basis.

Buchberger’s proof that the algorithm terminates uses the fact that Flxy, o, ..., z,]
is noetherian. That is, for every chain of ideals I, € I, € --- C [,, C --- C
Flxy1, 2, ... x,) there exists an M such that I,, = I, for all m > M. This implies
Dickson’s Lemma, that for every infinite sequence of monomials {m;} there exists
an index K such that all monomials appearing in the sequence after that index are

multiples of monomials appearing before that index.

Buchberger’s proof of correctness of the algorithm, Theorem 1 (2), involves a compari-
son of different one-step reductions of a polynomial and a careful use of the notion of

“successor” in a reduction calculation.

A Grobner basis allows ideal membership to be decided in an algorithmic way. The

Grobner basis generated by Buchberger’s algorithm depends on the term ordering
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used.

Since the basic algorithm above was first published, there have been improvements to
its efficiency, mainly by reducing the number of pairs that have to be considered, and
by the choice of term orderings. Packages to compute Grobner bases are available in

commercial symbolic algebra programmes, such as Maple, MACSYMA and so on.

Grobner bases have applications to many problems. Some of the applications that
are of interest in differential ideal theory are discussed below. Some references for
applications are [10, 9] and [34]. Other survey papers co-authored by Buchberger are
listed in the Bibliography. See also [57] and [3].

1.6 Simplest Element

A Grobner basis for an ideal I for a given ordering must contain the least element of
the ideal with respect to that ordering. For if it did not, no element of the Grébner

basis would reduce the least element, contradicting the definition of Grobner basis.

1.7 Elimination

The aim of elimination is to find from the ideal generated by polynomials { i, fa, ..., fr}

in the variables {x1, 2, ..., x,} a subset of polynomials involving only x;, x;11, . . ., Tp.
In other words we wish to find a basis for (fi, fa, ..., fr)r 0 Flz;, 2o, ..., z,).
In the lexicographic ordering, each monomial involving 1, s, ..., x;_1 is greater than

any free of 1, x9,..., ;1. Alternatively, if the leading monomial of a polynomial p is
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free of w1, x9,...,x;_1, then so is p. The process of forming “S” polynomials in Buch-
berger’s algorithm eliminates the highest terms, or those involving x1,xs, ..., ;1.
The defining property of a Grobner basis then implies the following theorem due to
Trinks (1978):

Theorem 2 (TRINKS) ([54]). If B ={f1, fa,..., fr} is a Grébner basis for I in
the lexicographic order, then (fi, fa, ..., fr)r NFla;, xiv1, ..., x,] is a Grobner basis

for INF[x;, i1, .., 2]

The process of computing a Grobner basis from B using the lexicographic order is to

see a diagonalization of the basis.

Example 4 (elimination ideals). We show the output of an algebraic Grébner
basis algorithm implemented by the author as part of the package DIFFGROB. Full
details of this package are contained in the Appendices. We take a system of partial
differential equations, and prolong them to degree (of differentiation) three. We then
treat all derivative terms as separate indeterminates, and find a Grobner basis for
the algebraic ideal generated by the prolonged equations. The output of the algorithm
will be used in Chapter 5, Example 8. The system has one unknown function u that
depends on two variables {z,t}. There is also an arbitrary function of u, f(u). The
system is

{ (s)* = ()? =1=0

Upy — gt — f(u) =0

We call the left hand side of the first equation fi and the left hand side of the second,
fa. We input the equations

05 0 P P Oh Oh O
Oxr’ Ot 0x2’ 0xot’ Ot2 Ox Ot

F = |:f17f27

and choose a lexicographic ordering on the indeterminates determined first by any
derivative of u being greater than any derivative of f(u), then by the number of deriva-

tives with respect to the variable t, and then by the number of derivatives with respect
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to x. The output s, in descending order,

2
Ut — Ugpr + Upf
2
Ugpgr — Ugtt + u:cf
Ugge — Uy — f(U)
2 2 r2
UgpUgrt — UUggt + f - uzf
2 2 _ 2, f2
Ugzt — UpUggt T UtUgpUggey T+ up f* — uxutf
Ut + Ugtly f
ui — u? —1
2

fut f?

We can now read off some elimination ideals: the sub-ideal depending only on the x-
derivatives of u and on derivatives of f is (Upe +u2 — f, fu + f?), while the sub-ideal

depending only on the derivatives of f is (f, + [?).

A feature of the output of the Grobner basis calculation with the lexicographic order is
that polynomial equations can be solved by successive substitution, in much the same
way as one would solve a system of linear equations by converting to the echelon form
of the matrix. In fact, the process of converting to the echelon form is an example of
elimination ideals, where the polynomials have degree one. Other examples can be
found in [10]. In contrast with the method of resultants, no spurious roots are found

([3]). Furthermore, the method guarantees that all roots are found.

The lexicographic ordering is claimed by several authors to be quite inefficient ([16],
[5].) Bayer and Stillman find the elimination ideals using refinements of non-strict
orders. Their preferred refining order is the reverse-lexicographic one. Faugere et.
al. describe an efficient (polynomial complexity) algorithm for computing a Grobner
basis for a particular ordering given a Grobmer basis for a different ordering. (The
complexity of the Buchberger algorithm for the lexicographic ordering is doubly ex-

ponential.) They give examples where the problem of finding a Grobner basis for
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the lexicographic ordering is intractable, but which can be done by first finding the
Grobner basis for the reverse-lexicographic ordering and then using their algorithm

to convert it to a Grébner basis in a lexicographic order.

1.8 Philosophy of Grobner Bases

The philosophy of using different orderings to compute Grobner bases is expressed
well by Dave Bayer in his lecture notes “Computational Algebraic Geometry: Part

One”:

“We can’t scrounge through every element of an ideal looking for elements

with some property (since I is infinite.)

“It doesn’t work to just scan the set of generators of I for elements with

some property.

“If we choose an order on the monomials whose structure reflects the
property we seek, then it works just to scan a standard or Grébner basis

for I, for elements with the property.”

1.9 Test for Inconsistency

The algorithm provides a test for the consistency of a set of polynomial equations. A

set of polynomial equations is inconsistent if they imply 1=0.

A set F' of polynomials is inconsistent if and only if every Grobner basis for the ideal

generated by F' contains the unit element 1.
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To see this, first note that if they imply 1=0, then 1 is in the ideal. But 1 is the least
element relative to any ordering, so it must be in every Grobner basis for the ideal.

Conversely, if 1 is in the Grobner basis, then the equations imply 1=0.

1.10 Ideal Quotients

Another example of this philosophy given by Dave Bayer is using the reverse-lexicographic
order to compute ideal quotients. If T is an ideal and f € F[xy,xo,...,,], then

(I:f)={g€Flxy,29,...,2,] | gf € I} is called the ideal quotient of I by f.

For a homogeneous polynomial p and with the reverse-lexicographic order, x,, divides

the leading monomial if and only if x,, divides p.

Theorem 3 ([3]). If {f1,f2, -, [rs@xnfri1, -, Tufs} is a Grobner basis of homo-
geneous polynomials for I using the reverse-lexicographic ordering, and fi, fa, ..., f-

are not divisible by x,, then {f.11,..., fs} is a Gréobner basis for (I : x,).

The ideal quotient for an arbitrary f € I can be calculated by including the variable
z (with the appropriate weighting) in the set of indeterminates and the relation f — 2z

in the set of generators, and then calculating (I : z).

1.11 Syzygies

The r-tuple of polynomials (hy,ha,...,h,) is a syzygy of the list of polynomials

fl?f?a'-'afr it
hifi + hafo+---+ h,.f, = 0.

The set of all syzygies of fi, fa, ..., fr form a submodule S(I) of the ring M consisting

of a direct sum of r copies of F[xq, s, , x,].
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To find syzygies, recall that our criterion for determining whether a basis is a Grobner
basis is that all the “S” polynomials reduce to zero. Keeping track of the coefficients

in the reductions yields syzygies.

Example 5 ([3]) (the syzygy module of a polynomial ideal). Let
I = (2% —wy,ry —wz,y? — x2)r. Assume the reverse-lexicographic order, so that

the leading monomials are 2%, xy and y?, respectively. Set

fi=2a%—wy,
fo=1y —wz,
fs=y* —az,

and F = {flaf?afS}-

JiSfe =y —xfe
= y(z? —wy) — x(vy — wz)

= —wy2 + wxz
= —w(y® — x2)
=-wf;

so that f1S fy remainder F' = 0.

fiSfs =y fi — 2 fs
= y*(2® —wy) — 2*(y* — x2)

= —wy3 + 23z

Now wi?® = wyy? = wy(fs + x2) and ¥*z = zxx® = zz(f1 + wy) so that
fiSfs = —wy(fs +xz) + xz(f1 + wy)
= zzfi —wyfs.

Hence f15 f3 remainder F' = 0.
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f2Sfs =yfo—afs
= y(zy —wz) — z(y* — xz)

= —wzy + 2%z
= z(2% — wy)
=zfi

Hence f3S f3 remainder F' = 0.

So F is a Grébner basis for I in the reverse-lexicographic order. FExamining the

calculations we obtain three syzygies,

yfi —zfo+wfs =0
(v —z2)f1 — (2> —wy)f3 =0
—zfityfo—xf3=0.

The syzygies are written in vector notation as:

(ya —.T,U}),
(y2 — Xz, OJ _:CQ + wy)a
(—z,y, —x).

By this notation is meant that the dot product of each vector with the column matrix

S
fa
s

1S zero.
The second syzyqy can be generated from the first and the third:
(y2 — Iz, 07 _Iz + wy) - y(ya —I,U}) + ZL’(—Z7 Y, —I)

By Theorem 4 below, the two syzygies (y, —x,w) and (—z,y, —x) generate the module
of syzygues for f1, fa, f5.
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To be more precise, we need some notation. The module M consisting of a direct sum
of r copies of F[zy,xs, ..., 2, has elements that can be written as gie; + -+ - + g€,
where g; € Flzy,x9,...,x,] and the e; act as place-holders for the components of M.
In other words, ¢; = (0,...,0,1,0,...,0) where the 1 is in the ith place. In this

notation, the syzygies of the above example would be written
yeyp — Treg + wes
—ze1 + yex — xes.

Recall f;Sf; = a;a' f; — a;z® f; where

r_ lem(Hmon(f;, f;))
N Hmon(f;) ’

x a; = Hcoeff(f;)

and

A lem(Hmon(f;, f;))
- Hmon( f;) ’

Theorem 4 (Spear, Schreyer). If fi,..., f, is a Grébner basis for I, then for all

x a; = Heoeff( f;)

pairs fi, f;, the expressions

ajxrei — aierj — (Z fiS f; quotient fk> e
k

generate the module S(I) of all syzygies of fi,..., fr.

(The definition of p quotient F' is on page 7.)
The expressions are a record of how the Spolynomials reduce to zero.

Consider the map ¢ : M — Flzy,z,...,x,] defined by ¢(e;) = f;, and extended

linearly. Then a syzygy hie; + - - -+ h,.e, maps to hy f; +---+ h,.f, = 0. The syzygies

are precisely the kernel of this map. The expression a;z"e; —a;xe; maps to a;z" f; —

a;x> f; which is f;Sf;. The criterion for a Grobner basis is that (Z fiS f; quotient f)ex
k
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is zero so that f;Sf; quotient {fi,...,f.} maps to f;Sf;. Hence the expression

a;jxle; — a;xz™e; — f;Sf; quotient {f1,..., f,} maps to zero, i.e. it is a syzygy.
APPLICATION OF SYZYGIES: INTERSECTION OF IDEALS
Let I ={f1,..., fr)rand J = (g1, ..., gs)r- If we find all the (r 4+ s)-tuples

<h17"'7h7"7j17"'7j5)

of elements of Flzy, zs,. .., x,], with the property

hfi+...+hfo+Jig1+... 4+ Jsgs =0,

then
hifi+...+hfr €1

= —J1g1 — ... — Jsgs € J.

In this way, each syzygy of fi,..., fr, 91,--.,9s gives an element of I N J.
THE PROJECTIVE RESOLUTION OF SYZYGY MODULES

Recall the syzygy module of an ideal I is contained in a ring M that consists of r;
copies of Flxy, 2, ..., x,]. The integer r; is the number of generators in the ideal
I. Given a basis with 7y elements for the module of syzygies S(I) for an ideal I,
it is possible to then form the module of syzygies S(S(I)) for the ideal S(I). The
ideal S(S(I)) is contained in a ring M, that consists of 7o copies of M. Iterating this
process forms the syzygy resolution of the ideal /. Denote the nth syzygy module by
SM(1).

We write the resolution as
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The kernel of each map ¢; is the module S®(I), and the image of each map ¢;
is SG=Y(I). This sequence is called the injective resolution of syzygy modules. (A

sequence . ..— A —— A(n—1) . A®) A 0 is called an projective
resolution of A if the kernel of one map is the image of the previous map.) It was
proved by Hilbert late last century that the syzygy resolution terminates. In fact, if

the original ideal contains n indeterminates, then S+ (I) = 0.

1.12 Primary Decomposition

It is clear that in seeking a locus to a set of polynomials, one seeks the simplest
equations implied by the given set, and then factors them. Indeed, one seeks all factors
implied by the given equations. Irreducible components of the locus correspond in

some way to irreducible components of the equations.

Example 6 (primary decomposition of a polynomial ideal (Bayer)). Consider
the zero set of
fi=zy+z—2a®
{ fo=y*+y—2y
The S polynomial f1Sfy is zero. Factoring fi and fy yields x(y + 1 — x?) and y(y +

1 — 2?) respectively. There are four possibilities, namely

{z,y |z =0,y=0},

{r,y | z=0,y+1-2>=0},
{v,y |ly+1—2>=0,y=0} and
{z,y |y+1-2=0}

These possibilities are contained in the sets {x = 0,y = 0} and {z,y | y+1—2*=0}.
The ideal I generated by fi and fo can be written as the intersection of the ideals

q1 = (z,y) and go = (y + 1 — x?). (Note that q, is not the whole of Flx,y] since the
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latter includes polynomials with a constant term whereas q; does not.) The zero set

of I is the union of the zero sets of q1 and qs.

The primary decomposition of an ideal is the algebraic foundation for decomposing
an algebraic variety into its irreducible components. It is the generalization of the

factorization of an integer as a product of prime-powers.

An ideal I of a ring R is said to be prime if [ # R and a.b € I implies either a € [
orbel.

An ideal I of a ring R is said to be primary if I ## R and a.b € I implies either a € [

or b" € I for some n > 0.

The radical of an ideal I is denoted rad(I) or v/I, and is defined by
VIi={aeR|a" €I some n >0}

The radical of a primary ideal is a prime ideal. For suppose ab € rad(I), so that
a"b" € I (note we are only concerned with commutative ideals). If a ¢ rad(I) so that
no power of a is in I, then since [ is primary some power of " is in /. But then

b e rad(I).
LASKER-NOETHER THEOREM

Every polynomial ideal can be expressed as an intersection of finitely many primary
ideals. We write

I = mz':l,.l.,n qi

While the primary ideals g; used in the intersection may not be unique, the radicals
of the primary ideals form a set that is independent of the particular decomposition

of I.

In their paper “Grébner Bases and Primary Decomposition of Polynomial Ideals”,
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P. Gianni, B. Trager and G. Zacharias [20] present an algorithm to compute the
primary decomposition of any ideal in a polynomial ring. Their algorithm relies on
those properties of Grobner bases already discussed here, namely, elimination ideals,

ideal membership and ideal intersection.

A simpler algorithm, to decompose the algebraic variety into its irreducuble compo-
nents, is given in [35]. [33] contains a discussion of the Buchberger algorithm where
polynomials are factored after every iteration. This provides an approximation to the

primary decomposition.
A discussion of primary decompositions, and further references are given in [10].

In his book “Differential Algebra”, Ritt proves that every perfect differential ideal
has a prime decomposition. ( An ideal I of a ring R is said to be perfect or radical
if o™ € I for some n > 0 implies b € I.) Ritt gives an extensive discussion of prime
differential ideals, which have many applications in the formal theory of PDE ([39,
41].) Pommaret ([39] p. 246) gives a criterion for a differential ideal to be prime.
Note that a perfect primary ideal is prime. Ritt’s discussion is for the most part
non-constructive; it is clearly desirable to extend the work of Gianni et al to the

differential case.

1.13 Implicitization of Parametrically described

Varieties

The general implicitization problem is to remove all parametric variables in the de-
scription of an algebraic variety. More precisely, given polynomials py,...,p, €

Flxy,...,2z,), find fi,... fx € Fly1, ..., ys) such that for all a4, ...,a,, €T,

f1<a17--'7am):"':fk<al,...,am):O
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if and only if for some by,...,b, € F,

aq :p1<b1a ... 7bn)7

A = Pm(b1, ..., bp).

The b; are the parametric variables, and the p; are the parametric equations, while

the a; are the non-parametric variables and the f; the non-parametric equations.

The polynomials f; are computed by finding the Grobner basis of the ideal generated
by {y1—p1,- .-, Ym —Pm} using the lexicographical ordering based on y; < ... < ¥y, <
x1 < ...< x,, and taking the intersection with Flyi, ..., y,]. ([9])

It will be seen in Chapter 4 that this is analogous to the algorithm used to calculate
the resolution of a system of partial differential equations. It is the dual of the syzygy

calculation.

The inversion problem, namely that of finding the co-ordinates of a particular point
on a variety given parametrically, can be solved using the same algorithm as used for

the implicitization problem.

1.14 Detection of Singularities

The method of Grobner bases yields an immediate approach to detect all singular
points of implicitly given planar curves. The singular points of a planar curve given
by f(z,y) = 0 are exactly the points that are common zeros of f, f, and f,. One
calculates the Grébner basis of the ideal generated by {f, f., f,} with respect to a
lexicographical ordering and then finds the set of zeros by the successive substitution

method (see the Elimination Ideals section.) ([9])
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1.15 Radicals

It is possible to use the Grobner basis algorithm to ascertain whether an element x
of a ring R is in the radical of an ideal /. Let I be generated by the set F', and let y
be a new indeterminate. Then x € rad([/) if the Grobner basis generated by the set
F U{1 — zy} contains the unit element 1. ([9])

1.16 Generalization to polynomials of operators

Polynomials of operators are not to be confused with polynomials in which the inde-

terminates are operators each acting on its own argument.

The set of operators D is assumed to satisfy the following: for D!, D? € D,

(D', D?] = D'D? — D*D' € D,
(DY, D'] =0,
[D17D2] = _[D27D1]7

and the Jacobi Identity
(DY, [D?, D°|] + [D?, [D?, D] + [D?, [D*, D*]] = 0,

in which case polynomial rings of operators are precisely enveloping algebras of Lie

algebras.

Apel and Lassner in their paper “An Extension of Buchberger’s Algorithm and Calcu-
lations in Enveloping Fields of Lie Algebras” present an extension to non-commutative
finite-dimensional Lie algebras. Examples are algebras of angular momentum oper-
ators, Weyl algebras, symmetry algebras and so on. Equations in the Weyl alge-

bra are linear systems with variable coefficients. These equations have the form
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( Z caﬁxﬂ Da) u = 0, where ¢, 3 are elements of the relevant field. The operators
a,FEN”

o . S
— | i=1,...n| which is the en-
(91:1-
veloping algebra for the Lie algebra (z;, . |7 =1,...n)p. These systems have been

l‘.

studied by Galligo ([19]). An example of ‘the differential Grobner basis of such an

can be regarded as elements of the algebra F |x;,

ideal is given in Example 2 of Chapter 3.



Chapter 2

DIFFERENTIAL GROBNER
BASES

The place of monomials in the polynomial ideal theory is given in differential ideal
theory to derivative terms. A derivative term is the (partial) derivative of an unknown
function u’ with respect to n variables {xy, ..., x,}. In differential algebra, there is an
additional complication which is that derivative terms can themselves be multiplied
or taken to powers. A product of two monomials or a power of a monomial is again
a monomial, while a product of two derivative terms or a power of a derivative term

is not again a derivative term.

This chapter contains a theorem that characterizes an analogue of Grobner bases in
differential ideals. Differential ideals are not noetherian (they have an infinite number
of generators, algebraically speaking), and replacing the S polynomial and reduction
calculations with their differential analogues yields infinite Grobner bases ([37], [12]).
To achieve a finite theory, we replace reduction with pseudo-reduction. This leads to

several subtleties when formulating an algorithm to calculate a differential Grobner

25
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basis. Pseudo-reduction involves multiplying equations by certain differential coeffi-
cients before reducing them. These differential coefficients must not lie in the ideal
generated by the given equations. The equations output by the algorithm satisfy all
conditions sufficient for them to be a differential Grobner basis, except the condition
concerning these differential coefficients, which must be checked on a case-by-case
basis. The details of the output, and the termination of the algorithm, are discussed

and proved. Examples are studied in Chapter 3.

Notations

N is the set of natural numbers

F a field of characteristic zero, usually R or C.

a, 3,7 € N* are multi-indices

If @« = (aq,00,...,a,) then |a| = a1+ + -+, .

Note: components of a multi-index « are denoted by aq, as . . ., to prevent confusion

between the components of a multi-index o, and distinct multi-indices o', .

A monomial is labelled by a multi-index « thus: % = z{'25? ... 2%". A derivative

term is labelled both by a multi-index o and an index ¢ to specify which unknown
function is being differentiated:

i _ pay olelyy? olelyy?
p = u = =
“ Jx®  Ox{'0x5?...0x%n

Py =

p; =(0,...,0,1,0,...,0) € N* with the 1 in the j* place. Where the notation p is
already in use, we use 1; = (0,...,0,1,0,...,0) with the 1 in the j% place.

For indices of small degree, derivatives are also denoted by the usual notation, e.g.

Uzz = P(2,0,...,0)

We will use the following abbreviations:

d.p differential polynomial
DGB differential Grobner basis
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2.1 Differential rings and ideals

A differential ring is a commutative ring R together with a finite set of derivations
{D;: R— R|i=1,..,n} which are linear, which commute with each other and

which satisfy the product rule
D;(rire) = Di(r1)re + r1D;i(r3).
A differential ideal I of a differential ring is an ideal which also satisfies
rel = D;r)el forall i=1,...,n.

We define R, ,, to be the ring of polynomials in the variables {z; | i = 1,...,n},
the C> unknown functions of the variables {u’/|j = 1,...,m} and their derivatives

{p!, = D?u;} over the field F, with D; = p

Ruym =Flxp,u,pl |i=1,....,n;5=1,...,m;a € N"|

The field F is usually R or C, but can be any field of characteristic zero on which
differentiation is defined. (Notations as above.) Elements of R, ,, are called diffe-
rential polynomials (d.p.’s).

As a differential ring, R, ,, is finitely generated by {x1, ..., z,, u', ..., u™}. We restrict

ourselves to ideals whose elements contain derivative terms.

2.2 Orderings on the differential polynomials

The ordering on the differential polynomials (d.p.’s) depends upon an ordering on
the variables {x; | i = 1,...,n}, and the functions {«’ | j = 1,...,m}. A compatible

ordering is desired, that is,

fi > fa= Di(f1) > Di(fz) and f.fi > f.f
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for all 7 and all d.p.’s f. We assume the ordering u,, > t,,_1 > ... > u; and x1 > x5 >
... > x,. The {p}} are called derivative terms. We first define orderings on the set of

derivative terms.

The lexicographic ordering on the derivative terms is given by
ph>ph if Q>
else 1 = 7 and the first non-zero difference
ar = P, a2 — Bay .o — By
is positive.
The total degree ordering on the derivative terms is given by
ph>ph i Q>

else i = j and |a| > |f]

else i = j, |a] = |4] and the first non-zero difference
Qp — Bn7a/n—1 - ﬁn—la s, O — ﬁl
is positive.

The total-degree ordering given by other authors is determined first by total degree,

then the unknown, and then inverse-lexicographic ordering ([53]).

The reverse-lexicographic ordering on the derivative terms is given by
ph>ph if P>

else i = j and |a| > |f|

else i = j, |a| = |B] and the first non-zero difference

(079 _ﬁnaan—l _ﬁn—la-"aal _ﬁl
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is negative.

It is clear that any ordering on the variables {z;} determines a lexicographic, total-
degree or reverse-lexicographic ordering on {p’, }. For these three orders, since u/ = p%,

we have p! >« for all a # 0.

While the lexicographic ordering is what we need to use for the elimination ideals
results, nevertheless, in the formal theory of partial derivative equations it has been
orderings graded by total degree that have been used to determine the symbol of
the system, motivated by the proof of the Cauchy-Kovalevska Theorem on analytic
equations. ([53], [38].) For a discussion of the symbol of a system of PDE’s and its

relationship to differential Grobner bases, see Chapter 6.

As in Chapter 1, it is possible to attach “weights” to obtain more general ordering
schemes ([53, Section 2.2], [54]). Our matrices are the transpose of Trinks’.)

For h =1,..,s, k =1,..,m and i = 1,...,n, define the weights wy,(u"*), wy(z;) and
set

wh(PZ) = wh(uk) + aqwy(zq) + -+ - + awp(xy,).

Then pt > pjb if the first non-zero difference

wh(pg) - wh(pjﬁ)’ h = ]-7 ey S

is positive. We can define a matrix A such that

W, ]; =1 A CYT .
e ( <<M>T>>h

(See Notations for definition of 1*). For example, the total degree ordering above has
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the matrix
x U
00 0|1 O 0
0 0 0/]0 1 0
0 0 0/0 O 1
11 110 O 0
00 110 O 0
0 1 0/0 O 0
1 0 0]0 O 0

x u
11 110 0
0 0 01 2 m
0 0 1(0 0 0
01 00 O 0
10 00 O 0

Definitions

Let DT? be a derivative term raised to a power p. The coefficient of DT? in a d.p.,
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f, is the sum of all coefficients DT? in f (note the coefficient contains no powers of
DT), and is denoted coeff(f, DT?). If DT” has a non-zero coefficient in f, we say DT?

occurs in f.

The highest derivative term occurring in a d.p. f is denoted HDT(f).
The highest power of the HDT(f) occurring in f is denoted Hp(f).
The highest coefficient, denoted Hcoeff(f), is the d.p.,

coeff( f, HDT(f)HP()).

The head of f is Head(f) = Hcoeff(f).HDT(f)HP().

The highest unknown function occurring in f, the unknown function involved in

the highest derivative term, is denoted Hu(f).

The separant of f is the highest coefficient of D*f, for any non-zero multi-index «,

and is denoted Sep(f).

The highest monomial, Hmon(f), is defined recursively as follows: if f is a mono-

mial, Hmon(f) = f, else Hmon(f) = Hmon(Head(f)).

Example 1. In the differential polynomial
f= (i - D)ty + ul, — (Vyy — V2)Uayy

we have
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lex total degree | reverse lex | lex

u >, u >, u >, v > u,

z>y>cT|lr>y>z2 T>y>z T>y>z
HDT(f) | ue- Uy Uy Uyy
HP(f) 3 1 1 1
Heoeff(f) | 1 —(vyy —v,) | ui—1 — Uy
Sep(f) [3(u:2)? | —(vyy—wv:) |ui—1 Uy
Hmon(f) | w2, —UyyUayy U Uiy —UyyUayy
Hu(f) u u u v

We now define the ordering on the differential polynomials, given an ordering on the
derivative terms.

If HDT(f;) > HDT(fs) we say fi; > fo. If two polynomials have equal HDT’s but the
HDT occurs to a higher power in f; than in fy, then f; > fo. If two polynomials have
the same HDT’s and the same Hp’s then the ordering is determined by the ordering on
the Hcoeff’s. If Head(f;) and Head(fs) differ by a field coefficient, then the ordering
is determined by that on f; — Head(f1), fo — Head(f5).

If the summands of f; and f, differ only in their field coefficients, we say f; and f,

are of equal rank.

2.3 Sequences of differential polynomials

Recall from Chapter 1 that a ring is said to be noetherian if it satisfies the “ascending
chain condition”, namely, that for any nested sequence of ideals Iy C I, C ... C [, C
... there is an N such that I,, = Iy for all n > N. This property was used by Buch-
berger to prove termination of his algorithm. A differential ideal, regarded as an alge-
braic ideal, is not noetherian, because there are infinitely many indeterminates. Ritt

([43]) proves that ascending chains of perfect or radical differential ideals terminate.
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(An ideal I is said to be perfect, or radical, if a? € ] = a € I. Generalisations
to this theorem appear in [30, Ch III] and [39, pp235-257].) Therefore, we need to
prove termination for general ideals “by hand”, that is, by examining sequences of
differential polynomials. The following two lemmas prove that any strictly decreasing
sequence of d.p.’s terminates. The strictly decreasing sequences are bounded below

by a least element in the ring, namely the zero polynomial.

Lemma 1. Any strictly decreasing sequence of the form
{t, = (p"a")™ |i, € {1,...,m},k, € N,a” € N"}

terminates after a finite number of terms. Hence for any infinite decreasing sequence

there must exist an N such thatn > N = t, = ty.

Proof. For m > 1, the sequence {t, } can only be infinite if it is infinite for one of the
indices that label the unknowns. Thus we prove the result for m =1 (i.e. 7, = 1 all

v.). Consider the associated sequence
S ={s, =2}, CFlay,..., 2,

The monomials have the ordering ® > 2 if and only if p, > ps with respect to some
compatible order. (See notations above). The sequence S is decreasing. For any
decreasing sequence {s;} in F[zy,...,x,] there exists an integer M such that i > M
implies s; = s);. Considering our original sequence {(p,»)* }, we now have o' = oM
for i > M, so the only way the sequence can be strictly decreasing is for {k, | v > M}

to be a strictly decreasing sequence of positive integers, which must terminate.  [J

Lemma 2. Let {f,} be a decreasing sequence of differential polynomials in R, .

Then there exists an N such that forn > N, f* and f are of equal rank.

Proof. We first show that a strictly decreasing sequence of monomials {my} termi-

nates. A monomial has the form z*DT}'.DT4*...DTE". Firstly, by Lemma 1, the
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sequence {HDT (m;)"P(™)} terminates. Let M) be the terminal value, occurring for
k > K;. Repeat the argument on the sequence of monomials {m/M; | k > K}, to
produce a terminal value M, occurring for k > K. Iterating, we obtain a sequence
{M,}. This sequence is strictly decreasing and so is finite, finishing at » = R. Then
the terminal value of the sequence {my} is M;y.Ms...Mp, which is reached in a finite

number of steps.
Let us now consider the given sequence {f"}.

Let f = f™. Considering the sequence {HDT(f")"P/")} we have by Lemma 1 that
there exists an /N7 such that the sequence is stationary for n > N;. Consider next

the sequence
{f3" = Hcoeff(f") | m =n— Ny + 1,n > Ny }.

Applying the above argument to f3* we again find an Ny for which HDT(f}) =
HDT(f), and Hp(f3) = Hp(f2?) for n > N,. We can iterate this procedure indefi-
nitely creating an infinite sequence of sequences. Consider now the sequence { f1}° ;.
Since by definition Hcoeff(f) < HDT(f)HP) for any f, this is a strictly decreasing

sequence, which terminates by Lemma 1.

This shows that there is an index K; for which & > K, implies Hmon(f*) and
Hmon(f%) differ by a field coefficient. Let m; denote Hmon(f**) divided by its
field coefficient.

We now iterate the whole argument on {f" — Hmon(f") | n > K;}, to produce a
strictly decreasing sequence of monomials {m, }. This sequence terminates, implying

the required result. O
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2.4 Reduction

There are two methods of reduction. The first is a strictly algebraic reduction.

Definition 1 ( reduction). If f and g are two d.p.s, we say that g reduces f at the

monomial M, where M is a summand of f, if Hmon(g) | M.

M
We write f —, f’ where f' = f — —— ¢.
Hmon(g)

This type of reduction is that used when calculating Grobner bases of algebraic ideals.

The second type of reduction we denote differential reduction. The d.p. ¢ (differen-

tially) reduces f if for some derivative term DT occurring in f to the power p, we

have

(1) D*HDT(g) =DT some multi-index a,

(2) Hp(g) <p if =0

and

(3) coeff(f, DT?) = hyHcoeff(D%g) + hy ~ hq, hy d.p.’s and hy # 0.

Then we write f —, f’ where

. f—mDTP DY a#0
f— DT Wy o =0

The reduction depends on the choice of term ordering.

We speak of the reduction of a d.p. f with respect to a finite set F' of d.p.’s as yielding
a normal form of f with respect to F. A normal form is achieved when no further
reduction of f with respect to any member of F' is possible. A normal form is not

unique; it depends upon the ordering used and the order in which the different terms
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are reduced. We write

f —r normal(f, F).

Example 2 (reduction).

Set  f = (ugty — uy)uy, —1

and g = Uyplly — U.

Assume the lezicographic order with y > x. Then HDT(g) = u,, and the algebraic
reduction of f with respect to g is f' = (u—uy)uy,—1. We can reduce f" (differentially)

with respect to g to obtain

"o
= Ulyy — 1 + UgyUy — Uy.

2.5 Pseudo-Reduction

Pseudo-reduction of f by a set of d.p.’s GG effects an elimination from f of all derivative
terms that can be obtained by differentiation of the highest derivative terms of the

elements of G.

Let a derivative term DT occur in f to some power p. Suppose there exists an « such
that D*HDT(g) = DT. If a = 0 assume further that p > Hp(g). A pseudo-reduction,
f', of f by g is given by the formulae

(Hcoeff(D%g).f — coeff(f,DT?).DT?~!.D%g)
Z

a#0

(Hcoeff(g).f — coeff(f,DT?).HDT(g)»~Hr9) g)
Z
where Z = gcd(Hcoeff(D%g), coeff( f, DT?)).(The notation ged stands for greatest com-

a=20

mon divisor.)

Denote pseudo-reduction with respect to G by f —¢, f'.
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Thus if Heoeff(D*g) divides coeff(f, DT?) pseudo-reduction equals differential reduc-
tion. Note: the coefficient of a term DT? contains no powers of DT: a reduction or

pseudo-reduction of a term DT? is not a reduction or pseudo-reduction of DT? where

q>D-

The reduction used by Ritt ([43, Chapters I, IX].) is actually pseudo-reduction, except
that Ritt does not divide out by Z. Although doing so makes the proofs that follow
a little more cumbersome, it is clearly advantageous to not introduce spurious factors
into the equations. When no further pseudo-reduction operations can be performed
on f with respect to the members of a set GG, we say f is in normal® form with respect

to G; the normal form is denoted normal®(f, G).

Example 3 (pseudo-reduction).

Let [ = ugyy + 2UyUyy,

g = Ulgy — Uy.

Then in either lezicographic or total degree ordering HDT(g) = uy,.

We can pseudo-reduce f at both the u,, and the gy, terms. Doing so yields

f=u.f— 8_yg — LUy.g = —Uylgy + Uy + TU,.
The difference between reduction and pseudo-reduction is that in pseudo-reduction we
are allowed to multiply the polynomial we are reducing by non-constant terms. We

can pseudo-reduce the result again at ug,, yielding
normal®(f, {g}) = —ui + Uy u + xuz
All three types of reduction defined here are noetherian relations, i.e. a normal form

is achieved in a finite number of steps. In Lemma 3, we prove that pseudo-reduction

is noetherian.
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Lemma 3. The pseudo-reduction relation — g, is noetherian. That is, a normal®
form of a d.p. fwith respect to a finite set F of d.p.’s is achieved after a finite number
of steps.

Proof. Let H(F') be the set
H(F) = {HDT(g)*, (D*HDT(9))" | g € F,q = Hp(g),p € N, € N"}.

Suppose the pseudo-reduction process yields an infinite sequence of d.p.’s {f;}, where
fo=f. Let S, = {DT? | DT? occurs in f,}. The set S, N H(F') is the list of terms
where pseudo-reduction is possible. Let dt, be the highest element in S, N H(F).
After each reduction step, an element in .S, is replaced in S, 1 by a list of derivative
terms (with powers), all of which are lower than the element replaced. Therefore
¢ > j implies dt; < dt;. By Lemma 1 we have, for N large enough, that dt,, = dty
for m > N. Let t; = dty. We now repeat the argument for fy but removing dty
from the S sets. Continuing in this way, we derive a strictly decreasing sequence {#}.
If the number of reductions is infinite, this sequence is infinite, since we never run
out of possibilities. But again by Lemma 1, any strictly decreasing sequence must be

finite. O

Spurious zeroes: It is possible that pseudo-reduction of f with respect to F' may
lead to a spurious zero. This occurs when for some f; € F, Sep(f;) pseudo-reduces to
zero with respect to other members of F'. The algorithm Reduceall outputs a set in
which no element pseudo-reduces any other element at all, (such a set is then called
auto-reduced, following Kolchin [30].) It ensures the auto-reduced set generates, as
far as possible, the same ideal as the original set F'; the output set generates an ideal
slightly smaller than the input set. Reduceall is easily adapted to output a set in

which no element pseudo-reduces any other element’s separant.

Definition 2 ( M(X)). If X is a finite set of d.p.s, define M(X) to be the multi-
plicative set generated by factors of the elements of X. (A set M is multiplicative if
a,b € M implies ab € M.)
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In forming normal®(fx, { f1, ..., fk—1}) we collect in a set denoted X (f,{f1,--, fx—1})

all the factors with which f; is multiplied in sucessive pseudo-reductions.

ALGORITHM: REDUCEALL

INPUT:  aset F of differential polynomials
a term ordering

OUTPUT: sets F’ = reduceall(F'), X = X (reduceall(F"))
the set F’ is auto-reduced and the generators of F' appear in I(F")
multiplied by factors of the elements of X.

Fl=F
z:=0

X = {}
while z = 0 do

sort F' into increasing order (f] < f5 < ... < f!)
for k from 2 to |F”|
k= normal’(fp, {fi, .., fr1})
if f/ = fi then z :=1 else I := F' minus {f}} union {f}
X := X union X(f{,{f1, fi_1})
k:=1
break

end

The set X is minimized if no member of F' reduces (algebraically or differentially)

any other member.

Lemma 4. The algorithm “REDUCFEALL” terminates.

Proof. Suppose not. Then at least one of the original equations would be the first

in an infinite strictly decreasing sequence in R, ,, . But any such sequence must

terminate.

]
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We now show some properties of pseudo-reduction (cf [8] for equivalent properties of

reduction.)

Definition 3 (S(G)). For G in R, ,, let S(G) be the multiplicative set in R, ,
generated by the set of factors of all the highest coefficients and separants of the g
in G. (A set S is a multiplicative set if a,b € S implies ab € S.) We assume that
1,-1€S8.

Definition 4 (~¢). Let ~¢ denote the equivalence relation generated by pseudo-
reduction. That is, f ~¢g g if there exists a sequence hy, ho, ..., hi such that f = hq,

g = hy, and either h; —g, hit1 or hip1 —ap hi

N\, /
\,/ \h5

Figure 2.1:
Each arrow represents psaido-reduction. In the diagram f ~ g.

f

Definition 5 (f | g). Let f |¢ g denote the fact that there exists an h such that

f —aphand g —g, h, ie. fand g have a common successor.

It f lg g then f ~qg.

We note the following properties for an arbitrary set G:

PRLif f —¢, g then h.f —¢, h.g forall h € R, ,,

PR2 if f — g pseudo-reduces in one step to h, then there exist s,s’,s” € S(G) and
d.p.’s f" and ¢’ such that f —¢, f',9 —¢,p ¢ and sh ="' —s"¢'.
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PR3 if f — g —¢,p 0 then §'f | s”¢g for some s,s” € S(G).
PR4 if f —¢,, h then there exists an s € S(G) such that s.f —h € 1.
PRS if f —¢, 0 then h.f —¢, 0 for all h € R, ..

We prove property PR3, the others following directly from the formulae. The proof
follows induction on the number of steps used to pseudo-reduce f —g to zero. If f =g
then clearly f |o g. Suppose the result is true if the pseudo-reduction uses k steps,
and consider the case where the pseudo-reduction takes k + 1 steps. Let the first step
be hy. By property PR2, there exist s,s',s” € S(G) and d.p.’s f’ and ¢’ such that
f—cp f'i9—cp ¢ and shy = s f' — s"g'. By property PR5, shy —¢, 0 in k steps,
so by the inductive step s'f’ | s”¢'. Hence s'f | o s"g, using property PR1.0

Definition 6 (f =4 g). If f — g € I(G) then we write f =¢ g.

Lemma 5. If f =4 g then f ~g g. Conversely, if f ~q g then there exist s, € S
such that s1f =¢ $29.

The proof of Lemma 5 follows that of Lemma 1 in [2].

2.6 The differential S polynomials

In direct analogy to the algebraic case, we wish to find a basis with respect to which
every member of the ideal pseudo-reduces to zero. We showed in Chapter 1 that it was
easy to find an example of a basis which does not satisfy this criterion merely by choos-
ing two polynomials whose S polynomial was non-zero, and taking the ideal generated
by them. Converting the example to a differential one by converting multiplication
by x; to —~— , One can see that the following formulae are a direct generalization of

ox

the formula for the algebraic S polynomial (cf the first example following.)

Let f; and f5 be two d.p.’s with the same highest unknown. Take the two multi-indices
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of least degree, a! and o such that
D' HDT(f1) = D*’HDT(fy).
Let Z = ged(Heoeff(D®' f1), Heoeff( D f,)).

If both a!, a? # 0, then define

(Hcoeff(D™' f,).D*" fo — Heoeff(D** f5).D* f;)

diffSpoly(f1, f2) = 7

If o' = 0 and a? # 0, then

(Heoeff(f1)HDT(f;)HP(i)=1) Do? £, — Heoeff(D** f5) f1)

diffSpoly(f1, f2) = 7

and similarly if o' # 0 and a? = 0.

If o' = o = 0 so that HDT(f;) = HDT(fs), or if f; and f; have different highest
unknowns, then the differential S polynomial is defined to be

Head(f2) f1 — Head(f1) f2

diffSpoly(f1, f2) = gcd(Head(f1), Head (f»))

Calculations equivalent to differential S polynomials appear in [30, p. 136 and p.
167].

Example 4 (differential S polynomials).

(1) In the case where the differential polynomials are linear, in one unknown and with
constant coefficients, the diffSpoly calculation mimics the algebraic one, since in this

case differentiation mimics multiplication by .
i

Take f1 = Uggy + Uy

f2 = Ugyy + u.
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. 0 0
Then diffSpoly( f1, f2) = %fz - %ﬁ
1 2

= Uz — Uyy
(2) The next level of generality is that of linear equations with variable coefficients.
Take fi = Ugqy + YUy
fo = Ylgyy + U

_ 0 0
Then diffSpoly( f1, f2) = 8_xf2 — ya_yfl

_ 2
= Ug — YUy — Y Uyy

More general examples will be given later.

A trick due to Drach ([53]) exists which converts a pde system in m unknowns
{v/ | j = 1,....,m} and n variables {z; | ¢ = 1,...,n} to an isomorphic system in
one unknown and n + m variables. We take extra variables z, 1, Tpi9, ..., Tpim and

define the new unknown w to be
_ 1 2 m
U= Tpt1. U + Tpya. U + oo + Tpgn U

- O0u
so that u’a—,i =n+1,...,n4+m. We then add to the system the equations

9%u
(9@-8953-

=0 fori,je{n+1,n+2,....,n+m} (%)

For this system to have an ordering equivalent to the original system, it is necessary
to adopt a weighted ordering. It is desirable that the given differential S polynomial
formulae be compatible in the following sense: in the case of two d.p.’s in the first
system having different highest unknowns, the definition of the differential S polyno-
mial utilizes an algebraic formula whereas the isomorphic polynomials in the second
system have only one unknown and hence the formula used is the differential one.

The definitions above yield compatible results.
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2.7 Differential Grobner Bases

Many of the properties of Grobner bases for polynomial ideals listed in Chapter 1

either apply directly to differential ideals or have differential analogues.

Systems that are linear, with constant coefficients and in one unknown, can be re-

garded as polynomials in the operators . Examining such systems leads us to

dz,
conjecture that replacing Spolynomials with differential Spolynomials, and algebraic
reduction with differential reduction in Buchberger’s algorithm will yield a “differen-
tial Grobner basis”. In fact, this is only true for linear systems, or systems where the

highest coefficient of every polynomial given or generated is a constant.

In systems where a highest coefficient contains a derivative term, the analogous pro-
cedure may not terminate in general. The reason is that the product rule dictates
that the coefficients become differentiated while the HDT does not, and thus these
terms will not reduce away in general. Thus the result of performing differential
Spolynomials and reducing them will lead in general to a polynomial that is higher

in rank than the ones given. This problem compounds upon iteration.

The proof of termination of Buchberger’s algorithm relies on the fact that finitely
generated polynomial ideals are noetherian. This means that any ascending sequence

of ideals

Lhchc---Cl,C---CR

in the polynomial ring R is essentially finite i.e. 3N such that n > N implies 1,, = I .

Differential polynomial rings are not noetherian, since they are generated algebraically
by infinitely many indeterminates. However, Ritt has proved ([43]) that ascending
sequences of perfect or radical ideals terminate. Hence we do not expect termina-
tion of an algorithm using reduction for systems that generate non-perfect ideals.

Forsman [18] has conjectured that the algorithm will terminate, using reduction, in
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radical (or perfect) ideals.

To overcome the difficulties associated with reduction, we resort to pseudo-reduction.
We shall see that this compromise involves a loss of information. Nevertheless, for
a large number of examples, the algorithm using pseudo-reduction yields sufficient
information to answer the kinds of questions Grobner bases answer. Moreover, for
linear systems, pseudo-reduction is the same as reduction so that the same code will

suffice.

The loss of information entailed in pseudo-reduction is contained, for a system G, in
the set S(G), which we defined earlier in this chapter. We repeat the definition here

for convenience:

Definition 7 (S(G)). For G C R, let S(G) be the multiplicative set in R, ,
generated by the set of factors of all the highest coefficients and separants of the
elements of G. (A set S is a multiplicative set if a,b € S implies ab € S.) We assume
that 1,—1 € S.

Property One below shows an example of this “loss of information”.

The use of pseudo-reduction is not new. In his book “Differential Algebra” J.F. Ritt
defined a chain to be an increasing sequence {A,}_, of elements of the differential
ideal such that each A, is pseudo-reduced with respect to { Ay, ..., A,_1}. (What Ritt
called reduction is today called pseudo-reduction.)

Given two chains A = {A4,}_, and B = {B,}™_ | he declared A > B if either there

n=1»
existed a k < min(N, M) such that rank(4;) = rank(B;) for ¢ < k and rank(A;) >
rank(By), or N > M and rank (A4;) = rank(B;) for ¢ < M. If neither A > B nor

A < B then he defined the two chains to be of equal rank.

A characteristic set is a chain that is least in the set of chains.

Definition 8 (auto-reduced). A set G is called an auto-reduced basis if no element
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of G pseudo-reduces any other element of G.

A characteristic set is auto-reduced.

Lemma ([43, p.5]). A chain is a characteristic set if and only if every member of the

1deal pseudo-reduces to zero with respect to it.

This property of a characteristic set, when compared to Buchberger’s original defini-
tion of a Grobner basis, is strikingly similar. Removing the cumbersome definition of

a chain, we define:

Definition 9 (differential Grobner basis). A differential Grébner basis of
the differential ideal I is a basis of I with respect to which every element f of [
has a unique normal® form, zero. Note that a differential Grobner basis need not be
auto-reduced while a characteristic set need not be a basis. Examples of differential

Grobner bases for given ideals are discussed in Chapter 3.

We now state and prove two important properties of differential Grobner bases. Other

important properties are discussed in this and subsequent chapters.
PROPERTY ONE

Let fo be the least element of the differential ideal I(G) with respect to some term
ordering. A differential Grobner basis with respect to that term ordering contains an

element of the form sfy for some s € S(G).

Proof: 1f not, then no other element of the differential Grobner basis would be able to

pseudo-reduce fj to zero, contradicting the definition of a differential Grobner basis.
PROPERTY TWO

The system X is inconsistent if and only if 1 is an element of any differential Grébner
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basis for I(X).

Proof: If 1 is in a differential Grobner basis for I(X), then the equations in 3 imply
1=0, which is a contradiction. Conversely, suppose the system X is inconsistent.
Then some combination of the equations in 3 implies 1=0. But then 1 € I(X), which
must pseudo-reduce with respect to some element of any differential Grobner basis
for I(X). But only 1 can pseudo-reduce 1. Therefore a differential Grobner basis for

any order must contain 1.

These properties show that not every basis is a differential Grobner basis.

2.8 The main results

Buchberger proved that a basis of an algebraic ideal is a Grobner basis if and only if
every S polynomial of the basis elements reduces to zero (cf Chapter 1.). His algorithm
for generating a Grobner basis consists of computing all the Spolynomials, reducing
them to normal form, adding the non-zero normal forms to the list, and ite-rating.
Those Spolynomials that do not reduce to zero are precisely the obstructions to the
list of polynomials being a Grébner basis.

We now proceed to ask the question, what differential polynomials generated by
members of a basis do not pseudo-reduce to zero with respect to that basis? We begin
by examining the pseudo-reductions of differential Spolynomials; we shall see that
the condition that all differential Spolynomials pseudo-reduce to zero is insufficient

to ensure a differential Grobner basis.

Example 5 (pseudo-reduction of a diffSpolynomial). Let f; and fo be defined
by
fl = UyUgay + Ugy

f2 = UgUgyy + Ugy
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In the lezicographic ordering with y > x, HDT(f1) = gy and HDT(f2) = uyy,.

) 0 0
Then diffSpoly(f1, f2) = Uxa—yﬁ - uy%fQ
= {Uatlyy — Uy Py + {Us — UyUsy Jly,y.

Reduction with respect to {f1, fo} yields uytiyyUypy — UylippUyy,, which is greater than

both fi and fs. Pseudo-reducing the result with respect to { f1, fo} results in

normalP(diffSpoly(f1, f2), { f1, fo}) = uxy{uZum — uuy, }

which is less than either fi or fo. Thus, the equation generated cannot be pseudo-

reduced to zero with respect to { fi, fo}.

The following lemma gives an upper bound for a differential analogue for Buchberger’s
algorithm, replacing Spolynomial calculations with diffSpolynomial calculations and
reduction with pseudo-reduction. Its proof shows how the algorithm produces a series

of differential polynomials all less than the elements of the original set.

Definition 10 (the map ). We define the map § : {{f;, f;} | fi. fj € Ram} —
N If HDT(f;) = p’y, HDT(fs) = p’», and 7' and 4?2 are the smallest multi-
indices possible such that DV (HDT(f;)) = DY (HDT(f»)) then define the map & to
be 0({ i fo}) = o 7 = a? 72

If Hu(f1) # Hu(f2) then 6({f1, fo}) = 0.

The multi-indices v! and +? are the multi-indices used to calculate the differential S

polynomial of f; and fs.

Lemma 6. For fi, fo € R,m, and the lezicographic order, or if Hu(f1) # Hu(f2) or
if HDT(f1) = HDT(f2), we have

normalP(diffSpoly(f1, f2), {f1, fo}) < max{fi, fo}.
With the total degree ordering and Hu(f1) = Hu(fs) = v/ (say),
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normal®(diffSpoly (f1, f2)), {f1, f2}) < p} where § = §({f1, f2})-
Furthermore, for g = normalP(diffSpoly(f1, f2), {f1, f2}), we have diffSpoly(f1, g), when

pseudo-reduced with respect to { f1, f2, g} has the same upper bounds for its derivative

terms.

Proof. Tf Hu(f1) # Hu(fs) or if HDT(f;) = HDT(f2), the result follows directly from
the definition of the diffSpolynomial for these cases. So assume Hu(f;) = Hu(fs)
and HDT(f;) # HDT(fy). Let a derivative term A occur to some power r in g =
normal®(diffSpoly( f1, f2), { f1, f2}). If the power r is greater than 1, then A occurs to
some power in either fi or fy, so that A” < max{HDT(f;)HPU1) HDT(fy)"P\"2)}. So,
let A (to the power 1) occur in g. Then there exists a derivative term B occurring to
some power in say fi, and an index 3 € N" such that D?(B) = A.

Indices can be regarded as vectors in N” and can be summed as vectors, component-
wise. For a given multi-index «, the set « + N* = {¢ | a is a summand of £}. If o
is the multi-index for HDT(f;), the sets o' + N" a? + N" in N" are the sets of those
multi-indices that can be pseudo-reduced by f; and f, respectively (see Figure 2.8.)
The smallest point of intersection is the index 6 = §({ f1, f2}). From the formulae for
differential S polynomials and pseudo-reduction it must be that g is a summand of
v or 42 If B =pl, then Q = {3+ o | # is a summand of '} contains the index
associated with the term A. Note that ¢ < max{a',a?}. If A cannot be reduced
by fi or fs, then it must be less than one of the HDT(f;) in the lexicographic order,
since the set @ cannot lie in that part of N" that is greater than max{a!, o?}.

In the total degree ordering, it is possible for |3 + o| to have greater magnitude than
|at| or |a?|, and not be reducible. Nevertheless we obtain that the set Q for some A
occurring in g must lie in that part of N” with magnitude less than |d].

The final statement of the lemma follows from the same considerations. O
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multi-indices with norm
greater than |d] on this
side of the diagonal
o({/f1, fo})
al + N
L9,
o
0 a? + N»
Figure 2.2:

The multi-index § = §(f1, f1), where HDT(f;) = o

Changing the example before Lemma 6, we obtain an example which shows why we
need different bounds for the different orderings. Set

J1 = Uyazy + ugy

fo = tgtigyy + Ug,

In total degree ordering the HDT’s are the same as before, but we now observe that

diffSpoly(f1, f2) = UyyUsUsay + Usyy{ts — Uyl } — UyUpey

The highest derivative term of the normalP-form with respect to { f1, fo} 1S Ugze < Uy,
where (2,2) = 0({f1, f2})- (Recall tzzyy = p2,2)-)

We now come to examining the result analogous to Buchberger’s (Theorem 1, Chap-
ter 1.) The replacement of Spolynomial calculations with diffSpolynomial calcula-
tions, and reductions with pseudo-reductions, “almost” yields a set that pseudo-

reduces every element of the ideal to zero. In fact, in the general case, we obtain that
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for every element f of the ideal I(G), there is an element s of S(G) such that the
product s.f pseudo-reduces to zero, provided S(G) NI = ¢. For a linear system, the

set S(QG) lies in Fxyq, ..., x,], so that a differential Grobner basis is achieved.

The second and third parts of Lemma 7 below introduce two extra conditions on the
set of generators G. If the first condition is satisfied (in addition to all diffSpolynomials
pseudo-reducing to zero and S(G) NI = ¢), then G is a DGB. We will use this part
of Lemma 7 in example 5, Chapter 3, an example which is both non-linear and
non-prime. The second condition is trivially satisfied if GG is auto-reduced. It gives a
decomposition result for any element of the ideal that does not pseudo-reduce to zero,
(again assuming that all diffSpolynomials pseudo-reduce to zero.) This decomposition

result shows that if G is also a Groébner basis for the algebraic ideal generated by G,
then G is a DGB for I(G).

Definition 11 (indets(G)). For a finite set of d.p.s G, let indets(G) be the set of

derivative terms and variables that occur to some power in the elements of G.

Definition 12 (Iyg(G)). For a finite set G C Ry, m, let Ig(G) be the algebraic ideal
generated by G considered as polynomials in the polynomial ring Flindets(G)].

Definition 13 (coherent). If for all f;, fi € G, diffSpoly(f;, fr) —c, 0, we say the
set G is coherent ([30]).

Lemma 7. For a set G of d.p.s, suppose

(CNI) { diffSpoly(fi, fv) =cp 0 V f1, fr €G
S(G)NI(G) = ¢.

Then (1)Vf € I(G),3s € S(G) such that s.f —¢, 0.
(2) if in addition to (CNI) the condition
(SPR) for all s € S(G), s=normal’(s,G)

is satisfied, then f —¢a, 0 for all f € I(G).



52

(3) if in addition to (CNI) the condition
(GAC)  for f,g € G, if g pseudo-reduces f at the derivative term DT = D*HDT(g),
and DT # HDT(f) if Hp(f) =1, then D%g € L4(G)

is satisfied, then for all f € I(G),f #ap 0 = normal®(f) = fo + > d;f;, where
fo. fi € Lyg(G), the d; are in normalP-form and indets(d;) N indets(G) = ¢.

If the set G is auto-reduced, the property (GAC) is satisfied trivially.
The notation:

CNI stands for Coherent with Null Intersection,

SPR stands for S set is Pseudo- Reduced

GAC stands for G set is Almost “ Complete”. (if we do not require DT # HDT(f)
if Hp(f) = 1, we say G is complete, or GC holds.)

The difference between GC and GAC is the following: firstly, we only need GAC,
while secondly, in the DIFFGBASIS algorithm, if we complete G to satisfy GC instead
of GAC, then DIFFGBASIS will not terminate in general (cf Example 5, Chapter 3.)

Proof. (1) We model the proof of this result on the proof of G3 = G1 in [2]. Consider

the condition (*):

Let f € I(G). Then any two pseudo-reductions of f, to hy and hs
(*) (say), have a common successor. That is, there exist sq, s2 € S(G)

and k € I such that s1hy —¢,p k, and sehy —¢, k.

We show that for all f € I(G), there exists an s € S(G) such that s.f —¢, 0.

Since f € I(G), we have f ~ 0. That is, there exist hy, hs, ..., h, such that hy =

f.hy, = 0 and either h; —¢, hiy1 or hiy1 —ap hi. We give an example in the
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following figure:

NN
/ \

f 0
We show the argument for the example in the diagram.

The element hy has two pseudo-reductions to hy and hg. We apply the condition (*)
and obtain s1, sy and k; such that sihy —¢ ) k1 and sahe —ap k1. Now we also have
sohg —ap 0, so applying condition (*) again we see that s'k; and 0 have a common
successor, which must be 0. Reassign to s; the value s;5". This is shown schematically

in the following diagram:

81h4 82h6

We now have the following situation:

81h3

N

519 s1hy

S N

sif ky



The element s1hg has two successors s1hy and s1hy, so we apply (*) to obtain:

$381ho 5451hy
ko Sakq
.
0
Now s451hy4 has two successors, leading to the diagram
$58381 M2
/ \
s55351f S5k SeSak1
NN
ky3——=-—-—---- >0
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where as before s”k3 pseudo-reduces to zero. Continuing in this fashion, we obtain

the following sequence of diagrams:

56358351f s7ss5k

SN

s7ks

0
5856555351 f
$8k4 59371{73
%_____j?f>

But this last diagram provides s = sgsgS55351 such that s.f pseudo-reduces to zero.

We now show that the condition (*) holds; that is, for two pseudo-reductions of f € I

to hy and hg, we shall show that shy g §'hs, for some s,s" € S(G).
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Case 1: h; and hy are pseudo-reductions via different terms of f in different sum-
mands of f. For fi1, fo € G suppose f; reduces the term DT}', and f; reduces the
term DT5? . We have

s1hy = Heoeff(DY' f1) f — coeff(f,DT?)DTI D f1, and

sohy = Heoeff(DY” f,) f — coeff(f, DTA?)DTR D’ f,, where the index jj is either p; — 1
if v £ 0 or p; — Hp(f1) if ¥! = 0, and similarly for j,, while the s;’s are the relevant
gcd’s.

Reducing s1h; via the term DT using D7 f, yields
s3s1hy = Heoeff(DV fy)Hcoeff(D' fy) f—
Hcoeff(D f,)coeff( f, DT? ) DT D' f,—
Hcoeff(D' f1)coeff( f, DTE)DTR D7 fo+
coeff(coeff(f,DT?)DTI D' f,, DTE)DTL DY £,

where s3 is the relevant gcd. The formula for the pseudo-reduction of sphy via DTS
using D' f1 inverts the indices 1 and 2. It can be seen that the first three summands
are symmetric in the indices 1 and 2. The last term can be reduced away using D7 f,
or D' f1, respectively.

Hence we have that shy [¢ §'hs, for some s,s" € S(G).

Case 2: h; and hy are reductions of f via different terms in the same summand of
f, which we write as
ADT".DTE.

As before we have HDT(D"' f;) = DT{,HDT(D" f,) = DT,. We assume without
loss of generality that DT; > DT, and that A contains no powers of DT; or DT,.
If neither DT divides Heoeff(D?” f,) nor DT, divides Hcoeff(D?' f;), then the proof
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that shy | s'he, for some s, € S(G) mirrors that of Case 1. So suppose (letting

red stand for reductum) that
D" f, = B.DT¥ .DTY 4 red(D" f)
DY fy = B,.DTY .DTE + red(DY" f,)

Since HDT (D" f,) = DTy, ¢’ = 0. We show the calculation for k; < ks, the case
k1 > ko being similar. Furthermore, since DTy € S(G) and S(G) N G = ¢, then
red(D? f,) # 0. Since ky > k; > 1, we have 42 = 0.

Finally let

f=ADT".DTY + rest(f)
S1 = ng(Bl, A)
and sy = gecd(Ba, A)
Then
sihy = Bif — ADTY* ™DTH 9 pn fy

and  sshy = Bof — ADTZF)pTP1 1,
so that

Bsysihy — Bisashe = _A_DTgpI*Q)DTgpgfk:g).
BDTEDY BT

Set g = [B,DTY> ™) D7 f; — B,.DTYfy).
(If the B; are monomials, then g is proportional to the algebraic Spolynomial of D f1
and f.)

We have
g = BoDTY> ™red(D? f,) — B,.DTred(f>).

Recall that red(f2) # 0. Furthermore, DT; does not occur in fs, since HDT(fy) = DTo
and DT; > DT,. Pseudo-reducing g with respect to fi at the term DT yields

(ByDTE + red(fy))red(D™ fy).
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Regardless of whether red(D”1 f1) contains any powers of DTy or not, this last poly-

nomial pseudo-reduces to 0 with respect to f;. Hence we have that
Bgslhl - Blsghg —G,p 0.

Since the B; € S(G), we have by property PR3 that shy |g s'hs, for some s, s € S(G),

as required.

Case 3: h; and hy are reductions of f via the same term DT?. In this case we have
HDT(D" f;) = HDT(D" f,) = DT. From the formulae above for s1hy, syhy we have
that
HCOfo(D72f2)81h1 — HCOfo(DVlfl)SQhQ
= 5 coeff(f, DT?)DT*diffSpoly(D° f,, D f,)

where s = ged(Heoeff(D' f;), Heoeff(D’ f,)), and

p—1 v #0

k=191 p—Hp(f) v =07"#0

p— (Hp(f1) —Hp(f2)) ~",7* = 0,Hp(f1) > Hp(f2)
while @ € N* . The multi-index « is non-zero in the case v',7? # 0 only. We now
show that condition (CNI) implies that diffSpoly(D® f;, D f;) must pseudo-reduce to

zero for all @ € N™; then we can use property PR3 to show that sh; |g $'hs, for

some s,s" € S(G).
We recall the following definition:

Definition. We define the map ¢ : {{fi, f;} | fi, [ € Rom} — N*. IfHDT(f1) = pil,
HDT(fs) = pi ., and ! and 72 are the indices of least degree possible such that
DY (HDT(f1)) = DY’ (HDT(fy)) then §({f1, fo}) = o' +~' = a® + 2

If Hu(f1) # Hu(f2) then 6({f1, fo}) = 0.

Since HDT(DY' f;) = HDT(D" f1), we have Hu(D" f;) = Hu(D"f,). Let 6; =
d({fi, f;})- Repeating the calculations above for f = diffSpoly(D*' f;, | Dalfjl), with
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fir, fii € G, with the DT we are reducing with respect to f;,, f;, € G having
associated multi-index ¢ € N"  the ‘difference’ of the pseudo-reductions contains
difFSpon(DazfiQ, DaijQ) for some index o?. Since f is a diffSpolynomial, the term
with index a' + d;,; has cancelled, so that ¢ is strictly less than o' + d,,;. But

e = a® + 0;,;,- Now using induction on « and the {&;; | f;, f; € G}

Proof of Lemma 7 (2): For f € I(G), such that f /¢, 0, there exists s € S(G)
such that s.f —¢, 0. We can assume that f is in normalP-form. Look at a pseudo-
reduction of sf at the term DT?, using gy € G. There are two possibilities:

(i) DT? occurs in s

(i) DT occurs to some power in both s and f.

Suppose condition (SPR) is satisfied. Then the case (1) cannot occur. But neither
can case (2), since then a suitable power of s, which is also an element of S(G), would

pseudo-reduce. Thus we arrive at a contradiction.

Proof of Lemma 7 (3): For f € I(G), such that f /¢, 0, there exists an s € S(G)
such that s.f —¢, 0. It cannot be that s —¢,, 0, for then 35’ € S(G) such that
s'.s € I(G) (by PR4), which contradicts S(G) N I(G) = ¢. We can assume that f is
in normalP-form.

Look at a pseudo-reduction of s.f at the term DT? in some summand of s.f, using
go € G. We have that DT = D*HDT(go). There are two possibilities:

(i) DT? occurs in s

(i) DT occurs to some power in both f and s.

Suppose the condition (GAC) holds, and consider the possibility (i). If DT? occurs in
some Hcoeff(g) or Sep(g) for some g € G, then gy pseudo-reduces that g, so that by
(GAC), D%gy € Lg(G). Otherwise DT occurs in some Hcoeff(g) or Sep(g), but only
to powers less than in gg. Thus HDT(gy) = DT. Either way, the pseudo-reduction of
sf has the form h; = s'sf — coeff(sf, DT?)DT*¢ for some ¢’ € Lig(G),k € N. Now
consider the second possibility (ii). In this case, DT occurs in f but too small a power

to be pseudo-reduced by gg. In this possibility, the pseudo-reduction of sf has the
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form

hy = §'sf — coeff(sf, DTP)DT" gy, ke N.

Now consider the second step in the pseudo-reduction of sf to zero. This time there
is a third possibility, namely our new DT satisfies

(iii) DT? occurs in gy or ¢’ (both elements of I,4(G), so that DT € indets(G)).
Note we do not need DT to be HDT(go) or HDT(¢') if the highest power is one. By
the condition (GAC), and using similar reasoning as above, a pseudo-reduction of such

a term leads to the second pseudo-reduction of sf having the form
hy = s" hy — coeff(hy,DT?) ¢’ ¢" € Lig(G).

Continuing until sf is pseudo-reduced to zero, we obtain an “expansion” of sf,
namely, s'sf = fo+ >_d;fi, where fo, fi € Lig(G), the d; are in normalP-form and
indets(d;) N indets(G) = ¢. (Recall that Vs € S(G),indets(s) C indets(G), so that
g € Lig(G) implies sg’ € L,(G).)

We now show that the expansion of s'sf and the fact f € I(G) implies that f has
a similar expansion. So suppose not, i.e. suppose that to obtain f we need to dif-
ferentiate elements of G (derivatives not contained in I,;(G)). Consider the highest
derivative term of one of the differentiated elements of GG. This derivative term can-
not appear in f since it does not appear in s'sf and indets(f) C indets(s’sf). Thus
it must cancel with another derivative term, i.e. the expansion of f involves differ-
ential S polynomials and their pseudo-reductions. But all differential S polynomials

pseudo-reduce to zero. Since f is in normalP-form, we have a contradiction. O

Example 6 (a coherent system that is not a DGB). Consider the system X
generated by

fi=u2—1

fo=ul—1

f3 = (ug +uy)u, — 1
in the lezicographic ordering with z > y > x. Then S(G) = M{uy, uy, uy + uy}.
The three generators of ¥ form an auto-reduced set, and all diffSpolynomials pseudo-

reduce to zero. Now uyf3 —u, fo— Uz fs +u. fi = uy —u, € I(F), but u, —u, does not
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pseudo-reduce to zero. However, there exists an element s of S(G) such that s(uy —uy)

does pseudo-reduce to zero, namely s = uy + uy.

Theorem 1. Let G be a finite set of differential polynomials. Suppose that

(i) diffSpoly(fis fi) =y 0 Vfis fi € G

(i) G is a Grobner basis for Iy (G) (i.e. every element of Ig(G) reduces (alge-
braically) to zero with respect to G.) and either:

(SPR)  for all s € S(G), s = normal’(s, G)

or

(GAC)  for f,g € G, if g pseudo-reduces f at the derivative term DT = D*HDT (g),
(DT #HDT(f) if Hp(f) = 1), then D%g € L,(G), and S(G) N I(G) = ¢.

Then G is a differential Grobner basis for I(G).

Notes:

(1) If G is auto-reduced, condition (GAC) holds trivially.

(2)  The condition S(G)NI(G) = ¢ is necessary. An example appears in Chapter 5
which violates this condition and for which the set is not a DGB.

(3) A close examination of the proof of Lemma 7 shows that one can replace the
condition S(G) N I(G) = ¢ with the condition normal®(s, G) # 0 Vs € S(G).

(4)  Schwarz [48] considers orthomonic systems (following Janet and Riquier.)
Such systems can be written HDT(f) + ... = 0, where the remainders of all the
equations in the system do not contain any highest derivative term or any derivative
of them. For such systems, coherence will guarantee the system is a DGB, since
they are automatically Grobner bases for the algebraic ideal they generate, and the

condition SPR holds.

Proof. We first show that the conditions of being coherent, a Grébner basis for the
algebraic ideal, and SPR are sufficient to guarantee S(G) N I(G) = ¢. Suppose not.
Let s € S(G) N I(G). Now SPR implies that

indets(S(G)) N {D*(HDT(g)) | « € N*, g € G} = ¢.
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Hence the expansion of s involves cancelling of the highest terms of the elements of G,
either algebraically or differentially. But that implies that there is either an algebraic

or differential S polynomial that does not pseudo-reduce to zero, a contradiction.

Applying Lemma 5, Vf € I(G), either f —¢,, 0, or normal’(f) = fo + Xd, f;, where
fo, fi € Lig(G), the d; are in normalP-form and indets(d;) Nindets(G) = ¢. But G is
a Grobner basis for I (G), so f —¢ 0. But if f reduces to zero, it pseudo-reduces

to zero. Thus, G pseudo-reduces every element of I(G) to zero, and hence it is a
differential Grébner basis for 1(G). O

2.9 The Algorithms

We now present three algorithms. The first is analogous to Buchberger’s, and was
first written down by Carra-Ferro [12] , who called it the Kolchin-Ritt algorithm. As

noted above, this algorithm generates a DGB where the input equations are linear.

ALGORITHM KOLCHIN-RITT

INPUT:  a finite basis F' = {fi, fo, ..., fn} for a differential ideal I
a term ordering

OUTPUT: sets I = reduceall(F'), X = X(reduceall(F'))
a set G =Kolchin-Ritt(F') such that

S(G)NI(G) =¢ = Vg€ I(G),3s € S(G) such that sg —¢, 0
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pairset:= {{fi, fx} | fi, fx € G}
while pairset# {}

for {fi, fx} in pairset do
pairset:=pairset minus {{f;, fx}}
m := normal®(diffSpoly({ f;, fx}), G)
if m #0 do
pairset:=pairset union {{f;,m} | f; € G}
G := G union {m}

end

We need the condition S(G) N I(G) = ¢ not only in order to use Lemma 7, but also
because spurious zeroes can result when pseudoreducing with a polynomial whose
highest coefficient or separant pseudo-reduces to zero (so that S(G) N I(G) = ¢ is
violated).

Proof of termination of Kolchin-Ritt:

Let the basis after the nth iteration be G, and let g, be the least element of G,,.
Consider the sequence {g, }. Since G,, D G,_1, this sequence is decreasing and hence
terminates, at Ny, say. Denote the terminal value by h;. Now iterate the argument
for n > Ny, on G,,\{h1}. Continuing in this way, we produce an increasing sequence
H = {hn}. Now every element of Gy\Gy_1 is pseudo-reduced with respect to every
element of Gy_1, and hence in the sequence H, h,, is pseudo-reduced with respect to
{h1,...;hm—1}. If the sequence H is infinite, the sequence {Hu(h,,)}, will be infinite
for at least one unknown u/, and we consider the subsequence of H consisting of those
elements with highest unknown u/. Examining the sequence HI = {z*"|HDT(h,,) =
p{;m}, we obtain by Dickson’s Lemma for polynomial ideals that M such that for
}. This contradicts the fact

m .. . 1 M-1
m > M,z*" has a divisor in one of the {z ..., x®

that the sequence is pseudo-reduced. Thus for some M;,m > M; = HDT(h,,) =
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HDT(A,,,). But in a pseudo-reduced sequence, if the HDT’s terminate, so does the

sequence. O

We now show an algorithm that “Almost Completes” a set of d.p.’s to a new set that

does satisfy GAC.
ALGORITHM GAC

INPUT: aset F of d.p.’s
OUTPUT: aset G D F such that G satisfies GAC

G:=F
H:=F:
while H # {}
H:={}
for g in G
for fin F
for DT? occurring in g
if DT = HDT(g) and Hp(g) = 1 then next
if DT = D*HDT(f) for some o and D*f & I,,(G)
then H := H union {D"f}
G := G union H

Termination of GAC:

Denote by F,, the set H at the end of the nth iteration, Fy = F. We show 4N such
that F,, = {} for n > N.

The set F), consists of those polynomials of the form D®f;, which do not reduce to
zero with respect to F),_1, for some f; € F such that D*HDT(f;) occurs in an element

of F,,_1. Note F,,NF,_; = ¢. Suppose the sequence {F,} is infinite. Pick the highest
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element of F,,, t, = D f;, where 0 = o(n),j = j(n), with DHDT(f;) occurring in
some element s,, of F,,_;, and D7HDT(f;) # HDT(s,) if Hp(s,) = 1. Let S = {s,}.
Now by construction, ¢, 1 > s,_1 > t,, so that t,,_y > t,. (Note: if Hp(s,) > 1, then
any derivative of f; such that D*HDT(f;) = HDT(s,) will be less than s,. If we do
not need to differentiate f; to obtain HDT(f;) = HDT(s,,), then since f; is in F it is
not added to H.) Thus {t,} is a strictly decreasing sequence, which terminates by

Lemma 2. O
Proof of correctness of GAC:

Suppose that a derivative term DT occurs in some element ¢, of F,,, and an element
tn—1 of F,_1 pseudo-reduces t, at DT. Now t, 1 = D*HDT(f;) for some element f;
of F, so that f; pseudo-reduces t,, at DT. O

Finally, a simple check will determine if a set G of D.P.’s satisfies SPR. We first
check that no element of G' pseudo-reduces any other element’s highest coefficient or
separant. We then check that no HDT occurs in any other element’s highest coefficient
or separant. Finally, we check that no HDT occurs to any power other than one. (Any
system containing a polynomial whose HDT occurs to a power higher than 1 will never
satisfy SPR.) If the check holds, we write SPR(G) = true, otherwise we write SPR(G)

= false.

Definition 14. (GB,(G termorder)).
For a set of d.p.s GG, denote by GB,g(G,termorder) the Grobner basis for I,(G)
generated by Buchberger’s algorithm (using algebraic reduction with respect to the

given termorder.)

ALGORITHM DIFFGBASIS

INPUT: aset Fofd.p.s

a term ordering
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OUTPUT: sets G such that I(G) = I(F),
(1) G is coherent
(2) G satisfies SPR or GAC

Thus if S(G) N I(G) = ¢, then G is a differential Grobner basis for I(F).

G =)

H=F
while G # H
G.=H

H :=Kolchin-Ritt(G)

if SPR(H) then G := H, end
H = GB,g(H)

H = GAC(H)

Notes (1): the set of differential coefficients S(G) will be minimized if G is converted
to an algebraically reduced set (i.e. the output of the Grobner basis algorithm is
reduced.)

(2): The proof of Lemma 7 (1) Case 3 shows that if a set F' is coherent, then
diffSpoly(D*f;, D® fy) —r, 0 for all a, 3 € N". Hence we can reduce the number
of pairs considered in Kolchin-Ritt after the first iteration. Such a reduction may
not improve the efficiency of the algorithm, as experimental evidence shows. It ap-
pears that for the Maple symbolic algebra programme in which these algorithms have
been implemented, keeping the outputs of previous iterations in memory causes a

significant increase in running time.

Proof of termination of DIFFGBASIS:

Let F,, be the output of the algorithm after the nth iteration. We have F},, D F,,_1.
Let h,, be the maximum element of F,,,\F,,—;. As in the proof of termination of

the Kolchin-Ritt algorithm we consider for the sequence H = {h,,}, the sequence
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H[ — {xanL
with the same highest unknown w’). We obtain by Dickson’s Lemma for polynomial

ideals that M such that for m > M,z°" has a divisor in one of the {z®', ... 2> '}.

HDT(h,) = plm}, (if necessary for a suitable sub-sequence of H, all

Let m > M. Now the output of Kolchin-Ritt is pseudo-reduced with respect to Fyy,
while the Groébner basis algorithm does not alter the list of derivative terms occurring
in H, so there is an d.p. t,,, of the output of GAC in F}, or F,,_;, containing the
highest derivative term of h,,. The d.p. t,, has its highest derivative term occurring in
ad.p. in F,, 1\F,,_o or in F,, 5\ F,,_3. Hence for m > M ,HDT(h,,) < HDT (t,,) <
HDT(Ay—1) or HDT(h,,—2). Hence the sequence {HDT(h,,)} terminates. Consider
next the sequence HP = {Hp(h,,)}. No calculations performed in either Kolchin-Ritt,
GB or GAC lead to higher Highest powers, so HP also terminates at m = M.

Thus for m > M, the h,, all have the same highest derivative term raised to the same
power. The algorithm GAC will not output a d.p. with the same HDT™P as hy,, as
it outputs only d.p.’s whose HDT’s occur to some power in the separants and tails of
existing d.p.’s, while the output of Kolchin-Ritt is pseudo-reduced (Kolchin-Ritt will
not output another dp with the same HDT as h,,_1), so we obtain that h,, is output
by GB. Thus h,, is the normal form of an Spolynomial. It is indeed possible to obtain

increasing higher coefficients, as the following calculation shows:
f1 = HCHDT (h,,) + taily
fo = HCGHDT, + taily

where HDTy = HDT(f2) # HDT (hyy).

Then
HC1HDT(hm)ta||2 - HCQHDTgtaill

Spol =
poly(/1, /2) gcd(HCy, HC)
So all we require is that tail, > HC; and gcd(HCy, HCy) # 1, so that the Spoly does

not reduce to zero.

Consider the sequence HC = {Hcoeff(h,,),m > M}. We show the sequence HC

must terminate. Suppose the sequence HC increases indefinitely. We follow the same
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argument as for H above on the sequence {HDT (Hcoeff(h,,)) : m > M}, to obtain a
d.p. t,, output by GAC that contains the DT, HDT(Hcoeff(h,,)) for m > M, (say).
We have t,, = D" (g,,) for some a™ € N", where the g; are output by GB or Kolchin-
Ritt. The DT, HDT(Hcoeff(h,,)) will be in the tail of D*"(g,,) (by the calculation of
the Spoly above). Comparing gaz,+1 With ga,+2 we have that if HC' increases, the tail
of gnry12 is higher than that of gyp,41 . By considering the sequence {HDT (tail(g;))}
and applying the Dickson’s Lemma argument, we have that for large enough 4, the
g; are output by GB. Since the GB algorithm does not alter the list of DT’s in its
input, we obtain a d.p. output by GAC in the previous iteration of DIFFGBASIS
containing the DT,HDT (tail(g;)). In this way, we see that indefinite increasing in
the sequence HC' is caused by successive differentiation of existing d.p.s in the GAC
algorithm and forming Spolynomials of the h; with this output of GAC. But the
output of GAC is always lower than its input d.p.’s, so that any such succession must
lead to a decreasing Hcoeff(h,,), a contradiction. The same argument shows that
the sequence {Hcoeff(Hcoeff(h,,))} must terminate. Finally for sufficiently high m,
Hmon(h,,) = Hmon(h,,41). Now none of GB, Kolchin-Ritt or GAC will output a
d.p. with the same highest monomial as an existing d.p., so that the sequence {h,,}

terminates. |

There is another way to achieve GAC, namely by converting bases to be auto-reduced.
This method causes the output ideal to be smaller than the input ideal, with a smaller
solution set. In some examples, the output ideal has only the trivial solution, as shown

in Example 5, Chapter 3.

2.10 Chapter 2, Conclusion

We have defined a differential Grobner basis to be a basis with respect to which every

element of the ideal pseudo-reduces to zero, and we have proved a characterisation
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theorem for such a basis.

The algorithm to generate a differential Grobner basis is seen to require both the
algebraic version of Buchberger’s algorithm, and the differential analogue of Buch-
berger’s algorithm, the Kolchin-Ritt algorithm. In addition, a completion algorithm
is required. All conditions necessary to ensure the output is a differential Grobner
basis are guaranteed to hold, bar one: if the output is G' (say), then we do not check

whether S(G) N I(G) = ¢ holds in general.



Chapter 3

PRACTICE IS EASIER THAN
THEORY

This chapter demonstrates the algorithm on several types of systems, and the effects of
using different orderings is discussed. Further examples are to be found in Chapter 4,
where resolvent systems and elimination ideals are calculated, and in Chapter 5,

where several extensions to the algorithm are given.

The first example is that of a linear system in one unknown function with constant
coefficients. This class of examples can be viewed as polynomials in the operators

, so the algebraic theory can be used for these examples. We show that the

(9xi

differential theory yields exactly equivalent results to the algebraic algorithm for this

class of system.

We then discuss a linear example with variable coefficients. Thirdly, the well-known
calculations for the Korteweg-de Vries equations are shown to be an example of the

algorithm.
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The last two systems are non-linear systems. It is in these systems that the conditions

for Theorem 1 need to be checked carefully.

It is not hard to see from these examples that the algorithm is used to generate from
the given equations more equations that are in some sense simpler. That is, they
involve fewer unknowns and variables. One then solves, if possible, from the simplest
equations up. This phenomenon is the content of the ”elimination ideals” which are
discussed in the next chapter. Obviously, finding the “right” coordinates and the
right ordering is vital both to efficiency and to the utility of the output.

A major problem with both the algebraic theory and the differential theory is that
seemingly simple input equations can generate expressions involving hundreds of
terms. An interesting paper by D. Lazard [31] indicates another method, albeit
less intuitive, which contains the possibility that control of the S-sets can be made

part of the theory.

3.1 Example 1: Linear, constant coefficients

The system has one unknown u, and five variables {z,y, z,w, t}, and is generated by
{ fl = Uyt — Ugy
f2 = Uzt — Ugw

Assume the lexicographic ordering based on t > w > z > y > x, so that HDT(f;) =

Uy, and HDT(f3) = uy. Then

. 0 0
dIfFSpOIY(fla fQ) = a_wa - &fl = Uggz — Ugww-

This equation does not reduce with respect to either f; or fs, so it must be added to
our basis:

f3 = Ugzz — Ugww-
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We now iterate the algorithm on the system F' = {fi, fo, f3}. Clearly diffSpoly(f1, f2)

now reduces to zero with respect to F'. We calculate

9, 02
[i5fs = 8_yf3 ~ 0w

= Uggzt — Uzzzw

62
f2

~ 0x?

so this diffSpoly reduces to zero. Similarly, fo.S f3 reduces to zero, so that the output
of the Kolchin-Ritt algorithm is

newbasis = { f1, fo, f3}

We now note that the conditions for Theorem 1 apply, so that newbasis is a differential

h

Grobner basis for the ideal I = (f1, fa) 7. Where the equations are linear, the output
of the Kolchin-Ritt algorithm is always a differential Grobner basis.

Linear systems in one unknown and with constant coefficients can be written
(ZcmiDa)u:O t=1,...,r and ¢,,; € F.
(0%

Such systems are equivalent to algebraic polynomials in the operators and

0
8%
the differential Grobner basis can be calculated with either the algebraic algorithm
on the operator polynomials or with the Kolchin-Ritt algorithm. The results will be

the same.

Let us now calculate the Grobner basis for the equivalent algebraic system, which is
obtained by translating D%u into x*:
fi = wt — x?
{ fo=2t — 2w )
Then Spoly(fi, f2) = xw? — 22z, which is the translation of the differential S polyno-
mial obtained above. The iteration and termination of the algebraic algorithm is a

translation of the calculations above, yielding a Grobner basis for (), namely

{f1, fo, %2 — 20?}.
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3.2 Example 2: Linear systems, variable

coefficients

The second example is a system of linear equations with variable coefficients ([38,

Ex.13, p.135]) in one unknown function depending on three variables, {z, vy, z}.

Let
{ fl = Uzz — YUgy
f2 = Uyy
Assume the inverse-lexicographic ordering. This is the lexicographic ordering based
on z >y > x. Then
HDT(fl) = Uzz,
HDT(f2) = uyy,
and ) )
. 0 0
dlfFSpOly(fl, fg) = a_nyl — @

= —YUgayy — 2ua:acy'

f2

This does not pseudo-reduce with respect to f;, but pseudo-reducing with respect to

f2 yields a new equation which we add to our basis, namely

fS = Ugzxy-

(We do not need to keep the constant coefficient.)

After one iteration of the algorithm, our basis is

J1= Uss — YUay
L=1q fa=uy
fz= Uy
Now diffSpoly( f2, f3) = 0, (since they both consist of one term), but
ok 0?

diffSpoly(f1, f3) = Ji— 922

- ax2y f3
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= —Uzzzx — YUzzaxy-

The only equation among { f1, f2, f3} to (pseudo-)reduce diffSpoly( f1, f3) is f3, yielding

a new equation to add to our basis, namely

f4 = Uggzz-
Trivially,
diffSpoly( f2, f4) = diffSpoly(fs, f1) = 0,
while
) o 0?
diffSpoly(f1, f1) = @fl — @le
= —YU(6,0,0)-

This (pseudo-)reduces to zero with respect to {fs}. Now the diffSpoly(f;, f;), for
i,7 € {1,2,3,4} are either identically zero or reduce to zero or an element of the basis

{f1, f2, f3, f1}, which means that they all reduce to zero with respect to that basis.

Thus after two iterations the algorithm terminates yielding the output

p
fl = Uzz — YUgy

f2 = Uyy
f3 = Ugay

L f4 = Uggax

newbasis =

Once again all the conditions for Theorem 1 hold, and we conclude that newbasis is

a differential Grobner basis.

After the first iteration, the highest variable, z, was eliminated, and after two iter-
ations we have an equation involving only x, the lowest variable. In a lexicographic
ordering, the algorithm produces successive eliminations; this feature is discussed
fully in Chapter 4. With respect to the inverse-lexicographic ordering, the equation
f4 is the least member of the ideal generated by { fi, fo}, since the least member of

the differential Grobner basis is the least member of the ideal generated by that basis.
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Other orderings yield different bases. The output of the algorithm using the reverse-
lexicographic ordering is

(
fl = Uzz — YUgy

f2 = Uyy
f3 = YUyzz — Uzz

L f4 = Uzzzz

newbasis, =

It is easier to solve the original system using the output obtained with the inverse-
lexicographic ordering. Solving

Uggzr = 0

yields

U = a3x3 + a2x2 + a1z + ag,

where the a; are functions of y and z. Next use

Uggy = 0
to obtain
0 0
6 — 2—ay =0
(ay“3) Ty
or
a—yag =0 and 8_ya2 =0.

From

Uyy = 0
is obtained
ar = by +bo, ao=c1y+ co,
so that
u = asz® + axx® + bizy + box + 1y + ¢

with by, by, c; and ¢y being functions of z only, as are a3 and as.
From
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is obtained
2

@(agx?) + apx® + biwy + box + 1y + o) — 6asxry — 2asy = 0.

Comparing coefficients of like monomials yields

( 82 32
92 =0 pan=y
0? 0?
@bg = 6@3 @bo = 0
0? 0?

{ @Cl = 2&2 @CO =0

Finally u is a polynomial in {z,y, 2z} depending on 12 arbitrary constants. As Pom-
maret remarks, such a solution is not apparent from the outset. The method used
to solve the system is not unlike the method used to solve linear systems, namely,

converting to echelon form first and then solving from the “bottom up”.

Linear systems with variable coefficients have the form

(an,mzﬁDa> u' =0 t=1,...,7

a,Bii

Such equations are also referred to as elements in the Weyl algebra. As well as the
methods outlined in this thesis, there are several other methods for calculating differ-
ential Grobner bases for such systems. Galligo [19] discusses them from a geometric
viewpoint. In the case of one unknown, this case is also an example of the work of
Apel and Lassner [1] who generalized Buchberger’s algorithm to enveloping algebras
of finitely generated Lie algebras. For the linear case with variable coefficients, the
Lie algebra is 5

<xi,%|i:1,...,n>y

0
with enveloping algebra, the so-called Weyl algebra, F |x;, . li=1,...,n|.
x

)
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There is an extensive literature on the Weyl algebra, whose ideals have been studied

from many points of view.

3.3 Example 3: A system with two unknowns

The third example shows elimination, not of differentiations with respect to certain
variables, but of certain unknowns. The equations are the Backlund equations for the
Korteweg-de Vries (KdV) equation and the modified KdV equation. There are two

unknowns {u,v} and two variables {x,y}. Take

7 fi = 2u + v, +v?
fa = gy + 2u0? + 4u* — uyv — v,

With the ordering being the lexicographical one based on v > u and y > =z,

HDT(f1) = v,
and
HDT(f;) = Uy.
Then
dlfFSp0|y(f1, fg)
10 0
= —§a—yf1 — %fz

2
= —Uy — VVy — Uggy — 2Uz0° — 4u0; — Uty + 2Uz,0 + Uy Vs

This can be pseudo-reduced at the terms containing v, and v, using f; and f5 respec-

tively. The result is, after elimination of irrelevant constant factors,
f3 = Uy + Uggr + 12““&:7

that is, a form of the KdV equation. The unknown function v has been eliminated.

The set { f1, f2, f3} forms a differential Grobner basis for I(F).
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By using the ordering u > v, the output of the algorithm is, in addition to f; and fs,
f3 = vy + Vg — 6v21)y.

that is, the modified KdV equation. The unknown u has been eliminated.

It will be seen in Chapter 4 that differential Grobner bases solve the Backlund problem

([39, p.644], [40]), which is to find all conditions on the separate unknowns in the

problem.

3.4 Example 4: A non-linear system

Let us now do an example where the coefficient of the highest derivative term is not

in F[zy,...,x,]. This system has one unknown function and three variables:

{ i =1, —uuy

f2 = Uyy-

Take the lexicographic ordering, with > y > 2. Then
diffSpoly(f1, f2) = Uyy> — UyyUy — 2UyUsy — Ullyy,,.

which pseudo-reduces to

2
f3 = wuyu,, — Uy Uy

Now HDT(f3) = uy.. The diffSpoly(fa, f3) pseudo-reduces with respect to f5 to zero,

while

fa = normal?(diffSpoly(f1, f3), { f1, f2, f3}) = U§u2(—u§ + 2un.).

Now HDT(f) = u,, occuring to a power greater than one, as a factor of f;. So we

cannot conclude that any output G containing f, is a differential Grobner basis since

f1ES(@G)NIG).
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Changing the order is clearly indicated. We show the output of the Kolchin-Ritt

algorithm for both orders that place y as the lowest variable:

In the lexicographic order with z > z > y, we obtain
G = Kolchin-Ritt(f1, fo) = {uyy, —uuyus, + uiuz, —u2uyuzz + 2uu§uz, U, — Ully }

Now S(G) = M({u,u,}), and in the lexicographic order based on x > z > y, no
element of S(G) pseudo-reduces. Thus condition (SPR) of Theorem 1 in Chapter 2
holds.

In the lexicographic ordering with z > = > y, the output of the Kolchin-Ritt algorithm
1s

newbasis = {u. — Uy, Ul Ugq, Uylay, Uy}
Now newbasis is a differential Grébner basis for I( f1, f2); since S(newbasis) = M ({u,})
and no element of this set pseudo-reduces i.e condition (SPR) holds and since newbasis
is a Grobner basis for I,jz(G).
Using newbasis, we can find all solutions to f; = 0, fo = 0 that satisfy u, # 0. We

begin with the least element of newbasis, namely
Uyy = 0.

This yields
u=F(z,2)+ G(z, 2)y.

The second lowest element of newbasis is
UyUzy = 0.

Since u, # 0, we have

u=F(x,z)+ G(2)y.

Next we use the equation

uZum = 0.
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This yields
u=K(z)xr+ H(z) + G(2)y.
Finally we use the equation
Uy, — Uy =0

to obtain
—r+by+c

zZ+a

)

where a, b, c are arbitrary constants.

In this example, the ordering used clearly makes a difference to the ease of solving

the equations.

3.5 Example 5: A non-prime system

This example shows that by choosing the condition GC to hold, rather than GAC, the

algorithm will not terminate.

The example

7 Uy — 20u =0

vy +v(u? + 2u,) =0

yields after one iteration of the algorithm (using v > u)
Uy — 20U
G = vy + v(u? + 2uy)

V(Uy + Uty + Ugy)

and S(G) = M ({uy, + uuy + ug, }).

It is easily verified that G is a differential Grobner basis, since the condition (SPR)
of Theorem 1, Chapter 2 holds, and since G is a Grobner basis of I,jz(G).
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Attempting to complete the set G to make the condition (GC) hold and to simultane-
ously be a Grobner basis for I,4(G), leads to an infinite set, containing all elements

of the form vD*(u, + uu, + uy,), v € N

If instead of completing we convert the set to be pseudo-reduced (thus ensuring GC,
GAC are trivially satisfied), we obtain only the equation {v(u, + uu, + uy,)}. Since
we cannot within the theory allow S(G) N I(G) = ¢, we have u, + uu, + Uy, # 0.
Thus we obtain only the trivial condition v = 0. Here we see the difference between

completing and insisting on auto-reduced sets.

If one wants to consider the equation u, + uu, + u,, = 0 in addition to the first two

(i.e. v #0), one must run the algorithm again with the input
F' = {v, — 20w, v, + v[(w)? + 2uy), uy + utty + Uy}
The set F” is a differential Grébner basis for I(F”) in the order v > w.

Examples such as Example 5 above lead one to suspect that an ideal may not contain
a differential Grobner basis that is also auto-reduced, if the ideal is not prime. (The
ideal generated by G = {v(u, + uu, + uy,)} is also not perfect, since (v, (u, 4+ uwu, +
ugzz))? € I(Q) but v, (u, + uu, + ug,) € I1(G).) This example can be converted to a

prime one by taking w = In(v), and writing the equations in terms of w and w.



Chapter 4

RESOLVENT SYSTEMS AND
ELIMINATION IDEALS

This chapter contains an application of differential Grobner bases to calculate re-
solvent systems and elimination ideals. Examples are discussed. A comparison of
the Janet resolution of a system of PDE’s and the projective syzygy resolution of a

polynomial ideal is given.

4.1 Resolvent Systems

A system ¥ can be written using general notation as D(u) = 0, where D is a (non-
linear) operator, and u represents a vector of unknown functions (u!,...,u™). Let
v = (vl,...,v%) be in the range of D, i.e. there exists a u so that D(u) = v. In
general, the range of an operator is not the whole of (C*(IR))* It is necessary for v to
satisfy various compatibility conditions, written DM (v) = 0, also denoted by 2(1);

this system is called the resolvent system (for the meaning of the index, see the next

81
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section, the Janet Resolution.) While the compatibility conditions DM (v) = 0 are
necessary conditions for v to be in the range of D, they are by no means sufficient.
A famous example by H. Lewy gives a single equation D(u) = v where D is linear, v
is C* and there is no solution u. ([29, p.235-9], see also [53], [15, Vol II p. 54, §4b]
and references there.)

The first example is a well-known result.

Example 1 (Resolvent system of the curl operator). In this example, u' €
C>(U,R), where U C R?,

ut ud — u?
Dl w|=|u—-ud | e€(C®UR))°
u? u — u,
.
We seek the compatibility conditions on | v? | such that

o3

ul | vt

Dl w2 | =12

u? v3

We input the following equations into the algorithm with any lexicographic ordering

such that u* > v?, all i, 7.

3 2 _ 1
Uy —uz — v
1 3,2
U, — U, — v
2 1_ .3
Uy — Uy — U

The output contains the equation
vy + vj + 02 = 0.

This is the only equation in the output where all the u’ have been eliminated. Since
the equations are linear, the output is a differential Grobner basis for the input ideal.
By Theorem 8 later in this chapter, the equation v + "UZ +v3 =0 generates the ideal

of compatibility conditions.
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Example 2 (Resolvent system of a differential ideal). (c¢f Example 2, Chapter 3,
[39, p.636]) Consider the system % in Rs; generated by

Uzz — YUgae = 0

Uyy =0.

We seek to find the resolvent system, i.e. the equations that must be satisfied by

unknown functions v and w in the new system >*

Uzz — YUgy =V

o = w

if a solution u is to exist. Here v and w are functions of the variables {x,y, z}. Then

with the lexicographic ordering based on x <y < z, the output of the algorithm is

Uzz = YlUgy — U =0

Uyy —w =0

QUpgy — Waz + Vyy + YWy = 0

2Ugger — Wazzz + Vyyze + 2YWage2s

+20s0y — Yauyy — Y Wagzz = 0

—Wyzz + Vyyy + 3Way + YWygy = 0

—W(0,0,6) T V(0,2,4) T 3YW2,0,4) + 2V(2,1,2)
—2Yv(2,2,2) — 39210(4,0,2) + 20(4,0,0) — 2YV(4,1,0)
+Y*0(4,2,0) + ¥ w(e,00) = 0.

The final two equations involve only v and w. Thus these equations are necessary
conditions on v and w in order for a solution u to exist. It is a result of Theorem 3

that the final two equations generate the resolvent system.

In his book “Differential Galois Theory”, Pommaret [39, p.636] writes “How could
we obtain DM from the knowledge of D ? . . . this problem is a difficult one ...
land] involves necessarily diagram chasing.” The method used here is conceptually

and practically simpler than that of Pommaret, and involves no diagram chasing.
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The resolvent systems in the examples above were calculated by selecting those equa-
tions in the output of the algorithm that involved only derivatives of the image func-
tions, the v’. For the calculation, the ordering on the unknowns must be u! > v7 for

all 4, 5.

More generally, if one chooses a lexicographic ordering on the x' and the w/, say

Ty, < Ty, < -+ < ay, and W < w2 < .- < u/m then those equations in a differential
Grobner basis for the ideal containing only {u/!, ... u’} and derivatives with respect
to {z;,,...,x; } generate the differential ideal

I N Raiglwy, ... x,wt, .. uf].

This result is Theorem 4, which is the analogue of Trinks’ Corollary [54, p. 484,
Chapter 1].

The term resolvent system has been used by Pommaret in this elimination sense: in
a system with more than one unknown, the equations satisfied by certain subsets of

the unknowns are also called resolvent systems.

Theorem 3. Assume a lexicographic ordering. Let ¥ = {f; | i = 1,..., N} be the
generators of a differential ideal I of R, ,,. Take N new unknowns {v' |i=1,...,N}
with some ordering, and consider the associated system X* = {f;—v' |i=1,...,N}.
Add to the ordering v’ > v® alli and j . Those equations in the output of the algorithm

involving only the {v7} forms a set of generators for the resolvent system.

The proof follows from Theorem 4. It is interesting to note that this method of
generating the dual of the syzygy module has been used by Buchberger to give the

implicitization of a parametric system (Chapter 1 and [9]).
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4.2 The Janet Resolution

Iterating the process of forming the resolvent system leads to the Janet resolution of
the system. Let S be the solution space of the equation D(u) = 0 where u € R™ (a
suitable function space) . Let the resolvent system be denoted D) : R — R2| and
let the resolvent system of the resolvent system be denoted D®, and so on. Then we

have the following sequence of maps:

inc . D . pM) . p@) . DB

0 S Rio Ru Ri2 Ris

The map inc is the inclusion map. In this sequence, we have the composition of
consecutive maps is zero:

D ptl) —

In standard algebraic theory, a resolution must also be exact. By this is meant, that

kerD™+1) = imD™ . In the Janet resolution, we have only that kerD"*+) > imD™.

Example 3 ( Janet resolution of exterior differentiation operator.). A fa-
meliar example of a resolution is the Poincaré d-sequence. Let U be an open set in
R™, Ak(U) the set of exterior k-forms on U, and let d be the usual exterior derivative.

Then the sequence
0= AO(U) e N U)o e A1) ——0

is a resolution for the operator d. In the case U is homeomorphic to the unit ball
B? = {z € R® | |z| < 1}, this particular Janet resolution is a resolution in the
algebraic sense: du = v has a solution if and only if dv = 0.

Let us look at this sequence in co-ordinates in the case n is 3. We have A°(U) = {f :

U — R3}, and
_of of of
= 8:L‘1dx1 + axQdCL’Q—f— ax3dlL’3.

df
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Now suppose df = v, so that

(or
I T
a_—rU
\ 85(73_ ’

From the fact that partial derivatives commute, we have that

( 82}1 _ 87]2 —0
0@ 81’1 N
62;3 87]2
(k) —— 2=
81’2 (91‘3
U1 _ 87)3 .
\ 8x3 E)xl N

The equations (xx) are the equations v must satisfy in order for an f to exist such
that df = v, and this is the resolvent system for d|xowy). In the notation of exterior

differentiation, they are written dv = 0.

If one takes as the input to the DIFFGBASIS algorithm the equations (%), then the

output will be the equations (x) and the equations (xx).

Continwing, we have for d|y1 vy, that dv = w implies

(Ov _Ou _
8LE1 8:1:2_ 3
(o) Ovs _Ov2 _
81‘2 81'3_ 2
v v _,
\81'3 81’1_ 1‘

With the equations (e) as the input to the DIFFGBASIS algorithm, the output will

be the equations (e) and the equation

811)1 awz (911)3
(..> 8:61 * (91'2 + 61'3

=0

We now turn to another example where the result is not known in advance.
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Example 4 (The Janet resolution of Example §2, Chapter 3.). The system

¥ O g
0

fQ(O) = Uyy-
The first resolvent system XU was calculated in Example 2 of the first section of this

chapter. This is

fl(l) == ,Uzzz + ,U;yy + 3,U£m + yvfwy
1) _
fo=— U(20,0,6) + ”(10,2,4) + 3yv(22,0,4) + 2U(12,1,2)

_va(12,2,2) - 3<y)2“(24,0,2) + 21’(14,0,0)

_2yv(14,1,0) + (9)27}(14,2,0) + (?J)BU(QG,O,O)
The next step is to calculate the output of the algorithm for the system {fl(l)—wl, 2(1)—
w?}. The output will be Ot (Y w2 the resolvent system @, and possibly
some other equations if the ordering chosen is different from the one used here. Taking
the lexicographic ordering based on w? < w!' < v? < v! and z > y > x we obtain one

equation in w' and w?:

1 2

A system generated by only one equation has a null resolvent system, and so the Janet

resolution of £ terminates after three steps.

In the early part of this century (1920), Janet ([28]) proved that if the original system
Y. was composed of linear differential equations (that is to say, linear as differential
equations), then the resolution must terminate by at most n steps, where n is the
number of variables. The termination of the Janet resolution for a system consisting of

arbitrary differential polynomials is, I believe, not known in general. The case of linear
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equations with constant coefficients is equivalent to the termination of the syzygy

resolution of a polynomial ideal (see later this chapter), which was demonstrated by

Hilbert [24] in 1892.

4.3 Elimination Ideals

Theorem 4. Assume the lexicographic ordering. Let G be a differential Grébner
basis for an ideal I contained in R, ,,, with the ordering on the unknowns being
u™ > u™t > o > ub and on the variables x, > x,—1 > -+ > x1. Let Ry  be the
differential subring generated by {u',u?, ... ,u* x1,29,...,2;}. Then G N Ry; is a

differential Grobner basis for I N Ry, ;.

Proof. Let GN Ry; = G and G\G' = G". Let I' = I N Ry;. Suppose g € I’
but that ¢ is not an element of the ideal I(G’), generated by G’. Note that G’ is
a differential Grobner basis for I(G’). Let g be pseudo-reduced with respect to G'.
Since g # 0, g € I(G"). But all the elements of G” have highest terms involving
unknowns and variables that are not in I’; such terms must have cancelled out so
that g must be expressible as diffSpolynomials of elements in I(G”) and their pseudo-
reductions. Now g is not pseudo-reducible with respect to G” since no highest term
of any element of G” reduces any term of g, and g has already been pseudo-reduced

with respect to G’, so we have a contradiction. Il

Example 5 ( Kadomtsev-Petviashvili equations ([47])). These equations are
the 8 dimensional analogue of the Bdcklund equations for the Korteweg-de Vries equa-
tions. The system is similar to Example 3 of Chapter 3, in that the principal part

1s linear for all orderings. This means that this example is also tractable by methods
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that first convert the system to a system of exterior differential forms [7].

1 1,2 _

F:{ Ua + 320 + 30 0y =0
1 1 1 1,3, 1 _

Uy — 5Vz — gUazz T 3Vzy T 15V + 5020y =0

We first take the lexicographic ordering based on u > v,z >y > x, and we obtain one

extra condition, from which u has been eliminated:
6Vyy + 2052 + 2V000 — 3U§vm — 6vgzvy = 0.

Taking the ordering based on v > u, we obtain one extra condition, from which v has
been eliminated:
The leading terms have coefficients in the field, and so the output is a differential

Grobner basis. Hence
I(F) N Rdiff[xa Y, z; U] = I(uzz + 3uyy + Ugzze + 6u:m:ux)a

and

I(F) N Rz, y, 2; 0] = I(6vyy + 204, + 205000 — 3vivm — 6V,,0y).

Example 6 (elimination ideals, a system with a non-linear principal part).
This system has a non-linear principal part, and thus cannot so easily be tackled by

algorithms that first convert to a system of exterior differential forms, or which use

F:{ UyVy — Uy = 0

UpVy — Uy = 0

Riquier’s method. Let

Performing the algorithm in the lexicographic order with v > u, and y > x we obtain

one extra condition, denoted g (say):

2

2 3 3
— U Uy Uy + Uy U Uy + Uy Uy — U Uyyyy = 0.

Y

which has for its HDT, w,,. We have for the output G = F U {g}, that S(G) =
M ({uz,uy,}) so that SPR holds. It is clear that S(G)NI(G) = ¢, so G is a differential
Grobner basis, and I(F) N Ry [z, y; u] = 1(g).
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Performing the algorithm with w > v, and y > x we obtain one new condition denoted
h (say):

Uy (V0 —1) =0
Thus we have not entirely eliminated u. The output G = F U {h} has S(G) =
M ({vyvy,—1,v,}). Thus SPR holds. Insisting that S(G)NI(G) = ¢ (i.e. v,u,—1#0)
leads to the conclusion that u, = 0, a trivial solution. It is better to run the algorithm
again adding the equation vyv, — 1 = 0 to the input. We then would obtain for the
augmented system F' = F U {v,v, — 1} that I(F') N Ry, y; v] = I (vyv, — 1).

Example 7 ( elimination ideals). Our third example shows that one can obtain

more than one condition from which one of the unknowns has been eliminated. Set

F:{ Vyly — Vg = 0

Vgyly — U =0

Performing the algorithm in the lexicographic ordering, with v > u and y > x, we
obtain four new conditions, with two conditions in u only, denoted by g, and g, (say).

The equation g, has 33 summands, while go has 39 summands. We have:
HDT(g1) = Usyyy, Hp(g1) =1, and

Hcoeff(g,) =
U Uy { Uty U+ U Uy Uy — VUL Uy + U Ugyy — UggUS + Ut }

while
HDT(g2) = Usayy, Hp(g92) = 1, and Hcoeff(gs) = Hcoeff(g;).

Equations with so many terms are difficult to solve. Yet the fact that there exist such
equations implied by the given set may have implications for the choice of method
of numerical solution. Moreover, in combination with other methods such as use of

symmetries, the use of elimination ideals could be extremely effective.
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APPLICATIONS

The major applications of the elimination ideals are in non-linear control theory with
distributed parameters, where one wishes to establish a hierarchy of control, and to
separate out the conditions that must be satisfied by the input and output variables

respectively. ([42, 40] , [17])

Another application is where one wishes to discover if any of the unknowns in the
system satisfies what is effectively an ODE with respect to some variable, that is, all
differentiations are with respect to the same variable. If the ODE can be solved, that
variable can be eliminated, simplifying the system. The use of different orderings
on the variables to find all ODE’s in the ideal is discussed in the second example of
Chapter 3, where it is shown that the ideal generated by {w., — yuy,,u,,} contains

the ODEjs {uyy; Ugrrr, uzzzz}-

4.4 Formal Duality of Resolvent Systems and

Syzygies for Linear Systems

We compare the syzygy resolution for an algebraic set of polynomials, and the Janet

resolution for the corresponding differential ideal, obtained by identifying z; with ;
both the algebraic and differential resolutions ontained are well-known.

Let us consider the syzygy resolution of the ideal
A= (x,y,2)r C Rlz,y, z].

We write the generators of A as a vector U, viz (x,y,z), (assume all vectors are
row vectors) and seek the set of vectors V' (whose components are polynomials in
Rlz,y, z]) such that

VUt =0.
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Then the syzygy module S(A) is generated by

‘/1 = (yv —$,O)
Vo = (2,0, —x)
‘/3 = (0727_3/)

(cf Chapter 1.) Continuing, we write the generators of S(A) as a row vector V', and

seek those vectors W such that
wvT =o.

Then the second syzygy module S®(A) is generated by
W = (z,y,2).
We have the exact sequence

O*)R[Zﬁ,y,Z] ﬁR[l’,y, z]gM*(ILR[;L',y’ 2]3 ﬂR[m,y,z] —R——=0

where
p1
MO | py | = api+ypa + 2ps
p3
D1 —Yp3 + P2
MO | py | = | +aps —zp
D3 —Ip2 + Yp1
and
xp
M®(p) = | yp
zp

We have ker M) = SO (A). Note that S©(A) = A, and R = Rz, y, z]/A.
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Let us now consider the differential system

0
du _
O
2 -0

0 {5
ou 0
0z

laf
This is the translation, under the identification z* <+ ——u of the ideal A to a

ox™

differential ideal. (We insert the dummy argument u to the differential operators.)
We have already calculated the resolution of this ideal, (it is in fact the same as the

Poincaré sequence), in Example 3 of this chapter.

Let R be a suitable function space. Let R stand for the constant functions. We can

write the resolution in the following way:

where
Uy
DO (u) = | u,
Uy
vl v — V2
D(l)(u) = || =] vl-0
v3 vz — v,
w!
D(Q)(u) = | w? | = w; + wi + wi’
w3

0 .

It is not hard to see that replacing x with e the maps D are the transpose of the
x

maps M and that replacing Rz, y, z] with R, the two exact sequences are formally

dual. In fact, we have an algorithm for obtaining the Janet resolution of a system
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of linear equations, with one unknown and constant coefficients, from the syzygy
resolution of the corresponding polynomial ideal, by considering the system as a set

of polynomials in the operators {(9_} That is, we replace R[x;] with R, replace x with
T

0
e take the transpose of the maps and send the arrows in the opposite direction.
x

The final space in the syzygy resolution is R[z;]/A, while the first non-zero space in

the Janet resolution is the solution space to D(u) = 0.

In view of the Lewy example we cannot say that the Janet resolution is exact even for
linear systems; the two sequences are only “formally” dual. Restricting the function
spaces to be analytic spaces, we obtain exactness ([53], see also Goldschmidt [21] who

proves an existence theorem for analytic systems.)



Chapter 5

COMPARISONS AND
EXTENSIONS

5.1 Algebraic vs differential Grobner bases

Given a set of d.p.’s X ={f; | i=1,..., N} we can form the r-prolongation
SO ={Df; |i=1,...,N,|a| <7}

Let M = max{|a| | p, occurs to some power in any of the f;}. One can form the
non-differential ring A,,,.; = Flzg,w/,pl | |af < #]. Let Lig(X) denote the non-
differential ideal generated by (") in A,, ..+ a. Take the ordering on the derivative
terms as determining the order on the indeterminants in A,, ,, 1, with ut > xj, and

then assume lexicographic ordering on monomials in A,, ,, 4.

Theorem 4. For sufficiently large r, a Grobner basis B of]a|g(2(’”)) satisfies Lyg(B) D
L (DIFFGBASIS(X)).

Proof. For a sufficiently large r, all the D®f; used in the calculation of the

95
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DIFFGBASIS algorithm will be in Ia|g(2(”). It can be seen from the formulae that
the diffSpolynomial formulae reduce to algebraic formulae when the differentiations
are already performed. Where the separants or highest coefficients contain more than
one summand, repeated calculation of algebraic Spolynomials result in the diffSpoly-

nomial calculation. OJ

Ritt proves an equivalent result in terms of characteristic sets in the case where the
ideals are prime ([43, Chapter V].) The iteration of prolongation and Grébner basis
calculation has been discussed by Carra-Ferro [12] and Ollivier [37, 36]. They have
both shown that in general such an iteration (using differential reduction) will not

terminate.

In general, the algebraic calculation in Ia|g(2(7”)) will be far larger than that of the
differential Grobner basis. Consider the case of Example 2, Chapter 3, which has three
variables, one unknown and starts with two equations. The highest derivative used in
the calculation is of order five. To use the algebraic algorithm, the two equations are
prolonged to be of order five, yielding 20 equations in 25 indeterminates (3 variables,
one unknown and 21 derivative terms.). The first iteration requires the calculation
of 190 Spolynomials. The complete algebraic calculation is beyond the capacity of
even top-range personal computers (as at 1990), while the differential Grébner basis
calculation was completed in minutes on a Macintosh Plus, using an implementation

of the differential algorithm as a package in MAPLE.

5.2 A branching algorithm

In his book, Ritt ([43]) is concerned with the prime decomposition of a differential
ideal. He proves that every perfect differential ideal has a prime decomposition. (An

ideal [ is prime if a.b € I implies a € [ or b € I. The ideal [ is said to be perfect
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if an @™ € I implies a € I.) The calculation of the prime decomposition of an
algebraic ideal is now algorithmic, due to the work of Gianni, Trager and Zacharias
[20]. The prime decomposition is important because one then has a listing of the
solution varieties, and the equations involved will be in some sense simpler, having
all factors removed. There is a complication in the case of differential ideals, which
is that an irreducible d.p. may have a derivative that factors. We give an example
of this at the end of this section. In some cases it is sufficient to take account of the
factors as they appear in the algorithm, a process that concerns us in this section.

This process has also been discussed by Melenk [33].

In seeking a solution to a system of partial differential equations one can take the
algorithm a step further: after each iteration of the algorithm the new conditions
obtained can be factored. Suppose each new condition obtained has n(i) factors. Then
there are N = [[n(i) factors. Form N new lists, each consisting of the previous list
plus one factor from each new condition created, upon which to iterate the algorithm.

Instead of a sequence

{Fo, F1, ..., newbasis}

of lists, a tree of lists is generated. Such a tree is illustrated in Figure 5.1.
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ZO
nil / 1.2
21.1.1 21.1.2 21.2.1 21.2.2 21.2.3
Figure 5.1:

A tree of systems

It is straightforward to show that this branched algorithm will also terminate.

Lemma 1. The branching algorithm terminates.

Proof. Suppose not. Then there is a path P = [X0 Xta $la2 1 in the tree
that is infinite. Now repeat the argument for the termination of the non-branching
algorithm, but on the list of systems in the path rather than on the systems obtained

after successive iterations. O

A solution to the original system will be a solution to one of the resulting systems.
The converse is false: a solution to one of the resulting systems will not in general

be a solution to the original system. For example, a solution to one of the resulting
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systems may only be a solution to the original system for certain values or subsets
of the constants of integration. Furthermore, the resulting lists will not in general be
bases for the ideal generated by the original list. Presumably the differential ideals
generated by the resultant lists form some kind of “decomposition” or “cover” of the
initial ideal. Ritt [43] proves that a perfect ideal has a prime decomposition, that is,
can be expressed as the intersection of finitely many prime ideals. That a differential
ideal be prime is a very strong condition: a differential ideal generated by a single
irreducible d.p. is not necessarily prime, primary or perfect. Consider the example
of an ideal I in R;; generated by

du\? du
f—(@) +%+2u+$.

2
Then ﬁ € [. But ﬁ = 2d—u +1 d_u + 1) and neither factor, nor any power
dz dx dx dx?

of either of them, is in I, so [ is neither prime nor primary. Furthermore,

du Bu\?
— +1) — I
((2 . + ) dx3> €, but

du d3u
2—+1|—¢g1
( i ) da? 71,

so I is not perfect. Other examples, where one must differentiate to higher orders

and then substitute in order to obtain factors are in [43, Chapter II].

Example (Branching Algorithm). Consider the system in Ry 3 generated by

fl = Uzz — UzUy,

f2 = Uyy-
With the lexicographic ordering based on z > y > x, the first iteration of the algorithm
yields

f3 = UyzUgy-
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Hence we iterate the algorithm on two sets of generators,

21.1 21.2

fl = Uzz — UzUyg, fl = Uzz — UzUy,
f2:uyy7 f2:uyy7
f3:uyz- f3:u;ry'

Iterating the algorithm on %' yields the new basis element fy = u,uy,. Hence two

new systems YU and X1Y2 are formed, which are respectively

El.l.l 21.1.2
flzuz flzuzz_uzu:w
f2 = Uyy- f2:uyya

f3 = Uyz,

f4 = Ugy-

These two bases are now differential Grobner bases, i.e. the algorithm terminates
at this step. Iterating the algorithm on the system 12 yields the new basis element

f1 = Uy,uz,. Hence two new systems are formed, 3121 and X122,

21.2.1 21.2.2

fl = Uzz — UpUyg, fl = Uzz — UUyg,
J2 = uyy, J2 = uyy,
f3:uazy7 f3:uxya
f4:uyz- f4:umz-

The algorithm terminates for both these systems with no new factors being discovered.
It can be seen that X121 and X112 are the same system and hence three distinct

systems are the output of the branching algorithm. Their solutions are as follows:
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Yy = f(x)y + g(x) where f and g are arbitrary functions,
Y121y = ky + g(x, 2) where k is a constant and

P (O (2.~
8229 629 or’ )

This equation has among its solutions the functions

b
g(x,z) = —=1In <—%/{;1(ax +b2) + k2>

a

2
g(z,z) = ?S(k:x + r)tanh ™ (\/ %z + t)

2 z
T,2) = Ztan~! +1
9(@,2) T <x 27“)

where ky, ko, k,s,t,r,a,b are arbitrary constants. These solutions are found by the

usual means of converting a PDE into ODE’s. The first is found by looking for a
solution that is a function of a linear combination of the two variables, while the
third is found by looking for a solution that is a function of the quotient of the two
variables. The reason one looks for these particular solutions is that the equation
s invariant under translations and dilations. The second solution is found by the
method of separable variables. Of course, one can always declare g to be independent

of one of its variables, and obtain trivial solutions!

Y22y =g(2)r + f(2)y + h(z) where
K U B
dZQg g ng =Y,
d> d
wf -9 <£f>

d? d
PR (ﬂ)

0,

0.
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Note that both f and h satisfy the same equation. The equation in g has as its solution

g(2) = V2k tan <\/§z + ,0)

where k and p are arbitrary constants.

The equations for the functions f and h have as solution

2
fih Z%\/jtan (\/Ez+p> + 7o
K 2

where v, and vy are arbitrary constants. Hence u depends on six arbitrary constants.

It is easily seen in this example that any solution of the resulting systems is a solution

to the original system.

5.3 Non-polynomial functions of the unknowns

A very desirable extension of the algorithm would be to systems whose equations
contain functions of the unknowns, for example, the Sine-Gordon equations, and
equations for metric components in general relativity which can have terms involving

eV, where U is some potential.

If the system contains powers of sin(u) or cos(u), we can add two unknowns to the

system, v! and v?, substitute v! for sin(u), v* for cos(u), and add in the equations

ot ,0u
8@ — v 0xz =0
ov* | Ou
8@- — v 83:1 =0

fori=1,...,n. The system will now be of the required type for the algorithm to be
correct and to terminate. A similar procedure can be employed for e*, 1/u, tan(u)

and sec(u), cot(u) and cosec(u).
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However suppose we have an arbitrary function of an unknown.
Example 8. (system with an arbitrary function of an unknown).

(t0)? = (uy)* =1

Uy — Ut = f(u)

where f is an arbitrary function of u, to be determined.

Using the ordering u > f(u), in this case the DIFFGBASIS algorithm terminates
yielding an equation in f in order for a solution u to exist, namely

af

2 _
=0,

We input to Kolchin-Ritt

where f is an arbitrary function of u, to be determined.

Using the ordering u > f(u), in this case the Kolchin-Ritt algorithm terminates
yielding

u? —u?—1

Upy + fui — f

Uge — Ut — f
df d*f df
2 1 - 2 _ 4 -
(uz = 1) (du i ) (dlﬂ +2fdu
df
2 _ 1 2 Y 2
-1 ()
The fifth equation is in S(G)NI(G), so the output is not a DGB. In fact the equation

T + f2=0is in I(F). This can be shown in several ways, for example by changing
u
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to characteristic coordinates, s = x +t, r = x —t, and computing the algorithm. In

characteristic co-ordinates, the system is

{ Ut — 1

F.=

Ups — f(U)
d,

The Kolchin-Ritt algorithm then yields u? (d—f + f2) = 0. Multiplying the second
u

d

equation by ul yields d_f + f2 = 0. Another way of finding this equation in the ideal
u

is to prolong and then do the algebraic Gréobner basis algorithm. This was done in

Chapter 1, Example 4. Inputting the set F,, the DIFFGBASIS algorithm terminates
yielding

(
UUy, — 1
d
_f 4 f2

K(Iex,r>s) = 3 du

Usyr — f

| tss +uif(u)
Now S(K)NI(K) = M{u.} so the set K is a DGB.

(The time taken for this example ranges from 19 minutes on a MacPlus, to 1.3 minutes

on an Apollo Workstation.)

The solution of this system is now easy to derive, it is:

1
— keR
f u—+k
u=2/rs+ecs+cr+cd —k c,d €R

The algorithms presented in this paper will terminate on examples containing arbi-
trary functions of the unknowns as well. To see this, in the proof of termination of the
Kolchin-Ritt algorithm, split the output of the algorithm after each iteration into two
sets, one whose highest derivative terms involve the unknown functions {u!,... u™},

and one whose highest derivative terms involve the arbitrary functions {b,...,b"}



105

of the unknowns. Since w/ > b* for all j, k, the second set contains equations that
involve only the arbitrary functions. Then the argument can be applied to the two

sets separately.

5.4 Chapter 5, Conclusion

This concludes the second part of the thesis, comprising Chapters 3, 4 and 5, which is
concerned with the effects of computing the algorithm, and its variations, on different
types of systems, and with different orderings. A truly effective theory would also
take into account known symmetries of the system. Nevertheless, even in their present
state the algorithms outlined in this thesis can be a valuable tool for studying systems

of partial differential equations.



Chapter 6

INVOLUTIVITY AND
INTEGRABILITY

This chapter is published as

E.L.Mansfield, Simple Criterion for Involutivity, Journal of the London Math Society,
vol. 54, pp. 323-345, 1996.
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Appendix 1-3 USER’S MANUAL
FOR DIFFGROB

In the original version of the thesis there were 3 appendices:

Appendix 1. User’s manual for DIFFGROB;

Appendix 2. Description of procedures;

Appendix 3. The Code.

These appendices are omitted because they are superseded by diffgrob2 manual.
Further information: http://www.kent.ac.uk/IMS/personal/elm2/

Online demo: http://centaur.maths.qmw.ac.uk/CATHODE/DiffGrob2_demo.html

Al



Appendix 4 RESEARCH
DIRECTIONS

This appendix contains various avenues for further research. Other unsolved problems

can be found in the Appendix of [43].

1) IMPROVE THE EFFICIENCY OF THE ALGORITHM
One of the costliest parts of the algorithm are the procedures involving pseudo-
reduction and reduction. To lessen the number of differential S polynomials to be
calculated and hence pseudo-reduced can possibly be achieved in a number of ways:
(i) are there any theoretical grounds on which one can guarantee a diffSpoly
pseudo-reduces to zero?
(ii) see also problems 2, 9

(iii) find the fastest path to a normal form for a given term ordering

2) EFFICACIOUS TERM ORDERINGS
Find the fastest term orderings for a particular system. Similar to this problem is

that of finding the term ordering from which it is easiest to solve the system.

3) PRIME DECOMPOSITION OF DIFFERENTIAL IDEALS
This problem has been solved in the algebraic case by Gianni et al, so it is natural

to try to solve the differential analogue. Ritt, Ollivier and Kolchin discuss at length

A2



A3

prime differential ideals. The complication in the differential case is that one must
know how many times to differentiate before one reduced the problem to the algebraic

one. See also [31].

4) NON-COMMUTATIVE DIFFERENTIAL OPERATORS

One can generalize the derivations used here to derivations in Lie Algebras other than

<8 | :=1,...,n). One should be able to use the work of Apel and Lassner in the
Li
differential setting. Note that their work does not apply directly, since polynomials

of operators are not equivalent to polynomials of operated on functions.

5) INVERSE BACKLUND PROBLEM
This is the opposite of elimination. Suppose that we have a problem in two un-
knowns w and v, and we know the elimination ideals I N Ry[z1,...,2,;u] and

I N Ryig[x1, ..., z,;v]. Find a basis for 1.

6) PERTURBATION OF SYSTEMS
If a system is perturbed in a certain way, for example, to make the equations trans-
verse, or if the equations depend on a certain parameter, how does a differential

Grobner basis perturb?

7) GLOBALIZE TO SYSTEMS ON MANIFOLDS
Extend the theory to systems on spaces other than R™.

8) THE BRANCHING ALGORITHM
Implement the branching algorithm and describe more precisely the relationship of

its output to the output of the non-branching algorithm.

9) SYMMETRIES AND DGB’S
One should be able to take advantage of a known symmetry structure to make the
algorithm more efficient, i. e. terminate within the available memory. This problem

would rely on problem 4 begin solved, i. e. having a generalization of the algorithm
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to non-commutative operators. Is there any connection between such a generalization

and differential Galois theory ([39])7

10) GENERAL COEFFICIANTS
The theory should generalize to coefficients other than R or C. Perhaps spurious

factor could be “divided out” as part of the coefficient ring.

11) USE OF REDUCTION IN RADICAL IDEALS
The algorithm using reduction, not pseudo-reduction may terminate for systems that
generate perfect or radical ideals, since Ritt proved that ascending chains of perfect

ideals terminate (i.e. differential ideals are noetherian with respect to radical ideals.)

12) TERMINATION OF THE JANET RESOLUTION

The theorems in Chapter 6 should go a long way to proving that the Janet resolution
of non-linear systems terminates, since all systems are eventually (with sufficient pro-
longation) involutive, meaning that all syzygies of the symbol equations are eventually

of degree 1.

13) EFFICACIOUS CO-ORDINATES
The final example of Chapter 5 shows that a change of co-ordinates can lead to
massive variations in time to terminate, and utility of the output. Are there any

algorithmic methods which lead to “better” co-ordinates.

14) USE OF THE JANET RESOLUTION TO CONSTRUCT SOLUTIONS
If the Janet resolution is exact, it may be possible to construct a homotopy operator

on the resolution, allowing a solution to be constructed.

15) DO SYSTEMS THAT GENERATE PRIME IDEALS HAVE LOCI THAT ARE
MANIFOLDS IN THE JET BUNDLE, AND VICE VERSA?
Pommaret [39, p.246] has a criterion for an ideal to be prime. Systems that generate

a prime ideal do not yield new factors upon differentiation.



Appendix 5 SOME
DEFINITIONS AND RESULTS

This appendix contains some basic definitions and results for fibre bundles and for
homological algebra, as they needed in Chapter 6. This thesis does not require any
global theory. Further references are [52], [6], [13], [26], [25].

The third part of this Appendix contains the proof of a criterion for involutivity used

to corroborate certain examples in Chapter 6

A5.1 Fibre Bundles

These notes are compiled from [13], [38], lecture notes in Differential Topology given at
the University of Sydney, 1979 by Dr. M. J. Field and at the University of Wisconsin,
1982-3 by Dr. D. Stowe.

A bundle is a triple (E, B, ) consisting of two topological spaces E and B and a
continuous onto mapping 7 : £ — B. The space B is called the base. The simplest
example is the cartesian bundle (M x B, B, ) where the projection 7 is given by

w(m,b) = b.

A5
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A fibre bundle (F, B,7,G) is a bundle (F, B, 7) together with a fibre F' such that
771(x) (denoted F,) is homeomorphic to F for all z € B, a topological group of
homeomorphisms, G, of F' onto itself, and a covering of B by a family of open sets
{U, : @ € A} such that:

(1) locally the bundle is a trivial bundle, i. e. for each o, 77(U,) is homeo-

morphic to U, x F. The homeomorphism has the form

Po 7 (Ua) = Ua X F, @a(p) = (7(p), da(p))

Let x € B. Then ¢, , = ¢a|ﬂ_1(l,) is a homeomorphism of F} onto F.

(2) Let x € U, N Us. Then gba,zqﬁg’i : F' — Fis an element of the group G.

(3) The induced mappings gns : Uy N Usg — G given by g.s5(z) = ¢a7x¢§;
are continuous. They are called the transition functions, and satisfy the relation

9ap(7) g6y (T) = Gar (7).

A vector bundle is a fibre bundle where the fibre is a vector space of dimension n
(say), and the group G is a subgroup of the general linear group GL(n). Similarly,
if the fibre is an affine space and G is the group of linear transformations and trans-
lations, the bundle is an affine bundle. More precisely, if {U,} are the trivialising
patches on the affine bundle F, for (z,y) € 7= (U, U Up),

pr2gpagogl U, NUg x F — F is given by

(z,y) — Aap(x) + Bag(z)
where pr, is projection onto the second factor, and A,g(x) is an element of GL(F)
and B,s(z) € F. Note F' is an affine space so linear transformations and translations
are defined. It is possible to consider a related vector bundle whose translation func-
tions are given by the {A,s@)}; the fibre may be smaller than F' depending on the
{Aap}- In this case, we say the affine bundle is modelled on the related vector
bundle.

The tangent vector to a manifold M at a point x is defined to be an equivalence

class of differential curves; curves are maps v : I C R — M such that v(0) = z. Two
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curves 7y, Yo are equivalent if, under every mapping f taking a neighbourhood of x

to R, which is differentiable at x, then

d d
E‘t:ofo% = %‘t:ofow‘

(Recall a map f : U, — R is differentiable at a point x if, when composed with
the inverse of a co-ordinate chart map, ¢! : R® — U,, it is differentiable as a map
R" — R (where n = dimM) at ¢_'(z).)

If the maps f are co-ordinate charts composed with a projection to a coordinate
hyperplane in R"™, we obtain that all components of the tangent vector are well-
defined.

Since locally M has co-ordinates that look like R™, it makes sense that locally we
can add curves, and multiply them by constants. Such operations take equivalence
classes to equivalence classes in a well-defined way. Hence the union of all equivalence
classes of curves 7 such that v(0) = z is a vector space; it is denoted T, (M). The

tangent bundle is the union U,epn T, (M).

This definition has an advantage in proving theorems, since to produce a tangent
vector at x we take a curve v on the manifold such that v(0) = z, compose with a

local co-ordinate chart, and consider its derivative at ¢t = 0.

If {Uy,, ¢o : Uy — R™} is an atlas for M, the transition functions of the tangent bundle
at x are the jacobians of the maps {¢a¢51 : R" — R"} at z, since the trivialising
maps for T'(M) are the tangent maps of the {¢, : U, — R"}. (This is one way of
defining the tangent bundle.)

The dual T(M) to the tangent vector space T,(M) is the space of linear maps
T.(M) — R; it is a vector space whose elements are called co-tangent vectors. Form-
ing the union over all x € M yields the cotangent bundle T*(M). If {U,, ¢o : Uy, —
R"} is an atlas for M, the transition functions of the cotangent bundle at x are the

adjoints of the jacobians of the maps {qﬁagf)gl :R" — R"} at z.
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Given a map ¢ : N — M and a bundle (E, M, ), we define the pullback bundle
(97H(E),N,p) : g7H(E) = {y € NxE| gpr,(y) = 7pry(y)} where pr; is the projection

onto the i factor.

g N(E) BN
lprl lﬂ
N——Mm

Given two bundles over the same base (F,B,7) and (£, B,7), whose fibres have
a linear structure over the same coefficient ring, we can form the tensor product
bundle F® L. The total space of the tensor bundle is the union Uyepm ! (z) @77 ().
We take a cover of B that is sub-ordinate to the corves that trivialize the bundles F
and £, and take appropriate restrictions to the trivialising maps for F and £. Then
the trivialising maps for F ® L is the tensor product of the trivialising maps for F
and L.

To form the bundles S*T*(M) and A*T*(M), we take the tensor product of the
cotangent bundle T*(M) with itself k times (the fibres have a linear structure over

R), and then take the symmetric and anti-symmetric subsets respectively.

Given the bundle (M, B,7), it is not necessary that all the fibres be homeomorphic.
Let M be a manifold of dimension k + n, with base space of dimension k. Suppose
M has an open covering by open sets {U, : a € A}, with co-ordinate maps ¢, :
U, — R"™ and {n(U,) =V, : a € A} is a covering of B, with ¢, : 7(U,) — R*
the co-ordinate charts for B. We say M is a fibred manifold with base B if the
diagram:

Us —>R" x R¥

L

Ve R

commutes, where pr, is the projection onto the second factor.

Yo
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A5.2 Homological Algebra

These notes are from lectures in Algebraic Topology given at the University of Sydney

in 1979 by Dr. R. Eyland.

A graded group is a family {G, : @ € Z} of commutative groups indexed by the
integers. Without loss of generality, the group operation is assumed to be addition.
A chain complex is a pair (C, ) consisting of a graded group and an endomorphism
0 : C — C such that 90 = 0 and 0 has degree —1. This means the map 0 con-
sists of maps {09, : C,, — C,_1} such that 0,10, = 0, d(c + d) = d(c) + I(d), and
d(—c) = —0(c).

A chain map 7 : (C,0) — (C',0') is a set of maps 7, : C;, — C! which satisfy
T(c+d) =71(c)+7(d), 7(—c) = —7(c) (i.e. T is a homomorphism), and 7,0, = 05, Tp—1
(7 commutes with 0).

A subcomplex of a chain complex C' is a chain complex ¢’ = {C/} such that for
each n, C} is a subgroup of C, and 0/, = 0,|c,. For each subcomplex, there is a
quotient complex C'/C" where (C/C"),, = (C,,)/C!, and the differential is the induced
map ¢+ C, — 9d(c) + C _;.

For a chain complex C, we defined the graded group of cycles Z(C) = ker0, i.e.
Z, = ker 0,,, and the graded group of boundaries B(C') = im 0, i.e. B,, =im J,. We
define the homology graded group H(C) = Z(C)/B(C); H, = Z,/B,. The equiva-
lence class of z € Z,, is denoted {z}.

If the deferential is of degree +1, so that 0, : C,, — C,,.1, the corresponding ho-
mology groups are called cohomology groups, the cycles cocycles and the boundaries,
coboundaries. Theorems proved for homology have corresponding theorems in coho-

mology.

A short exact sequence of chain complexes is a sequence of chain maps

C: 0 o4
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such that for all n, ker 3, = im «,,, the maps «,, are 1-1 and the maps (3, are onto.

So C corresponds to a commutative diagram of abelian groups:

’ QAn41 ﬂn+1 1
0 Cri Cnyr —=Chpy —0
B;H—l an+1 a;L/+1
Qn Bn
0 c C, o 0
o’ On o

in which all rows are exact and the composite of any two vertical maps is trivial.

Short exact sequences arise naturally when one considers a subcomplex C’ of a chain

complex C"

a B

0 C’ C c/c’ 0

where « is the inclusion and 3 the natural projection.

Let H' denote the homology graded group of C’ and H” the homology graded group
of C".

Chain maps naturally induce maps on the homology classes. If a homology class
x = {z} (say) i.e. the class z is represented by z, then the homology map a, :
H(C") — H(C) induced by o : C" — C, is given by a,x = {az}. Since ad = 0'a, the

map «, is well-defined.

Lemma A5.1 (The snake or connecting homomorphism A,). Let a short ezact
sequence C be given, and let o, and (. be the maps induced by «, 3 on homology
groups. There is homomorphism A, : H" — H of degree —1 i.e. A, : H — H, 4,

so that the sequence

c: > H, 1y (C") 25 H,(C") 2> H,(C) -2~ H,(C") —2> H,_,(C") —

18 exact.
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Proof. Definition of A, : Let z € H,1(C"), so that x is an equivalence class of
elements in C),,, x = {2z} or 2+ B/, and 0"(2) = 0. By exactness [ is onto
and so z = [(w) for some w € C,. Now fow = 0"pw = 0"z = 0. By exactness,
ker f = im «a, and « is 1-1, so there is a unique u € C! _; such that au = dw. The
element u = A,(z): we need to show that A is well-defined on the equivalence class
of x, that is, if we take any other representative of the class x, we obtain an element
in the same equivalence class as u. Suppose w; € C, is another element such that
pwy € x (ie. © =wi + B),;) Then f(w —wy) € B,(C') ie. f(w—wy) = 0"v for
some v € Cy, . Since 3 is onto, v = By, some y € C,11. So B(w—w,) = "By = By
or B(w —wy; — Jy) = 0. Again by exactness , w — w; — Jy = at, some t € C!. Then
Oow; = 0w — 00y — dat = au — ad't = a(u — J't), ie. A (fw;) = u— J't. But
u—0t+ B, 1(C") = u+ B,,_1(C"). In other words, A,,, assigns to the homology class
x the homology class of o103 1x.

We now show the sequence L is exact.

We have
ABxr = {a 0B Bz} = {a 10z} = {710} =0
Bz = (fa)x =0
aAvr = {aa™t0p 2} = {0872} =0

S0

im (3, C ker A,

im o, C ker 3,

im A, C ker a,
Let # € ker A, and let z € z, z € C!. Then, as above, z = By and a0y € B, _1(C")
(o is 1-1 by exactness.) So a0y = d'u for some u € C!. Then y — au € C,, and
Iy —au) = dy — dau = Jy — adu = 0. Soy — au € Z,(C). Then f.{y — au} =

{By — Pau} = {z} ==
So ker A, C im S,.
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Let x € ker §,, z € . Then z € C,, and Bz € B,(C"). So fz = 0'y for some y € C, ;.
Since (3 is onto, y = Bu some u € C,, 1. Thus fz = J'fu = Bou. So F(z — du) = 0.
So z — Ou = av for some v € C!,. Now ad'v =0z — J0u = 0. So v € Z,(C"). Then
afv} ={av} = {z — ou} = {z} = =

So ker 8, C im «.

Let © € keray, z € . Then z € C! and az = 9y for some y € C,y1. Then
z € {a7'9B7 ' By}. So x = A.{By}, while By € Z,(C") since 0"y = 0y = Baz = 0.
So ker oo, C 1m A,. O]

Using the long exact sequence, we show what happens if H,(C) = 0, that is, the
middle column of the large commutative diagram above, corresponding to the short
exact sequence, is exact. From the long exact sequence derived from the short exact

sequence using the snake homomorphism, we have
/ m A AN B m A /
£: 0—=H,1(C")—=H,(C") —=0—H,(C")—=H, 1(C") —0...

Thus the maps «, and [, are the zero maps. By exactness, the maps A, are both

onto and 1-1, that is, they are isomorphisms.

Hence H,(C") ~ H,_1(C") for all n.

Ab5.3 A criterion for involutivity

The results in this section appear in [38, pp.10-4]. Proofs given here are those of the
author.

They concern a criterion for involutivity obtained by grading the Spencer d-operator
lexicographically; the d-operator is already graded by the degree on A”, so we have
a double grading of . The result is used to corroborate the involutivity of certain

systems discussed in Chapter 6.
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For the definitions of g,, 7., S¥T*, V(&), dz'*) and 6, refer to Chapter 6.

Define the operators §; as follows:

dz=%) 1, >0
0 otherwise

and set (S*T*)! = {w € S*T* | §;(w) = 0,5(w) = 0,...,5;(w) = 0}. The elements
of (S*T)" are those symmetric forms that involve no components in the zy, 2o, .. ., z;

directions and
0= (S*T*)" C (S*T*)" ' ... C (S*T*)?* C (S*T*)° = SFT™*

It is trivial to check that 6 = >  dz; A J; (up to a constant!)

The vector space g,., are graded the same way as the (S*T™*):
(gq—i-r)i = Ggrr 1 (SQ—HT* ® V(g))l

Lemma A5.2. The symbol maps 7, commute with the §;, and thus respect the grading
on S¥T*.

Proof. Spencer [51] proves that the following diagram commutes (Pommaret uses o,
for the symbol map; we have used this notation for the symbol of an equation, and

hence use 7, to represent the actual linear map between the symmetric bundles)

STHHT* @ V() —— s ST @ V(E)

) lﬁ

T* @ ST T* @ V(E) —= 7 T+ @ §'T* @ V(&)
which is equivalent to the statement, dx; ® ;7.1 = dr; ®7,.0;. Therefore §;7,,1 = 7,:6;.

It then follows that

Topr: (STHHT @ V(g))" — (ST ® V(E’))i.



By definition, the two sequences

1 Tr+41
—_—

0— (ggir11) ™ — (STTHT* @ V(€)'

T (ST @ V(€)™ —0

and

)—— (SlH-r—i-lT* ® V(g))l S (Sq+r+1T* ® V(E))z—l L

i—1

(ST @ V(E)  —=0

are exact. Define

(1 (ST @ V(€)' = 7. (STTT @ V(E)) N (ST* @ V(E'))'.

Notation: write T* for S¥T* @ V(&).

A14

Lemma A5.2 implies that 7,,1((T9" ™)) C (74 ((TT 1)) The two exact

sequences for 9; and 7, can be “enmeshed” in the following commutative and exact

diagram (arrows in outline are inclusions):

0—— (ggrrir)’ (TT 1) —— (7 (T H)1))

0 (Gairsa)! ™! o (IO g (TP

(TQ—H")i—l

0——> (qurr)i_l

Lemma A5.3. The maps

T (ST @ V(E)) = (ropa (ST @ V(E)))'
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(all v >0, i > 0) are surjective if and only if the maps 8;(ggrrs1) " — (ggur)™" (all
r>0,1i>1) are surjective. ([38, p. 104])

Lemma A5.4. H(APT* ® (gg4,)"" ) =0 for allp >0, r > 0.

Proof. The vector space (gg4-)" " C (Sq”T*@)V(S))n_l = (2 @ ek | k=1,....m).

If (g4+r)" ' = 0, there is nothing to prove. Now

0=da® dx%qw)) = a Adzy, ® deldT

= aAdz,=0

= a=d Ndx,

= a®ds™ = §(a’ @dzT ). The space (ggq,)" ! is several copies of (dzi™);
(g+r)

the preceding argument applies to each copy, since dxj ®e* € (gur)" ! =

dai™ D © ¢ € (ggiria)" 0

Theorem A5.5 (CRITERION FOR INVOLUTIVITY). If the maps o;
(Ggrrt1)™" = (ggur)™* for all v > 0 and i > 1 are surjective, then g, is an in-

volutive symbol.

Proof. Let w € APT* ® g44, be such that 6(w) = 0. Separate w into two terms,
one consisting of the summands of w with dz; in their anti-symmetric part, and one,
denoted wy, consisting of the summands of w without dz; in their anti-symmetric
part, so that

w:wl—l—Zozk/\dxl@sk
k

where s, € ggir, Qi € AP~IT* and a4, has no term containing dx; in its anti-symmetric
part. Now 01 @ gg4r+1 — gg+r 1S surjective, so for all k, there is a ¢, € g44,4+1 such that

51(tg) = sp. Let wy = >~ ap @1y, and let wY = w—6(wy) = w1 — Y. ap Ada; @55ty
kg>1
Now dw™ = §(w — 6(wy)) = dw = 0 and no summand of w*) has dz; in its anti-

symmetric part. There two facts together imply that w € APT* ® (g,+r)'. Now use

the fact that 8y : (ggrrs1)' — (gger)! is surjective. Repeating the argument yields an
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element

w® = w® — 5w§1) =w — 0(wy) — &Uél) eNT"® (9q+r)27

with éw® = 0. Continuing in this way, we obtain an element w1V in APT* ®
(gger)" 1, with w1 = 0, and w™™Y = w — §(¢) for some ¢ € AP7IT* ® gyyris.
However H(APT* @ (gy,)" ') = 0 by Lemma 6.8, implying that w1 = §(k) for
some k € AP7'T* @ (gyrrs1)" ', This implies that w itself is in the image of ¢,
implying that H(APT* ® g,+,) = 0 for all » > 0 and p, which is to say, g, is an

involutive symbol. O]

It is clear from the proof that grading the spaces according to the ordering x, <

Ty < ... < Tg < 21 1s irrelevant. One can restate the result as follows:

Theorem A5.5 (BIS). Let x;, < z;, , <...<x; be an ordering on the variables
and define (gg4ri1)" to be the space {w € ggrpi1 | dyw = 0,...,6;w = 0}. If the
maps 0;; = (Ggrr41)9" — (Ggir)?* (all ¥ >0, 1 > 1) are surjective, then g, is an

inwvolutive symbol. The ordering may depend on the level of prolongation r.

Example A5.6 (an involutive system). Let X =R? £ = X x R and

50 that ga = (Uyy + Uy + Uyy). Hence

Uggy — Uggx = 0
R3 - Ugyy — Ugay = 0

Uyyy — Ugyy =0

and gs = <Ux:c:c + Vgzy + Vgyy + Uyyy) .

Then §1(g3) = ga so 0y is surjective, while (g3)' =0, (g2)! = 0.
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Prolonging,
.
U(n—1,1) — Un,0) = 0
U(n—2,2) — U(n—1,1) = 0
R, = ( ) ( )
| %om) — Uan-1) =0
and

gn=10 > vip)

ij: i+j=n
Then 01 : Gni1 — gn 18 surjective while (g,)* = 0, so that the conditions of Theo-
rem Ab5.5 are satisfied implying go is an involutive symbol. Let

Uy — Uy = [

Uyy — Uzy = f°
Then using the basis (Vaga, Vawy, Vayy Vyyy) for SST*QV(E) and the basis (f,, f,, f7, f3)
for SYT* @ V(E'), the map 1, has the matriz form

-1 1 0 O
0 -1 1 O
0 -1 1 O
0 0 —-11

Then  7i((T°)") = {fy)
n(T%) = {fo. fy + 12, 1)
and (T (T°))" = (f7).
Thus 71 : (T3)* — (11(T?))* is surjective.
This example shows how syzygies (in this case, f; = f2), lowers the dimensions of

the spaces (1,41 (T TH))E. Since
dim (Tt )" = Hunknown functions,

and dim(S™MT* @ V(£'))"! = #equations in the system, if the system is overdeter-

mined the map T,.1 can never be surjective without the presence of degree 1 syzygies.
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In this example, a syzyqy of the system will be a syzygy of the symbol, but this will

not be true in general where an equation has terms of more the one degree.

Example A5.7 (Ex 6.6, Ch 6 revisited). Recall

9o = <Uyz + Vze, Uy Uyy, Vzz + sz>7

93 = (Vyyz + Vsay, Uzyy, Uyyy, SUm of other basis elements).

In fact, for 2+r > 3,

Gotr = (V(©0,247-1,1) + V(24r-1,1,0)5 V(1,247-1,0) V(0,241,0)> Sum of the rest)

Now 61(gotri1) misses V(©0,24r-1,1) + V(24r—1,1,0), because differentiating the equation

0

U(0,247-1,1) — U(24r—1,1,0) = 0 (i.e. (8_y) o 2(uyZ — Uy )) with respect to x, yields an
equation which has a term in common with a derivative of the other original equation
U, — Uy, = 0. This causes the basis element of gayrq1 containing the terms v(i o4r—1,1)
and V(a4.,1,0), to not be of the form v a1r—1.1)+V24r1,00+an element of {w | sw = 0}.
For no prolongation is 01(gorri1) = gour. However, for 2 +1r > 3, 09(gotri1) = goir
while {w | dow = 0} = 0. Hence the conditions for Theorem A5.5 bis are satisfied,

and gz 1s an involutive symbol.



