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Preface

The formulation of laws of nature in terms of minimum principles has a
long history that can be traced to Hero of Alexandria (c. 125 B.C.). He
proved in his Catoptrics that when a ray of light is reflected by a mirror,
the path actually taken from the object to the observer's eye is shorter
than any other possible path so reflected. This principle was generalized
by Fermat who postulated, around 1650, that light always propagates in
the shortest time from one point to another, and deduced mathematically,
from this principle, the law of refraction. The same Fermat anticipated the
differential calculus by stating a necessary condition for the maximum or
the minimum of a polynomial that is equivalent to the vanishing of its
derivative.

More ambitious was the aim of Maupertuis when he enunciated, around
1750, his principle of least action as a rational and metaphysical basis for
geometrical objects and mechanics. His statement was far from precise and,
in the same year, Euler expressed it as an exact theorem of dynamics in
an addendum to his famous book on the calculus of variations. This book
contains the famous extension of the Fermat necessary condition for an
extremum of a real function to the case of functionals of the type

y -' f b f (x, y(x), Y ,(X)) dx,
a

called the Euler-Lagrange equation after the more analytical treatment
given shortly after by Lagrange.

It will take some time, during which further necessary conditions for a
maximum or a minimum will be derived by Legendre, Jacobi, Weierstrass,
and others to realize with Volterra and Hadamard, at the turn of this
century, that the calculus of variations is just a special chapter of a theory
of extrema for real functions defined on function spaces, and to create the
tools necessary to formulate, in this setting, the corresponding necessary
conditions.

The question of the existence of an extremum has a more recent history,
a feature shared with the more general problem of existence theorems in
mathematics. Gauss, who gave four demonstrations of the fundamental
theorem of algebra, admitted without proof the existence of a minimum
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for the functional <p given by
n

O(y) = f >(Diy(x))2 dx

over all sufficiently regular functions y whose restriction on the boundary
852 of the bounded domain S2 C Rn is fixed. It was the origin of the so-
called Dirichlet principle for the existence of a solution to the Dirichlet
problem with data h on 852,

Ay(x)=0, xE0
y(x) = h(x), x E 852.

The long-waited justification of this principle by Arzela and Hilbert, around
1900, was the stimulus for the creation of a systematic approach for getting
conditions of existence for a minimum or a maximum of a functional.

After some pioneering work of Lebesgue, it- became clear with Tonelli's
important contributions that the lower semi-continuity introduced by Baire
in another context was the right type of continuity for a fruitful abstract
formulation of the calculus of variations. The systematic development of
functional analysis, and in particular the study of convex sets and reflex-
ive Banach spaces, paved the way for a systematic development of sharp
existence conditions.

The creation of a general theory of periodic solutions of Hamiltonian sys-
tems as a fundamental step in understanding the structure of their solution
set was one of the major motivations of Poincare's monumental mathemat-
ical work. Besides many other contributions, Poincare initiated the varia-
tional treatment of those questions. In particular, he made use of Jacobi's
form of the least action principle to study the closed orbits of a conservative
system with two degrees of freedom. He also considered the related question
of the existence of geodesics. However, despite the rigorous treatment of the
closed orbits of dynamical systems with two degrees of freedom by Whit-
taker, and the related work of Signorini, Tonelli, and Birkhoff, and despite
the fact that Birkhoff minimax theory was the impetus for Morse theory
and Lusternik-Schnirelman approach to critical point theory, progress to-
ward a global variational approach for the periodic solutions of Hamiltonian
systems was very slow.

A notable exception was Seifert's use in 1948 of Jacobi's form of the least
action principle and differential geometry to prove the existence of an even
T-periodic solution when the Hamiltonian is the sum of a kinetic and a
potential energy term. This was generalized by Weinstein in the late 70s,
who proved in particular, by similar methods, that an autonomous system
with Hamiltonian H such that H-1(1) is a manifold bounding a compact
convex region always has a closed orbit in H-1(1).

The fundamental difficulty in applying the naive idea of finding the peri-
odic solutions of a general Hamiltonian system through the critical points
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of its Hamiltonian action on a suitable space of periodic functions lies in
the fact, already observed by Birkhoff, that this action is unbounded from
below and from above. This makes the use of the well-developed direct
method of the calculus of variations (which deals with absolute minima)
unapplicable, except in some particular second order systems already con-
sidered in the 20s by Lichtenstein and Hamel.

However, in the mid 60s, extensions of the minimax approach (in partic-
ular of Lusternik-Schnirelman theory) and of the Morse theory to functions
defined on Banach manifolds were given by Palais, Smale, Rothe, Clark,
Ambrosetti, Rabinowitz, and others. In the late 70s, Rabinowitz initiated
the use of those methods in the study of periodic solutions of Hamiltonian
systems. Later, a dual least action principle was introduced by Clarke and
extensively developed by Clarke, Ekeland, and others. More recently, Morse
theory and an extension of it due to Conley have provided further insight
into those questions.

The aim of this book is to initiate the reader to those fundamental tech-
niques of critical point theory and apply them to periodic solutions prob-
lems for Hamiltonian systems. Those illustrations have been chosen either
because of their importance in the various applications in mechanics, elec-
tronics, and economics, or because of their mathematical importance. We
hope that our style of presentation will be appealing to people trained and
interested in ordinary differential equations. We have the feeling that criti-
cal point theory, which has been mostly developed by specialists in differen-
tial topology, partial differential equations, or optimization, should be made
more popular among people working in ordinary differential equations. Of
course, the variational methods developed here are directly applicable to
partial differential equations problems at the expense of a substantial com-
plication of the technical details. They can be found in a number of the
references to the literature at the end of the book.

The reader interested in other aspects of critical point theory can then
consult the references given in the bibliographical notes ending each chapter
as well as the following surveys and monographs: [AuE1], [Berci], [Bert],
[Blot], [Boti,2], [Bre2], [Cesi], [Char], [ChH,t], [Cla3], [Con,], [Core], [Deil],
[Des,], [Eel,], [Ekes], [EkT1], [EkTui], [Fen,], [Fun,], [Klir], [Kozi], [Kra2],
[Ljus], [Maw2,3,5,1e], [Mil2], [Mor3], [Moyi], [Mrs2], [Nir2], [Rab2,s,12,s3,14,19],
[Rocs], [Rots], [Rybe], [Sche], [Smoi], [Str4,5] [Szu3], [Ton1], [Vai1,2], [Vo11,2],
[VoP1], [Wi13,5], [You2], [Zehi], [Zei2].
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1

The Direct Method of the
Calculus of Variations

Introduction

A real function cp of a real variable which is bounded below on the real
line needs not to have a minimum, as it is clear from the example of the
exponential function. If we call minimizing sequence for cp any sequence
(ak) such that

cp(ak) -r inf cp

as k -+ oo, a necessary condition for the real number a to be such that

W(a) = inf co

is that cp has a minimizing sequence which converges to a (take ak = a for
all integers k). Without suitable continuity assumptions on cp this condition
will not be sufficient, as shown by the example of the function cp defined
by cp(x) = IxI for x 54 0 and cp(0) = 1, which does not achieve its infimum
0 although all its minimizing sequences converge to zero. In order that the
limit a of a convergent minimizing sequence be such that W(a) = inf cp, we
have to impose that

klim so(ak) ? ga(a)

This will be the case if cp is lower semi-continuous on It, i.e. if

'P (U)

whenever Uk -* U.
Now, in It, the existence of a convergent minimizing sequence is equiv-

alent to that of a bounded minimizing sequence, a feature which is lost
when we replace R by an infinite dimensional Banach space with its norm
topology. In Section 1.1, we show that the existence of a bounded minimiz-
ing sequence still guarantees (and is indeed equivalent to) the existence of
a minimum for co : X -+ It, when X is a reflexive Banach space (in par-
ticular a Hilbert space) and when the lower semi-continuity property for cp
holds for the weakly convergent sequences (Uk) in X. Section 1.2 shows that
this weak lower semi-continuity is equivalent to the lower semi-continuity
in norm when cp is convex.
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If a differentiable function cp : R -> R has a local maximum or a local
minimum at a, then

cp'(a)=0.

This is the most elementary version of the basic necessary condition in
the theory of extremums. Its extension to the case of a differentiable real
function on a normed space is given in Section 1.3 and a detailed study
of its meaning in the case of the classical functional of the calculus of
variations with periodic boundary conditions can be found in Section 1.4. In
particular, for a continuous mapping F : [0,T] x RN -+ R, (t, u) -> F(t, u),
such that V F(t, u) = D F(t, u) is continuous, the solutions of the problem

u(t) = VF(t, u(t))

u(0) - u(T) = it(0) - it(T) = 0

are the critical points u (i.e., the points with p'(u) = 0) of the action
functional

T

'PF : u - J[(1/2) 1u(t)12 + F(t, u(t))] dt

on a suitable space of T-periodic functions.
We describe in Sections 1.5 to 1.7 various conditions upon F (and possi-

bly VF) which insure that cpF has a bounded minimizing sequence. In the
simple case of the scalar linear problem

ii(t) = -h(t)

u(0) - u(T) = it(O) - ii(T) = 0,

the necessary and sufficient condition of solvability is well known and given
by

jTh(i)di = 0,

i.e., h must have mean value zero. Our results are, in various directions,
nonlinear extensions of this condition. For example, Theorem 1.5 implies
that for a continuous g : R -+ R such that

u
li g(u) = g- < g+ =

u
lim g(u),

the problem

is solvable if

ii(t) = g(u) - h(t)

u(0) - u(T) = it(0) - u(T) = 0

g_ <h<g+,
where h denotes the mean value of h, i.e., T-1 ff h(t) dt.
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On the other hand, Theorem 1.6 will imply that for g(u) = a sin u (the
forced pendulum equation), the above periodic problem is always solvable
when h = 0. Finally, a consequence of Theorems 1.7 to 1.9 is that for
g non-decreasing, the above periodic problem is solvable if and only if h
belongs to the range of g. This completely extends the solvability results
of the linear case

u(t) = Au - h(t) (A > 0)

u(O) - u(T) = it(0) - it(T) = 0

to the more general situation where the linear restoring force Au is replaced
by an arbitrary continuous non-decreasing function of it.

1.1 Lower Semi-Continuous Functions

Let X be a normed space.
A minimizing sequence for a function cp : X -->] - oo, +oo] is a sequence

(uk) such that
p(uk) -> inf cp

whenever k , oo. A function cp : X -oo, +oo] is lower semi-continuous
(resp. weakly lower semi-continuous) if

Uk -; it = limcp(uk) > 9(U)

(resp. Uk -, u limcp(uk) > cp(u)).

The following properties are easy consequences of the definition:

i) The sum of two l.s.c. (resp. w.l.s.c.) functions is l.s.c. (resp. w.l.s.c.).

ii) The product of a l.s.c. (resp. w.l.s.c.) function by a positive constant
is l.s.c. (resp. w.l.s.c.).

iii) If (cpa)AEA is a family of l.s.c. (resp. w.l.s.c.) functions, the function
supAEA cpa defined by

(sup cpa ` (u) = sup cpa(u)
,\EA JI \EA

is lower semi-continuous (resp. w.l.s.c.).

Theorem 1.1. If cp is w.l.s.c. on a reflexive Banach space X and has a
bounded minimizing sequence, then cp has a minimum on X.

Proof. Let (Uk) be a bounded minimizing sequence. Going if necessary to
a subsequence, we can assume, by the reflexivity of X, that (uk) converges
weakly to some it E X. Thus,

cp(u) < limcp(uk) = lim cp(uk) = inf cp,
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so that cp(u) = infx gyp.

The existence of a bounded minimizing sequence will be in particular
insured when cp is coercive, i.e., such that

(p(u) - +00 iflull oo.

1.2 Convex Functions

A function cp : X --*] - oo, +oo] is convex if

w((1 - ))u + \v) < (1 -

A E]O, 1[, u, v E X.
The following properties are easy consequences of the definition:

i) The sum of two convex functions is a convex function.

ii) The product of a convex function by a positive constant is a convex
function.

iii) If (cpa)AEA is a family of convex functions then supAEA 0)1 is a convex
function.

In view of Theorem 1.1, it is important to obtain sufficient conditions
for weak lower semi-continuity. We shall obtain such a condition from the
following result.

Mazur Theorem. If (Uk) is a sequence in a normed space X such that
Uk u, there exists a sequence of convex combinations

k

Vk = Eakjuj,
j=1 =1

kj =1, ak,>0 (kEN*)

such that Vk -+ u in X.

Theorem 1.2. If X is a normed space and p : X --*] - oo,+oo] is l.s.c.
and convex, then p is w1s.c.

Proof. Assume that ui u and let c > limcp(ui). Going if necessary to
a subsequence, we can assume that c > p(ui) for all i E N*. By Mazur's
theorem, there exists a sequence (vk) with

k k

vk = Eakiuj, Eakj = 1, aki > 0

j=1 j=1
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such that vk - u. Since is l.s.c. and convex, we obtain

k

cO(u) < lim cp(vk) < UPI (akicui)) < (ci) C = C.
j=1 j=1

Since c > limco(ui) is arbitrary, we have c (u) < limcp(ui), so that cP is
W.I.S.C.

1.3 Euler Equation

The following theorem shows that in order to solve the equation

co'(u) = 0

for a differentiable function cc X -+ R, it suffices to find a local minimum
(or maximum) of c.

Theorem 1.3. If cP : X --+ R is differentiable, every local minimum (resp.
maximum) point satisfies the Euler equation

So'(u)=0.

Proof. Let U E X and r > 0 be such that

cc(u) < cP(u + v)

whenever jvj < r. Then, if v E X \ {0} and 0 < A < r/jjvjj, we have

0 <
<p(u + Av) - cP(u)

A

and hence 0 < (P'(u), v). Since v is arbitrary, cp'(u) = 0. The case of a local
maximum is similar. 11

Remark 1.1. The following simple generalization of Theorem 1.3 will be
useful. If cP : X -+ R is differentiable and Y C X is a vector subspace of
X, then every local minimum (resp. maximum) point of cciy satisfies the
equation

(cd(u), v) = 0, v E Y

i.e., w'(u) E Y-L. The proof is identical to the one above, except for the
very last conclusion.
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1.4 The Calculus of Variations with Periodic
Boundary Conditions

Let CT be the space of indefinitely differentiable T-periodic functions from
R into RN .

Fundamental Lemma. Let u, v E L' (0, T; RN). If for every f E CT,

I
0T

(u (t), f'(t)) dt =
-1T(v(t),

f (t)) dt, (1)

then
JT

v(s) ds = 0 (2)

and there exists c E RN such that

rt
u(t) = J v(s) ds + c (3)

0

a.e. on [0,T].

Proof. 1) If (ej) denotes the canonical basis of RN, we can choose f = ej
in (1), which gives

fT
0

(v(t), ej) dt = 0 (1 < j < N)

and (2) follows.
2) Let us define w E C(O,T;RN) by

so that

(t) = v(s) ds,fw

J

T

fT
(

(w(t), f'(t)) dt = dt.

By the Fubini theorem and (2), we obtain

f(w(i),f'(t))dt = fT [jT)fI(i))di]
ds

jT (v (s), f(T) - f(s)) ds = - fT f(s)) ds.

Hence, by (1) we have, for every f E CT ,

f
T

(u(t) - w(t), f(t)) dt = 0.
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In particular, we can choose

f(t) = { sin }(2irktlT)ei, k E N \ {0}, 1 < j < N
Cos

and the theory of Fourier series implies that

u(t) - w(t) = C

a.e. on [0, T] for some c E RN, and the proof is complete.

Remarks. 1) A function v satisfying (1) is called a weak derivative of u.
By a Fourier series argument, the weak derivative, if it exists, is unique.
The weak derivative of u will be denoted by u.

2) By the fundamental lemma,

u(t) = f u(s) ds + c
0

a,e. on [0,T]. As usual, we shall identify the equivalence class u and its
continuous representant

u(t) = 10, it(s) ds + c. (4)

In particular, by (2), u(0) = u(T) = c, and by soustraction in (4),

rt
u(t) = u(r) + J it(s) ds

T

for t, ,r E [0, T].
3) If it is continuous on [0, T], then by (4), it is the classical derivative of

u=ft.
4) It follows from (4) and a classical result of Lebesgue theory that it is

the classical derivative of u a.e. on [0,T].
Let 1 < p < oo. The Sobolev space WW'' is the space of functions u E

LP (0, T; RN) having a weak derivative it E LP (0, T; RN). Let us recall that,
ifuEWT

t
u(t) = f u(s) ds + c

0

and u(0) = u(T). The norm over WT'p is defined by

(10

/ 1/p

IIuliWi.p - T Ju(t)1pdt+ JT Iit(t)Ipdt
T

0

It is easy to verify that WT'p is a reflexive Banach space and that CT C
W"PT
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We shall denote by HT the Hilbert space WW'2 with the inner product

T
((u, v)) = f [(u(t), v(t)) + (u(t), v(t))] dt

0

and the corresponding norm IIuII = IIuIIww,a. Let us recall that

1/p

IIUIILD = (fT u(t)dt
)

and IIuIIo = tE o x 11u(t)II.

Proposition 1.1. There exists c > 0 such that, if u E WT'p, then

IIuII. < c Ilullww D. (4')

Moreover, if fo u(t) dt = 0, then

Iluli. < c IIUIILP. (4")

Proof. Going to the components of u, we can assume that N = 1. If
u E WT'p, it follows from the mean value theorem that

T
u(s) ds = u(r)(1/T) f

0

for some r E]0, T[. Hence, for t E [0,T], using Holder inequality,

WO =
t

u(r) + f it (s) ds
T

< (1/T) i u(s) ds
T

T

fo

u(s) ds

T
< Iu(T)I + Jlit(s) Ids

1/p

+T1/9
(1T

liu(s)lp

+T1/9IIuIILn (1/p+ 1/q =1).

If fo u(s) ds = 0, we obtain (4"). In the general case, we get, for t E [0,T],

T
< (1/T) f lu(s)I ds + T119IIuII Lp

< T'/PULP + T1/9IIuIIL,

< (T-1/p + T1/°)/IluII i p

and we obtain (4'). 0

Proposition 1.2. If the sequence (uk) converges weakly to u in WT'p, then
(uk) converges uniformly to u on [0,T].
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Proof. By Proposition 1.1, the injection of W "P into C(O,T;RN), with
its natural norm II IIa is continuous. Since Uk u in WW'P, it follows
that Uk - u in Q0, T; RN). By the Banach-Steinhaus theorem, (Uk) is
bounded in W PP and, hence, in Q0, T; RN). Moreover, the sequence (ak)
is equi-uniformly continuous since, for 0 < s < t < T, we have

r (r 11 P

t tI uk(t) - uk(s)I J
I2k(r)I dr < (t - s)1/9 (J I ilk(r)IP dr)

a \ a

< (t - S)1/9II21kII
W ,1 < C(t - s)1/9.

By Ascoli-Arzela theorem, (uk) is relatively compact in C(O,T;RN). By
the uniqueness of the weak limit in C(0, T; RN), every uniformly convergent
subsequence of (uk) converges to u. Thus, (Uk) converges uniformly on [0, TJ
to U.

In the case of the Hilbert space HT, we obtain sharp estimates.

Proposition 1.3. If u E HT and fo u(t) dt = 0, then

J
T

Iu(t)I2 dt < (T2/41r2) J
1u(t)12 dt

0

(Wirtinger's inequality) and

T

IIuII < (T/12)
J

Iu(t)I2 dt
0

(Sobolev inequality).

Proof. Since, by assumption, u has the Fourier expansion

u(t) = > , uk exp(2ilrkt/T),
=-oo
k00

the Parseval equality implies that

T

f Iu(t)I2dt = T(41r2k2IT2)IUk12
k=-oo
k;e0

+00

T> (41r2/T2) E TIuk12 = (41r2IT2)
J

Iu(t)I2 dt.
k=-oo 0

k960
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The Cauchy-Schwarz inequality and Parseval equality then imply that for
t E [0, T],

Iu(t)I2 <

+oo

(T/47r2k2)
k=-oo

k;EO

since

rT
_ (T/12) 10, 1 dt

:0 1(1/k2) = 7r2/6. 0

+oo

(47r2k2/T)Iuk12
k=-oo
k,-0

Theorem 1.4. Let L [0,T] x RN x RN --* R, (t, x, y) , L(t, x, y) be
measurable in t for each [x, y] E RN x RN and continuously differentiable
in [x, y] for almost every t E [0,T]. If there exists a E C(R+, R+), b E
L1(0,T;R+) and C E L9(0,T;R+), 1 < q < oo, such that, for a. e. t E [0,T]
and every [x, y] E RN x RN, one has

I L(t, x, y)I <_ a(I xI)(b(t) +IyIP)

IDxL(t,x,y)I <a(IxI)(b(t)+IyIP) (a)

IDyL(t,x,y)I :5 a(IxI)(e(t)+IyIP-1)
where n + q = 1, then the functional cp defined by

T
cp(u) = J L(t, u(t), it (t)) dt

0

is continuously differentiable on W 11P and

T
(cp'(u), v) = 1 [(D,L(t, u(t), u(t)), v(t)) + (DyL(t, u(t), u(t)), v(t))] dt.

0
(b)

Proof. It suffices to prove that cp has at every point u a directional deriva-
tive p(u) E (WT'P)* given by (b) and that the mapping

WT.P _, (WT'P)*, u --.'(u)

is continuous.
1) It follows easily from (a) that p is everywhere finite on WT''. Let us

define, for u and v fixed in WT'', t E [0,T], a E [-1, 11,

F(\, t) = L(t, u(t) + Av(t), u(t) + av(t))
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and

O(A) = f F(A, t) dt = cp(u + Av).T
0

We shall apply Leibniz formula of differentiation under integral sign to Vi.
By assumption (a) we have

DAF(A, t) I = I (D.L(t, u + Av, it + a1), v) + (Dy L(t, u + Av, it + Ai ), v)

< a(lu + Avl)[(b(t) + it + AvlP)IvI + (c(t) + Iii + avlP-')lull

< ao[(b(t) + (Ial + Ivl)P)Ivl + (c(t) + (lul + lvl)P-')lull

where
ao = max a(lu(t) + av(t)l).

(A,t)E[-1,1]x(0,T]

Since b E L', (Iul + Ivl)P E L', c E L9, Ivl E LP, and v is continuous on
[0, T], we have

I DAF(a, t)) < d(t) E L1(0, T; R+).

Thus, Leibniz formula is applicable and

fT T
0(0) = J DAF(O, t) dt = J [(DxL(t, u(t), 71 (t)), v(t))

0

+ (DyL(t, u(t), it(t)), v(t))] dt.

Moreover,

ID.L(t,u,u)I <a(Iu1)(b(t)+lit ) EL'(O,T,R+),

and

IDYL(t,u,it)I <_a(Iul)(c(t)+Iit IP-i)EL9(0,T,R+).
Thus, by Proposition 1.1,

J
T[(D,L(t,

u(t), it(t)), v(t)) + (DyL(t, u t , u t dt

< C1IIVII. +C2IIVIILP < C3IIVIIWI,P,

and cp has, at u, a directional derivative ca'(u) E (WT'P)* given by (b).
2) By a theorem of Krasnosel'skii, assumption (a) implies that the map-

ping from WT"P into L1 x L4 defined by

u -+ (D.L(., u, u), DyL(., u, u))

is continuous, so that cp' is continuous from W2'' into (WT'P)*, and the
proof is complete.
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Corollary 1.1. Let L : [0,T] x RN x RN -+ R be defined by

L(t, x, y) = (1/2)Iy12 + F(t, x)

where F : [0,7] x RN -, R, (t, x) -+ F(t, x) is measurable in t for each
x E RN, continuously differentiable in x for almost every t E [0,T] and
satisfy the following conditions:

IF(t,x)1, IVF(t,x)I <- a(lxl)b(t)

for a. e. t E [0,T], all x E RN, some a E C(R+, R+), and some b E
L'(O, T; R+). If u E HT is a solution of the corresponding Euler equation
V(u) = 0, then it has a weak derivative it, and

u(t) = VF(t, u(t)) a.e. on [0,T]

u(0) - u(T) = u(0) - ii(T) = 0.

Proof. By Theorem 1.4, we have

T
0 = W (u), v) = r ((VF(t, u(t)), v(t)) + (it(t), v(t))) dt = 0

0

for all v E HT and hence for all v E CT. Thus, u has a weak derivative
and ii(t) = VF(t, u(t)) a.e. on [0,T]. Moreover, the existence of a weak
derivative for u and it implies that u(O) - u(T) = iu(0) - it(T) = 0.

1.5 Periodic Solutions of Non-Autonomous
Second Order Systems with Bounded
Nonlinearity

Let us consider the problem introduced in Corollary 1.1

u(t) = VF(t,u(t)) (a.e. on [0,T]) (5)

where F : [0, T] x RN -* R satisfies the following assumption:
(A) F(t, x) is measurable in t for each x E RN, continuously differ-

entiable in x for a.e. t E [0, T], and there exist a E C(R+, R+) and
b E Ll (0, T; R+) such that

jF(t, x)j< a(jxj)b(t), jVF(t, x)I < a(jxl)b(t)

for all x E RN and a.e. t E [0,T].
The corresponding functional cp on HT given by

rT
cp(u) =

J [Iu(t)12/2 + F(t, u(t))] dt
0
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is continuously differentiable and w.l.s.c. on HT as the sum of a convex
continuous function (Theorem 1.2) and of a weakly continuous one (Propo-
sition 1.2). If cp has a bounded minimizing sequence then, by Theorem 1.1,
cp has a minimum so that, by Corollary 1.1, problem (5) is solvable. It
remains to find conditions under which <p has a bounded minimizing se-
quence. When VF is bounded by a L1-function for all u E RN, we shall
see that it suffices to require a coercivity condition for the average of F
with respect to t.

Theorem 1.5. Assume that F satisfies condition (A) and that there exists
g E L1(0,T) such that

IVF(t,x)l <_ g(t)

for a. e. t E [0,T] and all x E R' . If

rT

J
F(t, x) dt +oo as Ix1 --- oo, (6)

0

then problem (5) has at least one solution which minimizes cp on HT.

Proof. For u E HT , we have u = u + u where u = fT u(t) dt and

p(u) = r (Iu(t)I2/2) dt + J F(t, u) dt + JT[F(lu(t)) - F(t, )J dtT T
0 0

J

T
iu(t)I2/2)dt+JT F(t,u)dt

0 0

>

+
IT

u + su(t)), u(t)) dsdt
0

11(17F(t,

jT(I(i)I2/2) dt - I g(t) dl + 10 F(t, u) dt
0

J
rT (fT

dt - C I(t)I2dt + F(t, ) dt
0 0

by Sobolev's inequality. As Ilull -* oo if and only if (IiI2+ fo 1u(t)12 dt)112
oo, the above inequality and (6) imply that

,p(u) -+ +oo as IIuII - oo

and hence every minimizing sequence is bounded, which completes the
proof.

As an example, let us consider the scalar problem

ii = a[sin(u - b sgn u) + sin(b sgn u)] + e(t)

u(0) - u(T) =_ru(0) - u(T) = 0,



14 1. The Direct Method of the Calculus of Variations

where a> 0, 0< b< r, e E L1(0,T) and fo e(t) dt = 0. In this case,

F(t, u) = a[(sin b) Iul - cos(Iul - b) + cos b] + e(t)u

and hence

rT

J F (t, x) dt = T a sin b l x l- T a [cos(I x l- b) - cos b] +oo
0

if lxl --> oo. Moreover, IFu(t, u)l is clearly bounded by 2a + le(t)l and the
result follows.

The coercivity condition does not hold if b = 0, i.e., in the case of the
forced pendulum equation

u=asinu+e(t).

We shall show in the next section that the corresponding existence result
can still be proved by taking advantage of the periodicity in u of the right
hand member of the equation.

1.6 Periodic Solutions of Non-Autonomous
Second Order Systems with Periodic Potential

We show in this section that (5) is solvable when F is periodic in each
variable xi. Let (ei) (1 < i < N) denote the canonical basis of RN

Theorem 1.6. Assume that F satisfies condition (A) and that there exist
Ti > 0 such that

F(t, x +Tiei) = F(t, x) (1 < i < N) (7)

for all x E RN and a.e. t E [0,T]. Then the problem (5) has at least one
solution which minimizes co on HT.

Proof. It follows from (7) and the regularity of F that there exists h E
L1(0,T) such that

F(t, x) > h(t)

for all x E RN and a.e. t E [0,T]. Consequently, if C1 = fo h(t) dt,

T

p(u) > (1/2) f (u(t)I2dt - C1
0

for all u E HT. As infHT cp < +oo, it follows from this inequality that if
(Uk) is a minimizing sequence for cp, there will exist C2 > 0 such that

J

T
luk(t)I2dt < C2 (8)
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for all k E N. Let uk = 26k + iik with uk = (11T) fo uk(s) ds, it follows
from (8) and Wirtinger's inequality that

Ilukll < C3, k E N (9)

for some C3 > 0. On the other hand, it follows from (7) that

cp(u +T e;) _ p(u), 1 < i < N

for all u E HT and hence if (Uk) is a minimizing sequence for cp, ([(uk, el) +
k1T1 + (I k , el), ... , (i k, eN) + kNTN + (uk, err)]) is also a minimizing se-
quence of y> and we can therefore assume that

0<(zik,e;)<T; (1<i<N). (10)

Consequently by (8), (9), and (10), o admits a bounded minimizing se-
quence, and the proof is complete.

One can obtain, as follows, a useful extension of Theorem 1.6 to some
forced second order systems. It is elementary to check that, for e E L1(O, T;
RN), the linear problem

ii(t) = e(t)

v(0) - v(T) = v(0) - v(T) = 0

has a solution if and only if

T

fo

e(t) dt = 0. (12)

This solution will be unique if we impose in addition that

L v(t) dt = 0 (13)
T

and we shall denote by E the unique solution of (11) satisfying (13). Then
if we consider the problem

ii(t) = VF(t, u(t)) + e(t) (14)
u(0) - u(T) = it(0) - it(T) = 0

where e E L1(0,T;RN) satisfies (12), we obtain, letting

u(t) = v(t) + E(t), (15)

the equivalent problem

v(t) = VF(t, v(t) + E(t))
v(0) - v(T) = v(0) - v(T) = 0. (16)
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Now, if F satisfies the periodicity conditions of Theorem 1.6, the same is
true for F# : [0, T] x RN -r R, (t, x) -} F(t, x+E(t)) and hence, Theorem
1.5 applied to (16) implies the following.

Corollary 1.2. Under the conditions of Theorem 1.6 for F, the problem
(14) has, for each e E L1(O,T;RN) verifying (12), at least one solution
which minimizes on HT the functional cpe defined by

pe(u) = f [Iu(t)I2/2 + F(t, u(t)) + (e(t), u(t))] dt.T
0

Proof. Theorem 1.6 applied to (16) implies the existence of a solution v
of (16) which minimizes on HT the function 0 defined by

T
O(v) = 1[Iiv(t)I2/2 + F(t, v(t)) + E(t)] dt.

0

Therefore, u defined by (15) solves (14) and minimizes on V(. - E) on H.
But, integrating by parts we get

T
0(u - E) = 1[Iu(t) - E(t)I2/2 + F(t, u(t))] dt

0
fT

J
[Iu(t)I2/2 + (u(t), e(t)) + F(t, u(t))] dt + IIEII2

0

0e(u)
+ IIEIIi,

hence u minimizes ape on H. O

As an application, let us consider the periodic boundary value problem
for the forced pendulum equation

ii(t) + A sin u(t) = e(t) (A > 0 fixed)
u(0) - u(T) = u'(0) - u'(T) = 0. 17)

Notice that if (17) has a solution then, integrating the equation over [0, T]
and using the boundary conditions, we get

A IT sin u(t) dt =
`T

e(t) dt
0 J0

hence

-A < (11T) J e(t) dt < A.T
0

One cannot, therefore, hope to solve (17) for every e E L1(0, T) and
a complete explicit description of the range of (d2/dt2) + A sin(.) act-
ing on T-periodic functions is still unknown. As (17) is of the form (14)
with F(t, x) = A cos x, the conditions of Corollary 1.2 are satisfied if
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fT e(t) dt = 0 in which case (17) has, therefore, a solution which mini-
mizes the corresponding cpe on HT.

Another application is the pendulum with a horizontal periodic external
force, whose equation is

ii(t) + A sin u(t) = cos u(t) e(t)

and can be written
ii = D [A cos u + e(t) sin u]

so that Theorem 1.6 is directly applicable for each e E L'(0, T).

1.7 Periodic Solutions of Non-Autonomous
Second Order Systems with Convex Potential

When F is convex in x, it is possible to eliminate the boundedness condition
on VF in Theorem 1.5 and to deduce a necessary and sufficient condition
of existence when F is strictly convex in x or when N = 1.

We shall need the following elementary and intuitive results on convex
functions.

Proposition 1.4. Let G E C1(RN, R) be a convex function. Then, for all
x, y E RN we have

G(x) > G(y) + (VG(y), x - y). (18)

Proof. By the convexity of G we have, for each x, y E RN and each
A E]0,1[,

G((1 - A )y + Ax) < (1 - A)G(y) + )G(x)

hence
G(y + A(x - y)) - G(y) < G(x) - G(y).

A

Letting A -. 0 we obtain (18). 0

A function G : -+] - oo, +oo] is strictly convex if

G((1 - A)x + Ay) < (1 - A)G(x) + AG(y)

whenever G(x) < +oo, G(y) < +oo, x 54 y, and A E]0,1[.

Proposition 1.5. Let G E C1(RN, R) be a strictly convex function. The
following properties are equivalent:

a) There exists x E RN such that VG(x) = 0.

b) G(x) - +oo when IxI -+ oo.
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Proof. 1. If VG(x) = 0, it follows from (18) with y = x that x minimizes
G on RN. Since G is strictly convex, x is unique, hence

6 = min [G(x + x) - G(x)] > 0.
IvI=1

The convexity of G then implies that, when lxl > 1

6 < G (x
+ x

G(x) < IxIG(x+ x) + (1 -
I XI

G(x) - G(x)

= I(G(x+x)-G(x)).

Hence,
G(x+x) > 8x1 +G(x)

for jxj > 1 and (b) follows easily.
2. If G satisfies (b), then G has a minimum at some point x for which

(a) holds.

Theorem 1.7. Assume that F : [0,T] x RN --> R satisfies assumption
(A), that F(t,.) is convex for a.e. t E [0,T] and that

10

T
F(t, x) dt -+ +oo if lxl oo. (19)

Then problem (5) has at least one solution which minimizes O on HT.

Proof. By assumption, the real function on RN defined by

X -+ / F(t, x) dt
JJ0

has a minimum at some point x for which

T V F(t, x) dt = 0. (20)
0

Let (Uk) be a minimizing sequence for cp. It follows from (18) and (20) that

1T 1T

so(uk) (1/2) J luk(t)12 +
J

F(t, x) dt + 1T(VF(t, T), Uk(t) - x) dt
0 0 0

T T T

(1/2)
0

I uk(t)12dt + 1 F(t, x) dt + 1 (V F(t, x), uk (t)) dt
0 0 0

where Uk = -i k+uk with -ilk = (1/T) fo uk(t) dt. We obtain, using Sobolev's
inequality,

T

O(uk) > (1/2) f iuk(t)12dt +
I

T F(t, x) dt
0 0
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I oF'(t, x)I dt Iluk III

rT T 1/2

uk(t)I2dt(1/2) J
I uk(t)I2dt - c1 - C2 (10 I

0

for some constants c1 and c2 > 0. Hence, there exists a constant c3 > 0
such that

rT

J
Iuk(t)I2dt < C3.

0

By Sobolev's inequality, this implies that

IIukIIOO < c4

for some constant c4 > 0. Now we have, by convexity,

F(t, ukl2) = F(t, (1/2)(Uk(t) - uk(t)))
< (1/2)F(t, uk(t)) + (1/2)F(t, -uk(t))

for a.e. t E [0, T] and all k E N, hence

(21)

lT rT T
cp(uk) > (1/2) f I uk(t)I2dt + 2 1 F(t, uk/2) dt -1 F(t, -ilk (t)) dt.

o 0 0

This implies, by (21),

4P(uk) ? 21 F(t, uk/2) dt - csT
0

for some c5 > 0 and therefore, by (19), (uk) is bounded, which completes
the proof.

We consider now the case where F(t,.) is strictly convex.

Theorem 1.8. Assume that F satisfies condition (A) and that F(t,.) is
strictly convex for a.e. t E [0,T]. Then the following conditions are equiva-
lent:

a. Problem (5) is solvable.

Q. There exists x E RN such that

fT

J VF(t,x-)dt=0.
0

y. fo F(t, x) dt -+ +oo when IxI -+ co.
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Proof. 1. If u is a solution of (5) then, integrating the differential equation
over (0, T) and using the boundary conditions, we get

J
T

VF(t, u(t)) dt = 0. (22)
0

Let u = u + u where u = (11T) fo u(t) dt and define the strictly convex
functions G and G on RN by

TG(x) = J F(t, x) dt;
0

G(x) = f F(t, x + u(l)) dt.
T0

Since`, by (22), VG(u) = 0, Proposition 1.5 implies that

G(x) -+ +oo as jxj --} oo. (23)

By the convexity of F(t,.), we have

T TG(x) < (1/2)
J

F(t, 2x) dt + (1/2)
J

F(t, 2u(t)) dt
0 0

= (1/2)G(2x) + C. (24)

It then follows from (23) and (24) that G(x) -+ +oo as jxj --r oo. Hence,
there exists x E RN such that VG(x) = 0, i.e.,

rT

J OF(t, x) dt = 0
0

and (a) implies ()3).
2. By Proposition 1.5 applied to the function G defined above, (/3) implies

('Y)
3. By Theorem 1.7, (7) implies (a).

We now return to the case of a convex F(t,.) but with N = 1. Setting
f (t, x) = Dx F(t, x), we see that 1(1,.) is nondecreasing for almost every
t E [0, 1]. This implies a simpler necessary condition for the existence of a
solution of

ii(t) = f (t, u(t))
u(0) - u(T) = u(0) - it(T) = 0.

Lemma 1.1. If (25) has a solution, there exists a E R such that

(25)

J0

T
f (t, a) dt = 0. (26)
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In other words, the real function a -+ ff F(t, a) dt has a critical point

Proof. If (25) has a solution u, then, integrating both members of the
equation over [0, T] and using the boundary conditions imply that

T
f (t, u(t)) dt = 0.

0

Therefore, if m < u(t) < M for t E [0,T], we have, by the monotonicity of
f(t, .),

J

r r
T Tf (t, m) dt < 0<

J
f (t, M) dt

0 0

and the result follows from the intermediate value theorem. 0

We shall now prove the more striking fact that condition (26) is also
sufficient to the solvability of (25).

Theorem 1.9. If f(t,.) is nondecreasing for a.e. t E [0, T], then problem
(25) has at least one solution if and only if there exists some a E R sat-
isfying (26), i.e., if and only if the real function a --> fa F(t, a) dt has a
critical point.

Proof. The necessity is proved in Lemma 1.1. For the sufficiency, let us
first assume that JT

0
f (t, a) dt = 0

whenever a > U. Then, by (26) and the nondecreasing character of f (t, .),
this implies that

f (t, a) = f (t, a)

for a.e. t E [0, T] and all a > U. Let v be a solution of the T-periodic linear
problem

(such
that

ii(t) = f (t, a)

v(0) - v(T) = i(0) - i(T) = 0

a solution exists because of (26)) and let b E R sufficiently large so

v(t)+b>a, tE[0,T].

If we set u(t) = v(t) + b, then u(0) - u(T) = it(0) - it(T) = 0 and

u(t) = ii(t) = f (t, a) = f (t, v(t) + b) = f (t, u(t))

so that u is a solution to (25). Similarly if

fTf(t,a)dt = 0
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whenever a < a. It remains, therefore, to consider the case where there
exists a1 < a < a2 such that

rT

JO

(t,al)dt<0<f(t,a2)dt=c2.Cl =
0

f
Then, for a > a2,

JTF(t,a)dt IJ
T LF(t, a2) +

I
1 f (t, (1 - s)a2 + sa)(a - a2) dsJ dt

0 0

F(t,a2)dt+c2(a-a2)
fo

and fo F(t, a) dt -* +0o if a -+ +oo. Similarly, if a , -oo, the existence
of a solution follows from Theorem 1.7. O

Remark 1.2. When f is independent of x, Theorem 1.9 reduces to the
usual Fredholm necessary and sufficient condition

rT

Jo

f(t)dt=0

for the solvability of (25).
In the special case of a problem of the form

ii(t) = g(u(t)) - h(t)

u(0) - u(T) = u(0) - u(T) = 0

with g : R -+ R continuous and nondecreasing and h E L1(0, T), Theorem
1.9 implies existence if and only if h = (11T) fo h(t) dt belongs to the range
of g.

In particular, the range of the nonlinear operator as - g(.) acting on
T-periodic functions will be open (resp. closed) if the range of g is open
(resp. closed) in R.

Historical and Bibliographical Notes

The direct method of the calculus of variations has its origin in the Dirichlet
principle, which consists in connecting the existence of a solution of the
Dirichlet problem

Du(x) = 0, x E Q
(27)

u(x) = h(x), z E c 9Q

where S2 C RN is an open bounded set, 0 = E 1 D; is the Laplacian,
h : 9Q -r R is a given function, to the existence of a minimum of the
Dirichlet integral

D(u) = L IDu(x)12dx, (28)
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over a class of sufficiently regular real functions on SI which are equal to h on
852. If, with Gauss (1839), Lord Kelvin (1847), Dirichlet (1850), Riemann
(1851, 1857) and others, we consider the existence of this minimum as
obvious, the existence of a solution for (27) follows, as (27) is the Euler-
Lagrange equation associated to the extremums of D. In 1870, Weierstrass
pointed out the important distinction between the notions of infimum and
of minimum by producing a counterexample making doubtful the validity
of the Dirichlet principle. It was only at the turn of the twentieth century
that the partial results of Arzela [Arzl] and the definitive work of Hilbert
[Hill 2] rehabilitated the Dirichlet principle by giving conditions upon h and
SZ which insure its validity. This seminal work was immediately followed by
a number of significant contributions by Levi, Fubini, Lebesgue, Zaremba,
Courant, Lichtenstein, and Tonelli, establishing the direct method of the
calculus of variations, i.e., the extension of the Dirichlet principle to more
general functionals of the type

F(u) = jf(x,u(x),Vu(x))dx ( 29)

as a powerful tool for proving the existence of solutions to linear and non-
linear boundary value problems.

Although the concepts of lower and upper semi-continuity had been intro-
duced by Baire [Bail] in 1897, it was Lebesgue [Lebf 2] who first emphasized
that lower semi-continuity was the type of continuity naturally satisfied by
functionals of type (29), and Tonelli [Tons] extensively and systematically
developed the concept. One can consult Cesari's book [Cesl] for a modern
treatment and subsequent contributions.

It was soon realized, after Volterra's creation of the theory of function-
als and its development into functional analysis, that this discipline would
allow an elegant and general formulation of the direct method of calcu-
lus of variations. Theorem 1.1 illustrates this fact strikingly and is the
result of successive refinements by a number of mathematicians among
which Golomb [Golf], Mazur and Schauder [MaS1], Morrey [Moyl], Rothe
[Rotf,2,3], and Vainberg [Vaif 2]. More complete references can be found in
the survey papers and books of these last three authors.

Convexity is a very old concept and convex functions are present from the
very beginning of the calculus. The systematic study of convex functions on
R can be traced by Jensen [Jenf] and detailed treatments of convex func-
tions on RN can be found in the books of Fenchel [Fen,] and Rockafellar
[Rocf]. Convex sets were important in functional analysis, too, and Mazur's
theorem was proved by Mazur [Mazi] in 1933. The link between convex-
ity and the direct method of the calculus of variations, already present in
Tonelli's work, was very closely analyzed by Mazur and Schauder [MaS,]
in 1936.

The argument of Theorem 1.3 for obtaining the Euler equation can be
traced, in special situations, to Euler [Eulf], as early as 1771.
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The fundamental lemma is a variant, for weak derivatives and periodic
boundary conditions, of the du Bois-Reymond version of the fundamental
lemma of the calculus of variations, generally stated and proved for more
regular u and v and two-point boundary conditions. The pioneering rigor-
ous approach of this lemma is that of du Bois-Reymond [DuB1] in 1879,
which can be considered as a very early contribution to the theory of dis-
tributions, containing in particular the first use of what we now call the
"test functions."

The inequalities in Proposition 1.1 are generally referred as Sobolev in-
equalities and Wirtinger's inequality in Proposition 1.3 corresponds, for
periodic functions, to Poincare's inequality for Dirichlet boundary condi-
tions. Results in the line of Theorem 1.4 are due to Morrey [Moyl].

Although Poincare [Poil] initiated the use of Jacobi's least action prin-
ciple to the study of periodic solutions of a mechanical system with two
degrees of freedom, and was followed by Whittaker, Signorini, Tonelli, and
Birkhoff, the first treatment of a periodic boundary value problem for a
non-autonomous second-order equation seems to be due to Lichtenstein
[Lice] in 1915, where a problem of type (25) is considered under the as-
sumption that F is bounded from below and f > a > 0 for u > R and
f < -a < 0 for u < -R; he mentions the example

,a ii = u2"+1 + 1 + ai(x)u2n + .. . + a2n.f1(x).

Condition (6) in Theorem 1.5 (coercivity on the kernel) was first in-
troduced by Ahmad-Lazer-Paul [ALP,] for Dirichlet problems and in the
frame of a minimax method. Theorem 1.6 is due to Willem [Will] and the
method of proof, independently used by Dancer [Dana] in the case of the
forced pendulum equation, had essentially been found already by Hamel
[Ham,] in 1922. Theorems 1.7, 1.8, and 1.9 are motivated by results of
Mawhin-Willem [MaW1] described in Chapter III. They generalize and
improve earlier results of Berger-Schechter [BeS1] and Gossez [Gos,] ob-
tained by other methods. For an abstract version of Theorems 1.7, 1.8, and
1.9, see Mawhin [Maw,].

Further historical references on the Dirichlet principle are given in [Maw2],
as well in [Bert], [Boll], [Coui], [Fun,] (which contains Hamel's treatment
of the forced pendulum equation), [Had,], [Ler,], [McS1,2], [San1], [Vo11,2],
[VoP1].

For recent contributions to convexity and semi-continuity questions in
the calculus of variations, see [Ces,], [C1a3,4,5], and see [Bre,], [EkT1], [ScLi]
for elegant treatments of the foundations of convex analysis.

One can find a study of the forced periodic pendulum equation with
further restrictions on A in [Cast] and an extension of Theorem 1.6 to a
more general situation which covers the forced double pendulum in [CFSI].

Other applications of the direct method to the existence of odd periodic
solutions can be found in [Ber5] and [Wil,o]. For a study of periodic so-
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lutions of autonomous systems as contrained minima, see [Bern], [CaM1],
and [Gore].

Exercises

1. If p : X ->] - oo, oo] is convex and bounded above by a real constant
on a neighborhood of a E X, then 'p is continuous at a. Consequently,
if X is complete, such a 'p is continuous on int D(q) where D(ip) _
{u E X : V(u) < oo} (effective domain of cp).

2. A function So : X -p] - oo, oo] is called strictly convex if

cp(1 - A)u + \v < (1 - A) p(u) + a»(v)

whenever u # v and A E10, 1[. Such a function achieves its infimum
at one point at most.

3. If p : X ->] - oo, oo] is convex and l.s.c., then cp(u) +oo, as
Jul --+ oo, if and only if there exists a > 0 and 3 > 0 such that

cp(u)>ajul -Q

for alluEX.

4. The function cp : X oo, oo] is l.s.c. if and only if cp' = {u E X
cp(u) < c} is closed, for all c E R.

5. If the function co X -.] - oo, oo] is convex; then for each c E R, the
set cp` = {u E X : p(u) < c} is convex. Show by an example that cp`
can be convex for each c E R without 9 being convex.

6. If p : X ->] - oo, oo] is convex (resp. l.s.c.) the set of points at which
cp achieves its infimum is convex (resp. closed).

7. If 9 : X ->] - oo, oo] is convex, each local minimum of cp is a global
minimum of gyp.

8. Under the assumptions and notations of Theorem 1.4, if cp'(u) 0,
then

f

J
T

D.L(t, u(t), u(t)) dt = 0
0

and there is some c E Rjv such that

tDyL(t, u(t), it (t)) = J DyL(r, u(T), 7L(r)) dr + c
0

a.e. on [0, T].
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9. Assume that F satisfies assumption (A) of Section 1.5 and that

F(t, x) -+ +oo

as Ixl --+ oo uniformly for a.e. t E [0,T]. Show that the system

u(t) = VF(t, u(t)),

u(0) - u(T) = u(0) - ii(T) = 0,

has at least one solution which minimizes c on H. ([BeS1], [Bert]).
Show that the same is true for

ii(t) = VF(t, u(t)) + e(t),

u(O) - u(T) = u(0) - u(T) = 0,

where e E L1(0, T; RN) and fo e(t) dt = 0.

10. I4et g : R -+ R be continuous, 27r-periodic, and such that
fox g(u) du = 0. Show that the problem

u(t) + g(t + u(t)) = 0,

u(0) - u(27r) = 0 = u(0) - ic(2a),

has at least one solution ([Bate]) (and hence a continuum of solution
as u(t + c) + c is a solution for each c E R when u is a solution).

11. Show that the equation of the compass in a rotating magnetic field

u"(t) + A sin u(t) + B sin(u(t) - t) = 0

always has a 27r-periodic solution.

12. Generalize Theorem 1.6 to the case where

u= f T 1 u(t u (t o (t V (u(t u(t e t dt( ) - J
( /2) 11 aiA ()) i ) A ) - i l )) - ( l) I ())

i,A=1

where ai9 and V are in Cl(RN, R), Ti-periodic in ui for some Ti > 0
(1 < i < N), and such that

n
t ttE ai,(u)SiS;

i,j=1

for some p > 0 and all E RN, and e E L1(O,T; RN) with
fo e(t) dt = 0. ([CFS1]). This applies in particular to the forced
double-pendulum system.
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13. Show that, in the conditions of Theorem 1.9, the set of solutions of
(25) has the form I + uo where iio is a fixed T-periodic function with
mean value zero and I is a closed interval (possibly empty). Relate the
structure of I to the form of the function a - fT F(t, a) dt. ([Maw,]).

Hint. Use exercise 1.6.
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The Fenchel Transform and
Duality

Introduction

The Legendre transform F* of a function F E C1(RN, R) is defined by the
implicit formula

F*(v) _ (v, u) - F(u)

v = VF(u)

when VF is invertible. It has the remarkable property that

DiF*(v)dvi = dF*(v)
i=1

or,

so that F* is such that

N

(vidui + uidvi - DiF(u)dui) _ ui dvi,
i=1i=1

u = VF*(v),

(OF)-1 = VF*.

Its geometrical meaning is the following: the tangent hyperplane to the
graph of F with normal [v, -1] is given by

{[w, s] E RN+1 : s = (w, v) - F* (v)}.

Thus, the graph of F can be described in a dual way, either as a set of
points or as an envelope of tangent hyperplanes.

The Fenchel transform extends the Legendre transform to not necessarily
smooth convex functions by using affine minorants instead of tangent hy-
perplanes. To motivate the analytical definition of the Fenchel transform of
F we can notice that, when F is convex, the function F : u --> (v, u)- F(u)
is concave and the definition of the Legendre transform just expresses that
u is a critical point of F,,, and hence the global maximum of F is achieved
at u. Consequently,

F*(v) = sup [(v, w) - F(w)]
WE RI



Introduction 29

and the right-hand member of this equality, which is defined as an element
of ] - oo, +oo] without the smoothness and invertibility conditions required
by the Legendre transform is, by definition, the Fenchel transform of the
convex function F. The reciprocity property between VF and VF*, which
loses its meaning for a non-smooth convex F or a non-smooth F*, can
be recovered in terms of the subdiferential of a convex function G, i.e., a
subset of RN associated to G at u and which reduces to {VG(u)} when G
is differentiable at u.

The role of the Legendre transform in classical Hamiltonian mechanics
is well known. If the Lagrangian L = L(t, q, r) is given, the correspond-
ing Hamiltonian H = H(t, q, p) is nothing but the Legendre transform of
L(t, q, .), namely

H(t, q, p) = (p, q) - L(t, q, r)

where r is expressed in terms of (t, q, p) through the relation

p= DrL(t,q,r)

Besides this classical Hamiltonian duality, it is interesting to introduce,
in the study of Hamiltonian systems, another duality based on the Legen-
dre transform of H(t, ., .). Indeed, if we write u = (q, p), the Hamiltonian
equations can be written in the compact form

-Jit(t) = VH(t, u(t))

where
( ON INJ= I -IN ON

is the symplectic matrix. Setting`

v=-Ju,

so that
u=Jv - c

where c is a constant, we obtain

= VH(t, u)

or equivalently
u = VH*(t, v)

if the Legendre transform H* (t, .) of H(t,.) exists. Therefore, our Hamil-
tonian equations expressed in terms of v become

Jv - VH*(t, v) = c,
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the integrated Euler-Lagrange equations corresponding to the critical points
of the function X defined on a suitable space of T-periodic functions by

TX(v) = 1 2 Jii t dt.
0

This dual action X can, therefore, be used as well as the Hamiltonian action

T
O(u) = J [(1 /2)(Ju(t), u(t)) + H(t, u(t))] dt

0

to prove the existence of T-periodic solutions of our Hamiltonian system
because the critical points of X are, in many situations, more easy to find
than those of 0. This observation is at the basis of the use of this Clarke
duality in the study of Hamiltonian systems.

2.1 Definition of the Fenchel Transform

Let us first recall a basic tool in convex analysis.

Separation Theorem. Let C and D be nonempty disjoint convex subsets
of a normed vector space V. If C is closed and D is compact, there exists
a closed affine hyperplane P which strictly separates C and D, i.e., there
exists 1 E V* and a E R such that

l(u)>a i f u E C and l(u)<a if u E D.

Let us recall that the epigraph of a function F : V -+ ] - oo, oo], with
V a normed vector space, is the set

epiF = {[u,t] E V x R: F(u) < t}.

The easy proof of the following lemma is left to the reader.

Lemma 2.1. The function F : V -+ ] - oo, oo] is convex (resp. l.s. c.) if
and only if epiF is convex (resp. closed).

We shall now show that a convex l.s.c. function F : V -+ ] - oo, oo] can
be entirely characterized by the affine functions that F dominates.

Lemma 2.2. Let F : V -+ ] - oo,-foo]. The following statements are
equivalent.

a) F is convex and l.s.c.

b) F is the supremum of all the continuous affine functions which are
everywhere smaller than F.
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Proof. b) a). If b) holds, F is convex, and l.s.c. as the supremum of
convex continuous functions.

a) = b). If F = oo, then b) is satisfied. Assume now that F is finite
at some uo, so that epi F 0 ¢. To prove that a) b) we must show that
for each w E V and t < F(w) we can find an affine continuous function G
such that G(w) > t and G < F on V. Let t < F(w), so that (w, t) epi F.
Since, by Lemma 2.1, epi F is closed and convex, the separation theorem
implies the existence of v E V*, c E R, and d E R such that

v(w) + ct < d < v(u) + cs (1)

whenever (u, s) E epi F. Since s > F(uo) implies (uo, s) E epi F and thus

d - v(uo) < cs,

the function s -+ sc is bounded below for s > F(uo) so that, necessarily,
c > 0.

Assume first that c > 0. If we define G by

G(u) = c-lv(w - u) + t,

then G is affine, G(w) = t and, by (1), G(u) < s if s > F(u) so that G < F
on V. Assume now that c = 0. It follows from (1) that

v(w) < d < v(u) (2)

when F(u) < +oo. Thus F(w) = +oo. Since F(uo) is finite, the preceding
part of the proof, applied to uo and F(uo) - 1, implies the existence of a
continuous affine function G such that G < F on V. Define, for A > 0, the
affine continuous function Ga by

GA(u) = G(u) + A (d - v(u)).

It follows from (2) that F > Ga and that, for sufficiently large A, GA(w) > t.
11

We shall denote by I'o(RN) the set of all convex l.s.c. functions F :
RN -> ] - oo,+oo] whose effective domain D(F) = {u E RN : F(u) <
+oo} is non-empty.

The Fenchel transform F* of a function F E I o(RN) is the function
F* : RN -+ ] - oo, +oo] defined by

F* (v) = sup ((v, u) - F(u)).
uED(F)

Remarks. 1. The continuous affine function (v,.) - a is everywhere less
than F if and only if

a > (v, u) - F(u)
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for all u E RN, i.e. if and only if

a > F*(v).

2. It follows from the definition that F* is convex and lower semi-
continuous. On the other hand, by Lemma 2.2, there exists (v, a) E RN x R
such that

F > (v,.) - a.

Thus, by definition,
F*(v) < a

and D(F*) which shows that F* E Fo(RN).
3. An immediate consequence of the definition is the Fenchel inequality

F(u) + F* (v) > (v, u)

for alluERNandvERN.
4. Another immediate consequence of the definition is that if F1 E

ro(RN), F2 E ro(RN), and Fl < F2, then

Fi >F2. (3)

Theorem 2.1. If F E ro(RN), then (F*)* = F.

Proof. By Lemma 2.2 and Remark 2.1, we have, for each u E RN,

F(u) = sup ((v, u) - a) = sup ((v, u) - a)
[v,a]ERNxR vERN

(v,.)-a<F a>F*(v)

sup ((v, u) - F*(v)) _ (F*)*(u). 0
vED(F*)

We define the subdifferential of a function F E ro(RN) at a point u E RN
to be the set

8F(u) = {v E RN : F(w) > F(u) + (v, w - u) for all w E RN}.

We shall say that F is subdifferentiable at u if OF(u) 0 0.

Remarks. 1. F is subdifferentiable at u if and only if u E D(F) and there
is an affine continuous function everywhere less than F and equal to F(u)
at u.

2. F(u) = inf F if and only if 0 E 8F(u).
3. If vi E OF(ui) (i = 1,2), then

F(u2) ? F(ui) + (vi, u2 - ui)

F(ui) > F(u2) + (v2, ui - u2)
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so that
0 > (v2 - V1, ill - u2),

(vl - v2, u1 - u2) > 0,

which we express by saying that aF(u) is a monotone multivalued mapping.
4. It is easy to check that OF(u) is closed and convex.
We now state and prove a fundamental property of the Fenchel trans-

forms which is the basis of the duality method in optimization.

Theorem 2.2. If F E ro(RN), the following statements are equivalent

a. v E aF(u)

b. F(u) + F* (v) = (v, u)

c. u E aF*(v).

Proof. By definition

v E OF(u) q (v, u) - F(u) > (v, w) - F(w) for all to E RN
. (v, u) - F(u) = sup ((v, w) - F(w))

vER.N

(v, u) - F(u) = F*(v)

so that (a) G (b). By Theorem 2.1 and the first equivalence

F(u) + F*(v) = (v, u) a (F*)*(u) + F*(v) = (v, u)

. F*(v) + (F*)*(u) = (u, v) q u E aF*(v)

so that (b) q (c), and the proof is complete.

Proposition 2.1. If F E F0(RN), the graph {[u,v] E RN x RN v E
OF(u)} of OF is closed.

Proof. Let ([Uk, vk]) be a sequence in OF such that uk - u and vk -+ v as
k -+ oo. For every w E RN, we have

F(w) > F(uk) + (vk, w - uk), k E N*.

and hence, by lower semi-continuity

F(w) > Iim f +(v, w - u) > F(u) + (v, w - u).
k-oo

Thus, v E aF(u) and the proof is complete.

Example. Let G : RN -* R be defined by

G(u) = aq_lluly + y
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where a > O, q > 1, y E R. Then

G*(v) = sup ((v, u) - aq-l lull - y) = a-plgp-l lvlp -,y, (4)
uERN

where q-1 + p 1 = 1.

Proposition 2.2. Let F E F0(RN) be such that, for some a > 0, q > 1,
,Q > O, y >0, one has

-P:5 F(u) < aq-1lulg +'Y (5)

whenever u E RN. Then, if v E OF(u), one has

a-plgp 11vlp <(v,u)+/3+y (6)

and ,

lvl < {paplq[lul +a+y]+1}q-1. (7)

Proof.`By Theorem 2.2, v E OF(u) q F* (v) = (v, u) - F(u) and hence,
by (3), (4), and (5),

a-plgpllvlp -y <- F*(v) < (v, u)+a

which directly gives (6). If lvl < 1, (7) is obvious. If we now assume that
lvl > 1, then, by (6),

lvlp-1 < ap/q p[l ul + /j + y]

and the proof is complete.

2.2 Differentiable Convex Functions

We shall study the regularity of the Fenchel transform of a convex function.

Proposition 2.3. If F : RN --} R is convex and differentiable at u, then
OF(u) = {VF(u)}.

Proof. By the convexity of F and Proposition 1.2, VF(u) E OF(u). Now,
if v E 8F(u), then

F(w) - (v, w) > F(u) - (v, u)

for all w E RN, i.e., F(.) - (v, .) has a minimum at u. As F is differentiable,
this implies that

VF(u)-v=0
and the proof is complete.
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Recall that a function F : RN -+ [_00' +00[ is strictly concave if -F is
strictly convex.

Proposition 2.4. If F E Fo(RN) is strictly convex and such that

F(u)/iul -+ +oo

if Jul -+ oo, then F* E C1(RN, R).

Proof. Without loss of generality, we can assume that 0 E D(F).
1. By assumption, for v E RN fixed, the function G defined by

(8)

is strictly concave and -oo as Jwl -+ oo by (8). Thus, G has
exactly one maximum point u. By Theorem 2.2,

OF*(v) {u}.

2. Let us show that OF* : RN -+ RN, v --+ u where u is such that
OF*(v) = {u}, is continuous. By Proposition 2.1, the graph of OF* is
closed, hence it suffices to prove that OF* takes bounded sets into bounded
sets. Let lvi < p for some p and {u} = aF*(v); then v E OF(u) hence

F(0) > F(u) - (v, u) (9)

so that, by the Cauchy-Schwarz inequality

p ? l vi > (F(u) - F(0))/Iul.

Relations (8) and (9) imply that Jul is bounded.
3. Finally, if {u} = OF*(v) and {uh} = 8F*(v + h) for some v E RN,

h E RN \ {0}, then, by definition of the sub differential, we have

0<
ihi ihi

By the continuity of 8F*, Uh -+ u if h 0 and F* is differentiable at v
with {VF*(v)} = {u} = OF* (v). Hence F* E C1(RN, R).

2.3 Hamiltonian Duality

Let L : [0, T] x RN x RN -> R, (t, x, y) -+ L(t, x, y) be a smooth function
such that, for each (t, x) E [0, T] x RN, L(t, x,.) satisfies the assumptions of
Proposition 2.4. The Fenchel (or Legendre) transform H(t, x,.) of L(t, x,.)
is defined by

F* (v + h) - F* (v) - (h, u) < (h, uh - u) < luh - U .

H(t, x, z) = sup [(z, y) - L(t, x, y)]
yERN
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or

H(t, x, z) = (z, y) - L(t, x, y) (10)
z = DyL(t, x, y), y = D,zH(t, x, z).

The Lagrangian action is defined on a suitable space of T-periodic functions
by

T

L(t, q(t), 4(t)) dt.'P(q) = f
0

The corresponding Euler equations are

dt [DyL(t, q(t), 4(t))] = D.L(t, q(t), 4(1)). (11)

Formula (10) suggests replacing L(t, q, 4) in cp by (4, p) - H(t, q, p). The
Hamiltonian action is thus defined on a suitable space of T-periodic func-
tions by

T

b(q, p) =1 [(4(t), p(t)) - H(t, q(t), p(t))] dt.
0

The corresponding Euler equations are the Hamilton equations

4(t) = D,ZH(t, q(t), p(t)) (12)

p(t) = -D,H(t,q(t),p(t)). (13)

By duality, (12) is equivalent to

p(t) = Dy L(t, q(t), 4(t)). (14)

We obtain, at least formally, from (10)

D.H = -DxL - (D., y)(DyL) + (Dxy) (z) _ D, L,

so that (13) is equivalent to

p(t) = DXL(t, q(t), 4(t)). (15)

The Euler equation follows directly from (14) and (15). Let J be the sym-
plectic matrix, so that j2 = -J and (Ju, v) = -(u, Jv) for all u, v E R2N.
If u = [q, p], the system (12)-(13) becomes

u(t) = JVH(t,u(t)) (16)

or

At(t) + VH(t, u(t)) = 0,

where VH denotes the gradient of H with respect to u. We have, by T-
periodicity

1 /

J
T (4(t), p(t)) dt =

2
J T [(4(t), p(t)) + d (q(t), p(t)) - (q(t), p(t)) dt
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-
2 JoT [(P(t), q(t)) + (-4(t), p(t))] dt = -

2
f T (Ju(t), u(t)) dt.

Consequently, the Hamiltonian action 0 can be written

O(u) _ - J T [2 (Ju(t), u(t)) + H(t,
u(t))1

I

dt.

Now the quadratic form l

rT
U -> - 2 (Ju(t), u(t)) dt

s "strongly indefinite" (see Section 3.1) and "dominates" the functional

TU -4 -J H(t,u(t))dt.
0

Consequently, the function V will be neither bounded from above nor from
below and critical points will be rather difficult to obtain as global mini-
mums or maximums do not exist.

2.4 Clarke Duality

Let H : [0, T] x R2N --r It, (t, u) --> H(t, u) be a smooth Hamiltonian such
that, for each t E [0, T], H(t, .) satisfies the assumptions of Proposition 2.4.
The Fenchel (or Legendre) transform H*(t,.) of H(t,.) is defined by

H` (t, v) = sup [(v, u) - H(i, u)]
uER2N

or
H* (t, v) = (v, u) - H(t, u)

v = VH(t, u), u = VH"(t, v). (17)

If

we obtain

v=-Ju or u=Jv,

Tb(u) = I2 (v(t), u(t)) - H(t, u(t))
I

dtJ1
= J T (- 2 (v(t), u(t)) + (v(t), u(t)) - H(t) u(t))

I1

dt
o L

T

0

T
I2 (Ji(t), v(t)) + (v(t), u(t)) - H(t, u(t)) I dt.
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Formula (17) suggests replacing (v, u)-H(t, u) by H*(t, v). The dual action
is thus defined on a suitable space of T-periodic functions by

x(v) =
IT

[2 (Jil(t), v(t)) + H* (t, i(t)) I dt.
0

We shall see in the next chapter that x can be bounded below under
reasonable assumptions upon H.

Another useful property of the dual action is that

x(v + c) = x(v)

for all c E R2N. Thus, it suffices to find critical points of x restricted to
the space

rT
WT'p= vEWT'p :J v(t)dt=0

0

Theorem 2.3. Let

H : [0, T] x R2N --> R, (t, u) - H(t, u)

be measurable in t for each u E R2N and strictly convex and continuously
differentiable in u for almost every t E [0,7]. Assume that there exists
q E ]1,+00[, a > 0, 6 > 0, ,13,y E LP(O,T;R+), with 1 + q = 1, such that,
for all u E R2N and a.e. t E [0,T], one has

6(l ul ql q) - /3(t) < H(t, u) < a(I ul q/q) + y(t). (18)

Then the dual action x is a continuously differentiable on WT 'p and, if
v E WT'P is a critical point of x, the function u defined by

u(t) = VH*(t,v(t))

satisfies (16) and u(0) = u(T).

Proof. It follows directly from Proposition 2.4 that H* (t, u) is continuously
differentiable in u for a.e. t E [0,T]. By assumption (18) and relation (4),
we obtain, for all u E R2N and a.e. t E [0, T],

a-pI4(ivi'/p) - 7(t) <- H*(t, v) <- 6-piq(I vIP/p) +'8(t). (19)

Proposition 2.2 implies that

IVH*(t, v)I <
[(q/b)(Ivgl

+)3(t) + y(t)) + 1]P-1

< cllvIp-1 + c2(0(t) + -Y(t) + 1)P-1, (20)

for some positive constants c1 and c2. Let us note that ()3 + y + 1)P-1 E Lq
since (/3 + y + 1) E LP. By (19) and (20), the function L defined by

L(t, x, y) = (1/2)(Jy, x) + H*(t, y)
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satisfies the assumptions of Theorem 1.4. Consequently, the dual action is
continuously differentiable on WT 'P, and, hence, on WT'P

Finally, if v E WW'P is a critical point of x, Theorem 1.4 implies that, for
all h E WW'', one has

0 =
IT

12 (Jt(t), h(t)) + (VH* (t, v(t)) -
2

Jv(t), h(t))] dt. (21)

It is then easy to verify the preceding relation for all h E WW'', and hence
for all h E CT. By (21), the fundamental lemma is applicable, so that

tVH*(t, v(t)) - (1/2)Jv(t) = J (1/2)Jv(s) ds + c
0

a.e. on AT], i.e.,

a.e. on [0,T]. Setting

Jv(t) = VH*(t,v(t)) +c

u(t) = VH*(t, v(t)) = Jv(t) -

we obtain u E WT'P, is = Jv and, by duality

v(t) = VH(t, u(t)).

Thus,
u(t) = Ji(t) = JVH(t, u(t))

a.e. on [0, T]. Moreover, u(0) = u(T) since u E WT'P. 0

Historical and Bibliographical Notes

The Fenchel transform first appeared in 1939 for convex functions on R
in a paper of S. Mandelbrojt [Man,], which motivated an improved and
more general definition by Fenchel [Fen2] in 1949 for convex functions in
RN. A special case of the Fenchel inequality (in R) was already given
and used by W.H. Young [You,] in 1917. The Fenchel transform is an
extension of the Legendre transform [Leg,] introduced in 1787. The Fenchel
transform was extended to topological vector spaces by Bronsted [Broil,
Moreau [Mori,2,3], and Rockafellar [Roc,,2,3], as well as the concept of
subdifferential.

The Hamiltonian duality is basic in analytic mechanics and in the cal-
culus of variations. The Hamilton's equations appear for the first time in a
paper of Lagrange (1809) on perturbation theory, but it was Cauchy (1831)
who first gave the true significance of those equations. In 1835, Hamilton
put those equations at the basis of his analytical mechanics and gave the
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first exact formulation of the least action principle. That the Hamilto-
nian with periodic boundary conditions is indefinite was already noticed
by Birkhoff [Birl], who developed the first minimax approach to handle it.

The Clarke duality was introduced in 1978 by Clarke [Clal] and devel-
oped by Clarke-Ekeland [Cla1 2, C1E1 2, Ekei,2,3] to overcome the above
mentioned difficulty by replacing the Hamiltonian action by a dual action
which can be bounded from below. A heuristic exposition of duality in the
calculus of variations is given in Courant-Hilbert [CoHI].

See also [You2], [EkT1], [EkTul], [Fen3], [Wily] for various aspects of
the role of convexity and duality in the calculus of variations. Duality
methods for first and second order evolution equations are developed in
[AuE2], [BrE1], and [BrE2]. Non-convex optimization problems are consid-
ered, using duality, in [To11,2], [Eke9,lo], [Mass]. On the relations between
optimization and periodic orbits, see also [Cla7,s,9].

Exercises

1. LetFEro(RN),uoERN,AER.If

G(u) = F(u) + A, then G* (v) = F* (v) - A;
G(u) = F(u - uo), then G* (v) = F* (v) + (uo, v);
G(u) = F(u) + (u, uo), then G*(v) = F* (u - uo).

2. A function F E Fo(RN) has a global minimum at u if and only if
u E OF* (0), in which case

min F = -F* (0).
RN

3. Let (vn) be a sequence in RN, v E RN, be a sequence in ro(RN)
and F E Fo(RN). If

v V

and
lim &(u) > F(u) for each u E RN,

then
F*(v) <

4. If F : RN ... RN is convex and differentiable, then

F(w) = sup [F(u) + (VF(u), w - u)].
uERN

5. Let F E Fo(RN) be such that F(u) > alul -,3 for all u E RN and
some a > 0, 0 > 0. Then

F*(v) < 0 whenever jvj < a.
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6. Compute F* if F(u) = (e, u) - a for some $ E RN and a E R.

7. Let F : RN -F ] - oo, +oo] be convex and C C RN a convex set.
Assume that F is finite and continuous at uo E C or finite at uo E
int C. Then u minimizes F on C if and only if there is some v E OF(u)
such that

(v,w-u)>0 for all wEC.

8. If F E ro(RN) is continuous at uo E D(F), then OF(uo) is compact.



3

Minimization of the Dual
Action

Introduction

A basic problem in mechanics (classical and celestial) is the study of the
periodic solutions of Hamiltonian systems

Jit(t) + VH(t, u(t)) = 0.

Although the variational structure of the problem suggests that the best
results should be obtained through a variational approach, progress in this
direction has been rather slow. This is due to the fact that the associated
Hamiltonian action 0 given by

T

V, (U) = J [(1/2)(Jic(t), u(t)) + H(t, u t dt
0

is indefinite. This is easily shown by substituting

Uk(t) = (COS Akt)C - (sin )tkt)Jc

with Ak = 2ka/T, k E Z, c E R2N ICI = 1, so that 1uk(t)1 = 1 and
(Jitk(t), uk(t)) = Ak for all t E R and k E Z. Consequently,

T
,b(uk) = k7r + f H(t, uk(t)) dt -+ +00 or - 00

0

according to k -+ 0O or -oo. Therefore, the direct method of the calculus
of variations cannot be applied in a straightforward way and more sophisti-
cated approaches like minimax methods, isoperimetric natural constraints,
or dual least action principles have to be used.

In this chapter, we shall concentrate on situations where the Hamiltonian
H(t, u) is convex in u, in which case the dual least action principle seems
to provide the best results in the simplest way. We shall base the various
type of existence results (which deal with subharmonic solutions, periodic
solutions of autonomous systems with fixed period or with fixed energy
as shown in Sections 3.3 to 3.5) on a single basic existence theorem given
in Section 3.2. This theorem only requires a suitable quadratic growth
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restriction on H(t, .) and a coercivity condition on R2N for the averaged
Hamiltonian

T
T-1 J H(t, v) dt.

0

The special case of second order systems, which is particularly important
for the applications, deserves a special study made in Sections 3.6 to 3.8
where, in particular, nonlinear extensions of linear problems of the type

u(t) = Au - h(t) (a < 0)

u(0) - u(T) = it(0) - u(T) = 0

are given, which complete the study initiated in Chapter 1 for A > 0. For
example, some necessary and sufficient conditions for the solvability of the
scalar problem

u(t) = g(u(t)) - h(t)

u(O) - u(T) = u(0) - u(T) = 0,

with g continuous and non-increasing, are given and connected to the

Landesman-Lazer conditions.

3.1 Eigenvalues and Eigenfunctions of J(dldt)
with Periodic Boundary Conditions

Before going to nonlinear problems, it is of interest to discuss the simple
linear periodic problem

Ju(t) = Au(t), u(0) = u(T)

where A E R. The differential equation in (1) is equivalent to

it(t) = -AJu(t)

and its solutions are of the form

u(t) = exp(-AtJ)c

with arbitrary c E R2N. Now, as j2 = -I,

exp(-AtJ) = r(-1)k(At)kJk k!
k=0

(1)

0
E(At)2k(_1)kI(2k)! + J:(-1)(A t)2k+1(-l)k J(2k + 1)!
k=0 k=0

(cos At)I - sin(At) J
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hence
u(t) = (cos At)c - (sin At)Jc.

This solution will satisfy the T-periodicity condition if and only if c satisfies
the equation

[(1- cos AT)I + (sin )T)JJc = 0. (2)

Taking the inner product with c and with Jc, we obtain, since (Jc, c) = 0,

(1 - cosAT)Ic12 = (sin AT)IJcj2 = 0.

Thus (2) has a nontrivial solution if and only if

A - Ak = 2klr/T, k E Z.

Now, if A = Ak, equation (2) becomes

Oc=0

so that c E R2N is arbitrary. We have, therefore, proved the following.

Proposition 3.1. The periodic eigenvalue problem (1) has a nontrivial
solution if and only if

A = Ak = 2kir/T

for some k E Z, in which case (1) possesses the 2N-dimensional vector
space of solutions

u(t) = (cos Akt)c - (sin Akt) Jc (3)

where c E R2N is arbitrary.

As the set of eigenvalues {Ak : k E Z} is unbounded from below and
from above, the quadratic form

1 T
u -*

2 J
(Ju(t), u(t)) dt

will be indefinite on the space

HT = {u : [0,T] --1 R2N : u is absolutely continuous, u(0) = u(T)

and it E L2(0,T)}.

Indeed, with u(t) defined in (3),

2 jT(J.
T(t ), u(t)) dt = 2k J I u(t)I2dt = Lk T Ic12 = k7r IcI2.

The following estimate is useful.
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Proposition 3.2. For every u E HT,

i

Proof. Let us write u u(t)_T fo u(s) ds. Cauchy-Schwarz and Wirtinger
inequalities imply that

/
(Ju(t), u(t)) dt = f

T(Ju(t),
u(t)) dt

(10

T 1/2 T 1/2

- jJu(t)IZdt (r Iu(t)I2dt)

3.2 A Basic Existence Theorem for Periodic
Solutions of Convex Hamiltonian Systems

We consider the periodic boundary value problem

Ju.(t) + V H(t, u(t)) = 0 a.e. on [0, T] (4)
u(O) = u(T)

where H : [0, T] x R2N -* It, (t, u) - H(t, u) is measurable fort for each
u E R2N and continuously differentiable and convex in u for almost every
t E [0,T].

Theorem 3.1. Assume that the following conditions are satisfied.
A1. There exists I E L4(0,T;R2N) such that for all u E R2N and a.e.

t E [0,T] one has
H(t, u) > (l(t), u). (5)

A2. There exists a E ]0, 2r/T[ and y E L2(0, T; R+) such that, for every
u E R2N and a.e. t E [0,T] one has

T
(Ju(t), u(t)) dt > - T fT 1u(t)12dt.

T 1/2 T 1/2

> - T
IJu(t)J2dt dt

2a (10 (10
1-(t)12

2 T ji(t)12dt.

H(t, u) < 2 Iu12 + y(t).

A3-

10
H(t, u) dt -+ +oo as Ju) --* oo, u E R2N.

T

(6)

(7)
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Then problem (4) has at least one solution u such that

T
V (t) _ -J [u(i)_ T f u(s) ds

minimizes the dual action

X : HT-}]-oo,00),
IT r 11

v --* J L2 (Ji(t), v(t)) + H*(t, v(t)) dt.

Proof. a) Existence of a solution for a perturbed problem. Let co > 0 be
such that

0<a+eo<2a/T (8)

and let
2

HE : [0,T] x R2N --> R, (t, u) -*
el2)

+ H(t, u)

where 0 < e < co. Clearly HE(t, .) is strictly convex and continuously dif-
ferentiable for a.e. t E [0, T] and HE(., u) is measurable on [0, T] for every
u E R2N. We obtain, from (A1) and (A2),

-11(1)1 Jul +
e12-

< HE(t, u) < (a + eo)1212 + 7(t),

hence

CI412 _ 11(E)12
< HE(t, u) < (a + co) 1212 +7(t), (9)

so that by Theorem 2.3, the perturbed dual action

xe(v) = fT [2 (Ji(t), v(t)) + HE (t, v(t)), dt
0

is continuously differentiable on HT = {u E HT fo u(t) dt = 0} and if
vE E HT is a critical point of XE, the function uE defined by

uE(t) = VHE (t, i,(t))

is a solution of

and the relation

Jit(t) + cu(t) + V H(t, u(t)) = 0,
u(0) = u(T),

Jve = uE

holds. We have, by (9) and Propositions 3.2 and 2.2,

f
XE(v) ?

2

(a
+ co 2 ) fT (t)I2dt - J

7(t) dt
0

(10)
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fio f (v(t))2dt - yo (11)T
0

where So > 0 by (8). Let (Vk) be a minimizing sequence for XE. By (11),
(Ivkl)La) is bounded, and hence, by Wirtinger inequality, (vk) is bounded
in HT. Now x,,1(v) = fo HE (t, v(t)) dt is weakly lower semi-continuous
on HT by Theorem 1.2 and Xe,2(v) = 2 fo (Jv(t), v(t)) dt is w.l.s.c. (even
weakly continuous) by Proposition 1.2. Thus XE = Xf,1+Xe,2 is w.l.s.c. and,
by Theorem 1.1, has a minimum at some point vE E H.

b) A posteriori estimates on uE. It follows from (A1), (A2), and Proposi-
tion 2.2 that

JVH(t, u)I < 2(a + 1)[lul + 11(1)12/2) +-'(t)] + 1 + Jul.

It is then easy to verify that the function
rT

H : R2N -> R, u J H(t, u) dt
0

is continuously differentiable. Now, by assumption (A3), H has a minimum
at some point u E R2N for which

T
VH(t, u) dt = 0

0

so that the problem
v(t) = VH(t, u) (12)

has a unique solution win HT such that fo w(s) ds = 0. By (12), H*(t, ta(t))
= (tb(t), u`) - H(t, u) so that H*(., la(.)) E L1(O,T; R). From the obvious
inequality H(t, u) < HE(t, u) we deduce HE (t, v) < H*(t, v) and from (11)
we obtain

T
Iv'(t)I2dt -'Yo < Xc(ve) < XE(w)bo fo

IT
T 12 (Jw(t), w(t)) + H* (t, w(t)) dt = c1 < oo.

L

Therefore, IVEIL3 < c2 and from Ji, = t , we have

IuEIL2 = IuEIL2 < C2

where i = uE - uE, uE = T LT u j(t) dt. Wirtinger's inequality implies that
l1uCII < c3. By the convexity of H(t,.) and (10) we obtain

2 = H ()i))
< H(t, u(t)) +H H(t, uE(t))

< 2 (V H(t, ue(t)), ue(t)) + 2 H(t, 0) + 4 Iii (t) 12 +
2

<
1
(-Jiz (t), uE(t)) - 2IUe(t)I2 + 4 IuE(t)I2 +7(t)
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Using Proposition 3.2, we have

T
J H(t, uE)dt <

0 J T (JuE(t), uE(t)) dt + IucIL2 + yo

T T
< 4 Iuc1Ls+ 4IuEILa+ryo <_ 4 C2+ 4C3+-to =

By assumption (A3), IueI < c5. Finally,

C4-

11U,11 <- 11i i,11 + IIuEII < C3 + NFTC5 = C6.

c) Existence of a solution for the original problem. Since IIuEII < c6, there
is a sequence (c,,) in ]0, co] tending to 0 and some u E HT such that uEn
converge weakly to u in HT. Moreover, as of = -Juf, we have

vE(t) = -J(uf(t) - uf),

so that (v fn) converges weakly to

v=-J(u-u). (13)

By Proposition 1.2, ufn (resp. ven) converges uniformly to u (resp. v) on
[0,T]. From (10) in integrated form

JuEn(t) - JuEn(0)+ f [eriufn(s) + VH(s, uEn(s))] ds = 0
T0

we deduce

Ju(t) - Ju(0) + VH(s, u(s)) ds = 0,
T0

i.e. u E HT is a solution of (4).
Finally, as HE (t, v) < H* (t, v), we have, for all h E HT,

XEn(vfn) < XEn(h) <- X(h).

Now, by the duality between uEn and vfn, we have

T

Xfn (vfn) = [2 (JvEn (t), vEn (t)) + (ufn (t), vEn (t)) - HEn (t, uEn (t))] dt

T

f [2 (JvEn (t), vEn (t)) + (uEn (t), vEn (t))

- H(t,u,.(t)) - 2 IuEn(t)I2J dt. (14)

It follows from (4) and (13) that

v(t) = VH(t, u(t)) a.e. on [0, T]. (15)
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Letting n -> oo in (14), we obtain, by (15)

n
m

J

T
[(J(t), v(t)) + H*(t, (t)) - H(t,u(t))J dt

0

fT 1

J
[2(Jv(t), v(t)) + H' (t, v(t))J dt = X(v)

0

Thus X(v) < X(h) for all h E HT and the proof is complete.

Under stronger assumptions, it is possible to obtain a priori bounds for
all the solutions of (4).

Proposition 3.3. If there exists a E ]0, a/T[, i > 0, 7 > 0 and b > 0 such
that

SIul -,3 < H(t, u) < 2 JuI2 + 7

for all t E [0,T] and u E R2N, then each solution of (4) satisfies the
inequalities

I I ic (t)1Zdt <
2a(3 + y)7rT

o ir -aTJ

f T Iu(t)Idt <
irT(,Q+7)

J b(ir - aT)
Proof. By Proposition 2.2, we have

2a I H(t, u(t))12 < (VH(t, u(t)), u(t)) +,6 + 7.

It follows from (4) that

2a

IT
1u(t) 12dt + j(J(t), u(t)) dt < (Q + 7)T

and, by Proposition 3.2,

1

2a -
T IT

jii(t) 12dt < (,Q + 7)T,

(16)

(17)

which gives (16). Now, by convexity, (4), Proposition 3.2, and (16), we have

b10lu(t)ldt-,3T < f H(t,u(t))dtT
T

J
T [H(t, 0) + (VH(t, u(t)), u(t))] dt

7T - J 1 (Ju(t), u(t)) dt < 7T + 2 J
l ju(t)12dt

7T
T (2a(#+-y)irT)

+ 2a a - aT
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which gives (17).

When H(t,.) is strictly convex we can proceed exactly like in Theorem
8 of Chapter 1 (with F replaced by H) to deduce from Theorem 3.1 a
necessary and sufficient condition for the solvability of (4).

Corollary 3.1. Assume that H(t,.) is strictly convex for a.e. t E [0,T] and
satisfies the conditions (A1) and (A2) of Theorem 3.1. Then the following
conditions are equivalent.

a. Problem (4) is solvable.

0. There exists 7 E R2N such that

T

J V H(t, 7) dt = 0.
0

y. f0 H(t, x) dt -+ +oo when IxI -+ oo.

3.3 Subharmonics of Non-Autonomous Convex
Hamiltonian Systems

Now let H : R x R2N - R be continuous with H(t,.) convex and differ-
entiable on R2N for each t E R, VH : R x R2N -+ R2N continuous and
H(., u) T-periodic for each u E R2N, i.e.,

H(t, u) = H(t + T, u)

for all (t, u) E R x R2N. We still consider the corresponding system

Jia + VH(t, u) = 0. (18)

Clearly a solution u of (18) over [0, T] verifying

u(0) = u(T)

can be extended by T-perodicity over R to give a T-periodic or harmonic
solution of (18), i.e. a solution satisfying

u(t +T) = u(t), t E R, (19)

and Theorem 3.1 gives conditions for the existence of such a solution. If
(19) is not satisfied with T replaced by T/k (k E R, k> 2), T is called
the minimal period of u. We shall show that systems like (18) may admit
solutions u such that

u(t) = u(t + kT), t E R,
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for some k > 2 where minimal period is strictly greater than T. Such
solutions are called subharmonic solutions or simply subharmonics. Their
existence will follow from Theorem 3.1 and Proposition 3.3.

Theorem 3.2. Assume that

H(t, u)/Iu12 - 0 (20)

and

H(t, u) --* +00 (21)

as Jul , oo uniformly in t E R.
Then, for each k E N \ {0}, there exists a kT-periodic solution Uk of

(18), such that
IIukiio - oo (22)

and such that the minimal period Tk of Uk tends to +oo when k -* oo.

Proof. Let cl = maxtER IH(t, )l. By condition (21) there exists R > 0 such
that

H(t, u) > 1 + ci

for all t E R and u with IuI > R. By convexity we have, for all (t, u) E
RxR2N with Jul > R,

1 + ci < H (t,ju) < IRI H(t, u) + (1- RI) H(t, 0)

IRIH(t,u)+cl

and hence there is (3 > 0 and d > 0 such that

H(t, u) > blul - 0 (23)

for all (t, u) E R x R2N
If k E N \ {0} is fixed, condition (20) implies that there exists a E

]0, 2ir/kT[ and -t > 0 such that

H(t, u) < (a/2)lul2 +'Y (24)

for all (t, u) E R x R2N. By (23), (24), and Theorem 3.1 with T replaced
by kT, the system (18) will have a kT-periodic solution Uk such that

fT
Vk = -J uk - 1uk(s) ds

minimizes the dual action
kT

Xk : v --,
[(1/2)(Jv(t),

v(t)) + H*(t, v(t))] dt
0
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on HkT
The remainder of the proof depends upon the obtention of an upper

estimate for ck = xk(vk). Let us first notice that by (23)

(v, u) - H(t, u) < (v, u) - blul +,6 < Q

if Ivi < 6, so that

H*(t,v) <0 whenever Iv) < b.

If PER2N is such that IpI = 1, then the eigenfunction hk associated to
the eigenvalue a_1 = -2ir/kT of the kT-periodic problem for (1) given by

hk (t) = L- (cos kI + sin kJ PZ T

belongs to HkT and is such that IhkI = b. Thus,

kT 6 2

Ck < xk(hk) < j [(1/2)(Jhk(t), hk(t)) +, 9] dt = --k2T2 + /JkT. (25)
0

If (22) does not hold, there exists c2 > 0 and a subsequence such that

Iluk,.110 < C2.

By (18), this implies that
I luknll00 < C3

for some c3 > 0 and hence

Consequently, as

we have

Ilvknlloo < 2C2, IlvkJloo < C3.

H*(t, v) > -H(t, 0) > -cl,

Ckn > -(2c2c3 + ci)

which is impossible by (25) for n sufficiently large. Thus

Iluklioo ' oo if k oo.

It remains only to prove that the minimal period of uk tends to +oo as
k -+ oo. If not, there exists T > 0 and a subsequence such that the
minimal period Tk, of uk satisfies Tk,. < r (n E N*). By (20) there exists
a E ]0, it/r[ and y > 0 such that

H(t,u) < (a/2)IuI2+y,
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for all (t, u) E Rx R2N. Hence, by (23) and Proposition 3.3 with T replaced
by Tkn we get

T
k.

ukn
(t)I2dt < 2a(/3 + y)7rTk,< < 2a(3 + y)ar (26)I -aTkn 7r-ar

Tkn
7)r Tkn(13 + y)7rIukn(t)I dt < < (27)

0 6(7r - aTkn) 6(7r - aT)

Let us write ukn = ukn + ukn where

1 Tkn

ukn =
Tk

ukn(t)dt.
T n

Sobolev inequality and (26) imply that

Iluknll2o < r
C2a(#+y

7r - r
Inequality (27) implies that

II ukn Iloo < Tkn J T kn Iukn (t) I dt < (ir + a) )
1

3.4 Periodic Solutions with Prescribed Minimal
Period of Autonomous Convex Hamiltonian
Systems

Let H : R2N - R be convex and of class C1. We shall now consider the
autonomous system

Jit(t) + VH(u(t)) = 0. (28)

In this section, we shall deal with the problem of periodic solutions with a
prescribed minimal period. In the next one, we shall consider the case of
periodic solutions with a fixed energy.

Theorem 3.3. Assume that

H(u)/1u12 _ 0 (29)

and

H(u) , +oo (30)

as Jul --- oo. Then there exists To > 0 such that, for each T > To, the
system (28) has a periodic solution UT with minimal period T. Moreover,

Min I UT(t) I -* +oo if T -. +oo. (31)
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Proof. We can always assume that H(O) = 0. Theorem 3.1 implies, for
each T > 0, the existence of a T-periodic solution uT of (28) such that

T

VT=-J UT-1J "UT(s)ds
0

minimizes the dual action

XT(V) =
IT

I (Jv(t), v(t)) + H*(v(t))J I dt
2

on H. Let us estimate CT = XT(VT) from above. Like in the proof of
Theorem 3.2, there exist /3, b > 0 such that

IvI < b #- H*(v) < /3.

If PER2N is such that IpI 1, then the eigenfunction hT associated with
the eigenvalue a_ 1 = -29r/TKCosof the T--periodic problem for (28) given by

hT(t) = 2r Tt I I+( sin T t) J1 P

belongs to HT and is such that IhT(t)l = b. Thus ///

T

CT < XT(hT) < f [(Jr(i)h(i))+I3] dt = - 6 2 +,3T. (32)
4r

T
0

If T > To = 47/3/b2, we have CT < 0. Suppose that UT is (T/k)-periodic
for some k > 0. Then v(t) = kvT (k) belongs to HT and

XT(V)=k JT (JvT(tk/,vT (i)) di+ jk dt

2

Tlk

T/k

= 2 J (JvT(t), VT (t)) dt + k J
H*(iT(t)) dt

k T IT
2

r (J'vT(t), VT (t)) dt + H*(iT(t)) dt
///

= XT(VT) + k
2

1 f (JvT(t), VT(t)) dt. (33)

Since H(0) = 0, we have H*(v) > (v, 0) - H(0) = 0. Hence, if T > To,

T
0 > XT(VT) >

J
2(J'UT(t),VT(t)) dt

0

and (33) implies XT(v) < XT(vT), a contradiction. Thus, for T > To, the
minimal period of UT is T.
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As in the proof of Theorem 3.2, (32) implies that IIuTIlm , oo if T ->
+oo. Let R > 0 and let

m = max{H(e) : e E R2N, Iel < R}.

By (30) there is p > 0 such that, for all e E R2N,

l e l> p H(e) > m+ 1. (34)

There is also some T such that

T > T II2ITIIo, = I UT(tT)I > P. (35)

Now, we have, for T > T and t E R,

m + 1 < H(UT(tT)) = H(uT(t)) (36)

since the energy is conserved. The definition of m implies that, for T > T,

m
Ein l uT (t) I> RR

and the proof is complete. 0

Remark 3.1. There is no assumption in Theorem 3.3 about the behavior
of H near zero, so that bifurcation theory is not applicable.

Remark 3.2. The following example shows that Theorem 3.3 cannot be
generalized to the case of a superquadratic Hamiltonian. Let F E C'(R, R)
be such that F'(s) > 1 for all s E R and let H(u) = F(lul2)/2. Thus H is
convex when F is convex. The solutions of the Hamiltonian systems

Ju(t) + F'(I u12)u = 0

are

u(t) = cos(F'(lel2)t)e + sin(F'(Ie 12)t) Je,

for any e E R2N. Thus, the minimal period of u is less than 27r.
We shall now show that in Theorem 3, the existence of a non-constant

T-periodic solution cannot be expected for every T > 0.

Proposition 3.4. Let f : RN RN be Lipschitz continuous on RN with
Lipschitz constant c. If u is a non-constant T-periodic solution of

u = f (u),

then

T > 2a/c.

Proof. Since it = f (u), we obtain, for a t E It, and h # 0

l u(t + h) - u(t)I = I f(u(t + h)) - f (u(t))I < clu(t + h) - u(t)I,
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hence
Iii(Ol < cW01

for a.e. t E R. Then, by Wirtinger's inequality,

T T2 IT T2c2 rT
lu(t)I2dt < I2u(t)I2dt < 4-2 J I2l(t)I2dt

and the result follows as u is nonconstant.

Now Lipschitz continuity of OH is compatible with the assumptions of
Theorem 3.3, and Proposition 3.4 shows that the conclusion of Theorem
3.3 is optimal.

3.5 Periodic Solutions with Prescribed Energy of
Autonomous Hamiltonian Systems

If u(t) is a solution over [0, T] of an autonomous Hamiltonian system

Ju(t)+VH(u(t)) = 0

then scalar multiplication of both members by it(t) gives

(VH(u(t)), u(t)) = 0,

i.e. the energy

(37)

H(u(t)) = constant. (38)

It is therefore natural to look for solutions, and in particular for periodic
solutions, with prescribed energy. The difficulty in this case is that the
period, and hence the underlying function space of solutions, is not a priori
known. We shall see, however, how to reduce, under some assumptions
upon H, the fixed energy case to the fixed period case.

We first prove that, under some conditions on OH, the orbits of (37) on
an energy hypersurface S, i.e. the sets {u(t) E R2N : t E [0,T]} with u
verifying (37) and (38) are independent of H and depend only on S.

Lemma 3.1. Let Hi E C1(R2N, R) and c; E R (i = 1, 2) be such that

S = Hi 1(c1) = H2 1(c2).

If
VH1(u)#0, uES, i=1,2,

then the orbits of the systems

Jit(t) + V H1(u(t)) = 0, i = 1, 2

(39)

on S are the same.
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Proof. Let ul : [0,T] -* S be a solution of

Ju(t) +VH1(u(t)) = 0.

Since VH1(ui (t)) and VH2(ul (t)) are normal to S and continuous, there
is a function A : [0, T] -> R such that

VH2(ul(t)) = A(t)VH1(ui(t)), t E [0,T].

By (39), A(t) # 0 and the relation

A(t) = (VH2(ul(I)), VHi(ui(t)))/IVHI(ul(t))I2

shows that A is continuous and hence either positive or negative. Define
the strictly monotone function Eli by

'O(s) =13 A(t), s E [0,T]

and let u2 : [0,T] R2N beg given by u2 = ul o 0-1. Then

Ju2(t) = J(ui o 11 i)(1/W' o w-1)(t) = -[VH1(ul o w-1)(t)](Ao' -1)(t)

= -VH2(u2(t)), t E V)[0, T].

Consequently, u2 is a solution of Ju + V H2(u) = 0.

We shall now use the above lemma and some convexity properties of
H to replace it by another Hamiltonian leading to the same orbits and
satisfying the conditions of Theorem 3.3. To this end, let us recall that if
C is a closed convex set in R' and 0 E int C, the gauge j of C is defined
on R' by

j(u) = inf{A > 0 : u/A E C}.

Clearly, j maps R' onto R+, j(0) = 0 and j is positive homogeneous. If
uERt,vER'",

A E { A > 0 : a EC}, u E { t a > 0 :
v

EC
lilt / JJJJ

then
u+v _ A (u µ (v)

C
i.e.

A+µ A+µ \a) + A+µ µ E ,

u+v

0 CA : j+µE IV > E
v 1111)1

Thus,

{A>O:uEC}+jµ>O:µEC}C{v>O:uvvEC}
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so that
j(u) + j(v) > 7(u + v).

Then, if0<a<1,uERt,vERm,onehas

j((1 - a)u + av) < j((1 - a)u + j(av) a)j(u) + aj(v)

which shows that j is a convex function.
On the other hand, if u E C, j(u) < 1 and if u E int C, (1 + e)u E C

for e > 0 sufficiently small so that j(u) < 1+E < 1. Conversely, if j(u) < 1,
there is some j(u) < a < 1 such that E C; as 0 E intC, there is ro > 0
such that v E C whenever IvI < ro, so that, for all such v we have

u+(1 -a)v = au +(1 -a)v E Ca

so B[u, (1 - a)ro] C C and u E int C. Finally, if j(u) = 1, there is a
sequence (A,,) with an > 1 tending to 1 such that an E C. C being closed,
u = lirr,,-,,. an E C. We have, therefore, proved that u E C if and only if
j(u) < 1 and u E intC if and only if j(u) < 1. As C is closed this implies
that u E aC if and only if j(u) = 1. Thus j characterizes C.

Lemma 3.2. Let H E C1(R2N, R) and c E R be such that VH(u) # 0 for
every u E S = H-1(e). Assume that S is the boundary of a convex compact
set C containing 0 as an interior point. Let j be the gauge of C and let
F = j3/2. Then

(i) F-1(1) = S.

(ii) F is positively homogeneous of degree 3/2.

(iii) There is Q > 0 and y /> 0 such that

131u13/2 < F(u) < yl uI3/2 (40)

for all u E R2N.

(iv) F E C1(R2N, R) and OF is positively homogeneous of degree 1/2.

Proof. (i) and (ii) follow directly from the definition of F and the properties
of j.

For (iii), as F(u) > 0 for u # 0, we have

0 < /3 = min F(u) < max F(u) = y
1u1=1 1u1=1

and hence the result by (ii). To show (iv), first let u # 0, A $ 0 and
G(u, A) = H(a) - c. Then

G(u,A)=04 aESaj( )=1 *A=j(u)
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and

8A (
A) (VII `A) , a )

so that
( l

as (u, j(u)) _ -j(u) (VH
\.7(u)/ j(u)

as0EintCand

00

59

IV : \OH (j(u))
,

v - j(u)/
01

is a supporting hyperplane for C. Therefore, the implicit function theorem
implies that j, and hence F, is of class C' on R2N\{0}. Moreover, it follows
directly from (iii) that VF(0) = 0. Property (ii) implies trivially that VF
is positively homogeneous of degree 1/2. But then

lioVF(u) = 0 = VF(O)

so that VF is also continuous at zero. 0
We can now state and prove the basic theorem of this section.

Theorem 3.4. Let H E Cl(R2N,R) and c E R be such that VH(u) 54 0
for every u E S = H-1(c). Assume that S is the boundary of a convex
compact set C containing 0 as an interior point. Then there exists at least
one periodic solution of (37) whose orbit lies on S.

Proof. Let F : R2N - R be given by Lemma 3.2. All the conditions of
Theorem 3.3 are satisfied for

Jit(t) + VF(u(t)) = 0 (41)

and hence, if we fix any T > To, (41) has a periodic solution u with minimal
period T. Conservation of energy and properties of F imply that

F(u(t)) = d > 0, t E R.

Let us define w by

w(t) = d-213u(d1/3t), t E R.

Then w is (T/d1/3)-periodic,

F(w(t)) = F(d"2/3u(d1/3t)) = d"F(u(d'/3t)) = 1

for all IERand

Jt1(t) = d1/3Ju(d113t) = -d- 1/3 VF(u(dl 13t))
= -VF(d-213u(d'13t)) = -VF(w(t)),

so that w is a (T/d1/3)-periodic solution of (41) whose orbit r lies on S. By
Lemma 1, system (41) admit on S the same orbits as (37) and in particular
the closed orbit r which corresponds to a periodic solution of (37). 0
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3.6 Periodic Solutions of Non-Autonomous
Second Order Systems with Convex Potential

In this section we shall use Theorem 3.1 to study the periodic boundary
value problem

4(t) + V F(t, q(t)) = 0 (42)
q(0) - q(T) = 4(0) - 4(T) = 0

where F : [0, T] x RN -. R, (t, q) -+ F(t, q) is measurable in t for every
q E RN and continuously differentiable and convex in q for almost every
t E [0, 71.

Theorem 3.5. Assume that the following conditions are satisfied.
A1. There exists 1 E L4(0,T;RN) such that, for all q E RN and a.e.

t E [0,T] one has
(l(t), q) < F(t,q)

A2. There exists a E ]0, 2Tr/T[ and y E L2(0, T; R+) such that, for each
q E RN and a.e. t E [0, T], one has

F(t, q) <_
2

IgI2 + y(t).

A3.
JTF(t,q)dt->+oo

as IqI -"oo, g ERN.
0

Then problem (42) has at least one solution.

Proof. Define H : [0, T] x R2N R by

z

H(t, u) = a l u2) + 1F'(t, ul)

where u = (u1i u2). For a.e. t E [0,T], H(t, .) is convex and continuously
differentiable. For every u E R2N and a.e. t E [0, T],

(1(t), ull < H(t, u') <
2

(Iu212 + Iu112) + y(t) = 2 IuI2 + y(t)
J

Moreover,

if Jul -+ oo. By Theorem 3.1, the problem (4) is solvable, i.e. ul and u2
satisfy

u2(t) +
1vF(t,

ui(t)) = 0a
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-itl(t) + au2(t) = 0

ui(0) - ui(T) = u2(0) - u2(T) = 0
and hence q(t) = ul(t) is a solution of (42).

By applying Corollary 3.1 to the Hamiltonian system introduced in the
above proof, we easily get the following result.

Corollary 3.2. If F(t,.) is strictly convex for a.e. t E [0,7] and satis-
fies conditions (Al) and (A2) of Theorem 3.5, the following conditions are
equivalent.

a. Problem (42) is solvable.

Q. There exists x E RN such that fo VF(t, 7) dt = 0.

y. fo F(t, x) dt , +oo as I xI -+ oo.

In the special case of N = 1, we can proceed exactly as in Theorem 1.9
to deduce from Theorem 3.5 a necessary and sufficient condition for the
solvability of (42).

Theorem 3.6. If N = 1 and F satisfies conditions (Al) and (A2) of
Theorem 5, then the problem (42) has a solution if and only if there exists
q E R such that

J
T

VF(t, q) dt = 0 (43)

(or equivalently if and only if the function ff F(t, .) dt has a critical point).

Remark 3.3. Condition (A2) in Theorem 3.5 is sharp as shown by the
example

4(t) + w2q(t) = a cos wt (44)

q(O) - q(T) = 4(0) - 4(T) = 0 (45)

where w = 27r/T where a E RN\{0} which has no solution and corresponds
to

F(t, q) = (w2/2) Jgj2 - cos(wt)(a, q) (46)

which satisfies the regularity and convexity assumptions of Theorem 3.5 as
well as conditions (Al) and (A3)-

3.7 A Variant of the Dual Least Action Principle
for Non-Autonomous Second Order Systems

Let us consider the following generalization of the problem considered in
Section 3.6,

q(t) + m2w2q(t) + VF(t, q(t)) = 0 (47)
q(0) - q(T) = 4(0) - 4(T) = 0
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where F : [0, T] x RN -+ R satisfies the regularity and convexity assump-
tions listed at the beginning of Section 3.6 as well as condition (A1) of
Theorem 3.5, and where m E N and w = 2ir/T. Problem (42) is a nonlin-
ear perturbation of the linear problem

4(t)-Aq(t)=0
(48)

q(O) - q(T) = 4(0) - 4(T) = 0

at the zero eigenvalue and problem (47) a nonlinear perturbation of (48)
at an arbitrary eigenvalue -m2w2.

Assume for a moment that for a.e. t E [0,T], F(t,.) is strictly convex
and such that

F(t, q) --> +oo as Iql -+ oo, (49)
(ql

so that F* (t, v) exists and is of class C1 in v. Let us recall the elementary
result that

q(t) + rn2w2q(t) + v(t) = 0 (50)
q(0) - q(T) = 4(0) - 4(T) = 0

with v E L2(0,T;RN) has a solution if and only if

t) cos mwt dtV E V = w E L2(0,T, RN) : w(
JO

T

jT
w(t) sin mwt dt = 0 (51)

in which case (50) has the family of solutions given by

j

T
q(t) a cos rnwt + b sin mwt - sin mw(t - s)v(s) ds, (a, b) E RN).

Then we immediately check that when v E V, (50) has a unique solution
belonging to V, which we shall denote by Kv. We define in this way a linear
operator K in V, and the general solution of (50) can be written

q(t) = 9 + (Kv)(t)

where
qEW=V-L={wEL2(O,T;RN) :

w(t) = a cos mwt + bsin mwt, a, b E RN}.

Also, using Fourier series, it is easy to show that if

v(t) vkeikmt

kEZ
Ikl;4m
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then

and hence,

63

k 2)W2 eikWt (52)Kv(t) ti E (k2 -ym
kEZlkl*-

T Kv(t)O,vt) dt<
(2m

1
+ 1)w

v (53)
10

( i2,
for all v E V.

Let us introduce in (47) the change of unknown given by

v(t) = -q - m2W2q(t) (54)

with v E V, or equivalently

q(t) = q(t) + (Kv)(t) (55)

where q E W. If q satisfies (47), then

v(t) = VF*(t, v(t)) a.e. on [0,7] (56)

which, together with (54), shows that v satisfies the equation

-(Kv)(t) + V F* (t, v(t)) = q(t) a.e. on [0, T] (57)

or

-(Kv)(t) + VF*(t, v(t)) E W (58)

for a.e. t E [0, T]. Conversely, if v E V satisfies (57) or (58), then defining
q by (54), we see that the elimination of v implies (47). Now, (58) is the
Euler equation for the critical points in V of the functional X defined by

T

[-(1/2)(Kv(t), v(t)) + F*(t, v(t))] dt, (59)X(v) = f
0

as it follows from Remark 1.1. As K is now a bounded linear operator
on V, X often has better properties than the direct action associated to
(47). It is a variant of the dual action introduced for Hamiltonian systems
in Section 2.4. To eliminate the unpleasant assumption of strict convexity
and condition (49) on F, we shall use, like in Theorem 3.1, a perturbation
argument.

Theorem 3.7. Let m E N* and F : [0,71 x RN --> R, (t, q) - F(t, q)
be such that F(., q) is measurable for each q E RN and F(t,.) is convex
and continuously differentiable for a.e. t E [0, T]. Assume that the following
conditions are satisfied.

B1. There exists I E L4(0, T; RN) such that, for all q E RN and a. e.
t E [0,T], one has

F(t, q) > (l(t), q).
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B2. There exists a E ]0, (2m + 1)w[ and 7 E L2(0,T; R+) such that, for
every q E RN and a.e. t E [0,T], one has

F(t,q) < (a/2)IgI2 + 7(t).

B3. fo F(t, a cos rnwt + b sin mwt) dt --> +oo as

Ial + lbl -- c,o, a, b E RN.

Then problem (47) has at least one solution q such that v = -
minimizes on V the dual action X.

Proof. a) Existence of a solution for a perturbed problem. Let co > 0 be
such that

a + CO < (2m + 1)w (60)

and let

Fe : [0,T] x RN ---* R, (t, q) -+ (e/2)IgI2 + F(t, q)

where 0 < c < co. Proceeding as in part (a) of the proof of Theorem 3.1,
we see that FE : [0,T] x RN -> R is well defined and that the function

TFE(t,v(t))dtE : V-.R, v --+J
0

is well defined and continuously differentiable on V. The same is obviously
true for the function

TV -r R, v -+ J (1/2)(Kv(t), v(t)) dt
0

and hence for the perturbed dual action

T

Xe : V , R, v --+ J [-(1/2)(Kv(t), v(t)) + FE (t, v(t))] dt.

Moreover, as in Theorem 3.1,

2

FE(t'v)> a+eol2 - Y(t)
1

X, (v) >-
1 1 j[a + o (2m + 1)w] Ilvlla - 7(t) dt = Sollvllia - ?o (61)

with 6o > 0. Thus, every minimizing sequence for Xe is bounded. Now, 0, is
weakly lower semi-continuous on V by Theorem 1.2 and K(V) C V f1WT' 2.
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By Proposition 1.2, 0 is weakly continuous on V and hence XE is w.l.s.c.
Thus by Theorem 1.1, XE has a minimum at some vE E V, for which

((XE)'(ve), w) = 0

for all w E V. It is easy to check that

T

w) = J[-(Kv,(t), w(t)) + (VFE (t, ve(t)), w(t))] dt

(see the proof of Theorem 1.4) and hence

-KvE + VFE (., vE(.)) E W.

The reasoning above shows then that if -KvE + VFE (., vE(.)), then
qE = 4E + KvE is a solution of

9(t) + m2w2q(t) + VFE(t, q(t)) = 0 (62)
q(0) - q(T) = 9(0) - q(T) = 0.

b) a posteriori estimates on qE. It follows from (BI), (B2), and Proposition
2.2 that

IVF(t,q)I < 2a[(1+ 11(t) 1) Iql +'Y(t)]+ 1.

It is then easy to verify that the function

R2N -} R, [a, b] ---> F(t, a cos mwt + b sin mot) dt
fo

T

is continuously differentiable. By assumption (B3), F has a minimum at
some [a, b] E R2N for which

i
10

T
VF(t,acosmwt+bsinmwt)cosrnwtdt

T
VF(t,acosmwt+bsinmwt)sin mwtdt = 0.

But then VF(., a cos mw(.) + b sin mw(.)) E V,n and letting

w(t) = V F(t, a cos mwt + b sin mwt),

we have, by duality,

F*(t, w(t)) = (w(t), a cos mwt + bsin mwt)

- F(t, a cos mwt + b sin mwt)

for a.e. t E [0, T], so that F* (., w(.)) E L1(0, T; R). Consequently, using
(61), we get

6oIIveIIL2 -'YO < XE(vc) < XE(w) < X(w) = cl < 00
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and hence
IIgEIILa < C2

with c2 independent of e. Consequently, if qE = qE - q ,

IIq`IIL2 = IIKvCIIL2 < C3

and
114, + rn2W2g4II L2 = IIVEIIV < C2.

By the convexity of F(t,.) and (62), we obtain

F Ct, Y (t)) < 2 F(t, qE(t)) + 2 F(t, -qE(t))

<
2

(V F(t, qE(t)), q6(t)) + 2 F(t, 0) +
4

IgE(t)I2 + 72t)

<_
2

(-qE(t) - rn2w2ge(t), ge(t)) + 7(t) +
4 IgE(t)I2.

Hence,

f T F
(t, gE2

0

IT(_4(t)
- m2w2q(t), e(t)) dt1

+ IT
7(t) dt + 4 IIq` IIL2

2IIgE + rn2w2gEIIL2IIgEIIL, + -to + (a/4)Ili,112 a < C4,

so that, by (B3), IIgEIILa < c4i all norms being equivalent in the finite-
dimensional subspace W. Consequently,

IIgEIILa < C3 + C4 = C5

and
IIgEIILa < C2 + m2 W2 (C3 + C4) = C6.

c) Existence of a solution for the original problem. By the above inequal-
ities, there is a sequence in ]0, co] tending to zero and some T-periodic
q E C1([O,T],RN) such that qE - q in C1([O,T],RN). From (62) in inte-
grated form

T

[m2w2gE, (s) + VFEn(s, q,. (s))] ds = 0,gEn(t) - f0

we deduce

T

4(t) - q(o) + J
[m2w2q(s) + VF(s, q(s))] ds = 0

0
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and q is a solution of (47). The fact that the weak limit v of (vf,) minimizes
x on V is proved as in Theorem 3.1.

Remark 3.4. A similar result holds for the problem

m2w2q(t) + VF(t, q(t)) = 0 (m > 1)

q(O) - q(T) = 4(0) - 4(T) 0

if, in condition (B2), a E J0, (2m - 1)w[. The only difference consists in
defining Kv as the unique solution in V of

-q(t) - m2w2q(t) = v(t)

q(O) - q(T) = 4(0) - 4(T) = 0.
The same approach can also be used to study Hamiltonian problems of the
form

±(Jiu(t) + mwu(t)) + VH(t, u(t)) = 0

u(0) = u(T)

where m E Z and H(t,.) is convex.

Corollary 3.3. Assume that the conditions B1 to B3 of Theorem 3.7 are
replaced by the existence of numbers

0<8<a<(2m+1)w
such that, for every q E Rev and a.e. t E [O,TJ, one has

(a/2)Ig12 - 7(t) <- F(t, q) <- (a/2)IgI2 + y(t)

where y E L2(O,T;R+). Then problem (47) has at least one solution q such
that v = -4 - m2w2q minimizes on V the dual action X.

Proof. It is easy to show that the assumptions B1 to B3 of Theorem 3.7
hold.

3.8 The Range of Some Second Order Nonlinear
Operators with Periodic Boundary Conditions

We shall study the following special case of (47) with N = 1.

q(t) + m2w2q(t) + g(t, q(t)) = h(t) (63)
q(O) - q(T) = 4(0) - 4(T) = 0

where h E C(0, T), rn E N \ {0}, w = 2a/T, g : [0, T] x R - R is
continuous and g(t, .) is non-decreasing for each t E [O,TJ. Letting

F(t, q) = f g(t, s) ds - h(t)q, (64)
T0
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we see that (63) is a special case of (42). We write, as usual, u+ = max(u, 0),
u- = max(-u, 0), and use the notations of Section 3.7.

Proposition 3.5. Assume that F defined in (64) satisfies the assumptions
B1 and Bz of Theorem 3.7 (with N = 1). Assume, moreover, that there
exist q1 E LO°(0,T), q2 E L°°(0,T), such that

I
T T

0 h(t) sin(mwt + ip) dt < J g(t, ql(t)) sin+(mwt + cp) dt
0 0

IT
9(t, q2(t)) sin (mwt + p) dt

0

for all co E R. Then problem (63) has at least one solution.

Proof. It suffices to prove that condition (B3) with N = 1 holds in Theorem
3.7, or equivalently that

rT

Jo

F(t, Asin(mwt + ip)) dt - +oo (65)

as A -> +oo uniformly in c E R. By convexity, we have

0

F(t, A sin(mwt + cp)) dt = G(t, A sin(mwt + io)) dtJin(mwt+p)>0

T
G(t, A sin(mwt + cp)) dt - A h(t) sin(mwt + gyp) dt

r

JO

+ Jsin(mwt+p)<0

>_ G(t, q1(t)) + g(t, g1(t))(A sin(rnwt + gyp) - ql(t)) dtJ
G(t, q2(t)) + g(t, Q2(t))(Asin(mwt + cp) - q2(t)) dtfin(mwt+p)<0

rT rT
- A J h(t) sin(mwt + co) dt >_ A

J
g(t, q1(t) sin+(mwt + yp) dt

0 0

/T

JO

T
t) sin(mwt + gyp) dt,- A J g(t, qz (t)) sin` (mwt + co) dt + c1 + cz - A h(

0

and the result follows from (65), because, by continuity and periodicity,
the difference between the right and the left members has a positive lower
bound independent of gyp.

Let now g+ : [0, T] -+ ] - oo, +oo] and g_ : [0,1'] -* ] - oo, +oo [ be
defined on [0, T] by

g+(t) = q l10o g(t, q), g_ (t) = q li m g(t, q), (66)



3.8. The Range of Some Second Order Nonlinear Operators 69

so that g_ (t) < g(t, 0) < g+(t) on [0,T] and hence g_ and g+ are Lebesgue-
integrable on [0, T], with possibly

I
T rT

0 g_ (t) dt = -oo or J 9+ (t) dt = +oo.
0 0

Theorem 3.8. Assume that F defined in (64) satisfies the assumptions B1
and B2 of Theorem 3.7 (with N = 1). Assume, moreover, that h E Q0, T)
is such that

I
T fT

h(t) sin(mwt + cp) dt < J [g+ (t) sin+(mwt + cp)
0

- g- (t) sin-(mwt + cp)] dt (67)

for all cp E R. Then problem (63) has at least one solution.

Proof. We show that (65) holds for some q1 E R and q2 E R. If it is not
the case we can find a sequence cpk in [0, T] converging to some coo such
that fT

0

[g(t, k) sin+(mwt + 4pk) - g(t, -k) sin-(mwt + cpk)

- h(t) sin(mwt + cpk)] dt < 0,

and hence, by Fatou's lemma,

/T
0 > J [g+(t) sin'(mwt+cpo)-g_ (t) sin-(mwt+cpo)-h(t) dt,

0

a contradiction with (67).

Remark 3.5. As
g- (t) <- g(t, q) < g+ (t)

for a.e. t E [0,T] and all q E R, we see that if (63) has a solution q, then
necessarily for all cp E R,

I
T T

h(t) sin(mwt + cp) dt = f g(t, q(t)) sin(mwt + co) dt
0

g(t, q(t)) sin(mwt + cp) dtJin(mwt+p)>0

+ g(t, q(t)) sin(mwt + cp) dtfin(mwt+cp)<0

/T

I
g+ (t) sin+(mwt + cp) dt - J g_ (t) sin- (mwt + cp) dt

0 0
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which shows that condition (65) with < instead of < is necessary for the
solvability of (63). Such an "almost" necessary and sufficient condition
for the existence of a solution to (63) when B1 and B2 hold is called a
Landesman-Lazer condition.

Remark 3.6. When g is independent of t, g- and g+ are constant and
(67) takes the simpler form

1

fT
2 1 !T 2 1/2

J
h(t)sinmwtdt + jT

cosmwtdt)
(T o T

< 1(g+-g-)
Of course, similar results hold for the problem

m2w2q(t) + g(t, q(t)) = h(t)

q(0) - q(T) = 4(0) - q(T) = 0.
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Corollary 3.3 is a special case of a result of [Wil6] and generalizes [Doll],
[LaS1], [Maw9,io]

Abstract versions of Theorems 3.1, 3.5, 3.7, and 3.8 can be found also in
[Bre2], [Carl], [Dim,], [EkL2], [Maw3,4], [Wil6]. Other results on periodic
solutions of Hamiltonian systems based upon the dual least action principle
are given in [Amb4,5], [Bere,], [Blo,], [Clan], [Eke, I], [Manc,], [Wils,9].

For applications of the dual least action principle to other boundary value
problems, the reader can consult [AmS1], [Maw5,6,7], [MWW1,2] Results
in this line based upon a combination of Lyapunov-Schmidt arguments
and variational methods are given in [Bat,,2], [BaC1], [Cas3,4,s], [Cal2],
[Fac2,3,4], [Laz,], [LLM,], [LMc,], [Teri], [The,].

The importance of getting a posteriori estimates for the solutions of
variational problems was first emphasized by Dolph ([Doll]) in a different
context.

Some of the problems considered in this chapter can also be treated,
under supplementary conditions, by the method of natural isoperimetric
conditions (or natural constraints) initiated by Poincare [Poi2] and devel-
oped in [BiH1,2], [HeS,], [Ber3,4], [BeB1], [VGr,-4].
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was first considered by a geometrical approach in [Sei,]. For further re-
sults on periodic solutions of Hamiltonian systems, see also [Cro,], [Den,],
[The2], [Wei3], [Gia,], [Rab,7].

Exercises

1. Show that Theorem 3.1 also holds, under the same assumptions Al
and A2 upon H, for the problem

Ju(t) + VH(t, u(t)) = e(t),

u(O) = u(T),

where e E L2(0, T; R2') is such that

JTH(I)dt - Cu,
IT

e(t) dt) -+ +oo

as Jul --+ oo in R2T'.

Hint: Writing e =F + a, with e = T-1 fo e(t) dt, make the change of
variable u = w + E, where k is the unique solution of

Jv=e(t), v(0) =v(T), v=0,
and apply Theorem 3.1 to the equivalent problem

Jib + VH(t, w(t) + E(t)) = 0

w(0) = w(T).
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2. Show that if 0 < a < 2 and c E C(R, R) is such that c(t) > ry > 0
for all t E R and is T-periodic, the problem

Ju(t) + ac(t) l u(t)) a-2u(t) = 0

has, for each k E N\{0}, a kT-periodic solution Uk such that IIukII -;
0o and its minimal period Tk -+ +oo when k -+ oo.

3. Consider the problem

4.

5.

Jig + ca Jula'2u = 0

where c > 0 and a > 1 and show by direct computation and using
the energy integral that its general solution is given by

u(t) = cos(wt) + sin(wt) Jt;

where E
R2N and w = ac2t aha-2ta, h = c Ie1a. For a < 2, compare

this result with that of Theorem 3.3.

Let H E Cl(R2N,R). If S = H-1(c) is a sphere and if, for each
u E S, VH(u) # 0, then all the solutions of Jiu + VH(u) = 0 on S
are periodic.

Let H(u) = En
1 2 (um + uN+/z) where the w are positive real

numbers which are rationally independent. Show that, for each c > 0,
H-1(c) contains exactly N orbits of periodic solutions of the system

Jiu + V H(u) = 0.

6. Show that under the assumptions Al and A2 of Theorem 3.5, the
conclusion of this theorem holds for

q(t) +VF(t, q(t)) = e(t),

q(0) - q(T) = 4(0) - 4(T) = 0,
where e E L2(0,T;RN) is such that

IT
fF(tq)dt_

rT

q, J e(t) dt +oo

as jqj -+ oo in RN.

Hint. Adapt the argument of Exercise 4.

7. Formulate and prove the analog of Theorem 3.7 for problems of the
form

±(Ju(t) + mwu(t)) + VH(t, u(t)) = 0,

u(0) = u(T),

where w = 27r/T, m E Z \ {0} and H(t,.) is convex.



Minimax Theorems for
Indefinite Functionals

Introduction

The dual least action principle has provided sharp existence theorems for
the periodic solutions of Hamiltonian systems when the Hamiltonian is
convex in u. When it is not the case, the existence of critical points of
saddle point type can be proved by using some minimax arguments. To
motivate them, we can consider the following intuitive situation. If cp E
C1(R2, R), we can view cp(x, y) as the altitude of the point of the graph
of cp having (x, y) as projection on R2. Assume that there exists points
uo E R2, ul E R2 and a bounded open neighborhood Q of uo such that
u1 E R2 \ S2 and cp(u) > max(cp(uo), cp(ul)) whenever u E M1 (that is the
case for example if uo and ul are two isolated local minimums of So).

Looking at the graph of cp in a topographical way, we can thus consider
the point [uo, cp(uo)] as located in a valley surrounded by a ring of moun-
tains pictured by the set {[u, V(u)] : u E a Q}, the point [ul, cc(ul)] being
located outside of the ring. To go from [uo, ep(uo)] to [ul, Sp(in)] in a way
which minimizes the highest altitude on the path, we must cross the moun-
tain ring through the lowest mountain pass. The projection on R2 of the
top of this mountain pass will provide a critical point of So with critical
value

c =inf max co(g(s)),
gEr SE[0,11

where r denotes the set of paths joining uo to un (i.e. the set of continuous
mappings g : [0,1] --> R2 with g(0) = uo, g(1) = u1). The validity of this
result will be insured only when some compactness condition is satisfied by
So and variants of the result will be obtained by modifying the class I'.

Those minimax theorems will be deduced from Ekeland's variational
principle for a semi-continuous real function f which is bounded below on
a complete metric space M (another approach, based upon deformations
along the paths of steepest descent of cp can be used and is developed in
Chapter 6). If a real function achieves its minimum on M at a, its graph
will lie entirely in the "half-space" {[u, s] E M x R : s > f (a)}. Ekeland's
variational principle insures that, for each e > 0, there is some a, E M such
that

f(a,)<inff+e
M
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and the graph off lies entirely in the "cone" {[u, s} E M x R : s > f (a,) -
ed(aE, u)}. This theorem, given in Section 4.1, has many applications (to
optimization, optimal control, fixed points, dynamical systems, differential
geometry, ...) and variants which will not be developed here. To apply it
to the mountain pass situation described above, one will take in Section
4.5 M = r and f (g) = max,E[0,ll Y0(9(s))

To go from the existence of an "almost critical point" in Ekeland's prin-
ciple to that of a critical point, a compactness condition of the type intro-
duced by Palais and Smale in their extensions of Lusternik-Schnirelmann
and Morse theories to infinite-dimensional spaces is required. Such con-
ditions are analyzed in Section 4.2 where an example shows how those
conditions are related to the obtention of suitable a priori bounds. This
example concerns functionals cp of the form

cp(u) = J T L(t, u(t), it(t)) dt
0

where L(t, x, y) = (1/2)(M(t, x)y, y) -V (t, x)+ (f (t), x), M(t,.) and V(t, .)
are Ti-periodic in each variable x, and f has mean value zero, so that they
generalize the ones considered in Section 1.6.

Another minimax result, Rabinowitz saddle point theorem, is used in Sec-
tion 4.3 to provide existence results for the periodic solutions of equations
like

ii + g(u) = h(t),

when g, not necessarily monotone, is bounded, and the corresponding ep is
indefinite. Again, the existence conditions are related to Landesman-Lazer
conditions. The same saddle point theorem is applied to Section 4.4 to the
periodic solutions of systems describing a Josephson multipoint junction.

Each method to obtain critical points can, of course, be combined to the
dual least action principle and Section 4.5 provides an interesting applica-
tion to the periodic solutions with fixed point of an autonomous Hamilto-
nian system

Ju(t)+VH(u(t)) = 0

with H convex, superquadratic and such that VH(0) = 0. The correspond-
ing dual action x is unbounded from above and from below, but the exis-
tence of a nontrivial critical point can be deduced from the mountain pass
theorem.

In Section 4.6, we introduce the concept of Lusternik-Schnirelman cat-
egory of a subset A of a topological space Y (namely the smallest integer
such that A can be covered by k closed sets contractible in Y) to prove a
multiplicity result for the critical points of functionals ep : X -+ R which
are bounded from below and invariant under the action of a discrete sub-
group G of the Banach space X. This is done as an application of Ekeland's
variational principle. Let 7r : X -> X/G be the canonical surjection and
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1 < j < dim span G + 1. The critical levels are obtained by a minimax
characterization of the type

inf max cp
AEAJ A

where Aj denotes the compact subsets 7r(A) or ir(X) such that the category
in 9r(X) of a(A) is not less than j.

A natural application to the systems described in Section 4.2 provide
the existence of at least N + 1 geometrically distinct critical points. This
gives in particular two T-periodic solutions at least for the forced pendulum
equation under the assumption of Section 1.6. This is specially interesting if
we notice that, in the unforced case, the periodic solution which minimizes
the action corresponds to the unstable equilibrium.

4.1 Ekeland's Variational Principle and the
Existence of Almost Critical Points

Theorem 4.1. Let M be a complete metric space and let 1' : M ,
- oo,+oo] be a l.s.c. function, bounded from below and not identical to

+oo. Let e > 0 be given and u E M be such that

D(u) <inf4D +e.

Then there exists v E M such that

4D(v) < D(u)
d(u,v) < 1 (1)

and, for each w 0 v in M,

4>(w) > ok(v) - ed(v, w). (2)

Proof. The relation

w < v t* ed(v, w) < D(v)

defines an ordering on M, as checked immediately. Let us construct induc-
tively a sequence as follows, starting with uo = u. If we suppose that
un is known, let

{wEM :

and let us choose ur+i E S such that

1
di(un+1) < Sf-D +

n+ 1
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Clearly, Sn+1 C S, , as un+1 < u, and, since 4 is l.s.c., Sn is closed. Now,
if w E Sn+1i w < un+1 < un and hence

ed(w un+1) < $(un+1) - 1 inf 1
1 n + 1

so that
2

diam Sn+i C
e(n + 1)'

i.e. diam Sn - 0 as n --> oo. M being complete, this implies that

n Sn = {v}
nEN

for some v E M. In particular, v E So, i.e.

v<up=u

so that
'I(v) < D(u) - ed(u, v) < F(u)

and

(3)

d(u, v) < e-1(4 (u) - 40)) < e-1 (Minf + e - inMf 4D) = 1.

To obtain (2), it suffices to prove that w < v implies w = v. If w < v, then,
for each n E N,

w<U,

so that w E lnENSn and, by (3), w = v. 0

Remark 4.1. By using the equivalent distance Ad with A > 0, the conclu-
sions (1) and (2) can be respectively replaced by

d(u, v) < 1/A

and

-t(w) > $(v) - eAd(v, w). (4)

The choice A = C1'2 is then particularly interesting. We first prove a result
for functions bounded from below on a Banach space.

Theorem 4.2. Let X be a Banach space, cp : X -+ R be a function
bounded from below, and differentiable on X. Then, for each e > 0 and for
each u E X such that

+ c ,e, (5)

there exists v E X such that

O(v) < <p(u) (6)
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lu - vl < e1/2 (7)

1o (v)1 < el/2 (8)

Proof. Let us take M = X, 1 = o and, for e > 0 given, let us choose
A = e-1/2 like in Remark 4.1 of Theorem 4.1. Then, if u satisfies (5), there
exists v E X such that (6), (7) hold and

O(w) > cp(v) - e1/21v - wl (9)

for all w 0 v in X. Therefore, taking w = v+th with t > 0, h E X, lhl = 1
in (9) we get

cp(v + th) - co(v) > -e1/2t.

Dividing both members by t and letting t -+ 0, we obtain

-e1/2 < (V'(v), h)

for all h E X with lhl = 1, and hence (8). 0

Corollary 4.1. Let X be a Banach space, co : X -+ R be a function
bounded from below and differentiable on X. Then, for each minimizing
sequence (uk) of cp, there exists a minimizing sequence (vk) of cp such that

Yc(vk) < W(uk)

luk - Vkl- 0 if k-+oo

1c0'(vk)l 0 if k -- oo.

Proof. If (Uk) is a minimizing sequence for cc, take

ek = co(ok) - infX cp if co(ok) - infX cp > 0
= 1/k if So(uk)-infXco=0

and then take vk associated to uk and ek in Theorem 4.2. 0

For an indefinite function, we shall state and prove a minimax theorem
modeled on the intuitive situation described in the introduction.

Theorem 4.3. Let K be a compact metric space, KO C K a closed set, X
a Banach space, x E C(K0,X) and let us define the complete metric space
M by

M={gEC(K,X) : g(s)=x(s) if sEKo}
with the usual distance d. Let cp E C1(X, R) and let us define

c = inf maxco(g(s)), cl = max cp.
gEM 3EK x(Ko)

If
c > c1, (10)
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then for each e > 0 and each f E M such that

a p(f(s)) < c + e, (11)

there exists v E X such that

C - e < cp(v) < a w(f(s)),

dist (v, f (K)) < c1/2,

Ic (v)I < c1/2.

Proof. Without loss of generality, we can assume that

0<e<c-cl. (12)

Let PE M satisfying the condition (11). We define the function 1' : M -
R by

-D(g) = m ax p(g(s)),

so that c = infM -D > cl. To show that fi is continuous, one uses the uniform
continuity of cp on g(K)-

Now Theorem 4.1 implies the existence of h E M such that

<(f) < c + c,

m ax - f(s)I < 0/2

and

fi(g) > 1(h) - c1/2d(h,g) (13)

whenever g E M and g # h. Thus our theorem will be proved if we show
the existence of some s E K such that

c - c < (p(h(s))

and
c1/2,

(,a (h(s)), v) >
-c1/2

whenever v E X and Ivi = 1. If it is not the case, then, for each s E S,
where

S= IS E K: c- c< cp(h(s))},

there exist 8, > 0, v, E X with Iv, I = 1 and an open ball B, in K containing
s such that for t E B, and u E X with Jul < 8 we have

1/2(cp'(h(t)) + u, v,) < -c. (14)
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(We have used the continuity of cp'.) Since S is compact, there exists a
finite subcovering BX17 ... , B,,, of S and we define t,b : K ---+ [0, 1] by

dist (t, CB, .) k

O
t = iftE UBk dist t CB ,j) ff=1 ( a;) i=1

k

lkj(t)=0, if tEK\UB,;.
i=1

Finally, let 6 = let : K - + [0,1] be a continuous
function such that

fi(t) = 1 if c < cp(h(t))
0 if cp(h(t)) < c - e,

and let g E C(K, X) be defined by

k

g(t) = h(t) + bo(t) k 0j (t)v,j .

j=1

It follows from (12) that, for t E Ko,

W(h(t)) = Sp(X(t)) < cl < c - c.

and hence &(t) = 0. Thus, for t E KO,

g(t) = h(t) = X(t),

i.e. g E M. Let us now estimate ob(g) from above. The mean value theorem
and (14) imply that, for each t E S, there is some 0 < r < 1 for which

k k

S(g(t)) - p(h(t)) = h(t) + rbO(t) E'+kj(t)vdj ,

b'O(t)

Y, 0j (t)vdj)
j=1 j=1

= b,G(t) LOj (t)(qv h(t) + rb0(t) L Oj (t)v,j ' vsj )

j=1 j=

< -e1l2bo(t). (15)

If t V S, O(t) = 0 and cp(g(t)) = cp(h(t)). Now, if t is such that co(g(t)) _
fi(g), we obtain

'o(h(t)) ?'p(g(t)) > c
so that t E S and b(I) = 1. By (15), we get

so(g(t)) - So(h(t)) < -e1/2b
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and in particular
fi(g) + e1126 < cp(h(t)) < 4D(h)

so that g # h. But, by the definition of g, we have

d(g,h) <6

and hence

I(g) + e112d(g, h) < D(h),

which contradicts (13) and completes the proof.

The following result gives sufficient conditions insuring that (10) is sat-
isfied.

Corollary 4.2. Let K, Ko, X, x, M, cp, c, and cl be defined as in Theorem
4.3. Assume that there exists S C X such that

g(K)f1Sso for all gEM,

and let
co = i sf cp.

Then, if

(16)

c1 < co, (17)

the condition (10) of Theorem 4.3 holds and hence also its conclusion.

Proof. By (16), we have

c = inf maxcp(g(s)) > co
gEM sEK

and then (10) follows from (17).

Corollary 4.3. Under the conditions of Theorem 4.3, for each sequence
(fk) in M such that

mKaxcp(fk)--*c,

there exists a sequence (vk) in X such that

cp(vk)--*c

disc (vk, fk(K)) 0

Icc"(vk)I -* 0

when k --*oo.

Proof. We define ek =maxK O(fk) - c if maxK 'p(fk) - c > 0 and ek = 1/k
in the other case and we apply, for each k E N*, Theorem 4.3 to ek and
A.
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4.2 A Closedness Condition and the Existence of
Critical Points

We have seen in the previous section how to obtain "almost" critical points
of functions of class C1 on a Banach space X. Some auxiliary closedness
condition is required to obtain the existence of critical points. We shall
require that if (C, 0) C R x X* is in the closure of the range of <p x gyp', then
it must be in the range of p x yo'.

Definition 4.1. Let cp : X -+ R differentiable and c E R. We say that cp
satisfies the (PS),-condition if the existence of a sequence (Uk) in X such
that

cp(uk) --> c, V'(uk) --> 0

as k -+ oo, implies that c is a critical value of V.

Remark 4.2. We shall use later a compactness condition called the Palais-
Smale condition (PS-condition) and which requires that every sequence
(uj) in X such that (cp(uj)) is bounded and cp'(uj) -+ 0 as j -+ oo contains
a convergent subsequence. It is clear that the PS-condition implies the
(PS),-condition for each c E R. Example 2 below shows that the converse
is not true.

Examples

1.Let X = R and tp(u) = exp u. As cp'(u) = exp u, only sequences (Uk)
such that Uk -- -oo are such that 4p'(uk) - 0; for such a sequence, y0(uk) -->
0 but 0 is not a critical value for 4p. Thus, exp does not satisfy the (PS)o-
condition. It trivially satisfies the (PS)6-condition when c # 0.

2. Let X = R and w(u) = sin u; if (Uk) is such that

Sin uk -+ C, COS uk -+ 0

as k -+ oo, we can write

Uk = 2mk7r + Vk with Vk E [0, 2ir]

so that
sin vk -+ c, cos vk -+ 0

as k -r oo. Now (vk) has a convergent subsequence with limit v such that

sin v = c, cos v = 0,

and hence c is a critical for sin. Thus sin satisfies the (PS),-condition for
every c E R.

3. Let X = R and cp(u) = u; then cp'(u) = 1 and the (PS),-condition
holds for each c E R.
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4. Let X = R and cp(u) = u2/2; then cp'(u) = u and cp'(uk) ` 0 if and
only if Uk -*. 0, in which case cp(uk) -* 0. Thus (PS)0 holds and, trivially,
(PS), holds for all c # 0.

The examples above show that functions satisfying the (PS)c-condition
for each c E R may have an infinity, a finite number of critical points, or
no ones. Corollary 4.1 can be used to provide a sufficient condition for the
existence of a critical point.

Theorem 4.4. Let X be a Banach space, 9 : X -+ R a function bounded
from below and differentiable on X. If cP satisfies the (PS)c-condition with
c = infX cp, then cP has a minimum on X.

Proof. By Corollary 4.1, there exists a minimizing sequence (vk) such that
co'(vk) - 0 as k -* oo. By the (PS),-condition with c = inf cp, c is a critical
value and the proof is complete.

As an example of application to differential equations, let us consider the
following problem

dt Dy L(t, u(t), u(t))

u(0) - u(T) = u(0) - ii(T) = 0

where

(18)

L(t, x, y) _ (1/2)(M(t, x)y, y) - V(t, x) + (f (t), x)

is such that the following conditions hold:

(L1) M(t, x) is a symmetric matrix of order N continuously differentiable
on [0, T] x RN and such that

(M(t,x)y,y) >_ aIyI2

for some a > 0 and every (t, x, y) E [0, T] x RN x RN

(L2) V (t, x) is measurable in t for every x E RN and continuously differen-
tiable in x for almost every t E [0, T], and there exists h E L1(0, T; R)
such that

IV(t,x)I + ID,,V(t,x)l < h(t)

for every x E RN and almost every t E [0,7].

(L3) M(t, x) and V (t, x) are Ti-periodic in xi, 1 < i < N.

(L4) f E L1(0, T; RN) and f0 f (t) dt = 0. If u E L1(0, T; RN ), we shall
write u = u + u, where

= T-u(t) dt.j
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Proposition 4.1. Under the assumptions (L1) to (L4), the function cp
defined on HT by

Tcp(u) = J L(t, u(t), it (t)) dt
0

is continuously differentiable and bounded from below. Moreover, every se-
quence (Uk) such that cp'(uk) -- 0, ep(uk) is bounded and (uk) is bounded
contains a convergent subsequence.

Proof. Using assumptions (L1), (L2), (L4), and Sobolev inequality, we
obtain

p(u) > allulli2 - f h(t) dt - IifIIL- Ilulloo >_ allulIL2 - C1- C21IuIILa, (19)
T0

so that cp is bounded from below. Theorem 1.4 implies that cp is continuously
differentiable on HT and that

T
60, (u), v) = f [(M(t, u(t))u(t), (O)

0

N
+ (1/2) E(D,,;M(t, u(t))zi(t), u(t))v;(t)

(=1

- (D.V(t, u(t))v(t)) + (f (t), v(t))] dt. (20)

Now let (Uk) be a sequence in HT such that cp'(uk) ` 0, cp(uk) is bounded
and (uk) is bounded. It follows from (19) that (uk) is bounded in L2. Con-
sequently, (Uk) is bounded in HT and, going if necessary to a subsequence,
we can assume that Uk u in and Uk -+ u in C([0, T], RN). But then

(cp'(uk) - cp'(u), Uk - u) -+ 0 as k --> oo. (21)

Using (20) and assumption (L1), we obtain

(co (uk) - V(U), Uk - u) > allot - q2
L2

+
fT([M(t,

uk(t)) - M(t, u(t))]ii(I), uk(t) - ic(t)) dt

N
[DM(t, uk(t))k(t), k(t)) - (DM(t, u(t))(t), (t)))+ (1/2) fT

i.1

T
[uk,;(t) - ut(t)] dt - 1(D,,V(t, uk(t)) - D.,V(t, u(t)), uk(t) - u(t)) dt

0

+
jT(f(t),

uk (t) - u(t)) dt.
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It is then easy to verify, using (21), that II uk - uII La -> 0 as k , 00, and
hence that Uk - u in H.

Theorem 4.5. Under assumptions (Li) to (L4), Problem (18) has a weak
solution.

Proof. By Proposition 1, c = infHT cp is finite. Let us verify the (PS)--
condition. Let (uk) be a sequence in HT such that cp'(uk) -* 0 and cp(uk) -->
c. Because of (L3) and (L4), we have

cp(u+T;e;) = cp(u), (1 < i < N) (22)

and hence we can assume, without loss of generality, that

0<(uk,e;)<T;, 1<i<N.

But then (ilk) is bounded and, by Proposition 4.1, we can assume, going
if necessary to a subsequence, that Uk -+ u in H. Hence cp'(u) = 0 and
cp(u) = c, i.e. c is a critical value of cp. Now Theorem 4.4 implies the
existence of a minimum for cp at some point u E HT at which, necessarily,
cp'(u) = 0. Since

(cp'(u), v) = 0

for all v E CT, relation (20) implies that it has a weak derivative. But then
u(0) = u(T), u(0) = u(T) and u is a weak solution of (18).

Remark 4.3. We shall prove in Section 4.6 that problem (18) has at least
N + 1 "geometrically distinct" weak solutions.

We can now deduce the existence of critical points of functions cp E
C' (X, R) by adding a (PS), condition to the assumptions of Theorem 4.3.

Theorem 4.6. Under the assumptions of Theorem 4.3, if cp satisfies the
(PS),-condition, then c is a critical value for cp.

Proof. From Corollary 4.3, we obtain a sequence (vk) such that

O(vk)-'e, 0(vk)-;0

as k --r oo. By condition (PS), c is a critical value and the proof is complete.

Particular choices of K, KO, and X will provide interesting existence
theorems for critical points of cp. Two important examples will be described
in Sections 4.3 and 4.5.
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4.3 The Saddle Point Theorem and Periodic
Solutions of Second Order Systems with
Bounded Nonlinearity

To motivate a first important special case of Theorem 4.6 which is due to
Rabinowitz, let us return to the problem of Section 1.8

u(t) _ VF(t, u(t)) (a.e. on [0,T])
u(O) - u(T) = ii(0) - u(T) = 0 (23)

with the same regularity assumptions under F and with the condition

IVF(t, x)I < h(t) (24)

for some h E L1(0, T), a.e. t E [0, T] and all x E RN. It was proved in
Chapter 1 that (23) has a solution when

J T F(t, x) dt , +oo as jxj --r oo. (25)
0

It is natural to raise the question of the existence of a solution when (25)
is replaced by

fT

J F(t, x) dt -oo as Ixl oo. (26)
0

In this case, the function cp is neither bounded from below, now from above.
Indeed, if w is a constant function,

fF(t,
T

cp(w) = w) dt -+ -oo as jwj -> 00

and, if v E HT has mean zero,

Tcp(v) = J (1v(t)12/2) dt + J T F(t, 0) dt + J T [F(t, v(t)) - F(t, 0)] dt
0 0 0

jT(1(1)

0

rrT r
_ 2/2) dt + J F(t, 0) dt +

0J J0
(VF(t, sv(t)), v(t)) ds dt

> fTdt - cl -
(fT

/2(fT 1

dt--CZ (t)I2dt ,

where cl and c2 are positive constants, so that p is not bounded from
above. In particular, if X+ denotes the subspace of functions with mean
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value zero in HT and X- the subspace of constant functions in HT, we see
that

>-oo
x+

and that there exists R > 0 such that

sup cp < inf cp,
SR x+

where SR = {u E X- : Jul = R}. We shall obtain a solution of (23) from
the following abstract result.

Theorem 4.7. Let X be a Banach space and let cp E C1(X, R). Assume
that X splits into a direct sum of closed subspaces X = X- ® X+ with

dim X- < 00

and

sup cp < inf
gyp,

SR

where SS = {u E X- : Jul = R}. Let

BR={uEX- : Iul<R}
M = {gEC(BR,X) : g(s) = s if5ESR}

and

(27)

c = inf max o(g(s)). (28)
9EM SEB-

Then, if p satisfies the (PS),-condition, c is a critical value of cp.

Proof. We shall apply Theorem 4.6 with cl = sups- gyp, K = BR, Ko = SS

and x(s) = s, s E S. We have only to prove that c > cl. By Corollary 4.2
with co = infx+ cp and (27), it suffices to prove that, for each g E M, there
exists some s* E BR such that g(s*) E X. If P denotes the projector into
X- with null-space X+, this is equivalent to findings s* E BR such that
Pg(s*) = 0. Now, Pg E C(BR,X-) is such that Pg = Id on OBR = S.
Then, by Corollary 2 of Section 5.3 on topological degree, d(Pg, BR) _
d(Id, BR) = 1 and Pg has a zero in BR by the existence property of degree
(in the easy case where dim X- = 1, the intermediate value theorem
suffices).

Theorem 4.8. Let F satisfy the regularity assumptions of Section 1.8 as
well as the assumptions (24) and (26). Then problem (23) has at least one
solution u for which W(u) = c, where c is given by (28).

Proof. By Theorem 4.7, it is sufficient to prove that cp satisfies the (PS)--
condition, and we shall show that (PS), indeed holds for each c E R. Let
(uk) be a sequence in HT such that

V(uk) - c, lp (uk) -+ 0 as k -+ co.
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Writing Uk = Uk + uk with uk = (11T) fo uk(t) dt, and using the fact that
there is some ko such that

I (co'(uk), h)I < IIhII

for all k > ko and h E HT, we obtain, for k > ko

I (c'(uk), uk)I =

and hence

T [Iuk(t)I2 + (V F(t, uk(t)), uk(t))]dt

IIukII < C1, k > ko (29)

because of (24), the Sobolev inequality and the equivalence of the L2-norm
for it and the HT-norm on X+. Now, c (uk) is bounded and hence

J
T fT T

0 (Ihk(t)I2/2) dt +
J

F(t, uk) dt + [F(t, uk(t)) - F(t, ik)]dt > C2,
0 0 0

kEN
so that, using (29) and (24), we obtain

f0T

and then

F(t,ilk) dt>C3i kEN

IukI < C4i k E N

by condition (26). Thus (Uk) is bounded in HT and hence contains a subse-
quence, relabeled (uk) which converges to some u E HT, weakly in HT and
strongly in C([0, T], RN). Arguing then as in Proposition 4.1, we conclude
that (PS), is satisfied.

4.4 Periodic Solutions of Josephson-Type Systems

Systems of the form

where

D=

u(t) + N2Du(t) + f (u(t)) = h(t) (30)

1 -1

I -1 2 -1 0

N

-1 2 1

-1 1
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and f (u) = (a1 sin ul, ... , aN sin UN) arise in the theory of Josephson mul-
tipoint junctions in solid physics as well as in the space discretization of
some boundary value problems for the sine-Gordon equation. Similar sys-
tems also describe the motion of forced linearly coupled pendulums.

More generally, let us consider the periodic problem

ii(t) + Au(t) - VF(t, u(t)) = h(t) (a.e. on [0, T]) (31)
u(O) - u(T) = u(0) - u(T) = 0,

where A is a (N x N)-symmetric matrix, h E L1(0, T; RN), F(t,.) is con-
tinuously differentiable for a.e. t E [0, T] and F(., u) is measurable on [0, T]
for each u E RN. We shall use the saddle point theorem to obtain the
existence of solutions of (31) when F(t, .) satisfies some periodicity condi-
tions depending upon A and which reduce to those considered in Section
4.3 when A = 0.

Theorem 4.9. Assume that the following conditions are satisfied.

1. There exists g E L'(0, T) such that

I F(t, u)I < g(t), IVF(t, u) I << g(t)

for all u E RN and a.e. t E [0,T].

2. dim N(A) = m > 1 and A has no eigenvalue of the form k2w2

(k E N \ {0}), where w = 2ir/T.

3. There exist aj E RN and Tj > 0 (1 < j < m) such that

N(A) = span (a1, ... , a,,)

and

F(t, u + TT aj) = F(t, u) (1 < j < m)

for a.e. t E [0,T] and all u E RN

4.
rT

J
(h(t), a,) dt = 0 (1 < j < m).

0

Then (31) has at least one solution.

The proof of Theorem 4.9 requires several preliminary results. We know
that the solutions of (31) correspond to the critical points of the function
So defined on HT by

T
c(u) = f {(1/2)[lu(t)12 - (Au(t), u(t))] + F(t, u(t)) + (h(t), u(t))} dt.

0
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Letting

we see that

T
q(u) = (1/2)[[u(t)j' (Au(t), u(t))] dt,

q(u) = (1/2)IluII2 - (1/2)
1T((A

+ I)u(t), u(t)) dt
0

_ (1/2)(((I - K)u, u))

where K : HT -+ HT is the linear self-adjoint operator defined, using Riesz
representation theorem, by

IT

J ((A + I)u(t), v(t)) dt = ((Ku, v))
0

(u, v E HT). The compact imbedding of HT into C([O,T], RN) implies that
K is compact. By classical spectral theory, we can decompose HT into the
orthogonal sum of invariant subspaces for I - K

HT=H-ED HO ®H+

where H° = N(I - K) and H- and H+ are such that, for some 6 > 0,

q(u) < -(b/2)11u112 if u E H- (32)

q(u) > (6/2)11u112 if u E H+. (33)

Notice that H- is finite dimensional (as K has only finitely many eigen-
values .i with Ai > 1) and H° corresponds to the critical points of q(u),
i.e. to the solution of

ii(t) + Au(t) = 0

u(0) - u(T) = it(0) - it(T) = 0.

Consequently, assumption 2 and elementary theory of linear differential
systems imply that

H° = N(A).

If U E HT, we shall write u = u- + u° + u+ where u- E H-, u° E H°, and
u+ E H+.

In the following proposition, we assume that the assumptions of Theorem
4.9 hold.

Proposition 4.2. dim H- = 0 if and only if A is semi-negative definite.

Proof. If dim H- = 0, then q(u) > 0 for each u E HT and, in particular,
for each constant function c; thus,

0 < q(c) = -(T/2)(Ac, c)
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for all c E RN. Conversely, if A is semi-negative definite, q(u) > 0 for all
u E HT and dim H- = 0.

Proposition 4.3. Each sequence (Uk) in HT such that (uk) is bounded
and

Vcp(uk) - 0

contains a convergent subsequence.

Proof. Let (Uk), be such a sequence; if C1 is such that

IIV (uk)Il < Cl

for all k E N, then, using (32), (33), and Sobolev inequality, we get

Ci(lluk 112 + IIuk 112)' 2 = Gllluk - uk 11 >- ((V (uk), uk - uk ))

T

(((I - K)Uk, uk - uk )) + f (VF(t, uk(t)) + h(t), uk (t) - uk (t)) dt
0

>- s(IIutII2 + IIuk II2) - C2(IIutII2 + IIuk
II2)1i2,

where C2 depends only on h and g. Thus,

(IIuk II2 + IIuk
II2)1/2 <

C3

and (Uk) is bounded. Going, if necessary, to a subsequence, we can assume
that Uk u in HT and uk -+ u in C([0, T], RN). Now, the equality

((V co(uk) - Vcp(u), Uk - u)) = IIuk - u112 - ((K(uk - u), uk - u))

+
JT(VF(t,

uk(t)) - VF(t, u(t)), uk(t) - u(t)) dt
0

implies that IIuk - ull -' 0 as k - oo and the proof is complete.

Proposition 4.4. For each c E R, cp satisfies the (PS),-condition.

Proof. Let c E R and (uk) be such that

cp(uk) -+ c and V p(uk)

as k -+ oo. If we write

0uk

m

(34)

j=1

then cj = cj + kjT, (1 < j < m) for some kj E Z and cj E [0,Tj [ (1 <_
j < m). Set ilk = uk + cjaj + uk, so that ft- = uk, uk = uk and
(uk) = (E! 1 cjaj) is bounded. Moreover, ilk - uk E N(I - K), so that

q(uk) = q(uk), Vq(uk) = Vq(uk)
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On the other hand, by assumptions 3 and 4 of Theorem 4.10, we have

j[F(i, Uk(t)) - (h(t), uk(t))) dt = f[F(i, uk(t) + kjTjaj)

h(i u (i / dt = F t h(i u (i dtT- ( l ), k l) + uk (t))l [ (, uk(t)) - ( l ), k( ))
0

so that

Similarly,

wP(uk) _ cP(uk), k E N.

Ocp(uk) = VcP(uk), k E N

so that Vcp(2k) -} 0 as k --> oo. Proposition 4.3 implies that (iek) contains
a converging subsequence (ulik) with limit u. Hence, by (34)

C = limn cP(u9k) = lim SP(u'9k) = (u)
k

and condition (PS), holds.

Proof of Theorem 4.9. Let us first notice that if u = u0+u+ E H°®H+,
then, using Sobolev inequality,

T

(1/2)(((1- K)u+, u+)) + f [F(t, u(t)) + (h(t), u+(t))) dt
0

>- (b/2)I1u+112 -11911L1- CIIhllLlllu+II

and hence cp is bounded below on H° ® H+. Hence, if dim H- = 0, cp is
bounded below on H and has a minimum by Proposition 4.4 and Theorem
4.4. If dim H- > 0 and u = u- E H-, then

jT
V(u) = (1/2)(((I - K)u, u)) +

10

[F(t, u(t)) + (h(t), u(t))] dt

< -(6/2) 11U112
+ 11911L1 + CIIhIIL=Ilull

and

,p(u) - -oo if lull - oo in H-.
Taking X = HT, X- = H-, X+ = H° ® H+ in Theorem 4.7, we see that
dim X- < oo and that there exists R > 0 such that

sup cp < nf p
SR
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where SR = {u E X- : lull = R}. The existence of a critical point for cp
follows then from Theorem 4.7 and Proposition 4.4. O

In the example given at the beginning of the section, we have

N-1

(Dv, v) = E (vj - vj+1)2,
j=1

so that dim N(A) = l and A = span{(1,I,-, 1)}. On the other hand,

N

F(t, u) _ E aj cos uj
j=1

satisfies assumption 3 with Tj = 2a. Therefore, the conditions for the
existence of a periodic solution for (30) reduce to

det (N2D - k2w2) 00, k E N \ {0}

and
N 1T

hj (t) dt = 0.
j=1 0

4.5 The Mountain Pass Theorem and Periodic
Solutions of Superlinear Convex Autonomous
Hamiltonian Systems

Let us first state and prove the mountain pass theorem which was described
vaguely in the introduction.

Theorem 4.10. Let X be a Banach space and cp E C1(X, R). Assume that
there exist uo E X, u1 E X, and a bounded open neighborhood I of uo such
that ul E X \ Q and

ienf o >

Let

and

F = {g E C([0,11,X) : g(0) = uo,g(l) = u1}

c = inf max do(g(s)).
gEr sE[0,11

If cp satisfies the (PS),-condition, then c is a critical value of cp and c >
max(p(uo), p(u1)).
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Proof. Let us take K = [0,1], Ko = {0,1}, x(O) = uo, x(1) = ul, M =
t, S = 852, co = infa- cp, cl = in Theorem 4.3 and
Corollary 4.2. It remains only to show that

g([0,11)n852o 0

for all g E t, and this follows at once from the fact that g(0) = uo E 52,
g(1) = ul E X \ SZ and from a classical connectedness result. 0

We shall combine the dual least action principle with the mountain pass
theorem to prove the existence of non-trivial periodic solutions for the
autonomous Hamiltonian system

Ju(t) + VH(u(t)) = 0 (35)

where H E C1(R2N, R) is strictly convex, H(0) 0, VH(0) = 0 but, in
contrast to the results of Section 3.4, H is superquadratic instead of being
subquadratic.

Theorem 4.11. If there exists q > 2, a > 0, such that, for every u E R2N,
one has

qH(u) < (VH(u), u) (36)

and
H(u) < alul9, (37)

then, for each T > 0, (35) has a non-trivial T-periodic solution.

The proof of Theorem 4.11 will be a combination of the dual least action
principle and the mountain pass lemma, and requires several preliminary
results.

Lemma 4.1. If

M = max H(u), m = min H(u),
lul=l lul=1

then

Jul < 1 = H(u) < Mlul9, Jul > 1 = H(u) > mluj9. (38)

Proof. If f (s) = H(sv) for some fixed v, assumption (36) implies that
sf'(s) > qf(s). Thus, if s > 1, f(s) > sgf(1), i.e. H(sv) > s9H(v). If
Jul < 1, this implies

H(u/jul) > lug-9H(u)

and if Jul > 1, this implies

H(u) = H(jul(u/jui)) > luJQH(u/juj). 0

Lemma 4.2. The function H* is continuously differentiable on R2N and,
if

1 + 1 = 1, m* = min H*(v), M* max H* (v), a* = (aq)-pkq/p,
p q Iv1=1 Iv1=1
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we have m* > 0 and
pH*(v) > (VH*(v), v) (39)

Ivi < 1 = H*(v) > m*lvlp (40)

ivi 1 = H* (v) < M*Ivip (41)

H*(v) > a*Ivip (42)

for all v E R2N

Proof. Since H is strictly convex and, by (38), such that H(u)/lul -+ +oo
as Jul - oo, Proposition 2.4 implies that H* E C1(R2N, R). Now it follows
from Theorem 2.2 and Proposition 2.3 that

v = VH(u) t* u = VH*(v) t* H* (v) = (v, u) - H(u).

Hence, assumption (36) implies that

H*(v) = (v, u) - H(u) > (1 - 4 / (v, u) = p (v, V H* (v))

Like in the proof of Lemma 4.1, (39) implies (40) and (41). Finally, (42)
follows from (37) by relation 2.4.

Remark 4.4. By Lemma 4.1, assumption (36) implies for H a super-
quadratic growth at infinity and a subquadratic growth near the origin. In
particular, the results of Chapter 3 are not applicable.

Remark 4.5. Since, by (41), H*(v) < M*(1 + Ivip) for all v E R2N,
Proposition 2.2 and Theorem 1.4 imply that the dual action cp defined by

O(v) = J [(1/2)(Jv(t), v(t)) + H* (v(t))] dt
T0

is continuously differentiable on X = WT'p.
We shall apply the mountain pass theorem to 9.

Remark 4.6. It will be convenient, in this section, to use the norm Ilvii =
ilvIILP on X. By Proposition 1.1, this norm is equivalent to the W"P-norm
on X.

Lemma 4.3. There exists c > 0 such that, for each v E X, one has

fT
0

(Ji(t), v(t)) dt > -Cllvll2.

Proof. Holder's inequality and Proposition 1.1 imply that

f
T

(JO), v(t)) > -iiJviiLDliviiL" > -T' IIVIILpjlvII.
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> -cT11 112'.

Lemma 4.4. For every t E X*, there exists f E L9(0,T;R2N) such that,
for all v E X,

T
C, v= 10 (f t i(t)) dt,

IIfIIx = 11f 11D,

Proof. The mapping L : X - LP(0, T; R2N), v --y v is an isometry. Let
Y = L(X) and M = L" 1 : Y X. If f E X*, the function

'I : Y --} R, u - (f, Mu)

is linear and continuous. By the Hahn-Banach theorem, '1 has an exten-
sion 'I' E (LP)* such that II4'II(Ly) = The Riesz representation
theorem implies the existence of f E L9(0, T; R2N) such that ('It, u) _
fo (f(t),u(t))dt for every u E LP(0,T;R2N). Thus, for each v E X,

T
P, v = f, MLv = 'I', Lv = 10 (f (t), Lv(t)) dt

fT(f
(t), iv(t)) dt.

Moreover,

II1Ix = II'II(L') = IIfIIL9
Lemma 4.5. Every sequence (v?) in X such that (cp(vj)) is bounded and
V'(vj) -* 0 contains a convergent subsequence.

Proof. Theorem 1.4 and Lemma 4.4 imply the existence of a sequence (fj)
in L9 (0, T; R21) such that IIfi IIL9 -a 0 as j -} oo and

J
T(-Jv9 (t) + VH* (i,j (t)) - f, (t), zb(t)) dt = 0

for all w E X. By a standard Fourier series argument, we obtain

-Jvj (t)+VH*(i, (t))+cj = fi(t) (43)

a.e. on [0, T], for some cj E R2N. This implies that

J
T T T

(Jv; (t), vj (t))dt + f (V H* (v, (H), ivy (t)) dt = Jo (f, (t), i, (t)) dt.
0 0

( 44)
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Using (39), (42), and (44), we obtain

W(vj)
T

(1/2) JO (fi (t), vj (t)) dt - (1/2) JO
T(VH*

(vi (t)), vj (t)) dt

+ fT H*(vf(t)) dt > (1 -

2)

,/ T H*(vi(t)) dt - (l/2)IjfjllL9ljvi jILP

> (1-2)a*IIviIIip-cllvillLa=(1-2)a*IIvvMI'-C'IIvi1I

Since 1 < p < 2 and (p(vj)) is bounded, (vj) is bounded in X. Going if
necessary to a subsequence, we can assume that vj - v in X, vj -> v
uniformly on [0, T] and that

T
ci _ (1/T) 1(ff(t) -VH*(vj (t))) dt --- c

0

in R2N. By duality, (43) implies that

ve(t)=VH(ff(t)+Jvj(t)-cj) (45)

for a.e. t E [0,T]. Now, assumption (37) and Proposition 2.2 imply that
VH maps continuously L9 into LP, so that, letting j -+ oo in (45), we get

vj -+ VH(Jv - c)

in LP (0, T; R2N), and hence vj -+ v in X. 0

Proof of Theorem 4.11.
1) We shall apply Theorem 4.10 to V. By Lemma 4.5, cp satisfies the

(PS),-condition for every c E R.
2) Since

(P(v) > -(C/2)IIvll2 +a*IIvllp

there exists p > 0 such that

cp(v) >0=cp(0) if0<Ilvll<p
>b>0 ifIIvII=P.

3) Let

Vi (t) _ (cos T) e + (sin T I Je

where lel > 1. Then,

rT

(Jvl(t), vi (t)) dt = -(T2/2ir) Iel2

and Lemma 4.2 implies that

tp(vi) < -(T2/2ir) IeI2 +TM* lel1'.
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Since p < 2, we can choose je) such that V(vi) < 0.
4) Theorem 4.10, with uo = 0, ul vi and 1l = B(0, p), implies the

existence of a critical point v of cp such that cp(v) > cp(0). By Theorem 2.3,

u(t) = VF*(v(t))

is a nontrivial T-periodic solution of (35).

4.6 Multiple Critical Points of Periodic
Functionals

Let G be a discrete subgroup of a Banach space X and let 7r : X -} X/G be
the canonical surjection. A subset A of X is G-invariant if ir-1(ir(A)) = A.
A function f defined on X is G-invariant if f (u+g) = f (u) for every u E X
and every g E G. If a differentiable functional cp : X --> R is G-invariant,
then cp' is also G-invariant. Consequently, if u is a critical point of such a
cp, then 7r`1(7r(u)) is a set of critical points of cp, and is called a critical
orbit of cp.

We shall use the following compactness condition.

Definition 4.2. A G-invariant differentiable functional cp : X - R satis-
fies the (PS)G-condition if, for every sequence (uk) in X such that cp(uk)
is bounded and cp'(uk) 0, the sequence (7r(uk)) contains a convergent
subsequence.

If we consider for example the function cp associated to (18) in Section
4.2 and the discrete subgroup

G=
N

i_1

k2Tiei : ki E Z, 1 < i < N

of HT, where the Ti are the positive real numbers of Assumption (L3), we
see from (22), that cp is G-invariant. Moreover, if u E HT, with u = u + u,
u = (l/T) fo u(t) dt, there exists unique ki E Z (1 < i < N) such
that (u,ei) - kiT E [0,Ti[ (1 < i < N), and we set u = ((9,e1) -
k1T1i... , (u, eN) - kNTN). If (uk) is a sequence m X with (cp(uk)) bounded
and y0'(uk) -* 0, then vk = uk + uk is a representative of [uk] E HT /G
which, by Proposition 4.1, will have a convergent subsequence. There-
fore, (1r(uk)) = (7r(vk)) has the same property and cp satisfies the (PS)G-
condition.

This G-invariance of the functional will provide a substantial improve-
ment of the conclusion of Theorem 4.4.

Theorem 4.12. Let cp E C1(X, R) be a G-invariant functional satisfying
the (PS)G-condition. If cp is bounded from below and if the dimension N of
the space generated by G is finite, then 9 has at least N + 1 critical orbits.
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The proof of Theorem 4.12 depends on the notion of Lusternik-Schnirelman
category. Let us first recall that a subset C of a topological space Y is con-
tractible in Y if there exists h E C([0,1] x C, Y) and Y E Y such that

h(0, u) = u, h(1, u) = y

for all u E C.

Definition 4.3. A subset A of a topological space Y has category k in Y if
k is the least integer such that A can be covered by k closed sets contractible
in Y. The category of A in Y is denoted by Caty(A).

Lemma 4.6. Let Y, Z be topological spaces and let A, B C Y.

i) If A C B, then caty(A) < caty(B).

ii) caty(A U B) < caty(A) + catyB.

iii) If A is closed and B = r7(1, A), where 17 E C([0,1] x A, Y) is such
that 17(0, u) = u for every u E A, then caty(A) < caty(B).

iv) If z E Z, catyxz(A x {z}) = caty(A).

Proof. Properties i), ii), and iv) are obvious. If caty(B) = +oo, property
iii) is also obvious. Let us assume that k = caty(B) is finite, let (Bj)1<j<k
be the corresponding covering of B by closed sets which are contractible in
Y, and let (hj)1<j<k be the corresponding deformations. Define

Aj=(rl1)-1(Bj) (1<j<k)
where r11 = r7(1, .). The sets Aj are closed and the mapping hj *r7 : [0,1] x
Aj -a Y defined by

(h j * 77)(t, u) = 77(2t, u), 0 < t < 1/2
= hj (2t - 1, 77(1, u)), 1/2 < t < 1

is continuous and such that (hj *77)(0,u) = u and (h1 *77)(1,u) = aj for
each u E Aj (1 < j < k). Since (Aj)1<j<k is a covering of A, caty(A) < k.
0

Definition 4.4. A metric space Y is an absolute neighborhood extensor,
shortly an ANE, if, for every metric space E, every closed subset F of E
and every f E C(F, Y), there exists a continuous extension of f defined on
a neighborhood of F in E.

Examples

a) A finite product of ANE's is an ANE.

b) A convex subset of a normed space is an ANE.
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c) A circle is an ANE.

Proof. Property a) is obvious. Property b) follows from Dugundji's ex-
tension theorem: if F is a closed subspace of a metric space E and if
f E C(F, X) with X a normed space, then there exists an extension
g E C(E, X) of f such that g(E) is contained in the convex hull of f (F).
To prove property c), let F be a closed subspace of a metric space E, and
let f E C(F, Si). By Tietze's extension theorem, there exists an extension
g E C(E, R2) of f. On the other hand, there exists a neighborhood U of
S' in R2 and a retraction'r : U -+ S1. The map r o g defined on g-1(U)
is the desired extension of f.

Lemma 4.7. If A is a closed subset of an ANE Y, then there exists a
closed neighborhood U of A such that

caty(A) = caty(U).

Proof. 1) If caty(A) = +oo, the result is clear. Let us assume that k =
caty(A) is finite. Let (Aj)1<,<k be the corresponding covering of A by
closed sets contractible in Y. It suffices to prove that each A2 has a closed
neighborhood U, contractible in Y, since then

k

U= U U,
f-1

is a closed neighborhood of A and

k = cats (A) < caty (U) < k.

2) There exists hj E C([0,1] x Aj, Y) and aj E Y such that

h5(0,u) = u, h,(1,u) = aj

for each u E Aj. The set

F = ([0,1] x Aj)U({0} x Y)U({1} x Y)

is closed in E = [0,1] x Y. The function f : E Y defined by

f (t, u) = h,, (t, u), t E [0,1], u E Aj
f(0,u)=u, u E Y
f(1,u)=a,., uEY

is continuous. Since Y is an ANE, f has a continuous extension j defined
on a neighborhood N of E. We can assume that N is closed since Y is
normal. Using the compactness of [0, 1], it is easy to verify the existence of
a closed neighborhood Uj of Aj since that [0, 1] x U5 C N. Since

rl(0, u) = u, tl(1, u) = aj
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for each u E U j, U1 is contractible in Y and the proof is complete.

Let G be a discrete subgroup of a Banach space X and assume that the
dimension N of the space V generated by G is finite. Then X is isomorphic
to RN x Z, where Z is a complement of V, G is isomorphic to ZN and
7r(X) is isomorphic to TN x Z where TN is the N-torus. Property iv) of
Lemma 4.6 implies that if A = [0, 1]N x {0},

cat,,(X)(a(A)) = catTNXZ(TN x {0}) = catTN(TN).

By a standard result in algebraic topology,

catTN(TN) = N + 1.

Thus, we have
catx(X)(a(A)) = N + 1

and, for 1 < j < N + 1, the set

,Aj = {A C X : A is compact and cat,,(X)(lr(A)) > j}

is nonempty.
In order to apply Ekeland's variational principle, we need the following

lemmas.

Lemma 4.8. For 1 < j < N + 1, the space A, with the Hausdorff distance

b(A, B) = max{sup dist(a, B), sup dist(b, A)}
aEA bEB

is a complete metric space.

Proof. 1) It is easy to verify that the space

M = {A C X : A is closed, bounded and nonempty}

with the Hausdorff distance is a metric space. Let us prove that (M, 6) is
complete. Let (An) be a Cauchy sequence in (M, 6) and define the closed
bounded set

00 00

Ate= n U Am.
n=1 m=n

For every e > 0, there exists n(e) such that

p, q > n(c) b(Ap, Aq) < e.

It suffices to prove that b(A00, A,,(e)) < e since then
b(Aoo,Aq) < 2e. It follows from (46) that

(46)

> n(e) impliesq

00

A00 C U Am C (An(,))e.
m=n(e)
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Hence, we obtain
sup dist(a, A,,(,)) < e. (47)

aEA,o

Let b = bnu E A,(,). There exists an increasing sequence (nk) and a se-
quence (bn,,) in X such that bnk E Ana and IIb,,,, - bnk_, II < 2-ke. Since
(b,,,,) is a Cauchy sequence, there exists a E X such that bn,, a ask -* oo.
Clearly a E Aa, . For every k, Ilbnk - bnu II < e, so that Ila - bnu II < e and
we have proved that

sup dist(b, Aoo) < e.

e.Inequalities (47) and (48) imply that b(A.. ),An(,))
2) Let us prove that

(48)

K = {A E M : A is compact}

is closed in (M, 6). Let (An) be a sequence in K and A E M be such that
6(An, A) -> 0 in n --> oo. Since A is closed in the complete metric space X,
it suffices to prove that, for every e > 0, there exists a finite covering of A
by open balls of radius e. Fore > 0, there exists n such that b(A,,, A) < e/2.
Since An is compact, there exists a finite covering of An by open balls with
radius a/2. Hence there exists a finite covering of A by open balls of radius
C.

3) It remains only to prove that

A; = {A E K : catx(X)(7r(A)) >_ j}

is closed in (K, b). Let (An) be a sequence in A; and let A E K be such
that 6(A,,, A) -* 0 as n ---, oo. By Examples (a) - (b) - (c),

a(X)=T'vxZ='(S')NXZ

is an ANE. Lemma 4.7 implies the existence of a closed neighborhood U of
7r(A) such that

cat,,r(X)(lr(A)) = catr(X)(U).

Since a-1(U) is a closed neighborhood of the compact A, there exists n
such that An C U. Hence

cat,r(X)(7r(A)) = cat.,(X)(7r(An)) ? j,

andAEAj.
Lemma 4.9. If 1 < j < N + 1 and a E C(X, R), then the function
4i : A2 --* R defined by

(A) = maAx ca(u)

is lower semi-continuous.
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Proof. Let (An) be a sequence in A2 and A E A; be such that 6(A, A) -+ 0
in n - oo. For each u E A, there exists a sequence (un) in X such that
un E An and un - u. Therefore,

(p(u) =
ri
lim W(un) < li i-

and, since u E A is arbitrary,

$(A) < limn

Proof of Theorem 4.12. 1) Let us define, for 1 < j < N + 1,

cj = inf max cp.
AEA3 A

Since Aa+1 C Aj, one has clearly

-oo<infw<cl<c2<...<cN+l<+oo.

It suffices now to prove that, if ck = ci for some 1 < j < k < N + 1, then

K,j={uEX : cp'(u)=0and cp(u)=cj}

contains k - j + 1 critical orbits.
2) Assume that ck = cj = c for some 1 < j < k < N + 1 and that K,

contains n < k - j distinct critical orbits 1r(ul), ... , ir(un). Let p > 0 be
such that a restricted to B(um, 2p) is one-to-one, 1 < m < n, and define

A(,,= U U B(um + 9, P)
m=1 gEG

By the (PS)G-condition, there exists e E ]0,p2[ such that, if u E yo' 1([c -
C' C + e]) \ Np, then

11I1(U)II > E1/2.

Indeed, if it is not the case, there is a sequence (ui) such that

uiEX\Np, c -
i

<_ co(ui) < c + , 1k o'(011 <_

(49)

and, by (PS)G, we can assume, going if necessary to a subsequence, that
ir(ui) -. a(u), i -+ +oo, for some u E X. We can also assume that ui E
[0, 1]N x Z, since cp and cp' are G-invariant. But then ui , u, u E X \ Al ,

o(u) = c, <p(u) = 0, a contradiction since Np is a neighborhood of K, By
the definition of ck, there exists A E Ak such that

(A)=maxcp<c+e.
A
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Let B = A \ N2p Lemma 4.6 implies that

k < cat,r(X)(7r(A)) < cat,r(X)(7r(B) U7r(.NU2p))

< cat,,(X)(7r(B)) + cat,r(X)(N2p)

It follows from the definition of category that cat (X)(N2p) < n. But then

k < catx(X)(x(B)) + n < cat,r(X)(a(B)) + k - j,

i.e. B E A1.
3) Lemmas 4.8 and 4.9 and Ekeland's variational principle imply the

existence of C E Aj such that

4i(C) «(B) < P < c + e,

b(B, C) < e1/2

4i(D) > 4i(C) - f1"2b(C, D) (50)

whenever D E Aj and D $ C. Since B fl NZp = and b(B, C) < e < p,
C fl Np = 0. In particular, the set

S= {u E C : c- e< O(u)}

is contained in (p-'([c - e, c + e]) \ Np. By (49) and the continuity of ya', we
can find, for each u E S, b > 0 and v E X with IvuI = 1, such that, for
every g E G, one has

I h I < bu g + h), vu) < -e1j2. (51)

By the compactness of S, there exists a finite covering of S of the form
{B1, ... , Be} with

Bi = B(us,bu;), 1 < i < P.

Let us define 4%i : X --; [0,1] by

Y
EgCGdist(u+g,CBi)

(u _ r
ugEG dist(u + g, CBj) 'uj=1 r

I

ifuE UBj
j=1

e

V)i(u)=0, if UBj.
j=1

Finally, let b = min{bu, , ... , but }, let X -+ [0,1] be a continuous
invariant function such that

O(u) = 1 if c < cp(u)
= 0 if cp(u) < c - e,
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and let rl E C([0,1] x X, X) be defined by

t
71(t, u) = u+tbv(u) wi(u)vU:

For each t E [0, 1], the mapping rl(t, .) satisfies the equivariance property

rl(t, u + g) = rl(t, u) + g

for all u E X and all g E G. It follows from Lemma 4.6 that, if D = 71(1, C),

cat,,(x)(a(D)) > cat,(x)(1r(C)) ? j,

and hence, D being compact, D E A; .

The mean value theorem and (51) imply that, for each u E S, there is
some,T E [0, 1[ for which

(P(rl(l,u))-co(u) = u)),61P(u) bi(u)vui)

i=

t t

Y'i(u)(Tl (u + 7-60(u) E'Yi(u)vUi), vu )
i=1 i=1

< -C 1/260(U).

If u V S, V)(u) = 0, and v(tl(1, u)) = cp(u). If u E C is such that p(r7(1, u))
-t(D), we obtain

c < cp(rl(1, u)) < V(u)

so that u E S and z,(u) = 1. By (52), we get

'P(rl(l, u)) - cp(u) < -e1/26

and, in particular,

-b(D) + c112S < (p(u) < q(C).

But, by the definition of D, we have

b(C, D) < S

and hence
P(D) + C1/26 (C, D) < 4(C),

which contradicts (50) and completes the proof. 0

Assume now that L : [0, T] x RN x RN -+ R satisfies the assumptions
(L1) to (L4) of Section 4.2. We shall say that two weak solutions u and v
of (18) are geometrically distinct if

u$v(mod Tiei, 1<i<N).



4.6. Multiple Critical Points of Periodic Functionals 105

Theorem 4.13. Under assumptions (L1) to (L4) of Section 4.2, problem
(18) has at least N + 1 geometrically distinct weak solutions.

Proof. We shall apply Theorem 4.12 with X = HT and

N

G = kiT ei : ki E Z, l < i < N ,

i.1

so that the function cp defined on HT by

T(u) = f L(t, u(t), ii(t)) dt
0

is G-invariant, continuously differentiable, bounded from below, and sat-
isfies the (PS)G-condition, as shown in the beginning of this section. By
Theorem 4.12, co has at least N + 1 critical orbits, since N is the dimension
of the space generated by G. It is then easy to obtain, as in Theorem 4.6,
N + 1 geometrically distinct solutions of (18).

Remark 4.7. We shall prove in Section 9.4 that, under a nondegener-
acy assumption, problem (18) has at least 2N geometrically distinct weak
solutions.

Examples
1) For each m > 0, g > 0, f E R, and f E L1(0, T; R) such that

rT

J
f(t)dt=0,

0

the equation of the forced simple pendulum

Mf2u(t) + gf sin u(t) = f (t)

has at least two geometrically distinct weak T-periodic solutions. It suffices
to take G = {2kir : k E Z}.

2) For each mi > 0, Pi E R, g > 0 and fi E L1(0, T; R) such that

T
fi(t)dt=0

(i = 1, 2), the equations of the forced double pendulum, which correspond
to

L(t, x1, x2, y1, y2) = (1/2)(ml + m2)I2yi

+ (1/2)m242y
+ m211 e2yiy2 cos(x1 - x2) + (ml -1- m2)gtl cos xl

+ m2ge2 cos x2 + .fi(t)xl + f2(t)x2,
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have at least three geometrically distinct weak T-periodic solutions, as
L satisfies conditions (L1) to (L4) of Section 4.2 and is G-invariant for
G = {21rklel + 27rk2e2 : ki, k2 E Z}.

3)Foreachmi>0,fi>0,0<a<t1,0<b<t2,g>0,k>0,and
hi E L1(0, T; R), (i = 1, 2), the equations of a double pendulum coupled by
a linear spring with spring constant k attached at distances a and b of the
respective fixed points of the pendulums and driven by horizontal forces
-2adk + h, (t) and 2bdk + h2(t) where d is the distance between the fixed
points, correspond to

L(t, 11, 02, Y1, y2) = (1/2)[mit y1 + m2t2y2]

- [a2 + b2 - tab cos(x1 - x2) - 2d(b sin x2 - a sin x,)]

+ mlgtl cos x1 + m2gt2 cos x2 + h1(t) sin x1 + h2(t) sin x2.

Again, those equations have at least three geometrically distinct weak T-
periodic solutions.
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Exercises

1. Let M be a complete metric space, c : M R a l.s.c. nonnegative
function and T : M M a mapping such that

d(u,Tu) < p(u) - p(Tu)

for each u E M. Show that T has a fixed point (Caristi).

Hint. Apply Ekeland's principle with e = 2 to get v E M such that

(1/2)d(v, Tv) > cp(v) - cp(Tv).

2. Show that if T : M --; M satisfies

d(Tu,Tv) < kd(u, v)
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for some k E [0, 1[ and all u, v E M, then a function cp exists having
the properties of Exercise 4.1.

Hint. Try cp of the form V(u) = cd(u,Tu) and determine c.

3. Given an elementary proof of Ekeland's principle when M = RN.

Hint. Apply the results of Chapter 1 to the coercive function

O(w) = F(w) + ellu - wll where D(u) < inf 4 + e

and show that if 0 achieves its minimum at v, then v satisfies the
conditions of Ekeland's principle ([HiU1]).

4. Let H be a Hilbert space, C C H a closed convex set and let 1 E
C'(H,R) be bounded from below and such that (I - C C.
Show that for each e > 0 and each u E C with F(u) < infc -t + e
there exists v E C such that

ti) D(v) < 4(u)
ii) IIv -ull < E1/2

iii) IIV.(D(u)II C e1/2.

Hint. Apply Ekeland's principle with M = C and w = (1-t)v+t(v-
V<k(v)), t E [0, 1]. ([Ho5], [DFS1])

5. Let X be a Banach space and cp E C'(X, R) be such that cp achieves
its minimum on X at uo and such that, for some R > 0,

{u E X : cp'(u) = 0} C B(uo, R).

If cp satisfies the (PS)-condition, on OB(uo, R), then

aai
f R) f > f (uo).

uo,

Hint. Proceed by contradiction and apply Ekeland's variational prin-
ciple.

6. Let X be a Banach space and let cp : X , R be a differentiable
function satisfying the Palais-Smale condition.

a) If cp is bounded from below then (p is coercive.

b) If ep'1(c) is bounded for some c E R then Jcpj is coercive.

Hint. Apply Ekeland's principle and a contradiction argument.

7. Let X be a Banach space and let cp E C1(X, R) satisfying the (PS)-
condition. If cp is not bounded from below and has a local minimum,
show that cp has at least two critical points. If ep has n > 2 local
minima, show that it has at least n + 1 critical points.
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8. Show that Theorem 4.9 still holds for the problem

u(t) = VF(t, u(t))

u(0) - u(T) = it(0) - ii(T) = 0

if F(t, u) = G(u) + H(t, u) with

(G(u) - G(v), u - v) > -yju - vI2

for some y < w2 and all u, v E RN and

IVH(t, u)l < h(t)

for some h E L1(0,T), all u E RN and a.e. t E [0, T]. ([AhL1]).

Hint. Use Wirtinger inequality.

9. Show that, when F satisfies the regularity conditions of Section 1.8
and

IVF(t, x)I < h(t)

for some h E L1(0,T), a.e. t E [0, T] and each x E RN, the problem

ii(t) + m2w2u(t) = VF(t, u(t))

u(0) - u(T) = u(0) - it(T) = 0

with m E N \ {0} and w = 2a/T has at least one solution if either

10

T
F(t, a cos mwt + b sin mwt) dt --> +oo

or

i F(t, a cos mwt + b sin rnwt) dt
T

when I(a,b)I -+ oo in R2N

Hint. Use Rabinowitz saddle point theorem with, according to the
case, X- =H-,X+=HO ED H+ or X-=H-®H°,X+=H+
where

m-1
H- _ E aj cos jwt + bj sin jwt : aj E RN,

j=o

bjERN,0<j<m-1}
H° = {a cos mwt + b sin mwt : a E RN, b E RN}

rT T
H+ = u E HT : J u(t) cos jwt dt = 1 u(t) sin jwt dt = 0,

0 o
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0 < j <.m} and, to verify the PS,-condition, estimate

(uk), uk - uk )I

if u = u- + uO + u+ with u- EH-, u° E H°, u+ E H+.

10. Compare the results of Exercise 3.3 with the conclusions of Theorem
4.11.

11. Let Y be a closed subspace of a normed space. The following proper-
ties are equivalent:

i) Y is an ANE;

ii) there is a neighborhood U of Y of which Y is a retract.

12. Use the mountain pass lemma to show that if a E R and f E L' (0, T)
is such that fT f (t) dt = 0, then the problem

u"+asinu= f(t)

has a weak solution geometrically distinct from the one which mini-
mizes the action functional ([MaW2]).



5

A Borsuk-Ulam f and
Index Theories

Introduction

The (classical) Borsuk-Ulam theorem is a result which ensures that if 0 C
R' is an open bounded symmetric neighborhood of the origin and if f :
8S2 -*

Rs-1 is continuous and odd, then 0 E f(81). This result can be
proved using degree theory, a way of making an algebraic count of the zeros,
in the closure D of an open bounded set D C R', of continuous mappings
g : D C R" having no zeros on 8D. A short account of degree theory is
given in Section 5.3.

The Borsuk-Ulam theorem is fundamental in measuring the "size" of
some subsets of a Banach space X which are symmetric with respect to
the origin. If A is such a set, its "size" is measured by its index, namely the
smallest integer k such that there exists an odd mapping f E C(A, Rc\{0}).
For 8S2 like above, taking f = Id shows that ind 81 < n and Borsuk-Ulam
theorem implies that ind 8S2 = n.

Symmetry with respect to the origin and oddness of a mapping are noth-
ing but invariance properties with respect to a representation of the group
Z2. To cover more general situations, we sketch in Section 5.1 the elements
of the theory of representation of compact topological groups in Banach
spaces (or how to represent groups by linear operators). The case of the
group S1 will be particularly important for the study of periodic solutions
of autonomous Hamiltonian systems. Indeed, if u(t) is a solution of such a
system, the same is true for u(t + w) for each w E R and hence, if u(t) is
T-periodic, we see the appearance of the representation T(w) of the group
R/TZ - S1 given by

(T(w)u)(t) = u(t + w).

The computation of the index associated to the group S1 requires a
Borsuk-Ulam theorem in this setting. This is done in Section 5.3 using the
parametrized Sard theorem introduced in Section 5.2 and degree theory.

One then disposes of the elements necessary to develop in Section 5.4 a
general index theory containing the previously mentioned ones as special
cases.
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5.1 Group Representations

Let G be a topological group. A representation of G over a Banach space
X is a family {T(g)LEG of linear operators T(g) : X --} X such that

T(O) = Id,

T(91 + 92) = T(91)T(92)
(g, u) --+ T(g) u is continuous.

A subset A of X is invariant (under the representation) if T(g)A = A
for all g E G. A representation {T(g)}gEG of G over X is isometric if
(IT(g)ull =11ull for all 9 E G and all u E X.

Lemma 5.1. Let {T(g)}gEG be a representation of a compact group over
a Banach space X. Let Y be a closed invariant vector subspace of X which
admits a topological complement. Then Y has an invariant topological com-
plement.

Proof. Let P be a (continuous) projector onto Y. Then the linear contin-
uous operator

Q = f T(-g)PT(g) dg,
G

where dg is the normalized Haar measure on G, clearly maps X into Y
and, if y E Y,

Qy = f T(-9)PT(9)yd9 = f T(-9)T(9)yd9 = y.
G G

Thus Q is a continuous projector onto Y and is easily checked to be equi-
variant. Consequently, the range of Id - Q is an invariant topological com-
plement of Y.

Lemma 5.2. Let {T(g)}gEG be a representation of a compact topological
group over RN. Then there exists an invertible matrix L : RN -+ RN

such that LT(g)L-1 is an isometric representation of G over RN (with
the Euclidean norm).

Proof. Since the quadratic form

Q(u) = f IT(9)ul2d9
G

is positive definite, there exists a nonsingular matrix L : RN -,. RN such
that Qu = (LuJ2. It is then easy to verify that LT(g)L-1 is an isometric
representation of G over RN.

Theorem 5.1. Let {T(8)}8ES, be an isometric representation of S' over
RN (with the Euclidean norm). Then T(O) has the matrix representation

diag {M1i... , Mk}, (1)
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where M3 is either of order 1 and

M5 = 1, (2)

or is of order 2 and for some n E N \ {0} one has

Mi = _
cosnO -sinnO (3)

( sin nO cos nO

Proof. Since S1 = R/27rZ, we can consider T(O) as a continuous 27r-
periodic mapping over R. We first prove that T(O) is differentiable. Since

lim Ia-1 f aT(w)dwI =T(0) = Id
L o J

we see that fo T(O)dO is invertible for all a ,E 0 sufficiently small. On the
other hand, for any a E R and /3 E R, we have

T(p) J 0, T(O)dO = J a T(,0 + O)dO = J
#+T(O)

dB,
0 o p

so that, for a # 0 sufficiently small, we get

T(Q)
= (joQ+aT(O)dB

ToT(0)d01-1.
`o

This implies clearly the differentiability of T(/3) at any )3 E R. Differenti-
ating both sides of the identity

T(O + 3) = T(O)T(/3)

with respect to 0 and setting 0 = 0, we obtain

T'(/3) = 7'(0)T(a),
so that

T(O) = exp(OL)

where L = T'(0). Since the representation is isometric, T(.)u is bounded
over R for every u E RN. By the theory of linear differential equations,
T(O) has a matrix representation (1), where M,, is either of order 1 and
M5 = 1, or is of order 2 and

_ cos,3j0 -sinfljOM - ( sin,l3j 0 cos,Q30

for some Ql > 0. Since T(2a) = Id, we necessarily have i9 E N \ {0}.

Remark 5.1. The matrices M, are the irreductible representations of S1.

Remark 5.2. Let

Fix(S')_{uERN : T(O)u = u for all 0 E Sl}.

Theorem 5.1 implies that if Fix(S1) _ {0} and if T(0) is isometric, then N
must be even.
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5.2 The Parametrized Sard Theorem

Let U C RP be open. A point v E R9 is a regular value of f E C' (U, R°)
(m > 1) if f(u) is onto for each u E f -1(v).

We shall use the following important result.

Sard Theorem. Let U C RP be open and let f E Cm(U, R9). If m >
max(0, p - q), then almost every point of R9 is a regular value of f.

A subset Z of RP is a Cm-submanifold of dimension d if, for every z E Z,
there exists an open neighborhood A of 0 in RP, an open neighborhood B
of z in RP and a Cm-diffeomorphism 4) : A --+ B such that

-t(A n Rd) = B n Z.

It is easy to construct submanifolds by using regular values.

Preimage Theorem. Let U C RP be open and let f E Cm(U, Re), (rn >
1). Ifs v is a regular value of f and if f-1(v) # 0, then f-1(v) is a C'-
submanifold of dimension p - q.

Proof. Let z E Z = f -1(v). Without loss of generality, we can assume
that v = 0 and z = 0. Since 0 is a regular value of f, the kernel X of f'(0)
has dimension p - q. Define now t' : X x X1 -+ RP by

'0(x, y) = (x, f (x, y))

It is easy to verify that 0'(0) is invertible. By the inverse function theorem,
z/) is a C'-diffeomorphism from a open neighborhood B of 0 in RP to an
open neighborhood A of 0 in RP. Moreover,

V)(B n Z) = A n RP-9.

Setting -b _ -1 completes the proof.

We now state and prove the parametrized Sard theorem.

Theorem 5.2. Let U C RP, A C R' be open and let f E Cm(U x A, RQ).
If m > max(0, p - q) and 0 E R9 is a regular value of f, then, for almost
every .\ E A, 0 is a regular value of f (., .1).

Proof. We can assume that Z = f -1(0) # 0. By the preimage theorem,
Z is a Cm-submanifold of dimension d = p + n - q. Since Z is Lindelof,
there is a sequence (-bj, Aj, Bj) satisfying the definition of a submanifold
such that

Z C U Bj.
jEN

Let us denote by xj the restriction of cj to Aj n Rd = D(xj) and let
xj (v) = (yj (v), zj (v)) E U x A.



5.2. The Parametrized Sard Theorem 115

By Sard's theorem, for each j E N, almost every A E A is a regular value
of zj and then almost every A E A will be a regular value of every zj.

Assume that f (u, A) = 0 and that A is a regular value for every zj. Then
there is some j E N and v E D(xj) such that

u=yj(v), A=z5(v).

Now 0 is a regular value of f and hence, for each c E R4 there will be
a E R" and b E Rn such that

fu (u, A)a + fN'(u, A)b = c. (4)

From

we deduce

f (yj (s), zj (s)) = 0, SE D(xj ),

Al (u, A) yj' (v) + f,\' (u, A) zj' (v) = 0. 5)

Moreover, A being a regular value of zj, there will exist w E RP+n_9 such
that

zil (v)w = b. (6)

From (4) - (5) - (6) we deduce that

c = fu(u, A)[a - yj(v)w].

Hence 0 is a regular value of f (.,A) and the proof is complete.

Let {T(8)}OESI be an isometric representation of S' over R2k (with the
Euclidean norm) such that Fix(S') = {0}. By Theorem 5.1 and Remark
5.2, if we identify R2k with Ck, T(O) will have the representation

T(O)u = (einleul,...,einkeuk),
(7)

where nl, ... , nk E N \ {0}. _
Let D be an open invariant neighborhood of 0 and let c E C(D, R2k)

and n E N \ {0} be such that

ID E Cl(D, R2k), (8)

-t(T(B)u) = ein°D(u), 0 E S1, u E OD, (9)

0 ¢ 4;(8D). (10)

By (7), (9), and (10), mj = n/nj E N \ {0}, because if (0, ... , uj, ... , 0) E
8D, then, for 8 = 2'r/nj,

4i(T(9)u) = $(0, ...,u2,. .. , 0) = e21an/n3 c(0, ... , u , , . . . , 0 ) .

Moreover, for all A = (A,,.. -, Ak) E Ckxk, the mapping 4 defined by

4Da(u) = 4i(u) + Alum ' + ... + Akuk r
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satisfies the equivariance property (9).

Corollary 5.1. Under the above assumptions 0 E Ck is a regular value of
the restriction of fia to D \ {0} for almost every A E Ckxk

Proof. Set A = Ckxk and define f U x A --+ Ck by f (u, A) = t;k (u). In
order to apply Theorem 5.2 with p = q = 2k, m = 1 and n = k2, it suffices
to check that f'(u, A) is onto for each (u, A) E U x A, i.e. to be able to solve
the equation in (a, b) E Ck X

Cka

f'u(u, A)a + f'A(u, A)b = c

for each c E Ck. Choosing a = 0, it remains to solve

blur'+...+bkukk=C

which is always possible as u # 0. 0

5.3 Topological Degree

Let D C RN be bounded and open and let f E C(D, RN). If

0 ¢ f (OD),

f E C2 (D, RN), (11)

0 is a regular value of f ID,

the implicit function theorem implies that f -i {0} is finite. The topological
degree of f in D (with respect to 0) is then defined by

d(f, D) _ L sign det f'(u)
uEJ-'{0}

and represents, therefore in the "generic" case (11), the "algebraic" number
of zeros off in D.

The following lemma is basic to extend the concept of degree in more
general situations and prove its basic properties.

Lemma 5.3. Let F E C(D x [0, 1], RN) be such that

0 ¢ .T((9D x [0,1]),

.F E C2(D x [0,1]), (12)

0 is a regular value of j) ID (j = 0, 1). Then one has d(.F(., 0), D) _
d(.F(.,1), D).
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Let g E C(D, RN) be such that 0 V g(OD). The Weierstrass approxima-
tion theorem and the Sard theorem imply the existence of f E C(D, RN)
satisfying (11) and the inequality

If (u) - g(u)I < dist(0, g(OD)) (13)

for all u E OD. We then define the topological degree of g in D by

d(g, D) = d(f, D).

Such a definition is meaningful if we prove that for f E C(D, RN) satisfying
(11) and (13) we have

If we set

we obtain

d(f , D) = d(f, D).

Y(u,t) = (1 -t)f(u)+tf(u),

I.1 (u,t) - g(u) I < dist(0,g(OD))

for all (u, t) E OD x [0,1]. Consequently,

0 ¢ .F(OD x [0,1])

and we conclude by applying Lemma 5.3.
By reduction to the C2-regular case (11), it is easy to prove the following

properties.
(i) If 0 V g(D) then d(g, D) = 0, which immediately gives the existence

property: if d(g, D) 0 0, then 0 E g(D).
(ii) (Excision). If U C D is open and 0 V g(D\U), then d(g, D) = d(g, U).
(iii) (Additivity). If D = D1 U D2 where D1 and D2 are open disjoint sets

and 0 V g(aD1 U 9D2), then

d(g, D) = d(g, D1) + d(g, D2).

(iv) (Cartesian product). Let D1 C R" and D2 C R4 be open and
bounded and let fl E C(D1i RP), f2 E C(D2i R9) be such that 0 0 ff (aDj)
(j = 1, 2). Then

d((f1, f2), D1 x D2) = d(f1, Dl)d(f2, D2)

(In the C2-regular case, (iv) follows from the relation det(fl, f2)'(ul, u2) _
det fi(u1)det f2(u2).)

Example. Let p > 0, D = {u E R2k : Jul < p}, mj E N \ {0} (1 < j < k)
and identify R2k with Ck. If we define f D -> Ck by

f (u1, ... uk) = (um' , ... ukk )
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then

d(f, D) = ml ... Mk- (14)

Proof. By properties (ii) and (iv), it suffices to consider the case k = 1.
Define f : C -* C by f(u) = u', i.e. f(x + iy) = (x + iy)m, where
m E N \ {0}. For each z E C \ {0}, the equation f (u) = z has exactly
rn solutions and, by the Cauchy-Riemann equations, det f'(u) > 0 at each
solution. It follows from the definition of the degree that d(f, D) = m.

Theorem 5.3 (Homotopy invariance). Let 9 E C(D x [0, 1], RN) be such
that 0 ¢ 9(OD x [0,1]). Then

d(g(., 0), D) = d(g(.,1), D).

Proof. By Weierstrass approximation theorem and Sard theorem, there is
a F E C(D x [0,1],RN) satisfying (12) and such that

l.F(u,t) - g(u,t)l < dist(0,9(OD x [0, 1]))

for all (u, t) E 8D x [0,1]. One concludes by using Lemma 5.3 and the
definitions of the degree.

Corollary 5.2. (Continuity property). Let f E C(D, RN) and g E C(D, RN)
be such that 0 V f (8D) and

If (u) - g(u) I < dist(0, f (8D))

for all u E D. Then d(f, D) = d(g, D).

Proof. Use the homotopy

g(u, t) = (1- Of (u) + tg(u)

and Theorem 5.3.

Theorem 5.4. Let {T(8)}9ES' be an isometric representation of S' over
R2k (with the Euclidean norm) such that Fix(S1) = {0} and let D be an
open bounded invariant neighborhood of 0. If I E C(D, R2k) and n E
N \ {0} verify (9) and (10), then d(1, D) 0.

Proof. First step. Identifying R2k and Ck and using Theorem 5.1, we
see that T(B) has the representation (7). Let mj = n/n' (1 < j < k) where
the nj are given in (7) and let p > 0 be such that when Jul < p then u E D.
Define 'Y by

(ur' , ... , ukk) if Jul < p,
'k(u) _ -t(u) if u E OD,

and use Tietze theorem to obtain a continuous extension c1 of * over D.
By the continuity property of the degree we immediately obtain

D) = d(4>1, D).
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Second step. Let c > 0. By Weierstrass approximation theorem, there
exists a polynomial fit :

R2k -- R2k such that

4 i(u)l < e (15)

for alluED.
Third step. Define on D by3

z,
s(u) r d8

0

so that
-t3(T(9)u) = u E D, 0 E S1.

If Jul < p or if u E 8D we deduce from (15) that

1 12v
e-in - bl(T(0)u)) dB

By continuity of the degree, this implies that

sd(t1, D) = d(d, D)

for e > 0 small enough.
Fourth step. Let i > 0, since 4I36 verifies (8), (9), and, for e > 0 small
enough, (10), the Corollary 5.1 implies the existence of A E Ckxk such that
JAI < i and 0 is a regular value of D4ID\{o}, where

44(u) =,M(u) -{- alum' -}- ... -} Akuk ` (17)

Consequently, {0} fl (D \ {0}) is made of isolated points. But, since

4)4(T(0)u) = ein8-4(u), u E D, 0 E S1,

we see that I (T(0)u) = 0, 0 E S1 whenever M(u) = 0. Therefore, 04 4
' (D \ {0}) and, letting U = {u E D : Jul < p} and using the continuity
and excision properties of degree, we obtain, for i small enough,

d(,P3, D) = d(t4, D).

Fifth step. For c and 1i small enough, it follows from (16), (17), and (14)
that

U) = d(4>1 i U) = d(*, U) = ml ... Mk # 0

and the proof is complete.

Theorem 5.5. Let {T(0)}eES1 be a representation of S1 over R2k such
that Fix(S1) = {0} and let D be an open bounded invariant neighborhood
of 0. If 1 E C(OD, Ck-1) and n E N \ {0} are such that

1(T(0)u) = ein°I(u), 0 E S1, u E 8D,
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then 0 E 4'(8D).

Proof. Replacing T(O) by LT(O)L-1 and -D by 4D o L-1 with L given in
Lemma 5.2 allows us to assume that T(O) is an isometric representation
of S' over R2k with the Euclidean norm. -t has a continuous extension
zG : D -+ Ck-1 C Ck by Tietze theorem and if 0 V -D(OD) Theorem 5.4
implies that d(t, D) # 0. But if z E Ck is close enough to the origin and
not in Ck-1, property (i) of the degree and its continuity imply that

d(O,D) =d(O-z,D) = 0,

a contradiction.

5.4 Index Theories

Let G be a compact topological group and let {T(g)}gEG be an isometric
representation of G over a Banach space X.

A mapping R between two invariant subsets of X (under the represen-
tation of G) is equivariant if

R o T(g) = T(g) o R

for all g E G.

Definition 5.1. An index (for {T(g)}gEG) is a mapping from the closed
invariant subsets of X into N U loo} such that:

(i) ind A = 0 if and only if A = ¢;

(ii) if R : Al --r A2 is equivariant and continuous, then

ind Al < ind A2;

(iii) if A is compact invariant, there is a closed invariant neighborhood N
of A such that

ind N = ind A;

(iv) ind (A1 U A2) < ind Ai + ind A2 for all invariant subsets Ai (i = 1, 2).

We shall give two important examples.

Example 1. Let G = S' and define the Sl-index of a closed invariant
subset A of X as the smallest integer k such that there exists a n E N \ {0}
and a 4 E C(A, Ck `{0}) satisfying the following equivariance property

1(T(8)u) = ei"B-t(u), 0 E S1, u E A. (18)

If such a mapping fi does not exist, we define

ind A = oo.
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Finally, we define ind 0 = 0.
We now have to show that this is an index in the sense of Definition

5.1. We first notice that if ID E C(A, Ck \ {0}) satisfies (18), there exists a
continuous extension V of 4) over X satisfying (18). It suffices to use first
Tietze theorem to obtain a continuous extension 4) of 4 over X and then
the mapping IQ defined by

2r

2x e-inei(T(O)u) dO
0

will satisfy the requirements.
We now check that the properties (i) to (iv) are satisfied.
(i) Follows directly from the definition.
(ii) If ind A2 = oo, the result is trivial. If ind A2 = k < oo, then there is a

4) E C(A2i Ck \ {0}) satisfying (18). Since R is equivariant and continuous,
IF = ID o R E C(A1, Ck \ {0}) and satisfies (18). Thus ind Al < k.

(iii) Let V be any closed invariant neighborhood of the invariant subset
A. Property (ii) implies that

indV>indA

since the inclusion map is equivariant. Thus, the result is trivial if ind A =
oo. If indA = k < oo, there is a 4) E C(A,Ck \ {0}) satisfying (18)
and hence, a continuous extension ' of 4) over X satisfying (18). Since
0 *(A) = 4)(A) and 4)(A) is compact, there is, by uniform continuity
of W on A, a b > 0 such that 0 V '1 (A5). Thus, Ab is a closed invariant
neighborhood of A and ind A6 < k. Consequently, ind Ab = ind A.

(iv) If ind Al or ind A2 is infinite, the result is trivial. So, assume that
ind A3 = kk < oo (j = 1,2). Then there exists 4, E C(A2,Ck \ {0})
satisfying (18) with n = nj and a continuous extension of 4j over X
satisfying (18) with n = nj (j = 1, 2). Define

'I X . Cki+k2

111(u) = (Wl 1(u), ... , *i 2k1(u), *211(u), ... , *2 k2 (u))'

has
l : Al U A2 -, Ckl+k2 \ {0}

'(T(O)u) = l/ein2nh9*12 u ein2inj#Wn2 (ul l 1,1( ) 1,k )
inn 8 nl inln28 n1 (/ inn

e i 2 2,1(u), ... , e 2 k2u)) = e i 2 (u)
so that ind(A1 U A2) < k1 + k2.

Example 2. Let G = Z2 and define

T(0) = Id, T(1) = -Id.
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A subset A of X is invariant under this representation of Z2 if and only if it
is symmetric with respect to the origin. The Z2-indez of a closed invariant
subset A of X is defined as the smallest integer k such that there exists an
odd mapping F E C(A, Rk \ {0}). If such a mapping does not exist, one
defines ind A = oo and, finally, one defines ind 0 = 0. The properties of
Definition 5.1 are checked as before.

We now give some results on the computation of the S1-index. Recall
that the S'-orbit of u E X is the set 0(u) = {T(0)u : 0 E Sl }.

Proposition 5.1. The Sl-index of a finite union of Sl-orbits which do
not meet Fix(S1) is one.

Proof. Assume that A is the union of disjoint Sl-orbits 0(ui ), ... , 0(uj)
where uk V Fix(S1) (1 < k < j). Let us look at 0 -# T(0)uk as a continuous
mapping on R with minimal period 27r/nk for some nk E N \ {0}. The
mapping 4 : A -+ C \ {0} defined by

4>(T(0)uk) = ein8

where n = n1n2 ... nj, satisfies (18). Thus ind A = 1.

Proposition 5.2. Let Y be a closed invariant subspace of X of finite
codimension and let A be a closed invariant subset of X. If Fix(S1) C Y
and A fl Y = o, then

indA < 2 codim Y.

Proof. Lemma 5.1 implies the existence of an invariant topological com-
plement Z of Y. As Fix(Sl) fl z = {0}, it follows from Remark 5.2 that
the dimension of Z is even and, identifying Z with CN, we deduce from
Theorem 5.1 and Lemma 5.3 that the restriction of T(0) to Z admits the
representation

T(0) = L-1T(0) o L
T(9)u = (ein'Bui, ... , einNeu]Nr), u E CN.

The mapping 4t : Z \ {0} -. CN \ {0} defined by

-t = ioL,

ID(u) _ (uI/n',...,unNnN)

with n the least common multiple of n1i... nnr satisfies (18) as it is easily
checked. Let P be the projector onto Z along Y. Since A fl Y = 0, P E
C(A, Z \ {0}) and, by the invariance of Y and Z, P is equivariant. Thus
$ o P E C(A, CN \ {0}) and satisfies (18). Consequently, ind A < N =
ZcodimY.
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Proposition 5.3. Let Z be a finite-dimensional invariant subspace of X
and let D be an open bounded invariant neighborhood of 0 in Z. If z fl
Fix(S1) = {0}, then

ind OD = 2 dim Z.

Proof. Again, dim Z is even and let N =
i

dim Z. By Theorem 5.5,
ind 8D > N. Lemma 5.1 implies the existence of an invariant topologi-
cal complement Y of Z. Clearly, Fix(S') C Y and 8D fl Y = Qr, so that, by
Proposition 5.2,

ind OD <

2

codim Y = N

and the proof is complete. O

Historical and Bibliographical Notes

For the element of group representations, the reader can consult [Brdl]
and Sard theorem is proved in [Mill]. The parametrized Sard theorem is a
particular case of Thom transversality theorem [Thos] (see [AuE1]).

The topological degree for C1-mappings from regular subsets of RN into
RN was initiated in 1869 by Kronecker and extended by Brouwer in 1912
to the continuous case using simplicial techniques. See [Mill], [Llol], [Zeil],
and [Rot4] for recent expositions and discussions. The approach used here
relies upon the so-called generic method already used in 1922 by Birkhoff-
Kellogg [BiK1] to prove the Brouwer fixed point theorem, and in 1952
by Nagumo [Nag,] to define the Brouwer degree. This approach has been
widely rediscovered and developed since.

Theorem 5.4 constitutes the S'-version of the Borsuk-Ulam theorem:
d(f, D) = 1 (mod 2) for continuous and odd mappings f : D C RN -+ RN
such that 0 ¢ f (OD) and D is a symmetric open bounded neighborhood of
the origin. The original proof, due to Borsuk [Bor1], gave a positive answer
to a conjecture of Ulam. Generic proofs of this result were given inde-
pendently by Borisovich-Zvyagin-Sapronov [BZS1] and Alexander-Yorke
[AlY1]. A simpler case of Theorem 5.4 was first proved by Marzantowicz
[Marl] and Geba-Granas [GeG1] observed that the generic approach to the
Borsuk-Ulam theorem could be extended to other group actions. This is
realized in the given proof of Theorem 5.4, which is taken from Nirenberg
[Nir1].

Theorem 5.5 is the S'-version of a result of Borsuk [Bor,] for odd map-
pings. See [FHR1] for another approach to an extended version of Theorem
5.5. Propositions 5.1, 5.2, 5.3 are due to Benci [Ben,] for the case of a
Hilbert space.

Historically, the first index theory was the genus of Krasnosel'skii [Kra1,2]
which corresponds to G = Z2 and odd maps. It has been introduced as an
alternative to the Ljusternik-Schnirelmann category in the minimax ap-
proach of those authors to critical point theory [LJS1]. An extension of the
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genus to more general group actions was first published by Svarc [Sval] and
variants are due to Yang [Yani] and Conner-Floyd [CoF1,2]. Other indices
were developed by Yang [Yang], Conner-Floyd [CoF1,2], Holm-Spanier
[HoS1], and Fadell-Rabinowitz [FaR1,2]. Index theories when G = {S1}
have been introduced by Fadell-Rabinowitz [FHR1] and Fadell-Husseini
[FaH 1] .

Further information on index theories can be found in [Ano1], [Bars],
[Fad1,2,3], [Nehl], and [Ste,].

Exercises

1. A representation {T(g)}9EG of a topological group is irreductible if
T(g) has no non-trivial invariant subspace and is completely reductible
if it is a direct sum of irreductible representations. A representation
of a compact topological group over RN is always completely irre-
ductible.

Hint. Use Lemma 5.1 and induction.

2. Let D be an open bounded symmetric neighborhood of 0 in RN and
let 4? E C(D, RN)f1Cs(D, RN) be such that 4?(-u) _ -4?(u), u E 8D
and 0 V 4;(OD). For each real (n x n)-matrix A, define fiA(u) by

ltA(u) = 4?(u) + Au.

Then 0 E RN is a regular value of the restriction of to D \ {0}
for almost every A E Q R N, RN).

Hint. Following the line of Corollary 5.1 and use the density of the
subset of non-singular (n x n)-matrices. ([A1Y1], [BZS1]).

3. Let D be an open bounded symmetric neighborhood of 0 in RN and
let 4i E C(D, RN) be such that 4?(-u) = -4i(u) (u E 8D) and
0 V D(OD). Then

d(4i, D) = 1(mod 2)

(Borsuk-Ulam).

Hint. Prove the result for 4; E C1(D, RN) and 0 a regular value by
direct computation and use Exercise 5, Weierstrass approximation
theorem and invariance of degree.

4. Prove that the Z2-index defined in Example 2 has the properties (i),
(ii), (iii), and (iv) of an index.

5. Let X be a Banach space. Prove that if A C X is closed, symmetric
with respect to the origin and if 0 E A, then indz2A = +oo.
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6. Let X be a Banach space. Prove that if A C X is finite, non-empty,
symmetric with respect to the origin and if 0 0 A, then indz, A = 1.

Hint. Follow the lines of Proposition 5.1.

7. Let Y be a closed subspace with finite codimension of the Banach
space X and let A C X be closed, symmetric with respect to the
origin and such that A fl Y = . Then

indz,A < codimY.

Hint. Follow the lines of Proposition 5.2.

8. Prove that if A C R' is a bounded symmetric neighborhood of the
origin, then indz,BA = m.

Hint. Follow the lines of Proposition 5.3 and use Exercise 5.2 and
Exercise 5.3.
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Lusternik-Schnirelman Theory
and Multiple Periodic
Solutions with Fixed Energy

Introduction

When a function has some symmetry properties, one can expect to obtain
more precise information on the set of critical points by using, in the mini-
max approach, correspondingly symmetric sets which are distinguished by
a measure of their "size" given by an index theory.

For example, when cp is an even C1-mapping, the corresponding Luster-
nik-Schnirelman method consists in finding conditions under which the
values ck defined by

ck = inf max
AEAk A

are critical, where Ak denotes the collection of compact sets symmetric with
respect to the origin whose Z2-index is greater or equal to k. Of course,
different values of the ck for different k will immediately give a multiplicity
result for the critical points of V. The interest of the method lies in the
fact that multiplicity conclusions can still be obtained if ck = cj for some
k > j, the "size" indz2K,, of the set of critical points of 0 with critical
value c3 having, in this case, the lower bound k - j + 1. Of course, similar
results still hold when cp is invariant with respect to the representation of
a topological group for which an index is defined, as it is the case for S1.

Although a variant of the method of Chapter 4 based upon Ekeland's
variational principle could be used as well, we have adopted in this chapter
the more classical approach based on deformations, which is also at the
heart of the Morse theory given in Chapter 8. One considers deformations
of the underlying space X along the lines of steepest descent associated to
,o, i.e. along the trajectories of the differential system

u =

or of an associated pseudo-gradient vector field when the above differential
system or its solutions are not defined because of the lack of regularity of
o or of structure of X. When cp has some symmetry, the corresponding
symmetry of the flow has to be used to preserve the symmetries of the sets
used in the minimax process during a deformation.
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Some compactness is required in proving the basic properties of the de-
formation flow, and they follow from a Palais-Smale-type condition.

Combined with the natural Sl-invariance of the periodic solutions of
an autonomous Hamiltonian system in R2N, this approach provides the
existence of at least N distinct periodic orbits on a given convex energy
surface which does not differ too much from a sphere, in the sense that it
lies between two concentric spheres of radius r and V2-r.

Local results on the multiplicity of periodic orbits of Hamiltonian sys-
tems, namely on periodic orbits with prescribed energy near an equilibrium,
are also given in Section 6.6. Their obtention relies upon a variational
bifurcation argument which reduces the problem, through the Liapunov-
Schmidt method, to a nonlinear eigenvalue problem in a finite-dimensional
space (Section 6.5). This last problem is studied in Section 6.4 by a variant
of the Lusternik-Schnirelman method given in Sections 6.1 and 6.2.

6.1 Equivariant Deformations

The concept of "pseudo-gradient" is required to extend the steepest descent
method to a general Banach space.

Definition 6.1. Let X be a Banach space, cp E C'(X, R) and

Y = fu EX : cn'(u)00}. (1)

A pseudo-gradient vector field for cp on Y is a locally Lipschitz continuous
mapping v : Y -> X such that, for every u E Y, one has

IIv(u)II < 211co (u)Il (2)

(c' M, v(u)) >_ (3)

Lemma 6.1. Under the assumptions of Definition 6.1, there exists a pseudo-
gradient vector field for cp on Y.

Proof. Let ii E Y; as cp'(ii) # 0, there exists w E X such that liwIl = 1 and

(9'(u), w) > 311 0) 11

Let v = Zllcp'(u)jj w. Then

3
1lvII = 2llcG (u)il < 211so'(u)jj

(co (u), v) =
2 ilsa (u)ii < (il), w) > its (u)Ii2
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Since cp' is continuous, there is an open neighborhood Vu of u in Y such
that, for every u E U one has

llvll < 211c (u)ll (4)
(WI

(u), v) > IIco'(u)112. (5)
The family V = {Vu}uEY is an open covering of the metric, and thus,
paracompact space Y. Therefore V has a locally finite refinement {Wu:}iEI,
i.e. each W;,; is one Vu and each y E Y has a neighborhood Uy such that
Uy E Wu; : 0 only for a finite number of values of i. Let us define

pi (u) = dist(u,C W;,;), i E I

and, for u E Y,

v(u) = 1: Pi (U) v

iEI jEI Pi (u)
a

where vi corresponds to ui in the same way as v corresponds to u above.
All the,sums are finite as {Wu,}iEI is locally finite, and v is clearly locally
Lipschitz continuous. Since pi vanishes outside W6;, v(u) is a convex com-
bination of elements satisfying (4) and (5) and it is then easy to check that
(2) and (3) hold for every u E Y.

Remark 6.1. If X is a Hilbert space and co : X R is differentiable, the
gradient V<p of cp defined by

(V<p(u), w) = (cp'(u), w), w E X

satisfies (2) and (3).

Definition 6.2. A functional p : X -> R is invariant for the representa-
tion {T(g)}yEG of the topological group G if

co o T(g) = co, g E G.

We shall prove that any invariant cp E C'(X,R) has an equivariant
pseudo-gradient vector field.

Lemma 6.2. If cp E C1(X, R) is invariant for the isometric representation
{T(g)}yEG, then, for all g E G, u E X, h E X,

h) = (cP (u), T(-g)h) (6)

III (T(g)u)II = III (u)II. (7)

Proof. By definition,

(co'(T(g)u), h) = lim
cp(T(g)(u + tT(-g)h)) - p(T(g)u)

t-.o t

lim
`o(u + tT(-g)h) - p(u)

t-.o t
(G (u),T(-g)h)
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Since T(-g) is a surjective isometry, (7) follows from (6).

Lemma 6.3. Let X and Y be metric spaces and T : Y -i X a locally
Lipschitz continuous function. If A C Y is compact, there exists 6 > 0 such
that T is Lipschitz continuous on A5.

Proof. For each u E A, there is an open ball B(u, 6(u)) and a nonnegative
constant £(u) such that

d(Tv, Tw) < t(u) d(v, w), v, w E B(u, 6(u)).

The family {B(u, is an open covering of A and contains a finite
covering {B(ui, 6(ui)/3)}1<i<,¢ of A. Let

6 = min 6(ui)/3.
1<i<j

Then, by construction

M = sup{d(Tv, Tw) : v, w E Aa } < oo

and we shall show that T is Lipschitz continuous on Aa with Lipschitz
constant

£ = max{M/6, £(ul),... , P(ub)}.

Indeed, take v and w in A5i if d(v, w) < 6 and v E B(ui, 26(u1)/3), then
w E B(ui, 6(u1)) and

d(Tv, Tw) < t(ui) d(v, w) < P d(v, w).

If d(v, w) > 6, then

d(Tv, Tw) < b 6 < P d(v, w),

and the proof is complete.

Lemma 6.4. If co E C'(X, R) is invariant for the isometric representation
{T(g)}gEG of the compact group G, then there exists an equivariant pseudo-
gradient vector field for o and Y = {u E X : p'(u) 54 0}.

Proof. Let w : Y --} X be a pseudo-gradient vector field as given by
Lemma 6.1 and define v : Y -* X by

v(u) = JT(_g)w(T(g)u)dg,

where dg is the (normalized) Haar measure on G. Then v is equivariant
because

v(T(9)u) = j T (-g) w(T(g + §)u) dg

T(9) T(-g - g) w(T(g + 9)u) dg

= T(g) v(u).
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Now v satisfies (2) and (3) because, by Lemma 6.2, we obtain

IIv(u)II <- j IIT(-g) w(T(g)u)II dg

j Ilw(T(g)u)II dg <- 2 fG IIV'(T (g)u)II dg

= 211w'(u)II,

v(u)) = j (cp'(u),T(-g) w(T(g)u))dg

= j((T(g)u), w(T(g)u))dg > j III (T(g)u)II2dg

III (u)112.

Finally, let u E Y and A = {T(g)u : g E G} C Y. By Lemma 6.3, there
exists 6 > 0 such that w is Lipschitz continuous, with constant t, on A5.
Nowjf u1i u2 E B(u, b), we obtain, since Ab is invariant,

Ilv(ul) - v(u2)11 j IIT(-g)(w(T(g)ul) - w(T(g)u2))II dg

= j II w(T (g)ul) - w(T(g)u2)II dg

< f fG IIT(g)(ul - u2)II dg = t1jul - u211,

and v is locally Lipschitz continuous. 0

The construction of the required deformations depends on some com-
pactness conditions.

Definition 6.3. The function E C'(X, R) satisfies the Palais-Smale
condition (PS) if every sequence (uj) in X such that (co(uj)) is bounded
and

0'(uj) -+ 0 for j -+ oo

contains a convergent subsequence.

Remark 6.2. The Palais-Smale condition is a compactness condition on cp
which replaces the compactness of the manifold in the classical Lusternik-
Schnirelman theory.

Remark 6.3. It is, in general, easier to verify (PS) than to find a priori
bounds for all possible solutions of cp'(u) = 0 since in (PS) (co(uj)) has to
be bounded.

Remark 6.4. It follows immediately from (PS) that, for each c E R, the
set

Ifc={uEX : cp'(u)=0 and p(u)=c}
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is compact.
Recall that, for c E R, cpl _ {u E X : cp(u) < c}. The basic deformation

result is given by the following.

Lemma 6.5. If O E C'(X, R) satisfies (PS) and if U is an open neigh-
borhood of K,, then, for every E > 0, there exists e E ]0,-e[ and rt E
C([O, 1] x X, X) such that

(a)

17(1, 0°+E \ U) C so`-E,

rt(t,u)=u if uV lp-1([C-?,c+e]).
Moreover, if eo and U are invariant with respect to the isometric represen-
tation {T(g)}9EG of the compact group G, then

(b) q(t, .) is equivariant with respect to {T(g)}9EG for every t E [0, 1].

Proof. If e > 0 is given, there is a c E ]0, E/2[ such that if u E <p-1([c -
2e, c + 2e]) n (C U)2 G, then

III(u)II>Qc_.

Indeed, if it is not the case, there is a sequence (Uk) such that

2 2 4
ukE(CU)2,/k-, C -

k
< tp(uk)<C+k> III(uk)II<

VAC

(8)

and, by (PS) we can assume, going if necessary to a subsequence, that
Uk -+ u for k --+ oo. But then u E C U n K, = 0, a contradiction.

Now Lemma 6.1 implies the existence of a pseudo-gradient vector field v
for coon Y={uEX : cp'(u)#0}. Let us define

A=ep-1([c-2e,c+2e])n(CU)2fCY,

B=So-1([c-e,c+e])n(CU).fCA,
O(u) - dist(u, CA)

d(u, [ A) + d(u, B)'

so that 0 < O(u) < 1, O(u) = 1 in B and V(u) = 0 in CA. Define the locally
Lipschitz continuous vector field f on X by

f(u) = -O(u)Ilv(u)II if u E A
= 0 ifuVA.

As f is bounded on X, the Cauchy problem

e = f (o)

o(0) = u
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has, for each u E X, a unique solution a(., u) defined on [0, oo[ with o,(.,.)
continuous. Let us define ,j = C([0,1] x X, X) by

r/(t, u) = o(Vc-t, u).

For t > 0, we have

IIa(t, u) - uII =
rt

f (r(r, u)) dro < ftIIf(0,(r,u))II dr <t,

we have o(t, C U) C (C U) j fort E [0, Vc]. By definition of f , we have for
alluEXandt>0,

d

dt 0(o(t, u)) = (7(t, u)), f(o(t, u)))

_ -1'(o(t, u))Iiv(o(t, u))II-1(c (a(I, u)), v(o(t, u))) < 0.
Let °u E gyp`+E\U; if p(o,(t, u)) < c-c for some t E [0, V[, then p(Q(f , u)) <
c - e and rt(l, u) < c - c. If not, then o,(t, u) E B for all t E [0, Vc], and by
(8) and the definition of f we obtain

`1 d
P(u) + f dt o(a(t, u)) dt

0

'P(u) + f (W'(o(t, u)), f (a(t, u)))dt
0

v(o(t, u))_ (u) - f ( u)),
IIv(c(t, u))II

)dt
0

<
J IIv(o(t, u))II
1 r`/E

Ilso,(a(t, u))Ildt< c + c -
2

o

< c+c-2c=c-c.
Thus, 7)(1, u) E `-E and hence 77(1, cp`+E \ U) C PC-E

Finally, if ep is invariant as well as U with respect to {T(g)}yEG, we can
assume, by Lemma 4, that the pseudo-gradient vector field v is equivariant.
Since the invariance of U implies also the invariance of V), the vector field
f is equivariant. It is then a direct consequence of the uniqueness of the
solution of the Cauchy problem that a(t, .) and hence i7(t, .) are equivariant
with respect to {T(g)}yEG, and the proof is complete.

6.2 Existence of Multiple Critical Points

Let cp be a real continuous function on the Banach space X. We shall use
the Lusternik-Schnirelman minimax method to construct critical values of



6.2. Existence of Multiple Critical Points 133

V. Let {T(g)}fEG be an isometric representation of the compact topological
group G. Define, for j > 1,

.Aj _ {A C X : A is compact, invariant for {T(g)}gEG and indA > j}

c' = inf max W.
AEA, A

Clearly, one has A; C A_1 (j > 2) and hence

-00<c1 <c2 <... <+oo.

Theorem 6.1. Let E C1(X, R) be an invariant functional with respect
to {T(g)}9EG which satisfies (PS). If cj > -oo for some j > 1, then cj is
a critical value of p. Moreover, if ck = cj, for some k > j, then

indK,, >k-j+1.

Proof. We shall prove that if -oo < cj = ck = c for some 1 < j < k, then

indK,>k-j+1
so that, by property (i) of the index, K, # 0. Notice that K, is invariant by
Lemma 6.2 and is compact by the (PS) condition. Property (iii) of the index
implies the existence of a closed invariant neighborhood N of K, such that
ind N = ind K,. The interior U of N is an open invariant neighborhood of
K, so that Lemma 6.5 is applicable. Let e E ]0, 1[ be given by this lemma,
A E Ak such that

maxca<c+e
A

and B = A \ U. We deduce from properties (ii) and (iv) of the index

k <indA<ind(BUN)
< ind B + ind K,. (9)

It now follows from conclusion (a) of Lemma 6.5 that C = i(1, B) C y>`_E

and, since B is compact and invariant, the same is true for C by conclusion
(b) of Lemma 6.5. But maxC cp < c - e so that, by the definition of cj = c,
ind C < j - 1. Now property (ii) of the index implies that

indB<indC<j-1
and hence, by (9) and (10),

indK,>k-j+l. O

(10)

Theorem 6.2. Let E C1(X, R) be an S1-invariant functional satisfying
(PS). Let Y and Z be closed invariant subspaces of X with codim Y and
dim Z finite and

codimY < dim Z.
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Assume that the following conditions are satisfied:

Fix (Sl) C Y, z fl Fix (Sl) = {0} (11)

-oo (12)

there exist r > 0 and c < 0 such that cp(u) < c whenever u E Z and 1jull = r.
(13)

If u E Fix(S1) and cp'(u) = 0, then cp(u) > 0. (14)

Then there exists at least
z

(dim Z - codimY) distinct Sl-orbits of critical
points of p outside of Fix(S1) with critical values less or equal to c.

Proof. Let p = ZcodimY and let j > p + 1. If A E A;, Proposition 5.2
and (11) imply that A fl Y # c. By assumption (12),

mAaxcp>infcp> -oo

so that c2 > infy cp > -oo. Let q = ZdimZ and D = {u E Z : lull < r}.
Proposition 5.3 and (11) imply that ind OD = q. For j < q we deduce from
(13) that

cc <maxcp<c.
8D

Consequently,
-00<Cp}1<...<Cg<C.

By Theorem 6.1, each cj (p + 1 < j < q) is a critical value of V. If all the
cj are distinct, the proof is complete because of (14). If cj = ck for some
p + 1 < j < k < q, then, by Theorem 6.1,

indK,, >k-j+1>2.

By (14), K,, fl Fix (S1) = 0 and hence, by Proposition 5.1, K,, contains
necessarily infinitely many S1-orbits and the proof is complete.

6.3 Multiple Periodic Solutions with Prescribed
Energy of Autonomous Hamiltonian Systems

We study the existence of multiple periodic solutions of the autonomous
Hamiltonian system

Ju(t)+VH(u(t)) = 0 (15)

on a convex energy surface H-1(c).

Theorem 6.3. Let H E C1(R21v,R) and c E R be such that VH(u) 0 0
for every u E S = H-1(c). Assume that S is the boundary of a strictly
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convex compact set C and that there exists r > 0 and R E jr, /r[ such
that

B[0, r] C C C B[0, R]. (16)

Then there exists at least N periodic orbits of (15) on S.

The proof of Theorem 6.3 requires some preliminary results. Let F =
j312, where j is the gauge of C, so that F is strictly convex and satisfies
properties (i) to (iv) of Lemma 3.2. Assumption (16) implies that

(IuI/R)3/2 < F(u) < (Iui/r)3/2.

By relation (2.4), we obtain

?] r3IvI3 < F*(v) < ?R31VII (17)

where rl = 4/27. Theorem 2.3 implies that the dual action V defined by

cp(v) = J [(1/2)(Jv(t), v(t)) + F*(v(t))] dt
T0

is continuously differentiable over X = WT'3
The function cv is invariant under the representation of S1 -- R/Z defined

over X by the translation in time t. In order to apply Theorem 6.2, we need
some easy estimates.

Lemma 6.6. If p > 2 and v E WT'P, then

I

T(Ji(t),
v(t)) dt > -(1/2xr)T(2-2/P) J T Ii(t)IPdt

Proof. By Proposition 3.2, we have, for v E WT'P,

J
T

(Ji(t), v(t)) dt > -(T/27r)IIvJIL2.

Holder's inequality implies that

IIVIIL3 < T(1/2-1/p)IIiIILp.

As p = 3, Lemma 6.6 suggests to make the convenient choice T = (27r)3/4
for the period.

Lemma 6.7. If V E X, then

v(v) >- rir3II vII i3 -(1/2) IIvIIi3.

Proof. It follows from (17) that

f0 T F*(v(t)) dt > gr3IIv1L3
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and from Lemma 6.6 that

foT

Let

(Ji(t), v(t)) dt > -IIvII23.

V = {v E X : v is (T/k)-periodic for some integer.k > 2}.

Lemma 6.8. If v E V, then

cp(v) > m = -(1/12)(6rjr3)-2.

Proof. If v E X and is T/k periodic for some integer k > 2, Lemma 6.6
implies that

2/3

jT Jv(t), v(t)) dt = k fT l k(Jv(t), v(t)) A> -k_ 1/3
(JT

I v(t) I3dt

_ -k-1IIvIIL3 >- 2
IIvIIL3.

Then, using (17), we obtain, for v E V,

w(v) >- rJr3IIvII33-(1/4) p112L L31

and the right hand membre of this inequality is minimum when IIvIIL3 =
(6rjr3)-1.

Let

Z = cos T e + (sin T) Je e E R2N } .

llLemma 6.9. If v E Z and IIvIIL3 = p =

(37jr3)'1,

then

ep(v) < c = -p2/6.

Proof. If v E Z, then Jv = -(2ir/T)v, so that

f T (JV(t), v(t)) dt = (-T/2a) J T I Jv(t)I2dt = (-T/27r)IIiIIi2
0 o

> (-T/27r)Tl/3IIiIIL3 = -IIvIIL3.

Consequently, (17) implies that, for v E Z, with IIvIIL3 = p,

p(v) < rjr3IIVIIL3 - (1/2)IIiIIi3 = -p2/6.

Proof of Theorem 6.3. We apply Theorem 6.2 to the invariant functional
cp on X. It is convenient to use the norm IIvII = IIvIIL3 on X.
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1) Let (vj) be a sequence in X such that (cp(vj)) is bounded and cp'(vj) -->
0 as j - oo. Lemma 6.7 implies that (vj) is bounded in X. As in the proof
of Lemma 4.5, this implies that (V2) contains a convergent subsequence, so
that cp satisfies the (PS)-condition.

2) The space Y = X and the space Z introduced in Lemma 6.9 satisfy
the conditions (11) and (14) since Fix (Sl) = {0} and cp(O) = 0. Moreover,
condition (12) follows from Lemma 6.7 and condition (13) from Lemma
6.9. We also notice that

codimY = codimX = 0 < dimZ = 2N.

Thus, by Theorem 6.2, there exists at least N distinct Sl-orbits of critical
points of cp, namely {T(O)vj : 0 E S1} outside Fix (SI) _ {0} with cp(vj) <
c (j = 1,2,...,N).

By Theorem 2.3, the function uj defined by

u1(t) = VF"(ivy(t))

is a T-periodic solution of

Ju(t) + VF(u(t)) = 0. (18)

Now condition R E ]r, /r[ is equivalent to in > c, where m is defined in
Lemma 6.8 and c in Lemma 6.9. Since cp(vj) < c (1 < j < N), we have
vj V V (1 < j < N), i.e. T is the minimal period of uj (1 < j < N).

3) If d1 = F(u,) > 0, then wj, defined by

wj(t) = dj-213u1 (d "3t),

is a solution of (18) with minimal period T/d 13 and energy F(wj(t)) = 1.
If wj and wk describe the same orbit on S = F'(1), then wk = T(0)w1 for
some 0. Thus, the minimal periods of wj and wk are the same, i.e. d1 = dk.
But then uj and Uk also describe the same orbit, i.e. Uk = T(0)u1 for some
0, so that

'tlk = VF(uk) = VF(T(8)u2) = T(0)VF(u2) = T(8)i1

and hence vk = T(0)vj as vk and vj have mean value zero. Thus, vk and vj
describe the same orbit, which implies j = k. Thus, there exists at least N
distinct periodic orbits of (18) on S. By Lemma 3.1, the proof is complete.
0

Exercise 3.5 shows that the estimate N is optimal.
The Poincare integral invariant around a closed oriented curve r in R2N

is the line integral
1 j(JudU).
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Theorem 6.4. Let H E C1(R2N, R), c E R and r > 0 be such that
S = H-1(c) is the boundary of a compact convex set C enclosing the closed
ball B[0, r]. Assume that VH(u) 54 0 whenever u E S. Then every oriented
periodic orbit r of (15) on S satisfies the inequality

1 ar2.

Proof. Let v : [0, T] --+ R2N be the parametrization of the oriented peri-
odic orbit r by the arclength. Thus i,(t)j = 1 for all t E [0,T] and

Jii(t) _ -N(v(t)),

where N is defined on S by

N(u) = VH(u)/IVH(u)l

Since, (u, N(u)) is equal to the distance from the origin to the tangent
hyperplane to S at u, we have, by assumption

(u, N(u)) > r

for every u E S. By using Proposition 3.2, we obtain

T2/2rr = (T/27r) J 1v(t)l2dt > - J T (v(t), Ji(t)) dt
T

T

fo

(v (t), N(v(t))) dt > rT.

In particular, we have T > 2irr and

T(1/2) J (Ju, du) = (1/2) J (Jv(t), v(t)) dt
r o

(v(t), Jiv(t)) dt > rT/2 > irr2.(-1/2) JO

T

Example. The Henon-Heiles Hamiltonian H : R4 R given by

H(q,p) = (1/2) (P2 + P2 + q2 + q2) +µ(p2g2 - qz/3)

occurs in the simulation of a three atoms solid and in the Hartree averaged
field seen by a star moving in the galaxy. When c > 0 is sufficiently small,
H-1(c) is the boundary of a strictly convex compact set of R4 and Theorem
6.3 can be applied.
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6.4 Nonlinear Eigenvalue Problems

In this section, we denote by T(O) an isometric representation of S1 over
R2N such that Fix(S1) = {0}. Let D be an invariant open subset of R2k
and let yo, x E C1(D, R) be two invariant functions. We consider the non-
linear eigenvalue problem

V o(u) = pVX(u), u E Za, (19)

where
Za={uED : X(u)=a}.

By definition, a critical point of cp restricted to Za is a solution of (19).
The invariance of cp and X implies the invariance of the set of critical

points of cp restricted to Za.

Theorem 6.5. If there exists an equivariant difeomorphisrn h : D ->
h(D) such that h(Za) = S2k-1, then there exists at least k S1-orbits of
critical points of cp restricted to Za.

Proof. Let us define cp and j by = cp o h-1 and X' = X o h-1. It suffices,
therefore, to prove the existence of at least k S1-orbits of critical points of
co restricted to

Za = {v E h(D) : x(v) = a} = S2k-1

Now, for every v E Za, VX(v) and v are normal to Za, and hence there
exists A(v) E R such that

VX(v) = A(v)v.

Therefore, it suffices to prove the existence of k S1-orbits of solutions of

µv, v" E
S2k-1

so that the proof of Theorem 6.5 is reduced to that of the following lemma.

Lemma 6.10. Let D be an open invariant neighborhood of S2k-1 and
let . E C1(D, R) be an invariant function. Then there exists at least k
S1-orbits of critical points of p restricted to S2k-1

Proof. Let us define the equivariant vector field w on S2k-1 by

w(u) = V (u) - (Ocp(u), u)u.

As in Section 6.1, it is easy to define on

Y = {u E S2k-1 : w(u) # 0}

a pseudo-gradient vector field v such that
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(a) IIv(u)II < 211w(u)Ij

(b) (w(u), v(u)) > IIw(u)II2

(c) (v(u),u) = 0

(d) v is locally Lipschitzian and equivariant.

Let us define, for c E R, K, and Soc by

K, = {u E S2k-1 : w(u) = 0 and cp(u) = c}

lp
c = {u E S2k-1 : qO(u) < c}.

Let U be an open invariant neighborhood of K.. Using the pseudo-gradient
vector field v, it is easy to prove, as in Lemma 6.5, the existence of c > 0
and of 7 E C([0,1] X S2k-1, S2k-1) such that:

(a)
*/(1,acle \ U) C cac e

(b) i(t, .) is equivariant for every t E [0, 1].

By Proposition 5.3, ind S2k-1 = k. Define, for 1 < j < k, A,, and cj by

Aj = {A C S2k-1 : A is closed, invariant and indA > j},

cj = inf sup cp.
AEAJ A

It then suffices to prove, like in Theorem 6.1, that if cp = cq = c for some
1 < p < q < k, one has

indKc>q-p+1.

Remark 6.5. When X'(u) ,-E 0 on Za, the notion of critical point of p
restricted to Za has a simple geometric interpretation. By the preimage
theorem, Z. is a C1-manifold of R2k of dimension 2k - 1. Hence, for ev-
ery z E Za, there exists an open neighborhood A of 0 in R2k, an open
neighborhood B of z in R2k and a diffeomorphism -t : A -+ B such that
4(A n R2k-1) = B n Za. The tangent space of Za at z is defined by

TTZ0 = {V(--1(z))v : v E R2k-1}.

By the definition of Za, we obtain

X(,D(y))=a

for all y E A n R2k-1. Hence, we have

X'(I(y)) F'(y)v = 0
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for all y E A fl R2k-i and v E R2k-i In particular, this gives

x'(z)V (t(z)) v = 0

for all v E R2k-1 so that TzZa C kerx'(z). Since

codim Tz Za = 1 = codim ker x'(z),

we have, necessarily,
TzZa = kerx'(z).

By definition, z is a critical point of cp restricted to Za if and only if

ker x'(z) C kercp'(z),

i.e. if and only if
TzZaCkerc(z).

6.5 Application to Bifurcation Theory

This section is devoted to the nonlinear eigenvalue problem

141

Va(u)+,\V/3(u) = 0 (20)

where a and 3 are functionals of class C2 on a Hilbert space X. We assume
that

Va(0) = V/3(0) = 0.

Thus R x {0} is a branch of trivial solutions of (20). Using the Liapunov-
Schmidt method and an elementary variational argument, we shall con-
struct two distinct one-parameter families of non trivial solutions of (20).
We shall also prove a stronger multiplicity result when a and /3 are S'-
invariant.

Our basic assumptions are as follows:

(H1) Va(0) = V/3(0) = 0.

(H2) L = a"(0) is a Fredholm operator, i.e. the dimension of ker L and
the codimension of R(L) are finite.

(H3) dim ker L > 2 and M = 0"(0) is positive definite on ker L.

Remarks 6.6.
1) Since L is a Fredholm operator, R(L) is closed. The symmetry of L

then implies that X is the orthogonal direct sum of R(L) and ker L.
2) Without loss of generality, we can assume that

a(0) _ /3(0) = 0.
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3) We shall denote by P (resp. Q) the orthogonal projector on ker L
(resp. R(L)), so that Q = I - P. We shall use the following notations:

A=Va, B=O/3, R=A-L, S=B-M.
Theorem 6.6. Under assumptions (111,2,3), equation (20) has, for each suf-
ficiently small e > 0, at least two solutions (A(e), u(e)) such that /9(u(e)) _
e. Moreover,

A(c)-+0 as e-+0.

Proof. 1) Liapunov-Schmidt reduction. Equation (20) is equivalent to the
system

P[R(v + w) + AB(v + w)] = 0 (21)
Lw+Q[R(v+w)+.AB(v+w)] = 0

where v = Pu, w = Qu. Since L : R(Q) -+ R(Q) is invertible, it follows
from the implicit function theorem that (21) defines near A = 0, v = 0,
w = 0 a C'-function w = w* (A, v). Since R'x {0} is a branch of solutions,
we have w* (A, 0) = 0. Differentiating the identity

Lw* (A, v) + Q[R(v + w* (A, v)) + \B(v + w* (A, v))] = 0 (22)

with respect to v at [0, 0] and using the fact that R'(0) = 0, we obtain

LDw* (0, 0) = 0,

i.e. D w* (0, 0) = 0. Thus,

lIw* (A, v) Il/IIvII -+ 0 (23)

as v -+ 0 uniformly for A near zero. Thus, equation (20) in the neighborhood
of A = 0, v = 0, w = 0 is equivalent to the finite-dimensional system

P[R(v+w*(A,v))+AB(v-}-w*(A,v))] = 0. (24)

2) Deparametrization. Taking the inner product of (24) with v, we obtain

(R(v + w* (a, v)), v) +.(B(v + w* (a, v)), v) = 0. (25)

By Lemma 6.11 below, equation (25) defines a C1-function A = A*(v) for
v $ 0 and sufficiently small. Moreover, A* is extended continuously at zero
by setting A* (0) = 0. If we define f near the origin by

.f (v) = w*(A*(v),v),

it follows from (23) that

JJf (v)JJ/jJvlJ-+ 0 as v -+ 0. (26)
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Equation (20) is now equivalent to the equation

P{R(v + f (v)) + A* (v)B(v + f (v))l = 0. (27)

3) Constrained extremisation. For p > 0 small enough, the function
defined by

x(v) = a(v + f (v))
is continuous on B(0, p) and of class C' on B(0, p) \ {0}. Since

,Q(u) = (1/2)(Mu, u) + f (S(t, u), u) dt,T
0

we have

x(v) = (1/2)(Mv, v) + (Mv, f (v)) + (112)(M f (v), f (v))

x

+ J T(S(tv + t f (v)), v + f (v)) dt. (28)
0

Assumption (113) implies the existence of c > 0 such that

(Mv, v) > cIIv112, v E ker L. (29)

Using (26), (28), (29) and the fact that S(0) 0, we can choose p small
enough so that

x(v) >_ (e/4)IIvII2 (30)

for all v E B(0, p). Furthermore,

(VX(v), v) = (oa(v + f (v)), v + f'(v)v)
31

((M + S)(v + f (v)), v + f'(v)v).

By Lemma 6.12 below, we have

IIf'(v)II/IIvII 0 as v --, 0.

It then follows from (26), (29), and (32) that

( )

(32)

(ox(v), v) > IIv112 (33)

on B(0, p) for p > 0 small enough.
By (30) and (33),

ZE={vEkerL : x(v)=c}

will be a compact subset of B(0, p) \ {0} when e > 0 is small enough, and
moreover,

(Vx(v), v) 0 0 (34)
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when v E Z. The function cp defined by

O(v) = a(v + f(v)) + A*(v)(X(v) - e)

achieves its minimum on ZE at a point vE. Since Vx(vc) # 0 because of
(34), the Lagrange multiplies rule implies the existence of P such that

Vcp(vE) = POX(v E),

(A(v, + f (vf)) + A*(ve)B(v, + f (vE)), h + f'(v,)h) = u(Ox(vE), h)

_for every k E kerL. Since f'(ve)h E R(Q), the definition of f (v,)
w*(A(ve,ve) implies that

(A(v, + f (vE)) + .\*(v,)B(v, + f (v,)), f'(v,)h) = 0.

Using the fact that PA = PR, we obtain, for h E ker L,

(R(v, + f (v,)) + A*(ve)B(v, + f(v,)), h) = µ(V X(v,), h). (35)

It follows now from the definition of A* (v,) that

0 = (R(v, + f (vE)) + .\*(vc)B(vc + f (v,)), vE) = u(VX(v,), vt),

so that relation (34) implies that u = 0. So, we finally have by (35)

(R(vE + J (vE)) + A* (v,)B(v, + f (vE)), h) = 0

for all h E ker L, i.e. vE is a solution of (27). Thus (\(e), p,), with

A(e) = A*(ve), uE _ vE +{ l (vE)

is a solution of (20) such that

,Q(ue) = x(ve) = C.

By (30), vE -- 0 as a --> 0, so that A(e) = A*(ve) A(0) = 0 as e --> 0. The
other solution is obtained by maximizing cp on Z.

We now state and prove the technical lemmas used in the proofs of
Theorem 6.6.

Lemma 6.11. Equation (25) defines for small nonzero v a C'-function
A = A*(v) such that

A*(v)--*0 as v->0.
Proof. Since M = B'(0), it follows from (23) that

B(v + w* (A, v), v) = (Mv, v) + 0(1v12) as v -+
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uniformly for A near zero. Assumption (H3) implies the existence of c > 0
such that

(Mv, v) > cIIvII2

for each v E ker L. Thus, we have

B(v + w* (A, v), v) >- 2c IIvlI2

on a neighborhood of A = 0, v = 0, and the function g given by

g(A, v) = A + (R(v + w* (A, v)), v) if f 0 0,
(B(v + w* (A, v)), v)

= A ifv=0,

is well defined. Since R'(0) = 0, we have

R(v + w* (A, v), v) = 0(1v12) as v-0 (36)

uniformly for A near zero, so that g is continuous.
Let us prove that DAg is also continuous. Differentiating (22) with respect

to A, we obtain

[L + QR'(v + w*) + AQB'(v + w*)] Daw* + QB(v + w*) = 0.

Now, L : R(Q) --p R(Q) is invertible,

QR'(v + w*) + AQB'(v + w*) -. 0

as [A, v] - 0, and

B(v+w*)=My+0(v) as v-+0

uniformly for A near zero. Thus, there exists cl > 0 such that

IID,xw*II/IIvII <_ ci (37)

for [A, v] near zero. When v $ 0, we have

DAg - 1 +
(R'(v + w*)Daw*, v) - (R(v + w*), v)(B'(v + w*)Daw*, v)

(B(v + w*), v) ((B(v + w*, v)))2

Using (35), (36), and (37) in this formula, it is easy to verify that

Dag(A, v) -+ 1 as v - 0,

and D),g is continuous. Since

g(0, 0) = 0, Dag(0, 0) = 1,
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we deduce from the implicit function theorem that the equation

g(A,v) = 0 (38)

defines near A = 0, v = 0 a continuous function A = A* (v). Moreover, since
v) exists and is continuous for v # 0, A* is of class C2 for small

nonzero v. For v # 0, equations (25) and (38) are equivalent, so that the
proof is complete. 0

Lemma 6.12. The function f defined by

f(v) = w*(A*(v),v)

is such that

via
IIf'(v)vII/IIvII = 0.

v # 0, it follows from the definition of f that

f'(v)v = Daw*(A*(v), v)DA*(v)v + Dvw*(A*(v), v) v.

Since and A* are continuous, we have

v) -+ 0

as v ---+ 0, so that

IIDvw*(A*(v),v)vII/IIvII 0 as v -. 0.

Since, by (37),
IIDaw*(A*(v),v)II/IIvII <_ Cl,

it remains only to prove that DA*(v)v --+ 0 as v -} 0. Differentiating the
identity g(A*(v), v) = 0, we obtain

DA*(v)v = Dvg(A*(v),v)v
Dag(A*(v), v)

The continuity of Dag implies that Dag(A* (v), v) ->
suffices to show that

Dvg(A*(v),v)v 0 as v- 0.

1 as v -; 0. It thus

When v # 0, we have, omitting the argument (A*(v),v) in w*,

Dvg(A* (v), v)v =
(R'(v + w*)(v + v)

(B(v+w*),v)

(R(v + w* ), v)(B'(v + w*)(v + d w* v), v)
[(B(v + w*), v)]2
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Using (35) and (36), it is easy to complete the proof.

Now let T(O) be an isometric representation of S' over the Hilbert space
X such that the following condition holds.

(114) a and P are S'-invariant and

ker L fl Fix(S1) = {0}.

This assumption implies that A, B, L, M and S are equivariant. In partic-
ular, ker L is invariant and, by the last part of (114), the dimension of ker L
will be even.

Theorem 6.7. Under the assumptions of Theorem 6.6 and (H4), equation
(20) has, for each sufficiently small e > 0, at least (1/2)dim ker L S'-orbits
{[A(c),T(O)u,] 0 E S'} of solutions such that ,Q(u(c)) = e. Moreover,
A(e)-->0ase-->0.

Proof. 1. Let k = (1/2) dim ker L, so that ker L N R2k. We shall apply
Theorem 6.5 to the functions cp and x defined in the proof of Theorem 6.6.
Let us prove that a and x are invariant. The invariance of P and Q. It
then follows from equation (22) that

LT(0)w* + Q[R(T(0)v +T(0)w*) + )B(T(0)v +T(9)w*)] = 0.

From the uniqueness of w*, we, therefore, get the equivariance property

w*(A,T(0)v) = T(0)w*(A, v). (39)

T(0) being an isometry, we deduce from equation (25) with A = A*, and
(39) that

(R(T(0)v + w*(A*,T(0)v),T(0)v) + A*(B(T(O)v

+ w*(A*,T(0)v),T(9)v) = 0.

Thus the uniqueness of A* implies its invariance. In particular, we have

f (T(0)v) = w* (A* (T(O)v), T(0)v) = T(0)w* (A* (v), v) = T(0) f (v),

i.e. f is equivariant. The invariance of a and 3 then implies that of x and
cc.

2. As in the proof of Theorem 6.6, there exists p > 0 such that
(Vx(u), u) > 0 whenever 0 < Jul < p. Thus, for c > 0 small, there ex-
ists a diffeomorphism h defined on a neighborhood of

ZE = {u E kerL : x(u) = e}

such that h(Z,) = S2k-1. Thus, condition (H4) and Theorem 6.5 imply the
existence of k S'-orbits of critical points of cp restricted to Ze, namely

{T(0)vi : 0 E S'}, j = 1,2,...,k.
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It then suffices to verify, as in Theorem 6.6, that if .j(e) A* (vE ),

zE + f (vi), then
{[a1(e),T(O)uE] 0 E S'}

is an S'-orbit of solutions of (20) such that 3(uE) = c and Aj (e)
e-+0.

6.6 Multiple Periodic Solutions with Prescribed
Energy Near an Equilibruim

Let H E C2(R2N, R) be such that H(0) = 0, VH(0) = 0. We consider the
existence of periodic solutions of the Hamiltonian system

Ju(t) +VH(u(t)) = 0 (40)

on the energy surface H-1(e) for small e > 0. If C = H"(0), we assume
that the linearized system

Jilt) + Cv(t) = 0 (41)

has 2k linearly independent solutions with (not necessarily minimal) period
T. Moreover, we assume that

(Cv(t), v(t)) _ (Cv(0), v(0)) > 0

for every nonzero solution v of (41) with (not necessarily minimal) period
T.

Theorem 6.8. Under the above assumptions, equation (40) has, for each
sufficiently small c > 0, at least k periodic orbits on H-1(e) whose periods
are near T.

Proof. After the change of variable s = r-1t, equation (40) becomes

Ji(s) + rVH(z(s)) = 0

and any 1-periodic solution of this equation corresponds to a 7-periodic
solution of (40). Setting r = T + .\, we obtain the bifurcation problem

Va(z) +.\013(x) = 0 (42)

where the functionals a and ,Q given by

a(z) = Jo [(Jz(s), z(s)) + TH(z(s))] ds,

,0(z) = / H(z(s)) ds,1

0
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are defined on the Hilbert space X = Hl . The functionals a and Q are of
class C2 and are invariant under the representation of S' R/Z defined
over X by the translations in time.

Let L = a"(0), so that z E ker L if and only if

Ji(s) + TCz(s) = 0

Z(O) = z(1).

By assumption, dim ker L = 2k and M = /3"(0) are positive definite on
ker L. Since a"(0) is symmetric, dim ker L = codimR(L) and a"(0) is a
Fredholm operator. Since H"(0) is nonsingular, ker L fl Fix(S') = {0}.

By Theorem 6.7, equation (42) has, for every sufficiently small e > 0, at
least k S1-orbits

{[.3(e),T(9)z4] : 0 E S1}, j =

such that
1

p(zE) =
J

H(z4 (s)) ds = e,
0

and )3(e) -* 0 as a -- 0. The corresponding solutions of (40) on H-1(e)
are given by

uf(t) = zE((T + .\3(e))t).
Corollary 6.1. Let H E C2(R2N, R) be such that H(0) = 0, VH(0) = 0
and H"(0) is positive definite. Then, for each sufficiently small e > 0,
equation (40) has at least N periodic orbits with energy e.

Proof. Since C = H"(0) is positive definite, any solution of (41) is bounded
on R. Thus (41) has 2N linearly independent periodic solutions. The pe-
riodic solutions of (41) split into n families with incommensurable periods
T,, ..., T and dimensions k1,. .. , k,,. Theorem 6.8 applied to each of those
families implies the existence of a + ... + a = N periodic orbits on
H-1(e) where e > 0 is small enough. These periodic orbits are distinct
from one family to another because they have no common period for e > 0
sufficiently small. 0

Historical and Bibliographical Notes

For surveys on the mathematical work of Lusternik, see [AVS1, AVD1],
[Ale,] and on minimax methods see [Pale], [Rabs]. The Lusternik-
Schnirelmann theory [LJS1] generalizes to smooth functions on a compact
manifold the minimax theory of eigenvalues due to Raleigh, Poincare, Fis-
cher, Courant, Weyl, etc. The basic topological invariant is not the ho-
mology of the manifold as in Morse theory but the category. The category
catMA of a closed subset A of a compact manifold M is the least number
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of closed sets, each contractible in M, needed to cover A. By an elemen-
tary minimax argument, it is proved in [LJS1] that a smooth function
on M has at least catMM critical points. Since cata(pN)R(PN) = N + 1
where R(PN) = SN/Z2 is the real projective N-space, every smooth, even
function on SN will have at least N + 1 pairs of critical points. This re-
sult generalizes the linear theory of eigenvalues. If A C SN is closed and
symmetric with respect to the origin, the following relation

cata(pN)(A/Z2) = ind A

between the category and the Z2-index has been proved by Rabinowitz
[Rabs]. For other group actions, the quotient space is not, in general, a
manifold, so that the index is more flexible than the category.

The concept of pseudo-gradient vector field was introduced by Palais
[Pal3] in order to extend the classical Lusternik-Schnirelmann theory to
infinite-dimensional Banach manifolds. The compactness of the domain is
replaced by the Palais-Smale condition on the function ([Pall], [PaS1],
[Smal]). The next basic step toward the approach developed in this Chap-
ter was the obtention by Clark [C1k1] of strong multiplicity results for an
even function defined on a Banach space X. Since X is contractible, the
multiplicity follows from geometric conditions on the function itself as in
Theorem 6.2. The Z2-versions of Lemma 6.4, Lemma 6.5, Theorem 6.1, and
Theorem 6.2 are due to Clark [Clk1]. Related results are due to Ambrosetti
[Ambl].

Theorem 6.2 is a generalization, due to Costa-Willem [CoW1] of a re-
sult of Ekeland-Lasry [EkL1] (dealing with the case where Y = X and
Fix(S1) = {0}). Situations where Fix(Sl) is finite dimensional have been
considered by Benci [Bent].

Theorem 6.3 is a result of Ekeland-Lasry [EkL1]. Other proofs have
been given by Hofer [Hof2] and Ambrosetti-Mancini [AmM2]. An exten-
sion which replaces the strict convexity of C by starshapeness properties
has been given by Berestycki-Lasry-Mancini-Ruf [BLM1]. Local results in
the line of Theorem 6.3 had been proved earlier by Weinstein [Wei2] and
Moser [Moss], following the pioneering work of Lyapunov [Lya1] and Horn
[Hors]. The concept of an integral invariant is due to Poincare [Poil] and
Theorem 6.4 to Croke-Weinstein [CrW1].

Theorem 6.5 is due to Krasnosel'skii [Kral] and Theorem 6.6, due to
Stuart [Stu,], generalizes classical results of Krasnosel'skii, Bohme, and
Marino. Theorem 6.8 is due to Moser [Moss] and Corollary 6.1 is a result
of Weinstein [Wei2].

Further applications of the Lusternik-Schnirelmann type arguments with
Sl - or other indices or pseudo-indices can be found in [BCP1,2], [BeF1,2]1
[Cap1,2], [CaF1], [CFS2], [CaS122], [CWL1], [Ckk3], [Cor3], [DCF1], [Girl],
[GiM1,2 3], [Lovi], [Mnc2], [Rabls], [Sall], [VGrs-so].

For other papers on Lusternik-Schnirelmann theory, see [Ambs], [CoP1],
[Rab22], [Wu3].
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Multiplicity results for the fixed energy problem can also be found in
[Bens], [LasVi], [Szu4], [Vi1,2], [HofZi], [Rab23]. See also [Beret] and [BL1]
for conservative systems and [Bens] for Lagrangian systems.

Exercises

1. Let V E C1(X,R) be an even functional satisfying (PS). Let Y and
Z be closed subspaces of X with codim Y and dim Z finite and

codim Y < dim Z.

Assume that the following conditions are satisfied:

(i) infy po > -oo,

(ii) there exists r > 0 such that yo(u) < 0 whenever u E Z and
IIuII = r.

(iii) if cp'(0) = 0, then cp(0) > 0.

Then there exists at least dim Z - codim Y distinct pairs of nonzero
critical points of V.

Hint. Follow the line of Theorem 6.2 using Z2-index.

2. Let H E C1(R2N, R) be strictly convex and such that its Fenchel
transform H* E C'(R2N, R). If v1, v2 E C'([0,T],) are T-periodic
and such that ul = VH*(vl) and U2 = VH*(v2) belong to the same
Sl-orbit, then vl and v2 belong to the same S1-orbit.

3. Let H E C1 (R2N, R) be strictly convex, such that H(0) = 0, VH(0) _
0,

hm,,_o2IuI-2H(u) > a

and such that its Fenchel transform H* E C1(R2N,R). Then there
exists v > a and p > 0 such that

H*(v) < (2v)-hIvI2

whenever Ivi < p.

4. Let HE C1(R2N,R) be strictly convex and such that

H(0) = 0, VH(0) = 0

and let T > 0. Assume that there exists n E N, y E ]21rn/T, 27r(n +
1)/T[, c > 0, and 8 E ]0, min(7 - (2irn/T), (27r(n + 1)/T - y)[ such
that

IVH(u) -yul < 8Iu1 +c
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for all u E R2N and

ir -.,.o2l ul-2H(u) > (2a/T)(n + k)

for some k > 1. Then the problem

Ju +VH(u) = 0

u(0) = u(T)

has at least Nk Sl-orbits of nontrivial solutions.

Hint. Use Exercises 5.5 and 5.6. Show that the same is true for -Jic+
VH(u) = 0.

5. ([BHR1]). Let H, K E C1(R2N, R) and let U be a compact neighbor-
hood of S = H-1(1). Assume that there exists a, b > 0 with a + b > 0
such that

a(q, Dq H(q, p)) + b(p, Dq H(q, p)) + (V K(q, p), JV H(q, p)) > 0

for all (q, p) E U. Then there exists 0 such that every T-
periodic solution of Ju + VH(u) = 0 on SE = H'1(1 + e) C U
satisfies

IT
aT<

I
(Ju,u)<QT.

0



7

Morse-Ekeland Index and
Multiple Periodic Solutions
with Fixed Period

Introduction

An autonomous Hamiltonian system

Ju(t)+VH(u(t)) = 0

is called asymptotically linear if there exist symmetric matrices Ao and A,,
such that

VH(u) = Aou + o(jul) as Jul

and

VH(u) = A,,,u + o(jul) as Jul -+ oo.

Such a system necessarily has the trivial periodic solution u = 0 and it is
interesting to find conditions for AO and A,,,, which guarantee the existence
of nontrivial periodic solutions of a given period and provide information
about their multiplicity.

A rough condition follows from degree theory by requiring that some
topological degrees associated to the linearizations at zero and at infinity
would be different. A more precise tool would be provided by the Morse
index of the Hamiltonian actions associated to those linearized systems but
this index is equal to infinity in both cases because of the strongly indefinite
character of the action.

When AO and A., are positive definite, the corresponding dual actions
are well defined and have finite Morse indices, which we can denote by
i(Ao, T) and i(Ao., T), respectively, where T is the period. Combining their
properties with the Lusternik-Schnirelman theory applied to the dual ac-
tion, it is then possible to prove, under a nonresonance condition at infinity,
that the asymptotically linear Hamiltonian system has at least

(1/2)[i(Ao,T) - i(A.,T)]

nontrivial T-periodic solutions when i(Ao, T) > i(A.,T). This condition
is reminiscent of the twist condition in the Poincare-Birkhof fixed point
theorem for area-preserving mapping of an annulus into itself.
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7.1 The Index of a Linear Positive Definite
Hamiltonian System

Let A be a continuous mapping from R into the space of symmetric positive
definite matrices of order 2N. We consider the periodic boundary value
problem

Ju(t) + A(t)u(t) = 0
u(0) = u(T)

where T > 0 is fixed. The corresponding Hamiltonian is given by

H(t, u) = (1/2)(A(t)u, u).

(1)

It is easy to verify that its Legendre transform (with respect to u) H*(t, )
is of the form

H*(t, v) = (1/2)(B(t)v, v)

where B(t) = (A(t))-1, so that the corresponding dual action is defined on
HT by

T

XT(V) = f (1/2)[(Jv(t), v(t)) + (B(t)v(t), i (t))] dt.
0

Definition 7.1. The index i(A, T) is the Morse index of XT, i.e., the
supremum of the dimensions of the subspaces of HT on which XT is negative
definite.

Notice that the Hamiltonian action associated to (1) is given by

,p(u) = f (1/2)[(Jic(t), u(t)) + (A(t)u(t), u(t))] dt
0

and hence is strongly indefinite because of the spectral properties of u -+ Jiu
seen in Chapter 3. Therefore defining the index i(A, T) as the Morse index
of 'p would always give the value +oo and would be useless.

Since XT(v + w) = XT(v) for every constant function w, it is sufficient
to consider the restriction of XT to the subspace

T
xT {vEHT : f v(t)dt=0 .

0

From our assumptions follows the existence of 6T > 0 such that

(B(t)v, v) > bT IVI2

for all t E [0,71 and v E R2N. Thus Wirtinger's inequality implies that the
symmetric bilinear form given by

T
((v, w)) = f (B(t)i (t), w(t)) dt

0
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defines an inner product on HT. The corresponding norm II II is such that

IIvI12 >
6Tlvl2

L2. (2)

Let us define the linear operator K on HT by the formula (using the Riesz
theorem)

((Kv, w)) =
J

T(Jv(t),
w(t)) dt.

0

It is easy to check that K is self-adjoint and compact. Moreover

/T
2XT(v) = J [-(Jv(t), v(t)) + (B(t)v(t), v(t))] dt = ((v - Kv, v)). (3)

0

It follows from the spectral theory that HT will be the orthogonal sum
of ker(I - K), H+ and H- with I - K positive definite (resp. negative
definite) on H+ (resp. H-). Since K has at most finitely many eigenvalues
(with finite multiplicity) greater than one,

i(A,T) = dim H- < +oo

i.e., the index i(A, T) is finite. On the other hand, there exists > 0 such
that

((v - Kv, v)) > aIIvJI2, v E H+

and

((v - Kv, v)) < -3IIvII2, v E H-.

Setting 6 = 56T > 0 we deduce from (2) and (3) the estimates

XT(v) >- (6/2)IvI ,2, v E H+ (4)

and

XT(v) < -(b12)1v1' 2, v E H-. (5)

We now state and prove some preliminary results which will allow us to
prove a geometrical interpretation of the index.

Proposition 7.1. The dimension of ker(I - K) is equal to the number of
linearly independent solutions of (1).

Proof. By a Fourier series argument, v E ker(I - K) if and only if v E HT
and

B(t)v(t) = Jv(t) + c (6)

for some c E R2N and a.e. t E [0, T]. As (B(t))'1 = A(t) is invertible, v is
of class C', (6) holds for all t E [0,71, and E H. Setting

u(t) = (-tv)(t) = B(t)v(t),
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we have, for a.e. t E [0, T],

u(t) = dt (B(t)v(t)) = Ji(t),

and u is a solution of (1).
Conversely, assume now that u is a solution of (1). Then

J T A(t)u(t) dt = 0
0

and hence there will exist a unique v E HT such that u = $v. Thus

-Ju(t) = A(t)u(t) = v(t)

for a.e. t E [0, T], so that

u(t) = Jv(t) + c

for some c E R2N and all t E [0,7]. Consequently

A(t)[Jv(t) + c] = v(t)

for a.e. t E [0, T], which is equivalent to (6) and shows that v E ker(I - K).
Thus t is an isomorphism between ker(I - K) and the space of solutions
of (1).

According to the Poincare-Weyl-Fisher-Courant principle, the (possi-
ble) positive eigenvalues of K,

are given by the formulas

'\k = )tk(T) = max min ((Kv, v))
HT,k VEHT,k

Ilvll=1

f T(B(t)v(t),v(t))dt= 1

where the maximum is taken over all subspaces HT,k of HT having dimen-
sion k. By Proposition 3.1, the bilinear form

T Tv -+ jo (Jv(t), v(t)) dt 1 (Ji(t), v(t)) dt
0

is positive on the space spanned by

rT
= max min

J
(Jv(t), v(t)) dt, (7)

HT,k VEHT,k

(cos 2 T t ) c+ l sin 2 T t i Jc, k E N*, c E R2N
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and hence K has infinitely many positive eigenvalues.

Lemma 7.1. Let Y, Z and W be subspaces of a vector space X. If X is
the direct sum of Y and Z and if w fl Y = {0}, then

dim W < dim Z.

Proof. Let P be the projection on Z along Y. Since w flY = {0}, Pu = 0
implies that u = 0 for every u E W. Hence P : W -+ Z is one to one and
the result follows.

Proposition 7.2. The eigenvalues Ak(T) are increasing functions of T.

Proof. Let 0 < S < T. There exists a k-dimensional subspace V of HS
such that

j(Jv(i),i(t))dt.'k(S) = miVEV

(B(t),b(t),v(t))dt=1

If v E V, let us extend it to [0, T] by setting

v(t) = v(S), S < t < T

and let

Then the space

fT
i(t) = v(t) - T

J
v(s) ds, 0 < t < T.

W={i : vEV}CHT
is such that dim W = k. Moreover, for each v E V, we have

and

fS(B(i)(t)(t)) dt= f(B(t)(t)) dt

(t)) dt = J (J(t), (t)) dt.j(Jv(i),

Hence, (7) implies that

Ak(S) = min ((Kw, w)) < \k (T).
wEW

IIw1I=1

(8)

If )k (S) is not an eigenvalue of K on HT, then \k (S) < .k (T) and the proof
is complete. Let us assume that A = Ak(S) is an eigenvalue of K on H.
According to the spectral theory, HT is the orthogonal sum of H1, H2, and
H3, with H2 = ker(K - Al), K - AI negative definite on H1 and positive
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definite on H3. We show that W fl (Hi ®H2) = {0}. If w E w n (H1(D H2),
then w = w1 + w2 with wi E Hi (i = 1, 2). If w1 54 0, then

((K()

llwllII°II)I - ((K
\IIwIII' IIwII)l +

\(A (IIwW2 W2IIl' IIwIIl

< A11w2112 + 11w1112 < A = Ak(S),
11w112

a contradiction with (8). Thus w = w2 E ker(K - .I), i.e.,

AB(t)w(t) = Jw(t) + c

for some c E R2N and a.e. t E [0, T]. Since by construction w(t) = 0 on
]S, T], we have w(t) = Jc on the same interval. By the uniqueness of the
solution of the Cauchy problem, w(t) = Jc on [0, T] and hence w = 0 as
w E °HT. Now it follows from Lemma 7.1 that

k = dim W < dim H3.

Let HT,k be a k-dimensional subspace of H3. We have, by definition of H3
and (7),

Ak(S) = A <
vEHT k

((Kv,v)) < Ak(T),

IIvII=1

and the proof is complete. 0

Proposition 7.3. The eigenvalues Ak(T) are continuous functions of T.

Proof. Let T > 0 be fixed and let S > 0. Define p on HT by

\
Ps(v) = S

jT
(B(TSt) i (t), ei(t) I dt.

Then, the change of variable t = T r easily implies that

J
T

A k(S) = max mi(Jv(r), (r)) dr,
HT,k °EHTk

V-q(v)=1

(9)

where the maximum is taken over all subspaces HT,k of HT having dimen-
sion k.

Let c > 0; there will exist b > 0 such that

1+ E B(t) < S B
(ST

t) < 1 1 E B(t)

whenever t E [0,T] and IS - TI < 6. Thus

1 IIVI12 <- cPs(v) <_ 1 1 Ellvll2 (10)
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whenever IS - TI < 6 and v E HT. It follows then from (9) and (10) that

T
Ak(S) = max min r (Jv(t), v(t)) d)/cps(v)

HT,k vEHT,k in
v#0

IT
< max min (1 + e) (Jv(t), v(t)) dt /11vII2

HT,k vEHT,k
vq 0

(1 + e) max min J (Jv(t), v(t))dt = (1 + e)Ak(T)
HT,k vEHT,k 0T

11-11=1

whenever IS - TI < 6. Similarly, Ak(S) > (1 - e)Ak(T) when IS - TI < 6,
and the proof is complete.

Definition 7.2. A point T > 0 is conjugate to 0 for

Jit(t) + A(t)u(t) = 0 (11)

with multiplicity m if the periodic boundary value problem (1) has m
linearly independent solutions.

We can now state and prove our geometric interpretation of i(A, T).

Theorem 7.1. The index i(A, T) is equal to the sum of the multiplicities
of the conjugate points to 0 for (11) situated in ]0,T[.

Proof. By definition of the index and the relation

XT(v) = (1/2)((v - Kv, v))

we see immediately that the index i = i(A, T) is characterized by the
relation

Ai(T) > 1 > Ai+l(T).

It follows easily from Wirtinger's inequality that, for S > 0 sufficiently
small, we have

rT
A2(S) < A1(S) = max J (Jv(t), v(t)) dt < 1.

vEHs 0

f s(B(t),J(t),6(t))dt=1

Thus, by Propositions 2 and 3, i is equal to the number of eigenvalues
which have crossed the value one when S increases from 0 to T. But, if for
some S > 0,

Ak(S) > 1 = Ak+1(S) = ... = Ak+m(S) > Ak+m+l(S),

Proposition 7.1 implies that S is conjugate to 0 for (11) with multiplicity
in, and hence the proof is complete.
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7.2 Linear Autonomous Positive Definite
Hamiltonian Systems

Let A be a symmetric positive definite matrix of order 2N. Then the energy
integral

(Au(t), u(t)) = c

implies that all the solutions of the equation

At(t) + Au(t) = 0

are bounded on R. Consequently, all the eigenvalues of JA must be pure
imaginary, so that

Q(JA) = {iak : ak > 0, aN+k = -ak, k = 1,... , N}

and there exists a basis of C2N of the form

x1 + iy1, ... , xN +

such that

Hence

x1-iy1,...,XN-iYN

JA(xk + iyk) = iak(Xk + iyk) (i < k < N).

JAxk = -akyk, JAyk = akxk (1 < k < N)

so that a fundamental system of solutions is given by

(sin akt)xk + (COS akt)yk, (cos akt)xk - (sin akt)yk k = 1, ... , N.

It follows immediately from Proposition 7.1 that

dim ker(I - K) = 2 dim ker (JA - 2T- f (12)
J=o

and from Theorem 7.1 that

N
r(

i(A,T) = 2># { j E N*
k=1 111

< ak } . (13)

Proposition 7.4. If Q(JA) n 2il"N then I - K is invertible and
codimH+ = i(A,T).

Proof. By (12), ker(I - K) = {0} so that I - K is invertible and HT is
the orthogonal direct sum of H+ and H-. Hence

codim H+ = dim H- = i(A, T).
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7.3 Periodic Solutions of Convex Asymptotically
Linear Autonomous Hamiltonian Systems

We consider the existence of multiple periodic solutions for the autonomous
Hamiltonian system

Ju(t)+VH(u(t)) = 0 (14)

where H E C1(R2N,R) is strictly convex and satisfies the conditions

VH(u) = Aou + o(jul) as Jul--+O (15)

and

VH(u) = A00u + o(jul) as Jul--r oo (16)

with symmetric positive definite matrices AO and Ate.

Theorem 7.2. Assume that T > 0 is such that

Al. o-(JA,,.) fl 2TN =

A2. i(Ao,T) > i(A,,.,T).

Then system (14) has at least

1 [i(Ao,T) - i(A,,,,,T)]

nonzero T-periodic orbits.

Remarks.
1) It follows from (A1) that the linear system

Ju(t) + A,u(t) = 0

has no nontrivial T-periodic solution. Thus (A1) is a nonresonance condi-
tion "at infinity."

2) Assumption (A2), which requires a distinct behavior of VH "at the
origin" and "at infinity," is similar to the twist condition in the Poincare-
Birkhoff theorem on the invariant points of a self-mapping on an annulus.

3) Since H is strictly convex and VH(0) = 0 by (15), 0 is the unique
equilibrium point of (14).

4) Without loss of generality, we can assume that H(0) = 0. Since
VH(0) = 0, this implies that

H* (0) = 0.

5) Since H is strictly convex and, because of (16) such that

H(u)/Iul- +oo as Iul -oo,
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Proposition 2.4 implies that H* E C1(R2J, R). Moreover, (16) implies also
that

VH*(v) = Bc,,v + o(lvl) as lvl-a oo (17)

where B,, = A- '. Indeed, by duality, if v = VH(u),00

VH*(v) - Boov = u - B0VH(u) _ -B00(VH(u) - A00u).

Moreover, as A, is positive definite, there exists 6 > 0 such that (A00ui >
61ul for u E R2N and hence, by (16), we have, for sufficiently large Jul,

[IA0) + (6/2)]lul > JAou - (A00u - VH(u))i _ Jvl
> lAooul - lA00u - VH(u)l > (b/2)lul

so that Jul -. oo whenever Jvi -a oo, and hence (17) holds. By Theorem
2.3, the dual action p defined by

X(v) = f T [2(Jv(t), v(t)) + H*(v(t)), dt
0

is continuously differentiable on HT.
Since c is invariant for the representation of S' = R/TZ defined over

HT by the translations in time

(T(O)v)(t) = v(t + 0),

we are in a position to apply Theorem 6.2.
6) It is convenient in this section to use the inner product

T((v,w)) =
J

(Bo,, v(t),w(t))dt
0

and the corresponding norm in HT. By Wirtinger's inequality and the
positive-definiteness of B00, this norm is equivalent to the standard norm
of H.

The proof of Theorem 6.2 will depend on the following lemmas. The first
one will imply that p satisfies the (PS)-condition.

Lemma 7.2. Every sequence (vj) in HT such that v'(vj) --+ 0 contains a
convergent subsequence.

Proof. Let us define the operators K and N over HT, using the Riesz
theorem, by the formulas

T
((Kv, w)) = J (Jv(t), tb(t)) dt,

0

T
VH*(v(t)) - B00v(t), zb(t)) dt.((Nv, w)) = Jo (
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Since

rT
(cp' (v), w) = J (VH*(v(t)) - Jv(t), ti (t)) dt = ((v - Kv + Nv, w)),

we have, by assumption,

vj - Kv1 + Nvj = f j, j E N*, (18)

with f2 --> 0 in H. In particular, IIff II < R for some R > 0 and all j E N*.
Assumption (A1) and Proposition 7.4 imply that L = I - K is invertible.
Thus it follows from (16) that there exists some c > 0 such that

IINvII < (1/2)IIL-1II-1 IIvII + c

for all v E HT . Therefore (18) implies that

Ilvj II : ILL-'II(IINvv Il + IIf, II) < (1/2)IIv, II + IIL-'11(c + R), j E N*,

so that (vj) is bounded. The rest of the proof uses the same argument as
that of the end of the proof of Lemma 4.5.

We now verify the first geometric condition of Theorem 6.2 for cp.

Lemma 7.3. The functional <p is bounded from below on a closed invariant
subspace Y of HT of codimension i(A..,T).

Proof. By Assumption (A1), Proposition 7.4 and formula (4), there exists
a closed invariant subspace Y = H+ of HT with codimension T) and
there exists 6 > 0 such that, for each v E Y, one has

XT (v) J T (1/2)[Jv(t), v(t)) + (B.v(t), v(t))] dt > (6/2)Ivlia.
0

It follows from (17) that there exists c > 0 such that

OOH*(v) - B.vl < (6/2)lvl + c

for each v E R2N. Hence, by the mean value theorem,

IH*(v) - (1/2)(B.v, v)I < J T IVH*(tv) - v)Idt
0

< J[(6/2)i Iv12 + c IvI] dt = (b/4)Iv12 + c Iv!.1

Consequently, we have, for v E Y,
T

V(v) = XT (v) + J [H*(v(t) - (1/2)(Bcov(t), i,(t))] dt
0

T

(b/2)Iv12.- f [(6/2)Iv(i)I2-clv(t)I]dt
0

_ (6/4)IvlL2 - CIILI > (b/4)IiIi2 -cT(1/2)IvIL=,
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and cp is bounded from below on Y. 1

We show now that the second geometric condition of Theorem 6.2 holds
for cp.

Lemma 7.4. There exists an invariant subspace Z of HT with dimension
i(Ao,T) and some r > 0 such that cp(v) < 0 whenever v E Z and IIvii = r.

Proof. Assumption (15) and the reasoning of Remark 5 imply that

VH*(v) = Bov + o(IvI) as IvI -* 0 (19)

where Bo = Ao 1. By (5) there exists an invariant subspace Z = H- of HT
with dimension i(Ao, T) and some 6 > 0 such that

xT(v) = f
T(1/2)[Jv(t),

v(t)) + (Bou(t), v(t))] dt < -(6/2)Ivli2
0

whenever v E Z. By (19), there exists p > 0 such that

IVH*(v) - Boul <- (6/2) IvI

for v E R2N with IvI < p. Hence, by the mean value theorem, we have

1I H*(v) - (1/2)(Bov, v) < J I (VH*(tv) - Bo(tv), v) I dt
0

< j(6/2)t Ivl2dt = (b/4) Iv12

whenever IvI < p. Consequently, if v E Z and 0 < IvI < p, we get

T

H*(i(t)) - (1/2)(Bov(t), v(t))] dttp(v) = XT(v) + JO [

-(6/2)IiIL2 + (6/4)
JO

Iu(t)I2dt = -(6/4)IvJLa,T

and the proof is complete since Z is finite-dimensional. 0

Proof of Theorem 7.2. We apply Theorem 6.2 to cp which is invariant and
satisfies the (PS)-condition by Lemma 7.2. The spaces Y and Z introduced
respectively in Lemmas 7.3 and 7.4 satisfy the assumption

i(Ac,,T) = codimY < dim Z = i(Ao, T)

and the conditions (11), (12), (13), and (14) in Chapter 6 since Fix (S1) _
{0} and co(0) = 0. Thus Theorem 6.2 implies the existence of at least

(1/2)[i(Ao, T) - i(A., T)]
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distinct orbits {T(O)vj : 0 E S1} of critical points of cp outside of Fix
(S1) _ {0}. By Theorem 2.3, uj defined by

uj(t) = VH*(v,(t))

is a T-periodic solution of (14). Clearly, vj : 0 implies uj # 0 as vj has
a mean value of zero. Finally, if uj and Uk describe the same orbit, then
Uk = T(O)uj for some 0, so that

vk = VH(uk) = VH(t(O)uj) = T(8)VH(uj) = T(O)i'

and hence
Vk = T(B)vj

and vk and vj have a mean value of zero. Thus vk and vj describe the same
orbit, which implies j = k and completes the proof. 0
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Exercises

1. Let H E C2(R2N, R) be such that VH(0) = 0 and H"(x) is positive
definite for all x E R2N \ {0} (in particular, H is strictly convex).
Define the index i of an non-constant solution u of

Ju(t) + VH(u(t)) = 0,

u(0) = u(T),

by i = i(H" o u, T). Prove that if u is T/k-periodic, then k _< i -1-1.
In particular, if iu = 0, then T is the minimal period of u.
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2. Consider the linear Hamiltonian systems

Ju(t) + Ai(t)u(t) = 0, Ju(t) + A2(t)u(t) = 0,

with Al and A2 continuous mappings from R into the space of posi-
tive definite matrices of order 2N. If

A1(t) < A2(t)

for all t E [0, T], then

i(A1,T) < (A2,T).

3. Let H E C1(R2N,R) be strictly convex and such that

H(0) = 0, VH(O) = 0,

and let T > 0. Assume that there exists n E N, y E ]2irn/T, 2ir(n +
1)/T[ such that

VH(u) = yu + o(Jul) as Jul -+ oo

and some k > 1 and /.3 > (2ir/T)(n + k) such that

VH(u) =,3u + o(jul) as Jul --* 0.

Then the problem
Jit + VH(u) = 0,

u(0) = u(T)

has at least Nk S1-orbits of nontrivial solutions. Compare this result
with the Exercise 7 in Chapter 6.

Hint. Use Theorem 7.2 and the results of Section 7.2.
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Morse Theory

Introduction

Morse theory's object is the relation between the topological type of critical
points of a function So and the topological structure of the manifold on which
the function is defined.

The topological type of a critical point u is described by the critical
groups of Morse u) (see Section 8.2) which exhibit the following prop-
erties:

a) in the nondegenerate case, the critical groups are computable by lin-
earization (see Section 8.6);

b) the critical groups are stable under small perturbations of the function
.p (see Sections 8.9 and 8.10).

If <o'(u) = 0 and cp"(u) is invertible, then

u) = 6,,,k

where k is the Morse index of <o"(u). Recall that this Morse index is an
integer measuring the maximal dimension of the spaces on which cp"(u)
is negative definite (see Section 8.6). We also present some results in the
degenerate case when cp"(u) is a Fredholm operator.

The topological structure of the manifold M is described by its Betti
numbers B,,. Intuitively, B is the maximal number of n-dimensional sur-
faces without boundaries on M which are not the boundaries of a (n + 1)
dimensional surface on M (see Section 8.1). For example B0 is the num-
ber of path connected components of M. In the case of a sphere, every
closed curve is a boundary and Bl = 0. On the other hand, Bl = 2 for the
two-dimensional torus.

To illustrate Morse theory, let us consider the classical situation of the
function cp(x, y, z) = z defined on a two-dimensional torus M C R3 tangent,
to the plane Oxy (see Figure 8.1). The function cp has a critical point ul
with Morse index zero, two critical points u2 and u3 with Morse index one,
and one critical point u4 with Morse index 2. If Mk denotes the number of
critical points of o with Morse index k, we have Bk = Mk (k = 0, 1, 2).

In general, for an N-dimensional compact manifold, the following relation
is valid

E Mktk = E Bktk + (1 + t)Q(t),
k=0 k-0
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z

FIGURE 8.1.

where Q(t) is a polynomial with nonnegative integer coefficients (see Sec-
tion 8.5). In particular, for t = -1, we obtain the Poincare-Hopf formula
for a gradient vector field

N N
E(-1)kMk = E(-1)kBk-
k=0 k=0

It is important to notice that a single degenerate critical point can con-
tribute to different numbers Mk.

The proof of these results makes use of a deformation technique along the
paths of steepest descent along V p. The corresponding tools and results
are developed in Sections 8.3 and 8.4.

A first application of Morse theory deals with the bifurcation of solutions
of equations depending upon a parameter. Loosely speaking, a change of
critical groups of the trivial solution implies bifurcation. This result, which
corresponds, in the context of Morse theory, to Krasnosel'skii's bifurcation
theorem in degree theory, is given in Section 8.9.

8.1 Relative Homology

Let B be a subspace of a topological space A. For every integer n, we denote
by Hn(A, B) the nth singular homology group of the pair (A, B) over a
field F. For n < -1, Hn(A, B) = {0}. For any map f : (A, B) -> (A', B')
(i.e., any continuous map f : A --> A' such that f (B) C B') there is a
homomorphism

f,. : Hn(A,B) -+Hn(A',B')
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called the induced homomorphism. Let C C B; there is a homomorphism

an : H , , H , ,

called the boundary homomorphism. We shall frequently write f. and a,
omitting the subindex. The Eilenberg-Steenrod axioms are satisfied:

(a) id. = id.
(b) (g o f). = g. o f+
(c) The following diagram commutes:

H,, (A, B)
aI

Hn-1(B, C)

f.

(fIB).

Hn(A', B')
1a

Hr B ,C .

(d) (Exactness). Let

i : (B,C)-;(A,C)

j :
be the inclusion maps. The homology sequence

B) ' Hn(B, C) Hn(A, C) ? " - Hn(A, B) - .. .

is exact (i.e., the image of any homomorphism is equal to the kernel of the
next one).

(e) (Homotopy invariance). If f and g are homotopic (i.e., f = F(0, ),
g = F(1, ) for some continuous mapping F : [0, 1] x A A' such that
F([0,1] x B) C B'), then f. = g..

(f) (Excision). Assume that C is an open subset of A such that the closure
of C is contained in the interior of B. Let i : (A \ C, B \ C) -+ (A, B) be
the inclusion map. Then i. is an isomorphism.

(g) If u is a point, then Hn({u}, 0) = b,,,oF, where b o is the Kronecker
symbol.

We shall also need the following results.
(h) (Decomposition theorem). If (A, B) = Ui_1(Ai,Bi), where the Ai are

closed and disjoint, then

Hn(A, B) _ ®iHn(Ai, Bi).

(i) (Mayer-Vietoris sequence). Assume that X1, X2 are open in X =
X1UX2 and that Y1 C X1, Y2 C X2 are open in Y = Y1UY2. If X1f1X2
there is an exact sequence

Hn(X1,Yi)®Hn(X2,Y2) -* Hn(X,Y) -°. Hn-1(X1nX2,YinY2)

P Hn-1(X1,Yi) ®Hn-1(X2,Y2) -+ ...
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called the Mayer-Vietoris sequence of {(X1,Y1), (X2,Y2)}.
Since F is a field, the homology groups are vector spaces and the Beth

numbers Bn(A, B) of the pair (A, B) are defined by

Bn(A,B) = dimHn(A,B).

Let Rn(A, B, C) be the rank of 8n. By exactness, we obtain

Bn(A, B) = dim R(jn.) + Rn(A, B, C)

Bn(B,C) = (1)

Bn(A,C) = dimR(in.)

A pair (A, B) is admissible if Bn(A, B) is finite for each n and zero for all
sufficiently large n. The Poincare polynomial of an admissible pair (A, B)
is defined by 0

P(t,A,B) = >Bn(A,B)tn.

n-0

Let us also define

Q(t, A, B, C) = E Rn+1(A, B, C) to .00

n=0

If (A, B) and (B, C) are admissible, then (1) implies that (A, C) is also
admissible and that

Bn(A, B) + Bn (B, C) = Bn(A, C) + Rn(A, B, C) + Rn+1(A, B, C).

Multiplying this equation by to and adding over n, we get

P(t, A, B) + P(t, B, C) = P(t, A, C) + (1 + t)Q(t, A, B, C), (2)

where we have used the fact that Ro (A, B, C) = 0.
Assume that Al D A2 D ... D A,, are such that (A;, A;+1) is admissible

for i = 1, ... , j - 1. Applying equation (2) to (Al, A;, A;+1), we obtain

P(t, Al, A,) + P(t, A;, A;+1) = P(t, A1, Ai+1) + (1 + t)Q(t, A1, A;, A;+1).

Adding those equations, we find

i-1

P(t,A1,Ai)+(1+t)Q(t),
a.l

(3)

where Q(t) is a polynomial with nonnegative integer coefficients (by exact-
ness, P(t,A1iA1) = 0).
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A subset A' of A is a strong deformation retract of A if there exists
h E C([O,1] x A, A) such that

h(t, u) = u whenever u E A' and t E [0, 1],

h(0, u) = u and h(1, u) E A' whenever u E A.

Assume that A D A' D C with A' a strong deformation retract of A.
Definer : (A, C) -+ (A', C') by

r(u) = h(1,u)

and let
i : (A', C) -+ (A, C)

be the inclusion map. By homotopy invariance, we obtain

i. o r = (i o r). = id. = id,

and, on the other hand, by definition of r, we have

r. o i. = (r o i). = id. = id,

so that r* is an isomorphism between C) and C). In partic-
ular, if C = A', we see that

H,, (A, A') -- H,, (A, A') {0}.

Now, if A D B D B', with B' a strong deformation retract of B, we have,
by the above result and exactness,

{0} = B')-'+ B') "+ B) a+ B') {0},

and hence

{0} = Imi. = ker j., Im j. = kerb = H,, (A, B).

Thus j.: B') -+ B) is one to one and

H,, (A, B') ..: H,, (A, B).

Let A be a subset of R" containing 0 and let Bk be the k-ball. Then, for
k > 1,

Hn(A x Bk, (A x Bk) \ {0}) N A \ {0}). (4)

Proof. If k > 2, we obtain, after the identification Bk [-1,1]k,

(A x Bk, (A x Bk) \ {0}) = (A x Bk-1 x [-1, 1], (A x Bk-1 x [-1,1]) \ {0}).
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Thus the result follows by induction from the case k = 1. Let us assume that
k = 1. The suspension EA of A is obtained from A x [-1, 1] by identifying
the pair of sets (A x {-1}, Ax {1}) to a pair of points (w_, w+). By excision,

x [-1,1], (A x [-1,1]) \ {0}) ,.. H,,(EA, EA \ {0}).

Let us define the sets

X+ = EA \ {w_}, X- = EA \ {w+},

Y+ = X+ \ ({o} x ] -1, o]), Y_ = X_ \ ({o} x [0,1[),

so that
X+UX_ =EA, X+nX_ =Ax ]-1,1[,

Y + UY_ = EA\ {0}, Y+ nY_ = (A \ {0})x ] - 1, 1[.

Since X+ and Y+ (resp. X_ and Y_) are contractible to w+ (resp. w_) we
have, by homotopy invariance and exactness

{O}.

The exactness of the Mayer-Vietoris sequence of {(X+,Y+), (X_,Y-)}
implies that

UX_,Y+ UY_) -- H,i(X+ nX-,Y+ nY-),

] - 1, 1[)H.(EA, EA \ {0}) Hn_1(Ax ] - 1, 1[, (A \ 10})x

A \ {0}),

and the proof is complete. O

In particular, if A = {O}, we obtain

Bk \ {0}) x Bk, ({0} x Bk) \ {0})
Hn_k({0},Q5) = 8,,,kF.

Let B°° (resp. S°°) be the unit ball ( resp. the unit sphere) in an infinite-
dimensional normed space. Then, since S°° is a strong deformation retract
of B1, we have

B°O \ {0}) H,,(B°°, S°°) ;. H,,(S°°, S°°) {0}.
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8.2 Manifolds

Let M be a set and V a Banach space. A chart is a bijection x : D(x) C
M -} R(x) C V such that R(x) is open. An atlas of class Ck (k > 0) on
M is a set A of charts such that

(AT1) UXEAD(x) = M.
(AT2) x(D(x) fl D(y)) is an open subset of V whenever x E A and Y E A.
(AT3) the mapping

y o x-1 : x(D(x) fl D(y)) - y(D(x) fl D(y))

is a Ck-diffeomorphism for each x E A and Y E A.

A manifold of class Ck modeled on V (or briefly a Ck-manifold) is a
pair (M, A) where M is a set and A is an atlas of class Ck on M. We
will use the same symbol M to denote the Ck-manifold (M, A) and the
underlying set M. The topology of the manifold M is, by definition, the
unique topology on M such that the domain of each chart is open and each
chart is an homeomorphism.

Example 8.1. The singleton {Id : V -r V} is an atlas of class C°° on the
Banach space V.

Example 8.2. Let A be an atlas of class Ck on M and let N be an open
subset of the manifold. M. The restriction to N of the charts in A is an
atlas of class Ck on N.

Example 8.3. Let G be a discrete subgroup of V and it : V --* V/G the
canonical projection. Then

{Tr-1 : ir(U) -> U, U is open and it : U - V/G is injective}

is an atlas of class C°° in V/G.
An important example of a manifold is given by the tangent bundle of

a C1-manifold. If x and y are two charts on M whose domains contain a
point u, and if v E V and w E V, let us introduce the equivalence relation
(verify it!)

(u, x, v) - (u, y, w) S* w = (y ° x'1Ax(u))v
and define the equivalent class

[u, x, v] = {(u, y, w) : u E D(y) and (u, y, w) - (u, x, v)}.

The tangent space of M at u is the set of the equivalence classes
[u, x, v] such that u E D(x) and v E V. A vector space structure is defined
on T, ,M by the formulas

[u,x,v]+[u,x,w] = [u,x,v+w],
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s[u, x, v] = [u, x, sv].

The chain rule shows that this definition is independent of the chart x.
The tangent bundle TM of M is defined by

TM= U
uEM

and the projection it : TM -+ M is defined by

a : [u, x, v] -* u.

Let M and N be Ck-manifolds modeled on Banach spaces V and W,
respectively. A mapping f : M -} N is locally Lipschitzian (resp. of class
Ck) if yo f ox'1 is locally Lipschitzian (resp. of class Ck) for every chart x
on M and every chart y on N. If f : M --p N is of class C', the differential
of f is the mapping df : TM --> TN defined by

df ([u, x, v]) = [f (u), y, (y o f o x-1)' (x(u))v],

where x is a chart at u and y a chart at f (u). One can check that this defi-
nition is independent of x and y and that the following diagram commutes

TM TN
7r 1 1 7r

M f-* N.

If N is a Banach space W, then TW ;-- W2 and df : TM , W2 is defined
by (taking y = Id on W)

df([u,x,v]) = (f(u),(f ox-l)'(x(u))v)

In particular, if x is a chart on M,

dx : ir-1(D(x)) --f V2

is a chart and {dx : x E A} is an atlas of class Ck-1 on TM, such that

dx([u, x, v]) = (x (u), v).

A critical point of cp E C' (M, R) is a point u E M such that dcplT,M = 0.
The change in topology near an isolated critical point is described by the
critical groups. We assume that the C'-manifold M is regular. (Recall that
a topological space is regular if every neighborhood of a point contains a
closed neighborhood.) Let u be an isolated critical point of cp E C'(M, R).
The critical groups (over a field F) of u are defined by

u) = fl U, cp` fl U \ {u}), n=0,1,...,
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where c = ep(u) and U is a closed neighborhood of u. By excision, the
critical groups are independent of U.

Let us complete the critical groups in a trivial but important case, namely
when u is an isolated local minimum point. Then there exists a closed
neighborhood U of u such that

'P(v) > c ='P(u)

whenever v E U \ {u}. We obtain therefore

u) = q) = S,,,0F, n = 0,1, ... .

8.3 Vector Fields

In this section, M will denote a Hausdorff manifold of class C2 modeled on
a Banach space V. A vector field on M is a mapping f : M --+ TM such
that ar o f = Id. If o- :]a, b[ -+ M is a Cl-mapping, then we define 6(t) for
t E ]a, b[ by

e(t) = [a(t), x, (x o o)'(t)(1)] = do-[t, id, 1],

where x is a chart at Q(t).

Proposition 8.1. If f is a locally Lipschitzian vector field on M, then,
for every u E M, the Cauchy problem

a'(t) = ,f(a(t))
(5)0-(0) = u

has a solution defined on some open interval containing 0. Moreover, if
a1 : I1 -+ M and 12 -+ M is a pair of solutions of (5) defined on
open intervals Ij (j = 1, 2), then Cl '= 92 on I1 n 12.

Proof. Let x be a chart at u; near u, the Cauchy problem is equivalent to

dx(&(t)) = dx(f (o (t)))

x(o'(0)) = x(u)

or

fi(t) = (P o dx o f o x-1)(17(1)) (6)
rl(0) = x(u)

where it = x o o and P : V x V --+ V is defined by P(v, w) = w. Since f is
locally Lipschitzian, the same is true for dx o f o x-1. The local theory of
differential equations in a Banach space implies the existence of a solution
rl : ] - e, e[-+ V of (6), and each solution of (6) defined on ] - c, e[ is equal
tort.

Let I = {t E I1 n 12 : o1(t) = o'2(t)}; this set contains 0 and is closed in
i1 n I2 since M is Hausdorff. Using the local uniqueness result, it is easy
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to verify that I is open in Il fl 12, so that I = Il fl 12, and the proof is
complete.

Proposition 8.1 implies that the union of the graphs of all solutions of
(5) defined on open intervals is a solution of (5) defined on an interval
]w-(u),w+(u)[ with

-oo < W-(U) < 0 < w+(u) < +00.

This solution is called the maximal solution of (5) and is
As in the Banach space theory, the set

V = {(t, u) : w_ (u) < t < w+(u)}

is open in R x M and the flow

o:V--*M, (t,u)

is continuous.

8.4 Riemannian Manifolds

0 t, u)

denoted by o(., u).

Let M be a manifold of class Ck (k > 1) modeled on a Hilbert space V.
A Riemannian metric of class Ck-1 on M is a mapping which associates
to each pair (u, x), with u E M and x a chart at u, a positive definite
invertible symmetric operator MM(u) : V -* V such that the following
properties hold.

(RM1) The mapping Mr

D(x) -* C (V) : u -* M., (u)

is of class Ck-1 for each chart x.
(RM2) If x and y are two charts at u E M, then

[(y o x-1)F(x(u))]*My(u)[(y o x-1),(x(u))] = M=(u).

It follows from (RM2) that the relation

([u, x, v], [u, x, w]) = (M.(u)v, w)

defines an inner product on and the corresponding norm is given by

I[u, x, v]1= (M=(u)v, v)112.

A Riemannian manifold of class Ck is a regular connected manifold of
class Ck modeled on a Hilbert space and equipped with a Riemannian
metric of class Ck-1
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Let M be a Riemannian manifold of class C1. A piecewise C' path from
u E M to v E M is a piecewise C1 mapping o : [a, b] --} M such that
o-(a) = u and v. We shall denote by Cu the set of all piecewise C1
paths from u to v and define the length of o E Cu, by

b

L(o) = f Io-(t) I dt.
a

Proposition 8.2. For each u E M and v E M, the set Cu, is non-empty.

Proof. For each u E M, define A = {v E M : Cv # 0}. Since M is
connected and A # ¢, it suffices to prove that A is open and closed.

If v E A, there is a path o, : [a, b] --* M in C,". Let x be a chart at
v = There is a r > 0 such that B = x-1(B(x(v), r)) is an open subset
of D(x), and thus of M. For w E B, the path it : [a, b + 1] -+ M defined
by

o(t)=oo(t), a<t<b
Q(t)=x-1((1-(t-b))x(v)+(t-b)x(w)), b<t <b+1

is in Cu. Thus B C A and A is open.
Now let v be in the closure of A and x be a chart at v. Define B as

before; there will exist w E A fl B and then a path o- : [a, b] M in Cu.
The path & : [a, b + 1] defined by

d(t) = o(t), a < t < b

&(t)=x'1((1-(t-b))x(w)+(t-b)x(v)), b<t <b+1
is in Cu". Thus v E A and A is closed.

Proposition 8.2 justifies the following definition of the geodesic distance
don M

d(u,v) = inf{L(o) : u E Cu}.

Proposition 8.3. The geodesic distance d is a distance on M whose topol-
ogy is compatible with the manifold topology.

Proof. Clearly d is symmetric and verifies the triangle inequality. Let x be
a chart at u E M. By definition, there exists 0 < a <,3 such that

aIhI2 < (MM(u)h, h) :5,31h 12 , h E V.

By continuity, there exists r > 0 such that B = x'1(B(x(u), r)) is an open
subset of D(x), and hence of M and such that

(a/2)1h12 < (M.(v)h,h) < 201h 12, v E B, h E V.

For every piecewise C' path o : [a, b] --> B, we have

M.(0- (t))(x o.7)1(t), (x o o')'(t))1/2 dtbL(o-) = Ja (
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> (a/2)112
J I (x o Q)'(t)I dt > (a/2) 1/2 I

J
b(x o u)'(t) dt)6

a a

= (a/2)112I (x o o)(b) - (x o o)(a)I

For every v E B, the path & defined by

Q(t) = x-1((1 - t)x(u) + tx(v)), 0 < t < 1,

is such that

(7)

L(&) < (20)1121 Ix(v) - x(u)I dt = (20)112Ix(v) - X(U)I. (8)1

0

Let A be a neighborhood of u in M. Since M is regular, there exists a
closed neighborhood C of u such that C C A fl B. Define 6 > 0 by

b = inf{Ix(w) - x(u)I to E 8C}. (9)

Let v E M. If o : [a, b] -* M belongs to Cu, then either o([a, b]) C C or
there is a c E ]a, b[ such that o([a, c]) C C and o(c) E 8C. In the first case,
it follows from (7) that

L(o) > (a/2)112Ix(v) - x(u)I.

In the second case, (7) and (9) imply that

L(o) > (a/2)112Ix(o(c)) - x(u)I > (a/2) 1/26.

In particular, d(u, v) > 0 for v u and d is a distance.
On the other hand, if v E M \ C, then L(o) > (a/2) 1126 so that

{v E M: d(u,v) < (a/2) 1126} C C C A.

A being arbitrary, this implies that the topology induced by d is stronger
than the manifold topology. Now (8) implies that

x-1(B(x(u), (20)-112R)) C {v E M : d(u, v) < R}

whenever R E ]0, (2,Q)1/2r[, showing that the topology induced by d is
weaker than the manifold topology.

A subset of a Riemannian manifold of class C1 will be said to be complete
if it is complete for the geodesic distance.

Let M be a Riemannian manifold of class C2 and let co E C2-0(M, R).
The gradient of cp is the vector field defined on M by

Vcc(u) = [u, x, M. 1(u) J(cc ° x-1)'(x(u))]

where J : V* -+ V is the inverse duality mapping.
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If WE C2-0(M, R), the Cauchy problem

c(t) = -V 0(o'(t))
c(0) = u

has a unique maximal solution a(.) = c(., u). Since

(10)

dt(`poo)(t) = at(pox-1oxoc)(t)

= (('p o x-1)'(x(c(t)), dt(x o 0) (0)

_

(M-(o'(t))MM o x-1)'(x(c(t)), dt(x o c)(t))

(c(t)))
_ - Vc (c(t))I2,

where x is a chart at a(t), either cp(c(t)) = cp(u) for all t >_ 0 or cp o o is
decreasing. Moreover we have

tcp(c(t)) = V(c(s)) - J jVcp(c(r))j2dr, w_(u) < s < t < w+(u). (11)
a

Proposition 8.4. Under the above assumptions, if w+(u) is finite and the
set {c(t) : t E [0,w+(u)[} is contained in a complete subset of M, then
v(c(t)) - -oo when t - w+(u).
Proof. For 0 < s < t < w+ (u), the definition of d and (11) imply that

j

\1/2

d(c(t), o,(s)) <IV(r))I dr < (t - s)1/2 (1, o(u(r))12dr f/
= (t - ca(o.(t)))1/2. (12)

Since w+(u) < oo, c(t) does not converge as t -> w+(u), and hence does not
verify the corresponding Cauchy condition. Since ,p o c is non-increasing,
(12) implies that cp(o (t)) -. -oo as t -> w+(u). 11

8.5 Morse Inequalities

Let us consider the following framework:

i) M is a Riemannian manifold of class C2 and (P E C2-0(M, R);

ii) X C M is positively invariant for the flow c defined by (10) (i.e.,
c(t,u) E X whenever u E X and t E ]0,w+(u)[);

iii) a < b are real numbers such that the critical points of <p in yo-1([a, b])n
X are isolated and contained in the interior of cp-' ([a, b]) fl x;
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iv) cp-1([a, b]) fl x is complete;

v) the Palais-Smale condition over tp-1([a, b]) fl x is satisfied, i.e., every
sequence (uj) in t-'([a, b]) fl x such that IVcp(u5)I -> 0 contains a
convergent subsequence.

More generally, we shall say that cp satisfies the Palais-Smale condition
over a closed subset S of M if every sequence (uj) C S such that (cp(uj))
is bounded and IVw(uj)I , 0 contains a convergent subsequence.

Lemma 8.1. Let M be a Riemannian manifold of class C2 and let v be an
isolated critical point of cp E CZ-0(M, R). If the Palais-Smale condition
is satisfied over a closed neighborhood A of v, then there exists c > 0 and
a neighborhood B of v such that, if u E B, either o(t, u) stays in A for
0 < t < w+(u), or o(t, u) stays in A until cp(o(t, u)) becomes less than
'p(v) - C.

Proof. Let p > 0 be such that B[v, p] C A, co is bounded on B[v, p], and
C = {u E M : p/2 < d(u, v) < p} is free of critical points. The Palais-
Smale condition implies that

b = u E C} > 0.

Let us define B = B[v, p/2] n o'+6P14 where c = cp(v). If u E B is such that
o(t, u) does not stay in A for all 0 < t < w+(u), then there exists 0 < t1 <
t2 < w+(u) such that o(t, u) E C for t1 < t < t2, d(o(t1, u), v) = p/2 and
d(o(t2, u), v) = p. It follows from (11) that

'p(o(t2, u))
t

sv(a(t1, u)) - b it
,

I

I dr

yo(u) - bd(o(t1, u), o(t2, u))

< c + by/4 - b(d(o(t2, u), v) - d(o(t1, u), v))

= c + 6y/4 - by/2

= p(v) - bp14,
and the proof is complete with e = by/4.

Lemma 8.2. If Assumptions (A) hold, then, for every u E-1([a, b]) f1X,
either there is a (unique) t > 0 such that p(o(t, u)) = a or w+(u) = +oo
and there is a critical point v of cp in ,-1([a, b]) flX such that o(t, u) -* v
when t -- +oo.

Proof. If cp(o(t, u)) > a for all t E ]0,w+(u)[, Proposition 8.4 implies that
w+(u) = +oo, and hence V(o(t, u)) --- c > a when t --> +oo. By (11),

f0 IVcp(o(r,u))I2dr, < oo.
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Consequently, liminft_.,+, JV p(o(t, u))12 = 0 and the (PS) condition im-
plies the existence of a sequence (1,) tending to +oo and of a critical point
v such that o-(tj,u) --* v as j -} oo. In particular, v E X and c = cp(v). It
follows then from Lemma 8.1 that o(t, u) -+ v as t --+ +oo.

Let us define, for c E [a, b],

X` = {u E X : cp(u) < c}

K, _ {u E X : V(u) = c, dcp(u) = 0}.

Lemma 8.3. Under assumptions (A), let a < a < 3 < b be such that
c0_1(]a, Q[) fl x is free of critical points. Then X" is a strong deformation
retract of Xp \ Kp. Moreover, cp is non-increasing during the deformation.

Proof. By Lemma 8.2, if u E Xp \ Kp and V(u) > a, either there is a
unique t(u) such that co(o(t(u), u)) = a or Sp(o,(t, u)) -+ a as t -. +00. If
'(t, u) = cp(o(t, u)), then Dt0(t(u), u) = -IV(o(t(u), u)12 # 0, and t(u) is
continuous by the implicit function theorem. Define the function p by

p(t, u) = o(t, u) if 0 < t < t(u)
= o(t(u), u) ift(u) < t < 00

in the first case and by

p(t, u) = o(t, u), 0 < t < +oo

in the second case. Moreover define p by

p(t, u) = u, 0 < t < +oo

whenever u E X. The continuity of the flow o implies the continuity of p.
Now define the deformation onVt[0, 1] x (Xp \ Kp) by

1)(t,u)=p,u), 0<t<1

71(1, u) = tli p(t, u).

The continuity of i follows from Lemma 8.1 and from the continuity of
p. By construction, u)) is non-increasing, and the proof is complete.
0

It is easy to verify that, under assumptions (A), <p-1([a, b]) fl x contains
at most a finite number of critical points u1, ... , uj. The Morse numbers
of the pair (Xe, X°) are defined by

n = 0,1,....
1=1
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If Mn (X6, X a) is finite for every n and is equal to zero for n sufficiently
large, the Morse polynomial of the pair (Xb,Xa) is defined by

00M(t, X b, Xa) = Mn(XI, X a)tn.
n=0

Theorem 8.1. Under assumptions (A) if, every critical point in W-1([a, b]n
X corresponds to the same critical value c E ]a, b[, then

Mn(Xb,Xa) =
Bn(Xb,Xa), n = 0,1,....

Proof. Lemma 8.3 implies that
Hn(Xb,Xa) N Hn(X`,Xa) Hn(X`,X` \Ko).

Since K, = {u1, ... , uj } is contained in the interior of cp-1([a, b]) n x, the
critical points have disjoint closed neighborhoods U1,. .. , Uj such that

j
U= U Ui C (p-1([a, b]) n X.

i=1

Therefore we obtain, by the excision and decomposition properties,

Hn(X c, X' \ K,) Hn(X°nU,(X`\K,)nU)

i
n Ui, o` n Ui \ {ui})

1=1

ui),
i=1

and the result follows from the definitions.

Theorem 8.2. Under assumptions (A), if Mn(Xb, Xa) is finite for every
n and equal to zero for n sufficiently large, then there exists a polynomial
Q(t) with nonnegative integer coefficients such that

M(t, Xb, Xa) = P(t, Xb, Xa) + (1 + t) Q(t).

Proof. Let a < c1 < ... < cj < b be the critical values corresponding to
the critical points in W-1([a, b]) n X. If we take real numbers ai such that

a = a0<c1<a1<c2<...<aj-1<cj<aj=b,
Theorem 8.1 implies that the pairs (X ,i+,, X ai) are admissible and that

j-1 1-1
Bn (Xai+1 Xa') = >Mn (Xa.+',Xa`) = MM(Xb,Xa).

i=0 i=0
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It follows then from formula (3) that

1

M(t,Xb,Xa) = EP(t,Xa'+',Xaj) = P(t,Xb,Xa)+(1+t)Q(t),

=0

where Q(t) is a polynomial with nonnegative integer coefficients.

Remarks.
1. Theorem 8.2 implies that

MM(Xb,Xa) > Bn(Xb,Xa), n = 0,1,...,

. and that
00 00

. _1)nM,a(X6,Xa)=E(-1)nBn(Xb,Xa).
n=0 n=0

The second relation is an extension of the Poincare-Hopf formula.
2. If Mn (X b, X a ), Mn+i (X b, X a) 0 for every n, then necessarily

M(t,Xb,Xa) = P(t,Xb,Xa).

The above observation is called the Morse lacunary principle.
Let us now extend Theorem 8.2 to the case of an unbounded interval

[a, +oo[.

Lemma 8.4. Let M be a Riemannian manifold of class C2, let cp E
C2-0(M, R), and let X be a subset of M positively invariant with respect
to the flow o defined by (10). If for every d > b, co-1([b, d]) fl X is complete
and free of critical points, and if satisfies (PS) over cp-1([b,d])flX, then
Xb is a strong deformation retract of X.

Proof. Let u E X be such that cp(u) > b. If cp(o(t, u)) > b for every
t E ]0,w+(u)[ then, as in the first part of the proof of Lemma 8.2, there
exists a critical point v of o in X such that cp(v) > b. But this is not possible
by assumption. Thus there exists a unique t(u) such that cp(o(t(u), u)) = b.
The deformation can then be given on [0, 1] x X by

ij(s, u) = 0'(t(u)s, u), 0 < s < 1

ifuEX\Xbandby

rl(s,u)=u, 0<s<1
ifuEX'.

Let us suppose that, in addition to assumption (A), the following condi-
tion holds.

(B) For every d > b, cp-1([b, d[) flX is complete and free of critical points
and p satisfies (PS) over cp-1([b, d[) fl X.
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The Morse numbers of the pair (X, X°) are defined by

MM(X,X°) = MM(Xb,X°).

If M,,(X, X°) is finite for every n and equal to zero for n sufficiently large,
the Morse polynomial of the pair (X, X°) is defined by

M(t,X,X°) = M(t,Xb,X°).

Corollary 8.1. Under assumptions (A) and (B), if Mn(X,X°) is finite for
every n and equal to zero for n sufficiently large, there exists a polynomial
Q(t) with nonnegative integer coefficients such that

M(t, X, X°) = P(t, X, X°) + (1 + t) Q(t).

Proof. By Lemma 8.4, X b is a strong deformation retract of X so that

P(t,X,X°) = P(t,Xb,X°).

The result then follows from Theorem 8.2 and from the definition of M(t, X,
X°).

Corollary 8.2. Let M be a complete Riemannian manifold of class C2
and let cp E C2-0(M, R). If

i) cp satisfies the Palais-Smale condition over M,

ii) p is bounded from below on M,

iii) cp has only a finite number of critical points u1, ... , uj and dimCn(co, u;
is finite for every n and zero for n sufficiently large, i = 1, ... , j,

then there exists a polynomial Q(t) with nonnegative integer coefficients
such that

00 i
EE dimCn(cp,u;)tn = P(t, M,O) +(1 +t)Q(t).
n=0 i=1

Proof. Let a < infM cp and b > sup{9(u) : V p(u) = 0}. It suffices to
apply Corollary 8.1 with X = M.

8.6 The Generalized Morse Lemma

The generalized Morse lemma, also called the splitting theorem, is the basic
tool for the effective computation of critical groups. The theory of Fredholm
operators provides a natural setting for this lemma.

A linear continuous operator L between two Banach spaces is called a
Fredholm operator if the dimension of ker L and the codimension of R(L)
are finite. This implies that R(L) is closed.
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Let V be a Hilbert space, U an open neighborhood of u E V, and let
E C2(U, R). Define implicitly the linear operator L : V -+ V by

(Lv, w) = 9"(u)(v, w).

Then L is self-adjoint and we shall identify L with cp"(u). If 0"(u) is a
Fredholm operator, V is the orthogonal sum of R(p"(u)) and

Assume now that u is a critical point of cp. The Morse index of u is
defined as the supremum of the dimensions of the vector subspaces of V on
which cp"(u) is negative definite. The nullity of u is defined as the dimension
of kercp"(u). Finally, the critical point u will be said to be non-degenerate
if p"(u) is invertible.

Theorem 8.3. Let U be an open neighborhood of 0 in a Hilbert space
V and let cp E C2(U,R). Suppose that 0 is a critical point of cp with
positive nullity and that L = p"(0) is a Fredholm operator, so that V is the
orthogonal direct sum of ker(L) and R(L). Let w + v be the corresponding
decomposition of u E V. Then there exists an open neighborhood A of 0 in
V, an open neighborhood B of 0 in ker(L), a local homeomorphism h from
A into U, and a function cp E C2(B, R) such that

h(0) = 0, 0'(0) = 0, 0"(0) = 0

and

cp(h(u)) = (1/2)(Lv, v) + O(w)

on the domain of h.

Proof. 1) Let Q : V -+ V be the orthogonal projection onto R(L). By the
implicit function theorem, we can find rl > 0 and a C'-mapping

g B(0, rl) fl ker L

such that g(0) = 0, g'(0) = 0 and

R(L)

QVp(w + g(w)) = 0.

Let us define 0 on B = B(0, rl) fl ker L by

O(w) = cp(w + g(w))

so that, by direct computation and (13),

V (w) = (I - Q)V ca(w + g(w))

and

In particular

O"(w)
= (I - Q)co"(w + g(w))(Id + g'(w)).

VA0) = (I - Q)Vc (0) = 0

(13)
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and

0"(0) = (I - Q)Yd '(0) = (I - Q)L = 0.

Let us define, near [0, 1] x {0}, the function

(t, v, w) = (1 - t)(cp(w) + (1/2)(Lv, v)) + tcp(v + w + g(w))

and the vector field

f (t, v, w) = 0, if v = 0,
= if v 0 0.

If i7(t) = rj(t, v, w) is a solution of the Cauchy problem

fl = f (t, rl, w)

ri(0) = V

we have

dt 4(t, i(t), w) _ 'Dt(t, ll(t), w) + (4Dv(t, i(t), w), i(t))
=0

and, in particular,

O(w) + (1/2)(Lv, v) _ t(0, v, w)
_ 4(l, 77(1, v, w), w)

co(r7(1,v,w)+w+g(w))

Let us assume that the flow rj(t, v, w) is well defined and continuous on
[0, 1] x A, where A is an open neighborhood of 0 in V. Then the local
homeomorphism h is given by

h(u) = h(v, w) = w + g(w) + r7(1, v, w).

The local invertibility of h follows from the local invertibility of 77(l, , w).
2) It remains to prove that rt is well defined and continuous. Let us define
by

'Y(v, w) = cp(v + w + g(w)) - O(w) - (1/2)(Lv, v).

We obtain, using (13),

W(0, w) = 0, 'v (0, w) = 0, W;; (0, O) = 0;

and, consequently

r1
w) = J (1 - (sv, w)v, v) ds

0
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1

iv (v, w) = V (sv, w)v ds.
10

V

Thus, for each e > 0, there exists b(e) E JO, r1 [ such that

I'1(v, w)I < e I v I , I'J (v, w)I <_ EwI (14)

whenever Iv + wl < b(e). Since L R(L) -+ R(L) is continuous and invert-
ible, there exists c > 0 such that

c-1IvI < ILvI < c w) (15)

for v E R(L). We have, for v # 0,

f (t, v, w) _ -iIi(v, w) lLv + t'P,, (v, w)l-2(Lv + t%P (v, w)).

Let e = (2c)'1. Using (14) and (15), we obtain, for Iv + wl < b(e),

If (t, v, w)I < 2c(c + e)e Ivy. (16)

Since f (t, 0, w) = 0, f is continuous. Let P E ]0, b(e)[ be such that

Iq"'(v,w)I < 1 (17)

for Iv + wI _< p and v # 0. Using (14), (15), and (17), it is easy to verify
the existence of c1 > 0 such that

IA(t,v,w)I <ci

for Iv + wI < p and v # 0. By the mean value theorem and (16), there
exists c2 > 0 such that

I f(t, v1, w) - f (t, v2, w)I :5 C2Iv1 - v21

for Ivi + wI < p, i = 1, 2. Thus the flow 77 is locally well defined and
continuous. Moreover, since q (t, 0, w) = 0, rl is well defined on [0, 1] x A
where A is an open neighborhood of 0 in V.

Remarks. 1) It is easy to verify that h restricted to R(L) is a local diffeo-
morphism since f (t, v, 0) is continuous.

2) A similar but simpler proof gives the following result, which is called
the Morse lemma.

Theorem 8.3bis. Let U be a neighborhood of 0 in a Hilbert space V and let
E C2(U, R) be such that 0 is a non-degenerate critical point of 9. Then

there exists an open neighborhood A of 0 in V and a local diffeomorphism
h from A into U such that h(0) = 0 and

9(h(u)) = 4p(O) + (1/2)(,p"(0)u, u).
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Let now M be a regular C2-manifold modelled on a Hilbert space V and
let u be an isolated critical point of cp E C2(M, R). The Morse index (resp.
the nullity) of u is defined as the Morse index (resp. the nullity) of x(u) as
a critical point of cp o x-1, where x is a chart at u. The critical point u is
called non-degenerate if x(u) is a non-degenerate critical point of cp o x-1.

Remarks. 1. If y is another chart at u, then, since

Yo0x-1=(p0 y-1oyox-1

on D(x) n D(y), it is easy to verify that

(cp 0 x-1)"(x(u)) = (cp o y-1)"(y(u))[(y
o x-1)'(x(u)), (y o x-1)'(x(u))]

The invertibility of (y o x-1)'(x(u)) implies that the above definitions are
independent of the chart x.

2. In the non-degenerate case, the Morse index is the supremum of the
dimensions of the subspaces along which cp is decreasing near the critical
point u.

3. By the implicit function theorem (or by the Morse lemma) any non-
degenerate critical point is isolated.

We now show that the critical groups of a non-degenerate critical point
depend only upon its Morse index.

Corollary 8.3. Let M be a regular C2 manifold modeled on a Hilbert space
V and let u be a non-degenerate critical point of cp E C2(M, R) with Morse
index k. Then

u) = 6n,kF, n = 0,1, ... .

Proof. 1) Let x be a chart at u and let U C D(x) be a closed neighborhood
of u. Since, by definition

Cn(cp, U) = n u, coc n u \ {0})

with c = cp(u), it is sufficient to consider the case where M is an open
subset of V.

2) We can assume without loss of generality that u = 0 and c = 0. By
Theorem 8.3bis, there exists an open neighborhood A of 0 in M and a local
homeomorphism h from A into V such that h(0) = 0 and

cp(h(u)) = O(u) = (1/2%o "(0)u, u)

whenever u E A. Let B C A be a closed ball centered at 0. We have

0) = n h(B), io° n h(B) \ {0})

From the invertibility of cp"(0) it follows that V is the orthogonal sum of
V- and V+ with i negative (resp. positive) definite on V- (resp. V+). Let
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v = v- + v+ be the corresponding decomposition of any v E V. Define the
deformation 77 of B by

71 : [0,1] xB-->B, (t,v)-rv-+(1-t
so that

0(77(t, v)) = O(v-) + (1 - t)2,b(v+).

Thus v- n B \ {0} is a deformation retract of o° n B \ {0} and v- n B
is a deformation retract of 1° n B. Since, by definition, k = dim V-, we
obtain, for k > 1,

n B, b° n B \ {0}) n B, v- n B \ {o})

n B, v n B \ {0}) Sk-1) -- S,,,kF,

and for k = 0,

n B,,o° n B \ {0}) ti S,,,oF.

Remarks. 1. If the Morse index of a nondegenerate critical point u is
infinite, then all the critical groups of ep at u are isomorphic to 0.

2. Under the assumptions of Theorem 8.2, if the critical points of c,o in
-1([a, b])nX are non-degenerate, then M,, (X', X°) is equal to the number

of critical points of cp with Morse index n in cp-1([a, b]) n x.

8.7 Computation of the Critical Groups

The use of Morse inequalities depends on the effective computation of the
critical groups in the degenerate case.

Lemma 8.5. Let U be an open neighborhood of v in a Hilbert space V and
let E C2-0(U; R). If v is the only critical point of co, and if the Palais-
Smale condition is satisfied over a closed ball B[v, r] C U, then there exists
c > 0 and X C U such that:

i) X is a neighborhood of v, closed in U;

ii) X is positively invariant for the flow o defined by (10);

iii) cp-1([c - e, c + e]) n x is complete, where c = V(v);

iv) the Palais-Smale condition is satisfied over c-1([c- c, c + e]) n X.

Proof. Let c > 0 and B C U be given by Lemma 8.1 applied to A = B[v, r]
and let X be the closure in U of the set

Y= {u(t, u) : u E B, 0< t< w+(u)}.
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By construction, X satisfies i) and ii). Lemma 8.1 implies that

c-1([c-E,c+E])nY C B[v,r].
Since B[v, r] is closed in U, the set cp-1([c - E, c + c]) n x is contained
in B[v, r] and closed in B[v, r]; hence it is complete. By our Palais-Smale
assumption, iv) then follows from iii). 0

We shall prove that, in the setting of Theorem 8.3, the critical groups
depend on the Morse index and on the "degenerate part" of the functional.
Thus the computation of the critical groups is reduced to a finite dimen-
sional problem. This result is called the Shifting theorem.

Theorem 8.4. Under the assumptions of Theorem 8.3, if 0 is the only
critical point of V, and if the Morse index k of 0 is finite, then

Cn(tp, 0) N Cn-k( , 0), n = 0, 1, ... .

Proof. 1) With the notations of Theorem 8.3, let C C A be a closed neigh-
borhood of 0. Setting c = cp(0) = cp(O) and O(u) = O(v+w) (1/2)(Lv, v) +
cp(w), we obtain

CC(cp, 0) = Hn(coc n h(C), v` n h(C) \ {0})
N Hn(v° n c, Y n c \ {0}) = Cn(o, 0).

2) By assumption, 0 E ker L is the only critical point of cp E C2(B, R).
Since dim ker L is finite, the Palais-Smale condition is satisfied over any
closed ball B[0, r] C B. Let e > 0 and X C B be given by Lemma 8.5
applied to cp. Lemma 8.3 implies that X` is a strong deformation retract of
X`+E. Moreover, 0 is non-increasing during the corresponding deformation
ij. Define the deformation A over D = R(L) x X`+E by

A(t,v,w) = v- +(1-t)v++rl(t,w).

It is easy to verify that V- x X' is a strong deformation retract of 0` n D
and that (V- x X`) \ {0} is a strong deformation retract of '` n D \ {0}.
Therefore we obtain

CC(o, 0) = Hn(b` n D, oc n D \ {0})
Hn(V- x X`, (V- x X`) \ {0}).

3) If k = dim V- = 0, we have

CC(O, 0) = Hn(Xc, X` \ {0})
= Hn(Y>` n x, c` n x \ {0}) = Cnp, 0),

and the proof is complete. If k > 1, relation (4) implies that

C,, (0, 0) Hn(Rk
x X

e (Rk X X c) \ {0})
Hn(Bk x X`, (Bk X X`) \ {0/})

H.-k(Xc, X` \ {0}) = Cn-k( , 0). O
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Lemma 8.6. Let U be an open subset of R" and let v be the only critical
point of cp E C2(U, R). Then, for every p > 0, there exists cp E C2 (U, R)
such that the following hold:

a) The critical points of (p, if any, are finite in number and non-degener-
ate.

b) If lu - vl > p, then cp(u) = cp(u).

c) If u E U, then

Wu) - v(u)I + P'(u) - w'(u)l + Ic"(u) - 0'(u)I < p.

Proof. We can assume that the closed ball B[v, p] is contained in U. Let
w E C2 (U, R) be such that

w(u)
1 if lu - vl < p/2

l 0 if lu - vl > p

and let e E RP, The function cp E C2(U, R) defined by

Au) _ O(u) - w(u)(u, e)

satisfies b). It is easy to verify the existence of a > 0 such that c) is satisfied
for l e I < a. Since

W (U) = Vc (u) - w(u)e - Vw(u)(u, e),

we obtain

IV (u)I >- loca(u)I - lel Iw(u)I - lVw(u)I Jul lel.

But
b = inf{lVcp(u)l : p/2 < lu - vl < p} > 0.

Thus there exists Q E ]0, a] such that, for l e l < /3,

inf{lvcp(u)l : p/2 < lu - vl < p} > 6/2.

By Sard's theorem, we can assume that e is a regular value of V p such
that lel < ,0. If Iu - vl > p, cp(u) = cp(u), so that Ocp(u) # 0. If p/2 <
lu - vi < p, we have iVcp(u)l > 6/2. If lu - vl < p/2, then, by definition

Vcp(u) = 0 if and only if Vcp(u) = e.

Since e is a regular value of Vcp, the critical points of cP are non degenerate
and, consequently, isolated. Being contained in B[v, p/2], they must be
finite in number.
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Let U be an open subset of RP and let v be an isolated zero of f E
C(U, RP). Assume that r > 0 is such that the ball B[v, r] is contained in U
and v is the unique zero off in B[v, r]. Then the topological index i(f, v)
of f at v is defined by

i(f, v) = d(f, B(v, r)).

By the excision property of the topological degree, the right-hand member
is independent of r.

The following theorem gives a relation between the topological index and
the critical groups.

Theorem 8.5. Let U be an open subset of RP and let v be an isolated
critical point Ya E C2(U,R). Then dim Cn(cp,v) is finite for every n and is
zero for n > p + 1. Moreover

P

i(V , v) = E(-1)ndim.Cn(cp, v).
n=0

Proof. 1) By diminishing U if necessary, we can assume that v is the
only critical point of p lying in U. Moreover, the Palais-Smale condition is
satisfied over any closed ball B[v, r] C U. Let c > 0 and X C U be given by
Lemma 8.5. The definition of the Morse numbers and Theorem 8.1 imply
that

M.(Xc+e,X'-') = Bn(Xc+E,Xc-e)
(18)

where c = p(v).
2) There exists p E ]0,E/3] such that

B[v,2p]CSo'1 c-3,c+ E3 )nX.

Let O E C2(U, R) be given by Lemma 8.6. Properties b) and c) of p imply
that 0°1e = Vet'. Thus 3-1([c- E,c+E]) nX = c-1([c- E,c+E]) nX is
complete. In particular, satisfies the Palais-Smale condition over cp'1([c-
E, c + E]) n X. Since B[v, p] is contained in the interior of X, property b) of
p implies that X is positively invariant for the flow & defined by

mo(t) _

&(0) = U.

By a), cp has only a finite number of critical points u1, ... , uj, all non
degenerate. By b), the critical points are contained in B[v, p], and, hence,
in the interior of ([c - E, c + E]) n X.

3) Let ki E {0,1, ... , p} be the Morse index of ui, i = 1, ... , j. If we de-
note by Mn (X c+e, X' e) the Morse numbers corresponding to gyp, Corollary
8.2 implies that

Mn(Xc+e Xc-e) = (19)
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In particular, Mn(Xc+E,Xc-E) is finite for every n and equal to zero for
n > p + 1. It follows from Theorem 8.2 that

Mn(Xc+E,X` E) > Bn(X`+E,Xc E)

and that
P

E(-1)nMn(X c+c, X c-E)
n=0 n=0

(
1)nBn(Xc+e,Xc-E). (20)

In particular, dim Cn(p, v) is finite for every n and equal to zero for n >
P+ 1.

4) By definition of the topological index and of the topological degree,
we have

i(V P, u1) = (-1)k.

It follows from (19) and from the additivity of the topological degree that

P
1)nMn(Xc+c,Xc-c) _ E(_1)n

n=0 i-1

1)k'

u;) = B(v, 2p)). (21)
i=1

By continuity of the topological degree, we have

d(Vcp, B(v, 2p)) = d(Vcp, B(v, 2p)) = i(Vcp, v). (22)

Theorem 8.5 then follows from (18), (20), (21), and (22). 0

Theorem 8.6. Let U be an open subset of RP and let v be an isolated
critical point (p E C2(U, R). If v is neither a local minimum nor a local
maximum, then

V) = Cp(co, v) = 0.

Proof. 1) By diminishing U if necessary, we can assume that v is the only
critical point of cp located in U. Moreover, the Palais-Smale condition is
satisfied over any closed ball B[v, r] C U. Let e > 0 and X C U be given
by Lemma 8.5. Then, by Lemma 8.3, X' is a deformation retract of X '+c,
so that

Cn(SO, V) = H. (X', X' \ {0}) = Hn(Xc+E, Xc \ {v}).

Let rl E C([0,1] x Xc+E, X`+E) be the corresponding deformation.
2) In order to prove that Ho(Xc+E, X` \ {0}) = {0}, it suffices to show

that every point u E X'+' is connected to a point in X' \ {v} by a continu-
ous path contained in Xc+E. Let p > 0 be such that B[v, P] C Xc+E. Since v
is not a local minimum, there exists w E B[v, p] such that cp(w) < c. Thus
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v is connected to the point w E X° \ {v} by a continuous path contained
in X`+`. Now, every point u E X`+` is connected by a continuous path
contained in X'+' to j(l, u), which either is v or belongs to X c \ {v}.

3) Any continuous map

f : SP-1 -+ B[v, p] n coc \ {v}

has a continuous extension gl : BP -+ B[v, p]. It follows from Lemmas 8.3
and 8.5 that f has a continuous extension 92 : BP --+ cpC. Since v is not a
local maximum, v is not an interior point of g2(BP). Thus f has a continuous
extension g3 : BP -* cp' U S6 \ B6 where b > 0 is small, S6 = S(v, 6), and
B6 = B(v, b). Using the argument of Lemma 6.5, we obtain a continuous
extension g4 : BP <pc \ {v} of f. Thus Hp_i(cp° nB[v, p] \ {v}) 0. Since
HP(cp° n B[v, p]) -- 0, we obtain by exactness CP(cp, v) -- 0.

Corollary 8.4. Under the assumptions of Theorem 8.3, if 0 is an isolated
critical point of p with finite Morse index k and nullity v, then the following
are true.

i) dim Cn(V, 0) is finite for every n and is equal to zero if n V {k, k +
1,...,k + v};

ii) if 0 is a local minimum of cp, then

C.(co,0) = bn,kF;

iii) if 0 is a local maximum of p, then

C.(w,0) = bn,k+v F;

iv) if 0 is neither a local minimum nor a local maximum of cp, then

Ck ((P, 0) = Ck+Y (cO, O) = 0;

v) if there exist integers nl $ n2 such that Cn, (cp, 0) # 0 and Cn,(cp, 0) :
0, then

In,-n2l <v-2.

Proof. By Theorem 8.4, Cn(cp, 0) N Cn_k(cp, 0), so that C,, (cp, 0) = 0 if
n < k - 1. It follows from Theorem 8.5 and dimCn(cp, 0) is finite for every
n and is equal to zero for n > k + v + 1. It is easy to obtain ii) and iii) by
a direct calculation. Theorem 8.6 implies iv). Finally, v) follows from i) to
iv).
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8.8 Critical Groups at a Point of Mountain Pass
Type

Interesting multiplicity results can be obtained by combining the minimax
theorems and the Morse theory. Let us illustrate this fact by the mountain
pass theorem situation.

Theorem 8.7. Let X be a Hilbert space and let cp E CZ(X, R). Assume
that there exists uo E X, ul E X and a bounded open neighborhood S2 of
uo such that ul E X \ Q and

ianf cp > max(co(uo), ca(ui)).

Let r = {g E C([O,1],X) : g(O) = uo,g(1) = ui} and

c = inf max co(g(s)).
gEr sE[o,i1

If co satisfies the Palais-Smale condition over X, and if each critical point
of co in K, is isolated in X, then there exists u E K, such that dimCj(co, u) >
1.

Proof. Let c > 0 be such that c - e > max(co(uo), cp(ui)) and c is the only
critical value of co in [c - E, c + E]. Consider the exact sequence

... -* Hi(co'+E,

cP`-E) e* Ho(c E, q) Ho(cP`+E, 0) -' ...

where i is induced by the inclusion mapping i : (co°-E, qS) --r

The definition of c implies that uo and ul are path connected in co°+E but
not in co''. Thus, keri. # {0} and, by exactness, Hl((p'+E,(P`-E) # {0}.
It follows from Theorem 8.1 that

7

MI(cOc+E, SP` E) = B,(cP`+,co`'E) = dim Hi (co`+E,<oc-E) > 1.

Thus co-i ([c- c, c+E]) contains a critical point u such that dim Ci (cp, u) > 1
and, necessarily, u E K.

Corollary 8.5. Besides the above assumptions, assume moreover that each
u E K, satisfies the following conditions:

a) co"(u) is a Fredholm operator;

b) the nullity of u is less than 2 provided the Morse index of u is equal
to 0.

Then there exists u E K, such that

dim C (cp, u) = b,,,i, n E N.
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Proof. 1) Let u E K, with Morse index k and nullity v, be such that dim
C,(cp, u) > 1: We can assume that u = 0. By Corollary 8.4, k < 1 and
v>1ifk=0.

2) If k = 0, assumption b) implies that v = 1. It then follows from
Corollary 8.4 that 0 is a local maximum of 0 and

Cn(V, 0) = bn,k.{.,F = bn,1F.

3) If k = 1, then, by Corollary 8.4, either v = 0 or 0 is a local minimum
of 0. In both cases,

Cn((o, 0) = bn,kF = 6n,1F.

Corollary 8.6. Under the assumptions of Corollary 8.5, if X = RP, there
exists u E Kc such that

i(Ocp, u)

Proof. By Corollary 8.5, there exists u E Kc such that dim u) = bn,l.
Theorem 8.5 implies that

P

i(Vco, u) = E(-1)ndimCn(tp, u) -1.
n=0

8.9 Continuity of the Critical Groups and
Bifurcation Theory

The critical groups are continuous with respect to the C' topology.

Theorem 8.8. Let U be an open neighborhood of v in a Hilbert space V
and let cp, 0 E C2-0(U, R). Assume that p and have v as the only critical
point and satisfy the Palais-Smale condition over a closed ball B[v, r] C U.
Then there exists q > 0, depending only upon cp, such that the condition

sup(1 &(u) - co(u)I + IVV,(u) - Vco(u)j) < rl
uEU

implies

(23)

dimCn(O,v) = dimCn(cp,v), n E N. (24)

Proof. 1) Let c > 0 and X C U be given by Lemma 8.5 applied to cp. The
definition of the Morse numbers and Theorem 8.1 imply that

dimCn('p,v) = Mn(X'+F,Xc E) = Bn(Xc+e Xc E) (25)

where c = co(v).
2) Let p > 0 be such that

1 E

B[v,2p] c gyp" (fc- 3,c+ 3) nX. (26)
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By the Palais-Smale condition,

6 = inf{jVca(u)I : p/2 < ju - vj < p} > 0. (27)

Let w E CZ(U, R) be such that

w(u) = 1 if ju - v1 < p/2
W(U) flvl>p

0 < W (U)(u) < l (28)

-Y = sup IVw(u)I < 00,
uEU

and let
rl = mine/3, 6/2(1 + 7)).

Assume that satisfies the assumptions of the theorem and define on U
by

(u) = Au) +w(u)('(u) - O(u))
It follows from (23), (27), and (28) that, for p/2 < Iu - vI < p,

lvt(u)l ? 1V'a(u)I - w(u)IV1'(u) -Vc'(u)I - IVw(u)I k''(u) -W(u)l

> 6 - (1 + 7)ij > 6/2. (29)

We obtain from (23) and (28) that, for u E U,

-,p(u)l = w(u) J'i(u) - wp(u)l < 1i < e/3. (30)

3) Since i1(u) = co(u) if iu - vi > p, relations (26) and (30) imply that
C±( = pcfc. Thus -1([c-e, c+e])nX = cp-1([c-e, c+e])nX is complete.
It follows easily from (29) that satisfies the Palais-Smale condition over
-1([c - e, c + e]) n x. Moreover, B [v, p] is contained in the interior of X,
so that X is positively invariant for the flow 5 defined by

Q(t) _ -V(a(t))

&(0) = U.

Finally, the definition of and (29) imply that v is the only critical point
of If we denote by MM(X`+`,X'-E) the Morse numbers corresponding
to we have

dimCn(&,v) = Mtz(Xc+e,Xc-E) = Bn(Xc+,Xc-E). (31)

But, by the definition of ,

C. (1'' V) = C. (0, v), (32)

and (24) follows from (25), (31), and (32). 0
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The preceding theorem is useful in bifurcation theory.
Let V, W be Banach spaces, let U be an open neighborhood of 0 in V,

and let A be an open interval. Consider a mapping f E C(A x U, W) such
that f (A, 0) = 0 for every A E A. A point (ao, 0) E A x U is a bifurcation
point for the equation

f (A, u) = 0 (33)

if every neighborhood of (Ao, 0) in A x U contains at least one solution
(A, u) of (32) such that u # 0.

If f is a Cl mapping, the implicit function theorem implies that a neces-
sary condition for (A0, 0) to be a bifurcation point is the non-invertibility
of D f (Ao, 0). However, this condition is not sufficient in general, as shown
by the simple example with V = W = R2 and

AA, u1, u2) = (ul - Aul + u2, u2 -Au2 - ui)

for which

Duf(1,0,0)=0
is not invertible and which, however, has no bifurcation point, as f (A, ul, u2) _
0 implies

0 = u2(u1 - Aul + u2) - ul(u2 - Au2 - ui) = u2 + u1 = 0

and hence (ul, u2) = 0. Notice however that f is not a gradient mapping
with respect to u. We shall describe a rather wide class of gradient mappings
for which the necessary condition above is sufficient.

The proof of the following simple lemma is left to the reader.

Lemma 8.7. Let K C A be a non-empty compact interval such that K x {0}
contains no bifurcation point for (33). Then there exists p > 0 such that
B[0, p] C U and each solution (A, u) of (33) in K x B[0, p] satisfies u = 0.

Theorem 8.9. Let U be an open neighborhood of 0 in a Hilbert space V,
let A be an open interval and let f (A, u) be the gradient with respect to u
of O E C2 (A x U, R). Assume that the following conditions are satisfied:

a) 0 is a critical point of cps, = ca(A,.) for every A E A and 0 is an
isolated critical point of SOa and 'Pb for some reals a < b in A.

,Q) cpa satisfies the Palais-Smale condition over a closed ball B[0, r] C U
for every A E [a,b].

There exists n E N such that

dim 0).
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Then there exists a bifurcation point (a°i 0) E [a, b] x {0} for (33).

Proof. If [a, b] x {0} contains no bifurcation point for (33), then, by Lemma
8.7, there exists p > 0 such that B[0, p] C U and each solution (a, u) of (33)
in [a, b] x B[0, p] satisfies u = 0. We can assume, without loss of generality,
that yo(., 0) = 0. Since cp is of class C2, we can choose p small enough so
that

DA'(A, u) I + I < 1

whenever A E [a, b] and u E B[0, p]. Thus spa and V'a depend continuously
on a E [a, b], uniformly on B[0, p]. By Theorem 8.8, dim Cn(cpa, 0) is locally
constant, and hence constant, on [a, b], for every n E N. In particular,

dim Cn('pa, 0) = dimCn(<06, 0), n E N,

a contradiction with assumption y). 0

8.10 Lower Semi-Continuity of the Betti Numbers

We shall prove in this section a lower semi-continuity property for the
Betti numbers Bn(ya6, Wa) with respect to the C° topology. It is interesting
to notice that this property is weaker than the corresponding continuity
property of the topological degree whenever both concepts are defined.

Lemma 8.8. Let B C F C B' C A C E C A' be topological spaces.
Suppose that

Hn(B', B) Hn(A', A) N {0}, n = 0,1, .... (34)

Then

Bn(A, B) < B,, (E, F), n = 0,1.....
Proof. Let us consider the following diagrams:

Hn.1(A', A) -+ Hn(A, B) Z Hn(A', B) Hn(A', A)
f* / g.

Hn(E, B)

Hn(B', B) -> Hn(E, B) 14 Hn(E, B') -+ Hn(B', B)
f* / g*

Hn(E, F)

By exactness, assumption (34) implies that i* and j* are isomorphisms.
But i. = g* o f* and j* = g* o f*, so that f* and f* are injections. Thus

h* = f* o f. : Hn(A, B) -+ Hn(E, F)

is an injection. 0
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Theorem 8.10. Let M be a complete Riemannian manifold of class C2
and let 0 E C2-0(M, R). Suppose that there exists 0 : M -+ R, c E R and
e > 0 such that

i) SUPUEM (w(u) -'O(u)l < c/3;

ii) c is the only critical value of g in [c - e, c + e];

iii) cp satisfies the (PS) condition over cp-1([c - e, c + e]).

Then
B cpc-`) < Bn pc+c/2, oc-`/2), (n = 0,1, ...).

Proof. By assumption i), we have

(P
C_e c oc-e/2 c Pc-c/6 c pc+e/6)C 0,+,12CWC+f.

It follows from Lemma 8.3 and assumptions ii) and iii) that 0c-` (resp.
cp`+`/6 is a strong deformation retract of co'-111 (resp. gyp`+`). Hence

p'-') .., Hn((Pc+, ,c+`/6) = 0 (n = 0, 1, ...

Applying Lemma 8.8, we obtain

c+c/6'Yoc-`) < Bn(O'+`/2,0c-`/2) (n = 0, 1,...).

Since

C-E
, \Bn( /,C+(,C-E),

the proof is complete.

8.11 Critical Groups at a Saddle Point

Let X be a Hilbert space and assume that cc E C2(X, R) satisfies the
Palais-Smale condition over X. Assume also, as in the saddle point the-
orem, that X splits into a direct sum of closed subspaces X- and X+
with

2 < m := dim X- < +oo,

b := sup < d := inf cc
SR X+

where SR = {u E X- : I ul = R}. Regard the identity mappings o : SS -
SS as the generator of the homology Hm_1(SR,0) and define

c = inf sup co(u),
8r=v UEIrI

where r is any chain of m dimensional singular simplices on X such that
Or = u. In this way we obtain a natural variant of the saddle point theorem.
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Theorem 8.11. Under the above assumptions, c is a critical value of co.
Moreover, if each critical point of co in K, is isolated in X, then there
exists u E K, such that

dimC,,,(co,u) > 1.

Proof. 1) Let us show that irl fl x+ is nonempty for any chain r with
Or = o,. Consider the exact sequence

--r Hm(X, X \ X+) e H . - H . -
Since O[r] = [o,] # 0, necessarily [r] # 0. Thus Irl ¢ X \X+. In particular,
we have that

sup cp(u) > d
uEIr1

for any chain r with Or = o,. Hence c > d.
2) Using Lemma 6.5, one can easily prove, by contradiction, that K, is

nonempty.
3) Assume now that each critical point of cp in K, is isolated in X. Let

e > 0 be such that c-c > b and c is the only critical value of So in [c-e, c-I-e].
Consider the exact sequence

... --+ Hm(cp`+E, tp`-`) a ''
There exists a chain r such that o = Or and Irl C cp`+E. Thus [Q] = 0
in H,,,_1(cp`+E, 0). On the other hand, if [o,] = 0 in H,,,_r(cp`_E, 0), there
exists a chain r such that o = Or and Irl C cp`-E. But this contradicts
the definition of c. Thus [oP] is a nonzero element of Ker i . By exactness,
Hm(9`+E, (p'-L') # {0}. The conclusion then follows from Theorem 8.1. 13

Using Corollary 8.3, we obtain the following result.

Corollary 8.7. Under the assumptions of Theorem 8.11, if each critical
point of cp in K, is nondegenerate, then there exists u E K, such that

d,,,,,,, Ti E N.

Historical and Bibliographical Notes

The reader can consult [Wall] for a brief and lucid exposition of singular
homology. Surveys of the mathematical work of Morse are given by [Botr],
[Cail], and [Tho2], and surveys of Morse theory are given by [Bot2], [Char],
and [Rots].

Morse's first paper on this theory [Mrs,] already includes such essential
ingredients as the Morse lemma, gradient deformations, and Morse inequal-
ities for a nondegenerate function on a smooth domain in RN. It was aimed
as a generalization of the Birkhoff minimax theory [Bir,]. The theory is ex-
tended to compact smooth manifolds in [Mrs2], which also contains the
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Morse index theorem and applications to the calculus of variations by the
method of "broken extremals."

The Morse theory was extended to Hilbert spaces by Rothe [Rots] and
to infinite-dimensional Riemannian manifolds by Palais and Smale ([Pall],
[PaS1], [Sma1]). As in the Leray-Schauder theory, the compactness of the
domain is replaced by a compactness condition on the function (the PS
condition).

The classical Morse lemma for nondegenerate critical points was ex-
tended by Palais [Pall] to Hilbert spaces. Because of the loss of two or-
ders of differentiability, the Palais method is only applicable to functions
of class C3. Using the Lyapunov-Schmidt method and the Palais approach,
Gromoll-Meyer [GrM1] succeeded in treating the case of degenerate critical
points when the second differential of the function is a compact perturba-
tion of the identity. On the other hand, Kuiper [Kuil] and Cambini [Cams]
independently gave a proof of the Morse lemma for a nondegenerate criti-
cal point of a C2 function. This result was extended to the degenerate case
by Hofer [Hof3] when the second differential is a compact perturbation of
identity. Hofer's proof uses deformations by a gradient flow (see [GoM1] for
extensions). Theorem 8.3 generalizes the previous results. We follow the
proof of Hofer [Hof3] (see [MaW4] for another proof).

The shifting theorem is due to Gromoll-Meyer [GrM1]. A new proof is
given here. Theorem 8.5 was first proved by Rothe [Rot7], to whom we also
owe the first results on the continuity of the critical groups and the lower
semicontinuity of the Betti numbers in the Hilbert space case [Rots].

Lemma 8.6, Lemma 8.8 and Theorem 8.10 are contained in the important
paper of Marino-Prodi [MaP1] on perturbation methods in Morse theory.

Of course the genericity of the non-degenerate case is known and has
been used since Morse. Theorem 8.6 is due to Dancer [Dane] and Theorem
8.7 to Ambrosetti [Amb2,3] in the nondegenerate case and to Hofer [Hof3]
in the general case.

Minimax methods were introduced in bifurcation theory by Krasnosel'skii
[Kra2] and Morse theory by Marino-Prodi [MaP2] (see the surveys [Char],
[Rabe,]).

The results of Section 8.11 are due to Liu [Liu,].
For Morse theory on Banach manifolds, the reader can consult [Ski],

[Tri], and [U1]. The completeness of the Morse inequalities is studied in
[Johi] and [Sma2]. Degenerate critical points are considered in [CGR1],
[Dane], and [Ro7]. More results on bifurcation through variational methods
can be found in [Boh1,2], [Ch7], [Clk4], [Daps], [Marl], [Prod,], [BenPi], and
[Wi112]
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Exercises

1. Let M be a complete C2-Riemannian manifold and assume that ca E
C2(M, R) satisfies the Palais-Smale condition on M. If cp has a global
minimum and X(M) nondegenerate critical points with finite Morse
index, then cp has at least X(M) + 2 critical points.

2. Let U be an open subset of R2 and let v be an isolated critical point
of cp E C2(U, R). Then i(Vcp, v) < 1.

3. Let U be an open subset of RP and let v be an isolated local minimum
point of cp E C2 (U, R). Then i(Vep, v) = 1.

4. Let M be a complete C2-Riemannian manifold. Assume that cp E
C'([0,1] X M, R) and a < b are such that the following conditions
hold:

i) ep(A, u) is continuous with respect to A uniformly in u E M.

ii) For every A E [0,1], cc E C2-0(M, R) and V pa (u) # 0 when-
ever cpa(u) E {a,b}.

iii) Every sequence (A,, u,) such that (cc(.Aj , uj)) is bounded and
Ocp,\, (uj) -. 0 contains a convergent subsequence.

Then
P(t, ep ,,,a) = P(t, cc , ca )

Hint. Find 0 < c < (b - a)/2 and, for ao E [0,1], find ,j > 0 such that
for IA - a°l < one has

a-c +c/c C pa+c/e a-Fc cpb-c cpb-c/c b-Fclc
ccao C a A0 C a C a ao C WA C a

Use Lemma 8.3 and compactness of [0, 1].

5. (Principle of symmetric criticality, [Palo]). Let {T(g)}gEG be an iso-
metric representation of the topological group G over a Hilbert space
X. Let 0 E C2(X, R) be an invariant functional. If u E V = Fix(G)
is a critical point of Olv, then u is a critical point of .

Hint. Prove that V1(u) E V.

6. ([Wi112]). Let {T(g)}gEG and X be as in Exercise 5. Let cb E C2 (A x
X, R) where A is an open interval. Assume that

i) OX = t'(A, .) is invariant for every A E A,

ii) 0 restricted to A x Fix(G) satisfies the assumptions of Theorem
8.8, where V = Fix G.
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Then there exists [\o, 0] E [a, b] x {0} such that every neighborhood
of [Ao, 0] in A x Fix(G) contains at least one solution (A, u) of

VOA(U) = 0

such that u 0 0.



Applications of Morse Theory
to Second Order Systems

Introduction

The Liapunov center theorem is the classical result which follows easily
from the equivariant Crandall-Rabinowitz bifurcation theorem. Consider
the second order autonomous system

ii+ f(u) = 0

and assume that 0 is a solution and that

,Qi <Qi <...<a2

(/3r > 0, 0 < r < s) are the non-negative eigenvalues of f'(0). The Liapunov
theorem insures that if the geometric multiplicity of 8i is one and if /3 /pi ¢
N for r 0 i, then this system has a family of periodic solutions with minimal
period tending to 2r/,3i and with amplitude tending to 0.

In many applications, the multiplicity of fli is bigger than one. We prove
in Section 9.2 that, in the variational case (f = VF), it suffices to assume
that 3r/,8i V N for r # i in order to obtain a sequence (u,,) of solutions
with minimal period tending to 2a/,3i and with amplitude tending to zero
when k --p oo.

The application given in Section 9.3 concerns asymptotically linear non-
autonomous systems of the form

ii(t) + VF(t, u(t)) = 0.

Since the problem is no more S1-invariant as in the autonomous case, the
results of Chapter 7 are no more applicable. Using the Morse inequali-
ties, one can prove the existence of one or two nontrivial solutions when
VF(t, 0) = 0. The basic condition, namely a distinct behavior of OF at
the origin and at infinity, is an extension of the "twist" condition of the
famous Poincare-Birkhoff geometric fixed point theorem.

Finally, in Section 9.4, a strong multiplicity result for non-autonomous
second order systems with periodic potential and non-degenerate periodic
solutions is given, which corresponds, in the more difficult case of Hamilto-
nian systems with periodic Hamiltonian, to a famous solution by Conley-
Zehnder of a conjecture of Arnold.
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For some of the above results, it was necessary to analyze in more detail
the Morse index of the action associated to non-autonomous linear second
order system (this index is finite here because the system has order two),
and it is the object of Section 9.1.

9.1 The Index of a Linear Second Order
Differential System

Let A be a continuous mapping from R into the space of symmetric ma-
trices of order N. We consider the periodic boundary value problem

ii(t) + A(t)u(t) = 0
u(0) - u(T) = u(0) - it(t) = 0

where T > 0 is fixed. The corresponding action is defined on HT by

(1)

XT(u) =
T12

ut Atu/t u(t))] dt.

Definition 9.1. The index j(A, T) is the Morse index of XT-

Let us define the linear operator K on HT (with its usual norm and inner
product) by the formula

T((Ku, v)) = J (u(t) + A(t) u(t), v(t)) dt.
0

It is easy to check that K is self-adjoint and compact, and that

2XT(u) = ((u - Ku, u)).

The space HT can be written as the orthogonal direct sum of ker(I - K),
H+ and H- with I - K positive (resp. negative) definite on H+ (resp.
H'). Since K has at most finitely many eigenvalues (having, moreover,
finite multiplicity) greater than one,

j(A,T) = dim H- < oo,

i.e. the index j(A, T) is finite.

Definition 9.2. The nullity v(A, T) is the dimension of ker(I - K).

It is easy to verify that the nullity is equal to the number of linearly
independent solutions of (1), so that the nullity v(A, T) is less or equal to
2N. The linear operator I - K is a Fredholm operator of index zero and
hence is invertible if and only if v(A,T) = 0.

In the autonomous case, it is easy to compute the index and the nullity
after diagonalization of A.
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Proposition 9.1. Let al < a2 < ... < a1v be the eigenvalues of the
constant matrix A. Then

N 2 l

j(A,T) =#{k : ak>0}+2E#{jEN* : Tg <ak}
k=1 1

N 4?f2 .2 l
v(A,T)_#{k : ak=0}+2 #{j EN` :

T2
ak}.

k=1 J

Let us now consider the functional (p defined on HT by

T
u_ 1 2 ut F(t, u(t))] dt

where F E C2([0, T] x R'v, R). Since

0'(uo)(u, v) = fT[(u(t),
v(t)) - (D2F(t, uo(t))u(t), v(t))] dt,

0

every critical point uo of (p satisfies the following properties:

i) The Morse index of uo is equal to j(A, T) where A(t) = Du2 F(t, uo(t)).

ii) The nullity of uo is equal to v(A,T).

iii) Sp"(uo) is a Fredholm operator.

iv) uo is non-degenerate if and only if v(A, T) = 0.

By Corollary 8.4, if uo is an isolated critical point of gyp, then dim uo)
is finite for every n and equal to zero except if n E {j(A,T), j(A,T) +
1,..., j(A, T) + v(A, T)}.

9.2 Periodic Solutions of Autonomous Second
Order Systems Near an Equilibrium

We consider the existence of small non-trivial periodic solutions for the
autonomous system

u(t) + VF(u(t)) = 0

where F E C2(RN, R) is such that

VF(u) = Au + o(Iul)

(2)

as ui -.+ 0. Let
Nl < '622 < ... < Ns
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(/3r > 0, 0 < r < s) be the non-negative eigenvalues of the symmetric
matrix A.

Theorem 9.1. If /3i is such that f3r/)3i N for all r # i, then there exists
a sequence (uk) of periodic solutions of (2), with minimal period Tk such
that I uk I. --+ 0 and Tk -+ 2ir/,Oi as k --+ oo.

It is easy to verify that u is a periodic solution of (2) with minimal period
27r. if and only if u(t) = v(t/A) where v is a solution of

v(t) + A2VF(v(t)) = 0
v(0) - v(27r) = v(0) - v(2r) = 0

with minimal period 27r.
Let us define <p on R x H2,. by

(3)

Za

a [(1/2) lit(t)12 A2Fut dt

so that the solutions of (3) are the critical points of spa. For each A E R, 0
is a critical point of 9;k. Let us also define the operators K and N on HZ,r
by the formulas

so that

((Ku, v)) =
2,r(u(t),

v(t)) dt

((Nu, v)) = 12w (VF(u(t)), v(t)) dt,
0

(cpa(u), v) = ((u - Ku - )t2Nu, v)).

The proof of Theorem 9.1 requires the following lemma.

Lemma 9.1. Let A E R and r > 0. The functional oa satisfies the Palais-
Smale condition over B[0,r].

Proof. Let (uj) be a sequence in B[0, r] such that VgA(uJ) -+ 0, i.e.

uj -Kuj-A2Nuj =f,, jEN*,

with fj -+ 0 in H. Going if necessary to a subsequence, we can assume
that uj u in H2,r and that uj -+ u uniformly on [0, 2ir]. This implies
that Kuj -+ Ku and Nub Nu. Therefore, uj -+ Ku + A2Nu.

Proof of Theorem 1. 1) Let us first prove that (1 /3i, 0) is a bifurcation
point for the equation

VcPA(u) = 0. (4)

By assumption, if e E ]0,li/2[ is sufficiently small, we have A/3r V N for
r ,-E i whenever

A E [1/(8i + e),1/(,9 - ()].
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We shall apply Theorem 8.8 with a = 1/((3; + e) and b = 1/(,0; - e).
Proposition 9.1 implies that

v(a2A, 2r) = v(b2A, 2r) = 0

and

j(b2A, 2r) - j(a2A, 2r) = 2m

where m is the multiplicity of 3; as an eigenvalue of A. Thus, 0 is an
isolated critical point of cpa and Pb and, if n = j(a2A,27r), Corollary 8.3
implies that

dim Cn(cpa, 0) = 10 0 = dim 0).

By Lemma 9.1 and Theorem 8.8, there exists a bifurcation point (A0, 0) E
[a, b] x {0} for (4). Letting e -+ 0, we obtain the desired conclusion.

2) By the first part of the proof, there exists a sequence (Ak, vk) of solu-
tions of (3) such that Ak -+ 1/,Q;, vk # 0 and vk -+ 0 in H. Since vk - 0
uniformly on [0, 2r], we have

IIVF(vk) - Avk11.
-+ 0 as k --> oo. (5)

IIvk1I00

In particular, there exists C > 0 such that

IIVF(vk)II00 < C, k E N*. (6)
IIvk1I00

Let wk = vk/IIvklloo. It follows from (3) and (6) that (IIwk1I00) is bounded,
and so is (IItbkll00) by the Sobolev inequality. Using the Ascoli-Arzela the-
orem, we can assume, going if necessary to a subsequence, that wk -> w
and tbk --> w uniformly on [0, 2r]. It follows then from (5) that

VF(vk) - Aw
IIvk 1100

-*0 as k -*oo. (7)

By (3) and (7), we obtain

co

tu(t) +
1

Aw = 0#,2

w(0) - w(2r) = tb(0) - tb(27r) = 0.

Since 11w1I00 = 1 and, by assumption, it/p; V N for r 0 i, 2r is the minimal
period of w. Thus, for k sufficiently large, 2r is also the minimal period of
wk and, hence, of vk, which completes the proof. 0

Remarks. 1) If the multiplicity of ,Q; as an eigenvalue of A is equal to one,
then Theorem 9.1 follows from the classical Liapunov Center Theorem.

2) By Theorem 9.1, the small periodic solutions of system (2) are related
to the periodic solutions of the linearized system ii + Au = 0. This is not
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the case in general, as shown by the following examples where, respectively,
the nonlinearity is not a gradient and the differential operator is not of the
second order.

Example 9.1. Assume that u = (ul, u2) is a T-periodic solution of the
system

Uj+ul+u2=0
ii2+u2-u2=0.

After multiplying the first equation by u2i the second by ul, integrating
from 0 to T and subtracting, we obtain

rT

J [u2(t) + ui(t)] dt = 0,
0

i.e. u..= 0. On the other hand, all the solutions of the linearized system are
27r-periodic.

Example 9.2. Consider the Hamiltonian

H(u) = H(ul, u2, u3, u4)
= (1/2)(u1 + u3 - u2 - u4) + (ul + u2 + u3 + 2l4)(u3u4 - ulu2).

If u is a solution of the corresponding system

Ju + VH(U) = 0,

then

dt
(ulU4 + U2U3) = 4(u3u4 - U1U2)2 + 2uiu2 +2U34'

Since the right-hand side is positive for u # 0, we conclude that u = 0 is
the unique periodic solution of the system. But, in this case also, all the
solutions of the linearized system are 2a-periodic.

9.3 Periodic Solutions of Asymptotically Linear
Non-Autonomous Second Order Systems

We consider the existence of multiple solutions of the periodic boundary
value problem

u(t) + VF(t, u(t)) = 0
u(0)-u(T)=ii(0)-u(T)=0

where F E C2([0, T] x RN, R) satisfies the conditions

OF(t, u) = A0(t)u + o(juj) as ju) -+ 0

(8)

(9)
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and

VF(t, u) = A,,.(t)u + o(IuI) as Iul -+ oo, (10)

uniformly in t E [0, T]. We shall write jo = j(Ao,T) and jo. = j(Ao.,T).

Theorem 9.2. Assume that T > 0 is such that the following conditions
hold.

A1. v(Ao,T) = 0

A2. v(A,,,,,T) = 0

A3. jo # joo

Then the problem (8) has at least one non-zero solution. Assume, moreover,
that

A4 ho-joo1>2N.
Then the problem (8) has at least two non-zero solutions.

The solution of (8) are the critical points of the functional cp defined on
HT by

T
,p(u) = f [(1/2)I u(t)I2 - F(t, u(t))] dt.

0

Let us also define the operator L and the functional 0 on HT by

T((Lurut A.tut v(t)) dt

,'(u) ='p(u) - (1/2)((Lu, u)).
Assumption A2 implies that L is invertible. Since

VF(t, u(t)), v(t)) dtI((V '(u), v))I =
110

T

< IIA.u - VF(., u)IIL-IIvIIL,
< IIA.u - VF(., u)IIL2IIvII,

it follows from (10) that for every c > 0, there exists c(c) > 0 such that

IIVO(u)II < EIIuII + e(e) (11)

for every u E H.

Proposition 9.2. Under assumptions (10) and A2, there exists p > 0 and
E C°°(HT, R) satisfying the following conditions:

a) V (u) = 0 implies lull < p.
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b) &(u) = 1 if 0 < lull < p and &(u) = 0 if (lull > 2p.

c) the functional 0(u) _ (1/2)((Lu, u))+&(u)O(u) is such that llV(u)ll >
1 if p < llull < 2p.

Proof. Taking c = IIL-111'1/9, there will exist by (11) cl(e) such that

11o'0(u)11 < Ellull + cl (12)

on HT. Therefore, by the mean value theorem, we have

T

10(u)I < / ((V (su), u)) ds + I0(0)l

< (c/2)11u112 + clllull + 1k(0)l.

Thus, there exists e2 > 0 such that

Ii(u)l EIIul12 +.C2-

Let

P= 1+ 1+c1+ 3c2

/2
/e.(

ll

It follows from (12) that

llow(u)il 9Ellu1l - Ellull - c1

Thus, the critical points of p satisfy the a priori estimate

Hull <<c1/8c<p

and (a) is verified.
Let a E C' (R, R) be such that

Q(s) = 1 for s < 0
=0 fors> 1

-3/2 < o'(s) < 0 for s E R.

The function & defined on HT by

&(u) = a (Hull - P)
P

satisfies (b). If p < lull < 2p, we deduce from (12) and (13) that

11V 0(U)11 = IILU+a(V 1'(u) +o (Ilull- P)
IluIU

> 9ep - 2ep - c1 - (3/2p)(4Ep2 + c2) > ep - c1 - (3/2)c2 > 1,

(13)
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and the proof is complete.

By Proposition 9.2, Vcp(u) = 0 if and only if Vc (u) = 0. Thus, in order
to solve problem (8), it suffices to find the critical points of 0.

Lemma 9.2. Under the assumptions (20) and A2, every sequence (uj) in
HT such that V '(uj) -- 0 contains a convergent subsequence.

Proof. Assumption A2 and Proposition 9.2 imply that Iju1 Il < p (j E N).
Thus,

V (u,i) = V(u), (j E N).
Arguing as in Lemma 9.1, we can conclude that (uj) contains a convergent
subsequence.

Lemma 9.3. Under the Assumption (10) and A2, there exist a < b such
that the critical points of 0 belong to 0-1(]a, b[) and

P(t,01,'Ga) = ti-.

Proof. Define
a= inf 0-1, b= sup 0-1,

B[0,2p] B[0,2p]

and cp.(u) = (1/2)((Lu, u)). Proposition 9.2 implies that Y '(]a, b[) con-
tains the critical points of cp and that cpa = 00. Hence

P(t, Ob, cpa) = P(t, X01 , ,a

Since, by assumption A2, 0 is the only critical point of the quadratic func-
tional cpoo, it follows from Theorem 8.1 and Corollary 8.3 that

P(t, X0100' 00) = t7°°,

Proof of Theorem 9.2. We can assume that problem (8) has only a finite
number of solutions, i.e. that 0 has only a finite number of critical points.
By Lemma 9.2, c satisfies the Palais-Smale condition over H. Theorem
8.2 and Lemma 9.3 imply the existence of a polynomial Q(t) with non-
negative integer coefficients such that

M(t, 0a, 01) = ti- + (1 + t) Q(t). (14)

Assumptions (9) and Al and Corollary 8.3 imply that

dimCn(0,0) = bn,j0. (15`')

Since jo # j, we obtain from (14) and (15) the existence of at least one
non-zero critical point.

Now assume that Ijo - j,,. I > 2N and that u is the only non-zero critical
point of o1. Since, by (14),

00

tI° + dimCn(pi, u)tn = tj°° + (1 + t)Q(t),
n=0
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we necessarily have
dimCj_ (c ,n)> 1

and either dimC1a_1(0,u) > 1 or dimCjo+1(cp,u) > 1. Let us consider the
case where dim C10_ 1(0, u) > 1, the other one being similar. By assump-
tion, jo - 1 # j.. Since the nullity of u is less or equal to 2N, Corollary
8.4 implies that

Ijo-1-joI<2N-2.
Hence, we obtain I jo - j,,,, 1 < 2N - 1, which is impossible since I jo - j,,. I >
2N.

9.4 Multiple Solutions of Lagrangian Systems

We consider the periodic boundary value problem

dt Dy L(t, u(t), u(t)) = D.L(t, u(t), it(t)) (16)
u(0) - u(T) = it(O) - u(T) = 0

where L = L(t, x, y) satisfies the assumptions (Li) to (L4) of Section 4.2.

Theorem 9.3. Under the above assumptions, if all the weak solutions of
(16) are non-degenerate, then (16) has at least 2N geometrically distinct
weak solutions.

Proof. The weak solutions of (16) are the critical points of the functional
cp defined on HT by

T'P(u) = J
L(t, u(t), ii(t)) dt.

0

By Proposition 4.1, cp is bounded from below and continuously differen-
tiable. Since, by assumption (L3),

cp(u+T;e1) = <p(u), 1 < i < N,

it is natural to define cp on the manifold M = TN x HT, where TN is the
N-dimensional torus and

IT
HT = uEHT : J u(t)dt=0

0

By Proposition 4.1, cp satisfies the Palais-Smale condition over M. Without
loss of generality, we can assume that cp has only a finite number of critical
points u1,. .. , uj. By a classical result of algebraic topology,

N
nP(t,M,0) = P(t,TN,0) N

tri.
n=O
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By Corollary 8.2, there exists a polynomial Q(t), with non-negative integer
coefficients, such that

dimCn(cp, ui)tn = >2 I ) to + (1 + t)Q(t). (17)
n-0 i-1 n_0

(Since the critical points of cp are non-degenerate, Corollary 8.3 implies that

dimCn(cp, ui) = Sn,ki, (18)

where ki is the Morse index of ui. It follows from (17) and (18) that cp has
at least

N
n 2N

n=O

critical points in M, so that (16) has at least 2N geometrically distinct
weak solutions.

Historical and Bibliographical Notes
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fact superfluous. The simple approach of Section 9.3 is also applicable to
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[TsW1], [MerP1], [Ts1].
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Concerning singular dynamical systems, the reader can consult [AmC2],
[Cot3,4,5] for. a treatment by Morse theory and [Ben4], [CGS1], [CaS3],
[Gor3,4], [Gre2,3,4], [PiT3], [DGM1] for a treatment by minimax methods.

Exercises

1. Assume that F E C2([0,T] x RN, R) satisfies conditions (9) and (10)
of Section 9.3. If

Al. v(Ao,T) = 0

AT 0

A3. joo = 0 -` jo,

then the problem (8) has at least two non-zero solutions.

2. Assume that F E C2([0,T] x RN,R) satisfies condition (9) and (10)
of Section 9.3. If

Al. v(Ao,T) = 0
A2. v(A,,,,,T) = 0

A3. jo = 0, j,, = 1,

then problem (8) has at least two non-zero solutions.

3. Assume that F E C2([0,T] x RN, R) satisfies conditions
of Section 9.3. If

Al. v(A,,,),T) = 0

A2. joo ¢ [jo,jo+v(Ao,T)],

then problem (8) has at least one non-zero solution.

(9) and (10)
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Nondegenerate Critical
Manifolds

Introduction

After recalling some preliminary notions from differential geometry, this
chapter presents the local and global aspects of the theory of nondegenerate
critical manifolds. These manifolds are a natural extension of the notion of
non-degenerate critical point.

The theory is applied to proving the existence of infinitely many periodic
solutions of the forced superlinear second order equation

ii+ lulp-2u = f(t), p E ]2,oo[.

The periodic solutions of the forced equation are obtained from the periodic
orbits of the corresponding autonomous equation

ii + lulp-2u = 0

by a global perturbation argument. This apprcaach depends upon a precise
description of the solutions of the autonomous equation.

The last section is devoted to the existence of T-periodic solutions of the
perturbed second order equation

ii(t) + g(u(t)) = e f(t)

near a T-periodic orbit of the autonomous equation

u(t) + g(u(t)) = 0.

Since this equation is conservative, 1 is a Floquet multiplier with multiplic-
ity 2 of its variational equation, so that classical perturbation arguments are
not applicable. The periodic solutions are obtained here by combining the
Liapunov-Schmidt method with an elementary variational argument. An
application is given to the subharmonics of the forced pendulum equation.

10.1 Submanifolds

We define a class of sets locally diffeomorphic to a subspace of a Banach
space.
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Definition 10.1. Let X be a Banach space and Y C X be a closed subspace
with a closed complement. A subset Z of X is a Ck-submanifold of X
modelled on Y if, for every z E Z, there exists an open neighborhood A
of 0 in X, an open neighborhood B of z in X and a Ck-diffeomorphism
4t : A -+ B such that

' (AnY)=BnZ.
The tangent space of Z at z is defined by

TZZ = {4'(4 '(z))v : v E Y}.

Remark 10.1. It is clear that

-llanz : BnZ -+ A n Y

is a chart at z and that Z is a Ck-manifold modelled on Y.

Remark 10.2. The space T2Z is independent of and isomorphic to the
tangent space at z of Z considered as a manifold.

Remark 10.3. The restriction to A n Y of -t is called a parametrization
ofBnZ.

The following theorem describes an interesting class of submanifolds.

Theorem 10.1 (Embedding theorem). Let M be a 0-manifold, X be a
Hilbert space and let f E Ck(M,X). Assume that

a) M is compact.

b) f is injective.

c) df I T. M is injective for every u E M.

Then f(M) is a compact submanifold of X.

Proof. Let x : D(x) C M --> R(x) C RN be a chart at u E M. (Since M
is compact we can assume that M is modelled on RN.) The set D(x) being
open, assumptions a) and b) imply the existence of an open set C of X
such that f (M) n c = f (D(x)). By assumption, (f o x-') E Ck(R(x), X)
and (f o x-')'(x(u)) is injective. Define

V = (f 0 x-1)'(x(u))(RN)
and consider the mapping 4 : R(x) x V1- -+ X given by

4(v, w) = (f o x-1)(v) + w.

It is easy to verify that V(x(u), 0) is invertible. By the inverse function
theorem, the mapping t is a Ck-diffeomorphism from an open neighbor-
hood A of (x(u), 0) in R(x) x Vl to an open neighborhood B of f (u) in
X. Moreover we can assume that B C C. Since f is injective, we have

4(A n (R(x) x {0})) = B n f (D(x)) = B n f (M).

It is then easy to verify the definition of submanifold by a formal manipu-
lation.
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10.2 Normal Bundle

In this section, we assume that Z is a Ck-submanifold of a Hilbert space
X modelled on a subspace Y.

Definition 10.2. The normal space of Z at z, N,zf is the orthogonal com-
plement of T,TZ in X. The normal bundle of Z is defined by

NZ={(z,n)EZxX nENZ}.

We also define, for p > 0, NPZ by

NPZ = {(z, n) E NZ : InI < p}.

Lemma 10.1. If Z is a compact C2-submanifold of X modelled on Y,
then there exists po > 0, an open neighborhood H of Z and mappings
F E C' (A(, X), G E C' (N, X) such that, for every u E H,

i) u = F(u) + G(u);

ii) (F(u), G(u)) E N,0 Z;

iii) the above decomposition is unique.

Proof. 1) Let z, A, B, and I be like in Definition 10.1. Consider the
decomposition

u=m-fn, (1)

where m = P (y), y E A fl Y, n E NmZ. Equation (1) is equivalent to

(*(y) - u, -'(y)v) = 0 for all v E Y. (2)

Let us denote by L(y) the map V(y) restricted to Y, so that equation (2)
is equivalent to

L(y)*(4'(y) - u) = 0. (3)

Since Z is compact, the dimension of Y is finite and it is easy to verify
that L* (.) : A fl Y -+ £(X, Y) is continuously differentiable on A n Y. By
the implicit function theorem, near uo = z and yo = 0-1(z), equation (3)
defines a C'-function y = g(u) such that yo = q(uo). It is then possible to
locally define F and G near z by

F(u) = -t(g(u)), G(u) = u - 1(g(u))

In addition we can assume that, for p > 0 fixed,

IG(u)I = IG(u) - G(z)I <- p.

By the local uniqueness of the decomposition (1), the mappings F and G
are well defined on an open neighborhood of Z.
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2) Let us prove that (iii) is satisfied for po small enough. If it is not the
case we can find sequences (mj, nj) E NZ, (rn , E NZ such that

mj + nj = mj' + n

nj , 0, n --+ 0 as j -+ oo

and nj # j E N. Going if necessary to a subsequence, we can assume
that mj z E Z. Necessarily, m -+ z and this contradicts the local
uniqueness of the decomposition (1).

A proof by contradiction of the following lemma is straightforward.

Lemma 10.2. Let f be a continuous mapping between two metric spaces
A and B. If Z C A is compact, then, for each e > 0, there exists b > 0
such that

d(f(a),f(z)) < c
whenever a E A, z E Z and d(a, z) < 6.

Let us recall that, if Z is a subspace of a metric space X, we use the
notation

Zb = {u E X : d(u, Z) < b}.

Theorem 10.2. Under the assumptions of Lemma 10.1, there exists co > 0
such that for each e E ]0,eo[, the map

' : NZ -+ X, (z, u) -* z + u

induces a homeomorphism from NEZ onto a closed neighborhood of Z.

Proof. Let eo E ]0, po] be such that Z, C M. By Lemma 10.2, for each
e E ]0, co], there exists 6 E ]0, co] such that u E Zb implies IG(u) ( < e. Hence,
Z6 C J(N,Z) and iI'(NEZ) is a neighborhood of Z. Using the compactness
of Z and the definition of NZ, it is easy to verify that 'Y(NEZ) is closed.
Finally, since

IF(NEZ) C IF (NEOZ) C ZEO C M,

the mapping '.F is a homeomorphism from NZ onto *(NEZ).

Proposition 10.1. Let Z be a finite-dimensional CZ-submanifold of X
modelled on Y and let P,,, (resp. Qm) be the orthogonal projectors onto
N,,,Z (resp. T,,,Z). Then the mappings

m -+Pm, m .-''Qm

are continuously differentiable.

Proof. Since Pm = I - Qm, it suffices to prove the result for Q,,. Let
(yi,... , yj) be a basis of Y and let A, B, and 1 be as in Definition 10.1.
For in EBflZand1<i<j,define ei(m)by

ei(m) = '{-1(m))yi,
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so that (el(m),... , e2 (rn)) is a basis of T,,, Z. If (f1(m),... , ff (m)) is the
basis obtained from (ei (m), ... , ej (m)) by orthonormalization, then

i
Qmu = > (u, fi(m)) h(m).

i=1

By construction, the mapping m --> Q,,, is continuously differentiable. 0

10.3 Critical Groups of a Nondegenerate Critical
Manifold

The purpose of this section is to extend to compact manifolds of criti-
cal points the notion of nondegenerate critical point and to compute the
corresponding critical groups.

Definition 10.3. Let Z be a compact connected C2-submanifold of a Hilbert
space X and let cp E CZ(X, R). We say that Z is a nondegenerate critical
manifold of cp if

a) all points of Z are critical points of gyp;

b) the nullity of each z E Z is equal to the dimension of Z;

c) p"(z) is a Fredholm operator for each z E Z.

Remarks. 1) Under Assumption a) the nullity of each z E Z is greater or
equal to the dimension of Z. Indeed, using the notations of Definition 10.1,
we have

Vco(4(y)) = 0 for all y E A fl Y.

Hence,
cp"($(y))V(y)v = 0 for all y E A fl Y and V E Y.

In particular,

cp"(z)-'(V1(z))v = 0 for all v E Y

so that TZ Z C ker p"(z) and

dim ker cp"(z) > dim Tz Z = dim Z.

2. By the preceding Remark and Assumption b), Tz Z = ker cp"(z) for
each z E Z. Since, by Assumption c), cp"(z) is a Fredholm operator, the
spectral theorem implies that NzZ is the orthogonal sum of N,, +Z and N, -Z
with cp"(z) positive (resp. negative) definite on N,,+Z (resp. N.,-Z). Let us
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denote by Pz and P,z the corresponding orthogonal projectors. After the
complexification of X and iO"(z), Pz is given by

Pz -4- J D(`p "(z) - AI)-lda,

where D is an open disk in C containing the positive part of a((p"(z)) and
such that OD fl a(go"(z)) = 0. Thus Pt depends continuously upon z for
the operator norm, and the same is true for P,,-.

Definition 10.4. Let X be a Hilbert space and let Z be a nondegenerate
critical manifold of cp E C2(X, R). The Morse index of Z is defined as the
Morse index of cp"(z). (By continuity this last number is independent of
z.) The critical groups of Z are defined by

acflU\Z), n=0,1,...,

where c is the (constant) value of cp on Z, where U is a closed neighborhood
of Z and where one takes F = Z2. (By excision, the critical groups are
independent of U.)

Theorem 10.3. Let X be a Hilbert space and let Z be a nondegenerate
critical manifold with finite Morse index k of cp E C2(X, R). Then the
critical groups of Z are given by

Cn (P, Z) N Hn-k (Z, 0), n = 0, 1,... .

The proof of Theorem 10.3 depends upon the following lemma. Without
loss of generality, we can assume that cp(z) = 0 for all z E Z.

Lemma 10.3. Under the assumptions of Theorem 10.3, for every e > 0,
there exists b > 0 such that, if z E Z, u E X, and Ju - zi < 6, one has

II' "(z) - 'P"(u)II < e

'P(u) - 2('P
"(z)(u - z), u - z) < elu - z12.

Proof. It suffices to apply Lemma 10.2 to obtain the first conclusion. Let
e > 0 and assume that h = u - z is such that Jhi < 6 with b > 0 given by'
the first part of the lemma. For every z E Z, we have

cp(z) = 0, Vco(z) = 0.

Consequently,

1yo(z + h) = J (1 - s)(cp"(z + sh)h, h) ds
0
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and

cp(z + h) - 1(9"(z)h, h)I = j(i- s)[(<p"(z + sh)h, h)

- (cp"(z)h, h)] dsi < e1h12.

Proof of Theorem 10.3. 1) By continuity and compactness,

y+ = min inf n) > 0,
zEZ jnj=1

nEN; Z

µ_ = max inf (cp"(z)n, n) > 0.
zEZ 1nj=1

nEN.-Z

Let e = min{(µ+/2), (-p_ /2)} and let 6 > 0 be given by Lemma 10.3. (In
particular z E Z and Inj < 6 imply

n) - n)) < eIn12.)

Using the notations of Theorem 10.2, we can assume that 6 < co and we
can identify N6Z and W(N8Z). Define

N6Z={(z,n)EN6Z : nENz Z}
and similarly for Na Z. Lemma 10.3 and the definition of c imply that

((p"(u)n, n) > 0 if u E X, n E N6Z and ju - z1 < 6, (4)

Nb Z C 9, (5)

N6 Zflcp°=Z. (6)

By Theorem 10.2, U = N6Z is a closed neighborhood of Z. Let us define i
by

tj : [0,1]xU->U, (t,z,n)-*(z,n-tP,z n).
This deformation j is continuous as Pz depends continuously upon z. For
(z, n) E U fl cp°, let us define by f (t) = cp(i (t, z, n)). It follows from (4) that

f"(t) = (cp"(z + n - tPz n) P,z n, P,z n) > 0

for all t E [0, 1], so that f is convex on [0, 1]. But f (0) = cp(z, n) _< 0 since
(z, n) E o° and f (1) = <p(z, P,z n) < 0 by (5). Thus, cp(rt(t, z, n)) < 0 for
all t E [0, 1]. Moreover, if rj(t, z, n) = (z, 0) for some t t [0,1] and some
(z, n) E U fl w°, then n = 0. Indeed, 17(t, z, n) = (z, 0) implies P,- n = 0 so
that, by (6), n = 0. Finally, Na Z \ Z is a deformation retract of cp° fl u \ Z
and Na Z- is a deformation retract of o° fl U. Hence,

fl U, cp` fl U \ Z) (Hn(Na Z, N 6 Z \ Z), n = 0,1, ... .

2) Since F = Z2, by/Thom's isomorphism theorem we have

Hn(Nb Z, N6 Z \ Z) -- Hn-k(Z, 0),

and the proof is complete.
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10.4 Global Theory

In this section, the relative homology of the pair (cpb, p°), with b > a, will
be related to the critical groups of the nondegenerate critical manifolds
contained in cp-1([a,b]).

Lemma 10.4. Let X be a Hilbert space and let Z be a nondegenerate
critical manifold of cp E C2(X, R). Let P,z be the orthogonal projector from
X onto NzZ (z E Z). Then there exists p > 0 and zl > 0 such that if z E Z,
u E X, u - z E NzZ, and (u - zl <p, one has

IP Vo c(u)I > qIu - zI.

Proof. Since Z is a nondegenerate critical manifold, the mapping L(z)
NzZ -+ NZ defined by L(z)h = cp"(z)h is invertible for each z E Z. By
continuity and compactness we have

µ mZ IIL(z)-'11-1 > 0. (7)

Let e = p/2 and assume that h = u - z is such that IhI < b where b > 0 is
given by Lemma 10.3. The mean value theorem implies that

IPPOcp(z + h) - cp"(z)hi = IP2(Vcp(z + h) - cp"(z)h)I

< IVco(z + h) - cp"(z)hi < I hI sup Ilcp"(z + sh) - cp"(z)jj < cI hI. (8)
sE]0,1[

Assume now that h E NzZ. It follows from (7) and (8) that

2IhI,

and the proof is complete with p = b and rl = p/2. 0
Let us now introduce the following framework.
(A)

i) X is a Hilbert space and cp E C2(X, R);

ii) a < b are real numbers such that the Palais-Smale condition is satis-
fied over cp-1([a, b]);

iii) c E ]a, b[ is the only critical value of co contained in [a, b];

iv) K, consists of a finite number of isolated critical points and nonde-
generate critical manifolds.

For simplicity, we shall replace assumption iv) in the proofs by

iv') K, is a nondegenerate critical manifold Z.
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The general case can be obtained by an easy adaptation of the proof.
Using the notations of Theorem 10.2 and Lemma 10.4, we can assume

that p < co and that '1(NpZ) C c-1(]a, b[), and we can identify NpZ and
Let w E C1(X,R) be such that w(u) E [0,1] and

w(u) = 1 if u E Np12Z
= 0 if u ¢NPZ.

Consider the vector field f : X -t X defined by

f(u) = if u V NPZ

= -(1 - w(u))Vcp(u) - w(u)PF(u)Vco(u) if u E NpZ.

Lemma 10.1 and Proposition 10.1 imply that f is continuously differen-
tiable. The Cauchy problem

e(t) = f(o(t))
0(0) = u

has, therefore, a unique maximal solution o(.) = o(., u) defined on ]w_(u),
w+(u)[. Since

d(<P o o)(t) = DP(c't), f(a(t))), (9)t
the definition of f and Lemma 10.4 imply that either <a(o(t)) = ca(u) for
all t E R or that <o o o is decreasing.

Lemma 10.5. If w+(u) = +oo, then co(o(t)) -* -oo as t -+ w+(u).

Proof. For 0 < s < t < w+(u), we have

t

c-(t) - O'(s) I <

1,

If(o,(r))I dr < f 1V (c'(r))I dr.
a a

It then suffices to use the argument of Proposition 8.4.

Lemma 10.6. For every neighborhood A of z E Z, there exists a neighbor-
hood B of z such that, if u E B, either o(t, u) stays in A for 0 < t < w+(u)
or o(t, u) stays in A until co(o(t, u)) becomes less than c = co(z).

Proof. 1) Let (m, n) E N ,012Z. By the uniqueness of the solution of the
Cauchy problem, o(t, m + n) = m + o,,, (t, n), where o,,, (., n) is the solution
of

&,n(t) = -P,, V (m + om(t))

0,,,(0)=nEN..Z,
provided lo,,,(t, n)I < p/2.

2) Let r E ]0, p/2[ be such that

{(m, n) E NZ : Im - z) < r, Inj < r} C A
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and let
C = {(m, n) E NZ : Im - zI < r, r/2 < Ini < r}.

By Lemma 10.4,

b = inf{IP,,,V p(m + n) I : (m, n) E C} > q r/2 > 0.

Let us define

B = {(m, n) E NZ : Im - zI < r, Jul < r/2} n ,,+Ir/z

If (m, n) E B is such that o -(t, rn + n) doesn't stay in A for all 0 < t <
w+(m+n), then there exists 0 _< tl < t2 < w+(m+n) such that em(t, n) E
B[0, r] for 0 < t < ti, I°m(tl, n)I = r/2, m + n) E C for t1 < t < t2
and I o'm(t2i n) I = r. It follows from (9) that, if u = m + n,

P(O'(t2, u)) = `P(a(tl, u)) I PmV cO(o,(r, u))I2dr
tl

< co(u) - b I PmV (P(o,(r, u))I2dr
tlit

t,
< c+b-"-b f IQ(r,u)Idr

2

< c+b2 -bfr(t2,u)-C(tl,u)I<c+ 2 - 2 =c.

Lemma 10.7. For every u E 9-1([c, b]), either there is a (unique) t > 0
such that So(o(t, u)) = c or w+(u) = +oo and there is a v E K, such that
c(t, u) -+ v as t -+ +oo.

Proof. If 9(o(t,u)) > c for all t E ]0,w+(u)[, Lemma 10.5 implies that
w+(u) = +oo. Let us prove that for each j > 1/p, there exists tj > j such
that o (tj , u) E N111 Z. If this is not the case, we can find j > 1/p such that

o,([j,+oo[,u) nN1/2Z = 0.

Lemma 10.4 and the Palais-Smale condition over 9-1([a,b]) imply that

a = sup{(V'P(u), f(u)) : u E 9-1([a, b]) \ Nl/1Z} < 0.

Setting Q(t) = o,(t, u), we obtain, for t > j,

c <'P(O,(t)) ='P(r(j)) + f f(u(r))) dr < p(o,(j)) + (t - j)a,t

which is impossible. Now, going if necessary to a subsequence, we can as-
sume that o(tj, u) -+ z E Z and t1 -+ +oo when j -+ oo. Since v(c(t, u)) is
decreasing in t, cp(o (t, u)) -+ v(z) = c when t -+ +oo. It follows then from
Lemma 10.6 that a (t, u) --+ z as t -+ +oo.
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Lemma 10.8. Under assumption (A), <p` is a strong deformation retract
of rb and ta" is a strong deformation retract on r' \ K,

Proof. 1) The first part of the lemma follows from Lemma 10.6 and Lemma
10.7 by using the argument of Lemma 8.3.

2) It is easy to obtain the second part of the lemma by using the gradient
flow rt given by it =

Under assumption (A), K, consists of a finite number of isolated critical
points u1, ... , uj and a finite number of nondegenerate critical manifolds
Zl,... , Zr. The Morse numbers of the pair (r b, cp°) are defined by

i
M.(vb, (p4) dimC.(co, ui) +

s.1

c

1=1

dimC.(cp, Z;).

Theorem 10.4. Under assumption (A),

B.(cpb,<p°), n = 0,1,... .

Proof. By Lemma 10.8,

Hn(cpb, Hn(loc, p°) N Hn(co , cac \ Ke)

It suffices then to use the proof of Theorem 8.1.

10.5 Second Order Autonomous Superlinear
Equations

This section is devoted to the study of the autonomous problem

ii(t) + g(u(t)) = 0 (10)u(0)-u(T) =u(0)-u(T) =0

where g E C1(]-t, e[, R) for some £ E 10, +oo[. We assume that the following
condition holds:

(Ao) g(-u) = -g(u), 0 < g(u)u for 0 < Jul < P

and that g satisfies one of the following growth assumptions

(A1) u-1g(u) < g'(u) for 0 < Jul < .£

(Ai) g'(u) < g(u)u-1 for 0 < Jul < t,

each of which prevents g from being linear.
The energy (1/2)u2 + G(u), with

uG(u) = J g(s) ds,
0
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is a first integral of (10). It follows classically from this fact that the initial
conditions u(0) = a > 0 and u(0) = 0 provide a periodic solution of (10)
with minimal period

P(a) = 2V2- Jo° dx

G(a) - G(x)

On the other hand, the solutions of (10) are the critical points of the
functional cp defined on HT by

u = 1 2u t G(u(t))] dt.
10

T

The following theorem gives the Morse index and the nullity of the varia-
tional equation relative to a periodic solution of (10).

Theorem 10.5. Under assumptions (Ao) and (A1) (resp. (Aj)), if u is
a solution of (10) with minimal period Tlk such that u(0) E ]O,4 and
it(0) = 0, then

j(g' o u, T) = 2k, v(g' o u, T) = 1

(resp. j (g' o u, T) = 2k - 1, v(g o u, T) = 1).

The proof of Theorem 10.5 requires the following classical result.

Spectral Theorem for the Periodic Boundary Value Problem. Let
q and p be positive real continuous functions defined on [0, T]. We consider
the eigenvalue problem

h(t) - q(t)h(t) + \p(t)h(t) = 0

h(0) - h(T) = h(0) - h(T) = 0.

Then

a) there exists an infinite sequence of eigenvalues

0<.1o< \1 <A2<.\3<)4<....

b) The eigenfunctions corresponding to A2k_1 or A2k have exactly 2k

zeros in [0, T[.

c) If p is replaced by p such that 0 < p(t) < p(t) on [0, T], the corre-
sponding eigenvalues (),) are such that ), > )ij (j E N).

Proof of Theorem 10.5. 1) By conservation of energy, u(0) = maxtER. 1u(t)I.
Equation (10) implies that u is a solution of

h(t) + h(t) = 0 (11)
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h(0) - h(T) = h(0) - h(T) = 0 (12)

(with g(u)/u = g'(0) when u = 0) and that it is a solution of

h(t) + g'(u(t))h(t) = 0 (13)

satisfying (12). Let c > 0 be such that g'(u(t)) + c > 0 on R and denote
by (Ak) the eigenvalues of the problem

h(t) - ch(t) + .(g'(u(t)) + c)h(t) = 0 (14)

with the boundary conditions (12), and by (ak) those of

h(t) - ch(t) + A Cg( (t))) + c h(t) = 0

with the boundary conditions (12). Assume for definiteness that (A1) holds
(the case of (At) is similar and left to the reader). It follows from (A1) that
)j > ), for all j E N. Since T/k is the minimal period of u, u and it have
exactly 2k zeros on [0, T[ as it follows from a direct phase plane analysis.
Since u (resp. ic) is a solution of (11)-(12) (resp. (13)-(12)) we necessarily
have

A2k-1 = 1 or )12k = 1, )2k-1 = 1 or A2k = 1.

If A2k-1 = 1, then A2k > \2k-1 > )2k-1 = 1, a contradiction. Thus,

A2k-1 < 1 = A2k < A2k+1. (15)

In particular, 1 is a simple eigenvalue of (14)-(12) so that v(g' o u, T) = 1.
2) Taking on HT the inner product

T
((h, v)) = J [h(t)i(t) + ch(t)v(t)] dt,

0

let us define on HT the operator K by the formula

T
((Kh, v)) =

J
[g'(u(t))h(t) + ch(t)v(t)] dt.

0

Then,

T
XT(h) = (1/2) 0 h2(t) - g'(u(t))h2(t)) dt = (1/2)((h - Kh, h)).

0

It is then easy to verify that the Morse index j(g' o u, T) or XT is equal
to the number of characteristic values of K contained in ]0, 1[. But A is
a characteristic value of K if and only if A is an eigenvalue of (14)-(12).
Formula (15) then implies that j(g' o u,T) = 2k.
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Corollory 10.1. Under the assumptions of Theorem 10.5,

Z = {u( -I- 0) : 0 E R}

is a nondegenerate critical manifold of cp. Moreover, the Morse index of Z
is equal to 2k when (Al) holds and to 2k - 1 when (A2) holds.

Proof. Equation (10) implies that u is a C3 T-periodic function. Let us
define f : S1 - HT, where S1 -, R/(Tk-I Z), by f (0)(t) = u(t + 0), so
that Z = f (S1). It is easy to verify that f E C2(Sl, HT), that f is injective
and that df ITBSI is injective for every 0 E S'.

Since S1 is compact, it follows from Theorem 10.1 that Z is a compact
submanifold of H. Moreover, Z is connected and cp"(z) is a Fredholm
operator for each z E Z. Since problem (10) is autonomous, all points of
Z are critical points of W. By Theorem 10.5, the nullity of all z E Z equals
one, the dimension of Z. The value of the Morse index is also given by
Theorem 10.5.

Remark 10.4. If u E HT is not smooth, then the set {u( + 0) : 0 E R}
is not a smooth submanifold of HT.

We finally study the solutions of (10) for an important special class of
functions g satisfying (Ao) and (A1).

Proposition 10.2. Let P E 1,00[. If g(u) = lulp-2u, then

P(a) = al-p/2P(1).

Proof. Since G(u) = luIp/p, we obtain

P(a) = 2vr2 a dx = 2VJ I
dx

1G(a) - G(x) o VG(a) -- G(xa)

2/a1-p/2p1/2 01
dx O

0 1-XP
For the above g, if p # 2, there exists a unique ak such that P(ak) _

T/k. We shall denote by Uk the solution of (10) with the initial conditions
u(0) = ak, u(0) = 0.

Proposition 10.3. If p/> 2, then, for each k > 2,

'p(uk) = k2p/(P-2)9,(ul) > 0.

Proof. It is easy to verify that the uk can be deduced from ul by the
formula uk(t) = k2/(p-2)ul(kt). By a direct calculation, we get cp(uk) _
k2p/(p-2)cp(ul). Finally, equation (10) implies that

lul(t)Ipdt.
J T I2d1(t)I2dt =

1T

0 0

Thus,

P(ul) = (1 - 1)
IT

(ul(t)Ipdt > 0.
2 P
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10.6 Periodic Solutions of Forced Superlinear
Second Order Equations

Let us consider the problem

u(t) + lu(t)IP-2u(t) = f(t) (16)
u(0) - u(T) = u(0) - ii(T) = 0

where p > 2, f E L4 (0, T; R), and p + . = 1. We shall prove that each
T-periodic orbit of

u(t) + Iu(t)IP-2U(t) = 0, (17)

but a finite number of them, generates two distinct solutions of (16).
Let g(u) = IuIP-2u, G(u) = IuIP/p and let o E C°°(R,R) be such that

o(s) = 1 for s < 0
= 0 for s > 1

o'(s) < 0 for s E R.

For p > 0, define cpp on HT by

f (t)u(t) dt,'pp(U) = fT [(1/2)i12(t) - G(u(t)) +
(IuI_P)

J

where IuIP IIUIIL= When IuIP < p, cp is equal to the action integral

T
O(u) =

J
[(1/2)u2(t) - G(u(t)) + f(t)u(t)] dt

0

corresponding to the forced problem (16). When IuIP > 2p, app is equal to
the action integral

T
cp(u) = f [(1/2)u2(t) - G(u(t))] dt

0

corresponding to the autonomous problem (17).

Lemma 10.9. There exists p > 0 such that, for every u E HT, one has

lo(U) - cPP(u)I < µp1/P.

Proof. Holder's inequality implies that

IP
Ic(U)-Wp(U)I <o(uP P)

IfIQIUIP

and
uP-

o ( P P) = 0 whenever
p

IuIP
(2p)1/P.
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Lemma 10.10. There exists a > 0 and /3 > 0 such that, for every p > 0,
V pp(u) = 0 and yav(u) < ap -,l3 imply that

i(u) _ (pv(u), V (u) = 0 and IuIP < p.

Proof. Let us assume that V pp(u) = 0, i.e.

, P - r I , (P - \ (fr
u+g(u) = u (I Ip P f+ 1?0 .'

p I

1 fu
julp-2u.

P ) P ( P / o

After multiplication by u(t) and integration from 0 to T, we obtain

IT-
Jr2+ JT

g(u)u=(IuI-p/
C fT/

P o

p l rlulp -P (ru)
+ P\ P /

IuIp (18)

Since ug(u) = pG(u), we have, using (18),

G(u) 2
[,T'

Clul
P

P) N4] jT
fuiov(u) = 2 f T ug(u) -

f T

= (E- 1) fT G(u) - cl fT fu > 1 P- 1) fT G(u) - cllf I4Iulp,

where cl is independent of p. Thus, there` exists a > 0 and 8 > 0, indepen-
dent of p, such that

Ov(u) ? aluIP - Q. (19)

If we assume, moreover, that cpp(u) < ap - ,Q, inequality (19) implies that
luI < p. Thus, pv and 0 are equal on a neighborhood of u in H. Since
OVp(u) = 0, necessarily V (u) = 0. o

Lemma 10.11. The functional ip and, for any p > 0, the functional Ov
satisfy the Palais-Smale condition over H.

Proof. 1) Let us define N : HT -* HT by the formula

T
((Nu, v)) = 1(g(u(t)) + u(t), v(t)) dt,

0

with ((., .)) the usual inner product in HT. Let (uj) be a sequence in HT
such that is bounded and V p(uj) --+ 0, i.e.

u, - Nub = fj
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with f; -. 0 in HT as j - oo. After taking the inner product with u1, we
obtain

T T

uJ - g(ui)ui = ((f1, u1))
10

Hence,

1
T T

\
T

cp(ui) =
2
f u - -f 9(ui)ui =

C2 P/ Jo Iuj I2+ p((fi,u.i))

Since cp(uj) is bounded, we obtain

JO
ui < cllfj II IIuj II

for some c > 0. We also have

JO

T
uj2

<

T

I u,+f u
ui(t)I<1 Iuf(t)1<1

jT+ T Iu1 = T+
0

T+ (c+ 1)IIf,II IIuill.

Thus,
IIujII2 <T+(2c+ 1)IIfjILIIujjI

Since II fi I I --' 0, the sequence (uj) is bounded in H. Going if necessary
to a subsequence, we can assume that uj u. It is easy to verify that
Nub --> Nu, so that uj -+ Nu.

2) The proof that cpp satisfies the Palais-Smale condition is similar and
left to the reader.

Theorem 10.6. There exists ko E N* such that if k > ko, each orbit of
(17) with minimal period T/k generates two solutions of (16). In particular,
problem (16) has infinitely many solutions.

Proof. 1) Let ck = cp(uk) be the sequence given in Proposition 10.3. Since
(ck/k2) is increasing, we obtain

C2 11

1
Ck - Ck-1 >

2+
V Ck,

and hence
min(ck+1 - Ck,Ck - Ck-1) > k (20)
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Let Ck = ck/2k and pk = (ck/6kp)P. Assume that Vcppk(u) 0 and
wwpk (u) E [ck (, ck + Ek]. Then, by Lemma 10.10, t(u) = PPk (u) and
V&(u) = 0 if

1
aPk - Q > Ck + Ck = Ck 1 + 2k (21)

Let kl E N* be such that Ck > ,0-}- 2k fork > kl. If k > kl, inequality (21)
follows from apk > 2ck, i.e. a(ck/6kp)P > 2ck. This inequality is equivalent
to cP-1

kP
>- a(6p)P.

Since p > 2 and ck/k2 -+ +oo, there exists ko > kl such that the preceding
inequality is satisfied for k > ko.

2) By the first part of the proof, it suffices to show that for k > ko,
1PPk ([ck -Ek, Ck +Ek]) contains at least two critical points of (pPk . Let k > ko
and let us apply Theorem 8.10 with = cpPk, c = Ck and c = ek. It follows
from (20) that c is the only critical value of cp in [c - E, c + E]. By Lemma
10.9 wehave, for every u E HT,

kP(u) - cP(u)I : iPklP = E/3.

Corollary 10.1 implies that

Z = {uk(. + 0) : 0 E R}

is a nondegenerate critical manifold of cp with Morse index 2k. It follows
from Theorem 10.4 that

p`+E, ,c C, (9, Z), n = 0, 1, ... .

Using Theorem 10.3, we have/

Cn OP, Z) H.-2k(7i, c)
Hn-2k(Sl, O)
F if 2korn=2k+1
{0} ifn<2k-lorn>2k+2,

so that
Bn(cp`+`, V") = 1 for n = 2k or 2k + 1.

Since, by Lemma 10.11, cp satisfies the Palais-Smale condition, Theorem
8.10 implies that

Bn pc+E/2 oo-e/2) >
1 for n = 2k or n = 2k + 1. (22)

If [c - i , c + %] is free of critical values of 0, Lemma 10.11 and Lemma 8.3
imply that 0°-E/2 is a strong deformation retract of 0°+`/2. But then

Bn(Oe+e/2 Oc-c/2) = 0, n = 0, 1, ... ,
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a contradiction.
Let us now assume that 0-1([c- 2, c+ 2]) contains only one critical point

u of 0. Without loss of generality, we can also assume that O(u) 0 c ± 2.
It follows from (22) and Theorem 8.1 that

dim C (cp, u) > 1, n = 2k or n = 2k + 1. (23)

By Lemma 10.10, IuIP < pk. Thus, the nullity of u, which is equal to the
number of linearly independent solutions of

h + g'(u(t)) h = 0

h(0) - h(T) = h(0) - h(T) = 0

is at most 2. According to Corollary 8.4, dim C (ep, u) is different from zero
for at most one value of n. This fact contradicts (23). Thus, cp' 1([c - 1, c +
2]) contains at least two critical points of cp.

Theorem 10.7. If all the solutions of (16) are nondegenerate critical points
of the corresponding action ', there exists ko E N* such that, for each
k > ko, (16) has at least one solution with Morse index k.

Proof. Let k > ko, with ko given in the proof of Theorem 10.6. By as-
sumption, the critical points of cp = <p1,, in eppkl([ck - 2 , ck +

2
]) contains

at least one critical point u2k with Morse index 2k and one critical point
u2k+1 with Morse index 2k + 1. Since, by Lemma 10.10,

Iu2klp < Pk, Iu2k+llp < Pk,

the functions u2k and u2k+1 are critical points of 0 with respective Morse
indices 2k and 2k + 1.

10.7 Local Perturbations of Nondegenerate
Critical Manifolds

Let Z be a compact connected C2-submanifold of a Hilbert space X and
let cp E C2 (R x X, R). Assume that all points of Z are critical points of
cPo = cp(0,.) and consider the existence of critical points of ca = ep(e, .) near:
Z for a near 0.

Theorem 10.8. If Z is a nondegenerate critical manifold of cOo, then there
exists E > 0 such that, for all 0 < Je < e, cpc has at least catz(Z) critical
points near Z.

We shall use the Liapunov-Schmidt method on the manifold Z. We de-
note by P,,, (resp. Q,,,) the orthogonal projector onto N,,,Z (resp. T,,,Z)
and we define M(e, u) = Vcp,(u).
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Lemma 10.12. If Z is a nondegenerate critical manifold of cpo, then equa-
tion

PmM(e,m+n)+Qmn = 0 (24)

defines on an open neighborhood of {0} x Z a C' mapping n = n(e, m).

Proof. 1) Let z E Z. Since Z is a nondegenerate critical manifold, the map

z -* z)x + Q,x

is invertible on X. By the implicit function theorem, equation (24) defines,
on an open neighborhood of [0, z], a Cl mapping n = n(e, m). Let us recall
that, by Proposition 10.1, Pm and Qm are C'.

2) Using the compactness of Z, it is then easy to verify that u(e, m) is
well defined on an open neighborhood of {0} x Z.

By Lemma 10.12, for a sufficiently small, the function

V ),(m) = cp(e, m + n(e, m))

is well defined and continuously differentiable on Z.

Lemma 10.13. If Z is a nondegenerate critical manifold of coo, there
exists e > 0 such that, if 0 < jel < ?, m E Z and V 0,(m) = 0 then
V co (m + n(e, m)) = 0.

Proof. 1) Clearly n(0, m) = 0 for all m E Z. Differentiating the identity
Qmn(e,m) = 0 with respect to m at e = 0, we obtain QmDmn(O,m) = 0.
By compactness, there exists E > 0 such that, for jej < E, jjQmDmn(e, m)JI <
1/2 on Z.

2) Let 0 < jej < ?. If m E Z is a critical point of 0, then

(V o6(m + n(e, m)), (id + Dmn(e, m))v) = 0

for all v E TmZ. Since PmVea (m + n(e, rn)) = 0, we have

(V,p,(m + n(e, m)), (id + QmDmn(e, m))v) = 0 (25)

for all v E TmZ. Because jjQ,,,Dmn(e, m)JI < 1/2, the map id+QmDmn(e, m)
is invertible on TmZ. It follows then from (25) that QmVlo (m+n(e, m)) =
0. Since PmeoE(m + n(e, m)) = 0, m + n(e, m) is a critical point of co, and
the proof is complete.

Proof of Theorem 10.8. Let E > 0 be given by Lemma 10.13. For 0 <
gel <?, the Cl function 0, has at least cat, (z) critical points on the compact
C2 manifold Z (see [Pal3]). It suffices then to apply Lemma 10.13.

By Lemma 10.12, problem

M(e, u) = 0 (26)
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is equivalent near {0} x Z, to N(e, m) = 0 where N(e, m) = QmM(e, m +
n(c, m)). When Z is a circle, N(e,.) can be considered as a periodic function
of the real variable in. Moreover, N(0, m) = 0 so that problem (26) is a
bifurcation problem in R2.

Theorem 10.9. Let Z be a nondegenerate critical circle of coo. If m E Z
is such that

Qm DE M(O, m) A 0,

then there is a neighborhood H of [0, m] in R x X such that [e, u] E H and
M(e, u) = 0 implies e = 0 and u E Z.

Proof. Since D,N(0, m) = QmD,M(0, m), it suffices to apply the implicit
function theorem. O

Theorem 10.10. Let cp E C3(R x X, R) and let Z be a nondegenerate
critical circle of cpo. If z E Z is a simple zero of

h(m) = QmD,M(O, m),

then there exists e > 0 and a differentiable function u* : ] - E, E[-> X such
that

u* (0) = z and M(e, u* (e)) = 0.

Moreover, there is a neighborhood JV of [0, z] in R x X such that [e, u] E H
and M(e, u) = 0 implies either u = u*(e) or e = 0 and u E Z.

Proof. Since N(0, m) = 0, we have that

N(e, m) = cH(e, m)

where
r1

H(e, m) = J D,N(sc, m) ds.
0

Thus, for e # 0, equation N(e, m) = 0 is equivalent to H(e, m) = 0. Since,
by assumption, H is C1 and

H(0, z) = h(z) = 0

D,,,H(0, z) = h'(z) # 0,

it suffices to apply the implicit function theorem. 0

Example. Let f E C(R, R) be a r-periodic function and let us consider
the problem

ii(t) + sin u(t) = c f (t) (27)
u(jr)-u(0)=u(jr)-t(0)=0

where j is a positive integer. Assume that k'1 jr > 2zr and that v is a
solution of

ii(t) + sin v(t) = 0

with minimal period k-1 jr. By Theorems 10.5 and 10.8, problem (27) has,
for Icl sufficiently small, at least two solutions near Z = {v(.+0) : 0 E R}.
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Historical and Bibliographical Notes

In finite dimension, the notion of nondegenerate critical manifold and The-
orem 10.3 are due to Bott [Bot3]. Section 10.4 seems to be the first complete
treatment of the global theory in infinite dimension.

Ekeland [Eke7] introduced critical manifolds in the study of the fixed
energy periodic problem. Theorems 10.5, 10.6, and 10.7 are due to Willem
[Wi14]. Lemmas 10.9, 10.10, and 10.11 are taken from Bahri-Berestycki
[BaB1] who were the first ones to prove, by contradiction, the existence of
infinitely many periodic solutions of forced superlinear second order equa-
tions and of corresponding systems. See [BaB2] for an extension to first
order Hamiltonian systems and [BaB3], [Stri] for elliptic superlinear prob-
lems. When the forcing term is even or odd, the problem is simpler (see
[Maw2]).

Theorem 10.8 appears in [Rec12], [Dan7], [AmbCE1]. Theorems 10.9
and 10.10 generalize results of Albizatti [Albs} and of Lazer and McKenna
[LMc2].:See also [Will,].

Perturbations of Lusternik-Schnirelman theory are given in [Kra2],
[Amb9,io], [Pohi,2,3]

See also [Amb7] for autonomous superquadratic problems and [Ba1,2],
[BaLi], [DoL1], [Gnel], [Lon,], [0111], [PitTi,,2], [Rab2i], [Tai,2,3] for forced
superquadratic problems.

Exercises

1. Let X be a Hilbert space and let cp E C2 (X, R) be such that

i) So is bounded from below.

ii) cp satisfies the PS-condition over X.

iii) 0 is a non-degenerate critical point of cp with Morse index ko.

iv) the other critical points of cp are contained in j nondegener-
ate critical manifolds Z1,... , Z1 with respective Morse index
k1i ... , k, and homeomorphic to S1.

Then there exists a polynomial Q(t) with nonnegative integer coeffi-
cients such that

tko + (tk' + . . . + t ' ' ) (1 + t) = 1 + (1 + t)Q(t).

2. Let H E C2(R2N, R) and let v be a (non-constant) T-periodic solu-
tion of Ju+VH(u) = 0 such that if h is a T-periodic solution of the
linearized system

Jh + H"(v)h = 0
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then h is proportional to v. Consider the perturbed problem

Ju + V H(u) = e f (t, u, e), u(O)=u(T) (*)

where f E CI (R x R2N x It, R). If

f (t, u, e) = u, e)

then, for Icl small enough, problem (*) has at least two solutions near

Z = {v(. + 0) : 9 E R}.

3. Let H, v, and f be as in Exercise 2. Define

h(A) = JT (f (t, ve (t), 0), ve (t)) dt
0

where ve(.) = v(.+0). If h(9) :E 0, there exists a neighborhood Al of
[(ve0, 0)] in HT x It, such that, if [u, e] E H is a solution of (*), then
uEZande=0.

4. Now let H E C3 and f E C2. If Bo is a simple zero of h, there
exists ? > 0 and a differentiable function u* :] - HT such
that u*(0) = veo, and u*(e) is a solution of (*). Moreover there exists
a neighborhood H of [veo, 0] is X x R such that, if [u, e] E N is a
solution of (*) then either u = u*(e) or e = 0 and u E Z.
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