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Lie point symmetries and first integrals:
The Kowalevski top
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We show how the Lie group analysis method can be used in order to obtain first
integrals of any system of ordinary differential equations. The method of reduction/
increase of order developed by Nud¢di Math. Phys37, 1772-17751996)] is
essential. Noether’s theorem is neither necessary nor considered. The most striking
example we present is the relationship between Lie group analysis and the famous
first integral of the Kowalevski top. @003 American Institute of Physics.
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I. INTRODUCTION

In January 2001, the first Whiteman prize for notable exposition on the history of mathematics
was awarded to Thomas Hawkins by the American Mathematical Society. In the citation, pub-
lished in the Notices of AM®8, 416—-417(2001), one reads that Thomas Hawkins “... has written
extensively on the history of Lie groups. In particular, he has traced their originsets] work
in the 1870s on differential equations ... tidee fixeguiding Lie’s work was the development of
a Galois theory of differential equations[Hawkins's book?] highlights the fascinating interac-
tion of geometry, analysis, mathematical physics, algebra, and topology ...."

In the Introduction of his booRS Olver wrote that “it is impossible to overestimate the
importance of Lie's contribution to modern science and mathematics. Nevertheless, anyone who is
already familiar withit] ... is perhaps surprised to know that its original inspirational source was
the field of differential equations.”

Lie's monumental work on transformation grouf3s?> and in particular contact
transformationg? led him to achieve his goéf. Lie group analysis is indeed the most powerful
tool to find the general solution of ordinary differential equations. Any known integration tech-
nique can be shown to be a particular case of a general integration method based on the derivation
of the continuous group of symmetries admitted by the differential equation, i.e., the Lie symmetry
algebra. In particular, Bianchi's theorémt states that if an admitten-dimensional solvable Lie
symmetry algebra is found, then the general solution of the correspomdingler system of
ordinary differential equations can be obtained by quadratures. The admitted Lie symmetry alge-
bra can be easily derived by a straightforward although lengthy procedure. As computer algebra
softwares become widely used, the integration of systems of ordinary differential equations by
means of Lie group analysis is getting easier to carry out.

A major drawback of Lie’s method is that it is useless when applied to system§rst order
equations, because they admit an infinite number of symmetries, and there is no systematic way to
find even one-dimensional Lie symmetry algebra, apart from trivial groups like translations in time
admitted by autonomous systems. One may try to derive an admittiashensional solvable Lie
symmetry algebra by making an ansatz on the form of its generators.

However, Nuccl® has remarked that any system mffirst order equations could be trans-
formed into an equivalent system where at least one of the equations is of second order. Then, the
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admitted Lie symmetry algebra is no longer infinite dimensional, and nontrivial symmetries of the
original system could be retrievél. This idea has been successfully applied in several
instance§9'43'5'4°'32'33'35'31

Here we show another striking application of such an idea. If we consider a system of first
order equations, and by eliminating one of the dependent variables derive an equivalent system
which has one equation of second order, then Lie group analysis applied to that equivalent system
yields the first integrd) of the original system which does not contain the eliminated dependent
variable. Of course, if such first integrals exist. The procedure should be repeated on as many
times as there are dependent variables in order to find all such first integrals. The first integrals
correspond to the characteristic curves of determining equations of parabolfé tyipieh are
constructed by the method of Lie group analysis.

We would like to remark that interactiviot automati¢ programs for calculating Lie point
symmetries such as Refs. 28 and 29 are most appropriate for performing this task.

It is well known that if one finds a transformation which leaves invariant a functional describ-
ing a variational problem, then Noether’s theoféprovides a first integral of the corresponding
Euler—Lagrange system. Unfortunately, a general method for finding such a transformation does
not exist. In addition, many equations of physical intefesq., Lorenz system in meteoroldgy
do not come from a variational problem. On the contrary, our method can be applied to any system
of ordinary differential equations, even if they do not derive from a variational problemd we
do not make any a priori hypothesis on the form of the first integrals, apart missing one of the
unknowns.

In the next section, we describe the method in detail, in Secs. Ill and IV, we present the
classical example of the Kowalevski top, and in Sec. V the three-dimensional Kepler problem in
Cartesian coordinates. The last section contains some final comments.

II. OUTLINE OF THE METHOD

Let us consider the following autonomo(which could also be nonautonomgystem ofN
first order ordinary differential equations:

Wl:Fl(lewzy'--!WN);

W2: F2(W1 ,W2 g ,WN),

(1)
WN:FN(Wl,Wz,...,WN).
Let
I:I(W11W2!"'IWS—11WS+11"'IWN)! (2)
be a first integral which does not dependwyg, and
N
X:V(t,Wl,...,WN)O"t‘i‘kzl Gk(t,Wl,...,WN)o"Wk (3)

be a generator of a Lie point symmetry group €y. If we derivewg from one of the equations
(1), say the first, then we obtain a system ®&f—2 equations of first order in
Woy,....Ws 1,Ws,1,....Wy and one of second order in;. We remark that the method does not
depend on the equation we choose frnto derivews. After introducing the new notation;
(j=1,...N—1), we can write the system we obtain as
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ulzfl(u1!u2!'--1uN—1;U1)|

Up="F5(Uq,Uz,... Un—1,Uq),

4)
UN*l:fol(u11u21"'1uNfliul)'
A generator of a Lie point symmetry group f64) is
N—-1
X=V(t,ug,... .Un-1)dp+ 121 Gj(t,Un, .. Un-1) 3y (5)

If we apply Lie group analysis to systefd) using the interactive REDUCE programs developed
by Nucci?®?° then we obtain a determining equation of parabolic typeVforts characteristic
curves will yieldm<N-—1 transformations, which eliminatge, from all the first order equations

in (4). Thus, we have obtained a systemMf-2 equations of first order and one equation of
second order in the new dependent variaiiesuch thatu, =T, and each of the other variables

T; are either the original; itself, if U, did not appear in th¢-equation of systent4), or the
corresponding characteristic curve. If we apply Lie group analysis to this final system, then again
a determining equation of parabolic type will be derived, and its characteristic curve, when re-
written in the original variables, will be exactly the first integ(a).

Now let us consider a system & second order ordinary differential equations
Xi:Hi(Xlr"'vaixl!"'ixM) (|:1,,M) (6)

A generator of a Lie point symmetry group for this system has the form

M
FIT(I,Xl,...,XM)é?t-i-iZl it X1 Xan) Dy, 7)

System(6) can be converted into the following autonomous system Mf fdst order ordinary
differential equations:

Wi =Wy 4,

8

Wit = Hi(Wy, .o Wi Wi 1,00 W)

At this point, we could either proceed as indicated above or choose one of the dependent variables
to be the new independent variabjein order to reduce the order of systei® by one® For
example, we could take,,=wy=y. Then, systen{8) becomes the following nonautonomous
system of M —1 first order ordinary differential equations with independent varigble

@Wh:WMJrh/WzM )
©))

@WMJrh:Hh(le---iWMflivaMJrl’---vWZM)/WZM ;
whereh=1,... M —1. Now, our method can be applied to this system as if it was sy&terithe
fact that systen9) is not autonomous does not effect the result, as we will show in the case of the
three dimensional Kepler problem in Cartesian coordinates.
The same method can be applied to a single ordinary differential equation ofNndéich
can be easily transformed into a systeniNoéquations of first order. It should be noticed that there
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could be several different ways of transforming an equation of oMlénto a system ofN
equations of first order. Then, the just described method may give different results, videiget
no first integrals with certain reductions, all the first integrals with different reductions.

[ll. FINDING THE KOWALEVSKI TOP

The motion of a heavy rigid point about a fixed point is one of the most famous problems of
classical mechanicsin 1750, Eulef derived the equations of motion which now bear his name,
and described what is nowadays known as the Euler—Poinsot case because of the geometrical
description given by Poinsot about 100 years |#tdt.was Jacobf who integrated this case by
using the elliptic functions which he had develogatbng with Legendre, Abel, and Gaé$sand
masteredf’ (we have translated this fundamental text into Italian and extensively comrfi®nted
Another case was described by Lagrahyand it is known as the Lagrange—Poisson case, due to
the extensive study done later by PoisSdThis case can also be integrated by using Jacobi
elliptic functions?* At the time, it seemed that other cases could easily be found and similarly
integrated. In 1855, the Prussian Academy of Science proposed this topic for a competition, but
nobody applied. The problem was so elusive that the German mathematicians called it the math-
ematical mermaiddie mathematische Nix&’ More than 30 years elapsed before the Bordin prize
was awarded to Kowalevski for finding and reducing to hyperelliptic quadratures the thifd case
which is since known as the Kowalevski top. She solved the problem by looking for solutions
which are single-valued meromorphic functions in the entire complex plane of the vatriaHier
method became what is now known as the Paini@valevski(or just Painleve method"?
Hawkins had established “the nature and extent of Jacobi’s influence upon°liiés a remark-
able coincidence that the mathematical mermaid can also be found by using Lie group analysis as
we show in the following.

The Euler—Poisson equations describing the motion of a heavy rigid body about a fixed point

are'®
p=((B—C)rg+mg(Bzg— vys))/A,
q=((C—A)pr+mg(yxg—azg))/B,
i =((A—B)pg+mg(ays—Bxg))/C,
. (10)
a=pr—mq,
B=yp—ar,
y=aq-—Bp,

with A, B, C the principal moments of inertigy(t),q(t),r(t) the components of the angular
velocity, m the mass of the bodyg the acceleration of gravitks,Yq ,Zg the coordinates of the
center of mass, and(t),3(t),y(t) the component of the unit vertical vector. There are three first
integrals for systeng10): conservation of energy, i.e.,

l1=2(Ap?+Bag*+cr?) + mg(xea+yeB+2zcy) (11)
conservation of the vertical component of the angular momentum, i.e.,
l,=Apa+BgB+Cry (12
the length of the unit vertical vector, i.e.,

l3=a?+ B%+ y*(=1). (13
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If we apply our method to systerti0), then we find only the first integral of the unit vertical
vector which ha®,q,r as missing variables. Kowalevski found that if one imposes the following
conditions on the parameters:

(1) A=B=2C,
(2) z5=0, and eithexg#0 oryg#0

then there exists a fourth integral, i.e.,
Xga— YG,B XaBtysa)’

=|p>—q?—mg +|2pg-— mg—cs—|- (14

We notice thaty andr are missing in(14). Thanks to our method, we can find the Kowalevski
top by searching for a first integral which does not contgirfrirst we derivey from the second
equation of systeni10), i.e.,

Bg+(A—C)pr+mgzga
mgxs

which implies thatxg must be different from zero. We obtain the following system of four
equations of first order, and one of second order:

fy:

;= U1(AusZg+ (A—C)uzyg)/Axg— (A—B)(A—C)u,ud/BC+ (A—C)%ygU U3/ ABxs
+(A—C)U3UU3Zg /Bxg— (A—C)(B—C)u,u3/AB— (Auoxg— ClUszg)
X (A—C)mQygU, /ABCx;+ (A(A—2C)uXg+ C(C—2A)uzzg)mgus /ABC

+(x&+25)mguu, /Bxg, (15)

Uy=—UBYyg/AXg+Uz((C—A)ygUs+(B—C)XgUq)/AXg+MQgZs(— Usyg T+ UsXg)/AXg,
(16)
Uz= ((A=B)ujup+mg(usys—UsXg))/C, (17
Uy=—04Bu; /mgxs+(C—A)uusuz/mgxg+ (UsUsXg— UqUsZg) /X (18
Us=U;1BU,/mgxs+ (A—C)U5Uz/mgxs+ ZgUalUy /Xg— Ugly (19

with
Up=qg, Ux=p, U3=r, Us=a, Us=p. (20
Now we apply Lie group analysis to systgiib)—(19). An operatorl’
5

F=V(t,ul,U2,U3,U4,U5)(9t+k21 Gk(t,ul,uZ,US,UA,UE,)(?uk (21)

is said to generate a Lie point symmetry group if its second prolongation

- ide_dV) d(dG, _ dv| _ dv
T " Year) %o e Y] T Y)Y

applied to systenfl15)—(19), on their solutions, is identically equal to zero, i.e.,

I'(15)](15)-(19/=0,
2

I'(16)|(15)-(19=0,
2
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I'(17)|(15)-(19/=0, (22)
2

I'(18)](15)-(19=0,

2

I'(19)(15)-(19=0-
2

The five determining equatiori2) constitute an overdetermined system of linear partial differ-
ential equations in the unknowns G (k=1,5) In fact, they are polynomials i, , each coeffi-
cient of which must become identically equal to zero. In particular, the first determining equation
in (22) is a polynomial of degree three fay . The coefficient of highest degree yields an equation
of parabolic type folV in four independent variablas; ,u,,u,,us, i.e.,
PV PV e @V
A’m gzxéxf —2ABNMg®Xgya FTATA 2A’BmguXg TR +2A’BMgpXg FYHT

2 (?ZV (92 2

oV 0V
22~ 24,2 2 _ 2 2n2,,2
+B“m-g yG_aug +2AB mgulyGauzu4 2AB mguzyGauzuswLA B ul_aui

2A2RB? v +A2B2 27V AZB N AB? &V—o 23
uiu, IUzUs us &ug mg)ﬁaﬁu4 mgye s =0. (23

Its three characteristic curves yield the following transformations:

Buyyes Bays
U2:SZ_ AXG VIZ. p:SZ_ AXG y
Buf Bo?
Ug=Ss— Mo vViz. a=s,— Mg’ (24
BygUi+2AXgU, Bysa+2Axgp
Us=Sg+ Bulw ViZ. ﬁ=55+BqW

with s,, s, andsg new unknown functions off.

As outlined in Sec. Il, transformatiori&4) eliminateu, from all the first order equations in
system(15)—(19).

In fact, system(15)—(19) becomes

i1, =(— 6AZBCu,T5x3 — 4AZB Cu xgliUsZg — 2A’Bmguyx3y glis — 2A2C2UgXgUylisZg
+2AZBmguxgyatis— 3A?BC LY gUszg + 2A2BCUgXgy s — SA’BC LAY slioXg
+3ABuUdyS — 2ABCuujys — A’BCUEXE — 2A%B Cuyuix3 — 2AC3u3x4 U,
+2A2Cmgxgustiyz2 + 2A%2Cmgxu,li,— 4A2C Mgl uszalis— 4A’Cmg X, s
+2A2CmQxsUsZalisy s — TA’B?ygUslioXg + 2A2CmgiTislisy g — 4A2C2U3X sty g
— 3A%B?y2uS— B?C?ygUluszg— 2u;, A*TiaxE + 2A%TLx g C Udy g + 2A%T X g C Uy UsZg
+ 2A%3X4C U, — 2u, BC3y2us+ 5A%T,xgB U2y g — 2A%TLx5mdlyy s + 4A%TiSx5B U,
+4ABCmMgyxayslis— 2ABCmgyxgyalis— 2AB C2U,UgXgy s+ 2AB C?U xglisUsZg
+3ABC?U3ygU,zg+4ABCPU udy2 + 2AB C?u uix3 + 2AB?C Uy gUszg

+10AB?C U2y glipXg + 2ACCuxgli,y g + 2AC2mgusxa zglis— 4BCyaud
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— 2ACPMguxgzaliay g+ 2A2C2u3x3u, — A?BCUSZ3 + 3AB?CUdyZ
+2A?BCuyxgi Zg + 2A%xEmdls) /2A?BCXE, (25)

= (— 2A%T,UgXgY s+ ABUWYszg+ 2ABU T X Zg + 2AB U UsXE + 2AB U Usy2 — 2AC U UgXE

+2ACUsXgYs— 2AMGUXgYaZe + 2AmMgisx5zs — 2BCu ugy3 ) /2AXE, (26)
Ug=(2A%u,TiXg— 3AB Y g — 4B U TLAXg + 2AmGUxgys — 2UsxcAmg+ 3B2yu?)/2ACXs ,
(27)

d,=(—2A%U,T ugxg+ ABUZg + 2ABUSULY g + 2AB U T UgX g + 2AC Uy TipUsXg
—2AmguTligXgzZg+ 2Amgulisx3 — B2U2uzyg — 2BC LUy ) /2AMQXRE, (28

ds=(2A%U5UaXs — AB Tz + ABUUsXg — 2ABU T Ugy g — 2ACTBUsX g + 2AMGiblisXsZg
— 2Amgulix3 — 2B?UsTi,zg — 2B2UsUgxg + 2BCUiugXg + 2B CuyTioUsy
—2Bmgulisxgzg)/2Amg, (29
with
Uy=8S,, TUy=S,;, TUs=Ss. (30)
We now apply Lie group analysis to systé@b)—(29). An operatorl
T=V(t,u,Uy,U3,Tiy Ts) dp+ G (t,Uq Ty, U3, Ty JUs) dy, + Go(t,uy, Ty, U, Ty JUs) d,
+é3(t,ul,ﬁz,u3,TJ4,H5)07U3+64(t,u1,TJZ,u3,34,35)5344—65(t,u1,H2,u3,U4,l~15)(9f,5
(31)

is said to generate a Lie point symmetry group if its second prolongiftiaupplied to system
2

(25—(29), on their solutions, is identically equal to zero, i.e.,

2(25)|(25)—(29): 0,
2(26)|(25)—(29): 0,
~1;(27)|(25)—(29): 0, (32)
2(28)|(25)—(29): 0,

T(29)] (25— (29~ 0-
2

The five determining equation@2) constitute an overdetermined system of linear partial
differential equations in the unknowng (~3k(k=1,5) In fact, they are polynomials in;, each
coefficient of which must become identically equal to zero. In particular, the fifth determining
equation in(32) is a polynomial of degree one fai, . We call its two coefficients5k1 andc5kO.

For the sake of simplicity, we assur@&=0,0V/at =0. Then, the coefficient of degree one, i.e.,
c5k1, yields
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aV_

au,

Now, c5k0 is a polynomial of degree five iny. Therefore, its coefficients, call them
c5m5,c5m4,c5m3,c5m2,c5m1,c5m0, must become identically equal to zero. The coefficient of
degree five iruq, i.e.,c5mb, yields

Y
HAZBZCZG(—(A+ZB)T]ZZG+(A—ZB+ZC)u3xG)=O (33
4

which gives the condition on the parameter
ZGZO. (34)

Then, the coefficient of degree four in, i.e.,c5m4, yields

N N N
3(A B)_mgyGXG (A ZB+ZC) CU3XG (ZA B ZC)J"_CU3yG

X (A—2B+2C)AB?uzxg=0 (35
which gives the condition on the parameters
A=2B-2C. (36)

Then, the coefficient of degree threeun, i.e.,c5m3, becomes

FY, oV
12 m% f—cu3 (2B—3C)(B—C)(B—2C)B?li,uzy3=0 (37)

which gives the further condition on the parameters
B=2C. (39

Thus, we have found the Kowalevski top. We also notice that either condifton3C or B
=C leads to the Lagrange top. Finally, we are left with two linear first order partial differential

equations inV="V(T,,us,l,,Ts), the coefficient of degree two i, , i.e.,c5m2,

2av il Cugl 4‘N Ty + (X% + 2y NV =0 39
EXG_ﬁSyG Ul — ﬁ_u3mg Us+(Xg ye)ﬁzmg%— (39

and the coefficient of degree oneun, i.e.,c5ml

N
2C(CU;— mglyxg— mgUsye)(r XgUsl,

AC(CT2—mgt )(N T
— Us— Xg) /= usu
2 JWXg Jﬂ5ye 3Uz
(40)
Y
—2(2CUjXs — 2M UG + Mgluyg — mglXeye) 7~ m%Uz
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~2.2 ~2 2 ~ 3 ~ 2 Vv
+(CU2XG+2CUZYG_m9U4XG_m9U4XGYG)ﬁzmgu\azo-

If V satisfies equation@9) and(40), then it is easy to prove that the determining equati®®
are identically satisfied by considering conditidd), (36), (38) as well.

From (39) it is easy to obtain tha¥ =V(7,,7,,73) with

4x2T5 Cxgl3 Cyliz
2 GY2 - cUz - GcUz
=uz+ ———>, =ly— —————, =lUg+ ———>—. (41)
PTG T maeE e T maeE e
Then, (40) becomes
2mg( ) il +C il C il 0 (42
m —X — — na— C—1n,=0.
AYec72—Xc73 Fre 975 73 974 72
Its characteristic curves are
2mg 5 )
E1=m+ < (YenmztXcm2), &2=nm5+ 13 (43

Finally, we have thatT/=‘lf(§1,§2) with ¥ an arbitrary function of¢,,&,, and consequently
operator

T=W(&,6)0 (44)

is a generator of a Lie point symmetry for syst€?%)—(29). Transforming(43) into the original
unknown functions by using41), (30), (24), and(20) yields

2(C 2 24 2
&1=¢| 5 (2P + 207+ 1)+ my(Xgatyeh) |,

2
+

Xga—Yygf 2

2 2 XGB+yGa
p?-q?-mg——g e

2pg-mg——¢

— 2
e GG +YD
which correspond to the first integral of conservation of enéidy, and that derived by Kowa-
levski (14), respectively.

Can other cases of integrabilifyiz. integration by quadratuyebe obtained by using our
method? We leave the answer to a future paper. In Ref. 43, the application of our method led to an
integrable case for a nonlinear system of three ordinary differential equations which does not
possess the Painleyeoperty.

IV. FIRST INTEGRALS OF THE KOWALEVSKI TOP

We apply our method to the Kowalevski top itself which corresponds to the following con-
ditions on the parameters:

(1) A=B=2C,
(2) yo=25=0, xg>0.

The condition onyg can be added without loss of generality. Then, syst&@ become
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p=rq/2,
g=—pr/i2+mgxsy/2C,

r=-mgxsp/C,
. (45)
a=pr—vq,

B=vp—ar,
y=aq—pBp.
The first integrals for the Kowalewski top are

(1) conservation of energy, i.e.,
C
I1:§(2p2+ 20%+r2)+mg e, (46)

(2) conservation of the vertical component of the angular momentum, i.e.,
1,=C(2pa+2qB+r7y); (47)
(3) the length of the unit vertical vector, i.e.,
ls=a®+ B2+ (=1); (48)
(4) the first integral derived by Kowalevski, i.e.,

2
Xgamg
| n2_~2_

If our method is applied t@45), then all the first integrals can be obtained, apart fdm)
which has all the unknown variabl@sq,r,«, 3,y appearing in its expression. Let us observe that

B does not appear ih,

v does not appear in both andl,,

p does not appear ih;.

In the following, we eliminatex, B, y,p from system(45) one at a time.

_ xgBmg|?

2pa- =5

(49

A. Eliminating «

First we show a negative result: no first integral obtained. Let us assume that we do not know
any of the first integrals. Therefore, we do not knayriori that none of the first integrals can be
obtained by derivingr. We derivea from the fifth equation of systerf45), i.e.,

_py-B
o

a

and obtain the following system of four equations of first order, and one of second order:
i;=(—2Cuyu3—2Cu usu?—2C iU u,+ 3CUyUus
+2CUyUZus— 2mMguy Uy X+ 2Mg Uy UaUsXg)/2C Ug,
U,=(—Cugu,+mgusXg)/2C,
. (50
Us=(—mguxg)/C,

U4: (U2U3)/2,

Us=(—UyUgUs— UgUp+ UsUgUs)/Ug
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with
Up=pg, Up=Q, U3=r, Us=p, Us=y. (51)

If we apply Lie group analysis to systeff0), then we obtain a determining equation of parabolic
type forV in two independent variables. Its characteristic curve is

UsUz+ U U,
which yields the following transformation:

Sg—UsU S5 —
L 52

with s; a new unknown function of. Then, systen{50) transforms into

i1;=(—3Cuyu3u3— 2Cu,usu3— 2Cu u3— 2Cuyu3u3 — 2C Uy UyUgU, + 3C UpUSTS

+2C U,U3Tis — 2MgLEULU X g — 2MQ Uy Uy UsXg + 2Mg Ly U,lisXg ) /2C U3,
U= (— CUjUs— MguU,Xg+mMglsxg)/2Cug,
Uz=(—mguxg)/C, (53
Us=U,U3/2,
ds=(—2Cuyu3u,— 3Cuyudu,+ 2Cuyu,lis+ MgLeuxg — mgulisxg)/2C us,
with
Ts5=Ss. (549

If we apply Lie group analysis to syste(B3), then we obtain a two dimensional Lie symmetry
algebra generated by the following two operators:

[y=— (59

F ta+2 J + J + J + J + 3T J 56
ulau uzau u3¢9u u“au usa’ﬂ (56

which in the original unknown functions correspond to

I'y=— (57)

F_ta (9+ t9+t9+2 &4—2 a+2a 58
2= Tl TPty g t2a g, ’8,8 Yoy (58)

This is a trivial finding.
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B. Eliminating B
We deriveg from the third equation of systei@5), i.e.,
Cr
mgXs

and obtain the following system of four equations of first order, and one of second order:
Up=(mgxs(Uus—Uugus)/C,
Up,=(—Cuuz+mgxsus)/2C,
U3=UqU»/2, (59
Us=(—Cusl; —mgxsUaUs)/ mgxs,
Us=(ClyUz T MgxsUpUs)/Mgxs
with
Ui=r, u,=d, Uz=p, Us=a, Us=Y. (60)
If we apply Lie group analysis to systeff9), then we obtain a determining equation of parabolic
type forV in three independent variables. Its two characteristic curves yield the following trans-

formations:

s,—Cu2 s,—Cr?

(61)
~Cugugtsg Cpr+sg

S Tmgx 7 o

with s, andsg new unknown functions of. Then, systen{50) transforms into
;= (—Cu$-2Cu,u3+u,li,— 2uglis)/2C,
u,=Ts/2C,
Uz=UqU5/2, (62
4,=—2u,(Cuyuz+Ts),
dg=Uy(—2C U2 +Tiy)/2
with
Ty=54, TUs=Sg. (63

If we apply Lie group analysis to syste(62), then we obtain two first order partial differential
equations fonV:

vV Vv

(7—%—4CU3E:0, (64)
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i 4C aV—O 65
o, Uzm—, (65

with V=V(u,,u3,TU,). From(64) it is easy to obtain tha¥=V(7,u,) with

7=2CU3+Ty,. (66)
Then, (65) becomes
ﬂ—4Cu2ﬂ=O. (67)
du, Jan
Its characteristic curve is
£1=2CU3+ 7. (69)

Finally, we have thaV = ¢(&;) with ¢ an arbitrary function o, and consequently operator

L1=y(€1) 0 (69

is a generator of a Lie point symmetry for systé62). Transforming(68) into the original
unknown functions by using66), (63), (61), (60) yields

C
51:5(2p2+ 20%+r?)+mg xsa

which is exactly the first integral of conservation of enefd$). In addition, we have algorith-
mically derived thai69) is a generator of a Lie point symmetry for systé4).

C. Eliminating vy

We derivey from the second equation of systdib), i.e.,

_c(2q+p)
7T Tmoxs

and obtain the following system of four equations of first order, and one of second order:
;=Uuy(— Cu3+2mguxg)/4C,
U,=U,U3/2,
Uz=—mguxg/C, (70)
Uy=(—2Cuyu;— CuqUyuz+mgleUsXg)/Mgxs ,
Us=(2C i u,+ CUSU3— MgUsUXg)/MgXs
with
Up=q, Up=Pp, U3=r, Ug=a, Us=p. (72)

If we apply Lie group analysis to systefv0), then we obtain a determining equation of parabolic
type forV in three independent variables. Its two characteristic curves yield the following trans-
formations:
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s,—Cu? s4—Cq?
viz. a= ,

magxs mgxs

U4:

(72
2Cujur+ss | 2Cpg+ss
Us=———— viz. f=————
magxs mgxs

with s, andss new unknown functions of. Then, systen{70) transforms into
i,=[u,(—2Cus— Cu3+ 2T,)]/4C,
Up,=U4U3/2,
Uz=(—2Cuyu,—Ts)/C, (73
d,=u3(Cusu,+Ts),

Us= Us(CU§_TJ4)
with

TUs=s,, TUs=Ss. (74)

If we apply Lie group analysis to syste(i3), then we obtain two first order partial differential
equations fonV:

N 4 N +4C aV—O 75
u3a_uz_ u2<9_u3 Uzuaﬁ— , (79

Y Y 5 )
SCu2u5a—u3—Cu3u5E+Cu3(u4—Cu2)E=O (76)

with V=V(u,,u3,l,,Ts). From(75) it is easy to obtain tha¥=V(74, 7,,Us) with

m=4U3+ U5, 7,=Cu3—T,. (77
Then, Eq.(76) becomes
ZCugTJSﬁ+Cu3ﬁ5ﬂ—Cu3(u4—Cu§)ﬂ=0. (78)
dn /! dug
Its characteristic curves are
6=Cm—2m;, &=15+T. (79

Finally, we have thaV=W(¢,,&,) with W an arbitrary function oft;, &,, and consequently
operator

I =V (&1,62)0 (80)
is a generator of a Lie point symmetry for systéi#B). Transforming(79) into the original

unknown functions by using77), (74), (72), (71) yields

C
§1=5(2p2+ 2092+ 1) +mg xsa,
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XGamg
— 2_ N2

2 X m 2
+(2p — Gi g)

which are exactly the first integral of conservation of end@fy), and that derived by Kowalevski
(49), respectively. In addition, we have algorithmically derived t&4) is a generator of a Lie
point symmetry for systené5).

D. Eliminating p

We derivep from the second equation of systdrb), i.e.,

_ mgyxg—2Cq
B Cr

and obtain the following system of four equations of first order, and one of second order:
,=u,(— Cu3+2mguxg)/4C,
Uy,=(Cuquzu,s+2CUus—MgusXg)/Cug,
Uz3=—mguXg/C, (81
Us= —UqUy+ UgUs,
Us=(—2Cl u,— Cudu,+ mgexg)/Cus
with
u;=g, U=y, U3=r, Us=a, Us=}. (82
If we apply Lie group analysis to systef@1), then we obtain a determining equation of parabolic

type forV in three independent variables. Its two characteristic curves yield the following trans-
formations:

U,=\/Sg COY2S5—2U3)  Viz. y=/SgCOL255— 2r),

(83
u5=\/s—esin(255—2u3) viz. Bz\/s—ssin(ZSS—Zr)

with s ands; new unknown functions of. Then, systen{81) transforms into
{;=Uu;(— Cu3+2mguxg)/4C,
d,=2u,\T, cOg 2U3— 2Ts)[tan 2us— 2Ts) Us+ U, ],
3= /T, Sin(2u3— 2Tis)Mgxs /C, (84)
4= — i COS 2U5 — 2Ts)[tan(2us — 2Ts)Us + Uy,

s = VUi, COY 23— 2Us)[ — (CUjU,— MGlpXg) — 2C UyTi,
+(Cuquys+2mglpxg)tan2uz— 2Us) usz]/2CTU,uU5
with

EZZSG, U5=S5. (85)
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If we apply Lie group analysis to syste{®4), then we obtain a determining equation of parabolic
type forV in two independent variables. Its characteristic curve yields the following transforma-
tion:

S( S%—q—rz)
y=\/Sg CO Zf

—g—r2\"
ﬁz@ssin(zw>

~ SS—Up
lUs=—" viz.

s (86)

with ss5 a new unknown function of. Then, systen{84) transforms into
U, =uy(— Cu3+2mguxg)/4C,
U, =2u,\T, cog (2uy +2u3— 20i5)/ug)[ Uy +tan((2uy + 2u3— 20i5)/ug) us],
3=\, sin((2uy + 2u3— 20i5)/u3)Mgxs /C, (87)
U= — U, cog (2u; + 2u2— 205)/u3)[ Ul +tan((2u; + 2uZ— 20s)/uz) us],
(5= T, cog (2u2— 2015+ 2uy)/ug)[[(2u3+ 2015 — 2u; ) MGUXg + CUyUZU,]
X tan((2u3— 205+ 2u;)/uz) + (MFlXg — CUsUL) U3 /2CTi Uy
with
l5=ss5. (88

If we apply Lie group analysis to syste(B87), then we obtain one first order partial differential
equation forV:

N 2u, N =0 (89
AUy JUy
with V=V(T,,u,). Its characteristic curve is

£1=T,+U3. (90)
Finally, we have thaV = (&;) with ¢ an arbitrary function of;, and consequently operator

Fy=¢(§1) 0, (91

is a generator of a Lie point symmetry for systéBv). Transforming(90) into the original
unknown functions by usin@8), (86), (85), (83), (82) yields

&= a’+ 24y

which is exactly the first integral of the length of the unit vertical ve¢4®. In addition, we have
algorithmically derived that91) is a generator of a Lie point symmetry for systésb).

V. KEPLER PROBLEM

In Ref. 33, Nucci’'s methot! was used to find symmetries additional to those reported by
Kraus€® in his study of the complete symmetry group of the Kepler problem. A consequence of
the application of Nucci’s method was the demonstration of the group theoretical relationship
between the simple harmonic oscillator and the Kepler problem. In Ref. 33, polar coordinates were
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used, and Nucci's method was not applied to the three-dimensional case with the purpose of
finding first integrals. We do it here by considering Cartesian coordinates.

The equations of motion of the Kepler problem are given by the following well-known three
equations of second order:

%q= = puxy (X +35+x3)%2),
o= — uxo (X +X5+x3)%), (92)
Xa=— uxg /(X2 +x3+x3)%?).

The first integrals for the Kepler problem are conservation of enBrggonservation of angular

momentunK, the Laplace—Runge—Lenz vector None of the unknowng; ,X,,X3,X;,X5,X3 are
missing in the expression & and the components &f. This is not true for the three components

of K, i.e.,
K1 =X3Xo— X3X5, (93
Ko=X3X1 — X3X1 , (94
K3=X1X—X1X5. (95

Therefore, we can only obtain the three components aising our method. However, neithEr
nor L are needed to reduce syst¢®?®) to a linear oscillator, as we show in the following. Let us
transform systen(92) into a system of six equations of first order

W1=Wy,
Wy=Ws,
W3=Wg,
(96)
W= = s /(W5 + w3+ w3)¥?),
Ws=— W, / (Wi+w3+w3) ¥,
We=— puWs / ((W]+w3+w3)¥?)
with
Wi=X1, Wo=X,, W3=X3, Wy=X;, Ws=Xs, Wg=Xgz. (97
Consequently, the components of the angular momentum become
K1 =W3Ws5—WgW,, (98)
K2=W3w,—W;We, (99)
K3=W;W5—W,4W5. (100

We choose one of the dependent variables to be the new independent waiirableler to reduce
the order of systeni96) by one®® We takew;=y. Then, systen(96) becomes the following
nonautonomous system of five first order ordinary differential equations:

r_
Wi =W,y /Wg,
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Wy =Ws/Wg,

W, = — uwq /(We(W2+w3+y?)%?), (101)

Wg=— pWp / (We(Wi + w3 +y*)*?),

weg=— uyl (We(W2+w3+y?)%?)

with prime denoting differentiation with respect yo Let us observe that

w, does not appear iK,,

ws does not appear iK,,

wg does not appear K3,

We should remark that other variables are missing too. For exampls,also missing irK; .
However, our method will yield the result whatever the choice of a missing variable. In the
following, we eliminatew,,ws,wg from system(101) one at a time.

A. Eliminating w,
We derivew, from the first equation of systeif10l), i.e.,
W, =W1Wg

and obtain the following nonautonomous system of three equations of first order, and one of
second order:

U= p(upy —ug)/(ui(us+ui+y?)>%?),

uz= -yl (us(uz+uz+y*3?),

(102
Us,=uq/usg,
Uj= = plp /(Ug(u3+uz+y?)I%)
with
Ug=Wg, Uz=W,, U3=Wg, U;=Ws. (103

If we apply Lie group analysis to syste(02), then after several reductions we obtain one first
order partial differential equations f@;,

_+U3_:O (104)

with G3=G3(uq,U,,Us,Y). Its solution isG;=(&;) with ¢ an arbitrary function of
§1=UgU—yUy. (109
Transforming(105) into the original unknown functions by using7), (103 yields
§1= XaXo— XoX3

which is exactly the first component of the angular momen(@sa.
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B. Eliminating ws
We derivews from the second equation of systé@0l), i.e.,
W5=W5Wg

and obtain the following nonautonomous system of three equations of first order, and one of
second order:

U= w(— Ug+ugy)/ (uy(ui+ud+y?)3?),

2,2
uj=— uuy /(Uy(ui+uz+y?>3?),

(106)
up= -yl (Ui +uz+y?)®?),
u;=us/u,
with
Us=Wy, Upy=Wg, Uz=W,, U;=W;. (207

If we apply Lie group analysis to syste(@06), then after several reductions we obtain one first
order partial differential equation fdg,,

9G, 3G,

—+ —_—
u3(9u1 U, 3y 0 (108

with G,=G,(uq,U,,Us,Y). Its solution isG,= ¢(&,) with ¢ an arbitrary function of
&,=YyUz—UqUsy. (109
Transforming(109) into the original unknown functions by using7), (107) yields
§2= X3X1— X3Xq

which is exactly the second component of the angular mome@dim

C. Eliminating wg
We derivewg from the first equation of systeif101), i.e.,

Wy
We=—
6 Wé_
and obtain the following nonautonomous system of three equations of first order, and one of
second order:
Uy = puy?(— ugt+ugy)/(U(us+ui+y?)%?),
2 2
u3= — puyuy/ (Uug(us+uz+y>?)%?),
(110
Us=UsUy/uy,

Uy = = iU/ (Uy(U3+uz+y?)¥?)

with
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Ug=Wg, Up=W,, U3=Ws, U;=W,. (111

If we apply Lie group analysis to syste(il10), then after several reductions we obtain one first
order partial differential equation fd®,

9Gy 3G

_+ —_
Ug au, Uy a0, 0 (112

with G3=G3(uq,U,,Us,U,) and withG;=G3(uq,U,,U3,Y). Its solution isG3= ¢(&3) with ¢ an
arbitrary function of
£3= U Up— UgUs. (113
Transforming(113 into the original unknown functions by using7), (111 yields
E3=XoX1—X1Xp

which is exactly the third component of the angular momen(@#).
Now let us derivews, w,, andw, from (98), (99) and(100), i.e.,

— _§3W6y+§2§1+ ‘lelWG, (114
2y
w 4:M' (115
y
2:_§3y+§1W1 (116
&

with &, &, & new unknown functions of. Substituting(114), (115, (116 into (101, and
deriving wg from the first equation yields the following system of three equations of first order,
and one of second order:

_ 3 2 2021 113,,3 2.2 2,20 2021 112, 2\3/2
Uz = (puy(—uz+3uzugy — 3usuy y“+u,”y®))/ ((UTy“—2ugUgugy + Usuy+ usy =+ uzuy) ™),

(117

with
Ug=Wq, Uz=&3, Upy=§&, U=,

It is easy to show that syste(17) admits an eleven-dimensional Lie symmetry algebra. In fact,
the first equation of117) itself admits a Lie symmetry algebra of dimension eight, which means
that it is is linearizable through a point transformatf6ihus, we have reduced the equations of

motion of the Kepler problem to the harmonic oscilldfo? by using Lie group analysis.

VI. FINAL COMMENTS

We have found that Lie group analysis yields the first integrals admitted by any system of
ordinary differential equations if the method developed by Niidsiapplied, the only limitation
being the absence of at least one of the unknowns in each first integral.
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Is it possible to obtain all of the first integrals by means of Lie group analysis? Also, what is
the link between Painlévmethod and Lie group analysién addition, can Lax pairs be found by
Lie group analysis? So far these are open questions that we hope to address in future work.

Let us conclude by underlining that the application of Nucci's method to the Kowalevski top
have led us to understand how first integrals can be found by using Lie group analysis. In 1984,
Cooké wrote “Kowalevskaya’s work is an ingenious application of mathematics to a system of
equations of great mathematical interest ... but since the case to which it applies is rather special,
the details of her arguments are no longer worth troubling about.” About the same time, a revival
of interest into integrable problems of mechanics has led to numerous papers on the Kowalevski
top. Just to cite a few, see Refs. 37, 11, 8, 1, 3, 15 and the entire No. 11 issue of J. Bdys. A
(2002).
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