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Preface

Physikalische Mathematik Physical Mathematics

Die meisten Most
Mathematiker Mathematicians

glauben. believe.
Aber alle But all

Physiker Physicists
wissen. know.

The marriage between gauge theory and the geometry of fiber bundles from
the sometime warring tribes of physics and mathematics is now over thirty
years old. The marriage brokers were none other than Chern and Simons.
The 1978 paper by Wu and Yang can be regarded as the announcement of
this union. It has led to many wonderful offspring. The theories of Donaldson,
Chern–Simons, Floer–Fukaya, Seiberg–Witten, and TQFT are just some of
the more famous members of their extended family. Quantum groups, CFT,
supersymmetry, string theory and gravity also have close ties with this family.
In this book we will discuss some topics related to the areas mentioned above
where the interaction of physical and mathematical theories has led to new
points of view and new results in mathematics. The area where this is most
evident is that of geometric topology of low-dimensional manifolds. I coined
the term “physical mathematics” to describe this new and fast growing area
of research and used it in the title of my paper [265]. A very nice discussion
of this term is given in Zeidler’s book on quantum field theory [417], which is
the first volume of a six-volume work that he has undertaken (see also [418]).

Historically, mathematics and physics were part of what was generally
called “natural philosophy.” The intersection of ideas from different areas of
natural philosophy was quite common. Perhaps the earliest example of this is
to be found in the work of Kepler. Kepler’s laws of planetary motion caused a
major sensation when they were announced. Newton’s theory of gravitation
and his development of the calculus were the direct result of his successful

xi
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attempt to provide a mathematical explanation of Kepler’s laws. We may
consider this the beginning of modern mathematical physics or, in the spirit
of this book, physical mathematics.

Kepler was an extraordinary observer of nature. His observations of
snowflakes, honeycombs, and the packing of seeds in various fruits led him
to his lesser known study of the sphere packing problem. For dimensions
1, 2, and 3 he found the answers to be 2, 6, and 12 respectively. The lat-
tice structures on these spaces played a crucial role in Kepler’s “proof.” The
three-dimensional problem came to be known as Kepler’s conjecture. The
slow progress in the solution of this problem led John Milnor to remark that
here was a problem that nobody could solve but its answer was known to
every schoolboy. It was only solved in 1998 by Tom Hales and the problem
in higher dimensions is still wide open. It was the study of the symmetries
of a special lattice (the 24-dimensional Leech lattice) that led John Conway
to the discovery of his sporadic simple groups. Conway’s groups and other
sporadic simple groups are closely related to the automorphisms of lattices
and algebras. The study of representations of the largest of these sporadic
groups (called the Friendly Giant or Fischer–Griess Monster) has led to the
creation of a new field of mathematics called vertex algebras. They turn out
to be closely related to the chiral algebras in conformal field theory.

It is well known that physical theories use the language of mathematics
for their formulation. However, the original formulation of a physical law
often does not reveal its appropriate mathematical context. Indeed, the rele-
vant mathematical context may not even exist when the physical law is first
formulated. The most well known example of this is Maxwell’s equations,
which were formulated as a system of partial differential equations for the
electric and magnetic fields. Their formulation in terms of the electromag-
netic field tensor came later, when Minkowski space and the theory of special
relativity were introduced. The classical theory of gravitation as developed
by Newton offers another example of a theory that found later mathematical
expression as a first approximation in Einstein’s work on gravitation. Clas-
sical Riemannian geometry played a fundamental role in Einstein’s general
theory of relativity, and the search for a unified theory of electromagnetism
and gravitation led to continued interest in geometrical methods for some
time.

However, communication between physicists and mathematicians has been
rather sporadic. Indeed, one group has sometimes developed essentially the
same ideas as the other without being aware of the other’s work. A recent
example of this missed opportunity (see [115] for other examples) for commu-
nication is the development of Yang–Mills theory in physics and the theory
of connections in a fiber bundle in mathematics. Attempts to understand the
precise relationship between these theories has led to a great deal of research
by mathematicians and physicists. The problems posed and the methods of
solution used by each have led to significant contributions towards better
mutual understanding of the problems and the methods of the other. For
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example, the solution of the positive mass conjecture in gravitation was ob-
tained as a result of the mathematical work by Schoen and Yau [339]. Yau’s
solution of the Calabi conjecture in differential geometry led to the defini-
tion of Calabi–Yau manifolds. Manifolds are useful as models in superstring
compactification in string theory.

A complete solution for a class of Yang–Mills instantons (the Euclidean
BPST instantons) was obtained by using methods from differential geometry
by Atiyah, Drinfeld, Hitchin, and Manin (see [19]). This result is an example
of a result in mathematical physics. Donaldson turned this result around and
studied the topology of the moduli space of BPST instantons. He found a
surprising application of this to the study of the topology of four-dimensional
manifolds. The first announcement of his results [106] stunned the mathemat-
ical community. When combined with the work of Freedman [136,137] one of
its implications, the existence of exotic R4 spaces, was a surprising enough
piece of mathematics to get into the New York Times. Since then Donaldson
and other mathematicians have found many surprising applications of Freed-
man’s work and have developed a whole area of mathematics, which may
be called gauge-theoretic mathematics. In a series of papers, Witten has
proposed new geometrical and topological interpretations of physical quanti-
ties arising in such diverse areas as supersymmetry, conformal and quantum
field theories, and string theories. Several of these ideas have led to new in-
sights into old mathematical structures and some have led to new structures.
We can regard the work of Donaldson and Witten as belonging to physical
mathematics.

Scientists often wonder about the “unreasonable effectiveness of mathe-
matics in the natural sciences.” In his famous article [402] Wigner writes:

The first point is that the enormous usefulness of mathematics in the
natural sciences is something bordering on the mysterious and that
there is no rational explanation for it. Second, it is just this uncanny use-
fulness of mathematical concepts that raises the question of the unique-
ness of our physical theories.

It now seems that mathematicians have received an unreasonably effective
(and even mysterious) gift of classical and quantum field theories from physics
and that other gifts continue to arrive with exciting mathematical applica-
tions.

Associated to the Yang–Mills equations by coupling to the Higgs field are
the Yang–Mills–Higgs equations. If the gauge group is non-abelian then the
Yang–Mills–Higgs equations admit smooth, static solutions with finite action.
These equations with the gauge group Gew = U(1)×SU(2) play a fundamen-
tal role in the unified theory of electromagnetic and weak interactions (also
called the electroweak theory), developed in major part by Glashow [155],
Salam [333], and Weinberg [397]. The subgroup of Gew corresponding to U(1)
gives rise to the electromagnetic field, while the force of weak interaction cor-
responds to the SU(2) subgroup of Gew . The electroweak theory predicted
the existence of massive vector particles (the intermediate bosons W+,W−,
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and Z0) corresponding to the various components of the gauge potential,
which mediate the weak interactions at short distances. The experimental
verification of these predictions was an important factor in the renewed in-
terest in gauge theories as providing a suitable model for the unification of
fundamental forces of nature. Soon thereafter a theory was proposed to unify
the electromagnetic, weak and strong interactions by adjoining the group
SU(3) of quantum chromodynamics to the gauge group of the electroweak
theory. The resulting theory is called the standard model. It has had great
success in describing the known fundamental particles and their interactions.
An essential feature of the standard model is symmetry breaking. It requires
the introduction of the Higgs field. The corresponding Higgs particle is as yet
unobserved. Unified theory including the standard model and the fourth fun-
damental force, gravity, is still a distant dream. It seems that further progress
may depend on a better understanding of the mathematical foundations of
these theories.

The gulf between mathematics and physics widened during the first half of
the twentieth century. The languages used by the two groups also diverged to
the extent that experts in one group had difficulty understanding the work of
those in the other. Perhaps the classic example of this is the following excerpt
from an interview of Dirac by an American reporter during Dirac’s visit to
Chicago.

Reporter: I have been told that few people understand your work. Is
there anyone that you do not understand?
Dirac: Yes.
Reporter: Could you please tell me the name of that person?
Dirac: Weyl.

Dirac’s opinion was shared by most physicists. The following remark by Yang
made at the Stoney Brook Festschrift honoring him illustrates this: Most
physicists had a copy of Hermann Weyl’s “Gruppentheorie und Quanten-
mechanik” in their study, but few had read it.

On the mathematical side the great emphasis on generality and abstraction
driven largely by the work of the Bourbaki group and its followers further
widened the gulf between mathematics and science. Most of them viewed the
separation of mathematics and science as a sign of maturity for mathematics:
It was becoming an independent field of knowledge. In fact, Dieudonné (one
of the founders of the Bourbaki group) expressed the following thoughts in
[99]:

The nay-sayers who predicted that mathematics will be doomed by its
separation from science have been proven wrong. In the sixty years or so
after early 1900s, mathematics has made great progress, most of which
has little to do with physical applications. The one exception is the
theory of distributions by Laurent Schwartz, which was motivated by
Dirac’s work in quantum theory.
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These statements are often quoted to show that mathematicians had little in-
terest in talking to scientists. However, in the same article Dieudonné writes:

I do not intend to say that close contact with other fields, such as
theoretical physics, is not beneficial to all parties concerned.

He did not live to see such close contact and dialogue between physicists and
mathematicians and to observe that it has been far more beneficial to the
mathematicians than to the physicists in the last quarter century.

Gauss called mathematics the queen of sciences. It is well known that
mathematics is indispensable in the study of the sciences. Mathematicians
often gloat over this. For example, Atiyah has said that he and other math-
ematicians were very happy to help physicists solve the pseudoparticle (now
called the Euclidean instanton) problem. His student, Donaldson, was not
happy. He wanted to study the geometry and topology of the moduli space
of instantons on a 4-manifold M and to find out what information it might
provide on the topology of M . Donaldson’s work led to totally unexpected
results about the topology of M and made gauge theory an important tool
for studying low-dimensional topology. At about the same time, the famous
physicist Ed Witten was using ideas and techniques from theoretical physics
to provide new results and new ways of understanding old ones in mathemat-
ics. It is this work that ushered in the study of what we have called “physical
mathematics.”

Nature is the ultimate arbiter in science. Predictions of any theory have to
be tested against experimental observations before it can be called a physical
theory. A theory that makes wrong predictions or no predictions at all must
be regarded as just a toy model or a proposal for a possible theory. An ap-
pealing (or beautiful) formulation is a desirable feature of the theory, but it
cannot sustain the theory without experimental verification. The equations
of Yang–Mills gauge theory provide a natural generalization of Maxwell’s
equations. They have a simple and elegant formulation. However, the the-
ory predicted massless bosons, which have never been observed. Yang has
said that this was the reason he did not work on the problem for over two
decades. Such a constraint does not exist in “Physical Mathematics.” So the
nonphysical pure Yang–Mills theory has been heartily welcomed, forming the
basis for Donaldson’s theory of 4-manifolds and Floer’s instanton homology
of 3-manifolds. However, it was Witten who brought forth a broad spectrum
of physical theories to obtain new results and new points of view on old re-
sults in mathematics. His work created a whole new area of research that led
me to coin the term “physical mathematics” to describe it. Perhaps we can
now reverse Dirac’s famous statement and say instead “Mathematics is now.
Physics can wait.” The mathematicians can now say to physicists, “give us
your rejects, toy models and nonpredictive theories and we will see if they
can give us new mathematics and let us hope that some day they may be
useful in physics.”
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The starting point of the present monograph was The Mathematical Foun-
dations of Gauge Theories [274], which the author cowrote with Prof. Mar-
tucci (Firenze). That book was based in part on a course in differential geo-
metric methods in physics” that the author gave at CUNY and then repeated
at the Dipartimento di Fisica, Università di Firenze in 1986. The course was
attended by advanced graduate students in physics and research workers in
theoretical physics and mathematics. This monograph is aimed at a simi-
lar general audience. The author has given a number of lectures updating
the material of that book (which has been out of print for some time) and
presenting new developments in physics and their interaction with results in
mathematics, in particular in geometric topology. This material now forms
the basis for the present work. The classical and quantum theory of fields
remains a very active area of research in theoretical physics as well as math-
ematics. However, the differential geometric foundations of classical gauge
theories are now firmly established.

The latest period of strong interaction between theoretical physics and
mathematics began in the early 1980s with Donaldson’s fundamental work
on the topology of 4-manifolds. A look at Fields Medals since then shows
several going for work closely linked to physics. The Fields Medal is the
highest honor bestowed by the mathematics community on a young (under
40 years of age) mathematician. The Noble Prize is the highest honor in
physics but is often given to scientists many years after a work was done and
there is no age bar. Appendix B contains more information on the Fields
Medals.

Our aim in this work is to give a self-contained treatment of a mathematical
formulation of some physical theories and to show how they have led to
new results and new viewpoints in mathematical theories. This includes a
differential geometric formulation of gauge theories and, in particular, of the
theory of Yang–Mills fields. We assume that the readers have had a first course
in topology, analysis and abstract algebra and an acquaintance with elements
of the theory of differential manifolds, including the structures associated with
manifolds such as tensor bundles and differential forms. We give a review of
this mathematical background material in the first three chapters and also
include material that is generally not covered in a first course.

We discuss in detail principal and associated bundles and develop the
theory of connections in Chapter 4.

In Chapter 5 we introduce the characteristic classes associated to principal
bundles and discuss their role in the classification of principal and associated
bundles. A brief account of K-theory and index theory is also included in this
chapter. The first five chapters lay the groundwork for applications to gauge
theories, but the material contained in them is also useful for understanding
many other physical theories.

Chapter 6 begins with an introduction and a review of the physical back-
ground necessary for understanding the role of gauge theories in high-energy
physics. We give a geometrical formulation of gauge potentials and fields on
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a principal bundle P over an arbitrary pseudo-Riemannian base manifold M
with the gauge group G. Various formulations of the group of gauge transfor-
mations are also given here. Pure gauge theories cannot describe interactions
that have massive carrier particles. A resolution of this problem requires the
introduction of matter fields. These matter fields arise as sections of bundles
associated to the principal bundle P . The base manifold M may also sup-
port other fields such as the gravitational field. We refer to all these fields as
associated fields. A Lagrangian approach to associated fields and coupled
equations is also discussed in this chapter. We also discuss the generalized
gravitational field equations, which include Einstein’s equations with or with-
out the cosmological constant, as well as the gravitational instanton equations
as special cases.

Quantum and topological field theories are introduced in Chapter 7. Quan-
tization of classical fields is an area of fundamental importance in modern
mathematical physics. Although there is no satisfactory mathematical the-
ory of quantization of classical dynamical systems or fields, physicists have
developed several methods of quantization that can be applied to specific
problems. We discuss the Feynman path integral method and some regular-
ization techniques briefly.

In Chapter 8 we begin with some historical observations and then dis-
cuss Maxwell’s electromagnetic theory, which is the prototype of gauge the-
ories. Here, a novel feature is the discussion of the geometrical implications
of Maxwell’s equations and the use of universal connections in obtaining
their solutions. This last method also yields solutions of pure (or source-free)
Yang–Mills fields. We then discuss the most extensively studied coupled sys-
tem, namely, the system of Yang–Mills–Higgs fields. After a brief discussion
of various couplings we introduce the idea of spontaneous symmetry breaking
and discuss the standard model of electroweak theory. The idea of sponta-
neous symmetry breaking was introduced by Nambu (who received the Nobel
prize in Physics in 2008) and has been extensively studied by many physi-
cists. Its most spectacular application is the Higgs mechanism in the standard
model. A brief indication of some of its extensions is also given there.

Chapter 9 is devoted to a discussion of invariants of 4-manifolds. The spe-
cial solutions of Yang–Mills equations, namely the instantons, are discussed
separately. We give an explicit construction of the moduli space M1 of the
BPST-instantons of instanton number 1 and indicate the construction of the
moduli space Mk of the complete (8k − 3)-parameter family of instanton
solutions over S4 with gauge group SU(2) and instanton number k. The
moduli spaces of instantons on an arbitrary Riemannian 4-manifold with a
semisimple Lie group as gauge group are then introduced. A brief account of
Donaldson’s theorem on the topology of moduli spaces of instantons and its
implications for smoothability of 4-manifolds and Donaldson’s polynomial in-
variants is then given. We then discuss Seiberg–Witten monopole equations.
The study of N = 2 supersymmetric Yang–Mills theory led Seiberg and Wit-
ten to the now well-known monopole, or SW equations. The Seiberg–Witten
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theory provides new tools for the study of 4-manifolds. It contains all the
information provided by Donaldson’s theory and is much simpler to use. We
discuss some applications of the SW invariants and their relation to Donald-
son’s polynomial invariants.

Chern–Simons theory and its application to Floer type homologies of 3-
manifolds and other 3-manifold invariants form the subject of Chapter 10.
Witten has argued that invariants obtained via Chern–Simons theory be re-
lated to invariants of a string theory. We discuss one particular example of
such a correspondence between Chern–Simons theory and string theory in
the last section. (String theory is expected to provide unification of all four
fundamental forces. This expectation is not yet a reality and the theory (or
its different versions) cannot be regarded as a physical theory. However, it
has led to many interesting developments in mathematics.)

Classical and quantum invariants of 3-manifolds and knots and links in
3-manifolds are considered in Chapter 11. The relation of some of these in-
variants with conformal field theory and TQFT are also indicated there. The
chapter concludes with a section on Khovanov’s categorification of the Jones’
polynomial and its extensions to categorification of other link invariants. The
treatment of some aspects of these theories is facilitated by the use of tech-
niques from analytic (complex) and algebraic geometry. A full treatment of
these would have greatly increased the size of this work. Moreover, excel-
lent monographs covering these areas are available (see, for example, Atiyah
[15], Manin [257], Wells [399]). Therefore, topics requiring extensive use of
techniques from analytic and algebraic geometry are not considered in this
monograph.

There are too many other topics omitted to be listed individually. The
most important is string theory. There are several books that deal with this
still very active topic. For a mathematical treatment see for example, [95,96]
and [9, 212].

The epilogue points out some highlights of the topics considered. We note
that the last three chapters touch upon some areas of active current research
where a final definitive mathematical formulation is not yet available. They
are intended as an introduction to the ever growing list of topics that can be
thought of as belonging to physical mathematics. There are four appendices.
Appendix A is a dictionary of terminology and notation between that used
in physics and in mathematics. Background notes including historical and
biographical notes are contained in Appendix B. The notions of categories
and chain complexes are fundamental in modern mathematics. They are the
subject of Appendix C. The cobordism category originally introduced and
used in Thom’s work is now the basis of axioms for TQFT. The general theory
of chain complexes is basic in the study of any homology theory. Appendix D
contains a brief discussion of operator theory and a more detailed discussion
of the Dirac type operators.
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Remark on References and Notation

Even though the foundations of electromagnetic theory (the prototype of
gauge theories) were firmly in place by the beginning of nineteenth century,
the discovery of its relation to the theory of connections and subsequent
mathematical developments occurred only during the last three decades. As
of this writing field theories remain a very active area of research in math-
ematical physics. However, the mathematical foundations of classical field
theories are now well understood, and these have already led to interesting
new mathematics. But we also use theories such as QFT, supersymmetry, and
string theory for which the precise mathematical structure or experimental
verification is not yet available. We have tried to bring the references up to
date as of June 2009. In addition to the standard texts and monographs we
have also included some books that give an elementary introductory treat-
ment of some topics. We have included an extensive list of original research
papers and review articles that have contributed to our understanding of the
mathematical aspects of physical theories. However, many of the important
results in papers published before 1980 and in the early 1980s are now avail-
able in texts or monographs and hence, in general, are not cited individually.
The references to e-prints and private communication are cited in the text
itself and are not included in the references at the end of the book.

As we remarked earlier, gauge theories and the theory of connections were
developed independently by physicists and mathematicians, and as such have
no standard notation. This is also true of other theories. We have used nota-
tion and terminology that is primarily used in the mathematical literature,
but we have also taken into account the terminology that is most frequently
used in physics. To help the reader we have included in Appendix A a corre-
lation of terminology between physics and mathematics prepared along the
lines of Trautman [378] and [409].
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Chapter 1

Algebra

1.1 Introduction

We suppose that the reader is familiar with basic structures of algebra such
as groups, rings, fields, and vector spaces and their morphisms, as well as the
elements of representation theory of groups. Theory of groups was discovered
by Cauchy. He called it “theory of substitutions.” He found it so exotic that
he is said to have remarked: “It is a beautiful toy, but it will not have any use
in the mathematical sciences.” In fact, quite the opposite was revealed to be
true. The concept of group has proved to be fundamental in all mathematical
sciences. In particular, the theory of Lie groups enjoys wide applicability in
theoretical physics. We will discuss Lie groups in Chapter 3. Springer has
started to reissue the volumes originally published under the general title
“Éléments de mathématique” by Nicholas Bourbaki (see the note in Appendix
B). The volumes dealing with Lie groups and Lie algebras are [57, 56]. They
can be consulted as standard reference works, even though they were written
more than 20 years ago.

In the rest of this chapter we discuss some algebraic structure that may
not be included in a first year course in algebra. These are some of the
structures that appear in many physical theories. Section 1.2 considers the
general structure of algebras, including graded algebras. Kac–Moody alge-
bras are discussed in Section 1.3. Clifford algebras are introduced in Section
1.4. The gamma matrices in Dirac’s equation for the electron wave function
generate one such special Clifford algebra. Section 1.5 is devoted to the classi-
fication of finite simple groups and in particular to some strange coincidences
dubbed “monstrous moonshine” related to the largest sporadic group called
the monster. The quantum dimension of representations of the monster are
encoded in various classical Hauptmoduls. Surprising relations between the
monster and vertex algebras, conformal field theory, and string theory have
emerged, and these remain a very active area of research.

K. Marathe, Topics in Physical Mathematics, DOI 10.1007/978-1-84882-939-8 1, 1
c© Springer-Verlag London Limited 2010
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1.2 Algebras

Let K denote a field of characteristic zero. All the structures considered
in this section are over K, and hence we will often omit explicit reference
to K. In most applications K will be either the field R of real numbers
or the field C of complex numbers. Recall that an algebra A over K (or
simply an algebra) is a vector space with a bilinear function from A × A
to A (multiplication) and denoted by juxtaposition of elements of A. Note
that in general the multiplication in A need not be associative. A is called
an associative algebra (resp., a commutative algebra) if A has a two-
sided multiplicative identity (usually denoted by 1) and the multiplication
is associative (resp., commutative). A vector subspace B of an algebra A is
called a subalgebra if it is an algebra under the product induced on it by the
product on A. A subalgebra I of A is called a left ideal if xI ⊂ I, ∀x ∈ A.
Right ideal and two-sided ideal are defined similarly.

If A, B are algebras, then a map f : A → B which preserves the algebra
structure is called an (algebra) homomorphism; i.e., f is a linear map of the
underlying vector spaces and f(xy) = f(x)f(y), ∀x, y ∈ A. For associative
algebras we also require f(1) = 1. If f has an inverse then the inverse is
also a homomorphism and f is called an isomorphism. A homomorphism
(resp., an isomorphism) f : A → A is called an endomorphism. (resp. an
automorphism). A derivation d : A→ A is a linear map that satisfies the
Leibniz product rule, i.e.,

d(xy) = d(x)y + xd(y), ∀x, y ∈ A.

The set of all derivations of A has a natural vector space structure. However,
the product of two derivations is not a derivation.

Example 1.1 The set of all endomorphisms of a vector space V , denoted by
End(V ) has the natural structure of an associative algebra with multiplication
defined by composition of endomorphisms. A choice of a basis for V allows
one to identify the algebra End(V ) with the algebra of matrices (with the
usual matrix multiplication). Recall that the set Mn(K) of (n × n) matrices
with coefficients from the field K form an associative algebra with the usual
operations of addition and multiplication of matrices. Any subalgebra of this
algebra is called a matrix algebra over the field K.

The set of all automorphisms of a vector space V , denoted by Aut(V ) or
GL(V ), has the natural structure of a group with multiplication defined by
composition of automorphisms. If K = R (resp., K = C) and dim(V ) = n
then GL(V ) can be identified (by choosing a basis for V ) with the group of
invertible real (resp., complex) matrices of order n. These groups contain all
the classical groups (i.e., orthogonal, symplectic, and unitary groups) as
subgroups. The group operations are continuous in the topology on the groups
induced by the standard topology on V (identified with Rn or Cn). This makes
them topological groups. In fact, the classical groups are Lie groups (i.e., they
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are differentiable manifolds and the group operations are differentiable maps).
These groups play a fundamental role in the study of global and local symmetry
properties of physical systems in classical as well as quantum theories. The
tangent space to a Lie group G can be given a natural structure of a Lie
algebra LG. This Lie algebra LG carries most of the local information about
G. All groups with the same Lie algebra are locally isomorphic and can be
obtained as quotients of a unique simply connected group modulo discrete
central subgroups. Thinking of LG as a linearization of G allows one to study
analytic and global properties of G by algebraic properties of LG. (This is
discussed in greater detail in Chapter 3.)

In physical applications, the most extensively used algebra structure is
that of a Lie algebra. It is customary to denote the product of two elements
x, y by the bracket [x, y]. Recall that an algebra g is called a Lie algebra if its
product is skew-symmetric and satisfies the well known Jacobi identity,
i.e.

[x, y] = −[y, x], ∀x, y ∈ g, (1.1)

and
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ g, (1.2)

The skew-symmetry property is equivalent to the following alternating
property of multiplication.

[x, x] = 0, ∀x ∈ g, (1.3)

This property is an immediate consequence of our assumption that the field
K has characteristic zero. We say that the Lie algebra g is m-dimensional if
the underlying vector space is m-dimensional. If Ei , 1 ≤ i ≤ m , is a basis
for the Lie algebra g then we have

[Ej , Ek] = cijkEi,

where we have used the Einstein summation convention of summing over
repeated indices. The constants cijk are called the structure constants of
g with respect to the basis {Ei}. They characterize the Lie algebra g and
satisfy the following relations:

1. cijk = −cikj ,
2. cijkc

l
im + cikmclij + cimjc

l
ik = 0 (Jacobi identity).

The basis {Ei} is called an integral basis if all the structure constants
are integers. A vector subspace h of a Lie algebra g is called a subalgebra
if it is a Lie algebra under the product (i.e., bracket) induced on it by the
product on g. A subalgebra i of g is called an ideal if x ∈ g, y ∈ i implies
that [x, y] ∈ i. A Lie algebra ideal is always two-sided.

Given an associative algebra A, we can define a new product on A that
gives it a Lie algebra structure. The new product, denoted by [ . , . ], is
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defined by
[x, y] := xy − yx , ∀x, y ∈ A. (1.4)

The expression on the right hand side of (1.4) is called the commutator of
x and y in A. It is easy to verify that the new product defined by (1.4) is
skew-symmetric and satisfies the Jacobi identity. We denote this Lie algebra
by Lie(A).

Example 1.2 Let V be a vector space. The Lie algebra obtained by the above
construction from End(V ) is denoted by gl(V ) with multiplication defined by
the commutator of endomorphisms. If K = R (resp., K = C ) and dim(V ) =
n then gl(V ) can be identified (by choosing a basis for V ) with the Lie algebra
of all real (resp., complex) matrices of order n. These Lie algebras contain
all the classical (orthogonal, symplectic, and unitary) Lie algebras as Lie
subalgebras.

Given a Lie algebra g, there exists a unique (up to isomorphism) associa-
tive algebra U(g) called the universal enveloping algebra of g such that
Lie(U(g)) = g.

Example 1.3 Let A be an associative algebra. A derivation of A is a linear
map d : A→ A satisfying the Leibniz rule

d(xy) = xdy + (dx)y, ∀x, y ∈ A.

Let d(A) denote the vector space of all derivations of A. It can be given a
Lie algebra structure by defining the product of two derivations to be their
commutator; i.e.,

[d1, d2] := d1d2 − d2d1, ∀d1, d2 ∈ d(A).

The commutator [g , g] of g with itself is called the derived algebra of g.
The commutator [g , g] is an ideal of g which is zero if and only if g is abelian.
By induction one defines the derived series g(k), k ∈ N, by

g(1) := [g , g] and g(k) := [g(k−1) , g(k−1)], k > 1.

A Lie algebra g is called solvable if g(k) = 0, for some k ∈ N. The lower
central series gk, k ∈ N, is defined by

g1 := [g , g] and gk := [g(k−1) , g], k > 1.

A Lie algebra g is called nilpotent if gk = 0 for some k ∈ N. Definitions
given earlier for morphisms of algebras have their natural counterparts for
Lie algebras. A representation of a Lie algebra g on a vector space V
is a homomorphism ρ : g → gl(V ). The vector space V becomes a left g-
module under the action of g on V induced by ρ. Conversely, given a Lie
algebra module V we can obtain the representation ρ of the Lie algebra g
on V . In view of this observation we can use the language of representations
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and modules interchangeably. The dimension of V is called the degree of
the representation. We now recall some basic facts about representations. A
representation is called faithful if ρ is injective (i.e., a monomorphism). A
submodule W of V is a subspace of V that is left invariant under the action
of g on V . It is called an invariant subspace of V . Clearly the zero subspace
and V are invariant subspaces. A representation is called irreducible if zero
and V are its only invariant subspaces. Otherwise, it is called reducible. A
representation is called fully reducible if V is a direct sum of irreducible
g-modules.

Given an element x in a Lie algebra L we define the map

adx : L→ L by (ad x)(y) := [x, y], ∀y ∈ L.

It is easy to check that the map ad x is a linear transformation of the vector
space L. The bilinear form on L defined by

〈x, y〉 := Tr(ad x ad y) (1.5)

is called the Killing form of L. We define the adjoint map

ad : L→ gl(L) by ad(x) := ad x, ∀x ∈ L.

A simple calculation shows that the adjoint map is a homomorphism of Lie
algebras. It is called the adjoint representation of L. The kernel of the
adjoint representation is the center Z(L) (i.e., Ker ad = Z(L)). The center
Z(L) := {x ∈ L | [x, y] = 0, ∀y ∈ L} is an ideal of L.

A non-Abelian Lie algebra g is called simple if its only ideals are zero
and itself. A Lie algebra g is called semi-simple if it can be written as
a direct sum of simple Lie algebras. Elie Cartan (1869-1951) obtained a
characterization of semi-simple Lie algebras in terms of their Killing form
called the Cartan criterion. The Cartan criterion states:

A Lie algebra g is semi-simple if and only if its Killing form is non-
degenerate. This is equivalent to saying that the Killing form is an
inner product on g.

The simple summands of a semi-simple Lie algebra g are orthogonal with
respect to the inner product defined by the Killing form. A Lie group G is
called semi-simple (resp., simple) if LG is semi-simple (resp., simple).

The classification of semi-simple Lie groups was initiated by Wilhelm
Killing (1847–1923) at the end of the nineteenth century. It was completed
by E. Cartan at the beginning of the twentieth century. The main tool in this
classification is the classification of finite-dimensional complex, simple Lie al-
gebras. We give a brief discussion of the basic structures used in obtaining this
classification. They are also useful in the general theory of representations.
Let g be a finite dimensional complex, simple Lie algebra. A nilpotent subal-
gebra h of g that is self-centralizing is called a Cartan subalgebra. It can
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be shown that a non-zero Cartan subalgebra exists and is abelian. Any two
Cartan subalgebras are isomorphic. The dimension of a Cartan subalgebra is
an invariant of g. It is called the rank of g. Let h be a Cartan subalgebra and
x ∈ h. Then ad(x) is a diagonalizable linear transformation of g. Moreover,
all these linear transformation are simultaneously diagonalizable. Let h∗ be
the dual vector space of h. For λ ∈ h∗ define the space gλ by

gλ := {x ∈ g | [a, x] = λ(a)x, ∀a ∈ h. (1.6)

We say that λ is a root of g relative to the Cartan subalgebra h if the space
gλ is non-zero. There exist a set of non-zero roots A := {αi, 1 ≤ i ≤ s} such
that

g = h⊕
(⊕s

1
gαi

)
, (1.7)

where each space gαi is one-dimensional. The decomposition of g given in (1.7)
is called a root space decomposition. Let r denote the rank of g (dimension
of h). Then we can find a set B := {βj, 1 ≤ j ≤ r} ⊂ A satisfying the following
properties:

1. B is a basis for the space h∗.
2. Every root in A can be written as an integral linear combination of the

elements of B, i.e.,
αi = kji βj , 1 ≤ i ≤ s.

3. For a given i all the coefficients kji are either in Z+ (non-negative) or are
in Z− (non-positive). In the first case we say that αi is a positive root
(resp. negative root).

If B satisfies the above properties then we say that B is a set of simple
roots of g with respect to the Cartan subalgebra h. The positive and negative
roots are in one-to-one correspondence. Let g+ denote the direct sum of
positive root spaces. The algebra g+ ⊕ h is called the Borel subalgebra
relative to the basis of simple roots B. The classification is carried out by
studying root systems that correspond to distinct (non-isomorphic) simple
Lie algebras.

The finite dimensional complex, simple Lie algebras were classified by
Killing and Cartan into four families of classical algebras and five ex-
ceptional algebras. The classical algebras are isomorphic to subalgebras of
the matrix algebras gl(n, C). Each exceptional Lie algebra is the Lie algebra
of a unique simple Lie group. These Lie groups are called the exceptional
groups. We list the classical Lie algebras, their dimensions, and a matrix
representative for each in Table 1.1.
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Table 1.1 Classical Lie algebras

Type Dimension Matrix algebra
An, n ≥ 1 n(n + 2) sl(n + 1,C)
Bn, n ≥ 2 n(2n + 1) so(2n + 1,C)
Cn, n ≥ 3 n(2n + 1) sp(2n,C)
Dn, n ≥ 4 n(2n− 1) so(2n,C)

The exceptional Lie groups are listed in Table 1.2 in increasing order of
dimension.

Table 1.2 Exceptional Lie groups

Type G2 F4 E6 E7 E8

Dimension 14 52 78 133 248

We conclude this section with a discussion of weights for a finite dimen-
sional g-module V with corresponding representation ρ. Our starting point
is an important theorem due to Hermann Weyl.

Theorem 1.1 If g is a complex semi-simple Lie algebra, then every finite
dimensional representation of g is fully reducible.

It follows from Weyl’s theorem that ρ(x), x ∈ h (h a Cartan subalgebra) is
a diagonalizable linear transformation of V . Moreover, all these linear trans-
formations are simultaneously diagonalizable. We say that λ ∈ h∗ is a weight
of the g-module V if the space

Vλ := {v ∈ V | ρ(a)v = λ(a)v}, ∀a ∈ h (1.8)

is non-zero. It can be shown that the space V is the direct sum of all the
weight spaces Vλ and that gαVλ ⊂ Vα+λ whenever α is a root. A non-zero
vector v0 ∈ Vλ is called a highest weight vector or a vacuum vector if
gαv0 = 0 for all positive roots α of g. The weight λ is then called a highest
weight. The highest weight λ is maximal with respect to the partial order on
h∗ defined by μ > ν if μ−ν is a sum of positive roots. It is easy to check that
the highest weight vector is a simultaneous eigenvector of the Borel algebra
of g. Given a vacuum vector v0 we can generate an irreducible submodule V0

of V as follows. Let {α1, . . . , αk} be a finite collection of negative roots (not
necessarily distinct). Let Vo be the vector space generated by the vectors
(gα1 . . . gαk

)v0 obtained by the successive application of the negative root
spaces to v0. It can be shown that V0 is an irreducible submodule of V . In
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particular, if V itself is irreducible, then we have V0 = V . The module V0 is
called the highest weight module and the corresponding representation is
called the highest weight representation. A highest weight vector always
exists for a finite-dimensional representation of a semi-simple Lie algebra. It
plays a fundamental role in the theory of such representations. In the following
example we describe all the irreducible representations of the simple complex
Lie algebra sl(2,C) as highest weight representations.

Example 1.4 The Lie algebra sl(2,C) consists of 2-by-2 complex matrices
with trace zero. A standard basis for it is given by the elements h, e, f defined
by

h :=
(

1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
.

The commutators of the basis elements are given by

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

We note that the basis and commutators are valid for sl(2, K) for any field
K. The Cartan subalgebra is one dimensional and is generated by h. The
following theorem gives complete information about the finite dimensional
irreducible representations of the Lie algebra sl(2,C).

Theorem 1.2 For each n ∈ N there exists a unique (up to isomorphism)
irreducible representation ρn of sl(2,C) on a complex vector space Vn of di-
mension n. There exists a basis {v0, . . . , vn−1} of Vn consisting of eigenvec-
tors of ρn(h) with the vacuum vector (highest weight vector) v0 satisfying the
following properties:

1. h.vi = (n− 1− 2i)vi,
2. e.vi = (n− i)vi−1,
3. f.vi = vi+1,

where we have put ρn(x)v = x.v, x ∈ sl(2,C), v ∈ V , v−1 = 0 = vn and where
0 ≤ i ≤ n− 1.

1.2.1 Graded Algebras

Graded algebraic structures appear naturally in many mathematical and
physical theories. We shall restrict our considerations only to Z- and Z2-
gradings. The most basic such structure is that of a graded vector space
which we now describe. Let V be a vector space. We say that V is Z-graded
(resp., Z2-graded) if V is the direct sum of vector subspaces Vi, indexed by
the integers (resp., integers mod 2), i.e.

V =
⊕
i∈Z

Vi (resp., V = V0 ⊕ V1).
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The elements of Vi are said to be homogeneous of degree i. In the case of
Z2-grading it is customary to call the elements of V0 (resp. V1) even (resp.
odd). If V and W are two Z-graded vector spaces, a linear transformation
f : V → W is said to be graded of degree k if f(Vi) ⊂ Wi+k, ∀i ∈ Z. If
V and W are Z2-graded, then a linear map f : V →W is said to be even if
f(Vi) ⊂Wi, i ∈ Z2, and odd if f(Vi) ⊂ Wi+1, i ∈ Z2. An algebra A is said
to be Z-graded if A is Z-graded as a vector space; i.e.

A =
⊕
i∈Z

Ai

and AiAj ⊂ Ai+j , ∀i, j ∈ Z. An ideal I ⊂ A is called a homogeneous ideal
if

I =
⊕
i∈Z

(I ∩Ai).

Other algebraic structures (such as Lie, commutative, etc.) have their
graded counterparts. It was Hermann Grassmann (1809–1877) who
first defined the structure of an exterior algebra associated to a finite-
dimensional vector space. Grassmann’s work was well ahead of his time and
did not receive recognition for a long time. In the preface to his 1862 book he
wrote: [T]here will come a time when these ideas, perhaps in a new form, will
enter into contemporary developments. Indeed, Grassmann’s expectation has
come to fruition and his work has found many applications in mathematics
and physics. An example of a Z-graded algebra is given by the exterior algebra
of differential forms Λ(M) of a manifold M if we define Λi(M) = 0 for i < 0.
It is called the Grassmann algebra of the manifold M . (We discuss mani-
folds and their associated structures in Chapter 3.) The exterior differential
d is a graded linear transformation of degree 1 of Λ(M). The transformation
d is nilpotent of order 2, i.e., it satisfies the condition d2 = 0. A graded
algebra together with a differential d (i.e. a graded linear transformation d
of degree 1 satisfying the Leibniz rule and d2 = 0) is called a differential
graded algebra or DGA. Thus the Grassmann algebra is an example of
a DGA. Similarly, we can define a differential graded Lie algebra, or
DGLA. The DGA is a special case of the A∞ algebra, also known as strong
homotopy associative algebra. Similarly, the DGLA is a special case of an
infinite-dimensional algebra called the L∞-algebra. These algebras appear in
open-closed string field theory.

The graded or quantum dimension of a Z-graded vector space V is
defined by

dimq V =
∑
i∈Z

qi(dim(Vi)) ,

where q is a formal variable.
If A and B are graded algebras, their graded tensor product, denoted

A⊗̂B, is the tensor product A ⊗ B of A and B as vector spaces with the
product defined on the homogeneous elements by
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(u⊗ v)(x ⊗ y) = (−1)ijux⊗ vy, v ∈ Bi , x ∈ Aj .

A similar definition can be given for Z2-graded algebras. In the physics liter-
ature a Z2-graded algebra is referred to as a superalgebra. For example,
a (complex) Lie superalgebra is a Z2-graded vector space g = g0⊕ g1 with
a product satisfying the superanticommutativity and super Jacobi identity.

An important example of a Lie superalgebra is the space of all linear en-
domorphisms of a Z2-graded vector space; an important example of graded
algebras is provided by Vertex operator algebras, or VOA, introduced
in [139]. This definition of vertex operator algebras was motivated by the
Conway–Norton conjectures about properties of the monster sporadic group.
There are now a number of variants of these algebras, including the vertex
algebras and the closely related Lie algebras now called the Borcherds
algebras introduced by Richard Ewen Borcherds in his proof of the
Conway-Norton conjectures. (Borcherds received a Fields Medal at the ICM
1998 in Berlin for his work in algebra, the theory of automorphic forms and
mathematical physics.) These vertex algebras are closely related to algebras
arising in conformal field theory and string theory. Vertex operators arise in 2-
dimensional Euclidean conformal field theory from field insertions at marked
points on a Riemann surface. A definition of VOA is obtained by isolating the
mathematical properties related to interactions represented by operator prod-
uct expansion in chiral CFT. An algebraic description of such interactions and
their products codify these new graded algebras. These infinite-dimensional
symmetry algebras were first introduced in [37]. Borcherds definition of ver-
tex algebras is closely related to these. These algebras are also expected to
play a role in the study of the geometric Langlands conjecture. We discuss
the VOA in more detail in the last section.

1.3 Kac–Moody Algebras

Kac–Moody algebras were discovered independently in 1968 by Victor Kac
and Robert Moody. These algebras generalize the notion of finite-dimensional
semi-simple Lie algebras. Many properties related to the structure of Lie alge-
bras and their representations have counterparts in the theory of Kac–Moody
algebras. In fact, they are usually defined via a generalization of the Cartan
matrix associated to a Lie algebra. We restrict ourselves to a special class
of Kac–Moody algebras that arise in many physical and mathematical situa-
tions, such as conformal field theory, exactly solvable statistical models, and
combinatorial identities (e.g., Rogers–Ramanujan and Macdonald identities).
They are called affine algebras.

Let g be a Lie algebra with a symmetric bilinear form 〈 · , · 〉. This form
is said to be g-invariant (or simply invariant) if
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〈[x, y], z〉 = 〈x, [y, z]〉, ∀x, y, z ∈ g. (1.9)

In the rest of this section we assume that a symmetric, g-invariant, bilinear
form on g is given. Let t be a formal variable and let K[t, t−1] be the algebra
of Laurent polynomials in t. Then the vector space gt defined by

gt := g⊕K[t, t−1] (1.10)

can be given a Lie algebra structure by defining the product

[x⊕ tm, y ⊕ tn] := [x, y]⊕ tm+n, for x, y ∈ g, m, n ∈ Z. (1.11)

When the base field K = C, the algebra gt can be regarded as the Lie algebra
of polynomial maps of the unit circle into g. For this reason the algebra gt is
called the loop algebra of g. The affine Kac–Moody algebra, or simply
the affine algebra, is a central extension of gt. Let c be another formal
variable. It is called the central charge in physics literature. Using the one-
dimensional space Kc we obtain a central extension gt,c of gt defined by

gt,c := g⊕K[t, t−1]⊕Kc , (1.12)

where c is taken as a central element. The product on gt,c is defined by
extending the product on gt defined in (1.11) as follows:

[x⊕ tm, y ⊕ tn] := [x, y]⊕ tm+n + 〈x, y〉mδm,−nc , for x, y ∈ g . (1.13)

The choice of c as a central element means that c commutes with every
element of the algebra gt,c. The algebra gt,c, with product defined by extend-
ing (1.13) by linearity, is called the affine Lie algebra, or simply the affine
algebra associated to the Lie algebra g with central charge c and the given
invariant bilinear form. Similarly, we can define the affine algebra g√t,c by
letting m, n take half-integer values in the definition (1.13).

Example 1.5 (Virasoro algebra) Applying the construction of example (1.3)
to the associative algebra K[t, t−1], we obtain the Lie algebra of its derivations
d(K[t, t−1]). It can be shown that this Lie algebra has a basis dn, n ∈ Z,
defined by

dn(f(t)) := −tn+1f ′(t), ∀f ∈ K[t, t−1], (1.14)

where f ′(t) is the derivative of the Laurent polynomial f(t). The product of
the basis elements is given by the formula

[dm, dn] = (m− n)dm+n, ∀m, n ∈ Z. (1.15)

The algebra K[t, t−1] has a unique nontrivial one-dimensional central ex-
tension (up to isomorphism). It is called the Virasoro algebra and is de-
noted by v. It is generated by the central element (also called the central
charge C) and the elements Ln corresponding to the elements dn defined
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above. The product in v is given by

[Lm, Ln] = (m− n)Lm+n +
1
12

(m3 −m)δm,−nC, ∀m, n ∈ Z. (1.16)

The constant 1/12 is chosen for physical reasons. It can be replaced by an
arbitrary complex constant giving an isomorphic algebra. We note that the
central term is zero when m = −1, 0, 1. Thus the central extension is trivial
when restricted to the subalgebra of v generated by the elements L−1, L0, and
L1. This subalgebra is denoted by p and it can be shown to be isomorphic to
the Lie algebra sl(2, K) of matrices of order 2 and trace zero. The Virasoro
algebra is an example of an infinite-dimensional Lie algebra. It was defined
by physicists in their study of conformal field theory for the case K = C.
Gelfand and Fuchs have shown that the Virasoro algebra can be realized as a
central extension of the algebra of polynomial vector fields on the unit circle
S1 by identifying the derivation dn used in our definition with a vector field
on S1.

An infinite-dimensional algebra does not, in general, have a highest weight
representation. However, the Virasoro algebra does admit such modules. We
now describe its construction. Let U denote the universal enveloping algebra
of the Virasoro algebra v defined by the relations (1.16) and let (h, c) ∈ C2

be a given pair of complex numbers. Let I be the left ideal in U generated
by L0 − hι, C − cι, Li, i ∈ N, where ι denotes the identity. Let V (h, c) be
the quotient of U by the ideal I and let v ∈ V (h, c) be the class of the
identity (i.e., v = ι + I). Then it can be shown that V (h, c) is a highest
weight module for v with highest weight vector v and highest weight (h, c)
satisfying the following conditions:

1. L0v = hv, Cv = cv, Liv = 0, i ∈ N;
2. the set of vectors Li1 . . . Likv, where i1, . . . , ik is a decreasing sequence of

negative integers, generates V (h, c).

Any v-module V satisfying the above two conditions with a nonzero vector v
defines a highest weight module with highest weight (h, c). A highest weight
module is called a Verma module if the vectors in condition 2 form a basis
of V . It can be shown that this is the case for the module V (h, c) constructed
above. Thus V (h, c) is a Verma module for the Virasoro algebra v. Moreover,
every highest weight module is a quotient of V (h, c) by a submodule with the
same highest weight (h, c). Verma modules have many other interesting prop-
erties. For example, their homomorphisms are closely related to the invariant
differential operators on homogeneous manifolds obtained as quotients of Lie
groups by their subgroups. Verma modules were defined by D. N. Verma1 in
his study of representations of semi-simple Lie algebras over forty years ago.

Example 1.6 (Heisenberg algebras) In classical mechanics the state of
a particle at time t is given by its position and momentum vectors (q, p)

1 My long-time friend whose enthusiasm and interest in mathematics is still strong.
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in Euclidean space. The evolution of the system is governed by Hamilton’s
equations (see Chapter 3). Heisenberg’s fundamental idea for quantization of
such a system was to take the components of q and p to be operators on a
Hilbert space satisfying the canonical commutation relations

[qj , qm] = 0, [pj , pm] = 0, [pj, qm] = −i�δj,m, 1 ≤ j, m ≤ n,

where n is the dimension of the Euclidean space. Heisenberg’s uncertainty
principle is closely related to the noncommuting of the position and its con-
jugate momentum. If −i�.1 is replaced by a basis vector c taken as a central
element, then we obtain a (2n + 1)-dimensional real Lie algebra with basis
qj , pj , c. This algebra is denoted by hn and is called a Heisenberg algebra
with central element c. This Heisenberg algebra is isomorphic to an algebra
of upper triangular matrices. If we define an index set I to be the set of the
first n natural numbers, then the algebra hn can be called the (I, c)-Heisenberg
algebra. This definition can be generalized to arbitrary index set I. If I is in-
finite we get an infinite-dimensional Heisenberg algebra. Another example of
an infinite-dimensional Heisenberg algebra is given by a Lie algebra with a
basis an, n ∈ Z, together with the central element b. The product of the basis
elements is given by

[am, an] = mδm,−nb, [am, b] = 0, ∀m, n ∈ Z. (1.17)

This Heisenberg algebra is also referred to as the oscillator algebra. It
arises as an algebra of operators on the bosonic Fock space F . The space
F is defined as the space of complex polynomials in infinitely many variables
zi, i ∈ N. The operators on F defined by

an :=
∂

∂zn
, a−n := nzn, ∀n ∈ N, and a0 = id,

together with the central element b generate an algebra isomorphic to the
Heisenberg algebra. It is also possible to generate a copy of the Virasoro al-
gebra by a suitable combination of the operators defined above.

The original Heisenberg commutation relations were applied successfully in
producing the spectrum of the quantum harmonic oscillator (see Appendix
B) and the hydrogen atom, even though the Hilbert space on which the
operators act was not specified. The following theorem explains why this did
not cause any problems.

Theorem 1.3 (Stone–von Neumann theorem) Fix a nonzero scalar with
which the central element c acts. Then there is a unique irreducible represen-
tation of the Heisenberg algebra hn.

The experimental agreement of the spectra resulted in the early acceptance
of quantum mechanics based on canonical quantization. It is important to
note that canonical quantization does not apply to all classical systems and
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there is no method of quantizing a general classical mechanical system at this
time.

1.4 Clifford Algebras

Important examples of graded and superalgebras are furnished by the Clifford
algebras of pseudo-inner product spaces. In defining these algebras, William
Kingdon Clifford (1845–1879) generalized Grassmann’s work on exterior al-
gebras. Clifford algebras arise in many physical applications. In particular,
their relation to the Pauli spin matrices and the Dirac operator on spinorial
spaces and to the Dirac γ matrices is well known. Let V be a real vector
space and g : V × V → R a bilinear symmetric map. A Clifford map for
(V, g) is a pair (A, φ), where A is an associative algebra with unit 1A (often
denoted simply by 1) and φ : V → A a linear map satisfying the condition

φ(u)φ(v) + φ(v)φ(u) = 2g(u, v)1A, ∀u, v ∈ V.

Such pairs are the objects of a category whose morphisms are, for two objects
(A, φ), (B, ψ), the algebra homomorphisms h : A → B such that ψ = h ◦ φ;
i.e., the following diagram commutes:

V A�φ

B

ψ
�

�
�
��

h
�

�
�

��

This category has a universal initial object (C(V, g), γ). The algebra C(V, g),
or simply C(V ) is called the Clifford algebra of (V, g). In other words given
any Clifford map (A, φ), there is a unique algebra homomorphism Φ : C(V )→
A such that φ = Φ ◦ γ, i.e. the following diagram commutes.

V C(V )�γ

A

φ
�

�
�
��

Φ
�

�
�

��

There are several ways of constructing a model for C(V ). For example, let

T (V ) =
⊕
r≥0

T r(V )

and let J be the two-sided ideal generated by elements of the type
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u⊗ v + v ⊗ u− 2g(u, v)1T (V ), ∀u, v ∈ V.

We note that every element of J can be written as a finite sum
∑
i

λi ⊗ (vi ⊗ vi − g(vi, vi)1)⊗ μi,

where λi, μi ∈ T (V ) and vi ∈ V . Then we define C(V ) to be the quotient
T (V )/J and γ = π ◦ ι, where ι : V → T (V ) is the canonical injection and
π : T (V ) → T (V )/J is the canonical projection. C(V ) is generated by the
elements of γ(V ). The tensor multiplication on T (V ) induces a multiplication
on the quotient algebra C(V ) that is uniquely determined by the products

γ(u)γ(v) = u⊗ v + J, ∀u, v ∈ V.

We often write γ(v) ∈ C(V ) as simply v. Then an element of C(V ) can
be written as a finite sum of products of elements v ∈ V . In particular,
v2 = v ⊗ v + J = g(v, v)1C(V ) and, by polarization,

uv + vu = 2g(u, v)1C(V ), (1.18)

which shows that γ is a Clifford map. We observe that the tensor algebra
T (V ) is Z-graded but the ideal J is not homogeneous. Therefore, the Z-
grading does not pass to the Clifford algebra. However, there exists a natural
Z2-grading on C(V ), which makes it into a superalgebra. This Z2-grading is
defined as follows. Let C0(V ) (resp., C1(V )) be the vector subspace of C(V )
generated by the products of an even (resp., odd) number of elements of V .
Then

C(V ) = C0(V )⊕ C1(V )

and the elements of C0(V ) (resp. C1(V )) are the even (resp. odd) elements
of C(V ). We observe that, when g = 0, C(V ) reduces to the exterior algebra
Λ(V ) of V . An important result is given by the following theorem.

Theorem 1.4 Let (V, g), (V ′, g′) be two pseudo-inner product spaces. Then
there exists a natural Clifford algebra isomorphism

C(V ⊕ V ′, g ⊕ g′) ∼= C(V, g)⊗̂C(V ′, g′),

where ⊗̂ is the graded tensor product of Z2-graded algebras.
Proof: Let γ : V → C(V ), γ′ : V ′ → C(V ′) be the canonical inclusion map
and define

γ̃ : V ⊕ V ′ → C(V )⊗̂C(V ′)

by
γ̃(v, v′) = γ(v)⊗ 1 + 1⊗ γ′(v′).

It is easy to check that γ̃(v, v′)2 = [g(v, v) + g′(v′, v′)]1 and hence by the
universal property of Clifford algebras γ̃ induces an algebra homomorphism
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ψ : C(V ⊕ V ′)→ C(V )⊗̂C(V ′).

It can be shown that ψ is a Clifford algebra isomorphism (see M. Karoubi
[216] for further details). ��

Infinite-dimensional Clifford algebras have been studied and applied to the
problem of describing the quantization of gauge fields and BRST cohomology
in [236]. The structure of finite-dimensional Clifford algebras is well known
and has numerous applications in mathematics as well as in physics. We now
describe these algebras in some detail.

Recall that a subspace U ⊂ V is called g-isotropic or simply isotropic if
g|U = 0. Factoring out the maximal isotropic subspace of V , we can restrict
ourselves to the case when g is non-degenerate (i.e., g(x, y) = 0, ∀x ∈ V
implies y = 0). In the finite-dimensional case a pseudo-inner product space
(V, g), with pseudo-metric or pseudo-inner product g of signature
(k, n−k), is isometric to (Rn, gk), where gk is the canonical pseudo-metric on
Rn of index n−k. We denote by C(k, n−k) the Clifford algebra C(Rn, gk).
Let {ei | i = 1, . . . , n} be a gk-orthonormal basis of Rn. To emphasize the
Clifford algebra aspect we denote the images γ(ei) by γi; this is also in accord
with the notation used in the physical literature. Then the Clifford algebra
C(k, n− k) has a basis consisting of 1 and the products

γi1γi2 · · · γir , 1 ≤ i1 < i2 < · · · < ir ≤ n,

where r = 1, . . . , n and hence has dimension 2n. The element γ1γ2 · · ·γn is
usually denoted by γn+1. From equation (1.18) it follows that the product is
subject to the relations

γ2
i = 1, i = 1, . . . , k , γ2

j = −1, j = k + 1, . . . , n (1.19)

and
γiγj = −γjγi, ∀ i �= j. (1.20)

Conversely, the product is completely determined by these relations. In phys-
ical applications one often starts with matrices satisfying the product rela-
tions (1.19) to construct various Clifford algebras. In particular, starting with
the Pauli spin matrices one can construct various Clifford algebras as is
shown below. Recall that the Pauli spin matrices are the complex 2× 2 ma-
trices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Taking γ1 = σ1, γ2 = iσ2, we observe that I, γ1, γ2, γ1γ2 = −σ3 form a basis
of M2(R). The resulting algebra is isomorphic to the Clifford algebra C(1, 1).
If on the other hand we choose γ1 = σ1, γ2 = σ3, then I, γ1, γ2, γ1γ2 =
−iσ2 is a basis of M2(R). The resulting algebra is isomorphic to the Clifford
algebra C(2, 0). Thus, we have two non-isomorphic Clifford algebras with the
same underlying vector space. Taking γ1 = iσ1, γ2 = iσ2, we obtain the



1.4 Clifford Algebras 17

Clifford algebra C(0, 2) with basis I, γ1, γ2, γ1γ2 = −iσ3. It is easy to verify
that C(0, 2) ∼= H. Consider now the case C(m, n) where m + n = 2p. Then
(γ2p+1)2 = (−1)n+p1. The following theorem is useful for the construction of
Clifford algebras.

Theorem 1.5 Let m + n = 2p; then we have the isomorphisms

C(m, n)⊗ C(m′, n′) ∼= C(m + m′, n + n′) if (−1)n+p = 1, (1.21)

C(m, n)⊗ C(m′, n′) ∼= C(m + n′, n + m′) if (−1)n+p = −1. (1.22)

Proof: Consider the set

B = {γi ⊗ 1′, γ2p+1 ⊗ γj}, i = 1, . . . , m + n, j = 1, . . . , m′ + n′.

Observe that
(γi ⊗ 1′)2 = (1⊗ 1′)g(ei, ei),

(γ2p+1 ⊗ γj)2 = (−1)n+p(1⊗ 1′)g(ej , ej)

and that different elements of B anticommute. The number of elements of
B whose square is −1 ⊗ 1′ is n + n′ (resp., n + m′) if (−1)n+p = 1 (resp.,
(−1)n+p = −1). If (−1)n+p = 1, consider the map

φ : Rn+m ⊕Rn′+m′ → C(m, n)⊗ C(m′, n′)

such that
φ(v, v′) = v ⊗ 1 + γ2p+1 ⊗ v′.

By reasoning similar to that in the proof of Theorem (1.4) it can be shown
that φ induces an isomorphism of C(m+m′, n+n′) with C(m, n)⊗C(m′, n′).
This proves (1.21). Similar reasoning, in the case that (−1)n+p = −1, estab-
lishes the isomorphism indicated in (1.22). ��

The theorem (1.5) and the structure of matrix algebras lead to the iso-
morphism

C(p + n, q + n) ∼= C(p, q)⊗M2n(R) ∼= M2n(C(p, q)), (1.23)

where Mk(A) is the algebra of k× k-matrices with coefficients in the algebra
A. In particular we have

C(n, n) ∼= M2n(R), (1.24)

C(p, q) ∼= C(p− q, 0)⊗M2q(R), if p > q (1.25)

and
C(p, q) ∼= C(0, q − p)⊗M2p(R), if p < q. (1.26)

Example 1.7 In this example we consider the important special case of the
Clifford algebra C(p, q) where p = 3 and q = 1. Our discussion is based on
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the isomorphism
C(3, 1) ∼= C(2, 0)⊗ C(1, 1).

The generating elements of C(3, 1) correspond to a representation of the clas-
sical Dirac matrices. From the construction outlined above we obtain the fol-
lowing well-known expressions for the Dirac matrices in terms of the Pauli
spin matrices.

γ1 = σ2 ⊗ σ2, γ2 = σ3 ⊗ 1, γ3 = −σ1 ⊗ 1, γ4 = iσ2 ⊗ σ1.

They are referred to as the real representation or the Majorana repre-
sentation of the Dirac γ matrices. Let M denote the Minkowski space of
signature (3, 1) with coordinates (x1, x2, x3, x4) and let ∂i denote the partial
derivative with respect to xi. Then the Dirac operator D is defined by

D := γ1∂1 + γ2∂2 + γ3∂3 + γ4∂4 (1.27)

It acts on wave functions ψ : M → C4. The Dirac equation for a free
electron is then given by Dψ = mψ, where m is the mass of the electron (we
have set the velocity of light in vacuum and the Planck’s constant each to 1).
This equation is invariant under Lorentz transformation if ψ transforms as a
4-component spinor. Thus the Dirac equation is a relativistic equation. Dirac
operator is a first order differential operator. We will discuss it and other
differential operators in Appendix D. Using the properties of the γ matrices
one can show that the square of the Dirac operator is given by

D2 = ∂2
1 + ∂2

2 + ∂2
3 − ∂2

4 . (1.28)

This operator is the well known D’Alembertian or the wave operator. It
was in attempting to find a square root of this operator that Dirac discovered
the γ matrices and his operator. For an electron moving in an electromagnetic
field the partial derivatives are replaced by covariant derivatives by minimal
coupling to the electromagnetic gauge potential. This equation also admits a
solution where the particle has the same mass as the electron but positive
charge of the same magnitude as the electron charge. This particle, called the
positron was the first experimentally discovered anti-particle. It is known
that every charged fundamental particle has its anti-particle partner.

Another representation which is not real and is frequently used is the fol-
lowing:

γ1 = σ2 ⊗ σ1, γ2 = σ2 ⊗ σ2, γ3 = σ2 ⊗ σ3, γ4 = −iσ3 ⊗ 1.

A systematic development of the theory of spinors was given by E. Cartan in
[71]. He obtained the expression γi∂iξ for the Dirac operator acting on the
spinor ξ in Minkowski space. We give below these γ matrices in block matrix
form:
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γ1 =
(

θ σ3

σ3 θ

)
, γ2 =

(
θ iI2

−iI2 θ

)
, γ3 =

(
θ σ1

σ1 θ

)
, γ4 =

(
θ −iσ2

−iσ2 θ

)
,

where θ is the zero matrix and I2 is the identity matrix. The components of
the Cartan spinor ξ are linear combinations of the components of the Dirac
spinor ψ. Substituting these in Cartan’s expression of the Dirac operator we
obtain the expression of the operator used in Dirac’s equation for an electron
in an electromagnetic field. For further details see the classical work of E.
Cartan [71] and the contemporary book by Friedrich [144].

Using the algebras C(0, 2), C(2, 0) and the isomorphisms of (1.21), (1.22),
and their special cases discussed after that theorem, we obtain the following
periodicity relations

C(n + 8, 0) ∼= C(n, 0)⊗M16(R), (1.29)

C(0, n + 8) ∼= C(0, n)⊗M16(R). (1.30)

These periodicity relations of Clifford algebras can be used to prove the Bott
periodicity theorem for stable real homotopy via K-theory. Similar results
also hold for the complex case. Thus, we can consider these periodicity rela-
tions as a version of Bott periodicity. From the periodicity relations of Clifford
algebras, it follows that the construction of all real Clifford algebras can be
obtained by using the relations in the following table.

Table 1.3 Real Clifford algebras

n C(n, 0) C(0, n)
0 R R
1 R⊕R C
2 M2(R) H
3 M2(C) H⊕H
4 M2(H) M2(H)
5 M2(H)⊕M2(H) M4(C)
6 M4(H) M8(R)
7 M8(C) M8(R)⊕M8(R)
8 M16(R) M16(R)
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1.5 Hopf Algebras

Let A be an algebra with unit 1A over a commutative ring K with unit 1.
Denote by m : A × A → A, the multiplication in A and by I : A → A, the
identity homomorphism. Let (Δ, ε, s) denote the K-linear homomorphisms

Δ : A→ A⊗A, ε : A→ K, s : A→ A.

A quadruple (A, Δ, ε, s) or simply A when (Δ, ε, σ) are understood, is
called a Hopf algebra if the following conditions are satisfied:

HA1. (I ⊗Δ)Δ = (Δ⊗ I)Δ,
HA2. m(I ⊗ σ)Δ = m(σ ⊗ I)Δ,
HA3. (I ⊗ ε)Δ = (ε⊗ I)Δ = I .

Note that in the above conditions we have used the identification

(A⊗A)⊗A = A⊗ (A⊗ A),

via the natural isomorphism

(a⊗ b)⊗ c �→ a⊗ (b⊗ c), ∀a, b, c ∈ A

and
A⊗K = K ⊗A = A,

via the isomorphisms

a⊗ 1 �→ 1⊗ a �→ a , ∀a ∈ A.

The map Δ is called the co-multiplication. The map ε is called the co-unit
and the map σ is called the antipode. We define the map P : A⊗A→ A⊗A
by

P (a⊗ b) = b⊗ a, ∀a, b ∈ A.

The map P is an isomorphism called the flip. The definition of A implies
that the antipode σ is an anti-automorphism of both the algebra and the
coalgebra structures on A.

Define opposite co-multiplication Δ′ in A by Δ′ := P ◦Δ.

Definition 1.1 Let R be an invertible element of A ⊗ A. Define elements
R12, R23, R13 ∈ A⊗A⊗A by

R12 = R⊗ I, R23 = I ⊗R, R13 = (I ⊗ P )R12 = (P ⊗ I)R23.

The pair (A, R) is called a quasitriangular Hopf algebra if the following
conditions are satisfied:

QHA1. Δ′(a) = RΔ(a)R−1, ∀a ∈ A,
QHA2. (I ⊗Δ)(R) = R13R12,
QHA3. (Δ⊗ I)(R) = R13R23.
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The matrix R of the above definition is called the universal R-matrix of
A. The R-matrices satisfy the Yang–Baxter equation

R12R13R23 = R23R13R12.

There are a number of other special Hopf algebras such as ribbon Hopf alge-
bras and modular Hopf algebras. Associated with each Hopf algebra there is
the category of its representations. Such categories are at the heart of Atiyah–
Segal axioms for TQFT. These and other related structures are playing an
increasingly important role in our understanding of various physical theories
such as conformal field theories and statistical mechanics and their relation
to invariants of low-dimensional manifolds. An excellent reference for this
material is Turaev’s book [381].

1.5.1 Quantum Groups

Quantum groups were introduced independently by Drinfeld and Jimbo. They
were to be used as tools to produce solutions of Yang–Baxter equations, which
arise in the theory of integrable models in statistical mechanics. Since then
quantum groups have played a fundamental role in the precise mathematical
formulation of invariants of links, and 3-manifolds obtained by physical meth-
ods applied to Chern–Simons gauge theory. The results obtained are topo-
logical. In view of this, topologists refer to this area as quantum topology.
There are now several different approaches and corresponding definitions of
quantum groups. We give below a definition of the quantum group associated
to a simple complex Lie algebra in terms of a deformation of its universal
enveloping algebra.

Definition 1.2 Let g denote a simple complex Lie algebra. The quantum
group Uq(g) is a Hopf algebra obtained by deformation of the universal en-
veloping algebra U(g) of the Lie algebra g by a formal parameter q. In the
applications we have in mind, we take q to be an rth root of unity for r > 2.
We call these quantum groups at roots of unity. They are closely related
to modular categories and three-dimensional TQFT.

The general definition of a quantum group is rather long. We will consider
in detail the case when g = sl(2,C) in our study of quantum invariants of
links and 3-manifolds in Chapter 11.

1.6 Monstrous Moonshine

As evidence for the existence of the largest sporadic simple group F1 pre-
dicted in 1973 by Fischer and Griess mounted, several scientists put forth
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conjectures that this exceptional group should have relations with other ar-
eas of mathematics and should even appear in some natural phenomena.
The results that have poured in since then seem to justify this early assess-
ment. Some strange coincidences noticed first by McKay and Thompson were
investigated by Conway and Norton. The latter researchers called these unbe-
lievable set of conjectures “monstrous moonshine” and the Fischer–Griess
group F1 the monster and denoted it by M. Their paper [82] appeared in
the Bulletin of the London Mathematical Society in 1979. The same issue of
the Bulletin contained three papers by Thompson [372, 370, 371] discussing
his observations of some numerology between the Fischer–Griess monster and
the elliptic modular functions and formulating his conjecture about the rela-
tion of the characters of the monster and Hauptmoduls for various modular
groups. He also showed that there is at most one group that satisfies the
properties expected of F1 and has a complex, irreducible representation of
degree 196,883 = 47 · 59 · 71 (47, 59 and 71 are the three largest prime divi-
sors of the order of the monster group). Conway and Norton had conjectured
earlier that the monster should have a complex, irreducible representation of
degree 196,883. Based on this conjecture, Fischer, Livingstone, and Thorne
(Birmingham notes 1978, unpublished) computed the entire character table
of the monster.

The existence and uniqueness of the monster was the last piece in the clas-
sification of finite simple groups. This classification is arguably the greatest
achievement of twentieth century mathematics. In fact, it is unique in the
history of mathematics, since its completion was the result of hundreds of
mathematicians working in many countries around the world for over a quar-
ter century. This global initiative was launched by Daniel Gorenstein and
we will use his book [159] as a general reference for this section. Further de-
tails and references to works mentioned here may be found in [159]. Another
important resource for this section is Mark Ronan’s book [327] Symmetry
and the monster. The book is written in a nontechnical language and yet
conveys the excitement of a great mathematical discovery usually accessible
only to professional mathematicians (see also [262]). We describe the high-
lights of this fascinating story below. Finite simple groups are discussed in
the subsections 1.6.1. Subsection 1.6.2 introduces modular groups and modu-
lar functions. Numerology between the monster and Hauptmoduls is given in
subsection 1.6.3. The moonshine conjectures are also stated here. Indication
of the proof of the moonshine conjectures using infinite-dimensional algebras
such as the vertex operator algebra is given in subsection 1.6.4. This proof is
inspired in part by structures arising in theoretical physics, for example, in
conformal field theory and string theory.
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1.6.1 Finite Simple Groups

Recall that a group is called simple if it has no proper nontrivial normal
subgroup. Thus, an abelian group is simple if and only if it is isomorphic to
one of the groups Zp, for p a prime number. This is the simplest example
of an infinite family of finite simple groups. Another infinite family of finite
simple groups is the family of alternating groups An, n > 4, which are studied
in a first course in algebra. These two families were known in the nineteenth
century. The last of the families of finite groups, called groups of Lie type,
were defined by Chevalley in the mid twentieth century. We now give a brief
indication of the main ideas in Chevalley’s work.

By the early twentieth century, the Killing–Cartan classification of sim-
ple Lie groups, defined over the field C of complex numbers, had produced
four infinite families and five exceptional groups. Mathematicians began by
classifying simple Lie algebras over C and then constructing corresponding
simple Lie groups. In 1955, using this structure but replacing the complex
numbers by a finite field, Chevalley’s fundamental paper showed how to con-
struct finite groups of Lie type. Every finite field is uniquely determined up
to isomorphism by a prime p and a natural number n. This field of pn ele-
ments is called the Galois field and is denoted by GF (pn). Évariste Galois
introduced and used these fields in studying number theory. Galois is, of
course, best known for his fundamental work on the solvability of polynomial
equations by radicals. This work, now called Galois theory, was the first to
use the theory of groups to completely answer the long open question of the
solvability of polynomial equations by radicals.

Chevalley first showed that every complex semi-simple Lie algebra has an
integral basis. Recall that an integral basis is a basis such that the Lie
bracket of any two basis elements is an integral multiple of a basis element.
Such an integral basis is now called a Chevalley basis of L. Using his
basis Chevalley constructed a Lie algebra L(K) over a finite field K. He then
showed how to obtain a finite group from this algebra. This group, denoted
by G(L, K), is called the Chevalley group of the pair (L, K). Chevalley
proved that the groups G(L, K) (with a few well defined exceptions) are
simple, thereby obtaining several new families of finite simple groups. This
work led to the classification of all infinite families of finite simple groups.

However, it was known that there were finite simple groups that did not
belong to any of these families. Such groups are called sporadic groups.
The first sporadic group was constructed by Mathieu in 1861. In fact, he
constructed five sporadic groups, now called Mathieu groups. They are just
the tip of an enormous iceberg of sporadic groups discovered over the next
120 years. There was an interval of more than 100 years before the sixth
sporadic group was discovered by Janko in 1965. Two theoretical develop-
ments played a crucial role in the search for new simple groups. The first of
these was Brauer’s address at the 1954 ICM in Amsterdam, which gave the
definitive indication of the surprising fact that general classification theorems
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would have to include sporadic groups as exceptional cases. For example, Fis-
cher discovered and constructed his first three sporadic groups in the process
of proving such a classification theorem. Brauer’s work made essential use
of elements of order 2. Then, in 1961 Feit and Thompson proved that every
non-Abelian simple finite group contains an element of order 2. The proof of
this one-line result occupies an entire 255-page issue of the Pacific Journal
of Mathematics (volume 13, 1963). Before the Feit–Thompson theorem, the
classification of finite simple groups seemed to be a rather distant goal. This
theorem and Janko’s new sporadic group greatly stimulated the mathematics
community to look for new sporadic groups. Thompson was awarded a Fields
Medal at ICM 1970 in Nice for his work towards the classification of finite
simple groups. John Conway’s entry into this search party was quite acci-
dental. He was lured into it by Leech, who had discovered his 24-dimensional
lattice (now well known as the Leech lattice) while studying the problem
of sphere-packing. The origin of this problem can be traced back to Kepler.

Kepler was an extraordinary observer of nature. His observations of
snowflakes, honeycombs, and the packing of seeds in various fruits led him
to his lesser known study of the sphere-packing problem. The sphere-
packing problem asks for the densest packing of standard unit spheres in a
given Euclidean space. The answer is arrived at by determination of the num-
ber of spheres that touch a fixed sphere. For dimensions 1, 2, and 3 Kepler
found the answers to be 2, 6, and 12 respectively. The lattice structures on
these spaces played a crucial role in Kepler’s “proof.” The three dimensional
problem came to be known as Kepler’s (sphere-packing) conjecture.
The slow progress in the solution of this problem led John Milnor to remark
that here was a problem nobody could solve, but its answer was known to
every schoolboy. It was only solved recently (1998, Tom Hales). The Leech
lattice provides the tightest sphere-packing in a lattice in 24 dimensions (its
proof was announced by Cohn and Kumar in 2004), but the sphere-packing
problem in most other dimensions is still wide open. In the Leech lattice each
24-dimensional sphere touches 196,560 others. Symmetries of the Leech lat-
tice contained Mathieu’s largest sporadic group and it had a large number of
symmetries of order 2. Leech believed that the symmetries of his lattice con-
tained other sporadic groups. Leech was not a group theorist and he could not
get other group theorists interested in his lattice. But, he did find a young
mathematician, who was not a group theorist to study his work. In 1968,
John Conway was a junior faculty member at Cambridge. He quickly became
a believer in Leech’s ideas. He tried to get Thompson (the great guru of group
theorists) interested. Thompson told him to find the size of the group of sym-
metries and then call him. Conway later remarked that he did not know that
Thompson was referring to a folk theorem, which says:

The two main steps in finding a new sporadic group are

1. find the size of the group of symmetries, and

2. call Thompson.
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Conway worked very hard on this problem and soon came up with a num-
ber. This work turned out to be his big break. It changed the course of his
life and made him into a world class mathematician. He called Thompson
with his number. Thompson called back in 20 minutes and told him that
half his number could be a possible size of a new sporadic group and that
there were two other new sporadic groups associated with it. These three
groups are now denoted by Co1, Co2, Co3 in Conway’s honor. Further study
by Conway and Thompson showed that the symmetries of the Leech lattice
give 12 sporadic groups in all, including all five Mathieu groups, the first set
of sporadic groups discovered over a hundred years ago. In the early 1970s
Conway started the ATLAS project. The aim of this project was to collect
all essential information (mainly the character tables) about the sporadic
and some other groups. The work continued into the early 1980s when all
the sporadic groups were finally known. It was published in 1985 [84]. This
important reference work incorporates a great deal of information that was
only available before through unpublished work.

After Conway’s work the next major advance in the discovery of new
sporadic groups came through the work of Berndt Fischer. As with so many
mathematicians, Fischer had decided to study physics. He had great interest
and ability in mathematics from childhood, but he was influenced by his
high school teacher, who showed him how mathematics can be used to solve
physical problems. Sl Fischer’s physics plans changed once he started to study
mathematics under Baer. Prof. Baer had returned to Germany after a long
stay in America. The main reason he went back to his home country was
his love of the German higher education system (universities and research
institutes).2 Fischer became interested in groups generated by transpositions.
Recall that in a permutation group a transposition interchanges two elements,
so that the product of two transpositions is of order 2 or 3. Fischer first
proved that a group G generated by such transpositions falls into one of
six types. The first type is a permutation group and the next four lead to
known families of simple groups. It was the sixth case that led to three new
sporadic groups each related to one of the three largest Mathieu groups. The
geometry underlying the construction of G is that of a graph associated to
generators of G. Permutation groups and the classical groups all have natural
representations as automorphism groups of such graphs. Fischer’s graphs give
some known groups but also his three new sporadic groups. Fischer published
this work in 1971 as the first of a series of papers. No further papers in the
series after the initial one ever appeared. In fact most of his work is not
published. Fischer continued studying other transposition groups. This led
him first to a new sporadic group B, now called the baby monster and to
conjecture the existence of an even larger group: the monster.

2 I have had a very pleasant firsthand experience with this system since 1998, when I
bacame a Max Planck Gesselschaft Fellow at the Max Planck Institute for Mathematics
in the Sciences in Leipzig, Germany.
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By 1981, twenty new sporadic groups were discovered bringing the total
to twenty five. The existence of the 26th and the largest of these groups was
conjectured, independently, by Fischer and Griess in 1973. The construction
of this “friendly giant” (now the group finally known as the monster) was
announced by Griess in 1981 and the complete details were given in [168].
Griess first constructs a commutative, nonassociative algebra A of dimension
196, 884 (now called the Griess algebra). He then shows that the monster
group is the automorphism group of the Griess algebra. In the same year, the
final step in the classification of finite simple groups was completed by Norton
by establishing that the monster has an irreducible complex representation of
degree 196,883 (the proof appeared in print later in [300]). Combined with the
earlier result of Thompson, this work proves the uniqueness of the Fischer–
Griess sporadic simple group. So the classification of finite simple groups was
complete. It ranks as the greatest achievement of twentieth century mathe-
matics. Hundreds of mathematicians contributed to it. The various parts of
the classification proof together fill thousands of pages. The project to orga-
nize all this material and to prepare a flow chart of the proof is expected to
continue for years to come.

1.6.2 Modular Groups and Modular Functions

The search for sporadic groups entered its last phase with John McKay’s
observation about the closeness of the coefficients of Jacobi’s Hauptmodul
and the character degrees of representations of the monster. This observation
is now known as McKay correspondence. To understand this as well as the
full moonshine conjectures we need the classical theory of modular forms and
functions. We now discuss parts of this theory.

The modular group Γ = SL(2,Z) acts on the upper half plane, called H,
by fractional linear transformations as follows:

Az =
az + b

cz + d
, z ∈ H, A =

(
a b
c d

)
∈ Γ = SL(2,Z) . (1.31)

For positive integers k, n we define the congruence subgroups Γ (k) and
Γ0(n) of Γ as follows:

Γ (k) :=
{(

a b
c d

)
∈ Γ |

(
a b
c d

)
=

(
1 0
0 1

)
mod k

}
;

i.e., Γ (k) is the kernel of the canonical homomorphism of SL(2,Z) onto
SL(2,Zk) and

Γ0(n) :=
{(

a b
c d

)
∈ Γ | c = 0 mod n

}
.
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For a fixed prime p, we define the extended congruence subgroup Γ0(p)+
by

Γ0(p)+ :=
〈

Γ0(p),
(

0 1
−p 0

)〉
.

To describe the classical construction of the Jacobi modular function j,
we begin by defining modular forms.

Definition 1.3 A function f that is analytic (i.e., holomorphic) on H and
at ∞ is called a modular form of weight k if it satisfies the following
conditions:

f(Az) = (cz + d)kf(z), ∀A ∈ Γ.

The Eisenstein series provide many interesting examples of modular forms.
The Eisenstein series Ek, where k ≥ 4 is an even integer is defined by

Ek(z) :=
1

2ζ(k)

∑
m,n

(nz + m)−k ,

where the sum taken is over all integer pairs (m, n) �= (0, 0) and where ζ(k) =∑∞
r=1 r−k is the Euler zeta function. The series Ek can also be expressed

as a function of q = e2πiz by

Ek(z) := 1−
(

2k

Bk

) ∞∑
r=1

σk−1(r)qr ,

where Bk is the kth Bernoulli number (see Appendix B) and σt(r) =
∑

dt,
where t is a natural number and the sum runs over all positive divisors d of
r. Thus, E4 and E6 are modular forms of weights 4 and 6, respectively.
Therefore, the function Δ defined by

Δ =
E3

4 − E2
6

1728
= q

∞∏
n=1

(1− qn)24

is a modular form of weight 12. It is related to the Dirichlet function η by

η = Δ(1/24) = q(1/24)
∞∏
n=1

(1 − qn) .

Note that the η function is a modular form of fractional weight 1/2. Jacobi’s
modular function also called a Hauptmodul for the modular group Γ , is
defined by

j := E3
4/Δ = q−1 + 744 +

∞∑
n=1

c(n)qn . (1.32)

Since Δ is never zero, j is a modular form of weight zero, i.e., a modular
function In this work we use the modular function J defined by J(z) :=
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j(z)− 744. The first few terms in the Fourier expansion of the function J are
given by

J = q−1 + 196,884q + 21,493,760q2 + 864,299,970q3 + · · · . (1.33)

We note that the quotient space H/Γ under the action of Γ on H is
a surface of genus zero. In general, we define the genus of a congruence
subgroup as the genus of the surface obtained as indicated above for Γ . If
G is a congruence subgroup such that the quotient space H/G has genus
zero then it can be shown that every holomorphic function on H/G can
be expressed as a rational function of a single function jG. This function
jG is called a Hauptmodul for G. The fact that the coefficients of the J-
function are integers has had several arithmetic applications, for example
in the theory of complex multiplication and class field theory. The p-adic
properties and congruences of these coefficients have been studied extensively.
But their positivity brings to mind the following classical folk principle of
representation theory: If you meet an interesting natural number, ask if it is
the character degree of some representation. This is exactly the question that
John McKay asked about the number 196, 884. He sent his thoughts about it
to Thompson in November 1978, and this led to the McKay–Thompson series
and the monstrous moonshine. Correspondences of this type are also known
for some other finite and infinite groups. For example, McKay had found a
relation between the character degrees of irreducible representations of the
complexified exceptional Lie group E8 and the q-coefficients of the cube root
of the J-function.

1.6.3 The monster and the Moonshine Conjectures

Before discussing the relation of the monster with the modular functions
we give some numerology related to this group. This largest of the sporadic
groups is denoted by M, and its order o(M) equals

808,017,424,794,512,875,886,459,904,961,710,757,005,754,368× 109 .

The prime factorization of o(M) is given by

o(M) = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

It has more elements (about 1054) than number of atoms in the earth. We
call the prime factors of the monster the monster primes. We denote by
πM, the set of all monster primes. Thus,

πM = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.
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The set πM contains 15 of the first 19 primes. The primes 37, 43, and 67
also occur as divisors of the order of some sporadic groups. The only prime
that does not divide the order of any of the sporadic groups among the first
19 primes is 61. Thus, 61 can be characterized as the smallest prime that
does not divide the order of any of the sporadic groups. There are a number
of characterizations of the set πM of all monster primes. The theorem below
gives an indication of some deep connection between the monster and the
modular groups.

Theorem 1.6 The group Γ0(p)+ has genus zero if and only if p is a monster
prime, i.e., p divides o(M). Moreover, if the element g ∈ M has order p then
its McKay–Thompson series Tg is a Hauptmodul for the group Γ0(p)+.

Remark 1.1 The 15 monster primes are singled out in other situations. For
example, the primes p dividing the o(M) are exactly the primes for which
every supersingular elliptic curve in characteristic p is defined over the field
Zp. They also appear in the proof of the Hecke conjecture by Pizer [318].
In 1940 Hecke made a conjecture concerning the representation of modular
forms of weight 2 on the congruence group Γ0(p) (p a prime) by certain
theta series determined by the quaternionic division algebra over the field of
rational numbers, ramified at p and ∞. Pizer proved that the conjecture is
true if and only if p is a monster prime. The 15 monster primes also arise
in Ogg’s work on modular groups. Andrew Ogg was in the audience at a
seminar on the monster given by Jacques Tits in 1975. When he wrote down
the prime factorization of o(M), Ogg was astounded. He knew this list of 15
primes very well through his work on modular groups. He offered a small
prize for anyone who could explain this remarkable coincidence. In spite of a
great deal of work on the properties of the monster and its relations to other
parts of mathematics and physics, this prize remains unclaimed.

Recall that the quantum dimension of a graded vector space was defined
as a power series in the formal variable q. If we write q = exp (2πiz), z ∈ C
then dimq V can be regarded as the Fourier expansion of a complex func-
tion. A spectacular application of this occurs in the study of finite groups.
The study of representations of the largest of these groups has led to the
creation of a new field of mathematics called vertex algebras; these turn out
to be closely related to the chiral algebras in conformal field theory. These
and other ideas inspired by string theory have led to a proof of Conway
and Norton’s moonshine conjectures (see, for example, Borcherds [48], and
the book [139] by Frenkel, Lepowski, and Meurman). The monster Lie al-
gebra is the simplest example of a Lie algebra of physical states of a chiral
string on a 26-dimensional orbifold. This algebra can be defined by using the
infinite-dimensional graded representation V of the monster simple group.
Its quantum dimension is related to Jacobi’s SL(2,Z) Hauptmodul (elliptic
modular function of genus zero) j(q), where q = e2πiz , z ∈ H, by

dimq V =J(q) := j(q)− 744 = q−1+196,884q + 21,493,760q2 + 864,299,970q3

+ . . . .



30 1 Algebra

The coefficient 196, 884 in the above formula attracted John McKay’s at-
tention, it being very close to 196,883, the character degree of the smallest
nontrivial irreducible representation of the monster. McKay communicated
his observation to Thompson. We summarize below Thomson’s observations
on the numerology between the monster and the Jacobi modular function J .
Let c(n) denote the coefficient of the nth term in J(q) and let χn be the nth
irreducible character of the monster group. Then the character degree χn(1)
is the dimension of the nth irreducible representation of M. We list the first
few values of c(n) and χn(1) in Table 1.4.

Table 1.4 A strange correspondence

n c(n) χn(1)
1 1 1
2 196,884 196,883
3 21,493,760 21,296,876
4 864,299,970 842,609,326
5 20,245,856,256 18,538,750,076

A short calculation using the values in Table 1.4 gives the following for-
mulas for the first few coefficients of the J-function in terms of the character
degrees of the monster:

c(1) = χ1(1)
c(2) = χ1(1) + χ2(1)
c(3) = χ1(1) + χ2(1) + χ3(1)
c(4) = 2χ1(1) + 2χ2(1) + χ3(1) + χ4(1)
c(5) = 3χ1(1) + 3χ2(1) + χ3(1) + 2χ4(1) + χ5(1).

These relations led Thompson to ask the following questions:

1. Is there a function theoretic description where the coefficients c(n) equal
the dimension of some vector space Vn?

2. Is there a group G containing the monster as a subgroup that admits Vn
as a representation space such that the restriction of this representation
to the group M provides the explanation of the entries in Table 1.4.

These two questions are a special case of Conway and Norton’s monstrous
moonshine, the moonshine conjectures, which we now state.

1. For each g ∈ M there exists a function Tg(z) with normalized Fourier series
expansion given by
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Tg(z) = q−1 +
∞∑
1

cg(n)qn. (1.34)

There exists a sequence Hn of representation of M called the head rep-
resentations such that

cg(n) = χn(g), (1.35)

where χn is the character of Hn.
2. For each g ∈M, there exists a Hauptmodul Jg for some modular group of

genus zero such that Tg = Jg. In particular,

a. T1 = J1 = J , the Jacobi Hauptmodul for the modular group Γ .
b. If g is an element of prime order p, then Tg is a Hauptmodul for the

modular group Γ0(p)+.

3. Let [g] denote the set of all elements in M that are conjugate to gi, i ∈ Z.
Then Tg depends only on the class [g]. Note that from equation (1.35), it
follows that Tg is a class function in the usual sense. However, [g] is not
the usual conjugacy class. There are 194 conjugacy classes of M but only
171 distinct McKay–Thompson series.

Conway and Norton calculated all the functions Tg and compared their first
few coefficients with the coefficients of known genus zero Hauptmoduls. Such
a check turns out to be part of Borcherds’s proof, which he outlined in his
lecture at the 1998 ICM in Berlin [48]. The first step was the construction
of the moonshine module. The entire book [139] by Frenkel, Lepowsky and
Meurman is devoted to the construction of this module, denoted by V �. It
has the structure of an algebra called the Moonshine vertex operator
algebra (also denoted by V �). Frenket et al. proved that the automorphism
group of the infinite-dimensional graded algebra V � is the largest of the finite,
sporadic, simple groups, namely, the monster. We now describe some parts
in the construction of the graded algebra V � which can be written as

V � =
∞⊕

i=−1

Vi .

All the Vi are finite dimensional complex vector spaces with V−1 one-
dimensional and V0 = 0 (corresponding to zero constant term in the Haupt-
modul J). There are two distinguished homogeneous elements:
i) the vacuum vector, denoted by 1 in V−1, is the identity element of the
algebra;
ii) the conformal vector (also called the Virasoro vector), denoted by ω ∈
V2.
For each v ∈ V � there is given a linear map Y (v, z) with formal parameter z
defined by

Y (v, z) =
∑
n∈Z

vnz−n−1, vn ∈ End(V �).
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The operator Y (v, z) is called the vertex operator associated with v. The map
v �→ Y (v, z) is called the state-field correspondence. These operators
are subject to a number of axioms. For example, the endomorphisms ωn
appearing in the operator Y (ω, z) corresponding to the Virasoro vector ω
generate a copy of the Virasoro algebra with central charge 24, acting on V �.
The magical number 24 appearing here is the same as the dimension of the
Leech lattice. It also plays an important role in number theory and in the
theory of modular forms.

The second step was the construction by Borcherds of the monster Lie
algebra using the moonshine vertex operator algebra V �. He used this al-
gebra to obtain combinatorial recursion relations between the coefficients
cg(n) of the McKay–Thompson series. It was known that the Hauptmoduls
satisfied these relations and that any function satisfying these relations is
uniquely determined by a finite number of coefficients. In fact, checking the
first five coefficients is sufficient for each of the 171 distinct series. The j-
function belongs to a class of functions called replicable functions. This
class also includes the three classical functions, the exponential (q), the sine
((q − 1/q)/(2i)) and the cosine ((q + 1/q)/2). McKay has called these three
functions the modular fictions. Modular fictions are known to be the only
replicable functions with finite Laurent series. All modular functions given
by the 171 distinct series are replicable functions. Thus, all the monstrous
moonshine conjectures are now parts of what we can call the “Moonshine
Theorem” (for more details, see [91], [151], [152]). Its relation to vertex op-
erator algebras, which arise as chiral algebras in conformal field theory and
string theory has been established. In spite of the great success of these new
mathematical ideas, many mysteries about the monster are still unexplained.

We end this section with a comment which is a modification of the remarks
made by Ogg in [305], when the existence of the monster group and its
relation to modular functions were still conjectures (strongly supported by
computational evidence). Its deep significance for theoretical physics is still
emerging; so mathematicians and physicists young and old may find exciting
emergence of a new subject, guaranteed to be rich and varied and deep, with
many new questions to be asked and many of the conjectured results yet to be
proved. It is indeed quite extraordinary that new light should be shed on the
theory of modular functions, one of the most beautiful and extensively studied
areas of classical mathematics, by the largest and the most exotic sporadic
group, the monster. That its interaction goes beyond mathematics, into areas
of theoretical physics such as conformal field theory, chiral algebras,3 and
string theory, may indicate that the field of physical mathematics is rich and
worthy of deeper study.

3 A discussion of chiral algebras from a mathematical point of view may be found in the
book by Beilinson and Drinfeld [35]. For vertex operator algebras and their relation to
CFT see, for example, [138, 197, 250].



Chapter 2

Topology

2.1 Introduction

Several areas of research in modern mathematics have developed as a result
of interaction between two or more specialized areas. For example, the sub-
ject of algebraic topology associates with topological spaces various algebraic
structures and uses their properties to answer topological questions. An el-
egant proof of the theorem that Rm and Rn with their respective standard
topologies, are not homeomorphic for m �= n is provided by computing the
homology of the one point compactification of these spaces. Indeed, the prob-
lem of classifying topological spaces up to homeomorphism was fundamental
in the creation of algebraic topology. In general, however, the knowledge of
these algebraic structures is not enough to decide whether two topological
spaces are homeomorphic. The equivalence of algebraic structures follows
from a weaker relation among topological spaces, namely, that of homotopy
equivalence. In fact, homotopy equivalent spaces have isomorphic homotopy
and homology structures. Equivalence of algebraic structures associated to
two topological spaces is a necessary but not sufficient condition for their
homeomorphism. Thus, one may think of homotopy and homology as provid-
ing obstructions to the existence of homeomorphisms. As we impose further
structure on a topological space such as piecewise linear, differentiable, or
analytic structures other obstructions may arise.

For example, it is well known that Rn, n �= 4, with the standard topology
admits a unique compatible differential structure. On the other hand, as a
result of the study of the moduli spaces of instantons by Donaldson and the
classification of four-dimensional topological manifolds by Freedman, it fol-
lows that R4 admits an uncountable number of non-diffeomorphic structures.
In the case of the standard sphere Sn ⊂ Rn+1, the generalized Poincaré con-
jecture states that a compact n-dimensional manifold homotopically equiv-
alent to Sn is homeomorphic to Sn. This conjecture is now known to be
true for all n and is one of the most interesting recent results in algebraic
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topology. The case n = 2 is classical. For n > 4 it is due to Stephen Smale.
Smale (b. 1930) received a Fields Medal at the ICM 1966 held in Moscow
for his contributions to various aspects of differential topology and, in par-
ticular, to his novel use of Morse theory, which led him to his solution of the
generalized Poincaré conjecture for n > 4. Smale has extensive work in the
application of dynamical systems to physical processes and to economic equi-
libria. His discovery of strange attractors led naturally to chaotic dynamical
systems. The result for n = 4 is due to Michael Hartley Freedman (b. 1951),
who received a Fields Medal at ICM 19861 held in Berkeley for his complete
classification of all compact simply connected topological 4-manifolds, which
leads to his proof of the Poincaré conjecture. The original Poincaré conjecture
was recently proved by Grigory Yakovlevich Perelman (b. 1966). Perelman
received a Fields Medal at ICM 2006 held in Madrid for his fundamental con-
tributions to geometry and for his revolutionary insights into the analytical
and geometric structure of the Ricci flow. He studied the geometric topology
of 3-manifolds by extending Hamilton’s Ricci flow ideas. While he did not
publish his work in a final form, it contains all the essential ingredients of
a proof of the Thruston geometrization conjectures and in particular of the
original Poincaré conjecture (the case n = 3). This problem is one of the
seven, million dollar Clay Prize problems. As of this writing, it is not known
if and when he will get this prize. We will discuss the topology of 3- and
4-manifolds later in this chapter.

In the category of differentiable manifolds, it was shown by John Willard
Milnor that S7 admits an exotic differential structure, i.e., a structure not
diffeomorphic to the standard one. This work ushered in the new field of
differential topology. Milnor was awarded a Fields Medal at the ICM 1962
held in Stockholm for his fundamental work in differential geometry and
topology. Using homotopy theory, Kervaire and Milnor proved the striking
result that the number of distinct differentiable structures on Sn is finite for
any n �= 4. For n = 1, 2, 3, 5, 6, there is a unique differential structure on the
standard n-sphere. As of this writing (May 2010) there is no information on
the number of distinct differentiable structures on S4. The following table
gives a partial list of the number of diffeomorphism classes [Sn] of n-spheres.

Table 2.1 Number of diffeomorphism classes of n-spheres

n 7 8 9 10 11 12 13 14
#[Sn] 28 2 8 6 992 1 3 2

1 The year was the 50th anniversary of the inception of Fields medals. However, several
mathematicians including invited speakers were denied U.S. visas. Their papers were read
by other mathematicians in a show of solidarity.



2.2 Point Set Topology 35

We note that the set of these equivalence classes can be given a structure
of a group denoted by θn. Milnor showed that θ7 is cyclic group of order
28. Brieskorn has constructed geometric representatives of the elements of θ7

as 7-dimensional Brieskorn spheres Σ(6m − 1, 3, 2, 2, 2), 1 ≤ m ≤ 28, by
generalizing the Poincaré homology spheres in three dimensions. Thus the
mth sphere is the intersection of S9 ⊂ C5 with the space of solutions of the
equation

z6m−1
1 + z3

2 + z2
3 + z2

4 + z2
5 = 0, 1 ≤ m ≤ 28, zi ∈ C, 1 ≤ i ≤ 5.

Until recently, such considerations would have seemed too exotic to be of
utility in physical applications. However, topological methods have become
increasingly important in classical and quantum field theories. In particular,
several invariants associated to homotopy and homology of a manifold have
appeared in physical theories as topological quantum numbers. In the re-
maining sections of this chapter and in the next chapter is a detailed account
of some of the most important topics in this area.

2.2 Point Set Topology

Point set topology is one of the core areas in modern mathematics. How-
ever, unlike algebraic structures, topological structures are not familiar to
physicists. In this appendix we collect some basic definitions and results con-
cerning topological spaces. Topological concepts are playing an increasingly
important role in physical applications, some of which are mentioned here.

Let X be a set and P(X) the power set of X , i.e., the class of all subsets
of X . T ⊂ P(X) is called a topology on X if the following conditions are
satisfied:

1. {∅, X} ⊂ T ;
2. if A, B ∈ T , then A ∩B ∈ T ;
3. if {Ui | i ∈ I} ⊂ T , then

⋃
i∈I Ui ∈ T , where I is an arbitrary indexing

set.

The pair (X, T ) is called a topological space. It is customary to refer to X
as a topological space when the topology T is understood. An element of T
is called an open set of (X, T ). If W ⊂ X , then TW := {W ∩A | A ∈ T } is a
topology on W called the relative topology on W induced by the topology
T on X .

Example 2.1 Let T = {∅, X}. Then T is called the indiscrete topology on
X. If T = P(X), then T is called the discrete topology on X. If {Ti | i ∈ I}
is a family of topologies on X, then

⋂
{Ti | i ∈ I} is also a topology on X.
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The indiscrete and the discrete topologies are frequently called trivial
topologies. An important example of a nontrivial topology is given by the
metric topology.

Example 2.2 Let R+ denote the set of nonnegative real numbers. A metric
or a distance function on X, is a function d : X × X → R+ satisfying,
∀x, y, z ∈ X, the following properties:

1. d(x, y) = d(y, x), symmetry;
2. d(x, y) = 0 if and only if x = y, non-degeneracy;
3. d(x, y) ≤ d(x, z) + d(z, y), triangle inequality.

The pair (X, d) is called a metric space. If (X, d) is a metric space, we can
make it into a topological space with topology Td defined as follows. Td is the
class of all subsets U ⊂ X such that

∀x ∈ U, ∃ε > 0, such that B(ε, x) := {y ∈ X | d(x, y) < ε} ⊂ U.

The set B(ε, x) is called an ε-ball around x and is itself in Td. Rn with the
usual Euclidean distance function is a metric space. The corresponding topol-
ogy is called the standard topology on Rn. The relative topology on Sn−1 ⊂ Rn

is called the standard topology on Sn−1.

A topological space (X, T ) is said to be metrizable if there exists a distance
function d on X such that T = Td. It is well known that Riemannian mani-
folds are metrizable. It is shown in [256] that pseudo-Riemannian manifolds,
and in particular, space-time manifolds, are also metrizable.

Let (X, TX) and (Y, TY ) be topological spaces. A function f : X → Y is
said to be continuous if ∀V ∈ TY , f−1(V ) ∈ TX . If f is a continuous bijection
and f−1 is also continuous, then f is called a homeomorphism between X
and Y . Homeomorphism is an equivalence relation on the class of topological
spaces. A property of topological spaces preserved under homeomorphisms
is called a topological property. For example, metrizability is a topological
property.

Let (Xi, Ti), i ∈ I, be a family of topological spaces and let X =
∏
i∈I Xi

be the Cartesian product of the family of sets {Xi | i ∈ I}. Let πi : X → Xi

be the canonical projection. Let {Sj | j ∈ J} be the family of all topologies
on X such that πi is continuous for all i ∈ I. If S =

⋂
{Sj | j ∈ J}, then

S is called the product topology on X . We observe that it is the smallest
topology on X such that all the πi are continuous.

Let (X, T ) be a topological space, Y a set, and f : X → Y a surjection.
The class Tf defined by

Tf := {V ⊂ Y | f−1(V ) ∈ T }

is a topology on Y called the quotient topology on Y defined by f . Tf is
the largest topology on Y with respect to which f is continuous. We observe
that if ρ is an equivalence relation on X , Y = X/ρ is the set of equivalence



2.2 Point Set Topology 37

classes and π : X → Y is the canonical projection, then Y with the quotient
topology Tπ is called quotient topological space of X by ρ.

Let (X, T ) be a topological space and let A, B, C denote subsets of X . C
is said to be closed if X \ C is open. The closure Ā or cl(A) of A is defined
by

Ā :=
⋂
{F ⊂ X | F is closed and A ⊂ F}.

Thus, Ā is the smallest closed set containing A. It follows that C is closed
if and only if C = C̄. Let f : X → Y be a function. We define supp f , the
support of f to be the set cl{x ∈ X | f(x) �= 0}. A subset A ⊂ X is said to
be dense in X if Ā = X . X is said to be separable if it contains a countable
dense subset. A is said to be a neighborhood of x ∈ X if there exists U ∈ T
such that x ∈ U ⊂ A. We denote by Nx the class of neighborhoods of x. A
subclass B ⊂ T ∩Nx is called a local base at x ∈ X if for each neighborhood
A of x there exists U ∈ B such that U ⊂ A. X is said to be first countable if
each point in X admits a countable local base. A subclass B ⊂ T is called a
base for T if ∀A ∈ T , ∀x ∈ A, there exists U ∈ B such that x ∈ U ⊂ A. X is
said to be second countable if its topology has a countable base. A subclass
S ⊂ T is called a subbase for T if the class of finite intersections of elements
of S is a base for T . Any metric space is first countable but not necessarily
second countable. First and second countability are topological properties.
We now give some further important topological properties.

X is said to be a Hausdorff space if ∀x, y ∈ X , there exist A, B ∈ T
such that x ∈ A, y ∈ B and A ∩ B = ∅. Such a topology is said to separate
points and the Hausdorff property is one of a family of separation axioms for
topological spaces. The Hausdorff property implies that finite subsets of X
are closed. A metric space is a Hausdorff space.

A family U = {Ui | i ∈ I} of subsets of X is said to be a cover or a
covering of A ⊂ X if A ⊂

⋃
U . A cover {Vj | j ∈ J} of A ⊂ X is called

a refinement of U if, for all j ∈ J, Vj ⊂ Ui for some i ∈ I. A covering by
open sets is called an open covering. A ⊂ X is said to be compact if every
open covering of A has a finite refinement or, equivalently, if it has a finite
subcovering. The continuous image of a compact set is compact. It follows
that compactness is a topological property. The Heine–Borel theorem
asserts that a subset of Rn is compact if and only if it is closed and bounded. A
consequence of this is the extreme value theorem, which asserts that every
continuous real-valued function on a compact space attains its maximum and
minimum values. A Hausdorff space X is said to be paracompact if every
open covering of X has a locally finite open refinement, i.e., each point has
a neighborhood that intersects only finitely many sets of the refinement. A
family F = {fi : X → R | i ∈ I} of functions is said to be locally finite if
each x ∈ X has a neighborhood U such that fi(U) = 0, for all but a finite
subset of I. A family F of continuous functions is said to be a partition of
unity if it is a locally finite family of nonnegative functions and
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∑
i∈I

fi(x) = 1, ∀x ∈ X.

If X is a paracompact space and U = {Ui | i ∈ I} is an open covering of
X , then there exists a partition of unity F = {fi : X → R | i ∈ I} such that
supp fi ⊂ Ui. F is called a partition of unity subordinate to the cover U .
The existence of such a partition of unity plays a crucial role in showing the
existence of a Riemannian metric on a paracompact manifold. The concepts
of paracompactness and partition of unity were introduced into topology by
Dieudonné. It was shown by the author in [265] that pseudo-Riemannian
manifolds are paracompact. In particular, this implies that space-time (a
Lorentz manifold) is topologically a metric space. X is said to be locally
compact if each point has a compact neighborhood.

Let (X, T ) be a topological space and A ⊂ X . U, V ∈ T are said to form a
partition or a disconnection of A if the following conditions are satisfied:

1. A ⊂ U ∪ V,
2. A ∩ U �= ∅, A ∩ V �= ∅,
3. A ∩ U ∩ V = ∅.

The set A is said to be connected if there does not exist any disconnection
of A. This is equivalent to saying that A is connected as a topological space
with the relative topology. It follows that X is connected if and only if the
only subsets of X that are both open and closed are ∅ and X . If X is not
connected then it can be partitioned into maximal connected subsets called
the connected components of X . Each connected component is a closed
subset of X . The set of all connected components is denoted by π0(X). The
cardinality of π0(X) is a topological invariant. The continuous image of a
connected set is connected. Since the connected subsets of R are intervals, it
follows that every real-valued continuous function f on a connected subset
of X satisfies the intermediate value property, i.e., f takes every value
between any two values. X is said to be locally connected if its topology
has a base consisting of connected sets. The commonly used concepts of path
connected and simply connected are discussed in the next section.

2.3 Homotopy Groups

In homotopy theory the algebraic structures (homotopy groups) associated
with a topological space X are defined through the concept of homotopy be-
tween maps from standard sets (intervals and spheres) to X . The fundamental
group or the first homotopy group of a topological space was introduced by H.
Poincaré (1895), while the idea of the higher homotopy groups is principally
due to W. Hurewicz (1935). All the homotopy groups arise naturally in the
mathematical formulation of classical and quantum field theories. To make
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our treatment essentially self-contained, we have given more details than are
strictly necessary for the physical applications.

Let X and Y be topological spaces and h a map from D(h) ⊂ Y to X that
can be extended to a continuous map from Y to X . Let C(Y, X ; h) be the set

C(Y, X ; h) = {f ∈ C(Y, X) | f|D(h) = h}

where C(Y, X) is the set of continuous maps from Y to X . We say that
f ∈ C(Y, X) is homotopic to g ∈ C(Y, X) relative to h and write f ∼h g
if there exists a continuous map H : Y × I → X , where I := [0, 1], such that
the following conditions hold:

H(y, 0) = f(y), H(y, 1) = g(y), ∀y ∈ Y, (2.1)

H(y, t) = h(y), ∀y ∈ D(h), ∀t ∈ I. (2.2)

H is called a homotopy relative to h from f to g. Observe that condi-
tion (2.2) implies that f, g ∈ C(Y, X ; h). We may think of H as a family
{Ht := H(·, t) | t ∈ I} ⊂ C(Y, X ; h) of continuous maps from Y to X
parametrized by t, which deforms the map f continuously into the map g,
keeping fixed their values on D(h), i.e., Ht ∈ C(Y, X ; h), ∀t ∈ I. It can be
shown that the relation∼h is an equivalence relation in C(Y, X ; h). We denote
the equivalence class of f by [f ]. If h is the empty map, i.e., D(h) = ∅ so that
C(Y, X ; h) = C(Y, X), then we will simply write f ∼ g and say that f and g
are homotopic. We observe that in this case there is no condition (2.2) but
only the condition (2.1). A topological space X is contractible if idX ∼ ca,
where idX is the identity map on X and ca : X → X is the constant map
defined by ca(x) = a, ∀x ∈ X and for some fixed a ∈ X .

Let X be a topological space. A path in X from a ∈ X to b ∈ X is a map
α ∈ C(I, X) such that α(0) = a, α(1) = b. We say that X is path connected
if there exists a path from a to b, ∀a, b ∈ X . X is locally path connected
if its topology is generated by path connected open sets. A path connected
topological space is connected, but the converse is not true. However, a con-
nected and locally path connected topological space is path connected, and
hence connected manifolds are path connected. In what follows, we take all
topological spaces to be connected manifolds unless otherwise indicated.

Let α be a path in X from a to b; the opposite path of α is the path
←
α

in X from b to a such that
←
α (t) = α(1 − t), ∀t ∈ I. A loop in X at a ∈ X

is a path in X from a to a. The set of loops in X at a is

P (X, a) := C(I, X ; ha),

where D(ha) = ∂I = {0, 1} and ha(0) = ha(1) = a. Let [α] be the equivalence
class of the loops at a that are homotopic to α relative to ha and let E1(X, a)
be the set of equivalence classes of homotopic loops at a, i.e.,
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E1(X, a) := {[α] | α ∈ P (X, a)}.

If α, β ∈ P (X, a), then we denote by α ∗ β ∈ P (X, a) the loop defined by

(α ∗ β)(t) =
{

α(2t), 0 ≤ t ≤ 1/2
β(2t− 1), 1/2 ≤ t ≤ 1.

(2.3)

The operation ∗ induces an operation on E1(X, a), which we denote by juxta-
position. This operation makes E1(X, a) into a group with identity the class
[ca] of the constant loop at a, the class [

←
α] being the inverse of [α]. This group

is called the fundamental group or the first homotopy group of X at a
and is denoted by π1(X, a). A topological space X with a distinguished point
a is called a pointed topological space and is denoted by (X, a). Thus, we
have associated with every pointed topological space (X, a) a group π1(X, a).
Let (X, a), (Y, b) be two pointed topological spaces and f : X → Y a mor-
phism of pointed topological spaces; i.e., f is continuous and f(a) = b. Then
the map

π1(f) : π1(X, a)→ π1(Y, b)

defined by [α] �→ [f ◦ α] is a homomorphism. π1 turns out to be a covari-
ant functor from the category of pointed topological spaces to the cate-
gory of groups (see Appendix C). If X is path connected then π1(X, a) ∼=
π1(X, b), ∀a, b ∈ X (the isomorphism is induced by a path from a to b and
hence is not canonical). In view of this result we sometimes write π1(X) to
indicate the fundamental group of a path connected topological space X . A
topological space X is said to be simply connected if it is path connected
and π1(X) is the trivial group consisting of only the identity element. A
contractible space is simply connected.

We now introduce the notion of n-connected, which allows us to give an al-
ternative definition of simply connected. Let Xn := C(Sn, X) be the space of
continuous maps from the n-sphere Sn to X . We say that X is n-connected
if the space Xn with its standard (compact open) topology is path connected.
Thus 0-connected is just path connected and 1-connected is simply con-
nected as defined above. The fundamental group is an important invariant of
a topological space, i.e.,

X ∼= Y ⇒ π1(X) ∼= π1(Y ).

A surprising application of the non-triviality of the fundamental group is
found in the Bohm–Aharonov effect in Abelian gauge theories. We discuss
this application in Chapter 8.

The topological spaces X, Y are said to be homotopically equivalent
or of the same homotopy type if there exist continuous maps f : X → Y
and g : Y → X such that

f ◦ g ∼ idY , g ◦ f ∼ idX .
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The relation of homotopy equivalence is, in general, weaker than homeomor-
phism. The following discussion of the Poincaré conjecture and its general-
izations illustrate this.
Poincaré Conjecture: Every closed (i.e., compact and without boundary)
simply connected 3-manifold is homeomorphic to S3.

For n > 3 the conjecture is not true, as shown by our discussion after
Example 2.6. However, we have the following.
Generalized Poincaré Conjecture: Every closed n-manifold homotopi-
cally equivalent to the n-sphere Sn is homeomorphic to Sn.

As we remarked in the introduction, this generalized conjecture was proved
to be true for n > 4 by Smale in 1960. The case n = 4 was settled in the
affirmative by Freedman [136] in 1981 and the case n = 3 by Perelman (see
section 6.8 for Perelman’s work).

Let p : E → B be a continuous surjection. We say that the pair (E, p) is
a covering of B if each x ∈ B has a path connected neighborhood U such
that each pathwise connected component of p−1(U) is homeomorphic to U .
In particular, p is a local homeomorphism. E is called the covering space,
B the base space, and p the covering projection. It can be shown that
if B is path connected, then the cardinality of the fibers p−1(x), x ∈ B, is
the same for all x. If this cardinality is a natural number n, then we say that
(E, p) is an n-fold covering of B.

Example 2.3 Let U(1) := {z ∈ C | |z| = 1}.

1. Let qn : U(1)→ U(1) be the map defined by

qn(z) = zn,

where z ∈ U(1) = {z ∈ C | |z| = 1}. Then (U(1), qn) is an n-fold covering
of U(1).

2. Let p : R→ U(1) be the map defined by

p(t) = exp(2πit).

Then (R, p) is a simply connected covering of U(1). In this case the fiber
p−1(1) is Z.

3. Let n > 1 be a positive integer and π : Sn → RPn be the natural projection

x �→ [x].

This is a 2-fold covering. In the special case n = 3, S3 ∼= SU(2) ∼= Spin(3)
and RP3 ∼= SO(3). This covering π : Spin(3) → SO(3) is well known in
physics as associating two spin matrices in Spin(3) to the same rotation
matrix in SO(3). The distinction between spin and angular momentum is
related to this covering map.

A covering space (U, q) with U simply connected is called a universal
covering space of the base space B. A necessary and sufficient condition
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for the existence of a universal covering space of a path connected and lo-
cally path connected topological space X is that X be semi locally simply
connected, i.e., ∀x ∈ X there should exist an open neighborhood A of x
such that any loop in A at x is homotopic in X to the constant loop at x.
All connected manifolds are semi locally simply connected. If (E, p) is a cov-
ering of B and (U, q) is a universal covering of B and u ∈ U, x ∈ E are such
that q(u) = p(x), then there exists a unique covering (U, f) of E such that
f(u) = x and p ◦ f = q, i.e., the following diagram commutes.

U E�f

B

q
�

�
�
��

p
�

�
�

��

From this it follows that, if (U1, q1), (U2, q2) are two universal covering spaces
of B and u1 ∈ U1, u2 ∈ U2 are such that q1(u1) = q2(u2), then there exists a
unique homeomorphism f : U1 → U2, such that f(u1) = u2 and q2 ◦ f = q1,
i.e., the following diagram commutes.

U1 U2
�f

B

q1

�
�

�
��

q2

�
�

�
��

Thus a universal covering space is essentially unique, i.e., is unique up
to homeomorphism. Let (U, q) be a universal covering of B. A covering or
deck transformation f is an automorphism of U such that q ◦ f = q or the
following diagram commutes:

U U�f

B

q
�

�
�
��

q
�

�
�

��

It can be shown that the set C(U, q) of all covering transformations is a sub-
group of Aut(U) isomorphic to π1(B). This observation is useful in computing
fundamental groups of some spaces as indicated in the following example.

Example 2.4 The covering (U(1), qn) of Example (2.3) above is not a
universal covering while the coverings (R, p) and (Sn, π) discussed there
are universal coverings. Every deck transformation of (R, p) has the form
fn(t) = t + n, n ∈ Z. From this it is easy to deduce the following:

π1(RP1) ∼= π1(S1) ∼= π1(U(1)) ∼= Z.
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The only deck transformation of (Sn, π) different from the identity is the
antipodal map α defined by α(x) = −x, ∀x ∈ Sn. It follows that

π1(RPn) ∼= Z2, n > 1.

The fundamental group can be used to define invariants of geometric struc-
tures such as knots and links in 3-manifolds.

Example 2.5 An embedding k : S1 → R3 is called a knot in R3. Two knots
k1, k2 are said to be equivalent if there exists a homeomorphism h : R3 →
R3 which is the identity on the complement of some disk Dn = {x ∈ R3 |
‖x‖ ≤ n}, n ∈ N and such that h ◦ k1 = k2, i.e., the following diagram
commutes.

R3 R3�
h

S1

k1

�
�

�
��

k2

�
�

�
��

We define the knot group ν(k) by

ν(k) := π1(R3 \ k(S1)).

It is easy to verify that equivalent knots have isomorphic knot groups. An
algebraic structure preserved under knot equivalence is called a knot invari-
ant. Thus, the fundamental group provides an important example of a knot
invariant.

If X, Y are topological spaces, then π1(X × Y ) ∼= π1(X) × π1(Y ). In
particular, if X and Y are simply connected, then X×Y is simply connected.
From this result it follows, for example, that π1(Rn) = id and

π1(T n) ∼= Zn where T n = S1 × · · · × S1

︸ ︷︷ ︸
n times

is the real n-torus.

If B is a connected manifold then there exists a universal covering (U, q)
of B such that U is also a manifold and q is smooth. If G is a connected
Lie group then there exists a universal covering (U, p) of G such that U is
a simply connected Lie group and p is a local isomorphism of Lie groups.
The pair (U, p) is called the universal covering group of the group G. In
particular G and all its covering spaces are locally isomorphic Lie groups and
hence have the same Lie algebra. This fact has the following application in
representation theory. Given a representation r of a Lie algebra L on V , there
exists a unique simply connected Lie group U with Lie algebra u ∼= L and a
representation ρ of U on V such that its induced representation ρ̂ of u on V
is equivalent to r. If G is a Lie group with Lie algebra g ∼= L, then we get a
representation of G on V only if the representation ρ of U is equivariant under
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the action of π1(G). Thus, from a representation r of the angular momentum
algebra so(3) we get a unique representation of the group Spin(3) ∼= SU(2)
(spin representation). However, r gives a representation of SO(3) (an angular
momentum representation) only for even parity, r in this case, being invariant
under the action of π1(SO(3)) ∼= Z2. A similar situation arises for the case
of the connected component of the Lorentz group SO(3, 1) and its universal
covering group SL(2,C). In general, the universal covering group of SO(r, s)0
(the connected component of the identity of the group SO(r, s)) is denoted
by Spin(r, s) and is called the spinor group (see Chapter 3).

There are several possible ways to generalize the definition of π1 to obtain
the higher homotopy groups. We list three important approaches.

(1) Let

In = {t = (t1, . . . , tn) ∈ Rn | 0 ≤ ti ≤ 1, 1 ≤ i ≤ n}.

Define the boundary of In by

∂In = {t ∈ In | ti = 0 or ti = 1 for some i, 1 ≤ i ≤ n}.

Consider the homotopy relation in

Pn(X, a) := C(In, X ; h)

where D(h) = ∂In and h(∂In) = {a} ⊂ X . Let En(X, a) be the set of
equivalence classes in Pn(X, a). Observe that Pn(X, a) is the generalization
of P (X, a) = P1(X, a) for n > 1. We generalize the product ∗ in P (X, a) with
the following definition. Let

R1 = {(t1, . . . , tn) ∈ In | 0 ≤ t1 ≤ 1/2},

R2 = {(t1, . . . , tn) ∈ In | 1/2 ≤ t1 ≤ 1}

and ji : Ri → In, i = 1, 2, be the maps such that

j1(t) = (2t1, t2, . . . , tn), j2(t) = (2t1 − 1, t2, . . . , tn).

For α, β ∈ Pn(X, a) we define α ∗ β by

(α ∗ β)(t) =
{

α(j1(t)), t ∈ R1

β(j2(t)), t ∈ R2.

Then α ∗ β ∈ Pn(X, a) and α ∼h α1, β ∼h β1 implies α ∗ β ∼h α1 ∗ β1. This
allows us to define a product in En(X, a), denoted by juxtaposition, by

[α][β] = [α ∗ β].

With this product En(X, a) is a group. It is called the nth homotopy group
of X at a and is denoted by πn(X, a).
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(2) The second definition is obtained with Sn in the place of In and e1 =
(1, 0, . . . , 0) in the place of ∂In. Let us consider the space

P ′
n(X, a) := C(Sn, X ; h0),

where D(h0) = {e1} and h0(e1) = a. Let q : In → Sn be a continuous
map that identifies ∂In to e1. Then F1 = q(R1), F2 = q(R2) are hemispheres
whose intersection A = q(R1 ∩ R2) is homeomorphic to Sn−1 and contains
e1. The quotient spaces of F1 and F2 obtained by identifying A to e1 are
homeomorphic to Sn. Let r1 (resp., r2) be a continuous map of F1 (resp., F2)
to Sn that identifies A to e1. One can take q, r1, r2 so that

q ◦ ji = ri ◦ q|Ri
, i = 1, 2.

Let us define a product ∗′ in P ′
n(X, a) by

(α ∗′ β)(u) =
{

α(r1(u)), u ∈ F1

β(r2(u)), u ∈ F2.

Let E′
n(X, a) be the set of equivalence classes of homotopic maps in P ′

n(X, a).
The operation ∗′ induces a product on E′

n(X, a) which makes E′
n(X, a) into

a group, which we denote by π′
n(X, a). Let φ : P ′

n(X, a) → Pn(X, a) be the
map defined by

α �→ φ(α) = α ◦ q.

One can verify that α ∼ β =⇒ φ(α) ∼ φ(β) and φ(α ∗′ β) = φ(α) ∗ φ(β).
Then φ induces a map φ̃ : π′

n(X, a) → πn(X, a) which is an isomorphism.
Thus, we can identify π′

n(X, a) and πn(X, a).
(3) The third definition considers loops on the space of loops. We give

only a brief indication of the construction of πn(X, a) using loop spaces. In
order to consider loops in the space P (X, a), we have to define a topology
on this set. P (X, a) is a function space and a standard topology on P (X, a)
is the compact-open topology defined as follows. Let W (K, U) ⊂ P (X, a)
be the set

W (K, U) := {α ∈ P (X, a) | α(K) ⊂ U, K ⊂ I, U ⊂ X} .

The compact-open topology is the topology that has a subbase given by the
family of subsets W (K, U), where K varies over the compact subsets of I
and U over the open subsets of X . Then we define

π
′′
2 (X, a) := π1(P (X, a), ca),

where ca is the constant loop at a. We inductively define

π
′′
n(X, a) := π

′′
n−1(P (X, a), ca). (2.4)
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It can be shown that π
′′
n(X, a) is isomorphic to πn(X, a) and thus can be

identified with πn(X, a).
The space P (X, a) with the compact-open topology is called the first loop

space of the pointed space (X, a) and is denoted by Ω(X, a), or simply by
Ω(X) when the base point is understood. With the constant loop ca at a as
the base point, the loop space Ω(X) becomes the pointed space (Ω(X), ca).
We continue to denote by Ω(X) this pointed loop space. The nth loop space
Ωn(X) of X is defined inductively by

Ωn(X) = Ω(Ωn−1(X)).

From this definition and equation (2.4) it follows that

πn(X) = π1(Ωn−1(X)).

Thus one can calculate all the homotopy groups πn(X) of any space if one
can calculate just the fundamental group of all spaces. However, very little
is known about the topology and geometry of general loop spaces. A loop
space carries a natural structure of a Hopf space in the sense of the following
definition.

Definition 2.1 A pointed topological space (X, e) is said to be a Hopf space
(or simply an H-space) if there exists a continuous map

μ : X ×X → X

of pointed spaces called multiplication such that the maps defined by x �→
μ(x, e) and x �→ μ(e, x) are homotopic to the identity map of X.

One can verify that the map μ induced by the operation ∗ defined by
equation (2.3) makes the pointed loop space Ω(X) into an H-space. Iterating
this construction leads to the following theorem:

Theorem 2.1 The loop space Ωn(X), n ≥ 1, is an H-space.

We note that loop spaces of Lie groups have recently arisen in many math-
ematical and physical calculations (see Segal and Presley [321]). A general
treatment of loop spaces can be found in Adams [4]. For a detailed discussion
of the three definitions of homotopy groups and their applications see, for
example, Croom [90]. In the following theorem we collect some properties of
the groups πn.

Theorem 2.2 Let X denote a path connected topological space; then

1. πn(X, a) ∼= πn(X, b), ∀a, b ∈ X. In view of this we will write πn(X) instead
of πn(X, a).

2. If X is contractible by a homotopy leaving x0 fixed, then πn(X) = id.
3. πn(X) is Abelian for n > 1.
4. If (E, p) is a covering space of X, then p induces an injective homomor-

phism p∗ : πn(E)→ πn(X) for n > 1.
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Furthermore, if Y is another path connected topological space, then

πn(X × Y ) ∼= πn(X)× πn(Y ).

The computation of homotopy groups is, in general, a difficult problem.
Even in the case of spheres not all the higher homotopy groups are known.
The computation of the known groups is facilitated by the following theorem:

Theorem 2.3 (Freudenthal) There exists a homomorphism

F : πk(Sn)→ πk+1(Sn+1),

called the Freudenthal suspension homomorphism, with the following
properties:

1. F is surjective for k = 2n− 1;
2. F is an isomorphism for k < 2n− 1.

The results stated in the above theorems are useful in computing the homo-
topy groups of some spaces that are commonly encountered in applications.

Example 2.6 In this example we give the homotopy groups of some impor-
tant spaces that are useful in physical applications.

1. πn(Rm) = id.
2. πk(Sn) = id, k < n.
3. πn(Sn) ∼= Z.

If G is a Lie group then π2(G) = 0. In many physical applications one
needs to compute the homotopy of semi-simple Lie groups such as the groups
SO(n), SU(n), U(n). If G is a semi-simple Lie group then π3(G) ∼= Z. An
element α ∈ π3(G) often arises in field theories as a topological quantum
number. It arises in the problem of extending a G-gauge field from R4 to
its compactification S4 (see Chapter 8 for details).

From Theorems 2.1 and 2.2 and Example 2.6 it follows that π2(S4) = id
and

π2(S2 × S2) ∼= π2(S2)× π2(S2) ∼= Z× Z.

Also π1(S4) = id and π1(S2×S2) ∼= π1(S2)×π1(S2) = id. Thus S4 and S2×
S2 are both closed simply connected manifolds that are not homeomorphic.
This illustrates the role that higher homotopy groups play in the generalized
Poincaré conjecture.

All the homotopy groups of the circle S1 except the first one are trivial. A
path connected topological space X is said to be an Eilenberg–MacLane
space for the group π if there exists n ∈ N such that

πn(X) = π and πk(X) = id, ∀k �= n.
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Note that π must be Abelian if n > 1. It is customary to denote such a
space by K(π, n). Thus, S1 is a K(Z, 1) space. The construction of Eilenberg–
MacLane spaces in the late 1940s is considered a milestone in algebraic topol-
ogy. In 1955, Postnikov showed how to construct a topological space starting
with an Eilenberg–MacLane space as a base and building a succession of fiber
spaces with other Eilenberg–MacLane spaces as fibers. This construction is
known as the Postnikov tower construction and allows us to construct a
model topological space having the homotopy type of a given space.

Example 2.7 (Hopf Fibration) An important example of computation of
higher homotopy groups was given by H. Hopf in 1931 in his computation of
π3(S2). Consider the following action h : U(1) × C2 → C2 of U(1) on C2

defined by
(z, (z1, z2)) �→ (zz1, zz2).

This action leaves the unit sphere S3 ⊂ C2 invariant and hence induces an
action on S3 with fibers isomorphic to S1 and quotient CP1 ∼= S2, making S3

a principal fiber bundle over S2. We also denote by h : S3 → S2 the natural
projection. The above construction is called the Hopf fibration of S3. Hopf
showed that [h] ∈ π3(S2) is non-trivial, i.e., [h] �= id, and generates π3(S2)
as an infinite cyclic group, i.e. π3(S2) ∼= Z. This class [h] is essentially
the invariant that appears in the Dirac monopole quantization condition (see
Chapter 8). The Hopf fibration of S3 can be extended to the unit sphere
S2n−1 ⊂ Cn. The quotient space in this case is the complex projective space
CPn−1 and the fibration is called the complex Hopf fibration. This fibration
arises in the geometric quantization of the isotropic harmonic oscillator.

One can similarly consider the real, quaternionic and octonionic Hopf fi-
brations. For example, to study the quaternionic Hopf fibration we begin by
observing that

SU(2) ∼= {x = x0 + x1i + x2j + x3k ∈ H | |x| = 1}

acts as the group of unit quaternions on Hn on the right by quaternionic
multiplication. This action leaves the unit sphere S4n−1 ⊂ Hn invariant and
induces a fibration of S4n−1 over the quaternionic projective space HPn−1.
For the case n = 2, HP1 ∼= S4 and the Hopf fibration gives S7 as a nontrivial
principal SU(2) bundle over S4. This bundle plays a fundamental role in our
discussion of the BPST instanton in Chapter 9.

We conclude this section with a brief discussion of a fundamental result in
homotopy theory, namely, the Bott periodicity theorem.
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2.3.1 Bott Periodicity

The higher homotopy groups of the classical groups were calculated by Bott
[49] in the course of proving his well known periodicity theorem. An excellent
account of this proof as well as other applications of Morse theory may be
found in Milnor [284]. We comment briefly on the original proof of the Bott
periodicity theorem for the special unitary group. Bott considered the space
S of parametrized smooth curves c : [0, 1]→ SU(2m), joining −I and +I in
SU(2m), and applied Morse theory to the total kinetic energy function K of
c defined by

K(c) =
1
2

∫ 1

0

v2dt,

where v = ċ is the velocity of c. The Euler–Lagrange equations for the func-
tional K : S → R are the well known equations of geodesics, which are the
auto-parallel curves with respect to the Levi-Civita connection on SU(2m).
Now SU(2m)/SU(m)×SU(m) can be identified with the complex Grassman-
nian Gm(2m) of m-planes in 2m space. The gradient flow of K is a homotopy
equivalence between the loop space on SU(2m) and the Grassmannian up to
dimension 2m, i.e.,

πi+1SU(2m) = πi(ΩSU(2m)) = πiGm(2m), 0 ≤ i ≤ 2m.

This result together with the standard results from algebraic topology on the
homotopy groups of fibrations imply the periodicity relation

πi−1SU(k) = πi+1SU(k), i ≤ 2m ≤ k.

We give below a table of the higher homotopy groups of U(n), SO(n), and
SP (n) and indicate the stable range of values of n in which the periodicity
appears.

Table 2.2 Stable homotopy of the classical groups

πk U(n), 2n > k SO(n), n > k + 1 SP (n), 4n > k − 2

π1 Z Z2 0

π2 0 0 0

π3 Z Z Z

π4 0 0 Z2

π5 Z 0 Z2

π6 0 0 0

π7 Z Z Z

π8 0 Z2 0

period 2 8 8
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Table 2.2 of stable homotopy groups of the classical groups we have
given is another way of stating the Bott periodicity theorem. More gener-
ally, Bott showed that for sufficiently large n the homotopy groups of the
n-dimensional unitary group U(n), the rotation group SO(n) and the sym-
plectic group Sp(n) do not depend on n and that they exhibit a certain
periodicity relation. To state the precise result we need to define the infinite-
dimensional groups U(∞), SO(∞), and Sp(∞). Recall that the natural em-
bedding of Cn into Cn+1 induces the natural embedding of U(n) into U(n+1)
and defines the inductive system (see Appendix C)

U(1) ⊂ U(2) ⊂ · · · ⊂ U(n) ⊂ U(n + 1) ⊂ · · ·

of unitary groups. We define the infinite-dimensional unitary group U(∞) to
be the inductive limit of the above system. The groups SO(∞) and Sp(∞)
are defined similarly. Using these groups we can state the following version
of the Bott periodicity theorem.

Theorem 2.4 The homotopy groups of the infinite-dimensional unitary, ro-
tation, and symplectic groups satisfy the following relations:

1. πk+2(U(∞)) = πk(U(∞))
2. πk+8(SO(∞)) = πk(SO(∞))
3. πk+8(Sp(∞)) = πk(Sp(∞))

We already indicated how the statements of this theorem are related to
the periodicity relations of Clifford algebras in Chapter 1. We will give the K-
theory version of Bott periodicity in Chapter 5. The Bott periodicity theorem
is one of the most important results in mathematics and has surprising con-
nections with several other fundamental results, such as the Atiyah–Singer
index theorem. Several of the groups appearing in this theorem have been
used in physical theories. Some homotopy groups outside the stable range also
arise in gauge theories. For example, π3(SO(4)) = Z⊕Z is closely related to
the self-dual and the anti-self-dual solutions of the Yang–Mills equations on
S4. π7(SO(8)) = Z⊕Z arises in the solution of the Yang–Mills equations on
S8 (see [175, 243] for details). It can be shown that this solution and simi-
lar solutions on higher-dimensional spheres satisfy certain generalized duality
conditions.

2.4 Singular Homology and Cohomology

In homology theory the algebraic structures (homology modules) associated
with a topological space X are defined through the construction of chain
complexes (see Appendix D) related to X . If one uses simplexes related to X ,
one has simplicial homology, which was introduced by Poincaré (see [90] for
a very accessible introduction). There are, however, other homology theories
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that give rise to isomorphic homology modules under fairly general conditions
on X . We will discuss only the singular homology theory, whose introduction
is usually attributed to Lefschetz. For other approaches see, for example,
Eilenberg, Steenrod [118], and Spanier [357].

Let q be a nonnegative integer and Δq ⊂ Rq+1 be the set

Δq := {(x0, . . . , xq) ∈ Rq+1 |
q∑
i=0

xi = 1, xi ≥ 0, i = 0, 1, . . . , q}.

The set Δq with the relative topology is called the standard q-simplex. Let
X be a topological space. A singular q-simplex in X is a continuous map
s : Δq → X . We denote by Σq(X) the set of all singular q-simplexes in X .
If P is a principal ideal domain, we denote by Sq(X ;P) the free P-module
generated by Σq(X) and we will simply write Sq(X) when the reference to P
is understood. By definition of a free module it follows that every element of
Sq(X) can be regarded as a function c : Σq(X)→ P such that c(s) = 0 for all
but finitely many singular q-simplexes s in X . An element of Sq(X) is called
a singular q-chain and Sq(X) is called the qth singular chain module of
X . If s ∈ Σq(X), let χs denote the singular q-chain defined by

χs(s′) = δss′ , ∀s′ ∈ Σq(X),

where δss′ = 0 for s �= s′ and δss = 1 (1 is the unit element of P). χs is
called an elementary singular chain. It is customary to write s instead of
χs. Thus, any element c ∈ Sq(X) can be expressed uniquely as

c =
∑

s∈Σq(X)

gss, gs ∈ P,

where gs = 0 for all but finitely many s.
Let q be a positive integer, s ∈ Σq(X) be a singular q-simplex and i ≤ q

a nonnegative integer. The map

s(i) : Δq−1 → X

defined by

s(i)(x0, . . . , xq−1) = s(x0, . . . , xi−1, 0, xi, . . . , xq−1)

is a singular (q− 1)-simplex, called the ith face of s. Let us denote by δq the
unique linear map

δq : Sq(X)→ Sq−1(X)

such that

δq(s) =
q∑
i=0

(−1)is(i).
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One can show that
δq−1 ◦ δq = 0.

Let q ∈ Z. For q < 0 we define Sq(X) = 0 and for q ≤ 0 we define δq = 0.
With these definitions

· · · ←− Sq−1(X)
δq←− Sq(X)

δq+1←− Sq+1(X)←− · · ·

is a chain complex, which is also simply denoted by S∗(X). S∗(X) is called the
singular chain complex (with coefficients in P). Let X, Y be topological
spaces and f : X → Y a continuous map. For all q ∈ Z, let us denote by
Sq(f ;P), or simply Sq(f), the unique linear map

Sq(f) : Sq(X)→ Sq(Y )

such that χs �→ χf◦s. One can show that

δ ◦ Sq(f) = Sq−1(f) ◦ δ. (2.5)

The family S∗(f) := {Sq(f) | q ∈ Z} is a chain morphism such that

1. S∗(idX) = idS∗(X),
2. S∗(g ◦ f) = S∗(g) ◦ S∗(f), g ∈Mor(Y, Z).

Thus, S∗(· ;P) is a covariant functor from the category of topological spaces
to the category of chain complexes over P. The qth homology module of the
complex S∗(X) over P is called the qth singular homology module and
is denoted by Hq(X ;P), or simply Hq(X). An element of Hq(X) is called
a q-th homology class of X . In general, computing homology modules is a
non-trivial task and requires the use of specialized tools. However, it is easy
to show that H0(X ;P) is a free P-module on as many generators as there
are path components of X . In particular, if X is path connected, then

H0(X ;P) ∼= P.

Let X, Y be topological spaces and f : X → Y a continuous map. By passage
to the quotient, Sq(f ;P) induces the map

Hq(f ;P) : Hq(X)→ Hq(Y ),

which we simply denote also by Hq(f). Hq(f) is a linear map such that

1. Hq(idX) = idHq(X),
2. Hq(g ◦ f) = Hq(g) ◦Hq(f), g ∈Mor(Y, Z).

Thus, Hq(· ;P) is a covariant functor from the category of topological spaces
to the category of P-modules. It follows that homeomorphic spaces have iso-
morphic homology modules. This result is often expressed by saying that
homology modules are topological invariants. In fact, one can show that ho-
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motopy equivalent spaces have isomorphic homology modules, or that homol-
ogy modules are homotopy invariants.

Observe that singular 1-simplexes in a topological space X are paths in
X . Thus, there exists a natural map

φ : π1(X, x0)→ H1(X ;P)

such that, if γ is a loop at x0, φ([γ]) is the homology class of the singular 1-
simplex γ. The precise connection between fundamental groups and homology
groups of path connected topological spaces is given in the following theorem
(see [160] for a proof):

Theorem 2.5 Let X be a path connected topological space. The map φ de-
fined above is a surjective homomorphism whose kernel is the commutator
subgroup F of π1(X) (F is the subgroup of π1(X) generated by all the ele-
ments of the form aba−1b−1). Thus, H1(X ;Z) is isomorphic to π1(X)/F . In
particular, H1(X) is isomorphic to π1(X) if and only if π1(X) is Abelian.

In view of the above theorem the first homology group is sometimes re-
ferred to as the “Abelianization” of the fundamental group. For the relation
between higher homology and homotopy groups an important result is the
following Hurewicz isomorphism theorem, which gives sufficient conditions
for isomorphisms between Hq(X ;Z) and πq(X) for q > 1.

Theorem 2.6 (Hurewicz) Let X be a simply connected space. If there exists
j ∈ N such that πj(X) is the first non-trivial higher homotopy group of X,
then

πk(X) ∼= Hk(X ;Z), ∀k, 1 ≤ k ≤ j.

Thus for a simply connected space the first non-trivial homotopy and homol-
ogy groups are in the same dimension and are equal.

Let A be a subspace of the topological space X . The pair (X, A) is called
a topological pair. If (X ′, A′) is another topological pair and f : X → X ′

is a continuous map such that f(A) ⊂ A′, then f is called a morphism of the
topological pair (X, A) into (X ′, A′) and is denoted by f : (X, A)→ (X ′, A′).

Let (X, A) be a topological pair. Then, ∀q ∈ Z, Sq(A) can be regarded as a
submodule of Sq(X) and δq(Sq(A)) ⊂ Sq−1(A). The quotient chain complex
of (S∗(X), δ) by S∗(A) is called the relative singular chain complex of
X mod A and is denoted by S∗(X, A). The qth homology module of this
chain complex is denoted by Hq(X, A), or Hq(X, A;P) if one wants to stress
the fact that the coefficients are in the principal ideal domain P. Hq(X, A)
is called the qth relative singular homology module of X mod A. Let
Zq(X, A), Bq(X, A) be defined by

Zq(X, A) := {c ∈ Sq(X) | δc ∈ Sq−1(A)},

Bq(X, A) := {c ∈ Sq(X) | c = δw + c′, w ∈ Sq+1(X), c′ ∈ Sq(A)}.
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Then one can show that

Hq(X, A) ∼= Zq(X, A)/Bq(X, A).

Indeed, the above relation is sometimes taken as the definition of Hq(X, A).
The elements of Zq(X, A) (resp. Bq(X, A)) are called q-cycles (resp., q-
boundaries) on X mod A. Let f : (X, A)→ (X ′, A′) be a morphism of topo-
logical pairs. Then the map Sq(f) sends Sq(A) into Sq(A′) and hence Sq(f)
induces, by passage to the quotient, the map S̃q(f) : Sq(X, A)→ Sq(X ′, A′).
The family {S̃q(f) | q ∈ Z} is denoted by S̃∗(f). It is customary to write
simply Sq(f) and S∗(f) instead of S̃q(f) and S̃∗(f), respectively. The map
Sq(f) satisfies equation (2.5). From this it follows that it sends Zq(X, A) into
Zq(X ′, A′) and Bq(X, A) into Bq(X ′, A′). Thus, Sq(f) induces, by passage to
the quotient, a homomorphism

H̃q(f ;P) : Hq(X, A)→ Hq(X ′, A′).

It is customary to write Hq(f ;P), or simply Hq(f), instead of H̃q(f ;P). One
can show that

Hq(id(X,A)) = idHq(X,A).

Moreover, if g : (X ′, A′)→ (X ′′, A′′) is a morphism of topological pairs, then

Hq(g ◦ f) = Hq(g) ◦Hq(f).

Thus, ∀q ∈ Z, H̃q(·;P) is a covariant functor from the category of topological
pairs to the category of P-modules.

Let (X, A) be a topological pair, i : A → X the natural inclusion map,
and j : (X, ∅) → (X, A) the natural morphism of (X, ∅) into (X, A). Then
the sequence induced by these maps

0 −→ S∗(A)
S∗(i)−→ S∗(X)

S∗(j)−→ S∗(X, A) −→ 0

is a short exact sequence of chain complexes. Moreover, one has the related
connecting morphism h∗ (see Appendix D)

h∗ = {hq : Hq(X, A)→ Hq−1(A) | q ∈ Z}.

The corresponding long exact sequence

· · · −→ Hq+1(X, A)
hq+1−→ Hq(A) −→ Hq(X) −→

−→ Hq(X, A)
hq−→ Hq−1(A) −→ · · ·

is called the
Relative homology is useful in the evaluation of homology because of the

following excision property. Let (X, A) be a topological pair and U ⊂ A.
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Let i : (X \ U, A \ U)→ (X, A) be the natural inclusion. We say that U can
be excised and that i is an excision if

Hq(i) : Hq(X \ U, A \ U)→ Hq(X, A)

is an isomorphism. One can show that, if the closure Ū ⊂ A, then U can
be excised. If X is an n-dimensional topological manifold, then, using the
excision property, one can show that, ∀x ∈ X ,

Hn(X, X \ {x}) ∼= P.

Let U be a neighborhood of x ∈ X . If jUx : (X, X \U)→ (X, X \{x}) denotes
the natural inclusion, then we have the homomorphism

Hn(jUx ) : Hn(X, X \ U)→ Hn(X, X \ {x}).

One can show that, ∀x ∈ X , there exists an open neighborhood U of x and
α ∈ Hn(X, X \U) such that αy := Hn(jUy )(α) generates Hn(X, X \{y}), ∀y ∈
U . Such an element α is called a local P-orientation of X along U . A P-
orientation system of X is a set {(Ui, αi) | i ∈ I} such that

1.
⋃
i∈I Ui = X ;

2. ∀i ∈ I, αi is a local P-orientation of X along Ui;
3. αi,y = αj,y, ∀y ∈ Ui ∩ Uj .

Given the P-orientation system {(Ui, αi) | i ∈ I} of X , for each x ∈ X ,
∃i ∈ I such that x ∈ Ui and hence we have a generator αx of Hn(X, X \ {x})
given by αx := αi,x. Two P-orientation systems {(Ui, αi) | i ∈ I },
{(U ′

i , α
′
i) | i ∈ I ′ } are said to be equivalent if αx = α′

x, ∀x ∈ X . An
equivalence class of P-orientation systems of X is denoted simply by α and
is called a P-orientation of X . One can show that, if X is connected, then
two P-orientations that are equal at one point are equal everywhere. A topo-
logical manifold is said to be P-orientable if it admits a P-orientation. A
P-oriented manifold is a P-orientable manifold with the choice of a fixed
P-orientation α. A manifold is said to be orientable (resp., oriented) when
it is Z-orientable (resp., Z-oriented). We note that homology with integer
(resp., rational, real) coefficients is often referred to as the integral (resp.
rational, real) homology.

If X is a compact connected n-dimensional, P-oriented manifold, then

Hn(X) ∼= P.

This allows us to give the following definition of the fundamental class of
a compact connected oriented manifold with orientation α. Let αx be the
local orientation at x ∈ X . Then there exists a unique generator of Hn(X),
whose image under the canonical map Hn(X) → Hn(X, X \ {x}) is αx.
This generator of Hn(X) is called the fundamental class of X with the
orientation α and is denoted by [X ].
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Using integral homology we can define the Betti numbers and Euler char-
acteristic for certain topological spaces. They turn out to be integer-valued
topological invariants. In order to define them, let us recall some results from
algebra. Let V be a P-module. An element v ∈ V is called a torsion ele-
ment if there exists a ∈ P\{0} such that av = 0. The set of torsion elements
of V is a submodule of V denoted by Vt and called the torsion submodule
of V . If Vt = {0} then V is said to be torsion free. One can show (see Lang
[244]) that if V is finitely generated then there exists a free submodule Vf of
V such that

V = Vt
⊕

Vf .

The dimension of Vf is called the rank of V . Let M be a topological manifold.
If the homology modules Hq(M ;Z) are finitely generated, then the rank of
Hq(M ;Z) is called the qth Betti number and is denoted by bq(M). In this
case we define the Euler (or Euler–Poincaré) characteristic χ(M) of M
by

χ(M) :=
∑
q

(−1)qbq(M).

We observe that if M is compact then the homology modules are finitely
generated. Roughly speaking, the Betti numbers count the number of holes
of appropriate dimension in the manifold, whereas the torsion part indicates
the twisting of these holes.

An example of this is the following. Recall that the Klein bottle K
is obtained by identifying the two ends of the cylinder [0, 1] × S1 with an
antipodal twist, i.e., by identifying (0, θ) with (1,−θ), θ ∈ S1. This twist is
reflected in the torsion part of homology and we have H1(K;Z) = Z ⊕ Z2,
whereas H1(K;R) = R. Note that if we use homology with coefficient in Z2

then the torsion part also vanishes since Z2 has no non-trivial subgroups. If
the integral domain P is taken to be the field Q or R, then the Betti numbers
remain the same but there is no torsion part in the homology modules.

By duality a homology theory gives a cohomology theory. As an example
singular cohomology is defined as the dual of singular homology. The qth
singular cochain module of a topological space X with coefficients in P
is the dual of Sq(X ;P) and is denoted by Sq(X ;P) or simply Sq(X). If X, Y
are topological spaces and f : X → Y is a continuous map, then we denote
by Sq(f ;P) or simply by Sq(f) the map

Sq(f) := tSq(f) : Sq(Y )→ Sq(X),

where we have used the notation tL for the transpose of the linear map L
(here L = Sq(f) ). Then it is easy to verify that Sq( · ;P) is a contravariant
functor from the category of topological spaces to the category of P-modules.
The qth singular cohomology P-module Hq(X ;P) or simply Hq(X) is
defined by
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Hq(X) = Ker tδq+1/ Im tδq,

where tδq+1 : Sq(X) → Sq+1(X) is the qth coboundary operator. The
module Zq(X) := Ker tδq+1 (resp., Bq(X) := Im tδq) is called the qth
singular cohomology module of cocycles (resp., coboundaries). In partic-
ular, the duality of Hq(X,Z) with Hq(X,Z) and the finite dimensionality
of Hq(X,Z) implies that dim Hq(X,Z) = dimHq(X,Z) = bq(X), ∀q ≥ 0,
where bq(X) is the qth Betti number of X . If X, Y are topological spaces and
f : X → Y is a continuous map, then Sq(f) sends Zq(Y ) to Zq(X) and Bq(Y )
to Bq(X). Hence, it induces, by passage to the quotient, the homomorphism

Hq(f ;P) ≡ Hq(f) : Hq(Y )→ Hq(X).

Then it is easy to verify that Hq( · ;P) is a contravariant functor from the
category of topological spaces to the category of P-modules. With an analo-
gous procedure one can define the qth relative singular cohomology modules
for a topological pair (X, A), denoted by Hq(X, A) (see Greenberg [160] for
details). A comprehensive introduction to algebraic topology covering both
homology and homotopy can be found in Tammo tam Dieck’s book [98].

In dealing with noncompact spaces it is useful to consider singular coho-
mology with compact support that we now define. Let X be a topological
manifold. The set K of compact subsets of X is a directed set with the partial
order given by the inclusion relation. Let us consider the direct system

D = ({Hq(X, X \K) | K ∈ K}, {fK
′

K | (K, K ′) ∈ K2
0}),

where
K2

0 := {(K, K ′) ∈ K2 | K ⊂ K ′}.

The map fK
′

K : Hq(X, X \ K) → Hq(X, X \ K ′) is the homomorphism in-
duced by the inclusion. The qth singular cohomology P-module with
compact support is the direct limit of the direct system D and is denoted
by Hq

c (X ;P), or simply Hq
c (X). Then, by definition

Hq
c (X) := lim

−→
Hq(X, X \K).

We observe that if X is compact then X is the largest element of K. Thus, if
X is compact we have that Hq

c (X) = Hq(X), ∀q ∈ Z.
As with homology theories, there are several cohomology theories. An ex-

ample is given by the differentiable singular homology (resp., cohomol-
ogy) whose difference from singular homology (resp., cohomology) is essen-
tially in the fact that its construction starts with differentiable singular
q-simplexes instead of (continuous) singular q-simplexes. The differentiable
singular homology (resp., cohomology) of X is denoted by ∞H∗(X ;P) (resp.,
H∗

∞(X ;P)). Under very general conditions the various cohomology theories
are isomorphic (see Warner [396]); for example, H∗(X ;P) ∼= H∗

∞(X ;P). In
most physical applications we are interested in topological spaces that are dif-
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ferentiable manifolds. We now discuss the cohomology theory based on the
cochain complex of differential forms on a manifold. This is the well known
de Rham cohomology with real coefficients.

2.5 de Rham Cohomology

The de Rham complex of an m-dimensional manifold M is the cochain
complex (Λ(M), d) given by

0 −→ Λ0(M) d−→ Λ1(M) d−→ · · · d−→ Λn(M) −→ 0 . (2.6)

The cohomology H∗(Λ(M), d) is called the de Rham cohomology of M and
is denoted by H∗

deR(M). The de Rham cohomology has a natural structure of
graded algebra induced by the exterior product. The product on homogeneous
elements is given by the map

∪ : H i(M ;P)×Hj(M ;P)→ Hi+j(M ;P)

defined by
([α], [β]) �→ [α ∧ β].

This induced product in cohomology is in fact a special case of a cohomology
operation called the cup product (see Spanier [357]).

If M, N are manifolds then we have

H∗
deR(M ×N) = H∗

deR(M)⊗̂H∗
deR(N),

where ⊗̂ denotes the graded tensor products. In particular, we can express
the cohomology of M × N in terms of the cohomologies of M and N as
follows:

Hk
deR(M ×N) =

⊕
k=i+j

Hi
deR(M)⊗Hj

deR(N). (2.7)

In fact, the above formula holds more generally and is called the Künneth
formula.

There is a canonical map ρ called the de Rham homomorphism

Hq
deR(M)→ (∞Hq(M ;R))′ ∼= Hq

∞(M ;R)

given by the following pairing between de Rham cohomology classes [α] and
real differentiable singular homology classes [c]

([α], [c]) �→
∫

c

α.
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One can show that this map ρ is independent of the choice of α ∈ [α] and
c ∈ [c]. The classical de Rham theorem says that the map ρ is an isomorphism.
Thus, ∀q we have

Hq
deR(M) ∼= Hq

∞(M ;R) ∼= Hq(M ;R).

Let (M, g) be an oriented, closed (i.e., compact and without boundary)
Riemannian manifold with metric volume form μ. Recall that the Hodge–
de Rham operator Δ = d ◦ δ + δ ◦ d maps Λk(M)→ Λk(M), ∀k and that
the Hodge star operator ∗ maps Λk(M)→ Λn−k(M), ∀k. For further details,
see Chapter 3. The map

〈 , 〉 : Λk(M)× Λk(M)→ R

defined by

〈α, β〉 =
∫

M

α ∧ ∗β =
∫

M

g(α, β)μ (2.8)

is an inner product on Λk(M). One can show that, for σ ∈ Λk+1(M), we have

〈dα, σ〉 = 〈α, δσ〉 and 〈Δα, β〉 = 〈α, Δβ〉. (2.9)

That is, δ is the adjoint of d and Δ is self-adjoint with respect to this inner
product. Furthermore, Δα = 0 if and only if dα = δα = 0. An element of the
set

Hk := {α ∈ Λk(M) | Δα = 0} (2.10)

is called a harmonic k-form. It follows that a k-form is harmonic if and only
if it is both closed and coclosed. The set Hk is a subspace of Λk(M). Using
these facts one can prove (see, for example, Warner [396]) the Hodge decom-
position theorem, which asserts that Hk is finite-dimensional and Λk(M)
has a direct sum decomposition into the orthogonal subspaces d(Λk(M)),
δ(Λk(M)), and Hk. Thus any k-form α can be expressed by the formula

α = dβ + δγ + θ, (2.11)

where β ∈ Λk−1(M), γ ∈ Λk+1(M) and θ is a harmonic k-form. For α in a
given cohomology class, the harmonic form θ of equation (2.11) is uniquely
determined. Thus, we have an isomorphism of the kth cohomology space
Hk(M ;R) with the space of harmonic k-forms Hk. Therefore, the kth Betti
number bk is equal to the dimHk. This is an illustration of a relation between
physical or analytic data (the solution space of a partial differential operator)
on a manifold and its topology. A far-reaching, nonlinear generalization of
this idea relating the solution space of Yang–Mills instantons to the topology
of 4-manifolds appears in the work of Donaldson (see Chapter 9 for further
details).
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2.5.1 The Intersection Form

Let M be a closed (i.e., compact, without boundary), connected, oriented
manifold of dimension 2n. Let v denote the volume form on M defining the
orientation. We shall use the de Rham cohomology to define ιM , the in-
tersection form of M as follows. Let α, β ∈ Λn(M) be two closed n-forms
representing the cohomology classes a, b ∈ Hn(M ;Z) ⊂ Hn(M ;R) respec-
tively, i.e., a = [α] and b = [β]. Now α∧β ∈ Λ2n(M) and hence

∫
α∧β is well

defined with respect to the volume form v. It can be shown that this integral
is independent of the choice of forms α, β representing the cohomology classes
a, b and takes values that are integral multiples of the volume of M . Thus,
we can define the binary operator

ιM : Hn(M ;Z)×Hn(M ;Z)→ Z

by

ιM (a, b) =
∫

M

(α ∧ β).

In what follows we shall use the same letter to denote the cohomology class
and an n-form representing that class. It can be shown that ιM is a symmetric,
non-degenerate bilinear form on Hn(M ;Z). This symmetric, non-degenerate
form ιM is called the intersection form of M . The definition given above
works only for smooth manifolds. However, as is the case with de Rham co-
homology, the intersection form does not depend on the differential structure
and is a topological invariant. In particular, it is defined for topological man-
ifolds. In fact, the intersection form can also be defined for non-orientable
manifolds by considering cohomology or homology with coefficients in Z2 in-
stead of Z. Now for a compact manifold M, Hn(M ;Z) is a finitely generated
free Abelian group of rank bn (the nth Betti number), i.e., an integral lattice
of rank bn. Thus, the intersection form gives us the map

ι : M �→ ιM ,

which associates to each compact, connected, oriented topological manifold
M of dimension 2n a symmetric, non-degenerate bilinear form ιM on a lattice
of rank bn. Let (b+, b−) be the signature of the bilinear form ιM . If bn > 0 and
cj , 1 ≤ j ≤ bn, is a basis of the lattice Hn(M ;Z), then the intersection form
is completely determined by the matrix of integers ιM (cj , ck), 1 ≤ j, k ≤ bn.
From Poincaré duality it follows that the intersection form is unimodular,
i.e.,

| det(ιM (cj , ck))| = 1.

If bn = 0 then we take ιM := ∅ the empty form. Recall that on the abstract
level two forms ι1, ι2 on lattices L1, L2, respectively, are said to be equivalent
if there exists an isomorphism of lattices f : L1 → L2 such that f∗ι2 = ι1.
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The intersection form plays a fundamental role in Freedman’s classification
of topological 4-manifolds. We give a brief discussion of this result in the next
section.

2.6 Topological Manifolds

In this section we discuss topological manifolds with special attention to
low-dimensional manifolds. The following theorem gives some results on the
existence of smooth structures on topological manifolds.

Theorem 2.7 Let M be a closed topological manifold of dimension n. Then
we have the following results:

1. For n ≤ 3 there is a unique compatible smooth structure on M .
2. For n = 4 there exist (infinitely many) simply connected manifolds that

admit infinitely many distinct smooth structures. It is not known whether
there are manifolds that admit only finitely many distinct smooth struc-
tures.

3. For n ≥ 5 there are at most finitely many distinct compatible smooth
structures.

Thus, dimension 4 seems very special. This is also true for open topologi-
cal manifolds. There is a unique smooth structure on Rn, n �= 4, compatible
with its standard topology. However, R4 admits uncountably many smooth
structures. We do not know at this time if every open topological 4-manifold
admits uncountably many smooth structures. For further results in the sur-
prising world of 4-manifolds, see, for example, the book by Scorpan [343].

2.6.1 Topology of 2-Manifolds

The topology of 2-manifolds, or surfaces, was well known in the nineteenth
century. Smooth, compact, connected and oriented 2-manifolds are called
Riemann surfaces. An introduction to compact Riemann surfaces from
various points of view and their associated geometric structures may be found
in Jost [213]. They are classified by a single non-negative integer, the genus
g. The genus counts the number of holes in the surface. There is a standard
model Σg for a surface of genus g obtained by attaching g handles to a
sphere (which has genus zero). Every smooth, compact, oriented surface is
diffeomorphic to one and only one Σg. The classification is sometimes given
in terms of the Euler characteristic of the surface. It is related to the genus
by the formula χ(Σg) = 2− 2g.

In the classical theory of surfaces, homology classes a, b ∈ H1(M ;Z) were
represented by closed curves, which could be chosen to intersect transversally.
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The intersection form was then defined by counting the algebraic number
of intersections of these curves. Surfaces are completely classified by their
intersection forms. In the orientable case we have the following well known
result.

Theorem 2.8 Let M, N be two closed, connected, oriented surfaces. Then
M ∼= N (i.e., M is diffeomorphic to N) if and only if the intersection forms
ιM , ιN are equivalent. Moreover, if ιM = ∅ then M ∼= S2 and if ιM �= ∅ then
there exists k ∈ N such that ιM ∼= kσ1, where

σ1 =
(

0 1
1 0

)

is a Pauli spin matrix, and kσ1 is the block diagonal form with k entries of
σ1, and M ∼= kT 2, where T 2 = S1 × S1 is the standard torus and kT 2 is the
connected sum of k copies of T 2.

The Riemann surface together with a fixed complex structure provides a
classical model for one-dimensional algebraic varieties or complex curves. A
compact surface corresponds to a projective curve. The genus of such a sur-
face is equal to the dimension of the space of holomorphic one forms on the
surface. This way of looking at a Riemann surface is crucial in the Gromov–
Witten theory. We will not consider it in this book. The genus has also a
topological interpretation as half the first Betti number of the surface. We
note that the classification of orientable surfaces given by the above theorem
can be extended to include non-orientable surfaces as well. We are inter-
ested in extending this theorem to the case of 4-manifolds. This was done by
Freedman in 1981. Before discussing his theorem we consider the topology of
3-manifolds where no intersection form is defined.

2.6.2 Topology of 3-Manifolds

The classification of manifolds of dimension 3 or higher is far more difficult
than that of surfaces. It was initiated by Poincaré in 1900. The year 1900 is
famous for the Paris ICM and Hilbert’s lecture on the major open problems
in mathematics. The classification of 3-manifolds was not among Hilbert’s
problems. Armed with newly minted homology groups and his fundamental
group Poincaré began his study by trying to characterize the simplest 3-
manifold, the sphere S3. His first conjecture was the following:

Let M be a compact connected 3-manifold with the same homology groups
as the sphere S3. Then M is homeomorphic to S3.

In attempting to prove this conjecture Poincaré found a 3-manifold P
that provided a counterexample to the conjecture. This 3-manifold P is now
called the Poincaré homology sphere. It is denoted by Σ(2, 3, 5) as it can
be represented as a special case of the Brieskorn homology 3-spheres,
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Σ(a1, a2, a3) := {(z1, z2, z3) | za1
1 + za2

2 + za3
3 = 0} ∩ S5, a1, a2, a3 ∈ N.

We will compute various new invariants of the Brieskorn homology 3-spheres
in Chapter 10. Poincaré’s original ingenious construction of P can be de-
scribed via well known geometric figures. It is the space of all regular icosa-
hedra inscribed in the standard unit 2-sphere. Note that each icosahedron is
uniquely determined by giving one vertex on the sphere (2 parameters) and
a direction to a neighboring vertex (1 parameter). It can be shown that the
parameter (or moduli) space P of all icosahedra is a 3-manifold diffeomor-
phic to Σ(2, 3, 5) and that it has the same homology groups as the sphere
S3. Poincaré showed that π1(P ), the fundamental group of P , is non-trivial.
Since π1(S3) is trivial, P cannot be homeomorphic to S3. Yet another de-
scription of P is obtained by observing that the rotation group SO(3) maps
S2 to itself and the induced action on P is transitive. The isotropy group Ix
of a fixed point x ∈ P can be shown to be a finite group of order 60. Thus, P
is homeomorphic to the coset space SO(3)/Ix. This fact can be used to show
that π1(P ) is a perfect group of order 120.

Icosahedron is one of the five regular polyhedra or solids known since
antiquity. They are commonly referred to as Platonic solids (see Appendix
B for some interesting properties of Platonic solids). Poincaré’s counterexam-
ple showed that homology was not enough to characterize S3 and that one
has to take into account the fundamental group. He then made the following
conjecture:

Let M be a closed simply connected 3-manifold. Then M is homeomor-
phic to S3.

We give it in an alternative form, which is usrful for stating the generalized
Poincaré conjecture in any dimension, with 3 replaced by a natural number n.

Poincaré Conjecture: Let M be a closed connected 3-manifold with the
same homotopy type as the sphere S3. Then M is homeomorphic to S3.

Definition 2.2 Let Hn denote the n-dimensional hyperbolic space. A 3-
manifold X is said to be a Thurston 3-dimensional geometry if it is
one of the following eight homogeneous manifolds (i.e., the group of isome-
tries of X acts transitively on X).

• Three spaces of constant curvature R3, S3, H3.
• Two product spaces R× S2, R×H2.
• Three twisted product spaces, each of which is a Lie group with a left

invariant metric. They are

◦ the universal covering space of the group SL(2,R);
◦ the group of upper triangular matrices in M3(R) with all diagonal en-

tries 1, called Nil;
◦ the semidirect product of R and R2, where R acts on R2 through mul-

tiplication by the diagonal matrix diag(t, t−1), t ∈ R, called Sol.
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We can now define a geometric 3-manifold in the sense of Thurston.

Definition 2.3 A 3-manifold M is said to be geometric if it is diffeo-
morphic to X/Γ , where Γ is a discrete group of isometries of X (i.e.
Γ < Isom(X)) acting freely on X, and X is one of Thurston’s eight 3-
dimensional geometries.

We can now state the Thurston geometrization conjecture.

Thurston Geometrization Conjecture: : Let M be a closed 3-manifold
that does not contain two-sided projective planes. Then M admits a con-
nected sum decomposition and a decomposition along disjoint incompress-
ible tori and Klein bottles into a finite number of pieces each of which is a
geometric manifold.

The Thurston geometrization conjecture was recently proved by Perelman
using a generalized form of Hamilton’s Ricci flow technique. This result im-
plies the original Poincaré conjecture. We will comment on it in Chapter 6.

2.6.3 Topology of 4-manifolds

The importance of the intersection form for the study of 4-manifolds was al-
ready known since 1940 from the following theorem of Whitehead (see Milnor
and Husemoller [285]).

Theorem 2.9 Two closed, 1-connected, 4-manifolds are homotopy equiva-
lent if and only if their intersection forms are equivalent.

In the category of topological manifolds a complete classification of closed,
1-connected, oriented 4-manifolds has since been carried out by Freedman
(see [136]). To state his results we begin by recalling the general scheme of
classification of symmetric, non-degenerate, unimodular, bilinear forms (re-
ferred to simply as “forms” in the rest of this section) on lattices (see Milnor
and Husemoller [285]). The classification of forms has a long history and is an
important area of classical mathematics with applications to algebra, num-
ber theory, and more recently to topology and geometry. We have already
defined two fundamental invariants of a form, namely its rank bn and its
signature (b+, b−). We note that sometimes the signature is defined to be
the integer b+ − b− = bn − 2b−. We shall denote this integer by σ(M), i.e.,
σ(M) := bn−2b−. We say that a form ι on the lattice L is even or of type II
if ι(a, a) is even for all a ∈ L. Otherwise we say that it is odd or of type I. It
can be shown that for even (type II) forms, 8 dvides the signature σ(M). In
particular, 8 divides the rank of a positive definite even form. The indefinite
forms are completely classified by the rank, signature, and type. We have the
following result.

Theorem 2.10 Let ι be an indefinite form of rank r and signature (j, k), j >
0, k > 0. Then we have
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1. ι ∼= j(1)⊕ k(−1) if it is odd (type I),
2. ι ∼= mσ1 ⊕ pE8, m > 0 if it is even (type II),

where (1) and (−1) are 1 × 1 matrices representing the two possible forms
of rank 1, σ1 is the Pauli spin matrix defined earlier, and E8 is the matrix
associated to the exceptional Lie group E8 in Cartan’s classification of simple
Lie groups, i.e.,

E8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The classification of definite forms is much more involved. The number
N(r) of equivalence classes of definite forms (which counts the inequivalent
forms) grows very rapidly with the rank r of the form, as Table 2.3 illustrates.

Table 2.3 Number of inequivalent definite forms

r 8 16 24 32 40
N(r) 1 2 24 ≥ 109 ≥ 1051

We now give some simple examples of computation of intersection forms
that we will use later.

Example 2.8 We denote H2(M ;Z) by L in this example.

1. Let M = S4; then L = 0 and hence ιM = ∅.
2. Let M = S2 × S2; then L has a basis of cohomology classes α, β dual to

the homology cycles represented by S2 × {(1, 0, 0)} and {(1, 0, 0)} × S2,
respectively. With respect to this basis the matrix of ιM is the Pauli spin
matrix

σ1 =
(

0 1
1 0

)
.

3. Let M = CP2; then L = Z and hence ιM = (1).
4. Let M = CP

2
, i.e., CP2 with the opposite complex structure and orien-

tation. Then L = Z and hence ιM = (−1).

Whitehead’s Theorem 2.9 stated above says that the map ι that associates
to a closed, 1-connected topological 4-manifold its intersection form induces
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an injection from the homotopy equivalence classes of manifolds into the
equivalence classes of forms. It is natural to study this map ι in greater
detail. One can ask, for example, the following two questions.

1. Is the map ι surjective? I.e., given an intersection form μ, does there exist
a manifold M such that ιM = μ?

2. Does the injection from the homotopy equivalence classes of manifolds
into the equivalence classes of forms extend to other equivalence classes of
manifolds?

The first question is an existence question while the second is a uniqueness
question. These questions can be restricted to different categories of manifolds
such as topological or smooth manifolds. A complete answer to these ques-
tions in the topological category is given by the following theorem, proved
by Freedman in 1981 [136].

Theorem 2.11 Let Msp (resp., Mns) denote the set of topological equiva-
lence classes (i.e. homeomorphism classes) of closed, 1-connected, oriented,
spin (resp., non-spin) 4-manifolds. Let Iev (resp. Iod) denote the set of equiv-
alence classes of even (resp. odd) forms. Then we have the following:

1. the map ι :Msp → Iev is bijective;
2. the map ι : Mns → Iod is surjective and is exactly two-to-one. The two

classes in the preimage of a given form are distinguished by a cohomology
class κ(M) ∈ H4(M ;Z2) called the Kirby–Siebenmann invariant.

We note that the Kirby–Siebenmann invariant represents the obstruc-
tion to the existence of a piecewise linear structure on a topological manifold
of dimension ≥ 5. Applying the above theorem to the empty rank zero form
provides a proof of the Poincaré conjecture for dimension 4. Freedman’s the-
orem is regarded as one of the fundamental results of modern topology.

In the smooth category the situation is much more complicated. It is well
known that the map ι is not surjective in this case. In fact, we have the
following theorem:

Theorem 2.12 (Rochlin) Let M be a smooth, closed, 1-connected, oriented,
spin manifold of dimension 4. Then σ(M), the signature of M is divisible by
16.

Now, as we observed earlier, 8 always divides the signature of an even
form, but 16 need not divide the form. Thus, we can define the Rochlin
invariant ρ(μ) of an even form μ by

ρ(μ) :=
1
8
σ(μ) (mod 2).

We note that the Rochlin invariant and the Kirby–Siebenmann invariant
are equal in this case, but for non-spin manifolds the Kirby–Siebenmann
invariant is not related to the intersection form and thus provides a further
obstruction to smoothability. From Freedman’s classification and Rochlin’s
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theorem it follows that a topological manifold with nonzero Rochlin invariant
is not smoothable. For example, the topological manifold |E8| := ι−1(E8)
corresponds to the equivalence class of the form E8 and has signature 8
(Rochlin invariant 1) and hence is not smoothable.

For several years very little progress was made beyond the result of the
above theorem in the smooth category. Then, in 1982, through his study of
the topology and geometry of the moduli space of instantons on 4-manifolds
Donaldson discovered the following, unexpected, result. The theorem has led
to a number of important results including the existence of uncountably many
exotic differentiable structures on the standard Euclidean topological space
R4.

Theorem 2.13 (Donaldson) Let M be a smooth closed 1-connected oriented
manifold of dimension 4 with positive definite intersection form ιM . Then
ιM ∼= b2(1), the diagonal form of rank b2, the second Betti number of M .

Donaldson’s work uses in an essential way the solution space of the Yang–
Mills field equations for SU(2) gauge theories and has already had profound
influence on the applications of physical theories to mathematical problems.
In 1990 Donaldson obtained more invariants of 4-manifolds by using the
topology of the moduli space of instantons. Donaldson theory led to a number
of new results for the topology of 4-manifolds, but it was technically a difficult
theory to work with. In fact, Atiyah announced Donaldson’s new results
at a conference at Duke University in 1987, but checking all the technical
details delayed the publication of his paper until 1990. The matters simplified
greatly when the Seiberg–Witten equations appeared in 1994. We discuss
the Donaldson invariants of 4-manifolds in more detail in Chapter 9. It is
reasonable to say that at that time a new branch of mathematics which may
be called “Physical Mathematics” was created.

In spite of these impressive new developments, there is at present no ana-
logue of the geometrization conjecture in the case of 4-manifolds. Here ge-
ometric topologists are studying the variational problems on the space of
metrics on a closed oriented 4-manifold M for one of the classical curvature
functionals such as the square of the L2 norm of the Riemann curvature Rm,
Weyl conformal curvature W , and its self-dual and anti-dual parts W+ and
W−, respectively, and Ric, the Ricci curvature. The Hilbert–Einstein varia-
tional principle based on the scalar curvature functional and its variants are
important in the study of gravitational field equations. Einstein metrics, i.e.,
metrics satisfying the equation

K := Ric− 1
4
Rg = 0

are critical points of all of the functionals listed above. Here K is the trace-free
part of the Ricci tensor. In many cases the Einstein metrics are minimizers,
but there are large classes of minimizers that are not Einstein metrics. A well-
known obstruction to the existence of Einstein metrics is the Hitchin–Thorpe
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inequality χ(M) ≥ 3
2 |τ(M)|, where χ(M) is the Euler characteristic and τ(M)

is the signature of M . A number of new obstructions are now known. Some of
these indicate that their existence may depend on the smooth structure of M
as opposed to just the topological structure. These obstructions can be inter-
preted as implying a coupling of matter fields to gravity (see [269, 270, 94]).
The basic problem is to understand the existence and moduli spaces of these
metrics on a given manifold and perhaps to find a geometric decomposition
of M with respect to a special functional. One of the most important tools for
developing such a theory is the Chern–Gauss–Bonnet theorem which states
that

χ(M) =
1

8π2

∫
(|Rm|2 − |K|2)dv =

1
8π2

∫ (
|W |2 − 1

2
|K|2 +

1
24

R2

)
dv.

This result allows one to control the full Riemann curvature in terms of the
Ricci curvature Ric. It is interesting to note that in [242], Lanczos had arrived
at the same result while searching for Lagrangians to generalize Einstein’s
gravitational field equations. He noted the curious property of the Euler class
that it contains no dynamics (or is an invariant). He had thus obtained the
first topological gravity invariant (without realizing it). Chern’s fundamental
paper [74] appeared in the same journal seven years later. Chern–Weil the-
ory and Hirzebruch’s signature theorem give the following expression for the
signature τ(M):

τ(M) =
1

12π2

∫
(|W+|2 − |W−|2)dv.

The Hitchin–Thorpe inequality follows from this result and the Chern–
Gauss–Bonnet theorem. In dimension 4, all the classical functionals are con-
formally (or scale) invariant, so it is customary to work with the space of
unit volume metrics on M .

2.7 The Hopf Invariant

As we remarked in the preface, mathematicians and physicists have often
developed the same ideas from different perspectives. The Hopf fibration and
Dirac’s monopole construction provide an example of this. Each is based on
the observation that S2 (the base of the Hopf fibration) is a deformation
retract of R3 \{0} (the base of the Dirac monopole field). Thus non-triviality
of π3(S2) can be interpreted as Dirac’s monopole quantization condition.
Other Hopf fibrations and Hopf invariants also arise in physical theories, as
we indicate later in this section.

Let f : S2n−1 → Sn, n > 1, be a continuous map. Let X denote the
quotient space of the disjoint union D2n

⊔
Sn under the identification of
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x ∈ S2n−1 ⊂ D2n with f(x) ∈ Sn. The map f is called the attaching
map. The space X is called the adjunction space obtained by attaching
the 2n-cell e2n := (D2n, S2n−1) to Sn by f and is denoted by Sn ∪f e2n. The
cohomology H∗(X ;Z) of X is easy to calculate and is given by

Hi(X ;Z) =
{

Z if i = n or 2n,
0 otherwise .

Let α ∈ Hn(X ;Z) and β ∈ H2n(X ;Z) be the generators of the respective
cohomology groups. We note that in de Rham cohomology α, β can be identi-
fied with closed differential forms. It follows that α2 is an integral multiple of
β. The multiplier h(f) is completely determined by the map f and is called
the Hopf invariant of f . Thus we have

α2 = h(f)β.

It can be shown that h(f) is, in fact, a homotopy invariant and hence defines
a map (also denoted by h)

[f ] �→ h(f) of π2n−1(Sn)→ Z.

To include the case n = 1 we note that the double covering c2 : S1 → S1 has
adjunction space RP2 and Hopf invariant 1. The following theorem is due to
H. Hopf:

Theorem 2.14 Let Fn := C(S2n−1, Sn), n > 0, denote the space of contin-
uous functions from S2n−1 to Sn. Then we have the following:

1. If n > 1 is odd, then h(f) = 0, ∀f ∈ Fn.
2. If n is even, then for each k ∈ Z there exists a map fk ∈ Fn such that

h(fk) = 2k.
3. If there exists g ∈ Fn such that h(g) is odd, then n = 2m, where m is a

nonnegative integer.
4. Let π ∈ F1 (resp., F2) be the real (resp., complex) Hopf fibration. Then

h(π) = 1.

We note that the real Hopf fibration π : S1 → RP1 ∼= S1 occurs in the
geometric quantization of the harmonic oscillator [271,272] while the complex
Hopf fibration π : S3 → CP1 ∼= S2 occurs in the geometric construction
of the Dirac monopole. It can be shown that the last result in the above
theorem can be extended to include the quaternionic and octonionic Hopf
fibrations (which arise in the solution of Yang–Mills equations on S4 and
S8, respectively) and that this extended list exhausts all Fn that contain a
map with Hopf invariant 1. This result is part of the following extraordinary
theorem, which links several specific structures from algebra, topology, and
geometry.
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Theorem 2.15 Let Sn−1 ⊂ Rn, n > 0 denote the standard (n − 1)-sphere
in the real Euclidean n-space with the convention that S0 := {−1, 1} ⊂ R
and R0 := {0}. Then the following statements are equivalent:

1. The integer n ∈ {1, 2, 4, 8}.
2. Rn has the structure of a normed algebra.
3. Rn has the structure of a division algebra.
4. Rn−1 admits a cross product (or a vector product).
5. Sn−1 is an H-space.
6. Sn−1 is parallelizable (i.e., its tangent bundle is trivializable).
7. There exists a map f : S2n−1 → Sn with Hopf invariant h(f) = 1.

The relation of conditions (1) and (3) with condition (4) and its general-
izations have been considered in [126]. It is well known that complex numbers
have applications to 2-dimensional geometry and its ring of Gaussian in-
tegers (i.e., numbers of the form m + ni, where m, n ∈ Z) is used in many
classical questions in arithmetic. Similarly, the quaternions are related to 3-
dimensional and 4-dimensional geometry and they contain rings of integers
with many properties similar to those of Gaussian integers. The octonions
have applications to 7- and 8-dimensional geometry. In elementary algebra
one encounters the construction of the complex numbers in terms of certain
real matrices of order 2. This doubling procedure of constructing C from
R was generalized by Dixon to construct H from C and the octonions O from
H. This procedure leads to identities expressing the product of two sums of
2n squares as another such sum. The familiar identity from high school

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2

is the special case n = 1. Many interesting further developments of these
ideas can be found in the book [83] by Conway and Smith.

2.7.1 Kervaire invariant

In 1960 Kervaire defined a geometric topological invariant of a framed differ-
ential manifold M of dimension m = 4n+2 generalizing the Arf invariant for
surfaces. Ten years earlier Pontryagin had used the Arf invariant of surfaces
embedded in Sk+2 with trivialized normal bundle to compute the homotopy
groups πk+2(Sk) for k > 1. This group can be identified with the cobordism
group of such surfaces. The cobordism of manifolds and the corresponding
cobordism groups were defined by Thom in 1952. Algebraically the Arf invari-
ant is defined for any quadratic form over Z2. Kervaire defined a quadratic
form q on the homology group H2n+1(M ;Z2) by using the framing and the
Steenrod squares. The Kervaire invariant is the Arf invariant of q. A gen-
eral reference for this section is Snaith [356]. Kervaire used his invariant to
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obtain the first example of a non-smoothable 10-dimensional PL-manifold.
In the smooth category the first three examples of manifolds with Kervaire
invariant 1 are S1 × S1, S3 × S3, and S7 × S7. In these three cases the Ker-
vaire invariant is related to the Hopf invariant of certain maps of spheres. No
further examples of manifolds with Kervaire invariant 1 were known for many
years. The problem of finding the dimensions of framed manifolds for which
the Kervaire invariant is 1 came to be know as the Kervaire invariant 1
problem.

In 1969 Bill Browder proved that the Kervaire invariant is 0 for a mani-
fold M if its dimension is different from 2j+1 − 2, j ∈ N. By 1984, it was
known that there exist manifolds of dimensions 30 and 62 with the Kervaire
invariant 1. Then on April 21, 2009, during the Atiyah 80 conference at Ed-
inburgh, Mike Hopkins announced that he, Mike Hill, and Doug Ravenel had
proved that there are no framed manifolds of dimension greater than 126 with
Kervaire invariant 1. The case n = 126 was open as of January 2010. Mike
Hopkins gave a very nice review of the problem and indicated key steps in the
proof at the Strings, Fields and Topology workshop at Oberwolfach (June,
2009). This section is based in part on that review. The proof makes essential
use of ideas from a generalized cohomology theory, called topological mod-
ular forms, or tmf theory. It was developed by Hopkins and collaborators.
Witten has introduced a homomorphism from the string bordism ring to the
ring of modular forms, called the Witten genus. This can be interpreted in
terms of the theory of topological modular forms or tmf. We have al-
ready seen in Theorem 2.15, how the spheres S1, S3, S7 enter from various
perspectives in it. We have also discussed their relation to the Hopf fibration
and to different physical theories. The relation of the other manifolds with
other parts of mathematics and with physics is unclear at this time.

The discussion of homotopy and cohomology given in this chapter forms a
small part of an area of mathematics called algebraic topology, where these
and other related concepts are developed for general topological spaces. Stan-
dard references for this material and other topics in algebraic topology are
Bott and Tu [55], Massey [279], and Spanier [357]. A very readable introduc-
tion is given in Croom [90].





Chapter 3

Manifolds

3.1 Introduction

The mathematical background required for the study of modern physical
theories and, in particular, gauge theories, is rather extensive and may be di-
vided roughly into the following parts: elements of differential geometry, fiber
bundles and connections, and algebraic topology of a manifold. The first two
of these parts are nowadays fairly standard background for research workers
in mathematical physics. In any case, physicists are familiar with classical
differential geometry, which forms the cornerstone of Einstein’s theory of
gravitation (the general theory of relativity). Therefore, in this chapter we
give only a summary of some results from differential geometry to establish
notation and make the monograph essentially self-contained. Fiber bundles
and connections are discussed in Chapter 4. Characteristic classes, which are
fundamental in the algebraic topology of a manifold, are discussed in detail
in Chapter 5. The study of various classical field theories is taken up in Chap-
ter 6. The reader familiar with the mathematical material may want to start
with Chapter 6 and refer back to the earlier chapters as needed.

There are several standard references available for further study of the
material on differential geometry that are discussed here in Chapters 3
and in Chapters 4 and 5; see, for example, Greub, Halperin, and Vanstone
[162,163,164], Kobayashi and Nomizu [225,226], Lang [245], and Spivak [358].
Some basic references for topology and related geometry and analysis are
Palais [310], Porteous [319], and Booss and Bleecker [47], For references that
also discuss some physical applications see Abraham and Marsden [1], Abra-
ham, Marsden, and Ratiu [2], Choquet-Bruhat, DeWitt-Morette, and Dillard-
Bleick [79], Choquet-Bruhat and DeWitt-Morette [78], Curtis and Miller [93],
Felsager [124], Jost [214], Marsden [278], Nakahara [295], Sachs and Wu [331],
Scorpan [343], and Trautman [378].
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3.2 Differential Manifolds

The basic objects of study in differential geometry are manifolds and maps
between manifolds. Roughly speaking a manifold is a topological space ob-
tained by patching together open sets in a Banach space. For many physi-
cal applications this space may be taken to be finite-dimensional. However,
infinite-dimensional manifolds arise naturally in field theories and, hence, in
this chapter our discussion of manifolds applies to arbitrary manifolds unless
otherwise stated.

Definition 3.1 Let M be a topological space and F a Banach space. A chart
(U, φ) is a pair consisting of an open set U ⊂M and a homeomorphism

φ : U → φ(U) ⊂ F,

where φ(U) is an open subset of F . M is called a topological manifold or
simply a manifold modeled on the Banach space F if M admits a family
A = {(Ui, φi)}i∈I of charts such that {Ui}i∈I covers M . This family A of
charts is said to be an atlas for M . If (Ui, φi), (Uj , φj) are two charts and
Uij := Ui ∩ Uj �= ∅, then

φij := φi ◦ φ−1
j : φj(Uij)→ φi(Uij)

is a homeomorphism. The maps φij are called transition functions of the
atlas A. Various smoothness requirements on A are obtained by using the
transition functions. For example, if the φij are Cp-diffeomorphisms (i.e.,
φij and φ−1

ij are of class Cp), 0 < p ≤ +∞ , then A is called a differential
(or a differentiable) atlas of class Cp. Two differentiable atlases are said to
be compatible if their union is a differentiable atlas. Let A be a differentiable
atlas of class Cp on M .The maximal differentiable atlas of class Cp containing
A is called the differential structure on M of class Cp determined by A.
A differential structure of class C∞ is also called a smooth structure. The
corresponding atlas is called a smooth atlas. A manifold M together with a
differential structure is called a differential (or a differentiable) manifold.
By definition the dimension of M , dimM , is the dimension of F . If F is
Rm then M is called a real manifold of dimension m. If F is Cm and the
transition functions are holomorphic (complex analytic), then M is called a
complex manifold of complex dimension m.

One often considers a class of manifolds subjected to additional topologi-
cal restrictions such as compactness, paracompactness etc.. For example, the
result that locally compact Hausdorff topological vector spaces are finite-
dimensional, implies that locally compact Hausdorff manifolds are finite-
dimensional. We remark that a finite atlas (i.e., an atlas that consists of
a finite family of charts) always exists on a compact manifold.

The charts allow us to give an intrinsic formulation of various structures
associated with manifolds.
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Definition 3.2 Let M, N be real differential manifolds and f : M → N .
We say that f is differentiable (or smooth) if, for each pair of charts,
(U, φ), (V, ψ) of M and N , respectively, such that f(U) ⊂ V , the represen-
tative ψ ◦ f ◦ φ−1 of f in these charts is differentiable (or smooth). The set
of all smooth functions from M to N is denoted by F(M, N). When N = R
we write F(M) instead of F(M,R). A bijective differentiable f ∈ F(M, N)
is called a diffeomorphism if f−1 is differentiable. The set of all diffeomor-
phisms of M with itself under composition is a group denoted by Diff(M).
Diffeomorphism is an equivalence relation.

The class of differential manifolds and differentiable maps forms a category
(see Appendix C) that we denote by DIFF . The class of complex manifolds
and complex analytic maps forms a subcategory of DIFF . We discuss some
important complex manifolds but their physical applications are not empha-
sized in this book. An excellent introduction to this area may be found in
Manin [257] and Wells [399,398]. The class of topological manifolds and con-
tinuous maps forms a category that we denote by TOP . An important prob-
lem in the topology of manifolds is that of smoothability, i.e., to find when
a given topological manifold admits a compatible differential structure.
We note that a differential structure on a topological manifold M is said to
be compatible if it is contained in the maximal atlas of M . It is well known
that a connected topological manifold of dim < 4 admits a unique compatible
smooth structure. We observe that a topological manifold of dim > 3 may
admit inequivalent compatible differential structures or none at all.

Definition 3.3 Let M be a differential manifold with differential structure
A and let U ⊂M be open. The collection of all charts of A whose domain is
a subset of U is an atlas for U , which makes U into a differential manifold.
This manifold is called an open submanifold of M . More generally, a subset
S ⊂ M is said to be a submanifold of M if, ∀x ∈ S, there exists a chart
(U, φ) with x ∈ U such that

1. φ(U) ⊂ G⊕H, where G, H are Banach spaces;
2. φ(U ∩ S) = φ(U) ∩ (G× {b}), for some b ∈ H.

Then, denoting by π1 the projection onto the first factor, (U ∩ S, π1 ◦ φ)
is a chart at x. The collection of all these charts is an atlas on S, which
determines a differential structure on S. With this differential structure, S
itself (with the relative topology) is a differential manifold. We observe that
an open submanifold is a special case of a submanifold.

Let Rn
+ := {x = (x1, . . . , xn) ∈ Rn | xn ≥ 0}. The set Rn

0 := {x ∈
Rn | xn = 0} is called the boundary of Rn

+. Let U be an open subset of Rn
+

in the relative topology. We denote by bd(U) the set bd(U) := U∩Rn
0 and call

bd(U) the boundary of U . We denote by Int(U) the set Int(U) := U \ bd(U)
and call it the interior of U . If U and V are subsets of Rn

+ and f : U → V ,
we say that f is of class Cp, 1 ≤ p ≤ +∞ (smooth if p = +∞), if there
exist open neighborhoods U1 of U and V1 of V , and a map f1 : U1 → V1 of
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class Cp such that f coincides with f1 on U . The derivative Df1(x), x ∈ U ,
is independent of the choice of U1, V1, f1. Thus we may define Df(x) :=
Df1(x), x ∈ U. If f is a smooth isomorphism (i.e., diffeomorphism), then f
induces a diffeomorphism of IntU onto IntV and of δU onto δV . If M is a
topological space, a chart with boundary for M is a pair (U, φ) where U
is an open set of M and φ : U → φ(U) ⊂ Rn

+ is a homeomorphism onto the
open subset φ(U) of Rn

+. With obvious changes with respect to the definition
of differentiable manifold, we have the notions of an atlas with boundary
and of an n-manifold with boundary. Thus, an n-manifold with boundary
is obtained by piecing together open subsets of the upper half-space Rn

+. This
construction can be extended to the infinite-dimensional case. In this case in
place of Rn we have a Banach space F and in place of Rn

+ we have the
half-space

F+
λ := {x ∈ F | λ(x) ≥ 0},

where λ is a continuous, linear functional on F (for details see Lang [245]).
The boundary of an n-manifold M with boundary denoted by ∂M , is the
subset of the points x ∈M such that there exists a chart with boundary (U, φ)
with x ∈ U and φ(x) ∈ Rn

0 . The interior of M is the set IntM := M \∂M . A
differentiable manifold with empty boundary is called a differentiable man-
ifold without boundary and, in this case, we recover our previous definition
of a differentiable manifold. The differentiable structure of an n-manifold
with boundary M induces, in a natural way, a differentiable structure on
∂M and Int M with which ∂M and Int M are manifolds without bound-
ary of dimensions n − 1 and n, respectively. Thus, the boundary ∂(∂M) of
the boundary ∂M , of a manifold with boundary M , is empty. Moreover, if
f : M → N is a diffeomorphism of manifolds with boundary, then the maps
fInt : IntM → IntN and f∂ : ∂M → ∂N induced by restriction are diffeo-
morphisms. We now give several examples of manifolds that appear in many
applications.

Example 3.1 The sphere Sn is the subset of Rn+1 defined by

Sn := {(x1, x2, . . . , xn+1) | x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

Let us consider the map (stereographic projection)

φ : Sn \ {(0, . . . , 0, 1)} → Rn

defined by

φ(x1, x2, . . . , xn+1) := (x1/(1− xn+1), . . . , xn/(1− xn+1))

and the map
ψ : Sn \ {(0, . . . , 0,−1)} → Rn

defined by
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ψ(x1, x2, . . . , xn+1) := (x1/(1 + xn+1), . . . , xn/(1 + xn+1)).

Then, for ψ ◦ φ−1 : Rn \ {(0, . . . , 0)} → Rn \ {(0, . . . , 0)} one has

ψ ◦ φ−1(y1, . . . , yn) = (y1/(y2
1 + · · ·+ y2

n), . . . , yn/(y2
1 + · · ·+ y2

n)),

∀(y1, . . . , yn) ∈ Rn \ {(0, . . . , 0)}. Thus, ψ ◦ φ−1 is smooth and {φ, ψ} is a
smooth atlas, which makes Sn into a differential manifold. Let

Dn := {(x1, x2, . . . , xn) | x2
1 + x2

2 + · · ·+ x2
n ≤ 1}

be the unit disk in Rn. Dn is a manifold with boundary and ∂Dn = Sn−1 is
a manifold without boundary of dimension n− 1.

Example 3.2 Let f : Rn → R be a smooth map and let S := f−1({0}). Let
us suppose that S �= ∅ and that ∀x ∈ S, the Jacobian matrix of f at x has
rank 1. Then for each x ∈ S there exists k, 1 ≤ k ≤ n, such that

∂f

∂xk
(x) �= 0,

and hence, by the implicit function theorem, we have a smooth bijection of a
neighborhood of x in S onto a neighborhood of (x1, . . . , x̂k, . . . , xn) ∈ Rn−1

(the signˆover a symbol denotes deletion). This bijection is a chart at x, and
the collection of all the charts of this type is an atlas, which makes S into a
differential manifold. We observe that, for the sphere Sn, we have

Sn = f−1({0})

with f : Rn+1 → R defined by f(x1, . . . , xn+1) = x2
1 + · · · + x2

n+1 − 1. One
can verify that the differential structure on Sn defined by the procedure of this
example coincides with the one defined in the previous example.

Manifolds of the type discussed in the above example arise in many appli-
cations.

Example 3.3 Consider the equivalence relation in Rn+1 \ {0} defined as
follows. We say that two points x, y

x = (x1, x2, . . . , xn+1), y = (y1, y2, . . . , yn+1) ∈ Rn+1 \ {0}

are equivalent if there exists λ ∈ R\{0} such that xi = λyi, ∀i ∈ {1, 2, . . . , n+
1}. Let us denote by [x] the equivalence class containing x and by RPn the
set

RPn := {[x] | x ∈ Rn+1 \ {0}}.

Let Ui, i ∈ {1, 2, . . . , n + 1}, be the subset of RPn defined by

Ui := {[(x1, x2, . . . , xn+1)] ∈ RPn | xi �= 0}.
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The map φi : Ui → Rn such that

φi([(x1, x2, . . . , xn+1)]) = (x1/xi, . . . , xn+1/xi)

is a chart, and one can show that the set {φ1, . . . , φn+1} is an atlas for RPn.
The set RPn with the differential structure determined by this atlas is a
differential manifold also denoted by RPn and called the n-dimensional real
projective space. We observe that RPn is the manifold of 1-dimensional
vector subspaces (i.e., lines through the origin) in Rn+1. Analogously, one
defines the n-dimensional complex projective space CPn. Thus, CPn is
the set of complex lines in Cn+1, i.e.,

CPn := {[x] | x ∈ Cn+1 \ {0}},

where [x] = {λx | λ ∈ C\ {0}}. A similar construction extends to the quater-
nionic case to define the quaternionic projective space HPn. Gener-
alizing the above construction of RPn one can define the manifold of p-
dimensional vector subspaces of Rn+p. It is called the Grassmann mani-
fold of p-planes in Rn+p and is denoted by Gp(Rn+p). The construction of
Grassmann manifolds can be extended to the complex and quaternionic cases.

The construction of Grassmann manifolds given in the above example
generalizes to the case of p-dimensional subspaces of an infinite-dimensional
Banach space F and gives examples of infinite-dimensional differential man-
ifolds.

Example 3.4 Let M, N be differential manifolds and let (U, φ), (V, ψ) be
any two charts of M and N with ranges in the Banach spaces F and G,
respectively. Let us denote by φ× ψ the map

φ× ψ : U × V → φ(U)× ψ(V ) ⊂ F ⊕G

defined by (x, y) �→ (φ(x), ψ(y)). The pair (U ×V, φ×ψ) is a chart of M ×N
and the collection of all the charts of this type is an atlas for M ×N , which
determines a differential structure on M ×N . With this differential structure
M ×N is a differential manifold, which is called the product manifold of
M and N and is also denoted by M×N . Analogously, one defines the product
manifold M1 ×M2× · · · ×Mn of any finite number of differential manifolds.
An example of a product manifold is the n-dimensional torus T n defined by

T n := S1 × · · · × S1

︸ ︷︷ ︸
n times

.

Example 3.5 Let M(m, n;R) denote the set of all real m×n matrices. The
map

φ : M(m, n;R)→ Rmn
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defined by φ(A) = (a11, a12, . . . , amn), for A = (aij) ∈M(m, n;R), is a chart
on M(m, n;R) that induces a differential structure on M(m, n;R). With this
differential structure M(m, n;R) is a differential manifold of dimension mn.
Let M(n,R) := M(n, n;R) and let us denote by S(n,R) (resp., A(n,R)) the
subset of M(n,R) of the symmetric (resp., anti-symmetric) n×n matri-
ces. It is easy to show that S(n,R) and A(n,R) are submanifolds of M(n,R)
of dimension n(n + 1)/2 and n(n − 1)/2, respectively. Analogously, the set
M(m, n;C) of complex m × n matrices is a differential manifold of dimen-
sion 2mn. Let M(n,C) := M(n, n;C) and let us denote by S(n,C) (resp.,
A(n,C)) the subset of M(n,C) of the Hermitian (resp., anti-Hermitian)
n×n matrices. It is easy to show that S(n,C) and A(n,C) are submanifolds
of M(n,C) of dimension n2. The map

det : M(n,R)→ R,

which maps A ∈ M(n,R) to the determinant detA of A, is smooth. Hence
det−1(R \ {0}) is an open submanifold of M(n,R) denoted by GL(n,R).
The set GL(n,R) with matrix multiplication is a group. It is called the real
general linear group. One can show that matrix multiplication induces
a smooth map of GL(n,R) × GL(n,R) into GL(n,R). Similarly, one can
define the complex general linear group GL(n,C). The real and complex
general linear groups are examples of an important class of groups called Lie
groups, which are discussed in Section 3.6.

Let M be a differential manifold and (U, φ), (V, ψ) be two charts of M at
p ∈M . The triples (φ, p, u), (ψ, p, v), for u, v ∈ F , are said to be equivalent if

D(ψ ◦ φ−1)(φ(p)) · u = v

where D is the derivative operator in a Banach space. This is an equivalence
relation between such triples. A tangent vector to M at p may be defined
as an equivalence class [φ, p, u] of such triples. Alternatively, one can define a
tangent vector to M at p to be an equivalence class of smooth curves on M
passing through p and touching one another at p (see, for example, Abraham
et al. [2]). The set of tangent vectors at p is denoted by TpM ; this set is a
vector space isomorphic to F , called the tangent space to M at p. The set

TM =
⋃

p∈M
TpM

can be given the structure of a smooth manifold. This manifold TM is called
the tangent space to M . A tangent vector [φ, p, u] at p may be identified
with the directional derivative uφp , also denoted by up, defined by

up : F(U)→ R,

such that
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up(f) = D(f ◦ φ−1)(φ(p)) · u.

If dimM = m and φ : q �→ (x1, x2, . . . , xm) is a chart at p, then the tangent
vectors to the coordinate curves at p are denoted by ∂/∂xi|p or simply by
∂/∂xi or ∂i, i = 1, . . . , m. The set of vectors ∂i, i = 1, . . . , m, form a basis of
the tangent space at p ∈ U . A smooth map

X : M → TM

is called a vector field on M if X(p) ∈ TpM, ∀p ∈ M . The set of all vector
fields on M is denoted by X (M). A vector field X ∈ X (M) can be identified
with a derivation of the algebra F(M), i.e., with the linear map F(M) →
F(M) defined by f �→ Xf where (Xf)(p) = X(p)f satisfying the Leibnitz
property X(fg) = fXg +gXf . On a coordinate chart, the vector field X has
the local expression X = X i∂i and hence Xf has the local expression X =
X i∂if . In the above local expressions we have used Einstein’s summation
convention (summation over repeated indices) and in what follows we shall
continue to use this convention. If X, Y ∈ X (M) then, regarding them as
derivations of the algebra F(M), we can define the commutator or bracket
of X, Y by

[X, Y ] := X ◦ Y − Y ◦X.

It is easy to check that [X, Y ] is in X (M). The local expression for the
bracket is given by

[X, Y ] =
[
∂Y k

∂xj
Xj − ∂Xk

∂xj
Y j

]
∂k,

where X = X i∂i and Y = Y i∂i. We note that X (M) under pointwise vector
space operations and the bilinear operation defined by the bracket has the
structure of a Lie algebra as defined in Chapter 1; i.e., the Lie bracket,
(X, Y ) �→ [X, Y ] satisfies the following conditions:

1. [X, Y ] = −[Y, X ] (anticommutativity),
2. [X, [Y, Z]] + [Y, [Z, X ]] + [Z, [X, Y ]] = 0 (Jacobi identity).

If V and W are Lie algebras, a linear map f : V → W is said to be a Lie
algebra homomorphism if

f([X, Y ]) = [f(X), f(Y )], ∀X, Y ∈ V.

The Lie algebra X (M) is, in general, infinite-dimensional.
If f ∈ F(M, N), the tangent of f at p, denoted by Tpf or f∗(p), is the

map
Tpf : TpM → Tf(p)N

such that
Tpf(up) · g = up(g ◦ f).
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The tangent of f , denoted by Tf , is the map of TM to TN whose restriction
to TpM is Tpf .

Let E be a Banach space and F a closed subspace of E. We say that F is
complemented in E if there exists a closed subspace G of E such that

1. E = F + G, i.e., ∀u ∈ E, there exist v ∈ F, w ∈ G such that u = v + w;
2. F ∩G = {0}.

The space G in the above definition is called a complement of F in E.
We say that F ⊂ E splits in E, when F is a closed complemented subspace
of E. We observe that if E is a Hilbert space, then any closed subspace of
E splits in E and that if E is finite-dimensional, then every subspace of E
splits in E. Let M, N be differential manifolds and f ∈ F(M, N). We say
that f is a submersion at p ∈ M if Tpf is surjective and KerTpf splits
in TpM . Equivalently, f is a submersion at p ∈ M , if there exist charts
φ : U → φ(U) = A1 × A2 ⊂ F ⊕ G and ψ : V → ψ(V ) = A1 at p and
f(p), respectively, such that f(U) ⊂ V and the representative ψ ◦ f ◦ φ−1

of f in these charts is the projection onto the first factor. If M and N are
finite-dimensional, then f is a submersion at p ∈ M if and only if Tpf is
surjective, i.e., the rank of the linear map Tpf is equal to dim N . We say that
f is a submersion if it is a submersion at p, ∀p ∈M . One can show that a
submersion is an open map. A point q ∈ N is said to be a regular value of
f if, ∀p ∈ f−1({q}), f is a submersion at p. By definition, points of N \f(M)
are regular. An important result is given by the following theorem.

Theorem 3.1 Let M, N be differential manifolds and q ∈ N a regular value
of f ∈ F(M, N). Then f−1({q}) is an (m − n)-dimensional submanifold of
M and, ∀p ∈ f−1({q}), Tp(f−1({q})) = KerTpf.

An equivalence relation ρ on a differential manifold M is said to be regular
if, for some differential structure on the set of equivalence classes M/ρ, the
canonical projection π : M → M/ρ is a submersion. Such a differential
structure, if it exists, is unique and, in this case, M/ρ with this differential
structure is called the quotient manifold of M by ρ. A useful result is given
by the next theorem.

Theorem 3.2 Let M, N be differential manifolds and let f ∈ F(M, N) be a
submersion. Let us denote by ρ the equivalence relation on M defined by f ,
i.e., xρy if f(x) = f(y). Then ρ is regular and f(M) is an open submanifold
of N diffeomorphic to the quotient manifold M/ρ.

Example 3.6 Let ρ be the equivalence relation of Example 3.3. Then, as a
set, RPn = (Rn+1\{0})/ρ. One can easily verify that, with respect to the dif-
ferential structure defined on RPn in Example 3.3, the canonical projection
π : Rn+1 \ {0} → RPn is a submersion, and RPn is the quotient manifold
(Rn+1 \ {0})/ρ. Let μn be the restriction to Sn of the map π given above
and let ρn be the equivalence relation induced by μn on Sn. Observe that
ρn identifies antipodal points x and −x. By Theorem 3.2, ρn is regular and
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Sn/ρn is diffeomorphic to RPn. Analogously, if ρ′n (resp., ρ′′n) is the equiv-
alence relation on S2n+1 (resp., S4n+3) defining CPn (resp., HPn), then
ρ′n identifies all points of the circle S1

x = {λx | |λ| = 1, λ ∈ C} (resp., ρ′′n
identifies all points of the sphere S3

x = {λx | |λ| = 1, λ ∈ H}). Thus, CPn

is diffeomorphic to S2n+1/ρ′n and HPn is diffeomorphic to S4n+3/ρ′′n. From
this it follows that these projective spaces are connected and compact.

Let M, N be differential manifolds and f ∈ F(M, N). We say that f is
an immersion at p ∈ M if Tpf is injective and ImTpf splits in Tf(p)N.
Equivalently, f is an immersion at p ∈ M , if there exist charts φ : U →
φ(U) = A1 ⊂ F and ψ : V → ψ(V ) = A1 × A2 ⊂ F ⊕ G at p and f(p)
respectively, such that f(U) ⊂ V and the representative ψ ◦ f ◦ φ−1 of f in
these charts is the natural injection A1 → A1 × A2. If M and N are finite
dimensional then f is an immersion at p ∈ M if and only if Tpf is injective
and this is true if and only if the rank of the linear map Tpf is equal to
dimM . We say that f is an immersion if it is an immersion at p, ∀p ∈M .
An immersion f is, locally, a diffeomorphism onto a submanifold of N , but
f need not be injective. Even if f is an injective immersion, f(M) need not
be a submanifold of N . An injective immersion f is called an embedding if
f(M) is a submanifold of N .

3.3 Tensors and Differential Forms

In this section we define various tensor spaces and spaces of differential forms
on a manifold and discuss some important operators acting on these spaces.
Let V denote a vector space and let V ∗ be the dual of V . We denote by
T rs (V ) (see Appendix C) the tensor space of type (r, s) over V , i.e.,

T rs (V ) = V ⊗ . . .⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ . . .⊗ V ∗
︸ ︷︷ ︸

s times

.

Replacing TpM with various tensor spaces over TpM , a construction similar
to that of the tangent space, defines the tensor spaces on M . We define T rsM
by

T rsM =
⋃

p∈M
T rs (TpM),

where

T rs (TpM) = TpM ⊗ . . .⊗ TpM︸ ︷︷ ︸
r times

⊗ (TpM)∗ ⊗ . . .⊗ (TpM)∗︸ ︷︷ ︸
s times

.

The set T rsM can be given the structure of a manifold and is called the
tensor space of type (r, s) of contravariant degree r and covariant degree s.
A smooth map
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t : M → T rsM

is called a tensor field of type (r, s) on M if t(p) ∈ T rs (TpM), ∀p ∈M . We
note that, if M is finite-dimensional, then T rs (TpM) may be identified with
a space of multilinear maps as follows. The element

u1 ⊗ . . .⊗ ur ⊗ α1 ⊗ . . .⊗ αs ∈ T rs (TpM)

is identified with the multilinear map

(TpM)∗ × . . .× (TpM)∗︸ ︷︷ ︸
r times

× (TpM)× . . .× (TpM)︸ ︷︷ ︸
s times

→ R

defined by

(β1, . . . , βr, v1, . . . , vs) �→ β1(u1) . . . βr(ur)α1(v1) . . . αs(vs).

This map is extended by linearity to all of T rs (TpM). We note that, if dim M =
m, then dimT rsM = mr+s. We observe that T 1

0 M = TM . The space T 0
1 M

is denoted by T ∗M and is called the cotangent space of M . The space
(TpM)∗ (also denoted by T ∗

pM) is called the cotangent space at p ∈ M . We
define T 0

0 (TpM) := R. Hence, T 0
0 M := M ×R. Thus, a tensor field of type

(0, 0) can be identified with a function on M , i.e., an element of F(M). A
tensor field of type (r, 0) (resp., (0, r)) is also called a contravariant (resp.,
covariant) tensor field of degree r. A contravariant tensor field t of degree r
is said to be symmetric if, ∀p ∈M ,

t(p)(β1, . . . , βr) = t(p)(βσ(1), . . . , βσ(r)), ∀βi ∈ (TpM)∗, ∀σ ∈ Sr,

where Sr is the symmetric group on r letters. A contravariant tensor field t
of degree r is said to be skew-symmetric if

t(p)(β1, . . . , βr) = sign(σ)t(p)(βσ(1), . . . , βσ(r)),

∀p ∈ M, ∀βi ∈ (TpM)∗, ∀σ ∈ Sr. Similar definitions of symmetry and skew
symmetry apply to covariant tensor fields.

We define A0M := M ×R and denote by AkM , k ≥ 1, the manifold

AkM =
⋃

p∈M
Ak(TpM) ,

where
Ak(TpM) = T ∗

pM ∧ . . . ∧ T ∗
pM︸ ︷︷ ︸

k times

is the vector space of exterior k-forms on T ∗
pM . The manifold AkM is called

the manifold of exterior k-forms on M . We note that A1M = T ∗M . A
smooth map
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α : M → AkM

is called a k-form on M if α(p) ∈ Ak(TpM), ∀p ∈ M . The space of k-forms
on M is denoted by Λk(M). We note, in particular, that Λ0(M) can be
identified with F(M). We define the (graded) exterior algebra on M to be
the (graded) vector space Λ(M), defined by

Λ(M) =
+∞⊕
k=0

Λk(M),

with the exterior product ∧ as multiplication.
If dimM = m and {e1, . . . , em} is a basis for T ∗

pM , then

{ei1 ∧ · · · ∧ eik}1≤i1<···<ik≤m

is a basis for Ak(TpM). Thus

dimAkM =
(

m

k

)
.

We note that Λk(M) = {0} for k > m. An m-form ν is called a volume
form or simply volume on M if, ∀p ∈M, ν(p) �= 0. The manifold M is said
to be orientable if it admits a volume. Two volumes ν, ω on M are said to
be equivalent if ω = fν for some f ∈ F(M) such that f(p) > 0, ∀p ∈ M .
An orientation of an orientable manifold M is an equivalence class [ν] of
volumes on M . A pair (M, [ν]), where [ν] is an orientation of the manifold
M , is called an oriented manifold. Given an oriented manifold (M, [ν]), a
chart φ : q �→ (x1(q), x2(q), . . . , xm(q)) on U ⊂ M is said to be positively
oriented if dx1 ∧ · · · ∧ dxm ∈ [ν|U ]. Let (M, [ν]) be an oriented manifold
with boundary and let A = {φi : Ui → φi(Ui) ⊂ Rm

+} | i ∈ I} be an atlas on
M of positively oriented charts. The orientation on δM induced by the forms
(−1)mdx1 ∧ · · · ∧ dxm−1 relative to the charts of A is called the induced
orientation on δM .

Let f ∈ F(M, N); then f induces the map

f∗ : Λ(N)→ Λ(M),

called the pull-back map, defined as follows. If α ∈ Λ0(N) = F(N) then
we define f∗α := α ◦ f ∈ Λ0(M) = F(M). If α ∈ Λk(N), k ≥ 1, then
f∗α ∈ Λk(M) is defined by

(f∗α)(p)(u1, . . . , uk) := α(f(p))(Tpf(u1), . . . , Tpf(uk)),

∀u1, . . . , uk ∈ TpM. If f : M → N is a diffeomorphism and X ∈ X (N), the
element f∗X of X (M) defined by
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f∗X = Tf−1 ◦X ◦ f

is called the pull-back of X by f . Thus, when f is a diffeomorphism one can
extend the definition of the pull-back map f∗ to the tensor fields of type
(r, s). In particular if X1, . . . , Xr ∈ X (N) and α1, . . . , αs ∈ Λ1(N), we have

f∗(X1 ⊗ . . . Xr ⊗ α1 ⊗ . . . αs) = f∗X1 ⊗ . . .⊗ f∗Xr ⊗ f∗α1 ⊗ . . .⊗ f∗αs.

Given X ∈ X (M) and p ∈ M , an integral curve of X through p is a
smooth curve c : I →M , where I is an open interval around 0 ∈ R , c(0) = p,
and

ċ(t) := Tc(t, 1) = X(c(t)), ∀t ∈ I.

A local flow of X at p ∈M is a map

F : I × U →M,

where U is an open neighborhood of p such that, ∀q ∈ U , the map Fq : I →M
defined by

Fq : t �→ F (t, q)

is an integral curve of X through q. One can show that, ∀X ∈ X (M) and
∀p ∈M , a local flow F : I ×U →M of X at p exists and the map Ft defined
by

Ft(q) = F (t, q), ∀q ∈ U

is a diffeomorphism of U onto some open subset Ut of M .

Definition 3.4 Let X ∈ X (M) and let η be a tensor field of type (r, s) on
M . The Lie derivative LXη of η with respect to X is the tensor field of type
(r, s) defined by

(LXη)(p) =
d

dt
[(F ∗

t η)(p)]|t=0

∀p ∈M , where F : I×U →M is a local flow of X at p. The above definition
also applies to differential forms; then η ∈ Λk(M) implies LXη ∈ Λk(M).

It can be shown that the definition of Lie derivative given above is inde-
pendent of the choice of a local flow. We now give local expressions for the
Lie derivative. For this it is enough to give such an expression on an open
subset U of the Banach space F . These expressions will give the representa-
tive of the Lie derivative in every chart on M . We shall follow this practice
whenever we give local expressions. We consider only the finite-dimensional
case, i.e., F = Rn; the infinite-dimensional expressions are analogous. Let
x = (x1, x2, . . . , xn) ∈ U and X = Xk∂k (summation over repeated indices
is understood). For η = f ∈ F(U), from the definition of Lie derivative it
follows that

LXf =
∂f

∂xk
Xk. (3.1)
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For η = Y ∈ X (U) the expression of the Lie derivative LXY is

LXY =
[
∂Y k

∂xj
Xj − ∂Xk

∂xj
Y j

]
∂k, (3.2)

where B = {∂k := ∂/∂xk | k = 1, 2, . . . , n} is the natural basis of the tangent
space at each point of U . From the definition of exterior differential operator
given below, it follows that the dual base of B is B′ = {dxk | k = 1, 2, . . . , n}.
Then, for η = α = αkdxk ∈ Λ1(U) the expression of the Lie derivative LXα
becomes

LXα =
[
∂αk
∂xj

Xj +
∂Xj

∂xk
αj

]
dxk. (3.3)

The Lie derivative is a tensor derivation, i.e., it is linear and satisfies the
Leibnitz product rule

LX(η1 ⊗ η2) = (LXη1)⊗ η2 + η1 ⊗ LXη2, (3.4)

where η1, η2 are tensor fields. This fact and the local expressions given above
allow us to write down the local expression for the Lie derivative of any tensor
field of type (r, s).

Definition 3.5 The exterior differential operator d of degree 1 on Λ(M)
is the map d : Λ(M) → Λ(M) defined as follows: If f ∈ Λ0(M), then df ∈
Λ1(M) is defined by

df ·X = Xf.

If ω ∈ Λk(M), k > 0, then dω is the (k + 1)-form defined by

dω(X0, X1, . . . , Xk) =
k∑
i=0

(−1)iXi(ω(X0, X1, . . . , X̂i, . . . , Xk))

+
∑

0≤i<j≤k
(−1)i+jω(LXiXj , X0, . . . , X̂i, . . . , X̂j, . . . , Xk), (3.5)

where X̂h denotes suppression of Xh.

This definition implies that

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ, (3.6)

where α ∈ Λk(M), β ∈ Λ(M), and

d2 := d ◦ d = 0. (3.7)

From the definition, it also follows that, if

α =
∑

i1<···<ik

αi1,...,ikdxi1 ∧ · · · ∧ dxik
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is a local expression of the k-form α on a subset U of M , then the (local)
expression of dα is given by

dα =
n∑
j=1

∑
i1<···<ik

(∂jαi1,...,ik)dxj ∧ dxi1 ∧ · · · ∧ dxik .

If α ∈ Λ(M), then α is said to be closed (resp., exact) if dα = 0 (resp.,
α = dβ for some β ∈ Λ(M)). As a consequence of equation (3.7) every exact
form is closed. The converse of this statement is, in general, valid only locally,
i.e., if α ∈ Λ(M) is closed then, ∀p ∈ M , there exists a neighborhood U of
p such that α|U is exact; i.e., there exists β ∈ Λ(U) such that α = dβ. This
statement is called the Poincaré lemma. In the physical literature β is
referred to as a potential for α and one says that α is derived from a
potential.

Definition 3.6 Let X ∈ X (M) and α ∈ Λ(M). The (left) inner multipli-
cation iXα of α by X is defined as follows. If α ∈ Λ0(M) = F(M), then we
define iXα = 0. If α ∈ Λk(M), k ≥ 1, then iXα ∈ Λk−1(M) is defined by

iXα(X1, . . . , Xk−1) = α(X, X1, . . . , Xk−1).

In the following theorem we collect some important properties of the op-
erators LX , d, and iX .

Theorem 3.3 Let M, N be differential manifolds, then we have

1. d(f∗α) = f∗(dα), f ∈ F(M, N), α ∈ Λ(N).
2. [X, Y ] = LXY, X, Y ∈ X (M).
3. LX = iX ◦ d + d ◦ iX on Λ(M).
4. d ◦ LX = LX ◦ d on Λ(M).
5. i[X,Y ] = LX ◦ iY − iY ◦ LX on Λ(M).

Let (M, [ν]) be an oriented paracompact m-manifold. Let ω be an m-form
on M with compact support supp ω. We now define the integral of ω with
respect to the volume ν, denoted by

∫
M

ωdν, or simply by
∫

ω. First, let us
suppose that there exists a positively oriented chart (U, φ) with suppω ⊂ U .
By the change of variables rule for integrals, we can show that the integral

∫
φ∗ω dx1 . . . dxm

does not depend on the choice of a positively oriented chart (U, φ) satisfying
the condition that suppω ⊂ U . Thus, in this case we can define

∫
ω :=

∫
φ∗ω dx1 . . . dxm.

For an arbitrary m-form ω with compact support, we choose an atlas A =
{(Ui, φi) | i ∈ I} of positively oriented charts and a smooth partition of
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unity F = {fi | i ∈ I} subordinate to {Ui | i ∈ I}. We observe that the
above definition of integral applies to

∫
fiω, ∀i ∈ I. Furthermore, one can

show that the number
∑
i∈I

∫
fiω does not depend on the choices made for

A and F . Thus, we define the integral of ω on M by
∫

ω =
∑
i∈I

∫
fiω.

Using this definition of integration we now state the modern version of the
classical theorem of Stokes.

Theorem 3.4 (Stokes’ theorem) If (M, [ν]) is an oriented paracompact m-
dimensional manifold with boundary ∂M and ω is an (m − 1)-form on M
with compact support, then

∫

M

dω =
∫

∂M

i∗ω,

where i : ∂M →M is the canonical injection.

One often writes simply
∫
∂M

ω instead of
∫
∂M

i∗ω. The classical theorems
of Green (relating the line and surface integrals) and Gauss (relating the
surface and volume integrals) are special cases of the version of Stokes’ theo-
rem stated above. We observe that the definition of integral given above can
be extended to forms with compact support that are only continuous (not
necessarily smooth). Then, if f is a continuous function on M with compact
support and ω is a volume on M , we may define the integral of f with respect
to ω as

∫
fω. It can be shown that in a suitable topology this defines a con-

tinuous functional on the space of continuous functions on M with compact
support. By the Riesz representation theorem, there exists a measure μω on
the σ-algebra of Borel sets in M such that

∫
fω =

∫
fdμω.

3.4 Pseudo-Riemannian Manifolds

In this section we take M to be a finite-dimensional manifold of dimension
m. Let g be a tensor field of type (0, 2); we say that g is non-degenerate if,
for each p ∈M , g(p) is non-degenerate, i.e.

g(p)(u, v) = 0, ∀v ∈ TpM ⇒ u = 0.

A tensor field g ∈ T 0
2 M which is symmetric and non-degenerate is called

a pseudo-metric on M . Each g(p) then defines an inner product on TpM
of signature (r, s). The numbers r, s are invariants of the pseudo-metric.
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The number r (resp., s) is the dimension of the positive eigenspace of g(p)
(resp., the negative eigenspace of g(p)) for each p ∈M . The dimension of the
negative eigenspace of g is called the index of g. It is denoted by ig, i.e., the
index ig = s, where r + s = m = dimM . If g is a pseudo-metric on M of
index s then we say that (M, g) is a pseudo-Riemannian manifold of index
s. In local orthonormal coordinates the metric is usually expressed as

ds2 =
r∑
i=1

dx2
i −

s∑
i=1

dx2
r+i.

If s = 0, i.e., g(p) is positive definite ∀p ∈ M, then we say that (M, g) is
a Riemannian manifold. If s = 1, i.e., ∀p ∈ M the signature of g(p) is
(m − 1, 1), then we say that (M, g) is a Lorentz manifold. We note that
a pseudo-metric g induces an inner product on all tensor spaces, which
we also denote by g. In particular, if U is an open subset of M and
α =

∑
i1<···<ik αi1,...,ikdxi1∧· · ·∧dxik , β =

∑
i1<···<ik βi1,...,ikdxi1∧· · ·∧dxik

are k-forms on U , the expression of g(α, β) is the following: Let g−1 be the
inverse matrix of g = {gij} where gij = g(∂i, ∂j) and let gi1,...,ik;j1,...,jk denote
the determinant of the k × k-matrix obtained taking the rows i1, . . . , ik and
the columns j1, . . . , jk of g−1. Then

g(α, β) =
∑

i1<···<ik

αi1,...,ikβi1,...,ik ,

where
βi1,...,ik =

∑
j1<···<jk

gi1,...,ik;j1,...,jkβj1,...,jk .

Local expressions in pseudo-Riemmanian geometry simplify greatly when
they are referred to a coordinate chart with respect to which the matrix
of g is diagonal. Such coordinate charts always exist at each point of M and
the corresponding coordinates are called orthogonal coordinates.

There are several important differences in both the local and global prop-
erties of Riemannian and pseudo-Riemannian manifolds (see, for example,
Beem and Ehrlich [34] and O’Neill [308]). Until recently, most physical ap-
plications involved pseudo-Riemannian (in particular, Lorentz) manifolds.
However, the discovery of instantons and their possible role in quantum field
theory and subsequent development of the so-called Euclidean gauge theo-
ries has led to extensive use of Riemannian geometry in physical applications.
It is these Euclidean gauge theories that have been most useful in applications
to geometric topology of low-dimensional manifolds.

If (M, g) is an oriented, pseudo-Riemannian manifold with orientation [ν],
then we define the metric volume form μ by μ = ν/|g(ν, ν)|1/2. On an
oriented pseudo-Riemannian manifold (M, g) with metric volume μ, we define
the Hodge star operator
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∗ : Λ(M)→ Λ(M)

as follows. For β ∈ Λk(M), 0 ≤ k ≤ m, ∗β ∈ Λm−k(M) is the unique form
such that

α ∧ ∗β = g(α, β)μ, ∀α ∈ Λk(M). (3.8)

One can show that

∗ ∗α = (−1)ig+k(m−k)α , ∀α ∈ Λk(M), (3.9)

where ig is the index of the manifold M . In particular, we have

∗μ = (−1)ig , ∗1 = μ.

The star operator is linear. Thus, for the local expression, it is enough to give
the expression for ∗(dxi1 ∧ · · · ∧ dxik ). Taking into account that locally

μ = | det g|1/2dx1 ∧ · · · ∧ dxn,

we have

∗(dxi1 ∧ · · · ∧ dxik) = | det g|1/2
∑

j1<···<jk

(−1)j1+···+jk+k(k+1)/2·

gj1,...,jk;i1,...,ikdx1 ∧ · · · ∧ d̂xj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxn,

where d̂xjr denotes suppression of dxjr .

Definition 3.7 Let (M, g) be an m-dimensional oriented pseudo-
Riemannian manifold of index ig. The codifferential δ is the linear map
δ : Λ(M)→ Λ(M) of degree −1, which is defined on Λk(M) by

δ := (−1)ig+mk+m+1 ∗ d∗, (3.10)

where ∗ is the Hodge star operator.

We observe that if f ∈ Λ0(M) = F(M), then δf = 0. Furthermore, as a
consequence of equations (3.7) and (3.9) we have

δ2 := δ ◦ δ = 0. (3.11)

If
α =

∑
i1<···<ik

αi1,...,ikdxi1 ∧ · · · ∧ dxik

is a k-form on a subset U of M , expressed in terms of orthogonal coordinates
(xi), then the expression for δα is given by

δα = −| det g|−1/2
∑

i1<···<ik−1

gi1i1 · · · gik−1ik−1
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·∂j(αj,i1,...,ik−1 | det g|1/2)dxi1 ∧ · · · ∧ dxik−1 .

If α ∈ Λ(M), then α is said to be coclosed (resp., coexact) if δα = 0 (resp.
α = δβ for some β ∈ Λ(M)). As a consequence of equation (3.11) every
coexact form is coclosed. The converse of this statement is, in general, true
only locally.

The exterior differential and codifferential operators on a pseudo-
Riemannian manifold (M, g) are closely related to the classical differential
operators gradient, curl, divergence, and Laplacian, as we now explain. Let
V be a finite-dimensional, real vector space and f : V × V → R a bilinear
map. Then f induces a linear map f � : V → V ∗ defined by

f �(u)(v) = f(u, v), ∀u, v ∈ V.

We note that f is non-degenerate if and only if f � is an isomorphism. In this
case, we define f � : V ∗ → V by f � := (f �)−1. Applying this pointwise to the
pseudo-Riemannian metric g we obtain the maps

g� : X (M)→ Λ1(M), g� : Λ1(M)→ X (M).

The map g� (g�) is said to lower (raise) indices. Locally, we have

g�(X i∂i) = Xjdxj , where Xj = X igij ,

and
g�(αjdxj) = αi∂i, where αi = αjg

ij .

The operation of lowering or raising indices has an obvious extension to
tensors of arbitrary type. The gradient operator in a pseudo-Riemannian
manifold (M, g) is the map grad : F(M)→ X (M) defined by

grad := g� ◦ d.

If f is a function on an open subset U of M , we have

gradf = gij
∂f

∂xi
∂j .

The divergence operator in an oriented pseudo-Riemannian manifold (M, g)
is the map div : X (M)→ F(M) defined by

div := −δ ◦ g�.

If X is a vector field on an open subset U of M , we have

div X = | det g|−1/2∂i(| det g|1/2X i).
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The Hodge–de Rham operator Δ (also called the Laplacian) in an ori-
ented pseudo-Riemannian manifold (M, g) is the map Δ : Λ(M) → Λ(M)
defined by

Δ := dδ + δd. (3.12)

The operator Δ is at the basis of Hodge–de Rham theory of harmonic
forms. The classical Laplace–Beltrami operator or the Laplacian defined as
div ◦ grad equals −Δ on functions. The curl operator in an oriented pseudo-
Riemannian manifold (M, g) of dimension 3 is the map curl : X (M)→ X (M)

curl := g� ◦ ∗ ◦ d ◦ g�.

If X is a vector field on an open subset U of M , we have

curlX = (−1)ig | det g|−1/2{[δ2(g33X
3)− δ3(g22X

2)]δ1

+ [δ3(g11X
1)− δ1(g33X

3)]δ2 + [δ1(g22X
2)− δ2(g11X

1)]δ3}.

We observe that the well known classical results

A = gradφ⇒ curlA = 0 and B = curlA⇒ div B = 0,

where φ is a function and A, B are vector fields on R3 are consequences of
the relation d2 = 0. Note that, in view of the Poincaré lemma, the converse
implications frequently used in physical theories to define the scalar and
vector potentials are valid only locally.

3.5 Symplectic Manifolds

Let M be an m-dimensional manifold and let ω ∈ Λ2(M). We say that ω is
non-degenerate if, ∀p ∈M ,

ω(p)(u, v) = 0, ∀v ∈ TpM ⇒ u = 0. (3.13)

If ωij(p) are the components of ω(p) in a local coordinate system at p, then
condition (3.13) is equivalent to

detωij(p) �= 0, ∀p ∈M. (3.14)

Condition (3.14) together with the skew symmetry of ω implies that the di-
mension m must be even; i.e., m = 2n. Then the condition (3.13) is equivalent
to the condition that ωn := ω ∧ ω ∧ · · · ∧ ω be a volume form on M , i.e.,

ωn(p) �= 0, ∀p ∈M.
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Recall that any 2-form α can be regarded as a bilinear map of TpM and hence
induces a linear map

α�(p) : TpM → T ∗
pM

as follows:
α�(p)(u)(v) = α(p)(u, v),

where u, v ∈ TpM. The non-degeneracy of ω ∈ Λ2(M) defined above is then
equivalent to ω� being an isomorphism. Its inverse is then denoted by ω�.
Thus, a non-degenerate 2-form sets up an isomorphism between vector fields
and 1-forms. If X ∈ X (M) then we have ω�(X) = iXω. Let α, β be 1-forms;
the bracket of α and β is the 1-form

[α, β] = ω�([ω�(α), ω�(β)]).

We note that this form is well defined for any non-degenerate 2-form ω.

Definition 3.8 A symplectic structure on a manifold M is a 2-form ω
that is non-degenerate and closed. A symplectic manifold is a pair (M, ω),
where ω is a symplectic structure on the manifold M .

Example 3.7 Let Q be an n-dimensional manifold. Let P = T ∗Q be the
cotangent space of Q; then P carries a natural symplectic structure ω defined
as follows: Let θ be the 1-form on P defined by

θ(αp)(X) = αp(ψ∗(X)), ∀αp ∈ T ∗Q, X ∈ TαpP,

where ψ is the canonical projection of P = T ∗Q to Q. We define ω = −dθ.
The form θ is called the canonical 1-form and ω the canonical symplec-
tic structure on T ∗Q. By definition, ω is exact and hence closed. Its non-
degeneracy follows from a local expression for ω in a special coordinate sys-
tem, called a canonical coordinate system, defined as follows: Let {qi} be
local coordinates at p ∈ Q. Then αp ∈ P can be expressed as αp = pidqi. We
take Qi = qi ◦ ψ, Pi = pi ◦ ψ as the canonical coordinates of αp ∈ P . Using
these coordinates, we can express the canonical 1-form θ as

θ = PidQi.

It is customary to denote the canonical coordinates on P by the same let-
ters qi, pi and from now on we follow this usage. The canonical symplectic
structure ω is given by

ω = −d(pidqi) = dqi ∧ dpi.

From this expression it follows that

ωn = dq1 ∧ dp1 ∧ · · · ∧ dqn ∧ dpn �= 0.

Further, the components of ω in this coordinate system are given by the matrix
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(ωij) =
(

0 I
−I 0

)
,

where I (resp., 0) denotes the n× n unit (resp., zero) matrix.

The above example is of fundamental importance in the theory of sym-
plectic manifolds in view of the following theorem, which asserts that, at least
locally, every symplectic manifold looks like T ∗Q.

Theorem 3.5 (Darboux) Let ω be a non-degenerate 2-form on a 2n-
manifold M . Then ω is symplectic if and only if each p ∈ M has a local
coordinate neighborhood U with coordinates (q1, . . . , qn, p1, . . . , pn) such that

ω|U = dqi ∧ dpi.

Example 3.7 is also associated with the geometrical formulation of classical
Hamiltonian mechanics, where Q is the configuration space of the mechan-
ical system and P is the corresponding phase space. We now explain this
formulation.

If (M, ω) is a symplectic manifold, then the charts guaranteed by Dar-
boux’s theorem are called symplectic charts and the corresponding co-
ordinates (qi, pi) are called canonical coordinates. If M = T ∗Q, and ω
is the canonical symplectic structure on it, then, in the physical literature,
the qi are called the canonical coordinates and the pi the corresponding
conjugate momenta. This terminology arises from the formulation of clas-
sical mechanics on T ∗Q. We now indicate briefly the relation of the classical
Hamilton’s equations with symplectic manifolds.

Let (M, ω) be a symplectic manifold. A vector field X ∈ X (M) is
called Hamiltonian (resp., locally Hamiltonian ) if ω�(X) is exact (resp.,
closed). The set of all Hamiltonian (resp., locally Hamiltonian) vector fields
is denoted by HX (M) (resp. LHX (M)). If X ∈ HX (M), then there exists
an H ∈ F(M) such that

ω�(X) = dH. (3.15)

The function H is called a Hamiltonian corresponding to X . If M is con-
nected, then any two Hamiltonians corresponding to X differ by a constant.
Conversely, given any H ∈ F(M) equation (3.15) defines the corresponding
Hamiltonian vector field by ω�(dH), which is denoted by XH . The integral
curves of XH are said to represent the evolution of the classical mechani-
cal system specified by the Hamiltonian H . In a local canonical coordinate
system, these integral curves appear as solutions of the following system of
differential equations

dqi

dt
=

∂H

∂pi
, (3.16)

dpi
dt

= −∂H

∂qi
. (3.17)
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This is the form of the classical Hamilton’s equations. Let f, g ∈ F(M);
the Poisson bracket of f and g, denoted by {f, g}, is the function

{f, g} := ω(Xf , Xg).

The Poisson bracket makes F(M) into a Lie algebra. If X is a Hamiltonian
vector field with flow Ft, then Hamilton’s equations can be expressed in the
form

d

dt
(f ◦ Ft) = {f ◦ Ft, H}.

A Poisson structure on a manifold is a Lie algebra structure on F(M) that
is also a derivation in the first argument of the Lie bracket. The Lie bracket
of f, g is also called the Poisson bracket and is denoted by {f, g}. We can
define a Hamiltonian vector field on M corresponding to the Hamiltonian
function H by XH(g) := {g, H} ∀g ∈ F(M). A manifold with a fixed Poisson
structure is called a Poisson manifold. A symplectic manifold is a Poisson
manifold but the converse is not true. A Poisson structure induces a map of
T ∗M to TM , but this map need not be invertible.

In view of Darboux’s theorem, a symplectic manifold is locally standard
(or rigid). Thus, topology of symplectic manifolds or symplectic topology is
essentially global. This has been an active area of research with close ties
to classical mechanics. Gromov’s definition of pseudo-holomorphic curves in
symplectic manifolds has provided a powerful tool for studying symplectic
topology. For symplectic 4-manifolds this led to the Gromov–Witten, or GW,
invariants. For a special class of 4-manifolds Taubes has shown that the GW
and SW (Seiberg–Witten) invariants contain equivalent information. There
is also a symplectic field theory introduced by Eliashberg and Hofer with con-
nections to string theory and non-commutative geometry. We do not consider
these topics in this book. A general reference for symplectic topology is the
book by McDuff and Salamon [283]. For quantum cohomology see the books
by Kock and Vainsencher [228], Manin [258], and McDuff and Salamon [282].

3.6 Lie Groups

A manifold sometimes carries an additional mathematical structure that is
compatible with its differential structure. An important example of this is
furnished by a Lie group.

Definition 3.9 A Lie group G is a manifold that carries a compatible group
structure, i.e., the operations of multiplication and taking the inverse are
smooth. If G, H are Lie groups, a Lie group homomorphism f : G→ H
is a smooth group homomorphism of G into H, i.e., f is smooth as a map of
manifolds and f(ab) = f(a)f(b), ∀a, b ∈ G. Isomorphism and automor-
phism of Lie groups are defined similarly. Another useful concept is that
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of an anti-homomorphism. A smooth map f : G → H is called an anti-
homomorphism of Lie groups if f(ab) = f(b)f(a), ∀a, b ∈ G.

We observe that it is enough to require that the multiplication be smooth
because this implies that the operation of taking the inverse is smooth. In-
version, i.e., the map ι : G → G defined by a �→ a−1, a ∈ G, is an anti-
automorphism of the Lie group G. Furthermore, one can show that if G, H
are finite-dimensional Lie groups, then every continuous homomorphism of
G into H is smooth and hence is a Lie group homomorphism.

Example 3.8 Let F be a finite- (resp., infinite-) dimensional Banach space.
The group of automorphisms (linear, continuous bijections) of F is a finite-
(resp., infinite-) dimensional Lie group. Due to the fact that the locally com-
pact Hausdorff manifolds are finite-dimensional, a locally compact Haudorff
Lie group is finite-dimensional (see, for example Lang [245]).

If G is a locally compact group, there exists a unique (up to a multiplicative
constant factor) measure μ on the σ-algebra of Borel subsets of G that is left
invariant, i.e.,

μ(gU) = μ(U), ∀g ∈ G

and for all Borel subsets U of G. Such a measure is called a Haar measure
for G. If G is compact, a Haar measure is also right invariant. Thus, finite-
dimensional Lie groups have a Haar measure and this measure is also right
invariant if the Lie group is compact.

A subgroup H of a Lie group is called a Lie subgroup if the natural
injection i : H → G is an immersion. If H is a closed subgroup of G, then
H is a submanifold of G and therefore is a Lie subgroup of G. It is easy to
check that the groups GL(n,R) and GL(n,C) defined in Example 3.5 are
Lie groups. We now give an example of Lie subgroups.

Example 3.9 In Example 3.5, we introduced the smooth determinant map
det : M(n,R)→ R. Its restriction to GL(n,R) is also smooth. In fact,

det : GL(n,R)→ R \ 0 = GL(1,R)

is a Lie group homomorphism. It follows that the kernel of this homomor-
phism, det−1({1}) is a closed subgroup of GL(n,R). It is called the special
real linear group and is denoted by SL(n,R). Thus,

SL(n,R) := {A ∈ GL(n,R) | detA = 1}

is a Lie subgroup of GL(n,R). Analogously, one can show that the special
complex linear group

SL(n,C) := {A ∈ GL(n,C) | detA = 1}

is a closed Lie subgroup of GL(n,C).
The orthogonal group O(n) defined by
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O(n) := {A ∈ GL(n,R) | AAt = 1},

where At is the transpose of A, is the fixed point set of the automorphism
of GL(n,R) defined by A �→ (At)−1. Hence, it is a closed Lie subgroup of
GL(n,R). The special orthogonal group SO(n) is defined by

SO(n) := O(n) ∩ SL(n,R).

The group SO(n) is usually referred to as the rotation group of the n-
dimensional Euclidean space Rn. It is the connected component of the identity
in the orthogonal group. Similarly, the unitary group U(n) defined by

U(n) := {A ∈ GL(n,C) | AA† = 1},

where A† denotes the conjugate transpose of A, is a closed Lie subgroup of
GL(n,C). The special unitary group SU(n) is defined by

SU(n) := U(n) ∩ SL(n,C).

Another definition of these groups is given in Example 3.12.

We give other important examples of Lie groups later.
A Lie group (left) action (or a G-action) of a Lie group G on a manifold

M is a smooth map

L : G×M →M, such that Lg : M →M

defined by Lg(x) = L(g, x) (also denoted by gx) is a diffeomorphism of M
∀g ∈ G and

∀g1, g2 ∈ G, Lg1g2 = Lg1 ◦ Lg2 and Le = idM , (3.18)

where e is the identity element of G. The map L induces the map L̂ : G →
Diff(M) defined by g �→ Lg. The conditions in equation (3.18) may be ex-
pressed by saying that the map L̂ : G→ Diff(M) is a group homomorphism.
In fact, this last statement is sometimes used as the definition of a Lie group
action. The orbit of x ∈ M under the G-action is the subset {gx | g ∈ G}
of M , also denoted by Gx. The set of the orbits of the G-action L on M is
denoted by M/L or by M/G when L is understood. A G-action on M is said
to be transitive if there is just one orbit; in this case we also say that G acts
transitively on M . If x ∈ M , then the isotropy group Hx of the G-action
is defined by

Hx = {g ∈ G | gx = x}.

If G acts transitively on M then Hx
∼= Hy, ∀x, y ∈ M , and if H denotes

the isotropy subgroup of some fixed point in M , then M is diffeomorphic to
G/H . Such a differential manifold M is called a homogeneous space of G
or a G-homogeneous space. In particular, if H is a closed subgroup of G, then



98 3 Manifolds

H is a Lie subgroup and the quotient G/H with the natural transitive action
of G is a G-homogeneous space.

Example 3.10 The rotation group SO(n + 1) of Rn+1 acts on the sphere
Sn transitively. The isotropy group at the point (1, 0, . . . , 0) ∈ Rn+1 may be
identified with SO(n). Thus, the sphere Sn is a homogeneous space of the
group SO(n + 1), i.e.,

Sn = SO(n + 1)/SO(n).

The conformal group SO(n, 1), defined in Example 3.12, acts transitively
on the open unit ball Bn ⊂ Rn+1 with isotropy group SO(n) at the origin.
Thus Bn is a homogeneous space of the conformal group, called the Poincaré
model of hyperbolic space, i.e.

Bn = SO(n, 1)/SO(n).

For n = 5 this construction occurs in the study of the moduli space of BPST
instantons (see Section 9.2).

A G-action on M is said to be free if gx = x for some x ∈ M implies
g = e, i.e., if Hx = {e}, ∀x ∈M . A G-action on M is said to be effective if
gx = x, ∀x ∈M implies g = e.

A vector field X ∈ X (M) is said to be invariant under the action L of
G on M (or G-invariant) if

TLg ◦X = X ◦ Lg, ∀g ∈ G;

i.e., the following diagram commutes:

TM TM�
TLg

M M�Lg

�
X

�
X

Equivalently, X is G-invariant if

(Lg)∗X = X, ∀g ∈ G.

G-invariant tensor fields and G-invariant differential forms can be
defined similarly. A right G-action on M may be defined similarly; then,
with obvious changes, one has the related notions of orbit, transitive action,
etc.

We now consider an important example of a natural action of G when the
manifold is G itself and the action is by left multiplication. A vector field
X ∈ X (G) is said to be left invariant if it is invariant under this action
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by left multiplication. The set of all left invariant vector fields is a finite-
dimensional Lie subalgebra of the Lie algebra X (G) and is called the Lie
algebra of the group G and is denoted by LG or g. The tangent space TeG
to G at the identity e is isomorphic, as a vector space, to g. This isomorphism
is used to make TeG into a Lie algebra isomorphic to g. Precisely, for C ∈ TeG
we define the left invariant vector field XC on G by

XC(g) := TLg(C), ∀g ∈ G,

where Lg : G → G is left multiplication by g. Now for A, B ∈ TeG the Lie
product [A, B] is defined by

[A, B] := [XA, XB](e) ∈ TeG,

where XA, XB are the left invariant vector fields corresponding, respectively,
to A and B. Let G, H be Lie groups with Lie algebras g, h respectively. Let
f : G → H be a Lie group homomorphism and let f∗ : g → h be the map
defined by

f∗(XA) := XÂ, where Â := Tef(A) ∈ TeH ;

i.e., f∗(XA) is the left invariant vector field on H determined by Â ∈ TeH .
Then one can show that f∗ is a Lie algebra homomorphism of g into h.

The element A ∈ g generates a global one-parameter group φt of diffeo-
morphisms of G, determined by the global flow φ(t, g) of A. Thus φt(e) is the
integral curve of the left invariant vector field A through e. We observe that
φt(e) is the one-parameter subgroup of G generated by A ∈ g. Conversely, a
one-parameter subgroup φt of G determines a unique element A ∈ g, namely
the tangent to φt at e ∈ G. These observations play an important role in the
construction of Lie algebras. We define the map exp : g→ G by

exp : A �→ φ1(e).

This map is a homeomorphism on some neighborhood of 0 ∈ g and can be
used to define a special coordinate chart on G called the normal coordinate
chart. The map exp is called the exponential map and coincides with the
usual exponential function for matrix groups and algebras. One can show
that t �→ exp(tA) is the integral curve of A through e ∈ G, i.e.,

exp(tA) = φt(e).

The adjoint action Ad of G on itself is defined by the map

Ad : h �→ Ad(h) of G→ AutG,

where Ad(h) : G→ G is defined by

Ad(h)g = hgh−1.
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This action induces an action ad of G on g, which is a representation of G,
called the adjoint representation of G on g. We observe that with the
identification of TeG with g,

ad g = T (Ad(g))|g.

The set GL(g) of linear invertible transformations of g is a Lie group with
Lie algebra: the algebra gl(g) of linear transformations of g with Lie product
given by

[M, N ] = M ◦N −N ◦M, ∀M, N ∈ gl(g).

Thus the restriction of (ad)∗ to g, also denoted by ad∗, is a map of g into
gl(g). If V is a Lie algebra, let us denote by ad the map

ad : V → gl(V )

defined by
ad(X)(Y ) = [X, Y ], ∀X, Y ∈ V. (3.19)

The map ad is a Lie algebra homomorphism called the adjoint represen-
tation of V . In the case of V = g one can show that ad∗ coincides with ad
defined in equation (3.19). Therefore, we use ad to also denote ad∗.

The contragredient of the representation ad of G on g, called the coadjoint
representation of G on g∗, is denoted by ad∗. Thus, ∀g ∈ G,

ad∗(g) = (ad(g−1))t : g∗ → g∗,

is the transpose of the linear map ad(g−1). It plays an important role in the
theory of representations of nilpotent and solvable groups. The study of this
representation is the starting point of the Kostant–Kirillov–Souriau theory
of geometric quantization (see Abraham and Marsden [1] and [271,272] and
references therein). We now give a construction of the Lie algebras of the Lie
groups GL(n,R) and GL(n,C) defined in Example 3.5 as well as those of
SL(n,R) and SL(n,C) defined in Example 3.9.

Example 3.11 We first observe that, when the differential manifold M is
an open subset of a Banach space F , then TM = M ×F . The Lie group G ≡
GL(n,R) is an open subset of the n2-dimensional Banach space M(n,R).
Then TG = GL(n,R) ×M(n,R) and thus the Lie algebra of GL(n,R) can
be identified with M(n,R) as a vector space. If A ∈ M(n,R), then the left
invariant vector field associated to A is

XA : GL(n,R)→ GL(n,R)×M(n,R)

defined by
XA(g) = (g, gA).
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From this it follows that the Lie algebra structure of M(n,R) is the one
given by the commutator. Analogously, the Lie algebra of GL(n,C) is the Lie
algebra M(n,C) with the Lie algebra structure given by the commutator. We
note that the map exp defined above becomes in this case the usual exponential
map defined by

exp(A) = eA = I +
A

1!
+

A2

2!
+ · · · .

In view of the fact that det(eA) = etr(A), we conclude that

sl(n,R) := {A ∈M(n,R) | tr(A) = 0}

is the Lie algebra of SL(n,R). Similarly,

sl(n,C) := {A ∈M(n,C) | tr(A) = 0}

is the Lie algebra of SL(n,C).

We now give several examples of Lie groups and their Lie algebras, which
appear in many applications.

Example 3.12 Let gk be the canonical pseudo-metric on Rn of signature
n− k, i.e., gk is the pseudo-metric on Rn whose matrix representation, also
denoted by gk, is

gk =
(

Ik 0
0 −In−k

)
,

where Ii denotes the i× i unit matrix, i = k, n− k, and the 0 denote suitable
zero matrices. Let O(k, n−k) be the group of linear transformations A of Rn

such that gk(Ax, Ay) = gk(x, y), ∀x, y ∈ Rn. The group O(k, n − k) can be
identified with the group of n× n matrices A such that

AtgkA = gk.

From this equation it follows that detA = ±1, ∀A ∈ O(k, n− k). We denote
by SO(k, n−k) the subgroup of O(k, n−k) of matrices A such that detA = 1.
We write O(n), SO(n) in place, respectively, of O(n, 0), SO(n, 0). The group
O(n) (resp., SO(n)) is the orthogonal group (resp., special orthogonal group)
in n dimensions defined in Example 3.9. Let f : GL(n,R)→ S(n,R) be the
map defined by

f(A) = AtgkA.

The map f is smooth and then f−1({gk}) is closed. Thus, O(k, n − k) =
f−1({gk}) is a closed subgroup of GL(n,R) and thus is a Lie subgroup of
GL(n,R). For any A ∈ GL(n,R), the linear map Df(A) on M(n,R) is
given by

Df(A)B = BtgkA + AtgkB, ∀B ∈M(n,R).

Thus,
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KerDf(In) = {B ∈M(n,R) | Btgk = −gkB}.

This implies that the rank of f at In is maximum (it is equal to n(n+1)/2) and
that f is a submersion at In. By Theorem 3.1, the Lie algebra of O(k, n−k),
denoted by o(k, n− k), can be identified with KerTInf and thus is given by

o(k, n− k) = {B ∈M(n,R) | Btgk = −gkB}.

This also implies that the dimension of O(k, n−k) is n(n−1)/2. In particular,
with gk = In, the Lie algebra o(n) of O(n) is given by

o(n) = {B ∈M(n,R) | Bt = −B},

the Lie algebra of the antisymmetric n × n matrices. It is easy to see that
SO(k, n− k) is a Lie subgroup of O(k, n− k) of dimension n(n− 1)/2, given
by the connected component of the identity element. Its Lie algebra denoted
by so(k, n− k) is given by

so(k, n− k) = {B ∈ o(k, n− k) | tr(B) = 0}.

The groups O(n), SO(n) are compact.

Example 3.13 Let us denote by gk the canonical non-degenerate Hermitian
sesquilinear form on Cn of signature n− k, i.e. the sesquilinear form on Cn

given by

gk(x, y) = x1y1 + · · ·+ xkyk − xk+1yk+1 − · · · − xnyn

∀x, y ∈ Cn. Then the matrix representation of gk is the same as for gk of
the previous example. Let U(k, n− k) be the group of linear transformations
A of Cn such that gk(Ax, Ay) = gk(x, y), ∀x, y ∈ Cn. The group U(k, n− k)
identifies with the group of n× n complex matrices A such that

A†gkA = gk,

where A† denotes the conjugate transpose of A. From this equation it follows
that detA = ±1, ∀A ∈ U(k, n− k). We denote by SU(k, n− k) the subgroup
of U(k, n − k) of matrices A such that detA = 1. We write U(n), SU(n)
in place of U(n, 0), SU(n, 0), respectively. The group U(n) (resp., SU(n)) is
the unitary group (resp., special unitary group) in n dimensions defined in
Example 3.9. Let f : GL(n,C)→ S(n,C) be the map defined by

f(A) = A†gkA.

The map f is smooth and hence f−1({gk}) is closed. Thus, U(k, n − k) =
f−1({gk}) is a closed subgroup of GL(n,C) and thus a Lie subgroup of
GL(n,C). Proceeding as in the previous example, we find that the Lie al-
gebra of U(k, n− k), denoted by u(k, n− k), is given by
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u(k, n− k) = {B ∈M(n,C) | B†gk = −gkB}.

This also implies that the dimension of U(k, n− k) is n2. In particular, with
gk = In, the Lie algebra u(n) of U(n) is given by

u(n) = {B ∈M(n,C) | B† = −B},

the Lie algebra of the anti-Hermitian n×n matrices. One easily realizes that
SU(k, n− k) is a Lie subgroup of U(k, n− k) of dimension n2 − 1, with Lie
algebra su(n, n− k) given by

su(k, n− k) = {B ∈ u(k, n− k) | tr(B) = 0}.

The groups U(n), SU(n) are compact.

Example 3.14 Let ω be the canonical symplectic structure on R2n whose
matrix representation, also denoted by ω, is

ω =
(

0 I
−I 0

)
,

where I (resp., 0) denotes the n× n unit (resp., zero) matrix. Let SP (n,R)
be the group of linear transformations A of R2n, such that ω(Ax, Ay) =
ω(x, y), ∀x, y ∈ R2n. The group SP (n,R) can be identified with the group of
2n× 2n matrices A such that

AtωA = ω.

From this equation it follows that detA = ±1, ∀A ∈ SP (n,R). The group
SP (n,R) is called the real symplectic group in 2n dimensions. Let f :
GL(2n,R)→ GL(2n,R) be the map defined by

f(A) = AtωA.

The map f is smooth and hence f−1({ω}) is closed. Thus, SP (n,R) =
f−1({ω}) is a closed subgroup of GL(2n,R) and thus is a Lie subgroup of
GL(2n,R). Proceeding as in the previous example, we find that the Lie alge-
bra of SP (n,R), denoted by sp(n,R), is given by

sp(n,R) = {B ∈M(2n,R) | Btω = −ωB}.

This also implies that the dimension of SP (n,R) is n(2n + 1). The group
SP (n,R) is non-compact. Analogously, one has the complex symplectic
group SP (n,C), which is a Lie group of dimension 2n(2n + 1).

As a preparation for the next example we start by briefly recalling the
notations and elementary properties of quaternions. The noncommutative
ring of quaternions is denoted by H in honor of its discoverer, Hamilton (see
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Appendix B for some historical remarks). It is obtained by adjoining to the
field R the elements i, j, k satisfying the relations

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Thus, H is a 4-dimensional real vector space with basis 1, i, j, k and a quater-
nion x ∈ H has the following expression

x = x0 + ix1 + jx2 + kx3, xi ∈ R, 0 ≤ i ≤ 3.

The operation of conjugation on H is defined by

x = x0 + ix1 + jx2 + kx3 �→ x̄ := x0 − ix1 − jx2 − kx3.

Then (xy) = ȳx̄ and each nonzero x ∈ H has a unique inverse x−1 given by

x−1 = x̄/(xx̄).

We denote by Hn the module over H of n-tuples of quaternions with the
action given by right multiplication. It is customary to refer to a morphism
of this module as an H-linear, or simply a linear map.

Example 3.15 We denote by GL(n,H) the group of linear bijections of Hn.
H can be identified with C2 by the map φ : H→ C2 defined by

φ(x0 + ix1 + jx2 + kx3) = (x0 + ix3, x2 + ix1).

Then GL(n,H) can be identified with the subgroup of GL(2n,C) of the ma-
trices A of the form

A =
(

B −C̄
C B̄

)
, (3.20)

where B, C are complex n× n matrices. The group GL(n,H) is a Lie group.
Let us denote by Q the quadratic form on Hn defined by

Q(x1, x2, . . . , xn) = x1x1 + x2x2 + · · ·+ xnxn, ∀x1, x2, . . . , xn ∈ H.

We define the Lie subgroup Sp(n) of GL(n,H) by

Sp(n) := {A ∈ GL(n,H) | Q(Ax) = Q(x), ∀x ∈ Hn}.

The group Sp(n) is called the quaternionic symplectic group in n di-
mensions. This group can be identified with the group of the 2n× 2n complex
matrices A of the form given in equation (3.20) that satisfy the conditions

A†A = 1, AtωA = ω,
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where ω is the matrix of the canonical symplectic form of the previous exam-
ple. Thus, Sp(n) ∼= U(2n)∩SP (n,C) and is therefore also called the unitary
symplectic group. In particular we have that Sp(1) ∼= SU(2).

The classic reference for the theory of Lie groups is Chevalley [77]; a mod-
ern reference with geometric analysis is Helgason [188].





Chapter 4

Bundles and Connections

4.1 Introduction

In 1931 Hopf studied the set [S3, S2] of homotopy classes of maps of spheres
in his computation of π3(S2). He showed that π3(S2) is generated by the class
of a certain map that is now well known as the Hopf fibration (see Example
4.5). This fibration decomposes S3 into subspaces homeomorphic to S1 and
the space of these subsets is precisely the sphere S2. In 1933 Seifert introduced
the term fiber space to describe this general situation. The product of two
topological spaces is trivially a fiber space, but the example of the Hopf
fibration shows that a fiber space need not be a global topological product.
It continues to be a local product and is now referred to as a fiber bundle.

Fiber spaces immediately acquired an important role in mathematics
through the early work of Whitney, Serre, and Ehresmann. In 1935 Hopf
generalized his early work to construct the fibration of S7 over S4 with fiber
S3 and, using octonions, also constructed a fibration of S15 over S8 with fiber
S7. All of these examples have found remarkable application to fundamental
solutions of gauge field equations (see Chapter 8 for details). For the applica-
tions we wish to consider, we mainly need vector bundles and principal and
associated bundles with a fixed structure group. In Section 4.2 we give several
alternative definitions of principal bundle and discuss the reduction and
extension of the structure group of the bundle. In physical applications it is
the structure group of the bundle, which serves as the local symmetry
group or the gauge group, while the base is usually a space-time mani-
fold. The matter fields interacting with gauge fields are sections of vector
bundles associated to the given principal bundle. The associated bundles are
considered in Section 4.3, where the bundles Ad(P ) and ad(P ), which play
a fundamental role in gauge theory, are defined. In Section 4.4, we give sev-
eral definitions of connection on a principal bundle and define the curvature
2-form. The structure equations and Bianchi identities satisfied by the cur-
vature are also given there. Subsection 4.4.1 is devoted to a discussion of
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universal connections. The covariant derivative is introduced in Section 4.5,
where the notion of parallel displacement is also discussed. The important
class of linear connections, which include the widely used pseudo-Riemannian
connections, is discussed in Section 4.6. The special case of dimension 4 leads
to the definitions of various special types of manifolds that play a significant
role in physical applications. A section on generalized connections concludes
the chapter.

A standard reference for most of the material in this chapter is Kobayashi
and Nomizu [225]. The theory of fiber bundles occupies a central place in
modern mathematics. Recently, fiber bundles have provided the geometrical
setting for studying gauge field theories. We discuss various basic aspects of
field theories in Chapters 6 and 7. Standard references for the theory of fiber
bundles are Husemöller [198] and Steenrod [359].

4.2 Principal Bundles

We begin with the definition of a differentiable fiber bundle.

Definition 4.1 A differentiable fiber bundle E over B is a quadruple
ζ = (E, B, π, F ), where E, B, F are differentiable manifolds and the map
π : E −→ B is an open differentiable surjection satisfying the following local
triviality (LT) property:

LT property—There exists an open covering {Ui}i∈I of B and a family
ψi of diffeomorphisms ψi : Ui × F −→ π−1(Ui), ∀i ∈ I, satisfying the
condition (π ◦ ψi)(x, g) = x, ∀(x, g) ∈ Ui × F .

The family {(Ui, ψi)}i∈I is called a local coordinate representation or
a local trivialization of the bundle ζ. E is called the total space or the
bundle space, B the base space, π the bundle projection of E on B,
and F the standard or typical fiber. Ex := π−1(x) is called the fiber of
E over x ∈ B.

The bundle τ = (B × F, B, π, F ), where π is the projection onto the first
factor, is called the trivial bundle over B with fiber F . The total space
of the trivial bundle τ is B × F. For this reason a general fiber bundle is
sometimes called a twisted product of B (the base) and F (the standard
fiber). A fiber bundle ζ = (E, B, π, F ) is sometimes indicated by a diagram
as follows:

F E�

B
�
π
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One can verify that, ∀x ∈ Ui, ∀i ∈ I, the map ψi,x : F → Ex defined by
g �→ ψi(x, g) is a diffeomorphism. If Ui ∩Uj �= ∅ then we write Uij = Ui ∩Uj
and define

ψij : Uij → Diff(F ) by ψij(x) = ψ−1
i,x ◦ ψj,x.

The functions ψij are called the transition functions for the local repre-
sentation. They satisfy the condition

ψij(x) ◦ ψjk(x) ◦ ψki(x) = idF , ∀x ∈ Uijk, (4.1)

where we have written Uijk = Ui∩Uj∩Uk. Condition (4.1) is referred to as the
cocycle condition on the transition functions. We note that, given the base
B, the typical fiber F and a family of transition functions {ψij} satisfying the
cocycle condition (4.1), it is possible to construct the fiber bundle E. Given
the bundles ζ = (E, B, π, F ) and ζ′ = (E′, B′, π′, F ′), a bundle morphism
f from ζ to ζ′ is a differentiable map f : E → E′ such that f maps the fibers
of E smoothly to the fibers of E′ and therefore induces a smooth map of B
to B′ denoted by f0. Thus, we have the following commutative diagram:

B B′�
f0

E E′�f

�

π

�
π′

If B = B′, f is injective and f0 = idB, then we say that ζ is a subbundle
of ζ′. If ζ = (E, B, π, F ) is a fiber bundle, we frequently denote by E the
fiber bundle ζ when B, π, F are understood. If ζ = (E, B, π, F ) is a fiber
bundle and h ∈ F(M, B), where M is a manifold, then we can define a
bundle h∗ζ = (h∗E, M, h∗π, F ) called the pull-back of the bundle E to M
as follows. h∗E is the subset of M ×E consisting of the pairs (p, a) ∈M ×E
such that h(p) = π(a), and one can show that it is a closed submanifold
of M × E. Thus, h∗E is obtained by attaching to each point p ∈ M the
fiber π−1(h(p)) over h(p). The map h∗π is the restriction to h∗E of the
natural projection of M × E onto M . The map h lifts to a unique bundle
map ĥ : h∗E → E such that the following diagram commutes:

M B�
h

h∗E E�ĥ

�
h∗π

�

π

Let ζ = (E, B, π, F ) be a fiber bundle. A smooth map s : B → E with
π ◦ s = idB is called a (smooth) section of the fiber bundle E over B. We
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denote by Γ (B, E), or simply Γ (E), the space of sections of E over B. If
U ⊂ B is open then we denote by Γ (E|U ) the set of sections of the bundle
E restricted to U . If p ∈ U and s ∈ Γ (E|U ) then we say that s is a local
section of E at p.

Choosing local coordinates {xi | 1 ≤ i ≤ m} in a neighborhood of p ∈ B
and {(xi, yj)| 1 ≤ i ≤ m, 1 ≤ j ≤ n} in a neighborhood of s(p) ∈ E, we may
think of s as a function from an open subset of Rm to Rm+n such that

(xi) �→ (xi, yj(x1, x2, . . . , xm)).

The Taylor expansion of s at p clearly depends on the local coordinates
chosen. However, if two local sections s and t have the same kth order Taylor
expansion at p in one coordinate system, then they have the same kth order
expansion in any other coordinate system. This observation can be used to
define an equivalence relation on local sections at p. An equivalence class
determined at p by the section s is called the k-jet of s at p and is denoted
by jk(s)p. We define the k-jet of sections of E over B, Jk(E/B) (also
denoted by Jk(E)) by

Jk(E/B) := {jk(s)p | p ∈ B, s is a local section of E at p}.

Jk(E/B) is a fiber bundle over B with projection πk : Jk(E)→ B defined by
πk(jk(s)p) = p, and a fiber bundle over J l(E/B), 0 ≤ l ≤ k, with projection
πkl : Jk(E) → J l(E) defined by πkl (j

k(s)p) = jl(s)p. In particular, Jk(E)
is a fiber bundle over J0(E) = E. A section s ∈ Γ (E) induces a section
jk(s) ∈ Γ (Jk(E)) defined by jk(s)(p) = jk(s)p. We call jk(s) the k-jet
extension of s. The map jk : Γ (E)→ Γ (Jk(E)), defined by

s �→ jk(s),

is called the k-jet extension map. If M, N are manifolds then we define the
space Jk(M, N) of k-jets of maps of M to N by

Jk(M, N) = Jk((M ×N)/M),

where M × N is regarded as a trivial fiber bundle over M . It is possible to
define the bundle Jk(M, N) directly by considering the Taylor expansion of
local maps up to order k. Jet bundles play a fundamental role in the geo-
metrical formulation of variational problems and in particular of Lagrangian
theories. We shall not make use of these jet bundle techniques in this book.

Let ζ = (E, B, π, F ) be a fiber bundle. If a Lie group G is a subgroup of
Diff(F ) such that for each transition function ψij of ζ we have ψij(x) ∈ G
∀x ∈ Uij , and ψij is a smooth map of Uij into G, then we say that ζ is a fiber
bundle with structure group G. We now give the two most important
cases of fiber bundles with structure group.
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Definition 4.2 A fiber bundle ζ = (E, B, π, F ) with structure group G is
called a vector bundle with fiber type F if F is a Banach space and G is
the Lie group of the linear automorphisms (linear continuous bijections) of
F . In particular, if F is a real (resp., complex) vector space of dimension
n and G = GL(n,R) (resp., G = GL(n,C)), then we call ζ a real (resp.,
complex) vector bundle of rank n.

We note that in the case of a vector bundle of rank n the transition func-
tions turn out to be automatically smooth. Let E, H be two vector bundles
over B. The algebraic operations on vector spaces can be extended to define
vector bundles such as E⊕H , E⊗H , and Hom(E, H) by using pointwise oper-
ations on the fibers over B. In particular, we can form the bundle (AkB)⊗E.
The sections of this bundle are called k-forms on B with values in the vec-
tor bundle E, or simply, vector bundle-valued (E-valued) k-forms . We
write Λk(B, E) for the space of sections Γ ((AkB)⊗E). Thus, α ∈ Λk(B, E)
can be regarded as defining for each x ∈ B a k-linear, anti-symmetric map
αx of (TxB)k into Ex. In particular, Λ0(B, E) = Γ (E). If E is a trivial vector
bundle with fiber V , then we call Λk(B, E) the space of k-forms with values
in the vector space V , or vector valued (V -valued) k-forms, and denote it by
Λk(B, V ). We observe that a Riemannian metric on M is a smooth section
of the vector bundle S2(TM) on M , i.e., of the bundle whose fiber on x ∈M
is the vector space S2(TxM) of symmetric bilinear maps of TxM ×TxM into
R. More generally, given the real (resp., complex ) vector bundle E on M , a
Riemannian (resp., Hermitian) metric on E is a smooth section s of the
vector bundle S2(E) on M such that s(x) is a bilinear (resp., sesquilinear),
symmetric (resp., Hermitian) and positive definite map of Ex × Ex into R
(resp., C), ∀x ∈M . By definition a Riemannian metric on M is a Riemannian
metric on the vector bundle TM on M . A Riemannian (resp., Hermitian)
vector bundle is a couple (E, s) where E is a real (resp., complex) vector
bundle and s is a Riemannian (resp., Hermitian) metric on E. We note that
if M is paracompact, then every real (resp., complex) vector bundle on M
admits a Riemannian (resp., Hermitian) metric.

Let V1, V2, V3 be vector spaces and h : V1 × V2 → V3 be a bilinear form.
Let α ∈ Λp(B, V1), β ∈ Λq(B, V2); then we define α ∧h β ∈ Λp+q(B, V3) as
follows. Let {ui} be a basis of V1 and {vj} a basis for V2. Then we can write

α = αiui, β = βjvj ,

where αi ∈ Λp(B) and βj ∈ Λq(B) and we define

α ∧h β := αi ∧ βjh(ui, vj).

There are several important special cases of this operation. For example, if
V = V1 = V2 = V3 and if h is an inner product on the vector space V , then
α ∧h β ∈ Λp+q(B). If V is a Lie algebra and h is the Lie bracket, then it is
customary to denote α ∧h β by [α, β]. Thus, we have
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[α, β] := αi ∧ βj [ui, uj ] = ckijα
i ∧ βjuk,

where ckij are the structure constants of the Lie algebra V . If B is a pseudo-
Riemannian manifold with metric g and h is an inner product on V , then for
each x ∈ B, the space Λkx(B, V ) becomes a pseudo-inner product space, with
pseudo-inner product denoted by 〈 , 〉(g,h), defined by

〈α, β〉(g,h) := 〈αi, βj〉gh(ui, uj), α, β ∈ Λkx(B, V ),

where < , >g is the pseudo-inner product on Λkx(B) induced by g. If B is
compact with volume form vg, then we can integrate these local products
over B to obtain a pseudo-inner product on Λk(B, V ) defined by

〈〈α, β〉〉(g,h) :=
∫

B

〈αi, βj〉g h(ui, uj)dvg, α, β ∈ Λk(B, V ).

Recall that a natural symmetric bilinear form on a Lie algebra V is given
by the Killing form

K(X, Y ) := Tr(adX ◦ ad Y ), ∀X, Y ∈ V,

where Tr(L) denotes the trace of the linear transformation L of V . We note
that, if cijk are the structure constants of V with respect to a basis Ei, then

K(X, Y ) = crikc
k
jrX

iY j .

Furthermore, K is non-degenerate if and only if the determinant of the matrix
{crikckjr} is nonzero. By Cartan’s criterion K is non-degenerate if and only
if V is semisimple, i.e., if it has no nonzero Abelian ideals. If V = g is the Lie
algebra of a connected Lie group G and g is semisimple, then, by a theorem
of Weyl, K is negative definite if and only if G is compact. Thus, in this case
h := −K is an inner product on g which with h the Killing form and g a can
be used to define the norm or energy of α ∈ Λk(B, V ) by

‖α‖ :=
√
|〈〈α, α〉〉(g,h)|.

The constructions discussed above for vector-valued forms can be extended
to apply to vector bundle-valued forms by using their pointwise vector space
structures. We shall use them to define the Yang–Mills and other action
functionals in gauge theories.

Example 4.1 Let TM be the tangent space of the m-dimensional manifold
M and π : TM → M the canonical projection. Then (TM, M, π,Rm) is a
vector bundle of rank m, called the tangent bundle of M . A k-dimensional
distribution on M is a vector bundle of rank k over M , which is a subbundle
of the tangent bundle of M .
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Definition 4.3 A fiber bundle ζ = (P, M, π, F ) with structure group G is
called a principal fiber bundle, or simply a principal bundle, over M
with structure group G if F is a Lie group and G is the Lie group of the
diffeomorphisms h of F such that

h(g1g2) = h(g1)g2.

The map h �→ h(e), where e is the identity of F , is an isomorphism of G with
F . A principal bundle over M with structure group G is denoted by P (M, G).

Equivalently a principal bundle P (M, G) with structure group G over M
may be defined as follows.

Definition 4.4 A principal bundle P (M, G) with structure group G over M
is a fiber bundle (P, M, π, G) with a free right action ρ of G on P , such that

1. the orbits of ρ are the fibers of π : P → M , i.e., π may be identified with
the canonical projection P → P/G;

2. ∀ψ : U × G → π−1(U), such that ψ is a local trivialization of P , writing
uxg in the place of ρ(ux, g), one has

ψ−1
x (uxg) = ψ−1

x (ux)g, ∀ux ∈ Px, g ∈ G.

We observe that, given the first definition one has the natural right action
ρ of G on P defined by

ρ(ux, g) = ψi,x(ψ−1
i,x (ux)g),

where ψi is a local trivialization of P at x ∈M . This action ρ is a free right
action and satisfies both conditions of Definition 4.4. Conversely, given the
second definition, the ψij(x) are diffeomorphisms of G satisfying the defining
condition

ψij(x)(g1g2) = ψij(x)(g1)g2

of Definition 4.3. We give below an example of a principal bundle that is
naturally associated with every manifold.

Example 4.2 (Bundle of frames) Let M be an m-dimensional manifold. A
frame u = (u1, . . . , um) at a point x ∈M is an ordered basis of the tangent
space TxM . Let

Lx(M) = {u | u is a frame at x ∈M},

L(M) =
⋃
x∈M

Lx(M).

Define the projection

π : L(M)→M by u �→ x, where u ∈ Lx(M) ⊂ L(M).
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The general linear group GL(m,R) acts freely on L(M) on the right by

(u, g) �→ ug = (uigi1, uig
i
2, . . . , uig

i
m), g = (gij) ∈ GL(m,R).

It can be shown that L(M) can be given the structure of a manifold, such that
this GL(m,R)-action is smooth. Then L(M)(M, GL(m,R)) is a principal
bundle over M with structure group GL(m,R). This principal bundle L(M)
is called the bundle of frames or simply the frame bundle of M .

Let P (M, G) and Q(N, H) be two principal fiber bundles. A principal
bundle homomorphism of Q(N, H) into P (M, G) is a bundle homomor-
phism f : Q→ P together with a Lie group homomorphism γ : H → G, such
that

f(uh) = f(u)γ(h), ∀u ∈ Q, h ∈ H.

When f satisfies the above condition we say that it is equivariant with
respect to γ. A bundle isomorphism f : P → Pm which is equivariant with
respect to the identity is called a principal bundle automorphism. The
set of all principal bundle automorphisms of P is a subgroup of Diff(P ),
called the automorphism group of P . It is denoted by Aut(P ). Returning
to the general case, if f : Q→ P is an embedding and γ is injective, then we
say that Q is embedded in P . Note that in this case the induced morphism
f0 : N → M is also an embedding. If M = N and f0 = idM , then Q
is called a reduced subbundle of P or a reduction of the structure
group G to H where H is regarded as a subgroup of G. The structure group
G of the principal bundle P (M, G) is said to be reducible to a subgroup
H ⊂ G if P (M, G) admits a reduction of G to H . If H is a maximal compact
subgroup of G, then it can be shown that the bundle P (M, G) can be reduced
to a bundle Q(M, H). An application of this result to the bundle of frames
L(M) (Example (4.2)) shows that L(M)(M, GL(m,R)) can be reduced to a
subbundle O(M) with structure group O(m,R), the orthogonal group. The
bundle O(M)(M, O(m,R)) is called the bundle of orthonormal frames on
M . Furthermore, this reduction is equivalent to the existence of a Riemannian
structure on M . The structure group O(m,R) of O(M) can be reduced to
the special orthogonal group SO(m,R) if and only if the manifold M is
orientable. The reduced subbundle of special orthonormal frames is denoted
by SO(M)(M, SO(m,R)).

On the other hand, in some situations one is interested in extending, or
lifting, the structure group of a bundle to obtain a new principal bundle in
the following sense. Let P (M, G) be a principal bundle with structure group
G. Recall that the center of a group H is the normal subgroup Z(H) of H
given by

Z(H) := {x ∈ H | xh = hx, ∀h ∈ H}.

Let H be a Lie group and let f : H → G be a surjective, covering homomor-
phism such that K = Ker f ⊂ Z(H), the center of H . We say that P (M, G)
has a lift to a principal bundle Q(M, H) with structure group H if there
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exists a bundle map f̂ : Q→ P such that

f̂(uh) = f̂(u)f(h), ∀u ∈ Q, h ∈ H.

Using Čech cohomology, Greub and Petry [165] have shown that there exists
a topological obstruction η(P ) ∈ H2(M, K) to the lifting of P (M, G) to
Q(M, H) with the property that

h ∈ F(N, M) implies that η(h∗(P )) = h∗(η(P )).

An important special case that appears in many applications is when f
is the universal covering map. In this case K is isomorphic to π1(G), the
fundamental group of G, and hence η(P ) ∈ H2(M, π1(G)). When f is the
universal covering map we say that Q(M, H) is a universal lift, or a uni-
versal extension, of P (M, G). The following theorem gives the obstruction
η(P ) in terms of well known characteristic classes (see Chapter 5) for three
frequently used groups.

Theorem 4.1 In the following, H denotes the universal covering group of G.

1. Let G = SO(n), then H = Spin(n). In this case the obstruction η(P ) =
w2(P ) ∈ H2(M,Z2), where w2(P ) is the second Stiefel–Whitney class of
P .

2. Let G = SO(3, 1)+, the connected component of the identity of the proper
Lorentz group; then H = Spin(3, 1) = SL(2,C). In this case η(P ) =
w2(P ) ∈ H2(M,Z2), where w2(P ) is the second Stiefel–Whitney class of
P .

3. Let G = U(n), then H = R × SU(n). In this case η(P ) = c1(P ) ∈
H2(M,Z), where c1(P ) is the first Chern class of P .

The following example is a typical application of the above theorem.

Example 4.3 Let M be an oriented Riemannian m-manifold. Then its bun-
dle of special orthonormal frames SO(M) is a principal SO(m,R) bundle.
We say that M admits a spin structure if the bundle SO(M) can be ex-
tended to the group Spin(m,R). By Theorem 4.1 it follows that M admits a
spin structure if and only if the second Stiefel–Whitney class of M is zero.
A spin manifold is a manifold M together with a fixed spin structure. The
principal bundle obtained by this extension is called the spin frame bundle
and is denoted by Spin(M)(M, Spin(m,R)), or simply by Spin(M).

The definition of spin manifold can be extended to an oriented pseudo-
Riemannian manifold. In the physical literature one usually deals with the
case of a 4-dimensional Lorentz manifold. Item 2 of Theorem 4.1 refers to
this case.

Let P (M, G) be a principal bundle. The action ρ of G on P defines for
each u ∈ P the map ρu : G→ P by ρu(g) = ρ(u, g). This induces an injective
homomorphism of the Lie algebra g of G into X (P ) (the Lie algebra of the



116 4 Bundles and Connections

vector fields on P ) as follows. Let A ∈ g and let at = exp(tA) be the one-
parameter subgroup of G generated by A. Restricting the action ρ of G to
exp(tA) we get a smooth curve

u · exp(tA) := ρu(exp(tA)) = ρ(u, exp(tA))

through u ∈ P . The tangent vector to this curve at the point u ∈ P is denoted
by Ãu. The fundamental vector field Ã ∈ X (P ) of A ∈ g is defined by
the map

u �→ Ãu := Tρu(A).

One can verify that the map ρ̃ from g to X (P ) defined by

A �→ Ã

is an injective Lie algebra homomorphism. We note that, since G acts freely
on P , A �= 0 implies Ãu �= 0, ∀u ∈ P . Moreover, Ã has another important
property, namely, that it is a vertical vector field in the sense of the following
definition. A vector field Y ∈ X (P ) is said to be a vertical vector field if
Yu is tangent to the fiber of P through u, ∀u ∈ P . We denote by V(P ) the
set of vertical vector fields on P . The set V(P ) is called the vertical bundle
of P . It is a Lie subalgebra of X (P ). Since G preserves the fibers (i.e., acts
vertically on P ), Ã is a vertical vector field and the map

ρ̃ : g→ V(P ) defined by A �→ Ã

is a Lie algebra isomorphism into V(P ) and induces a trivialization of the
vertical bundle V(P ) ∼= P × g. The inverse of this isomorphism associates to
a vertical vector field an element of the Lie algebra g. This result plays an
important role in a definition of connection given later in this chapter.

4.3 Associated Bundles

Let P (M, G) be a principal fiber bundle and F be a left G-manifold, i.e., G
acts by diffeomorphisms from the left on F . We denote by r this action of
G on F and by gf or r(g)f the element r(g, f). Then we have the following
right action R of G on the product manifold P × F

(u, f)g = (ug, r(g−1)f), ∀g ∈ G, (u, f) ∈ P × F :

The action R is free and its orbit space (P × F )/R is denoted by P ×r F
or by E(M, F, r, P ) (or simply E). We denote by

O : P × F → E



4.3 Associated Bundles 117

the quotient map, called the projection onto the orbits of R, and by [u, f ]
the orbit O(u, f). We have the following commutative diagram:

E M�
πE

P × F P�p1

�
O

�

π

where πE : E →M is defined by [u, f ] �→ π(u) and p1 is the projection onto
the first factor. (E, M, πE , F ) is a fiber bundle over M with fiber type F . We
call P ×r F or E(M, F, r, P ) the fiber bundle associated to P with fiber
type F . If F is a vector space then E is called the vector bundle with
fiber type F associated to P .

Example 4.4 Let Ad denote the adjoint action of G on itself. Then P×AdG
is a bundle of Lie groups associated to P , denoted by Ad(P ). We note that
Ad(P ) is not a principal bundle, in general. Let ad denote the adjoint action
of G on its Lie algebra g. Then P ×ad g is a bundle of Lie algebras associated
to P , denoted by ad(P ). The bundles Ad(P ) and ad(P ) play a fundamental
role in applications to gauge theory.

Each u ∈ P induces an isomorphism

ũ : F → Eπ(u), defined by ũ(f) = O(u, f),

where O is the orbit projection. We note that the map ũ satisfies the relation

(̃ug)(f) = ũ(gf), ∀g ∈ G.

We denote by FG(P, F ) the space of G-equivariant maps of P to F , i.e.,

FG(P, F ) := {f : P → F | f(ug) = g−1(f(u)), ∀g ∈ G}.

Recall that Γ (E) = ΓM (E(M, F, r, P )) is the space of smooth sections of
E over M . There exists a one-to-one correspondence between FG(P, F ) and
Γ (E) which is defined as follows: For f ∈ FG(P, F ) we define sf ∈ Γ (E) by

sf (x) = [u, f(u)], where u ∈ π−1(x).

It is easy to verify that sf is well defined and that f �→ sf is a one-to-one
correspondence from FG(P, F ) to Γ (E) with the inverse defined as follows:
If s ∈ Γ (E), then fs ∈ FG(P, F ) is defined by

fs(u) = ũ−1(s(π(u))).

Example 4.5 Let M be an m-dimensional manifold. The tangent bundle
TM of M is an associated bundle of L(M) with fiber type Rm and left action
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r given by the defining representation of GL(m,R) on Rm, i.e.,

TM = E(M,Rm, r, L(M)).

For u ∈ Lx(M) we have the map

ũ : Rm → Tx(M),

which is a linear isomorphism. Thus, we could define a frame by the map ũ
using the vector bundle structure of TM with the action of GL(m,R) given
by the composition

ũ · g = ũ ◦ g, ∀g ∈ GL(m,R),

where g is regarded as a map from Rm to Rm. Similarly it can be shown that
the various tensor bundles T rs (M) and form bundles Λk(M) are associated
bundles of L(M).

Example 4.6 Let M be a spin manifold with spin bundle Spin(M). Let
Spin(M)×ρ V be the bundle associated to Spin(M) by the representation ρ
of Spin(m,R) on the complex vector space V . Then Sρ = Γ (Spin(M)×ρ V )
is called the space of spinors of type ρ. By the first part of the Theo-
rem 4.1 we can conclude that M admits a spin structure if and only if
w2(M) := w2(SO(M)), the second Stiefel–Whitney class of M , is zero. Topo-
logical classification of spin structures is attributed to Milnor. A detailed ac-
count of spin geometry may be found in Lawson and Michelsohn [248]. The
mathematical foundations of the theory of spinors over Lorentz manifolds
were laid by Cartan in [71], where the Dirac operator on spinors was intro-
duced to study Dirac’s equation for the electron. This operator and its various
extensions play a fundamental role in the study of the topology and the ge-
ometry of manifolds arising in gauge theory.

Associated bundles can be used to give the following formulation of the
concept of reduction of the structure group of a principal bundle.

Theorem 4.2 If H is a closed subgroup of G, then the structure group
G of P (M, G) is reducible to H if and only if the associated bundle
E(M, G/H, q, P (M, G)) admits a section (where q is the canonical action
of G on the quotient G/H).

This theorem is useful in studying the existence of pseudo-Riemannian
structures on a manifold and their topological implications.
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4.4 Connections and Curvature

The idea of Riemannian manifold was introduced in Riemann’s famous lec-
ture “Über die Hypothesen, welche der Geometrie zugrunde liegen” (On the
hypotheses that lie at the foundations of geometry). Riemann’s ideas were
extended by Ricci and Levi-Civita, who gave a systematic account of Rie-
mannian geometry and also introduced the notion of covariant differentiation.
Their work influenced Einstein (via Grossmann), who used it to formulate his
general theory of relativity. Weyl and Cartan introduced the idea of affine,
projective, and conformal connections and found interesting applications of
these to physical theories. The notion of connection in a fiber bundle was
introduced by Ehresmann and this influenced all subsequent developments
of the theory of connections. In particular his notion of a Cartan connection
includes affine, projective, and conformal connections as special cases.

In this section we give several definitions of connection on a principal
bundle and define the curvature 2-form. The structure equations and Bianchi
identities satisfied by the curvature are also given there. A subsection is
devoted to a detailed discussion of universal connections.

Let P (M, G) be a principal bundle with structure group G and canonical
projection π over a manifold M of dimension m. Recall that a k-dimensional
distribution on P is a smooth map L : P → TP such that L(u) is a k-
dimensional subspace of TuP , for all u ∈ P .

Definition 4.5 A connection Γ in P (M, G) is an m-dimensional distribu-
tion H : u �→ HuP , on P such that the following conditions are satisfied for
all u ∈ P :

1. TuP = VuP ⊕HuP , where VuP = Ker(π∗u) is the vertical subspace of
the tangent space TuP ;

2. Hρa(u)P = (ρa)∗HuP, ∀a ∈ G, where ρa is the right action of G on P
determined by a.

The first condition in the above definition can be taken as a definition of
a horizontal distribution H. The second condition may be rephrased as
follows:

2’. The distribution H is invariant under the action of G on P .

We call HuP (also denoted simply by Hu) the Γ -horizontal subspace,
or simply the horizontal subspace of TuP . The union HP of the horizontal
subspaces is a manifold, called the horizontal bundle of P . The union V P
of the vertical subspaces is a manifold called the vertical bundle of P . We
will also write simply Vu instead of VuP . A vector field X ∈ X (P ) is called
vertical if X(u) ∈ VuP, ∀u ∈ P . We note that while the definition of HP
depends on the connection on P , the definition of the vertical bundle V P is
independent of the connection on P . Condition (1) allows us to decompose
each X ∈ TuP into its vertical part v(X) ∈ Vu and the horizontal part
h(X) ∈ Hu. If Y ∈ X (P ) is a vector field on P then
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v(Y ) : P → TP defined by u �→ v(Yu)

and
h(Y ) : P → TP defined by u �→ h(Yu)

are also in X (P ). We observe that

π∗u : Hu → Tπ(u)M

is an isomorphism. The vector field Y ∈ X (P ) is said to be Γ -horizontal
(or simply horizontal) if Yu ∈ Hu, ∀u ∈ P . The set of horizontal vector fields
is a vector subspace but not a Lie subalgebra of X (P ). For X ∈ X (M) the
Γ -horizontal lift (or simply the lift) of X to P is the unique horizontal
field Xh ∈ X (P ) such that π∗X

h = X . Note that Xh ∈ X (P ) is invariant
under the action of G on P and every horizontal vector field Y ∈ X (P )
invariant under the action of G is the lift of some X ∈ X (M), i.e., Y = Xh

for some X ∈ X (M). In the following proposition we collect some important
properties of the horizontal lift of vector fields.

Proposition 4.3 Let P (M, G) be a principal bundle with connection Γ . Let
X, Y ∈ X (M) and f ∈ F(M); then we have the following properties:

1. Xh + Y h = (X + Y )h,
2. (π∗f)Xh = (fX)h,
3. h([Xh , Y h]) = [X , Y ]h.

A smooth curve c in P (i.e. c is a smooth function from some open interval
I ⊂ R into P ) is called a horizontal curve if ċ(t) ∈ Hc(t), ∀t ∈ I. A section
s ∈ Γ (P ) is called parallel if

s∗(TxM) ⊂ Hs(x), ∀x ∈M ;

i.e., if s ◦ c is a horizontal curve for all curves c in M . Given a curve
x : [0, 1] → M and w0 ∈ P such that π(w0) = x(0), there is a unique
horizontal curve w : [0, 1]→ P such that w(0) = w0 and

π(w(t)) = x(t), ∀t ∈ [0, 1].

The curve w in P is called the horizontal lift of the curve x starting from
w0 ∈ P. If P0 (resp., P1) denotes the fiber of P over x(0) (resp., x(1)) then
the horizontal lift of x to P induces a diffeomorphism of P0 with P1 called the
parallel displacement along x. In particular, given a loop (closed curve)
x at p ∈ M , i.e., p = x0 = x1, the horizontal lift of x to P induces an
automorphism of the fiber π−1(p). The set of all such automorphisms forms
a group called the holonomy group of the connection Γ at p ∈ M . It is
denoted by Φ(p). The subset of Φ(p) corresponding to parallel displacement
along loops homotopic to the constant loop at p turns out to be a subgroup
of Φ(p). It is called the restricted holonomy group of the connection Γ
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at p ∈M and is denoted by Φ0(p). Given a point u ∈ π−1(p), each α ∈ Φ(p)
(resp., Φ0(p)) determines a unique g ∈ G such that α(u) = ug. The map α �→
g of Φ(p) (resp., Φ0(p)) to G is an isomorphism onto a subgroup Φu (resp.,
Φ0
u) called the holonomy group (resp., restricted holonomy group) of

the connection Γ at u ∈ P . It can be shown that if M is paracompact, then
the holonomy group Φu is a Lie subgroup of the structure group G, Φ0

u is a
normal subgroup of Hu and Φu/Φ0

u is countable. Now we let P (u) denote the
set of points of P that can be joined to u by a horizontal curve. Then we
have the following theorem.

Theorem 4.4 Let M be a connected, paracompact manifold and Γ a con-
nection in the principal bundle P (M, G). Then

1. P (u), u ∈ P , is a reduced subbundle of P with structure group Φu. It is
called the holonomy bundle (of Γ ) through u.

2. The holonomy bundles P (u), u ∈ P , are isomorphic with one another and
partition P into a disjoint union of reduced subbundles.

3. The connection Γ is reducible to a connection in P (u).

We now give two important characterizations of a connection that are often
used as definitions of a connection. Recall first that a k-form α ∈ Λk(P, V )
(the space of k-forms on P with values in the vector space V ) can be identified
with the map

u �→ αu, u ∈ P,

where
αu : TuP × · · · × TuP︸ ︷︷ ︸

k times

→ V

is a multilinear anti-symmetric map. Given a basis {vi}1≤i≤n in V , we can
express α as the formal sum

α =
n∑
i=1

αivi,

where αi ∈ Λk(P ), ∀i. We define a 1-form ω ∈ Λ1(P,g) on P with values in
the Lie algebra g by using the connection Γ as follows:

ωu(Xu) = ρ̃−1
u (v(Xu)), ∀u ∈ P, ∀Xu ∈ TuP, (4.2)

where ρ̃u : g → V(P )u is the isomorphism induced by the action of G on P .
It is customary to write (4.2) in the form

ω(X) = ρ̃−1(v(X)). (4.3)

The 1-form ω is called the connection 1-form of the connection Γ . It can
be shown that the connection 1-form ω satisfies the following conditions:

ω(Ã) = A, ∀A ∈ g, (4.4)
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(ρa)
∗ω = ad(a−1)ω, ∀a ∈ G. (4.5)

Condition (4.5) means that ω is G-equivariant, i.e., the following diagram
commutes:

g g�
ad(a−1)

TuP TuaP�Tρa

�

ωu

�

ωua

Condition (4.5) can also be expressed as

ω(ua)(Tρa(X(u))) = ad(a−1)(ω(u)X(u)), ∀X ∈ X (P ),

where we have written X(u) for Xu etc. Conditions (4.4) and (4.5) char-
acterize the connection 1-form ω on P . In fact, one may give the following
alternative definition of a connection.

Definition 4.6 A connection in P (M, G) is a 1-form ω on P with values
in the Lie algebra g) (i.e., ω ∈ Λ1(P, g)), which satisfies conditions (4.4) and
(4.5) given above.

Note that given a 1-form ω satisfying conditions (4.4) and (4.5), we can
define the distribution H : u �→ Hu on P by

Hu := {Y ∈ TuP | ωu(Y ) = 0}. (4.6)

One can then verify that the distribution H is m-dimensional and defines
a connection Γ according to the Definition 4.5 and that the connection 1-
form associated to Γ is ω. Let h be a Lie subalgebra of g. We say that the
connection ω is reducible if ω(X) ∈ h, ∀X ∈ X (P ). A connection ω that is
not reducible is called irreducible. These concepts play an important role
in studying the space of all connections on P . These spaces are fundamental
in the construction of various gauge fields that we study in later chapters.

We now motivate another characterization of a connection in terms of a lo-
cal representation of the bundle P (M, G). Let ω be a connection on P (M, G).
Let {(Ui, ψi)}i∈I be a local representation of P (M, G) with transition func-
tions

ψij : Uij → G.

Let e ∈ G be the identity element of G and let si : Ui → P be a local section
defined by

si(x) = ψi(x, e).

Define the family {ωi}i∈I of 1-forms

ωi ∈ Λ1(Ui,g) by ωi = s∗i (ω),
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where ω is a connection on P . Let Θ ∈ Λ1(G,g) be the canonical left invariant
1-form on G defined by Θ(A) = A, ∀A ∈ g. Alternatively, Θ can be defined
by

Θ(g) := TLg−1 : TgG→ TeG ≡ g, ∀g ∈ G.

Then writing Θij = ψ∗
ijΘ, we obtain the following relations

ωj(x) = ad(ψij(x)−1)ωi(x) + Θij(x), ∀x ∈ Uij and ∀i, j ∈ I. (4.7)

Thus, given a connection ω on P , we have a family {(Ui, ψi, ωi)}i∈I where
{(Ui, ψi)}i∈I is a local representation of P and {ωi}i∈I is a family of 1-forms
satisfying conditions (4.7). Conversely, given such a family {(Ui, ψi, ωi)}i∈I
satisfying conditions (4.7), a connection is determined in the following way.
Let ψi

−1 : π−1(Ui) → Ui × G and let p1, p2 be the canonical projections of
Ui ×G on the first and second factors, respectively. Let

αi = (p1 ◦ ψi
−1)∗ωi + (p2 ◦ ψi

−1)∗Θ.

Then αi ∈ Λ1(π−1(Ui),g). Define ω ∈ Λ1(P,g) by ω = αi on π−1(Ui). This
is well defined because on the intersection π−1(Uij) the conditions guarantee
that αi = αj . Then one can show that ω is a connection according to Def-
inition 4.6. Thus we may give the following third definition of a connection
equivalent to the two definitions given above.

Definition 4.7 A connection in the bundle P (M, G) is a family of triples
{(Ui, ψi, ωi)}i∈I , where {(Ui, ψi)}i∈I is a local representation of P and {ωi ∈
Λ1(Ui,g)}i∈I is a family of 1-forms satisfying the relations (4.7).

Frequently, it is this local definition that is used to construct a connection
via a suitable local representation of P .

Example 4.7 Let M be a paracompact manifold and let P = L(M) be the
bundle of frames on M . Recall that M admits a Riemannian metric so that
the bundle of frames L(M) can be reduced to a bundle of orthonormal frames.
Using the local isomorphism with Rm we can pull back the flat connection on
the frame bundle of Rm to L(M), locally. These local connections can be
pieced together by a partition of unity argument to obtain the Riemannian
connection in L(M).

Let φ ∈ Λk(P, V ) be a k-form in P with values in a finite-dimensional
vector space V . Let r : G → GL(V ) be a representation of G on V . We say
that φ is pseudo-tensorial of type (r, V ) if

ρ∗
aφ = r(a−1) · φ, ∀a ∈ G.

A connection 1-form ω on P is pseudo-tensorial of type (ad, g). The form
φ ∈ Λk(P, V ) is called horizontal if

φ(X1, X2, . . . , Xk) = 0
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whenever some Xi, 1 ≤ i ≤ k, is vertical. The form φ ∈ Λk(P, V ) is called
tensorial of type (r, V ) if it is horizontal and pseudo-tensorial of type (r, V ).
If the k-form φ ∈ Λk(P, V ) is tensorial of type (r, V ), then there exists a
unique k-form sφ on M with values in the vector bundle E = P ×r V defined
as follows:

sφ(x)(X1, X2, . . . , Xk) = ũφ(u)(Y1, Y2, . . . , Yk), ∀x ∈M,

where u ∈ π−1(x) and Yi ∈ TuP such that Tπ(Yi) = Xi, 1 ≤ i ≤ k. Due to
tensoriality of φ this definition of sφ is independent of the choice of u and
Yi. We call sφ ∈ Λk(M, E) the k-form associated to φ. We note that the
one-to-one correspondence f �→ sf between FG(P, F ) and Γ (E) extends to a
one-to-one correspondence φ �→ sφ of tensorial forms of type (r, V ) and forms
with values in the vector bundle E defined above.

Given a connection 1-form ω on P we define the exterior covariant
differential

dω : Λk(P,g)→ Λk+1(P,g)

on (k-forms on) P (with values in g) by

dωα(X0, . . . , Xk) = dα(h(X0), . . . , h(Xk)), ∀α ∈ Λk(P,g).

We define the curvature 2-form Ω ∈ Λ2(P,g) of the connection 1-form ω
by

Ω := dωω. (4.8)

It is easy to verify that Ω is a tensorial 2-form of type (ad, g) and that it
satisfies the condition

dω(X, Y ) = Ω(X, Y )− [ω(X), ω(Y )]. (4.9)

Equation (4.9) is called the structure equation and is often written in the
form

dω = Ω − ω ∧ ω.

Using definition (4.8) we obtain the Bianchi identity on the bundle P ,

dωΩ = 0. (4.10)

The one-to-one correspondence φ �→ sφ of tensorial forms of type (ad, g) and
forms with values in the vector bundle ad(P ) defined above associates to the
curvature form Ω a unique 2-form Fω ∈ Λ2(M, ad(P )) so that

Fω = sΩ. (4.11)

The 2-form Fω is called the curvature 2-form on M with values in the
adjoint bundle ad(P ) corresponding to the connection ω on P .
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4.4.1 Universal Connections

We now discuss an important class of principal bundles with natural connec-
tions, which play a fundamental role in the classification of principal bundles
with connections. Let F stand for R,C, or H. On Fn we have the standard
inner product defined by

〈u, v〉 :=
n∑
i=1

ūivi,

where the bar denotes the conjugation on F , which is the identity on R and
complex (resp., quaternionic) conjugation when F is C (resp., H). Let UF (n)
denote the connected component of the identity of the Lie group of isometries
of Fn (i.e., linear automorphisms of Fn preserving the above inner product).
Then we have

UF (n) =

⎧
⎨
⎩

SO(n), if F = R,
U(n), if F = C,
Sp(n), if F = H.

The real dimension of UF (n) is 1
2n(n + 1) dimR F − n.

A k-frame in Fn is an ordered orthonormal set (u1, u2, . . . , uk) of k vec-
tors in Fn. The set of k-frames can be given a natural structure of smooth
manifold. The connected component of the k-frame (e1, e2, . . . , ek), where
{ei, 1 ≤ i ≤ n} is the set of standard orthonormal basis vectors in Fn, is
called the Stiefel manifold of k-frames in Fn. It is denoted by Vk(Fn). The
group UF (n) acts transitively on Vk(Fn). The stability group of this action
at the k-frame (e1, e2, . . . , ek) can be identified with the subgroup UF (l) of
the group UF (n), where l = n − k. In block matrix form we can write an
element of the group UF (l) as

(
Ik O(k,n−k)

O(n−k,k) T

)
,

where Ik is the k× k unit matrix, O(i,j) is the i× j zero matrix, and T is the
l × l matrix in UF (l) (regarded as the group of isometries of F l). Hence, we
can identify the Stiefel manifold Vk(Fn) as the left coset space UF (n)/UF (l).
Thus, UF (n) is a principal UF (l)-bundle over the Stiefel manifold Vk(Fn).
We use the following notation for indices:

1. lower case Latin letters i, j, . . . take values from 1 to k;
2. upper case Latin letters A, B, . . . take values from 1 to l = n− k;
3. Greek letters α, β, . . . take values from 1 to n.

Then the canonical projection π0 : UF (n)→ Vk(Fn) is given by
(

aij aiB
aAj aAB

)
→ (u1, u2, . . . , uk) ∈ Vk(Fn),
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where uj :=
∑n

α=1 eαaαj . We note that the subgroup UF (k) of the group
UF (n) formed by elements of the type

(
T O(k,n−k)

O(n−k,k) In−k

)

acts on Fn, sending a k-frame to a k-frame and inducing a free action of
UF (k) on the Stiefel manifold Vk(Fn) on the right. The quotient manifold of
Vk(Fn) under this action is called the Grassmann manifold and is denoted
by Gk(Fn). It can be defined directly as the set of k-planes through the origin
in Fn. Two elements u, v ∈ Vk(Fn) determine the same k-plane in Fn if
and only if there exists t ∈ UF (k) such that ut = v. Thus, Vk(Fn) can be
regarded as a principal UF (k)-bundle over the Grassmann manifold Gk(Fn)
with canonical projection π. In particular, G1(Cn) = CPn and each point is
a complex line. The assignment of this line to the corresponding point defines
a complex line bundle which is called the tautological complex line bundle.
Similar definition can be give for the real and quaternionic case.

Let Θ denote the canonical Cartan 1-form on the Lie group UF (n) with
values in the corresponding Lie algebra uF (n). It is often written in the form

Θ = g−1dg = (Θαβ), (4.12)

where (Θαβ) are F -valued 1-forms on UF (n) which satisfy the relations

Θ̄αβ + Θαβ = 0. (4.13)

The form Θ is left invariant and right equivariant under the adjoint action
and satisfies the Maurer–Cartan equations

dΘ + Θ ∧Θ = 0, i.e., dΘαβ + Θαγ ∧Θγβ = 0. (4.14)

The forms Θαj are horizontal relative to the projection π0. The forms Θij

are invariant under the action of UF (l) on UF (n) and hence project to forms
on the Stiefel manifold Vk(Fn), which we continue to denote by the same
symbols. The 1-form ω = (Θij) with values in the Lie algebra uF (k) satisfies
the conditions for it to be a connection form on the bundle Vk(Fn) regarded
as a principal UF (k)-bundle over the Grassmann manifold Gk(Fn). The con-
nection defined by this form ω is called a universal connection in view of
the fact that the principal bundle Vk(Fn)(Gk(Fn), UF (k)) with connection
ω is m-classifying for m < kl, i.e. given a principal UF (k)-bundle P over a
compact manifold M of dim M ≤ m with connection α there exists a map
f : M → Gk(Fn) such that P = f∗(Vk(Fn)) and α = f∗ω (see Chapter 5 for
further discussion).

The Stiefel and Grassmann manifolds carry a natural Riemannian struc-
ture, which can be described as follows. The quadratic form

∑
α,j Θ̄αj ⊗Θαj

on UF (n) is invariant under the action of UF (l) and hence descends to the
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quotient to define the metric dσ2 on Vk(Fn) such that
∑
α,j

Θ̄αj ⊗Θαj = π∗
0(dσ2).

The quadratic form
∑
A,j Θ̄Aj⊗ΘAj on UF (n) is invariant under the left UF (l)

and the right UF (k) action and therefore descends to define a Riemannian
metric ds2 on Gk(Fn). We have the following relations

∑
A,j

Θ̄Aj ⊗ΘAj = (π ◦ π0)∗(ds2), (4.15)

dσ2 = π∗(ds2) +
∑
i,j

Θ̄ij ⊗Θij . (4.16)

We note that this metric is useful in generalized Kaluza–Klein theories. In
the special case of k = 1 and F = C (resp., H), the metric dσ2 reduces to the
natural Riemannian metric on a sphere S2n−1 (resp., S4n−1), and the metric
ds2 reduces to the Fubini–Study metric on the corresponding projective
space CPn−1 (resp., HPn−1). These are the classical Hopf fibrations, also
called the Hopf fiberings. In the case n = 2, the complex fibration appears
in consideration of the Dirac monopole whereas the quaternionic fibration
corresponds to the well-known BPST instanton solution of the Yang–Mills
equations (see Chapter 8 for further details).

We observe that UF (n) is a UF (k)×UF (l)-bundle over Gk(Fn) and hence
we may view UF (n) as a restriction of the bundle of orthonormal frames of
Gk(Fn) corresponding to the canonical injection UF (k) × UF (l) ↪→ UF (kl).
The form δijΘAB + δABΘij on UF (n) defines the Levi-Civita connection
for Gk(Fn).

4.5 Covariant Derivative

Let P (M, G) be a principal bundle and E(M, F, r, P ) be the associated fiber
bundle over M with fiber type F and action r. A connection Γ in P allows
us to define the notion of a horizontal vector field on E. Let w ∈ E and
(u, a) ∈ O−1(w), where O : P × F → E is the canonical orbit projection.
Define

fa : P → E by u �→ O(u, a),

where O(u, a) is the orbit of (u, a) in E. Now define Hw = HwE ⊂ TwE by

Hw := (fa)∗(HuP ),

where HuP is the horizontal subspace of TuP . It can be shown that HwE is
independent of the choice of (u, a) ∈ O−1(w) and is thus well-defined. The
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assignment w �→ Hw, w ∈ E, defines a connection on E. Thus, one has
the notions of horizontal vector field on E, horizontal lift of a vector field
on M , horizontal curve, and horizontal lift of a curve to E. Given a curve
x : [0, 1] → M and w0 ∈ E such that πE(w0) = x(0), there is a unique
horizontal lift w : [0, 1]→ E of the curve x such that w(0) = w0 and

πE(w(t)) = x(t), ∀t ∈ [0, 1],

i.e., the curve w in E is horizontal and πE(w(t)) = x(t). Given the curve x
joining x0 and x1, the horizontal lift induces a diffeomorphism of π−1

E (x0) and
π−1
E (x1) called parallel translation or parallel displacement of fibers of

E. In particular, if E is a vector bundle (i.e., the fiber type F is a vector
space), then parallel displacement is an isomorphism and we may define the
covariant derivative ∇ẋ(t)s of a section s at x(t) along the vector ẋ(t) by
the formula

∇ẋ(t)s = lim
h→0

1
h

[c−1
t,t+h(s(x(t + h)))− s(x(t))],

where
ct,t+h : π−1

E (x(t))→ π−1
E (x(t + h))

is the parallel displacement along x from x(t) to x(t + h). If X ∈ X (M) and
x is the integral curve of X through x0, so that Xx(t) = ẋ(t), then the above
definition may be used to define the covariant derivative ∇Xs.

Theorem 4.5 The covariant derivative operator ∇X : Γ (E) → Γ (E)
satisfies the following relations, ∀X, Y ∈ X (M), ∀f ∈ F(M) and ∀t, s ∈
Γ (E):

1. ∇X+Y s = ∇Xs +∇Y s,
2. ∇X(s + t) = ∇Xs +∇X t,
3. ∇fXs = f∇Xs,
4. ∇X(fs) = f∇Xs + (Xf)s.

We note that the covariant derivative may be defined in terms of the Lie
derivative as follows. Recall first that there is a one-to-one correspondence
between G-equivariant functions from P to F and sections in Γ (E), which is
defined as follows. Let s ∈ Γ (E); then we define

fs : P → F by u �→ ũ−1(s(x)),

where π(u) = x and ũ : F → Ex is the isomorphism defined by u ∈ P .
Conversely, given a G-equivariant map f from P to F , define sf ∈ Γ (E) by

sf(x) = O(u, f(u)),

where u ∈ π−1(x). This is well-defined because of equivariance. The covariant
derivative ∇Xs corresponds to LX̂(fs) where fs is defined above and X̂ is
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the horizontal lift of X to P . The covariant derivative defines a map ∇ from
Γ (E) to Γ (T ∗(M)⊗ E) as follows. Recall that a section s ∈ Γ (T ∗(M)⊗ E)
may be regarded as defining, for each x ∈ M , a map s(x) : TxM → Ex. For
s ∈ Γ (E), let ∇s : M → T ∗(M)⊗ E be the map defined by

∇s(x) ·Xx = (∇Xs)(x).

Then we have

∇(fs) = df ⊗ s + f∇s, ∀f ∈ F(M) and ∀s ∈ Γ (E). (4.17)

To indicate the dependence of ∇ on the connection 1-form ω, it is customary
to denote it by ∇ω, and the same notation is used for its natural extension
to E-valued tensors on M . We note that the operator ∇ω maps Λ0(M, E) to
Λ1(M, E). We denote the extension of the operator ∇ω to Λp(M, E) by dω ,
in agreement with the notation used for vector-valued forms. It is defined as
follows:

dωα(X0, . . . , Xp) :=
p∑
j=0

(−1)j∇Xj (α(X0, . . . , X̂j, . . . , Xp))

+
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp),

where the hat sign ˆ on a vector field denotes deletion of that vector field.
The operator dω is called the exterior covariant differential or simply the
covariant differential on M . Applying the above equation to the curvature
2-form Fω ∈ Λ2(M, ad(P )) we obtain the Bianchi identity on M ,

dωFω = 0. (4.18)

The classical Bianchi identity is a special case of the above identity
when ω is the Levi-Civita connection on the principal bundle of orthonormal
frames. The operator dω satisfies the following relation:

dω(β ∧ α) = (dωβ) ∧ α + (−1)deg(β)β ∧ (dωα), (4.19)

where α ∈ Λ∗(M, E) and β ∈ Λ∗(M,R) is a homogeneous form. In fact, this
relation can be used to define the operator dω. It is customary to write dωp for
the above operator if we want to emphasize its action on p-forms, otherwise
we write dω to denote any one of these operators. Thus our earlier definition
of dω : Λ0(M, E) → Λ1(M, E), combined with the above definition, gives us
the sequence

0 −→ Λ0(M, E) dω

−→ Λ1(M, E) dω

−→ Λ2(M, E) dω

−→ · · · ,
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which is called the generalized de Rham sequence. We note that if α ∈
Λ0(M, E), then we have

dω ◦ dω(α) = αΩ. (4.20)

Thus, we can consider the curvature Ω as a zeroth order operator, which acts
as an obstruction to the vanishing of (dω)2 := dω ◦ dω. We will find these
concepts useful in the study of gauge fields and their associated fields.

4.6 Linear Connections

Let L(M) be the bundle of frames of M . Then we have seen that L(M)
is a principal bundle with structure group GL(m,R). A connection on this
principal bundle is called a linear connection. If Γ is a linear connection
on M , the 1-form ω of Γ is a 1-form on L(M) with values in gl(m,R). Let us
denote by {uij | i, j = 1, 2, . . . , m} the natural basis of gl(m,R), where uij is
the n× n matrix such that the only non-zero element is 1 at the ith column
and jth row. Then locally we have

ω = Γ i
jkdxjuki . (4.21)

The functions Γ i
jk are called the Christoffel symbols of the linear connec-

tion Γ . One can show that

∇∂i∂j = Γ k
ij∂k.

Recall that the tangent bundle TM = E(M,Rm, GL(m,R), L(M)) is a
vector bundle associated to the bundle of frames L(M). In particular, a frame
u ∈ L(M) induces an isomorphism

ũ : Rm → Tπ(u)M.

Let X ∈ TuL(M) and define the 1-form θ ∈ Λ1(L(M),Rm) by

θu(X) = ũ−1(π∗(X)). (4.22)

Then θ is a tensorial 1-form on L(M) of type (r,Rm), where r is the defining
representation of GL(m,R). In the physics literature the form θ is frequently
called the soldering form. If we choose a basis for the Lie algebra gl(m,R)
and a basis for Rm, then we can express the connection 1-form ω as m2

1-forms ωij and the form θ as m 1-forms θk, 1 ≤ k ≤ m. These m2 + m
forms are globally defined on L(M) and make L(M) into a parallelizable
manifold. In particular, we can define a Riemannian metric on L(M) by
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ds2 =
m∑
i=1

m∑
j=1

ω2
ij +

m∑
k=1

θ2
k. (4.23)

Using this Riemannian metric we can make L(M) into a metric space. This
metric can be used to show that a manifold M that admits a linear connection
(in particular, a Lorentz connection) must be a metric space. Thus, in consid-
ering manifolds of interest in physical applications one may restrict attention
to manifolds that are metric spaces. The metric on L(M) is called the bun-
dle metric or b-metric and is used in defining the so-called b-boundaries
for space-time manifolds. The bundle metric was introduced by Marathe in
[265] to study the topology of spaces admitting a linear connection and in-
dependently by Schmidt in [338] in his study of singular points in general
relativity.

We observe that the linear connections are distinguished from connections
in other principal bundles by the existence of the soldering form. Thus, in
addition to the curvature 2-form Ω = dωω, we have the torsion 2-form
ϑ = dωθ ∈ Λ2(L(M),Rm). A linear connection ω is called torsion free if
the torsion 2-form ϑ = dωθ = 0.

Let ω be a linear connection on the m-manifold M , i.e., a connection on
the principal GL(m,R)-bundle of frames of M . If x ∈M, Xx, Yx ∈ TxM , let
us consider the element

ũ(ϑ(X∗
u, Y

∗
u )) ∈ TxM,

where u ∈ L(M)x and X∗
u, Y

∗
u are elements of TuL(M) such that π∗X

∗
u =

Xx, π∗Y
∗
u = Yx. One can show that ũ(ϑ(X∗

u, Y
∗
u )) does not depend on the

choices of u, X∗
u, Y ∗

u . Thus, it is easy to see that

T (Xx, Yx) := ũ(ϑ(X∗
u, Y

∗
u )), Xx, Yx ∈ TxM

defines a tensor field T ∈ Γ (T 1
2 (M)), which is called the torsion tensor

field, or simply the torsion. Analogously, the curvature tensor field or
simply the curvature is the tensor field R ∈ Γ (T 1

3 (M)) such that

R(Xx, Yx)Zx := ũ[Ω(X∗
u, Y

∗
u )(ũ−1(Zx))],

∀x ∈M, Xx, Yx, Zx ∈ TxM . We observe that Ω(X∗
u, Y

∗
u ) is in the Lie algebra

gl(m,R) of GL(m,R), while ũ−1(Zx) ∈ Rm and thus Ω(X∗
u, Y

∗
u )(ũ−1(Zx)) ∈

Rm. One can show that the torsion T and the curvature R can be expressed
in terms of the covariant derivative ∇ ≡ ∇ω as follows:

T (X, Y ) = ∇XY −∇Y X − [X, Y ], (4.24)

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z. (4.25)

Locally, with X = X i∂i, Y = Y j∂j



132 4 Bundles and Connections

T (X, Y ) = (Γ k
ij − Γ k

ji)X
iY j∂k (4.26)

and thus
T kij ≡ dxk(T (∂i, ∂j)) = Γ k

ij − Γ k
ji. (4.27)

From the above local expression it follows that a linear connection is torsion-
free if and only if its Christoffel symbols are symmetric in the lower indices.
Hence, a torsion-free connection is sometimes called a symmetric connec-
tion. Analogously, defining

Rl
ijk := dxl(R(∂j , ∂k)∂i), (4.28)

we have
Rl
ijk = ∂jΓ

l
ki − ∂kΓ

l
ji + Γ l

jrΓ
r
ki − Γ l

krΓ
r
ji. (4.29)

We observe that
Rl
ijk = −Rl

ikj (4.30)

and, for a torsion-free connection,

Rl
[ijk] ≡ Rl

ijk + Rl
kij + Rl

jki = 0. (4.31)

By contraction, from the curvature one obtains the following important tensor
field. The Ricci tensor field is the tensor field Ric ∈ Γ (T 0

2 (M)) defined by

Ric(Xx, Yx) = αk(R(ek, Xx)Yx),

∀x ∈ M, Xx, Yx ∈ TxM , where {e1, . . . , em} is a basis of TxM with dual
basis {α1, . . . , αm}. Thus locally, the components Rij of the Ricci tensor
are given by

Rij := Ric(∂i, ∂j) = Rk
jki. (4.32)

If M is a Riemannian manifold, then the structure grou GL(m,R) can
be reduced to the orthogonal group O(m,R). A connection on the reduced
bundle is called a Riemannian connection. Similarly if M is a Lorentz
manifold, then the structure group GL(m,R) can be reduced to the Lorentz
group. The frames in the reduced bundle are called local inertial frames
and the connection on the reduced bundle is called a Lorentz connection.
If m = 4 then the Lorentz manifold M is called a space-time manifold. The
connection and curvature can be interpreted as representing a gravitational
potential and gravitational field when they satisfy gravitational field
equations. We will discuss them in Chapter 6. The Levi-Civita connection
defined in the next paragraph is determined by the metric tensor g and hence
in this case g is interpreted as representing the gravitational potential.
Einstein’s field equations are then expressed as non-linear partial diferential
equations for the components of g.

A linear connection ω on a pseudo-Riemannian manifold (M, g) is called a
metric connection if the metric g is covariantly constant, i.e., ∇ωg = 0.
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Among all metric connections on a pseudo-Riemannian manifold there ex-
ists a unique torsion-free, metric connection λ called the Levi-Civita con-
nection. This fact is sometimes referred to as the fundamental theorem of
pseudo-Riemannian geometry. The Levi-Civita connection is also referred to
as the symmetric connection. The curvature 2-form Fλ of the Levi-Civita
connection λ is denoted by R and is called the Riemann curvature of M .
Locally, the Christoffel symbols of the Levi-Civita connection are given,
in terms of the metric g, by

Γ k
ij =

1
2
ghk(∂jgih + ∂igjh − ∂hgij). (4.33)

The Ricci tensor of a pseudo-Riemannian manifold (M, g) is symmetric. Other
important quantities for (M, g) are the scalar curvature and the sectional
curvature which we now define. The scalar curvature is the function S ∈
F(M) defined by

S = gijRij . (4.34)

Using this definition we obtain the following expression for the trace-free
part K of the Ricci tensor

Kij = Rij −
1
m

Sgij . (4.35)

Let p be a 2-dimensional subspace of TxM and let {e1, e2} be an orthonormal
basis for p. The quantity

κ(p) := e�1(R(e1, e2)e2) (4.36)

does not depend on the choice of the orthonormal basis {e1, e2} and is called
the sectional curvature along p. The local expression for the covariant
derivative

∇XY = (δjY iXj + Γ i
jkX

jY k)δi, X, Y ∈ X (M) (4.37)

shows that (∇XY )(x) depends on the value of X only in x. This allows us to
define the covariant derivative of a vector field X along a curve c : I →M as
the curve

DX

dt
: I → TM

in TM given by
DX

dt
(t) = (∇ċX)(c(t)),

where ċ(t) = Tc(t, 1). The vector field X is said to be autoparallel along c
if ∇ċX = 0. A geodesic is a curve γ in M that is autoparallel along itself,
i.e., it satisfies the equation

∇γ̇ γ̇ = 0. (4.38)

In local coordinates this gives the system of differential equations
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γ̈i + Γ i
jk γ̇

j γ̇k = 0, (4.39)

where i, j, k go from 1 to dimM and the Einstein summation convention is
used. These equations always admit a local solution giving a geodesic starting
at a given point in a given direction. On a complete manifold there exists a
piecewise smooth geodesic joining any two points. The classical Hopf–Rinow
theorem states that on a complete manifold every geodesic can be extended to
a geodesic defined for all time t ∈ R. In classical mechanics a particle of unit
mass moving with velocity v has kinetic energy 1

2v2. For a curve c : I → M
the tangent vector ċ(t) is the velocity vector at time t. Let PI denote the set
of all smooth curves from I to M . Then it can be shown that the critical
points of the energy functional

E(c) =
1
2

∫

I

g(ċ, ċ)dt

when c varies over PI are the geodesics.
Let M be an oriented Riemannian manifold. The identification of the Lie

algebra so(m) with Λ2(Rm) allows us to identify adL(M) with Λ2(M). Thus
for each x ∈M, R defines a symmetric, linear transformation of Λ2

x(M). The
dimension 4 is further distinguished by the fact that so(4) = so(3) ⊕ so(3)
and that this decomposition corresponds to the decomposition Λ2(M) =
Λ2

+(M) ⊕ Λ2
−(M) into ±1 eigenspaces of the Hodge star operator. The Rie-

mann curvature R also decomposes into SO(4)-invariant components induced
by the above direct sum decomposition of Λ2(M). These components are the
self-dual (resp., anti-dual) Weyl tensorW+ (resp.,W−), the trace-free
part K of the Ricci tensor, and the scalar curvature S. Thus

R =W+ ⊕W− ⊕ (K ×c g)⊕ (g ×c g)S (4.40)

where ×c is the curvature product defined in Section 6.7. These compo-
nents can be used to define several important classes of 4-manifolds. Thus,
M is called a self-dual manifold (resp., anti-dual manifold) if W− = 0
(resp., W+ = 0 ). It is called conformally flat if it is both self-dual and
anti-dual or if the full Weyl tensor is zero, i.e., W := W+ +W− = 0 . A
pseudo-Riemannian manifold (M, g) is said to be an Einstein manifold if

Ric = Λg , (4.41)

where Λ is a constant. By contraction of both sides of equation (4.41) we
get Λ = S/m. Hence equation (4.41) is equivalent to the vanishing of the
trace-free part K of the Ricci tensor, i.e., K = 0. Einstein manifolds corre-
spond to a class of gravitational instantons ([269]). Einstein manifolds were
characterized in [353] by the commutation condition [R, ∗] = 0 , where the
Riemann curvature R and the Hodge star operator ∗ are both regarded as
linear transformations of Λ2(M). This condition was generalized in [268,267]
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to obtain a new formulation of the gravitational field equations, which are
discussed in in Section 6.7. For the study of Riemannian manifolds in dimen-
sion 4 and manifolds of differentiable mappings see, for example, Donaldson
and Kronheimer [112].

4.7 Generalized Connections

The various definitions of connection in principal and associated bundles
discussed in this chapter are adequate for most of the applications discussed
in this book. However, it is possible to define the notion of connection on an
arbitrary fiber bundle. We call this a generalized connection. It can be used
to give an alternative formulation of some aspects of gauge theories. There
is extensive work in this area but we will not use this approach in our work.

Let E be a fiber bundle over B with projection p : E → B. Let V E denote
the vertical vector bundle over E. V E is a subbundle of the tangent bundle
TE, the fiber VuE, u ∈ E being the tangent space to the fiber Ep(u) of E
passing through u. Let p∗(TB) be the pull-back of the tangent bundle of B
to E. Then we have the following short exact sequence of vector bundles and
morphisms over E:

0 −→ V E
i−→ TE

a−→ π∗(TB) −→ 0 , (4.42)

where i is the injection of the vertical bundle V E into the tangent bundle, and
a is defined by (e, Xe) �→ (e, p∗(Xe)). We define a generalized connection
on E to be a splitting of the above exact sequence, i.e., a vector bundle
morphism c : π∗(TB) → TE such that a ◦ c = idπ∗(TB). Let b ∈ B and let
e ∈ p−1(b), then the splitting c induces an injection ĉe : Tb(B)→ Te(E), X �→
c(e, X). We call ĉe(X) the horizontal lift of the tangent vector X to e ∈ E.
We call ĉe(Tb(B)) the horizontal space at e ∈ E and denote it by HeE.
The spaces HeE are the fibers of the horizontal bundle HE and we have the
decomposition

TE = HE ⊕ V E.

We note that this decomposition corresponds to the first condition of Def-
inition 4.5. Alternatively, a connection may be defined as a section of the
first jet bundle J1(E) over E. The definitions of covariant derivative, covari-
ant differential, and curvature can be formulated in this general context. An
introduction to this approach and to its physical applications is given in [153].

If E = P (M, G), then we can recover the usual definition of connection as
follows. The action of G on P extends to all the vector bundles in the exact
sequence (4.42) to give the following short exact sequence of vector bundles
over M :

0 −→ V P/G
i−→ TP/G

â−→ π∗(TM)/G −→ 0.
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We can rewrite the above sequence as follows:

0 −→ ad(P ) i−→ TP/G
â−→ TM −→ 0. (4.43)

A connection on P is then defined as a splitting of the short exact se-
quence (4.43). This splitting induces a splitting of the sequence (4.42) and
we recover Definition 4.5 of the connection given earlier. This approach helps
to clarify the role of the structure group in the usual definition of connection
in a principal bundle.



Chapter 5

Characteristic Classes

5.1 Introduction

In 1827 Gauss published his classic book Disquisitiones generales circa su-
perficies curvas. He defined the total curvature (now called the Gaussian
curvature) κ as a function on the surface. In his famous theorema egregium
Gauss proved that the total curvature κ of a surface S depends only on the
first fundamental form (i.e., the metric) of S. Gauss defined the integral
curvature κ(Σ) of a bounded surface Σ to be

∫
Σ κ dσ. He computed κ(Σ)

when Σ is a geodesic triangle to prove his celebrated theorem

κ(Σ) :=
∫

Σ

κ dσ = A + B + C − π, (5.1)

where A, B, C are the angles of the geodesic triangle Σ. Gauss was aware
of the significance of equation (5.1) in the investigation of the Euclidean
parallel postulate (see Appendix B for more information). He was inter-
ested in surfaces of constant curvature and mentions a surface of revolution
of constant negative curvature, namely, a pseudosphere. The geometry of
the pseudosphere turns out to be the non-Euclidean geometry of Lobačevski–
Bolyai.

Equation (5.1) is a special case of the well-known Gauss–Bonnet the-
orem. When applied to a compact, connected surface Σ the Gauss-Bonnet
theorem states that ∫

Σ

κ dσ = 2πχ(Σ), (5.2)

where χ(Σ) is the Euler characteristic of Σ. The left hand side of equation
(5.2) is arrived at through using the differential structure of Σ, while the
right hand side depends only on the topology of Σ. Thus, equation (5.2) is
a relation between geometric (or analytic) and topological invariants of Σ.
This result admits far-reaching generalizations. In particular, it can be re-
garded as a prototype of an index theorem. The Gauss–Bonnet theorem was

K. Marathe, Topics in Physical Mathematics, DOI 10.1007/978-1-84882-939-8 5, 137
c© Springer-Verlag London Limited 2010



138 5 Characteristic Classes

generalized to Riemannian polyhedra by Allendoerffer and Weil and to arbi-
trary manifolds by Chern. In this latter generalization the Gaussian integral
curvature is replaced by an invariant formed from the Riemann curvature. It
forms the starting point of the theory of characteristic classes.

Gauss’ idea of studying the geometry of a surface intrinsically, without
leaving it (i.e., by means of measurements made on the surface itself), is
of fundamental importance in modern differential geometry and its applica-
tions to physical theories. We are similarly compelled to study the geome-
try of the three-dimensional physical world by the intrinsic method, i.e.,
without leaving it. This idea was already implicit in Riemann’s work, which
extended Gauss’ intrinsic method to the study of manifolds of arbitrary di-
mension. This work together with the work of Ricci and Levi-Civita provided
the foundation for Einstein’s theory of general relativity. The constructions
discussed in this chapter extend these ideas and provide important tools for
modern mathematical physics.

5.2 Classifying Spaces

Let G be a Lie group. The classification of principal G-bundles over a manifold
M is achieved by the use of classifying spaces. A topological space Bk(G)
is said to be k-classifying for G if the following conditions hold:

1. There exists a contractible space Ek(G) on which G acts freely and Bk(G)
is the quotient of Ek(G) under this G-action such that

Ek(G)→ Bk(G)

is a principal fiber bundle with structure group G.
2. Given a manifold M of dim ≤ k and a principal bundle P (M, G), there ex-

ists a continuous map f : M → Bk(G) such that the pull-back f∗(Ek(G))
to M is a principal bundle with structure group G that is isomorphic to P .

It can be shown that homotopic maps give rise to equivalent bundles and
that all principal G-bundles over M arise in this way. Let [M, Bk(G)] denote
the set of equivalence classes under homotopy, of maps from M to Bk(G).
Then the classifying property may be stated as follows:

Theorem 5.1 (Classifying property) Let M be a compact, connected man-
ifold and G a compact, connected Lie group. Then there exists a one-to-one
correspondence between the set [M, Bk(G)] of homotopy classes of maps and
the set of isomorphism classes of principal G-bundles over M .

The spaces Ek(G) and Bk(G) may be taken to be manifolds for a
fixed k. However, classifying spaces can be constructed for arbitrary finite-
dimensional manifolds. They are denoted by E(G) and B(G) and are in gen-
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eral infinite-dimensional. The spaces E(G) and B(G) are called universal
classifying spaces for principal G-bundles.

Example 5.1 The complex Hopf fibration S2n+1 → CPn is a principal
U(1)-bundle and is n-classifying. By forming a tower of these fibrations by
inclusion, i.e., by considering two series of inclusions

S3 ⊂ S5 ⊂ S7 ⊂ · · ·

CP1 ⊂ CP2 ⊂ CP3 ⊂ · · · ,

we obtain a direct system of principal U(1)-bundles. Taking the direct limit
of this system we get the spaces S∞ and CP∞ such that S∞ is a principal
U(1)-fibration over CP∞. Thus B(U(1)) = CP∞ and E(U(1)) = S∞. This
classification is closely related to the electromagnetic field as a U(1)-gauge
field and, in particular, to the construction of the Dirac monopole and the
monopole quantization condition.

A similar argument applied to the quaternionic Hopf fibration gives the
classifying spaces for principal SU(2)-bundles as indicated in the following
example.

Example 5.2 The quaternionic Hopf fibration S4n+3 → HPn is a prin-
cipal SU(2)-bundle and is n-classifying. By considering the towers

S7 ⊂ S11 ⊂ S15 ⊂ · · ·

HP1 ⊂ HP2 ⊂ HP3 ⊂ · · · ,

we obtain the universal classifying spaces B(SU(2)) = HP∞ and E(SU(2))
= S∞. This example is closely related to the classification of Yang–Mills
fields with gauge group SU(2), and, in particular, to the construction and
classification of instantons.

5.3 Characteristic Classes

The beginning of the theory of characteristic classes was made in the
1930s by Stiefel and Whitney. Stiefel studied certain homology classes of the
tangent bundle of a smooth manifold, while Whitney considered the case
of an arbitrary sphere bundle and introduced the concept of a characteristic
cohomology class. In the next decade, Pontryagin constructed important new
characteristic classes by studying the homology of real Grassmann manifolds,
and Chern defined characteristic classes for complex vector bundles. Chern’s
study of the cohomology of complex Grassmann manifolds also led to a better
understanding of Pontryagin’s real characteristic classes.

We begin with a brief discussion of the Stiefel–Whitney classes in terms
of certain cohomology operations. Recall first that the de Rham cohomology
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has a graded algebra structure induced by the exterior product. This induced
product in cohomology is in fact a special case of a cohomology operation
in algebraic topology called the cup product:

∪ : Hi(M ;P)×Hj(M ;P)→ Hi+j(M ;P), (α, β) �→ α ∪ β.

The cup product induces the structure of a graded ring on the cohomology
space H∗(M ;P). The ring H∗(M ;P) is called the cohomology ring of M . If
P is a field, then the ring H∗(M ;P) is a P -algebra called the cohomology
algebra of M . In the rest of this paragraph we take P = Z2 and omit
its explicit indication. We also use the Steenrod squaring operations
Sqi, i ≥ 0, which are characterized by the following four properties.

1. For each topological pair (X, A) and ∀n ≥ 0 the map

Sqi : Hn(X, A)→ Hn+i(X, A)

is an additive homomorphism.
2. (Naturality) If f : (X, A) → (Y, B) is a morphism of topological pairs,

then
Sqi ◦ f∗ = f∗ ◦ Sqi,

where f∗ : H∗(Y, B)→ H∗(X, A) is the homomorphism induced by f .
3. If α ∈ Hn(X, A), then

Sq0(α) = α, Sqn(α) = α ∪ α and Sqi(α) = 0, ∀i > n.

4. (Cartan formula) Let α, β be such that α ∪ β is defined. Then

Sqk(α ∪ β) =
∑
i+j=k

Sqi(α) ∪ Sqj(β).

Theorem 5.2 Let

F E�

M
�

π

be a real vector bundle of rank n (i.e., dimF = n) over the base manifold M
and let E0 be the complement of the image of the zero section θ of E over
M . Let E0

x = E0 ∩ Ex, x ∈M , then we have the following results.
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1.

Hi(Ex, E0
x) =

{
0 i �= n,
Z2 i = n.

2.

Hi(E, E0) =
{

0 i < n,
H i−n(M) i ≥ n.

3. There exists a unique class u ∈ Hn(E, E0) such that ∀x ∈ M the class u
restricted to (Fx, F 0

x ) is the unique non-zero class in Hn(Fx, F 0
x ). Further-

more, the cup product by u defines an isomorphism cu by

cu : α �→ α ∪ u of Hk(E)→ Hk+n(E, E0), ∀k. (5.3)

The class u introduced in the above theorem is called the Thom class. Now
the zero section θ embeds M as a deformation retract of E with retraction
map π : E → M. Thus, π∗ : Hk(M) → Hk(E) is an isomorphism for all
k. The Thom isomorphism φ : Hk(M) → Hk+n(E, E0) is defined as the
composition of the two isomorphisms π∗ and cu,

Hk(M) π∗
−→ Hk(E) ∪u−→ Hk+n(E, E0), φ(α) = π∗(α) ∪ u.

Composing the Steenrod squaring operation Sqk with φ−1 results in a homo-
morphism

Hn(E, E0)
Sqk

−→ Hn+k(E, E0)
φ−1

−→ Hk(M), ∀k ≥ 0.

We define the kth Stiefel–Whitney class wk(ξ) ∈ Hk(M) of the vector bundle
ξ = (E, π, M) as the image of the Thom class u under the above homomor-
phism, i.e.,

wk(ξ) = φ−1(Sqk(u)). (5.4)

We remark that the definitions of the Thom class and the Thom isomorphism
extend to the case of oriented vector bundles and their integral cohomology.
Theorem 5.2 also extends to this case with obvious modifications. The class
χ ∈ Hn(M ;Z), which corresponds to the Thom class under the canonical
isomorphism π∗ : Hn(M ;Z) → Hn(E;Z), is called the Euler class of the
oriented bundle ξ. Moreover, we have the following proposition.

Proposition 5.3 Let M be an n-dimensional manifold. The natural homo-
morphism Hn(M ;Z) → Hn(M ;Z2), induced by the reduction of coefficients
mod 2, maps the Euler class χ(ξ) to the Stiefel–Whitney class wn(ξ) in the
top dimension.

The Stiefel–Whitney classes are characterized by the following four prop-
erties.
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1.
wi(ξ) ∈ H i(M ;Z2), i ≥ 0.

In particular, w0(ξ) = 1 and wi(ξ) = 0 for i > rank(ξ).
2. (Naturality) If ξ′ = (E′, π′, M ′) is another vector bundle and f : M →

M ′ is covered by a bundle map from ξ to ξ′, then

wi(ξ) = f∗(wi(ξ′)).

3. (Whitney product formula) With the above notation, if M = M ′ then

wk(ξ ⊕ ξ′) =
k∑
i=0

wi(ξ) ∪ wk−i(ξ′). (5.5)

4. If γ is the canonical line bundle over the real projective space RP1 ∼= S1,
then w1(γ) �= 0.

We recall that the ring of formal series over H∗(M ;Z2) is the set
{ ∞∑
i=0

ai | ai ∈ H i(M ;Z2)

}

with termwise addition and with multiplication induced by the cup product.
One can show that the set of invertible elements in this ring consists of
elements with a0 = 1. The total Stiefel–Whitney class is defined as the
formal series

w(ξ) = 1 + w1(ξ) + · · ·+ wn(ξ) + · · · . (5.6)

Its inverse

w̄ = 1 +
∞∑
i=1

w̄i

can be computed by formal power series expansion. Each w̄i is then expressed
in terms of wj , j ≤ i. For example,

w̄1 = w1, w̄2 = w2
1 + w2.

We define the ith Stiefel–Whitney class of a manifold M by

wi(M) := wi(TM).

If M can be immersed in Rm+k then we have the following theorem.

Theorem 5.4 (Whitney duality) Let ν denote the normal bundle of M in
Rm+k. Then

wi(ν) = w̄i(M), ∀i ∈ N.

In particular, w̄i(M) = 0 for i > k.
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Applying this theorem to projective spaces, we get the following best es-
timate result for immersions of compact manifolds in Euclidean spaces.

Theorem 5.5 Let m = 2r, r ∈ N. If RPm can be immersed in Rm+k,
then k ≥ m− 1.

Let M be a compact m-dimensional manifold and let

r = (r1, . . . , rm), such that
m∑
i=1

iri = m,

where ri, 1 ≤ i ≤ m, are non-negative integers. Define the monomial wr(M)
by

wr(M) := w1(M)r1 · · ·wm(M)rm .

The value of wr(M) on the fundamental homology class [M ] is called the
Stiefe–Whitney number of M associated to the monomial wr(M). Any
M has a finite set of Stiefel–Whitney numbers. One important application of
these numbers is found in the following theorem of Pontryagin and Thom.

Theorem 5.6 Let M be a compact m-dimensional manifold. Then M can
be realized as the boundary of a compact (m+1)-dimensional manifold if and
only if all the Stiefel–Whitney numbers of M are zero.

This theorem is the starting point of Thom’s theory of cobordism.

Definition 5.1 Two closed m-dimensional manifolds M1, M2 are said to be
cobordant (M1 ∼cb M2) if their disjoint union M1 �M2 is the boundary of
a compact (m + 1)-dimensional manifold. The relation ∼cb is an equivalence
relation, and the equivalence class [M ] of M under this relation is called
an unoriented cobordism class of M . The class of closed m-dimensional
manifolds together with unoriented cobordism as morphism is called the m-
dimensional cobordism category.

Theorem 5.6 and the above definition lead to the following result.

Theorem 5.7 [M1] = [M2] if and only if all Stiefel–Whitney numbers of M1

and M2 are the same.

Define the set

Tm = {[M ] | M is a closed m-dimensional manifold}. (5.7)

Disjoint union induces an operation on Tm (denoted by + ) with which it
is an Abelian group. In view of Theorem 5.7 the group (Tm, +) is finite. It
is called the m-dimensional unoriented cobordism group. Thom proved
that the unoriented cobordism group Tm is canonically isomorphic to the
homotopy group πm+k of a certain universal space for a sufficiently large
k. We note that {Tm} can be made into a graded ring with the product
induced by Cartesian product of manifolds. The zero element of this ring is
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represented by the class of the empty manifold and the unity by the class of
the one-point manifold. It is called the unoriented cobordism ring. There
are several theories of cobordism for manifolds carrying additional structure
such as orientation, group action, etc. (see Stong [360]). The 2-dimensional
cobordism category was used by Segal in his axioms for conformal field theory.
They form the starting point for the Atiyah–Segal axioms for (topological)
quantum field theories. These axioms are discussed in Chapter 7.

Let ξ = (E, B, π, F ) be a vector bundle with a Riemannian metric. Let

Dn
x := {v ∈ Ex | ‖v‖ ≤ 1},

Sn−1
x := {v ∈ Ex | ‖v‖ = 1}.

The space
D(ξ) =

⋃
x∈B

Dn
x (resp., S(ξ) =

⋃
x∈B

Sn−1
x )

has a natural structure of a manifold with which it becomes a bundle over
B, called the disk bundle of ξ (resp., the sphere bundle of ξ). The bun-
dles D(ξ) (resp., S(ξ)) defined by a different choice of the metric on ξ are
equivalent (isomorphic as bundles). The quotient bundle T (ξ) = D(ξ)/S(ξ)
is called the Thom space of ξ. The cobordism groups Tm are isomorphic
to πm+k(T (γk)), where γk is the universal k-plane bundle. Thom has shown
that these isomorphisms induce an isomorphism θ : {Tm} → πm(T ) of graded
rings. Let P (M, G) be a principal bundle over a manifold M with structure
group G. We will define a set of cohomology classes in H∗(M ;R) (the coho-
mology ring of M with real coefficients) associated to the principal bundle,
which characterize the bundle up to bundle isomorphism. They are called the
real characteristic classes of P (M, G). There are several different ways of
defining these characteristic classes (see Husemoller [198], Kamber and Ton-
deur [215], and Milnor and Stasheff [286]). We define them by using connec-
tions in the bundle P and the Weil homomorphism defined below.

Let ρ : G → GL(V ) be a representation of G on the real vector space V .
Let Sk(V ) denote the set of k-linear symmetric real-valued functions on V
and let

S(V ) = ⊕∞
k=0S

k(V )

be the symmetric algebra of V with product of f ∈ Sh(V ), g ∈ Sk(V )
defined by

(f · g)(v1, . . . , vh+k) =
1

(h + k)!

∑
σ∈Sh+k

f(vσ(1), . . . , vσ(h))g(vσ(h+1), . . . , vσ(h+k)),

where Sn, n ∈ N, is the symmetric group of permutations on n numbers.
The group G acts on Sk(V ) by an action induced by the representation ρ,
which we also denote by ρ, given by
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(ρ(a)f)(v1, . . . , vk) = f(ρ(a−1)v1, . . . ρ(a−1)vk).

We note that from this definition it follows that

ρ(a)(ρ(b)f) = ρ(ab)f.

Let (e1, . . . , en) be a basis of V . The relation

Pf (x1, . . . , xn) = f(v, v, . . . , v), v =
n∑
i=1

xiei

allows us to establish a correspondence between functions in Sk(V ) and the
space Pk of homogeneous polynomials of degree k in n variables with the
coefficient of xm1

i1
· · ·xmr

ir
, m1 + · · ·+ mr = k, given by

k!
m1! · · ·mr!

f(ei1 , . . . , ei1︸ ︷︷ ︸
m1 times

, . . . , eir , . . . , eir︸ ︷︷ ︸
mr times

).

This correspondence can be extended to S(V ) and turns out to be an algebra
homomorphism. The inverse of the mapping f �→ Pf is called polarization.
If P ∈ Pk, we denote by fP the element of Sk(V ) obtained by polarization
of P . For example, if P ∈ P2, then

fP (v1, v2) =
1
2
[
P (x1 + y1, . . . , xn + yn)− P (x1, . . . , xn)− P (y1, . . . , yn)

]
,

where v1 =
∑n

i=1 xiei, v2 =
∑n
i=1 yiei. If P ∈ P3, then

fP (v1, v2, v3) =
1
6
[
P (x1 + y1 + z1, . . . , xn + yn + zn)

− P (x1 + y1, . . . , xn + yn)− P (x1 + z1, . . . , xn + zn)
− P (y1 + z1, . . . , yn + zn) + P (x1, . . . , xn)
+ P (y1, . . . , yn) + P (z1, . . . , zn)

]
,

where v1 =
∑n

i=1 xiei, v2 =
∑n
i=1 yiei, v3 =

∑n
i=1 ziei. We define

Ik(V, ρ) := {f ∈ Sk(V ) | ρ(a)(f) = f, ∀a ∈ G}. (5.8)

In view of the isomorphism between symmetric functions and homo-
geneous polynomials described above, we call the space Ik(V, ρ) the space
of G-invariant symmetric polynomials of degree k on V , the action
of G by ρ being understood. We define the space I(V, ρ) of all G-invariant
symmetric polynomials on V by

I(V, ρ) :=
∞⊕
k=0

Ik(V, ρ). (5.9)
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It is easy to verify that I(V, ρ) is a subalgebra of S(V ). In what follows we
will take V to be the Lie algebra g of the Lie group G and ρ to be the adjoint
representation of G on g, and we denote Ik(V, ρ) by Ik(G) and I(V, ρ) by
I(G).

Let ω be the connection 1-form of a connection on P (M, G) and Ω the
curvature 2-form of ω. For f ∈ Ik(G), we define the 2k-form fΩ on P by

fΩ(X1, . . . , X2k) =
1

(2k)!

∑
σ∈S2k

sgn(σ)f(u1, . . . , uk), (5.10)

where ui = Ω(Xσ(2i−1), Xσ(2i)) ∈ g, 1 ≤ i ≤ k.

Since the curvature form Ω is tensorial with respect to the adjoint action of
G on g and f is G-invariant, the 2k-form fΩ on P descends to a 2k-form f̂Ω
on M ; i.e., there exists a form f̂Ω ∈ Λ2k(M) such that

π∗(f̂Ω) = fΩ,

where π is the canonical bundle projection of P on M . It can be shown that
the form f̂Ω is closed and hence defines a cohomology class [f̂Ω] ∈ H2k(M ;R).
Furthermore, this cohomology class turns out to be independent of the choice
of a particular connection ω on P , i.e., if ω1, ω2 are two connections on P
with respective curvature forms Ω1, Ω2 then [f̂Ω1 ] = [f̂Ω2 ] ∈ H2k(M ;R). In
view of this result we can define a map

wk : Ik(G)→ H2k(M ;R) by wk(f) := [f̂Ω]. (5.11)

The family of maps {wk} defines the map

w : I(G)→ H∗(M ;R). (5.12)

The map w is called the Weil homomorphism. We note that w is an
algebra homomorphism of the algebra I(G) into the cohomology algebra
H∗(M ;R). The image of w is an algebra called the real characteristic
algebra of the bundle P . The construction discussed above extends to the
algebra IC(G) of the complex valued G-invariant polynomials on g to give
us the complex algebra homomorphism

wC : IC(G)→ H∗(M ;C). (5.13)

This is called the Chern–Weil homomorphism. The image of wC is an
algebra called the complex characteristic algebra of the bundle P .

An element p ∈ w(I(G)) ⊂ H∗(M ;R) is called a real characteristic
class of the bundle P . Similarly, an element c ∈ wC(IC(G)) ⊂ H∗(M ;C) is
called a complex characteristic class of the bundle P .
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Characteristic classes are topological invariants of the principal bundle P
and characterize P up to isomorphism. They can also be viewed as topo-
logical invariants of the vector bundle associated to P by the fundamental
or defining representation of the structure group G. It is possible to give an
axiomatic formulation of characteristic classes of vector bundles directly (see
Kobayashi and Nomizu [226] and Milnor and Stasheff [286]). In studying the
properties of characteristic classes we will use either of these formulations as
is convenient.

For the Lie groups that are commonly encountered in physical theories we
can show that the algebra of characteristic classes is finitely generated. We
also exhibits a basis for each such algebra. Before giving several examples
of this, we recall the correspondence between homogeneous polynomials of
degree k and symmetric functions in Sk(V ). In the following examples V is a
vector space of matrices and the polynomial variables are the entries of these
matrices. In view of this remark, in the examples discussed below, we give
only the homogeneous polynomials pk of degree k for the construction of the
characteristic classes.

Example 5.3 Let G = GL(n,R); then the characteristic algebra I(G) is
generated by p0, p1, . . . , pn, where the pi are defined by

det
(

λIn −
1
2π

A

)
=

n∑
i=0

piλ
n−i, A ∈ gl(n,R).

If Ω is the curvature form of some connection ω on P , the kth Pontryagin
class of P is defined to be the cohomology class pk represented by the unique
closed 4k-form βk on M such that π∗(βk) = (p2k)Ω ; i.e., the kth Pontryagin
class is given by

pk := w(p2k) = [βk].

The 4k-form (p2k)Ω can be expressed as

(p2k)Ω =
1

(2π)2k(2k)!

∑
δj1,...,j2k

i1,...,i2k
Ωi1
j1
∧ · · · ∧Ωi2k

j2k
, (5.14)

where the sum is over all ordered subsets (i1, . . . , i2k) of 2k different elements
in (1, . . . , n) and all permutations (j1, . . . , j2k) of (i1, . . . , i2k), δj1,...,j2k

i1,...,i2k
de-

notes the sign of the permutation and the Ωi
j are the components of Ω in

gl(n,R).

The reason for considering only pi with even index i is given in the following
example.

Example 5.4 Let G = O(n,R). The characteristic algebra I(G) is generated
by p0, p2, p4, . . . defined as in Example 5.3. Observe that for A ∈ o(n,R) =
so(n,R) one has
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det
(

λIn −
1
2π

A

)
= det

(
λIn +

1
2π

A

)
.

Therefore p1 = p3 = . . . = 0 and p2k again corresponds to the kth Pontryagin
class. In Example 5.3, p2k+1 �= 0 in general but w(p2k+1) = 0, since every
GL(n,R)-connection is reducible to an O(n,R)-connection.

Example 5.5 With the notation of Example 5.4, we construct an SO(2m)-
invariant polynomial, called the Pfaffian, which is not invariant under the
action of O(2m). The Pfaffian Pf is the homogeneous polynomial of degree
m such that, for A ∈ so(2m),

Pf(A) =
1

22mπmm!

∑
σ

sgn(σ)Aσ(1)σ(2) · · ·Aσ(2m−1)σ(2m), (5.15)

where the sum is over all permutations of (1, 2, . . . , 2m). The class w(Pf) is
called the Euler class of P (M, SO(2m)) and is the class [γ] such that

π∗(γ) =
1

22mπmm!

∑
σ

sgn(σ)Ωσ(1)
σ(2) ∧ · · · ∧Ω

σ(2m−1)
σ(2m) . (5.16)

The Euler class occurs as the generalized curvature in the Chern–Gauss–
Bonnet theorem, which states that

∫

M

Pf(Ω̂) = χ(M). (5.17)

This theorem generalizes the classical Gauss–Bonnet theorem for compact,
connected surfaces in R3. For such a surface the Pf(Ω̂) is a multiple of the
volume form on M . The multiplier κ is the Gaussian curvature and the above
theorem reduces to ∫

M

κ = χ(M).

The expression for the Euler class of a 4-manifold as an integral of a poly-
nomial in the Riemann curvature was obtained by Lanczos [242] in his study
of Lagrangians for generalized gravitational field equations. He observed that
the integral was invariant and so did not contain any dynamics, but he did
not recognize its topological significance. The general formula for the Euler
class of an arbitrary oriented manifold was obtained by Chern and it was in
studying this generalization that Chern was led to his famous characteristic
classes, now called the Chern classes.

Example 5.6 Let G = GL(n,C). IC(G) is generated by the characteristic
classes c0, c1, . . . , cn defined by

det
(

λIn −
1

2πi
A

)
=

n∑
i=0

ciλ
n−i.
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The classes w(ck) ∈ H2k(M ;C), k = 1, 2, . . . , n, are called the Chern classes
of P .

Example 5.7 G = U(n). IC(G) is generated by the classes ck defined in Ex-
ample 5.6. However, for A ∈ u(n) one has the following complex conjugation
condition:

det
(

λIn −
1

2πi
A

)
= det

(
λIn −

1
2πi

A

)
.

Therefore the class w(ck) turns out to be a real cohomology class, i.e.,
w(ck) ∈ H2k(M ;R) ⊂ H2k(M ;C), where H2k(M ;R) is regarded as a sub-
set of H2k(M ;C) by the isomorphism induced by the inclusion of R into
C. In view of the fact that the GL(n,C)-connection is reducible to a U(n)-
connection we find that the classes w(ck) of Example 5.6 are in fact real.

As we have indicated above, the characteristic classes turn out to be real
cohomology classes. Indeed, the normalizing factors that we have used in
defining them make them integral cohomology classes.

The total Chern class c(P ) of P is defined by

c(P ) := 1 + c1(P ) + · · ·+ cn(P ), (5.18)

and the Chern polynomial c(t) is defined by

c(t) :=
n∑
i=0

tn−ici(P ) = tn + tn−1c1(P ) + · · ·+ tcn−1(P ) + cn(P ). (5.19)

We factorize the Chern polynomial formally as follows:

c(t) = (t + x1)(t + x2) · · · (t + xn). (5.20)

The Chern classes are then expressed in terms of the formal generators
x1, . . . , xn by elementary symmetric polynomials. For example,

c1(P ) = x1 + x2 + · · ·+ xn

c2(P ) =
∑

1≤i<j≤n
xixj

...
cn(P ) = x1x2 · · ·xn.

It is well known that every symmetric polynomial in x1, . . . , xn can be ex-
pressed as a polynomial in elementary symmetric polynomials. In particular,
the homogeneous polynomial

∑n
i=1 xki of degree k can be expressed in terms

of the first k Chern classes. These expressions are useful in many character-
istic classes.

The Chern character ch(P ) is the polynomial in xi defined by
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ch(P ) =
n∑
i=1

exi ∈ H∗(M ;Q), (5.21)

where the exponential function on the right hand side is interpreted as a for-
mal power series, which in fact is finite and terminates after 1

2 (dim M) terms.
It is customary to say that the Chern character is defined by the generating
function ez. The first few terms on the right hand side, expressed in terms
of the Chern classes, give us the following formula

ch(P ) = n + c1(P ) +
[
1
2
c2
1(P )− c2(P )

]
+ · · · .

We now give examples of some other important characteristic classes that
can be defined by generating functions and then expressed as polynomials
in xi.

• The Todd class τ(P ) ∈ H∗(M ;Q) defined by the generating function
z/(1− e−z) is given by

τ(P ) =
n∏
i=1

xi
1− exp(−xi)

. (5.22)

Its expression in terms of the Chern classes is given by

τ(P ) = 1 +
1
2
c1 +

1
12

(c2
1 + c2) +

1
24

c1c2 + · · · . (5.23)

The Todd class appears in the statement of a version of the Riemann–Roch
theorem.

• The Hirzebruch L-polynomial defined by the generating function
z/ tanh(z) is given by

L(P ) =
n∏
i=1

xi
tanh(xi)

. (5.24)

Its expression in terms of the Pontryagin classes is given by

L(P ) = 1 +
1
3
p1 +

1
45

(7p2 − p2
1) + · · · . (5.25)

The Hirzebruch L-polynomial appears in the Hirzebruch signature theo-
rem, which is discussed later in this chapter.

• The Â genus defined by the generating function z/(2 sinh(z/2)) is given
by

Â(P ) =
n∏
i=1

xi
2 sinh(xi/2)

. (5.26)
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Its expression in terms of the Pontryagin classes is given by

Â(P ) = 1− 1
3
p1 +

1
5760

(7p2
1 − 4p2) + · · · . (5.27)

The Â genus is a topological invariant of spin manifolds. It is in establishing
the divisibility properties of this invariant that Atiyah and Singer were led
to their famous index theorem.

The characteristic classes satisfy the following properties.
(i) Naturality with respect to pull-back of bundles:

If f : N → M and f∗P is the pull-back of the principal bundle P (M, G)
to N , then we have

b(f∗(P )) = f∗(b(P )), (5.28)

where b(P ) is a characteristic class of the bundle P .
(ii) The Whitney sum rule:

b(E1 ⊕ E2) = b(E1)b(E2), (5.29)

where E1, E2 are vector bundles and b is a characteristic class.
If E is a complex vector bundle with fiber Cn, which is associated to

P (M, GL(n,C)), then the kth Chern class ck(E) of E is represented by
w(ck) ∈ H2k(M ;C). If V is a real vector bundle over M and V c its complex-
ification, then the kth Pontryagin class pk(V ) of V is given by

pk(V ) = (−1)kc2k(V c) ∈ H4k(M ;R). (5.30)

We now work out in detail the Chern classes for an SU(2)-bundle P over
a compact manifold M . They are used in defining invariants of isospin gauge
fields and in particular the instanton numbers.

Let

A =
(

a11 a12

a21 a22

)

be a matrix in the Lie algebra su(2). The algebra of characteristic classes
is generated by the images of the invariant symmetric polynomials TrA =
a11 + a22 and det A = a11a22 − a12a21. Let ω be a connection on P with
curvature Ω. Writing alk = −Ωlk/2πi we get the polynomials in curvature
representing the Chern classes

c1(P ) = − 1
2πi

(Ω11 + Ω22) = 0 (by the Lie algebra property),

c2(P ) = − 1
4π2

(Ω11 ∧Ω22 −Ω12 ∧Ω21)

=
1

8π2
Tr(Ω ∧Ω).
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The 2-form Ω̂ induced by the curvature on the base M will be denoted
by Fω . We will see later that Fω corresponds to a gauge field when ω is
identified with a gauge potential. Evaluating the second Chern class on the
fundamental cycle of M , we get

c2(P )[M ] =
1

8π2

∫

M

Tr(Fω ∧ Fω). (5.31)

In view of the integrality of the Chern classes, the number k defined by

k = −c2(P )[M ] (5.32)

is an integer called the topological charge or topological quantum num-
ber or the instanton number of the principal SU(2)-bundle P . The topo-
logical charge may also be defined as p1(P )[M ], where p1 is the first Pontrya-
gin class. If M is orientable and dim M = 4, then we have

k = p1(P ) = −c2(P ). (5.33)

The characteristic classes described above are often referred to as the pri-
mary characteristic classes. These classes do not depend on the choice
of connection used to define them and are in fact topological invariants of
the principal bundle P (M, G). They can be obtained by pulling back suit-
able universal classes, as can be shown by using the following theorem due
to Narasimhan and Ramanan [296,297].

Theorem 5.8 Let G be a Lie group with π0(G) <∞ and k a positive integer.
Then there exists a principal G-bundle Ek(Bk, G) with connection θk, which
is k-universal for principal G-bundles with connection; i.e., for any compact
manifold M with dimM < k and principal bundle P (M, G) with connection
ω there exists a map f : M → Bk, defined up to homotopy such that P is the
pull-back of Ek to M by f . Then we have the following commutative diagram:

M Bk�
f

P Ek�f̂

�

π

�
πk

where π, πk are the bundle projections, P = f∗Ek, and f̂ is the lift of f .
Furthermore, we have

ω = (f̂)∗θk.

We note that the spaces Bk and Ek form two inductive sets and their direct
limits define topological spaces BG and EG, respectively, such that EG is a
principal G-bundle over BG. The spaces BG, EG are called the universal
classifying spaces for principal G-bundles. They are not finite-dimensional
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manifolds. However, in most applications it is sufficient to choose a large
enough k so that the classifying spaces can be taken as finite-dimensional
manifolds.

Example 5.8 The Stiefel manifold VR(n+k, n) of orthonormal n-tuples of
vectors in Rn+k is a principal O(n)-bundle over the Grassmann manifold
GR(n + k, n) of n-planes in Rn+k. This bundle has a natural connection θk.
The bundle VR(n+k, n) with connection θk is k-universal for principal O(n)-
bundles. Similarly, the principal bundle VC(n+k, n)(GC(n+k, n), U(n)) with
connection θkC is k-universal for principal U(n)-bundles.

This example plays a fundamental role in the proof of Theorem 5.8.

5.3.1 Secondary Characteristic Classes

Primary characteristic classes of principal bundles have become important
tools for defining and analyzing topological invariants in physical theories
and in particular in gauge theories. Recently, another set of characteristic
classes, called the secondary characteristic classes, have appeared in the
Lagrangian formulation of quantum field theories. The most well-known of
these classes are the Chern–Simons classes. We now discuss a construction
which leads to another proof of the independence of the primary characteristic
classes of the choice of connections and at the same time prepares the way for
defining secondary characteristic classes. Recall that a standard r-simplex is
defined by

Δr =

{
(t0, . . . , tr) ∈ Rr+1 | ti ≥ 0,

r∑
i=0

ti = 1

}
. (5.34)

Let ωi, 0 ≤ i ≤ r, be a set of connections on P (M, G). Let ω =
∑r
i=0 tiωi.

Then ω is a connection on P with curvature Ω = dωω. Let f ∈ Ik(G); define

Δf (ω0, . . . , ωr) := (−1)[
r+1
2 ]

∫

Δr

f(Ω, . . . , Ω), (5.35)

where [ r+1
2 ] is the integer part of r+1

2 and the integration is along the fiber
Δr of the bundle P × Δr → P with respect to the standard volume form
dt1 ∧ . . . ∧ dtr of Δr. Thus, Δf (ω0, . . . , ωr) is a (2k − r)-form on P , which
descends to M in view of the fact that f is an invariant polynomial. We
continue to denote this form on M by the same notation. Thus we have a
map

Δ(ω0, . . . , ωr) : Ik(G)→ Λ2k−r(M) defined by f �→ Δf (ω0, . . . , ωr).
(5.36)
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This map extends to an algebra homomorphism

Δ(ω0, . . . , ωr) : I(G)→ Λ(M), (5.37)

which is called the Bott homomorphism relative to (ω0, . . . , ωr) [50]. The
following theorem gives an important relation among the forms Δf .

Theorem 5.9 Let ωi, 0 ≤ i ≤ r, be a set of connections on P (M, G) and
f ∈ Ik(G); then

d(Δf (ω0, . . . , ωr)) =
r∑
i=0

(−1)iΔf (ω0, . . . , ω̂i, . . . , ωr), (5.38)

where ˆ over a variable denotes that this variable is deleted.

Applying the above theorem to the case of a 0-simplex and a 1-simplex we
obtain the following corollaries.

Corollary 5.10 In the case r = 0 we have

d(Δf (ω0)) = 0.

Hence, Δf (ω0) is a closed form and defines an element of the cohomology
space H2k(M ;R). The Bott homomorphism induces the homomorphism

[Δ(ω0)] : Ik(G)→ H2k(M ;R), defined by f �→ [Δf (ω0)]. (5.39)

Corollary 5.11 In the case r = 1 we have

d(Δf (ω0, ω1)) = Δf (ω0)−Δf (ω1) ∈ Λ2k(M,R).

Thus,
[Δf (ω0)] = [Δf (ω1)] ∈ H2k(M ;R),

and hence the homomorphism [Δ(ω0)] of Corollary 5.10 is independent of
the connection ω0 and is, in fact, the Chern–Weil homomorphism w defined
earlier.

Corollary 5.11 allows us to define secondary characteristic classes in the
following way. Let

Ik(G)(ω) := {f ∈ Ik(G) | Δf (ω) = 0},

and let
Ik(G)(ω1,ω2) := Ik(G)(ω1) ∩ Ik(G)(ω2).

Let f ∈ Ik(G)(ω1,ω2); then by Corollary 5.11, d(Δf (ω1, ω2)) = 0. Hence,
Δf (ω1, ω2) defines a cohomology class in H2k−1(M ;R). We call the class
[Δf (ω1, ω2)] ∈ H2k−1(M ;R) a simple secondary characteristic class of
the triple (P, ω1, ω2). We note that in geometrical mechanics and geometric
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quantization theory, an important role is played by the Maslov class, which
can be interpreted as a secondary characteristic class. A general discussion of
symplectic geometry and its relation to the secondary characteristic classes
can be found in Vaisman [390].

We now proceed to define the Chern–Simons classes of P (M, G) with
connection ω (see [75, 76]). The basic tool is the transgression form
Tf (ω) ∈ H2k−1(P ;R) defined by

Tf (ω) := −
∫

Δ1
f(Ωt, . . . , Ωt) = k

∫ 1

0

f(ω, Ωt, . . . , Ωt)dt, f ∈ Ik(G),

where
∫
Δ1 denotes integration along the fiber and

Ωt := dt ∧ ω + tΩ + t(1 + t)dω ∈ Λ2(P,g), 0 ≤ t ≤ 1.

Roughly speaking Ωt can be thought of as the “curvature ” form correspond-
ing to the “connection form” tω on P × Δ1. We note that, in general, the
transgression forms do not descend to the base M. However, we have the
following theorem.

Theorem 5.12 Let ω be a connection form on P (M, G). Then

d(Tf (ω)) = π∗(Δf (ω)), ∀f ∈ Ik(G).

From this theorem it follows that, if f ∈ Ik(G)(ω) then Tf (ω) defines a
cohomology class [Tf (ω)] ∈ H2k−1(P ;R), which is called the Chern–Simons
class of (P, ω) related to f ∈ Ik(G)(ω). The relation between the secondary
characteristic classes and the Chern–Simons classes is given by the following
proposition.

Proposition 5.13 Let ω1, ω2 be two connection forms on the principal bun-
dle P (M, G) and let f ∈ Ik(G)(ω1,ω2). Then

π∗[Δf (ω1, ω2)] = [Tf (ω2)]− [Tf(ω1)].

An interesting application of the transgression forms is the following de-
scription of the de Rham cohomology ring of an important class of principle
bundles.

Theorem 5.14 (Chevalley) Let G be a compact, connected, semi-simple Lie
group of rank r (dimension of maximal torus in G) and M a compact man-
ifold. Let ω be a connection form on the principal bundle P (M, G). Then
the ring I(G) of invariant polynomials is generated by a set of r elements
f1, f2, . . . , fr and the de Rham cohomology H∗(P ;R) is given by the quotient
ring

H∗(P ;R) = A/dA,

where
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A = Λ(M)[Tf1(ω), Tf2(ω), . . . , Tfr(ω)]

is the ring of polynomials in [Tf1(ω), Tf2(ω), . . . , Tfr(ω)] with coefficients in
Λ(M), the ring of forms on M (pulled back to P by the bundle projection).

If (M, g) is a Riemannian manifold, P = L(M) the bundle of frames of M
with structure group GL(m,R) and λ the Levi-Civita connection on P , then
we have the following result.

Theorem 5.15 Let f ∈ I2k(GL(m,R)). Let g′ be a Riemannian metric
conformal to g and let λ′ the corresponding Levi-Civita connection on P .
Then there exists a form W ∈ Λ4k−1(P ) such that

Tf (λ′)− Tf(λ) = dW. (5.40)

It can be shown that the form W in equation (5.40) can be expressed in
terms of the Weyl conformal curvature tensor.

We now consider a special case in which we can associate to f ∈ Ik(G)(ω)

a form αf ∈ H2k−1(M ;R/Z). Recall that the short exact sequence

0 −→ Z ι−→ R
p−→ R/Z −→ 0

where ι is the inclusion and p is the canonical projection, induces the long
exact sequence in the cohomology of M

· · · −→ Hj(M ;Z) ι−→ Hj(M ;R)
p−→ Hj(M ;R/Z) −→ · · ·

and a similar sequence in the cohomology of P . Using these sequences we
obtain the following theorem.

Theorem 5.16 Let f ∈ Ik(G)(ω) be such that w(f) is an integral cohomology
class, i.e., w(f) ∈ ι(Hj(M ;Z)) ⊂ Hj(M ;R). Then there exists a form αf ∈
H2k−1(M ;R/Z) such that

p[Tf (ω)] = π∗(αf ) ∈ H2k−1(P ;R/Z).

It is this form αf ∈ H2k−1(M ;R/Z) that appears as the Chern–Simons
term in the Lagrangian of field theories on manifolds with boundary. If A
denotes the pull-back to M of the connection form ω by a local section of
P , and F the corresponding curvature form on M (in the physics literature,
A is called the gauge potential and F the gauge field on M), then the first
three Chern–Simons terms have the following local expressions:

α1 =
i

2π
tr A,

α3 =
1
2

(
i

2π

)2

tr(A ∧ F +
2
3
A3),
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α5 =
1
6

(
i

2π

)3

tr(A ∧ F ∧ F +
3
2
A3 ∧ F +

3
5
A5),

where
An := A ∧A ∧ . . . ∧A︸ ︷︷ ︸

n terms

.

The secondary characteristic classes and the Chern–Simons classes are also
used in describing anomalies such as chiral and gravitational anomalies in field
theories. Using quantum field theory on a 3-manifold with the Lagrangian
function given by the Chern–Simons term α3, Witten obtained a physical
interpretation of the Jones polynomial of a link by expressing it as the ex-
pectation value of a quantum observable. This work ushered in topological
quantum field theory (TQFT) as a new area of research in physical mathe-
matics. We discuss this work in Chapter 11.

5.4 K-theory

The foundations of K-theory were laid by A. Grothendieck in the framework
of algebraic geometry, in his formulation of the Riemann–Roch theorem, pro-
viding a new and powerful tool that can be regarded as a generalized co-
homology theory. Grothendieck’s ideas have led to other K-theories, notably
algebraic and topological K-theories. Grothendieck (b. 1928) was awarded a
Fields Medal at the ICM 1966, in Moscow, for work that gave a new unifying
perspective in the study of geometry, number theory, topology, and complex
analysis. The Grothendieck Festschrift, celebrating his 60th birthday, con-
tains articles on his incredible achievements, which opened up many new
fields of research in mathematics. Volume 3 (1989) of the journal K-Theory
contains two articles on Grothendieck’s work in K-theory, one by Serre and
the other by his mentor Dieudonné. (For a recent update on topological
and bivariant K-theories see the book by Cuntz et al. [92].) Grothendieck
unveiled his work in the first lecture at the first Arbeitstagung, organized
by Friedrich Hirzebruch1 in Bonn in 1957. At the 2007 Arbeitstagung, cele-
brating 50 years of these extraordinary meetings, Hirzebruch gave the first
lecture, offering his point of view on the first Arbeitstagungen, with special
emphasis on 1957, 1958, and 1962. He explained that Grothendieck lectured
for twelve hours spread out over four days on “Kohärente Garben und ver-
allgemeinerte Riemann–Roch–Hirzebruch-Formel auf algebraischen Mannig-
faltigkeiten”2. In these lectures he proved a far reaching generalization of the

1 Hirzebruch is the founding director of the Max Planck Institute for Mathematics in Bonn.
This institute and the Arbeitstagung have had a very strong and wide ranging impact on
mathematical research since their inception.
2 Coherent sheaves and generalized Riemann–Roch–Hirzebruch formula for algebraic man-
ifolds.
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Riemann–Roch–Hirzebruch (or RRH) theorem, which was itself an important
extension of the classical Riemann–Roch (or RR) theorem. This theorem
is now known as the Grothendieck–Riemann–Roch (GRR) theorem.
Grothendieck proved this theorem by using his new theory that he called K-
theory. When Hirzebruch asked Grothendieck to explain the significance of
“K” in K-theory, Grothendiek replied: “ ‘H’ was already used for homology
and I did not like ‘I, J’, so I decided to call my theory K-theory.”

The starting point of Grothendieck’s proof is the construction of the
Grothendieck ring of the projective algebraic variety X . The Grothendieck
ring K(X) is constructed with complex vector bundles and coherent sheaves
on X . Recall that a vector bundle corresponds to the locally free sheaf of its
sections. A coherent sheaf has a resolution in terms of vector bundles. This
allows a coherent sheaf S to be considered as an element of the ring K(X), as
an alternating sum of vector bundles. The definition of K(X) is based on the
notion of ring completion of a semi-ring. Recall that a semi-ring S satis-
fies all the axioms of a ring except for the existence of the additive inverse.
If S has a unity then it is unique and is denoted by 1S or simply by 1. The
non-negative integers {0, 1, . . . } with the usual addition and multiplication
form a commutative semi-ring with unity (i.e., multiplicative identity). The
ring completion of the semi-ring N is the ring Z of all integers with the usual
addition and multiplication. In general, the ring completion of a semi-ring
S is a pair (S̃, f), where S̃ is a ring and f : S → S̃ is a morphism of semi-
rings such that the following universal property is satisfied: If h : S → R is
any morphism of S into a ring R then there exists a unique ring morphism
h̃ : S̃ → R such that h̃ ◦ f = h, i.e., the following diagram commutes:

S S̃�f

R

h
�

�
�
��

h̃

�
�

�
��

We recall the construction of S̃. Define the relation ∼ on S×S by (a, b) ∼
(c, d) if there exists e ∈ S such that a + d + e = c + b + e. It is easy to verify
that this is an equivalence relation. We define S̃ := (S×S)/∼ and denote by
[a, b] ∈ S̃ the equivalence class of (a, b). Addition and multiplication in S̃ are
defined by

[a, b] + [c, d] = [a + c, b + d],
[a, b]× [c, d] = [ac + bd, bc + ad].

We denote the class [0, 0] simply by 0 and define −[a, b] := [b, a]. We define
the map

f : S → S̃ by f(a) = [a, 0], ∀a ∈ S.
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It is customary to identify S with the image of f and to denote the class [a, 0]
simply by a and to denote [a, b] by a− b.

The following example is fundamental in our considerations.

Example 5.9 (The semi-ring VectF (X)) Let X be any compact manifold
and F denote either of the fields R or C. Let VectF (X) be the set of iso-
morphism classes of F -vector bundles over X. Then the set VectF (X) has a
natural commutative semi-ring structure with unity, defined by

1. the Whitney sum (α, β) �→ α⊕ β as addition,
2. the tensor product (α, β) �→ α⊗ β as multiplication,
3. θ1, the class of the trivial line bundle as unity,

where θn ∈ VectF (X) denotes the isomorphism class of the trivial n-plane
bundle X × Fn over X.

The Grothendieck ring KF (X) is defined to be the ring completion of
the semi-ring VectF (X). Thus elements of KF (X) can be written as A −
B, A, B ∈ VectF (X). If V, W are vector bundles over X , then it is customary
to call [V ]− [W ] a virtual vector bundle and to denote it simply by V −W .
Now we recall that the Chern character Ch satisfies the following relations:

Ch(V ⊕W ) = Ch(V ) + Ch(W ), Ch(V ⊗W ) = Ch(V )Ch(W ), (5.41)

where V, W ∈ VectC(X). Hence, Ch : VectC(X)→ H∗(X ;R) is a semi-ring
morphism of VectC(X) into the cohomology ring H∗(X ;R) and hence lifts
to a unique ring morphism (also denoted by Ch) Ch : KC(X)→ H∗(X ;R)
defined by

Ch([V ]− [W ]) = Ch(V )− Ch(W ). (5.42)

This morphism allows us to extend the definition of Chern character to vir-
tual vector bundles. In fact, the image of this morphism lies in the even
cohomology with rational coefficients, i.e.,

Ch : KC(X)→ Heven(X ;Q) =
∞⊕
i=0

H2i(X ;Q) ⊂ H∗(X ;R). (5.43)

In particular, if X is compact then the Chern character induces an isomor-
phism

KC(X)⊗Q ∼= Heven(X ;Q). (5.44)

In the case of spheres we can say more, namely,

KC(S2n) ∼= H∗(S2n;Z) ⊂ H∗(S2n;R). (5.45)

We note that in the original definition of K(X), the space X is a projective
algebraic variety. Thus a coherent sheaf S can be regarded as an element of
K(X) and the Chern character Ch(S) is well-defined. Grothendieck then
defines the push forward of the sheaf S by an algebraic map f : X → Y of
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algebraic varieties, as a sheaf on Y . It is denoted by f!S. The GRR theorem
is then expressed by the formula;

f∗(Ch(S)τ(TX)) = Ch(f!S)τ(TY ) , (5.46)

where f∗ is the homomorphism on cohomology induced by the map f . If the
space Y is a point then the GRR formula (5.46) reduces to the RRH formula.
The original RRH formula is in terms of a holomorphic vector bundle E over
a compact complex manifold X of complex dimension n. The RRH formula
can be expressed as follows:

(Ch(E)τ(TX))[X ] = χ(X, E), (5.47)

where TX is the holomorphic tangent bundle of X , [X ] is the fundamental
class of X , and χ(X, E) is the holomorphic Euler characteristic of E in
sheaf cohomology defined by

χ(X, E) :=
∞∑
i=0

(−1)i dim Hi(X, E). (5.48)

The Chern character and the Todd class lie in the cohomology ring of X ,
and evaluation on the fundamental homology class [X ] is obtained from the
pairing of homology and cohomology (i.e., integration over X of the total class
in H2n(X, E) in the expansion of Ch(E)τ(TX)). All the sheaf cohomology
spaces H i(X, E) are finite-dimensional. They equal zero for i > 2n+1 so the
sum is finite. The RRH theorem, proved in 1954, provides the long sought
after generalization of the RR theorem from Riemann surfaces (i.e.r, complex
curves) to complex manifolds of arbitrary finite dimension. In fact, the RR
theorem in the current form was proved by Riemann’s student Gustav Roch,
improving on Riemann’s inequality in the 1850s. It provides an important tool
in the computation of the dimension of the space of meromorphic functions
on a compact connected Riemann surface Σ satisfying certain conditions. It
relates the complex analytic properties of Σ to its global topological prop-
erties, namely its Euler characteristic or, equivalently, its genus. The RRH
theorem is very much in the spirit of the RR theorem relating holomorphic
and topological data related to a fixed variety. GRR theorem changes these
statements to a statement about morphism of varieties inaugurating the cat-
egorical approach which paved the way for K-theories for other structures.
These observations are useful in the study of index theorems for families of
elliptic operators such as the Dirac operator coupled to gauge fields.

We note that X → VectF (X) defines a contravariant functor VectF
from the category of manifolds to the category of semi-rings. Simi-
larly, X → KF (X) defines a contravariant functor KF from the category of
manifolds to the category of rings. We recall that the F -rank of a vector
bundle over X is well defined by the requirement of connectedness of X .
Therefore, the map
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ρ : VectF (X)→ Z, [α] �→ rankF (α),

is well defined. It is easy to see that ρ is a morphism of semi-rings and
hence lifts to a ring morphism ρ̃ : KF (X) → Z. We define the reduced
Grothendieck ring K̃F (X) to be the kernel of ρ̃, i.e.,

K̃F (X) := ker(ρ̃).

We denote by ε : Z → KF (X) the map defined by ε(1) := θ1 and note
that ρ̃ ◦ ε = idZ. For a positive integer n, ε(n) = θn = [X × Fn], the class of
the trivial n-plane bundle over X . One can show that the generic element of
KF (X) can be written in the form [α]− θn, [α] ∈ VectF (X), and that

KF (X) ∼= K̃F (X)⊕ Z. (5.49)

The contravariant functor KF can be used to give alternative definitions of the
maps ρ̃ and ε as follows: For a ∈ X , let ι : {a} → X be the natural injection.
This induces a ring morphism KF (ι) : KF (X) → KF ({a}). Observing that
KF ({a}) ∼= Z, we can show that KF (ι) can be identified with ρ̃. Similarly,
we may identify ε with KF (π), where π : X → {a} is the natural projection.

It is possible to define the ring K̃F (X) directly by using the relation of
stable equivalence of vector bundles. We say that two vector bundles α, β
over X are stably equivalent or s-equivalent if there exist natural numbers
k, n such that

[α⊕ θk] = [β ⊕ θn] ∈ VectF (X).

It can be shown that stable equivalence is an equivalence relation on
VectF (X). Let us denote by Es(X) the set of stable equivalence classes.
Under the operation induced by direct sum the set Es(X) is a group.
We observe that a generic element of K̃F (X) can be written in the form
[α] − θr(α), [α] ∈ VectF (X), where we have written r(α) for rankF (α). Let
[α]s denote the stable equivalence class of α. The map

φ : K̃F (X)→ Es(X) defined by [α]− θr(α) �→ [α]s

is an isomorphism with inverse ψ : Es(X) → K̃F (X) defined by [α]s �→
[α]− θr(α).

If Y is a closed subspace of X , we denote by X/Y the topological space
obtained from X by identifying Y to a point denoted by {y}. If Y = ∅, we
consider X/Y as obtained from X by adjoining a disjoint point, which we
also denote by {y}. Thus, in any case (X/Y, {y}) is a pointed topological
space. We define the relative K-group of X with respect to Y , denoted by
KF (X, Y ), to be the reduced K-group of X/Y , i.e.,

KF (X, Y ) := K̃F (X/Y ).
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If Y = ∅ it follows that KF (X, ∅) ∼= KF (X). If X is locally compact we may
identify X/∅ with the one-point compactification, denoted by X ∪ {∞}, of
X ; in this case we define

KF (X) := KF (X/∅, {∞}) = K̃F (X/∅).

Thus, by definition,
KF (R2) = K̃F (S2).

We shall use the relative K-groups in the K-theoretic formulation of index
theorems later in this chapter.

If we consider only the group structure of KF (X) and K̃F (X) then the
above considerations can be applied also to the case when F = H, the divi-
sion ring of quaternions. The functors K̃R, K̃C, K̃H are usually denoted by
K̃O, K̃U, and K̃Sp and are called the real, complex, and quaternionic
K-groups respectively. The reduced Grothendieck groups of Sn, n > 1, are
given by the following theorem.

Theorem 5.17 For n > 1 we have the following group isomorphisms:

K̃O(Sn) = πn−1(SO(∞)),

K̃U(Sn) = πn−1(SU(∞)),

K̃Sp(Sn) = πn−1(Sp(∞)).

The following theorem is of fundamental importance in the K-theory treat-
ment of periodicity theorems.

Theorem 5.18 Let X be a compact manifold. Then in the complex case we
have the following isomorphism

KU(X)⊗KU(S2) ∼= KU(X × S2),

where KU(S2) is the free Abelian group on two generators 1 and η (the class
of the complex Hopf fibration of S3 over S2, which is the tautological complex
line bundle over CP1 = S2). In the real case we have the isomorphism

KO(X)⊗KO(S8) ∼= KO(X × S8),

where KO(S8) is the free Abelian group on two generators 1 and η8, the class
of the real 8-dimensional Hopf bundle (for further details see [198]).

The K-theory interpretation of the Bott periodicity theorem given below
is a direct consequence of the above two theorems.

Corollary 5.19
K̃O(Sn) = K̃O(Sn+8),

K̃U(Sn) = K̃U(Sn+2).
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It can be shown that the quaternionic K-groups are related to real K-
groups of spheres by the following relations:

K̃O(Sn) = K̃Sp(Sn+4), (5.50)

K̃O(Sn+4) = K̃Sp(Sn). (5.51)

These relations and Corollary 5.19 imply the following periodicity relation
for the quaternionic K-groups of spheres:

K̃Sp(Sn) = K̃Sp(Sn+8),

thus allowing us to calculate all the K-groups of spheres using the following
table.

Table 5.1 Reduced Grothendieck groups of spheres

n K̃O(Sn) K̃U(Sn) K̃Sp(Sn)
1 Z2 0 0
2 Z2 Z 0
3 0 0 0
4 Z Z Z
5 0 0 Z2

We observe that these groups correspond to the stable homotopy groups
given in the Bott periodicity table in Chapter 2.

Grothendieck groups and rings have many interesting properties that par-
allel those of classical cohomology theories. For this reason K-theory is some-
times referred to as a generalized cohomology theory. Grothendieck’s ideas
were extended to the domain of topology, differential geometry, and algebra
by Atiyah, Hirzebruch, and other mathematicians. In topological K-theory
one associates to any compact topological space X , a group K(X) constructed
from the category of vector bundles on X . In algebraic K-theory one asso-
ciates to a ring R with unity the group K(R) constructed from the category
of finitely generated projective right R-modules. One of the main problems
in algebraic K-theory is the computation of K(R) for special classes of rings.
In differential geometry it is reasonable to think of K-theory as a generalized
cohomology theory that deals with classes of stable vector bundles. In this
case the set K(X) can be given the structure of a ring.

Applications of K-theory have provided new links and simpler proofs of
several important results in geometry, topology, and algebra. In particular,
as we discussed earlier, the Bott periodicity theorem can be interpreted as
a theorem in K-theory. J. F. Adams solved the long outstanding problem of
the existence of vector fields on spheres by using K-theory. Today K-theory
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has developed into an important discipline in its own right with its own
aforementioned journal K-Theory. A very readable account of K-theory may
be found in Karoubi [216].

5.5 Index Theorems

The Atiyah–Singer index theorem is one of the most important results of
modern mathematics. The theorem—or rather a set of theorems collectively
referred to as index theorems—were developed in a series of papers by Atiyah,
Singer and their collaborators. A good introduction to this and other related
results may be found in Gilkey [154], Lawson and Michelsohn [248], Palais
[311], and Shanahan [348]. Its application to gauge theories is discussed in the
book by Booss and Bleecker [47]. We give below a statement of some versions
of the index theorem and also consider special cases. Index theorems relate
analytic data of an operator on bundles over a manifold to the topological
data of these bundles. We discuss the relevant operator theory in Appendix D.
We also introduce below some additional machinery needed for the statements
of various index theorems.

1. If X and Y are compact spaces, one can define an outer product ⊗̇ of
X and Y ’s respective Grothendieck groups K(X) and K(Y ):

⊗̇ : K(X)×K(Y )→ K(X × Y )

such that [E]⊗̇[F ] is the class in K(X × Y ) determined by the vector
bundle E⊗̇F over X ×Y with fiber Ex⊗Fy over (x, y). This product can
be extended to the case of locally compact spaces (see, for example, Booss
and Bleecker [47]).

2. Let E1 and E2 be vector bundles over the compact spaces X1 and X2,
respectively, with A = X1 ∩ X2 �= ∅ and let X = X1 ∪ X2. Let f be
a vector bundle isomorphism of E1

|A onto E2
|A. We denote by E1 ∪f E2

the vector bundle over X obtained by identifying the fiber E1
x, x ∈ A,

with the fiber E2
x through the isomorphism fx. Let B+ (resp., B−) denote

the upper (resp., lower) closed hemisphere of S2. Thus B+ ∩ B− = S1.
Consider the above construction with X1 = B+, X2 = B−, E1 = B+×C
(resp., E2 = B− × C) the complex, trivial line bundle over B+ (resp.,
B−), f : S1 × C → S1 × C the map defined by f(z, z1) = z1/z. Let
E−1 := (B+ ×C) ∪f (B− ×C); then E−1 is a vector bundle over S2. If
θ1 := [S2 × C] denotes the class of the trivial line bundle, the element
b := [E−1] − θ1 is in the kernel of K(S2) → Z and thus b ∈ K(R2). The
class b is called the Bott class. Let X be a locally compact space; the Bott
periodicity theorem (complex case) asserts that the map mb : K(X)→
K(X × S2) defined by outer product by b, i.e., mb(u) := u⊗̇b, u ∈ K(X),
is an isomorphism.
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3. Let E1 and E2 be vector bundles over X and let A be a closed subspace of
X . Let f be a vector bundle isomorphism of E1

|A onto E2
|A. Associated with

the triple (E1, E2; f) there is a unique, canonically constructed element in
K(X, A). Let X1 = X×{1}, X2 = X×{2}, and Z be the union of X1 and
X2 with (x, 1) and (x, 2) identified for all x ∈ A. Let πr : Z → Xr, r = 1, 2
be the natural maps, and W = π∗

1E1 ∪f π∗
2E2. Let j : X2 → Z be the

natural injection. One can show that [W ]− [π∗
2E2] is in the kernel of K(j)

and thus can be considered an element of K(Z, X2). We now observe that
Z with X2 reduced to a point can be identified with X in which A is
reduced to a point. Thus, K(Z, X2) ∼= K(X, A) and hence [W ] − [π∗

2E2]
can be identified with an element of K(X, A), which we denote [f ]K .

4. Let E, F be two vector bundles over a compact Riemannian manifold M
and let P ∈ Elk(E, F ) be an elliptic operator of order k from Γ (E) to
Γ (F ). Define the disk bundle DM := {u ∈ T ∗M | ‖u‖ ≤ 1}. Apply-
ing the above construction to the triple (π∗(E), π∗(F ); σk(P )), we have
[σk(P )]K ∈ K(DM, ∂DM). But DM/∂DM is naturally homeomorphic
to the one-point compactification of T ∗M and by means of the Rie-
mannian metric we may identify T ∗M with TM . Thus we may consider
[σk(P )]K ∈ K(TM).

5. Recall that every m-dimensional compact manifold M can be trivially
embedded in some Rm+n in the following sense. The restriction of TRm+n

to M allows one to define the normal bundle of M with fibers Nx such
that TxRm+n = TxM ⊕ Nx. For large enough n the normal bundle is
trivial and in this case we say that M is trivially embedded in Rm+n.
Furthermore, by choosing a trivialization we can write N = M×Rn. Thus
N becomes a tubular neighborhood of M in Rm+n and TN = TM ×R2n.
Thus, an element a ∈ K(TM ×R2n) may be identified with an element in
K(R2m+2n) also denoted by a. Thus applying m+n times the inverse m−1

b

of mb to a gives an element of Z, i.e., m
−(m+n)
b (a) ∈ Z if a ∈ K(TM×R2n).

We can now state the K-theoretic version of the index theorem.

Theorem 5.20 (Atiyah–Singer) Let M be a closed, oriented, Riemannian
manifold of dimension m, which is trivially embedded in Rm+n. Let E and
F be Hermitian vector bundles over M and P ∈ Elk(E, F ) be an elliptic
operator of order k from Γ (E) to Γ (F ). Then

Ind(P ) = (−1)mm
−(m+n)
b ([σk(P )]K⊗̇bn). (5.52)

The cohomological versions of the Atiyah–Singer index theorem are ob-
tained by lifting to K(M) certain characteristic classes. One form is the
following.

Theorem 5.21 (Atiyah–Singer) Let M be a compact manifold of dimension
m and let P ∈ Elk(E, F ) be an elliptic operator of order k from Γ (E) to
Γ (F ). Then the index of P is given by
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Ind(P ) = (−1)m{ch[σ(P )] · τ(TM ⊗C)}[TM ], (5.53)

where τ is the Todd class and [TM ] is the fundamental class of the tangent
bundle.

We note that one can always roll up an elliptic complex to obtain a unique
elliptic operator with the same index. However, sometimes it is advantageous
to consider the full complex. A formulation of the index theorem for differ-
ential complexes is the following.

Theorem 5.22 (Atiyah-Singer) Let M be a compact manifold of dimension
m and let (E, L) be an elliptic differential complex over M . Then there exists
a compactly supported cohomology class a(E, L) ∈ H∗

c (TM,Q) such that

Ind(E, L) = (a(E, L) · τ(TM ⊗C))([TM ]), (5.54)

where τ is the Todd class and [TM ] is the fundamental class of the tangent
bundle.

The statement of the index theorem takes a much simpler form in the
special case when all the Laplacians of the elliptic complex are second order
operators. In this case it can be shown that there exists a cohomology class
b(E, L) ∈ Hm(M) with the property that

Ind(E, L) = (b(E, L))([M ]).

Furthermore, b(E, L) = 0 for odd m. Hence, m odd implies that Ind(E, L) =
0. The index theorems for classical elliptic complexes are special cases of this
formula, as indicated below.

As we discussed earlier, for the de Rham complex we have Ei = Λi, L =
d, and b(E, L) = Euler class of M , and the index theorem takes the form
Ind(E, L) = χ(M), the Euler characteristic of M .

We now consider in detail the Hirzebruch signature operator D+ and state
the relation of its index to the Hirzebruch signature of M . Let M be a com-
pact, oriented Riemannian manifold of dimension 4n. We define the involution
operator j : Λk → Λ4n−k by

α �→ j(α) = ik(k−1)+2n ∗ α = (−1)nik(k−1) ∗ α.

The operator j extends to Λ and satisfies j2 = 1. We denote by Λ+ (resp., Λ−)
the eigenspace of j for the eigenvalue +1 (resp., −1). Define D+ = d + δ|Λ+ .
Then

D+ : Λ+ → Λ−

is an elliptic operator called the Hirzebruch signature operator. We now
define the Hirzebruch signature σ(M) of M . Consider the bilinear operator

h : H2n ×H2n → R
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defined by

(α, β) �→
∫

M

(α ∧ β).

In the above formula we have used (α∧β) to denote the cohomology class and
a 2n-form representing that class. We note that h is the intersection form on
M as defined in Chapter 2. Let (e+, e−) be the signature of the intersection
form h. Then the Hirzebruch signature is defined by

σ(M) = e+ − e−.

Let us denote by Δ+ (resp., Δ−) the Laplacian on Λ+ (resp., Λ−). If H2n
+

(resp., H2n
− ) denotes the space of harmonic 2n-forms in Λ+ (resp. Λ−), then

one can show that
σ(M) = dimH2k

+ − dimH2k
− ,

Ind(D+) = dim kerΔ+ − dim kerΔ− = dimH2k
+ − dimH2k

− .

Hence,
Ind(D+) = σ(M).

We observe that σ(M) could be defined in a purely topological way through
the cup product, because

∫

M

(α ∧ β) = ([α] ∪ [β])([M ]).

A deeper result is the Hirzebruch signature theorem, which gives

Ind(D+) =
∫

M

Lk = Lk[M ],

where Lk is the top degree form of the Hirzebruch L-polynomial. This result
can be obtained as a special case of the cohomological version of the Atiyah–
Singer index theorem.

A similar formulation can be given for the Dolbeault complex of a complex
manifold and the spin complex of a spin manifold.





Chapter 6

Theory of Fields, I: Classical

6.1 Introduction

In recent years gauge theories have emerged as primary tools for research
in elementary particle physics. Experimental as well as theoretical evidence
of their utility has grown tremendously in the last two decades. The isospin
gauge group SU(2) of Yang–Mills theory combined with the U(1) gauge group
of electromagnentic theory has lead to a unified theory of weak interactions
and electromagnetism. We give an account of this unified electroweak theory
in Chapter 8. In this chapter we give a mathematical formulation of several
important concepts and constructions used in classical field theories. We be-
gin with a brief account of the physical background in Section 6.2. Gauge
potential and gauge field on an arbitrary pseudo-Riemannian manifold are
defined in Section 6.3. Three different ways of defining the group of gauge
transformations and their natural equivalence is also considered there. The
geometric structure of the space of gauge potentials is discussed in Section
6.4 and is then applied to the study of Gribov ambiguity in Section 6.5. A
geometric formulation of matter fields is given in Section 6.6. Gravitational
field equations and their generalization is discussed in Section 6.7. Finally,
Section 6.8 gives a brief indication of Perelman’s work on the geometrization
conjecture and its relation to gravity.

The literature in the area covered in Chapter 6 is rather vast. We cite here
only a few references that may be consulted for additional information about
the material of this chapter and related aspects of gauge theories from the
physicist’s point of view. They are Cheng and Li [73], Faddeev and Slavnov
[120], and Quigg [322]. Classical field theories need to be quantized before
they can be applied to study elementary particle physics. While there is
no mathematically satisfactory theory of quantization of fields, physicists
have developed several workable methods of field quantization. The most
notable among these is Feynman’s method of path integration. For the path
integral method of quantization of field theories and related topics, see, for
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example, Feynman and Hibbs [125] and Schulman [340]. Standard references
for a general discussion of the mathematical aspects of gauge theories are
the books by Bleecker [43], Booss and Bleecker [47], Freed and Uhlenbeck
[135], and the papers [116, 273]. For discussion of modern geometry and its
relation to physics see, for example, the books by Frankel [132] and Novikov
and Taimanov [301].

6.2 Physical Background

In this section we give a brief account of some ideas and results from modern
physics which are important in elementary particle physics. We use the
physical terminology found in standard texts in modern physics. Elementary
particle physics is also referred to as high energy physics. The term “high
energy” refers to the kinetic energy of particles used in accelerators and
colliders to produce particle reactions. The principal experimental method
of producing elementary particles and studying their size and structure is
to accelerate them to high energies and shoot them against a given target,
which may be another accelerated beam. The distance and the time scale of
the resulting reaction is extremely small. The dispariy of the extremely small
scale (distances of less than 10−13 cm and duration of the order of 10−10 sec
or less) of elementary particles and the extremely high energies required to
produce and study them may be explained by two fundamental principles of
modern physics, now discussed.

First, Einstein’s well-known mass–energy relation

E = mc2,

where c is a universal constant (the velocity of light in a vacuum ∼= 3 ·
1010 cm/sec), allows us to calculate the energy E required for the creation
(or released with the annihilation) of mass m. It also allows us to express both
energy and mass in term of the same physical unit. In elementary particle
physics this unit is taken to be the electron-volt (eV), the kinetic energy
acquired by an electron in passing through an electric potential of 1 volt. In
terms of this unit the electron rest-mass is me

∼= 0.5 MeV (1 MeV = 106 eV).
The proton rest mass is mp

∼= 1 GeV (1 GeV = 109 eV), while the mass
of the heaviest known elementary particle, the Z0, was first confirmed by
observations made in the early 1980s to be approximately 91 GeV.

Einstein is considered one of the greatest physicists of all time. His special
theory of relativity provides the foundation for both classical and quantum
field theories. The general theory of relativity revealed the intimate connec-
tion between space-time geometry and gravity. Einstein received the 1921
Nobel Prize in physics for his many contributions to theoretical physics and
especially for his discovery of the law of the photoelectric effect. The photo-
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electric effect provides conclusive evidence for the quantum nature of light.
Combined with the known wave properties of light, it gave an example of the
wave–particle duality.

Second, Heisenberg’s uncertainty principle states that in a simulta-
neous measurement of two conjugate observables A, B of a quantum system
in a given state ψ, one has

ΔψAΔψB ≥ �/2,

where ΔψC denotes the standard deviation in the measurement of the ob-
servable C in the state ψ and � ∼= 10−27erg sec is a universal constant related
to the Planck constant h by the relation � = h/2π.

Werner Heisenberg1 (1901–1976) was one of the greatest physicists of the
twentieth century. He is considered one of the founders of quantum mechan-
ics. Heisenberg received the Nobel Prize in physics in 1932. The uncertainty
principle is a cornerstone of quantum physics. In particular, applying the un-
certainty relation to the conjugate observables position Q and momentum P
yields that quantum states in which the precision of the measurement of the
position is high are also states with large uncertainty in the measurement of
momentum. Thus, the more precisely the position of a particle is determined,
the less precisely its momentum is known. A similar situation exists with re-
spect to the simultaneous measurement of the conjugate observables time
and energy. This explains in part the requirements as well as the limitations
of high energy experiments. Indeed, the energies required for the production
of some conjectured elementary particles such as the Higgs boson are so high
that they do not seem to be reachable in the near future. In the remaining
part of this section we touch upon some basic aspects of the development of
elementary particle physics.

Elementary particle physics is the science that studies the ultimate con-
stituents of matter, the interactions among them, and the fundamental forces
acting on them. In this broad sense elementary particle physics deals with
questions that have been asked since ancient times. For example, it is well
known that the classical Greek philosophers discussed such questions. Indeed
the concept of atom as an indivisible fundamental constituent of matter can
be traced to early Greek writings. Of the four fundamental forces known to-
day, the force of gravity and some of its properties have been recongnized
since ancient times. However, the beginning of a theory of the gravitational
field was made only in the sixteenth century by Galileo, and the first com-
plete theory of gravity was worked out by Newton in the following century.
Newton’s main motivation was to obtain a mathematical explanation of Ke-
pler’s laws of planetary motion, one of the most important instances in which
experimental physics required and led to the development of a new area of

1 I had the opportunity to visit Prof. Heisenberg at the MPI in Munich in 1970 and cherish
the autographed copy of his autobiography Der Teil und das Ganze, which he gave me at
that time.
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mathematics. Newton developed the calculus to provide an appropriate tool
for studying Kepler’s laws. The second law is a conversion law, which provides
a first integral of motion. The equation of an ellipse in polar coordinates with
origin at one of the focal points was already well-known. Using this and the
second law Newton could easily calculate the radial accelaration of the planet.
This calculation led him to his law of gravitation. If one starts with this law
then one sees that orbits depend on initial conditions and are, in general,
conic sections. The elliptic orbits arise from special initial conditions.

Some properties of electric and magnetic forces were also known for a long
time, but a systematic experimental and theoretical study of these forces
started only in the eighteenth century, culminating in the unified theory of
the electromagnetic field developed by Maxwell. The discovery of the periodic
table and radioactivity led scientists to suspect that in spite of their name,
atoms may not be the indivisible, ultimate constituents of matter. This sus-
picion was confirmed with the discovery of the electron and the nucleons
(proton and neutron) as subatomic particles.

The foundations of quantum theory were established during the first quar-
ter of the twentieth century, The theory immediately met with great success
in explaining a wide range of phenomena in molecular, atomic, and nuclear
physics. This, coupled with the discovery of subatomic particles, created
a new and rapidly growing branch of physics, namely, elementary particle
physics. The principal theoretical tools for studying elementary particles and
their interactions are provided by (quantum) gauge field theories. We now
discuss two well-known examples of classical gauge theories. The problem of
their quantization is discussed from a physical perspective in Chapter 7.

Maxwell’s electromagnetic theory provides the simplest example of a gauge
theory, with the field equations being given by Maxwell’s equations. We
therefore begin with a brief review of Maxwell’s equations, which in their
classical form are given by:

div B = 0
curlE = −∂B/∂t

div E = ρ

curlB = J + ∂E/∂t,

where the electric field E and the magnetic field B are time-dependent vector
fields on some subset of R3 and ρ and J are the charge and current densi-
ties, respectively. These equations unified the separate theories of electricity
and magnetism and paved the way for important advances in both experi-
mental and theoretical physics. With the introduction of the 4-dimensional
Minkowski space-time M4 it became possible to describe both the electric
and magnetic fields as parts of a skew-symmetric tensor field, or a differen-
tial 2-form F , on M4 as follows. Using the standard chart on M4 and the
induced bases of the tensor spaces, the tensor F has components given by:
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Fk4 = Ek, 1 ≤ k ≤ 3 F12 = B3, F23 = B1, F31 = B2.

Maxwell’s equations written in terms of F (regarded as a 2-form) are

dF = 0, δF = j, (6.1)

where j = (J, ρ) is the current density 1-form and δ = ∗d∗ is the codifferential
operator on 2-forms of M4. The source-free field equations are obtained by
setting j = 0 and can be expressed as

dF = 0, d ∗ F = 0. (6.2)

This is the modern form of Maxwell’s source free field equations. It is well-
known that Maxwell’s equations are globally invariant under the conformal
group and in particular, under the Lorentz group. Their Lorentz invariance
is the starting point of Einstein’s theory of special relativity. They are also
invariant under a local group of transformations known as gauge trans-
formations. This invariance arises as follows. On M4 the equation dF = 0
implies that the field F is derivable from a 4-potential or 1-form A, i.e.,
F = dA. However, the potential A is not uniquely determined. If B is an-
other potential such that F = dB, then d(B −A) = 0. Every closed form on
M4 is exact and this implies that B − A = dψ, ψ ∈ F(M4). Thus, we may
think of the potential B as obtained by a gauge transformation of A by ψ.
We can write this transformation as

A �→ Aψ := A + dψ, ψ ∈ F(M4). (6.3)

Since ψ is real-valued Weyl considered ψ(x) to be the choice of the scale
at x. The infinitesimal change dψ = ψ(x + dx) − ψ(x) corresponds up to
first order to a change of local scale. This is not related to the conformal
invariance of the Maxwell equations. In Einstein’s theory of gravitation the
base manifold M is a 4-dimensional Lorentz manifold, usually referred to as a
space-time manifold, and its pseudo-metric or the corresponding Levi-Civita
connection plays the role of “gravitational potential.” Now Maxwell’s equa-
tions written by using F admit immediate generalization to the case of the
Minkowski space replaced by an arbitrary 4-dimensional Lorentz manifold.
However, in contrast to the geometric description of a gravitational field on
M , the electromagnetic field is put in “by hand” as a 2-form on M satisfying
the generalized Maxwell’s equations. Thus, it was natural to look for a unified
geometric theory of gravity and electromagnetism. Weyl sought to incorpo-
rate the electromagnetic field into the geometric structures associated to the
space-time manifold as arising from local scale invariance. He referred to
this scale invariance as “eich-invarianz” and this is the origin of the mod-
ern term gauge invariance. In fact, with slight modification, replacing local
scale by local phase taking values in the unitary group U(1), one obtains a
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formulation of Maxwell’s equations as gauge field equations2 with the gauge
group U(1). The gauge transformation with the real-valued function ψ of
equation (6.3) replaced by the gauge transformation g := eiψ ∈ U(1) allows
us to rewrite equation (6.3) as

iA �→ iAg := g−1(iA)g + g−1dg, g = eiψ ∈ F(M4, U(1)). (6.4)

Note that the gauge potential iA takes values in the Lie algebra u(1) = iR
of the gauge group U(1). We study gauge transformations with arbitrary
gauge group G later in this chapter. Equation (6.4) is a special case of the
equation (6.18) of a general gauge transformation. We discuss this formulation
of Maxwell’s equations and the interpretation of the form F as a U(1) gauge
field on M4 in Chapter 8.

Another approach to a unified treatment of electromagnetic and gravita-
tional fields leads to the Kaluza–Klein theory, which uses a 5-dimensional
pseudo-Riemannian manifold and a suitable (4 + 1)-dimensional decompo-
sition to obtain Einstein’s and Maxwell’s equations from the 5-dimensional
metric. The ideas of Kaluza–Klein theory have been applied to higher di-
mensional manifolds for studying coupled field equations and the problem of
dimensional reduction. For a modern treatment of Kaluza–Klein theories, see
Hermann [190] and Coquereaux, Jadczyk [85].

In 1954 Yang and Mills [413, 412] obtained the following now well-known
non-Abelian gauge field equations for the vector potential bμ of isotopic spin
in interaction with a field ψ of isotopic spin 1/2. These are the original Yang–
Mills equations for the SU(2) gauge group

∂fμν/∂xν + 2ε(bν × fμν) + Jμ = 0 , (6.5)

where the quantities

fμν = ∂bμ/∂xν − ∂bν/∂xμ − 2εbμ × bν , (6.6)

are the components of an SU(2)-gauge field and Jμ is the current density of
the source field ψ. There was no immediate physical application of these equa-
tions since they seemed to predict massless gauge particles as in Maxwell’s
theory. In Maxwell’s theory the predicted massless particle is identified as
photon, the massless carrier of electromagnetic field. No such identification
could be made for the massless particles predicted by pure (i.e., source-free)
Yang–Mills equations. This difficulty is overcome by the introduction of the
Higgs mechanism [192], which shows how spontaneous symmetry-breaking
can give rise to massive gauge vector bosons by a gauge transformation to a

2 I discussed this in my talk at the Geometry and Physics Workshop organized by Prof.
Raoul Bott at MSRI, Berkeley in 1994. After my talk Bott remarked: “We teach Harvard
students to think of functions as Lie algebra valued 0-forms so that they know the distinc-
tion between scale and phase.” When one of his students said he never learned this in his
courses, Bott gave a heary laugh.
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particular local gauge. This paved the way for a gauge theoretic formulation
of the standard model of electroweak theory and subsequent development of
the general framework for a unified treatment of strong, weak and electro-
magnetic interactions.

The Yang–Mills equations may be thought of as a matrix-valued general-
ization of the equations for the classical vector potential of Maxwell’s theory.
The gauge field that they obtained turns out to be the curvature of a connec-
tion in a principal fiber bundle with gauge group SU(2). The general theory
of such connections was developed in 1950s by Ehresman [117]. However,
physicists continued to use the classical theory of connections and curva-
ture that was the cornerstone of Einstein’s general relativity theory. In fact,
using this classical theory, Ikeda and Miyachi3 [199, 200] essentially linked
the Yang–Mills theory with the theory of connections. However, this work
does not seem to be well-known in the mathematical physics community,
and it was not until the early 1970s that the identification between curva-
ture of a connection in a principal bundle and the gauge field was made.
This identification unleashed a flurry of activity among both physicists and
mathematicians and has already had great successes, some of which were
indicated in the preface. Since the physical and mathematical theories have
developed independently each has its well-established terminology. We have
used the notation that is primarily used in the mathematical literature but
we have also taken into account the terminology that is most frequently used
in physics. To help the reader we have given Appendix A, a table indicating
the correspondence between the terminologies of physics and mathematics,
prepared along the lines of Trautman [378]. The physical literature on gauge
theory is vast and is, in general, aimed at applications to elementary particle
physics and quantum field theories. The most successful quantum field theory
is quantum electrodynamics (QED), which deals with quantization of elec-
tromagnetic fields. Its predictions have been verified to a very high degree of
accuracy. However, there is as yet no generally accepted mathematical theory
of quantization of gauge fields.

After this brief look at two classical gauge theories, we now turn to a
discussion of some major developments in elementary particle physics in the
last 30 years. As we observed earlier, the aim of elementary particle physics
is to study the structure of matter in terms of some fundamental system of
constituents. The last three decades have seen a dramatic increase in our
knowledge of both the theoretical and the experimental aspects of elemen-
tary particle physics. A host of new experimental results have come out es-
pecially from a new generation of particle accelerators. We have identified
two types of elementary particles, namely the leptons and the hadrons.
In addition to these there are the carriers of the forces of interaction. Each
particle also has a corresponding anti-particle with the same rest mass and
spin, but with opposite charge. All particles are subject to two kinds of statis-

3 We would like to thank Prof. Akira Asada of Shinshu University for introducing us to
Prof. Miyachi and his work.
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tics. Those subject to Fermi–Dirac statistics have half-integer spin and are
called fermions, while those subject to Bose–Einstein statistics are called
bosons. Leptons come in three pairs: the electron, the muon, and the tau
particle, each with its corresponding massless neutrino. The hadrons are
divided into two groups called baryons (with half-integer spin) and mesons
(with integer spin). The well-known nuclear particles proton and neutron are
baryons, while pion and kaon are examples of mesons. A large number of
other hadrons have been discovered. We now have strong evidence that the
properties of hadrons can be explained by considering them as composed of
quarks u (up), d (down), c (charm), s (strange), t (top or truth), and b
(bottom or beauty). Each quark also carries a color index corresponding
to the color gauge group SU c(3). Each quark has its anti-quark part-
ner. The hadrons are made up of combinations of quarks and anti-quarks.
However, they are supposed to remain confined inside hadrons and hence
are unobservable. This phenomenon is called quark confinement. The fact
that all searches for free quarks since 1977 have had negative results strongly
supports the hypothesis of quark confinement. In view of this we will not call
quarks fundamental particles. In view of the indirect yet rather strong ex-
perimental evidence now available we can consider quarks as virtual particles
that form the fundamental constituents of hadrons.

Table 6.1 displays what we consider to be the fundamental constituents
of matter at this time. Each constituent is identified by its name, symbol,
charge (in units of the proton charge), and mass or range of mass (in units
of GeV), in that order. The information in the table is a summary of our
knowledge of the fundamental constituents of matter at this time. These
particles are subject to the various fundamental forces, which act via their
carrier particles. Three of them have interpretation as gauge fields. They are
combined to obtain the standard model of fundamental particles and forces
described later. The data in Table 6.1 and Table 6.2 are taken from [11], with
2009 web updates by the Particle Data Group. They are not needed for the
mathematical formulation discussed in detail in Chapter 8.

All matter is subjected to one or more of the four fundamental forces.
They are the well known classical, long range forces of electromagnetic
and gravitational fields and the more recently discovered short range forces
of weak and strong interactions. Leptons are subject to all but the strong
interaction while hadrons participate in all of them. In classical field theory
it was assumed that each particle generates a set of fields that extend over
entire space. A neutral, massive particle generates gravitational field while a
charged particle also generates electromagnetic field. Thus, for example, two
particles with charge of the same sign exert a repulsive force on each other
as a result of the interaction of their fields. In quantum field theory it is pos-
tulated that all forces act by exchange of carrier particles or quanta. For
the gravitational field this carrier particle is called the graviton. It has spin
2 related to the representation of the Lorentz group on symmetric tensors
of order 2. This is consistent with the observation that gravitation is always
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Table 6.1 Fundamental constituents of matter

Leptons Quarks
electron electron neutrino up down

e νe u d
−1 0 2/3 −1/3

0.0005 0 (< 10−17) 0.0015−0.0033 0.0035−0.006
muon muon neutrino charmed strange

μ νμ c s

−1 0 2/3 −1/3
0.105 0 (< 10−3) 1.2−1.3 0.6−1.3
tau tau neutrino top (or truth) bottom (or beauty)
τ ντ t b

−1 0 2/3 −1/3
1.78 0 (< 0.25) ? 171 4.1−4.4

an “attractive force.” There is no experimental or theoretical evidence for
the graviton. For the electromagnetic field, the prototype of Abelian gauge
fields, this particle has been identified as the photon. The beta decay of
unstable, radioactive nuclei provided an early example of weak interaction.
Its analysis led Pauli and Fermi to conjecture the existence of the neutrino
(Italian for “tiny neutron”). The prediction and detection of the carrier par-
ticles W+, W−, Z0 of the weak force is one of the triumphs of the electroweak
theory (a U(1)×SU(2)-gauge theory), which provides a unified treatment of
electromagnetic and weak interactions. The particles W+, W−, Z0 are called
weak intermediate vector bosons. The U(1) factor of the electroweak
gauge group is called the weak hypercharge gauge group and is de-
noted by UY (1). The SU(2) factor of the electroweak gauge group is called
the weak isospin gauge group and is denoted by SUL(2). Hence, the elec-
troweak gauge group is often denoted by UY (1)× SUL(2). The subscript
L in the term SUL(2) denotes the action on left-handed fermions. In fact, the
electroweak theory is left-right asymmetric. For further details see [11].

The energy of the carrier particles and the range of corresponding inter-
action are related by Heisenberg’s uncertainty principle. The infinite
range of electromagnetic interaction is consistent with the zero rest mass of
its carrier particle, the photon. The observed short range of the weak inter-
action requires that its carrier particles be massive. A very readable account
of the problems and triumphs of electroweak theory is given in [330]. The
strong force corresponds to the color gauge group SU c(3) and has eight ex-
change particles, called gluons. The corresponding quantum field theory is
called quantum chromodynamics or QCD for short. The success of the
electroweak theory has led scientists to a unified theory of strong, weak, and
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electromagnetic fields based on the gauge group SUc(3) × SUL(2) × UY (1).
This theory is usually referred to as the standard model of strong, weak,
and electromagnetic interactions or SM for short. We discuss a model of the
electroweak theory and the related Higgs mechanism of symmetry-breaking
in Chapter 8, where a brief account of the standard model will also be given.
Our current knowledge of the fundamental forces and their carrier particles
is summarized in Table 6.2.

Table 6.2 Fundamental forces and carrier particles

Force Carrier Particles
Name Range Name Symbol Mass Spin

gravitation ∞ graviton Γ 0 2
electromagetism ∞ photon γ 0 1

weak W+ 80 1
weak 10−16 intermediate W− 80 1

vector bosons Z0 91 1
strong 10−14 gluons Ga 0 1

From the experimental point of view the main difficulty in studying strong
interaction is that the energy required for the creation and detection of the
gluons is very high. The Large Hadron Collider (LHC) at CERN, which has
recently gone on line, is expected to bring protons into head-on collision
at extremely high energies. Now the well-known de Broglie wave-particle
duality principle tells us that particles are also waves. This principle is used
in electron microscopes, which exploit the short wavelength of an electron to
reveal details unseen with visible light. The higher the energy, the greater
is the probability for creating more massive particles out of a collision and
the shorter the wavelength corresponding to these particles. This will allow
scientists to penetrate still further into the fine structure of matter. When
fully operational, the LHC is expected to re-create conditions prevailing in
the very early universe (about 10−10 seconds after the so-called “Big Bang”)
causing nuclear matter to transform into quark-gluon plasma. Studies of such
a state of matter are expected to shed new light on a number of unexplained
phenomena such as quark confinement and the masses of elementary particles.

From the theoretical side, there are several other proposals beyond the
standard model for a unified treatment of electromagnetic, weak, and strong
interactions. The most extensively studied models are those of the grand
unified theories (also known as GUTs), the technicolor models, string and
superstring theories, and supersymmetric theories. However, none of these
has been found to be completely satisfactory. The known theories of gravi-
tational forces differ substantially from those of the other three forces. The
quantum theories of gravitational forces as well as unified theories of all the
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known forces should at present be considered to be speculative at best. Work
to understand and explain all these theories in precise mathematical terms
should remain on the agenda of mathematical physics of the twenty-first cen-
tury.

6.3 Gauge Fields

The theory of gauge fields and their associated fields, such as the Yang–Mills–
Higgs fields, was developed by physicists to explain and unify the fundamental
forces of nature. The theory of connections in a principal fiber bundle was
developed by mathematicians during approximately the same period, but as
we pointed out in the preface, the fact that they are closely related was not
noticed for many years. Since then substantial progress has been made in
understanding this relationship and in applying it successfully to problems
in both physics and mathematics. In physical applications one is usually
interested in a fixed Lie group G called the gauge group, which represents an
internal or local symmetry of the field. The base manifold M of the principal
bundle P (M, G) is usually the space-time manifold or its Euclidean version,
i.e., a Riemannian manifold of dimension 4. But in some physical applications,
such as superspace, Kaluza–Klein and string theories, the base manifold can
be an essentially arbitrary manifold. In this section we formulate the theory
of gauge fields on an arbitrary pseudo-Riemannian base manifold.

Let (M, g) be an m-dimensional pseudo-Riemannian manifold and G a
Lie group which we take as the gauge group of our theory. Let P (M, G)
be a principal bundle with the gauge group G as its structure group. A
connection in P is called a gauge connection. The connection 1-form ω is
called the gauge connection form or simply the gauge connection. A
global gauge or simply a gauge is a section s ∈ Γ (P ). The gauge potential
A on M in gauge s is obtained by pull-back of the gauge connection ω on P
to M by s, i.e., A = s∗(ω). A global gauge and hence the gauge potential on
M exists if and only if the bundle P is trivial. A local gauge is defined as a
section of the bundle P (M, G) restricted to some open subset U ⊂M . Local
gauges defined for the local representations (Ui, ψi)i∈I of P always exist. Let
t ∈ Γ (Ui, P ) be a local gaugel then the 1-form t∗ω ∈ Λ1(Ui,g) is called the
gauge potential in the local gauge t and is denoted by At. If the local gauge
t is given, we often denote At by A and call it a local gauge potential. In
electromagnetism, the gauge group G = U(1), the circle group. An element
eiθ ∈ U(1) is determined by the phase θ. Thus, in this case, a local gauge
over an open set V ⊂M can be regarded as a choice of a phase in the bundle
P|V = V ×G at each point of V . For this reason, the total space of the bundle
P is sometimes called the space of phase factors in the physics literature.

Let Ω = dωω be the curvature 2-form of ω with values in the Lie algebra
g. We call Ω the gauge field on P . Although this terminology is fairly
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standard, we would like to warn the reader that sometimes, in the physics
literature, our gauge potential is called the gauge field and our gauge field is
called the field strength tensor. As we have seen in Chapter 4, there exists a
unique 2-form Fω on M with values in the Lie algebra bundle adP associated
to the curvature 2-form Ω such that

Fω = sΩ. (6.7)

The 2-form Fω ∈ Λ2(M, ad P ) is called the gauge field on M corresponding
to the gauge connection ω. The gauge field Fω is globally defined on M , even
though, in general, there is no corresponding globally defined gauge potential
on M . If we are given a local gauge potential At ∈ Λ1(Ui,g), then on Ui we
have the relations

t∗ω = At and Fω = dωAt . (6.8)

Example 6.1 (The Dirac Monopole) Let S3(S2, U(1)) be the principal U(1)-
bundle over S2 determined by the Hopf fibration of S3. Let μ denote the
connection 1-form of the canonical connection on this bundle and let Fμ be
the corresponding gauge field on S2. In this case there is no globally defined
gauge potential on S2. We need at least two charts to cover S2 and therefore
at least two local potentials, which give rise to a single globally defined gauge
field. This field can be shown to be equivalent to the Dirac monopole field.
The Dirac monopole quantization condition corresponds to the classification
of principal U(1)-bundles over S2. These are classified by π1(U(1)) ∼= Z.
In general, the principal G-bundles over S2 are classified by π1(G). Thus
π1(SU(2)) = id implies that there is a unique SU(2)-monopole on S2 and
π1(SO(3)) = Z2 implies that there are two inequivalent SO(3)-monopoles on
S2 (see [161,411,410] for further details).

Gauge potentials and gauge fields acquire physical significance only after
one postulates the field equations to be satisfied by them. These equations and
their consequences must then be subjected to suitably devised experiments
for verification. On more than one occasion a theory was abandoned when
its predictions seemed to contradict an experimental result, but later this
experiment or its conclusions turned out to be incorrect and the abandoned
theory turned out to be correct. In any case there is no natural mathemat-
ical method for assigning field equations to gauge fields. Thus the Riemann
curvature of a space-time manifold M is the gauge field corresponding to
the gauge potential given by the Levi-Civita connection on the orthonormal
frame bundle of M , but it does not describe the gravitational field until it
is subjected to Einstein’s field equations. If instead it satisfies Yang–Mills
equations, then it describes a classical Yang–Mills field. This aspect of gauge
fields is already evident in the following remark of Yang:

The electromagnetic field is a gauge field. Einstein’s gravitational theory
is intimately related to the concept of gauge fields, although to identify
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the gravitational field as a gauge field is not an absolutely straightfor-
ward matter.

However, a study of physically interesting field equations such as Maxwell’s
equations of electromagnetic field and their quantization indicates some de-
sirable features for the gauge field equations. One of these features is gauge
invariance of the field equations. This requirement is formulated in terms of
the group of gauge transformations, which acts on the various fields involved.
In the following we give a mathematical formulation of this group.

The group Diff(P ) of the diffeomorphisms of P is too large to serve as
a group of gauge transformations, since it mixes up the fibers of P . The
requirement that fibers map to fibers may be expressed by the condition that
the following diagram commutes:

M M�
fM

P P�f

�

π

�

π

i.e.,
π ◦ f = fM ◦ π. (6.9)

We say that the map f is fiber-preserving if condition (6.9) is satisfied.
We note that condition (6.9) does not depend on the principal bundle struc-
ture of P and hence can be imposed on any fiber bundle. The pair (f, fM )
satisfying the condition (6.9) is called a fiber bundle automorphism. In
this case we call f a projectable diffeomorphism or transformation of
P covering the diffeomorphism fM . The projectable diffeomorphisms form a
group DiffM (P ), defined by

DiffM (P ) := {f ∈ Diff(P ) | f is projectable}.

Let φt be a one-parameter group of projectable transformations of P with
the associated vector field X ∈ X (P ) and let φtM be the corresponding one
parameter group in Diff(M) with the associated vector field XM ∈ X (M).
Then X is a projectable vector field on P , i.e., the pair of vector fields
(X, XM ) satisfies the condition

π∗(X(u)) = XM (π(u)), ∀u ∈ P.

The set XM (P ) of projectable vector fields forms a Lie subalgebra of the
Lie algebra X (P ). The group DiffM (P ) (resp., the algebra XM (P )) and its
subgroups (resp., subalgebras) arise in many applications. They are usually
obtained by requiring that the transformations occurring in them preserve
some additional structure on the fiber bundle. For example, condition (6.9) is
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satisfied if f ∈ Diff(P ) is G-equivariant, i.e., f(ug) = f(u)g, ∀u ∈ P, g ∈ G.
We are thus led to define the set Aut(P ) by

Aut(P ) := {f ∈ Diff(P ) | f is G-equivariant}. (6.10)

The set Aut(P ) is a group called the group of generalized gauge transfor-
mations. From the point of view of differential geometry, the group Aut(P )
is just the group of principal bundle automorphisms of P . We note that
the fiber-preserving property of the generalized gauge transformation f com-
pletely determines the diffeomorphism fM . We define the group of gauge
transformations G(P ) to be the subgroup Aut0(P ) of the group Aut(P ) of
generalized gauge transformations. Thus

G(P ) := Aut0(P ) = {f ∈ Aut(P ) | fM = idM}. (6.11)

Then G(P ) (also denoted simply by G) is a normal subgroup of Aut(P ).
From definition (6.11) it is clear that f ∈ G if and only if it is a smooth
fiber-preserving map of P into itself commuting with the action of the gauge
group G on P , i.e., f satisfies the conditions

π ◦ f = π (6.12)

and
f(p · g) = f(p) · g, ∀p ∈ P, ∀g ∈ G. (6.13)

From definitions (6.10) and (6.11) we obtain the following exact sequence
of groups:

G i−→Aut(P )
j−→Diff(M),

where i denotes the inclusion map and j is defined by

j(f) = fM , ∀f ∈ Aut(P ).

Note that the exactness means here that Im(i) = Ker(j). The map i is injec-
tive, so by adding the identity at the beginning of the above sequence we get
a 4-term exact sequence. However, the map j is not, in general, surjective.
Thus, the 4-term exact sequence cannot be extended to a 5-term or short
exact sequence. The following example4 illustrates this.

Example 6.2 Recall that the principal U(1) bundles over S2 are classified
by the integers. For each n ∈ Z there exists a unique equivalence class Pn of
U(1) bundles over S2. As we observed in Example 6.1, this corresponds to
Dirac’s monopole quantization condition. The Hopf fibration of S3 discussed
there is in the class P1. Now let α : S2 → S2 be the antipode map, i.e.,
α(x) = −x, ∀x ∈ S2. Then the pull-back bundle of the Hopf fibration α∗(S3)

4 This example was suggested by Stefan Wagner, a doctoral student of Prof. Neeb at TU
Darmstadt.



6.3 Gauge Fields 183

is also a principal U(1) bundle. But this bundle is in the class P−1. Thus α
cannot be lifted to an automorphism of the Hopf fibration.

This example leads to the following proposition.

Proposition 6.1 Let DiffP (M) denote the subgroup of Diff(M) defined by

DiffP (M) := {α ∈ Diff(M) | α∗(P ) ≡ P}.

Then we have the short exact sequence

1 −→ G i−→ Aut(P )
j−→ DiffP (M) −→ 1.

In several applications one is interested in splitting the above exact se-
quence or in finding conditions that imply the equality DiffP (M) = Diff(M)
so that one may try to construct an extension of Diff(M) by G. Additional
geometric structures may also be involved in this process. For example, if
P = L(M), the bundle of frames of M , then it is a principal bundle but
carries the additional structure given by the soldering form θ and we have
the following proposition.

Proposition 6.2 Let M be a manifold with a linear connection. Then there
exists a natural lift λ : Diff(M)→ Diff(L(M)), which splits the exact sequence
of groups

1 −→ G i−→ DiffM (L(M))
j−→ Diff(M) −→ 1.

Furthermore, the map f ∈ Diff(L(M)) is the natural lift of a diffeomorphism
fM ∈ Diff(M), i.e., f = λ(fM ) if and only if f leaves the soldering form
invariant (i.e., f∗θ = θ).

When M is a 4-dimensional Lorentz manifold, connections on the frame
bundle L(M) play the role of gravitational potentials. Action functionals
involving connections and metrics on M form the starting point of gauge
theories of gravitation.

A physical interpretation of a gauge transformation f ∈ G is that f is a
local (i.e., pointwise) change of gauge For this reason, G is sometimes
called a local symmetry group and G is called the local gauge group; but
we will not use this terminology. Let t be a local gauge over U . Then t is a
section of the bundle P|U , i.e., for x ∈ U , t(x) is in Px = π−1(x), the fiber of
P over x and f(t(x)) is also in Px. Therefore, there exists a unique element
f̂(x) ∈ G such that

f(t(x)) = (t(x)).(f̂ (x)), ∀x ∈ U.

The map f̂ : U → G is a local representation of the gauge transformation f .
If the bundle P is trivial, then we can take U = M and in this case a gauge
transformation can be identified with a map of M to G.
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We now consider two alternative definitions of the group of gauge transfor-
mations. Note first that the space F(P, G) of all smooth functions f : P → G
with pointwise multiplication is a group. Let FG(P, G) denote the subset of
all G-equivariant functions (with respect to the adjoint action), i.e.,

FG(P, G) := {f : P → G | f(uα) = α−1f(u)α, ∀u ∈ P, ∀α ∈ G}.

Then it is easy to verify that FG(P, G) is a group. Let Ad(P ) denote the
bundle (P ×AdG) over M associated to P by the adjoint action of G on itself.
It is a bundle of Lie groups with fiber G. The set Γ (Ad(P )) := Γ (P ×Ad G)
of sections of the associated bundle Ad(P ) with pointwise multiplication is
a group. The relation between these groups is established in the following
theorem.

Theorem 6.3 There exists an isomorphism between each pair of the follow-
ing three groups:

1. the group of gauge transformations G;
2. the group FG(P, G) of all functions f : P → G such that f is G-

equivariant, with respect to the adjoint action of G on itself;
3. the group Γ (Ad(P )) of sections of the associated bundle Ad(P ) over M .

Proof : For g ∈ G we define ḡ : P → G by

ḡ(u) = a,

where a ∈ G is the unique element such that g(u) = ua. It can be verified
that the map T : g �→ ḡ is a one-to-one correspondence from G to FG(P, G)
with inverse given by the map from FG(P, G) to G such that f �→ gf where
gf (u) = uf(u). Using the definition of T and of the G action it is easy to
verify that

T (gh) = gh = ḡh̄ = T (g)T (h).

It follows that T is an isomorphism of groups.
The correspondence between FG(P, G) and Γ (P×AdG) is a special case of

the correspondence between FG(P, F ) and Γ (E(M, F, r, P )) (see Chapter 4)
with F = G and r = Ad, the adjoint action of G on itself. Thus, f ∈ FG(P, G)
corresponds to a section sf ∈ Γ (P ×Ad G) defined by

sf (x) = f(u), u ∈ π−1(x).

We note that sf is well defined in view of the G-equivariance of f . On the
other hand a section s ∈ Γ (P ×Ad G) defines an element fs ∈ FG(P, G) by

fs(u) = s(x), u ∈ π−1(x).

One can verify that the map S defined by S : f �→ sf is an isomorphism of
the group FG(P, G) with the group Γ (P ×Ad G). ��
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In view of the above theorem we use any one of the three representations
above for the group of gauge transformations as needed. For example, re-
garding G as the space of sections of (P ×Ad G), the bundle of groups (not
a principal G-bundle), we can show that a suitable Sobolev completion (see
Appendix D) of G (also denoted by G) is a Hilbert Lie group (i.e., G is a
Hilbert manifold with smooth group operations). Let ad denote the adjoint
action of the Lie group G on its Lie algebra g. Let E(M, g, ad, P ) be the
associated vector bundle with fiber type g and action ad, the adjoint action
of G on g. Recall that this bundle is a bundle of Lie algebras denoted by
P ×ad g or ad P . We denote Γ (adP ) by LG; it is a Lie algebra under the
pointwise bracket operation. The algebra LG is called the gauge algebra of
P . It can be shown that a suitable Sobolev completion of LG is a Banach Lie
algebra with well-defined exponential map to G. It is the Lie algebra of the
infinite-dimensional Banach Lie group G. An alternative characterization of
the gauge algebra is given by the following theorem.

Theorem 6.4 The set FG(P, g) of all G-equivariant (with respect to the ad-
joint action of G on its Lie algebra g) functions with the pointwise bracket
operation is a Lie algebra isomorphic to the gauge algebra LG.

6.4 The Space of Gauge Potentials

Without any assumption of compactness for M or G it can be shown that G is
a Schwartz Lie group (i.e., a Lie group modeled on a Schwartz space) with Lie
algebra consisting of sections of ad P of compact support. While this approach
has the advantage of working in full generality, the technical difficulties of
working with spaces modelled on an arbitrary locally convex vector space
can be avoided by considering Sobolev completions of the relevant objects as
follows. In this section we consider a fixed principal bundle P (M, G) over a
compact, connected, oriented, m-dimensional Riemannian base manifold M
with compact, semisimple gauge group G. These assumptions are satisfied
by most Euclidean gauge theories that arise in physical or mathematical
applications. The base manifold is typically a sphere Sn or a torus T n or
their products such as Sn × Tm. Thus, for n = 4 one frequently considers as
a base S4, T 4, S3 × S1, orS2 × S2. With appropriate boundary conditions on
gauge fields one may also include non-compact bases such as R4 or R3×S1.
The gauge group G is generally one of the following: U(n), SU(n), O(n),
SO(n), or one of their products. For example, the gauge group of electroweak
theory is SU(2)×U(1). As we discussed above, the gauge connections (gauge
potentials) and the gauge fields acquire physical significance only after field
equations, to be satisfied by them, are postulated. However, the topology and
geometry of the space of gauge connections has significance for all physical
theories and especially for the problem of quantization of gauge theories.
They are also fundamental in studying low-dimensional topology. Various
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aspects of the topology and geometry of the space of gauge connections and
its orbit spaces have been studied in [22, 153, 233, 234]. We denote by A(P )
the space of gauge potentials or connections on P defined by

A(P ) := {ω ∈ Λ1(P,g) | ω is a connection on P}. (6.14)

If P is fixed we will denote A(P ) simply byA and a similar notation will be
followed for other related spaces. From the definition of connection it follows
that ω1, ω2 ∈ A implies that ω1−ω2 is horizontal and of type (rmad,g) and,
therefore, defines a unique 1-form on M with values in the associated bundle
ad P := P ×ad g. Then we have that, for a fixed connection α,

A ∼= {α + π∗A | A ∈ Λ1(M, adP )}. (6.15)

From the above isomorphism it follows that the space A is an affine space
with the underlying vector space Λ1(M, adP ). Thus, the tangent space TαA
is isomorphic to Λ1(M, ad P ) and we identify these two spaces. If 〈 , 〉g is a
G-invariant inner product on g, we have a natural inner product defined on
TαA as follows. First, for A, B ∈ TαA, we define

〈A, B〉 ∈ F(M) by 〈A, B〉 := gij〈Ai, Bj〉g,

where gij are the components of the metric tensor g on M with respect to
the base {dxi} of T ∗

xM and A = Ai(x)dxi, B = Bi(x)dxi. We note that
Ai(x), Bi(x) are elements of the fiber of the Lie algebra bundle adP over
x ∈M . Then we define the inner product 〈〈A, B〉〉α, or simply 〈〈A, B〉〉, by

〈〈A, B〉〉α =
∫

M

gij〈Ai, Bj〉g, ∀A, B ∈ TαA . (6.16)

The map α �→ 〈〈A, B〉〉α defines a weak Riemannian metric or the L2

Riemannian metric on A.
We observe that an invariant inner product always exists for semisimple

Lie algebras and is given by a multiple of the Killing form K on g defined by

K(X, Y ) = Tr(adX ad Y ).

The inner product defined in (6.16) can be extended to Λk(M, ad P ). A con-
nection ω on P defines a covariant derivative

∇ω : Λ0(M, adP )→ Λ1(M, adP )

which is compatible with the metric on ad P , i.e.,

〈∇ωXψ, φ〉+ 〈∇ωXφ, ψ〉 = X(〈φ, ψ〉),
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for all φ, ψ ∈ Λ0(M, adP ) and X ∈ X (M). The covariant derivative has a
natural extension to (ad P )-valued tensors that is also denoted by ∇ω. The
corresponding covariant exterior derivative is denoted by dω. We now give
definitions of several terms that occur frequently in physical applications.

Definition 6.1 Let (M, g) be a compact, connected, m-dimensional, Rie-
mannian manifold and let P (M, G) be a principal bundle over M with com-
pact, semisimple, n-dimensional gauge group G. Let 〈 , 〉g be a G-invariant
inner product on its Lie algebra g. For x ∈ M , the metric gx induces inner
products on the tensor spaces and spaces of differential forms that we also
denote by gx. Let {ei(x)}1≤i≤n be a basis for the fiber (adP )x of the Lie al-
gebra bundle adP . Let α, β ∈ Λp(M, adP ) and γ ∈ Λq(M, ad P ). Locally, we
can write

α(x) = αi(x) ⊗ ei(x), where αi(x) ∈ Λpx(M) and ei(x) ∈ (adP )x, ∀i,

with similar expressions for β and γ. Then we have the following definitions:

1. The product 〈α, β〉 ∈ F(M) is defined by x �→ 〈α, β〉x, where

〈α, β〉x := gx(αi(x), βj(x))〈ei(x), ej(x)〉g.

The corresponding local norm |α| ∈ F(M) is defined by

x �→ |α|x :=
√
〈α, α〉x , ∀x ∈M.

2. The inner product 〈〈α, β〉〉 ∈ R and the corresponding norm are defined
by

〈〈α, β〉〉 :=
∫

M

〈α, β〉dvg and ‖α‖ :=
√
〈〈α, α〉〉.

3. The formal adjoint of dω : Λp(M, ad P )→ Λp+1(M, ad P ), denoted by δω,
is defined by

〈〈dωα, σ〉〉 = 〈〈α, δωσ〉〉, ∀σ ∈ Λp+1(M, ad P ).

4. The product α∧̇γ ∈ Λp+q(M) is defined by

x �→ (α∧̇γ)x = (αi(x)∧γj(x))〈ei(x), ej(x)〉g ∈ Λp+qx (M).

5. The bracket [α, γ]∧, or simply [α, γ] of bundle-valued forms, is defined
by

x �→ [α, γ]x = (αi(x)∧γj(x))[ei(x), ej(x)] ∈ Λp+qx (M, adP ).

We note that this product is also denoted by α∧γ.

The group G acts on the space of gauge connections A(P ). We can describe
this action in two different ways. Let f ∈ G. Then the first is the right action
Rf−1 obtained by pulling back the connection form, i.e.,
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f · ω := Rf−1(ω) = (f−1)∗ω, f ∈ G, ω ∈ A(P ). (6.17)

The second is the left action Lf obtained by pushing forward the horizontal
distribution defined by the given connection by f∗. It can be shown that the
two are related by Lf = Rf−1 . Thus we see that there is essentially only one
natural action of G onA. We shall use both forms of this action as convenient.
We now derive a local expression for this action when G is one of the classical
matrix groups. Let Ai (resp., Aj) be a local gauge potential in local gauge ti
(resp., tj) over Ui (resp. Uj), corresponding to the gauge connection ω. Let

ti = ψijtj , ψij : Ui ∩ Uj → G

be the local expression of the gauge transformation f . Then equation (6.17)
becomes

Aj = ψ−1
ij Aiψij + ψ−1

ij dψij .

It is customary to write g for ψij and A, Ag for Ai, Aj , respectively. Then
the local expression of equation (6.17) becomes

Ag = g−1Ag + g−1dg. (6.18)

Equation (6.4) for the gauge transformation of an electromagnetic potential
is a special case of equation (6.18) corresponding to G = U(1). In many
applications it is the local form (6.18) of the equation (6.17) that is used for
calculating the gauge transforms of potentials and fields. For example, using
equation (6.18) we obtain the following expression for the gauge transform
F g
ω of the gauge field Fω

F g
ω = g−1Fωg. (6.19)

From equation (6.19) it follows that |Fω | is a gauge invariant function on M ,
i.e.,

|F g
ω | = |Fω | ∈ F(M).

It is this gauge invariant function that is used in defining the Yang–Mills
action functional (see Chapter 8).

We say that connections α, β ∈ A are gauge equivalent if there exists a
gauge transformation f ∈ G such that β = f · α. From the definition of the
action of G on A given above, it follows that each equivalence class of gauge
equivalent connections is an orbit of G in A. The orbit space O = A/G thus
represents gauge inequivalent connections and is called the moduli space
of gauge potentials on P (M, G).

Gauge field equations that arise in physical applications are partial differ-
ential equations on manifolds. Their analysis is greatly facilitated by consid-
ering Sobolev completions of the various infinite-dimensional spaces involved
in the formulation and study of these equations. Now we define Sobolev
norms and completions of some of the structures used in this chapter. We
use the assumptions and notation of Definition 6.1. Let E be a Rieman-
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nian vector bundle over the manifold M associated to P (M, G). Recall that
Λp(M, E) = Γ (Ap(M) ⊗ E) is the space of p-forms on M with values in E.
Fixing a connection α on P we get the induced covariant derivative ∇α on
Λp(M, E). If λ is the Levi-Civita connection on (M, g), then we can define
the covariant derivative

∇(ω,λ) : Λk(M, ad P )→ Γ (T ∗M ⊗AkT ∗M ⊗ adP )

or simply ∇ by
∇ ≡ ∇(ω,λ) := 1⊗∇ω +∇λ ⊗ 1.

Using the covariant derivative ∇ we define a Sobolev k-norm on Λp(M, E)
by

‖φ‖k =

⎛
⎝

k∑
j=0

∫

M

|(∇)jφ|2
⎞
⎠

1/2

, φ ∈ Λp(M, E).

The completion of Λp(M, E) in this norm is a Hilbert space (under the as-
sociated bilinear form) denoted by Hk(Λp(M, E)). A different choice of the
connection on P and metrics on M and E gives an equivalent norm. The map
dα : Λp(M, E) → Λp+1(M, E) extends to a smooth bounded map of Hilbert
spaces (also denoted by dα)

dα : Hk(Λp(M, E))→ Hk−1(Λp+1(M, E)).

For p = 0, this map has finite dimensional kernel and closed range. In general,
the sequence

0 −→ Hk(Λ0(M, E)) dα

−→ Hk−1(Λ1(M, E)) dα

−→ · · ·

fails to be a complex, the obstruction being provided by the curvature of α.
In particular, fixing a connection α on P gives an identification of A with
Λ1(M, ad P ) and we denote the corresponding Sobolev completion of A in
the k-norm by Hk(A). This Sobolev k-norm defines a strong Riemannian
metric on A. Strong Riemannian metrics and the weak or L2 metric on
A defined above are used in studying the geometry of A and other related
spaces in Chapter 9. The curvature map

F : ω �→ Fω of A → Λ2(M, ad P )

extends to a smooth bounded Hilbert space map from Hk+1(A) into
Hk(Λ2(M, ad P )) for k ≥ 1. The Sobolev completion of the gauge group
G is obtained by considering G as a subset of Λ0(M, P ×ρ End(V )), where
ρ : G→ End(V ) is a faithful representation of the gauge group G. We define
Hk(G) to be the closure of G in Hk(Λ0(M, P ×ρ End(V ))). The Lie alge-
bra structure of LG = Λ0(M, ad P ) extends to a Lie algebra structure on
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its Sobolev completion Hk(Λ0(M, adP )). The above discussion leads to the
following theorem.

Theorem 6.5 Let k > 1
2 (m + 1); then we have the following:

1. The Sobolev completion Hk(G), is an infinite-dimensional Lie group mod-
eled on a separable Hilbert space with Lie algebra Hk(LG).

2. The action of G on A defined by equation (6.17) extends to a smooth action
of Hk+2(G) on Hk+1(A).

3. The curvature map F : A → Λ2(M, adP ) extends to a smooth,
bounded, Hk+2(G)-equivariant, Hilbert space map from Hk+1(A) into
Hk(Λ2(M, adP )), i.e.,

F (g.ω) = g−1F (ω)g, ∀g ∈ Hk+2(G).

From now on we consider that all objects requiring Sobolev completions
have been completed in appropriate norms and drop the Hk from Hk(object).

In many applications one is interested in the orbit space O = A/G whose
points correspond to equivalence classes of gauge connections. The orbit space
is given the quotient topology and is a Hausdorff topological space. However,
in general, the action of G on A is not free and O fails to be a manifold. We
now discuss two methods of suitably modifying A or G to obtain orbit spaces
with nice mathematical structure.
1. Let G0 ⊂ G denote the group of based gauge transformations, defined
by

G0 = {f ∈ G| f(u0) = u0 for some fixed u0 ∈ P}.

The group G0 is also called the restricted group of gauge transforma-
tions. A based gauge transformation that fixes a connection is the identity.
Therefore G0 acts freely on A and the orbit space O0 = A/G0 is an infi-
nite dimensional Hilbert manifold. A(O0,G0) is a principal fiber bundle with
canonical projection

π0 : A → A/G0 = O0.

The relation between G,G0 and the gauge group G is given by the following
proposition.

Proposition 6.6 The group G0 is a normal subgroup of G and the quotient
G/G0 is isomorphic to the gauge group G.

Proof : We note that if π(u0) = x0 then a based gauge transformation f
fixes every point of the fiber π−1(x0). If h ∈ G, then h(u0) ∈ π−1(x0) and
hence f(h(u0)) = h(u0); i.e., (h−1fh)(u0) = u0. This proves that G0 is a
normal subgroup of G. Now define ĥ to be the unique element of G such that
h(u0) = (u0)ĥ. It is now easy to verify that the map

Tu0 : h �→ ĥ of G → G
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is a surjective, homomorphism with kernel G0. From this it follows that the
map

hG0 �→ ĥ of G/G0 → G

is well defined and is an isomorphism of groups. ��
2. Let Z(G) denote the center of the gauge group G. Denote by Z the group
Γ (P ×Ad Z(G)) ∼= Z(G). Then Gc = G/Z is called the group of effec-
tive gauge transformations. By an argument similar to that in the above
proposition we can show that Z ∼= Z(G). Let Air ⊂ A denote the space of
irreducible connections. Then Gc acts freely on Air and we denote by Oir
the orbit space Air/Gc. Oir is an infinite-dimensional Hilbert manifold and
Air(Oir,Gc) is a principal fiber bundle with canonical projection

πc : Air → Air/Gc = Oir .

We now discuss the topology of the various spaces and fibrations intro-
duced above and use it to study the problem of global gauge fixing. We begin
by considering a fiber bundle E over base B and fiber F as follows:

F E�

B
�
p

Given a point x0 ∈ B and a point u0 ∈ π−1(x0) ∼= F , there exists a natural
group homomorphism ∂ : πn(B, x0) → πn−1(F, u0). This homomorphism
together with the homomorphisms induced by the inclusion ι : F → E and
by the bundle projection p leads to the following long exact sequence of
homotopy groups

· · · → πk+1(E, u0)→ πk+1(B, x0)→ πk(F, u0)→ πk(E, u0)→ · · · .

Applying the above homotopy sequence to the various fiber bundles related
to the based and effective gauge transformations we obtain the following
theorem.

Theorem 6.7 Let G be a compact, simply connected, non-trivial Lie group
and let P(M, G) be a principal bundle over a closed, simply connected base
manifold M . Then we have

1. πj(G) ∼= πj(G0), for j = 0, 1;
2. πj(G) ∼= πj(Gc), for j ≥ 2;
3. πj(G0) ∼= πj(O0), ∀j;
4. πj(Gc) ∼= πj(Oir), ∀j.
Furthermore, if M is orientable (resp., spin) then there exists a non-negative
integer j such that πj(G0) (resp., πj(Gc)) is non-trivial.
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Now we use these results and related constructions to study the Gribov
ambiguity.

6.5 Gribov Ambiguity

Recall that the orbit space O whose points represent gauge equivalent con-
nections (gauge potentials), is defined by

O = A/G.

We denote by
p : A → O = A/G

the infinite-dimensional principal G-bundle with natural projection p. The
group of gauge transformations G acts on A by

(g, ω) �→ g · ω, g ∈ G, ω ∈ A .

The induced action on the curvature Ω is given by g.Ω = gΩg−1. These
transformation properties are used to construct gauge invariant functionals
on A. In the Feynman integral approach to quantization one must integrate
these gauge invariant functions over the orbit space O to avoid the infinite
contribution coming from gauge equivalent fields. However, the mathematical
nature of this space is essentially unknown. Physicists often try to get around
this difficulty by choosing a section s : O → A and integrating over its
image s(O) ⊂ A with a suitable weight factor such as the Faddeev–Popov
determinant, which may be thought of as the Jacobian of the change of
variables effected by p|s(O) : s(O)→ O. This procedure amounts to a choice
of one connection in A from each equivalence class in O and is referred to as
gauge fixing. The question of the existence of such sections is thus crucial for
this approach. For the trivial SU(2)-bundle over R4, Gribov showed that the
so called Coulomb gauge fails to be a section, i.e., the Coulomb gauge is not
a true global gauge. Gribov showed that the local section corresponding to
the Coulomb gauge at the zero connection if extended (under some boundary
conditions) intersects the orbit through zero at large distances and thus fails
to be a section. The boundary conditions imposed by Gribov amount to the
gauge potential being defined over the compactification of R4 to S4. He also
discussed a similar problem for R3. This non-existence of a global gauge is
referred to as the Gribov ambiguity. In view of this negative result, it
is natural to ask if any true gauge exists under these boundary conditions.
Without any boundary conditions it is possible to exhibit a global gauge,
but it does not seem to have any physical meaning. We show that, in fact,
the Gribov ambiguity is present in all physically relevant cases, so that no
global gauge exists. The existence of Gribov ambiguity can be proven for
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a number of different base manifolds and gauge groups. For examples and
further details see [166,167,220,351].

The Gribov ambiguity is a consequence of the topology of the principal
bundle A over O as we now explain. Let P (S4, SU(2)) be a principal bundle.
Recall that A is isomorphic to the vector space of 1-forms on S4 with values
in the vector bundle adP = P ×ad g once a connection is fixed. If α ∈ A is a
fixed connection we can write

A ∼= {α + A | A ∈ Λ1(S4, adP )},

where the pull-back of A to P is understood. Consider the slice Sα defined
by

Sα := {α + A | δαA = 0} ⊂ A.

We call this the generalized Coulomb gauge. In particular, if α = 0 then

S0 = {A | δ0A = 0}.

Locally the condition δ0A = 0 can be written as

∑
i

∂Ai

∂xi
= 0.

Locally (or on R4 as a base) one can find a connection with zero time com-
ponent that is gauge equivalent to the given connection. The gauge condition
then reduces to the classical Coulomb gauge condition

div A = 0.

It is convenient to reformulate the definition of the group G of gauge
transformations as follows. Let

E2 = E(M,C2, r, P )

be the vector bundle associated to P with fiber C2, where r is the defining
or standard representation of SU(2) on C2. Then

G ∼= {h ∈ Γ (Hom(E2, E2)) | h(x) ∈ SU(2) , ∀x ∈M}.

Define the isotropy group Gα of a fixed connection α by

Gα = {g ∈ G | g · α = α}.

It is easy to see that g ∈ Gα if and only if

dαg = 0 .
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In particular, g is completely determined by specifying its value at a single
point, say x0 ∈ M . To study the question of the irreducibility of α, we
consider the holonomy group Hα ⊂ SU(2) of the connection α at x0. We
observe that g ∈ Gα if and only if g(x0) ∈ SU(2) and [g(x0), Hα] = 0. If
α is irreducible then this is equivalent to requiring that g(x0) ∈ Z(SU(2))
(the center of SU(2), which is isomorphic to Z2). Recall that the group Gc of
effective gauge transformations is the quotient of G by the center Z(G),
which in this case is isomorphic to Z2 and hence

Gc = G/Z2 .

Let Air ⊂ A be the set of irreducible connections. Gc acts on Air freely
and the quotient Oir is the orbit space of irreducible connections. Air is a
principal Gc-bundle over Oir, i.e.,

Air = P (Oir ,Gc).

We now compute the homotopy groups of the space Air. Let f : Sk → Air ⊂
A be a continuous map. Regarding f as a map of the boundary of a (k + 1)-
simplex Δk+1 we can extend f linearly to a map of Δk+1 to A. It can be
shown that the extended map is homotopic to a map g, which actually lies in
Air . The construction uses the fact that the set Ar of reducible connections
is a closed, nowhere dense, stratified subset of A. A simple argument then
shows that f ∼ g ∼ cα, where cα is the constant map cα(x) = α , ∀x ∈ Sk.
Thus

πk(Air) = 0. (6.20)

Under certain topological conditions it can be shown that Air = A. For
example, if P (M, SU(2)) is a non-trivial bundle and the second cohomology
group H2(M,Z) = 0, then Air = A. In particular, this second condition is
satisfied by M = S4 and we have the following proposition.

Proposition 6.8 Let P be a fixed non-trivial SU(2)-bundle over S4, then
there exists some k such that

πk(Gc) �= 0. (6.21)

Proof : By definition of Gc we have the following short exact sequence of
groups

0→ Z2 → G → Gc → 0.

Therefore, if G is connected then π1(Gc) is non-trivial. For k > 1 we have
πk(G) = πk(Gc). Recall that the group G0 is a group of based gauge trans-
formations over some fixed point of the manifold, which we may take to be
the point at infinity (i.e., the north pole) on S4. We have the following short
exact sequence of groups

0→ G0 → G → SU(2)→ 0.
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It induces the following long exact sequence in homotopy

· · · → πk+1(SU(2))→ πk(G0)→ πk(G)→ πk(SU(2))→ · · ·

We shall use the following part of the above sequence

π3(G)→ π3(SU(2))→ π2(G0)→ π2(G)→ π2(SU(2)). (6.22)

In the present case of an SU(2)-bundle over S4 it can be shown that

πk(G0) ∼= πk+4(SU(2)).

In particular,
π2(G0) ∼= π6(SU(2)) = Z12.

We also know that

π3(SU(2)) = Z and π2(SU(2)) = 0.

Thus, (6.22) becomes

· · · → π3(G)→ Z→ Z12 → π2(G)→ 0.

Hence, if π2(G) = 0 then π3(G) �= 0. Thus either

π2(Gc) = π2(G) �= 0 or π3(Gc) = π3(G) �= 0.

Thus, there exists some k such that πk(Gc) �= 0. ��

We note that equation (6.21) is a consequence of Theorem 6.7 applied
to the case when M = S4 and G = SU(2). However, we have given the
above proof to illustrate the kind of computations involved in establishing
such results. Using the result (6.21) we can prove that no continuous global
gauge s : O → A exists in this case. For if such an s exists then it induces a
map sir, that is,

sir : Oir → Air ,

which is a section of the principal Gc-bundle Air and we have a corresponding
trivialization of the bundle Air = Oir × Gc. Now choose some k such that
πk(Gc) �= 0. Then we have

0 = πk(Air) = πk(Oir)× πk(Gc) �= 0.

This contradiction shows that a continuous global gauge s does not exist in
this case.

The non-existence of a global gauge fixing need not prevent an application
of path-integral methods. For example, one may use the fact that the orbit
space Oir and the space Air are paracompact. Thus we may be able to find a
suitable locally finite covering and a subordinate partition of unity forOir and
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construct local gauges and local weights to define the path integrals. However,
for this procedure to work we need an explicit description of the locally finite
covering and local weights for the Faddeev–Popov approach. More generally,
one can consider physical configuration spaces that are subspaces or quotient
spaces of the space of gauge potentials A. This observation is the starting
point of the development of a geometric setting for field theories in [276],
on which part of our treatment of classical and quantum field theories and
coupled fields is based.

In [167] Gribov proposed another interesting approach that we now dis-
cuss. It is based on the assumption that the physically relevant part of the
configuration space can be defined by the following two conditions:

1. local transversality to the gauge orbits,
2. positivity of the Faddeev–Popov determinant.

The second condition insures that the effective contributions at various orders
in perturbation theory do not tend to infinity at finite distances. The region
of the configuration space satisfying the above two conditions is called the
Gribov region. It is denoted by Ω. The boundary ∂Ω of the Gribov region
is called the first Gribov horizon. It has been conjectured by Gribov that
the problem of confinement of gluons may be due to the restriction of the
configuration space to the physically allowable region Ω. It can be shown
that the two conditions defining the Gribov region Ω are the conditions for
a local minimum of the L2 norm on each gauge orbit. In [97] it is shown that
the L2 norm attains its absolute minimum on each gauge orbit and hence
each gauge orbit intersects the Gribov region at least once at the absolute
minimum. It would be interesting to study the structure of the set of absolute
minima and to check if this set is the appropriate region of integration for
the Feynman path integral method of quantization.

6.6 Matter Fields

Let E(M, F, r, P ) be a vector bundle associated to the principal bundle
P (M, G). We call a section φ ∈ Γ (E) an E-field (or a generalized Higgs
field) on M . If E = ad(P ) := P ×ad g then φ is called the Higgs field (in
the adjoint representation) on M . In general there are several fields that can
be defined on bundles associated with a given manifold. For example, on a
Lorentz 4-manifold the Levi-Civita connection is interpreted as representing
a gravitational potential. Recall that the Levi-Civita connection is the unique
torsion-free, metric connection defined on the bundle of orthonormal frames
O(M) of M . In general if M is a pseudo-Riemannian manifold, we can define
the space of linear connections A(O(M)) on M by

A(O(M)) := {α ∈ Λ1(O(M), so(m)) | α is a connection on O(M)}.
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Generalized theories of gravitation often use this space as their configura-
tion space. If M is a spin manifold and S(M)(M, Spin(m)) is the Spin(m)-
principal bundle, then one can consider the space A(S(M)) of spin connec-
tions on the bundle S(M), defined by

A(S(M)) := {β ∈ Λ1(S(M), spin(m)) | β is a connection on S(M)}.

For a given signature (p, q) we may consider the space RM(p,q)(M) of all
pseudo-Riemannian metrics on M of signature (p, q). The spaceRM(m,0)(M)
of Riemannian metrics on M is denoted simply byRM(M). Recall that there
is a canonical principal GL(m,R)-bundle over M , namely L(M) the bundle
of frames of M . If ρ : GL(m,R) → EndV is a representation of GL(m,R)
on V and E(M, V, ρ, L(M)) is the corresponding associated bundle of L(M),
then we denote by W the space of E-fields Γ (E), i.e.,

W = Γ (E(M, V, ρ, L(M))).

Thus we see that we have an array of fields on a given base manifold M and we
must specify the equations governing the evolution and interactions of these
fields and study their physical meaning. There is no standard procedure for
doing these things. In many physical applications one obtains the coupled
field equations of interacting fields as the Euler–Lagrange equations of a
variational problem with the Lagrangian constructed from the fields. For
any given problem the Lagrangian is chosen subject to certain invariance
or covariance requirements related to the symmetries of the fields involved.
We now discuss three general conditions that are frequently imposed on the
Lagrangians in physical theories. In what follows we restrict ourselves to a
fixed, compact 4-manifold M as the base manifold, but the discussion can
be easily extended to apply to an arbitrary base manifold. Let P (M, G) be a
principal bundle over M whose structure group G carries a bi-invariant metric
h. For example if G is a semisimple Lie group, then a suitable multiple of the
Killing form on g provides a bi-invariant metric on G.

We want to consider coupled field equations for a metric g ∈ RM(M),
a field φ ∈ W(M) (a section of the bundle associated to the frame bundle
L(M)), a connection ω ∈ A(P ) and a generalized Higgs field ψ ∈ H =
ΓE(M, Vr, r, P ), where r : G → End(Vr) is a representation of the gauge
group G. Thus, our configuration space is defined by

C := RM×W ×A×H.

We assume that the field equations are the variational equations of an action
integral defined by a Lagrangian L on the configuration space with values in
Λ4(M). When a fixed volume form such as the metric volume form is given,
we may regard L as a real-valued function. We shall use any one of these
conventions without comment. The action E is given by
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E(g, φ, ω, ψ) =
∫

M

L(g, φ, ω, ψ).

There are various groups associated with the geometric structures involved in
the construction of these fields, groups that have natural actions on them. We
shall require the Lagrangian to satisfy one or more of the following conditions:
i) naturality, ii) local regularity, iii) conformal invariance.

i) Naturality: Naturality with respect to the group of generalized gauge
transformations is defined as follows. Let F ∈ DiffM (P ) be a generalized
transformation covering f ∈ Diff(M). Then by naturality with respect to
DiffM (P ) we mean that

L(f∗g, f∗
ρφ, F ∗ω, F ∗

r ψ) = f∗L(g, φ, ω, ψ), (6.23)

where f∗
ρ is the induced action of f on W , and F ∗

r is the action induced by
the generalized gauge transformation F on H. In the absence of the principal
bundle P this condition reduces to naturality with respect to Diff(M) and is
Einstein’s condition of general covariance of physical laws derived from the
Lagrangian formalism. Further, in the absence ofW(M) this condition corre-
sponds to the covariance of gravitational field equations when the Lagrangian
is taken to be the standard Einstein–Hilbert Lagrangian. If we require nat-
urality with respect to the group G, then condition (6.23) is precisely the
principle of gauge invariance introduced by Weyl. Since in this case f = id,
condition (6.23) becomes

L(g, φ, F ∗ω, F ∗
r ψ) = L(g, φ, ω, ψ).

The concept of natural tensors on a Riemannian manifold was introduced by
Epstein. It was extended to oriented Riemannian manifolds in [361], where a
functorial formulation of naturality is given and a complete classification of
natural tensor fields is given under some regularity conditions.

ii) Local regularity: Given any coordinate chart on M and a local gauge
we can express the various potentials and fields with respect to induced bases.
We require that in this system the Lagrangian be expressible as a universal
polynomial in

(det g)−1/2, (det h)−1/2, gij , ∂|α|gij/∂xα, φ|β|, ω|γ|, ψ|δ|, . . .

where α, β, γ, δ, . . ., are suitable multi-indices (i.e., in the coefficients and
derivatives of the potentials and fields in the induced bases). In physical
applications one often restricts the order of derivatives that can occur in this
local expression to at most two. For example in gravitation one considers
natural tensors satisfying the conditions that they contain derivatives up to
order 2 and depend linearly on the second order derivatives. Then it is well-
known that such tensors can be expressed as

c1R
ij + c2g

ijS + c3g
ij ,
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where Rij are the components of the Ricci tensor Ric and S is the scalar
curvature. Einstein’s equations with or without the cosmological constant
involve the above combination with suitable values of the constants c1, c2, c3.
Einstein’s field equations and their generalization are discussed in the next
section.

Applying the classification theorem of [361] to SO(4)-actions on the metric
and gauge fields, we get the following general form for the Lagrangian:

L(g, ω) = c1S
2 + c2‖K‖2 + c3‖W+‖2 + c4‖W−‖2

+ c5‖Fω ∧ Fω‖+ c6‖Fω ∧ (∗Fω)‖, (6.24)

where S, K, W+, W− are the SO(4)-invariant components of the Rieman-
nian curvature and Fω is the gauge field of the gauge potential ω. For a
suitable choice of constants in the above Lagrangian we obtain various topo-
logical invariants of M and P as well as the pure Yang–Mills action. For
example, the first Pontryagin class of M is given by

p1(M) =
1

4π2

∫

M

(|W+|2 − |W−|2).

The first Pontryagin class of P is given by

p1(P ) =
1

8π2

∫

M

(|F+
ω |2 − |F−

ω |2),

which turns out to be the instanton number of P .
To satisfy the conditions of naturality and local regularity for fields coupled

to gauge fields physicists often start with ordinary derivatives of associated
fields and the coupling is achieved by replacing these by gauge covariant
derivatives in the Lagrangian. This is called the principle of minimal cou-
pling (or minimal interaction). These two requirements can also be for-
mulated by taking the Lagrangian to be defined on sections of suitable jet
bundles on the space of connections. Using this approach a generalization of
the classical theorem of Utiyama has been obtained [153].

iii) Conformal invariance: A conformal transformation of a manifold
M is a diffeomorphism f : M →M such that

f∗g = e2σg.

The condition of conformal invariance of the Lagrangian may be expressed
as follows

L(e2σg, φ, ω, ψ) = L(g, φ, ω, ψ), ∀σ ∈ F(M).

In general, Lagrangians satisfying the conditions of naturality and regularity
need not satisfy the condition of conformal invariance. This condition is often
used to select parameters such as the dimension of the base space and the rank
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of the representation. A particular case of (6.24) is the Yang–Mills Lagrangian
with action

E =
1

8π2

∫

M

Fω ∧ ∗Fω.

It is an example of a Lagrangian that is conformally invariant only if
dimM = 4.

A large number of Lagrangians satisfying the naturality and regularity
requirements are used in the physics literature. They are broadly classified
into Lagrangians where gauge and other force fields are coupled to fields of
bosonic matter, which has integral spin, and to fields of fermionic matter,
which has half-integral spin. For example, a bosonic Lagrangian is given by

Lboson(g, ω, ψ) = ‖Fω‖2 + ‖∇ψ‖2 +
1
6
S‖ψ‖2 − V (ψ),

where V is the potential function taken to be a gauge-invariant polynomial
of degree ≤ 4 on the fibers of E. If M is a spin manifold and if Σ is a bundle
associated to the spin bundle, then we define an E-valued spinor to be a
section of Σ ⊗ E. An example of a fermion Lagrangian is given by

Lfermion(g, ω, ξ) = ‖Fω‖2 + 〈D(ξ), ξ〉,

where ξ ∈ Γ (Σ⊗E) and D is the Dirac operator on E-valued spinors. Several
important properties of coupled field equations are studied in [314,58].

6.7 Gravitational Field Equations

There are several ways of deriving Einstein’s gravitational field equations.
For example, as we observed in the previous section, we can consider natural
tensors satisfying the conditions that they contain derivatives of the fun-
damental (pseudo-metric) tensor up to order 2 and depend linearly on the
second order derivatives. Then we obtain the tensor

c1R
ij + c2g

ijS + c3g
ij ,

where Rij are the components of the Ricci tensor Ric and S is the scalar
curvature. Requiring this tensor to be divergenceless and using the Bianchi
identities leads to the relation c1 + 2c2 = 0 between the constants c1, c2, c3.
Choosing c1 = 1 and c3 = 0 we obtain Einstein’s equations (without the
cosmological constant), which may be expressed as

E = −T, (6.25)

where E := Ric− 1
2Sg is the Einstein tensor and T is an energy-momentum

tensor on the space-time manifold which acts as the source term. Now the
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Bianchi identities satisfied by the curvature tensor imply that

div E := δ(g�E) = 0.

Hence, if Einstein’s equations (6.25) are satisfied, then for consistency we
must have

div T = 0. (6.26)

Equation (6.26) is called the differential (or local) law of conservation of
energy and momentum. However, integral (or global) conservation laws can
be obtained by integrating equation (6.26) only if the space-time manifold
admits Killing vectors. Thus, equation (6.26) has no clear physical meaning,
except in special cases. An interesting discussion of this point is given by
Sachs and Wu [331]. Einstein was aware of the tentative nature of the right
hand side of equation (6.25), but he believed strongly in the expression on
the left hand side. By taking the trace of both sides of equation (6.25) we are
led to the condition

S = t (6.27)

where t denotes the trace of the energy-momentum tensor. The physical
meaning of this condition seems even more obscure than that of condi-
tion (6.26). If we modify equation (6.25) by adding the cosmological term
cg (c is called the cosmological constant) to the left hand side of equa-
tion (6.25), we obtain Einstein’s equation with cosmological constant

E + cg = −T. (6.28)

This equation also leads to the consistency condition (6.26), but condi-
tion (6.27) is changed to

S = t + 4c. (6.29)

Using (6.29), equation (6.28) can be rewritten in the following form

K = −(T − 1
4
tg), (6.30)

where
K = −(Ric− 1

4
Sg) (6.31)

is the trace-free part of the Ricci tensor of g. We call equation (6.30) gen-
eralized field equations of gravitation. We now show that these equations
arise naturally in a geometric formulation of Einstein’s equations. We begin
by defining a tensor of curvature type.

Definition 6.2 Let C be a tensor of type (4, 0) on M . We can regard C as a
quadrilinear mapping (pointwise) so that for each x ∈M , Cx can be identified
with a multilinear map

Cx : T ∗
x (M)× T ∗

x (M)× T ∗
x (M)× T ∗

x (M)→ R.
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We say that the tensor C is of curvature type if Cx satisfies the following
conditions for each x ∈M and for all α, β, γ, δ ∈ T ∗

x (M);

1. Cx(α, β, γ, δ) = −Cx(β, α, γ, δ),
2. Cx(α, β, γ, δ) = −Cx(α, β, δ, γ),
3. Cx(α, β, γ, δ) + Cx(α, γ, δ, β) + Cx(α, δ, γ, β) = 0.

From the above definition it follows that a tensor C of curvature type also
satisfies the following condition:

Cx(α, β, γ, δ) = Cx(γ, δ, α, β), ∀x ∈M.

Example 6.3 The Riemann–Christoffel curvature tensor is of curvature
type. Indeed, the definition of tensors of curvature type is modeled after this
fundamental example. Another important example of a tensor of curvature
type is the tensor G defined by

Gx(α, β, γ, δ) = gx(α, γ)gx(β, δ)− gx(α, δ)gx(β, γ), ∀x ∈M,

where g is the fundamental or metric tensor of M .

We now define the curvature product of two symmetric tensors of type
(2, 0) on M . The curvature product was introduced in [264] and used in [273]
to obtain a geometric formulation of Einstein’s equations.

Definition 6.3 Let g and T be two symmetric tensors of type (2, 0) on M .
The curvature product of g and T , denoted by g ×c T , is a tensor of type
(4, 0) defined by

(g ×c T )x(α, β, γ, δ) := 1
2

[
g(α, γ)T (β, δ) + g(β, δ)T (α, γ)

−g(α, δ)T (β, γ)− g(β, γ)T (α, δ)
]
,

for all x ∈M and α, β, γ, δ ∈ T ∗
x (M).

In the following proposition we collect some important properties of the
curvature product and tensors of curvature type.

Proposition 6.9 Let g and T be two symmetric tensors of type (2, 0) on M
and let C be a tensor of curvature type on M . Then we have the following:

1. g ×c T = T ×c g;
2. g ×c T is a tensor of curvature type:
3. g ×c g = G, where G is the tensor defined in Example 6.3;
4. Gx induces a pseudo-inner product on Λ2

x(M), ∀x ∈M ;
5. Cx induces a symmetric, linear transformation of Λ2

x(M), ∀x ∈M .

We denote the Hodge star operator on Λ2
x(M) by Jx. The fact that

M is a Lorentz 4-manifold implies that Jx defines a complex structure on
Λ2
x(M), ∀x ∈M. Using this complex structure we can give a natural structure

of a complex vector space to Λ2
x(M). Then we have the following proposition.
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Proposition 6.10 Let L : Λ2
x(M) → Λ2

x(M) be a real, linear transforma-
tion. Then the following are equivalent:

1. L commutes with Jx;
2. L is a complex linear transformation of the complex vector space Λ2

x(M);
3. The matrix of L with respect to a Gx-orthonormal basis of Λ2

x(M) is of
the form (

A B
−B A

)
(6.32)

where A, B are real 3× 3 matrices.

We now define the gravitational tensor Wg, of curvature type, which in-
cludes the source term.

Definition 6.4 Let M be a space-time manifold with fundamental tensor g
and let T be a symmetric tensor of type (2, 0) on M . Then the gravitational
tensor Wg is defined by

Wg := R + g ×c T, (6.33)

where R is the Riemann–Christoffel curvature tensor of type (4, 0).

We are now in a position to give a geometric formulation of the generalized
field equations of gravitation.

Theorem 6.11 Let Wg denote the gravitational tensor defined by (6.33) with
source tensor T . We also denote by Wg the linear transformation of Λ2

x(M)
induced by Wg. Then the following are equivalent:

1. g satisfies the generalized field equations of gravitation (6.30);
2. Wg commutes with Jx;
3. Wg is a complex linear transformation of the complex vector space Λ2

x(M).

We shall call the triple (M, g, T ) a generalized gravitational field if any
one of the conditions of Theorem 6.11 is satisfied. Generalized gravitational
field equations were introduced by the author in [264]. Their mathemati-
cal properties have been studied in [275, 266, 287]. Solutions of Marathe’s
generalized gravitational field equations that are not solutions of Einstein’s
equations are discussed in [69]. We note that the above theorem and the last
condition in Proposition 6.8 can be used to discuss the Petrov classification
of gravitational fields (see Petrov [316]). The tensor Wg can be used in place
of R in the usual definition of sectional curvature to define the gravitational
sectional curvature on the Grassmann manifold of non-degenerate 2-planes
over M and to give a further geometric characterization of gravitational field
equations. We observe that the generalized field equations of gravitation con-
tain Einstein’s equations with or without the cosmological constant as special
cases. Solutions of the source-free generalized field equations are called gravi-
tational instantons. If the base manifold is Riemannian, then gravitational
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instantons correspond to Einstein spaces. A detailed discussion of the struc-
ture of Einstein spaces and their moduli spaces may be found in [39].

We note that, over a compact, 4-dimensional, Riemannian manifold (M, g),
the gravitational instantons that are not solutions of the vacuum Einstein
equations are critical points of the quadratic, Riemannian functional or action
A2(g) defined by

A2(g) =
∫

M

S2dvg.

In fact, using any polynomial in S of degree > 1 in the above action leads,
generically to the gravitational instanton equations. Furthermore, the stan-
dard Hilbert–Einstein action

A1(g) =
∫

M

Sdvg

also leads to the generalized field equations when the variation of the action
is restricted to metrics of volume 1.

There are several differences between the Riemannian functionals used in
theories of gravitation and the Yang–Mills functional used to study gauge field
theories. The most important difference is that the Riemannian functionals
are dependent on the bundle of frames of M or its reductions, while the Yang–
Mills functional can be defined on any principal bundle over M . However, we
have the following interesting theorem [20].

Theorem 6.12 Let (M, g) be a compact, 4-dimensional, Riemannian man-
ifold. Let Λ2

+(M) denote the bundle of self-dual 2-forms on M with induced
metric G+. Then the Levi-Civita connection λg on M satisfies the gravita-
tional instanton equations if and only if the Levi-Civita connection λG+ on
Λ2

+(M) satisfies the Yang–Mills instanton equations.

6.8 Geometrization Conjecture and Gravity

The classification problem for low-dimensional manifolds is a natural ques-
tion after the success of the case of surfaces by the uniformization theorem. In
1905, Poincaré formulated his famous conjecture, which states, in the smooth
case: A closed, simply connected 3-manifold is diffeomorphic to S3, the stan-
dard sphere. A great deal of work in 3-dimensional topology the century that
followed was motivated by this. In the 1980s Thurston studied hyperbolic
manifolds. This led him to his “geometrization conjecture” about the exis-
tence of homogeneous metrics on all 3-manifolds. It includes the Poincaré
conjecture as a special case. We already discussed this in Chapter 2. In the
case of 4-manifolds there is at present no analogue of the geometrization
conjecture. We now discuss briefly the main idea behind Perelman’s proof of
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the geometrization conjecture and the relation of the perturbed Ricci flow
equations to Einstein’s equations in Euclidean gravity.

The Ricci flow equations

∂gij
∂t

= −2Rij

for a Riemannian metric g were introduced by Hamilton in [183]. They form
a system of nonlinear second order partial differential equations. Hamilton
proved that this equation has a unique solution for a short time for any
smooth metric on a closed manifold. The evolution equation for the metric
leads to the evolution equations for the curvature and Ricci tensors and for
the scalar curvature. By developing a maximum principle for tensors Hamil-
ton proved that the Ricci flow preserves the positivity of the Ricci tensor in
dimension 3 and that of the curvature operator in dimension 4 [184]. In each
of these cases he proved that the evolving metrics converge to metrics of con-
stant positive curvature (modulo scaling). These and a series of further papers
led him to conjecture that the Ricci flow with surgeries could be used to prove
the Thurston geometrization conjecture. In a series of e-prints Perelman de-
veloped the essential framework for implementing the Hamilton program. We
would like to add that the full Einstein equations with dilaton field as source
play a fundamental role in Perelman’s work (see, arXiv.math.DG/0211159,
0303109, 0307245 for details) on the geometrization conjecture. A corollary
of this work is the proof of the long standing Poincaré conjecture. Perelman
was awarded the Fields medal at the ICM 2006 in Madrid for his proof of the
Poincaré and the geometrization conjectures. His ideas and methods have al-
ready found many applications in analysis and geometry. On March 18, 2010
Perelman was awarded the Clay Mathematics Institute’s first millenium prize
of one million dollars for his resolution of the Poincaré conjecture. A complete
proof of the geometrization conjecture through application of the Hamilton–
Perelman theory of the Ricci flow has now appeared in [70] in a special issue
dedicated to the memory of S.-S. Chern,5 one of the greatest mathematicians
of the twentieth century.

The Ricci flow is perturbed by a scalar field, which corresponds in string
theory to the dilaton. It is supposed to determine the overall strength of all
interactions. The low energy effective action of the dilaton field coupled to
gravity is given by the action functional

F(g, f) =
∫

M

(R + |∇f |2)e−fdv.

5 I first met Prof. Chern and his then newly arrived student S.-T. Yau in 1973 at the
AMS summer workshop on differential geometry held at Stanford University. Chern was
a gourmet and his conference dinners were always memorable. I attended the first one
in 1973 and the last one in 2002 on the occassion of the ICM satellite conference at his
institute in Tianjin. In spite of his advanced age and poor health he participated in the
entire program and then continued with his duties as President of the ICM in Beijing.
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Note that when f is the constant function the action reduces to the classical
Hilbert–Einstein action. The first variation can be written as

δF(g, f) =
∫

M

[−δgij(Rij+∇if∇jf)+(1
2δgij(gij−δf)(2Δf−|∇f |2+R)]dm,

where dm = e−fdv. If m =
∫
M e−fdv is kept fixed, then the second term in

the variation is zero and then the symmetric tensor −(Rij +∇if∇jf) is the
L2 gradient flow of the action functional Fm =

∫
M (R+|∇f |2)dm . The choice

of m is similar to the choice of a gauge. All choices of m lead to the same
flow, up to diffeomorphism, if the flow exists. We remark that in the quan-
tum field theory of the 2-dimensional nonlinear σ-model, the Ricci flow can
be considered as an approximation to the renormalization group flow. This
suggests gradient-flow-like behavior for the Ricci flow, from the physical point
of view. Perelman’s calculations confirm this result. The functional Fm has
also a geometric interpretation in terms of the classical Bochner–Lichnerowicz
formulas with the metric measure replaced by the dilaton twisted measure
dm.

The corresponding variational equations are

Rij − 1
2Rgij = −(∇i∇jf − 1

2 (Δf)gij).

These are the usual Einstein equations with the energy-momentum tensor of
the dilaton field as source. They lead to the decoupled evolution equations

(gij)t = −2(Rij +∇i∇jf), ft = −R−Δf.

After applying a suitable diffeomorphism these equations lead to the gra-
dient flow equations. This modified Ricci flow can be pushed through the
singularities by surgery and rescaling. A detailed case by case analysis is
then used to prove Thurston’s geometrization conjecture [70]. This includes
as a special case the classical Poincaré conjecture. A complete proof of the
Poincaré conjecture without appealing to the Thurston geometrization con-
jecture may be found in the book [289] by Morgan and Tian. In fact, they
prove a more general result which implies a closely related stronger conjec-
ture called the 3-dimensional spherical space-form conjecture. This conjecture
states that a closed 3-manifold with finite fundamental group is diffeomor-
phic to a 3-dimensional spherical space-form, i.e., the quotient of S3 by free,
linear action of a finite subgroup of the orthogonal group O(4).



Chapter 7

Theory of Fields, II: Quantum and
Topological

7.1 Introduction

Quantization of classical fields is an area of fundamental importance in mod-
ern mathematical physics. Although there is no satisfactory mathematical
theory of quantization of classical dynamical systems or fields, physicists
have developed several methods of quantization that can be applied to spe-
cific problems. Most successful among these is QED (quantum electro-
dynamics), the theory of quantization of electromagnetic fields. The physi-
cal significance of electromagnetic fields is thus well understood at both the
classical and the quantum level. Electromagnetic theory is the prototype of
classical gauge theories. It is therefore natural to try to extend the methods
of QED to the quantization of other gauge field theories. The methods of
quantization may be broadly classified as non-perturbative and perturbative.
The literature pertaining to each of these areas is vast. See for example, the
two volumes [95,96] edited by Deligne, et al. which contain the lectures given
at the Institute for Advanced Study, Princeton, during a special year devoted
to quantum fields and strings; the book by Nash [298], and [41,354,89]. For
a collection of lectures covering various aspects of quantum field theory, see,
for example, [134,133,376].

Our aim in this chapter is to illustrate each of these methods by discussing
some specific examples where a reasonably clear mathematical formulation
is possible. A brief account of the non-perturbative methods in the quan-
tization of gauge fields is given in Section 7.2. A widely used perturbative
method in gauge theories is that of semiclassical approximation. We devote
Section 7.3 to a mathematical formulation of semiclassical approximation in
Euclidean Yang–Mills theory. This requires a detailed knowledge of the geom-
etry of the moduli spaces of instantons and methods of regularization for the
infinite-dimensional quantities. Two such methods are indicated in this sec-
tion. Both classical and quantum field theories lead to topological invariants
of base manifolds on which they are defined. We call these topological field
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theories, or TFT. They are subdivided into topological classical field
theories, or TCFT and topological quantum field theories, or TQFT.
The earliest result in TCFT is the Gauss formula for the linking number.
We discuss this in Section 7.4. Donaldson’s instanton invariants are also dis-
cussed here. Topological quantum field theories are discussed in Section 7.5.
Interpretation of the Donaldson’s polynomial invariants and the Jones poly-
nomial via TQFT is then given. The Atiyah–Segal axioms for TQFT are also
considered in this section. These topics are of independent interest and we
will return to them in later chapters. They are included here because of their
recent connections with topological quantum field theories, which now form
an important branch of quantum field theory (or QFT for short). Ideas from
QFT have already led to new ways of looking at old topological invariants of
low-dimensional manifolds as well as to surprising new invariants.

7.2 Non-perturbative Methods

From the mathematical point of view, gauge field theories are classical field
theories formulated on the infinite-dimensional space of connections on a prin-
ciple bundle over a 4-dimensional space-time manifold M [273]. In physical
applications the manifold M is usually a non-compact, Lorentzian 4-manifold.
In many cases, M is taken to be the flat Minkowski space of special relativ-
ity. The corresponding quantum field theory is constructed by considering the
space of classical fields as a configuration space C and defining the quantum
expectation values of gauge invariant functions on C by using path integrals.
This is usually referred to as the Feynman path integral method of quan-
tization. Application of this method together with perturbative calculations
has yielded some interesting results in the quantization of gauge theories. The
starting point of this method is the choice of a Lagrangian defined on the con-
figuration space of classical gauge fields. This Lagrangian is used to define the
action functional that enters in the integrand of the Feynman path integral.
Two important examples of the action functional considered are the Yang–
Mills action and the Yang–Mills–Higgs action (see Chapter 8). Dimensional
reduction allows us to think of a Yang–Mills–Higgs field as a Yang–Mills field
on a higher dimensional manifold which is invariant under a certain sym-
metry group. Thus we may restrict our attention to the Yang–Mills case.
Furthermore, we wish to consider only the Euclidean quantum field theory,
where the pseudo-Riemannian space-time manifold is replaced by a Rieman-
nian manifold. In physical literature the passage from a Lorentzian manifold
to a Riemannian manifold is often referred to as a Wick rotation of the
time coordinate. The Euclidean quantum field theory plays an important
role in the calculation of tunneling amplitudes in quantum field theories (see
Coleman [80] for a discussion of this and related aspects of quantization).
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We consider the following mathematical setting for Euclidean quantum
field theory. Let (M, g) be a compact, connected, oriented, Riemannian 4-
manifold and let G be a compact, semisimple Lie group with Lie algebra
g. From the physical point of view, the group G is the gauge group of the
classical gauge field that we wish to quantize. Let P (M, G) be a principal G-
bundle. If G = SU(n), then the isomorphism class of P is determined by its
topological quantum number or the instanton number k = −c2(P ) ∈ Z. We
introduce a free parameter μ in the theory by considering the one-parameter
family of G-invariant inner products 〈X, Y 〉μ on the Lie algebra g defined by

〈X, Y 〉μ := − 1
μ

K(X, Y ), 0 < μ ∈ R, (7.1)

where K is the Killing form on G.
The inner product defined by (7.1) and the metric g induce inner products

on each fiber of the space Λp(M, ad(P )) = Λp(M)⊗ ad(P ) of p-forms on M
with values in the bundle ad(P ) = P ×ad g. We denote these inner products
by 〈 , 〉gμ or simply by 〈 , 〉μ when the metric g is fixed. The corresponding
pointwise norm is denoted by | |gμ, or simply by | |μ. By integration over M
these define the L2 inner product

〈〈α, β〉〉μ :=
∫

M

〈α, β〉μdvg, ∀α, β ∈ Λp(M, ad(P )), (7.2)

where dvg is the volume form on M determined by the metric g. The norm of
α corresponding to this L2 inner product 〈〈 , 〉〉μ is denoted by ‖α‖μ. Thus,

‖α‖2μ =
∫

M

|α|2μdvg, α ∈ Λp(M, ad(P )). (7.3)

In classical gauge field theories, the norms corresponding to different coupling
constants μ lead to the same field equations up to trivial rescaling. However,
as we shall show below, on quantization the different coupling constants μ
lead to a one-parameter family of quantum field theories. By taking μ to be
a suitable function of the other parameters of the given theory it may be
possible to construct a renormalized version of the theory.

Recall that a connection ω on P determines the exterior covariant differ-
ential dω, its formal adjoint δω, and the covariant derivative ∇ω on the full
tensor algebra with values in ad(P ). These in turn determine the Laplacians
on the various spaces Λp(M, ad(P )). The ±1 eigenspaces Λ2

±(M, ad(P )) of
the Hodge operator give a decomposition of the curvature Fω into its self-dual
and anti-dual parts, i.e.,

Fω = F+
ω + F−

ω . (7.4)

In terms of these parts we can write the instanton number k and the Yang–
Mills action Sμ as follows:
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k =
μ

8π2

[
||F+

ω ||2μ − ||F−
ω ||2μ

]
=

μ

8π2

∫

M

[
|F+
ω |2μ − |F−

ω |2μ
]
dvg, (7.5)

Sμ(ω) =
1

8π2
[||F+

ω ||2μ + ||F−
ω ||2μ] =

1
8π2

∫

M

[|F+
ω |2μ + |F−

ω |2μ]dvg. (7.6)

From equation (7.6) it follows that μ rescales the Yang–Mills action, i.e.,
Sμ(ω) = 1

μS1(ω). We denote by AP the space of connections on P and by
GP the group of gauge transformations. The Yang–Mills action Sμ defined on
AP is gauge invariant (i.e., invariant under the natural action of GP on AP ).
We now define A(M) to be the disjoint union of the AP over all equivalence
classes of principal G-bundles over M . The Euclidean quantum field theory
may be considered an assignment of the quantum expectation 〈Φ〉μ to
each gauge invariant function Φ : A(M) → R. A gauge invariant function
Φ : A(M) → R is called an observable in quantum field theory. In the
Feynman path integral approach to quantization, the quantum expecta-
tion 〈Φ〉μ of an observable is given by the following expression

〈Φ〉μ =

∫
A(M)

e−Sµ(ω)Φ(ω)DA∫
A(M)

e−Sµ(ω)DA , (7.7)

where DA denotes a measure on A(M) whose precise definition is not known,
in general. It is customary to express the quantum expectation < Φ >μ in
terms of the partition function Zμ defined by

Zμ(Φ) :=
∫

A(M)

e−Sµ(ω)Φ(ω)DA. (7.8)

Thus, we can write

〈Φ〉μ =
Zμ(Φ)
Zμ(1)

. (7.9)

In the above equations we have written the quantum expectation as 〈Φ〉μ to
indicate explicitly that, in fact, we have a one-parameter family of quantum
expectations indexed by the coupling constant μ in the Yang–Mills action.
In what follows we drop this subscript with the understanding that we do
have a one-parameter family of quantum field theories when dealing with
non-perturbative aspects of the theory. A mathematically precise definition
of the Feynman path integral is not available at this time. Feynman (1918–
1988) developed his diagrams and a set of rules to extract physically relevant
information from the path integral in specific applications. He successfully
applied these methods to his study of quantum electrodynamics. Feynman
had a wide range of interests in and out of science. He received the Nobel
Prize for physics for 1965, jointly with Schwinger and Tomonaga for their
work in quantum electrodynamics.
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There are several examples of gauge-invariant functions. For example, pri-
mary characteristic classes evaluated on suitable homology cycles give an
important family of gauge invariant functions. The instanton number k of
P (M, G) belongs to this family, as it corresponds to the second Chern class
evaluated on the fundamental cycle of M representing the fundamental class
[M ]. The pointwise norm |Fω |x of the gauge field at x ∈ M , the absolute
value |k| of the instanton number k, and the Yang–Mills action Sμ are also
gauge-invariant functions. We now give two other important examples of
gauge-invariant functions.

Example 7.1 (Instanton scale size λ) In Chapter 9 we will show that an
instanton solution of Yang–Mills equations on R4 (or on its compactification
S4) is characterized by three parameters, namely the instanton number k,
the center x ∈ R4, and the scale size λ. We can extend the definition given
there to the entire configuration space A(R4) as follows:

λ(ω) = inf{ρ(x)|x ∈ R4}, (7.10)

where

ρ(x) = sup

{
r

∣∣∣∣
∫

S3(x,r)

|Fω|2 ≤ 1
2Sμ

}
.

Thus, λ(ω) is the radius of the smallest sphere that contains half the Yang–
Mills action. It is easy to see that the function λ : A(R4) → R is gauge-
invariant. An expression for the semiclassical expectation of λ is given in the
next section.

In the next example we introduce two families of gauge invariant func-
tions that generalize the Wilson loop functional well-known in the physics
literature.

Example 7.2 (Wilson loop functional) Let ρ denote a representation of G
on V . Let α ∈ Ω(M, x0) denote a loop at x0 ∈ M. Let π : P (M, G) → M
be the canonical projection and let p ∈ π−1(x0). If ω is a connection on P
then the parallel translation along α maps the fiber π−1(x0) into itself. Let
α̂ω : π−1(x0) → π−1(x0) denote this map. Since G acts transitively on the
fibers, ∃gω ∈ G such that α̂ω(p) = pgω. Now define

Wρ,α(ω) := Tr[ρ(gω)]. (7.11)

We note that gω and hence ρ(gω) change by conjugation if instead of p we
choose another point in the fiber π−1(x0), but the trace remains unchanged.

Alternatively, we can consider the vector bundle P ×ρ V associated to the
principal bundle P and parallel displacement of its fibers induced by α. Let π :
P×ρV →M be the canonical projection. We note that in this case π−1(x0) ∼=
V . Now the map α̂ω : π−1(x0)→ π−1(x0) is a linear transformation and we
can define

Wρ,α(ω) := Tr[α̂ω]. (7.12)
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We call these Wρ,α the Wilson loop functionals associated to the repre-
sentation ρ and the loop α. In the particular case when ρ = Ad, the adjoint
representation of G on g, our constructions reduce to those considered in
physics.

We note that the gauge invariance of Φ makes the integral defining Z di-
vergent, due to the infinite contribution coming from gauge-equivalent fields.
To avoid this difficulty observe that the integrand is gauge-invariant and
hence Z descends to the orbit space O = A(M)/G and can be evaluated by
integrating over this orbit space O. However, the mathematical structure of
this space is essentially unknown at this time. Physicists have attempted to
get around this difficulty by choosing a section s : O → A and integrating
over its image s(O) with a suitable weight factor such as the Faddeev–Popov
determinant, which may be thought of as the Jacobian of the change of vari-
ables effected by p|s(O) : s(O) → O. As we saw in Chapter 6, this gauge
fixing procedure does not work in general, due to the presence of the Gri-
bov ambiguity. Also the Faddeev–Popov determinant is infinite-dimensional
and needs to be regularized. This is usually done by introducing the anti-
commuting Grassmann variables called the ghost and anti-ghost fields.
The Lagrangian in the action term is then replaced by a new Lagrangian
containing these ghost and anti-ghost fields. This new Lagrangian is called
the effective Lagrangian. The effective Lagrangian is not gauge-invariant,
but it is invariant under a special group of transformations involving the ghost
and anti-ghost fields. These transformations are called the BRST (Becchi–
Rouet–Stora–Tyutin) transformations. On the infinitesimal level the BRST
transformations correspond to cohomology operators and define what may be
called the BRST cohomology. The non-zero elements of the BRST cohomol-
ogy are called anomalies in the physics literature. At present there are several
interesting proposals for studying these questions, proposals that make use
of equivariant cohomology in the infinite-dimensional setting and which are
closely related to the various interpretations of BRST cohomology (see, for
example, [21,193,236,404]). A detailed discussion of the material of this sec-
tion from a physical point of view may be found in the books on quantum
field theory referred in the introduction. A geometrical interpretation of some
of these concepts may be found in [27,86].

The general program of computing the curvature of connections on infinite
dimensional bundles and of defining appropriate generalizations of character-
istic classes was initiated by Isadore Singer in his fundamental paper [351] on
Gribov ambiguity. Today this is an active area of research with strong links
to quantum field theory (see, for example, [23,61,174,233,234,352,404]). We
now give a brief description of some aspects of this program.

We proceed by analogy with the finite-dimensional case. To simplify con-
siderations let us suppose that the group of gauge transformations G acts
freely on the space of gauge connections A. Then we can consider A to be a
principal G-bundle over the space B = A/G of gauge equivalence classes of
connections. Define the map
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F− : A → Λ2
−(M, ad(P )) by ω → F−

ω . (7.13)

Then F− is equivariant with respect to the standard action of G on A and the
linear action of G on the vector space Λ2

−(M, ad(P )). Hence, we may think
of F− as defining a section of the vector bundle E associated to A with fiber
Λ2
−(M, ad(P )). Thus, F− is the infinite-dimensional analogue of a vector field

and we may hope to obtain topological information about the base space B by
studying the set of zeros of this vector field. In the generic finite-dimensional
case, one can define an index of a vector field by studying its zero set and
thereby obtain a topological invariant, namely the Euler characteristic. In
our case, the zeros of F− in A are precisely the Yang–Mills instantons and
the zero set of the associated section sF− (see Theorem 6.2) is the moduli
spaceM+ ⊂ B. Thus

M+ = (F−)−1({0})/G. (7.14)

In this general setting, there is no obvious way to define the index of sF− and
to consider its relation with the analytic definition of the Euler characteristic,
which should correspond to an integral of some “curvature form” analogous
to the Chern–Gauss–Bonnet integrand.

In the case of Abelian gauge fields we have the following argument (see
[280] for details). Once again we consider the finite-dimensional case. Here
the Thom class, which lies in the cohomology of the vector bundle over M
with compact support, is used to obtain the desired relation between the
index and the Euler characteristic as follows. We assume that there exists a
section s of the vector bundle E. Using s, we pull back the Thom class α to
a cohomology class on the base M . In fact, we have a family of homologous
sections λs, λ ∈ R, and the corresponding family of pull-backs (λs)∗α, which,
for λ = 0, gives the Euler class of M and, for large λ (λ→∞) gives, in view
of the compact support of α, the index of s. Thus, one would like to obtain a
suitable generalization of the Thom class in the infinite-dimensional case. We
shall refer to this idea—of interpolating between two different definitions of
the Euler characteristic—as the Mathai–Quillen formalism. We consider
the case of quantum electrodynamics where the gauge group G is U(1). In
this case the moduli space of instantons is 0-dimensional and the computation
of the index can be carried out as in the finite-dimensional case. The index
turns out to be related to an important new invariant due to Donaldson (see
[109]). Even in this case there does not seem to be any version of the Thom
class with compact support. Instead, we have an equivariant version with
Gaussian asymptotics, which may be regularized. Locally, the action of U(1)
on R2 is given by the vector field

X = −x1
∂

∂x2
+ x2

∂

∂x1
.

If ω is a gauge connection form on P (M, U(1)), then a representative of an
equivariant Thom class α is given by
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α = 1
πe−|x|2(u + 1

2dω + (dx1 + ωx2) ∧ (dx2 − ωx1)), (7.15)

where u is a degree-2 indeterminate, which enters in the formulation of equiv-
ariant cohomology. The precise relation of equation (7.15) to the physical
computation of invariants in quantum electrodynamics or its role in topolog-
ical quantum field theory are yet to be understood.

On the principal G-bundleA = P (B,G), we can define a natural connection
as follows. For ω ∈ A, the tangent space TωA is identified with Λ1(M, ad(P ))
and hence carries the inner product as defined in Definition 6.1 with p = 1.
With respect to this inner product we have the orthogonal splitting

TωA = Vω ⊕Hω, (7.16)

where the vertical space Vω is identified as the tangent space to the fiber G or,
alternatively, as the image of the covariant differential dω : Λ0(M, ad(P ))→
Λ1(M, ad(P )). The horizontal space Hω can be identified with ker δω, where
δω is the formal adjoint of dω. The horizontal distribution is equivariant with
respect to the action of G on A and defines a connection on A. If LG(=
Λ0(M, ad(P ))) denotes the Lie algebra of the infinite-dimensional Hilbert
Lie group G (see Section 6.3), the connection form ω̂ : TA → LG of this
connection is given by

ω̂(X) = Gα(δαX), X ∈ TαA, (7.17)

where Gα is the Green operator, which inverts the Laplacian

Δ0
α = δαdα : Λ0(M, ad(P ))→ Λ0(M, ad(P )).

The curvature Ωω̂ of this natural connection form ω̂ is the 2-form with values
in Λ0(M, ad(P )) given by the usual formula

Ωω̂ = dω̂ω̂

and can be expressed locally, in terms of the Green operator by

Ωω̂(X, Y ) = −2Gα(gij [Xi, Yj ]), (7.18)

where locally X = Xidxi, Y = Yjdxj , and gij = g(dxi, dxj). We remark that
Ωω̂ should be considered as defined on a local slice at [α] ∈ B transversal to
the vertical gauge orbit through α. We now explain the relation of the natural
connection ω̂ defined above to a connection defined in [23]. Regarding G as
a subgroup of Aut(P ), we have a natural action of G on P (M, G) and hence
on P (M, G) ×A. The quotient of this action can be regarded as a principal
bundle P over M ×B called the Poincaré bundle. Pulling back the natural
connection ω̂ to the Poincaré bundle P , we get a connection that coincides
with the one defined in [23]. The Poincaré bundle with this connection can
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be regarded as a universal bundle with respect to deformations of the bundle
P (M, G).

In addition to the gauge connection on the bundle P (M, G) and associated
differential operators, there are other bundles and operators which enter nat-
urally into many mathematical and physical applications. For example, on
M there is the frame bundle L(M) and the Levi-Civita connection on iti,
which are fundamental in gravitation. Another important example is that
of the Dirac operator defined on spinor bundles over M , when M is a spin
manifold. More generally, we can consider an elliptic operator or a sequence
of elliptic operators on sections of real or complex vector bundles over M .
For definiteness, we consider a fixed elliptic operator D : Γ (V ) → Γ (V ),
where V is a vector bundle over M . If E is a vector bundle associated to
P (M, G), then each connection ω ∈ A induces a connection and correspond-
ing covariant derivative operator on sections of E. By coupling the ellip-
tic operator D with this gauge connection ω, we obtain an elliptic operator
Dω : Γ (V ⊗ E) → Γ (V ⊗ E). Then ω → Dω defines a family D̂ of elliptic
operators indexed by ω ∈ A. From ellipticity of Dω it follows that ker Dω
and cokerDω are finite dimensional. By the Atiyah–Singer index theorem, it
follows that the numerical index

n(ω) = dim kerDω − dim cokerDω (7.19)

is independent of ω. The family D̂ can be used to define two bundles over
A, whose fibers over ω ∈ A are kerDω and cokerDω, and a virtual bundle
(in the sense of K-theory), whose fiber over ω is kerDω − cokerDω. This
virtual bundle is called the index bundle Ind D̂ of D̂. In fact, since G acts
equivariantly on the operators Dω, the index bundle descends to the quotient
and can be regarded as an element of the Grothendieck group K(B). In
particular, its restriction to the finite-dimensional instanton moduli space
M⊂ B defines an element of K(M). In this general set up, we cannot apply
the index theorem for families to B. However, in the special case when D is
the Dirac operator, we have the following formula

ch(Ind D̂) =
∫

M

â(M) ch(E), (7.20)

where â(M) is the characteristic class of the spinor bundle whose value on
the fundamental cycle of M is the Â-genus and E is a certain vector bundle
associated to the Poincaré bundle P (see [23] for further details). The natural
connection ω̂ on the principal bundle A = P (B,G) restricts to define a con-
nection on the index bundle in the case that it corresponds to a real vector
bundle. For example, this happens if cokerDω = 0, ∀ω ∈ A (see [204]). In
this case there is also a well-defined second fundamental form and one can
apply the Gauss–Codazzi equation to this situation to derive information on
the geometry of B.
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Several of the topics mentioned above are now considered to be parts of
topological field theory, which may be viewed as the study of topological
structures related to infinite-dimensional manifolds and infinite-dimensional
bundles over them. The mathematical foundations of this theory are not yet
precisely formulated. In the next section, we discuss one of the most widely
used perturbative techniques, namely, the semiclassical approximation to the
partition functions for Yang–Mills theories.

7.3 Semiclassical Approximation

It is well-known that an asymptotic description of physical field theories has
become an indispensable tool in deciding the validity and usefulness of these
theories, which is done by our comparing their predictions with experimen-
tal measurements. In fact, the actual calculations carried out in quantum
electrodynamics as well as in other areas of physics have been verified to a
high degree of accuracy, even though fundamental theoretical justification
for them is not always evident. These calculations involve various methods
of perturbation theory. For Hamiltonian systems a geometric description of
perturbation theory suitable for computer simulation and symbol manipula-
tion techniques is given in Omohundro [307]. The mathematical formulation
suitable for quantum field theories is currently under development.

A widely used method of approximation in quantum field theories is the
so-called semiclassical, or the one loop, approximation to the Feynman
path integrals. We give a brief account of the semiclassical approximation
for Yang–Mills theory based on [174]. It is well-known that the partition
functions of quantum Yang–Mills theory have an expansion in powers of the
coupling constant. The leading order term in this expansion is called the
semiclassical approximation. As we observed in the previous section we have
a one parameter family of quantum expectations indexed by the coupling
constant μ in the Yang–Mills action. As μ → 0 the integrals defining the
quantum expectation < Φ > of the observable Φ have an asymptotic expan-
sion in powers of μ. The leading order term in the resulting expansion of
[< Φ >] is called the semiclassical expectation of Φ and is denoted by
< Φ >sc. The calculation of [< Φ >sc] requires a detailed study of some
elliptic operators. Two important techniques that are required for this study
are (i) the zeta function regularization and (ii) study of the associated heat
family. These techniques are also useful in other applications. We therefore,
give a slightly more general discussion of these techniques than is necessary
for the statement of results.



7.3 Semiclassical Approximation 217

7.3.1 Zeta Function Regularization

Let Q be a symmetric, positive operator on a finite-dimensional real Hilbert
space H . We identify H with Rn and define the positive definite quadratic
form Q̂ on Rn associated to Q by Q̂(x) =< Q(x), x >, ∀x ∈ Rn. Then the
Gaussian integral associated to Q is given by

∫

Rn

exp(−πQ̂(x)) dx = (det Q)−1/2
, (7.21)

where Q(x) =
∑

qijx
ixj , detQ is the determinant of the symmetric matrix

(qij), and dx is the standard volume form on Rn. We are interested in gen-
eralizing this Gaussian integral to the case when Q is a symmetric, positive
operator on an infinite-dimensional Hilbert space. We could define the inte-
gral by the same formula as formula (7.21) provided detQ is well-defined. We
now consider the method of zeta function regularization, which allows us to
define det Q for a large class of operators. This class includes the families of
Laplace operators which enter in the computation of semiclassical approxi-
mations in Yang–Mills theory. Recall first that in the finite-dimensional case
we can write

det Q =
n∏
i=1

λi = exp
n∑
i=1

ln(λi), (7.22)

where λi, 1 ≤ i ≤ n, is the complete set of eigenvalues of Q. Now let Q
be an operator on an arbitrary separable Hilbert space such that Q has a
discrete set of positive eigenvalues λi, i ∈ N. We define the generalized
zeta function ζQ by

ζQ(z) :=
∞∑
i=1

(λi)−z. (7.23)

It can be shown (see [345]) that under certain conditions on Q, the sum in
formula (7.23) converges for Re(z) >> 0 (i.e., for sufficiently large Re(z) )
and has a meromorphic continuation to the entire complex z-plane with only
simple poles. Furthermore, zero is a regular point of ζQ(z) and hence ζ′Q(0)
is well-defined. From equation (7.23) it follows that

ζ′Q(z) := −
∞∑
i=1

ln(λi)(λi)−z. (7.24)

Thus formally one can write

ζ′Q(0) := −
∞∑
i=1

ln(λi). (7.25)

In view of this equation we define detQ by
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detQ := exp(−ζ′Q(0)). (7.26)

We note that equation (7.26) reduces to the usual definition of determinant
in the finite-dimensional case.

Example 7.3 Consider a real scalar field φ on a compact Riemannian man-
ifold (M, g) with Lagrangian density

L = 1
2 (gij∂iφ∂jφ−m2φ2)− V (φ), (7.27)

where m denotes the mass and V the potential. Then the vacuum to vacuum
amplitude Z in the absence of sources is given by

Z =
∫

H
exp

(
− 1

2

∫

M

< φ, Aφ > dvg

)
dμ(φ), (7.28)

where μ is a measure on the space H of all scalar fields, dvg is the volume
form on M determined by the metric g, and A is an operator on H defined
by

A := −gij∂i∂j + m2 +
∂V

∂φ
. (7.29)

Under certain conditions H is a separable Hilbert space, A is a positive, sym-
metric operator with a discrete set of eigenvalues λi, and H has an orthonor-
mal basis ψi consisting of eigenvectors of A. Then the zeta function regular-
ization of the detA allows us to evaluate the integrals defining Z to obtain

Z = exp
(

1
2ζ′A(0)

)
. (7.30)

The discussion given above is implicit in most evaluations of such amplitudes.

We note that the zeta function regularization can be applied also in the
fermionic case. This requires an extension of usual calculus to Grassmann or
anti-commuting variables. An introduction to this subject may be found in
Berezin [38].

7.3.2 Heat Kernel Regularization

Let E be a vector bundle over a compact Riemannian manifold M of di-
mension m = 2n. Let D : Γ (E) → Γ (E) be a self-adjoint, non-negative
elliptic operator on the space Γ (E) of the sections of E over M . From the
standard theory of elliptic operators we know that D extends to the Hilbert
space completion L2(E) of Γ (E) as a self-adjoint, non-negative elliptic op-
erator and that L2(E) has a complete orthonormal basis of eigenvectors
{φi | Dφi = λiφi}. Furthermore, the spectrum {λi} is discrete and non-
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negative and each eigenspace is finite-dimensional. In physics literature kerD
with basis {φi | Dφi = 0} is called the space of zero modes. One often fac-
tors out the zero modes to obtain an operator D+ with positive spectrum. In
what follows we shall consider that this has been done and denote D+ just
by D.

The heat family associated with D is the unique family of operators Ht

on L2(E) satisfying the heat equation

∂

∂t
(Ht) = −DHt, (7.31)

with H0 = id. It is customary to write formally Ht = e−tD. We note that for
z ∈ C, Re(z) >> 0, the operator D−z is well-defined and is of trace class.
This complex power of the operator D, its zeta function ζD, and the heat
family are related by

ζD(z) = Tr(D−z) =
1

Γ (z)

∫ ∞

0

tz−1 Tr(e−tD)dt, (7.32)

where Γ (z) is the usual gamma function. The operators Ht are themselves
of trace class and are given by convolution with the heat kernel KD. Heat
equation was used by Patodi in his study of the index theorem. It can also be
used to study harmonic forms and the Hodge decomposition theorem, (see,
for example, [214]). It is the detailed study of the heat kernel that enters
into the computation of the semiclassical measure when applied to suitable
Laplace operators on Λk(M, ad(P )).

The calculations of the semiclassical expectation are quite involved. We
state the result for the expectations of |k| and λ in the case that M = S4

and G = SU(2) and refer to [174] for further details.

Theorem 7.1 Let M = S4 and G = SU(2). LetM1 denote the moduli space
of k = 1 instantons over M . Then for any smooth, bounded, gauge-invariant
function Φ, the semiclassical partition function

Zsc(Φ) =
∫

M1

Φ(ω)e−Sµ(ω) dν (7.33)

is finite. Moreover, one has an explicit formula for the semiclassical measure
dν on M1(S4). In particular, the semiclassical expectations of |k| and λ,
where k is the instanton number and λ the instanton scale size, are given by

〈|k|〉sc ≈ 0.05958Cμ2e−8π2/μ (7.34)

and
〈λ〉sc ≈ 0.03693Cμ2e−8π2/μ, (7.35)

where C = 2183−5/2π23/2.
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We note that, even though both expectations decrease exponentially as
μ→ 0, their ratio is non-zero and we have

〈|k|〉sc
〈λ〉sc

≈ 0.6198.

On the other hand the ratio of classical expectations is given by

〈|k|〉c
〈λ〉c

≈ 0.3112.

These ratios can be interpreted as conditional expectations: the expected
scale size of a gauge potential, given that it has instanton number ±1. The
difference in the semiclassical and the classical values is due to the differ-
ence between the semiclassical measure and the classical measure used in
computing these expectations. It remains to be seen how these results can
be extended to non-compact Lorentz manifolds to compute quantum field
theoretic expectation values of physically significant quantum variables.

Several of the topics mentioned above are now considered to be parts of
topological field theories. The earliest example of a TFT result occurs in the
well-known formula for the linking number by Gauss. In the next section we
discuss this as an example of TCFT.

7.4 Topological Classical Field Theories (TCFTs)

We discuss the invariants of knots and links in 3-manifolds in Chapter 11.
Here we consider one of the earliest investigations in combinatorial knot the-
ory, contained in several unpublished notes written by Gauss between 1825
and 1844 and published posthumously as part of his Nachlass1. They deal
mostly with his attempts to classify “Tractfiguren,” or closed curves in the
plane with a finite number of transverse self-intersections. As we shall see in
Chapter 11, such figures arise as regular plane projections of knots in R3.
However, one fragment of Gauss’s notes deals with a pair of linked knots:

Es seien die Koordinaten eines unbestimmten Punkts der ersten
Linie x, y, z; der zweiten x′, y′, z′ und2

∫ ∫
[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]−3/2[(x′ − x)(dydz′ − dzdy′)

+ (y′ − y)(dzdx′ − dxdz′) + (z′ − z)(dxdy′ − dydx′)] = V

1 Estate.
2 Let the coordinates of an arbitrary point on the first curve be x, y, z; of the second
x′, y′, z′ and let
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dann ist dies Integral durch beide Linien ausgedehnt

= 4πm

und m die Anzahl der Umschlingungen.
Der Werth ist gegenseitig, d.h. er bleibt derselbe, wenn beide Linien

gegen einander umgetauscht werden,3 1833. Jan. 22.

In this fragment, Gauss had given an analytic formula for the linking
number of a pair of knots. This number is a combinatorial topological in-
variant. As is quite common in Gauss’s work, there is no indication of how
he obtained this formula. The title of the note “Zur Elektrodynamik” (“On
Electrodynamics”) and his continuing work with Weber on the properties of
electric and magnetic fields lead us to guess that it originated in the study of
the magnetic field generated by an electric current flowing in a curved wire.
Recall that the magnetic field due to a unit current flowing along a wire C
generates the magnetic field B(r′) at a point r′ ∈ C′ given by

B(r′) =
1
4π

∫

C

(r′ − r) × dr

|r′ − r|3 ,

where we have used the vector notation r = (x, y, z) and r′ = (x′, y′, z′) and
× is the vector product. The work W done by this magnetic field in moving
a unit magnetic pole around the wire C ′ is given by

W =
∫

C′
B(r′) · dr = V/4π.

Maxwell knew Gauss’s formula for the linking number and its topological
significance and its origin in electromagnetic theory. In fact, in commenting
on this formula, he wrote:

It was the discovery by Gauss of this very integral expressing the work
done on a magnetic pole while describing a closed curve in the presence
of a closed electric current and indicating the geometric connection be-
tween the two closed curves, that led him to lament the small progress
made in the Geometry of Position since the time of Leibnitz, Euler and
Vandermonde. We now have some progress to report, chiefly due to
Riemann, Helmholtz and Listing.

In obtaining a topological invariant by using a physical field theory, Gauss
had anticipated topological field theory by almost 150 years. Even the term
“topology” was not used then. It was introduced in 1847 by J. B. Listing, a

3 then this integral taken along both curves is = 4πm and m is the number of intertwinings
(linking number in modern terminology). The value (of the integral) is common (to the
two curves), i.e., it remains the same if the curves are interchanged,
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student and protegé of Gauss, in his essay “Vorstudien zur Topologie” (“Pre-
liminary Studies on Topology”). Gauss’s linking number formula can also be
interpreted as the equality of topological and analytic degree of a suitable
function. Starting with this a far-reaching generalization of the Gauss inte-
gral to higher self-linking integrals can be obtained. We discuss this work
in Chapter 11. This result forms a small part of the program initiated by
Kontsevich [235] to relate topology of low-dimensional manifolds, homotopi-
cal algebras, and non-commutative geometry with topological field theories
and Feynman diagrams in physics.

7.4.1 Donaldson Invariants

Electromagnetic theory is the prototype of gauge theories with Abelian gauge
group U(1). Its generalization to non-Abelian gauge group SU(2) was ob-
tained by Yang and Mills in 1954. A spectacular application of Yang–Mills
theory as TCFT came thirty years later in Donaldson theory. We discuss
this theory in detail in Chapter 9. Here we simply indicate its interpreta-
tion as a topological field theory based on the classical instanton solutions
of Yang–Mills equations. Donaldson’s theorem on the topology of smooth,
closed, 1-connected 4-manifolds provides a new obstruction to smoothability
of these topological manifolds. A surprising ingredient in his proof of this
theorem was the moduli space I1 of SU(2)-instantons on a manifold M . This
theorem has been applied to obtain a number of new results in topology and
geometry and has been extended to other manifolds. The space I1 is a sub-
space of the moduli space M1 of Yang–Mills fields with instanton number
1. The space M1 in turn is a subspace of the moduli space of A/G of all
Yang–Mills fields on M . In fact, we have

A/G =
⋃
k

Mk.

Donaldson shows that the space I1 (or a suitable perturbation of it) is
a 5-dimensional manifold with singularities and with one boundary compo-
nent homeomorphic to the original base space M . By careful study of the
remaining boundary components Donaldson obtained the following theorem.

Theorem 7.2 (Donaldson) Let M be a smooth, closed, 1-connected, oriented
manifold of dimension 4 with positive definite intersection form ιM . Then
ιM ∼= b2(1), the identity form of rank b2, the second Betti number of M .

This theorem is the genesis of what can be called gauge-theoretic topol-
ogy. In his later work, Donaldson used the homology of spacesMk, for suf-
ficiently large k, to obtain a family of new invariants of a smooth 4-manifold
M , satisfying a certain condition on its intersection form. We now describe
these invariants, which are known as Donaldson’s polynomial invariants,
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or simply Donaldson polynomials. The Donaldson polynomials are defined
by polarization of a family qk of symmetric, multilinear maps

qk : H2(M)× · · · ×H2(M)︸ ︷︷ ︸
d times

→ Q,

where k is the instanton number of P (M, SU(2)) and d is a certain function
of k. We shall also refer to the maps qk as Donaldson polynomials. A basic
tool for the construction of Donaldson polynomials is a map that transfers
the homology of M to the cohomology of the orbit space Oir of irreducible
connections on the SU(2)-bundle P . The details of this construction are given
in Chapter 9. Donaldson polynomials are examples of TCFT invariants. It
is interesting to note that in [404] Witten has given a TQFT interpretation
for them. We comment on this in the next section, where an introduction to
TQFT is given. Before that we give two more examples of TCFT.

7.4.2 Topological Gravity

Einstein’s theory of gravity is the most extensively studied and experimen-
tally supported theory of gravity at this time. However, Einstein was not
content with it. We have already considered his introduction of the cosmo-
logical constant and indicated a generalized theory of gravity, which replaces
the cosmological constant by the cosmological function. Over the years many
alternative theories of gravitation have been proposed. Several of these start
with a variational principle with some geometric function as the Lagrangian.
Lanczos [242] in his study of Lagrangians for generalized gravitational field
equations observed that one of his Lagrangians led to the integral that was
invariant under the action of the group of diffeomorphisms of the space-time
manifold and so did not contain any dynamics. Lanczos had obtained the ex-
pression for the Euler class of a 4-manifold as an integral of a polynomial in
the Riemann curvature, but he did not recognize its topological significance.
The general formula for the Euler class of an arbitrary oriented manifold
was obtained by Chern, generalizing the earlier work for hypersurfaces by
Weil and Allendoerfer. It was in studying this generalization that Chern was
led to his famous characteristic classes, now called the Chern classes. All
Chern classes and not just the Euler class are topological invariants and can
be expressed as integrals of polynomials in the Riemann curvature. We can,
therefore, consider them topological gravity invariants if we think of these
polynomials as Lagrangians of some generalized gravitational field in arbi-
trary dimension.
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7.4.3 Chern–Simons (CS) Theory

Chern–Simons theory is a classical gauge field theory formulated on an odd-
dimensional manifold. We discuss it in detail in Chapter 10 and apply it to
consider Witten’s QFT interpretation of the Jones polynomial. Chern–Simons
theory became widely known after Witten’s paper was published. It gives new
invariants as TCFT also. We discuss this after reviewing the 3-dimensional
CS theory. Let M be a compact, connected, oriented 3- manifold and let
P (M) be a principal bundle over M with structure group SU(n). Then the
Chern–Simons action ACS is defined by

ACS =
k

4π

∫

M

tr(A ∧ F +
2
3
A ∧A ∧A), (7.36)

where k ∈ R is a coupling constant, A denotes the pull-back to M of the
gauge potential ω by a section of P , and F = Fω = dωA is the gauge field
on M corresponding to the gauge potential A. We note that the bundle P
always admits a section over a 3-manifold. The action is manifestly covariant
since the integral involved in its definition is independent of the metric on
M . It is in this sense that the Chern–Simons theory is a topological field
theory. The field equations obtained by variation of the action turn out to be
flat connections. A detailed calculation showing this is given in Chapter 10.
Under a gauge transformation g the action transforms as follows:

ACS(Ag) = ACS(A) + 2πkAWZ , (7.37)

where
AWZ :=

1
24π2

∫

M

εαβγ tr(θαθβθγ) (7.38)

is the Wess–Zumino action functional. It can be shown that the Wess–Zumino
functional is integer-valued and hence if the Chern–Simons coupling constant
k is taken to be an integer, then we have

eiACS(Ag) = eiACS(A).

It follows that the path integral quantization of the Chern–Simons model
is gauge-invariant. This conclusion holds more generally for any compact
simple group. In the next subsection we discuss briefly the development of
topological QFT. Chern–Simons theory played a fundamental role in this
development. It also gives a new way of looking at the Casson invariant.
This is an example of TCFT. It rests on the observation that the mod-
uli space Mf(N, H) of flat H-bundles over a manifold N can be identified
with the set hom(π1(N), H)/H. The moduli space Mf (N, H) and the set
hom(π1(N), H) have a rich mathematical structure, which has been exten-
sively studied. These spaces appear in the definition of the Casson invariant
for a homology 3-sphere and its gauge theoretic interpretation was given by
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Taubes [366]. Recall that the Casson invariant of an oriented homology 3-
sphere Y is defined in terms of the number of irreducible representations of
π1(Y ) into SU(2). As indicated above, this space can be identified with the
moduli space Mf(Y, SU(2)) of flat connections in the trivial SU(2)-bundle
over Y . The map F : ω → ∗Fω defines a natural 1-form and its dual vector
field VCS on A/G. Thus, the zeros of this vector field VCS are just the flat
connections. We note that since A/G is infinite-dimensional, it is necessary to
use suitable Fredholm perturbations to get simple zeros and to count the in-
dex of the vector field with appropriate signs. Taubes showed that this index
equals the Casson invariant of Y . In classical geometric topology of a compact
manifold M , the Poincaré–Hopf theorem tells us that the index of a vector
field equals the Euler characteristic of M . This theorem does not apply to
the infinite-dimensional case considered here. Is there some homology theory
associated to the above situation whose Euler characteristic would be equal
to the Casson invariant? The surprising affirmative answer to this question
is provided by Floer homology. We discuss it briefly in the next section and
in detail in Chapter 10.

7.5 Topological Quantum Field Theories (TQFTs)

In recent developments in low-dimensional topology of manifolds, geometric
analysis of partial differential equations plays an important role. These equa-
tions have their origins in physical field theories. A striking example of this
is provided by Donaldson’s work on smoothability of 4-manifolds, where the
moduli space of instantons is used to obtain a cobordism between the base
manifold M and a certain manifold N whose topology is well understood,
thereby enabling one to study the topology of M . In physics the moduli
spaces of these classical, non-Abelian gauge fields are used to study the prob-
lem of quantization of fields. Even though a precise mathematical formulation
of QFT is not yet available, the methods of QFT have been applied success-
fully by Witten for studying the topology and geometry of low-dimensional
manifolds. It seems reasonable to say that his work has played a fundamental
role in the creation of topological QFT (see [41] and references therein for a
review of this fast developing field).

Let Σg be a compact Riemann surface of genus g. Then the moduli space
Mf (Σg, H) of flat connections has a canonical symplectic structure ι. We
now discuss an interesting physical interpretation of the symplectic manifold
(Mf (Σg, H), ι). Consider a Chern–Simons theory on the principal bundle
P (M, H) over the (2 + 1)-dimensional space-time manifold (M = Σg ×R)
with gauge group H and with time-independent gauge potentials and gauge
transformations. Let A (resp., H) denote the space (resp., group) of these
gauge connections (resp. transformations). It can be shown that the curvature
Fω defines an H-equivariant moment map
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μ : A → LH ∼= Λ1(M, ad P ), by ω → ∗Fω,

where LH is the Lie algebra of H. The zero set μ−1(0) of this map is precisely
the set of flat connections and hence

Mf
∼= μ−1(0)/H

is the reduced phase space of the theory, in the sense of the Marsden–
Weinstein reduction. We denote this reduced phase space by A//H and call
it the symplectic quotient of A by H. Marsden–Weinstein reduction and
symplectic quotient are fundamental constructions in geometrical mechanics
and geometric quantization. They also arise in many other mathematical and
physical applications.

A situation similar to that described above also arises in the geometric for-
mulation of canonical quantization of field theories. One proceeds by analogy
with the geometric quantization of finite-dimensional systems. For example,
Q = A/H can be taken as the configuration space and T ∗Q as the corre-
sponding phase space. The associated Hilbert space is obtained as the space
of L2 sections of a complex line bundle over Q. For physical reasons this bun-
dle is taken to be flat. Inequivalent flat U(1)-bundles are said to correspond
to distinct sectors of the theory. Thus we see that at least formally these
sectors are parametrized by the moduli space

Mf (Q, U(1)) ∼= hom(π1(Q), U(1))/U(1) ∼= hom(π1(Q), U(1)),

since U(1) acts trivially on hom(π1(Q), U(1)).
Now let Y be a homology 3-sphere. By considering a one-parameter family

{ωt}t∈I of connections of Y defines a connection on Y × I and the corre-
sponding Chern–Simons action ACS . This is invariant under the connected
component of the identity in G but changes by the Wess–Zumino action under
the full group G. In [403], Witten showed how the standard Morse theory (see
Morse and Cairns [292] and Milnor [284]) can be modified by consideration
of the gradient flow of the Morse function f between pairs of critical points
of f . One may think of this as a sort of relative Morse theory. Witten was
motivated by the phenomenon of the quantum mechanical tunneling effect
between the states represented by the critical points. The resulting Wit-
ten complex (C∗, δ) can be used to define the Floer homology groups
HFn(Y ), n ∈ Z8 (see [130, 131]). This is an example of TQFT. The Euler
characteristic of Floer homology equals the Casson invariant. Thus TQFT
methods give a resolution or categorification of the Casson invariant in
terms of a new homology theory. Floer homology is discussed in detail in
Chapter 11.

Consideration of the Heegaard splitting of Y leads to interesting connec-
tions with conformal field theory. On the other hand given a 4-manifold M
we can always decompose it along a homology 3-sphere Y into a pair of 4-
manifolds M+ and M−. Then one can study instantons on M by studying a
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pair of instantons on M+ and M− and matching them along the boundary Y .
This procedure can be used to relate the Floer homology to the polynomial
invariants of M defined by Donaldson.

A geometrical interpretation of the Jones polynomial invariant of a link was
provided by Witten [405], who applied ideas from QFT to the Chern–Simons
Lagrangian. In fact, Witten’s model allows us to consider the knot and link
invariants in any compact 3-manifold M . Let P (M, G) be a principal bundle
over M , with compact semisimple Lie group G. The state space is taken to
be the space of gauge potentials AP . The partition function Z of the theory
is defined by

Z(Φ) :=
∫

AP

e−iACS(ω)Φ(ω)DA,

where Φ : AP → R is a quantum observable of the theory and ACS is the
Chern–Simons action. The expectation value 〈Φ〉 of the observable Φ is given
by

〈Φ〉 =

∫
AP

e−iACS(ω)Φ(ω)DA∫
AP

e−iA(ω)DA .

Taking for Φ the Wilson loop functional Wρ,κ, where ρ is a suitably chosen
representation of G and κ is the link under consideration, one is led to the
following interpretation of the Jones polynomial:

〈Φ〉 = Vκ(q), where q = e2πi/(k+2).

Witten’s ideas have been used by several authors to obtain a geometrical in-
terpretation of various knot and link invariants and to discover new invariants
of knots, links, and 3-manifolds (see, for example, [87, 178]).

In [404] it is shown that the Donaldson polynomial invariants of a 4-
manifold M appear as expectation values of certain observables in a topo-
logical QFT. The Lagrangian of this topological QFT has also been ob-
tained through consideration of an infinite-dimensional version of the classical
Chern–Gauss–Bonnet theorem, in [21]. The general program of computing
the curvature of connections on infinite-dimensional bundles and of defining
appropriate generalizations of characteristic classes was initiated by I. Singer
in his fundamental paper [351] on Gribov ambiguity. We proceed by analogy
with the finite-dimensional case. To simplify considerations, let us suppose
that the group of gauge transformations G acts freely on the space of gauge
connections A. Then we can considerA as a principle G-bundle over the space
B = A/G of gauge equivalence classes of connections. Define the map

F− : A → Λ2
−(M, ad(P )) by ω → F−

ω . (7.39)

Then F− is equivariant with respect to the standard action of G on A and the
linear action of G on the vector space Λ2

−(M, ad(P )). Hence, we may think
of F− as defining a section of the vector bundle E associated to A with fiber
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Λ2
−(M, ad(P )). Thus F− is the infinite-dimensional analogue of a vector field

and we may hope to obtain topological information about the base space B by
studying the set of zeros of this vector field. In the generic finite-dimensional
case, one can define an index of a vector field by studying its zero set and
thus obtain a topological invariant, namely the Euler characteristic. In our
case, the zeros of F− in A are precisely the Yang–Mills instantons and the
zero set of the associated section sF− is the moduli spaceM+ ⊂ B. Thus,

M+ = (F−)−1({0})/G. (7.40)

In this general setting there is no obvious way to define the index of sF− and
consider its relation with the analytic definition of the Euler characteristic,
which should correspond to an integral of some “curvature form” analogous
to the Chern–Gauss–Bonnet integrand.

Once again we consider the finite-dimensional case. Here the Thom class,
which lies in the cohomology of the vector bundle over M with compact
support, is used to obtain the desired relation between the index and the Euler
characteristic as follows. We assume that there exists a section s of the vector
bundle E. Using s, we pull back the Thom class α to a cohomology class on the
base M . In fact, we have a family of homologous sections λs, λ ∈ R, and the
corresponding family of pull-backs (λs)∗α which, for λ = 0, gives the Euler
class of M and, for large λ (λ→∞) gives, in view of the compact support of
α, the index of s. Thus, one would like to obtain a suitable generalization of
the Thom class in the infinite-dimensional case. We shall refer to this idea, of
interpolating between two different definitions of the Euler characteristic, as
the Mathai–Quillen formalism. On the principal G-bundle A = P (B,G),
we can define a natural connection as follows. For ω ∈ A, the tangent space
TωA is identified with Λ1(M, ad(P )) and hence carries the inner product as
defined in Definition 6.1. With respect to this inner product we have the
orthogonal splitting

TωA = Vω ⊕Hω, (7.41)

where the vertical space Vω is identified as the tangent space to the fiber G or,
alternatively, as the image of the covariant differential dω : Λ0(M, ad(P ))→
Λ1(M, ad(P )). The horizontal space Hω can be identified with ker δω, where
δω is the formal adjoint of dω. The horizontal distribution is equivariant
with respect to the action of G on A and defines a connection on A. If LG(=
Λ0(M, ad(P ))) denotes the Lie algebra of the infinite-dimensional Hilbert Lie
group G then the connection form ω̂ : TA → LG of this connection is given
by

ω̂(X) = Gα(δαX), X ∈ TαA, (7.42)

where Gα is the Green operator, which inverts the Laplacian

Δ0
α = δαdα : Λ0(M, ad(P ))→ Λ0(M, ad(P )).
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The curvature Ωω̂ of this natural connection form ω̂ is the 2-form with values
in Λ0(M, ad(P )) given by the usual formula

Ωω̂ = dω̂ω̂

and can be expressed locally, in terms of the Green operator, by

Ωω̂(X, Y ) = −2Gα(gij [Xi, Yj ]), (7.43)

where locally X = Xidxi, Y = Yjdxj , and gij = g(dxi, dxj). We remark that
Ωω̂ should be considered as defined on a local slice at [α] ∈ B transversal to
the vertical gauge orbit through α. Let P denote the Poincaré bundle over
M ×B. Pulling back the natural connection ω̂ to the Poincaré bundle P , we
get a connection which coincides with the one defined in [23]. The Poincaré
bundle with this connection can be regarded as a universal bundle with re-
spect to deformations of the bundle P (M, G). If F denotes the curvature of
the canonical connection on P , then the Künneth formula applied to F gives
its (i, j) component

F(i,j) ∈ Λi(P )⊗ Λj(A), i + j = 4.

Let (p, ω) ∈ P × A. Then for X, Y ∈ TpP and α, β ∈ TωA = Λ1(M, ad(P ))
we have

F(2,0)(X, Y ) = Ωω(X, Y ) (7.44)
F(1,1)(X, α) = α(X) (7.45)
F(0,2)(α, β) = (α, β)g (7.46)

where (α, β)g is the inner product on forms induced by the metric and bracket
on the Lie algebra g (identified with the fiber of ad(P )). Let c2 = tr(F ∧ F)
denote the second Chern class of the canonical connection on P ; then the
Künneth formula applied to c2 gives its (i, j) component

cji ∈ Λi(M)⊗ Λj(A), i + j = 4.

Explicit expressions for cji in terms of the components of the curvature are
given by (see [33] for details)

c4
0 = tr

(
F(0,2) ∧ F(0,2)

)
, (7.47)

c3
1 = 2 tr

(
F(0,2) ∧ F(1,1)

)
, (7.48)

c2
2 = tr

(
F(1,1) ∧ F(1,1)

)
+ 2 tr

(
F(2,0) ∧ F(0,2)

)
, (7.49)

c1
3 = 2 tr

(
F(2,0) ∧ F(1,1)

)
, (7.50)

c0
4 = tr

(
F(2,0) ∧ F(2,0)

)
= tr(Fω ∧ Fω). (7.51)
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The TQFT interpretation of the Donaldson polynomials makes essential
use of the Mathai–Quillen formalism to obtain the expectation value of a
quantum observable η as

〈η〉 = lim
t→∞

∫

Mk

ηωts,

where Mk is the moduli space of SU(2)-instantons on M , s is the self-dual
part of the curvature, and ωs is a form that is, essentially, the exponential
of Witten’s Lagrangian. At least on a formal level, the Mathai–Quillen for-
malism can be used to obtain an expression for the equivariant Euler class
e of the Poincaré bundle P . In [404] Witten constructs a Lagrangian out of
bosonic and fermionic variables and defines a set of forms Wi, 0 ≤ i ≤ 4. The
Lagrangian L is a function of the bosonic fields φ, λ ∈ Λ0(M, ad(P )) and A ∈
Λ1(M, ad(P )) and the fermionic fields ψ ∈ Λ1(M, ad(P )), η ∈ Λ0(M, ad(P ))
and χ ∈ Λ2(M, ad(P )) and their covariant derivatives ∇ with respect to the
connection ω (corresponding to the local gauge potential A) on P as well as
the curvature Fω and the metric g. In local coordinates L has the expression

L = tr
(

1
4FabF

ab + 1
2φ∇a∇aλ + i∇aψbχab − iη∇aψa

− i
8φ[χab, χab]− i

2λ[ψb, ψb] + ic
2 φ[η, η] + c

8 [φ, λ]2
)
,

where c is a real coupling constant. The TQFT action S is defined by

S(g, ω, φλ, B, ψ, η, χ) =
∫

M

L′√det(g)dx1dx2dx3dx4,

where
L′ = L + 1

8 tr(F ∧ F ).

The additional term is a multiple of the instanton number and is a topological
invariant. It is inserted so that the action becomes invariant under an odd
supersymmetry operator Q. When restricted to gauge-invariant functionals,
Q is a boundary operator. The Lagrangian and the corresponding energy-
momentum tensor turn out to be Q-exact. In fact, this property plays a
fundamental role in the TQFT interpretation of the Donaldson invariants.
The forms Wi are defined by

W0 = 1
2 tr(φ2), (7.52)

W1 = tr(φ ∧ ψ), (7.53)
W2 = tr(1

2ψ ∧ ψ + iφ ∧ F ), (7.54)
W3 = i tr(ψ ∧ F ), (7.55)
W4 = − 1

2 tr(F ∧ F ). (7.56)

Then, the expectation value of Witten’s observables
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∫

γi

Wi

in the path integral formalism in the corresponding TQFT coincides with the
integral of the Euler class e against the j-form

∫

γi

cji ∈ Λj(A),

where γi is an i-cycle. More generally, we can define observables O by

O := Πr
i=1

∫

γki

Wki ,

where γki is a ki-cycle and

r∑
i=1

(4− ki) = 2d(k) = dim(Mk).

Then one can show that the expectation value of O is a topological invariant.
If we set ki = 2, ∀i, then this is, essentially, Donaldson’s definition of his
polynomial invariants. A similar interpretation of the Casson invariant is
also given in [21].

Another important topic that gave an early indication of the importance
of topological methods in field theory is that of anomalies. In the physical
literature the word anomaly is used in a generic sense as denoting an ob-
struction to the lifting of a given structure to another structure. For example,
we already referred to anomalies in our discussion of the BRST cohomolgy
in the previous section. The term quantum anomaly in field theory refers
to the situation in which a certain symmetry or invariance of the classical
action is not preserved at the quantum level. The requirement of anomaly
cancellation imposes strong restrictions on the construction of field theoretic
models of gauge and associated fields. A detailed discussion of anomalies from
a physical point of view and their geometrical interpretation can be found in
[187,325,349].

As we have indicated earlier, there are formidable mathematical difficulties
in obtaining physically significant results from evaluating the full Feynman
path integral. To overcome these difficulties, physicists have developed sev-
eral approximation procedures, which allow them to extract some information
from such integrals. We remark that the vacuum expectation values of Wilson
loop observables in the Chern–Simons theory have been computed recently
up to second order of the inverse of the coupling constant. These calcula-
tions have provided a quantum field-theoretic definition of certain invariants
of knots and links in 3-manifolds [87, 178]. A geometric formulation of the
quantization of Chern–Simons theory is given in [25]. In the next subsection
we discuss the Atiyah–Segal axioms for TQFT, which arose out of attempts
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to obtain a mathematical formulation of the physical methods of QFT as
applied to topological calculations.

7.5.1 Atiyah–Segal Axioms for TQFT

The Atiyah–Segal axioms for TQFT [16, 346] arose from an attempt to give
a mathematical formulation of the non-perturbative aspects of quantum field
theory in general and to develop, in particular, computational tools for the
Feynman path integrals that are fundamental in the Hamiltonian approach
to QFT. They generalize the formulation given earlier by Segal for conformal
field theories. The most spectacular application of the non-perturbative meth-
ods has been in the definition and calculation of the invariants of 3-manifolds
with or without links and knots. In most physical applications however, it
is the perturbative calculations that are predominantly used. Recently, per-
turbative aspects of the Chern–Simons theory in the context of TQFT have
been considered in [30]. For other approaches to the invariants of 3-manifolds
see [145,156,221,223,294,380,383].

Let Cn denote the category of compact, oriented, smooth n-dimensional
manifolds with morphism given by oriented cobordism. Let VC denote the
category of finite-dimensional complex vector spaces. An (n+1)-dimensional
TQFT is a functor T from the category Cn to the category VC that satisfies
the following axioms.

A1. Let −Σ denote the manifold Σ with the opposite orientation of Σ and
let V ∗ be the dual vector space of V ∈ VC. Then

T (−Σ) = (T (Σ))∗, ∀Σ ∈ Cn.

A2. Let � denote disjoint union. Then

T (Σ1 �Σ2) = T (Σ1)⊗ T (Σ2), ∀Σ1, Σ2 ∈ Cn.

A3. Let Yi : Σi → Σi+1, i = 1, 2, be morphisms. Then

T (Y1Y2) = T (Y2)T (Y1) ∈ hom(T (Σ1), T (Σ3)),

where Y1Y2 denotes the morphism given by composite cobordism Y1 ∪Σ2 Y2.
A4. Let φn be the empty n-dimensional manifold. Then

T (φn) = C.

A5. For every Σ ∈ Cn

T (Σ × [0, 1]) : T (Σ)→ T (Σ)

is the identity endomorphism.
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We note that if Y is a compact, oriented, smooth (n + 1)-manifold with
compact, oriented, smooth boundary Σ; then

T (Y ) : T (φn)→ T (Σ)

is uniquely determined by the image of the basis vector 1 ∈ C ≡ T (φn).
In this case the vector T (Y ) · 1 ∈ T (Σ) is often denoted also by T (Y ). In
particular, if Y is closed, then

T (Y ) : T (φn)→ T (φn) and T (Y ) · 1 ∈ T (φn) ≡ C

is a complex number, which turns out to be an invariant of Y . Axiom A3
suggests a way of obtaining this invariant by a cut and paste operation on Y
as follows. Let Y = Y1 ∪Σ Y2 so that Y1 (resp., Y2) has boundary Σ (resp.,
−Σ). Then we have

T (Y ) · 1 =< T (Y1) · 1, T (Y2) · 1 >, (7.57)

where < , > is the pairing between the dual vector spaces T (Σ) and
T (−Σ) = (T (Σ))∗. Equation (7.57) is often referred to as a gluing formula.
Such gluing formulas are characteristic of TQFT. They arise in Fukaya–Floer
homology theory of 3-manifolds (see Chapter 10), Floer–Donaldson theory of
4-manifold invariants (see Chapter 9), as well as in 2-dimensional conformal
field theory. For specific applications the Atiyah axioms given above need to
be refined, supplemented and modified. For example, one may replace the
category VC of complex vector spaces by the category of finite-dimensional
Hilbert spaces. This is in fact the situation of the (2 + 1)-dimensional Jones–
Witten theory. In this case it is natural to require the following additional
axiom.

A6. Let Y be a compact oriented 3-manifold with ∂Y = Σ1�(−Σ2). Then
the linear transformations

T (Y ) : T (Σ1)→ T (Σ2) and T (−Y ) : T (Σ2)→ T (Σ1)

are mutually adjoint.
For a closed 3-manifold Y axiom A6 implies that

T (−Y ) = T (Y ) ∈ C.

It is this property that is at the heart of the result that in general the Jones
polynomials of a knot and its mirror image are different, i.e.,

Vκ(t) �= Vκm(t),

where κm is the mirror image of the knot κ.
An important example of a (3 + 1)-dimensional TQFT is provided by the

Floer–Donaldson theory. The functor T goes from the category C of compact,
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oriented homology 3-spheres to the category of Z8-graded Abelian groups. It
is defined by

T : Y → HF∗(Y ), Y ∈ C.

For a compact, oriented, 4-manifold M with ∂M = Y , T (M) is defined to
be the vector q(M, Y )

q(M, Y ) := (q1(M, Y ), q2(M, Y ), . . .),

where the components qi(M, Y ) are the relative polynomial invariants of
Donaldson defined on the relative homology group H2(M, Y ;Z).

The axioms also suggest algebraic approaches to TQFT. The most widely
studied of these approaches are those based on quantum groups, oper-
ator algebras, and Jones’s theory of subfactors. See, for example, books
[227, 229, 209, 381, 119] and articles [380, 383, 384]. Turaev and Viro have
given an algebraic construction of such a TQFT. Ocneanu’s method [304]
starts with a special type of subfactor to generate the data, which can be
used with the Turaev and Viro construction.

The correspondence between geometric (topological) and algebraic struc-
tures has played a fundamental role in the development of modern mathe-
matics. Its roots can be traced back to the classical work of Descartes. Recent
developments in low-dimensional geometric topology have raised this corre-
spondence to a new level bringing in ever more exotic algebraic structures
such as quantum groups, vertex algebras, and monoidal and higher cate-
gories. This broad area is now often referred to as quantum topology. See,
for example, [414,259].



Chapter 8

Yang–Mills–Higgs Fields

8.1 Introduction

Yang–Mills equations, originally derived for the isospin gauge group SU(2),
provide the first example of gauge field equations for a non-Abelian gauge
group. This gauge group appears as an internal or local symmetry group
of the theory. In fact, the theory can be extended easily to include the other
classical Lie groups as gauge groups. Historically, the classical Lie groups ap-
peared in physical theories, mainly in the form of global symmetry groups
of dynamical systems. Noether’s theorem established an important relation
between symmetry and conservation laws of classical dynamical systems. It
turns out that this relationship also extends to quantum mechanical systems.
Weyl made fundamental contributions to the theory of representations of
the classical groups [401] and to their application to quantum mechanics.
The Lorentz group also appears first as the global symmetry group of the
Minkowski space in the special theory of relativity. It then reappears as the
structure group of the principal bundle of orthonormal frames (or the inertial
frames) on a space-time manifold M in Einstein’s general theory of relativity.
In general relativity a gravitational field is defined in terms of the Lorentz
metric of M and the corresponding Levi-Civita connection on M . Thus, a
gravitational field is essentially determined by geometrical quantities intrin-
sically associated with the space-time manifold subject to the gravitational
field equations. This geometrization of gravity must be considered one of
the greatest events in the history of mathematical physics.

Weyl sought a geometric setting for a unified treatment of electromag-
netism and gravitation. He proposed local scale invariance as the origin of
electromagnetism. While this proposal was rejected on physical grounds, it
contained the fundamental idea of gauge invariance and local symmetry. In-
deed, replacing the local scale invariance by a local phase invariance leads to
the interpretation of Maxwell’s equations as gauge field equations with gauge
group U(1). In Section 8.2 we discuss the theory of electromagnetic fields
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from this point of view. This theory is the prototype of Abelian gauge
theories, i.e., theories with Abelian gauge group. Here, a novel feature is
the discussion of the geometrical implications of Maxwell’s equations and the
use of universal connections in obtaining their solutions. This last method
also yields solutions of pure Yang–Mills field equations, which are described
in Section 8.3. We also introduce here the instanton equations, which corre-
spond to self-dual Yang–Mills fields; however a detailed discussion of these
equations and their applications is postponed until Chapter 9. The removable
nature of isolated singularities in the solutions of Yang–Mills equations is also
discussed in this section. In Section 8.4 we give a brief discussion of the non-
dual solutions of the Yang–Mills equations. Yang–Mills–Higgs equations with
various couplings to potential are studied in Section 8.5. The Higgs mecha-
nism of symmetry-breaking is introduced in Section 8.6, and its application
to the electroweak theory is discussed in Section 8.7. The full standard model
including QCD is also considered here. Invariant connections are important
in physical theories where both local and global symmetries are present. We
discuss them briefly in Section 8.8.

8.2 Electromagnetic Fields

A source-free, or simply free, electromagnetic field is the prototype of
Yang–Mills fields. We will show that a source-free electromagnetic field is a
gauge field with gauge group U(1). Let P (M4, U(1)) be a principal U(1)-
bundle over the Minkowski space M4. Any principal bundle over M4 is triv-
ializable. We choose a fixed trivialization of P (M4, U(1)) and use it to write
P (M4, U(1)) = M4 × U(1). The Lie algebra u(1) of U(1) can be identified
with iR. Thus a connection form on P may be written as iω, ω ∈ Λ1(P ), by
choosing i as the basis of the Lie algebra iR. The gauge field can be written
as iΩ, where Ω = dω ∈ Λ2(P ). The Bianchi identity dΩ = 0 is an immedi-
ate consequence of this result. The bundle ad(P ) is also trivial and we have
ad(P ) = M4 × u(1). Thus, the gauge field Fω ∈ Λ2(M4, ad(P )) on the base
M4 can be written as iF , F ∈ Λ2(M4). Using the global gauge s : M4 → P
defined by s(x) = (x, 1), ∀x ∈M4, we can pull the connection form iω on P
to M4 to obtain the gauge potential iA = is∗ω. Thus in this case we have a
global potential A ∈ Λ1(M4) and the corresponding gauge field F = dA. The
Bianchi identity dF = 0 for F follows from the exactness of the 2-form F .
The field equations δF = 0 are obtained as the Euler–Lagrange equations
minimizing the action

∫
|F |2, where |F | is the pseudo-norm induced by the

Lorentz metric on M4 and the trivial inner product on the Lie algebra u(1).
We note that the action represents the total energy of the electromagnetic
field. The two equations

dF = 0, δF = 0 (8.1)
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are Maxwell’s equations for a source-free electromagnetic field.
A gauge transformation f is a section of Ad(P ) = M4 × U(1). It is com-

pletely determined by the function ψ ∈ F(M4) such that

f(x) = (x, eiψ(x)) ∈ Ad(P ), ∀x ∈M4.

If iB denotes the potential obtained by the action of the gauge transforma-
tion f on iA, then we have

iB = e−iψ(iA)eiψ + e−iψdeiψ or B = A + dψ,

which is the classical formulation of the gauge transformation f . We observe
that the group G of gauge transformations acts transitively on the solution
space of gauge connections A of equation (8.1) and hence the moduli space
A/G reduces to a single point. This observation plays a fundamental role in
the path integral approach to QED (quantum electrodynamics).

The above considerations can be applied to any U(1)-bundle over an arbi-
trary pseudo-Riemannian manifold M . We now consider the Euclidean ver-
sion of Maxwell’s equations to bring out the relation of differential geometry,
topology and analysis with electromagnetic theory as an example of gauge
theory. Let (M, g) be a compact, simply connected, oriented, Riemannian
4-manifold with volume form vg. A connection ω on P (M, U(1)) is called a
Maxwell connection or potential if it minimizes the Maxwell action
AM (ω) defined by

AM (ω) =
1

8π2

∫

M

|Fω|2xdvg . (8.2)

The corresponding Euler–Lagrange equations are

dFω = 0, δFω = 0. (8.3)

A solution of equations (8.3) is called a Maxwell field or a source-free Eu-
clidean electromagnetic field on M . We note that equations (8.3) are equiv-
alent to the condition that Fω be harmonic. Thus, a Maxwell connection is
characterized by its curvature 2-form being harmonic.

Now from topology we know that

H2(M,Z) = [M,CP∞],

where [M,CP∞] is the set of homotopy classes of maps from M to CP∞.
But, as discussed earlier in Chapter 5, CP∞ is the classifying space for U(1)-
bundles. Thus, each element of [M,CP∞] determines a principal U(1)-bundle
over M by pulling back the universal U(1)-bundle S∞ over CP∞. Hence each
element α ∈ H2(M,Z) corresponds to a unique isomorphism class of U(1)-
bundles Pα over M . Moreover, the first Chern class of Pα equals α. Note
that the natural embedding of Z into R induces an embedding of H2(M,Z)
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into H2(M,R). Thus, we can regard H2(M,Z) as a subset of H2(M,R).
Now H2(M,R) can be identified with the second cohomology group of the
de Rham complex H2

deR(M,R) of the base manifold M . Thus, an element

α ∈ H2(M,Z) ⊂ H2(M,R) = H2
deR(M,R)

corresponds to the class of a closed 2-form on M , which we also denote simply
by α. By applying Hodge theory we can identify H2

deR(M,R) with the space
of harmonic 2-forms with respect to the Hodge Laplacian Δ2 on 2-forms
defined by Δ2 = dδ + δd . Thus there exists a unique harmonic 2-form β on
M such that α = [β]. It can be shown that β is the curvature (gauge field)
of a gauge connection on the U(1)-bundle Pα over M . We note that Δβ = 0
is equivalent to the set of two equations dβ = 0, δβ = 0. Thus, the harmonic
form β is a Maxwell field, i.e., a source-free electromagnetic field. The above
discussion proves the following theorem.

Theorem 8.1 Let P (M, U(1)) be a principal bundle over a compact, simply
connected, oriented, Riemannian manifold M . Then the Maxwell field is the
unique harmonic 2-form representing the Euler class or the first Chern class
c1(P ).

The role played by the various areas of topology and geometry in the proof
of the above theorem is as follows. Let I denote the set of isomorphism classes
of U(1)-bundles over M , H2 the set of harmonic 2-forms on M , EG the set
of gauge equivalence classes of gauge fields, and CI the set of connections on
U(1)-bundles with integral curvature. Then we have the following diagram:

H2(M,Z) H2(M,R)�

algebraic topology

�

[M,CP∞]
�

bundle theory

�

I
�

differential geometry

�

EG
�

�
gauge theory

de Rham theory

�

H2
deR(M,R)

�

Hodge theory

�

H2

�

theory of connections

�

CI
�
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The fact that an integral Chern class c1(P ) is represented by the curvature
of a gauge connection in a complex line bundle associated to P also plays
an important role in geometric quantization. If M is 4-dimensional then the
Maxwell field can be decomposed into its self-dual and anti-dual parts un-
der the Hodge star operator. The corresponding fields are related to certain
topological invariants of the manifold M such as the Seiberg–Witten invari-
ants.

Theorem 8.1 suggests where we should look for examples of source-free
electromagnetic fields. Since every U(1)-bundle with a connection is a pull-
back of a suitable U(1)-universal bundle with universal connection, it is nat-
ural to examine this bundle first. The Stiefel bundle VR(n + k, k) over the
Grassmann manifold GR(n + k, k) is k-classifying for SO(k). In particu-
lar, for k = 2, we get VR(n + 2, 2) = SO(n + 2)/SO(n) and GR(n + 2, 2) =
SO(n+2)/(SO(n)×SO(2)). Similarly, VC(n+1, 1) = U(n+1)/U(n) = S2n+1

and GC(n+1, 1) = U(n+1)/(U(n)×U(1)) = CPn, which is the well-known
Hopf fibration. Recall that the first Chern class classifies these principal
U(1)-bundles and is an integral class. When applied to the base manifold
CP1 ∼= S2 this classification corresponds to the Dirac quantization con-
dition for a monopole. Example 6.1 corresponds to the above Hopf fibration
with n = 1. The natural (or universal) connections over these bundles satisfy
source-free Maxwell’s equations. We note that the pull-back of these univer-
sal connections do not, in general, satisfy Maxwell’s equations. However, we
do get new solutions in the following situation.

Example 8.1 If M is an analytic submanifold of CPn, then the U(1)-bundle
S2n+1, pulled back by the embedding i : M ↪→ CPn, gives a connection
on M whose curvature satisfies Maxwell’s equations. For example, if M =
CP1 = S2, then for each positive integer n, we have the following well-known
embedding:

fn : CP1 ↪→ CPn

given in homogeneous coordinates z0, z1 on CP1 by

fn(z0, z1) = (zn0 , c1z
n−1
0 z1, . . . , cmzn−m0 zm1 , . . . , zn1 ),

where ci =
(
n
i

)1/2. The electromagnetic field on CPn is pulled back by fn
to give a field on CP1 = S2, which corresponds to a magnetic monopole of
strength n/2. Moreover the corresponding principal U(1)-bundle is isomorphic
to the lens space L(n, 1).

8.2.1 Motion in an Electromagnetic Field

We discussed above the geometric setting that characterizes source-free elec-
tromagnetic fields. On the other hand, the existence of an electromagnetic
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field has consequences for the geometry of the base space and this in turn
affects the motion of test particles. Indeed, these effects are well-known in
classical physics only for the electromagnetic field. At this time there are no
known physical effects associated with classical non-Abelian gauge fields such
as the Yang–Mills field. We now give a brief discussion of these aspects of the
electromagnetic field.

First recall that an electrostatic field E determines the difference in po-
tential between two points by integration along a path joining them. It is
therefore reasonable to think of E as a 1-form on R3. Maxwell’s fundamental
idea was to introduce a quantity, called electric displacement D, which
has the property that its integral over a closed surface measures the charge
enclosed by the surface. One should thus think of D as a 2-form. In a uni-
form medium characterized by dielectric constant ε, one usually writes the
constitutive equations relating D and E as

D = εE.

However, our discussion indicates that this equation only makes sense if E is
replaced by a 2-form. In fact, if we are given a metric on R3, there is a natural
way to associate with E a 2-form, namely ∗E, where ∗ is the Hodge operator.
Then the above equation can be written in a mathematically precise form

D = ε(∗E).

Conversely, requiring such a relation between D and E, i.e., specifying the
operator ∗ : Λ1(R3) → Λ2(R3), is equivalent to a Euclidean metric on R3.
Similarly, one can interpret the magnetic tension or induction as a 2-form
B and Faraday’s law then implies that B is closed, i.e., dB = 0. The law of
motion of a charged test particle of charge e, moving in the presence of B, is
obtained by a modification of the canonical symplectic form ω on T ∗R3 by
the pull-back of B by the canonical projection π : T ∗R3 → R3, i.e., by use
of the form

ωe,B = ω + eπ∗B.

The distinct theories of electricity and magnetism were unified by Maxwell
in his electromagnetic theory. To describe this theory for arbitrary elec-
tromagnetic fields, it is convenient to consider their formulation on the 4-
dimensional Minkowski space-time M4. We define the two 2-forms F and G
by

F := B + E ∧ dt, G := D −H ∧ dt,

where B and H are the magnetic tension and magnetic field, respectively and
E and D are the electric field and displacement, respectively. If J denotes
the current 3-form, then Maxwell’s equations with source J are given by

dF = 0
dG = 4πJ.
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The two fields F and G are related by the constitutive equationsm which
depend on the medium in which they are defined. In a uniform medium (in
particular in a vacuum) we can write the constitutive equations as

G = (ε/μ)1/2 ∗ F.

We note that, specifying the operator ∗ : Λ2(M4) → Λ2(M4) determines
only the conformal class of the metric. If we choose the standard Minkowski
metric, then we can write the source-free Maxwell’s equations in a uniform
medium as

dF = 0, d ∗ F = 0.

The second equation is equivalent to δF = 0; we thus obtain the gauge field
equations discussed earlier.

It is well known that Hamilton’s equations of motion of a particle in
classical mechanics can be given a geometrical formulation by using the phase
space P of the particle. The phase space P is, at least locally, the cotangent
space T ∗Q of the configuration space Q of the particle. For a geometrical
formulation of classical mechanics see Abraham and Marsden [1]. We now
show that this formalism can be extended to the motion of a charged particle
in an electromagnetic field and leads to the usual equations of motion with
the Lorentz force. We choose the configuration space Q of the particle as the
usual Minkowski space. The law of motion of a charged test particle with
charge e is obtained by considering the symplectic form

ωe,F = ω + eπ∗F,

where ω is the canonical symplectic form of T ∗Q and π : T ∗Q → Q is the
canonical projection. The Hamiltonian function is given by

H(q, p) =
1

2m
gijpipj ,

where gij are the components of the Lorentz metric and pi are the components
of 4-momentum. In the usual system of coordinates we can write the metric
and the Hamiltonian as

ds2 = dq2
0 − dq2

1 − dq2
2 − dq2

3 ,

H(q, p) =
1

2m
(p2

0 − p2
1 − p2

2 − p2
3).

The matrix of the symplectic form ωe,F , in local coordinates xα = (qi, pi) on
T ∗Q, can be written in block matrix form as

ωe,F =
(

eF −I
I 0

)
.
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The Hamiltonian vector field is given by

XH = (dH)� =
∂H
∂xα

ωαβe,F∂β ,

where ωαβe,F are the elements of (ωe,F )−1. The corresponding Hamilton’s equa-
tions are given by

dxα

dt
= Xα

H = ωαβe,F
∂H
∂xβ

,

i.e.,

dqi

dt
=

∂H
∂pi

, (8.4)

dpi
dt

= −∂H
∂qi

+ eFij
∂H
∂pi

. (8.5)

Equation (8.5) implies that the 3-momentum p = (p1, p2, p3) of the particle
satisfies the equation

dp

dt
=

e

2m
(E + p×B), (8.6)

where E and B are respectively the electric and the magnetic fields. The
equation (8.6) is the well-known equation of motion of a charged particle in
an electromagnetic field subject to the Lorentz force. Now the electromag-
netic field is a gauge field with Abelian gauge group U(1). The orbits of
contragredient action of U(1) on the dual of its Lie algebra u(1) are trivial.
Identifying u(1) and its dual with R, we see that an orbit through e ∈ R
is the point e itself. Thus, in this case, the choice of an orbit is the same
thing as the choice of the unit of charge. This construction can be general-
ized to gauge fields with arbitrary structure group and, in particular, to the
Yang–Mills fields to obtain the equations of motion of a particle moving in
a Yang–Mills field. A detailed discussion of this is given in Guillemin and
Sternberg [179].

8.2.2 The Bohm–Aharonov Effect

We discussed above the effect of the geometry of the base space on the prop-
erties of the electromagnetic fields defined on it. We now discuss a property
of the electromagnetic field that depends on the topology of the base space.
In Example 6.1 of the Dirac monopole we saw that the topology of the base
space may require several local gauge potentials to describe a single global
gauge field. In fact, this is the general situation. In classical theory only the
electromagnetic field was supposed to have physical significance while the
potential was regarded as a mathematical artifact. However, in topologically
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non-trivial spaces the potential also becomes physically significant. For ex-
ample, in non-simply connected spaces the equation dF = 0, satisfied by a
2-form F , defines not only a local potential but a global topological prop-
erty of belonging to a given cohomology class. Bohm and Aharonov ([8, 7])
suggested that in quantum theory the non-local character of electromagnetic
potential A = Aidxi, in a multiply connected region of space-time, should
have a further kind of significance that it does not have in the classical theory.
They proposed detecting this topological effect by computing the phase shift∮

Aidxi around a closed curve not homotopic to the identity and computing
its effect in an electron interference experiment. We now discuss the special
case of a non-relativistic charged particle moving through a vector potential
corresponding to zero magnetic field to bring out the effect of potentials in
the absence of fields.

Consider a long solenoid placed along the z-axis with its center at the
origin. Then for motion near the origin the space may be considered to be
R3 minus the z-axis. A loop around the solenoid is then homotopically non-
trivial (i.e., not homotopic to the identity). Thus, two paths c1, c2 respectively
joining two points p1, p2 on opposite sides of the solenoid are not homotopic.
If we send particle beams along these paths from p1 to p2, we can observe the
resulting interference pattern at p2. Let ψi, i = 1, 2, denote the wave function
corresponding to the beam passing along ci when the vector potential is zero.
When the field is switched on in the solenoid, the paths c1, c2 remain in the
field-free region, but the vector potential in this region is not zero. The wave
function ψj is now changed to ψje

iSj/�, where

Sj = q

∫

cj

Akdxk, j = 1, 2.

It follows that the total wave function of the system is changed as follows:

ψ1 + ψ2 → ψ1e
iS1/� + ψ2e

iS2�. (8.7)

The interference effect of the recombined beams will thus depend on the
phase factor

ei(S1−S2)/� = e(iq/�)
∫

c
Akdx

k

,

where c is the closed path c1 − c2. The predicted effect, called the Bohm–
Aharonov effect, was confirmed by experimental observations. This result
firmly established the physical significance of the gauge potential in quantum
theory. Extensions of the Bohm–Aharonov effect to non-Abelian gauge fields
have been proposed, but there is no physical evidence for this effect at this
time. The prototype of non-Abelian gauge theories is the theory of Yang–
Mills fields. Many of the mathematical considerations given above for the
electromagnetic fields extend to Yang–Mills fields, which we discuss in the
next section.
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8.3 Yang–Mills Fields

Yang–Mills fields form a special class of gauge fields that have been exten-
sively investigated. In addition to the references given for gauge fields we give
the following references which deal with Yang–Mills fields. They are Douady
and Verdier [114], [59, 60, 386], and [410,411].

Let M be a connected manifold and let P (M, G) be a principal bundle
over M with Lie group G as the gauge group. In this section we restrict
ourselves to the space A(P ) of gauge connections as our configuration space.
If ω is a gauge connection on P then, in a local gauge t ∈ Γ (U, P ), we have
the corresponding local gauge potential

At = t∗ω ∈ Λ1(U, ad(P )).

Locally, a gauge transformation g ∈ G reduces to a G-valued function gt on
U , and its action on At is given by

gt ·At = (ad gt) ◦At + g∗tΘ,

where Θ is the canonical 1-form on G. It is customary to indicate this gauge
transformation as follows

Ag := g ·A = g−1Ag + g−1dg

when the section t is understood.
The gauge field Fω is the unique 2-form on M with values in the bundle

ad(P ) satisfying
Fω = sΩ,

where Ω is the curvature of the gauge connection ω. In the local gauge t we
can write

Fω = dωAs = dAs + 1
2 [As, As],

where the bracket is taken as the bracket of bundle-valued forms.
We note that it is always possible to introduce a Riemannian metric on

a vector bundle over M . The manifold M itself admits a Riemannian met-
ric. We assume that metrics are chosen on M and the bundles over M , and
the norm is defined on sections of these bundles as an L2-norm if M is not
compact. However, to simplify the mathematical considerations, we assume
in the rest of this chapter that M is a compact, connected, oriented, Rie-
mannian manifold and that G is a compact, semisimple Lie group, unless
otherwise indicated. For a given M and G, the principal G-bundles over M
are classified by [M ; BG], the set of homotopy classes of maps of M into the
classifying space BG for G. For f ∈ [M ; BG], let Pf be a representative of
the isomorphism class of principal bundles corresponding to f . Let A(Pf )
be the space of gauge potentials on Pf . Then, the Yang–Mills configuration
space AM is the disjoint union of the spaces A(Pf ), i.e.,
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AM = ∪{A(Pf ) | f ∈ [M ; BG]}.

The isomorphism class [Pf ] is uniquely determined by the characteristic
classes of the bundle Pf . For example, if dimM = 4 and G = SU(2),
then c1(Pf ) = 0 and hence [Pf ] is determined by the second Chern class
c2(Pf ) = c2(Vf ), where Vf is the complex vector bundle of rank 2 associated
to Pf by the defining representation of SU(2). Now the class c2(Pf ), evalu-
ated on the fundamental cycle of M , is integral, i.e., c2(Pf )[M ] ∈ Z. Thus, in
this case Pf is classified by an integer n(f) and we can write A(Pf ) as An(f),
or simply as An. In the physics literature, this number n is referred to as the
instanton number of Pf . From both the physical and mathematical point
of view, this is the most important case.

We now restrict ourselves to a fixed member A(Pf ) of the disjoint union
AM and write simply P for Pf . Then the Yang–Mills action or (func-
tional) AYM is defined by

AYM (ω) =
1

8π2

∫

M

|Fω |2xdvg, ∀ωA(P ). (8.8)

To find the corresponding Euler–Lagrange equations, we take into account
the fact that the space of gauge potentials is an affine space and hence it is
enough to consider variations along the straight lines through ω of the form

ωt = ω + tA, where A ∈ Λ1(M, adP ).

Direct computation shows that the gauge field, corresponding to the gauge
potential ωt, is given by

Fωt = Fω + tdωA + t2(A ∧A). (8.9)

Using equations (8.8) and (8.9) we obtain

d

dt
AYM (ωt)|t=0 =

d

dt

(∫

M

|Fω + tdωA + t2(A ∧A)|2xdvg

)
|t=0

= 2
∫

M

< Fω, dωA > dvg

= 2
∫

M

< δωFω, A > dvg .

The above result is often expressed in the form of a variational equation

δAYM (ω)(A) = 2〈〈δωFω, A〉〉. (8.10)

A gauge potential ω is called a critical point of the Yang–Mills functional
if

δAYM (ω)(A) = 0, ∀A ∈ Λ1(M, ad P ). (8.11)
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The critical points of the Yang–Mills functional are solutions of the corre-
sponding Euler–Lagrange equation

δωFω = 0. (8.12)

The equations (8.12) are called the pure (or sourceless) Yang–Mills equa-
tions. A gauge potential ω satisfying the Yang–Mills equations is called
the Yang–Mills connection and its gauge field Fω is called the Yang–
Mills field. Using local expressions for dω and δω it is easy to show that
δω = ± ∗ dω∗. From this it follows that ω satisfies the Yang–Mills equa-
tions (8.12) if and only if it is a solution of the equation

dω ∗ Fω = 0. (8.13)

In the following theorem we have collected various characterizations of the
Yang–Mills equations.

Theorem 8.2 Let ω be a connection on the bundle P (M, G) with finite
Yang–Mills action. Then the following statements are equivalent:

1. ω is a critical point of the Yang–Mills functional;
2. ω satisfies the equation δωFω = 0;
3. ω satisfies the equation dω ∗ Fω = 0;
4. ω satisfies the equation ∇ωFω = 0, where ∇ω = dωδω + δωdω is the Hodge

Laplacian on forms.

The equivalence of the first three statements follows from the discussion
given above. The equivalence of the statements 2 and 4 follows from the
identity

〈〈∇ωFω , Fω〉〉 = ‖dωFω‖2 + ‖δωFω‖2 = ‖δωFω‖2.

The second equality in the above identity follows from the Bianchi identity

dωFω = 0. (8.14)

This identity is a consequence of the Cartan structure equations and ex-
presses the fact that, locally, Fω is derived from a potential. It is customary
to consider the pair (8.12) and (8.14) or (8.13) and (8.14) as the Yang–Mills
equations. This is consistent with the fact that they reduce to Maxwell’s
equations for the electromagnetic field F , when the gauge group G is U(1)
and M is the Minkowski space.

In local orthonormal coordinates, the Yang–Mills equations can be written
as

∂Fij
∂xi

+ [Ai, Fij ] = 0, (8.15)

where the components Fij of the 2-form Fω are given by

Fij =
∂Aj

∂xi
− ∂Ai

∂xj
+ [Ai, Aj ]. (8.16)
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Thus, we see that the Yang–Mills equations are a system of non-linear, second
order, partial differential equations for the components of the gauge potential
A. The presence of quadratic and cubic terms in the potential represents the
self-interaction of the Yang–Mills field.

In (8.8) we defined the Yang–Mills action AYM on the domain A(P ). This
domain is an affine space and hence is contractible. But there is a large sym-
metry group acting on this space. This is the group G of gauge transformations
of P . By definition, a gauge transformation φ ∈ G is an automorphism of the
bundle P , which covers the identity map of M and hence leaves each x ∈M
fixed. Under this gauge transformation, the gauge field transforms as

Fω → Fφ
ω := φ−1Fωφ.

Therefore, the pointwise norm |Fω |x is gauge-invariant. It follows that the
Yang–Mills action AYM(ω) is gauge-invariant and hence induces a functional
on the moduli spaceM = A/G of gauge connections. This functional is also
called the Yang–Mills functional (or action). In order to relate the topology
of the moduli space M to the critical points of the Yang–Mills functional,
it is necessary to compute the second variation or the Hessian of the
Yang–Mills action

δ2AYM (ω) :=
d2

dt2
AYM (ωt)|t=0.

One can verify that the Hessian, viewed as a symmetric, bilinear form, is
given by the following expression:

δ2AYM (ω)(A, B) = 2
∫

M

(〈dωA, dωB〉+ 〈Fω , A ∧B + B ∧A〉).

Analysis of the Yang–Mills equations then proceeds by our obtaining various
estimates using these variations.

We note that if φ ∈ Aut(P ) covers a conformal transformation of M (also
denoted by φ), then this φ ∈ Diff(M) induces a conformal change of metric.
It is given by

φ∗g = e2fg, f ∈ F(M). (8.17)

Neither the pointwise norm |Fω|x nor the Riemannian volume form vg are
invariant under this conformal change, and the integrand in the Yang–Mills
action transforms as follows:

|Fω |2x dvg → (e−4f |Fω|2x)(emf dvg). (8.18)

It follows that, in the particular case of m = 4, the Yang–Mills action is
invariant under the generalized gauge transformations that cover conformal
transformations of M .
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A large number of solutions of the Yang–Mills equations are known for
special manifolds. For example, the universal connections on Stiefel bundles
provide solutions of pure (sourceless) Yang–Mills equations. As we observed
in the previous section, the natural connections associated to the complex
Hopf fibration satisfy source-free Maxwell’s equations. As is well known, Hopf
fibrations are particular cases of Stiefel bundles. In Chapter 4, we gave a
unified treatment of real, complex, and quaternionic Stiefel bundles. Those
results can be used to arrive at solutions of pure Yang–Mills equations as
follows (for further details see [302,377]).

Let A be the local gauge potential corresponding to the universal connec-
tion ω on the Stiefel bundle Vk(Fn)(Gk(Fn), UF (k)) with gauge group UF (k),
and let Fω = dωA be the corresponding gauge field. The basic computation
involves an explicit local expression for ∗Fω, the Hodge dual of the gauge
field Fω . In the complex case it can be shown that ∗Fω is represented by an
invariant polynomial of degree kl− 1, l = n− k in Fω , i.e.,

∗F = a F ∧ F ∧ · · · ∧ F︸ ︷︷ ︸
kl−1 times

,

where a is a constant. This expression, together with the Bianchi identities,
imply

dω ∗ Fω = 0. (8.19)

In the quaternionic case, a similar expression for ∗Fω leads to equation (8.19).
In the real case the expression for ∗Fω also involves the gauge potential
explicitly. These terms can be written as a wedge product of certain l-forms
ψ, which satisfy the condition dAψ = 0. As a consequence of the Maurer–
Cartan equation this, together with the Bianchi identities, implies (8.19) as
in the complex case.

Let M be a compact, oriented Riemannian manifold of dimension 4. Let
P (M, G) be a principal bundle over M with compact semisimple Lie group
G as structure group. Recall that the Hodge star operator on Λ(M) has a
natural extension to bundle valued forms. A form α ∈ Λ2(M, ad(P )) is said
to be self-dual (resp., anti-dual) if

∗α = α (resp., ∗α = −α).

We define the self-dual part α+ of a form α ∈ Λ2(M, ad(P )) by

α+ :=
1
2
(α + ∗α).

Similarly, the anti-dual part α− of a form α ∈ Λ2(M, ad(P )) is defined by

α− :=
1
2
(α − ∗α).
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Over a 4-dimensional base manifold, the second Chern class and the Euler
class of P are equal and we define the instanton number k of the bundle P
by

k := −c2(P )[M ] = −χ(P )[M ]. (8.20)

Recall that F = Fω is the curvature form of the gauge connection ω, and
hence, by the theory of characteristic classes, we have

k := −c2(P )[M ] = − 1
8π2

∫

M

Tr(F ∧ F ). (8.21)

Decomposing F into its self-dual part F+ and anti-dual part F−, we get

k =
1

8π2

∫

M

(|F+|2 − |F−|2). (8.22)

Using F+ and F− we can rewrite the Yang–Mills action (8.8) as follows:

AYM(ω) =
1

8π2

∫

M

(|F+|2 + |F−|2). (8.23)

Comparing equations (8.22) and (8.23) above we see that the Yang–Mills
action is bounded below by the absolute value of the instanton number k,
i.e.,

AYM (ω) ≥ |k|, ∀ω ∈ A(P ). (8.24)

When M is 4-dimensional, we can associate to the pure Yang–Mills equations
the first order instanton (resp., anti-instanton) equations

Fω = ∗Fω (resp., Fω = −∗Fω). (8.25)

The Bianchi identities imply that any solution of the instanton equations is
also a solution of the Yang–Mills equations. The fields satisfying Fω = ∗Fω
(resp., Fω = − ∗ Fω) are also called self-dual (resp., anti-dual) Yang–Mills
fields. We note that a gauge connection satisfies the instanton or the anti-
instanton equation if and only if it is the absolute minimum of the Yang–Mills
action. It can be shown that the instanton equations are also invariant under
the generalized gauge transformations, which cover conformal transforma-
tions of M . This result plays a crucial role in the construction of the moduli
space of instantons. The solutions of the instanton equations in the case of
M = S4 were originally called “instantons,” but this term is now used to
denote any solution of the instanton equations over a Riemannian manifold.
We study these solutions and consider their topological and geometrical ap-
plications in Chapter 9.

We now give two examples of Yang–Mills fields on S4 obtained by gluing
two potentials along the equator.
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Example 8.2 We consider the two standard charts U1, U2 on S4 (see Chap-
ter 1) and define the SU(2) principal bundle P1(S4, SU(2)) by the transition
function

g : U1 ∩ U2 → SU(2), g(x) = x/|x|,

where x ∈ R4 is identified with a quaternion. Essentially, the transition func-
tion g defines a map of the equator S3 into SU(2), i.e., an element of the
homotopy group [g] ∈ π3(SU(2)) ∼= Z. In fact, [g] is non-trivial, correspond-
ing to the non-triviality of the bundle P1. A connection A ∈ A(P1(S4, SU(2))
is specified by data consisting of a pair of su(2)-valued 1-forms Ai on
Ui, i = 1, 2, which are restricted to U1 ∩ U2 to obey the cocycle condition

A1(x) = g(x)A2g−1(x) + g(x)dg−1(x).

For each λ ∈ (0, 1) define the connection Aλ = (Aλ
1 , Aλ

2 ) by

Aλ
1 = Im

(
xdx̄

λ2 + |x|2

)
, Aλ

2 = Im
(

λ2x̄dx

|x|2(λ2 + |x|2)

)
.

The connection Aλ is self-dual with instanton number 1. The curvature of
this connection Aλ is Fλ+ = (Fλ+

1 , Fλ+
2 ) given by

Fλ+
1 = Im

(
λ2dx ∧ dx̄

(λ2 + |x|2)2

)
, Fλ+

2 = Im
(

λ2x̄dx ∧ dx̄x

|x|(λ2 + |x|2)2|x|

)
.

The basic anti-instanton over R4 is described as follows. The principal bundle
P−1(S4, SU(2)) is defined by the transition function

ḡ : U1 ∩ U2 → SU(2), ḡ(x) = x̄/|x|.

For each λ ∈ (0, 1) define the connection Bλ = (Bλ
1 , Bλ

2 ) by

Bλ
1 = Im

(
x̄dx

λ2 + |x|2

)
, Bλ

2 = Im
(

λ2xdx̄

|x|2(λ2 + |x|2)

)
.

The connection Bλ is anti-dual with instanton number −1. We note that
[ḡ] = −[g] ∈ π3(SU(2)) ∼= Z and thus [ḡ] is also non-trivial. The curvature
of this connection Aλ is Fλ− = (Fλ−

1 , Fλ−
2 ) given by

Fλ−
1 = Im

(
λ2dx̄ ∧ dx

(λ2 + |x|2)2

)
, Fλ−

2 = Im
(

λ2xdx̄ ∧ dxx̄

|x|(λ2 + |x|2)2|x|

)
.

In the above example we have given an explicit construction of two
basic Yang–Mills fields. In fact, these fields can be obtained by applying
Uhlenbeck’s removable singularities theorem to a suitable connection on
S4 \ {(0, 0, 0, 0, 1} ⊂ R5 to extend it to all of S4. We use this method in
our construction of the BPST instanton in Chapter 9.
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An explicit construction of the full (8k − 3)-parameter family of solutions
was given by Atiyah, Drinfeld, Hitchin, and Manin ([19]). An alternative con-
struction was given by Atiyah and Ward using the Penrose correspondence.
Several solutions to the Yang–Mills equations on special manifolds of various
dimensions have been obtained in [26, 175, 186, 243, 302, 377]. Although the
solutions’ physical significance is not clear, they may prove to be useful in
understanding the mathematical aspects of the Yang–Mills equations.

Gauge fields and their associated fields arise naturally in the study of
physical fields and their interactions. The solutions of these equations are
often obtained locally. The question of whether finite energy solutions of
the coupled field equations can be obtained globally is of great significance
for both the physical and mathematical considerations. The early solutions of
SU(2) Yang–Mills field equations in the Euclidean setting had a finite number
of point singularities when expressed as solutions on the base manifold R4.
The fundamental work of Uhlenbeck ([385,386,387]) showed that these point
singularities in gauge fields are removable by suitable gauge transformations
and that these solutions can be extended from R4 to its compactification
S4 as singularity-free solutions of finite energy. The original proof of the
removable singularities theorem is greatly simplified by using the blown-up
manifold technique. This proof also applies to arbitrary Yang–Mills fields and,
in particular, to non-dual solutions. Note that we call a connection non-dual
if it is neither self-dual (∗F = F ) nor anti-dual (∗F = −F ), i.e., if it is not
an absolute minimum of the Yang–Mills action. Specifically, one obtains in
this way a local solution of the source-free Yang–Mills equations on the open
ball B4 by removing the singularity at the origin.

Theorem 8.3 Let B4
g be the open ball B4 ⊂ R5 with some metric g (not

necessarily the standard metric induced from R5). Let ω be a solution of the
Yang–Mills equations in B4 \ {0} with finite action, i.e.,

∫

B4
|Fω|2 <∞.

Assume that the local potential A ∈ H1(B4 \ {0}) of ω has the property
that, for every smooth, compactly supported function φ ∈ C∞

0 (B4 \ {0}),
φA ∈ H1(B4 \ {0}). Then ω is gauge-equivalent to a connection ω̃, which
extends smoothly across the singularity to a smooth connection on B4.

By a grafting procedure the result of this theorem can be extended to
manifolds with a finite number of singularities as follows.

Theorem 8.4 Let M be a compact, oriented, Riemannian 4-manifold. Let
{p1, p2, . . . , pk} be any finite set of points in M . Let Pk be an SU(2)-bundle
defined over M \ {p1, p2, . . . , pk} and let ωk be a Yang–Mills connection on
P . Then the bundle Pk extends to an SU(2)-bundle defined over M and the
connection ωk extends to a Yang–Mills connection ω on P .
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These theorems can be extended to finite energy solutions of coupled
field equations on Riemannian base manifolds. It was shown in [386] that
the removable singularities theorems for pure gauge fields fail in dimensions
greater than 4. In dimension 3 the removable nature of isolated singularities
is discussed for the Yang–Mills and Yang–Mills–Higgs equations in Jaffe and
Taubes [207].

8.4 Non-dual Solutions

In general, the standard steepest descent method for finding the global min-
ima of the Yang–Mills action is not successful in 4 dimensions, even though
this technique does work in dimensions 2 and 3. In fact, the problem of
finding critical points of the Yang–Mills action seems to be similar to the 2-
dimensional harmonic map problem as well as to conformally invariant varia-
tional problems. These similarities had led some researchers to believe in the
non-existence of non-dual solutions. It can be shown that local Sobolev con-
nections, on SU(2)-bundles over R4 \M (M a smoothly embedded compact
2-manifold in R4) with finite Yang–Mills action, satisfy a certain holonomy
condition. If the singular set has codimension greater than 2, then the tech-
niques used for removing the point singularities can be applied to remove
these singularities. Thus, a codimension 2 singular set, such as an S2 embed-
ded in R4, provides an appropriate setting for new techniques and results. For
example, the holonomy condition implies that there exist flat connections in
a principal bundle over R4\S2 that cannot be extended to a neighborhood of
the singular set S2 even though the bundle itself may be topologically trivial.
It was also known that connections satisfying certain stability or symmetry
properties are either self-dual or anti-dual. In view of these results, it was
widely believed that no non-dual solutions with gauge group SU(2) existed
on the standard four sphere S4. Analogies with harmonic maps of S2 to S2

also appeared to support the non-existence of such solutions. In fact, it turns
out that a family of such connections may be used to obtain a non-trivial con-
nection that can be extended to a neighborhood of the singular set. These
ideas, together with the work on monopoles in hyperbolic 3-space, have been
used in [350] to prove the existence of non-dual (and hence non-minimal)
solutions of Yang–Mills equations. The existence of other non-dual solutions
has been discussed in [332,388,389].

In [332] it is shown that non-dual Yang–Mills connections exist on all
SU(2)-bundles over S4 with second Chern class different from ±1. The re-
sults are obtained by studying connections that are equivariant with respect
to the symmetry group G = SU(2) that acts on S4 ⊂ R5 via the unique
irreducible representation. The principal orbits are 3-dimensional, reducing
the Yang–Mills equations and the instanton equations to a system of ordinary
differential equations following [389]. The inequivalent lifts of this G-action to
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SU(2)-bundles over S4 are called quadrupole bundles. These bundles are
naturally classified by a pair of odd positive integers (n+, n−). The principal
bundle corresponding to the pair (n+, n−) is denoted by P(n+,n−). Then we
have

c2(P(n+,n−)) = (n2
+ − n2

−)/8.

Thus the second Chern class of the quadrupole bundle P(n+,n−) assumes all
integral values. The main result is:

Theorem 8.5 On every quadrupole bundle P(n+,n−) with n+ �= 1 and n− �=
1 there exists a non-dual SU(2) Yang–Mills connection.

It is not known whether any non-dual connections exist for c2 = ±1. The
non-dual Yang–Mills connections obtained in this work on the trivial bundle
over S4 (i.e., with c2 = 0) are different from those of [350]. The proof and
further discussion may be found in [332].

Recently, non-dual solutions of the Yang–Mills equations over S2×S2 and
S1×S3 with gauge group SU(2) have been obtained in [395]. We give a brief
discussion of these results below.

Theorem 8.6 Let (m, n) be a pair of integers with |m| �= |n|, which satisfy
the following conditions:

1. If |m| > |n|, then |m| �= |n|(2l + 1) + l(l + 1), for l = 0, 1, 2, . . ..
2. If |n| > |m|, then |n| �= |m|(2l + 1) + l(l + 1), for l = 0, 1, 2, . . ..

Then there exists a positive integer K0 such that, for any positive odd num-
ber k > K0, there exists an irreducible SU(2)-connection A(m, n, k) over
S2×S2 with instanton number 2mn, which is a non-minimal solution of the
Yang–Mills equations. In fact, the Yang–Mills action defined by equation (8.9)
satisfies the inequality

2(m2 + n2 + 2k)− ε < AYM (A(m, n, k)) < 2(m2 + n2 + 2k) + ε

for some ε ≤ 1.

Proof : It is well known that S2 is diffeomorphic to the complex projective
space CP1 viewed as the set of 1-dimensional linear subspaces in C2. There
exists a tautological line bundle L over S2 whose first Chern number is

∫

CP1
c1(L) = −1,

where c1(L) is the first Chern class of L. Consider the standard metric on
S2 ∼= CP1; then the first Chern class is written as

c1(L) = − 1
4π

ω,

where ω is the volume form on CP1. Suppose that A0 is the canonical con-
nection on L; then the curvature of A0 is
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FA0 = iω/2.

Set L(m, n) = π∗
1Lm⊗ π∗

2Lm → CP1×CP1, which is a complex line bundle
over the product manifold CP1×CP1, where m, n ∈ Z, and π1, π2 are the
natural projections from CP1×CP1 to the first and second factor, respec-
tively. The first Chern class of L(m, n) is

c1(L(m, n)) = −1
4
(mω1 + nω2),

where ωi = π∗
i ω, i = 1, 2. Let A(m, n) = π∗

1(⊗mA0) ⊗ π∗
2(⊗nA0). Then the

corresponding curvature is

F (m, n) = FA(m,n) =
i

2
(mω1 + nω2).

Hence L(m, n)⊕L(m, n)−1 → CP1×CP1 is a reducible SU(2)-bundle over
CP1×CP1, and there exists a reducible SU(2)-connection whose curvature
is

F (m, n) =
1
2
(mω1 + nω2)

(
i 0
0 −i

)
.

We note that c1(L(m, n)⊕ L(m, n)−1) = 0 and

−c2(L(m, n)⊕ L(m, n)−1) =
1

4π2
det(F (m, n)) =

mn

8π2
ω1 ∧ ω2.

It follows that if m = n (resp., m = −n), then A(m, n) is a reducible self-dual
(resp., anti-dual) SU(2)-connection on L(m, n) ⊕ L(m, n)−1 with instanton
number 2m2 (resp. −2m2). When |m| �= |n|, then A(m, n) is a reducible non-
minimal Yang–Mills connection on L(m, n) ⊕ L(m, n)−1 with degree 2mn
since F (m, n) is neither self-dual nor anti-dual. Grafting the standard in-
stanton and anti-instanton solutions on these non-dual solutions gives the
required family of solutions. ��

For Yang–Mills fields on S1 × S3 we have the following result.

Theorem 8.7 There exists a positive integer K0 such that, for any positive
odd number k > K0, there exists an irreducible SU(2)-connection A(k) over
S1×S3 with instanton number 0 that is a non-minimal solution of the Yang–
Mills equations and its action satisfies the inequality

AYM(A(k)) > 4k.

A special non-dual Yang–Mills field on S1 × S3 was used in [269] as the
source field in the construction of generalized gravitational instantons. From
a physical point of view, one can consider the family of non-dual solutions to
be obtained by studying the interaction of instantons, anti-instantons, and
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the field of a fixed background connection, which is an isolated non-minimal
solution of the Yang–Mills equations.

8.5 Yang–Mills–Higgs Fields

In this section we give a brief discussion of the most extensively studied cou-
pled system, namely, the system of Yang–Mills–Higgs fields, and touch upon
some related areas of active current research. From the physical point of view
the Yang–Mills–Higgs system is the starting point for the construction of real-
istic models of field theories, which describe interactions with massive carrier
particles. From the mathematical point of view the Yang–Mills–Higgs system
provides a set of non-linear partial differential equations, whose solutions have
many interesting properties. In fact, these solutions include solitons, vortices,
and monopoles as particular cases. Establishing the existence of solutions of
the Yang–Mills–Higgs system of equations has required the introduction of
new techniques, since the standard methods in the theory of non-linear par-
tial differential equations are, in general, not applicable to this system. We
now give a brief general discussion of various couplings of Yang–Mills field to
Higgs fields, with or without self-interaction.

Let (M, g) be a compact Riemannian manifold and P (M, G) a principal
bundle with compact semisimple gauge group G. Let h denote a fixed bi-
invariant metric on G. The metrics g and h induce inner products and norms
on various bundles associated to P and their sections. We denote all these
different norms by the same symbol, since the particular norm used is clear
from the context. The Yang–Mills–Higgs configuration space is defined
by

CH := A(P )× Γ (ad P ),

i.e.,
CH ⊂ {(ω, φ) ∈ Λ1(P, g)× Λ0(M, ad P )},

where ω is a gauge connection and φ is a section of the Higgs bundle ad P . In
the physics literature φ is called the Higgs field in the adjoint representation.
In the rest of this section we consider various coupled systems with such Higgs
field.

A Yang–Mills–Higgs action AS , with self-interaction potential V :
R+ → R+, is defined on the configuration space C by

AS(ω, φ) = c(M)
∫

M

[
|Fω |2 + c1|dωφ|2 + c2V (|φ|2)

]
, (8.26)

where c(M) is a normalizing constant that depends on the dimension of
M (c(M) = 1

8π2 for a 4-dimensional manifold) and c1, c2 are the coupling
constants. The constant c1 measures the relative strengths of the gauge



256 8 Yang–Mills–Higgs Fields

field and its interaction with the Higgs field. When c1 �= 0, the constant
c2/c1 measures the relative strengths of the Higgs field self-interaction and
the gauge field–Higgs field interaction. A Yang–Mills–Higgs system with
self-interaction potential V is defined as a critical point (ω, φ) ∈ C of the
action AS . The corresponding Euler–Lagrange equations are

δωFω + c1[φ, dωφ] = 0, (8.27)

δωdωφ + c2V
′(|φ|2)φ = 0, (8.28)

where V ′(x) = dV/dx. Equations (8.27), (8.28) are called the Yang–Mills–
Higgs field equations with self-interaction potential V . In the physics litera-
ture, it is customary to define the current J by

J = −c1[φ, dωφ]. (8.29)

Using this definition of the current we can rewrite equation (8.27) as follows:

δωFω = J. (8.30)

Note that in these equations δω is the formal L2-adjoint of the corresponding
map dω. Thus, in (8.27) δω is a map

δω : Λ2(M, ad P )→ Λ1(M, ad P )

and in (8.28) δω is a map

δω : Λ1(M, adP )→ Λ0(M, ad P ) = Γ (adP ).

The pair (ω, φ) also satisfies the following Bianchi identities

dωFω = 0, (8.31)
dω · dωφ = [Fω, φ]. (8.32)

Note that these identities are always satisfied whether or not equa-
tions (8.27), (8.28) are satisfied.

We note that no solution in closed form of the Yang–Mills–Higgs equations
with self-interaction potential is known for c2 > 0, but existence of spherically
symmetric solutions is known. Also, existence of solutions for the system is
known in dimensions 2 and 3. It can be shown that the solutions of the
system of equations (8.27), (8.28) on Rn satisfy the following relation (Jaffe
and Taubes [207]):

(n− 4)|Fω |2 + (n− 2)c1|dωφ|2 + nc2|V (|φ|2)| = 0.

From this relation it follows that for c1 ≥ 0, c2 ≥ 0 there are no non-trivial
solutions for n > 4, and for n = 4 every solution decouples (i.e., is equivalent
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to a pure Yang–Mills solution.) For the Yang–Mills–Higgs system on R3 with
c1 = 1 and c2 ≥ 0 we have the following result [169].

Theorem 8.8 Let V (t) = (1 − t)2(1 + at), a ≥ 0. Then for c2 sufficiently
small, there exists a positive action solution to equations (8.27), (8.28) which
is not gauge equivalent to a spherically symmetric solution. Furthermore, for
c2 smaller still, there exists a solution that has the above properties and is,
in addition, not a local minimum of the action.

Writing c1 = 1 and c2 = 0 in (8.26) we get the usual Yang–Mills–Higgs
action

AH(ω, φ) = c(M)
∫

M

[|Fω |2 + |dωφ|2]. (8.33)

The corresponding Yang–Mills–Higgs equations are

δωFω + [φ, dωφ] = 0, (8.34)
δωdωφ = 0. (8.35)

In the above discussion the Higgs field was defined to be a section of the
Lie algebra bundle adP . We now remove this restriction by defining the
generalized Higgs bundle

Hρ := P ×ρ H

to be the vector bundle associated to P by the representation ρ of the gauge
group G on the vector space H (which may be real or complex). We as-
sume that H admits a G-invariant metric. A section ψ ∈ Γ (Hρ) is called
the generalized Higgs field. In what follows we shall drop the adjective
“generalized” when the representation ρ is understood.

8.5.1 Monopoles

Finite action solutions of equations (8.27), (8.28) are called solitons. Locally,
these solutions correspond to time-independent, finite-energy solutions on
R×M . The Yang–Mills instantons discussed earlier are soliton solutions of
equations (8.27), (8.28) corresponding to φ = 0, c2 = 0. The soliton solutions
on a 2-dimensional base are known as vortices and those on a 3-dimensional
base are known as monopoles. Vortices and monopoles have many properties
that are qualitatively similar to those of the Yang–Mills instantons.

When M is 3-dimensional, we can associate to the Yang–Mills–Higgs equa-
tions the first order Bogomolnyi equations [46]

Fω = ± ∗ dωφ. (8.36)
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Equation (8.36) is also referred to as the monopole equation. The Bianchi
identities imply that each solution (ω, φ) of the Bogomolnyi equations (8.36)
is a solution of the second order Yang–Mills–Higgs equations. In fact, one
can show that such solutions of the Yang–Mills–Higgs equations are global
minima on each connected component of the Yang–Mills–Higgs monopole
configuration space Cm defined by

Cm = {(ω, φ) ∈ C | AH(ω, φ) <∞, lim
y→∞

sup{φ̂(x)| | |x| ≥ y} = 0},

where φ̂(x) = |1 − |φ(x)||. Locally, the Bogomolnyi equations are obtained
by applying the reduction procedure to the instanton or anti-instanton equa-
tions on R4. No such first order equations corresponding to the Yang–Mills–
Higgs equations with self-interaction potential are known. In particular, a
class of solutions of the Bogomolnyi equations on R3 has been studied ex-
tensively. They are the most extensively studied special class of the Yang–
Mills monopole solutions. If the gauge group is a compact, simple Lie group,
then every solution (ω, φ) of the Bogomolnyi equations, satisfying certain
asymptotic conditions, defines a gauge-invariant set of integers. These inte-
gers are topological invariants corresponding to elements of the second homo-
topy group π2(G/J), where J is a certain subgroup of G obtained by fixing
the boundary conditions. In the simplest example, when the gauge group
G = SU(2) and J = U(1), we have π2(G/J) ∼= π2(S2) ∼= Z and there is only
one integer N(ω, φ) ∈ Z that classifies the monopole solutions. It is called
the monopole number or the topological charge and is defined by

N(ω, φ) =
1
4π

∫

R3

dωφ ∧ F , (8.37)

where we have written F for Fω. It can be shown that, with suitable decay
of |φ| in R3, N(ω, φ) is an integer and we have

N(ω, φ) =
1
4π

∫

R3

dωφ ∧ F

= lim
r→∞

1
4π

∫

S2
r

〈φ, F 〉

= deg{φ/|φ| : S2
r → SU(2)},

where 〈 , 〉 is the inner product in the Lie algebra. In fact, Groisser [170,
169] has proved that in classical SU(2) Yang–Mills–Higgs theories on R3

with a Higgs field in the adjoint representation, an integer-valued monopole
number is canonically defined for any finite action smooth configuration and
that the monopole configuration space essentially has the homotopy type of
Maps(S2, S2) (regarded as maps from the sphere at infinity to the sphere in
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the Lie algebra su(2)) with infinitely many path components, labeled by the
monopole number.

The Yang–Mills equations and the Yang–Mills–Higgs equations share sev-
eral common features. As we noted above, locally, the Yang–Mills–Higgs
equations are obtained by a dimensional reduction of the pure Yang–Mills
equations. Both equations have solutions, which are classified by topological
invariants. For example, the G-instanton solutions over S4 are classified by
π3(G). For simple Lie groups G this classification goes by the integer defined
by the Pontryagin index or the instanton number, whereas the monopole so-
lutions over R3 are classified by π2(G/J). The first order instanton equations
correspond to the first order Bogomolnyi equations and both have solution
spaces that are parametrized by manifolds with singularities or moduli spaces.
However, there are important global differences in the solutions of the two
systems that arise due to different boundary conditions. For example, no
translation-invariant non-trivial connection over R4 can extend to S4. Ex-
tending the analytical foundations laid in [344, 386, 387], Taubes proved the
following theorem:

Theorem 8.9 There exists a solution to the SU(2) Yang–Mills–Higgs equa-
tions that is not a solution to the Bogomolnyi equations.

The corresponding problem regarding the relation of the solutions of the
full Yang–Mills equations and those of the instanton equations has been
solved in [350], where the existence of non-dual solutions to pure Yang–Mills
equations over S4 is also established. Other non-dual solutions have been
obtained in [332]. The basic references for material in this section are Atiyah
and Hitchin [18] and Jaffe and Taubes [207]. For further developments see
[169,194].

8.6 Spontaneous Symmetry Breaking

We shall consider the spontaneous symmetry breaking in the context of a La-
grangian formulation of field theories. We therefore begin by discussing some
examples of standard Lagrangian for matter fields, gauge fields, and their
interactions. An example of a Lagrangian for spin 1/2 fermions interacting
with a scalar field φ1 and a pseudo-scalar field φ2 is given by

L = −ψ̄(Dψ + mψ) + y1φ1ψ̄ψ + iy2φ2ψ̄γ5ψ, (8.38)

where ψ is the 4-component spinor field of the fermion and ψ̄ is its conjugate
spinor field and D = γμ∂μ is the usual Dirac operator. Thus, the first term in
the Lagrangian corresponds to the Dirac Lagrangian. The second and third
terms, representing couplings of scalar and pseudo-scalar fields to fermions
are called Yukawa couplings. The constants y1, y2 are called the Yukawa
coupling constants. They are introduced to give mass to the fermions. The
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field equations for the Lagrangian (8.38) are given by

(D + m)ψ = y1φ1ψ + iy2φ2γ5ψ (8.39)

and the conjugate of equation (8.39). The Lagrangian for a spin 1/2 fermion
interacting with an Abelian gauge field (e.g., electromagnetic field) is given
by

L = −ψ̄(Dωψ + mψ)− 1
4
FμνF

μν , (8.40)

where Dω is the Dirac operator coupled to the gauge potential ω and Fω is
the corresponding gauge field. A local expression for Dω is obtained by the
minimal coupling to the local gauge potential A by

Dω = γμ∇ωμ ≡ γμ(∂μ − iqAμ). (8.41)

We recall that the principle of minimal coupling to a gauge potential signifies
the replacement of the ordinary derivative ∂μ in the Lagrangian by the gauge-
covariant derivative ∇ωμ . In the physics literature it is customary to denote
γμ∂μ by /∂ for any vector ∂μ (∂μ is regarded as a vector operator). The field
equations corresponding to (8.40) are given by

∇ωλFμν +∇ωμFνλ +∇ωνFλμ = 0, (8.42)

∂νFμν = Jμ := iqψ̄γμψ, (8.43)

(γμ∂μ + m)ψ = iqγμAμψ (8.44)

and the conjugate of equation (8.44). We note that (8.42) is often expressed
in the equivalent forms

δωF = 0 or ∇ω ∗ F = 0,

where δω is the formal adjoint of∇ω. Equation (8.43) implies the conservation
of current ∂μJ

μ = 0. The Lagrangian for spin 1/2 fermions interacting with
a non-Abelian gauge field (e.g., an SU(N)-gauge field) has the same form as
in equation (8.40) but with the operator Dω defined by

Dω = γμ∇ωμ ≡ γμ(∂μ − gTaA
a
μ), (8.45)

where {Ta, 1 ≤ a ≤ N2 − 1} is a basis for the Lie algebra su(N). The
expression for the current is given by

(Ja)μ := gψ̄γμTaψ.

The law of conservation of current takes the form

∇ωμJμa = 0 or ∂μJ
μ
a − f cabA

b
μJ

μ
c = 0,
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where f cab are the structure constants of the Lie algebra of su(N).
We now discuss the idea of spontaneous symmetry breaking in classical

field theories by considering the Higgs field ψ ∈ Γ (Hρ) with self-interaction
and then in interaction with a gauge field. We note that most of the ob-
served symmetries in nature are only approximate. From classical spectral
theories as well as their quantum counterparts dealing with particle spectra,
we know that broken symmetries remove spectral degeneracies. Thus, for ex-
ample, one consequence of spontaneous symmetry breaking of isospin is the
observed mass difference between the proton and neutron masses (proton
and neutron are postulated to form an isospin doublet with isospin symmet-
ric Lagrangian). In general, if we have a field theory with a Lagrangian that
admits an exact symmetry group K but gives rise to a ground state that is
not invariant under K, then we say that we have spontaneous symmetry
breaking. The ground state of a classical field theory represents the vacuum
state (i.e., the state with no particles) in the corresponding quantum field
theory. We now illustrate these ideas by considering an example of a classical
Higgs field with self-interaction potential.

Let Hρ be a complex line bundle. Then ψ ∈ Γ (Hρ) is called a complex
scalar field. We shall be concerned only with a local section in some co-
ordinate neighborhood with local coordinates (xj). Let us suppose that the
dynamics of this field is determined by the Lagrangian L defined by

L :=
1
2
(∂j ψ̄)(∂jψ)− V (ψ), (8.46)

where ψ̄ = ψ1− iψ2 is the complex conjugate of ψ. The potential V is usually
taken to be independent of the derivatives of the field. Let us consider the
following form for the potential:

V (ψ) = m2|ψ|2 +
m2

2a2
|ψ|4. (8.47)

The Lagrangian L admits U(1) as the global symmetry group with action
given by

ψ �→ eiαψ, eiα ∈ U(1).

We note that if we regard ψ as a real doublet, this action is just a rotation
of the vector ψ by the angle α and hence this Lagrangian is often called
rotationally symmetric. A classical state in which the energy attains its
absolute minimum value is called the ground state of the system. The
corresponding quantum state of lowest energy is called the vacuum state.
For the potential given by equation (8.47) the lowest energy state corresponds
to the field configuration defined by ψ = 0. By considering small oscillations
around the corresponding vacuum state and examining the quadratic terms
in the Lagrangian we conclude that the field ψ represents a pair of massive
bosons each with mass m. Let us now modify the potential V defined by
equation (8.47) so that the ground state will be non-zero by changing the
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sign of the first term; i.e., we assume that

V (ψ) = −m2|ψ|2 +
m2

2a2
|ψ|4. (8.48)

As in the previous case the new Lagrangian admits U(1) as the global sym-
metry group. By rewriting the potential V of equation (8.48) in the form

V (ψ) =
m2

2a2
(|ψ|2 − a2)2 − m2a2

2
, (8.49)

it is easy to see that the absolute minimum of the energy is (−m2a2/2). The
manifold of states of lowest energy is the circle ψ2

1 +ψ2
2 = a2. A vacuum state

ψ̂ corresponding to ψ has expectation value given by

|〈ψ̂〉|2 = a2.

Thus, we have a degenerate vacuum. Choosing a vacuum state breaks the
U(1) symmetry. The particle masses corresponding to the given system are
determined by considering the spectra of small oscillations about the vacuum
state. We shall carry out this analysis for the classical field by choosing the
ground state ψ0 := a and expressing the Lagrangian in terms of the shifted
field φ := ψ − ψ0. A simple calculation shows that the only term quadratic
in the field variable φ is

Lquad = 2m2φ2
1. (8.50)

The absence of a quadratic term in φ2 in (8.50) and hence in the Lagrangian of
the shifted field is interpreted in physics as corresponding to a massless boson
field φ2. The field φ1 corresponds to a massive boson field of mass

√
2m. The

massless boson arising in this calculation is called the Nambu–Goldstone
boson. The appearance of one or more such bosons is in fact a feature of a
large class of field theories, with Lagrangians that admit a global continuous
symmetry group K, but which have ground states invariant under a proper
subgroup J ⊂ K. The assertion of such a statement is called Goldstone’s
theorem in the physics literature. The example that we have given above is
a special case of a version of Goldstone’s theorem that we now discuss.

Theorem 8.10 Let L denote a Lagrangian that is a function of the field φ
and its derivatives. Suppose that L admits a k-dimensional Lie group K as
a global symmetry group. Let J (dimJ = j) be the isotropy subgroup of K
at a fixed ground state φ0. Then by considering small oscillations about the
fixed ground state one obtains a particle spectrum containing k − j massless
Nambu–Goldstone bosons.

However, there is no experimental evidence for the existence of such mass-
less bosons with the exception of the photon. Therefore, Lagrangian field
theories that predict the existence of these massless bosons were considered
unsatisfactory. We note that Goldstone type theorems do not apply to gauge
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field theories. In fact, as we observed earlier, gauge field theories predict the
existence of massless gauge mesons, which are also not found in nature. We
now consider the phenomenon of spontaneous symmetry breaking for the
coupled system of gauge and matter fields in interaction. It is quite remark-
able that in such a theory the massless Goldstone bosons do not appear and
the massless gauge mesons become massive. This phenomenon is generally
referred to as the Higgs mechanism, or Higgs phenomenon, although
several scientists arrived at the same conclusion in considering such coupled
systems (see, for example, Coleman [80]). A geometric formulation of spon-
taneous symmetry breaking and the Higgs mechanism is given in [148].

8.7 Electroweak Theory

We now discuss spontaneous symmetry breaking in the case of a Higgs field
with self-interaction minimally coupled to a gauge field and explain the corre-
sponding Higgs phenomena. For the Higgs field we choose an isodoublet field
ψ (i.e., ψ ∈ Γ (Hρ), where ρ is the fundamental 2-dimensional complex repre-
sentation of the isospin group SU(2)) in interaction with an (SU(2)×U(1))-
gauge field. This choice illustrates all the important features of the general
case and also serves as a realistic model of the electroweak theory of Glashow,
Salam, and Weinberg. Experimental verification of the gauge bosons pre-
dicted by their theory as carrier particles of the weak force earned them the
Nobel Prize for physics in 1979.

We take the base M to be a 4-dimensional pseudo-Riemannian manifold.
Since we work in a local coordinate chart we may in fact consider the theory
to be based on R4 in the Euclidean case and on the Minkowski space M4 in
the case of Lorentz signature. The principal bundle P over M with the gauge
group SU(2)×U(1) and all the associated bundles are trivial in this case. We
choose a fixed trivialization of these bundles and omit its explicit mention in
the rest of this section. Let us suppose that the dynamics is governed by the
free field Lagrangian

L :=
1
2
(∂jψ†)(∂jψ)− V (ψ), (8.51)

where ψ† is the Hermitian conjugate of ψ and the potential V is given by

V (ψ) =
m2

2a2
(|ψ|2 − a2)2 − m2a2

2
. (8.52)

Let us write the field ψ as a pair of complex fields

ψ =
(

π1 + iπ2

ν1 + iν2

)
. (8.53)
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Then we have
|ψ|2 = π2

1 + π2
2 + ν2

1 + ν2
2 .

We want to minimally couple the field ψ to an (SU(2) × U(1))-gauge field.
The gauge potential ω takes values in the Lie algebra su(2) ⊕ u(1) of the
gauge group and the pull-back of ω to the base splits naturally into a pair
(A, B) of gauge potentials; A with values in su(2) and B with values in u(1).
Let F (resp., G) denote the gauge field corresponding to the gauge potential
A (resp., B). Then the Lagrangian of the coupled fields is given by

LS(ω, ψ) = c(M)[|F |2 + |G|2 + c1(|∇ωψ|2 − V (ψ))] , (8.54)

where c(M) is a normalizing constant that depends on the dimension of M
(c(M) = 1/(8π2) for a 4-dimensional manifold) and the constant c1 measures
the relative strengths of the gauge field and its interaction with the Higgs
field. In what follows we put c1 = 1. The covariant derivative operator ∇ω is
defined by

∇ωj ψ := (∂j + ig1A
a
jσa + ig2Bjι)ψ , (8.55)

where the subscript j corresponds to the coordinate xj , constants g1, g2 are
the gauge coupling constants, while the σa, a = 1, 2, 3, are the Pauli spin
matrices, which form a basis for the Lie algebra su(2) and ι is the 2 × 2
identity matrix. It is easy to see that Emin, the absolute minimum of the
energy of the coupled system, is given by

Emin = −m2a2

2
.

The manifold of states of lowest energy is the 3-sphere

Aa = 0, B = 0, π2
1 + π2

2 + ν2
1 + ν2

2 = a2.

A vacuum state ψ̂0 corresponding to the lowest energy state ψ0 has expecta-
tion value given by

|〈ψ̂0〉|2 = a2.

Thus we have a degenerate vacuum. Choosing a vacuum state breaks the
SU(2)× U(1) symmetry. Let us choose

ψ0 =
(

0
a

)
. (8.56)

It is easy to verify that Qψ0 = 0, where

Q :=
1
2
(ι + σ3). (8.57)

Thus we see that the symmetry is not completely broken. The stability group
of ψ0, generated by the charge operator Q defined in (8.57), is isomorphic to
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U(1). Thus, in the free field situation, there would be three Goldstone bosons.
However, in coupling to the gauge field, these Goldstone bosons disappear as
we now show. As before, we consider small oscillations about the vacuum to
determine the particle spectrum. The shifted fields are A, B, and φ = ψ−ψ0.
We look for quadratic terms in these shifted fields in the Lagrangian. The
potential contributes a quadratic term in ν1, which corresponds to a massive
scalar boson of mass

√
2m. The only other quadratic terms arise from the

term involving the covariant derivative. Since the charge operator annihilates
the ground state ψ0, we rewrite the covariant derivative as follows:

∇ωj := ∂j + ig1A
1
jσ1 + ig1A

2
jσ2 + i

2 (−g1A
3
j + g2Bj)(ι− σ3)

+ i(g1A
3
jσa + ig2Bj)Q. (8.58)

Using this expression, it is easy to see that quadratic terms in the gauge fields
are

g2
1a

2(|A1
j |2 + |A2

j |2) + a2|(−g1A
3
j + g2Bj)|2. (8.59)

To remove the mixed terms in expression (8.59) we introduce two new fields
Z0, N by rotating in the A3, B-plane by an angle θ as follows:

Z0
j = A3

j cos θ −Bj sin θ , (8.60)

Nj = A3
j sin θ + Bj cos θ , (8.61)

where the angle θ is defined in terms of the gauge coupling constants by

g1 = g cos θ, g2 = g sin θ, (8.62)

or, equivalently,
tan θ = g2/g1, g2 = g2

1 + g2
2 . (8.63)

The angle θ (also denoted by θew or θw) is called the mixing angle of the
electroweak theory. Using the fields Z0, N the quadratic terms in the gauge
fields can be rewritten as

g2
1a

2(|A1|2 + |A2|2) + g2a2|Z0|2. (8.64)

It is customary to define two complex fields W± by

W+ :=
1√
2
(A1 + iA2), W− :=

1√
2
(A1 − iA2) (8.65)

and to write the quadratic terms in the Lagrangian as follows:

Lquad = 2m2ν2
1 + g2

1a
2(|W+|2 + |W−|2) + g2a2|Z0|2. (8.66)

The terms in equation (8.66) allow us to identify the complete particle spec-
trum of the theory. The absence of a term in N indicates that it corresponds
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to a massless field, which can be interpreted as the electromagnetic field. In
the covariant derivative N is coupled to the charge operator Q by the term
g sin 2θQNj. In the usual electromagnetic theory, this term is eQNj, where e
is the electric charge. Comparing these, we get the following relation for the
mixing angle θ:

g sin 2θ = e. (8.67)

The electric charge e is related to the fine structure constant α ≈ 1/137 by
the relation e =

√
4πα. There are three massive vector bosons, two W+,

W− of equal mass mW = g1a and the third Z0 of mass mZ = ga. In the
electroweak theory the carrier particles W+, W− are associated with the
charged intermediate bosons, which mediate the β-decay processes, while the
Z0 is associated with the neutral intermediate boson, which is supposed to
mediate the neutral current processes. The masses of the W and Z bosons
are related to the mixing angle by the relation

mW = mZ cos θ. (8.68)

The term containing ν1 in equation (10.39) represents the massive Higgs par-
ticle. The mass of this particle is called the Higgs mass and is denoted by
mH . It can be expressed, in terms of the parameters in the Higgs poten-
tial (10.24), as

mH =
√

2m.

We note that, while there is strong experimental evidence for the existence
of the W and the Z particles, there is no evidence for the existence of the
Higgs particle.

Up to this point our calculations have been based on the Lagrangian
of equation (8.54). This Lagrangian is part of the standard model La-
grangian, which forms the basis of the standard model of electroweak
interactions. We conclude this section with a brief discussion of this model.

The phenomenological basis for the formulation of the standard model of
the electroweak theory evolved over a period of time. The four most important
features of the theory, based on experimental observations, are the following:

1. The family structure of the fermions under the electroweak gauge
group SUw(2)×UY (1) consists of left-handed doublets and right-handed
singlets characterized by the quantum numbers I, I3 of the weak
isospin group SUw(2) and the weak hypercharge Y . For the leptons
we have (

e
νe

)

L

,

(
μ
νμ

)

L

,

(
τ
ντ

)

L

, eR, μR, τR

and for the quarks we have
(

u
d

)

L

,

(
c
s

)

L

,

(
t
b

)

L

, uR, dR, cR, . . . .
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The subscript L (resp., R) in these terms is used to denote the left-handed
fermions (resp., right-handed fermions).

2. The physical fields are also subject to finite symmetry groups. Three fun-
damental symmetries of order 2 are the charge conjugation C, parity
P , and time reversal T . These symmetries may be preserved or vio-
lated individually or in combination. The electroweak theory is left-right
asymmetric. This result is called the parity violation. Thus, contrary to
what many physicists believed, nature does distinguish between left and
right. Lee and Yang had put forth an argument predicting that parity
could be violated in weak interactions. They also suggested a number of
experiments to test this violation. This parity violation was verified exper-
imentally by Chien-Shiung Wu in 1957. Lee and Yang were awarded the
Nobel Prize for physics in the year 1957 for their fundamental work on
the topic. However, it is Yang’s work on the matrix-valued generalization
of the Maxwell equations to the Yang–Mills equations and the relation of
these equations with the theory of connections in a principal bundle over
the space-time manifold that has had the most profound effect on recent
developments in geometric topology.

If ΦL (resp., ΦR) denotes the set of all left-handed (resp., right-handed)
fermions, then the assignment of the hypercharge quantum number must
satisfy the following conditions:

∑
ΦL2

Y = 0,
∑
ΦL

Y 3 =
∑
ΦR

Y 3,

where ΦL2 denotes the set of left-handed fermion doublets.
3. The quantum numbers of the fermions with respect to the electroweak

gauge group and their electric charge Q satisfy the Gell-Mann–
Nishijima relation

Q = I3 +
1
2
Y. (8.69)

4. There are four vector bosons;

γ, W+, W−, Z0.

These act as carriers of the electroweak force. The first of these is identified
as the photon, which is massless, while the other three, collectively called
the weak intermediate bosons, are massive.

Taking into account the above features and applying the general princi-
ples of constructing gauge-invariant field theory with spontaneous symmetry
breaking, one arrives at the following standard model Lagrangian for elec-
troweak theory:

Lew = LG + LH + LF + LY .

LY is the Yukawa Lagrangian, and LG, the electroweak gauge field La-
grangian, is given by



268 8 Yang–Mills–Higgs Fields

LG = c(M)[|F |2 + |G|2].

The Lagrangian LH of the Higgs field in interaction with the electroweak
gauge field is given by

LH = c(M)[|∇ωψ|2 − V (ψ)],

and the Lagrangian LF of the fermion fields in interaction with the elec-
troweak gauge field is given by

LF =
∑

ψ̄Liγj∇ωj ψL +
∑

ψ̄Riγj∇ωj ψR.

In the definition of LF the first sum extends over all left-handed doublets and
the second sum extends over all right-handed singlets and the electroweak
gauge covariant derivative ∇ω is given by equation (8.55). In addition to the
above terms it is necessary to introduce Yukawa couplings to fermions, to give
masses to charged fermions. We denote by gf the Yukawa coupling constant
to fermion f . Thus, there is one Yukawa coupling constant for each family
of leptons and quarks. These are contained in the Yukawa Lagrangian LY ,
whose detailed expression is not relevant to our discussion. Using the standard
model Lagrangian, one can construct models for the weak and electromag-
netic interactions of various types of known particles, such as leptons, and
predict the outcome of processes mediated by the heavy intermediate bosons.
A striking experimental confirmation of the predictions of electroweak theory
in the late 1970s must be viewed as a big boost to the gauge theory point
of view in elementary particle physics. Several physicists had been working
on the electroweak theory. Glashow, Salam, and Weinberg working indepen-
dently arrived at essentially similar results including the mass ratios of the
electroweak bosons. The three shared the 1979 Nobel Prize for physics for
this work, paving the way for the current version of the standard model.

8.7.1 The Standard Model

The above considerations on electroweak theory can be extended to construct
the standard model of a unified theory of the strong, weak, and electromag-
netic interactions as a gauge theory with the gauge group GSM defined by

GSM := SU c(3)× SUL(2)× UY (1).

The gauge potential of the theory corresponds to spin 1 vector bosons. These
split naturally into the gauge bosons of the electroweak theory and the glu-
ons Ga, 1 ≤ a ≤ 8, which correspond to the color gauge group SU c(3)
of the strong interaction with coupling constant g3. Quantized Yang–Mills
theory with the full gauge group GSM is the foundation of the theory of
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elementary particles. However, the mechanism of mass generation for gluons,
the carrier particles of the strong interaction, is not via the Higgs mecha-
nism. It uses a quantum mechanical property called the “mass gap” in the
physics literature. This property was discovered by experimental physicists
but its mathematical foundation is unclear. Putting the quantum Yang–Mills
theory on a mathematical foundation and explaining the mass gap is one of
the seven millennium problems announced by the Clay Mathematics Insti-
tute. We refer the reader to their web page at www.claymath.org for more
details. The full Lagrangian LSM of the theory can be written along the lines
of the electroweak Lagrangian given above. The Lagrangian LSM contains the
following, rather large, number of free parameters:

1. three gauge coupling constants g1, g2, g3

2. Higgs coupling constant
3. Yukawa coupling constants
4. Higgs particle mass mH

5. quark-mixing matrix elements
6. number of matter families or generations (there is strong evidence that

this number is 3).

In Tables 6.1 and 6.2 we have already given the masses and electric charges
of the fermions and bosons that enter into the description of the standard
model. Initially the isospin group SU(2) of the Yang–Mills theory was ex-
pected to provide an explanation of the spectrum of strongly interacting
particles. However, it turned out that a larger group, SU(3), was needed to
explain the observed particles. The representations of SU(3) have been well
known in mathematics since the work of Weyl in the 1930s. In the 1950s, how-
ever, Weyl’s work was not included in physicists’ training. In fact, Pauli had
dubbed group theory “Gruppenpest,” and most physicists found the mathe-
matical developments quite hard to understand and felt that they would be
of little relevance to their work. The mathematicians also did not understand
physicists work and did not feel that it would contribute to a better under-
standing of group theory. When Murray Gell-Mann started to study the
representations of SU(3), he never discussed his problem with his lunchtime
companion J.-P. Serre, one of the leading experts in representation theory.
Upon returning to Caltech from Paris, where he had discussions with his
mathematician colleagues, Gell-Mann was able to show that the observed
particles did fit into representations of SU(3). The simplest representation
he could use was 8-dimensional and he started to call this symmetry the
eightfold way (perhaps an allusion to Buddha’s eight steps to Nirvana). He
could fit 9 of the particles into a 10-dimensional representation and was able
to predict the properties of the missing 10th particle. When this particle was
found at Brookhaven, it made the theory of group representations an essential
tool for particle theory. Gell-Mann’s work had not used the fundamental or
defining representation of SU(3) as it predicted particles with charges equal
to a fraction of the electron charge. Such particles have never been observed.



270 8 Yang–Mills–Higgs Fields

Gell-Mann was nevertheless convinced of the existence of these unobserved or
confined particles as the ultimate building blocks of matter. He called them
quarks. Gell-Mann expects the quarks to be unobservable individually. They
would be confined in groups making the fundamental particles.

The single mixing angle of the electroweak theory must be replaced by a
3×3 matrix in the study of strong interactions. The Cabibbo–Kobayashi–
Maskawa (CKM) matrix, also known as the quark mixing matrix, is
a unitary matrix, which contains information on the flavor changing of
quarks under weak interaction. Kobayashi and Maskawa shared the 2008
Nobel Prize in physics with Nambu for their work on the origin of broken
symmetry, which predicts the existence of at least three families of quarks.
Their work was based on the earlier work of Cabibbo, who was not honored
with the Prize. An up type quark, labeled (u, c, t), can decay into a down
type quark, labeled (d, s, b). The entries of the CKM matrix are denoted
by Vαβ , where α is an up type quark and β is a down type quark. The
transition probability of going from quark α to quark β is proportional to
|Vαβ |2. Using this notation, the CKM matrix V can be written as follows:

V :=

⎛
⎝

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞
⎠ . (8.70)

The CKM matrix is a generalization of the Cabibbo angle, which was
the only parameter needed when only two generations of quarks were known.
The Cabibbo angle is a mixing angle between two generations of quarks. The
current model with three generations has three mixing angles. Unitarity of
the CKM matrix implies three relations involving only the absolute values of
the entries of the matrix V . These relations are

|Vαd|2 + |Vαs|2 + |Vαb|2 = 1, α = u, c, t. (8.71)

The relations of (8.71) imply that the sum of all couplings of any of the
up type quarks to all the down type quarks is the same for all generations.
This was first pointed out by Cabibbo. These relations are called the weak
universality. Unitarity of the CKM matrix also implies the following three
phase-dependent relations.

VαdVβd + VαsVβs + VαbVβb = 0, (8.72)

where α, β are any two distinct up type quarks.
These phase-dependent relations are crucial for an understanding of the

origin of CP violation. For fixed α, β each of the relations says that the
sum of the three terms is zero. This implies that they form a triangle in the
complex plane. Each of these triangles is called a unitary triangle, and their
areas are the same. The area is zero for the specific choice of parameters in the
standard model for which there is no CP violation. Non-zero area indicates
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CP violation. The CPM matrix elements are not determined by theory at
this time; various experiments for their determination are being carried out
at laboratories around the world. It was the observation of CP violation in
weak interactions that led to the existence of a third generation of quarks.
Experimental evidence for the existence of a third generation b-quark came
in 1977 through the work of the Fermi Lab, Chicago group led by Leon
Lederman. For this work he was awarded the Noble Prize in 1988.

Predictions of the standard model have been verified with great accuracy
and present there are no experimental results that contradict this model.
However, there are a number of unsatisfactory features of this theory, e.g.,
the problem of the origin of mass generation, prediction of the Higgs particle
mass, and so on.

We conclude this section with a brief look at some consistency checks
of grand unified theories from recent experimental results. Since 1989, the
Z-factory at LEP (large electron–positron collider at CERN, Geneva) has
produced a large number of electron–positron collisions for the resonance
production of Z0 gauge bosons to perform a number of high-precision ex-
periments for determinatinig of the mass of asthenons (weak intermediate
vector bosons W± and Z0) and to find lower bounds on the mass of hig-
gsons1 (Higgs bosons) and the top quark. These same LEP data have been
used to perform consistency checks of grand unified theories and to study
the problem of unification of the three coupling constants of the standard
model (see, for example, [10]). It has been shown that the standard model is
in excellent agreement with all LEP data. However, an extrapolation of the
three independent running coupling constants to high energies indicates that
their unification within the standard model is highly unlikely. On the other
hand, the minimal supersymmetric extension of the standard model leads to
a unification of couplings at a scale compatible with the present data. As
Richard Feynman once observed “In physics, the best one can hope for is to
be temporarily not wrong.”

8.8 Invariant Connections

In many physically interesting situations, in addition to the local internal
symmetry provided by the gauge group, an external global action of another
Lie group exists on the space of phase factors. Mathematically, we can de-
scribe the situation as follows. We consider, as before, a principal bundle
P (M, G) with gauge group G, which represents the space of phase factors.
For the external symmetry group we take a Lie group K acting on P by
bundle automorphisms. Then every element of K induces a diffeomorphism
of M . Thus, K may be regarded as a group of generalized gauge transfor-

1 I thank Prof. Ugo Amaldi of the University Milan for suggesting these particle names
and for useful discussions on the analysis of LEP data.
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mations as defined in Chapter 6. We fix a point u0 ∈ P as a reference point
and let π(u0) = x0 ∈ M. Let J be the set of all elements f ∈ K such that
f · u0 ∈ π−1(x0). Thus the induced map f0 ∈ Diff(M) fixes the point x0. We
note that the set J is a closed subgroup of K. We call J the isotropy sub-
group of K at x0. Define a map ψ : J → G as follows. For each f ∈ J , ψ(f)
is the unique element a ∈ G such that fu0 = u0a. It is easy to see that ψ is
a Lie group homomorphism and hence induces a Lie algebra homomorphism
ψ̄ of the Lie algebra j of J to the Lie algebra g of G.

Definition 8.1 Using the notation of the above paragraph, let Γ be a con-
nection in P with connection 1-form ω. We say that Γ is a K-invariant
connection if each f ∈ K preserves the horizontal distribution of Γ , or,
equivalently, leaves the form ω invariant, i.e., f∗ω = ω.

In physical literature the group K is referred to as the external symme-
try group of the gauge potential ω.

Theorem 8.11 Let K be a group of bundle automorphisms of P (M, G) and
Γ a K-invariant connection in P with connection 1-form ω. Let Ψ be the
linear map from the Lie algebra k of K to g defined by

Ψ(A) = ωu0(Â), A ∈ k, (8.73)

where Â is the vector field on P induced by A. Then we have

1. Ψ(A) = ψ̄(A), A ∈ j;
2. if adJ is the restriction of the adjoint representation of K in k to the

subgroup J and ad is the adjoint representation of G in g (see Section
1.6), then

Ψ(adJ f(A)) = ad(ψ(f))(Ψ(A)), f ∈ J, A ∈ k;

3. 2Ωu0(Â, B̂) = [Ψ(A), Ψ(B)] − Ψ([A, B]), A, B ∈ k.

We say that K acts fiber-transitively on P if, for any two fibers of P ,
there is an element of K that maps one fiber into the other or, equivalently, if
the induced action on the base M is transitive. In this case M is isomorphic
to the homogeneous space K/J , where J is the isotropy subgroup of K at
x0.

Theorem 8.12 Let K be a fiber-transitive group of bundle automorphisms
of P . Then there is a one-to-one correspondence between the set of K-
invariant connections in P and the set of linear maps Ψ : k → g satisfying
the first two conditions of Theorem 8.11, the correspondence being given by
equation (8.73).

If K is fiber-transitive on P , the curvature form Ω of the invariant connec-
tion ω is a tensorial form of type (ad, G) that is K-invariant. It is completely
determined by the values Ωu0(Â, B̂), where A, B ∈ k. The following corollary
is an immediate consequence of condition 3 of Theorem 8.11.
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Corollary 8.13 The K-invariant connection in P defined by Ψ is flat if and
only if Ψ : k→ g is a Lie algebra homomorphism.

The following particular situation is often useful for the construction of
invariant connections. Suppose that k admits an adJ -invariant subspace m
that is complementary to j, i.e., k = j⊕m. Then we have the following.

Theorem 8.14 There is a one-to-one correspondence between the set of K-
invariant connections in P and the set of linear maps Ψm : m → g such
that

Ψm(adJ f(A)) = ad(ψ(f))(Ψm(A)), f ∈ J, A ∈m.

Furthermore, the curvature form Ω of this K-invariant connection satisfies,
∀X, Y ∈m, the condition

2Ωu0(Â, B̂) = [Ψm(A), Ψm(B)]− Ψm([A, B]m)− Ψ([A, B]j),

where [A, B]m (resp., [A, B]j) is the m-component (resp., j-component) of
[A, B] in k.

The K-invariant connection in P defined by Ψm = 0 is called the canon-
ical connection in P with respect to the decomposition k = j ⊕ m. An
important special case that arises in many applications is the following. Let
H be a closed subgroup of a connected Lie group K and let M = K/H and
P = K (i.e., we consider the principal bundle K(K/H, H)). If there exists an
ad H-invariant subspace m complementary to h in k, then the h-component
ω of the canonical 1-form θ of K with respect to the decomposition k = h⊕m
defines a K-invariant connection in the bundle K (the action of K being that
by left multiplication). Conversely, any such K-invariant connection (if it ex-
ists) determines a decomposition k = h ⊕ m. Furthermore, the curvature
form Ω of the invariant connection defined by ω is given by

Ω(A, B) = −1
2
[A, B]h.

([A, B]h is the h-component of [A, B] in k), where A, B are left-invariant
vector fields on K belonging to m. The invariant connection ω defined above
coincides with the canonical connection defined at the beginning of this para-
graph.

At least locally, the Yang–Mills–Higgs equations (8.27), (8.28) may be
regarded as obtained by dimensional reduction from the pure Yang–Mills
equations. To see this, consider a Yang–Mills connection α on the trivial
principal bundle Rm+1 ×G over Rm+1 and let

Ai dxi + Am+1 dxm+1, 1 ≤ i ≤ m,

be the gauge potential on Rm+1 with values in g. Suppose that this potential
does not depend on xm+1. Define φ := Am+1; then φ can be regarded as a
Higgs potential on Rm with values in g and
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A = Ai dxi, 1 ≤ i ≤ m,

can be regarded as the gauge potential on Rm with values in g. Let ω denote
the gauge connection on Rm ×G corresponding to A. Then we have

(Fω)ij = (Fα)ij , (Fα)i m+1 = (dωφ)i 1 ≤ i, j ≤ m

and the pure Yang–Mills action of Fα on Rm+1 reduces to the Yang–Mills–
Higgs action (8.33). It is easy to see that this reduction is a consequence
of the translation invariance of the pure Yang–Mills system in the xm+1-
direction. In general, suppose that T is a Lie group that acts on P (M, G)
as a subgroup of DiffM (P ) with induced action on M . We say that T is a
local symmetry group of the connection ω on P or that ω is a locally
T -invariant connection on P if the condition

LÂω = 0, ∀A ∈ t,

is satisfied, where Â is the fundamental vector field corresponding to the
element A in the Lie algebra t of T . Under certain conditions P/T is a prin-
cipal bundle over M/T and a system of equations on the original bundle can
be reduced to a coupled system on the reduced base. Invariant connections
and their applications to gauge theories over Riemannian manifolds are dis-
cussed in [129, 388, 389]. For a particular class of self-interaction potentials,
such reduction and the consequent symmetry breaking are responsible for the
Higgs mechanism [192]. For a geometrical description of dimensional reduc-
tion and its relation to the Kaluza–Klein theories, see [206] and the book by
Coquereaux and Jadczyk [85].



Chapter 9

4-Manifold Invariants

9.1 Introduction

The concept of moduli space was introduced by Riemann in his study of the
conformal (or equivalently, complex) structures on a Riemann surface. Let us
consider the simplest non-trivial case, namely, that of a Riemann surface of
genus 1 or the torus T 2. The set of all complex structures C(T 2) on the torus
is an infinite-dimensional space acted on by the infinite-dimensional group
Diff(T 2). The quotient space

M(T 2) := C(T 2)/ Diff(T 2)

is the moduli space of complex structures on T 2. Since T 2 with a given com-
plex structure defines an elliptic curve,M(T 2) is, in fact, the moduli space of
elliptic curves. It is well known that a point ω = ω1 + iω2 in the upper half-
plane H (ω2 > 0) determines a complex structure and is called the modulus
of the corresponding elliptic curve. The modular group SL(2,Z) acts on H by
modular transformations and we can identifyM(T 2) with H/ SL(2,Z). This
is the reason for callingM(T 2) the space of moduli of elliptic curves or simply
the moduli space. The topology and geometry of the moduli space has rich
structure. The natural boundary ω2 = 0 of the upper half plane corresponds
to singular structures. Several important aspects of this classical example
are also found in the moduli spaces of other geometric structures. Typically,
there is an infinite-dimensional group acting on an infinite-dimensional space
of geometric structures with quotient a “nice space” (for example, a finite-
dimensional manifold with singularities). For a general discussion of moduli
spaces arising in various applications see, for example, [193].

We shall be concerned with the construction of the moduli spaces of in-
stantons and in studying their topological and geometric properties in this
chapter. The simplest of these moduli spaces is the spaceM1(M) of instan-
tons with instanton number 1 on a compact, simply connected Riemannian
manifold M with positive definite intersection form. Donaldson showed that
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this moduli space M1(M) is a compact, oriented, 5-dimensional manifold
with singularities and that it provides a cobordism between M and a sum
of a certain number of copies of CP2. This result has led to the existence of
new obstructions to smoothability of 4-manifolds and to some surprising and
unexpected results about exotic differential structures on the standard Eu-
clidean space R4. In Section 9.2 we give an explicit construction of the moduli
space M1 of the BPST-instantons of instanton number 1 and indicate the
construction of the moduli space Mk of the complete (8k − 3)-parameter
family of instanton solutions over S4 with gauge group SU(2) and instan-
ton number k. The moduli spaces of instantons on an arbitrary Riemannian
4-manifold with semisimple Lie group as gauge group are also discussed here.

A brief account of Donaldson’s theorem on the topology of moduli spaces
of instantons and its implications for smoothability of 4-manifolds can be
found in Section 9.3. The investigation of the Riemannian geometry of these
moduli spaces was begun after Donaldson’s work. The results obtained for
the metric and curvature of M1 are given and a geometrical interpretation
of Donaldson’s results is also indicated in this section. Donaldson’s polyno-
mial invariants are discussed in Section 9.4. The generating function of these
invariants and its relation to basic classes is also given there. In the summer
of 1994 Witten announced in his lecture at the International Congress on
Mathematical Physics in Paris that the Seiberg–Witten theory can be used
to obtain all the information contained in the Donaldson invariants. His paper
[407] gave an explicit formula relating the SW invariants and the Donaldson
invariants. We discuss this work in Section 9.5. Witten’s derivation of this
fantastic formula was based on physical reasoning. There is now a mathe-
matical proof for a large class of manifolds. We indicate this result and some
of its applications in the same section.

9.2 Moduli Spaces of Instantons

A complete set of solutions of instanton equations on S4 was obtained by
the methods of algebraic geometry and the theory of complex manifolds.
These methods have also been used in the study of the Yang–Mills equa-
tions over Riemann surfaces. Since this approach is not discussed here, we
simply indicate below some references where this and related topics are de-
veloped. They are [17,19,51,67,256]. See also the book [143] by Friedman and
Morgan.

Let M be a compact, connected, oriented Riemannian manifold of dimen-
sion 4. Let P (M, G) be a principal bundle over M with compact, semisimple
Lie group G as structure group. Recall that the Hodge star operator on
Λ(M) has a natural extension to bundle valued forms and this is used to
define the self-dual and anti-dual forms in Λ2(M, ad P ) and to decompose a
form α ∈ Λ2(M, adP ) into its self-dual and anti-dual parts. A G-instanton
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(resp., G-anti-instanton) over M is a self-dual (resp., anti-dual) Yang–Mills
field on the principal bundle P . If F = Fω is the gauge field corresponding
to the gauge connection ω, then

∗F = F (9.1)

is called the instanton equation and

∗F = −F (9.2)

is called the anti-instanton equation. Over a 4-dimensional base manifold
M , the second Chern class and the Euler class of P are equal and we define
the instanton number k of a G-instanton by

k := −c2(P )[M ] = −χ(P )[M ]. (9.3)

Recall that using the decomposition of F = Fω into its self-dual part F+ and
anti-dual part F− (see Chapter 8) we get

k =
1

8π2

∫

M

(|F+|2 − |F−|2) (9.4)

and
AYM(ω) =

1
8π2

∫

M

(|F+|2 + |F−|2). (9.5)

Comparing equations (9.4) and (9.5) above we see that the Yang–Mills action
is bounded below by the absolute value of the instanton number k, i.e.,

AYM(ω) ≥ |k|, ∀ω ∈ A(P ) (9.6)

and the connections satisfying the instanton or the anti-instanton equations
are the absolute minima of the action. In particular, for a self-dual (∗F = F )
Yang–Mills field, i.e., a G-instanton, we have

AYM =
1

8π2

∫

M

(‖F+‖2) = |k|.

Similarly, for an anti-dual (∗F = −F ) Yang–Mills field, i.e., a G-anti-
instanton, we have

AYM =
1

8π2

∫

M

(‖F−‖2) = −|k|.

We now discuss the most well known family of instanton solutions, namely
the BPST instantons (Belavin–Polyakov–Schwartz–Tyupkin instan-
tons) [36]. It can be shown that the BPST instanton solution over the base
manifold R4 can be extended to the conformal compactification of R4, i.e.,
S4. This extension is characterized by a self-dual connection on a non-trivial
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SU(2)-bundle over S4. This bundle is the quaternionic Hopf fibration of H2

over HP1, where H is the space of quaternions and HP1 is the quaternionic
projective space, of quaternionic lines through the origin in the quaternionic
plane H2. We identify H with R4 by the map H→ R4 given by

x = x0 + ix1 + jx2 + kx3 �−→ (x0, x1, x2, x3).

Then H2 is isomorphic to R8 and each quaternionic line intersects the 7-
sphere S7 ⊂ H2 in S3. On the other hand, the base HP1 can be identified
with S4. Thus, the quaternionic Hopf fibration leads to the bundle

SU(2) = S3 S7�

S4
�

π

As indicated in the diagram, the fiber S3 can be identified with the group
SU(2) of unit quaternions and its action on H2 by right multiplication re-
stricts to S7. This makes it into a principal SU(2)-bundle over S4. This
follows from the observation that α ∈ SU(2) and (x, y) ∈ S7 ⊂ H2 imply
that (αx, αy) ∈ S7 and that the SU(2)-action is free. This principal bun-
dle is clearly non-trivial and admits a canonical connection ω1 (also called
the universal connection), whose curvature Ω1 is self-dual and hence satis-
fies the instanton equation (and hence also the full Yang–Mills equations). It
corresponds to a BPST instanton of instanton number 1. The entire BPST
family of instantons can be generated from this solution as follows. The group
SO(5, 1) acts on S4 by conformal transformations and this action induces an
action on ω1. If g ∈ SO(5, 1), then we denote the induced action on ω1 also
by g. Then gω1 is also an SU(2)-connection over S4 and it has self-dual
curvature. Since the Yang–Mills action is conformally invariant, the solution
generated by gω1 also has instanton number 1. The connection gω1 is gauge-
equivalent to ω1 (and hence determines the same point in the moduli space)
if and only if g is an isometry of S4, i.e., if and only if g ∈ SO(5) ⊂ SO(5, 1).
Thus, the space of gauge-inequivalent, self-dual, k = 1, SU(2)-connections
on S4, or the moduli spaceM1(S4, SU(2)), is given by

M1(S4, SU(2)) = SO(5, 1)/(SO(5)).

We note that the quotient space SO(5, 1)/(SO(5)) can be identified with the
hyperbolic 5-space H5.

We now give an explicit local formulation of the BPST family. Consider
the chart defined by the map ψe5

ψe5 : S4 − {e5} → R4,
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where ψe5 is obtained by projecting from e5 = (0, 0, 0, 0, 1) ∈ R5 onto the
tangent hyperplane to S4 at −e5. This chart gives conformal coordinates on
S4. Identifying R4 with H, the metric can be written as

ds2 = 4|dx|2/(1 + |x|2),

where |x|2 = xx̄, |dx|2 = dxdx̄. Identifying the Lie algebra su(2) with the
set of pure imaginary quaternions, we can write the gauge potential A(1)

corresponding to the universal connection ω1, as follows:

A(1) = Im

(
xdx̄

1 + |x|2

)

It is possible to give a similar expression for the potential in the chart
obtained by projecting from −e5 and to show that these expressions are
compatible, under a change of charts and hence define a global connection
with corresponding Yang–Mills field. However, we apply the removable sin-
gularities theorem of Uhlenbeck (see [386]) to guarantee the extension of the
local connection to all of S4. This procedure is also useful in the general
construction of multi-instantons, where there is a finite number of removable
singularities. The Yang–Mills field F (1), corresponding to the gauge potential
A(1), is given by

F (1) =
dx ∧ dx̄

(1 + |x|2)2
.

Using the formula

vol(S2m) =
22m+1πmm!

(2m)!

and calculating the Euclidean norm |F (1)|2Eu = 3, we can evaluate the Yang–
Mills action

AYM =
1

8π2

∫

S4
|F (1)|2Eu = 3 · vol(S4)/(8π2) = 1.

On the other hand, AYM = k for a self-dual instanton with instanton number
k. Thus we see that the above solution corresponds to k = 1. We now apply
the conformal dilatation

fλ : R4 → R4 defined by x �→ x/λ, 0 < λ < 1,

to obtain induced connections A(λ) = f∗
λA(1) and the corresponding Yang–

Mills fields F (λ) = f∗
λF (1). Because of conformal invariance of the action

AYM , the fields F (λ) have the same instanton number k = 1. The local
expressions for A(λ) and F (λ) are given by
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A(λ) = Im

(
xdx̄

λ2 + |x|2

)
,

and

F (λ) =
λ2dx ∧ dx̄

(λ2 + |x|2)2
.

If we write the above expressions in terms of the quaternionic components we
recover the formulas for the BPST instanton. The connections corresponding
to different λ are gauge-inequivalent, since |F |2 is a gauge-invariant func-
tion. Moreover, choosing an arbitrary point q ∈ S4 and considering the chart
obtained by projecting from this point, we obtain gauge inequivalent con-
nections for different choices of q. In fact, we have a 5-parameter family of
instantons parametrized by the pairs (q, λ), where q ∈ S4 and λ ∈ (0, 1).
Two pairs (q1, λ1) and (q2, λ2) give gauge-equivalent connections if and only
if q1 = q2 and λ1 = λ2. It is customary to call q the center of the instanton
and λ its size. The map defined by

(q, λ) �→ (1 − λ)q from S4 × (0, 1) to R5

is an isomorphism onto the punctured open ball B5 − {0}. The universal
connection A(1) corresponds to the origin. Thus, the moduli space of gauge
inequivalent-instantons is identified with the open unit ball B5, which is the
Poincaré model of the hyperbolic 5-space H5. The connection corresponding
to (q, λ) as λ → 0 can be identified with a boundary point of the open ball
B5. This realizes S4 as the boundary of the ball B5. Thus our base space
appears as the boundary of the moduli space. This is one of the key ideas
of Donaldson in his work on the topology of the moduli space of instantons
[106]. The moduli space of the fundamental BPST instantons or self-dual
SU(2) Yang–Mills fields with instanton number 1 over the Euclidean 4-sphere
S4 is denoted by M+

1 . It can be shown [20] that the action of the group
SO(5, 1) of conformal diffeomorphisms of S4 induces a transitive action of
SO(5, 1) on the moduli space M+

1 with isotropy group SO(5). Thus M+
1

is diffeomorphic to the homogeneous hyperbolic 5-space SO(5, 1)/ SO(5). In
particular, the topology of M+

1 is the same as that of R5. A more general
result of Donaldson, discussed in the next section, shows that any 1-connected
4-manifold M with positive definite intersection form, can be realized as a
boundary of a suitable moduli space.

Most of the solutions of the pure Yang–Mills equations that have been con-
structed are in fact solutions of the self-dual or anti-dual instanton equations,
i.e., instantons or anti-instantons. The instanton and anti-instanton solutions
are also called collectively pseudo-particle solutions. The first such solu-
tions, consisting of a 5-parameter family of self-dual Yang–Mills fields on R4,
was constructed by Belavin, Polyakov, Schwartz, and Tyupkin ([36]) in 1975
and it is these solutions or their extension to S4 that are commonly referred
to as the BPST instantons. We will show that the BPST instanton solu-
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tions correspond to the gauge group SU(2) over the base manifold S4 and
have instanton number k = 1. In this case the instanton number k is defined
by

k := −c2(P (S4, SU(2)))[S4],

where c2 denotes the second Chern class of the bundle P and [S4] denotes
the fundamental cycle of the manifold S4. The BPST solution was general-
ized to the so-called multi-instanton solutions, which correspond to the
self-dual Yang–Mills fields with instanton number k. A 5k-parameter family
of solutions was obtained by ’t Hooft (unpublished) and a (5k+4)-parameter
family was obtained by Jackiw, Nohl, and Rebbi in 1977. For a given in-
stanton number k the maximum number of parameters in the corresponding
instanton solution can be identified with the dimension of the space of gauge
inequivalent solutions (the moduli space). For SU(2)-instantons over S4 this
dimension of the moduli space was computed by Atiyah, Hitchin, and Singer
([20]) by using the Atiyah–Singer index theorem and turns out to be 8k− 3.
Thus, for k = 1 the moduli space has dimension 5 and the 5-parameter BPST
solutions correspond to this space. For k > 1, the ’t Hooft and Jackiw, Nohl,
Rebbi solutions do not give all the possible instantons with instanton number
k. Instead of describing these solutions we will describe briefly the construc-
tion of the most general (8k−3)-parameter family of solutions, which include
the above solutions as special cases.

The construction of the (8k−3)-parameter family of instantons was carried
out by Atiyah, Drinfeld, Hitchin, and Manin [19] by using the methods of
analytic and algebraic geometry. It is called the ADHM construction. It
starts by generalizing the twistor space construction of Penrose (see Wells
[399] for a discussion of twistor spaces and their applications in field theory)
as follows.

Atiyah, Hitchin and Singer [20] studied the properties of self-dual connec-
tions over self-dual base manifolds M , which have positive scalar curvature.
In this case the bundle of projective anti-dual spinors PV− has a complex
structure and the The Ward correspondence: holds:

Let E be a Hermitian vector bundle with self-dual connection over a com-
pact, self-dual 4-manifold M . Let PV− denote the bundle of projective anti-
dual spinors on M . Then we have the following commutative diagram

PV− M�
h

F E�ĥ

�

h∗p

�

p

where F := h∗E is the pull-back of the bundle E to PV−. Then

1. F is holomorphic on PV− with holomorphically trivial fibers.
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2. Let ρ : PV− → PV− denote the real structure on PV−. Then there is a
holomorphic bundle isomorphism σ : ρ∗F̄ → F , which induces a positive
definite Hermitian structure on the space of holomorphic sections of F on
each fiber.

3. Every bundle F on PV− satisfying the above two conditions is the pull-
back of a Hermitian vector bundle E over M , with self-dual connection.

When M = S4, the bundle PV− can be identified with CP3. This is
the original twistor space of Penrose. In this case standard techniques from
algebraic geometry can be used to study the bundle F and to obtain all self-
dual connections on G-bundles over S4. It turns out that for G = SU(2),
the general solution can be described explicitly by starting with a vector
λ = (λ1, . . . , λk) ∈ Hk and a k×k symmetric matrix B over H satisfying the
following conditions:

1. (B†B + λ†λ) is a real matrix († is the quaternionic conjugate transpose).
2. rank

(
λ

B−xI
)

= k, ∀x ∈ H.

The local expression for the gauge potential A(λ,B) determined by the pair
(λ, B), λ ∈ Hk, B ∈ Hk×k, is given by

A(λ,B) = f∗(A(u)),

where u = (u1, . . . , uk) ∈ Hk, f : H → Hk is defined by f(x) =
[λ(B − xI)−1]†, ∀x ∈ H, and A(u) is the SU(2)-gauge potential on the space
Hk given by

A(u) = Im

(
udu†

1 + |u|2

)
.

The gauge field F (λ,B) corresponding to the gauge potential A(λ,B) contains a
finite number of removable singularities and hence, by applying Uhlenbeck’s
theorem on removable singularities, the solution can be extended smoothly
to S4. The potentials determined by (λ, B) and (λ′, B′) are gauge-equivalent
if and only if there exists α ∈ SU(2) and T ∈ O(k) such that

λ′ = αλT and B′ = T−1BT.

We may carry out a näıve counting of free real parameters as follows. The
pair (λ, B) gives

4k + 4
[
1
2k(k + 1)

]
= 2k2 + 6k (9.7)

real parameters. The reality condition (i) above involves 3k(k− 1)/2 param-
eters. The condition (ii) on the rank does not restrict the number of parame-
ters. The gauge equivalence further reduces the number of parameters in (9.7)
by 3 (by the SU(2)-action) and by k(k − 1)/2 (by the O(k)-action). Thus,
we have the following count for free real parameters.

2k2 + 6k − 3
2k(k − 1)− 3− k

2 (k − 1) = 8k − 3.
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It can be shown that this family of (8k− 3)-parameter solutions exhausts all
the possible solutions up to gauge equivalence. Thus, the space of these solu-
tions may be identified as the moduli space Mk(S4, SU(2)) of k-instantons
(i.e., instantons with instanton number k) over S4. In the theorem below we
give an alternative characterization of this moduli space.

Theorem 9.1 Let k be a positive integer. Write

B(q) = A1q1 + A2q2,

where, q = (q1, q2) ∈ H2, and Ai ∈ HomH(Hk,Hk+1), i = 1, 2. Define the
manifold M and Lie group G by

M := {(A1, A2) | B(q)†B(q) ∈ GL(k,R), ∀q �= 0},

G := (Sp(k + 1)×GL(k,R))/Z2.

Then M �= ∅, G acts freely and properly on M by the action

(a, b) · (A1, A2) := (aA1b
−1, aA2b

−1),

and the quotient space M/G is a manifold of dimension 8k − 3, which is
isomorphic to the moduli space Mk(S4, SU(2)) of instantons of instanton
number k.

9.2.1 Atiyah–Jones Conjecture

Soon after the differential geometric setting of the Yang–Mills theory was
established, Atiyah and Jones [22] took up the study of the topological aspects
of the theory over the 4-sphere S4. They proved the following theorem.

Theorem 9.2 Let Bk (resp., Mk) denote the moduli space of based gauge-
equivalence classes of connections (resp., instantons) on the principal bundle
Pk(S4, SU(2)) with instanton number k. Then Bk is homotopy equivalent to
the third loop space Ω3

k(SU(2)), and the natural forgetful map

θk :Mk → Bk ∼= Ω3
k(SU(2))

induces a surjection θ̂k in homology through the range q(k); i.e., there exists
a function q(k) such that

θ̂ik : Hi(Mk)→ Hi

(
Ω3
k(SU(2))

)
for i ≤ q(k) << k

is a surjective homomorphism.

In its strong form, the Atiyah–Jones conjecture states that θk is a homo-
topy equivalence through the range q(k) and that the function q(k) can be
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explicitly determined as a function of k. The stable version of the conjecture
was proved by Taubes in [365]. In fact, he proved the following theorem for
the general case of the gauge group SU(n).

Theorem 9.3 Let M∞ (resp., θ) be the direct limit of the moduli spaces
Mk (resp., maps θk). Then

θ :M∞ → Ω3
0(SU(n)), n ≥ 2

is a homotopy equivalence.

Boyer et al. [63] proved the following theorem, settling the Atiyah–Jones
conjecture in the affirmative.

Theorem 9.4 For all k > 0 the natural inclusion map

θk :Mk → Ω3
k(SU(2))

is a homotopy equivalence through dimension q(k) = [k/2]−2, i.e., θk induces
an isomorphism θ̂k in homotopy

θ̂ik : πi(Mk)→ πi(Ω3
k(SU(2)) = πi+3((SU(2)) ∀i ≤ q(k).

In particular, using the known homotopy groups of SU(2) we can conclude
that the low-dimensional homotopy groups of Mk are finite.

The result of this theorem has been extended to the gauge group SU(n)
in [375] (see also [61, 62]).

The long period between the formulation of the Atiyah–Jones conjecture
and its proof is an indication of the difficulty involved in the topology and
geometry of the moduli spaces of gauge potentials, even for the case when
the topology and the geometry of the base manifold is well known. In fact, an
explicit description of moduli spaces of instantons on S4 available through the
ADHM formalism [19] did not ease the situation. A surprising advance did
come through Donaldson’s study of the moduli spaceM1(M, SU(2)), where
M is a positive definite 4-manifold. He showed thatM1 is a 5-manifold with
singularities and used the topology of M1 to obtain new obstructions to
smoothability of M .

We begin by considering Taubes’s fundamental contributions to the anal-
ysis of Yang–Mills equations. His work on the existence of self-dual and anti-
dual solutions of Yang–Mills equations on various classes of 4-manifolds paved
the way for many later contributions including Donaldson’s. A direct ap-
plication of the steepest descent method to find the global minima of the
Yang–Mills functional AYM does not work in dimension 4, although this
technique does work in dimensions 2 and 3. In fact, the problem of finding
critical points of AYM in 4 dimensions is a conformally invariant variational
problem. It has some features in common with sigma models (the harmonic
map problem in 2 dimensions). Taubes used analytic techniques to study the
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problem of existence of self-dual connections on a manifold. This allowed him
to remove some of the restrictions on the base manifolds that were required
in earlier work. He does impose a topological condition on the base manifold
M , namely that there be no anti-dual harmonic 2-forms on M . This condition
can be written using the second cohomology group of the de Rham complex:

p−(H2
deR(M ;R)) = 0.

This condition is equivalent to the statement that the intersection form ιM of
M be positive definite. It is precisely this condition that appears in Donald-
son’s fundamental theorem, which gives a new obstruction to smoothability
of a 4-manifold. We discuss this theorem in the next section.

In the rest of this section we take M to be a compact, connected, oriented,
4-dimensional, Riemannian manifold with a compact, connected, semisimple
Lie group G as gauge group. We begin by recalling the classification of princi-
pal G-bundles over M . The isomorphism classes of principal bundles P (M, G)
are in one-to-one correspondence with the elements of the set [M ; BG] of ho-
motopy classes of maps of M into the classifying space BG for G. Using this
isomorphism, we can consider the isomorphism class [P ] as an element of the
set [M ; BG]. Since G is semisimple, its Lie algebra g is a direct sum of a finite
number of non-trivial simple ideals, i.e., there exists a positive integer k such
that

g = g1 ⊕ g2 ⊕ · · · ⊕ gk.

In this case, we can write the first Pontryagin class of the vector bundle ad(P )
as a vector

p = (p1, p2, . . . , pk) ∈ Zk.

Each isomorphism class of P uniquely determines a set of multipliers {rgi},
one for each simple ideal gi of g, which we write as a vector

r = (r1, r2, . . . , rk) ∈ Qk.

where we have written ri for rgi . The values of rh when h is the Lie algebra
of the simple group H are given in Table 9.1

Table 9.1 Multipliers for the Pontryagin classes of P

H SU(n) Spin(n) Sp(n) G2 F4 E6 E7 E8

rg 4n 4n− 2 4n + 4 16 36 48 72 120

The classification of principal bundles by Pontryagin classes can be de-
scribed as follows.

Proposition 9.5 Define the map
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φ : [M ; BG]→ Zk by [P ] �→ (r−1
1 p1, r−1

2 p2, . . . , r−1
k pk).

Then we have the following result. The map φ is a surjection and there exists
a map η

η : [M ; BG]→ H2(M ; π1(G))

such that φ restricted to the kernel of η is an isomorphism. In particular, if
G is simply connected, then φ is an isomorphism.

We now state two of Taubes’ theorems on the existence of irreducible,
self-dual, Yang–Mills connections on 4-manifolds.

Theorem 9.6 Let M be a compact, connected, oriented, Riemannian, 4-
manifold with p−H2

deR(M) = 0 and let G be a compact, semisimple Lie group.
Then there exists a principal bundle P (M, G) which admits irreducible self-
dual connections.

Moreover, we have the following theorem.

Theorem 9.7 Let M, G be as in the previous theorem and let P (M, G) be a
principal bundle with non-negative Pontryagin classes such that [P ] ∈ ker η.
Then we have the following.

1. The space A(P ) contains a self-dual connection.
2. Let Q(S4, G) be a principal bundle with the same Pontryagin classes as

P . If Q admits an irreducible, self-dual connection B, then there exists
an irreducible connection A on P . Furthermore, such an A has a neigh-
borhood in A(P )/G(P ) in which the moduli space of irreducible self-dual
connections is a manifold of dimension

p1(ad P )− 1
2 (dim G)(χ + σ),

where p1(ad P ) =
∑k

i=1 pi is the sum of the Pontryagin classes of adP , χ
is the Euler characteristic of M , and σ is the signature of M .

The analytical tools developed in these and related theorems by Taubes play
a fundamental role in the construction and analysis of Yang–Mills fields and
their moduli spaces on several classes of manifolds. We now discuss a special
class of these moduli spaces, namely the moduli spaces of instantons.

We restrict ourselves to considering self-dual Yang–Mills fields on M with
gauge group G, i.e., with G-instantons. Similar considerations apply to anti-
dual fields or anti-instantons. Since both the instanton and anti-instanton
solutions are used in the literature, we shall state important results for both.
The configuration space of G-instantons is denoted by C+(P ) and is defined
by

C+(P ) := {ω ∈ A | Fω = ∗Fω},

where A is the space of gauge connections. The group G of gauge transfor-
mations acts on C+(P ) and the quotient space under this action is called the
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moduli space of instantons with instanton number k. It is denoted by
M+

k (M, G), or simply byMk(M, G). Thus, we have

Mk(M, G) := C+(P (M, G))/G.

We now briefly indicate how the dimension of the moduli spaceMk(M, G)
can be computed by applying the Atiyah–Singer index theorem. The funda-
mental elliptic complex comes from a modification of the generalized de Rham
sequence. For a vector bundle E over M associated to the principal bundle
P (M, G), the generalized de Rham sequence can be written as

0 −→ Λ0(M, E) dω

−→ Λ1(M, E) dω

−→ Λ2(M, E) dω

−→ · · ·,

where Λp(M, E) = Γ (Λp(T ∗M)⊗ E). On the oriented Riemannian 4-
manifold M the space Λ2(T ∗M) splits under the action of the Hodge ∗ opera-
tor into a direct sum of self-dual and anti-dual 2-forms. This splitting extends
to Λ2(M, E) so that

Λ2(M, E) = Λ2
+(M, E)⊕ Λ2

−(M, E),

where Λ2
+(M, E) (resp., Λ2

−(M, E)) is the space of self-dual (resp., anti-dual)
2-forms with values in the vector bundle E. Let

p± : Λ2(M, E)→ Λ2
±(M, E)

be the canonical projections defined by

p± := 1
2 (1± ∗).

Then we have the following diagram

0 Λ0(M, E)� Λ1(M, E)�dω Λ2(M, E)�dω · · ·�dω

Λ2
−(M, E)

�

p−

Λ2
+(M, E)

�
p+
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We now consider the special case of E = ad(P ) = P ×ad g, the Lie algebra
bundle associated to P with fiber g, and define

dω± : Λ1(M, E)→ Λ2
±(M, E) by dω± := p± ◦ dω.

Now the curvature 2-form Fω splits into its self-dual part (Fω)+ ∈ Λ2
+(M, E)

and its anti-dual part (Fω)− ∈ Λ2
−(M, E). Thus, for a self-dual (resp., anti-

dual) gauge connection ω

dω− ◦ dω = (Fω)− = 0 (resp., dω+ ◦ dω = (Fω)+ = 0). (9.8)

Using equation (9.8) and a suitable part of the above diagram we obtain the
fundamental instanton deformation complex (or simply the instanton
complex)

0 −→ Λ0(M, E) dω

−→ Λ1(M, E)
dω
−−→ Λ2

−(M, E) −→ 0

Similarly, one has the anti-instanton deformation complex (or simply
the anti-instanton complex). It can be shown that the instanton (resp.,
anti-instanton) complex is an elliptic complex. The formal dimension of the
instanton moduli space is determined by the cohomology of this complex. We
define the twisted Dirac operator

Dt : Λ1(M, E)→ Λ0(M, E)⊕ Λ2
−(M, E)

by
Dt(α) := δωα⊕ dω−α, α ∈ Λ1(M, E),

where δω is the formal adjoint of dω. It can be shown that the twisted Dirac
operator Dt is elliptic. We now compute its analytic index by studying the
cohomology of the original instanton complex. There are three Hodge–de
Rham Laplacians

1. Δω
0 := δωdω on Λ0(M, E),

2. Δω
1 := dωδω + δωdω− on Λ1(M, E),

3. Δω
2 := dω−δω,

and their associated harmonic spaces, which determine the cohomology
spaces Hi, 0 ≤ i ≤ 2, of the instanton complex. We denote by hi the dimen-
sion of Hi for all i. Let Mk ⊂ A/G denote the moduli space of irreducible
instantons of instanton number k. For a self-dual connection ω the tangent
space TωMk can be identified with ker dω−/ Im dω. Thus, at least formally
dimMk = h1. Under suitable conditions on M and the gauge group, one
can show that h0 = 0 = h2 and that Mk is a manifold. Thus, the index
Ind(Dt) = −h0 + h1 − h2 = h1 equals the formal dimension of the moduli
space Mk(M, G). This index can be computed by using the Atiyah–Singer
index theorem and leads to the following result:
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dimMk(M, G) = 2 ch(P ×ad gC)[M ]− 1
2 dimG(χ(M) + σ(M)), (9.9)

where ch is the Chern character, gC = g⊗C is the complexification of the Lie
algebra g, χ(M) is the Euler characteristic of M and σ(M) is the Hirzebruch
signature of M . If M is 1-connected then b0 = 1 = b4 and b1 = 0 = b3. Thus,
χ(M) = 2 + b2 = 2 + b+

2 + b−2 and σ(M) = b+
2 − b−2 . This gives

dimMk = c(P )− 1
2 dimG(2 + 2b+

2 ) = c(P )− dim G(1 + b+
2 ),

where c(P ) is a constant depending on P . For example, if P is an SU(N)-
bundle over M with instanton number k, then

dimMk = 4kN − (N2 − 1)(1 + b+
2 ).

In the particular case of N = 2, we get

dimMk(M, SU(2)) = 8k − 3(1 + b+
2 ).

We shall use this result in our discussion of the Donaldson polynomial invari-
ants of M later in this chapter.

If M = S4 then χ(M) = 2 and σ(M) = 0; thus formula (9.9) reduces to

dimMk(S4, G) = 2 ch(P ×ad gC)[S4]− dim G. (9.10)

We now use this formula to obtain dimensions of moduli spaces of instantons
over S4 for some standard non-Abelian gauge groups.

Proposition 9.8 Let k denote the instanton number of the principal bundle
P (S4, G). Then we have the following results.

1. Let G = SU(n), n ≥ 2. Then

dimG = n2 − 1 and ch(P ×ad gC)[S4] = 2nk.

Thus, equation (9.10) becomes

dimMk(S4, SU(n)) = 4nk − n2 + 1. (9.11)

Applying formula (9.11) to the particular case of G = SU(2) we obtain

dimMk(S4, SU(2)) = 8k − 3.

For instanton number k = 1, we get

dimM1(S4, SU(2)) = 5,

corresponding to the BPST family of solutions. In the last section we have
given an explicit geometric construction of the (8k − 3)-parameter family
of instantons with instanton number k.
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2. Let G = Spin(n), n > 3, where Spin(n) is the universal covering group of
SO(n). Then

dimG = n
2 (n− 1) and ch(P ×ad gC)[S4] = 2(n− 2)k.

Thus, equation (9.10) becomes

dimMk(S4, Spin(n)) = 4(n− 2)k − n
2 (n− 1), k ≥ n/2. (9.12)

For small values of n some of the gauge groups are locally isomorphic. For
example, Spin(6) is locally isomorphic to SU(4). Thus, (9.11) and (9.12)
lead to the same dimension for the corresponding moduli spaces in this
case.

3. Let G = Sp(n). Then

dimG = n(2n + 1), and ch(P ×ad gC)[S4] = 2(n + 1)k,

and we obtain

dimMk(S4, Sp(n)) = 4(n + 1)k − n(2n + 1), k ≥ n/4. (9.13)

We note that the groups SU(2), Spin(3), and Sp(1) are isomorphic and hence
the corresponding moduli spaces are homeomorphic. Each of these groups have
been used to study the topology and geometry of the fundamental moduli space
of BPST instantons from different perspectives (see, for example, [103, 172,
173,181]).

9.3 Topology and Geometry of Moduli Spaces

Study of the differential geometric and topological aspects of the moduli
space of Yang–Mills instantons on a 4-dimensional manifold was initiated by
Donaldson [104]. Building on the analytical work of Taubes [364, 363] and
Uhlenbeck [385, 386, 387], Donaldson studied the space M+

1 (M), where M
is a compact, simply connected, differential 4-manifold with positive defi-
nite intersection form. He showed that for such M the intersection form is
equivalent to the unit matrix. Freedman had proved a classification theorem
for topological 4-manifolds [136], which shows that every positive definite
form occurs as the intersection form of a topological manifold. A spectacu-
lar application of this classification theorem is his proof of the 4-dimensional
Poincaré conjecture. Donaldson’s result showed the profound difference in
the differentiable and topological cases in dimension 4 to the known results
in dimensions greater than 4. In particular, these results imply the exis-
tence of exotic 4-spaces, which are homeomorphic but not diffeomorphic to
the standard Euclidean 4-space R4. Soon many examples of such exotic R4
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were found ([157]). A result of Taubes gives an uncountable family of ex-
otic R4 and yet this list of examples is not exhaustive. The question of the
existence of exotic differentiable structures on compact 4-manifolds has also
been answered in the affirmative (see, for example [343]). Using instantons
as a powerful new tool Donaldson has opened up a new area of what may
be called gauge-theoretic mathematics (see the book by Donaldson and
Kronheimer [112], Donaldson’s papers [105,107,109] and [136]).

We now give a brief account of Donaldson’s theorem and its implications
for the classification of smooth 4-manifolds. In Chapter 2 we discussed the
classification of a class of topological 4-manifolds. In addition to these there
are two other categories of manifolds that topologists are interested in study-
ing. These are the category PL of piecewise linear manifolds and the category
DIFF of smooth manifolds. We have the inclusions

DIFF ⊂ PL ⊂ TOP .

In general, these are strict inclusions, however, it is well known that every
piecewise linear 4-manifold carries a unique smooth structure compatible with
its piecewise linear structure. Freedman’s classification of closed, 1-connected,
oriented 4-manifolds does not extend to smooth manifolds. In the smooth cat-
egory the situation is much more complicated. In fact, we have the following
theorem:

Theorem 9.9 (Rochlin) Let M be a smooth, closed, 1-connected, oriented,
spin manifold of dimension 4. Then 16 divides σ(M), the signature of M .

Now as we observed earlier, 8 always divides the signature of an even form
but 16 need divide it. Thus, we can define the Rochlin invariant ρ(μ) of
an even form μ by

ρ(μ) := 1
8σ(μ) (mod 2).

We note that the Rochlin invariant and the Kirby–Siebenmann invariant
are equal in this case, but for non-spin manifolds the Kirby–Siebenmann
invariant is not related to the intersection form and thus provides a further
obstruction to smoothability. From Freedman’s classification and Rochlin’s
theorem it follows that a topological manifold with non-zero Rochlin invariant
is not smoothable. For example, the topological manifold |E8| := ι−1(E8)
corresponds to the equivalence class of the form E8 and has signature 8
(Rochlin invariant 1) and hence is not smoothable.

For nearly two decades very little progress was made beyond the result
of the above theorem in the smooth category. Then, in 1982, through his
study of the topology and geometry of the moduli space of instantons on
4-manifolds Donaldson discovered the following unexpected result, which has
led to a number of important results, including the existence of uncountably
many exotic differentiable structures on the standard Euclidean topological
space R4.
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Theorem 9.10 (Donaldson) Let M be a smooth, closed, 1-connected, ori-
ented manifold of dimension 4 with positive definite intersection form ιM .
Then ιM ∼= b2(1), the diagonal form of rank b2, the second Betti number of
M .

Proof : We given only a sketch of the main ideas involved in the proof. The
theorem is proved by consideration of the solution space of the instanton field
equations

∗Fω = Fω,

where ω is the gauge potential on a principal SU(2)-bundle P over M with
instanton number (Euler class) 1 and Fω is the corresponding SU(2)-gauge
field on M with values in the bundle ad(P ). The instanton equations are a
semi-elliptic system of nonlinear partial differential equations, which are a
nonlinear generalization of the well-known Dirac equation on M . The group
G of gauge transformations acts as a symmetry group on the solution space
of the instanton equations. The quotient space under this group action is the
moduli space M+

1 (M) (or simply M) of instantons with instanton number
1. Recall that the action of G is not, in general, free due to the existence of
reducible connections. The spaceM depends on the choice of the metric on
the base M . By perturbing the metric or the instanton equations we obtain
a nearby moduli space (also denoted by M), which can be shown to be an
oriented 5-dimensional manifold with boundary and with a finite number k
of singular points. In fact, moduli spaceM has the following properties:

1. Let k be half the number of solutions to the equation

ιM (α, α) = 1, α ∈ H2(M,Z).

Then for almost all metrics on M , there exists a set of k points
p1, p2, . . . , pk inM such thatM\{p1, p2, . . . , pk} is a smooth 5-manifold.
The points pj are in one-to-one correspondence with equivalence classes of
reducible connections.

2. Each point pj has a neighborhood Uj ⊂ M, which is homeomorphic to a
cone on CP2.

3. The moduli spaceM is orientable.
4. There exists a collar (0, 1]×M ⊂M. Attaching M to the open end of the

collar at 0 we obtain the space M̄ := M∪M . This space is a compact
manifold with the manifold M appearing as part of the boundary.

The proofs of the properties listed are quite involved and we refer the reader
to the books by Freed and Uhlenbeck [135], Lawson [247], and Donaldson
and Kronheimer [112] for details. Using the above properties, one can show
that the moduli space M̄ provides a cobordism between the manifold M
and a disjoint union X of k copies of CP2. Since the intersection form is a
cobordism invariant, M and X have isomorphic intersection forms. Thus, the
intersection form of M is equivalent to the identity form. ��
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The above theorem, combined with Freedman’s classification of topological
4-manifolds, provides many examples of non-smoothable 4-manifolds with
zero Kirby–Siebenmann invariant. In fact, we have the following classification
of smooth 4-manifolds up to homeomorphism.

Theorem 9.11 Let M be a smooth, closed, 1-connected, oriented 4-
manifold. Let ∼=h denote the relation of homeomorphism and let ιM denote
the intersection form of M . If ιM = ∅ then M ∼=h S4 and if ιM �= ∅ then we
have the following cases:

1. M is non-spin with odd intersection form

ιM ∼= j(1)⊕ k(−1), j, k ≥ 0,

and
M ∼=h j(CP2)#k(CP

2
);

i.e., M is homeomorphic to the connected sum of j copies of CP2 and
k copies of CP

2
, that is, CP2 with the opposite complex structure and

orientation.
2. M is spin with even intersection form

ι ∼= mσ1 ⊕ pE8, m, p ≥ 0,

where

σ1 =
(

0 1
1 0

)

is a Pauli spin matrix and E8 is the matrix associated to the exceptional
Lie group E8 in Cartan’s classification of simple Lie groups. i.e.,

E8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and
M ∼=h m(S2 × S2)#p(|E8|).

That is, M is homeomorphic to the connected sum of m copies of S2×S2

and p copies of |E8|, the unique topological manifold corresponding to the
intersection form E8.

Gauge-theoretic methods have become increasingly important in the study
of the geometry and topology of low-dimensional manifolds. New invariants
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are being discovered and new links with various physical theories are being
established. In this chapter we are studying their application to 4-manifolds.
We shall consider applications to invariants of 3-manifolds and links in them
in later chapters.

9.3.1 Geometry of Moduli Spaces

In the Feynman path integral approach to quantum field theory, one is in-
terested in integrating a suitable function of the classical action over the
space of all gauge-inequivalent fields. In addition, one assumes that an “ana-
lytic continuation” can be made from the Lorentz manifold to a Riemannian
manifold, the integration carried out and then the results transferred back
to the physically relevant space-time manifold. Although the mathematical
aspects of this program are far from clear, it has served as a motivation for
the study of Euclidean Yang–Mills fields, i.e., fields over a Riemannian base
manifold. Thus, for the quantization of Yang–Mills field, the space over which
the Feynman integral is to be evaluated turns out to be the Yang–Mills mod-
uli space. Evaluation of such integrals requires a detailed knowledge of the
geometry of the moduli space. We have very little information on the ge-
ometry of the general Yang–Mills moduli space. However, we know that the
dominant contribution to the Feynman integral comes from solutions that
absolutely minimize the Yang–Mills action, i.e., from the instanton solutions.
If Y denotes the Yang–Mills moduli space, then Y = ∪Yk, where Yk is the
moduli space of fields with instanton number k. The moduli space M+

k of
self-dual Yang–Mills fields or instantons of instanton number k is a subspace
of Yk. Thus, one hopes to obtain some information by integrating over the
space M+

k . Several mathematicians [103, 172, 173, 255, 281] have studied the
geometry of the spaceM+

k and we now have detailed results about the Rie-
mannian metric, volume, form and curvature of the most basic moduli space
M+

1 . We give below a brief discussion of these results.
Let (M, g) be a compact, oriented, Riemannian 4-manifold. Let P (M, G)

be a principal G-bundle, where G has a bi-invariant metric h. The metrics g
and h induce the inner products 〈 , 〉(g,h) on the spaces Λk(M, ad P ) of k-
forms with values in the vector bundle ad P . We can use these inner products
to define a Riemannian metric on the space of gauge connections A(P ) as
follows. Recall that the space A(P ) is an affine space, so that for each ω ∈
A(P ) we have the canonical identification between the tangent space TωA(P )
and Λ1(M, ad P ). Using this identification we can transfer the inner product
〈 , 〉(g,h) on Λ1(M, ad P ) to TωA(P ). Integrating this pointwise inner product
against the Riemannian volume form we obtain an L2 inner product on the
space A(P ). This inner product is invariant under the action of the group G
onA and hence we get an inner product on the moduli spaceA/G. Recall that
G does not act freely on A, but G/Z(G) acts freely on the open dense subset
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Air of irreducible connections. After suitable Sobolev completions of all the
relevant spaces, the moduli space Oir = Air/G of irreducible connections can
be given the structure of a Hilbert manifold. The L2 metric on A restricted
to Air induces a weak Riemannian metric on Oir by requiring the canonical
projection Air → Oir to be a Riemannian submersion. The space Ik of
irreducible instantons of instanton number k = −c2(P ), is defined by

Ik =M+
k ∩ Oir,

where k = −c2(P ). The space Ik is a finite dimensional manifold with sin-
gularities and the weak Riemannian metric on Oir restricts to a Riemannian
metric on Ik.

The space I1 was studied by Donaldson ([106]) in the case where M is a
simply connected manifold with positive definite intersection form and where
the gauge group G = SU(2). He proved that there exists a compact set
K ∈ I1 such that I1−K is a union of a finite number of components, one of
which is diffeomorphic to M × (0, 1) and all the others are diffeomorphic to
CP2×(0, 1). Using the Riemannian geometry of I1 discussed above we can
put this result in its geometric perspective as follows:

Theorem 9.12 Let M be a simply connected manifold with positive definite
intersection form and let the gauge group G = SU(2). Then

1. I1 is an incomplete manifold with finite diameter and volume.
2. Let Ī1 be the metric completion of I1. Then Ī1 − I1 is the disjoint union

of a finite set of points {pi} and a set X diffeomorphic to M . There exists
an ε > 0 such that M × [0, ε) is diffeomorphic to a neighborhood of X in
Ī1 with the pull-back metric asymptotic to a product metric and for each
pi there is a neighborhood diffeomorphic to CP2×(0, ε) with the pull-back
metric asymptotic to a cone metric with base CP2.

See [173,172] for a proof and further details.
In general, the L2 metric on a moduli space cannot be calculated explicitly,

since it depends on global analytic data about M . However, for the funda-
mental BPST instanton moduli space I1, the metric and the curvature have
been computed by several people (see, for example, [103, 172, 181, 203]). We
have the following theorem.

Theorem 9.13 There exists a diffeomorphism φ : R5 → I1 for which the
pull-back metric has the form

φ∗g1 = ψ2(r)g,

where g1 is the L2 metric on I1 and g is the standard Euclidean metric on
R5, and ψ is a smooth function of the distance r.

The explicit formula for the function ψ is quite complicated and is given
in [172]. The geometry of the moduli space of instanton solutions in the par-
ticular case of CP2 has been studied in detail in [67,171]. The moduli spaces



296 9 4-Manifold Invariants

of Yang–Mills connections on various base manifolds have also been studied
in [201, 202, 203] and in [171]. We now state the result on the curvature of
the moduli space Mir of irreducible instantons on a compact, Riemannian
manifold with compact, semisimple gauge group. The calculation of this cur-
vature is based on a generalization of O’Neill’s formula for the curvature of
a Riemannian submersion.

Theorem 9.14 Let X, Y ∈ TαA be the horizontal lifts of tangent vectors
X1, Y1 ∈ T[α]Mir, where [α] is the equivalence class of gauge connections
that are gauge-equivalent to α. Then the sectional curvature R of Mir at [α]
is given by

〈R(X1, Y1)Y1, X1〉 = 3〈b∗X(Y ), G0
α(b∗X(Y ))〉

+ 〈b−X(X), G2
α(b−Y (Y ))〉

− 〈b−X(Y ), G2
α(b−X(Y ))〉,

where b is bracketing on bundle-valued forms, b∗ its adjoint, and b− is b
followed by orthogonal projection onto Λ2

−(M, adP ) and Gi are the Green
operators of the corresponding Laplacians on bundle-valued forms.

9.4 Donaldson Polynomials

Donaldson’s theorem on the topology of smooth, closed, 1-connected 4-
manifolds provides a new obstruction to smoothability of these topological
manifolds. A surprising ingredient in his proof of this theorem was the mod-
uli space I1 of SU(2)-instantons on a manifold M . This theorem has been
applied to obtain a number of new results in topology and geometry and has
been extended to other manifolds. The space I1 is a subspace of the moduli
spaceM1 of Yang–Mills instantons with instanton number 1. The spaceM1

in turn is a subspace of the moduli space Y1 of all Yang–Mills fields on M .
In fact, we have ⋃

k

Mk ⊂
⋃
k

Yk ⊂ A/G .

Donaldson has used the homology of these spaces Mk, for sufficiently large
k, to obtain a family of new invariants of a smooth 4-manifold M , satisfying
a certain condition on its intersection form. We now describe these invariants
known as Donaldson’s polynomial invariantsi, or simply as the Don-
aldson polynomials.

The Donaldson polynomials are defined by polarization of a family qk of
symmetric, multilinear maps

qk : H2(M)× · · · ×H2(M)︸ ︷︷ ︸
d(k) times

→ Q,
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where k is the instanton number of P (M, SU(2)) and the function d(k) is
given by

d(k) := 4k − 3
4 (χ(M) + σ(M)) = 4k − 3

2 (1 + b+
2 ), (9.14)

where χ(M) is the Euler characteristic of M , σ(M) is the signature of M ,
and b+

2 is the dimension of the space of self-dual harmonic 2-forms on M . We
shall also refer to the maps qk as Donaldson polynomials.

A basic tool for the construction of Donaldson polynomials is a map that
transfers the homology of M to the cohomology of the orbit space Oir of
irreducible connections on the SU(2)-bundle P . To describe this map we
begin by recalling the Künneth formula for cohomology of a product of two
manifolds

Hk(M1 ×M2) ∼=
⊕
k=i+j

Hi(M1)×Hj(M2).

If α ∈ Hk(M1×M2) we denote by α(i,j) = (β, γ), its component in Hi(M1)×
Hj(M2). For a fixed i ≤ k we define a map

f : Hi(M1)×Hk(M1 ×M2)→ Hj(M2)

by

f(a, α) =
∫

a

α(i,j) :=
(∫

a

β

)
γ.

Given a fixed element α ∈ Hk(M1 ×M2), the above map induces the map
μα

(μα)i : Hi(M1)→ Hk−i(M2),

defined by (μα)i(a) = f(a, α).
We now apply this formula to the case when M1 is a smooth, closed, 1-

connected 4-manifold M , M2 is the moduli spaceOir of irreducible instantons
on M , k = 4, i = 2, and α = c2(P), the second Chern class of the Poincaré
bundle P over M ×Oir with structure group SU(2), to obtain Donaldson’s
map

μ := (μc2(P))2 : H2(M)→ H2(Oir). (9.15)

We note that the rational cohomology ring of Oir is generated by cohomology
classes in dimensions 2 and 4 and that the map μ and the map (μc2(P))0 can
be used to express these generators in terms of the homology of M . Using
the map μ we define maps μd, d ≥ 1,

μd : H2(M)× · · · ×H2(M)︸ ︷︷ ︸
d times

→ H2d(Oir), d ≥ 1,

by
μd(a1, a2, . . . , ad) = μ(a1) ∧ μ(a2) ∧ · · · ∧ μ(ad). (9.16)
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This is the first step in the definition of qk. The second step is to pair the
cohomology class on the right hand side of (9.16) with a suitable homology
cycle. We now describe this homology cycle. Observe first that the formal
(or virtual) dimension, of the moduli space of anti-instantons of instanton
number k is given by

dimMk(M, SU(2)) = 8k − 3(1 + b+
2 ). (9.17)

We note that the instanton equations depend on the choice of a metric g
on M through the Hodge ∗-operator. It follows that the instanton moduli
space also depends on this choice. We indicate this dependence of Mk on
the metric g by writingMk((M, g), SU(2)) or simply Mk(g) for the moduli
space. If b+

2 = 2a + 1, a > 0, then for a generic metric g the moduli space
Mk(g) has even dimension 2d, where d = 4k− 3(1 + a). This requirement is
incorporated in the following definition.

Definition 9.1 A C-manifold is a pair (M, β) where

1. M is a smooth, compact, 1-connected, oriented 4-manifold with b+
2 (M) =

2a + 1, a > 0;
2. β is an orientation of a maximal positive subspace H+

2 ⊂ H2(M,R) for
the intersection form of M .

In the following theorem we collect some properties of the moduli spaces
over a C-manifold that play a fundamental role in the definition of Donaldson
polynomials.

Theorem 9.15 Let M be a C-manifold. Let RM(M) denote the set of
Riemannian metrics on M . Then there exists a second category subset
GM(M) ⊂ RM(M) (called the set of generic metrics) such that

1. For g ∈ GM(M) and k > 0 the moduli space Mk(g) is a manifold with
boundary. The part M∗

k(g) corresponding to irreducible instantons is a
smooth submanifold of the space B∗

k of all irreducible gauge potentials, cut
out transversely by the instanton equations and hence is of dimension equal
to the virtual dimension 8k − 6(1 + a).

2. For g0, g1 ∈ GM(M) there exists a smooth path of generic metrics gt, t ∈
[0, 1] joining g0 and g1 such that the parametrized moduli space N
defined by

N = {(ω, t) ∈ B∗
k × [0, 1] | ω ∈M∗

k(gt)}

is a smooth manifold with boundary, the boundary consisting of the disjoint
union ofM∗

k(g0) andM∗
k(g1). The manifold N has dimension 8k−6a−5

and is a cobordism between M∗
k(g0) and M∗

k(g1).
3. The orientation β induces an orientation on all the moduli spaces Mk(g)

so that changing β to −β reverses the orientation of all the moduli spaces.
Given an orientation on all the moduli spaces Mk(g), the parametrized
moduli space N can be given an orientation so that it provides an oriented
cobordism between M∗

k(g0) and M∗
k(g1).
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In the rest of this section we take M to be a C-manifold. There are a
number of technical points to be addressed before we give the definition
of Donaldson polynomials. Briefly, we know that Mk(g) is a manifold of
dimension 2d. If we can associate a 2d-dimensional homology class h2d to this
manifold then we can evaluate the 2d-form defined in (9.16) on the class h2d to
define Donaldson polynomials. Theorem 9.15 can then be used to show that
the definition is independent of the metric and the orientation ofMk(g). In
view of this we drop the reference to the metric and orientation of the moduli
spaces in what follows. For a compact manifold, the fundamental homology
class is well-defined. However, the moduli spaces Mk are, in general, not
compact. They do have a natural compactification Mk defined as follows.
Let si(M) denote the ith symmetric power of M . Define the topology TD on

Tk :=Mk

k⋃
i=1

(
Mk−i × si(M)

)
(9.18)

by the following notion of convergence. We say that a sequence [ωn] in Mk

converges to a point ([ω], (x1, . . . , xi)) ∈Mk−i × si(M) if

lim
n→∞

[ωn] = [ω] on M \ {x1, . . . , xi}

and the corresponding sequence of Yang–Mills integrands

|Fωn |2 converges to |Fω |2 + 8π2
i∑

j=1

δxj .

By extending the analytical results of Uhlenbeck on the compactification of
Yang–Mills moduli spaces, Donaldson has proved the following theorem:

Theorem 9.16 Let M be a C-manifold. Then the closureMk ofMk in the
topological space (Mk ∪ki=1 Mk−i × si(M), TD) is a compact stratified space
with principal stratum Mk. Moreover, if

4k > 3(b+
2 (M) + 1) (9.19)

then the secondary strata

Mk ∩ (Mk−i × si(M)), i > 1,

have codimension at least 2 in Mk. In particular, this implies that the com-
pactified moduli space Mk carries the fundamental homology class.

The compactification Mk is called the Donaldson compactification
of Mk. The values of k satisfying the inequality (9.19) are said to be in
the stable range. The fundamental class of the space Mk defines a 2d-
dimensional homology class [Mk] in the homology H∗(Oir). The Donaldson
polynomial qk
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qk : H2(M)× · · · ×H2(M)︸ ︷︷ ︸
d times

→ Q

is then defined by

qk(a1, . . . , ad) = (μd(a1, . . . , ad))[Mk]. (9.20)

An important alternative definition of the map μ can be given by con-
sidering a representative of the homology class a ∈ H2(M) by an embedded
surface S as follows. The embedding map ι : S →M defines the map

r : Air(M)→ A(S)

obtained by restricting an irreducible connection over M to a connection
over S. Coupling the Dirac operator D on S, to the restriction of gauge fields
on M to S gives a family of coupled Dirac operators. This family defines a
determinant line bundle L over A(S). We denote by Lr the pull-back r∗L of
this bundle to Air(M). We then define

μ(a) := c1(L−1
r ) ∈ H2(Air(M)).

One can show that this definition of μ leads to the same cohomology class as
the previous definition.

In [237] the definition of Donaldson polynomial invariants has been ex-
tended beyond the stable range as well as to manifolds M with b+

2 (M) = 1
(see also [113]).

In [404] it is shown that the Donaldson polynomial invariants of a 4-
manifold M appear as expectation values of certain observables in a topolog-
ical QFT. As we have discussed in Chapter 7, this is a physical interpretation
of Donaldson’s polynomial invariants. We note that this TQFT formulation
or its later variants have not led to any new insight into the structure of these
invariants. As we have indicated above, Donaldson polynomials are indepen-
dent of the metric on M and depend only on its differential structure. Thus
we have the following theorem.

Theorem 9.17 Let M be a smooth, oriented, compact, simply connected
4-manifold with b+

2 (M) = 2a + 1, a ≥ 1. For each k in the stable range
(4k > 3(b+

2 (M)+1)), the polynomial qk defined by equation (9.20) is a differ-
ential topological invariant of M , which is natural with respect to orientation-
preserving diffeomorphisms.

When M is a connected sum of manifolds M1 and M2, one can construct
instantons on M by gluing instantons on M1 and M2. By carefully analyzing
the corresponding moduli spaces Donaldson proved the following important
vanishing theorem.

Theorem 9.18 Let M be a smooth, oriented, compact, simply connected 4-
manifold with b+

2 (M) = 2a + 1, a ≥ 1. If M can be written as a smooth,
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oriented connected sum M = M1#M2 and b+
2 (Mi) > 0, for i = 1, 2, then the

polynomial invariant qk is identically zero for all k.

The case when the base manifold carries a compatible complex structure is
usually referred as the integrable case. In particular, when M is a compact
Kähler manifold with Kähler form ω, there exists a one-to-one correspondence
between the following two spaces of equaivalence classes:

1. space of irreducible SU(2) anti-instantons,
2. space of holomorphic SL(2,C) bundles that satisfy a certain stability con-

dition with respect to the polarization induced by the Kaḧler form.

In the integrable case one has the following positivity property of the in-
variants, which has strong influence on the differential topology of complex
surfaces even in cases where the invariants cannot be explicitly calculated.

Theorem 9.19 Let M be a compact Kähler manifold with Kähler form ω.
Let Σ ∈ H2(M ;Z) be the Poincaré dual of the Kähler class [ω] ∈ H2(M ;Z).
Then qk(Σ, . . . , Σ) > 0 for all sufficiently large k.

The integrable case has been studied extensively (see, for example,
[108, 113], [141] and [150]). For algebro-geometric analogues of Donaldson
polynomials see J. Morgan and K. O’Grady [291]. For applications to com-
plex manifolds and algebraic varieties see R. Friedman and J. Morgan [142]
and [290].

9.4.1 Structure of Polynomial Invariants

Donaldson’s polynomial invariants are defined in terms of the 2-dimensional
cohomology classes in the image of the μ map. The moduli space Oir also
carries a distinguished 4-dimensional cohomology class ν defined by the image
of the generator 1 ∈ H0(M) under the map

(μc2(P))0 : H0(M)→ H4(Oir). (9.21)

We note that the cohomology class ν is essentially the first Pontryagin class
of the principal SO(3)-bundle Ôir over Oir generated by the base point fi-
bration. Using the class ν we can define a larger class q(i,j)

q(i,j) : H2(M)× · · · ×H2(M)︸ ︷︷ ︸
i times

→ Q

of invariants of M by

q(i,j)(a1, . . . , ai) = (μi(a1, . . . , ai) ∧ νj)[Mk], (9.22)
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where i, j are non-negative integers such that i + 2j = d(k). We say that M
is of KM simple type, or just simple type, if

q(i,j) = 4q(i,j+2) (9.23)

for all i, j for which the invariants are defined. It is known that condi-
tion (9.23) holds for several classes of 4-manifolds including simply connected
elliptic surfaces, complete intersections, and some branched covers. It is not
known whether the condition holds for all simply connected 4-manifolds.

In the rest of this section we restrict ourselves to manifolds of simple type.
Then the evaluation of the invariants q(i,j) is reduced to two cases. Case one
has j = 0 and corresponds to the original polynomial invariants. In case two
j = 1 and in this case, following [238, 239] we define new invariants qd(k)−2

by
qd(k)−2 = 1

2q(d(k)−2,1) (9.24)

For non-negative n we define qn by equation (9.20) if n = d(k), by equa-
tion (9.24) if n = d(k) − 2, and set qn = 0 for all other n. Then we define a
function q by a series involving qn

q : H2(M ;Z)→ R by q(a) :=
∞∑
n=0

qn(a)
n!

. (9.25)

The following structure theorem for the invariant q was proved by Kronheimer
and Mrówka [239].

Theorem 9.20 Let M be a simply connected 4-manifold of simple type. Then
there exist finitely many cohomology classes K1, . . . , Kp ∈ H2(M ;Z) and
non-zero rational numbers r1, . . . , rp such that

q = e(ιM)/2

p∑
i=1

rie
Ki , (9.26)

where the equality is to be understood as equality of analytic functions on
H2(M ;R). The classes Ki, 1 ≤ i ≤ p, are called the KM basic classes
and each Ki is an integral lift of the second Stiefel–Whitney class w2(M) ∈
H2(M ;Z).

The proof of the above theorem depends in an essential way on studying
the moduli spaces of singular gauge fields on M with codimension two singular
surface Σ. One starts by specifying the following data:

1. a principal SU(2) bundle over M \Σ with instanton number k;
2. a complex line bundle L over Σ with monopole number l = −c1(L)[Σ];
3. a non-trivial holonomy α around Σ such that α ∈ (0, 1/2).

Fix a background connection Aα and define the configuration space Aα
by
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Aa = {Aα + a | ∃p > 2 such that ∇Aαa ∈ Lp}.

Then define the moduli space:

Mα
k,l = {A ∈ Aα | ∗FA = −FA}/G,

where G is the group of gauge transformations. We call Mα
k,l a moduli space

of connections on M with fixed singularity along Σ. In general, Mα
k,l is a

manifold with singularities, and

dimMα
k,l = 8k − 3(b+

2 (M)− b1(M) + 1) + 4l− (2g − 2),

where g is the genus of Σ. One can define a family of invariants of Don-
aldson type using these moduli spaces. These invariants interpolate between
the usual Donaldson invariants to provide the recurrence relations and also
furnish information on their structure. In particular, we have the following
theorem:

Theorem 9.21 Let M be a simply connected 4-manifold of simple type and
let K1, . . . , Kp ∈ H2(M ;Z) be a complete set of KM basic classes given by
Theorem 9.20. Let Σ be any smoothly embedded, connected, essential surface
in M of genus g with normal bundle of non-negative degree. Then g satisfies
the inequality

ιM (Σ) + max
i
〈Ki, Σ〉 ≤ 2g − 2. (9.27)

This result is closely related to the classical Thom conjecture about embedded
surfaces in CP2. While the singular gauge theory methods do not apply to
CP2, they do lead to interesting new results. As an example of such a result
we state the following theorem due to Kronheimer and Mrówka.

Theorem 9.22 Let M be a manifold with b+
2 ≥ 3 and non-zero Donaldson

invariants. Let Σ ⊂M be an essential surface with g > 0. Then

2g − 2 ≥ ιM (Σ).

The condition that M be of simple type is very mysterious. It is not known
whether every simply connected 4-manifold is of simple type. Simple type
and basic classes also arise in the Seiberg–Witten theory, as we will see later
in this chapter.

9.4.2 Relative Invariants and Gluing

Let Y be an oriented compact manifold for which the Fukaya–Floer homol-
ogy FF∗(Y ) is defined. Let M be an oriented, simply connected compact
manifold with boundary ∂M = Y . Then one can define a relative version
of Donaldson’s polynomial invariants of M with values in the Fukaya–Floer
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homology FF∗(Y ). This definition can be used to obtain gluing formulas
for Donaldson polynomials for 4-manifolds, which can be written as general-
ized connected sums split along a common boundary Y . If Ȳ is Y with the
opposite orientation, then there is a dual pairing between the graded homol-
ogy groups FF∗(Y ) and FF∗(Ȳ ). Let N be an oriented simply connected
closed 4-manifold, which can be written as the generalized connected sum
N = N1#Y N2. If q1 (resp., q2) is a relative polynomial invariant with values
in FF∗(Y ) (resp., FF∗(Ȳ )) then q1, q2 can be glued to obtain a polynomial
invariant q of N by the “formula”

q = 〈q1, q2〉.

The definition of relative invariants and detailed structure of the gluing for-
mula in this generality is not yet known. Some specific examples have been
considered in [110,369].

We give a definition of relative invariants in the special case when Y is
an integral homology sphere and the representation space R∗(Y ) is regular.
Let M be an oriented simply connected 4-manifold with boundary Y . Let
P be a trivial SU(2) bundle over M and fix a trivialization of P to write
P = M × SU(2) and let θM be the corresponding trivial connection. Let θY
denote the induced trivial connection on P|Y = Y × SU(2). Let α ∈ R∗(Y )
and letM(M ; α) denote the moduli space of self-dual connections on P which
equal α on the boundary Y of M . The index of the corresponding instanton
deformation complex gives the formal (or virtual) dimension of the moduli
spaceM(M ; α). Let n be the dimension of a non-empty componentMn(α)
ofMg(M ; α) for a suitable generic metric g on M . Then

n ≡ −3(1 + b+
2 (M))− sf(α, θ) (mod 8). (9.28)

If n = 2m we can define the relative polynomial invariants qm

qm : H2(M, Y ;Z)× · · ·H2(M, Y ;Z)︸ ︷︷ ︸
m times

→R∗(Y )

by
qm(a1, . . . , am) = (μm(a1, . . . , am)[M2m(α)])α. (9.29)

Let nα ∈ Z8 be the congruence class of the spectral flow sf(α, θ). Then one
can show that the right hand side of equation (9.29) depends only on the
Floer homology class of α ∈ HFnα . Thus the relative polynomial invariants
of M take values in the Floer homology of the boundary ∂M = Y .
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9.5 Seiberg–Witten Theory

I first learned about the Seiberg–Witten theory from Witten’s lecture at
the 1994 International Congress on Mathematical Physics (ICMP 1994) in
Paris. His earlier formulation of the Jones polynomial using quantum field
theory had given a new and geometrical way of looking at the Jones poly-
nomial and it led to the WRT invariants of 3-manifolds. It was thus natu-
ral to consider a similar interpretation of the Donaldson polynomials. Wit-
ten’s results were given a more mathematical reformulation in [21]. However,
these results provided no new insight or method of computation beyond the
well known-methods used in physics and mathematics. Another idea Witten
used successfully was a one-parameter family of supersymmetric Hamiltoni-
ans (Ht, t ≥ 0) to relate Morse theory and de Rham cohomology. Large
values of t lead to Morse theory while small t give the de Rham cohomol-
ogy. In physics these limiting theories are considered dual theories and are
referred to as the infrared limit and ultraviolate limit, respectively. ,
Witten used the ultraviolet limit of N = 2 supersymmetric Yang–Mills the-
ory to write the Donaldson invariants as QFT correlation functions. As these
invariants do not depend on the choice of a generic metric, they could also
be calculated in the infrared limit. The infrared behavior of the N = 2 su-
persymmetric Yang–Mills theory was determined by Seiberg and Witten in
1994. The equations of the theory dual to the SU(2) gauge theory are the
Seiberg–Witten or the monopole equations. They involve U(1) gauge fields
coupled to monopoles. Thus the new theory should be expected to give in-
formation on the Donaldson invariants of 4-manifolds. Witten told me that
his paper [407] giving further details should appear soon.

After returning to America, Witten gave a lecture at MIT discussing his
new work. He remarked that the monopole invariants (now known as the
Seiberg–Witten invariants or the SW-invariants) could be used to com-
pute the Donaldson invariants and vice versa. Gauge theory underlying
the SW-invariants has gauge group U(1), the Abelian group of Maxwell’s
electromagnetic field theory. The moduli space of the solutions of the SW-
equations has a much simpler structure than the instanton moduli spaces
used in the Donaldson theory. A great deal of hard analysis is required to
deal with the problem of compactification of moduli spaces and the existence
of reducible connections to extract topological information about the base
manifold in Donaldson’s theory. It was (and still is) hard to believe that one
can bypass the hard analysis if one uses the SW-moduli space and that doing
so gives a much simpler approach to the known results. It also leads to proofs
of several results that have seemed intractable via the Donaldson theory.1

1 Taubes described what happened after the lecture: Several people working in geometric
topology gathered at Bott’s house. Most of us were thinking of obtaining a counterexample
to Witten’s assertion of equivalence of the monopole and instanton invariants. No such
example was found by the time we broke up late that night. It was agreed that anyone
who finds a counterexample would communicate it to the others. (Personal communication)
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Witten’s assertion of equivalence of the monopole and instanton invari-
ants seems incredible. However, as of this writing no counterexample has
been found to Witten’s assertion that monopole and instanton invariants are
equivalent. In fact, the equivalence of the monopole and instanton invariants
has been established for a large class of 4-manifolds. SW-equations arose
as a byproduct of the solution of N = 2 supersymmetric Yang–Mills equa-
tions in theoretical physics. It was the physical concept of S-duality that led
Witten to his formula relating the SW and Donaldson invariants. Thus, SW
theory provides the most exciting recent example of physical mathematics.
SW theory is an active area of current research with vast literature including
monographs and texts. The book [277] by Marcolli gives a very nice introduc-
tion to various aspects of SW theory. A comprehensive introduction can be
found in Nicolaescu [299]. The relation between the Seiberg–Witten theory
and the Gromov–Witten theory is discussed in detail by Taubes in [362].

Spin structures and Dirac operators on spinor bundles are now reviewed.
These are used to define the SW-equations, SW-moduli space, and SW-
invariants. We then indicate some applications of the SW-invariants and state
their relation to Donaldson’s polynomial invariants.

9.5.1 Spin Structures and Dirac Operators

Dirac’s 1928 discovery of his relativistic equation for the electron is consid-
ered one of the great achievements in theoretical physics in the first half of the
twentieth century. This equation introduces a first order differential operator
acting on spinors defined over the Minkowski space. This is the original Dirac
operator, which is a square root of the D’Alembertian (or the Minkowski
space Laplacian). The equation also had a solution corresponding to a pos-
itively charged electron. No such particle was observed at that time. The
Dirac gamma matrices in the definition of the Dirac operator have a natural
interpretation in the setting of the Clifford algebra of the Minkowski space.
In fact, given a finite-dimensional real vector space V with a pseudo-inner
product g, we can construct a unique (up to isomorphism) Clifford algebra
associated to the pair (V, g). The definitions of the gamma matrices, spinors
and the Dirac operator all have natural extensions to this general setting.
For mathematical applications we want to consider Riemannian manifolds
which admit spinor bundles. The Dirac operator is then defined on sec-
tions of these bundles. As we discussed in Chapter 2 and Appendix D, there
are topological obstructions to a manifold admitting a spin structure. How-
ever, a compact oriented Riemannian manifold of even dimension admits a
Spinc-structure which can be used to construct spinor bundles on it. We now
discuss this structure on a fixed compact oriented Riemannian manifold M
of dimension m. The group Spinc(m) is defined by
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Spinc(m) := (Spin(m)× U(1))/Z2 . (9.30)

Definition 9.2 A Spinc-structure on a compact oriented Riemannian
manifold M is a lift of the principal SO(m)-bundle of oriented orthonormal
frames of M to a principal Spinc(m)-bundle over M .

As with the existence of Spin-structure, that of the Spinc-structure has topo-
logical obstruction that can be expressed in terms of the second Stiefel–
Whitney class w2(M). Using standard homology theory argument, it can be
shown that a manifold M admits a Spinc-structure if w2(M) is the reduction
of an integral homology class (mod 2). Moreover, a compact oriented even
dimensional Riemannian manifold admits a Spinc-structure. Recall that the
Clifford algebra of the Euclidean space R2n has a unique irreducible com-
plex representation on a Hermitian vector space S of rank 2n. It is called
the (complex) spinor representation . The elements of S are called (com-
plex) spinors . The space S has a natural Z2-graded or superspace structure
under which it can be written as a vector space direct sum S = S+ ⊕ S−.
The elements of S+ (resp. S−) are called positive spinors (resp. negative
spinors) . Clifford multiplication by v ∈ R2n acts as a skew-Hermitian op-
erator on the vector space S interchanging the positive and negative spinors.

9.5.2 The Seiberg–Witten (SW) Invariants

In what follows we restrict ourselves to a compact oriented Riemannian 4-
manifold M . The manifold M admits a Spinc-structure. We choose a fixed
Spinc-structure and the corresponding S as discussed above. A spin con-
nection ∇ on S is a connection compatible with the Levi-Civita connection
∇g on the orthonormal frame bundle of M ; i.e.,

∇X(Y · ψ) = ∇gX(Y ) +∇X(ψ),

where X, Y are vector fields on M and ψ is a section of the spinor bundle S.
The corresponding Dirac operator D acting on a spinor ψ is the first order
operator whose local expression is given by

D(ψ) =
4∑

k=1

ek · ∇ek
(ψ),

where ek, 1 ≤ k ≤ 4 is a local orthonormal basis for the tangent bundle TM .
The Dirac operator maps positive spinors to negative spinors and vice versa.
The determinant line bundles of S+ and S− are canonically isomorphic. We
denote this complex line bundle by L. The spin connection ∇ on S leaves
the bundles S+ and S− invariant and hence induces a connection on L. We
denote by A the gauge potential and by FA the corresponding gauge field of
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the induced connection on L. An important property of the Dirac operator
that is used in the study of the SW equations is given by the following
theorem.

Theorem 9.23 (Lichnerowicz–Weitzenböck formula) Let ∇∗ be the formal
adjoint of the spin connection (covariant derivative operator) ∇. Let R be the
scalar curvature of the manifold (M, g). Then the Dirac operator satisfies the
following Lichnerowicz–Weitzenböck formula:

D2(ψ) =
(
∇∗∇+ 1

4 (R − iFA)
)
ψ, ∀ψ ∈ Γ (S+).

In the case we are considering, the manifold M admits Spinc structures
and they are classified by H2(M,Z). Given α ∈ H2(M,Z) there is a principal
U(1)-bundle Pα with connection A and curvature FA whose first Chern class
equals α. The associated complex line bundle L is the determinant bundle
of the positive and negative spinors. Given a positive spinor ψ, the Seiberg–
Witten or SW equations are a system of differential equations for the pair
(A, ψ) given by

Dψ = 0 , F+
A = 1

4σ(ψ), (9.31)

where D is the Dirac operator of the spin connection, F+
A is the self-dual part

of the curvature FA, and σ(ψ) is a pure imaginary valued self-dual 2-form
with local coordinate expression

σ(ψ) = 〈eiejψ, ψ〉ei ∧ ej .

The SW equations are the absolute minima of the variational problem for
the SW functional given by

ASW (A, ψ) =
∫

M

(
||Dψ||2 + ||F+

A −
1
4
σ(ψ)||2

)
dvg . (9.32)

Using the Lichnerowicz–Weitzenböck formula the SW functional can be writ-
ten as

ASW (A, ψ) =
∫

M

(
||∇ψ||2 + ||F+

A ||2 +
R

4
||ψ||2 +

1
8
||ψ||4

)
dvg . (9.33)

This second form of the SW functional is useful in the study of the topology
of the moduli space of the solutions of the SW equations. The group of gauge
transformations given by G = F(M, U(1)) acts on the pair (A, ψ) as follows:

f (̇A, ψ) = (A− f−1df, fψ), ∀f ∈ G. (9.34)

This action induces an action on the solutions (A, ψ) of the SW equations.
The moduli spaceMSW of the solutions of the SW equations is defined by

MSW := {(A, ψ) | (A, ψ) ∈ C}/G,
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where C is the space of solutions of the SW equation. The moduli space
MSW depends on the choice of α ∈ H2(M,Z) and we indicate this by writing
MSW (α) for the moduli space. To simplify our considerations we now take
b+
2 (M) > 1. Then for a generic metric on M at a regular point (i.e., where

ψ �= 0) the dimension of the tangent space to MSW (α) can be computed
by applying index theory to the linearization of the SW equations. This
dimension dα is given by

dα = 1
4 (c2

1(L)− (2χ + 3σ)).

It can be shown that the spaceMSW (α) (or the space obtained by perturba-
tion) when non-empty is a smooth compact orientable manifold. We choose
an orientation and define the SW-invariants as follows.

Definition 9.3 (SW Invariants) Suppose that α ∈ H2(M,Z) be such that
dα = 0. Then the space MSW (α) consists of a finite number pi, 1 ≤ i ≤ k,
of signed points. We define the SW-invariant ιSW (α) of α by

ιSW (α) :=
k∑
i=1

s(pi) , (9.35)

where s(pi) = ±1 is the sign of pi.

Theorem 9.24 The SW invariants ιSW (α) are independent of the metric
and hence are differential topological invariants of M .

It is possible to define SW-invariants when dα > 0 by a construction similar
to that used in Donaldson theory. However, their significance is not clear yet.
In most of the examples the SW moduli space turns out to be 0-dimensional.
We now restrict the class of manifolds to those of SW simple type defined
below.

Definition 9.4 A class α is called an SW basic class if the invariant
ιSW (α) �= 0. It can be shown that there are only finitely many basic classes.
We say that M is of SW simple type if dα = 0 for every basic class α.

Simple Type Conjecture: Let M be a closed simply connected oriented
Riemannian 4-manifold with b+

2 > 1. Then the simple type conjecture says
that every such manifold is of KM and SW simple type. It is known that
the conjecture holds if M is also a symplectic manifold. There are no known
examples of manifolds that are not simple type. If M has non-negative scalar
curvature then all the SW invariants are zero. The following theorem is similar
to the one on invariants of connected sums in Donaldson theory.

Theorem 9.25 (Connected sum theorem) Let Mi, i = 1, 2, be compact ori-
ented 4-manifolds with b+

2 (Mi) ≥ 1; then SW (M1#M2, s) = 0, where s is an
arbitrary Spinc structure on (M1#M2).



310 9 4-Manifold Invariants

A symplectic manifold M has a canonical Spinc structure for which the
SW invariant is non-zero. It follows from the above theorem that such M
cannot be a connected sum of two manifolds each with b+

2 ≥ 1 if b+
2 (M) ≥ 1.

In his theory of pseudo-holomorphic curves in symplectic manifolds, Gromov
defined a set of invariants, which were given a physical interpretation in terms
of sigma models by Witten. They are called the Gromov–Witten or GW-
invariants. The following theorem due to Taubes gives a surprising relation
between the SW- and the GW-invariants.

Theorem 9.26 (Taubes) Let M be a compact symplectic manifold with
b+
2 > 1. Orient M and its positive determinant line bundle by using the sym-

plectic structure. Define Seiberg–Witten invariants SW and Gromov–Witten
invariants Gr as maps from H2(M ;Z) to Λ∗H1(M ;Z). Then SW = Gr.

For a complete treatment of this theorem and relevant definitions we refer
the reader to Taubes’ book [362].

One of the earliest applications of SW-invariants was the proof by Kron-
heimer and Mrówka of the classical Thom conjecture about embedded sur-
faces in CP2. This was beyond reach of the regular or singular gauge theory
methods. There is a version of SW equations for 3-manifolds and the corre-
sponding Seiberg–Witten Floer homology (see, for example, Marcolli [277]).
For other applications of the SW-invariants see [249,293,329,367,379].

9.6 Relation between SW and Donaldson Invariants

As we saw earlier, Donaldson used the moduli spaces of instantons to define
a new set of invariants of M , which can be regarded as polynomials on the
second homology H2(M). In [239] Kronheimer and Mrówka obtained a struc-
ture theorem for the Donaldson invariants in terms of their basic classes and
introduced a technical property called “KM-simple type” for a closed simply
connected 4-manifold M . Then, in 1994, the Seiberg–Witten (SW) equations
were obtained as a byproduct of the study of super Yang–Mills equations. As
we discussed earlier these equations are defined using a U(1) monopole gauge
theory, and the Dirac operator obtained by coupling to a Spinc structure.
The moduli space of solutions of SW equations is used to define the SW-
invariants. The structure of this SW moduli space is much simpler than the
instanton moduli spaces used to define Donaldson’s polynomial invariants.
This led to a number of new results that met with insurmountable difficulties
in the Donaldson theory (see, for example, [240,368]). We also discussed the
simple type condition and basic classes in SW theory. Witten used the idea
of taking ultraviolet and infrared limits of N = 2 supersymmetric quantum
Yang–Mills theory and metric independence of correlation functions to relate
Donaldson and SW-invariants. The precise form of Witten’s conjecture can
be expressed as follows.
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Witten’s conjecture for relation between Donaldson and SW-
invariants: A closed, simply connected 4-manifold M has KM-simple type
if and only if it has SW-simple type. If M has simple type and if D(α)
(resp., SW (α)) denotes the generating function series for the Donaldson
(resp., Seiberg–Witten) invariants with α ∈ H2(M ;R), then we have

D(α) = 2ceιM(α)/2SW (α), ∀α ∈ H2(M ;R). (9.36)

In the above formula ιM is the intersection form of M and c is a constant
given by

c = 2 +
7χ(M) + 11σ(M)

4
. (9.37)

A mathematical approach to a proof of Witten’s conjecture was proposed
by Pidstrigatch and Tyurin (see dg-ga/9507004). In a series of papers, Feehan
and Leness (see [122,123] and references therein) used similar ideas employing
an SO(3) monopole gauge theory that generalizes both the instanton and
U(1) monopole theories to prove the Witten conjecture for a large class of 4-
manifolds. This result is an important ingredient in the proof of the property
P conjecture that we next discuss. The problem of relating Feehan and Leness’
proof to Witten’s TQFT argument remains open.

9.6.1 Property P Conjecture

In early 1960s Bing tried to find a counterexample to the Poincaré conjec-
ture by constructing 3-manifolds by surgery on knots. Bing and Martin later
formalized this search by defining property P of a knot as follows:

Definition 9.5 A non-trivial knot K has property P if every 3-manifold
Y obtained by a non-trivial Dehn surgery on K has a non-trivial fundamental
group.

Using the above definition we can state the property P conjecture as
follows: Every non-trivial knot K has property P. In particular, Y is not a
homotopy 3-sphere.

Thus, to verify the property P conjecture, it is enough to show that π1(Y )
is non-trivial if the knot K is non-trivial. It can be shown by topological
arguments that π1(Y ) is non-trivial if it is obtained by Dehn surgery with
coefficient other than ±1. The proof of the remaining cases was recently
given by Kronheimer and Mrówka [241], thereby proving the property P
conjecture. In fact, they showed that in these cases π1(Y ) admits a non-trivial
homomorphism to the group SO(3). The proof uses several results from gauge
theory, symplectic and contact geometry, and the proof of Witten’s conjecture
relating the Seiberg–Witten and Donaldson invariants for a special class of
manifolds. The proof is quite complicated as it requires that methods and
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results from many different areas be fit together in a precise way. According
to Gromov2 a simplified proof of the theorem should be possible. We note
that it is known that surgery on a non-trivial knot can never produce the
manifold S3. It follows that the Poincaré conjecture implies the property P
conjecture. Thanks to Perelman’s proof of the Poincaré conjecture, we now
have a different proof of the property P conjecture closely related to ideas
from gravitational physics.

2 Gromov made this remark after the seminar by Mrówka at Columbia University explain-
ing this work.



Chapter 10

3-Manifold Invariants

10.1 Introduction

In Chapter 9 we discussed the geometry and topology of moduli spaces of
gauge fields on a manifold. In recent years these moduli spaces have been
extensively studied for manifolds of dimensions 2, 3, and 4 (collectively re-
ferred to as low-dimensional manifolds). This study was initiated for the
2-dimensional case in [17]. Even in this classical case, the gauge theory per-
spective provided fresh insights as well as new results and links with physical
theories. We make only a passing reference to this case in the context of
Chern–Simons theory. In this chapter, we mainly study various instanton
invariants of 3-manifolds. The material of this chapter is based in part on
[263]. The basic ideas come from Witten’s work on supersymmetric Morse
theory. We discuss this work in Section 10.2. In Section 10.3 we consider gauge
fields on a 3-dimensional manifold. The field equations are obtained from the
Chern–Simons action functional and correspond to flat connections. Casson
invariant is discussed in Section 10.4. In Section 10.5 we discuss the Z8-graded
instanton homology theory due to Floer and its relation to the Casson in-
variant. Floer’s theory was extended to arbitrary closed oriented 3-manifolds
by Fukaya. When the first homology of such a manifold is torsion-free, but
not necessarily zero, Fukaya also defines a class of invariants indexed by the
integer s, 0 ≤ s < 3, where s is the rank of the first integral homology group
of the manifold. These invariants include, in particular, the Floer homology
groups in the case s = 0. The construction of these invariants is closely re-
lated to that of Donaldson polynomials of 4-manifolds, which we considered in
Chapter 9. As with the definition of Donaldson polynomials a careful analysis
of the singular locus (the set of reducible connections) is required in defining
the Fukaya invariants. Section 10.6 is a brief introduction to an extension of
Floer homology to a Z-graded homology theory, due to Fintushel and Stern,
for homology 3-spheres. Floer also defined a homology theory for symplec-
tic manifolds using Lagrangian submanifolds and used it in his proof of the
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Arnold conjecture. We do not discuss this theory. For general information on
various Morse homologies, see, for example, [29]. The WRT invariants, which
arise as a byproduct of Witten’s TQFT interpretation of the Jones polyno-
mial are discussed in Section 10.7. Section 10.8 is devoted to a special case of
the question of relating gauge theory and string theory where exact results
are available. Geometric transition that is used to interpolate between these
theories is also considered here. Some of the material of this chapter is taken
from [263].

10.2 Witten Complex and Morse Theory

Classical Morse theory on a finite-dimensional, compact, differentiable man-
ifold M relates the behavior of critical points of a suitable function on M
with topological information about M . The relation is generally stated as an
equality of certain polynomials as follows. Recall first that a smooth function
f : M → R is called a Morse function if its critical points are isolated and
non-degenerate. If x ∈M is a critical point (i.e., df(x) = 0) then by Taylor
expansion of f around x we obtain the Hessian of f at x defined by

{
∂2f

∂xi∂xj
(x)

}
.

Then the non-degeneracy of the critical point x is equivalent to the non-
degeneracy of the quadratic form determined by the Hessian. The dimension
of the negative eigenspace of this form is called the Morse index, or simply
index, of f at x and is denoted by μf (x), or simply μ(x) when f is under-
stood. It can be verified that these definitions are independent of the choice
of the local coordinates. Let mk be the number of critical points with index
k. Then the Morse series of f is the formal power series

∑
k

mkt
k.

Recall that the Poincaré series of M is given by
∑
k bkt

k, where bk ≡ bk(M)
is the kth Betti number of M . The relation between the two series is given
by ∑

k

mkt
k =

∑
k

bkt
k + (1 + t)

∑
k

qkt
k, (10.1)

where qk are non-negative integers. Comparing the coefficients of the powers
of t in this relation leads to the well-known Morse inequalities

i∑
k=0

mi−k(−1)k ≥
i∑

k=0

bi−k(−1)k , 0 ≤ i ≤ n− 1,
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and to the equality

n∑
k=0

mn−k(−1)k =
n∑
k=0

bn−k(−1)k .

The Morse inequalities can also be obtained from the following observation:
Let C∗ be the graded vector space over the set of critical points of f . Then the
Morse inequalities are equivalent to the existence of a coboundary operator
∂ : C∗ → C∗ so that ∂2 = 0 and the cohomology of the complex (C∗, ∂)
coincides with the de Rham cohomology of M .

In his fundamental paper [403] Witten arrives at precisely such a complex
by considering a suitable supersymmetric quantum mechanical Hamiltonian.
Witten showed how the standard Morse theory (see Morse and Cairns [292]
and Milnor [284]) can be modified by consideration of the gradient flow of the
Morse function f between pairs of critical points of f . One may think of this
as a sort of relative Morse theory. Witten was motivated by the phenomenon
of quantum mechanical tunneling. We now discuss this approach. From a
mathematical point of view, supersymmetry may be regarded as a theory
of operators on a Z2-graded Hilbert space. In recent years this theory has
attracted a great deal of interest even though as yet there is no physical
evidence for its existence. In our general formulation of a supersymmetric
theory we let E denote the Hilbert space of a supersymmetric theory, i.e.,
E = E0 ⊕ E1, where the even (resp., odd) space E0 (resp., E1) is called
the space of bosonic states (resp. fermionic states). These spaces are
distinguished by the parity operator S : E → E defined by

Su = u, ∀u ∈ E0,

Sv = −v, ∀v ∈ E1.

The operator S is interpreted as counting the number of fermions modulo
2. A supersymmetric theory begins with a collection {Qi | i = 1, . . . , n} of
supercharge operators (or supersymmetry operators) on E that are
of odd degree, that is, they anti-commute with S,

SQi + QiS = 0, ∀i, (10.2)

and satisfy the following anti-commutation relations

QiQj + QjQi = 0, ∀i, j with i 	= j. (10.3)

The mechanics is introduced by the Hamiltonian operator H , which com-
mutes with the supercharge operators and is usually required to satisfy ad-
ditional conditions. For example, in the simplest non-relativistic theory one
requires that

H = Q2
i , ∀i. (10.4)
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In fact, this simplest supersymmetric theory has surprising connections with
Morse theory, as was shown by Witten in his fundamental paper [403]. It gave
a new interpretation of this classical theory and paved the way for Floer’s
new homology theory. We consider Floer homology later in this chapter. We
now discuss Witten’s work.

Let M be a compact differentiable manifold and define E by

E := Λ(M)⊗C.

The natural grading on Λ(M) induces a grading on E. We define

E0 :=
⊕
j

Λ2j(M)⊗C (resp., E1 :=
⊕
j

Λ2j+1(M)⊗C),

the space of complex-valued even (resp., odd) forms on M . The exterior
differential d and its formal adjoint δ have natural extension to odd operators
on E and thus satisfy (10.2). We define supercharge operators Qj , j = 1, 2,
by

Q1 = d + δ, (10.5)

Q2 = i(d− δ). (10.6)

The Hamiltonian is taken to be the Hodge–de Rham operator extended to
E, i.e.,

H = dδ + δd. (10.7)

The relations d2 = δ2 = 0 imply the supersymmetry relations (10.3)
and (10.4). We note that in this case bosonic (resp., fermionic) states cor-
respond to even (resp., odd) forms. The relation to Morse theory arises in
the following way. If f is a Morse function on M , a one-parameter family of
operators is defined:

dt = e−ftdeft, δt = eftδe−ft, t ∈ R, (10.8)

and the corresponding supersymmetry operators

Q1,t, Q2,t, Ht

are defined as in equations (10.5), (10.6), and (10.7). It is easy to verify
that d2

t = δ2
t = 0 and hence Q1,t, Q2,t, Ht satisfy the supersymmetry rela-

tions (10.3) and (10.4). The parameter t interpolates between the de Rham
cohomology and the Morse indices as t goes from 0 to +∞. At t = 0 the
number of linearly independent eigenvectors with zero eigenvalue is just the
kth Betti number bk when H0 = H is restricted to act on k-forms. In fact,
these ground states of the Hamiltonian are just the harmonic forms. On the
other hand, for large t the spectrum of Ht simplifies greatly with the eigen-
functions concentrating near the critical points of the Morse function. It is
in this way that the Morse indices enter into this picture. We can write Ht
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as a perturbation of H near the critical points. In fact, we have

Ht = H + t
∑
j,k

f,jk[αj , iXk ] + t2‖df‖2,

where αj = dxj acts by exterior multiplication, Xk = ∂/∂xk, and iXk is the
usual action of inner multiplication by Xk on forms and the norm ‖df‖ is
the norm on Λ1(M) induced by the Riemannian metric on M . In a suitable
neighborhood of a fixed critical point taken as origin, we can approximate
Ht up to quadratic terms in xj by

Ht =
∑
j

(
− ∂2

∂x2
j

+ t2λ2
jx

2
j + tλj [αj , iXj ]

)
,

where λj are the eigenvalues of the Hessian of f . The first two terms corre-
spond to the quantized Hamiltonian of a harmonic oscillator (see Appendix
B for a discussion of the classical and quantum harmonic oscillator) with
eigenvalues

t
∑
j

| λj | (1 + 2Nj),

whereas the last term defines an operator with eigenvalues ±λj . It commutes
with the first and thus the spectrum of Ht is given by

t
∑
j

[| λj | (1 + 2Nj) + λjnj ],

where Nj are non-negative integers and nj = ±1. Restricting H to act on
k-forms we can find the ground states by requiring all the Nj to be 0 and
by choosing nj to be 1 whenever λj is negative. Thus the ground states
(zero eigenvalues) of H correspond to the critical points of Morse index k.
All other eigenvalues are proportional to t with positive coefficients. Starting
from this observation and using standard perturbation theory, one finds that
the number of k-form ground states equals the number of critical points of
Morse index k. Comparing this with the ground state for t = 0, we obtain the
weak Morse inequalities mk ≥ bk. As we observed in the introduction, the
strong Morse inequalities are equivalent to the existence of a certain cochain
complex that has cohomology isomorphic to H∗(M), the cohomology of the
base manifold M . Witten defines Cp, the set of p-chains of this complex, to
be the free group generated by the critical points of Morse index p. He then
argues that the operator dt defined in (10.8) defines in the limit as t→∞ a
coboundary operator

d∞ : Cp → Cp+1

and that the cohomology of this complex is isomorphic to the de Rham
cohomology of Y .
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Thus we see that in establishing both the weak and strong form of Morse
inequalities a fundamental role is played by the ground states of the super-
symmetric quantum mechanical system (10.5), (10.6), (10.7). In a classical
system the transition from one ground state to another is forbidden, but in
a quantum mechanical system it is possible to have tunneling paths between
two ground states. In gauge theory the role of such tunneling paths is played
by instantons. Indeed, Witten uses the prescient words “instanton analysis”
to describe the tunneling effects obtained by considering the gradient flow of
the Morse function f between two ground states (critical points). If β (resp.,
α) is a critical point of f of Morse index p + 1 (resp., p) and Γ is a gra-
dient flow of f from β to α, then by comparing the orientation of negative
eigenspaces of the Hessian of f at β and α, Witten defines the signature nΓ
of this flow. By considering the set S of all such flows from β to α, he defines

n(α, β) :=
∑
Γ∈S

nΓ .

Now defining δ∞

δ∞ : Cp → Cp+1 by α →
∑

β∈Cp+1

n(α, β)β, (10.9)

he shows that (C∗, δ∞) is a cochain complex with integer coefficients. Witten
conjectures that the integer-valued coboundary operator δ∞ actually gives
the integral cohomology of the manifold M . The complex (C∗, δ∞), with
the coboundary operator defined by (10.9), is referred to as the Witten
complex. As we will see later, Floer homology is the result of such “instanton
analysis” applied to the gradient flow of a suitable Morse function on the
moduli space of gauge potentials on an integral homology 3-sphere. Floer also
used these ideas to study a “symplectic homology” associated to a manifold.
A corollary of this theory proves the Witten conjecture for finite-dimensional
manifolds (see [334] for further details), namely,

H∗(C∗, δ∞) = H∗(M,Z).

A direct proof of the conjecture may be found in the appendix to K. C.
Chang [72]. A detailed study of the homological concepts of finite-dimensional
Morse theory in anology with Floer homology may be found in M. Schwarz
[342]. While many basic concepts of “Morse homology” can be found in the
classical investigations of Milnor, Smale, and Thom, its presentation as an
axiomatic homology theory in the sense of Eilenberg and Steeenrod [118] is
given for the first time in [342]. One consequence of this axiomatic approach
is the uniqueness result for so-called Morse homology and its natural equiva-
lence with other axiomatic homology theories defined on a suitable category
of topological spaces. Witten conjecture is then a corollary of this result.
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A discussion of the relation of equivariant cohomolgy and supersymmetry
may be found in Guillemin and Sternberg’s book [180].

10.3 Chern–Simons Theory

Let M be a compact manifold of dimension m = 2r + 1, r > 0, and let
P (M, G) be a principal bundle over M with a compact, semisimple Lie group
G as its structure group. Let αm(ω) denote the Chern–Simons m-form on M
corresponding to the gauge potential ω on P ; then the Chern–Simons action
ACS is defined by

ACS := c(G)
∫

M

αm(ω), (10.10)

where c(G) is a coupling constant whose normalization depends on the group
G. In the rest of this paragraph we restrict ourselves to the case r = 1 and
G = SU(n). The most interesting applications of the Chern–Simons theory
to low-dimensional topologies are related to this case. It has been extensively
studied by both physicists and mathematicians in recent years. In this case
the action (10.10) takes the form

ACS =
k

4π

∫

M

tr(A ∧ F − 1
3A ∧A ∧A) (10.11)

=
k

4π

∫

M

tr(A ∧ dA + 2
3A ∧A ∧A), (10.12)

where k ∈ R is a coupling constant, A denotes the pull-back to M of the
gauge potential ω by a local section of P , and F = Fω = dωA is the gauge field
on M corresponding to the gauge potential A. A local expression for (10.11)
is given by

ACS =
k

4π

∫

M

εαβγ tr(Aα∂βAγ + 2
3AαAβAγ), (10.13)

where Aα = Aa
αTa are the components of the gauge potential with respect

to the local coordinates {xα}, {Ta} is a basis of the Lie algebra su(n) in the
fundamental representation, and εαβγ is the totally skew-symmetric Levi-
Civita symbol with ε123 = 1. We take the basis {Ta} with the normalization

tr(TaTb) = 1
2δab, (10.14)

where δab is the Kronecker δ function. Let g ∈ G be a gauge transformation
regarded (locally) as a function from M to SU(n) and define the 1-form θ by

θ = g−1dg = g−1∂μgdxμ.

Then the gauge transformation Ag of A by g has the local expression
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Ag
μ = g−1Aμg + g−1∂μg. (10.15)

In the physics literature the connected component of the identity Gid ⊂ G is
called the group of small gauge transformations. A gauge transformation
not belonging to Gid is called a large gauge transformation. By a direct
calculation one can show that the Chern–Simons action is invariant under
small gauge transformations, i.e.,

ACS(Ag) = ACS(A), ∀g ∈ Gid.

Under a large gauge transformation g, the action (10.13) transforms as fol-
lows:

ACS(Ag) = ACS(A) + 2πkAWZ , (10.16)

where
AWZ :=

1
24π2

∫

M

εαβγ tr(θαθβθγ) (10.17)

is the Wess–Zumino action functional. It can be shown that the Wess–
Zumino functional is integer-valued and hence, if the Chern–Simons coupling
constant k is taken to be an integer, then we have

eiACS(Ag) = eiACS(A).

The integer k is called the level of the corresponding Chern–Simons theory.
It follows that the path integral quantization of the Chern–Simons model is
gauge-invariant. This conclusion holds more generally for any compact simple
group if the coupling constant c(G) is chosen appropriately. The action is
manifestly covariant since the integral involved in its definition is independent
of the metric on M . It is in this sense that the Chern–Simons theory is
a topological field theory. We considered this aspect of the Chern–Simons
theory in Chapter 7.

In general, the Chern–Simons action is defined on the space AP (M,G) of
all gauge potentials on the principal bundle P (M, G). But when M is 3-
dimensional P is trivial (in a non-canonical way). We fix a trivialization to
write P (M, G) = M×G and write AM for AP (M,G). Then the group of gauge
transformations GP can be identified with the group of smooth functions
from M to G and we denote it simply by GM . For k ∈ N the transformation
law (10.16) implies that the Chern–Simons action descends to the quotient
BM = AM/GM as a function with values in R/Z. We denote this function
by fCS , i.e.,

fCS : BM → R/Z

is defined by
[ω] → ACS(ω), ∀[ω] = ωG ∈ BM . (10.18)

The field equations of the Chern–Simons theory are obtained by setting the
first variation of the action to zero as
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δACS = 0.

We discuss two approaches to this calculation. Consider first a one-parameter
family c(t) of connections on P with c(0) = ω and ċ(0) = α. Differentiating
the action ACS(c(t)) with respect to t and noting that differentiation com-
mutes with integration and the tr operator, we get

d

dt
ACS(c(t)) =

1
4π

∫

M

tr (2ċ(t) ∧ dc(t) + 2(ċ(t) ∧ c(t) ∧ c(t)))

=
1
2π

∫

M

tr (ċ(t) ∧ (dc(t) + c(t) ∧ c(t)))

=
1
2π

∫

M

〈ċ(t), ∗Fc(t)〉,

where the inner product on the right is as in Definition 2.1. It follows that

δACS =
d

dt
ACS(c(t))|t=0 =

1
2π

∫

M

〈α, ∗Fω〉. (10.19)

Since α can be chosen arbitrarily, the field equations are given by

∗ Fω = 0 or equivalently, Fω = 0. (10.20)

Alternatively, one can start with the local coordinate expression of equa-
tion (10.13) as follows:

ACS =
k

4π

∫

M

εαβγ tr(Aα∂βAγ + 2
3AαAβAγ)

=
k

4π

∫

M

εαβγ tr(Aa
α∂βA

c
γTaTb + 2

3Aa
αAb

βA
c
γTaTbTc)

and find the field equations by using the variational equation

δACS
δAa

ρ

= 0. (10.21)

This method brings out the role of commutation relations and the structure
constants of the Lie algebra su(n) as well as the boundary conditions used
in the integration by parts in the course of calculating the variation of the
action. The result of this calculation gives

δACS
δAa

ρ

=
k

2π

∫

M

ερβγ
(
∂βA

a
γ + Ab

βA
c
γfabc

)
, (10.22)

where fabc are the structure constants of su(n) with respect to the basis Ta.
The integrand on the right hand side of the equation (10.22) is just the local



322 10 3-Manifold Invariants

coordinate expression of ∗FA, the dual of the curvature, and hence leads to
the same field equations.

The calculations leading to the field equations (10.20) also show that the
gradient vector field of the function fCS is given by

gradfCS =
1
2π
∗F. (10.23)

The gradient flow of fCS plays a fundamental role in the definition of Floer
homology. The solutions of the field equations (10.20) are called the Chern–
Simons connections. They are precisely the flat connections. Next we dis-
cuss flat connections on a manifold N and their relation to the homomor-
phisms of the fundamental group π1(N) into the gauge group.

Flat Connections

Let H be a compact Lie group and Q(N, H) be a principal bundle with
structure group H over a compact Riemannian manifold N . A connection ω
on Q is said to be flat if its curvature is zero, i.e., Ωω = 0. The pair (Q, ω)
is called a flat bundle. Let Ω(N, x) be the loop space at x ∈ N . Recall
that the horizontal lift hu of c ∈ Ω(N, x) to u ∈ π−1(x) determines a unique
element of H . Thus we have the map

hu : Ω(N, x)→ H.

It is easy to see that ω flat implies that this map hu depends only on the
homotopy class of the loop c and hence induces a map (also denoted by hu)

hu : π1(N, x)→ H.

It is this map that is responsible for the Bohm–Aharonov effect. It can be
shown that the map hu is a homomorphism of groups. The group H acts on
the set Hom(π1(N), H) by conjugation sending hu to g−1hug = hug. Thus, a
flat bundle (Q, ω) determines an element of the quotient Hom(π1(N), H)/H.
If a ∈ G(Q), the group of gauge transformations of Q, then a · ω is also a
flat connection on Q and determines the same element of Hom(π1(N), H)/H.
Conversely, let f ∈ Hom(π1(N), H) and let (U, q) be the universal covering
of N . Then U is a principal bundle over N with structure group π1(N).
Define Q := U ×f H to be the bundle associated to U by the action f
with standard fiber H . It can be shown that Q admits a natural flat con-
nection and that f and g−1fg, g ∈ H , determine isomorphic flat bundles.
Thus, the moduli spaceMf (N, H) of flat H-bundles over N can be identified
with the set Hom(π1(N), H)/H. The moduli space Mf(N, H) and the set
Hom(π1(N), H) have a rich mathematical structure, which has been exten-
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sively studied in the particular case when N is a compact Riemann surface
[17].

The flat connection deformation complex is the generalized de Rham
sequence

0 −→ Λ0 dω

−→ Λ1 dω

−→ · · · d
ω

−→ Λn −→ 0.

The fact that in this case it is a complex follows from the observation that
ω flat implies dω ◦ dω = 0. By rolling up this complex, we can consider the
rolled up deformation operator dω + δω : Λev → Λodd. By the index theorem
we have

Ind(dω + δω) = χ(N) dim H

and hence
n∑
i=0

(−1)ibi = χ(N) dim H, (10.24)

where bi is the dimension of the ith cohomology of the deformation complex.
Both sides are identically zero for odd n. For even n the formula can be used to
obtain some information on the virtual dimension ofMf (= b1). For example,
if N = Σg is a Riemann surface of genus g > 1, then χ(Σg) = −2g + 2,
while, by Hodge duality, b0 = b2 = 0 at an irreducible connection. Thus,
equation (10.24) gives

−b1 = −(2g − 2) dim H.

From this it follows that

dimMf (Σg, H) = dimMf = (2g − 2) dim H. (10.25)

In even dimensions greater than 2, the higher cohomology groups provide
additional obstructions to smoothability of Mf . For example, for n = 4,
Hodge duality implies that b0 = b4 and b1 = b3 and (10.24) gives

b1 = b0 + 1
2 (b2 − χ(N) dim H).

Equation (10.25) shows that dimMf is even. Identifying the first cohomol-
ogy H1(Λ(M, adh), dω) of the deformation complex with the tangent space
TωMf toMf , the intersection form defines a map ιω : TωMf ×TωMf → R
by

ι(X, Y ) =
∫

Σg

X ∧ Y, X, Y ∈ TωMf . (10.26)

The map ιω is skew-symmetric and bilinear. The map

ι : ω → ιω, ∀ω ∈ Mf , (10.27)

defines a 2-form ι onMf . If h admits an H-invariant inner product, then this
2-form ι is closed and non-degenerate and hence defines a symplectic structure



324 10 3-Manifold Invariants

on Mf . It can be shown that, for a Riemann surface with H = PSL(2,R),
the form ι, restricted to the Teichmüller space, agrees with the well-known
Weil–Petersson form.

We now discuss an interesting physical interpretation of the symplectic
manifold (Mf (Σg, H), ι). Consider a Chern–Simons theory on the principal
bundle P (M, H) over the 2+1-dimensional space-time manifold M = Σg×R
with gauge group H and with time-independent gauge potentials and gauge
transformations. Let A (resp., H) denote the space (resp., group) of these
gauge connections (resp. transformations). It can be shown that the curvature
Fω defines an H-equivariant moment map

μ : A → LH ∼= Λ1(M, ad P ), by ω → ∗Fω,

where LH is the Lie algebra of H. The zero set μ−1(0) of this map is precisely
the set of flat connections and hence

Mf
∼= μ−1(0)/H := A//H (10.28)

is the reduced phase space of the theory, in the sense of the Marsden–
Weinstein reduction. We call A//H the symplectic quotient of A by H.
Marsden–Weinstein reduction and symplectic quotient are fundamental con-
structions in geometrical mechanics and geometric quantization. They also
arise in many other mathematical applications.

A situation similar to that described above also arises in the geometric for-
mulation of canonical quantization of field theories. One proceeds by analogy
with the geometric quantization of finite-dimensional systems. For example,
Q = A/H can be taken as the configuration space and T ∗Q as the corre-
sponding phase space. The associated Hilbert space is obtained as the space
of L2 sections of a complex line bundle over Q. For physical reasons this bun-
dle is taken to be flat. Inequivalent flat U(1)-bundles are said to correspond
to distinct sectors of the theory. Thus we see that at least formally these
sectors are parametrized by the moduli space

Mf(Q, U(1)) ∼= Hom(π1(Q), U(1))/U(1) ∼= Hom(π1(Q), U(1))

since U(1) acts trivially on Hom(π1(Q), U(1)).
We note that the Chern–Simons theory has been extended by Witten to

the cases when the gauge group is finite and when it is the complexification
of compact real gauge groups [101,406]. While there are some similarities be-
tween these theories and the standard CS theory, there are major differences
in the corresponding TQFTs. New invariants of some hyperbolic 3-manifolds
have recently been obtained by considering the complex gauge groups lead-
ing to the concept of arithmetic TQFT by Zagier and collaborators (see
arXiv:0903.24272). See also Dijkgraaf and Fuji arXiv:0903.2084 [hep-th] and
Gukov and Witten arXiv:0809.0305 [hep-th].
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10.4 Casson Invariant

Let Y be a homology 3-sphere. Let D1, D2 be two unitary, unimodular rep-
resentations of π1(Y ) in C2. We say that they are equivalent if they are
conjugate under the natural SU(2)-action on C2, i.e.,

D2(g) = S−1D1(g)S, ∀g ∈ π1(Y ), S ∈ SU(2).

Let us denote by R(Y ) the set equivalence classes of such representations. It
is customary to write

R(Y ) := Hom{π1(Y )→ SU(2)}/conj. (10.29)

Let θ be the trivial representation and define

R∗(Y ) := R(Y ) \ {θ}. (10.30)

Fixing an orientation of Y , Casson showed how to assign a sign s(α) to each
element α ∈ R∗(Y ). He showed that the set R∗(Y ) is finite and defined a
numerical invariant of Y by counting the signed number of elements ofR∗(Y )
via

c(Y ) :=
∑

α∈R∗(Y )

s(α).1, (10.31)

where s(α).1 is ±1 depending on the sign of α. The integer c(Y ) is called the
Casson invariant of Y .

A similar idea was used by Taubes [366] to give a new interpretation of
the Casson invariant c(Y ) of an oriented homology 3-sphere Y , which is
defined in terms of the number of irreducible representations of π1(Y ) into
SU(2). As indicated above, this space can be identified with the moduli space
Mf (Y, SU(2)) of flat connections in the trivial SU(2)-bundle over Y . The
map F : ω → Fω defines a natural 1-form on A/G and its dual vector field
vF . The zeros of this vector field are just the flat connections. We note that
since A/G is infinite-dimensional, it is necessary to use suitable Fredholm
perturbations to get simple zeros and to count them with appropriate signs.
Let Z denote the set of zeros of the perturbed vector field (also denoted by
vF ) and let s(a) be the sign of a ∈ Z. Taubes showed that Z is contained in
a compact set and hence the index iF of the vector field vF is well-defined
by the classical formula

iF :=
∑
a∈Z

s(a).1.

He then proved that this index is an invariant of Y and equals the Casson
invariant, i.e.,

c(Y ) = iF =
∑
a∈Z

s(a).1.
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Now for a compact Riemannian manifold M the Poincaré–Hopf theorem
states that the index of a vector field equals the Euler characteristic χ(M)
defined in terms of the homology of M . It is thus natural to ask if the Casson
invariant can be realized by some homology theory associated to the moduli
space Mf(Y, SU(2)) of flat connections on Y . This question was answered
in the affirmative by Floer by constructing his instanton homology. We will
discuss this homology in the next section. The main idea is to consider a
one-parameter family {ωt}t∈I of connections of Y that defines a connection
on Y × I and the corresponding Chern–Simons action ACS . This is invariant
under the connected component of the identity in G but changes by the Wess–
Zumino action under the full group G. The Chern–Simons action ACS can be
modified (if necessary) to define a Morse function f on the moduli space of
flat connections on Y . By considering the gradient flow of this Morse function
f between pairs of critical points of f , the resulting Witten complex (C∗, δ)
was used by Floer to define the Floer homology groups FHn(Y ), n ∈ Z8

(see [130, 131]). Using Taubes’ interpretation of the Casson invariant c(Y ),
one can show that c(Y ) equals the Euler number of the Floer homology.
This result has an interesting geometric interpretation in terms of topological
quantum field theory. In fact, ideas from TQFT have provided geometric
interpretation of invariants of knots and links in 3-manifolds and have also
led to new invariants of 3-manifolds. We considered some of these results in
Chapter 7.

Another approach to Casson’s invariant involves symplectic geometry and
topology. We conclude this section with a brief explanation of this approach.
Let Y+∪Σg Y− be a Heegaard splitting of Y along the Riemann surface Σg of
genus g. The space R(Σg) of conjugacy classes of representations of π1(Σg)
into SU(2) can be identified with the moduli space Mf (Σg, SU(2)) of flat
connections. This identification endows it with a natural symplectic structure
that makes it into a (6g−6)-dimensional symplectic manifold. The representa-
tions which extend to Y+ (resp., Y−) form a (3g−3)-dimensional Lagrangian
submanifold of R(Σg), which we denote by R(Y+) (resp., R(Y−)). Casson’s
invariant is then obtained from the intersection number of the Lagrangian
submanifolds R(Y+) and R(Y−) in the symplectic manifold R(Σg). How the
Floer homology of Y fits into this scheme seems to be unknown at this time.

An SU(3) Casson invariant of integral homology 3-spheres is defined in
[45] and some of its properties are studied in [44].

10.5 Floer Homology

The idea of instanton tunneling and the corresponding Witten complex was
extended by Floer to do Morse theory on the infinite-dimensional moduli
space of gauge potentials on a homology 3-sphere Y and to define new topo-
logical invariants of Y . Fukaya generalized this work to apply to arbitrary
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oriented 3-manifolds. We shall refer to the invariants of Floer and Fukaya
collectively as Fukaya–Floer homology (see [66,147,303]). A detailed dis-
cussion of the Floer homology groups in Yang–Mills theory is given in Donald-
son’s book [111]. Fukaya–Floer homology associates to an oriented connected
closed smooth 3-dimensional manifold Y , a family of Z8-graded homology.
We begin by introducing Floer’s original definition, which requires Y to be a
homology 3-sphere.

Let α ∈ R∗(Y ). We say that α is a regular representation if

H1(Y, ad(α)) = 0. (10.32)

The Chern–Simons functional has non-degenerate Hessian at α if α is regular.
Fix a trivialization P of the given SU(2)-bundle over Y . Using the trivial
connection θ on P = Y × SU(2) as a background connection on Y , we can
identify the space of connections AY with the space of sections of Λ1(Y ) ⊗
su(2). In what follows we shall consider a suitable Sobolev completion of this
space and continue to denote it by AY .

Let c : I → AY be a path from α to θ. The family of connections c(t) on
Y can be identified as a connection A on Y × I. Using this connection we can
rewrite the Chern–Simons action (10.11) as follows

ACS =
1

8π2

∫

Y×I
tr(FA ∧ FA). (10.33)

We note that the integrand corresponds to the second Chern class of the
pull-back of the trivial SU(2)-bundle over Y to Y ×I. Recall that the critical
points of the Chern–Simons action are the flat connections. The gauge group
GY acts on ACS : A → R by

ACS(αg) = ACS(α) + deg(g), g ∈ GY .

It follows that ACS descends to BY := AY /GY as a map fCS : BY → R/Z
and we can take R(Y ) ⊂ BY as the critical set of fCS . The gradient flow of
this function is given by the equation

∂c(t)
∂t

= ∗Y Fc(t). (10.34)

Since Y is a homology 3-sphere, the critical points of the flow of gradfCS
and the set of reducible connections intersect at a single point, the trivial
connection θ. If all the critical points of the flow are regular then it is a
Morse–Smale flow. If not, one can perturb the function fCS to get a Morse
function.

In general the representation space R∗(Y ) ⊂ BY contains degenerate crit-
ical points of the Chern–Simons function fCS . In this case Floer defines a set
of perturbations of fCS as follows. Let m ∈ N and let ∨mi=1S

1
i be a bouquet

of m copies of the circle S1. Let Γm be the set of maps
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γ :
m∨
i=1

S1
i ×D2 → Y

such that the restrictions

γx :
m∨
i=1

S1
i × {x} → Y and γi : S1

i ×D2 → Y

are smooth embeddings for each x ∈ D2 and for each i, 1 ≤ i ≤ m. Let γ̂x
denote the family of holonomy maps

γ̂x : AY → SU(2)× · · · × SU(2)︸ ︷︷ ︸
m times

, x ∈ D2.

The holonomy is conjugated under the action of the group of gauge transfor-
mations and we continue to denote by γ̂x the induced map on the quotient
BY = AY /G. Let Fm denote the set of smooth functions

h : SU(2)× · · · × SU(2)︸ ︷︷ ︸
m times

→ R

which are invariant under the adjoint action of SU(2). Floer’s set of pertur-
bations Π is defined as

Π :=
⋃
m∈N

Γm ×Fm.

Floer proves that for each (γ, h) ∈ Π the function

hγ : BY → R defined by hγ(α) =
∫

D2
h(γ̂x(α))

is a smooth function and that for a dense subset P ⊂ RM(Y )×Π the critical
points of the perturbed function

f(γ,h) := fCS + hγ

are non-degenerate. The corresponding moduli space decomposes into smooth
oriented manifolds of regular trajectories of the gradient flow of the function
f(γ,h) with respect to a generic metric σ ∈ RM(Y ). Furthermore, the ho-
mology groups of the perturbed chain complex are independent of the choice
of perturbation in P . We shall assume that a suitable perturbation has been
chosen. Let α, β be two critical points of the function fCS . Considering the
spectral flow (denoted by sf) from α to β we obtain the moduli spaceM(α, β)
as the moduli space of self-dual connections on Y ×R which are asymptotic
to α and β (as t→ ±∞). LetMj(α, β) denote the component of dimension j
inM(α, β). There is a natural action of R onM(α, β). Let M̂j(α, β) denote
the component of dimension j− 1 inM(α, β)/R. Let #M̂1(α, β) denote the
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signed sum of the number of points in M̂1(α, β). Floer defines the Morse
index of α by considering the spectral flow from α to the trivial connection θ.
It can be shown that the spectral flow and hence the Morse index are defined
modulo 8.

Now define the chain groups by

Rn(Y ) = Z{α ∈ R∗(Y ) | sf(α) = n}, n ∈ Z8

and define the boundary operator ∂

∂ : Rn(Y )→Rn−1(Y )

by
∂α =

∑
β∈Rn−1(Y )

#M̂1(α, β)β. (10.35)

It can be shown that ∂2 = 0 and hence (R(Y ), ∂) is a complex. This complex
can be thought of as an infinite-dimensional generalization [131] of Witten’s
instanton tunneling and we will call it the Floer–Witten Complex of the
pair (Y, SU(2)). Since the spectral flow and hence the dimensions of the
components of M(α, β) are congruent modulo 8, this complex defines the
Floer homology groups FHj(Y ), j ∈ Z8, where j is the spectral flow of α to
θ modulo 8. If rj denotes the rank of the Floer homology group FHj(Y ), j ∈
Z8, then we can define the corresponding Euler characteristic χF (Y ) by

χF (Y ) :=
∑
j∈Z8

(−1)jrj .

Combining this with Taubes’ interpretation of the Casson invariant c(Y ) we
get

c(Y ) = χF (Y ) =
∑
j∈Z8

(−1)jrj . (10.36)

An important feature of Floer’s instanton homology is that it can be re-
garded as a functor from the category of homology 3-spheres to the category
of graded Abelian groups, with morphisms given by oriented cobordism. Let
M be a smooth oriented cobordism from Y1 to Y2 so that ∂M = Y2− Y1. By
a careful analysis of instantons on M , Floer showed [130] that M induces a
graded homomorphism

Mj : FHj(Y1)→ FHj+b(M)(Y2), j ∈ Z8, (10.37)

where
b(M) = 3(b1(M)− b2(M)). (10.38)

Then the homomorphisms induced by cobordism have the following functorial
properties:
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(Y ×R)j = id, (10.39)
(MN)j = Mj+b(N)Nj. (10.40)

An algorithm for computing the Floer homology groups for Seifert-fibered
homology 3-spheres with three exceptional fibers (or orbits) is discussed in
[127]. In the following example we present some of the results given in that
article.

Example 10.1 Let Y denote the Seifert-fibered integral homology 3-sphere
with exceptional orbits of order a1, a2, a3. Then Y = Σ(a1, a2, a3) can be
represented as the Brieskorn homology 3-sphere

Σ(a1, a2, a3) := {(z1, z2, z3) | za1
1 + za2

2 + za3
3 = 0} ∩ S5.

Floer homology is computed by using the moduli space of SO(3)-connections
over Y . In this case the representation space R(Y ) contains only regular
representations and hence is a finite set. The Chern–Simons function

fCS : R(Y )→ R/4Z

is defined by
α → (2e2

α/a1a2a3) (mod 4), (10.41)

where eα ∈ Z is the Euler class of the representation α. The algorithm to
determine this number is one of the highlights of [127]. Moreover, it can be
shown that α is a critical point of index n where

n ≡ 2e2
α

a1a2a3
+

3∑
i=1

2
ai

ai−1∑
k=1

cot
(

πak

a2
i

)
cot

(
πk

ai

)
sin2

(
πeαk

ai

)
(mod 8).

(10.42)
It can be shown that the index n is odd for all critical points and hence
the boundary operator ∂ defined in (10.35) is zero. It follows that the Floer
homology groups FHi(Σ(a1, a2, a3)) are zero for odd i and are free for even
i. If we denote by ri(Y ) the rank of the ith Floer homology group of the
manifold Y then the set of ranks {r0(Y ), r2(Y ), r4(Y ), r6(Y )} determines the
Floer homology of Y in this case. In Table 10.1 we give some computations
of these ranks (see [127] for further details).

An examination of Table 10.1 shows that Floer homology of Brieskorn
spheres is periodic of period 4, i.e.,

FHi(Σ(a1, a2, a3)) = FHi+4(Σ(a1, a2, a3)), ∀i ∈ Z8.

It has been conjectured that this property of periodicity holds for Floer homol-
ogy groups of any homology 3-sphere.

The result discussed in the above example can be extended to compute
the Floer homology groups of any Seifert-fibered integral homology 3-sphere.
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Table 10.1 Floer homology of Brieskorn spheres

Y = Σ(a1, a2, a3)
(a1, a2, a3), (−1)k r0(Y ) r2(Y ) r4(Y ) r6(Y )
(2, 3, 6k ± 1), −1 (k ∓ 1)/2 (k ± 1)/2 (k ∓ 1)/2 (k ± 1)/2
(2, 3, 6k ± 1), 1 k/2 k/2 k/2 k/2
(2, 5, 10k± 1), −1 (3k ∓ 1)/2 (3k ± 1)/2 (3k ∓ 1)/2 (3k ± 1)/2
(2, 5, 10k± 1), 1 3k/2 3k/2 3k/2 3k/2
(2, 5, 10k± 3), −1 (3k ± 1)/2 (3k ± 1)/2 (3k ± 1)/2 (3k ± 1)/2
(2, 5, 10k± 3), 1 (3k ± 2)/2 3k/2 (3k ± 2)/2 3k/2
(2, 7, 14k± 1), −1 3k ∓ 1 3k ± 1 3k ∓ 1 3k ± 1
(2, 7, 14k± 1), 1 3k 3k 3k 3k

Further examples of the computation of Floer homology groups can be found
in [335].

Instanton Homology for Oriented 3-Manifolds

We now discuss briefly some of the results of Fukaya (see [147]) on the instan-
ton homology for oriented 3-manifolds. Let Y be a closed connected oriented
3-manifold. We restrict ourselves to the special case of H1(Y ;Z) torsion-free.
Let γ1, . . . , γk be a basis for H1(Y,Z), where k = b1(Y ) is the first Betti
number of Y . Fukaya constructs a function using this basis to modify the
Chern–Simons function of the Floer theory. To define this function we begin
by observing that there is a natural gauge-invariant function associated to
a loop on Y which generalizes the Wilson loop functional well known in the
physics literature. We recall a definition of this functional from Chapter 7.
It is given in a more general form than we need. It is of independent interest
in the TQFT interpretation of knot and link invariants, as we will show in
Chapter 11.

We begin with a general definition of the Wilson loop functional that
was introduced as an example of a quantum observable in Chapter 7. This
functional is also used in the TQFT interpretation of the Jones polynomial
in Chapter 11.

Definition 10.1 (Wilson loop functional) Let ρ denote a representation of
G on V . Let α ∈ Ω(M, x0) denote a loop at x0 ∈ M. Let π : P (M, G)→ M
be the canonical projection and let p ∈ π−1(x0). If ω is a connection on P ,
then the parallel translation along α maps the fiber π−1(x0) into itself. Let
α̂ω : π−1(x0) → π−1(x0) denote this map. Since G acts transitively on the
fibers, ∃gω ∈ G such that α̂ω(p) = pgω. Now define
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Wρ,α(ω) := Tr[ρ(gω)], ∀ω ∈ A. (10.43)

We note that gω and hence ρ(gω) change by conjugation if, instead of p, we
choose another point in the fiber π−1(x0), but the trace remains unchanged.

Alternatively, we can consider the vector bundle P ×ρ V associated to the
principal bundle P and parallel displacement of its fibers induced by α. Let π :
P×ρV →M be the canonical projection. We note that in this case π−1(x0) ∼=
V . Now the map α̂ω : π−1(x0)→ π−1(x0) is a linear transformation and we
can define

Wρ,α(ω) := Tr[α̂ω], ∀ω ∈ A. (10.44)

We call these Wρ,α the Wilson loop functionals associated to the represen-
tation ρ and the loop α. In the particular case when ρ = Ad, the adjoint
representation of G on g, our constructions reduce to those considered in
physical applications.

A gauge transformation f ∈ G acts on ω ∈ A by a vertical automorphism
of P and therefore changes the holonomy by conjugation by an element of the
gauge group G. This leaves the trace invariant and hence we have

Wρ,f ·α(ω) =Wρ,α(ω), ∀ω ∈ A and f ∈ G. (10.45)

Equation (10.45) implies that the Wilson loop functional is gauge-invariant
and hence descends to the moduli space B = A/G of gauge potentials. We
shall continue to denote it by W.

In the application that we want to consider, we are interested in the special
case of gauge group G = SU(2) and ρ the defining representation of SU(2).
It can be shown that if α, β are loops representing the same homology class
then

Wρ,α =Wρ,β . (10.46)

Thus, W can be regarded as defined on the first homology H1(Y,Z). Let αi
be a loop representing the basis element γi of the homology H1(Y,Z). The
loop αi : S1 → Y can be extended to an embedding α0

i : S1 × D2 → Y .
Define the loop

α0
i,x : S1 → Y

by
α0
i,x(θ) = α0

i (θ, x), θ ∈ S1.

Choose a non-negative function u : D2 → R with compact support such that
∫

D2
u(x)dx = 1.

We define Wi : D2 × BY → R by

Wi(x, ω) :=Wρ,α0
i,x

(ω), 1 ≤ i ≤ k. (10.47)
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Now fix an ε > 0 and define fε : BY → R by

fε(ω) := ε

k∑
i=1

∫

D2
Wi(x, ω)u(x)dx. (10.48)

It can be shown that for sufficiently small ε the function fCS − fε on BY has
finitely many non-degenerate critical points and that the Morse index of each
critical point is well-defined modulo 8. We now proceed as in Floer theory by
considering the gradient flow of the function fCS − fε on BY defined by

∂c(t)
∂t

= ∗Y Fc(t) − gradc(t) fε. (10.49)

The corresponding chain complex is denoted by (C0, ∂) and the Fukaya ho-
mology groups are denoted by I0

n, n ∈ Z8. When Y is a homology 3-sphere
the Fukaya theory goes over into the Floer theory and hence we refer to these
collectively as the Fukaya–Floer homology groups. By tensoring the chains
of the complex with symmetric powers of H1(Y,Z) Fukaya defines new chain
complexes (Cs, ∂s) indexed by non-negative integer s < 3. The main result
of [147] is the following theorem.

Theorem 10.1 Let Isn, n ∈ Z8, denote the homology groups of the complex
(Cs, ∂s) indexed by non-negative integer s < 3. Then the groups Isn do not
depend on the choice of metrics, the bases γi for the homology H1(Y,Z), and
the other choices made in perturbing the function fCS − fε on BY , and they
are topological invariants of the manifold Y .

The significance of these new invariants and their relation to other known
invariants is not yet clear.

10.6 Integer-Graded Instanton Homology

In Section 10.4 we discussed the Z8-graded homology theory due to Floer and
its extension to arbitrary closed oriented 3-manifolds by Fukaya. Fintushel
and Stern [128] have extended Floer homology theory in another direction
by defining a Z-graded homology theory for homology 3-spheres. We now
discuss this extension.

To extend FH to a Z-graded homology we use the universal cover (infinite
cyclic) B̃Y of BY defined by

B̃Y = A/G0. (10.50)

The Chern–Simons action functional and the spectral flow (denoted by sf)
on A descend to B̃Y → R. Let R̃∗(Y ) be the cover of R∗(Y ) and let
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RY = R \ c(R̃∗(Y )) (10.51)

be the set of regular values of the Chern–Simons functional. We note that the
set c(R̃∗(Y )) is finite modulo Z. Fix μ ∈ RY and let α(μ) ∈ R̃(Y ) ⊂ B̃Y be
the unique lift of α ∈ R(Y ) (see section 10.4) such that c(α(μ)) ∈ (μ, μ + 1).
Define

R(μ)
n (Y ) := Z{α ∈ R∗(Y ) | sf(α(μ)) = n} (10.52)

and define the boundary operator ∂(μ)

∂(μ) : R(μ)
n (Y )→R(μ)

n−1(Y )

by
∂(μ)α =

∑

β∈R(μ)
n−1(Y )

#(M̂1(α, β))β, (10.53)

where M̂1(α, β) is defined by a construction similar to that in the Floer
theory. It can be shown that ∂(μ)∂(μ) = 0 and hence (R(μ)(Y ), ∂(μ)) is a
complex. The resulting homology groups are denoted by I(μ)

n , n ∈ Z, and are
called the integer-graded instanton homology groups. In general, not
all the representations in R(Y ) are regular. However, as in the Floer theory,
one can define the integer-graded instanton homology groups by perturbing
the Chern–Simons function. The resulting homology groups are independent
of the perturbations and satisfy the following properties:

1. For μ ∈ [μ0, μ1] ⊂ RY ,

I(μ0)
n = I(μ)

n = I(μ1)
n , ∀n ∈ Z,

2. For μ ∈ RY ,
I(μ)
n = I(μ+1)

n , ∀n ∈ Z.

The homology groups I(μ)
n , n ∈ Z, determine the Floer homology groups by

filtering the Floer chain complex. If Φ
(μ)
s,n(Y ) denotes the filtration induced

on the Floer homology then we have the following theorem.

Theorem 10.2 Let n ∈ Z8, s ∈ Z, and s ≡ n (mod 8). Then there exists
a spectral sequence (Er

s,n(Y ), dr) such that

E1
s,n(Y ) ∼= I(μ)

s , (10.54)

E∞
s,n(Y ) ∼= Φ(μ)

s,n(Y )/Φ
(μ)
s+8,n(Y ). (10.55)

The groups Er
s,n(Y ) of the spectral sequence are topological invariants of Y .

The groups Er
s,n(Y ) as well as the instanton homology groups I(μ)

n , n ∈
Z, can be regarded as functors from the category of homology 3-spheres to
the category of graded Abelian groups with morphisms given by oriented
cobordism.
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Theorem 10.3 If M is an oriented cobordism from Y1 to Y2 so that ∂M =
Y2 − Y1 then for μ ∈ RY1 ∩RY2 , M induces graded homomorphisms

M (μ)
s : Er

s,n(Y1)→ Er
s+b(M),n+b(M)(Y2),

where b(M) = 3(b1(M)− b2(M)). Moreover, we have the following relations:

(Y ×R)s = id, (10.56)
(MN)s = Ms+b(N)Ns. (10.57)

Proofs of the above two theorems are given in [128].
In Example 10.1, we presented some results on the Floer homology groups

FHi(Σ(a1, a2, a3)), i ∈ Z8, where Σ(a1, a2, a3) is the Seifert-fibered homol-
ogy 3-sphere with exceptional orbits of order a1, a2, a3. An algorithm for com-
puting these Floer homology groups discussed in [127] is extended in [128] to
compute the integer-graded instanton homology groups I(μ)

i (Σ(a1, a2, a3)),
i ∈ Z. In the following example we present some of the results given in that
article.

Example 10.2 As in Example 10.1, we let Y denote the Seifert-fibered inte-
gral homology 3-sphere with exceptional orbits of order a1, a2, a3. Integer-
graded instanton homology is computed via the moduli space of SO(3)-
connections over Y . The representation space R(Y ) contains only regular
representations. Let eα denote the Euler class of the representation α. Let
e
(μ)
α ∈ (μ, 4 + μ) be defined by the congruence

e(μ)
α ≡ (2e2

α/a1a2a3 (mod 4).

Then α is a critical point of the lift of the Chern–Simons functional

f
(μ)
CS : R(μ)(Y )→ R/4Z defined by α → e(μ)

α . (10.58)

The index l(μ)(α) of α is given by

l(μ)(α) =
2(e(μ)

α )2

a1a2a3
+

3∑
i=1

2
ai

ai−1∑
k=1

cot
(

πak

a2
i

)
cot

(
πk

ai

)
sin2

(
πe

(μ)
α k

ai

)
.

It can be shown that the index l(μ)(α) is always an odd integer. It follows
that the boundary operator ∂(μ) is identically zero in this case and hence the
integer-graded instanton homology is given by

I(μ)
n (Σ(a1, a2, a3)) ∼=

{
R(μ)
n (Σ(a1, a2, a3)), for odd n

0, for even n.

It can be shown that I(μ)
n (Σ(a1, a2, a3)) is free of finite rank for all n for which

it is non-zero. For example, we can obtain the ranks of the homology groups
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I(0)
n (Σ(2, 3, 6k±1)) after some explicit computations. Using this information

we can write down the Poincaré–Laurent polynomials p(Σ(2, 3, 6k± 1))(t) of
Σ(2, 3, 6k ± 1). A list of these polynomials for the values of k from 1 to 9 is
given in Table 10.2. We have corrected some typographical errors in the list
given in [128].1

Table 10.2 Poincaré–Laurent polynomials of Σ(2, 3, 6k ± 1)

k p(Σ(2, 3, 6k − 1))(t) p(Σ(2, 3, 6k + 1))(t)
1 t + t5 t−1 + t3

2 t + t3 + t5 + t7 t−1 + t + t3 + t5

3 t + t3 + 2t5 + t7 + t9 2t−1 + t + 2t3 + t5

4 t + 2t3 + 2t5 + 2t7 + t9 2t−1 + 2t + 2t3 + 2t5

5 t + t3 + 3t5 + 2t7 + 2t9 + t11 2t−1 + 2t + 3t3 + 2t5 + t7

6 t + 2t3 + 3t5 + 3t7 + 2t9 + t11 t−1 + 3t + 3t3 + 3t5 + 2t7

7 t + t3 + 4t5 + 3t7 + 3t9 + 2t11 2t−1 + 3t + 4t3 + 3t5 + 2t7

8 t + 2t3 + 3t5 + 4t7 + 3t9 + 2t11 + t13 t−1 + 4t + 4t3 + 4t5 + 3t7

9 t + t3 + 4t5 + 4t7 + 4t9 + 3t11 + t13 2t−1 + 3t + 5t3 + 4t5 + 3t7 + t9

At the end of Example 10.1 we saw that the conjecture that the Floer
homology is periodic with period 4 is verified for the Brieskorn spheres. An
examination of Table 10.2 shows that the integer-graded instanton homology
groups of the Brieskorn spheres do not have this periodicity property. The
integer-graded instanton homology groups can be thought of as a refinement
of the Z8-graded Floer homology groups just as the Floer homology groups
can be thought of as a refinement of the Casson invariant of an integral ho-
mology 3-sphere. An extension of the Casson invariant to a rational homology
3-sphere is defined in Walker [394] (see [64] for another approach).

A method for calculating the spectral flow in the Fukaya–Floer theory for
a split manifold is given in [416]. Recall that a connected closed oriented
3-manifold is said to be split if

M = M1

⋃
M2, M1

⋂
M2 = ∂M1 = ∂M2 = Σg, g > 1,

where M1, M2 are 0-codimension submanifolds of M and Σg is a connected,
closed Riemann surface of genus g oriented as the boundary of M1. Then we
have the following theorem

Theorem 10.4 (Yoshida) Let M be split manifold. Let Ai, i = 1, 2, be
smooth irreducible flat connections on the trivial bundle M × SU(2) with
Ker(dAi) = 0. Assume that the connections Ai restrict to smooth irreducible

1 We would like to thank Ron Stern for confirming these corrections.
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flat connections Bi on the trivial bundle Σg × SU(2). Then there exists a
metric on M and a smooth generic path of connections At, 0 ≤ t ≤ 1, on
M × SU(2) such that At restricts to a path Bt × 1 on a tubular neighbor-
hood of Σg and defines a path Ât in the space of all Lagrangian pairs in
the 6(g− 1)-dimensional symplectic vector space of the equivalence classes of
representations of π1(Σg) into SU(2). Let γ(Ât) be the corresponding Maslov
index. Then

sf(A1, A0) = γ(Ât) (10.59)

where sf denotes the spectral flow.

This theorem can be viewed as a link between the Fukaya–Floer homology
and the symplectic homology. In fact, similar ideas have been used by Taubes
in his interpretation of the Casson invariant. An application of the above
theorem leads to a calculation of the Floer homology groups of a class of
manifolds as indicated in the following theorem (see [416] for a proof).

Theorem 10.5 Let Nk, 0 > k ∈ Z, denote the integral homology 3-
sphere obtained by the (1/k)-Dehn surgery along the figure eight knot in
S3. Then it can be shown that the Floer homology groups FHi(Nk) are
zero for odd i and are free for even i. If we denote by ri(Nk) the rank
of the ith Floer homology group of the manifold Nk then the set of ranks
{r0(Nk), r2(Nk), r4(Nk), r6(Nk)} determines the Floer homology of Nk. Com-
putations of these ranks for all k ∈ Z, k < 0, is given in the Table 10.3.

Table 10.3 Floer homology of homology 3-spheres Nk, k < 0

k r0(Nk) r2(Nk) r4(Nk) r6(Nk)
−4m 2m 2m 2m 2m

−4m + 1 2m− 1 2m 2m− 1 2m

−4m + 2 2m− 1 2m− 1 2m− 1 2m− 1
−4m + 3 2m− 2 2m− 1 2m− 2 2m− 1

This table can also be used to determine the Floer homology groups of the
homology 3-spheres N−k, 0 > k ∈ Z, by noting that N−k is orientation-
preserving diffeomorphic to −Nk and that

FHi(−Nk) = FH3−i(Nk), ∀i ∈ Z8.

An examination of Table 10.3 shows that Floer homology of the homology
3-spheres Nk is periodic of period 4, i.e.,

FHi(Nk) = FHi+4(Nk), ∀i ∈ Z8.
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In the above theorem and in Example 10.1 Floer’s boundary operator is
trivial. An example of a non-trivial boundary operator appears in the com-
putation of the Floer homology for connected sums of homology 3-spheres. A
Künneth formula also holds for SO(3) Floer homology. Another important
development in the topology of 3-manifolds is the use of Morse–Bott the-
ory, which generalizes the classical Morse theory to functions whose critical
points are not necessarily isolated. This is closely related to the definition
of equivariant Floer (co)homology. Another approach to Donaldson–Floer
theory that uses a simplicial model of the theory was proposed by Taubes
[196].

We would like to add that there is a vast body of work on the topology
and geometry of 3-manifolds which was initiated by Thurston [373, 374]. At
present the relation of this work to the methods and results of the gauge
theory approach to the study of 3-manifolds remains mysterious.

10.7 WRT Invariants

Witten’s TQFT invariants of 3-manifolds were given a mathematical defini-
tion by Reshetikhin and Turaev in [326]. In view of this and with a sugges-
tion from Prof. Zagier, I called them Witten– Reshetikhin–Turaev or WRT
invariants in [260]. Several alternative approaches to WRT invariants are
now available. We will discuss some of them later in this section. In the
course of our discussion of Witten’s interpretation of the Jones polynomial
in Chapter 11 we will indicate an evaluation of a specific partition function
(see equation (11.22)). This partition function provides a new family of in-
variants of S3. Such a partition function can be defined for a more general
class of 3-manifolds and gauge groups. More precisely, let G be a compact
simply connected simple Lie group and let k ∈ Z. Let M be a 2-framed closed
oriented 3-manifold. We define the Witten invariant TG,k(M) of the triple
(M, G, k) by

TG,k(M) :=
∫

BM

e−ifCS([ω])D[ω], (10.60)

where D[ω] is a suitable measure on BM . We note that no precise definition
of such a measure is available at this time and the definition is to be regarded
as a formal expression. Indeed, one of the aims of TQFT is to make sense
of such formal expressions. We define the normalized Witten invariant
WG,k(M) of a 2-framed closed oriented 3-manifold M by

WG,k(M) :=
TG,k(M)
TG,k(S3)

. (10.61)

Then we have the following “theorem”:
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Theorem 10.6 (Witten) Let G be a compact simply connected simple Lie
group. Let M , N be two 2-framed closed oriented 3-manifolds. Then we have
the following results:

TG,k(S2 × S1) = 1, (10.62)

TSU(2),k(S3) =

√
2

k + 2
sin

(
π

k + 2

)
, (10.63)

WG,k(M#N) =WG,k(M) · WG,k(N). (10.64)

If G is a compact semi-simple group then the WRT invariant TG,k(S3) can
be given in a closed form in terms of the root and weight lattices associated
to G. In particular, for G = SU(n) we get

T =
1√

n(k + n)(n−1)

n−1∏
j=1

[
2 sin

(
jπ

k + n

)]n−j
.

We will show later that this invariant can be expressed in terms of the gener-
ating function of topological string amplitudes in a closed string theory com-
pactified on a suitable Calabi–Yau manifold. More generally, if a manifold M
can be cut into pieces over which the CS path integral can be computed, then
the gluing rules of TQFT can be applied to these pieces to find T . Different
ways of using such a cut and paste operation can lead to different ways of
computing this invariant. Another method that is used in both the theoretical
and experimental applications is the perturbative quantum field theory. The
rules for perturbative expansion around classical solutions of field equations
are well understood in physics. It is called the stationary phase approxima-
tion to the partition function. It leads to the asymptotic expansion in terms
of a parameter depending on the coupling constants and the group. If č(G)
is the dual Coxeter number of G then the asymptotic expansion is in terms
of � = 2πi/(k + č(G)). This notation in TQFT is a reminder of the Planck’s
constant used in physical field theories. The asymptotic expansion of log T
is then given by

log T = −b log(�) +
a0

�
+

∞∑
n=1

an+1(�)n,

where ai are evaluated on Feynman diagrams with i loops. The expansion
may be around any flat connection and the dependence of ai on the choice
of a connection may be explicitly indicated if necessary. For Chern–Simons
theory the above perturbative expansion is also valid for non-compact groups.

In addition to the results described above, there are several other applica-
tions of TQFT in the study of the geometry and topology of low-dimensional
manifolds. In 2 and 3 dimensions, conformal field theory (CFT) methods
have proved to be useful. An attempt to put the CFT on a firm mathemat-
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ical foundation was begun by Segal in [347] (see also, [288]) by proposing a
set of axioms for CFT. CFT is a two-dimensional theory and it was necessary
to modify and generalize these axioms to apply to topological field theory in
any dimension. We discussed these TQFT axioms in Chapter 7.

10.7.1 CFT Approach to WRT Invariants

In [230] Kohno defines a family of invariants Φk(M) of a 3-manifold M by
using its Heegaard decomposition along a Riemann surface Σg and represen-
tations of the mapping class group of Σg. Kohno’s work makes essential use of
ideas and results from conformal field theory. We now give a brief discussion
of Kohno’s definition.

We begin by reviewing some information about the geometric topology
of 3-manifolds and their Heegaard splittings. Recall that two compact 3-
manifolds X1, X2 with homeomorphic boundaries can be glued together
along a homeomorphism f : ∂X1 → ∂X2 to obtain a closed 3-manifold
X = X1 ∪f X2. If X1, X2 are oriented with compatible orientations on the
boundaries, then f can be taken to be either orientation-preserving or revers-
ing. Conversely, any closed orientable 3-manifold can be obtained by such a
gluing procedure where each of the pieces is a special 3-manifold called a han-
dlebody. Recall that a handlebody of genus g is an orientable 3-manifold
obtained from gluing g copies of 1-handles D2 × [−1, 1] to the 3-ball D3.
The gluing homeomorphisms join the 2g disks D2 × {±1} to the 2g pairwise
disjoint 2-disks in ∂D3 = S2 in such a way that the resulting manifold is
orientable. The handlebodies H1, H2 have the same genus and a common
boundary H1∩H2 = ∂H1 = ∂H2. Such a decomposition of a 3-manifold X is
called a Heegaard splitting of X of genus g. We say that X has Heegaard
genus g if it has some Heegaard splitting of genus g but no Heegaard split-
ting of smaller genus. Given a Heegaard splitting of genus g of X , there exists
an operation called stabilization, which gives another Heegaard splitting of
X of genus g + 1. Two Heegaard splittings of X are called equivalent if
there exists a homeomorphism of X onto itself taking one splitting into the
other. Two Heegaard splittings of X are called stably equivalent if they
are equivalent after a finite number of stabilizations. A proof of the following
theorem is given in [336].

Theorem 10.7 Any two Heegaard splittings of a closed orientable 3-
manifold X are stably equivalent.

The mapping class groupM(M) of a connected compact smooth sur-
face M is the quotient group of the group of diffeomorphisms Diff(M) of M
modulo the group Diff0(M) of diffeomorphisms isotopic to the identity. i.e.,

M(M) := Diff(M)/ Diff0(M)
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If M is oriented, thenM(M) has a normal subgroupM+(M) of index 2 con-
sisting of orientation-preserving diffeomorphisms of M modulo isotopies. The
group M(M) can also be defined as π0(Diff(M)). Smooth closed orientable
surfaces Σg are classified by their genus g, and in this case it is customary
to denoteM(Σg) byMg. In the applications that we have in mind it is this
group Mg that we shall use. The group Mg is generated by Dehn twists
along simple closed curves in Σg. Let c be a simple closed curve in Σg that
forms one of the boundaries of an annulus. In local complex coordinate z
we can identify the annulus with {z | 1 ≤ |z| ≤ 2} and the curve c with
{z | |z| = 1}. Then, the Dehn twist τc along c is an automorphism of Σg,
which is the identity outside the annulus, while in the annulus it is given by
the formula

τc(reiθ) = rei(θ+2π(r−1)),

where
z = reiθ , 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

Changing the curve c by an isotopic curve or changing the annulus gives
isotopic twists. However, twists in opposite directions define elements ofMg

that are the inverses of each other. Note that any two homotopic simple
closed curves on Σg are isotopic. A useful description ofMg is given by the
following theorem.

Theorem 10.8 Let Σg be a smooth closed orientable surface of genus g.
Then the group Mg is generated by the 3g − 1 Dehn twists along the curves
(called Lickororish generators) αi, βj, γk, 1 ≤ i ≤ g, 1 ≤ j ≤ g, 1 ≤ k < g,
where αi , βj are Poincaré dual to a basis of the first integral homology of
Σg. See the book by Birman [40] for a construction of these generators.

In [230] Kohno obtains a representation of the mapping class group Mg

in the space of conformal blocks which arise in conformal field theory (see
the book [232] by Kohno for more applications of conformal field theory to
topology). Kohno then uses a special function for this representation and
the stabilization to define a family of invariants Φk(M) of the 3-manifold M ;
these invariants are independent of its stable Heegaard decomposition. Kohno
obtains the following formulas:

Φk(S2 × S1) =

(√
2

k + 2
sin

(
π

k + 2

))−1

, (10.65)

Φk(S3) = 1, (10.66)
Φk(M#N) = Φk(M) · Φk(N). (10.67)

Kohno’s invariant coincides with the normalized Witten invariant with the
gauge group SU(2). Similar results were also obtained by Crane [88]. The
agreement of these results with those of Witten may be regarded as strong
evidence for the correctness of the TQFT calculations. In [230] Kohno also
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obtains the Jones–Witten polynomial invariants for a framed colored link in
a 3-manifold M by using representations of mapping class groups via confor-
mal field theory. In [231] the Jones–Witten polynomials are used to estimate
the tunnel number of knots and the Heegaard genus of a 3-manifold. The
monodromy of the Knizhnik–Zamolodchikov equation [224] plays a crucial
role in these calculations.

10.7.2 WRT Invariants via Quantum Groups

Shortly after the publication of Witten’s paper [405], Reshetikhin and Tu-
raev [326] gave a precise combinatorial definition of a new invariant by us-
ing the representation theory of quantum group Uqsl2 at the root of unity
q = e2πi/(k+2). The parameter q coincides with Witten’s SU(n) Chern–
Simons theory parameter t when n = 2 and in this case the invariant of
Reshetikhin and Turaev is the same as the normalized Witten invariant. As
we have observed at the begining of section 10.7, it is now customary to
call the normalized Witten invariants the Witten–Reshetikhin–Turaev
invariants, or WRT invariants. We now discuss their construction in the
form given by Kirby and Melvin in [222].

Let U denote the universal enveloping algebra of sl(2,C) and let Uh de-
note the quantized universal enveloping algebra of formal power series in h.
Recall that U is generated by X, Y, H subject to relations as in the algebra
sl(2,C), i.e.,

[H, X ] = 2X, [H, Y ] = −2Y, [X, Y ] = H.

In Uh the last relation is replaced by

[X, Y ] = [H ]s :=
sH − s−H

s− s−1
, s = eh/2.

It can be shown that Uh admits a Hopf algebra structure as a module over
the ring of formal power series. However, the presence of divergent series
makes this algebra unsuitable for representation theory. We construct a finite-
dimensional algebra by using Uh. Define

K := ehH/4 and K̄ := e−hH/4 = K−1.

Fix an integer r > 1 (r = k+2 of the Witten formula) and set q = eh = e2πi/r.
We restrict this to a subalgebra over the ring of convergent power series in
h generated by X, Y, K, K̄. This infinite-dimensional algebra occurs in the
work of Jimbo (see the books [254] by Lusztig, [306] by Ohtsuki, and [381]
by Turae). We take its quotient by setting
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Xr = 0, Y r = 0, K4r = 1.

The representations of this quotient algebraA are used to define colored Jones
polynomials and the WRT invariants. The algebra A is a finite-dimensional
complex algebra satisfying the relations

K̄ = K−1, KX = sXK, KY = s̄Y K,

[X, Y ] =
K2 −K−2

s− s̄
, s = eπi/r.

There are irreducible A-modules V i in each dimension i > 0. If we put
i = 2m + 1, then V i has a basis {em, . . . , e−m}. The action of A on the basis
vectors is given by

Xej = [m + j + 1]sej+1, Y ej = [m− j + 1]sej−1, Kej = sjej .

The A-modules V i are self-dual for 0 < i < r. The structure of their tensor
products is similar to that in the classical case. The algebra A has the ad-
ditional structure of a quasitriangular Hopf algebra with Drinfeld’s universal
R-matrix R satisfying the Yang–Baxter equation. One has an explicit formula
for R ∈ A⊗A of the form

R =
∑

cnabX
aKb ⊗ Y nKb .

If V , W are A-modules then R acts on V ⊗W . Composing with the per-
mutation operator we get the operator R′ : V ⊗W → W ⊗ V . These are
the operators used in the definition of our link invariants. Let L be a framed
link with n components Li colored by k = {k1, . . . , kn}. Let JL,k be the cor-
responding colored Jones polynomial. The colors are restricted to Lie in a
family of irreducible modules V i, one for each dimension 0 < i < r. Let σ
denote the signature of the linking matrix of L. Define τL by

τL =
(√

2/r sin(π/r)
)n

e3(2−r)σ/(8r)
∑

[k]JL,k ,

where the sum is over all admissible colors. Every 3-manifold can be obtained
by surgery on a link in S3. Two links give isomorphic manifolds if they are
related by Kirby moves. It can be shown that the invariant τL is preserved
under Kirby moves and hence defines an invariant of the 3-manifold ML ob-
tained by surgery on L. With suitable normalization it coincides with the
WRT invariant. WRT invariants do not belong to the class of polynomial
invariants or other known 3-manifold invariants. They arose from topologi-
cal quantum field theory applied to calculate the partition functions in the
Chern–Simons gauge theory.

A number of other mathematicians obtained invariants closely related to
the Witten invariant. The equivalence of these invariants, defined by different
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methods, was a folk theorem until a complete proof was given by Piunikhin in
[317]. Another approach to WRT invariants is via Hecke algebras and related
special categories. A detailed construction of modular categories from Hecke
algebras at roots of unity is given in [42]. For a special choice of the fram-
ing parameter one recovers the Reshetikhin–Turaev invariants of 3-manifolds
constructed from the representations of the quantum groups Uq(sl(N)) by
Reshetikhin, Turaev, and Wenzl [326, 384, 400]. These invariants were con-
structed by Yokota [415] using skein theory. As we discussed earlier the quan-
tum invariants were obtained by Witten [404] using path integral quantization
of Chern–Simons theory. In Quantum Invariants of Knots and 3-Manifolds
[381], Turaev showed that the idea of modular categories is fundamental in
the construction of these invariants and that it plays an essential role in ex-
tending them to a topological quantum field theory. (See also the book [306]
by Ohtsuki for a comprehensive introduction to quantum invariants.) Since
the time of the early results discussed above, the WRT invariants for several
other manifolds and gauge groups have been obtained. We collect some of
these results below.

Theorem 10.9 The WRT invariant for the lens space L(p, q) in the canon-
ical framing is given by

Wk(L(p, q)) = − i√
2p(k + 2)

exp
(

6πis

k + 2

)

·
∑

δ∈{−1,1}

p∑
n=1

δ exp
(

δ

2p(k + 2)
+

2πiqn2(k + 2)
p

+
2πin(q + δ)

p

)
,

where s = s(q, p) is the Dedekind sum defined by

s(q, p) :=
1
4p

p−1∑
k=1

cot
(

πk

p

)
cot

(
πkq

p

)
.

In all of these the invariant is well-defined only at roots of unity and per-
haps near roots of unity if a perturbative expansion is possible. This situation
occurs in the study of classical modular functions and Ramanujan’s mock
theta functions. Ramanujan introduced his mock theta functions in a letter
to Hardy in 1920 (the famous last letter) to describe some power series in
variable q = e2πiz , z ∈ C. He also wrote down (without proof, as was usual in
his work) a number of identities involving these series, which were completely
verified only in 1988 by Hickerson [191]. Recently, Lawrence and Zagier ob-
tained several different formulas for the Witten invariantWSU(2),k(M) of the
Poincaré homology sphere M = Σ(2, 3, 5) in [246]. Using the work of Zwegers
[419], they show how the Witten invariant can be extended from integral k
to rational k and give its relation to the mock theta function. In particular,
they obtain the following fantastic formula, in the spirit of Ramanujan, for
the Witten invariant WSU(2),k(M) of the Poincaré homology sphere
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WSU(2),k(Σ(2, 3, 5)) = 1 +
∞∑
n=1

x−n2
(1 + x)(1 + x2) · · · (1 + xn−1)

where x = eπi/(k+2). We note that the series on the right hand side of this
formula terminates after k + 2 terms.

We have not discussed the Kauffmann bracket polynomial or the theory
of skein modules in the study of 3-manifold invariants. An invariant that
combines these two ideas has been defined in the following general setting.
Let R be a commutative ring and let A be a fixed invertible element of
R. Then one can define a new invariant, S2,∞(M ; R, A), of an oriented 3-
manifold M called the Kauffmann bracket skein module. The theory of
skein modules is related to the theory of representations of quantum groups.
This connection should prove useful in developing the theory of quantum
group invariants which can be defined in terms of skein theory as well as by
using the theory of representations of quantum groups.

10.8 Chern–Simons and String Theory

The general question “What is the relationship between gauge theory and
string theory?” is not meaningful at this time. So, following the strong ad-
monition by Galileo, we avoid “disputar lungamente delle massime questioni
senza conseguir verità nissuna”.2 However, interesting special cases where
such relationship can be established are emerging. For example, Witten [408]
argued that Chern–Simons gauge theory on a 3-manifold M can be viewed
as a string theory constructed by using a topological sigma model with tar-
get space T ∗M . The perturbation theory of this string should coincide with
Chern–Simons perturbation theory. The coefficient of k−r in the perturba-
tive expansion of SU(n) theory in powers of 1/k comes from Feynman di-
agrams with r loops. Witten shows how each diagram can be replaced by
a Riemann surface Σ of genus g with h holes (boundary components) with
g = (r − h + 1)/2. Gauge theory would then give an invariant Γg,h(M) for
every topological type of Σ. Witten shows that this invariant would equal
the corresponding string partition function Zg,h(M).

We now give an example of gauge theory to string theory correspondence
relating the non-perturbative WRT invariants in Chern–Simons theory with
gauge group SU(n) and with topological string amplitudes which general-
ize the GW (Gromov–Witten) invariants of Calabi–Yau 3-folds [261]. The
passage from real 3-dimensional Chern–Simons theory to the 10-dimensional
string theory and further onto the 11-dimensional M-theory can be schemat-
ically represented by the following:

2 lengthy discussions about the greatest questions that fail to lead to any truth whatever.
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3 + 3 = 6 (real symplectic 6-manifold)
= 6 (conifold in C4 )
= 6 (Calabi–Yau manifold)
= 10− 4 (string compactification)
= (11− 1)− 4 (M-theory).

Let us consider the significance of the various lines of the above equa-
tion array. Recall that string amplitudes are computed on a 6-dimensional
manifold which in the usual setting is a complex 3-dimensional Calabi–Yau
manifold obtained by string compactification. This is the most extensively
studied model of passing from the 10-dimensional space of supersymmetric
string theory to the usual 4-dimensional space-time manifold. However, in
our work we do allow these so called extra dimensions to form an open or
a symplectic Calabi–Yau manifold. We call these the generalized Calabi–
Yau manifolds. The first line suggests that we consider open topological
strings on such a generalized Calabi–Yau manifold, namely, the cotangent
bundle T ∗S3, with Dirichlet boundary conditions on the zero section S3. We
can compute the open topological string amplitudes from the SU(n) Chern–
Simons theory. Conifold transition [355] has the effect of closing up the holes
in open strings to give closed strings on the Calabi–Yau manifold obtained
by the usual string compactification from 10 dimensions. Thus, we recover a
topological gravity result starting from gauge theory. In fact, as we discussed
earlier, Witten had anticipated such a gauge theory/string theory correspon-
dence by many years. Significance of the last line is based on the conjectured
equivalence of M-theory compactified on S1 to type IIA strings compactified
on a Calabi–Yau 3-fold. We do not consider this aspect here. The crucial
step that allows us to go from a real, non-compact, symplectic 6-manifold to
a compact Calabi–Yau manifold is the conifold or geometric transition. Such
a change of geometry and topology is expected to play an important role in
other applications of string theory as well. A discussion of this example from
physical point of view may be found in [6, 158].

Conifold Transition

To understand the relation of the WRT invariant of S3 for SU(n) Chern–
Simons theory with open and closed topological string amplitudes on
“Calabi–Yau” manifolds we need to discuss the concept of conifold transition.
From the geometrical point of view this corresponds to symplectic surgery in
six dimensions. It replaces a vanishing Lagrangian 3-sphere by a symplectic
S2. The starting point of the construction is the observation that T ∗S3 minus
its zero section is symplectomorphic to the cone z2

1 + z2
2 + z2

3 + z2
4 = 0 minus

the origin in C4, where each manifold is taken with its standard symplectic
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structure. The complex singularity at the origin can be smoothed out by the
manifold Mτ defined by z2

1 + z2
2 + z2

3 + z2
4 = τ , producing a Lagrangian S3

vanishing cycle. There are also two so called small resolutions M± of the
singularity with exceptional set CP1. They are defined by

M± :=
{

z ∈ C4
∣∣∣ z1 + iz2

z3 ± iz4
=
−z3 ± iz4

z1 − iz2

}
.

Note that M0 \{0} is symplectomorphic to each of M± \CP1. Blowing up
the exceptional set CP1 ⊂M± gives a resolution of the singularity, which can
be expressed as a fiber bundle F over CP1. Going from the fiber bundle T ∗S3

over S3 to the fiber bundle F over CP1 is referred to in the physics literature
as the conifold transition. We note that the holomorphic automorphism of
C4 given by z4 → −z4 switches the two small resolutions M± and changes
the orientation of S3. Conifold transition can also be viewed as an applica-
tion of mirror symmetry to Calabi–Yau manifolds with singularities. Such an
interpretation requires the notion of symplectic Calabi–Yau manifolds and
the corresponding enumerative geometry. The geometric structures arising
from the resolution of singularities in the conifold transition can also be in-
terpreted in terms of the symplectic quotient construction of Marsden and
Weinstein.

10.8.1 WRT Invariants and String Amplitudes

To find the relation between the large n limit of SU(n) Chern–Simons theory
on S3 to a special topological string amplitude on a Calabi–Yau manifold we
begin by recalling the formula for the partition function (vacuum amplitude)
of the theory TSU(n),k(S3), or simply T . Up to a phase, it is given by

T =
1√

n(k + n)(n−1)

n−1∏
j=1

[
2 sin

(
jπ

k + n

)]n−j
. (10.68)

Let us denote by F(g,h) the amplitude of an open topological string theory
on T ∗S3 of a Riemann surface of genus g with h holes. Then the generating
function for the free energy can be expressed as

−
∞∑
g=0

∞∑
h=1

λ2g−2+hnhF(g,h). (10.69)

This can be compared directly with the result from Chern–Simons theory if
we expand the log T as a double power series in λ and n. Instead of that we
use the conifold transition to get the topological amplitude for a closed string
on a Calabi–Yau manifold. We want to obtain the large n expansion of this
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amplitude in terms of parameters λ and τ , which are defined in terms of the
Chern–Simons parameters by

λ =
2π

k + n
, τ = nλ =

2πn

k + n
. (10.70)

The parameter λ is the string coupling constant and τ is the ’t Hooft cou-
pling nλ of the Chern–Simons theory. The parameter τ entering in the string
amplitude expansion has the geometric interpretation as the Kähler modulus
of a blown up S2 in the resolved M±. If Fg(τ) denotes the amplitude for a
closed string at genus g then we have

Fg(τ) =
∞∑
h=1

τhF(g,h). (10.71)

So summing over the holes amounts to filling them up to give the closed
string amplitude.

The large n expansion of T in terms of parameters λ and τ is given by

T = exp

[
−

∞∑
g=0

λ2g−2Fg(τ)

]
, (10.72)

where Fg defined in (10.71) can be interpreted on the string side as the
contribution of closed genus g Riemann surfaces. For g > 1 the Fg can be
expressed in terms of the Euler characteristic χg and the Chern class cg−1 of
the Hodge bundle over the moduli spaceMg of Riemann surfaces of genus g
as follows:

Fg =
∫

Mg

c3
g−1 −

χg
(2g − 3)!

∞∑
n=1

n2g−3e−n(τ) . (10.73)

The integral appearing in the formula for Fg can be evaluated explicitly to
give ∫

Mg

c3
g−1 =

(−1)(g−1)

(2π)(2g−2)
2ζ(2g − 2)χg. (10.74)

The Euler characteristic is given by the Harer–Zagier [185] formula

χg =
(−1)(g−1)

(2g)(2g − 2)
B2g , (10.75)

where B2g is the (2g)th Bernoulli number. We omit the special formulas
for the genus 0 and genus 1 cases. The formulas for Fg for g ≥ 0 coincide
with those of the g-loop topological string amplitude on a suitable Calabi–
Yau manifold. The change in geometry that leads to this calculation can be
thought of as the result of coupling to gravity. Such a situation occurs in the
quantization of Chern–Simons theory. Here the classical Lagrangian does not
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depend on the metric; however, coupling to the gravitational Chern–Simons
term is necessary to make it a TQFT.

We have mentioned the following four approaches that lead to the WRT
invariants:

1. Witten’s TQFT calculation of the Chern–Simons partition function;
2. Quantum group (or Hopf algebraic) computations initiated by Reshetikhin

and Turaev;
3. Kohno’s special functions corresponding to representations of mapping

class groups in the space of conformal blocks and a similar approach by
Crane;

4. open or closed string amplitudes in suitable Calabi–Yau manifolds.

These methods can also be applied to obtain invariants of links, such as the
Jones polynomial. Indeed, this was the objective of Witten’s original work.
WRT invariants were a byproduct of this work. Their relation to topological
strings came later.

The WRT to string theory correspondence was extended by Gopakumar
and Vafa (see hep-th/9809187, 9812127) by using string theoretic arguments
to show that the expectation value of the quantum observables defined by
the Wilson loops in the Chern–Simons theory has a similar interpretation
in terms of a topological string amplitude. This led them to conjecture a
correspondence exists between certain knot invariants (such as the Jones
polynomial) and Gromov–Witten type invariants of generalized Calabi–Yau
manifolds. Gromov–Witten invariants of a Calabi–Yau 3-fold X , are in gen-
eral, rational numbers, since one has to get the weighted count by dividing
by the order of automorphism groups. Using M-theory Gopakumar and Vafa
argued that the generating series FX of Gromov–Witten invariants in all de-
grees and all genera is determined by a set of integers n(g, β). They give the
following remarkable formula for FX :

FX(λ, q) =
∑ ∑

g≥0

∑
k≥1

1
k

n(g, β)(2 sin(kλ/2))2g−2qkβ ,

where λ is the string coupling constant and the first sum is taken over all
nonzero elements β in H2(X). We note that for a fixed genus there are only
finitely many nonzero integers n(g, β). A mathematical formulation of the
Gopakumar–Vafa conjecture (GV conjecture) is given in [312]. Special cases
of the conjecture have been verified (see, for example, [313] and references
therein). In [251] a new geometric approach relating the Gromov–Witten
invariants to equivariant index theory and 4-dimensional gauge theory was
used to compute the string partition functions of some local Calabi–Yau
spaces and to verify the GV conjecture for them.

A knot should correspond to a Lagrangian D-brane on the string side and
the knot invariant would then give a suitably defined count of compact holo-
morphic curves with boundary on the D-brane. To understand a proposed
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proof, recall first that a categorification of an invariant I is the construction of
a suitable homology such that its Euler characteristic equals I. A well known
example of this is Floer’s categorification of the Casson invariant. We will dis-
cuss in Chapter 11 Khovanov’s categorification of the Jones polynomial Vκ(q)
by constructing a bi-graded sl(2)-homology Hi,j determined by the knot κ.
Its quantum or graded Euler characteristic equals the Jones polynomial, i.e.,

Vκ(q) =
∑
i,j

(−1)jqi dimHi,j .

Now let Lκ be the Lagrangian submanifold corresponding to the knot κ of a
fixed Calabi–Yau space X . Let r be a fixed relative integral homology class of
the pair (X, Lκ). Let Mg,r denote the moduli space of pairs (Σg, A), where
Σg is a compact Riemann surface in the class r with boundary S1 and A is a
flat U(1) connection on Σg. These data together with the cohomology groups
Hk(Mg,r) determine a tri-graded homology. It generalizes the Khovanov ho-
mology. Its Euler characteristic has a physical interpretation as a generating
function for a class of invariants in string theory and these invariants can be
used to obtain the Gromov–Witten invariants. Taubes has given a construc-
tion of the Lagrangians in the Gopakumar–Vafa conjecture. We note that
counting holomorphic curves with boundary on a Lagrangian manifold was
introduced by Floer in his work on the Arnold conjecture. The tri-graded
homology is expected to unify knot homologies of the Khovanov type as well
as knot Floer homology constructed by Ozswáth and Szabó [309], which pro-
vides a categorification of the Alexander polynomial. Knot Floer homology
is defined by counting pseudo-holomorphic curves and has no known com-
binatorial description. An explicit construction of a tri-graded homology for
certain torus knots was recently given by Dunfield, Gukov, and Rasmussen
[math.GT/0505662].



Chapter 11

Knot and Link Invariants

11.1 Introduction

In this chapter we make some historical observations and comment on some
early work in knot theory. Invariants of knots and links are introduced in
Section 11.2. Witten’s interpretation of the Jones polynomial via the Chern–
Simons theory is discussed in Section 11.3. A new invariant of 3-manifolds is
obtained as a byproduct of this work by an evaluation of a certain partition
function of the theory. We already met this invariant, called the Witten–
Reshetikhin–Turaev (or WRT) invariant in Chapter 10. In Section 11.4 we
discuss the Vassiliev invariants of singular knots. Gauss’s formula for the
linking number is the starting point of some more recent work on self-linking
invariants of knots by Bott, Taubes, and Cattaneo. We will discuss their
work in Section 11.5. The self-linking invariants were obtained earlier by
physicists using Chern–Simons perturbation theory. This work now forms a
small part of the program initiated by Kontsevich [235] to relate topology
of low-dimensional manifolds, homotopical algebras, and non-commutative
geometry with topological field theories and Feynman diagrams in physics.
See also the book [176] by Guadagnini. Khovanov’s categorification of the
Jones polynomial by Khovanov homology is the subject of Section 11.6. We
would like to remark that in recent years many applications of knot theory
have been made in chemistry and biology (for a brief of discussion of these
and further references see, for example, [260]). Some of the material in this
chapter is from my article [263]).

In the second half of the nineteenth century a systematic study of knots
in R3 was made by Tait. He was motivated by Kelvin’s theory of atoms
modeled on knotted vortex tubes of ether. It was expected that physical and
chemical properties of various atoms could be expressed in terms of properties
of knots such as the knot invariants. Even though Kelvin’s theory did not
hold up, the theory of knots grew as a subfield of combinatorial topology. Tait
classified the knots in terms of the crossing number of a regular projection.
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A regular projection of a knot on a plane is an orthogonal projection
of the knot such that at any crossing in the projection exactly two strands
intersect transversely. Tait made a number of observations about some general
properties of knots which have come to be known as the “Tait conjectures.” In
its simplest form the classification problem for knots can be stated as follows.
Given a projection of a knot, is it possible to decide in finitely many steps
if it is equivalent to an unknot? This question was answered affirmatively by
Haken [182] in 1961. He proposed an algorithm that could decide if a given
projection corresponds to an unknot. However, because of its complexity the
algorithm has not been implemented on a computer even after a half century.
We add that in 1974 Haken and Appel solved the famous four-color problem
for planar maps by making essential use of a computer program to study the
thousands of cases that needed to be checked. A very readable, non-technical
account of their work can be found in [12].

11.2 Invariants of Knots and Links

Let M be a closed orientable 3-manifold. A smooth embedding of S1 in M is
called a knot in M . A link in M is a finite collection of disjoint knots. The
number of disjoint knots in a link is called the number of components of the
link. Thus, a knot can be considered a link with one component. Two links
L, L′ in M are said to be equivalent if there exists a smooth orientation-
preserving automorphism f : M → M such that f(L) = L′. For links with
two or more components we require f to preserve a fixed given ordering of
the components. Such a function f is called an ambient isotopy and L and
L′ are called ambient isotopic. Ambient isotopy is an equivalence relation on
the set of knots in M , and the equivalence class [κ] of a knot κ under this
relation is called the isotopy class of κ. If h : S1 → M is a knot, then its
image κ = h(S1) is also called a knot. A knot type [κ] of a knot κ is defined
to be the isotopy class of κ. As in all classification problems we try to find a
set of invariants of knots that will distinguish different knot types. However,
at this time no such set of invariants of knots is known. Another approach is
to define a suitable “energy” functional on the space of knots and study the
critical points of its gradient flow to identify the knot type of a given knot.
Even though there are several candidates for energy functional there is no
known example which produces an energy minimizer for every knot type.

Knots and links in R3 can also be obtained by using braids. A braid on
n strands (or with n strings, or simply an n-braid) can be thought of as a
set of n pairwise disjoint strings joining n distinct points in one plane with n
distinct points in a parallel plane in R3. Making a suitable choice of planes
and points we make the following definition.

Definition 11.1 Fix a number n ∈ N and let i be an integer such that
1 ≤ i ≤ n. Let Ai (resp., Bi) denote the point in R3 with x-coordinate i lying
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on the x-axis (resp., line y = 0, z = 1). Let σ ∈ Sn, the symmetric group
on the first n natural numbers. A strand from Ai to Bσ(i) is a smooth curve
from Ai to Bσ(i) such that the z coordinate of a point on the curve decreases
monotonically from 1 to 0 as it traces out the curve from Ai to Bσ(i). A
set of n non-intersecting strands from Ai to Bσ(i), 1 ≤ i ≤ n, is called an
n-braid in standard form. Two n-braids are said to be equivalent if they are
ambient isotopic. The set of equivalence classes of n-braids is denoted by Bn.
It is customary to call an element of Bn also an n-braid. It is clear from
the context whether one is referring to an equivalence class or its particular
representative.

The multiplication operation on Bn is induced by concatenation of braids.
If Ai, Bi (resp., A′

i, B
′
i) are the endpoints of braid b1 (resp., b2) then the braid

b1b2 is obtained by gluing the ends Bi of b1 to the starting points A′
i of b2.

This can be put in the standard braid form going from z = 1 to z = 0 by
reparametrization so that b1 runs from z = 1 to z = 1/2 and b2 runs from
z = 1/2 to z = 0. A representative of the unit element is the braid consisting
of n parallel strands from Ai to Bi, 1 ≤ i ≤ n. Taking the mirror image of
b1 in the plane z = 0 gives a braid equivalent to b−1

1 (its parallel translation
along the z-axis by 1 puts it in the standard form. A nontrivial braid has
at least two strands joining Ai and Bj for i �= j. For each i with 1 ≤ i < n
let σi be an n-braid with a strand from Ai to Bi+1 crossing over the strand
from Ai+1 to Bi and with vertical strands from Aj to Bj for j �= i, i + 1.
Then it can be shown that σi and σj are not equivalent whenever i �= j and
that every n-braid can be represented as a product of braids σi and σ−1

i for
1 ≤ i < n; i.e., the n − 1 braids σi generate the braid group Bn. Analysis
of the equivalence relation on braids leads to the relations

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2. (11.1)

Equation (11.1) is called the braid relation, and .

σiσj = σjσi, 1 ≤ i, j ≤ n− 1 and |i− j| > 1 (11.2)

is called the far commutativity relation, for it expresses the fact that the
generators σi, σj commute when the indices i, j are not immediate neighbors.
This discussion leads to the following well-known theorem of M. Artin.

Theorem 11.1 The set Bn with multiplication operation induced by concate-
nation of braids is a group generated by the elements σi, 1 ≤ i ≤ n−1 subject
to the braid relations (11.1) and the far commutativity relations (11.2).

The braid group B2 is the infinite cyclic group generated by σ1 and hence
is isomorphic to Z. For n > 2 the group Bn contains a subgroup isomorphic
to the free group on two generators and is therefore, non-Abelian. The group
B3 is related to the modular group PSL(2,Z) in the following way. It is easy
to check that the elements a = σ1σ2σ1, b = σ1σ2 generate B3 and that the
element c = a2 = b3 generates its center Z(B3). Let f : B3 → SL(2,Z) be
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the mapping defined by

f(a) :=
(

0 1
−1 0

)
, f(b) :=

(
0 1
−1 1

)
.

One can show that f is a surjective homomorphism that maps c to −I2,
where I2 is the identity element. Let f̂ = π ◦ f , where π is the canonical
projection of SL(2,Z) to PSL(2,Z). Then f̂ : B3 → PSL(2,Z) is also a
surjective homomorphism with kernel the center Z(B3). Thus, B3/Z(B3) is
isomorphic to the modular group PSL(2,Z).

The map that sends the braid σi to the transposition (i, i + 1) in the
symmetric group Sn on n letters induces a canonical map π : Bn → Sn. The
kernel, Pn of the surjective map π is called the pure braid group on n
strands. Thus, we have an exact sequence of groups

1→ Pn → Bn → Sn → 1,

where 1 denotes the group containing only the identity element. Braid groups
can also be defined in terms of configuration spaces. Recall that the configura-
tion space of n points in R2 is the space of unordered sequences of n pairwise
distinct points. It is denoted by Cn(R2). General discussion of configuration
spaces is given later in this chapter in defining self-linking invariants. Each
braid b ∈ Bn defines a homotopy class of loops in this space. In fact, we
have an isomorphism of Bn with the fundamental group π1(Cn(R2)) of the
configuration space Cn(R2). The group Bn is also isomorphic to the mapping
class group of the unit disk in R2 = C with n punctures or marked points.
Magnus pointed out that this interpretation of the braid group was known
to Hurwitz. Braids are implicit in his work on monodromy done in 1891.
However, they were defined explicitly by E. Artin in 1925. Hurwitz’s inter-
pretation was rediscovered by Fox and Neuwirth in 1962. Birman’s book [40]
is a classic reference for this and related material. For an updated account,
see Kassel and Turaev [217].

Given an n-braid b with endpoints Ai, Bi we can obtain a link by joining
each Ai and Bi by a smooth curve so that these n curves are non-intersecting
and do not intersect the strands of b. The resulting link is denoted by c(b)
and is said to be obtained by the operation of the closure of braid b. The
question whether every link in R3 is the closure of some braid is answered
by the following classical theorem of Alexander.

Theorem 11.2 The closure map from the set of braids to the set of links
is surjective, i.e., any link (and, in particular, knot) is the closure of some
braid. Moreover, if braids b and b′ are equivalent, then the links c(b) and c(b′)
are equivalent.

The minimum n such that a given link L is the closure of an n-braid is
called the braiding number or braid index of L and is denoted by b(L).
To answer the question of when the closure of a braid is a knot, we consider
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the canonical homomorphism π : Bn → Sn defined above. The following
proposition characterizes when the closure of a braid is a knot.

Proposition 11.3 The closure c(b) of an n-braid b is a knot if and only if
the permutation π(b) has order n in the symmetric group Sn.

In view of the above discussion it is not surprising that invariants of knots
and links should be closely related to representations of the braid group. The
earliest such representation was obtained in the 1930s by Burau. The Burau
representation is a matrix representation over the ring Z[t, t−1] of Laurent
polynomials in t with integer coefficients. We now indicate the construction
of the Burau representation of Bn by matrices of order n. The representation
is trivial for n = 1. For n = 2 the generator σ1 is mapped to the matrix
σ̂1 = U defined by

U :=
(

1− t t
1 0

)
,

For n > 2 the generators σi are mapped to the matrix σ̂i with block diagonal
entries Ii−1, U , and In−i−1, where Ik is the identity matrix of order k for
k �= 0 and I0 is regarded as the empty block and is omitted. For example,
the Burau representation of B3 is defined by

σ̂1 :=

⎛
⎝

1− t t 0
0 1 0
0 0 1

⎞
⎠ , σ̂2 :=

⎛
⎝

1 0 0
0 1− t t
0 1 0

⎞
⎠ ,

It is a classical result that the Burau representation is faithful for n =
3. After extensive work by several mathematicians, it is now known that
the representation is not faithful for n > 4. The case n = 4 is open as of
this writing. The Burau representation of Bn can be used to construct the
Alexander polynomial invariant of the link obtained by the closure c(b) of
the braid b ∈ Bn. After nearly 60 years Jones obtained his link invariant
taking values in Laurent polynomials Z[t, t−1] in t with integer coefficients.
The new representations underlying his invariant are obtained by studying
certain finite-dimensional von Neumann algebras. A special case of these
representations was discovered earlier by Temperley and Lieb in their study of
certain models in statistical mechanics. Many surprising interpretations of the
Jones polynomial have been obtained using ideas coming from conformal field
theory and quantum field theory. Thus we have another example of a result
in physical mathematics. The Lawrence–Krammer–Bigelow representation of
the braid group is a matrix representation of Bn over the ring of Laurent
polynomials Z[t, t−1, q, q−1] in two variables t, q with integer coefficients. This
representation is faithful for all n ≥ 1 and shows that the group Bn is linear,
i.e., it admits an injective homomorphism into the general linear group over
R.

Every link L in M has a tubular neighborhood N(L), which is the union
of smoothly embedded disjoint solid tori D2 × S1, one for each component,
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so that the cores {0} × S1 of the tori form the given link L. The set N(L)
is called a thickening of L. Unless otherwise stated we shall take M to be
S3 ∼= R3∪{∞} and write simply a link instead of a link in S3. The diagrams
of links are drawn as links in R3. Every link L in S3 or R3 can be thickened.
A link diagram of L is a plane projection with crossings marked as over
or under. Two links are equivalent if a link diagram of one can be changed
into the given diagram of the other link by a finite sequence of moves called
the Reidemeister moves. There are three types of Reidemeister moves as
indicated in Figures 11.1, 11.2, and 11.3.

Fig. 11.1 Reidemeister moves of type I

Fig. 11.2 Reidemeister moves of type II

The simplest combinatorial invariant of a knot κ is the crossing number
c(κ). It is defined as the minimum number of crossings in any projection of the
knot κ. The classification of knots up to crossing number 17 is now known
[195]. The crossing numbers for some special families of knots are known;
however, the question of finding the crossing number of an arbitrary knot is
still unanswered. Another combinatorial invariant of a knot κ that is easy to
define is the unknotting number u(κ), the minimum number of crossing
changes in any projection of the knot κ that makes it into a projection of
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Fig. 11.3 Reidemeister moves of type III

the unknot. Upper and lower bounds for u(κ) are known for any knot κ. An
explicit formula for u(κ) for a family of knots called torus knots, conjectured
by Milnor nearly 40 years ago, has been proved recently by a number of
different methods. The 3-manifold S3 \κ is called the knot complement of
κ. The fundamental group π1(S3 \ κ) of the knot complement is an invariant
of the knot κ. It is called the fundamental group of the knot (or simply the
knot group) and is denoted by π1(κ). Equivalent knots have homeomorphic
complements and conversely. However, this result does not extend to links.

A Seifert surface ΣL (or simply Σ) for a link L is a connected compact
orientable surface smoothly embedded in S3 such that its boundary ∂Σ = L.

Theorem 11.4 Every link in S3 bounds a Seifert surface.

The least genus of all Seifert surfaces of a given link L is called the genus
of the link L. For example, the genus of the unknot is 0.

We define an integer invariant of a knot κ, called the signature, by using
its Seifert surface Σκ. Let α1, α2 be two oriented simple loops on Σκ. Let α+

2

be the loop obtained by moving α2 away from Σκ along its positive normal in
S3. We can now associate an integer with the pair (α1, α2) to be the linking
number Lk(α1, α

+
2 ). This induces a bilinear form on H1(Σ;Z). Let Q be the

matrix of this bilinear form with respect to some basis of H1(Σ;Z). Then the
signature sgn(κ) of the knot κ is defined to be the signature of the symmetric
matrix Q+Qt. It can be shown that the signature of a knot is always an even
integer. In fact, sgn(κ) = 2h(κ), where h(κ) is an integer-valued invariant of
the knot κ defined by studying a special class of representations of the knot
group π1(S3 \ κ) into the group SU(2) along the lines of the construction of
the Casson invariant [253].

In the 1920s Alexander gave an algorithm for computing a polynomial
invariant Δκ(t) (a Laurent polynomial in t) of a knot κ, called the Alexander
polynomial, by using its projection on a plane. He also gave its topological
interpretation as an annihilator of a certain cohomology module associated
to the knot κ. In the 1960s Conway defined his polynomial invariant and
gave its relation to the Alexander polynomial. This polynomial is called the
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Alexander–Conway polynomial, or simply the Conway polynomial. The
Alexander–Conway polynomial of an oriented link L is denoted by ∇L(z), or
simply by ∇(z) when L is fixed. By changing a link diagram at one crossing
we can obtain three diagrams corresponding to links L+, L−, and L0, which
are identical except for this crossing (see Figure 11.4).

L+ L− L0

Fig. 11.4 Altering a link at a crossing

We denote the corresponding polynomials of L+, L−, and L0 by ∇+, ∇−
and ∇0 respectively. The Alexander–Conway polynomial is uniquely deter-
mined by the following simple set of axioms.

AC1. Let L and L′ be two oriented links that are ambient isotopic. Then

∇L′(z) = ∇L(z). (11.3)

AC2. Let S1 be the standard unknotted circle embedded in S3. It is usually
referred to as the unknot and is denoted by O. Then

∇O(z) = 1. (11.4)

AC3. The polynomial satisfies the skein relation

∇+(z)−∇−(z) = z∇0(z). (11.5)

We note that the original Alexander polynomial ΔL is related to the
Alexander–Conway polynomial of an oriented link L by the relation

ΔL(t) = ∇L(t1/2 − t−1/2).

Despite these and other major advances in knot theory, the Tait conjec-
tures remained unsettled for more than a century after their formulation.
Then, in the 1980s, Jones discovered his polynomial invariant VL(t), called
the Jones polynomial, while studying von Neumann algebras [210] and
gave its interpretation in terms of statistical mechanics. A state model for
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the Jones polynomial was then given by Kauffman using his bracket poly-
nomial. These new polynomial invariants led to the proofs of most of the
Tait conjectures. As with the earlier invariants, Jones’ definition of his poly-
nomial invariant is algebraic and combinatorial in nature and was based on
representations of the braid groups and related Hecke algebras.

The Jones polynomial Vκ(t) of κ is a Laurent polynomial in t, which is
uniquely determined by a simple set of properties similar to the axioms for
the Alexander–Conway polynomial. More generally, the Jones polynomial
can be defined for any oriented link L as a Laurent polynomial in t1/2 so
that reversing the orientation of all components of L leaves VL unchanged.
In particular, Vκ does not depend on the orientation of the knot κ. For a
fixed link, we denote the Jones polynomial simply by V . Recall that there
are three standard ways to change a link diagram at a crossing point. The
Jones polynomials of the corresponding links are denoted by V+, V− and
V0 respectively. Then the Jones polynomial is characterized by the following
properties:

JO1. Let L and L′ be two oriented links that are ambient isotopic. Then

VL′(t) = VL(t). (11.6)

JO2. Let O denote the unknot. Then

VO(t) = 1. (11.7)

JO3. The polynomial satisfies the skein relation

t−1V+ − tV− = (t1/2 − t−1/2)V0. (11.8)

An important property of the Jones polynomial not shared by the
Alexander–Conway polynomial is its ability to distinguish between a knot
and its mirror image. More precisely, we have the following result. Let κm be
the mirror image of the knot κ. Then

Vκm(t) = Vκ(t−1). (11.9)

Since the Jones polynomial is not symmetric in t and t−1, it follows that in
general

Vκm(t) �= Vκ(t). (11.10)

We note that a knot is called amphichiral (achiral in biochemistry) if
it is equivalent to its mirror image. We shall use the simpler biochemistry
terminology, so a knot that is not equivalent to its mirror image is called
chiral. The condition expressed by (11.10) is sufficient but not necessary
for chirality of a knot. The Jones polynomial did not resolve the following
conjecture by Tait concerning chirality.
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The chirality conjecture: If the crossing number of a knot is odd, then it
is chiral.
A 15-crossing knot which provides a counterexample to the chirality conjec-
ture is given in [195].

There was an interval of nearly 60 years between the discovery of the
Alexander polynomial and the Jones polynomial. Since then a number of
polynomial and other invariants of knots and links have been found. A par-
ticularly interesting one is the two-variable polynomial generalizing the Jones
polynomial V which was defined in [211]. This polynomial is called the HOM-
FLY polynomial (its name formed from the initials of authors of the article
[140]) and is denoted by P . The HOMFLY polynomial P (α, z) satisfies the
skein relation

α−1P+ − αP− = zP0. (11.11)

Both the Jones polynomial VL and the Alexander–Conway polynomial ∇L
are special cases of the HOMFLY polynomial. The precise relations are given
by the following theorem.

Theorem 11.5 Let L be an oriented link. Then the polynomials PL, VL, and
∇L satisfy the relations:

VL(t) = PL(t, t1/2 − t−1/2) and ∇L(z) = PL(1, z).

After defining his polynomial invariant, Jones also established the relation
of some knot invariants with statistical mechanical models [208]. Since then
this has become a very active area of research. We now recall the construction
of a typical statistical mechanics model. Let X denote the configuration space
of the model and let S denote the set (usually with some additional structure)
of internal symmetries. The set S is also called the spin space. A state of the
statistical system (X, S) is an element s ∈ F(X, S). The energy Ek of the
system (X, S) is a functional

Ek : F(X, S)→ R, k ∈ K

where the subscript k ∈ K indicates the dependence of energy on the set
K of auxiliary parameters, such as temperature, pressure, etc. For example,
in the simplest lattice models the energy is often taken to depend only on
the nearest neighboring states and on the ambient temperature, and the spin
space is taken to be S = Z2, corresponding to the up and down directions.
The weighted partition function of the system is defined by

Zk :=
∑
Ek(s)w(s),

where w : F(X, S) → R is a weight function and the sum is taken over
all states s ∈ F(X, S). The partition functions corresponding to different
weights are expected to reflect the properties of the system as a whole. Cal-
culation of the partition functions remains one of the most difficult problems
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in statistical mechanics. In special models the calculation can be carried out
by auxiliary relations satisfied by some subsets of the configuration space.
The star-triangle relations or the corresponding Yang–Baxter equations are
examples of such relations. One obtains a state-model for the Alexander or
the Jones polynomial of a knot by associating to the knot a statistical system
whose partition function gives the corresponding polynomial.

However, these statistical models did not provide a geometrical or topo-
logical interpretation of the polynomial invariants. Such an interpretation
was provided by Witten [405] by applying ideas from quantum field theory
(QFT) to the Chern–Simons Lagrangian. In fact, Witten’s model allows us
to consider the knot and link invariants in any compact 3-manifold M . Wit-
ten’s ideas led to the creation of a new area—which we discussed in Chapter
7—called topological quantum field theory. TQFT, at least formally, allows
us to express topological invariants of manifolds by considering a QFT with a
suitable Lagrangian. An excellent account of several aspects of the geometry
and physics of knots may be found in the books by Atiyah [14] and Kauffman
[218].

We conclude this section by discussing a knot invariant that can be defined
for a special class of knots. In 1978 Bill Thurston [373] created the field of
hyperbolic 3-manifolds. A hyperbolic manifold is a manifold that admits
a metric of constant negative curvature or equivalently a metric of constant
curvature −1. The application of hyperbolic 3-manifolds to knot theory arises
as follows. A knot κ is called hyperbolic if the knot complement S3 \ κ is a
hyperbolic 3-manifold. It can be shown that the knot complement S3 \ κ
of the hyperbolic knot κ has finite hyperbolic volume v(κ). The number
v(κ) is an invariant of the knot κ and can be computed to any degree of
accuracy; however the arithmetic nature of v(κ) is not known. This result also
extends to links. It is known that torus knots are not hyperbolic. The figure
eight knot is the knot with the smallest crossing number that is hyperbolic.
Thurston made a conjecture that effectively states that almost every knot is
hyperbolic. Recently Hoste and Weeks made a table of knots with crossing
number 16 or less by making essential use of hyperbolic geometry. Their
table has more than 1.7 million knots, all but 32 of which are hyperbolic.
Thistlethwaite has obtained the same table without using any hyperbolic
invariants. A fascinating account of their work is given in [195]. We would
like to add that there is a vast body of work on the topology and geometry
of 3-manifolds which was initiated by Thurston. At present the relation of
this work to the methods and results of the gauge theory, quantum groups,
or statistical mechanics approaches to the study of 3-manifolds remains a
mystery. There are some conjectures relating invariants obtained by different
methods. For example, the volume conjecture (due to R. Kashaev, H.
Murakami, and J. Murakami, see [306]) states that the invariant v(κ) of the
hyperbolic knot κ is equal to the limit of a certain function of the colored
Jones polynomial of the knot κ. There is also an extension of the volume
conjecture to links and to non-hyperbolic knots. This extension has been
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verified for special knots and links such as the figure eight knot and the
Borromean rings.

11.3 TQFT Approach to Knot Invariants

In this section we discuss a surprising application of the Chern–Simons the-
ory to the calculation of some invariants of knots and links via TQFT. We
begin with some historical observations. The earliest example of TQFT is the
“derivation” of the Ray–Singer analytic torsion [323,324] in terms of Chern–
Simons theory given in [341], although TQFT was not introduced until later.
The analytic torsion is defined by using determinants of Laplacians on forms
that are regularized by zeta function regularization. It is an anlogue of the
classical Reidemeister torsion of 3-manifolds as generalized to arbitrary man-
ifolds by Franz and de Rham. Reidemeister torsion was the first topological
invariant that could distinguish between spaces that are homotopic but not
homeomorphic. It can be used to classify lens spaces. Ray and Singer conjec-
tured that these two invariants should be the same for compact Riemannian
manifolds. This conjecture was proved independently by Cheeger and Müller
in the late 1970s. See the book [382] by Turaev for further details.

Quantization of classical fields is an area of fundamental importance in
modern mathematical physics. Although there is no satisfactory mathemati-
cal theory of quantization of classical dynamical systems or fields, physicists
have developed several methods of quantization that can be applied to specific
problems. Most important among these is Feynman’s path integral method
of quantization, which has been applied with great success in QED (quan-
tum electrodynamics), the theory of quantization of electromagnetic fields.
On the other hand the recently developed TQFT has been very useful in
defining, interpreting, and calculating new invariants of manifolds. We note
that at present TQFT cannot be considered a mathematical theory and our
presentation is based on a development of the infinite-dimensional calcula-
tions by formal analogy with finite dimensional results. Nevertheless, TQFT
has provided us with new results as well as a fresh perspective on invariants
of low-dimensional manifolds. For example, at this time a geometric inter-
pretation of polynomial invariants of knots and links in 3-manifolds such as
the Jones polynomial can be given only in the context of TQFT.

Recall from Chapter 7 that a quantum field theory may be considered
an assignment of the quantum expectation 〈Φ〈μ to each gauge-invariant
function (i.e., a quantum observable) Φ : A(M) → R. In the Feynman path
integral approach to quantization the quantum expectation 〈Φ〉μ of an ob-
servable is expressed as a ratio of partition functions as follows:

〈Φ〉μ =
Zμ(Φ)
Zμ(1)

. (11.12)
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There are several examples of gauge-invariant functions. For example, pri-
mary characteristic classes evaluated on suitable homology cycles give an
important family of gauge-invariant functions. The instanton number k of
P (M, G) belongs to this family, as it corresponds to the second Chern class
evaluated on the fundamental cycle of M representing the fundamental class
[M ]. The pointwise norm |Fω |x of the gauge field at x ∈ M , the absolute
value |k| of the instanton number k, and the Yang–Mills action are also
gauge-invariant functions. Another important example of a quantum observ-
able is given by the Wilson loop functional, which we will use later in
this section. It is gauge-invariant and hence defines a quantum observable.
Regarding a knot κ as a loop we get a quantum observable Wρ,κ associated
to the knot. For a link L with ordered components κ1, κ1, . . . , κj and corre-
sponding representations ρ1, ρ1, . . . , ρj of G we define the Wilson functional
WL by

WL(ω) :=Wρ1,κ1(ω)Wρ2,κ2(ω) . . .Wρj ,κj (ω), ∀ω ∈ AM .

When M is 3-dimensional, P is trivial (in a non-canonical way). We fix a
trivialization to write P (M, G) = M×G and writeAM forAP (M,G). Then the
group of gauge transformations GP can be identified with the group of smooth
functions from M to G and we denote it simply by GM . The gauge theory
used by Witten in his work is the Chern–Simons theory on a 3-manifold with
gauge group SU(n). The Chern–Simons Lagrangian LCS is defined by

LCS := k
4π tr(A ∧ F − 1

3A ∧A ∧A) = k
4π tr(A ∧ dA + 2

3A ∧A ∧A). (11.13)

Recall that in this case the Chern–Simons action ACS takes the form

ACS :=
∫

M

LCS =
k

4π

∫

M

tr(A ∧ dA + 2
3A ∧A ∧A), (11.14)

where k ∈ R is a coupling constant, A denotes the pull-back to M of the
gauge potential (connection) ω by a section of P , and F = Fω = dωA is the
gauge field (curvature of ω) on M corresponding to the gauge potential A. A
local expression for (11.14) is given by

ACS =
k

4π

∫

M

εαβγ tr(Aα∂βAγ + 2
3AαAβAγ), (11.15)

where Aα = Aa
αTa are the components of the gauge potential with respect

to the local coordinates {xα}, {Ta} is a basis of the Lie algebra su(n) in
the fundamental representation, and εαβγ is the totally skew-symmetric Levi-
Civita symbol with ε123 = 1. Let g ∈ GM be a gauge transformation regarded
as a function from M to SU(n) and define the 1-form θ by

θ := g−1dg = g−1∂μgdxμ.
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Then the gauge transformation Ag of A by g has (local) components

Ag
μ = g−1Aμg + g−1∂μg, 1 ≤ μ ≤ 3. (11.16)

In the physics literature the connected component of the identity Gid ⊂ GM
is called the group of small gauge transformations. A gauge transformation
not belonging to Gid is called a large gauge transformation. By a direct calcu-
lation, one can show that the Chern–Simons action is invariant under small
gauge transformations, i.e.,

ACS(Ag) = ACS(A), ∀g ∈ Gid.

Under a large gauge transformation g the action (11.15) transforms as follows:

ACS(Ag) = ACS(A) + 2πkAWZ , (11.17)

where
AWZ :=

1
24π2

∫

M

εαβγ tr(θαθβθγ) (11.18)

is the Wess–Zumino action functional. It can be shown that the Wess–Zumino
functional is integer-valued and hence, if the Chern–Simons coupling constant
k is taken to be an integer, then we have

eiACS(Ag) = eiACS(A).

The integer k is called the level of the corresponding Chern–Simons the-
ory. The action enters the Feynman path integral in this exponential form.
It follows that the path integral quantization of the Chern–Simons model is
gauge-invariant. This conclusion holds more generally for any compact sim-
ple group G if the coupling constant c(G) is chosen appropriately. The action
is manifestly covariant since the integral involved in its definition is inde-
pendent of the metric on M and this implies that the Chern–Simons theory
is a topological field theory. It is this aspect of the Chern–Simons theory
that plays a fundamental role in our study of knot and link invariants. For
k ∈ N, the transformation law (11.17) implies that the Chern–Simons action
descends to the quotient BM = AM/GM as a function with values in R/Z.
BM is called the moduli space of gauge equivalence classes of connections.
We denote this function by fCS, i.e.,

fCS : BM → R/Z

is defined by
[ω] �→ ACS(ω), ∀[ω] = ωGM ∈ BM . (11.19)

The field equations of the Chern–Simons theory are obtained by setting the
first variation of the action to zero as
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δACS = 0.

The field equations are given by

∗ Fω = 0 or, equivalently, Fω = 0. (11.20)

The calculations leading to the field equations (11.20) also show that the
gradient vector field of the function fCS is given by

grad fCS =
1
2π
∗ F. (11.21)

The gradient flow of fCS plays a fundamental role in the definition of Floer
homology. A discussion of Floer homology and its extensions is given in Chap-
ter 10, following the article [275]. The solutions of the field equations (11.20)
are called the Chern–Simons connections. They are precisely the flat con-
nections.

We take the state space of the Chern–Simons theory to be the moduli
space of gauge potentials BM . The partition function Zk of the theory is
defined by

Zk(Φ) :=
∫

BM

e−iACS(ω)Φ(ω)DA,

where Φ : AP → R is a quantum observable (i.e., a gauge-invariant function)
of the theory and ACS is defined by (11.14). Gauge invariance implies that
Φ defines a function on BM , and we denote this function by the same letter.
The expectation value 〈Φ〉k of the observable Φ is given by

〈Φ〉k :=
Zk(Φ)
Zk(1)

=

∫
BM

e−iACS(ω)Φ(ω)DA∫
BM

e−iACS(ω)DA .

If Zk(1) exists, it provides a numerical invariant of M . For example, for
M = S3 and G = SU(2), using the action (11.14) Witten obtains the follow-
ing expression for this partition function as a function of the level k:

Zk(1) =

√
2

k + 2
sin
(

π

k + 2

)
. (11.22)

This result is a special case of the WRT invariants that we discussed in Chap-
ter 10. These new invariants of 3-manifolds arose as a byproduct of Witten’s
TQFT interpretation of the Jones polynomial as shown next. Taking for Φ the
Wilson loop functionalWρ,κ, where ρ is the fundamental representation of G
and κ is the knot under consideration, leads to the following interpretation
of the Jones polynomial (up to a phase factor):

〈Φ〉k = Vκ(q), where q = e2πi/(k+2).
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For a framed link L, we denote by 〈L〉 the expectation value of the corre-
sponding Wilson loop functional for the Chern–Simons theory of level k and
gauge group SU(n) and with ρi the fundamental representation for all i.
To verify the defining relations for the Jones polynomial of a link L in S3,
Witten starts by considering the Wilson loop functionals for the associated
links L+, L−, L0 and uses TQFT with Chern–Simons Lagrangian to obtain
the relation

α〈L+〉+ β〈L0〉+ γ〈L−〉 = 0, (11.23)

where the coefficients α, β, γ are given by the expressions

α = − exp
(

2πi

n(n + k)

)
, (11.24)

β = − exp
(

πi(2− n− n2)
n(n + k)

)
+ exp

(
πi(2 + n− n2)

n(n + k)

)
, (11.25)

γ = exp(
2πi(1− n2)
n(n + k)

). (11.26)

We note that the calculation of the coefficients α, β, γ is closely related to
the Verlinde fusion rules [393] and 2d conformal field theories. Substituting
the values of α, β, γ into equation (11.23) and canceling a common factor
exp

(
πi(2−n2)
n(n+k)

)
, we get

− tn/2〈L+〉+ (t1/2 − t−1/2)〈L0〉+ t−n/2〈L−〉 = 0, (11.27)

where we have put

t = exp
(

2πi

n + k

)
.

The Laurent polynomial determined by the skein relation (11.27) is called
the Jones–Witten polynomial for gauge group SU(n). For SU(2) Chern–
Simons theory equation (11.27), under the transformation

√
t→ −1/

√
t, goes

over into equation (11.8), which is the skein relation characterizing the Jones
polynomial. The significance of this transformation is related to the choice of
a square root for t. It is more transperent when the quantum group definition
of the Jones polynomial is used. We note that recently the Alexander–Conway
polynomial has also been obtained by the TQFT methods in [146].

If V (n) denotes the Jones–Witten polynomial corresponding to the skein
relation (11.27), then the family of polynomials {V (n)} can be shown to be
equivalent to the two variable HOMFLY polynomial P (α, z).

We remark that the vacuum expectation values of Wilson loop observ-
ables in the Chern–Simons theory have been computed recently up to sec-
ond order of the inverse of the coupling constant. These calculations have
provided a quantum field theoretic definition of certain invariants of knots
and links in 3-manifolds [87, 178]. A geometric formulation of the quan-
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tization of Chern–Simons theory is given in [25]. Another important ap-
proach to link invariants is via solutions of the Yang–Baxter equations
and representations of the corresponding quantum groups (see, for exam-
ple, [221, 223, 294, 317, 326, 380, 383]). For relations between link invari-
ants, conformal field theories and 3-dimensional topology see, for example,
[88, 230,328].

11.4 Vassiliev Invariants of Singular Knots

We define a singular knot s as a knot with at most a finite number n
of double point singularities. Each such singularity can be resolved in two
ways by deforming one of the two crossing threads to an overcrossing or an
undercrossing. We fix a double point p and use orientation to define a knot
s+ (resp., s−) by overcrossing the first (resp., second) time the path passes
the point p. This gives us two singular knots with n− 1 singular points. Let
v denote a knot invariant of a regular (i.e., non-singular) knot. We define a
Vassiliev invariant v of the singular knot s with n singular points inductively
by the formula

v(s) := v(s+)− v(s−) . (11.28)

This definition allows us to express v as a finite sum of the invariant v on
a set of regular knots obtained by the complete resolution of the singular
knot s into regular knots. The definition can be extended to oriented links
by applying it to each component knot.

Definition 11.2 We say that a Vassiliev invariant v is of order at most n
if v is zero on any singular knot with more than n double points. The order
of a Vassiliev invariant v denoted by ord(v) is the largest natural number m
such that v is not zero on some singular knot with exactly m double points.

The existence of nonzero Vassiliev invariants of a given finite order was
established in [391]. In fact, knot polynomials such as the Jones polynomial
lead to Vassiliev invariants as follows:

Theorem 11.6 Let VK(q) be the Jones polynomial of the knot K. Put q = ex

and expand VK as a power series in x:

VK(ex) =
∞∑
n=0

vnx
n.

Then the coefficient vn of xn in the series expansion is a Vassiliev invariant
of order n.

The set V of Vassiliev invariants has a natural structure of an infinite-
dimensional real vector space. It is filtered by a sequence of finite-dimensional
vector spaces Vn := {v ∈ V | ord(v) ≤ n}, n ≥ 0. That is
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V =
⊕

Vn and V0 ⊂ V1 ⊂ V2 · · · .

We also have the following theorem due to Kontsevich.

Theorem 11.7 The set Vn is non-empty and forms a real vector space. Fur-
thermore the quotient space Vn/Vn−1 is isomorphic to the space of linear
functions on the n-chord diagrams modulo certain relations (one and four
term relations).

There are several open questions about Vassiliev invariants. For example:
What can one say about dn = dim Vn and the quantum dimension dimq V =∑

dnq
n of the real vector spaces V ?

11.5 Self-linking Invariants of Knots

As we indicated in Chapter 7, one of the earliest investigations in combi-
natorial knot theory is contained in several unpublished notes written by
Gauss between 1825 and 1844 and published posthumously. In obtaining a
topological invariant by using a physical field theory, Gauss had anticipated
topological field theory by almost 150 years. Even the term “topology” was
not used then. Gauss’s linking number formula can also be interpreted as
the equality of topological and analytic degree of a suitable function. Start-
ing with this a far-reaching generalization of the Gauss integral to higher
self-linking integrals was obtained by Bott, Taubes, and Cattaneo. We now
discuss their work.

Let us recall the relevant definitions. Let X, Y be two closed oriented n-
manifolds. Let q ∈ Y be a regular value of a smooth function f : X → Y .
Then f−1(q) has finitely many points p1, p2, . . . , pj . For each i, 1 ≤ i ≤ j,
define σi = 1 (resp., σi = −1) if the differential Df : TX → TY restricted to
the tangent space at pi is orientation-preserving (resp., reversing). Then the
differential topological definition of the mapping degree, or simply degree,
of f is given by

deg(f) :=
j∑
i=1

σi. (11.29)

For the analytic definition we choose a volume form v on Y and define

deg(f) :=

∫
X

f∗v∫
Y

v
. (11.30)

In the analytic definition one often takes a normalized volume form so that∫
v = 1. This gives a simpler formula for the degree. It follows from the well

known de Rham’s theorem that the topological and analytic definitions give
the same result. To apply this result to deduce the Gauss formula, denote
the two curves by C, C′. Then the map
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λ : C × C′ → S2

defined by

λ(r, r′) :=
(r− r′)
|r− r′| , ∀(r, r′) ∈ C × C′

is well-defined by the disjointness of C and C′. If ω denotes the standard
volume form on S2, then we have

ω =
xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

(x2 + y2 + z2)3/2
.

The pull-back λ∗(ω) of ω to C × C′ is precisely the integrand in the Gauss
formula and

∫
ω = 4π. It is easy to check that the topological degree of λ

equals the linking number m. Let us define the Gauss form φ on C ×C′ by

φ :=
1
4π

λ∗(ω).

Then the Gauss formula for the linking number can be rewritten as
∫

φ = m.

Now the map λ is easily seen to extend to the 6-dimensional space C0
2 (R3)

defined by

C0
2 (R3) := R3 ×R3 \ {(x, x) | x ∈ R3} = {(x1, x2) ∈ R3 ×R3 | x1 �= x2}.

The space C0
2 (R3) is called the configuration space of two distinct points

in R3. Denoting by λ12 the extension of λ to the configuration space we can
define the Gauss form φ12 on the space C0

2 (R3) by

φ12 :=
1
4π

λ∗
12(ω). (11.31)

The definition of the space C0
2 (R3) extends naturally to define C0

n(X), the
configuration space of n distinct points in the manifold X as follows:

C0
n(X) := {(x1, x2, . . . , xn) ∈ Xn | xi �= xj for i �= j, 1 ≤ i, j ≤ n}.

In [149] it is shown how to obtain a functorial compactification Cn(X) of
the configuration space C0

n(X) in the algebraic geometry setting. A detailed
account of the geometry and topology of configuration spaces of points on a
manifold with special attention to Rn and Sn is given by Fadell and Husseini
in [121]. In his lecture at the Geometry and Physics Workshop at MSRI in
Berkeley (January 1994), Bott explained how the configuration spaces enter
in the study of embedding problems and, in particular, in the calculation of
embedding invariants. Let f : X ↪→ Y be an embedding. Then f induces
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embeddings of Cartesian products fn : Xn ↪→ Y n, n ∈ N. The maps fn give
embeddings of configuration spaces C0

n(X) ↪→ C0
n(Y ), n ∈ N by restriction.

These maps in turn extend to the compactifications giving a family of maps

Cf
n : Cn(X)→ Cn(Y ), n ∈ N.

It is these maps Cf
n that play a fundamental role in the study of embedding

invariants. As we have seen above, the Gauss formula for the linking number
is an example of such a calculation. These ideas are used in [54] to obtain
self-linking invariants of knots. Configuration spaces have also been used in
the work of Bott and Cattaneo [52, 53] to study integral invariants of 3-
manifolds. The first step is to observe that the λ12 defined in (11.31) can
be defined on any two factors in the configuration space C0

n(R3) to obtain a
family of maps λij and these in turn can be used to define the Gauss forms
φij , i �= j, 1 ≤ i, j ≤ n,

φij :=
1
4π

λ∗
ij(ω), where λij(x1, x2, . . . , xn) :=

xi − xj
|xi − xj |

∈ S2. (11.32)

Let Kf denote the parametrized knot

f : S1 → R3 with
∣∣∣∣
df

dt

∣∣∣∣ = 1, ∀t ∈ S1.

Then we can use Cf
n to pull back forms φij to C0

n(S1) as well as to the spaces
C0
n,m(R3) of n + m distinct points in R3 of which only the first n are on S1.

These forms extend to the compactifications of the respective spaces and we
continue to denote them by the same symbols. Integrals of forms obtained by
products of the φij over suitable spaces are called the self-linking integrals. In
the physics literature self-linking integrals and invariants for the case n = 4
have appeared in the study of perturbative aspects of the Chern–Simons field
theory in [30, 31, 177, 178]. A detailed study of the Chern–Simons perturba-
tion theory from a geometric and topological point of view may be found in
[25, 24]. The self-linking invariant for n = 4 can be obtained by using the
Gauss forms φij as follows: Let K denote the space of all parametrized knots.
Then the Gauss forms pull back to the product K×C4(S1), which fibers over
K by the projection π1 on the first factor. Let α denote the result of inte-
grating the 4-form φ13 ∧φ24 along the fibers of π1. While α is well-defined, it
is not locally constant (i.e., dα �= 0) and hence does not define a knot invari-
ant. The necessary correction term β is obtained by integrating the 6-form
φ14 ∧ φ24 ∧ φ34 over the space C3,1(R3). In [54] it is shown that α/4 − β/3
is locally constant on K and hence defines a knot invariant. It turns out that
this invariant belongs to a family of knot invariants, called finite-type in-
variants, defined by Vassiliev [391], which we discussed in Section 11.4 (see
also [13]). In [235] Gauss forms with different normalization are used in the
formula for this invariant and it is stated that the invariant is an integer equal
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to the second coefficient of the Alexander–Conway polynomial of the knot.
Kontsevich views the self-linking invariant formula as forming a small part of
a very broad program to relate the invariants of low-dimensional manifolds,
homotopical algebras, and non-commutative geometry with topological field
theories and the calculus of Feynman diagrams. It seems that the full real-
ization of this program will require the best efforts of mathematicians and
physicists in the new millennium.

11.6 Categorification of the Jones Polynomial

As we discussed earlier, the discovery of the Jones polynomial invariant of
links renewed interest and greatly increased research activity towards finding
new invariants of links. Witten’s work gave a new interpretation in terms
of topological quantum field theory and in the process led to new invariants
of 3-manifolds. Reshetikhin and Turaev gave a precise mathematical defini-
tion of these invariants (now called WRT invariants) in terms of representa-
tions of the quantum group slq(2,C) (a Hopf algebra deformation of the Lie
algebra sl(2,C)). Quantum groups were discovered independently by Drin-
feld and Jimbo. By the early 1990s a number of invariants were constructed
starting with the pair (L, g), where L is a link with components colored by
representations of the complex simple Lie algebra g. Many (but not all) of
these invariants are expressible as Laurent polynomials in a formal variable q.
These polynomial invariants have representation-theoretic interpretation in
terms of intertwiners between tensor products of irreducible representations
of the quantum group Uq(g) (a Hopf algebra deformation of the universal
enveloping algebra of g). These invariants are often referred to as quantum
invariants of links and 3-manifolds. They form part of a new (rather loosely
defined) area of mathematics called quantum topology.

In modern mathematics the language of category theory is often used
to discuss properties of different mathematical structures in a unified way.
In recent years category theory and categorical constructions have found
applications in other branches of mathematics and also in theoretical physics.
This has developed into an extensive area of research. In fact, as we siaw
in Chapter 7, the axiomatic formulation of TQFT is given by the use of
cobordism categories. We will use a special case of it in our discussion of
Khovanov homology.

We begin by recalling that a categorification of an invariant I is the con-
struction of a suitable (co)homology H∗ such that its Euler characteristic
χ(H∗) (the alternating sum of the ranks of (co)homology groups) equals I.
Historically, the Euler characteristic was defined and understood well before
the advent of algebraic topology. Theorema egregium of Gauss and the closely
related Gauss–Bonnet theorem and its generalization by Chern give a geomet-
ric interpretation of the Euler characteristic χ(M) of a manifold M . They
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can be regarded as precursors of Chern–Weil theory as well as index the-
ory. Categorification χ(H∗(M)) of this Euler characteristic χ(M) by various
(co)homology theories H∗(M) came much later. A well-known recent exam-
ple that we have discussed is the categorification of the Casson invariant by
the Fukaya–Floer homology. Categorification of quantum invariants such as
knot polynomials requires the use of quantum Euler characteristic and multi-
graded knot homologies. Khovanov [219] has obtained a categorification of
the Jones polynomial VL(q) by constructing a bi-graded sl(2)-homology Hi,j

determined by the link L. It is called the Khovanov homology of the link L
and is denoted by KH(L). The Khovanov polynomial KhL(t, q) is defined
by

KhL(t, q) =
∑
i,j

tjqi dimHi,j . (11.33)

It can be thought of as a two-variable generalization of the Poincaré polyno-
mial. The quantum or graded Euler characteristic of the Khovanov homology
equals the non-normalized Jones polynomial. That is,

V̂L(q) = χq(KH(L)) =
∑
i,j

(−1)jqi dimHi,j .

Khovanov’s construction follows Kauffman’s state-sum model of the link
L and his alternative definition of the Jones polynomial. Let L̂ be a regular
projection of L with n = n+ + n− labeled crossings. At each crossing we
can define two resolutions or states, the vertical or 1-state and horizontal or
0-state. Thus, there are 2n total resolutions of L̂ which can be put into a one-
to-one correspondence with the vertices of an n-dimensional unit cube. For
each vertex x let |x| be the sum of its coordinates and let c(x) be the number
of disjoint circles in the resolution L̂x of L̂ determined by x. Kauffman’s
state-sum expression for the non-normalized Jones polynomial V̂ (L) can be
written as follows:

V̂L(q) = (−1)n−q(n+−2n−)
∑

(−q)|x|(q + q−1)c(x) , (11.34)

where the sum is taken over all the vertices x of the cube. Dividing this by the
unknot value (q + q−1) gives the usual normalized Jones polynomial V (L).
The Khovanov complex can be constructed using 2-dimensional TQFT and
related Frobenius algebra as follows: Let V be a graded vector space over
a fixed ground field K, generated by two basis vectors v± with respective
degrees ±1. The total resolution associates to each vertex x a 1-dimensional
manifold Mx consisting of c(x) disjoint circles. We can construct a (1 +
1)-dimensional TQFT (along the lines of Atiyah–Segal axioms discussed in
Chapter 7) by associating to each edge of the cube a cobordism as follows:
If xy is an edge of the cube we can get a pair of pants cobordism from Mx

to My by noting that a circle at x can split into two at y or two circles at x
can fuse into one at y. If a circle goes to a circle then the cylinder provides



11.6 Categorification of the Jones Polynomial 373

the cobordism. To the manifold Mx at each vertex x we associate the graded
vector space

Vx(L) := V ⊗c(x){|x|}, (11.35)

where {k} is the degree shift by k. We define the Frobenius structure (see
the book [227] by Kock for Frobenius algebras and their relation to TQFT)
on V as follows. Multiplication m : V ⊗ V → V is defined by

m(v+ ⊗ v+) = v+, m(v+ ⊗ v−) = v−,

m(v− ⊗ v+) = v−, m(v− ⊗ v−) = 0.

Co-multiplication Δ : V → V ⊗ V is defined by

Δ(v+) = v+ ⊗ v− + v− ⊗ v+, Δ(v−) = v− ⊗ v−.

Thus, v+ is the unit. The co-unit δ ∈ V ∗ is defined by mapping v+ to 0
and v− to 1 in the base field. The rth chain group Cr(L) in the Khovanov
complex is the direct sum of all vector spaces Vx(L), where |x| = r, and the
differential is defined by the Frobenius structure. Thus,

Cr(L) := ⊕|x|=rVx(L). (11.36)

We remark that the TQFT used here corresponds to the Frobenius alge-
bra structure on V defined above. The rth homology group of the Khovanov
complex is denoted by KHr. Khovanov proved that the homology is inde-
pendent of the various choices made in defining it. Thus, we have the next
theorem.

Theorem 11.8 The homology groups KHr are link invariants. In particular,
the Khovanov polynomial

KhL(t, q) =
∑
j

tj dimq(KHj)

is a link invariant that specializes to the non-normalized Jones polynomial.
The Khovanov polynomial is strictly stronger than the Jones polynomial.

We note that the knots 942 and 10125 are chiral. Their chirality is de-
tected by the Khovanov polynomial but not by the Jones polynomial. Also,
there are several pairs of knots with the same Jones polynomials but dif-
ferent Khovanov polynomials. For example (51, 10132) is such a pair. Using
equations (11.35) and (11.36) and the algebra structure on V , we can re-
duce the calculation of the Khovanov complex to an algorithm. A computer
program implementing such an algorithm is discussed in [32]. A table of Kho-
vanov polynomials for knots and links up to 11 crossings is also given there.
We now illustrate Khovanov’s categorification of the Jones polynomial of the
right-handed trefoil knot 31.
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Example 11.1 (Categorification of V (31)) For the standard diagram of the
trefoil 31, we have n = n+ = 3 and n− = 0. The quantum dimensions of the
non-zero terms of the Khovanov complex with the shift factor included are
given by

C0 = (q + q−1)2, C1 = 3q(q + q−1), C2 = 3q2(q + q−1)2, C3 = q3(q + q−1)3,

and Ci = 0 for all other i ∈ Z. The non-normalized Jones polynomial can be
obtained by using the above chain complex (with differential induced by the
Frobenius algebra defined earlier) or directly from (11.34) giving

V̂L(q) = (q + q3 + q5 − q9). (11.37)

The normalized or standard Jones polynomial is then given by

VL(q) =
q + q3 + q5 − q9

q + q−1
= q2 + q6 − q8.

By direct computation or using the program in [32] we obtain the following
formula for the Khovanov polynomial of the trefoil

Kh(t, q) = q + q3 + t2q5 + t3q9, Kh(−1, q) = χq = V̂L(q).

Based on computations using the program described in [32], Khovanov,
Garoufalidis, and Bar-Natan (BKG) have formulated some conjectures on
the structure of Khovanov polynomials over different base fields. We now
state these conjectures.

The BKG Conjectures: For any prime knot κ there exists an even integer
s = s(κ) and a polynomial Kh′

κ(t, q) with only non-negative coefficients such
that

1. over the base field K = Q,

Khκ(t, q) = qs−1[1 + q2 + (1 + tq4)Kh′
κ(t, q)]

2. over the base field K = Z2,

Khκ(t, q) = qs−1(1 + q2)[1 + (1 + tq2)Kh′
κ(t, q)]

3. moreover, if the knot κ is alternating, then s(κ) is the signature of the
knot and Kh′

κ(t, q) contains only powers of tq2.

The conjectured results are in agreement with all the known values of the
Khovanov polynomials.

If S ⊂ R4 is an oriented surface cobordism between links L1 and L2 then it
induces a homomorphism of Khovanov homologies of links L1 and L2. These
homomorphisms define a functor from the category of link cobordisms to
the category of bi-graded Abelian groups [205]. Khovanov homology extends
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to colored links (i.e., oriented links with components labeled by irreducible
finite-dimensional representations of sl(2)) to give a categorification of the
colored Jones polynomial. Khovanov and Rozansky have defined an sl(n)-
homology for links colored by either the defining representation or its dual.
This gives categorification of the specialization of the HOMFLY polynomial
P (α, q) with a = qn. The sequence of such specializations for n ∈ N would
categorify the two variable HOMFLY polynomial P (α, q). For n = 0 the
theory coincides with the Heegaard–Floer homology of Ozsváth and Szabo
[309].

In the 1990s Reshetikhin, Turaev, and other mathematicians obtained sev-
eral quantum invariants of triples (g, L, M), where g is a simple Lie algebra,
L ⊂ M is an oriented, framed link with components labeled by irreducible
representations of g, and M is a 2-framed 3-manifold. In particular, there are
polynomial invariants 〈L〉 that take values in Z[q−1, q]. Khovanov has conjec-
tured that at least for some classes of Lie algebras (e.g., simply laced) there
exists a bi-graded homology theory of labeled links such that the polynomial
invariant < L > is the quantum Euler characteristic of this homology. It
should define a functor from the category of framed link cobordisms to the
category of bigraded Abelian groups. In particular, the homology of the un-
knot labeled by an irreducible representation U of g should be a Frobenius
algebra of dim(U).





Epilogue

It is well known that the roots of “physical mathematics” go back to the
very beginning of human attempts to understand nature. The abstraction of
observations in the motion of heavenly bodies led to the early developments
in mathematics. Indeed, mathematics was an integral part of natural philos-
ophy. Rapid growth of the physical sciences aided by technological progress
and increasing abstraction in mathematical research caused a separation of
the sciences and mathematics in the twentieth century. Physicists’ methods
were often rejected by mathematicians as imprecise, and mathematicians’
approaches to physical theories were not understood by physicists. We have
already given many examples of this. However, theoretical physics did influ-
ence development of some areas of mathematics. Two fundamental physical
theories, relativity and quantum theory, now over a century old, sustained
interest in geometry and functional analysis and group theory. Yang–Mills
theory, now over half a century old, was abandoned for many years before
its relation to the theory of connections in a fiber bundle was found. It has
paid rich dividends to the geometric topology of low-dimensional manifolds
in the last quarter century. Secondary characteristic classes were given less
than secondary attention when they were introduced. These classes turn out
to be the starting point of Chern–Simons theory.

A major conference celebrating 20 years of Chern–Simons theory orga-
nized by the Max Planck and the Hausdorff institutes in Bonn was held in
August 2009. It drew research workers in mathematics and theoretical physics
from around the world. The work presented under the umbrella of this sin-
gle topic shows that the 30 year old marriage between theoretical physics
and mathematics is still going strong. Many areas such as statistical mechan-
ics, conformal field theory, and string theory not included in this work have
already led to new developments in mathematics.

The scope of physical mathematics continues to expand rapidly. Even for
the topics that we have considered in this book a number of new results are
appearing and new connections between old results are emerging. In fact, the
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recent lecture1 by Curtis McMullen (Fields Medal, ICM 1998, Berlin) was
entitled “From Platonic Solids to Quantum Topology.” McMullen weaves
a fascinating tale from ancient to modern mathematics pointing out unex-
pected links between various areas of mathematics and theoretical physics.
He concludes with the statement of a special case of the volume conjecture,
interpreting it as the equality between a gauge-theoretic invariant and a topo-
logical gravity invariant.

In view of all this activity we might liken this book with a modern tour
through many countries in a few days. When you return home you can look
at the pictures, think of what parts you enjoyed and then decide where you
would like to spend more time. I hope that readers found several parts en-
joyable and perhaps some that they may want to explore further. The vast
and exciting landscape of physical mathematics is open for exploration.

We began this book with a poem dedicated to the memory of my mother
and we conclude with a poem which touches upon some of the great discov-
eries that have shaped our understanding of nature.

In the beginning

God said:
Let there be gauge theories!

And there was light,
clear and bright
followed by particles
fundamental or otherwise.

They jostled along merrily,
sometimes weakly, sometimes strongly,
creating and annihilating things
small and big.

They hurtled along paths
as straight as could be.
And it was called
the miracle gravity.

Three fundamental forces
united in the standard model
now wait patiently to be
tied up with the fourth.

1 The 2009 Reimar Lüst lecture in Bonn delivered on June 12.



Appendix A

Correlation of Terminology

As we remarked earlier, gauge theories and the theory of connections were
developed independently by physicists and mathematicians, and as such have
no standard notation. This is also true of other theories. To help the reader
we present a table describing the correlation of terminology between physics
and mathematics, prepared along the lines of Trautman [378] and [409].

Physics Mathematics
Space-time Lorentz 4-manifold M

Euclidean space-time Riemannian 4-manifold M

Gauge group G Structure group of a principal
bundle P (M, G) over M

Space of phase factors Total space of the bundle
Gauge group bundle Ad(P ) = P ×Ad G, where Ad is

the adjoint action of G on itself
Gauge transformation A section of the bundle Ad(P )
Gauge algebra bundle ad(P ) = P ×ad g, where ad is

the adjoint action of G on g
Infinitesimal gauge A section of the bundle ad(P )

transformation
Gauge potential ω on P Connection 1-form ω ∈ Λ1(P,g)
Global gauge s A section of the bundle P (M, G)
Gauge potential As on M A = s∗(ω)
Local gauge t A section of the bundle P (M, G),

over an open set U ⊂M .
Local gauge potential At At = t∗(ω)
Gauge field Ω on P Curvature dωω = Ω ∈ Λ2(P,g)
Gauge field Fω on M The 2-form Fω ∈ Λ2(M, ad(P ))

associated to Ω

Group of projectable DiffM (P ) = {f ∈ Diff(P ) |
transformations f covers fM ∈ Diff(M)}
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Correlation of Terminology (continued)

Physics Mathematics
Group of generalized Aut(P ) = {f ∈ Diff(P ) |

gauge transformations f is G-equivariant}
Group G of gauge Aut0(P ) = {f ∈ Aut(P ) |

transformations fM = id ∈ Diff(M)}
Group G0 ⊂ G, of Subgroup of Aut0(P ) of

based gauge transformations based bundle automorphisms
Group Gc, of effective The quotient group of G

gauge transformations by its center Z(G)
Gauge algebra LG Lie algebra Γ (adP )
Generalized Higgs field φr A section of the associated

bundle E(M, F, r, P )
Higgs field φ φr, with r the fundamental

representation
Bianchi identities for the dωFω = 0

gauge field Fω
Yang–Mills equations for Fω δωFω = 0
Instanton (resp., anti-instanton) ∗Fω = ±Fω, where ∗ is

equations on a 4-manifold M the Hodge operator
Instanton number of P (M, G) The Chern class c1(P )
BPST instanton Canonical SU(2)-connection

on the quaternionic Hopf
fibration of S7 over S4

Dirac monopole Canonical U(1)-connection on
the Hopf fibration of S3

Inertial frames on a The bundle O(M, g) of
space-time manifold (M, g) orthonormal frames on M

Gravitational potential Levi-Civita connection λ
on O(M, g)

Gravitational field The curvature Rλ of λ

Gravitational instanton [Rλ, ∗] = 0, where ∗ is
equations the Hodge operator

Gravitational instanton Einstein space
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Background Notes

This appendix contains material that might have hindered the exposition of
various arguments in the text. It contains some historical observations which
I found interesting and which throw additional light on the origin of concepts,
nomenclature, and notation. It also includes biographical notes on some of
the scientists whose work has influenced me over the years or are mentioned
in the main body of the text.

1. Bernoulli numbers
Bernoulli numbers Bn for n ≥ 0 are defined by the formal power series

x

ex − 1
=

∞∑
n=0

Bnx
n

n!
.

Expanding the power series on the left and comparing its coefficients with
those on the right, we get the Bernoulli numbers. Note that Bn = 0 for
odd n > 1.

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

,

B10 =
5
66

, B12 = − 691
2730

, B14 =
7
6
, B16 = −3617

510
, B18 =

43,867
798

.

Bernoulli numbers satisfy the following recurrence relation

B0 = 1, Bn = − 1
n + 1

n−1∑
k=0

(
n + 1

k

)
Bk.

This recurrence relation provides a simple but slow algorithm for comput-
ing Bn. Bernoulli numbers seem to attract both amateur and professional
mathematician. Srinavasa Ramanujan’s first paper was on Bernoulli num-
bers. He proved several interesting results but also made a conjecture that
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turned out to be false. For more information about the Bernoulli numbers,
see the website (www.bernoulli.org).

An important property of the Bernoulli numbers is their appearence in
the values of Euler’s zeta function for even natural numbers 2n, n ∈ N.
Euler defined and proved a product formula for the zeta function

ζ(s) :=
∞∑
m=1

m−s =
∏
p

(1− p−s), s > 1,

where the product is over all prime numbers p. He evaluated the zeta
function for all even numbers to obtain the following formula:

ζ(2n) = − (2πi)2n

2(2n)!
B2n.

He also computed approximate values of the zeta function at odd numbers.
There is no known formula for these values similar to the formula for even
numbers. Even the arithmetic nature of ζ(3) was unknown until Apery’s
proof of its irrationality. The nature of other zeta values is unknown.

Riemann generalized Euler’s definition to complex values of the variable
s. He proved that this zeta function can be extended to the entire complex
plane as a meromorphic function and obtained a functional equation for it.
The extended zeta function has zeros at negative even integers. These zeros
are called the trivial zeros. Riemann conjectured that all the non-trivial
zeros of the zeta function have real part 1/2. This conjecture is known as
the Riemann hypothesis. It is one of the open problems on the Clay
Prize list. For a complete list of Clay mathematics prize problems, see the
website (www.claymath.org).

2. Bourbaki
The first world war had a devastating effect on science and mathematics
in France. Jean Dieudonné told me that he and his best friend Henri
Cartan followed the course on differential geometry by Elie Cartan, but
they did not understand much of what he was doing. They turned to their
senior friend André Weil for help. Even so Dieudonné decided to opt for
taking the examination in synthetic geometry. Graduates had large gaps
in their knowledge. After graduation the friends were scatterred around
France. Weil and H. Cartan were teaching calculus in Strasbourg using E.
Goursat’s well known text. Cartan turned to Weil for advice on the course
so frequently that Weil decided it was time to write a new treatise for the
course. Weil called some of his old friends (Jean Delsarte, Dieudonné, and
Claude Chevalley) to join him and H. Cartan with the simple idea to write
a new text to replace the text by Goursat.

This is the story of the birth of Bourbaki. The young men eager to finish
this simple project had no idea what they were getting into. After a few
meetings they realized that they had to start from scratch and present all
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the essentials of mathematics then known. They believed that they would
have the first draft of this work in three years. They met for their first
congress in 1935. Eventually, they chose to use the name “Nicholas Bour-
baki” for their group, an invented name. It went on to become the most
famous group of mathematicians in the history of mathematics. Bourbaki’s
founders were among the greatest mathematicians of the twentieth century.
Their work changed the way mathemtics was done and presented. Their
active participation in the Bourbaki group ended when a member turned
50 (this was the only rule of Bourbaki). The first chapter of Bourbaki’s
nine volumes (consisting of 40 books) came out four years later, rather
than three. The last volume “Spectral Theory” was published in 1983. For
a long time the membership and the work of the Bourbaki group remained
a well guarded secret. Jean Dieudonné broke the silence in his article [100].
All the members were called upon to write various drafts of the chapters
but the final version for printing was prepared by Dieudonné. (This ex-
plains the uniformity of the style through most of the forty books written
by Bourbaki.) Over the years membership in the Bourbaki group changed
to include some of the most influential mathematicians of the twentieth
century such as A. Grothendieck, S. Lang, J. P. Serre, and L. Schwartz.

The rapid progress in the physical sciences and increasing abstraction in
mathematics caused an almost complete separation of physics and mathe-
matics. Even the mathematics used in theoretical physics did not have the
rigor required in modern mathematics. Extreme generality in Bourbaki
infurianted many mathematicians. For example, nobody had ever studied
Euclidean geometry as a special case of the theory of Hermitian opera-
tors in Hilbert space even though Dieudonné says in [100] that this is
well known. In his article [99] on the development of modern mathematics
Dieudonné was stressing the fact that mathematics in the second half of
the twentieth century had become a self sustaining field of knowledge, not
depending on applications to other sciences. Thus, while the development
of mathematics since antiquity to the first half of the twentieth century
was strongly influenced by developments in the physical sciences, a new
chapter in the history of mathematics had now begun.

As we pointed out in the preface, this article is often quoted to show
that the abstraction stressed by Bourbaki was the major cause of the
split between mathematics and the physical sciences. In fact, in the same
article Dieudonné clearly stated that a dialogue with other sciences, such
as theoretical physics, may be beneficial to all parties. He did not live to
see such a dialogue or to observe that any dialogue has been far more
beneficial to the mathematics in the last quarter century. I would like to
add that in 2001 a physics seminar “Le Séminaire Poincaré” modeled after
the well-known “Séminaire Bourbaki” was created by the Association des
Collaborateurs de Nicolas Bourbaki.
I had several long discussions with Prof. Dieudonne. Most of the time,
I asked the questions and he never tired of giving detailed answers. He
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was an embodiment of history. He spoke many languages fluently and had
phenomenal memory. He enjoyed Indian food and was a frequent dinner
guest at our home. This created a rather informal setting for our discus-
sions. Early on I asked him about a statement in the preface to the first
volume of Bourbaki. It said that no background in university mathematics
was necessary to read these books. I asked him if there was any example
of this. He immediately replied in the affirmative and gave the following
account. There was a high school student in Belgium whom the mathe-
matics teacher found quite a handful. So he gave him Bourbaki’s book
on set theory to read over the holidays. When the school reopened the
student reported that he enjoyed the book very much but found out that
he could prove one of the stated axioms from the others. The teacher was
totally unprepared for this and decided to send a letter to Bourbaki with
his student’s proof. Dieudonné (the unofficial secretary of Bourbaki) knew
that the group had not started from a minimal set of axioms. He checked
and found the proof correct. The student’s name is Pierre Degline (b.
1944, Fields medal, ICM 1978, Helsinki) who is now a professor of math-
ematics at IAS (the Institute for Advanced Study), Princeton. I came to
know Prof. Degline during my visits to IAS, especially during the special
year on QFT and string theory. During a social evening, I finally found the
courage to ask him about the above story. He was very surprised and asked
me how I knew it. I explained that I had heard it from Prof. Dieudonné
during one of his visits to my home. To this day I have never heard of any
other person who started to read Bourbaki before entering the university.

3. Fields Medals
It is well known that there is no Nobel Prize in mathematics. There are
several stories about why this queen of sciences was omitted, most of them
unsupported by evidence. Many mathematicians wanted an internation-
ally recognized prize comparable in importance to the highly regarded No-
bel Prize in the sciences and other areas. Canadian mathematician John
Charles Fields actively pursued this idea as chairman of the committee
set up for the purpose of organizing the ICM 1924 in Toronto. The idea
of awarding a medal was well supported by several countries. The Fields’
committee prepared an outline of principles for awarding the medals. The
current rule that the awardee not be more than 40 years old at the time
the award is granted stems from the principle that the award was to be in
recognition of work already done, as well as to encourage further achieve-
ment on the part of the recipient. Another statement indicated that the
medals should be as purely international and impersonal as possible and
not be attached in any way to the name of any country, institution, or
person.

Fields died before the opening of the ICM 1932 in Zürich opened, but
the proposal was accepted by the congress. The medal became known as
the Fields Medal (against Fields’s wishes) since it was awarded for the
first time at ICM 1936 in Oslo to Lars Ahlfors and Jesse Douglas. On
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one side of the medal is engraved a laurel branch and a diagram of a
sphere contained in a cylinder from an engraving thought to have been
on Archimedes’ tomb. The Latin inscription on it may be translated as
“Mathematicians, having congregated from the whole world, awarded (this
medal) because of outstanding writings.” On the obverse is the head of
Archimedes surrounded by the Latin inscription from the first century
Roman poet Manilius’s Astronomica. It may be translated as “to pass
beyond your understanding and make yourself master of the universe.” The
complete passage from which this phrase is taken is strikingly similar to
verses in many parts of the Vedas, the ancient Indian scriptures. Manilius
writes:

The object of your quest is god; you are seeking to scale the skies
and though born beneath the rule of fate, to gain knowledge of that
fate; you are seeking to pass beyond your understanding and make
yourself master of the universe. The toil involved matches the reward
to be won, nor are such high attainments secured without a price.

The Fields medalists have certainly fulfilled the expectations for contin-
ued achievements. However, the monetary value (currently about $15,000
Canadian) makes it a poor cousin to the Nobel prize, but is consistent with
that old adage: “One does not go into mathematics to become rich.” Here,
I am also reminded of the remark made by the famous American comic
Will Rogers when he was awarded the Congressional Medal of Honor. He
said: “With this medal and 25 cents I can now buy a cup of coffee.” In fact,
several other prizes for which mathematicians are eligible far exceed the
monetary value of the Fields Medal. In particular, the Abel prize instituted
in 2003 and given annually is closer in spirit and monetary value to the
Nobel prize. Jean-Pierre Serre (the youngest person to receive the Fields
Medal at ICM 1954, in Amsterdam, at age 27) received the first Abel Prize
in 2003. The Abel Prize for 2009 has been awarded to the Fields medalist
M. L. Gromov. More information on the Abel Prize may be found at the
official website (www.abelprisen.no/en/).

I would like to add that of the 28 Fields medalists since the ICM
1978 to the ICM 2006, 14 have made significant contribution to advanc-
ing the interaction of mathematics and theoretical physics. Ed Witten is
the only physicist to be awarded the Fields Medal (ICM 1990, Keyoto).
More information about the Fields medal can be found at the IMU website
(www.mathunion.org).

4. Harmonic Oscillator
The quantization of the classical harmonic oscillator was one of the earliest
results in quantum mechanics. It admits an exact closed-form solution in
terms of the well-known Hermite polynomials. The oscillator’s discrete en-
ergy spectrum also showed that the lowest energy level need not have zero
energy and it can be used to explain the spectrum of diatomic molecules
and to provide a tool for approximation of the spectra of more complex
molecules. It was used in the early study of the black body radiation in the
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theory of heat and it can be applied to understand the motion of atoms in
lattice models of crystals. We remark that the classical harmonic oscillator
was the first dynamical system that was quantized through the canonical
quantization principle.

We now discuss the canonical quantization of a single classical harmonic
oscillator. The Hamiltonian H of the particle of mass m vibrating with
frequency ω is given by

H(p, q) =
p2

2m
+

1
2
mω2q2,

where p, q are the conjugate variables momentum and position. In canon-
ical quatization they are replaced by operators p̂, q̂ on the space of wave
functions defined by

p̂(ψ) := −i�
dψ

dq
, q̂(ψ) := q(ψ), ψ ∈ L2(q).

These operators satisfy the cononical commutation relation

[q̂, p̂] = i�.

This prescription gives us the Schrödinger equation Ĥ(ψ) = E(ψ) for the
wave function ψ (eigenfunction of Ĥ) with energy level E (eigenvalue of
Ĥ). It is a second order ordinary differential equation

−�
2

2m
ψ̈ +

1
2
mω2q2ψ = Eψ.

The set of values of E for which the Schrödinger equation admits a solution
is called the spectrum of the quantum harmonic oscillator. It can be shown
that the spectrum is discrete and is given by

En = �ω(n + 1
2 ), n ≥ 0.

The corresponding wave function ψn is given by the explicit formula

ψn(x) =
(α

π

)1/4 Hn(x)e−x
2/2

√
2nn!

, where α = mω/�, x = q
√

α .

In the above formula Hn(x) is the nth Hermite polynomial, defined by

Hn(x) = (−1)nex
2
(

d

dx
)ne−x

2
.

Dirac defined creation (or raising) and annihilation (or lowering) op-
erators, collectively called the ladder operators, which allow one to find the
spectrum without solving the Schrödinger equation. (Feynman used this
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result to test his path integral quantization method.) These operators can
be defined for more general quantum mechanical systems and also gener-
alize to quantum field theory. We now indicate their use for the harmonic
oscillator. The creation and annihilation operators a† and a are related to
the position and momentum operators by the relations

a† + a =
√

α/2q̂, a† − a =

√
2/αp̂

i�
.

From these relations it is easy to show that

a†(ψn) =
√

n + 1ψn+1, a(ψn) =
√

nψn−1.

It is these relations that led to the names “creation” (or raising) and
“annihilation” (or lowering) operators. It follows that

[a, a†] = I, (a†a)(ψn) = nψn .

In view of the second relation the operator (a†a) is called the number
operator. Using the definitions of a† and a we can write the quantum
Hamiltonian Ĥ as

Ĥ = �ω(a†a + 1
2 ).

The energy spectrum formula follows immediately from the above expres-
sion. It is these energy levels that appear in Witten’s supersymmetric
Hamiltonian and its relation to the classical Morse theory. The harmonic
oscillator serves as a test case for other methods of quantization as well.
The geometric quantization method applied to coupled harmonic oscilla-
tors leads to the same results as shown in [271,272]. This method requires
the use of manifolds with singularities.

5. Parallel Postulate The parallel postulate was the fifth postulate or ax-
iom in Euclid’s geometry. For those readers who have not seen it recently,
here is the statement:

Let L be a straight line in a plane P . Through every point x ∈ P
not lying on the line L, there passes one and only one straight line
Lx that is parallel to L.

The parallel postulate is much more complicated and non-intuitive than
the other postulates of Euclidean geometry. Euclid attempted to prove this
postulate on the basis of other postulates. He did not use it in his early
books. Eventually, however, it was necessary for him to use it, but he wrote
his 13 books without finding a proof. Finding its proof became a major
challenge in geometry. Over the next 2000 years, many leading mathemati-
cians attempted to prove it and announced their “proofs.” There are more
false proofs of this statement than any other statement in the history of
mathematics. It turns out that most of these attempts contain some hid-
den assumption which itself is equivalent to the parallel postulate. Perhaps
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the most well known of these equivalent statements is: “The sum of the
angles of a triangle is π.” If we take the surface Σ of constant negative
curvature as a model of a plane then its straight lines are the geodesics.
Gauss’s theorem applied to a geodesic triangle implies that the sum of
the angles of a triangle is less than π. All other postulates of Euclid hold
in this model. In this geometry the parallel postulate is replaced by the
statement:

Let L be a straight line in a plane P . Through every point x ∈ P
not lying on the line L, there pass at least two straight lines that are
parallel to L.

The geometry based on the above parallel postulate is called non-
Euclidean geometry. It was developed independently by the Russian
mathematician Lobachevski and the Hungarian mathematician J. Bolyai.
Gauss discovered this geometry earlier but he never published his work, al-
though he had indicated it in his letter to F. Bolyai, J. Bolyai’s father. Eu-
clidean and non-Euclidean geometries became special cases of Riemannian
geometry whose foundations were unveiled in Riemann’s famous lecture1 “
Über de Hypothesen welche der Geometrie zu grunde liegen” in Göttingen
delivered in the presence of his examiner Gauss. Riemann’s work paved
the way for Einstein’s theory of gravity generalizing his special theory of
relativity.

6. Platonic Solids
A regular convex polyhedron in R3 all of whose faces are congruent regu-
lar polygons is called a Platonic solid. The icosahedron, which we met in
Chapter 2, is one of the five Platonic solids. These five regular polyhedra
have been known since antiquity. Their names derive from the number of
faces they have: tetrahedron (4), hexahedron (6) (more commonly called
a cube), octahedron (8), dodecahedron (12), and icosahedron (20). Taking
the centers of faces of a polyhedron as vertices generates its dual poly-
hedron. A tetrahedron is self-dual since taking the centers of its faces
as vertices generates again a tetrahedron. Note that the cube and the oc-
tahedron are dual as are the dodecahedron and the icosahedron. Each of
the Platonic solids is homeomorphic to S2 and so has Euler characteristic
χ = 2. Euler gave a combinatorial definition of χ by χ = v−e+f , where v
is the number of vertices, e the number of edges, and f the number of faces
of the given polyhedron. In table B.1 we also list b, the number of edges
bounding a face, and n, the valence, or the number of edges meeting a
vertex. The Platonic solids exhaust all the possibilities of pairs (b, n) that
can occur in a regular polyhedron in R3.

Symmetry groups of the Platonic solids occur in many applications. As
we have seen in Chapter 2, the moduli space of icosahedra inscribed in a
sphere turns out to be a homology 3-sphere that is not homeomorphic to
S3. This example led Poincaré to reformulate his famous conjecture (now

1 On the hypotheses which lie at the foundations of geometry
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Table B.1 Platonic solids or regular polyhedra in R3

Name v e f b n

Tetrahedron 4 6 4 3 3
Cube 8 12 6 4 3

Octahedron 6 12 8 3 4
Dodecahedron 20 30 12 5 3
Icosahedron 12 30 20 3 5

a theorem). The interest in these solids named after Plato (around 360
BCE) has continued to this day. In fact, the title of the 2009 Reimar Lüst
lecture in Bonn delivered on June 12 by Curtis McMullen (Fields Medal,
ICM 1998, Berlin) was “From Platonic Solids to Quantum Topology.”

7. Ramanujan
India’s greatest contribution to modern mathematics came in the last cen-
tury in the work of Srinivasa Ramanujan. Its story is one of the most
fascinating chapters in the history of mathematics. It began about a hun-
dred years ago with a long letter from Ramanujan, a poor unknown clerk
in Madras to Prof. G. H. Hardy, a well known English mathematician. It
was a desperate cry for help. Ramanujan wrote that he had no university
education but was striking a new path for himself in mathematics research.
The letter contained over 100 results in mathematics that Ramanujan had
obtained on his own without any formal university education in mathemat-
ics. His earlier attempts to communicate his work to other mathematicians
had been unsuccessful. Hardy decided to show the letter to his close friend
J. E. Littlewood who was also an eminent mathematician. They immedi-
ately realized that the writer had no exposure to standard mathematics.
The letter contained some well known results and some that were known
to be false. Some of the results seemed familiar. But it took Hardy far
more time to prove them than he anticipated. The letter also contained
several results the likes of which they had never seen before. Ramanujan
had given no indication of how he obtained these results. After a few hours
of work, they could not prove any of these new results and they were the
best in the field. Hardy wrote later: A single look at them is enough to
show that they could only be written down by a mathematician of the
highest class. We concluded that these strange looking results must be
true since no one would have had the imagination to invent them. Hardy
replied immediately: I was exceedingly interested by your letter and by the
theorems you state. However, I must see the proofs of some of your asser-
tions. Ramanujan wrote back: I have found in you a friend who views my
labors sympathetically. I am a half starving man who needs nourishment
to preserve my brains.
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Hardy was shocked to find out that Ramanujan had failed the first Arts
examination of Indian universities. He could not get him a satisfactory
position in India to continue his research in mathematics. He therefore
used all his influence to get him a position at Cambridge University which
involved no teaching duties. In March 1914 Ramanujan sailed to England
to take up his new position. In 1916 he was awarded BSc by research (the
degree was later called Phd). Winter months were very difficult for his
health. But he continued to produce first rate mathematics working with
Hardy almost every day that he was not ill. In 1917 he fell seriously ill and
his doctors felt that he did not have much time. Hardy worked tirelessly to
make sure that Ramanujan received the highest honor in Britain, namely
election as a fellow of the Royal Society of London in 1918. Hardy wrote:
He will return to India with a scientific standing and reputation such as no
Indian has enjoyed before, and I am confident that India will regard him
as the treasure he is. Ramanujan returned to India in March 1919 in poor
health. His illness was never properly diagnosed and his health continued
to deteriorate. On April 26, 1920 at age 32 Ramanujan passed away.

Ramanujan rarely gave detailed and rigorous proofs of his formulas
and this led him sometimes to wrong results. In his notebooks Ramanu-
jan listed a large number of results. Some of these notebooks were lost
and were found quite accidentally. They have now been published by the
American Mathematical Society. Ramanujan discovered nearly 4000 re-
sults by himself. Most of the new results are now proved but there are
still several which are unproved. In the last year of his life spent in India,
Ramanujan’s health continued to deteriorate but his mathematical abili-
ties remained undiminished. This is clearly shown by Ramanujan’s famous
last letter to Hardy written shortly before his death. In this letter he an-
nounced his discovery of the mock theta functions and discussed some of
their remarkable properties. We are just beginning to understand these
functions 90 years after their discovery. Recently, my friend Prof. Don Za-
gier, director of the Max Planck Institute for Mathematics in Bonn gave a
research seminar on the mock theta functions and their surprising relation
to string theory in Physics. Ramanujan would not have been surprised by
this. He always felt that all his results were part of universal knowledge.
If they appear where we don’t expect to see them, then this is because of
our limited vision. Let us hope and pray that we improve our record of
recognizing great visionaries and helping them fulfill their destiny.

Let me conclude this brief biography of Ramanujan by recounting the
most well known story about Ramanujan’s friendship with numbers. Hardy
went to visit Ramanujan when he was hostitalized. Hardy said that he
came in a taxi bearing a rather dull and uninteresting number and he took
it as an omen that he would find Ramanujan in poor health. On hearing
the number, Ramanujan’s eyes lit up. He said: No Mr. Hardy, in fact it is
one of the most interesting numbers that I know. It is the smallest number
that can be written as the sum of two cubes in two different ways. This
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number 1729 is now known as the Ramanujan number. For a fascinating
account of Ramanujan’s life and work I refer the reader to Kanigel’s book
“The man who knew infinity.” It is a definitive biography of Ramanujan.
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Categories and Chain Complexes

C.1 Categories

In modern mathematics the language of category theory is often used to
discuss properties of different mathematical structures in a unified way. In
recent years category theory and categorical constructions have been used in
algebraic and geometric theories and have also found surprising applications
to invariants of low-dimensional manifolds. The axiomatic development of
TQFT is also based on a special category. Furthermore, applications to string
theory and symplectic field theory have developed into an extensive area of
research. We give here a mere outline of the basic ideas of category theory.

A category C consists of

1. a class Ob(C) whose elements are called the objects of C;
2. a correspondence that associates to eacth ordered pair (A, B) of objects

of C a set MorC(A, B) (or simply Mor (A, B)) such that

A �= C or B �= D ⇒ Mor(A, B) ∩Mor(C, D) = ∅.

The elements of MorC(A, B) are called C-morphisms (or simply mor-
phisms or arrows) of A to B;

3. a correspondence that associates to each ordered triple (A, B, C) of objects
of C a map ◦, called the composition law,

◦ : Mor (B, C)×Mor (A, B)→ Mor (A, C),

such that (f, g) → f ◦ g, satisfying the following two properties:

a. Existence of identities: ∀A ∈ Ob(C), there exists an identity mor-
phism 1A ∈ Mor(A, A) such that, ∀B ∈ Ob(C), ∀f ∈ Mor (A, B), ∀g ∈
Mor (B, A),

f ◦ 1A = f and 1A ◦ g = g;

393
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b. Associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f), ∀(f, g, h) ∈ Mor (A, B) ×
Mor (B, C)×Mor (C, D).

As is customary we have used the same notation for morphisms as for maps.
A morphism f ∈ MorC(A, B) is said to be a C-isomorphism, or simply

an isomorphism, of A with B if there exists a morphism g ∈ MorC(B, A)
such that

f ◦ g = 1B and g ◦ f = 1A.

Two objects A, B are said to be isomorphic if there exists an isomorphism
of A with B. One frequently refers to only Ob(C), when speaking of a cat-
egory whose morphisms and composition law are understood. For example,
we speak of the category Gr of groups with the understanding that the mor-
phisms are the homomorphisms of groups with the usual composition law.
A similar convention holds for other categories such as the category Top of
topological spaces whose morphisms are continuous functions and Top0 of
pointed topological spaces whose morphisms are base point-preserving con-
tinuous functions.

A category A is said to be a subcategory (resp., full subcategory)
of the category B if Ob(A) ⊂ Ob(B) and for each X, Y ∈ Ob(A) we have
MorA(X, Y ) ⊂ MorB(X, Y ) (resp., MorA(X, Y ) = MorB(X, Y )). As an ex-
ample we note that the category Ab of Abelian groups is a full subcategory
of Gr , while the category DIFF of differential manifolds is a subcategory of
the category TOP of topological manifolds which is not a full subcategory.

Let C be a category. An object A ∈ Ob(C) is called a universal ini-
tial (resp. universal final) or simply initial (resp., final) object of C if,
∀B ∈ Ob(C), Mor (A, B) (resp. Mor (B, A)) contains only one element. Uni-
versal initial (resp. final) objects of a category, if they exist, are isomorphic.
Universal objects play an important role in many constructions in modern
mathematics, even though in applications it is customary to consider some
concrete realization of such objects. We now give some examples of universal
objects.

Let K be a field and let V, W denote fixed K-vector spaces and let Z, Z1, . . .
denote K-vector spaces. Consider the category B such that

1. the set of objects is Ob(B) = {(Z, g) | g ∈ L(V, W ; Z)}, where L(V, W ; Z)
is the K-vector space of all bilinear maps of V ×W to Z;

2. for g1 ∈ L(V, W ; Z1), g2 ∈ L(V, W ; Z2) a morphism f from (Z1, g1) to
(Z2, g2) is a linear map f : Z1 → Z2 such that f ◦ g1 = g2, i.e., the
following diagram commutes:

V ×W Z1
�g1

Z2

g2

�
�

�
��

f
�

�
�

��
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It can be shown that in this category a universal initial object exists. It is
called the tensor product of V and W and is denoted by (V ⊗ W, t) or
simply by V ⊗W . It is customary to write v ⊗ w for t(v, w) and to call it
the tensor product of v and w. If V and W are finite-dimensional, then a
realization of V ⊗W is given by L(V ∗, W ∗; K), where v ⊗w, v ∈ V, w ∈ W
is identified with the map defined by

(α, β) → α(v)β(w), ∀α, β ∈ V ∗ ×W ∗.

If in the above example we take W = V and require g ∈ L(V, V ; Z) to be
skew-symmetric (resp., symmetric) then in the resulting category the univer-
sal initial object is called the exterior product (resp., symmetric prod-
uct) of V with itself and is denoted by Λ2(V ) (resp., S2(V )). The map
V ×V → Λ2(V ) is denoted by ∧ and ∧(α, β) is denoted by α∧β and is called
the exterior product of α with β. The map V × V → S2(V ) is denoted by
∨, and ∨(α, β) is denoted by α∨β and is called the symmetric product of
α with β. Both the above constructions can be extended to any finite number
of vector spaces. In particular, the tensor product

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

s times

,

where V ∗ is the dual of V , is called the tensor space of type (r, s) over V
and is denoted by T rs (V ). The exterior product

V ∧ V ∧ · · · ∧ V︸ ︷︷ ︸
k times

is called the space of exterior k-forms on V and is denoted by Λk(V ). The
symmetric product

V ∨ V ∨ · · · ∨ V︸ ︷︷ ︸
k times

is called the space of symmetric k-tensors on V and is denoted by Sk(V ).
Another important example of an initial object is the direct limit of mod-

ules, which we used to define singular cohomology with compact support. Let
I be a directed set, i.e., a set with a partial order ≤ such that, ∀i1, i2 ∈ I,
there exists i ∈ I such that i1 ≤ i, i2 ≤ i. If I is a directed set, let us denote
by I2

0 the subset of I2 := I × I defined by

I2
0 := {(i, j) ∈ I2 | i ≤ j}.

A direct system in a category C relative to the directed set I is a couple

D = ({Ai | i ∈ I} , {f ji | (i, j) ∈ I2
0})
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such that {Ai | i ∈ I} is a family of objects of C and f ji : Ai → Aj is a family
of C-morphisms such that

1. f ii = idAi , ∀i ∈ I;
2. fkj ◦ f ji = fki , ∀i, j, k ∈ I, i ≤ j ≤ k.

Given the direct system D, let C(D) be the category such that:

Ob: The objects of C(D) are the pairs (A, {gi | i ∈ I}) where A ∈ Ob(C)
and gi : Ai → A, i ∈ I, is a C-morphism such that gi = gj◦f ji , ∀(i, j) ∈ I2

0 .
Mor: If A = (A, {gi | i ∈ I}), B = (B, {hi | i ∈ I}) are objects of
C(D), a morphism of A to B is a C-morphism f : A → B such that
f ◦ gi = hi, ∀i ∈ I.

Given the direct system D as above, the direct limit of D is a universal
initial object of the category C(D), i.e., an object (A, {gi | i ∈ I}) of C(D)
such that, ∀(B, {hi | i ∈ I}) ∈ Ob(C(D)), there exists a unique C-morphism
f : A → B satisfying the relations f ◦ gi = hi, ∀i ∈ I. By definition,
two direct limits of a direct system D, if they exist, are isomorphic objects
of the category C(D). Hence, we can speak of “the” direct limit of D. If
(A, {gi | i ∈ I}) is a direct limit of D, we also say that A is the direct limit
of the Ai and write

A = lim
−→

Ai.

Direct limits exist in the categories of sets, topological spaces, groups, and
R-modules. As an example we give the direct limit for a direct system D in
the category of R-modules. Let A = ⊕i∈IAi be the direct sum of the modules
Ai and ui : Ai → A the natural injection. Let us denote by B the submodule
of A generated by all elements

ujf
j
i (xi)− ui(xi), (i, j) ∈ I2

0 , xi ∈ Ai.

Let π : A→ A/B be the quotient map and, ∀i ∈ I, gi be the map defined by

gi := π ◦ ui : Ai → A/B.

Then (A/B, {gi | i ∈ I}) is a direct limit of D.
Remark. If I has a largest element m, i.e., i ≤ m, ∀i ∈ I, then

(Am, {gi = fmi | i ∈ I})

is a direct limit of D.
Let A,B be two categories. A covariant (resp., contravariant) functor

F from A to B is a correspondence which associates with each X ∈ Ob(A)
an object F (X) ∈ Ob(B) and to each f ∈ MorA(X, Y ) a morphism F (f) ∈
MorB(F (X), F (Y )) (resp., F (f) ∈ MorB(F (Y ), F (X))) such that

1. F (1X) = 1F (X),
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2. F (g ◦ f) = F (g) ◦ F (f), (resp., F (g ◦ f) = F (f) ◦ F (g)), ∀(f, g) ∈
MorA(X, Y )×MorA(Y, Z)).

An example of a covariant functor is provided by the nth homotopy functor
πn : Top0 → Gr , which associates with each pointed topological space its
nth homotopy group as defined in Chapter 2.

Let F : A → B, G : A → B be two covariant functors. A natural
transformation τ : F → G is a correspondence τ which associates to each
object X ∈ A a morphism τ(X) ∈ MorB(F (X), G(X)) such that

G(f) ◦ τ(X) = τ(Y ) ◦ F (f), ∀f ∈ MorA(X, Y ).

The defining equation of the natural transformation τ may be indicated by
the commutativity of the following diagram:

F (Y ) G(Y )�
τ(Y )

F (X) G(X)�τ(X)

�

F (f)

�

G(f)

A similar definition may be given for a natural transformation between con-
travariant functors.

C.2 Chain Complexes

Any homology (cohomology) theory of topological spaces is based on the
construction of a structure called a chain (cochain) complex. In this section we
discuss the general theory of chain complexes over a principal ideal domain.
Let A be a commutative ring with unit element. We recall that A is called
an integral domain if it has no zero divisors, i.e.,

∀a, b ∈ A, ab = 0⇒ a = 0 or b = 0.

A subring I of A is called an ideal if AI = I = IA. An ideal I is called a
principal ideal if I = aA, for some a ∈ A. A principal ideal domain is
an integral domain A such that every ideal in A is principal. Clearly, every
field is a principal ideal domain. The ring of integers Z is a principal ideal
domain that is not a field. In what follows we shall be concerned with modules
over a fixed principal ideal domain P. Recall that a module M over P or
a P-module is a generalization of the notion of a vector space with base
field replaced by P. For example, any ideal in P is a P-module. The class
of P-modules and P-linear maps forms a category. It is called the category
of P-modules and is denoted byMP. Note that every Abelian group can be
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regarded as a Z-module. Thus, the categoryMZ is the same as the category
of Abelian groups. As we will see in the next paragraph, the category of
P-modules provides a general setting for defining a (co)chain complex and
(co)homology modules generalizing the classical theories. The notion of an
Abelian category, which is a generalization of the category of P-modules,
arose from Grothendieck’s attempt to unify different cohomology theories
such as sheaf and group cohomologies by identifying the basic properties
needed in their definitions. His attempt culminated in K-theory, which has
found applications in algebraic and analytic geometry and more recently in
theoretical physics.

A chain complex over P is a pair (C∗, δ), where C∗ = {Cq | q ∈ Z} is a
family of P-modules and δ = {δq : Cq → Cq−1 | q ∈ Z} is a family of P-linear
maps such that

δq−1 ◦ δq = 0, ∀q ∈ Z. (C.1)

An element of Cq is called a q-chain. The P-linear map δq is called the qth
boundary operator. One usually omits the subscript for the δq’s and also
writes δ2 := δ ◦ δ = 0 to indicate that equation (C.1) is true. The chain
complex (C∗, δ) is also represented by the following diagram:

· · · ∂q−1←− Cq−1
∂q←− Cq

∂q+1←− Cq+1
∂q+2←− · · ·

Let (C∗, δ) be a chain complex over P. The P-module

Zq(C∗, δ) := Ker δq

is called the P-module of q-cycles and the P-module

Bq(C∗, δ) := Im δq+1

is called the P-module of q-boundaries. The P-module

Hq(C∗, δ) = Zq(C∗, δ)/Bq(C∗, δ)

is called the qth homology P-module of the chain complex. We will simply
write Zq, Bq, and Hq instead of Zq(C∗, δ), Bq(C∗, δ), and Hq(C∗, δ), respec-
tively, when the complex (C∗, δ) is understood. The q-cycles z, z′ ∈ Zq are
said to be homologous if z−z′ is a q-boundary, i.e., z−z′ ∈ Bq. The family
H∗ := {Hq | q ∈ Z} is called the Z-graded homology module or simply
the homology of the chain complex (C∗, δ). A chain complex (C∗, δ), is said
to be exact at Cq, if

Ker δq = Im δq+1.

The chain complex is said to be exact if it is exact at Cq, ∀q ∈ Z. Thus
the homology of a chain complex is a measure of the lack of exactness of the
chain complex.
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Given the chain complexes (C1
∗ , δ1), (C2

∗ , δ2) over P, a chain morphism
of (C1

∗ , δ1) into (C2
∗ , δ2) is a family f∗ = {fq : C1

q → C2
q | q ∈ Z} of P-linear

maps such that, ∀q ∈ Z, the following diagram commutes:

C2
q C2

q−1
�

δ2
q

C1
q C1

q−1
�δ1
q

�

fq

�

fq−1

That is,
δ2
q ◦ fq = fq−1 ◦ δ1

q , ∀q ∈ Z. (C.2)

It is customary to indicate the above chain morphism f∗ by the diagram

C1
∗

f∗−→ C2
∗ .

Using equation (C.2) we can show that a chain morphism f∗ = {fq : C1
q →

C2
q | q ∈ Z} induces a family of P-linear maps

H∗(f∗) = {Hq(f∗) : Hq(C1
∗ , δ1)→ Hq(C2

∗ , δ2) | q ∈ Z}

among the homology modules. We observe that chain complexes and chain
morphisms form a category and H∗ is a covariant functor from this category
to the category of graded P-modules and P-linear maps.

Let (C∗, δ) be a chain complex and let D∗ = {Dq ⊂ Cq | q ∈ Z} be a
family of submodules such that δq(Dq) ⊂ Dq−1, ∀q ∈ Z. Then (D∗, δ|D∗) is
called a chain subcomplex of (C∗, δ). Let

C∗/D∗ = {Cq/Dq | q ∈ Z}, δ̄ = {δ̄q | q ∈ Z},

where δ̄q : Cq/Dq → Cq−1/Dq−1 is the map induced by passage to the
quotient, i.e., δ̄q(α + Dq) = δq(α) + Dq−1. Then (C∗/D∗, δ̄) is called the
quotient chain complex of (C∗, δ) by D∗.

Recall that a short exact sequence of P-modules is a sequence of P-
modules and P-linear maps of the type

0 −→ C
f−→ D

g−→ E −→ 0

such that f is injective, g is surjective and Im f = Ker g. A short exact
sequence of chain complexes is a sequence of chain complexes and chain
morphisms

0 −→ C1
∗

f∗−→ C2
∗

g∗−→ C3
∗ −→ 0

such that, ∀q ∈ Z, the following sequence of modules is exact:
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0 −→ C1
q

fq−→ C2
q

gq−→ C3
q −→ 0.

We observe that if D∗ is a subcomplex of C∗, then we have the following
short exact sequence of complexes:

0 −→ D∗
i∗−→ C∗

π∗−→ C∗/D∗ −→ 0

where i∗ is the inclusion morphism and π∗ is the canonical projection mor-
phism. Let

0 −→ C1
∗

f∗−→ C2
∗

g∗−→ C3
∗ −→ 0

be a short exact sequence of chain complexes and let us denote by Hi
q the

homology modules Hq(Ci
∗, δ

i), i = 1, 2, 3. It can be shown that there exists
a family

h∗ = {hq : H3
q → H1

q−1 | q ∈ Z}

of linear maps such that the following homology sequence is exact:

· · · −→ H1
q

fq−→ H2
q

gq−→ H3
q

hq−→ H1
q−1 −→ · · ·

The family h∗ is called the family of connecting morphisms associated
to the short exact sequence of complexes. The corresponding homology se-
quence indicated in the above diagram is called the long exact homology
sequence.

If we consider the construction of chain complexes, but with arrows re-
versed, we have cochain complexes, which we now define. A cochain com-
plex over P is a pair (C∗, d), where C∗ = {Cq | q ∈ Z} is a family of
P-modules and d = {dq : Cq → Cq+1 | q ∈ Z} is a family of P-linear maps
such that

dq+1 ◦ dq = 0, ∀q ∈ Z. (C.3)

The P-linear map dq is called the qth coboundary operator. As with chain
complexes, one usually omits the superscript for the dq and also writes d2 :=
d◦d = 0 to indicate that equation (C.3) is true. The cochain complex (C∗, d)
is also represented by the diagram

· · · d
q−2

−→ Cq−1 dq−1

−→ Cq dq

−→ Cq+1 dq+1

−→ · · ·

Let (C∗, d) be a cochain complex over P. The P-module

Zq(C∗, d) := Kerdq

is called the P-module of q-cocycles and the P-module

Bq(C∗, d) := Im dq−1

is called the P-module of q-coboundaries. The P-module
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Hq(C∗, d) = Zq(C∗, d)/Bq(C∗, d)

is called the qth cohomology P-module of the cochain complex. Cochain
morphisms are defined by an obvious modification of the definition of chain
morphisms. We observe that cochain complexes and cochain morphisms form
a category and H∗ is a contravariant functor from this category to the cate-
gory of graded P-modules and P-linear maps.

Let (C∗, δ) be a chain complex. Let C′
q be the algebraic dual of Cq and tδ

the transpose of δ. Then (C∗, d) defined by

C∗ = {C′
q | q ∈ Z}, d = {tδq | q ∈ Z},

is a cochain complex. This cochain complex is called the dual cochain com-
plex of the the chain complex (C∗, δ).

As we indicated earlier, when P = Z, the P-modules are Abelian groups.
In this case one speaks of homology and cohomology groups instead of Z-
modules.

In many mathematical and physical applications the notions of chain and
cochain complexes that we have introduced are not sufficient and one must
consider multiple complexes. We shall only consider the double com-
plexes, also called bicomplexes, which may combine the chain and cochain
complex in one double complex. We consider this situation in detail. A mixed
double complex is a triple (C∗

∗ , d, δ) where C∗
∗ = {Cp

q | p, q ∈ Z} is a family
of P-modules and δ = {δpq : Cp

q → Cp
q−1 | p, q ∈ Z}, d = {dpq : Cp

q → Cp+1
q |

p, q ∈ Z} are families of P-linear maps such that

δpq−1 ◦ δpq = 0, dp+1
q ◦ dpq = 0, δp+1

q ◦ dpq = dpq−1 ◦ δpq , ∀p, q ∈ Z.

The double chain complex and double cochain complex can be defined sim-
ilarly (see Bott and Tu [55] for further details). It is customary to associate
to this double complex a cochain complex (T ∗, D) called the total cochain
complex, where

T k =
⊕
{Cp

q | p− q = k},

and
Dk = dk + (−1)kδk,

where
dk =

⊕
{dpq | p− q = k}, δk =

⊕
{δpq | p− q = k}.

Since dk(⊕ωpq ) = ⊕dpqω
p
q ∈ T k+1 and δk(⊕ωpq ) = ⊕δpqω

p
q ∈ T k+1, we have

that Dk maps T k to T k+1. It is easy to verify that D2 = 0, i.e., Dk+1 ◦Dk =
0, ∀k. D is called the total differential. A slight modification of the above
construction is used in [236] to give an interpretation of the BRST operator
in quantum field theory as a total differential D of a suitable double complex.
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Operator Theory

D.1 Introduction

It is well known that pure gauge theories cannot describe interactions that
have massive carrier particles. A resolution of this problem requires the in-
troduction of associated fields. We discussed these fields and their couplings
in Chapter 6. As with pure gauge fields, the coupled fields are solutions of
partial differential equations on a suitable manifold. The theory of differen-
tial operators necessary for studying these field equations is a vast and very
active area in mathematics and physics. In this appendix we give a brief
introduction to the parts of operator theory that are relevant to the applica-
tions to field theories. Special operators and corresponding index theorems
are also discussed here. We are interested in the situation where the oper-
ators are linear differential or pseudo-differential operators on modules of
smooth sections of vector bundles over a suitable base manifold. Standard
references for this material are Gilkey [154], Palais [310], and Wells [398]. In
what follows we consider complex vector bundles over a compact base mani-
fold. This simplifies many considerations, although the corresponding theory
over non-compact base manifold and for real vector bundles can be developed
along similar lines. Sobolev spaces play a fundamental role in the study of
differential operators and in particular, in the study of operators arising in
gauge theories. The analysis of differential operators is greatly simplified by
the use of these spaces, essentially because they are Hilbert spaces in which
differential operators, which are not continuous in the usual L2 spaces, are
continuous. For an introduction to the theory of Sobolev spaces, see for ex-
ample, Adams [5]. We now give a brief account of some important aspects of
these spaces, which are needed in this appendix.

403
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D.2 Sobolev Spaces

Recall that a multi-index α in dimension n is an ordered n-tuple of non-
negative integers, i.e., α = (α1, α2, . . . , αn). The number |α| = α1 +α2+ · · ·+
αn is called the length of α. We will use the notation

∂αx = ∂|α|/∂xα1
1 · · · ∂xαn

n and Dα
x := (−i)|α|∂αx

to indicate that derivatives are taken with respect to the variable x =
(x1, . . . , xn) ∈ Rn, and we will write ∂α and Dα when this variable is un-
derstood. Let ν be a measure on Rn and let L2(ν) be the Hilbert space of
complex-valued functions on Rn, which are square integrable with respect to
ν, with the inner product defined by

(f, g) → (f |g) :=
∫

Rn

f̄ gdν.

In the above definition of inner product on L2(ν) we have followed the con-
vention commonly used in the physics literature. We alert the reader that
most mathematical works use the convention of linearity in the first variable
and semi-linearity in the second. However, both induce the same norm on
L2(ν) and the use of one or the other convention is simply a matter of choice.
Let μn or simply μ denote the Lebesgue measure on Rn. Let us denote by f̂ or
Ff the Fourier transform of the Lebesgue integrable function f : Rn → C.
By definition,

Ff(x) ≡ f̂(x) := (2π)−n/2
∫

Rn

f(y)e−ix·ydμ(y),

where x·y = x1y1+· · ·+xnyn. Let Sn denote the Schwartz space of (rapidly
decreasing) smooth complex-valued functions on Rn such that, ∀p ∈ N and
for every multi-index α, there exists a real positive constant Cα,p such that

(1 + |x|2)p|Dαf(x)| ≤ Cα,p, ∀x ∈ Rn.

The space Sn is a dense subspace of L2(μ). The Parseval relation (f |g) =
(Ff |Fg) implies that Sn is mapped isometrically onto itself by the Fourier
transform F . Using this property, it can be shown that F has a unique ex-
tension to a unitary operator on L2(μ). If α = (α1, . . . , αn) is a multi-index,
let us denote by Mα the operator of multiplication on Sn defined by

(Mαf)(x) = xαf(x), ∀x ∈ Rn,

where xα := xα1
1 xα2

2 · · ·xαn
n . Then one can show that, on Sn,

Dα ◦ F = (−1)|α|F ◦Mα, (D.1)
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F ◦Dα = Mα ◦ F. (D.2)

We note that relation (D.2) is used in passing from coordinate representation
to the momentum representation in quantum mechanics.

Let νs, s ∈ R, denote the measure on Rn defined by

dνs(x) = (1 + |x|2)sdμ(x).

For f ∈ Sn the Sobolev s-norm is defined by

|f |s :=
∫

Rn

|Ff |dνs.

The Sobolev space Hs(Rn) is the completion of Sn in this norm. It is
customary to refer to Hs(Rn) as the Sobolev s-completion, or simply the
Sobolev completion, of Sn. We observe that if s < t then L2(νt) ⊂ L2(νs)
(in particular, L2(ν0) = L2(μ)) and, for s ≥ 0,

Hs(Rn) := {f ∈ L2(μ) | Ff ∈ L2(νs)}.

Furthermore, if f, g ∈ Hs(Rn), s ≥ 0, then their inner product is defined by

(f |g)s =
∫

Rn

Ff · Fgdνs.

Thus, for s ≥ 0, Hs(Rn) = F−1(L2(νs)) and F maps Hs(Rn) isometrically
onto the Hilbert space L2(νs). Due to the relation (D.2) we can consider
Hs(Rn), s ≥ 0, as the space of square summable complex-valued functions
f on Rn whose distributional derivative Dαf is a function in L2(μ), for all
multi-indices α such that |α| ≤ s. In the following theorem we list three useful
results concerning Sobolev spaces.

Theorem D.1 Let Hs(Rn), s ∈ R denote the Sobolev s-completion of the
Schwartz space Sn. Then we have the following:

1. (Sobolev lemma) Let Bk ⊂ Ck(Rn) denote the Banach space of complex-
valued functions f of class Ck with norm | · |Bk defined by

|f |2Bk := sup
Rn

∑
|α|≤k

|Dαf |2.

If s > n/2 + k and f ∈ Hs(Rn), then f may be considered a function of
class Ck, and the natural injection of Hs(Rn) into the Banach space Bk

is continuous.
2. (Rellich lemma) Let s < t and let {fi} be a sequence of functions in Sn

with support in a compact subset of Rn and such that, for some constant
K, |fi|t ≤ K, ∀i. Then a subsequence of {fi} converges in Hs(Rn). Thus,
the natural injection of Ht(Rn) into Hs(Rn) is compact when restricted
to functions with support in a fixed compact subset of Rn.
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3. For all s ∈ R, the restriction to Sn×Sn of the L2(μ)-inner product extends
to a bilinear map of H−s(Rn) × Hs(Rn) → C, which gives a canonical
identification of H−s(Rn) with the dual of Hs(Rn).

The above construction of Sobolev spaces can be generalized to sections of
vector bundles over a manifold as follows. Let E be a Hermitian vector bundle
over an m-dimensional compact manifold M with n-dimensional fibers. Let
{(Uα, φα)} be an atlas on M with a finite family of charts such that φα(Uα) =
Vα ⊂ Rm and let {ρα} be a smooth partition of unity subordinate to this
atlas. Let us suppose that the atlas is chosen to give a local representation
{(Uα, ψα)} of the bundle E so that ψα : Uα ×Cn → π−1(Uα). If ξ ∈ Γ (E),
then ψ−1

α ◦ ραξ induces, through the chart φα, a section of Vα ×Cn over Vα,
which can be considered a map of Vα into Cn, denoted by fα. This map has
compact support and can be extended to a map, also denoted by fα, of Rm

into Cn with the same support. Thus, fα is an n-tuple fα,i, i = 1, . . . , n, of
elements of Sm. Therefore, we may define

‖ξ‖s :=
∑
α,i

|fα,i|s.

It is easy to see that ‖ ‖s is a norm on Γ (E) and that Γ (E) with this norm is
a pre-Hilbert space. Let Hs(E) be the Hilbert space obtained by completion
of this normed vector space. One can show that norms related to different
partitions of unity and to other choices made in the definition are equivalent.
Thus, Hs(E) is topologically a Hilbert space. The results of Theorem D.1
have obvious generalizations to this global case.

D.3 Pseudo-Differential Operators

The results on U ⊂ Rn are generally referred to as local, while those on a
manifold (obtained by patching toghether these local results) are referred to
as global. We use a vector notation which easily generalizes to the global case.
Let U×Ch be the trivial complex vector bundle over an open subset U ⊂ Rm

and let Γ h
m be the space of smooth sections of this bundle. A differential

operator of order k from U ×Ch to U ×Cj is a linear map P : Γ h
m → Γ j

m

which can be written as
P =

∑
|α|≤k

aαDα, (D.3)

where aα is a (j × h)-matrix-valued function on U . Let U = Rm and let

Shm ≡ Sm ⊕ · · · ⊕ Sm︸ ︷︷ ︸
h times
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denote the space of sections of Rm × Ch. An element of Shm is an h-tuple
of functions in Sm. Let I denote the operator on functions f : Rm → C
defined by (If)(x) := f(−x). Then Mα ◦ I = (−1)|α|I ◦Mα. This relation
and equations (D.1) and (D.2) imply that

Dα = I ◦ F ◦Mα ◦ F.

Using this equation we obtain the following expression for the operator P on
f ∈ Shm:

(Pf)(x) = (2π)−m/2
∫

Rm

eix·yp(x, y)(Ff)(y)dμ(y), (D.4)

where p(x, y) is the matrix-valued function defined by

p(x, y) =
∑
|α|≤k

aα(x)yα.

The function p is called the total symbol of P , while the function σk(P )
defined by

σk(P )(x, y) =
∑
|α|=k

aα(x)yα

is called the k-symbol or the principal symbol (or simply the symbol)
of P . Let E (resp., F ) be a Hermitian vector bundle of rank h (resp., j)
over an m-dimensional differential manifold M . Let P : Γ (E) → Γ (F ) be a
linear operator from sections of E to sections of F . The operator P is called
a (linear) differential operator of order k from E to F if locally, in a
coordinate neighborhood U , P has the expression (D.3). Alternatively we can
express this definition by saying that P factors through the k-jet extension
Jk(E) of E, i.e., there exists a vector bundle morphism f : Jk(E)→ F such
that P = f∗ ◦ jk, where f∗ : Γ (Jk(E))→ Γ (F ) is the map induced by f , i.e.,
the following diagram commutes

Γ (Jk(E)) Γ (F )�
f∗

Γ (E)

jk
�

�
�

��
P

�
�

�
��

In fact, this formulation can easily be extended to define a non-linear dif-
ferential operator of order k between sections of arbitrary fiber bundles. We
denote by Dk(E, F ) the space of linear differential operators of order
k from E to F . We now give a direct definition of the symbol of an operator
P ∈ Dk(E, F ), which generalizes the definition of k-symbol given above in
the local case. Let

T ∗
0 M = T ∗M \ {the image of the zero section}
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and let p0 : T ∗
0 M → M be the restriction of the canonical projection p :

T ∗M →M to T ∗
0 M . Let p∗0E (resp., p∗0F ) be the pull-back of the bundle E

(resp., F ) to the space T ∗
0 M with projection π∗

E (resp., π∗
F ). Thus, we have

the diagram

p∗0E p∗0F�σ

T ∗
0 M

π∗
E

�
�

�
��

π∗
F

�
�

�
��

where σ is a morphism of vector bundles. The set of k-symbols is the set
Smk(E, F ) defined by

Smk(E, F ) := {σ ∈ Γ (Hom(p∗0E, p∗0F )) | σ(cαx, e) = ckσ(αx, e),
c > 0, αx ∈ T ∗

0 M}.

The k-symbol (or simply the symbol) of P denoted by σk(P ) ∈ Smk(E, F )
is defined by

σk(P )(αx, e) := P (t)(x),

where (αx, e) ∈ p∗0E and t ∈ Γ (E) is defined as follows. We can choose
s ∈ Γ (E) and f ∈ F(M) such that s(x) = e and df(x) = αx; then

t =
ik

k!
(f − f(x))ks.

It can be shown that P (t)(x) depends only on αx and e and is independent
of the various local choices made. We say that an operator P ∈ Dk(E, F )
is elliptic if σk(P ) is an isomorphism. In particular, if P is elliptic then
rankE = rankF .

The relation (D.4) suggests how to enlarge the class of differential op-
erators to a class (the class of pseudo-differential operators) large enough
to contain also the parametrix (a quasi-inverse modulo an operator of low
order) of every elliptic operator. Let k ∈ R; a total symbol of order
k in Rm is a (j × h)-matrix-valued smooth function p, with components
pr,s : Rm ×Rm → C with compact support in the first m-dimensional vari-
able, such that, for all multi-indices α, β, there exists a constant Cα,β such
that

|Dα
xDβ

yp(x, y)| ≤ Cα,β(1 + |y|)k−|β|.

We denote by Smk(j, h) the vector space of these total symbols of order k
represented by j × h matrices. Let p ∈ Smk(j, h); we define the operator P
on Shm with the relation (D.4). One can show that P is a linear continuous
operator from Shm into Sjm and that P can be extended to a continuous
operator Ps : Hh

s (Rm) → Hj
s−k(R

m), ∀s ∈ R, where Hh
s (Rm) denotes

vectorial Sobolev space with h components in Hs(Rm). We will often write P
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instead of Ps. The operator P is called the pseudo-differential operator of
order k associated with p ∈ Smk(j, h) and p is called the total symbol of P . We
observe that if l < k then Sml(j, h) is a subspace of Smk(j, h). Let us denote as
Sm<k(j, h) the space ∪l<k Sml(j, h). If k ∈ Z then Sm<k(j, h) = Smk−1(j, h).
The k-symbol of P , denoted σk(P ), is the class σk(P ) of p in the quotient
Smk(j, h)/ Sm<k(j, h). We denote by Sm−∞(j, h) the space

Sm−∞(j, h) :=
⋂
k

Smk(j, h).

We observe that p ∈ Sm−∞(j, h) is a matrix-valued function with com-
ponents in the Schwartz space S2m, with compact support in the first
(m-dimensional) variable. We say that P , with total symbol p, is an in-
finitely smoothing pseudo-differential operator if p ∈ Sm−∞(j, h). We de-
note by PDk(j, h) (resp., PD−∞(j, h)) the space of pseudo-differential op-
erators of order k (resp., infinitely smoothing pseudo-differential operators)
associated with total symbols in Smk(j, h) (resp., Sm−∞(j, h)). We observe
that, by the Sobolev lemma, if P ∈ PD−∞(j, h) then the j components
of Pf are smooth, ∀f ∈ Hh

s (Rm), ∀s ∈ R. We say that two operators
P, Q ∈ PDk(j, h) are equivalent if P−Q ∈ PD−∞(j, h). One can show that,
if P ∈ PDk(h, i), Q ∈ PDl(i, j) then PQ ∈ PDk+l(h, j) and P ∗ ∈ PDk(i, h).

The above theory can be extended to vector bundles as follows. Let E
(resp., F ) be a Hermitian vector bundle of rank h (resp., j) over an m-
dimensional compact differential manifold M . Let P : Γ (E) → Γ (F ) be a
linear operator from sections of E to sections of F . The operator P is called a
(linear) pseudo-differential operator of order k from E to F if locally,
in any trivialization

ψE : U ×Ch → π−1
E (U), ψF : U ×Cj → π−1

F (U)

and any chart φ : U → Rm, the induced operator from sections of φ(U) ×
Ch → φ(U) to sections of φ(U) × Cj → φ(U) extends to an operator P̃
that is in PDk(j, h) modulo infinitely smoothing operators. We denote by
PDk(E, F ) the space of pseudo-differential operators from E to F . A
total symbol of order k from E to F is an element p ∈ Γ (Hom(π∗E, π∗F ))
that, in any trivialization ψE , ψF , φ as above, induces p̃ ∈ Smk(j, h). We
denote by Smk(E, F ) the space of symbols of order k from E to F . In
analogy with the definition of Sm<k(j, h) we may define Sm<k(E, F ). One
can show that for any operator P ∈ PDk(E, F ) there exists a well-defined
class σk(P ) ∈ Smk(E, F )/ Sm<k(E, F ), which is called the k-symbol (or
the principal symbol or simply the symbol) of P . For differential operators
from E to F this definition coincides with the previous one. We say that
P ∈ PDk(E, F ) is elliptic if in the class of σk(P ) there is an element which,
for each (x, y) ∈ T ∗

0 M , is an isomorphism of Ex onto Fx. Thus, if P is elliptic,
rankE = rankF . We denote by Elk(E, F ) the space of elliptic operators from
E to F . A parametrix for P ∈ Elk(E, F ) is a pseudo-differential operator
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Q ∈ PDk(F, E) such that

QP = id− S1 and PQ = id− S2,

where S1 and S2 are infinitely smoothing operators on E and F , respectively,
i.e.,

S1 ∈ PD−∞(E, E) and S2 ∈ PD−∞(F, F ).

We observe that a parametrix of P is an inverse of P modulo infinitely
smoothing operators. One can show that every elliptic operator over a com-
pact manifold admits a parametrix which is unique up to equivalence. An
important consequence of the existence of the parametrix for an operator
P ∈ Elk(E, E) with k > 0 is the fact that every eigenfunction u of P is
smooth.

In order to state some fundamental properties of elliptic operators we
now recall some basic facts about the theory of continuous linear operators
between Hilbert spaces. Let H, K be Hilbert spaces and T : H → K a
linear continuous map. The adjoint T ∗ of T is the (unique) linear continuous
operator T ∗ : K → H such that

(x|Ty) = (T ∗x|y), ∀x ∈ K, ∀y ∈ H.

If H, K are only pre-Hilbert spaces, then an operator T ∗ satisfying the above
relation does not necessarily exist, and if it does exist, it need not be unique.
The operator T is said to be compact if, for every bounded sequence {un}
in H , the sequence {Tun} contains a convergent subsequence. The adjoint of
a compact operator is compact and the composition of a compact operator
with a continuous operator is compact. Furthermore, if the range Im T of
T is closed, then dim Im T < ∞. The operator T is said to be of trace
class if it is compact and the sequence of eigenvalues of (T ∗T )1/2, counted
with their multiplicity, is summable. The operator T from a Hilbert space
H to a Hilbert space K is said to be a Fredholm operator if kerT and
kerT ∗ are finite-dimensional. It follows that, if K is infinite-dimensional,
a continuous operator T cannot be compact and Fredholm. A continuous
operator P : H → K is Fredholm if and only if there exists a continuous
operator Q : K → H and compact operators S1 : H → H , S2 : K → K such
that

QP = id− S1 and PQ = id− S2. (D.5)

Thus, Fredholm operators are the continuous operators that are invertible
modulo compact operators. In particular, from equation (D.5) it follows that
the operator Q is Fredholm. If P is a Fredholm operator the index of P ,
denoted by Ind(P ), is defined by

Ind(P ) = dim kerP − dim kerP ∗. (D.6)
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If P : H → K and Q : L → H are Fredholm operators then PQ : L → K is
a Fredholm operator and

Ind(PQ) = Ind(P ) + Ind(Q).

If S is a compact operator then id− S is a Fredholm operator and a simple
calculation shows that Ind(id − S) = 0. Thus, for the Fredholm operator Q
in (D.5) we have

Ind(PQ) = 0

and hence
Ind(Q) = − Ind(P ).

We observe that, by definition, if P is Fredholm then P ∗ is also Fredholm
and

Ind(P ∗) = − Ind(P ).

If P ∈ PDk(E, F ), then P has a well-defined extension to a continuous
operator Ps : Hs(E) → Hs−k(F ), ∀s. It is customary to denote Ps simply
by P when the extension is clear from the context. The following theorem
contains some important properties of pseudo-differential operators.

Theorem D.2 Let E (resp., F ) be a Hermitian vector bundle over a com-
pact Riemannian manifold M and let P ∈ PDk(E, F ). Then we have the
following:

1. There exists a unique P ∗ ∈ PDk(F, E) such that
∫

M

〈v, Pu〉F =
∫

M

〈P ∗v, u〉E , u ∈ Γ (E), v ∈ Γ (F ),

where 〈 , 〉E (resp. 〈 , 〉F ) denotes the inner product in the fibers of E
(resp., F ). P ∗ is called the formal adjoint of P . Moreover, σk(P ∗) =
(σk(P ))∗.

2. The operator P is elliptic if and only if its formal adjoint P ∗ is elliptic.
In this case, for all s ∈ R, Ps is a Fredholm operator, ker P and ker P ∗

are finite-dimensional and if we define Ind(P ) := dim kerP − dim kerP ∗,
we have

Ind(Ps) = Ind(P ).

3. We say that two k-symbols σ0, σ1 are regularly homotopic if there exists
a homotopy σt, 0 ≤ t ≤ 1, such that σt(αx) is an isomorphism for all
αx ∈ T ∗

0 M . Then, if P ∈ Elk(E, F ), its index depends only on the regular
homotopy class of its symbol.

4. Let F = E, let Eλ := ker(P −λ id) denote the eigenspace associated to the
eigenvalue λ ∈ C and let V be the set of eigenvalues of P . If P ∈ Elk(E, F )
is self-adjoint and k > 0, then each eigenspace of P is finite-dimensional
and each eigenvector of P is a smooth section of E. Furthermore, V is not
bounded and the Hilbert space L2(E) is a direct sum of the eigenspaces of
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P , i.e.,
L2(E) =

⊕
λ∈V

Eλ.

The above theory for a single operator can be generalized to apply to differ-
ential complexes that we now define. Let E0, . . . , En be a set of Riemannian
vector bundles over a compact connected Riemannian manifold (M, g) and
let

Lq : Γ (Eq)→ Γ (Eq+1), q = 0, . . . , n− 1

be a set of pseudo-differential operators of some fixed order k, such that

Lq+1 ◦ Lq = 0, 0 ≤ q ≤ n− 2. (D.7)

The finite cochain complex (see Appendix C)

0 −→ Γ (E0)
L0−→ Γ (E1)

L1−→ · · · Ln−1−→ Γ (En) −→ 0

is called a differential complex of order k (or simply a differential com-
plex) and is denoted by (Γ (E), L) or simply by (E, L). We observe that the
generalized de Rham sequence (see Chapter 4) is an example of a sequence
which fails to be a complex, the obstruction being given by the curvature.
If (E, L) is a differential complex, then a q-cocycle (resp., q-coboundary) of
(E, L) is an element of Zq(E, L) = kerLq (resp., Bq(E, L) = Im Lq−1). A
qth cohomology class is an element of the q-th cohomology space Hq(E, L) =
Zq(E, L)/Bq(E, L) of the complex (E, L). The symbol sequence associ-
ated to the differential complex (E, L) of order k is the following sequence of
vector bundles and homomorphisms of vector bundles

0 −→ p∗0(E0)
σk(L0)−→ p∗0(E1)

σk(L1)−→ · · · σk(Ln−1)−→ p∗0(En) −→ 0.

The differential complex is said to be elliptic if its associated symbol se-
quence is exact, i.e.,

Im σk(Lq−1) = kerσk(Lq), q = 0, 1, . . . , n.

A single elliptic operator may be considered an elliptic complex. Given the
elliptic complex (E, L) we define the jth Laplacian, or Laplace operator
Δj , of the complex (E, L) by

Δj := L∗
jLj + Lj−1L

∗
j−1 , 0 ≤ j ≤ n. (D.8)

The operator Δj is an elliptic operator for all j. It is self-adjoint (i.e., Δj =
Δ∗
j ) with respect to the inner product defined by

〈〈σ1, σ2〉〉 :=
∫

M

〈σ1(x), σ2(x)〉jdvg, σ1, σ2 ∈ Γ (Ej),
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where 〈 , 〉j is the metric on Ej . Some properties of Laplace operators that
are relevant to physical applications are given in [315, 323]. The solutions
of Δj(s) = 0 are called harmonic sections as in the particular case of the
de Rham complex. One can show that the Hodge decomposition theorem
is valid also for general elliptic complexes (see, for example, Gilkey [154] or
Wells [398]). Thus, the space of all harmonic sections is a finite-dimensional
subspace of Γ (Ej) isomorphic to the jth cohomology space Hj(E, L). The
index of the elliptic complex (E, L) is defined by

Inda(E, L) =
n∑
j=0

(−1)j dimHj(E, L). (D.9)

In the case of an elliptic complex consisting of a single elliptic operator P
this definition reduces to the definition of the index of P given earlier. Defi-
nition (D.9) of the index is formulated using the spaces of solutions of differ-
ential equations and is therefore called the analytic index. The subscript
“a” in Inda(E, L) refers to this analytic aspect of the definition. One can also
define the topological index Indt(E, L), which can be expressed in terms
of topological invariants (characteristic classes) associated to the complex
(E, L). It turns out that the analytic index and the topological index of the
elliptic complex (E, L) coincide, i.e.,

Inda(E, L) = Indt(E, L). (D.10)

This is the content of the classical Atiyah–Singer index theorem and its ex-
tensions. In the following example we apply this discussion to the de Rham
complex.

Example D.1 Recall that the de Rham complex of an m-dimensional man-
ifold M is the differential complex

0 −→ Λ0(M) d−→ Λ1(M) d−→ · · · d−→ Λn(M) −→ 0.

The operator d is a differential operator of order 1 and its symbol is given by

σ1(d)(αx, βx) = iαx ∧ βx, βx ∈ Λj(M)x, ∀j.

It is easy to verify that the corresponding symbol sequence is exact. Thus,
the de Rham complex (Λ(M), d) is an elliptic complex. The topological index
Indt(Λ, d) of the de Rham complex is defined by

Indt(Λ, d) =
m∑
k=0

(−1)kbk(M) = χ(M),

where bk(M) is the kth Betti number of M and χ(M) is the Euler character-
istic of M . From equation (D.9), we have
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Inda(Λ, d) =
n∑
j=0

(−1)j dimHj(Λ, d).

By Hodge theory, Hj(Λ, d) can be identified with the space of harmonic j-
forms and hence with the corresponding de Rham cohomology spaces. Now
recall from Chapter 2 that, by the classical de Rham theorem, the de Rham
cohomology is in fact topological, i.e., does not depend on the differential
structure and is isomorphic to the singular cohomology with real coefficients,
i.e., Hq

deR(M) ∼= Hq(M ;R), ∀q. Thus, we have a topological characterization
of the analytic index Inda(Λ, d). This may be regarded as a very special case
of the index theorem.

One of the most extensively studied differential operators in mathematical
physics is the Dirac operator. We devote the next section to a study of this
operator by using the bundle of spinors on a Riemannian manifold.

D.4 The Dirac Operator

Spinors were first introduced by physicists to study representations of the
universal covering group Spin(3) = SU(2) of the rotation group SO(3). The
non-relativistic theory of spin was developed by Pauli. Pauli’s spin matrices
are the generators of the spin group SU(2), which was interpreted as repre-
senting an intrinsic angular momentum of the electron. The relativistic wave
equation for the electron was discovered by Dirac [102]. The wave functions
of the electron occurring in Dirac’s equation belong to the 4-dimensional rep-
resentation of Spin(3, 1) = SL(2,C), which is the universal covering group,
of the connected component of the identity of the Lorentz group. The formal
treatment of spinors in these and other related works was replaced by a geo-
metrical definition by E. Cartan. In the introduction to his famous book on
the theory of spinors [71], Cartan writes:

... because of this geometrical origin, the matrices used by physicists in
Quantum Mechanics appear of their own accord, and we can grasp the
profound origin of the property, possessed by Clifford algebras, of repre-
senting rotations in space having any number of dimensions. Finally this
geometrical origin makes it very easy to introduce spinors into Rieman-
nian geometry, and particularly to apply the idea of parallel transport
to these geometrical entities.

It is this generalized Dirac operator that plays a fundamental role in index
theory and in particular in the study of moduli spaces of gauge fields and in
the Seiberg–Witten theory.

Our discussion of the Dirac operator is based on Clifford bundles over
Riemannian manifolds. A typical fiber of a Clifford bundle is a Clifford
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algebra. Let n = r + s and let gr be the standard pseudo-metric on Rn of
signature (r, s). Let Pin(r, s) be the group of the elements of C(r, s) that are
products of a finite number of elements γ(v) ∈ γ(Rn) ⊂ C(r, s), such that
gr(v, v) = ±1. The group Pin(r, s) is called the Pin group of (Rn, gr). The
subgroup of Pin(r, s) consisting of the elements which are products of an even
number of elements in γ(Rn) is called the spinor group of (Rn, gr) and is
denoted by Spin(r, s). Let α : Rn → C(r, s) be the map defined by

α(v) = −v, ∀v ∈ Rn.

This map extends to a unique algebra automorphism of C(r, s) such that
α2 = id. Let u ∈ Pin(r, s). By identifying Rn with γ(Rn) we define the map
Ãdu

Ãdu : Rn → Rn by Ãdu(v) := α(u)vu−1 ∈ γ(Rn) ∼= Rn,

One can show that Ãdu is an invertible linear map of Rn into itself. In fact,
it turns out that

Ãdu ∈ O(r, s), ∀u ∈ Pin(r, s).

The map
Ãd : u → Ãdu of Pin(r, s)→ O(r, s)

is called the twisted adjoint representation of Pin(r, s). It is a surjective
homomorphism whose restriction to Spin(r, s) is, for n > 2, a two-sheeted
universal covering of SO(r, s). In what follows we shall restrict ourselves to
the case of signature (n, 0) and denote Spin(n, 0) by Spin(n). The general
case can be treated along similar lines.

Let E be an oriented Riemannian vector bundle of rank n > 2 and let
SO(E) be the bundle of oriented orthonormal frames in E. A spin structure
Spin(E) on E is a universal extension of the bundle SO(E) to the group
Spin(n). The bundle Spin(E) is a principal Spin(n)-bundle over M and is
called the spin frame bundle of E.

Theorem D.3 Let E be an oriented Riemannian vector bundle over a man-
ifold M . E admits a spin structure if and only if its second Stiefel–Whitney
class w2(E) is zero. Furthermore, if w2(E) = 0, then the spin structures on
E are in one-to-one correspondence with the elements of H1(M ;Z2).

If M is an oriented Riemannian manifold we define a spin structure on M
to be a spin structure on TM . A spin manifold is an oriented Riemannian
manifold M with w2(M) := w2(TM) = 0, together with a spin structure on
M . We will denote by Spin(M) the corresponding spin structure on TM . By
abuse of language Spin(M) is called the spin frame bundle of M .

Let E be an oriented Riemannian vector bundle of rank n; the Clifford
bundle of E, denoted by Cl(E), is the associated bundle (C(n) ≡ C(n, 0))

Cl(E) := SO(E) ×r C(n),
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where r : SO(n)→ Aut(C(n)) is the canonical representation of SO(n) into
the automorphism group of C(n). It is easy to see that Cl(E)x = C(Ex), for
all x in the base space of E. Thus, Cl(E) is a bundle of Clifford algebras. If
the bundle E admits a spin structure with Spin(n)-bundle Spin(E), a real
(resp., complex) spinor bundle of E is an associated vector bundle of the
form

Spin(E) ×ρ V,

where ρ is a representation of Spin(n) in the homomorphisms of the real
(resp., complex) vector space V . Different spinor bundles of E may be ob-
tained with different choices of Spin(E) and ρ. We will denote by S(E, ρ) (or
simply S(E)) the spinor bundle of E defined by ρ. We observe that the vector
space V of the representation ρ is a left module over C(n). Thus, S(E)x is
a left module over C(Ex) ∼= C(n) and S(E) is a bundle of left modules. We
observe that the Clifford bundle Cl(E) is a particular case of spinor bundle
because

Cl(E) = Spin(E)×Ad C(n),

where Ad is the representation of Spin(n) into the automorphisms of C(n)
such that Adu v = uvu−1, u ∈ Spin(n) ⊂ C(n). It follows that Ad−1 = id.
Furthermore, the canonical vector space isomorphism of the exterior algebra
Λ(Rn) with C(n) (not an algebra isomorphism) gives rise to a canonical
isomorphism

Λ(E) ∼= Cl(E). (D.11)

Let M be an oriented Riemannian m-manifold with w2(M) = 0 and let
S(M) := S(TM) be a real spinor bundle of TM . Let us suppose that S(M)
is Riemannian and has a Riemannian connection with covariant derivative ∇.
The Dirac operator D relative to ∇ is the first order differential operator
D on sections of spinor bundle Γ (S(M)) defined by

Dσ :=
m∑
j=1

ej · ∇ej σ, σ ∈ Γ (S(M)), (D.12)

where, {e1, . . . , em} is an orthonormal basis of TxM ∀x ∈ M , and · denotes
Clifford multiplication. In Minkowski space the Dirac operator has the ex-
pression

D =
∑

γk∂k. (D.13)

From this it follows that D2 = gjk∂j∂k, which is the Laplacian in Minkowski
space. Thus, the Dirac operator can be regarded as the square root of the
Laplacian.

The Dirac operator is an elliptic operator with symbol

σ1(D)(ux, vx) = iux · vx, ux, vx ∈ C(TxM).



Appendix D 417

We observe that a Riemannian connection always exists on SO(M). In fact,
by the fundamental theorem of Riemannian geometry, SO(M) (M is a Rie-
mannian manifold) admits a canonical torsion-free Riemannian connection
which can be lifted to Spin(M) and thus to any spinor bundle on M . Thus,
we have a canonical Riemannian connection also on Cl(M) := Cl(TM). Un-
der the canonical isomorphism (D.11) with E = TM , the Dirac operator
D relative to the canonical Riemannian connection on Cl(M) satisfies the
relation

D ∼= d + δ.

A Dirac bundle over a Riemannian manifold M is a Riemannian spinor
bundle S(M) of TM with a Riemannian connection ω on S(M) such that:

1. for all x ∈M and for all unit vectors e ∈ TxM we have

〈e · ux, e · vx〉 = 〈ux, vx〉, ∀ux, vx ∈ S(M)x;

2. if ∇ is the covariant derivative of the canonical Riemannian connection on
M , then

∇ω(φ · σ) = ∇φ · σ + φ · ∇ωσ.

The space Γ0(S(M)) of sections of S(M) with compact support has an inner
product defined by

(σ1, σ2) :=
∫

M

〈σ1, σ2〉. (D.14)

With respect to this inner product, the Dirac operator of a Dirac bundle is
formally self-adjoint, i.e.

(Dσ1, σ2) = (σ1,Dσ2), σ1, σ2 ∈ Γ0(S(M)).

The Dirac operator of a Dirac bundle S(M) over a complete Riemannian
manifold M can be extended to the space L2(S(M)) of square integrable
sections of S(M) and one can show that this extension is essentially self-
adjoint, i.e., the closure of D is self-adjoint. We have given several examples
of index theorems in Chapter 5.
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255. Maciocia, A.: Metrics on the moduli spaces of instantons over Euclidean 4-space.

Comm. Math. Phys. 135, 467–482 (1991)
256. Manin, Y.I.: New exact solutions and cohomological analysis of ordinary and super-

symmetric Yang–Mills equations (in Russian). Trudy Mat. Inst. Steklov 165, 98–114
(1984)

257. Manin, Y.I.: Gauge Field Theory and Complex Geometry. SpringerVerlag, Berlin
(1988)

258. Manin, Y.I.: Frobenius manifolds, quantum cohomology, and moduli spaces. Coll.
Pub., vol. 47. Amer. Math. Soc., Providence (1999)

259. Manturov, V.: Knot Theory. Chapman & Hall/CRC, London (2004)
260. Marathe, K.: A chapter in physical mathematics: Theory of knots in the sciences. In:

B. Engquist and W. Schmidt (ed.) Mathematics Unlimited - 2001 and Beyond, pp.
873–888. Springer-Verlag, Berlin (2001)

261. Marathe, K.: Topological quantum field theory as topological gravity. In: B. Fauser
and others (ed.) Mathematical and Physical Aspects of Quantum Gravity, pp. 189–
205. Birkhauser, Berlin (2006)

262. Marathe, K.: The review of symmetry and the monster by Marc Ronan (Oxford).
Math. Intelligencer 31, 76–78 (2009)

263. Marathe, K.: Geometric topology and field theory on 3-manifolds. In: M. Banagl and
D. Vogel (ed.) The Mathematics of Knots, Contributions in the Mathematical and
Computational Sciences, Vol. 1, pp. 151–207. Springer-Verlag, Berlin (2010)

264. Marathe, K.B.: Structure of relativistic spaces. Ph.D. thesis, University of Rochester
(1971)

265. Marathe, K.B.: A condition for paracompactness of a manifold. J. Diff. Geom. 7,
571–572 (1972)

266. Marathe, K.B.: Generalized field equations of gravitation. Rend. Mat. (Roma) 6,
439–446 (1972)



References 429

267. Marathe, K.B.: Spaces admitting gravitational fields. J. Math. Phys. 14, 228–233
(1973)

268. Marathe, K.B.: The mean curvature of gravitational fields. Physica 114A, 143–145
(1982)

269. Marathe, K.B.: Generalized gravitational instantons. In: Proc. Coll. on Diff. Geom.,
Debrecen (Hungary) 1984, pp. 763–775. Colloquia Math Soc. J. Bolyai, Hungary
(1987)

270. Marathe, K.B.: Gravitational instantons with source. In: Particles, Fields, and Gravi-
tation, Lodz, Poland 1998, AIP Conf. Proc., vol. 453, pp. 488–497. Amer. Inst. Phys.,
Woodbury, NY (1998)

271. Marathe, K.B., Martucci, G.: Geometric quantization of the nonisotropic harmonic

oscillator. Il Nuovo Cim. 79B, N. 1, 1–12 (1984)
272. Marathe, K.B., Martucci, G.: Quantization on V-manifolds. Il Nuovo Cim. 86B, N.

1, 103–109 (1985)
273. Marathe, K.B., Martucci, G.: The geometry of gauge fields. J. Geo. Phys. 6, 1–106

(1989)
274. Marathe, K.B., Martucci, G.: The Mathematical Foundations of Gauge Theories.

Studies in Mathematical Physics, vol. 5. North-Holland, Amsterdam (1992)
275. Marathe, K.B., Martucci, G., Francaviglia, M.: Gauge theory, geometry and topology.

Seminario di Matematica dell’Università di Bari 262, 1–90 (1995)
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