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M. MARVAN, A. M. VINOGRADOV, V. A. YUMAGUZHIN

Abstract. In this paper, we construct differential invariants of generic hyperbolic
Monge–Ampère equations with respect to contact transformations. We give a solution
of the equivalence problem for these equations.

Introduction. In this paper we look for differential invariants of classical Monge–
Ampère equations of hyperbolic type with respect to the group of contact transforma-
tions by interpreting them as a geometrical structure on 5-dimensional contact man-
ifolds. We limit ourselves to the case of generic equations and solve the equivalence
problem for them by the approach developed by the second author, see [10],[1].

In spite of more than 200 years of history of Monge–Ampère equations and numerous
publications dedicated to them it would be an exaggeration to say that their nature
is completely understood. Establishing the existence and uniqueness theorems for this
class of equations (see [4, 3] for local aspects and [9] for global ones) was an important
achievement of the classical theory. For a modern exposition of elements of the classical
theory, say, of Monge’s method of integration, see [5, 6] and Morimoto [7].

Differential invariants of non-generic equations and some applications will be given in
subsequent papers.

Below, all manifolds and maps are supposed to be smooth. By [f ]kp , k = 0, 1, 2, . . .
denote the k-jet of a map f at a point p. As usually, R

n stands for the n-dimensional
arithmetic space, R being the real numbers, and RPn for the n-dimensional projective
space.

Bundle of Monge–Ampère equations. Consider the trivial bundle

τ : R
2 × R → R

2

and the manifold M of all 1-jets of its sections. Natural coordinates in M are denoted
by (x, y, z, zx, zy). Classically Monge–Ampère equations are defined to be equations of
the form

N(zxxzyy − z2
xy) + Azxx + Bzxy + Czyy + D = 0 , (1)
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where the coefficients N , A, B, C, D are functions of x, y, z, zx, zy. Geometrically
such an equation may be seen as the section

p �→
[
N(p) : A(p) : B(p) : C(p) : D(p)

]

of the trivial bundle

π′ : RP4 × M → M .

Equation (1) is called hyperbolic if

B2 − 4AC + 4ND > 0 ,

see [2]. This condition defines the open subset E ⊂ RP4 × M . Put

π = π′∣∣
E
: E → M .

Recall that M has a canonical contact structure, see [8]. Contact transformations
of M preserve the class of hyperbolic Monge–Ampère equations. In particular, such a
transformation ϕ is lifted to a diffeomorphism ϕ(0) of E such that ϕ ◦ π = ϕ(0) ◦ π. Let

πk : Jkπ → M , πk : [S]kp �→ p ,

be the bundle of all k-jets of sections S of π, k = 0, 1, 2, . . . ϕ(0) can be lifted to the
diffeomorphism ϕ(k) of Jkπ by the formula

ϕ(k)( [S]kp ) =
[
ϕ(0) ◦ S ◦ ϕ−1

]k

ϕ(p)
.

Let Γ be the pseudogroup of all contact transformations of M . It acts on Jkπ’s by lifted
diffeomorphisms.

Proposition 1. (1) Γ acts transitively on J0π and J1π.
(2) Generic orbits of Γ on J2π are of codimension 2, and on J3π of codimension

29.

Let I be a tensor on Jkπ, say, a function, vector field or a differential form. It is a
differential invariant of order k if ϕ(k) preserves I for any ϕ ∈ Γ. Functions that are
differential invariants are also called scalar differential invariants, see [1].

Corollary 1. (1) The algebra of scalar differential invariants on J2π is generated
by 2 functionally independent invariants.

(2) The algebra of scalar differential invariants on J3π is generated by 29 function-
ally independent invariants.

Let E be equation (1), S the corresponding section of π, and I a differential invariant
of order k. Denote by IE the restriction of I to the image of jkS. Since jkS is a
diffeomorphism on its image, IE may be viewed as a tensor on M . Below we describe
differential invariants I in terms of their restrictions IE, i.e., as tensors on M . The
subscript E will be usually omitted.
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Skew-orthogonal distributions associated with a hyperbolic Monge–Ampère
equation. Let

τk : Jkτ → R
2 , τk : [S]kx �→ x ,

be the bundle of all k-jets of sections of τ . A natural projection

τk,l : Jkτ → J lτ, k ≥ l ,

sends [S]kx to [S]lx. Sections jkS of τk, k ≥ 0, associated with a section S of τ , are
defined as

jkS : x �→ [S]kx .

Put Lk
S = Im jkS. Let [S]2x = q ∈ J2τ . Recall that q is naturally identified with the

tangent space Kq to L1
S at [S]1x. The canonical contact 1-form on M = J1τ is denoted

by U1 and the distribution of contact hyperplanes on M by

C : p �→ Cp .

Below, equation (1) is considered to be a submanifold E of J2τ , as usual. Let P be a
one-dimensional subspace of Cp, p ∈ M , such that (τ1)∗P �= 0. Put

l(P ) = { q ∈ (τ2,1)
−1(p)

∣∣P ⊂ Kq } .

Denote by Qp the span of all one-dimensional subspaces P of Cp such that τ∗P �= 0 and
l(P ) is tangent to E at least at one point.

Proposition 2. Let E be a hyperbolic Monge–Ampère equation. Then Qp is the union
of two-dimensional subspaces D1

p and D2
p such that

(1) Cp = D1
p ⊕ D2

p,

(2) D1
p and D2

p are skew-orthogonal with respect to the symplectic form dU1

∣∣
p
.

In this way E determines a pair of 2-dimensional skew-orthogonal subdistributions

D1 : p �→ D1
p and D2 : p �→ D2

p

of the contact distribution C.

Proposition 3. Let E be a hyperbolic Monge–Ampère equation and q ∈ J2τ . Then
q ∈ E iff one of the following equivalent conditions holds:

(1) dim Kq ∩ D1
p = 1,

(2) dim Kq ∩ D2
p = 1.

In its turn, a pair of 2-dimensional skew-orthogonal subdistributions D1 and D2 of C
determines a submanifold E = {q ∈ J2τ | dim Kq ∩ Di = 1, i = 1, 2} ∈ J2π which is a
hyperbolic Monge–Ampère equation.

So, there exists a natural bijection between hyperbolic Monge–Ampère equations and
pairs of 2-dimensional skew-orthogonal non-lagrangian subdistributions D1, D2 of C on
M . In particular, the equivalence problem for hyperbolic Monge–Ampère equations
with respect to contact transformations is equivalent to that for such pairs of subdis-
tributions.



4 M. MARVAN, A. M. VINOGRADOV, V. A. YUMAGUZHIN

Projections. For a distribution D on M denote by D(1) the distribution generated by
all vector fields X, Y ∈ D and their commutators [X, Y ]. Put D(2) = (D(1))(1).

For a hyperbolic Monge–Ampère equation E we have

dim(D1)(1) = dim(D2)(1) = 3 and D3 = (D1)(2) ∩ (D2)(2)

is a one-dimensional distribution not belonging to C. In this way one gets the decom-
position

T (M) = D1 ⊕ D2 ⊕ D3

and the corresponding projections

Pi : T (M) → Di, i = 1, 2, 3, P
(1)
j : T (M) → Dj ⊕ D3, j = 1, 2 .

Interpreted as vector-valued 1-forms these projections have the following description.
Let X1, . . ., X5 be vector fields on M such that

D1 = 〈X1, X2〉 , D2 = 〈X3, X4〉 , and D3 = 〈X5〉 .

Denote by ω1, . . ., ω5 the dual 1-forms, i.e., Xj ωi = δi
j , i, j = 1, . . . , 5. Then

P1 = ω1 ⊗ X1 + ω2 ⊗ X2 , P2 = ω3 ⊗ X3 + ω4 ⊗ X4 ,

P3 = ω5 ⊗ X5 , P
(1)
j = Pj + P3 , j = 1, 2 .

These vector-valued differential 1-forms are differential invariants of E with respect to
contact transformations.

For a generic E,

dim(D1)(2) = dim(D2)(2) = 5 .

Curvature forms. Let P : TM → TM be a projection. Then the curvature R of P
is a 2-form on M defined by the formula

R(X, Y ) = (idTM −P )( [P (X), P (Y )] ) ,

where idTM is the identity map. The curvatures of projections P1, P2, P
(1)
1 , P

(1)
2 are:

R1 = ω1 ∧ ω2 ⊗ X5 , R2 = ω3 ∧ ω4 ⊗ X5 ,

R1
1 = (b3

15ω
1 + b3

25ω
2) ∧ ω5 ⊗ X3 + (b4

15ω
1 + b4

25ω
2) ∧ ω5 ⊗ X4 ,

R1
2 = (b1

35ω
3 + b1

45ω
4) ∧ ω5 ⊗ X1 + (b2

35ω
3 + b2

45ω
4) ∧ ω5 ⊗ X2

respectively, with functions bi
jk coming from relations

[Xj , Xk] =
5∑

i=1

bi
jkXi .

Clearly, these curvatures are differential invariants of E.
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Scalar invariants on J2π. From invariant 5-forms:
1
2

(
R1

2 R1

) (
R1

2 R1

)
= λ1 · ω1 ∧ . . . ∧ ω5 ⊗ X5 ,

1
2

(
R1

1 R2

) (
R1

1 R2

)
= λ2 · ω1 ∧ . . . ∧ ω5 ⊗ X5 ,

(
R1

2 R1

) (
R1

1 R2

)
= λ12 · ω1 ∧ . . . ∧ ω5 ⊗ X5

with
λ1 = b2

35b
1
45 − b1

35b
2
45 , λ2 = b4

15b
3
25 − b3

15b
4
25 ,

λ12 = b3
15b

1
35 + b4

15b
1
45 + b3

25b
2
35 + b4

25b
2
45

one immediately derives scalar differential invariants

I1 = λ12/λ1 , I2 = λ12/λ2

on J2π due to the fact that λ1 �= 0 and λ2 �= 0 for a generic E.

Theorem 1. As smooth function algebra, the algebra of scalar differential invariants
on J2π is generated by I1 and I2.

The complete parallelism. Consider the invariant 1-forms:

Ω1 = P1 dI1 = X1(I
1)ω1 + X2(I

1)ω2 ,

Ω2 = P1 dI2 = X1(I
2)ω1 + X2(I

2)ω2 ,

Ω3 = P2 dI1 = X3(I
1)ω3 + X4(I

1)ω4 ,

Ω4 = P2 dI2 = X3(I
2)ω3 + X4(I

2)ω4 ,

Ω5 = P3 dI1 = X5(I
1)ω5 , Ω̃5 = P1 dI2 = X5(I

2)ω5 .

If E is generic, then

X5(I
1) �= 0 , X5(I

2) �= 0 ,

∆1 =

∣∣∣∣
X1(I

1) X2(I
1)

X1(I
2) X2(I

2)

∣∣∣∣ �= 0 , ∆2 =

∣∣∣∣
X3(I

1) X4(I
1)

X3(I
2) X4(I

2)

∣∣∣∣ �= 0 .

So, {Ω1, . . . , Ω4, Ω5} and {Ω1, . . . , Ω4, Ω̃5} are invariant coframes on M . Each of them
defines an invariant complete parallelism on M .

Scalar invariants on J3π. Coefficient of proportionality

I3 = X5(I
1)/X5(I

2)

between invariant 1-forms Ω5 and Ω̃5 is a scalar differential invariant on J3π. By
applying natural operations of linear algebra and tensor analysis to already obtained
differential invariants one gets numerous new scalar differential invariants of E. For
instance, further invariants I4 and I5 are obtained as factors connecting invariant 2-
forms R1 dI1, R2 dI1 and Ωi ∧ Ωj on J3π:

R1 dI1 = I4Ω1 ∧ Ω2, R2 dI1 = I5Ω3 ∧ Ω4.
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More exactly,

I4 = ∆1/X5(I
1) , I5 = ∆2/X5(I

1) .

Theorem 2. Scalar differential invariants I1, . . . , I5 on J3π are functionally indepen-
dent.

The equivalence problem. For a generic hyperbolic Monge–Ampère equation E func-
tions I1

E, . . ., I5
E form a natural invariant chart on M . Put

Ωi
E =

5∑

j=1

Ωi
j(I

1
E, . . . , I

5
E)dIj

E , i = 1, . . . , 5 .

Theorem 3. The equivalence class of a generic equation E with respect to contact
transformations is uniquely determined by the functions Ωi

j(I
1
E, . . . , I

5
E), i, j = 1, . . . , 5.

Invariant operators. Invariant vector fields Yj are defined by duality relations Yj

Ωi = δi
j , i, j = 1, . . . , 5. Consider invariant endomorphisms of vector bundles

�1 = Y5 R1
1 : TM → D2 and �2 = Y5 R1

2 : TM → D1

and their compositions

∇1 = �2

∣∣
D2◦�1

∣∣
D1 : D1 → D1 and ∇2 = �1

∣∣
D1◦�2

∣∣
D2: D2 → D2

which are invariant as well.

Theorem 4. The endomorphism ∇i of Di, i = 1, 2, has two, one, or zero different real
eigenvalues, if I > 0, I = 0, I < 0, respectively, where I = 4 − I1I2.

Thus, generic hyperbolic Monge–Ampère equations are subdivided locally into three
subclasses according to the sign of I.
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