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Abstract

Direct and inverse recursion operator is derived for the vacuum Ein-
stein equations for metrics with two commuting Killing vectors that are
orthogonal to a foliation by 2-dimensional leaves.

1 Introduction

In the past decade, inverse recursion operators became a subject of a
number of papers [7, 8, 14, 15]. In particular, the work of Guthrie [7]
opened a new perspective on recursion operators by essentially identifying
them with auto-Bäcklund transformations for linearized equation [18].

It is known for a long time that recursion operators of integrable sys-
tems are obtainable from their Lax pairs (see [6] and references therein)
and ZCR’s (see [10, 24]). However, recently it became clear that zero cur-
vature representations are related much closer to inverse recursion opera-
tors than to their ‘direct’ counterparts [19, 20]. Examples that have been
already published elsewhere include the Korteweg–de Vries and Tzitzéica
equation [19] and the stationary Nizhnik–Novikov–Veselov equation [20].
In the present paper, the methods of [19, 20] are applied to equations of
General Relativity.

2 Recursion operators

Let E = {F l = 0} be a system of PDE’s in unknown functions uk of two
independent variables x, y. We assume that F l are functions of x, y, uk and
a finite number of the derivatives uk

ij = ∂i+juk/∂xi∂yj (uk
00 = uk). Con-

sider the infinite-dimensional jet space J∞ with local coordinates x, y, uk
ij

along with the commuting vector fields Dx = ∂/∂x +
P

ij
uk

i+1,j(∂/∂uk
ij),

Dy = ∂/∂y +
P

ij
uk

i,j+1(∂/∂uk
ij), called total derivatives. The submani-

fold E determined by equations F l = 0 and their differential consequences
DxF l = 0, DyF l = 0, D2

xF l = 0, DxDyF l = 0, D2
yF l = 0, . . . , is called
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the equation manifold (and is an underlying space of the diffiety struc-
ture [12] employed in [19]). In this context, infinitesimal symmetries (more
precisely, their generating functions) are functions Uk defined on E such
that

P

k,i,j
(∂F l/∂uk

ij)D
i
xDj

yUk = 0.

It is then natural to consider the jet space with coordinates x, y, uk
ij ,

Uk
ij , and denote

LF l =
X

k,i,j

∂F l

∂uk
ij

Uk
ij . (1)

The system LE := {F l = 0, LF l = 0} on unknowns uk, Uk will be called
the linearized equation. Now, Guthrie’s recursion operators [7] may be
interpreted as auto-Bäcklund transformations of the linearized equation
LE that keep variables uk unchanged [19].

In now standard formalism [21], recursion operators are pseudodif-
ferential operators, characterized by the occurrence of inverses of total
derivatives D−1

x . Under Guthrie’s approach, p = D−1
x f is introduced as

an auxiliary nonlocal variable satisfying

px = f, py = g, (2)

provided such a g exists, and it actually does without known exception;
see Sergyeyev [23] for a proof in case of evolution systems. Thus, p is a
potential of a conservation law f dx + g dy of the linearized equation LE .

For the inverse recursion operators, the nonlocalities tend to be gen-
uinely nonabelian pseudopotentials related to a zero curvature represen-
tation of the system in question. Let g be a matrix Lie algebra. Let
α = A dx+B dy be a g-valued zero curvature representation (ZCR) for the
system E . This means that A, B are g-valued functions on the equation
submanifold E and DyA−DxB +[A, B] = 0 holds on E. Let us introduce
the associated pseudopotential P as a g-valued solution of the compatible
system

Px = [A, P ] + LA, Py = [B, P ] + LB. (3)

A recursion operator R is then a linear operator in Uk and P such that
U ′ = R(U, P ) solves the linearized system LE whenever U does and P
satisfies (3) (see [19, 20]). In this way, the inverse recursion operator can
be found without previous knowledge of the direct recursion operator. A
remarkable aspect of this approach is that R(U, P ) tends to be a very
simple expression.

For the above scheme to work, it is not necessary that the ZCR α a
priori depends on the “spectral parameter.” However, if R is a recursion
operator related to the ZCR α as above, then (R−1 + µ Id)−1 is another
recursion operator, associated with a ZCR αµ which depends on µ.

3 The results

We consider vacuum Einstein equations for a space-time with two com-
muting Killing vectors that are orthogonal to a foliation by 2-dimensional
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surfaces [4, 5]. Our presentation will be restricted to the case when both
Killing vectors are space-like. The case when one of the Killing vectors is
time-like is equivalent to ours via an appropriate complex transformation
of coordinates.

As is well known, there exist coordinates x, y, z1, z2 such that the
metric in question can be written in the form ds2 = 2f(x, y) dx dy +
gij(x, y) dzi dzj (the Lewis [13] metric). The vacuum Einstein equations
essentially reduce to

(
√

det g gxg−1)y + (
√

det g gyg−1)x = 0, (4)

while f can be obtained by quadrature. Using the standard normalization
det g = (x + y)2 compatible with Eq. (4), we parametrize g as follows:
g11 = (x+ y)/u, g12 = (x+ y)v/u, g22 = (x + y)(u2 + v2)/u. Equation (4)
then becomes

uxy =
uxuy − vxvy

u
− 1

2

ux + uy

x + y
,

vxy =
vxuy + uxvy

u
− 1

2

vx + vy

x + y
.

(5)

As is well known, Eq. (5) has a ZCR and a Bäcklund transformation [1,
2, 3, 9, 16, 17, 22]. The ZCR reads

A =
1

2

„

−(θ + 1)ux/u (θ + 1)vx/u2

(θ − 1)vx (θ + 1)ux/u

«

,

B =
1

2θ

„

−(θ + 1)uy/u (θ + 1)vy/u2

(−θ + 1)vy (θ + 1)uy/u

«

,

where θ =
√

(µ + y)/(µ − x) , µ being the spectral parameter.
The main result of this paper, obtained by the methods of [19, 20], is

as follows: If nonlocal variables p11, p12, p21 satisfy

p11,x = −θ − 1

2
vxp12 +

θ + 1

2

vx

u2
p21 −

θ + 1

2

1

u
Ux +

θ + 1

2

ux

u2
U,

p12,x = −(θ + 1)
vx

u2
p11 − (θ + 1)

ux

u
p12

− (θ + 1)
vx

u3
U +

θ + 1

2

1

u2
Vx,

p21,x = (θ − 1)vxp11 + (θ + 1)
ux

u
p21 +

θ − 1

2
Vx,

p11,y =
θ − 1

2θ
vyp12 +

θ + 1

2θ

vy

u2
p21 +

θ + 1

2θ

uy

u2
U − θ + 1

2θ

1

u
Uy ,

p12,y = −θ + 1

θ

vy

u2
p11 − θ + 1

θ

uy

u
p12

− θ + 1

θ

vy

u3
U +

θ + 1

2θ

1

u2
Vy,

p21,y = −θ − 1

θ
vyp11 +

θ + 1

θ

uy

u
p21 −

θ − 1

2θ
Vy ,

(6)
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then

U ′ = 2
u

p

(µ − x)(µ + y)
p11 +

1
p

(µ − x)(µ + y)
U,

V ′ = − u2

p

(µ − x)(µ + y)
p12 − 1

p

(µ − x)(µ + y)
p21

(7)

is a recursion operator for Eq. (5), namely, it sends symmetries to sym-
metries if the latter are viewed as solutions of the linearized system

Uxy =

„

uy

u
− 1

2(x + y)

«

Ux +

„

ux

u
− 1

2(x + y)

«

Uy

− uxuy − vxvy

u2
U − vy

u
Vx − vx

u
Vy ,

Vxy =
vy

u
Ux +

vx

u
Uy − vxuy + uxvy

u2
U

+

„

uy

u
− 1

2(x + y)

«

Vx +

„

ux

u
− 1

2(x + y)

«

Vy.

The ‘direct’ recursion operator for this equation seems to be missing
in the literature; we can obtain it by inverting the operator (7), the result
being

U ′ = uvp1 − up2 + (y − x)U,

V ′ = − 1

2
(u2 − v2)p1 − vp2 − 1

2
p3 + (y − x)V,

where p1, p2, p3 satisfy

p1,x = (x + y)

„

−2
vx

u3
U +

1

u2
Vx

«

,

p2,x = (x + y)

„

−uux + 2vvx

u3
U +

1

u
Ux +

vx

u2
V +

v

u2
Vx

«

,

p3,x = (x + y)

„

2
(uux + vvx)v

u3
U − 2

v

u
Ux

− 2
uux + vvx

u2
V +

u2 − v2

u2
Vx

«

,

p1,y = (x + y)

„

2
vy

u3
U − 1

u2
Vy

«

,

p2,y = (x + y)

„

uuy + 2vvy

u3
U − 1

u
Uy − vy

u2
V − v

u2
Vy

«

,

p3,y = (x + y)

„

−2
(uuy + vvy)v

u3
U + 2

v

u
Uy

+ 2
uuy + vvy

u2
V − u2 − v2

u2
Vy

«

.

It is readily seen that pi are potentials of the linearizations [18] of the
three obvious conservation laws of Eq. (4).

4



Quite unusually, neither of the recursion operators found generates an
infinite series of local symmetries (and no such series is known). The action
of our operators on the infinite-dimensional Geroch group of nonlocal
symmetries [5, 11] remains to be investigated.

It is convenient to rewrite system (6) in triangular form. To achieve
this, we introduce the Riccati pseudopotential q by

qx =
θ − 1

2
vxq2 − (θ + 1)

ux

u
q − θ + 1

2

vx

u2
,

qy = −θ − 1

2θ
vyq2 − θ + 1

2θ

uy

u
q − θ + 1

2θ

vy

u2

and a nonlocal potential r by

rx = (θ − 1)vxq − (θ + 1)
ux

u
,

ry = −θ − 1

θ
vyq − θ + 1

θ

uy

u
.

Then the inverse recursion operator assumes the form

U ′ =
1

p

(µ − x)(µ + y)

„

2uQ − 2
uq

er R + U

«

,

V ′ =
1

p

(µ − x)(µ + y)

„

−u2erP − 2u2qQ +
u2q2 − 1

er R

«

,

where P, Q, R are supposed to satisfy

Px = (θ + 1)
q

u
e−rUx +

„

θ + 1

2

1

u2
− θ − 1

2
q2

«

e−rVx

− (θ + 1)

„

qux

u2
+

vx

u3

«

e−rU,

Qx = −θ + 1

2

1

u
Ux +

θ − 1

2
qVx +

θ + 1

2

ux

u2
U − θ − 1

2
vxerP,

Rx =
θ − 1

2
erVx + (θ − 1)vxerQ,

Py =
θ + 1

θ

q

u
e−rUy +

„

θ + 1

2θ

1

u2
+

θ − 1

2θ
q2

«

e−rVy

− θ + 1

θ

„

quy

u2
+

vy

u3

«

e−rU,

Qy = −θ + 1

2θ

1

u
Uy − θ − 1

2θ
qVy +

θ + 1

2θ

uy

u2
U +

θ − 1

2θ
vyerP,

Ry = −θ − 1

2θ
erVy − θ − 1

θ
vyerQ.

This form of the inverse recursion operator is better adapted to generation
of symmetries, which is, however, beyond the scope of this paper.
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