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PREFACE

Many computational methods for solving continuous or infinite-dimen-
sional problems with a high-speed digital computer exist. One of these, the
finite-element method, seems to be almost universally applicable.

In this book I discuss, in elementary terms, a unified and mathematically
rigorous approach to the finite-element method. My primary aim is to present
enough practical and theoretical details to enable the reader either to imple-
ment the method intelligently on a digital computer in order to solve practical
problems, or to pursue theoretical studies knowledgeably. Included in the
presentation are applications to interpolation problems, integral equations,
least squares or regression problems, elliptic differential equations, eigenvalue
problems, parabolic problems, and optimal control problems.

The material in this book is aimed at an audience with a knowledge of
calculus and linear algebra. The book can be used as a supplement to a survey
text in a numerical analysis or methods course, or as a text in a finite-element
methods course.

I wish to thank both the Office of Naval Research and the Chevron Oil
Field Research Company for their support during the preparation of this
book, Professors Stanley C. Eisenstat, Herbert Keller, John Todd, and
Olof Widlund for reviewing the entire manuscript carefully, and Allon Gillon
and Paul Patent for their aid with the computations. Also, I thank the
Department of Computer Science at Yale University, where most of the
work was completed, and Janet Gail Beyer and Vianne Ramirez, who effi-
ciently typed the manuscript.

MARTIN H. SCHULTZ

New Haven, Connecticut
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l INTRODUCTION

In this book, we give a unified treatment of a variety of basic numerical
analysis problems. In particular, we will be concerned mainly with the ques-
tion of changing infinite-dimensional or continuous problems into “discrete”
ones, to obtain computationally attractive, approximate, finite-dimensional
problems.

Our approach is to use variational formulations and spaces of piecewise
polynomial functions. This combination was first used by Courant to study
vibration problems in 1943 (cf. [1.3]) and has since been successfully adopted
by engineers, who call it the “finite element procedure.”

Since we wish to compute the solutions of the finite-dimensional
problems on a digital computer, we are naturally led to use spaces of piecewise
polynomial functions, e.g., spline functions, for which we can easily a priori
construct appropriate basis functions. When coupled with the variational
approach, these basis functions yield approximate, finite-dimensional
problems involving sparse, well-conditioned linear systems, which can be
effectively solved either by Gaussian elimination or iterative methods.
Moreover, we can show that the approximate problems generally have unique
solutions, and we can give general a priori error bounds, which show that the
approximations obtained are high-order accurate.

In summary, we formulate a large variety of problems as minimizing a
real-valued functional, F, over an infinite-dimensional function space V,
and obtain computationally attractive, approximate, finite-dimensional
problems by minimizing F over finite-dimensional subspaces S of V, con-
sisting of appropriately chosen piecewise polynomial functions. Moreover,
our goal is to give only a general survey of the basic ideas and general
techniques of analysis and results. We will not attempt to present and prove

1



2 INTRODUCTION CHAP. 1

the sharpest or the most general possible mathematical theorems. Instead,
we will consider a variety of simple model problems. For example, we consider
only second-order differential equations, domains which are either an
interval or a square, and piecewise polynomials of degree one or three. We
leave the extensions and generalizations to the exercises and the references,
which have been chosen for their suitability in guiding the reader in further
study.

We now introduce some basic mathematical notations and results, which
we will use repeatedly throughout this book. We will let

I=[0,1]={x0<x<1]},
=[0,1x[0,1]={Cx»n0<x<1and0 <y <1},

and for each positive integer ¢,

Do =980, Db =3 Dy =T,

and
R ={(x,,...,x)|x, is a real number, 1 < i <1},

i.e., R* is Euclidean z-space. For each nonnegative integer ¢ and for each p,
1 < p < oo, we will let PC*?(a,’b) be the set of all real-valued functions
¢(x) such that:

(1) ¢(x)is t — 1 times continuously differentiable,
(2) there exist y,, 0 < i <s, with

a=70<71<-~-<7’:<}’s+1:b

such that on each open subinterval (y,, y,,,),0 < i < s, D*"!¢ is continuously
differentiable, and
(3) the L?-norm of D¢ is finite, i.e.,

S Pi+l 1/p
1091, = (5[ 1000 P dx) ™ < oo,
For the special case of p = oo, we will demand that

|| D'¢|l. = max sup |D'¢(x)| << oo.

0<i<s x€(pt,p1e1)

Unless we state otherwise, the L?-norm of a function ¢ of one variable,
[|@||,» will mean the L?-norm over / = [0, 1]. Similarly, for each nonnegative
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integer ¢ and for each p, 1 < p < oo, we will let PC*?(U) be the set of all real-
valued functions @(x, y) such that:

(1) ¢(x, y) is t — | times continuously differentiable, i.e.,
DLDip(x,y), O0<I+hk<r—1.

exists and is continuous,
(2) thereexist y, 0 <i<<s,and y;, 0 <j<r, with

0=y0<_._<yj+1=l and Ozﬂo<...<ﬂ,+1:1

such that on each open subrectangle,
(P> Pivr) X (/‘j: /‘j+1), 0<i<s, 0<j<r,

we have
D! Dx¢, 0<Il+k<t—1,

continuously differentiable, and
(3) for all 0 <</ 4 k < ¢, the L*-norm of D' D¥ is finite, i.e.,

1203911, = (S B[ 7710081 dy ) < o

i=0 j=0

For the special case of p = oo, we will demand that

|| D'. D ||.. = max sup )|D’XD§¢(x, Y| < oo.

0<i<s (x,¥) € (p1, y141) X (3, 301
0<j<r

Unless we state otherwise, the L”-norm of a function ¢ of two variables,
[l 1], will mean the L7-norm over U = [0, 1] X [0, 1]. Moreover,
PCj*(a, b) = {¢ € PC"*(a, b)|§(a) = ¢(b) = 0}
and
PC»(U)={¢ € PC'»(U)|¢(x, y) = 0 for all (x, y) in the boundary
of U, ie., for(x,y) with x=0o0r1, or y=0orl}.

Finally, we will let A: 0 = x, < x, < ... < xy,, = 1 be a general parti-
tion of I, with the points x,, 0 << i << N + 1, being called partition points or
mesh points or knots, andif A;: 0 = y, <y, <...<yp,, = lisanother

such partition, we will let p = A X A be a partition of U, i.e., p consists of
the subrectangles of the form

(X Xir ) X (¥p Yjen)y 0<SISN, 0<j< M.
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Moreover, we will let

h= max (x,,, — x) and A= min (x,, — x,)
0<i<N 0<i<N

be respectively the maximum and minimum mesh lengths of A,

k = max (yj+1 _'yj) and ISE mLI}W(yj+I —yj)

0<j<M 0<j
be respectively the maximum and minimum mesh lengths of A, and
p = max (h, k), p = min (4, k).

We now discuss some basic mathematical results which will be used
repeatedly throughout this book. We start with a generalization of Rolle’s
Theorem. The proof we give follows [1.4].

THEOREM 1.1

If fe C"a,b], n>1, ie., fis n times continuously differentiable on
[a, b], and if f has a zero of order at least m, at x,, | << i < k, where

k
a=x,<x,<...<x,=b and Y m >n+1,
i-1

then there exists & € [a, b] such that D"f(£) = 0. Moreover, ¢ < (a, b)
unless kK = 1 and x, = a or b, in which case ¢ = x,.

Proof. If k = 1, then the result follows by choosing ¢ = x,. If k > 1
we use induction on n.

For n = 1, f(x) has zeroes at two distinct points and the result is just the
standard Rolle’s Theorem of calculus. We assume the result holds for all
integers through » — 1 and let g(x) = Df(x). The function g(x) has a zero
of order m, — | at each x,, 1 << i < k, and (by the result for » = 1) a zero
., of order one, between each pair x, and x,,, for | < i<k — 1. Therefore
the total number of zeroes of g is

Sim — 1)+ k—1>n,
=1

and by the induction hypothesis there exists ¢ € (a, b) such that D""1g(§) =
Df(€) = 1. Q.E.D.

The next result which we will prove is called the Rayleigh-Ritz Inequality.
We give the Fourier series proof due to Hurwitz; cf. [1.1].
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THEOREM 1.2
If f € PC}%(a, b), then

(1.1) 72 jb f2(x) dx < (b — a)? j" (Df(x))? dx.
Moreover, we have equality if and only if

f(x) = a, sin (n(b — a)"'(x — a))
for some real number a,.

Proof. Expanding f(x) and Df(x) in their respective Fourier series, we
have

f(x) ~ 2 a, sin (nn(b — a)~'(x — a))
and
Df(x) ~ i. a, na(b — a)~! cos (na(b — a)~'(x — a)).

By Parseval’s relation (cf. [1.1]),

[[rerar=% @)
and
[ rey ax = ¥ (@, ma — ay 1y,
which implies (1.1). Q.E.D.

We come now to a discussion of the Peano Kernel Theorem. We will call
E a linear functional on the vector space

PC"*1:1(a, b), n>0,
if E is a real-valued function on PC"*'-1(a, b) such that
E(cf) = cE(f) and E(f+g)= E(f)+ E(g)
for all f, g € PC"*1:'(a, b).

THEOREM 1.3

If E is a linear functional on PC**!-!(a, b), n.-> 0, and E(p(x)) = 0 for all
polynomials p of degree n, then for all f € PC**'-1(a, b),
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(12 B() = | [ D0 — o i,
where
(x— 1y, = {(x -, x>t
0, x < t,

and E, means the linear functional E applied to the expression
b
[ D — oy a,

considered as a function of x.

Proof. With the notations introduced, Taylor’s Theorem with exact
remainder can be written as

(13) f(x) = 1@ + Df@)(x — @) -+ -+ + - Df(@)x — a
v D — 1)

and the result follows by applying E to both sides of the identity (1.3) and by
using the linearity of E and the fact that E vanishes on all polynomials of
degree n. Q.E.D.

Our next two results in this chapter will be basic to the results of Chapters
2-4,

THEOREM 1.4

If fand g € PC°%(I) and

(,8): = [ f(gx) dx =0,
then
(1.4) 171+ gl =117+ gl

Proof. By definition

W+ gl =) + 20/, 8): + (8 8)as

and the result follows from the orthogonality condition. Q.E.D.

COROLLARY
If fand g € PC*%(I), k > 0, and (D*f, D*g), = 0, then

(1.5) | D*fIl; + || Dgll; = || D*f 4 D*gll>.
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Moreover, if g(x) vanishes » > k times on I (counting multiplicities) and
| D¥gll, =0, g(x) =0 on I.

Proof. The equality comes from Theorem 1.4 with D*f replacing f and
D*g replacing g. Furthermore, by Rolle’s Theorem, there exists a point
¢ € I'such that D¥"1g(¢) = 0.

Hence, for all x € I, we have by the Cauchy-Schwarz Inequality that

| D*"lg(x)| = Ux D¥g(s) dSI < fxlD"g(S)lds
¢ <
1
< | 1D*g(s)| ds < || D*gll, = 0,

and g must be a polynomial of degree at most k& — 2. But g vanishes at »
points and hence must be the zero polynomial. Q.E.D.

Our last result of this chapter is called the Schmidt Inequality.

THEOREM 1.5

If p,(x) is a polynomial of degree » = 1, 2, or 3, then
b b
(1.6) | D) dx < 4k, (b — @) [ [p, (0 ax,

where k, = 3, k, = 15, and k, = (45 + /T605) ~ 42.6.

Proof. We first consider the special case of @ = —1 and b = 1. If we
define the Legendre polynomials Ly(x) = 4/1/2, L,(x) = 1/3/2x, L,(x) =
~/5/8(3x% — 1), and L,(x) = ./7/8(5x3 — 3x), then

, i=j

| L LOILx) =8, = {o, oy

0 < i, j < 3, and there exist real numbers S, 8,, 8., and B, such that

n

(1.7) Pi) = 5B L().
Using the representation (1.7) of p,(x) in terms of Legendre polynomials,
we have

[* D or dx
k, = sup —!

[ [pp ax

~ 'y =
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where
1
4, =[aos = [ DLEODL () dx]

0<i, j<n

is symmetric, nonnegative definite and R[B] is the Rayleigh quotient of 4,.
Furthermore, we can compute that

0 o0 0 o0
00 00 0o 3 0 21
A = , A,=|0 3 O0f, and 4,= .
0 3 O 0 15 0
0 0 15
0 /21 0 42

By the variational characterization of the eigenvalues of symmetric
matrices in terms of the Rayleigh quotient (cf. [1.2]) we have that &k, =
maximum eigenvalue of 4, and the inequality (1.6) follows by direct computa-
tion. To prove the inequality (1.6) for arbitrary a and b, we use the change of
independent variable

y=2a—>b)yta—x)—1

and obtain
[1pmdx =26 - [ 1D+ 40+ 106 — a)l dy
<2b—ayk, [ [pfat 40+ DG — QP dy

< a(b — a) 2k, [ [p, ()P dx.
QE.D.

EXERCISES FORCHAPTER 1

(1.1) Show that if w e PC' %(q,
a<x<b
/
36 —a)V 2<J.b [Dw())? dt)I 2. We remark that this is a special case of the
general Sobolev Inequality. (Hint: use the equality w(x) = %{Jx Dw(t) dt

- j" Dw(t) dt} and the Cauchy-Schwarz Inequality.)

(1.2) Show that if we PC!9(a, '
/
<3 - a)‘“’"“""(_[b [Dw(x)]'l)1 ‘ (Hint: Proceed as in (1.1) except using
Holder’s Inequality.)
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(1.3) Prove that if f € PC! 2(a, b) and either f(a) = 0 or f(b) = O, then

b b
72 [ (fCP dx < 46 — @? [ (DF(0)? a.

(1.4) Show that if p > ¢ and {a;}/~, and {b;}., are any positive numbers such

[1.1]

[1.2]

[1.3]

[1.4]

that a}/? < b}’?, 1 < i< N, then

(£a)" < (50"

(Hint: Use Jensen’s Inequality; cf. [1.1, p. 18].)

REFERENCES FOR CHAPTER 1

BECKENBACH, E. F., and R. BELLMAN, Inequalities. Springer-Verlag, Berlin
(1965).

BELLMAN, R., Introduction to Matrix Theory. McGraw-Hill, New York
(1960).

CouURrANT, R., Variational methods for the solution of problems of equilib-
rium and vibrations. Bull. Amer. Math. Soc. 49, 1-23 (1943).

WENDROFF, B., Theoretical Numerical Analysis. Academic Press, New York
(1966).



2 PIECEWISE LINEAR
INTERPOLATION

2.1 ONE-DIMENSIONAL PROBLEMS

In this and the following two chapters, we consider interpolation pro-
cedures. Given A:0 =x, <x, <...<xy <Xy,;, =1 and N + 2 real
numbers, { f;}4!, an interpolating procedure yields a function, g(x), such
that g(x) is defined for all xe 7 and g(x)=f, 0<i< N+ 1. A good
procedure is one which yields a function, g, which is “inexpensive” to evaluate
and such that if £, = f(x,), 0 << i << N + 1, where f(x) is a smooth function,
then g(x) is a good approximation to f(x).

A classic procedure due to Lagrange is to let g(x) be the unique N-th
degree polynomial, p,(x), defined by the interpolation conditions. That is

@.1) Pa) =3 (),
where
2.2) I(x) = 2'1'[: (x — x)(x;, — x)7L.

However, it is a well-known result of Runge that the Lagrange interpolation
procedure is not good. In fact, there exist analytic functions on 7, e.g., f(x)
= [(10x — 5)2 + 1]7!, for which the sequence, {py(x)}5-., of Lagrange
interpolating polynomials, defined with respect to uniform meshes, diverges;
cf. [2.3].

In order to overcome this difficulty, we introduce and study a piecewise
linear interpolation procedure. We begin with two basic definitions.

10



SEC. 2.1 ONE-DIMENSIONAL PROBLEMS 1

DEFINITION 2.1

Given A, let L(A) be the vector space of all continuous, piecewise linear
polynomials with respect to A, i.e.,

L(A) = {p(x) € C(I)| p(x) is a linear polynomial on each subinterval
[x,, X;.,], 0 < i < N, defined by A}

The functions in L(A) are sometimes called “linear finite element functions”
or “linear patch functions.”

DEFINITION 2.2

Given f= (fy, f1,- - -»fve1) € R¥*2, let 3., f, the L(A)-interpolate of
f, be the unique element, /(x), in L(A) such that I(x)) =1, 0 <i< N+ 1.

This procedure is well-defined. In fact, on each subinterval [x,, x,,,],
0 <i<N, #,4f is equal to a linear polynomial a,x + b, which must be
determined by the two conditions

(23) ax,+b=f and ax,, +b =71,
To show that there is a unique solution to (2.3), it suffices to show that the
homogeneous case of f; = f;,, = 0 has only the solution of a, = b,= 0.

However, this is obvious since x; = x,, ;.
We can express the L(A)-interpolate as

N+1
Fraf = l_;) f1(x),
where /(x) is the unique element in L(A) such that
I(x;) =0, 0<L,j<N+1

(6;; is the Kronecker delta function). The graph of /,(x), ] <i <N, is given
by
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Moreover,

(x, — x)x7, 0<x<x,;, and
0, x<x<l,
(x — X2 )0 — x,2)7Y Xy X< X
L(x) = 1 (xipy — X)X — X)77 x, < x < x,,, and

h(x) = {

0, 0<x<x,., or x,,,<x<1,
and
(x —x)(1 — xy)° 1, xy<x<1, and
Iy, (x) =
05 0£X__<__XN.

In the special case of a uniform partition with mesh length h = (N + 1)71,
the basis functions /(x), 0 << i << N + 1, can be expressed in terms of one
“standard” basis function, L(x). In fact, if

l+x, —ISXSO,
Lx) =<1 — x, 0<x<l,
0, xe R—[—1,1],

then
I(x)=Lh'x—i), O0<i<N+1.

Furthermore, the mapping #,(,, is “local” in the sense that if x € [x,, x;,,],
0 < i < N, then #,,,f(x) depends only on f; and f,, ,. If f(x) is defined for all
x € I, we will let #,,, f = 3,5f, where f = (f(x,), - . ., f(xy,,))- Moreover,
we will often abbreviate #,(,, by #;.

Any single evaluation of #,f(x) requires only three multiplications and
four additions. In fact, if x € [x;, x;,,], 0 < i < N, then

M) = (xipy — x) iy — X) + frn(x — x)]

To get an idea of the behavior of the error in this procedure, we consider
the simple function f(x)=x2. If e(x) =f(x) — I/ (x), x € [x, x:,,],
0 < i< N, then

e(x) = x* — xF (X1 — X)Xy — X)71 — X2 (6 — X)Xy — X))
Moreover, it is easily directly verified that

_—i('xi+1 —x)*<elx)<O0

for all x € [x,, x,,,], with the minimum being assumed at x = {(x;, + x,,,).
Thus, || f— #, f]l.. < }A?, which shows that for f(x) = x? the piecewise linear
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interpolation procedure is second-order accurate, i.e., the exponent of 4 in the
error bound is 2. Using this bound we may compute the following table for
uniform partitions A(h):

h dim L(AR)) | || x2 — FLam)x2 ||
1 2 0.25
10-! 12 0.25 x 10-2
10-2 102 0.25 x 104
10-3 1002 0.25 x 10-¢

In Section 2.3, we will show that this special result generalizes and that this
procedure is second-order accurate for all sufficiently smooth functions.

2.2 TWO-DIMENSIONAL PROBLEMS

In this section, we introduce a two-dimensional analogue of the inter-
polation procedure of the previous section.

We let L(p) = L(A) ® L(A)) (the tensor product), ie., L(p) is the
(N + 2)(M + 2)-dimensional linear space of all functions of the form

) =53 85 e ).

Clearly L(p) can be characterized as the vector space of all continuous,
piecewise bilinear polynomials with respect to p. In fact, if ¢(x, y) is such a
function, then for each 0 <i < N, 0 <j< M, and (x,)) € [x;, x,,,] X
s Yyeads

¢(x, ») = d(x,, yj)ll(x)lj(y) + ¢(x,+,, yj)li+l(x)lj(y)
+ o(x;, yj+1)ll(x)lj+l(y) + d(xisys yj+])li+l(x)lj+1(y)'
Thus,

N+1 M+1

¢(X, y) = ¢(xi’ yj) li(x) lj(y)’

=0 j=0

-

and hence ¢ € L(p).
Given the vector f = {f;,}J¥01%",
we define

N+1 M+1

24 L(p) = fu lx’(x)lj(y)

i=0 j=0

—

as the interpolation mapping into L(p). If f,, = f(x,, y), 0 < i< N + 1
and 0 <j << M + 1, where f(x, y) is defined for all (x, y) € R, we will write
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3. S for #,,f. We now give a characterization of #,,,f in terms of one-
dimensional interpolation schemes.

THEOREM 2.1
If f(x, y) is defined for all (x, y) € U, then

(2.5) '9L(p>f = '9L(Av)'91.m>f = '9L<A) '9L(Ay)f~

Proof. We prove only the first equality in (2.5), as the second is proved the
same way. By definition

FriaPrarS = Fuiaa] 33 S DI |

M+1

=% (3 e 2D )

+1

2\..

W WERPIOUE)
= 3L(P).f'

Q.E.D.

2.3 ERROR ANALYSIS

In this section, we prove a priori error bounds for the interpolation
procedures introduced in Sections 2.1 and 2.2. In the one-dimensional case,
our analysis is based upon the fact that the piecewise linear interpolating
function describes the shape of a taut string passing through the interpolation
points. As such, it can be characterized as the solution of a simple variational
problem.

This is also true of the piecewise cubic interpolation procedures of
Chapters 3 and 4. Hence, we treat the piecewise linear interpolation procedure
in full detail as a guide to the higher-order cases.

We now state and prove a variational characterization of the piecewise
linear interpolate #,,,f as the interpolating function of minimum least
squares variation.

THEOREM 2.2
Let A and { £}{'%' be given and

V={wePCt:(I)|w(x)=f,0<i<N+ 1.

The variational problem of finding the functions p € ¥ which minimize
|| Dw||3 over all w € V has the unique solution &, ,,f.
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Proof. First, we show that p € V is a solution of the variational problem
if and only if

(2.6) (Dp, Do), =0

forall 6 e Vy={we PCL2(I)|w(x) = 0,0 <i< N + 1}, i.e., if and only
if p is a solution of the generalized Euler equation.

In fact, if p € V, then p + ad € V for all real numbers « and all § € V,,.
Moreover, if p is a solution of the variational problem, the function

2.7) F(@) = ||D(p + ad)|l; = (Dp, Dp), + 20(Dp, D3), + a*(DJ, DJ),

is minimized for & = 0. Thus, by calculus, dF(0)/do = 0 and we obtain (2.6).
Conversely, if p € V is a solution of (2.6) and w € ¥, then w — p € V,, and
(Dp, Dw — Dp), = 0. Thus, by the corollary to Theorem 1.4, we have

(2.8) |Dw — p) Iz + |1Dp|l; = || Dwl;.
Hence,
2.9) |Dpll; < ||Dwl|l;  forallweV

and p is a solution of the variational problem. Moreover, we have equality in
(2.9) if and only if ||Dw — Dp||; = 0 or, using the Rayleigh-Ritz Inequal-
ity (Theorem 1.2), if and only if

n*|lw —pll; <|IDw — p)|I; = O,
or w = p. Thus, the variational problem and the generalized Euler equation
(2.6) have at most one solution.

Second, we complete our proof by showing that #,,,f is a solution of the
generalized Euler equation (2.6). If § € V, then integrating by parts we have

(DIsuf, DO), = || D3, f(x)DS(x) dx
N X141
= % [ DI (D) dx
N N X1
= 2 6D F(Nz — X [ 8D I () dx.

Thus, (D, f, DJ), = 0, since each term in the first sum vanishes because
of the interpolation conditions on p, and each term of the second sum
vanishes because #,,,f is a linear polynomial on each subinterval [x,, x,.,],
0<i<N Q.E.D.
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As a corollary of equation (2.8) of the preceding proof we obtain the so-
called “First Integral Relation,” which was introduced in [2.1].

COROLLARY
If f € PC"2(I), then

(2.10) | D3, f15 + ||D3.f — Df|l; = || Df 5.

By using the same type of integration by parts argument that we used in
the proof of Theorem 2.2, we may prove the following result.

THEOREM 2.3
Ifg € PC**(I),and g(x;) = f;,0 < i< N + 1, then
(2.11) |D(g — $.0)|; = (g — 9.1, D*g),.
For the special case in which f, = f(x), 0 < i< N + 1, and g = f, we

obtain the so-called “Second Integral Relation,” which was introduced in
[2.1].

COROLLARY
If f € PC*2(I), then
(2.12) ID(f— 3. )z = (f — 3.1, D),

We now turn to the derivation of a priori bounds for the interpolation
error, f — &, f, and its derivative with respect to the L?-norm and the L~-norm.
In general, variational problems lead naturally to error bounds in the L2?-
norm. However, for computational purposes we prefer L=-normerror bounds.
We start with a preliminary error bound which is not only of interest for its
own sake, but will be used in the remainder of this chapter.

THEOREM 2.4
If fe PC%2*(I), then

(2.13) IDCf — 3Dl < 1 Df 1,
and
(2.14) [|f—3.fll, < =n'h||Df]),.

Proof. Inequality (2.13) follows directly from the First Integral Relation
(2.10). To prove inequality (2.14) we note that f(x;) — &, f(x;) = 0, for all
0 < i< N + 1, and by the Rayleigh-Ritz Inequality (Theorem 1.2)
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@15 [0/ — 9f0P dx
< x — x) [ IDAx) — DI, fP dx,

forall0 <i<N.
Summing both sides of inequality (2.15) with respect to i from 0 to N
and taking the square root of both sides of the resulting inequality, we obtain

(2.16) | f =3, fll, <z 'h||D(f— '9Lf)“2’

and (2.14) follows by using (2.13) to bound the right hand side of (2.16).
Q.E.D.

If f is somewhat smoother, we may obtain stronger a priori bounds. The
“boot-strap” method of proof, which we will give, was suggested in [2.1]
and refined in [2.5].

THEOREM 2.5
If f € PC?2%(I), then

(2.17) [1D(f = 3. N, < = 'h|| D*f]|,
and
(2.18) IIf— 3. fll. < =~2h*|| D*f]],.

Proof. Applying the Cauchy-Schwarz Inequality to the second integral
relation (2.12) yields

(2.19) 1D(f = 3. Nz <D I|.f = 30.S |l

Combining this with (2.16), we obtain (2.17).
‘Now using (2.17) to bound the right-hand side of (2.16), we obtain (2.18).
Q.E.D.

Wenowturnto a derivation of error bounds in the L=-norm.

THEOREM 2.6
If f e PC%*>=(I), then

(2.20) LS = Sl < $R2 (| DS,

and

(2.21) ID(f — . Nl < 3hI DS,
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Proof. For fixed 0 <i<N, let w(x)=(x — x)(x — x,,,). For each
x € [x;, x;,,], there exists &, € [x,, x,,,] such that

e(x) = f(x) — 3. /(x) = 1 D*M({ Jw(x).

In fact, if x = x; or x,,,, any point £, suffices. Otherwise, for fixed ¥,
choose 4 such that

(%) = e(X) — Am(X) = 0.

But (x) has three zeroes in [x,, x;,,] and hence by Rolle’s Theorem there
exists a point &, € [x, x;,,] such that D20(¢,) =0. But D26(&,) =
D*f(¢,) — 24 and hence A = 4 D?*f(£,). Thus,

max [e(x)| < 41Dl max |w(x)| < 442D .,

X € [x4. X141

which proves (2.20).

We now give an alternate proof of (2.20) based on the Peano Kernel
Theorem. Applying this theorem to the functional e(x) for fixed x € [x,, x;,,),
we have

ex) = [ KDY () d,

where

K@) = {

(Xipy — XY — X)Xy — x)74, X<t < x < Xpeps
(x — x)(xier — OOy — x)71 X< x <t < Xy
Thus,
e < ND e iy — )7 [ (s — 20 — )

+ J.:M (x — X)Xy — 1) dt]
= %”sz”w (Xip1 — xi)—l[(t - xi)z(xi+1 - x) li«

—(t — X )P (x — x) 3]
= HID* |l (xpsy — x)7M(x — x)*(x;0y — X)

+ (x — X )¥(x — x))

By a standard application of the differential calculus, we find that the
maximum value of the expression in brackets occurs at x = (x; + x;,,)/2
and is equal to }(x,,, — x,)?, which proves (2.20).

Similarly,

De(x) = [ DK ()D*f () di

+ (e — X)) M — 0)(x — x) — (x — X)Xy — X))
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< G — 2N = 0+ [ - ]

Jxor — ) HIDS e [ — x)? 15 — Crivn — )2 131
35 — x)THIDYS L [(x — x)? + (x40 — %)2).

The maximum value of the expression in brackets occurs at either x = x;,
or x = x,,, and is equal to (x,,, — x;)?, which proves (2.21). Q.E.D.

The preceding proof shows that the interpolation error f(x) — &, f(x)
for x € [x,, x,,,] depends only on values of D*f(¢) for ¢ € [x,, x,,,]. Further-
more, if fis sufficiently smooth, then the interpolation mapping, ¢#,, produces
an approximation which is second-order accurate with respect to both the
L>-norm and the L?-norm, i.e., the exponent of 4 in the error bounds (2.18)
and (2.20) is 2.

We now proceed to the a priori error bounds for the piecewise bilinear
interpolation procedure. As in the one-dimensional case, we find that if f
is sufficiently smooth, then the interpolate ¢, ,, f'is a second-order approxima-
tion to f with respect to both the L~-norm and the L2-norm.

THEOREM 2.7
If f € PC2%%(U), then

S = 2o fll: <222 || D3 fl, + hk || DD, fll + k*|| DS l2)

(2.22)
< a2 pA(| Difl. + (|1 DD, fll, + 11D3f112)s
2.23) IDf = Fun )l < 27 (kI D2 Sl + 2k DD, f1I2)
<a'p(|Difl. + 21| DD, f1lo),
and
(2.24) I D)(f = o Nl < 7'k || D} fl. + 2| DD, f]l>)

<z 'p(D;fl. + 2|| DD, f1l2)-
Proof. From (2.5) and the triangle inequality, we have

f =3 flle <N = o fllz + [1F2@(f = Fran L2
(2.25) <If =3 flls + 13 (S — Fran f)
- (f_ l9L(Av)f)||2 + “f_ l91.(4\,,)f||2~

Using the results of Theorems 2.4 and 2.5 to bound the right-hand side of
(2.25), we have

If = oo fll. < 202 || DL Sl

2.26
(226) + 7 h|IDL(f — Fran )l + 772k [ D f |-
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But since D, &, 4, f = #.4, D.f, we have
(2.27) ID(f — ranh)l. < =" 'k||D,D, fl,.

Using (2.27) to bound the right-hand side of (2.26), we obtain (2.22).
We may prove (2.23) and (2.24) in a similar way. For example, using the
results of Theorems 2.4 and 2.5 we have
1D f = Frin /)l <|IDf — Frar )z 4 (| Dl riay(f — FrianS)
— (f = el + 1DLSf = Fran )]l
<7 h||Difll + 2{|DLf — Fran )2
<z 'h||Difll. + 227 'k || DD, f|lz,

which proves (2.23). Q.E.D.

The error bounds for the L=-norm are proved in a similar way using the
following result, which is of interest for its own sake.

LEMMA 2.1
IFwfll. < max |f|=|[f]|l.
0<i<N+1

Proof. If x € [x;, x;,,],0 < j <N,

|‘9L(A)f(x)| = |f](xj+l - x)(xj+l - x/)_l +fj+1(x - xj)(xj+1 - xj)_ll
< ”f”oe [(xj+l —x)+ (x— xj)](xj+1 - xj)—l
= [|f]|..
Q.E.D.

The result of Lemma 2.1 shows that #,,f depends continuously on f
in a very strong way. Moreover, if f* is an approximation to f such that
[|[f — f*||l.. <€, then

[[Fraf — Fraf*ll. <€
THEOREM 2.8
If f € PC*>(U), then
1f = dep flle < FR2{|DLS |l + K2 (| D] f|)
<4P*(I1Df 1l + 1D} f1l-)-
Proof. Using (2.5) and Lemma 2.1, we have

W = o flle < NS = Foiar flle + 1 20a/(f — Frian )l
<= e flle 4 11 = Frian fles

(2.28)
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and (2.28) follows by using the result of Theorem 2.6 to bound the right-hand
side of this inequality. Q.E.D.

2.1)

2.2)

2.3)

2.4)

2.5)

(2.6)

2.7)

EXERCISES FOR CHAPTER 2

Let f€ PC-=(I) and f(x) = {fI(xi + xi+1)/2)|x € [x;, X141], 0 < i < N}
be the piecewise constant interpolate of f(x). Using the Mean Value
Theorem of calculus, show that || f — f ||« < 14 || Df |-

Let fe PCt=(U) and f(x,y) = {fI(xi + xi+1)/2, 05 + y;20)/2|(x, ) €
[xis Xis1] X [¥j, 51, 0 < i< N,0<j< M} be the piecewise constant
interpolate of f(x, y). Show that

f = Flle < 3{A 1| Defllw + k|| Dyf ||}
Use the Peano Kernel Theorem to show that
If — Frafll- < 301 DfIl.  forall fe PCt=(]).
Use the result of Exercise (2.3) to show that
f = Fepnflle < HAI DSl + k|| Dyf|lu}  for all f€ PCL-=(U).

LetA(h):0 < h <2h <... < (N + 1)h = 1 be the uniform mesh of mesh
length 4. Show that #,(am)) sin A~ !7tx = 0 and explicitly evaluate both sides
of the error bounds (2.14) and (2.15). What can you conclude about the
exponent of 4 and the constant factor in (2.14) and (2.15) from this example ?

Let e(x) = {(—D(x — x)(xis1 — ) (X1 — x)7Hx € [x, x:41], 0 < i K
N}. Show that @(x) € PC2-2(I), #.4)0(x) =0, and explicitly evaluate
both sides of the error bounds (2.17) and (2.18). What can you conclude
about the exponent of 4 and the constant factor in (2.17) and (2.18)?

Let
Anv:O<(N+1)9<...<ji(N+1)7<...<(N+ 1N+ 1)7=1,

where g = 20071, be a partition of [0, 1] for all 0 < & < 2, & = 1. Show that
if E;j= max [x* — daemx*l, 0<j<N, then E, < (N +1)2

x € [x5, x341]

and

2/7 2(g=1)
E,g%(’TJf‘)q (N+ ) 2aja—1, 1<j<N.

Thus, if we choose the partition properly, we can define an interpolation
scheme for x*, 0 < @ < 2, & % 1, which is second-order accurate in the
L=-norm, even though x € PC?%=(I).

2
12— Frimu el < max (1, Lo & — 1)) (N + 1)°2

(cf. [2.4]).
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2.8)

(2.9)

(2.10)

(2.11)

2.12)

(2.13)

(2.14)

(2.15)

PIECEWISE LINEAR INTERPOLATION CHAP. 2

Usethe Peano Kernel Theorem to show thatif f € PC*9(I), t = 1 or 2, then
there exists a positive constant, K, which can be explicitly computéd, such
that

Kht+2' =97 || D*f |, if p>g>1,

“f“?Lf“pS{Khr”foHq, if g=p=>1,

for all partitions A of 1.

Show that if D%f(x) > 0 for all x € [x, xx+1] for some 0 < k < N, then
FLf(x) = f(x) for all x € [xy, Xp41])-

Use Exercises (1.2) and (1.4) to show that if f € PC!-%(I), then for allp > 2,
Lf = Fofllo < gh2/247" || DS |la,
and if f € PC22(1), then for all p > 2,
IIf = Fofll, < @m)~1h3/2+27 || D2 |,.

Show that if f € PC!-2(I), then for all p < 2,

Wf = dfll, <z 'h || Df Iz
and if f € PC?-2(1), then for all p < 2,

ILf = dofll, < m=2h2 || Df |l

Show that if f € PC1-2(I), then &, f satisfies the “local First Integral Rela-
tion,”

f::l (D3 f(x))? dx + J:l (D3.f(x) — Df(x))* dx

— f (Df(x)?dx, 0<i<N.

Show that if f € PC2-2(I), then #.f satisfies the “local Second Integral
Relation,”

[ (Do) — DILfo? ax
= ["(f@) = SusNDF W dx  0<i<N.

Using the results of Exercises (2.12) and (2.13), prove local versions of the
results of Theorems 2.3 and 24.

Consider the trapezoidal rule quadrature scheme

f (‘) f(x) dx ~ f ; Fra [ (%) dx.
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[2.1]

[2.2]

[2.3]

[2.4]

[2.5]

Show that for a uniform mesh A(4) this scheme reduces to
1 h N

[ o~ 500 + 28 160+ r.
0 =

Develop an analogous formula for the case of nonuniform meshes.
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3 PIECEWISE CUBIC HERMITE
INTERPOLATION

3.1 ONE-DIMENSIONAL PROBLEMS

In this chapter, we introduce and study a Hermite interpolation pro-
cedure which is fourth-order accurate. Given A: 0 = x, < x, <... <
Xy < Xy,, =1 and 2(N 4+ 2) real numbers, {f, f!}¥%', a Hermite inter-
polating procedure yields a function, g(x), such that g(x) is defined for all
xelgx)=,,0<i< N+ 1l,and Dg(x) =f,0<i< N+ 1.

In order to have a “good” procedure, we extend the ideas of Chapter 2
and consider a piecewise cubic Hermite interpolation procedure. We begin
with two basic definitions.

DEFINITION 3.1

Given A, let H(A) be the 2(N + 2)-dimensional vector space of all
continuously differentiable, piecewise cubic polynomials with respect to A,
ie.,

H(A) = {p(x) € C'(I)|p(x) is a cubic polynomial on each
subinterval [x,, x,,,], 0 << i < N, defined by A}.

DEFINITION 3.2
Given f= (fo,f0, 1, /15 - - s fvsrs Faer) € R4, let Fy,f, the H(A)-

interpolate of f, be the unique element, A(x), in H(A) such that A(x,) = f,,
0<i<N+1,and Dh(x) =f1,0<i< N + L.

This procedure is well-defined. In fact, if A(x) € H(A) interpolates f
as above, then e(x) = #,,,f(x) — h(x) is a cubic polynomial on [x, x,,,],
0<i<N, and e(x)= De(x) = e(x;,,) = De(x,,;) =0,0<i<N,

24
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which implies that e(x) = ¢(x — x,)*(x — x,,,)? for some constant ¢ and all
x € [x,, x,,,)- Since e(x) is a cubic polynomial, ¢ must be zero and e(x) = 0
for all x € I. We can express the H(A)-interpolate as

Fual = 33 (F (D) + IR,

where /,(x) is the unique element in H(A) such that h(x,) =4, 0 </,
J<N-+1, and Dh(x;)=0, 0<i, j< N+ 1, and h/(x) is the unique
element in H(A) such that 4/(x;) = 0,0 </, j < N + 1, and Dh}(x,) = 9d,;,
0 < i,j < N + 1. The graph of A,(x) is given by

% % X
0 Xy 1
that of A,(x), | < i< N, is given by
-
0 /N N 7N
0 X X; Xiy1 1
and that of 4, ,(x) is given by
1+
0 >4 %
0 Xy 1
Moreover,
2x73x% — 3x7ix? + 1, 0<x<x,,
ho(x) =
0, xn<x<l,
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=2(x; — X, ) (x — x,_ )% + 3(x; — x,_ )7 x — x,_ )%,

X < x < X
h(x) = {2(x;0y — x)73(x — x)* — 3(x,,; — x)7Hx — x)2 + 1,
X <X < Xiyys
0, x € [0, 1] — [x,-y5 Xis4)s

for 1 <i< N, and

=21 — x)73(x — x)* + 3(1 — x)72(x — xp)?, xy<x<1,
hyo(x) =
0, 0<< x < xy.
The graph of A}(x) is given by
ﬁ
-
0 X |

that of A}(x), 1 < i< N, is given by

—X

and that of A}, ,(x) is given by
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Moreover,
Ry(x) = x72x(x, — x)?, 0<x<x,,
° 0, x,<x<l,
(6 — X2 ) 72X — X2 )M(x — X)), X < x< X,
hi(x) = (x40 — X)72(x — X)X, — %), X < x < Xy
0, x e [0,1] — [xt—l; Xi41)s

for1 <i< N, and

(I =x)72(x —xy)’(x — 1), xw<x<lI,

hL (%) =
i) { 0, 0< X< Xy

Clearly, 3y f(x) = f;, 0 <i < N+ 1, and Dy, f(x) = f!, 0 <i<
N+ 1.

In the special case of a uniform partition with mesh length 4 = (¥ + 1)7!,
the basis functions A,(x), A!(x), 0 < i << N + 1 can be expressed in terms of
two “standard” basis functions, H(x) and H!(x). In fact, if

(x + 121 — 2x), —1<x<0
H(x) = {2x® — 3x2 4 1, 0<x<l1
0, xe R—[—1,1],
and
x(x + 1)2, —1<x<0
H!'(x) = {x(1 — x)?, 0<x<1
0, xe R—[-1,1],
then
h(x)=HMh'x—i),0<i<N+1,
and

hl(x) =hH'(h"'x —0),0<i< N+ 1.

Furthermore, the mapping #,, is “local” in the sense that if x € [x, x,,,],
0 < i< N, then #,,f(x) depends only on f, f}, fi,,, and f},,.

If f(x) and Df(x) are defined for all x € I, we will let &, f = F4u)f,
where

f= (f(x0)s Df(x0), f(%1), - -, f(Xn11)s Df (Xws1))-

Moreover, we will usually abbreviate ¢4, by #,. Any single evaluation of
g f(x) requires at most only eleven multiplications and ten additions.
In fact, if x € [x;, x;,,], 0 < i < N, then



28 PIECEWISE CUBIC HERMITE INTERPOLATION CHAP. 3

Fuaf®) = fil{(x0 — x)7' (¢ — x)P{20x0 — x)7'(x — x) — 3} + 1]
+ fiaal{Caey — x)71x — x)P{—=2(x;,, — x)7'(x — x,) + 3]
+ fI{Ge s — x) 7 x — x)Mx — x)(x, — X))
+ G, — x) 7 (x — x)P(x — x4 )],

and we first compute 8 = (x,,, — x,)”'(x — x;), which requires two addi-
tions and one multiplication. Next we compute 62, which requires one mul-
tiplication, 260 — 3, which requires one multiplication and one addition,
02(20 — 3), which requires one multiplication, and & = 6*(x — x,,,), which
requires one multiplication and one addition. Finally, we compute

P f(x) = f(x)62(20 — 3) + 1] — f(x,, )[6*(20 — 3)]
+ Df(xi)[a(x - xi+l)(xi+1 - xi)] + Df(le)[a]a

which requires six multiplications and five additions.

We now examine how we can develop an interpolation scheme in H(A),
which uses only the N + 2 values f = (f,, fi, ..., fy+1) as does &, Our
idea is to use local cubic Lagrange interpolation polynomials to approximate
values, which we think of as the derivatives f! = Df(x,), 0 < i< N+ 1,
which in turn are used to compute an approximation to #,,,f:

More precisely, given { f,,.}i.0, 0 < k << N — 2, we define

PR = B0

where

MG — x,.)

J
NiX) = FHF—

IIo(ka - xk+j)

i=

which is the unique cubic polynomial interpolating { ., }’.0. f N> 2, i.e.,
if A has at least two interior points, we approximate the derivatives f! =
Df(x), 0 < i< N + 1, in the following fashion:

Dp(x,), i =0,
Dp;_(x), i=1,

(3.1) fl=Dfx)~ %(Dpi-z(xi) + Dp;_(x)), 2<i<N—1,
Dp,_,(x,), i= N, and
Dp,_,(x,), i= N+ 1.

Using these approximations of the derivatives, we then compute the piecewise
cubic Hermite interpolate as before, i.e.,



SEC. 3.2 TWO-DIMENSIONAL PROBLEMS 29

Tl = 35 Fih(x) + Doo(OMhi(x) + Dpolx,Jhi(x)

(32) +N22l HDp,_5(x)) + Dps_ (x)h}(x)

+ Dpy-o(xp)hi(x) + Dpy_o(1hy.1(x).

If f, = f(x), 0<i < N + 1, where f(x) is a sufficiently smooth function,
then we let :9,,(A)f Fuaf. Moreover we can give a priori error bounds for
the interpolation mapping &, in the same way as we will for the mapping
Puas cf. [3.9].

To get an idea of the behavior of the error in this procedure, we consider
the simple function f(x)= x*. If e(x) =f(x) — ¥4 f(x), x € [x;, X;.1),
0 < i < N, then we can verify by the Peano Kernel Theorem that

max |e(x)| = 54z(x,., — x,)*4), 0<i<N.
X € [x4, X441)
Thus, || x* — #44,x*||.. < 16A%, which shows that the piecewise cubic Hermite
interpolation procedure is fourth-order accurate for f(x) = x*. Using this
bound we may compute the following table for uniform partitions A(h):

h dim H(A(h)) || x4 — u?H(A(;,))x“ lloq
1 4 0.16 x 102
10-1 24 0.16 x 10-2
10-2 204 0.16 x 10-6
10-3 2004 0.16 x 10-10

In Section 3.3, we will show that this special result generalizes and that this
procedure is fourth-order accurate for all sufficiently smooth functions.

3.2 TWO-DIMENSIONAL PROBLEMS

In this section, we introduce a two-dimensional analogue of the inter-
polation procedure of the previous section.

We let H(p) = H(A) @ H(A,) (the tensor product), i.e., H(p) is the
4(N + 2)(M + 2)-dimensional vector space of all functions of the form

N+1 M+1

h(x,y) = P l=20 {aijhl(x)hj(y) + bijhi(x)h}(y)
+ C:'jhll(x)h](y) + dijhtl(x)h}(Y)}'

-

Clearly H(p) can be characterized as the vector space of all piecewise bicubic
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polynomials, p(x, y), with respect to p, such that D! D¥p(x, y) is continuous on
Uforal0<1] k<.
Given the vector

— 1,
fz{fij) |‘ lj’ ljl ?’B‘]M“
we define

N+1 M+1

(3 Fupf= 2 X Suh(Dh(Y) + filhi ()
+ [ hOR;(Y) + SR ()R ()}

as the interpolation mapping in H(p). If £, =f(x,, y)), =D, f(x,y),
*'=D,f(x,y), and f}'= DD, f(x,y,), for all 0§z§N+ 1 and
0<j< M+ 1, where f(x, ), D,f(x,y), D,f(x,y), and D,D, f(x,y) are
defined for all (x, y) € U, we will write &, f for #,,,f. We now give an
important characterization of #,f in terms of one-dimensional inter-

polation schemes.

THEOREM 3.1
If f € C*(U), then
(3.4 '9H(p)f= '9H(Av)l9mmf: '9H(A)'9H(Ay)f:

Proof. We prove only the first equality in (3.4), since the second is proved
the same way. By definition

'9H(Au)'9H(A)f '9H(Au)[‘_2 (f(xis Wh(x) + D, f(x;, Y)hi(x))]

M+1 N+1

L2 (S yphi(x) + Do f Cxin y P CALY)

j=0 i=
N+1

+ 13 (D, £ 7)) + DD, f (G 2R NI
= Suin . QED.

Finally, following deBoor, we make some observations about the com-
putational aspects of the two-dimensional problem; cf. [3.5]. By definition a
piecewise bicubic polynomial is given by an expression of the form

(3.5) CE D) = B P = X =y

in each subrectangle U, = {(x, ) |x,_, < x < x,y,., <y < yh1<i<
N+1 and 1 <j< M+ 1. Given f(x,y), D,f(x,y), D,f(x,y), and

D,f(x, y) at the four corners of the rectangle U,;, we know that there
exists a unique bicubic polynomial c,;(x, y) which assumes the given values.
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Moreover, the matrix of coefficients, I';; = [yi,], in (3.5) is given by

(3.6) I, = AAx,_)K ;A"(Ay;_,),
where
K,= B 11 B1—1,1J’
L Bij-1 B, ;
B, = [ fCen yi) D, f(x;, yi) :l’ and
_D f(xb yk) Dnyf(xh yk)
o1 0 0 0
0 1 0 0
Ah) = .
—3h72 —2h' 3n2  —p!
| 2R3 h=2 —2h™% h72

3.3 ERROR ANALYSIS

In this section, we prove a priori error bounds for the interpolation
procedures introduced in Sections 3.1 and 3.2. In the one-dimensional case,
our analysis is based upon the characterization of the piecewise cubic Hermite
interpolate as the solution of a simple variational problem.

In fact, we will show that the piecewise cubic Hermite interpolate, &, ,f,
is the Hermite interpolating function of minimum least squares curvature.

THEOREM 3.2
Let A and {f,, f}!}'4" be given and

V={we PC**(I)|w(x) = f,and Dw(x) = f},0 < i< N + 1}.

The variational problem of finding the functions p € V which minimize
|| D*w||; over all w € V¥ has the unique solution Faaf.

Proof. As in the proof of Theorem 2.2, p € V is a solution of the varia-
tional problem if and only if

3.7 (D?*p, D*), =0,

foralld € V, = {w e PC*2(I)|w(x) =0and Dw(x) =0,0 << i< N+ 1},
i.e., if and only if p is a solution of the generalized Euler equation. Moreover,
the variational problem and the generalized Euler equation (3.7) have at most
one solution.
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We complete our proof by showing that #,,,f is a solution of the gen-
eralized Euler equation (3.7). If 6 € V,, then integrating by parts, we have

(D3, D?6), = [ D3y f()D26(x) dx
N Xiel
=3 [ Dy ()D?5(x) dx

= 32 [DS(x)D,u S L

— 3 [ DE()D* 0 f(x) dx
i=0 v x¢

X141

= g; [DO(x)D*3 ya) ()]

X141

— 32 BOD T fL

+ 32 [ 600D B () dx.

Thus, (D*#,,f, D?d), = 0, since the boundary terms vanish because of the

interpolation conditions on §, and each term of the last sum vanishes because

34 f is a cubic polynomial on each subinterval [x,, x,,,], 0 < i < N.
Q.E.D.

As a corollary of equation (3.7) of the preceding proof we obtain the
so-called “First Integral Relation,” which was originally introduced in [3.1].

COROLLARY
If f € PC?%(I), then
(3.8) | D28, f s + || D3, f — D*f|l; = || D*f|[:.

By using the same type of integration by parts argument that we used in
the proof of Theorem 3.2, we may prove the following result.

THEOREM 3.3
1 0< i< N+ 1, then

If g € PC*2(I), g(x) = f;, and Dg(x,) =
| DX (g — $,0)|l; = (g — 34f, D*g),.

(3.9)
For the special case in which f; = f(x,) and f}! = Df(x), 0 <i < N+1,

and g = f, we obtain the so-called “Second Integral Relation,” which was

originally introduced in [3.1].
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COROLLARY
If f € PC*2(I), then
(3.10) | D(f — $u)lls = (f — Fuf, D),

As in Chapter 2, we turn to the derivation of a priori bounds for the
interpolation error, f— &, f, and its derivatives with respect to the L2-norm
and the L~-norm. We find that if fis sufficiently smooth, then #,, f'is a fourth-
order approximation to f with respect to both the L~-norm and the L?-norm.
We begin with a preliminary error bound in the L?-norm which is not
only of interest for its own sake, but will be used in the remainder of this
chapter.

THEOREM 3.4

If f € PC?2%(I), then
(3.11) I D*(f— Fu ). < I D,
(3.12) I D(f — Fuf)ll. <= 'h|| D],
and
(3.13) Lf = afll, < = 2k || D*f ||,

Proof. Inequality (3.11) follows directly from the First Integral Relation
(3.8). To prove (3.12) we note that Df(x,) — D&, f(x;) =0, for all 0 < i <
N + 1, and by the Rayleigh-Ritz Inequality (Theorem 1.2)

3.14) [[Df(x) — DIuf (O dx
<A 2x0 — X [ IDY () — DB f()P dx

forall0 <i<<N.
Summing both sides of inequality (3.14) with respect to i from 0 to N
and taking the square root of both sides of the resulting inequality, we obtain

(3.15 ID(f — 3 )l <7 'h|| D*(f — [l

and (3.12) follows by using (3.11) to bound the right-hand side of (3.15).

Inequality (3.13) is proved in an analogous way by using the fact that
f(x) — 3y f(x) =0, 0<i<N, and the Rayleigh-Ritz Inequality
(Theorem 1.2) twice. Q.E.D.

If fis somewhat smoother, we may obtain stronger a priori bounds. The
“boot strap” method of proof, which we will give, was suggested in [3.1]
and refined in [3.8].
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THEOREM 3.5

If f € PC*2(I), then
(3.16) I D> (f— 3 ))l. < =2k || DS,
(3.17) 1 DCf = 3u Nl < =72k || DS,
and
(3.18) | f = Fuflly < 7 2h* || DSf]],.

Proof. Application of the Cauchy-Schwarz Inequality to the Second
Integral Relation (3.10) yields

(3.19) 1 D2(f = $u NIz <N DS NI S — FufIlo-

Combining this with (3.13), we obtain (3.16). Now, using (3.16) to bound the
right-hand side of (3.15), we obtain (3.17). Inequality (3.18) can be obtained
in an analogous way. Q.E.D.

We now turn to a derivation of error bounds in the L~-norm.

THEOREM 3.6
If f € PC*>=(I), then

(3.20) 1S = 8uf Il < gz 1 D7l
(321) 1D(f = Bu)l. <3 b | DS .,
(3.22) 1D/ — 84 f)ll. < 15#2 11 D* Sl
and

(3.23) 1D/ — 8uf)ll < Al D*fL..

Proof. First we prove (3.20) and then we will indicate a proof of (3.21)-
(3.23). For fixed 0 <i < N, let w(x) = (x — x,)(x — x,,,). For each x €
[x;, x:.,), there exists & € [x,, x,,,] such that

e(x) = f(x) = Fuf (x) = 4 DI (R).

In fact, if x = x; or x,,,, any point £, suffices. Otherwise, for fixed X,
choose 4 such that

(%) = e(X) — Aw¥(X) = 0.
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But, counting multiplicities, @(x) has five zeroes in [x,, x,,,] and hence by
Rolle’s Theorem there exists a point ¢, € [x,, x,,,] such that D*6(£,) = 0.

But D*(¢,) = D*f(£,) — 4!4 and hence A = %D“f(fx). Thus,

4

4 4
53 11D/ 1l

max [e(x)| < 4[| D*fIl. max |wi(x)|<
] . x € [x0, x101)

X € (x4 X101

which proves (3.20).

To prove (3.21)—(3.23), the idea is to apply the Peano Kernel Theorem
locally to the functional D/(I — &), 0 < j < 3, on PC*~(x,, x,,,), for each
0 < i < N. Doing this, we find that for all x € [x, x,,,]

DI — 8,)f(x) = j DLK, (1)D*f(f) dt, 0 < i < N,

where K (1) = (x — 0)* — #4(x — 1)*. As may be easily verified, K, (1) <0
so that

1= 3Ol <1 D*71l. max [ —K, (o) ar

< max
0<i<N

|
4_!(x — X)HX — Xi1)?

D% fl..

] 4 4
< 352" 1107 Il

which again proves (3.20).

However, it unfortunately turns out that DiK (r), 1 <j < 3, has variable
sign. Thus, to extend the preceding analysis we need to compute the zeroes
of DIK (1), 1 < j < 3, since the biggest possible error will occur for those
functions, f, for which | D*f(¢)|=|| D*f||.. forall ¢t € [x,, x,,,], 0<<i<N,
and the sign of D* f(¢) is either always the same as that of DiK (¢) or always
the opposite. For a discussion of the computation of these zeroes and a com-
pletion of the derivation of the error bounds see [3.2]. Q.E.D.

To prove our next error bound, which will be used in the error analysis of the
procedure for two-dimensional problems, we need the following preliminary
result concerning the basis functions

(RIS
LemmMa 3.1
At (x)| 4 | AL ()| < 34 for all x € [x;, x,,,] and 0 < i << N.

Proof. 1t clearly suffices to consider the interval [0, /4] and there

1(x) = |k ()| + | Al (X)| = h72x(h — x)* + h72x2(h — X).
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To find the maximum of #(x) on [0, A), we set

Dn(x) = h™%[(h — x)? — 2x(h — x) + 2x(h — x) — x*] =0
to obtain 4> — 2xh = 0. The root of this equation is X = 44 and in addition
D?p(X) < 0, which implies that ¥ maximizes # on [0, 4]. Moreover, n(X) = }.

Q.E.D.

THEOREM 3.7
If f € PC%*=(I), then

(3.24) If — afll. < 3A*|| D f]|...
Proof. For all x € [x;, x;,,], 0 < i< N, we have

J&x) = 3 f(x) = f(x) — 3. f(x) + 3. f(x) — T4/ (x)
=f(x) — 3.1 (x) + [DI, f(x) — Df(x))h!(x)
+ [D?,f(x:11) — Df (x4 )AL 1 (X).

Hence, using the results of Theorem 2.5 and Lemma 3.1, we have

1S = Bl < BN D2 Nl + | DILf — DSl _max (AIG0)] + Al ())
< PRI D S| + bt DS,

which yields (3.24). Q.E.D.

Our last error bound for our procedure for one-dimensional problems
will be needed for the results about two-dimensional problems.

THEOREM 3.8
If f € PC32%(I), then

(3:25) f —Fufll. <7731 + 27 2/15R || D £ ||,

Proof. For fixed 0 << i << N, let g(x) be the unique quintic polynomial
such that D/q(x,) = Df(x,)for0 <j<2and k =iand i+ 1. Then

(326 | :" (Dg(x)P dx + | :" (D3q(x) — D*f(x)) dx

= [ @ sy ax.
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In fact, by the Corollary to Theorem 1.4, it suffices to show that

(327) [ e 2ax) — D sy ax =0,

which can be verified by integration by parts coupled with the quintic inter-
polation conditions. Moreover, by the Rayleigh-Ritz Inequality (Theorem
1.2) we have

328) | :" (@) — f) dx <7 (xiy — %)° | :“ (D3 f(x))? dx.

Then, for all x € [x,, x,,,],

SxX) — 3 f(x) = f(x) — q(x) + q(x) — F,4(x),

and hence by (3.18), (3.28), and the triangle and Schmidt Inequalities
(cf. Theorem 1.5),

W) = sy dx)

(J;
< ([ (7 — qer ax) "+ ([ (q0) — Fq0 a)

1/2

1/2

Bt ([ 0175

14— ) ([ (Drgyr ax)
<, — X)L+ n"'zm)( | (D? f(x))? dx)'“.

The result follows by squaring both sides of the inequality (3.29), summing
i from 0 to N, and taking the square root of both sides of the resulting
inequality. Q.E.D.

We now proceed to the a priori error bounds for the piecewise bicubic
Hermite interpolation procedure. As in the one-dimensional case, we find
that if f'is sufficiently smooth, then #,, f is a fourth-order approximation
to f with respect to both the L~-norm and the L?-norm.

THEOREM 3.9
If f € PC*2(U), then

I f — Funf lle <a™*(h* || Dif |l, + R*K2 || DID5 £ ||, + k*{| D3 f |I2)

(3.30) -4 54 4 22 4
< a*p*(| Dif |, + | DED; I, + 11 D3 f1l2)s
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(3.31) |ID(f — 3w NNl <72k || Dif ||, + 7 *hk*|| DD} f ||,
+ 7731 + =7 '2/15)K* || D; D, f |,
<= *p(IDif |l, + (| DD} f I,
+ (1 + 7' 2/15) || D3 D, f |I.)s

and
I1D(f — Fun Il <=2k || DS f ||, + =~ 3kh*|| DIDLS ||,
n 31 + a2, /15)h? || D3D
3.32) + &3l + ~15)R* || DiD, f |,

<ap| DS |l, + (1 DiD; 1 I,
+ (14 27'2/15) || DD, f |I,)-

Proof. From (3.4) and the triangle inequality, we have

Lf = w1 < = Fuwrf Il + 1Fua(f — FuanHIl
(3.33) <If = Fu Sl + 1Fua(f — Fuanf)
—(f = o Dl + 11/ — Fuan f 1Lz

Using the results of Theorems 3.4 and 3.5 to bound the right-hand side of
(3.33), we have

f = Fun S, <2 k| DLS N, + 272R2 || DUS — Fuan )2

(3.34) .
+ ntk* || Dy f ||,

But since D}, f = Fyn, DS, we have
(3.35) DS — Fuan Nl < 772k || DD |-

Using (3.35) to bound the right-hand side of (3.34), we obtain (3.30).
We may prove (3.31) and (3.32) in a similar way. For example, using the
results of Theorems 3.4, 3.5, and 3.8, we have

ID(f — Fun N l: < NDL(f — Nz + | DulFuar(f — FarianS)
— (f = Fuan U + 1 DL — P DIl
<a kR ||Dif |l + =& hl| DS — Fuan N2
+ 271 + 272 /15K || DD, f I,
<n k|| Dif |, + = 3hk* || DD 1 |l
+ 773 (1 + 272 /15K | D3 f Lo
which proves (3.31). Q.E.D.
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The following error bounds for the L>-norm are proved in a similar way.

THEOREM 3.10
If f € PC+=(U), then

1S = Faof e < sha(h* || DiS || + 24R%k2|| D2DLS ||,
(3.36) + k*|| D3 f||-)
< 143P*(I D3 f || + 24| DiD; f |l + || D3 £ ||)-

Proof. Again from (3.4) and the triangle inequality, we have
1f = 3o f e <N f — Fnar f e + 1Fa(f — Fran) -

(3.37) </ = Fuw S Nl + 1ua(f — Fuanf)
— (f = Fa@nDlle + 1/ — Fuan S ller

Using the results of Theorems 3.6 and 3.7 to bound the right-hand side of
(3.37), we have

S = Fuinf e < shah*l| DLSf Il + 3R DS — Fuian Nl
+ shzk* 1D} f |l
< ghgh* | DS |l + {sh*k* || DID; f |l + shak* (| D3 f ||-»

which was to be proved. Q.E.D.

EXERCISES FOR CHAPTER 3
(3.1) Let

Alv:O<(N+D7<... <jUN + 1)e
<... <(N+Dy(N+D7=1,

where g = 4a~!, be a partition of [0,1] for all 0 <& <4, a0 = 1,2, 3.
Show that if

E;= max [x* — dgappxsl, O0<J/<N,

X € x5 x341)
where we define

3 TLal, X% 0<x<(N+ 19 and
'9H(A' N)X" = 4 B
l?H(Aalr,N)xa, N+ 1D)1<x<L],

o,
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(3.2)

(3.3)

(3.4)
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then
E,<(N+ D)
and
E; < (q4/38)[(j + DI P(N + D)t el — 1]lae — 2][ec — 3],
1<j<N

Thus, if we choose the partition properly, we can achieve a fourth-order
accurate (in the L=-norm) interpolation scheme for x*, 0 <o <4, a1,
2, 3, even though x* ¢ PC* = (I). Moreover,

Ix* — P al, 0x |lo

4
< max (1,3‘7@24<y-1>a|a Sl —2)ja — 3|) (N + 1)~

(cf. [3.7D.

Use the Peano Kernel Theorem to show thatif f € PC"(I),t = 1,2, 3, 0or4,
then there exists a positive constant, K, which can be explicitly computed,
such that

Kh+o=at || Dif g, ifp>g>1,

”f_ﬁ”f”"g{Kh‘HD’qu, fg=p=>1,

for all partitions A of 1.

Use Exercises (1.2) and (1.4) to show that if f € PC2?:2(I), then for all
p=12

| DOf — FaN)ll, < fht/2+27 || D2 ||,
and

Wf = 3ufll, < Qm)~'h32+27" || D2 f ||.
Furthermore, show that if f € PC4 2(]), then for all p > 2,
1 D(f — Faf)|l, < Qr2)1hS/2+97 || D4 S ||,
and
1f = Fufll, < @) 1h72+27 || DA f ;.
Show that if f € PC?2-2(I), then for all p < 2,
| D(f = Fuf)ll, < m=th || DS |,
and
W f—3ufll, <m2h?|| D2f||,.
Furthermore, show that if f € PC*-2(I), then for all p < 2,

| D(f — N, <m=3h* || D*f I,
and
| f—3ufll, <7 *h* || D*f ..
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3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)

(3.11)

EXERCISES 41

Show that if f € PC2-2(I), then #f satisfies the “local First Integral
Relation,”

[ (D2uf e dx + [T (D28af (1) — D2f(x))2 dx
= [ rfegrdy,  0<i<N.
Show that if f € PC*2(1), then #f satisfies the “local Second Integral
Relation,”
[ 02100 — D2BusCiyrdx = [ () — Fuf (ND*f(x) dx,
0<i<N.

Using the results of Exercises (3.5) and (3.6), prove local versions of the
results of Theorems 3.4 and 3.5.

For each positive integer, m, and each partition, A, of I, let H™(A) be the
vector space of all piecewise polynomials, p, of degree 2m — 1 with respect
to A such that p € C™~1(I). Show that H!(A) = L(A) and H2(A) = H(A).
Moreover, given

fm = (fg’f(l)’ O ,f’o"—l’f?a LRI yfl?l-rlrf]l\/i*l, .. ,f’mv::)’
let #ma)f™ be the unique element, A(x), in H™(A) such that

Dihx) =f}, O<i<N+1 0<j<m-—1.

Show that the mapping (s, is well-defined for all m > 1.

Using the notations of Exercise (3.8), show that if p € PC™2(I) and
Dip(x) =0,0<i< N+ 1 0<j<m— 1, then (D™p, D™h), = 0 for
all h € Hm(A). Furthermore, given fm, show that #m,f™ is the unique
solution of the variational problem

inf{[| D"pll2|p € PC™2(I), D'p(x;) = f1,0<i<N+1,0<j<m—1]},

and if f € PC™2(I) and dynf= dynf™, where [/ = Dif(x), 0<i<
N+ 1,0<j< m— 1, prove the “First Integral Relation,”

|| DS enf N5 + || D"gn f — D7f ||} = || D7f |I5.

Using the notations of Exercises (3.8) and (3.9), prove the “Second Integral
Relation” for f € PC2™2(]), i.e.,

| D(f — Fam)|; = (f — Sunf, D2mf),.

Using the notations and results of Exercises (3.8), (3.9), and (3.10), show
that if f € PC™2(1), then

I DI(f = Fum)ll: < Am~Ihm=I || D™f |l 0<j<m,
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(3.12)

(3.13)

(3.14)

3.15)

(3.16)

3.17)

(3.18)
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and if f € PC2m™2(]), then
| DI(f — Funf) |l < m2m=IR2m=i|| Dmf ||,
Use the Peano Kernel Theorem to show that if f € PC*(I), 1 <t < 2m,

then there exists a positive constant, K, which can be explicitly computed,
such that

I f =3 nf I <{Kh“”"“"‘IID'f||q, ifp>g>1,
L P =

Kk || D f |l ifg>p=>1,

for all partitions A of I (cf. [3.3)).

Use the results of Exercises (1.2), (1.4), and (3.11) to show that if
f€ PCm2(I), then for all p > 2

I DI(f = Fan ), < gmmmeitipm=12e =7 || Dnf|ly, 0 < j<m — 1.
Furthermore, if f € PC2m 2(I), then for all p > 2
W DISf = Fumf) ||, < gmm2mttipzm=t2ep =T || D21, 0 < j<m — 1.

Show that if f € PC™ 2(I), then for all p < 2

| DICf ~Fum DN, < 7t ihm=1 || D™ f |,
and if f € PC2m 2(I), thenforall p <2

WDI(f — Fun )|, < m=2m+ih2m=i|| D2 f ||,.
Show that if f € PCm™2(I), then 3y~ f satisfies the “local First Integral
Relation,”
[ a2 dx - [ (DB nf (x) — DS Ce)R ax
- T Dnfprdy,  0<i<N.

Show that if f € PC?m-2(I), then 3~ f satisfies the “local Second Integral
Relation,”

[ @nfx) = DnBunf (o2 dix
_ J‘x«.l (f(x) — $um f(x) D2 f(x) dx, 0<i<N.

Using the results of Exercises (3.15) and (3.16), prove local versions of the
results of Exercise (3.11).

Let #4n(,) = Fymay?umia,). Using the results of Exercise (3.11), show that if
f € PC*m2(U), then
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| f =3 amin S |l
< m2mp2m || D2mf ||, 4 wo2mhmkm || DTDTf ||, 4+ mm2mkim || D2 ||,
(cf. [3.3], [3.4]).

Let #5n(,) = Funa)Fuma,). Using the results of Exercise (3.12), show that if
f € PC?m=(U), then there exists a positive constant, K, such that

Lf = Famin S |le < K(h2m || D37 ||o + hmkm || DE DTS ||o + k2™ || DI |0

(cf. [3.3], [3.4]).
Show that if f € PC»2(I), where m < p < 2m, then

| DI(f — 3 )2
< mPH1 4 mem2m2N2 oD pl [(2p — 2m)!) hr~d || DS ||,
forall 0 < j < m.
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4 SPLINE INTERPOLATION

41 ONE-DIMENSIONAL PROBLEMS

In this chapter, we introduce and study a (cubic) spline interpolation
procedure which is fourth-order accurate. Our spline interpolation procedure
is an improvement over the piecewise cubic Hermite interpolation procedure
of Chapter 3 in the sense that it yields a smoother interpolate, i.e., the spline
interpolate is a C?(/)-function while the piecewise cubic Hermite interpolate
is only a C'(Z)-function. Moreover, the spline interpolate depends on roughly
half as many parameters as the piecewise cubic Hermite interpolate. We
begin with the basic definition of (cubic) splines due originally to Schoenberg;
cf. [4.9].

DEFINITION 4.1

Given A, let the space of cubic splines with respect to A, S(A), be the
vector space of all twice continuously differentiable, piecewise cubic poly-
nomials on 7 with respect to A, i.e.,

S(A) = {p(x) € C*(I)|p(x) is a cubic polynomial on each
subinterval [x,, x,,,], 0 < i < N, defined by A}.

Clearly a C!-piecewise cubic Hermite polynomial i(x), i.e., h(x) € H(A),
is a spline function if and only if 4 € C?(I). Conversely, every cubic spline
function s(x) € H(A) and we have the inclusion S(A) = H(A). Moreover,
the dimension of S(A) is N + 4, while the dimension of H(A) is 2N + 4.
Thus we may represent every cubic spline function s(x) in terms of the basis
functions {A,(x), A} (x)}4! of H(A) even though these basis functions do not

44
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belong to S(A). In fact, we have
53 = 3 (sxIA() + DsCx)hI ().

In this book we will use the words cubic spline and spline interchangeably,
although, as we will see in the exercises, the concept of spline function can be
greatly generalized.

It is natural to define the following cubic spline interpolation procedure.
Ahlberg, Nilson, and Walsh (cf. [4.1]) refer to this procedure as the Type I
procedure. See the exercises and the references given there for a discussion of
interpolation procedures of Types II, III, and IV.

DEFINITION 4.2

Givenf={fy, ..., fyr1s [ [he1} € RV*3, let F5,f, the S(A)-interpolate
of f, be the unique spline, s(x), in S(A) such that s(x,) =f, 0 <i< N+ 1,
and Ds(x;) = f!,i=0and N 4 1.

We now show that this procedure is well-defined. Following deBoor (cf.
[4.5]), we first prove the following result.

LeEMMA 4.1
Let x,_, < x; < x;,, for some 1 <<i<{N and p(x) and ¢g(x) be two cubic
polynomials such that p(x,) = q(x;) = », and Dp(x;) = Dq(x)) = y}. Then
D*p(x,) = D*q(x,) if and only if
1) Ax.Dp(x;_,) + 2Ax; + Ax,_ )yl + Ax,_Dg(x,,,)
‘ = 3[Ax,_,(Ax) " (q(xis1) — y) + Ax(Ax;_ )" ' (¥: — p(x;- 1)),

where Ax,_, = x;, — x,_, and Ax;, = x,,, — x;.
Proof. Clearly,

p(x) = p(x)) + Dp(x)(x — x;)
+ B(p(x,- 1) — p(x))x; — x;-)7?
+ (Dp(x;-1) + 2Dp(x))(x; — X;-,) "' 1(x — X))
+ [2(p(x;- 1) — pP(x))(x; — x;21) 73
+ (Dp(x,-1) + Dp(x))(x; — X:-)2)x — x,)%,

and hence

D*p(x) = 2[3(p(x;_ 1) — p(x)(x; — x;_;)72
+ (Dp(x;_,) + 2Dp(x))(x; — x;-1)'].
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Similarly,

q(x) = q(x)) + Dg(x)(x — x,) + [3(q(xis,) — 9(X))(x; — X1) 72
+ (Dg(x;41) + 2Dg(x))(x; — x,.,) 7 I(x — x)*
+ [2(q(xi01) — 9D(x; — Xp40) 7
+ (Dg(x1s1) + Dg(x))(x; — x,41) 2 Mx — x)%,
and hence

D*q(x,) = 2[3(q(x;+,) — q(x))(x; — X;4q) 72
+ (Dg(x,4,) + 2Dg(x))(x; — X;44) 7]

Thus, we have equality if and only if

3(p(xiy) — P(x))AX,_ )7 + (Dp(x;_,) + 2Dp(x)NAx,_,)™!
= 3(q(xi+l) - q(xi))(Axt)—z - (Dq(xi+1) + 2Dq(xl))(Axi)—l'
Q.E.D.

We can now prove that the spline interpolation procedure is well-defined.

THEOREM 4.1

Let h(x) € H(A). For given numbers ¢, = A(x), 0 <i< N+ 1, and
cs = Dh(0), c}., = Dh(1), there exists exactly one set of given numbers
¢} = Dh(x,), 1 < i <N, such that h € S(A).

Proof. By Lemma 4.1 the continuity of D?Ah(x) is equivalent to the set of
N linear equations
@2) Axicl, + 2(Ax; + Ax;_ el + Ax,_ ¢ty
' = 3[Ax,_(Ax)"'Ac, + Ax(Ax,,) ' Ac,_,],
1 <i< N,where Ax; = x;,, — x;and Ac, = ¢;,; — ¢;, 0 < j < N, for the

N unknown numbers ¢}, 1 <<i<N. The linear equations (4.2) can be
rewritten in vector form as

4.3) Bc! =Kk,
where B = [b,]],

2(Ax, + Ax,_)), 1<j=i<N,
Ax,, 1<j=i—1<N-—1,
Ax;_,, 2<j=i+1<N,
0, otherwise,

(4.4) b,

f
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i.e., B is a tridiagonal matrix, and k = [k,],

3[Axo(Ax,) ' Ac; + Ax,(Axy)"'Aco] — Ax,Dh(0), i=1,

(4.5) ko= 3NAx;_1(Ax,)"'Ac; + Ax(Ax,_,) 'Ac,_,], 1 <i<N,
. T 3[Axy_(Axy) 'Acy + Axy(Axy_ ;) 'Acy_,] — Axy_,Dh(1),
i=N.

The tridiagonal matrix, B, of the linear system is strictly diagonally
dominant and hence by the Gerschgorin Theorem (cf. [4.7]), the system has a
unique solution. Q.E.D.

Iff,=f(x),0<i<N+1,and f}! = Df(x), i=0and N+ 1, where
f € C'(I), then we will denote &4, f by #4)f- Moreover, we will usually
omit the A from both notations.

We compute #5,,f by solving the system (4.3) for ¢! and writing

N+1 N
Fswf = 33 Fh(x) + FUR) + 35 elhi) + [hoihhn(0).

To construct the matrix B, we first compute and store Ax,, 0 < i< N,
which requires N + 1 arithmetic operations, and then we compute 2(Ax, +
Ax,_,), 1 <i< N, which requires 2N operations, for a total of 3N 4 1
operations, where we count both additions and multiplications as opera-
tions. To construct the vector k, we first compute Ac, = f,,, — f,, 0 <i <N,
which requires N + 1 operations, and then we compute the expressions given
in (4.5) which requires 6N + 4 operations, for a total of 7N + S operations.
Finally, solving the linear system (4.3) by Gaussian elimination for tridiagonal
matrices requires SN — 1 operations. Thus, it requires a total of 15N 4 5
arithmetic operations to compute the vector c¢!. Furthermore, it follows from
the ‘results of Section 3.1 that with this type of representation of #g¢)f,
a single evaluation of #4,f(x) requires at most only twenty arithmetic
operations.

We now examine how we can develop an interpolation mapping 5S(A, in
S(A), which uses only the N 4 2 values f = (f, fi, - - -, fv+1) as does &, ,).
As in Chapter 3, our idea is to use the derivative of the local cubic Lagrange
interpolating polynomial at both ends of the interval to approximate values,
which we think of as the derivatives f{ = Df(0) and f,, = Df(1), which in
turn are used to compute an approximation to #g,,f.

More precisely, if N > 2, i.e., if A has at least two interior points, we define

P = 370 ()],
and

Prn-2(x) = i=230 Mv-2,8X) -2+



48 SPLINE INTERPOLATION CHAP. 4

where
3
'110 (x — xk+j)
j=
e (x) = *f&—l——
_I_I (Xpss — xk+j)
j=1

for k = 0and N — 2. We approximate the derivative f§ = Df(0) and f},,
= Df(1) in the following fashion:

(4.6) Df(0) =~ Dpo(0) and Df(1) =~ Dpy_,(I)-

Using these approximations of the derivatives, we then compute the cubic
spline interpolate as before.

Iff, = f(x), 0 < i< N+ 1, where f(x) is a sufficiently smooth function,
then we let §,, /= Fsuf, and we can give a priori error bounds for the
interpolation mapping J,,, in the same way as we will in Section 4.3 for the
mapping J,,; cf. [4.12].

Using the result of Theorem 4.1, it is possible to describe a basis for S(A),
namely the “cardinal splines,” {C(x)}/%3, defined by the following inter-
polation conditions:

Cix) =08, DC(0)=DC()=0, 0<ij<N+]1,
Cri2(x) = Cy,s5(x) = 0, 0<i< N+,
DCN+2(0) = DCN+3(1) =1, and DCN+2(1) = DCN+2(0) = 0.

Clearly,
N+1

Fof(x) = X fiClx) + fiCxsa(x) + fh1Cnis(x)

i=0
and
N+1
s(x) = EO s(x)Ci(x) + Ds(0)Cy,,(x) + Ds(1)Cy,5(x)
for all s € S(A). Moreover, the interpolation mapping #f is not local, i.e.,
Jsf(x) depends on all the quantities f;,, 0 < i< N+ 1, f, and f}.,.

To get an idea of the behavior of the error in this procedure, we consider
the simple function f(x) = e*. For the special case of x, = 0, x, = 4, and
x, = 1, the linear system (4.3) reduces to one linear equation in one unknown,
cl. Its solution is ¢} = —}(1 + e) + 3(e — 1) = 4e — 1, and ds(,1/2,n€* =
ho(x) + hi(x) + €'2h,(x) + (Je — Dhi(x) + ehy(x) + ehi(x).

For uniform partitions A(k) with more knots, we have computed the
following table:
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h dim S(A(R)) |llex — Fsamne” |l
3 7 026 x 10-4
: 8 0.11 X 10-4
1 9 0.53 x 105
1 10 0.29 x 10-5
: 11 0.17 x 10-5

Since the error apparently decreases by a factor of approximately 16 = 24
when we halve the mesh length, we have that the spline interpolation pro-
cedure is fourth-order accurate for f(x) = e*. In Section 4.3 we will prove
that this special result generalizes and that this procedure is fourth-order
accurate for all sufficiently smooth functions.

4.2 TWO-DIMENSIONAL PROBLEMS

In this section, we introduce a two-dimensional analogue of the inter-
polation procedure of the previous section. We consider only the case of
rectangular partitions of U = [0, 1] x [0, 1]. See [4.3] for nontrivial results
for more general domains in the plane.

We let S(p) = H(A) Q H(A)), ie., S(p) is the (N + 4)(M + 4)-dimen-
sional vector space of all functions of the form

s(x,y) = lj‘;j ]:2: ﬂijci(x)cj(y)'

Clearly S(p) is the space of all C%(U), piecewise bicubic polynomials with
respect to p.
Given the vector

f_{fu’fl)j’ N+lj’ io,'Ola R'IJIJA» (1J(1)’ 0M+l’fN+10’fN+1M+1N+011M0+1a
we define
N+1 M+1
S(p) 2 - IJC(X)C (y)
i=0 j=
M+1

+ Z (f09Cno(x) + fa?y, i N+3(x))Cj(.V)

=0

4.7

+1

+ Z (f2Cre2(0) + f2561Car13(P)Ci(x)

+ f0,0Cn+2(0)Cr12(Y) + f6::M+1Cn42(X)Cas13()
+ SN 0CNn3(X)C a2 (P) + N M 1Chi3(X)C 4 5()
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as the interpolation mapping in S(p). If f; , = f(x,, y,), f&:5 = D_f(O, y)),
fah =D f(1, yj): [l = Dyf(xi’ 0), Darer = D,f(x, 1), 00 =
Dnyf(O, O)’ f(l):!lt{+1 = Dnyf(O! 1)! f]lvi'ill.o = Dnyf(l’ O)’ and fIlV'-il,M+l
=D,D,f(1,1) forall 0 <i< N+ 1and 0<j<< M+ 1, where f(x, y),
D.f(x,y), D,f(x,y), and D D, f(x, y) are defined for all (x, y) € U, we
will write #¢,,f for #;,f We now give an important characterization of
?s(,f in terms of one-dimensional interpolation schemes.

THEOREM 4.2
If f € C*(U), then
(4.8) Fsinf = Fswandsar S = Fsadsanf-

Proof. We prove only the first equality in (4.8), as the second is proved the
same way. By definition,

Isansw S = Iswn| 2 S 2ICE) + Dof 0, $)Cual)
+ D1, ))Chs(0) |
=S5 S G0 7)) + DS, 7)Cural®)

i=o Lj=o0

+ D f(1,3)Cuis) [C/(9)
1[S00, 0OC0) + DD, 10, 00Cysx)
+ DD, f(1,0Cy () [Curs(y) + | 33 D, DC)

+ D.D, f(0, DCy.a(x) + D.D,f (1, NCyss(X) [Crus(»)

= '9s(p)f-
Q.E.D.

Finally, we comment onthe computation of &, /. Since the restriction of
?s.,,f to each vertical and horizontal line of the mesh p is a one-dimensional
cubic spline, we may use the given data to do one-dimensional spline inter-
polation along these lines. This procedure gives us the values of
D 3, f(x,, y;) and D, kg, f(x, y;) for all mesh points (x;,y;), 0 <i<
N+land0O< ;< M+ 1.

To obtain the mixed partial derivatives D, D ¥, f(x,, y;), we first note
that the restriction of D, &, f(x, y) to the vertical boundaries of U is a spline
in y, and we have just the right data to do one-dimensional spline interpola-
tion there. This yields the mixed partial derivatives at all the points of the form
(x,y) i=0and N+ 1, 0<j< M+ 1. Second, to obtain the mixed
partial derivatives at the other partition points, we note that the restriction of
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D3, f(x, y) to the horizontal lines in p is a spline in x, and moreover,
we now have just the right data to do a one-dimensional spline interpolation
there.

If £, =00y, f1f =D f(xp), fO = D,f(x,y), and fi =

D,f(x,y;), 0<i< N+ 1 and 0<j< M+ 1, then the preceding

procedure is equivalent to solving the following 2M + N -+ 8 sets of linear
equations:

Ax,_, L%, 4 2(Ax,_, + Ax) [P + Ax, f1S.;
(4.9) = 3[Ax;_ (Ax) " (fir1 —f.-,j) + Ax(Ax, ) (foy — fioi )
I<i<N,0<Z<j<M+ 1,
Ay, [+ 28y, + Ay )2+ Ay fik
(4.10) =3Ay; (Ay) ' (fijer — fu)) T AYAy; ) ' (foy — fis-D)
1<j<M, 0<K<i<N+ 1,
ij—lftlfjlu -+ 2(ij-1 + ij')fil,'jl + ij'fil.'jlﬂ
(4.11) =3Ay;.(Ay) " (fEP — f10) + Ay Ay, ) (i — fitob
l<j<M, i=0and N 41,
and
Ax,_ fhl 4+ 2Ax,_, + Ax)fL' + Ax,fl
(4.12) = 3Ax,_ ,(Ax)7'(f%h; — 2 + Ax(Ax,_ ) (2 — fi))
I<i<N, 0<j<M+ 1.

4.3 ERROR ANALYSIS

In this section, we prove a priori error bounds for the interpolation
procedures introduced in Sections 4.1 and 4.2. In the one-dimensional case,
our analysis is based upon the fact that the spline interpolating function
describes the shape of a thin beam passing through the interpolation points
and “clamped” at the end points. As such, it can be characterized as the
solution of a simple variational problem.

We now state and prove this variational characterization of #g,f.

THEOREM 4.3

Let A and f={f, ..., fyu> fo: N1} be given and V={we
PC22(D)|w(x,) =f, 0< 1<N+ 1 and Dw(x,)=f!, i=0 and N+ 1}.
The variational problem of finding the functions p € ¥ which minimize
|| D*w||; over all w € V¥ has the unique solution 3g)f.
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Proof. As in the proof of Theorem 2.2, p € V is a solution of the varia-
tional problem if and only if

(4.13) (D?p, D23), = 0,

foralld € V,={w € PC*?(I)|w(x;) =0,0 < i< N + 1,and Dw(x,) =0,
i=0and N 4 1}, i.e, if and only if p is a solution of the generalized Euler
equation. Moreover, the variational problem and the generalized Euler
equation (4.13) have at most one solution.

We complete our proof by showing that #;,,f is a solution of the gen-
eralized Euler equation (4.13). If 6 € V,, then integrating by parts twice we
have

(D235iaf, D*8), = [ D350 f(x)D?8(x) dx
0
N Xi41
= 3 [ D23siuf(x)D?(x) dx
i=0 v x¢
N
(4.19) =‘;0 [DO(x)D*} g0 f (x)]5ee
N
— 3 [B()D s f(0k
N

+ ,;0 J.:M O(x)D*3ga f(x) dx.

Thus, (D?*#4)f, D?§), = 0 since the first sum on the right-hand side of (4.14)
is equal to zero because of the smoothness of d(x) and &4, f(x) and of the
fact that DA(0) = D&(1) = 0; each term of the second sum is equal to zero
because d(x;) = 0, 0 << i << N + 1; and finally each term of the last sum is
equal to zero because D*¥,,f(x) =0 for all x € [x,x,,,], 0<<i<N.

Q.E.D.

As a corollary to the preceding proof we obtain the so-called “First
Integral Relation” for splines, which was originally introduced in [4.1].

COROLLARY
If f € PC?2(I), then

(4.15) | D235 f|l; + || D*Fsf — D*f |I; = || D*f |-

By using the same type of integration by parts argument that we used in
the proof of Theorem 4.3, we may prove the following result.
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THEOREM 4.4

If g e PC*%(]), gx)=f, 0<i< N+ 1, and Dg(x)=f}, i=0
and N 4+ 1, then
(4.16) | DX(g — 30)|[; = (g — 9f, D*g),.

For the special case in which f;, = f(x,),0 < i< N+ 1, and f! = Df(x)),
i=0and N + I, and g = f, we obtain the so-called “Second Integral Rela-
tion” for splines, which was originally introduced in [4.1].

COROLLARY
If f € PC*2*(I), then
(4.17) | D(f — 3 ) = (F — 3, D*f),.

As in Chapters 2 and 3, we now turn to the derivation of a priori bounds
for the interpolation error, f — #f, and its derivatives with respect to the
L*-norm and the L=-norm. We find as in Chapter 3 that if f is sufficiently
smooth, then ¢ fis a fourth-order approximation to f with respect to both the
L=-norm and the L2-norm. We start with a preliminary result, which is of
interest for its own sake.

THEOREM 4.5
If f € PC*2%(I), then

(4.18) 1 D*(f — Fs Ol <1 DSl
(4.19) | D(f — s ))l, < 277 1| D*f]l,,
and

(4.20) = 3sfll, < 2n*h?|| D*f]],.

Proof. Inequality (4.18) follows directly from the First Integral Relation
(4.15). To prove (4.19), we note that by Rolle’s Theorem applied to e(x) =
f(x) — 35 f(x), there exist points {&,}¥, in [0, 1] such that x, <&, < x,,,,
0< k< N,and De(§,) =0,0 < k < N.

Thus, applying the Rayleigh-Ritz Inequality (Theorem 1.2), we have

@2 [ “ [De(x)? dx < 7-}(2k)? | " De()P dx, O0<k<N—I,
93 4
$o $o
(4.22) j " [De(x)] dx < m72h? j (D) dx,

and

(4.23) f :V[De(x)]z dx <7 | C'N [D?e(x)]? dx.
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Summing both sides of inequality (4.21) with respect to k fromOto N — 1,
adding inequalities (4.22) and (4.23) to the resulting inequality, and taking the
square root of both sides of the resulting inequality, we obtain

(4.24) I D(f — Fs Nl < 277 k|| DX(f — F5)l2s

and (4.19) follows by using (4.18) to bound the right-hand side of (4.24).
Inequality (4.20) follows in a similar fashion from

(4.25) lle]l, < n~'h|| Del|,
and (4.19). Q.E.D.

If fis somewhat smoother, we may obtain stronger a priori bounds, as we
did in Chapters 2 and 3. The “boot strap” method of proof, which we will use
again, was suggested in [4.1] and refined in [4.10].

THEOREM 4.6
If f € PC*2(I), then

(4.26) [| D2(f — ds ) l, < 2m~2h* || D*f||,,
(4.27) [| D(f — ds N, < 4r™3h* || D*f ||,
and

(4.28) | f— 3sf1l, < 4n*h*|| D*f||;.

Proof. Applying the Cauchy-Schwarz Inequality to the Second Integral
Relation, we obtain

(4.29) I D*(f = 3 )1l <UD N NIf — B f .-

Combining this with (4.20) yields (4.26).
Now, using (4.26) to bound the right-hand side of (4.24), we obtain (4.27).
Finally, using (4.27) to bound the right-hand side of (4.25), we obtain (4.28).
Q.E.D.

To obtain an a priori error bound in the L=-norm, we follow Hall (cf.
[4.6]), and write

(4.30) f=3sf=(—3uf)+ @uf—3sf)

and use the results of Chapter 3 to bound the first term on the right-hand side.
To bound the second term, we observe that &,f— d;f e H(A),
@Fuf—3:/)x)=0, 0<i<N+1, and (D¥,f— Fs/)(x)=0,i=0
and N + 1. Hence,



SEC. 4.3 ERROR ANALYSIS 55

Fuf(x) — Fsf(x) = f} (DFy f(x;) — DIs f(x))hi(x)

Mz i Mz

(Df(x ) — D3 f(x)h}(x)

elhi(x),

and it suffices to obtain an a priori bound on the vector e! = [e}].

LEMMA 4.2
If f € PC*>=(I), then

(4.31) lle'|l. = max |e/ | < F¢h’l| D*f ..
1<i<N

If f € C3(1) and A is a uniform partition of 7, then

(4.32) lle'l. < ggh* [l DS ||

Proof. The proof of (4.31) is accomplished by showing via the Peano
Kernel Theorem that if f! = Df(x,), 1 <i<N, and f' =[f!] € R", then
Bf' =k + r and hence Be! = r. Inequality (4.31) is then obtained from a
priori bounds on the norms of B™! and r = [r,].

For each 1 << i << N, we have from (4.2) that

r(f) = Ax,Df(x,_,) + 2(Ax; + Ax,_)Df(x;) + Ax;_,Df(x;,,)
(4.33) — 3[Ax(Ax,_) ' (f(x) — f(xi-1))
+ Ax,_ (Ax) T (f(xipy) — S(xD))

and, by the Peano Kernel Theorem, we have

(4.34) n(N =4[ DSNr)(x — 02 .

It can easily be verified by direct computation that

6(Ax; + Ax,_)(x, — 1)* + 3Ax,_,(x,., — 1)?
—3[Ax(Ax;_ )7 (x; — 1)
+ Ax,_(Ax) Mxpy — 1) — (x; — 1)},
x,_, <t<x,and
3Ax;_ (x4 — 1) — 3[Ax;_,(Ax) "' (x40, — 2)°),
X S ES Xy

@.35) (r),(x — )3 =

Moreover, (r,).(x — ¢)3 > 0 for all ¢ € [x, x,,,] and (r).(x — )3 < O for
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all t € [x,_,, x,). In fact, for ¢ € [x,, x,,,],
(r)(x — 0% = 3Ax,_ (%, — D?[1 — (X1 — Dy — x)7'1 >0,
while for ¢ € [x,_,, x;), (r;)).(x — #)} is a cubic polynomial, g(¢), such that
q(x;) = 3Ax;_,(Ax)? — 3Ax,_,(Ax) '(Ax)* =0,

q(x;_,) = 6(Ax; + Ax,_ )(Ax;_,)?* + 3Ax;_,(Ax; + Ax,_,)?
— JAx(Ax;_,)""(Ax,_))* + Ax,_(Ax,)"Y{(Ax, + Ax;_,)?
— (Ax;-)*}]
=0,

Dg(x;) = —6Ax;_,(Ax;) + 9Ax,_,(Ax,)"'(Ax,)* > 0,
and
Dg(x;_,) = —12(Ax; + Ax;_)(Ax,_,) — 6Ax,_(Ax; + Ax;_,)
+ 9[Ax(Ax,_ ) '(Ax;_,)* + Ax,_ (Ax;)"'{(Ax,)?
+ 2(Ax)(Ax;- )}l
=0.
Thus, the cubic polynomial, g(¢), vanishes at ¢t = x,_, and x;, and Dgq(¢)

vanishes at ¢t = x;_, and is positive at x;. Hence, g(z) < 0.
Using these facts on the sign of (r,),(x — )3, we have from (4.34) that

<UL — = a7 s — o2 )

Xi-1

4
= Mé% {2(Ax; + Ax,_y)(x; — )P [, + Axio(xi — 0P[5

(436) — HAx(Ax, ) (5 — 0 + Ax,((Ax) T {(xiey — 1)

— (= DR — Axo (xy — O 1
+ %Ax,_,(Ax,.)“‘(x,-H — 1)* 3}
< ’le [| D*f ||[Ax(Ax;_)* + Ax,_,(Ax,)’].
Multiplying both sides of Be' =r by the diagonal matrix D = [d,],
where d,; = 3(Ax; + Ax,_,)"', 1 <i <N, we have

DBe!' = (I + M)e! = Dr
and

N
M., = . = =4
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Thus,
[|(DB) |l = [|({ + M) ||. < 2

(cf. [4.7]), and
(4.37) Ie!]l. < 2|| Drll..

However, from (4.36) we have

|d.r| < zlE||D4f||eo[Axi(Axi—1)3 + Ax,_(Ax)*)(Ax; + Ax;_)"!
< Zg | D*f|l[max (Ax,_,, Ax))]*.

In fact, if for example 0 < Ax,_, << Ax,, then

[Ax(Ax;_,)* + Ax;_,(Ax)’NAx; + Ax,_,)"!
< AxAx; ([(Ax)* + (Ax,)*NAx;-, + Ax, )™
= (Ax)*.
Hence
| Drll.. < ggh* || D*f]l.,

and using this to bound the right-hand side of (4.37) we obtain (4.31).
For the case of a uniform partition, i.e., Ax, = h, 0 << i << N, we have
from (4.33) that

':Ii'ri(f) = ’_lih[Df(xi—l) + 2Df(x,) + Df(xi+l)] - [f(xi+l) - f(xi—l)]
(4.38) = JHDfGx ) + 2D/(x) + Dftx )l — | DI dx,
T l<i<n

The right-hand side of (4.38) turns out by coincidence to be exactly the error
for Simpson’s rule for the approximate calculation of the integral

jx” Df(x) dx, and it is a classical result of numerical analysis that

Xi-1

BrNl< BIDNDN.,  1<i<N;

cf. [4.7). Using the a priori bound ||r||.. < (h°/30)|| D*f||.., we may complete
the proof as in the nonuniform case to obtain || Dr|| < (h*/120)|| D’f||.. and
(4.32). Q.E.D.

THEOREM 4.7
If f € PC*=(1), then

(4.39) W= Fsfll- < s3gh* | DS ]l...
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Moreover, if f € C3(I) and A is a uniform partition, then

(4.40) Ilf = Fsflle < *(shz || DSl + zhoht|| DS L)

Proof. As we previously noted,

IWf = dsSflle <Nf = Fuflle + [1Fuf — s Sl

Using the bound (3.20) and Lemma 3.1 in conjunction with Lemma 4.2,
we have in the general case

ILf = Fsflle < 54ah*[| DSl + 5h* || D*f |l = 335h* || DSl

In the case of f € C*(/) and a uniform partition, we have

IIf = 35 flle < skah* || D*f || + 5h* | DS,
which yields (4.40). Q.E.D.

Birkhoff and deBoor gave the first proof of the fact that cubic spline
interpolation was fourth-order accurate in the L=-norm, at least for partitions
with bounded mesh ratios; cf. [4.2]. However, our treatment follows that of
Hall, who proved the result without any restrictions; cf. [4.6].

Our last result of this section is of interest not only for itself but for its
usefulness in obtaining error bounds for bicubic spline interpolation.

THEOREM 4.8
If f € PC?>(I), then

(4.41) ILf = Fsfll < 342 || DS ||

Proof. The proof is essentially the same as that of Theorem 4.7. The only
difference lies in the bound for || Dr||...
By the Peano Kernel Theorem,

W) = [ DS x — 0, dt,  1<i<N,
and
2(Ax; + Ax;_y) + Ax,_y — [Ax(Ax;_ ) ' (x; — 1)
(r)(x — 0, = + Ax;(Ax) H{(x — ) — (=0} X <t <x,
Ax;_; — 3Ax,_(Ax) ' (X0 — D) X <t <Xy

On [x,_,, x.), (r).(x — 1), isa linear polynomial p(z) such that
p(x;) = 2Ax; + Ax;_y) + Ax;oy — 3Ax,_,(Ax, ) 'Ax; = 2Ax;
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and
p(xiy) = 2AAx; + Ax,_,) + Ax,_; — 3[Ax,(Ax;)"'Ax,_,
+ Ax;_,(Ax)"'(Ax; 4 Ax;_y — Ax,_ )] = —Ax,

Thus, p(3x,_, +34x)=0. On [x, x,,,],r(x —¢), is a linear polynomial
q(2) such that

q(x) = Ax,_, — 3Ax,_(Ax) 'Ax, = —2Ax,_,
and
q(x;y,) = Ax,_,.
Thus, g(3x;, + %x,,,) = 0, and the graph of (r,).(x — ?), is as follows:

2Ax;

1

Axi—l

2/3x;_, +1/3x; 1/3x; +2/3x;,

—24x;_

Thus,

|r(f)| < || D*f]l. X (sum of the areas of the shaded triangles of the preced-
ing graph)

= 3[3Ax,_(Ax,) + 3Ax,_,(2Ax)) + 3Ax,(2Ax,_,)
+ 3Ax(Ax,_ )] D*f]|..
= 3Ax,_,Ax; || D*f..

Moreover,
| Dur( )| < 3-3Ax,_ Ax(Ax;_, + Ax)7'|| D*f|l. < 3h | D*f..

Since || (DB)!||.. < 2, we have || e! ||.. < 3k|| D*f||. Combining this bound
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with the results of Lemma 3.1 and Theorem 3.7, we have

If — 3sf ll. < 3h2|| D*f|l.. + (3H)(3R|| D*f]|..) = %h? || D*f]|...
Q.E.D.

We now proceed to the a priori error bounds for the bicubic spline
interpolation procedure. We find as in the one-dimensional case that if f is
sufficiently smooth, then dg, f is a fourth-order approximation to f with
respect to both the L*-norm and the L?-norm.

THEOREM 4.9
If f € PC*%(U), then

If = s fll, < 4n=*(h*|| D3 f |l + k> || DXD5 fll, + k*1| D5 £1I,)

(4.42) _
< 4n~*p*(| DS, + I DED5 f1l, + 11 D5 £ 11,)-

Proof. From (4.8) and the triangle inequality, we have

1f = 3sfll <Nf = Fsar fllz + 1 Fsa(f — Fsan )]l
(4.43) <|Nf = s fllz + 1Fsa)(f — Fsian)
- (f - '9s(A.,))||z + Hf_ '9s(A.)f||2-

Using the results of Theorems 4.5 and 4.6 to bound the right-hand side of
(4.43), we have

(4.43) lf = 3sfll. < 4n™*h* || DL fl, + 2a72h* || DS — Fsanfll
+ 4n4k* || D5 f ],
But since D23, f = #5a,D%f, we have

(4.45) I DI(f — Isw@n Nz < 2272k || DD} f ],

Using (4.45) to bound the right-hand side of (4.44), we obtain (4.42). Q.E.D.

Using the results of Theorems 4.7 and 4.8, we may prove the following
result in essentially the same way.

THEOREM 4.10
If f € PC4>=(U), then

W = dsflle < s8ah* | D2 S |l + K> || DID5 £l 4 33k* || D5 f1l-

(4.46) "
< P(3all Dif |l + &I DD} [l + 53 || D5 f|l)-
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EXERCISES FORCHAPTER 4

(4.1) Using the Peano Kernel Theorem, show that if f € PC#4-=([), then

1D = Fsh) ke < (Yo -+ )11 D1

(ct. [4.6)).
(4.2) Using the Peano Kernel Theorem, show that if f € PC#*-=(I), then

| D2(f — Fs/)lle < (5 + D™ )2 || DS,
(cf. [4.6)).
(4.3) Using the Peano Kernel Theorem, show that if f € PC#4-=(I), then

I1D(f = 35l < 31 + h=2h2)h || D*f ||
(cf. [4.6]).

(44) Given f = (fo, fi, ..., fxe1), let 3501, the Type I S(A)-interpolate of f,
be the unique spline, s(x), in S(A) such that s(x;) =f;, 0<<i< N + 1,
and D2s(x;) = 0, i = 0 and N + 1. Show that the mapping #%\4, is well-
defined (cf. [4.8), [4.10], and [4.13]).

(4.5) Givenf= (fy,...,fusto S5 %1), let 3841, the Type 111, S(A)-interpolate
of f, be the unique spline, s(x), in S(A) such that s(x;) = f;, 0 < i< N + 1,
and D%s(x;) = f# i =0and N - 1. Show that the mapping #%%%, is well-
defined (cf. [4.8], [4.10], and [4.13]).

(4.6) Givenf(x) € Cg(l), ie.,f(x) € C3(I)and D¥f(0) = D*f(1) = 0,0 < k <
3, let 351 f, the Type 1V, S(A)-interpolate of f, be the unique spline, s(x),
in S(A)such that s(x;) = f, 0 < i< N + l,and D*s(0) = D*s(1),1 < k <
2. Show that the mapping ¥}, is well-defined (cf. [4.8], [4.10], and [4.13]).

(4.7) Show that if s(x) is the Type II or 1V interpolate of f € PC?2:2(I), then it
satisfies the First Integral Relation (cf. [4.8] and [4.10]).

(4.8) Show that if s(x) is the Type III or 1V interpolate of f € PC#*:2(I), then it
satisfies the Second Integral Relation (cf. [4.8] and [4.10]).

(4.9) Deriveerror bounds analogous to those of Section 4.1 for the interpolation
procedures of Types II, 111, and 1V (cf. [4.8], [4.10], and [4.13]).

(4.10) Develop a theory for two-dimensional spline interpolation procedures of
Types 11, 111, and 1V, analogous to that of Section 4.2.

(4.11) Use Exercises (1.2) and (1.4) to show that if f € PC?-2([), then
I f—dsfll, <m=th? 2+27" || D],
for all p > 2. Furthermore, show that if f € PC#* 2(I), then

Lf = s fll, < 2m73k7 2427 || DS,

for all p > 2.
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(4.12) If mis a positive integer and zis an integer such that m — 1 < z < 2m — 2,

(4.13)

(4.14)

(4.15)

(4.16)

we define the spline space S@m — 1, A, z) to be the set of all real-valued
functions s(x) € C*(I) such that on each subinterval [x;, x;1;], 0 < i< N,
s(x) is a polynomial of degree 2n — 1. Moreover, we define the interpola-
tion mapping #,,: C"~'(I) — S2m — 1, A, z) by #,, f = 5, where

0<k<2m—2—12z 1<i<N,

Dk l.:Dk ,',{
s(x;) f(x) 0<k<m—1, i=0and N + 1.

Show that S(1, A, 0) = L(A), S3, A, 1) = H(A), and S(3, A, 2) = S(A).
Moreover, show that the interpolation mapping #, is well-defined (cf.
[4.8], [4.10], and [4.13]).

Using the notations of Exercise (4.12), show that if f € PC™ 2(I), then
.. f satisfies the First Integral Relation, i.e.,

| D |12 = | D™(f — 3 )z + | D3 1|1

(cf. [4.8], [4.10], and [4.13]).

Using the notations of Exercise (4.12), show that if f € PC2?™ 2(I), then
.. f satisfies the Second Integral Relation, i.e.,

| D(f — Fu/)3 = (f — Fnf, D™ f)s.

Using the notations of Exercise (4.12), show that if f € PC™ (1), then
I DI(f =FnD)ls < Kpomz ™I D |2, 0<j<m,
where
1, m—1<z<2m-—-2, j=m,
JTm, m—1=z 0<j<m-—1,
X _ nmti(z + 2 — m)!, m—1<z<2m—2,
mom,z,j =

0<j<2m—2 — 2,
nmti(z + 2 — m)!I(GNHY, m—1<z<2m — 2,
2m —2 —z<j<m-—1.
Moreover, show that if f € PC2™2(]), then
| DI(f — Fmh)le < Kmzmoz, B2 7| D27 |, 0 < m,

Where Km,lm.z,j = (Km,m.z,i)(Km,m,z.O) (Cf [41 1])

Using the notations of Exercise (4.12), let 3% be the product interpolation

mapping into the tensor product space SQ2m — 1, A, z) X SQm — 1,

A,, z) and show that if f € PC2m2(R), then

Lf = flle < Km,zm,z,0(h2™ || DI"f ||z + hmkem || DEDYS ||z + k2™ || DI™f112)
< Kmamz,0P?™(| DE7f |l + || DEDSf |2 + 11 DF7F |l2)-
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Using the notations of Exercise (4.12) and the results of Exercises (1.2) and
(1.4), show that if f € PCm™2(I), then

W = Fnflly < 3Km.mznAm= V222 || DS |5, p =2,
Moreover, show that if f € PC?™ 2(I), then
Wf = Fnfllp < $Kmyam,z, 1 h3m= 12427 || D2fY|,, p > 2.

Develop analogues of the results of Exercises (4.12)-(4.17) for interpolation
mappings of Types II, III, and IV into S2m — 1, A, z) (cf. [4.8], [4.10],
and [4.13]).
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5 LINEAR INTEGRAL EQUATIONS

In this chapter we discuss the method of degenerate kernels for approxi-
mating the solutions of Fredholm integral equations of Type II. In particular,
we consider the use of bivariate, piecewise polynomial kernels.

We consider the equation

(5.1) ux) = [ Ko pu)dy +/0),  0<x<1,

where K(x, y) and f(x) are given real-valued continuous functions. The kernel
K(x, y) is said to be degenerate if it has the form

(5.2) K(x,p) = 5 3 BuB(x)Cly).

Substituting (5.2) into (5.1), we see that if u(x) is a solution, then

(5:3) u(x) = 58 [ 3 BL.COU)dy + )
or

(5.4) u(x) = f(x) + 3 0,B(x)

where

(5.5) a=[ 5 BuCyut) ay.

Equation (5.4) determines the structure of u#(x), and it remains only to

64
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determine the coefficient vector a.. Substituting (5.4) into (5.1), we get

56 Babm= [ 35 BBEOCOK(E 0 B0) +10)dy.

Setting the coefficient of B,(x) on the left-hand side of (5.6) equal to the coeffi-
cient of B,(x) on the right-hand side of (5.6) for each 0 << i < n, we have

m 1 n m 1
5.7 o; = Z J ﬁika(y) Z o; Bj(y) dy + Z J ﬁika(Y)f(y) dy
k=09Y0 j=0 k=0Y0
for 0 << i < n. Putting this linear system into matrix form, we have
(5.8) Aa =k,

where 4 =1 — B, B= [b,}],

m 1
by =3 | BCBOdy,  0=<ij<n,

k = [ki]’
and

K,

Il

kg f; B.Cfy)ydy, 0<i<n.

Of course in general, K(x, y) is not degenerate, but we can approximate it
by a piecewise bivariate polynomial, P(x, y), which is degenerate. In this
chapter, we will concentrate on approximating the kernel by interpolation.
However, it is clear that we could as well approximate it by a least squares
technique. Moreover, in a problem in which K(x, y) is experimentally deter-
mined, this latter technique might be preferable.

We first study the question of the nonsingularity of the matrix 4 for a
degenerate kernel P(x,y) approximating K(x, y). If we rewrite (5.1) in
operator form as

5.9 I—Ku=f
and the approximate integral equation (which reduces to (5.8)) as
(5.10) (I— Pa=f,

then we show that if ||[K — P||.. = max |K(x, y) — P(x, y)| is sufficiently
0<x,y<1

small and if 7 — K is invertible (i.e., (/ — K)u = f has a unique solution
u(x) € C[0,1] for all fe C[0,1]), and if there exists a positive constant,
which we will denote by ||(/ — K)~!||.., independent of f such that ||u|. <
| — K) ||| fll for all f € C[O, 1], then I — P is invertible.
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THEOREM 5.1
If I — K is invertible and ||K — P||.||(/ — K)"!||.=¢ <1, then I — P
is invertible.

Proof. We must show that for all f e C[0, 1], (/ — P)u = f has a unique
solution in C[0, 1]. Let g € C[0, 1] be such that (I — K)g = fand || g||.. <
| — K) 'l || fll~- Then it suffices to consider (/ — K)™'(/ — P)u = g and
to show that this has a unique solution. But

=K 'U—=P)=1—-U—-K)'[I—-K)—U—P)]
=1—(—K)'(P—K),
and

= K)'(P =K. < || = K) M5 ||P = K|ls =g < 1.

Thus if W= — K) (P — K), we want to solve (/ —W)u=g or u=
Wu + g = V(u) where V satisfies

VW) = V)l =IWu — 2)|l. < qllu — z]|.

and is a contraction mapping on C[0, 1]. By the contraction mapping theorem
(cf. [5.1]), (I — K)"'(I — P) is invertible and

full. < (A =@ | — K) e + | [l
Q.E.D.

We can now obtain two general error bounds. The first is an a priori
bound and depends on ||#||.. and the second is an a posteriori bound and
depends on || #||...

THEOREM 5.2
If the hypotheses of Theorem 5.1 hold,

(5.11) Nu — |l < q(1 — @)~ " |[ulles

and

(5.12) lfu —a]. <gqllall..
Proof.

d=U—P)y'f=U—P)'(I—Ku
=U—P)'[I—P)+ (P—K)u
=u+dT—P)'(P—K)u
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and hence
[lu —all. <||(I — P)" (P — K)||]lullo

— K)o |[P— KL
— I "
S T s MY =

which proves (5.11). Likewise,
u=U—K)'f=U—K)'(I— P
=(I—-K'MI—-K)+K—Pla=d+{I— K)'(K— P,

and hence
[lu—dll. <|| — K) || K — P|l.]|#]|
Q.E.D.

From Theorem 2.8, we have the following result.

COROLLARY 1
If I — K is invertible, K(x, y) € PC*=(U), and p is such that

g = }(1* || DIK |l + K* | DIK||) | — K) 7'l < 1,
then I — #,,,K is invertible and
(5.13) o — a |l < gl — g7 lull
i.e., we have a second-order approximation scheme.
From Theorems 3.10 and 4.10, we have the following results.

COROLLARY 2
If I — K is invertible, K(x, y) € PC*=(U) and p is such that

Ok = 3h3(* || DiK||.. + 24h7k?* || DIDIK || + k*[| D3K ||| (T — K)7HJ. <1,
then I — &, K is invertible and

(5.14) llu — it |l < gl — gh)™" 1]l

i.e., we have a fourth-order approximation scheme.

COROLLARY 3
If I — K is invertible, K(x, y) € PC*>=(U) and p is such that

Ih i = (33ah* || DiK||.. + $h*k*||DiDIK || + 53zk* || D3K]|..)
x| — K) M. <1,
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then I — ¢, K is invertible and
(5.15) N — dsl < gRu(l — gi)™" 4]l

i.e., we have a fourth-order approximation scheme.

EXERCISE FOR CHAPTER 5

(5.1) Using the notations and results of Exercise 3.19, show that if 7 — K is
invertible and K(x, y) € PC2m=(R), then there exists a positive constant,
C, such that if

gnx = C(h*" || DY"K || + H"k™ || DEDYK |l + k*™ || DK ||..)
X = K)Hle < 1,

then I — #yn(,)K is invertible and
e — dgn|le < gh el — gh )™t | el

i.e., we have a 2mth-order approximation scheme.

REFERENCE FOR CHAPTER 5

[5.1] GorrmaN, C., and G. PEDRICK, First Course in Functional Analysis. Prentice-
Hall, Inc., Englewood Cliffs, N. J., (1967).



6 FINITE ELEMENT REGRESSION

6.1 ONE-DIMENSIONAL PROBLEMS

In this chapter, we study finite element regression or least squares ap-
proximation by means of piecewise polynomial functions. ‘Generally, we
recommend least squares procedures for smoothing “noisy” or oscillatory
data when we wish to avoid the extraneous oscillations of the approximations
given by interpolation procedures. We start by considering general one-
dimensional problems.

Let {B(x)}r-, denote n linearly independent basis functions in PC°2(/) and
fe€ PC*%(I). We consider the least squares variational problem of finding
B* € R" such that

2
:

6.) #(B*) — inf p®) = inf |/ — 32 BB,
8@ = II115 — 20, £ B.8): +| 33 8.5

The function

2
2

is clearly quadratic in B € R” and hence B* is a solution of (6.1) if and only if
(6.2) DipB*) =0, 1<i<n,

and the matrix J[B*] = [D,D,$(B*)] is positive definite. Carrying out the
differentiation in (6.2), we obtain the linear system

(6.3 ABp* =k,
where A =[q,], a; = (B, B)),, | <i, j<n, k=[k], and k, = (f, B),,

69
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1 < i < n. Moreover,
(6.4) J[B] = 24, for all p € R".
Using (6.3) and (6.4), we have the following result.

THEOREM 6.1

The least squares variational problem of finding p* satisfying (6.1) has a
unique solution,

N
2 ﬂi*Bi(x)’
s
where the B* is the solution of a symmetric, positive definite linear system.

Proof. The matrix A is clearly symmetric. If == 0,
n 2
BTAp = ” 3 5.8, ”z > 0.

In fact, if II 2"} BB,
i=1

which contradicts the choice of . Hence, 4 is positive definite.
Furthermore, (6.3) has a unique solution §*. Since J[B*] = 24, B* is
actually a solution of the variational problem (6.1). Q.E.D.

| = 0, then, since {B,};., are linearly independent, § = 0,
2

If S= {2": B.B(x)|B € R"}, then the unique solution given by (6.3) is
i=1

denoted by Psf = E": B¥B(x). Clearly Psf is the orthogonal projection of f
i=1

onto S with respect to the L2-inner product; cf. [6.4].

We now examine the question of choice of basis functions so as to yield
sparse, well-conditioned matrices.

As a basis for L(A), we suggest the functions {/,(x)}%' defined in Section
2.1. Using these to form the system (6.3), we obtain a system with a tridiagonal
matrix. Such systems can be solved very efficiently by Gaussian elimination;
cf. [6.2] and [6.6). Moreover, in the special case of a uniform partition, i.e.,
x,=ih, 0<i< N+ 1, where h= (N + 1)7!, the matrix 4, =[a,] is
given by

l

(6.5) A,

21
0
" 1 4\ |
° 0\4 1
1 2
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where the solid lines indicate a continuation of the same entry. Since A4, is
symmetric, its eigenvalues are real, and by the Gerschgorin Theorem (cf.
[6.6] and [6.11]), the eigenvalues lie in the open interval (4/6, ). Thus, the
condition number of 4,, cond (4,), which for symmetric, positive definite
matrices is the ratio of the maximum eigenvalue to the minimum eigenvalue,
satisfies

(6.6) cond (4,) < 6.

For a detailed discussion of the computational significance of condition
numbers, see [6.2] and [6.6). The important thing to note in the bound (6.6)
is that the condition number is bounded independent of h.

For the case of nonuniform partitions, we can obtain a similar result,
though the proof is different.

THEOREM 6.2

If A, is the least squares matrix (6.3) obtained by using the basis
functions {/,(x)}¥%! defined in Section 2.1, then

(6.7) cond (4, )) < 6(h™'A).

Proof. Since A, ,, is symmetric and positive definite, it suffices to find
positive numbers A4 and A such that

WS B) <P b= [ [ 3 Bl | ax <Y 52)

In fact, then cond (A4, ,) < A7'A. If we let

;= J.:l [Mol ﬂ,l,.(x)}2 dx

= [ B + Bl dx,  0<j<N,
then by a change of variables we have
1 ~
b= (e — x) [ BT0) + Byl ) dy

= (x50 — X1,

(6.8)

where [,(y) =1 — y and 7,(y) = y are independent of j, for all 0 <j < N.
But the integral I, = [B,, B,,,0M[B,, B;.,)", where M is the 2 X 2 matrix

1l
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whose eigenvalues are { and 3. Thus,

(6.10) 3B} + Broh <1, <3PBF + Brdh,  O<j<N.

Summing the inequality (6.10) with respect to j from 0 to N, we obtain

(s B2) < dh(ps + 2% B2 + B

< PTAL0B
(6.11) N
< By + 23 B Br)
N+1
2
< i3 )
Hence, we may take 4 = th and A = h. Q.E.D.

As a basis for H(A), we suggest the functions {/;(x)}%' and

1x7'hi(x), i=0,
(6.12) ﬁil(x) = (X1 — X)) RA(X), 1 <i<N,
%(l - xN)—Ihll*H-l(x)’ l: N + 1’

where the functions 4,(x) and 4!(x) are defined in Section 3.1 and we have
normalized the functions 4;(x) so as to make all the diagonal entries in A4,
the same order of magnitude. It is easily verified that A,,, is six-diagonal
and that if we couple together #,(x) and A!(x) foreach 0 < i << N + I, then
the corresponding (block) matrix is block tridiagonal with 2 x 2 subblocks.

For the case of uniform partitions of /, we can prove an analogue of
Theorem 6.2 for these basis functions; cf. [6.3].

THEOREM 6.3

If A is a uniform partition and Ay, is the least squares matrix (6.3)
obtained by using the basis functions {,(x)/|| ,(x) |2, A} (x)/|| B (x) ||, }%5!, then

(6.13) cond Ay, < 160.

The important thing to note is that the bound of (6.13) is independent of h.
Moreover, we can ask whether or not there exist other “obvious” basis
functions for H(A), which would yield an even better result than (6.13). To
this end, for each o« > 0, we let

(6.14) br(x) = h(x) + ahi(x), O0<i< N+,
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and
(6.15) 15(x) = hix) — ahl(x), O0<i<N+1,

be a basis for H(A). If A, () denotes the least squares matrix with respect
to these basis functions, then we can seek o* > 0 which minimizes
cond Ay,(). As a step in this direction, it has been shown that
cond A,4,(15.5) = 26; cf. [6.3].

To define a basis for S(A), we augment the partition A to form A:
=X, <X, <...< Xy, <...<Xy,s Where, for example, we choose
Xigg — X, =X, — X,, —3<i<—I, and Xx;,, —X, =Xy, — Xp,
N+ 1 <j< N + 3. Following [6.8], we suggest as a basis for S(A) the fol-
lowing “B-splines:”

4

(6.16) s{x) = 3 [Doo(x; )] (xipi — X)3, —3<i<N,

k 0

where w,(x) = ﬁ (x — x,,,) and
k-0

yi=

, {y% y=>0,
0, y <O.

The graph of s,(x) is given by

3¢ 3¢ N|
X, X4 Xi+2 Xi+3 Xiva

In the special case of a uniform partition with mesh length 4 = (N 4+ 1)71,
the basis functions s,(x), —3 < i< N, can be expressed in terms of a
“standard” basis function, S(x). In fact, if

(2 —x)*/24 — (1 —x)}/6 — x*[4 + (1 + x)’/6, —2<x< —1,
2 —x)%/24 — (1 — x)*/6 — x3/4, —1<x<0
S(x) =42 — x)3/24 — (1 — x)*/6, 0<x<1
(2 — x)3/24, | <x<2
0, xe R—[-22],

then s (x) = S(h™'x —i—2), —3<i<N.

It is easily verified that with these basis functions, 4 ,, is a band matrix
with seven nonzero diagonals, and hence the linear system (6.3) can be
efficiently solved by Gaussian elimination for band matrices. Moreover, for
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the case of uniform partitions of /, we can prove an analogue of Theorems
6.2 and 6.3 for these basis functions; cf. [6.9].

Now we discuss the question of what to do if the data is given only at the
points 7 = {t,}2 ,. Our first approach to this problem follows [6.7]. We note
that the only place in the linear system (6.3) where the data f(x) plays a role

is in the formation of the right-hand side k = [ | ' F(0)B.(x) dx].
0

The idea is to approximate these integrals by expanding f(x) in terms of
the data, i.e.,

) = 3 ftyo ) = F(x),

in such a way that the integrals 'fl F(xX)B;(x) dx, 1 <j < n, can be evalu-
ated analytically and such that thoe error introduced by this procedure is
“asymptotically consistent” with the error of the basic least squares method.
For the special case of L(A), we suggest letting f = &, ., /, i.e., f is the piece-
wise linear interpolate of f(x) with respect to the partition 7. For the special
cases of H(A) and S(A), we can do essentially the same thing. However,
here we suggest using piecewise, cubic Lagrange interpolation with respect to
the partition 7 to form f. This procedure was described in detail in Chapters
2 and 3 in the context of approximating derivatives of f(x).

Our second approach to the problem of what to do if f(x) is given only
at the points 7 = {1,]J2, is based on the idea of approximating the functional

.

In particular, we consider the approximate functional
A n 2
8 =S w| f0) - 588
where

(ti+1 - tj)’ j= I,
wy =t — 1-1), 2<j<@—1,
(tj_tj—1)9 =0,

and define ﬁ* as the solution of the approximate variational problem of
finding B* € R" such that

$(@B*) = inf $(B).

per"

It is possible to analyze this procedure completely; cf. [6.9] for the detalils.
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We end this section with some numerical results due to Patent (cf. [6.7])
concerning the approximation of the exponential function, e*, by finite
element regression with the spaces L(A), H(A), and S(A). In all of the
following examples the partitions A(/) will be uniform with mesh length 4.

L(A(h))
h llex — Priagmne* |2 llex — Priamye* ||
1 .63 X 10! .16 x 100
2-! 17 x 101t S1 x 107!
2-2 42 x 102 14 x 10!
273 A1 x 10-2 .35 x 10-2
2-4 27 X 10-3 .88 x 10-3
2-5 .66 X 104 22 X 103
H(A(h)
h llex — Pramye* |2 llex — Pramye* |l
1 34 x 10-3 A1 x 10-2
2-1 43 x 104 .15 x 10-3
272 44 x 10-5 14 x 104
2-3 34 x 10-6 .93 x 10-6
2-4 .23 X 1077 .62 x 10-7
2-5 16 x 10-8 .60 x 108
S(A(h))
h llex — Psamnex ||z llex — Psamye* ||
1 34 x 1073 A1 x 10-2
2-1 46 X 104 .19 x 10-3
272 .54 x 105 A1 x 104
2-3 37 X 1076 .81 X 10-6
2-4 24 X 10-7 .56 x 10-7
2-5 16 x 10-8 40 x 10-8

These numerical results indicate that the piecewise linear least squares
approximation to e* is second-order accurate in both the L?-norm and the
L>-norm, while the piecewise cubic Hermite and spline least squares approxi-
mations to e* are fourth-order accurate in both the L2-norm and the L>-norm.
In Section 6.3, we will prove that these special results are true for all suffi-
ciently smooth functions.
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6.2 TWO-DIMENSIONAL PROBLEMS

Let {B,(x, y)};-, denote n linearly independent basis functions in PC% 2(U)
and fe PC%%(U). We consider the least squares variational problem of
finding p* € R" such that

617  ¢@") = inf @ =inf [ [ | r(x.3)— £ BBx.») | dxdy.

Using essentially the same analysis as we did in Section 6.1, we can prove
the following characterization result.

THEOREM 6.4

The least squares variational problem of finding p* satisfying (6.17) has a
unique solution,

3 BEB(x, ).

where the coefficients p* are the solution of the symmetric, positive definite
linear system
(6.18) Ap* =
where
a=la)=[ [ B y)Bx ) dudy ]

and

k=)= [ [ fex.0B(x,») dxay |

IfS= {z": B:B(x,y)|B € R"} then the unique solution given by (6.18)

is denoted by P f = Z S¥B,(x, y). Clearly P f'is the orthogonal projection of

fonto S with respect to the L?-inner product over the square U; cf. [6.4].

We now examine the choice of basis functions. As a basis for L(p), we
suggest the functions {/,(x)/,(y)}¥4!14+!. Using these to form the matrix of
(6.18), we obtain a sparse matrix with nine nonzero diagonals. The zero

structure is given in the following figure
\0
0

AL(p) = O
AN

where the solid lines indicate the nonzero diagonals.
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Actually 4,,) may be conveniently expressed in terms of 4, and 4,
In fact, if B = [b,;] and C = [¢,;]areann X nand m X m matrix respectively,
then we define their tensor or Kronecker product as the mn X mn matrix
B &) C given by

b“C b1nC1
B®CE ' . ’
bnlc ot bnnCJ

and in particular A, = Ay & AL,,. Moreover, it follows from the
theory of tensor products of matrices (cf. [6.1]), that

cond (4,,,) < 36k~ 'hk™'k.

To solve the linear system corresponding to A, we suggest either
Cholesky decomposition (cf. [6.2] and [6.6]), or an iterative method such as
successive overrelaxation (SOR); cf. [6.6] and [6.11]. The Cholesky decom-
position requires storage of the order 273 and on the order of p~* arith-
metic operations. The successive overrelaxation iterative method requires
storage of the order 27! and by Ostrowski’s Theorem is convergent for any
relaxation factor w € (0, 2); cf. [6.11]. Moreover, if we consider the block
partitioned form of A4, obtained by lumping together all the unknowns
along every horizontal line (i.e., for each 0 << j << M 4 1, we consider as
one vector in RV*2 the coefficients of /,(x)/,(y), 0 < i << N + 1), we obtain
a block tridiagonal matrix 4,,. Since 4, has block property 4 and is
block consistently ordered, we may apply the theory of Young (cf. [6.11]) to
determine the optimal relaxation factor for block successive relaxation.

As a basis for H(p), we suggest the functions

{(x) y(9), B )y (9), () RJ(D), B (x)RJ($) |0 < i < N+ 1

(6.19)
and 0 <j< M+ 1}.

If for each i and j, we lump together the four basis functions A,(x)h,(y),
hi(x)h,(y), h(x)hi(y), and h}(x)h!(y), then we obtain a block matrix whose
zero structure is the same as the zero structure of the preceding matrix A4, ,.
Moreover, for uniform partitions, p, cond 4,,,, < (160)2. As discussed before,
we may use either Cholesky decomposition or successive overrelaxation to
solve the corresponding system.

Finally, as a basis for S(p), we suggest the functions

(6.20) {509s,(»)| =3 < i< Nand =3 <j < M},

where s,(x) and s,(y) are defined in (6.16). Using these to form the least squares
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matrix (6.18), we obtain a sparse matrix with forty-nine nonzero diagonals.
Again the corresponding linear system can be solved by either Cholesky
decomposition or successive overrelaxation.

6.3 ERROR ANALYSIS

In this section, we prove a priori error bounds for the least squares pro-
cedures introduced in Sections 6.1 and 6.2. Our analysis is based upon the
results of Chapters 2, 3, and 4.

THEOREM 6.5
If f € PC%?*(I), then

(6.21) IS = Pra fll: < 77202 || D*f ],

and
(6.22)  [ID(f — Pumy N, <7 '(1 + 4/ 3= 'k~ h)h|| D*f I,

Proof. Inequality (6.21) follows from the observation that

(6.23) I/ = Py Sl = inf (1S =1 <I1f = #ew Slle

I(x)eL(A

and the results of Theorem 2.5, which we use to bound the right-hand side of
(6.23). To prove (6.22), we use the Schmidt Inequality (cf. Theorem 1.5),
and (6.23) to obtain

1D(f — Py N2 < IDCSf — Fa Nl + 1D piar f — Prar )l
<ID(f = 3 NIl
+ 2/ 30 3w f— Pear fll2
<D(f = S Nl
+ 2307 f = e flla + 1 f — Puay f12)
<|ID(f = 3Nz + 4/ 30N f — Iy 2

(6.24)

Inequality (6.22) now follows by using the results of Theorem 2.5to bound the
right-hand side of (6.24) Q.E.D.

In the L=-norm, we can obtain a rather surprising error bound, which
states that the least squares approximation to f € PC?%>(I) is asymptotically
as good as the Tchebyscheff approximation to fin L(A).
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THEOREM 6.6
If f € PC*>=(I), then

(6.25) If — Pray flle < #5(1 + 47 'h)h* || D*f||.,
and
(6.26) [1D(f — Pray )l < 31 + h72h%)hR|| D*f ...

Proof. The idea of the proof is to show that P,,, is the second derivative
of the cubic spline interpolate of a second iterated integral of f(x). The
required inequalities then follow immediately from Exercises (4.2) and (4.3).

We define a mapping M of C[0, 1] into C?[0, 1] by

M(f)(x) = jo j 0 £(2) drds.

It is easy to verify directly that M(f)0) = DM(f)(0) =0, M{L(A)} =
{s € S(A)|s(0) = Ds(0) = 0} = S(A), and D*M(f) = f. Moreover, since
from (6.3) we have (f — P, f, 1), = O for all [ € L(A),

6.27)  (D*M(f) — D*M(Pyuf), D*M(I)), =0  for all I € L(A),

or equivalently
(6.28)  (D*M(f) — D*M(Py4 f), D*s), =0  forall s € S(A).

But from the proof of Theorem 4.3, we have
(6.29) (D*M(f) — D*35,M(f), D%s), =0 for all s € S(A),
and subtracting (6.28) from (6.29) we obtain
(6.30) (D*M(Ppia,f) — D* 350 M(f), D?s), =0 for all s € S(A).

Since [M(P.(s)f) — #sayM(f)] € S(A), we have by the “one-sided Rayleigh-
Ritz Inequality” (cf. Exercise (1.3)),

0 = || DIM(Pua f) — FsmM (N2

6.31 2\2 )
(@30 = (B) IMPu 1) — s MU,

or M(Pp) f) = FsyM(f). Hence,

PL(A)f: DZM(PL(A)f) = D? '9S(A)M(f)’
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and
f— Puayf= D*M(f) — D*3sM(f).

The results now follow by applying Exercises (4.2) and (4.3) to the function
M(f). Q.E.D.

It is possible to use the argument of the preceding proof in reverse to
obtain new error bounds in the L?-norm for cubic spline interpolation from
the results of Theorem 6.5. We do this now to improve and extend some of
the results of Chapter 4. We begin by improving the results of Theorems 4.6
and 4.9.

THEOREM 6.7
If fe PC*2*(I), then

(6.32) 1D*(f — s /) l. < m~2h* || DS,
(6.33) ID(f — 3 ))l. < 2773k || D1,
and

(6.34) I1f — #sflla < 2r7*h*| DS |,

Proof. We first remark that

J(x) = [DAQO)x + f(0)] — #:[/(x) — (DfO0)x + f(O)] = f(x) — F5f(x),

since ¢ preserves cubic polynomials. Thus, we may assume that f(0) = Df(0)
= 0. By the argument of the preceding proof, D*¢; f = P, ,D*f and hence by
inequality (6.21)

ID*(f — ds/)l2 = [| D*f — PriayD*f |l < &7 2h* || DS |2,

which proves (6.32). The remaining results follow from (6.32) as in the
proof of Theorem 4.6. Q.E.D.

The following result is proved in the same way as Theorem 6.7. It is an
improvement of Theorem 4.9.

THEOREM 6.8
If fe PC*%(U), then

IS = Psin flla < 2274(h* || DL f1lo + 2k°K* || DIDf I + k* || D5 f112)

(6'35) -4 54 4 22 4
< 2n7*p*(| D3 fl2 + 21| DD f I, + 11Dy f1l2)-

In order to extend the results of the preceding theorem to include bounds for
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the partial derivatives of the interpolation error, we need the following result,
which is also of interest for its own sake.

THEOREM 6.9

If fe PC*2%(1I), then
(6.36) I D(f — ds O)l. < m~th|| D],
(6.37) ID(f — Fs ). < 27720 || D*f |1,
and
(6.38) I1f = Fsfll, < 2r7h3 || D*f |,

Proof. As in the proof of Theorem 6.7, we may assume that f(0) = Df(0)
= 0 and hence D?¥;f = P,,D*f. Thus, we have

ID*(f = Fs/)la = | D°f — PriayD*f|las

and inequality (6.36) follows from Exercise (6.1). The remaining inequalities
follow from (6.36) as in the proof of Theorem 4.5. Q.E.D.

THEOREM 6.10
If fe PC*%(U), then

I D(f — st N2
(6.39) < 2m3(h*||Difl, + 2hk? || DID; f|, + k*|| D, D3 f|l2)
<2n3p(|1Dfl. + 2|1DiD S|l + || D«D3 f1l2)
and

ID,(f — Fs: )l2
(6.40) < 2a7%(k*|| D3 fl, 4 2kh? || DID;f 1|, + A*|ID,D3 S |I2)
<2772 p*(I D3 fl. + 21IDID3S |l + 1D, D3 f|l2)-
Proof. We prove only (6.39), since (6.40) follows by symmetry. Using the
results of Theorems 4.5, 6.7, and 6.9, we have
1D f = Fsin 2 <DL f — Fsay N2 + | DalFsa(f — Fsian f)
— (f = Fs@an DUz + I1D(f — Fsan Nl
<2a7R||D3 Sl + 22 R DA f — Fsan Nl
+ 277°k* || DL D5 £l
<L2n7K||DLf|l, + 4m~hk? || DID; f 1],
+ 277°k3 || D D5 f |,

(6.41)

Q.E.D.
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We now return to the question of error bounds for finite element regres-
sion. Using the same techniques as in the proof of Theorem 6.5, we may obtain
the following result.

THEOREM 6.11
If fe PC*2(I), then

(6.42) Lf = Pua fll: < 7w *h* || D*f |l
(6.43)  [[D(f = Py Dl < 273(1 + 20/90 4 2/160527 15~ h)h* || D*f ||,

and

(6.44) || D*(f — Py Nl <7 (1 4 44/1350 4 30,/160522h~2h%) || D*f ||,

Using a result of Hall (cf. [6.5]) concerning C3(/)-piecewise quintic
polynomial interpolation of functions in PC® =, we may prove the following
analogue of the surprising result of Theorem 6.6.

THEOREM 6.12
If fe PC*~(I), then

(6.45) [1f — Puay fllo < s¥igh* |1 DS,

(6.46) [1D(f — Puay Nl < t35(1 + 287 ')A || D*f ..,
and

(6.47) [|[D*(f — Py /)l < §(6 + Sh~2h*)h? || D*f ...

Turning now to the spline case, we can prove the following result with the
aid of Theorem 6.7.

THEOREM 6.13
If f€ PC**(I), then

(6.48) I|f — Psayfll: < 2a*h* || D*f 12,
(6.49) ||D(f — Psiayf)l2 < 2m73(1 4 24/90 + 2./16057~ b~ h)h* || D*f ||,
and

6.50) ID*(f — Psw )l

< 27721 + 4+/1350 + 30./160572h~2h?)h? || D*f .

To prove an analogue of Theorems 6.6 and 6.12 for S(A), we need a result
about L=-norm bounds for the error in interpolation in S(5, A, 4), where we
have used the notations of Exercise (4.12). More precisely, we need to know
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that there exist positive constants, {,}4_,, such that
(6.51) IDA(f — #3)lle < e h°7*IIDf |y 0 <k <4,
for all f e PC%~(I); cf. [6.10] for a discussion of such results.

THEOREM 6.14
If fe PC*>=(I) and (6.54) is true, then

(6.52)  |ID/(S— Pswy N llo < s h* 7N Df ]l 0<j< 2.

We turn now to the derivation of error bounds for two-dimensional
problems.
THEOREM 6.15

If fe PC**U), then

WS = Prp flle < m*(W || DSl + k21D S 1I2)

(6.53) _
<a2p*(| DSl + [1D;f112)s

1D f — Pein N2
(6.54) <a '[(1 + 4/ 3k 'hh||DLfl. + 2/ 3 'h™ Kk || D} fl2)
<a'(1+ 43 p7 ' PPUIDL S|l + [1D3S112),
1D = Pun
(6.55) <n Q2 Fa kT hR|IDLf Il + (1 + 4/ 3k k[ DS 12]
<a'(1+ 43 p7 ' DPUIDI Sz + [ID3S|l2)-
Proof. We begin by remarking that

PL(,)f= PL(A)PL(Av)f= PL(AnPL(A)f-

In fact, if {4,(x)}}L' denotes an orthonormal basis for L(A) and {F,(y)}}%5"
denotes an orthonormal basis for L(A,), then {A,(x)F,(p)¥4y5%+! is an
orthonormal basis for L(p) and

and

Punf =3 % AFO) [ [ 705, DA, () dxdy

N+1

=5 4@ [ [ FO) [ 1 nF ) dy A dx

= )PL(Ay)f
M+

=S FE0 [ 5 A® [ S A0 dx ) dy

= L(m)PL(A)f-
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Thus, since | [Prmg (2 dx < [ "lg@Fdx for all g(x) e PCoX(I)
0 1]
(cf. [6.4, p. 175]), we have

1f = Pepn Sl <N f — Pray fllz + | Peeay(S — Prian )z
<f = Puayfllz + 11f = Prian flla-
Inequality (6.53) follows by using the results of Theorem 6.5 to bound the

right-hand side of (6.56).
To obtain (6.54) we use the Schmidt Inequality (cf. Theorem 1.5), to get

[1D:(f = Prp Nl KN D:(Sf = Pray/lz + 1DxPriay(f — Prian Nl
S DL f = PN+ 24/ 3871 f = Priay L2

Inequality (6.54) follows by using the results of Theorem 6.5 to bound the
right-hand side of (6.57). Inequality (6.55) follows by symmetry. Q.E.D.

(6.56)

(6.57)

In a similar fashion, we may prove the following result.

THEOREM 6.15
If fe PC*+%(U), then

NS = Puip fll, < m=*(h* || D3 f1l2 + k* || D3f112)

(6.58) !
<a*p*lDifll. + 1Dy f1l2)

and

(6.59) 1S = P flla < 2774(h* || DSl + k* || D3 11,)

< 227 p*(I1 D2 f 12 + 11 D3 S 12)-

Analogues of inequalities (6.54) and (6.55) hold for the spaces H(p) and
S(p). Their derivations are straightforward and are left to the reader.

EXERCISES FOR CHAPTER 6
(6.1) Show that if f € PC!-2(I), then

lf = Prayfll. < 2~ 'h|| DS |-

(6.2) Show that B solves the variational problem (6.1) if and only if it solves the
variational problem

inf {j; Lg ﬁ,).!;,(x)]2 dx —2 j; @ % BB dx}.

BER"
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(6.3)

6.4

(6.5)

(6.6)

Using the notations and results of Exercises (4.12)-(4.15), show that if
f e PC2m.2(]), then

”f_ PS(Zm—l,A,z)f”Z S Km,Zm,z.thm ” Dsz'lz‘

Moreover, show that if f € PC2m 2(R), then
f = Psam-1,a,n0s2m-1,a50f 12 < Kin,2m,z,0 (B2 | DE7f || + k2™ || DE7f ||,).

In many problems we wish to approximate a closed contour I' =
{(x(®), ¥(£))| 0 < t < 1}in the plane. We may assume that (x(0), y(0)) = (0, 0)
and since I' is closed we must also have (x(1), y(1)) = (0, 0). If

Lo(A) = {I(x) € L(A)|1(0) = (1) = 0},

Hy(A) = {h(x) € H(A)|h(0) = h(1) = 0},

and

So(B) = {s(x) € $(A)|5(0) = s(1) = 0},

develop analogues of the results of Section 6.1 for the least squares ap-
proximation of the two coordinate functions x(¢) and y(¢f) over Ly(A),
Hy(A), and Sy(A). Many times we are given (x(¢), ¥(¢)) for only a discrete set
of points T = {t,}2,, i.e., we are given only a finite set of points, in the plane,
which approximate the contour. In this case develop analogues of the “ap-
proximate regression” results of Section 6.3 (Hint: Use the arc length along
the polygon with vertices {(x(¢), ¥(¢))| ¢ € T} as the parameter ¢.).

If f € PC?2:2(R), show that

max (|| Dx(f — Pup ) lzs |1 Dy(f — Puipy S)l2)
<@ '(1 4 24/90 4 24/1605p~ 1 p)p (I D21 |2 + [|D3f1l2)

and

max (|| D(f — Psp /) 2 |DLS — Psip ) 1I2)
<27 '(1 + 24/90 4 24/1605p71 p)p(I| D3 f 12 + (I D3S|2)-

If f € PC42(U), show that

max (|| Dx(f — Pu(p NIz |DAS — Prip ) l2)
<7731 + 24/90 + 24/1605p71 )| D2 S 1l2 + 11 D5 S112)

and

max (|| Do(f — Psin ) |z, | DSS — Psipyf)]l2)
<2731 + 24/90 + 24/1605p7 p)p3(| D2 S|z + || D3 S 112)-
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THE RAYLEIGH=RITZ=GALERKIN
7 PROCEDURE FOR ELLIPTIC
DIFFERENTIAL EQUATIONS

7.1 INTRODUCTION

In the past few years there has been renewed interest in the Rayleigh—
Ritz-Galerkin procedure, and in particular the finite element procedure, for
approximating the solutions of well-posed boundary value problems for
linear and nonlinear elliptic differential equations. In this context, the finite
element procedure is nothing more than the Rayleigh-Ritz—Galerkin proce-
dure applied to the spaces of piecewise polynomial functions which we intro-
duced in Chapters 2, 3, and 4. For classical accounts of this procedure, see
[7.14], [7.15), [7.16], [7.25], and [7.26); for modern accounts see [7.1], [7.7),
[7.8], [7.12), [7.31], [7.32], and [7.35).

For a bibliography of the extensive Russian work on this procedure, see
[7.27]), and for a bibliography of the engineering literature on the finite
element method, see [7.44]. Finally, we mention the very general and impor-
tant work of Aubin, Babuska, Bramble, Fix, Schatz, and Strang on the
mathematics of the finite element method; cf. [7.2], [7.3], [7.6], and [7.42] for
references.

In this chapter, we will consider the Dirichlet problem for self-adjoint,
second-order linear and semilinear elliptic equations. See [7.9], [7.10], [7.11],
[7.12], [7.18)], [7.37], [7.38]), and [7.39] for a discussion of other types of
boundary conditions and more general equations. Moreover, for two-
dimensional problems we will consider only tensor product types of sub-
spaces. See [7.19], [7.44], [7.45], [7.46], and [7.47] for discussions of subspaces
based on triangulations.

87
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7.2 LINEAR SECOND-ORDER TWO-POINT
BOUNDARY VALUE PROBLEMS

In this section, we consider the problem of approximating the solution
of the self-adjoint differential equation

(7.1) — D[p(x)Du(x)] + gu(x) =f(x), 0<x<1,
subject to the Dirichlet boundary conditions
(7.2) u(0) = u(1) = 0.

We assume that the differential equation is elliptic, i.e., p(x) and g(x) €
PC*>(I) are such that there exist positive constants y and g such that

3yl Dull < [ [PCHDUY + g0l dx < w| Dull;

for all u € PCL¥(I)={p € PC"2(I)|§0) = ¢(1) =0}, and f € PC*(]).
See [7.13] for a discussion of singular two-point boundary value problems.
We say that u is a generalized solution (over PC}'?) of (7.1)—(7.2) if and only if
u € PC}*(I) and

(7.49) a(u, v) = J; [p(x)DuDv + q(x)uv] dx = (f, v),

for all v € PC}-2(I). Integrating by parts, we can prove the following stan-
dard result.

THEOREM 7.1

If u is a classical solution of (7.1)—(7.2), i.e., u € C?(I) and satisfies (7.1)
pointwise, then it is a generalized solution.

Moreover, if the coefficients of the differential equation are sufficiently
smooth, we can show that every generalized solution is a classical solution.

We now state and prove a variational characterization of generalized
solutions.

THEOREM 7.2

The function u(x) is the generalized solution of (7.1)—(7.2) if and only if
u(x) is the unique solution of the variational problem of finding « such that

(7.9 Flu] = l},rtl:f2 Flw] = a(w, w) — 2(w, f),.

Proof. First, we show that if u solves the variational problem then it is a
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generalized solution. In fact, if » € PC}-2(/) and « € R,
Flu + on) = a(u, u) + a*a(n, n) + 2aau, n) — 2u,f), — 2a(n, ), > Flu],

and hence F[u + a#] is quadratic in o and has a minimum at ¢ = 0 only if
(dF/da)[u] = 0. Calculating this latter expression, we obtain a(u, n) = (f, 1),
forally € PC}-2(I), i.e., u is a generalized solution.

Conversely, if u is a generalized solution and # € PC}-*(]), then

Fln) — Flu] = a(n, n) — a(u, u) + 2(f;u — n),
= a(n, n) + a(u, u) — 2(f, n),,

where we have used the equality obtained by putting » = u in (7.4). Using the
equality obtained by putting v = # in (7.4), we finally obtain

(7.6) Fln] — Flu] = a(n, n) — 2a(u, n) + a(u, u) = a(n — u, n — u)
> 92| D(u — n)|l3 > 0,

with equality if and only if u = #, i.e., u is the unique solution of the varia-
tional problem (7.5). Q.E.D.

Let S be any finite-dimensional subspace of PC}{-%(]) and {B/(x)}’., bea
basis for S. The Rayleigh-Ritz procedure is to find an approximation to the
generalized solution, u, of (7.1)=(7.2) by determining an element ug € S,
which minimizes F[u] over S. The following result shows that this is a well-
defined procedure.

THEOREM 7.3

There is a unique element ug € S which minimizes F[u] over S.

Proof. Considering

n

FIBI=F| 388, = 3} 33 BBja(B. B) — 233 B( 1. B,

i=1

as a function of p € R, it is clear that F[B] is quadratic in p and hence F
has a minimum at B* if and only if

a7 3—5, Bx]—0, forall 1 <i<n,

and the matrix
H

aram ]

is positive definite.



90 THE RAYLEIGH-RITZ-GALERKIN PROCEDURE CHAP. 7

Calculating the equations of the system (7.7), we obtain
78 §EB1=23 Ba(B.B)~ A/.B).  1<i<n,
i Jj=

or in matrix form

(7.9) AB* =k,
where

(7.10) A = [a;;] = [a(B,, B))]
and

(7.11) k=[k]=I(f, B),l

Clearly, A is symmetric and positive definite. In fact, if B 7 0, then

B AB = a(i B.B,, ‘_:il ﬂA‘Bi> >7ll D(1=Z"| B.B)I1}

i=1

> yn?

n 2
588, >0

Thus (7.9) has a unique solution p*. Moreover, from (7.8) it is clear that
H = 2A and hence p* is the unique minimum of F over R". Q.E.D.

It follows from the preceding proof that the Rayleigh—Ritz approximation
can be characterized in terms of the solution of a linear system of equations,
whose matrix is symmetric and positive definite for any choice of basis func-
tions for any finite-dimensional subspace of PC}-%({).

The Galerkin procedure is to find an approximation to the generalized
solution, u, of (7.1)—(7.2) by determining an element w; € S such that

(7.12) a(wg, B)) = (f, B), forall 1 <i<n.

If we expand w; in terms of the basis functions

ws(x) = g:l 7:B{x),

then we can see that the coefficients, 7y, satisfy the exact same linear algebraic
equations as the coefficients, p*, for the Rayleigh—-Ritz approximation. Thus,
for a problem of this form the Rayleigh-Ritz and Galerkin approximations
are identical and will henceforth be called the Rayleigh-Ritz—Galerkin or
RRG approximation.

We now show how to construct computationally attractive basis functions
for the spaces under consideration.
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As a basis for Ly(A) = {l(x) € L(A)|/(0) = I(1) = 0}, we suggest the
functions {/,(x)}., defined in Chapter 2, i.e., we eliminate the two functions
l,(x) and I, ,(x) from our basis for L(A). This choice of basis leads to an
RRG system (7.9) with a tridiagonal matrix. As discussed in Chapter 6, such
systems are easily solved by Gaussian elimination.

For the special case of a uniform partition with mesh length 4, p(x) = 1,
and g(x) = 0, the RRG matrix is given by

2 —1 0

1
(7.13) A, = h :

which is irreducibly diagonally dominant; cf. [7.43]. Moreover, since
sin ka(x — h) — 2 sin knx + sin kn(x + h) + 2(1 — cos kz&h) sin kax = 0,

the eigenvalues of A4, are {2h7'(1 —cos mkh)|l < k < N}, h=(N+ 1)7!,
and hence
cond (4,) = (1 — cos =wh)~'(1 — cos ANh) = (m2h?)~!(n*N2h?)
= N*x~h? as h—>O.
Furthermore, the matrix #7'A4, is identical to the matrix one obtains from
the standard three-point central difference approximation to the differential
operator — D?; cf. [7.24].

For the case of nonuniform partitions, we can obtain a similar result,
though the proof uses the result of Theorem 6.2 and the Schmidt Inequality
(cf. Theorem 1.5).

THEOREM 7.4

If A, 4, is the RRG matrix (7.10) obtained by using the basis functions
{1.(x)}¥,, then
(7.14) cond (Ay,) < 72y~ un~2(h™'h)h~2.

Proof. From the Rayleigh—Ritz Inequality (Theorem 1.2) and the proof
of Theorem 6.2, we have for all B == 0

(7.15) 6m2w<ﬁ
SBAM&
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From the Schmidt Inequality (cf. Theorem 1.5), and the proof of Theorem
6.2, we have

(7.16) BB < 1272 | 32 [ < 120870 35 2
i=1 2 i=1
Combining (7.15) and (7.16), we obtain (7.14). Q.E.D.

The important thing to note about the bound (7.14) is that the condition
number grows at a rate no worse than the square of the size of the system.

As a basis for H(A) = {h(x) € H(A)|h(0) = h(1) = 0}, we suggest the
basis functions {#,(x)}, U {A!(x)}%' defined in Section 6.1, i.e.,

dim H,(A) = 2N + 2.

This choice yields an RRG system with a block tridiagonal matrix as dis-
cussed in Section 6.1 for the corresponding least squares matrix. For a
uniform partition with mesh length 4, p(x) = 1, and ¢(x) = 0, the RRG
matrix is given by the following matrix, equation (7.17),

B —d 0 0 7
& [E 0 [t &
5
~% | 0 & |t —a 0
0 [—t —
1| 0 [ —a
(117)  Av=p
_810
5 T0
—ds 5| 0
0
v —d | 0 |~
0 0 4 % A

Using the result of Theorem 6.3, we can prove a result on the condition
number of Ay, for uniform partitions. See [7.20] for the proof and further
details.

THEOREM 7.5

There exists a positive constant, K, such that if A is a uniform partition
and Ay, is the RRG matrix obtained by using the basis functions
(R} U (A ()}, then

(7.18) cond (Ay,,) < Kh™2.

We make the important observation that the condition number for H(A)
grows at the same rate as the condition number for L (A) even though we have
a fourth-order scheme instead of a second-order scheme!
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To construct a basis for S,(A) = {s(x) € S(A)|s(0) = s(1) = 0}, it is
necessary to modify the basis functions {s,(x)}X _; presented in Section 6.1 so
that the modified functions satisfy the Dirichlet boundary conditions. To this
end, we illustrate the procedure by giving the modification for the special
case of a uniform mesh.

Let §_,(x) = s_,(x) — 4s_,(0), §_,(0) =s_,(x) —5_,(), 5x) = 5(),
0<i<< N—3 §y_,(x)=sy_,(x) — sy(x), and §p_ ,(x) = spy_,(x) — dsy(x).
Then {5,(x)}X-}, is a basis for S;(A) and the support of each 5, is contained in
at most four adjacent subintervals of A. Thus, use of these basis functions
yields a seven-diagonal band RRG matrix, and the corresponding RRG
system may be solved by Gaussian elimination.

We turn now to the question of generating the RRG system of linear
algebraic equations. The problem is that the nonzero coefficients of the
equations are given by integrals of products of the coefficients of the differ-
ential equation and the basis functions or their derivatives. In general, these
integrals cannot be evaluated analytically, and furthermore we want an
automatic program even for those problems in which the integrals can be
evaluated analytically. If the coefficients of the differential equation are
sufficiently smooth, we suggest approximating the integrals by interpolating
the coefficients in the space over which we are doing the RRG procedure and
then evaluating the integrals of the approximate integrands, which will be
products of piecewise polynomials, exactly. See [7.21], [7.22], [7.40], and [7.41]
for further details.

7.3 SEMILINEAR SECOND-ORDER TWO-POINT
BOUNDARY VALUE PROBLEMS

In this section, we follow [7.9] and extend the ideas of the previous section
to semilinear problems of the form

(7.19) —D[p(x)Du] + q(x)u = f(x,u), O0<x<I,
subject to the Dirichlet boundary conditions
(7.20) u(0) = u(l) = 0,

where p and ¢ € PC°~ and are such that there exist positive constants y and

4 such that (7.3) holds for all u € PC}-2, f(x, u) and g—i(x, u) are continuous

on [0, 1] X (—oo, oo),}g—i(x, w)| < Bforall (x, ) € [0, 1] X (—oo, 0o), and

gTC(X, W<A<A= inf a(w, w)

weEPCol 2(1) (W, W)z ’
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We say that u is a generalized solution (over PC}-2) of (7.19)—(7.20) if and only
if u e PC}?and

(7.21) a(u, v) = (f(u), v),, for all v € PC)2.
Integrating by parts, we can prove the following result.

THEOREM 7.6

If u is a classical solution of (7.19)—(7.20), then it is a generalized solution.

Moreover, if the coefficients of the differential equation are sufficiently
smooth, every generalized solution is a classical solution.
As in the linear case, we have uniqueness of generalized solutions.

THEOREM 7.7
The problem (7.19)-(7.20) has at most one generalized solution.

Proof. Let u and v be two distinct generalized solutions. Then
0=au—v,u—1v)— () —SfO),u—"2),
— ar — v u— ) — (Y — _
=alu —v,u—v) <E(u V), U v)z

(122) =a—v,u—v)— Mu—o,u— ),
>au —v,u—v)— A "'alu — v, u — v)
= (1 — AA Na(u — v,u —v) >l — AA)|| Du — v) |l
> yrx(l — AN |Ju — |l > 0,

which is a contradiction. Q.E.D.

We now state and prove a variational characterization of generalized
solutions. This is a semilinear generalization of Theorem 7.2.

THEOREM 7.8

The function u(x) is the generalized solution of (7.19)—(7.20) if and only if
u(x) solves the variational problem of finding u such that

(7.23) Fil= _inf Fwl= [ | p)Dw) + gCxw?
—2f ) dt] dx.

Proof. Let u(x) be a generalized solution and #(x) be any other element in
PC}2. Then
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Fln) — Flul = atn, 1) — a(u, ) + 2 ; {jo fx, 1) dt — j: fx, 1) dz} dx
= aln, ) — a(w, u) + 2 ; | f(x, ©) dedx.

But since u is a generalized solution, a(u, u) = (f(v), u), and a(u, ) =
(f@), n),, and hence
Fln] — Flu]
= aln, 1) + at, ) — 2t m) + 2 [ [f0x, 1) = f(x, ) o

= aw —nu—m +2[ 170 0) = fx, w) drdx
(1.24) — G — g u— ) — 2[1 J (gf;)(t — ) dedx

za(u—n,u—n)—ljl(n—u)zdx

=au—nu—n) —ilu—nl}=0—AAa(u —n,u—n)
> (1 — AA " Yyr?||lu — n|; > 0.

Conversely, if # € PC)? and & € R,
Flu + anl = a(u, u) + oa(n, n) + 20atu, m) — 2 7" fx, ) drax

is twice continuously differentiable with respect to @ and has a minimum
at o = 0 only if (dF/de)[u] = 0. Calculating this latter expression, we obtain
a(u,n) = (f(u), n), forally € PC}-?,i.e., uis ageneralized solution. Q.E.D.

As in Section 7.1, we let S be any finite-dimensional subspace of PC}-%(1)
and {B,/(x)}>., be a basis for S. The Rayleigh-Ritz procedure is to find an
approximation to the generalized solution, u, of (7.19)—(7.20) by determining
an element g € S which minimizes F[w] over S. The following result shows
that this is a well-defined procedure. Our proof closely follows [7.9].

THEOREM 7.9
There is a unique element u; € .S which minimizes F[w] over S.
Proof. If u € S, then from Theorem 7.8, ¥ uniquely minimizes F over S.

If u ¢ S, we consider the (n 4 1)-dimensional space spanned by {B/(x)}_,
and u. Any function in this space is expressible as

au(x) + 33 BB(x)
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for suitable coefficients and can be represented as an (n + 1)-vector ¢ =
(a, B;5 - - ., B,). Moreover, since {B,(x)};-, and u(x) are linearly independent,

(7.25) |¢|El(a,ﬁu---,ﬁn)|5||““+§ﬁi8‘"z

is a norm over this subspace, and using (7.24) we have

(7.26) F[;Zl ﬁiB,.] > Flul + (1 — AA =2 | (—1, B, ..., B~

But, as all norms on any (n + 1)-dimensional vector space are equivalent
(cf. [7.24]), there exists a positive constant, K, depending on .S, such that

K| Bis- s B Z1(0 Brse o os B = 1(Bis -5 B s

and hence
20 F[ 3 BB | = Flul + (1 = A pmK A (B, B,

where | - |, denotes the /2-norm. Thus, if we view

G®) =GB, B)=F| 3185,

as a functional on R", then the equivalence of all norms on R" coupled with
(7.27) gives us that

(7.28) lim GB) = +oo

l1Bil—eo
forany norm || - || on R". Hence, as G(B)is clearly a continuous function on R"
which is bounded below by F[u] and satisfies (7.28), a standard compactness
argument shows that there exists at least one vector p* € R* for which
G@B) > G(B*) forall p € R", or equivalently

(1.29) F[E BB, | > F[g ﬁ;“B,.] forall € R-.

To show that B* is unique, we observe that G(B) is twice continuously
differentiable over R" with derivatives given by

(7.30) "g—g) - 2a(j:z;l BB, B.) + 2(f(;1 BB,), B’); 1<i<n,

and

9°G(B) _ f (< .
(31) 7o) =208, B) + 2(@(‘; ﬁ,.B,.)B,., B,.>2, 1<ij<n.
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If we define the n X n matrix B(B) = [b,,(B)] where b,,(B) = 3*G(B)/0 .98,
then B is symmetric and uniformly positive definite. In fact,

YBOY = 35 vb,By, = 241, ) + 2 LBy, v)

2
where Y(x) = :‘":1 »:B(x). But from the proof of Theorem 7.8, we have
(7.32) Y'B@)Y > 2yn2(1 — AA7Y)|| YI5,

and, by the equivalence of all norms on R”,

(7.33) Y'B@)Y = 2K-yn*(1 — AAT)|y .

Since G(B) is twice continuously differentiable, we can write its Taylor
series expansion about §* as

(7.34)  G(B) = G(B*) + (B — B*)" (grad G(B*)) + (B — B*)"B(W)(B — B*),

where w =6 + (1 — G)B* for some 6 € (0, 1). Then uniqueness follows
since grad G(B*) = 0 implies

GB) = GB*) + B — B)"BW)(B — B*)
> G(B*) + 2Kyn*(1 — AAY)|B — B* |2
Q.E.D.

To find the unique element ugy(x) = i} B¥B(x) which minimizes F[w]
i=1

over S, we must solve the » nonlinear equations

(1.35) a(z; B,B,, B,) — ( f( > ﬂjB,), Bi)z, 1<i<n
We can rewrite these equations in vector form as
(7.36) AB = g(B)

where A = [a,)] = [a(B,, B,)] and

e® = L0 = [ (£(£ £8).8) |

As with the linear problem, we can use the Galerkin procedure to find
an approximation to the generalized solution, u, of (7.19)-(7.20) by now
determining an element wg € S such that

(7.37) a(ws, B)) = (f(wg), B),, 1<i<n
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If we expand wy in terms of the basis functions
ws(x) = £=21 7:B,(x),

then we can see that the coefficients, y, satisfy the exact same nonlinear
algebraic equations as the coefficients, p*, for the Rayleigh-Ritz approxima-
tion. Thus, for a problem of this form the Rayleigh-Ritz and Galerkin
approximations are identical, and we will refer to the Rayleigh—Ritz—Galerkin
(RRG) approximation.

We now turn briefly to the question of algorithms for solving the nonlinear
RRG systems (7.36). Several iterative methods can be rigorously applied;
cf. [7.29], [7.33], and [7.34]. For example, we may apply the Gauss—Seidel
method to (7.36) to obtain
E aijﬂﬂ-’*” 4 E a; 5;) _ gr(ﬂ(l”l)a oy, ,B.f'”),ﬁ,(i)n .
st j>i

=0,

. l?y))
(7.38)
1<i<n

For each fixed i, | << i < n, this equation is a nonlinear equation in the single
unknown f{*" and has a unique solution, which can be obtained by Newton’s
method. Moreover, the cyclic determination of the S*" is convergent;
cf. [7.33] and [7.34].

Finally, we give some numerical results for a simple model problem.
We consider

(7.39)
(7.40)

—D%u(x) = —$u(x) + x + 1)3,
u(0) = u(1) =0,

0<x<l,

which has the associated functional

1 wix)
(7.41) Fiv = [ [(Dwe)? + [ (0 + x + 1yd) dx
and the unique solution u(x) = 2(2 — x)"! — x — 1. The following com-
putations for this problem were done by Dr. Robert Herbold; cf. [7.9]. All
the partitions are uniform.

h dim LoA(h) | |lu — ullz |dim HoA(h) | [lu — ug|l2 |dim SoAh) | |lu — us|l2
1 6 19 x 10-5

1 8 75 x 10-6 5 91 x 10-6
1 4 .15 x 10-3 10 .36 x 1076 6 A7 x 10-6
el 9 43 x 10-4

s 19 12 x 10-¢
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Though it is difficult to tell from these numerical results, we will prove
in Section 7.5 that the RRG procedure is second-order accurate for L,(A)
and fourth-order accurate for H,(A) and S,(A) for all sufficiently smooth
solutions.

7.4 SECOND-ORDER PROBLEMS IN THE
PLANE

In this section, we consider the problem of approximating the solution
of the second-order self-adjoint linear elliptic differential equation

— D, [p(x, y)D,u(x, )] — D,[r(x, y)Du(x, y)] + q(x, y)u(x, y)

7.42
74 = f(x, y), (x, y) € interior of U,

subject to the Dirichlet boundary conditions

(7.43) u(x,y) =0 for all (x, y) € boundary of U,

where p(x, ), r(x,), and g(x,y) € PC°=(U) are such that there exist
positive constants y and u such that

ylully=2[ [ (Dw? + (D) drdy

(7.44) < [ [} {pr, XDy + r(x, YYDy + qx, Yy} dixdy
< wllul}

forallu € PC{2(U) = {¢p € PC"*(U)|¢(x,y) =0forall (x, y) € boundary
of U} and f € PC®?(U). We can extend the methods and results of this
section to treat semilinear problems in the plane in the same way that we
explicitly extended those of Section 7.2 to Section 7.3, for one-dimensional
problems. The details are straightforward and are left to the reader. We
say that uis a generalized solution (over PC}-2(U)) of (7.42)-(7.43) if and only
ifu e PC{:*(U) and

(7.45) a(u, v) = Il jl {p(x, y)D.uD. v + r(x, y)DuDpw + q(x, y)uv} dxdy
= [ [ fx yw dxay

for all v € PC}-2(U).
Integrating by parts, we can prove the following result.
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THEOREM 7.10

If uis a classical solution of (7.42)—(7.43), then itis a generalized solution.
Moreover, if the coefficients of the differential equation are sufficiently
smooth, then every generalized solution is a classical solution.

We now state a variational characterization of generalized solutions. The
proof is an exact analogue of the proof of Theorem 7.2.

THEOREM 7.11

The function u(x, y) is a generalized solution of (7.42)—(7.43) if and only
if u(x, y) is the unique solution of the variational problem of finding u such
that
(7.47) Flul= inf F[w] = a(w,w)— 2(f, w),.

wEPCo!'2(U)

Following the treatment in Section 7.1, we let S be any finite-dimensional
subspace of PC}-%(U) and {B,(x, y)}i-, be a basis for S. The Rayleigh-Ritz
procedure is to find an approximation to the generalized solution by deter-
mining an element u; € S which minimizes F[w] over S. The following result
extends Theorem 7.3 to the two-dimensional case. The proof is analogous to
that of Theorem 7.3.

THEOREM 7.12

There is a unique element
Us = 1:21 B¥B(x,y) € S

which minimizes F[w] over S. Moreover, B* is the solution of the linear
system with symmetric, positive definite matrix 4 = [a,]] = [a(B,, B))].

If we define the Galerkin approximation wg(x, y) = i y,B(x,y) to be
i=1
determined by the solution of the linear equations

(7.48) a(ws, B) = (f; B),, 1<i<n,

then we can see that the coefficients satisfy the exact same linear equations as
p* and hence y = p*, and we will refer to the Rayleigh-Ritz-Galerkin, RRG,
approximation.

Now we turn our attention to the question of constructing suitable basis
functions. As a basis for Ly(p) = {I(x,y) € L(p)|(x,y) =0forall (x,y)
boundary of U}, we suggest the functions {/,(x)/,(y)}:#,_,. This choice yields
an RRG system with a sparse matrix having only nine nonzero diagonals.
Moreover, the zero structure of the matrix is exactly the same as that of
the least squares matrix for L(p) described in Section 6.2, and we may use
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Cholesky decomposition or successive overrelaxation to solve the linear
system as in Section 6.2. It is possible to prove an analogue of Theorem 7.4
for A,,,,; cf. [7.20].

As a basis for Hy(p) = {h(x,y) € H(p)|h(x,y) =0 for all (x,y) €
boundary of U}, we suggest the product basis functions

{RCR (P U (RGO (2)NCS!Y,
U (ORI U (BRI (DI,

i.e., Hy(p) has dimension 4N + 1)(M 4 1). This choice yields a sparse RRG
matrix with thirty-six nonzero diagonals, as described in Section 6.2, and we
may use either Cholesky decomposition or successive overrelaxation to solve
the corresponding linear system.

As a basis for Sy(p) = {s(x,y) € S(p)|s(x,y)=0 for all (x,y) e
boundary of U}, we suggest the product basis functions {5,(x)s,(y)}¥_441,.
These functions yield a sparse RRG matrix, with forty-nine nonzero
diagonals, which has essentially the same zero structure as the least squares
matrix for S(p) described in Section 6.2. Again we may use either Cholesky
decomposition or successive overrelaxation to solve the RRG system.

Finally, we consider the two-dimensional problem

—Diu(x, y) — Dju(x, y) = —bxye*e’(xy + x + y — 3),
(x, y) € interior of U,
(7.50) u(x,y) =0, (x, ) € boundary of U,

(7.49)

which has the associated functional

(1.51) FIWI= f; J; {[(D w(x, )* 4 (D,w(x, ¥)*]
+ 12[xye¥e’(xy + x + y — 3)w(x, )]} dxdy

and the unique solution u(x, y) = 3e*e’(x — x?)(y — y?). The following
computations for this problem were also done by Dr. Robert Herbold; cf.
[7.21]. All the partitions are uniform.

h& k|dimLo(p) | |lu —urlly | dim Ho(p) | llu — ugllz | dim So(p) | llu — usll2

3 36 92 x 10-5 16 A1 x 10-4
1 64 32 x 10-3 25 36 x 10-5
: 100 14 x 10-5 36 16 x 10-5
i 144 71 x 10-6 49 77 % 1076
3 36 31 x 1073 64 42 x 10-6
i 49 25 x 10-3

i 64 20 x 10-3

I 81 .16 x 10-3

1

. 100 14 x 103
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These results indicate that for this particular problem the RRG procedure
is second-order accurate for Ly(p), and fourth-order accurate for H,(p) and
So(p). In Section 7.5, we will prove that this is true for all sufficiently smooth
solutions.

7.5 ERROR ANALYSIS

In this section, we prove a priori error bounds for the Rayleigh-Ritz-
Galerkin procedures introduced in Sections 7.2, 7.3, and 7.4. Throughout this
section, we will assume that the generalized solution, u, exists. Our analysis
is based upon the results of Chapters 2, 3, 4, and 6. We start with one-
dimensional problems.

Before discussing error bounds there is one further characterization we
want to introduce. From (7.3) it follows that a(u, v) is an inner product on
PC}-%(I) and we may show that u; is the orthogonal projection of u onto S
with respect to the inner product a(u, v), i.e., u = ug; + e5 where e; is
orthogonal to S or a(eg, B) =0 forall 1 <i<n.

THEOREM 7.13
The RRG approximation, uy, is the orthogonal projection with respect to
the inner product a(u, v) of u onto S, i.e., a(u — ug, B) = O0forall | <i<n

Proof. This result follows directly by subtracting (7.12) from (7.4) with
» = B, Q.E.D.

i

We proceed now to a discussion of a priori error bounds.

THEOREM 7.14

If u is the generalized solution of (7.1)-(7.2), S is any finite-dimensional
subspace of PC{-%(I), and uy is the RRG approximate to u, then

(7.52) a(u — ug, u — ug) = inf a(u — y, u — y).
YES

Proof. We will give two proofs of this fundamental result. First let
{B;}r., be an orthonormal basis for S with respect to the inner product

a(u, v). Then, if uy = Z": B.B,u= zn: B.B; + es where e is orthogonal to S.
by =
Ify= i y.B; is any other element in S, we have
i=1

U= ;%Bi + g(ﬁ, — y)B; -+ es
and

alu — y,u—y)= i:il (B — y)* + ales, ey),

which is minimized for §, =y, | < i< n,i.e., fory = uj.
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For the second proof, we use (7.6). In fact, using (7.6) for = uy and
n =y, we have

ing a( — y,u —y) < a(u — us, u — us) = Flug] — Flu]
< Fly] — Flu] = a(u — y, u — ).
Q.E.D.

We can now use this result in conjunction with the results of Chapters
2, 3, 4, and 6, giving a priori error bounds for interpolation mappings to
obtain explicit a priori error bounds in the norm || D(u — ug)||,. Moreover,
foralargeclass of problems, we can actually give sharp bounds for||u — ug||,.
To this end, we say that (7.1)~(7.2) or a(u, v) is strongly coercive if and
only if there exists a positive constant, I, such that (7.1)-(7.2) has a gen-
eralized solution, ¥ € PC%*2(I) N PC{-*(I), for all f € PC®*(I), and

(7.53) | D?ull, < T fll,,  forallf e PC®(J).

If p(x) € PC'=(I), p(x) > > 0 for all x € I, and g(x) € PC°>=(I), then
(7.1)-(7.2) is strongly coercive and

| Du|l, < (0ym)~'(I| PPl + =7 M| g1l + DILfl2-
In fact, differentiating out (7.1), we have

1

(1.54) — D=5

[Dp()Du — g(xu + 11,
and hence

(.59 1 Dull < | | 1102 1l Duly 4 lg - ell + 1171k
But

v |1 Dull,*< au, ) = (f, W)y < ISl llull, < @ {1 1], | Dull,
implies || Du/|, < (yn)~'||f1l, and
lull, <zt || Dull, <y~ '=2=2 || fl,.

Using these inequalities to bound the right-hand side of (7.55), we obtain the
stated a priori bound.

THEOREM 7.15

If (7.1)-(7.2) is strongly coercive, then

(7.56) I D — u)|l, <y~ 2p' 227 T || f1l,h
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and
(7.57) o — urll, <y~ 2p*2T2a2 || f I,
where u, is the RRG approximation to u over
Ly(A) = {l(x) € L(A)|I(0) = I(1) = 0}.
Proof. From the result of Theorem 7.14 and inequality (7.3) we have

WD —uplly < aw — u,u — uy)
(7.58) < alu — Fu, u — &)
< u|| D — 315,

since #,u € Ly(A). The bound (7.56) follows by using the results of Theorem
2.5 to bound the right-hand side of (7.58) and by taking the square root of
both sides of the resulting inequality.

To prove (7.57), we use a technique of Nitsche; cf. [7.28]. We let

wi(x) = (lu — upll) ™' (w(x) — u(x))
and consider the problem of finding ¢, such that
(7.59) a(d,, v) = (w., v),, for all v € PC}-2(1).
Since (7.1)—(7.2) is strongly coercive, the problem (7.59) has a unique solu-

tion, @,, and || D*¢, ||, < T. Moreover, a(@,, u — u;) = ||u — u|l,-
Since #,¢, € L,(A), we have by the definition of the RRG procedure,

a(¢L - '9L¢1.: u— uL) = a(¢1., u— uL) = ”u - uL”Z’
and hence
lu —uyll, < ul| Db, — 3.8, 1|1 Dw — up)|l,.

Using the inequalities (2.17) and (7.56) to bound the right-hand side of this
inequality, we have

[lu — ull, < u@ ALYy~ w)2m~ || f|l,h
— y—l/z'uz/zrzn—z ||f||2h2,

which proves (7.57). Q.E.D.

In a similar way, we can prove the following two results.
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THEOREM 7.16
Ifu € PC4%(I) N PC}-%(I), then

(7.60) 1D — up) [, <y~ 72k || D*ull,,
where u,, is the RRG approximation to u over

Hy(A) = {h(x) € HA)|h0) = h(1) = 0}.
Moreover, if in addition (7.1)—(7.2) is strongly coercive, then
(7.61) lu — uyll, < p~2p**Tn”*h* || D*u|l,.

THEOREM 7.17
Ifu € PC*%(I) N PC}-*(I), then

(7.62) | D — us)ll, < 2y~ 2 u'2a=3h || D*ull,,
where ug is the RRG approximation to u over

So(A) = {s(x) € S(A)[s(0) = s(1) = 0}.
Moreover, if in addition (7.1)-(7.2) is strongly coercive, then
(7.63) lu — usll, < 4p~V2p**Ta*h* || D*ul|,.

Thus, we have shown that under suitable hypothesis the RRG approxima-
tion to u over L,(A) is second-order accurate with respect to the L2-norm,
while the RRG approximations to u over Hy(A) and S,(A) are both fourth-
order accurate with respect to the L2-norm. Roughly speaking, this means
that asymptotically it is no more difficult to obtain a finite element RRG
approximation to the solution of a linear two-point boundary value problem
than it is to obtain a finite element least squares approximation given the
solution.

We proceed now to discuss semilinear problems.

THEOREM 7.18

If u is the generalized solution of (7.19)-(7.20), Sis any finite-dimensional
subspace of PC{-%(I), and ug is the RRG approximation to u over S, then

1D — ug)ll, < y™'(1 — AA)"(p + Bn™?) inf | D — p)l1;

(7.64) .
= Q inf || D(u — »y)||,.
yES
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Proof. Since a(u, B,) = (f(u), B),, | < i< n, and
a(us, B)) = (f(us), B)),, 1<i<n,

we have a(u — ug, B)) = (f(u) — f(ug), B), 1 <i<n. But from the proof
of Theorem 7.8 we have, forall y € S,

p(I — AA)|| D(u — us)|l>
< a(w — us,u — ug) — (fw) — flus), u — ug),
< alu —ugu—y) — (f(w) — flus), u — y),
< pll D@ — ug) |l | D(u — W)l + Bllu — usll, lu — pll,
< pll D — ugll, [| D — P, + Ba~?|| D — ug) ;|| D — )|,

and hence

(7.65) || D(u — ug)|b, <y~ ' — AA™) W(u + Br~?) || Du — p) ..
Q.E.D.

We can now use this result in conjunction with the appropriate results
from Chapters 2, 3, 4, and 6 to obtain explicit a priori error bounds.

THEOREM 7.19
If u € PC*%(I) N PC}2(I), then

(7.66) I D — up) |, < Qu~'h|| Dul|,,

where Q is the constant defined in (7.64) and u, denotes the RRG approxima-
tion to u over L,(A). Moreover, if in addition a(u, v) is strongly coercive, then

(7.67) lu —ull, < Q2 *T(u + Br~?)h || D?ul|,.

Proof. The bound (7.66) follows by using the results of Theorem 2.5 to
bound the right-hand side of (7.64) of Theorem 7.18. To prove (7.67), let

wi() = (lu — u]l) 7' wx) — uy(x))

and let ¢, (x) be the unique solution of the /inear problem

b(o, $) = v, 8 + (Libu + (1 — Oy, 4,)

7.68
( ) = ('//L’ 'U)Z!

where 0 < 6 < 1, for all v € PC}-2(1).
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Then

y(1— AA || Do|l; < (1 — AA™")a(v, v) < b(, )

(7.69) ) ) } )
< ullDv|l; + Bl[v|l: < (4 + Ba™*)|| Doz,

for all v € PC}-2(I), and

y(l - AA—I) “ D¢L||§ < b(¢u ¢L) = ('/’Ls ¢L)2

(7.70)
<Nwell 1ol < m~t || D, |,

From the strong coerciveness of a(u, v) and (7.70) we have
(7.71) | D*¢.ll, <T[By~'(1 — AA™)'n™2 4 1] < TQ.

Moreover, from (7.68) we have that for all / € L(A),

Ml —ull, = a(u —u, ¢, — 1)+ (gTC(u —up), ¢, — l)
(7.72) <l D@ — uy)|l. 1| D@, — Dl
+ Br || D(u — up) ||| D(d. — DI,
<(u+ Bn?)||D(u — u,)ll, |l D(¢L =Ml

Choosing y = #,u, we may use (7.66) and (2.17) to bound the right-hand
side of (7.72) and obtain (7.67). Q.E.D.

2

In a similar way, we can prove the following two results.

THEOREM 7.20
Ifu € PC*+2(I) N PC{-2(I), then

| D — up)ll, < Qu=3h* || Dull;,

where Q is the constant defined in (7.64) and u,, denotes the RRG approxima-
tion to u over H,(A). Moreover, if in addition a(u, v) is strongly coercive,
then

(7.74) lu — uyll, < Q*a™*T'(4 + Br~2)h*|| Déull,.

THEOREM 7.21
Ifu € PC**(I) N PC{*(I), then

(7.75) | D(u — ug) ||, < 2Qn~3h* || D*ul|,,

where Q is the constant defined in (7.64) and u4 denotes the RRG approxima-
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tion to u over S,(A). Moreover if in addition a(u, v) is coercive, then
(7.76) lu — ug|l, < 4Q*n~*I'(u + Brn~?)h*|| D*ul|,.

We turn now to a discussion of the two-dimensional problem. Analogues
of Theorems 7.13 and 7.14 hold.
THEOREM 7.22
If u is the generalized solution of (7.59)—(7.60), S is any finite-dimensional
subspace of PC{-2(U), and uy is the RRG approximate to u, then
(7.77) alu — ug,u — ug) = inf alu — y, u — ).
YES

We can now use this result in conjunction with the results of Chapters
2, 3, 4, and 6 to obtain a priori error bounds in the norm || u — ug||,. More-
over, for a large class of problems, we can actually give sharp error bounds
for ||u — ug||,- To this end, we say that (7.42)—(7.43) or a(u, v) is strongly
coercive if and only if (7.42)-(7.43) has a generalized solution for all f €
PC*2(U),

u € PC*>*(U) N PC}*(U),
and
(7.78) | DD, < T\ fll,, forall 0 <k +j<2.

Birman and Skvortsov have shown that if p(x,y) and r(x,y) € C'(U),
q(x,y) € C(U), and a(u, v) satisfies (7.44), then a(u, v) is strongly coercive;
cf. [7.5].

THEOREM 7.23
If (7.42)-(7.43) is strongly coercive, then

(7.79) lu — ullp < 6p~V2p!2at || 11,5,
where u, is the RRG approximation to u over
L,(p) ={l(x,y) € L(p)|I(x,y) = 0 for all (x, y) € boundary of U},

and
(7.80) lu — u,ll, < 36y~ 22T 2a~2 || f ||, 0%

Proof. From the result of Theorem 7.22 and inequality (7.77) we have

Yu —u b <aw—u,u—u)<au—¢uu—du

(7.81)
S ﬂ“u - '9Lu||1733
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since#,u € Ly(p). The bound (7.79) follows by taking the square root of both
sides of (7.81) and using the results of Theorem 2.7 to bound the right-hand
side of the resulting inequality.

To prove (7.80), we can follow the proof of Theorem 7.15 almost exactly
to obtain the inequality

(7.82) o —uyll, < pulld,— 3. P.lpllu — ullp,

where ¢, is the solution of the two-dimensional analogue of (7.59). Using the

results of Theorem 2.7 and inequality (7.79) to bound the right-hand side of

(7.82), we obtain (7.80). Q.E.D.
In a similar way, we can prove the following two results.

THEOREM 7.24
Ifu € PC4%*(U) N PC}2(U), then

(7.83) lu — uglly < p™'2u2273(1 + 2712129)5° || u|l,, 2

where ||u||,,= 3 || D%DJu||, and u,, is the RRG approximation to u over
k+j=4

Hy(p) = {h(x,y) € H(p)|h(x, y) = O for all (x, y) € boundary of U}.

Moreover, if in addition (7.42)-(7.43) is strongly coercive, then

lu — ugll, < 2Ly~ 222741 + 27'24/15)

x (1 + 24/90 + 2,/1605p7 5)p* || ull, -

Proof. In analogy to the preceding proof, we have

(1.84)

(7.85) N — |l < p™'2u' 2 ||u — dgullp,

and (7.83) follows by using the results of Theorem 3.10 to bound the right-
hand side of (7.85).

To prove (7.84) we can follow the proof of Theorem 7.16 almost exactly
to obtain the inequality

(7.86) ”u_—uH”z£ﬂ”¢H_PH(p)¢H”D”u—_ Uy |lp,

where @, is the solution of the two-dimensional analogue of (7.59). Using the
results of Exercise (6.5) and (7.83) to bound the right-hand side of (7.86),
we obtain (7.84). Q.E.D.
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THEOREM 7.25
If u € PC42(U) N PC}2(U), then

(1.87)  lu — usllp < 2y 222731 + 24/90 + 2./1605p )5 | s .»
where ug is the RRG approximation to u over

So(p) = {s(x, y) € S(p)|s(x,y) = 0 for all (x,y) € boundary of U}.
Moreover, if in addition (7.42)—(7.43) is strongly coercive, then
(1.88)  |lu— ugll, < 4Ty~ "2p¥ 241 + 2/90 + 2./T605p p)*p* || I .o-

In general we would not expect u € PC*2(U) because of singularities of
derivatives of u at the corners of R. However, it is possible to augment H,(p)
and S,(p) with appropriate “singular” basis functions so that we rigorously
obtain results which are essentially the same as those of Theorems 7.24 and
7.25 with the augmented spaces. See [7.17] for the details.

EXERCISES FOR CHAPTER 7
(7.1) Prove analogues of the results of Sections 7.2 and 7.3 for the spaces
So(2m — 1, A, 2) = {¢p € S@m — 1, A, 2)|$(0) = ¢(1) = 0}

defined in Exercise (4.12) (cf. [7.39]). Prove analogues of the results of Section
7.4 for the spaces

So@2m — 1, p,2) = So(2m — 1, A, 2) ® So2m — 1, A, 2)

(cf. [7.39)).

(7.2) Proveanalogues of the results of Section 7.2 for the linear two-point boun-
dary value problem of order 2, i.e., find 4 € PC™2(I) such that

z (=YD p()Dux)] = f(x), O0<x<I,
Diu(0) = Diu(1) = 0, 0<<i<n—1,
where p;(x) € PC%>=(I), 0 < i< n,and
1 n
y Il Dully < {3 piolDie dx < )l Dl
for all

ue PCu2(I) = (¢ € PC™2(I)| Di$(0) = Dip(1) = 0,0 <i<n — 1}.
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(7.3)

(7.4)

(7.5)

(Hint: Use the functional
1 n i 1
Flw] = JO Z,Op,-(x)[D‘w]z dx — 2.[0f(x)w dx;

cf. [7.9] and [7.39)).

Prove analogues of the results of Section 7.3 for the nonlinear two-point
boundary value problem of order 2n, i.e., find # € PC"-2(]) such that

g(—l)iDi[px(X)Dfu(x)] = f(x, u), 0<x<l,
Diu(0) = Diu(1) = 0, 0o<i<<n—1,

where the coefficients p;(x), 0 <<i<n, satisfy the hypotheses of Exercise (7.2),

760, 3 e € €, 1 % (o, o),

'%,(x, u)| < Bfor all (x, u) € [0,1] x (— oo, o0), and

13 () Diw(x)]* d

:;—f(x,u)gl<A5 inf f.-zo” 1 w(x))? dx
0

(Hint: Use the functional

Fw] = I; 1@0 PO Dw]? dx — 2j:"” f(x, 0 dt} dx;

cf. [7.9] and [7.39].)

Follow the example of Exercises (7.2) and (7.3) and generalize the results of
Section 7.4 to problems of order 2# in the square (cf. [7.4] and [7.39]).

In many nonlinear two-point boundary value problems, we have all the hypo-
theses of Section 7.3 except for the boundedness of f(x, ) as a function of u.
Show that if under these hypotheses we can still prove an a priori bound,
|| u|l.. < B, for any solution of (7.25)-(7.26) then we may apply all the results
of Section 7.3 to the equivalent problem

— D[p(x)Dug) + q(x)up = f(x, Eplup), 0 < x < 1,

up(0) = ug(1) =0,
where
B+ 1 — eBus, B < ug,
Ep(up) = up, lug| < B,
—B — 1 + eBtus, ug < —B,

i.e., the modified problem satisfies all the hypotheses of Section 7.3; if up
is a solution of the modified problem, then || #||.. < B; and if up exists, then
ug = u (cf. [7.12]).
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(7.6) Show that for the problem —Du = f(x), 0 <x <1, u(0) =u() =0,

7.7

u; = 9.4 u and hence u; is “infinitely accurate” at the mesh points and if
f € PC%=(I), then

lu — gl < RS |]oe.

Moreover, show that if f € PC2-=(I), then there exists a positive constant,
K, such that

lu — ugll. < Kh*||D2f ||
and
llu — uslle < Kh*|| D2f||..

(cf. [7.23], [7.30], and [7.36] for more general results on the uniform conver-
gence of RRG approximations.)

Consider the nonselfadjoint problem of finding u(x) such that

—D?%u(x) + p(x)Du(x) + q(x)u(x) = f(x), o<x<l,

and «(0) = u(1) = 0, where we assume that p(x) € C!(1), g(x) € C°1),
f(x) € PCO°2(I), and there exists a positive constant 9 such that

YIDwIE < [ (DW? + (g(x) — 3 Dp(x)w)?] dx

for all w € PC§ 2(I). We say that this problem has a generalized solution, «,
if and only if

a(u,v) = j; [DuDv + p(x)vDu + q(x)uv] dx
— [ sy dx = (0,

for all v € PC}-2(I). Show that this problem has at most one generalized
solution. Let S be any n-dimensional subspace of PC}-2(I) with basis
{B.(x)}- . If the generalized solution exists, we define the Galerkin approxi-
mate, us, as the solution of

a(uS’ Bl) = (f; Bi)Z’ 1 S lg n.
Show that us is well-defined and that

1D — ug)lls <+ 77'(1 + P~ + Qu-3)]inf || D — )z,

where
P = max|p(x)| and Q = max|g(x)]|.
x€l x€l

Prove analogues of inequalities (7.57), (7.61), and (7.63) for this problem.
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THE RAYLEIGH=RITZ=GALERKIN
8 PROCEDURE FOR EIGENVALUE
PROBLEMS

8.1 INTRODUCTION

In this chapter, we consider the problem of finding those real numbers,
A, such that the problem

(8.1) — D[p(x)Du) + q(x)u = Ar(x)u, O<x<l,
8.2) u(0) = u(1) =0,

has a nontrivial solution. A value of 4 for which a nontrivial solution of
(8.1)-(8.2) exists is called an eigenvalue and the nontrivial solution u(x) is
called an eigenfunction.

The results of this chapter extend to higher-order problems, problems
with more general boundary conditions, and problems in more than one
independent variable; cf. [8.1], [8.3], [8.10], and [8.12] for further details.

8.2 ONE-DIMENSIONAL PROBLEMS

We make the assumption that p(x) € C!(J), that g(x) and r(x) € C°(J),
and that there exist positive constants a, p, and u such that

ayllwll; < ab(w, w) = fl r(x)[wlrdx < a(w, w)
(8.3) ) 0
= | (PCIDWE + g dx < ul| Dwl,

for all we PCL2(I). It is well-known that solutions {4, u(x)} of (8.1)—(8.2)
can be characterized in terms of the minimum values and minimizing func-

116
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tions of the Rayleigh-quotient:

_aw,w) _ a[w]
(8.4) R[w] = b& x) :%,

we PCH2(I), w = 0; cf. [8.4], [8.5], [8.6], and [8.9]. We now state the results
of Brauer (cf. [8.2]) and Kamke (cf. [8.7] and [8.8]) for this problem.

THEOREM 8.1

The problem (8.1)-(8.2) has countably many eigenvalues which are real,
have no finite limit point, and can be arranged as

(8.5) 0<id, <4 <. ...

There is a corresponding sequence of eigenfunctions {u;(x)};.,, where u; €
C*(I) and

—D[p(x)Du;] + q(x)u; = A,r(x)u;, 0<x<l,

for all j > 1, and these eigenfunctions can be normalized so that

(8.6) a(u, u;)) = 4,0, foralli,j=1,2...,
and
8.7 b(u,, u;) = 6,;, foral i,j=1,2,....

Moreover, each eigenvalue, 4;, j > 1, can be characterized as

inf {R[w]|w € PC}-2(I) such that b(w, u,) = 0, 1 < k < j},
Rlu,],

j
mm{ max [Z c,v,]
i=1

Clyeeey (2]

®8) 4,= 2,(%), .. ., v,(x) € PCYA(I)

linearly independent}.

As in the previous chapters, let S be a finite-dimensional subspace of
PC}*(I) spanned by the basis functions {B,(x)};.,. The Rayleigh-Ritz pro-
cedure consists of looking for the minimizing points of R[w] over S. The
restriction of R to S can be viewed as

o(%; 8.8, 5, 5.8,
b(3, 8.8, 3 8.5.)

- (g ({5an)

R[g ﬁ,B,(x)] _
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To find the minimum values of R[B], we write using the calculus

aa[i\;”l ,3,3,.] Aab[g ﬂ,B,]
g, ap.

which yields the matrix eigenvalue problem,

(8.9)

(8.10) AB = ABB,

where the n X n matrices 4 and B have their entries given by

(8.11) A = [a;;] = [a(B,, B,))]
and
(8.12) B = [b,;] = [b(B,, B))].

The matrices A and B are clearly symmetric and positive definite. Thus
the matrix eigenvalue problem (8.10) has n positive eigenvalues 0 < i<
l <...< A and corresponding linearly independent eigenvectors f,, . . .,
ﬁ,,. To each eigenvector ﬁ] 1 < j < n, we associate the function

(8.13) i(x) = 3. B Bx),

where ﬁu is the i-th component of ﬁj, and henceforth we will call /Tj an
approximate eigenvalue and it,(x) an approximate eigenfunction for (8.1)-(8.2).
Clearly, we have the following characterizations, which are analogues of (8.8).

Rl[i;]
7 — inf {R[w]|w € Sand b(w,#,) =0, | < k <}
min { max R[E c; ]vl(x), ..., v;(x) € S linearly independent}.

The Galerkin procedure is to find an approximation {/'l € S} by solving

the finite-dimensional problem

.l’.l

ad,, B) =1, | ; r(x)d, B, dx,

forall 1 <i < n. If we expand #; in terms of the basis functions, then we can
see that the coefficients satisfy the matrix eigenvalue problem (8.10). Thus,
for a problem of this form the Rayleigh-Ritz and Galerkin approximations
are identical and will henceforth be called the Rayleigh-Ritz-Galerkin (RRG)
eigenvalue and eigenfunction.
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Using the equality of the two characterizations, we immediately have
the following basic result.

THEOREM 8.2

If S is any n-dimensional subspace of PC2(I) and 4 5» 1 <j < n, are the
corresponding approximate eigenvalues of (8.1)-(8.2), then

(8.14) L<i, 1<j<n

This result yields an upper bound for the eigenvalues. In Section 8.3,
we will also give a lower bound and hence an a priori error estimate.

Using the basis functions for the subspaces L,(A), H,(A), and S,(A)
described in Chapter 7, we obtain sparse matrices which for one-dimensional
problems are actually band matrices. Moreover, as shown in Chapter 7,
these matrices are well-conditioned.

We now give the numerical results of [8.1] for the very simple problem

(8.15) — D?*u = m?Au, 0<x<l,
(8.16) u(0) = u(l) = 0.

For H,(A), a search was made for the zeroes of det (4 — uB) using regula
falsi and a special code for seven-diagonal determinants. For S,(A), the
eigenvalues were computed by applying a standard eigenvalue subroutine
to the not necessarily symmetric matrix B~' 4. Moreover, all the partitions
were chosen to be uniform.

h | Z1(Ho) — A1| 12(Ho) — 42| X3(Ho) — 43| X1(So) — A1 [22(So) — 42| 23(So) — 43

3| 32x1076| 43 x10-4 | .12 x 10-2| .5 x 102

1| .64 x10-7 | .11 x 10-4 | .17 x 1073 52 x 1074 | .27 x 10-2
1| 18 x10-7 | .34 x 10-5 | .58 x 104 A1 x 1074 | 48 x 1073
t | .64 x10°8 | .13 X 10-5 | .24 x 104 .28 X 1075 | .12 x 1073
) 27 x 1078 | .54 x 106 | .11 x 104 10 x 1075 | .38 x 104
§ 2 X 1078 | 26 x 1076 | .42 x 10-5 40 x 1076 | .15 x 104
% 68 x 1079 | .13 x 10-6 | .28 x 10-5 .20 x 1076 | .64 x 105

For the case of Ly(A), where A is a uniform partition of mesh length 4,
we obtain
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and hence B = h(I — (h/6)A). Therefore, if Ap = 18[3, we have

hAp — ZhZ(I _ -g-A)ﬁ

or
hAp = 1(1 4 I%)_'mp = uB.
But it is easily verified, as in Section 7.2, that the eigenvalues of £4 are
M; = 2h~2(1 — cos jmh), 1<j<h,
and therefore the eigenvalues 1 ; are given by
1, = 6h*(1 — cos jmh)(2 + cos jnh)™*.

Moreover, it is easily verified that
-~ 2.4\~ -~
/11(1 + %a,) "ca =m <1,

These numerical results show that for this special case the Rayleigh—Ritz-
Galerkin procedure yields approximate eigenvalues over L,(A) which are
second-order accurate, and approximate eigenvalues over H,(A) and S,(A)
which are sixth-order accurate. In Section 8.3, we will prove that this is true
in general for sufficiently smooth eigenfunctions.

8.3 ERROR ANALYSIS

In this section, we prove a priori error bounds for the Rayleigh—Ritz—-
Galerkin approximations to the first eigenvalue and eigenfunction. Our
method of proof follows [8.1] and [8.3]. See Exercise (8.2) for corresponding
results about the approximations to the higher eigenvalues and eigenfunc-
tions.

We begin by discussing the approximate eigenvalue.

THEOREM 8.3

Let S be any finite-dimensional subspace of PC{-2(1), {4,, i,} the RRG
eigenvalue and eigenfunction in S corresponding to {4,, #,} and # any linear
mapping of PC}-2(]) into S. If b[u, — Ju,] < 1, then

8.17) A, <X, < R¥u,) <A, + alu, — $u,)(1 — b'2[u, — Ju,])"2.

Proof. Let e, =#u, —u,and P.e, = 6,, where P, denotes the orthogonal
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projection mapping of PC}-*(I) onto the one-dimensional subspace spanned
by u, with respect to the inner product b(w, v).

We now make the important observation that if u € span (u,), i.e.,
u is in the one-dimensional subspace spanned by u,, and b(v, u,) = 0, then

(8.18) blu 4+ v] = b[u] + b[v] and du + v] = a[u] + a[v].
In fact,
blu + v] = b(u + v, u + v) = b[u] + b[v] + 2b[u, v]
= b[u] + B[]
and
alu + v] = alu] + a[v] + 2a(u, v) = a[u] + a[v] + A,b(u, v)
= afu] + a[v].

Hence, since $u, = (u, + 6,) + (e, — &,), we have

b[#u,] = blu, + 8,] + ble, — 4],
a[#u,] = alu, + 0,] + ale, — 4],
and
ale,] = a[d,] + ale, — d,].
Thus,
R[3u,] = a[u,)b[u,])"" = (alu, + d,] + ale, — 6, )(b[Fu, )"
< (alu, + 6, )(Blu, +6,)7" + (ale, — 6,)(B[Fu,])~!
= A, + (ale, — &, D@[#u, )",
where we have used the fact that
blu, + 8,1 = b[du,] — ble, — 8,1 < b[du,].

Hence,

(8.19) R3] < 4, + (ale,D[Iu,) .
But by the triangle inequality,

b20u) < b2[9u) + b2fe,]
or

(8.20) b[du,] > (b"*[u,] — b"*[e,])* = (1 — b'"?[e,]).
Using (8.20) to bound the right-hand side of (8.19), we obtain (8.17). Q.E.D.

We now turn to a derivation of an a priori errror bound for the first
eigenfunction.
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THEOREM 8.4

Let0 <4, <4, <..., S be any finite-dimensional subspace of PC y2(,
and {4,, #,} be the RRG eigenvalue and eigenfunction in S corresponding to
{A,u, ). If A, < 4,, then

(821)  afu, — @) <A, — A, + 24,01 — {1 — (A, — 2)A, — )7},

Proof. We normalize the first RRG eigenfunction #, by bl =1,
(a[#,) = 4,), and b*(u,,it,) = 1 — 6} > 0. Thus,

blu, — @] = blu,] — 2b(u,, &,) + blit,] = 2(1 — b(u,, %,))
=2(1 — (1 — a)?).
Moreover, since #, = b(u,, #,)u, + n, where b(n, u,) = 0, we have
(8.22) o} = 1 — b¥(u,, i) = b(n, &,) = b(n, n) = bln)-

Let a,[w] = a[w] — A,b[w] and a,[w] = alw] — A4,b[w] for all we
PC{2(I). Since a,[w] + (4, — A)b[w] = a,[w] for all we PC}2(I), and
a,[w] > 0 for all w such that b(w, u,) = 0, we have

(8.23) (A, — A)bln) < a,[n) = a,[,] = j:1 — 4y

where we have used (8.18) with u = b(u,, #,)u, and v = 5. From (8.23),
we have

(8.24) bl < (A, — 4D, — A7
and from (8.22) and (8.24) we have
(8.25) 0} < (A — A4, — A)7N
Moreover,
X, — A, = a,li#,] — ay[u,) = a,[u, + @ — u)] — a,u,]

= Aa(u,, i, — u,) — Ab(uy, #, —u,)) + a,lt;, —u)]
= a,[t#t, — u,) = alit, — u,] — A,b[it;, — u,).
Hence _
ali, —u,) = (11 —4)+ Abli, — u,]

(8.26) =, — )+ 24,(1 — (1 — g?)'72),

and we obtain (8.21) by using the inequality (8.25) to bound the right-hand
side of (8.26). Q.E.D.
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COROLLARY

Let 0 <A, <4,<..., let S be a finite-dimensional subspace of
PCL2(1), and let {1,,#,} be the RRG eigenvalue and eigenfunction in S
corresponding to {4,, u,}. If L, < 4, and & is any linear mapping of PC}%(I)
into S such that &, = blu, — #u,] < 1, then

alu, — ] < n,(1 — 410

(8.27)
+ 22,1 — {1 — (1 — &V)7%(A, — A)71}V2),

where 5, = alu, — Ju,].

Combining the results of Theorem 8.3 and the Corollary to Theorem 8.4
with the approximation theory results of Chapters 2, 3, and 6, we obtain the
following a priori bounds. Using the results of Theorem 2.5, we may prove the
following theorem.

THEOREM 8.5

Let u, € PC*2(I) N PC}*(I) and {1,,17,} be the RRG eigenvalue and
eigenfunction in L,(A) corresponding to {4, u,}. If &, = a~*h*|| D?u,||, || r |-
< 1, then

(8.28) M<X <A+l — &),

where
11 = (||pl. + n~2h* || q|l)m~2h? || Du, |-

Moreover, if in addition 4, < 4, and A is such that 4, < 1,, then

alu, — ] < ni(1 — &)
+ 24[1 — {1 — (1 — &1?)72(A, — A)7 12,

It follows that if u, € PC%2(I) N PC}2(I) and S = Ly (A), then #, is a
first-order accurate approximation to #, with respect to the norm @'/?[-] and
}:, is a second-order accurate approximation to A,. Using the results of
Theorem 3.5, we may prove the following theorem.

(8.29)

THEOREM 8.6

Let u, € PC*2(I) " PCY*(I) and {1,, %,} be the RRG eigenvalue and
eigenfunction in H,(A) corresponding to {4,,u,}. If &, = n~ %A% || D*u, |5{| r||..
< 1, then

(8.30) Ay ézx <+ ?71(1 - 6}/2)—2,
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where

= (pll- + 72k || q|l)n™ kS || D*u, |3
Moreover, if in addition 4, < A, and A is such that X, < A,, then

alu, — ;] < m(l — &2

(8.31)
+ 24,01 — {1 — (1 = &) 724, — A)7'}2).

Finally, using the results of Theorem 6.7, we may prove the following
theorem.

THEOREM 8.7

Let u, € PC*%(I) N PCy*(I) and {4,, %,} be the RRG eigenvalue and
eigenfunction in.S,(A) corresponding to {4,, u,}. If &, = 4n~2h®|| D*u, ||, || r |-
< 1, then

(8.32) A <A <A+ (1 — &V

where
n = 4(|pll + n~2h*| g |l)n~*h® || D*u, (3.
Moreover, if in addition 4, <, and A is such that 4, < 1,, then
alu, — ] < (1 — £1/?)~?
+ 2241 — {1 - ’71(1 - 51/2)—2(12 - 11)—1}”2}

We remark that if u € PC*2(I) N PC{*(I) and S = Hy(A) or S = S(A),
then #, is a third-order accurate approximation to #, with respect to the norm
a'/*[-]and 4, is a sixth-order accurate approximation to 4,.

(8.33)

EXERCISES FOR CHAPTER 8

(8.1) Show that if a(u, v) is strongly coercive, {I 1, i} are the RRG eigenvalue and
eigenfunction in Ly(A) corresponding to {4, #,}, and

2|2 p22m=2y= 2 Th? || D2uyf2 < 1,

then
1,0 = 2|\ r||y2perem=2y 122 || D2y |2) < Ao < A
(cf. [8.12].)
(8.2) Prove the following extension of Theorems 8.3 and 8.4. Let uy, ..., ux

denote the first k eigenfunctions normalized so that b(u;, u;) = d;; and S
be a finite-dimensional subspace of PC}-%(f) of dimension greater than k.
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(8.3)

[8.1]

[8.2]

[8.3]

[8.4]

[8.5]

[8.6]

[8.7]

[8.8]

If there exist k functions w,, . .., w, € S such that

i blw: —u] <1,
<1
then
<< (2]] alw; — u;])[l _ (,; blw, — ”i])m]z,

for all 1 < j< k. Moreover, if in addition 0 < 4; < 4, <... < A4, there
exists a positive constant, K, such that

au,— )< KA —A), 1<j<k.
i=1

(Hint: cf. [8.1] and [8.3]). (See [8.10] and [8.11] for sharp error bounds for
the RRG eigenfunctions with respect to the L2-norm.)

Prove analogues of the results of Section 8.2 for the spaces
So2m — 1, A, z) = (¢ € S@m — 1, A, 2)|$(0) = ¢(1) = 0}

defined in Exercise (4.12).
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SEMI-DISCRETE GALERKIN
9 PROCEDURES FOR
PARABOLIC EQUATIONS

9.1 LINEAR PROBLEMS

In this chapter, we discuss the use of the Galerkin procedure to “dis-
cretize” the space variables in initial boundary value problems for linear and
semilinear parabolic differential equations. In this section, we consider the
linear problem
©.1) D,u = D [p(x)D,u] — q(x)u + f(x), 0<x<l, t>0,
subject to the initial condition
9.2) u(x, 0) = uy(x), 0<x<l,
and the boundary conditions

(9.3) 0,1 =u(l,r) =0, t>0,

where p(x) and q(x) € PC%=(I), f(x) € PC®2(I), uy(x) € PC}?*(I), and such
that there exist two positive constants, y and g, for which

YDl < [ (pD.P + gG)uF} dx = alu,w)

< ul|D.ull},

(9.4)

for all u € PC{2(I). See [9.2], [9.3], [9.6], [9.7], and [9.8] for discussions of
more general problems.
We say that u is a generalized solution of (9.1)-(9.3) if and only if u(x, ) €

127
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PCY2(I) for all t > 0, u(x, 0) = uy(x), and
9.5) (D,u, v), + a(u, v) = (f, v),, t > 0, for all v € PCL2(I).

Integrating by parts and using the Gronwall Inequality (cf. [9.1]), we can
prove the following standard result; cf. [9.5].

THEOREM 9.1

If u is a classical solution of (9.1)—(9.3), then it is a generalized solution.
Moreover, (9.1)-(9.3) has at most one generalized solution.

Throughout this section, we will assume the generalized solution exists.

To define a “semi-discrete Galerkin” approximation to the generalized
solution, u, of (9.1)-(9.3), we let S be a finite-dimensional subspace of PC{: (1)
spanned by the basis functions {B,(x)}r_, and seek an approximation ug(x, )
of the form

us(x, 1) = 33 B(DB(x).

The coefficients {#,(¢)}-, are functions of time which are determined as the
solution of the linear system of ordinary differential equations

9.6) (D,ug, B)), + a(us, B) = (f, B)), 1 <i<n,forallt>0,

and
9.7 (us(0), B)), = (u,, B,),, 1<i<n.

Expressing u in terms of the basis functions, we obtain the equivalent system

(9.8) BDB(:) + AB(t) =k, >0,
(9.9) BB(0) = g,

where B = [bij] = [(B,, Bj)2]7 A= [aij] = [a(B, Bj)]7 k= [k.] =[(/, Bi)z]s
and g = [g] = [(uo, B)).]

Since B is symmetric, positive definite and hence nonsingular, it follows
from a standard result in ordinary differential equations (cf. [9.1]), that
(9.8)-(9.9) has a unique solution B*(z). Moreover, the solution p*(¢) can be
expressed analytically as

9100 Pr0) =B g+ | " etomlag-ik ds, 1> 0.
0

THEOREM 9.2

Under the preceding hypotheses, the semi-discrete Galerkin procedure is
well-defined for linear problems.
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We now turn to the question of a priori error bounds for this procedure.

THEOREM 9.3
If #g(x, r) is the orthogonal projection of u(x, r) onto S with respect to the
inner product a(u, v) for all > 0, then
lu(t) — us()) |l < |lu(e) — @) |l + [l|us(0) — #s(0) Iz

9.11) ) )
+ t(2yn*)"! sup [|D(u — us)(9)|l]V2, 1 =0.
0<s<t

Proof. From Theorem 7.13 we have that for each 1 > 0,
(9.12) a(u(t), B;) = a(us(1), B), 1 <i<n.
It follows from equation (9.6) that for all w € S, we have

(Dfu — us)(t), w), = (f, w), — a(u(t), w) — (D,is(1), w),
(9.13) = (D, us(1), ), + a(us(t), w) — a(is(t), w)
— (D,ug(r), w),, t > 0.
Thus,
(D(u — us)(1), W),
= (D(us — ug)(t), w), + a((us — us)(t), w), 1> 0.

Choosing w = ug4(t) — ug(r) in (9.14), we obtain
(D,(u — us)1), (us — ug)(1)),
(9.15) = (D(us — us)(1),(us — #s)(2)), + a((us — is)(1), (us — is)(t))
= 4D, (us — #s)(1)|; + al(us — #s)(t), (us — ds)(t))-

(9.14)

But
(D(u — #5)(1), (us — s)(1)),
< @yr?) | D(u — @) @)|l; + yr2il (ws — i) o) |la,
and hence
1D, || (us — #s)(t) I3
< (42 || Du — )O3 + ya || (us — ds)2)]la
— a(us — ig)1), (us — #s)(1))
< (4yn) || Du — s)(D) ||z-

(9.16)

Integrating both sides of the inequality (9.16) from O to ¢, we obtain

O17) (s — AsHOIIE < (a5 — EsXO) I} -+ (2pm2) " sup || Diae — () I

and the result follows from the triangle inequality. Q.E.D.
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Since D,iig is the orthogonal projection of D,u onto S with respect to the
inner product a(u, v), i.e.,

a(D,iig, w) = a(D,u, w), forallwe S,

we may use the results of Chapters 6 and 7 to bound the right-hand side of
9.11).

THEOREM 9.4
If a(u, v) is strongly coercive and u € PC*=(I X (0, o0)), then

1« = un)O) | <72 2 2T || Di() Il
(9:18) + (1 4y 2@ D) || Dius s + 2yn®) 'y w2
X sup || DDYu(s) I =2k, 1 >0,
0<s<t

where u, is the semi-discrete Galerkin approximation to u over L,(A).
Proof. By the results of Theorems 6.5 and 7.15,
(9-19) Il — @)Dl <y~ "2 u**Tr=2h* || D3u(o) |l

and hence
[[20) — @, (0) ||, <lluo — u0)]l, + |luo — #(0) ][

(9.20)
< (1 4y 2w D)a k2 || Diug .
Moreover,
12yn?)t sup || Du — i )(s)|l3
©21) ‘G sup I D — E)9) I

< #(2yn?)~ 'y~ pPa*T2h* sup || D,D2u(s)|l;.
0<s<t

Inequality (9.18) now follows by using (9.19)—(9.21) to bound the right-hand
side of (9.11) Q.E.D.

Likewise, we may prove the following result.
THEOREM 9.5
If a(u, v) is strongly coercive and u € PC3>>=(I X (0, o)), then

[ (e — ug)(®)|l. <y~ 2 u®*mn~*Th*|| Diu(t) ||,
+ [(1+ =2 @322 || Diuy |I; + t2pn?)~ 'y~ T2

0-22) % sup || D Dtu(s) 2] 2aht
0<s<t

=Q,(On *h*, >0
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and
(9.23) [ — u)@) ||, < 4Q;()n*h*, >0,

where u,, and u; denote the semi-discrete Galerkin approximations to u over
H,y(A) and S,(A), respectively.

Thus, we have shown that under suitable hypotheses, the semi-discrete
Galerkin approximation to u over L,(A) is second-order accurate with
respect to the L2-norm, while the semi-discrete Galerkin approximations to u
over H,(A) and S,(A) are both fourth-order accurate with respect to the L2-
norm.

9.2 SEMILINEAR PROBLEMS
In this section, we consider the semilinear problem
(9.24) D,y = D [p(x)D,u] — q(x)u + f(x, w), 0O<x<l1, t>0,
subject to the initial condition
(9.25) u(x, 0) = uy(x), 0<x<l,
and the boundary conditions
(9.26) u@©,1) =u(l, ) =0, t >0,
where the coefficients p(x), g(x), and u,(x) satisfy the hypotheses of Section

9.1, f(x, u) and (df/du)(x, u) are continuous on / X (—oo, o), |(df/du)(x, u) |
< Bforall (x,u) € I X (—oo, o), and

g—i(x, W<i<A= inf %W

wepcetun (W, W),

We say that u is a generalized solution of (9.24)-(9.26) if and only if
u(x,t) € PCY2(I)forallt > 0, u(x, 0) = uy(x), and

9.27) (D,u, v), + a(u, v) = (f(u), v),, t > 0, for all v € PC}2(1).
As in the linear case, we may prove the following standard result; cf. [9.5].

THEOREM 9.6

If u is a classical solution of (9.24)—(9.26), then it is a generalized solution.
Moreover, (9.24)-(9.26) has at most one generalized solution.
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Throughout this section, we will assume that the generalized solution
exists. Given a finite-dimensional subspace S of PC}-2(I), we find the semi-
discrete Galerkin approximation

us(x, t) = ;1 B.()B(x)
by solving the nonlinear system of ordinary differential equations,

(9.28)  (D,us, w), + a(us, w) = (f(us), w),, t>0,forallwe S,
(9.29) (ug(0), w), = (uy, w),, for all w € S,

or equivalently

(9.30) BD,B(r) + AB(r) = {(B), t > 0,
9.31) BB(0) = g,

where B and A are the previously defined matrices and

18 =L/®) = (r(585).5) |

Since B is nonsingular, it follows from a standard result in ordinary differ-
ential equations (cf. [9.11]), that (9.30)-(9.31) has a unique solution.

THEOREM 9.7

Under the preceding hypotheses, the semi-discrete Galerkin method is
well-defined for semilinear problems.

We turn now to the question of a priori error bounds for this procedure.

THEOREM 9.8

If, for all £ > 0, #g(x, t) is the RRG approximation in S of the solution,
v(x), of the nonlinear two-point boundary problem

—D.[p(x)D.v] + q(x)v — f(x, v)

©-32) = —D,[p(x)D,u(x, )] + q(x)u(x,1) — f(x, u(x,1)), 0<x<I,
(9.33) v(0) = »(1) =0,
then
- i — i)
9.34) [ — us)@®) |l < || (@ — #s)(®)||. + [ us(0) — us(0) ||

+ f2yr*(1 — AA-Y]! sup || D(u — d@s)s) |12, 1> 0.
0<s<t
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Proof. By our hypotheses, we have that for all w € S,

(Dfu — ug)(t), w), = (f(u(®), w), — a(u(t), w) — (D,iis(t), w),
(9.35) = (D,us(t), w), + alus(t), w) — (f(us(), w),
+ (flas(0), w), — aliis(e), w) — (D, iis(1), w),.
Thus,

(D,(u — 5)(t), w),
= (D(us — us)(1), w), + a((us — #@s)(2), w) — (f(us(t)) — f(@s(2), w),

and, choosing w = ug(t) — u4(t), we have

(D(u — #g)(t), (us — #s)0)),
= (Dfus — us)0), (us — dis)(1)), + al(us — is)0), (us — dis)(1))
— (flus(1)) — flas(2)), (us — iis)(0)),
> 4D (us — @) |l + (1 — AN~ a((us — #s)(0), (us — #s)(2)).

But

(Diu — dig)(t), (us — dis)())2 < [4p(1 — AN~ || D(u — #s)(@D) Iz
+ p(1 — AA"D)m? || (us — #s)(1)|[2,
and hence
1D, || (us — i)t |l < [4p(1 — AA~D)m?]! || D(u — dis)(®) Iz
+ 7(1 — AN || (us — #5)O) Iz
— (1 — AA™ Y a((us — dis)(1), (us — #t5)(1))
< [4y(1 — AA) )] || D(u — is)(@)|lz-

(9.36)

Integrating both sides of the inequality (9.36) from O to ¢, we obtain

[ (us — @) Iz < || us(0) — #s(0) Iz

(9.37) o
+ t[2pm?(1 — AA~H]! osi’}i,” D(u — s)(s)|l2s

and the result follows from the triangle inequality. Q.E.D.

Using the results of Chapter 7 to bound the quantities on the right-hand
side of (9.34), we obtain the following results; cf. [9.3] and [9.8] for the
technical details.
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THEOREM 9.9

If a(u, v) is strongly coercive and u € PC?**=(I X (0, o)), then there exists
a positive constant, K, such that

(9.38) (u —u )0)|l, < Kh*, >0,
where u, is the semidiscrete Galerkin approximation to u over L,(A).

THEOREM 9.10

If a(u, v) is strongly coercive and u € PC* (I x (0, o)), then there exists
a positive constant, K, such that

(9.39) [ —ug)®)|l, < Kh*, >0
and
(940) ” (u - uS)(t)HZ S Kh49 > 0’

where u,, and ug are the semi-discrete Galerkin approximations to v over
H,(A) and S,(A), respectively.

Thus we have shown that under suitable hypotheses on the semilinear
problem, the semi-discrete Galerkin approximation to u over L (A) is
second-order accurate with respect to the L2-norm, while the semi-discrete
Galerkin approximations to u over Hy(A) and S,(A) are both fourth-order
accurate with respect to the L?-norm.

9.3 COMPUTATIONAL CONSIDERATIONS

In this section, we discuss the question of actually solving the systems
of ordinary differential equations, (9.8)—(9.9), which we obtain by discretizing
the space variables via Galerkin’s procedure. We will treat only the special
problems studied in Section 9.1. See [9.2], [9.3], [9.7], and [9.8] for the
analogous details about more general problems.

We recall that our system is of the form

(9.8) BD,B(r) + AB(¢) = Kk, t >0,
(9.9) BB(0) = g,

where 4 and B are symmetric, positive definite matrices. If B'/2 is the unique,
nonsingular square root of B, i.e., (B'?)2 = A, y(t) = B'/?B(¢), and E =
B~ 124B~'/2 then (9.8)-(9.9) can be rewritten as

(9.41) Dy(t) = —Ey(@t) +¢, >0,

(9.42) ¥(0) = h,
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where ¢ = B'/2B 'k = B~ '/?k and h = B~ '/2g. The solution of (9.41)-(9.42)
is given by

(9.43) Y() = eFh + (I — e"E)E-'¢ 1t >0,

or equivalently
v, + At) = e 2 Ey(t,) + (I — e ¥E)E"Ic

(9.44)
= E7'c + e *E(y(t,) — E"'0).

The method that we suggest for computing y(r) is to discretize the
continuous time variable ¢ € [0, o] into {t; = jAt|j=0,1,2,...} and to
replace (9.41) by a finite difference equation. If we think of y,asanapproxima-
tion to y(¢;), j=0,1,2,..., then three well-known finite difference ap-
proximations to (9.41) are the forward difference approximation

(9.45) (Y1 —Y)A) ' = —Ey; +¢, j=0,1,2,...,

or equivalently

(9.46) Yoo =U—AE)y; + Ate, j=0,1,2,...,

the backward difference approximation

(9.47) (Yo —¥)AD) ' = —Ey;,, +¢, j=0,1,2,....,

or equivalently

(9.48) Yioo=U 4+ AtE) 'y, + At + AtE)'e, j=0,1,2,...,

and the Crank—Nicholson approximation

049 (1A = Loty te =012,

or equivalently
(9.50) Yjo1 = (I 4+ FAtE) '(I — JALE)y; + At(I + $AtE) 'c.

Comparing (9.46), (9.48), and (9.50) with (9.44), we see that these three
difference approximations give rise to particular rational matrix approxima-
tions to the matrix e=4‘£.

Following [9.9], these approximations may be generalized and studied
from the viewpoint of the Padé table for e™>. The Padé table for e™2 is a
double entry table of rational approximations, R, (z), such that

(9.51) R, (2)=n, (2)d, (2] ' =e*+ 0O(z]) as|z| —0,

(where n, (z) and d, [(z) are polynomials of degree g and p respectively)
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gives the best approximation for e~7 near z = 0. Except for a multiplicative
factor, these polynomials are uniquely determined and r =p 4+ ¢ + 1. In
fact, it turns out that

952)  n, (o) = ,;Z% (P +q—K)p+9tklqg — I '(—2),
0.53)  d, ()= kE:.IO (p+a9—R)pp + @lkl(p — k)25,

and
9.54) R, (|<plq'zzrtte(p + @)l (p + g+ Dld, (2],

for all real z. Clearly, Ry (z) =1 — z, R, ((z) = (1 4 2)7!, and R, |(2) =

(1 —42)(1 + 42"
To define our class of difference approximations, let R, ,(AtE) denote the
matrix Padé approximation to e4'¢ and

955 ¥,..(p, @) = E7'c + R, (AtE)(y,(p,q) — E"'c), j=0,1,2,...
(9.56) Yo(p, q) = h.

We now state and prove a result giving the necessary and sufficient
conditions for stability in the L2-norm for this class of difference approxima-
tions coupled with the Galerkin approximations.

THEOREM 9.11

Let S be the finite-dimensional subspace of PC{:%(/) spanned by the basis
functions {B;(x)}.,, which are normalized so that x"x << xTBx << Ax"x
forall x € R If

n

ugo(t;) = 35 Bro(j)B(x),

i=1

where B>4(j) = B~'2y,(p, q), then

[luze(t,)|l, < cond (B){y~'|| fl.

(9.57) .
+ IR, (AIE) | ([uo [l + 7' I 1)} J=0,1,2,...,
n 1/2
where | x|, = (Z xf) for all x € R* and
i=1

|M|, = sup {|Mx |, |x[;'[x € R", x # 0}

for all n X n matrices.
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Proof. Using our hypotheses, we have forall j=0,1,2,...,

[l ]l < A2 B29(j) |,
<A BTV, 1D 92
< AVE|BTVE{|ET e, + |RL (ALE) | |h — E-'el,}
(9-38) <AV BT {|BV2AT K],
+ |R} (AtE) |, |B™'2g — B2 A7 'K|,}
<AV BT [BA |, {|A7K],
+ |R,(ALE) |, (1B~ 'gl, + |47 'K )}
Moreover, since y << (x74x)(x"Bx)"! for all x € R", we have

(9.59) pxTx < XTAXx, for all x € R".

Using this inequality to bound the right-hand side of (9.58), we obtain for all
j=0,1,2,...
luga()ll. < Aly~' K|, + |R} (AIE) [, (g l. + 7" [K]2)}
S AR Sl + (R, (ALE) |, (o |l + y7H | f112)}-
Q.E.D.

(9.60)

COROLLARY 1

Let C be a set of finite dimensional subspaces, S = span {B(x)}{% 5,
of PC}-%(I) such that

©.61) x"x < x"Bx < Ax"x,  for all x € R¥™5,
where A is a positive constant independent of S € C. If

T, =supf{t >0|n, (2)d, ()] ' <1 for 0 < z <¢},

then
(9.62) [[ug )l < Alluollz + 2771 f112),
forallj=0,1,2,..., SeC,
and
(9.63) 0<Ar <1, ,p (E),

where p(E) denotes the spectral radius of E (cf. [9.9]).
Proof. Since E is symmetric, we have that if (9.62) holds then
|R},(ALE) |, = [p(R, ((AIE))) < 1
(cf. [9.9]). The result then follows from (9.57). Q.E.D.
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Inequality (9.62) states that the discretization procedure of Corollary 1 is
strongly stable.

COROLLARY 2
If p > q and the hypotheses of Corollary 1 hold, then

(9.64) lug @Dl < Aluollz + 277 I f112),
forallj=0,1,2,...,all At >0, and all S € C.

Thus, we have shown that under the appropriate hypotheses the back-
wards difference and Crank-Nicholson difference approximations coupled
with the Galerkin method are strongly stable for all Az > 0. The spaces
Ly(A), Hy(A), and S,(A) with the basis functions given in Chapter 7 satisfy
these hypotheses.

We now show how to obtain a priori error bounds for the important
special case of the Crank-Nicholson-Galerkin approximation.

THEOREM 9.12

Let S be a finite-dimensional subspace of PC{-%(I) and #4(z)), j =0,1, 2,
..., be the orthogonal projection of u(x, r) onto S with respect to the inner-
product a(u, v). If u € C3(I x [0, oo]), then there exists a positive constant,
K, such that

[lu(x, t;) — up ()|l < |lulx, t;) — is(e;) |2
+ 2p7'a7 sup (1D (u(x, 1) — Aste) |l

+ K(Ar)* _ sup || Djull;)

0<t<(k+1)Ar

+ | uk10) — #@s(0)]2]'72,  j=0,1,2,...,

(9.65)

where D, is the forward difference quotient operator in the time variable, i.e.,
D,z; = (z;4y — z)(AD)".

Proof. We let 6, = u(x,t;) — us(t;) and €; = ul'(t;) — us(z;), for all
j=0,1,2,....Then by Taylor’s theorem applied to u(x, ¢), we have
© 66) (D+5j’ W)z =(f, W)z - a(%(u(tj+l) + u(tj))s w)
- (D+ﬁs(tj), W),_ + (ej’ W)z,

forallwe Sandallj=0,1,2,..., where
lle;ll. < K(At)>  sup || D}u(x, 1)|l,-

0<e<(j+1)At
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Thus,
(D0, w), = (Dyup'(t)), w), + a(F(uy '(t,.1) + ui (1)), w)

— a(§(#s(t;.1) + #s(2))), w) — (D, is(t;), w), + (€ W)y,
forallw e Sandallj=0,1,2,....Settingw =€, 4 ¢€,,, in (9.67), we have

(9.67)

(D0, €+ €;,1), = (D, €;,€; + €;.,), + 4al€; + €;,1,€; + €;,1)
+ (e, €, + €,41),
> 4D, “ﬂ“; +dyn?|l€; + Ej+l||§ —yln? ||e,||§
— e, + el j=0,1,2,...,

(9.68)

where we have used the fact that ab > —#n~'a®> — }nb* for all # > 0 and all
a and b.
Thus, we have

(9.69) iD. €l < (D6, €, + f,-;l)z +yin? IIZe,- Iz — 4721l €, 4 €112
<y 'm*||D.6;ll; + y'm* |l e;llzs j=012,...,
and it follows that

9.70) €z < 2?"‘%"212221 (D6 +llell) +lleoll,  j=1,2,....
Inequality (9.65) follows from (9.70) and the triangle inequality. Q.E.D.

Combining Theorem 9.12 with the results of Chapter 7, we find that
under the appropriate hypotheses

©9.7)  llu—u}'|l, = O + (Ar)*)  as hand At—>0,
9.72) [lu — ujz||, = OCh* + (Ar)*) as hand At—> 0,
and

9.73) lu —ul'|l, = O(h* 4+ (Ar)*) as hand At —> 0.

The estimates (9.71) and (9.72) suggest the use of Richardson extrapolation
with respect to the time difference scheme (cf. [9.4]), and indeed it is possible
to show that in these two cases one extrapolation yields an approximation
which is fourth-order accurate in time as well as in space.

EXERCISES FOR CHAPTER 9
(9.1) Prove analogues of the results of this chapter for the spaces

Som — 1, A, z) = {p € SCm — 1, A, 2)|$(0) = $(1) = 0}
defined in Exercise (4.12).
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9.2)

9.3)

[9.1]

[9.2]

[9.3]

[9.4]

[9.5]

[9.6]

[9.71

[9.8]

[9.9]

SEMI-DISCRETE GALERKIN PROCEDURES FOR PARABOLIC EQUATIONS CHAP. 9

Derive bounds for the interval of stability for the forward difference
approximation coupled with the semi-discrete Galerkin method over Ly(A),
i.e., derive bounds for 7,,; p~1(E).

Prove rigorously that one recursion of Richardson extrapolation applied
to the Crank-Nicholson difference approximation to the semi-discrete
Galerkin equations over Hy(A) and Sy(A) yields a fourth-order accurate
approximation with respect to the L2-norm.
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lo THE RITZ PROCEDURE FOR
AN OPTIMAL CONTROL PROBLEM

10.1 FORMULATION OF THE PROCEDURE

In this chapter, we consider a variational procedure for approximating
the solution of the “state regulator problem” in optimal control. Following
Borsage and Johnson (cf. [10.2], [10.3], [10.4], and [10.6]), we consider the
Lagrange formulation of the problem and show that the Lagrange multiplier
can be characterized as the solution of the variational problem of minimizing
a quadratic, positive definite functional, F, over an appropriate function
space, @.

We obtain approximate solutions by using Ritz’s idea of minimizing F
over finite dimensional subspaces of ®7 and derive general a priori error
bounds for this procedure in terms of approximation theory. Finally we apply
these results to obtain asymptotic error bounds for the subspaces which we
have previously considered.

We let O(¢) and R(r) be respectively an n X »n symmetric, positive definite
matrix and an r X r symmetric, positive definite matrix, both of which
are continuous functions of ¢ € I. For each k > 1, we let

D+ = >k< [PC-2(])]..

The state regulator problem in optimal control is to find u* € ®" and
x* € @" which minimize

10 Jux =4[ (0, QOX(V) + (), ROUE)) dr
over all u € @, where x(¢) is given by
(10.2) Dx(t) = A(t)x(¢) + B()u(r), O<r<l,

141
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and
(10.3) x(0) = x,,

IYE=@®y =3 forallye R,

122 = (z,2) = 3 22, forallz € R,
=1

A(?) is an n X n matrix, and B(¢) is an n X r matrix, both of which have
entries which are bounded, piecewise continuous functions of ¢ € I.

Using standard arguments in the calculus of variations (cf. [10.1]), we
can show that the state regulator problem is equivalent to the variational
problem of finding A* € ®” which minimizes

_L[u, X, 2’3 7] = J[ll, X]

(10.4) 1
+ fo (M), —Dx(1) + A@Dx(1) + B(D)u(®) dr + (¥, x(0) — x,),

subject to the constraint that

(10.5) A1) =0,

where v, u(z), and x(z) are given by

(10.6) Y = —MO0),

(10.7) u(z) = — R ()BT (1)M(2), forall ¢ € I,
and

(10.8)  x(t) = —Q '()DA() + ATOMY), forallt e I.

Using the characterizations (10.6), (10.7), and (10.8), we can express
L[u, x; A, Y] in terms of A only. In fact, we have

—L[u, x; A, y] = —J[u, x] + (@), x(2)) |}
— "(DA + AT\, x)dr — | "(B™A, u) dt

+ (M0), x(0) — x,)
= J[ll, X] - (l(O), xo)-

But
1 1
%f (u,Ru)dtz%f (R™1B™\, RR™'B")
0

=4[ BRB V) ar,
0
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and
i ; (x, OX) dr — & j; (Q ' AT\ + Q 1D, AT\ + D) dt
=3[ @'DADMd+ [ (@14, N ds
+3 j; (O ' AT\, DAY df + % j; (Q-'DA, A™A) dt

3 f; (@'DA, DAY d1 + 4 [ (AQ~14™A, 1) dr
0

+ fl (A0~ DA, V).
0
Thus,
F[A]= —L[u, x; A, ¥]

—3 f’ (© DA, DA)dr + 4 f’ (AQ 1 AT, ) dt
0 0
+4 [ (BRBA Y+ [ (4071 DM M) dt — (MO), x).
0 0
If we define

o= [ ©'DA Dwdr+ [ (4Q 1 ah m)ar

(10.9) + J‘ (BR™'B™\, ) dt -+ jl {(40"'D), m)

+ (4Q7'Dm, M)} dt,
for all A and 7 in @", then
(10.10) F[A] = 3[A, A] — (MO), x,).
If we use the notation that for any r X p matrix M,
|M|, = max {| Mx|,|x € R* and |x|, =1},
we may prove the following characterization result.

THEOREM 10.1

The optimal Lagrange multiplier exists and is the unique solution in

s ={9 € @"|¢(1) = 0}
of the generalized Euler equation

(10.11) [A, m] = ((0), x,), for all n € @5.
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Moreover, [A, 7] is symmetric,

1
(10.12) |IDAIE = [ (DA DAY dt < 25 THQ1L + pllATILIA, AL
and
(10.13) MG < 2851 p2[, A,

where ¢, = min {{(¢)|£(7) is an eigenvalue of Q(r)},

1 1
121 = [ 1o Bdn |4 IE= [ |4 @)} d,
0 0
| A7 ||l. = max | A™()|,, and p=||Q,(2]| AT ||..)""/2e!" k.
tel
Proof. The existence part of the theorem is a standard result in optimal
control theory; cf. [10.1]. If n € ®j and & € R, we have F[A* 4 an] > F[A*],
with equality if and only if & = 0. Hence, we must have (dF/da)[A*] = O,

and this implies that (10.11) holds.
Clearly, [A, 1] is symmetric in A and i} and

A = %j; (u, Ru)dr + %j’ (X, OX) dt
=4[ oxd =4 [ xx)d,

where u and x are given by (10.7) and (10.8). From (10.8), we have

MOL =00, M) <NCLIIxI, + [ 1476 LM, dr

and using Gronwall’s Inequality (cf. [10.5]), we obtain the inequality
1A, < Q121 AT |I.)~ 2" = || x ||, = pl| X ||,

Thus, we have [A,A] > 3,072 || ||, which proves (10.13), and (10.12) follows
by combining (10.8) and (10.13).
Finally, if A and n both satisfy (10.11), then

0=[A—pd—p]=3op A —pli
and A = p, which proves the uniqueness result. Q.E.D.

To define the Ritz approximation procedure, we let S be any finite-
dimensional subspace of ®% and we find an approximation, Ag, to A* by
minimizing F over S and an approximation, ug, to u* via equation (10.7).
When we apply the computed control, we obtain the state x; determined by
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(10.2). It is important to note that xg is not the state which we can compute
via equation (10.8).
We now show that the Ritz procedure is well-defined.

THEOREM 10.2

There exists a unique Ay € S which minimizes F over S.

Proof. Let {B(z)}m, be a basis for S. Considering
FI3; BB) = 4[5 BB, 33 BB] — (3 BB(0), x,)

as a function of f € R™, it isclear that Fis twice continuously differentiable
and hence F has a minimum at g* if and only if

(TIL[B]_O’ foralll <i<m,

and the Hessian matrix of F, H = [9*F/dx,0x,], is positive definite. Cal-
culating the equations (10.14), we obtain

(10.14)

(1015 2871 = 3 BB Bl — (BO).x).  1<i<m

or
(10.16) Ap* =k,
where

(10.17) A =[[B, B]]
and

(10.18) k = [(B,(0), x,)].

Clearly, A is symmetric and positive definite. In fact, if B == 0, then from
(10.13) we have

BrAp = l:i BB, 'g"‘l ﬂiBii| > 3Cop?

i=1

3> BB, H > 0.

i=1 2

Moreover, it follows from (10.15) that H = 24 and hence B* is the unique
minimum of F over R™. Q.E.D.
10.2 ERROR BOUNDS

In this section, we obtain general error bounds and then apply the results
of Chapters 2, 3, and 4 to obtain error bounds for the spaces which we have
previously discussed.
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THEOREM 10.3

If A denotes the Ritz approximation to A* over S, then
(10.19) [A* — hg| =[A* — Ag, A* — AG]V2 = inf | ¥ — w|.
wes

Proof. If w € S,

Flw] = Lw, w] — (w(0), x,)
and
Flw] — F[A*] = £[w, w] — 3[A*, M*] + (x4, A*(0) — w(0)).

But taking m = A* in (10.11), we See that [A*, A*] = (x,, A*(0)), and hence
that
FIw] — F[M] = 3w, w] + 3[A%, M*] + (X, — w(0)).
Taking n = w in (10.11), we see that [A*, w] = (x,, w(0)), and hence that
Fw] — F[M] = 3w, w] + 5[, A*] — [A%, W]

= UM — w, A — w] = L|A* — w|h
Thus,

|V — Mg = 2(F[As] — FIM*]) < 2(F[w] — FIA®]) = [M* — w]?,

and we have
inf |[A* — w| <|A* — Ag| < inf |A¥ — w]|
wes wes
Q.E.D.

Combining Theorems 10.1 and 10.3, we have the following result.

COROLLARY
If A denotes the Ritz approximation to A* over S, then
(10.20) 1A — Agll, < (285")"2p inf [A* — w
and e
(102D I DA — M)l < (28e")" (I D2l + pll A7 lp) inf |A* — wl,

where £, and p are defined in Theorem 10.1.
Using this corollary, we may prove the following results.

THEOREM 10.4

Ifug(r) = — R '(t) BT(¢)A(2), ¢ € 1, is the computed approximation to u*,
then

(10.22)  [Ju* — ugll, < [|[R7BT||.(2E5")" 2p inf |A* — w)|
wES



sec. 10.2 ERROR BOUNDS 147

where
IRBT Il = sup | R ()BT,
tel

and ¢, and p are defined in Theorem 10.1.
Proof. In fact, we have that 8,(r) = u*(r) — u4(z) satisfies the equation
85(t) = —R'(O)BTOAX(1) — As(1)).
Hence, (10.22) follows from the inequality
18sll, = [[ R BTA* — Ag) [l < [|R7'BT |l [|A* — Asl,_
and (10.20). Q.E.D.

THEOREM 10.5
If Dx4(r) = A()x5(r) + B(r)ug(2), ¢ € I, and x4(0) = x,, then

(1023)  [Ix* = xXgll, < TIIRBIL(265)%p inf [ W — w]
and

D(x* — x
02y 10Tl

< (T[4l + 1Bl R™BT|I.(285") 2 p inf |A* — w,
where I' = || B||,els4tees, || A || = sup [ A() |y, [| Bl = sup| B(1) ,, and ¢o
and p are defined in Theorem 10.1.

Proof. Letting €4(r) = x*(r) — x4(¢), t € I, we have
Des(r) = Aes(n) + BOu*(r) —us(r)), 1€,

and €4(0) = 0. This implies that

&) = | 0 A(2)es(z) dz + jo B(2)84(2) dz

or
e < [ 1 4@ bles@ b dz + [ 1B(),1852) 1, dz.

Applying the Gronwall Inequality (cf. [10.5]), to this last inequality, we
obtain

les() |, <[ Bl || 8s ] €fstac1ae
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and
leslls = [ lesn)li dr < | BI85 [featiiacn:
=T ||u* — w5,
which, when combined with (10.22), proves (10.23). Moreover, we have
| Des(r)l, <[ AW | |€s() |, + | BO)|u () —us() ], 1 €1,
and hence by the triangle inequality

I DEsll, <[ All-ll€sll, + [| Bll. [u* — ug]l,
< (TN All. + [ Bll) |lw* — ug]l,.

Inequality (10.24) follows by using (10.22) to bound ||u* — ug||,. Q.E.D.

We now prove a result which gives us an error bound for the cost criteria,
i.e., if we actually use the computed control ug(#) and the system behaves
according to xg(z), how does J[ug, xg] compare with J[u*, x*]? The proof is
essentially the same as the one for the analogous result in [10.4].

THEOREM 10.6
Under the preceding hypotheses,

Ju*, x*]
(10.25) <Jlug, xs] < J[u*, x*] + || R'B7|[2o' (|| Q||T"* + [| R||)

% inf|h — w2,
wES

where I' is defined in Theorem 10.5 and £, and p are defined in Theorem 10.1.
Proof. If 85(r) = u*()) — us(), ¢ € 1, and &5(r) = x*(1) — x5(1), 1 € I,
then
Tus, %51 = % [ (xs(0), QxS dr + 4 [ (s, Ry
=4[ O+ 6, 00" + €)dr + 4 [ (@ + 8, R* + By)d
— Ju*, x*] + j; (85, Ru*) dr + j; (€5 OX*)dr

1 1
4 f, B RB) a1+ 4 [ (e, Qo) dr.
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But since (10.7) must hold for the optimal A* and u*, we have

J; (O5, Ru*) dt = —f; (5, BT™A*) dt

(10.26) 1
- —j (BSg, A*) dt.

0

However, from the equation (10.2) we have that
Des(t) = A(1)es(t) + B(1)ds(1),
and combining this with (10.26) we obtain

(10.27) | ; (8, Ru*ydr = — | ; (Des — Aeg, M*) dr.

Integrating the right-hand side of (10.27) by parts, using the boundary
conditions on €; and A*, and using (10.8) for A* and x*, we obtain

[ @ Runydr = [ {(es, DA + (e, AAM)}
0 0
= —[ (e 0x" a.
0
Finally, using (10.22) and (10.23) we have

1 1
T, X5 = T, 3]+ 4 [ (85, RB) di + 4 [ (€52 Qes)

< J[u*, x*] + | Rl 1|81z + 311Q1l.| €112
< J[u*, x*] + (| Q|I.T? || R BT [|2(2€5")*p? inf | A* — w2
wES

+ HIRBTIEEG I QILT? + IR (L) inf A% — wP:
Q.E.D.

We now consider how these general error bounds can be applied to
specific examples. As subspaces of @7, we consider

(10.28) Lya)y= {ﬁ: BLOIB € R, 0<i< N,

(1029) Ho&)= {ﬁg&hf(x) - Nz:; ahi(x)|B, € R,

0<i< N, and &, € R", 0<i<N |- 1},
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and

S88) = { T Bsix) + Busfua(0) + By iiu i @IB € R

(10.30)
_3<i<N — 1}.

It is easily verified that we obtain a block-banded matrix for the linear system
(10.6) by using these subspaces and basis functions in the Ritz procedure.
Moreover, combining the results of Theorems 2.5, 3.5, and 4.6 with the
general results of this chapter, we obtain the following error bounds.

THEOREM 10.7

IfA* e X [PC?2(I)),, then there exists a positive constant, K, such that
i=1

(10.31) 1A — Agl, < Kh,

(10.32) [[u*, ug|l, < Kh,

and

(10.33) Ju*, x*] < Jlugs, Xpp] < J[u*, x*] + Kh2,

THEOREM 10.8

IfA* e x [PC*2(I)];, then there exists a positive constant, K, such that
i=1

(10.34) IA* — Aggll, < KB, |IA* — Agll, < KR2,
(10.35) lu* —ug|l, < Kk, |0 — ug]l, < KR,
(10.36) Ju*, x¥] < J[ugs, xgi] < J[u*, x*] + Ki,
and

(10.37) Ju*, x¥] < J[ug, xg] < J[u*, x*] + KhS.

We have shown that under the appropriate hypotheses, the Ritz procedure
produces an approximate control over L% which is second-order accurate with
respect to the performance criteria and approximate controls over A% and S,
which are sixth-order accurate with respect to the performance criteria. See
[10.4] for some sample numerical results.

EXERCISES FOR CHAPTER 10

(10.1) Prove analogues of the results of Section 10.2 for the subspaces of @}
generated by the spaces S(2m — 1, A, z) defined in Exercise 4.12.

(10.2) Obtain bounds for the constant, K, of Theorems 10.7 and 10.8.
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