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Editors' introduction

Geometry has always aided intuition in econometrics but has perhaps
only very occasionally aided analytic development. However, advances in
statistical theory have recently been greatly enhanced through a deeper
understanding of differential geometry and the geometrical basis of
statistical inference; see, for instance, Kass and Vos (1997), Barndorff-
Nielsen and Cox (1994) and McCullagh (1987), as well as a rapidly
expanding array of journal articles.

What value do these advances hold for econometrics? How can prac-
tical econometric methods be improved by a deeper understanding of the
geometrical basis of the problems faced by econometricians?

This volume attempts to stimulate the appetite of econometricians to
delve further into the sometimes complex but always enlightening world
of differential geometry and its application to econometrics. The reward
we have found is not only a deeper appreciation of existing method-
ologies but the recognition that further advance in a host of different
directions can readily be made. It is this potential gained through study-
ing what may be standard problems from an alternative perspective that
makes the application of differential geometry to econometrics so excit-
ing. Geometry is mathematically fundamental, and frequently a geo-
metric understanding of a problem highlights the essential issues which
can be hidden in an algebraic development of the same issue. Take for
instance the basic notion of orthogonal projection that underlies much of
econometric and statistical method and its extension to curved statistical
spaces and the question of invariance to different parameterisations, the
interpretation of higher-order asymptotic expansions and statistical cur-
vature and the role of ancillarity and exogeneity. How can we formalise
and hence understand more fundamentally the notions of encompassing
in inference and the relationship between likelihood and method of
moment based inference? These are some of the questions raised in the
papers collected in this volume, which is in part based on the papers
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presented at a conference held at the European University Institute on
the Applications of Differential Geometry to Econometrics supported by
a Human Capital and Mobility Grant (ERB CHRX-CT940514) from the
European Union. We hope that you enjoy the experience of reading the
papers gathered here and perhaps at the end appreciate the power of the
geometric method.

We would like to thank the authors for their patience as this volume
was put together ± some more than others (!) and ®nally Tom and Tara
for undertaking the burden of proofreading the ®rst draft.

The ®rst chapter in this volume, by Paul Marriott and Mark Salmon,
surveys the mathematics needed to understand the methods of differential
geometry and their application to econometric inference. A complete de-
velopment of the tools required fully to understand differential geometry
is clearly beyond the scope of this chapter, but we hope that this intro-
duction provides the basis for understanding the issues and facilitates the
reading of the later chapters in the volume. This is not to say that the
papers collected here cannot be read without a deep understanding of
differential geometry; indeed it is clearly the case that the intuition pro-
vided by the geometric framework can be grasped quite easily without the
need for a full mastery of the techniques involved.

Maozu Lu and Grayham Mizon, in the second chapter, consider sev-
eral aspects of the important issues of encompassing and nesting in model
selection. Encompassing has a natural geometric intuition and feel but it
is not necessarily straightforward to develop the associated geometry
mathematically, partly because the concept of encompassing needs to
be carefully de®ned. They investigate and develop the potentially surpris-
ing observation made by GourieÂ roux and Monfort (1995) that it is not
always the case that a more general model encompasses models that are
simpler than itself. This has important implications for the inferential
process of reduction from general-to-simple since in this case the sequence
of parsimoniously encompassing models will not form a partial order and
hence critical information might be lost if the intermediate models were
discarded in the process. Lu and Mizon explore the conditions under
which a general model encompasses simpler models independently of
its relationship to the data-generation process (DGP). They explore the
notion of nesting and demonstrate that nesting implies more than one
model being an algebraic simpli®cation of another. The importance of
dimension-reducing nesting constraints is explained by showing that the
nesting model will encompass models nested within it independently of
the nature of the data-generation process when there is an orthogonal
parameterisation. They de®ne this property as automatic encompassing
and show that it is not possible amongst non-nested models. They also
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discuss how the concept of parsimonious encompassing can be used to
establish encompassing relationships between non-nested models given a
competing model that nests each of the non-nested models.
Encompassing hypotheses are considered as mappings in Hilbert space
and it is shown that a suf®cient condition for a model to encompass
models nested within it is that these mappings are orthogonal projections
in the relevant space.

Grant Hillier and Ray O'Brien apply a recently developed and geome-
trically motivated technique (Hillier and Armstrong (1996) for obtaining
exact distribution results for implicitly de®ned estimators to study exact
properties of the maximum likelihood estimator (MLE) in the exponen-
tial regression model. The method provides an integral formula for the
exact density of the MLE, expressed as a surface integral over the mani-
fold in the sample space upon which the MLE is de®ned. The method
does not require that the MLE be a known function of data; all that is
required is that the manifold or the level set of the MLE be known. This
enables the formula to be used to get the exact density of the MLE even
though the estimator may be only implicitly de®ned in terms of the data.
Hillier and O'Brien provide a detailed discussion of the application of the
approach to the exponential regression model. They show that the sur-
face integral formula is tractable in general and that from particular
numerical results for the exponential regression case the exact densities
are well behaved and well approximated by the asymptotic density.

The generalised method of moments (GMM) approach to estimation
and inference relaxes the need to have full knowledge of the likelihood
function and is essentially a semi-parametric method. In consequence
there is generally a trade-off between robustness and ef®ciency.
Richard Smith considers instead empirical likelihood methods of infer-
ence, an approach that embeds the moment conditions used in GMM
estimation within a non-parametric likelihood function through the use
of additional parameters associated with these moment conditions. This
enables equivalents of the test statistics based on classical likelihood to be
developed and, in particular, tests of misspeci®cation on the over-identi-
fying moment conditions. He also considers the possibility of applying
the empirical likelihood to testing non-nested hypotheses.

Russell Davidson develops a general geometric basis for the analysis of
ef®ciency and robustness for estimators de®ned by estimating equations.
The general class of such estimators was considered originally by
Godambe (1960) and is essentially equivalent to the generalised method
of moments. Davidson shows that, when a parameterised model is con-
sidered as a Hilbert manifold in an underlying space of DGPs, the tan-
gent space at any particular DGP can be expressed as the direct sum of
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three mutually orthogonal subspaces. Robustness of an estimator is
de®ned as its root-n consistency at all points in the model and ef®ciency
by the asymptotic variance which is natural in the Hilbert spaces context.
Consistent estimators of the model's parameters all have the same
component in one of these subspaces which contains the asymptotically
ef®cient estimator. Inef®cient estimators have a non-vanishing compo-
nent in the orthogonal complement of the tangent space to the model and
they can then be seen to lose ef®ciency by including random variation in
directions excluded by the model's speci®cation. Information about par-
ameters is represented geometrically by tangents that lie in the tangent
space of the model. Ef®cient estimating equations for model parameters
can be obtained by orthogonally projecting arbitrary root-n consistent
estimators onto the ef®cient subspace. This projection can often be imple-
mented by arti®cial regression.

Uwe Jensen provides a discussion of Rao distances and associated tests
in certain two-parameter models. These tests are sometimes also called
geodesic tests (see Critchley, Marriott and Salmon (1996)) and potentially
offer an alternative approach to inference beyond the standard likelihood
based trinity of the Likelihood Ratio, Lagrange multiplier and Wald
tests. Jensen then develops an interesting earnings frontier model for
German data and applies the Rao distance approach to examine various
hypotheses on earnings differentials.

Jose Manuel Corcuera and Federica GiummoleÁ consider the highly
relevant issue of determining an optimal predictive density. They show
how this predictive density may lie outside the class of the original par-
ametric model describing the variable of interest and how geometrically a
global solution can be constructed by considering formally all possible
directions in which the original model may be extended. Their theory is
based on minimising the leading term in the asymptotic expansion of risk
based on general loss functions that re¯ect the discrepancy between dis-
tributions. Speci®cally they employ � divergences as loss functions to
prove the existence of an optimal solution and to get explicit solutions
for a number of examples in relevant econometric models, including the
standard regression model and the AR(1) model.

Kees Jan van Garderen provides a detailed and powerful analysis of
the effects of statistical curvature on the classical tests used in econo-
metrics: the LR, LM, Wald and point optimal tests, as well as the
geodesic test put forward by Critchley, Marriott and Salmon (1996).
Most practical econometric models are statistically curved and yet the
effects of statistical curvature are largely unrecognised. When a model
is statistically curved, no uniformly powerful test will exist and any test
will necessarily compromise power against different alternatives. Van
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Garderen employs a geometric approach avoiding a complex mathema-
tical development to graphically analyse the partitioning of the sample
space into the critical and acceptance regions for the particular tests. The
analysis is valid for all sample sizes and is global in that it considers the
whole of the parameter and sample spaces. The standard asymptotic
equivalence result often seems to suggest that the choice of which test
to employ is simply a matter of computational convenience, but the
approximate nature of this ®rst-order asymptotic result can be highly
misleading if the model is seriously curved, as van Garderen shows
since the different tests employ very different critical regions. The point
optimal and Lagrange multiplier tests give a straight boundary to the
critical region and cannot guarantee global consistency. The Wald test
gives a curved boundary but the numerical value of the statistic depends
on the algebraic formulation of the restrictions, and the geodesic test begs
the fundamental question of which geodesic to calculate. The likelihood
ratio test uses the best critical region in the maximum likelihood direction
and, since it implicitly and automatically takes into account the curvature
of the model, it should be favoured over the other tests when the model is
signi®cantly curved. Van Garderen provides a detailed analysis of testing
for serial correlation and unit roots.

Tom Rothenberg considers the question of testing for unit roots in
autoregressive and moving-average models. These models are statistically
curved and inference will often be critically affected. Moreover the effects
of curvature get substantially larger the closer we get to the unit root (see
van Garderen (1997)), indicating one aspect of the non-standard nature
of inference in the unit root case. Although standard asymptotic theory
does not apply, Rothenberg ®nds somewhat surprisingly that the large
sample power curves and envelopes mimic those predicted by standard
second-order asymptotic theory. This result requires further explanation.

Finally, Critchley, Marriott and Salmon consider the very general issue
of the geometry of transformations and the role of parameterisation in
econometric models. In particular, they provide an elementary and visual
account of Amari's (1990) expected geometry, focusing on the full expo-
nential family case. Formal de®nitions of af®ne connections are not
exploited; instead they exploit the ®rst two moments of the score function
under the true distribution. Amari's fundamental non-metric af®ne con-
nection appears as the natural measure of the non- constancy of the true
covariance of the score across parameter space. This covariance is con-
stant in the natural parameters. Non-linearity of the graph of the mean
score in the natural parameter is then seen to re¯ect a curvature present in
nearly all parametric families. They introduce the notion of ÿ-duality,
which is a natural duality between the score function in one parameter-
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isation and the maximum likelihood estimator in another. It is seen to
correspond to, and therefore provide a statistical interpretation of, the
notion of duality in Amari's expected geometry. A number of generalised
linear model examples are used throughout.
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1 An introduction to differential
geometry in econometrics

Paul Marriott and Mark Salmon

1 Introduction

In this introductory chapter we seek to cover suf®cient differential geo-

metry in order to understand its application to econometrics. It is not
intended to be a comprehensive review either of differential geometric

theory, or of all the applications that geometry has found in statistics.

Rather it is aimed as a rapid tutorial covering the material needed in the

rest of this volume and the general literature. The full abstract power of a

modern geometric treatment is not always necessary and such a develop-

ment can often hide in its abstract constructions as much as it illuminates.

In section 2 we show how econometric models can take the form of

geometrical objects known as manifolds, in particular concentrating on

classes of models that are full or curved exponential families.

This development of the underlying mathematical structure leads into

section 3, where the tangent space is introduced. It is very helpful to be

able to view the tangent space in a number of different but mathemati-

cally equivalent ways, and we exploit this throughout the chapter.

Section 4 introduces the idea of a metric and more general tensors

illustrated with statistically based examples. Section 5 considers the

most important tool that a differential geometric approach offers: the

af®ne connection. We look at applications of this idea to asymptotic

analysis, the relationship between geometry and information theory

and the problem of the choice of parameterisation. Section 6 introduces

key mathematical theorems involving statistical manifolds, duality, pro-

jection and ®nally the statistical application of the classic geometric

theorem of Pythagoras. The last two sections look at direct applications

of this geometric framework, in particular at the problem of inference in

curved families and at the issue of information loss and recovery.

Note that, although this chapter aims to give a reasonably precise

mathematical development of the required theory, an alternative and
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perhaps more intuitive approach can be found in the chapter by
Critchley, Marriott and Salmon in this volume. For a more exhaustive
and detailed review of current geometrical statistical theory see Kass and
Vos (1997) or, from a more purely mathematical background, see Murray
and Rice (1993).

2 Parametric families and geometry

In this section we look at the most basic relationship between parametric
families of distribution functions and geometry. We begin by ®rst intro-
ducing the statistical examples to which the geometric theory most natu-
rally applies: the class of full and curved exponential families. Examples
are given to show how these families include a broad range of econo-
metric models. Families outside this class are considered in section 2.3.

Section 2.4 then provides the necessary geometrical theory that de®nes
a manifold and shows how one manifold can be de®ned as a curved
subfamily of another. It is shown how this construction gives a very
natural framework in which we can describe clearly the geometrical rela-
tionship between full and curved exponential families. It further gives the
foundations on which a fully geometrical theory of statistical inference
can be built.

It is important at the outset to make clear one notational issue: we shall
follow throughout the standard geometric practice of denoting compo-
nents of a set of parameters by an upper index in contrast to standard
econometric notation. In other words, if � 2 Rr is an r-dimensional para-
meter vector, then we write it in component terms as

� � �1; �2; . . . ; �r
ÿ � 0

:

This allows us to use the Einstein summation convention where a repeated
index in both superscript and subscript is implicitly summed over. For
example if x � �x1; . . . ; xr� 0 then the convention states that

�ixi �
Xr

i�1

�ixi:

2.1 Exponential families

We start with the formal de®nition. Let � 2 � � Rr be a parameter
vector, X a random variable, continuous or discrete, and s�X� �
s1�X�; . . . ; sr�X�� � 0 an r-dimensional statistic. Consider a family of

8 Paul Marriott and Mark Salmon



continuous or discrete probability densities, for this random variable, of
the form

p�xj�� � exp f�isi ÿ ý���gm�x�: �1�
Remember we are using the Einstein summation convention in this de®-
nition. The densities are de®ned with respect to some ®xed dominating
measure, �. The function m�x� is non-negative and independent of the
parameter vector �. We shall further assume that the components of s are
not linearly dependent. We call � the natural parameter space and we
shall assume it contains all � such that�

exp f�isigm�x� d� < 1:

A parametric set of densities of this form is called a full exponential
family. If � is open in Rr then the family is said to be regular, and the
statistics s1; . . . ; sr� � 0 are called the canonical statistics.
The function ý��� will play an important role in the development of the

theory below. It is de®ned by the property that the integral of the density
is one, hence

ý��� � log

�
exp f�isigm�x�d�

� �
:

It can also be interpreted in terms of the moment generating function of
the canonical statistic S. This is given by M�S; t; �� where

M�S; t; �� � exp fý�� � t� ÿ ý���g; �2�
see for example Barndorff-Nielsen and Cox (1994, p. 4).

The geometric properties of full exponential families will be explored
later. However, it may be helpful to remark that in section 5 it is shown
that they have a natural geometrical characterisation as the af®ne sub-
spaces in the space of all density functions. They therefore play the role
that lines and planes do in three-dimensional Euclidean geometry.

2.1.1 Examples
Consider what are perhaps the simplest examples of full expo-

nential families in econometrics: the standard regression model and the
linear simultaneous equation model. Most of the standard building
blocks of univariate statistical theory are in fact full exponential families
including the Poisson, normal, exponential, gamma, Bernoulli, binomial
and multinomial families. These are studied in more detail in Critchley
et al. in chapter 10 in this volume.
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Example 1. The standard linear model Consider a linear model
of the form

Y � Xb� r;

where Y is an n� 1 vector of the single endogenous variable, X is an
n� �k� 1� matrix of the k weakly exogenous variables and the intercept
term and r is the n� 1 matrix of disturbance terms which we assume
satis®es the Gauss±Markov conditions. In particular, for all i in 1; . . . ; n

�i � N�0; �2�:
The density function of Y conditionally on the values of the exogenous
variables can then be written as

exp
þ

�2

� � 0
X 0Y
ÿ �� 1

ÿ2�2

� �
Y 0Y
ÿ ��

ÿ þ 0X 0Xþ
2�2

� �n=2� log �2��2�
� ��

:

This is in precisely the form for a full exponential family with the par-
ameter vector

� 0 � þ 0

�2
;

1

ÿ2�2

��
and canonical statistics

�s�Y�� 0 � Y 0X Y 0Y
ÿ �

:

Example 2. The simultaneous equation model Consider the set of
simultaneous linear equations

BYt � !Xt � Ut;

where Y are endogenous variables, X weakly exogenous, U the random
component and t indexes the observations. Moving to the reduced form,
we have

Yt � ÿBÿ1!Xt � Bÿ1Ut;

which gives a full exponential family in a similar way to Example 1.
However, an important point to notice is that the natural parameters �
in the standard full exponential form are now highly non-linear functions
of the parameters in the structural equations. We shall see how the geo-
metric analysis allows us to understand the effect of such non-linear
reparameterisations below.
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Example 3. Poisson regression Moving away from linear
models, consider the following Poisson regression model. Let �i denote
the expected value for independent Poisson variables Yi, i � 1; . . . ; n. We
shall initially assume that the �i parameters are unrestricted. The density
for �y1; . . . ; yn� can be written as,

exp
Xn
i�1

yi log ��i� ÿ
Xn
i�1

�i

( )Yn
i�1

1

yi!
:

Again this is in full exponential family form, with the natural parameters
and canonical statistics being

�i � log ��i�; si�y1; . . . ; yn� � yi;

respectively. For a true Poisson regression model, the �i parameters will
be predicted using covariates. This imposes a set of restrictions on the full
exponential family which we consider in section 2.2.

2.1.2 Parameterisations
There is a very strong relationship between geometry and para-

meterisation. In particular, it is important in a geometrically based theory
to distinguish between those properties of the model that are dependent
on a particular choice of parameterisation and those that are independent
of this choice. Indeed, one can de®ne the geometry of a space to be those
properties that are invariant to changes in parameterisation (see Dodson
and Poston (1991)).

In Example 2 we noted that the parameters in the structural equations
need not be simply related to the natural parameters, �. Structural para-
meters will often have a direct econometric interpretation, which will be
context dependent. However, there are also sets of parameters for full
exponential families which always play an important role. The natural
parameters, �, are one such set. A second form are the expected para-
meters �. These are de®ned by

�i��� � Ep�x;���si�x��:
From equation (2) it follows that these parameters can be expressed as

�i��� � @ý

@�i
���: �3�

In a regular full exponential family the change of parameters from � to �
is a diffeomorphism. This follows since the Jacobian of this transforma-
tion is given from equation (3) as

Introduction to differential geometry 11



@�i

@�j
� @2ý

@�i@�j
���:

This will be non-zero since for a regular family ý is a strictly convex
function (see Kass and Vos (1997), p. 16, Theorem 2.2.1).

2.1.3 Repeated sampling and suf®cient statistics
One important aspect of full exponential families concerns the

properties of their suf®cient statistics. Let us assume that we have a
random sample �x1; . . . ; xn� where each observation is drawn from a
density

p�x; j �� � exp f�isi�x� ÿ ý���gm�x�:
The log-likelihood function for the full sample will be

`��; �x1; . . . ; xn�� � �i
Xn
j�1

si�xj� ÿ ný���:

Thus if the parameter space is r-dimensional then there is always an r-
dimensional suf®cient statistic, namelyXn

j�1

s1�xj�; . . . ;
Xn
j�1

sr�xj�
ý !

:

Note that the dimension of this suf®cient statistic will be independent of
the sample size n. This is an important property which we shall see in
section 2.3 has important implications for the geometric theory.

2.2 Curved exponential families

In the previous section we mentioned that full exponential families will be
shown to play the role of af®ne subspaces in the space of all density
functions. Intuitively they can be thought of as lines, planes and
higher-dimensional Euclidean spaces. We can then ask what would be
the properties of curved subfamilies of full exponential families?

In general there are two distinct ways in which subfamilies can be
de®ned: ®rstly by imposing restrictions on the parameters of the full
family, and secondly as parametric families in their own right. We use
this second approach as the basis of a formal de®nition.

Let � be the r-dimensional natural parameter space for the full expo-
nential family given by

p�x j �� � exp f�isi ÿ ý���gm�x�:
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Assume that there is a mapping from �, an open subset of Rp to �,

A : � ! �

�} ����;
which obeys the following conditions:
1. the dimension of � is less than that of �,
2. the mapping is one-to-one and smooth and its derivative has full rank

everywhere,
3. if the sequence of points f�i; i � 1; . . . ; rg � A��� converges to

�0 2 A���, then Aÿ1��i� converges to Aÿ1��0� in �.
Under these conditions the parametric family de®ned by

p�x j �� � exp f�i���si ÿ ý������gm�x�
is called a curved exponential family. In particular noting the dimensions
of the relevant spaces, it is an �r; p�-curved exponential family.

2.2.1 Examples
We now look at a set of examples to see how this class of curved

exponential families is relevant to econometrics. For further examples see
Kass and Vos (1997) or Barndorff-Nielsen and Cox (1994), where many
forms of generalised linear models, including logistic, binomial and expo-
nential regressions, non-linear regression models, time-series models and
stochastic processes, are treated. Another important source of curved
exponential families is the imposition and testing of parametric restric-
tions (see Example 5). Finally we mention some general approximation
results which state that any parametric family can be approximated using
a curved exponential family (see, for example, Barndorff-Nielsen and
Jupp (1989)).

Example 3. Poisson regression (continued) Let us now assume
that the parameters in the Poisson regression model treated above are
assumed to be determined by a set of covariates. As a simple example we
could assume the means follow the equation

log ��i� � �� þXi;

where X is an exogenous variable. Hence, in terms of the natural para-
meters we have

�i � �� þXi:

Thus the map de®ning the curved exponential family is
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��; þ� ! �1��; þ�; . . . ; �n��; þ�ÿ �
;

and we have a �n; 2�-curved exponential family.

Example 4. AR�1�-model Consider the simple AR�1� model

xt � �xtÿ1 � �t;

where the disturbance terms are independent N�0; �2� variables, and we
assume x0 � 0. The density function will then be of the form

exp
ÿ1

2�2

� �Xn
i�1

x2i �
�

�2

� �Xn
i�1

xtxtÿ1 �
ÿ�2

2�2

ý !Xn
i�1

x2tÿ1

(

ÿ n

2
log �2��2�

)
:

This is a curved exponential family since the parameters can be written in
the form

�1��; �� � ÿ1

2�2
; �2��; �� � �

�2
; �3��; �� � ÿ�2

2�2
:

The geometry of this and more general ARMA-families has been studied
in Ravishanker (1994).

Example 5. COMFAC model Curved exponential families can
also be de®ned by imposing restrictions on the parameters of a larger, full
or curved, exponential family. As we will see, if these restrictions are non-
linear in the natural parameters the restricted model will, in general, be a
curved exponential family. As an example consider the COMFAC model,

yt � ÿxt � ut;

where x is weakly exogenous and the disturbance terms follow a normal
AR�1� process

ut � �utÿ1 � �t:

Combining these gives a model

yt � �ytÿ1 � ÿxt ÿ �ÿxtÿ1 � �t

which we can think of as a restricted model in an unrestricted auto-
regressive model

yt � �0ytÿ1 � �1xt � �2xtÿ1 � !t:
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We have already seen that the autoregressive model gives rise to a curved
exponential structure. The COMFAC restriction in this simple case is
given by a polynomial in the parameters

�2 � �0�1 � 0:

The family de®ned by this non-linear restriction will also be a curved
exponential family. Its curvature is de®ned by a non-linear restriction
in a family that is itself curved. Thus the COMFAC model is curved
exponential and testing the validity of the model is equivalent to testing
the validity of one curved exponential family in another. We shall see
later how the geometry of the embedding of a curved exponential family
affects the properties of such tests, as discussed by van Garderen in this
volume and by Critchley, Marriott and Salmon (1996), among many
others.

2.3 Non-exponential families

Of course not all parametric families are full or curved exponential and
we therefore need to consider families that lie outside this class and how
this affects the geometric theory. We have space only to highlight the
issues here but it is clear that families that have been excluded include the
Weibull, generalised extreme value and Pareto distributions, and these
are of practical relevance in a number of areas of econometric applica-
tion. An important feature of these families is that the dimension of their
suf®cient statistics grows with the sample size. Although this does not
make an exact geometrical theory impossible, it does considerably com-
plicate matters.

Another property that the non-exponential families can exhibit is that
the support of the densities can be parameter dependent. Thus members
of the same family need not be mutually absolutely continuous. Again,
although this need not exclude a geometrical theory, it does make the
development more detailed and we will not consider this case.

In general the development below covers families that satisfy standard
regularity conditions found, for instance, in Amari (1990, p. 16). In detail
these conditions for a parametric family p�x j �� are:
1. all members of the family have common support,
2. let `�� ; x� � log Lik�� ; x�, then the set of functions

@`

@�i
�� ; x� j i � 1; . . . ; n

� �
are linearly independent,

3. moments of @`=@�i�� ; x� exist up to suf®ciently high order,
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4. for all relevant functions integration and taking partial derivatives
with respect to � are commutative.

These conditions exclude a number of interesting models but will not, in
general, be relevant for many standard econometric applications. All full
exponential families satisfy these conditions, as do a large number of
other classes of families.

2.4 Geometry

We now look at the general relationship between parametric statistical
families and geometric objects known as manifolds. These can be thought
of intuitively as multi-dimensional generalisations of surfaces. The theory
of manifolds is fundamental to the development of differential geometry,
although we do not need the full abstract theory (which would be found
in any modern treatment such as Spivak (1979) or Dodson and Poston
(1991)). We develop a simpli®ed theory suitable to explain the geometry
of standard econometric models. Fundamental to this approach is the
idea of an embedded manifold. Here the manifold is de®ned as a subset of
a much simpler geometrical object called an af®ne space. This af®ne space
construction avoids complications created by the need fully to specify
and manipulate the in®nite-dimensional space of all proper density func-
tions. Nothing is lost by just considering this af®ne space approach when
the af®ne space we consider is essentially de®ned as the space of all log-
likelihood functions. An advantage is that with this construction we can
trust our standard Euclidean intuition based on surfaces inside three-
dimensional spaces regarding the geometry of the econometric models
we want to consider.

The most familiar geometry is three-dimensional Euclidean space, con-
sisting of points, lines and planes. This is closely related to the geometry
of a real vector space except for the issue of the choice of origin. In
Euclidean space, unlike a vector space, there is no natural choice of
origin. It is an example of an af®ne geometry, for which we have the
following abstract de®nition.

An af®ne space �X;V� consists of a set X , a vector space V , together
with a translation operation �. This is de®ned for each v 2 V , as a
function

X ! X

x }x� v

which satis®es

�x� v1� � v2 � x� �v1 � v2�
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and is such that, for any pair of points in X , there is a unique translation
between them.

Most intuitive notions about Euclidean space will carry over to general
af®ne spaces, although care has to be taken in in®nite-dimensional
examples. We shall therefore begin our de®nition of a manifold by ®rst
considering curved subspaces of Euclidean space.

2.4.1 Embedded manifolds
As with our curved exponential family examples, curved sub-

spaces can be de®ned either using parametric functions or as solutions
to a set of restrictions. The following simple but abstract example can
most easily get the ideas across.

Example 6. The sphere model Consider in R3, with some ®xed
origin and axes, the set of points which are the solutions of

x2 � y2 � z2 � 1:

This is of course the unit sphere, centred at the origin. It is an example
of an embedded manifold in R3 and is a curved two-dimensional surface.
At least part of the sphere can also be de®ned more directly, using par-
ameters, as the set of points

cos��1� sin��2�; sin��1� sin��2�; cos��2�ÿ � j �1 2 �ÿ�; ��; �2 2 �0; ��� þ
:

Note that both the north and south poles have been excluded in this
de®nition, as well as the curve

�ÿ sin��2�; 0; cos��2��:
The poles are omitted in order to ensure that the map from the parameter
space to R3 is invertible. The line is omitted to give a geometric regularity
known as an immersion. Essentially we want to keep the topology of the
parameter space consistent with that of its image in R3.

The key idea here is we want the parameter space, which is an open set
in Euclidean space, to represent the model as faithfully as possible. Thus
it should have the same topology and the same smoothness structure.

We shall now give a formal de®nition of a manifold that will be suf®-
cient for our purposes. Our manifolds will always be subsets of some
®xed af®ne space, so more properly we are de®ning a submanifold.

Consider a smooth map from �, an open subset of Rr, to the af®ne
space �X;V� de®ned by

i : � ! X :
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The set i��� will be an embedded manifold if the following conditions
apply:
(A) the derivative of i has full rank r for all points in �,
(B) i is a proper map, that is the inverse image of any compact set is itself

compact (see BroÈ cker and JaÈ nich (1982), p. 71).
In the sphere example it is Condition (A) that makes us exclude

the poles and Condition (B) that excludes the line. This is necessary for
the map to be a diffeomorphism and this in turn is required to ensure the
parameters represent unique points in the manifold and hence the econo-
metric model is well de®ned and identi®ed.

Another way of de®ning a (sub)manifold of an af®ne space it to use a
set of restriction functions. Here the formal de®nition is: Consider a
smooth map � from an n-dimensional af®ne space �X;V� to Rr.
Consider the set of solutions of the restriction

x j ��x� � 0
� þ

;

and suppose that for all points in this set the Jacobian of � has rank r,
then the set will be an �nÿ r�-dimensional manifold.

There are two points to notice in this alternative de®nition. Firstly, we
have applied it only to restrictions of ®nite-dimensional af®ne spaces. The
generalisation to the in®nite-dimensional case is somewhat more techni-
cal. Secondly, the two alternatives will be locally equivalent due to the
inverse function theorem (see Rudin (1976)).

We note again that many standard differential geometric textbooks do
not assume that a manifold need be a subset of an af®ne space, and
therefore they require a good deal more machinery in their de®nitions.
Loosely, the general de®nition states that a manifold is locally diffeo-
morphic to an open subset of Euclidean space. At each point of the
manifold there will be a small local region in which the manifold looks
like a curved piece of Euclidean space. The structure is arranged such that
these local subsets can be combined in a smooth way. A number of
technical issues are required to make such an approach rigorous in the
current setting. Again we emphasise that we will always have an
embedded structure for econometric applications, thus we can sidestep
a lengthy theoretical development.

Also it is common, in standard geometric works, to regard parameters
not as labels to distinguish points but rather as functions of these
points. Thus if M is an r-dimensional manifold then a set of parameters
��1; . . . ; �r� is a set of smooth functions

�i : M ! R:
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In fact this is very much in line with an econometric view of parameters in
which the structural parameters of the model are functions of the prob-
ability structure of the model. For example, we could parameterise a
family of distributions using a ®nite set of moments. Moments are clearly
most naturally thought of as functions of the points, when points of the
manifolds are actually distribution functions.

2.4.2 Statistical manifolds
In this section we show how parametric families of densities can

be seen as manifolds. First we need to de®ne the af®ne space that embeds
all our families, and we follow the approach of Murray and Rice (1993)
in this development. Rather than working with densities directly we work
with log-likelihoods, since this enables the natural af®ne structure to
become more apparent. However, because of the nature of the likelihood
function some care is needed with this de®nition.

Consider the set of all (smooth) positive densities with a ®xed common
support S, each of which is de®ned relative to some ®xed measure �. Let
this family be denoted by P. Further let us denote by M the set of all
positive measures that are absolutely continuous with respect to �. It will
be convenient to consider this set up to scaling by a positive constant.
That is, we will consider two such measures equivalent if and only if they
differ by multiplication of a constant. We denote this space by M�.
De®ne X by

X � flog �m� j m 2 M�g:
Because m 2 M� is de®ned only up to a scaling constant, we must have
the identi®cation in X that

log �m� � log �Cm� � log �m� � log �C�; 8 C 2 R�:

Note that the space of log-likelihood functions is a natural subset of X . A
log-likelihood is de®ned only up to the addition of a constant (Cox and
Hinkley (1974)). Thus any log-likelihood log �p�x�� will be equivalent to
log �p�x�� � log �C� for all C 2 R�. Finally de®ne the vector space V by
V � f f �x� j f 2 C1�S;R�g:

The pair �X;V� is given an af®ne space structure by de®ning transla-
tions as

log �m�} log �m� � f �x� � log �exp � f �x�m��:
Since exp� f �x�m� is a positive measure, the image of this map does lie in
X . It is then immediate that �log �m� � f1� � f2 � log �m� � � f1 � f2� and
the translation from log �m1� to log �m2� is uniquely de®ned by log �m2� ÿ
log �m1� 2 C1�S;R�, hence the conditions for an af®ne space apply.
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Using this natural af®ne structure, consider a parametric family of

densities that satis®es the regularity conditions from section 2.3.

Condition 1 implies that the set of log-likelihoods de®ned by this family

will lie in X . From Condition 2 it follows that Condition (A) holds

immediately. Condition (B) will hold for almost all econometric models;

in particular it will always hold if the parameter space is compact and in

practice this will not be a serious restriction. Hence the family will be an

(embedded) manifold.

We note further that the set P is de®ned by a simple restriction func-

tion as a subset of M. This is because all elements of P must integrate to

one. There is some intuitive value in therefore thinking of P as a sub-

manifold ofM. However, as pointed out in section 2.4.1, the de®nition of

a manifold by a restriction function works most simply when the em-

bedding space is ®nite-dimensional. There are technical issues involved

in formalising the above intuition, which we do not discuss here.

However, this intuitive idea is useful for understanding the geometric

nature of full exponential families. Their log-likelihood representation

will be

�isi�x� ÿ ý���:

This can be viewed in two parts. Firstly, an af®ne function of the para-

meters � ®ts naturally into the af®ne structure of X . Secondly, there is a

normalising term ý��� which ensures that the integral of the density is

constrained to be one. Very loosely think of M as an af®ne space in

which P is a curved subspace; the role of the function ý is to project

an af®ne function of the natural parameters back into P.

Example 4 AR�1�-model (continued) We illustrate the previous

theory with an explicit calculation for the AR�1� model. We can consider

this family as a subfamily of the n-dimensional multivariate normal

model, where n is the sample size. This is the model that determines

the innovation process. Thus it is a submodel of an n-dimensional full

exponential family. In fact it lies in a three-dimensional subfamily of this

full exponential family. This is the smallest full family that contains the

AR�1� family and its dimension is determined by the dimension of the

minimum suf®cient statistic. The dimension of the family itself is deter-

mined by its parameter space, given in our case by � and �. It is a �3; 2�
curved exponential family.

Its log-likelihood representation is
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`��; � : x� � ÿ1

2�2

� �Xn
i�1

x2i �
�

�2

� �Xn
i�1

xtxtÿ1

� ÿ�2

2�2

ý !Xn
i�1

x2tÿ1 ÿ
n

2
log �2��2�:

2.4.3 Repeated samples
The previous section has demonstrated that a parametric family

p�x j �� has the structure of a geometric manifold. However, in statistical
application we need to deal with repeated samples ± independent or
dependent. So we need to consider a set of related manifolds that are
indexed by the sample size n. The exponential family has a particularly
simple structure to this sequence of manifolds.

One reason for the simple structure is the fact that the dimension of the
suf®cient statistic does not depend on the sample size. If X has density
function given by (1), then an i.i.d. sample �x1; . . . ; xn� has density

p��x1; . . . ; xn� j �� � exp �i
Xn
j�1

si�xj� ÿ ný���
( )Yn

j�1

m�xj�:

This is also therefore a full exponential family, hence an embedded mani-
fold. Much of the application of geometric theory is concerned with
asymptotic results. Hence we would be interested in the limiting form
of this sequence of manifolds as n ! 1. The simple relationship between
the geometry and the sample size in full exponential families is then used
to our advantage.

In the case of linear models or dependent data, the story will of course
be more complex. There will still be a sequence of embedded manifolds
but care needs to be taken with, for example, the limit distribution of
exogenous variables. As long as the likelihood function for a given model
can be de®ned, the geometric construction we have set up will apply. In
general econometric models with dependent data and issues of exogene-
ity, the correct conditional distributions have to be used to de®ne the
appropriate likelihood for our geometric analysis, as was implicitly done
in the AR�1� example above with the prediction error decomposition.

2.4.4 Bibliographical remarks
The term curved exponential family is due to Efron (1975, 1978

and 1982) in a series of seminal papers that revived interest in the geo-
metric aspects of statistical theory. This work was followed by a series of
papers by Amari et al., most of the material from which can be found in
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Amari (1990). The particular geometry treatment in this section owes a
lot to Murray and Rice's (1993) more mathematical based approach, as
well as to the excellent reference work by Kass and Vos (1997). Since the
exponential family class includes all the standard building blocks of sta-
tistical theory, the relevant references go back to the beginnings of prob-
ability and statistics. Good general references are, however, Brown (1986)
and Barndorff-Nielsen (1978, 1988).

3 The tangent space

We have seen that parametric families of density functions can take the
mathematical form of manifolds. However, this in itself has not de®ned
the geometric structure of the family. It is only the foundation stone on
which a geometric development stands. In this section we concentrate on
the key idea of a differential geometric approach. This is the notion of a
tangent space. We ®rst look at this idea from a statistical point of view,
de®ning familiar statistical objects such as the score vector. We then show
that these are precisely what the differential geometric development
requires. Again we shall depart from the form of the development that
a standard abstract geometric text might follow, as we can exploit the
embedding structure that was carefully set up in section 2.4.2. This struc-
ture provides the simplest accurate description of the geometric relation-
ship between the score vectors, the maximum likelihood estimator and
likelihood-based inference more generally.

3.1 Statistical representations

We have used the log-likelihood representation above as an important
geometric tool. Closely related is the score vector, de®ned as

@`

@�1
; . . . ;

@`

@�r

� � 0
:

One of the fundamental properties of the score comes from the following
familiar argument. Since�

p�x j ��d� � 1;

it follows that

@

@�i

�
p �x j ��d� �

�
@

@�i
p�x j ��d� � 0

using regularity condition 4 in section 2.3, then
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Ep�x;��
@`

@�i

� �
�

�
1

p�x j ��
@

@�i
p�x j ��p�x j ��d� � 0: �4�

We present this argument in detail because it has important implications
for the development of the geometric theory.

Equation (4) is the basis of many standard asymptotic results when
combined with a Taylor expansion around the maximum likelihood esti-
mate (MLE), �̂;

�̂i ÿ �i � I ij @`

@�j
�O

1

n

� �
�5�

where

ÿ @2`

@�i@�j
��̂�

ý !ÿ1

� I ij

(see Cox and Hinkley (1974)). This shows that, in an asymptotically
shrinking neighbourhood of the data-generation process, the score sta-
tistic will be directly related to the MLE. The geometric signi®cance of
this local approximation will be shown in section 3.2.

The ef®ciency of the maximum likelihood estimates is usually
measured by the covariance of the score vector or the expected Fisher
information matrix:

Iij � Ep�x;�� ÿ @2`

@�i@�j

ý !
� Covp�x;��

@`

@�i
;
@`

@�j

� �
:

Efron and Hinkley (1978), however, argue that a more relevant and hence
accurate measure of this precision is given by the observed Fisher
information

I ij � ÿ @2`

@�i@�j
��̂�;

since this is the appropriate measure to be used after conditioning on
suitable ancillary statistics.

The ®nal property of the score vector we need is its behaviour under
conditioning by an ancillary statistic. Suppose that the statistic a is
exactly ancillary for �, and we wish to undertake inference conditionally
on a. We then should look at the conditional log-likelihood function

`�� j a� � log �p�x j�; a��:
However, when a is exactly ancillary,
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@`

@�i
�� : ja� � @`

@�i
���;

in other words, the conditional score will equal the unconditional. Thus
the score is unaffected by conditioning on any exact ancillary. Because of
this the statistical manifold we need to work with is the same whether we
work conditionally or unconditionally because the af®ne space differs
only by a translation that is invariant.

3.2 Geometrical theory

Having reviewed the properties of the score vector we now look at the
abstract notion of a tangent space to a manifold. It turns out that the
space of score vectors de®ned above will be a statistical representation of
this general and important geometrical construction. We shall look at
two different, but mathematically equivalent, characterisations of a
tangent space.

Firstly, we note again that we study only manifolds that are embedded
in af®ne spaces. These manifolds will in general be non-linear, or curved,
objects. It is natural to try and understand a non-linear object by linear-
ising. Therefore we could study a curved manifold by ®nding the best
af®ne approximation at a point. The properties of the curved manifold, in
a small neighbourhood of this point, will be approximated by those in the
vector space.

The second approach to the tangent space at a point is to view it as the
set of all directions in the manifold at that point. If the manifold were r-
dimensional then we would expect this space to have the same dimension,
in fact to be an r-dimensional af®ne space.

3.2.1 Local af®ne approximation
We ®rst consider the local approximation approach. LetM be an

r-dimensional manifold, embedded in an af®ne space N, and let p be a
point inM. We ®rst de®ne a tangent vector to a curve in a manifoldM. A
curve is de®ned to be a smooth map

ÿ : �ÿ�; �� � R ! M

t } ÿ�t�;

such that ÿ�0� � p. The tangent vector at p will be de®ned by

ÿ 0�0� � lim
h!0

ÿ�h� ÿ ÿ�0�
h

:
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We note that, since we are embedded in N, ÿ 0�0� will be an element of this
af®ne space (see Dodson and Poston (1991)). It will be a vector whose
origin is p. The tangent vector will be the best linear approximation to the
curve ÿ, at p. It is the unique line that approximates the curve to ®rst
order (see Willmore (1959), p. 8).

We can then de®ne TMp, the tangent space at p, to be the set of all
tangent vectors to curves through p. Let us put a parameterisation � of an
open neighbourhood which includes p on M. We de®ne this as a map �

� : ��� Rr� ! N;

where ���� is an open subset of M that contains p, and the derivative is
assumed to have full rank for all points in �. Any curve can then be
written as a composite function in terms of the parameterisation,

� � ÿ : �ÿ�; �� ! � ! N:

Thus any tangent vector will be of the form

@�

@�i
d�i

dt
:

Hence TMp will be spanned by the vectors of N given by

@�

@�i
; i � 1; . . . ; r

� �
:

Thus TMp will be a p-dimensional af®ne subspace of N. For complete-
ness we need to show that the construction of TMp is in fact independent
of the choice of the parameterisation. We shall see this later, but for
details see Willmore (1959).

3.2.2 Space of directions
The second approach to de®ning the tangent space is to think of

a tangent vector as de®ning a direction in the manifold M. We de®ne a
direction in terms of a directional derivative. Thus a tangent vector will
be viewed as a differential operator that corresponds to the directional
derivative in a given direction.

The following notation is used for a tangent vector, which makes clear
its role as a directional derivative

@

@�i
� @i:

It is convenient in this viewpoint to use an axiomatic approach. Suppose
M is a smooth manifold. A tangent vector at p 2 M is a mapping

Xp : C
1�M� ! R
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such that for all f, g 2 C1�M�, and a 2 R:

1. Xp�a:f � g� � aXp� f � � Xp�g�,
2. Xp� f :g� � g:Xp� f � � f :Xp�g�.
It can be shown that the set of such tangent vectors will form an r-
dimensional vector space, spanned by the set

@i; i � 1; . . . ; r
� þ

;

further that this vector space will be isomorphic to that de®ned in section
3.2.1. For details see Dodson and Poston (1991).

It is useful to have both viewpoints of the nature of a tangent vector.
The clearest intuition follows from the development in section 3.2.1,
whereas for mathematical tractability the axiomatic view, in this section,
is superior.

3.2.3 The dual space
We have seen that the tangent space TMp is a vector space whose

origin is at p. We can think of it as a subspace of the af®ne embedding
space. Since it is a vector space it is natural to consider its dual space
TM�

p . This is de®ned as the space of all linear maps

TMp ! R:

Given a parameterisation, we have seen we have a basis for TMp given by

f@1; . . . ; @rg:
The standard theory for dual spaces (see Dodson and Poston (1991))
shows that we can de®ne a basis for TM�

p to be

d�1; . . . ; d�r
� þ

;

where each d�i is de®ned by the relationship

@i�d�j� �
1 if i � j

0 if i 6� j:

(
We can interpret d�i, called a 1-form or differential, as a real valued
function de®ned on the manifold M which is constant in all tangent
directions apart from the @i direction. The level set of the 1-forms de®nes
the coordinate grid on the manifold given by the parameterisation �.

3.2.4 The change of parameterisation formulae
So far we have de®ned the tangent space explicitly by using a set

of basis vectors in the embedding space. This set was chosen through the
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choice of parameterisation. Since this parameterisation is not intrinsic to
the geometry of the manifold we must be able to convert from the basis
de®ned in terms of one parameterisation to that de®ned in terms of
another. Indeed we must show that the tangent space and its dual exist
independently of the choice of parameters used.

The change of parameterisation formulae in fact turn out to be
repeated applications of the standard chain rule from multivariate calcu-
lus. Suppose we have two parameterisations � and �, for an open subset
of the manifold M. Owing to the full rank of the derivative of parame-
terisations there is a diffeomorphism connecting the parameters, i.e.
� � ���� is a smooth invertible map, whose inverse is smooth. This fol-
lows from the inverse function theorem and the fact that we are only
working locally in an open neighbourhood of some point in the manifold
(see for example Kass and Vos (1997), p. 300). We write @a�

i to denote the
i'th partial derivative of � with respect to the a'th component of �. So we
have

@a�
i � @�i

@�a
���:

Application of the chain rule then allows us to connect the basis in the �-
parameters, which we denote by f@a j a � 1; . . . ; rg, indexed by a, with the
basis relative to the �-parameterisation, which is denoted by f@i j i �
1; . . . ; rg. Thus, recalling from section 3.2.2 that the basis elements are
de®ned as differential operators, we can apply the chain rule. This gives
the formula connecting the two bases as being

@a � �@a�i�@i:
Note here, as throughout, the use of the Einstein summation notation.
Since this is just an invertible linear transformation, this result immedi-
ately implies that the tangent space spanned by the two basis sets will be
the same. Hence we have shown that the previous de®nitions are indeed
well de®ned.

Further, to complete the change of basis formulae, suppose we have a
tangent vector X . We could write it in component terms relative to the �-
parameterisation as

X � Xa@a:

Thus, changing basis gives

X � Xa @a�
i

ÿ �
@i

� Xa@a�
i

ÿ �
@i:
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Hence the components will have the following change of basis formula

�X1; . . . ;Xr�} �Xa@a�
1; . . . ;Xa@a�

1�: �6�
The change of basis formulae for the dual space can be derived in a

similar way. The relationship connecting the basis relative to the �-
parameterisation, fd�a j : a � 1; . . . ; rg, with that of the �-parameterisa-
tion, fd�i j : i � 1; . . . ; rg, is given by

d�a � @i�
ad�i;

where @i�
a � @�i=@�a. Note that there is also the important relationship

between the two changes of basis matrices, which states

@i�
a@a�

j �
1 if i � j

0 if i 6� j:

(
�7�

That is, viewed as matrices, @i�
a and @a�

j are mutual inverses.

3.2.5 Statistical interpretation
We can now relate this previous theory to our statistical mani-

folds. Recall that we are representing the manifolds by their log-likeli-
hood representations. Let us now consider the representation of the
tangent space in terms of the local af®ne approximation to the manifold.

Let the parametric family be given by p�x j ��, then its log-likelihood
representation is given by log p�� j x� � `���. A path in this manifold,
through the point represented by �0, is given by

ÿ : �ÿ�; �� ! � ! X

t} `���t��:
Thus the tangent space will be spanned by the set of random variables

@`

@�1
; . . . ;

@`

@�r

� �
:

Hence the set of score vectors spans the tangent space.
It will be convenient to swop freely between the two interpretations of

tangent vectors ± ®rstly random variables, which are elements of the
above vector space, and secondly directional derivatives. We shall use
the following notation throughout,

@i`��� �
@`

@�i

when we wish to emphasise the random variable nature of the tangent
vector.
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3.2.6 Taylor's theorem
Suppose we have a real valued function h de®ned on our statis-

tical manifold M. Most asymptotic theory is de®ned using a form of
expansion of such functions. Using the machinery we have already devel-
oped, we can look at a ®rst-order Taylor expansion that is relevant for
curved manifolds. Suppose we have a parameterisation � on the mani-
fold, then Taylor's expansion will be

h��� � h��0� � @ih��0�d�i � higher-order terms:

We note however, owing to the change of basis formulae in section 3.2.4,
in particular equation (7), that this expansion will be invariant. That is to
say, the expansion will be the same for all parameterisations. The ques-
tion of invariance to reparameterisation is an important one in statistics,
and has motivated much of our geometric development. We shall see that
the extension of this formula, which is needed for higher-order asympto-
tics, requires more knowledge of the underlying geometry of the mani-
fold, and is considered in detail in Bl�sild (1987).

3.2.7 Further structures
Having de®ned a single tangent space for a manifold M at the

point p 2 M, we can de®ne the tangent bundle, denoted by TM. This is
the collection of all tangent spaces, i.e.

TM � fTMp j p 2 Mg:

The tangent bundle itself will have the structure of a manifold; in fact, if
M is r-dimensional then TM will be a 2r-dimensional manifold (see
Dodson and Poston (1991)).

We will also use the notion of a tangent ®eld on the manifold.
Intuitively we can think of this associating a tangent vector at each
point p that lies in the tangent space TMp. Formally, a tangent ®eld X
is a (smooth) map between manifolds

X : M ! TM

p }X�p� 2 TMp:

We denote the set of all tangent ®elds by ��M�. In a similar way we can
de®ne the cotangent bundle T�M by

T�M � fT�Mp j p 2 Mg;

and a cotangent ®eld X� by
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X� : M ! T�M

p }X��p� 2 T�Mp:

We denote the set of all cotangent ®elds by ���M�.

4 Metric tensors

Having carefully de®ned the tangent and cotangent spaces we are now
able to de®ne part of the underlying geometrical structure of a statistical
manifold. Given that the tangent space can be viewed as a vector space, it
is natural to ask if we have some way of measuring lengths of tangent
vectors and angles between tangent vectors. We will see how this will
enable us to de®ne, amongst other things, lengths of paths. The tool
that we use is called a metric tensor.

Since each tangent space is a vector space, the simplest way to measure
lengths and angles is to prescribe a quadratic form for each tangent space.
However, we would require that this quadratic form varies smoothly
across the manifold. This gives the de®nition: a metric tensor, denoted
by h ; i, is a smooth function

h ; i : ��M� � ��M� ! C1�M�
�X;Y�}hX;Yi:

It satis®es the properties that for all X;Y;Z 2 ��M�, and for all
f 2 C1�M�:
1. hX;Yi � hY;Xi (symmetry),
2. h fX;Yi � f hX;Yi and hX � Y;Zi � hX;Zi � hY;Zi (bilinearity),
3. hX;Xi > 0 (positive de®niteness).

This de®nition is best understood when you consider what happens at
the tangent space at a particular point p. On this vector space, TpM, the
metric h ; ip is simply a quadratic form. The key to the above de®nition
lies in ensuring that this quadratic form varies smoothly across the mani-
fold with p.

Suppose now that we introduce a parameterisation, �. Since the metric
is a bilinear form it can be written as an element of the tensor product of
1-forms, T�M þ T�M. We can express it in terms of the basis for T�M
given by the parameterisation, i.e. relative to fd�1; . . . ; d�rg. Thus we have
the expression

h ; i � gabd�
ad�b; where gab � h@a; @bi:

Just as we write any tangent vector in terms of its components with
respect to the basis f@1; . . . ; @rg, the metric is often simply denoted by
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its components gab � gab��� relative to the basis fd�1; . . . ; d�rg. It is
important then to understand how this `component form' representation
of the metric changes with a change of parameters. Suppose that � is
another parameterisation, then we have

h ; i � gab@i�
a@j�

bd�id�j � ~gijd�
id�j;

where ~gij is the coordinate form for the �-parameterisation. Hence the
change of basis formula for the coordinate version of the metric is

~gij � @i�
a@j�

bgab: �8�
Remember that we are using the Einstein convention. From the above
de®nition we can see that, as long as the components of the metric obey
the transformation rule in equation (8), then lengths and angles de®ned
by the metric will be invariant to changes in parameterisation.

The following example shows how the metric can be induced by the
geometry on the embedding space.

Example 6. The sphere example (continued) Consider the sphere
embedded in R3, which is given parametrically by

f�cos��1� sin��2�; sin��1� sin��2�; cos��2�� j �1 2 �ÿ�; ��; �2 2 �0; ��g:
The tangent space at the point ��1; �2� is spanned by the vectors in R3

@1 � ÿ sin��1� sin��2�; cos��1� sin��2�; 0ÿ �
@2 � cos��1� cos��2�; sin��1� cos��2�;ÿ sin��2�ÿ �

:

This surface is embedded in R3. Let us suppose we impose on R3 the
standard Euclidean inner product, h ; iR3 . Since @1; @2 2 R3 we can mea-
sure their lengths and angles with this inner product. Thus we can de®ne

gij � h@i; @jiR3 ;

and we have the metric

sin2��2� 0

0 1

0@ 1A:

In general, if the embedding space N is not just an af®ne space, but also
has a ®xed inner product h ; iN , then this will induce the embedding metric.
In component form, relative to a parameterisation �, this will be

gij � h@i; @jiN :
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We shall return to this notion in section 4.2.
Having a metric tensor on the manifold not only de®nes the length of

tangent vectors; it also can be used to de®ne the length of curves. Suppose
that the curve

ÿ : �0; 1��� R� ! M

t} ÿ�t�
is a smooth map such that ÿ�0� � p1 and ÿ�1� � p2. For any t 2 �0; 1� the
corresponding tangent vector is dÿ

dt
�t�, with length�����������������������������������

dÿ

dt
�t�; dÿ

dt
�t�

� �
ÿ�t�

s
and the length of the curve from p1 to p2 is de®ned as�1

0

�����������������������������������
dÿ

dt
�t�; dÿ

dt
�t�

� �
ÿ�t�

s
dt:

Owing to the invariance properties of the metric, this will be an invariant
measure of arc-length.

Given two such points on a manifold we can ask the natural geometric
question: what is the shortest path connecting them? Although this is a
natural question, in general the complete answer is rather complex. There
are examples where there will not be a shortest path in a manifold, or
there may be many. There is a simpler answer, however, to the question:
is it a path of locally minimum length, in a variational sense? That is, its
length is a local minimum in the class of all paths joining p1 and p2. A
path that satis®es this condition is called a geodesic.

Given a metric on a manifold, its geodesics can be characterised by a
set of differential equations. We will see this representation in section 5.

4.1 Tensors

Tangent vectors, cotangent vectors and metrics are all examples of the
general geometric notion of a tensor. All of these examples show how the
careful de®nition of transformation rules allows de®nitions of invariant
quantities to be made. This invariance to the choice of parameterisation
is very important not only geometrically but also for statistical purposes.
In general we would not want the tools of inference to depend on arbi-
trary choices in the model speci®cation. Using a geometric approach will,
almost by de®nition, avoid these problems; for an example of this see
Critchley, Marriott and Salmon (1996). For a good reference to where
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tensors have had a direct application to statistical theory, see McCullagh
(1987).

A general tensor is made up of multivariate linear functions and func-
tionals of the tangent ®elds. They come in two types. The ®rst are
covariant tensors, which on each tangent space are high-dimensional
generalisations of matrices. For example, the metric is simply a bilinear
form that varies smoothly with the point of evaluation. The second type
are called contravariant tensors, which are simply products of tangent
vectors when evaluated at each point. We have the following formal
de®nitions:

A covariant tensor of degree r on TpM is an r-linear real valued func-
tion on the r-fold product TpM � . . .� TpM. A contravariant tensor ®eld
of degree r is an r-linear real valued function on the r-fold product
T�
pM � . . .� T�

pM. A tensor ®eld is a set of tensors on TpM that varies
smoothly with p 2 M.

4.1.1 Components of tensors
To work with these tensors in computations it is necessary to

write them out in component form with respect to the bases which span
TMp and TM�

p . Given a parameter system �, these bases will be

f@1; . . . ; @rg
and

fd�1; . . . ; d�rg:
Thus a k-covariant tensor can be written as

Ai1i2...ikd�
i1d�i2 . . . d�ik :

This is, by de®nition, a k-linear real valued function on the k-fold product
TpM � . . .� TpM, which acts on tangent vectors in the following way. If
we have a set of k tangent vectors v1; . . . ; vk, which we write with respect
to the basis as

vi � v j
i @j;

then the tensor acts on the set of vectors as

Ai1i2...ikd�
i1d�i2 . . . d�ik v1; . . . ; vk� � � Ai1i2...ikv

i1
1 . . . v

ik
k ;

recalling again the Einstein convention.
To see how the components of this tensor will transform under a

change of parameters, we apply the same methodology as we did for
the metric. Let � be the original parameterisation and let the components
of the tensor with respect to this parameterisation be Aa1a2...ak . Let � be
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the new parameterisation, with components ~Ai1i2 ...ik . This will give a trans-
formation rule

~Ai1i2...ik � @i1�
a1@i2�

a2 . . . @ik�
akAa1a2 ...ak : �9�

For a contravariant tensor the component form will be

Ai1i2...ik@i1 . . . @ik;

which acts on k cotangent vectors v1; . . . ; vk, which we write as

vi � vijd�
j :

The action is then

Ai1i2...ik@i1 ...@ik �v1; . . . ; vk� � Ai1i2...ikv1i1 . . . v
k
ik;

and the transformation rule will then be

~Ai1i2...ik � @a1�
i1@a2�

i2 . . . @ak�
ikAa1a2...ak : �10�

4.1.2 Raising and lowering indices
The general theory of dual spaces tells us that if V is a vector

space and V� its dual space, there will be a natural isomorphism between
V and V��, the dual of the dual space, de®ned by

V ! V��

v }�v;

where �v : V
� ! R is de®ned by �v�A� � A�v� for all A 2 V�. However,

in general there will not be a natural isomorphism between V and V�

unless there is an inner product h ; i on V . In that case the isomorphism is
de®ned by

V ! V�

v}hv; :i;
where we interpret hv; :i as an element of V� since

hv; :i : V ! R

w }hv;wi:
For a manifold with a metric, of course, we do have an inner product

on each of the vector spaces de®ned by the tangent space. This will, by
the above theory, allow us to de®ne a natural isomorphism between
tangent space TM and dual space T�M. More generally it will enable
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us to convert between covariant and contravariant tensors. Thus, if in
component terms we have a 1-covariant tensor, given by Ai, then it can be
converted to a contravariant tensor by using the metric. In detail we get
Aj � gijAi, where gij is the inverse to the metric gij :

4.2 Statistical metrics

Having seen the concept of a metric and a tensor in generality, we turn
now to statistical applications. In this section we shall see that these tools
are not new to statistical theory and that they are essential to under-
standing the nature of invariance. We look ®rst at three examples of
metrics in statistics and their application.

4.2.1 Expected Fisher information
We have already seen the expected Fisher information matrix in

section 3.1:

Iij � Ep�x;�� ÿ @2`

@�i@�j

ý !
� Covp�x;��

@`

@�i
;
@`

@�j

� �
:

These are the components of a covariant 2-tensor which can be easily
checked by seeing how it transforms under a change of parameters using
equation (9). This is a simple exercise in the chain rule. Further, it will,
under regularity, be positive de®nite and a smooth function of the para-
meter. Hence it has the properties of the components of a metric tensor.
In general we will abuse notation and refer to Iij as being a metric,
dropping reference to components and explicit parameter dependence.

For a full exponential family, in the natural parameterisation, the
expected Fisher information matrix will be given by

Iij��� �
@2ý

@�i@�j
���:

Applying equations (3) and (8) shows immediately that the components
in the expected �-parameters will be

@2ý

@�i� j
������

ý !ÿ1

:

Using the convexity of ý we see that the positive de®niteness is assured,
hence in the full exponential family case the expected Fisher information
matrix is a metric tensor.
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Although this has the formal properties of being a metric, we have to
ask in what way does this act on the tangent space? In particular, what
statistical interpretation can be given? This will become clear if we use the
interpretation of the tangent vectors as being random variables, elements
of the space spanned by

@`

@�1
; . . . ;

@`

@�r

� �
:

The expected Fisher information is the covariance for this space of ran-
dom variables. Due to the additive properties of the log-likelihood, the
central limit theorem tells us that asymptotically linear combinations of
score vectors will be normally distributed. Equation (4) tells us that the
mean will be zero, thus the metric completely determines the stochastic
behaviour of the space, at least to ®rst order. This interpretation,
although being completely standard, does need careful re®nement in
our geometric viewpoint. We will return to this issue below.

Having seen the expected Fisher information metric in the case of full
exponential families, it is natural to ask what form it takes in a curved
exponential family. Given an �r; t�-curved exponential family

p�x j �� � expf�i���si ÿ ý������gm�x�;
the tangent space to this family will be spanned by the set

@`

@�1
; . . . ;

@`

@�t

� �
;

where

@`

@�i
� @�j

@�i
sj ÿ

@ý

@�j

� �
� @�j

@�i
@`j :

The construction of an embedding metric, as seen in Example 6, can be
used here. The metric on the curved family is completely determined by
that on the embedding full exponential family. In component form this is
given by gij, where

gij �
@�k

@�i
@�l

@�j
Ikl : �11�

4.2.2 Applications
We now give two examples where the metric properties of the

expected Fisher information have found application in statistics. The ®rst
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concerns the question of an invariant de®nition of length, and the second
an invariant de®nition of angle.

The ®rst example concerns the score test. Suppose we have an �r; 1�-
curved exponential family

p�x j �� � expf�i���si�x� ÿ ý������g;
and we wish to test the null hypothesis � � �0 using the score test. The
components of the score vector will be

S����0�� � si ÿ
@ý

@�i
����0��

� �
d�i

d�
����0��:

The variance of the score is the expected Fisher information matrix,
which can be calculated using equation (11) as

V � d�k

d�

d�l

d�
Ikl :

Hence the score statistic is S 0Vÿ1S: This is an invariant quantity for any
reparameterisation of �. It has the geometric interpretation of the length
of a cotangent vector which is a tensor. For an example of how this
invariance is important in econometrics, see Critchley, Marriott and
Salmon (1996).

The second example is where an angle is measured invariantly.
Parameter orthogonality is a useful property when estimation is being
made in the presence of nuisance parameters. For an example of this, see
Barndorff-Nielsen and Cox (1994, p. 49).

4.2.3 Preferred point metrics
The expected Fisher information metric is not the only possible

statistically based metric. The concept of a preferred point geometry and
the related preferred point metric was introduced in Marriott (1989). This
is a very natural geometric and statistical construction for the embedding
given in section 2.4.2. The embedding space can be viewed as a space of
random variables. These random variables are simply functions of the
data. It seems natural then that the data-generation process (DGP) plays
some role in de®ning the geometry. Let us suppose that we have a para-
metric family p�x j �� and the data-generation process is given by a mem-
ber of this family, namely p�x j ��. The point �, although unknown, plays
a distinctive role in the family p�x j ��. It is called the preferred point. The
tangent space at a general point � is spanned by the random variables

@`

@�1
���; . . . ; @`

@�r
���

� �
:
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We can de®ne the covariance matrix of this space relative to the DGP, i.e.

I�ij ��� � Covp�x j ��
@`

@�i
���; @`

@�j
���

� �
: �12�

The important difference between this and the expected Fisher informa-
tion matrix is that the covariance here is evaluated with respect to some
®xed distribution for all tangent spaces. In the Fisher information case
the evaluating distribution varies with tangent space.

By the same argument as for the Fisher information, equation (12)
de®nes the components of a metric tensor, at least for all � in a neigh-
bourhood of �. The properties of such preferred point metrics are
explored in Critchley, Marriott and Salmon (1993, 1994, and in this
volume).

We note further that we must reconsider equation (4) in the preferred
point context. The mean value of the score vector will be zero only in the
tangent space of the preferred point. In general we de®ne

��
i ��� � Ep�x j ��

@`

@�i
���

� �
: �13�

This de®nes a covariant 1-tensor on the manifold.
For a full exponential family it is easy to check that the preferred point

metric, in the natural parameters, is given by

I�ij ��� �
@2ý

@�i@�j
���:

Note that this is independent of � and thus is constant across all tangent
spaces. We return to this property later.

4.2.4 Observed information metrics
As mentioned in section 3.1, Efron and Hinkley (1978) argue

that in general the observed Fisher information

I ij � ÿ @2`

@�i@�j
��̂�;

is a better measure of the covariance of the score vector at �̂, since it
re¯ects the conditional distribution of the score. This will also give a
statistically based metric. Here, though, the change of parameterisation
rule requires some care. By applying the chain rule to

@2`

@�i@�j
���

twice, we have the following formula:
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@2`

@�i@�j
������ � @�a

@�i
@�b

@�j
@2`

@�a@�b
��� � @2�a

@�i@�j
@`

@�a
���:

The second term on the right-hand side of this expression disappears
when evaluated at �̂, giving the correct covariant 2-tensor transformation
rule. At all other values of �, however, this will not transform as a tensor.

For a full exponential family the metric has components

I ij��̂� �
@2ý

@�i@�j
��̂�; �14�

the same as the expected Fisher metric. However, for a curved exponen-
tial family the metrics will differ. The observed information metric will be
a stochastic function, whereas the expected form will be deterministic.

The use of the observed information metric is best explained in the
context of conditional inference. Let us suppose that we can write the
minimum suf®cient statistic, �s1�x�; . . . ; sr�x��, for the curved exponential
family p�x j �� in the form ��̂�x�; a�x��, where a is any ancillary statistic for
� and �̂ is the maximum likelihood estimate. We have seen in section 3.1
that the tangent space is invariant under conditioning on an exact ancil-
lary statistic. Thus, as an asymptotic approximation the observed metric
will be the conditional covariance of the tangent vector and this will be the
observed information matrix.

4.2.5 Bibliographical notes
The fact that the expected Fisher information has the properties

of a metric tensor was ®rst observed by Rao (1945, 1987). The full theory
of so-called expected geometry was developed in a series of papers by
Amari (see Amari (1987, 1990)). Preferred point metrics were introduced
by Marriott (1989). The relationship between these two forms of geome-
try is explored in the companion chapter in this volume by Critchley,
Marriott and Salmon. The observed geometry was developed by
Barndorff-Nielsen (1987) and developed to a more general theory of
yokes, by Bl�sild (1987, 1991).

5 Af®ne connections

In section 2 it was stated that full exponential families can be thought of
as af®ne subspaces, and that curved exponential families are curved
subfamilies of these af®ne subspaces. In this section we shall see the
formalisation of these statements. We have already studied the construc-
tion of the manifold, tangent bundle and metric structure of a parametric
family. One ®nal structure is needed before a satisfactory geometric the-
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ory for statistics can be developed. This is the idea of curvature and the
absence of curvature, straightness and ¯atness. The tool used in differ-
ential geometry to describe these features is called an af®ne connection.

Consider for motivation a one-dimensional subfamily of a parametric
family p�x j ��. We have already seen two ways in which we might con-
sider this to be `straight'. Firstly, we have the af®ne structure of the
embedding space. Af®ne subspaces are often considered to be straight.
Secondly, we have the concept of a geodesic with respect to a metric
tensor. Loosely, a geodesic is a curve of minimum length, and this is
often intuitively thought of as being equivalent to straightness.
However, detailed investigation shows that for parametric families
these two notions are quite different. A curve that is `straight' according
to this ®rst criterion will not be `straight' according to the second. Amari
(1990) realised that the way out of this seeming paradox lay in the careful
de®nition of the correct connection structure for statistics.

In this section we shall ®rst examine the general geometric theory of
connections and then de®ne the relevant statistical examples.

5.1 Geometric af®ne connections

We take as our fundamental notion of straightness for a curve that its
tangent vectors are always parallel to some ®xed direction. However, to
formalise this we must have a way of measuring the rate of change of a
tangent ®eld. An af®ne connection gives us that tool. It can be thought of
as a way to calculate the rate of change of one tangent ®eld with respect
to another. We would want the result of the differentiation itself to be a
tangent ®eld.

Formally we de®ne a symmetric af®ne connection r to be a function

r : ��M� � ��M� ! ��M�
�X;Y�}rXY;

which satis®es the following properties: for all X;X1;X2;Y;Y1;Y2 2
��M� and f 2 C1�M�, we have
1. rX1�X2

Y � rX1
Y � rX2

Y ,
2. rX �Y1 � Y2� � rXY1 � rXY2,
3. rfXY � frXY ,
4. rX �fY� � frXY � X�f �Y ,
5. rXY ÿ rYX � XY ÿ YX .
Note that here we are explicitly using the derivative version of the tangent
vector given in section 3.2.2. Thus X� f � is the directional derivative of the
function f in the direction stipulated by the tangent vector X . Conditions
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1, 2 and 3 de®ne the linearity properties of the connection. Condition 4
states that the connection is a derivative and hence satis®es the product
rule. Condition 5 is the condition that makes the connection symmetric.
We shall consider only symmetric connections.

Just as in the case of a metric, we can write a connection in component
form. Let us suppose that the vector ®elds X and Y are given with respect
to the basis de®ned by the parameterisation �, i.e.

X � Xi@�i

Y � Yi@�i:

By de®nition rXY is also a tangent ®eld. If we de®ne

r@i@j � ÿk
ij@k;

then by the above Conditions 1±5 it must follow that

rXY � �Xi@iY
k � XiYjÿk

ij�@k: �15�
Thus the connection is completely determined by the three-way array ÿk

ij .
These are called the Christoffel symbols for the connection. Note that
Condition 5 implies that, for all i; j and k,

ÿk
ij � ÿk

ji;

hence the connection is called symmetric.
It is important to note that the Christoffel symbols do not transform as

tensors. If ÿc
ab are the Christoffel symbols relative to the �-parameters and

~ÿk
ij relative to the �-parameters, then the two sets of components are

connected according to the rule

ÿc
ab � @k�

c @2ab�
k � @a�

i@b�
j ~ÿk

ij

� �
: �16�

One consequence of this not being a tensor rule is that Christoffel sym-
bols can be identically zero with respect to one parameterisation, but
non-zero in another.

Having de®ned a connection, we can see how the symbols are able to
de®ne a straight line, or, as it is called, a geodesic. Let us de®ne a path in
terms of a parameterisation,

ÿ : �0; 1��� R� ! M

t} ��t�:
Note that this is a slight abuse of notation, identifying ��1�t�; . . . ; �r�t��
with the point in M with those parameters. The path will be a geodesic if
it satis®es the equation
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d2�k

dt2
� d�i

dt

d�j

dt
ÿk
ij � 0: �17�

If the tangent vector to this path is X�t�, this equation is the component
form of the equation

rXX � 0: �18�

5.1.1 Connections and projections
In order to understand the nature of a connection operator it is

helpful to return to the sphere example and see how the most natural
connection there operates on tangent ®elds.

Example 6. Sphere example (continued) For the sphere
embedded in R3 with parameterisation

f�cos��1� sin��2�; sin��1� sin��2�; cos��2�� j �1 2 �ÿ�; ��; �2 2 �0; ��g;
consider a path

��1; �2� � �t; �=2�:
In R3 it is the path

�cos�t�; sin�t�; 1�;
the equator of the sphere. Suppose we differentiate with respect to t,
giving a vector in R3

X�t� � �ÿ sin�t�; cos�t�; 0�:
This is the tangent vector to the curve. A connection allows us to differ-
entiate tangent ®elds. The result of this differentiation should itself be a
tangent vector, since the tangent space gives the set of all directions in the
manifold. However, differentiating X�t� directly gives

_X � �ÿ cos�t�;ÿ sin�t�; 0�:
This does not lie in the tangent space, which is spanned by

@1 � ÿ sin�t�; cos�t�; 0� � and @2 � 0; 0;ÿ1� �:
If we want the derivative of the tangent ®eld, to be a tangent ®eld we must
project _X�t� back into TMp. Using the standard inner product on R3,
h ; iR3 , we ®nd that _X�t� is in fact orthogonal to the tangent space. Hence
the rate of change of X , relative to the sphere, will be zero. In other
words, in the sphere the curve is straight. This is completely consistent
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with intuition. The equator is a great circle that is well known to provide
the shortest distance between two points on a sphere.

The intuition from the above example gives an interpretation of
equation (15). It can be viewed as a standard derivative operation com-
bined with a projection onto the tangent space. The exact form of the
projection will depend on the form of the Christoffel symbols. For details
of this construction, see Dodson and Poston (1991). We return to this
view of the connection in section 5.2.1.

5.1.2 Metric connections
Having seen how a connection de®nes a geodesic, we return to

the second de®nition of straightness. In section 4 a geodesic was de®ned
as a path of (locally) minimum length. It can be shown, that given a
metric, there is a unique af®ne connection r0, called the Levi±Civita
connection, for which the two de®nitions of geodesic agree. That is to
say, de®ning a metric automatically de®nes a particular connection, such
that if a path satis®es equation (18) it will be a path of minimum length.
We quote here two important ways of characterising the Levi±Civita
connection.

Theorem
(i) For a manifoldM with a metric h ; ip, the Levi±Civita connection r0 is

characterised as the only symmetric connection that satis®es

XhY;Zip � hr0
XY;Zip � hY;r0

XZip; �19�
for all tangent ®elds X;Y;Z.

(ii) If we introduce a parameter system �, the Christoffel symbols of the
Levi±Civita connection are given by

ÿ0k

ij � gkl
@gil
@�j

� @gjl
@�i

ÿ @gij
@�l

� �
; �20�

where gij are the components of the metric. The proof of this theorem
can be found in Dodson and Poston (1991).

5.1.3 Non-metric connections
Connections do not, however, have to be constructed in this way.

Any connection that is not the Levi±Civita connection of some under-
lying metric will be called a non-metric connection. Formally, all that is
required is the de®nition of a set of Christoffel symbols that transform
under a change of parameters according to equation (16). We shall see in
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the following section that for statistical purposes non-metric connections
play a more important role than metric ones.

5.2 Statistical connections

As we have previously noted, we have two distinct notions of straightness
or ¯atness for our statistical manifolds: ®rstly from the af®ne structure of
the embedding space, and secondly from the Levi±Civita connection of a
statistically based metric. Initially we consider the case with the expected
Fisher information as the metric tensor on the manifold which represents
the parametric family.

5.2.1 The �1-connection
We wish to de®ne a connection that is consistent with the af®ne

structure of the embedding space. Relative to this embedding we have the
tangent vector

@i �
@`

@�i
;

and hence

@i@j �
@2`

@�i@�j
��; x�;

a random variable. This, as we have seen in section 5.1.1, will not neces-
sarily lie in the tangent space. The embedding structure gives a possible
way of projecting into TM�. It is natural to use

h f ; gi � Covp�x j ��� f ; g�
for all elements f ; g of X . Using this we project @i@j onto the tangent
space, which is spanned by the set

@`

@�1
���; . . . ; @`

@�r
���

� �
:

This will then de®ne a connection whose Christoffel symbols are

ÿ�1k

ij��� � Ikl���Ep�x j ��
@2`

@�i@�j
��� @`

@�l
���

ý !
: �21�

This connection will be denoted by r�1.
Calculating the Christoffel symbols for a full exponential family in its

natural parameterisation and exploiting equation (4), gives that, for all
i; j; k 2 f1; . . . ; rg,
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ÿ�1k

ij��� � 0:

We will return to this result later.

5.2.2 The 0-connection
In section 5.1.2 it was shown that the metric tensor gives rise to

the Levi±Civita connection. The Christoffel symbols are de®ned by equa-
tion (20). If we take I , the expected Fisher information matrix, as our
metric, then the associated Levi±Civita connection will be given by

ÿ�1k

ij � Ikl���Ep�x j ��
@2`

@�i@�j
��� @`

@�l
���

ý !

� 1

2
Ikl���Ep�x j ��

@`

@�i
��� @`

@�j
��� @`

@�l
���

� �
:

For the full exponential family in the natural parameterisation, the
Christoffel symbols are given by

ÿ0k

ij �
1

2
Ikl

@3ý

@�i@�j@�l
:

This connection will be denoted by r0.

5.2.3 The ÿ1-connection
Again considering connections as the combination of a deriva-

tive operation followed by a projection to the tangent space gives us yet
another plausible connection.

As in section 5.2.1, we wish to project the random variable

@2`

@�i@�j
���

into the tangent space. From equation (4) it is clear that any member of
the tangent space must have zero expectation. Hence this motivates the
projection

@2`

@�i@�j
���} @2`

@�i@�j
��� ÿ Ep�x j ��

@2`

@�i@�j
���

ý !
:

This operation is enough to de®ne a connection, rÿ1, and its Christoffel
symbols will be

ÿÿ1k

ij � IklEp�x; j ��
@2`

@�i@�j
��� � @`

@�i
��� @`

@�j
���

( )
@`

@�l
���

ý !
:
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In the full exponential family, again in the natural coordinates, this has
the form

ÿÿ1k

ij��� � Ikl��� @3ý

@�i@�j@�l
���:

Notice the similarity to the r0 case.

5.2.4 The �-connection
Amari (1987) pointed out that these different connections are all

special cases of a large family of connections that have many statistical
uses. They are called the �-connections, and denoted by r�. They can be
thought of as a linear combination of any two of the above types. The
general de®nition is that the Christoffel symbols are given by

ÿ�k
ij � IklEp�x; j ��

@2`

@�i@�j
��� � 1ÿ �

2

@`

@�i
��� @`

@�j
���

( )
@`

@�l
���

ý !
:

In the full exponential family this simpli®es to be

ÿ�k
ij��� �

1ÿ �

2
Ikl

@3ý

@�i@�j@�l
���:

in the natural parameterisation.

5.2.5 Statistical manifolds
The development in the previous section concentrated on

expected geometry. As we have seen, this is not the only sensible or
important geometrical structure for a parametric family of distributions.
However, the structure that was developed does seem to have a general
applicability across most of the possible geometric structures. This was
recognised by Lauritzen (1987). He de®ned a general structure that
encompassed most forms of statistical geometry. A statistical manifold is
de®ned as �M; g;T�, where M is a manifold of distribution functions, g is
a metric tensor and T is a covariant 3-tensor that is symmetric in its
components and called the skewness tensor. For this structure there
will always be a set of af®ne connections that parallels the structure in
the previous section.

Theorem For any statistical manifold �M; g;T� there is a one-
dimensional family of af®ne connections de®ned by

ÿ�
ijk � ÿ0

ijk ÿ
�

2
Tijk;

where r0 is the Levi±Civita connection for the metric g.
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In the case of expected geometry we have that

Tijk � Ep�x j ��
@`

@�i
@`

@�j
@`

@�k

� �
:

For the observed geometry we assume that the data can be written in
the conditional resolution form x � ��̂; a�, where a is ancillary. The like-
lihood can then be written as

`�� ; x� � `�� ; �̂; a�:
We use the following notation

`i �
@

@�i
`�� ; �̂; a�; and `;i �

@

@�̂i
`�� ; �̂; a�: �22�

In this notation it can be shown that gij � ÿ`ij � `i; j is the observed
Fisher information metric, and Tijk � `ijk is the skewness tensor.

6 Three key results

In this section we look at the key mathematical theorems of statistical
manifolds; the applications to statistics are shown in sections 7 and 8.
Throughout we shall assume that we have the structure of a statistical
manifold �M; g;T� as de®ned in section 5.2.5.

6.1 Duality

The concept of duality for a statistical manifold is tied up with that of
¯atness. A connection de®nes the geometry of a manifold; in particular, it
de®nes the curvature. There are many ways in which we can measure the
curvature of a manifold. One issue of great interest is when there is no
curvature, which is measured using the Riemann curvature tensor. This is
a covariant 2-tensor de®ned in component terms using a connection as

Rijkl � glm�@iÿm
jk ÿ @jÿ

m
ik� � �ÿimlÿ

m
jk ÿ ÿjmlÿ

m
ik�: �23�

If this tensor is identically zero for all � and all i; j; k; l 2 f1; . . . ; rg, then
the manifold is said to be ¯at. It is an important theorem of differential
geometry that if a manifold is ¯at then there exists a parameterisation �
that has the property that the components of the Christoffel symbol in
this parameterisation will be identically zero (see section 7). If the con-
nection that de®nes the Riemann curvature is the Levi±Civita connection
of the metric g, then this theorem extends. In this case there exists a
parameterisation that has the property that the components gij��� will
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be independent of �, so that the metric will be a constant. In either of
these cases the parameterisation is called an af®ne parameterisation.

The duality theorem for statistical manifolds then states

Theorem If �M; g;T� is a statistical manifold such that M is ¯at
with respect to the connection r�, then it will be ¯at with respect to rÿ�.

We say that the ÿ�-connection is dual to the �-connection. The 0-con-
nection, which is the Levi±Civita connection derived from the metric, will
be self dual.

One important application of this theorem is to the full exponential
family. In section 5.2.1 it is shown that in the natural parameterisation
the Christoffel symbols of the r�1-connection are identically zero. Thus
for this connection a full exponential family is ¯at and the natural para-
meters are af®ne. The theorem states that a full exponential family will
also be ¯at with respect to the ÿ1-connection. There is also therefore a set
of parameters that is af®ne for this connection. These parameters are the
expectation parameters de®ned in section 2.1.2.

The relationship between a dual pair of connections is illuminated by
the following result, which should be compared with the de®ning
equation for the Levi±Civita connection, equation (19).

Theorem If the metric is denoted by h ; i, then for a statistical
manifold �M; g;T�

XhY;Zi � hr�
XY;Zi � hY;rÿ�

X Zi: �24�

6.2 Projection theorem

In the following two sections we concentrate on the statistical manifold
structure de®ned by Amari (1990).

The geodesic distance in a manifold is one way to measure distances
between points of the manifold. However, for probability distributions
there are other more statistically natural ways of de®ning a form of
distance. Consider the following de®nition:

An �-divergence between p�x� and q�x�, two density functions, is
de®ned as

D��p; q� �
Eq log �q� ÿ log �p�� � � � 1

Ep log �p� ÿ log �q�� � � � ÿ1:

(
�25�

48 Paul Marriott and Mark Salmon



Note that these divergences are the Kullback±Leibler information from q
to p when � � 1 and from q to p when � � ÿ1. These are not formally
distance functions as they do not obey the standard axioms for a dis-
tance, such as symmetry or the triangle inequality. For a clari®cation of
their geometric role, see Critchley, Marriott and Salmon (1994).

Amari's projection theorem connects these divergence functions with
the geodesic structure. We give a simpli®ed version of his theorem here,
for exponential families. For more details see Amari (1990, p. 89).

Theorem Let p�x j �� be a full exponential family, and p�x j �� a
curved subfamily. Let �1 represent a distribution in the embedding family.
Let �� be an extremal point for the �-divergence, that is, in �, �� is an
extremal point of the function

D��p�x j �1�; p�x j ���:
If �� is an � extremal point, then the � geodesic connecting p�x j �1� and
p�x j ��� cuts the family p�x j �� orthogonally.

One natural application here is in the case of a misspeci®ed model.
Suppose that the model is incorrectly speci®ed as being the curved expo-
nential family p�x j ��, while the data-generation process lies in the
embedding family, and is denoted by p�x j �0�. It is well known that the
MLE on the misspeci®ed model will converge to the value that is closest
to p�x j �0� in terms of the Kullback±Leibler divergence. Hence it will be a
ÿ1-extremal point and the DGP and the pseudo-true estimate are
connected by a ÿ1-projection.

6.3 Pythagoras theorem

The ®nal result presented in this section brings to the geometry of statis-
tical families the classical geometric theorem of Pythagoras. We state the
theorem for completeness.

Theorem Let �1; �2 and �3 be three points in the parameter space
of a full exponential family. Suppose that the �-geodesic joining �1 and �2 is
orthogonal to the ÿ�-geodesic joining �2 and �3. For this triangle we have
the Pythagorean relationship

D���1; �2� �D���2; �3� � D���1; �3�: �26�
A more complete version of this theorem can be found in Amari (1990,
p. 86).
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7 Inference in curved families

In the ®nal two sections of this chapter we look at how the machinery
previously set up enables us to understand both the problem of inference
in curved families and how to assess the information content of a general
statistic. This issue is taken up in several chapters in this volume, in
particular by Kees Jan van Garderen and Tom Rothenberg.

7.1 Curvature due to parameterisations

We have seen how the connection structure of a manifold enables us to
de®ne curvature, both of a curve and of a set of parameters. We look ®rst
at the issue of parameter-dependent curvature.

Example 7. Non-linear regression models Bates and Watts
(1988, p. 241) distinguish between two types of parameterisation that
are important in the analysis of non-linear regression models. These
curvatures are called the parameter effects and intrinsic curvatures. The
®rst of these will be dependent on the exact form of the parameterisation
and can be removed in principle by reparameterisation. The second will
be independent of the parameterisation chosen. This distinction carries
over from the non-linear regression case to a general statistical manifold.

One example where parameter effects are important is the bias of the
maximum likelihood estimate. In the case of a full exponential family, the
®rst-order bias of the maximum likelihood estimate is given by

bi��� � ÿ1

2n
gijgklÿÿ1

jkl : �27�

Consider this formula in the context of linear models.

Example 1. The linear model (continued) There is a natural geo-
metric interpretation for ordinary least squares (OLS) estimation, which
connects Euclidean geometry and regression (see, for example, Bates and
Watts (1988)). For presentational simplicity we consider the case where
the variance parameter is ®xed and known. We have the model

Y � Xb� r:

There is an n-dimensional space of possible response vectors Y and a
�k� 1�-dimensional submanifold of this af®ne space is de®ned by the
expectation surface

b ! Xb � Rn:
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This is a �k� 1�-dimensional af®ne subspace. When � is known, the
geometry of the model is simply that of Euclidean geometry.

In this model the natural parameters are given by þ and the expectation
parameters by

X 0Xb
�2

:

Thus there is a ®xed linear relationship between the �1-af®ne and ÿ1-
af®ne parameters. Equation (16) implies that the Christoffel symbols for
the r�1 and rÿ1 connections will be simultaneously zero in both the
natural and expectation parameterisations. Equation (27) then implies
that estimating b using maximum likelihood estimation will have zero
bias in both those parameterisations. However, in any non-linear repara-
meterisation of the model the Christoffel symbols ÿÿ1 need not be zero. A
simple example of this is given by a simultaneous equation model, when
we parameterise by the parameters in the structural equations.

In general, choosing a parameterisation can improve statistical proper-
ties. This was recognised by Hougaard (1982), and similar results are
found in Amari (1990). In section 6.1 we have seen that the Riemann
curvature tensor can characterise the existence of a set of af®ne para-
meters. The following theorem formalises this idea.

Theorem For a manifold M with metric g and connection r we
have the following:
(a) Assume that the Riemann curvature tensor vanishes identically for all

points in a suf®ciently small open neighbourhood U. Then there exists
an af®ne parameterisation � covering U such that the Christoffel
symbols for r vanish identically. Further all r-geodesics in U are
characterised by being af®ne functions of the �-parameters.

(b) In the general case, the Riemann curvature tensor will be non-zero. For
any point p0 2 M there will be a parameterisation � around p0 such
that the Christoffel symbols for r vanish at p. Further, the set of
geodesics through p0, in U, are all af®ne functions of the �-parameters.

The parameterisation in case (b) is often called the geodesic normal
parameterisation. For details of this and the related exponential map,
see Dodson and Poston (1991). When a manifold has an af®ne para-
meterisation, the geometry becomes that of an af®ne space. All geodesics
are the one-dimensional af®ne subspaces. This is the simplest possible
geometry. When the Riemann curvature is non-zero, the fundamental
geometry of the manifold creates an obstruction to the existence of
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such an af®ne parameterisation. In this case the geodesic normal para-
meterisation is, in a sense, closest to being truly af®ne.

In the case where the connections come from the expected geometric
statistical manifold, then af®ne parameterisations, when they exist, and
geodesic normal parameters, when they do not exist, have useful statis-
tical properties. The following list summarises the properties of some of
the more important of these. Each of these is global property if the
parameterisation is af®ne, otherwise they hold locally in the neighbour-
hood of a ®xed point.

* �1-connection: The af®ne parameters for these are the natural para-
meters for the full exponential family.

* 1=3-connection: This is the quadratic log-likelihood parameterisation.
In this parameterisation, the expectation of the third derivative of the
log-likelihood

Ep�x j �� @i@j@k`
ÿ �

vanishes. Thus the likelihood closely approximates that from a normal
family. This is the expected form of the directed likelihood parameter-
isation, which has been shown to be a very effective tool in classical
and Bayesian analysis (see Sweeting (1996) and references therein).

* 0-connection: This is the covariance stabilising parameterisation in
which the Fisher information will be (locally) constant.

* ÿ1=3-connection: This is called the zero asymptotic skewness parame-
terisation, because any ®rst-order ef®cient estimator will have zero
asymptotic skewness in this parameterisation.

* ÿ1-connection: We have already seen that in this parameterisation we
have asymptotically minimum bias.

7.2 Intrinsic curvature

The distinction raised by Bates and Watts between parameter effects and
intrinsic curvature is an important one in geometry. In this section we
look at how intrinsic curvature is particularly important when undertak-
ing inference on curved exponential families.

Suppose that N is the manifold representing the �r; t�-curved exponen-
tial family p�x j ��. N is embedded in the r-dimensional full exponential
family, p�x j ��, which is denoted by M. In terms of manifolds, N is an
embedded submanifold of M (see section 2.4.1). In the natural para-
meters, M has many of the properties of an af®ne space, and intuitively
it is useful to think of N as a curved subspace of an af®ne space. It is this
curvature that will de®ne the intrinsic curvature of the model.
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We ®rst de®ne a set of parameters that is suited to describe the embed-
ding of N in M.

Theorem For each �0 2 N there exists an open neighbourhood U
of M, such that p�x j �0� 2 U and U can be parameterised by

�� X�� Rt � Rrÿt� ! U � M

��; ��} p�x j ���; ���
where

U \N � fp�x j ���; 0�� j � 2 �g:

The parameters for the full family are split such that the ®rst t compo-
nents refer to the submanifold, while the remaining �rÿ t� components ®ll
out the rest of the space, in such a way that they are zero on the sub-
manifold. For notational convenience we will denote the ®rst t compo-
nents of such a system by indices i; j; k; . . ., while the remaining �rÿ t�
indices will be denoted by a; b; c; . . ..
Hence, if we consider the tangent space to M at a point in N, denoted

by p0, in this space there will be directions that also lie in tangent space to
N. In the above parameterisation these are spanned by the set
f@i � @

@�i
j i � 1; . . . ; tg: There will remain those directions that are not

tangent to N. The set of tangent vectors f@a � @
@�a j a � 1; . . . ; �rÿ t�g all

have this property. We think of TNp0 as being a subspace of TMp0 .
In fact a parameterisation ��; �� can be re®ned to have the property

that

h@i; @aiM � @

@�i
;
@

@�a

� �
M

� 0

for all i � 1; . . . ; t and for all a 2 1; . . . ; �rÿ t�. Hence the splitting of the
tangent space TMp0 can be made into TNp0 and its orthogonal compo-
nent. It will be convenient to use such a parameterisation throughout this
section.

Suppose now that there is a metric and a connection on M. These will
induce a metric and a connection on the submanifold N in the following
way. Let gij be the components of the metric on M relative to the ��; ��-
parameterisation. By de®nition, the parameterisation has the property
that

gia � 0

for all i � 1; . . . ; t and for all a 2 1; . . . ; �rÿ t�. Relative to the �-para-
meterisation, de®ne the metric on N, ~g to have components
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~gij � h@i; @jiM : �28�
Let X;Y be tangent ®elds on N. They can then also be thought of,
slightly loosely, as tangent ®elds on M. Hence we can de®ne the rate of
change of Y relative to X using the connection on M. This gives rXY a
tangent ®eld in M. However, a connection on N gives this rate of change
as a tangent ®eld on the submanifold. Hence we need to project rXY
from TM to TN. We do this using the metric on M and an orthogonal
projection. The connection ~r on N is de®ned by

~rXY � �N rXY� � �29�
where �N is the orthogonal projection of TM to TN.

The embedding curvature of N in M is de®ned as the difference
between the result of using the connection relative to M and relative to
N. Formally it is a 2-tensor H de®ned by

H�X;Y� � rXY ÿ ~rXY : �30�
H�X;Y� will lie in the orthogonal complement to TN. It can be written
with respect to the parameterisation de®ned above as

H�@i; @j� � ~ÿa
ij@a � Ha

ij@a: �31�

7.2.1 Auxiliary spaces
Suppose that we now wish to conduct inference in a curved

exponential family N. An estimator is a function that maps the data x
to a point in N. It is convenient to use the fact that in the full exponential
family M, which embeds N, there is a bijection between x and �̂�x�, the
maximum likelihood estimate in M. We can therefore think of an esti-
mator, geometrically, as a function

T : M ! N

�̂�x�}T��̂�x��:
We then study the properties of the estimator in terms of the geometry of
this function. T is said to be regular if it is a smooth map with derivative
of full rank and the restriction of T to the subspace, T jN , is the identity.
De®ne the auxiliary space of the estimator to be the points in M given

by the set of parameters

A��� � f� j T��� � �g: �32�
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We shall assume that for each point �0 2 N there exists an open subset U
of M such that A��0� \M is an �rÿ t�-dimensional submanifold of M.
This assumption will be satis®ed by all of the commonest estimators used
in econometrics and in practice it will not be restrictive. We shall use the
geometry of these submanifolds together with that of N to explore the
behaviour of estimators.

A simple way of measuring the ef®ciency of an estimator is in terms of
mean square error. We de®ne an estimator to be k'th-order ef®cient if the
asymptotic expansion of its mean square error is minimal among all
�kÿ 1�'th ef®cient estimators. The following theorems, due to Amari,
characterise this asymptotic ef®ciency.

Theorem A consistent estimator is ®rst-order ef®cient if the
associated auxiliary space A��� cuts N orthogonally with respect to the
expected Fisher information metric.

Theorem The ®rst-order bias of a consistent estimator is de®ned
to be

ba��� � ÿ1

2n
gij gklÿÿ1

ijk � gabhÿ1
abj

n o
; �33�

where h is the embedding curvature of the submanifold A��� with respect to
the ÿ1-connection and is de®ned as

hÿ1
abj � hHÿ1�@a; @b�; @ji:

Thus for a curved exponential family the bias term comes in two parts.
The ®rst, as we have seen before, is parameterisation dependent; the
second, however, depends only on the intrinsic geometry of the auxiliary
space. This depends on the exact form of the estimator but not on the
parameterisation use. Thus we have a decomposition into parameter
effects and intrinsic curvature.

Using this geometric characterisation, the third-order most ef®cient
estimator for a curved exponential family can be found.

Theorem The biased correct maximum likelihood estimator is
third-order ef®cient for a curved exponential family.

All the results shown in this section are proved in Amari (1990); for a
good treatment, see Kass and Vos (1997, p. 227).
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8 Curvature and information loss

Once we move from the full exponential family case we lose the property
that the maximum likelihood estimate (MLE) will be a suf®cient statistic.
Fisher (1925) was the ®rst to suggest using the observed information as
the best means of recovering information lost by reducing the data to just
the maximum likelihood estimate. There is an elegant geometric exten-
sion to higher-order recovery which provides a complete decomposition
of the information in a minimal suf®cient statistic. The geometry provides
a natural framework for expressing the higher-order calculations but also
an explanation of why these terms successfully recover additional infor-
mation. Having analysed the decomposition of the information in a sta-
tistic in geometric terms, there remains the question of how to use this
information for inference.

8.1 Information loss

Since the MLE is a suf®cient statistic for a full exponential family, stan-
dard inferential procedures will automatically make use of all available
information in the data. We look at geometrical properties that make a
family exponential, and hence ensure that the full information content in
the data is exploited.

8.1.1 One-dimensional case
First consider a one-dimensional family as in Efron (1975). If we

have an r-dimensional full exponential family de®ned by

p�x j �� � expf�isi�x� ÿ ý���gm�x�;
then any one-dimensional af®ne map

�}�i��� � �i� � þi

will de®ne a one-dimensional full exponential family. In general we have
the following result.

Theorem A one-dimensional curved exponential family

p�x j �� � expf����si�x� ÿ ý������gm�x� �34�
is a full exponential family if and only if there exist constants ��1; . . . ; �r�
and �þ1; . . . ; þr� such that

���� � �if ��� � þi

for some smooth monotone function f .
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Hence we see that being a full exponential family depends on the family
being de®ned as an af®ne subspace of the natural parameters of the
embedding family. In section 5.2.1 we saw that the r�1 connection is
the appropriate tool for measuring curvature relative to the natural para-
meters. Efron (1975) approached this question more directly. He de®ned
the statistical curvature of equation (34) to be

ÿ � ÿ��� � h� 00���N; � 00���Ni1=2
h� 0���; � 0���i �35�

where � 0��� � d�=d� and � 00���N denotes the component of the second
derivative which is normal to the tangent direction � 0���. The inner pro-
duct is the expected Fisher information metric. The motivation for this
comes directly from the de®nition of the curvature of a one-dimensional
path in Rn. The important result concerning statistical curvature is given
by the following theorem.

Theorem The curved exponential family given by equation (34)
is a one-parameter full exponential family if and only if its statistical cur-
vature is zero.

One important property of the full exponential family is that the
observed information equals the expected Fisher information. They
both equal ��@2ý�=�@�i@�j����̂� in the natural parameterisation. The ran-
domness of the observed information is purely a function of the MLE. In
fact Murray and Rice (1993) characterise a full exponential family by the
property that the second derivative of the log-likelihood lies in the span
of the ®rst derivatives. In a curved family, the expected and observed
information matrices will differ. The statistical curvature, de®ned above,
gives a useful measure of the amount of variability in the observed infor-
mation, given the MLE. This comes from the following result (see Efron
and Hinkley (1978)).

Theorem In a regular curved exponential family, if I��̂� is the
observed Fisher information and I��̂� the expected information for one
observation, then

�I��̂� ÿ nI��̂�����
n

p
I��̂�ÿ��̂�

! N�0; 1� �36�

where the convergence is in law as n ! 1.
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8.1.2 The general case
Suppose now that we are working in an �r; t�-curved exponential

family. Again we wish to understand the amount of information lost if we
use only the statistic �̂. To do this we need to de®ne the information
contained in a general statistic T�x�. Using an asymptotic measure of
information, the information in a statistic T is de®ned as being the
expected Fisher information for the likelihood for � based on the statistic
T�x�. That is

IT ��� � Ep�t j �� ÿ @2`

@�i@�j
�t ; ��

ý !
: �37�

This measures, by the Cramer±Rao theorem, the variance of the best
possible estimator based only on the statistic T�x�. Of course, with this
notation we would have IX ��� � I���, the standard Fisher information.
We can generalise the previous results on information loss to multi-
dimensional families.

Theorem In a curved exponential family p�x j �� then

nIij ÿ I �̂ij � gklhH�1�@i; @k�;H�1�@j; @l�i; �38�

where H�1 is the embedding curvature of the family relative to the �1-
connection, and the inner product is relative to the expected Fisher metric.

For a proof of this result, see Kass and Vos (1997, p. 222). Thus the �1-
embedding curvature plays the role of Efron's statistical curvature in
higher dimensions.

8.2 Information recovery

Having seen that the geometric structure of a family allows the measure-
ment of loss in information, we now ask in what way this information
can be recovered and used in inference. Since the MLE, �̂, will not in
general be suf®cient, we need to add a further statistic that will recover
(approximate) suf®ciency. It is convenient to construct the conditional
resolution. This is a decomposition of the suf®cient statistic into ��̂; a�,
where a is (approximately) ancillary, combined with an (approximate)
expression for p��̂ j �; a�. For more details of this construction, see
Barndorff-Nielsen and Cox (1994).
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8.2.1 Choosing ancillaries
One dif®culty with using a conditional resolution structure is the

problem of the non-uniqueness of the ancillary statistic, raised by Basu
(1964). Solutions to this problem were considered by Barnard and Sprott
(1971) and Cox (1971). We look at a geometrical construction de®ned in
Kass and Vos (1997, p. 222), which gives a way of ensuring that the
ancillary constructed captures information to progressively higher
asymptotic order.

First we use geometry to construct approximately suf®cient statistics
for a curved exponential family. These are then transformed into
approximately ancillary statistics. Consider the �r; t�-curved exponential
family N given by expf�i���si�x� ÿ ý������gm�x�. Clearly the statistic
�s1�x�; . . . ; sr�x�� is suf®cient, but this can be very high dimensional. In
fact, as Examples 3, 4 and 5 show, in econometric examples this suf®cient
statistic can be of order n. It is therefore natural to see if we can reduce
the dimension of the suf®cient statistic. Using the de®nition of tangent
vector and the af®ne embedding given in section 3.2.1, the best local
af®ne approximation to N at �0 will be given by the t-dimensional full
exponential family, M�1�,

p�x j ��1; . . . ; �t�� � expf��i��0� � �j@j�
i��0��si�x�

ÿ ý����0� � �j@j���0��gm�x�

� expf�j�@j�i��0�si�x�� ÿ ý���gm1�x�

� expf�j ~sj ÿ ý���gm1�x�;

say, for a measure m1�x�. The natural parameters are given by
��1; . . . ; �t� 0. It follows from the theorems in section 8.1.1 that this will
be a full exponential family. Its suf®cient statistic will be equivalent to �̂,
the MLE for the curved family. This is de®ned by the equations

@�i

@�j
��̂i� si ÿ

@ý

@�i

� �
� ~si ÿ

@�i

@�j
��̂i� @ý

@�i
��̂�

� 0:

Owing to the regularity conditions of section 2.3, this equation will
be invertible. Hence the information in �̂ is precisely equivalent to
�~s1; . . . ; ~st� 0.

In general we can de®ne a sequence of full exponential families
M�1�;M�2�; . . . ;M�k� where M�k� is the family
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p�x j �i; �ij; . . . ; �i1...ik� � expf��i��0� � �j@j�
i��0� � �j1j2@2j1j2�

i��0�
� � � � � �j1���jk@kj1���jk�

i��0��si�x�
ÿ ý������gm�x�:

The suf®cient statistic for this full exponential family is given by

��̂; @i1i2`��̂�; . . . ; @ki1...ik`��̂��:
We therefore have constructed a sequence of full exponential families,
which give progressively better approximations to the curved family N.
These in turn give a sequence of statistics, which become progressively
better approximations to the suf®cient statistic for N.

It is necessary to check that this construction is geometrically well
de®ned, so that the suf®cient statistics generated will be independent of
any choice of parameterisation. This follows since the linear spaces given
by

T�k� � spanf@i�; @2i1i2�; . . . ; @ki1���ik�g
will be parameterisation independent (see Murray and Rice (1993)).

The sequence of suf®cient statistics ��̂; @i1i2`��̂�; . . . ; @ki1...ik`��̂�� can then
be transformed to be approximately in the conditional resolution form
��̂; a�. De®ne

hi1���ik�1
� P?

�k�@
k�1
i1���ik�1

;

where P?
�k� is the orthogonal projection into T�k�. This orthogonalisation

ensures that the terms are uncorrelated and asymptotically independent;
further, the expected Fisher information based on hi1���;ik�1

will be of
asymptotic order nÿk�1. To achieve approximate ancillarity these
statistics are adjusted to give zero mean and unit variance to the correct
asymptotic order. For further details, see Kass and Vos (1997). Note that
the terms hi1���ik are simply generalisations of the embedding curvature in
section 7.2.

8.2.2 The p�-formula
Having used geometry in the construction of an approximately

suf®cient statistic of the form ��̂; a�; the second part of a conditional

resolution is to approximate the distribution p��̂ j�; a�. Barndorff-
Nielsen, in a series of papers, proposes a very good higher-order approx-
imation, based on the saddlepoint method given by the so-called p�-for-
mula. For a derivation of results in this section, see Barndorff-Nielsen
and Cox (1994, p. 238). The p�-approximation is given by
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p���̂ j �; a� � cj |̂ j1=2e �̀; �39�
where

|̂ � @2`

@�i@�j
��̂�

and

�̀�� j �̂; a� � `�� j �̂; a� ÿ `��̂ j �̂; a�:
The constant c is de®ned to make the above density integrate to one.

When this is not known, the approximation

py��̂ j�; a� � �2��ÿt=2j |̂j1=2e �̀ �40�
can be used. This version is accurate to order O�nÿ1�, whereas the p�-
formula is accurate to order O�nÿ3=2�: For a further discussion of this
issue of the distribution of the maximum likelihood estimator, see
chapter 3 by Grant Hillier and Ray O'Brien in this volume.
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2 Nested models, orthogonal
projection and encompassing

Maozu Lu and Grayham E. Mizon

1 Introduction

An important objective in econometric modelling is to obtain congruent

and encompassing models, which are thus consistent with data evidence

and economic theory, and are capable of explaining the behaviour of

rival models for the same economic phenomena. Hendry (1995) and

Mizon (1995b) inter alia present this view of modelling, as well as record-

ing that a general-to-simple modelling strategy is an ef®cient way to iso-

late congruent models. Indeed such a modelling strategy requires the

models under consideration to be thoroughly tested and progressively

evaluated within a sequence of nested hypotheses, so that each model

not rejected in the process is a valid simpli®cation of (i.e. parsimoniously

encompasses) all models more general than it in the sequence. Models

arrived at as the limit of the reduction process therefore contain all

relevant information available in the initial models, thus rendering the

latter inferentially redundant. Testing the ability of models to parsimo-

niously encompass more general ones, thus ensuring that no information

is lost in the reduction process, creates a partially ordered sequence of

models. Further, Lu and Mizon (1997) point out that the intermediate

models considered while testing the parsimonious encompassing ability

of models in a nested sequence are mutually encompassing models and

hence observationally equivalent to each other. Note, though, that there

is an important distinction between observational equivalence in the

population and in a sample, which may contain weak evidence.

In the theory of reduction, attention is focused on parsimonious

encompassing, and not on the ability of nesting models to encompass
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simpli®cations of themselves. Though the latter might be thought to be
automatic, GourieÂ roux and Monfort (1995) give a counter-example, thus
showing that it is not always the case that a general model encompasses
models simpler than itself. Clearly, if this happens in a process of reduc-
tion, the sequence of parsimonious encompassing models will not form a
partial order, and some vital information might be lost if the intermediate
models were discarded. It is therefore important to investigate the con-
ditions under which a general model encompasses simpler models inde-
pendently of its relationship to the data-generation process (DGP). This is
the topic of the present chapter. Bontemps and Mizon (1997), on the
other hand, establish that congruence of a general model is a suf®cient
condition for it to encompass models that it nests.

The chapter is organised as follows. In section 2 nesting is de®ned, it
being emphasised that nesting is more than one model being an algebraic
simpli®cation of another model. A distinction is drawn between exact and
inequality constraints on parameters, the former being dimension redu-
cing and the latter not. The importance of dimension-reducing nesting
constraints is illustrated by showing that the nesting model in cases where
there is an orthogonal parameterisation will encompass models nested
within it independently of the nature of the process generating the data.
This property is de®ned as automatic encompassing. Section 2.3 records
that automatic encompassing is not possible amongst non-nested models.
Section 3 indicates how the concept of parsimonious encompassing can
be used to establish encompassing relationships between non-nested
models within the framework of a completing model that nests each of
the non-nested models. In section 4 encompassing hypotheses are con-
sidered as mappings in Hilbert space, and it is shown that a suf®cient
condition for a model to encompass models nested within it is that these
mappings are orthogonal projections. Section 5 presents concluding
remarks.

2 Nested and restricted models

A parametric probability model for the n random variables �x1;t;
x2;t; . . . ; xn;t� � x 0

t de®ned on the probability space S;=;P�:�� � consists
of a family of sequential densities indexed by a parameter vector h:

M1 � f f xt j Xtÿ1; h� �; h 2 ? � R
pg �1�

when Xtÿ1 � �X0; x1; . . . ; xtÿ1� � �X0;X
1
tÿ1�, with X0 being initial con-

ditions. Denoting this probability model byM1 and considering the alter-
native probability model M2:
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M2 � fg xt j Xtÿ1;w� �; w 2 ) � R
qg �2�

enables nesting to be de®ned.

De®nition 1 M2 is nested within M1 if and only if M2 � M1:

Hence nesting is a property of the joint density of all the variables
involved in M1 and M2; and heuristically requires M2 to be a restricted
version of M1. However, there are important differences between nested
and restricted models. In particular, note that if? were restricted (e.g. the
model was restricted to have only seasonal dynamics) but ) were not so
restricted, thenM2 cannot be nested inM1 sinceM2 could not be a subset
of M1: Further, the nature of restrictions applied to models can affect the
nesting and encompassing relationships between models. This is illu-
strated in section 2.1 for the important cases of equality and inequality
restrictions.

There exist alternative de®nitions of nested models in the literature,
one of which, based on an information criterion, was proposed by
Pesaran (1987):

De®nition 2 For the models M1 and M2 de®ned in (1) and (2)
M2 is nested within M1 if and only if for 8w� 2 ), 9h� 2 ?, such that�

log
g�w��
f h�� �

� �
g�w�� dy � 0 �3�

where f h�� � � f xt j Xtÿ1; h
�� � and g�w�� � g xt j Xtÿ1;w

�� �:

Despite their apparent differences, these de®nitions are essentially the
same. In particular, it is shown in A.1 of the Appendix that, for any given
w� 2 ); h� is the pseudo true value h�w�� that solves the minimisation
problem:

min
h2?

�
log

g�w��
f h� �

� �
g�w�� dy �

�
log

g�w��
f h�w��� �

� �
g�w�� dy:

It is further shown in A.2 that, if M2 is nested in M1 in the sense of (3),
the parameter space ) is a subset of ? with probability one. It then
follows that, although the concept of nesting de®ned by (3) employs
a measure of distance between densities, it is closely concerned with
parameter restrictions leading to ) � ?:
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2.1 Nested models with exact restrictions

A special case of De®nition 1, which is commonly used in the discussion
of nesting, arises when f xtj Xtÿ1; h� � and g xtj Xtÿ1;w� � belong to the same
family of densities but ) � ? with q < p; so that M2 � M1 solely as a
result of restrictions on ? de®ning the restricted parameter space ): In
this latter case, when ? is an unrestricted parameter space and the con-
straints on ? that lead to ) are exact or equalities, a reparameterisation
ofM1 is possible that makes explicit the relationship betweenM1 andM2:

Proposition 1 In the context of (1) and (2) let / h� � � 0 be the
r � pÿ q > 0 exact, continuous, and differentiable constraint equations on
h which de®ne w; with rank @/=@h 0ÿ �

Nh0

� r when Nh0
is a neighbourhood of

the pseudo-true value h0 of the maximum likelihood (ML) estimator ĥT of
h. Then there exists an isomorphic reparameterisation k of h : k � k h� � �
k1�h� 0; k2�h� 0
ÿ � 0� k1�h� 0;/ h� � 0ÿ � 0 8 h 2 Nh0

such that rank @�=@h 0ÿ �
Nh0

� p
and k1; k2� � 2 ,1 � ,2.
(See Sargan (1988, p. 143) for discussion of such a reparameterisation.)

Note that the r constraint equations / h� � � 0 are dimension reducing,
in that when applied they reduce the dimension of parameter space from
dim ? � p to dim ) � q � pÿ r: Further note that k2�h� is equal to the
parameters of the constraint equations, and although k1�h� 6� w in gen-
eral, when the constraints are satis®ed k1�h� � w 8 h 2 ?0 � fh j h 2 ?
such that / h� � � 0g. Hence ) � fw j w � k1�h� such that / h� � � 0 8 h 2
?0g: Another important property of the reparameterisation is the fact
that k1�h� and k2�h� are variation free. These properties of the reparame-
terisation do not ensure that M1 EM2: A special class of model that does
ensure that M1 EM2 is that in which the parameters k1 and k2 are ortho-
gonal. An important feature of this special case is that the expected
information matrix for the parameters k1 h� � and k2 h� � (and hence / h� �)
is block diagonal, so that the score vectors with respect to k1 and k2 are
asymptotically uncorrelated. Thus, if / h� � were set to zero, the ML esti-
mator of k1will be unaffected asymptotically. In particular, when there
are T observations on xt available, the log-likelihood function for M1 is:

L1 h� � �
XT
t�1

log f xt j Xtÿ1; h� �

�
XT
t�1

log f xt j Xtÿ1; k1;/� � � L1 k1;/� �; �4�
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and when M2 � M1 as a result of the exact restrictions / h� � � 0 the log-
likelihood function for M2 is:

L2 w� � �
XT
t�1

log f xt j Xtÿ1;w; 0� �: �5�

The parameters k1�h� and / h� � are globally orthogonal when:

EDGP

@2L1 k1;/� �
@k1@/

0

" #
� 0 8 h 2 ? �6�

and locally orthogonal at h0 when (6) holds for h � h0 ± see inter alia Cox
and Reid (1987) and Barndorff-Nielsen and Cox (1994), who also point
out that parameter orthogonality is achievable in the regular exponential
family of densities.

In this special case Proposition 1 has the following corollary.

Corollary 2 Under the conditions of Proposition 1 the condition
that k1�h� and k2�h� are locally orthogonal at h0 is suf®cient forM1 EM2�w�
independently of the data-generation process (DGP), i.e. w0 �
k1�h0� � w�h0� 8 DGPs when w0 is the pseudo-true value of the maximum
likelihood (ML) estimator ŵT of w.

As an example, consider the following two nested regression models
M2 � M1� � when x 0

t � yt; z
0
t

ÿ �
with n � 3; and the validity of conditioning

on zt is assumed:

M1 : yt � z1;tþ1 � z2;tþ2 � �t �t j zt � N 0; �2
ÿ �

M2 : yt � z1;t�� vt vt j zt � N 0; �2
ÿ �

:
�7�

Note that model M2 may be obtained by setting þ2 � 0 in model M1; so
that � � þ1 and �2 � �2 when the restriction þ2 � 0 is valid. However, it is
also possible to reparameterise M1 as:

M1 : yt � z1;t�� z�2;tþ2 � �t �t j zt � N 0; �2
ÿ � �8�

when z�2;t � �z2;t ÿ z1;t
PT

s�1 z1;sz2;s=
PT

s�1 z
2
1;s� is the projection of z2;t onto

the space orthogonal to z1;t so that the relationship between M1 and M2

is explicit, in that they both involve �; independently of the restriction
þ2 � 0: This reparameterisation leaves � and þ2 variation free, and it is
valid independently of the DGP. Hence M1 encompasses M2 with respect
to � M1 EM2���� � independently of the DGP (see Mizon and Richard
(1986)). Heuristically this means that anything that can be learned
about � from M2; can be obtained equally from M1. In particular, note
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that the ML estimator of � in M2 is �̂T � PT
t�1 z1;tyt=

PT
t�1 z

2
1;t, which has

a pseudo-true value of �0 under the DGP. Further, using (8) yields:

�̂T �
XT
t�1

z1;t�z1;t�� z�2;tþ2 � �t�
" #, XT

t�1

z21;t

" #

� ��
XT
t�1

z1;tz
�
2;tþ2 �

XT
t�1

z1;t�t

" #, XT
t�1

z21;t

" #

� ��
XT
t�1

z1;t�t=
XT
t�1

z21;t

so that �̂T has a probability limit under M1 given by:

plim
T!1

�̂TM1�� � �0:

The latter equality holds since the ML estimator of � in M1 is identical to
that for � in M2 as a result of z1;t and z�2;t being orthogonal. This example
and Corollary 2 serve to indicate the value in econometric and statistical
modelling of adopting orthogonal parameterisations, a point made by
Barndorff-Nielsen and Cox (1994, section 3.6) and Hendry (1995,
p. 552). Section 4 further illustrates the importance of orthogonality by
interpreting encompassing as involving mappings in Hilbert space and
proving that a suf®cient condition for automatic encompassing
(M1 EM2�w�) is that the mappings be orthogonal projections.
Although the nesting of M2 in M1 in the above example (7) was deter-

mined by parameter restrictions, the form of the densities f xt j Xtÿ1; h� �
and g xt j Xtÿ1;w� � can also affect the nestedness of models. For example,
the models in (7) are still nested when the normality of �t and vt is
replaced by the assumption that they are i.i.d. with zero means and ®nite
variances. However, they are non-nested when �t j zt � N 0; �2ÿ �

and vt j
zt � U ÿh;�h� � since then (2 is no longer a subset of (1. On the other
hand, the following conditional models:

M3 : yt � þzt � �t �t j zt;Xtÿ1 � i.i.d. 0; �2
ÿ �

M4 : yt � ÿytÿ1 � �t �t j zt;Xtÿ1 � i.i.d. 0; �2
ÿ �

are non-nested when �t and �t are i.i.d., but if �t is serially dependent the
models might be nested. For example, if �t were speci®ed as being gen-
erated by the stationary AR 1� � process �t � ��tÿ1 � �t (j � j< 1), then M3

can be rearranged as:

M�
3 : yt � þzt � �ytÿ1 ÿ þ�ztÿ1 � �t;
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so that the restriction þ � 0 applied to M�
3 yields M4 with � � ÿ and

�2 � �2 when the common factor restriction involved in the AR 1� � error
process is valid, in which case these models are nested (see Hendry and
Mizon (1978), Mizon (1995a) and Sargan (1980)). However, M�

3 has a
restricted parameter space in that though it has 3 regression coef®cients
they involve only 2 parameters þ and �; and as a result M�

3 does not nest
M4 in general. Indeed, only if the DGP belonged to M�

3 would the latter
nest M4: Note that in this example, and that developed in Mizon (1995a),
a model that appears to be an algebraic simpli®cation of another (e.g., the
restriction þ � 0 renders M�

3 algebraically the same as M4� is neither
nested nor encompassed by the more general model as a result of an
auxiliary restriction on the parameter space of the general model (the
common factor restriction) not being a feature of the parameter space
of the simple model. Thus the requirement that ? be unrestricted, or if
restricted the same restrictions apply to ); is critical for M1 to nest M2;
and hence for an apparently more general model to encompass its alge-
braic simpli®cation.

2.2 Nested models with inequality restrictions

In addition to the requirement that ? be unrestricted in order for the
reparameterisation presented in Proposition 1 to hold, it is also necessary
that the constraint equations be exact (and hence dimension reducing),
and not inequality restrictions as the following example illustrates. Let
M�

1 be an inequality restricted version of M1 from (7):

M�
1 : yt � z1;tþ1 � z2;tþ2 � ut �9�

s:t: 0 � þ2 � þ1; if þ1 � 0

0 � þ2 � jþ1j if þ1 � 0

then M�
1 � M1; but since the constraints are inequalities they are not

dimension reducing and Proposition 1 does not apply. Indeed, for the
generic nested models M1 and M2; whenever M2 � M1 as a result of
restrictions on the parameter space, but the constraints de®ning the
nested model are inequalities (e.g. / h� � > 0 8 h 2 ?�; neither
Proposition 1 nor its Corollary 2 apply. As a result, the nesting model
M1 will not in general encompass the nested model M2, though if the
DGP lies in M1 it will. Hence the nature of the restrictions relating the
nested model M2 to the nesting model M1 can determine whether
M1 EM2 independently of the DGP.
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2.3 Non-nested models

Now consider the relationship of M�
1 in (9) to M2 in (7). Even though M2

appears as an algebraic simpli®cation of M�
1 it is not nested in M�

1 since it
is not subject to the inequality restrictions in (9): Further, although M�

1

and M2 are each nested in M1 of (7), and model M1 in (7) encompasses
M2 independently of the DGP, M�

1 does not encompass M2 unless the
DGP lies in M�

1 of (9) or the inequality restrictions are not binding.
Indeed, if yt were generated by a process not contained in M�

1 ; it can
be shown that, as long as the projection of yt on the space spanned by z1t
and z2t is in the interior of the area of 0 � þ2 � jþ1j, M�

1 will encompass
M2 irrespective of the actual form of the DGP.

A more revealing case arises when the minimum distance from yt to
M1, generated by a DGP h xt j Xtÿ1; �0� � other than M�

1 or M2; lies in the
parameter subspace in which þ1 � þ2. Given this relationship between
M1 and the unknown data-generation process, the apparently more gen-
eral model M�

1 may not encompass the simple model M2: Within the
parameter subspace the restriction þ1 � þ2 holds, so model M1 in (7)
becomes:

My
1 : yt � þ1 z1t � z2t� � � wt �10�

� þ1z
y
t � wt

where zyt � z1t � z2t: Model My
1 encompasses M2 in (7) if and only if:

� �0� � ÿ � b �0� �� � � 0;

that is:

plim
T!1

XT
t�1

z21t

ü !ÿ1

plim
T!1

XT
t�1

z1t yt ÿ z
y
t

XT
t�1

zyt yt

XT
t�1

zy2t

8>>>><>>>>:

9>>>>=>>>>; � 0 �11�

(see Mizon and Richard (1986)). The condition in (11) requires that the
residuals

yt ÿ z
y
t

XT
s�1

zys ys

XT
s�1

zy2s

; t � 1; 2; . . . ;T �12�
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be orthogonal to z1t, and it is shown in A.3 of the Appendix that this is
equivalent to:

plim
T!1

XT
t�1

z2t yt ÿ zyt
XT
s�1

zys ys
XT
s�1

zy2s

( )
� 0: �13�

Hence, the condition (11) requires that the residuals (12) be orthogonal to
the space S þ� � spanned by z1t and z2t. However, M�

1 will encompass only
M2 when the orthogonal projection of yt onto S þ� � lies in the subspace
satisfying the triangular restriction in (9). This is illustrated by the graph
in ®gure 2.1 (see also ®gure 1 in GourieÂ roux and Monfort (1995)).
The analysis of section 2 can be summarised in the following proposi-

tion.

Proposition 3 In the context of the generic models M1 and M2 of
(1) and (2) respectively and De®nition 2:
(i) if M2 � M1 with /�h� � 0 being the constraints on h de®ning the

lower dimensional parameters w then M1 EM2�w� for all DGPs when-
ever w and / are orthogonal;

(ii) if M2 � M1 with /�h� < 0 being the constraints on h de®ning the
nested model M2 then M1 EM2�w� if the DGP belongs to M1;

(iii) if M1 and M2 are non-nested then M1 EM2�w� if the DGP belongs to
M1 and conversely M2 EM1�w� if the DGP belongs to M2:

Hence nesting and the nature of the restrictions de®ning the nested
relationship, as well as the class of density used, are critical in determin-
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ing whether a general model will automatically encompass a simple
model. An implication of this proposition is that it is important to estab-
lish carefully that models thought to be nested are indeed nested. The fact
that a restriction placed on the parameters of an apparently more general
model yields a simple model does not imply that the general model nests
the simple model. Further, since the presence of auxiliary restrictions on
the parameter space of a general model will generally result in that model
not nesting an algebraic simpli®cation of it, it is important to test the
validity of such auxiliary restrictions, and to proceed to a comparison of
the general and simple models only if they are not rejected. Thus the
congruence of general models is important whenever a general-to-simple
modelling strategy is adopted.

3 Encompassing and parsimonious encompassing

In this section the role of nested models in encompassing is discussed
further, and it is shown that when a completingmodel exists for non-nested
models it is possible to use the concept of parsimonious encompassing to
establish encompassing relationships amongst the non-nested models.

Although general conditions for encompassing amongst non-nested
models are dif®cult to establish, and will usually involve the unknown
DGP, the concept of parsimonious encompassing can be used to yield
encompassing relationships amongst non-nested models that are nested
within the completing model. For example, M�

1 in (9), M
y
1 in (10) and M2

in (7) are all non-nested, but they are each nested within M1 in (7): Hence
if any of the three non-nested models is a valid reduction of M1 (i.e.
parsimoniously encompasses M1� it contains as much relevant informa-
tion as M1; and hence at least as much as each of the other non-nested
models. In other words, when any of M�

1 , M
y
1 and M2 parsimoniously

encompasses M1 it will also encompass the other two non-nested models.
This result can now be stated more generally for generic non-nested
models M1 and M2 as follows.

De®nition 3 M2 parsimoniously encompasses Mc (denoted
M2 E pMc) when M2 EMc and M2 � Mc with Mc � M2 [M?

1 being the
completing model which contains M2 and all aspects of M1 that are not
already in M2:
(See Hendry and Richard (1989) and Hendry (1995).)

This de®nition and the following theorem provide a framework for
establishing encompassing relationships between non-nested models.
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Theorem 4 If M1 � Mc and M2 � Mc then M2 EM1 if and only
if M2 E pMc:
(See Hendry and Richard (1989) and Hendry (1995, pp. 511±512).)

Hence it is possible to compare alternative non-nested models via their
encompassing properties within the framework of an appropriate choice
of completing model. For example, since each of M�

1 in (9), My
1 in (10)

and M2 in (7) is nested within M1, if any of them parsimoniously encom-
passes M1 in the population, that model will encompass the other two
models. If more than one of these models parsimoniously encompasses
M1 then they are mutually encompassing and hence observationally
equivalent ± see Lu and Mizon (1997) for more details.

4 Encompassing and orthogonal projection

In this section a generalisation of the results in section 2 is presented
which interprets encompassing as orthogonal projections in Hilbert
space. In particular, a more general suf®cient condition for a model to
encompass models nested within it, when the DGP need not be para-
metric, is given.

4.1 Mapping and orthogonal projection

Let a Hilbert space RT , of which the random vectors y1 and y2 are
elements, be de®ned as a T-dimensional complete linear space equipped
with the scalar product:

y1; y2
ý � � E

XT
j�1

y1;j y2;j

ü !
8 y1; y2 2 RT

and the norm of any element y 2 RT is given by:

k y k � y; y
ý �ÿ �1=2� E

XT
j�1

y2j

ü !1=2

;

where `E ' is expectation taken under the speci®cation of y. Two T � 1
random vectors y1 and y2 2 RT are equal if and only if:

k y1 ÿ y2 k � 0;

which requires y1 and y2 be equivalent with probability one.
With these de®nitions and notation it is possible to discuss encom-

passing in a Hilbert space generated by T � 1 random vectors y �
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y1; . . . ; yT� �. In order to do so, it is convenient to translate the encom-
passing relationship, which is often de®ned in parameter space, to the
mapping relationship between the elements y in RT . This not only facil-
itates the discussion inRT , but also has the advantage of accommodating
those random vectors y that are generated by a non-parametric DGP (cf.
GourieÂ roux and Monfort (1995)).

Let xt be partitioned as x 0
t � yt; z

0
t

ÿ �
and consider the conditional mod-

els M1 and M2:

M1 : ff ytj zt;Xtÿ1; h� �; h 2 ? � R
pg

M2 : fg ytj zt;Xtÿ1;w� �; w 2 ) � R
qg

�14�

which are such that the conditional densities f yt j zt;Xtÿ1; h� � and
g yt j zt;Xtÿ1;w� � are suf®ciently well-behaved functions to ensure the
global uniqueness of the pseudo-true values h0 and w0. It is assumed
that conditioning on zt is valid (see Engle, Hendry and Richard
(1983)), and that yt does not Granger cause zt (see Granger (1969)). It
is also assumed that the random variable of interest, yt, can be uniquely
expressed as:

yt � yt h� � � rt zt;Xtÿ1; �1;t; h
ÿ �

and

yt � yt w� � � kt zt;Xtÿ1; �2;t;w
ÿ �

from models M1 and M2, respectively. Further, the functions

rt zt;Xtÿ1; �1;t; h
ÿ �

and kt zt;Xtÿ1; �2;t ;w
ÿ �

are assumed to have derivatives for all arguments, and to be contraction
mappings (with probability one) with respect to Xtÿ1 when it includes
lagged values of yt. Let

yt�ŵT � � kt�zt;Xtÿ1; 0; ŵT �
and

yt�w1�ĥT �� � kt�zt;Xtÿ1; 0;w1�ĥT ��
when w1 h� � is the M1 pseudo-true value of ŵT ; or binding function from
? to ) (see GourieÂ roux and Monfort (1995)). Under these conditions,
the encompassing contrast w0 ÿ w1 h0� � for the hypothesis M1 EM2�w�
takes the form:

w0 ÿ w1 h0� � � plim
T!1

fŵT ÿ w1�ĥT �g � 0: �15�
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The contrast in (15) can be translated to the following relationship in
RT :

fy�ŵT � ÿ y�w1�ĥT ��g � 0

where y 0 � y1; . . . ; yT� �. y�ŵT � and y�w1�ĥT �� 2 RT are two T � 1 ran-
dom vectors constrained by parameter sets ? and ). Therefore, since
ŵT and ĥT are functions of y 0 � �y1; y2; . . . ; yT �; y ! y�ŵT � and
y ! y�w1�ĥT �� de®ne two mappings on RT ! RT . These mappings will
form the basis of the following discussion of encompassing.

In addition, de®ne the following mapping for ŵT 2 ):

MT
ý : RT 7!ST )� � � RT

such that for 8 y 2 RT ,

MT
ý y� � � y�ŵT � 2 ST )� � � RT ; ŵT 2 ); �16�

and the corresponding mapping for ĥT 2 ?:

MT
� : RT 7!ST ?� � � RT

such that for 8 y 2 RT ,

MT
� y� � � y�ĥT � 2 ST ?� � � RT ; ĥT 2 ?: �17�

When the only restrictions on the parameter spaces ) and ? are of the
form '�w� � 0 and / h� � � 0 so that they are dimension reducing, ST )� �
and ST ?� � are subspaces of RT : By the construction of MT

ý and MT
� ,

y�w1�ĥT �� can be expressed as:

y�w1�ĥT �� � MT
ý � MT

� y� �;
where MT

ý � MT
�

ÿ �
denotes the product mapping. Hence the condition for

M1 E M2 at y 2 RT is equivalent to:

k MT
ý y� � ÿMT

ý �MT
� y� � k � 0: �18�

The nature of the mappings MT
ý , MT

� and MT
ý � MT

� not only depends
on the functional form of f h� � and g�w� and the relation between ST )� �
and ST ?� �, but also depends on the nature of the DGP. This makes the
derivation of general conditions for (18) to hold impossible ± in general
the encompassing relation between f h� � and g�w� requires separate inves-
tigation for each particular case. However, there is a degenerate case of
(18), in which

MT
ý y� � � MT

ý � MT
� y� � �19�
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holds independently of the nature of the DGP, and this is referred to as
automatic encompassing as it does not provide any relevant information
about the DGP.

Corollary 2 in section 2.1 gives suf®cient conditions for a nesting model
M1 automatically to encompass a nested model M2: An important com-
ponent of those suf®cient conditions is the requirement that nesting
model M1 has orthogonal parameters. A similar, but more general, con-
dition can be derived for (19) when the mappings MT

ý and MT
� are

orthogonal projections de®ned on ST )� � and ST ?� �, respectively. A
continuous linear mapping MT

ý de®ned on subspace ST )� � � RT is
orthogonal, if it is self-adjoint ± MT

ý � MT�
ý , where MT�

ý is the adjoint
projection ± and idem-potent so that MT

ý � MT
ý � MT

ý: This condition is
often satis®ed, especially when both densities f h� � and g�w� belong to the
linear exponential family. In the sequel it is assumed that the mappings
MT

ý and MT
� are orthogonal projections de®ned on ST )� � and ST ?� �,

respectively.

Since MT
ý is an orthogonal projection, for (19) to hold it is necessary

that the product projection MT
ý �MT

� �� � also be orthogonal. However,
the fact that MT

ý and MT
� are orthogonal projections is not suf®cient for

the orthogonality of the product projection MT
ý �MT

� . A necessary and
suf®cient condition for MT

ý � MT
� to be an orthogonal projection is pro-

vided by the following proposition.

Proposition 4 Let MT
ý and MT

� be orthogonal projections
de®ned on ST )� � and ST ?� �, respectively. A necessary and suf®cient con-
dition for the product projection MT

ý � MT
� to be an orthogonal projection is

that MT
ý and MT

� commute, i.e.

MT
ý � MT

� � MT
� � MT

ý: �20�

In this case MT
ý �MT

� is the orthogonal projection on ST )� � \ ST ?� �:
(For a proof see e.g. Bachman and Narici (1966).)

An implication of Proposition 4 is that the product projection MT
ý �

MT
� cannot de®ne the same orthogonal projection as MT

ý if the two
subspaces are disjoint, i.e. ST )� � \ ST ?� � � fg. Since having disjoint
parameter sets is a de®ning characteristic of non-nested models, it follows
that automatic encompassing can never occur between non-nested
models.

As an illustration of the result in (20) consider the following two con-
ditional regression models:
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M1 : y � Z1ÿ1 � u1

M2 : y � Z2ÿ2 � u2

�21�

when y is T � 1;Zi is T � ki; ÿ1 is ki � 1; and ui � N 0; 1� � for i � 1; 2:
Let Z � Z1;Z2� � have rank k � k1 � k2 so that the two parameter sub-
spaces ) and ? are disjoint, when h � ÿ1 and w � ÿ2. The two subspaces
ST )� � and ST ?� � are given by:

ST )� � � fy ÿ̂2

ÿ � � MT
ý y� � � Z2 Z 0

2Z2

ÿ �ÿ1
Z 0

2y � P2y; ÿ̂2 2 )g
ST ?� � � fy ÿ̂1

ÿ � � MT
� y� � � Z1 Z 0

1Z1

ÿ �ÿ1
Z 0

1y � P1y; ÿ̂1 2 ?g
when ÿ̂ i � Z 0

iZi

ÿ �ÿ1
Z 0

i y for i � 1; 2. It is easy to see that the product
projection MT

ý �MT
� is not orthogonal because in general MT

ý and
MT

� do not commute:

P1P2 6� P2P1: �22�
The next result shows that, when the two models are nested, the ortho-
gonality of MT

ý and MT
� is suf®cient for the product projection to be

orthogonal.

Proposition 5 Let MT
ý and MT

� be orthogonal projections
de®ned on ST )� � and ST ?� �, respectively. If M2 is nested in M1 with
) � ? so that ST )� � � ST ?� �, then the product projection MT

ý � MT
� �� �

is an orthogonal projection de®ned on ST )� �:
(Proof see A.4 in the Appendix.)

Note that the nesting of M2 in M1 alone is not suf®cient for this result.
The requirement that MT

ý and MT
� are orthogonal projections is critical.

Also note that when MT
ý and MT

ý � MT
� are orthogonal projections

de®ned on ST )� � it follows that MT
ý � MT

ý � MT
� on ST )� �, which

implies the following proposition.

Proposition 6 If MT
ý and MT

� are orthogonal projections on
ST )� � and ST ?� �, respectively, and ST )� � is a subspace of ST ?� �, then

MT
ý � MT

ý �MT
�

and hence M1 E M2�w� automatically.

Note that Proposition 3(i) is the special case of 6 that arises when both
) and ? are Euclidean subspaces with / h� � � 0 being the dimension-
reducing constraints that de®ne ) as a subspace of ?.
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As an illustration, consider the previous example but further assume
that Z2 � Z1 so that M2 �M1, and Z2 � Z1&. Hence substituting for Z2

into (22) yields:

P2P1 � P1P2 � P2

and thus, from Proposition 6, M1 EM2�w� automatically irrespective of
the nature of the DGP.

4.2 Limit of orthogonal projection MT
ý

Finally, it is shown that the above analysis remains valid when the dimen-
sion T of the Hilbert space RT tends to in®nity. This is important since
much statistical inference using econometric models, including encom-
passing analyses, relies on limiting distribution theory.

Noting that ST )� � is the subspace on which the orthogonal projection
MT

ý is de®ned, it is necessary to show that as T ! 1 the limit of MT
ý

exists and de®nes an orthogonal projection in the in®nite-dimensional
Hilbert space H � limT!1 RT : Let fST )� �;T � l; l � 1; . . .g be a series
of T-dimensional subspaces of the Hilbert space RT , fMT

ý;T �
l; l � 1; . . .g be a series of orthogonal projections de®ned on RT }ST )� �
; and S )� � � limT!1 [T

l ST )� �. It is shown in A.5 of the Appendix that
Mý is the orthogonal projection de®ned on H}S )� �, where

MT
ý ! Mý:

The limits of MT
� and MT

ý �MT
� also exist for the same reasons, thus

yielding:

Proposition 7 If MT
ý and MT

� are orthogonal projections on
ST )� � and ST ?� �, respectively, and ST )� � is a subspace of ST ?� �, then

MT
ý � MT

ý � MT
�

so that M1 EM2�w�. This encompassing relation remains valid when
T ! 1, since

Mý � limMT
ý � limMT

ý � MT
� � Mý � M�

de®nes an orthogonal projection on H.

5 Conclusion

The ability of a general model to encompass a simpli®cation of itself has
been questioned rarely. However, GourieÂ roux and Monfort (1995) pre-
sented an example in which a general model was unable to encompass a
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simple model. This paper has presented conditions under which a model
encompasses models nested within it independently of the nature of the
DGP, and thus automatically encompasses the nested models. Equally
importantly it was pointed out that nesting is more than one model being
an algebraic simpli®cation of another. By interpreting encompassing as
the existence of orthogonal projections in Hilbert space, it was shown
that, when the model M2 is nested within M1, a suf®cient condition for
M1 to encompass M2 is that the individual mappings associated with the
models are orthogonal projections. As a by-product, it was also pointed
out that automatic encompassing cannot occur between non-nested mod-
els. One of the important methodological implications of these ®ndings is
that care should be taken to establish the presence and nature of nesting
amongst models prior to implementing hypothesis tests for model reduc-
tion, as for example is done in general-to-simple modelling.

Appendix

A.1

If w� and h� satisfy (3), then:

0 �
�
log

g�w��
f h�� �

� �
g�w�� dy

� min
h2?

�
log

g�w��
f h� �

� �
g�w�� dy

�
�
log

g�w��
f h�w��� �

� �
g�w�� dy

� 0:

Therefore, h� � h w�� � is the M2 pseudo-true value of h 2 ? 8 w� 2 ).
GourieÂ roux and Monfort (1995) de®ne h� � h w�� � as the binding function
from ) to ?.

A.2

Here it is shown that if g w� � is nested in f h� � in the sense of (3) then
) � ?; or ) \? � ) with probability one. g w� � is nested in f h� � in the
sense of (3) if 8 w 2 ); there exists h� 2 ?� � ?, such that�

log
g�w�
f h�� �

� �
g�w� dy � 0: �23�
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First, if for each w 2 ), there exists h� 2 ?� � ?; then it is necessary
and suf®cient that g�w� and f h�� � are equivalent with probability one.
Therefore, there is a one-to-one mapping between g w� � j w 2 )

� þ
and

f h�� � j h� 2 ?�� þ
. Otherwise, if both g w1

ÿ �
and g w2

ÿ �
are mappings to

f h�� �, then g w1

ÿ �
and g w2

ÿ �
are identical with probability one, and

hence w1 � w2: Further, the equivalence between g�w� and f h�� � holds
under any absolutely continuous measure, so g w� � j w 2 )

� þ
and

f h�� � j h� 2 ?�� þ
are isomorphic. Let :0 de®ne the set of zero measure

on which g�w� 6� f h�� �; g w� � can then be equally written as

g�w� � f �h�� on ?� ÿ:0

g�w� on :0

�
g w� � is a density function de®ned on ?�; and ) � ? with probability one.

On the other hand, if for each w 2 ); g w� � can be obtained as a special
case of f h� �; then there exists h� 2 ? so that (23) holds.

A.3

Here, it is shown that:

plim
T!1

XT
t�1

z1t yt ÿ zyt

XT
s�1

zys ys

XT
s�1

zy2s

8>>>><>>>>:

9>>>>=>>>>; � 0 �24�

implies:

plim
T!1

XT
t�1

z2t yt ÿ z
y
t

XT
s�1

zys ys

XT
s�1

zy2s

8>>>><>>>>:

9>>>>=>>>>; � 0 �25�

and vice versa. The following are equivalent to the orthogonal condition
in (24):

plim
T!1

XT
t�1

zy2t
XT
t�1

z1tyt ÿ
XT
t�1

z1tz
y
t

XT
t�1

z1t � z2t� �yt
( )

� plim
T!1

XT
t�1

z1tyt
XT
t�1

z
y
t ÿ z1t

� �
z
y
t ÿ

XT
t�1

z1tz
y
t

XT
t�1

z2tyt

( )

� plim
T!1

XT
t�1

z1tyt
XT
t�1

z2tz
y
t ÿ

XT
t�1

z1tz
y
t

XT
t�1

z2tyt

( )
� 0: �26�
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On the other hand, condition (25) can be rewritten as:

plim
T!1

XT
t�1

zyt
XT
t�1

z2tyt ÿ
XT
t�1

z2tz
y
t

XT
t�1

z1t � z2t� �yt
( )

� plim
T!1

XT
t�1

z2tyt
XT
t�1

zyt ÿ z2t

� �
zyt ÿ

XT
t�1

z2tz
y
t

XT
t�1

z1tyt

( )

� plim
T!1

XT
t�1

z2tyt
XT
t�1

z1tz
y
t ÿ

XT
t�1

z2tz
y
t

XT
t�1

z1tyt

( )
� 0: �27�

Therefore, the conditions in (26) and (27) are equivalent.

A.4

Proof. Consider any y 2 RT that can be decomposed in the
following form:

y � z� z?; z 2 ST )� �; z? 2 ST )� �?:
Therefore,

MT
ý y� � � z 2 ST )� � � ST ?� �;

which implies,

MT
� �MT

ý y� � � z

and it follows that

MT
� �MT

ý �� � � MT
ý �� �: �28�

Taking adjoints in (28), we have,

MT�
ý � MT

� � MT
ý

ÿ �T�� MT�
ý � MT�

�

� MT
ý � MT

� � MT
ý:

�29�

The last equality sign holds because of the orthogonality MT
� and MT

ý .
Combining (28) and (29) yields

MT
ý �MT

� �� � � MT
� � MT

ý �� �;
i.e. MT

ý �� � and MT
� �� � commute. Therefore, MT

ý � MT
� �� � is an orthogonal

projection de®ned on ST )� � \ ST ?� � � ST )� �. &
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A.5

Proof. First, the orthogonal projection MT
ý on ST )� � is con-

tinuous and bounded, and for 8 y 2 RT

k MT
ý y� � k� k y k< 1:

On the other hand, the subspaces fST )� �;T � l; l � 1; . . . ; g form an
increasing sequence:

Sl )� � � Sl�1 )� � � � � �
therefore:

MT
ý � MT�1

ý � MT
ý

and

k MT
ý y� � k2 �k MT

ý � MT�1
ý y� � k2

�k MT
ý k2 � k MT�1

ý y� � k2

�k MT�1
ý y� � k2�k y k2 :

Hence,

k MT
ý y� � k2�k MT�1

ý y� � k2� � � � � k y k2

implies MT
ý �� � strongly converges in the norm �k k to the projection Mý �� �

which is de®ned on S )� � � H. &
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3 Exact properties of the maximum
likelihood estimator in exponential
regression models: a differential
geometric approach

Grant Hillier and Ray O'Brien

1 Introduction

In a recent paper Hillier and Armstrong (1996) have given an integral

formula for the (exact) density of the maximum likelihood estimator

(MLE). The formula,1 which expresses the density at a point t, does

not require that the estimator be a known function of the data, but

does require that the manifold on which the MLE is ®xed (i.e. the level

set of the MLE) be known. One situation, but by no means the only case,

in which this occurs is when the MLE is uniquely de®ned by the vanishing

of the score vector. The importance of this result lies in the fact that the

formula can be used to obtain the exact density even when the estimator

is only implicitly de®ned in terms of the data. The exponential regression

model is well known to be of this type, and in this chapter we apply the

Hillier and Armstrong result to the MLE for this model.

The observations x1; . . . ; xn are assumed to be independent realisations

of exponential random variables with means

�i � expf� 0wig; i � 1; . . . ; n; �1�

where � is a k� 1 vector of parameters, and wi is a k� 1 vector of

covariates, assumed non-random. The joint density of the data is thus:

pdf �x1; . . . ; xn; �� � expfÿn� 0 �wg exp ÿ
Xn
i�1

xi exp�ÿ� 0wi�
( )

; �2�
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for xi > 0; i � 1; . . . ; n, where �w is the vector of sample means of the wi.
Let x � �x1; . . . ; xn� 0, and abbreviate the condition xi > 0 for i � 1; . . . ; n
to simply x > 0: The log-likelihood, score vector and observed informa-
tion matrix are:

`�x; �� � ÿn� 0 �wÿ
Xn
i�1

xi expfÿ� 0wig; �3�

u�x; �� � u�x; �;W� � @`�x; ��=@�

� ÿn �w�
Xn
i�1

xiwi expfÿ� 0wig; �4�

j�x; �� � j�x; �;W� � ÿ@2`�x; ��=@�@� 0

�
Xn
i�1

xiwiw
0
i expfÿ� 0wig; �5�

respectively. Provided the matrix W�n� k� with rows w 0
i , i � 1; . . . ; n,

has rank k, it is well known that the MLE for � is the unique solution
to the equations u�x; �� � 0; but the MLE cannot be expressed directly in
terms of x1; . . . ; xn. This has hitherto prevented an analysis of the small-
sample properties of the MLE in this model, but the Hillier/Armstrong
formula makes such results accessible, at least for small values of k, as we
shall see.

To the best of our knowledge the only other analytic study of the
exact properties of the MLE in this model is Knight and Satchell
(1996). This used an approach suggested by Huber (1964; see also
Shephard (1993)) and characteristic function inversion techniques to
deduce some properties of the density for the cases k � 1 and k � 2,
but this approach does not generalise easily. In fact, our differential
geometric formula can be regarded as a generalisation of the Huber
approach to the multi-parameter case, avoiding the need for character-
istic function inversion.

We denote the MLE for � by T � T�x� � T�x;W�, and a particular
value of T by t. The density of T (with respect to Lebesgue measure,
dt) at T � t will be denoted by pdfT �t; ��, or, if the dependence on
W is important, by pdfT �t; �;W�. From Hillier and Armstrong
(1996, equation (26)), we have the following expression for the density
of T :
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pdfT �t; �� � expfÿn� 0 �wg
Xn
i�1

wiw
0
i expfÿ2t 0wig

ÿÿÿÿÿ
ÿÿÿÿÿ
ÿ1=2

�
�
S�t�

Xn
i�1

xiwiw
0
i expfÿt 0wig

ÿÿÿÿÿ
ÿÿÿÿÿ

� exp ÿ
Xn
i�1

xi expfÿ� 0wig
" #

�dS�t��; �6�

where S�t� � fx; x > 0;
Pn

i�1 xiwi expfÿt 0wig � n �wg, and �dS�t�� denotes
the (canonical) volume element on the manifold S�t� (see Hillier and
Armstrong (1996), Appendix A, for de®nitions and technical details).
That is, S�t� is the intersection of an �nÿ k�-dimensional hyperplane
with the non-negative orthant.

The key problem, therefore, is the evaluation of the surface integral in
(6). Because the surface S�t� is, in this case, ¯at, S�t� admits a global
coordinate chart, so that this surface integral can be reduced to an ordin-
ary integral over a region in Rnÿk. Nevertheless, the evaluation of this
integral presents considerable dif®culties: the region of interest consists of
a polyhedron in Rnÿk bounded by the coordinate axes and k intersecting
hyperplanes. In the present chapter we give details of the evaluation of
this integral for the cases k � 1 and k � 2: The completely general case
can no doubt be dealt with similarly; see Schechter (1998) for one possible
algorithm.

2 Some properties of the density in the general case

Before considering the evaluation of (6) in detail we make some general
observations on the density of T that follow almost trivially from equa-
tions (4)±(6). Consider ®rst a transformation of the wi;wi ! A 0wi;
i � 1; . . . ; n, where A is a k� k non-singular matrix, so that W ! WA.
From (4) we see that u�x; �;WA� � A 0u�x;A�;W�. Hence, T�x;W� �
AT�x;WA�, so that the transformation W ! WA induces the trans-
formation T ! Aÿ1T on the MLE. It follows from this observation
that pdfT �t; �;W� � Ak kÿ1pdfT� �t�; �;WA�, where T� � T�x;WA� �
Aÿ1T�x;W�, and t � At�. That is, the density of T � T�x;W� is trivially
obtainable from the density of T� � T�x;WA�, the MLE when W is
replaced by WA, so that there is no loss of generality in standardising
the w 0

i 's so that, for instance, W 0W � Ik. Note that W 0W is the Fisher
information matrix for �.
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Next, for a ®xed value of t one can transform variables in equation (6)

from xi to ~xi � expfÿt 0wigxi; i � 1; . . . ; n. This maps the manifold S�t�
into a new manifold ~S�t�, say, and using Hillier and Armstrong (1996,

equation (A4)), the volume elements on S�t� and ~S�t� are related by:

�d ~S�t�� � expfÿnt 0 �wg
Xn
i�1

xiwiw
0
i expfÿ2t 0wig

ÿÿÿÿÿ
ÿÿÿÿÿ
ÿ1=2

� j W 0W j1=2 �dS�t��:

Rewriting (6) in terms of the transformed xi we obtain:

pdfT �t; �� � expfn�tÿ �� 0 �wg j W 0W jÿ1=2

�
�
S

Xn
i�1

xiwiw
0
i

ÿÿÿÿÿ
ÿÿÿÿÿ exp ÿ

Xn
i�1

xi expf�tÿ �� 0wig
" #

�dS�;

�7�

where S � fx; x > 0;
Pn

i�1 xiwi � n �wg does not depend on t. It follows at
once from (7) that the density of T depends on �t; �� only through their
difference �tÿ ��. When regarded as a function of d � �tÿ ��, it is easy to
see that, at each point on the surface S, the integrand (with the term
expfnd 0 �wg attached) is maximised at d � 0. Hence, the mode of the
(joint) density is at the point t � �.

Write the density of T � T�x;W� in (7) as f �d;W�. It is clear from (7)
that f �d;W� is invariant under permutations of the rows of W , and

also that the density of T� � T�x;WA� � Aÿ1T�x;W� is f �d;WA� �
kAkf �Ad;W� for any non-singular k� k matrix A. In particular,
f �d;ÿW� � f �ÿd;W� (on choosing A � ÿIk�, and thus, if ÿW � PW

for some permutation matrix P, the density of �tÿ �� is symmetric about
the origin. If the model contains an intercept, and the remaining variables

are symmetric about their means, the density of the estimates of the

coef®cients of those variables will be symmetric about the corresponding
true values, and hence will be unbiased if their means exist.

3 The one-parameter case

We consider ®rst the case k � 1; and work from expression (7) for the
density, which, becomes (on replacing wi by zi�:
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pdfT �t; �� � expfn�tÿ �� �zg
Xn
i�1

z2i

" #ÿ1=2�
S

Xn
i�1

xiz
2
i

" #

� exp ÿ
Xn
i�1

xi expf�tÿ ��zig
" #

�dS�; �8�

where S is the intersection of the hyperplane
Pn

i�1 xizi � n �z with the non-

negative orthant. To simplify matters we assume that the zi are all of the

same sign, and there is no loss of generality in taking this to be positive.

Results for the case where the z 0i 's are of mixed signs require only minor

modi®cations in what follows. We also assume for convenience that the

z 0i 's are distinct.

The manifold S admits a global coordinate chart, and we can use

x2; . . . ; xn as coordinates, setting

x1 � zÿ1
1 n �zÿ

Xn
i�2

xizi

þ !
: �9�

We then have (from Hillier and Armstrong (1996), equation (A3)):

�dS� � zÿ1
1

Xn
i�1

z2i

" #1=2

dx2dx3 . . . dxn;

and, in view of (9), the region of integration becomes:

R � xi > 0; i � 2; . . . ; n;
Xn
i�2

xizi < n �z

( )
:

To further simplify the integration it will be helpful to `lift' the term

�Pn
i�1 xiz

2
i � in the integrand in �8) into the exponential. This can be

done by writing

Xn
i�1

xiz
2
i

" #
exp ÿ

Xn
i�1

xiri

( )
� �@=@w� exp ÿ

Xn
i�1

xi�ri ÿ wz2i �
( )" #

w�0

;

where we have put ri � expf�tÿ ��zig; i � 1; . . . ; n. Substituting for x1
from (9), and noting that the differentiation (with respect to w� commutes

with the integration, the density becomes:
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pdfT �t; �� � zÿ1
1 expfn�tÿ ��zg�@=@w� expfÿ�nza1=z1�g�

�
�
R

exp ÿ
Xn
i�2

xi�aiz1 ÿ a1zi�=z1dx2 . . . dxn
( #

w�0

�10�

where we have now set ai � ri ÿ wz2i ; i � 1; . . . ; n. The essential problem,
therefore, is the evaluation of the integral in (10).

De®ne

dsi � �zsai ÿ zias�=zs; i � 2; . . . ; n; s < i: �11�

The x2-integral in (10) is (with the term expfÿnza1=z1g attached):

exp ÿnza1=z1 ÿ
Xn
i�3

xid1i

( )(�u2
0

expfÿx2d12gdx2
)
; �12�

where u2 � zÿ1
2 �n �zÿPn

i�3 xizi�, giving, on integrating out x2;

exp ÿnza1=z1 ÿ
Xn
i�3

xid1i

( )
dÿ1
12 f1ÿ exp�ÿd12u2�g

� dÿ1
12 exp ÿnza1=z1 ÿ

Xn
i�3

xid1i

( )(

ÿ exp ÿnza2=z2 ÿ
Xn
i�3

xid2i

( ))
; �13�

since a1=z1 � d12=z2 � a2=z2 and d1i ÿ zid12=z2 � d2i. The integral is inter-
preted as zero if u2 � 0:

Integrating now with respect to x3 we have:

dÿ1
12 exp ÿnza1=z1 ÿ

Xn
i�4

xid1i

( )
dÿ1
13 1ÿ expfÿd13u3g� �

(

ÿ exp ÿnza2=z2 ÿ
Xn
i�4

xid2i

( )
dÿ1
23 1ÿ expfÿd23u3g� �

)
; �14�

where u3 � zÿ1
3 �n �zÿPn

i�4 xizi�. There appear to be four distinct terms
here, but identities similar to those below (13) yield:
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�d12d13�ÿ1 exp ÿnza1=z1 ÿ
Xn
i�4

xid1i

( )
ÿ �d12d23�ÿ1

� exp ÿnza2=z2 ÿ
Xn
i�4

xid2i

( )
��d12d13�ÿ1 ÿ �d12d23�ÿ1�

� exp ÿnza3=z3 ÿ
Xn
i�4

xid3i

( )
: �15�

The iterative relation is now clear: the p'th step in the integration yields a
linear combination of terms

exp ÿnzas=zs ÿ
Xn
i�p�1

xidsi

( )
; s � 1; . . . ; p;

in which the coef®cients are simply the coef®cients at the previous step
multiplied by dÿ1

1p ; d
ÿ1
2p ; . . . ; d

ÿ1
pÿ1;p, respectively, except for the last term

�s � p�, whose coef®cient is minus the sum of the coef®cients of all lower
terms. Thus, if we denote by cp the p� 1 vector of coef®cients of the
terms expfÿnzas=zs ÿ

Pn
i�p�1 xidsig after integrating out xp, we may

write:

cp � Lpcpÿ1;

where Lp is the p� �pÿ 1� matrix:

Lp �

dÿ1
1p 0 :: 0

0 dÿ1
2p :: :

: : :: :

0 0 :: dÿ1
pÿ1;p

ÿdÿ1
1p ÿdÿ1

2p :: ÿdÿ1
pÿ1;p

26666666664

37777777775
: �16�

After integrating out x2; . . . ; xn, therefore, we are left with a linear
combination of the terms

gn� j� � expfÿnzaj=zjg; j � 1; . . . ; n; �17�
with vector of coef®cients, cn, given by the recursive relation:

cn � LnLnÿ1 . . .L2 �
Ynÿ1

i�1

Lnÿi�1; �18�

starting with
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L2 �
dÿ1
12

ÿdÿ1
12

0@ 1A:

We therefore have a very simple expression for the density:

pdfT �t; �� � zÿ1
1 expfn �z�tÿ ��g�@=@w� c 0ngn

� �
w�0

� zÿ1
1 expfn �z�tÿ ��g �@cn=@w� 0gn � c 0n�@gn=@w�

� �
w�0

;

�19�
where gn is the n� 1 vector with elements gn� j� given in (17).

It remains to evaluate the derivatives in (19), and then set w � 0: It is
easy to see that

@gn� j�=@w jw�0 � nzzj expfÿnzrj=zjg � nzzj ~gn� j�; say: �20�
De®ning ~Lp as Lp has been de®ned above, but with the dsp replaced by
~dsp � �zsrp ÿ zprs�=zs (since ai � ri when w � 0�, we de®ne

~cn � cn jw�0 �
Ynÿ1

i�1

~Lnÿi�1: �21�

This deals with the second term in the ��� in (19).
Now, from the de®nition of cn in terms of the Lp in (18), we have that:

@cn=@w �
Xnÿ1

i�1

LnLnÿ1 . . .Lnÿi�2�@Lnÿi�1=@w�LnÿiLnÿiÿ1 . . .L2

� �
:

The matrices

@Lp=@w jw�0

that occur here have the same structure as the ~Lp except that the elements
~dÿ1
sp are replaced by zp�zp ÿ zs� ~dÿ2

sp . Denote these matrices by ~L�
p,

p � 2; . . . ; n: Then clearly

@cn=@w jw�0 �
Xnÿ1

i�1

� ~Ln . . . ~Lnÿi�2
~L�
nÿi�1

~Lnÿi . . . ~L2� � ~c�n; say:

Hence we ®nally have an expression for the density in the form:

pdfT �t; �� � zÿ1
1 expfn �z�tÿ ��g

Xn
j�1

~gn� j�f ~c�n� j� � nzzj ~cn� j�g: �22�

Unfortunately, because the vectors ~c�n and ~cn are both de®ned only by
recursive formulae, it is dif®cult to study the properties of the density (22)
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analytically. In section 5 below we brie¯y summarise some results
obtained by direct numerical evaluation of (22).

4 Inclusion of a constant term

Suppose now that E�xi� � expf�� �zig, so that wi � �1; zi� 0 in the nota-
tion used in the Introduction. We denote the (®xed values of) the MLEs
for ��; �� by �a; t�. From equation (7) we have:

pdfA;T �a; t;�; �� � �n0 expfn�tÿ �� �zg
Xn
i�1

1

zi

þ !
1

zi

þ ! 0ÿÿÿÿÿ
ÿÿÿÿÿ
ÿ1=2

�
�
S

Xn
i�1

xi

1

zi

þ !
1

zi

þ ! 0ÿÿÿÿÿ
ÿÿÿÿÿ

� exp ÿ�0
Xn
i�1

xiri

( )
�dS� �23�

where �0 � exp�aÿ ��, and we have again put ri � expf�tÿ ��zig;
i � 1; . . . ; n. The integral is now over the surface S de®ned by:Xn

i�1

xi � n; and
Xn
i�1

xizi � n �z;

and xi > 0; i � 1; . . . ;n. In what follows we assume that the z 0i 's are dis-
tinct, and are ordered so that z1 < z2 < � � � < zn. It is clear from (23) that
the density is invariant to the order of the z 0

i 's, so the assumption that the
z 0i 's are ordered is not restrictive. The assumption that the z 0i 's are distinct
is restrictive, but unlikely to be important in practice.

We ®rst choose nÿ 2 coordinates for the surface S, and for this pur-
pose it will be convenient to use x2; . . . ; xnÿ1. Writing x1 and xn in terms
of x2; . . . ; xnÿ1 we have:

x1 � n�zn ÿ �z�=�zn ÿ z1� ÿ
Xnÿ1

i�2

xi��zn ÿ zi�=�zn ÿ z1�� �24�

xn � n� �zÿ z1�=�zn ÿ z1� ÿ
Xnÿ1

i�2

xi��zi ÿ z1�=�zn ÿ z1��: �25�

Note that the constants, and the coef®cients of the xi, in both of these
expressions are all positive, because of our ordering of the z 0i 's.
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With these coordinates the integral (23) becomes an ordinary integral
over x2; . . . ; xnÿ1, and the volume element becomes:

�dS� � ��zn ÿ z1��ÿ1
Xn
i�1

1

zi

þ !
1

zi

þ ! 0ÿÿÿÿÿ
ÿÿÿÿÿ
1=2

�dx2dx3 . . . dxnÿ1�: �26�

Because x1 and xn in (24) and (25) must be positive, the region of inte-
gration becomes that part of the non-negative orthant (for x2; . . . ; xnÿ1�
within which:Xnÿ1

i�2

xi�zn ÿ zi� < n�zn ÿ �z� and
Xnÿ1

i�2

xi�zi ÿ z1� < n� �zÿ z1�:

�27�
That is, the region of integration becomes the subset, R say, of the
�nÿ 2�-dimensional non-negative orthant below both of the hyperplanes
de®ned by replacing the inequalities in (27) by equalities. It is straightfor-
ward to check that the two hyperplanes involved must intersect, so
neither lies entirely below the other. This obviously complicates the inte-
gration problem to be dealt with.

We ®rst set out a notation that will be helpful in the evaluation of
the integral in (23). First, we de®ne bi � zi ÿ �z; i � 1; . . . ; n, and
bjk � zj ÿ zk; j; k � 1; . . . ; n; j 6� k. Note that bjk will be positive for
j > k because of the ordering of the zi, and that the bi will necessarily
be negative for i less than some integer p, say, �1 � p < n�, and positive
thereafter. This property of the b 0

i 's will be important in what follows.
The following identities, easily derived from the de®nitions of the bi and
bjk, will be used repeatedly in what follows to combine products of terms:

brbis � bsbri ÿ bibrs � 0 �28�
birbjs ÿ bijbrs ÿ bisbjr � 0: �29�

Next we de®ne

`rs � nbs �
Xnÿ1

i�r

xibis �r � 2; . . . ; nÿ 2; s < r�; �30�

and

�̀
r � nbn ÿ

Xnÿ1

i�r

xibni: �31�

Substituting for x1 and xn from (24) and (25) into the determinantal
factor in the integrand of (23) we ®nd that:
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Xn
i�1

xi

1

zi

þ !
1

zi

þ ! 0ÿÿÿÿÿ
ÿÿÿÿÿ � n2f�bnz21 ÿ b1z

2
n�=bn1 ÿ �z2g

� n
Xnÿ1

i�2

xifbn1z2i ÿ bniz
2
1 ÿ bi1z

2
ng=bn1: �32�

Note that this is linear in x2; . . . ; xnÿ1, not quadratic.
As before, it will be helpful to `lift' the determinantal factor (32) into

the exponential term in the integrand. We thus write the integrand in the
form:

n�ÿ1
0 �@=@w�

"
expfÿn�0w �z2g

� exp ÿn�0��bna1 ÿ b1an�=bn1� ÿ �0
Xnÿ1

i�2

xidn1i

( )#
w�0

;

where we have de®ned

dijk � �akbij ÿ aibkj ÿ ajbik�=bij; �33�
and

gij � �biaj ÿ bjai�=bij; �34�
with

ai � �ri ÿ wz2i �; i � 1; . . . ; n: �35�
Assuming that differentiation with respect to w commutes with the inte-
gration, we therefore have:

pdfA;T �a; t;�; �� � n�nÿ1
0 expfn�tÿ ��zg�bn1�ÿ1�@=@w�

�
"
expfÿn�0w �z2g expfÿn�0gn1g

�
�
R
exp ÿn�0

Xnÿ1

i�2

xidn1i

( )
dx2 . . . dxnÿ1

#
w�0

:

�36�
Our ®rst task is therefore to evaluate the integral in the last line of (36),
though in what follows we shall include the term expfÿn�0gn1g in the
derivation of the results, because this will facilitate their simpli®cation as
we proceed.
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Consider now the integral with respect to x2. From (27), the range of x2
is restricted by

x2 < nbn ÿ
Xnÿ1

i�3

xibni

" #
=bn2 � �̀

3=bn2;

and

x2 < ÿnb1 ÿ
Xnÿ1

i�3

xibi1

" #
=b21 � ÿ`31=b21:

Now, the difference between these two upper bounds is

�̀
3=bn2 � `31=b21 � �bn1=�bn2b21�� nb2 �

Xnÿ1

i�3

xibi2

" #
� �bn1=�bn2b21��`32: �37�

For x3; . . . ; xnÿ1 such that `32 > 0 and `31 < 0; the x2-integral is over the
interval �0;ÿ`31=b21�, while for x3; . . . ; xnÿ1 such that `32 < 0 and �̀

3 > 0;
it is over the interval �0; �̀3=bn2�. Notice that, because all coef®cients other
than b2 in `32 are positive, if b2 � z2 ÿ �z > 0 the only possibility is
`32 > 0: However, assume for the moment that b2 < 0; so that `32 can
be either positive or negative. Since the regions of subsequent integration
with respect to x3; . . . ; xnÿ1 are disjoint, the integral with respect to x2
may be expressed as a sum of two terms, each to be subsequently inte-
grated over different regions for x3; . . . ; xnÿ1. The result of integrating out
x2 is thus the sum of two terms:

��0dn12�ÿ1 exp ÿ�0 ngn1 �
Xnÿ1

i�3

xidn1i

" #( )
�1ÿ exp��0dn12`31=b31��;

to be integrated over the region f`32 > 0; �̀
3 < 0g, and

��0dn12�ÿ1 exp ÿ�0 ngn1 �
Xnÿ1

i�3

xidn1i

" #( )
�1ÿ exp�ÿ�0dn12`3=bn2��;

to be integrated over the region f`32 < 0; �̀
3 > 0g.

After some tedious algebra the two results above for the x2-integral
become (apart from the factor ��0dn12�ÿ1�:

exp ÿ�0

"
ngn1 �

Xnÿ1

i�3

xidn1i

( #" )
ÿ exp ÿ�0 ng21 �

Xnÿ1

i�3

xid21i

" #( )#
;

�38�
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to be integrated over f`32 > 0; `31 < 0g, plus

exp ÿ�0 ngn1 �
Xnÿ1

i�3

xidn1i

" #( )
ÿ exp ÿ�0 ngn2 �

Xnÿ1

i�3

xidn2i

" #( )" #
;

�39�
to be integrated over f`32 < 0; �̀

3 > 0g.
Now, the ®rst terms in (38) and (39) are the same, but are to be

integrated over two disjoint regions. When added, therefore, the integral
of this term will be over the union of the regions f`32 > 0; `31 > 0g and
f`32 < 0; �̀

3 > 0g, i.e. over the region f`31 > 0; �̀
3 > 0g. The result of the

x2-integration is therefore a sum of three terms, each to be integrated
over a different region of �x3; . . . ; xnÿ1�-space. These are (again apart
from the term ��0dn12�ÿ1�, together with their respective regions of sub-
sequent integration:

� exp ÿ�0 ngn1 �
Xnÿ1

i�3

xidn1i

" #( )
; �`31 < 0; �̀

3 > 0�; �40�

ÿ exp ÿ�0 ngn2 �
Xnÿ1

i�3

xidn2i

" #( )
; �`32 < 0; �̀

3 > 0�; �41�

ÿ exp ÿ�0 ng21 �
Xnÿ1

i�3

xid21i

" #( )
; �`32 > 0; `31 < 0�: �42�

Note that if `32 cannot be negative (i.e. if z2 > �z�, the second term here is
missing.

The ®nal form of the result we seek is certainly not yet apparent, so we
need to proceed to integrate out x3 in the same way. To do so we need to
deal with the three terms in (40) to (42) separately, since each has a
different region of integration for �x3; . . . ; xnÿ1�. Proceeding as above
for the x2-integration, after isolating x3 each region gives rise to a sum
of two x3-integrals, and each of these yields two distinct terms. At this
stage we have:
from (40)

� ��0dn13�ÿ1 multiplied by

exp ÿ�0 ngn1 �
Xnÿ1

i�4

xidn1i

" #( )
�1ÿ exp��0dn13`41=b31��

�`43 > 0; `41 < 0�
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plus

exp ÿ�0 ngn1 �
Xnÿ1

i�4

xidn1i

" #( )
�1ÿ exp�ÿ�0dn13`4=bn3��

�`43 < 0; �̀
4 > 0�

from (41)

ÿ��0dn23�ÿ1 multiplied by

exp ÿ�0 ngn2 �
Xnÿ1

i�4

xidn2i

" #( )
�1ÿ exp��0dn23`42=b32��

�`43 > 0; `42 < 0�

plus

exp ÿ�0 ngn2 �
Xnÿ1

i�4

xidn2i

" #( )
�1ÿ exp�ÿ�0dn23`4=bn3��

�`43 < 0; �̀
4 > 0�

from (42)

ÿ��0d213�ÿ1 multiplied by

exp ÿ�0 ng21 �
Xnÿ1

i�4

xid21i

" #( )
�exp��0d213`42=b32�

ÿ exp��0d213`41=b31�� �`43 > 0; `42 < 0�

plus

exp ÿ�0 ng21 �
Xnÿ1

i�4

xid21i

" #( )
�1ÿ exp��0d213`41=b31��

�`41 < 0; `42 > 0�

From the ®rst of these sets of results we get three terms (ignoring the
factor ��0�ÿ1 which occurs in all terms):
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dÿ1
n13 multiplied by:

� exp ÿ�0 ngn1 �
Xnÿ1

i�4

xidn1i

" #( )
�`41 < 0; �̀

4 > 0� �43�

ÿ exp ÿ�0 ng31 �
Xnÿ1

i�4

xid31i

" #( )
�`43 > 0; `41 < 0� �44�

ÿ exp ÿ�0 ngn3 �
Xnÿ1

i�4

xidn3i

" #( )
�`43 < 0; �̀

4 > 0�: �45�

From the second group we get:

ÿdÿ1
n23 multiplied by:

� exp ÿ�0 ngn2 �
Xnÿ1

i�4

xidn2i

" #( )
�`42 < 0; �̀

4 > 0� �46�

ÿ exp ÿ�0 ng32 �
Xnÿ1

i�4

xid32i

" #( )
�`43 > 0; `42 < 0� �47�

ÿ exp ÿ�0 ngn3 �
Xnÿ1

i�4

xidn3i

" #( )
�`43 < 0; �̀

4 > 0�: �48�

Finally, from the third group we get:

ÿdÿ1
213 multiplied by:

� exp ÿ�0 ng21 �
Xnÿ1

i�4

xid21i

" #( )
�`41 < 0; `42 > 0� �49�

� exp ÿ�0 ng32 �
Xnÿ1

i�4

xid32i

" #( )
�`43 > 0; `42 < 0� �50�

ÿ exp ÿ�0 ng31 �
Xnÿ1

i�4

xid31i

" #( )
�`43 > 0; `41 < 0�: �51�

To simplify the summary of these results, write

f �k�
ns � exp ÿ�0 ngns �

Xnÿ1

i�k

xidnsi

" #( )
; k � 3; . . . ; nÿ 1; s < k;

�52�
and, for j > s,
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f �k�js � exp ÿ�0 ngjs �
Xnÿ1

i�k

xidjsi

" #( )
; k � 3; . . . ; nÿ 1; s < k:

�53�
From (40)±(42), the result after integrating out x2 may, with this nota-
tion, be expressed as:

��0dn12�ÿ1fÿf
�3�
21 � f

�3�
n1 ÿ f

�3�
n2 g; �54�

with respective regions of integration: for f
�3�
n1 , f`31 < 0; �̀

3 > 0g, for
f
�3�
n2 ; f`32 < 0; �̀

3 > 0g, and for f
�3�
21 ; f`32 > 0; `31 < 0g. Likewise, from

(43)±(51), the result after integrating out x3 may be expressed in the form:

��20dn12�ÿ1fdÿ1
n13 f

�4�
n1 ÿ dÿ1

n23 f
�4�
n2 ÿ �dÿ1

n13 ÿ dÿ1
n23� f �4�n3 ÿ dÿ1

213 f
�4�
21

ÿ�dÿ1
n13 ÿ dÿ1

213� f �4�31 ÿ �dÿ1
213 ÿ dÿ1

n23� f �4�32 g; �55�

with subsequent regions of integration:

for f �4�ns ; f`4s < 0; �̀4 > 0g; s � 1; 2; 3;

for f
�4�
js ; f`4j > 0; `4s < 0g; j � 2; 3; s < j:

Evidently, so long as �kÿ 1� < p (recall that p is the ®rst value of i
for which bi � zi ÿ �z > 0), the result of integrating out x2; . . . ; xkÿ1 will
be a linear combination of k�kÿ 1�=2 terms, the �kÿ 1� terms
f �k�ns ; s � 1; . . . ; kÿ 1; together with the �kÿ 1��kÿ 2�=2 terms f

�k�
js ;

j � 2; . . . ; �kÿ 1�; s � 1; . . . ; � j ÿ 1�, each term to be subsequently inte-
grated over a different region for �xk; . . . ; xnÿ1�. As in the one-parameter
case, the coef®cients in this linear combination can be generated recur-
sively. To deduce the transition rules for the recursion, write the result of
integrating out x2; . . . ; xkÿ1 (assuming kÿ 1 < p) in the form:

Xkÿ1

s�1

a�k�ns f
�k�
ns �

Xkÿ1

r�2

Xrÿ1

s�1

a�k�rs f
�k�
rs ; �56�

with regions of subsequent integration:

for f �k�ns : �`ks < 0; �̀
k > 0�

for f �k�rs : �`kr > 0; `ks < 0�:
We proceed now to integrate out xk. There are two cases to consider: (i)
the case k < p, and (ii) the case k � p.
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Case (i): k < p
We begin with the ®rst sum in (56). Isolating xk in the inequalities
�`ks < 0; �̀

k > 0�, we ®nd that xk must satisfy both of the inequalities:

xk < ÿ`k�1;s=bks and xk < �̀
k�1=bnk:

Using the identities (28) and (29), the difference between these upper
bounds is

�̀
k�1=bnk � `k�1;s=bks � �bns=�bnkbks��`k�1;k:

The xk-integral of an f �k�ns term in (56) therefore splits into a sum of two
terms (each multiplied by f �k�1�

ns �:�ÿ`k�1;s=bks

0

exp�ÿ�0xkdnsk�dxk � ��0dnsk�ÿ1 1ÿ exp��0dnsk`k�1;s=bks�
� �

�if `k�1;k > 0; `k�1;s < 0�; �57�
plus � �̀

k�1=bnk

0

exp�ÿ�0xkdnsk�dxk � ��0dnsk�ÿ1 1ÿ exp��0dnsk`k�1=bnk�
� �

�if `k�1;k < 0; �̀
k�1 > 0�: �58�

As before, the sum of the two equal terms f �k�1�
ns to be integrated over the

disjoint regions �`k�1;k > 0; `k�1;s < 0� and �`k�1;k < 0; �̀
k�1 > 0� is sim-

ply the integral over the union of those regions, i.e. over the region
�`k�1;s < 0; �̀

k�1 > 0�. Using the identities (28) and (29) again, we see that

f �k�1�
ns exp��0`k�1;sdnsk=bks� � f

�k�1�
ks ;

and

f �k�1�
ns exp�ÿ�0 �̀k�1dnsk=bnk� � f

�k�1�
nk :

Hence, integration of the ®rst sum in (56) yields the sum:

�ÿ1
0

Xkÿ1

s�1

�ansk=dnsk�f f �k�1�
ns ÿ f

�k�1�
ks ÿ f

�k�1�
nk g; �59�

with regions of subsequent integration:

for f �k�1�
ns : f`k�1;s < 0; �̀

k�1 > 0g;
for f �k�1�

ks : f`k�1;k > 0; `k�1;s < 0g;
for f �k�1�

nk : f`k�1;k < 0; �̀
k�1 > 0g:
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Consider now the second sum in (56). Isolating xk in the inequalities
�`kr > 0; `ks < 0� gives:

xk > ÿ`k�1;r=bkr and xk < ÿ`k�1;s=bks:

The difference between the upper and lower limits is

`k�1;r=bkr ÿ `k�1;s=bks � �brs=�bkrbks��`k�1;k:

The integral vanishes, of course, if this is non-positive, i.e. if `k�1;k � 0:

We again get a sum of two terms (each to be multiplied by f �k�1�
rs �:�ÿ`k�1;s=bks

ÿ`k�1;r=bkr

exp�ÿ�0xkdrsk�dxk

� ��0drsk�ÿ1�exp��0`k�1;rdrsk=bkr� ÿ exp��0`k�1;sdrsk=bks��
(if `k�1;r < 0; `k�1;k > 0� �60�

plus �ÿ`k�1;s=bks

0

exp�ÿ�0xkdrsk�dxk

� ��0drsk�ÿ1 1ÿ exp��0`k�1;sdrsk=bks�
� �

(if `k�1;r < 0; `k�1;s < 0�: �61�
Again using the identities (28) and (29) we ®nd that:

f �k�1�
rs exp��0`k�1;rdrsk=bkr� � f

�k�1�
kr ;

and

f �k�1�
rs exp��0`k�1;sdrsk=bks� � f

�k�1�
ks :

The two equal terms in (60) and (61) combine as usual to give the term
f
�k�1�
ks , to be integrated over f`k�1;k > 0; `k�1;s < 0g. Hence the second
sum in (56) becomes, after integrating out xk,

�ÿ1
0

Xkÿ1

r�2

Xrÿ1

s�1

�a�k�rs =drsk�f f �k�1�
rs � f

�k�1�
kr ÿ f

�k�1�
ks g �62�

with regions of subsequent integration:

for f �k�1�
rs : f`k�1;r > 0; `k�1;s < 0g;

for f �k�1�
kr : f`k�1;r < 0; `k�1;k > 0g;

for f
�k�1�
ks : f`k�1;s < 0; `k�1;k > 0g:
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Case (ii): k � p
In the case k � p, `p�1;p cannot be negative, so only (57) occurs when xp is
integrated out in the ®rst term of (56). We therefore get, in place of (59),

�ÿ1
0

Xpÿ1

s�1

�a�p�ns =dnsp�f f �p�1�
ns ÿ f �p�1�

ps g; �63�

with both terms to be integrated over the region (for xp�1; . . . ; xnÿ1�
determined by the single condition `p�1;s < 0: Notice that the term
f �p�1�
np does not appear in (63).
Turning to the second term in (56), equations (60) and (61) apply with

k � p, but the condition `p�1;p > 0 in (60) is automatically satis®ed.
Hence the only change needed for this case is that the regions of sub-
sequent integration of the terms f �p�1�

pr and f �p�1�
ps in (62) are determined by

the single inequalities `p�1;r < 0 and `p�1;s < 0; respectively.
Combining these results, the result of integrating out xk in (56) is, apart

from the factor ��0�ÿ1,
for case (i): k < pXkÿ1

s�1

�a�k�ns =dnsk�f f �k�1�
ns ÿ f

�k�1�
ks ÿ f

�k�1�
nk g

�
Xkÿ1

r�2

Xrÿ1

s�1

�a�k�rs =drsk�f f �k�1�
rs � f

�k�1�
kr ÿ f

�k�1�
ks g �64�

for case (ii): k � p

Xpÿ1

s�1

�a�p�ns =dnsp� ff �p�1�
ns ÿ f �p�1�

ps g

�
Xpÿ1

r�2

Xrÿ1

s�1

�a�p�rs =drsp�f f �p�1�
rs � f �p�1�

pr ÿ f �p�1�
ps g: �65�

Identifying (64) with the analogue of (56):Xk
s�1

a�k�1�
ns f �k�1�

ns �
Xk
r�2

Xrÿ1

s�1

a�k�1�
rs f �k�1�

rs �66�

the `new' terms are f �k�1�
nk �in the ®rst sum) and f

�k�1�
k1 ; . . . ; f �k�1�

k;kÿ1 (in the

second), a total of k new terms. Now, for s � 1; . . . ; kÿ 1; f �k�1�
ns occurs

only in the ®rst line of (64). Hence, if k < p,

a�k�1�
ns � a�k�ns =dnsk; s � 1; . . . ; �kÿ 1�: �67�
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Also, the term f �k�1�
nk occurs only in the ®rst line of (64), so that

a�k�1�
nk � ÿ

Xkÿ1

s�1

�a�k�ns =dnsk�: �68�

In the second line of (64), the terms f �k�1�
rs with r < k occur with coef®-

cients a�k�rs =drsk, so that

a�k�1�
rs � a�k�rs =drsk; r � 2; . . . ; �kÿ 1�; s � 1; . . . ; �rÿ 1�: �69�

The new terms f �k�1�
kj ; j � 1; . . . ; kÿ 1; occur in the ®rst line of (64) with

coef®cients ÿa�k�ns =dnsk, and twice in the second line of (64), in the second
term with coef®cients

�
Xjÿ1

s�1

a�k�js =djsk

h i
; � j > 1�

and in the third term with coef®cients

ÿ
Xkÿ1

r�j�1

a
�k�
rj =drjk

h i
; � j < kÿ 1�:

Hence the coef®cients of the terms f
�k�1�
kj in (64) are:

a
�k�1�
k1 � ÿa

�k�
n1 =dn1k ÿ

Xkÿ1

r�2

�a�k�r1 =dr1k�;

a
�k�1�
kj � ÿa

�k�
nj =dnjk �

Xjÿ1

s�1

�a�k�js =djsk� ÿ
Xkÿ1

r�j�1

�a�k�rj =drjk�;

j � 2; . . . ; kÿ 2;

a
�k�1�
k;kÿ1 � ÿa

�k�
n;kÿ1=dn;kÿ1;k �

Xkÿ2

s�1

�a�k�kÿ1;s=dkÿ1;s;k�: �70�

Equations (67)±(70) specify the recursive relations between the co-
ef®cients in equation (56) up to the integration with respect to xpÿ1.
For the next step, integration with respect to xp, we need to identify
(65) with (66) (with k replaced by p�. This gives:

a�p�1�
ns � a�p�ns =dnsp; s � 1; . . . ; pÿ 1; �71�

a�p�1�
np � 0; �72�

a�p�1�
rs � a�p�rs =drsp; r � 2; . . . ; pÿ 1; s � 1; . . . ; rÿ 1; �73�
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a
�p�1�
p1 � ÿa

�p�
n1 =dn1p ÿ

Xpÿ1

r�2

�a�p�r1 =dr1p�

a
�p�1�
pj � ÿa

�p�
nj =dnjp �

Xjÿ1

s�1

�a�p�js =djsp � ÿ
Xpÿ1

r�j�1

�a�p�rj =drjp�;

j � 2; . . . ; pÿ 2

a
�p�1�
p;pÿ1 � ÿa

�p�
n;pÿ1=dn;pÿ1;p �

Xpÿ2

s�1

�a�p�pÿ1;s=dpÿ1;s;p�: �74�

Thus, after integrating out xp, we shall have an expression:

Xpÿ1

s�1

a�p�1�
ns f �p�1�

ns �
Xpÿ1

r�2

Xrÿ1

s�1

a�p�1�
rs f �p�1�

rs �
Xpÿ1

s�1

a�p�1�
ps f �p�1�

ps �75�

with regions of subsequent integration:

for f �p�1�
ns : `p�1;s < 0;

for f �p�1�
rs : f`p�1;r > 0; `p�1;s < 0g �r � pÿ 1�;

for f �p�1�
ps : `p�1;s < 0; s � 1; . . . ; pÿ 1:

In general, after integrating out xkÿ1, with p < kÿ 1 < nÿ 1; we shall
have an expression of the form:

Xpÿ1

s�1

a�k�ns f
�k�
ns �

Xpÿ1

r�2

Xrÿ1

s�1

a�k�rs f
�k�
rs �

Xkÿ1

r�p

Xpÿ1

s�1

a�k�rs f
�k�
rs �76�

with regions of subsequent integration:

for f �k�ns : `ks < 0; s � 1; . . . ; pÿ 1;

for f �k�rs : `kr > 0; `ks < 0; r � 2; . . . ; pÿ 1; s � 1; . . . ; rÿ 1;

for f �k�rs : `ks < 0; r � p; . . . ; nÿ 2; s � 1; . . . ; pÿ 1:

Integration of (76) with respect to xk then yields (apart from the factor
�ÿ1
0 �:
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Xpÿ1

s�1

�a�k�ns =dnsk�f f �k�1�
ns ÿ f

�k�1�
ks g

�
Xpÿ1

r�2

Xrÿ1

s�1

�a�k�rs =drsk�f f �k�1�
rs � f �k�1�

kr ÿ f �k�1�
ks g

�
Xkÿ1

r�p

Xpÿ1

s�1

�a�k�rs =drsk�f f �k�1�
rs ÿ f

�k�1�
ks g: �77�

Identifying this with the analogue of (76) with kÿ 1 replaced by k:Xpÿ1

s�1

a�k�1�
ns f �k�1�

ns �
Xpÿ1

r�2

Xrÿ1

s�1

a�k�1�
rs f �k�1�

rs �
Xk
r�p

Xpÿ1

s�1

a�k�1�
rs f �k�1�

rs ; �78�

the only additional terms are the pÿ 1 terms f
�k�1�
ks ; s � 1; . . . ; pÿ 1:

Comparison of (77) with (78) yields the recursive relations for the
coef®cients for terms beyond the p'th, but with k < nÿ 1:

a�k�1�
ns � a�k�ns =dnsk; s � 1; . . . ; pÿ 1; �79�

a�k�1�
rs � a�k�rs =drsk; r � 2; . . . ; pÿ 1; s � 1; . . . ; rÿ 1; �80�

a�k�1�
rs � a�k�rs =drsk; r � p; . . . ; kÿ 1; s � 1; . . . ; pÿ 1; �81�

a�k�1�
k1 � ÿa�k�k1 =dn1k ÿ

Xpÿ1

r�2

�a�k�r1 =dr1k�;

a
�k�1�
kj � ÿa

�k�
kj =dnjk ÿ

Xpÿ1

r�j�1

�a�k�rj =drjk�

�
Xjÿ1

s�1

�a�k�js =djsk�; j � 2; . . . ; pÿ 2

a
�k�1�
k;pÿ1 � ÿa

�k�
k;pÿ1=dn;pÿ1;k �

Xpÿ2

s�1

�a�k�pÿ1;s=dpÿ1;s;k�;

a�k�1�
ks � 0; s > pÿ 1: �82�

Note that each integration with respect to an xk, with k > pÿ 1; adds
only pÿ 1 terms to the sum, not k.

Consider now the integral with respect to the last variable, xnÿ1. We
assume that p < nÿ 2; slight modi®cations of what follows are needed in
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the cases p � nÿ 1 or p � n, but since these cases are unlikely in practice
we omit those details. We need to integrate (78) (with k replaced by nÿ 2�
with respect to xnÿ1. For the terms f �nÿ1�

ns the range of integration is
`nÿ1;s < 0; or nbs � xnÿ1bnÿ1;s < 0; so that

xnÿ1 < ÿnbs=bnÿ1;s; s � 1; . . . ; pÿ 1:

Hence, integration of these terms with respect to xnÿ1 yields the sum:

�ÿ1
0

Xpÿ1

s�1

�a�nÿ1�
ns =dns;nÿ1�ffns ÿ fnÿ1;sg; �83�

where here and below we set frs � expfÿn�0grsg.
For the second sum in (78), the inequalities `nÿ1;r > 0 and `nÿ1;s > 0

give xnÿ1 < ÿnbr=bnÿ1;r and xnÿ1 > ÿnbs=bnÿ1;s. The difference between
the upper and lower limits here is a positive multiple of bnÿ1, and is thus
positive unless p � n, which we rule out. Since the lower limit is certainly
positive (because bs < 0 when s < pÿ 1�, integration with respect to xnÿ1

yields:

�ÿ1
0

Xpÿ1

r�2

Xrÿ1

s�1

�a�nÿ1�
rs =drs;nÿ1�f fnÿ1;r ÿ fnÿ1;sg: �84�

Note particularly that (84) yields no terms frs with r < p.
Finally, the third sum in (78) yields

�ÿ1
0

Xnÿ2

r�p

Xpÿ1

s�1

�a�nÿ1�
rs =drs;nÿ1�f frs ÿ fnÿ1;sg: �85�

Hence, after integrating out the ®nal variable xnÿ1, we shall have a linear
combination of �nÿ p� 1��pÿ 1� terms:

frs � expfÿn�0grsg; r � p; . . . ; n; s � 1; . . . ; pÿ 1: �86�
If we write this linear combination in the form:

Xn
r�p

Xpÿ1

s�1

ars frs; �87�

equations (79)±(85) yield the relations between the ars and the a�nÿ1�
rs :

ars � a�nÿ1�
rs =drs;nÿ1; r � p; . . . ; nÿ 2; s � 1; . . . ; pÿ 1; �88�

anÿ1;1 � ÿa
�nÿ1�
n1 =dn1;nÿ1 ÿ

Xnÿ2

r�2

�a�nÿ1�
r1 =dr1;nÿ1�; �89�
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anÿ1;s � ÿa�nÿ1�
ns =dns;nÿ1 �

Xsÿ1

j�1

�a�nÿ1�
sj =dsj;nÿ1�

ÿ
Xnÿ2

r�s�1

�a�nÿ1�
rs =drs;nÿ1�; s � 2; . . . ; pÿ 1; �90�

ans � a�nÿ1�
ns =dns;nÿ1; s � 1; . . . ; pÿ 1: �91�

As in the single-parameter case, these recursive relations can be expressed
in terms of a product of matrices of increasing dimension. To do so, ®rst
assume that k < p, and let ck be the �k�k� 1�=2� � 1 vector of coef®cients
of the f �k�1�

rs after integrating out xk, with an analogous de®nition of ckÿ1

(which, of course, is �k�kÿ 1�=2� � 1�. Assume that the elements of ck are
arranged in lexicographic order, i.e. in the order (for k < p�:

��21�; �31�; �32�; . . . ; �k1�; �k2�; . . . ; �k; kÿ 1�; �n1�; . . . ; �nk��:
In the case k � p, only pairs (rs) with s � pÿ 1 occur. In the transition
from ckÿ1 to ck �k < p� the terms ��k1�; . . . ; �k; kÿ 1�� and �nk� are added.
Let Lk denote the �k�k� 1�=2� � �k�kÿ 1�=2� matrix that takes ckÿ1 to
ck : ck � Lkckÿ1. From the results in (67)±(70), the structure of the matrix
Lk, for k < p, is as follows:

Lk �

Lk11 0

Lk21 Lk22

0 Lk32

0 Lk42

26666664

37777775; �92�

where

Lk11 � diagfdÿ1
21k; d

ÿ1
31k; d

ÿ1
32k; . . . ; d

ÿ1
kÿ1;1k; . . . ; d

ÿ1
kÿ1;kÿ2;kg �93�

is a ��kÿ 1��kÿ 2�=2� � ��kÿ 1��kÿ 2�=2� diagonal matrix,

Lk32 � diagfdÿ1
n1k; . . . ; d

ÿ1
n;kÿ1;kg �94�

is a �kÿ 1� � �kÿ 1� diagonal matrix, Lk22 � ÿLk32;

Lk42 � �ÿdÿ1
n1k; . . . ;ÿdÿ1

n;kÿ1;k� �95�
is a 1� �kÿ 1� vector, and Lk21 is a �kÿ 1� � ��kÿ 1��kÿ 2�=2� matrix
with the following structure:
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for j � 1; . . . ; �kÿ 1�, the non-zero elements in row j are, in their lex-
icographic positions, the terms ÿdÿ1

rjk for r > j, and the terms dÿ1
jsk for

s � 1; . . . ; j ÿ 1:
Row 3, for instance, is:

f0; dÿ1
31k; d

ÿ1
32k; 0; 0;ÿdÿ1

43k; 0; 0;ÿdÿ1
53k; . . . ;ÿdÿ1

kÿ1;3;k; 0; . . . ; 0g:
For p � k < nÿ 1 the following modi®cations to Lk must be made: (1)
the last row is absent; (2) Lk32 = diagfdÿ1

n1k; . . . ; d
ÿ1
n;pÿ1;kg is �pÿ 1� �

�pÿ 1�, and hence so is Lk22 � ÿLk32; (3) in Lk11, the diagonal terms
dÿ1
rsk for r > p appear only for s � 1; . . . ; �pÿ 1�, so that Lk11 is square

of dimension �p�pÿ 1�=2� �kÿ p��pÿ 1��, and, correspondingly, (4) Lk21

is now �pÿ 1� � �p�pÿ 1�=2� �kÿ p��pÿ 1��, with the same structure as
above except that the dÿ1

rsk that occur are for r � 1; . . . ; �pÿ 1� only.
Hence, for p � k < nÿ 1; Lk is

�p�pÿ 1�=2� �kÿ p� 1��pÿ 1�� � �p�pÿ 1�=2� �kÿ p� 2��pÿ 1��:
Finally, the matrix Lnÿ1 is ��nÿ p� 1��pÿ 1�� � ��nÿ p��pÿ 1� �

p�pÿ 1�=2� with the following structure:

Ln �
Lnÿ1;11 0

Lnÿ1;21 Lnÿ1;22

0 Lnÿ1;32

2664
3775

where Lnÿ1;32 � diagfdÿ1
ns;nÿ1; s � 1; . . . ; pÿ 1g is �pÿ 1� � �pÿ 1�;

Lnÿ1;22 � ÿLnÿ1;32; Lnÿ1;21 is �pÿ 1� � ��nÿ pÿ 1��pÿ 1� � p�pÿ 1�=2�
with the same structure as in the case p � k < nÿ 1 above, and Lnÿ1;11

is �nÿ pÿ 1��pÿ 1� � ��nÿ pÿ 1��pÿ 1� � p�pÿ 1�=2� with the form:

Lnÿ1;11 � 0; diagfdÿ1
rs;nÿ1; r � p; . . . ; nÿ 2; s � 1; . . . ; pÿ 1g� �

;

where the initial block of zeros is �nÿ pÿ 1��pÿ 1� � ��pÿ 1��pÿ 2�=2�.
The ®nal vector cnÿ1, of dimension ��nÿ p� 1��pÿ 1�� � 1; is then

given by the recursive formula:

cnÿ1 � Lnÿ1Lnÿ2 . . .L2; �96�
starting with

L2 � dÿ1
n12

ÿ1

�1

ÿ1

0BB@
1CCA �97�

(see (54) above). Letting fnÿ1 denote the vector of functions
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frs � expfÿn�0�bras ÿ bsar�=brsg;
ordered lexicographically as above, we have:

pdfA;T �a; t; �; �� � �n�0bÿ1
n1 � expfn �z�tÿ ��g�@=@w�

� �expfÿn�0wz
2gc 0nÿ1 fnÿ1�w�0:

It remains now to evaluate the differential operator, and set w � 0: The
results are exactly analogous to those for the single-parameter case given
earlier. First we de®ne

~cnÿ1 � cnÿ1jw�0 � ~Lnÿ1
~Lnÿ2 . . . ~L2; �98�

where the ~Lp are de®ned exactly as the Lp are de®ned above, but with dijk
replaced by

~dijk � �bijrk ÿ bkjri ÿ bikrj �=bij: �99�
Before proceeding we note that, at the point t � �; ri � 1 for all i, and
~dijk � 0; so that the ~Lr are not de®ned at t � �. The results that follow
therefore hold everywhere except at t � �. At the point t � � we have,
directly from (23),

pdfA;T �a; t � �;�; �� � �n0 expfÿn�0g � cn�z�; �100�
where cn�z� is a constant. (100) follows from (23) when t � � because, in
the integrand of (23), the exponential term becomes

exp ÿ�0
Xn
i�1

xi

( )
� expfÿn�0g

on S (since, on S; Pn
i�1 xi � n). The integral is then a function only of

z � �z1; . . . ; zn� 0 and n. Since (100) is proportional to the conditional
density of A given that T � �, which must integrate to one, we also
obtain an expression for the density of T at t � �:

pdfT �t � �; �� � nÿnÿ�n�cn�z�: �101�
The constant cn�z� in (100) and (101) can be evaluated by methods like
those above, but we omit these details.

Next, let ~fnÿ1 be de®ned as fnÿ1, which has been de®ned above, but with
the frs replaced by

~frs � expfÿn�0�brrs ÿ bsrr�=brsg; �102�
and de®ne ~f �nÿ1 to be the vector with elements

�@=@w��expfÿn�0w �z2g frs� jw�0 � ÿn�0brbs ~frs: �103�
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As before,

@cnÿ1=@w jw�0�
Xnÿ2

i�1

� ~Lnÿ1 . . . ~L
�
nÿi�1 . . . ~L2� � ~c�nÿ1; say; �104�

where ~L�
p is again de®ned as Lp is de®ned above but with dÿ1

ijk replaced by

�bijz2k ÿ bkjz
2
i ÿ bikz

2
j �=�bij ~d2

ijk� � bkibkj= ~d
2
ijk: �105�

Combining these results, we have a relatively simple expression for the
density of �A;T�:

pdfA;T �a; t;�; �� � expfn �z�tÿ ��g�n�0bÿ1
n1 ��c� 0

nÿ1
~fnÿ1 � ~c 0nÿ1

~f �nÿ1�:
�106�

4.1 The marginal density of T

Remarkably, it is straightforward to integrate out a in (106) to obtain the
marginal density of T , because the two terms in the ��� in (106) are linear
combinations of terms expfÿn�0grsg and �ÿnbrbs�0� expfÿn�0grsg, respec-
tively, with coef®cients that do not depend on a. Transforming from
�aÿ �� to �0 � expf�aÿ ��g > 0; and integrating out �0 we obtain:

pdfT �t; �� � expfn �z�tÿ ��gbÿ1
n1 �c� 0

nÿ1hnÿ1 � ~c 0nÿ1h
�
nÿ1�; �107�

where hnÿ1 has elements gÿ1
rs , and h�nÿ1 has elements ÿbrbsg

ÿ2
rs . Again, the

density is de®ned by (107) at all points other than t � �. At t � � expres-
sion (101) must be used.

5 Properties of the exact densities

Because the coef®cients in the exact expressions (22), (106) and (107) are
generated recursively it is dif®cult to study the properties of the densities
analytically. However, given a choice for the vector z, it is straightfor-
ward to analyse the densities numerically, although in the two-parameter
case we did have some dif®culty with the numerical stability of the cal-
culations near t � � (see below).

5.1 Properties in the case k � 1

From the remarks in section 2, the density depends only on d � �tÿ ��,
has its mode at t � �, and the density at d when z > 0 is the density at ÿd
with z < 0, so that the density with negative z's is simply the density with
positive z's re¯ected about the origin.
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It also follows from the remarks in section 2 that there is no loss of
generality in scaling the zi's so that z 0z, the (expected) Fisher information
for �, is unity, corresponding to an asymptotic variance of one. Figure 3.1
shows the density, calculated from equation (22), for the case of equi-
spaced positive z's, scaled so that z 0z � 1; for the cases n � 2; 4; 8 and 16.
Different patterns of z's produce little change in the graphs. In table 3.1
we give the means, variances and skewness for the cases that appear in
®gure 3.1 (calculated by numerical integration).

Both ®gure 3.1 and table 3.1 suggest that the approach to the asymp-
totic distribution of the MLE is quite rapid, that (with positive z's) the
estimator is slightly negatively biased, and that the asymptotic variance
(� 1 in this example) slightly understates the true variance.
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Figure 3.1 Densities for n � 2; 4; 8 and 16 equispaced points z 0z � 1

Table 3.1. Means, variances and skewness for
®gure 3.1

n Mean Variance Skewness

2 70.429 1.386 70.841
4 70.315 1.216 70.628

8 70.227 1.114 70.454
16 70.161 1.058 70.323



5.2 Properties for the model with a constant term

In view of the remarks in section 2, the joint density has its mode at
the point (a; t� � ��; ��: Further properties must be derived from the
formulae above.

Consider ®rst the case n � 3: In this case no recursion is needed, and
we have directly from (54):

pdfA;T �a; t;�; �� � expf3�tÿ �� �zÿ 3�0 ~g31g�3�0bÿ1
31 �

� �ÿb21b32�2� ~d312� ÿ �0b1b3�1� ~d312�� �108�
where

�1�y� � �1ÿ eÿþy�=y; �109�
and

�2�y� � �1ÿ �1� þy�eÿþy�=y2; �110�
with þ � n�0b3=b32 if p � 3 and þ � ÿn�0b1=b21 if p � 2: Note that (108)
is well de®ned for all �a; t�, including t � �, since both �1 and �2 in fact do
not involve negative powers of ~d312.

The marginal density of T is readily obtained from (108) by direct
integration, giving:

pdfT �t; �� � expf3�tÿ �� �zgbÿ1
31

� �ÿÿ2b21b32 ~g31 ÿ b1b3ÿ�6 ~g31
� ÿ ~d312��=� ~g231�3 ~g31 � ÿ ~d312��; �111�

where now ÿ � þ=�0. The marginal density of A does not seem to be
obtainable analytically from (108), but is easily obtained from the joint
density by numerical integration.

Figure 3.2 presents three cases of the marginal density of t in (111)
corresponding to vectors z 0 � �ÿ1;ÿ0:9; 1�; �ÿ1; 0; 1�, and �ÿ1; 0:9; 1�
that were subsequently standardised to have �z � 0 and

P
z2i � 1 (so

that the asymptotic covariance matrix of �pn�aÿ ��; �tÿ ��� is an identity
matrix). The ®rst and third cases, of course, are identical except for
re¯ection about the origin. Even for such a small sample size, ®gure 3.2
reveals that the density is quite concentrated around zero, showing slight
skewness (depending on the pattern of the z's). Table 3.2 presents some
properties of the marginal densities for the case n � 3; and the two
(unstandardised) z-vectors (a) �ÿ1;ÿ0:9; 1�; (b) �1; 0; 1�.
Figure 3.3 shows the joint density pdfA;T �a; t;�; �; z� for case (b). The

marginal density of A, pdfA�a;�; z�, can be obtained by numerical
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integration, and is shown for all three cases in ®gure 3.4 (although cases
(a) and (c) are exactly superimposed). It does not exhibit the mirror
symmetry of pdfT �t; �; z�, being always negatively skewed. The density
for (b) lies slightly to the right. The density of A has variance and kurtosis
closer to the asymptotic values than those for T , but the mean and
skewness are further from their asymptotic values. The correlation
between A and T is negative for case (a), and positive for cases (b) and
(c), which is the mirror image of (a). Given the small sample size, the
results look well behaved.

For n � 4, the marginal density of T is symmetric if the data are
symmetric about its mean (e.g. z 0 � �0:1; 0:2; 0:3; 0:4�), and positively
skewed z's (e.g. z 0 � �0:1; 0:26; 0:33; 0:4�) give the mirror image of the
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Table 3.2. Properties of the marginal densities: n � 3

pdfT�t; �� pdfA�a;��
Case (a) (b) (a) (b)

Mean 70.25 0.0 70.64 70.62
Variance 1.53 1.65 1.39 1.38

Skewness 70.56 0.0 70.61 70.62
Kurtosis 4.22 4.15 3.64 3.68
Correlation 70.03 0.03 70.03 0.03

(a) z 0 � �ÿ1;ÿ0:9; 1�; (b) z 0 � �1; 0; 1�.

Figure 3.2 Marginal densities for tÿ �; n � 3



density with negatively skewed z's (e.g. z 0 � �0:1; 0:17; 0:24; 0:4�).
Accordingly we can illustrate almost the full range of behaviour by
using the symmetric z above, and the negatively skewed case
z 0 � �0:1; 0:11; 0:12; 0:4�. Table 3.3 shows the resulting moments in its
®rst two columns. For n � 5, the cases z 0 � �0:1; 0:2; 0:29; 0:4; 0:5�,
which gives the mirror image of the results with z3 changed to 0:31,
and z 0 � �0:1; 0:11; 0:12; 0:13; 0:5�, are illustrated in columns 3 and 4 of
table 3.3. The z-vectors given for table 3.3 (and elsewhere) are in their
unstandardised form. Progress towards limiting normality is masked by
the possibility of greater skewness for n � 5 observations than for n � 4.
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Figure 3.3 Joint density for tÿ �, aÿ �, n � 3

Figure 3.4 Marginal densities for aÿ �, n � 3



Because of the numerical instability of the calculations near t � �, and
because the cases above for small n suggest reasonably rapid convergence
to the asymptotic distribution, we now concentrate on the tail area of the
densities. Table 3.4 gives the exact tail area in the marginal density of T
(obtained by numerical integration) for n � 5 and n � 10, and for three
nominal (i.e. asymptotic) levels.

If one chooses z in this way, so that, for example, when n � 10, all the
observations except the largest are crowded together at the lower end of
the range, the skewness increases, and this acts against the effect of in-
creasing n, to leave the tail areas more or less unchanged over the range
n � 5; . . . ; 10, as the last column of table 3.4 illustrates. However, for
uniformly distributed z's, for example

z 0 � �0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0�;
the distribution is symmetric, the tail probabilities are equal, and are
given in table 3.5. There is evidently steady progress towards the nominal
values as n increases, slightly slower the further one is into the tails. For
larger values of n the computational dif®culties mentioned above have so
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Table 3.3. Moments of the marginal density of T

n � 4 n � 5

(a) (b) (a) (b)

Mean 0.00 70.329 70.016 70.393
Variance 1.43 1.45 1.40 1.55

Skewness 0.00 70.56 70.05 70.77
Kurtosis 3.48 3.58 3.71 4.22

For n � 4: (a) z 0 � �0:1; 0:2; 0:3; 0:4�, (b) z 0 � �0:1; 0:11; 0:12; 0:4�
For n � 5: (a) z 0 � �0:1; 0:2; 0:29; 0:4; 0:5�, (b) z 0 � �0:1; 0:11; 0:12; 0:13; 0:5�

Table 3.4. Marginal density of T. Tail areas: n � 5 and n � 10

Nominal tail area lower% upper% sum% n � 10, sum%

10 14.4 2.3 16.7 17.2
5 10.4 0.9 11.3 12.0
1 7.0 0.3 7.3 8.7

n � 5: z 0 � �0:1; 0:11; 0:12; 0:13; 0:5�
n � 10: z 0 � �0:1; 0:11; 0:12; 0:13; 0:14; 0:15; 0:16; 0:17; 0:18; 1:0�



far prevented us from carrying out a more detailed analysis of the
densities.

6 Conclusion

We have shown that the surface integral formula for the exact density of
the MLE given by Hillier and Armstrong (1996) provides a tractable
expression for the exact density in the case of an exponential regression
model with a k-covariate exponential mean function, at least for small
values of k. It seems clear that an algorithm could, in principle, be written
to provide similar results for arbitrary k.

The discussion in section 2 also shows that, even for arbitrary k, the
general formula can, by itself, provide considerable information about
the properties of the exact density. It is also worth noting that the general
approach used here extends easily to more general speci®cations for the
mean function (i.e. non-exponential functions of the wi), provided only
that the level set of the MLE is known. It will remain true for more
general models that the surface integral that needs to be evaluated is
over an �nÿ k�-dimensional hyperplane.

Finally, as far as the results for the speci®c model under consideration
are concerned, our main conclusion is that the exact densities are well
behaved and well approximated by the asymptotic densities, even for
quite small sample sizes. The sample behaviour of the covariates certainly
has an impact on the properties of the estimator, as one would expect, but
this effect is not dramatic.
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4 Empirical likelihood estimation and
inference

Richard J. Smith

1 Introduction

Since Hansen's (1982) seminal paper, the generalised method of moments

(GMM) has become an increasingly important method of estimation in

econometrics. Given assumed population moment conditions, the GMM

estimation method minimises a quadratic form in the sample counter-

parts of these moment conditions. The quadratic form is constructed

using a positive de®nite metric. If this metric is chosen as the inverse of

a positive semi-de®nite consistent estimator for the asymptotic variance

matrix of the sample moments, then the resultant GMM estimator is

asymptotically ef®cient. Estimation using GMM is semi-parametric

and, therefore, a particular advantage of GMM is that it imposes less

stringent assumptions than, for example, the method of maximum like-

lihood (ML). Although consequently more robust, GMM is of course

generally less ef®cient than ML. There is some Monte Carlo evidence

indicating that GMM estimation may be biased in small samples where

the bias seems to arise mainly from the metric used. For example, Altonji

and Segal (1996) suggest that GMM estimators using an identity matrix

metric may perform better in ®nite samples than an ef®cient GMM esti-

mator obtained using the inverse of the estimated asymptotic variance

matrix of the sample moments.1

When the variables of interest in the data-generation process (DGP)

are independent and identically distributed, an important recent paper

(Qin and Lawless (1994)) shows that it is possible to embed the compo-

nents of the sample moments used in GMM estimation in a non-para-

metric likelihood function; namely, an empirical likelihood (EL)
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framework. The resultant maximum EL estimator (MELE) shares the
same ®rst-order properties as Hansen's (1982) ef®cient GMM estimator.
Hence, the EL framework provides the possibility of using classical-type
methods to examine hypotheses for the parameters of interest. See
DiCiccio, Hall and Romano (1989) and Owen (1988, 1990, 1991) for a
discussion of the method of EL. Qin and Lawless (1994) also discuss
some simulation evidence that indicates that the MELE may represent
an improvement over the ef®cient GMM estimator. In the light of Qin
and Lawless's (1994) and Altonji and Segal's (1996) Monte Carlo evi-
dence, the EL method offers a potentially useful alternative and asymp-
totically ®rst-order equivalent approach to GMM estimation.

Empirical likelihood appears to have been largely ignored by econo-
metricians. A relevant related paper is that of Back and Brown (1993),
which, however, does not make explicit reference to the literature on
EL. More recently, Imbens (1997) proposes the use of an estimator,
which is essentially the MELE of Qin and Lawless (1994) and associated
test statistics. Imbens, Spady and Johnson (1998) use an information-
theoretic approach also for the independently and identically distributed
case and suggest an estimator and test statistics which are also asympto-
tically ®rst-order equivalent to those based on EL (Qin and Lawless
(1994)) and GMM (Hansen (1982)).

However, the application of EL and related information-theoretic
approaches to time-series DGPs is relatively limited. A notable exception
is Kitamura and Stutzer (1997), which uses an approach based on an
empirical Kullback±Leibler information criterion that yields estimators
®rst-order equivalent to ef®cient GMM estimation. Kitamura and
Stutzer's (1997) information-theoretic estimation method specialises to
that of Imbens, Spady and Johnson (1998) for independent and identi-
cally distributed DGPs. As will be seen below, for time-series DGPs,
Kitamura and Stutzer's (1997) method and ef®cient GMM estimation
are asymptotically equivalent to estimation based on a suitably smoothed
EL function. Smith (1997), by adapting the approach of Chesher and
Smith (1997) from the parametric context, introduces a class of semi-
parametric likelihood criteria which includes the criteria of EL,
Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998)
as special cases.

The emphasis in the statistical literature, however, has tended to be on
inference for the parameters of interest rather than issues of misspeci®ca-
tion. A major concern of this chapter is to discuss misspeci®cation test
statistics based on EL criteria for moment conditions. These tests mimic
the classical tests in an obvious way. A typical approach in the econo-
metric literature to the construction of misspeci®cation tests is based on
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using a quadratic form in estimated sample analogues of assumed or
implicit population moment conditions, which is examined to ascertain
whether or not the sample moments differ signi®cantly from the corre-
sponding theoretical moment conditions (see Newey (1985a, 1985b)). We
show that a suitable test, which shares the asymptotic properties of its
GMM counterpart, may be based on an empirical likelihood ratio (ELR)
statistic.

Section 2 brie¯y reviews GMM estimation and introduces EL estima-
tion in the context of time-series data. A modi®ed EL estimation proce-
dure is introduced that results in consistent and asymptotically ef®cient
estimators. We also present an ef®cient estimator for the stationary dis-
tribution of the time-series DGP, which might prove useful in examining
parametric distributional hypotheses. ELR and other classical-type tests
for over-identifying moment conditions which have the requisite central
chi-squared distribution are obtained in section 3, together with tests for
additional moment and parametric restrictions. Section 4 discusses the
application of the EL method to testing non-nested hypotheses. Various
proofs are given in the Appendix.

2 Empirical likelihood estimation

2.1 Generalised method of moments estimation

Consider the strictly stationary process fxtg1t�ÿ1. Suppose there exists a
unique value �0 of the p-vector of parameters � which lies in a compact
parameter space � � Rp such that the following r � p moment condi-
tions hold:

E�fg�xt; �0�g � 0; t � 0;�1; . . . ; �1�
where E�f:g denotes expectation taken with respect to the true but
unknown distribution or probability measure �. For economy of nota-
tion but without loss of generality, we will deliberately suppress any
dependence of the moment vector g�xt; �0� on lagged values xtÿs,
s � 1; 2; . . . ; and current and lagged values of exogenous variables.

Given observations fxtgTt�1, the optimal GMM estimator (Hansen
(1982)) �̂T is de®ned by

�̂T � argmin
�2�

Tÿ1
XT
t�1

g�xt; �� 0V̂
ÿ1

T

XT
t�1

g�xt; ��; �2�

where V̂T is a positive semi-de®nite consistent estimator for the asymp-
totic variance matrix V of the random vector Tÿ1=2 PT

t�1 g�xt; �0� which is
assumed to be positive de®nite; namely
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V � lim
T!1

Var Tÿ1=2
XT
t�1

g�xt; �0�
( )

: �3�

See inter alia Andrews (1991) and Newey and West (1987) for positive
semi-de®nite consistent estimation of asymptotic variance matrices.

Under suitable conditions and (1), it may be shown that

T1=2��̂T ÿ �0� ) N�0; �G 0Vÿ1G�ÿ1�;

where `)' indicates weak convergence, G � E�fr 0
�g�x; �0�g, which is

assumed to have full column rank, and r� � @=@�; see Hansen (1982).

2.2 Empirical likelihood estimation

De®ne the space of probability measures

P��� � fP : EPfg�x; ��g � 0g;

where EPf:g denotes expectation taken with respect to the probability
measure P, which is assumed absolutely continuous with respect to
the measure �. Consider obtaining the maximum likelihood estimator
for dP���=d�; that is, maximise E�fln�dP���=d��g subject to EPf1g �
1 (namely, that P is a probability measure) and EPfg�x; ��g � 0.2 It
is straightforward to show that the solution is given by
dP���=d� � �1� � 0g�x; ���ÿ1, where � is a vector of Lagrange multipliers
associated with the constraint EPfg�x; ��g � 0. Consequently, it may be
seen that dP���=d� � 1, that is, P��� � �, if and only if � � 0. Moreover,
given the uniqueness of �0 for E�fg�x; �0�g � 0, we have that P��0� � �.
Note that dropping the constraint EPfg�x; ��g � 0 results in
dP���=d� � 1.

Given observations fxtgTt�1, the appropriate empirical counterparts
to dP���=d� and d� are, respectively, dPt���=d�t � �1� � 0g�xt; ���ÿ1

and d�t � Tÿ1, t � 1; . . . ;T . Therefore, dPt��� � Tÿ1�1� � 0g�xt; ���ÿ1,
t � 1; . . . ;T . For Pt���, t � 1; . . . ;T , to de®ne a probability measure
we also require dPt��� � 0, t � 1; . . . ;T , and

PT
t�1 dPt��� �

Tÿ1 PT
t�1�1� � 0g�xt; ���ÿ1 � 1. The empirical measures fdPt���gTt�1 may

then be used to construct a semi-parametric likelihood function for the
observations fxtgTt�1. Hence, the log empirical likelihood (EL) criterion is
given by
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ÿT lnT ÿ
XT
t�1

ln�1� � 0g�xt; ���:

This and the above discussion suggest basing an estimation procedure for
�0 by ®nding the saddle-point of the criterion ÿT lnTÿPT

t�1 ln�1� � 0g�xt; ��� or, equivalently, the log EL criterion

QT ��; �� �
XT
t�1

ln�1� � 0g�xt; ���: �4�

Consequently, the estimated vector of Lagrange multipliers �T ��� asso-
ciated with the constraint Tÿ1 PT

t�1�1� � 0g�xt; ���ÿ1g�xt; �� � 0 for given
� is given by

�T ��� � argmax
�

QT ��; ��;

and the corresponding maximum EL estimator (MELE) �T by

�T � argmin
�2�

max
�

QT ��; ��: �5�

Denote �T � �T ��T �.
Although the consistency of the saddle-point estimator �T and the

MELE �T for 0 and �0 respectively may be shown by a similar method
to the Proof of Lemma 1 given below, the MELE �T of (5) based on
QT ��; �� of (4) is in general inef®cient relative to the GMM estimator �̂T
of (2); cf. the Proof of Theorem 1 below. See also Kitamura and Stutzer
(1997). In particular, the MELE �T and Lagrange multiplier estimator �T

are asymptotically correlated if the moment indicators fg�xt; �0�g1t�ÿ1 are
serially correlated. Consequently, there is additional information from
the moment conditions, E�fg�xt; �0�g � 0, t � 0;�1; . . . ; which is cur-
rently ignored and which may usefully be exploited. However, when,
for example, the DGP for fxtg1t�ÿ1 is independently and identically dis-
tributed or fg�xt; �0�g1t�ÿ1 is a martingale difference process, then �T is
asymptotically relatively ef®cient; cf. inter alia Qin and Lawless (1994). In
this case, �T and �T are asymptotically uncorrelated.

2.3 Ef®cient maximum empirical likelihood estimation

The inef®ciency of the MELE �T of (5) relative to the GMM estimator �̂T
of (2) is caused by the log EL criterion function QT ��; �� of (4) implicitly
imposing an inef®cient metric. In effect, QT ��; �� of (4) ignores any serial
correlation among the vectors fg�xt; ��g1t�ÿ1. In order to remedy this
dif®culty, consider the smoothed moment indicators
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g!tT ��� �
Xm�T�

s�ÿm�T�
!�s;m�T��g�xtÿs; ��;

with the weights f!�s;m�T��g acting to take into account any serial cor-
relation among the vectors fg�xt; ��g1t�ÿ1; cf. section 2.2. The weights
f!�s;m�T��g are chosen so that !�s;m�T�� � 0, s � ÿm�T�; . . . ;m�T�,
and

Pm�T�
s�ÿm�T� !�s;m�T�� � 1. We de®ne the lead and lag truncation

parameter m�T� such that m�T� � o�T1=2�; cf. Andrews (1991). More-
over, we choose the weights f!�s;m�T��g such that
E�fg!tT ���g � 0 , E�fg�xt; ��g � 0; t � 0;�1; . . . . Hence, we may refor-
mulate the moment conditions (1) equivalently as

E�fg!tT ��0�g � 0; t � 0;�1; . . . �6�
Kitamura and Stutzer (1997, equation (8), p. 865) propose the weights
!�s;m�T�� � 1=�2m�T� � 1�, s � ÿm�T�; . . . ;m�T�, which give rise to the
Bartlett kernel in the estimation of the variance matrix V of (3); see below
(10).

The smoothed log EL criterion function corresponding to the rede®ned
moment conditions (6) is given by

RT ��; �� �
XT
t�1

ln�1� � 0g!tT ����: �7�

The criterion RT ��; �� of (7) may be thought of as being constructed by
rede®ning the empirical measures fdPt���gTt�1 as

�t��; �� � Tÿ1�1� � 0g!tT ����ÿ1; t � 1; . . . ;T; �8�
cf. section 2.2.3 Note that it is necessary to ensure �t��; �� � 0,
t � 1; . . . ;T , and

PT
t�1 �t��; �� � 1.4 Smoothing the moment indicators
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3 Consider the following optimisation problem: maximise with respect to dPt���, t �
1; . . . ;T , the empirical likelihood

PT
t�1 lnt��� subject to the restrictions

PT
t�1 dPt��� � 1,

dPt��� � 0, t � 1; . . . ;T , and the empirical moment conditionXT
t�1

dPt���g!tT ��� � 0:

Ignoring for presentational purposes the inequality constraints dPt��� � 0, t � 1; . . . ;T , the
Lagrangean isXT

t�1

ln dPt��� � � 0 XT
t�1

dPt���g!tT ��� � ' 1ÿ
XT
t�1

dPt���
þ !

:

It is straightforwardly shown that the solution is given by

dPt��� � Tÿ1�1� � 0g!tT ����; t � 1; . . . ;T :
4 Alternatively, the rede®nition �t��; ��=

PT
t�1 �t��; ��, t � 1; . . . ;T , guarantees summation

to unity.



fg�xt; ��gTt�1 using the weights f!�s;m�T��g to take account of their
potential serial correlation renders the implicit metric imposed by the
smoothed log EL criterion of (7) equal to the required metric V of (3).

In a likewise manner to that of section 2.2, the Lagrange multiplier
estimator �̂T ��� for given � is de®ned by

�̂T ��� � argmax
�

RT ��; ��;

and the corresponding ef®cient maximum empirical likelihood estimator
(EMELE) �̂T by

�̂T � argmin
�2�

max
�

RT ��; ��; �9�

write �̂T � �̂T ��̂T �.5 We have deliberately used the same notation �̂T in (9)
for the EMELE as that for the optimal GMM estimator of (2) because, as
will be seen in Theorem 1 below, the EMELE (9), although not numeri-
cally identical, shares the same ®rst-order asymptotic properties as the
ef®cient GMM estimator of (2).

We may prove

Lemma 1 (Consistency of the EMELE �̂T and Lagrange multi-
plier estimator �̂T .) Under (1), the EMELE �̂T of (9) is a consistent
estimator for �0 and �̂T !P 0.

De®ning ��T� � Pm�T�
s�ÿm�T� !�s;m�T��2, we may prove the following

theorem, which demonstrates the ®rst-order equivalence of the EMELE
�̂T with the optimal GMM estimator of (2).

Theorem 1 (Limit distribution of the EMELE �̂T and Lagrange
multiplier estimator �̂T .) Under (1),

T1=2
��T��̂T

�̂T ÿ �0

0@ 1A

)N
0

0

þ !
;

Vÿ1ÿVÿ1G�G 0Vÿ1G�ÿ1G 0Vÿ1 0 0

0 �G 0Vÿ1G�ÿ1

0@ 1A0@ 1A:
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5 The empirical measures �t��̂T ; �̂T �, t � 1; . . . ;T , may be regarded as implied probabilities
for the stationary distribution of fxtg1t�ÿ1 (see Back and Brown (1993)). See section 2.4.



From Theorem 1, we see that the Lagrange multiplier estimator �̂T is
asymptotically uncorrelated with the EMELE �̂T , which ensures that the
moment conditions (1) are used ef®ciently in constructing the EMELE;
see section 2.2.

In the course of the proof of Theorem 1, we require that

VT �
X2m�T�

s�ÿ2m�T�
!��s;m�T��C�s� !P V;

where the (infeasible) sample autocovariances C�s� � Tÿ1 PT
t�s�1 g�xt; �0��

g�xtÿs; �0� 0, s � 0, and C�ÿs� � C�s� 0, s � ÿ2m�T�; . . . ; 2m�T�. The
weights f!��s;m�T��g obey the relations

!��s;m�T�� � �1=��T��
Xm�T�

r�ÿm�T�ÿs

!�r� s;m�T��!�r;m�T��; s � 0;

� �1=��T��
Xm�T�ÿs

r�ÿm�T�
!�r� s;m�T��!�r;m�T��; s � 0:

�10�
Note that !��s;m�T�� � 0, !��0;m�T�� � 1 and !��s;m�T�� �
!��ÿs;m�T��, s � ÿ2m�T�; . . . ; 2m�T�. Moreover, we require that
the boundedness condition of Andrews (1991, (2.6), p. 821)
limT!1

P2m�T�
s�ÿ2m�T� !

��s;m�T��2 < 1 is satis®ed. Hence, the weights
f!�s;m�T��g give rise to the (infeasible) positive semi-de®nite consistent
estimator VT for V. A particular example of the sequence of weights
f!�s;m�T��g is the ¯at kernel de®ned by !�s;m�T�� � 1=�2m�T� � 1�,
s � ÿm�T�; . . . ;m�T�, which results in the Bartlett-type kernel
!��s;m�T�� � 1ÿ sj j=�2m�T� � 1�, s � ÿ2m�T�; . . . ; 2m�T�, with ��T� �
1=�2m�T� � 1�; see Newey and West (1987) and Kitamura and Stutzer
(1997, equation (8), p. 865). For other examples, see Andrews (1991).

A feasible positive semi-de®nite consistent estimator for V of (3) may
therefore be de®ned as

V̂T �
X2m�T�

s�ÿ2m�T�
!��s;m�T��Ĉ�s�; �11�

Ĉ�s� � Tÿ1 PT
t�s�1 g�xt; �̂T �g�xtÿs; �̂T � 0, s � 0, and Ĉ�ÿs� � Ĉ�s� 0,

s � ÿ2m�T�; . . . ; 2m�T�, and the weights f!��s;m�T��g are de®ned in
(10) above. Note that an alternative positive semi-de®nite consistent esti-
mator to V̂T is output as minus �T��T��ÿ1 times the ��; �� component of
the Hessian of RT ��; �� of (7) evaluated at ��̂T ; �̂T �.
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2.4 Ef®cient cumulative distribution function estimation

The information contained in the moment conditions E�fg�xt; �0�g � 0,
t � 0;�1; . . . ; of (1) may be exploited to provide a more ef®cient esti-
mator of the stationary distribution � of the process fxtg1t�ÿ1 than the
empirical distribution function �T �x� � Tÿ1 PT

t�1 1�xt � x�, where 1�:�
denotes an indicator function, that is, 1�xt � x� � 1 if xt � x, 0 otherwise,
t � 1; . . . ;T . Consider the empirical likelihood cumulative distribution
function (ELCDF) estimator based on the estimated probabilities
�t��̂T ; �̂T �, t � 1; . . . ;T , from (8):

�̂T �x� �
XT
t�1

Xm�T�

r�ÿm�T�
!�r;m�T��1�xtÿr � x�

þ !
�t��̂T ; �̂T �: �12�

Theorem 2 (Limit distribution of the ELCDF estimator �̂T �x�.)
Under (1), the ELCDF estimator �̂T �x� of (12) has limiting distribution
given by

T1=2 �̂T �x� ÿ ��x�� � ) N�0; !2�;
where

!2 � �2 ÿ B 0 Vÿ1 ÿ Vÿ1G�G 0Vÿ1G�ÿ1G 0Vÿ1
ÿ �

B;

B �
X1
s�ÿ1

E�f1�xt � x�g�xtÿs; �0�g
and

�2 �
X1
s�ÿ1

E�f1�xt � x�1�xtÿs � x�g ÿ ��x�2ÿ �
:

The empirical distribution function �T �x� has a limiting distribution
described by

T1=2 �T �x� ÿ ��x�� � ) N�0; �2�:
Hence, the ELCDF estimator �̂T �x� is more ef®cient. Moreover, it may
be straightforwardly seen that it dominates other estimators that incor-
porate the information in the moment conditions E�fg�xt; �0�g � 0,
t � 0;�1; . . . ; of (1).

The various components in the variance !2 may be consistently esti-
mated by

�̂2 �
X2m�T�

s�ÿ2m�T�
!��s;m�T���̂2�s�;
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where �̂2�s� � Tÿ1 PT
t�s�1 1�xt � x�1�xtÿs � x� ÿ �T �x�2

ÿ �
, s � 0, �̂2�ÿs� �

�̂2�s�, s � ÿ2m�T�; . . . ; 2m�T�,

B̂ �
X2m�T�

s�ÿ2m�T�
!��s;m�T��B̂�s�;

where B̂�s� � Tÿ1 Pmin�T ;T�s�
t�max�1;s�1� 1�xt � x�g�xtÿs; �̂T �, s � ÿ2m�T�; . . . ;

2m�T�, V̂T is given in (11) and

ĜT � Tÿ1
XT
t�1

r 0
�g�xt; �̂T �: �13�

Alternatively, G may be estimated consistently by Tÿ1 PT
t�1 r 0

�g
!
tT ��̂T �.

3 Empirical likelihood inference

3.1 Tests for over-identifying moment conditions

In order to gauge the validity of the moment conditions E�fg�xt; �0�g � 0,
t � 0;�1; . . . ; of (1), Hansen (1982) suggested the statistic

GT � Tÿ1
XT
t�1

g�xt; �̂T � 0V̂
ÿ1

T

XT
t�1

g�xt; �̂T �; �14�

which may be shown under the validity of (1) to possess a limiting chi-
squared distribution with �rÿ p� degrees of freedom.

In the context of the smoothed log EL criterion (7), we might think of
the validity of the moment conditions (1) as corresponding to the para-
metric restrictions � � 0. As will soon become evident, this viewpoint
allows us to de®ne straightforwardly classical-type tests for the validity
of the moment conditions (1) based directly on consideration of the
hypothesis � � 0 in the smoothed log EL criterion RT ��; �� of (7).
However, it should be emphasised that the parametric hypothesis � � 0
is equivalent to that of the validity of the moment conditions (1).

Firstly, we consider a likelihood ratio test based on the smoothed log
EL criterion RT ��; �� of (7). Under � � 0, RT ��; 0� � 0. When � 6� 0, the
estimated smoothed log EL criterion is evaluated at ��̂T ; �̂T �, namely
RT ��̂T ; �̂T �. From the classical viewpoint then, the difference between
estimated smoothed log EL criteria may be used to de®ne an empirical
likelihood ratio (ELR) statistic for testing � � 0 or, rather, the over-
identifying moment conditions E�fg�xt; �0�g � 0, t � 0;�1; . . . ; of (1);
namely

ELR�
T � 2��T�RT ��̂T ; �̂T �: �15�
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Theorem 3 (Limit distribution of the ELR statistic for over-
identifying moment conditions.) Under (1), the ELR statistic ELR�

T of
(15) has a limiting chi-squared distribution with �rÿ p� degrees of freedom.

Secondly, by analogy with the classical Wald test for � � 0, an EL
Wald statistic for the over-identifying moment conditions (1) is de®ned
in terms of the Lagrange multiplier estimator �̂T ; namely

EW�
T � T��T�2�̂ 0

T V̂T �̂T ; �16�
where V̂T is de®ned in (11).

Proposition 1 (Limit distribution of the EL Wald statistic for
over-identifying moment conditions.) Under (1), the EL Wald statistic
EW�

T of (16) has a limiting chi-squared distribution with �rÿ p� degrees
of freedom.

To de®ne a classical score test for � � 0 based on the smoothed log EL
criterion RT ��; �� raises a particular dif®culty; namely, when � is set
equal to 0 the parameter vector � is no longer identi®ed. This class of
problem has been considered by Davies (1977, 1987) in the classical and
other contexts. For a recent treatment of this problem, see Andrews and
Ploberger (1994). To circumvent this dif®culty, consider a score statistic
based on the ®rst-order derivatives of the smoothed log EL criterion
RT ��; �� evaluated at �̂T and 0, the former of which could be regarded
as using the least favourable choice of estimator for �0. The score vector
associated with the smoothed log EL criterion RT ��; �� is de®ned by

ST �
XT
t�1

�t��; ��
g!tT ���

r�g
!
tT ��� 0�

� �
;

where �t��; ��, t � 1; . . . ;T , are given in (8). Now, ST evaluated at �̂T and
0, ŜT , has second block equal to a vector of zeroes. Also, �t��̂T ; 0� � Tÿ1,
t � 1; . . . ;T . Hence, the EL score statistic is given by

ES�
T � T Ŝ

0
T

V̂T ĜT

Ĝ
0
T 0

þ !ÿ1

ŜT

� Tÿ1
XT
t�1

g!tT ��̂T � 0 V̂
ÿ1

T ÿ V̂
ÿ1

T ĜT �Ĝ
0
T V̂

ÿ1

T ĜT �ÿ1ĜT V̂
ÿ1

T

� �
�

XT
t�1

g!tT ��̂T �; �17�

where ĜT and V̂T are de®ned in (13) and (11) respectively.
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Proposition 2 (Limit distribution of the EL score statistic for
over-identifying moment conditions.) Under (1), the EL score statistic
ES�

T of (17) has a limiting chi-squared distribution with �rÿ p� degrees
of freedom.

Because the EMELE �̂T of (9) is ®rst-order equivalent to the optimal
GMM estimator of (2), the EMELE asymptotically obeys the optimal
GMM estimator's ®rst-order conditions; see Proof of Proposition 2.
Hence, an equivalent score-type statistic may be based on

Tÿ1
XT
t�1

g!tT ��̂T � 0V̂
ÿ1

T

XT
t�1

g!tT ��̂T �

� Tÿ1
XT
t�1

g�xt; �̂T � 0V̂
ÿ1

T

XT
t�1

g�xt; �̂T � � oP�1�;

the latter statistic being the GMM statistic GT of (14) using �̂T of (9).
Moreover, the ELWald statistic and the GMM statistic GT are ®rst-order
equivalent as T1=2��T��̂T � Vÿ1Tÿ1=2 PT

t�1 g�xt; �̂T � � oP�1�; that is,
EW�

T � GT � oP�1�. Moreover, from the proofs of Theorem 1 and
Propositions 1 and 2, the ELR, EL Wald and EL score statistics are all
®rst-order equivalent. Therefore, the classical-type EL statistics above
offer a potentially useful alternative class of tests for the over-identifying
moment conditions (1). Although not discussed here, other ®rst-order
equivalent tests based on the C��� principle may also be de®ned in a
parallel fashion; see inter alia Neyman (1959) and Smith (1987).

3.2 Tests for additional moment conditions

Typically, it may be of interest to examine whether an additional s-vector
of moments also has zero mean and, thus, might be usefully incorporated
to improve inferences on the vector �0; namely

E�fh�xt; �0�g � 0; t � 0;�1; . . . : �18�
The approach due to Newey (1985a, 1985b) would set up a conditional
moment test based on a quadratic form in the estimated sample moments
Tÿ1=2 PT

t�1 h�xt; �̂T � using as metric the inverse of the asymptotic var-
iance matrix of Tÿ1=2 PT

t�1 h�xt; �̂T �.
However, similarly to the ELR test for over-identifying moment

conditions given in (15), we may de®ne the log EL criterion appropriate
for the incorporation of the additional moments E�fh�xt; �0�g � 0,
t � 0;�1; . . . ; of (18); namely
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R�
T ��; �; þ� �

XT
t�1

ln�1� � 0g!tT ��� � þ 0h!tT ����; �19�

where h!tT ��� �
Pm�T�

s�ÿm�T� !�s;m�T��h�xtÿs; ��. The Lagrange multiplier
estimators corresponding to R�

T ��; �; þ� of (19) are given by

� ~�T ���; ~þT ���� � argmax
�;þ

R�
T ��; �; þ�;

and the EMELE under the moment conditions (1) and (18) is de®ned by

~�T � argmin
�2�

max
�;þ

R�
T ��; �; þ�:

De®ne ~�T � ~�T � ~�T � and ~þT � ~þT � ~�T �.
Similarly to the classical interpretation of the ELR, EL Wald and EL

score statistics in section 3.1 for the over-identifying moment conditions
(1), we may construct tests of the additional moment conditions
E�fh�xt; �0�g � 0, t � 0;�1; . . . ; of (18), by considering EL-based tests
for the parametric hypothesis þ � 0 in the smoothed EL criterion
R�

T ��; �; þ� of (19).
Firstly, consider the difference of ELR statistics under (1), (18) and (1)

respectively, which, as RT ��; �� � R�
T ��; �; 0�, corresponds to an ELR

test for þ � 0; namely

ELRT � ELR�;þ
T ÿ ELR�

T

� 2��T��R�
T � ~�T ; ~�T ; ~þT � ÿ R�

T ��̂T ; �̂T ; 0��: �20�

Therefore

Theorem 4 (Limiting distribution of the ELR statistic for addi-
tional moment restrictions.) Under (1) and (18), the ELR statistic ELRT

of (20) has a limiting chi-squared distribution with s degrees of freedom.

If one were interested in the full vector of moment conditions (1) and
(18), one obtains the statistic ELR�;þ

T � 2��T�R�
T � ~�T ; ~�T ; ~þT � (see (15)),

which has a limiting chi-squared distribution with �r� s� ÿ p degrees of
freedom; see section 3.1 and Hansen (1982).

Secondly, we may also de®ne an EL Wald statistic for þ � 0 or the
additional moment restrictions (18) in an obvious way. De®ne the
�r� s; s� matrix Sþ to select the elements of þ from the vector �� 0; þ 0� 0;
that is, S 0

þ�� 0; þ 0� 0 � þ. The asymptotic variance matrix of the vector
Tÿ1=2 PT

t�1�g�xt; �0� 0; h�xt; �0� 0� 0 is denoted by
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V� � lim
T!1

Var Tÿ1=2
XT
t�1

g�xt; �0� 0; h�xt; �0� 0
ÿ � 0( )

;

which is assumed positive de®nite. A positive semi-de®nite consistent
estimator ~V�T for V� may be de®ned similarly to V̂T of (11) after appro-
priate substitution of the estimators ~�T , ~�T and ~þT . Similarly, ~G�T is a
consistent estimator for G� � E�f�r�g�xt; �0� 0;r�h�xt; �0� 0� 0g based on
~�T , ~�T and ~þT (see (13)). The EL Wald statistic for the additional
moment conditions is then de®ned as6

EWT � T��T�2 ~þ 0
T �S 0

þ�~Vÿ1
�T ÿ ~V

ÿ1
�T ~G�T

��~G 0
�T ~V

ÿ1
�T ~G�T �ÿ1 ~G

0
�T ~V

ÿ1
�T �Sþ�ÿ1 ~þ 0

T : �21�
Therefore

Proposition 3 (Limiting distribution of the EL Wald statistic for
additional moment restrictions.) Under (1) and (18), the EL Wald statis-
tic EWT of (21) has a limiting chi-squared distribution with s degrees of
freedom.

The classical-type score test for þ � 0 based on the smoothed log EL
criterion R�

T ��; �; þ� is constructed in a standard manner using the score
from R�

T ��; �; þ� evaluated at the estimators ��̂T ; �̂T ; 0�. The score vector
of the smoothed log EL criterion R�

T ��; �; þ� is

S�T �
XT
t�1

��
t ��; �; þ�

g!tT ���
h!tT ���

r�g
!
tT ��� 0�� r�h

!
tT ��� 0þ

0BB@
1CCA; �22�

where

��
t ��; �; þ� � Tÿ1�1� � 0g!tT ��� � þ 0h!tT ����ÿ1; t � 1; . . . ;T;

see �t��; ��, t � 1; . . . ;T , of (8). Thus, from (22), we see that the score
vector S�T evaluated at ��̂T ; �̂T ; 0�, Ŝ�T , has zeros in its ®rst and last
blocks from the ®rst-order conditions determining �̂T and �̂T .
Therefore, noting ��

t ��; �; 0� � �t��; ��, t � 1; . . . ;T , the EL score statis-
tic for þ � 0 for the additional moment conditions is given by
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þ�Vÿ1

� ÿ Vÿ1
� G��G 0

�V
ÿ1
� G��ÿ1G 0

�V
ÿ1
� �Sþ is positive de®nite as the

(r� s; s� p) matrix (Sþ;G�) is full column rank.



EST � T Ŝ
0
�T

V̂�T ÿĜ�T

ÿĜ
0
�T 0

0@ 1Aÿ1

Ŝ�T ; �23�

� T
XT
t�1

�t��̂T ; �̂T �h!tT ��̂T � 0S 0
þ

� V̂
ÿ1

�T ÿ V̂
ÿ1

�T Ĝ�T �Ĝ
0
�T V̂

ÿ1

�T Ĝ�T �ÿ1Ĝ�T V̂
ÿ1

�T
� �

Sþ

�
XT
t�1

�t��̂T ; �̂T �h!tT ��̂T �;

where

Ĝ�T � Tÿ1
XT
t�1

�r�g�xt; �̂T � 0;r�h�xt; �̂T � 0� 0

or Tÿ1 PT
t�1�r�g

!
tT ��̂T � 0;r�h

!
tT ��̂T � 0� 0 (see ĜT of (13)) and V̂�T denotes a

positive semi-de®nite consistent estimator for V� based on the estimators
�̂T and �̂T (see V̂T of (11)).

Proposition 4 (Limiting distribution of the EL score statistic for
additional moment restrictions.) Under (1) and (18), the EL score stat-
istic EST of (23) has a limiting chi-squared distribution with s degrees of
freedom.

Other statistics asymptotically equivalent to the above EL-based sta-
tistics may be de®ned. For example, a minimum chi-squared statistic is
given by

MCT � T��T�2 � ~�T ÿ �̂T � 0 ~þ 0
T

ÿ �
V̂�T � ~�T ÿ �̂T � 0 ~þ 0

T

ÿ � 0
: �24�

The proofs of Theorem 4 and Propositions 3 and 4 show that the ELR,
EL Wald, EL score and EL minimum chi-squared statistics of (20), (21),
(23) and (24), respectively, are all ®rst-order equivalent. It also immedi-
ately follows from the expression of the ELR statistic ELRT of (20) as the
difference of the ELR statistics, ELR�;þ

T and ELR�
T , that equivalent sta-

tistics may be obtained as the difference of EL Wald and score statistics;
namely EW�;þ

T ÿ EW�
T and ES�;þ

T ÿ ES�
T , respectively. Furthermore,

given the discussion in section 3.1 concerning the equivalence of those
EL-based statistics with the GMM statistic GT of (14), the statistics of
section 3.2 are equivalent to the difference of estimated GMM criteria
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and thus the GMM statistic for additional moment restrictions (see
Newey (1985a, 1985b)). A ®nal point to note is that, under the moment
conditions (1) and (18), all of the statistics of section 3.2 above are
asymptotically independent of those of section 3.1, a property also dis-
played by the classical tests for a sequence of nested hypotheses; see inter
alia Aitchison (1962) and Sargan (1980).

3.3 Empirical likelihood speci®cation tests

The limiting distribution results given in section 3.2 may be suitably
adapted to allow various classical-type speci®cation (likelihood ratio,
Lagrange multiplier and Wald) tests on the parameter vector � to be
de®ned. Consider the following parametric null hypothesis expressed
in constraint equation form which includes many forms of parametric
restrictions:

H0 : h��0� � 0; �25�
where h�:� is a known s-vector of functions that are continuously dif-
ferentiable. We assume that the derivative matrix H � r�h��0� 0 is full
column rank s.7

We may integrate the parametric restrictions H0 : h��0� � 0 of (25) into
the framework of section 3.2 by recalling that the weights f!�s;m�T��g
obey

Pm�T�
s�ÿm�T� !�s;m�T�� � 1. Therefore, the corresponding smoothed

log EL criterion incorporating the parametric restrictions (25) is

R�
T ��; �; þ� �

XT
t�1

ln�1� � 0g!tT ��� � þ 0h����; �26�

with associated score vector

S�T �
XT
t�1

��
t ��; �; þ�

g!tT ���
h���

r�g
!
tT ��� 0�� r�h��� 0þ

0BB@
1CCA;

where, now, we de®ne

��
t ��; �; þ� � Tÿ1�1� � 0g!tT ��� � þ 0h����:
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Denoting the EMELE and Lagrange multiplier estimators based on
R�

T ��; �; þ� of (26) by ~�T , ~�T and ~þT , respectively, we see that ~�T satis®es
h� ~�T � � 0 by recalling

PT
t�1 �

�
t � ~�T ; ~�T ; ~þT � � 1. Therefore, ��

t � ~�T ; ~�T ; ~þT � �
�t� ~�T ; ~�T �, t � 1; . . . ;T , and R�

T � ~�T ; ~�T ; ~þT � � RT � ~�T ; ~�T �.
It is straightforward to demonstrate the consistency of the estimators

� ~�T ; ~�T ; ~þT � for ��0; 0; 0� under E�fg�xt; �0�g � 0, t � 0;�1; . . . ; of (1)
and H0 : h��0� � 0 of (25); see Lemma 1. Moreover, the limiting distribu-
tion of the EMELE and Lagrange multiplier estimators ~�T , ~�T and ~þT

may be derived along similar lines to Theorem 1; namely,

Theorem 5 (Limiting distribution of the EMELE ~�T and
Lagrange multiplier estimators ~�T and ~þT .) Under (1) and (25), the
EMELE ~�T and Lagrange multiplier estimators ~�T and ~þT have limiting
distribution given by

T1=2

��T� ~�T

~þT

� ~�T ÿ�0�

0BBB@
1CCCA

)N

0

0

0

0BBB@
1CCCA;

Vÿ1ÿVÿ1GNG 0Vÿ1 P 0

P 0 H 0�G 0Vÿ1G�ÿ1H
� �ÿ1

0

0 0 0 0 N

0BBB@
1CCCA

0BBB@
1CCCA;

where

N � ��G 0Vÿ1G�ÿ1 ÿ �G 0Vÿ1G�ÿ1H H 0�G 0Vÿ1G�ÿ1H
� �ÿ1

�H 0�G 0Vÿ1G�ÿ1�;

P � Vÿ1G�G 0Vÿ1G�ÿ1H H 0�G 0Vÿ1G�ÿ1H
� �ÿ1

:

The corresponding ELR and EL Wald statistics become

ELRT � 2��T��RT ��̂T ; �̂T � ÿ RT � ~�T ; ~�T ��; �27�
EWT � T ~þ 0

TĤ
0
T �Ĝ

0
T V̂

ÿ1

T ĜT �ÿ1ĤT
~þT ; �28�

see section 3.2. As the ®rst and last blocks of the score vector S�T esti-
mated at ��̂T ; �̂T ; 0�, Ŝ�T , are zero, the EL score statistic
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EST � T Ŝ
0
�T

V̂T 0 ÿĜT

0 0 0 ÿĤT

ÿĜ
0
T ÿĤ

0
T 0

0BBB@
1CCCA

ÿ1

Ŝ�T

� Th��̂T � 0 Ĥ
0
T Ĝ

0
T V̂

ÿ1

T ĜT

� �ÿ1

ĤT

� �ÿ1

h��̂T �; �29�

where V̂T and ĜT are de®ned in (11) and (13), respectively, and
ĤT � r�h��̂T � 0. The forms of the EL Wald (28) and EL score (29) statis-
tics are, respectively, those of Lagrange multiplier and Wald statistics in
the GMM framework.

Proposition 5 (Limiting distribution of EL statistics for para-
metric restrictions.) Under (1) and (25), the EL statistics ELRT , EWT

and EST statistics of (27), (28) and (29), respectively, each have limiting
chi-squared distributions with s degrees of freedom.

As the EMELE �̂T is ®rst-order equivalent to the ef®cient GMM esti-
mator, not only are all three statistics ELRT , EWT and EST asymptoti-
cally ®rst-order equivalent (see Proof of Proposition 5) but they are
equivalent to GMM tests for H0 : h��0� � 0 of (25); see (29). The Proof
of Proposition 5 also shows that the following minimum chi-squared
statistics are ®rst-order equivalent to ELRT , EWT and EST :

MC�T � T��T�2� ~�T ÿ �̂T � 0V̂T � ~�T ÿ �̂T �;

MC�T � T� ~�T ÿ �̂T � 0Ĝ
0
T V̂

ÿ1

T ĜT � ~�T ÿ �̂T �;
as is the statistic T��T�2� ~� 0

T
~VT

~�T ÿ �̂ 0
T V̂T �̂T �. Moreover, differences of

EL Wald and score statistics for � � 0; þ � 0 and � � 0 are also equiva-
lent to the above statistics from the structure of the statistic ELRT (27);
see section 3.2.

4 Empirical likelihood non-nested tests

Denote the model embodied in the moment conditions E�fg�xt; �0�g � 0,
t � 0;�1; . . . ; of (1) by Hg. Consider an alternative model Hh based on
the assumed moment conditions

E�fh�xt; ÿ0�g � 0; t � 0;�1; . . . : �30�
We denote the smoothed log EL function under Hh of (30) by
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Rh
T �ÿ; �� �

XT
t�1

ln�1� � 0h!tT �ÿ��; �31�

where h!tT �ÿ� �
Pm�T�

s�ÿm�T� !�s;m�T��h�xtÿs; ÿ�. For convenience of exposi-
tion, the weights and lead and lag truncation parameter have been chosen
identical to those under Hg; namely f!�s;m�T��g and m�T� of section 2.3.
Correspondingly, we de®ne the Lagrange multiplier estimator by

�̂T �ÿ� � argmax
�

Rh
T �ÿ; ��

and the EMELE under Hh of (30) by

ÿ̂T � argmin
ÿ2B

max
�

Rh
T �ÿ; ��; �32�

where B is a compact set; we denote �̂T � �̂T �ÿ̂T �.
Under Hg of (1), the asymptotic pseudo-true value (PTV) of the

Lagrange multiplier estimator �̂T is de®ned via

���ÿ� � argmax
�

lim
T!1

E�fln�1� � 0h!tT �ÿ��g

and that for the EMELE ÿ̂T as

ÿ� � argmin
ÿ2B

max
�

lim
T!1

E�fln�1� � 0h!tT �ÿ��g;

we write �� � ���ÿ��. Therefore, by a similar argument to Lemma 1,
under Hg of (1),

ÿ̂T !P ÿ�; �̂T !P ��:

In order to avoid the dif®culty of observational equivalence between the
smoothed log EL criteria under Hg and Hh, it is assumed that
limT!1 E�fln�1� � 0�h

!
tT �ÿ���g > 0. Hence, �� 6� 0.8

The usual approach to constructing Cox-type (1961, 1962) tests of Hg

of (1) against Hh of (30) involves the contrast of consistent estimators
under Hg of the probability limit of the requisite criterion function under
Hh evaluated at the corresponding estimator PTV; see Smith (1992,
equation (2.3), p. 973). That is, for the smoothed EL criterion (31),
limT!1 E�fln�1� � 0�h

!
tT �ÿ���g. Clearly, the smoothed log EL criterion

(31) evaluated at the estimators �ÿ̂T ; �̂T �, Tÿ1Rh
T �ÿ̂T ; �̂T � provides one

such consistent estimator. In order to provide another consistent estima-
tor to contrast with Tÿ1Rh

T �ÿ̂T ; �̂T �, recall that the empirical measures
�t��̂T ; �̂T � � Tÿ1�1� oP�1��, t � 1; . . . ;T . Hence, consider the alternative
smoothed log EL criterion function
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Rh�
T �ÿ; �� �

XT
t�1

�t��̂T ; �̂T � ln�1� � 0h!tT �ÿ��; �33�

and denote the corresponding optimisers by ~ÿT and ~�T . Therefore, as
��̂T ; �̂T � are consistent for ��0; 0� under Hg, � ~ÿT ; ~�T � are consistent for
�ÿ�; ��� and an alternative consistent estimator for limT!1 E�fln�1�
� 0�h

!
tT �ÿ���g is obtained by evaluation of (33) at � ~ÿT ; ~�T �:

Rh�
T � ~ÿT ; ~�T � �

XT
t�1

�t��̂T ; �̂T � ln�1� ~� 0Th
!
tT � ~ÿT ��:

Consequently, an EL likelihood ratio Cox-type statistic for Hg against
Hh is based on the contrast between the optimised smoothed log EL
criteria, Tÿ1Rh

T �ÿ̂T ; �̂T � of (31) and Rh�
T � ~ÿT ; ~�T � of (33); namely

CT �HgjHh� � T1=2��T��Tÿ1Rh
T �ÿ̂T ; �̂T � ÿ Rh�

T � ~ÿT ; ~�T ��: �34�

Theorem 6 (Limiting distribution of the Cox-type statistic.)
Under (1), the Cox statistic CT �HgjHh� of (34) has a limiting N�0; �2�
distribution where

�2 � � 0� Vÿ1 ÿ Vÿ1G�G 0Vÿ1G�ÿ1G 0Vÿ1
ÿ �

��;

�� � lim
T!1

E�fln�1� � 0�h
!
tT �ÿ���g!tT ��0�g;

and �2 is assumed non-zero.

The asymptotic variance �2 may be consistently estimated under Hg by

�̂2
T � �̂ 0T V̂

ÿ1

T ÿ V̂
ÿ1

T ĜT �Ĝ
0
T V̂

ÿ1

T ĜT �ÿ1Ĝ
0
T V̂

ÿ1

T

� �
�̂T ;

where

�̂T � Tÿ1
XT
t�1

ln�1� �̂ 0Th
!
tT �ÿ̂T ��g!tT ��̂T � �35�

and V̂T and ĜT are described in (11) and (13) respectively.
The Proof of Theorem 6 suggests the alternative ®rst-order equivalent

linearised Cox-type statistic:

LCT �HgjHh� � �̂ 0TT
1=2��T��̂T ; �36�

where �̂T is de®ned in (35) (see Smith (1992), section 2.1, pp. 974±976).
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Corollary 1 (Limiting distribution of the linearised Cox-type
statistic.) Under (1), the linearised Cox statistic LCT �HgjHh� of (36)
has a limiting N�0; �2� distribution where �2, de®ned in Theorem 6, is
assumed non-zero.

Because T1=2��T��̂T � Vÿ1Tÿ1=2 PT
t�1 g�xt; �̂T � � oP�1�, the form of

the linearised statistic LCT �HgjHh� emphasises that non-nested tests of
competing hypotheses expressed in moment form are particular linear
combinations of the estimated sample moment vector under the null
hypothesis as this vector represents the sole information feasible and
available for inference purposes (see Smith (1992)).

A simpli®ed form of EL likelihood ratio Cox-type statistic evaluates
the criterion Rh�

T �ÿ; �� at �ÿ̂T ; �̂T � and is ®rst-order equivalent to the Cox
statistics, CT �HgjHh� of (34) and LCT �HgjHh� of (36); namely

SCT �HgjHh� � T1=2��T� Tÿ1Rh
T �ÿ̂T ; �̂T � ÿ Rh�

T �ÿ̂T ; �̂T �
� �

: �37�

Proposition 6 (Limiting distribution of the simpli®ed Cox-type
statistic.) Under (1), the simpli®ed Cox statistic SCT �HgjHh� of (37) has a
limiting N�0; �2� distribution where �2, de®ned in Theorem 6, is assumed
non-zero.

Appendix

Proof of Lemma 1

De®ne MT ��; �� � E�fln�1� � 0g!tT ����g, where, from (1) and (6),
E�fg!tT ���g � 0 , � � �0. Now, E�fg!tT ���g!tT ��� 0g is positive de®nite if
fg�xt; ��g1t�ÿ1 is a non-defective process; that is, there exists no sequence
of non-zero r-vectors fam;sgms�ÿm such that

Pm
s�ÿm a 0

m;sg�xtÿs; �� is a degen-
erate random variable for some m � 0; 1; . . . . By Chesher and Smith
(1997, Lemma, p. 643), the matrix of second derivatives of MT ��; ��
with respect to �, ÿE�f�1� � 0g!tT ����ÿ2g!tT ���g!tT ��� 0g, is negative de®nite.
De®ne

�T ��� � argmax
�

MT ��; ��:

Hence, �T ��� satis®es the ®rst-order conditions

E�f�1� � 0g!tT ����ÿ1g!tT ���g � 0:

Therefore, it follows from Chesher and Smith (1997, Lemma and Proof
of Theorem 1, p. 643) that the maximiser �T ��� is unique. Consequently,

Empirical likelihood 139



as �0 uniquely satis®es the moment conditions (1), and, thus, (6),
�T ��0� � 0 and �T ��� 6� 0, � 6� �0.
Now, 0 � MT ��; �T ��0�� � MT ��; �T ����, � 6� �0. Moreover, 0 �

MT ��; �T ��0�� < MT ��; �T ����, � 6� �0 because �T ��� is a unique maximi-
ser of MT ��; ��. Therefore, �0 is the unique minimiser of MT ��; �T ����;
namely

�0 � argmin
�2�

MT ��; �T ����;

and MT ��0; �T ��0�� � 0.
De®ne a �-neighbourhood of �0, N ���0�, and a sequence of open

�j-neighbourhoods, N �j ��j�, �j 2 �, j � 1; . . . ; J, such that [J
j�1N �j ��j�

covers �ÿN ���0�. From continuity and the Dominated Convergence
Theorem

E� inf
� 02N �j

��j �
ln�1� �T �� 0� 0g!tT �� 0��

� �
� 2�j > 0; j � 1; . . . ; J:

A point-wise double array WLLN gives:

Pr Tÿ1
XT
t�1

inf
� 02N �j

��j�
ln�1� �T �� 0� 0g!tT �� 0�� < �j

( )
< �=2J;

j � 1; . . . ; J:

Hence,

Pr inf
� 02�ÿN ���0�

Tÿ1
XT
t�1

ln�1� �T �� 0� 0g!tT �� 0�� < �

( )
< �=2;

where � � minj �j . The saddle-point maximisation property of �̂T �:�
implies

Pr inf
� 02�ÿN ���0�

Tÿ1
XT
t�1

ln�1� �̂T �� 0� 0g!tT �� 0�� < �

( )
< �=2: �A:1�

Now, by concavity

ln�1� �̂T ��0� 0Tÿ1
XT
t�1

g!tT ��0�� � Tÿ1
XT
t�1

ln�1� �̂T ��0� 0g!tT ��0�� � 0:

As Tÿ1PT
t�1 g

!
tT ��0� � Tÿ1 PT

t�1 g�xt; �0� � oP�1� !P 0, we have

�̂T ��0� !P 0 and, thus, Tÿ1 PT
t�1 ln�1� �̂T ��0� 0g!tT ��0�� !P 0. Therefore

Pr Tÿ1
XT
t�1

ln�1� �̂T ��0� 0g!tT ��0�� > �=2

( )
< �=2: �A:2�
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Consider the event

Tÿ1
XT
t�1

ln�1� �̂T ��0� 0g!tT ��0��
(

< inf
� 02�ÿN ���0�

Tÿ1
XT
t�1

ln�1� �̂T �� 0� 0g!tT �� 0��
)
:

Therefore, �̂T 2 N ���0�. Hence, combining (A.1) and (A.2), we have

Prf�̂T 2 N ���0�g > 1ÿ �;

which yields the required result. &

Proof of Theorem 1

Consider the ®rst-order conditions determining �̂T and �̂TXT
t�1

�t��̂T ; �̂T �
g!tT ��̂T �

r�g
!
tT ��̂T � 0�̂T

þ !
�

0

0

þ !
: �A:3�

Now, as
Pm�T�

s�ÿm�T� !�s;m�T�� � 1, !�s;m�T�� � O�m�T�ÿ1�. Moreover,

Tÿ1
XT
t�1

r�g
!
tT ��0� 0

� Tÿ1
XT
t�1

r�g�xt; �0� 0 ÿ Tÿ1
Xm�T�

t�1

Xm�T�

s�t

!�s;m�T��
þ !

r�g�xt; �0� 0

ÿTÿ1
XT

t�Tÿm�T��1

XtÿT

s�ÿm�T�
!�s;m�T��

þ !
r�g�xt; �0� 0

� Tÿ1
XT
t�1

r�g�xt; �0� 0 �OP�m�T�=T�;

noting that, for example,
Pm�T�

s�t !�s;m�T�� � O�1� and m�T�ÿ1 Pm�T�
t�1 �

r�g�xtÿs; �0� 0 � OP�1�. Therefore, a ®rst-order Taylor series expansion of
(A.3) about �0 and 0 yields

0

0

þ !
� Tÿ1=2 PT

t�1 g
!
tT ��0�

0

þ !
�

ÿV G

G 0 0

þ !
T1=2 ��T��̂T

�̂T ÿ �0

þ !
� oP�1�:

Moreover, by a similar argument to that above,
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Tÿ1=2
XT
t�1

g!tT ��0� � Tÿ1=2
XT
t�1

g�xt; �0� �OP��m�T�=T�1=2�:

Therefore

T1=2��̂T ÿ �0� � ÿ�G 0Vÿ1G�ÿ1G 0Vÿ1Tÿ1=2
XT
t�1

g�xt; �0� � oP�1�;

�A:4�
T1=2��T��̂T � �Vÿ1 ÿ Vÿ1G�G 0Vÿ1G�ÿ1G 0Vÿ1�Tÿ1=2

�
XT
t�1

g�xt; �0� � oP�1�: �A:5�

Hence, from (A.4) and (A.5), the result of the theorem follows from the
CLT Tÿ1=2 PT

t�1 g�xt; �0� ) N�0;V�. &

Proof of Theorem 2

Consider a ®rst-order Taylor series expansion of T1=2 �̂T �x� ÿ ��x�� �
about �0 and 0:

T1=2��̂T �x� ÿ ��x�� � T1=2��T �x� ÿ ��x��
ÿ B 0T1=2��T��̂T � oP�1�:

We have made use of the approximations

Tÿ1=2
XT
t�1

Xm�T�

r�ÿm�T�
!�r;m�T��1�xtÿr � x�

� Tÿ1=2
XT
t�1

1�xt � x� � oP�1�;

and

T��T�� �ÿ1
XT
t�1

Xm�T�

r�ÿm�T�
!�r;m�T��1�xtÿr � x�g!tT ��0� 0

þ !
� B 0 � oP�1�;

see the Proof of Theorem 1. As

Tÿ1=2
XT
t�1

1�xt � x� ÿ ��x�
g�xt; �0�

þ !
) N

0

0

þ !
;

�2 B 0

B V

þ !þ !
:

Therefore, from (A.5),
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T1=2 �̂T �x� ÿ ��x�� �
� �1; ÿB 0�Vÿ1 ÿ Vÿ1G�G 0Vÿ1G�ÿ1G 0Vÿ1��

�Tÿ1=2
XT
t�1

1�xt � x� ÿ ��x�
g�xt; �0�

þ !
� oP�1�;

and, hence, the result follows. &

Proof of Theorem 3

A second-order Taylor series expansion ofRT ��0; 0� � 0 about �̂T and �̂T

gives

0 � ��T�RT ��̂T ; �̂T � � �1=2�T ��T��̂ 0
T ��̂T ÿ �0� 0

ÿ �
�

ÿV G

G 0 0

þ !
��T��̂T

��̂T ÿ �0�

0@ 1A� oP�1�: �A:6�

After substitution from (A.4) and (A.5) into (A.6) and noting
G 0T1=2��T��̂T � oP�1�, we obtain

2��T�RT ��̂T ; �̂T � � T��T�2�̂ 0
TV�̂T � oP�1�

� Tÿ1=2
XT
t�1

g�xt; �0� 0�Vÿ1 ÿ Vÿ1G

� �G 0Vÿ1G�ÿ1G 0Vÿ1�Tÿ1=2

�
XT
t�1

g�xt; �0� � oP�1�; �A:7�

yielding the required result. &

Proof of Proposition 1

Follows directly from the expansion ( A.7). &

Proof of Proposition 2

From (A.5), T1=2��T��̂T � Vÿ1Tÿ1=2 PT
t�1 g�xt; �̂T � � oP�1�. Moreover,

similarly to the Proof of Theorem 1, Tÿ1=2 PT
t�1 g

!
tT ��̂T � �

Tÿ1=2 PT
t�1 g�xt; �̂T � � oP�1�. The result follows because the ®rst-order
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conditions determining the optimal GMM estimator imply that

Ĝ
0
T V̂

ÿ1

T Tÿ1=2 PT
t�1 g

!
tT ��̂T � � oP�1�. &

Proof of Theorem 4

A Taylor series expansion for R�
T � ~�T ; ~�T ; ~þT � similar to that in (A.7) for

RT ��̂T ; �̂T � results in

2��T�R�
T � ~�T ; ~�T ; ~þT � � T��T�2 ~� 0

T
~þ 0
T

ÿ �
V�

~�T

~þT

0@ 1A� oP�1�

� Tÿ1
XT
t�1

g�xt; �0� 0; h�xt; �0� 0
ÿ �

A�

�
XT
t�1

g�xt; �0�
h�xt; �0�

þ !
� oP�1�; �A:8�

where A� � Vÿ1
� ÿ Vÿ1

� G��G 0
�V

ÿ1
� G��ÿ1G 0

�V
ÿ1
� , G� � G 0 H 0ÿ � 0

, H �
E�fr 0

�h�x; �0�g and V� � limT!1 VarfTÿ1=2 PT
t�1� g�xt; �0� 0; h�xt; �0� 0 � 0g.

Hence

2��T�fR�
T � ~�T ; ~�T ; ~þT � ÿ R�

T ��̂T ; �̂T ; 0�g

� Tÿ1
XT
t�1

g�xt; �0� 0; h�xt; �0� 0
ÿ ��A� ÿ A�

�
XT
t�1

g�xt; �0�
h�xt; �0�

þ !
� oP�1�; �A:9�

where A � S�Vÿ1 ÿ Vÿ1G�G 0Vÿ1G�ÿ1G 0Vÿ1�S 0 and S is a selection
matrix such that S 0 g�xt; �0� 0; h�xt; �0� 0

ÿ � 0� g�xt; �0�. Note that V �
S 0V�S and S 0G� � G. Now

V��A� ÿ A�V��A� ÿ A�V� � V��A� ÿ A�V�

as A�V�A� � A� and AVA� � A. Therefore, Proposition 2 follows from
Rao and Mitra (1971, Theorem 9.2.1, p. 171) with degrees of freedom
given by

trfV��A� ÿ A�g � trfV�A�g ÿ trfV�Ag
� �r� sÿ p� ÿ �rÿ p� � s: &

144 Richard J. Smith



Proof of Proposition 3

Firstly, we have from (A.5) that

T1=2��T� ~� 0
T

~þ 0
T

ÿ � 0 � A�T
ÿ1=2

XT
t�1

g�xt; �0� 0; h�xt; �0� 0
ÿ � 0�oP�1�:

�A:10�
Combining (A.5) and (A.8) yields the intermediate result that the EL
minimum chi-squared statistic MCT of (24)

T��T�2 � ~�T ÿ �̂T � 0 ~þ 0
T

ÿ �
V̂� � ~�T ÿ �̂T � 0 ~þ 0

T

ÿ � 0
� Tÿ1

XT
t�1

g�xt; �0� 0; h�xt; �0� 0
ÿ � 0

A� ÿ A� �

�
XT
t�1

g�xt; �0� 0; h�xt; �0� 0
ÿ �� oP�1�; �A:11�

which, therefore, from (A.7), is asymptotically equivalent to the differ-
ence of ELR statistics (20).

Now,

V� ÿG�

ÿG 0
� 0

þ !ÿ1

�
Vÿ1

� ÿVÿ1
� G��G 0

�V
ÿ1
� G��ÿ1G 0

�V
ÿ1
� ÿVÿ1

� G��G 0
�V

ÿ1
� G��ÿ1

ÿ�G 0
�V

ÿ1
� G��ÿ1G 0

�V
ÿ1
� ÿ�G 0

�V
ÿ1
� G��ÿ1

0@ 1A:

De®ne the �r� s� p; s� selection matrix S�þ such that
S 0
�þ�� 0; þ 0; � 0� 0 � þ. Therefore, the EL Wald statistic EWT of (21) may

be expressed as

EWT � T

��T�� ~�T ÿ �̂T �
��T� ~þT

� ~�T ÿ �̂T �

0BBB@
1CCCA

0

S�þ S 0
�þ

V� ÿG�

ÿG 0
� 0

þ !ÿ1

S�þ

0@ 1Aÿ1

� S 0
�þ

��T�� ~�T ÿ �̂T �
��T� ~þT

� ~�T ÿ �̂T �

0BBB@
1CCCA� oP�1�:
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A Taylor series expansion of the score at � ~�T ; ~�T ; ~þT � about the score at
��̂T ; �̂T ; 0�, Ŝ�T (see (22)), yields

T1=2Ŝ�T � ÿ
V� ÿG�

ÿG 0
� 0

þ !
T1=2

��T�� ~�T ÿ �̂T �
��T� ~þT

� ~�T ÿ �̂T �

0BBB@
1CCCA� oP�1�;

�A:12�
noting G 0

�T
1=2��T� ~� 0

T
~þ 0
T

ÿ � 0� oP�1� and G 0T1=2��T��̂T � oP�1�.
Hence,

T1=2

��T�� ~�T ÿ �̂T �
��T� ~þT

� ~�T ÿ �̂T �

0BB@
1CCA � ÿ

V� ÿG�

ÿG 0
� 0

þ !ÿ1

T1=2Ŝ�T � oP�1�:

Therefore, noting that Ŝ�T � S�þ
PT

t�1 �t��̂T ; �̂T �h!tT ��̂T �,

EWT � T Ŝ
0
�T

V� ÿG�
ÿG 0

� 0

� �ÿ1

Ŝ�T � oP�1�

� EST � oP�1�: �A:13�
Substituting into (A.13) for T1=2Ŝ�T from (A.12) and again recalling
G 0

�T
1=2��T�� ~�T

0 ~þ 0
T � 0 � oP�1� and G 0T1=2��T��̂T � oP�1� yields

(A.11) apart from asymptotically negligible terms. &

Proof of Proposition 4

This result is immediate from (A.13). &

Proof of Theorem 5

Consider the ®rst-order conditions determining � ~�T ; ~�T ; ~þT �:

XT
t�1

�t� ~�T ; ~�T �
g!tT � ~�T �
h� ~�T �

r�g
!
tT � ~�T � 0 ~�T � ~HT

~þT

0BB@
1CCA �

0

0

0

0BB@
1CCA: �A:14�

Because h��0� � 0, a ®rst-order Taylor series expansion of (A.14) about
��0; 0; 0� yields
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0

0

0

0BBB@
1CCCA �

Tÿ1=2 PT
t�1 g

!
tT ��0�

0

0

0BBB@
1CCCA

�
ÿV 0 G

0 0 0 H 0

G 0 H 0

0BBB@
1CCCAT1=2

��T� ~�T

~þT

� ~�T ÿ �0�

0BBB@
1CCCA� oP�1�:

Therefore

T1=2� ~�T ÿ �0� � ÿNG 0Vÿ1Tÿ1=2
XT
t�1

g�xt; �0� � oP�1�; �A:15�

T1=2��T� ~�T � Vÿ1 ÿ Vÿ1GNG 0Vÿ1
ÿ �

Tÿ1=2
XT
t�1

g�xt; �0� � oP�1�;

�A:16�
T1=2 ~þT � P 0Tÿ1=2

XT
t�1

g�xt; �0� � oP�1�: & �A:17�

Proof of Proposition 5

A Taylor series expansion for RT � ~�T ; ~�T � about ��0; 0; 0� results in
2��T�RT � ~�T ; ~�T � � T��T�2 ~� 0

TV ~�T � oP�1�: �A:18�
Combining (A.7) and (A.18):

2��T��RT � ~�T ; ~�T � ÿ RT ��̂T ; �̂T ��
� T��T�2� ~� 0

TV ~�T ÿ �̂ 0
TV�̂T � � oP�1�

� Tÿ1=2
XT
t�1

g�xt; �0� 0P H 0�G 0Vÿ1G�ÿ1H
� �

P 0Tÿ1=2

�
XT
t�1

g�xt; �0� � oP�1�

� T ~þ 0
TH

0�G 0Vÿ1G�ÿ1H ~þT � oP�1�;
the second equality following from (A.5) and (A.16) and the third from
(A.17). From (A.4) and (A.17),
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T1=2h��̂T � � ÿH 0�G 0Vÿ1G�ÿ1HT1=2 ~þT � oP�1�:
We also note that, from (A.4), (A.15) and (A.17),

T1=2� ~�T ÿ �̂T � � �G 0Vÿ1G�ÿ1HT1=2 ~þT � oP�1�;
and, from (A.5), (A.16) and (A.17),

T1=2��T�� ~�T ÿ �̂T � � Vÿ1G�G 0Vÿ1G�ÿ1HT1=2 ~þT � oP�1�: &

Proof of Theorem 6

From the ®rst-order conditions determining �ÿ̂T ; �̂T �, a ®rst-order Taylor
series expansion about ��0; 0� and �ÿ̂T ; �̂T � for the optimised criterion
Rh�

T � ~ÿT ; ~�T � yields
T1=2��T� Tÿ1Rh

T �ÿ̂T ; �̂T � ÿ Rh�
T � ~ÿT ; ~�T �

� �
� Tÿ1

XT
t�1

ln�1� �̂ 0Th
!
tT �ÿ̂T ��g!tT ��0� 0

þ !
T1=2��T��̂T � oP�1�

� � 0�T
1=2��T��̂T � oP�1�: &

Proof of Corollary 1

Immediate from that of Theorem 6. &

Proof of Proposition 6

A ®rst-order Taylor series expansion of the statistic T1=2��T�
�Rh

T �ÿ̂T ; �̂T � ÿ Rh�
T �ÿ̂T ; �̂T �� about ��0; 0� yields an identical expansion to

that in the Proof of Theorem 6. &
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5 Ef®ciency and robustness in a
geometrical perspective

Russell Davidson

1 Introduction

The aim of this chapter is to construct a general geometrical setting,

based on Hilbert space, in which one may study various estimation tech-

niques, in particular with respect to ef®ciency and robustness. Given the

sort of data one wishes to study, such as continuous, discrete, etc., the set

of data-generation processes (DGPs) capable of generating data of that

sort is given the structure of a Hilbert manifold. Statistical models will be

treated as submanifolds of this underlying manifold.

Geometrical methods are frequently used in the study of statistical

inference. One important strand of the literature is presented in Amari

(1990), whose numerous earlier papers were inspired by some very

abstract work of Chentsov (1972) and led to the concept of a statistical

manifold. Other review papers and books in this tradition include

Barndorff-Nielsen, Cox and Reid (1986), Kass (1989), Murray and

Rice (1993), and Barndorff-Nielsen and Cox (1994). Most of this work

makes use of ®nite-dimensional differential manifolds, which are usually

representations of models in the exponential family.

In®nite-dimensional Hilbert space methods are extensively used in

another strand of literature, for which the most suitable recent reference

is Small and McLeish (1994). This book contains numerous references to

the original papers on which it builds. In this work, random variables are

represented as elements of Hilbert space, and different probability mea-

sures (that is, different DGPs) correspond to different inner products on

the Hilbert space. However, no manifold structure is imposed on the set

of inner products, so that the set of DGPs, rather than the set of random

151

This research was supported, in part, by grants from the Social Sciences and Humanities
Research Council of Canada. It is loosely based on unpublished joint work with Stanley E.
Zin, to whom I am grateful for many useful discussions.



variables, is not given a geometrical interpretation. Nevertheless, Small
and McLeish's approach provides most of the geometrical elements used
in this chapter.

Davidson and MacKinnon (1987) introduced in®nite-dimensional sta-
tistical manifolds, with Hilbert manifold structure, in a manner similar to
that used by Dawid (1975, 1977). In®nite-dimensional differential mani-
folds are less frequently encountered than ®nite-dimensional ones, but see
Lang (1972) for an excellent account. The use of in®nite-dimensional
manifolds avoids the need to limit attention to models in the exponential
family. In this chapter, that Hilbert space representation is extended, and
adapted for use in the context of asymptotic theory.

In this chapter, estimators are de®ned in such a way as to correspond
to elements of the tangent spaces to the statistical manifold at DGPs
belonging to the manifold. In fact, an interpretation of these tangent
spaces is given as the space of random variables with zero mean and
®nite variance under the DGP at which the space is tangent. Since a
tangent space to a Hilbert manifold is itself a Hilbert space, it can,
under this interpretation, be identi®ed with the subspace of Small
and McLeish's Hilbert space corresponding to zero-mean random
variables.

The principal focus in this chapter is on estimators de®ned by the
method of estimating functions, as proposed by Godambe (1960). This
method is essentially equivalent to the method known in the econometrics
literature as the generalised method of moments, introduced by Hansen
(1982). With little effort, the results given in this chapter can be extended
to Manski's (1983) closest empirical distribution class of estimators. The
ef®ciency and/or robustness of an estimator is always treated relative to a
statistical model, treated as a Hilbert submanifold. Since estimators esti-
mate parameters, they are de®ned relative to a parameter-de®ning map-
ping de®ned on the model. A parameterised model is just the pair
consisting of the model and the parameter-de®ning mapping.

A major result of the chapter is that the tangent space to the underlying
statistical Hilbert manifold at a DGP belonging to a parameterised model
is the direct sum of three mutually orthogonal subspaces. The model,
being a Hilbert submanifold, has its own tangent space at any DGP in
it, this being a subspace of the full tangent space. The ®rst of the three
subspaces is just the orthogonal complement of the tangent space to the
model. The other two are therefore complementary subspaces of the
model tangent space. Of these, one is the tangent space to the subset of
the model for which the model parameters do not vary, and the other,
orthogonal to it, turns out to be the ®nite-dimensional space in which
(asymptotically) ef®cient estimators are located.
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Robustness of an estimator with respect to a given model is interpreted
as meaning that the estimator is root-n consistent for all DGPs in the
model. The property of root-n consistency is shown to have a geometrical
interpretation according to which the tangents that represent the estima-
tor are orthogonal to the second subspace described above, the one that is
tangent to the space over which the parameters do not vary. Quite gen-
erally, a root-n consistent estimator can be made ef®cient at any given
DGP by projecting it orthogonally in Hilbert space on to the ®nite-
dimensional third subspace. Such orthogonal projections can be achieved
by making use of a particular privileged basis of the third subspace, a
basis that is easy to characterise in terms of Godambe's estimating
functions.

In the next section, the Hilbert manifold of DGPs is constructed, and it
is shown how to adapt it for use with asymptotic theory. Then, in
section 3, estimators are de®ned in a geometrical context, as also the
concepts of ef®ciency and robustness of estimators. The main results
pertaining to the three-subspace decomposition of the tangent space
are proved in this section. Section 4 is an interlude of examples and
illustrations, and in section 5 the results are specialised to estimators
de®ned by estimating functions and the generalised method of moments.
In section 6, the linear regression model is used as the simplest example in
which the results of section 5 can be deployed, and a non-trivial applica-
tion of orthogonal projection is given. Finally, concluding comments are
found in section 7.

2 Data-generation processes in Hilbert space

In Davidson and MacKinnon (1987) a Hilbert space representation was
introduced for the set of data-generation processes (DGPs) that could
have generated a given data set. The representation used here is a slight
generalisation of that presented there, in that we will not restrict our-
selves to samples of i.i.d. random variables.

First, it is assumed that the DGPs we are concerned with are de®ned on
a measure space �ÿ;F�. A DGP corresponds to a probability measure, P
say, de®ned on this space. Observed data, yn � fytgnt�1, say, for a sample
of size n, are interpreted as realisations of random variables on �ÿ;F�.
Thus, if each observation has m components (there are m simultaneously
observed dependent variables), then for each t � 1; 2; . . . ; n there exists a
mapping Yt : ÿ ! R

m, and for each sample size n � 1; 2; . . . a mapping
Yn : ÿ ! Rnm, where Yt andY

n are, respectively, the random variable for
observation t and the random variable for a complete sample of size n.
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Their stochastic properties are given by the probability measure P, or,
equivalently, by the measure that P induces on Rmn by the mapping Yn.

A model, for a given sample size n, will be thought of as a set of DGPs,
that is, as a set of probability measures on R

mn. We assume that there
exists a carrier measure Pn

0 on R
mn such that the measures associated with

all DGPs in the model are absolutely continuous with respect to it. By the
Radon±Nikodym theorem, this ensures for each DGP in the model the
existence of a probability density for the random variable Yn.

Consider now one single DGP in the model, and denote the density of
Yn by Ln : Rmn ! R. Since this is the joint density of the Yt, t � 1; . . . ; n,
it can be factorised as follows:

Ln�y1; . . . ; yn� �
Yn
t�1

Lt�yt j ytÿ1; . . . ; y1�; �1�

where Lt denotes the density of the t'th observation, Yt, conditional on all
the observations before it in the ordering f1; 2; . . . ; ng, that is, the obser-
vations 1 through tÿ 1.

We may now make contact with the representation given in Davidson
and MacKinnon (1987), by considering not the density (1) but its square
root. Analogously to (1), we write

ýn�y1; . . . ; yn� �
Yn
t�1

ýt�yt j ytÿ1; . . . ; y1�; �2�

where Ln�y1; . . . ; yn� � �ýn�y1; . . . ; yn��2, with a similar relation between
Lt��� and ýt���, t � 1; . . . ; n. By construction, ýn belongs to the Hilbert
space L2�Rmn;Pn

0�, in fact to the unit sphere of that space, since the
integral of the square of ýn with respect to dyn � dy1dy2 . . . dyn equals
one. We write Hn for this unit sphere.
Usually we choose ýn and the ýt to be the non-negative square roots of

Ln and the Lt, but this is not necessary. Indeed, in Hilbert space, it is
impossible to limit oneself to non-negative square root densities, since the
non-negative cone in an in®nite-dimensional Hilbert space has an empty
interior, and thus does not have a manifold structure. A consequence of
this is that we cannot represent a given DGP uniquely in Hilbert space,
but this does not matter for anything in this chapter. Hilbert space, on the
other hand, is the natural setting for mean-square convergence, and has
the considerable advantage that the information matrix ± to be de®ned
later ± is a smooth tensor in this representation. This would not be so if
we used, for instance, the log of the density in place of the square root
density.
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It is clear from (2) that a convenient way to deal with arbitrary sample
sizes is to consider in®nite sequences of contributions fýtg1t�1. For any
given sample size n, the joint square root density of the n observations
is given by (2). For a given in®nite sequence to de®ne a DGP for each n, it
is necessary and suf®cient that�

jýt�yt j ytÿ1; . . . ; y1�j2 dyt � 1 �3�

for all possible values of the conditioning variables y1; . . . ; ytÿ1. We
denote by S the set of sequences satisfying these conditions, and consider
S as the space of DGPs for asymptotic theory, since, given any element
of S, a proper probability density can be de®ned for arbitrary sample
size. A model, for the purposes of asymptotic theory, will thus be a subset
of S.

Consider ®rst, for a given n, the tangent space to the unit sphere Hn at
some DGP ýn 2 Hn. A tangent at ýn is associated with a smooth curve in
Hn through ýn. Such a curve is a one-parameter family of DGPs that
includes ýn. Let the curve be denoted by ýn�"�, " 2 � ÿ 1; 1�, and
ýn�0� � ýn. The tangent to this curve at ýn is then represented by the
derivative of ýn�"� at " � 0. The appropriate derivative in Hilbert space is
a mean-square derivative, �ýn� 0 2 L2�Rmn;Pn

0�, say, that satis®es

lim
"!0

1

"
�ýn�"� ÿ ýn�0�� ÿ �ýn� 0

ÿÿÿÿ ÿÿÿÿ � 0; �4�

where k � k is the Hilbert space norm in Hn.
Consider next a curve in S through the point ý � fýtg1t�1. Denote the

curve by ý�"�, and, for each n, we have a curve in Hn given by

ýn�"� �
Yn
t�1

ýt�"�:

In order to de®ne the tangent to the curve ý�"�, and for the purposes of
asymptotic theory more generally, it is more convenient to consider not
the sequence fýn�"�g for a ®xed ", but rather the sequence

fýn�nÿ1=2"�g1n�1:

On differentiating with respect to " at " � 0, this gives the following
representation for the tangent to ý�"� at ý:

fnÿ1=2�ýn� 0g1n�1; �5�
where each �ýn� 0 is de®ned as in (4).
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The reason for the factor of nÿ1=2 is that we can now de®ne the norm of
the sequence (5), and thus the norm of the tangent ý 0 to ý�"� at ý by the
formula

ký 0k � lim
n!1knÿ1=2�ýn� 0kHn ; �6�

where the norm of each �ýn� 0 is calculated in the Hilbert space corre-
sponding to sample size n. The limit in (6) will be shown shortly to exist in
a wide variety of circumstances. Without the factor of nÿ1=2, this would
not be the case. Another way to see why the factor is useful is to note that
its use converts the curve ý�"� into what Davidson and MacKinnon
(1993) call a drifting DGP, in the sense of a Pitman drift.

Note that there is no obvious way to embed the contributions ýt�"� in a
Hilbert space or manifold, and there is therefore no direct way to com-
pute their derivatives with respect to ". An appropriate indirect way is as
follows. Recall that ýn with a superscript refers to a product of contribu-
tions, while ýt with a subscript refers to a single contribution. Then
de®ne derivatives ý 0

t recursively by the relations

ý 0
1 � �ý1� 0; ýtÿ1ý 0

t � �ýt� 0 ÿ ýt�ýtÿ1� 0: �7�
For values of �y1; . . . ; ytÿ1� for which ýtÿ1 vanishes, ý 0

t is arbitrarily set
equal to zero. It should be clear that, whenever the ýt�"� can be differ-
entiated in any useful sense, the derivatives will satisfy (7). With that
de®nition, it is clear that the tangent ý 0can be represented by the in®nite
sequence of contributions, fý 0

t g1t�1, such that, for each n,

�ýn� 0
ýn �

Xn
t�1

ý 0
t

ýt

: �8�

The construction of the tangent space at the DGP ý 2 S as a Hilbert
space is almost complete. Tangents are represented by in®nite sequences
of contributions satisfying (8), with the norm (6). The ®nal step, needed
so that (6) should be positive de®nite, is to identify tangents of zero norm
with the actual zero tangent, de®ned as an in®nite sequence of zero con-
tributions. In this way, the Hilbert space that we consider is the space of
equivalence classes of in®nite sequences of contributions satisfying (8),
two sequences being equivalent if the difference between them is a
sequence of zero norm using the norm (6). It will be clear shortly that
the different elements of equivalence classes so de®ned are asymptotically
equivalent in the usual sense of asymptotic theory. The Hilbert space thus
de®ned, the space of tangents to S at the DGP ý, will be denoted
as TS�ý�.
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It is now possible to give a statistical interpretation of the space TS�ý�.
Consider a curve ý�"� and suppose that, for each n and for all admissible
values of yn � �y1; . . . ; yn�, ýn�"; yn� is non-zero, so that log jýn�"; yn�j
exists everywhere. We remarked above that the curve corresponds
to a one-parameter family of DGPs, and it is clear that `n�"; yn� �
2 log jýn�"; yn�j is the log-likelihood function corresponding to this one-
parameter family. Further, `t�"; yt� � 2 log jýt�"; yt�j is just the contribu-
tion to `n from observation t, and

`n�"; yn� �
Xn
t�1

`t�"; yt�: �9�

Assuming now that `n, `t and ýt can be differentiated with respect to ",
we see that, by (8),Xn

t�1

@`t
@"

�0� � @`n

@"
�0� � 2

�ýn� 0
ýn � 2

Xn
t�1

ý 0
t

ýt

: �10�

The expression second from the left above is the gradient of the log-
likelihood of the one-parameter family at " � 0, and, as such, its expecta-
tion under the DGP ýn is zero. In Hilbert space, this result corresponds
to a simple orthogonality property, as follows. The expectation of each
expression in (10), since the square of ýn is the density of yn, can be
written as

2

� �ýn� 0
ýn �ýn�2 dyn � 2

�
�ýn� 0 ýn dyn; �11�

and the right-hand side of this can be seen to be zero when the normal-
isation relation�

�ýn�2�"� dyn � 1;

which holds for all admissible ", is differentiated with respect to " and
evaluated at " � 0 to yield�

�ýn� 0ýn dyn � 0; �12�

which just says that the inner product in L2�Rmn;Pn
0� of �ýn� 0 and ýn is

zero, so that �ýn� 0 and ýn are orthogonal. Geometrically, this just says
that a radius of the unit sphere ± ýn ± is orthogonal to a tangent to that
sphere ± �ýn� 0.

From (3), it follows that a result like (12) holds for each contribution:�
ý 0
t ýt dyt � 0;
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which, in terms of `t, becomes�
@`t
@"

�0; yt� exp�`t�0; yt�� dyt � E
@`t
@"

�0; yt�
þþþþ ytÿ1

� �
� 0:

The second equation above implies the well-known result that the
sequence

Xn
t�1

@`t
@"

�0�
( )1

n�1

is a martingale under ý.
Now consider the norm of the tangent ý 0, as given by (6). In order to

calculate it, we need the norms, in L2�Rmn;Pn
0�, of the tangents �ýn� 0.

These norms are given by the formula

k�ýn� 0k2 �
�
��ýn� 0�2 dyn �

� �ýn� 0
ýn

� �2

�ýn�2 dyn

� Eýn

Xn
t�1

@`t
@"

�0�
" #2

0@ 1A; �13�

where the last equality follows from (10). The martingale property allows
(13) to be simpli®ed to

Xn
t�1

Eýt

@`t
@"

�0�
� �2ý !

: �14�

From (6), the squared norm of ý 0 is

lim
n!1 nÿ1

Xn
t�1

Eýt

@`t
@"

�0�
� �2ý !

;

where the limit exists under mild regularity conditions allowing a law of
large numbers to be applied. This limit can be interpreted as the limiting
(asymptotic) variance under ý of the sequence

nÿ1=2
Xn
t�1

@`t
@"

�0�
( )1

n�1

: �15�

Although (15) is derived from a triangular martingale array rather than
being a martingale, we will refer to sequences like (15) as martingales, by
a slight abuse of terminology. Exactly similar considerations allow us to
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express the inner product of two tangents �ý1� 0 and �ý2� 0 in TS�ý� as the
limit of the covariance of the two random variables

nÿ1=2
Xn
t�1

@`1t
@"1

�"1 � 0� and nÿ1=2
Xn
t�1

@`2t
@"2

�"2 � 0�;

in obvious notation.
The above considerations lead to an intuitive understanding of the

Hilbert space TS�ý� we have constructed. It is the space of equivalence
classes of asymptotically equivalent sequences of random variables of the
form

h � nÿ1=2
Xn
t�1

ht

( )1

n�1

;

where

Eý�ht j h1; . . . ; htÿ1� � 0; t � 1; 2; . . . ;

Eý�h2t � � �t < 1; t � 1; 2; . . . ; �16�
and nÿ1 Pn

t�1 �t converges as n ! 1 to a ®nite limiting variance.
The squared norm khk2 of such a sequence is the limiting variance, and

the inner product hh1; h2i of two such sequences is the limiting covariance
of

nÿ1=2
Xn
t�1

h1t and nÿ1=2
Xn
t�1

h2t : �17�

The construction depends heavily on the martingale property. On
account of the variety of central-limit theorems applicable to martingales
(see for instance McLeish (1974)), this property also justi®es considering
limiting normal random variables to which sequences like (17) tend as
n ! 1.

The choice of the particular Hilbert space structure just constructed so
as to de®ne the tangent space at ý confers a Hilbert manifold structure on
the set S itself. It is not the aim of the present chapter to conduct a full
investigation of this structure, since all the remaining analysis of the
chapter will be local, and so just a few remarks will be made. It is clear
that it would be necessary to group the elements of S into equivalence
classes of DGPs with asymptotically equivalent properties. The regularity
conditions (16) implicitly restrict the sorts of DGPs admitted into S.
These are not so strong as those imposed by Hansen (1982), who worked
in a stationary ergodic framework. Methods of the sort used in White and
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Domowitz (1984) and White (1985) are presumably appropriate for
determining just what restrictions are implicit in the present treatment.

3 Ef®ciency and robustness in Hilbert space

All procedures of estimation or inference treated here will be situated in
the context of a particular model, that is, a subset of the set S introduced
in the preceding section. If M denotes such a model, it is almost always
interesting to de®ne some parameters for it. A parameterised model will
therefore be a pair, of the form �M; h�, where the mapping h : M ! � is
termed a parameter-de®ning mapping. The set � is a ®nite-dimensional
parameter space, a subset of Rk for some positive integer k. A para-
meterisation would go the other way, associating a DGP to each para-
meter vector in �.

Models that can be estimated by maximum likelihood constitute a very
straightforward class. They are special in that a parameterisation does
exist for them: for each admissible parameter vector, and for each sample
size, the likelihood function gives a probability density for the dependent
variables, which is precisely what we mean by a DGP. The image of the
parameterisation is the model, and the parameter-de®ning mapping is
the inverse of the parameterisation. Note that the inverse will not exist
if the parameterisation is not one-to-one. In such cases, the model para-
meters are not identi®ed. A convenient way to impose identi®cation of all
the parameters we consider, not just in the context of maximum likeli-
hood models, is to require the existence of a parameter-de®ning mapping.

In more general circumstances, a given parameter vector corresponds
to an in®nite number of DGPs. A simple case is that of a linear regression
model

yt � X tb� ut; E�ut� � 0; E�u2t � � �2; �18�
in which the distribution of the error terms is not speci®ed past the ®rst
two moments. Any mean-zero error distribution with ®nite variance can
be used in combination with a ®xed parameter vector b and variance �2.
Clearly, there is an in®nite number of such error distributions.

In order to bene®t from the Hilbert space structure introduced in the
preceding section, it will be desirable to consider only models M that are
closed submanifolds of S. Locally, in a neighbourhood of a DGP ý 2 M,
this just means that, if we consider the subset of tangents at ý generated
by curves that lie entirely in the subset M, this subset, denoted by TM�ý�,
should be a closed subspace of the full tangent space TS�ý�.
If this condition is satis®ed, then another regularity condition needed

for the rest of the development can be imposed on the parameter-de®ning
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mappings that may be used with M. It is that such a mapping must be a
submersion (see, for instance, Lang (1972)). Among the consequences of
this technical condition is that, if h denotes the parameter-de®ning map-
ping, open neighbourhoods of ý in M are mapped by h into open sets of
the parameter space �. This avoids redundant parameters: if, for
instance, one parameter, �1 say, was always just twice another parameter,
�2, all points in the image of h would satisfy �1 � 2�2, and so the image
could not be an open set. Another consequence, more important for what
follows, is that TM�ý� can be expressed as the direct sum of two ortho-
gonal subspaces, the ®rst, possibly in®nite-dimensional, corresponding to
tangents to curves along which the parameters de®ned by h are constant,
and the second the orthogonal complement of the ®rst, and necessarily of
®nite dimension k, where k is the number of parameters de®ned by h. A
maximum likelihood model is itself of dimension k, and so the ®rst of
these orthogonal subspaces contains only the zero element of TM�ý�. In
general, the ®rst of the subspaces, that for which the parameters are
constant, will be denoted as TM�ý; h�, and the second as E�ý; h�. These
two subspaces, together with their orthogonal complement in TM�ý�,
comprise the three-subspace decomposition of TM�ý� alluded to in the
introduction.

An estimator of the parameters of a given parameterised model is a
sequence of random k-vectors ĥn which, for each n, are de®ned solely in
terms of the random variable Yn of which any data set of size n is a
realisation. Thus ĥn maps from R

mn to a parameter space �. The estima-
tor characterised by the sequence fĥng will be written as just ĥ. The above
de®nition clearly contains many useless estimators; usually we will be
interested only in consistent estimators. The property of consistency
can be expressed as follows. For each DGP ý 2 M, we must have

plimý
n!1

ĥn � h�ý�:

The notation means that the probability limit is calculated under the
DGP ý, and that the limit is what is given by the parameter-de®ning
mapping h for that DGP.

Most root-n consistent estimators correspond to vectors of tangents at
each point of the model for which they are de®ned. Consider a DGP ý in
a parameterised model �M; h�, and let h�ý� � h0 be the parameter vector
for ý. Then, for a root-n consistent estimator ĥ, construct the vector
sequence with typical element

st � t�ĥt ÿ h0� ÿ �tÿ 1��ĥtÿ1 ÿ h0�: �19�
Clearly
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n1=2�ĥn ÿ h0� � nÿ1=2
Xn
t�1

st:

The components of fstg may not exactly satisfy the conditions (16), but
they will usually be asymptotically equivalent to sequences that do. Since
such asymptotically equivalent sequences are identi®ed in our Hilbert
space structure, the estimator ĥ can be associated with the vector of
tangents at ý de®ned by the equivalence classes containing the compo-
nents of fstg. In fact, all estimators that are asymptotically equivalent to ĥ

are associated with the same vector of tangents.
A simple illustration may be helpful here. The OLS estimator of the

regression model (18) satis®es the relation

n1=2�b̂n ÿ b0� � nÿ1
XN
t�1

X
0
tX t

ý !ÿ1

nÿ1=2
Xn
t�1

X
0
tut �20�

when the true parameter vector is b0. Under standard regularity condi-
tions, nÿ1 Pn

t�1X
>
t X t tends to a non-random, symmetric, positive de®nite

limiting matrix A, say. Thus the sequence with typical element �20� is
asymptotically equivalent to the sequence

ŝ � nÿ1=2
Xn
t�1

Aÿ1X
0
tut

( )1

n�1

;

which clearly obeys the requirements of (16).
If the parameter space � is k-dimensional, we may denote the k tan-

gents corresponding to ĥ at ý by the vector ŝ, with typical element ŝi,
i � 1; . . . ; k. It follows from the interpretation of the Hilbert space norm
of a tangent as a variance that the k� k matrix with typical element
hŝi; ŝji is the asymptotic covariance matrix of ĥ, that is,

lim
n!1Var�n1=2�ĥn ÿ h0��: �21�

The notion of robustness used in this chapter can be de®ned as follows.
Suppose we have two parameterised models �M0; h0� and �M1; h1�, where
h0 and h1 map into the same parameter space �, such that M0 � M1 and
h0�ý� � h1�ý� for all ý 2 M0. Then a consistent estimator ĥ of the para-
meters of the ®rst model is said to be robust with respect to the second if
it is also consistent for the second model. (Note that, since h0 : R

mn ! �,
it satis®es our de®nition of an estimator of �M1; h1�.) Thus the OLS
estimator of the regression model (18) restricted so as to have normal
errors is robust with respect to the full model (18) with arbitrary error
distribution satisfying the conditions on the ®rst two moments.
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It may happen that the `unrestricted' model M1 has more parameters
than the `restricted' model M0. The above de®nition may still be used by
limiting the parameter-de®ning mapping h1 to its projection on to those
parameters that do appear in �M0; h0�. For instance, the unrestricted
regression

yt � X tb� Z tc� ut �22�
contains the restricted regression

yt � X tb� ut �23�
as a special case, but has more parameters. In order to see if an esti-
mator for (23) is robust with respect to (22), one just forgets about the c
parameters for model (22). It then follows by standard arguments that
the OLS estimator of (23) is robust with respect to (22) if and only if
plimn!1 nÿ1 Pn

t�1 Z
0
tX t � 0.

Robustness is often thought to entail a cost in terms of the ef®ciency of
an estimator. One of the chief aims of this chapter is to make explicit the
trade-off between these two desirable features. Before we can do so, we
need a geometrical characterisation of ef®ciency. As with robustness,
ef®ciency will always be de®ned with respect to a given parameterised
model �M; h�. A root-n consistent estimator ĥ is ef®cient for �M; h� at a
DGP ý 2 M if no other root-n consistent estimator �h for �M; h� has
smaller asymptotic variance under ý. Speci®cally, the difference between
the asymptotic covariance matrix of �h, given by (21), and that for ĥ is a
positive semi-de®nite matrix. The geometrical characterisation of ef®-
ciency is given by the following theorem.

Theorem 1 Under the regularity assumed so far, the root-n con-
sistent estimator ĥ is ef®cient for the parameterised model �M; h� at a DGP
ý 2 M if and only if the tangents ŝi, i � 1; . . . ; k, associated with ĥ belong
to the space E�ý; h�.

In order to prove this theorem, we will develop in a series of lemmas a
number of properties of root-n consistent estimators. First, note that, if
the condition of the theorem is true, the ŝi, i � 1; . . . ; k, span the k-
dimensional space E�ý; h�, since any linear dependence of the ŝi would
imply that the model parameters were not independent, contrary to the
assumption that the parameter-de®ning mapping is a submersion.

Lemma 1 The tangents �si, i � 1; . . . ; k, associated with a root-n
consistent estimator �h of the parameterised model �M; h� at a DGP ý 2 M

are orthogonal to the space TM�ý; h�.

Efficiency and robustness 163



Proof If TM�ý; h� consists only of the zero tangent, the lemma
is trivial. Otherwise, consider a curve in M through ý such that, for all
points ý�"� on the curve, h�ý�"�� � h�ý�. The tangent ý 0 to this curve
belongs to TM�ý; h� by de®nition, and any element of TM�ý; h� can be
generated by such a curve. Then, for all admissible ", the expectation of
�hn under ý�"� tends to h0 � h�ý� as n ! 1.
Suppose that the curve is expressed in terms of contributions `t�"�, as in

(9), and that the tangents �si correspond to components �sti satisfying (16).
Then we have

0 � Eý�"���sti� yt� j ytÿ1� �
�
exp�`t�"; yt�� �sti� yt� dyt:

From (19), it is clear that, since h�ý�"�� is independent of ", so too is �sti
along the curve ý�"�.Thus differentiating with respect to " and evaluating
at " � 0 gives�

exp�`t�0; yt��
@`t
@"

�0; yt� �sti� yt� dyt � Eý
@`t
@"

�0; yt� �sti� yt�
þþþþ ytÿ1

� �
� 0:

Thus the random variables @`t=@"�0� and �sti have zero covariance at ý
conditional on ytÿ1. By the martingale property (compare (14)), this
implies that the unconditional covariance of nÿ1=2 Pn

t�1 @`t=@"�0� and
nÿ1=2 Pn

t�1 �sti is zero, and so, letting n ! 1 gives

lim
n!1Eý nÿ1=2

Xn
t�1

@`t
@"

�0; yn� n1=2��hn� yn� ÿ h0�
ý !

� 0: �24�

Since the left-hand side of this is the limiting covariance of n1=2��hn ÿ h0�
and nÿ1=2 Pn

t�1�@`t=@"� under ý, the typical element of �24� becomes

hý 0; �sii � 0:

Since ý 0 is an arbitrary element of TM�ý; h�, this completes the
proof. &

Lemma 1 shows that any �si can be expressed as the sum of a compo-
nent in E�ý; h� and a component in the orthogonal complement of TM�ý�
in TS�ý�. The two terms of this sum are themselves orthogonal.
According to Theorem 1, the second term must vanish for an ef®cient
estimator. In fact, the ef®cient estimator will turn out to be asymptoti-
cally unique.
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For the next lemma, for each j � 1; . . . ; k, consider any curve ýj�"� in
M that satis®es the relation

h�ýj�"�� � h0 � "ej; �25�

where ej is a k-vector all the components of which are zero except for
component j, which equals one. The existence of such curves is once more
guaranteed by the requirement that h be a submersion.

Lemma 2 For any root-n consistent estimator �h characterised at
the DGP ý in the parameterised model �M; h� by the tangents �si, i �
1; . . . ; k, and for any curve ýj�"� satisfying �25�, the inner product
hý 0

j ; �sii � �ij.

Proof Suppose as in the proof of Lemma 1 that the �si corre-
spond to components �sti satisfying (16). From (19) and (25) it follows that
@�sti=@" � �ij along ýj�"�. Letting ýj�"� be expressed in terms of contribu-
tions �`j�t�"�, then, by exactly the same arguments as in the proof of
Lemma 1, for i � 1; . . . ; k, we see that

Eý

@�`j�t
@"

�0; yt� �sti� yt�
þþþþ ytÿ1

� �
� �ij :

This implies that hý 0
j ; �sii � �ij ,as required. &

Lemma 3 At each DGP ý in the parameterised model �M; h�,
there exist unique tangents ŝi, i � 1; . . . ; k in the space E�ý; h� such that for
any root-n consistent estimator �h characterised at ý by the tangents �si,
i � 1; . . . ; k, �si � ŝi � vi, where vi belongs to the orthogonal complement
of TM�ý� in TS�ý�. Similarly, for all j � 1; . . . ; k and for any curve ýj�"�
satisfying (25), there exist unique tangents �j in E�ý; h� such that
ý 0
j � �j � wj , where wj belongs to TM�ý; h�.

Proof For any �h, we know from Lemma 1 that �si can be
expressed as a sum of a tangent in E�ý; h� and some vi in the orthogonal
complement of TM�ý� in TS�ý�. This decomposition is unique, because it
is orthogonal. Thus we may choose an arbitrary estimator �h and de®ne
the ŝi by �si � ŝi � vi. Similarly, for any given set of curves ýj�"�
satisfying (25), since the ý 0

j lie in TM�ý�, we may de®ne the tangents �j
by ý 0

j � �j � wj, �j 2 E�ý; h�, wj 2 TM�ý; h�. Clearly the �j span E�ý; h�.
By Lemma 2, we have

�ij � hý 0
j ; �sii � h�j � wj; ŝi � vii � h�j; ŝii; �26�
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since vi, being orthogonal to TM�ý�, is orthogonal to both �j and wj , and
wj, being orthogonal to E�ý; h�, is orthogonal to ŝi.
Consider any other root-n consistent estimator characterised by tan-

gents ~si such that ~si � ti � ui, ti 2 E�ý; h�, ui orthogonal to ti. Then (26)
applies to the ~si, and so

h�j; tii � �ij :

Since the �j span E�ý; h�, and the ti and the ŝi belong to E�ý; h� and
have the same inner products with the basis vectors �j , we have ti � ŝi,
and so the ŝi are unique, as claimed. The uniqueness of the �j follows by
an exactly similar argument starting from any other set of curves
satisfying (25). &

Since all the tangents in the above lemma can be represented by mar-
tingales, the results of the lemma can be expressed in terms of contribu-
tions, as follows:

Eý�ŝti� yt� vti� yt�j ytÿ1� � 0; and

Eý��tj� yt�wtj� yt�j ytÿ1� � 0:

The relations

h�j; ŝii � �ij �27�
can be expressed by saying that the �j and the ŝi constitute a pair of dual
bases for E�ý; h�. This property also implies that the k� k matrix with
typical element hŝi; ŝji is the inverse of the matrix with typical element
h�i; �ji. Since the former matrix is the asymptotic covariance matrix of
the estimator h, the latter can be thought of as performing the role of the
asymptotic information matrix ± in a maximum likelihood model, it
would be the asymptotic information matrix in the usual sense. Since
the scalar product is a smooth tensor on Hilbert space or a Hilbert
manifold, it is seen that the information matrix is smooth in our
Hilbert space construction.

The proof of Theorem 1 can now be ®nished easily. Any estimator ĥ
satisfying the condition of the theorem is characterised by tangents lying
in E�ý; h�, which, by the uniqueness given by Lemma 3, must be the ŝi of
that lemma. Any other estimator �h has associated tangents of the form
ŝi � vi. Since all the ŝi are orthogonal to all the vi, the asymptotic covar-
iance matrix of �h equals the matrix of inner products of the ŝi plus the
matrix of inner products of the vi. Since all of these matrices are covar-
iance matrices, they are all positive semi-de®nite, and so the difference
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between the asymptotic covariance matrix of �h and that of ĥ is positive
semi-de®nite, as required. &

4 Examples and illustrations

As a textbook example, consider the linear regression model (18) with
normal errors. Since asymptotic theory is hardly necessary to treat this
model, we can consider a ®nite sample size n. The model can be written in
matrix notation as follows:

y � Xþ� u; �18�
where y and u are n� 1, X is n� k, and b is k� 1. We also consider the
model (22):

y � Xþ� Zc� u: �22�
As we saw, the OLS estimator for (18) is not robust with respect to (22) if
Z

0
X is non-zero. However the OLS estimator for (22), restricted to the

parameters b, is consistent, but not ef®cient, for (18). The OLS estimator
from (18) is

b̂ � �X 0
X�ÿ1X

0
y;

and the estimator of b from (22) is

�b � �X 0
MZX�ÿ1X

0
MZy; �28�

where MZ � Iÿ Z�Z 0
Z�ÿ1Z

0
is the orthogonal projection on to the

orthogonal complement of the span of the extra regressors Z. It is easy
to show that (see, for instance, Davidson and MacKinnon (1993),
chapter 11)

�bÿ b̂ � �X 0
MZX�ÿ1X

0
MZMXy; �29�

with MX de®ned similarly to MZ.
When (18) is speci®ed with normal errors, the model is ®nite-

dimensional, k� 1-dimensional in fact, if �2 is allowed to vary. Since
the log-likelihood of the model is

`�b; �2� � ÿ n

2
log 2��2 ÿ 1

2�2
kyÿ Xþk2;

the tangents to the curves along which just one component of b varies are
represented by the k-vector of zero-mean random variables

r � nÿ1=2 1

�2
X

0
u: �30�
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The only way to vary the DGP without changing the parameter vector b
is to vary the error variance. Thus the space TM�ý; b� is one-dimensional
in this case, and is generated by the tangent represented by

nÿ1=2 @`

@�2
� nÿ1=2 1

2�2

Xn
t�1

u2

�2
ÿ 1

ý !
; �31�

which has zero covariance with all the components of (30). This means
that these components lie in E�ý; b�, thereby justifying the notation r.

The OLS estimator b̂ is associated with the tangents

ŝ � �nÿ1X
0
X�ÿ1nÿ1=2X

0
u; �32�

which are seen immediately to be linear combinations of the components
of r in (30). The tangents ŝ therefore also lie in E�ý; b� and so b̂ is seen to
be asymptotically ef®cient. Note also that the matrix of inner products of
the components of r and ŝ is the expectation of

nÿ1=2 1

�2
X

0
u nÿ1=2u 0X�nÿ1X

0
X�ÿ1 � I;

con®rming the dual basis property (27).
The tangents corresponding to the estimator (28) are seen, from (29),

to be

�s � ŝ� �nÿ1X
0
MZX�ÿ1nÿ1=2X

0
MZMXu:

It is simple to check that the covariances of the second term of this with
the components of (32) are zero, as also with (31), which represents the
tangent that generates TM�ý; b�. Thus this second term represents a tan-
gent orthogonal to all of TM�ý�, as required by the theory of the preced-
ing section.

As a slightly less trivial example, consider again the regression
model (18), without imposing the normality of the error terms. The
OLS estimator is of course robust for any model at all that satis®es the
regression equation with zero-mean errors, but it is interesting to enquire
under what conditions it is also ef®cient.

Consider a parameterised model �M; b� the DGPs of which satisfy (18),
but do not necessarily have normal errors. The OLS estimator is still
characterised by the tangents (32), and its robustness implies, by Lemma
1, that these tangents are orthogonal to TM�ý; b� for all ý 2 M.
Consequently, the estimator is ef®cient at a given ý if M is large enough
to contain the tangents (32) in its tangent space TM�ý� at ý, since then,
being orthogonal to TM�ý; b�, they must belong to E�ý; b�. Although it is
dif®cult to state a precise condition that will guarantee this property,
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intuitively it can be seen that the model must include the case of normal
errors.

It can be checked that, if the model speci®es the error distribution, up
to a scale factor, then only normal errors are compatible with the ef®-
ciency of the OLS estimator. Suppose that the error density, scaled to
have unit variance, is denoted by f . Then the log-density of observation t
of the model (18) is

log
1

�
f

yt ÿ X tb

�

� �� �
:

The tangent corresponding to a variation of þi is then represented by

ÿ 1

�
nÿ1=2

Xn
t�1

Xti

f 0�et�
f �et�

;

where et � �yt ÿ X tb�=�. If the tangents ŝ given by (32) are linear combi-
nations of those above, for i � 1; . . . ; k, then it is necessary that

f 0�et�
f �et�

� cet; �33�

for some constant c independent of t. The general solution to the differ-
ential equation (33) is

f �e� � C exp�ce2=2�;
(C another constant) and, since this density must have mean zero and
unit variance, it must be the standard normal density, with C � �2��ÿ1=2,
and c � ÿ1.

In general, if one wishes to improve the precision of a parameter esti-
mate, more information of some sort is necessary. Such information may
take the form of the true value of some other parameter, or the true
nature of the error density, or the like. When models are considered as
sets of DGPs, this sort of information corresponds to a reduction of the
model size, since only DGPs satisfying the constraints imposed by the
new information can belong to the model. Then ef®ciency gains are
possible because estimators that would not have been robust with respect
to the original model may be so for the reduced model. In some circum-
stances, though, this is not so, in which case the extra information is
uninformative concerning the parameters.

These general considerations can be illustrated geometrically. Consider
®gure 5.1, which represents the space E�ý; h� for some parameterised
model as a two-dimensional space, with h � �þ ... ÿ�. The origin corre-
sponds to the DGP ý, at which it is supposed that þ � þ0, ÿ � 0. The
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dual bases fŝþ; ŝÿg and f�þ; �ÿg are drawn, and it can be seen that ŝþ is
orthogonal to �ÿ , and ŝÿ to �þ. The tangent �ÿ gives the direction in which

only ÿ varies, and so it is labelled þ � þ0. Similarly, �þ is labelled ÿ � 0.

Now suppose that we are provided with the information that ÿ � 0.

The model must now be restricted to DGPs that satisfy that property.
The two-dimensional E�ý; h� depicted in the ®gure is reduced to the one-

dimensional line in the direction of �þ, that being the direction in which ÿ
remains constant at zero. But ŝþ does not belong to the one-dimensional
E�ý; þ�, and so is no longer ef®cient for the constrained model. The

ef®cient estimator for that model is obtained by projecting ŝþ orthogon-

ally on to the direction of �þ, using the projection denoted by Pþ in the
®gure. This gives rise to a new consistent estimator associated with
~sþ � Pþŝþ. Since ~sþ is obtained from ŝþ by an orthogonal projection, it
is of smaller norm or, in statistical terms, of smaller asymptotic variance.

In addition, the orthogonal projection means that ~sþ has the same inner

product with �þ as does ŝþ, and so it satis®es the condition of Lemma 2
for a consistent estimator. The result of Lemma 1 is also seen to be

satis®ed: the inef®cient estimator ŝþ for the constrained model equals
the ef®cient estimator ~sþ plus something orthogonal to the constrained

model.

If ÿ is a `nuisance' parameter, the value of which is used only to

improve the precision of the estimate of þ, then it could have been left

out of the parameter-de®ning mapping of the original, unreduced, model.
If so, the omission of ÿ once more leads to a one-dimensional E�ý; þ�, but
this time in the direction of ŝþ. This is because E�ý; þ� must be orthogo-
nal to all directions in which þ does not vary, now including the direction

of �ÿ . This time, it is �þ that is projected orthogonally on to the direction
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of ŝþ to yield ��þ, which replaces �þ for the model with ÿ dropped. This
orthogonal projection, which means that ��þ has smaller norm than �þ,
corresponds to a reduction in information about þ. Notice that the esti-
mator ŝþ is unchanged whether or not ÿ is dropped. The information gain
moving from ��þ to �þ is not realised so long as þ and ÿ are estimated
jointly, and is realised only when information about ÿ is available.

If �þ and �ÿ were orthogonal, so would be ŝþ and ŝÿ , and the directions
of �þ and ŝþ would coincide, as would those of �ÿ and ŝÿ . Redrawing
®gure 5.1 to re¯ect this state of affairs shows that information about ÿ no
longer leads to any gain in the precision of the estimate of þ. This is
perfectly intuitive, since the orthogonality means that the asymptotic
covariance matrix of the parameter estimates is diagonal.

A simple example of such orthogonality is provided by the linear
regression model (18) with normal errors, for which the tangents (30)
corresponding to variation of the parameters b of the regression function
are orthogonal to the tangent (31), which corresponds to variation of �2.
As is well known, knowledge of the value of the error variance is unin-
formative about b. In much the same way, it was seen above that if
normal errors are not assumed in (18), then, if it were learnt that the
errors were in fact normal, this new information would not lead to any
gain as regards estimation of b, since the OLS estimator remains ef®cient
for normal errors.

5 Estimating functions and GMM

The generalised method of moments (GMM) was proposed by Hansen
(1982), apparently without knowledge of a very similar method proposed
by Godambe (1960); see also Godambe and Thompson (1989) and
Godambe (1991). It is convenient to refer to Godambe's method as the
method of estimating functions . Both approaches start from what in the
estimating function context are called elementary zero functions , which
are functions ± at least one for each observation of the sample ± of both
data and parameters. When these functions are evaluated at the correct
values for any given DGP, their expectation under that DGP is zero. The
simplest example is, as usual, the linear regression model (18), for which
the elementary zero functions are the yt ÿ X tb, one for each observation t.

Specifying a set of elementary zero functions is very similar to specify-
ing a model and a parameter-de®ning mapping. Suppose that, for each
observation t, the elementary zero functions are written as f t� yt; h�,
where, as before, the argument yt 2 R

mt corresponds to the observed
data in observations 1 through t, and h is a k-vector of parameters.
The p-vector-valued function f t will usually depend on explanatory vari-
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ables (covariates), hence the index t. The natural way to proceed is to

specify the model as the set of those DGPs ý for which there exists a

unique parameter vector h such that Eý� f t�Yt; h�� � 0. (Recall that Yt is

the random variable of which observations 1 through t are a realisation.)

The parameter-de®ning mapping then maps ý to this unique h.

The above way of de®ning a parameterised model needs to be quali®ed

somewhat, for a number of reasons. The ®rst is that, in order to perform

inference, it is necessary to be able to estimate not only the parameter

vector h, but also the asymptotic covariance matrix of the estimator ĥ,

and, for this, one needs the existence of higher moments. It would there-

fore be preferable to limit the model to those DGPs for which those

higher moments exist.

The second reason reveals a dif®culty that arises whenever a model,

parameter-de®ning mapping or estimation method makes use of

moments, that is expectations. It is that, in any commonly used stochastic

topology, including the one used here based on Hilbert space norms (see

Billingsley (1968, 1979)), expectations of unbounded random variables

are not continuous functions of the DGP under which they are calcu-

lated. For instance, even the smallest admixture of the Cauchy distribu-

tion with the normal is enough to destroy the existence of the ®rst

moment. The unfortunate consequence is that, if a model is de®ned by

moments, it will not be a smooth submanifold of the overall set of

DGPs, S.

The lack of continuity of moments is a problem for establishing appro-

priate regularity conditions in many contexts, not just the geometrical

one. For present purposes, the easiest solution is just to require that the

elementary zero functions f t� yt; h� should be bounded functions of yt. Of

course, this assumption excludes most interesting models, even the linear

regression model, but, since the emphasis of this chapter is geometrical, it

does not seem worthwhile to look further for more suitable regularity

conditions. In particular, imposing the existence of moments on a model

is not informative about that model's parameters. This can be seen by

considering a very simple problem, namely that of estimating the mean of

a set of scalar i.i.d. observations. If these observations may take values

anywhere in an unbounded set, then the set of DGPs de®ned by requiring

that the observations be i.i.d. drawings from a distribution for which the

mean exists is not a smooth submanifold of S. However, the set is dense

in such a submanifold. To see why, consider the Hilbert space L2�R� in
which the unit sphere represents all univariate densities de®ned on R.

Then, for ý in this unit sphere, the mean of the density to which ý
corresponds, if it exists, is
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�1
ÿ1

jý�y�j2y dy: �34�

The integral above de®nes an unbounded quadratic operator on L2�R�,
the domain of which is dense in L2�R�. In other words, the densities for
which the mean exists are dense in the unit sphere of L2�R�. It is straight-
forward to extend this univariate result to the asymptotic Hilbert space S.
Clearly the model implicitly de®ned by the problem of estimating the

mean is just the set of all i.i.d. sequences, and this set does constitute a
smooth submanifold because the requirement that all the observations be
i.i.d. can be expressed by the relations ýt � ý, for some ý independent
of t � 1; . . . ; and these relations are trivially continuously differentiable
in the Hilbert space norm of L2�R�. The set of DGPs in this model for
which the mean actually exists is a dense set, so that its closure is the full
submanifold. However, any information gain that could lead to increased
precision of the estimate of the mean must involve, as we saw above, a
reduction in the dimension of the model. Since we have seen that impos-
ing a ®nite mean does not reduce the dimension, no information gain is
possible from the knowledge that the mean exists.

Any expectation can be expressed as an integral similar to (34), and can
therefore be used to de®ne an unbounded operator on the Hilbert spaces
for ®nite samples. Thus the argument above generalises to all models
de®ned using the expectations of unbounded random variables, and so,
for the purposes of geometrical discussions of ef®ciency and robustness,
we must limit ourselves to models de®ned in terms of the expectations of
bounded random variables, for instance, variables obtained by censoring
unbounded variables above some suitably high threshold.

Suppose then that we de®ne a parameterised model �M; h� by a set of
elementary zero functions given by the components of the p-vector
f t� yt; h�, as above. Suppose further that the parameter-de®ning mapping
h thus implicitly de®ned is in fact de®ned for all ý 2 M, so that the
identi®cation condition is satis®ed, and that h is a submersion, as we
required earlier. Consider any ý 2 M and suppose that h�ý� � h0.
Then, for each component fti, i � 1; . . . ; p, of f t, Eý�fti�Yt; h0�� � 0,
and so in some circumstances it may be that the sequence

nÿ1=2
Xn
t�1

Xp
i�1

ati� ytÿ1�fti� yt; h0� �35�

represents a vector of tangents at ý, where the ati� ytÿ1� are predetermined
at t, and such that limn!1 nÿ1 Pn

t�1

Pp
i�1 Eý�a2ti� is ®nite. This may

equally well not be so, because, since only the unconditional expectations
of the zero functions must vanish, the sequence may not be a martingale,
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as required by the ®rst equation of (16). For the moment, we suppose that
the martingale property is satis®ed. Then we have:

Lemma 4 For a parameterised model �M; h� de®ned by a set of
elementary zero functions f t� yt; h� obeying the above regularity conditions
and such that, for all ý 2 M, the sequence (35) is a martingale, the tan-
gents represented by the components of (35) are orthogonal to TM�ý; h�,
the space of tangents at ý that correspond to curves within the model along
which the parameters are constant at h0.

Proof As in the proof of Lemma 1, consider a curve ý�"� in
TM�ý; h�, represented by the log-density contributions `t�"�. Then, as in
Lemma 1,�

fti� yt; h0�
@`t
@"

�"; yt� exp�`t�"; yt�� dyt � 0: �36�

On multiplying by at, the martingale property implies the result. &

Lemma 4 is the geometrical expression of the fact that, under suitable
regularity conditions, the parameters h can be consistently estimated by
solving any k linearly and functionally independent equations of the formXn

t�1

Xp
i�1

ati�Ytÿ1�fti�Yt; ĥ� � 0; �37�

where the ati, t � 1; . . . ; n, i � 1; . . . ; p, are predetermined at t. Standard
arguments based on a short Taylor expansion (see, for instance,
Davidson and MacKinnon (1993), chapter 17) show that, asymptotically,

the components of the sequence n1=2�ĥÿ h0� are linear combinations of
the tangents represented by

nÿ1=2
Xn
t�1

Xp
i�1

ati� ytÿ1�fti� yt; h0�; �38�

provided that a law of large numbers can be applied to the sequences

@fti
@�j

�Yt; h0�
� �1

t�1

:

Although this point will not be developed here, regularity conditions like
these are the algebraic counterparts of the geometrical regularity condi-
tions, involving identi®ability and the submersion property, discussed
above. For further discussion, see Newey and McFadden (1994).
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Just as with the tangents �si used in Lemma 1, the tangents (38) can be
expressed as the sum of two orthogonal components, one in the k-dimen-
sional space E�ý; h�, and the other orthogonal to the model M. The ®rst
component corresponds to the asymptotically ef®cient estimator, and so,
in order to ®nd an ef®cient estimator, we wish to project the tangents (38)
orthogonally on to E�ý; h�. Intuitively, this orthogonal projection is on to
the model M itself, since the tangents are already orthogonal to TM�ý; h�,
the orthogonal complement of E�ý; h� in the tangent space to the
model M.

We can perform the orthogonal projection by expressing the unique
tangents �j, j � 1; . . . ; k, de®ned in Lemma 3, in the form (38). As seen in
the proof of that lemma, we can compute the inner product of any
tangent of the form (38) with �j by considering a curve satisfying (25),
since the tangent to such a curve equals �j plus a component orthogonal
to everything like (38). These inner products are given by the following
lemma.

Lemma 5 For a parameterised model �M; h� de®ned by a set of
elementary zero functions f t� yt; h� obeying the regularity conditions of
Lemma 4, the tangent �j at DGP ý 2 M corresponding to component j �
1; . . . ; k of h can be represented by the sequence of contributions

�tj �
Xp
i�1

�tij fti�h0�: �39�

Further, for all i � 1; . . . ; p, j � 1; . . . ; k,

Eý��tj fti�h0� g j ytÿ1� � ÿEý
@fti
@�j

�h0�
þþþþ ytÿ1

� �
: �40�

If the covariance matrix of f t� yt; h0� under ý, conditional on ytÿ1, is
Xt� ytÿ1�, then

�tij� ytÿ1� � ÿ
Xp
l�1

�Xÿ1
t � ytÿ1��ilEý

@ftl
@�j

� yt�
þþþþ ytÿ1

� �
: �41�

Proof The ®rst statement of the lemma, (39), simply requires
the equations that de®ne the asymptotically ef®cient estimator to take the
general form (37). For this to be false, there would need to exist consis-
tent estimators de®ned by equations that did not take this form. But the
model is de®ned by the expectations of the elementary zero functions,
and expectations of non-linear functions of these will not in general be
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zero. Thus a consistent estimator cannot be de®ned using non-linear
functions of the elementary zero functions, and so (39) is true.

For (40), consider, as in Lemma 2, a curve ýj�"� in M satisfying
(25). Then we have, for i � 1; . . . ; p, j � 1; . . . ; k, t � 1; . . . ; and all
admissible ",�

exp��`j�t� yt; "��fti� yt; h0 � "ej� dyt � 0;

and so, on differentiating with respect to ", and setting " � 0, we get

Eý

@�`j�t�0�
@"

fti�h0�
þþþþ ytÿ1

� �
� ÿEý

@fti
@�j

�h0�
þþþþ ytÿ1

� �
:

By Lemma 3 and the remark following it, we may replace @�`j�t�0�=@" in
the left-hand side above by the contribution �tj , thus yielding (40).

Substituting the expression for �tj in (39) into (40) givesXp
l�1

�tljEý�ftl�h0� fti�h0�j ytÿ1� � ÿEý
@fti
@�j

�h0�
þþþþ ytÿ1

� �
;

from which (41) follows, since by de®nition

�Xt�li � Eý�ftl�h0� fti�h0� j ytÿ1�: &

The following theorem now follows immediately from Lemma 5.

Theorem 2 Let the parameterised model �M; h� be de®ned by
means of the set of bounded elementary zero functions f t� yt; h� with the
restriction that, for all ý 2 M, the sequences fti�Yt; h0�, i � 1; . . . ; p, satisfy
the conditions of (16) under ý. De®ne the sequences of random variables �ti
by (39), with the coef®cients �tij� ytÿ1�, predetermined at t, given by (41).
Then the estimator ĥ obtained by solving the equationsXn

t�1

Xp
i�1

�tij�Ytÿ1�fti�Yt; ĥ� � 0; �42�

for j � 1; . . . ; k, is asymptotically ef®cient for �M; h�.

Proof As mentioned above, ĥ can be expressed asymptotically
as a linear combination of the tangents (38) with the ati replaced by �tij .
By Lemma 5, these tangents belong to E�ý; h� for all ý 2 M. By
Theorem 1, ĥ is asymptotically ef®cient. &
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The conditions (16) are quite essential for Theorem 2, in particular the
martingale condition. However, if the elementary zero functions do not
satisfy that condition, it is often possible to ®nd linear combinations,
gt� yt; h� of the f s� ys; h�, s � 1; . . . ; t, that do. The transformation from
the f t to the gt is analogous to the transformation used to estimate models
by GLS rather than OLS.

For instance, suppose that there is just one elementary zero function
ft�h� per observation (that is, p � 1), and denote the covariance matrix of
the ft, for sample size n, by the n� n matrix V . V may depend on h, and
possibly on other parameters as well, such as autocorrelation coef®cients.
Let / denote the complete set of parameters, and let /0 be the parameter
values for the DGP ý. In addition, since we are interested in the condi-
tional covariance structure, V ts, if t � s, may depend on Ysÿ1.

Then if the lower-triangular matrix P�/� is such that
P>�/�P�/� � Vÿ1�/�, we may form the vector of zero functions g�/� �
P�/�f �h�, where f is n� 1, with typical element ft. Note that Pts�/� is
non-zero only if t � s, and in that case it may depend on ysÿ1. The
covariance matrix of g�/� is then just the identity matrix, and the mar-
tingale condition is satis®ed.

In order to obtain the optimal estimating equations, we use the relation

Eý
@gt
@�j

� yt;/0�
þþþþ ytÿ1

� �
�

Xt

s�1

Pts� ysÿ1;/�Eý
@fs
@�j

� ys; h0�
þþþþ ysÿ1

� �
;

which holds since

Eý
@Pts

@�j

� ysÿ1;/�fs� ys; h0�
þþþþ ysÿ1

� �
� @Pts

@�j

� ysÿ1;/�Eý�fs� ys; h0� j ysÿ1� � 0:

Thus the equations that de®ne the asymptotically ef®cient estimator are
obtained from (42) with gt in place of fti (the index i is omitted since we
have assumed that p � 1), and �t1j is de®ned by (41) with g in place of f .
Because p � 1, Xt is just a scalar, equal to one, since the covariance
matrix of g is the identity matrix. Putting all this together gives as the
estimating equationXn

t�1

Xn
s�1

Eý̂

@ft
@�j

�/̂�
þþþþ Ytÿ1

� �
V�/̂�fs�Ys; /̂� � 0: �43�

The notation is intended to indicate that the conditional expectation of
@ft=@�j must be estimated in some manner ± we need not specify details,
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since many procedures exist. The result (43) is standard in the estimating
functions literature, and can be found, for instance, in Godambe (1960)
and Godambe and Thompson (1989).

All of the results of this section can be extended quite simply to the sort
of model usually found in the context of the generalised method of
moments. Such models are still de®ned in terms of elementary zero func-
tions f t� yt; h�, but the requirement that these have zero mean is strength-
ened so as to require that their means conditional on some set of random
variables be zero.

More formally, let F t, t � 1; . . . ; be a nested set of sigma-algebras,
with F tÿ1 � F t, and such that Yt 2 F t. Then the condition on the zero
functions becomes

Eý�fti�Yt; h0�j F tÿ1� � 0;

where as usual h0 � h�ý�, t � 1; . . . ; and i � 1; . . . ; p. An equivalent way
of expressing the condition is to require that, for all random variables
htÿ1 2 F tÿ1, the unconditional expectation of htÿ1fti�h0� be zero. Lemma 5
can be applied to all of these new zero functions, and it follows that (40)
and (41) are now true with the expectations conditional on F tÿ1 rather
than just on Ytÿ1.

In addition, Theorem 2 continues to hold with the �tij de®ned by the
modi®ed (41). This result is most often expressed in terms of the optimal
instruments for GMM estimation (see, for instance, Davidson and
MacKinnon (1993), chapter 17).

6 The linear regression model

Despite its simplicity, the linear regression model (18) can be used to
illustrate most of the theory of the preceding section. The elementary
zero functions, one per observation, are given by

ft�yt; b� � yt ÿ X tb: �44�
In order to use (41), we compute @ft=@þj � ÿXtj. Thus, if the ft are homo-
skedastic, and provided that Xtj 2 F tÿ1, it follows from Theorem 2 that
solving the estimating equationsXn

t�1

Xtj�yt ÿ X tb� � 0; j � 1; . . . ; k;

yields an asymptotically ef®cient estimator, namely the OLS estimator, as
required by the Gauss±Markov theorem. In case of heteroskedasticity, if
E��yt ÿ X tb�2� � �2t , the estimating equations are
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Xn
t�1

1

�2t
Xtj�yt ÿ X tb� � 0;

and they yield the Aitken GLS estimator. If the explanatory variables X t

are endogenous and do not belong to F tÿ1, then the estimating equations
are, assuming homoskedasticity,

Xn
t�1

E�Xtj j F tÿ1� �yt ÿ X tb� � 0:

In simultaneous equations models, the expectations of endogenous expla-
natory variables can be expressed in terms of exogenous instrumental
variables: the equation above then de®nes an instrumental variables esti-
mator with optimal instruments.

It is clear that, if the model M includes heteroskedastic as well as
homoskedastic DGPs, then there will be no estimator that is at the
same time robust with respect to the whole model and ef®cient at every
DGP in the model, unless there is a way of consistently estimating the
variances �2t . This will be the case whenever feasible GLS can be used, but
not more generally.

In section 4, it was seen that, in regression models in which the error
density is speci®ed, the OLS estimator is ef®cient only if that density is
normal. It is of interest to see if an ef®ciency gain with respect to OLS can
be realised when the density is not normal, but is nonetheless of unknown
form. We will now derive an estimator that can be used with homoske-
dastic errors, is robust against non-normal error densities, and is more
ef®cient than OLS in some cases of non-normality. This estimator, which
was recently proposed by Im (1996) using arguments somewhat different
from those here, can be derived directly using the theory of the preceding
section.

We rename the zero function (44) as ut�yt; b�, and introduce a new zero
function and a new parameter by the relation

vt�yt; b; �2� � u2t �yt; b� ÿ �2;

where the homoskedasticity assumption is made explicit in terms of the
error variance �2. It will also be assumed that the vt are homoskedastic,
and that the expectation of utvt does not depend on t. If this last assump-
tion does not hold, the estimator we are about to derive is still robust, but
is no longer ef®cient.

Analogously to (39), tangents that span the ef®cient space for the
present model can be de®ned by the contributions

Efficiency and robustness 179



�ti � atiut � btivt; i � 1; . . . ; k; and

�t� � at�ut � bt�vt;
�45�

where ati, bti, at� and bt� are exogenous or predetermined at t. Now by
(40) we have

E��tiut� � ÿE
@ut
@þi

� �
� Xti;

E��tivt� � ÿE
@vt
@þi

� �
� 2E�Xtiut� � 0;

E��t�ut� � ÿE
@ut
@�2

� �
� 0; and

E��t�vt� � ÿE
@vt
@�2

� �
� 1:

Thus, on substituting the de®nitions (45) into the above, we obtain the
following equations for the ati, etc.:

ati�
2 � btiÿ � Xti;

atiÿ � bti� � 0;

at��
2 � bt�ÿ � 0;

at�ÿ � bt�� � 1;

where ÿ � E�u3t � and � � E�u4t � ÿ �4 are independent of t by assumption,
and equal 0 and 2�4 under normality. Letting � � �2 ÿ ÿ2=�, we ®nd that

�ati � Xti; �bti � ÿ�ÿ=��Xti; �at� � ÿÿ=�; �bt� � �2=�:

Thus, according to Theorem 2, the estimating equations for b areXn
t�1

Xti ut ÿ
ÿ

�
�u2t ÿ �2�

� �
� 0: �46�

If ÿ is known to be zero, that is, if the error density is not skewed, these
equations give the OLS estimator. Otherwise, ÿ can be consistently esti-
mated by nÿ1 Pn

t�1 û
3
t , and � by nÿ1 Pn

t�1 û
4
t ÿ �̂4, where ût and �̂2 can be

obtained by, for example, OLS.
The procedure suggested by Im (1996) makes use of the arti®cial

regression

yt � X tb� �û2t ÿ �̂2�� � residual;
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where � is an auxiliary parameter. A little algebra shows that the OLS
estimate of b from this is the solution of (46). Im shows, both theoreti-
cally and by Monte Carlo simulation, that his estimator, which he calls
RALS (for residuals augmented least squares) is more ef®cient than OLS
when the error terms are skewed. In fact, he goes further and, by intro-
ducing at third zero function

wt�yt; b; �2; ÿ� � u3t �yt; b� ÿ 3�2ut ÿ ÿ;

in which ÿ, as de®ned above, becomes an explicit parameter, shows that
further ef®ciency gains relative to OLS are available if the errors have
non-normal kurtosis. The approach of the preceding paragraph can again
be used to derive the explicit form of this estimator. As Im points out,
estimators of this sort are constructed in the spirit of adaptive estimation
(see, for instance, Newey (1988)).

7 Concluding remarks

In this chapter, geometrical characterisations have been given of ef®-
ciency and robustness for estimators of model parameters, with special
reference to estimators de®ned by the method of estimating functions
and/or the generalised method of moments. It has been shown that,
when a parameterised model is considered as a Hilbert manifold in an
underlying space of DGPs, the tangent space at any DGP of the model
can be expressed as the direct sum of three mutually orthogonal sub-
spaces. Consistent estimators of the model parameters all have the
same component in one of these subspaces, which is ®nite-dimensional,
with dimension equal to the number of parameters. This space contains
the asymptotically ef®cient estimator. Inef®cient estimators also have a
non-vanishing component in the orthogonal complement of the tangent
space to the model, and they thus lose ef®ciency by including random
variation in directions excluded by the speci®cation of the model.

Information about parameters is represented geometrically by tangents
that lie within the tangent space to the model. There is a unique tangent
in the ®nite-dimensional ef®cient subspace that corresponds to the varia-
tion of each parameter, and the tangent to any curve along which that
parameter alone varies is the sum of this unique tangent and a component
in the tangent subspace in which the model parameters do not vary.
These information tangents form a basis of the ef®cient subspace that
is dual to that provided by the ef®cient estimators.

Ef®cient estimating equations for model parameters can be obtained
by projecting arbitrary root-n consistent estimators on to the ef®cient
subspace. Lemma 5 provides a simple method of performing this sort
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of projection. As seen in the example of the RALS estimator, the projec-
tion can often be implemented by an arti®cial regression. More generally,
as shown in Davidson and MacKinnon (1990) in the context of fully
parameterised models, arti®cial regressions can be used in many one-
step ef®cient estimation procedures that are equivalent to projection on
to the ef®cient subspace. The theory of this chapter suggests that arti®cial
regressions can be developed to perform such projections in greater
generality.

One-step estimators of a seemingly different sort have been proposed
recently by Imbens (1997), and it is claimed that their ®nite-sample prop-
erties are substantially better than those of conventional, asymptotically
ef®cient, GMM estimators. Although these estimators are not imple-
mented by arti®cial regression, they are of course the result of implicit
projection on to the ef®cient subspace. Another asymptotically ef®cient
estimation method with ®nite-sample properties different from those of
GMM has been proposed by Kitamura and Stutzer (1997), based on
minimisation of the Kullback±Leibler information criterion. It seems
probable that this minimisation is another asymptotically equivalent
way of projecting on to the ef®cient subspace.

It is hoped that the geometrical construction laid out in this chapter
will serve as a uni®ed framework for the discussion of asymptotic ef®-
ciency and robustness.
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6 Measuring earnings differentials
with frontier functions and Rao
distances

Uwe Jensen

1 Introduction

In a seminal paper Rao (1945) introduced the concept of `Geodesic

Distance' (or `Rao Distance') into statistics. This concept has important

theoretical properties and is based on the demanding differential-

geometrical approach to statistics. These mathematical requirements

and dif®culties in its application are responsible for the low level of

familiarity by econometricians with this generalisation of the well-

known Mahalanobis distance. Econometricians require some detailed

knowledge of Riemannian geometry to gain a complete understanding

of Rao distances. Section 2 provides a short introduction to the necessary

theory on Rao distances, hyperbolic curvature, isocircles and Rao

distance tests.

Since their original development in the paper by Aigner and Chu

(1968), frontier functions have served almost exclusively for estimating

production and cost functions consistently with an economic theory of

optimising behaviour. In section 3 of this chapter, an extended human

capital model is estimated as a stochastic earnings frontier with data from

the German socio-economic panel. This provides a deeper interpretation

of the deviations of observed income from estimated income.

Distinguishing between `potential human capital' and `active human

capital ' accounts for the partial failure of human capital models when

estimated as average functions.

There has been a tendency in Germany for the number of years of

education attained to increase, in part owing to the combination of an
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apprenticeship with university studies. BuÈ chel and Helberger (1995) call
this combination an inef®cient `insurance strategy' pursued mainly by
children from low-income and low-education families because of low
ef®ciency or high risk-aversion. The authors observe that the strategy is
not rewarded by an expected increase in income or a smaller probability
of being unemployed, although this result is contentious. The concepts of
Rao distance and earnings frontiers are then combined in section 4 and
applied to the analysis of the pecuniary consequences of this strategy of
education choice.

2 Rao distances

This section gives a short introduction to the Rao distance theory neces-
sary for the economic application in section 4. See Jensen (1995) for more
detail and references.

2.1 Derivation of the Rao distance

Let þ be a sample space, A a �-algebra of subsets of þ and P : A ! �0; 1�
a probability measure. The random variable X has a density function
p�x; �� with an n-dimensional parameter � � ��1; �2; . . . ; �n� and � 2 �.
The parameter space � is an open subset of Rn. Then,

S � fp�x; �� j � 2 �g �1�
is a statistical model.

Example 1 If X follows a normal distribution with

��1; �2� � ��; ��; � � f��; �� j � 2 R; � > 0g; �2�
we identify the family of all normal distributions and the set of all points
p on the upper real half-plane. But this identi®cation does not mean that
the family of normal distributions is geometrically ¯at. A distance should
quantify how dif®cult it is to discriminate between two distributions and,
because, for instance, N��1; 0:1� and N��2; 0:1� can be discriminated
more easily than N��1; 10� and N��2; 10�, this surface should be curved.

It is assumed therefore that an n-parametric family of distributions
behaves only locally like Rn, so that its potential curvature can be
analysed. Such a generalisation of a real space is called an n-dimensional
manifold. Then, local coordinates are transferred from � � Rn to open
neighbourhoods of the points on the n-manifold. In the example of the 2-
parameter normal distribution, we could take ��; �� for this purpose.
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These coordinates can be changed by admissible (smooth) trans-
formations being three times continuously differentiable and having a
non-singular functional determinant. In this way, S is equipped with
a differentiable structure and S is called a differentiable n-manifold.

With the de®nition

@il�x; �� :�
@

@�i
ln p�x; �� �3�

a statistical model is called regular if the following regularity conditions
(known from the Cramer±Rao inequality) hold:

1. 8 � 2 � and 8 x 2 þ, p�x; �� > 0
2. 8 � 2 �, the n components of the score function

@1l�x; ��; @2l�x; ��; . . . ; @nl�x; ��� � �4�
are linearly independent

3. For r � 3, i � 1; 2; . . . ; n and 8 � 2 �, E�@il�x; ���r < 1
4. For all functions f �x; �� used in the following,

@

@�i

�
f �x; �� dP �

�
@

@�i
f �x; �� dP: �5�

In the sequel, we will inspect only regular statistical models that are
differentiable n-dimensional manifolds, which will be called statistical
models or n-manifolds for short. The examples used in this chapter are
the normal statistical model (see Example 1) and the inverse Gaussian
model:

Example 2 X � IG��; �� with

p�x; �; �� �
����������
�

2�x3

r
exp

ÿ��xÿ ��2
2�2x

ý !
I�0;1��x� �6�

and

��1; �2� � ��; ��; � � f��; �� j �; � > 0g: �7�

The regularity conditions are partly responsible for the restricted applic-
ability of Rao distances, because distributions outside the exponential
family cannot be analysed with this concept.

The n linearly independent vectors (see regularity condition 2) @i l�x; ��
measuring relative density changes are taken as a basis for the n-
dimensional vector space T �1�

� , the so-called 1-representation of the
tangent space. Then, the inner product
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gij��� � h@il�x; ��; @j l�x; ��i � E�@il�x; �� @j l�x; ��� �8�
is formed from the basis of T

�1�
� by averaging out x. Because of

E�@il�x; ��� � 0 for i � 1; 2; . . . ; n; �9�
we have

gij��� � Cov�@il�x; ��; @j l�x; ���: �10�
Of course, gij��� is the Fisher information.

Since this �n� n�-matrix is de®ned for every point p 2 S, it is a matrix
®eld �gij����. This matrix ®eld is a Riemannian metric tensor, i.e. a tensor
of order two with positive de®nite matrices and the property that the arc-
length de®ned below (the Rao distance) is an invariant. See, if necessary,
an introduction on tensor calculus, e.g. Kay (1988).

The main diagonal provides the lengths of the basis vectors:

j@il�x; ��j2 � h@i l�x; ��; @il�x; ��i � gii��� � Var �@il�x; ���: �11�
Beside the main diagonal, we ®nd the necessary information on the angles
�ij of the basis vectors:

cos�ij �
h@i l�x; ��; @j l�x; ��i
j@il�x; ��jj@j l�x; ��j

� gij�������������������������
gii��� gjj���

p
� Corr �@il�x; ��; @j l�x; ���: �12�

Example 3 For X � N��; �2�, the Fisher information is found
to be

�gij���� �
1

�2

1 0

0 2

ý !
: �13�

Since g12��� � 0, the coordinate vectors of the coordinate system
� � ��; �� are orthogonal for all p 2 S, but the lengths of the coordinate
vectors depend on �. Therefore, ��; �� is not a Cartesian coordinate
system.

For X � IG��; ��

�gij���� �
�

�3
0

0
1

2�2

0BB@
1CCA: �14�

Once again, the coordinate vectors of the coordinate system � � ��; ��
are orthogonal for all p 2 S, but their lengths depend on �; with
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� :� �E�X �;Std�X �� � ��;
������������
��3=�

p
��, even the angles of the coordinate

vectors depend on �.

Now let C� � fc� j � 2 �g be the set of all curves lying completely in S
and connecting two distributions F1 and F2 represented by parameter
values �1 and �2. With t1 < t2, c��t1� � �1 and c��t2� � �2, the Rao
distance (or geodesic distance or Riemannian distance) is the minimum
arc-length of all these curves:

d�F1;F2� � min
c�2C�

�t2
t1

������������������������������������������������������Xn
i�1

Xn
j�1

gij���t��
d�i�t�
dt

d�j�t�
dt

vuut dt: �15�

d�F1;F2� is a mathematical distance and ± since the Fisher information is
a Riemannian metric tensor ± it is invariant for all non-singular differ-
entiable transformations of � and þ.

2.2 Calculation of Rao distances

In this chapter, Rao distances will be applied only to two-parameter
statistical families. The calculation of Rao distances in the one-parameter
case is presented in Jensen (1995). For n-parameter families with n � 2,
some results on the curvature of manifolds are necessary. Curvature
measures are necessary for geometrical intuition and for the classi®cation
of statistical distributions.

In order to determine the curves with minimum length between two
points on S, we ®rst have to `connect' the tangent spaces. An af®ne
connection is a bilinear map on a Cartesian product of vector ®elds
V�S� � V�S� ! V�S� providing the directional derivation of vector
®elds. There is an in®nite number of possible af®ne connections, but
there is only one for which the movement of vectors from one tangent
space to another is an isometry (preserving all distances and angles) and
the Christoffel symbols (see below) are symmetric. This connection is
called the Levi±Civita connection. By choosing a speci®c connection on
a manifold, speci®c curves ± called geodesics ± are distinguished to be
generalisations of the straight lines in Rn. If the Levi±Civita connection
has been chosen, these geodesics locally show the shortest way (in S)
between any two points on S. In Rn, the geodesics are the straight
lines. If a different connection is selected (e.g. the exponential connection
distinguishing one-parametric exponential families as geodesics; see
Efron (1975) and Amari (1985)), this leads in general to non-
Riemannian geometry and the geodesics are no longer distance
minimising.
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An af®ne connection can be de®ned with the help of the n3 Christoffel
symbols of the ®rst kind

ÿijk �
1

2

@

@�i
gjk��� �

@

@�j
gki��� ÿ

@

@�k
gij���

� �
: �16�

The Christoffel symbol of the second kind

ÿk
ij �

Xn
m�1

ÿijm gmk for i; j; k � 1; 2; . . . ; n; �17�

is the ®rst auxiliary quantity, where gmk��� is the inverse matrix of the
metric tensor gmk���. The use of lower and upper indices has tensorial
reasons (see Kay (1988)).

The Riemannian tensor of the second kind is a tensor of order 4 with n4

components

Rl
ijk �

@

@�j
ÿl
ik ÿ

@

@�k
ÿl
ij �

Xn
m�1

ÿm
ikÿ

l
mj ÿ

Xn
m�1

ÿm
ij ÿ

l
mk; �18�

and the Riemannian tensor of the ®rst kind is also a tensor of order 4:

Rijkl �
Xn
m�1

Rm
jkl gmi: �19�

Both tensors consist of second derivatives of the metric tensor (measuring
curvature). For n � 2, only one component of the Riemannian tensor of
the ®rst kind is independent from the rest and not identically zero:

R1212 � R2121 � ÿR1221 � ÿR2112: �20�
Finally, for a 2-manifold, the sectional curvature (or mean Gaussian
curvature) is

K � R1212

g11 g22 ÿ g212
�21�

and is identical with the Gaussian curvature of surfaces in R3. K is an
invariant. An n-manifold S is said to be of constant curvature if K is
constant for all p 2 S. S is said to be ¯at if K vanishes for all p. Two
manifolds with constant sectional curvature are locally isometric iff their
sectional curvatures are identical. The curvature is called parabolic if
K � 0, it is called elliptic if K > 0, and it is called hyperbolic if K < 0.
In R3, the plane is a standard example for a surface with constant K � 0.
The sphere is the typical example for a surface with constant elliptic
curvature (K � 1=r2 > 0 with radius r). Hyperbolic curvature can be
seen on parts of the torus (the tyre of a bicycle). The inner side (facing
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the spokes) shows hyperbolic curvature, the outer side (facing the road) is
elliptically curved. In the neighbourhood of hyperbolic points, tangent
planes always cut the surface.

It may be appropriate to remark that the curvature measures discussed
here are not identical with the `statistical curvature' introduced by Efron
(1975), which is the curvature of embedding of a submanifold (known as
Euler±Schouten curvature) in non-Riemannian geometry (see Amari
(1985) and Lauritzen (1987)).

Example 4 The sectional curvature of the 2-manifolds of the
normal distributions and the inverse Gaussian distributions is K � ÿ0:5.
This means that both manifolds are of the same constant hyperbolic
curvature ± independent of the parameterisation (see Amari (1985,
pp. 7 and 30) and Lauritzen (1987)).

Many standard statistical distributions lead to manifolds with constant
negative sectional curvature (see Jensen (1995)). This calls for deeper
knowledge of hyperbolic geometry, which is rather unfamiliar for most
econometricians.

Any Riemannian 2-manifold with positive (not necessarily constant)
sectional curvature can be embedded isometrically in R3. Comparable
results are not available for 2-manifolds with hyperbolic curvature,
because no embedded complete surface in R3 can have constant negative
curvature (a metric space is called complete if any Cauchy sequence
converges). Any surface in R3 with constant negative curvature must
have singularities.

That is why the PoincareÂ model is used in most cases for the distorted
representation of 2-manifolds with constant hyperbolic curvature in R2.
For K � ÿ1 (the hyperbolic analogue of the unit sphere, statistically
represented by the t�3�-distribution), the set of points is the upper half-
plane without the abscissa and the (distorted) geodesics are all semi-
circles with centre on the abscissa and all straight lines orthogonal to
the abscissa (see Millman and Parker (1991)).

The derivation of the Rao distance for a 2-manifold with constant
hyperbolic curvature now consists of a transformation of its metric to
the PoincareÂ metric

ds2 � �d���2 � �d���2
����2 ; �22�

which is the so-called ®rst fundamental form of the 2-manifold with
constant K � ÿ1. This manifold is known to have the MoÈ bius distance
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d�F1;F2� � 2 tanhÿ1

������������������������������������������������
���

1 ÿ ��
2�2 � ���

1 ÿ ��
2 �2

���
1 ÿ ��

2�2 � ���
1 � ��

2 �2

sý !
�23�

as Rao distance (see Burbea and Rao (1982)).

Example 5 The metric of the 2-manifold of normal distribu-
tions with � � ��; �� is

ds2NV � �d��2 � 2�d��2
�2

: �24�

The Rao distance between N��1; �1� and N��2; �2� follows as

d�F1;F2� � 2
���
2

p
tanhÿ1

��������������������������������������������������
��1 ÿ �2�2 � 2��1 ÿ �2�2
��1 ÿ �2�2 � 2��1 � �2�2

s0@ 1A �25�

(Atkinson and Mitchell (1981, pp. 352ff)), whereas the Rao distance
between two inverse Gaussian distributions IG��1; �1� and IG��2; �2� is

d�F1;F2�

� 2
���
2

p
tanhÿ1

������������������������������������������������������������������������������������
2

����������
1=�2

p ÿ ����������
1=�1

pÿ �2� ����������
1=�2

p ÿ ����������
1=�1

pÿ �2
2

����������
1=�2

p ÿ ����������
1=�1

pÿ �2� ����������
1=�2

p � ����������
1=�1

pÿ �2
vuut0@ 1A

�26�
(Villarroya and Oller (1991)).

See Jensen (1995) for more results on Rao distances in 2-manifolds and
for some results and many problems in multivariate distributions.

2.3 Isocircles

An isocircle on a 2-manifold S is the set of all points p 2 S having con-
stant distance d > 0 from a `centre' p0 2 S. This generalisation of the
circle in Euclidean space can be very useful in two-parameter applications
of Rao distances (see section 4).

Example 6 For the calculation of the isocircle with ®xed
`radius' d > 0 and `centre' ��1; �1� for the two-parameter normal distri-
bution, (25) has to be solved for �2 and �2. For improved readability, we
write
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A � tanh
d

2
���
2

p
� �� �2

; m � �1; � � �2; s � �1; � � �2

�27�
with 0 � A < 1 and obtain

�1;2 �
1� A

1ÿ A
s�

�����������������������������������������
4As2

�1ÿ A�2 ÿ
�mÿ ��2

2

s
: �28�

� is maximal (minimal) for m � � and the extreme values of � are

�max;min � m�
������
8A

p

1ÿ A
s: �29�

Figures 6.1 and 6.2 show various isocircles.
1. A shift in �-direction does not change the isocircle, because the

metric tensor depends only on �.
2. A shift in �-direction does not change the form (which is always the

same within the distribution family) but does change either the
Euclidean volume of the isocircle or the relative position of the
`centre'.
(a) The isocircle for d � 1 and �m; s� � �0; 0:1� has the same form

as the isocircle for d � 1 and �m; s� � �0; 1� in ®gure 6.1, but is
much smaller because the distances increase with decreasing �.
Dividing all the coordinates by 10 would restore the original
Euclidean volume because the decreasing volume was created
by the distorted representation of the hyperbolic surface in R2.

(b) Calculating the isocircle for �m; s� � �0; 0:1� with constant
Euclidean volume provides an isocircle of the same form
with d � 3:862, where the `centre' has been shifted away
from the Euclidean centre (see ®gure 6.2). Note that the
distance between any distribution and the �-axis is in®nity.

3. Variation of the `radius' d leads to the isocircles in ®gure 6.1: the
form is identical but the size varies.

Example 7 For the inverse Gaussian distribution with `centre'
��1; �1� � �m; s�, we choose the abbreviations

A :� tanh
d

2
���
2

p
� �� �2

; � :� �2; � :� �2 �30�

and the isocircle follows to be
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Figure 6.1 Isocircles, normal distribution, d � 0:25, 0.52, 1
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Figure 6.2 Isocircle, normal distribution, d � 3:862
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where

�max;min for m � � �max;min �
����
1

m

r
�

������
2A

p

�1ÿ A� ��
s

p
ý !ÿ2
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�32�

2.4 Rao distance tests

The parameter values de®ning the distributions for which the Rao
distances are to be calculated are generally unknown. Hence, the
parameter values and the Rao distances must be estimated. If the n-
dimensional parameters �1 and �2 of an n-parameter family have been
estimated by maximum likelihood (ML) from independent random
samples, the invariance property of ML estimation provides an estimate
of the required Rao distance:

d̂ML��1; �2� � d��̂1;ML; �̂2;ML�: �33�
Distance measures and tests are closely related. Therefore, it is not
surprising to see that it is possible to construct tests from (estimated)
distances. For a density function p�x; �� with parameter vector �, the
general test problem

H0 : g��� � 0 versus H1 : g��� 6� 0 �34�
is considered where g is a smooth function. The null hypothesis selects a
subset of the parameter space � (a submanifold of the manifold S).

�H0
� f� 2 � j g��� � 0g: �35�

Given a sample X1; . . . ;Xm from p�x; ��, the Rao distance between �̂ and
�H0

is de®ned as:

d��̂;�H0
� � inffd��̂; �� j � 2 �H0

g: �36�
If �H0

6� ;, the in®mum exists because d��; �� � 0. Then, a critical region

C � f�X1; . . . ;Xm� j d��̂�X�;�H0
� > u�g �37�
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is de®ned with a constant u� depending on the signi®cance level of the
test.

The minimisation in (36) and the derivation of the test statistic may be
dif®cult, but the idea behind a (Rao) distance test is extremely simple.
The null hypothesis is rejected if the distance (weighted with the sample
size) between the estimated distribution and the distribution under H0 is
too big. In some standard test problems, Rao distance tests are equivalent
to classical t, �2 or F tests (see the survey in Jensen (1995)). In addition,
when testing for two or more parameters, the following theorems can
provide a useful and easy alternative to the explicit derivation of the
individual test statistic.

Theorem 1 (Burbea and Oller (1989), pp. 13f) Let S be a reg-
ular n-parametric family of density functions. Let X1; . . . ;Xm be a random
sample of size m from p0 2 S. Let ~pm be a consistent sequence of critical
points of the log-likelihood function. Then

md2�p0; ~pm� ÿ!
L

Z � �2�n�: �38�

Theorem 2 (Burbea and Oller (1989), p. 14) Let S be a regular
n-parametric family of density functions. Let X1; . . . ;Xm and Y1; . . . ;Yl be
two independent random samples of size m and l, respectively, obtained
from p0 2 S. Let ~pm and ~pl be two consistent sequences of critical points
of the log-likelihood functions. Then

ml

m� l
d2� ~pm; ~pl� ÿ!

L
Z � �2�n�: �39�

Example 8 Consider two independent samples of size m1 and
m2 from N��1; �

2
1� and N��2; �

2
2� and the test problem

H0 : ��1; �1� � ��2; �2� versus H1 : ��1; �1� 6� ��2; �2�: �40�
A Rao distance test is easily derived with the help of Theorem 2. The
critical region is

C � U � m1m2

m1 �m2

d2���̂1; �̂1�; ��̂2; �̂2��
þþþþ U > u�

� �
; �41�

where d��; �� is taken from (25), P�U > u� j H0� � � and U � �2�2�
asymptotically under H0.

Testing

H0 : ��; �� � ��0; �0� versus H1 : ��; �� 6� ��0; �0� �42�
Theorem 1 can be applied to derive the critical region
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C � fU � md2���̂; �̂�; ��0; �0�� j U > u�g; �43�
where P�U > u� j H0� � � and U � �2�2� asymptotically under H0.

Villarroya and Oller (1991) extensively analyse Rao distance tests for
the inverse Gaussian distribution ± with very satisfactory results. Two-
parameter test problems can be treated with Theorems 1 and 2 and the
distance (26) as in the previous example.

3 Earnings frontiers

We now turn to consider the estimation of a human capital model as a
stochastic earnings frontier. In the ®rst subsection, we look at the basic
human capital model for explaining individual income. In subsection 3.2,
the data taken from the German socio-economic panel are described. The
subsequent subsection provides essential information on stochastic
frontier models in general. In subsection 3.4, the earnings frontier
function is derived as an extended human capital model with imperfect
information on the employees' side. The costs for this imperfection are
measured by the inef®ciency terms of the frontier model. Subsection 3.5
presents the estimation results and the economic implications in detail.
The ®nal subsection discusses the relative advantages and limitations of
the approach.

3.1 Human capital theory

Since the pathbreaking work of Mincer (1958) and Becker (1964), human
capital theory has been the most popular approach for explaining
individual income. Schooling is seen as an investment in human capital
because it means renouncing present consumption for higher future
income by increasing the individual's resources. The basic model derived
by Mincer (1974) is

LI � ÿ0 � ÿ1S � ÿ2E � ÿ3E
2 � v; ÿ0; ÿ1; ÿ2 > 0; ÿ3 < 0;

�44�
where LI is the natural logarithm of individual wage income, S is school-
ing (years of education) and E is experience (age-education-6).
For all the success and broad applicability of this approach, it has

limitations. Even in extended human capital models the portion of
unexplained variance remains persistently near 50 per cent of the total
variance and this has led to a debate about the reasons for this partial
failure. This discussion has been very fruitful for econometrics but has
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not yet resolved the empirical problems of human capital models (see
Wagner (1981)).

The number of exogenous variables will be heavily augmented in this
chapter, as in many other papers. However, in addition, we apply a
frontier function model to explain the deviations between estimated
and empirical earnings. The idea behind adopting this approach is
simply that human capital models can explain only potential income,
whereas actual income achieved depends on the individual's search for
an appropriate job.

3.2 The data from the socio-economic panel

The data are taken from the tenth wave of the German socio-economic
panel (SOEP). After a detailed data analysis, the twenty-four variables
presented below have been selected following the recommendations for
the extension of the basic human capital model given by various authors
(see e.g. Becker (1964), Brinkmann (1981), Griliches (1977) or HuÈ bler
(1984)). The 13,179 individuals were reduced to n � 1;334 full-time
employees, workers or public servants throughout the year 1992 who
provided information on all the required variables.

The endogenous variable LI is the natural Logarithm of gross wage
Income in 1992 including all extra payments. The exogenous variables
are:

1. Schooling:
(a) QUUN: Dummy: 1 for QUali®cation for UNiversity entrance

± 0 for lower education
2. Professional TRaining:

(a) TRAP: Dummy: 1 for APprenticeship, technical schools,
health schools, etc.

(b) TRPS: Dummy: 1 for Public Service education
Both 0 for no professional training

3. STudies:
(a) STTC: Dummy: 1 for Technical College
(b) STUN: Dummy: 1 for UNiversity

Both 0 for no studies
4. Experience:

(a) AGE1: AGE in years divided by 10
(b) AGE2: AGE1 squared

5. On-the-Job-Training:
(a) JTNO: Dummy: 1 for `NO interest in on-the-job-training'
(b) JTNC: Dummy: 1 for `No interest in on-the-job-training at

one's own Cost'
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6. Health:

(a) SAHL: SAtisfaction with one's own Health and Life ± values

on an integer scale ranging from 0 (no) to 20 (yes) ± an

indicator for physical and emotional health

7. Gifts, predisposition:

(a) FATH: Status of the job of the FATHer ± values on an integer

scale ranging from 0 to 1.868 ± the Wegener scale provided by

the SOEP divided by 1000

8. Ability:

(a) PCHA: Probability of CHAnging the occupation in the near

future ± values on an integer scale ranging from 1 (yes) to 4

(no) ± an indicator for `being in the right place'

(b) PDET: Probability of DETerioration in the same ®rm in the

near future ± values on an integer scale ranging from 1 (yes) to

4 (no) ± an indicator for `being on the right level'

(c) SATW: SATisfaction with Work ± values on an integer scale

ranging from 0 (no) to 10 (yes)

9. Demographic variables:

(a) MALE: Dummy: 1 for MALE ± 0 for female

(b) MARR: Dummy: Marital status: 1 for MARRied (including

those living separated), divorced and widowed ± 0 for

unmarried

(c) RESI: Size of the RESIdence constructed from the Boustedt

type of residence provided by the SOEP ± 0: centre or outskirts

of cities with more than 500,000 inhabitants . . . ± 6: towns with

fewer than 2,000 inhabitants

10. Job characteristics:

(a) SIZE: SIZE of the ®rm: Number of employees divided by 1000

(b) ii. EMPL: Dummy: 1 for salaried EMPLoyees

ii. SERV: Dummy: 1 for public SERVants

Both 0 for workers

(c) STAT: STATus of the job ± values on an integer scale ranging

from 0.2 to 1.731 ± the Wegener scale provided by the SOEP

divided by 1000

11. Working time:

(a) HOUR: Weekly working HOURs including overtime

12. SENIority:

(a) SENI: Years of af®liation to the ®rm

13. PROPerty:

(a) PROP: Interest and dividend income in 1992 divided by 1000
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Unfortunately, some interesting information is not provided by the
SOEP. One has to be satis®ed with proxy variables for health status,
predisposition, ability and the region of residence. Furthermore, the
variables for health status, ability and the region of residence have
been measured on ordinal scales but are treated as quantitative
variables. It is to be hoped that the estimation results are not overly
biased by these inaccuracies. On the other hand, the choice of the
dummy variables for schooling (instead of years of education) and of
age (instead of age-education-6) for experience is deliberate and deserves
some explanation.

I agree with researchers like Helberger (1988) who ®nd it problematic
to take the years of education as proxy for education. First, pupils repeat-
ing a school year or students changing subject, studying for an excessively
long time or breaking off their studies certainly do not augment their
human capital according to the theory. Secondly, information on the
actual years of education is not available and one has to ®x theoretical
values for different types of schooling. Dummies and theoretically ®xed
years are not affected by the problems mentioned above, but both are
affected in different ways by the `insurance strategy' mentioned in
section 1.

The decision to use dummy variables is motivated by the fact that years
of education cannot discriminate between the yield of one year of appren-
ticeship and that of one year at university, whereas dummy variable
parameters provide interesting information on the yield of different
types of education (see subsection 3.5 and section 4). The decision to
take age as a proxy for experience (instead of age-education-6) is based
on the similarity of the latter with the seniority variable.

Becker (1964) mentioned that the search for information is also a very
important human capital investment. This suggestion has not been
employed here because it is dif®cult to quantify; nevertheless, in section
3.4 we will see a fruitful way to capture it indirectly.

3.3 The stochastic frontier model

A production function gives the maximum possible output that can be
produced from given input quantities. Ever since the seminal paper by
Aigner and Chu (1968), a range of production functions have been
estimated as frontier functions consistent with the economic theory of
optimising behaviour. In the following, we will concentrate on the
stochastic frontier model of Aigner et al. (1977) and Meeusen and van
den Broeck (1977). See Greene (1993) for a discussion of the alternatives.
A stochastic Cobb±Douglas production frontier is
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yi � ��
Xk
j�1

ÿjxij � ei; ei � vi ÿ ui; ui � 0; i � 1; . . . ; n;

�45�
where yi is output in logs and xij are inputs in logs. Then, ŷi is estimated
maximum possible output. The composite error term ei consists of the
technical inef®ciency ui of individual number i (in logs), which follows a
one-sided distribution, and a symmetric part vi representing statistical
noise. vi and ui are assumed to be independent.
The vi are assumed to follow a normal distribution. The authors

employ the half-normal and exponential distributions for the ui, whereas
Stevenson (1980) proposes the truncated normal distribution. Greene
(1989) has developed the econometric computer package LIMDEP,
which estimates all versions of this model by direct maximisation of the
likelihood function.

3.4 The earnings frontier

What do we gain by estimating the earnings function not as an average
function but as a frontier function? Why is it sensible? Following
Daneshvary et al. (1992), it is assumed that wages LI depend upon per-
sonal characteristics H augmenting human capital stock, job character-
istics C and information I on labour market conditions, the wage
distribution and job search methods. Individuals stop their search when
a wage offer exceeds the reservation wage LIr. For any set of H and C
and perfect information I�, a potential maximum attainable wage LI�

exists. We estimate LI � LI�H;C; I� as a stochastic earnings frontier (45)
where y � LI is empirical gross wage income in logs and x is the vector of
twenty-four variables presented in subsection 3.2.

Then,

bLIi � LI�i �46�
is the estimated maximum possible income and the inef®ciency term

ûi � bLIi ÿ LIi �47�
is interpreted as the cost of imperfect information becoming apparent in
the underemployment or overeducation of individual number i. We dis-
tinguish between the underemployed `potential human capital' produced
through the education process and the `active human capital' used as a
factor of production (see MaÈ ding (1981)).
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The return from estimating an earnings frontier instead of the average
function

yi � ��
Xk
j�1

ÿjxij � vi; i � 1; . . . ; n �48�

with standard assumptions arises from the interpretation of a signi®cant
part of the deviations of empirical income from estimated income.
Furthermore, the earnings frontier takes account of the important but
dif®cult to measure component of human capital consisting of `search for
information'.

3.5 Results

Estimation has been carried out using LIMDEP, with all three inef®-
ciency distributions mentioned in subsection 3.3. In the exponential
case, the estimation procedure did not converge. The truncated normal
distribution

ui � truncN��u; �
2
u� �49�

and its special case for �u � 0, the half-normal distribution

ui � jN�0; �2
u�j; �50�

provided very similar results and an insigni®cant �u in (50). So, the
results with speci®cation (51) are presented in the following. LIMDEP
takes the OLS regression coef®cients as starting values for an iterative
procedure combining the DFP algorithm and the method of steepest
descent. The estimation results are given in table 6.1.

The OLS regression has an adjusted R2 of 0.6016. One could argue that
this is suf®cient for a cross-section data set, especially if compared with
the empirical success of extended human capital models in general (see
section 3.1). However, 40 per cent unexplained variance leaves some
scope for improvement.

It can be seen that the step from OLS to the frontier does not turn the
results upside down. The coef®cients and t-ratios change marginally. The
bene®t of the frontier model lies in the interpretation of the deviations of
the observations from the estimated function (see below). To begin with,
the frontier coef®cients and t-ratios will be examined carefully. The OLS
results can be analysed in a similar way if `maximum possible income' is
replaced by `average income'.
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The step from the average function to the frontier increases the con-
stant, which is (and should be) highly signi®cant. The interpretation of
the dummy variable coef®cients is straightforward; if we rewrite equation
(45) as

INCi � exp��� �
Yk
j�1

exp�ÿjxij� � exp�vi� � exp�ÿui�;

ui � 0; i � 1; . . . ; n �51�
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Table 6.1. Estimation results

Estimation method OLS Frontier

Adjusted R2 0.6016

Variable Coe�cient t-ratio Coe�cient t-ratio

Constant 8.56200 56.498 8.85160 59.988
1 a QUUN 0.07614 2.665 0.07559 2.507

2 a TRAP 0.05908 2.709 0.05502 2.594
b TRPS 0.07315 1.876 0.08549 2.251

3 a STTC 0.10015 2.347 0.09697 2.043

b STUN 0.23441 5.978 0.24188 6.213
4 a AGE1 0.54392 8.638 0.50281 7.941

b AGE2 70.05877 78.061 70.05441 77.319

5 a JTNO 70.05795 72.979 70.04884 72.580
b JTNC 70.06603 74.120 70.06969 74.345

6 a SAHL 70.00221 70.716 70.00199 70.614
7 a FATH 0.01115 0.432 0.00310 0.119

8 a PCHA 0.04106 2.792 0.03921 2.913
b PDET 70.04315 72.938 70.04041 72.752
c SATW 0.01688 3.337 0.01621 3.375

9 a MALE 0.20714 10.898 0.20679 10.862
b MARR 0.08087 3.433 0.07253 2.983
c RESI 70.00783 72.058 70.00714 71.888

10 a SIZE 0.00989 6.298 0.00931 5.605
b i EMPL 0.09566 4.533 0.09640 4.741
b ii SERV 70.12591 73.557 70.13828 73.825
c STAT 0.35893 9.904 0.35701 11.180

11 a HOUR 0.01084 9.213 0.01212 13.381
12 a SENI 0.00540 5.363 0.00514 5.063
13 a PROP 0.00655 4.041 0.00699 4.138

�u=�v 1.52190 12.571����������������
�2u � �2

v

p
0.35832 37.601



with the untransformed gross wage income INC, this implies that study-
ing at the university means, for instance, multiplying maximum possible
gross wage income without any study by the factor
exp�0:24188� � 1:2736. Being male implies multiplying female maximum
possible gross wage income by the factor exp�0:20679� � 1:2297.

The health proxy SAHL in 6 and the predisposition proxy FATH in 7
show very insigni®cant coef®cients. Naturally, the insigni®cance could
originate in poor suitability of the proxy variables, but employees are
perhaps neither healthy nor satis®ed with their health and life when they
are working `on the frontier'. The irrelevance of predisposition for
explaining income is in agreement with earlier results on this question.

The rest of the variables are weakly to highly signi®cant and show
expected signs. The maximum possible income is greater
* with higher education (1±3b).
* with higher experience (� age) (4) with the well-known concavity of

the in¯uence of experience on income.
* with interest in on-the-job-training (5a,b).
* for individuals who will not change their occupation in the near future

and who are satis®ed with their work (8a,c). These people seem to be
able to accomplish the tasks their job demands.

* for individuals who fear ± at the time of estimation ± some deteriora-
tion in their prospects in the near future (8b). In the present position,
their actual human capital stock may be overcharged.

* for men (9a).
* for individuals who are or have been married (9b). Part of this effect

may be due to the payment system in the public service, but it could
also be that being married is highly correlated with hardly measurable
parts of human capital stock such as trustworthiness or a sense of
responsibility that are appreciated by employers. Many employers
hire married persons by preference because of this supposed or actual
correlation.

* in places with more inhabitants (9c).
* in ®rms with more employees (10a). This could be interpreted from an

ef®ciency wage viewpoint. Because these ®rms have higher costs for
the motivation and monitoring of their employees they give income
incentives to increase the ef®ciency of their employees and to prevent
shirking because idlers must fear being dismissed even more from this
high-income ®rm (see e.g. Franz (1994)).

* for salaried employees than for workers, whereas public servants have
the lowest maximum possible income (10b). Public servants have to
pay the price for the various non-income contributions such as, for
example, the greater security of their jobs.
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* for jobs with higher status (10c).
* with higher working time (11).
* with increasing years of af®liation to the ®rm (12). It is possible that

some ®rms try to eliminate shirking by rewarding ef®cient workers
with delay so that idlers again have to fear being dismissed even
more because of the loss of the subsequent payments (seniority
hypothesis).

* with higher property (13). Individuals with higher income today are
likely to have had a higher income in the past, which has led to higher
property wealth.
Now the frontier speci®c results will be examined. The high signi®cance

of the ratio

� � �u
�v

�52�

means that the variation of the inef®ciency terms ui in relation to the
variation of the noise vi is reasonably large. � � 0 would lead to the
simple OLS model because there are no inef®cient individuals in this case.

Note that �u is not the standard deviation of u because of de®nition
(50). From the estimated coef®cients in the last two lines of table 6.1 we
can calculate �u � 0:2995 and �v � 0:1968. This leads to the estimates for
the mean and standard deviation of u

E�u� �
���
2

�

r
�u � 0:2389 and Std�u� �

������������
�ÿ 2

�

r
�u � 0:1805

�53�
(see e.g. Aigner et al. (1977)). Combining E�u� with equation (51), we see
for example that on average individuals receive only exp�ÿ0:2389� � 100
� 78:75% of the maximum possible income.

3.6 Assessment of the approach

Now the bene®t of estimating an earnings frontier instead of an average
function mentioned in subsection 3.4 can be seen. The frontier model
includes the important but hardly measurable human capital investment
`search for information' and it explains an essential part of the deviations
of empirical income from estimated income. The extended human capital
model explains potential income suf®ciently, but individuals do not
obtain their maximum possible income because of imperfect information
on labour market conditions, the wage distribution, and job search meth-
ods. The more or less underemployed `potential human capital' produced
through the education process is distinguished critically from the `active
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human capital' used as a factor of production. In the OLS approach, we
simply interpret inef®ciency as misspeci®cation.

What are the limits of the extended human capital model underlying
both the OLS and the frontier approach? First of all, there are the data
problems mentioned in subsection 3.2, including a possible selection bias
because of the systematic elimination of many individuals from the data
set and a possible bias because of the inclusion of many exogenous vari-
ables that could be highly correlated (see Griliches (1977)).

The standard assumptions of human capital models, such as the
complete entrance of schooling efforts into working productivity, will
certainly be violated. Unemployment and other limitations on the labour
demand side were excluded. The monetary and social costs of migration
and search for information were left out of consideration. Because of
these omissions, all conclusions have to be viewed with caution.

As for the reasons for income inef®ciency, the frontier analysis con-
centrated on imperfect information on the employees' side. There are
certainly further causes for this sort of inef®ciency. Employers often
are not suf®ciently informed about the potential human capital of their
employees or applicants, and, if they do know, they are not able to relate
individual skills to the tasks available. This is another classic criticism of
human capital models (see e.g. Klein (1994)), but this information
problem could certainly be included in the frontier model presented
above.

What arguments could be put forward for applying the standard OLS
approach instead of the frontier approach? Many researchers are perhaps
interested only in estimating average income, not in estimating maximum
possible income. This reservation is meaningless as long as the model
lacks a sensible job search variable, which is not available. By simply
mixing up inef®ciency and white noise, OLS does not solve the problem.

4 Differentials in earnings and inef®ciency

In this section, Rao distances are applied to the earnings frontier problem
presented above.

4.1 Earnings differentials

We now want to consider the issue raised by BuÈ chel and Helberger (1995)
when criticising the `insurance strategy' discussed in section 1. One ®rst
idea would be to isolate this effect by constructing three new dummy
variables:
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* TRAPN: Dummy: 1 only for apprenticeship, etc. and No university
study

* STUNN: Dummy: 1 only for university study and No apprenticeship,
etc.

* INSU: Dummy: 1 only for the INSUrance strategy
Substituting these variables for TRAP and STUN in the earnings

frontier of section 3 and re-estimating the function yields minimal
changes in the frontier results and an INSU parameter that is smaller
than but not signi®cantly different from the STUNN (or STUN)
parameter.

Rather than analysing point estimates, which focus only on central
tendencies, it will be more useful to consider instead the entire income
distribution of some sample subgroups constructed from the dummy
variables in section 3. The standard approach of applying inequality
measures for the comparison of these income distributions will not be
adopted in the following, however, since we are interested in earnings
differentials rather than in the interpretation of, for instance, Gini
coef®cients.

In recent years, the kernel density estimation of income distributions
has become more and more popular (see e.g. DiNardo et al. (1996))
because it is still an open question which theoretical distribution is
best. Unfortunately, this nonparametric approach cannot be applied
here because of limited sample sizes in some subgroups. So, some choice
has to be made as to a suitable income distribution. The Pearson family is
often applicable but is intractable in many respects and this is why the
inverse Gaussian distribution for income and the normal distribution for
log income were chosen, given that they performed satisfactorily. In these
cases, it is possible to examine the subgroup distributions in ��; ��-plots
or ��; 1=��-plots, which is much more informative than looking at the
densities themselves. Furthermore, Rao distances and isocircles (see
section 2) can be applied for an intuitive understanding and for tests in
these plots. Finally, a Rao distance analysis with the log-normal distribu-
tion for income would not differ from the analysis with the normal
distribution for log income because of the invariance property of the
distance.

Figure 6.3 is the ��; ��-plot of estimated normal distributions of log
income for some subgroups of individuals having passed through certain
courses of education. We can see how mean and variance of income
increase with increasing the additional quali®cation of apprentices. It
can also be seen that university study and the insurance strategy differ
in distribution although not so much in mean. The mean difference is
in fact insigni®cant, but the Rao distance test (40) shows that these
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distributions are signi®cantly different with � � 0:06, mainly due to the
difference in variances.

Dealing with the mean and variance of (log) income in ��; ��-plots, an
obvious idea is to exploit the analogy with a simple yield±risk analysis in
asset theory. We assume
* that individuals judge different types of schooling Ai by their income

distributions represented by expected incomes �i and `risk' �i,
* that the rest of the economic environment is irrelevant for the choice of

the optimal A�, and
* that a preference function þ��; �� exists for the selection of A�.
Taking þ��; �� � �ÿ ��2=2� with indifference curves � � ��������������

2�ÿ c
p

,
the decision according to the ��; ��-rule is consistent with the Bernoulli
principle. Of course, there are limitations to the analogy between
asset allocation decisions and decisions on courses of education, for
instance because ± in the latter problem ± it is dif®cult to include costs
and because a `true' portfolio analysis is not applicable given that it is
virtually impossible to diversify education risks (Helberger (1997)).

Interpreting income variance as risk, we see that the `insured' have the
highest risk! Figure 6.3 shows the indifference curve I going through
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INSU. It is interesting to know if STUN could also lie on I , in other

words whether or not it might nevertheless be rational to choose the

insurance strategy (if these two courses of education are `true' alterna-

tives for the individual). This can be tested by the Rao distance test (42),

where ��0; �0� is an unknown point on I . For known sample size and

signi®cance level � � 0:05, the critical Rao distance can be determined

and the corresponding isocircle can be plotted as in ®gure 6.3. Because

this isocircle does not intersect I , the null hypothesis that STUN lies on I

can be rejected. This result could also be achieved by drawing a Rao

distance con®dence band around I , which can be constructed by moving

an appropriate isocircle along I . This con®dence band deviates from I for

growing � because of the distorted representation of the hyperbolic sur-

face in R2. See subsection 2.3 and Jensen (1995) for more details.

Finally, ®gure 6.4 shows the ��; 1=��-plot of estimated inverse

Gaussian distributions of income for the same subgroups. The interpre-

tation is slightly more complicated because the vertical axis no longer

represents the standard deviation of the distributions (see Example 3 for

the reason). That is why some lines of constant standard deviation are
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added to this plot to compensate for this drawback. Apart from that, the
results in the inverse Gaussian case do not differ substantially.

4.2 Inef®ciency differentials

The results of subsection 4.1 have made clear ± with the help of ��; ��-
plots and Rao distances ± that there are signi®cant differences between
the income distribution of university students and that of individuals
having followed the insurance strategy. Finally in this subsection, Rao
distances and the frontier results from subsection 3.5 on inef®ciency will
be combined to get even more insight into the ®nancial implications of
these courses of education and of the relationship with other sample
subgroups. The inef®ciency distribution of various subgroups will be
analysed to answer questions such as:
* Are low-educated persons very inef®cient in ®nding suitable jobs?
* Are older people more inef®cient than younger people?
* Are the `insured' particularly inef®cient?

Unfortunately, the individual inef®ciency terms ui are unobservable
(see subsection 3.3), but we have

uijei � trunc0N���
i ; �

2
��; ��

i �
ÿ�2

uei
�2

�� �
�u�v
�

�54�

(Jondrow et al. (1982)) and, because the Rao distances for N���
i ; �

2
�� are

also Rao distances for trunc0N���
i ; �

2
��, the estimated normal distribu-

tions of conditional inef®ciency in various sample subgroups can be
plotted, as in ®gure 6.5, with the following additional abbreviations
(see subsection 3.2):
* QUU0: lower education than `quali®cation for university entrance'
* 1830, 3140, 4150, 5165: age between 18 and 30; . . . ; 51 and 65
* FEMA: female
* UNMA: unmarried
* WORK: workers

The inef®ciency distributions of the age classes make clear that increas-
ing age leads to higher average inef®ciency and lower standard deviation
of inef®ciency. This could be a hint that human capital models need the
inclusion of retirement effects. Public servants and those trained for pub-
lic service show relatively high average inef®ciency and low standard
deviation. This had to be expected because of the payment system in
the public service, and very plausibly the `insured' are close to these
two groups.

On the other hand, university students show relatively low average
inef®ciency but very high variation. The latter could be due to the
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well-known fact that many university graduates do not ®nd suitable jobs.
As in the previous subsection, the mean difference between INSU and
STUN is clearly insigni®cant, but the Rao distance test (40) indicates that
the distributions depending on � and � are signi®cantly different with
� � 0:1. Finally, the Rao distance test (42) can be applied to construct a
con®dence region around, for instance, STUN. If ��0; �0� is an unknown
point on the surface, the critical Rao distance can be determined for
known sample size and signi®cance level � � 0:05, and the corresponding
isocircle can be plotted as in ®gure 6.5.

5 Conclusions

Estimating an extended human capital model as a stochastic earnings
frontier has proved to be a fruitful way of explaining potential income
and the deviations between empirical and potential income. The partial
failure of human capital models when estimated as average functions can
thus be explained. The inef®ciency terms of the frontier model capture
the important but dif®cult to measure human capital investment in the
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`search for information'. Inef®ciency turned out to be considerable: the
individuals in the sample received only 79 per cent of their maximum
possible income on average. Human capital theory is able to explain
maximum possible income suf®ciently but individuals are inef®cient in

their job search.

The results of section 4 sustain the judgement of BuÈ chel and Helberger
(1995) that the combination of an apprenticeship with university study is
an inef®cient `insurance strategy'. Comparing the pecuniary implications
of university study STUN and the insurance strategy INSU, it turns out
that:

1. the income distributions of STUN and INSU differ signi®cantly;

2. interpreting income variance as risk, the insured have the highest

risk of all courses of education in the analysis;

3. the inef®ciency distributions of STUN and INSU differ signi®-

cantly;

4. the name `insurance strategy' is justi®ed in that the inef®ciency

distribution of INSU is very similar to that in public service (high

average inef®ciency, low variance).

At least for the present data set, the second and the fourth items mean

that the insurance strategy is poor and costly.

It has been shown that the application of Rao distances is straightfor-
ward if one is willing to restrict the analysis to the narrow class of dis-
tributions allowing explicit analytic calculation of the necessary distance
formula. Rao distances and isocircles are very helpful tools in an intuitive
comparison of distributions, especially in two-parameter families. Rao
distance tests are based on simple geometrical ideas and ± in combination
with isocircles ± they make it possible graphically to solve test problems

such as the test for a ��; ��-pair lying on an indifference curve.
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7 First-order optimal predictive
densities

J.M. Corcuera and F. GiummoleÁ

1 Introduction

Consider a vector of observations x � �x1; . . . ; xn�, not necessarily inde-
pendent, that corresponds to a random variable X having a distribution
that depends on an unknown parameter �. We suppose that the sample
size n is large enough to allow asymptotic approximations.

The aim is to predict the value of an as yet unobserved random vari-
able Y , with a distribution related to that of the data. In general, X and Y
have different distributions and are dependent. The conditional density of
Y given X is assumed to belong to a regular parametric model

Px � fp�y; �jx�; � 2 �g;

where p�y; �jx� are densities with respect to some reference measure �, �-
®nite in R

p, and � is an open set in R
k.

If possible, we operate with a prior reduction of the problem. Let z be a
minimal predictive suf®cient statistic of the data, that is, z is a minimal
suf®cient statistic among those that satisfy

p�y; �jx� � p�y; �jz�:

Then, without loss of information, we can write z instead of x. We also
assume that there exists a decomposition z � ��̂; a�, where �̂ is the max-
imum likelihood estimator for � and a is an ancillary statistic, that is,
distribution constant, at least up to certain order. According to the con-
ditional principle, the values of a are kept ®xed as the sample varies, so
that we can denote the densities in Px as

p�y; �j�̂�; � 2 �:
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2 Different approaches to the problem

It is possible to predict Y by using a point value predictor g�X�. In order to
compare different point value predictors, it is necessary to specify a loss
function as a measure of the error. In the case of Y and g�X� being square
integrable variables, we have

E� �Y ÿ g�X��2ÿ � � E� �Y ÿ E��Y jX��2ÿ �
� E� �E��Y jX� ÿ g�X��2ÿ �

:

Thus, if we use the mean square error to measure the goodness of a
prediction, the best predictor g�X� is the one that minimises

E� �E��Y jX� ÿ g�X��2ÿ �
:

Notice that we cannot choose E��Y jX� as the optimal predictor, since it
depends on the unknown value of the parameter �. If Y and X are
independent, the optimal predictor is then the best estimate for E��Y�.
Anyway, a point prediction does not give any information about the
`likelihood' of values of Y different from the prediction itself.

Another way to solve the problem is based on prediction limits or
intervals, that is functions c��X� such that

P� Y < c��X�� þ � �:

Exact prediction limits can be found by means of pivotal quantities
(functions that depend on Y and X , whose distribution is independent
of �), or we can look for an approximate solution with an order of
approximation that depends on the sample size. One of the problems
with this method is that there is not an obvious generalisation to the
multivariate case.

Another possibility, which we are going to develop throughout the
chapter, consists of ®nding an optimal predictive density, p̂� yjx�, that is
as close as possible, in some sense, to the true conditional density of Y
given X � x. We need then to specify a loss function between densities.

3 The form of the optimal solutions

We can use an estimative density p� y; ~�j�̂�, obtained by substituting the
unknown parameter � with a suitable estimator ~�. Anyway, there could
be a predictive density outside the model Px that is closer than any
estimative density to the true one, p�y; �0j�̂�.
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Example 1 Let X1; . . . ;Xn and Y be independent random vari-
ables with the same normal distribution N��; �2�, �2 ®xed. It is known
that the estimative density

��yÿ �x; �2�
(���; �2� denotes the density function of a Gaussian random variable with
zero mean and variance �2) does not provide good prediction intervals
for Y . Instead,

� yÿ �x; �2 1� 1

n

� �� �
gives exact prediction intervals, since

Y ÿ �X � N 0; �2 1� 1

n

� �� �
:

Notice that this density, for each x, does not belong to the original
parametric model of Y . As we shall see in Example 3, this density is
closer than the estimative density to the true one, in a precise sense.

Let us consider a regular parametric model of dimension r > k that
contains P (from now on we will not indicate the dependence of the
model on the data):

M � fp�y;!j�̂�; ! 2 þg;
where þ is an open set in R

r and � a k-dimensional submanifold of þ. In
M we choose a coordinate system ! � ��; s�, where �i, i � 1; . . . ; k, are
the old coordinates in P and sI , I � k� 1; . . . ; r, the new ones in M. We
also take s � 0 for the points in P and � and s orthogonal in P. We use
indices A;B;C . . . for the components of the coordinate system ! � ��; s�
in the enlarged model M, i; j; k . . . for those in the original family P and
I; J;K . . . for the components of s.

Every density in M admits the formal expansion

p�y; �; sj�̂� � p�y; �j�̂� � p�y; �j�̂�sIhI �y; �j�̂� � � � � ;
where

hI �y; �j�̂� � @I log p�y; �; sj�̂�js�0; I � k� 1; . . . ; r;

and we use the repeated index convention.
We consider in M predictive densities of the form

p̂�yjx� � p�y; !̂j�̂� � p�y; �̂; ŝj�̂�;
with ŝ��̂� a smooth function of �̂ of order nÿ1, so that
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ŝ��̂� � 1

n
�s��̂� � op�nÿ1�:

The aim is then to ®nd a predictive density in M,

p̂�yjx� � p�y; �̂j�̂� 1� 1

n
�sI ��̂�hI �y; �̂j�̂�

� �
� op�nÿ1�; �1�

that minimises, uniformly in �, the leading term in the asymptotic expan-
sion of the risk,

E� L p̂�yjx�; p�y; �j�̂�
� �h i

;

where L is a loss function to be speci®ed and the expectation is calculated
keeping the value of the ancillary statistic a ®xed.

4 A measure of the discrepancy between densities

We consider a very general class of loss functions called divergences.
Given a ®xed regular parametric model

M � fp�y;!�; ! 2 þg;
we can use any smooth function

' : þ�þ ! �0;1�;
such that

'�!; ! 0� � 0 () ! � ! 0;

to measure the discrepancy between two points in M.
The condition of minimum in the diagonal can be expressed by

6'i;�!� � 0; 8! 2 þ; �2�
and

6'ij;�!� is a positive definite matrix, 8! 2 þ; �3�
where 6' means that ' is calculated in the diagonal and the semicolon
indicates the argument with respect to which the derivative is taken.

By repeatedly differentiating expression (2), we obtain the so-called
balance equations for ':

6'ij;�!�� 6'i;j�!� � 0 �4�
and

6'ijk;�!�� 6'ij;k�!�� 6'ik;j�!�� 6'i;jk�!� � 0: �5�
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It is interesting to observe that similar functions have already been
studied by different authors. By changing the sign of ' we obtain a
normalized yoke (Blñsild (1991)), while ' itself is a smooth contrast func-
tion (Eguchi (1992)).

Let us now study the geometry that a divergence induces over the
manifold where it is de®ned.

By (2) and (3), we have a metric tensor associated with ':

gij�!� � 6'ij;�!�: �6�

Moreover, ' generates a whole family of af®ne connections whose coef®-
cients are given by

ÿ
ÿ

ijk � ÿ 1� ÿ

2
6'ij;k ÿ

1ÿ ÿ

2
6'k;ij; ÿ 2 R: �7�

In fact, let � be another coordinate system for the model M where ' is
de®ned. Using indices i; j; k for ! and a; b; c for �, we can write the
Christoffel symbols just de®ned in the new parameterisation � as:

ÿ
ÿ

abc��� � ÿ 1� ÿ

2
6'ij;k�!�

@!i

@�a
@!j

@�b
ÿ 6'i;k�!�

@2!i

@�a@�b

ý !
@!k

@�c

ÿ 1ÿ ÿ

2
6'k;ij�!�

@!i

@�a
@!j

@�b
ÿ 6'k;i�!�

@2!i

@�a@�b

ý !
@!k

@�c

� ÿ
ÿ

ijk�!�
@!i

@�a
@!j

@�b
� gik�!�

@2!i

@�a@�b

ý !
@!k

@�c
;

which is exactly the transformation law that characterises the coef®cients
of an af®ne connection (Amari (1985), p. 36).

Using (5) and (7), it is easy to see that

6'ijk;�!� � ÿ
1

ijk � ÿ
1

ikj � ÿ
ÿ1

jki:

Example 2 An �-divergence between two points ! and ~! in M
is de®ned as follows:

'� ~!; !� �
�
f�

p�y; ~!�
p�y;!�

� �
p�y;!���dy�;

with
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f��t� �
4

1ÿ �2
�1ÿ t

1��
2 � � 6� �1

t log t � � 1

ÿ log t � � ÿ1:

8>><>>:
�-divergences include well-known divergences as particular cases. For
� � ÿ1 we obtain the Kullback±Leibler divergence and for � � 0 twice
the Hellinger distance.

Suppose � 6� �1. If we write p � p�y;!�, ~p � p�y; ~!�, l � log p and
~l � log ~p, under regularity conditions,

'i;� ~!; !� �
2

�ÿ 1

�
~p

p

� ��ÿ1
2

@i ~p��dy�;

'i;j� ~!; !� � ÿ
�

~p

p

� �1��
2

p @i ~l @j l ��dy�;

'ij;k� ~!; !� � ÿ 1� �

2

�
~p

p

� �1��
2

p @i ~l @j ~l @kl ��dy�

ÿ
�

~p

p

� �1��
2

p @i@j ~l @kl ��dy�

� ÿ
�

~p

p

� �1��
2

p @kl @i@j ~l �
1� �

2
@i ~l@j ~l

� �
��dy�

and, by symmetry,

'i;jk� ~!;!� � ÿ
�

p

~p

� �1ÿ�
2

~p @i ~l @j@kl �
1ÿ �

2
@j l@kl

� �
��dy�:

By (6) and (4), the metric induced by ' on M is

gij�!� �6'ij;�!� � ÿ 6'i;j�!� � E!�@i l@j l�;
which corresponds to the Fisher metric. Moreover,

ÿ
1

ijk�!� � ÿ 6'ij;k�!� � E! @i@j l �
1� �

2
@il@j l

� �
@kl

� �
and

ÿ
ÿ1

ijk�!� � ÿ 6'k;ij�!� � E! @i@j l �
1ÿ �

2
@i l@j l

� �
@kl

� �
:

It is immediate to check that the result also holds for � � �1. The family
of af®ne connections de®ned by (7) is then given by
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ÿ
ÿ

ijk�!� � E! @i@j l �
1� �ÿ

2
@i@j l

� �
@kl

� �
; �8�

which for ÿ � ÿ1 are the coef®cients of the Amari �-connections (Amari
(1985), p. 39).

Since the conditional model P depends on x, we consider the family of
divergences obtained as the data change. This family depends on the data
through z and, since the value of a is considered ®xed in z � ��̂; a�, we
write '�̂. Similarly, g�̂ij and ÿ

ÿ
�̂
ijk denote the families of metrics and af®ne

connections corresponding to '.
We can ®nally say that our purpose is to determine the predictive

density in M of the form (1) that minimises, uniformly in �, the leading
term of the asymptotic expansion of the average divergence

E� '�̂�!̂; !�
h i

�
�
'�̂�!̂; !�p��̂; �� d �̂;

where p��̂; �� is the distribution of the maximum likelihood estimator
conditioned on the observed value of the ancillary a.

5 The asymptotic risk

From now on, we denote by g and ÿ
ÿ
, respectively, the metric and the

family of connections induced by ' in a ®xed M.
If !0 � ��0; 0� is the true value of the parameter ! in M, the following

result holds:

Proposition 1 Suppose that �̂ ÿ �0 � Op�nÿ1=2�. Then the average

divergence from the true distribution p�y;!0j�̂� to a predictive density

p�y; �̂; ŝj�̂�, is given by

E�0 '�̂�!̂; !0�
h i

� E�0 '�̂���̂; 0�; !0�
h i

� 1

2n2
gIJ �s

I �sJ

ÿ 1

2n2
ÿ
ÿ1

ijK i
ij �sK � o�nÿ2�; �9�

where

iij � lim
n!1 nE�0 ���̂ ÿ �0�i��̂ ÿ �0� j �

and gIJ � g
�0
IJ �!0�, ÿ

ÿ1

ijK � ÿ
ÿ1�0

ijK �!0� and �s � �s��0�.

Proof The asymptotic expansion of '�̂� ~!; !0� as a function of ~!
in a neighbourhood of !0, is
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'�̂� ~!; !0� �6'�̂�!0�� 6'�̂A;�!0�� ~!ÿ !0�A

� 1
2 6'�̂AB;�!0�� ~!ÿ !0�A� ~!ÿ !0�B

� 1
6
6'�̂ABC;�!0�� ~!ÿ !0�A� ~!ÿ !0�B� ~!ÿ !0�C

� 1
24
6'�̂ABCD;�!0�� ~!ÿ !0�A� ~!ÿ !0�B

� � ~!ÿ !0�C� ~!ÿ !0�D � � � � :
Now, let !̂ � ��̂; ŝ�, with ŝ � Op�nÿ1� and �̂ ÿ �0 � Op�nÿ1=2�. Taking into
account (6) and using the fact that

g�̂iJ�!0� � 0; 8i � 1; . . . ; k; J � k� 1; . . . ; r; �10�
we can write

'�̂�!̂; !0� � 1
2
g�̂ij��̂ ÿ �0�i��̂ ÿ �0� j � 1

2
g�̂IJ ŝ

I ŝJ

� 1
6 6'�̂ijk;��̂ ÿ �0�i��̂ ÿ �0� j��̂ ÿ �0�k

� 1
2
6'�̂ijK;��̂ ÿ �0�i��̂ ÿ �0� j ŝK

� 1
24
6'�̂ijkh;��̂ ÿ �0�i��̂ ÿ �0� j��̂ ÿ �0�k��̂ ÿ �0�h � op�nÿ2�;

where the coef®cients are calculated in !0.
Moreover, by (10) and (4), it holds

0 � @i 6'�̂jK; �6'�̂ijK;� 6'�̂jK;i

and

0 � @j 6'�̂K;i �6'�̂jK;i� 6'�̂K;ij:

It is then obvious, using also (7), that

6'�̂ijK; � ÿÿ
ÿ1�̂

ijK :

Thus, we can write

'�̂�!̂; !0� � 1
2g

�̂
ij��̂ ÿ �0�i��̂ ÿ �0� j � 1

2g
�̂
IJ ŝ

I ŝJ

� 1
6 6'�̂ijk;��̂ ÿ �0�i��̂ ÿ �0� j��̂ ÿ �0�k

ÿ 1
2ÿ
ÿ1�̂

ijK ��̂ ÿ �0�i��̂ ÿ �0� j ŝK

� 1
24 6'�̂ijkh;��̂ ÿ �0�i��̂ ÿ �0� j��̂ ÿ �0�k��̂ ÿ �0�h � op�nÿ2�;
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so that

'�̂�!̂; !0� � '�̂���̂; 0�; !0� � 1
2
g�̂IJ ŝ

I ŝJ

ÿ 1
2ÿ
ÿ1�̂

ijK ��̂ ÿ �0�i��̂ ÿ �0� j ŝK � op�nÿ2�:
By taking the expectations and disregarding terms of higher order, we

obtain

E�0 '�̂�!̂; !0�
h i

� E�0 '�̂���̂; 0�; !0�
h i

� 1
2
g
�0
IJ�!0�E�0 ŝI ŝJ

� �
ÿ 1

2ÿ
ÿ1�0

ijK ��0�E�0 ��̂ ÿ �0�i��̂ ÿ �0� j ŝK
h i

� o�nÿ2�:

Now, since

ŝI ��̂� � �sI ��0�
n

� op�nÿ1�;

we have

E�0 '�̂�!̂; !0�
h i

� E�0 '�̂���̂; 0�; !0�
h i

� 1
2g

�0
IJ �!0��sI ��0��sJ ��0�

ÿ1
2ÿ
ÿ1 �0

ijK ��0�E�0 ��̂ ÿ �0�i��̂ ÿ �0� j
h i

ŝK ��0� � o�nÿ2�:

Finally, putting

iij � lim
n!1 nE�0 ��̂ ÿ �0�i��̂ ÿ �0� j

h i
gives the result. &

5.1 The optimal predictive density in the enlarged model

Expression (9) allows us to split the problem of prediction into one of
estimation followed by a correction of the estimative density. In the i.i.d.
case, when the model is a curved exponential family, the term corre-
sponding to the estimation can be expanded further and different esti-
mative densities can be compared. Here we concentrate on the problem of
®nding an expression for �s that gives the optimal correction to the esti-
mative density obtained with the maximum likelihood estimator.

We can easily prove the following result:

Proposition 2 The optimal choice of �s is given by

�sIopt��0� � 1
2ÿ
ÿ1�0 I

ij ��0; 0�iij��0� � o�nÿ1�: �11�
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Proof By differentiating (9) with respect to �s we obtain

�sI � 1
2ÿ
ÿ1

ijKg
KI iij � 1

2ÿ
ÿ1

ij
I iij;

which minimises the risk and thus the optimal choice of �s (�gKI � is the
inverse of �gIK � and we raise and lower indices by multiplying respectively
by �gKI � and �gIK �). &

Notice that ÿ
ÿ1

ijK is in fact a tensor and represents the components of
the embedding curvature of P in the enlarged manifold M. This is easily
proved since, if we change the parameterisation in M, using (10), we have

ÿ
ÿ1

abC��� � ÿ
ÿ1

ijK �!�
@!i

@�a
@!j

@�b
� giK �!�

@2!i

@�a@�b

ý !
@!K

@�C

� ÿ
ÿ1

ijK �!�
@!i

@�a
@!j

@�b
@!K

@�C
;

where we used indices a; b; C for the coordinate system � and i; j; K
for !.

(1) and (11) allow us to write the asymptotic expression for the optimal
predictive density in M:

p̂M�yjx� � p�y; �̂j�̂� 1� 1

2n
iij ÿ

ÿ1�̂ I
ij ��̂; 0���̂�hI �y; �̂j�̂�

� �
� op�nÿ1�:

�12�
Of course, this expression depends on M, so that, in general, if we

further enlarge the model, we can improve the predictive density (12).

6 A global solution

In this section we want to ®nd suf®cient conditions for the existence of an
extended manifoldM such that the optimal predictive density inM is the
global solution to the problem of prediction.

In order to do that, we associate with each point � in P, the vector
space that includes all the possible directions in which we can extend the
original model.

First of all, the tangent space T� to P in � can be identi®ed with the
linear space generated by

@il�y; �j�̂� �
@l�y; �j�̂�

@�i
; i � 1; . . . ; k;
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where l�y; �j�̂� � log p�y; �j�̂�. In T�, it is possible to de®ne a scalar pro-
duct by means of the Fisher information matrix, and a family of af®ne
connections, the Amari �-connections de®ned in (8).

A vector space containing T�,

H� � h�y� :
�
h�y� p�y; �j�̂���dy� � 0;

�
�
h2�y� p�y; �j�̂���dy� < 1

�
;

can be associated to each point � in P. H�, as a subspace of L2�p d��,
inherits in a natural way the scalar product

hh�y�; g�y�i �
�
h�y�g�y�p�y; �j�̂���dy�; h; g 2 H�:

It is immediate to see that this scalar product is compatible with the one
given in T� by the Fisher information matrix. We refer to

H�P� �
[
� 2�

H�

as the vector ®bre bundle of P.
Let h 2 H�P� be a vector ®eld such that

@ah�
1� �

2
E�h@al� �

1ÿ �

2
h@al � r� �H�

@al
h �13�

belongs to H�P�. The previous expression could be seen as a covariant
derivative in H�P�; anyway its interest here is due to the fact that

hr
� �H�
@al

@bl; @cli � ÿ
��A�

abc; �14�

where ÿ
��A�

abc are the coef®cients of the Amari �-connections.
Notice that the geometry given by the Fisher information matrix and

the Amari �-connections does not necessarily coincide with that induced
by the considered divergence '. The spaceM�, tangent toM in the points
of the original manifold P, is generated by vectors @Al�y;!j�̂�js�0,
A � 1; . . . ; r, belonging to H�. The divergence induces on M a metric
gAB�!� given by (6), which is in general different from the Fisher metric.
We also have a family of af®ne connections or covariant derivatives

r
ÿ �M�
@Al�y;�j�̂�

@Bl�y; �j�̂� � ÿ
ÿ
�̂
ABC���g�̂CD���@Dl�y; �j�̂�

� ÿ
ÿ
�̂ D
AB ���@Dl�y; �j�̂�;
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where ÿ
ÿ

ABC are given by (7). In general they are not the Christoffel
symbols of the Amari �-connections. Since T� � M�, we have an induced
scalar product in T� given by gij, and an induced covariant derivative
obtained by projecting the preceding one:

r
ÿ �P�
@i l�y;�j�̂�

@j l�y; �j�̂� � ÿ
ÿ
�̂
ijh���g�̂ hk���@kl�y; �j�̂� � ÿ

ÿ
�̂ k
ij ���@kl�y; �j�̂�:

Consider now, for i; j � 1; . . . ; k, vectors

hMij � ÿ
ÿ1

ij
I hI � ÿ

ÿ1

ij
I@I l � rÿ1�M�

@i l
@j l ÿ rÿ1�P�

@i l
@j l:

They are orthogonal to P and belong to the tangent space to M in P,
thus to the vector ®bre bundle H�P�. hMij 's represent the orthogonal
components to P of the ÿ1-covariant derivative induced in M by the
divergence '.

Using the de®nition of hMij , we can rewrite expression (12) of the opti-
mal predictive density in M as

p̂M�yjx� � p�y; �̂j�̂� 1� 1

2n
hMij i

ij

� �
� op�nÿ1�: �15�

We now present an example in which there exists a special orthogonal
direction to enlarge the original model P, such that, if the model M
contains that direction, the preceding predictive density represents the
maximal improvement to an estimative density.

6.1 The case of �-divergences

In this case, the ÿ1-covariant derivatives induced by �-divergences in M
and P coincide with Amari �-connections, as we have seen in (8).
Moreover, as shown in (14), they can be obtained by projecting (13)
over the tangent spaces of M and P.

Let

hij � r� �H�
@i l

@j l ÿ ÿ
��A�

k
ij @kl; 8i; j � 1; . . . ; k:

Notice that, by (14), these vectors are orthogonal to P.
We can now prove the following result, which states the existence of an

optimal direction to enlarge the model P.

Proposition 3 The optimal direction is given by iijhij and the
optimal predictive density can be written, up to order nÿ1, as
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p̂�yjx� � p�y; �̂j�̂� 1� 1

2n
iij @i@j l�y; �̂j�̂� �

1ÿ �

2
@i l�y; �̂j�̂�@j l�y; �̂j�̂�

��
� 1� �

2
g�̂ij��̂� ÿ ÿ

��A�
ij
k��̂�@kl�y; �̂j�̂�

��
:

Proof The gain in average divergence obtained by using p̂M

instead of the estimative is

E�0 �'�̂���̂; 0�; !0�� ÿ E�0 �'�̂���̂; ŝopt�; !0��

� 1

2n2
�ÿgIJ �s

I
opt �s

J
opt � ÿ

ÿ1

ijK i
ij �sKopt� � o�nÿ2�

� 1

2n2
�ÿ1

4gIJ ÿ
ÿ1

ij
I
ÿ
ÿ1

kh
J iij ikh � 1

2ÿ
ÿ1

ij
I gIJ ÿ

ÿ1

kh
J iij ikh� � o�nÿ2�

� 1

8n2
ÿ
ÿ1

ij
I
ÿ
ÿ1

kh
J iij ikhgIJ � o�nÿ2�

� 1

8n2
kÿÿ1

ij
I iij@I lk2 � o�nÿ2�

� 1

8n2
khMij iijk2 � o�nÿ2�:

On the other hand,

hhij; @I ligIJ@J l � hr� �H�
@i l

@j l; @I ligIJ@J l

� hrÿ1�M�
@i l

@j l; @I ligIJ@J l � hMij ; 8M � P

and we can write

1

8n2
khMij iijk2 �

1

8n2
kiijhhij; @I ligIJ@J lk2

� 1

8n2
khhijiij; @I ligIJ@J lk2;

which depends only on the projection of hij i
ij on the tangent space to M

in P. The gain is then maximum if and only if vector hij i
ij belongs to that

space and, in this case, hMij i
ij � hij i

ij , since hij are orthogonal to P. The
®nal expression for the optimal predictive density follows from (13) and
the de®nition of vectors hij . &
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7 Examples

In the following examples we always take �-divergences as loss functions.

Example 3 Let x � �x1; x2; . . . ; xn� be a random sample of size
n from X � �X1;X2; . . . ;Xn� and suppose that we want to predict a value
from Y � �Xn�1 � Xn�2 � � � � � Xn�m�=m, where Xi � N��; �2�, i � 1; 2;
. . . ; with �2 known.

The maximum likelihood estimator for � is given by

�̂ � �X �

Xn
i�1

Xi

n

and it is normally distributed with variance �2=n.
Since Y � N��; �2=m�, we have that

@�l �
m�yÿ ��

�2
and @2�l � ÿ m

�2
:

It is also easy to see from (8) that

ÿ
� � 0; 8�:

Then, the optimal predictive density is given by

p̂�yjx� � ��yÿ �̂; �2=m�

� 1� �1ÿ ��m
4n

m�yÿ �̂�2
�2

ÿ 1

ý !" #
� op�nÿ1�;

where ���; �2� denotes the normal density with mean 0 and variance �2. p̂
can be written in a close form as

p̂�yjx� � � yÿ �̂; �2 1

m
� 1ÿ �

2n

� �� �
:

For � � ÿ1 it coincides with the exact solution that we obtain from the
pivotal statistics

Y ÿ �X

�
1

m
� 1

n

� �1=2
:

Example 4 Let X0; X1; . . . ;Xn be an autoregressive process of
order 1, with X0 � 0 and XnjXnÿ1 � N��Xnÿ1; �

2�, where �2 is known and
j�j < 1. Suppose that x � �x1; x2; . . . ; xn� and y � xn�1.
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It is well known that

�̂ �

Xn
i�1

Xiÿ1Xi

Xn�1

i�1

X2
iÿ1

is asymptotically normal with asymptotic variance 1ÿ �2. Moreover,

@�l �
xn�xn�1 ÿ �xn�

�2
and @2�l � ÿ x2n

�2
:

Then the optimal predictive density is, up to order nÿ1,

p̂�yjx� � ��xn�1 ÿ �̂xn; �
2�

� 1� 1ÿ �

4n

x2n�1ÿ �̂2�
�2

�xn�1 ÿ �̂xn�2
�2

ÿ 1

ý !" #
;

which can be written in the equivalent form

p̂�yjx� � � xn�1 ÿ �̂xn; �
2 1� 1ÿ �

2n

�1ÿ �̂2�x2n
�2

ý !ý !
:

Example 5 Let y � �y1; y2; . . . ; yn� be an observation from a
random vector Y � �Y1; Y2; . . . ;Yn� such that

Yi � ÿ1xi1 � � � � � ÿmxim � �i; i � 1; . . . ; n:

We can write, using matrix notation,

Y � Xÿ� �;

where:
* Y � �Y1; Y2; . . . ;Yn� 0;
* X � �xij� is a n�m non-stochastic matrix of rank m � n;
* � � ��1; �2; . . . ; �n� 0 is distributed as N�0; �2In�, with �2 > 0 known;
* ÿ � �ÿ1; ÿ2; . . . ; ÿn� 0 is the unknown parameter.

We also assume that

�X 0X�ÿ1 � �

n
�O�nÿ2�;

with � known.
We want to predict the future observation yn�1 from the random

variable
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Yn�1 � ÿ1xn�1;1 � � � � � ÿmxn�1;m � �n�1 � x 0
n�1ÿ� �n�1;

with xn�1 � �xn�1;1; . . . ; xn�1;m� 0 known and �n�1 � N�0; �2�.
The maximum likelihood estimator for the unknown parameter ÿ

coincides with the least square estimator:

ÿ̂ � �X 0X�ÿ1X 0y:

The covariance matrix of ÿ̂ is

Var�ÿ̂� � �2�X 0X�ÿ1;

so that limn!1 nVar�ÿ̂� � �2�. Moreover, since Yn�1 � N�x 0
n�1ÿ; �

2�, we
have that

@il�yn�1;ÿ� �
yn�1 ÿ x 0

n�1ÿ

�2
xn�1;i

and

@ij l�yn�1;ÿ� � ÿ xn�1;ixn�1; j

�2
:

Thus, the optimal predictive density for yn�1 with respect to an �-
divergence, is

p̂�yn�1jy� � ��yn�1 ÿ x 0
n�1ÿ̂; �

2�
"
1� 1ÿ �

4n
x 0
n�1� xn�1

� �yn�1 ÿ x 0
n�1ÿ̂�2

�2
ÿ 1

ý !#
� op�nÿ1�;

which, up to terms of order nÿ1, can be written as

N x 0
n�1ÿ̂; 1ÿ 1ÿ �

2n
x 0
n�1� xn�1

� �ÿ1

�2

ý !
:

Again, for � � ÿ1 we obtain a predictive density that gives exact predic-
tion intervals.
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8 An alternative comparison of
classical tests: assessing the effects
of curvature

Kees Jan van Garderen

1 Introduction

The last two decades have seen a rapid growth in the application of

differential geometry in statistics. Efron (1975) stimulated much of this

research with his de®nition of statistical curvature and he showed that

curvature has serious consequences for statistical inference.

Many papers on the application of differential geometry in statistics

go straight into de®ning all the necessary tools, such as the metric and

an af®ne connection on a manifold, and show how they can be used

in statistical analysis. The emphasis is predominantly on asymptotic

theory and applications are mainly in estimation, information loss and

higher-order ef®ciency. Barndorff-Nielsen, Cox and Reid (1986) give a

very accessible account of the relevant ideas in differential geometry

and also provide a historical overview; see also Amari (1985) and

Okamoto, Amari and Takeuchi (1991) provide a brief recent summary

of main achievements.

This chapter is concerned with the effects of curvature on hypothesis

testing. However, our approach differs from the differential geometrical

approach mentioned above in a number of ways. First, we give a global

analysis, i.e. for the whole of the sample and parameter space, not merely

in a neighbourhood of a ®xed point such as the true parameter value.

Secondly, the analysis is valid for all sample sizes, not just asymptotically.

Finally, we are concerned with hypothesis testing, which is less common,

and use the partitioning of the sample space into critical region and

acceptance region to illustrate our arguments graphically, rather than

solely investigating the (analytic) properties of test statistic(s).

More speci®cally, this chapter investigates the effects of global curva-

ture on the different classical tests: the Lagrange multiplier (LM), Wald,

and likelihood ratio (LR) tests, as well as the point optimal (PO) and

geodesic tests. Traditional approaches can be found in most econometrics
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text books, and see Engle (1984) and Buse (1982) for a comparison
between the LM, Wald and LR tests using simple diagrams of the log-
likelihood. The LR measures the difference in height of the log-likelihood
between restricted and unrestricted models, the LM test measures the
slope of the log-likelihood at the null, and the Wald measures the dis-
tance between the unrestricted MLE and the restricted value under the
null directly. In these approaches all three tests appear equally reason-
able, a view reinforced by the fact that they are asymptotically equivalent.
We shall see that this can be very misleading and that the tests make very
different choices in terms of their critical regions. We also consider the
global curvature of the model and show that the one-sided LM and PO
tests, for instance, are potentially inconsistent for distant alternatives
because of their straight critical regions.

Another comparison between the classical tests from a differential
geometrical point of view was developed by Kumon and Amari (1983)
and Amari (1983); also see Amari (1985, chapter 6). They analysed ®rst-
order ef®cient (most powerful) tests, showed that they are automatically
second-order ef®cient (most powerful), and compared the third-order
power loss, i.e. the asymptotic difference between the power of a test
and the power envelope. This power loss depends on the curvature of
the model at H0, common to all tests, and the curvature properties of the
boundary of the critical region. The LR is shown to have good perfor-
mance over a `wide range' of alternatives, the LM test in a range close to
H0, and the Wald test for more distant alternatives, where distance is
measured in terms of the geodesic distance to local alternatives.

Other articles on hypothesis testing dealing speci®cally with curvature
include Efron (1975, section 8), Critchley, Marriott and Salmon (1996),
Davidson (1992) and Hillier (1990, 1995). Efron (1975) showed that the
(local) curvature at H0 gives a good indication of the performance of the
locally most powerful test and concludes that a point optimal test may be
preferable if the curvature is larger than 1/8, as a rough guide. Hillier
(1990, 1995) considers the global curvature properties of the model and
proposes a measure of global curvature. If the measure is small, then
curvature does not pose a serious problem and any of the classical tests
will give a reasonable test. Davidson (1992) and Critchley et al. (1996)
consider the Wald test and propose alternative geometric solutions to the
non-invariance problem of the Wald statistic ± a C��� type test and a
geodesic test, respectively ± but the two tests must still contend with a
number of practical problems.

There are two main approaches in analysing testing procedures. The
usual approach is to de®ne the test statistic and evaluate its properties,
such as its exact, asymptotic or simulated distribution, and ®nd size and
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power properties. The second approach is in the tradition of Neyman and
Pearson and looks at the partition of the sample space into a critical
region (CR) and an acceptance region de®ned by the test. The two
approaches are equivalent in the sense that every statistic induces a parti-
tion of the sample space and vice versa, but in practice they are quite
different.

This chapter follows the second approach and is therefore closely
related to Hillier (1990, 1995); see section 5 below in particular. He
uses the change in the PO test CR as a measure of global curvature.
We show how curvature also affects the CR of other classical test pro-
cedures. This chapter is further related to Kumon and Amari (1983),
Amari (1983) and Amari (1985), as mentioned before, who call the
boundaries of the CR ancillary manifolds but concentrate on an asymp-
totic treatment.

It is well known that if the model is a one-parameter linear exponential
model, then there exists a uniformly most powerful (UMP) test against
one-sided alternatives. Conversely, it is also true that if a UMP test exists,
then the model must be a one-parameter linear exponential model, as was
shown by Pfanzagl (1968). In Theorem 1 in section 2 we give a new and
simple proof of a slightly stronger result, assuming the density belongs to
an exponential family of arbitrary, but ®xed, dimension.

We will assume throughout the chapter that the models of interest are
(curved) exponential models. If the density belongs to a curved exponen-
tial family, it means that the dimension of the minimal suf®cient statistic
is ®nite and ®xed. This allows us to concentrate on the critical region,
which is a subset in the sample space of ®xed dimension for all sample
sizes, rather than on the test statistic (which concentrates the suf®cient
statistic into a one-dimensional statistic).

A wide variety of models belong to this class of models. In van
Garderen (1997a) we motivate the use of curved exponential models
and give a variety of examples in econometrics, such as the seemingly
unrelated regressions model, the single structural equation model,
demand systems, and time-series models, as well as references to other
examples in, for instance, continuous time-series models.

Another reason for the assumption is that, since UMP tests do not
exist if the model is curved, it seems natural to use a general class of
models that includes the one-parameter linear exponential model to
determine the effects of curvature. Models close to linear exponential
models can then be analysed, as well as models that are very different.
Of course, this can be generalised to non-exponential families. Efron
(1975) derived a curvature measure based on exponential models and
generalised this to arbitrary families of distributions. Many expressions
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derived here have analogues in terms of derivatives of the likelihood also.

We shall not pursue such a generalisation, but the intuition developed

here holds more generally. It should be noted that the dimension in such

a generalisation is implicitly restricted because only a ®nite number of

derivatives are taken into account and, secondly, these derivatives and

their expectations are evaluated at speci®c points.1 This leads quite natu-

rally to asymptotic theory in a neighbourhood of a chosen point.

In contrast, we restrict the dimension explicitly from the onset, because

we set out to consider the whole of the sample and parameter space and

consider ®nite sample behaviour.

No test exists that is best for all parameter values if the model is

curved. Different test procedures achieve good power properties for

certain regions of the parameter space (only), or achieve some overall

desirable power properties, and some tests do not achieve either. We

want to assess the reasonableness of tests based on the shape of the

CR.

The LM and PO test give a straight boundary of the critical region

regardless of the model curvature, as shown in sections 3 and 4, and thus

in effect ignore the curvature of the model. The Wald test does give a

curved boundary, but the test statistic is inherently a non-geometric

quantity and depends on the parameterisation used (see section 5). A

geometric counterpart introduced in section 6, called the geodesic test,

also gives a curved boundary, but raises practical and fundamental ques-

tions. The analysis of the LR test in section 7 is the most interesting. The

LR test gives a curved boundary that trades off the global curvature

against the local curvature of the model, and the LR test can be seen

as an average of best critical regions in all directions.

If a model is not too curved in the sense of both Efron and Hillier,

then any of the tests give a reasonable solution to the non-existence

of a uniformly most powerful test. The main conclusion of the present

analysis is that if the model is seriously curved then the LR test appears

the clear favourite, from both a practical and a theoretical point of

view.

Section 8 provides an example and shows the CRs of the different tests

when testing for autocorrelation or for a unit root in the ®rst-order

autoregressive (AR(1)) model. Section 9 concludes.
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2 UMP tests and one-parameter linear exponential models

To test a simple null hypothesis H0 against a simple alternativeHa we can
use the Neyman±Pearson lemma to give a test that is at least as powerful
as any other test of the same size.

Neyman±Pearson Lemma (NPL) Let x 2 X be a random vari-
able of dimension n, with likelihood function L�xjH0� and L�xjHa� under the
null and alternative hypothesis, respectively. When testing H0 versus Ha the
critical region

BCR � x 2 X
L�xjHa�
L�xjH0�

� c�

ÿÿÿÿ �
;

�
�1�

c� � 0, is most powerful among all tests with the same size
� � Prob�x 2 CR=H0�.

The critical value c� determines the size �. In general, if x is continuous,
we can also determine for any �; c� such that the size of the test is �.
The lemma is very general in the sense that it gives the best critical

region (BCR) regardless of the distributions under H0 and Ha. The
hypotheses may for instance be non-nested.

Naturally, the CR (critical region) may change if the alternative
changes, or the null for that matter. This implies that a test which is
best against one alternative is in general not best against another alter-
native. Only in special cases will the two tests coincide. If the CR is the
same for all elements in the alternative, then this region is called a uni-
formly most powerful size � region. If the system of CRs has this prop-
erty for each �, the test is called uniformly most powerful (UMP).

Finally note that the NPL can be used to determine the power envel-
ope, which is the function describing the maximum attainable power for
any test at each point under the alternative. The power envelope is found
by constructing, for each point in the alternative, the BCR and calculat-
ing the power for this alternative. Since this test is at least as powerful as
any other test, this power must be on the power envelope.

The BCRs have a particularly simple form in exponential families
where the boundary of the CR is orthogonal to the direction from the
null to the alternative hypothesis (see Theorem 1 below). An exponential
model is a family of distributions with densities that can be written as

pdf �x; �� � expf� 0t�x� ÿ ����gh�x�: �2�
This is called the canonical representation with canonical parameter
� 2 N, a k� 1 vector, and canonical statistic t�x� 2 T , a k� 1 vector of
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random variables. The representation is called minimal if k is the smallest
possible integer such that (2) holds. In this case, t�x� is minimal suf®cient
and has itself an exponential distribution similar to the distribution of x,
but with a different h��� (see Lehmann (1986), Lemma 8, p. 58). Thus,

pdf �t; �� � expf� 0tÿ ����gh�t�:
The minimal suf®ciency of t implies that there is no essential loss of
information by considering only t, instead of the whole sample x (see,
for example, Lehmann (1986), 1.5), and in what follows we shall work
directly with the distribution of t itself.

If � is a smooth function of a parameter �, of dimension d < k, then the
model is a �k; d�-curved exponential model. In that case, ���� describes a
curved d-dimensional manifold (e.g. a surface) in N. The parameter � may
originate from the way the model was initially written down, which is not
usually in canonical form.2 k is the dimension of t�x�, which is a minimal
suf®cient statistic, i.e. a statistic of smallest dimension that still contains
all information in the sample. The expectation of t is a function of �,
which we denote by ����. This function is one-to-one and easily derived
using the fact that in exponential models

���� � E��t� � @����=@�: �3�
In curved exponential models, the expectation of t is a function of �,

since � � ����, and we write ���� � E��t�. ���� is obtained by substitution

���� � E��t� � �������: �4�
���� is a d-dimensional manifold and can be thought of as lying in the
sample space for t. We shall make regular use of (4) and the following
expression obtained by the chain rule

�

�
� �0

�
t���: �5�

The importance of exponential models is that the dimension of t is
constant, regardless of the sample size. In van Garderen (1997a) we
prove that curved exponential models can be de®ned by the property
that the number of parameters is smaller than the dimension of a minimal
suf®cient statistic, even for non-i.i.d. observations. This basically means
that the dimension of the problem is ®nite and ®xed. The paper motivates
curved exponential models more generally and provides econometric
examples.
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If the densities belong to a one-parameter linear exponential family,
then it is easily shown, as in Theorem 1 below, that the CR is the same for
all (one-sided) alternatives. Hence, there is a class of models for which a
UMP test exists, but the question is whether or not there are any other
classes of models with this property. The short answer, under mild reg-
ularity conditions, is no. Borges and Pfanzagl (1963) showed that the
existence of a UMP test for all sample sizes and all signi®cance levels �
implies a one-parameter exponential family. Pfanzagl (1968) extended
this result to one level of signi®cance and all (arbitrarily large) sample
sizes. Their assumptions include that the family of distributions is
mutually absolutely continuous, a property shared by exponential
families.

Theorem 1 gives a new simple proof of a slightly more general result,
assuming that the density belongs to an exponential family of arbitrary
dimension. The dimension of this family is arbitrary but ®xed, which
means that the dimension of the problem does not increase with the
sample size. In the introduction we have already given a number of
arguments why the assumption may not be too restrictive. It is also
worth noting that in addition to the regularity conditions, which are
considered weak (Lehmann (1986), p. 80), Pfanzagl requires that a
UMP test exists for arbitrarily large sample sizes. We restrict the dimen-
sion by assuming an exponential model from the start, and the existence
of a UMP test for one sample size (and one �) then implies the existence
of a UMP test for all sample sizes (and all �'s).

Theorem 1 Let the density of x (of dimension n) belong to an
exponential family of arbitrary, but ®xed dimension k.
(a) If the model is a one-parameter linear exponential model then a one-

sided UMP test exists for all n and �.
(b) If a UMP test exists for one � and one n � k then the density is a one-

parameter linear exponential model.

Proof Let � be the �k� 1� canonical parameter vector and t�x�
the �k� 1� canonical statistic. Using the exponential distribution of the
minimal suf®cient statistic t, we obtain the BCR for testing H0 : � � �0
against Ha : � � �a directly from the NPL as

BCR � ft 2 T j exp���a ÿ �0� 0tÿ ���a� � ���0�� � c�g �6�

or simply, by de®ning c�a�� � ln�c�� � ���a� ÿ ���0�, as

BCR � f��a ÿ �0� 0t � c�a�� g: �7�
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The boundary of the BCR is a hyperplane of dimension �kÿ 1� which
is orthogonal to ��a ÿ �0�. The BCR is determined by the direction of
��a ÿ �0� only. The length of ��a ÿ �0� is irrelevant because c�a�� is deter-
mined by the size condition:

Prob���a ÿ �0� 0t � c�a�� jH0� � �: �8�
(a) In a one-parameter linear exponential model the direction of ��aÿ0� is

constant for all �a as long as the sign does not change, i.e. a one-sided
test in terms of �, since the vector is one-dimensional.3 The BCR of
size � is constant for all alternatives, and, since this holds for all �, the
CRs de®ne a UMP test.

(b) If the size � BCR is constant for all �a, then ��a ÿ �0� must have the
same direction for any parameter value �a in the alternative, since
every such vector is orthogonal to the same �kÿ 1�-dimensional
hyperplane. Hence the vectors are proportional and ��a ÿ �0� � ���a1
ÿ�0� for all a and some ®xed a1. But this constitutes a one-parameter
exponential family with � as canonical parameter and s�x� � ��a1 ÿ
�0� 0t as canonical statistic. This holds for any � used to construct the
BCR. &

The statements (a) and (b) follow from simple linear algebra, since a
plane determines a normal, and a normal determines a plane, as illu-
strated in ®gure 8.1. Note that ��a ÿ �0� is a vector in the parameter
space, whereas the boundary of CR�a� is a hyperplane in the sample
space. The proof therefore makes use of the duality between the para-
meter space and the sample space.4 This explains why the condition n � k
is necessary in part (b) of the proof. If n � kÿ 1, the boundary of the
BCR no longer de®nes a unique normal vector in N (there are fewer than
kÿ 1 restrictions on �), but rather a �kÿ n� 1�-dimensional hyperplane.

Part (b) of the proof shows that the alternative does not need to be a
continuous line, but may consist of points as long as these points are on
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that the function ���� is one-to-one. Suf®ciency is immediate and necessity follows from the
fact that there would otherwise be two values of � with the same value of �. We could not
sensibly test one value of � against the other because the two models are essentially the same
(observationally equivalent), and the NPL does not de®ne a CR. Note that the condition
guarantees likelihood ratio monotonicity in terms of �.
4 The duality here is between N and T through the bilinear product h�; ti � � 0t � P

�iti ,
de®ned on N � T . This is different from the usual convex duality that is used in the theory
of exponential models, which is really between the canonical parameter space and the
expectation parameter space, and the dual of ���� is de®ned through the Legendre trans-
form. See Barndorff-Nielsen (1978).



the same line. In fact, we can think of the NPL as de®ning straightness in

a space of distributions even more general than exponential families, as

well as straightness in the sample space, since the NPL is valid for all

distributions.

The proof also shows a well-known result that if we are testing one

linear restriction on the canonical parameter �, we can reparameterise the

model to obtain a UMP test (see, for instance, Lehmann (1986)).

Given the regularity conditions in Pfanzagl (1968) or the assumption

made here, a UMP test exists if, and only if, the model is one-parameter

linear exponential. This is the ideal situation and most practical situations

do not fall into this category.

In curved models the NPL cannot be used to give a best test, since no

test exists that maximises power against every alternative. We have to use

a different approach and compromise power against different alterna-

tives. Different tests compromise in a different way.5 In what follows

we will show how different tests choose different critical regions and, in

the spirit of Theorem 1, show that they can be thought of as choosing

directions for ��a ÿ �0�. The point optimal test chooses an arbitrary `sui-

table' point � from which �a and the direction follow. The LM, locally

most powerful and locally best test choose a direction equal to the gra-

dient of ���� at �0. The Wald test uses the gradient of ���� at point(s)

different from �0, but this direction is not used to construct a BCR in the
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5 Cox and Hinkley (1974, p. 102) offer three suggestions: (a) pick an arbitrary point and
maximise power against this alternative; (b) choose this point close to �0 and maximise the
power locally near the null hypothesis; and (c) maximise some weighted average of power.



sense that the LM and PO test do. The Wald test introduces a distance
concept that is generally not compatible with the model. The geodesic test
uses a geometrical notion of distance but there are some theoretical, as
well as practical problems, although it does give a test that takes the
curvature of the model into account and gives a curved boundary for
the CR. The LR test can be viewed as averaging over all possible
directions.

3 The point optimal (PO) test

A point optimal test is a direct application of the NPL. It simply chooses
a particular parameter point �� in the alternative (and a �0 under the null
if it is composite) and forms the best CR for testing the simple null versus
this simple alternative. If we write �a � �� � ����� and �0 � ���0� in (7),
we see immediately that the CR for the PO test equals

CRPO � f������ ÿ ���0�� 0t � c��g: �9�
The CR is determined by the direction of ��� ÿ �0� since the boundary of
CRPO is a hyperplane orthogonal to this direction. The size condition
determines c��, and hence how far the boundary is translated from zero. It
is worth recalling that c�� changes with ��, depending on the direction and
length of ������ ÿ �0�, so that c�� � c�������� � c�����. (The LR test indir-
ectly uses (9) in all directions with c� ®xed, as we shall see below.)

Since zero is just an arbitrary point in the sample space, it is more
relevant how distant the boundary is from the expectation of t under the
null, ���0�. We therefore rewrite the CR by de®ning
~c�� � c�� ÿ ��� ÿ �0� 0���0�, as

CRPO � f��� ÿ �0� 0�tÿ ���0�� � ~c��g; �10�
which is shown in ®gure 8.2. The left-hand frame shows the canonical
parameter space N and the canonical manifold ���� with the relevant
directions determining the PO test. The right-hand frame shows the
sample space T and the CRs for two different choices of ��. The expecta-
tion manifold, E��t� � ����, is superimposed on T.

The left frame shows how the vector ��� ÿ �0� is obtained: choosing ��

determines a direction and hence a test (choosing ��� is choosing a dif-
ferent direction and a different test). The direction of ��� ÿ �0� depends
on �� only through ����. This has two consequences: the picture and
conclusions drawn from it are the same regardless of the parameterisa-
tion used (i.e. whether � is used or some other parameter �), but, on the
other hand, a different parameterisation will generally result in a different
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choice of �� and hence a different direction. In this sense the test is not

invariant under reparameterisations.

The PO test is not as widely applied as the LM, Wald and LR tests, but

has been successfully exploited in econometrics, mainly in time-series

applications. Early examples are Kadiyala (1970) and Berenblutt and

Webb (1973), and later examples include King (1987), Brooks (1993),

Silvapulle and King (1993) and Saikkonen and Luukkonen (1993).

King and Wu (1994) provide a survey and references, including most

of King's own and joint work. Evans and King (1985) derive a PO test

for heteroskedasticity.

The test statistic is often quite easy to derive and the main dif®culty is

determining the critical value. c����� can in principle be obtained numeri-

cally by, for example, Monte Carlo integration. In time-series models the

statistic is frequently a ratio of quadratic forms in normal variates and

the critical value can be determined by Imhof's (1961) or Davies's (1980)

procedure, similar to obtaining the exact DW critical value.

Apart from its simplicity, the test has some other attractions. The

power of the test equals the power envelope for at least one parameter

point, and we can choose this point based on economic or other external

considerations. This freedom, on the other hand, makes the procedure

ad hoc, since there is no general principle or optimality consideration to

choose the point.

One solution to this arbitrariness is to choose the point closest to the

null for which the power equals a pre-set level such as 0.8. This gives the
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ÿ-optimal test of Davies (1969) but is often computationally dif®cult.6

Other solutions include to choose the maximum or the middle of the �
values, but this determines a direction which depends on the parameter-

isation used. Using � instead of � gives a different middle value and

consequently ����� 6� �����, resulting in different tests. Another problem

is that we can easily think of parameterisations ���� that give the same �
for two different values of �, disturbing the idea that we can sensibly talk

about minima, maxima or middle values.

Figure 8.2 suggests part of the answer. We should be thinking in terms

of choosing a direction, taking into account the global properties of the

model, rather than choosing a point in an arbitrary parameterisation.

A further question concerning the choice of PO point is whether or not

it should be the same regardless of the sample size. The PO test based on

�� in ®gure 8.2 is very unattractive for large sample sizes and local alter-

natives because the boundary of the CR is virtually orthogonal to the

BCR based on local alternatives (and to the LR, LM and Wald CRs)! It

appears more sensible to choose the point optimal direction for large

sample sizes based on (a sequence of) local alternatives which achieve

maximal power against local alternatives, since, even for these tests, the

power will approach 1 for distant alternatives such as ��, provided the

model is not too curved.

If the model is very curved then it is possible, because of the straight

boundary, that ���� curves back into the acceptance region for large

values of �. Put differently, the expectation of t in such a case lies in

the acceptance region for values of � very distant from �0.
Asymptotically, with independent sampling and t � �1=n�Pn

i�1 ti, we

have that t ! ���� as n ! 1. This means that the test is not globally

consistent and, for certain values of the parameter, very different from �0,
the test accepts the null with probability one.

Returning to the attractions of the PO test, it follows directly from the

NPL that the PO test can be applied to non-nested problems, e.g. testing

MA versus AR errors as in Silvapulle and King (1993).

Furthermore, if ���� is a straight line, then the BCR is constant and the

test is UMP, as in Theorem 1. Put differently, if a UMP test exists, then

the PO tests will produce it.

Even if a UMP test does not exist, the PO test may still give a satis-

factory test. In particular if ���� is not too curved and therefore

����� ÿ �0� does not change very much, the BCRs do not change very
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much either. Hence, the power of any of the PO tests will be close to the
power envelope.

If ���� is seriously curved and ������ ÿ �0� changes a lot for different
values of �� in the alternative, then the BCRs also change a lot. This
means that very different tests are obtained for different choices of ��.
The test becomes sensitive to the choice of �� and this choice gets more
important. A small value of �� causes a loss of power against alternatives
further away from H0 and vice versa, and, because the boundary of the
CR is straight, it may be impossible to get desirable power properties
against the whole range of alternatives.

These ideas were developed in detail by Hillier (1990, 1995). He ana-
lysed the global behaviour of the BCRs and suggested a measure of the
variability of the BCRs based on the probability of the enveloping region,
which he de®ned as the union of all possible ®xed-size PO critical regions.
If the probability of the enveloping region under H0 is close to �, then the
model cannot be very curved, but the model must be globally curved if
this probability is much larger than �. It is clear from ®gure 8.2 that in the
two-dimensional case this relates to the maximum possible angle between
any two vectors ��� ÿ �0� and ���� ÿ �0�, which is a measure of the total
curvature of ����.

This global concept of curvature is different from Efron's statistical
curvature, which is the curvature of the model at a particular point. Efron
(1975) related his curvature to the rate of change of the BCR at H0,
whereas Hillier's global measure relates to the total change in all
BCRs. The local measure of curvature, evaluated at �0, does, however,
give a good indication of the relative performance of the LMP test, as
Efron showed. Large curvature leads to poor performance of the LMP
test as compared with a PO test. Efron therefore suggested the use of a
PO test as an alternative to the LMP test if the model has curvature larger
than 1/8 at H0, which we shall now discuss.

4 Lagrange multiplier (LM), locally most powerful (LMP) and
locally best (LB) test

The locally most powerful (LMP) test is a test that gives maximal power
against alternatives in a neighbourhood of the null.7 Although the NPL
gives the BCR for all �a 6� �0, it is clear that, if we let �a ! �0,
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��a ÿ �0� ! 0, and no CR is de®ned. The main point of Theorem 1 is,
however, that the direction of ��a ÿ �0� determines the CR, not its length
(the critical value c� � c���� � c������� absorbs the length because of the
size condition). The direction does not change if we divide both sides in
(7) by k�a ÿ �0k with k � k some measure of distance, and we write the
BCR as

����a� ÿ ���0�� 0
k�a ÿ �0k

tÿ �����a�� ÿ �����0��
k�a ÿ �0k

� c���a�
k�a ÿ �0k

: �11�

We may now let the point �a approach �0 arbitrarily closely and take the
limit as �a ! �0 on both sides to obtain the CR

CRLMP � ���0� 0
�

t � c��� � @���0�=@�
� �

: �12�

This shows that the CR of the LMP test is determined by the direction of
@���0�=@� � @����=@�j���0 , the gradient of ���� at �0. The CR is bounded
by a hyperplane orthogonal to @���0�=@�. We can rewrite the CR as in
(10), using (4),

CRLMP � ���0� 0
�

�tÿ ���0�� � c���

� �
: �13�

Figure 8.3 illustrates how the direction and CR are obtained (note that
@�=@� 6� @�=@�).8 The equivalence between the tests will be shown below.
If ���� is a straight line then @�=@� has the same direction as ��� ÿ �0� for
any �� and hence the CR of the LMP test is the same as the CR for any
PO test. Thus the LMP test also produces the UMP test if it exists.

Figure 8.3 also illustrates the parameterisation invariance of the test
because the direction is the same regardless of which parameter is used.
Analytically this follows because

�@� 0@�� � �@�=@���@� 0=@��;
and the direction @� 0=@� determined by � is proportional to @� 0=@� since
�@�=@�� is 1� 1 and the CRs are the same.

If ���� is curved, the LMP test gives the same CR regardless of how
curved the model is. The LMP uses the direction only at �0, essentially
ignoring the curvature. Figure 8.3 shows that this can have serious con-
sequences. Since the boundary is straight, it is possible that ���� curves
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back into the acceptance region for large values of � and the test is not

consistent. Again, with independent sampling and t � 1=n
Pn

i�1 ti,

t ! ���� as n ! 1, and the test will accept the null with probability

one asymptotically for values of � very distant from �0. This is similar

to the PO test but, since the LMP test chooses an extreme direction, the

problem may be more serious. Usually the test is globally consistent, but

even in less extreme cases we would expect poor power performance away

from the null if the model has appreciable global curvature.

The relation between the curvature and performance of the LMP test

was pointed out by Efron (1975, section 8). He concluded that, if the

curvature at �0 is larger than 1/8, then the performance of the LMP is

seriously affected and a PO test should be considered. His measure

describes the local curvature at H0. Figure 8.3 gives the global picture.

The LMP test is derived here as a limiting case of a PO test if we let

� ! �0. The LMP test maximises the slope of the power curve at the null

in most cases. A test that maximises the slope of the power is often

referred to as a locally best (LB) test. Lehmann (1986, p. 528) gives

counter-examples when the two tests are different and suf®cient condi-

tions for the two tests are to be the same: if there is a unique level � LB

test, then it is the unique LMP test.9 The LB test can be found directly

using a generalised version of the NPL (e.g. Cox and Hinkley (1974),

p. 126): the region w � ft 2 T j f �t� � cg�t�g maximises
�
w f �t�dt, subject to�

w g�t�dt � a, provided such a c exists. Since the LB test maximises the

slope of the power function, we have
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9 See also Cox and Hinkley (1974), pp. 107 and 113, for relevant discussions.



max ��

�
w

pdf �t; ���dtj���0 �
�
w

���0� 0
�

�tÿ ���0��
� �

expf� 0
0tÿ �gdt;

s:t:

�
w

pdf �t; �0��dt � � ,
�
w

expf� 0
0tÿ �gdt � �;

where we have used (3) and the fact that in exponential models we may
interchange differentiation and integration. The region w becomes,

CRLB � ���0� 0
�

�tÿ ���0�� � c

� �
; �14�

which is equal to (13) with c � c��� .
The Lagrange multiplier (LM) test, or (ef®cient) score test, is one of the

most widely applied tests in econometrics (see Breusch and Pagan (1980),
Engle (1984) or Godfrey (1988) and references therein). The general form
of the test is to reject for large values of the LM test statistic

LM � s��̂� 0I��̂�ÿ1s��̂� � c�; �15�
where s��̂� is the score statistic @`��̂; t�=@�, a d � 1 vector, and I��̂� is the
d � d information matrix, all evaluated at the restricted MLE�̂�H0�. A
one-sided version of the LM test if d � 1 (ignoring sign) would be to
reject for large values of

I��̂�1=2s��̂� � c�: �16�
The restricted MLE in the present case is �0 because H0 is simple.

Furthermore, using (5), the score in an exponential model can be written
as

s��� � 1�t; �����
�

� � 0

�
�tÿ �����: �17�

Substitution gives

CRLM � I��0�ÿ1=2 ���0� 0
�

�tÿ ���0�� � c�

� �
; �18�

which, after pre-multiplication by I��0�1=2, is equal to (13) and (14).
Hence, the one-sided version of the LM test in exponential models is
equal to the LMP and LB test.

Of course, if d > 1 the statistic �@�=@�� is d � 1 and needs to be reduced
to a one-dimensional test statistic. The LM statistic does this by weight-
ing the elements by the inverse of the Fisher information matrix, which,
incidentally, keeps the test parameterisation invariant even if d > 1.
A different matrix could be chosen to give more weight to particular
directions.
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5 The Wald test

One of the main attractions of the Wald test is that it requires estimation
of the parameters only under the alternative hypothesis. The Wald test is
slightly at odds with the other tests discussed in this chapter because the
Wald statistic is inherently a non-geometric quantity. The test statistic
depends on the algebraic formulation of the restrictions de®ning the null
hypothesis. The main problem with the Wald test is that it uses only the
®rst term in the Taylor expansion of the restriction, and there are
uncountably many other restrictions that correspond, up to ®rst order,
with the restriction written down. Gregory and Veall (1985) showed that
this non-invariance can lead to drastically different conclusions, even in a
very simple model. Nevertheless, the Wald test is one of the classic tests
and widely applied.

The general form of the Wald statistic for testing

H0 : r��� � 0 versus Ha : r��� > 0; �19�
where r��� describe some non-linear restrictions on �, is given by

w��̂� � r��̂� 0�R��̂� 0I��̂�ÿ1R��̂��ÿ1r��̂�; R��̂� � r���
�

j���̂ : �20�

In section 8 we use the following example to demonstrate a number of
problems set out in this section. Since H0 is simple we may set �0 � 0
without loss of generality. There are many ways of writing this restriction
in the form (19), but consider,

rb��� �
exp�b�� ÿ 1

b
� 0; with Rb��� � exp�b��; �21�

which for each value of b gives a different way of writing the restriction.
In the limiting case b ! 0, (21) reduces to r0��� � � � 0. The Wald
statistics with b � 0 and b � 1 are

wr0��̂� � �̂2I �̂; wr1 ��̂� � �1ÿ exp��̂��2I�̂; �22�
and obviously differ, although they agree in a neighbourhood of H0.

The Wald test introduces an arbitrary measure of distance on the
manifold (the curve ����), which is determined by the way the restrictions
are formulated. This distance is not an intrinsic quantity, meaning that it
depends on the parameterisation used.

Shortcomings of the Wald statistics are well known; see, for example,
Gregory and Veall (1985), Breusch and Schmidt (1988), Lafontaine and
White (1986), Phillips and Park (1988) and Nelson and Savin (1990).
They all show certain properties of the test, such as dependence on the
formulation of the restrictions and the possibility of obtaining any
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numerical value, problems with the size and the power function or
approximations to them, but offer limited explanations. We provide an
alternative view by considering the CR rather than the test statistic,
which is quite revealing.

We turn to the partition of the sample space into acceptance region and
critical region that is induced by the one-sided version of the Wald test.
First note that the test statistic is a function of the estimator �̂ only, and
that it determines a `distance' from �̂ to �0, using the distance measure
wr���.10 If �̂ is further than a particular wr-distance away from �0 we reject
the null hypothesis, i.e. the test rejects when11

wr��̂� � c��; �23�
where the subscript indicates the dependence on r, the formulation of the
restrictions. The critical value c�� is generally based on the asymptotic chi-
square distribution of wr��̂� under H0 and does not change with r, which
has important adverse consequences in ®nite samples as we shall see
below.

Assume for the moment that wr��� is monotonically increasing so that
the CR can be expressed directly in terms of �̂. Let ��r be the critical value
in terms of �̂, which now does depend on r, precisely because c�� does not
depend on r. The one-sided Wald test rejects for all those observations
t 2 T for which

�̂�t� � ��r : �24�
We have written �̂�t� to make explicit that �̂ is a function of t. There will
be many different values of t that give the same value for �̂ because the
dimension of t is larger than the dimension of �. The boundary of the CR
is determined by all those t in the sample space that give ��r as the MLE,
i.e. the boundary is the inverse image of ��r :

boundary CRWald � �̂ÿ1���r � � ft 2 T j �̂�t� � ��r g: �25�

We can determine the inverse image of ��r by solving the ®rst-order
conditions for the MLE, as a ®rst step. Following Efron (1978) we denote
the set of solutions to the ®rst-order conditions (f.o.c.) by
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£�� � t 2 T
1��; t�

�

ÿÿÿÿ ÿÿÿÿ
����

� 0

� �
: MLE constant (f.o.c.). �26�

Keeping � ®xed at ��, we can solve for t such that (26) holds. Thus £�� is
the pre-image of ��, plus all values of t satisfying the ®rst-order condi-
tions only. In curved exponential models we have, using (2) and (5),

£�� � t 2 T
���� 0
�

�tÿ �����
ÿÿÿÿ ÿÿÿÿ

����
� 0

� �
: MLE constant (f.o.c.).

�27�
Clearly t � ����� satis®es (27) and the complete solution consists of a
hyperplane in the sample space through ����� orthogonal to the gradients
@�����=@�i, i � 1; . . . ; d. The hyperplane is thus of dimension �kÿ d�. The
straight part of the Wald test CR is illustrated in ®gure 8.4 for k � 2,
d � 1 and critical value ��r . (The curved part of the boundary is discussed
jointly with the geodesic test; see ®gure 8.6 in particular.)

The boundary is orthogonal to the gradient of ���� at ��r for the Wald
test, versus �0 for the LMP test. Also note that the boundary of the LMP
test stretches out in®nitely, whereas the boundary of the Wald test is a
hyperplane only until it crosses another line of constant MLE. Points
where two constant MLE lines cross and give more than one maximum
likelihood solution were de®ned in van Garderen (1995) as critical points,
since the MLE is not unique. Beyond such critical points the boundary is
curved (see the discussion of the geodesic test below).

Using a different formulation of the restriction, e.g. r1��� instead of r0���,
will result in a different value for ��r and a different CR. Figure 8.4 would
apply with the boundary shifted to coincide with �̂ÿ1�t� � ��r1. Similarly,
changing the critical value c�� changes ��r .

In principle c�� a could, and should, be chosen such that the signi®cance
level is exactly �. In practice this is typically too dif®cult, and asymptotic
theory is used to ®nd an approximation. The asymptotic critical value is
the same regardless of which rb��� is used. Note that the asymptotic
critical value is based on ��r close to �0, the value under the null. This
gives a boundary parallel to the LR and LM statistic, and asymptotically
the boundaries are equivalent, de®ning the same test statistic. For large ��r
in a curved model, the boundary is at an angle with the asymptotic
boundaries and de®nes a different statistic. The asymptotic critical
value does not take this into account and size and power calculations
are suspect in small samples.

It was assumed in ®gure 8.4 that wr��� was monotonically increasing. If
the Fisher information I��� is decreasing faster than �r���=R����2 is
increasing, then it is possible that wr��� is not monotonic, as will be
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demonstrated for testing against the null hypothesis of a unit root test in
section 8. This means that wr��� is not a proper distance measure and, as a
consequence, there are potentially three (or more) values of �̂i for which

wr���r �1�� � wr���r �2�� � wr���r �3�� � c��: �28�
The Wald test rejects in that case for values of �̂ in two unconnected
intervals

��r �1� � �̂ � ��r �2� [ �̂ � ��r �3�: �29�
This means that for values of �̂ between ��r �2� and ��r �3� we do not

reject, even though they are much larger than ��r �1�, the smallest value
for which the test rejects. Instead of the one line in ®gure 8.4, there are
now three lines bounding the CR. This is shown in ®gure 8.5. Figure 8.5
shows that the Wald test can lead to very unattractive CRs. It also
explains why the power function can be non-monotonic, as reported in
Nelson and Savin (1990): the probability of rejection is larger for
� � ��r �2� than for � between ��r �2� and ��r �3�.

The next section discusses a geometrical version of the Wald test and
deals with some further issues not related to the non-invariance of the
test.

6 A geodesic distance test

The Wald statistic is a non-geometric quantity which de®nes a `distance'
not compatible with the model. Improvements based on differential geo-
metrical arguments have been proposed by Critchley, Marriott and
Salmon (1996) and Davidson (1992); see also Vñth (1985). We can de®ne
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distances on the manifold in a geometric way by de®ning a metric, with

coef®cients gij , and an af®ne connection, with coef®cients ÿm
ij , and deter-

mine the geodesic distance on the manifold from �̂ to �0.
12;13 A geodesic

on a manifold is the analogue of a straight line in Euclidean space and

gives the shortest distance between two points on the manifold, e.g.

between ���̂� and ���̂0� or ���̂� and ���0�, based on the distance de®ned

by the metric, and connection. This distance is the same regardless of the

parameterisation. The Fisher information metric is commonly used for

gij , together with the Riemannian (Levi±Civita) connection for ÿm
ij . Rao

(1945, 1949) was the ®rst to explore the idea of a geodesic de®nition of the

distance between two distributions (see also Jeffreys (1939), however). We

could use this distance for hypothesis testing, as in fact Critchley et al.

(1996) do. They use the geodesic distance based on the Fisher informa-

tion metric between �̂ and �0 as test statistic

gd��̂; �0� � min
��x�

�1
0

���������������������������������������������������XXd
i;j�1

gij���x��
�i�x�
x

�j�x�
x

vuut dx; �30�

s:t: ��0� � �̂ and ��1� � �0 �or ��1� � �̂ and ��0� � �0�
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12 The null hypothesis is simple so that �0 is known. A composite H0 complicates the test
even further.
13 If gij � gij��� is the metric with inverse gij , then the Christoffel symbols for the Levi±Civita
connection are de®ned by ÿm

ij �
Pd

l�1
1
2 g

ml��@gil=@�j� � �@glj=@�i� ÿ �@gij=@�1��, which is the
unique Riemannian connection (the conventional superscript on @� denotes a coef®cient and
is not a power). gij��� is often the Fisher information metric gij��� � iij � E�@I=@�i@I=@�j �.



where the minimum is over all possible curves ��x� in � that connect �̂
and �0. The test rejects for large values of the geodesic distance

gd��̂� � gd��̂; �0� � c��; �31�
which is exactly like (23) for the Wald test, but now the test statistic is by
de®nition strictly monotonic and it does not depend on the algebraic
formulation of the restrictions. Consequently, the test rejects for all
�̂�t� � ���, as in (24), but the critical value does not depend on r. The
boundary has the same shape as the (monotonic) Wald test in ®gure
8.4, if the correct critical values are used, and is again determined by
the inverse image of ���:

boundary CRgeodesic � �̂ÿ1����� � ft 2 T j �̂�t� � ���g: �32�
Geodesics have been determined for a limited number of distributions.

Rao (1987) summarises a number of these geodesic distances in statistical
manifolds. These can be used directly to de®ne a geodesic test, but in
general they need to be worked out speci®cally.

This poses a serious practical problem for geodesic tests because
solving (30) in higher dimensions requires the solution of the following
second-order non-linear differential equation

2�m
x2

�
Xd
i;j�1

ÿm
ij

�i
x

�j
x
� 0; m � 1; . . . ; d; �33�

where ÿm
ij are the Christoffel symbols for the Levi±Civita connection.

Equation (33), together with initial conditions ��0� � �� and
@�=@xjx�0 � v, de®nes a unique curve ��x� that minimises the distance
between ��0� and other points on ��x�.

We do need to determine the initial direction v that will assure that ��x�
passes through the points �� and �0. In the general setting of the Wald
test, estimation is carried out only under the (unrestricted) alternative,
and hence �0 is unknown.
Considering these problems, it seems more natural to use the geodesic

distance to construct con®dence regions, since we can start from �̂ and
determine in each direction v the points in � of equal distance to �̂. These
geodesic circles or orbits could be evaluated numerically, and for differ-
ent distances correspond to different con®dence levels. Moolgavkar and
Venzon (1987), for instance, construct Wald-type con®dence regions
using a geodesic distance, although based on a different metric and
connection.

In general we can construct many different metrics and connections. In
fact, Chentsov (1982) and Amari (1982) introduced a one-parameter
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family of so-called �-connections, and different values of � are useful in
different contexts.14 The Riemannian connection used in (30) and (31)
corresponds to � � 0, which may, or may not, be the most relevant for
hypothesis testing.

The geodesic test also poses a fundamental question, namely: should
the shortest distance between two distributions be measured as the dis-
tance over the manifold, i.e. as curves in N, or, alternatively, as the short-
est distance in the embedding space, i.e. straight lines in N?15 Figure 8.6
shows an extreme case where the manifold curves back to the origin.

Regardless of how close, in terms of �, we get to the origin, we will
always reject if �̂ � ���. The test rejects only because it took a long time to
get to ���̂�, not because pdf �t; �0� is very different from pdf �t; �a�. In
economic applications this would mean that we reject a maintained
model even though in economic terms there is hardly any difference
between the null and the estimated model.

This comparison between models is in contrast with the NPL, where it is
the direct distance in the full exponential model that matters. It may there-
fore be the case that the problem lies, not with the geodesic test in principle,
but with the metric and �-connection usually chosen. The Fisher informa-
tion metric, essentially de®ned on the manifold, may be useful in applica-
tions other than hypothesis testing, but the NPL and ®gure 8.6 suggest that
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14The �-connections determine a non-Riemannian geometry and are de®ned as

���ÿm
ij � ÿm

ij �
1ÿ �

2

Xd
l�1

gmlTij1;

where Tij1 � E�@I=@�i @I=@�j @I=@�1�, the skewness tensor.
15 Davidson (1992) raises the same question in his discussion of Critchley et al. (1996).
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the geodesics in the embedding density give the relevant distances in

hypotheses testing, not the geodesics on the manifold.

Decreasing the size of the test does not affect the bottom part of the CR.

��� will increase, but this changes only the top right-hand side of the CR.

Under H0, the additional points so excluded are less likely than the points

at the bottom, which is undesirable. Further note that the boundary of the

CR in the top right can be orthogonal to the BCR in that direction.
The boundary of the CR consists of two types of points: the inverse

image of ���, i.e. �̂
ÿ1�����, which gives the straight part of the boundary,

mainly on the outside of the ellipse; and those points on the inside, such

as tc, that have two maximum likelihood solutions, one solution on the

left and one solution on the right. Such points were called critical points

in van Garderen (1995) and I investigated the sensitivity of the MLE as t

gets closer to critical points, based on the local curvature at �̂. The same

argument applies here, even though the critical points in ®gure 8.6 are

global in nature. The sensitivity for global critical points is only more

extreme. Let tc be a point on the boundary on the inside of the curve ����.
A small change " in the observation, from tc ÿ "=2 to tc � "=2 leads to a

huge increase in �̂, from �1 to �2. The test statistic suddenly appears highly
signi®cant despite the fact that the likelihood of tc ÿ " is virtually the

same as the likelihood of tc � " under the null, as well as under the

alternative.16

This raises another problem for a geodesic or Wald-type test. Since the

test statistic is based on an estimator (whether this is the MLE or some

other estimator), there are many points t in the sample space giving the

same value of the estimator but lending very different support to the null.

Observations on the inside of ���� in ®gure 8.6 provide little information

about the validity of H0 or Ha, because the likelihood values under the null

and alternative will be very similar. In contrast, observations on the right

of the curve ���� giving rise to the same value of �̂ are much more likely

underHa than underH0 and do provide strong evidence against the null. It

is unreasonable to treat points on the inside and on the outside the same.

This implies that the geodesic and Wald tests should be carried out

conditional on the relative position of the observation to the manifold

and critical point. The tests could, for example, be conditional on the

relative distance auxiliary de®ned in van Garderen (1995). Implemen-

tation of such a conditional test is likely to be dif®cult, with little intuition
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critical points.



why it should be better than the PO, LM or LR test. Furthermore, the
traditional Wald computational advantage of having to estimate only
under the alternative seems to have been lost in the process.

7 The likelihood ratio test

The PO, LMP and (one-sided) LM test are all determined by particular
directions in the canonical parameter space and have ¯at CR boundaries.
As a consequence they have optimal properties in the directions used to
construct the test. The LR does not satisfy any such optimality criteria, but
performs remarkably well in a range of diverse testing problems. It also
tends to perform well against a range of alternatives, whereas the PO and
LM test may break down against alternatives that differ from the direc-
tions used to construct the test. It is an interesting question why the LR test
provides a reasonable solution in such a broad range of testing problems.

Part of the explanation is that the boundary of the LR CR mirrors the
global curvature of the model. If the model is ¯at, the CR boundary is
¯at, just like the PO and LM boundaries, but if the model is curved the
LR boundary re¯ects this curvature. This relation is, however, not
straightforward and is quite interesting in its own right. We will therefore
spend some time discussing and explaining the relation between three
different elements that determine the curvature of the CR. A further
explanation for the performance of the LR test is that it implicitly
averages over different alternatives, and we give an interpretation of
the LR CR as a `weighted average of BCRs'.

Because of the issues involved, this section is subdivided as follows.
Section 7.1 determines the boundary of the LR test CR, described as a
function of the parameter values in the alternative. Section 7.2 discusses
how the three aspects referred to above in¯uence the relation between the
global curvature of the model and the shape of the CR boundary. Section
7.3 further discusses some of the merits of the trade-off between global
and local curvature that the LR makes. This prepares for the interpreta-
tion of the LR CR as a `weighted average of BCRs' given in section 7.4.
Finally, in section 7.5, we discuss when the LR test may fail.

7.1 The boundary of the LR CR

The LR test rejects for large values of the LR statistic:

LR � 2 Sup
� �a

l��; t� ÿ Sup
� �o

l��; t� � c�: �34�
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The second maximisation in (34) is not required if the null hypothesis is
simple (as assumed throughout this chapter) and the maximum becomes
l��0; t�. If, moreover, there was only one point in the alternative then the
test would be just like a PO test. If there are more points in the alter-
native, we ®rst have to maximise the likelihood under the alternative and
calculate the likelihood ratio using this value of �̂. The LR test can there-
fore be broken up into two steps:
(i) maximise the likelihood to obtain the MLE �̂ � �̂�t�,
(ii) for this value of �� �i:e: �� � �̂� calculate the likelihood ratio

LR��;�0 �t� � 2��l���; t� ÿ l��0; t��
and compare it with the critical value c�.

Hence, if t� is a point in the sample space on the boundary of the CR, it
satis®es two conditions:17

�i� �̂�t�� � �� and �ii� LR��;�0 �t�� � c�; �35�
where �� is ®xed at the same value for (i) and (ii). Changing the perspec-
tive, we may ask, for each value of �� 2 �, which t�'s in the sample space
lie on the boundary for that particular value of ��. This requires solving
for t� from (i) and (ii) jointly, for ®xed ��. Thus, we are going to deter-
mine all t� in T satisfying (i) and (ii) as a function of ��.

We can determine all t that give �� as the MLE, just as we did for the
Wald and geodesic tests, by solving the ®rst-order conditions (f.o.c.) for
the MLE (see (27)).

�i� ����� 0
�

�tÿ ������ � 0 : MLE constant (f.o.c.); �36�

which, for a ®xed value of ��, is a hyperplane through ����� orthogonal to
@�=@�j���� .

We have further seen from the PO test that the set of t values for which
the likelihood ratio is constant is also a hyperplane, but orthogonal to
������ ÿ �0�. We have

�ii� ������ ÿ �0� 0t � 1
2
c� � ����� ÿ ���0� : LR constant. �37�

The `constant MLE' hyperplane is of dimension �kÿ d� and the `constant
LR' hyperplane is of dimension �kÿ 1�, and they will intersect since
the gradient @�=@� at �� has a direction different from the vector

Curvature and classical tests 255

17 The boundary of the LR CR can in principle also be determined by substitution of
�� � �̂�t� and trying to solve LR�̂;�0

�t� � 2�l��̂�t�; t� ÿ l��0; t�� � c� directly, but explicit for-
mulas for �̂�t� are often unavailable.



������ ÿ �0�.18 The intersection forms part of the boundary of the LR

critical region. It is a set in the k-dimensional sample space satisfying

d � 1 linear restrictions and is thus a �kÿ d ÿ 1�-dimensional hyperplane

in T. If d � kÿ 1, this intersection is just a point.

The intersection is shown in ®gure 8.7, for k � 2 and d � 1, so (36) and

(37) are straight lines intersecting (if at all) in a point. Two values �� and
��� are shown. In ®gure 8.7 we have actually chosen a bivariate normal

distribution for t, i.e. t � N�����; I2�, because the canonical parameter in

this case is equal to the expectation parameter ���� � ���� � ����, and
this allows us to depict the parameter and sample space together in one

®gure. To get a general interpretation, all arrows should be interpreted as

vectors from the canonical parameter space, as in ®gure 8.1.
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18 Different directions in the sense that ������� ÿ �0�� cannot be written as a linear combina-
tion of the columns of @�=@� at ��. An exception is a linear exponential model when the
gradient is a vector with the same direction as the difference vector for all ��. In that case the
LR test equals to PO and LM tests and is UMP with a straight boundary of the CR. A
second exception is caused by the global curvature of the model. For example, if k � 2,
d � 1 and ���� curves back such that two � values give the same direction of ����� ÿ �0�, then
there will exist a � value in between such that the MLE constant line and LR constant line
are parallel. No point from the PO tests based on the ���� furthest from �0 is part of the
boundary. Finally, the two lines may fail to cross because �̂ÿ1���� is only a half line, which
does not stretch out beyond the critical point. Again, no point from the PO boundary based
on this �̂ is part of the LR boundary.
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Figure 8.7 The intersection of constant MLE and constant LR lines



All points on the inverse image of �� (the MLE � �� line) to the right of
t� have LR��;�0 �t� > c� and therefore lie in the CR. Similarly, all points to
the right of t��, giving ��� as the MLE, fall in the CR also.

The boundary point t� is determined by ®xing �� and solving (36) and
(37) for this particular value, and likewise t�� is determined for ���. We
can repeat this process for all parameter values, generating a curve in the
sample space. This curve forms the boundary of the CR, which can thus
be described as a function of ��. The CR consists of all points in T to the
right of this curve. This is shown in ®gure 8.8.

7.2 Determinants of the shape and location for the LR CR
boundary

The boundary of the LR CR clearly re¯ects the global curvature of the
model, and it is instructive to examine this relationship in some detail.
The shape and position of the boundary depend on three things: the
signi®cance level (through c�), the distance from ����� to �0, and the
angle between ������ ÿ �0� and the gradient @�=@� at ��.
First, it is useful to rewrite (36) and (37) by subtracting �@�=@�� 0�0 and

��� ÿ �0� 0�0, respectively, to obtain

�i� ����� 0
�

�tÿ �0� �
����� 0
�

������ ÿ �0�; �36 0�

�ii� ������ ÿ �0� 0�tÿ �0� � 1
2 c��KLI��0; ���; �37 0�
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where KLI��0; ��� is the Kullback±Leibler information (directed) dis-
tance from pdf �t; �0� to pdf �t; ���.19

The boundary of the LR CR as a function of �� is found by solving
�36 0� and �37 0� simultaneously for each �� 2 �. It is clear that the sig-
ni®cance level and the distance from ����� to �0, directly affect �37 0� and
together they determine the position of the constant LR hyperplane. The
constant MLE hyperplane is also determined by ��, via ��������, as well as
by the gradient @�����=@�. The angle between ������ ÿ �0� and the gradient
determines where the two hyperplanes intersect. We shall now review
their in¯uence on the position and the shape of the boundary more
closely.

7.2.1 The signi®cance level
The signi®cance level in¯uences the position of the constant LR

line. Decreasing the size of the test increases c�, which in turn shifts the
constant LR lines further to the right, because a larger value of t is
required for �37 0� to hold. The shift is illustrated in ®gure 8.9.
Figure 8.10 shows the critical regions for two different signi®cance

levels. The boundary shifts away from �0 as � decreases and the CR is
smaller (reducing the probability of rejecting H0).

7.2.2 The distance between the null and the alternative
The distance between �0 and ����� also determines the position of

the constant LR line, as �37 0� clearly shows. But, unlike increasing c�,
increasing �� does not always shift LR� away from �0, because �� enters
on both sides of �37 0�. Increasing �� enlarges ��� ÿ �0� on the left-hand
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19 KLI��o; ��� � E�0 �lnfL��0�=L����g� which, for exponential models, equals

KLI��0; ��� � ��0 ÿ ��� 0E�0 �t� ÿ ����0� ÿ ������ � ��0 ÿ ��� 0�0 ÿ ����0� ÿ ������:
�36 0� relates to the local curvature of ���� through the change in @�=@�, and to the global
curvature of ���� through ������ ÿ �0�. �37 0� involves the distance between the null and the
����� alternative through the terms ������ ÿ �0� and KLI��0; ���, and relates to the global
behaviour of ����.
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Figure 8.9 The effect of decreasing the signi®cance level from �1 to �2
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side, pulling LR� towards �0, since t needs to be reduced for �37 0� to hold.
But increasing �� also increases the Kullback±Leibler distance on the
right-hand side, pushing LR� away from �0, since t needs to be increased
for �37 0� to hold.

In order to be more speci®c we need to de®ne the length of ��� ÿ �0�
and the distance between �0 and LR�. This can be done in different ways,
but we shall simply use Euclidean distance, which suf®ces for present
purposes.20 We de®ne the distance between �0 and LR� as ����� �
ktm ÿ �0k, where tm is the intersection point of the line through �0 in
the direction ��� ÿ �0� and the constant LR hyperplane (see ®gure
8.12). Thus tm is the point on LR� closest to �0 in Euclidean sense.21

Since �tm ÿ �0� is a multiple of ��� ÿ ��, we have ��� ÿ �� 0�tm ÿ �0� �
k�� ÿ �kktm ÿ �0k, and using �37 0� we obtain

����� � ktm ÿ �0k � c�
2k�� ÿ �0k

� KLI��0; ���
k�� ÿ �0k

: �38�

For the normal distribution with identity covariance matrix, as used in
®gure 8.7, we have ���� � ���� � ����, KLI��; ��� � 1

2
k�ÿ ��k2, and (38)

reduces to

������ � ktm ÿ �0k � c�
2k�� ÿ �0k

� 1

2
k�� ÿ �0k: �39�

Curvature and classical tests 259

ο

Acceptance Region

t**( 1

t*( 1)

T: Sample Space and
N: Parameter Space

CR:
Reject Ho

t*( 2)

CR( 1) CR(α2)

t**( 2)
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20 It is generally more appropriate to use Mahalanobis distance kvk � v 0 Pÿ1 v in the sample
space �v 2 T� and kwk � w 0 Pw in the parameter space �w 2 N�. This would show, for
instance, that the distance � between �0 and LR� goes to 0 as the number of observations
goes to in®nity. The current relations are valid for ®xed sample sizes and in ®xed directions.
21 But not necessarily in the Mahalanobis sense.



For distant ��, the second term in (38) is dominating, and doubling
the distance to �� approximately doubles ����. For �� close to �0, the
®rst term in (38) dominates, and now halving the distance approximately
doubles the distance ����. For distant alternatives and nearby ones, more
extreme observations are required before the null is rejected. Figure
8.11 shows the distance ���� as a function of the length of ��� ÿ �0�.
Note that the minimum, and where the minimum is attained, increase
with c�.

The critical value c� is constant regardless of the ��� ÿ �0� direction,
with the result that, as �� varies, the distances � from �0 to the CR vary,
depending on the distance to the alternative. This turns out to be crucial
in the implicit power trade-off between different alternatives that the LR
test makes.

This concludes the discussion of �37 0�; the position of the constant LR
line is determined by the signi®cance level and length of ��� ÿ �0�.
The distance from �� to �0 also enters �36 0�, because it determines ��

and �0. Increasing �� also increases �� and, since �� lies on the constant
MLE hyperplane, shifts this hyperplane away from �0.

Finally, we consider the interaction between �37 0� and �36 0�, and what
determines their intersection.

7.2.3 The angle between the difference vector and the gradient
The angle between ��� ÿ �0� and @�=@�j���� determines the angle

between the LR� and the constant MLE hyperplane, and consequently
where these planes intersect, i.e. the position of the CR boundary in the
sample space. Note that the local behaviour of ���� at �� only enters in
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�36 0� and does not affect �37 0�, which is essentially determined by the

global behaviour. Figure 8.12 illustrates the situation.

For ®xed �� and c�, the constant LR line is ®xed and the gradient

determines the intersection with the constant MLE line, and therefore

the point t� on the boundary of the LR CR. The gradient @�=@�j����

represents the local direction of the canonical manifold and ��� ÿ �0�
represents the average direction from the null to the alternative. The

closer the direction of the gradient is to the average direction, the further

the boundary point moves away from the expectation under the null and

the point tm (both a � kt� ÿ �0k and b � kt� ÿ tmk increase). The larger

the value of b, the larger the proportion of the constant MLE line that

falls in the CR.

The two extreme cases are when the gradient is orthogonal to the

average direction (b � 0 and a � �) and when the gradient is proportional

to the average direction and the two lines are parallel; they either coincide

or do not cross at all.

7.3 Discussion

7.3.1
The direct effect of decreasing the signi®cance level is to shift

LR� away from �0, but there is also an effect on the shape of the bound-

ary, because shifting out LR� changes the trade-off between average

(global) direction and local direction, but only indirectly through the

effects given in subsections 7.3.2 and 7.3.3.
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7.3.2
We shall now motivate ®gure 8.11 and justify the shifting of LR�

away from �0 for distant alternatives and alternatives close to H0, since
this is a crucial aspect of the trade-off between different alternatives
implicit in the LR test.

The increasing value of � for distant alternatives solves a classic pro-
blem in hypothesis testing illustrated by the following example. Suppose
x � N��; 1� and we are testing � � 0 versus � � 10. If x � 3 is observed,
then the null hypothesis is rejected because of the size condition. This is
quite unreasonable since the value of 3 is so much more unlikely under
the alternative than under the null.22 What the LR test does implicitly is
to adjust the critical value for the BCR if the alternative is far away (large
power will be attained against distant alternatives regardless; there is little
power loss and large size gain), in favour of alternatives closer to H0

(against which higher power is worth the additional size penalty).
For distributions very similar to �0 it is also sensible to require obser-

vations to be further away from �0 before the null is rejected. This avoids
including points in the CR that are of little use in discriminating between
Ha and H0, being almost as likely under the null as under the alternative.
They contribute to the size of the test without contributing much in terms
of power.

7.3.3
The angle between the gradient and the difference vector helps to

explain why the boundary is ¯atter when the model is less curved.
First consider a third type of extreme case (in addition to the directions

being orthogonal or parallel), when the angle is, in fact, irrelevant,
namely at the point on the expectation manifold where the constant
LR line and constant MLE line cross. This is the point where the bound-
ary of the CR crosses the expectation manifold. This point depends on
the signi®cance level, however, and for a different � the angle does
matter.

For models close to linear exponential models, this crossing point, call
it ���x�, helps to show why the LR boundary is less curved. The boundary
is a function of �� and passes through ���x� when �� � �x, and as a
consequence b � 0 in ®gure 8.12. If the model is not very curved the
constant MLE and LR lines are close to being parallel and, as �� deviates
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22 This criticism applies directly to the PO test. The PO test has a critical value that varies
with �� such that the size of the test is constant. This means that for a ®xed direction
the distance to the boundary of the PO CR is constant regardless of the distance to the
alternative.



from �x, the value of b increases very quickly, despite � being fairly
constant, resulting in a very ¯at boundary. If the model is exactly linear
exponential, then there is only one value �� for which the constant MLE
and LR lines coincide and this line forms the straight boundary of the
CR.

If the local (Efron) curvature at �� is large, then the gradient changes
quickly relative to the average direction. The distance b changes quickly
(depending of course on the distance of � relative to jjt� ÿ tmjj) and the
boundary is more curved as a result.

7.4 The LR as a `weighted sum of BCRs'

We are now able to give an interpretation of the LR test as a weighted
sum of BCRs or PO tests in the following sense.

For each possible parameter value �� 2 Ya, we construct the PO test
fLR��;�0�t� � c�g 2 T , in the direction �� � ����� and take the intersection
with the inverse image of the MLE ��; �̂ÿ1���� 2 T . The proportion of the
inverse image �̂ÿ1���� that forms part of the CR depends on where
the constant LR hyperplane using the same ��, fLR��;�0 �t� � c�g, inter-
sects the inverse image. The location of the constant LR hyperplane
depends on the signi®cance level � (®gure 8.9), and varies with the dis-
tance between the null and alternative (®gure 8.11). For distant (and
close) alternatives the hyperplane is more distant from �0. The
�kÿ d ÿ 1�-dimensional hyperplane of intersection between the inverse
image and constant LR plane also depends on the angle between the
gradient vector(s) of ���� at �� (i.e. the tangent space of ���� at ��) and
the average direction vector ��� ÿ �0�. If the angle is small, the constant
MLE and LR planes are more parallel and the intersection is further
away from �0, but this also means that a larger proportion of the inverse
image of �� is part of the CR (®gure 8.12).

Each point in the alternative contributes one slice of a BCR, the inter-
section with the inverse image. The weights refer to the proportion of the
slice that is included in the LR CR. An alternative interpretation is thus
as a weighted average of constant MLE hyperplanes, but this is simply
the other side of the same coin, since we always consider the intersection
of the two sets.

If the model is a one-parameter linear exponential then the whole BCR
in the direction �� is taken and the whole inverse image for all �� � �crit.

23
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23 Thus the test statistic and the estimator determine the same partition of the sample space
(de®ne the same orbits in the sample space on which they are constant).



In contrast with the LR tests, the PO and LM tests take the whole BCR
in one direction, regardless of the value of the MLE, i.e. the PO test uses
only LR��;�0�t� for one �� regardless of �̂. The Wald and geodesic tests, on
the other hand, take the whole inverse image of ��, regardless of the value
of LR��;�0 �t�, as long as �� maximises the likelihood and �� is larger than
�crit.

7.5 When does the LR test fail?

The discussion so far gives the impression that the LR test is more than
just appealing, but we should be cautious. In curved models the max-
imum power against all alternatives as an optimality criterion is vacuous
since no such test exists. We did not de®ne an alternative optimality
criterion, but gave a general appreciation of different tests instead.
Optimality requirements are not necessarily desirable and can on occa-
sion be viewed as simply restricting the class of tests to be considered. The
LMP and PO tests, for example, uniquely satisfy optimality requirements
but potential drawbacks are well known and have been exposed in this
chapter. The LR test does not satisfy these optimality requirements, and
is inadmissible on these criteria, but seems `reasonable' nevertheless. On
the other hand, one would also expect the LR to perform badly in
extreme cases, just like the PO, LM and Wald/geodesic tests.

In particular, if the model is globally very curved, we can expect the
power function of the LR test to differ substantially from the power
envelope. The basic reason is that the power envelope is based on the
PO test in each and every direction. When the global curvature of the
model is large, these PO tests will de®ne very different CRs and the LR
CR must differ substantially from the CRs of these tests (which give the
power envelope), since all of them are of size �. The extent to which they
are different is measured by Hillier's (1990) global curvature measure ±
the probability of the enveloping region (ER) under the null. If this
probability is large, say 2�, then the ER is much larger than the LR
CR, which is always of size �, and we may expect the LR power to be
well below the power envelope. Hillier (1995) shows that the LR CR is a
proper subset of the ER because the critical value used for the LR test, c�
in (34), is larger than or equal to the maximum of the critical values c�����
in (9), for all PO tests of the same size, i.e. c� � max��2Y c�����. Hence, the
ER includes every BCR, as well as the LR CR.

In fact, Hillier (1995) shows that the ER is the smallest region that
contains all sensible CRs (in the sense that it is the smallest region that
includes all proper Bayes procedures of size �). Put differently, in deter-
mining a solution to the non-existence of a UMP test, we need to consider
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only subsets of ER24 The LR, LM and PO CRs are just particular
choices. If Prob�ER� � �, then ER � CRLR � CRLM � CRPO� , for all
��, and the three testing principles give the unique optimal test. If
Prob�ER� > �, no test exists that is UMP and a trade-off is necessary
between power against different alternatives. As Prob[ER] gets larger,
there is greater (undesirable) freedom to choose, and maximising power
against one particular direction has more serious consequences for power
against other alternatives.

A natural counterpart to ER, which could be used to restrict the choice
of CR, is the intersection of all BCRs of size �, which we shall call the
intersection region (IR). It seems reasonable to require of CRs that they
include IR, since it consists of points in T that lie in all possible BCRs,
and no BCR would exclude them. By de®nition every PO test includes
IR, and the LM test, being a limiting case, essentially includes IR also.25

The LR test turns out to include IR in the examples below, but, although
this might hold more broadly, it remains to be proved in general.

Note that Prob[IR] could be used as a measure of global curvature
also, but since IR can be empty if the model is too curved it provides no
additional information on the global curvature beyond this cut-off point.
In contrast, Prob[ER] will continue to increase with increasing global
curvature and is therefore more useful.

Concluding, we need to choose a CR that is a subset of ER and
possibly includes IR. This could be based on a desire to optimise
power against particular parameter values, which are of economic inter-
est for instance, or to average power over a range of alternatives (both
require additional information on the parameter values). The LR
averages in an implicit fashion that may not be appropriate for the situa-
tion at hand, but in many cases the LR test will be a convenient choice.

8 Example: testing for autocorrelation and unit roots

This section illustrates the critical regions of different tests when testing
for autocorrelation and unit roots in an AR(1) model. An illustration of
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24 Note that the Wald/geodesic CR is not in general a subset of ER.
25 Related to Roy's union-intersection method, we could think of two tests ± one based on
ER and one on IR. The ER tests would be based on the ER of size � (Prob[ER] can be
decreased by decreasing the size on which the BCR is based). This test would exclude part of
IR in the examples below. The IR test would be based on the IR of size � (Prob[IR] might be
increased by increasing the size on which the BCR is based, but if the model is very curved
Prob[IR] might be zero for all signi®cance levels used). In the examples below, the IR test is
not a subset of ER, i.e. it includes points that are excluded by all BCRs of size �.



the problems of the Wald test, including the possibility of disconnected
parts of the CR, is given at the end of this section.

Consider the AR(1) model with ®xed initial value:

yi � �yiÿ1 � "i; "i � IIN�0; �2�; i � 1; . . . ;T; �40�
and y0 ®xed. Assuming �2 known reduces the model to a (2,1)-curved
exponential model, and we set �2 � 1.26 The canonical parameter � and
minimal suf®cient statistics t, as in (2), are easily derived and are

���� � ÿ 1

2
�2

�

0@ 1A; t�y� �
s

d

þ !
�

XT
i�1

y2iÿ1

XT
i�1

yiyiÿ1

0BBBBB@

1CCCCCA: �41�

The expectation of t as a function of �, i.e. the expectation manifold ����,
equals

�1��� � Ep�s� � y20ST ��� �
1

1ÿ �2
�T ÿ ST ����; j�j 6� 1 �42a�

� y20T � 1

2
�T ÿ 1�T; j�j � 1 �42b�

�2��� � E��d� � ��1���; all � �43�
where ST ��� �

PTÿ1
i�0 �2i � �1ÿ �2T �=�1ÿ �2�, when j�j 6� 1.

The maximum likelihood estimator is

�̂ � d

s
: �44�

It follows trivially from (44) that all d proportional to s by the same
factor give the same value for the MLE. Consequently, the lines of con-
stant MLE, (27) and (36), used in the Wald, geodesic and LR test are rays
from the origin through �1; ��.

£�̂ � fd ÿ �̂s � 0g : MLE constant (f.o.c.). �45�
The inverse image of �̂, i.e. �̂ÿ1��̂�, does not continue to the left of the

origin, since s is a sum of squares and is always larger than zero. The
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26 The model with �2 unknown is a (3, 2)-curved exponential model and is analysed as such
more extensively in van Garderen (1995). Note that �2 and � are orthogonal in the sense that
the (expected, as well as observed) Fisher information matrix is diagonal, which tends to

make the assumption of known �2 less restrictive.



origin is the only critical point, because it is the only point in T

for which the MLE is not uniquely de®ned. Note, however, that

Prob��s; d� � 0� � 0.

The canonical and expectation manifolds are shown in ®gure 8.13, as

well as two lines of constant MLE, the inverse image of �̂�t� � 1=2 and

2/3, i.e. �̂ÿ1�1=2� and �̂ÿ1�2=3�. Thus all the points on each MLE line give

the same value for the MLE and the critical point lies on both lines.

The expected Fisher information on � is �1 and the observed informa-

tion equals s.

The different classical tests have the following general forms.

1. The PO test for testing H0 : � � �0 against Ha : � � ��.
1 The test rejects for large values of ��� ÿ �0� 0t and the CR is

CRPO���;�0� � fÿ 1
2 �����2 ÿ �20�s� ��� ÿ �0�d � c�g; �46�

1 regardless of whether �� is larger or smaller than �0.
2. The LM test for testing H0 : � � �0 against one-sided alternatives.

1 When testing against Ha : � > �0 �� < �0�, the test rejects for large

(small) values of �@���0�=@�� 0t and the CR is

CRLM � fÿ�0s� d � c�g: �47�
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Figure 8.13 Canonical and expectation manifolds for the AR(1) model



1 When testing against Ha : � < �0, the inequality sign is reversed and
a different critical value, obtained from the left tail of the distribution
of @���0�=@� 0t, is used.

3. The geodesic/Wald test.
1 The standard version of the Wald test is analysed at the end of this

section. The geodesic version does not require solving the partial
differential equation (33), since the manifold is one-dimensional.
Consequently, the geodesic test simply rejects if �̂ > ���, when
Ha : � > �0 (or �̂ < ��� when Ha : � < �0). This determines a CR
above (or below) the inverse image of �̂ÿ1����� and ��� is such that
Prob��̂ > ���� � �:

1 Note that the inverse image of �̂ is a ray through the origin, and the
boundary of the CR is a straight line as a result. As a consequence of
this straight boundary there exists a PO test that coincides with this
geodesic test. The intercept of the PO test changes with �� and happens
to pass through the origin for particular ��'s in each of the cases
considered here. For this value of ��, the PO and geodesic test coin-
cide. Note, however, that ��� 6� ��.

4. The LR test for testing H0 : � � �0 against one-sided alternatives.
1 The points on the boundary of the CR are simultaneously on the

constant MLE line and on the constant LR line. As a function of ��

and �, they are de®ned by (see (45) and (46))

�i� d ÿ ��s � 0; : MLE constant, �48�
�ii� ��� ÿ �0�d ÿ 1

2
���2 ÿ �20�s � 1

2
c� : LR constant: �49�

1 Solving (i) and (ii) simultaneously for s and d in terms of �� and c�, we
obtain

s���; �� � c�
1

��� ÿ �0�2
; d���; �� � c�

��

��� ÿ �2�2
: �50�

1 Note that s���; �� and d���; �� do not depend on y0, other than the
value of c�.

27 The effect of y0 6� 0 is that the expectation manifold
shifts to the right.
We now focus on testing for serially uncorrelated observations and

testing for a unit root, thus specialising the general formulas given
above to: �0 � 0 against �a > 0, i.e. positive autocorrelation (negative
autocorrelation gives the mirror image), and secondly to: �0 � 1 against
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27 It is also interesting to note that, if �0 � 0, the boundary points close to the origin are
obtained for large values of �� in (50).



stationary alternatives, �a < 1, and explosive alternatives, �a > 1. Critical
values were obtained by simulation, using 100,000 replications for testing
both serial independence and unit roots.28 To obtain critical values for
the one-sided version of the LR test, the signed LR statistic was calcu-
lated: ��LR � sign��̂ÿ �0��LR, where �LR � 2���̂ÿ �0�d ÿ 1

2
��̂2 ÿ �20�s�,

which is larger than 0 for all s and d.

8.1 Testing for serial correlation

Figure 8.14 shows the PO critical region for testing the null of no serial
correlation, � � 0, against positive autocorrelation, � > 0, i.e. a one-sided
test, using four different values of the PO point.

Comments on ®gure 8.14
1. ���� is the expectation manifold, i.e. the expectation of �s; d� as a

function of �. For � � 0 this equals the expectation under H0, �0,
and for other values describes the expectation of �s; d� under Ha.

2. The tinted area is the intersection region IR of all BCRs considered
here, i.e. the part of the sample space that falls in the CR of all the PO
tests.29 It is a subset of Hillier's enveloping region ER, which, in addi-
tion, includes the `bow tie' shaped area. All the tests, including the LR
and geodesic test, have their boundary inside this double conic section,
which means that they all have the desirable properties that their CRs
are proper subsets of ER, and they include IR.

3. The probabilities on ER and IR were calculated numerically for
different nominal values of �, and using the PO points 1, 0.75, 0.5
and 0.25 and the LM test. With � � 10% we obtained for Hillier's
global curvature measure ���0:1 � Prob�ER� � 15:3%, and for the IR
region Prob�IR� � 5:1%. This leaves a fair amount of (undesirable)
freedom to choose a CR that includes IR and is a proper subset of
ER. This freedom is due to the global curvature of the model and
means that global curvature poses a notable problem.
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28 For the no-serial correlation case a bivariate approximation is available for �s; d� using
that under H0 : E�s� � T , Var�s� � 2T , E�d� � 0 and Cov�s; d� � 0. The critical values
obtained from this approximation did not seem too far astray, but the union of all
BCRs, i.e. the enveloping region, did not include the LR CR, which we know should be
a proper subset of the enveloping region.
29 �� 2 �0; 1�. Stopping at �� � 1 might be sensible but is rather arbitrary. Increasing ��

results in a steeper boundary, smaller IR and larger ER. In the limit, the boundary becomes
vertical, implying that the ER includes the CR of a test depending on s only, which may be
considered undesirable.



4. Figure 8.14 also illustrates the LM test as a limiting PO test as �� ! 0.
The critical region in this case depends only on d, but note that the
variance is assumed known ��2 � 1�.

5. The geodesic/Wald test rejects if �̂ > 0:25�� ���� and coincides with the
PO test based on 0.5 (illustrating the obvious point made earlier that
��� 6� ��).

6. The LR boundary lies between the G/Wald and LM boundaries, for
large values of s and d below the Wald and above the LM boundaries
and vice versa for small s and d. The LR test is actually very close to
the PO test with �� � 0:25, being slightly above it for central values of
s and below it elsewhere. This value for the PO point is the average of
the two PO points that generate the Wald test and the limiting value
that generates the LM test, but this is coincidental.
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Figure 8.14 Testing for serial correlation. H0 : � � 0 vs. Ha : � > 0. T � 25,
y0 � 0, � � 10%. Lines correspond to the CR boundaries of four different PO

tests using �� � 0:25; 0:5; 0:75; 1; the LM test (horizontal); the one-sided LR
(dashed); and the G(eodesic)/Wald test (equal to PO���0:5). �0 is the expectation
of �s; d� 0 when � � 0, i.e. under H0, and ���� (dashed) is the expectation manifold,

i.e. the expectation of �s; d� 0 for values of � under the alternative. The grey area is
the intersection region. Prob�IR� � 5%, Prob�ER� � 15%



8.2 Testing for a unit root

Figure 8.15 shows the boundaries of different CRs for testing the null
of a random walk, � � 1, against stationary alternatives, � < 1. Figure
8.16 shows the different CR's boundaries for testing the random walk
hypothesis versus explosive alternatives.

Comments on ®gures 8.15 and 8.16
1. All the CRs in ®gures 8.15 and 8.16 are again proper subsets of the

relevant ERs, and include the IRs.
2. The ®gures give the impression that the IR is smaller in the stationary

case than in the explosive case, but this is not true in terms of their
probability content, which shows, in fact, the reverse. Thus care needs
to be taken when making direct comparisons of IR and ER in different
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testing problems. The IR and ER probabilities serve the purpose of

allowing such a comparison. They were calculated for both cases, and

can be compared with the serial correlation case discussed earlier.

1 For stationary alternatives we used the LM test and the PO tests

based on �� � 0:75; 0:5; 0:25 and 0, making it comparable with the

serial correlation case. With � � 10% we obtained for Hillier's

���0:1 � Prob�ER� � 19:2% and for Prob�IR� � 1:7%. We see that

there is much greater freedom for choosing a CR, and global curvature

poses a much more serious problem for unit root testing than

for testing for serial correlation. For explosive alternatives we used

the LM test and the PO tests based on �� � 1:25; 1:5 and 2. With
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� � 10% we obtained ���0:1 � Prob�ER� � 25:5%, and
Prob�IR� < 0:1%.

1 It should be noted that �� � 2 is much further away from �0 � 1
than �� � 0, in terms of, for instance, the Kullback±Leibler or Jeffreys

distance.30 The point �� � 1:156 on the explosive side is the same
Jeffreys distance away from 1 as �� � 0 on the stable side. Hence,
we further calculated the probabilities using the LM test and the PO

tests based on �� � 1:05 and �� � 1:156, and obtained
���0:1 � Prob�ER� � 19:0% and Prob�IR� � 2:2%, which is very simi-
lar to the results for stationary alternatives.

1 Irrespective of the question of which points should be included,
global curvature poses a much more serious problem for testing unit
roots than for testing serial correlation.31

3. The boundary for the LM test against stationary (one-sided) alterna-
tives is of course parallel to the boundary for the LM test against
explosive alternatives, since they are based on the same test statistic.

The test against stationary alternatives uses the left tail, and the test
against explosive alternatives uses the right tail of the distribution.

4. The geodesic/Wald test rejects for �̂ < 0:79, when testing against sta-

tionary alternatives, and rejects for �̂ > 1:04, when testing against
explosive alternatives.

1 One explanation for this asymmetry round 1 is that the distribution

of �̂ is heavily skewed to the left. Another explanation, related to a
point made earlier, is that the distribution of the canonical statistic

�s; d� changes much quicker when � > 1 than for � < 1. Considering
the mean of s and d, for instance, � needs to be increased by 1 to
change expectation from (0,0) to (300,300), whereas an increase by

less than 0.04 on the explosive side achieves the same change.
Similarly, the Fisher information on �, which equals ����, increases
much faster for � > 1 than for � < 1. We are better able to distinguish

the null distribution from distributions with � > 1 than for � < 1.

5. The LR boundaries for the unit roots test case are much less curved
than for the serial correlation case and are almost straight lines. The

boundaries again lie between the Wald and LM boundaries, but are
much closer to the LM boundary. In fact, it is dif®cult to distinguish

between the LM and LR boundaries for large sections.
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30 Pertaining to the discussion in section 7, Prob[ER] takes no account of the distance from
null to alternative.
31 Van Garderen (1997b) calculates the exact Efron curvature for stable, unit root and
explosive values of �. The curvature increases dramatically as � approaches the explosive
region.



8.3 The Wald test

We conclude this section by illustrating a number of problems with the
Wald test, in particular when testing for a unit root against stationary
alternatives. The Wald test depends on the formulation of the restric-
tions. We use the class of restrictions (22) and choose different values of b
to make a comparison.

r��� � �expfb��ÿ �0�g ÿ 1�=b; �51�
R��� � @r���=@� � expfb��ÿ �0�g: �52�

The information matrix �1� 1� in this case is equal to �1��� and the Wald
statistic is

wr��̂� �
expfb��̂ÿ �0�g ÿ 1

b

� �2

�1��̂�: �53�

The information matrix is increasing in � > 0 since �1��� is increasing
when � > 0. The Wald statistic wr��� is therefore monotonically increasing
when testing H0 : � � �0 against Ha : � > �0. By the same token, �1��� is
decreasing as � # 0 and the Wald statistic need not be monotonic.

This non-monotonicity is shown in ®gure 8.17, when testing for a unit
root Ha : � � 1 against Ha : � < 1. The three curves correspond to three
different values of b. We know from before that the geodesic version of
the Wald test with the correct size, rejects if �̂ < 0:79 (at 10% signi®cance
level) and we use this value for comparison. Figure 8.17 also illustrates
that we can obtain any value for the test statistic we like by varying the
choice of b. For �̂ � 0:79, the test statistics take the values 0.66, 1.01 and
1.59 for b � 7:5, 5 and 2.5 respectively. This implies that using the same
critical value for all three values of b can lead to very different conclu-
sions and is clearly inappropriate (as pointed out by Breusch and Schmidt
(1985) and Lafontaine and White (1986)).

Instead of using a common critical value, we could choose a critical
value such that the value of � closest to 1, for which the tests reject, is
0.79. This is also illustrated in ®gure 8.17. For b � 2:5 this actually gives a
size-adjusted monotonic version of the Wald test, and coincides therefore
with the geodesic test. This is not the case for b � 5 or 7.5, which illus-
trate the situation where the test determines two unconnected parts of the
CR. Taking b � 5 for example, the test rejects for w5 > 1:01, which
corresponds to rejecting if

�̂ < ÿ0:22 or 0:35 < �̂ < 0:79; �54�
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but does not reject for values of �̂ between 70.22 and 0.35. The resulting
CR is shown in ®gure 8.18 and is very unattractive indeed.

9 Conclusion

In this chapter we have presented a review of classical tests very different
from traditional treatments. Traditional approaches are concerned with
explaining and justifying the choice of test statistics and deriving their
properties. From this viewpoint questions about correct critical values
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and appropriate approximations to their distributions are important.
Whether we can easily ®nd the correct critical value is also important
from a practical point of view but is irrelevant in answering questions
about the `optimal' or desirable properties of a test. Optimality considera-
tions apply whether the test is carried out at a 1% or a 10% signi®cance
level.

The LM, Wald and LR tests are asymptotically equivalent and this
gives the impression that choosing a test is merely a question of which test
is most convenient. Being aware of the approximate nature of this result,
effort is often put into making sure that particular choices are appropri-
ate in particular situations, and determining the right ®nite sample critical
values and power functions or higher-order corrections to improve results
for ®nite samples more generally.

Asymptotic considerations can also go astray because of their local
nature. A sequence of local alternatives, for instance, cannot reveal the
power properties for alternatives quite different from the null. It may be
thought that distinguishing the null from local alternatives is harder than
for alternatives further away, and hence that only local properties matter
asymptotically. The ®gures presented here illustrate that this can be very
misleading because the classical tests behave very differently for distant
alternatives.

This chapter shows that the choice of test (statistic) is a matter of
convenience only if the model is not seriously curved. If the model is
appreciably curved then the different tests imply very different critical
regions.

The PO test and LM test give a straight boundary of the CR and
cannot guarantee global consistency. The PO test further depends on
the parameterisation of the model and, because of the size condition,
ignores the distance to ��, which can lead to (inappropriate) high
power against (less relevant) distant alternatives. Choosing the same
direction regardless of the sample size gives an inferior test in large sam-
ples also. The LM test is asymptotically superior to the PO test in most
cases and is invariant under reparameterisations. The LM test can be
seen, however, as an extreme case of a PO test and the power of the
LM test is more easily affected by curvature of the model and is likely
to have inferior power properties to the PO test in small samples, espe-
cially if the local curvature at H0 is large.
The Wald test gives a curved boundary but the numerical value of the

test statistic depends on the algebraic formulation of the restrictions. The
geometric version of the Wald test, the geodesic test, raises a number of
practical problems as well as a number of fundamental questions that
apply directly to the Wald test also. The geodesic distance on the mani-
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fold is arguably not the right de®nition of distance for hypothesis testing
and the geodesic distance in the larger embedding manifold provides a
better idea of departure from the null. The fact that the geodesic and
Wald test is solely a function of the estimator means that the boundary
always consists of the inverse image of the estimator at the critical value,
�̂ÿ1���� in the sample space. This raises two problems: ®rst, there are
many different t such that �̂�t� � ��, which lends very different support
to the (non-)validity of H0 so that the test should be carried out condi-
tionally; secondly, the boundary of the CR can be orthogonal to the BCR
based on the direction from ���0� to �����, since this (average) direction
can be orthogonal to the gradient of ���� at �� on which �̂ÿ1

mle���� is based,
if the model is very curved globally. Furthermore, the geodesic/Wald CR
is not in general a proper subset of the ER and does not always include
the IR.

All these problems are a direct consequence of the curvature of the
model. No test exists that is best in every direction. Choosing one parti-
cular direction, like the PO and LM tests, gives maximum power in that
direction, but no guarantee of reasonable properties in different direc-
tions. One ®rst needs to investigate the curvature properties of the model.
Ideally, we would like a test with a curved boundary that takes into
account the curvature of the model and gives reasonable power in all
possible directions.

One solution would be to take the intersection of all BCRs against all
possible alternatives such that the overall size is �, i.e. a weighted version
of all possible PO tests. The problem is how to choose the weights or
critical values associated with each parameter point. If all the signi®cance
levels are equal, then this is the enveloping region of Hillier (1990)
adjusted for size and is related to Roy's union-intersection method, but
this CR does not generally include the IR.

We could also specify a weighting function re¯ecting the importance of
different parameter values, e.g. based on external or prior information on
the parameter values, since the ER ignores the distance of different alter-
natives from the null. Specifying a weighting function objectively and
determining appropriate critical values raise practical as well as ideolo-
gical problems.

The LR test solves many of these problems simultaneously. The LR
test uses the BCR in the maximum likelihood direction and a critical
value that takes into account the distance from the alternatives on the
manifold to the null, penalising alternatives that are too close and too far
from the null to contribute reasonable power. It takes only one slice from
each BCR boundary, namely the intersection with the inverse image of
the MLE that gave rise to the maximum likelihood direction on which the
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BCR was based. This determines a curved boundary that trades off the
local curvature against the average global curvature at every alternative.
The LR strikes a convenient compromise in terms of power against alter-
natives that are too close or too distant from the null, and alternatives
that are a moderate distance away, against which reasonable power is
desirable and can be attained.

The overall conclusion based on this presentation must be that the
Wald test should be avoided, not only because of its invariance proper-
ties, but also because of the deeper questions relating to the geodesic
version; the LM and PO tests can be used if the model is not too curved,
preferring a PO if the model is curved locally near the null hypothesis;
and, ®nally, the LR test can be used in any case, but when the model is
seriously curved then it appears clearly favourite since it implicitly (and
automatically) takes the curvature of the model into account.
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9 Testing for unit roots in AR and
MA models

Thomas J. Rothenberg

In parametric statistical models for weakly dependent data, maximum

likelihood estimates are typically root-n consistent and, when standar-

dised, have limiting normal distributions. Likelihood ratio, Wald, and

score statistics for testing equality constraints on the parameters have

the same limiting distribution under the null hypothesis and lead to

tests with the same asymptotic power function for local alternatives.

Employing higher-order asymptotic expansions of the distribution func-

tions, one can explain the small-sample departures from the asymptotic

results in terms of the statistical curvature of the likelihood function.

There exist, however, statistical problems of practical importance where

this standard asymptotic theory does not apply. In this chapter, we look

at three examples arising in non-stationary time-series analysis: testing

for a unit root in a ®rst-order autoregressive model and in two variants of

a ®rst-order moving-average model. These three examples have very dif-

ferent likelihood functions, yet have many features in common. In all

three cases, power functions resulting from ®rst-order asymptotic analy-

sis are remarkably close to those obtained from second-order asymptotic

analysis in the standard case.

The examples analysed here involve one-sided, one-parameter tests in

models where there are no nuisance parameters. That is, we assume that

the distribution of the data depends on a single unknown parameter �
and consider tests of the null hypothesis � � � against the composite

alternative � < �. Since there are no nuisance parameters, the null dis-

tribution of any test statistic is known; exact critical values can always

be computed by simulation. When there are nuisance parameters not

speci®ed under the null hypothesis, ®nding exact (or even approximate)

critical values is non-trivial. This added complication is ignored here in

order to concentrate on the key issues concerning power.
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1 The `standard' case

Suppose we have n observations generated according to a probability law
that depends on an unknown scalar parameter �. To test the null hypoth-
esis that � � � against the alternative that � < �, rejection regions of the
form Tn < t are commonly employed, where Tn is a test statistic depend-
ing on the data and �; t is a constant critical value such that, under the
null hypothesis, Pr�Tn < t� is equal to the predetermined size of the test.
Tests of the same size can be compared by their power: the probability
that Tn < t when the null hypothesis is false. We will denote the power of
the test based on Tn when the true parameter is � by �T ���; the size of the
test is � � �T ���:

For arbitrary point s < � in the parameter space, let Ln�s� denote the
log-likelihood of the sample. By the Neyman±Pearson lemma, the best
test of the null hypothesis � � � against the point alternative � � s rejects
when the log-likelihood ratio Ln��� ÿ L�s� is small. The power of this size-
� NP(s) test when the true parameter is in fact � will be denoted by
�NP��; s�. The function ����� � �NP��; �� is called the power envelope
since the power function of the size-� NP(s) test is tangent to �� at the
point s. The Neyman±Pearson lemma asserts that ����) is an upper
bound to �T ��� for all tests of size �.

In certain exponential models, it turns out that the power function for
the NP(s) test is independent of s; there exists a uniformly most powerful
test with power function identically equal to the bound. In most testing
problems, even in the one-sided, one-parameter case treated here, the
Neyman±Pearson bound is not attainable in ®nite samples. But it is
often attainable asymptotically.

Since only alternatives near the true parameter value are of interest
in large samples, it is convenient to reparameterise by writing the true
parameter value as � ÿ nÿ1=2ÿ and a typical point in the parameter space
as � ÿ nÿ1=2c. We will view ÿ as the parameter of interest and, when
developing local asymptotic approximations, hold ÿ and c ®xed as n
tends to in®nity. Assuming Ln is three times differentiable, we de®ne
the standardised score Sn�s� � nÿ1=2@Ln�s�=@s, the average Hessian
Hn�s� � nÿ1@2Ln�s�=@s2, and the average third derivative Rn�s� �
nÿ1@3Ln�s�=@s3: By Taylor series we have

Ln��� ÿ Ln�� ÿ n1=2c�
c

� Sn��� ÿ 1
2Hn���c� nÿ1=2Rn�s��c2; �1�

where s� lies between � and � ÿ nÿ1=2c. In standard cases, Sn��� converges
in distribution to a normal random variable;Hn��� and Rn�s�� converge in
probability to constants. Thus we ®nd that, to a ®rst order of approx-
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imation, the log-likelihood ratio behaves like a linear function of the
asymptotically normal suf®cient statistic Sn���: For any c > 0, the rejec-
tion region based on the likelihood ratio is asymptotically equivalent to
rejecting for small values of the score. As n tends to in®nity, the power
functions tend to ��t� �ÿ�, where � is the standard normal distribution
function, t� is its �-quantile, and �2 � Var�Sn���� is the expected informa-
tion for � (evaluated at �). The local asymptotic power functions are
independent of c and are identical to the asymptotic power envelope.

To a second order of approximation, the log-likelihood ratio is a linear
combination of Sn��� and Hn���. The loss in power from using only
the score depends on the amount of additional information contained
in the Hessian. Efron (1975) suggested as a measure of this information
the curvature

C � n

Var�Hn� ÿ
Cov2�Hn;Sn�

Var�Sn�
Var2�Sn�

; �2�

where the score and Hessian are evaluating at the true �. Typically, Hn

and Sn are asymptotically bivariate normal, so the numerator of C is
approximately the conditional variance of Hn given Sn.
Using Edgeworth expansions of their distribution functions, Pfanzagl

and Wefelmeyer (1978) develop asymptotic expansions for the local
power functions of various likelihood-based test statistics. The exposition
here follows that of Cavanagh (1983) and Pfanzagl (1980). Under regu-
larity conditions, the power envelope for tests of size � has the asymptotic
expansion

���� ÿ nÿ1=2ÿ� � ��t� � ÿ� � nÿ1=2P�ÿ� � nÿ1Q�ÿ�� � o�nÿ1�;
where P and Q are low-order polynomials depending on the particular
likelihood function. The local power function for a typical admissible test
has the asymptotic expansion

�T �� ÿ nÿ1=2ÿ� � �

�
t� � ÿ� � nÿ1=2P�ÿ� � nÿ1Q�ÿ�

ÿ C

8n
�2ÿTt� � ÿ��2

�
� o�nÿ1�; �3�

where ÿT is a constant depending on the particular test. For example, the
score test has ÿT = 0; its power curve is tangent to the power envelope at
the origin where power is equal to the size �: The Wald test based on the
MLE has ÿT � 1; its power curve is tangent to the power envelope at the
point where power is approximately 1ÿ �. The maximised likelihood
ratio test has ÿT � 1

2; its power curve is tangent to the power envelope
at the point where power is approximately one-half.
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These power formulae have a simple interpretation in terms of power
plots on normal paper. That is, suppose we graph �ÿ1(power) against ÿ.
In very large samples one should get a straight line with slope �. In small
samples one will get some curvature from the polynomial terms. The
curvature due to P and Q is inherent in the problem and is independent
of the particular test statistic. It is captured in the power envelope. The
additional curvature due to the particular test statistic is very simple. It is
a pure quadratic, tangent to the power envelope, with coef®cient equal to
Efron's curvature measure.

Although quite elegant, this second-order asymptotic analysis need not
be terribly accurate in small samples. Luckily, it can be dispensed with. In
our one-parameter problem, the critical value t� and the power functions
�T ��� can always be computed to any degree of accuracy by simulation.
Indeed, that is the approach we will use in the non-standard unit-root
cases where asymptotic analysis does not lead to analytically convenient
approximations to the power functions.

2 The AR(1) model

Inference in autoregressive models with a near-unit root has been studied
extensively, following the seminal paper by Dickey and Fuller (1979).
Stock (1995) and Banerjee et al. (1993) survey some of the literature.
The approach employed here is developed in greater detail in Elliott,
Rothenberg and Stock (1996) and Rothenberg and Stock (1997).

Suppose an observed time-series y1; . . . ; yn is generated by the ®rst-
order autoregression

yt � �ytÿ1 � "t t � 1; . . . ; n; �4�
where y0 � 0, � is an unknown parameter, and the "'s are unobserved
i.i.d. normal errors with mean zero and unit variance. We are interested
in testing the null hypothesis that � � 1 against the alternative that � < 1.
Except for an additive constant, the log-likelihood function evaluated at
the point s is given by

Ln s� � � ÿ1

2

Xn
t�1

�yt ÿ �ytÿ1�2 � ÿ1

2

Xn
tÿ1

�4yt � �1ÿ s�ytÿ1�2

� ÿ1

2

Xn
tÿ1

�4yt�2 � 2�1ÿ s�
Xn
t�1

ytÿ14yt

"

� �1ÿ s�2
Xn
t�1

�ytÿ1�2
#
: �5�
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Note that Ln�s� is quadratic in s and that �P ytÿ14yt;
P�ytÿ1�2� is a

pair of suf®cient statistics. Again it will be convenient to rewrite the
model in terms of a local parameterisation around the null hypothesis
value � � 1. Writing the true parameter as � � 1ÿ nÿ1ÿ and a typical
point in the parameter space as s � 1ÿ nÿ1c, we ®nd

1

c
Ln�1� ÿ Ln�1ÿ nÿ1c�� � � An �

1

2
cBn �6�

where

An �
1

n

Xn
t�1

ytÿ14yt; Bn �
1

n2

Xn
t�1

�ytÿ1�2:

The log-likelihood ratio (6) looks very much like (1) with the remainder
term set to zero. But there are three major differences:
1. To obtain ®nite stochastic limits, the score term An must be scaled by

nÿ1and the Hessian term Bn must be scaled by nÿ2; hence the repara-
meterisation in terms of c involves a scaling by n instead of n1=2.

2. Even after rescaling by nÿ2, Bn does not converge to a constant under
the null hypothesis; the limiting likelihood ratio depends on the pair of
suf®cient statistics An and Bn.

3. The joint limiting distribution of An and Bn is not normal. The actual
distribution function does not have a simple analytic representation,
but the statistics themselves can be expressed as stochastic integrals of
normal processes.
Despite these differences, the Neyman±Pearson theory discussed in

section 1 is still applicable. Each member of the family of test statistics
de®ned by (6) is admissible, with power functions tangent to the power
envelope. It is only the asymptotic approximations that have to be mod-
i®ed. To describe the limiting behaviour of An and Bn, we note that, when
ÿ � n�1ÿ �� is ®xed and n is large, the discrete time-series nÿ1=2yt can be
well approximated by a continuous-time process. Let W�r� represent
standard Brownian motion de®ned on [0,1] and let

Jÿ�s� �
�s
0

eÿÿ�sÿr�dW�r� �7�

be the Ornstein±Uhlenbeck process that satis®es the stochastic differen-
tial equation dJÿ�s� � ÿÿJÿ�s�ds� dW�s� with initial condition Jÿ �0� � 0.
For s in the unit interval, let �sn� be the largest integer less than sn. Then,
for parameter values local to unity such that ÿ � n�1ÿ �� remains con-
stant as n tends to in®nity, nÿ1=2y�sn� ) Jÿ �s� and
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An;Bn� � ) 1
2
�J2

ÿ �1� ÿ 1�;
�1
0

J2
ÿ �s� ds

� �
where ) represent weak convergence (see Chan and Wei (1987) and
Stock (1995)). Thus, the power functions for our family of NP tests
have the form

�NP�� ÿ nÿ1ÿ; � ÿ nÿ1c� � Pr J2
ÿ �1� � c

�1
0

J2
ÿ �s�ds < t�c�

� �
� o�1�;

where t�c� is the appropriate critical value.
Unfortunately, there is no simple analytic expression for the joint dis-

tribution function of the pair �Jÿ �1�;
�
J2ÿ �. In practice, it is simplest to

compute the power function by simulating the joint distribution of
�An;Bn� by Monte Carlo draws from the distribution of the "'s. Power
functions for the NP(c) test statistics (6) were obtained from 10,000 repli-
cations of samples of size 100. The results are plotted in ®gure 9.1 for
c � 0 (the score test) and for c � 7. In addition, the upper-bound power
envelope is also drawn. To simplify comparisons, a normal quantile scale
is used; that is, �ÿ1(power) is plotted against ÿ. Three facts emerge from
these calculations (and others not reported here):
1. With normal quantile scale, the power envelope is essentially a straight

line with slope 0.24. (Note: the square root of expected information is
0.7.)
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2. The Dickey±Fuller t-test (which is the signed maximum likelihood
ratio test) behaves almost exactly like the NP(7) test. Their power
functions are very close to the power envelope and seem to be tangent
to the envelope where power is about one-half.

3. In the family of Neyman±Pearson test statistics (6), the power curves
are very similar as long as 2 < c < 30. The relative weight given to the
score and the Hessian does not matter much as long as each gets some
weight. The members with very small c have particularly poor power
characteristics.

3 The stationary MA(1) model

Suppose the observed time-series y1; . . . ; yn was generated by

yt � "t ÿ �"tÿ1 t � 1; . . . ; n �8�
where the "'s are i.i.d. standard normal variates. To avoid identi®ability
issues, we shall assume j�j � 1. The problem of testing the null hypothesis
� � � against the alternative that � < � is standard as long as j�j is much
less than one. Indeed, the results of section 1 apply whenever j�j < 1,
although the accuracy of the asymptotic approximations will diminish
rapidly as j�j tends to one. The problem of testing � � 1, however, is non-
standard. Our analysis builds on the work reported by Tanaka (1990),
Saikkonen and Luukkonen (1993), and Davis, Chen and Dunsmuir (1995).

Let y be the n-dimensional column vector of the observations. Then,
apart from an additive constant, the log-likelihood at parameter value s is

Ln�s� � ÿ1
2
log jÿ�s�j ÿ 1

2
y 0ÿ�s�ÿ1y; �9�

where ÿ�s� � �1� s2�I ÿ sD and D � �dij � is a matrix with dij � 1 when
ji ÿ jj � 1 and zero otherwise. The characteristic roots of D are
2 cos��j=�n� 1��, j � 1; . . . ; n. Hence the matrix ÿ can be written as
Q 0�Q where Q is an orthogonal matrix not depending on s and L is
diagonal with typical element �j�s� � 1� s2 ÿ 2s cos��j=�n� 1��. It fol-
lows that y 0ÿ�s�ÿ1y can be written as x 0��s�ÿ1x; where the (observable)
transformed variable x � Qy has variance matrix ����. Thus, we can write

ÿ2Ln�s� �
Xn
j�1

log �j�s� �
x2j
�j�s�

" #
�

Xn
j�1

log �j�s� �
�j���
�j�s�

�2j

� �
;

�10�
where the (unobserved) elements of � � ����ÿ1=2Qy are i.i.d. standard
normal.
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When j�j < 1, L��� ÿ L�s� can be expanded as in (1) where the remain-
der term is asymptotically negligible. This does not happen when � � 1.
We write the true parameter as � � 1ÿ nÿ1ÿ and the point alternative as
s � 1ÿ nÿ1c. Then, noting that

�j 1ÿ ÿ

n

� �
� 2ÿ 2

ÿ

n
� ÿ

n

� �2
ÿ2 1ÿ ÿ

n

� �
cos

�j

n� 1

� �
;

we ®nd after considerable algebra that, as n tends to in®nity,

ÿ2cÿ2�Ln�1ÿ nÿ1c� ÿ Ln�1��

)
X1
j�1

�2j2 � ÿ2

�2j2��2j2 � c2� �
2
j � ln

�2j2

�2j2 � c2

" #
: �11�

This implies that, asymptotically, the score evaluated at � � 1 is zero.
Hence, the locally best test is based on the Hessian. It is also apparent
that the higher-order derivatives of L are not asymptotically negligible.
Unlike the standard case discussed in section 1 and the AR unit-root case
discussed in section 2, the log-likelihood ratio is not approximately quad-
ratic in the local parameter c. The limiting likelihood ratio depends not
on just one or two suf®cient statistics but on a continuum of suf®cient
statistics.

There are no convenient analytic expressions for the distribution func-
tions of the limiting NP(c) statistics de®ned by (11). Nevertheless, it is
easy to simulate the distributions. (The in®nite series was truncated after
200 terms.) Figure 9.2 presents the power envelope and the power func-
tions for a few values of c. Again, a normal quantile scale is used. We can
draw the following conclusions.
1. With a normal quantile scale, the power envelope has noticeable cur-

vature for small values of g but is approximately linear for large values
of g.

2. The power curve for the NP(7) test is very close to the envelope. It is
tangent to the power envelope at a point where power is about one-
half.

3. In the family of Neyman±Pearson tests of the form (11), the power
curves are fairly similar as long as 2 < c < 30. The members with very
small c have somewhat poorer power characteristics.

4 A non-stationary MA model

Suppose the observed time-series y1; . . . ; yn was generated by

yt � "t ÿ �"tÿ1; �12�
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where "1; . . . ; "n are i.i.d. standard normal variates and "0 = 0. This
model is identical to the one considered in section 3 except for the ®rst
observation. When the hypothesised value � is less than one in absolute
value, the modi®cation has no effect to a ®rst order of approximation and
has only a trivial effect to second order. When � � 1, the effect is non-
negligible even asymptotically.

Note that the joint density for "1; . . . ; "n is proportional to
expfÿ 1

2

P
"2t g. But (12) de®nes a one-to-one mapping of the "'s to the

y's with Jacobian equal to one. Recursively solving for the "'s in terms of
the y's, we ®nd that, apart from an additive constant, the log-likelihood
function evaluated at parameter value s is

Ln�s� � ÿ 1

2

Xn
t�1

Xtÿ1

i�0

siytÿi

" #2

: �13�

Again we transform into local coordinates, writing the true parameter
value as � � 1ÿ nÿ1ÿ and an arbitrary point is the parameter space as
s � 1ÿ nÿ1c: It is convenient to de®ne the arti®cial (unobserved) variable

xct �
Xtÿ1

i�0

�1ÿ nÿ1c�i"tÿi:

Then we ®nd that
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Figure 9.2 Asymptotic power functions for unit MA root (stationary model; 5%
level; normal quantile scale)



Xtÿ1

i�0

�1ÿ nÿ1c�iytÿi �
Xtÿ1

i�0

�1ÿ nÿ1c�i�4"tÿi � ÿnÿ1"tÿi�

� "t � nÿ1�ÿ ÿ c�xct :
Thus we ®nd the log-likelihood ratio for testing � � 1 against the alter-
native � � 1ÿ nÿ1c is given by

Ln�1� ÿ Ln�1ÿ nÿ1c� � 1

2

Xn
t�1

Xtÿ1

i�1

siytÿi

" #2

ÿ 1

2

Xn
t�1

Xtÿ1

i�1

ytÿi

" #2

� 1

2

Xn
t�1

"t � nÿ1�ÿ ÿ c�xctÿ1

� �2
ÿ 1

2

Xn
t�1

�"t � nÿ1ÿx0tÿ1�2: �14�

Noting that the process nÿ1=2xc�sn� converges to the continuous time pro-
cess Jc�s� de®ned in (6), we ®nd that the likelihood ratio converges to the
stochastic integral

1
2�ÿ2 ÿ c2�

�1
0

J2c �s� dsÿ 1
2ÿ

2

�1
0

J2
0 �s� ds� �ÿ ÿ c�

�
�1
0

Jc�s� dW�s� ÿ ÿ

�1
0

J0�s�dW�s�: �15�

Again, there is a continuum of suf®cient statistics asymptotically.
Differentiating and evaluating at c � 0, we ®nd that the score test statistic
has the simple asymptotic representation

lim
c!0

cÿ1�Ln�1� ÿ Ln�1ÿ nÿ1c�� � 1

2

Xn
t�1

Xtÿ1

i�0

ytÿ1

" # Xtÿ1

i�0

iytÿ1

" #

) 1

2
ÿ 1

2
W�1� � ÿ

�1
0

W�s� ds
� �2

:

�16�
Except for the score statistic, which asymptotically is a linear transform
of a chi square, there are no convenient analytic expressions for the
distribution functions of the limiting NP(c) statistics de®ned by (15).
Nevertheless, it is easy to simulate the distributions using the representa-
tion (13). The sample size n was set at 200 and 10,000 Monte Carlo
replications were used. Using a normal quantile scale, ®gure 9.3 presents
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the power envelope and the power functions for a few values of c. We can
draw the following conclusions.
1. With a normal quantile scale, the power envelope has strong curvature

for small values of ÿ but is approximately linear for large values of ÿ.
2. The power curve for the NP(7) test is very close to the envelope. It is

tangent to the envelope at a point where power is slightly greater than
one-half.

3. In the family of Neyman±Pearson tests of the form (11), the power
curves are fairly similar as long as 2 < c < 30. The members with very
small c have much poorer power characteristics.

5 Conclusions

The large-sample power curves and power envelopes for the three `non-
standard' examples presented here look very much like the small-sample
power curves and envelopes predicted by second-order theory for `stan-
dard problems'. Although the test statistics themselves are not even close
to being normally distributed, the power curves are not very far from
looking like normal power curves. Curiously, the NP(7) test seems to
behave similarly in all three examples.

For the AR(1) model, van Garderen (1997) shows that Efron curva-
ture, viewed as a function of �, increases very sharply when � is near one.
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Figure 9.3 Asymptotic power functions for unit MA root (non-stationary model;
5% level; normal quantile scale)



Thus, standard second-order theory seems to explain why the score test

of the unit-root hypothesis performs rather badly. The result that the

power curve for the maximum likelihood ratio test is tangent to the

power envelope at the point where power equals one-half is also consis-

tent with standard second-order theory, although the standard proof is

not applicable.

For the MA unit-root problem, it is not so clear that standard asymp-

totic theory provides any explanation for our empirical ®ndings. In par-

ticular, Efron curvature is not a very useful measure in these models.

When � � 1, all the derivatives of the log-likelihood are the same order

of magnitude, so it does not seem useful to concentrate only on the ®rst

two. The results presented here cannot be viewed as a solution to the

problem of explaining the behaviour of tests in non-standard situations.

Rather they are really just a description of some of the facts that have to

be explained.
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10 An elementary account of Amari's
expected geometry

Frank Critchley, Paul Marriott and Mark Salmon

Differential geometry has found fruitful application in statistical infer-

ence. In particular, Amari's (1990) expected geometry is used in higher-

order asymptotic analysis and in the study of suf®ciency and ancillarity.

However, we can see three drawbacks to the use of a differential geo-

metric approach in econometrics and statistics more generally. First, the

mathematics is unfamiliar and the terms involved can be dif®cult for the

econometrician to appreciate fully. Secondly, their statistical meaning

can be less than completely clear. Finally, the fact that, at its core, geo-

metry is a visual subject can be obscured by the mathematical formalism

required for a rigorous analysis, thereby hindering intuition. All three

drawbacks apply particularly to the differential geometric concept of a

non-metric af®ne connection.

The primary objective of this chapter is to attempt to mitigate these

drawbacks in the case of Amari's expected geometric structure on a full

exponential family. We aim to do this by providing an elementary

account of this structure that is clearly based statistically, accessible geo-

metrically and visually presented.

Statistically, we use three natural tools: the score function and its ®rst

two moments with respect to the true distribution. Geometrically, we are

largely able to restrict attention to tensors; in particular, we are able to

avoid the need formally to de®ne an af®ne connection. To emphasise the

visual foundation of geometric analysis we parallel the mathematical

development with graphical illustrations using important examples of

full exponential families. Although the analysis is not restricted to this

case, we emphasise one-dimensional examples so that simple pictures can
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be used to illustrate the underlying geometrical ideas and aid intuition. It
turns out that this account also sheds some new light on the choice of
parameterisation as discussed by Amari (1990), extending earlier work by
Bates and Watts (1980, 1981), Hougaard (1982) and Kass (1984). There
are also a number of points of contact between our presentation and
Firth (1993).

A key feature of our account is that all expectations and induced
distributions are taken with respect to one ®xed distribution, namely,
that assumed to give rise to the data. This is the so-called preferred
point geometrical approach developed in Critchley, Marriott and
Salmon (1993, 1994), on whose results we draw where appropriate.

Our hope is that the following development will serve to broaden
interest in an important and developing area. For a more formal but
still readable treatment of differential geometry, see Dodson and
Poston (1977). For broader accounts of the application of differential
geometry to statistics, see the review chapters or monographs by
Barndorff-Nielsen, Cox and Reid (1986), Kass (1987, 1989), Amari
(1990) and Murray and Rice (1993).

The chapter is organised as follows. The elementary prerequisites are
established in section 1. The key elements of Amari's expected geometry
of general families of distributions are brie¯y and intuitively reviewed in
section 2. In particular, his �-connections are discussed in terms of the
characteristic statistical properties of their associated af®ne parameteri-
sations. Section 3 contains our account of this geometry in the full expo-
nential family case, as outlined above, and section 4 considers the effect
of changing the sample size.

1 Preliminaries

1.1 The general framework

Let

M � fp�x; �� : � 2 �g
be a p-dimensional parametric family of probability (density) functions.
The available data x � �x1; . . . ; xn�T is modelled as a random sample
from some unknown true distribution p�x; �� 2 M. Let the parameter
space � be an open connected subset of Rp. The family M is regarded
as a manifold, with the parameter � playing the role of a coordinate
system on it. Formally, certain regularity conditions are entailed. These
are detailed in Amari (1990, p. 16).

Parameterisations and transformations 295



1.2 The score function

The score function

s��; x� � @

@�1
ln p�x; ��; . . . ; @

@�p
ln p�x; ��

� �T

is very natural to work with statistically as it contains precisely all the
relevant information in the likelihood function. Integrating over �
recovers the log-likelihood function, l, up to an additive constant
which is independent of �. This is equivalent to the likelihood up to a
multiplicative positive factor which may depend on x but not on �. As
discussed by Cox and Hinkley (1974, p. 12), two different choices of the
constant do not affect the essential likelihood information, which we refer
to as the shape of the likelihood. Visually, the graph of the score function
displays the shape of the likelihood in a natural and direct way. We use
this to advantage later.

The score function is also a very natural tool to work with geometri-
cally. An important concept of differential geometry is that of the tangent
space. We can avoid the general abstract de®nition here as we have a
concrete representation of this space in terms of the score function.
Regarding x now as a random vector and following Amari (1990), we
identify the tangent space TM� at each ®xed p�x; �� 2 M with the vector
space of random variables spanned by

fsi��; x� �
@

@�i
ln p�x; �� : i � 1; . . . ; pg:

Under the regularity conditions referenced in section 2.3 of chapter 1, this
vector space has dimension p, the dimension of M.

1.3 Distribution of the score vector

Naturally associated with each ®xed tangent space TM� is the joint dis-
tribution ��� of the components of the score vector s��; x�. This may be
known analytically but can always, by the central limit theorem, be
approximated asymptotically by the multivariate normal distribution
Np������; g�����, where

����� � Ep�x;���s��; x�� � nEp�x;���s��; x��
and

g���� � Covp�x;���s��; x�� � nCovp�x;���s��; x��:
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These last two quantities are statistically natural tools that we shall
employ in our account of Amari's geometry. The matrix g���� is assumed
to be always positive de®nite.

Note that, for all �,

����� � 0 and g���� � I��� � ni���;
where I and i denote the Fisher information for the sample and for a
single observation, respectively.

For later use we de®ne the random vector ����; x� by the decomposition

s��; x� � ����� � ����; x�
so that Ep�x;�������; x�� vanishes identically in � and �.
In the one-dimensional case there is a particularly useful graphical

representation of the three tools on which our account is based. For a
particular realisation of the data x, the plot of the graph of s��; x� against
� can give great insight into the shape of the observed likelihood function.
We call this graph the observed plot. Together with this we use the
expected plot. This is a graph of the true mean score together with an
indication of variability. We make extensive use of this graphical method
for several important examples below.

1.4 Reparameterisation

So far, we have worked in a single parameterisation �. It is important to
consider what happens under a reparameterisation.

We consider reparameterisations � ! ���� that are smooth and inver-
tible. De®ne

B�
i ��� �

@��

@�i
and �Bi

���� �
@�i

@��
;

for 1 � i; � � p. By the chain rule, the components of the score vector
transform as 1-tensors. That is:

s������; x� :�
@l

@��
�

Xp
i�1

�Bi
�������

@l

@�i
:�

Xp
i�1

�Bi
����si��; x� �1�

for each ®xed �. This amounts to a change of basis for the vector space
TM�. By linearity of expectation, the components of ����� are also 1-
tensors. That is:

�����
� ������ �

Xp
i�1

�Bi
������

i ���: �2�
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As covariance is a bilinear form, we see that g���� is a 2-tensor. That is, its
components transform according to:

g�����ÿ ������ �
Xp
i�1

Xp
j�1

�Bi
���� �B j

ÿ���g�ij���: �3�

By symmetry, the assumption of positive de®niteness, and since g����
varies smoothly with �, g���� ful®ls the requirements of a metric tensor
(see Amari (1990), p. 25). It follows at once, putting � � �, that the Fisher
information also enjoys this property.

In parallel with this tensor analysis, plotting the observed and expected
plots for different parameterisations of the model can be extremely useful
in conveying the effects of reparameterisation on the shape of the like-
lihood and the statistical properties of important statistics such as the
maximum likelihood estimate (MLE). The question of parameterisation
is therefore an important choice that has to be taken in statistical
analysis.

2 Some elements of Amari's expected geometry

2.1 Connections

Formally, Amari's expected geometry is a triple �M; I;r�1� in whichM is
a family of probability (density) functions and I the Fisher information
metric tensor, as described above. The major dif®culty in understanding
revolves around the third component, r�1, which is a particular non-
metric af®ne connection. In section 3 we obtain a simple, statistical inter-
pretation of it in the full exponential family case. Here we note certain
facts concerning connections and Amari's geometry, offering intuitive
explanations and descriptions where possible. For a formal treatment,
see Amari (1990). We emphasise that such a treatment is not required
here, as our later argument proceeds in terms of the elementary material
already presented.

A connection allows us to (covariantly) differentiate tangent vectors
and, more generally, tensors (see Dodson and Poston (1977), chapter 7).
A connection therefore determines which curves in a manifold shall be
called `geodesic' or `straight'. Generalising familiar Euclidean ideas, these
are de®ned to be those curves along which the tangent vector does not
change.

A metric tensor induces in a natural way an associated connection
called the Levi±Civita or metric connection. In Amari's structure the
Fisher information I induces the af®ne connection denoted by r0. The
Levi±Civita connection has the property that its geodesics are curves of
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minimum length joining their endpoints. No concept of length is asso-
ciated with the geodesics corresponding to non-metric connections.

Amari shows that the two connections r0 and r�1 can be combined to
produce an entire one-parameter family fr� : � 2 Rg of connections,
called the �-connections. The most important connections statistically
correspond to � � 0;�1

3;�1, as we now explain.

2.2 Choice of parameterisation

For each of Amari's connections it can happen that a parameterisation �
of M exists such that the geodesic joining the points labelled �1 and �2
simply consists of the points labelled f�1ÿ ���1 � ��2 : 0 � � � 1g. For
example, Cartesian coordinates de®ne such a parameterisation in the
Euclidean case. When this happens, M is said to be ¯at, such a para-
meterisation is called af®ne, and the parameters are unique up to af®ne
equivalence. That is, any two af®ne parameterisations are related by a
non-singular af®ne transformation. In the important special case of a
metric connection, M is ¯at if and only if there exists a parameterisation
� in which the metric tensor is independent of �.

For a connection to admit an af®ne parameterisation is a rather
special circumstance. When it does, we may expect the af®ne param-
eterisation to have correspondingly special properties. This is indeed
the case with Amari's expected geometry. When an �-connection has
this property, the manifold is called �-¯at and the associated param-
eterisations are called �-af®ne. Amari (1990, Theorem 5.12, p. 152),
established the following characteristic features of certain �-af®ne param-
eterisations:
1. � � 1 corresponds to the natural parameter, �.
2. � � 1

3
corresponds to the normal likelihood parameter.

3. � � 0 gives a constant asymptotic covariance of the MLE.
4. � � ÿ1

3 gives zero asymptotic skewness of the MLE.
5. � � ÿ1 gives zero asymptotic bias of the MLE.
These correspond to the � � 0; 13;

1
2
; 2
3
; 1 parameterisations, respectively, of

Hougaard (1982), who studied the one-dimensional curved exponential
family case. In any one-dimensional family an �-af®ne parameter exists
for every �. A full exponential family, of any dimension, is always �1-
¯at and ÿ1-¯at, with the natural and mean value parameters, respec-
tively, being af®ne. Amari (1990) also established the duality result that
M is �-¯at if and only if it is ÿ�-¯at. This duality between r� and rÿ�

has nice mathematical properties but has not been well understood
statistically.
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3 The expected geometry of the full exponential family

3.1 Introduction

We restrict attention now to the full exponential family. In the natural
parameterisation, �, we have

p�x; �� � exp
Xp
i�1

ti�x��i ÿ þ���
( )

:

The mean value parameterisation is given by � � ��1; . . . ; �p�, where

�i��� � Ep�x;���ti�x�� �
@þ

@�i
���:

These two parameterisations are therefore af®nely equivalent if and only
if þ is a quadratic function of �, as with the case of normal distributions
with constant covariance. As we shall see, this is a very special circum-
stance.

In natural parameters, the score function is

si��; x� � n �ti�x� ÿ
@þ

@�i
���

� �
� nf �ti�x� ÿ �i���g; �4�

where n�ti�x� �
Pn

r�1 ti�xr�. From (4) we have the useful fact that the
maximum likelihood estimator �̂i :� �i��̂� � �ti. Further, the ®rst two
moments of the score function under p�x; �� are given by

��
i��� � n

@þ

@�i
��� ÿ @þ

@�i
���

� �
� nf�i��� ÿ �i���g �5�

g�ij��� � n
@2þ

@�i@�j
��� � Iij���: �6�

3.2 Examples

The following one-dimensional examples are used for illustrative pur-
poses: Poisson, normal with constant (unit) variance, exponential and
Bernoulli.

Although, of course, the sample size affects the �-distribution of �t, it
enters the above equations for the score and its ®rst two moments only as
a multiplicative constant. Therefore our analysis, which is based solely on
these quantities, is essentially invariant under independent repeated
samples. Our third and fourth examples implicitly cover the gamma
and binomial families and together, then, these examples embrace most
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of the distributions widely used in generalised linear models (McCullagh
and Nelder, 1989).

The examples are summarised algebraically in table 10.1, and are dis-
played visually in ®gures 10.1 to 10.4, respectively. For each example, for
a chosen � and n shown in table 10.1, we give observed and expected
plots, both in the natural parameterisation � and in a non-af®nely equiva-
lent parameterisation ����.
We take ���� to be the mean value parameter ���� except in the normal

case, where we take ���� � �
1
3. We use this last parameterisation for illus-

tration only, even though it is not invertible at � � 0. In each case, � is an
increasing function of �. In the expected plots, we illustrate the ®rst two
moments of the score function under the true distribution (that is, under
p�x; ��) by plotting the mean �2 standard deviations. In the observed
plots, to give some idea of sampling variability, we plot ®ve observed
score functions corresponding to the 5%, 25%, 50%, 75% and 95%
points of the true distribution of �t for the continuous families and the
closest observable points to these in the discrete cases. Recall that these
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Table 10.1. One-dimensional examples: Poisson, normal, exponential and
Bernoulli

Poisson (�) Normal (�; 1) Exponential (�) Bernoulli (�)

(Figure 10.1) (Figure 10.2) (Figure 10.3) (Figure 10.4)

t�x� x x ÿx x

ÿ��� e� 1
2
�2 ÿ ln � ln�1� e��

s��;x� n��xÿ e�� n��xÿ �� n�ÿ�x� �ÿ1� n��xÿ e��1� e��ÿ1�

����� n�e� ÿ e�� n��ÿ �� n�ÿ�ÿ1 � �ÿ1� n
e�

1� e�
ÿ n

e�

1� e�

g���� ne� n n�ÿ2 ne��1� e��ÿ2

���� ���� � e� �1=3 ���� � ÿ�ÿ1 ���� � e��1� e��ÿ1

�B��� �ÿ1 3�2 �ÿ2 ���1ÿ ���ÿ1

s��;x� n��xÿ ���ÿ1 3n��xÿ �3��2 ÿn��x� ���ÿ2 n��xÿ �����1ÿ ���ÿ1

�������� n����� ÿ ���ÿ1 3n��3��� ÿ �3��2 n����� ÿ ���ÿ2 n
����� ÿ ��
���1ÿ ���
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Figure 10.1 One-dimensional Poisson example
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Figure 10.3 One-dimensional exponential example

Observed Plot: Natural parameters 

S
co

re

-1.0 0.0 1.0

-6
-4

-2
0

2
4

6

Observed Plot: xi-parameters 

S
co

re

0.2 0.4 0.6 0.8

-6
0

-2
0

0
20

40
60

80

Expected Plot: Natural parameters 

S
co

re

-6
-4

-2
0

2
4

6

Expected Plot: xi-parameters 

S
co

re

0.2 0.4 0.6 0.8

-6
0

-2
0

0
20

40
60

80

-1.5 -0.5 0.5 1.5 -1.0 0.0 1.0-1.5 -0.5 0.5 1.5

-4
0

-4
0

Figure 10.4 One-dimensional Bernoulli example



plots precisely contain the shape of the observed and expected likelihood
functions and thus are a direct and visual representation of important
statistical information.

The observed score graphs do not cross since, for each ®xed parameter
value, the observed score function is a non-decreasing af®ne function of
�t. This holds in all parameterisations, using (1). From (1), (2), (4) and
(5) it is clear that, in any parameterisation, the graph of the true
mean score function coincides with that of the observed score for data
where �t�x� equals its true mean ����. In the examples, the true distribution
of n �t is given by Poisson��� ln n�, normal�n�; n�, gamma��; n� and
binomial�n; ��, respectively.

The most striking feature of the plots is the constancy of the variance
of the score across the natural parameterisation, and the fact that this
property is lost in the alternative parameterisation. Also remarkable is
the linearity of the normal plots in the natural parameterisation. A close
inspection reveals that for each example, in the natural parameterisation,
each of the observed plots differs by only a vertical translation. Again this
property will not hold in a general parameterisation. We use these and
other features of the plots to better understand Amari's expected geome-
try.

Certain information is evident from the plots straight away. Under
standard regularity conditions, the unique maximum likelihood estimate
of a parameter for given data occurs when the graph of the corresponding
observed score function crosses the horizontal axis from above. Thus, as
�t � �̂ in our examples (even in the degenerate Bernoulli case), these ®ve
crossing points are the 5%, 25%, 50%, 75% and 95% points of the true
distribution of the maximum likelihood estimate. The position of these
®ve crossing points gives visual information about this distribution, in
particular about its location, variance and skewness.

Of more direct relevance to our present concern is the fact that, in these
one-dimensional cases, there is a straightforward visual representation of
the tangent space at each point. TM� can be identi®ed with the vertical
line through �, and ��� with the distribution of the intersection of this line
with the graph of the observed score function. Identical remarks apply in
any parameterisation. These tangent spaces are shown in both parame-
terisations, at the above ®ve percentage points of the maximum likeli-
hood estimator, as lines in the observed plots and as vertical bars in the
expected plots.

In the observed plot, the ®ve intersection points with any given tangent
space TM� are the ®ve corresponding percentage points of ��� . The same
is true in any increasing reparameterisation �. Thus, comparing the posi-
tion of these ®ve intersection points at corresponding parameter values in
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the two observed plots gives direct visual information on the difference
between ��� and ��������� ; in particular, on changes in skewness. The observed
plots also show very clearly that, as the natural parameter varies, the true
distribution of the score changes only in its location, whereas this is not
so in a general parameterisation.

This brings to light a certain natural duality between the maximum
likelihood estimator and the score function. Consider the observed plots
in the natural and mean value parameterisations. For any given point
consider its corresponding tangent space TM� and TM���� in the two
plots. In each plot we have ®ve horizontal and ®ve vertical crossing
points, as above, giving information about the distribution of the max-
imum likelihood estimator and the score function respectively in the same
parameterisation. Now, these two plots are far from independent. As
�̂�x� � ���� � nÿ1s��; x�, the horizontal crossing points in the mean para-
meter plot are just an af®ne transformation of the vertical crossing points
in the natural parameter plot. The converse is true asymptotically. As we
discuss below, this simple and natural duality between the maximum
likelihood estimator and the score function corresponds with the duality
present in Amari's expected geometry.

3.3 Amari's +1-geometry

The above one-dimensional plots have already indicated two senses in
which the natural parameterisation is very special. We note here that this
is so generally. Our analysis then provides a simple statistical interpreta-
tion of Amari's +1-connection.

From (4) we see that in the natural parameterisation the score function
has the form of a stochastic part, independent of �, plus a deterministic
part, independent of the data. Recalling (1) and (4) we see that this
property is lost in a non-af®ne reparameterisation �, since �B���
�:� �B1

1���� is independent of � if and only if � is an af®ne transformation
of �. An equivalent way to describe this property is that the `error term'
����; x� in the mean value decomposition of s��; x� de®ned at the end of
section 1.3 is independent of �. Or again, as ����� vanishes, that this
decomposition has the form

s��; x� � ����� � s��; x�: �7�
Note that ��� differs from ��� 0 only by the translation ����� ÿ ���� 0�. In
this parameterisation, from one sample to the next, the whole graph of
the observed score function just shifts vertically about its �-expectation
by the same amount s��; x�.
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As a consequence of (7), the �-covariance of the score function is
independent of � (and therefore coincides with g���� � I���). But g����
is a metric tensor (section 1.4) and, in this parameterisation, the metric is
constant across all tangent spaces. Recalling section 2.2, we note that if a
metric is constant in a parameterisation then the parameterisation is
af®ne for the metric connection. All tangent spaces thus have the same
geometric structure and differ only by their choice of origin. For more
details on this geometric idea of ¯atness, see Dodson and Poston (1977).

The metric connection is the natural geometric tool for measuring the
variation of a metric tensor in any parameterisation. But Critchley,
Marriott and Salmon (1994) prove that, in the full exponential family,
the metric connection induced by g���� coincides with Amari's �1-con-
nection. Thus we have the simple statistical interpretation that r�1 is the
natural geometric measure of the non-constancy of the covariance of the
score function in an arbitrary parameterisation. In the one-dimensional
case, the �1-connection measures the variability of variance of the
observed score across different points of M. Looking again at ®gures
10.1 to 10.4 we see a visual representation of this fact in that the �2
standard deviation bars on the expected plot are of a constant length for
the �-parameterisation, and this does not hold in the non-af®ne �-para-
meterisation.

3.4 Amari's 0-geometry

The fact that in the natural parameterisation all the observed score func-
tions have the same shape invites interpretation. From (7) we see that the
common information conveyed in all of them is that conveyed by their �-
mean. What is it?

The answer is precisely the Fisher information for the family. This is
clear since �� determines I via

Iij��� � ÿ@��
j

@�i
���;

while the converse is true by integration, noting that ����� � 0. Thus, in
natural parameters, knowing the Fisher information at all points is
equivalent to knowing the true mean of the score function (and hence
all the observed score functions up to their stochastic shift term). In
particular, in the one-dimensional case, the Fisher information is con-
veyed visually by minus the slope of the graph of ����� as, for example, in
the natural parameter expected plots of ®gures 10.1 to 10.4.
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Amari uses the Fisher information as his metric tensor. It is important
to note that, when endowed with the corresponding metric connection,
an exponential family is not in general ¯at. That is, there does not, in
general, exist any parameterisation in which the Fisher information is
constant. The multivariate normal distributions with constant covariance
matrix and any one-dimensional family are notable exceptions. In the
former case, the natural parameters are af®ne. In the latter case, using
(3), the af®ne parameters are obtained as solutions to the equation

@�

@�
���

� �2

þ 00��� � constant:

For example, in the Poisson family where þ��� � exp��� one ®nds
���� � exp��=2�, as in Hougaard (1982).

Thus far we have seen that, in the case of the full exponential family,
the fundamental components of Amari's geometry �M; I;r�1� can be
simply and naturally understood in terms of the ®rst two moments of
the score function under the distribution assumed to give rise to the data.
I is de®ned by the true mean, and r�1 by I and the true covariance.
Further, they can be understood visually in terms of the expected plots in
our one-dimensional examples. We now go on to comment on duality
and choice of parameterisation.

3.5 Amari's 71-geometry and duality

The one-dimensional plots above have already indicated a natural duality
between the score vector and the maximum likelihood estimator, and that
there is a natural statistical curvature, even in the one-dimensional case,
unless the manifold is totally ¯at; that is, unless the graph of the true
mean score function is linear in the natural parameterisation. We develop
these remarks here.

Amari (1990) shows that the mean value parameters

���� � Ep�x;���t�x�� � þ 0���
are ÿ1-af®ne and therefore, by his general theory, duality related to the
natural �1-af®ne parameters �. We offer the following simple and direct
statistical interpretation of this duality. We have,

�̂ � ���� � nÿ1s��; x�:
Expanding ���̂� to ®rst order about � gives an asymptotic converse

�̂ _� � � nÿ1 �B���s��; x� � � � nÿ1s��; x�;
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the right-hand equality following from (1) and where we use _� to denote
®rst-order asymptotic equivalence. Note that �B��� � iÿ1���. Thus the dua-
lity between the �1 and ÿ1 connections can be seen as the above strong
and natural asymptotic correspondence between the maximum likelihood
estimator in one parameterisation and the score function in another.
In fact this simple statistical interpretation of Amari's duality is not
restricted to the full exponential family (see Critchley, Marriott and
Salmon (1994)). It is established formally in a more general case than
�1 duality here in section 3.7.

3.6 Total ¯atness and choice of parameterisation

The above approximation to �̂ is exact when � and � are af®nely equiva-
lent. In this case, �̂ and �̂ are in the same af®ne relationship and so their
distributions have the same shape. In particular, as normality is preserved
under af®ne transformations, these distributions are as close to normality
as each other whatever the de®nition of closeness that is used. In the case
where M is a constant covariance normal family, �̂ and �̂ are both exactly
normally distributed.

Af®ne equivalence of � and � is a very strong property. When it holds,
much more is true. It is the equivalent in the full exponential family case
of the general geometric notion of total ¯atness de®ned and studied in
Critchley, Marriott and Salmon (1993). Recall that the natural parame-
terisation � has already been characterised by the fact that the true co-
variance of the score function is constant in it. Total ¯atness entails this
same parameterisation simultaneously has other nice properties. It is easy
to show the following equivalences:

� and � are affinely equivalent

() þ is a quadratic function of �

() I��� is constant in the natural parameters

() ����� is an affine function of �

() 9� 6� ÿ with r� � rÿ

() 8�; 8ÿ; r� � rÿ

() the � parameterisation is �-affine for all �

(see Critchley, Marriott and Salmon (1993)). In particular, the maximum
likelihood estimators of any �-af®ne parameters are all equally close (in
any sense) to normality.
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It is exceptional for a family M to be totally ¯at. Constant covariance
multivariate normal families are a rare example. In totally ¯at manifolds
the graph of ����� is linear in the natural parameterisation, as remarked
upon in the one-dimensional normal example of ®gure 10.2. More
usually, even in the one-dimensional case, a family M of probability
(density) functions will exhibit a form of curvature evidenced by the
non-linearity of the graph of �����.
Recall that the graph of ����� enables us to connect the distribution of

�̂ and �̂. In the natural parameterisation �, each observed graph is a
vertical shift of the expected graph. This shift is an af®ne function of
�t � �̂. The intersection of the observed plot with the � axis determines �̂.
When the expected plot is linear (the totally ¯at case), then �̂ and �̂ are
af®nely related and so their distributions have the same shape. When it is
non-linear they will not be af®nely related. This opens up the possibility
that, in a particular sense of `closeness', one of them will be closer to
normality.

In all cases, the 0-geometry plays a pivotal role between the �1-geo-
metries. That is, the graph of ����� determines the relationship between
the distributions of the maximum likelihood estimators �̂ and �̂ of the �1-
af®ne parameters. We illustrate this for our examples in ®gure 10.5. Both
distributions are of course exactly normal when the parent distribution is.
In the Poisson case, the concavity of ����� means that the positive skew-
ness of �̂ is reduced. Indeed, �̂ has negative skew, as ®gure 10.5a illus-
trates. The opposite relationship holds in the exponential case, where
����� is convex (®gure 10.5c). In our Bernoulli example, the form of
����� preserves symmetry while increasing kurtosis so that, in this
sense, the distribution of �̂ is closer to normality than that of �̂ (®gure
10.5d).

3.7 Amari's �1
3
-geometry and duality

Amari's 1
3
-connection can be simply interpreted in terms of linearity of

the graph of the true mean score function, at least in the one-dimensional
situation where the 1

3-af®ne parameters are known to exist. If M is totally
¯at, this graph is linear in the natural parameterisation, as in the normal
constant covariance family. It is therefore natural to pose the question:
Can a parameterisation be found for a general M in which this graph is
linear?

This question can be viewed in two ways. First, for some given p�x; ��,
is such a parameterisation possible? However, in this case, any parame-
terisation found could be a function of the true distribution. In general,
there will not be a single parameterisation that works for all �. The
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Figure 10.5 The distributions of the natural and expected parameter estimates



second way is to look locally to �. This is the more fruitful approach
statistically. The question then becomes: Can a single parameterisation
� ! � be found such that, for all �, the graph of the true mean score is
linear locally to � � ����? In the one-dimensional case, we seek � such that

8�; @2��������
@�2

j������ � 0:

Such a local approach is suf®cient asymptotically when the observed
score function will be close to its expected value and the maximum like-
lihood estimate will be close to the true parameter. Thus in such a para-
meterisation, whatever the true value, the observed log-likelihood will
asymptotically be close to quadratic near the MLE. Hence the name,
normal likelihood parameter. Amari (1990) shows that such parameters
always exist for a one-dimensional full exponential family, and that they
are the 1

3
-af®ne parameters.

The vanishing of the second derivative of the true expected score func-
tion in one parameterisation � ®nds a dual echo in the vanishing of the
asymptotic skewness of the true distribution of the maximum likelihood
estimator in another parameterisation �. This is called the ÿ1

3
-af®ne para-

meterisation, because it is induced by Amari's ÿ1
3
-connection. Note again

that the duality is between the score function and the maximum like-
lihood estimator, as in section 3.5. This can be formalised as follows.

Consider any one-dimensional full exponential family,

p�x; �� � expft�x�� ÿ þ���g:
Let � and � be any two reparameterisations. Extending the approach in
section 3.5, it is easy to show the following equivalences:

�̂ _� � � nÿ1s��; x� () �̂ _� �� nÿ1s��; x� () @�

@�

@�

@�
� þ 00���:

In this case, we say that � and � are þ-dual. Clearly, the natural (�1-
af®ne) and mean value (ÿ1-af®ne) parameters are þ-dual. A parameter �
is called self þ-dual if it is þ-dual to itself. In this case we ®nd again the
differential equation for the 0-af®ne parameters given in section 3.4.
More generally, it can be shown that for any � 2 R

� and � are þ-dual ) �� is �-affine () � is ÿ �-affine�:
For a proof see the appendix to this chapter. Thus the duality between
the score function and the maximum likelihood estimator coincides quite
generally with the duality in Amari's expected geometry.

Note that the simple notion of þ-duality gives an easy way to ®nd ÿ�-
af®ne parameters once ��-af®ne parameters are known. For example,
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given that � � �
1
3 is 1

3
-af®ne in the exponential family (Hougaard, 1982)

where þ��� � ÿ ln���, one immediately has

@�

@�
� 3�ÿ4=3;

whence �ÿ1=3 is ÿ1
3
-af®ne. Again, in the Poisson family, � � exp��=3� is 1

3
-

af®ne gives at once that exp�2�=3� is ÿ1
3
-af®ne.

The local linearity of the true score in �1
3-parameters suggests that

asymptotically the distributions of the maximum likelihood estimator
of the �1

3
-af®ne parameters will be relatively close compared, for ex-

ample, with those of the �1-af®ne parameters. In particular, it suggests
that both will show little skewness. Figure 10.6, which may be compared
with ®gure 10.5(c), conveys this information for our exponential family
example.

4 Sample size effects

In this section we look at the effect of different sample sizes on our plots
of the graph of the score vector. For brevity we concentrate on the
exponential model. In ®gure 10.7 we plot the observed scores, taken as
before at the 5%, 25%, 50%, 75% and 95% points of the distribution of
the score vector. We do this in the natural �-parameters and the ÿ1-af®ne
mean value �-parameters, for sample sizes 5, 10, 20 and 50.

In the natural parameters we can see that the distribution of �̂
approaches its asymptotic normal limit. Its positive skewness visibly
decreases as the sample size increases. More strikingly, the non-linearity
in each of the graphs of the observed scores reduces quickly as n
increases. For the sample size 50 case, we see that each graph is, to a
close degree of approximation, linear. This implies that at this sample size
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there will be almost an af®ne relationship between the score in � coordi-
nates and the maximum likelihood estimator �̂, thus demonstrating their
well-known asymptotic af®ne equivalence. It also throws light on the
familiar asymptotic equivalence of the score test, the Wald test and
(given the asymptotic normality of the maximum likelihood estimate)
the likelihood ratio test.

For any model in any smooth invertible reparameterisation of the
natural parameters asymptotically the graphs of the observed score will
tend to the natural parameterisation plot of the normal distribution
shown in ®gure 10.2. In this limit the graphs become straight and parallel.
We can see both these processes in the �-parameterisation of ®gure 10.7.
In this example, a higher sample size than for the natural parameter case
is needed to reach the same degree of asymptotic approximation. The
highly non-linear and non-parallel graphs of sample size 5 and 10 have
been reduced to a much more moderate degree of non-linearity for
sample size 50. However, this sample size is not quite suf®cient to pro-
duce the parallel, linear graphs of the �-parameterisation, thus there will
still not quite be an af®ne relationship between the score and the
maximum likelihood estimator.

Parameterisations and transformations 313

Observed Plot: Natural parameters   

S
co

re

0.6 0.8 1.0 1.2 1.4 1.6 1.8

-1
0

-5
0

5
10

15

Observed Plot: Expected parameters 

S
co

re

-2.0 -1.5 -1.0 -0.5

-4
0

-3
0

-2
0

-1
0

0

Observed Plot: Natural parameters   

S
co

re

0.5 1.0 1.5 2.0

-1
0

-5
0

5
10

15

Observed Plot: Expected parameters 

S
co

re

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4

-6
0

-4
0

-2
0

0

Observed Plot: Natural parameters   

S
co

re

0.8 1.0 1.2 1.4

-1
5

-5
0

5
10

15

Observed Plot: Expected parameters 

S
co

re

-1.4 -1.2 -1.0 -0.8

-4
0

-3
0

-2
0

-1
0

0
10

Observed Plot: Natural parameters   

S
co

re

0.8 0.9 1.0 1.1 1.2 1.3

-2
0

-1
0

0
10

20

Observed Plot: Expected parameters 

S
co

re

-1.3 -1.2 -1.1 -1.0 -0.9 -0.8

-4
0

-2
0

0
10

20

(a) Sample size 5

(b) Sample size 10

(c) Sample size 20

(d) Sample size 50

Figure 10.7 The effect of sample size on the relationship between the score vector
and the MLE: the exponential case



Appendix

We give the proof of the equivalence claimed in section 3.7. We assume
here familiarity with the use of Christoffel symbols (see Amari (1990),
p. 42).

Theorem Let M be a one-dimensional full exponential family,
and assume the parameterisations � and � are þ-dual. Then � is ��-af®ne
if and only if � is ÿ�-af®ne.

Proof From Amari (1990) we have in the natural �-parameter-
isation

ÿ���� � 1ÿ �

2

� �
þF���:

Thus in �-parameters, by the usual transformation rule, the Christoffel
symbols are

ÿ���� � @�

@�

� �3

ÿ���� � i��� @�
@�

@2�

@�2

� 1ÿ �

2

� �
þF��� @�

@�

� �3

�þ 00��� @�
@�

@2�

@�2
:

Thus � is �-¯at if and only if

1ÿ �

2

� �
þF��� � þ 00��� @2�

@�2

ÿ !
@�

@�

� �2

� 0: �A:1�

Similarly in � parameters we have � is ÿ�-¯at if and only if

1� �

2

� �
þF��� � þ 00��� @2�

@�2

ÿ !
@�

@�

� �2

� 0: �A:2�

Since � and � are þ-dual we have

@�

@�

@�

@�
� �þ 00�ÿ1���:

Differentiating both sides with respect to � using the chain rule gives

@2�

@�2
@�

@�

@�

@�
� @2�

@�2
@�

@�

@�

@�
� ÿ 1

þ 00���
� �2

þF���;

and multiplying through by �þ 00�2 and using the þ-duality gives
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@2�
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þ 00��� � @2�
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� �2
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Substituting (A.3) into (A.2) gives (A.1), and (A.3) into (A.1) gives (A.2)
as required.
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Index

�-divergence, see under divergences

acceptance region, 230, 232
af®ne approximation, 24, 28, 59
af®ne connections, 39±40, 188,

218±219, 250, 294
non-metric, 298
symmetric, 40

af®ne embedding, 59
af®ne function, 20
af®ne parameterisation, 48, 51±52, 295

af®ne space, 16±19, 24, 50
curved subspace of, 52

af®ne structure, 19, 40
af®ne subspace, 9, 12, 39±40, 51

Aitken GLS estimator, 179
alternatives,
explosive, stationary, 269±270,

272±273
Amari's duality, see duality
Amari's expected geometry, 5, 294,

297±298, 304±305
Amari's projection theorem, 49
ancillarity, role of, 1, 294
ancillary statistic, see under statistic

arti®cial regression, 4, 182
asymptotic
analysis, 281, 294

converse, 307
covariance matrix, 113, 167, 171
critical value, 248

distribution, 112, 116
equivalence, 156, 307

expansion, 220, 283

information matrix, 166
theory, 29, 152, 154
variance, 112, 119

autocorrelation, 265

balance equations, 217

Bartlett kernel, 124, 126
basis formulae, 27±28
Bernoulli principle, 207

Cartesian coordinates, 187, 299
Christoffel symbols, 41±45, 46,

188±189, 218, 225, 314
COMFAC model, see under model
conditional resolution, 58±59

connection, 41±43, 298
Amari's connections, 220, 224±225,
299

geometric af®ne, 40, 224

large family of, 46
metric, 299, 305
non-metric, 43

Levi±Civita, 43±45, 47±48, 188,
250±251, 298

Riemannian, 252

ÿ1-connection, 45, 48, 52., 307
0-connection, 45, 48, 52, 306, 309
�1-connection, 44, 52, 58, 305±306

�1/3-connection, 52, 309, 312
�-connection, 46, 48, 252, 295, 299

cotangent bundle, 29
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cotangent ®eld, 29
cotangent vector, 34, 37
covariance, 298
covariant derivatives, 224, 225

Cramer±Rao theorem, 58, 186
critical points, 195, 248, 253
critical region (CR), 195, 230±234, 237,

239, 241, 243, 247, 249, 264±265,
269, 276±277

best (BCR), 234, 236±238, 241±242,

254, 263, 265, 277
critical value, 248, 269, 277
curvature, 40, 47, 50, 56, 188, 230±232,

242±244, 283±284
constant negative sectional, 190
Efron's statistical, 58
elliptic, 189±190

embedding, 54, 58, 60, 223
Euler±Schouten, 190
Gaussian, 189

geodesic, 298
global, 230±233, 254, 257, 265, 269,
272±273, 278

hyperbolic, 184, 189±190
intrinsic, 50, 52, 55
local, 233
model, 233

parabolic, 189
parameter-dependent, 50
sectional, 189, 190

statistical, see statistical curvature
`straight', 298

curved boundary, 233, 239

curved statistical spaces, 1

differential geometry, 1, 7, 86, 184.

294, 295
differential operator, 25, 27, 110
directional derivative, 25, 40

distribution, 214
bivariate normal, 256
exponential, 200

families of, 295
®xed, 295
Gaussian, 190, 192, 196, 208

half-normal, 200, 201
income, 206
induced, 295
inef®ciency, 201, 209

limiting chi-squared, 131±133
log-normal, 206
multivariate, 190, 296

normal, 190, 199, 206, 209
true, 294
truncated normal, 200, 201

distribution functions, 19, 127
divergences, 217±220
�-divergences, 225±229
average, 226

dual spaces, see under space
duality, 5, 7, 47, 48, 307, 308, 309, 311
duality theorem for statistical

manifolds, 48

earnings frontiers, 185, 196, 200±201,
204±205, 210

Edgeworth expansions, 283

ef®ciency, 163, 173, 181±182
Efron curvature, 58, 242, 262, 284,

291±292

Einstein convention, 31, 33
Einstein summation, 8, 9, 27
elementary zero function, 171±175,

177, 178
bounded, 176

embedding metric, 31, 36
empirical likelihood (EL), 119±120

ratio test, 130
encompassing, 73, 76
analysis, 79

automatic, 65, 77, 80
mutually, 74
parsimonious, 65, 73±74

properties, 74
relationships, 73, 75, 76, 79
general conditions, 73

enveloping region (ER), 242, 264, 269,
271, 277

equality constraints, testing 281
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estimation,
in econometrics, 119
one-step ef®cient procedures, 182
positive semi-de®nite consistent, 122

semi-parametric, 119
techniques, 151

estimators, 54±55, 152, 171, 181

Aitken GLS, 179
consistent, 55, 161, 170, 175±176
ef®cient, 152, 170, 174, 178

ef®cient maximum empirical
likelihood (EMELE), 125±26,
130±131, 135±136

empirical likelihood (EL), 121
empirical likelihood cumulative

distribution function (ELCDF),
127

generalised method of moments
(GMM), see generalised method
of moments estimator

inef®cient, 181
instrumental variables (IV), 179
Lagrange multiplier, see Lagrange

multiplier
maximum likelihood, see maximum

likelihood estimator
maximum empirical likelihood

(MELE), 120, 123
of model parameters, 181
one-step, 182

ordinary least squares (OLS), 50,
162, 168, 171, 178±181

positive semi-de®nite consistent, 126,

132, 133
residuals augmented least squares

(RALS), 181, 182

root-n consistent, 4, 153, 161, 163,
165±166, 181

saddle-point, 123
Euclidian distance, 259

Euclidian geometry, 9, 50, 51
Euclidian inner product, 31
Euclidian space, 16, 191, 250

open set, 17
subspaces, 17, 78

exogeneity, role of, 1
exogenous variables, 21
expectations, 172, 175, 179, 266, 295
unconditional, 173, 178

expected geometry, 39, 47, 300
expected Fisher information matrix,

see Fisher information

expected parameters, 11

families, 8, 9

ARMA, 14
Bernoulli, 9, 300, 309
binomial, 9, 300

constant covariance multivariate
normal, 308, 309

continuous, 301

curved exponential, 7, 8, 12±15, 17,
20±21, 36, 39, 55, 57±59, 222, 232,
299

exponential, 21±22, 49, 234, 236,
300, 306

full exponential, 7±12, 20±21, 35±36,
38±39, 46, 48, 52, 56±57, 59±60,

294±295, 299
gamma, 9, 300
geometric structure of, 22

linear exponential, 77
multinomial, 9
non-exponential, 15, 232

normal, 9, 300
one-dimensional, 56, 299, 306±307
one-parameter, 157, 236
one-parametric exponential, 188,

237
p-dimensional parametric, 295
parametric, 8, 12, 15, 28, 44, 46

parametric statistical, 16
Poisson, 9, 300, 309, 312
regular, 9

two-parameter, 188, 211
Fisher information, 23, 35±39, 44±45,

52, 57±58, 60, 87, 112, 224±245,

250, 252, 267, 273, 297, 306±307
¯atness, 40, 47±48, 306
form,
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bilinear, 30
component, 31
quadratic, 30

function,

average, 184, 200, 201, 202
contrast, 218
distribution, 290

estimating, 181
expected likelihood, 301
exponential mean, 117

frontier, 184, 199, 202, 209
joint distribution, 286
likelihood, 296

log-likelihood, 289, 296
loss, 215
mean, 117
method of estimating, 152

non-decreasing af®ne, 301
non-exponential, 117
non-linear, 175±176

zero, 179
observed likelihood, 297, 301
observed score, 301, 304±305

power, 249, 281±284, 286, 291
probability, 295
production, 199
score, 194, 296, 300±301, 305±306

standard normal distribution, 283
stochastic, 39

Gauss±Markov theorem, 178
generalised linear models, 12

generalised method of moments
estimator (GMM), 119±121, 123,
125, 130, 133±134, 136, 144, 152,

171, 178, 181
geodesic distance, see Rao distance
geodesic orbits, 251

geodesic test, see under tests
geodesics, 32, 40±41, 43, 188, 190,

299

geometric af®ne connections, 40
geometric theory, 8, 23±24
of connections, 40

geometry of transformations, 5
German socio-economic panel (SOEP),

197
global coordinate chart, 89

Godambe's estimating functions, 153,
171

Hellinger distance, 219
Hessian, 282±283, 285, 288
hetero-, homoskedasticity, 178±179,

240
higher-order asymptotic expansions, 1
Hilbert manifold, 151±153, 156, 159

Hilbert space, 65, 69, 74, 79±80,
151±157, 159±160, 162, 166,
172±173

ef®ciency and robustness in, 160±163
in®nite-dimensional methods, 151,
154

Small and McLeish's, 152

Hilbert submanifold, 152
human capital, 184, 196, 199±201, 203,

205, 210

theory, 196, 199
hyperbolic geometry, 190, 208
hypotheses,

nested, 134
parametric null, 134
seniority, 204

hypothesis testing, 230±231, 277

identi®ability, 174
identi®cation condition, 173

inef®ciency, 205, 209±210
inequality restriction, 70±71, 101
inference,

conditional, 39
in curved families, 50, 52
encompassing in, 1

likelihood based, 1, 22
method-of-moment based, 1
statistical, see statistical inference

information criterion, 66
information loss, 56
information recovery, 58
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information theoretic approach, 120
insurance strategy, 185, 205±206,

208±209, 211
intersection points, 304

intersection region (IR), 265, 269, 270,
271

invariance, 35

invariant de®nition of angle, length, 37
isocircles, 191±192, 206, 208, 210±211
isometry, 188

isomorphism, 34, 81

Jeffreys distance, 273

Kullback±Leibler distance, 259, 273
Kullback±Leibler divergence, 49, 219
Kullback±Leibler information, 49, 182,

258
kurtosis, non-normal, 181

Lagrange multiplier, 5, 122±123, 129,
131, 135±137

Lebesgue measure, 86

Legendre transform, 237
Levi±Civita connection, see under

connection

likelihood function,
semi-parametric 122

likelihood ratio, 281, 290

limiting distribution theory, 79, 285
limiting likelihood ratio, 285, 288

Mahalanobis distance, 184

manifold, 7, 8, 16, 27, 30, 34, 38, 44, 48,
85, 88±89, 218, 250, 295

�-¯at, 299
canonical, 239, 267
curved, 24, 29, 188, 252, 298
d-dimensional, 235

direction in, 25
embedded, 16±17, 20, 21, 277
enlarged, 223

expectation, 239, 241, 266±268, 270
expected geometric statistical, 52
extended, 223

®nite-dimensional differential, 151
¯at, 47
Hilbert, see Hilbert manifold
in®nite-dimensional, 152

(n±r)-dimensional, 18
r-dimensional, 24
smooth, 25

statistical, see statistical manifold
sub-, 17±18, 20, 160, 172
totally ¯at, 307±308

mapping, 74±76, 81
parameter-de®ning, 160, 163,
170±172

martingale,
condition, 177
difference process, 123
property, 158±159, 164, 174

triangular array, 158
maximum likelihood estimator (MLE),

22, 49±50, 56, 61, 85±86, 93, 117,

119, 122, 160, 214, 220, 222, 227,
253, 255, 263, 266, 283, 298, 300,
305, 307±308, 313

method of steepest descent, 201
metric, 31
Fisher, 219, 224
invariance properties of, 32

observed information, 38±39
PoincareÂ , 190
preferred point, 37±39

metric tensor, 30, 32, 35, 38±40, 44±45,
218, 298, 306

Fisher information, 298

Riemannian, 187
minimal suf®ciency, 235
minimization problem, 66

minimum suf®cient statistic, 39, 236
misspeci®cation tests, 120
MoÈ bius distance, 190
model,

COMFAC, 14±15, 70
conditional, 75
congruent, 64

constrained, 170
curvature properties of, 277, 278
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curved, 238
curved exponential, 232, 235
encompassing, 64
exponential, 235, 245, 312

exponential regression, 85, 117
®rst-order autoregressive (AR(1)),
20, 281

®rst-order moving average (MA(1)),
281, 287±288

frontier, 196±197, 201, 204±205, 210

general, 65, 79
human capital, 196±197, 201,
204±205, 210

linear, 10, 21, 50, 301
linear exponential, 262
linear regression, 171±172, 178
linear simultaneous equation, 9

misspeci®ed, 49
mutually encompassing, 64
nested, 66, 70, 73, 77, 80

non-linear regression, 50
non-nested, 65±67, 71, 73
one-parameter linear exponential,

232, 236±238, 263
ordinary least squares (OLS),
204±205

parameterised, 152, 160, 168,

173±174, 176, 276
parametric probability, 65
parametric statistical, 281

parsimonious encompassing, 64±65,
73

PoincareÂ , 190

regression, 179
regular parametric, 214, 216±217
restricted, 65±66

seemingly unrelated regressions, 232
simple, 80
simultaneous equations, 179
speci®cation, 32

sphere, 17
statistical, 186
stochastic frontier, 199

time-series, 232
model size, 169

modelling strategy,
general-to-simple, 73, 80

moment conditions, 119, 123±124, 128,
130±132, 136

test for over-identifying, 130
moment indicators, 124
moments, 19, 130, 172

multivariate calculus, 27

nesting, 65, 69±70, 72
Neyman±Pearson Lemma (NPL), 232,

234, 236, 238, 282

Neyman±Pearson theory, 282, 285
non-Riemannian geometry, 190, 252
non-stationary time-series analysis, 281

normal errors, 169, 171, 179
normal quantile scale, 26, 288, 291
numerical integration, 113±114

observed Fisher information, see
Fisher information

observed geometry, 39, 47
observed information metric, see under

metric

optimal instruments, 178
optimising behaviour, theory of, 199
Ornstein±Uhlenbeck process, 285

orthogonal projection, 1, 65, 69, 74,
77±80, 82

over-identifying moment conditions,
127

p*-formula, 60±61

parameter,
�-af®ne, 299
canonical, 234, 238

expectation, 256
explicit, 181
mean value, 301

natural, 312±313
nuisance, 37, 170, 281

parameter effects, 50, 52, 55

parameter orthogonality, 37, 67, 69, 77
parameter space, 9, 20, 76
canonical, 254, 256
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parameter space (cont.)
®nite-dimensional, 160
natural r-dimensional, 12
normal likelihood, 311

restricted, unrestricted, 67, 70
vector, 160

parameter values, 277

parameterisation, 11, 25, 27, 50±51,
160, 218, 223, 241, 297, 299, 304,
309

alternative, 304
choice of, 7, 295, 308
covariance stabilising, 52

directed likelihood, 52
in econometric models, 5
expectation, 51
formulae, 26±27

general, 304±305
geodesic normal, 51±52
invariance to, 1

mean value, 300, 305
natural, 46, 51, 301, 304±305, 308
non-af®nely equivalent, 301

quadratic log-likelihood, 52
zero asymptotic skewness, 52

parametric families, see under families
parametric restrictions, 134

Pitman drift, 156
Poisson regression model, 11, 13
power, 262, 281

power curve, 283, 287±288, 291±292
power envelope, 231, 234, 240, 242,

264, 282±286, 288, 291±292

power formulae, 284
power properties, 233, 262, 288, 291
prediction, goodness of, 223

prediction intervals, 216
prediction limits, 215
predictor,
optimal, 215

point value, 215
preferred point geometry, 37, 38, 295
projection, 42, 77±78, 175

projection theorem, 48
pseudo-true value (PTV), 137

Pythagoras, theorem of, 7, 49

Radon±Nikodym theorem, 154

random walk hypothesis, 271
Rao distance, 48, 184, 186±187,

190±191, 194±195, 205±206,
208±211, 231, 250, 277

theory, derivation, 185
tests, 194±196, 206, 210±211

recursive formulae, 92, 109

regularity conditions, 174
reparameterisation, 29, 70, 297±298,

313

isomorphic, 67
non-af®ne, 305
non-linear, 10

repeated index convention, 216
repeated samples, 21
Riemannian curvature tensor, 47, 51
Riemannian distance, see Rao distance

Riemannian geometry, 184, 188
Riemannian metric tensor, 188
Riemannian tensor, 189

robustness, 162±163, 168±169, 173,
181±182

Roy's union-intersection method, 277

saddle-point method, 60, 140
sample size effect, 312±313

scalar product, 224±225
score vector, 22±23, 28, 37±38, 132,

296±297
serial correlation, 269, 272±273

sigma-algebras, 178
simultaneous equation model, 10
size condition, 237

skewness, 115
smoothed log EL criterion, 124,

128±129, 132, 134, 137

smoothed moment indicators, 123
space,
af®ne, see af®ne space

auxiliary, 54±55
canonical parameter, 256
curved sub-, 20
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dual, 26, 28, 34
embedding, 26, 31, 40, 44, 252
Euclidian, see Euclidian space
Hilbert, see Hilbert space

isomorphic, 26
linear, 74
parameter, 17

tangent, see tangent space
vector, 16±17, 26, 34,

speci®cation tests, 134

standard econometric model,
geometry of, 16

standard regularity conditions, 304

standard problems, second-order
theory for, 291

standard second-order theory, 292
statistic, 7

ancillary, 23, 59, 214, 217
asymptotically normal suf®cient, 283
canonical, 9, 273

Cox-type, 138±139
empirical likelihood (EL) minimum
chi-squared, 133, 136, 145

empirical likelihood ratio (ELR),
121, 129, 131±132, 135, 145

empirical likelihood (EL) score,
130±133, 135±136

empirical likelihood (EL) Wald ,
129±133, 135±136, 145

general, 50

linearised, 139
minimal suf®cient, 232
minimum chi-squared, 136

predictive suf®cient, 214
score, 23, 24, 129, 133, 136, 281, 290
suf®cient, see suf®cient statistic

Wald, 281
statistical curvature, 1, 4, 57±58, 190,

230, 281
statistical inference, 151, 230

geometrical basis of, 1
statistical manifold, 7, 19, 24, 28±29,

44, 46±47, 50, 151, 251

geometrical structure of, 30, 48
mathematical theorems of, 47

statistical metrics, 35
statistical noise, 200
statistical theory, 1
geometric aspects of, 21

stochastic differential equation, 285
stochastic limits, 285
straightness, 40, 43, 238

subfamilies, curved, 12
submersion, 161, 174
subspace, 161,

ef®cient, 181
®nite-dimensional ef®cient, 181

suf®ciency, 294

suf®cient conditions, 77
suf®cient statistic, 12, 59±60, 232, 290
r-dimensional, 12

symmetry, 49, 114

tangent,

information, 181
zero, 156

tangent bundle, 29
tangent directions, 26

tangent ®eld, 29, 41±42, 53
tangent space, 22, 24±25, 26, 27±28,

30±31, 34, 37±38, 39, 42, 53, 152,

155±156, 159, 168, 181, 225, 296,
304

1-representation of, 186

tangent vector, 24±30, 40, 42, 298
conditional covariance of, 39

Taylor expansion, 23, 29, 141±144,
146±148, 174, 246

Taylor's theorem, 29
tensor, 32, 37
analysis, 298

calculus, 187
components of, 33
contravariant, 33±35

covariant, 33±34
metric, see metric tensor
Riemann curvature, see Riemannian

curvature tensor
rule, 41
skewness, 46
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tensor (cont.)
1-tensors, 297
2-tensors, 298

terms, 103±104, 106, 109

tests,
ÿ-optimal, 241
Dickey±Fuller, 287

®rst-order ef®cient, 231
geodesic, 5, 43, 230±231, 233, 239,

248±249, 251, 253, 266. 268±269,

273±274, 276
Lagrange multiplier (LM), 230±231,

233, 239±240, 245, 264, 270, 276

likelihood ratio (LR), 230±231,
233, 239±240, 254±255, 263, 270,
313
failure of, 264, 266, 276

locally best (LB), 242, 244±245
locally most powerful (LMP),

242±245, 248, 254, 264

maximum likelihood ratio (MLR),
283

Neyman±Pearson (NP), 286±288,

291
one-sided parameter, 281
optimal properties of, 276
point optimal (PO), 230, 231, 233,

238, 239±241, 243±244, 255, 264,
268±270, 276

score, 37, 132, 245, 292, 312

size of, 262
uniformly most powerful (UMP),

232, 234, 236±238, 241, 243, 264

Wald, 5, 129, 230±231, 233, 238±241,
245±249, 251, 253, 264, 266, 268,
270, 273±274, 283, 312

total ¯atness, 308±309

transformation, 177, 190
rule, 31, 32, 33
2-tensor, 39

triangle inequality, 49
triangular restriction, 72
true expected score function, 311

true parameter value, 289

unit roots, 292
non-standard, 284
testing for 265, 270, 272, 281

vector,

coordinate, 188
cotangent, see cotangent vector
of coef®cients, 91

difference, 260±262
®bre bundle, 225
of tangents, 173
tangent, see tangent vector

unique normal, 237

yield±risk analysis, 207
yokes,
normalized, 218

theory of, 39

þ-duality, 5, 311, 314
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