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General tools

�A major task of mathematics is to harmonize the continuous and the discrete� to include them in one com�
prehensive mathematics� and to eliminate obscurity from both�� �E�T� Bell� Men of Mathematics�

��� Introduction

Motion is described by di�erential equations� which are derived from the laws of physics� In the simplest

case� they read md�x
dt� � F �t� x� dxdt ��Newton�s second law� These equations contain within them not just

a statement of the current acceleration experienced by the object�s�� but all the physical laws relevant to

the particular situation� Finding these laws and their consequences for the motion has been a major part

of physics since the time of Newton� For example� the equations tell us the space in which the system

evolves �its phase space� which may be ordinary Euclidean space or a curved space such as a sphere�� any

symmetries of the motion� such as the left�right or forwards�backwards symmetries of a pendulum� and

any special quantities such as energy� which for a pendulum is either conserved �if there is no friction� or

decreases �if there is friction�� Finally and most importantly� the laws describe how all motions starting

close to the actual one are constrained in relation to each other� These laws are known as symplecticity

and volume preservation�

�A gyroscope is an emissary from a six�dimensional symplectic world to our three�dimensional one� in its
home world its behavior looks simple and natural�� �Yuri Manin�

Standard methods for simulating motion� called numerical integrators� take an initial condition and

move the objects in the direction speci�ed by the di�erential equations� They completely ignore all of the

above hidden physical laws contained within the equations� Since about ����� new methods have been

developed� called geometric integrators� which obey these extra laws� Since this is physically natural� we

can hope that the results will be extremely reliable� especially for long�time simulations�

Before we tell you all the advantages� three caveats


� The hidden physical law usually has to be known if the integrator is going to obey it� For example� to

preserve energy� the energy must be known�

� Because we�re asking something more of our method� it may turn out to be computationally more

expensive than a standard method� Amazingly �because the laws are so natural
� sometimes it�s

actually much cheaper�

� Many systems have multiple hidden laws� for which methods are currently known which preserve any

one law but not all simultaneously�

Now the advantages


� Simulations can be run for enormously long times� because there are no spurious non�physical e�ects�

such as dissipation of energy in a conservative system�

� By studying the structure of the equations� very simple� fast� and reliable geometric integrators can

often be found�

�



��� Flows �

� In some situations� results can be guaranteed to be qualitatively correct� even when the motion is chaotic�

This allows one to study systems in a �quick and dirty� mode and explore the system thoroughly� while

retaining reliability�

� For some systems� even the actual quantitative errors are much smaller for short� medium� and long

times than in standard methods�

Chapter � discusses a case where all of these nice features are realized
 the solar system�

The �rst lecture is about general tools which will be useful later on� the second discusses the question

�why bother
�� and the third to sixth lectures are about how to preserve various speci�c properties�

These lectures were delivered at ANODE� the Auckland Numerical ODEs workshop� in July ���	�

Naturally� they are tailored to our own research interests� They are intended to be suitable for a student�s

�rst exposure to the subject� and we have preserved their informality� We are very grateful to John

Butcher for inviting us to speak� to all the organizers of ANODE� and especially to Nicolas Robidoux

for transcribing the lectures� ANODE and the authors are supported by the Marsden Fund of the Royal

Society of New Zealand� the Australian Research Council and the EPSRC� The written form was prepared

at the MSRI� Berkeley� supported in part by NSF grant DMS���������

��� The exact �ow of an ODE� and general properties of integrators

We �rst de�ne the exact �ow �or solution� of an ordinary di�erential equation �ODE� and discuss what

properties one would like an integrator to have� Let x�t� be the exact solution of the system of ordinary

equations �ODEs�y

dx

dt
� f�x�� x��� � x�� x � Rm � �����

The exact �ow �� is de�ned by

x�t � �� � �� �x�t�� � t� �

For each �xed time step � � � is a map from phase space to itself� i�e� �� 
 Rm � R
m �

Three properties of exact �ows

�i� �Self�adjointness� The �ow has the continuous group property

��� � ��� � ������ ���� �� � R� �����

In particular�

�� � ��� � Id �����

Hence the exact �ow is self�adjoint


�� � ���
�� � �����

�ii� �Taylor expansion�

x��� � x��� � �
dx

dt
��� � ��

�

�

d�x

dt�
��� � � � �

Substitute
dx

dt
� f�x�

d�x

dt�
� �df�

dx

dt
� �df�f

Hence

�� �x�� � x� � �f�x�� �
�

�
���df�x���f�x�� � � � � �����

y Nonautonomous ODEs dx�dt � f�x� t� can be formulated autonomously as dx�dt � f�x� xm���� dxm���dt � �� The
geometric integrator is applied to this �extended	 system �if possible�� and then t � xm�� substituted�



� General tools

�iii� �Formal exact solution�

�� �x� � e
�
P

n

i��
fi�x�

�

�xi �x�


� exp��f��x�
�����

It�s impossible to construct integrators with the continuous group property ����� for any reasonably

general class of ODEs� The closest one can come is to preserve self�adjointness�

Properties of integrators

In general we don�t know the �ow �� � so we seek maps �� that approximate �� � We call such ��
integrators� Some properties of integrators


�i� �Self�adjointness� It is useful for �� to be self�adjoint� i�e��

�� � ���
��

�ii� �Order of an integrator� The order of accuracy of �� is p� if the Taylor series of �� and the

exact �ow �� agree to order p


�� �x�� �� �x� � O��p���

�iii� �Consistency� A necessary property of �� is that it be consistent� i�e�� �rst order accurate� i�e��

�� �x� � x � �f�x� �O�����

Note	 It is not di�cult to show that every self�adjoint integrator is of even order�

There are three types of integrators


�i� Integrators that form a group

�ii� Integrators that form a symmetric space

�iii� Integrators that form a semigroup

��
 Integrators that form a group

Suppose we have a set G of integrators which may or may not be consistent� If� for all integrators ��
and �� in G� we have

�� � �� � G

and

���� � G�

we say the integrators form a group� That is� they are a group where the group operation is composition

of maps�

Examples of integrators that can form a group are

�i� symplectic integrators �Lecture ��

�ii� symmetry�preserving integrators �Lecture ��

�iii� volume�preserving integrators �Lecture ��

�iv� integral�preserving integrators �Lecture ��

For example� for the group of integral�preserving integrators there is a real function I�x� �the integral�

such that I�x� � I��� �x�� for all x
 the value of the integral I is preserved by the integrator� Therefore

it is also preserved by �� � �� and by ���� 
 the integrators form a group�y

These groups are in�nite�dimensional groups of di�eomorphisms� They share many but not all of the

properties of Lie groups� various extensions of the concept of Lie groups from �nite to in�nite dimensions

have been proposed� One approach is the theory of �Lie pseudogroups� of di�eomorphisms� Cartan

discovered in ���� that in a sense there are just � fundamental Lie pseudogroups
 the group of all

di�eomorphisms� those preserving a symplectic� volume� or contact structure� and those preserving a

symplectic or volume structure up to a constant� These correspond to di�erent generic types of dynamics�

y If ���� exists� which it does for the methods of Lecture 
� but not necessarily for projection methods�



��� Symmetric spaces �

How to construct integrators that form a group

The main way to construct integrators that form a group is through splitting methods� Splitting

methods work for all cases ������� above� and are discussed further in Lecture ��

We illustrate splitting for integral�preserving integrators� Assume we don�t know an integral�preserving

integrator for the vector �eld f � but f can be split into two vector �elds f� and f�� each with the same

integral as f 


f�x� � f��x� � f��x�

and assume that we do know integral preserving integrators �� �resp� ��� for f� �resp� f�� separately�

Then we obtain an integral�preserving integrator � for f by composition


�� � ���� � ����

This is a consistent method for f � because it is the map �� 
 x �� x�� given by

x� � x � �f��x� �O����

x�� � x� � �f��x�� �O����

� x � ��f��x� � f��x�� �O����

Splitting methods are very easy to program�one merely calls routines for �� and �� in turn�

Thus the problem becomes


�i� How to split vector �elds while staying in the appropriate class�

�ii� How to construct integrators in the appropriate group�

�iii� How to compose those integrators so as to get an integrator of the original vector �eld of the

desired order�

Each of these will be considered in these lectures�

��� Integrators that form a symmetric space

Suppose we have a set G of integrators with the property that� for all integrators �� and �� in G� we

have

�� � �
��
� � �� � G� �����

Then G is an example of the algebraic object known as a symmetric space� a set G together with a binary

operation � obeying the axioms

x � x � x

x � �x � y� � y

x � �y � z� � �x � y� � �x � z�

x � y � y 	 y � x for all y su�ciently close to x

�

In our case the integrators G form a symmetric space by taking

�� � �� 
� �� � �
��
� � �� �

Notice that every group also forms a symmetric space� but not vice versa
 a group may have subsets

which are closed under ����� but not under simple composition�

The two most important examples of integrators that form a symmetric space are

�i� Self�adjoint integrators�

�ii� Integrators that possess time�reversal symmetry �Lecture ���

Proof of ���
 Let �� � �� � ���� � �� � Then

���
�� �

�
��� � �

��
�� � ���

���
� ���

�� � ��� � �
��
��

� �� � �
��
� � ��

� �� �



	 General tools

How to construct integrators that form a symmetric space

There are two main ways


�i� �Projection methods� If �� is any integrator� then the �projection�

�� 
� ���� � �
��
����

is self�adjoint�

�ii� �Splitting methods� If f can be split into two vector �elds

f�x� � f��x� � f��x�

such that we have self�adjoint integrators �� and �� for f� and f� separately� then we obtain a

self�adjoint integrator � for f from the symmetric composition

�� 
� ������ � ���� � �������

These are generalized to other symmetric spaces in Lecture �� The projection is almost miraculous�

because it starts with any integrator� There is no analogous projection for groups�

��� Integrators that form a semigroup

A set G of integrators forms a semigroup if for all integrators �� and �� in G� we have �� � �� � G�

but not necessarily ���� � G�

These arise from properties that only hold for forwards time


�i� systems with a Lyapunov function �Lecture ��

�ii� systems which contract phase space volume

For example� if the Lyapunov function is decreasing as t increases� it is increasing as t decreases� and

even the �ow ���� � ��� does not have the Lyapunov property� This means one cannot use backwards

time steps when composing these integrators� which can be proved to limit the order of composition

methods to ��

��
 Creating higher order integrators	 composition methods

Having obtained a geometric integrator �� � a higher order method can be obtained from the composition

�� � ��n��
��
��n�����n����

��
��n��� � � �

� � � ��n����
��
��n�����n����

��
��n�

which has been chosen to be self�adjoint� i�e� �� � ���
�� � Here the number of integrators n and the

coe�cients 	n can be adjusted to obtain the desired order� High order methods can also be designed in

the context of splitting methods� using the two �ows ���� and ���� of f� and f� respectively� One uses

the composition

������������ � � � ����n� �

However� these two approaches turn out to be equivalent �� �

Example � If � is self�adjoint� then a fourth�order integrator is obtained as follows


�� � ��� � �������� � ���

where 
 
� ��� ��������

This example is generalized in Theorem � below� Note that �� �
 � ��



��� Composition methods �

An example of composition methods� the generalized Yoshida method

Theorem � �Yoshida� Qin� and Zhu� Let � be a self�adjoint integrator of order �n� Then

�� � ��� � �������� � ��� � 
 � ��� �
�

�n�� ���

is a self�adjoint integrator of order �n� ��

Proof Let

�� �f� � �� �f� � ���n�� � � � � �

Then� using the �ow property of the exact �ow �� �

��� � �������� � ��� � �� �f���

�n�� � ��� �
��n�� � 
�n��

�
���n�� � � � �

which has order �n � � if 
 is as given in the theorem� However� it is self�adjoint by construction� so it

has even order� hence the order is �n � ��
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Why preserve structure�

��� Introduction

Let�s start with an example of a simulation of the outer solar system by Jack Wisdom and coworkers�

Part of its appeal is the long history of modelling the solar system� The people who do this are not

from the numerical analysis community� but they have their own history of methods which they have

developed and tweaked�

In the ��	��s� a special�purpose supercomputer� the �Digital Orrery�� simulated the outer planets for

	�� million years� With a lot of tweaking� an energy error of about ���� was achieved with a time step

of �� days �a six month calculation!�� A calculation with a very high order symmetric multistep method

achieved an energy error of about ����� in a � million year simulation� with a time step of ���� days�

In a completely di�erent approach� Laskar ������ used classical perturbation theory �expanding in mass

ratios and eccentricities about circular orbits� to eliminate the fast �annual� frequencies� This required

������� terms� but a time step of ��� years could be taken�

All of these attempts were roundly routed by the calculation of Jack Wisdom et al�� using a very simple�

elegant symplectic integrator� Their billion year simulation with a time step of ��� days gave an energy

error of only �
 ������ Moreover� only one force evaluation was used per time step� making the method

very fast�

Roughly speaking� they wrote the ODE as a sum of uncoupled Kepler ��body problems and the potential

which couples the planets
 f � f��f� � fKepler�fcoupling� Each fi is a Hamiltonian system� and the �ow

���i of each can be found exactly and quickly �the ��body problems using an elegant method of Gauss��

Fig� ���� Energy error of leapfrog applied to the whole solar system over ��� years �Wisdom et al��

��



��� Phase space and phase �ow ��

Fig� ���� Energy error after application of corrector �� �

The time stepping is simply the simplest composition �� � ���� ������a form of the �leapfrog� method�

Since the �ow of Hamiltonian ODEs is symplectic� and symplectic maps form a group� �� is symplectic�

Moreover� they found a �corrector� �� such that

�� � �� � �
��
� � �� �O�m����

where m � jf�
f�j � ���� is the mass ratio between Jupiter and the sun� �The result after n time steps

is �� � �n
� � �

��
� � so that �� only needs to be evaluated once� no matter how long the simulation�� This

method


� is symplectic�

� is one�step�

� is explicit�

� is second order�

� uses one force evaluation per time step�

� exploits classical analysis� namely the exact solution of the ��body problem�

� preserves total linear and angular momentum�

� is self�adjoint and reversible�

� has an extra factor of m� � ���	 in its local truncation error� compared to classical methods�

� for moderate times �� �
��
 years�� has linear growth of global errors� compared to quadratic growth

for classical methods�

� has bounded energy errors for long times�

This is almost a dream situation� where geometric integration has lead to a simple method with vastly

improved local �time ��� global �time T �� and structural �time �� errors� This calculation discovered

chaos in the outer solar system with a Lyapunov time� the time for the separation between nearby

orbits to grow by a factor e� of �� million years� Over the billion year calculation� they would separate

by e�� � ����� and integration errors would be magni�ed by this amount also� Thus� the �nal angular

positions of the planets are not expected to be accurate� However� we can be con�dent that the qualitative

or statistical properties of the solution are correct�

��� Phase space and phase �ow

�In phase space� no one can hear you scream�� �Caltech T�shirt�

The fundamental idea to keep in mind is to think in phase space� It�s a simple idea but one which you
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Fig� ��	� Inclination of Pluto over ��� years� showing chaos� Even after ��� years the inclination has reached a
new maximum�

have to keep reminding yourself of
 a simple de�nition in a dynamical systems class just isn�t enough�

Considering that di�erential equations were studied for ��� years before Poincar"e adopted this point of

view� this may not be too surprising�

�Consider the �uid molecules which initially form a certain 
gure F�� when these molecules are displaced�
their ensemble forms a new 
gure which will be deformed in a continuous manner� and at the instant t the
envisaged ensemble of molecules will form a new 
gure F ��

�Poincar�e� Celestial Mechanics� 	����

In a trajectory �t�x��� one thinks of the initial condition x� as �xed� and the time t increasing� in the

�ow map �� �x�� one thinks of all initial conditions x �owing forward for some �xed time � � We�ll only

consider one�step methods� so that the numerical approximation for one time�step � is a map

�� 
 Rm � R
m �

Now classical approximation theory� e�g� for Runge�Kutta methods� shows that chaos always wins
 the

best bound that can be obtained in general for a method of order p is����T��
� �x�� �T �x�

��� 
 �#t�pC
e�T � �

$

The precise value of $ depends on the Lipschitz constant of the vector �eld and on the method� but

$ � � and consequent exponential growth of error cannot be avoided in general� But dynamical systems

theory teaches that � can be �close� to � in other ways
 their phase portraits may be qualitatively or

even quantitatively similar� the stability of their orbits may be the same� for strange attractors� their

Lyapunov exponents or fractal dimensions may be close�

The pendulum� theory

Systems can have many geometric or structural properties� Before we get into de�nitions� let�s look at

the planar pendulum� It is a two�dimensional system with phase space R� � and dynamics

%q � p� %p � � sin q �����

where q is the angle of the pendulum� and p its angular momentum� �Here we are taking q � R� the

covering space of the actual angle�� Here are some of the properties of the pendulum


� It conserves the total energy %H � �
�p

� � cos q� That is� its �ow stays on the level sets of this function�

Because this is a two�dimensional system� these level sets are curves in the plane�

� Being a Hamiltonian system� its �ow is symplectic� For two�dimensional systems� this is equivalent to

being area�preserving�



��
 Philosophy of geometric integration ��

Fig� ���� Phase portrait and �ow of the pendulum �from Hairer and Wanner�� The area of each cat is preserved
in time� the manifestation of symplecticity� Energy� whose levels sets are the curves shown� is preserved� Rotation
by ���� ��q� p� �� ��q��p�� is a symmetry� while �ipping up�down �p �� �p� is a reversing symmetry�

� It has one discrete symmetry and one discrete reversing symmetry �see Lecture ��� The symmetry�

�q� p� �� ��q��p�� maps the vector �eld into itself� the reversing symmetry� �q� p� �� �q��p�� maps the

vector �eld into minus itself� Imagining �owing along one of the solution curves� you can see that the

motion of the re�ected points is constrained�

Because this is such a simple system� preserving any of these three properties gives a geometric in�

tegrator with good long�time behavior for almost all initial conditions� A picture of its phase portrait

will look very similar to the true phase portrait� we�ll see examples of this in Section ���� By contrast�

standard methods �e�g� Euler�s method� destroy the qualitative phase portrait completely�

��
 Philosophy of geometric integration

In any numerical study� one should

� examine any geometric or structural properties of the ODE or its �ow�

� design numerical methods which also have these structural properties� and

� examine the consequences� hopefully over and above the immediate ones�

This encourages us to

� confront questions of phase space and degrees of freedom�

� think about the signi�cance of local� global� and qualitative errors� and

� think about the kinds of tools and functions allowed in numerical analysis�

For example� multistep methods do not de�ne a map on phase space� because more than one initial

condition is required� They can have geometric properties� but in a di�erent �product� phase space� which

can alter the e�ects of the properties� �See Fig� ������ This puts geometric integration �rmly into the

�single step� camp� If a system is de�ned on a sphere� one should stay on that sphere
 anything else

introduces spurious� non�physical degrees of freedom�

The direct consequences of geometric integration are that we are

� studying a dynamical system which is close to the true one� and in the right class� and
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Fig� ���� Phase portrait of a symplectic integration� from Channell and Scovel� ��� time steps for �� di
erent
initial conditions are shown� Smooth curves ��KAM tori�� correspond to regular� quasiperiodic motion� clouds
correspond to chaotic motion�

� this class may have restricted orbit types� stability� and long�time behavior�

In addition� because the structural properties are so natural� some indirect consequences have been

observed� For example�

� symplectic integrators have good energy behavior�

� symplectic integrators can conserve angular momentum and other conserved quantities�

� geometric integrators can have smaller local truncation errors for special problems� and smaller global

truncation errors for special problems&initial conditions �even though they�re larger in the �generic�

case��

� some problems �particle scattering� isospectral problems� can have errors tending to zero at long times�

Here�s a pictorial survey showing what you can expect from geometric integration� Fig� ��� appears

in Channell and Scovel �� � one of the �rst symplectic integration papers� Orbits starting on the smooth

curves ��invariant circles�� stay on them forever� Of course� the orbit may be going around the circle at

the wrong speed� but the �orbital error� does not grow in time� Compare this to the traditional approach

to numerical integration� with its overwhelming emphasis on the estimation and control of local errors�

The idea that errors grow in time and� once committed� cannot be undone� was deeply ingrained� Pictures

like Fig� ��� did a lot to revise this traditional point of view�

Other orbits in Fig� ��� are chaotic� and their position errors grow exponentially� But� they can never

jump across the invariant circles� and because it�s the right kind of chaos �namely� the solution of some

nearby Hamiltonian system�� statistical observations of this chaos will have small errors�

��� Types of geometric properties

Study the list in the Table� The left hand column gives properties of vector �elds� and the right

hand column gives the corresponding properties of their �ow� It�s the right hand property that must be

preserved by the integrator� Usually the �ow properties are named the same as the ODE property�

�The standard example of a Lie group G is the set of orthogonal � 
 � matrices� ATA � I � which

represent rotations� Its Lie algebra g is the set of antisymmetric �
 � matrices� G is a manifold whereas

g is a linear space� a much simpler object to work with��

To bring some order to this table� consider the following features�

� Is the structure linear in some sense


All of the ODE properties are linear in f � but all of the �ow properties are nonlinear in �� except



��� Miscellaneous topics ��

ODE �x � f�x� �ow �t� derivative d�t

Hamiltonian f � JrH�x�� J �
�

� I

�I �

�
d�T Jd� � J �symplectic�

Poisson f � J�x�rH�x� d�T Jd� � J � �
source�free r � f � � det d� � � �volume preserving�
symmetric dS�f � f � S S � � � � � S
reversible �dR�f � f �R R � ��� � � �R
Lie group f � a�x�x� x � G� a � g � � G
isospectral f � �b�x�� x�� x� b � g eigenvalues ��x� constant
integral f � rI � � I�x�t�� � I�x����
dissipative f � rV � � V �x�t�� � V �x����

Table ���� Special classes of ODEs� and the corresponding properties of their �ows�

for linear symmetries� Symplecticity� Poisson� and reversibility are quadratic� volume preservation and

isospectrality are degree m when x � Rm �

� Does the structure appear explicitly or implicitly in the ODE


Hamiltonian� Poisson� Lie group� and isospectral ODEs are explicit �e�g� f � JrH generates all

Hamiltonian ODEs�� the rest are implicit�there are side conditions which f has to satisfy�

� Does the �ow property depend on � or d�


Symplecticity� Poisson� and volume preservation depend on the Jacobian d�� This makes them harder

to preserve�

These will be explored further in the other lectures� Brie�y� it is easier to work on linear and explicit

properties� so we concentrate on bringing all �ow properties into this form� �See x��� on splitting�� This

has been achieved for all the properties in the Table� but not for some of their nonlinear generalisations

and combinations�

A major justi�cation for geometric integration comes from backward error analysis� This theoretical

tool writes the integrator �� as the time�� �ow of some vector �eld 'f � i�e� �� �f� � �� � 'f�� If the method

is of order p� we have 'f � f �O��p�� Then� in many cases one can argue that since �� is in some class

�e�g� symplectic�� the perturbed vector �eld must be in the appropriate class too �e�g� Hamiltonian�� So

we know that by studying the dynamics of the method� we are at least studying dynamics in the right

class� The reliability of the results then depends on the �structural stability� of the original system
 a

di�cult problem� but a standard one in dynamical systems�

In the Hamiltonian case� 'f � Jr eH for some Hamiltonian eH � which is conserved by the method� Since

we don�t know eH and can only measure the original energy H � it �H� will be seen to oscillate� but �if the

levels sets of H and eH are bounded� will not drift away from its original level�

Technically� one suspends the map �� to a time�dependent �ow �� �'g�x� t��� from which� when �� is

analytic� nearly all the time dependence can be removed by a change of variables� giving 'f�x��O�e���� � t��

This introduction of an exponentially small nonautonomous term is inevitable� because most maps� even

those close to the identity� are not actually �ows� If the time step is too large these exponentially small

terms can actually pollute the calculation� and one observes� for example� the energy drifting�

��� Miscellaneous topics

Some other branches of geometric integration are

� ODEs on manifolds� such as homogeneous spaces� Although ultimately one can only compute in a

linear space� it�s best to formulate the method on the manifold and transfer to coordinates as late as

possible� A special case is when the manifold is a Lie group �� � Lie group methods are one of the major

themes in geometric integration which we don�t have space to discuss here�
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Fig� ���� Flow on a family of invariant tori� From V�I� Arnol
d� Small denominators and problems of stability
of motion in classical and celestial mechanics� Uspehi Mat� Nauk �Russ� Math� Surv�� �� ����	� no� � �����
�������

� Mapping methods approximate the equations in x as well as in t� for example� by Taylor series� Maps

de�ned by series can then be manipulated analytically�

� When evaluating Lyapunov exponents one should try to preserve their structure� e�g�� that the Jacobians

used are symplectic or volume�preserving�

� For partial di
erential equations one can either discretize in space �rst� seeking a �nite�dimensional

version of� e�g�� the Hamiltonian structure� or discretize space�time directly�

� One can discretize phase space itself and study lattice maps� a form of cellular automata� This has

been used in studies of the e�ect of roundo� error�

� Instead of trying to construct special methods that preserve particular properties� one can see how

well standard methods do� Usually the property has to be fairly robust� e�g�� dissipation of the type

djxj�
dt � � for jxj � R is studied� instead of dV
dt 
 � for all x� This approach is thoroughly treated

in Stuart and Humphries� Dynamical Systems and Numerical Analysis�

��
 Growth of global errors

The global error is �
T��
� �x���� �x� where T is a large� but �xed� time� Geometric integrators are not

expressly designed to control the global error� Nevertheless� sometimes it grows linearly in a symplectic

integrator and quadratically in a standard integrator� This will make the symplectic integrator superior

if T is large enough�

This property has been observed in many systems of di�erent types� It is associated with preservation

of invariant tori by the method� An invariant torus is a subset of initial conditions� topologically a torus�

which orbits starting on stay on for all forwards and backwards time� A torus is preserved if the integrator

has an invariant torus of its own� which tends to the torus of the ODE as � � ��

Invariant tori

Invariant tori are ubiquitous in dynamics� They�re found in


� Hamiltonian systems �tori have dimension n
���

� reversible systems �when orbits intersect the symmetry plane� tori often have dimension n
���

� volume�preserving systems �tori have any dimension � n��

They are important because they

� form positive�measure families of neutrally stable orbits� which

� mostly persist under small perturbations of the system�

� form �sticky sets�� dominating behavior of nearby orbits on intermediate time scales

Nearby orbits diverge like

� O��� on same torus



��� The pendulum� numerical experiments ��

Fig� ���� Cross�section of the tori in Fig ��� after perturbation �Arnol
d�� Some are destroyed and replaced by
chaos� some persist�

� O�T � on a nearby or perturbed torus

� O�T �� if O�T � drift across tori

� O�T� e�T � on nearby chaotic orbits� � depends on the order of resonance� but can be very small�

Therefore� in an integrator we should try to preserve tori of the correct dimension� In a standard method�

they are not preserved� and orbits drift transversely� leading to O�T �� growth of global errors� If the

torus is preserved� orbits only move around the torus at a slightly wrong angle or speed� leading to O�T �

errors�

It turns out to be an extraordinarily subtle question to determine when which tori persist under which

perturbations� Finally� in the �����s� conditions were found by Kolmogorov� Arnol�d� and Moser under

which most tori do persist under appropriate perturbations� although some are destroyed� This forms

the subject of KAM theory�

For Hamiltonian systems� an appropriate perturbation is Hamiltonian� so the results apply to symplectic

integrators�

In between invariant tori� or if tori were destroyed by taking too large a time step� orbits can be chaotic�

But� because of the nearby tori� exponential separation can be very slow� and the linear error growth can

dominate for long times�

��� The pendulum	 numerical experiments

We illustrate the above points on the simplest meaningful example� the pendulum �Eq� ������� The

simplest symmetric� reversible� self�adjoint symplectic method is leapfrog


q� � q �
�

�
�p

p� � p� � sin q�

q�� � q� �
�

�
�p�

The results of this method are shown in Fig� ��	 for a small time step �� � ���� and in Fig� ��� for a

much larger time step �� � ��� Even for the larger time step� the left�right and up�down symmetries are

preserved� as are most of the invariant circles� as promised by KAM theory for symplectic integrators�

Chaos is signi�cant only in a small neighbourhood of the homoclinic orbit connecting ��� �� and ���� ���

A symplectic method which is not symmetric or self�adjoint is shown in Fig� ����� the lack of symmetry
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Fig� ���� ���� times steps of symplectic leapfrog applied to the pendulum� time step � � ����
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Fig� ���� As in Fig� ���� but � � ��

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Fig� ����� A nonsymmetric symplectic integration of the pendulum� � � ����
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Fig� ����� ��� time steps of leapfrog at � � �� showing a chaotic orbit�
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Fig� ����� A symplectic multistep method� the torus has dimension � instead of � as in Figs� ��������� A single
orbit is shown� with the �rst �� time steps marked by ��

is plain to see� In this case� invariant circles are still preserved� In higher�dimensional systems� there is

a more complicated interaction between symplecticity and reversibility�

What is the e�ect of the chaos created by the numerical integrator
 Fig� ���� shows one chaotic orbit

of leapfrog at the large time step � � �� obtained with initial condition �q� p� � ��� ��	�� It was found to

have a large Lyapunov exponent of ����� By T � ���� the chaos would dominate the numerical errors�

by contrast� with initial condition �q� p� � ��� ����� the Lyapunov exponent is already reduced to ���
�

and phase errors �moving around the circle at the wrong speed� would dominate until T � ��
� Thus�

even when the numerical orbit does not lie on an invariant torus� the preservation of some invariant tori

nearby helps a great deal�

In Section �� we talked about the importance of staying in the right phase space� The multistep

method xn�� � xn�� � ��f�xn� is a map on the product phase space R� 
 R
� � It can be shown to be

symplectic in this larger space� but its KAM tori have dimension �� instead of � as in the real system�

When projected to the original phase space� they �ll out a solid region� instead of a curve�a disaster for

long�time simulations� This e�ect is illustrated in Fig� �����

��� Summary

Systems may have many geometric or structural features� Integrators must balance costs� local� global�

and long�time errors� stability� and structural preservation� You can�t expect to do well at all of these
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simultaneously! Also� numerical studies can have di�erent goals� Demanding very small local errors for a

large class of ODEs tilts the balance in favour of highly�developed standard methods� seeking reliability

over long times with simple� fast methods tilts in favour of geometric integrators�

The remaining lectures look at preserving di�erent properties� Here we sum up what is known about

preserving several properties at once�

�i� Symplecticity and energy
 If� by �integrator�� we mean that the method is de�ned for all Hamilto�

nian ODEs� then by a theorem of Ge� this is impossible� For exceptional ��completely integrable��

problems� such as the free rigid body� this can be done�

�ii� Symplecticity and integrals apart from energy
 Not known� although doable in principle�

�iii� Symplecticity and linear symmetries
 Achieved by� e�g�� the implicit midpoint rule�

�iv� Poisson and linear symmetries
 Not known�

�v� Volume preservation and linear symmetries
 Not known�

�vi� Integrals and linear symmetries
 Sometimes possible using the Harten� Lax and Van Leer discrete

gradient �see Lecture ���

�vii� Volume and an integral
 Can be done by splitting for all systems with some integrals and for some

systems with any integrals� Not known in general�

Extending the concept of geometric integration to PDEs is much less developed� Work has been done�

e�g�� on integral preservation �� � symmetry preservation �	 � and Lagrangian �variational� structure �� �
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Symplectic integrators� A case study of the
molecular dynamics of water�

�Chemistry is a science� but not Science� for the criterion of true science lies in its relation to mathemat�
ics� �Kant�

�Chemistry will only reach the rank of science when it shall be found possible to explain chemical reactions
in the light of their causal relations to the velocities� tensions and conditions of equilibrium of the con�
stituent molecules� that the chemistry of the future must deal with molecular mechanics by the methods and
in the strict language of mathematics� as the astronomy of Newton and Laplace deals with the stars in their
courses� �Du Bois Reymond�

This quote �from D�Arcy Thompson�s On Growth and Form� could not be more apt
 symplectic

integrators� developed to deal with the stars in their courses� are now applied to the velocities of molecules�

There are many �ne surveys of symplectic integration� so here we�ll discuss Poisson systems� or non�

canonical Hamiltonian systems� and how they arose in a study of water� Water� the �king of polar

�uids�� has many strange phases and anomalous properties� which statistical mechanics has a hard time

explaining� Therefore people turn to numerical simulations�


�� Splitting

Recall the problem of splitting�how can we write f � f� � f� so that the fi retain some properties of

f
 The idea is to represent all f in the given class explicitly by a �generating function�� Then we split

the generating function� This can be done for Hamiltonian systems by splitting the Hamiltonian� Look

at Table ���
 Hamiltonian systems are expressed explicitly�

Example 
 Hamiltonian systems� The generating function is the Hamiltonian H �

f � JrH � Jr
�X

i

Hi

�
� JrH� � � � � � JrHn�

Properties due to J � which is not split� are retained�symplecticity� Properties due to H � which is split�

are lost�conservation of H �

Example � Systems with an integral� The generating function is the skew�symmetric matrix function J �

f � JrH �
�X

i

Ji

�
rH � J�rH � � � � � JnrH

Properties due to J � which is split� are lost�symplecticity� Properties due to H � which is not split� are

retained�conservation of H �

We�ll return to systems with an integral in Lecture �� and see how to apply splitting to volume�preserving

systems in Lecture ��

��



�� Symplectic integrators


�� Poisson systems

Consider a standard� canonical Hamiltonian system�

%x � JrxH�x�� J �

�
� I

�I �

�
�

It only has this special form when written in special variables� If we apply an arbitrary change of variables�

writing the system in terms of y � g�x�� it becomes

%y � dg � %x

� dg � JrxH�x�

� dg � J � dgTryH�x�

� eJ�y�ry
eH�y��

where eJ � dg � J � �dg�TeH�y� � H�x��

This is an example of a �Poisson system�� the most obvious change being that the matrix J now depends

on y� However� the class of Poisson systems is invariant under changes of variables� Since the history

of mathematics and of physics is a history of requiring invariance under more operations� it seems we

should study Poisson systems in their own right�

�There are many other motivations for the introduction of Poisson systems� from PDEs� systems on

Lie groups and other manifolds� and symmetry reduction��

An important special case are the �Lie��Poisson systems� Let x � Rm be an element of a Lie algebra�

Let �xi� xj  �
Pm

k
� c
k
ijxk be the Lie bracket� Let Jij � �xi� xj  � so that the entries of J are linear functions

of x� Then

%x � J�x�rH�x�

or

%xi �
X
j�k

ckijxk
�H

�xj

is called a Lie�Poisson system�

Example � The free rigid body in R
� � The variables are ��� ��� ��� the angular momenta of the body

in body��tted coordinates�

J �

�	 � �� ���
��� � ��
�� ��� �


A
H �

�

�

�
���
I�

�
���
I�

�
���
I�

�
Here the Lie algebra is so���� the antisymmetric �
 � matrices�


�
 Splitting into solvable pieces

Earlier we showed how to split a vector �eld into appropriate pieces� and how to compose their �ows�

But� it is still important to be able to apply a geometric integrator to each piece� Here we achieve this

by requiring the pieces to be �easily� integrable�

Observation I If Jij � � for � 
 i� j 
 k � n and H � H�x�� � � � � xk�� then the ODEs are

%x �

�
� �
� �

��
�
�

�




�� Molecular dynamics ��

or

%xi �

�
� i � �� �� � � � � kP

j�l c
l
ijxlfj�x�� � � � � xk� i � k � �� � � � �m

which are linear with constant coe�cients� hence easily solved �although the coe�cients depend para�

metrically on the other variables x�� � � � � xk��

Observation II Systems with H �
P

iHi�xi� can be split into easily solved parts� The rigid body has

this form�

Observation III Quadratic Hamiltonians can be diagonalized� i�e�� put in the form of Observation II�

and hence split�


�� Molecular dynamics

The basic steps in a molecular dynamics simulation are the following�

�i� Take a large sea of particles�

�ii� Impose boundary conditions �e�g� �D periodic� and impose constancy of any three out of the four

quantities pressure� volume� temperature� and number of particles� the fourth is determined�

�iii� Find a classical model of the interparticle forces�

�iv� Move the particles for a long time�

�v� Collect statistics of the motion�

Applications are to exploring states of matter �phase transitions� liquid� liquid crystal� colloidal��

protein folding� the design of large organic molecules and drugs� nanotechnology� It�s a big �eld�

Current limits are about ��� simple atoms on a supercomputer� ��� simple atoms on a workstation�

and ������� water molecules on a workstation� For water� even �� � � 
 �
 � molecules with periodic

boundary conditions are enough to see solid� liquid� and gas phases�

What�s the best way to move the particles
 The method should

� obey the physical laws�

� exhibit the correct statistical equilibrium in the face of chaos� and

� be fast and cheap� since forces are expensive to evaluate�

In fact� the forces are so expensive that users don�t want to evaluate them more than once per time

step� For decades they�ve been using the Verlet method for point masses


H � kinetic � potential �
�

�
p� � V �q��

qn�� � qn � �pn

pn�� � pn � �rV �qn���

We now know that it�s so good because it�s the simplest symplectic integrator� and comes from splitting

the Hamiltonian�

How can we extend the Verlet algorithm to non�symmetric molecules like water
 Many approaches

have been considered�

� Move each atom separately� This involves modelling the interatomic forces� which means simulating

the many modes of vibration within each molecule� Their time scale is very short and they are not

believed to a�ect the macroscopic properties of water� which rules out this approach�

� Model as a rigid body� This is the preferred option� It can be done in various ways


� Consider the molecule as a set of particles subjected to constraints on interatomic distances and angles�

This is possible� but constraints lead to expensive� implicit methods� They are needed for problems

involving �exible chains such as proteins�

� Model as a rigid body� with orientation represented by Euler angles or unit quaternions� The Hamilto�

nian in these variables is complicated and nonseparable� this makes symplectic methods expensive� In

the most popular variant� unit quaternions are used and the ODEs are passed to a black�box solver�

� Represent orientation by a �
 � orthogonal matrix� and update this by rotations only�

This last is what we now do� First� let�s look at the free rigid body�
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Fig� 	��� The phase portrait of the free rigid body �from Bender � Orszag� Advanced Mathematical Methods for
Scientists and Engineers�� Orbits on a sphere of constant angular momentum j�j are shown� There are three
pairs of �xed points� corresponding to rotation about each of the three principal axes� two are stable and one is
unstable� To observe passage along the �homoclinic orbit� joining the unstable pair� hold a hammer with the
head horizontal and toss so it rotates once about a left�right axis�


�� The free rigid body

Let the angular momentum vector be �� the orientation be Q � SO���� i�e� QTQ � Id� the Hamiltonian

for the free rigid body is

H �
�

�

�
���
I�

�
���
I�

�
���
I�

�
�

The phase portrait for this system is shown in the famous Figure ����

As noted above� splitting methods work excellently for Lie�Poisson systems with Hamiltonians of this

type� The �ow of H �
	��
�I�

is

��t� � R����

Q�t� � Q���RT

where

R �

�	 � � �

� cos � � sin �

� sin � cos �


A � � � t
��
I�
�

This decomposes the motion into three elementary rotations� The method is fast� accurate� reversible

and symplectic� Q is always orthogonal up to round�o� error� because it is updated only by rotations�

How does this �t into a full simulation of water
 For each molecule the variables are the q� the position

of the centre of mass� p� the linear momentum� Q� and �� The total energy has the form

H � T rotation��� � T translation�p� � V �q�Q�

together with the constraints QTQ � Id� We apply a Verlet�like splitting into kinetic and potential parts�

For each molecule� we have

Potential part


%q � �

%Q � �

%p � �
�V

�q
�
 f �force�

%� � �QT f�
 x �torque�




�� The free rigid body ��

where x is the point at which the force acts� Since the positions and orientations are here held constant�

these equations are easy to solve�

Kinetic part


%q � p

%Q � Q
�
skew�I����

�
%p � �

%� � � 
 I���

where I � diag�I�� I�� I�� is the inertia tensor� The centres of mass undergo free� straight�line motion�

while the orientations move as a free rigid body� The latter could be solved explicitly� although this has

never been implemented in a production code� in practice� we approximate its �ow by the previously�given

splitting method�

Composing these pieces gives an analogue of the Verlet method for this non�canonical Hamiltonian

system� The �nal method uses only one force evaluation per time step� but is still explicit� symplectic�

reversible� and conserves total linear and angular momentum �because each piece does�� As expected

for such a method� energy errors are bounded in time� When implemented in the existing research code

ORIENT using existing error criteria� this method was about ten times faster than the old method ���level

leapfrog with Bulirsch�Stoer extrapolation��
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Symmetries and reversing symmetries

��� Symmetries of ODEs

A symmetry is a map h 
 Rm � R
m from phase space to itself� such as x �� �x� In a system with

symmetries� the vector �eld at the two points x and h�x� are related to each other� This is shown for

the pendulum in Fig� ���� Under the �	�� rotation �q� p� �� ��q��p�� arrows �the vector �eld� map to

arrows
 a symmetry� Under the re�ection p� �p� arrows map to arrows if we also reverse their direction


a reversing symmetry� The analogous properties for �ows can be seen by tracing along the �ow lines�

Symmetries and reversing symmetries both reduce the possible complexity of the phase portrait� and

should be preserved�

In reversible Hamiltonian systems� reversing symmetries are a bit easier to preserve than symplecticity

�although one can have both� if desired�� For example� for simple mechanical systems there are explicit�

variable�step�size reversible methods�

Consider the ODE %x � f�x� under the change of variables y � h�x�� The new system is

%y � ef�y� 
� ��dh � f�h����y��

De�nition 
 The vector �eld f has symmetry h if f � ef � i�e�� if dh � f � fh� The vector �eld f has

reversing symmetry h if f � � ef � i�e�� dh � f � �fh� and f is called reversible�

The notation fh indicates composition� i�e�� �fh��x� � f�h�x���

Example � The pendulum� For the vector �eld

f 
 %q � p� %p � � sin q

we have

h� 
 eq � q� ep � �p	 %eq � �ep� %ep � sin eq�
�a reversing symmetry�

h� 
 eq � �q� ep � p	 %eq � �ep� %ep � sin eq�
�a reversing symmetry� and so

h� � h� 
 eq � �q� ep � �p	 %eq � ep� %ep � � sin eq
is a symmetry� So the pendulum has �reversing symmetry group� �the group of all symmetries and

reversing symmetries�

( � fid� h�� h�� h�h�g �

In general� half of the elements of ( are symmetries� and the composition of two reversing symmetries

is a symmetry�

We will use S for a symmetry and R for a reversing symmetry�

De�nition � The �xed set of S is

�x�S� 
� fx 
 x � S�x�g�

��



��� Symmetries of maps ��

The �xed set is invariant under the �ow of f � So preserving symmetries is one way of staying on a

submanifold�

Example � A nonlinear symmetry� For the pendulum� the elements of ( were all linear maps� Here is

an example of a matrix ODE with a nonlinear symmetry� It is related to the famous Toda lattice� Let

X�L� � R
n�n �

%X � B�XL�X
���X�

B�L� � L� � L��

where L� �L�� is the upper �lower� triangular part of L� This system has h�X� � X�T as a symmetry�

The �xed set is X � h�X� � X�T or XXT � I � i�e�� X � O�n�� the orthogonal group� A symmetry�

preserving integrator for this system would also have O�n� as an invariant set�

��� Symmetries of maps

De�nition �� A map � has h as a symmetry if h� � �h� i�e��

� � Nh� 
� h���h�

A map � has h as a reversing symmetry if h� � ���h� i�e�

� � NhI� 
� h�����h�

The important property of the operators Nh� I is how they act on compositions of maps� Nh acts as

an automorphism� i�e�

Nh������ � �Nh����Nh����

while I acts as an antiautomorphism� i�e�

I������ � �������� � ���� ���� � �I����I���

For a map� having a �reversing� symmetry is equivalent to being in the �xed set of an �anti�automorphism�

Therefore� we study how to construct maps in such �xed sets� We shall see that for antiautomorphisms

this is relatively simple� while for automorphisms it is unsolved�

Thus� paradoxically� we know how to construct reversible integrators� �which is good� because re�

versibility brings good long�time behavior� e�g�� through invariant tori�� but not symmetric integrators�

which looks at �rst sight simpler�

��
 Covariance

Why are Runge�Kutta methods called linear methods
 One explanation is that they are linearly

covariant� Consider methods � which associate to each ODE f a map �� �f�� where � is the time step�

De�nition �� A method � is h�covariant if the following diagram commutes�

%x � f�x� x
h�y�
��

%y � ef�y�

� �ex � �� �f��x� x
h�y�
��

ey � �� � ef�

That is� if

� � Kh� 
� h�����dh � f�h���h

where Kh is an automorphism�



�	 Symmetries and reversing symmetries

In words� we get the �same� integrator whether we take the ODE in variables x or y� Notice that if h is

a symmetry of f � then f � ef � and hence h is a symmetry of �� So an h�covariant method is automatically

h�symmetric� even if we don�t know what the symmetry is!

So� we should classify methods by their covariance group�

Example �� Euler�s method

�� �f� 
 x �� x � �f�x�

�or� more generally� any Runge�Kutta method�� is covariant under any a�ne map x � Ay � b�

Example �
 The exact solution �� �f� is covariant under all maps x � h�y��

Example �� The splitting method for %q � f�p�� %p � g�q��

�� �f� 
 q� � q � �f�p�� p� � p � �g�q��

is covariant under all maps eq � h��q�� ep � h��p�� It is not even covariant under linear maps which couple

the q� p variables�

When composing symmetric or reversible methods� we can use the properties

�i� The �xed sets of automorphisms form a group�

�ii� The �xed sets of antiautomorphisms form a symmetric space�

Property ��� is immediate� while property ��� follows from the following

Lemma �� �The Generalized Scovel Projection�� Let A� be an antiautomorphism with order ��

i�e� A�
�

� id� Let � � A��� i�e� � � �xA�� Then

��A�� � �xA� ���

Proof A����A��� � A�
�
�A��A�� � ��A���

Example �
 For any �anti�automorphism A� we have A�id� � id and hence A����� � A������ There�

fore� � � �xA� 	 ��� � �xA�� Taking � � A�� gives the symmetric space property ����� � �xA��

Example �� � � id 	 �A�� � �xA�� This gives a way of constructing elements �xed under any

antiautomorphism� starting from any element�

Example �� With A��� 
� ���
�� and � � id� this builds self�adjoint methods of the form ���

��
�� �

Example �� With A�� 
� h�����h� h� � id� and � � id� this builds reversible methods of the form

�h�����h�

��� Building symmetric methods

This is unsolved except in two simple cases�

�i� If the method is h�covariant and h is a symmetry� then the method is h�symmetric�

�ii� If the symmetry group H is linear and the map � belongs to a linear space� then we can average

over H 


� 
�
�

jH j

X
h�H

�h

is H�symmetric�

Since preserving symmetries is di�cult� we should try not to destroy symmetries in the �rst place� by

doing non�symmetric splittings� for example�



��� Building reversible methods ��
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Fig� ���� The discrepancy for �� � ���������
 applied to Example �� where the base method �� is Euler� Notice
how the symmetry error is drastically reduced every �� then every �� then every � time steps�

Hamiltonian systems

A symplectic integrator preserves an integral I if it preserves the symmetry associated with that

integral� namely� the �ow of JrI �

Example �� Angular momentum I � q 
 p� Here JrI has the form %q � a�q�� %p � b�p�� whose �ow has

the form of Example ��� Therefore� splitting methods for H � �
�p

� � V �q� preserve angular momentum�

Example �� Quadratic integrals are associated with linear symmetries� so are preserved by any linearly

covariant symplectic integrator� such as the midpoint rule �by Noether�s theorem��

��� Building reversible methods

Here the situation is much nicer�

Theorem �� Let ( be a group of automorphisms and antiautomorphisms� Let � be �xed under the

automorphisms� Then

� � �A��

is �xed under Ag for all g � (� where A� is any antiautomorphism in (�

For example� if all symmetries are linear� then we can use this theorem to construct integrators having

the full reversing symmetry group�

��
 Approximately preserving symmetries

The composition used in Lemma �� is so nice that it would be nice to use it for symmetries as well as

reversing symmetries� Although it doesn�t eliminate the symmetry error� it does reduce it by one power

of the time step�

Theorem �
 Let A� be an automorphism of order �� Let �� be a method with � � A�� �O���� Let

�� 
� �A��� Then �� � A��� �O����� where � � O����

Proof The proof is an illustration of backward error analysis and manipulation of �ows considered as

exponentials� We write the map � as the �ow of a vector �eld consisting of a part S which has the



�� Symmetries and reversing symmetries

symmetry and a part M which does not


� � exp��S � �M��

Therefore�

A�� � exp��S � �N�

for some vector �eld N � Now

���A������ � ��A����A�� ����

� �A�� �
�� �A�����

� exp���S � �M� �S � �N  � � � ��

� exp����S�N �M  � � � ��

Usually� the initial symmetry error � will be O��p��� for a method of order p� and this composition

reduces it to O��p���� The idea can be applied iteratively
 if

�n�� � �nA��n�

then �n has symmetry error O��n��� This gives methods of the form

�� � �A��A��� � )������

�� � )����������

and so on� given by the initial elements of the famous )Thue�Morse� sequence�

In the matrix example given previously� it is desired to leave the �xed set XXT � I invariant� This

could be done by� e�g�� the midpoint rule� but this is implicit and� given the form of the ODE� very

expensive� Instead� one can use a simple explicit method for �� and reduce the symmetry error to any

desired order using �n� This leaves X orthogonal to any desired order�
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Volume�preserving integrators

Remember that the ODE
dx

dt
� f�x�

is source�free �or divergence�free� if

r � f �
mX
i
�

�fi
�xi

� �

for all x� Let df � ��fi
�xj� be the derivative of f and A � ���
�x be the Jacobian of its �ow� A

evolves according to

dA

dt
� dfA� A��� � Id

and one can show that
d

dt
detA � tr�df� det�A��

Consequently� if r � f � tr�df� � �� then detA � � for all time� the �ow is volume preserving�

Volume preserving systems may be seen as one of the very few fundamental types of dynamics� their

�ows belong to one of the �Lie pseudogroups� of di�eomorphisms� They arise in tracking particles in

incompressible �uid �ow� in perturbations of Hamiltonian systems� and in discretizations of the wave

equations of mathematical physics� volume preservation �and not symplecticity� for example� is the key

conservation law underlying statistical mechanics� An example comparing volume� and non�volume�

preserving integration is shown in Figs� ��������

�

The integrator �� is volume preserving �VP� if

det

�
����i
�xj

�
� �

for all x� There are two general ways to construct VP integrators


�i� the splitting method� and

�ii� the correction method�

��� Volume�preserving splitting method

Starting with the system of ODEs

dx�
dt

� f��x�

���

dxm
dt

� fm�x�

��



�� Volume�preserving integrators
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Fig� ���� Orbit of the 	D �ABC� �ow computed with a second�order volume�preserving integrator� The system
is �x � A sin z  C sin y� �y � B sinx  A cos z� �z � C sin y  B cos x� with parameters A � B � �� C � � and
initial conditions ��� �� ��� The phase space T� is here viewed along the z�axis� the long axis of the torus� The
integration time is ���� equivalent to ��� circuits of the z�axis� and the time step is � � ���� The orbit lies on a
torus and its regular� quasiperiodic behaviour is apparent�
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Fig� ���� As in Fig� ���� but computed with the a non�volume preserving second order Runge�Kutta method with
the same time step� The computed �ow is not quasiperiodic and the amplitude of the motion gradually decreases
�the last 	! of the orbit is shown in bold�� However� this method does preserve the �� linear symmetries of the
ODE ������ which may explain why the results are better than in Fig� ���	�

we substitute

fm�x� �

Z
�fm
�xm

dxm

� �

Z m��X
i
�

�fi
�xi

dxm



��� VP splitting ��
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Fig� ��	� As in Fig� ���� but computed with MATLAB
s ODE�� routine� The use of time�adaptivity has broken
the spatial symmetries� with drastic consequences�

with appropriately chosen constants of integration� to get the equivalent form

dx�
dt

� f��x�

���

dxm��
dt

� fm���x�

dxm
dt

� �
m��X
i
�

Z
�fi
�xi

dxm�

Now we split f � writing f as the sum of the m� � vector �elds

dxi
dt

� � i �� j�m

dxj
dt

� fj�x�

dxm
dt

� �

Z
�fj
�xj

dxm

for j � �� � � � �m� �� Note that


�i� Each of these m� � vector �elds is source�free�

�ii� We have split one big problem into m� � small problems� But we know the solution to each small

problem! They each correspond to a two�dimensional Hamiltonian system

dxj
dt

�
�Hj

�xm
dxm
dt

� �
�Hj

�xj

with Hamiltonian Hj 
�
R
fj�x�dxm� treating xi for i �� j�m as �xed parameters� Each of these �D

problems can either be solved exactly �if possible�� or approximated with any symplectic integrator

�j � Even though �j is not symplectic in the whole space Rm � it is volume�preserving�



�� Volume�preserving integrators

A volume�preserving integrator for f is then given by

� � �� � �� � � � � �m���

Example �� �for illustration only� The �D Volterra system

dx�
dt

� x��x� � x��

dx�
dt

� x��x� � x��

dx�
dt

� x��x� � x��

is source�free� and splits as

dx�
dt

� x�x� � x�x�

dx�
dt

� �

dx�
dt

� �x�x� �
�

�
x��

�




�




�
'f��

dx�
dt

� �

dx�
dt

� x�x� � x�x�

dx�
dt

� x�x� �
�

�
x��

�




�




�
'f��

where volume�preserving integrators for 'f� and 'f� are given by the implicit midpoint rule�

x� � x � � 'f�

�
x � x�

�

�
� x�� � x� � � 'f�

�
x� � x��

�

�
�

Note that the x�� terms were not in the original system� but on combining the two steps they cancel�

The splitting is an example of a generating function method
 we construct source�free f �s without any

side conditions�

��� The volume�preserving correction method

The simplest case is the semi�implicit method

x�� � x� � �f��'x�

���

x�m�� � xm�� � �fm���'x�

xm �

Z x�
m

J�'x� dx�m

where

J 
� det

�
�x�i
�xj

�
i�j
��


�m��

and

'x � �x�� � � � � xm��� x
�

m��

For a proof of consistency and volume�preservation� see �� �



��� VP correction ��

Example �� �for illustration only� For the �D Volterra system

dx�
dt

� x��x� � x��

dx�
dt

� x��x� � x��

dx�
dt

� x��x� � x��

we get

x�� � x� � �x��x� � x���

x�� � x� � �x��x�� � x��

and

J �

�����
�x��
�x�

�x��
�x�

�x��
�x�

�x��
�x�

�����
�

���� � � ��x� � x��� �x�
��x� � � ��x�� � x��

����
� � � ��x� � x�� � ���x�x

�

� � x�x
�

� � x��� �

and the last component of the method is x� �
R x�� Jdx�� or

x� � x�� � �x���x� � x�� �
��

�

�
x�x

��
� � x�x

��
� �

�

�
x���

�
�
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Integrators that preserve integrals and�or
Lyapunov functions

De�nition �
 I�x� is a ��rst� integral or a conserved quantity of an ODE if

d

dt
I�x�t�� � �

for solutions x�t� of the ODE dx
dt � f�x�� x � Rm �

By the chain rule� this requires
P

dI
dxi

dxi
dt � � for all solutions x�t�� or equivalentlyX dI

dxi
fi�x� � f � rI � �

for all x�

De�nition �� V �x� is a Lyapunov function if

d

dt
V �x� 
 ��

Equivalently�

f � rV 
 � for all x � Rm �

ODEs with one or more �rst integrals occur frequently in physics� Many examples come from two main

classes


�i� Hamiltonian systems� For example� the pendulum

dx�
dt

� x�

dx�
dt

� � sin�x��

where x� is the angular position of the pendulum and x� its angular momentum� has the �rst

integral

I�x�� x�� �
�

�
x�� � cos�x���

�ii� Poisson systems� For example� the free rigid body with moments of inertia I�� I�� and I�� and

angular momentum ��� ��� �� in body��xed coordinates�

d��
dt

�

�
�

I�
�

�

I�

�
����

d��
dt

�

�
�

I�
�

�

I�

�
����

d��
dt

�

�
�

I�
�

�

I�

�
����

has the �rst integral

I���� ��� ��� � ��� � ��� � ��� �

��



��� Preserving a �rst integral ��

Fig� ���� An orbit of the Kepler ��body problem with the eccentricity of the Hale�Bopp comet� computed with
an integral�preserving method �left� and Runge�Kutta �right��

which is the body�s total angular momentum�


�� Preserving a �rst integral

Before presenting the theory� here is a picture� Fig� ��� shows an orbit in the Kepler problem� it�s an

ellipse� This remains true if you use an integral preserving method� With a standard method such as

Runge�Kutta� the orbit spirals down to the origin�

The general method we present is as follows


�i� For every ODE with a �rst integral I�x�� we construct an equivalent �skew�gradient system��

�ii� we discretize the skew�gradient system to a �skew discrete�gradient system��

�iii� we show that the skew discrete�gradient system has the same integral I�x��

More speci�cally�



�	 Integrals � Lyapunov functions

�i� Given the system dx
dt � f�x� and �rst integral I�x� such that d

dtI�x�t�� � �� we construct the

equivalent skew gradient system

dx

dt
� SrI� ST � �S�

�ii� we discretize this to the skew discrete gradient system

x� � x

�
� SrI�x� x���

where r is a �discrete gradient��

�iii� we show that I�x�� � I�x��

Constructing an equivalent skew gradient system

We want to solve SrI � f for the antisymmetric matrix S� where f and the integral I are given�

Because I is an integral�

d

dt
I �

dx

dt
� rI � fTrI � ��

One solution for S is

S �
f�rI�T � �rI�fT

jrI j�

but S is not unique� In particular� if the critical points of I �points where rI�x� � �� are nondegenerate�

then there is an S which is as smooth as f and rI � Sometimes� as in Poisson systems� S is already known

and does not need to be constructed�

Discretizing the skew�gradient system to a skew discrete�gradient system

A discrete gradient rI is de�ned by the two axioms

I�x��� I�x� � �rI� � �x� � x�

rI�x� x�� � rI�x� �O�x� � x��

For any such discrete gradient we can construct the skew discrete�gradient system

x� � x

�
� eSrI

where eS is any consistent antisymmetric matrix� such as eS�x� x�� � S��x � x��
���

This discretization has the same integral I 


I�x��� I�x� � �rI� � �x� � x�

� ��rI�TS�rT �

� �

Examples of discrete gradients

The problem is reduced to �nding discrete gradients r satisfying the axioms� The general solution is

known� Here are two particular solutions


�i� �Itoh and Abe�

rI�x� x��i 
�
�
I�x�i��� I�x�i����

�


�
x�i � xi

�
�

where

x�i� 
� �x��� � � � � x
�

i� xi��� � � � � xm� �

�ii� �Harten� Lax and Van Leer�

rI�x� x�� 
�

Z �

�

rI �x � ��x� � x�� d�



��� Preserving a Lyapunov function ��

Fig� ���� Evolution of an integral I�x� in a 	D system with three fourth�order methods� QT�� Integral preserving�
RK�� Classical Runge�Kutta� LM�� linear multistep�

Numerical example preserving one integral

Consider the system

dx

dt
� yz � x�� � ���y� � y� � ���y��

dy

dt
� �x� � z� � ���x�y�

dz

dt
� �z � xy � y�z

which has �rst integral
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but is not Hamiltonian or Poisson� I�x� has compact level surfaces� so staying on them means that the

numerical integration is stable� This system is written as a skew�gradient system as

d

dt

�	x
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z


A �
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�x�� � ���y�� � z

�y �z �


ArI

and a comparison between a skew�discrete gradient integrator and two classical methods is shown in Fig�

����


�� Preserving a Lyapunov function

An integral is a function that is preserved in time� dI
dt � �� A Lyapunov function decreases in time�

dV
dt 
 �� These also arise frequently


�i� Gradient systems �these arise in dynamical systems theory�

dx

dt
� �rV �x�

Here dV
dt � ��rV �TrV � �jrV j� 
 �� so V is a Lyapunov function�

�ii� Systems with dissipation For example� the damped pendulum with friction 	 � ��

dx�
dt

� x�

dx�
dt

� � sin�x��� 	x�



�� Integrals � Lyapunov functions

has Lyapunov function V �x�� x�� � �
�x

�
� � cos�x��� because

dV

dt
� �	x�� 
 ��

�iii� Systems with an asymptotically stable �xed point Here the construction of the Lyapunov

function is a standard �although di�cult� problem in dynamical systems�

These systems can be discretized very similarly to systems with an integral� Namely�

�i� Given the system dx
dt � f�x� with Lyapunov function V � we construct the equivalent �linear�

gradient system�

dx

dt
� LrV

where L is negative semide�nite� i�e� vTLv 
 � for all vectors v�

�ii� we take the linear�discrete gradient system

x� � x

�
� LrV �x� x���

�iii� we show that V �x�� 
 V �x��

Note that L is not necessarily symmetric� This is important� because as the dissipation tends to zero�

we want L to smoothly tend to an antisymmetric matrix� to recover the integral�preserving case�

Constructing an equivalent linear�gradient system

We want to solve LrV � f where f and V are given� dV
dt � f �rV 
 �� and L is a negative semide�nite

matrix� One solution is

L �
f�rV �T � �rV �fT � �f � rV �I

jrV j�
�

One can check that vTLv � jvj��f � rV �
jrV j� 
 �� so that L is negative semi�de�nite� and that

LrV � f � As with skew�gradient systems� the matrix L is not unique� and special care is required near

critical points of V �

The linear�discrete gradient system

By analogy with the integral�preserving case� we check that the linear�discrete gradient system has the

same Lyapunov function as the original system


V �x��� V �x� � �rV � � �x� � x�

� ��rV �TL�rV �


 ��

Numerical example

The damped pendulum

dx�
dt

� x�

dx�
dt

� � sin�x��� 	x�

with Lyapunov function V �x�� x�� � �
�x

�
� � cos�x��� can be written in the linear�gradient form

d
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��� Preserving a Lyapunov function ��

Fig� ��	� The damped pendulum� computed with a linear�discrete gradient method� Orbits spiral in correctly
even if the dissipation rate tends to zero�

�Note that L is negative semi�de�nite� because the eigenvalues of its symmetric part are � and �	�� Using

the Itoh�Abe discrete gradient we get the discretization

�

�

�
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whose phase portrait is sketched in Fig� ���� The behaviour of the non�dissipative Euler�s method is

quite di�erent� It increases energy near p � � for all time steps � � Globally� for � �� �	 orbits move

out across the separatrix� and for 	 �� � �� �	 there are spurious asymptotically stable periodic orbits

inside the separatrix�

Extensions and generalizations

�i� The above methods can be generalized to ODEs with any number of integrals and&or Lyapunov

functions�

�ii� There are discrete gradient methods of order �� but higher order is desirable� For systems with

an integral� this can be done by composition� For Lyapunov functions� the maps form only a

semigroup� so the order cannot be increased beyond � by composition�

�iii� Given a system in skew� or linear�gradient form� the matrix can be split� leading to �D systems

with the same integral or Lyapunov function�

�iv� Satisfactory treatment of nonautonomous ODEs is still an open problem�
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