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Abstract. In this paper, we construct differential invariants of
generic hyperbolic Monge–Ampère equations with respect to con-
tact transformations. We give a solution of the equivalence prob-
lem for these equations.

1. Introduction

In this paper we look for differential invariants of classical Monge–
Ampère equations of hyperbolic type with respect to the group of con-
tact transformations by interpreting them as a geometrical structure
on 5-dimensional contact manifolds. We limit ourselves to the case of
generic equations and solve the equivalence problem for them by the
approach developed by the second author, see [10],[1].

In spite of more than 200 years of history of Monge–Ampère equa-
tions and numerous publications dedicated to them it would be an
exaggeration to say that their nature is completely understood. Estab-
lishing the existence and uniqueness theorems for this class of equations
(see [4, 3] for local aspects and [9] for global ones) was an important
achievement of the classical theory. For a modern exposition of ele-
ments of the classical theory, say, of Monge’s method of integration,
see [5, 6] and Morimoto [7].

Differential invariants of non-generic equations and some applica-
tions will be given in subsequent papers.

Below, all manifolds and maps are supposed to be smooth. By
[f ]kp , k = 0, 1, 2, . . . denote the k-jet of a map f at a point p. As
usually, R

n stands for the n-dimensional arithmetic space, R being the
real numbers, and RPn for the n-dimensional projective space.
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2. Bundle of Monge–Ampère equations

Consider the trivial bundle

τ : R
2 × R → R

2

and the manifold M of all 1-jets of its sections. Natural coordinates in
M are denoted by (x, y, z, zx, zy). Classically Monge–Ampère equations
are defined to be equations of the form

N(zxxzyy − z2
xy) + Azxx + Bzxy + Czyy + D = 0 , (1)

where the coefficients N , A, B, C, D are functions of x, y, z, zx, zy.
Geometrically such an equation may be seen as the section

p �→ [
N(p) : A(p) : B(p) : C(p) : D(p)

]

of the trivial bundle
π′ : RP4 × M → M .

Equation (1) is called hyperbolic if

B2 − 4AC + 4ND > 0 ,

see [2]. This condition defines the open subset E ⊂ RP4 × M . Put

π = π′∣∣
E
: E → M .

Recall that M has a canonical contact structure, see [8]. Contact
transformations of M preserve the class of hyperbolic Monge–Ampère
equations. In particular, such a transformation ϕ is lifted to a diffeo-
morphism ϕ(0) of E such that ϕ ◦ π = ϕ(0) ◦ π. Let

πk : Jkπ → M , πk : [S]kp �→ p ,

be the bundle of all k-jets of sections S of π, k = 0, 1, 2, . . . ϕ(0) can be
lifted to the diffeomorphism ϕ(k) of Jkπ by the formula

ϕ(k)( [S]kp ) =
[
ϕ(0) ◦ S ◦ ϕ−1

]k

ϕ(p)
.

Let Γ be the pseudogroup of all contact transformations of M . It acts
on Jkπ’s by lifted diffeomorphisms.

Proposition 2.1. (1) Γ acts transitively on J0π and J1π.
(2) Generic orbits of Γ on J2π are of codimension 2, and on J3π

of codimension 29.

Let I be a tensor on Jkπ, say, a function, vector field or a differential
form. It is a differential invariant of order k if ϕ(k) preserves I for any
ϕ ∈ Γ. Functions that are differential invariants are also called scalar
differential invariants, see [1].

Corollary 2.2. (1) The algebra of scalar differential invariants on
J2π is generated by 2 functionally independent invariants.

(2) The algebra of scalar differential invariants on J3π is generated
by 29 functionally independent invariants.
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Let E be equation (1), S the corresponding section of π, and I a
differential invariant of order k. Denote by IE the restriction of I to
the image of jkS. Since jkS is a diffeomorphism on its image, IE may
be viewed as a tensor on M . Below we describe differential invariants
I in terms of their restrictions IE, i.e., as tensors on M . The subscript
E will be usually omitted.

3. Skew-orthogonal distributions associated with a

hyperbolic Monge–Ampère equation

Let
τk : Jkτ → R

2 , τk : [S]kx �→ x ,

be the bundle of all k-jets of sections of τ . A natural projection

τk,l : Jkτ → J lτ, k ≥ l ,

sends [S]kx to [S]lx. Sections jkS of τk, k ≥ 0, associated with a section
S of τ , are defined as

jkS : x �→ [S]kx .

Put Lk
S = Im jkS. Let [S]2x = q ∈ J2τ . Recall that q is naturally

identified with the tangent space Kq to L1
S at [S]1x. The canonical

contact 1-form on M = J1τ is denoted by U1 and the distribution of
contact hyperplanes on M by

C : p �→ Cp .

Below, equation (1) is considered to be a submanifold E of J2τ , as
usual. Let P be a one-dimensional subspace of Cp, p ∈ M , such that
(τ1)∗P �= 0. Put

l(P ) = { q ∈ (τ2,1)
−1(p)

∣∣P ⊂ Kq } .

Denote by Qp the span of all one-dimensional subspaces P of Cp such
that τ∗P �= 0 and l(P ) is tangent to E at least at one point.

Proposition 3.1. Let E be a hyperbolic Monge–Ampère equation. Then
Qp is the union of two-dimensional subspaces D1

p and D2
p such that

(1) Cp = D1
p ⊕ D2

p,

(2) D1
p and D2

p are skew-orthogonal with respect to the symplectic

form dU1

∣∣
p
.

In this way E determines a pair of 2-dimensional skew-orthogonal
subdistributions

D1 : p �→ D1
p and D2 : p �→ D2

p

of the contact distribution C.

Proposition 3.2. Let E be a hyperbolic Monge–Ampère equation and
q ∈ J2τ . Then q ∈ E iff one of the following equivalent conditions
holds:
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(1) dim Kq ∩ D1
p = 1,

(2) dim Kq ∩ D2
p = 1.

In its turn, a pair of 2-dimensional skew-orthogonal subdistributions D1

and D2 of C determines a submanifold E = {q ∈ J2τ | dim Kq ∩ Di =
1, i = 1, 2} ∈ J2π which is a hyperbolic Monge–Ampère equation.

So, there exists a natural bijection between hyperbolic Monge–Ampè-
re equations and pairs of 2-dimensional skew-orthogonal non-lagrangian
subdistributions D1, D2 of C on M . In particular, the equivalence prob-
lem for hyperbolic Monge–Ampère equations with respect to contact
transformations is equivalent to that for such pairs of subdistributions.

4. Projections

For a distribution D on M denote by D(1) the distribution generated
by all vector fields X, Y ∈ D and their commutators [X, Y ]. Put
D(2) = (D(1))(1).

For a hyperbolic Monge–Ampère equation E we have

dim(D1)(1) = dim(D2)(1) = 3 and D3 = (D1)(2) ∩ (D2)(2)

is a one-dimensional distribution not belonging to C. In this way one
gets the decomposition

T (M) = D1 ⊕ D2 ⊕ D3

and the corresponding projections

Pi : T (M) → Di, i = 1, 2, 3, P
(1)
j : T (M) → Dj ⊕ D3, j = 1, 2 .

Interpreted as vector-valued 1-forms these projections have the follow-
ing description. Let X1, . . ., X5 be vector fields on M such that

D1 = 〈X1, X2〉 , D2 = 〈X3, X4〉 , and D3 = 〈X5〉 .

Denote by ω1, . . ., ω5 the dual 1-forms, i.e., Xj ωi = δi
j , i, j = 1, . . . , 5.

Then

P1 = ω1 ⊗ X1 + ω2 ⊗ X2 , P2 = ω3 ⊗ X3 + ω4 ⊗ X4 ,

P3 = ω5 ⊗ X5 , P
(1)
j = Pj + P3 , j = 1, 2 .

These vector-valued differential 1-forms are differential invariants of E
with respect to contact transformations.

For a generic E,

dim(D1)(2) = dim(D2)(2) = 5 .



MONGE–AMPÈRE EQUATIONS 5

5. Curvature forms

Let P : TM → TM be a projection. Then the curvature R of P is
a 2-form on M defined by the formula

R(X, Y ) = (idTM −P )( [P (X), P (Y )] ) ,

where idTM is the identity map. The curvatures of projections P1, P2,

P
(1)
1 , P

(1)
2 are:

R1 = ω1 ∧ ω2 ⊗ X5 , R2 = ω3 ∧ ω4 ⊗ X5 ,

R1
1 = (b3

15ω
1 + b3

25ω
2) ∧ ω5 ⊗ X3 + (b4

15ω
1 + b4

25ω
2) ∧ ω5 ⊗ X4 ,

R1
2 = (b1

35ω
3 + b1

45ω
4) ∧ ω5 ⊗ X1 + (b2

35ω
3 + b2

45ω
4) ∧ ω5 ⊗ X2

respectively, with functions bi
jk coming from relations

[Xj , Xk] =
5∑

i=1

bi
jkXi .

Clearly, these curvatures are differential invariants of E.

6. Scalar invariants on J2π

From invariant 5-forms:
1
2

(
R1

2 R1

) (
R1

2 R1

)
= λ1 · ω1 ∧ . . . ∧ ω5 ⊗ X5 ,

1
2

(
R1

1 R2

) (
R1

1 R2

)
= λ2 · ω1 ∧ . . . ∧ ω5 ⊗ X5 ,

(
R1

2 R1

) (
R1

1 R2

)
= λ12 · ω1 ∧ . . . ∧ ω5 ⊗ X5

with
λ1 = b2

35b
1
45 − b1

35b
2
45 , λ2 = b4

15b
3
25 − b3

15b
4
25 ,

λ12 = b3
15b

1
35 + b4

15b
1
45 + b3

25b
2
35 + b4

25b
2
45

one immediately derives scalar differential invariants

I1 = λ12/λ1 , I2 = λ12/λ2

on J2π due to the fact that λ1 �= 0 and λ2 �= 0 for a generic E.

Theorem 6.1. As smooth function algebra, the algebra of scalar dif-
ferential invariants on J2π is generated by I1 and I2.

7. The complete parallelism

Consider the invariant 1-forms:

Ω1 = P1 dI1 = X1(I
1)ω1 + X2(I

1)ω2 ,

Ω2 = P1 dI2 = X1(I
2)ω1 + X2(I

2)ω2 ,

Ω3 = P2 dI1 = X3(I
1)ω3 + X4(I

1)ω4 ,

Ω4 = P2 dI2 = X3(I
2)ω3 + X4(I

2)ω4 ,

Ω5 = P3 dI1 = X5(I
1)ω5 , Ω̃5 = P1 dI2 = X5(I

2)ω5 .
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If E is generic, then

X5(I
1) �= 0 , X5(I

2) �= 0 ,

Δ1 =

∣∣∣∣
X1(I

1) X2(I
1)

X1(I
2) X2(I

2)

∣∣∣∣ �= 0 , Δ2 =

∣∣∣∣
X3(I

1) X4(I
1)

X3(I
2) X4(I

2)

∣∣∣∣ �= 0 .

So, {Ω1, . . . , Ω4, Ω5} and {Ω1, . . . , Ω4, Ω̃5} are invariant coframes on
M . Each of them defines an invariant complete parallelism on M .

8. Scalar invariants on J3π

Coefficient of proportionality

I3 = X5(I
1)/X5(I

2)

between invariant 1-forms Ω5 and Ω̃5 is a scalar differential invariant
on J3π. By applying natural operations of linear algebra and tensor
analysis to already obtained differential invariants one gets numerous
new scalar differential invariants of E. For instance, further invariants
I4 and I5 are obtained as factors connecting invariant 2-forms R1 dI1,
R2 dI1 and Ωi ∧ Ωj on J3π:

R1 dI1 = I4Ω1 ∧ Ω2, R2 dI1 = I5Ω3 ∧ Ω4.
More exactly,

I4 = Δ1/X5(I
1) , I5 = Δ2/X5(I

1) .

Theorem 8.1. Scalar differential invariants I1, . . . , I5 on J3π are
functionally independent.

9. The equivalence problem

For a generic hyperbolic Monge–Ampère equation E functions I1
E,

. . ., I5
E form a natural invariant chart on M . Put

Ωi
E =

5∑

j=1

Ωi
j(I

1
E, . . . , I5

E)dIj
E , i = 1, . . . , 5 .

Theorem 9.1. The equivalence class of a generic equation E with re-
spect to contact transformations is uniquely determined by the functions
Ωi

j(I
1
E, . . . , I5

E), i, j = 1, . . . , 5.

10. Invariant operators

Invariant vector fields Yj are defined by duality relations Yj Ωi = δi
j ,

i, j = 1, . . . , 5. Consider invariant endomorphisms of vector bundles

�1 = Y5 R1
1 : TM → D2 and �2 = Y5 R1

2 : TM → D1

and their compositions

∇1 = �2

∣∣
D2◦�1

∣∣
D1 : D1 → D1 and ∇2 = �1

∣∣
D1◦�2

∣∣
D2: D2 → D2

which are invariant as well.
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Theorem 10.1. The endomorphism ∇i of Di, i = 1, 2, has two, one,
or zero different real eigenvalues, if I > 0, I = 0, I < 0, respectively,
where I = 4 − I1I2.

Thus, generic hyperbolic Monge–Ampère equations are subdivided
locally into three subclasses according to the sign of the scalar differ-
ential I.
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