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Abstract

The main physical result of this paper are exact analytical solu-

tions of the heavenly equation, of importance in the general theory of

relativity. These solutions are not invariant under any subgroup of the

symmetry group of the equation. The main mathematical result is a

new method of obtaining noninvariant solutions of partial differential

equations with infinite dimensional symmetry groups. The method

involves the compatibility of the given equations with a differential

constraint, which is automorphic under a specific symmetry subgroup,

the latter acting transitively on the submanifold of the common so-

lutions. By studying the integrability of the resulting conditions, one

can provide an explicit foliation of the entire solution manifold of the

considered equations.
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1 Introduction

An important problem for partial differential equations invariant with re-
spect to an infinite Lie group is to obtain non-invariant solutions that admit
no continuous symmetries of the equations. In our opinion, the old approach
of S. Lie [1] developed by Vessiot [2] and in modern form by Ovsiannikov [3],
which we call group foliation, is an adequate tool for treating this problem
in the framework of Lie theory. According to this method we foliate the
solution space of the equations in question into orbits, choosing for the foli-
ation an infinite-dimensional symmetry group. Each orbit is determined by
the automorphic system joined to the original equations and considered as
invariant differential constraints. Due to the automorphic property of this
system, any of its solutions can be obtained from any other solution by a
transformation of the chosen symmetry subgroup. This symmetry property
makes the automorphic system completely integrable if only one of its solu-
tions can be obtained. The collection of orbits of all solutions of the original
equations is determined by the resolving system. Thus the problem reduces
to obtaining as many particular solutions of the resolving system as possible.
Each of them will fix a particular automorphic system and the corresponding
orbit in the solution space of original equations.

Group theory is usually used to obtain invariant solutions. Here we show
that it also provides a mechanism for obtaining non-invariant solutions. We
give examples of such solutions as an application of the method.

In this paper we further develop the method of group foliation by in-
troducing a procedure of invariant integration. It is used for reconstructing
the solution of the original equation corresponding to the known particu-
lar solution of the resolving system. We apply the method for obtaining
non-invariant solutions of the ‘heavenly” equation

uxx + uyy = κ(eu)tt (1.1)

where κ = ±1 and the unknown u depends on the time t and two space
variables x and y. Here and further subscripts of u denote partial differen-
tiation with respect to corresponding variables. This equation formally is a
continuous version of the Toda lattice [4]. It appears in various physical the-
ories, like the theory of area preserving diffeomorphisms [5], in the theory of
the so-called gravitational instantons [6] and in the general theory of relativ-
ity [7]. In this context it describes self-dual Einstein spaces with Euclidean
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signature with one rotational Killing vector. Moreover it is a completely
integrable system in the sense of the existence of a Lax pair [8, 9].

The outline of the method is the following. We determine the total group
of point symmetries of the heavenly equation. For the group foliation we
choose its infinite subgroup of conformal transformations. We compute dif-
ferential invariants of this subgroup up to the second order inclusively and
obtain 5 functionally independent differential invariants. On account of the
heavenly equation we are left with 4 invariants. We choose three of them
as new independent variables, the same number as in the heavenly equation,
and one is left for the new unknown.

We obtain three first order operators of invariant differentiation defined
by the property that acting on a differential invariant they produce again a
differential invariant. These operators are determined by the condition that
they should commute with an arbitrary prolongation of any element of the
infinite symmetry Lie algebra chosen for the foliation.

Extensive use of operators of invariant differentiation and their commu-
tator algebra for formulating the resolving system is a new feature of the
method suggested by one of the authors (M.B.S.) in a recent article on the
complex Monge-Ampère equation [10]. We derive the resolving system as a
set of compatibility conditions for the heavenly equation and its automorphic
system, using invariant cross-differentiation. Then we formulate the resolving
system in terms of the commutator algebra of operators of invariant differ-
entiation by discovering the fact that this algebra together with its Jacobi
identities, projected on the solution manifold of the considered equation in
the space of differential invariants, is equivalent to the resolving system.

We show how an Ansatz simplifying the commutator algebra of opera-
tors of invariant differentiation leads to a particular class of solutions of the
resolving system. Then we use invariant integration to obtain the corre-
sponding solution of the heavenly equation and prove that this solution is
non-invariant.
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2 Lie group of point symmetries and

differential invariants

It is convenient to work with the heavenly equation using the complex coor-
dinates z = (x+ iy)/2, z̄ = (x− iy)/2

uzz̄ = κ(eu)tt. (2.1)

A standard calculation of the total symmetry group of the heavenly equation
gives the following result for the symmetry generators of all one-parameter
subgroups [11]

T = ∂t, G = t∂t + 2∂u,

Xa = a(z)∂z + ā(z̄)∂z̄ − (a′(z) + ā′(z̄))∂u, (2.2)

where T is the generator of translations in t, G is the generator of a dilation
of time accompanied by a shift of u: t = t̃eτ , u = ũ+2τ andXa is a generator
of the conformal transformations

z = φ(z̃), z̄ = φ̄(˜̄z), u(z, z̄, t) = ũ(z̃, ˜̄z, t) − ln(φ′(z̃)φ̄′(˜̄z)), (2.3)

where a(z) and φ(z) are arbitrary holomorphic functions of z (see also [12]).
The Lie algebra of the symmetry generators is determined by the com-

mutation relations

[T,G] = T, [T,Xa] = 0, [G,Xa] = 0, [Xa, Xb] = Xab′−ba′ , (2.4)

which show that the generators Xa of conformal transformations form an
infinite-dimensional subalgebra.

We choose for the group foliation the corresponding infinite symmetry
subgroup of all holomorphic transformations in z, i.e. the conformal group.
Differential invariants of this group are the invariants of all its generators Xa

of the form (2.2) in the prolongation spaces. This means that they can depend
on independent variables, the unknowns and also on the partial derivatives
of the unknowns allowed by the order of the prolongation. The order N
of the differential invariant is defined as the order of the highest derivative
which this invariant depends on. The determining equation for differential
invariants Φ of the order N ≤ 2 has the form

2

X(Φ) = 0, (2.5)
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where
2

X is the second prolongation of the generatorXa (2.2) of the conformal
group defined by the standard prolongation formulae

2

X = a∂z + ā∂z̄ − (a′ + ā′) ∂u − (a′′ + a′uz) ∂uz
− (ā′′ + ā′uz̄) ∂uz̄

− (a′′′ + a′′uz + 2a′uzz) ∂uzz
− (ā′′′ + ā′′uz̄ + 2ā′uz̄z̄) ∂uz̄z̄

− a′uzt∂uzt
− ā′uz̄t∂uz̄t

− (a′ + ā′) uzz̄∂uzz̄
, (2.6)

where a = a(z) and ā = ā(z̄).
The integration of eq.(2.5) gives 5 functionally independent differential

invariants up to the second order inclusively

t, ut, utt, ρ = e−uuzz̄, η = e−uuztuz̄t (2.7)

and all of them turn out to be real. This allows us to express the heavenly
equation (2.1) solely in terms of the differential invariants

utt = κρ− u2
t . (2.8)

3 Operators of invariant differentiation and a

basis of differential invariants

Operators of invariant differentiation are linear combinations of total deriva-
tive operators with respect to independent variables. Their coefficients de-
pend on local coordinates of the prolongation space. They are defined by
the special property that, acting on any (differential) invariant, they map
it again into a differential invariant. Being first-order differential operators,
they raise the order of a differential invariant by one. Invariance requires
that these differential operators commute with any infinitely prolonged gen-
erator Xa (2.2) of the conformal symmetry group. It is obvious (see [3] par.
24.2 for a complete proof) that the total number of independent operators of
invariant differentiation is equal to the number of total derivative operators,
that is to the number of independent variables (which is three in the present
case).

We look for operators of invariant differentiation in the form

δ = λ1Dt + λ2Dz + λ3Dz̄ =
3∑

i=1

λiDi (3.1)
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where D1 = Dt, D2 = Dz, D3 = Dz̄ are operators of total derivatives with
respect to the subscripts. We look for the coefficients λi satisfying the condi-

tion of commutativity of δ with the infinite prolongation
∞

X of the generator
Xa (2.2). It can be decomposed as the sum of the infinite prolongation of the
symmetry generator in the evolution form X̂ [13] and the linear combination
of the total derivative operators

∞

X = X̂ +
3∑

j=1

ξjDj = X̂ + a(z)Dz + ā(z)Dz̄, (3.2)

where from the form of Xa we take

ξ1 = ξt = 0, ξ2 = ξz = a(z), ξ3 = ξ z̄ = ā(z̄). (3.3)

The generator X̂ in the evolution form commutes with all the total derivatives
Dj:

[
Di, X̂

]
= 0 and hence we have the standard commutation relation

[
Di,

∞

X
]

=
[
Di,

3∑

j=1

ξjDj

]
=

3∑

j=1

Di(ξ
j)Dj. (3.4)

We use it in the determining relation for operators of invariant differentiation

[
δ,

∞

X
]

=
∑

i

[
λiDi,

∞

X
]

=
∑

i

(∑

j

λiDi[ξ
j]Dj −

∞

X(λi)Di

)

=
∑

i

(∑

j

λjDj[ξ
i] −

∞

X(λi)
)
Di = 0. (3.5)

The final equation for the coefficients λi of the operators of invariant differ-
entiation (see eq.(24.2.3) of [3]) is

∞

X(λi) =
3∑

j=1

λjDj [ξ
i]. (3.6)

Using (3.3) and restricting ourselves to the second prolongation
2

X of the
symmetry generator, the equation (3.6) leads to

2

X(λ1) = 0,
2

X(λ2) = λ2a
′(z),

2

X(λ3) = λ3ā
′(z̄) (3.7)
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where primes denote derivatives and

λi = λi(t, z, z̄, u, ut, uz, uz̄, uzt, uz̄t, uzz̄, uzz, uz̄z̄).

Here
2

X is the second prolongation of the generatorXa of the conformal group
defined by eq.(2.6).

Equations (3.7) are easily solved by the method of characteristics and we
choose 3 simplest linearly independent solutions for the coefficients λi of the
three operators of invariant differentiation

λ1
1 = 1, λ1

2 = 0, λ1
3 = 0, λ2

1 = 0, λ2
2 = e−uuz̄t, λ

2
3 = 0,

λ3
1 = 0, λ3

2 = 0, λ3
3 = e−uuzt. (3.8)

From here we obtain a basis for the operators of invariant differentiation

δ = Dt, ∆ = e−uuz̄tDz, ∆̄ = e−uuztDz̄. (3.9)

The basis of differential invariants is defined as a minimal finite set of
invariants of a symmetry group from which any other differential invariant
of this group can be obtained by a finite number of invariant differentiations
and operations of taking composite functions. The proof of the existence and
finiteness of the basis was given by Tresse [14] and in a more modern form
by Ovsiannikov [3].

In our example the basis of differential invariants is formed by the set of
three invariants t, ut, ρ, while two other invariants utt and η of eq.(2.7) are
given by the relations

utt = δ(ut), η ≡ e−uuztuz̄t = ∆(ut) = ∆̄(ut). (3.10)

All other functionally independent higher-order invariants can be obtained
by acting with operators of invariant differentiation on the basis {t, ut, ρ}. In
particular, the following third-order invariants generated from the 2nd-order
invariant ρ by invariant differentiations will be involved in our construction

σ = ∆(ρ), σ̄ = ∆̄(ρ), τ = δ(ρ) ≡ ρt. (3.11)

The operators of invariant differentiation form the commutator algebra

[δ,∆] =

(
κ
σ̄

η
− 3ut

)
∆, [δ, ∆̄] =

(
κ
σ

η
− 3ut

)
∆̄

[∆, ∆̄] =

(
∆(η)

η
− (utρ+ τ)

)
∆̄ −

(
∆̄(η)

η
− (utρ+ τ)

)
∆ (3.12)
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which form a Lie algebra over the field of invariants of the conformal group,
in agreement with Ovsiannikov’s lemma 24.2 [3].

The commutator algebra is simplified by introducing two new operators of
invariant differentiation Y and Ȳ instead of ∆ and ∆̄ and two new variables
λ and λ̄ instead of σ and σ̄, defined by

∆ = ηY, ∆̄ = ηȲ , σ = ηλ, σ̄ = ηλ̄, (3.13)

and becomes

[δ, Y ] =

(
κλ̄− 3ut −

δ(η)

η

)
Y, [δ, Ȳ ] =

(
κλ− 3ut −

δ(η)

η

)
Ȳ ,

[Y, Ȳ ] =
(utρ+ τ)

η

(
Y − Ȳ

)
. (3.14)

Equations (3.10) and (3.11) imply the following properties of the operators
Y and Ȳ

Y (ut) = Ȳ (ut) = 1, Y (ρ) = λ, Ȳ (ρ) = λ̄. (3.15)

4 Automorphic and resolving equations

We have four independent differential invariants t, ut, ρ, η on the solution
manifold of the heavenly equation (2.8). We choose three of them t, ut, ρ
as new invariant independent variables, the same number as in the original
equation (2.1), and consider the fourth one η as a real function F of these
three

η = F (t, ut, ρ) ⇐⇒ uztuz̄te
−u = F

(
t, ut, uzz̄e

−u
)
, (4.1)

which gives us the general form of the automorphic equation, i.e. invariant
differential constraint.

Our next task is to derive the resolving equations for the heavenly equa-
tion. This will account for all integrability conditions of the system (2.8),
(4.1) in an explicitly invariant form. If we pick a particular solution of this
resolving system for F and use it in the right-hand side of (4.1), then the lat-
ter equation will possess the automorphic property: each solution of it can
be obtained from any other solution by an appropriate conformal symmetry
transformation.

We consider the automorphic equation (4.1) divided by F in the form

Y (ut) = 1, (4.2)
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and the heavenly equation (2.8) in the form

δ(ut) = κρ− u2
t . (4.3)

We put η = F in the definitions (3.13) of Y and Ȳ and in their commutation
relations (3.14). The integrability condition for the system (4.2) and (4.3) is
obtained by the invariant cross-differentiation with δ and Y with the use of
their commutation relation (3.14)

δ(F ) = [κ(λ+ λ̄) − 5ut]F. (4.4)

Since this equation involves λ and λ̄ we use their definitions in eq.(3.15)

Y (ρ) = λ, Ȳ (ρ) = λ̄ (4.5)

and obtain the integrability condition for these two equations by the invari-
ant cross-differentiation by Ȳ and Y using their commutation relation from
eq.(3.14)

F (Y (λ̄) − Ȳ (λ)) = (utρ+ τ)(λ− λ̄). (4.6)

This equation contains τ , so we use its definition (3.11)

δ(ρ) = τ. (4.7)

Using the invariant cross-differentiation with Y or Ȳ and δ, we obtain the
compatibility conditions of eq.(4.7) with each of equations (4.5)

δ(λ) = Y (τ) + 2utλ− κλ2 (4.8)

and
δ(λ̄) = Ȳ (τ) + 2utλ̄− κλ̄2. (4.9)

These are complex conjugate to each other. There is one more differential
consequence of the obtained resolving equations. This is the integrability
condition of the equation (4.6) solved with respect to Y (λ̄) together with the
equation (4.9). It is obtained by the invariant cross-differentiation of these
equations by δ and Y . Using the other resolving equations it can be brought
to the form

F (Y (λ̄) + Ȳ (λ)) = −(utρ+ τ)(λ+ λ̄)

+ 2κ[δ(τ) + 2F + 4utτ + κρ2 + 2u2
tρ]. (4.10)
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The resolving equations (4.4), (4.6), (4.8), (4.9) and (4.10) form a closed
resolving system if we assume that not only the 2nd-order differential in-
variant η = F , but also the 3rd-order differential invariants λ, λ̄ and τ are
functions of t, ut, ρ. They should be regarded as additional unknowns in these
equations, so the resolving system consists of 5 partial differential equations
with 4 unknowns F, λ, λ̄ and τ . The operators of invariant differentiation
are projected on the solution manifold of the heavenly equation and on the
space of differential invariants treated as new independent variables. We keep
the same notation for the projected operators of invariant differentiation and
write them in the form

δ = ∂t + (κρ− u2
t )∂ut

+ τ∂ρ, Y = ∂ut
+ λ∂ρ, Ȳ = ∂ut

+ λ̄∂ρ. (4.11)

Here we have used the following properties of these operators

δ(t) = 1, δ(ut) = κρ− u2
t , δ(ρ) = τ (4.12)

Y (t) = Ȳ (t) = 0, Y (ut) = Ȳ (ut) = 1, Y (ρ) = λ, Ȳ (ρ) = λ̄,

which follow from their definitions, equations (3.10), (3.11), (3.15) and the
heavenly equation in the form (4.3). If we used for the operators of invariant
differentiation δ, Y, Ȳ the formulae (4.11) in the resolving equations (4.4),
(4.6), (4.8), (4.9) and (4.10), then we would obtain the resolving system in
an explicit form as a system of 5 first-order PDEs with 4 unknowns F, λ, λ̄, τ
and 3 independent variables t, ut, ρ. This system is passive, i.e. it has no
further algebraically independent first-order integrability conditions.

The commutator relations (3.14) were satisfied identically by the opera-
tors of invariant differentiation. On the contrary, for the projected operators
(4.11) these commutation relations and even the Jacobi identity

[δ, [Y, Ȳ ]] + [Y, [Ȳ , δ]] + [Ȳ , [δ, Y ]] = 0 (4.13)

are not identically satisfied, but only on account of the resolving equations.
It is easy to check that even a stronger statement is valid.

Theorem 1 The commutator algebra (3.14) of the operators of invariant
differentiation δ, Y, Ȳ , together with the Jacobi identity (4.13), is equivalent
to the resolving system for the heavenly equation and hence provides a com-
mutator representation for this system.
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This theorem means that the complete set of the resolving equations is en-
coded in the commutator algebra of the operators of invariant differentiation
and provides the easiest way to derive the resolving system. In Section 6 we
shall show how the commutator representation of the resolving system can
lead to a useful Ansatz for solving this system.

5 Invariant and non-invariant solutions

Invariant solutions are defined as solutions that are invariant with respect
to a symmetry subgroup of the equation. Non-invariant solutions are those
solutions which are not invariant with respect to any one-parameter sym-
metry group of the equation. We present here a simple derivation of the
infinitesimal criterion of invariance of solutions.

Consider a general form of the generator of a one-parameter symmetry of
the heavenly equation as a linear combination of symmetry generators (2.2)
with arbitrary real constant coefficients α and β

X = α∂t + β (t∂t + 2∂u) + a(z)∂z + ā(z̄)∂z̄ − (a′(z) + ā′(z̄)) ∂u (5.1)

where a(z) is an arbitrary holomorphic function. The infinitesimal criterion
for the invariance of the solution u = f(z, z̄, t) with respect to the generator
X has the general form (see par. 19.2.1 of [3])

X(f − u)|u=f = 0, (5.2)

which for X defined by the formula (5.1) becomes

(α + βt)ft + a(z)fz + ā(z̄)fz̄ = 2β − a′(z) − ā′(z̄). (5.3)

The invariance criterion can be summed up as follows.

Proposition 1 If there exists a holomorphic function a(z) and constants α
and β, not all equal to zero, such that the equation (5.3) is satisfied, then the
solution u = f(z, z̄, t) is invariant. Otherwise this solution is non-invariant.

From this proposition one can derive some criteria for the non-invariance
of solutions. For example, we consider the case when α = 0 and β = 0 so that
equation (5.3) is a criterion of conformal invariance. The general solution of
eq.(5.3) in this case has the form

u = ln f(ξ, t) − ln a(z) − ln ā(z̄) (5.4)
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where

ξ = i

(∫ dz

a(z)
−
∫ dz̄

ā(z̄)

)
. (5.5)

The invariant ρ defined by eq.(2.7) becomes

ρ =
ffξξ − f 2

ξ

f 3
(5.6)

and the invariants σ and σ̄, defined by eqs.(3.11) as

σ = e−uuz̄tDz(ρ), σ̄ = e−uuztDz̄(ρ),

are equal to each other

σ̄ = σ =
(fftξ − ftfξ)

f 3
×
(
ffξξ − f 2

ξ

f 3

)

ξ

, (5.7)

where the subscripts denote partial differentiations. Hence the necessary
condition for a solution to be conformally invariant is the equality

σ̄ = σ ( ⇐⇒ λ̄ = λ). (5.8)

The converse statement gives the criterion for a solution to be conformally
non-invariant.

Corollary 1 The sufficient condition for a solution of the heavenly equation
to be conformally non-invariant is that the following inequality should be
satisfied

σ̄ 6= σ (5.9)

(or equivalently λ̄ 6= λ).
Concerning the practical use of this statement we must remark that even

if the inequality (5.9) is satisfied for a solution of the resolving system it
could become the equality (5.8) on the corresponding solution of the heavenly
equation. Nevertheless the above criterion is useful, meaning that we should
avoid solutions of the resolving equations satisfying eq.(5.8) in order not to
end up with conformally invariant solutions.
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6 Particular solutions of the resolving

system

Here we show that the commutator representation of the resolving system can
prompt Ansatzes, leading to particular solutions of the resolving equations.
Attempts to solve the commutation relations by imposing relations between
the operators of invariant differentiation lead to invariant solutions of the
heavenly equation. This is the case with the Ansatz Ȳ = Y . Then the
expressions (4.11) for Y, Ȳ imply λ̄ = λ, so the condition (5.9) of Corollary 1
is not satisfied. Hence we obtain a conformally invariant solution of the
heavenly equation.

Another possible simplifying Ansatz is that the operators Y and Ȳ com-
mute and we have

τ = −utρ ⇒ [Y, Ȳ ] = 0, (6.1)

but Ȳ 6= Y .
Before solving the resolving system with the Ansatz (6.1) we keep in

mind that F 6= 0. Indeed the case F = 0 is singular for the derivation of the
resolving equations and should be treated separately. We shall consider first
the case F = 0 and show that it leads to invariant solutions of the heavenly
equation.

Putting F = 0 in equation (4.1) we obtain

uzt = 0, uz̄t = 0 (6.2)

and hence we have the separation

u = α(t) + β(z, z̄). (6.3)

Substituting this expression for u into the heavenly equation (2.1) we obtain

eα(t)
(
α′′(t) + (α′(t))

2
)

= κe−β(z,z̄)βzz̄(z, z̄) = 2l, (6.4)

where l = l̄ is a separation constant and the primes denote derivatives in t.
Integrating the equation for α we obtain

α(t) = ln
(
lt2 + C1t+ C2

)
(6.5)

where C1, C2 are arbitrary real constants. The equation for β(z, z̄)

βzz̄ = 2κleβ (6.6)
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is the Liouville equation if κ = 1 and the p̀seudo-Liouvillé equation for
κ = −1. Its general solution is

β(z, z̄) = ln a′(z) + ln ā′(z̄) − 2 ln (a(z) + ā(z̄)) − ln l (6.7)

if κ = 1 and

β(z, z̄) = ln a′(z) + ln ā′(z̄) − 2 ln (a(z)ā(z̄) + 1) − ln l (6.8)

if κ = −1. Here a(z) is an arbitrary holomorphic function and the primes de-
note derivatives. Thus, the corresponding solutions of the heavenly equation
are given by the equation (6.3) with α(t) determined by the formula (6.5)
and β(z, z̄) determined by the formula (6.7) or (6.8).

To obtain the simplest representative of the orbit of solutions we apply
simplifying symmetry transformations: the conformal transformation

a(z) 7→ z, ā(z̄) 7→ z̄,

the suitable time translation and the dilation of time accompanied by a shift
of u

u 7→ u+ ln l, t 7→ t√
l
.

The resulting solutions become

u = ln
(
t2 + C

)
− 2 ln (z + z̄) if κ = 1, (6.9)

u = ln
(
t2 + C

)
− 2 ln (zz̄ + 1) if κ = −1, (6.10)

where C is an arbitrary real constant.
To perform a check of invariance of the solutions (6.9) and (6.10), we

substitute them into the criterion of invariance (5.3) and make a splitting in
t. Then we obtain α = 0 and if C 6= 0, then also β = 0. For C = 0 the
constant β can be arbitrary. We also obtain a differential equation for a(z)
and ā(z̄)

a′(z) + ā′(z̄) = 2
a(z) + ā(z̄)

z + z̄
for κ = 1 (6.11)

and

a′(z) + ā′(z̄) = 2
z̄a(z) + zā(z̄)

zz̄ + 1
for κ = −1, (6.12)
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with the trivial solutions

a = i, ā = −i for κ = 1; a = iz, ā = −iz for κ = −1. (6.13)

Thus, we have proved that there exist α, β and a(z), ā(z̄) such that the cri-
terion (5.3) of invariance of solutions is satisfied for our solutions (6.9) and
(6.10). Hence the case F = 0 corresponds to invariant solutions.

In the following we assume that F 6= 0 and consider the resolving equa-
tions with the Ansatz (6.1). Equations (4.6) and (4.10) become respectively

Y (λ̄) = Ȳ (λ) and Y (λ̄) + Ȳ (λ) = 4κ

and hence
Ȳ (λ) = 2κ, Y (λ̄) = 2κ. (6.14)

Next we consider the compatibility condition of the system of equations (4.8),
(4.9) and the first equation in (6.14). Because of the formula (6.1) the first
equation becomes

δ(λ) = utλ− κλ2 − ρ. (6.15)

Then, using cross-differentiation of the invariant operators δ and Ȳ , their
commutator (3.14) and eq.(6.14), we obtain a very simple result

λ+ λ̄ = 2κut. (6.16)

Solving this equation with respect to λ̄, substituting in equation (4.9) and
using the equation (6.15) to express δ(λ), we obtain a quadratic equation for
λ

λ2 − 2κutλ+ 2κρ = 0,

with the solution
λ = κut + i

√
2κρ− u2

t , (6.17)

where we have chosen the + sign before the square root. Equation (6.16)
gives the result

λ̄ = κut − i
√

2κρ− u2
t (6.18)

which is complex conjugate to (6.17) provided the condition

2κρ− u2
t ≥ 0 (6.19)

is satisfied. The obtained expressions for λ and λ̄ satisfy the equations (6.14),
(6.15) and its complex conjugate, and hence all the resolving equations apart
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from the equation (4.4). We rewrite this last equation for the new unknown
f = lnF as

ft + (κρ− u2
t )fut

− utρfρ = −3ut (6.20)

and solve it by the method of characteristics obtaining the general solution
of the equation (4.4)

F = ρ3ϕ(ξ, θ) where ξ =
2κρ− u2

t

ρ2
, θ = t− κ

ρ

(
ut +

√
2κρ− u2

t

)
,

(6.21)
where ϕ is an arbitrary real differentiable function.

Finally we sum up our results for the particular solution of the resolving
system which follows from our Ansatz (6.1)

F = ρ3ϕ(ξ, θ), τ = −utρ, λ = κut + i
√

2κρ− u2
t , λ̄ = κut− i

√
2κρ− u2

t

(6.22)
This will be used in the next section for obtaining the corresponding solution
of the heavenly equation. Since λ̄ 6= λ the condition (5.9) of Corollary 1 for
non-invariance of this solution is satisfied.

7 Invariant integration and non-invariant

solution of the heavenly equation

In this section we reconstruct the solution of the heavenly equation starting
from the particular solution (6.22) of the resolving system. We demonstrate
here the procedure of invariant integration which amounts to the transfor-
mation of equations to the form of the exact invariant derivative. Then we
drop the operator of invariant differentiation adding the term playing the
role of the integration constant which is an arbitrary element of the kernel
of this operator.

We start from our Ansatz (6.1) using the definitions τ = δ(ρ) and δ = Dt

Dt(ln ρ) = Dt(−u). (7.1)

We integrate this equation in the form

ln ρ = −u+ ln γzz̄(z, z̄),
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where the last term is a function to be determined. Solving this equation
with respect to ρ and using the definition of ρ we obtain

ρ = e−uuzz̄ = e−uγzz̄(z, z̄)

and hence uzz̄ = γzz̄(z, z̄). This implies the following form of the solution

u(z, z̄, t) = γ(z, z̄) + α(z, t) + ᾱ(z̄, t), (7.2)

where γ, α and ᾱ are arbitrary smooth functions of two variables. After the
substitution of this expression into the heavenly equation (2.1) it becomes

eα(z,t)+ᾱ(z̄,t)
[
αtt(z, t) + ᾱtt(z̄, t) + (αt(z, t) + ᾱt(z̄, t))

2
]

= κe−γ(z,z̄)γzz̄(z, z̄).

(7.3)
Next we rewrite the formulae (6.22) for λ and λ̄ in the form of exact

invariant derivatives

Y (
√

2κρ− u2
t − iκut) = 0, Ȳ (

√
2κρ− u2

t + iκut) = 0. (7.4)

On account of the definitions (3.13), the operators Y and Ȳ can be written
as

Y =
1

F
∆ =

e−uuz̄t

F
Dz, Ȳ =

1

F
∆̄ =

e−uuzt

F
Dz̄

and the equations (7.4) become

(
√

2κρ− u2
t + iκut)z̄ = 0, (

√
2κρ− u2

t − iκut)z = 0.

They are integrated in the form
√

2κρ− u2
t + iκut = ψ(z, t),

√
2κρ− u2

t − iκut = ψ̄(z̄, t), (7.5)

where ψ, ψ̄ are arbitrary smooth functions. Taking the difference of two
equations (7.5) we obtain

ut = −iκ
2

[ψ(z, t) − ψ̄(z̄, t)] = αt(z, t) + ᾱt(z̄, t),

where the last equality follows from the expression (7.2) for u. Separation of
z, z̄ in the last equality leads to

αt(z, t) +
iκ

2
ψ(z, t) = −

[
ᾱt(z̄, t) −

iκ

2
ψ̄(z̄, t)

]
= χ′(t) = −χ̄′(t),
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where χ′(t) is the separation ‘constant” and the prime denotes the derivative.
Solving these equations with respect to ψ, ψ̄ and substituting the results into
the equations (7.5) we solve them with respect to the square root with the
result √

2κρ− u2
t = iκ [αt(z, t) − ᾱt(z̄, t) − 2χ′(t)] .

Solving this equation with respect to κρ and multiplying the result by eα+ᾱ

we obtain

κe−γ(z,z̄)γzz̄(z, z̄) (7.6)

= 2eα(z,t)+ᾱ(z̄,t)
[
αt(z, t)ᾱt(z̄, t) + χ′(t)(αt(z, t) − ᾱt(z̄, t)) − χ′2(t)

]
.

Using this equation in the right-hand side of the heavenly equation in the
form (7.3) and separating z, z̄ we obtain two complex conjugate equations

αtt(z, t) = −α2
t (z, t) + 2χ′(t)αt(z, t) − χ′2(t) + µ(t), (7.7)

ᾱtt(z̄, t) = −ᾱ2
t (z̄, t) − 2χ′(t)ᾱt(z̄, t) − χ′2(t) − µ(t), (7.8)

where µ(t) = −µ̄(t) is the separation “constant”. We substitute these ex-
pressions for αtt and ᾱtt into the transformed heavenly equation (7.3) to
obtain

eα(z,t)+ᾱ(z̄,t)
[
αt(z, t)ᾱt(z̄, t) + χ′(t)(αt(z, t) − ᾱt(z̄, t) − χ′2(t))

]

=
κ

2
e−γ(z,z̄)γzz̄(z, z̄). (7.9)

Next we take the total derivative Dt of this equation and substitute again
the second derivatives αtt and ᾱtt from the equations (7.7) and (7.8). The
result is unexpectedly simple

(χ′′ − µ) (αt − ᾱt − 2χ′) = 0. (7.10)

This equation implies that
µ(t) = χ′′(t), (7.11)

since the complementary assumption

αt − ᾱt − 2χ′ = 0

leads again to the equation (7.11). Indeed, the last equation allows a sepa-
ration of z, z̄ and, being integrated, gives α, ᾱ

α(z, t) = χ(t) + ν(t) + ω(z), ᾱ(z̄, t) = −χ(t) + ν(t) + ω̄(z̄).
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Substituting these expressions into the equations (7.7) and (7.8) and com-
paring the results we discover again the equation (7.11).

With this restriction the equations (7.7) and (7.8) are simplified and
integrated to give

α(z, t) = ln (t+ b(z)) + χ(t) + ω(z), ᾱ(z̄, t) = ln (t+ ā(z̄)) − χ(t) + ω̄(z̄),
(7.12)

where b(z) and ω(z) are arbitrary holomorphic functions and we have reserved
the notation a(z) only for the generators of the conformal vector field Xa in
eq.(2.2).

Now define a new function of z, z̄

Γ(z, z̄) = γ(z, z̄) + ω(z) + ω̄(z̄), (7.13)

so that the form (7.2) of the solution becomes

u(z, z̄, t) = ln (t+ b(z)) + ln (t+ b̄(z̄)) + Γ(z, z̄). (7.14)

Substituting the expressions (7.12) for α, ᾱ into the transformed heavenly
equation (7.3) we obtain the equation for the only unknown function Γ(z, z̄)
in the solution (7.14)

Γzz̄ = 2κeΓ. (7.15)

If κ = 1 this is the Liouville equation with the general solution

Γ(z, z̄) = ln c′(z) + ln c̄′(z̄) − 2 ln (c(z) + c̄(z̄)) (7.16)

where c(z) is an arbitrary holomorphic function. If κ = −1 we call the
equation (7.15) p̀seudo-Liouvillé equation and its general solution is

Γ(z, z̄) = ln c′(z) + ln c̄′(z̄) − 2 ln (c(z)c̄(z̄) + 1). (7.17)

Finally, substituting these expressions for Γ(z, z̄) into the equation (7.14) we
obtain the solutions of the heavenly equation (2.1) for the two choices of the
sign κ = +1 and κ = −1.

1. The solution for κ = 1:

u(z, z̄, t) = ln (t+ b(z)) + ln (t+ b̄(z̄))

+ ln c′(z) + ln c̄′(z̄) − 2 ln (c(z) + c̄(z̄)). (7.18)
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2. The solution for κ = −1 (see also [15]):

u(z, z̄, t) = ln (t+ b(z)) + ln (t+ b̄(z̄))

+ ln c′(z) + ln c̄′(z̄) − 2 ln (c(z)c̄(z̄) + 1). (7.19)

Here b(z) and c(z) are arbitrary holomorphic functions.
To avoid “false generality” it is sufficient to choose the simplest represen-

tative of the obtained orbits of solutions applying the conformal symmetry
transformation c(z) = z, c̄(z̄) = z̄ with the following results.

1. The solution for κ = 1:

u(z, z̄, t) = ln (t+ b(z)) + ln (t+ b̄(z̄)) − 2 ln (z + z̄). (7.20)

2. The solution for κ = −1:

u(z, z̄, t) = ln (t+ b(z)) + ln (t+ b̄(z̄)) − 2 ln (zz̄ + 1). (7.21)

Here b(z) is still an arbitrary holomorphic function.
Up to now we solved completely only the Ansatz (6.1) defining τ , but

we did not check the automorphic equation (4.1) and the auxiliary equations
(4.5), by using the particular solution (6.22) of the resolving system. Hence,
though we obtained the correct solutions (7.20) and (7.21) of the heavenly
equation (2.1), we have not made a complete foliation of these solutions into
separate orbits.

To do this, first we remark that due to the discrete symmetry of the
heavenly equation (2.1) and of our solutions with respect to the permutation
z ↔ z̄, we can define the holomorphic function b(z) as satisfying the condition

Im b(z) ≥ 0 for κ = 1 and Im b(z) ≤ 0 for κ = −1. (7.22)

Then we check that the automorphic equation (4.1) coincides with the aux-
iliary equations (4.5) and becomes

(z + z̄)2b′(z)b̄′(z̄) = 8ϕ(ξ, θ) for κ = 1 (7.23)

and
(zz̄ + 1)2b′(z)b̄′(z̄) = −8ϕ(ξ, θ) for κ = −1. (7.24)

20



Using the solutions (7.20) and (7.21) in the definitions (6.21) of the char-
acteristic variables ξ and θ, we discover that they depend only on b and b̄,
i.e.

ξ = −(b− b̄)2

4
, θ = −(b+ b̄)

2
−
√
ξ. (7.25)

Hence, defining the new arbitrary function Φ(b, b̄) = ϕ(ξ, θ), the automorphic
equations (7.23) and (7.24) become

(z + z̄)2b′(z)b̄′(z̄) = 8Φ(b, b̄) for κ = 1 (7.26)

and
(zz̄ + 1)2b′(z)b̄′(z̄) = −8Φ(b, b̄) for κ = −1. (7.27)

Sufficient conditions for solving these functional-differential equations are
given by the following choices of Φ(b, b̄)

Φ(b, b̄) =

[
f(b) + f̄(b̄)

]2

8f ′(b)f̄ ′(b̄)
for κ = 1 (7.28)

and

Φ(b, b̄) = −
[
f(b)f̄(b̄) + 1

]2

8f ′(b)f̄ ′(b̄)
for κ = −1, (7.29)

where f(b) is an arbitrary holomorphic function. Then the automorphic
equations become

{
ln
[
f(b) + f̄(b̄)

]}

zz̄
= [ln (z + z̄)]zz̄ for κ = 1 (7.30)

and
{
ln
[
f(b)f̄(b̄) + 1

]}

zz̄
= [ln (zz̄ + 1)]zz̄ for κ = −1. (7.31)

Their general solutions are

f(b) + f̄(b̄) = w(z)w̄(z̄)(z + z̄) for κ = 1 (7.32)

and
f(b)f̄(b̄) + 1 = w(z)w̄(z̄)(zz̄ + 1) for κ = −1, (7.33)

where w(z) is an arbitrary holomorphic function. The formulae (7.28) and
(7.29) for Φ(b, b̄) become

Φ(b, b̄) =
w2(z)w̄2(z̄)(z + z̄)2

8f ′(b)f̄ ′(b̄)
for κ = 1
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and

Φ(b, b̄) = −w
2(z)w̄2(z̄)(zz̄ + 1)2

8f ′(b)f̄ ′(b̄)
for κ = −1.

If we plug these formulae into the automorphic equations (7.26) and (7.27),
then both automorphic equations coincide and become

b′(z)b̄′(z̄) =
w2(z)w̄2(z̄)

f ′(b)f̄ ′(b̄)
. (7.34)

This equation admits a separation of variables, leading to the ODEs

b′(z) =
w2(z)

f ′(b)
, b̄′(z) =

w̄2(z̄)

f̄ ′(b̄)
. (7.35)

The obvious choice of the functions w(z) and w̄(z̄)

w(z) = 1 ⇐⇒ w̄(z̄) = 1 (7.36)

simplifies the ODEs (7.35) to

[f(b)]z = 1, [f̄(b̄)]z̄ = 1, (7.37)

with the solution
f [b(z)] = z, f̄ [̄b(z̄)] = z̄ (7.38)

meaning that b(z) is the inverse function for f(b): b = f−1. The equations
(7.32) and (7.33) are obviously satisfied by the solution (7.38) with our choice
(7.36) of w(z), w̄(z̄).

Thus, any particular function b(z) can be obtained for an appropriate
choice of f(b) as its inverse function. This fixes the function Φ(b, b̄) according
to the formulae (7.28) or (7.29), the function ϕ(ξ, θ) = Φ(b, b̄) and the right-
hand side F of the automorphic equation (4.1) determined by the formulae
(6.22). Hence any particular choice of the function b(z) in our solutions
(7.20), (7.21) means a corresponding choice of the particular orbit in the
solution space of the heavenly equation.

8 Check of non-invariance of the solutions

In this section we prove that our solutions (7.20) and (7.21) of the heavenly
equation (2.1) are non-invariant, with respect to its symmetry group gener-
ated by the vector fields in (2.2), for generic functions a(z), except for some
particular classes listed below in the theorems summarizing the results.
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For the check of non-invariance we substitute our solutions (7.20) and
(7.21) into the invariance criterion (5.3). The resulting equation is quadratic
in t and it implies the vanishing of the coefficients of t2, t and t0.

We consider first the case κ = 1. The term with t2 gives again the
equation (6.11) of the Section 6. However, now we need the general solution
of this equation.

We assume in the generic case that a′(z) + ā′(z̄) 6= 0, otherwise the
equation (6.11) implies a = −ā = constant and this case should be treated
separately. Then we rewrite the equation (6.11) in the form

a(z) + ā(z̄)

a′(z) + ā′(z̄)
=
z + z̄

2
=⇒

(
a+ ā

a′ + ā′

)

zz̄
= 0. (8.1)

In order to consider the generic case we postulate a′′ā′′ 6= 0, then the last
equation can be easily manipulated, obtaining the solution

a(z) = C1(z + λ)2 + C2, ā(z̄) = −
[
C1(z̄ − λ)2 + C2

]
, (8.2)

where C1 6= 0, C2 and λ are arbitrary purely imaginary constants.
Now we consider the term without t in the criterion of invariance using

our result (8.2) which gives the equation with the separated variables z, z̄

α

b(z)
+
[
C1(z + λ)2 + C2

] b′(z)
b(z)

− β = (8.3)

−
{

α

b̄(z̄)
−
[
C1(z̄ − λ)2 + C2

] b̄′(z̄)
b̄(z̄)

− β

}
= µ = −µ̄

where µ is a separation constant. Comparing these equations with the equa-
tion obtained from the term with t in the criterion of invariance we conclude
that they coincide if and only if the condition

µ
(
b(z) − b̄(z̄)

)
= 0

is satisfied. This implies µ = 0, since otherwise we have b = b̄ = constant
and our solution is obviously invariant depending only on two variables t and
z + z̄. Hence the equations (8.3) become

[
C1(z + λ)2 + C2

]
b′(z) − βb(z) = −α, (8.4)

[
C1(z̄ − λ)2 + C2

]
b̄′(z̄) + βb̄(z̄) = α. (8.5)
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Consider now the case C2 6= 0, β 6= 0 and introduce the notation

ν =

√

−C2

C1

, γ =
β

2
√
−C1C2

. (8.6)

Integrating the ODEs (8.4) and (8.5) we fix the function b(z) in our solution
of the heavenly equation which corresponds to the invariant solution in the
considered case

b(z) = C

(
z + λ− ν

z + λ+ ν

)γ

+
α

β
, b̄(z̄) = C̄

(
z̄ − λ− ν

z̄ − λ+ ν

)γ

+
α

β
(8.7)

where C, C̄ are integration constants.
In a similar way we treat other possible cases. We sum up the results for

the case of κ = 1 in the following statement.

Theorem 2 The function

u = ln (t+ b(z)) + ln (t+ b̄(z̄)) − 2 ln (z + z̄) (8.8)

is a solution of the heavenly equation (2.1) for κ = +1 for an arbitrary
holomorphic function b(z). This solution is a non-invariant solution of this
equation iff the function b(z) does not coincide with any of the following
choices:

1.

b(z) = C

(
z + λ− ν

z + λ+ ν

)γ

+
α

β

where α and β are arbitrary real constants, β 6= 0, ν and γ are defined
by the formulae (8.6) and λ, C1, C2 are complex constants which satisfy
the conditions

λ̄ = −λ, C̄1 = −C1, C̄2 = −C2, C1 6= 0, C2 6= 0.

In this case the solution is invariant with respect to the symmetry gen-
erator

X = α∂t + β (t∂t + 2∂u) + C1

[
(z + λ)2∂z − (z̄ − λ)2∂z̄ − 2(z − z̄)∂u

]

+ C2 (∂z − ∂z̄) .
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2.

b(z) =
α

2
√
−C1C2

(
z + λ+ ν

z + λ− ν

)
+ C if β = 0, C2 6= 0;

the solution is invariant with respect to the previous symmetry generator
X with β = 0.

3.

b(z) = C exp

[
− β

C1(z + λ)

]
+
α

β
if C2 = 0, β 6= 0;

the solution is invariant with respect to the symmetry generator X from
the case 1 with C2 = 0.

4.

b(z) =
α

C1(z + λ)
+ C if β = 0 and C2 = 0;

the solution is invariant with respect to the symmetry generator X from
the case 1 with β = 0 and C2 = 0.

5.

b(z) = C(C1z + C2)
β/C1 +

α

β
if C1 6= 0, β 6= 0;

the solution is invariant with respect to the symmetry generator

X = α∂t + β (t∂t + 2∂u) + C1 (z∂z + z̄∂z̄ − 2∂u) + C2 (∂z − ∂z̄) .

6.

b(z) = Ce
β

C2
z
+
α

β
if C1 = 0, β 6= 0;

the solution is invariant with respect to the symmetry generator X from
the case 5 with C1 = 0.

7.

b(z) = − α

C2
z + C if C1 = 0, β = 0;

the solution is invariant with respect to the symmetry generator X from
the case 5 with C1 = 0 and β = 0.
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8.

b(z) = b = constant if C1 = α = β = 0, C2 6= 0;

the solution is invariant with respect to the symmetry generator

X = ∂z − ∂z̄.

If b = α/β, then this solution is also invariant with respect to the
generator

X = α∂t + β (t∂t + 2∂u) .

Now we consider the case κ = −1 and substitute the solution (7.21) of
the heavenly equation (2.1) into the criterion of invariance (5.3). Then the
resulting equation is again quadratic in t and the term with t2 gives us again
the equation (6.12), for which we need now the general solution. First we
rewrite it in the form

a′ + ā′ +
a′ + ā′

zz̄
= 2

(
a

z
+
ā

z̄

)
.

Differentiating this equation with respect to z and z̄ we obtain an equation
which admits separation of z, z̄ in the form

za′′(z) − a′(z) = − [z̄ā′′(z̄) − ā′(z̄)] = λ = −λ̄ (8.9)

where λ is a separation constant. Integrating these ODEs we obtain

a(z) = C1z
2 − λz + C2, ā(z̄) = C̄1z̄

2 + λz̄ + C̄2

where C1, C2 are integration constants. Substituting these solutions into the
equation (6.12) we see that it is identically satisfied if and only if
C̄1 = C2 ⇐⇒ C̄2 = C1, so that finally we have the solution of the equation
following from the term with t2

a(z) = C1z
2 − λz + C2, ā(z̄) = C2z̄

2 + λz̄ + C1. (8.10)

Next we consider the term without t in the criterion of invariance using
our result (8.10) which gives the equation with the separated variables z, z̄

α

b(z)
+
(
C1z

2 − λz + C2

) b′(z)
b(z)

− β =

−
[
α

b̄(z̄)
+
(
C2z̄

2 + λz̄ + C1

) b̄′(z̄)
b̄(z̄)

− β

]
= µ = −µ̄ (8.11)
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where µ is a separation constant. Comparing these equations with the equa-
tion obtained from the term with t in the criterion of invariance we conclude
that they coincide if and only if the condition

µ
(
b(z) − b̄(z̄)

)
= 0

is satisfied. This implies µ = 0 for the same reason as in the case κ = 1.
Hence the equations (8.11) become

(
C1z

2 − λz + C2

)
b′(z) − βb(z) = −α, (8.12)

(
C2z̄

2 + λz̄ + C1

)
b̄′(z̄) − βb̄(z̄) = −α. (8.13)

Consider now the case C1 6= 0. Introduce the new constants λ̃ = −λ/(2C1)
and C̃2 = C2 − λ2/(4C1). Then the first equation takes the form

[
C1(z + λ̃)2 + C̃2

]
b′(z) − βb(z) = −α (8.14)

coinciding with the ODE (8.4) in the case κ = 1. Therefore we can use its
solutions with an appropriate change of notation. Other possible cases are
treated in a similar way. Therefore we can transfer the results of Theorem
2 to the case κ = −1 with an appropriate change of notation and sum them
up in the following statement.

Theorem 3 The function

u = ln (t+ b(z)) + ln (t+ b̄(z̄)) − 2 ln (zz̄ + 1) (8.15)

is a solution of the heavenly equation (2.1) for κ = −1 for an arbitrary
holomorphic function b(z). This solution is a non-invariant solution of this
equation iff the function b(z) does not coincide with any of the 8 forms given
in Theorem 2 with the change of notation

λ 7→ λ̃ = − λ

2C1
, C2 7→ C̃2 = C2 −

λ2

4C1
,

ν 7→ ν̃ =

√√√√−C̃2

C1
, γ 7→ γ̃ =

β

2
√
−C1C̃2

in the cases 1, 2, 3, 4 and C1 7→ −λ in the case 5. Those 8 choices of b(z) give
invariant solutions with respect to the corresponding symmetry generators of
Theorem 2 with the same change of notation.
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9 Conclusions and outlook

The title of this article, or rather of the research direction that it represents,
could have been “Invariant methods for obtaining non-invariant solutions
of partial differential equations”. The main result is that we are proposing
an alternative tool for obtaining particular solutions of non-linear partial
differential equations with infinite dimensional symmetry algebras. As stated
in the Introduction, the idea of the method is more than a hundred years
old [1, 2]. We have turned it into a usable tool by adding new elements.
These are:

1. The systematic use of invariant cross-differentiation involving the oper-
ators of invariant differentiation and their commutator algebra for the
derivation of the resolving equations and for obtaining their particular
solutions.

2. The presentation of the resolving system as a Lie algebra of the opera-
tors of invariant differentiation (over the field of differential invariants
of the symmetry group) [10].

3. The concept of invariant integration applied to the automorphic system.

Let us use the heavenly equation (2.1) to compare different methods of
obtaining exact analytical solutions of a partial differential equation, pro-
vided or at least suggested by symmetry analysis. In all of them the studied
equation is embedded into a larger system of equations, to be solved simul-
taneously.

The most standard method is that of invariant solutions [3, 13, 16]. One
first finds the symmetry algebra realized by vector fields of the form

X = τ∂t + ξ∂z + ξ̄∂z̄ + φ∂u (9.1)

where τ, ξ, ξ̄ and φ are functions of t, z, z̄ and u. Once this algebra is found
(i.e. the algebra (2.2) for the heavenly equation) one classifies its subalgebras
into conjugacy classes and then adds one, or more, first order linear equations
of the type

τut + ξuz + ξ̄uz̄ − φ = 0 (9.2)

to the studied equation. These equations are solved, their solution is substi-
tuted into the original equation. This again is solved and we obtain solutions
invariant under the chosen subgroup.
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Further methods are the Bluman and Cole “non-classical method” [17],
the Clarkson-Kruskal [18] “direct method” and that of “conditional symme-
tries” [19] (see [20] for a review). These methods, basically all equivalent,
amount to the fact that a first order equation of the type (9.2) is added to
the studied equation, without the requirement that τ, ξ, ξ̄ and φ define an
element of the symmetry algebra.

Finally, we have the group foliation method [10] used and further devel-
oped in this article. Let us review the essential steps, performed above.

1. Find the total symmetry algebra (2.2).

2. Find all differential invariants of order up to N of its infinite dimen-
sional subalgebra which is Lie algebra of the conformal group. The
number N must be larger or equal to the order of the equation and
must satisfy the requirement that there should be #N functionally
independent invariants with

#N ≥ p+ q (9.3)

where p and q are the number of independent and dependent variables,
respectively. In our case we have p = 3, q = 1, N = 2, #N = 5. The
actual invariants are given in the equation (2.7).

3. Choose p invariants as new independent variables and require that the
remaining invariants be functions of the chosen ones. This provides us
with the automorphic system that also contains the considered equa-
tion, expressed in terms of the invariants. In our case the automorphic
system consists of the equation (2.8) (the heavenly equation) and the
equation (4.1) (or equivalently (4.2)).

4. Find the “resolving equations”. This is a set of compatibility condi-
tions between the studied equation and those that we have added to
obtain the automorphic system. In our case we require compatibility
between the equations (2.8) and (4.1), i.e. determine the restrictions
on the function F (t, ut, ρ). We have shown that this can be done in
an explicitly invariant manner by using the operators of invariant dif-
ferentiation, in our case δ, Y and Ȳ of the equations (3.9) and (3.13).
The resolving system in our case consists of the equations (4.4), (4.6),
(4.8), (4.9) and (4.10). As stated by the fundamental Theorem 1, this
resolving system is best written as a system of commutator relations
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for the operators of invariant differentiation projected on the solution
manifold of the heavenly equation in the space of differential invariants,
together with the Jacobi relations for these operators.

5. Solve the resolving system and the automorphic one. This provides
solutions of the original equation.

The last step, step 5 is the most difficult one. If it can be carried out
completely, we obtain “all” solutions, both invariant and non-invariant ones.
In general, such a situation is too good to be true. In particular, for the heav-
enly equation we were not able to solve the system (3.14), (4.13) in general.
Instead, we made various simplifying assumptions. The most obvious ones,
like Y = Ȳ or F = 0, lead to invariant solutions. These we already know,
or can obtain by much simpler standard methods. The assumption, or re-
striction, that leads to non-invariant solutions was [Y, Ȳ ] = 0. The solutions
obtained are (7.18) and (7.19), for κ = 1 and κ = −1, respectively. Each
solution involves two arbitrary holomorphic functions. One of them, b(z) is
fundamental. The other is induced by a conformal transformation and can
be transformed away (i.e. set equal to e.g. c(z) = z). In Section 8 we show
that the solutions are, in general, not invariant under any subgroup of the
symmetry group. They reduce to invariant ones only for very special choices
of the function b(z), specified in Theorems 2 and 3.

It would be interesting to relate the concepts of this article to that of inte-
grability for non-linear partial differential equations. “Integrability” means
that the considered equation is viewed as an integrability condition for a
Lax pair, a pair of linear operators [21, 22]. Here we can view the equations
(3.12) as a set of relations between a triplet of linear operators, subject to a
non-linear constraint (4.13) .
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