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INTERPOLATION IN LIE GROUPS* 

ARNE X/IARTHINSEN~ 

Abstract. We consider interpolation in Lie groups. Based on points on the manifold together 
with tangent vectors at  (some of) these points, we construct Hermite interpolation polynonlials. If the 
points and tangent vectors are produced in the process of integrating an ordinary differential equation 
in terms of Lie-algebra actions, we use the truncated inverse of the differential of the exponential 
mapping and the truncated Baker-Campbell-Hausdorff formula to relatively cheaply construct an 
interpolation polynomial. 

Much effort has lately been put into research on geometric integration: i.e., the process of integrat- 
ing differential equations in such a way that the configuration space of the true solution is respected 
by the numerical solution. Some of these methods may be viewed as generalizations of classical 
methods, and we investigate the construction of intrinsic dense output devices as generalizations of 
the continuous Runge-Kutta methods. 
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1. Introduction. During the last few years there has been a growing interest 
in geometric integration, which in particular includes symplectic integration methods 
and Lie-group methods. Since many differential equations either explicitly or implic- 
itly have solutions that evolve on some manifold (e.g., through constraints or invari- 
ants), it is vital to  the qualitative behavior of the numerical solution that it is also re- 
stricted to  the manifold. To accomplish this in a natural way, various approaches have 
been proposed and a number of numerical methods are constructed. Among these 
are the methods of Crouch and Grossman [2], blunthe-Kaas [22], Leimkuhler and 
Patrick [15], Dieci, Russell, and van Vleck [6], Eich et al. [7], Iserles and N ~ r s e t t  [13], 
Zanna [36], and Sanz-Serna with coworkers [32, 311. Some of the Lie-group methods 
are implicit, and the nonlinear equations may be solved with the Newton iteration 
schemes proposed by Owren and Welfert [26]. 

The geometric integration methods, as well as the traditional Runge-Kutta meth- 
ods, are generally designed to approximate the solution of a system of ordinary dif- 
ferential equations on a mesh. The size of the mesh will typically be determined by 
some stepsize selection algorithm, and the steps will in general be chosen as large 
as possible constrained by tolerances to accuracy. Sometimes, however, the solution 
is required at  points not included in the mesh, and an effective device for output of 
results a t  randomly chosen points within an interval should be provided. Some of the 
Lie-group methods are directly applicable only to Lie-type problems (e.g., the Mag- 
nus series methods [13]), but they may be extended to the general case by means of 
dynamic iteration or as in [37]. This again introduces the need for an approxin~atioii 
to the solution at intermediate points in the integration interval. 
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In this paper we discuss variants of Hermite interpolation in Lie groups. We also 
consider continuous extensions to some of the new geometric integration methods by 
equipping them with continuous weights. 

It should be mentioned that Zanna [37]developed collocation and relaxed collo- 
cation methods for the Fer and the Magnus expansions. While Zanna's motivation 
apparently was to construct new integration methods, the motivation of this paper is 
to understand how to construct interpolants in the generalized setting of Lie groups. 
An analysis of the collocation idea is presented in section 3.3. 

The rest of this paper is organized as follows. Section 2 is devoted to the develop- 
ment of a Hermite interpolation procedure. In section 3 we equip some of the recently 
developed Lie-group metliods with contiiluous extensions. Finally, in section 4 we 
briefly discuss a procedure to  be used with discrete integrators that are based on 
Lie-algebra actions. 

2. Hermite interpolation in Lie groups. In this section we construct a poly- 
nomial that interpolates data given as points on a matrix Lie group and tangent 
vectors in the tangent space at  the points. The values may be obtained from discrete 
integration of an ordinary differential equation on a Lie group, G, say, but this is 
not a requirement; we do not use information about vector fields on G or particular 
integration schemes. 

The setting is given by the following commutative diagram, where T denotes 
projection, denotes projection onto the first component, and R, : G -t G is 
defined by R,(z) = z . y, where . is the group multiplication (see [18]). 

dexp TR 
T g ~ g x g - G x g - T G  

Consider the map A, : g + G defined by 

A, = Ry o exp, 

where y E G is fixed. There exists a neighborhood U C G around y in which A, is 
invertible. Hence for z E U we obtain a local coordinate system 4, : G + g, given by 

The coordinates of this mapping are usually denoted by canonical coordinates of the 
first kind. 

We want to compute the tangent mapping of this coordinate chart. Note that if 
z = X,(u) and 2: E g then 

Therefore, TX, : Tg .v g x g + TG. Hence, if we right trivialize elements in TG, we 

get 

TX, (u,v) = (z, dexp, (v)) E G x g. 
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It readily follows that the mapping Tq5, : G x g -+ Tg is given by 

T&(z, w)  = (u,  dexp,' (w)) = (u,v) 

when u = & ( z )  and dexp,(v) = ,w. 
Assume now that we have available k + 1 triplets, (ti, yi, yi) E R x G x g, i = 

n,  . . . , n +  k .  The tangent vector a t  the point yi is given by yi = We choose T,R,%(5). 
a reference element among the data, (t,, y,, &),say. Relative to this reference element 
we compute the "transformed" quantities ui = log(yiy;') and vi = d e ~ ~ ; ~ l ( ~ ) ,=i 
n ,  . . . ,n + k .  A Hermite interpolation polynomial, p(t)  E g, may now be computed 
based on the 2k + 2 elements 

( tn ,o) ,  (ti, ui) ,  i = n + 1, .. . , n  + k, 

and 

-
n Y (ti, vi), i = n + 1 , .. . , n + k.  

Here, (ti, u,) E R x g correspond to what usually is thought of as points and (ti, vi) E 
R x g correspond to the (translated) derivatives at the points. 

We want to compute the unique polynomial p : R + g of degree 2k + 1 such that 
p(ti)  = ui and p(ti)  = vi, i = n,  . . . , n + k. By using standard notation from the 
theory of divided differences (see, e.g., [30]), we have the divided difference 

and the polynomial is, by Newton's interpolation method, given by 

since u, = 0. It  is well known, however, that it is better to use a recurrence re- 
lation to compute f [. . .] than equation (2.1) directly. Given the divided differences 
f [tj+l,:. . ,tj+e] and f [tj , . . . , t,+e-11 of order l- 1,we compute f [tj ,  t j+ l , .  . . ,tj+!] 
of order & as 

Initially, we have that f [tj] = uj ,  j = n ,  . . . , n +  k. As in classical interpolation theory, 
we define f [tj ,  tj+'] = vj when t j  = tj+'; hence Hermite and Hermite-Birkhoff [16] 
interpolation readily follow. 

Assume now that p(t)  is computed. As will be shown in Theorem 2.1, an approx- 
imation to  an element in G at time E [t,, tn+k] is given as 

Accordingly, the element (y(t"), y(tx)) E G x g is approximated by 
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THEOREM The numerical approximation (2.2) to (y(tx),C(i)) E G x p, t" E2.1. 
[t,, t,+k], based on interpolation of 2k + 2 points, (y(ti) ,  Q(ti)) E G x 8, belongs to 
G x p. The order of approximation to y(i)  is at least 2k + 1. 

Proof. The interpolation polynomial p(t)  belongs to p for all t and (p(t) ,p(t))  E 
Tp. Since TX, : Tp + G x p, the first part of the theorem trivially follows. 

By classical theory, the order of the interpolation polynomial in p is 2k + 1. The 
order of approximation is defined through expansion in Lie series around a point, and 
since X is a smooth mapping, the order on G x p is at least as high as the order in 

TP. 	 0 
The above procedure can roughly be explained as follows. Assume we are given 

points in a Lie group and tangent vectors in the tangent space at  (some of) the points. 
Through a suitable mapping, T4 ,  we change coordinates and express the information 
in the linear space Tp. In this space we can apply classical interpolation techniques, 
and the function X maps the result back to  the Lie group. By requiring that p(ti)  = ui 
we make sure that the interpolation conditions in G are satisfied: 

Furthermore, by requiring that p(t,) = vi we interpolate the prescribed tangents at 
the respective points in G: 

Example 2.2. When solving the nonlinear problem Ij(t) = A(t, y (t))y ( t ) ,  y (0) = 

yo, with the Magnus series method developed in [13], we may employ waveform re- 
laxation. This gives us the iteration scheme 

which can be integrated with the linear Magnus series method of order four, say. But 
we then need to approximate y(t, + c,h), i = 1 , .. . , s, with sufficiently high order. 
Given (y (t,), Q(tn)) and (y (t,+l), Q(tn+1)), we can construct a third order approxi- 
mation to  the solution at  the quadrature points by the above described procedure. By 
computing the transformed quantities u, and v,, i = n, n +1,we get the interpolation 
points: 

The unique polynomial interpolating these elements in p is 

The cost of the above described Hermite interpolation procedure is approximately 
as follows. Let yo be a matrix of dimension m x m. The transformation of k elements 
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consists roughly of one inverse and k multiplications (however, the actual implemen- 
tation may use m3/3 flops (LU-decomposition), m3/2 flops (m  forward elimina- 
tions) plus m3/2 flops (m  back substitutions) to acconlplish this task), k logarithms 
(N 25km3 flops (depending on the method used)), and k dexp-l. The computation 
of p(t)  is relatively cheap, while applying the actioii X requires one exponentiation (N 
25m3 flops (depending on the method used)), one multiplication, and possibly one 
dexp computation. Note that the functions dexp and dexpP1 are infinite sums. They 
need be evaluated o~lly to  the order of the interpolation polynomial, however. For 
order 4, this leads to roughly 8m3 flops for both dexp and dexp-l. 

It is well known that when exponentiating matrices in 50(3), the Euler-Rodrigues 
formula may be applied to  reduce the cost of exponentiation. An even simpler for- 
mula can be deduced for the logarithm of matrices in SO(3). The topic of efficiently 
computing the matrix exponential when viewed as a mapping from a Lie algebra to  
a Lie group has recently been addressed by Celledoni and Iserles [I]. 

3. Generalized integration methods with continuous extensions. We 
next consider interpolants for some geometric integrators. All the integrators inay 
use the Hermite interpolation procedure specified in section 2 in the process of pro- 
ducing dense output when integrating on matrix Lie groups. However, as for classical 
Runge-Kutta methods, we would also like to look for other (intrinsic) ways of esti- 
mating the required values. We will use continuous weights for the methods that have 
coefficients that are based on Butcher tableaus. 

For completeness we include brief descriptions of the methods we coiisider. We 
adopt some of the notation from 122, 91 and we let M be a differentiable manifold 
and G be a Lie group with Lie algebra g. Let A : G x M +M be a (left) Lie-group 
action. A (left) Lie-algebra action X : g x M +M exists with X(v,p) = A(exp(v), p) 
for all v in a neighborhood of 0. Here, exp : g + G is the matrix exponential when 
G is a matrix group. Let the one-parameter family of Lie-algebra actions on a point 
p E M be given as Xp(u) = X(v,p). The Lie-algebra homomorphism A, : g + X ( M ) ,  
where X ( M )  is the set of all vector fields on M, is defined as 

Marsden and Ratiu 1181 define a Lie-algebra action of g on M as a Lie-algebra 
(anti-)homomorphism from g to  X ( M ) .  This corresponds to A,. In this paper, how- 
ever, we use the term Lie-algebra action to denote A ,  according to the definition 
in 1221. 

We assume that there exists a Lie algebra g with a Lie bracket [., .], a (left) Lie- 
algebra action defined as above, and a function f : R x M + g such that tlie ordinary 
differential equation for y(t)  E M can be written as 

This is the generic form of an ordinary differential equation on a manifold, and if we 
assume that yo E M, it follows that y' E TM,,  where T M ,  is the tangent space of 
M at y E M .  Munthe-Kaas [22] proved that the following diagram commutes: 
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The solution of (3.1) is given, for sufficiently small t ,  as y(t)  = X(u(t),p), where 
y(0) = p and u(t)  E g satisfies the differential equation 

When ul and uz, both as elements in g, are sufficiently small, then 

and hence X(ul, X(u2,p)) = X(B(ul, uz),p),  where B : g x g + g is the well-known 
Baker-Campbell-Hausdorff formula (see, e.g., [33, 231). 

3.1. Crouch-Grossman methods. The Crouch-Grossman methods are de- 
scribed in a number of texts; see, e.g., [2, 25, 191. Much of the discussion in this 
section is based on notation and results from [25]. Letting E l , .  . . ,En be smooth 
vector fields (a frame) on the manifold M, we may write a system of differential 
equations relative to the frame as 

where f, : M -+ R are smooth functions. The solution of (3.3) is an integral curve 
y : [0,T] + M of the vector field F. 

The Crouch-Grossman methods make use of sampled versions of F: for any 
p E M we associate a vector field F, = C:=l f,(p)E,, i.e., a vector field with co- 
efficients frozen relative to the frame. Let g be the Lie algebra generated by the 
frame El,.. . , En and let G E Diff ( M )  be the collection of flows on M generated by 
exponentiation of g. Since 

it follows that (3.2) can be written in the form 

Let 1, : M + M be defined as = X(v,p). This is the v-flow through 
p E M .  The Crouch-Grossman methods may now be written as follows: 

Note that these methods only assume that we are able to compute flows of vector 
fields in the linear span of E l , .  . . , En .  

As for classical, continuous Runge-Kutta methods (see, e.g., [ll,27, 28, 34, 351) 
we consider interpolants defined by continuous weights, b(8). The methods then take 
the form (3.4) together with 

It is often natural to  require that bi (0) = 0 and bi (1) = bi, i = 1,. . . , s ,  where bi ,  
i = 1,. . . , s ,  are the discrete weights, so that 

u(p; 0) = yk and u(p; 1)= 
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One step from gk = p with the continuous method may be written as 9 (Qh ,p ) ,  and 
the exact solution of the problem is given by eehFp. Therefore, the uniform order of 
accuracy to which the interpolant approximates the local solution may be defined as 
the greatest integer q > 0 for which 

max I ($ o eehF) - p)) 1 = 0(hq+') for all $ E C"($o \~r(Qh,  (M,R) 
Y € [ O , l I  

The Lie series of $ o eehFp is given by 

$(p) + QhF[S](p)+ iQ2h2F2[$](p)+ . . . + hQichic~ ' [$ ](p) + . . . , 
where Fr+'= F [Fr[$]], r = 1 , 2 , .. .. By identifying elementary differentials, F,  with 
ordered (rooted) trees (see [25]), we can write the Lie series of the exact solution as 

It follows that 

where F, is an elementary differential frozen at  p E M. 
On the other hand, the qth derivative of the numerical solution at  time Bh is given 

by 

where 

with j !  and Bic(t) defined as in section 4 of [25]. By equating (3.7) and (3.8) and 
requiring this condition to hold for each tree of order less than p+2 ,  the next theorem 
follows. 

THEOREM3.1 (continuous order conditions). The approxzmation given by (3.4) 
and (3.6) is of uniform order p if and only z j  

y( t )@(t ;  Q) = for all t E T; u T: u . . . u T;". 

Example 3.2. Consider the following Crouch-Grossman method of order three 
with three stages (left tableau) (see [25]): 
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We can equip it with an interpolant by adding two stages, yielding, e.g., the right 
tableau, where 

with 

This interpolant satisfies b, (1) = b,, z = 1,. . . ,3 ,  and b4(1) = b5 (1) = 0. In addition, 
b,(O) = 0, z = 1,.. . , 5 .  

The cost involved in advancing the numerical solution from t, to t, + h mith an 
s-stage Crouch-Grossman method is roughly s function evaluations and i s ( s +  1)flow 
computations (exponentiation and group multiplication). The cost of approximating 
the solution on the interval [t,, t, +h] mith the continuous extension is roughly given 
by s flow computations. 

3.2. Munthe-Kaas Methods. The llunthe-Kaas methods were developed in 
the trilogy [20, 21, 221. While Crouch-Grossinan inetliods coilsist of coinpositions of 
flows of vector fields on the manifold, Munthe-Kaas methods compose pulled back 
vector fields before computing the resulting action on the manifold. 

The basic idea is to integrate (3.2) using a classical Runge-Kutta method. Since 
the action X is assumed to  be a smooth mapping, the order of approximation to  
the solutioil of (3.1) is a t  least the saine as the classical order of the RungeeKutta 
method. Let us consider the methods in inore detail. For simplicity we assume that 
the manifold M is a homogeneous manifold given by a matrix Lie group G acting on' 
itself by left multiplication. Let the truncated dexp,'(u) function be defined by 

where [., .] is the matrix commutator1 defined by [il,B] = -4B - BA, and Bk is the 
kth Bernoulli number. Note that when q is an even number, the sum runs from 2 to 
q - 2, since the odd Bernoulli numbers are zero. The Munthe-Kaas methods are then 
defined by the following scheme: 

Assuilie that y, FZ y(t,) is available 
for i =  l , 2 , . . . ,  s 

'ui = h C;=l a, k., 
ki = f (tn + czh, yn))
ii= dexpinv(ui, ki, q) 

end 
u = h ~ j s = ~b j i j  


yn+l = X(V, yn). 


'The method is defined for more general groups than matrix groups, but.  for simplicity, we 
restrict ourselves to  matrix groups in this exposition. 
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The coefficients are given by the qth order classical Runge-Kutta method's Butcher 
tableau [I  11. 

It  is obvious that hlunthe-Kaas methods, which are directly based on classical 
Runge-Kutta methods, can use the coiitinuous weights, bi(Q), i = 1 , . . . ,s ,  of the 
underlying continuous RungeeKutta methods. The solution at  an intermediate point 
t, + Qh,I9 E (0, I ) ,  is then given by 

The work needed to find the solution at  one intermediate point is therefore given 
by a linear combination in the Lie algebra and a Lie-algebra action (which is matrix 
exponentiation and multiplication(s) in the case of matrix Lie groups). A new step 
with the hlunthe-Kaas methods, however, costs roughly s f~~nc t i on  evaluations, s Lie- 
algebra actions, and s dexp-'. 

Example 3.3. Consider the classical Runge-Kutta method of order four with four 
stages (left tableau) : 

JVe can equip it with a classical interpolant of order three without adding any stages, 
yielding the right tableau. This interpolant satisfies bi(0) = 0 and b,(l) = b,, i = 

1 , .. . , 4 .  

3.3. Magnus series and Fer expansion methods. The hlagnus series and Fer 
expansion methods were originally developed to  analyze and solve matrix differential 
equations of the form 

with f : R --i RnXn.hlagnus [17] assumed a solution of the form y(t) = exp (a ( t ) )  yo 
and derived a differential equation to be satisfied by a .  Fer [ lo] assumed a solution in 
the form of compositions of exponentials. In [13], Iserles and Norsett analyzed prob- 
lenls of the forin (3.9) along the saine line as hllagnus, and they devised very efficient 
numerical methods based on analysis involving certain rooted trees and multivariate 
quadrature. The analysis has been extended in [12, 141. 

Zanna [37] proposed a may of extending these methods to numerically integrate 
general initial value problems of the form y' = f (t ,  y)y in terms of collocation and 
relaxed collocation. Let Li(t)  be the i th  Lagrangian cardinal polynomial defined on 
a set of s abscissae values, c l ,  . . . , c, E [0, I ] :  
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By letting f, % f (t,+cih, y(t,+cih)), i = 1,. . . ,s ,  we can construct an approximation 
to  f (t ,  y) on the interval [t,, t, +h] through its Lagrangian interpolating polynomial: 

Instead of letting f : IW + Rnxn ,  Zanna considered the general case where f : R x 
G + g and therefore the interpolation polynomial belongs to 0. Note that this is 
interpolation in a linear space and is perfectly legal for that reason. It  does, however, 
not directly give approximations to  the solution in the time-interval of interest, as the 
interpolants described in this paper do. By inserting the approximation pL(t)  into 
the Magnus series or the Fer expansion, numerical schemes of collocation type can be 
derived. 

Having completed a step, the pairs (yi, f i)  = (y (t, +ci h) ,  f (t, +ci h, y(t, +cih))),  
i = 1 , .. . , s ,  are available. We can now approximate the solution in the interval 
[t,, t, + h] as follows. Let 

be the hlagnus expansion (see, e.g., [12, 131) inserted into the interpolant (3.10) for 
f .  By truncating the series, as described in [13], the solution at time t, + Qh is given 
as 

Y(tn + Qh)= X(on(Q; h),  y,) . 

Example 3.4. Consider the fourth order collocation method described in [37, 
Example 4.21. The method is based on the Gauss-Legendre points cl = $ -6& and 

1 &C2 = 5 +7: 

with fi = f (t, + cih, Yi), i = 1,2 .  The step is advanced with 

Having completed the step, the values fi = f (t, + cih, y(t, + cih)),  i = 1 ,2 ,  are 
available. The following interpolant is based on these values and yields an order two 
approximation to  the solution in the interval (t,, t, + h): 
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with 

Note that the interpolant coincides with the discrete integrator at B = 1, i.e., 

and the approximation is hence of order four there. At the midpoint of the interval, 
B = i, the approximation is of order three. To see this, me need a result from [13] 
(see also [37]). 

LEMMA3 .5  (Iserles and Nmrsett). Let e l , . . . , c,, be nodes of quadrature of order 
p. Provided that L is an s-linear form, the quadrature formula 

where 71,E {[I,. . . , &), k = 1,.. . , s - 1, with weights 

is also of order p.  
We proceed by first analyzing the quadrature order q of the scheme 

as a function of B E (O,l] ,  when P is any polynomial of degree at  least q + 1. The 
quadrature is a t  least C3(h3) in the interval. The order three and four conditions are 

The roots of (3.11) are B E {:, 1) while the only solution of (3.12) in the interval of 
interest is B = 1. 

We conclude by applying [37, Lemma 4.21. 
An alternative way of solving the generalized problem y' = f ( t ,y)y using colloca- 

tion is as follows. The idea is similar to the classical collocation idea [ll,241, and the 



- - 

280 ARNE MARTHINSEN 

resulting methods are just the classical collocation methods applied in the setting of 
hlunthe-Kaas (see section 3.2). 

Choose distinct abscissae values cl ,  . . . ,cs E [0,I] and construct a polynomial 
p( t )  E 11-1 that obeys (3.2) a t  the collocation points clh,  . . . ,csh: 

The derivation of the collocation schemes follows as for classical collocation. We have 
that 

since u(t,) = 0. By first assuming that approximations fi = f (u(t, + cih)), i = -
1, .. . ,s, are available, me can construct a polynomial that interpolates f a t  the ab- 
scissae values: 

S 
t - t ,  -

T ( U ( ~ ) )ZZ ~i fi .  
i=l 

Insertion of this approximation into (3.13) gives, as in the classical case, the method 
weights bi = So1Li ( r )  d r ,  i = 1, .. . ,s. The stage values Y , zz u(t, +cih) are computed 
as 

mith aij  = SoC"Lj(7) d r ,  i,j = 1, .. . , S. As opposed to the collocation schemes by 
Zanna [37], we do not need any higher-order coefficients or weights. 

3.4. Numerical results. As a test problem we consider an example by Zanna 
[36]. Let M = G be a matrix Lie group with Lie algebra 8.The action of the Lie 
algebra on G is given by X : g x G i G,  where X(v,p) = exp(v) .p .  Now (3.1) reduces 
to 

(3.14) y' = f (y) . y, where f : G +0 and y(0) E G. 

JVe consider the particular case of G = SO(5) with the right hand side of (3.14) 
defined as follows (in MATLAB notation): 

and we solve this problem with initial values (a random, orthogonal, 5 x 5 matrix 
with determinant +1) 

JVe integrate from to = 0 to tend = 3 mith constant stepsize h = k .  
Figures 3.1- 3.3 show some results from simulations with the continuous methods 

described in Examples 3.2-3.4. 
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0 d~screteCG . 

Interpolant MK i 
0 d~screteMK : 

F I G .  3.1. Global error commztted by the interpolants ('Crouch-Grossman and Munthe-Kaas). 
The  czrcles denote the approxzmations of the underlyzng discrete scheme. 

stepsize 

FIG.3 . 2 .  Local error commztted by the znterpolants as a functzon of the stepsize (Crouch- 
Grossman and Munthe-Kaas) .  T h e  local order of approximation is given by the slope of the graphs. 

As a second test problem we consider the spinning top. The Crouch-Grossman 
and Munthe-Kaas methods have already been successfully applied to  this problem, 
but in order to verify the properties of the interpolants, me apply them also to this 
problem. A complete description of the spinning top problem phrased in the setting 
necessary for the numerical integrators described in this paper can be found in [8]. 
However, for completeness me also include a brief description here. 

We model the spinning top on the Lie group G = SO(3)x so(3),and an element 
in G is hence a pair ( B ,  w). Both B and w are time dependent. B(t )  describes a 
rotation and the tangent to  B(t ) is ~ ( t )  which can be written in the E TB(t lS0(3) ,  
form ~ ( t )w(t). B(t ) ,mhere w E so(3).The Lie algebra of g can be identified with = 

so(3)x so(3).The differential equation describing the motion of the top is essentially 
given by the Euler equations. Let f : G + g be the mapping ( B ,w )  ++ ( w ,w'). It is 
shown in [8]that 

mhere IP1(t)= ~ ( t ) l o ' ~ ~ l ( t )  = mc x f. Let subscript 0 refer to quantities and M 
in the initial configuration of the top. Then, l o  is the inertia tensor, c is the centroid 
vector, the angular momentum L(t)= B(t )Lo = B(t )  loR with w(t)= B(t)R,m is the 
mass, and f is the vector of gravity. The differential equation describing this system 
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FIG.3.3 .  Global error  commit ted by the  in terpolant  t o  t h e  collocation me thod .  T h e  circles 
deno te  t he  approximat ions  of t he  underly ing discrete collocation scheme .  
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- interpolant CG 


0 0 discrete CG 


o ,  . o  :o.. 0 . ' 

interpolant MK 
,. 0 

0 0 discrete MK 
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F I G .  3.4. Global error commatted by the  anterpolants w h e n  integrating the  spznning top  problem. 
T h e  circles deno te  t he  approz ima t ions  of t he  underly ing discrete s cheme .  

can now be written as 

As initial values for the simulations we use 

1.0 0.0 0.0 -1.0 0.0 
0.0 cos(4) sin(4) and uo = 0.0 ![ :: 0 0  ]
0.0 - sin(4) cos(4) 0.0 0.0 

with 4 = ~ 1 1 6 .The constants c, f ,  and lo have been taken as 

0 0 7 0 0= [  4 1 2  1 0 ] and 0 0 20 = [  -9.81 10=i[070] 
Figure 3.4 shows some of the results from the simulations with the continuous meth- 
ods. Again, the continuous order of approximation of the interpolants are as claimed. 
The interpolant from Example 3.2 is of order three and the interpolant from Exam- 
ple 3.3 is of order four. 

4. Interpolation in the setting of homogeneous manifolds. Many geo- 
metric integrators have been formulated so that they respect homogeneous manifolds. 
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It is therefore of interest to  perform Hermite interpolation also on such spaces. How- 
ever, the procedure introduced in section 2 is not directly applicable. Consider, e.g., 
SO(3) acting on S2(the unit sphere in R3). Letting pl  = p2 E S2,there(21,2 2 ,  x ~ ) ~ ,  
is an infinite number of matrices v E so(3) such that A(v,pl) = p2. The matrix 

satisfies exp(il')pl = pl ;  in fact, all matrices sil', s E R, satisfy the same relation. 
Therefore, all matrices v,w E so(3) related through v = B(w, sG), s E R, will satisfy 
exp(v)pl = exp(w)pl. This fact can make it unclear what elements to use in the 
interpolation process. Numerical simulations indicate that interpolation results highly 
depend on choice of elements vj E g such that A(vj, p l )  = pj  E M, j = 1, . . . , k +1. If 
we let Q be a quadratic form on g, one choice would be to  use, for each j ,  the element 
u E g that minimizes uTQu among all u satisfying A(u)pl = p, [29]. Crouch, Kun, 
and Leite [3, 4, 51 have constructed splines on Lie groups and spheres, and they have 
addressed the above problem from a numerical point of view. 

We will now briefly describe an alternative way of solving this problem. Assume 
that wi E g defined by A(wi, yi) = yi+l, i = n,  . . . , n + k, are available. Given these 
values, we avoid having to invert the action A.  Such elements are often available 
from geometric integrators; the Aiunthe-Kaas method, e.g., generates w = v in each 
step (see section 3.2). The situation is now similar to  what we have analyzed in the 
context of multistep methods on manifolds [9]. We have to  express w,, . . . ,w,+k and 
the vector field evaluated at yn, . . . , yn+k in a common coordinate system around one 
of the points. By using the algorithm from [9],this can be accomplished in terms of 
B and dexpP1 only. Let, for each i = n ,  . . . ,n + k, u, be w, expressed in a coordinate 
system around w,, say, and let vi be the corresponding transformed samples of the 
vector field (vi = d e ~ p ; ~ l ( f ~ ) ) .  canA Hermite interpolation polynomial, p(t)  E g, 
now be computed based on the 2k elements 

and 

n f ) (ti,Vi), i = n + l , . . . , n + k .  

The polynomial can be computed as described in section 2, and approximation of 
elements in the time interval [tn,tn+k] is given by (2.2). Theorem 2.1 still applies. 
Again, B and dexp-' can be truncated to  the order of the interpolation polynomial. 

Note that we could have used any of the available points as the base point and 
expressed the other points in a coordinate system around this point. To ensure con- 
vergence of the exponential mapping, it might be better to  choose a point near the 
middle of the interpolation interval. 

5. Concluding remarks. We have described how to perform Hermite interpo- 
lation in Lie groups. When integrating in the setting of homogeneous spaces, the 
procedure changes slightly. Instead of assuming properties of the Lie-algebra action, 
the interpolation data is provided through use of the truncated Baker-Campbell- 
Hausdorff and dexppl formulas. When the interpolation points are produced by 
discrete integration of ordinary differential equations on Lie groups or homogeneous 
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spaces by methods in the class of Munthe-Kaas or Crouch-Grossman, the integra- 
tion methods can be equipped with continuous weights. We have also showed how to 
construct continuous extensions to the Magnus series methods. 
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