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Lie point symmetries and first integrals:
The Kowalevski top
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We show how the Lie group analysis method can be used in order to obtain first
integrals of any system of ordinary differential equations. The method of reduction/
increase of order developed by Nucci@J. Math. Phys.37, 1772–1775~1996!# is
essential. Noether’s theorem is neither necessary nor considered. The most striking
example we present is the relationship between Lie group analysis and the famous
first integral of the Kowalevski top. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1561157#

I. INTRODUCTION

In January 2001, the first Whiteman prize for notable exposition on the history of mathem
was awarded to Thomas Hawkins by the American Mathematical Society. In the citation,
lished in the Notices of AMS48, 416–417~2001!, one reads that Thomas Hawkins ‘‘... has writt
extensively on the history of Lie groups. In particular, he has traced their origins to@Lie’s# work
in the 1870s on differential equations ... theidée fixeguiding Lie’s work was the development o
a Galois theory of differential equations ...@Hawkins’s book10# highlights the fascinating interac
tion of geometry, analysis, mathematical physics, algebra, and topology ... .’’

In the Introduction of his book,36 Olver wrote that ‘‘it is impossible to overestimate th
importance of Lie’s contribution to modern science and mathematics. Nevertheless, anyone
already familiar with@it# . . . is perhaps surprised to know that its original inspirational source
the field of differential equations.’’

Lie’s monumental work on transformation groups,20–22 and in particular contac
transformations,23 led him to achieve his goal.24 Lie group analysis is indeed the most powerf
tool to find the general solution of ordinary differential equations. Any known integration t
nique can be shown to be a particular case of a general integration method based on the de
of the continuous group of symmetries admitted by the differential equation, i.e., the Lie sym
algebra. In particular, Bianchi’s theorem2,36 states that if an admittedn-dimensional solvable Lie
symmetry algebra is found, then the general solution of the correspondingn order system of
ordinary differential equations can be obtained by quadratures. The admitted Lie symmetry
bra can be easily derived by a straightforward although lengthy procedure. As computer a
softwares become widely used, the integration of systems of ordinary differential equatio
means of Lie group analysis is getting easier to carry out.

A major drawback of Lie’s method is that it is useless when applied to systems ofn first order
equations, because they admit an infinite number of symmetries, and there is no systematic
find even one-dimensional Lie symmetry algebra, apart from trivial groups like translations in
admitted by autonomous systems. One may try to derive an admittedn-dimensional solvable Lie
symmetry algebra by making an ansatz on the form of its generators.

However, Nucci30 has remarked that any system ofn first order equations could be tran
formed into an equivalent system where at least one of the equations is of second order. Th

a!Author to whom correspondence should be addressed; electronic mail: nucci@unipg.it
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admitted Lie symmetry algebra is no longer infinite dimensional, and nontrivial symmetries o
original system could be retrieved.30 This idea has been successfully applied in seve
instances.30,43,5,40,32,33,35,31

Here we show another striking application of such an idea. If we consider a system o
order equations, and by eliminating one of the dependent variables derive an equivalent
which has one equation of second order, then Lie group analysis applied to that equivalent
yields the first integral~s! of the original system which does not contain the eliminated depen
variable. Of course, if such first integrals exist. The procedure should be repeated on as
times as there are dependent variables in order to find all such first integrals. The first in
correspond to the characteristic curves of determining equations of parabolic type42 which are
constructed by the method of Lie group analysis.

We would like to remark that interactive~not automatic! programs for calculating Lie poin
symmetries such as Refs. 28 and 29 are most appropriate for performing this task.

It is well known that if one finds a transformation which leaves invariant a functional des
ing a variational problem, then Noether’s theorem27 provides a first integral of the correspondin
Euler–Lagrange system. Unfortunately, a general method for finding such a transformatio
not exist. In addition, many equations of physical interest~e.g., Lorenz system in meteorology25!
do not come from a variational problem. On the contrary, our method can be applied to any s
of ordinary differential equations, even if they do not derive from a variational problem,31 and we
do not make any a priori hypothesis on the form of the first integrals, apart missing one
unknowns.

In the next section, we describe the method in detail, in Secs. III and IV, we presen
classical example of the Kowalevski top, and in Sec. V the three-dimensional Kepler probl
Cartesian coordinates. The last section contains some final comments.

II. OUTLINE OF THE METHOD

Let us consider the following autonomous~which could also be nonautonomous! system ofN
first order ordinary differential equations:

ẇ15F1~w1 ,w2 ,...,wN!,

ẇ25F2~w1 ,w2 ,...,wN!,
~1!

¯ ,

ẇN5FN~w1 ,w2 ,...,wN!.

Let

I 5I ~w1 ,w2 ,...,ws21 ,ws11 ,...,wN!, ~2!

be a first integral which does not depend onws , and

X5V~ t,w1 ,...,wN!] t1 (
k51

N

Gk~ t,w1 ,...,wN!]wk
~3!

be a generator of a Lie point symmetry group for~1!. If we derivews from one of the equations
~1!, say the first, then we obtain a system ofN22 equations of first order in
w2 ,...,ws21 ,ws11 ,...,wN and one of second order inw1 . We remark that the method does n
depend on the equation we choose from~1! to derivews . After introducing the new notationuj

( j 51,...,N21), we can write the system we obtain as
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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ü15 f 1~u1 ,u2 ,...,uN21 ,u̇1!,

u̇25 f 2~u1 ,u2 ,...,uN21 ,u̇1!,
~4!

¯ ,

u̇N215 f N21~u1 ,u2 ,...,uN21 ,u̇1!.

A generator of a Lie point symmetry group for~4! is

X̄5V̄~ t,u1 ,...,uN21!] t1 (
j 51

N21

Ḡj~ t,u1 ,...,uN21!]uj
. ~5!

If we apply Lie group analysis to system~4! using the interactive REDUCE programs develop
by Nucci,28,29 then we obtain a determining equation of parabolic type forV. Its characteristic
curves will yieldm,N21 transformations, which eliminateu̇1 from all the first order equations
in ~4!. Thus, we have obtained a system ofN22 equations of first order and one equation
second order in the new dependent variablesũ j such thatu15ũ1 and each of the other variable
ũ j are either the originaluj itself, if u̇1 did not appear in thej -equation of system~4!, or the
corresponding characteristic curve. If we apply Lie group analysis to this final system, then
a determining equation of parabolic type will be derived, and its characteristic curve, whe
written in the original variables, will be exactly the first integral~2!.

Now let us consider a system ofM second order ordinary differential equations

ẍi5Hi~x1 ,...,xM ,ẋ1 ,...,ẋM ! ~ i 51,...,M !. ~6!

A generator of a Lie point symmetry group for this system has the form

G5t~ t,x1 ,...,xM !] t1(
i 51

M

h i~ t,x1 ,...,xM !]xi
. ~7!

System~6! can be converted into the following autonomous system of 2M first order ordinary
differential equations:

ẇi5wM1 i ,
~8!

ẇM1 i5Hi~w1 ,...,wM ,wM11 ,...,w2M !.

At this point, we could either proceed as indicated above or choose one of the dependent va
to be the new independent variabley in order to reduce the order of system~8! by one.30 For
example, we could takexM[wM5y. Then, system~8! becomes the following nonautonomou
system of 2M21 first order ordinary differential equations with independent variabley:

d

dy
wh5wM1h /w2M ,

~9!
d

dy
wM1h5Hh~w1 ,...,wM21 ,y,wM11 ,...,w2M !/w2M ,

whereh51,...,M21. Now, our method can be applied to this system as if it was system~1!. The
fact that system~9! is not autonomous does not effect the result, as we will show in the case o
three dimensional Kepler problem in Cartesian coordinates.

The same method can be applied to a single ordinary differential equation of orderN which
can be easily transformed into a system ofN equations of first order. It should be noticed that the
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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could be several different ways of transforming an equation of orderN into a system ofN
equations of first order. Then, the just described method may give different results, videlice~viz.!
no first integrals with certain reductions, all the first integrals with different reductions.

III. FINDING THE KOWALEVSKI TOP

The motion of a heavy rigid point about a fixed point is one of the most famous problem
classical mechanics.7 In 1750, Euler6 derived the equations of motion which now bear his nam
and described what is nowadays known as the Euler–Poinsot case because of the geo
description given by Poinsot about 100 years later.38 It was Jacobi13 who integrated this case b
using the elliptic functions which he had developed~along with Legendre, Abel, and Gauss26! and
mastered14 ~we have translated this fundamental text into Italian and extensively comment41!.
Another case was described by Lagrange,19 and it is known as the Lagrange–Poisson case, du
the extensive study done later by Poisson.39 This case can also be integrated by using Jac
elliptic functions.44 At the time, it seemed that other cases could easily be found and sim
integrated. In 1855, the Prussian Academy of Science proposed this topic for a competitio
nobody applied.4 The problem was so elusive that the German mathematicians called it the
ematical mermaid~die mathematische Nixe!.17 More than 30 years elapsed before the Bordin pr
was awarded to Kowalevski for finding and reducing to hyperelliptic quadratures the third c16

which is since known as the Kowalevski top. She solved the problem by looking for solu
which are single-valued meromorphic functions in the entire complex plane of the variablet.7 Her
method became what is now known as the Painleve´–Kowalevski ~or just Painleve´! method.12

Hawkins had established ‘‘the nature and extent of Jacobi’s influence upon Lie.’’9 It is a remark-
able coincidence that the mathematical mermaid can also be found by using Lie group ana
we show in the following.

The Euler–Poisson equations describing the motion of a heavy rigid body about a fixed
are16

ṗ5~~B2C!rq1mg~bzG2gyG!!/A,

q̇5~~C2A!pr1mg~gxG2azG!!/B,

ṙ 5~~A2B!pq1mg~ayG2bxG!!/C,
~10!

ȧ5br 2gq,

ḃ5gp2ar ,

ġ5aq2bp,

with A, B, C the principal moments of inertia,p(t),q(t),r (t) the components of the angula
velocity, m the mass of the body,g the acceleration of gravity,xG ,yG ,zG the coordinates of the
center of mass, anda(t),b(t),g(t) the component of the unit vertical vector. There are three
integrals for system~10!: conservation of energy, i.e.,

I 15 1
2 ~Ap21Bq21cr2!1mg~xGa1yGb1zGg! ~11!

conservation of the vertical component of the angular momentum, i.e.,

I 25Apa1Bqb1Crg ~12!

the length of the unit vertical vector, i.e.,

I 35a21b21g2~51!. ~13!
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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If we apply our method to system~10!, then we find only the first integral of the unit vertica
vector which hasp,q,r as missing variables. Kowalevski found that if one imposes the follow
conditions on the parameters:

~1! A5B52C,
~2! zG50, and eitherxGÞ0 or yGÞ0

then there exists a fourth integral, i.e.,

I45Sp22q22mg
xGa2yGb

C D2

1S2pq2mg
xGb1yGa

C D2

. ~14!

We notice thatg andr are missing in~14!. Thanks to our method, we can find the Kowalevs
top by searching for a first integral which does not containg. First we deriveg from the second
equation of system~10!, i.e.,

g5
Bq̇1~A2C!pr1mgzGa

mgxG

which implies thatxG must be different from zero. We obtain the following system of fo
equations of first order, and one of second order:

ü15u̇1~Au1zG1~A2C!u3yG!/AxG2~A2B!~A2C!u1u2
2/BC1~A2C!2yGu2u3

2/ABxG

1~A2C!u1u2u3zG /BxG2~A2C!~B2C!u1u3
2/AB2~Au2xG2Cu3zG!

3~A2C!mgyGu4 /ABCxG1~A~A22C!u2xG1C~C22A!u3zG!mgu5 /ABC

1~xG
2 1zG

2 !mgu1u4 /BxG , ~15!

u̇252u̇1ByG /AxG1u3~~C2A!yGu21~B2C!xGu1!/AxG1mgzG~2u4yG1u5xG!/AxG ,
~16!

u̇35~~A2B!u1u21mg~u4yG2u5xG!!/C, ~17!

u̇452u̇1Bu1 /mgxG1~C2A!u1u2u3 /mgxG1~u3u5xG2u1u4zG!/xG , ~18!

u̇55u̇1Bu2 /mgxG1~A2C!u2
2u3 /mgxG1zGu2u4 /xG2u3u4 ~19!

with

u15q, u25p, u35r , u45a, u55b. ~20!

Now we apply Lie group analysis to system~15!–~19!. An operatorG

G5V~ t,u1 ,u2 ,u3 ,u4 ,u5!] t1 (
k51

5

Gk~ t,u1 ,u2 ,u3 ,u4 ,u5!]uk
~21!

is said to generate a Lie point symmetry group if its second prolongation

G
2

5G1 (
k51

5 S dGk

dt
2u̇k

dV

dt D ] u̇k
1S d

dt S dG1

dt
2u̇1

dV

dt D2ü1

dV

dt D ] ü1

applied to system~15!–~19!, on their solutions, is identically equal to zero, i.e.,

G
2
~15!u(15) – (19)50,

G
2
~16!u(15) – (19)50,
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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G
2
~17!u(15) – (19)50, ~22!

G
2
~18!u(15) – (19)50,

G
2
~19!u(15) – (19)50.

The five determining equations~22! constitute an overdetermined system of linear partial diff
ential equations in the unknownsV,Gk(k51,5) In fact, they are polynomials inu̇1 , each coeffi-
cient of which must become identically equal to zero. In particular, the first determining equ
in ~22! is a polynomial of degree three foru̇1 . The coefficient of highest degree yields an equat
of parabolic type forV in four independent variablesu1 ,u2 ,u4 ,u5 , i.e.,

A2mg2xG
2 ]2V

]u1
2 22ABm2g2xGyG

]2V

]u1u2
22A2Bmgu1xG

]2V

]u1u4
12A2Bmgu2xG

]2V

]u1u5

1B2m2g2yG
2 ]2V

]u2
2 12AB2mgu1yG

]2V

]u2u4
22AB2mgu2yG

]2V

]u2u5
1A2B2u1

2 ]2V

]u4
2

22A2B2u1u2

]2V

]u4u5
1A2B2u2

2 ]2V

]u5
2 2A2BmgxG

]V

]u4
2AB2mgyG

]V

]u5
50. ~23!

Its three characteristic curves yield the following transformations:

u25s22
Bu1yG

AxG
viz. p5s22

BqyG

AxG
,

u45s42
Bu1

2

2mgxG
viz. a5s42

Bq2

2mgxG
, ~24!

u55s51Bu1

ByGu112AxGu2

2AmgxG
2 viz. b5s51Bq

ByGq12AxGp

2AmgxG
2

with s2 , s4 , ands5 new unknown functions oft.
As outlined in Sec. II, transformations~24! eliminateu̇1 from all the first order equations in

system~15!–~19!.
In fact, system~15!–~19! becomes

ü15~26A2BCu1ũ2
2xG

2 24A2BCu1xGũ2u3zG22A2Bmgu1xG
2 yGũ522A2C2u3xGu1ũ2zG

12A2Bmgu1xGyG
2 ũ423A2BCu1

2yGu3zG12A2BCu̇1u3xGyG25A2BCu1
2yGũ2xG

13AB3u1
3yG

2 22A2BCu1u3
2yG

2 2A2BCu1
3xG

2 22A2BCu1u3
2xG

2 22AC3u3
2xG

2 u1

12A2CmgxGu1ũ4zG
2 12A2CmgxG

3 u1ũ424A2CmgxG
2 u3zGũ524A2CmgxG

3 ũ2ũ5

12A2CmgxGu3zGũ4yG27A2B2yGu1
2ũ2xG12A2CmgxG

2 ũ2ũ4yG24A2C2u3
2xGũ2yG

23A2B2yG
2 u1

32B2C2yGu1
2u3zG22u1A4ũ2

2xG
2 12A3ũ2xGCu3

2yG12A3ũ2xGCu1u3zG

12A3ũ2
2xG

2 Cu122u1BC3yG
2 u3

215A3ũ2xGBu1
2yG22A3ũ2xG

2 mgũ4yG14A3ũ2
2xG

2 Bu1

14ABCmgu1xG
2 yGũ522ABCmgu1xGyG

2 ũ422ABC2u̇1u3xGyG12ABC2u1xGũ2u3zG

13ABC2u1
2yGu3zG14ABC2u1u3

2yG
2 12ABC2u1u3

2xG
2 12AB2Cu1

2yGu3zG

110AB2Cu1
2yGũ2xG12AC3u3

2xGũ2yG12AC2mgu3xG
2 zGũ524B3CyG

2 u1
3

7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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22AC2mgu3xGzGũ4yG12A2C2u3
2xG

2 u12A2BCu1
3zG

2 13AB2Cu1
3yG

2

12A2BCu1xGu̇1zG12A3ũ2xG
3 mgũ5!/2A2BCxG

2 , ~25!

u8 25~22A2ũ2u3xGyG1ABu1
2yGzG12ABu1ũ2xGzG12ABu1u3xG

2 12ABu1u3yG
2 22ACu1u3xG

2

12ACũ2u3xGyG22Amgũ4xGyGzG12Amgũ5xG
2 zG22BCu1u3yG

2 !/2A2xG
2 , ~26!

u̇35~2A2u1ũ2xG23ABu1
2yG24Bu1ũ2AxG12Amgũ4xGyG22ũ5xG

2 Amg13B2yGu1
2!/2ACxG ,

~27!

u8 45~22A2u1ũ2u3xG1ABu1
3zG12ABu1

2u3yG12ABu1ũ2u3xG12ACu1ũ2u3xG

22Amgu1ũ4xGzG12Amgu3ũ5xG
2 2B2u1

2u3yG22BCu1
2u3yG!/2AmgxG

2 , ~28!

u8 55~2A2ũ2
2u3xG2ABu1

2ũ2zG1ABu1
2u3xG22ABu1ũ2u3yG22ACũ2

2u3xG12Amgũ2ũ4xGzG

22Amgu3ũ4xG
2 22B2u1

2ũ2zG22B2u1
2u3xG12BCu1

2u3xG12BCu1ũ2u3yG

22Bmgu1ũ5xGzG!/2AmgxG
2 , ~29!

with

ũ25s2 , ũ45s4 , ũ55s5 . ~30!

We now apply Lie group analysis to system~25!–~29!. An operatorG̃

G̃5Ṽ~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] t1G̃1~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!]u1
1G̃2~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] ũ2

1G̃3~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!]u3
1G̃4~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] ũ4

1G̃5~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] ũ5

~31!

is said to generate a Lie point symmetry group if its second prolongationG̃
2

applied to system

~25!–~29!, on their solutions, is identically equal to zero, i.e.,

G̃
2
~25!u(25) – (29)50,

G̃
2
~26!u(25) – (29)50,

G̃
2
~27!u(25) – (29)50, ~32!

G̃
2
~28!u(25) – (29)50,

G̃
2
~29!u(25) – (29)50.

The five determining equations~32! constitute an overdetermined system of linear par
differential equations in the unknownsṼ, G̃k(k51,5) In fact, they are polynomials inu̇1 , each
coefficient of which must become identically equal to zero. In particular, the fifth determi
equation in~32! is a polynomial of degree one foru̇1 . We call its two coefficientsc5k1 andc5k0.
For the sake of simplicity, we assumeG̃k50,]Ṽ/]t 50. Then, the coefficient of degree one, i.e
c5k1, yields
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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]Ṽ

]u1
50.

Now, c5k0 is a polynomial of degree five inu1 . Therefore, its coefficients, call them
c5m5,c5m4,c5m3,c5m2,c5m1,c5m0, must become identically equal to zero. The coefficient
degree five inu1 , i.e., c5m5, yields

]Ṽ

]ũ4
A2B2CzG~2~A12B!ũ2zG1~A22B12C!u3xG!50 ~33!

which gives the condition on the parameter

zG50. ~34!

Then, the coefficient of degree four inu1 , i.e., c5m4, yields

2S 3~A2B!
]Ṽ

]u3
mgyGxG2~A22B12C!

]Ṽ

]ũ5
Cu3xG2~2A2B22C!

]Ṽ

]ũ4
Cu3yGD

3~A22B12C!AB2u3xG50 ~35!

which gives the condition on the parameters

A52B22C. ~36!

Then, the coefficient of degree three inu1 , i.e., c5m3, becomes

12S ]Ṽ

]u3
mgxG2

]Ṽ

]ũ4
Cu3D ~2B23C!~B2C!~B22C!B2ũ2u3yG

2 50 ~37!

which gives the further condition on the parameters

B52C. ~38!

Thus, we have found the Kowalevski top. We also notice that either condition 2B53C or B
5C leads to the Lagrange top. Finally, we are left with two linear first order partial differe
equations inṼ5Ṽ(ũ2 ,u3 ,ũ4 ,ũ5), the coefficient of degree two inu1 , i.e., c5m2,

2S ]Ṽ

]ũ4
xG2

]Ṽ

]ũ5
yGDCu3ũ224

]Ṽ

]u3
mgxG

2 ũ21~xG
21yG

2!
]Ṽ

]ũ2
mgu350 ~39!

and the coefficient of degree one inu1 , i.e., c5m1

2C~Cũ2
22mgũ4xG2mgũ5yG!

]Ṽ

]ũ4
xGu3ũ2

24C~Cũ2
22mgũ4xG!

]Ṽ

]ũ5
yGu3ũ2

~40!

22~2Cũ2
2xG22mgũ4xG

2 1mgũ4yG
2 2mgũ5xGyG!

]Ṽ

]u3
mgxGũ2
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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1~Cũ2
2xG

2 12Cũ2
2yG

2 2mgũ4xG
3 2mgũ4xGyG

2 !
]Ṽ

]ũ2
mgu350.

If Ṽ satisfies equations~39! and~40!, then it is easy to prove that the determining equations~32!
are identically satisfied by considering conditions~34!, ~36!, ~38! as well.

From ~39! it is easy to obtain thatṼ5Ṽ(h1 ,h2 ,h3) with

h15u3
21

4xG
2 ũ2

2

xG
2 1yG

2 , h25ũ42
CxGũ2

2

mg~xG
2 1yG

2 !
, h35ũ51

CyGũ2
2

mg~xG
2 1yG

2 !
. ~41!

Then,~40! becomes

2mg~yGh22xGh3!
]Ṽ

]h1
1C

]Ṽ

]h2
h32C

]Ṽ

]h3
h250. ~42!

Its characteristic curves are

j15h11
2mg

C
~yGh31xGh2!, j25h2

21h3
2. ~43!

Finally, we have thatṼ5C(j1 ,j2) with C an arbitrary function ofj1 ,j2 , and consequently
operator

G̃5C~j1 ,j2!] t ~44!

is a generator of a Lie point symmetry for system~25!–~29!. Transforming~43! into the original
unknown functions by using~41!, ~30!, ~24!, and~20! yields

j15
2

C S C

2
~2p212q21r 2!1mg~xGa1yGb! D ,

j25C2
S p22q22mg

xGa2yGb

C D 2

1S 2pq2mg
xGb1yGa

C D 2

m2g2~xG
2 1yG

2 !

which correspond to the first integral of conservation of energy~11!, and that derived by Kowa-
levski ~14!, respectively.

Can other cases of integrability~viz. integration by quadrature! be obtained by using ou
method? We leave the answer to a future paper. In Ref. 43, the application of our method le
integrable case for a nonlinear system of three ordinary differential equations which doe
possess the Painleve´ property.

IV. FIRST INTEGRALS OF THE KOWALEVSKI TOP

We apply our method to the Kowalevski top itself which corresponds to the following
ditions on the parameters:

~1! A5B52C,
~2! yG5zG50, xG.0.

The condition onyG can be added without loss of generality. Then, system~10! become
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ṗ5rq/2,

q̇52pr/21mgxGg/2C,

ṙ 52mgxGb/C,
~45!

ȧ5br 2gq,

ḃ5gp2ar ,

ġ5aq2bp.

The first integrals for the Kowalewski top are

~1! conservation of energy, i.e.,

I15
C

2
~2p212q21r2!1mg xGa; ~46!

~2! conservation of the vertical component of the angular momentum, i.e.,
I25C~2pa12qb1rg!; ~47!

~3! the length of the unit vertical vector, i.e.,
I35a21b21g2~51!; ~48!

~4! the first integral derived by Kowalevski, i.e.,

I45Sp22q22
xGamg

C D2

1S2pq2
xGbmg

C D2

. ~49!

If our method is applied to~45!, then all the first integrals can be obtained, apart from~47!
which has all the unknown variablesp,q,r ,a,b,g appearing in its expression. Let us observe t

b does not appear inI 1 ,
g does not appear in bothI 1 and I 4 ,
p does not appear inI 3 .
In the following, we eliminatea,b,g,p from system~45! one at a time.

A. Eliminating a

First we show a negative result: no first integral obtained. Let us assume that we do not
any of the first integrals. Therefore, we do not knowa priori that none of the first integrals can b
obtained by derivinga. We derivea from the fifth equation of system~45!, i.e.,

a5
pg2ḃ

r

and obtain the following system of four equations of first order, and one of second order:

ü15~22Cu1u3
322Cu1u3u4

222Cu̇1u2u413Cu2u3
2u5

12Cu2u4
2u522mgu1u̇1xG12mgu1u4u5xG!/2Cu3 ,

u̇25~2Cu3u41mgu5xG!/2C,
~50!

u̇35~2mgu1xG!/C,

u̇45~u2u3!/2,

u̇55~2u1u3u42u̇1u21u2u4u5!/u3
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with

u15b, u25q, u35r , u45p, u55g. ~51!

If we apply Lie group analysis to system~50!, then we obtain a determining equation of parabo
type for V in two independent variables. Its characteristic curve is

u5u31u1u2

which yields the following transformation:

u55
s52u2u1

u3
viz. g5

s52qb

r
~52!

with s5 a new unknown function oft. Then, system~50! transforms into

ü15~23Cu1u2
2u3

222Cu1u2
2u4

222Cu1u3
422Cu1u3

2u4
222Cu̇1u2u3u413Cu2u3

2ũ5

12Cu2u4
2ũ522mgu1

2u2u4xG22mgu1u̇1u3xG12mgu1u4ũ5xG!/2Cu3
2,

u̇25~2Cu3
2u42mgu1u2xG1mgũ5xG!/2Cu3 ,

u̇35~2mgu1xG!/C, ~53!

u̇45u2u3/2,

u8 55~22Cu1u2
2u423Cu1u3

2u412Cu2u4ũ51mgu1
2u2xG2mgu1ũ5xG!/2Cu3 ,

with

ũ55s5 . ~54!

If we apply Lie group analysis to system~53!, then we obtain a two dimensional Lie symmet
algebra generated by the following two operators:

G15
]

]t
, ~55!

G252t
]

]t
12u1

]

]u1
1u2

]

]u2
1u3

]

]u3
1u4

]

]u4
13ũ5

]

]ũ5
~56!

which in the original unknown functions correspond to

G15
]

]t
, ~57!

G252t
]

]t
1p

]

]p
1q

]

]q
1r

]

]r
12a

]

]a
12b

]

]b
12g

]

]g
. ~58!

This is a trivial finding.
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B. Eliminating b

We deriveb from the third equation of system~45!, i.e.,

b52
Cṙ

mgxG

and obtain the following system of four equations of first order, and one of second order:

ü15~mgxG~u1u42u3u5!/C,

u̇25~2Cu1u31mgxGu5!/2C,

u̇35u1u2/2, ~59!

u̇45~2Cu1u̇12mgxGu2u5!/mgxG ,

u̇55~Cu̇1u31mgxGu2u4!/mgxG

with

u15r , u25q, u35p, u45a, u55g. ~60!

If we apply Lie group analysis to system~59!, then we obtain a determining equation of parabo
type for V in three independent variables. Its two characteristic curves yield the following t
formations:

u45
s42Cu1

2

2mg xG
viz. a5

s42Cr2

2mg xG
,

~61!

u55
Cu3u11s6

mg xG
viz. g5

Cpr1s6

mg xG

with s4 ands6 new unknown functions oft. Then, system~50! transforms into

ü15~2Cu1
322Cu1u3

21u1ũ422u3ũ5!/2C,

u̇25ũ5/2C,

u̇35u1u2/2, ~62!

u8 4522u2~Cu1u31ũ5!,

u8 55u2~22Cu1
21ũ4!/2

with

ũ45s4 , ũ55s6 . ~63!

If we apply Lie group analysis to system~62!, then we obtain two first order partial differentia
equations forV:

]V

]u3
24Cu3

]V

]ũ4
50, ~64!
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]V

]u2
24Cu2

]V

]ũ4
50, ~65!

with V[V(u2 ,u3 ,ũ4). From ~64! it is easy to obtain thatV[V(h,u2) with

h52Cu3
21ũ4. ~66!

Then,~65! becomes

]V

]u2
24Cu2

]V

]h
50. ~67!

Its characteristic curve is

j152Cu2
21h. ~68!

Finally, we have thatV5c(j1) with c an arbitrary function ofj, and consequently operator

G15c~j1!] t ~69!

is a generator of a Lie point symmetry for system~62!. Transforming~68! into the original
unknown functions by using~66!, ~63!, ~61!, ~60! yields

j15
C

2
~2p212q21r 2!1mg xGa

which is exactly the first integral of conservation of energy~46!. In addition, we have algorith-
mically derived that~69! is a generator of a Lie point symmetry for system~45!.

C. Eliminating g

We deriveg from the second equation of system~45!, i.e.,

g5
C~2q̇1pr !

mgxG

and obtain the following system of four equations of first order, and one of second order:

ü15u1~2Cu3
212mgu4xG!/4C,

u̇25u1u3/2,

u̇352mgu5xG /C, ~70!

u̇45~22Cu1u̇12Cu1u2u31mgu3u5xG!/mgxG ,

u̇55~2Cu̇1u21Cu2
2u32mgu3u4xG!/mgxG

with

u15q, u25p, u35r , u45a, u55b. ~71!

If we apply Lie group analysis to system~70!, then we obtain a determining equation of parabo
type for V in three independent variables. Its two characteristic curves yield the following t
formations:
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u45
s42Cu1

2

mgxG
v iz. a5

s42Cq2

mgxG
,

~72!

u55
2Cu1u21s5

mgxG
v iz. b5

2Cpq1s5

mgxG

with s4 ands5 new unknown functions oft. Then, system~70! transforms into

ü15@u1~22Cu1
22Cu3

212ũ4!#/4C,

u̇25u1u3/2,

u̇35~22Cu1u22ũ5!/C, ~73!

u8 45u3~Cu1u21ũ5!,

u8 55u3~Cu2
22ũ4!

with

ũ45s4 , ũ55s5 . ~74!

If we apply Lie group analysis to system~73!, then we obtain two first order partial differentia
equations forV:

u3

]V

]u2
24u2

]V

]u3
14Cu2u3

]V

]ũ4
50, ~75!

8Cu2ũ5

]V

]u3
2Cu3ũ5

]V

]ũ4
1Cu3~ ũ42Cu2

2!
]V

]ũ5
50 ~76!

with V[V(u2 ,u3 ,ũ4 ,ũ5). From ~75! it is easy to obtain thatV[V(h1 ,h2 ,ũ5) with

h154u2
21u3

2 , h25Cu2
22ũ4 . ~77!

Then, Eq.~76! becomes

2Cu3ũ5

]V

]h1
1Cu3ũ5

]V

]h2
2Cu3~u42Cu2

2!
]V

]ũ5
50. ~78!

Its characteristic curves are

j15Ch122h2 , j25h2
21ũ5

2. ~79!

Finally, we have thatV5C(j1 ,j2) with C an arbitrary function ofj1 , j2 , and consequently
operator

G15C~j1 ,j2!] t ~80!

is a generator of a Lie point symmetry for system~73!. Transforming~79! into the original
unknown functions by using~77!, ~74!, ~72!, ~71! yields

j15
C

2
~2p212q21r 2!1mg xGa,
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j25S p22q22
xGamg

C D 2

1S 2pq2
xGbmg

C D 2

which are exactly the first integral of conservation of energy~46!, and that derived by Kowalevsk
~49!, respectively. In addition, we have algorithmically derived that~80! is a generator of a Lie
point symmetry for system~45!.

D. Eliminating p

We derivep from the second equation of system~45!, i.e.,

p5
mggxG22Cq̇

Cr

and obtain the following system of four equations of first order, and one of second order:

ü15u1~2Cu3
212mgu4xG!/4C,

u̇25~Cu1u3u412Cu̇1u52mgu2u5xG!/Cu3 ,

u̇352mgu5xG /C, ~81!

u̇452u1u21u3u5 ,

u̇55~22Cu̇1u22Cu3
2u41mgu2

2xG!/Cu3

with

u15q, u25g, u35r , u45a, u55b. ~82!

If we apply Lie group analysis to system~81!, then we obtain a determining equation of parabo
type for V in three independent variables. Its two characteristic curves yield the following t
formations:

u25As6 cos~2s522u3! viz. g5As6 cos~2s522r !,
~83!

u55As6 sin~2s522u3! viz. b5As6 sin~2s522r !

with s6 ands5 new unknown functions oft. Then, system~81! transforms into

ü15u1~2Cu3
212mgu4xG!/4C,

u8 252u4Aũ2 cos~2u322ũ5!@ tan~2u322ũ5!u31u1#,

u̇35Aũ2 sin~2u322ũ5!mgxG /C, ~84!

u̇452Aũ2 cos~2u322ũ5!@ tan~2u322ũ5!u31u1#,

u8 55Aũ2 cos~2u322ũ5!@2~Cu3
2u42mgũ2xG!22Cu̇1ũ2

1~Cu1u412mgũ2xG!tan~2u322ũ5!u3#/2Cũ2u3

with

ũ25s6 , ũ55s5 . ~85!
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If we apply Lie group analysis to system~84!, then we obtain a determining equation of parabo
type for V in two independent variables. Its characteristic curve yields the following transfo
tion:

ũ55
ss52u1

u3
v iz.

g5As6 cosS 2
ss52q2r 2

r D
b5As6 sinS 2

ss52q2r 2

r D , ~86!

with ss5 a new unknown function oft. Then, system~84! transforms into

ü15u1~2Cu3
212mgu4xG!/4C,

u8 252u4Aũ2 cos~~2u112u3
222û5!/u3!@u11tan~~2u112u3

222û5!/u3!u3#,

u̇35Aũ2 sin~~2u112u3
222û5!/u3!mgxG /C, ~87!

u̇452Aũ2 cos~~2u112u3
222û5!/u3!@u11tan~~2u112u3

222û5!/u3!u3#,

u̇̂55Aũ2 cos~~2u3
222û512u1!/u3!@@~2u3

212û522u1!mgũ2xG1Cu1u3
2u4#

3tan~~2u3
222û512u1!/u3!1~mgũ2xG2cu3

2u4!u3#/2cũ2u3

with

û55ss5 . ~88!

If we apply Lie group analysis to system~87!, then we obtain one first order partial differenti
equation forV:

]V

]u4
22u4

]V

]ũ2
50 ~89!

with V[V(ũ2 ,u4). Its characteristic curve is

j15ũ21u4
2. ~90!

Finally, we have thatV5c(j1) with c an arbitrary function ofj1 , and consequently operator

G15c~j1!] t ~91!

is a generator of a Lie point symmetry for system~87!. Transforming~90! into the original
unknown functions by using~88!, ~86!, ~85!, ~83!, ~82! yields

j15a21b21g2

which is exactly the first integral of the length of the unit vertical vector~48!. In addition, we have
algorithmically derived that~91! is a generator of a Lie point symmetry for system~45!.

V. KEPLER PROBLEM

In Ref. 33, Nucci’s method30 was used to find symmetries additional to those reported
Krause18 in his study of the complete symmetry group of the Kepler problem. A consequen
the application of Nucci’s method was the demonstration of the group theoretical relatio
between the simple harmonic oscillator and the Kepler problem. In Ref. 33, polar coordinate
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used, and Nucci’s method was not applied to the three-dimensional case with the purp
finding first integrals. We do it here by considering Cartesian coordinates.

The equations of motion of the Kepler problem are given by the following well-known th
equations of second order:

ẍ152mx1 /~~x1
21x2

21x3
2!3/2!,

ẍ252mx2 /~~x1
21x2

21x3
2!3/2!, ~92!

ẍ352mx3 /~~x1
21x2

21x3
2!3/2!.

The first integrals for the Kepler problem are conservation of energyE, conservation of angula
momentumK , the Laplace–Runge–Lenz vectorL . None of the unknownsx1 ,x2 ,x3 ,ẋ1 ,ẋ2 ,ẋ3 are
missing in the expression ofE and the components ofL . This is not true for the three componen
of K , i.e.,

K15x3ẋ22 ẋ3x2 , ~93!

K25x3ẋ12 ẋ3x1 , ~94!

K35x1ẋ22 ẋ1x2 . ~95!

Therefore, we can only obtain the three components ofK using our method. However, neitherE
nor L are needed to reduce system~92! to a linear oscillator, as we show in the following. Let u
transform system~92! into a system of six equations of first order

ẇ15w4 ,

ẇ25w5 ,

ẇ35w6 ,
~96!

ẇ452mw1 /~~w1
21w2

21w3
2!3/2!,

ẇ552mw2 /~~w1
21w2

21w3
2!3/2!,

ẇ652mw3 /~~w1
21w2

21w3
2!3/2!

with

w15x1 , w25x2 , w35x3 , w45 ẋ1 , w55 ẋ2 , w65 ẋ3 . ~97!

Consequently, the components of the angular momentum become

K15w3w52w6w2 , ~98!

K25w3w42w1w6 , ~99!

K35w1w52w4w2 . ~100!

We choose one of the dependent variables to be the new independent variabley in order to reduce
the order of system~96! by one.30 We takew35y. Then, system~96! becomes the following
nonautonomous system of five first order ordinary differential equations:

w185w4 /w6 ,
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w285w5 /w6 ,

w4852mw1 /~w6~w1
21w2

21y2!3/2!, ~101!

w5852mw2 /~w6~w1
21w2

21y2!3/2!,

w6852my/~w6~w1
21w2

21y2!3/2!

with prime denoting differentiation with respect toy. Let us observe that
w4 does not appear inK1 ,
w5 does not appear inK2 ,
w6 does not appear inK3 ,
We should remark that other variables are missing too. For example,w1 is also missing inK1 .

However, our method will yield the result whatever the choice of a missing variable. In
following, we eliminatew4 ,w5 ,w6 from system~101! one at a time.

A. Eliminating w 4

We derivew4 from the first equation of system~101!, i.e.,

w45w18w6

and obtain the following nonautonomous system of three equations of first order, and o
second order:

u495m~u48y2u4!/~u3
2~u2

21u4
21y2!3/2!,

u3852my/~u3~u2
21u4

21y2!3/2!,
~102!

u285u1 /u3 ,

u1852mu2 /~u3~u2
21u4

21y2!3/2!

with

u45w1 , u25w2 , u35w6 , u15w5 . ~103!

If we apply Lie group analysis to system~102!, then after several reductions we obtain one fi
order partial differential equations forG3 ,

u1

]G3

]u2
1u3

]G3

]y
50 ~104!

with G3[G3(u1 ,u2 ,u3 ,y). Its solution isG35c(j1) with c an arbitrary function of

j15u3u22yu1 . ~105!

Transforming~105! into the original unknown functions by using~97!, ~103! yields

j15 ẋ3x22 ẋ2x3

which is exactly the first component of the angular momentum~93!.
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B. Eliminating w 5

We derivew5 from the second equation of system~101!, i.e.,

w55w28w6

and obtain the following nonautonomous system of three equations of first order, and o
second order:

u495m~2u41u48y!/~u2~u1
21u4

21y2!3/2!,

u3852mu1 /~u2~u1
21u4

21y2!3/2!,
~106!

u2852my/~~u1
21u4

21y2!3/2!,

u185u3 /u2

with

u45w2 , u25w6 , u35w4 , u15w1 . ~107!

If we apply Lie group analysis to system~106!, then after several reductions we obtain one fi
order partial differential equation forG2 ,

u3

]G2

]u1
1u2

]G2

]y
50 ~108!

with G2[G2(u1 ,u2 ,u3 ,y). Its solution isG25f(j2) with f an arbitrary function of

j25yu32u1u2 . ~109!

Transforming~109! into the original unknown functions by using~97!, ~107! yields

j25x3ẋ12 ẋ3x1

which is exactly the second component of the angular momentum~94!.

C. Eliminating w 6

We derivew6 from the first equation of system~101!, i.e.,

w65
w4

w18

and obtain the following nonautonomous system of three equations of first order, and o
second order:

u495mu48
2~2u41u48y!/~u1

2~u2
21u4

21y2!3/2!,

u3852mu2u48/~u1~u2
21u4

21y2!3/2!,
~110!

u285u3u48/u1 ,

u1852mu4u48/~u1~u2
21u4

21y2!3/2!

with
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u45w1 , u25w2 , u35w5 , u15w4 . ~111!

If we apply Lie group analysis to system~110!, then after several reductions we obtain one fi
order partial differential equation forG3 ,

u3

]G3

]u2
1u1

]G3

]u1
50 ~112!

with G3[G3(u1 ,u2 ,u3 ,u4) and withG3[G3(u1 ,u2 ,u3 ,y). Its solution isG35w(j3) with w an
arbitrary function of

j35u1u22u4u3 . ~113!

Transforming~113! into the original unknown functions by using~97!, ~111! yields

j35 ẋ2x12 ẋ1x2

which is exactly the third component of the angular momentum~94!.
Now let us derivew5 , w4 , andw2 from ~98!, ~99! and ~100!, i.e.,

w55
2j3w6y1j2j11j1w1w6

j2y
, ~114!

w45
j21w1w6

y
, ~115!

w25
2j3y1j1w1

j2
~116!

with j1 , j2 , j3 new unknown functions ofy. Substituting~114!, ~115!, ~116! into ~101!, and
deriving w6 from the first equation yields the following system of three equations of first or
and one of second order:

u495~mu2~2u4
313u4

2u48y23u4u48
2y21u48

3y3!!/~~u1
2y222u3u1u4y1u2

2u4
21u2

2y21u3
2u4

2!3/2!,

u3850,
~117!

u2850,

u1850

with

u45w1 , u35j3 , u25j2 , u15j1 .

It is easy to show that system~117! admits an eleven-dimensional Lie symmetry algebra. In fa
the first equation of~117! itself admits a Lie symmetry algebra of dimension eight, which me
that it is is linearizable through a point transformation.24 Thus, we have reduced the equations
motion of the Kepler problem to the harmonic oscillator33,35 by using Lie group analysis.

VI. FINAL COMMENTS

We have found that Lie group analysis yields the first integrals admitted by any syste
ordinary differential equations if the method developed by Nucci30 is applied, the only limitation
being the absence of at least one of the unknowns in each first integral.
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Is it possible to obtain all of the first integrals by means of Lie group analysis? Also, wh
the link between Painleve´ method and Lie group analysis?34 In addition, can Lax pairs be found b
Lie group analysis? So far these are open questions that we hope to address in future wo

Let us conclude by underlining that the application of Nucci’s method to the Kowalevsk
have led us to understand how first integrals can be found by using Lie group analysis. In
Cooke4 wrote ‘‘Kowalevskaya’s work is an ingenious application of mathematics to a syste
equations of great mathematical interest ... but since the case to which it applies is rather s
the details of her arguments are no longer worth troubling about.’’ About the same time, a r
of interest into integrable problems of mechanics has led to numerous papers on the Kow
top. Just to cite a few, see Refs. 37, 11, 8, 1, 3, 15 and the entire No. 11 issue of J. Phys34
~2001!.
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