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Overview

Homotopy theory reveals certain topological invariants of a path con-
nected space M through investigation of continuous maps from S™ into M.
These maps are naturally partitioned and form a group. This in turn par-
titions the category of path connected spaces into equivalence classes by
identifying spaces that share identical group structures. This lecture will
introduce the powerful idea of covering maps and use them to discover some
elementary results about 7, the “fundamental group” of a space, consisting
of continuous maps S' — M. We will also apply results to the special cases
where M is a group and where M is a Lie group.

Definitions

Let M, N be topological spaces. A path in M is a continuous function
from I = [0,1] into M. M is path connected if there exists a path con-
necting any two points of M. Let f,g: M — N. A homotopy & from f to
g is a continuous transformation of f to g. Specifically we need

b:IxM—N where ®(0,z) = f(z), ®(1,z) = g(x)

and ® is continuous, of course. (Equivalently, we can define a homotopy as a
path in the function space given with the compact-open topology). Through-
out this lecture let M be a path connected topological space. A loop in M
at xzg is a path ¢ with

c(0) = ¢(1) = xo.

(Equivalently a continuous function S — M, 1 + z7). When we speak of
path homotopies and loop homotopies we mean these as per the defini-
tions above with the added constraint that the end points remain fixed (see
exercise 3). We will now investigate loop homotopies.

Group Structure Emerges
Let Q(M,x) be the loop space at x. Define an operation x on Q(M, z)



called concatenation as follows.
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Now consider the relation ~ on Q(M, z) such that f ~ g when there exists
a homotopy from f to g (we say f is homotopic to g). ~ is an equiva-
lence relation. Then Q(M,x)/ ~ is well defined and equivalent to the path
components in Q(M, x).

Theorem 1. x induces a group operation - on G = Q(M,x)/ ~.

Proof. Let fo, fi belong to some class [f], and go, g1 to [g], and let ¢, @, be
respective loop homotopies. * induces an operation on loop homotopies as
follows.
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Which gives the desired homotopy

Dy * @9(07t) = fo *gO<t)7 Dy x (I)g(l,t) = h *gl(t)

and shows * is independent of choice of class representative.
With a moments reflection the group operations should be evident.

The Fundamental Group  Let m (M, z) be the group Q(M, x)/ ~ with
operation - induced by .

Theorem 2. m(M,x) is isomorphic to m(M,y), for all x,y € M.

Proof. We show that any path p from z to y determines a homomorphism
W, : (M, z) — m(M,y) with inverse. Let W,([f]) = [p~'][f][p] where [p] is
the homotopy equivalence class of the path p. Then

U, ([flg)) = [p~"1LAlgllp] = [~ APl lgllp] = (1) s(l9])

and we have a similarly defined homorphism Y,-1 going back from m (M, y)
to (M, z) along [p~!], and

Tp-1 0 U, ([f]) = [l APl "] = [f]
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SO
Tpr 0 Wy = Idr (x,0)

Since VU, has a left inverse it is injective. A similar argument shows
Wy o Ty = Idr (xy)

and hence W, is an isomorphism.

Quiz:

What is 7 (S?)?

Proof?

Maybe there is a little surprise here.

Covering Spaces

Given a map F' between topological spaces, we say that a set U in the range
is evenly covered by F if U is open and U’s fiber F~1U is a disjoint num-
ber of homeomorphic copies of U, and F|y is such a homeomorphism. A
covering map is a surjective map p : &£ — M between topological spaces
such that every point in M has a neighborhood evenly covered by p. In such
a case we call F a covering space.

Lemma. Fizing a point eg € p~Y(x), and given a loop f in M we can con-
struct a unique path f in E beginning at eq, such that the following diagram

commutes.
e
p

]?M

We refer to f as the lift or lifted path of f, by p.

Rough sketch. Cover the image of f by evenly covered sets {U}. By compact-
ness reduce to a finite subcover {U;}. (Order these locally along the image
of f using the loop parameter.) Now, by our local homeomorphism from U;
to a neighborhood about eg we have a unique begining of a path. Using the
fact that U; N U411 contains a point evenly covered by both neighborhoods,
glue the lifted path together in this unique bf way. -



Lemma. Loop homotopies in M lift to path homotopies in E, and path ho-
motopies on paths between eg, e; € m1(x) descend via p to loop homotopies
on loops at xy.

Rough sketch. Let U be a loop homotopy from f to g, both loops at zy. By
the local homeomorphisms, given some j € (0,1) there is an epsilon € such
that W(j,¢) and W(j £ €,¢) are all within the same cover of evenly covered
sets, and so have the same end point. Let A C I be defined by

A={sel|U(s1)=f(1)}

Then by the above argument A is open in I. But by continuity of the lo-
cal homeomorphisms and ¥, A is closed. Hence A = I. As for homotopies
on F descending to M, this is just a consequence of the continuity of p. -

Caveat LectorMunkres book Topology contains generously detailed proofs
of these lemmas, for example making use of the Lebesgue number lemma. 1
don’t see a need for this, so there’s probably hidden subtlety here.

Conclusion

Consider the implication of Lemma 1 and 2 when F is simply connected.
For every point e € m 'zy we have exactly one homotopy class of paths
connecting eg to e, which descends to a distinct loop homotopy on M. Thus
the fundamental group has the cardinality of a typical fiber, and in fact in
the case of topological groups there is much more structure here.

Theorem 3. Let (G) be a topological group. Define an operation - on Q(G,e)
by
(f - 9)(t) = f(t)g(2).
a) - is well defined on Q(G,e)/ ~, the homotopy classes of loops at e.

b) Concatenation, x, and path product, -, are identical on Q(G,e)/ ~.
¢) The fundamental group of G is abelian.

Proof. a) Let fo, f1 € [f] and go, g1 € [g] with @, @, the respective homo-
topies. We must show that fo-go ~ f1-g1. Let ®(s,t) = Qs(s,t) - Dy(s,t).
b) by a) we can write

[f]-[g] = [f xe] - [exg]



where e is denoting the constant loop. But this is clearly equal to [f*g]=[f][g].
¢) We must find a homotopy from f(t) - g(t) to g(t) - f(t). Try

®(s,t) = f~'(s,t) f(t) g(t) - g7 (s,1) A

In a more extensive lecture we would see that a covering space for a topo-
logical group has a unique (up to some symmetry) group structure that turns
the covering map into a homomorphism, that the fiber over e is contained in
the center of the covering group, and that the action of the covering group
on itself that leaves the fiber invariant is a group isomorphic to the fiber
subgroup. In this direction, we would want to include that a simply con-
nected covering space E of some space X is unique up to homeomorphism
and that whenever Y covers X there is a covering map £ — Y such that it
composes to give our covering £ — X. I want to discuss the existence of
simply connected covering spaces. Such a covering space is call a universal
covering space.

Proposition 1. For M areasonably' connected topological space there exists
a universal covering space.

Cruz. We will construct the covering space. Let A(M,z) be the space of
paths begining at z. Let ~ be the usual path homotopy relation.We will
show that A(M,z)/ ~ can be given the topology of M, locally, and that
A(M,z)/ ~ is simply connected. Surjectivity will follow from path connec-
tivity of M. Now, let f € A(M,z) be a path to y € M and let U be a
neighborhood in A(M,z) about f. There exists a neighborhood about y
with the property that for any z € U there is a path g € U connecting x
to z,and a path in A(M,x) connecting f to g. This gives us a local surjec-
tion from U onto U. By local simple connectedness, when we quotient out
A(M,z) by ~ we get injectivity, so have a local bijection with U around
the point [f] € A(M,z)/ ~. Next, we need that the induced topology on
A(M,x)/ ~ is equivalent to M’s topology. This is left to the reader. Finally,
that A(M,x)/ ~ is simply connected follows from this construction. When
we form a loop in A(M,x) ~, we are defining the boundary of a D? disc, in

lsemi-locally simply connected should be enough, at any rate anything resembling a

manifold or variety is okay. For sake of simplicity say M is path connected.



M. The contraction of D? in M corresponds to the contraction of our loop
to a point in A(M,z)/ ~. 1 will attempt a convincing illustration.
A Few Exercises on Loop Quotients

Exercise 1. Let Q(R?,0) be the loop space at 0 of the plane, endowed with
the concatenation product .

a) Show that there exists no identity element.

b) Show that fxg=gxf = f=g.

c) Prove that for two loops f, g, not both equal to the trivial loop, we cannot
have f g = f ... however,

d) allowing f to be discontinuous at a single point this can be achieved, and
such that neither of f, g is the trivial loop.

Since L fails to be a group, we might ask ourselves what is the weak-
est quotienting or modifying we need to do to get a group structure out of

Q(R?,0).

Exercise 2. Let ~ be the relation on Q(R?,0) of loop homotopy within the
images of the loops. That is, let f € Q(R? 0) and let f denote the image
of fin R% Let f be the set of loops with image in f and homotopic to f
within this subspace. Then f ~ g whenever fN§ # @. Show that x is a well
defined group operation on Q(R? 0)/ ~.

Exercise 3. Let X be a path connected topological space with some dis-
tinguished point xg. Define a (courser than normal homotopy) relation ~
where the point f(0) = f(1) is itself allowed to loop away from zy and then
back. More precisely, Let T(X) = {f : S' — X) and define the inclusion
L Q(X, x9) — YT(X) according to the usual correspondence

Isz— e eSSt cCt

Now for f,g € Q(X,x¢) let f ~ g if o(f) and ¢(g) are connected by a path in
T(X). Show that ~ is well defined on (X, z¢) (this is trivial). Provide an
example where the quotienting is not trivial, (i.e., is not equivalent to normal
loop homotopy). Can the quotient in such a case be a group? Provide an
example where the quotient is a group or prove it cannot be one.



