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VI

Preface

This book explains Cartan’s method of equivalence, with some involved ex-
amples, and discussions of the more technical points. The manuscript began
as my 8 pages of notes of Robert Bryant’s 1996 lectures at the Institute for
Advanced Study on Élie Cartan’s method of equivalence.1 Most of the added
material can be found elsewhere in the literature. There is some new material
here, but I ask credit principally for the mistakes.

1 Those lectures became appendix 1 of chapter 2 of Bryant & Griffiths [18].
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1

Introduction

1.1 The purpose of the method

The method of equivalence generates differential invariants of a wide variety
of geometric structures on manifolds. It is more a recipe than an algorithm,
so there are no criteria for its having succeeded or failed. It organizes calcula-
tions, without requiring local coordinates. Its greatest strengths are in calcu-
lating examples with large symmetry groups and in bringing to light hidden
geometric features such as characteristic classes, foliations or complex struc-
tures. As examples (don’t be concerned if you are not familiar with them), the
Godbillion-Vey invariant of foliations of a 3 dimensional manifold by surfaces,
the characteristic classes of web geometries, the Chern–Moser theory of CR-
manifolds, and the existence of Riemannian manifolds of holonomy G2 and
Spin (7) were arrived at using essentially this point of view. Again: the reader
need not be familiar with any of these topics to benefit from this book. The
method works most effectively when applied to geometric objects with strong
local structure, although we will apply it to some flabby objects as well. We
will concentrate in this book on finding homogeneous examples of different
types of geometry.

Question 1. Take a look over the hints and make sure that they read clearly.

Question 2. To relate the abstract computation of the Lie algebra of a ho-
mogeneous guy (using roots, for instance) to a specific matrix representation,
allowing us a Cartan connection for the inhomogeneous guys, we will want to
look at the splitting

h = h−1 ⊕ h0 ⊕ . . .

where h−1 = V , h0 = g and hk ⊂ g(k), I guess.

Question 3. I would like to include discussion of the tractor calculus and BGG
somewhere.



2 1 Introduction

1.2 Geometries

Many geometric structures on manifolds determine special bases for tangent
spaces, and are determined by these bases, and any two such bases are matched
up by some unique element of a particular subgroup of the general linear
group. For examples, see table 1.1. We may think of these bases as choices
of special coordinates, adapted to the geometry, but only defined as Taylor
expansions up to first order. In the symplectic geometry example, if Ω is a
symplectic form, a symplectic basis is a basis of vectors u1, . . . , un, v

1, . . . , vn

so that:
Ω (ui, uj) = Ω

(
vi, vj

)
= Ω

(
ui, v

j
)
− δj

i = 0

Geometry Distinguished bases Structure group

Riemannian orthonormal SO(n)

Symplectic symplectic Sp (2n, R)

Complex holomorphic GL (n, C)

Kähler unitary holomorphic U(n)

Table 1.1. Examples of geometric structures

1.3 Prerequisites

In these notes, I will assume that the reader is familiar with differential geome-
try at the level of a first graduate course, for example Spivak [78]; occasionally
I will make some comments which assume familiarity with elementary repre-
sentation theory of Lie algebras, but those comments can always be skipped.
Far more than just the relevant Lie algebra theory is beautifully developed
by Fulton & Harris [39] or Bröcker & tom Dieck [10]. Occasionally, we will
employ the Cartan–Kähler theorem, a very general theorem for proving ex-
istence of solutions of systems of partial differential equations, although the
reader will find that we often discover some way around using it; the theorem
is explained more clearly than anywhere else by Ivey & Landsberg [47] and in
the solved problems in the second half of Cartan’s book [25], and proven in
complete detail and generality by Bryant et. al. [12]. Ivey & Landsberg also
provide a clear and short introduction to the equivalence method.
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Ingredients
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G-structures, frame bundles and torsion

2.1 The frame bundle

Let M be a manifold, and V a vector space of the same dimension as M .
Define FM , the frame bundle of M , to be the bundle over M whose points
u ∈ FxM are the linear isomorphisms

u : TxM → V.

When we want to be specific, we will call such an isomorphism a V valued
coframe.1 Let π : FM → M be the bundle map π(u) = x for u : TxM → V .
The frame bundle is a principal GL (V ) bundle, with right action u 7→ rg(u)
defined by rg(u) = g−1u. (This will prove a superior choice to the obvious left
action.)

Example 1. If V is a vector space, then FV = V ×GL (V ).

Exercise 2.1 The tangent bundle is the quotient

TM = (FM × V ) /GL (V ) .

Figure out what GL (V ) action is needed here to make this work, and prove
that it works. How can a similar construction produce the cotangent bundle?

Definition 1. Suppose that φ : M → N is a smooth map, which is locally a
diffeomorphism. Define its prolongation to frames Fφ as

Fφ : FM → FN Fφ(u) = u ◦ φ′(x)−1

for u ∈ FxM .
1 In this book, we use the term coframe for an isomorphism of one tangent space

with a vector space, and the term coframing for a smooth family of such isomor-
phisms, defined at each point of a manifold.
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Exercise 2.2 Unwind definitions to show that rgFφ = Fφrg, i.e. the struc-
ture group GL (V ) commutes with diffeomorphisms.

On FM there is a canonically defined soldering form ω defined by

ω ∈ Ω1(FM)⊗ V ω(v) = u(π∗v) for all v ∈ TuFM.

Exercise 2.3
r∗gω = g−1ω.

Exercise 2.4 The soldering form is invariant under prolongation to frames
of a diffeomorphism φ : M →M :

Fφ∗ω = ω.

Exercise 2.5 The soldering form has the reproducing property : if η is a sec-
tion of the frame bundle, i.e. a V -valued 1-form which identifies the tangent
spaces of M with V ,

ηx : TxM → V

then
η∗ω = η

where on the left-hand side η∗ means, thinking of η : M → FM as a map,
pulling back ω, while η on the right-hand side means η as a V -valued 1-form.

Example 2. On a vector space V , the frame bundle is FV = V ×GL (V ) and
if x ∈ V and u ∈ GL (V ), then ω = u dx. The right action is

rg(x, u) =
(
x, g−1u

)
.

2.2 G-structures

Definition 2. Suppose that G is a Lie group and V is a representation of G.
Take M a manifold with dimM = dimV and let FM be the V valued frame
bundle of M . A G-structure is a right principal G bundle B → M together
with a G equivariant bundle map B → FM .

2.2.1 Examples

Example 3. Traditionally in this subject, the group with 1 element, {1}, is
denoted by e. An e-structure is a choice of section M → FM of the frame
bundle FM →M , i.e. a choice of coframing.
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Example 4. Take a Lie group G and finite dimensional G representation V .
Write the representation as ρ : G→ GL (V ) . The standard flat G-structure is
the trivial bundle B = V ×G→M = V , with right action

rg (x0, g0) =
(
x0, g

−1g0
)

which maps into FV = V ×GL (V ) by the map

(x0, g0) 7→ (x0, ρ (g0)) .

Exercise 2.6 Prove that a foliation of a manifold by submanifolds determines
and is determined by a G-structure.

Example 5 (Lie groups). Take M = H a Lie group, V = h the Lie algebra,
and B = H the same Lie group with map B → FM given by

h ∈ H = B 7→ u ∈ FM

where
u =

(
r−1
h

)′
: ThH → T1H = h.

This type of e-structure is particularly important, and will reappear fre-
quently.

Example 6 (Pullback). If φ : M0 → M1 is a local diffeomorphism, and B1 →
M1 is any G-structure, then we can define the pullback G-structure φ∗B1 →
M0 to be the pullback bundle as a principal G-bundle, turned into a G-
structure via the map

u1 ∈ φ∗B1 7→ u1φ
′(x) ∈ FM0.

Exercise 2.7 (Pushforward) Suppose that M1 = Γ\M0 is a quotient by a
discrete group Γ , and that B0 →M0 is a G-structure, and that Γ acts on B0

as symmetries of the G-structure. Show that the pushforward B0/Γ →M1 is
a smooth principal right G-bundle. Define a map B0/Γ → FM1 to create a
G-structure.

Example 7 (Local picture). Every manifold is locally an open subset M ⊂ V
inside a vector space, and every right principal G bundle is locally a product
B = M ×G, for instance with right action

rg (x0, g0) =
(
x0, g

−1g0
)
.

Such a trivialization of B is uniquely determined up to a gauge transformation
g : M → G replacing

(x0, g0) 7→ (x0, g0g (x0)) .

Every G-structure is locally a map
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(x0, g0) ∈ B 7→ (x0, ρ (g0) f (x0)) ∈ FM = M ×GL (V )

for some function f : M → GL (V ). The choice of trivialization of B alters f
by gauge transformation f (x0) 7→ ρ (g (x0))

−1
f (x0). Therefore the map

f/G : M → GL (V ) /G

is well defined, and determines the G-structure. Locally, all G-structures are
determined in this manner, but globally the story is more complicated.

Exercise 2.8 Show that a G-structure B on a manifold M determines and
is determined by a section of the fiber bundle FM/G→M .

Example 8. Take a homogeneous space M = H/G and pick any frame u0 ∈
FM. The action of an element h ∈ H on M prolongs to an action Fh on FM
as in definition 1 on page 5. The H-orbit of that frame is a G-structure:

h ∈ H � //
�

&&LLLLLLLLLL Fhu0 ∈ FM/

wwoooooooooooo

hm0 ∈M.

Most of our examples will be constructed in this way.

Example 9. Consider another point of view on the same construction. Let
M = H/G be a homogeneous space. Write the map H → M as π : H → M .
Take h−1 dh to be the left invariant Maurer–Cartan 1-form, defined at a point
h0 ∈ H as

h−1 dh =
(
L−1

h0

)′
,

where Lh0 means left translation by h0. Let V = h/g. Define a 1-form ω ∈
Ω1 (H)⊗ V by ω = h−1 dh (mod g).

Lemma 1. The 1-form ω vanishes on the fibers of H →M = H/G.

Proof. These fibers are hG translates, so on them h−1 dh is valued in g.

So ω is semibasic2 for H → M , and for each point h ∈ H we can define a
1-form at the corresponding point of M , written u = u(h) ∈ ThGM ⊗V, to be
the one which pulls back to ω:

u(h)π′(h) = ω.

Map H → FM by h ∈ H 7→ u(h) ∈ FM to make an H-structure.

2 A differential form η on a manifold X is called semibasic for a map φ : X → Y
if at each point x ∈ X, there is some ξ ∈ Λ∗

�
T ∗

φ(x)Y
�

for which ηx = φ∗ξ. For

example, y dx is semibasic for (x, y) ∈ R2 7→ x ∈ R.
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Example 10. A variation on the previous example: take a G-structure π :
B → M and suppose that a Lie group H of symmetries of the G-structure
acts transitively on M . Then take any element u ∈ B, say π(u) = m ∈ M
and consider the maps h ∈ H 7→ Fh(u) ∈ B, and h ∈ H 7→ h(m) ∈ M.
These make H an Hm-structure on M , where Hm is the stabilizer in H of
m ∈ M. The structure group Hm acts on the right on H by usual right
multiplication, while H acts on itself as symmetries of the Hm-structure, by
usual left multiplication.

Exercise 2.9 Explain how the constructions in examples 8,9 and 10 are re-
lated.

2.2.2 Embedded G-structures

Returning to the general theory of G-structures, pull back the soldering 1-
form ω to B so that we obtain another V valued 1-form which we call by the
same name, satisfying the same equation:

r∗gω = g−1ω

for g ∈ G.

Definition 3. A G-structure is called an embedded G-structure if the map
B → FM is injective.

In fact, embeddedness depends only on the representation V of G: a G-
structure B → M is embedded just when G → GL (V ) is an embedding,
i.e. a closed subgroup. Define a subgroup N of G by

1 // N // G // GL (V ) .

If G has image in GL (V ) a closed subgroup (which happens in every case
of interest), then B/N is an embedded G/N -structure. However, there can
be more than one G-structure B → FM with the same image, i.e. the same
embedded B/N structure.

Example 11. A spin manifold is a manifold with G-structure where G =
Spin (n) acts on the vector space V = Rn via the usual irreducible repre-
sentation. Recall the exact sequence

1→ Z/2→ Spin (n)→ SO (n)→ 1

and that Spin (n) is the only connected group that fits into this sequence.
We get G = Spin (n) to act on V = Rn via the map to SO (n). There can be
more than one spin structure with the same SO (n)-structure (i.e. Riemannian
metric). See Lawson & Michelsohn [56] for examples and a beautiful exposition
of spin structures.
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Example 12 (Hyperbolic and spherical geometry). Lets see an embedded G-
structure explicitly in coordinates. On Rn (or an open subset of Rn) we can
take coordinates xi and consider the SO (n)-bundle whose elements are (x, u)
with u : TxRn = Rn → Rn given by

ui
j =

gi
j

a+ κ|x|2
4a

where |x| is the usual Euclidean distance from the origin, a and κ are arbitrary
constants, a 6= 0, and g =

(
gi

j

)
∈ SO (n) . This SO (n)-structure is the Rie-

mannian geometry of a sphere or hyperbolic space, depending on the sign of
κ, as we will see later on, and κ will be the sectional curvature. (Picking a = 1
is convenient to show that it looks like the standard flat SO (n)-structure to
first order. On the other hand, for κ < 0 it is more common to scale things so
that it is defined precisely in the disk r < 1, i.e. to set a =

√
|κ|2.)

Exercise 2.10 Recall example 8 on page 8: M = H/G, pick u ∈ FM and
map H → FM via h 7→ Fh(u). Show that such a G-structure is embed-
ded precisely when G acts freely on h/g via the adjoint action. Most of our
examples will be constructed in this way.

2.2.3 Peripheral remarks on topology and embedded G-structures

The embedded G-structures on a manifold M are identified with sections
of FM/G → M . The existence of an embedded G-structure is therefore a
problem of topology: a manifold M which is homotopy equivalent to a finite
cell complex carries a characteristic class

c(m) ∈
⊕

k

Hk+1 (M,πk (FmM/G))

belonging to the cohomology with coefficients in the local system of homotopy
groups of the fibers. This class vanishes when an embedded G-structure exists.
A similar story describes whether two embeddedG-structures can be deformed
into one another. See Steenrod [83] for details.

Question 4. Try to give page references for citations wherever possible.

The one result on topology of principal bundles which we will make use
of:

Proposition 1. If K ⊂ G is a maximal compact subgroup of a Lie group, then
every principal G-bundle B →M contains a principal K-subbundle B′ ⊂ B.

Steenrod [83] gives the proof.

Definition 4. For G0 ⊂ G a closed subgroup of a Lie group, a principal G0-
subbundle of a G-structure is called a G0-reduction.

Corollary 1. If K ⊂ G is a maximal compact subgroup of a Lie group G,
then every G-structure admits a K-reduction.
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2.3 Equivalence

Definition 5. Two G-structures B →M and B′ →M ′ are called equivalent
if there is some diffeomorphism φ : M → M ′ and a right principal G bundle
isomorphism Φ : B → B′ so that

B
Φ //

��

B′

��
FM

Fφ //

��

FM ′

��
M

φ // M ′

(Recall that Fφ means the prolongation to frames.) The pair (φ, Φ) is called
an equivalence. An autoequivalence is usually called a symmetry. Clearly the
map Φ determines the map φ.

Exercise 2.11 The symmetry group commutes with the structure group G.

Exercise 2.12 Writing Aut (B) for the symmetry group of a G-structure,
show that the group G× Aut (B) (with direct product group structure) acts
on B via (g, Φ)b = r−1

g Φ(b). Show that the subgroup of G×Aut (B) which acts
trivially on B is the set of pairs (g, Φ) with g ∈ N ∩Z(G) and Φ = rg. (Recall
that N is the subgroup of G acting trivially on the representation V ; see the
remarks following definition 3 on page 9.) In particular, if the G-structure is
embedded (N = 1), then an equivalence (φ, Φ) is completely determined by
φ.

Example 13. Translations

φ (x0) = x0 + τ, Φ (x0, g0) = (x0 + τ, g0)

and the maps

φ(x) = ρ(g)x0, Φ (x0, g0) =
(
ρ(g)x0, g0g

−1
)

are equivalences of the standard flat G-structure. We can put them together
into an action of the semidirect product G n V (in which V is the normal
subgroup):

(g, τ)x0 = ρ(g)x0 + τ, (g, τ) (x0, g0) =
(
ρ(g)x0 + τ, g0g

−1
)
.

Recall that the semidirect product has multiplication

(g, τ) (g′, τ ′) = (gg′, τ + ρ (g) τ ′) .

This symmetry group acts transitively on the bundle B, so the standard flat
G-structure is homogeneous.
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Example 14. The symmetry group of the standard flat G-structure could be
much larger than GnV . For example, if G = GL (2,C), and V = C2, then the
standard flat G-structure has an infinite dimensional symmetry group, given
precisely by the biholomorphisms of C2. Among them one finds

φ (z1, z2) = (z1, z2 + f (z1))

where f (z1) is any entire holomorphic function. These maps, sometimes called
shears, are symmetries of the standard flat SL (2,C)-structure, and even of
the standard flat G-structure, where G is the group of matrices of the form(

1 0
a 1

)
with a ∈ C.

In general, the symmetry group of the standard flat G-structure (when G is
embedded) consists in the maps φ : V → V with φ′(x) ∈ G for all x ∈ V .

Exercise 2.13 The symmetry group of a flat G-structure might not be as
large as the symmetry group of the standard flat G-structure, or may be
larger. Calculate the symmetry group of the quotient of the standard flat G-
structure on your favourite flat torus. However the standard flat G-structure
does not always have the largest group of global symmetries; see the next
example.

Example 15 (Conformal structures on Riemann surfaces). The standard flat
structure is not always the most symmetrical. A Riemann surface is a sur-
face with GL (1,C)-structure; the representation is the obvious V = C. (N.B.
GL (1,C) is the identity component of CO (2), so these are conformal struc-
tures.) There are three connected and simply connected Riemann surfaces (up
to equivalence): the disk ∆, the complex affine line C, and the complex pro-
jective line CP1 (also called the Riemann sphere); see Forster [38] for proof.
Each is obviously included in the next. The complex affine line is the standard
flat GL (1,C)-structure.

Riemann surface Symmetry group Γ dim Γ

∆ PSL (2, R) ∼= PSU (1, 1) hyperbolic isometries 3

C C× o C complex affine maps 4

CP1 PSL (2, C) Möbius group 6

Table 2.1. Symmetry groups of simply connected Riemann surfaces

Example 16 (Pullback). The pullback of a G-structure (see example 6 on
page 7) is a local equivalence.
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Lemma 2 (Homogeneity). Suppose that B1 → M1 is a G-structure with
transitive symmetry group. Take M0 →M1 any covering space, and let B0 →
M0 be the pullback (see example 6 on page 7). The G-structure B0 →M0 has
locally transitive symmetry group (transitive, if it is a normal covering or if
M0 is connected).

Proof. Each infinitesimal symmetry is a vector field, say X1 on B1, which
projects to a vector field on M1 as well, which we will call by the same name.
The map B0 → B1 is a local diffeomorphism, so determines a vector field
X0 on B0, and one on M0, which again we call by the same name. Because
the maps B0 → B1 and M0 → M1 are covering maps, the integral curves
are mapped locally diffeomorphically, and in particular, completeness of X1

implies completeness ofX0. Therefore the Lie algebra of complete infinitesimal
symmetries lifts to B0, giving a group action of a connected covering Lie group
by Palais’ corollary 6 on page 73. The covering space must split into orbits,
each of which is a homogeneous space and an open subset of M0. Clearly these
orbits cover M0, and so each must be a path component.

Recall that a covering map M0 → M1 is called normal (or regular) if
π0 (M0) → π0 (M1) is an isomorphism, and π1 (M0) → π1 (M1) is a normal
subgroup. This is the case precisely when the group of deck transformations
is transitive on the fibers. Clearly the deck transformations are equivalences.

Exercise 2.14 Give an example of a G-structure whose symmetry group is
transitive, for which the symmetry group of the pullback to some abnormal
covering is not transitive.

Exercise 2.15 Fix a group G ⊂ GL (V ). Let Γ be the group of linear trans-
formations of V that intertwine the representation, i.e. Γ is the group of
T ∈ GL (V ) so that TG = GT . For any G-structure α : B → FM, show that
rTα : B → FM is also a G-structure. Give an example in which these are
inequivalent. Examples of G-structures with nontrivial Γ groups arise in some
geometry problems (for instance, in hyperkähler geometry, or web geometry,
see section 4.1).

Exercise 2.16 Continuing the previous exercise, let Z be the elements of
GL (V ) which commute with each element of G. Show that W = Γ/Z acts on
the category of G-structures, and that the symmetry groups and relations of
equivalence and local equivalence are invariant under the W action.

Definition 6. A G-structure is called flat if it is locally equivalent to the stan-
dard flat G-structure.

Proposition 2. An embedded G structure B ⊂ FM is flat precisely if each
point of M has a neighborhood, say U , where there is some V valued 1-form
η ∈ Ω1(U)⊗ V so that (1) dη = 0 and (2) ηx ∈ Bx for each x ∈ U .
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Proof. Locally η is exact, η = dφ. This φ is the map that identifies an open
set of M with an open set of V , matching up G-structures. Conversely, given
such a map φ, take η = dφ.

Exercise 2.17 What does equivalence mean for G-structures of the type
given in example 5 on page 7?

Determining whether two G-structures are equivalent has two parts: (1) ask
if B/N and B′/N are equivalent as embedded G/N -structures and (2) ask if
B → B/N and B′ → B′/N are isomorphic as principal right N bundles. The
second part of the problem belongs entirely to differential topology, and can
be solved using the methods of Steenrod [83]. Therefore, our focus is entirely
on the first part of the problem, in which we will employ the local geometry
of an embedded G-structure.

Henceforth all G-structures are assumed embedded.

2.4 The significance of the soldering form

Recall the soldering form on FM , ω defined at a point u ∈ FM by ωu = uπ′,
where π : FM → M is the obvious bundle map. Let B be a G-structure on
M . We pull back ω to B via the bundle map B → FM . Note that the 1-form
ω is surjective at each point:

TuB
ωu // V // 0,

and its kernel consists of precisely the vertical vectors, i.e. the vectors tangent
to the fibers of B →M .

Proposition 3. If φ : M0 →M1 is an equivalence between G-structures B0 →
M0 and B1 → M1, then the prolongation to frames of φ is a diffeomorphism
Fφ : B0 → B1 matching up the soldering forms

Fφ∗ω1 = ω0

(where ω0 is the soldering form on B0, and ω1 the soldering form on B1).
Conversely if U0 ⊂ B0 is an open set, with connected fibers, and ψ : U0 → B1

is any smooth map satisfying

ψ∗ω1 = ω0

then there is a local diffeomorphism

ψ̄ : π (U0)→M1

so that ψ = Fψ̄ and ψ̄ is a local equivalence of B0 and B1, i.e. on small enough
open sets U (forming a cover of π (U0)), ψ̄ restricts to be an equivalence of
the G-structure π−1

0 U → U with the G-structure π−1
1 ψ̄ (U)→ ψ̄(U).
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Proof. Because ψ∗ω1 = ω0, the fibers ω0 = 0 of U0 → M0 are mapped into
the fibers ω1 = 0 of B1 → M1. Define ψ̄ by ψ (m0) = m1 if ψ takes the fiber
of m0 into that of m1.

(ω0)u0
= u0π

′
0 (u0)

= (ψ∗ω1)u0

= (ω1)u1
ψ′ (u0)

= u1π
′
1 (u1)ψ′ (u0)

= u1 (π1ψ)′ (u0)

= u1

(
ψ̄π0

)′ (u0)
= u1ψ̄

′ (m0)π′0 (u0) .

Therefore u0 = u1ψ̄
′ (m0). So

u1 = u0

(
ψ̄′ (m0)

)−1

= Fψ̄ (u0) .

Therefore the local equivalence problem consists in the study of integral man-
ifolds (in the sense of exterior differential systems) of the field of planes
(ω0 = ω1) in tangent spaces of B0 ×B1.

Exercise 2.18 If we have bundle maps

B0

��

// B1

��
M0

// M1

matching up soldering forms, then M0 →M1 is an equivalence, and B0 → B1

is its prolongation to frames.

Example 17. If M is an open subset of V , and B = M ×G is trivial (locally,
this is always the case) then we can write the immersion B → FM as

(x, g)→ (x, gf(x))

for some f : M → GL (V ). We can parameterize FM via writing down points
(x, u) with x ∈M and u ∈ GL (V ). The soldering form on FM is

ω = u dx.

It pulls back to B to give
ω = gf dx.

The exterior derivative is
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dω =dg ∧ f dx+ gf ′(x)dx ∧ dx

=− γ ∧ ω +
1
2
Tω ∧ ω

where
γ = −dg g−1

and T is a function valued in Λ2 (V ∗)⊗V . This function T will be our source
for invariants of the G-structure. It is not itself an invariant, as it depends
on the choice of local trivialization, so we have to figure out how we can find
build invariants out of it.

Example 18 (Hyperbolic and spherical geometry). Returning to example 12 on
page 10, the soldering form has components

ωi = gi
j

dxj

a+ κr2

4a

.

Exercise 2.19 (Nonembedded G-structures) Recall the exact sequence
for nonembedded structures 1 → N → G → GL (V ). Even if B0 → M0 and
B1 → M1 are not embedded G-structures, if there is a map ψ : U open ⊂
B0/N → B1/N with ψ∗ω1 = ω0, prove that there is a local equivalence be-
tween B0 and B1 (and define the term local equivalence).

2.5 Connections

We will refer to the fiber of B → M over x ∈ M as Bx ⊂ B, and its tangent
spaces Tu (Bx) as the spaces of vertical vectors.

Definition 7. A connection H on a G-structure is a G invariant choice of
complementary subspace to the tangent space to the fiber at each point:

Hu ⊕ Tu (Bx) = TuB, r
∗
gHu = Hrgu

where Bx is the fiber of B above x ∈M , and u ∈ Bx.

With this we can associate to any velocity vector v at x ∈ M and coframe
u ∈ Bx a corresponding velocity vector in B: the one v̂ ∈ Hu so that

π′(u)v̂ = v.

We can lift paths from M to paths upstairs in B, by asking that the lifted
path be one which projects to the original path, and has velocity belonging
to H, a process called parallel transport.

Example 19. On the standard flat G-structure B = V ×G→ V, take

H = TV ⊕ 0 ⊂ TB

This is the standard flat connection.
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How can we work with differential forms? On a Lie group G we have a canoni-
cal left invariant g valued 1-form: we translate a vector from any point of G up
to identity, by left translation. It gives a universal measure of velocity, allow-
ing comparisons of velocity vectors at any points. We can imitate this on any
right principal bundle P : we have a space of vertical vectors: Tp (Px) ⊂ TpP
in each tangent space, the tangent spaces of the fibers. These are spanned by
the vectors that represent the infinitesimal G action. Write them, for A ∈ g,
as

~A(p) =
d

dt

∣∣∣∣
t=0

re−tAp

so that [
~A1, ~A2

]
=
−−−−−→
[A1, A2].

On these vectors we have a map Tp (Px) → g, ~A 7→ A, measuring a kind of
velocity of motion up the fibers. Nothing this simple will give us a 1-form,
because we only know how to measure vertical motion, so want can’t apply it
to arbitrary tangent vectors. But with a choice of connection H, we can define
the connection 1-form

γ = γH ∈ Ω1(B)⊗ g

by

γ(v) = 0 if v ∈ H

γ
(
~A
)

= A

Example 20. For the standard flat connection, we can write for x ∈ V, g ∈ G

ω = g dx

γ = −dg g−1

Alternatively, we could start with a suitable 1-form γ:

Definition 8. A connection form (or sometimes, abusing terminology, a con-
nection) for a G-structure B → FM is a g valued 1-form γ ∈ Ω1(B)⊗ g that
satisfies

r∗gγ = Adg−1 γ

γ
(
~A
)

= A

The associated connection is H = ker γ.

Exercise 2.20 On the standard flat G-structure B = V ×G any connection
can be written

γ = −dg g−1 + Adg (Γ (x) dx)

where Γ is any function
Γ : V → V ∗ ⊗ g.

Conversely, any function Γ can be used to construct a connection γ.
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Exercise 2.21 Any G-structure admits a connection.

Example 21. H = 0 is a connection on any e-structure.

Example 22 (The flat spin structure on Euclidean 4-space). Let H be the al-
gebra of quaternions, i.e. the associative real algebra with identity generated
by three elements i, j and k with relations

−1 = ijk = i2 = j2 = k2.

The elements 1, i, j, k form a basis, with which we identify H with R4. The
unit length quaternions form a group called Sp (1).

Let G be the group G = Sp (1)+×Sp (1)−, two copies of Sp (1). This group
G is usually called Spin (4). Let G act on H by (g+, g−)x = g+xḡ−. Consider
the flat G-structure: M = H, B = M × G, and soldering 1-form ω = g dx.
But g ∈ G so g = (g+, g−), allowing us to write

ω = g+ dx ḡ−.

The flat connection γ = γ+ ⊕ γ− is

γ+ = −dg+ ḡ+
γ− = −dg− ḡ−

so that the structure equations are

dω = −γ ∧ ω
= −γ+ ∧ ω − ω ∧ γ−

dγ+ = −γ+ ∧ γ+

dγ− = −γ− ∧ γ−

with ω a 1-form valued in H and γ+ and γ− 1-forms valued in Im H. This shows
us how a peculiar representation of a group G imposes itself on the structure
equations of the G-structure. We will return to these equations later when we
briefly look at twistor theory in chapter 11.

2.5.1 The canonical connection

We will see below (example 27 on page 25, section 7.3 on page 106) that there
is a canonical connection, called the Levi-Civita connection, on any O (n)-
structure (where we think of O (n) as acting on Rn in the irreducible repre-
sentation). The Levi-Civita connection is the unique torsion-free connection.
The same idea works for O (p, q)-structures: they have canonical torsion-free
connections. In the next chapter, we will try to see how close we can come
to picking a torsion-free connection for other G-structures, imitating Rieman-
nian geometry. If we have a G-structure B → M for which the underlying
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representation V of G bears an invariant definite quadratic form, so that
G ⊂ O (p, q) , then we can “fatten up” G to O (p, q) , and B to what we will
call B(O (p, q)) (see section 6.2 on page 59). The resulting connection deter-
mines a connection on B, called the canonical connection, and determined by
the requirement that the connection 1-form γ is the orthogonal projection to
g ⊂ so (p, q) of the Levi-Civita connection 1-form (via the adjoint invariant in-
ner product on so (p, q)). This idea will become clearer later on. For example,
this determines the canonical connection of a Kähler manifold, or in general
any U (p, q)-structure. Any compact groupG preserves a positive definite inner
product on each of its representations, giving every G-structure a canonical
connection. More on canonical connections in example 28 on page 25.

Remark 1 (Connections on bundles). We have only introduced connections on
G-structures; there are more general definitions of connections on principal
bundles, but for the most part we won’t need these.

Example 23 (Symmetries of the standard flat connection). The reader might
be curious to know why connections on the frame bundle of a manifold are
called affine connections. The reason is:

Theorem 1. The automorphism group of the standard flat connection is the
semidirect product G o V where G acts on V by the representation, and V
acts on itself by translation.

Proof. The automorphisms must be maps φ : V → V . Such a map has pro-
longation to frames

Fφ(x, g) =
(
φ(x), gφ′(x)−1

)
.

Exercise 2.22 Compute that

Fφ∗γ = γ + Adg

(
φ′(x)−1φ′′(x)

)

Thus φ is a local equivalence just when φ′′ = 0, i.e. φ is an affine map. But we
also need φ′ ∈ G to have an equivalence, so the symmetry group is the group
Go V. Indeed every local symmetry has this form too.

This holds true even when the underlying standard flatG-structure has infinite
dimensional symmetry group, e.g. G = GL (n,C) or G = GL (n,R) . For such
groups G, no connection is preserved by the symmetry group. However if G is
compact (and in some other cases as well, as we shall see) then the canonical
connection on the standard flat G-structure is the standard flat connection,
and is invariant under symmetries, and therefore the symmetry group of the
standard flat G-structure is Go V.
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Example 24 (Hyperbolic and spherical geometry). Returning to example 18 on
page 16, there is a natural connection, the Levi-Civita connection (we will
learn more about it later), for which the connection form has components

γi
j = −dgi

k

(
g−1

)k
j

+
κ

2a2 + κr2

2

gi
k

(
xk dxm − xm dxk

) (
g−1

)m
j
.

2.6 Pseudoconnections

It is not always possible to construct invariantly defined choices of connections
on our G-structures. In such cases there are sometimes invariantly defined
pseudoconnections. We will consider the origin of this problem in detail shortly.

Definition 9. A pseudoconnection is a smooth choice of complement Hu to
the vertical:

Hu ⊕ Tu (Bx) = TuB

A pseudoconnection form (or, again abusing terminology, a pseudoconnec-
tion) γ for a G-structure B is a g valued 1-form on B so that

γ
(
~A
)

= A for A ∈ g

The associated pseudoconnection is H = ker γ.

It follows that the map
(ω, γ) : TuB → V ⊕ g

is a linear isomorphism.

Exercise 2.23 Prove that any pseudoconnection on the standard flat G-
structure V ×G can be written

γ = −dg g−1 + Adg (Γ (x, g) dx)

where Γ is any function

Γ : V ×G→ V ∗ ⊗ g.

Conversely, any function Γ can be used to construct a pseudoconnection γ.

Parallel transport is still defined as before: the curves in B on which γ = 0 are
the parallel transports of curves from M . Each curve in M has a unique paral-
lel transport through each point of B which lies over it. But there is a crucial
difference: for a connection, G invariance ensures that the parallel transport
of a frame along a curve is induced by a single linear map from the tangent
space in M at the initial point of the curve to the tangent space in M at the
final point. Therefore, parallel transport can be thought of on M as defining
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linear identifications of tangent spaces along a curve. For a pseudoconnection,
such a family of linear identifications still exists, but is generally dependent
on the choice of initial point u from Bx, i.e. initial frame on TxM , because a
pseudoconnection is not G invariant (unless it is a connection).

A connection on a G-structure always imposes a connection on the frame
bundle, determined uniquely by GL (V ) invariance. However, a pseudocon-
nection on a G-structure does not generally have a canonical extension to a
pseudoconnection on the frame bundle (see section 6.2 on page 59).

Proposition 4 (Structure equations). Let γ be a pseudoconnection. There
exists a unique map T : B → V ⊗ Λ2 (V ∗) called the torsion of γ, so that

dω = −γ ∧ ω +
1
2
Tω ∧ ω.

This equation is called the structure equation of the G-structure. To emphasis
that the V -valued 1-form ω has components ωi in a basis for V , we can also
call this the structure equations of the G-structure.

Proof. Before I prove the result, I need to explain the notation. The object
ω ∧ ω is a 2-form with values in Λ2 (V ) defined by

ω ∧ ω(v, w) = 2ω(v) ∧ ω(w)

for v, w ∈ TuB. The object T (u) for any u ∈ B will eat such a thing and give
out a vector in V.

L ~Aω =
d

dt

∣∣∣∣
t=0

r∗etAω

=
d

dt

∣∣∣∣
t=0

e−tAω

= −Aω.

By the Cartan family formula

L ~Aω = d
(
~A ω

)
+ ~A dω

and since ~A is vertical, ~A ω = 0. This gives us

~A dω = −Aω

or, if v, w are vectors tangent to B, and v = ~A is vertical, then

dω(v, w) = −γ(v)ω(w)
= −γ ∧ ω(v, w)

(using the fact that v is vertical, so ω(v) = 0). We have only to find a correction
to this expression to make it work for arbitrary v and w: the torsion.
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2.7 Developing and the geometric meaning of torsion

Surfaces with Riemannian metric provide some of the simplest examples of
G-structures for which we have both rich geometric phenomena and intuition.
Imagine rolling one surface on another, along a curve drawn on one of them.
Their points of contact will roll out a curve on the other one. Call this process
developing along a curve.

Take two G-structures, B0 ⊂ FM0 and B1 ⊂ FM1, whose soldering forms
are ω0 and ω1 respectively, and suppose that they are equipped with pseudo-
connections γ0 and γ1 respectively. Pick points x0 ∈M0 and x1 ∈M1. We can
take any curve, say C0 ⊂M0 passing through x0, and take a coframe uj ∈ Bj

for the tangent space at xj . Now we form the parallel transport of C0 through
u0: C̃0 ⊂ B0. On C̃0 ×B1, we solve the system of equations

ω1 − ω0 = 0
γ1 = 0

which will draw out a unique curve on C̃0 × B1, projecting to a curve C̃1 on
B1 through u1, together with a map C̃0 → C̃1. Call this the development of
C0 from u0 to u1.

To understand torsion, look at development of a G-structure B0 on a
manifold M0 with a chosen pseudoconnection against the flat G-structure
G× V → V . In the flat structure, we can draw a parallelogram, and develop
along it.

Exercise 2.24 Take B a G-structure on a manifold M . The torsion of a
pseudoconnection measures the failure at first order of the development of a
small parallelogram from the standard flat G-structure V to close up in M .

The failure to close up in the bundle B is measured by the higher torsion (see
section 7.1 on page 93). The straight lines of the standard flat G-structure
(equipped with the standard flat connection) develop a family of curves in B
called geodesics. The geodesics of a pseudoconnection are defined in the G-
structure bundle, B, but their images on M are not in general determined by
any system of differential equations. However, the geodesics of a connection
always project to the solutions of a second order system of ordinary differential
equations on the base M .

Exercise 2.25 Expressing a connection in local coordinates, show that its
geodesics are precisely the solutions to a second order system of ordinary
differential equations:

d2x

dt2
+ Γ (x)

dx

dt

dx

dt
= 0.

From the same expression, show that there is no such second order system
describing the geodesics of any pseudoconnection, unless the pseudoconnection
is a connection.
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Torsion controllable and uncontrollable

3.1 Controlling torsion

Suppose that γ′ is another pseudoconnection on the same G-structure. How
much can we affect the torsion by change of pseudoconnection? Suppose

dω = −γ′ ∧ ω +
1
2
T ′ω ∧ ω

Then
(γ − γ′) ∧ ω =

1
2
(T − T ′)ω ∧ ω

But γ − γ′ is a multiple of ω because it vanishes on the vertical. Define

δ : g⊗ V ∗ → V ⊗ Λ2 (V ∗) δη(v, w) = η(v, w)− η(w, v)

Proposition 5. There is some Q : B → g⊗ V ∗ so that

T − T ′ = δQ

Proof. We know that γ− γ′ is a multiple of ω, say Qω, with Q : B → g⊗V ∗.
Thus (γ − γ′) ∧ ω = (Qω) ∧ ω. But

(Qω) ∧ ω(v, w) = (Qω(v))ω(w)− (Qω(w))ω(v)
= (δQ) (v, w).

Exercise 3.1 Conversely, given any function Q : B → g ⊗ V ∗, prove that
γ′ = γ +Qω is a pseudoconnection for the G-structure B.

3.2 About the Lie algebra

Definition 10. Let g be a Lie algebra contained in gl (V ). Define g(1) to be
the kernel of the map δ defined above:
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δ : g⊗ V ∗ → V ⊗ Λ2 (V ∗) δη(v, w) = η(v, w)− η(w, v)

Let H0,2 (g) be the cokernel of δ in V ⊗Λ2 (V ∗). We call g(1) the first prolon-
gation of g, and H0,2 (g) the (0, 2) Spencer cohomology group.(For an expla-
nation of the Spencer cohomology groups, see the appendix A on page 283.)

0 −−−−→ g(1) −−−−→ g⊗ V ∗ δ−−−−→ V ⊗ Λ2 (V ∗)
[ ]−−−−→ H0,2 (g) −−−−→ 0

The space g(1) represents freedom to change pseudoconnection without affect-
ing torsion, and H0,2 (g) represents the part of the torsion we can’t change.
Larger groups have larger prolongation and smaller Spencer cohomology.

Definition 11. The intrinsic torsion of a G-structure B →M, often [unam-
biguously!] referred to as the torsion of the G-structure, is the map

[T ] : B → H0,2 (g)

Proposition 6. Consider that G acts on the right on the bundle B, and on the
left on H0,2 (g) by the representation given by quotienting the representation
of G on V ⊗ Λ2 (V ∗):

rgt(u, v) = gt(g−1u, g−1v)

for t ∈ V ⊗ Λ2 (V ∗). The intrinsic torsion is equivariant:

[T ] (rgu) = g−1 [T ] (u)

Proof. Pick γ any pseudoconnection. Taking exterior derivative of both sides
of r∗gω = g−1ω, we calculate

0 =
(
Ad−1

g γ − r∗gγ
)
∧ ω +

1
2
(
r∗gT − g−1T

)
∧ g−1ω.

Check that
0 = ~A

(
Ad−1

g γ − r∗gγ
)

for A ∈ g. Therefore
Ad−1

g γ − r∗gγ = Qg−1ω

for some Q ∈ g⊗ V ∗. Therefore

r∗gT = g−1T + δQ.

Reduce to intrinsic torsion:

r∗g [T ] = g−1[T ].

Corollary 2. The map (of sets)

[T ] /G : M → H0,2 (g) /G

is well defined. It is called the first order structure function. For flat G-
structures, the first order structure function vanishes. We will never employ
the first order structure function, or refer to it again.
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Example 25. An e-structure has g = 0 so H0,2 (g) = H0,2 (0) = V ⊗ Λ2 (V ∗).
If the e-structure, thought of as a coframing, is η : M → FM , then the
reproducing property η = η∗ω implies that dη = dη∗ω, so that dη = 1

2Tη ∧ η,
with T our torsion.

Example 26 (Almost symplectic geometry). If G = Sp (2n,R), in its usual rep-
resentation on R2n, then H0,2 (g) ∼= Λ3 (V ∗) and [T ] is equal to the coeffi-
cients of dΩ in each given coframe, where Ω is the nondegenerate 2-form on
M giving this structure. The prolongation is g(1) ∼= Sym3 (V ∗). Recall that
g ∼= Sym2 (V ∗). A Sp (2n,R)-structure is called an almost symplectic struc-
ture. By the Darboux theorem (see [7]), every torsion-free Sp (2n,R)-structure
is flat.

Example 27 (The Levi-Civita connection). If G = SO (p, q) in the usual Rp+q

representation, then δ is an isomorphism, and there is a unique torsion-free
pseudoconnection on B, the Levi-Civita connection. Note that g ∼= Λ2 (V ∗).
The intrinsic torsion always vanishes, because H0,2 (g) = 0, but nonetheless
SO (p, q)-structures are not generally flat. We will soon look to second order to
see the curvature. The Levi-Civita pseudoconnection is actually a connection,
because its uniqueness forces it to be G-invariant.

Example 28 (Reductive groups with vanishing prolongation). If the group G is
reductive (in the sense of the theory of Lie groups), then the G-equivariant
map [] : V ⊗ Λ2 (V ∗) → H0,2 (g) splits, giving a G-equivariant section σ :
H0,2 (g)→ V ⊗Λ2 (V ∗). If it also turns out that g(1) = 0 then we can specify
a pseudoconnection γ by asking that the torsion of γ be T = σ([T ]). This is
a canonical choice of pseudoconnection, and therefore must be G-equivariant,
i.e. a connection.

3.3 The torsion bundle

A useful view of torsion is via the torsion bundle

Tor(B) :=
(
B ×H0,2 (g)

)
/G

which is a vector bundle over M . The intrinsic torsion of the G-structure [T ]
can be interpreted as a section of this bundle.

Example 29 (Almost symplectic geometry). Returning to the caseG = Sp (2n,R) ,
the torsion bundle is canonically identified with 3-forms

Tor(B) = Ω3(M)

and the torsion with dΩ where Ω is the 2-form on M giving (and given by)
the G-structure.
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Note, however, that the torsion bundle depends on the choice of G-structure
B, i.e. there is no canonical identification of the torsion bundles of different
G-structures on the same manifold. This is different from the torsion of a
connection, which is always a section of

Λ2(T ∗M)⊗ TM.

The torsion bundle is canonically identified with a tensor bundle (independent
of the choice of G structure, i.e. the torsion will be a tensor) precisely when
there is an injective morphism of G representations

H0,2 (g)→W

with W a GL (V ) representation. Otherwise, the intrinsic torsion of different
G-structures on the same manifold M live in different torsion bundles over M .
A noninjective morphism will give rise to a tensor component of the torsion.

3.4 Pseudoconnections versus connections

The reason for our use of pseudoconnections rather than connections: if we
take a linear section of the linear map

V ⊗ Λ2 (V ∗)→ H0,2 (g) ,

say σ : H0,2 (g)→ V ⊗ Λ2 (V ∗) , then we can define our pseudoconnection γ,
up to choice of an element of g(1), at each point, by requiring that the torsion
satisfy T = σ([T ]), where [T ] is the intrinsic torsion, independent of γ. For
example, if g(1) = 0, that nails down a choice of pseudoconnection. But is it
a connection? Only if it is G equivariant:

r∗gγ = Ad−1
g γ.

But that can’t happen unless our section σ is G invariant, i.e. a morphism of
G representations. There may not exist a G invariant section; see section 4.3
on page 31 for an example. If the structure group G is reductive (for example
semisimple), then all of its representations are sums of irreducible representa-
tions, and therefore there is always a G invariant section.

Exercise 3.2 Existence of a G invariant section σ : V ⊗ Λ2 (V ∗)→ H0,2 (g)
occurs if and only if there is a connection γ with torsion T satisfying T =
σ([T ]), not just a pseudoconnection.
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Four examples

4.1 Example: web geometry

Take a surfaceM with three foliations by curves, the curves from each foliation
being nowhere tangent to those of either of the other foliations. Let B → M
be the bundle of coframes u : TxM → R2 which identify the tangent lines
of the leaves of the three foliations with three fixed lines drawn on R2, say
the two axes and the diagonal. By some simple linear algebra, such coframes
exist and are uniquely determined up to the action of the group G of linear
transformations fixing those three lines in the plane. This group, the reader
can easily calculate, consists just of the matrices of the form(

a 0
0 a

)

where a is any nonzero real number. Conversely, any G-structure on a surface
M will determine three foliations of M, with no curve from any of the three
tangent to any curve from either of the other two. The structure equations
with an arbitrary choice of pseudoconnection are

d

(
ω1

ω2

)
= −

(
γ 0
0 γ

)
∧

(
ω1

ω2

)
+

(
t1ω

1 ∧ ω2

t2ω
1 ∧ ω2

)

= −

(
γ + t1ω

2 0
0 γ − t2ω1

)
∧

(
ω1

ω2

)

= −

(
γ − t2ω1 + t1ω

2 0
0 γ − t2ω1 + t1ω

2

)
.

Adding any multiples we like of ω1, ω2 to γ, it will still be a pseudoconnection,
and we can arrange t1 = t2 = 0, and
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d

(
ω1

ω2

)
= −

(
γ 0
0 γ

)
∧

(
ω1

ω2

)
.

Now there is no freedom in the choice of γ : our pseudoconnection is uniquely
determined, because if two 1-forms existed satisfying this equation, say γ1 and
γ2, the reader can check that their difference γ1−γ2 would satisfy (γ1 − γ2)∧
ωj = 0 for j = 1, 2, and so would vanish by Cartan’s lemma.

This actually forces γ to be a connection, since the condition that deter-
mined γ, vanishing of torsion, is equivariant under the structure group G, so
therefore γ is also invariant under the structure group (since r∗gγ satisfies the
same equations that determined γ). The curvature κ of the connection is given
by

dγ = κω1 ∧ ω2.

The function κ, analogous to Gauss curvature, is not actually defined on the
surface M itself, but only up on B. However,

Exercise 4.1 dγ is defined on M , although γ is not.

Being the curvature of the connection γ on the bundle B, the curvature form
dγ is a characteristic class,i.e.

∫
M
dγ is a topological invariant, ifM is compact.

4.1.1 The soldering form as chameleon

We can already see an important general idea emerging: the soldering 1-form
ω is only defined on the bundle B of the G-structure. But it is semibasic,
and so it “looks as if” it were a 1-form on the underlying manifold M . The
reproducing property tells us that ω is something like a universal choice of
1-form on M adapted to the G-structure. Nonetheless, to be rigorous we must
remember that ω is not actually defined on M at all.

4.1.2 Flat web geometries

Let us consider first what the web geometry looks like if the curvature vanishes.
Then the structure equations are dω = −γ ∧ ω and dγ = 0. These same
structure equations hold for any web geometry with vanishing curvature.

Exercise 4.2 Use the exponential map to prove that all web geometries with
vanishing curvature are flat, locally equivalent to the web geometry obtained
in the plane by taking 3 lines, no two being parallel, and foliating the plane
thrice with their parallels.

Such webs exist on tori as well, by quotienting out any lattice.

Exercise 4.3 Show that tori are the only compact surfaces allowing a web
geometry.
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4.2 Example: conformal geometry

Let V be a finite dimensional real vector space and 〈, 〉 a nondegenerate
quadratic form of signature p, q. For x ∈ V , we write x∗ ∈ V ∗ for the ele-
ment

x∗(y) = 〈x, y〉

and similarly for λ ∈ V ∗ we write λ∗ ∈ V for the element

〈λ∗, y〉 = λ(y)

The conformal group of 〈, 〉, written CO (p, q), is the group of linear maps of
V preserving the quadratic form up to a factor, i.e. the group of g ∈ GL (V )
so that is some a ∈ R× with

〈gx, gy〉 = a 〈x, y〉

for any x, y ∈ V .

Exercise 4.4

a =

(det g)2/n if n odd or 〈, 〉 definite

± (det g)2/n if n even and 〈, 〉 indefinite

The Lie algebra of CO (p, q) is co (p, q), which is the Lie algebra of linear maps
A ∈ gl(V ) so that

〈Ax, y〉+ 〈x,Ay〉 =
2
n

(trA) 〈x, y〉

for any x, y ∈ V .

Proposition 7. The prolongation of co (p, q) is

co (p, q)(1) ∼= V ∗

where the identification is given by

λ ∈ V ∗ 7→ λ′ ∈ co (p, q)(1) ⊂ V ∗ ⊗ co (p, q)

where
λ′(x)y = λ(x)y + xλ(y)− λ∗ 〈x, y〉

Proof. First, given a choice of λ we need the see that λ′ belongs to the pro-
longation.

δλ′(x, y) = λ′(x)y − λ′(y)x

But λ′(x)y is clearly symmetric in x, y, so δλ′ = 0.
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We need to see that every element α of the prolongation has the form
α = λ′ for some λ ∈ V ∗. For α to belong to the prolongation,

0 = δα(x, y) = α(x)y − α(y)x

Therefore
〈α(x)y, z〉 = 〈α(y)x, z〉 (4.1)

By definition of the Lie algebra co (p, q), we also have

〈α(x)y, z〉+ 〈α(x)z, y〉 =
2
n

trα(x) 〈y, z〉

We can write this

〈α(x)y, z〉 =
2
n

trα(x) 〈y, z〉 − 〈α(x)z, y〉 (4.2)

We apply the two identities 4.1 and 4.2 one after the other to the expression
〈α(x)y, z〉, and then repeat this two more times. The result is

〈α(x)y, z〉 =
1
n

(trα(x) 〈y, z〉+ trα(y) 〈x, z〉 − 〈x, y〉 trα(z))

or
α(x) =

1
n

(
trα(x)I + x⊗ trα(x)− (trα)∗ ⊗ x∗

)
so

α =
1
n

(trα)′

It remains to see that λ 7→ λ′ is injective. If λ′ = 0,

λ(x) 〈y, z〉+ λ(y) 〈x, z〉 = λ(z) 〈x, y〉

for any x, y, z ∈ V . Taking x = y = z gives

2λ(x) 〈x, x〉 = λ(x) 〈x, x〉

so that λ(x) = 0 or 〈x, x〉 = 0. So λ vanishes on all nonnull vectors, and
nonnull vectors span V .

Corollary 3.
H0,2 (co (p, q)) = 0

Proof. Suppose that dimV = n. Then

dim co (p, q) =
n(n− 1)

2
+ 1

and our exact sequence is

0→ co (p, q)(1) = V ∗ → V ∗ ⊗ co (p, q)→ Λ2 (V ∗)⊗ V → H0,2 (co (p, q))→ 0
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We count dimensions:

dim co (p, q)(1) = dimV ∗ = n

dimV ∗ ⊗ co (p, q) = n

(
n(n− 1)

2
+ 1
)

dimΛ2 (V ∗)⊗ V =
n2(n− 1)

2

and consequently
dimH0,2 (co (p, q)) = 0

Corollary 4. Every CO (p, q)-structure on a manifold admits a torsion free
pseudoconnection, although it is never unique. Any two torsion free pseudo-
connections differ by a map B → V ∗.

See section 12.4 on page 259 for more on conformal connections.

4.3 Example: flag geometry

Consider a manifold equipped with a smoothly varying flag in its tangent
spaces. This imposes a G-structure, where G is the group of invertible matrices
of the form 

∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗
...

...
. . . . . . . . .

...
0 0 0 . . . 0 ∗


i.e. the Borel subgroup of GL (V ). Let us ignore the G-structure for the mo-
ment, and learn more about the group. It is the group of linear maps fixing a
flag

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V

of subspaces, dimVk = k. The elements of the first prolongation g(1) are

α =
(
αi

j

)
1-forms valued in g. So each αi

j is a 1-form, expressible in linear coordinates
xi on V by

αi
j = αi

jkdx
k

and to satisfy δα = 0 it must satisfy

αi
jk = αi

kj .
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To be valued in g, we need

αi
j = 0 for i > j.

We see that αi
jk is arbitrary for i ≤ j ≤ k, and hence

dim g(1) = dim Sym3 (V )

=

(
n+ 2

3

)

In particular, using αi
jk − αi

kj terms to act on torsion, we can wipe out T i
jk

for i ≤ j. So we are left with T i
jk terms with i > j > k. Writing out matrices

makes it pretty easy to see how the torsion gets wiped out; consider the 3
dimensional case:

d

ω1

ω2

ω3

 = −

γ1
1 γ1

2 γ1
3

0 γ2
2 γ2

3

0 0 γ3
3

 ∧
ω1

ω2

ω3

+
1
2

T 1
jkω

j ∧ ωk

T 2
jkω

j ∧ ωk

T 3
jkω

j ∧ ωk

 .

We can add any multiples of the ω1, ω2, ω3 to the γi
j , so we can wipe out the

torsion from the first line, and the second line. On the third line there is no
way to add anything to γ3

3 which will affect the ω1 ∧ ω2 term in the torsion,
since γ3

3 only appears wedged with ω3. So after absorbing:

d

ω1

ω2

ω3

 = −

γ1
1 γ1

2 γ1
3

0 γ2
2 γ2

3

0 0 γ3
3

 ∧
ω1

ω2

ω3

+

 0
0

T 3
12ω

1 ∧ ω2

 .

In fact, as G representations

g(1) =
n⊕

i=1

Vi ⊗ Sym2 (V/Vi)
∗

H0,2 (g) =
n−1⊕
i=2

(V/Vi)⊗ Λ2 (V ∗i )

(It is easy to see that g(1) contains this space, and the equality follows by
dimension count.) The weights of this representation are not those of any
GL (V ) representation, since the weights of a GL (V ) representation are per-
mutation invariant. Thus the torsion of such a G-structure is not a tensor,
and the torsion bundle is not a tensor bundle.

Exercise 4.5 Calculate the weights.
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Under the action of the structure group G the torsion transforms via:

r∗gT
i
jk =

(
g−1

)i
i′
T i′

j′k′g
j′

j g
k′

k .

In particular, in the 3 dimensional case, the T 3
12 component gets added to

the other ω1 ∧ω2 components, with arbitrary multiples. Therefore there is no
1-dimensional linear subspace of T values which is G invariant and parame-
terized by T 3

12, no G invariant section of

V ⊗ Λ2 (V ∗)→ H0,2 (g) .

Consequently, if T 3
12 6= 0 then we are stuck using pseudoconnections.

4.4 Example: three line fields on a 3-manifold

Let

G =


a 0 0

0 b 0
0 0 c


∣∣∣∣∣∣∣ abc 6= 0

 .

A G-structure is thus a choice of 3 transverse line fields on a 3 manifold. Our
structure equations with any choice of pseudoconnection γ are

d

ω1

ω2

ω3

 = −

γ1
1 0 0
0 γ2

2 0
0 0 γ3

3

 ∧
ω1

ω2

ω3

+
1
2

T 1
ijω

i ∧ ωj

T 2
ijω

i ∧ ωj

T 3
ijω

i ∧ ωj


It is clear that if I redefine the choice of γi

i by adding an arbitrary multiple of
ωi to it, then the equations remain valid, and γ remains a pseudoconnection.
(Indeed the structure equations state that it is a pseudoconnection.) In this
way, by adding (for example) −T 1

21ω
2 to γ1

1 we can arrange that T 1
21 = 0 for

some new pseudoconnection, γ′. Continuing in this way, we eventually get a
pseudoconnection γ for which all of the torsion coefficients vanish except

T 1
23, T

2
31, T

3
12.

These constitute the intrinsic torsion. When an element of G acts on this
intrinsic torsion,

T 7→ g−1T (g, g)

we find T 1
23ω

2 ∧ ω3

T 2
31ω

3 ∧ ω1

T 3
12ω

1 ∧ ω2

 7→
a−1T 1

23bcω
2 ∧ ω3

b−1T 2
31caω

3 ∧ ω1

c−1T 3
12abω

1 ∧ ω2


where
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g =

a 0 0
0 b 0
0 0 c


We want to find the orbits of this group action. Note that we can not change
the signs of products of any two of our torsion coefficients: the sign of T 1

23T
2
31

is invariant. Also, we can not make any torsion coefficient vanish by manip-
ulating a, b, c. In case, for example, all of the torsion coefficients are positive,
we can scale them to be all equal to 1. This reduces our group structure to a
structure B1 for the group

G1 =


a 0 0

0 b 0
0 0 c


∣∣∣∣∣∣∣ a2 = b2 = c2 = 1, abc = 1

 ∼= Z/2Z⊕ Z/2Z.

The G1-structure B1 is the set of points of B at which the torsion coefficients
are all equal to 1.



Part II

Recipes





5

Using torsion to reduce a G-structure

5.1 Reduction of G-structures

This will be the most difficult section of this book. We are going to use as-
sumptions on the nature of the torsion to effect a reduction procedure, as in
the last example.

Definition 12. Let H ⊂ G be a closed subgroup, and let H0,2 (g)H be the ele-
ments of H0,2 (g) whose isotropy group in G is H. We say that a G-structure
has type H if the intrinsic torsion satisfies

[T ] (u) ∈ G ·H0,2 (g)H

for any u ∈ B, i.e. every u ∈ B is mapped to a point of H0,2 (g) which has
stabilizer subgroup conjugate to H.

Of course, H type is the same as K type if H and K are conjugate, so type
depends only on conjugacy classes of closed subgroups of G. Not every G-
structure need have a type: the stabilizers could be nonconjugate at various
points of B. These are called variable type G-structures. A word on these a
little later. Our reduction procedure will attempt (not always succeed) to cut
an H subbundle out of a G-structure of type H.

If we have a two G equivariant maps X → Y and Z → Y, we would like
to lift to a map Z → X, covering the given one, or perhaps a map from
something transverse to the G orbits in Z to something transverse to those
in X. This might then still be equivariant under a subgroup of G. We will
ultimately apply this to the torsion: Y = H0,2 (g) and X = Λ2 (V ∗)⊗ V and
Z = B →M a G-structure, so that for each value of intrinsic torsion in Y we
will be looking for a value of extrinsic torsion in X which maps to it.

Definition 13. Suppose that φ : X → Y is a smooth G equivariant map of
manifolds, for a Lie group G acting on the right on X and Y . Define a section
of φ to be an immersed submanifold ι : S ↪→ X so that



38 5 Using torsion to reduce a G-structure

1. S is transverse to the stalks of φ, i.e.

TsS ∩ kerφ′(x) = 0

and
2. the tangent space of Y at each y = φ(s) for s ∈ S is the direct sum of two

transverse subspaces

φ′(s) · TsS ⊕ Ty(yG) = TyY

(where yG is the G orbit through y) and
3. for each s ∈ S, the stabilizer of φ(s) ∈ Y in G is the same subgroup
GS ⊂ G.

See figure 5.1. Clearly

Y

X

    G orbits stalk of φ

section S

Fig. 5.1. A section of a G equivariant map

dimS = dimY − dimG+ dimGS .

Given S, define an equivalence relation on S by setting two points s1, s2 ∈ S
equivalent if φ(s1) and φ(s2) lie in the same G orbit. The quotient by this
equivalence relation

S → S/ ∼
is a surjective local diffeomorphism (not necessarily a covering map). Call S
simple if S ⊂ X is embedded and S/ ∼= S. Every section is locally simple. We
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call such a thing a section because it is essentially a multivalued local section
of XGS

/N → YGS
/N , where YGS

is the set of points of Y whose G stabilizer
is GS, and XGS

= φ−1YGS
, and N is the normalizer of GS in G.

Now fix a choice of group G, G equivariant map φ : X → Y , and section
S ⊂ X. Take any right principal G bundle B → M with equivariant map
T : B → Y , so that for every b ∈ B there is some g ∈ G so that T (bg) ∈ φ(S).

Define the reduction of B by S to be the pushout

BS = { (b, s) ∈ B × S | T (b) = φ(s)}

We get GS to act on BS by having it act on B × S acting trivially on S, and
with the right action on B. Define the reduced map

TS : BS → S

(b, s) 7→ s.

and the reduced base space to be

MS = BS/GS ⊂ (B/GS)× S

with the obvious map BS →MS. Note that the reduced map TS is defined on
MS.

The idea is that the torsion T belongs to φ(S) precisely on a principal GS-
subbundle of B. But note that the reduced map is actually mapping to S.
Locally, it looks like a map to X (globally, if S is embedded in X).

Proposition 8. BS → MS is a principal GS bundle on MS, and MS → M
is a surjective local diffeomorphism. If B ⊂ FM is a G-structure, then BS ⊂
FMS is a GS-structure.

Proof. We write ∆ ⊂ Y ×Y for the diagonal. Then BS = (T, φ)−1∆. We have
to check transversality, i.e. that

TbB ⊕ TsS
T ′(b)⊕φ′(s) // TyY ⊕ TyY // TyY⊕TyY

T(y,y)∆

is onto, where y = T (b) = φ(s). Obviously

TyY × TyY

T(y,y)∆
∼= TyY

(u, v) 7→ u− v

so we have to show that

T ′(b)− φ′(s) : TbB ⊕ TsS → TyY

is onto. Since T is equivariant, T ′(b) is onto the tangent space of the G orbit
through y ∈ Y . Also, φ′(s) is onto the transverse directions, by definition,
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so T ′(b) − φ′(s) is onto TyY . Therefore BS ⊂ B × S is a smooth embedded
submanifold of dimension

dimBS = dimB + dimS − dimY

= dimB + dimGS − dimG.

Clearly BS ⊂ B × S is invariant under the action of GS on B. If v ∈
T(b,s)BS vanishes under the projection

T(b,s)BS → TbB ⊕ TsS → TbB → TmM

then write v =
(
ḃ, ṡ
)
, and we find

T ′(b)ḃ = φ′(s)ṡ

in order that v be tangent to BS . But also we have ḃ a vertical vector for
B →M , so that T ′(b)ḃ is tangent to the G orbit in Y . But φ′(s)ṡ can not be
tangent to the G orbit unless ṡ = 0 and so T ′(b)ḃ = 0. Therefore, ḃ represents
the action of an element of the Lie algebra of GS , and we have

ker
(
T(b,s)BS → TmM

)
=
{

( ~A, 0)
∣∣∣ A ∈ gS

}
.

In particular, this ensures that BS →M is a submersion, with the components
of its fibers diffeomorphic to the maximal connected subgroup of GS .

It is obvious that GS acts freely on BS , since BS ⊂ B × S and GS acts
freely on B. We need to see that BS → MS is locally trivial. If we take an
open subset Σ ⊂ S, we have BΣ ⊂ BS an open subset. We can assume that
Σ ⊂ S is a simple section. We take the open subset Ω ⊂ M over which the
torsion of B belongs to the G orbit of an element of φ(Σ). Thus BΣ → Ω
is a submersion. If we have two points of BΣ mapping to the same point of
M , we can easily check that these two points differ by an element of GS , i.e.
Ω = BΣ/GS . Consequently, our result is true for simple sections. If we take
two simple sections, Σ1, Σ2 overlapping in a third simple sectionΣ3 = Σ1∩Σ2,
then it is easy to see that BΣ1 and BΣ2 glue together smoothly, forming an GS

bundle. This also shows that MS →M is a surjective local diffeomorphism.
To see that BS defines an GS-structure on MS , we need to show how to

map it into the frame bundle FMS . Using the map

BS ⊂ B × S → B

we determine an element of B ⊂ FM for each point of BS . Using the surjective
local diffeomorphism MS → M , and the map BS → MS , this determines an
element of FMS . Clearly BS → FMS is an immersion, since BS → B is an
immersion. Also, since BS → FMS ⊂ FM × S is an injection, we see that
BS → FMS is injective.
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Remark 2. Note the strange fact that BS is not sitting inside B unless S is
simple. Simple sections are the most common in practice.

Remark 3. To apply this process to a G-structure, we can take X = V ⊗
Λ2 (V ∗) and Y = H0,2 (g). The process is useless unless the torsion of B sits
inside S at least over some open subset of M . In general, we will want the
torsion to belong to S up to G-action over every point of M .

Example 30. If H0,2 (g) = 0 then we can take S = {0} ⊂ Λ2 (V ∗) ⊗ V as
a section. For example, this happens with G = SO (p, q) in its irreducible
V = Rp+q representation.

Example 31. In our example of three line fields on a 3-manifold (see section 4.4
on page 33), we had structure group

G =


a 0 0

0 b 0
0 0 c


∣∣∣∣∣∣∣ abc 6= 0

 .

The intrinsic torsion had three components, acted on by the group according
to T 1

23

T 2
31

T 3
12

 7→
a−1T 1

23bc

b−1T 2
31ca

c−1T 3
12ab

 .

The stabilizer of any torsion element will be

GS =


a 0 0

0 b 0
0 0 c


∣∣∣∣∣∣∣ a2 = b2 = c2 = 1, abc = 1

 ∼= Z/2Z⊕ Z/2Z.

as long as none of T 1
23, T

2
13, T

3
12 vanish. We find that the two points(

T 1
23, T

2
13, T

3
12

)
= (1, 1, 1) or (1, 1,−1)

(with all other T i
jk = 0) form a section S.

Proposition 9. If
B

Fφ−−−−→ B′

π

y yπ′

M
φ−−−−→ M ′

is an equivalence of G-structures, then

Fφ∗ [T ′] = [T ]

and consequently, the reduction commutes:
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BS
Fφ−−−−→ B′S

π

y yπ′

MS
φ−−−−→ M ′S

i.e. equivalence obtains before reduction exactly if it obtains after reduction.
(We are using the same section S ⊂ V ⊗ Λ2 (V ∗) of the map

[ ] : V ⊗ Λ2 (V ∗)→ H0,2 (g)

for both reductions.)

In the example of the 3 line fields, when all the torsion coefficients are positive,
we can arrange that they become all equal to 1, and reduce to a GS-structure,
where GS is finite. This says that we have specially distinguished coframes,
up to 4 choices, and that these coframes are determined intrinsically by the
choice of the three line fields. Note that we used a simple section in that
example.

The two problems with reduction are (1) that we do not know how to
write down sections, and (2) might not have torsion with conjugate stabilizer
at every point, i.e. might not have constant type.

Remark 4 (Variable type). To study variable type structures, one can try to
use a quotient of the torsion representation, to produce a quotient bundle, and
take the image of the torsion in that bundle. Then one can impose constant
type hypotheses on that object. Or one could even apply a G equivariant map
H0,2 (g) → Y to any manifold Y with G action, and impose a constant type
assumption on the image of the torsion inside Y . More generally, we could look
only at the G-structures whose torsion belongs to some G-invariant subset of
H0,2 (g) , and define a map on that subset to some Y with a G action. This is
the only way that one can reduce the structure group and thereby produce an
invariantly defined reduction of eachG-structure with given torsion behaviour.

Example 32 (Almost Kähler manifolds). An almost Kähler manifold, i.e. a
U(n)-structure, might fail to have constant type, but the associated almost
complex (i.e. GL (n,C)) structure and the almost symplectic (i.e Sp (2n,R))
structure might both have constant type; think of the maps

H0,2 (u(n))→ H0,2 (gl(n,C))

H0,2 (u(n))→ H0,2 (sp(2n,R)) .

Remark 5. In carrying out reduction, it is essential to understand the geomet-
ric meaning of the constant type hypothesis one is making. Without knowing
what our hypothesis means, we are probably unable to interpret the mean-
ing of the resulting reduced structure, and we will be engulfed in a mess of
structure equations.
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Remark 6. Little is known about how to write down algebraic sections for var-
ious types. Perhaps in equivalence problems arising in algebraic geometry we
might hope to understand sections of X//N and Y//N in geometric invariant
theory.

5.2 Example: curved web geometries

Recall web geometries from section 4.1 on page 27. The action of the structure
group is

r∗gω
j = a−1ωj

r∗gγ = γ

r∗gκω
1 ∧ ω2 = κω1 ∧ ω2

for

g =

(
a 0
0 a

)
so that

r∗gκ = a2κ.

Suppose that the curvature of our web geometry is nowhere zero. We can
arrange κ = ±1 on a subbundle B1 ⊂ B with structure group G1 = ±1. We
now find that γ = sjω

j is semibasic, since the new structure group has trivial
Lie algebra, and γ is always valued in the Lie algebra of the structure group.
Our bundle B1 →M is a 2-1 cover.

Proposition 10. The symmetry group of a nowhere flat web geometry has
dimension at most one, and consequently does not act transitively.

Proof. If the symmetry group acts transitively on M , then it must have di-
mension at least two, and must act locally transitively on B1. Later on (see
section 8 on page 169), we will show that the symmetry group must embed
into B1, so that the symmetry group has at most two dimensions, and if it
has two, then it acts locally transitively on B1. So these sj must be locally
constant. But

dγ = dsj ∧ ωj = κω1 ∧ ω2

so that the sj cannot both be constant.

Proposition 11. A compact surface with a web geometry must be a torus.

Proof. Since G consists of oriented linear transformations, a G-structure im-
poses an orientation, so M is an oriented surface. Every G-structure B admits
a reduction of structure group to any maximal compact subgroup of G, in this
case ±1 ⊂ G; let B1 ⊂ B be any such reduction. The bundle B1 → M is 2-
1 cover, and B1 has trivial tangent bundle (with global sections ωj of the
cotangent bundle), so B1 is a torus, and therefore M is a torus.
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Proposition 12. On a compact surface, no web geometry can have nowhere
vanishing curvature.

Proof. On our 2-1 cover, we find

0 =
∫

B1

dγ

= 2
∫

M

dγ

since the 2-1 cover is orientation preserving. If there were negatively curved
bits, they would have to be compensated for by positively curved bits.

The geometric meaning of web geometry curvature is not clear to the author.
This is typical of the method of equivalence: it uncovers differential invariants,
but does not always provide an interpretation of them.

5.2.1 Local coordinates

One can explicitly calculate the curvature of a given web geometry in local
coordinates as follows: pick local coordinates x, y on the surface M , and sup-
pose that the three foliations are each given by dy = fj dx, where j = 1, 2, 3.
Then the coframes that identify these with the usual foliations in R2 must
look like

u =

(
η1

η2

)
where each ηj is a 1-form at a point of M . But then these 1-forms must look
like

ηj = uj (dy − fj dx)

(no summation intended), to arrange that ηj lines up the tangent line to the
j-th foliation with the appropriate line in R2, and to ensure that η3 lines up
the third foliation with the diagonal line, we need (as the reader can check)

u3 = u2 − u1

u2 = u1 f3 − f1
f3 − f2

.

The soldering 1-forms are

ωj = uj (dy − fj dx) .

This is a general phenomenon: expressing the general coframe u ∈ B in our
bundle as a column of 1-forms ηj , we find that the soldering 1-forms are
expressed by the same expressions, but now the parameters appearing (here
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uj) are local coordinate functions on the bundle B giving coordinates to the
fibers of B →M . So B has coordinates x, y, u1,

We can calculate the 1-form γ on B by taking exterior derivatives of the
soldering forms and applying Cartan’s lemma. We find complicated expres-
sions, along the lines of

γ = −du
1

u1
− ∂f1

∂y
dx+ hω1

with h a very complicated function, which can be easily computed in a com-
puter algebra program. Taking dγ, our computer algebra program spits out a
huge mess giving an explicit expression for the curvature of the web.

Exercise 5.1 A pair of foliations by curves on a surface, with no curve from
the first foliation tangent anywhere to any curve from the second, is always
locally equivalent to the flat example: lines parallel to the x and y axes in the
plane.

So lets suppose that we arrange the first and second of our foliations to have
equations f1 = 1 and f2 = −1. Then we can calculate

γ = −du
1

u1
+

∂f3
∂x −

∂f3
∂y

f2
3 − 1

(dy − dx)

dγ =

(
f2
3 − 1

)(
∂2f3
∂x2 − ∂2f3

∂y2 − 2f3

((
∂f3
∂x

)2

−
(

∂f3
∂y

)2
))

(f2
3 − 1)2

dx ∧ dy.

Since the torsion vanishes, our results on osculation (see section 12.7 on
page 264) show that one can always change coordinates to arrange that
f3 = df3 = 0 at the origin, so that at the origin of coordinates, the curvature
becomes

dγ =
(
∂2f3
∂y2

− ∂2f3
∂x2

)
dx ∧ dy

so that we can calculate curvature of some examples quite easily.

5.2.2 Web geometries with symmetry

Suppose that a web geometry has a one dimensional symmetry group whose
generic orbits on M are curves. Replacing M by an open subset, we can
suppose that all symmetry orbits are curves, and that the curvature vanishes
nowhere. In tangent directions to these curves, we will have a relation between
ω1 and ω2, since ω1 and ω2 are semibasic, say ω2 = uω1 or ω1 = vω2. If
we swap the foliations, we can arrange that the relation is ω2 = uω1, at
least locally. This is a general technique in the method of equivalence: see
exercise 2.16 on page 13. Check that this equation is invariant under structure
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group action, so that u : M → R is defined on the underlying surface. All
scalar invariants are constant along symmetry group orbits, and so

du = u1

(
ω2 − uω1

)
for some function u1 : B → R. Taking exterior derivative,

du1 − u1γ + u2
1ω

1 = u2

(
ω2 − uω1

)
.

The orbits of the symmetry group in B are curves, which are permuted by the
action of the structure group G, and any curves thereby permuted project to
the same curve on M . Let X be the vector field on M generating the group
action, and also write X for the associated vector field on B. By the Cartan
formula,

0 = LXdγ = d (X dγ)

so that X dγ is a closed 1-form, say dH for H a locally defined smooth
function on the surface M , and

LXH = X dH = X X dγ = 0

so H is invariant under the flow of X. The differential is dH = X dγ 6= 0,
since dγ 6= 0. So up on B, dH = H1

(
ω2 − uω1

)
for nonvanishing function

H1 on B. Every scalar invariant on M must be a function of H, since H is a
scalar invariant with nonvanishing differential. By similar calculation,

dH1 +H1

(
u1ω

1 − γ
)

= h
(
ω2 − uω1

)
.

So by moving up the fibers (i.e. in the γ direction), we can arrange H1 = ±1.
Changing sign of X if needed, we consider the subbundle B1 of B on which
H1 = 1. There we have

dH = ω2 − uω1

γ = u1ω
1 − h dH.

Note that we assumed dH was actually the differential of a function H, but
we could really repeat the above steps without the hypothesis that such a
function H exists; we only needed that the 1-form X dγ was closed.

Fix a particular curve of the foliation ω1 = 0 and let t be the function
defined (locally) by asking at each point how much time it takes for the given
curve to pass through that point under the flow of X. Then clearly ω1 = g dt
for some function g on our bundle B, and X dt = 1. Calculate that in H, t
coordinates,
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X =
∂

∂t

h =
g′

g

g = g(H)
u = u(H)

and with a bit more calculation, use X invariance of ω1, ω2, γ, and the struc-
ture equations to find

u = −
∫

1
g

(∫
gκ dH

)
dH

ω1 = g dt

ω2 = dH + ug dt

γ = u′g dt− g′

g
dH,

where the curvature is dγ = κ(H)ω1 ∧ω2. The symmetry group is translation
in t. Conversely, if we draw any functions t = g(H), t = κ(H), these structure
equations produce a web geometry with symmetry. The coordinate functions
t,H are invariants defined up to adding constants. The function g(H) is a
differential invariant, up to translation in the H variable.

Exercise 5.2 What are the 3 foliations by curves?

The moral of the story: using the differential forms coming from the method
of equivalence, we can sometimes construct (nearly) canonical coordinates, in
which a wide variety of questions can be answered by direct calculation, a
process called integrating the structure equations.

5.3 Example: Finsler surfaces

Let Σ3 ⊂ TM be a three manifold in the tangent bundle of a surface M ,
cutting across the fibers transversely (hence on curves in each tangent space).
We call Σ a Finsler metric if these curves are strictly convex, closed, and
symmetric about the origin of each tangent space. (Such Σ is the bundle of
unit vectors of a smooth family of Banach space structures on the tangent
spaces of M .) More generally, we call Σ a Finsler structure if it is locally a
Finsler metric, i.e. we do not require the curves to be symmetric or to close
up. This distinction will reappear soon. Let π : TM → M be the canonical
bundle map. To each point v ∈ Σ we can associate the line π′(v)−1v ⊂ TvΣ.
Thus we have a choice of line in each tangent space of Σ.
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Suppose that Σ is merely a 3 manifold on which we have a choice of line in
each tangent space, never passing through 0. Consider the choices of coframes

η : TvΣ → R3

for which η1 = 1 on the line, and the translate of the line passing through 0
is defined by

η1 = η2 = 0

Any two such coframes can be brought into correspondence by a linear map
in the group

G =


 1 a1

2 0
0 a2

2 0
a3
1 a3

2 a3
3


∣∣∣∣∣∣∣ a2

2a
3
3 6= 0

 .

Our distinguished coframes form a G-structure B → Σ. After getting rid of
the inessential torsion, as in the previous example, we find that the structure
equations are

d

ω1

ω2

ω3

 = −

 0 γ1
2 0

0 γ2
2 0

γ3
1 γ3

2 γ3
3

 ∧
ω1

ω2

ω3

+

T 1
31ω

3 ∧ ω1

T 2
31ω

3 ∧ ω1

0


(The reader will notice occasional factors of 2 or 1/2 being reabsorbed into
the definitions of some functions.) We can write the essential torsion as the
vector

[T ] =

(
T 1

31

T 2
31

)
∈ R2 ∼= H0,2 (g)

The representation on torsion is

g =

 1 a1
2 0

0 a2
2 0

a3
1 a3

2 a3
3

 7→ 1
a3
3

(
1 a1

2

0 a2
2

)

How do we figure this out? The straightforward, algebraic route uses the
definitions given in section 3.2 on page 23. Another approach, which is easier
in this case: we differentiate the structure equations. For example

dω1 = −γ1
2 ∧ ω2 + T 1

31ω
3 ∧ ω1

implies (by taking d)

0 = γ1
2 ∧ dω2 + . . . (mod ω2)

= γ1
2 ∧ T 2

31ω
3 ∧ ω1 + dT 1

31 ∧ ω3 ∧ ω1 − T 1
31γ

3
3 ∧ ω3 ∧ ω1 (mod ω2)

Therefore on vectors on which ω1 = ω2 = ω3 = 0 (i.e. vertical vectors)
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dT 1
31 = T 1

31γ
3
3 − T 2

31γ
1
2

Working out a similar expression for dT 2
31 by differentiating the other structure

equation, we find that on vertical vectors

d

(
T 1

31

T 2
31

)
=

(
γ3
3 −γ1

2

0 γ3
3 − γ2

2

)(
T 1

31

T 2
31

)
(5.1)

or in other words
dT = −ρ(γ)T mod ω

where ρ is the representation of G onH0,2 (g). We see that the intrinsic torsion
is right equivariant, because of the minus sign.

Intrepretations of the 3 types of torsion are indicated in table 5.1. How do
I know this? I will show that Finsler structures must have T 2

31 6= 0, and leave
the other cases to the reader.

Orbit Interpretation

T 1
31 = T 2

31 = 0 Σ is a nonzero vector field

T 2
31 = 0, T 1

31 6= 0 Σ is an affine line field

T 2
31 6= 0 Σ is a Finsler structure

Table 5.1. Interpretations of torsion

We take local coordinates on our surface M , say x, y. We can write local
coordinates x, y, ξ, η on TM , defined by identifying a vector

v = ξ
∂

∂x
+ η

∂

∂y

with the point with coordinates

(x, y, ξ, η) .

To write down Σ, we need to sweep out a curve in each tangent space TmM .
For instance, we could use coordinates x, y, θ on Σ, where θ indicates the angle
of a vector, so that the inclusion

Σ ⊂ TM

is written

ξ = ρ(x, y, θ) cos θ
η = ρ(x, y, θ) sin θ

The function ρ(x, y, θ) is a positive function; it describes the radius of the
vector belonging to Σ which sits at point x, y and points in direction θ. At
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least locally on Σ such a thing will be unique. The line field on Σ as described
above has as line at (x, y, θ)

dx = ρ cos θ
dy = ρ sin θ

We can see that the coframing

η1 =
1
ρ

(cos θ dx+ sin θ dy)

η2 =
1
ρ

(− sin θ dx+ cos θ dy)

η3 = dθ

is a section of the bundle of coframes B, i.e. write u ∈ B as

u =

η1

η2

η3

 : TxM → R3.

But
dη2 = η1 ∧ η3 (mod η2)

Because this holds for one choice of section of the bundle B, and when we pull
back the ωi 1-forms on B by this section, we get the “reproducing property”,

η∗ωi = ηi

where
η =

(
η1, η2, η3

)
: M → B

i.e. essentially the same equations hold, we must have T 2
31 6= 0, because T 2

31 =
−1 along the graph of this section η of B.

In the case of a Finsler structure, we can reduce to the bundle B1 deter-
mined by (

T 1
31

T 2
31

)
=

(
0
−1

)
.

The group G1 is

G1 =


 1 a1

2 0
0 a2

2 0
a3
1 a3

2 a2
2


∣∣∣∣∣∣∣ a2

2 6= 0

 .

On B1 equation 5.1 reduces to the equation on vertical vectors:(
0
0

)
= −

(
−γ3

3 γ1
2

0 γ2
2 − γ3

3

)(
0
−1

)
.
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So γ1
2 = 0 and γ2

2 = γ3
3 , on vertical vectors, which fits in nicely with the group

G1, as it should, forcing γ to be valued in the Lie algebra of G1, i.e. a G1

pseudoconnection. By vertical here I mean tangent to the fibers of B1 → Σ.
So this means that on arbitrary (not necessarily vertical) vectors,

γ1
2 = siω

i

γ3
3 = γ2

2 + tiω
i

for some functions si, ti : B1 → R. Since γ1
2 only ever appears wedged with

ω2, we can replace it with a different choice of γ1
2 without loss of generality

so that s2 = 0. Similarly we can force t3 = 0. We can rewrite our structure
equations now with these results, on B1:

d

ω1

ω2

ω3

 = −

 0 γ1
2 0

0 γ2
2 0

γ3
1 γ3

2 γ3
3

 ∧
ω1

ω2

ω3

+

 0
ω1 ∧ ω3

0


= −

 0 0 0
0 γ2

2 0
γ3
1 γ3

2 γ2
2

 ∧
ω1

ω2

ω3

+

s1ω1 ∧ ω2 + s3ω
3 ∧ ω2

ω1 ∧ ω3

0


(We are a little dishonest here: the tiωi ∧ ω2 terms have been absorbed in to
γ3

i 1–forms, between the second to last and the last lines above.)
Again we can use any coframing η1, η2, η3 of the sort we have written

above in local coordinates, and check that this is a section of B1, and that it
has s3 6= 0, i.e.

dη1 = η3 ∧ η2 (mod η1)

so on the graph of η in B1, we have s3 = 1. From differentiating the structure
equation for dω2, and working modulo ω1, we find

ds3 = 2s3γ2
2 (mod ω1, ω2, ω3)

In other words, on the fibers of B1, we find s3 scaling as we travel in directions
in which γ2

2 6= 0. We can therefore restrict to the subbundle B2 ⊂ B1 on which
s3 = 1. We find that on B2,

d

ω1

ω2

ω3

 = −

 0 0 0
0 0 0
γ3
1 γ3

2 0

∧
ω1

ω2

ω3

+

 ω3 ∧ ω2

ω1 ∧ ω3 + u1ω
1 ∧ ω2 + u3ω

3 ∧ ω2

0


Differentiating these equations, we find that on vertical vectors

du1 = −γ3
2

so that we can arrange that u1 = 0, say on a subbundle B3. We find the
structure equations on that bundle are
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d

ω1

ω2

ω3

 = −

 0 0 0
0 0 0
γ3
1 0 0

 ∧
ω1

ω2

ω3

+

s1ω1 ∧ ω2 + ω3 ∧ ω2

ω1 ∧ ω3 + uω3 ∧ ω2

vω3 ∧ ω2


for some function v. (Again the poor reader has to keep pace with a little
absorbing of torsion into the γi

j and a bit of renaming.) We find that on
vertical vectors

ds1 = γ3
1

so we can find a subbundle B4 on which s1 = 0. On this subbundle, γ3
1 is

forced to vanish on the fibers, so we have completely eliminated the structure
group down to the identity group. We write our structure equations again:

d

ω1

ω2

ω3

 =

 ω3 ∧ ω2

ω1 ∧ ω3 + uω3 ∧ ω2

vω3 ∧ ω2 + w2ω
2 ∧ ω1 + w3ω

3 ∧ ω1


If we differentiate the first of these equations, we find that w3 = 0. To preserve
Cartan’s notation, we rename

u to I
v to J
w2 to K

and have Cartan’s structure equations of Finsler surfaces:

dω1 = ω3 ∧ ω2

dω2 = (ω1 − Iω2) ∧ ω3

dω3 = ω2 ∧ (Kω1 − Jω3)

The reader can prove the following assertions as exercises. You don’t need
coordinates to do any of them; just use the structure equations.

Exercise 5.3 To every immersed curve on a Finsler surface can be associated
its lift to Σ, a curve on which ω2 = 0 and ω1 6= 0.

Exercise 5.4 The length of the curve is
∫
ω1 integrated over its lift.

Exercise 5.5 Taking the first variation, we find the geodesic equation

ω2 = ω3 = 0.
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Exercise 5.6 The structure equation

dω1 = ω3 ∧ ω2

ensures that closed geodesics belonging to a smooth connected family must
all have the same length.

Exercise 5.7 The invariants I, J both vanish precisely when the Finsler met-
ric is Riemannian.

Exercise 5.8 The “unit circles” in each tangent space of our surface are the
curves in Σ on which

ω1 = ω2 = 0.

Exercise 5.9 The integral ∫
ω3

over these circles gives them a notion of length, and that length is constant
when J = 0, since

dω3 = ω2 ∧ (Kω1 − Jω3)

Exercise 5.10 The invariant K is called the Gauss–Finsler curvature—it
measures the infinitesimal focusing of geodesics; to see this consider a family
of geodesics on a Finsler surface emanating from a point, and standard Sturm–
Liouville theory.

Exercise 5.11 If K is constant, then from the structure equations we can
calculate that

d

(
I

J

)
=

(
J

−KI

)
ω1 mod ω2, ω3

This implies that on the geodesics we have conservation of the quantity

KI2 + J2

and that along geodesics

İ = J

J̇ = −KI

Exercise 5.12 So for example, if the Gauss–Finsler curvature is constant
equal to −1, then

İ = J

J̇ = I
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so
I = c1e

t + c2e
−t

for some constants c1, c2, which implies that I is unbounded along complete
geodesics, unless it vanishes everywhere.

Exercise 5.13 If I is bounded and K = −1 is constant and the Finsler
surface is a complete metric space, then I vanishes everywhere. Similarly, J
vanishes everywhere, so the Finsler surface is a Riemannian surface of constant
negative curvature, locally isometric to the hyperbolic plane, a result of Akbar-
Zadeh [3].

Exercise 5.14 Compact Finsler surfaces of constant negative Gauss–Finsler
curvatureK ≡ −1 are quotients of the hyperbolic plane. Remark: IfK > 0 is a
positive constant, and the Finsler surface is complete, then it is diffeomorphic
to a sphere, but surprisingly there is an infinite dimensional family of such
Finsler surfaces. This result is difficult to prove, see Bryant [17]. A related
remark: There are also many Finsler surfaces with K = 0, as we will see in
section 12.2 on page 252. If K = 0 and I is constant, then some cover of the
surface is an open subset of a homogeneous Finsler structure (see section 8
on page 169).

Exercise 5.15 On Finsler surfaces with constant Gauss-Finsler curvature
K = 1, if we set Ω1 = ω2, Ω2 = ω3, and Γ = −ω1 + Iω2 + Jω3, then
Ω1, Ω2, Γ satisfy the structure equations of a Riemannian metric. In partic-
ular, if the quotient of Σ by geodesic flow is a smooth surface, show that it
has a Riemannian metric. Find the curvature of that metric.

Exercise 5.16 Finsler structures with constant I 6= 0 are never Finsler sur-
faces, since as we move up the fiber of Σ → M i.e. on a vector field X with
ω1(X) = ω2(X) = 0 and ω3(X) = 1, we find

LX

(
ω1

ω2

)
=

(
0 1
−1 −I

)(
ω1

ω2

)

so the flow on TM is not periodic (since the trace of the matrix is −I 6= 0),
and hence the fibers of Σ →M do not close up to form circles in the tangent
spaces of M . Therefore, any complete Finsler surface of vanishing Gauss–
Finsler curvature has nonconstant I or is flat.

Exercise 5.17 Surfaces with J = 0 have two constants of motion on geodesics,
I and KI2, so the geodesics can be calculated explicitly, unless

dI ∧ dK = 0.

Thus on Finsler surfaces with J = 0, geodesic flow is not ergodic.
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Exercise 5.18 On surfaces with J = 0, an analogue of the Gauss–Bonnet
theorem holds, since

dω3 = Kω2 ∧ ω1.

5.4 The recursive nature of reduction

Looking back at the Finsler surface example, we see that we applied reduc-
tion repeatedly. In practice, it is clear what is happening, but the theory is
confusing. We can take a sequence of nested closed subgroups

· · · ⊂ Gj+1 ⊂ Gj ⊂ · · · ⊂ G1 ⊂ G

and write their Lie algebras as

· · · ⊂ gj+1 ⊂ gj ⊂ · · · ⊂ g1 ⊂ g

and for j > k write
T 7→ (T )j

k

for the quotient map
H0,2 (gj)→ H0,2 (gk) .

Also, write
T 7→ [T ]k

for the quotient map
V ⊗ Λ2 (V ∗)→ H0,2 (gk) .

Describe a sequence of spaces Yj and sections by

Y1 = H0,2 (g)

and take S1 ⊂ V ⊗Λ2 (V ∗) any G1 section for V ⊗Λ2 (V ∗)→ Y1, and looking
at the quotient map

()21 : H0,2 (g2)→ H0,2 (g1)

apply the section to it:
Y2 = H0,2 (g2)S1

and then proceed recursively, so that Sj ⊂ V ⊗ Λ2 (V ∗) is a Gj section for
V ⊗ Λ2 (V ∗)→ Yj and

Yj+1 = H0,2 (gj+1)Sj
.

It is clear that in order that this process be defined, each group Gj must
occur as the stabilizer in Gj−1 of an element of Yj . Therefore, it must be the
intersection of Gj−1 with an algebraic subgroup of GL (V ) (i.e. defined by
polynomial equations). At each step, we are making our groups Gj smaller
by adding polynomial equations on them. Therefore we can guarantee that
this process must terminate, by the Hilbert basis theorem, since eventually
Gj = Gj+1 (i.e. we have added enough polynomials to generate the entire
ideal). Keep in mind that reduction may fail at any stage, unless we can
guarantee that the result of each reduction has constant type.
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5.5 Reduction using a larger group

Suppose that the torsion representation H0,2 (g) of G ⊂ GL (V ) is the restric-
tion of a representation of a larger group H,

G ⊂ H ⊂ GL (V ) .

For example, if G ⊂ H is a normal subgroup, then H has a canonical repre-
sentation on H0,2 (g), and on all of the Spencer cohomology of g, since adjoint
H action is a representation on g.

Suppose that the torsion of a G-structure B ⊂ FM is of constant H type,
i.e.

[T ] : B → H0,2 (g)

hits only the part of H0,2 (g) where the stabilizer in H is conjugate to some
subgroup H1 ⊂ H. Take a section S ⊂ V ⊗Λ2 (V ∗) for H1, i.e. S is transverse
to the fibers of

[ ] : V ⊗ Λ2 (V ∗)→ H0,2 (g)

and locally its image in H0,2 (g) is transverse to the H orbits. We might not
find any point of B where [T ] lies in the image of S in H0,2 (g), i.e. the pushout
BS might be empty. But every point of B can be multiplied by an element of
H so that it lies in a point of S. This element of H is determined up to the
action of H1, and a sheet of S. Therefore we have a kind of reduction

BS = { (x, u,H1 · h, s) | (x, u) ∈ B, H1 · h ∈ H1\H, s ∈ S, rh [T ] (x, u) = s}

and the obvious maps BS → H1\H and BS → S.

Example 33 (CR geometry). This is precisely the sort of reduction that Élie
Cartan [22, 23] employed in his work on CR geometry (see section 7.4 on
page 111 for more on the topic): he considered a 3-manifold sitting inside
a complex surface. Each tangent space of the 3-manifold contains a unique
complex line. Therefore the 3-manifold has aG-structure, whereG is the group
of real linear transformations of a 3-dimensional real vector space which leave
invariant a real 2-plane, and act as complex linear transformations on that
2-plane. Call this a CR geometry (where C stands for Cauchy, and R for
Riemann). We can let H be the group of linear transformations fixing the
2-plane, ignoring the complex structure on it. Then the H-structure is just a
2-plane field. If the H-structure has constant type, then it is either a contact
structure (see section 7.9 on page 147) or a foliation by surfaces. In the first
case, the G-structure is called Levi-pseudoconvex and in the second it is called
Levi-flat. All Levi-flat CR geometries are locally isomorphic.
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General features of G-structures

6.1 Coordinate expressions

6.1.1 Example: time dependent force on a line

Following Cartan [24] p. 129, consider a force field depending on time t, and
the position x and velocity dx/dt of a particle on a line. The force gives a
differential equation

d2x

dt2
= F

(
t, x,

dx

dt

)
.

We want to consider equivalence of such equations, up to changing the x vari-
able arbitrarily, and preserving the time variable up to translation. Consider
the pair of 1-forms dx−x′ dt, dx′−F dt on the manifold M = R3

t,x,x′ ; they will
determine the differential equation. On each tangent space of M , we want to
preserve the differential dt, and also preserve dx up to multiples, so that we
can make changes in the x variable independent of t. We also need to recall
the differential equation, so we need the preserve dx − x′ dt, dx′ − F dt up
to linear combinations. But there is a unique multiple a dx of dx for which
a dx − dt belongs to these linear combinations, a = 1/x′, so we can arrange
on the set where x′ 6= 0 to preserve both dt and dx/x′, and to preserve the
span of dx− x′ dt, dx′ − F dt. So we have differential forms

ω1 = dt

ω2 =
dx

x′

ω3 = u (dx′ − F dt) + v

(
dx

x′
− dt

)

defined up to choice of u and v, where u and v are arbitrary, with u 6= 0. This
class of coframings on M is a G-structure, where G is the group of matrices
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−v v u

 .

The bundle B has explicit coordinates t, x, x′, u, v, for which the above equa-
tions for ωi give the soldering forms.

6.1.2 Torsion in coordinates

Suppose that B ⊂ FM is a G-structure on a manifold M of dimension n.
Let us work locally, taking M to be an open subset of a vector space V . On
FM = M × GL (V ) we have coordinates x, h where h is an invertible n × n
matrix. This associates to each point (x, h) the frame

TxM → Rn

ai ∂

∂xi
7→
(
h1

ja
j , . . . , hn

j a
j
)

Trivialize B = M ×G and parameterize B as the image of the map

(x, u) 7→ (x, uf(x)) .

The form ω becomes
ω = uf(x) dx

and if we write w = u−1 and G(x) = f(x)−1 then

dωi = dui
jw

j
k ∧ ω

k +
1
2
T i

jkω
j ∧ ωk

where

T i
jk = ui

l

(
∂f l

m

∂xp
−

∂f l
p

∂xm

)
Gp

qw
q
jG

m
r w

r
k.

This provides an explicit expression for the torsion. In particular, at the points
where u = f = I

T i
jk =

(
∂f i

k

∂xj
−
∂f i

j

∂xk

)
.

We can always pick the coordinates so that a given point of B is represented by
u = f(0) = I, so this is a typical perspective on torsion: failure of commutation
of first derivatives. The tangent space to B at this point is

T(0,I)B =
{(

v,
∂f

∂x
v +A

) ∣∣∣∣ v ∈ V,A ∈ g

}
.

For the flat G-structure, the tangent space is
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T(0,I)Bflat = { (v,A) | v ∈ V,A ∈ g} = V ⊕ g.

So our G-structure B ⊂ FM is tangent to the flat G-structure exactly when
∂f
∂x belongs to g⊗V ∗, which is the case exactly when [T ] (0, I) = 0, by definition
of intrinsic torsion.

In the example of Finsler surfaces, we used this sort of presentation of a
G-structure in local coordinates to examine its torsion, and justify our con-
stant type hypotheses. Clearly one could employ local coordinate expressions
like these throughout the computations of the equivalence method. The ad-
vantage is that one can explicitly calculate torsion, so all of the differential
invariants uncovered by the equivalence method receive explicit calculable ex-
pressions. For example, in studying the equivalence of Riemannian metrics,
one obtains explicit, but very long, coordinate expressions for the curvature
tensor. In harder examples, like exceptional holonomy metrics [14], writing out
the curvature tensor (or similar torsion invariants) is practically impossible.

Exercise 6.1 What is the torsion of a force field in one dimension (see sub-
section 6.1.1 on page 57), in local coordinates?

6.2 Fattening structure groups

6.2.1 Fattening principal bundles

If G ⊂ H ⊂ GL (V ) are subgroups, and B ⊂ FM is a G-structure, then we
can fatten it up to a H-structure by taking

B(H) = (B ×H) /G

the quotient under the right G action

g ∈ G, (u, h) ∈ B ×H 7→
(
g−1u, g−1h

)
∈ B ×H

and using the map

(u, h) ∈ B ×H 7→ h−1u ∈ FM

to map B(H)→ FM . We have an embedding

u ∈ B 7→ (u, 1) ∈ B ×H 7→ B(H).

This fattened up B(H) is defined for any principal bundle, not only for B
a G-structure; the definition of the map B(H) → FM is equally useful for
G-structures which are not embedded.

Example 34.
B(GL (V )) = FM.
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Example 35. If B0 ⊂ B1 is a G-structure living inside a H-structure B1, then

B0(H) = B1.

Lemma 3. The map B ×H →M given by using the map B →M on the B
factor, and forgetting the H factor, descends to a map B(H) → M, which is
a fiber bundle. The right action of H given by

rh (u0, h0) = (u0, h0h) .

commutes with the right G action above, so that it descends to B(H). This
turns B(H)→M into a principal right H bundle, and the map B(H)→ FM
makes B(H) into an H-structure, which is embedded just when the original
G-structure B → FM is.

Proof. Locally the results follow from carrying out the construction on M a
vector space, and thereby on any of its open subsets; the global results are
elementary.

Example 36 (e-structures). The most important example is the simplest: an
e-structure B = M ⊂ FM (where e means the group with one element,
e = {1}). If we have a manifold M, an e-structure is a choice of coframe, at
each point (up to e action, i.e. up to no action at all, an actual coframe), say
ω. No danger of confusion in calling it ω, by the reproducing property For any
morphism of Lie groups G ⊂ GL (V ) , we have a G-structure B(G).

Note that we can carry out the fattening up construction even when the G-
structure is not embedded; we only use the morphisms of groups G → H →
GL (V ) .

6.2.2 The soldering form

The soldering form survives fattening up: we have started with a map B →
FM and produced a map B(H)→ FM, and the soldering form is pulled back
from FM. Alternately, we can define a 1-form ω∗ on B×H by ω∗(u,h) = h−1ω.
Then calculate that under the right G action

r∗gω∗ = ω∗

while under the right H action

r∗hω∗ = h−1ω∗,

and from these equations, and the vanishing of ω∗ on the fibers of B ×H →
B(H), we see that ω∗ is pulled back from B(H), where it is the soldering
form. Calculate

dω∗ = −
(
h−1 dh+ Ad−1

h γ
)
∧ ω∗ +

1
2
ρ(h)(T )ω∗ ∧ ω∗,
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where ρ is the representation of H on Λ2 (V ∗) ⊗ V, and h−1 dh is the left
invariant Maurer–Cartan 1-form on H, defined at a point h ∈ H by

h−1 dh =
(
L−1

h

)′
where Lh means left multiplication by h.

6.2.3 The pseudoconnection

Pseudoconnections do not quite survive fattening up. We can take a pseudo-
connection 1-form γ at a single point of B and push it forward to a pseudo-
connection at the corresponding point of B(H) by

γ∗(v) = γ(v)

if v is tangent to B ⊂ B(H), and for A ∈ g ask that

γ∗

(
~A
)

= A.

These two equations determine γ∗ uniquely:

γ ∈ Λ1 (TuB)⊗ g 7→ γ∗ ∈ Λ1 (TuB(H))⊗ h.

Notice that this only defines γ∗ at points in the image of B → B(H), so it
doesn’t even define a pseudoconnection on all of B(H).

6.2.4 Connections

Suppose that γ is a connection defined on all of B. Another approach to γ∗,
more constructive, is to define on B ×H the form

γ∗ = h−1 dh+ Ad−1
h γ ∈ Ω1 (B ×H)⊗ h

where γ is the connection from B. Under the right H action

rH
h (u0, h0) = (u0, h0h)

we find that
rH∗
h γ∗ = Ad−1

h γ∗.

Under the right G action

rG
g (u0, h0) =

(
g−1u0, g

−1h0

)
we find

rG∗
g γ∗ = γ∗,

and γ∗ vanishes on the fibers of B ×H → B(H), so γ∗ is defined on B(H).
The problem for pseudoconnections γ is that this formula attempts to

extend γ off of B to be H equivariant. If γ is not G invariant, then it can not
be extended to be H invariant, and then there is no obvious way to extend it.
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6.2.5 Torsion

An inclusion of Lie algebras gives maps:

0 // g(1) //

��

g⊗ V ∗ δ //

��

V ⊗ Λ2 (V ∗)
[ ] //

��

H0,2 (g) //

��

0

0 // h(1) // h⊗ V ∗ δ // V ⊗ Λ2 (V ∗)
[ ] // H0,2 (h) // 0

providing a surjection on the (0, 2) cohomologies

H0,2 (g)→ H0,2 (h)

(smaller Lie algebra implies larger torsion, i.e. not as much room to absorb
torsion) so that the torsion of any G-structure B determines the torsion of
the H-structure B(H).

Lemma 4. The torsion T∗ of B(H) at a point (u, 1) ∈ B is just the image of
the torsion T of B under the map H0,2 (g)→ H0,2 (h) .

6.2.6 Reduction

If SH → SG → V ⊗ Λ2 (V ∗) are two immersions, and SG is a section, and
SH → V ⊗ Λ2 (V ∗) a section, then obviously reduction of constant type G-
structures commutes with fattening up.

6.2.7 Prolongation

We will define prolongations and show that prolongations commute with fat-
tening up in subsection 7.1.4 on page 95.

6.2.8 Generalizations

These constructions can be useful in more general circumstances. Imagine
that G ⊂ H but that H is not contained in GL (V ) . If we have W an H
representation, and V ⊂W equivariant under G, then we can interpret ω∗ as
being W -valued, and the same equations above apply.

Example 37. Let G = GL (n,R) , V = Rn,H = GL (n,C) ,W = Cn. Then
a G-structure must just be B = FM the frame bundle. Fattening up gives
B(H) = FM (GL (n,C)) = FCM the complexified frame bundle, whose ele-
ments are choices of complex linear isomorphism u : TxM ⊗C → Cn. If we let
PC be the group of complex n × n matrices preserving a complex line, then
FCM/PC = PCM is the projectivized complexified tangent bundle. Inside it
is the real projectivized tangent bundle. The point of view here is that the
structure equations on FCM look like those on FM ,
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dω = −γ ∧ ω

except that ω is now valued in Cn, and γ in n×n complex matrices. Anything
PC -equivariant will descend to PCM. We could similarly complexify any G-
structure: define BC by complexifying Lie groups: H = GC . This is not going
to complexify the underlying manifold of course. See LeBrun & Mason [57]
for an application of this idea.

6.3 Flattening out along a curve

Since torsion is (roughly) a vector-valued 2-form, we expect to be unable to
see it if we merely travel along a curve.

Definition 14. Suppose that B ⊂ FM is a G-structure, with FM → M
the usual V -valued frame bundle, V a fixed vector space, and suppose that
φ : C →M is an immersed curve. The pullback:

φ∗B

��

// B

��
C // M

is the set of triples (x,m, u) so that m = φ(x) and u ∈ B. At each point of
the pullback, there is a linear map

uφ′ : TxC → V.

This determines a map
Tφ : φ∗B → P (V )

by taking (x,m, u) to the line uφ′ (TxC) ⊂ V, and identifying P (V ) with the
space of lines through 0 in V. Quotienting by the diagonal G action on φ∗V ×
P (V ) , we can identify this map Tφ with a section of a bundle of projective
spaces over C. This is just keeping track of the tangent line. If our curve is
oriented, we could keep track of its oriented tangent line, so map to the sphere
V \0/R+ instead of P(V ).

We will say that an immersed curve φ : C → M is of constant type if
Tφ : φ∗C → P(V ) is always in the same G-orbit in P(V ), and this G-orbit
will be said to be the type of the curve.

Example 38. In the flat plane, with its e-structure (e the group with 1 ele-
ment), constant type means precisely always pointing in the same direction,
so a straight line.

Example 39. Every curve in a Riemannian manifold is of constant type. In a
pseudo-Riemannian manifold, there are three types: positive definite, negative
definite, and null.
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Example 40. In a contact manifold (see section 7.9 on page 147), there are 2
types: lines tangent to the contact planes, and those transverse.

Lemma 5. Let B ⊂ FM be a G-structure. If a curve has constant type, then
every point of the curve lies in a region U ⊂M of the manifold in which there
is a flat structure B0 ⊂ FU which has the same fibers as B at all points of
the curve in that region.

Proof. In local coordinates, write ω = uf(x) dx. By linear change of coor-
dinates, we can arrange that f(0) = 1 at the origin, and linear change of
coordinates in Rn to arrange that the type of our curve is the type of ∂

∂x1 .
This ensures that our curve is tangent to the x1-axis, and we can then change
coordinates so that C is the x1-axis. The curve has constant type, which means
that if ` = span

〈
∂

∂x1

〉
is the direction of the curve, then f(x)` ∈ G` ⊂ Pn−1

for every x ∈ C. The space G` is clearly homogeneous, G` = G/G0 where G0

is the stabilizer of ` in G. Therefore we can choose a lift of the map

x ∈ C 7→ f(x)` ∈ G/G0

up to G, say g(x), which then satisfies g(x)` = f(x)`. But the map f is
determined only up to multiplication on the left by elements of G, so we can
arrange f(x)` = ` all along the curve C. Therefore f(x) must have first column
f i
1(x) = δi

1.
Our problem is to provide a map φ(x) so that

φ′(x) = f(x)

along C. If we can do this, then ω = uf(x) dx = u dφ along C. But this is
easy: take

φi(x) =
∑
j>1

xjf i
j

(
x1
)

+
∫ x1

0

f i
1(s) ds.

We can see that this satisfies φ′(x) = f(x) along C, and also that

φ
(
x1, 0, . . . , 0

)
=
(
φ1, 0, . . . , 0

)
preserves the curve C. After this diffeomorphism φ (which is a diffeomorphism
near the origin), we have arranged that ω = u dx all along C.

Example 41 (Riemannian geometry). In a Riemannian manifold, every im-
mersed curve has constant type, so we can construct a flat Riemannian metric
near such a curve, at least locally, so that the flat metric and the given met-
ric agree on all tangent vectors to the ambient manifold at each point of the
curve. We can not do this globally if the curve is closed, unless it has trivial
holonomy.
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Doesn’t development make this result obvious? If we develop, we get a map
between curves, and match up frames above the curves. But then suppose
that one curve is a geodesic, i.e. the tangent line is always identified with a
fixed line in V by the frames. If the other curve is not a geodesic, then the
frames cannot be matched up by any diffeomorphism which matches up the
curves. Besides, development requires a choice of pseudoconnection.

Theorem 2. Let B ⊂ FM be a G-structure equipped with a connection γ.
Note that this connection on B imposes a connection γ∗ on all of FM, as in
section 6.2 on page 59. If a curve has constant type, then every point of the
curve lies in a region U ⊂M of the manifold in which there is a flat structure
B0 ⊂ FU which has the same fibers as B at all points of the curve in that
region, so that the flat connection γ0∗ agrees with γ∗ at all points of the frame
bundle above the curve C.

Proof. As in the previous result, we can take local coordinates so that the
curve C is x2 = · · · = xn = 0, and so that the bundle B is given by U × G,
mapped into the frame bundle by (x, u) ∈ B 7→ (x, uf(x)) ∈ FM, with
f(x) = 1 at all points of C. The connection γ can be written

γ = −du u−1 + Adu (Γ (x) dx)

with Γ : U → g. Gauge transformation: (x, u) 7→ (x, ug(x)) on B affects γ by

Γ (x) 7→ Γ (x)− dg g−1.

Solving the required ordinary differential equation

Γ i
j1(x) =

∂gi
k

∂x1

(
g−1

)k
j

on C brings us to Γ i
j1 = 0. Following this by the gauge transformation

gi
j(x) = δi

j +
∑
J>1

xJΓ i
jJ

brings us to Γ = 0 along C. Since f(x) is really only defined up to such
transformations, we can still suppose that f(x) = 1 along C.

6.4 Example: principal bundles

Suppose that B an G-structure on a manifold M , and that P →M is a right
principal H bundle. Write the Lie algebra of G as g and that of H as h. For
any A ∈ h, write ~A for the vector field on P

~A(p) =
d

dt
petA

∣∣∣∣
t=0

.
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Let PB be the set of ordered tuples (x, u, p, w) so that (x, u) ∈ B, p ∈ Px,
w : TpP → h, and

~A w = A

for all A ∈ h.
PB

V ∗⊗h

��
B ×M P

H

��

G

$$HHHHHHHHH

FM Boo

G

��

P

Hzzvvv
vvv

vvv
v

M

Each arrow is labelled with a group, so that the arrow represents a principal
bundle with that structure group. Since our commutative diagram of bundles
contains only one map from any manifold to any other, we will label the maps
using the notation [X → Y ] for the map from X to Y .

The bundle PB → P is a right principal G × (V ∗ ⊗ h) bundle. We have
actions on PB: an action of G

rg(x, u, p, w) =
(
x, g−1u, p, w

)
and of H

rh(x, u, p, w) =
(
x, u, pg,Ad−1

g w
(
r−1
g

)′)
and of V ∗ ⊗ h:

rS(x, u, p, w) =
(
x, u, p, w − Su [P →M ]′ (p)

)
.

We define 1-forms on PB by

ω =u [PB →M ]′

η =w [PB → P ]′

These are the soldering forms of our structure. This ω is just the soldering
form on B (or on FM) pulled back to PB. It is therefore invariant under the
H action on PB, and the V ∗ ⊗ h action. In fact, it still satisfies the same
structure equations, pulled back:

dω = −γ ∧ ω +
1
2
Tω ∧ ω.

We easily uncover
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r∗gω = g−1ω

r∗hω = ω

r∗Sω = ω

r∗gη = η

r∗hη = Ad−1
h η

r∗Sη = η − Sω

for
g ∈ G, h ∈ H,S ∈ V ∗ ⊗ h.

We can differentiate these equations to find the Lie derivatives of the soldering
forms under the flows of vertical vector fields. We find

L ~Aω =−Aω
L ~Bω =0
L~Sω =0
L ~Aη =0
L ~Bη =− adhη

L~Sη =− Sω

for
A ∈ g, B ∈ h, S ∈ V ∗ ⊗ h.

Then the left hooks:

~A ω =0
~B ω =0
~S ω =0
~A η =A
~B η =0
~S η =0

This determines the structure equations:

dω + γ ∧ ω =
1
2
Tω ∧ ω

dη + η ∧ η = θ ∧ η

where
θ ∈ Ω1 (PB)⊗ V ∗ ⊗ h.

Conversely, as we will see in section 6.7 on page 86, any system of 1-forms
on a manifold X which satisfies these structure equations, with the η and ω
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components being independent, must be locally the structure equations of a
principal right H bundle over a manifold with G-structure: in other words,
the manifold X is locally equipped with such a structure. It might not be a
global bundle. Worse, we can only read off the connected component of the
identity in each of the groups G and H.

The associated vector bundles are given by the representations of the group
H. If W is such a representation, then

WP = (P ×W ) /G,

using the diagonal H action

(p, v)h = (ph, h−1v),

is a vector bundle. A section of WP corresponds to a map

f : P →W

satisfying
f(ph) = h−1f(p)

for all h ∈ H. Taking derivatives:

~B df(p) = −Bf(p)

by H invariance, for all B ∈ h. Therefore, if we pull f back to PB:

df = −ηf + ω∇f

where
∇f : PB → V ∗ ⊗W

is the covariant derivative. We can take higher derivatives by differentiating
further, but they are only defined on the prolongations of PB.1. For example,

d∇f +∇fη = fθ +∇fγ +∇2fω

on PB(1).
A linear first order operator taking sections of WP to those of UP is a map

L : PB → (W ∗ +W ∗ ⊗ V )⊗ U

which is G and H and V ∗ ⊗ h equivariant.
1 Prolongation will be defined in section 7.1 on page 93
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6.5 The Sussmann orbit theorem

We will need to understand a little about Lie algebra actions.

Definition 15. Write etX(m) ∈M for the flow of a vector field X through a
point m after time t. Let F be a family of smooth vector fields on a man-
ifold M . The orbit of F through a point m ∈ M is the set of all points
et1X1et2X2 . . . etkXk(m) for any vector fields Xj ∈ F and numbers tj (posi-
tive or negative) for which this is defined.

Example 42. The vector field ∂
∂θ on the Euclidean plane (in polar coordinates)

has orbits the circles around the origin, and the origin itself.

Example 43. The set of smooth vector fields supported in a disk has as orbits
the open disk (a 2-dimensional orbit) and the individual points outside or on
the boundary of the disk (zero dimensional orbits).

Example 44. On Euclidean space, the set of vector fields supported inside a
ball, together with the radial vector field coming from the center of the ball,
forms a set of vector fields with a single orbit.

Theorem 3 (Sussmann [84]). The orbit of any point under any family of
smooth vector fields is an immersed submanifold (in a canonical topology to
be defined in the proof). If two orbits intersect, then they are equal. Let F̄ be
the largest family of smooth vector fields which have the same orbits as the
given family F. Then F̄ is a Lie algebra of vector fields, and a module over the
algebra of smooth functions.

Remark 7. Obviously, one could localize these results, replacing globally de-
fined vector fields with subsheaves of the sheaf of locally defined smooth vector
fields.

Proof. We can replace F by F̄ without loss of generality, so we can assume
that F = F̄. Therefore, if X,Y ∈ F, we can suppose that eX

∗ Y ∈ F since the
flow of eX

∗ Y is eteX
∗ Y = eXetY , which must preserve orbits. We refer to this

process as pushing around vector fields.
Fix attention on a specific orbit. For each point m0 ∈ M , take as many

vector fields as possible X1, . . . , Xk, out of F, which are linearly independent
at m. Refer to the number k of vector fields as the orbit dimension. Pushing
around convinces us that the orbit dimension is a constant throughout the
orbit. Refer to the map

(t1, . . . , tk) ∈ open ⊂ Rk 7→ et1X1 . . . etkXkm0 ∈M

(defined in any open set on which it is an embedding) as a distinguished
chart and its image as a distinguished set. The tangent space to each point
et1X1 . . . etkXkm0 of a distinguished set is spanned by the linearly independent
vector fields
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X1, e
t1X1
∗ X2, . . . , e

t1X1 . . . e
tk−1Xk−1
∗ Xk,

which belong to F, since they are just pushed around copies of the Xj . Let
Ω be a distinguished set. Suppose that Y ∈ F is a vector field, which is not
tangent to Ω. Then at some point of Ω, Y is not a multiple of those pushed
around vector fields, so the orbit dimension must exceed k.

Therefore all vector fields in F are tangent to all distinguished sets. So
any point inside any distinguished set stays inside that set under the flow of
any vector field in F, at least for a short time. So such a point must also stay
inside the distinguished set under compositions of flows of the vector fields,
at least for short time. Therefore a point belonging to two distinguished sets
must remain in both of them under the flows that draw out either of them,
at least for short times, and therefore belongs to another distinguished set
lying inside both of them. Therefore the intersection of distinguished sets is
distinguished.

We define an open set of an orbit to be any union of distinguished sets;
so the orbit is locally homeomorphic to Euclidean space. Every open subset
of M intersects every distinguished set in a distinguished set, so intersects
every open set of the orbit in an open set of the orbit. Thus the inclusion
mapping of the orbit into M is continuous. Since M is metrizable, the orbit
is also metrizable, so a submanifold of M . The distinguished charts give the
orbit a smooth structure. They are smoothly mapped into M , ensuring that
the inclusion is a smooth map.

Example 45. Let α = dy − z dx in R3. The vector fields on which α = 0 have
one orbit: all of R3, since they include ∂z, ∂x + z∂y, and therefore include the
bracket:

[∂z, ∂x + z∂y] = ∂y.

Exercise 6.2 Rolling a ball in the plane, you can acheive any desired rotation
of the ball, by a sequence of moves, with each move rolling straight along the
x direction, or straight along the y direction.

Definition 16. Take a map φ : M0 → M1, and vector fields Xj on Mj,
j = 0, 1. Write φ∗X0 = X1 to mean that for all m0 ∈M0, φ′ (m0)X0 (m0) =
X1 (φ (m0)) . For families of vector fields, write φ∗F0 = F1 to mean that

1. for any X0 ∈ F0 there is an X1 ∈ F1 so that φ∗X0 = X1 and
2. for any X1 ∈ F1 there is a vector field X0 ∈ F0 so that φ∗X0 = X1.

Example 46. The vector field ∂x on R has R as orbit. Consider the inclusion
(0, 1) ⊂ R of some open interval. The orbit of ∂x on (0, 1) is (0, 1). The orbits
are mapped to each other by the inclusion, but not surjectively.

Example 47. If M0 = R2
x,y and M1 = R1

x, and φ(x, y) = x, and F0 = {∂x, ∂y}
and F1 = {∂x, 0} , then clearly φ∗F0 = F1.
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Theorem 4. If Fj are sets of vector fields on manifolds Mj, for j = 0, 1,
and φ : M0 → M1 satisfies φ∗F0 = F1, then φ takes F0-orbits into F1-orbits.
On each orbit, φ has constant rank. If the vector fields in both families are
complete, then φ is a fiber bundle mapping on each orbit.

Proof. By restricting to an orbit in M0, we may assume that there is only
one orbit. The map φ is invariant under the flows of the vector fields, so must
have constant rank.

Henceforth, suppose that the vector fields are complete. Given a path
et1X1 . . . etkXkm0 down in M1, we can always lift it to one in M0, so φ is onto.

It might not be true that φ∗F̄0 = F̄1, but nonetheless we can still push
around vector fields, because the pushing upstairs in M0 corresponds to push-
ing downstairs in M1. So without loss of generality, both F0 and F1 are closed
under “pushing around”.

As in the above proof, for each point m1 ∈M1, we can construct a distin-
guished chart

(t1, . . . , tk) 7→ et1X1 . . . etkXkm1.

These Xk are vector fields on M1. Write Yk for some vector fields on M0

which satisfy φ∗Yk = Xk. Clearly φ is a surjective submersion. Let U1 ⊂ M1

be the associated distinguished set; on U1these tj are now coordinates. Let
U0 = φ−1U1 ⊂ M0. Let Z be the fiber of φ : M0 → M1 above the origin of
the distinguished chart. Map

u0 ∈ U0 7→ (u1, z)U1 × Y

by u1 = φ (u0) and
z = e−tkYk . . . e−t1Y1u0.

Clearly this gives M0 the local structure of a product. The transition maps
have a similar form, composing various flows, so M0 →M1 is a fiber bundle.

Example 48. Take any 2-plane field on SO (3) transverse to the leaves of the
Hopf fibration SO (3)→ S2, and lift each vector field X1 from S2 to a vector
field X0 on SO (3), by asking that X0 be tangent to the 2-plane field. A two
dimensional orbit would have to be diffeomorphic to S2, since S2 is simply
connected. The Hopf fibration admits no section, so therefore all orbits must
be three dimensional, hence open and disjoint, and cover SO (3), which is
connected. Hence every 2-plane field transverse to the Hopf fibration has all
of SO (3) as orbit, even though the 2-plane field may be holonomic on an open
set. The same idea works for any nontrivial circle bundle over a compact man-
ifold in any dimension: either the circle bundle becomes trivial on a covering
space, or there is only one orbit of any plane field transverse to the fibers.

Definition 17. A right Lie algebra action of a Lie algebra g on a manifold
M means a choice, for each Lie algebra element A ∈ g, of a vector field ~A on
M so that
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~A, ~B

]
=
−−−→
[A,B].

Similarly, a left Lie algebra action has[←−
A,
←−
B
]

= −
←−−−
[A,B].

If G is a Lie group acting on a manifold, we define in the usual way the action
of its Lie algebra. By the orbit of a point under a Lie algebra action, we mean
the points reachable from that point by riding the flows of the vector fields
~Aj , one after the other, taking in total a finite number of rides (i.e. the orbit
thinking of the Lie algebra as a family of vector fields). The number of these
rides might depend on which point you are at, and where you want to go. The
space of orbits is written M/g.

Example 49. Write Lx for left multiplication Lxy = xy and Rx for right mul-
tiplication Rxy = yx. A Lie group G has Lie algebra g acting on it on the
right via

A ∈ g 7→ ~A(g) = L′g(1)A

and on the left via
A ∈ g 7→

←−
A (g) = R′g(1)A.

These have flows as vector fields:

e
~Ag = geA

and
e
←−
Ag = eAg

(hence the arrows). The quotient in either case is g\G = G/g = G/G0, the
space of path components of G.

Exercise 6.3 Prove that these are the correct flows.

Corollary 5. Suppose that g is a Lie algebra acting on a manifold M . Let
g(m) =

{
~A(m)|A ∈ g

}
The orbits gm for m ∈M satisfy

Tmgm = g(m).

Proof. Inclusion of these spaces into the tangent spaces is clear, since we can
clearly move in these directions. It suffices to restrict attention to a single
orbit. We can assume that no element of the Lie algebra acts trivially, by
quotienting out those elements. The vector fields ~A vary in the adjoint repre-
sentation under flows of one another, just as they would if we were on a Lie
group, since the bracket relations are the same. Therefore the spaces g(m) are
invariant under the flows, and so these g(m) have constant rank, and satisfy
the conditions of the Frobenius theorem. The Frobenius theorem cuts up our
manifold into invariant submanifolds, i.e. into orbits, unless g(m) = TmM .
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Definition 18. An action of a Lie algebra g on a manifold M is called locally
transitive if for each point m ∈M

TmM =
{
~A(m)|A ∈ g

}
.

An action is called complete if all of the vector fields ~A are complete, i.e.
their flows are defined for all time.

Corollary 6 (Palais [71]). An action of a finite dimensional Lie algebra
comes from the action of a Lie group just when it is complete, which occurs
just when it is generated by a finite set of complete vector fields.

Proof. Let g be a Lie algebra with complete action on a manifold M . Take
G to be any Lie group with Lie algebra g. (See any text on Lie groups, for
example [69], p. 284, for proof that there is one.) On G×M , we get g to act
via ~A = ~AG ⊕ ~AM . Calculating the bracket, we see that this is a Lie algebra
action. Mapping G ×M → G by forgetting M , we apply the previous result
to see that the orbits inside G×M are smooth manifolds.

Let g0 ⊂ g be the complete vector fields belonging to g. Clearly g0 is
invariant under rescaling. It is also closed, since a limit of complete vector
fields will be complete. Under “pushing around”, complete vector fields remain
complete. Therefore g0 is invariant under the adjoint representation of G, and
consequently, under brackets with any elements of g. Since g0 generates g, and
is closed under brackets, it must span g. We want to show that g0 is closed
under addition, so that g0 = g.

Take a basis of g, say X1, . . . , Xs ∈ g0. Then inside G we can write

eAjXj = ea1X1 . . . easXs ,

for some functions aj depending smoothly on Aj , defined for Aj small enough.
Indeed we can determine the function a(A) by the Campbell–Baker–Haussdorf
formula explicitly; in particular a(A) = A+O

(
A2
)
. The flow on M of eAjXj

is given by the same expression, because we have the same Campbell–Baker–
Haussdorff formula. Therefore there is a neighborhood of 0 in g so that each
element AjXj in that neighborhood has flow defined onM for at least one unit
of time at every point. Composing these flows ensures completeness. Therefore
g0 = g and all of the vector fields in the Lie algebra are complete.

The orbits inside G×M are therefore covering spaces of G. Replacing G by
a covering Lie group if needed, we can arrange that some orbit is diffeomorphic
to G. But G acts on G × M , by acting on G on the left and leaving M
alone, permuting orbits. Therefore all orbits are sent diffeomorphically to G
by G×M → G. Define the group action of G by: we define m0g = m1 when
the orbit of (1,m0) contains (g,m1). Clearly this is well defined and smooth,
because the map from each orbit to G is a local diffeomorphism. It is easy to
check that it is a group action.
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Theorem 5 (Palais [71]). Let H be a group of transformations of a mani-
fold, and h the set of vector fields X whose flows etX belong to the group, for
all t ∈ R. If h generates a finite dimensional Lie algebra, then H is a finite
dimensional Lie group and h is the Lie algebra of H.

Proof. There must be a Lie group H0 generated by h̄, by corollary 6 on the
preceding page. This group must be a subgroup of H, since it is generated
by the flows of the h vector fields. The adjoint action of H on vector fields
preserves completeness, so preserves h, so H0 is a normal subgroup. Put a
topology on H by declaring that open sets are the unions of sets of the form
hU , where h ∈ H and U open ⊂ H0. On H0, this agrees with the given
topology, since the open sets of the form hU which strike H0 have to have
h ∈ H0, so are open in H0. Check that this topology is Hausdorff, because H0

is. The quotientH/H0 is discrete, so metrizable, and thereforeH is metrizable.
Lets show that H has a countable basis of open sets. First, take any count-

able basis of open sets for M . Then for each continuous map φ : M → M ,
write down the infinite sequence of pairs (U, V ) of basis elements, so that
φ(U) ⊂ V . To any finite sequence of pairs (U, V ) of basis elements, we asso-
ciate the set of maps φ whose sequence contains this finite sequence. This is a
basis for the topology of uniform convergence. Replacing M by an appropri-
ate jet bundle, we can find a countable basis for the topology of convergence
uniformly with any number of derivatives, and putting these bases together
we get a countable basis for the topology of smooth maps. Therefore H has a
countable basis of open sets. The smooth structure on H0 translates in H to
give a smooth structure.

6.6 Tangential approximation and the exponential map

Let us imagine a G-structure π : B → M and pick a point m ∈ M. Write
Bm for the fiber of B above m, let M(m) = TmM be the tangent space, let
B(m) = M(m) × Bm. Then π(m) : (v, u) ∈ B(m) → v ∈ M(m) is the obvious
bundle map. The obvious right G action on B(m) is rg(w, u) =

(
w, g−1u

)
.

Map B(m) → FM(m) by taking each (w, u) to u : TvM(m)
∼= TmM → V.

Clearly B(m) is equivalent (not canonically) to the standard flat G-structure
overM(m). On B(m), we have the standard flat connection. Write the soldering
and connection forms on B(m) as

ω(m) = u dw

γ(m) = −duu−1.

The map B(m) →M(m) has distinguished fiber: over 0 ∈M(m) = TmM. Given
a pseudoconnection γ on B, and any curve Γ (t) in B(m) starting at a point
of this fiber, there is a unique curve C(t) in B so that
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Γ (0) = (0, C(0))

Γ ′(t)
(
ω(m), γ(m)

)
= C ′(t) (ω, γ) ,

at least for short times. For any point (w, u) ∈ B(m) we start with the curve
Γ (t) = (tw, u) and we define the exponential map exp : open ⊂ B(m) → B
by

exp(w, u) = C(1).

Clearly
exp(0, u) = (0, u)

and the map exp extends to a smooth map exp : TM ×B B → B.

Exercise 6.4 The exponential map is smooth on a neighborhood U(m) of
π−1

(m)(0) ⊂ B(m). It may help to define, for v ∈ V , the vector field ~v on B by
~v (ω, γ) = (v, 0) .

Proposition 13. Suppose that

B0

��

Φ // B1

��
M0

φ // M1

is an equivalence of G-structures, preserving a pseudoconnection. Then the
equivalence is completely determined by taking the exponential maps to identify
with the flat G-structures in tangential approximations, and identifying the flat
tangential approximations with an equivalence.

Corollary 7. If M0 is connected, then any equivalence φ : M0 → M1 pre-
serving pseudoconnections is uniquely determined by its derivative φ′(m) at a
single point.

Proof. We can see immediately that the above expression determines φ near
m, and we can take m to be any point of M0. The exponential map will be
defined near any point of B, and any point of B′, in some open sets. These
open sets will cover, and so we can take any compact subset of B and make a
finite subcover. So if we had two such maps φ, ψ : M0 →M1 agreeing to first
order at a point m, but disagreeing at some other point n, we could take any
path from m to n, start at corresponding points of B and B′, and take a path
through B from our given point u over m to some point v over n covering
the path down on M , and pick finitely many points on that path, so that we
cover that path with finitely many open sets on which exp−1 is defined. Once
we have determined φ = ψ on one of them, it follows on the next overlapping
one, and so on.
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Corollary 8. On an n-dimensional manifold, every G-structure with pseudo-
connection has at most a n+d-parameter group of pseudoconnection preserving
symmetries, where d = dimG.

Definition 19. A pseudoconnection for a G-structure B →M is called com-
plete if the exponential map at each point m is defined everywhere on B(m).

6.6.1 Examples of incomplete connections

Compact manifolds with pseudoconnections, or even with connections, even
flat connections, may fail to be complete. A famous mathematician once re-
marked that, as a graduate student, he had proven a number of elegant results
about compact 1-dimensional Riemannian manifolds. He boasted about them
to his thesis adviser, who deflated him by explaining that the circle is the only
compact 1-dimensional Riemannian manifold. Lets study the circle in depth.

Exercise 6.5 Prove that all connections on the frame bundle of a line or
circle are locally identified by diffeomorphisms.

Exercise 6.6 On M = R, take Γ (x) any smooth function and let γ be the
connection on FM given by

γ = −du u−1 + Γ (x) dx.

Define
K(x) =

∫ x

e
R y Γ (z) dzdy.

Check that on geodesics of γ,

d2

dt2
K(x(t)) = 0.

Therefore on geodesics
K(x(t)) = at+ b

for some constants a and b. Solve for the geodesics:

x(t) = K−1 (at+K (x (0))) .

If Γ (x) has period 2π, then the connection γ is defined on the frame bundle of
the circle S1 = R/2πZ. For instance, taking Γ = 0 gives the usual connection:
geodesic flow is linear. Taking Γ = Γ0 constant gives geodesics

x(t) =

at+ x0, if Γ0 = 0
1

Γ0
log
(
eΓ0x0 + at

)
, otherwise.

Note that the constant a is arbitrary. The geodesic is defined for times
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a < t <∞ if a > 0

−∞ < t < eΓ0x0

|a| if a < 0.

Exercise 6.7 Take Γ (x) any smooth real-valued function of period 2π, ex-
pand in a Fourier series:

Γ (x) =
∑

k

Γke
√
−1kx

and show that the time TN take to travel the N -th trip around the circle
satisfies

TN = T1e
2πΓ0(N−1).

What happens if we change direction? Add up to see that the connection γ is
complete just when Γ0 = 0.

Exercise 6.8 Calculate the symmetry group and symmetry Lie algebra for
Γ (x) = Γ0 a constant. You should find that the symmetry Lie algebra consists
in the vector fields (

a+ be−Γ0x
)
∂x.

Show that the locally defined symmetries act transitively on the frame bundle
(which makes it more surprising that the connection is not complete), but
that the globally defined symmetries are the translations, and do not act
transitively on the frame bundle.

Exercise 6.9 Apply the formula

Γ i
jk =

1
2

(∂igkj + ∂jgki − ∂kgij) gkl

for the Levi-Civita connection to a 1-dimensional manifold to obtain g11 =
e2

R
Γ dx. Show that a connection on the frame bundle of the circle is complete

just when it is the Levi-Civita connection of a metric on the circle, and the
metric can be recovered from the connection up to a conformal factor. Show
that up to equivalence, there is a unique complete connection on the frame
bundle of the circle.

6.6.2 Connections and exponential map

Lemma 6. A pseudoconnection γ is a connection precisely when

rg exp = exp rg.
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Proof. For v ∈ V and A ∈ g, let ~v and ~A be the vector fields on B, defined by

~v

(
ω

γ

)
=

(
v

0

)
,

~A

(
ω

γ

)
=

(
0
A

)
.

Calculate

r′g ·
(
~v + ~A

)
(ω, γ) =

(
~v + ~A

) (
r∗gω, r

∗
gγ
)

=
(
~v + ~A

) (
g−1ω,Ad−1

g γ + semibasic
)

=
(−−→
g−1v +

−−−−−→
Ad−1

g A

)
(ω, γ)

for all v,A just when r∗γ is a connection. So

rg∗

(
~v + ~A

)
=
−−→
g−1v +

−−−−−→
Ad−1

g A

precisely for γ a connection. Henceforth suppose that γ is a connection. Thus

the flow lines of ~v + ~A are taken to those of
−−→
g−1v +

−−−−−→
Ad−1

g A by G action
on B. Therefore they have the same images down on M . They relate to the
exponential map by

exp(w, u) = e
−−−→
u(w)(u)

for w ∈ TmM and u ∈ Bm (where eX means time 1 flow of the vector field
X). Under G action

rg exp(w, u) = er∗g
−−−→
u(w) (rgu)

= e
−−−−−−→
g−1 u(w) (rgu)

= exp
(
(rgu)

−1
g−1u(w), rgu

)
= exp

((
g−1u

)−1
g−1u(w), g−1u

)
= exp

(
u−1gg−1u(w), g−1u

)
= exp

(
w, g−1u

)
.

6.6.3 Local coordinates

In local coordinates, identify M with an open subset of V , and write

ω = u dx

γ = −du u−1 + Adu (Γ (x, u) dx)
ω(m) = ū dx̄

γ(m) = −dū ū−1
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the curves in B(m) that give rise to the exponential are just straight lines
Γ (t) = (tx̄, ū), while in B their images satisfy

Γ̌ ′(t) (ω, γ) = Γ ′(t)
(
ω(m), γ(m)

)
= (ū (x̄)) .

Writing Γ̌ (t) = (x(t), u(t)), we find

Γ̌ (t) ω = ux′(t) = ū (x̄)

Γ̌ (t) γ = −u′(t)u(t)−1 + u(t) (Γ (x, u)x′(t))u(t)−1 = 0.

Solving, we find

x′(t) = u(t)−1ū (x̄)
u′(t) = u(t) (Γ (x, u)x′(t))

a coupled system of ordinary differential equations. Taking second derivatives,

x′′(t) = −Γ (x, u)x′x′,

so that Γ (x, u) is independent of u precisely when γ is a connection, and
this happens precisely when x(t) satisfies a second order ordinary differential
equation on M .

6.6.3.1 Tangential approximation more generally

This idea of tangential approximation generalizes to allow approximation of
any G-structure B →M by an arbitrary homogeneous G-structure B′ →M ′

with pseudoconnection, as long as the homogeneous model has symmetry
group acting transitively on fibers of the G-structure bundle B′. We are asking
for a homogeneous bundle, but also existence of an invariant pseudoconnec-
tion. Those are strong assumptions. As we will see, for Riemannian geometry,
these are the space forms, while for Kähler geometry, they are the complex
space forms.

It is not clear if in any sense B “converges” to B(m) under some kind of
rescaling.

Example 50. A Lie group H bears a canonical e-structure (where e means the
group e = {1}) given as follows: at each point h ∈ H we identify ThH → h =
T1H by left translation by h−1:(

L−1
h

)′
(h) : ThH → h.

The map exp is just the usual exponential map familiar from the theory of
Lie groups.
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6.6.4 The exponential map downstairs

Imagine a manifold M with connection γ for a G-structure B on M . The
exponential map on the total space on B determines an exponential map
downstairs as follows: pick any vector v ∈ TmM, and any u ∈ Bm. We have
seen that the curve t 7→ exp(tw, u) is right invariant in the choice of u:

rg exp(tw, u) = exp (tw, rgu) .

This shows that the image down on M is independent of u:

π (exp(tw, u)) = π (exp (tw, rgu)) ,

determining a curve exp(tw) ∈M, the usual exponential map.

6.6.5 Complete connections

Definition 20. Suppose that B →M is a G-structure with pseudoconnection
γ. For any v ∈ V and A ∈ g, define the vector fields ~v and ~A by

~v

(
ω

γ

)
=

(
v

0

)

~A

(
ω

γ

)
=

(
0
A

)

We will say that the pseudoconnection γ is complete if these vector fields are
complete. Note that the ~A generate the action of the structure group, so they
are always complete, and it is only the ~v that we might have to think about.
Another way to present the information: define the vector field E on B × V
by

E(u, v) = (~v, 0) .

The flow of this vector field is called the geodesic flow. Completeness of B is
just completeness of the vector field E.

Proposition 14. A local diffeomorphism φ : M0 → M1 between manifolds,
which matches up G-structures and complete pseudoconnections on those man-
ifolds is a covering map.

Proof. Suppose that the G-structures are B0 → M0 and B1 → M1. If
φ (u0) = u1, then the exponential maps match up at these points (this requires
completeness). Taking a small open set Ω in the flat tangential approxima-
tion, we can make it small enough so that the exponential map will take it
diffeomorphically into each of the bundles. So B0 → B1 is a covering map,
and therefore M0 →M1 is a covering map.
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6.6.6 Detecting homogeneity

Lemma 7. Let B → M be a G-structure with pseudoconnection γ with only
constants appearing in the structure equations. Then the vector fields ~v and ~A
span a Lie algebra. The Lie algebra g of G is a subalgebra, spanned by the ~A
vector fields. If we write

d

(
ω

γ

)
= −C

(
ω

γ

)
∧

(
ω

γ

)

then C is the matrix of structure constants of the Lie algebra h.

Proof. Let Ω = (ω, γ). Apply the Cartan equation repeatedly; for example:

(~v0, ~v1) dΩ = L~v0 (~v1 Ω)− L~v1 (~v0 Ω)− [~v0, ~v1] Ω.

Simplifying both sides gives
[~v0, ~v1] Ω

a constant, so [~v0, ~v1] must be a constant multiple of ~v and ~A vector fields.

Example 51. The structure equations of the usual round metric on the 2-
sphere are

d

(
ω1

ω2

)
= −

(
0 γ

−γ 0

)
∧

(
ω1

ω2

)
, dγ = ω1 ∧ ω2.

The Lie algebra is so (3).

Proposition 15. Let B → M be a G-structure on a path connected man-
ifold with complete pseudoconnection γ, and only constants in the struc-
ture equations. Let h be the Lie algebra of infinitesimal symmetries.Then
B = Γ\H → M = Γ\H/G for some discrete subgroup Γ ⊂ H of a Lie
group H containing G, with Lie algebra h, Γ ∩ G = 1, H/G path connected
and Γ acting on H/G as the deck transformations of the normal covering map
H/G → M . Moreover (ω, γ) pulls back to H under H → Γ\H to be the left
invariant Maurer–Cartan form on H. In particular, if M is simply connected,
then Γ = 1, B = H, and M = H/G.

Proof. Consider the Lie algebra h spanned by the vector fields of the form ~v
and ~A. By Palais’ theorem 6 on page 73, there is a connected Lie group H0

which induces this action, which we take to be a right action. As vector spaces,
the Lie algebra of H0 is h = V ⊕ g. We can assume that H0 acts faithfully,
by quotienting out any elements that act trivially. The vector fields ~A come
from the action of the structure group G. Thus the identity component of G
is contained in H0. Let H be the group of diffeomorphisms of B which are
generated by H0 and G. As a set,
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H =
⊔

g∈G/G∩H0

H0g,

which is a countable disjoint union of manifolds, and is a group because H0

is connected, and
getA = et Adg Ag

for g ∈ G and A ∈ h. Clearly the group operations are smooth, so H is a Lie
group with Lie algebra h, acting on the right on B. Pick a point u ∈ B and
map h ∈ H 7→ uh ∈ B. The left invariant vector fields on H are taken to
the vector fields generating the Lie algebra action, so to constant multiples of
the ~v and ~A vector fields. Therefore (ω, γ) pulls back to the Maurer–Cartan
form, just by precisely the identification h = V ⊕ g. The map H → B is a
local diffeomorphism, since it matches up these coframings. Clearly H acts
locally transitively on B. Since M = B/G is a connected manifold, it is path
connected, so B/H is also path connected. Therefore H acts transitively on
B, and letting Γ be the stabilizer of a point u ∈ B, we have B = Γ\H and
M = Γ\H/G. Since G is the structure group of B →M , no element of G can
have a fixed point on B, so G ∩ Γ = 1. Therefore H/G → M = Γ\H/G is a
covering map with Γ as the group of deck transformations.

By definition of H, π0(G) acts transitively on π0(H), so π0(H/G) = 1.
Since π0(M) = 1, the covering map H/G→M = Γ\H/G is a normal cover-
ing.

Corollary 9. Any two complete G-structures Bj → Mj with pseudoconnec-
tions γj, j = 0, 1, with the same structure groups and only constants appearing
in the structure equations, and all the constants matching up, have covering
maps

B0

��

Boo //

��

B1

��
M0 Moo // M1

a common covering G-structure. In particular, if the Mj are simply connected,
then there is an equivalence preserving the pseudoconnections.

Lemma 8. Let B → M be a G-structure with connection γ with only con-
stants appearing in the structure equations. Let h be the Lie algebra spanned
by the ~v and ~A vector fields, v ∈ V and A ∈ g. Then M is covered by open sets
so that on each open set, the Lie algebra of infinitesimal connection-preserving
symmetriesof the G-structure is isomorphic to h.

Proof. Let h = V ⊕ g be that Lie algebra. Clearly g is a subalgebra. Let H0

be any Lie group with Lie algebra h. Let Ω0 be the left invariant Maurer–
Cartan form on H0. Inside B × H0, the equation Ω = Ω0 is holonomic, so
by the Frobenius theorem, B ×H0 is foliated by submanifolds on which Ω =
Ω0. Clearly each one is locally the graph of a diffeomorphism from an open
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subset of B to an open subset of H0, identifying Ω and Ω0. Moreover, such
diffeomorphisms are unique up to left H0 action.

The left invariant vector fields on H0 are precisely those which satisfy
~A Ω0 = A, while the right invariant ones are precisely those which satisfy

L←−
A
Ω0 = 0.

These right invariant vector fields locally map via the local diffeomorphisms
B → H0 to an isomorphic Lie algebra of vector fields satisfying the same
equation, but only on various open sets in B. To see that they do map, note
that the local diffeomorphisms are determined up to left action of H0, and
under left action, right invariant vector fields are taken to other right invariant
vector fields. Back on H0, right invariant vector fields commute with the ~A
left invariant vector fields for A ∈ h. Moreover, they form a basis for each
tangent space. Therefore on some open subsets covering B, there are vector
fields defined, satisfying LΩ = 0, and commuting with the ~v and ~A vector
fields, for any v ∈ V and A ∈ g, and forming a basis at each point of B.
Henceforth, we can dispense with H0.

The central problem is that, while these vector fields on B commute with
the ~v and ~A, nonetheless they might not extend to all of B, because of mon-
odromy problems. Lets take one such vector field, say X on B, defined in
some open set U ⊂ B. Map π|U : U → M . Define X̄ : U → π∗TM by

X̄(u) = π′(u)X(u). Because
[
~A,X

]
= 0 for ~A ∈ g, we have

X
(
et ~Au

)
=
(
et ~A
)′

(u)X(u).

Calculate that for A ∈ g:

X̄
(
et ~Au

)
= π′

(
et ~Au

)(
et ~A
)′

(u)X(u)

=
(
πet ~A

)′
(u)X(u)

= π′(u)X(u)
= X̄(u).

Therefore X̄ is invariant under g action, where that is defined. Assume that
the open set U ⊂ B on which X is defined is connected and has connected
fibers over M . Then X̄ is constant on those fibers, since they are the orbits of
the g action. Therefore X̄ is now a vector field defined on a connected open
subset of M , and clearly π∗X = X̄ so etX̄π = πetX .

Given any vector field Z on M , define a vector field ZF on FM by

ZF (u) =
d

dt

∣∣∣∣
t=0

F
(
etZ
)
(u).

Lets check that X = X̄F . To check this, note that where defined,
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etX∗ω = ω.

Therefore

uπ′(u) = ωu

=
(
etX∗ω

)
u

= ωetXu

(
etX
)′

(u)

= etXuπ′
(
etXu

) (
etX
)′

(u)

= etXu
(
πetX

)′
(u)

= etXu
(
etX̄π

)′
(u)

= etXu
(
etX̄
)′

(π(u))π′(u)

=
(
F
(
e−tX̄

)
etXu

)
π′(u)

Therefore
u = F

(
e−tX̄

)
etXu,

so that
F
(
etX̄
)

= etX ,

and thus X̄F = X. This X̄ is defined in an open subset of M , so X̄F is defined
in the preimage of that open set in B, and we can extend each vector field X
from its original open set to a G-invariant open set, setting X = X̄F .

Exercise 6.10 Why do we need γ to be a connection? Show that if G is
connected, it is enough to assume that γ is a pseudoconnection.

Proposition 16. Let B → M be a G-structure with connection γ with only
constants appearing in the structure equations. Suppose that every component
of M is compact with finite fundamental group. Then γ is complete.

Remark 8. Consequently we can apply proposition 15 on page 81 to each com-
ponent of M .

Proof. Let h be the Lie algebra spanned by the ~v and ~A vector fields, v ∈ V
and A ∈ g. Without loss of generality, we can assumeM is connected. We cover
M by open sets, so that on each open set we have a Lie algebra of infinitesimal
symmetries, and the Lie algebra is isomorphic across any of those open sets.
When we travel along a path in M , we can smoothly continue any of our
infinitesimal symmetries along that path, uniquely. However, if our path is a
loop, we may encounter monodromy, giving a morphism of groups

π1 (M)→ Aut (h) .
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So the infinitesimal symmetries are defined on a finite covering space of M .
Replace M by this covering space. Because M is compact, these infinitesimal
symmetries are complete vector fields. For each one of them, say Z, we have
ZF defined on B, and the various ZF give a basis of each tangent space of B.
In particular, they generate a symmetry group that acts locally transitively
on B.

Given any one of the vector fields ~v on B, we can imagine picking up its
flow lines and moving them around with the symmetry group. Because the
group is locally transitive, I can take any two points on a single flow line,
and move one to another by a symmetry. This will just slide the flow line
along itself. But then the time for which the flow is defined through each of
those points must be the same, and therefore must be infinite, so the flow is
complete.

We can generalize slightly:

Definition 21. A group Γ defies a group G if every morphism Γ → G has
finite image; otherwise it yields to G.

Example 52. If Γ is finite, it defies every group. If G is finite, every group
defies it. The groups Z,Z2, . . . yield to one another, and defy sums and free
products of finite cyclic groups.

Example 53. Γ =
〈
x, y|x2 = y2 = 1

〉
defies G = SL (2,R), since the only invo-

lutions in SL (2,R) are ±1. It yields to SO (3), which has lots of involutions.

Corollary 10. Let B → M be a G-structure with connection γ with only
constants appearing in the structure equations. Let h be the Lie algebra spanned
by the ~v and ~A vector fields, v ∈ V and A ∈ g. Suppose that every component
of M is compact with fundamental group defying Aut (h). Then γ is complete.

Proof. The proof is identical to the proof of corollary 16 on the preceding
page.

Example 54 (Web geometry again). Recall the structure equations of web ge-
ometry from section 4.1 on page 27:

d

(
ω1

ω2

)
= −

(
γ 0
0 γ

)
∧

(
ω1

ω2

)

and dγ = κω1 ∧ ω2. Proposition 10 on page 43 showed that unless κ = 0, the
web geometry cannot be homogeneous. On the other hand, if κ = 0, then the
web geometry is flat and locally homogeneous, since there are only constants
appearing in the structure equations. If the web geometry lives on a compact
surface, then the surface is a torus, and the web geometry is the quotient of the
standard flat web geometry from the plane by a discrete group of symmetries.
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6.7 Structure equations locally define G-structures

Suppose that X is a manifold equipped with 1-forms ω ∈ Λ1 (X) ⊗ V and
γ ∈ Λ1 (X)⊗ g and a 0-form T ∈ Λ0 (X)⊗ V ⊗ Λ2 (V ∗) so that

dω = −γ ∧ ω +
1
2
Tω ∧ ω

so that the components of ωi and γi
j are all independent 1-forms and form a

basis for each cotangent space of X.

Definition 22. Call this X a local G-structure with pseudoconnection. A
local G-structure is a choice of local G-structure with pseudoconnection, but
with γ only defined up to adding multiples of ω to γ.

Example 55. The purpose of this section is to show that all local G-structures
come about locally from G-structures. This is often used by writing down a
choice of e-structure, i.e. a coframing on a manifold. For instance, consider a
function u(x, t) satisfying the sine-Gordon equation

∂2u

∂x∂t
= sinu.

Following Chern & Tenenblat [35], let

ω1 = sinu dt

ω2 = dx+ cosu dt

γ = −∂u
∂x

dx.

The 1-forms ω1, ω2 already provide a coframing, and (as we will see in this
section) we can fatten this to an SO (2)-structure. But since in fact the 1-forms
ω1, ω2 formally satisfy the equations of an SO (2)-structure, with γ plugged in
instead of a pseudoconnection 1-form, we can see that the fattened up SO (2)-
structure has no torsion, and its connection 1-form pulls back to γ under the
fattening up map including this e-structure into the SO (2)-structure. We can
even calculate the curvature: dγ = −ω1∧ω2 tells us that the Gauss curvature
of the surface is −1.

Definition 23. If M is a manifold, V a vector field on M and x0 ∈ M,
write eV x0 for the point x1 (should one exist) so that there is an absolutely
continuous path x(t) with x(0) = x0, x(1) = x1 and

dx

dt
= V (x(t)).

Lemma 9. If X is a local G-structure, define for each A ∈ g a vector field ~A
on X by

~A ω = 0, ~A γ = A.

This is a right Lie algebra action.
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Proof. Calculate that

L ~Aω = ~A dω + d
(
~A ω

)
= −Aω

Taking exterior derivative of the structure equations on X, and plugging in
two of these ~A vectors, one finds

~A ∧ ~B (dγ + γ ∧ γ) = 0.

Calculate

~A ∧ ~B dγ = L ~A

(
~B γ

)
− L ~B

(
~A γ

)
−
[
~A, ~B

]
γ

so that [
~A, ~B

]
(ω, γ) =

−−−→
[A,B] (ω, γ).

This shows that the map A 7→ ~A is a right Lie algebra action.

Definition 24. A local G-structure X is said to fiber if there is a fiber bundle
map X → M, so that the path components of the fibers are unions of leaves
of the foliation ω = 0.

Lemma 10. Let X be a local G-structure. The orbits of the Lie algebra action
are precisely the leaves of the foliation ω = 0.

Proof. See corollary 5 on page 72.

The quotient X/g is paracompact (since X is), but not necessarily Hausdorff.

Lemma 11. If X fibers, then X/g is a manifold, and X → X/g is a fiber
bundle.

Proof. Locally, for an open subset U ⊂M , its inverse image in X is diffeomor-
phic to U ×F , with F the fiber, and the Lie algebra vector fields are tangent
to F . The orbits are the path components of F , so U × F/g = U × π0 (F ).

Globally, we have to patch these things together, which we do with maps
patching the U open sets together to make M , similar maps putting X to-
gether, and clearly the maps putting X/g together make it a covering of M .

Proposition 17. Given a local G-structure X which fibers, ρ : X →M, there
is a unique map Fρ : X → FM which satisfies

Fρ∗ω = ω and πFρ = ρ

(where π : FM → M is the frame bundle). Moreover, this map Fρ is an
immersion and a bundle map, and there is a unique right Lie algebra action
of g on X for which Fρ is equivariant.
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Proof. For each A ∈ g, define a vector field ~A on X (sometimes we will write
it ~AX to distinguish from other actions) by

~A ω = 0
~A γ = A.

Calculate that
L ~Aω = −Aω

from which we can conclude that for as long as the flow of ~A is defined,

et ~A∗ω = e−tAω.

This shows that the map A 7→ ~A is a right Lie algebra action.
Write π : FM → M for the usual V -valued coframe bundle. Define the

map Fρ : X → FM by
Fρ(x) = u(x)

where
m = ρ(x)

and
u(x)ρ′(x) = ωx.

This is well-defined, because ω is semibasic for the map X → M. Moreover,
πFρ = ρ. Recall that the soldering form (also called ω) on FM is defined by

ωu = uπ′(u).

It now follows that
Fρ∗ω = ω.

Next we need to check that Fρ is equivariant under the Lie algebra action.
First,

et ~A∗ωx = e−tAωx

= ωet ~Ax

(
et ~A
)′

(x).

Next,

u
(
et ~Ax

)
ρ′
(
et ~Ax

)
= ωet ~Ax

= e−tAωx

(
e−t ~A

)′ (
et ~Ax

)
= e−tAu(x)ρ′(x)

(
e−t ~A

)′ (
et ~Ax

)
= e−tAu(x)ρ′

(
et ~Ax

)
.
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Putting this together,
u
(
et ~Ax

)
= e−tAu(x)

which is the same as saying

rgFρ = Fρrg,

equivariance where defined. The fibers of X → M are now mapped equivari-
antly, and therefore the map Fρ is an immersion on fibers. But it is also a
bundle map over M , so it must be an immersion.

If we had two maps ρ0, ρ1 : X → FM satisfying

ρ∗jω = ω and πρj = ρ

then take x ∈ X and let uj = ρj(x). Taking π of both sides gives

mj = πρj(x)
= ρ(x)

so m0 = m1. Using the pullback of ω:

ωx = ρ∗jωx

= ωujρ
′
j(x)

= ujπ
′ (uj) ρ′j(x)

= uj (πρj)
′ (x)

= ujρ
′(x)

and since ρ is a submersion, u0 = u1.

Proposition 18. Given a local G-structure X, define a Lie algebra action on
X ×G by

A ∈ g 7→ ~AX −
←−
AG

where ~AX is the right Lie algebra action on X, and
←−
AG is the left Lie algebra

action on G.
Define X[G] = (X ×G) /g. Write [x, g] for the Lie algebra orbit of a a

point (x, g) ∈ X ×G. The group G acts on X ×G via the action

(x0, g0) g = (x0, g0g)

and this descends to X[G]. This action on X[G] is free. Its orbit through a
point [x0, g0] is precisely the set of points [x1, g1] so that x0 and x1 are in the
same Lie algebra orbit. If X fibers, then the map

Fρ : X ×G→ FM, (x0, g0) 7→ g−1
0 Fρ(x0)

descends to X[G] where it is continuous and G equivariant, and the map
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X → X[G], x0 7→ (x0, 1)

is continuous and equivariant under the Lie algebra action, and the map

ρ : X[G]→M, [x, g] 7→ ρ(x)

is well-defined, continuous and G invariant.

Proof. To see the freedom of the action, use the map Fρ : X[G]→ FM. The
rest is elementary.

Notice that we could replace M by X/g here. So if X fibers, even if we don’t
know how, we can canonically map X[G]→ FX/g.

Lemma 12. If X fibers, then X[G]→ X/g is a principal G-bundle; in partic-
ular X[G] is a smooth manifold, and the G-action on it is smooth. Moreover,
the map X[G]→ FX/g is an embedded G-structure.

Proof. We have seen that X/g = X[G]/G, and that the action of G on X[G]
is free. We need to show that X[G] is Hausdorff, then show that it is a man-
ifold, and then exhibit local, smooth, trivializing maps for X[G] → X/g.
The map X[G] → X/g is continuous, and X/g is Hausdorff, so if two points
[x0, g0] , [x1, g1] ∈ X[G] do not map to the same point of X/g, we can easily
surround them with disjoint open sets. The same holds for the map Fρ. If
they map to the same point of X/g, we have seen that they are in the same
G-orbit, say [x1, g1] = [x0, g0g] . They agree under Fρ, so

Fρ [x0, g0] = Fρ [x0, g0g]

but this gives
g−1
0 Fρ (x0) = g−1g−1

0 F (x0)

so that g = 1 and the points are the same in X[G]. Therefore X[G] is Haus-
dorff. Consider the continuous maps

φg0 : x ∈ X → [x, g0] ∈ X[G].

Taking such a map φg0 and any point x0, we need to show that this map
has an inverse, at least when restricted to a neighborhood of x0, and that,
in that neighborhood the map is a homeomorphism. Being close to [x0, g0] in
X[G] means being at a point (x, g) ∈ X ×G where, after flowing around with
the local Lie algebra action, we can arrange x close to x0 and g close to g0.
Every (x, g) ∈ X × G with g near g0 can be written

(
x, eAg0

)
for a unique

A ∈ g close to 0. But then under the Lie algebra action of B 7→ ~BX −
←−
BG,

we can flow to the point
(
e

~Ax, g0

)
, as long as A belongs to yet another small

neighborhood of the origin, which can be chosen to depend only on x0. This
provides a local inverse for our map x ∈ X 7→ (x, g0) ∈ X[G] in a small open
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subset of X[G], which depends on the sufficiently small neighborhood of x0

we started working in. It is easy to check that the inverse is continuous.
We employ these φg0 maps to provide a smooth structure: a function is

smooth if it pulls back to a smooth function under all of these maps. Smooth-
ness of transitions is easy. Smoothness of the map X × G → X is also easy,
and this implies smoothness of the G-action.

To find a local section, take any local section of X → X/g (which is locally
a fiber bundle, i.e. a disjoint union of fiber bundles), say σ : open ⊂ X/g→ X.
Given a point [x0, g0] with σ (x0) defined, let σ[G](x) = [x, g0] . Clearly this
is smooth.

Lemma 13. The map x ∈ X 7→ [x, 1] ∈ X[G] is a local diffeomorphism. If
X fibers, then this map is a local equivalence, in the sense that it is a local
diffeomorphism, and identifies the 1-forms ω.

Theorem 6. Every local G-structure with pseudoconnection admits near any
point a local diffeomorphism to a G-structure, preserving structure equations.

Proof. Locally, the foliation by ω = 0 is a fiber bundle.

Proposition 19. A local G-structure [with pseudoconnection] X is a G-
structure [with pseudoconnection] precisely when there is a G action on X
extending the Lie algebra action, so that

r∗gω = g−1ω

for all g ∈ G, and so that X is a principal G bundle.

Proof. In this case, it is easy to see that the map Fρ is an embedding.
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Prolonging G-structures into involution

Prolongation means differentation. The purpose of prolongation is to find
“enough” differential invariants to tell geometric objects apart. A good crite-
rion for “enough” will emerge in the next chapter, when we discuss symme-
tries. For now, we can see why we need to prolong: there is no intrinsic torsion
on a Riemannian manifold, so our process has not yet told us anything of sub-
stance about Riemannian manifolds (except that they are all the same, to first
order). Clearly we need to differentiate in order to feel the curvature. Cartan’s
approach is to build a new G-structure on top of the G-structure we have al-
ready built, i.e. if B is a structure on a manifold M , build a structure on the
manifold B, and so on to form a tower of structures. Each point of the k-th
structure represents a Taylor expansion of the original geometry up to k-th
order.

7.1 Prolongation

We do not have a unique choice of pseudoconnection except when g(1) = 0.
Let us instead parameterize the choices. Suppose that we have succeeded
in carrying out reduction on a G-structure π : B → M , having taken a
structure with constant type, and having reduced the structure group so that
the resulting G-structure has constant torsion on each fiber of B → M, say
torsion T : M → V ⊗Λ2 (V ∗) . To be more precise, we should write T : M →
S ⊂ V ⊗ Λ2 (V ∗) , where S is our section.

Recall the exact sequence

0 // g(1) // g⊗ V ∗ δ // V ⊗ Λ2 (V ∗)
[] // H0,2 (g) // 0.

Consider g(1) as a group under addition, and consider its action on V ⊕ g
given for Q ∈ g(1) by

(v,A) ∈ V ⊕ g 7→ (v,Q · v +A)
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where Q · v is the obvious contraction: in a basis ei of V :

(Q · v)i = Qi
jkv

k.

Fix a choice Γ of pseudoconnection on B. Then any other pseudoconnec-
tion must look like γ = Γ +Qω where Q ∈ g(1). We form a bundle B(1) → B
whose fibers are the possible choices of pseudoconnection at each point of B.
Obviously B(1) → B is a trivial bundle, because every section is just Γ +Qω.
Nonetheless, it is not canonically trivial, because we do not have a canoni-
cal choice of pseudoconnection Γ to start with. Let π(1) : B(1) → B be the
obvious map. On B(1), define the 1-forms ω and γ by

ω = π(1)∗ω

γΓ+Qω = π(1)∗Γ +Qπ(1)∗ω.

Note that now γ is not a pseudoconnection on B, but rather a 1-form canon-
ically defined on B(1). Down on B we had the structure equations

dω = −Γ ∧ ω +
1
2
Tω ∧ ω.

Now we work on B(1), and find exactly the same equation, with everything
just pulled back to B(1). Once we pull back to B(1), we find the (peculiar!)
equation γ = Γ +Qω, and since Q ∈ g(1), we know (Qω) ∧ ω = 0, so

dω = −γ ∧ ω +
1
2
Tω ∧ ω.

With some effort, we have managed to keep the equations the same as on B,
but made γ mean something different.

Map g(1) → GL (V ⊕ g) by

Q 7→ Q′, Q′(v,A) = (v,A+Qv).

Proposition 20. Map

U = Γ +Qω ∈ B(1) 7→ uπ′(u)⊕ U ∈ FB

Then B(1) → B is a g(1)-structure, called the prolongation of B → M . Two
G-structures of the same constant type are equivalent precisely if their prolon-
gations are.

7.1.1 Partial reduction

To define the prolongation, we used constancy of torsion on fibers of B, i.e. we
employed a section S to carry out reduction. Otherwise, there would be too
much freedom in the choice of pseudoconnection form Γ so that the bundle
would not be a g(1) principal bundle. One can nonetheless make use of such
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partial reductions, where the torsion T might not be constant on the fiber
of B → M, but only have constant f(T ), where f is some G-equivariant
map into some G-space. There is a natural generalization of this process to
circumstances when only partial reductions have been carried out, but we will
not belabour our exposition with it.

7.1.2 Higher prolongations

Subsequent prolongations are defined inductively, after carrying out reduction
at each step (assuming that the type is constant at each step). Prolongations
are an analogue of coordinate systems adapted to the geometry of the G-
structure, but defined only up to a certain order in their Taylor expansions.
We will discuss the higher order prolongations in section 7.5 on page 115.

7.1.3 Higher order structures

G-structures are principal subbundles of the frame bundle FM. We could
impose geometry on a manifold by taking principal subbundles of the bundle
FM (1) → FM instead of FM → M , called second order structures. An
example is the notion of projective structure (see section 7.11 on page 154).

7.1.4 Fattening up and prolonging

The map constructed in section 6.2 on page 59 taking pseudoconnection 1-
forms on a G-structure B to those on its “fattening up” B (H) for any group
H with G ⊂ H ⊂ GL (V ) does not always map

B(1) → B(H)(1)

since the condition for a pseudoconnection 1-form to belong to the first pro-
longation is that its torsion must belong to a specified section.

Exercise 7.1 If sections SH and SG are used to carry out reduction, and we
can smoothly map SH → SG, so that the diagram

SH
// SG

// V ⊗ Λ2 (V ∗)

��
H0,2 (g)

H0,2 (h)

commutes, using the obvious mapping H0,2 (g) → H0,2 (h) on torsion, then
fattening commutes with prolonging, i.e. there is a natural map γ ∈ B(1) 7→
γ∗ ∈ B(H)(1) so that the diagram
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B(1) //

��

B(H)(1)

��
B // B(H)

commutes.

7.1.5 Structure equations of the prolongation

Let us formulate structure equations on the prolongation. Note that γ is well
defined on B(1), while on B we found that there were choices of pseudocon-
nections γ. But on B(1), γ is not a pseudoconnection; instead ω + γ is the
soldering form of B(1) → B. Searching for a pseudoconnection on B(1) is the
next step. We find, by straightforward unwinding of definitions, that the right
action of Q ∈ g(1) given by rQU = U −Qω (where U = Γ +Q0ω is a point of
B(1)) satisfies

r∗Qω = ω

r∗Qγ = γ −Qω.

There is a natural action of G on B(1), commuting with the bundle map
B(1) → B, which is (for g ∈ G):

rgU = Ad−1
g

(
U
(
r−1
g

)′)
Form the semidirect product Go g(1) with multiplication

(g1, Q1) (g2, Q2) = (g1g2, Q1 + g1Q2)

where gQ means the element of Sym2 (V ∗)⊗ V defined by

gQ(u, v) = g
(
Q
(
g−1u, g−1v

))
.

We can write a point of B(1) as (u, U) where u ∈ B and U = Γ +Qω is the
value of some choice of pseudoconnection at u. The two group actions fuse
together to an action of the semidirect product:

r(g,Q) (u, U) =
(
g−1u,Ad−1

g (U −Quπ′)
(
r−1
g

)′)
.

This action makes B(1) →M into a principal right Go g(1)-bundle. It is not
a Go g(1)-structure. Under the G action

r∗gω = g−1ω

r∗gγ = Ad−1
g γ.
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Therefore under the Go g(1) action

r∗(g,Q)

(
ω

γ

)
=

(
g−1ω

Ad−1
g (γ −Qω)

)
.

Proposition 21. Since T : M → S is defined on M , its differential can be
written

dT i
jk = ∇mT

i
jkω

m.

The structure equations of the prolongation are

dωi + γi
jω

j =
1
2
T i

jkω
j ∧ ωk

dγi
j + γi

k ∧ γ
j
k + ξi

jk ∧ ωk =
1
2
T i

jklω
k ∧ ωl + T im

jklγ
k
m ∧ ωl

+
1
6
(
∇lT

i
jm +∇jT

i
ml +∇mT

i
lj

+ T i
kjT

k
lm + T i

kmT
k
jl + T i

klT
k
mj

)
ωl ∧ ωm

where
ξ ∈ Ω1

(
B(1)

)
⊗ g(1)

is some 1-form satisfying ~Q ξ = Q (a pseudoconnection for B(1) → B) and

T i
jkl = T i

kjl

T im
jkl = T im

kjl .

Remark 9. It is easy to arrive at these structure equations: formally, we just
take the exterior derivatives of the structure equations for ω that we already
had on B. These structure equations will not help us compute examples, since
in each example it will be easier just to write down the structure equations on
B, and then arrive at the same equations for dω on B(1) as above, and then
just differentiate them to recover equations for dγ.

Clearly ~Q means the vector field on B(1) giving the infinitesimal action of
Q ∈ g(1) and ~A is the vector field on B(1) giving the infinitesimal action of
A ∈ g. This ξ is defined up to replacing with ξ + fω for any f : B(1) → g(2).
It is a pseudoconnection 1-form for the g(1)-structure B(1) → B.

Remark 10. ~A ξ = 0 for all A just when γ ⊕ ξ forms a pseudoconnection
for B(1) → M . This is not the case for CR 3-manifolds; see section 7.4 on
page 111.

Definition 25. Henceforth it is useful to rename the torsion on B the 1-
torsion, and the torsion on B(1) the 2-torsion, etc. and use the all encom-
passing name torsion for any of these. Say that a G-structure is 1-flat if its
1-torsion vanishes, and k-flat if its 1-torsion, 2-torsion, etc. up to and in-
cluding its k-torsion all vanish.
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7.1.6 Torsion and Spencer cohomology

If 1-torsion vanishes everywhere, then the prolongation has 2-torsion in
H1,2 (g) . Similarly, if the 2-torsion from the prolongation vanishes everywhere,
then the next prolongation has 3-torsion in H2,2 (g) . Practically speaking, one
rarely encounters torsion vanishing higher than this stage without vanishing
altogether at all orders, indeed without flatness.

Example 56 (The octave projective plane). G = Spin (9, 1) has an irreducible
representation on R16, and dimH0,2 (so (9, 1)) = 1200. The 1-torsion of a
Spin (9, 1)-structure lives in that 1200 dimension space. If the 1-torsion van-
ishes everywhere, then we should get 2-torsion in H1,2 (so (9, 1)) , which has
5400 dimensions. But in fact the second Bianchi identity forces flatness of ev-
ery 1-torsion-free Spin (9, 1)-structure, up to local equivalence; every 1-torsion-
free Spin (9, 1)-structure is locally isomorphic to the octave projective plane.

7.1.7 The two actions of the structure group on the frame bundle
FB

Note: do not confuse the action of G on B(1) with the action on the frame
bundle of B which is induced from the action on B. Take rg acting on B, and
prolong it to frames to produce

Frg : FB → FB.

We have an embedding

B(1) → FB

(x, u, w) 7→ u ◦ π′ ⊕ w

but the prolongation of rg to frames on B does not necessarily leave B(1)

invariant, and it is not the action of G on B(1). Indeed,

Frg(x, u, w) =
(
x, g−1u,w ◦

(
r−1
g

)′)
7.1.8 Recursion

Now that we have obtained the prolongation, and found out how its torsion
behaves under the action of each factor group in the semidirect product Go
g(1), the next step (assuming constant type) is to attempt reduction with
respect to Gog(1). Repeatedly, we carry out reduction as far as possible, and
then prolong. The process will halt if the next prolongation is identical to the
previous one, i.e. if g(k) = 0.

Remark 11. When quotienting out by the action of a semidirect product of
groups G0 o G1, one can always quotient out first by the normal subgroup
G1, and then by the quotient group G0. In our case, that means that we can
always try to normalize the torsion first by g(1) action, and then by G action.
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7.2 Example: the general linear group

Consider a manifold with no structure at all. If the manifold has dimension n,
then this can be thought of as a GL (n,R) structure. We will find the structure
equations of the prolongations. This isn’t going to be very useful, since there
is no geometric structure on the manifold; the equivalence method focuses on
local geometric invariants and there aren’t any. But we get an idea of what it
looks like to carry out prolongation to all orders.

First, for notation, fix a vector space V and consider the spaces

Symp (V ∗)⊗ V

of V -valued polynomials on V of degree p, where p ≥ 0. Keep in mind that

gl (V )(p) = Symp+1 (V ∗)⊗ V,

for p = −1, 0, . . . . Think of these as vector fields on V with polynomial coef-
ficients of degree p+ 1. For any vector v ∈ V , define the differential operator
Dv : Symp (V ∗) ⊗ V → Symp−1 (V ∗) ⊗ V by differentiating the polynomial
part. Following Guillemin [42], define a bracket by

[s1 ⊗ v1, s2 ⊗ v2] = (s2Dv2s1)⊗ v1 − (s1Dv1s2)⊗ v2.

Careful: this is the negative of the usual Lie bracket on vector fields, applied
to polynomial vector fields; in fact, we are not quite following Guillemin, but
have instead reversed his sign convention. This makes the formal sum

gl (V )(•) =
∞∑

p=−1

gl (V )(p)

into a Lie algebra, the “negative” of Lie algebra of polynomial vector fields.

Lemma 14. Let ω(−1) = ω, ω(0) = γ. Prolongations give rise to 1-forms ω(k)

and bundles FM (k) so that on FM (p) the 1-forms

ω(−1), ω(1), . . . , ω(p−1)

are defined, with

ω(k) ∈ Ω1
(
FM (p)

)
⊗ Symk+1 (V ∗)⊗ V = gl (V )(k)

.

The structure group of FM (p) is the group GL (V )(p≥0) of (p + 1)-jets of
diffeomorphisms V → V fixing the origin. The 1-forms ω(−1), . . . , ω(p−1) vary
in the representation of GL (V )(p≥0) given by treating ω(−1) + · · ·+ ω(p−1) as
a polynomial vector field of degree at most p. The structure equations are

dω(•) = −1
2

[
ω(•), ω(•)

]
,
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which is to say

dω(p) = −1
2

p+1∑
k=−1

[
ω(p−k), ω(k)

]
.

Proof. For p = −1, 0, it is easy to check (paying very careful attention to
minus signs). The Jacobi identity on a Lie algebra is just the equation d2 = 0
on the Maurer–Cartan form, so the consistency of the above rules follows from
the consistency of the Jacobi identity on the (“negative” of the) Lie algebra
of polynomial vector fields.

Given FM (p), we let FM (p+1) → FM (p) be the prolongation, so on
FM (p+1), we have the same structure equations up to

dω(p−1) = −1
2

p∑
k=−1

[
ω(p−1−k), ω(k)

]
.

Under the structure group, ω(−1), . . . , ω(p−1) transform by hypothesis in the
required representation.

Question 5. Finish this.

If there was a Lie group of polynomial diffeomorphisms V → V , we would like
to say that this would be its Lie algebra; morally, it is the Lie algebra of the
diffeomorphism group, when we concentrate our attention only on order-by-
order formal geometry.

For the reader curious about the sign convention, it comes about as follows:
we would like to pretend that there is an infinite prolongation FM (∞), and
that the diffeomorphism group acts simply transitively on FM (∞). (We don’t
claim that this is true, but useful to pretend.) Then the Lie algebra of the
diffeomorphism group should consist, formally, in the vector fields on M .
We would like to pretend that picking any point of FM (∞), we can identify
FM (∞) with the diffeomorphism group, and thereby identity ω(•) with the
left-invariant Maurer–Cartan 1-form. This follows the pattern in our examples
so far, that homogeneous G-structures have symmetry group identified with
the last nontrivial prolongation, with Maurer–Cartan 1-form agreeing with the
1-form ω(•). But ω(•) is certainly invariant under symmetries, and symmetries
act on the left, so it would have to be the left invariant Maurer–Cartan form
λ = g−1 dg. The bracket on left invariant vector fields is determined from the
differential of the left invariant Maurer-Cartan form, by the equation[

~A, ~B
]

=
−−−→
[A,B]

where
dλ = −1

2
[λ, λ] ,

and is the negative of the bracket on right invariant vector fields. But right
invariant vector fields generate the left action, so in our case it is the right
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invariant vector fields that should be the vector fields on M with their usual
Lie bracket. Consequently, the negative of the usual Lie bracket on vector fields
should be the bracket on left invariant vector fields on the diffeomorphism
group, and should give the structure equations for the Maurer–Cartan form.

To express this story in terms of real-valued 1-forms, instead of Lie algebra
valued 1-forms, lets write each polynomial vector field in coordinates on V =
Rn as

X(x) =
∑
α

∂αXi

∂xα

∣∣∣∣
x=0

xα

α!
∂

∂xi

where α = (α1, . . . , αn) ∈ Zn
+ is a multindex, and

ej = (0, . . . , 1︸︷︷︸
j

, . . . , 0)

α! = α1! . . . αn!,
|α| = α1 + . . . αn,

xα =
(
x1
)α1

. . . (xn)αn ,

∂α

∂xα
=

∂α1

∂ (x1)α1 . . .
∂αn

∂ (xn)αn
.

The usual Lie bracket on (formal) vector fields is

[X,Y ] =
∑

γ

∂γ

∂xγ
[X,Y ]i

∣∣∣∣
x=0

xγ

γ!
∂

∂xi

=
∑

α+β=γ

γ!
α!β!

(
∂α+ejY i

∂xα+ej

∂βXj

∂xβ
− ∂α+ejXi

∂xα+ej

∂βY j

∂xβ

)
xγ

γ!
∂

∂xi
.

So the structure equations of a GL (n,R)-structure can be written

dωi
γ = −

∑
α+β=γ

γ!
α!β!

ωi
α+ej

∧ ωj
β

(keeping in mind the necessary sign change).

Question 6. Here is where things get dodgy in this section.

We have a natural pairing between them:

α ∈ Symp (V ∗)⊗ V, β ∈ Symq (V ∗)⊗ V 7→ α · β ∈ Symp+q−1 (V ∗)⊗ V

defined by taking the V factor from β and plugging it into a V ∗ slot from α,
and then averaging over all permutations.

Our prolongations will give rise to forms ω(−1) = ω, ω(0) = γ, etc., so that
on FM (j) the 1-forms
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ω(−1), ω(1), . . . , ω(j−1)

are defined, with

ω(k) ∈ Ω1
(
FM (j)

)
⊗ Symk+1 (V ∗)⊗ V = gl (V )(k)

.

The structure equations are

dω(k) +
k+1∑
p=0

ω(p) ∧ ω(k−p) = 0.

Note that we never obtain a coframing, since there are never enough 1-forms
on any bundle FM (j) defined to form a basis. We can absorb all torsion on
each bundle.

In index notation, the 1-form ω(p) has p+1 lower indices, say ω(p) =
(
ωi

α

)
,

with α = (α1, . . . , αp+1). Write

|α| = α1 + · · ·+ αp+1

α! = α1! . . . αp+1!.ej = (0, . . . , 1
j
, . . . , 0)

Proposition 22.

dωi
α = −

∑
β+γ=α

α!
β!γ!

ωi
β+ej

∧ ωj
γ

Proof.

Question 7. This stuff needs a careful rewrite, using proper multi-index nota-
tion.

In index notation, the form ω(p) has p+ 1 lower indices, say

ω(p) =
(
ωi

j1...jp+1

)
which is symmetric in all lower indices. Given a multiindex

J = (j1, . . . , jp+1)

we define
|J | = p+ 1.

We define the symbol ∑
J1J2|J

f (J1, J2)

to mean the sum of the expression

1
|J1|! |J2|!

f (J1, J2)
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over all choices of partitions

J1 =
(
js1 , . . . , jsq

)
J2 =

(
jt1 , . . . , jtp−q

)
where

s1, . . . , sq, t1, . . . , tp+1−q

is any permutation of
1, . . . , p+ 1.

We will adapt this notation to partitions of J into any number of pieces
J1, J2, . . . , JN in the obvious manner.

Lemma 15. If f (J1, J2) is symmetric in all entries of J1 and also in all
entries of J2 then∑

J1J2|Jk

f (J1, J2) =
∑

J1J2|J

f ((J1, k) , J2) + f (J1, (J2, k))

(a Leibnitz rule for “differentiating in k”).

Proof. Partitioning J, k instead of J , we either have to put k with J1 or with
J2. If we put it with J1, then it can occur anywhere in J1, but by symmetry
of F it suffices to always put k at the end of J1, and the factorials take care
of ensuring that we count correctly.

Lemma 16. If f (J1, J2, J3) is symmetric in all entries of J1, and also in all
entries of J2, and also those of J3, then∑

J1J2|J

∑
J11J12|J1

f (J11, J12, J2) =
∑

J1J2J3|J

f (J1, J2, J3)

Proof. Again it is just a matter of keeping track of the factorials:

1
|J1|! |J2|!

1
|J11|! |J12|!

|J1|! =
1

|J11|! |J12|! |J2|!

and seeing that there are |J1|! possible ways to divide up J1.

The structure equations are

dωi
J = −

∑
J1J2|J

ωi
J1k ∧ ωk

J2
.

To see that this is correct, first we calculate by hand that

0 = dωi + ωi
j ∧ ωj

0 = dωi
j + ωi

k ∧ ωk
j + ωi

jk ∧ ωk

0 = dωi
jk + ωi

l ∧ ωl
jk + ωi

lk ∧ ωl
j + ωi

jl ∧ ωl
k + ωi

jkl ∧ ωl
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These agree with the claimed result.
Then we suppose by induction that we have

dωi
J = −

∑
J1J2|J

ωi
J1k ∧ ωk

J2

for any set of indices J with at most p indices in it. Our induction hypothesis
tells us all of the exterior derivatives of all of the expressions in this equation,
except the last:

ωi
Jk ∧ ωk

(i.e. with J2 = ∅), because this term involves a 1-form

ωi
Jk

with more than p indices. Therefore we rewrite our induction hypothesis equa-
tion as

0 = dωi
J +

J2 6=∅∑
J1J2|J

ωi
J1k ∧ ωk

J2
+ ωi

Jk ∧ ωk

where the sum is again over partitions, but this time we don’t allow J2 to be
empty.

Taking exterior derivatives, we find

0 =
J2 6=∅∑

J1J2|J

(
dωi

J1k ∧ ωk
J2
− ωi

J1k ∧ dωk
J2

)
+
(
dωi

Jk + ωi
Jl ∧ ωl

k

)
∧ ωk.

We use the induction hypothesis to compute the exterior derivatives in the
first term:

0 =
J2 6=∅∑

J1J2|J

− ∑
J11J12|J1k

ωi
J11l ∧ ωl

J12

 ∧ ωk
J2

−
J2 6=∅∑

J1J2|J

ωi
J1k ∧

− ∑
J21J22|J2

ωk
J21l ∧ ωl

J22


+
(
dωi

Jk + ωi
Jl ∧ ωl

k

)
∧ ωk

Using our lemma, we find

0 =−
J2 6=∅∑

J1J2|J

∑
J11J12|J1

ωi
J11kl ∧ ωl

J12
∧ ωk

J2

−
J2 6=∅∑

J1J2|J

∑
J11J12|J2

ωi
J11l ∧ ωl

J12k ∧ ωk
J2

+
J2 6=∅∑

J1J2|J

ωi
J1k ∧

∑
J21J22|J2

ωk
J21l ∧ ωl

J22
+
(
dωi

Jk + ωi
Jl ∧ ωl

k

)
∧ ωk.
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We are dividing J into J1 and J2 and then dividing J1 or J2. We can instead
divide J into three parts. In the first term, we needed J2 6= ∅, so if we change
notation to

J11 7→ J1

J12 7→ J2

J2 7→ J3

then we need J3 6= ∅. Similarly for the second term, we had J2 6= ∅, so if we
change notation to

J1 7→ J1

J21 7→ J2

J22 7→ J3

then we need to have either J2 6= ∅ or J3 6= ∅. This gives

0 =−
J3 6=∅∑

J1J2J3|J

ωi
J1kl ∧ ωl

J2
∧ ωk

J3

−
J3 6=∅∑

J1J2J3|J

ωi
J1l ∧ ωl

J2k ∧ ωk
J3

+
J2 6=∅ or J3 6=∅∑

J1J2J3|J

ωi
J1k ∧ ωk

J2l ∧ ωl
J3

+
(
dωi

Jk + ωi
Jl ∧ ωl

k

)
∧ ωk.

The J3 6= ∅ terms in the third sum kill those in the second, so we get

0 =−
J3 6=∅∑

J1J2J3|J

ωi
J1kl ∧ ωl

J2
∧ ωk

J3

+
J2 6=∅∑

J1J2|J

ωi
J1k ∧ ωk

J2l ∧ ωl

+
(
dωi

Jk + ωi
Jl ∧ ωl

k

)
∧ ωk.

Any term in the first sum, say

ωi
L1kl ∧ ωl

L2
∧ ωk

L3

with L2 6= ∅ must appear in the sum once with J2 = L2 and J3 = L3 and
then once again with J2 = L3 and J3 = L2. By symmetry of these ωi

J in all
lower indices, the two appearances of these terms have opposite signs, so they
contribute nothing. Therefore
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0 =−
J3 6=∅∑

J1J3|J

ωi
J1kl ∧ ωl ∧ ωk

J3

+
J2 6=∅∑

J1J2|J

ωi
J1k ∧ ωk

J2l ∧ ωl

+
(
dωi

Jk + ωi
Jl ∧ ωl

k

)
∧ ωk.

We can rewrite this as

0 =
J2 6=∅∑

J1J2|J

ωi
J1kl ∧ ωk

J2
∧ ωl +

J2 6=∅∑
J1J2|J

ωi
J1k ∧ ωk

J2l ∧ ωl +
(
dωi

Jk + ωi
Jl ∧ ωl

k

)
∧ ωk.

or as

0 =
(
dωi

Jk + ωi
Jl ∧ ωl

k

+
J2 6=∅∑

J1J2|J

ωi
J1lk ∧ ωl

J2

+
J2 6=∅∑

J1J2|J

ωi
J1l ∧ ωl

J2k

)
∧ ωk.

Therefore there exist 1-forms ωi
Jkl symmetric in all lower indices, so that

dωi
Jk +

∑
J1,J2|J,k

ωi
J1,l ∧ ωl

J2
= 0.

7.3 Example: pseudo-Riemannian geometry

Let Q be a nondegenerate quadratic form of signature p, q on a vector space
V , and take G the group of orientation preserving linear transformations of
V fixing Q:

G = SO (p, q)

and g = so (p, q) . We have the explicit isomorphism

A ∈ g 7→ A′ ∈ Λ2 (V ∗)

defined by
A′(v, w) = Q (Av,w) .

Similarly, V = V ∗ using Q. Therefore

g⊗ V ∗ = V ⊗ Λ2 (V ∗)
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as G representations. This ensures that g(1) = 0 and that H0,2 (g) = 0.
Therefore, g(k) = 0 for all k > 0. In particular, there are no prolongations
of G-structures: we can stop right away. On the first bundle B → M of the
SO (p, q)-structure, we already have a unique torsion-free pseudoconnection,
called the Levi-Civita connection. Since g(k) = 0 for k > 0, we find

Ca,b (g) = 0

for a > 1, and consequently, Ha,b (g) = 0 for a > 1. We only have to find
Ha,b (g) for a = 0, 1 and b = 0, . . . , n = dimV .

The cohomology H1,2 (g) is the collection of

ρ ∈ C1,2 (g) = g⊗ Λ2 (V ∗)

so that
Q(ρ(x, y)z, w) +Q(ρ(z, x)y, w) +Q(ρ(y, z)x,w) = 0

(the first Bianchi identity). Since the prolongation g(1) vanishes, we have
B(1) = B, for B any SO (p, q)-structure, and we can write out the prolonged
structure equations as equations on B, i.e. our structure equations now look
like

dω = −γ ∧ ω

dγ = −γ ∧ γ +
1
2
Rω ∧ ω

since the prolongation connection 1-form is ξ = 0 (because ξ is valued in
g(1) = 0) and the torsion is T = 0 (because it is valued in H0,2 (g) = 0). We
have written the torsion of the prolongation as

R : B → H1,2 (g)

to conform with Riemannian geometry: it is the curvature of the connection
γ. To see that γ is a connection, rather than a pseudoconnection:

Lemma 17. For any Lie group G for which g(1) = 0, every torsion-free G-
structure has a unique torsion-free connection.

Proof. The choice of torsion-free pseudoconnection γ is unique, since g(1) = 0.
We calculate from r∗gω = g−1ω that

dω = −
(
gr∗gγg

−1
)
∧ ω.

This shows that
gr∗gγg

−1 = γ,

by uniqueness of γ, so that γ is a connection.
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By applying some well known representation theory of special orthogonal
groups, we find that

H1,2 (g) = R⊕ Sym2
0 (V )⊕Weyl (p, q)

where Sym2
0 (V ) means the traceless quadratic forms, which form an irre-

ducible SO (p, q) representation, and Weyl (p, q) is an SO (p, q) representation
known as the Weyl curvature representation. The Weyl curvature representa-
tion is irreducible except in case dimV = 4, where it can split depending on
p and q. Using the form Q we can write

Ricci(x, y) = trR(x, ·)y ∈ Sym2 (V ∗)
s =trQ Ricci ∈ R

R0 =Ricci− s
n
Q ∈ Sym2

0 (V ∗)

W (x, y)z =R(x, y)z

− 1
n− 2

(
R0 (, x)∗Q(y, z)−R0 (, y)∗Q(x, z) + xR0(y, z)− yR0(x, z)

)
− s

n(n− 1)
(xQ(y, z)− yQ(x, z)) ∈Weyl (p, q)

The dimensions of the various representations are detailed in table 7.1, with
κ(p, q) the space of values of the Riemann curvature. The structure equations

n = p + q dimSym2
0 (Rn) dimWeyl (p, q) H1,2 (so (p, q))

1 0 0 0

2 0 0 1

3 5 0 6

4 9 10 20

5 14 35 50

6 20 84 105

7 27 168 196

8 35 300 336

9 44 495 540

10 54 770 825

n > 2 n(n+1)
2

− 1 (n−3)n(n+1)(n+2)
12

(n−1)n2(n+1)
12

Table 7.1. Dimensions of representations in the decomposition of the Riemann
curvature tensor.

can be rewritten via the 1-form

Ω =

(
γ ω

0 0

)
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(which is valued in so (p, q) o Rp+q) as

dΩ +Ω ∧Ω =

(
1
2Rω ∧ ω 0

0 0

)

so that when R = 0 we see that these are the equations satisfied by the
Maurer–Cartan 1-form on the group of rigid motions of pseudo-Euclidean
space M = V with quadratic form Q. This exhibits the notion that all
SO (p, q)-structures are “deformations” of the flat one.

Let us consider which Riemannian geometries have unusually large sym-
metry groups. If the symmetry group acts transitively on the bundle of or-
thonormal frames then the invariants R0 and W must be constant on that
bundle (recall that they are functions on B, and tensors on M). But they vary
according to an irreducible representation of SO (p, q). Either they vanish or
the constant values of R0 and W span invariant one dimensional subspaces;
therefore they vanish. (This argument also holds in dimension 4, even though
the Weyl can split, because it has no trivial components). Moreover, the scalar
curvature must also be constant. Therefore the structure equations reduce to

dω = −γ ∧ ω

dγ = −γ ∧ γ +
1
2
Rω ∧ ω

with R constant satisfying W = 0, i.e.

R(x, y)z =
s

n(n− 1)
(xQ(y, z)− yQ(x, z)) .

We can therefore write the structure equations as

dω = −γ ∧ ω

dγ = −γ ∧ γ +
s

n(n− 1)
ω ∧ ω∗.

Packing these into a matrix

Ω =

(
γ ω

−κω∗ 0

)

(not quite the same choice of Ω we made just above), picking

κ =
s

n(n− 1)
,

we find that our structure equations are expressed by

dΩ +Ω ∧Ω = 0.
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These are the structure equations satisfied by the Maurer–Cartan 1-form of a
Lie group, the group of symmetries of this G-structure. If κ = 0, we have seen
that these are the symmetries of pseudo-Euclidean space. If κ > 0, then the
Lie algebra of this group is so (p+ 1, q), and up to coverings, each component
of the manifold is

M = SO (p+ 1, q) /SO (p, q) .

We can realize this manifold explicitly: let V ′ = Rx ⊕ V with quadratic form

dx2 +Q.

Then the group SO (p+ 1, q) is the group of symmetries of this quadratic form,
and the subgroup SO (p, q) is the subgroup preserving the unit vector (1, 0) ∈
V ′. This vector has length 1, and the group SO (p+ 1, q) acts transitively on
such vectors, with isotropy group SO (p, q), so M is the “sphere” of vectors
of length 1. Consequently, M is an affine hyperquadric.

On the other hand, if κ < 0 then the Lie algebra is so (p, q + 1), and up to
coverings each component of the manifold is

M = SO (p, q + 1) /SO (p, q) .

Here, we let V ′ = V ⊕ Ry with quadratic form

Q− dy2.

Then M is the manifold of vectors with length −1, and again an affine hyper-
quadric.

There are many more homogeneous examples; for instance we can take
any Lie group and pick a nondegenerate quadratic form in one of its tangent
spaces, and carry the form around the group by left translation. But only
the examples given above have symmetry group acting transitively on the
manifold of orthonormal coframes.

Lets classify the homogeneous pseudo-Riemannian manifolds of dimen-
sions 1, 2 and 3. Every 1 dimensional manifold is locally isometric to the line,
so homogeneous precisely when it is a line or circle. Homogeneous surfaces
must have constant Gauß curvature, so must be space forms. A homogeneous
3 dimensional pseudo-Riemannian manifold is one of three types: a three di-
mensional space form (isometry group of dimension 6), a product of a line
or circle with a surface of constant curvature (isometry group of dimension
4), or a 3 dimensional Lie group with left invariant metric (isometry group of
dimension 3). The classification of 3 dimensional Lie groups is due to Bianchi,
and is well known.

Let us consider how to generalize the classification of space forms above to
infinite dimensions on a Hilbert manifold, with Q a positive definite continu-
ous quadratic form. Then we can no longer use the splitting into irreducible
representations, because we have no reason to imagine that R is trace class
(i.e. has a trace). But we can introduce the sectional curvature
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K(P ) = Q(R(x, y)y, x)

where x, y ∈ V are an orthonormal basis for a fixed plane P ⊂ V . Thus the
sectional curvature is a function on the bundle B. We can then recover the
Riemann curvature tensor from K by a well known trick from Riemannian
geometry (see any textbook on the subject), and show that if R is invariant
under the orthogonal group O (Q) then R is in fact of the form

R(x, y)z = κ (xQ(y, z)− yQ(x, z))

for a constant κ. Hence the same classification of space forms, even in infinite
dimensions. The method of equivalence is not often used in infinite dimensions.

7.4 Example: CR 3-manifolds

Picture a smooth real hypersurface M in a complex surface, in other words
a submanifold of 3 real dimensions inside an ambient complex manifold of 2
complex (hence 4 real) dimensions. Every tangent space of M is a real 3-plane
in a complex 2-plane, and so by easy linear algebra contains a unique com-
plex line. This imposes a CR-structure on M , which means (in this setting) a
choice of 2-plane field on M with a complex structure on each 2-plane. This
can be expressed as a G-structure, where G is the group of real linear trans-
formations of a 3-dimensional real vector space preserving a 2-plane and a
complex structure on that 2-plane, so G consists of the matrices of the forma1

1 −a2
1 a1

3

a2
1 a1

1 a2
3

0 0 a3
3


with real entries. Lets try a complex notation: write these matrices as complex
matrices (

a1
1 a1

2

0 a2
2

)
with a2

2 being a real number. In this notation, lettingB → FM beG-structure,
the structure equations on B are clearly

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ2
2

)
∧

(
ω1

ω2

)
+

(
t111̄ω

11̄ + t112ω
12 + t11̄2ω

1̄2

√
−1t211̄ω

11̄ + t212ω
12 + t21̄2ω

1̄2

)

(writing ωAB = ωA ∧ ωB), so that ω1 is complex-valued, while ω2 is real-
valued, and t211̄ ∈ R and t212 =

(
t21̄2
)∗. But we can absorb torsion into the γA

B

to get to

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ2
2

)
∧

(
ω1

ω2

)
+

(
0√
−1tω11̄

)
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with t real-valued. Calculate that

dt = t
(
γ1
1 + γ1̄

1̄ − γ
2
2

)
(mod ω1, ω1̄, ω2)

so that the torsion t ∈ H0,2 (g) transforms in a representation which is not
trivial. Returning to the definition of the torsion representation, we can cal-
culate that under right action by g ∈ G,

r∗gt =

∣∣g1
1

∣∣2
g2
2

t,

which we could guess from the equation above for dt. Therefore if t does not
vanish anywhere, we can reduce the structure group. We can say that M is
Levi-flat if t = 0 everywhere, and Levi-pseudoconvex if t 6= 0 everywhere. The
geometric meaning of Levi pseudoconvexity is not very clear.

7.4.1 Levi-flat hypersurfaces

The structure equations of a Levi-flat hypersurface are

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ2
2

)
∧

(
ω1

ω2

)

with no torsion occuring, looking identical for any Levi-flat hypersurfaces. We
might guess then that all Levi-flat hypersurfaces are locally equivalent. We
will reconsider this question later, in section 8 on page 169. From the structure
equations, we can see that ω2 = 0 is a holonomic equation (i.e. satisfies the
conditions of the Frobenius theorem) on the bundle B, and involves only
semibasic 1-forms, so that any Levi-flat CR-structure endows the underlying
3-manifold with a foliation by surfaces (the images in M of the leaves of the
foliation ω2 = 0 in B). These surfaces are tangent to the 2-planes of our 2-
plane field in the tangent spaces of M , so inherit a GL (1,C)-structure, since
we have a complex structure in each of those 2-planes. Recall that we started
off this section by thinking about real hypersurfaces in complex surfaces. Levi-
flat real hypersurfaces M are then foliated by real surfaces, which we can see
are holomorphic curves, since their tangent planes are complex lines in the
tangent spaces of M . Conversely, picking any family of complex curves in
a complex surface, chosen so that they foliate a 3-manifold in the complex
surface, we get a Levi-flat hypersurface.

7.4.2 Levi-pseudoconvex hypersurfaces

Suppose that t 6= 0 at every point. Then t = 1 is a subbundle B1 ⊂ B,
principal for G1 the group of matrices of the form
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g1
1 g1

2

0
∣∣g1

1

∣∣2
)

with complex entries, and g1
1 6= 0. The structure equations are now:

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ2
2

)
∧

(
ω1

ω2

)
+

(
0√
−1ω11̄

)

On this subbundle, γ2
2 − γ1

1 − γ1̄
1̄ must be semibasic, say

γ2
2 = γ1

1 + γ1̄
1̄ + a1ω

1 + a1̄ω
1̄ + a2ω

2 + a2̄ω
2̄

with a̄ the conjugate of aj , since γ2
2 is real valued. We can absorb these aj

(and hence a̄) by redefining γ1
1 and γ1

2 . The structure equations:

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)
∧

(
ω1

ω2

)
+

(
0√
−1ω11̄

)
.

There are no longer any functions appearing here, so we might guess that all
Levi pseudoconvex hypersurfaces are equivalent, since nothing has popped up
to tell them apart. It will turn out that we simply haven’t differentiated enough
times to see the local invariants that can tell them apart. (In subsection 8.2
on page 172, we will explain a technique of Cartan to tell us whether or not
we really “need” to differentiate to detect local invariants at higher order, and
in this example Cartan’s technique will tell us that we do.)

7.4.3 The prolongation

The pseudoconnection 1-forms γi
j are determined up to

γ1
1 7→ γ1

1 + a1ω
2

γ1
2 7→ γ1

2 + a1ω
1 + a2ω

2.

Equivalently, we could say that the prolongation g
(1)
1 of the Lie algebra g1

consists of the choices of a1 and a2. These a1, a2 coefficients will parameterize
the choices of pseudoconnection, and thus parameterize the structure group
g
(1)
1 of the bundle B(1)

1 → B1, the prolongation of the G1-structure. We can
pick a specific choice Γ of pseudoconnection on B1, and write γ = Γ + aω on
B

(1)
1 → B, so that a1 and a2 are thought of as parameterizing the fibers of

B(1) → B.
Taking the structure equations for dω and performing exterior derivative

to both sides, we find
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0 =

(
d

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)
+

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)
∧

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)

+

(√
−1γ1

2 ∧ ω1̄ + 2
√
−1γ1̄

2 ∧ ω1 0
0 −

√
−1γ1

2 ∧ ω1̄ +
√
−1γ1̄

2 ∧ ω1

))
∧

(
ω1

ω2

)
from which we can conclude, using Cartan’s lemma, that there are 1-forms ξ1
and ξ2 so that

0 = dγ1
1 +
√
−1γ1

2 ∧ ω1̄ + 2
√
−1γ1̄

2 ∧ ω1 + ξ1 ∧ ω2 +Rω1̄ ∧ ω1

0 = dγ1
2 + γ1

2 ∧ γ1̄
1̄ + ξ1 ∧ ω1 + ξ2 ∧ ω2

for some function R. We can check explicitly that on fibers of B(1)
1 → B1, these

forms ξ1 and ξ2 satisfy ξj = daj . In particular, the ξj are pseudoconnection
1-forms for B(1)

1 → B.
Taking exterior derivative, we find

dR = 2
√
−1 (ξ1̄ − ξ1)

modulo ω, γ, i.e. on each fiber of B(1)
1 → B1, R varies according to an affine

action of the structure group g
(1)
1 . Therefore there is a distinguished subbundle

B2 ⊂ B(1)
1 on which R = 0, which is a principal right G2 bundle, with G2 the

subgroup of g
(1)
1 given by requiring a1 to be real. On B2, effectively (i.e. by

excusable change of notation) ξ1 has become real-valued, but there are new
torsion terms coming from what was its imaginary part:

0 = dγ1
1 +
√
−1γ1

2 ∧ ω1̄ + 2
√
−1γ1̄

2 ∧ ω1 + ξ1 ∧ ω2 +
√
−1τ ∧ ω2

0 = dγ1
2 + γ1

2 ∧ γ1̄
1̄ + ξ1 ∧ ω1 + ξ2 ∧ ω2 +

√
−1τ ∧ ω1.

Absorbing torsion, I can arrange τ = Tω1 + T̄ ω1̄. Calculating exterior deriva-
tives determines that

dT = −3
2
ξ2

modulo ω, γ, i.e. on the fibers of B2 → B1. Therefore again T varies in an
affine action of the structure group, and there is a subbundle B3 ⊂ B2 on
which T = 0, and on that subbundle, ξ2 becomes semibasic, i.e. new torsion
emerges: ξ2 becomes a multiple of the ω, γ 1-forms. Lets write ξ instead of ξ1.
Taking exterior derivatives, absorbing torsion, we obtain the final structure
equations:

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)
∧

(
ω1

ω2

)
+

(
0√
−1ω11̄

)

d

(
γ1
1

γ1
2

)
= −

(
0 ξ

ξ 0

)
∧

(
ω1

ω2

)
−

(√
−1γ1

2 ∧ ω1̄ + 2
√
−1γ1̄

2 ∧ ω1

γ1
2 ∧ γ1̄

1̄ + sω1̄ ∧ ω2

)
dξ =

(
γ1
1 + γ1̄

1̄

)
∧ ξ +

√
−1γ1

2 ∧ γ1̄
2 −

(
pω1̄ + p̄ω1

)
∧ ω2
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for a uniquely determined complex-valued functions s and p. Note that now
the exterior derivatives of all of the 1-forms ω, γ, ξ are expressed in terms
of those same 1-forms, and some functions. We will see later on that this is
precisely the signal to us that the equivalence method can be stopped here.

We can calculate the exterior derivatives of these structure equations to
find expressions for ds and dp, which are

d

(
s

p

)
=

(
γ1
1 + 3γ1̄

1̄ 0
−
√
−1γ1̄

2 2γ1
1 + 3γ1̄

1̄

)(
s

p

)
+

(
p ∇1̄s ∇2s

∇1p ∇1̄p ∇2p

)ω1

ω1̄

ω2

 .

7.4.4 Homogeneous examples

Cartan [22, 23] classified all of the homogeneous cases. Lets just do the sim-
plest one: suppose that the symmetry group acts transitively on the bundle
B3 which we have constructed above. Then the invariants s and p must be
constants, since they are invariant. From the equations above for s and p,
being constant forces them both to vanish. Plugging in s = p = 0 to the
structure equations gives

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)
∧

(
ω1

ω2

)
+

(
0√
−1ω11̄

)

d

(
γ1
1

γ1
2

)
= −

(
0 ξ

ξ 0

)
∧

(
ω1

ω2

)
−

(√
−1γ1

2 ∧ ω1̄ + 2
√
−1γ1̄

2 ∧ ω1

γ1
2 ∧ γ1̄

1̄

)
dξ =

(
γ1
1 + γ1̄

1̄

)
∧ ξ +

√
−1γ1

2 ∧ γ1̄
2

Exercise 7.2 We don’t have any room left: there can only be one example,
at least locally. Prove this by defining a developing map, analogous to that
for a manifold with connection as discussed in section 2.7 on page 22.

To learn the identity of this example, see subsection 8.6 on page 189. See
Jacobowitz [48], for more information on CR-manifolds in all dimensions,
including an excellent explanation of the equivalence method, and proof that
the generic Levi pseudoconvex CR 3-manifold is not the boundary of a domain
in C2.

7.5 Higher prolongations

We call a Lie algebra g ⊂ End(V ) of linear transformations of a finite dimen-
sional vector space V finite type if the sequence of prolongations g, g(1), g(2), . . .
has only finitely many nonzero terms. (See the appendix on Spencer cohomol-
ogy for the definition of prolongations.)
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If the Lie algebra g of our group G has finite type, then eventually we
will arrive at a prolongation B(k) for which there is an invariant choice of
coframing. Be careful: the choice of which constant type our structure has
at each stage will decide which abelian groups occur as the structure groups
of each prolongation, since we will have to reduce structure group before
each prolongation. But the structure groups will be subgroups of the g(k)

(i.e. vector subspaces), and consequently finite type of g implies that the
sequence of prolongations will stop. If the torsion of each prolongation up to
B(k−1) vanishes, then the torsion of the k-th prolongation lies in the Spencer
cohomology group Hk,2 (g).

Remark 12 (How far do we have to go?). By finiteness of Spencer cohomology
(see the appendix) there are only finitely many nonzero torsion representations
Hk,2 (g) (whether G has finite type or not); finitely many obstructions to
flatness that emerge from the method of equivalence.

Remark 13 (Not very far). There are no important examples of higher order
finite type structures beyond B(1). This is perhaps explained by the absence
of irreducible homogeneous spaces of higher than second order.

Exercise 7.3 If M = H/H0 is a homogeneous space, let N ⊂ H0 be a normal
subgroup of H. Show that M = (H/N) / (H0/N).

Recall that a homogeneous space M = H/H0 can be regarded as having an
H0-structure. We do this by taking a point m0 ∈ M with stabilizer H0, and
a point u0 ∈ Fm0M , and mapping h ∈ H 7→ hu0 ∈ FM . Henceforth, suppose
that H0 contains no normal subgroup of H. If H0 is discrete, we say that the
homogeneous space M has order 0. If not, then we let H1 be the subgroup
of H0 acting trivially on h/h0 (which we can identify with the tangent space
Tm0M). Our map H → FM descends to a map H/H1 → FM . We can view
H/H1 as our H0/H1-structure, and take its prolongation.

Exercise 7.4 Let H2 ⊂ H1 be the elements of H1 which act trivially on
Tu0FM . Show how to map H/H2 → (H/H1)

(1).

In this way, we proceed inductively, and say that M = H/H0 has order k if
Hk is discrete.

Exercise 7.5 Show that if the dimension of H1 equals that of H0, then the
identity component of H0 is a normal subgroup of H.

Theorem 7 (Cartan [19], Kobayashi & Nagano [54]). A homogeneous
space M = H/H0 is called irreducible if H0/H1 acts irreducibly on h/h0.
Every irreducible homogeneous space has order at most 2.
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7.6 Cartan geometries, homogeneity and completeness

7.6.1 Definition of Cartan geometries

It is occasionally useful to generalize the concept of finite type G-structure
to:

Definition 26. A Cartan geometry on a principal right G-bundle B →M is
a Lie algebra valued coframing Ω ∈ Ω1 (B)⊗ h so that

1. the Lie algebra g of G is a Lie subalgebra of h and
2. G occurs as a closed subgroup of some Lie group H with Lie algebra h and
3. for each A ∈ g, the vector field ~A on B generating the G action, i.e.

~A(u) =
d

dt

∣∣∣∣
t=0

ue−tA,

satisfies ~A Ω = A and
4. under G action,

r∗gΩ = Ad−1
g Ω

Call M the base space, B the bundle, G the structure group, h the principal
Lie algebra, Ω the Cartan connection. For each A ∈ h, define the vector field
~A on B by ~A Ω = A. Say that the Cartan geometry is complete if all of
the ~A vector fields are complete. The curvature of a Cartan geometry is the
function κ : B → h⊗ Λ2 (h∗) defined by

dΩ = −1
2

[Ω,Ω] + κΩ ∧Ω.

We call a Cartan geometry flat if its curvature vanishes.

Sharpe [76, 77] is the standard reference on Cartan connections.

Remark 14. DANGER: a Cartan connection is not a connection!

Exercise 7.6 Check that the vector fields ~A form a Lie algebra just when
the curvature is constant.

Exercise 7.7 (Surfaces with Riemannian metric) A surface with Rie-
mannian metric has structure equations

d

(
ω1

ω2

)
= −

(
0 γ

−γ 0

)
∧

(
ω1

ω2

)
dγ = Kω1 ∧ ω2.

Check that the form
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Ω =

 0 γ ω1

−γ 0 ω2

−K0ω
1 −K0ω

2 0


for K0 any constant is a Cartan geometry on the orthonormal frame bundle.
Calculate the curvature.

Example 57. Prolong any G-structure B enough times, and if if at each stage
one can choose an equivariant section for the torsion, and if finally the pro-
longation stops, because g(k) = 0, then on the bundle B(k) →M , its soldering
and connection forms give a Cartan geometry.

Definition 27. A locally Klein geometry is a choice of Lie group H, closed
subgroup G and discrete subgroup Γ so that Γ acts freely and properly on the
left on H/G. The associated Cartan geometry is: B is the quotient B = Γ\H,
the principal Lie algebra h is the Lie algebra of H, M = Γ\H/G, and Ω is
the Maurer–Cartan 1-form of H. It is called a Klein geometry if Γ = 1. To
each Cartan geometry with principal Lie group H and structure group G, the
Klein geometry H/G is called its model.

This definition is due to Sharpe [76], chapter 4. Note that the definition in-
cludes a choice of group H, but only the Lie algebra of H plays a substantial
role. This leads to annoying subtleties.

7.6.2 Example: Levi pseudoconvex CR 3-manifolds

We follow Robert Bryant [15].

Exercise 7.8 The structure equations from subsection 7.4.2 on page 112 can
be organized into 1-form

Ω =

− 1
3

(
2γ1

1 + γ1̄
1̄

)
−
√
−1γ1̄

2̄ −
√
−1ξ

ω1 1
3

(
γ1
1 − γ1̄

1̄

) √
−1γ1

2

−
√
−1ω2 ω1̄ 1

3

(
γ1
1 + 2γ1̄

1̄

)


(which is a Cartan connection on the bundle B3 →M) and if we write

∇Ω = dΩ +
1
2

[Ω,Ω]

then

∇Ω =

0 −
√
−1s̄ω1 ∧ ω2

√
−1
(
pω1̄ ∧+p̄ω1

)
∧ ω2

0 0
√
−1sω1̄ ∧ ω2

0 0 0

 .

The reader is naturally curious as to how we came up with Ω; this comes from
the study of the CR-geometries with largest symmetry group. The general
formalism will be explained in subsection 8.5.1 on page 182.
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7.6.3 Flat Cartan geometries

Exercise 7.9 (Surfaces with Riemannian metric) Continuing exercise 7.7
on page 117, if the Cartan geometry is a locally Klein geometry, show that
K = K0 constant Gauss curvature. Give an example with K = K0 which is
not locally Klein. For those which are locally Klein, rescale the metric to get
K0 = −1, 0 or 1, and then show that the principal Lie algebra is sl (2,R),
so (2) o R2 or so (3).

Lemma 18. A locally Klein geometry is a complete flat Cartan geometry.

Proof. You need to show that Γ\H → Γ\H/G is a principal right G bundle.
See Sharpe [76], pp.154–156 for details.

Definition 28. If M0 → M1 is a local diffeomorphism, and Ω1 is a Cartan
connection on a bundle B1 →M1, the pullback Cartan geometry is the pulled
back form on the pullback bundle.

Lemma 19. Under a covering map M0 → M1, the pullback of a Cartan ge-
ometry is complete just when the original is complete.

Proof. The bundles B0 → B1 are covering spaces, and the vector fields ~A are
matched up by the covering map.

Definition 29. A double coset space is a space Γ\H/G, where G ⊂ H is a
closed subgroup, and Γ ⊂ H is a countable subgroup, perhaps not acting freely
or properly on H/G.

Example 58. Take H = SO (2) o R2, G = SO (2) and Γ = ±1 ⊂ G. Then
Γ\H/G is the plane with points x and −x identified, a cone with a sharp
point, a double coset space but not a locally Klein geometry.

Exercise 7.10 Give other examples of double coset spaces which are not
locally Klein geometries.

Definition 30. If Γ\H/G is a double coset space, and Γ is endowed with a
free and proper discontinuous action on a manifold M , commuting with a local
diffeomorphism M → H/G, define the quotient Γ\M the Cartan geometry
on the quotient bundle of the pullback bundle.

Example 59. Returning to the previous example, take M̃ the plane with origin
removed, and M the cone with the sharp point removed.

Theorem 8. Every flat Cartan geometry is a quotient M = Γ\M̃ of a pull-
back M̃ → H/G.
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Proof. Take B →M the bundle, Ω the Cartan connection. Let H be any Lie
group with Lie algebra h containing G as a closed subgroup. Let Ω0 be the
left invariant Maurer–Cartan form of H. Let H act on B ×H on the left, by
leaving B alone and acting on H by left translation. Let G act on B ×H by
acting diagonally on the right. On B×H, the equation Ω = Ω0 is holonomic,
so by the Frobenius theorem, B×H is foliated by its leaves. Both the H and
G actions preserve the equation Ω = Ω0, so both permute the leaves. Define a
G-leaf to be the G-orbit of a maximal leaf. Each leaf must be invariant under
the vector fields ~A⊕ ~A, since these satisfy Ω = Ω0. Therefore each leaf must
be invariant under the identity component of G, and each G-leaf B̃ is a union
of leaves, parameterized by the topological components of G. Thus a G-leaf
is an immersed submanifold, and there is a unique G-leaf through each point
of B ×H. Any two G-leaves are permuted by H action. Each G-leaf is acted
on freely and properly by G, since B and H are. So each G-leaf is a smooth
principal right G-bundle B̃ → M̃ over its quotient by G-action.

Pick a G-leaf B̃. Lets see why B̃ → B is onto. Suppose that u′ ∈ B is in the
boundary of the image of B̃ → B. Pick any other G-leaf B̃′, passing through
some point (u′, h′) ∈ B×H. Then the map B̃′ → B is a local diffeomorphism
near (u′, h′). Therefore it must hit some point u ∈ B in the range of of
B̃ → B, say (u, h) ∈ B̃. But then some H translate of B̃′ must intersect B̃,
and therefore equal B̃. Therefore B̃ → B is onto, and thus M̃ →M is onto.

Pick a point u0 ∈ B. Consider the map h → B given by A 7→ e
~Au0. This

map might not be defined globally, but is a coordinate chart in some open
neighborhood W ⊂ h of the origin. Perhaps replacing W by a smaller open
neighborhood of the origin, we can arrange that A ∈ W 7→ eA ∈ H is also a
coordinate chart. Take WB ⊂ B the image of W . Let WB̃ be the preimage of
WB via B̃ → B. Let u0 × F be the preimage in B̃ of u0, F ⊂ H a discrete
subset (not empty). An explicit diffeomorphism:

(A, h) ∈W × F 7→
(
e

~Au0, e
Ah
)
∈WB̃ .

shows that B̃ → B is a covering map.
Let ũ0 = (u0, 1) ∈ B̃. Given a smooth path in B starting at u0, lift it

to a path in B̃, starting at ũ0, by requiring Ω = Ω0. The path, say u(t),
gives rise to a Lie equation u′(t) Ω = h′(t) Ω0 for a path h(t) ∈ H.
We can solve Lie equations locally using short time existence of solutions
of ordinary differential equations, and globally by left invariant patching of
local solutions. Alternatively, we can just lift paths via the observation that
B̃ → B is a covering map. In particular, we can lift loops u(t) to paths
(u(t), h(t)) ∈ B̃, and then map to h(1). This defines a map taking loops based
at u0 to elements of H. It is easy to see that this map is homotopy invariant,
so takes π1(B)→ H. Moreover, given two loops u1(t) and u2(t), we join them
together to form a loop u(t), and find that u(t) gives rise to the path h(t) which
is h1(t) for 0 ≤ t ≤ 1 and h1(1)h2(t − 1) for 1 ≤ t ≤ 2, by left translation.
Therefore π1(B) → H is a homomorphism. Clearly it vanishes precisely on
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π1

(
B̃
)
. So B̃ → B is a normal covering map. Γ = π1(B)/π1

(
B̃
)
⊂ H acts

on B̃, as a subgroup of H acting on the left, so commuting with G acting on
the right. Therefore the action of Γ descends to an action on M̃ . Check that
Γ acts freely. To see that Γ acts properly, follow Sharpe [76] lemma 3.12, p.
154. Therefore M̃ →M is a normal covering map. Because the map B̃ → B is
a G-bundle morphism, π1(B)→ H vanishes on the image of π1(G)→ π1 (B),
so descends to a map π1(M) → H. Moreover, one can easily check that its
kernel is precisely π1

(
M̃
)
, so Γ = π1(M)/π1

(
M̃
)
.

Question 8. I think there is a problem here: I think that Γ is not a subgroup of
G. In fact, if you look carefully, it looks like in the case of Sn → RPn covering,
the group of deck transformations ±1 is mapped to 1 ∈ G = PGL (RPn).

Remark 15. The proof also shows that Γ is containing in the identity compo-
nent of H.

7.6.4 Complete flat Cartan geometries

Lemma 20. A Cartan geometry with connected base space is complete and
flat just when it is a locally Klein geometry, possibly for some Lie group H ′

with the same Lie algebra h as the principal group H, and which also contains
G as a closed subgroup, with the same Lie algebra inclusion g ⊂ h, with H ′/G
connected.

Proof. This generalizes proposition 15 on page 81 and has the same proof,
and is proven in Sharpe [76].

Definition 31. The kernel N of a Cartan geometry modelled on H/G is the
largest subgroup of G which is normal in H. We will say that a Cartan geom-
etry is effective if N = 1. We will say it is locally effective if N is discrete.

Example 60 (Reducing by the kernel). Given a Klein geometry H/G, con-
struct the Klein geometry G/N ⊂ H/N , which has the same base mani-
fold (H/N)/(G/N) = H/G. Similarly for a double coset space, Γ\H/G =
(Γ/(Γ ∩N)) \(H/N)/(G/N).

Exercise 7.11 Show that the kernel N of a Klein geometry G ⊂ H is a closed
subgroup of G, and

N =
⋂

h∈H

hGh−1.

Definition 32. Let Γ\H/G (with Γ,G ⊂ H) be a locally Klein geometry. The
associated effective locally Klein geometry is Γ ′\H ′/G′ where Γ ′ = Γ/(Γ∩N),
H ′ = H/N and G′ = G/N .
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Definition 33. If Ω on B →M is a Cartan geometry, then Ω+n, B/N →M
is the associated effective Cartan geometry; where n is the Lie algebra of the
kernel N .

Lemma 21. A Cartan geometry is complete just when its associated effective
Cartan geometry is complete.

Proof. The 1-form Ω + n is invariant under N action, and vanishes on the
fibers of B → B/N , so is defined on B/N , and one easily checks that it
is a Cartan connection. A vector field ~A up on B will map to ~A on B/N ,
intertwining the flows. Therefore if ~A is complete upstairs, then it is complete
downstairs. If complete downstairs, but not upstairs, there must be some
point u ∈ B and time T so that the flow of some ~A through u is defined
on B for times up to but not equal to T . (Switching ~A and − ~A, we can
assume T > 0.) Downstairs, the flow is defined at time T , so we can look at
the corresponding point ū downstairs and watch its flow even past time T .
The problem is clearly local in B/N , so we can assume that B → B/N is a
trivial bundle, B = M ×G→ B/N = M ×G/N . Write the quotient by N as
g ∈ G 7→ ḡinG/N . Upstairs the vector field ~A must be

~A(m, g) = (X(m, ḡ), Lg∗A0(m)) ,

for some A0 : M → g. Downstairs it is

~A(m, ḡ) =
(
X(m, ḡ), Lḡ∗Ā0(m)

)
.

We get a flow line upstairs (m(t), g(t)), so that g(t) does not converge as
t→ T , but (m(t), ḡ(t)) converges. Thus we have a smooth function A0 (m(t))
defined for t even bigger than T , and the equation upstairs

dg

dt
= Lg(t)∗A0 (m(t)) .

But this ordinary differential equation must have a solution for times even
bigger than T , because it is a Lie equation, so we can solve it locally on the
group G, and then patch local solutions together by left translation.

Lemma 22. Every infinitesimal symmetry of a complete Cartan connection
is a complete vector field; the Lie algebra of infinitesimal symmetries is the
Lie algebra of the Lie group of symmetries.

Proof. The vector fields ~A commute with infinitesimal symmetries X. If the
Cartan connection is complete, then these ~A will permute the integral curves
of X, so the amount of time we can flow along X is independent of which
point we start at. But we can also take any piece of an integral curve of X,
and just slide its initial point to its final point by flowing along finitely many
of the ~A vector fields, each for a finite time, by Sussmann’s orbit theorem
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3. Therefore however long we can flow along X, we can always flow twice as
long as that. This ensures completeness of all infinitesimal symmetries, and
the rest follows by Palais’s result 6 on page 73, combined with the results in
corollary 14 on page 177 which will show us that the symmetry group is a
finite dimensional Lie group.

Question 9. I should point out somewhere below that the symmetry group of
a Cartan connection is a finite dimensional Lie group, and change this last
lemma to point to that spot.

For example, the Killing vector fields (infinitesimal symmetries) of a complete
Riemannian manifold are complete vector fields.

Lemma 23. A flat Cartan connection on a compact, connected base manifold
with finite fundamental group is a locally Klein geometry.

Proof. Let M̃ → M be the covering map of theorem 8 on page 119. Because
M has finite fundamental group, so does M̃ , and therefore M̃ →M is a finite
covering, so M̃ is compact. By compactness of M̃ , M̃ → H/G is a covering
map (to its image–it need not be onto). Therefore B ← B̃ → H are covering
maps (to their images). So Ω is a complete Cartan connection.

Lemma 24. Every compact manifold M which is the base of a flat Cartan
geometry modelled on H/G either (1) has fundamental group π1(M) yielding
to the identity component of H/N (where N is the kernel) or (2) is a locally
Klein geometry M = Γ\H̃/G, where H̃ is a finite covering group of H con-
taining G and Γ , and Γ ⊂ H is finite. In particular, either n < 4 or infinitely
many compact manifolds of dimension n bear no flat Cartan connection.

Proof. We can quotient out the kernel, so assume N = 1. By Levi decom-
position (see Onishchik & Vinberg [69] p. 284), every Lie group H admits a
covering group which splits into a semidirect product of simple factors with
a solvable factor. No simple group can live in the solvable factor, so simple
subgroups must live in the simple factors. Looking at the lowest degree repre-
sentations of various finitely presented simple groups (alternating groups, for
instance), compared to the lowest degree representations of the simple factors
of our Lie group, we can find lots of finitely presented simple groups which
are not faithfully represented in any of these simple factors. Moreover, the
kernel of a covering map between Lie groups is abelian, so there are lots of
finitely presented simple groups, both finite and infinite, which defy H. Their
free products also defy H.

Every finitely presented group is the fundamental group of some compact
manifold of any dimension 4 or more (Massey [61] p. 143); takeM any compact
manifold with fundamental group defying H. Suppose that M bears a flat
Cartan connection. As in the previous proof, some finite normal covering of
M , say M̃ , is a compact covering of H/G. Therefore π1 (H/G) must share a
finite index normal subgroup with π1 (M).
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If we start with M having finite fundamental group defying H, then we
find that π1 (H/G) must be finite as well. But if we start with M having
infinite fundamental group defying H, then π1 (H/G) must be infinite as well.

Remark 16. This approach is not very explicit, but it effortlessly demonstrates
the existence of counterexamples.

Exercise 7.12 Give an example of an incomplete flat Cartan connection on
a compact base manifold, and one on a simply connected noncompact base
manifold.

7.6.5 The tangent bundle in a Cartan geometry

Lemma 25. Given a Cartan connection Ω on B → M , let V = h/g, and
get G to act on V via the representation on h. Consider the diagonal right G
action:

rg (u, v) =
(
ug, ρ(g)−1v

)
.

Then TM = (B × V ) /G.

Proof. We follow Sharpe [76], p. 163. Write the bundle map as π : B → M .
Define ω ∈ Ω1 (B)⊗ V by ω = Ω (mod g). Define a map

(u, v) ∈ B × V 7→ π′(u)Ω̄−1v ∈ TM.

Check G-invariance, so that the map is defined on the quotient (B × V ) /G,
which is a vector bundle over M . Nonzero vectors remain nonzero under the
map, so it is an injection, and clearly of full rank, so a vector bundle isomor-
phism.

Exercise 7.13 Show that the curvature form ∇Ω = κΩ∧Ω is semibasic, i.e.
vanishes on the fibers of B → M . Define κΩ̄ ∧ Ω̄. Show that the curvature
represents a section of the vector bundle

(
B × h⊗ Λ2 (V ∗)

/
G→M .

7.7 Example: conformal geometry again

Take 〈, 〉 a nondegenerate quadratic form of signature p, q on a vector space
V . Recall from section 4.2 on page 29 that as CO (p, q) representations

co (p, q)(1) = V ∗

and co (p, q)(1) = 0.
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7.7.1 Surfaces

The prolongations of conformal structures on surfaces are more easily under-
stood by treating such structures as complex structures (at least after choos-
ing an orientation, perhaps on a covering space). One simply complexifies the
general linear group example, using only complex linear 1-forms. We see iden-
tical structure equations, with all Spencer cohomology vanishing, so no local
invariants emerge at any prolongation. Indeed, in example 67 on page 171
Cartan’s count will tell us that real analytic conformal structures on surfaces
are flat and have infinite dimensional local symmetry pseudogroup, so no local
invariants. Moreover, by the Newlander–Nirenberg theorem (see [66],[44],[72])
the same result is true for continuously differentiable conformal structures on
surfaces.

7.7.2 Higher dimensions

We will follow Cartan [21].

Proposition 23. If dimV ≥ 3 then co (p, q)(k) = 0 for all k ≥ 2. Moreover,

H1,2 (co (p, q)) = Weyl (p, q)

is identified with the Weyl curvature under the map

H1,2 (so (p, q))→ H1,2 (co (p, q))

induced by the inclusion
so (p, q) ⊂ co (p, q) .

Proof. Suppose that dimV ≥ 3. Take any η ∈ co (p, q)(2). So η ∈ Sym3 (V ∗)⊗
V and for any x ∈ V we have

η(x, ·, ·) ∈ co (p, q)(1) .

Therefore (in the notation we defined in our previous discussion of conformal
geometry)

η(x, ·, ·) = λ′x

for some λx ∈ V ∗, i.e.

η(x, y, z) = λ′x(y, z)
= λx(y)z + λx(z)y − λ∗x 〈y, z〉
= λy(x)z + λy(x)z − λ∗y 〈x, y〉

(by symmetry in x, y). Now pick x, y, z orthogonal and linearly independent.
We find λx(z) = 0. Therefore for any pair of vectors x, z ∈ V , if 〈x, z〉 = 0
then λx(z) = 0. This implies that
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λx(z) = µ 〈x, z〉

for some fixed µ ∈ R i.e. for arbitrary x, y, z we have

η(x, y, z) = λx(y)z + λx(z)y − λ∗x 〈y, z〉
= µ 〈x, y〉 z + µ 〈x, z〉 y − µx 〈y, z〉

and this is not symmetric in x, y, z unless λ = 0. Therefore co (p, q)(2) = 0.
Let g = co (p, q). From the exact sequence

0 −−−−→ 0 = g(2) −−−−→ g(1) ⊗ V ∗ δ−−−−→ g⊗ Λ2 (V ∗)
[ ]−−−−→ H1,2 (g) −−−−→ 0

we have
δ : g(1) ⊗ V ∗ → g⊗ Λ2 (V ∗)

an injection. Indeed we can write elements of g(1) ⊗ V ∗ as

λ′(x, y, z) = λ(x, z)y + λ(y, z)x− λ∗(z) 〈x, y〉

for some λ ∈ V ∗ ⊗ V ∗, with the notation λ∗(z) defined by

〈λ∗(z), w〉 = λ(w, z).

Calculating δ we find

〈δλ′(x, y, z), w〉 = λ(x, z) 〈y, w〉+ λ(w, y) 〈x, z〉
+(λ(y, z)− λ(z, y)) 〈x,w〉
−λ(w, z) 〈x, y〉 − λ(x, y) 〈w, z〉 .

Pick w = y and x, y, z orthogonal.

〈δλ′(x, y, z), y〉 = λ(x, z) 〈y, y〉

so this vanishes only for λ = 0. Therefore, we see explicitly that

δ : g(1) ⊗ V ∗ → g⊗ Λ2 (V ∗)

is an injection.
In order to investigate

H1,2 (g) =
ker δ : g⊗ Λ2 (V ∗)→ V ⊗ Λ3 (V ∗)

im δ : g(1) ⊗ V ∗ → g⊗ Λ2 (V ∗)

we need now to study the numerator. For

η ∈ g⊗ Λ2 (V ∗)

define
Tη ∈ V ∗ ⊗ V ∗
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by
Tη (x, y) = tr η (x, ·, y) .

Calculate
Tδλ′ (x, y) = −λ(x, y) + 〈x, y〉 trλ∗.

Obviously, if trλ∗ = 0, this recovers λ. More generally, we can always recover
λ from δλ′ using a complicated manipulation involving T . Explicitly, if we
write

Φλ = −Tδλ′

then

λ =
(

1
n− 1

Φ2 +
n− 2
n− 1

Φ

)
λ.

Therefore, we can recover λ from δλ explicitly. Consequently, for each η ∈
g⊗ Λ2 (V ∗) we can replace it by a unique η + δλ′ so that Tη = 0. Therefore
we can identify

H1,2 (co (p, q)) ∼= kerT ∩ ker δ ⊂ C1,2 (co (p, q)) ∩ ker δ.

We can identify this as an so (p, q) representation with the Weyl curvature
Weyl (p, q) under the map

H1,2 (so (p, q))→ H1,2 (co (p, q))

coming from the inclusion

so (p, q) ⊂ co (p, q) .

To prove this, we simply consider the operators δ and T which impose the
first Bianchi identity, and wipe out the other components of C1,2 (co (p, q)).

Note that the Weyl curvature representation is Weyl (p, q) = 0 if dimV = 3.
Moreover, if dimV = 4, it splits into subrepresentations, while in all higher
dimensions it is an irreducible SO (p, q) and CO (p, q) representation.

Corollary 11. Suppose again that dimV ≥ 3. By the vanishing of g(k) for
k > 1 we see that all higher torsion representations

Hk,2 (co (p, q)) = 0

vanish for k > 2. Therefore, we have only to look at H2,2 (co (p, q)) .

Proposition 24. If dimV ≥ 4 then

H2,2 (co (p, q)) = 0.
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Proof. The cohomology group is

H2,2 (co (p, q)) =
ker δ : g(1) ⊗ Λ2 (V ∗)→ g⊗ Λ3 (V ∗)
im δ : g(2) ⊗ V ∗ → g(1) ⊗ Λ2 (V ∗)

.

The denominator vanishes, since g(2) = 0. If we have

η ∈ g(1) ⊗ Λ2 (V ∗)

then
δη(x, y, z, w) = η(x, y, z, w) + η(x,w, y, z) + η(x, z, y, w).

Essentially as before,

η(x, y, z, w) = λ(x, z, w)y + λ(y, z, w)x− λ∗(z, w) 〈x, y〉

for some λ ∈ V ∗⊗Λ2 (V ∗). Calculate δη and take x, y, z, w with x perpendic-
ular to y, z, w and y independent of x, z, w. You find

λ(x, z, w) = 0

so that as long as dimV ≥ 4 we can ensure that λ(x, z, w) = 0 whenever x is
perpendicular to z and w. Therefore there is some ϑ ∈ V ∗ so that

λ(x, y, z) = 〈x, y〉ϑ(z)− 〈x, z〉ϑ(y).

Now calculate
〈δη(x, y, z, w), t〉

plugging in this ϑ. If ϑ 6= 0 then plug in x, y, z, w, t so that ϑ(y) 6= 0 and
ϑ(z) = ϑ(w) = 0. You find that

〈x, z〉 〈t, w〉 = 〈x,w〉 〈t, z〉

for any x, t vectors. Taking w, z perpendicular, and x = z, t = w we have a
contradiction. But the kernel of ϑ is a hyperplane in V , so we can take z, w
perpendicular. Therefore ϑ = 0, and λ = 0 and so η = 0, and the cohomology
vanishes.

7.7.3 Dimension 3

Proposition 25. If dimV = 3 then

H2,2 (co (p, q)) = Sym2
0 (V ∗)⊗ R 〈, 〉∗ ⊗ Λ3 (V ∗)

where 〈, 〉∗ is the dual quadratic form on V ∗ to the quadratic form 〈, 〉 on V .
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Proof. Carrying out the same calculations as before we find that

H2,2 (co (p, q)) = ker δ : g(1) ⊗ Λ2 (V ∗)→ g⊗ Λ3 (V ∗) .

Any representation of CO (p, q) gives a representation of SO (p, q), and if
we split that representation into irreducibles over SO (p, q) then we obtain
a splitting of the CO (p, q) representation, together with a weight for each
irreducible indicating how it scales with the diagonal matrices in CO (p, q).
Conversely, we can produce all irreducible representations of CO (p, q) by tak-
ing the SO (p, q) representations and adjoining all possible weights to them.
We will assign V weight one. We will write Rk for the one dimensional repre-
sentation of CO (p, q) of weight k. For instance

Λ3 (V ∗) = R−3.

We find

g(1) = V ∗

Λ2 (V ∗) = R−3 ⊗ V
g = R0 ⊗ so (p, q)

with weights

[V ] = 1
[so (p, q)] = 0

Tensoring gives a splitting into irreducibles:

δ : Sym2
0 (V )⊗ R−1 ⊕ R−3 ⊕ R−2 ⊗ V ∗ → R−3 ⊕ R−2 ⊗ V ∗.

The representation
Sym2

0 (V )

(symmetric traceless quadratic forms) is an irreducible representation of di-
mension 5, and so the term containing it must be in the kernel. We have only
to show that nothing else is.

Again we write

η(x, y, z, w) = η(x, y, z, w) = λ(x, z, w)y + λ(y, z, w)x− λ∗(z, w) 〈x, y〉

with
λ ∈ V ∗ ⊗ Λ2 (V ∗) .

If we take λ ∈ Λ3 (V ∗) then we find that δη 6= 0 unless λ = 0. Therefore, this
is the factor of R−3, not belonging to the kernel of δ.

We are still missing the R−2 ⊗ V ∗ part. Using the cross product defined
by

〈x× y, z〉 = dV ol(x, y, z)
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we can write

λ(x, y, z) = a 〈x, y × z〉+ ζ0(x, y × z) + ζ1(x, y × z)

decomposing into irreducibles, where ζ0 is symmetric and traceless and ζ1
antisymmetric, and a is a constant. We already know that the a part will not
belong to the kernel, so we take a = 0. Then we can easily calculate that
δη = 0 precisely when ζ1 = 0.

7.7.4 The structure equations

We will now write out the structure equations of conformal geometry in any
dimension greater than two. First, we saw that

dω = −γ ∧ ω

with ω ∈ Ω1 (B) ⊗ V our soldering form, and γ ∈ Ω1
(
B(1)

)
⊗ co (p, q). We

can split γ into pieces
γ = α+ σ1p+q

where

α ∈ Ω1
(
B(1)

)
⊗ so (p, q)

σ ∈ Ω1
(
B(1)

)
and 1p+q means the (p+ q)× (p+ q) identity matrix. These satisfy

dγ = −γ ∧ γ −$′ ∧ ω +
1
2
T (1)ω ∧ ω

for some $′ ∈ Ω1
(
B(2)

)
⊗ co (p, q)(1). But note that co (p, q)(2) = 0, the struc-

ture group of the bundle B(2) → B(1), so B(2) = B(1), and the prolongation
stops there. This gives

dα = −α ∧ α+ ω ∧$ +$∗ ∧ ω∗ +
1
2
Wω ∧ ω

dσ = −$ ∧ ω

for a 1-form
$ ∈ Ω1

(
B(1)

)
⊗ V ∗.

By taking exterior derivative of these equations, we see that this 1-form $
satisfies

d$ = −$ ∧ (α+ σ1p+q) +
1
2
Cω ∧ ω.

We have seen that W is the Weyl curvature, which vanishes in dimension
3, where C is the only torsion. On the other hand, when the dimension ex-
ceeds three, W is the only torsion, so that C is determined by the covariant
derivatives of W .
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7.7.5 The group actions

r∗g


ω

α

σ

$

 =


g−1ω

Ad−1
g α

σ

$g

 ,

r∗λ



ω

α

σ

$

W

C


=



ω

α+ λ∗ ⊗ ω∗ − ω ⊗ λ
σ − λω

$ − λ (α+ σ1p+q)
W

C − λW


,

where

1. g ∈ CO (p, q) and λ ∈ V ∗ and
2. the structure group is reductive, and the Weyl curvature lives in an ir-

reducible representation, H1,2 (co (p, q)), so we are using as section the
unique equivariant choice of linear section of

co (p, q)⊗ Λ2 (V ∗)→ H1,2 (co (p, q)) .

This is just the same as saying that we are requiring our Weyl curvature
to be in co (p, q) ⊗ Λ2 (V ∗), and be traceless and satisfy the first Bianchi
identity:

W i
ikl = 0,W i

jkl +W i
klj +W i

ljk = 0.

Note that W , the Weyl curvature, is a tensor, since it lives in the represen-
tation V ⊗ V ∗ ⊗ Λ2 (V ∗), and is invariant under the structure group of the
prolongation. On the other hand, C is a tensor just when W = 0, because
of the manner in which C varies under the structure group of the prolonga-
tion. But if W = 0, and the dimension is n > 3, then that forces C = 0, by
differentiating the structure equations. So we find that C is a tensor just on
3-manifolds.

7.7.6 Structure equations as Cartan connection

Question 10. I really should think carefully about the idea of graded Lie alge-
bras making their way into the theory. The notation from graded Lie algebras,
particularly Ruchti [73] and Agaoka [2], might clarify a lot about how things
were organized in the Cartan connection. It might also make it easy to bring
it Yamaguchi’s results on simple Lie groups as symmetry pseudogroups of
exterior differential systems. It might be convenient to write h =

⊕
hi and

write hij = hi ⊕ hj etc., and h≥i =
⊕

j≥i hj etc.
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We now present a mysterious reformulation of the structure equations, whose
origins will be revealed in subsection 8.5.1 on page 182. For now, we merely
state the startling:

Proposition 26. Let V ′ = R ⊕ V ⊕ R with coordinates (u, v, w). Let 〈, 〉′ be
the quadratic form on V ′:

〈, 〉′ = −dw du− du dw + 〈, 〉 .

On the bundle B(1) we have the structure equations

dΩ +Ω ∧Ω =

0 1
2Cω ∧ ω 0

0 1
2Wω ∧ ω 1

2 (Cω ∧ ω)∗

0 0 0


where

Ω =

−σ −$ 0
ω α −$∗

0 ω∗ σ

 ∈ Ω1
(
B(1)

)
⊗ so (p+ 1, q + 1)

is a Lie algebra valued 1-form, valued in the Lie algebra of the isometry group
of the quadratic form 〈, 〉′.

In subsection 8.5.1 on page 182, after careful study of the flat case, we will
see that it is natural to organize our differential forms in this fashion.

7.7.7 The flat case

If the symmetry group acts transitively on the bundle B(1) then the invariants
W and C must be constant. But since they belong to representations of the
structure group which contain no trivial subrepresentations, they must vanish.
Therefore the structure equations are

dΩ +Ω ∧Ω = 0.

These are also the structure equations of the group SO (p+ 1, q + 1), so any
conformal structure with vanishing Weyl and Cotten invariants must be locally
equivalent to the flat example:

SO (p+ 1, q + 1) /H0

where H0 is the maximal parabolic subgroup of elements of SO (p+ 1, q + 1)
which preserve the element 1

0
0

 ∈ RP (V ′)
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which we identify with the line through the origin and through1
0
0

 ∈ V ′.
The group H0 consists precisely in the matrices of the forms−1 y∗ z

0 a y

0 0 s


which belong to SO (p+ 1, q + 1). How did we find this group H0? We simply
set ω = 0 in the structure equations above; that gives the structure group of
the bundle, and the structure equations above become the structure equations
of H0. (We will be somewhat cavalier about factors of ±1.)

7.7.8 Null lines

The line preserved by H0 in V ′ is a null line. Null lines belong to a single orbit
of the action of O (p+ 1, q + 1) on RP (V ′). Therefore the space of null lines
in V ′ is precisely the manifold O (p+ 1, q + 1) /H0 on which we have created
the homogeneous flat conformal structure. Moreover, we have a canonical
projective embedding of this manifold of null lines into RP (V ′), embedded as
a hyperquadric (because the equation for a point of V ′ to belong to a null line
is quadratic).

7.7.9 The symmetry group

The orthogonal group O (p+ 1, q + 1) acts on the flat conformal structure,
and the subgroup ±1 ⊂ P acts trivially. So in fact the group

PO (p+ 1, q + 1) = O (p+ 1, q + 1) /± 1

acts on the space of null lines, and turns out to be the symmetry group.

7.7.10 Algebraic geometry of hyperquadrics

Every smooth nonempty real hyperquadric comes about in this way, i.e. as
the projectivized zero locus of a quadratic form 〈, 〉′ for some quadratic form
〈, 〉. The automorphisms of projective space leaving the hyperquadric invariant
form precisely the group of equivalences of the flat conformal structure on the
hyperquadric.
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7.7.11 The diffeomorphism type of a hyperquadric

Let us now find the hyperquadric as a manifold. Take a splitting V = V +⊕V −
of V into a maximal positive definite subspace for 〈, 〉 (possibly empty) and
a maximal negative definite subspace (possibly empty). Let x1, . . . , xp and
y1, . . . , yq be orthonormal coordinates on V + and V − respectively. We can
then let

x0 =
u− w√

2
and y0 =

u+ w√
2

and find that our space V ′ is split into

V ′ =
(
Rx0
⊕ V +

)
⊕
(
Ry0
⊕ V −

)
maximal positive definite and negative definite spaces, with quadratic form

〈, 〉′ =
∑

dx2
µ −

∑
dy2

ν .

The null lines are those on which |x| = |y|. We can pick out a vector on each
null line by the condition that |x| = 1, unique up to ±1. So the hyperquadric
on which our conformal structure lives is

(Sp × Sq) /{±1}

where the ±1 action is the simultaneous antipodal map.
Up to covering spaces, this is the unique conformal structure for which

the symmetry group acts transitively on all prolongations. Even in infinite
dimensions, the same approach works.

Exercise 7.14 The conformal structure on (Sp × Sq) /±1 is locally, but not
globally, equivalent to the standard flat conformal structure.

7.7.12 Circles

One motivation for looking at the group H0, which we found by setting ω = 0
in our structure equations, is that the ω terms occur everywhere in the cur-
vature. So both flat and curved manifolds will give rise to the same structure
equations once we set ω = 0. Indeed setting all but one of the ωj to 0 (say,
leaving ω1) kills off all of the curvature terms, since they are always wedge
products of ω 1-forms. But the structure equations for dωj then force αj

1 to
be semibasic, say αj

1 = kjω1, and that gives new curvature, a kind of geodesic
curvature. Assume that it vanishes, say αj

1 = 0. This forces $j semibasic by
the structure equations. Then ask for $j = 0 to kill off that kind of curva-
ture. Finally, this gives equations ωj = αj

1 = $j = 0 for j > 1 which turns
out to make all curvature terms disappear, and so, if the conformal geometry
is complete, then the integral manifolds (in the sense of exterior differential
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systems) of the equations
(
ωj = αj

1 = $j = 0 | j > 1
)

are acted on by a Lie
group whose structure equations are just the result of plugging these equations
into the structure equations above, so with Lie algebra sl (2,R)⊕so (p− 1, q).
Indeed this group acts transitively and with discrete stabilizer. The bundle
B(1) is foliated by these group orbits.

Exercise 7.15 What curves on M = (Sp × Sq) /{±1} live underneath the
integral manifolds of the equations 0 = ωj = αj

1 = $j for j > 1?

Exercise 7.16 As a vector space, V is equipped with the Maurer–Cartan
1-form dv defined by v dv = v. Define a 1-form ω̇ ∈ Ω1

(
B(1)

)
⊗ V by

ω̇ = dv + (α+ σ1p+q) v.

Define a vector field E on B(1) × V by

E


ω

α

σ

$

ω̇

 =


v

0
0
0
0

 .

Call the flow of E the circle flow of a conformal geometry. Show that its
flow lines are permuted by the action of the structure group of B(1) → M .
Show that these flow lines project to M by immersion, and are precisely the
images in M of the integral manifolds of (ω − v dt = αv = $ − v∗ dt = 0).
These curves on M are called the circles. Show that the circles satisfy a third
order system of ordinary differential equations.

7.7.13 Global consequences

Lemma 26. Suppose that M is a conformally flat pseudo-Riemannian man-
ifold with metric of signature (p, q). Then the orthonormal frame bundle B
admits a canonical embedding into the bundle B (CO (p, q))(1) of the confor-
mal structure, for which the Weyl curvature tensor pulls back to the Weyl
curvature component of the Riemann curvature tensor.

Proof. Start with the structure equations of pseudo-Riemannian geometry:

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

1
2
Ri

jklω
k ∧ ωl.

Fattening up the structure group to CO (p, q), we have the inclusion B →
B (CO (p, q)). But on B (CO (p, q)), the 1-forms α and σ are not really de-
fined. However, we can create a map B → B(CO (p, q))(1), picking out a
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pseudoconnection at each point, by using the Levi-Civita pseudoconnection
γ : TuB → so (p, q) and fattening it up to a choice of α, σ determined by

α : T(u,h)B ×H → so (p, q)
σ : T(u,h)B ×H → R

by
α+ σ1p+q = h−1 dh+ Ad−1

h γ.

It is easy to see that this defines 1-forms α and σ on B (CO (p, q)). It is easy to
check that they are pseudoconnection 1-forms, by splitting each h ∈ CO (p, q)
into h = sa with s ∈ R× and a ∈ SO (p, q).

This map satisfies
σ = 0, α = γ

on B. Taking exterior derivative, and plugging into the structure equations,
we find

$i = sijω
j

Ri
jkl = W i

jlk + δi
lsjk − δi

ksjl − gimgjlsmk + gimgjksml,

where gij are the components of the quadratic form 〈, 〉 on V . The Ricci tensor
is represented by sij .

Theorem 9. Every complete, connected, conformally flat pseudo-Riemannian
manifold of metric signature (p, q) with dimension p+ q ≥ 3 is a quotient of

• Sp × Sq if p 6= 1 and q 6= 1
• Sp × R if p > 1 and q = 1
• R × Sq if p = 1 and q > 1

by a discrete subgroup of (the appropriate covering group of) SO (p+ 1, q + 1).

Remark 17. N.B.: the relevant notion of completeness is not the one from
pseudo-Riemannian geometry. Indeed Euclidean space is conformally flat, and
complete as a Riemannian manifold, but not conformally complete, because
the circle flow on the bundle B(1) will not be complete. We can see this
from the conformal embedding Rn → Sn into the sphere. Similarly, the flat
torus is complete as a Riemannian manifold, but incomplete as a conformal
manifold, since flat Rn is a covering space, and is incomplete. In fact, the torus
of dimension at least 3 admits no complete flat conformal structure, of any
signature, since it does not have one of the above listed spaces as a covering
space.

Proof. Apply lemma 20 on page 121.
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Exercise 7.17 Use lemma 24 on page 123 to show that a compact mani-
fold can not admit a flat conformal structure if its fundamental group defies
PO (p+ 1, q + 1).

Exercise 7.18 Classify all homogeneous complete flat conformal structures
of dimension at least three.

Exercise 7.19 The proof certainly requires dimension at least 3, since the
structure equations behave very differently for dimension 2. What happens in
2-dimensional conformal geometry? See Forster [38]. Why do we expect that
analysis will be required?

Exercise 7.20 What happens to this proof if we start with M not simply
connected, for example a flat 3-torus? Does it at least construct a conformal
map from the 3-sphere to the 3-torus?

Exercise 7.21 Are there any compact, simply connected Lorentzian mani-
folds? Are there conformally flat ones?

Remark 18. The symmetry group of a positive definite conformal structure
alway preserves a Riemannian metric with that conformal geometry, except
for the standard conformal structure on the sphere or the standard flat con-
formal geometry on Euclidean space, as proven by R. Schoen [75]. Nothing
is known about this question in pseudo-Riemannian geometry. Fefferman &
Graham [37] discovered a beautiful fundamental relation between Riemannian
conformal geometry and negatively curved Riemannian Einstein manifolds.

7.7.14 Duality

In flat conformal geometry, we see that $ and ω have very similar roles in
the structure equations. Indeed we can see that transposing the Ω object flips
around the roles of ω and $. Note that putting in ω = 0 gives the structure
equations of the stabilizer of the null line1

0
0

 ∈ RP (V ′) .

Similarly, putting in $ = 0 gives the structure equations of the stabilizer of
the hyperplane [

1 0 0
]
∈ RP

(
(V ′)∗

)
.

This is a hyperplane of signature (p, q) with a null direction, i.e. a de-
generate hyperplane. All such hyperplanes are permuted by the action of
PO (p+ 1, q + 1), so that the same structure equations determine a confor-
mal structure on the space of degenerate hyperplanes. This is not surprising,



138 7 Prolonging G-structures into involution

since each degenerate hyperplane is perpendicular to a unique null line. In the
picture of M = Sp × Sq/± 1, this duality is just the antipodal map on Sp.

We can obviously generalize this observation: consider any conformal ge-
ometry. The Cotton invariant vanishes just when the equation $ = 0 is holo-
nomic, i.e. satisfies the conditions of the Frobenius theorem. Therefore if we
have vanishing Cotton invariant, then the bundle B(1) is foliated by the leaves
of $ = 0, and on each leaf we have the structure equations

dω = − (α+ σ1p+q) ∧ ω

dα = −α ∧ α+
1
2
Wω ∧ ω

dσ = 0.

Therefore each of these leaves is itself foliated by a family hypersurfaces de-
termined by the equation σ = 0. On each of these, the structure equations
are

dω = −α ∧ ω

dα = −α ∧ α+
1
2
Wω ∧ ω,

the structure equations of a Ricci-flat metric in the given conformal class.

Exercise 7.22 If the Ricci curvature vanishes in some metric in the confor-
mal class, does the Cotton invariant vanish?

7.7.15 Holomorphic conformal geometry

A holomorphic conformal structure is a holomorphic CO (n,C)-structure on
a complex manifold. The structure equations are the same as above.

Theorem 10. A complete holomorphic conformal structure is flat, and the
quotient of the hyperquadric

(
x2

0 + · · ·+ x2
n+1 = 0

)
/C× ⊂ CPn+1 by a discrete

subgroup of PO (n+ 2,C) = CO (n+ 2,C) /C×.

Proof. We take B → M to be the bundle of the conformal structure, and
B(1) → B its prolongation. Without loss of generality, we can replace M with
its universal covering space, so assume M is simply connected.

Lets compare with the flat example, M0 a smooth hyperquadric in pro-
jective space M0 ⊂ CPn+1. Write B0 → M0 for the conformal structure,
and B

(1)
0 → B0 for its prolongation. Recall that the symmetry group is

H = PO (n+ 2,C). The symmetry group can be identified with B
(1)
0 , be-

cause it acts transitively on B
(1)
0 with trivial stabilizer at any point. Under

this identification, M0 = H/H0, B0 = H/H1 and B
(1)
0 = H, where H0 is the

stabilizer of a null line in Cn+2, and H1 = Cn is the group of “null boosts”
along that null line, i.e. these are the connected subgroups with Lie algebras
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h =


σ −$ 0
ω α v∗

0 ω∗ −σ


 ,

h0 =


σ −$ 0

0 α $∗

0 0 −σ


 ,

h1 =


0 −$ 0

0 0 $∗

0 0 0


 .

The integral manifolds of the differential system

ωJ = αJ
1 = $J = 0, J > 1

are just left translates of the subgroup H− with Lie algebra given by these
equations, i.e. the subgroup PSL (2,C)×SO (n− 1,C), which is the subgroup
fixing a circle. Let H+ ⊂ H− be the subgroup fixing the circle and a point on
the circle.

Now consider a general holomorphic conformal structure. Lets check that
the nonnull circles are projective lines. Above each nonnull circle C we have
a subbundle BC of B(1) on which

ωJ = αJ
1 = $J = 0

for J > 1, and BC bears the coframing ω1, σ,$1, α
I
J , with the structure

equations of PSL (2,C)× SO (n− 1,C):

dω1 = −σ ∧ ω1

dσ = −$1 ∧ ω1

d$1 = σ ∧$1

dαI
J = −αI

K ∧ αK
J .

This is a complete flat Cartan connection so by lemma 20 on page 121, a cov-
ering must be isomorphic to the corresponding Klein geometry, i.e. the Cartan
connection BP1 → P1 we would find in the hyperquadric case. Therefore, P1

is a covering space of C. By the classification of complex curves (see Forster
[38]), the map P1 → C must be a biholomorphism, so the geodesic is rational.
Looking back at the hyperquadric, BP1 is invariantly identified with H−. We
identify BC with H− by equivalence.

To understand how the circle C = CP1 sits inside the manifold M , we
need to construct its normal bundle. Using the same method as lemma 25 on
page 124,
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TM |C = H+\ (H− × Cn)

NC = H+\
(
H− ×

(
0⊕ Cn−1

))
TC = H+\

(
H− ×

(
C1 ⊕ 0

))
using diagonal H+ action. The tangent and normal bundles of a nonnull
geodesic are therefore independent of the geodesic itself (up to isomorphism),
and are isomorphic to the tangent and normal bundles of the geodesics of the
hyperquadric.

We recall the Birkhoff–Grothendieck theorem [40],[45]: every vector bundle
on the complex projective line is a sum of line bundles, and each line bundle is
O (d) for some integer d, up to holomorphic bundle isomorphism. The positive
line bundles have holomorphic sections, the negative ones have only the zero
section, and O (d1) ⊗ O (d2) = O (d1 + d2) . The dual of O(d) is O(−d). In
particular, the normal bundle of C = CP1 ⊂ M0 is NC =

⊕n−1O (1) (look
at an affine chart), while the tangent bundle is TC = O(2) (look at changing
affine chart on CP1).

Now map H+ → BC → B(1), and pull back the Weyl curvature W i
jkl. The

Weyl curvature tensor has one upper and three lower indices, each of which
can be taken to be the “tangent” index 1, or the “normal” indices bigger than
1. Therefore the Weyl curvature restricted to the geodesic C is a section of a
vector bundle on C, which is a sum of line bundles, each a tensor product of
either O(1) or O(2) with three line bundles, each either O(−1) or O(−2). All
of the resulting line bundles are negative, so there are no nonzero holomorphic
sections. All of the Weyl curvature components are forced to vanish, at every
point above every geodesic, and therefore everywhere.

Once the Weyl curvature is out of the way, the Cotton invariant C is a
tensor, and the same argument applies to it, so that it vanishes. Therefore the
conformal structure is flat. Proposition 15 on page 81 shows that the manifold
M is locally equivalent to a covering space of the hyperquadric.

By the Lefschetz hyperplane theorem (see [62], theorem 7.4, p. 41), the fun-
damental group of a hyperquadric is isomorphic to the fundamental group of
its intersection with any hyperplane, which is a hyperquadric in one lower di-
mension. A hyperquadric in the projective plane is a rational curve (projection
to a line). Therefore hyperquadrics in all dimensions are simply connected.

7.8 Tensors and other objects defined on the base, and
their covariant derivatives

Once we calculate the representationH0,2 (g) (and split it into indecomposable
pieces as a G representation), we want to interpret the resulting components
of the torsion.
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7.8.1 Tensors on the base as equivariant functions on the bundle

Lemma 27. A G equivariant map f : B → V on a G-structure π : B → M
(i.e. f (rgu) = g−1f(u) determines a vector field X on M by

u(X(x)) = f(u)

for u ∈ B a linear isomorphism u : TxM → V . Every vector field comes about
this way, from a unique function f given by the same equation. In the same
way, a G equivariant map f : B → V ∗ determines a 1-form α by

f ◦ ω = π∗α.

Here, f ◦ ω means the 1-form which eats a tangent vector v ∈ TB and spits
out f(ω(v)). In the same manner, the G equivariant maps f : B →W to any
GL (V ) representation W are precisely in correspondence with tensors of type
W on M .

Proof. Given f : B → V and a point u ∈ B which is a linear map u : TxM →
V we can let X(u) = u−1f(u). Then under the right G action

X (rgu) =
(
g−1u

)−1
f
(
g−1u

)
= u−1gg−1f(u)

= u−1f(u).

The rest is similar.

Lemma 28. We will always write the equivariant function B → V associated
to a vector field X as X• : B → V. It is represented in a basis of V by
components Xi : B → R so that if we set

∇Xi = dXi + γi
jX

j

then
∇Xi = ∇jX

iωj

for some functions ∇jX
i. Conversely, if the structure group G is connected

then any functions Xi which satisfy these equations are equivariant.

Proof. The equivariance condition is

X• (rgu) = g−1X•(u)

so that
X• (retAu) = e−tAX•(u)

for A ∈ g. Differentiating
L ~AX

• = −AX•

so that dX• + γX• is semibasic. The converse for a connected group follows
immediately.
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7.8.2 Covariant derivatives

If we wish to avoid components, we can write ∇X• as

∇X• = ∇•X•ω.

For a 1-form, we must have

∇fi = dfi − γj
i fj = ∇jfiω

j

for functions ∇jfi. For a 2-form, represented by fij = −fji components,

∇fij = dfij − γk
i fkj − γk

j fik = ∇kfijω
k.

For a general tensor represented by functions

f i1...im
j1...jn

we find

∇f i1...im
j1...jn

= df i1...im
j1...jn

+
∑

f
i1...ip−1kip+1...im

j1...jn
γ

ip

k −
∑

f i1...im

j1...jq−1kjq+1...jn
γk

jq

= ∇kf
i1...im
j1...jn

ωk.

We will call the operator ∇ the covariant derivative. There are three sub-
tleties here:

1. If γ is a chosen connection, then this covariant derivative is just the usual
notion, corresponding to the usual Ehresmann ∇ operator (see any text-
book on differential geometry).

2. In general, γ might only be a pseudoconnection. Then we have, for any
tensor from M , a well defined collection of functions on the bundle B, and
we can take ∇ as many times as we like. But only if γ is a connection can
we ensure that these ∇I functions are in fact the component functions
of a tensor from M . This is clear if we consider the representations of
the structure group under which component functions must vary, and
remember that γ is a connection just when it is equivariant under the
structure group. It will not always be possible to pick a connection, and
so the results of the computation, while sometimes useful, are tricky to
interpret geometrically.

3. Even more generally, we might not even have picked any γ pseudoconnec-
tion at all. Instead, we might work purely formally on the prolongation
B(1), the bundle of all choices of pseudoconnection, so that we can imagine
that we are carrying out the universal computation of covariant deriva-
tives, for all pseudoconnections at once.
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7.8.2.1 Example: invariant differential operators on complex
projective spaces

Lets find the linear differential operators on functions on complex projective
space CPn which are invariant under isometries. (The problem of classifying
invariant differential operators, for tensors in general, on manifolds with arbi-
trary G-structures, is very natural since it can give rise to operators to which
we might apply the Böchner technique, if we are very lucky.) Isometries con-
stitute the symmetry group of the usual U (n)-structure (Kähler metric) of
the complex projective space. This group is PSU (n+ 1) = U (n+ 1) /U (1).
We can identify the group with the total space B of the U (n)-structure, since
it acts simply transitively on B. The structure equations are

dωµ = −γµν̄ ∧ ων̄

dγµν̄ = −γµσ̄ ∧ γσν̄ + ωµ ∧ ων̄ .

Take a real-valued function u : CPn → R, and pull it back to the group. It
now satisfies

∇u = du

= ∇µuωµ̄ +∇µ̄uωµ.

Take the exterior derivative to see that

∇∇µu = d∇µu−∇νγν̄µ

= ∇µνuων̄ +∇µν̄uων

and the complex conjugate of this equation. Take another exterior derivative
to find

∇∇µνu = d∇µνu−∇σνu γσ̄µ −∇µσu γσ̄ν

=
(
Dµνσ̄u+

1
2
δσµ∇νu

)
ωσ +Dµνσuωσ̄

and

∇∇µν̄u = d∇µν̄u−∇σν̄u γσ̄µ −∇µσ̄u γσν̄

= Dµνσ̄uωσ +
(
Dµν̄σu−

1
2
δνµ∇σu

)
ωσ̄

with these D··· symmetric in all lower indices. These D things are not the
covariant derivatives; indeed the equations show that

∇µν̄σu = Dµν̄σu−
1
2
δνµ∇σu.



144 7 Prolonging G-structures into involution

The quantities ∇µu,∇µ̄u,∇µνu etc. vary in certain representations of the
structure group U (n). Constructing invariant linear differential operators just
means identifying U (n)-invariant linear operators on these representations.
Similarly, invariant linear differential equations are just U (n)-invariant sub-
spaces of these representations. For example, the equations

∇µu = 0 Cauchy–Riemann equations
∇µµ̄u = 0 Laplace equation

Dµµ̄νu+∇νu = 0 etc.

7.8.2.2 Example: invariant differential equations in conformal
geometry

A k-density on a manifold M is a function f on the frame bundle FM which
satisfies

r∗gf = |det g|−k
f.

Exercise 7.23 A compactly supported 1-density can be integrated over a
manifold, even if the manifold is not orientable.

The k-densities are the sections of the vector bundle (FM × R) /GL (V ),
where the action of GL (V ) is

rg (u, F ) =
(
rgu, |det g|−k

F
)
.

A positive definite conformal structure, structure group CO (n), has structure
equations

dω = − (α+ σ1p+q) ∧ ω

dα = −α ∧ α+ ω ∧$ +$∗ ∧ ω∗ +
1
2
Wω ∧ ω

dσ = −$ ∧ ω

d$ = −$ ∧ (α+ σ1p+q) +
1
2
Cω ∧ ω

(computed in section 7.7 on page 124). Let B(1) → B →M be the bundles of
a conformal structure. Differentiating the equation for a k-density gives

df + kσ = ∇ifω
i,

for some functions ∇if : B → R. Differentiating this equation:

d∇if = −f$i +∇jf
(
αj

i + (1− k)σδj
i

)
+∇ijfω

j .

Check the group equivariance for λ ∈ V ∗:

r∗λ∇ijf = ∇ijf − kλi∇jf − (∇kf − kfλk)
(
λlmg

kmgij − δk
j λi − λjδ

k
i

)
.
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Exercise 7.24 The expression ∇iif = 0 is an invariant differential equation
just when the conformal manifold has dimension 2 and the density f has
weight 0, i.e. is a function.

Exercise 7.25 Classify conformally invariant fourth order linear operators
on 4-manifolds.

7.8.3 Intrinsic torsion on the base

The intrinsic torsion always defines an object on the base: a section of the
torsion bundle. It is often helpful to try to identify this bundle, relating it to
other more well-recognized bundles.

Example 61 (Flag 3-manifolds). A flag geometry determines and is determined
by a family of subbundles

0 = W0 ⊂W1 ⊂ · · · ⊂Wn = TM

so that Wj has rank j. The torsion of a 3-dimensional flag geometry is a
section of the line bundle (TM/W2)⊗ Λ2 (W ∗2 ) .

Example 62 (Almost symplectic geometry). If G = Sp (2n,R) acts in its ir-
reducible R2n representation, a G-structure on a manifold M has torsion a
section of Λ3 (T ∗M) .

If we are facing a connected structure group G then we can figure out what
objects are defined on the base from the torsion by calculating the structure
equations

dω = −γ ∧ ω +
1
2
Tω ∧ ω

and then splitting the torsion into indecomposable pieces, say Tα, each of
which will then satisfy an equation like

∇Tα = dTα + ρ(γ)Tα = ∇kTαω
k.

We will refer to this as the covariant derivative of Tα. The expression ρ(γ) is
the Lie algebra representation of g on Tα.

Example 63. Consider a pseudo-Riemannian manifold, i.e. an SO (p, q)-structure
π : B →M. Lets write ∂

∂ωj for the vector satisfying

∂

∂ωj
ωi = δi

j

∂

∂ωj
γi

j = 0.

In pseudo-Riemannian geometry, the curvature Ri
jkl

∂
∂ωi⊗ωj∧ωk∧ωl is defined

on the base manifoldM . So are the various pieces of it: scalar, Ricci, and Weyl.
To see this, we can use the general fact that the curvature of a Riemannian
manifold is the torsion of the prolongation of its orthonormal frame bundle,
and torsion is always equivariant under the structure group.
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7.8.4 Lie derivatives and covariant derivatives

Fix a G-structure π : B → M and fix a pseudoconnection γ on it. For a
vector field X on M , we define a vector field X̂ on B by ω

(
X̂
)

= u(X)

and γ
(
X̂
)

= 0. This is only well-defined on B if there is a choice made of

pseudoconnection γ. Similarly, X̂ is well-defined on B(1), if we have a choice
of pseudoconnection ξ for B(1) → B, and we ask that X̂ ξ = 0. In the same
way, X̂ is defined at each prolongation, given a choice of pseudoconnection
for that prolongation. We can therefore imagine X̂ as being formally defined
on some kind of infinite prolongation.

The infinite prolongation can be described as a filtered graded differential
algebra, the direct limit of the algebras of differential forms on the various
prolongations, mapping to each other by pullback. Roughly speaking, the
spectrum of this algebra is the infinite prolongation, but of course the filtered
graded differential algebra structure is really what is relevant. This X̂ is a
derivation of that algebra. This only makes sense for smooth G-structures, so
it is probably preferable to think of the infinite prolongation only formally,
and actually describe X̂ on some finite prolongation, equipped with a choice
of pseudoconnection.

Suppose that the structure equations are

dωi = −γi
j ∧ ωj +

1
2
T i

jkω
j ∧ ωk

dγi
j = −γi

k ∧ γk
j − ξi

jk ∧ ωk +
1
2
T

(1)i
jkl ω

k ∧ ωl.

(Warning: structure equations don’t have to look quite like this. For example,
dγ could involve γ ∧ ω terms.)

We write Xi for the functions on B associated to a vector field X on M
and compute for two vector fields X and Y on M :

[X,Y ]i = Xj∇jY
i − Y j∇jX

i − T i
jkX

jY k.

We can also check that π∗X̂ = X, so that

[̂X,Y ]−
[
X̂, Ŷ

]
is tangent to the fibers of π : B → M. Finally, we compute using the Cartan
formula, [

X̂, Ŷ
]

γi
j = T

(1)i
jkl X

kY l.

We can then calculate LX̂ω
i = T i

jkX
jωk + ∇jX

iωj . We could write this as
LX̂ω = TX•ω +∇•X•. From here we can easily calculate that, for example,
the Lie derivative of a 2-tensor h on M pulls back to

π∗LXh = (LXh)ij ω
i ⊗ ωj
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where

(LXh)ij = Xk∇khijω
i ⊗ ωj + hlj

(
T l

kiX
k +∇iX

l
)

+ hil

(
T i

kjX
k +∇jX

l
)
.

In this way, we can carry out calculus on manifolds without ever taking local
coordinates.

Example 64 (Riemannian geometry). If our G-structure π : B → M is an
O (n)-structure, i.e. a Riemannian manifold, then the metric g pulls back to
the bundle B to give π∗g = ωi ⊗ ωi. From the above:

(π∗LXg)ij = ∇iX
j +∇jX

i.

Beware: when we reduce a G-structure, say B → M to a G1-structure for
G1 ⊂ G a subgroup, say to B1 ⊂ B, the operation ∇ on B1 is related in a
complicated manner to ∇ on B. Many calculations in differential geometry
can be expressed as relating these two operators.

7.9 Example: contact and polycontact geometry

The 1-jet of a function y = f(x) at a point x = x0 means the data consisting of
the point x0, the value f (x0) and the first derivative f ′ (x0) .Write J1 (Rn,Rt)
for the space of 1-jets of functions from open subsets of Rn to Rt. This manifold
M = J1 (Rn,Rt) bears a special structure. To see it, first we can look at
coordinates xµ on Rn, yi on Rt, and impose coordinates on M by asking that
for a given function f(x) and point x0, the corresponding point in the jet
space have coordinates

(
xµ, yi, pi

µ

)
where xµ are the coordinates of the point

x0, y
i are the coordinates of the point f (x0) and

pi
µ =

∂f i

∂xµ

∣∣∣∣
x=x0

.

Then a submanifold of M on which the dxµ are independent is locally the
graph of the 1-jets of a function f(x) just when dyi − pi

µ dx
µ = 0 on M . We

can store this information by saying that M bears a field of planes of corank
t in its tangent planes: the field cut out by the equations dyi − pi

µ dx
µ = 0 on

tangent vectors. The ideal generated by the 1-forms dyi − pi
µ dx

µ and their
exterior derivatives is called the polycontact ideal.

We have an obvious choice of G-structure on M : on the vector space V =
T(0,0,0)M = Rn ⊕Rt ⊕Rn×t (with obvious (x, y, p) coordinates, since V = M
in this case) let G0 be the group of linear transformations of V preserving the
plane dy = 0. Then M , the 1-jet manifold, bears a G0-structure.

Let us now consider any G-structure for this group G, i.e. any field of
planes of codimension t on any manifold M . We will ask when this field is
locally equivalent to the field on J1 (Rn,Rp) . The structure equations are
then
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d

ωi

ωµ

ωi
µ

 = −

 γi
j 0 0
γµ

j γµ
ν γµν

j

γi
µj γi

µν γiν
µj

 ∧
ωj

ων

ωj
ν

+
1
2

τ i

0
0


where

τ i = T i
µνω

µ ∧ ων + T iν
µjω

µ ∧ ωj
ν + T iνσ

jk ωj
ν ∧ ωk

σ.

WARNING: we are using a notation in which the Greek and Roman letters are
used to distinguish between the two different objects ωi and ωµ. We assume
that they range over some disjoint set of labels.

It is easy to see that this torsion determines a section of Ω2 (M)⊗TM/F
where F is the plane field. This is the first invariant we run into. To have a
plane field F locally isomorphic to the plane field on the manifold of 1-jets
above we must have T identical to the torsion from the manifold of 1-jets. Let
us assume henceforth that this is the case.

On the manifold of 1-jets, a section of the G-structure is given by the
coframing ϑi

ϑµ

ϑi
µ

 =

dyi − pi
µ dx

µ

dxµ

dpi
µ


with our ideal being generated by the ϑi, and further we have the equations

dϑi = −ϑi
µ ∧ ϑµ (mod ϑj).

(This tells us what the torsion T is. For example, T 6= 0.) There are other
coframings satisfying the same equations, i.e. the same normalization of T ,
given by ωi

ωµ

ωi
µ

 =

 gi
j 0 0
gµ

j gµ
ν gµν

j

gi
µj gi

µν giν
µj


ϑj

ϑν

ϑj
ν


where the coefficients, to preserve the same torsion, must satisfy the conditions

gi
µνg

µ
σ = gi

µσg
µ
ν

gi
jδ

ν
µ = giν

σjg
σ
µ − gi

σµg
σν
j

giν
µjg

µσ
k = giσ

µkg
µν
j .

These three equations emerge from asking that

dωi = −ωi
µ ∧ ωµ (mod ωj).

Let G be the group of matrices of this form. We will define a polycontact
structure to be a G-structure satisfying the torsion equations

dωi = −ωi
µ ∧ ωµ (mod ωj)
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for any section ωi, ωµ, ωi
µ of the G-structure. If t = 1 (e.g. intuitively if there

is only one y variable) then we call such a G-structure a contact structure.
We have structure equations

d

ωi

ωµ

ωi
µ

 = −

 γi
j ωi

µ 0
γµ

j γµ
ν γµν

j

γi
µj γi

µν γiν
µj

 ∧
ωi

ωµ

ωi
µ

 .

The 1-forms
γi

j , γ
µ
ν , γ

µν
j , γi

µj , γ
i
µν , γ

iν
µj

constitute the pseudoconnection 1-form. The pseudoconnection is valued in
the Lie algebra, so

γi
µν = γi

νµ

δi
jγ

νσ
k = δi

kγ
σν
j

γiν
µj = δν

µγ
i
j − δi

jγ
ν
µ.

The second of these equations tells us that if the number of dimensions indexed
by Roman letters (i.e. the number t) is more than one, then

γµν
j = 0

while if there is exactly one Roman indexed dimension (t = 1, i.e. a contact
structure) then

γµν
j = γνµ

j .

The geometric significance is enormous: if t > 1 (not a contact structure),
then the requirements γµν = 0 say precisely that the equations ωi = ωµ = 0
cut out a foliation. Locally, this foliation is a fiber bundle.

Exercise 7.26 If it is a fiber bundle globally, then each symmetry of the
polycontact structure acts on the base of the fiber bundle. In particular, the
symmetries of the polycontact structure on the 1-jet bundle must act on the
base, as diffeomorphisms of the 0-jet bundle.

Exercise 7.27 More generally, suppose that we start with a manifoldM with
a codimension t field of planes F ⊂ TM , which is a polycontact structure.
Now suppose that M turns out to be a global fiber bundle, say p : M → M̄,
following the ideas above, so that the fibers are cut out by equations ωi =
ωµ = 0. Then we can map M to the Grassmann bundle Gr

(
n, M̄

)
of k-planes

in the tangent spaces of M̄ , by taking m ∈M to the n-plane

Π(m) = p′(m) ·
(
ωi = 0

)
.

Prove that this mapΠ : M → Gr
(
n, M̄

)
is a local equivalence ofG-structures,

and a global equivalence just when the fibers of M → M̄ are compact with
the map M → Gr

(
n, M̄

)
an isomorphism on fundamental groups of fibers.
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Exercise 7.28 Contact structures are more flexible than polycontact struc-
tures. Look at an odd dimensional sphere S2n+1 sitting as the unit sphere
inside Cn+1, and take the contact structure which is the field of maximal
complex subspaces in the real tangent spaces of the sphere. Show that the
unitary group U(n+1) acts as symmetries of that contact structure, preserv-
ing no foliation. In particular, this contact manifold is not a fiber bundle.
Show that this is a contact structure.

So for contact structures, we have the structure equations

d

 ω

ωµ

ωµ

 = −

 γ ωµ 0
γµ γµ

ν γµν

γµ γµν δν
µγ − γν

µ

 ∧
 ω

ων

ων


with γµν and γµν symmetric in their indices. There are no invariants emerging
here. Moreover, calculating Spencer cohomology convinces us that no invari-
ants will emerge at any order, since the Spencer cohomology groups all vanish.
Indeed it is well known that all contact structures are locally equivalent.

Remark 19. One can show that all contact structures are locally isomorphic,
by constructing the symplectification and using the Moser homotopy proof to
match up symplectic structures, followed by a little more work to match up
the contact structures; see [7].

On our contact manifold, our plane field is a family of hyperplanes. Any
local section of the G-structure will give rise to a local choice of 1-form ω
vanishing on these hyperplanes. We will say that a hypersurface H ⊂ M is
noncharacteristic if it has none of these hyperplanes as tangent spaces, i.e.
ω 6= 0 on H. On this H, any local section of our G-structure will give 1-forms

ω, ωµ, ωµ

and among these there must be one linear relation. This relation can not be
ω = 0, so it must be of the form

Aω +Aµω
µ +Aµωµ = 0

with one of the Aµ or the Aµ not zero. The structure group has Lie algebra
containing 0 0 0

0 γµ
ν γµν

0 γµν −γν
µ

 ,

the symplectic Lie algebra, which acts transitively on covectors, so we can
arrange by change of local section that the relation is Aω + ωn = 0. The
structure Lie algebra also contains
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0 0 0
γµ 0 0


which enables us to arrange a section for which the relation is ωn = 0. Now
consider the subbundle of coframings on H which satisfy this condition.

Differentiating the structure equations reveals that on this bundle of
coframes

γn = 0
γn = 0
γnν = 0

δν
nγ − γν

n = 0

modulo semibasic 1-forms. We find that we can absorb the semibasic 1-forms
in these expressions. The resulting structure equations (using the new con-
vention that Greek letters will run from 1 to n− 1) are

d


ω

ωµ

ωn

ωµ

 = −


γ ων 0 0
γµ γµ

ν 0 γµν

γn γn
ν γ γnν

γµ γµν 0 δν
µγ − γν

µ

 ∧

ω

ων

ωn

ων

 .

The foliation
ω = ωµ = ων

by curves is invariantly defined on H, since

0 = dω = dωµ = dων (mod ω, ωσ, ωτ ).

These curves are called the bicharacteristic curves of H.

Lemma 29. If the bicharacteristic foliation of a noncharacteristic hypersur-
face in a contact manifold is a submersion with connected fibers to a manifold
Z, then the plane field ω = 0 quotients to a hyperplane field on Z.

Proof. We calculate that

dω = 0 (mod ω, ωµ, ωµ).

If X is a vector field tangent to the fibers of H → Z, we find

LXω = − (X γ)ω

(here ω means the 1-form obtained from taking a local section of the bundle
over H, and pulling back ω via that local section). So therefore the plane field
ω = 0 is carried invariantly along X, so projects to a smooth plane field on
Z.
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Example 65. One can imagine the fibers of a mapH → Z not being connected,
but still being bicharacteristics, so that the induced geometry on Z would be
a web geometry.

Theorem 11. If the bicharacteristic foliation of a hypersurface H in a contact
manifold is the foliation by stalks of a submersion H → Z then Z is also a
contact manifold.

Proof. In fact, for any section of our bundle over H, we find that ω, ωµ, ωµ

are semibasic for the bundle map H → Z. But they are only defined up to
the contact structure group in the next lowest dimension.

This is not the easiest approach to contact reduction, but it is a simple example
of the equivalence method point of view.

Question 11. Every holomorphic contact manifold admits a reduction of struc-
ture group to a maximal compact subgroup of the contact structure group. Is
there a natural choice of reduction, perhaps using the calculus of variations,
especially when the underlying complex manifold is Kähler?

7.10 Induced structures on tensor bundles

Suppose that B is a G-structure on a manifold M . Let π : B → M be the
bundle map. Take ρ : G → GL (W ) any G-representation. We can construct
a vector bundle W ′ = (B ×W ) /G where the quotient is taken via the right
action

g ∈ G, (u,w) ∈ B ×W 7→
(
g−1u, ρ(g)−1w

)
.

The map B ×W → W ′ is a principal G-bundle, but not a G-structure. The
vertical directions of the bundle are spanned by the vector fields

~A(u,w) =
(
~Au,−Aw

)
.

Let γ be any pseudoconnection for B, ω the soldering form. Pull them back
to B ×W . On B ×W define ω̇ = dw + ρ(γ)w. We are writing dw for the
identity map on W , thought of as a 1-form valued in W . Since we know the
vertical directions of the bundle map B ×W →W ′, we can see that ω and ω̇
are semibasic 1-forms for the bundle map:

ω ∈ Ω1 (B ×W )⊗ V, ω̇ ∈ Ω1 (B ×W )⊗W.

The definition of ω̇ depends on the choice of pseudoconnection γ. To eliminate
the need to make such a choice, we can consider the map

B(1) ×W → FW ′
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defined by γ 7→ ω⊕ ω̇ using the above expressions. This is a Gog(1) structure
on W ′. Its structure equations are completely determined from the structure
equations on B(1), since the soldering forms are just ω and ω̇, and the pseudo-
connection 1-form γ and the pseudoconnection ξ of the prolongation B(1) → B
determine a pseudoconnection on B(1) ×W . The relevant representation of
Go g(1) is V ⊕W , where (g,Q) ∈ Go g(1) acts on (v, w) ∈ V ⊕W via

(g, 0)(v, w) = (gv, ρ(g)w)
(1, Q)(v, w) = (v, ρ (Q · v)w) .

7.10.1 Example: the almost complex structure on the tangent
bundle of a Riemannian manifold

If G = SO (n), Riemannian geometry, then the structure equations on the
bundle B (the bundle of orthonormal coframes) are

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

1
2
Ri

jklω
k ∧ ωl.

(We could lower all of the indices, if we like.) Consider the tangent bundle
TM = V ′. We have B(1) = B so our prescription above is simply that on
B × V , we have 1-forms ω, γ, ω̇V = dv + γv, so that in components

ω̇i = dvi + γi
jv

j

and we can calculate that

dω̇i = −γi
j ∧ ω̇j +

1
2
Ri

jklv
jωk ∧ ωl.

Notice that g(1) = 0, so that the representation is G = SO (n) acting on
V ⊕ V = Rn ⊕ Rn by g(v, w) = (gv, gw), the sum of the two representations.
In particular, we see that the almost complex structure J(v, w) = (−w, v) is
defined on this representation, determining an almost complex structure on
the tangent bundle.

Exercise 7.29 Calculate from the structure equations above (and use the
Newlander–Nirenberg theorem, see [66],[44],[72]) to show that the almost com-
plex structure on TM is a complex structure just when the Riemannian man-
ifold M is flat.

7.10.2 Example: the exponential map

If a manifold M has a G-structure B with a fixed choice of pseudoconnection
γ, we map B × V → TM and obtain a G-structure on TM . The soldering
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1-forms are ω and ω̇ = dv + γv, for v ∈ V . If the structure equations of M
are written as

dω = −γ ∧ ω +
1
2
Tω ∧ ω

dγ = −γ ∧ γ + ξ ∧ ω

where ξ is a multiple of ω and γ, then we find the structure equations of TM
to be

dω = −γ ∧ ω +
1
2
Tω ∧ ω

dω̇ = −γ ∧ ω̇ + ξv ∧ ω
dγ = −γ ∧ γ + ξ ∧ ω.

We can define a vector field E on B × V , called the geodesic field by

E

ωω̇
γ

 =

v0
0

 .

at a point (u, v) ∈ B × V . Its flow is the geodesic flow. We can calculate

LE

ωω̇
γ

 =

 γv + Tvω

(E ξ) vω − (ξv) v
(E ξ)ω − ξv

 .

Exercise 7.30 Show that the vector field E is G-invariant just when γ is a
connection, in which case E descends to a vector field on TM .

Exercise 7.31 How do the structure equations look for Riemannian geome-
try?

7.11 Example: projective structures

Question 12. Think carefully about the indexing conventions being used in
this section. They could probably be made consistent.

Two connections on the tangent bundle of a manifold are called projectively
equivalent if they have the same unparameterized geodesics. Connections mod-
ulo this equivalence are called projective structures. See Kobayashi & Nagano
[53] for some historical references and an approach to this topic.
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7.11.1 The flat example: projective space

First, let us consider projective space Pn (either real or complex—the com-
putations will be the same). We bring up projective space because it is glued
together out of affine charts, and the transition functions are affine trans-
formations, so preserve straight lines, i.e. geodesics. The geodesic-preserving
transformations of projective space are precisely the projective linear trans-
formations, forming the group PGL (n+ 1) (a well-known result in geometry
due to David Hilbert).1

We will think of Pn as the space of tuples
x0

...
xn


of numbers, not all zero, modulo rescaling. Write the corresponding point of
Pn as 

x0

...
xn

 .
Pn is acted on transitively by the group PGL (n+ 1) of projective linear trans-
formations, i.e. linear transformations of the x variables modulo rescaling.
We will write [g] for the element of PGL (n+ 1) determined by an element
g ∈ GL (n+ 1) . The stabilizer of the point

1
0
...
0


is the group Hpt consisting of [g] where g is a matrix of the form

[g] =

[
g0
0 g0

j

0 gi
j

]
where i, j = 1, . . . , n. The Lie algebra of PGL (n+ 1) is just sl (n+ 1) , so
consists of the matrices of the form(

A0
0 A0

j

Ai
0 Ai

j

)
1 Note that over the complex numbers, this result holds only with the assumption

of continuity, and preservation of orientation of the complex lines. Over the real
numbers, not even continuity need be assumed.
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withA0
0+A

i
i = 0.We define the Maurer–Cartan 1-form ω ∈ Ω1 (PGL (n+ 1))⊗

sl (n+ 1) by ω = g−1 dg. This form satisfies dω = −ω∧ω. Splitting into com-
ponents, we calculate

dωi
0 = −

(
ωi

j + δi
jω

k
k

)
∧ ωj

0

dωi
j = −ωi

k ∧ ωk
j + ω0

j ∧ ωi
0

dω0
i =

(
ωj

i + δj
iω

k
k

)
∧ ω0

j

If we let ωi = ωi
0, γ

i
j = ωi

j + δi
jω

k
k , and ωi = ω0

i then we find

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

(
ωjδ

i
k + ωkδ

i
j

)
∧ ωk

dωi = γj
i ∧ ωj .

The group Hpt is a semidirect product: each element factors into two
elements of the form [

1 0
0 g

][
1 λ

0 1

]
.

It will be helpful later to see how each of these factors acts on our differential
forms. This is not difficult, since the form ω = g−1 dg satisfies

r∗hω = Ad−1
h ω.

We leave to the reader to calculate that if we write g for the matrix[
1 0
0 g

]

and λ for the matrix [
1 λ

0 1

]
then

r∗gω
i =

(
g−1

)i
j
ωj

r∗gγ
i
j =

(
g−1

)i
k
γk

l g
l
j

r∗gωi = ωjg
j
i

r∗λω
i = ωi

r∗λγ
i
j = γi

j +
(
λjδ

i
k + λkδ

i
j

)
ωk

r∗λωi = ωi − λjγ
j
i − λiλjω

j .
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We can reconsider the projective geometry above in terms of bundles. The
group PGL (n+ 1) acts transitively on Pn, and also on the frame bundle FPn.
The stabilizer of a point of Pn is Hpt; the stabilizer of a frame at a point is
Hfrm consisting of matrices of the form[

1 λ

0 1

]
.

We leave this as an exercise. (It is easy to show that Pn has tangent spaces
TP Pn = P ∗ ⊗

(
Rn+1/P

)
, and then this result is not difficult.)

So we can identify

FPn oo //

��

PGL (n+ 1) /Hfrm

��
Pn oo // PGL (n+ 1) /Hpt.

We have another bundle over Pn, PGL (n+ 1) itself, which we can put on the
top at the right side. We will build a corresponding bundle on the left side.

Consider the geodesics of projective space. These are the projective lines.
If we think of projective space as the space of lines through 0 in a vector
space, its geodesics correspond to 2-planes in that vector space. Thus the
space of geodesics is Gr (2, n+ 1) = PGL (n+ 1) /Hgeod where Hgeod consists
of matrices of the form

[g] =

g0
0 g0

1 g0
J

g1
0 g1

1 g1
J

0 0 gI
J


where I, J = 2, . . . , n. Above the space of geodesics is the space of pointed
geodesics, which is the space of choices of a 2-plane in our vector space with
a line in that 2-plane, so it is PGL (n+ 1) /Hpt+geod where Hpt+geod ⊂ Hpt

consists of matrices of the form

[g] =

g0
0 g0

1 g0
J

0 g1
1 g1

J

0 0 gI
J

 .
7.11.2 When do connections have the same geodesics

Now we turn to the real problem at hand: declaring two connections on the
tangent bundle of a manifold to be equivalent if the have the same unparam-
eterized geodesics, what are the invariants of such an equivalence class?
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Proposition 27. Given any connection γ on the frame bundle of a manifold,
the connections γ̃ with the same geodesics are precisely those of the form

γ̃i
j = γi

j +
(
λjδ

i
k + λkδ

i
j

)
ωk + ai

jkω
k

where λ = λkω
k is any 1-form on M, pulled back to FM , and ai

jkω
j ∧ ωk is

any section of Λ2 (T ∗M)⊗ TM, pulled back to FM .

Proof. Consider any manifold Mn+1 with an equivalence class of connections
γ for the tangent bundle, where equivalent means having the same unparam-
eterized geodesics. Let us take our soldering 1-form ω on FM and write its
components ω0, . . . , ωn. We will use Greek indices for 0, . . . , n and Roman for
1, . . . , n. (This is not in agreement with the conventions used in the statement
of the proposition we are proving, but it is convenient for the moment.) Take
one such geodesic, say Γ ⊂ M (which we take to be embedded, by taking a
sufficiently small piece of it). Define the principal right bundle Γ1 ⊂ FM to
be the set of all frames (x, u) ∈ FM so that x ∈ Γ and u : TxM → Rn+1

takes TxΓ to R ⊕ 0 ⊂ Rn+1. The structure group of this bundle is the group
of matrices of the form (

a0
0 a0

i

0 ai
j

)
.

The equation of a geodesic in FM is ωj = γ = 0. The tangent space to
Γ1 satisfies the equations ωj = 0, and therefore dωj = −γj

0 ∧ ω0 = 0. So
ωj = γj

0 = 0 on Γ1, and by dimension count, this is the tangent space to Γ1.
If we have another connection γ̃ with the same geodesics, we would have the
same ideals: (

ωj , γk
0

)
=
(
ωj , γ̃k

0

)
since Γ1 is independent of the choice of connection, depending only on the
curve Γ. Since both γ and γ̃ are connections, they must agree on vertical
vectors, and so their difference must be semibasic:

γ̃µ
ν = γµ

ν + aµ
νσω

σ.

But then the equality of the two ideals forces

aj
00 = 0.

Since the indices can be permuted freely, this implies that

aµ
νσ = 0

whenever ν = σ 6= µ. We check that the expression D defined by

D ωµ = aµ
νσω

ν ⊗ ωσ

defines a tensor D, a section of T ∗M ⊗T ∗M ⊗TM. (This requires that our γ
and γ̃ be connections, not pseudoconnections, so that they transform in the
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adjoint representation.) We can split this into a symmetric and an antisym-
metric part: D = A+S, sections of Λ2 (T ∗M)⊗TM and Sym2 (T ∗M)⊗TM.
If v ∈ TxM is not zero, pick a frame (x, u) above x at which u(v) = eµ is a
fixed direction, and find D(v, v) = S(v, v) must be a multiple of v from the
above reasoning. Define a 1-form by λ(v)v = 1

2S(v, v). It is easy to show that
this λ is well defined. Moreover, we now have

γ̃µ
ν = γµ

ν + (λνδ
µ
τ + λτδ

µ
ν )ωτ + aµ

νσω
σ

where λ = λτω
τ when we pull back to FM.

Corollary 12. Given any connection, there is a torsion-free connection with
the same geodesics (and with the same parameterization for those geodesics).

Proof. Set

ai
jk =

1
2
T i

jk,

in other words just subtract off the torsion. Since the antisymmetric A part
of the difference D in connection is arbitrary, this is permissable without
changing the unparameterized geodesics.

Exercise 7.32 Show that the geodesics end up with the same parameteriza-
tion.

Example 66. Which conformal changes of metric preserve geodesics? On the
frame bundle of a Riemannian manifold, the structure equations are

dωi = −γi
j ∧ ωj

γi
j + γj

i = 0.

A metric conformal to the given one has soldering 1-forms

ω̃i = efωi

for some function f on the manifold. Write the exterior derivative of f as

df = fiω
i.

Calculate that the connection 1-forms are

γ̃i
j = γi

j + fiω
j − fjω

i.

To preserve unparameterized geodesics, this must have the form

γ̃i
j = γi

j + λjω
i + δi

jλkω
k

for some functions λk. If i 6= j then

fiω
j − fjω

i = λjω
i

forcing fj = 0. Therefore df = 0, and we have the result:
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Proposition 28. Every conformal change of Riemannian metric preserving
unparameterized geodesics is a rescaling by a constant.

The conformal transformations of a fixed metric modulo constant rescaling
embed into the space of projective structures.

7.11.3 Structure equations of projective structures

Suppose that our manifold Mn has a projective structure [∇], i.e. a choice
of connection ∇ on the tangent bundle, up to equivalence, or equivalently a
foliation of the projectived tangent bundle by the geodesics of some unknown
connection. We will use the V valued frame bundle, as usual, and when con-
venient we identify V = Rn by taking any basis of V. Let B → FM be the
bundle of triples (m,u, Γ ) so that u ∈ FM , u : TmM → V a linear isomor-
phism, and Γ is any connection 1-form Γ : TuFM → gl (V ), i.e. ~A Γ = A, so
that this Γ can occur as the value at u, Γ = γ̃u, of a torsion-free connection
γ̃ with the given geodesics. By the proposition above, B is a principal V ∗

bundle under the right action

λ ∈ V ∗, (m,u, Γ ) ∈ B 7→ rλ(m,u, Γ ) = (m,u, Γ + 〈λ, ω〉 1V + λ⊗ ω) .

Define π : (m,u, Γ ) ∈ B 7→ u ∈ FM and define a 1-form γ on B by

w γ(m,u,Γ ) = (π′(m,u, Γ )w) Γ.

Just as for projective space:

r∗λω
i = ωi

r∗λγ
i
j = γi

j +
(
λjδ

i
k + λkδ

i
j

)
ωk.

We also have an action of GL (V ) on B :

rg (m,u, Γ ) =
(
m, g−1u,Ad−1

g Γ
(
r−1
g

)′ (
g−1u

))
for which

r∗gω = g−1ω

r∗gγ = Ad−1
g γ

again just like projective space. As we have done before, we can differentiate
these equations, for example

L ~Aω = −Aω

etc., to find equations that govern the exterior derivatives, using the formula

LXξ = d (X ξ) +X dξ
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for any vector field X and differential form ξ. Applying these equations, and
the fact that GL (V ) equivariant local sections of B → FM are torsion-free
connections, we get

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

(
ωjδ

i
k + ωkδ

i
j

)
∧ ωk +∇γi

j

for some 1-forms ωj satisfying

ωj

(
~λ
)

= λj and ωj

(
~A
)

= 0,

for λ ∈ V ∗ and A ∈ gl (V ) (i.e. pseudoconnection 1-forms for B → FM), and
some forms

∇γi
j =

1
2
Ki

jklω
k ∧ ωl.

By taking exterior derivative of these equations, we find

∇γi
j ∧ ωj = 0.

We still have some freedom in picking ωi. Indeed, one can see from these
equations that ω̃i = ωi + aijω

j can be used in place of ωi with the effect that
∇γi

j changes to
∇γi

j − ajlω
l ∧ ωi − δi

jaklω
l ∧ ωk.

Using the antisymmetric part of aij we can arrange

∇γi
i = 0.

This implies, together with ∇γi
j ∧ ωj = 0, that Ki

jil is symmetric in j and l.
Now using the symmetric part of aij , we can arrange

Ki
jil = 0

as long as n > 1.

Proposition 29. Suppose that Mn is a manifold with projective structure
[∇]. Let B → FM be the bundle whose GL (n)-equivariant sections are the
torsion-free connections on M with geodesics given by the projective structure.
There are 1-forms ωi, γi

j , ωi and functions Ki
jkl and Kijk on B satisfying

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

(
ωjδ

i
k + ωkδ

i
j

)
∧ ωk +∇γi

j

dωi = γk
i ∧ ωk +∇ωi

∇γi
j =

1
2
Ki

jklω
k ∧ ωl

∇ωi =
1
2
Kijkω

j ∧ ωk
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with

0 = Ki
jkl +Ki

jlk

0 = Ki
ikl

0 = Ki
jil

0 = Ki
jkl +Ki

klj +Ki
ljk

0 = Kjkl +Kjlk

0 = Kjkl +Kklj +Kljk.

Moreover the ωi are the soldering 1-forms on FM and the γi
j are the soldering

1-forms on B, and the ωi 1-forms and the K functions are uniquely determined
by the above equations. Under the GL (n) action on B → FM →M we have

r∗gω
∗ = g−1ω∗

r∗gγ = Ad−1
g γ

r∗gω∗ = ω∗g.

Under the Rn∗ action on B → FM we have

r∗λω
∗ = ω∗

r∗λγ = γ + 〈λ, ω〉 · 1 + λ⊗ ω

Proof. Taking exterior derivatives of the equations we have already established
gives these results immediately.

Question 13. Are these a complete set of equations on the invariants—in other
words does the Cartan–Kähler theorem tell us that we can pick the values of
invariants arbitrarily at one point, subject to these equations, and construct
a projective structure with those values for invariants at a point?

Exercise 7.33

r∗g∇γ = g−1∇γg
r∗g∇ω = ∇ωg

Lemma 30.

r∗λωi = ωi − λjγ
j
i − λiλjω

j

r∗λ∇γi
j = ∇γi

j

r∗λ∇ωi = ∇ωi − λj∇γj
i .

Proof. These equations come from differentiating the equation for r∗λγ (and it
helps to have the equations from projective space, in order to guess the right
answer for r∗λωi).
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We have a tower of principal bundles B → FM → M. Let us put these
together into a single principal bundle B → M. The actions of λ ∈ Rn∗ and
g ∈ GL (n) can be put together into a single action of Hpt by letting

[h] =

[
h0

0 h0
i

0 hi
j

]

act on (x, u, U) ∈ B by

r[h](x, u, U) = rλrg(x, u, U)

where

λi = h0
i /h

0
0

gi
j = hi

j/h
0
0.

In terms of [h] the action is

r[h](x, u, U) =
(
x, g−1u,Ad−1

g U
(
r−1
g

)′ (
x, g−1u

)
− 〈λ, ω〉 1− λ⊗ ω

)
.

This makes B →M into a right principal Hpt bundle.

Lemma 31. A projective structure B → FM admits a canonical Rn∗-equivariant
embedding B → FM (1), making it an Rn∗-structure on FM, a second order
structure.

Proof. Each triple (x, u, U) ∈ B already belongs to FM (1) by definition of
projective structure and prolongation. Moreover, we have imposed the same
actions on B and on FM (1).

Proposition 30. Suppose that B is a manifold equipped with a coframing by
1-forms ωi, γi

j , ωj and equipped with functions Ki
jkl and Kijk satisfying the

structure equations

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

(
ωjδ

i
k + ωkδ

i
j

)
∧ ωk +∇γi

j

dωi = γk
i ∧ ωk +∇ωi

∇γi
j =

1
2
Ki

jklω
k ∧ ωl

∇ωi =
1
2
Kijkω

j ∧ ωk

with
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0 = Ki
jkl +Ki

jlk

0 = Ki
ikl

0 = Ki
jil

0 = Ki
jkl +Ki

klj +Ki
ljk

0 = Kjkl +Kjlk

0 = Kjkl +Kklj +Kljk.

Suppose that the foliation ωi = 0 is a fiber bundle B → M with connected
fibers and that the foliation ωi = γi

j = 0 is a fiber bundle B → F over a
manifold F , with connected fibers. There is a local diffeomorphism F → FM ,
and a unique projective structure B̃ → FM with a map B → B̃ which is a
local diffeomorphism, matching up the given differential forms and functions
on B with those on B̃.

Proof. Apply theorem 6 on page 91, twice.

Question 14. What are the objects defined on the base, and the characteristic
classes?

Proposition 31. The curvature ∇γi
j of a projective structure vanishes every-

where precisely when it is flat, which occurs just when it is locally equivalent
to the projective structure on projective space.

Proof. Equivalent projective structures must have agreement in their curva-
tures. But on projective space, we have exhibited the projective structure
explicitly (it is PGL (n+ 1)→ Pn), and see directly that the curvatures van-
ish. So the vanishing of curvatures is a necessary condition for isomorphism
with projective space. Taking exterior derivatives of the structure equations,
one finds that if the Ki

jkl all vanish, then so do the Kijk.

7.11.4 Completeness

Definition 34. Suppose that B → M is a projective structure. For each v ∈
Rn define the vector field ~v on B by

~v

ωi

γi
j

ωi

 =

vi

0
0

 .

A projective structure B → M is called complete if all of the vector fields ~v
are complete.

Exercise 7.34 Define the exponential map of a projective structure. (Start
by figuring out what bundle it should be defined on.) Show that it is a local
diffeomorphism.
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Theorem 12. A complete, flat projective structure is the quotient of the stan-
dard projective structure on projective space, or (if we are working over the
real numbers, rather than the complex numbers) to the standard projective
structure on the sphere (induced as the double cover of projective space), by
a discontinuous group action. A flat projective structure on a compact mani-
fold with finite fundamental group is a quotient of the sphere by a finite sub-
group of SL (n+ 1,R). The symmetry group of a projective structure on an
n-dimensional manifold has dimension no more than n2 + 2n; this dimension
of symmetry group is acheived only by the standard projective space or the
sphere.

Proof. A symmetry group of dimension n2 + 2n occurs on real projective
space: PGL (n+ 1) , and on the sphere: SL (n+ 1) . On the other hand, the
symmetry group of a projective structure must act faithfully on the bundle
B → M of the projective structure (see theorem 15 on page 176), and each
of the orbits of the symmetry group must be an embedding of the symmetry
group into B. If the group has the same dimension as B, then the orbits on
B must all be open, and so the curvature functions Ki

jkl and Kijk must be
locally constant. But they occur in irreducible representations of the structure
group, and must transform under the structure group in those representations.
Therefore they must all vanish. The rest follows from the results of section 7.6.

Remark 20. Note that the appropriate notion of completeness is not the com-
pleteness in some Riemannian metric, but rather that the geodesic flow is
complete on the bundle B. For example, the standard flat Riemannian met-
ric on Euclidean space is complete as a Riemannian metric, but the induced
projective structure (which is the standard flat projective structure) is not
complete. To see this, note that it sits as an affine chart inside projective
space, and the flows that would need to be complete generate the entire pro-
jective linear group. Now consider the flat torus; the flat metric induces a
projective structure. Lift it up to the covering space, the standard flat struc-
ture, which is not complete. If the torus’ projective structure was complete,
then the projective structure upstairs would be complete too. Therefore one
can have incomplete flat projective structures on both simply connected and
on compact manifolds, but not on compact, simply connected manifolds.

Remark 21. By lemma 24 on page 123, if the fundamental group of a compact
n dimensional manifold defies PGL (n+ 1,R) (a purely algebraic property of
the fundamental group) then the manifold has no flat projective structure.

7.11.5 Geodesics

Given any immersed curve φ : C → M in a manifold M with projective
structure B → FM →M, consider the pullback bundle φ∗B → C and inside
it the subbundle BC consisting of choices of (m,u, Γ ) for which u (TmC) =
R⊕0 ⊂ Rn. Then on BC we have the equations ωJ = 0 for J > 1 and ω1 6= 0.
Taking exterior derivative, we find γJ

1 = kJω1 for some functions kJ : Γ0 → R.
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Exercise 7.35 k =
∑

J>1 k
J ∂

∂ωJ

(
ω1
)2 is defined on the curve C, forming a

section of φ∗TM/φ(TC)⊗ (T ∗C)⊗2
. Call this the geodesic curvature of C.

Definition 35. An immersed curve in a manifold with projective structure is
called a geodesic if its geodesic curvature vanishes.

A choice of connection γi
j on a manifold M picks out a coframing at each

point of FM : ωi, γi
j , and thus a section of FM (1) → FM.

Lemma 32. Suppose that M is a manifold bearing both a torsion-free con-
nection γ and a projective structure B → FM . Then the geodesics of the
connection are the same as those of the projective structure (as unparame-
terize curves on M) precisely when, under pulling back under the section of
FM → FM (1), the image is contained in B. Equivalently, a torsion-free con-
nection with a given projective structure is just a reduction of structure group,
from Hpt to GL (n,R) , killing the action of the λ variables.

Proof. This is just the definition of B.

Lets follow the structure equations for such a connection. The ωi and γi
j match

up on FM and B by the reproducing property. The ωi must pull back to be
multiples of the ωi and γi

j , and the equation ~A ωi = 0 forces ωi to be a
multiple of the ωj , say

ωi = aijω
j

giving

dγi
j = −γi

k ∧ γk
j +

1
2
Ri

jklω
k ∧ ωl

with
Ri

jkl = Ki
jkl + 2ajkδ

i
l + 2alkδ

i
j .

Question 15. What happens when there is torsion in the connection?

7.11.6 Holomorphic projective structures

Remark 22. A complex curve (possibly singular) is called rational when it is
the image under a holomorphic map of the projective line P1.

Proposition 32. A holomorphic projective structure on a complex manifold
is complete just when the geodesics are immersed rational curves.

Proof. Consider the equations of geodesics ωI = γI
1 = 0 on the bundle B of a

projective structure. These equations are holonomic (i.e. satisfy the conditions
of the Frobenius theorem), so their leaves foliate B. We have seen that the
leaves are just the BC bundles over geodesics C. On BC the 1-forms

ω1, γ1
1 , γ

1
J , γ

I
J , ω1, ωJ
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form a coframing, with the structure equations

dω1 = −γ1
1 ∧ ω1

dγ1
1 = 2ω1 ∧ ω1

dγ1
J = −γ1

1 ∧ γ1
J − γ1

K ∧ γK
J + ωJ ∧ ω1

dγI
J = −γI

K ∧ γK
J + δI

Jω1 ∧ ω1

dω1 = γ1
1 ∧ ω1

dωJ = γ1
J ∧ ω1 − γK

J ∧ ωK

which are the Maurer–Cartan structure equations of Hgeod. Note that BC →
C is an Hpt+geod bundle, and that Hgeod/Hpt+geod = P1 is simply con-
nected. By lemma 20 on page 121, if the projective structure is complete,
then BC → C is a complete flat Cartan connection, so C is covered by P1. By
the classification of complex curves (see Forster [38]), the map P1 → C must
be a biholomorphism, so the geodesic is rational.

Conversely, if C is a rational curve, lemma 23 on page 123 says that the
Cartan connection BC → C is complete, and therefore the vector field dual
to ω1 is complete on BC . Since the manifolds BC for the various geodesics C
foliate B, the vector field dual to ω1 is complete on B.

We need now only show completeness of all of the vector fields dual
to the ωi, γi

j , ωj coframing on B. We have completeness of those dual to
ω1, γ1

1 , γ
1
J , γ

I
J , ω1, ωJ . The vector fields dual to γ∗∗ , ω∗ generate the action of

the structure group, so they must be complete. We need only check on the
vector fields dual to the ωI for I > 1. By just changing the ordering of the
indices in the proofs above (using a 2 index instead of a 1 index, etc.), we get
completeness of all of the dual vector fields.

Definition 36. Say that a geodesic C of a projective structure is complete just
when the Cartan connection on BC (given in the proof of the last proposition)
is complete.

Corollary 13. On a complex manifold with holomorphic projective structure,
a geodesic is complete just when it is rational with normal bundle

⊕n−1O(1).

Proof. Split Cn = C ⊕ Cn−1, and get the structure group Hpt+geod to act on
BC × Cn in the obvious manner on BC , and on Cn by taking

[g] =

g0
0 g0

1 g0
J

0 g1
1 g1

J

0 0 gI
J

 ,
rescaling to get g0

0 = 1, and then having [g] act on vectors in Cn as the matrix
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g1
1 g1

J

0 gI
J

)
.

Using the methods of lemma 25 on page 124, we see that

TC =
(
BC × C1

)
/Hpt+geod,

C∗TM = (BC × Cn) /Hpt+geod,

NC = C∗TM/TC =
(
BC × Cn−1

)
/Hpt+geod.

Because BC is identified with BP1 , as above, these bundles are all isomorphic
to those obtained for the flat case M = Pn.

Theorem 13. The only complete holomorphic projective structures on any
complex manifolds are the quotients of the standard projective structure on Pn

by discrete groups of projective transformations.

Proof. To be complete, all geodesics must be rational, with tangent bundles
O(2) and normal bundles

⊕nO(1). Therefore the tensor represented by Ki
jkl

lives in a vector bundle which is a sum of line bundles of the form O(d1 −
d2 − d3 − d4), where each d1, d2, d3, d4 is either 1 or 2. But that forces the
line bundles to be negative, so there are no nonzero holomorphic sections, and
the projective structure is flat and complete. By lemma 20 on page 121 it is
locally Klein.

Remark 23. Compact complex surfaces which admit a projective structure
have been classified by Gunning [43] and Kobayashi & Ochiai [55].

Question 16. Why is PSL (n+ 1,R) a maximal Lie group of transformations
of Pn? This must be connected with the projective structure bundle B →
FPn → Pn. Any bigger group would have to have orbit inside FPn(1) of larger
dimension. So larger g1 than Rn∗. The structure equations should then force
g2 6= 0. Then some induction argument should apply.
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Symmetries of G-structures

Remark 24. Every example so far has either had a finite dimensional Lie
group of symmetries (e.g. Riemann surfaces have finite dimensional symmetry
groups), or some kind of “infinite dimensional” symmetry group. We won’t
try to formulate a theory of infinite dimensional groups in this book; see Mil-
nor [63] and Kamran & Robart [49]. However, Kim & Zaitsev [50] provide
examples of G-structures so wildly behaved that their symmetry group would
appear to admit no such structure, being just a union of infinitely many finite
but arbitrarily large subgroups of a single infinite dimensional Lie group.

8.1 Symmetries as integral manifolds of an exterior
differential system

Symmetries are autoequivalences, so in some sense a special case of the method
of equivalence. We have seen that a map between manifolds matching their
G-structures

B
Fφ−−−−→ B′

π

y yπ′

M
φ−−−−→ M ′

is equivalent to a map between the bundles matching up the soldering form.
Consider a G-structure B →M . We have

dω = −γ ∧ ω + Tω ∧ ω

for some pseudoconnection γ. Symmetries of this G-structure are represented
by maps

Fφ : B → B

so that
Fφ∗ω = ω



170 8 Symmetries of G-structures

Consider two copies of B, say B1 and B2, and on them we put soldering forms
ω1 and ω2, pseudoconnections γ1 and γ2, and torsion T1, T2. The graph of a
symmetry of the G-structure is a submanifold of B1 ×B2, on which ω1 = ω2

and so dω1 = dω2. The 1-form components of ω1 and γ1 are independent
1-forms on the graph. In this way, we have translated the problem of find-
ing symmetries to one of solving an exterior differential system (a system of
equations in differential forms), with an independence condition.

We restrict to the submanifold on which

[T1] = [T2]

(hoping that it is actually a submanifold; if the instrinsic torsions are of dif-
ferent types, then of course, this locus is empty.) We may attempt to study
the resulting equations using the Cartan–Kähler theorem.1

The solutions of this differential system will usually be local symmetries,
between open subsets of M .

Definition 37. A pseudogroup on a topological space M is a set Γ of home-
omorphisms between open sets of M , say φ : U → V , so that

1. if φ : U → V belongs to Γ , and U ′ ⊂ U is an open subset, then the
restriction φ|U ′ : U ′ → φ(U ′) belongs to Γ

2. the composition of two elements of Γ (when defined) belongs to Γ
3. inverses of elements of Γ belong to Γ
4. domains U of elements φ of Γ cover M
5. if φ : U → V is a homeomorphism, and Uα is an open cover of U , and
φ|Uα

belongs to Γ for all α, then φ belongs to α.

A Lie pseudogroup is a pseudogroup whose elements are precisely the solutions
of a system of partial differential equations and inequalities invariant under
the pseudogroup.

Clearly the symmetries of a G-structure form a Lie pseudogroup.
The space of integral elements of these equations at each point is exactly

identified with the first prolongation g(1), since we need to write dω0− dω1 =
π ∧ ω0 where π can be anything of the form

π = pω

for p ∈ g(1).

Theorem 14. If the structure equations on B(k) of an analytic G-structure
B → M are in involution, with Cartan characters s1 ≥ s2 ≥ · · · ≥ sk >
sk+1 = 0 and the G-structure is (k + 1)-flat, then it is flat, and its general
symmetry depends on sk functions of k variables; in particular, the local sym-
metry pseudogroup is infinite dimensional.
1 Ivey and Landsberg [47] provide a nice explanation of the Cartan–Kähler theorem,

which is proven in complete detail and maximal generality by Bryant et. al. [12].
The Cartan–Kähler theorem is only valid in the real analytic category.
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To say that the structure equations are in involution just means that the Lie
algebra g(k) is involutive in the sense of the appendix to these notes.

Example 67 (Complex manifolds). For a complex manifold of complex dimen-
sion n, the last nonzero character is sn = 2n, and the local symmetries are
just the local invertible holomorphic maps, which are determined by their
restrictions to any total real submanifold, hence 2n real functions of n real
variables. Any real analytic functions can be locally extended off of a real an-
alytic totally real submanifold to holomorphic functions. Nonanalytic smooth
functions can not be extended. Any two complex manifolds of the same di-
mension are locally isomorphic. In particular, any two conformal structures
on surfaces are locally isomorphic.

Example 68 (Flag geometry). Consider a manifold M equipped with a flag of
smooth subbundles of its tangent bundle:

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = TM

with Vk a vector bundle of rank k. This is a G-structure, with G the stabilizer
of a flag. The reader might find it easier to follow along with this example by
assuming n = 3. The structure equations are

dωi = −γi
j ∧ ωj +

1
2
T i

jkω
j ∧ ωk,

and we can absorb torsion to arrange that T i
jk = 0 for j ≥ i or k ≥ i,

and T i
jk + T i

kj = 0. In the case of a torsion-free flag geometry, the structure
equations are just

dωi = −γi
j ∧ ωj .

Lets check for involution. The Cartan characters are s1 = n, s2 = n −
1, . . . , sn = 1, counting independent 1-forms in the columns of the matrix
γ =

(
γi

j

)
. Thus

s1 + 2s2 + · · ·+ nsn = (1)n+ 2(n− 1) + 3(n− 2) + · · ·+ n(1).

The prolongation g(1) of the Lie algebra is given by objects ξi
jk for which

ξi
jk = ξi

kj and ξi
jk = 0 for i > j or i > k, so the number of independent

components in such a ξ is

dim g(1) =
n∑

i=1

dim Sym2
(
Rn−i+1

)
=

n∑
i=1

(n− i+ 1)(n− i+ 2)
2

=
n∑

j=1

j(j + 1)
2

.
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We leave the reader to juggle the combinatorics to show that

s1 + 2s2 + · · · = dim g(1),

i.e. involution. Therefore

Proposition 33. Any two torsion-free real analytic n-dimensional flag ge-
ometries are locally equivalent.

8.2 Are we there yet? How to stop prolonging

Involutivity (in the real analytic category) implies transitivity of the pseu-
dogroup of local symmetries on B, so that no further invariantly defined re-
duction of B. Moreover, involutivity implies that no higher order torsion can
emerge (since the Spencer cohomology of involutive tableaux vanish) and im-
plies involutivity of all prolongations, so that the symmetry pseudogroup acts
transitively on all prolongations, and therefore there is no reason to prolong.
Even in the smooth category, prolonging would not reveal any new local in-
variants, since formally to all orders the G-structures appear equivalent, and
there is no differential invariant that can tell them apart. That does not imply
that they are equivalent, even locally.

Example 69 (Flat web geometries). Lets find the possible symmetry groups
of a flat web geometry, continuing our discussion from subsection 4.1.2 on
page 28. The standard flat web geometry has symmetry group R2oR× because
the standard flat connection is invariantly determined on it (as in theorem 1
on page 19). Note that we can’t exchange the foliations.

We can quotient the plane by a lattice of translations, bringing the stan-
dard flat web geometry down onto a torus. Translations preserve the flat web
geometry on the torus. Similarly, we could quotient onto a cylinder, and still
have translations. We could also cut out a point of the plane, and still have
dilations around that point acting as symmetries, so we could quotient by a
discrete group of dilations to produce a torus with a one parameter symmetry
group.

Consider a general flat web geometry. The symmetry group must embed in
the G-structure bundle B (by fixing a point of B, and letting each symmetry
move it around, to map symmetries to points of B; see theorem 15), so that
the structure equations of B pull back under the embedding to become the
structure equations (i.e. Maurer–Cartan equations) of the symmetry group. So
the symmetry Lie algebra of any flat web geometry sits inside the symmetry
Lie algebra of the standard flat web geometry, i.e. the Lie algebra of the
group R2 o R× of translations and rotations. We get an easy classification of
the possible symmetry Lie algebras.

Exercise 8.1 Classify the homogeneous flat web geometries on surfaces.
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Example 70 (Levi-flat CR 3-manifolds). Let us apply these techniques to Levi-
flat CR 3-manifolds, a topic discussed previously in section 7.4 on page 111.
The structure equations of a Levi-flat 3-manifold are

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ2
2

)
∧

(
ω1

ω2

)

The Cartan characters are determined just from the γ pseudoconnection ma-
trix: keeping in mind that the complex entries have each a real and imaginary
part, that gives s1 = 3 (second column) and s2 = 2 (first column). The pro-
longation of the Lie algebra is given by(

γ1
1 γ1

2

0 γ2
2

)
∧

(
ω1

ω2

)
= 0

which gives

γ1
1 = a1

11ω
1 + a1

12ω
2

γ1
2 = a1

21ω
1 + a1

22ω
2

γ2
2 = a2

22ω
2

with a1
21 = a1

12 complex coefficients, and a2
22 real. In particular, the Lie algebra

has prolongation g(1) = C3 ⊕ R with 7 real dimensions. Cartan’s test: s1 +
2s2 = 3 + 2 · 2 = 7, so in involution with general solution depending on
s2 = 2 functions of 2 variables. Thus the Cartan–Kähler theorem predicts that
there is a symmetry group acting transitively on the Levi-flat hypersurface, as
symmetries of the CR-structure, and that any two Levi-flat CR-structures are
equivalent with general equivalence depending on 2 functions of 2 variables.
Since the Cartan–Kähler theorem is only valid in the analytic category, and
is local, we can only be sure of:

Proposition 34. Any real analytic Levi-flat 3-manifold is flat.

In fact, Malgrange [60] proved that all Levi-flat 3-manifolds are flat.

Remark 25. Symmetry group versus symmetry pseudogroup Note that the
symmetry group might not really be as large as the symmetry pseudogroup.
The global symmetry group of a complex curve is always finite dimensional,
while its pseudogroup of local symmetries is infinite dimensional, since local
symmetries are just holomorphic local changes of variable. Applying this to
the leaves of a Levi-flat hypersurface, we see that the global symmetry group
must depend on functions of one variable at most; indeed the largest symmetry
group is that of a family of rational curves, with symmetries depending on one
function of 6 variables, rather than the two functions of 2 variables predicted
by Cartan–Kähler.
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Exercise 8.2 Use the Cartan–Kähler theorem to show that the symmetry
pseudogroup of a real analytic contact structure is transitive. Note that the-
orem 14 on page 170 does not apply, since the torsion does not vanish.

Example 71 (Levi pseudoconvex CR 3-manifolds). Let us see an example in
which we have to prolong. Indeed higher order invariants appear. Recall the
structure equations from subsection 7.4.2 on page 112:

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)
∧

(
ω1

ω2

)
+

(
0√
−1ω11̄

)
.

Following the discussion in the appendix on prolongations of Lie algebras, we
calculate the prolongation of the Lie algebra of the structure group as follows:(

γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)(
ω1

ω2

)
= 0

gives, by Cartan’s lemma:

γ1
1 = a1ω

2

γ1
2 = a1ω

1 + a2ω
2.

These are 2 complex numbers, so the Cartan integer is 4. The Lie algebra has
s1 = 3, s2 = 1 (keeping track of real and imaginary parts), so s1+2s2 = 5 6= 4.
Therefore the structure equations are not in involution, and we must prolong.
We saw in subsection 7.4.2 on page 112 that indeed new differential invariants
appear on the prolongation.

8.3 Finite type

Exercise 8.3 (Finsler surfaces) If the symmetry group of a Finsler struc-
ture acts transitively on the bundle B → Σ we constructed previously, then
the invariants I, J,K must be constants on that bundle, since they are invari-
ant under symmetries. Suppose that the functions in Cartan’s structure equa-
tions for Finsler surfaces from page 52 are constant. Show that J = IK = 0,
so J = 0 and either I = 0 or K = 0. In case I = J = 0 (which occurs exactly
when the Finsler geometry is Riemannian), find structure equations

dω1 = ω3 ∧ ω2

dω2 = ω1 ∧ ω3

dω3 = Kω2 ∧ ω1.

Show that these are the structure equations (i.e. Maurer–Cartan equations)
dΩ = −Ω ∧Ω for the symmetry groups
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SL (2,R) if K < 0

SO (2) o R2 if K = 0
SO (3) if K > 0

giving the hyperbolic plane, Euclidean plane and sphere, where we take

Ω =

 0 ω3 ω1

−ω3 0 ω2

Kω1 Kω2 0

 .

If we suppose that I 6= 0, then we have J = K = 0, and a one parameter
family of exotic homogeneous Finsler structures, which, as noted in section 5.3
on page 47, do not come about from Finsler surfaces.

In general, if we have a G-structure B → M and if we find an invariantly
determined pseudoconnection, then the symmetry group of the G structure is
just the symmetry group of the soldering form and pseudoconnection, which
is of dimension at most dimB. It is of dimension equal to dimB precisely
when the universal cover of B is a Lie group, and the coframing is just the
coframing of Maurer-Cartan forms. Let us see why.

Even if the symmetry group is trivial, as long as the symmetry Lie algebra
is not trivial, we can look at the flows of Lie algebra elements, and see that the
torsion must be invariant under those flows. So if the infinitesimal symmetries
point in all directions, at a generic point, then the torsion functions on B must
be constants. So we find structure equations expressing dω and dγ in terms
of constant multiples of ω and γ.

Exercise 8.4 Suppose that dω and dγ are constant multiples of ω ∧ ω, γ ∧ ω
and γ ∧ γ. Show that the dual vector fields to the components of ω and γ
form a Lie algebra. Show that B is locally identified with some Lie group,
uniquely up to left action of the Lie group, so that (ω, γ) is identified with the
left invariant Maurer–Cartan form. Show that the infinitesimal symmetries
are identified with the right invariant vector fields. Hence the Lie algebra of
infinitesimal symmetries has dimension equal to dimB.

Similarly, by prolonging we see that if we have any group G of finite type, say
g(k) = 0, then the symmetry group of any G-structure must have dimension
no larger than

dimV + dim g + dim g(1) + · · ·+ dim g(k−1).

Moreover, the Lie algebra of the symmetry group will be filtered, with a
contribution from each of these prolongations. The part of the symmetry Lie
algebra which sits inside

g⊕ g(1) ⊕ . . .
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is the Lie algebra of the isotropy group of a point, while that which sits inside

g(p) ⊕ g(p+1) . . .

is the symmetry group of a choice of point and frame adapted up to order p,
i.e. a point of B(p−1).

Example 72 (Riemannian manifolds). The symmetry group of a Riemannian
manifold is of dimension no larger than

dimV + dim g = n+
n(n− 1)

2

because g(1) = 0. The sphere, hyperbolic space, and Euclidean space meet
this dimension bound, with nonisomorphic symmetry groups, each having Lie
algebra composed of:

V × g = Rn × so(n).

Keep in mind that this is not a direct or even semidirect sum of Lie algebras.
For instance, the symmetry group of the n-sphere is O (n+ 1) , which is simple
for n 6= 1, 3, and the subgroup fixing a point is O (n) × ±1. This gives the
filtration

so (n+ 1) = Rn ⊕ so (n)

but (e.g. since SO (n+ 1) is simple for n > 3) this is not a semidirect sum
of Lie algebras, since Rn is not a Lie subalgebra. The generic flat torus V/Λ
has itself as symmetry group, so the Lie algebra of the symmetry group is
V . The generic Riemannian manifold has trivial symmetry group. Since the
Weyl representation is irreducible (except in dimension 4), as is the traceless
Ricci representation, any pseudo-Riemannian manifold with symmetry group
acting transitively on the oriented orthonormal frame bundle will have to
have vanishing traceless Ricci curvature (i.e. must be an Einstein manifold)
and vanishing Weyl curvature (i.e. be conformally flat). Differentiating the
structure equations, we find that it must have constant scalar curvature, so
with a little work one can show that it is a space form (see section 7.3 on
page 106.) In particular, if it is Riemannian, then it is locally equivalent (i.e.
locally isometric) to a sphere, hyperbolic space, or Euclidean space.

8.3.1 Embedding the symmetry group

Theorem 15 (Kobayashi [51]). The symmetry group H of an e-structure
on a connected manifold M embeds into M via the map h ∈ H 7→ hm0 ∈M ,
for any choice of point m0 ∈M .

Proof. Let ω be the soldering form. An e-structure is just a coframing, which
is just ω itself. The dual vector fields to the elements of this coframing must
commute with all symmetries. Their flows will head in all directions out of
each point. If a symmetry fixes a point, then it must fix the points obtained
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by following any of these flows, so must fix all points nearby. Therefore the
set of fixed points of any symmetry is both open and closed, so a symmetry
fixing a point must be the identity. If an infinitesimal symmetry vanished at a
point, then its flow would be a symmetry fixing that point, so fixing all points.
Therefore the symmetry Lie algebra is injectively mapped to the tangent space
at each point, and so the map H →M is an injective immersion.

To show that this map is an embedding, following Abraham & Marsden
[1] page 264, we need to show that if mj → m and hjmj → m′ are convergent
sequences in M , then hj is convergent in H. For each v ∈ V define the vector
field ~v by ~v ω = v. Then for a fixed point m, we define expm(v) = e~vm;
this is defined for v near 0 in V . Check that this is diffeomorphism, since
exp′m(0)∗ω = dv. Then we define h by

h (expm (v)) = expm′ (v) .

This defines h near m, and clearly h is a limit of symmetries, so a symmetry.
We now replace m by any point where h is defined, and use the same formula
at the new point. This agrees with h at points where h was already defined,
because it does so for the hj which approach h at those points. Extend the
definition of h over all of M , and it is a symmetry.

Corollary 14. Suppose that B → M is a G-structure, which has prolonga-
tions B(k) defined for all k > 0. The symmetry group of B →M has dimension
at most dimB(∞). If that dimension is finite, then the symmetry group is a
Lie group, and an embedded submanifold of B(∞)

Proof. The manifold B(∞) is really just the last B(k) for which g(k) 6= 0, and
carries an e-structure. Apply the previous theorem and theorem 5 on page 74.

Example 73. The symmetry group of a compact Riemannian manifold is a
compact Lie group.

Corollary 15. The symmetry group of a Cartan geometry B → M modelled
on a Klein geometry H/G embeds into B. If its dimension equals that of B,
then the curvature is constant, and therefore lives in a trivial G-representation
inside h⊗ Λ2 (h/g∗)

Corollary 16. A flat Cartan geometry on a bundle B → M modelled on a
Klein geometry H/G has symmetry group of dimension at most that of H. If
the base manifold M is connected, then the following are equivalent:

1. the dimension of the symmetry group reaches that of H
2. the Cartan geometry is complete and homogeneous
3. B → M is a locally Klein geometry, i.e. after possibly replacing H by a

covering Lie group H̃ → H with the same Lie algebra, also containing G
as a closed subgroup, we have B = Γ\H̃ → M = Γ\H̃/G where Γ ⊂ H̃
acts trivially on h in the adjoint representation.
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Proof. If the dimension of the symmetry group is equal to dimH, then the
symmetry group acts locally transitively, preserving the integral curves of the
vector fields ~A defined in subsection 7.6.1 on page 117. Sliding those integral
curves along themselves we see that their flows are defined for all time, hence
complete.

If the Cartan connection is complete and flat, then by lemma 20 on
page 121, it has the form B = Γ\H̃ → M = Γ\H̃/G, but possibly for a
different group H with the same Lie algebra, and containing the same sub-
group G. The map H̃ → B = Γ\H̃ pulls back the Cartan connection to the
Maurer–Cartan form, so matches up the Lie algebra of infinitesimal symme-
tries of the Cartan connection with the right invariant vector fields. These
generate the left action on H̃. They must commute with the left action of Γ ,
so Γ must act trivially in the adjoint representation on h.

Example 74 (Symmetries of connections). A connection on the frame bundle
FM of a connected n-dimensional manifold M is a Cartan geometry modelled
on H/G, with H = GL (n,R)oRn and G = GL (n,R). Therefore the symme-
try group of the connection has dimension at most dimH = n2+n. It can only
reach this bound if the curvature and torsion vanish, since they live in rep-
resentations which have no trivial subrepresentation. If the symmetry group
reaches n2 + n dimensions, the manifold must have the form M = Γ\H̃/G,
for Γ ⊂ H̃ acting trivially in the adjoint representation, and H̃/G → H/G
must be a covering map of connected manifolds. Since H/G = Rn is simply
connected, H̃/G = H/G = Rn.

Exercise 8.5 Calculate that no element of H acts trivially in the adjoint
representation. Show that the same must be true for any covering group H̃ →
H.

Therefore M = H/G = Rn, the standard flat connection has the largest
symmetry group of any pseudoconnection.

Exercise 8.6 Apply the same reasoning to conformal geometry.

Remark 26 (Symmetries and path components). What if the manifold has
many components? Think of a countable (or finite) set of spheres, all of the
same radius, or maybe different radii. If they have different radii, then the
symmetry group is a direct product of the symmetries of each sphere. If they
are of the same radius, you also have to allow permutations of spheres, so you
get a discrete permutation group appearing in a semidirect product with a
Lie group. The same idea works with arbitrary G-structures.

Example 75 (Compact subgroups of Lie groups).

Proposition 35. Let G be a simple Lie group of dimension p. Every compact
subgroup K ⊂ G has dimension q satisfying either q = p (i.e. K is a union of
path components of G) or
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q ≤ p+
1
2
− 1

2

√
8p+ 1.

Proof. The manifold G/K has a G-invariant Riemannian metric by a standard
argument (find an K-invariant positive definite quadratic form on the tangent
space g/k, using center of mass and convexity of the space of positive definite
forms, then extend by G-invariance). So G must act on G/K by isometries
of that metric. Let N ⊂ G be the elements acting trivially. Then N ⊂ G is
normal. By simplicity of G, N is discrete or N = G. (Recall that a simple
Lie group may fail to be simple as a group, but its normal subgroups are
discrete and abelian). If N = G, so that G acts trivially on G/K, then G = K
because gK = K for any g ∈ G. Therefore we may assume N discrete, so
that G is immersed into the group of isometries of G/K. The isometry group
is embedded into the orthonormal frame bundle, so has dimension at most
n+ n(n− 1)/2 where n = dimG/K = p− q. Therefore

p ≤ n+
n(n− 1)

2
,

which, plugging in n = p− q, easily gives

q ≤ p+
1
2
−
√

8p+ 1
2

.

See table 8.1 for examples. In particular, SU (3) ⊂ G2 is a maximal subgroup,

G p = dim G
j
p + 1

2
−

√
8p+1
2

k

SU (2) 3 1

SU (3) 8 4

SU (4) 15 10

SU (5) 24 17

SU (6) 35 27

SU (7) 48 38

SU (8) 63 52

SU (9) 80 67

SU (10) 99 85

SO (n) (n 6= 4) n(n−1)
2

(n−2)(n−1)
2

E6 78 66

E7 133 117

E8 248 226

F4 52 42

G2 14 9

Table 8.1. Bounds on dimensions of compact subgroups of some simple Lie groups

as is O (n− 1) ⊂ SO (n) . These bounds on subgroup dimensions are not
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optimal, but they are easy to come by: no roots or weights were calculated.
The reader might ponder whether U (n) ⊂ SU (n+ 1) (obvious embedding) is
maximal.

8.4 Homogeneous G-structures

More generally, the symmetry group always embeds into the last bundle B(k),
as long as the G-structure has finite type. Let us examine this more carefully.

8.4.1 Replacing the bundle by an orbit

Suppose that H is a Lie group acting transitively on a manifold M , preserving
a G-structure B ⊂ FM . Pick a point m0 ∈ M , and let H0 be the stabilizer
of m0, so M = H/H0. Let H1 be the subgroup fixing m0 and every tangent
vector at m0, so H1 ⊂ H0 is a closed normal subgroup. Pick a point u0 ∈ B,
and map h ∈ H 7→ hu0 ∈ B. Clearly H1 fixes u0, so this map descends to a
map H/H1 → B. We use the fact that u0 : TmM → V is a linear isomorphism
as follows: give H0/H1 a representation on V by

h ∈ H0/H1, v ∈ V 7→ u0h
′ (m0)u−1

0 v.

We have the composition H/H1 → B → FM and the identification M =
H/H0 to makeH/H1 → H/H0 anH0/H1-structure. Alternatively, we can just
use the adjoint representation to get H0/H1 to act on TH1 (H/H1) = h/h1.
We identify these two representations by mapping

A ∈ h/h1 7→ u0

(
~A
)
∈ V

where A ∈ h generates the vector field ~A on M . We can identify an element
hH1 ∈ H/H1 with a linear map ThH0H/H0 → h/h1 by

w ∈ ThH0H/H0 7→ Lh∗w ∈ h/h1

using left translation, we get H/H1 → FH/H0 a H0/H1-structure. Clearly
H/H1 → B is a smooth injective map, immersing H/H1 into the orbit of u0

under H.

Example 76 (Homogeneity and connections).

Proposition 36. Suppose that the symmetry group H of a G-structure B →
M acts transitively on M , with stabilizer H0 ⊂ H of a point m0 ∈ M , and
H1 the subgroup of H0 consisting of elements acting trivially on Tm0M (as
above). Suppose that hj is the Lie algebra of Hj for j = 0, 1. Let W = h0/h1.
Suppose that for this H0-representation, (1) the prolongation is trivial: h

(1)
0 =

0, and (2) the subrepresentation h0⊗W ∗ ⊂W ⊗Λ2 (W ∗) has an H0-invariant
complement. Then there is an H-invariant connection on B.
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Proof. We start by replacing the G-structure B by the H0-structure H/H0 →
FM as above. Then we build the canonical connection on H (see example 28
on page 25). We then push this connection forward to B (see subsection 6.2.4
on page 61).

Exercise 8.7 The unitary group acts transitively on complex projective
space, preserving the complex structure. Show that there must be a connec-
tion on complex projective space, invariant under unitary transformations, for
which the complex structure is parallel.

8.4.2 Torsion

We can normalize torsion as usual, but we also have the action of the original
structure group G, which permutes the orbits of H on B. We can use the
action of G to normalize torsion even further, and to replace the subgroup
H0/H1 → G by any conjugate subgroup. We will see this in action shortly.

8.4.3 Prolonging

Rather than prolonging the original G-structure, we can prolong the H0/H1-
structure H/H1. We obtain a new bundle (H/H1)

(1) → H/H1, and we can
pick any point b of this bundle, and look at its orbit under H, H/H2, and
continue by induction. Of course, the structure groups of prolongations are
always vector spaces, so connected, and therefore either the dimension goes up
at each step, or else the structure group becomes trivial, and the process stops,
with a prolongation bundle H/H∞ which is equipped with an H invariant
pseudoconnection. By theorem 15 on page 176, each H-orbit in H/H∞ is a
copy of H. Therefore H∞ = 1, i.e. the bundle is the symmetry group itself,
acting on itself by left translation.

After all of the reduction and prolongation, structure equations look like

dη = Aη ∧ η

and these A must be constants, since they are invariant under the transitive
action of H. (Obviously, constant type hypotheses are justified at each reduc-
tion.) But then, these A must be the structure constants of the Lie algebra of
the symmetry group, and the η, being left invariant, must be multiples of the
Maurer–Cartan 1-forms.

Exercise 8.8 Show that the moving frame of vector fields dual to the compo-
nent 1-forms of η will give infinitesimal symmetries of the G-structure. Show
that these are all of the infinitesimal symmetries (use the Cartan formula
LXα = X dα+ dX α for differential forms).
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Exercise 8.9 Classify all G-structures B →M which have an abelian group
of symmetries acting transitively on M . (It is not known which G-structures
have abelian symmetry groups.)

Question 17. Cartan’s classification of the irreducible second order homoge-
neous spaces seems important here. I should recall what it is.

8.5 Example: conformal geometry

8.5.1 Guessing the symmetry group

Recall our discussion of conformal geometry from section 7.7 on page 124. The
reader is naturally curious as to how we guess that we can put the 1-forms
ω, α, σ and $ together into a single matrix, which we called Ω, and magically
find that conformally flat manifolds have infinitesimal symmetries forming the
Lie algebra so (p+ 1, q + 1). Let us examine the method here. The underlying
idea is that we want to take all of the standard results and techniques from
the theory of Lie algebras, which are usually expressed in terms of the Lie
bracket, and rewrite them in the notation of the left invariant Maurer–Cartan
1-form and its exterior derivative.

8.5.2 The symmetry Lie algebra

Start with M a manifold with flat conformal structure. The structure equa-
tions:

dω = − (α+ σ1p+q) ∧ ω
dα = −α ∧ α+ ω ∧$ +$∗ ∧ ω∗

dσ = −$ ∧ ω
d$ = −$ ∧ (α+ σ1p+q) .

Because the structure equations only contain constants, as we have seen above,
these must be the structure equations of a Lie algebra h, i.e. the ω, α, σ and
$ will together, in some combination, compose the Maurer–Cartan 1-form of
a Lie algebra.

8.5.3 Detecting semisimplicity

Exercise 8.10 Suppose that a Lie group has Maurer–Cartan 1-forms ϑi and
structure equations

dϑi = −cijkϑ
j ∧ ϑk.

Show that the dual vector fields Xi to the 1-forms ϑi satisfy
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[Xj , Xk] = cijkXi.

Show that the Killing form

B (x, y) = tr (adx ady)

is given by
B (Xi, Xj) = cljkc

k
il.

We can now determine whether the symmetry group of a homogeneous G-
structure is semisimple by direct calculation: the Lie algebra is semisimple
just when the Killing form is definite as a quadratic form on the Lie algebra.
This is just a calculation on the matrix

(Bij) =
(
cljkc

k
il

)
.

Exercise 8.11 By hand, calculate the Killing form matrix for constant cur-
vature Riemannian geometry on surfaces. Show that det (Bij) vanishes just
when the curvature is zero, so that the symmetry group is semisimple just
when the curvature is not zero. Show that the Killing form is negative defi-
nite just when the curvature is positive.

Recall that the Killing form of a semisimple Lie group is negative definite just
when the identity component of the Lie group is compact (see Fulton & Harris
[39] p. 434). Determining compactness of a nonsemisimple Lie group can be
much more complicated. More generally, the Killing form of a semisimple
Lie algebra is negative definite on the Lie algebra of the maximal compact
subgroup of the adjoint form, and positive definite on the complement.

Exercise 8.12 Using a computer, calculate the Killing form matrix for the
standard flat positive definite conformal geometry in low dimensions. Write
6[−6] + 4[6] to mean eigenvalues −6 of multiplicity 6 and 6 of multiplicity 4;
compare with table 8.2 on the following page. The Killing form is negative
definite on the Lie algebra of the maximal compact subgroup of the adjoint
form, and positive definite on its complement, so we can read off the dimension
of the maximal compact subgroup: n(n+ 1)/2.

8.5.4 Finding abelian subgroups

To find the maximal abelian subgroup, follow the process which we will explain
in detail in subsection 12.2.1 on page 254: look for choices of equations on
differential forms which will render all of the right hand sides of all of the
structure equations to 0. For example, if we set ω = $ = 0, our structure
equations simplify to dα = −α ∧ α, dσ = 0. We need to add some more
equations on the α to kill off the rest of the equations. Recall that α is valued
in so (p, q). Let t0 ⊂ so (p, q) be a maximal abelian Lie subalgebra, and split
so (p, q) into a sum of linear subspaces:
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n dim h Spectrum of B

3 10 6 [−6] + 4 [6]

4 15 10 [−8] + 5 [8]

5 21 15 [−10] + 6 [10]

6 28 21 [−12] + 7 [12]

7 36 26 [−14] + 8 [14]

8 45 36 [−16] + 9 [16]

9 55 45 [−18] + 10 [18]

10 66 55 [−20] + 11 [20]

n (n+1)(n+2)
2

n(n+1)
2

[−2n] + (n + 1) [2n]

Table 8.2. The spectrum of the Killing form of the symmetry group of flat conformal
geometry

so (p, q) = t0 ⊕ t⊥0 .

We write α as α = α0 + α1 in terms of this splitting. Consider the equations
I = (0 = ω = $ = α1).

Exercise 8.13 Let t be the set of elements of h on which these equations I
are satisfied. From the structure equations, why is t an abelian subalgebra?

Clearly t = t0 ⊕ R.

8.5.5 Checking that an abelian subgroup is maximal abelian

Next we have to check that t is a maximal abelian subalgebra. Define Z (t) to
be the set of elements z of h so that dζ(z, h) = 0 for all h ∈ t, where ζ = 0 is
any one of our equations from I.

Exercise 8.14 Show that Z (t) is the centralizer of t, i.e. the set of all ele-
ments of h which commute with every element of t.

For example,
dω = − (α+ σ1p+q) ∧ ω

so that plugging in the element of t dual to σ, we get the equations 0 = ω
satisfied by the elements of Z (t). Similarly, using the same element on the
equation

d$ = −$ ∧ (α+ σ1p+q) ∧$

we find the equation 0 = $ on Z (t).
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Exercise 8.15 On Z (t), we have now established that ω = $ = 0. But
therefore, on Z (t),

dα = −α ∧ α.

Use this to show that the map

v ∈ Z (t) 7→ v α ∈ so (p, q)

is a Lie algebra morphism.

This morphism maps t onto t0, by definition of t. Therefore it maps

t

��

// t0

��
Z (t) // Z (t0) .

The subalgebra t0 ⊂ so (p, q) is already maximal abelian, so Z (t0) = t0, and
therefore Z (t) must map under α to t0, i.e. satisfy α1 = 0, and therefore must
equal t. Therefore t ⊂ h is maximal abelian.

8.5.6 How to see all of this from the structure equations

Summing up, if we have a finite type G-structure, with only constants appear-
ing in the structure equations of all prolongations, and if we write the 1-forms
in the infinitely prolonged structure equations as ηi, ζα (so that the structure
equations say that dηi, dζα are constant coefficient multiples of wedge prod-
ucts built from ηj , ζβ), then the equations (ζ = 0) cut out a subgroup just
when all dζ vanish modulo ζ. Our subgroup is abelian if we also have dη = 0
modulo ζ. Denote by ∂

∂ηi the vectors dual to the ηi, and write

Z⊥ (ζ) = span
i,α

(
∂

∂ηi
dζα

)
.

Our subgroup is maximal abelian if furthermore

Z⊥ (ζ) = span
α

(ζα) .

All of this can be checked just by looking at the structure equations, without
even calculating anything.

8.5.7 Roots

We have identified that t is a maximal abelian subgroup. Next we calculate
roots.
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Definition 38. Recall the definition of a root vector: if t ⊂ h is a maximal
abelian subgroup of a semisimple Lie algebra, and λ ∈ t∗, we say that w ∈ h
is a root vector with weight λ if

[h,w] = λ(h)w

for all h ∈ t.

Exercise 8.16 Suppose that the Lie group H has left invariant Maurer–
Cartan 1-form ϑ. Show that w is a root vector with weight λ just when

0 = w (h dϑ+ λ(h)ϑ) ,

for all h ∈ t. (If λ is the weight of some root vector, then λ is called a root.)

Example 77 (Surfaces of nonzero constant curvature). The structure equations
of a Riemannian geometry on a surface are

d

ω1

ω2

γ

 = −

−γ ∧ ω2

γ ∧ ω1

κω1 ∧ ω2

 .

We suppose that κ is a constant. A maximal abelian subgroup is cut out by
ω1 = ω2 = 0. The equations of a root with weight λ are therefore

0 = w

 ∂

∂γ
d

ω1

ω2

γ

+ λ

ω1

ω2

γ




where
∂

∂ω1
,
∂

∂ω2
,
∂

∂γ

is the dual basis to ω1, ω2, γ, and λ ∈ R. In this simple case, t is just the span
of ∂

∂γ . We compute out that the roots are solutions of

0 = w

−ω2 + λω1

ω1 + λω2

λγ

 .

We can easily see that w must be zero unless we allow complex roots:

Root Root vector
−
√
−1 ∂

∂ω1 −
√
−1 ∂

∂ω2

0 ∂
∂γ√

−1 ∂
∂ω1 +

√
−1 ∂

∂ω2
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Lets find the roots of the symmetry group of the flat conformal geometry.
The maximal abelian subgroup t splits as t0 ⊕ R, and in the same way, we
can represent each weight in t∗ as a sum of two pieces λ⊕ Λ with λ ∈ t∗0 and
Λ ∈ R. The equations for root vectors are

0 = w

h d


ω

α

σ

$

+ λ(h)


ω

α

σ

$




for h ∈ t0 and a similar equation for the R part of t. Calculating these out,
and putting them together gives:

0 = w


−hω + λ(h)ω
−[h, α] + λ(h)α

λ(h)σ
−h$ + λ(h)$


and

0 = w


(Λ+ 1)ω
Λα

Λσ

(Λ− 1)$

 .

If w α 6= 0 then this forces α(w) to be a root vector of so (p, q) with weight
λ, and forces Λ = 0, and then ω = $ = σ = 0 on w. This provides at Λ = 0 a
copy of the root lattice of so (p, q).

If we consider w α = 0, and still ask for Λ = 0, there is one more
possibility: we are forced to have ω = α = $ = 0 on such a root vector, but
could still have σ 6= 0. Hence one additional dimension of root vectors at the
weight λ = Λ = 0.

Recall that a vector v ∈ V in a representation of a Lie algebra h is called
a weight vector of weight λ ∈ t∗ if hv = λ(h)v for all h ∈ t. A weight is a
choice of λ which is the weight of some nonzero weight vector. Complex weight
vectors and complex weights are defined similarly. As above, a weight for the
adjoint representation is called a root.

In our case, if Λ 6= 0, this forces w α = 0 and w σ = 0, but allows ω 6= 0
if Λ = −1, and $ 6= 0 if Λ = 1. In each case, λ is forced to be a (possibly
complex) weight of the representation Rp+q.

We now have the following picture of the roots of the symmetry group:
there are three layers, Λ = −1, 0, 1, and the Λ = 0 layer is just the roots
of so (p, q), but with multiplicity increased by one at the origin. The Λ = ±1
layers are just the weights of the Rp+q representation of so (p, q); see figures 8.1
and 8.2.
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Fig. 8.1. The roots of SO (3, C)

Fig. 8.2. The roots of SO (5, C)

Exercise 8.17 Draw the roots of the symmetry Lie algebra of the flat con-
formal structure on Sp × Sq for small values of p and q, from the drawings of
the roots of so (p, q) given by Fulton and Harris [39] lecture 18.

From these root diagrams, the reader should be able to identify that the sym-
metry Lie algebra of a flat conformal structure on a three-manifold must be a
real form of so (5,C), for example. We found that the maximal compact sub-
group had dimension 6, and therefore the symmetry group of a flat conformal
structure on a three-manifold must be so (4, 1). Similarly, for a flat conformal
four-manifold, we must have symmetry Lie algebra so (5, 1).

In the usual picture of the weight lattice (Fulton & Harris [39], p. 283),
the weights of the Rp+q representation of so (p, q) are at the standard basis
vectors of the weight lattice and their negatives. If p+q is odd, then the roots
of so (p, q) are at 0,±ei,±ei ± ej , all with unit multiplicity, except that 0 has
multiplicity (p+q−1)/2. So putting these together, say letting the Λ direction
have standard basis vector e0, we can see that the resulting root vectors are
0,±e0,±ei,±e0 ± ei,±ei ± ej , all with unit multiplicity, except that 0 has
multiplicity (p+ q − 1)/2 + 1, and so these are the roots of so (p+ q + 2,C).
We leave the case of p+ q even to the reader.
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8.6 Example: homogeneous Levi pseudoconvex CR
3-manifolds

Torsion-free Levi pseudoconvex CR 3-manifolds provide a simpler example.
Recall our structure equations from subsection 7.4.4 on page 115:

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ1
1 + γ1̄

1̄

)
∧

(
ω1

ω2

)
+

(
0√
−1ω11̄

)

d

(
γ1
1

γ1
2

)
= −

(
0 ξ

ξ 0

)
∧

(
ω1

ω2

)
−

(√
−1γ1

2 ∧ ω1̄ + 2
√
−1γ1̄

2 ∧ ω1

γ1
2 ∧ γ1̄

1̄

)
dξ =

(
γ1
1 + γ1̄

1̄

)
∧ ξ +

√
−1γ1

2 ∧ γ1̄
2

8.6.1 Semisimplicity

Exercise 8.18 Split ω1, γ1
1 , γ

1
2 into real and imaginary parts. Read off from

the structure equations the structure constants cijk, and then calculate the
Killing form Bij = cljkc

k
il in the basis

Reω1, Imω1, ω2,Re γ1
1 , Im γ1

1 ,Re γ1
2 , Im γ1

2 , ξ.

You should find

B =



0 0 0 0 0 0 2 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 −6
0 0 0 12 0 0 0 0
0 0 0 0 4 0 0 0
0 2 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 0 −6 0 0 0 0 0


.

The spectrum of B is

[−6] + 2[−2] + 2[2] + [4] + [6] + [12].

Of course, the values that occur in the spectrum depend on the basis chosen
for the structure equations, but the signs do not. Zero is not in the spectrum,
so the symmetry group is semisimple. The symmetry group is 8 dimensional,
since there are 8 real-valued 1-forms in our basis. There is a 3 dimensional
space of negative eigenvectors, so the maximal compact subgroup of the sym-
metry group has 3 dimensions.
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8.6.2 Finding an abelian subgroup

Lets follow subsection 8.5.6. To find an abelian subgroup, try setting some
1-forms to 0, and keep going until all of the exterior derivatives of all of
the remaining 1-forms vanish. In our case, we could try ω1 = 0, but then
dω1 wouldn’t vanish. So lets try ω1 = ω2 = 0. Then dγ1

2 = γ1
2 ∧ γ1̄

1̄ . The
easiest way to kill this off is to ask for ω1 = ω2 = γ1

2 = 0. This still leaves
dξ =

(
γ1
1 + γ1̄

1̄

)
∧ ξ. The easiest way to kill this off is to make ξ = 0 too, so

our equations are
ω1 = ω2 = γ1

2 = ξ = 0,

an abelian subgroup. We call our abelian Lie subalgebra t, so

t⊥ = span
{
ω1, ω2, γ1

2 , ξ
}
.

8.6.3 Checking maximality of our abelian subalgebra

To see that t is maximal abelian, we take each 1-form in this list of equations,
for example ω1 = 0, we take the differential of the 1-form on the original
group:

dω1 = −γ1
1 ∧ ω1 − γ1

2 ∧ ω2,

and, since γ1
1 is not in t⊥, we find that ω1 is in Z⊥ (t). Similarly, checking

through
dξ =

(
γ1
1 + γ1̄

1̄

)
∧ ξ +

√
−1γ1

2 ∧ γ1̄
2

since γ1
1 +γ1̄

1̄ is not in t⊥, then ξ must be in Z⊥ (t). Checking all of the relevant
1-forms, we find that Z⊥ (t) = t⊥, so the subalgebra is maximal abelian.

8.6.4 Roots

Since t is has two real dimensions, parameterized by the real and imaginary
parts of γ1

1 , lets let X and Y be the vector fields dual to the real and imaginary
parts of γ1

1 . We have to plug h = X and h = Y into the equation

0 = w


h d



ω2

ω1

ω1̄

γ1
1

γ1̄
1̄

γ1
2

γ1̄
2

ξ


+ λ(h)



ω2

ω1

ω1̄

γ1
1

γ1̄
1̄

γ1
2

γ1̄
2̄

ξ




.

This turns out to be quite easy, even though it might look daunting. Note
that complex-valued 1-forms have to appear along with their conjugates.
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Exercise 8.19 Find the roots (in dX, dY coordinates) and root vectors;
check table 8.3.

Root Root vector

(2, 0) ∂
∂ω2

(1, 1) ∂
∂ω1

(1,−1) ∂

∂ω1̄

(0, 0) ∂
∂γ1

1
, ∂

∂γ1̄
1̄

(−1, 1) ∂
∂γ1

2

(−1,−1) ∂

∂γ1̄
2

(−2, 0) ∂
∂ξ

Table 8.3. Roots and root vectors

Question 18. Consider the point of view of Ivey & Landsberg, using the same
root diagram even for the inhomogeneous case, to see how the invariants can
be organized by weight.

Exercise 8.20 Decorate figure 8.3 with the root vectors labelled on each
root; use this to find sl (2,R) and so (3) subgroups, checking the structure
equations to be sure of the constants.

Fig. 8.3. The roots of SL (3, C)

The symmetry group is a real form of SU (3,C) because it has the same roots
as SU (3,C) (up to choice of basis of t). It has 3 dimensional maximal compact
subgroup, and therefore must have Lie algebra su (2, 1). Therefore, the sym-
metry group is either SU (2, 1) or PSU (2, 1) = SU (2, 1) / ± 1. At this stage,
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we might already guess how to construct the Levi-pseudoconvex hypersurface.
The group SU (2, 1) acts on C3 preserving a pseudo-Hermitian form of signa-
ture (2, 1). Therefore PSU (2, 1) acts on CP2, preserving the real hypersur-
face on which the pseudo-Hermitian form vanishes. Moreover, PSU (2, 1) acts
freely on that hypersurface, so must be a subgroup of the symmetry group.
The symmetry group of any Levi-pseudoconvex CR 3-manifold is at most 8
dimensional, and reaches this bound just when its invariants p and s vanish,
i.e. just when it has the required structure equations. But dim PSU (2, 1) = 8,
and therefore PSU (2, 1) is the identity component of the symmetry group.

Proposition 37. Every Levi-pseudoconvex CR 3-manifold with p = s = 0 is
locally isomorphic to the real hypersurface in CP2 given by the null lines of a
pseudo-Hermitian form of signature (2, 1) on C3.

Exercise 8.21 Consider the pseudo-Hermitian form

|z0|2 + |z1|2 − |z2|2 .

Show that the set of null points in CP2 for this form is the 3-sphere z2 = 1,
|z0|2 + |z1|2 = 1.

Exercise 8.22 Check that PSU (2, 1) is a simple group. (We know that it is
a simple Lie group, i.e. has simple Lie algebra, so every normal subgroup is a
discrete subgroup of the center. You need to check that its center is trivial.)

Corollary 17. Every Levi-pseudoconvex CR 3-manifold with symmetry group
of dimension 8 is S3 ⊂ CP2, the null lines of a pseudo-Hermitian form.

Corollary 18. Every Levi-pseudoconvex CR 3-manifold with p = s = 0 is
locally isomorphic to S3 ⊂ CP2.

Corollary 19. Every Levi-pseudoconvex CR 3-manifold with p = s = 0 which
is compact and has fundamental group defying PSU (2, 1) is isomorphic to
S3/Γ where Γ ⊂ PSU (2, 1) is a finite group.

Proof. It must be a quotient S3/Γ by lemma 24 on page 123, with Γ ⊂
PSU (2, 1) a finite group, since S3 is compact and simply connected.

Exercise 8.23 Classify all homogeneous Levi-pseudoconvex CR 3-manifolds.

8.7 Infinite type

Lie algebras not of finite type are quite rare. In the case of infinite type Lie
algebras, the notion of symmetry group can be replaced by that of the sym-
metry pseudogroup, i.e. treated as a system of partial differential equations
for local symmetries, as above.
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8.7.1 Elliptic G-structures

It is elementary to see that ellipticity of the differential equations of section 8.1
for symmetries is equivalent to having no linear maps of rank one in the Lie
algebra g ⊂ gl (V ) (see [12], chapter V): in such a case we call every G-
structure elliptic. Any elliptic G-structure on a compact manifold, has as
symmetry group a finite dimensional Lie group, by standard elliptic theory;
see Kobayashi [51]. For example, the global symmetries of a compact complex
manifold form a finite dimensional Lie group, because the complex linear maps
of a vector space to itself contain no linear maps of rank one. We measure
rank thinking of the complex linear maps on Cn as real linear maps of R2n.

Remark 27. Even if the G-structure is not of finite type, as long as the global
symmetry group is a finite dimensional Lie group, its Lie algebra will still
have the sum decomposition:

h ⊂ V ⊕ g⊕ g(1) ⊕ . . . .

8.8 Example: homogeneous foliated surfaces

Question 19. This section is awful.

Consider how we could find examples of homogeneous foliations of surfaces
by curves.

8.8.1 Structure equations

Let G ⊂ GL (2,R) be the group of linear transformations preserving the line
dx1 = 0, i.e. invertible matrices of the form(

g1
1 0
g2
1 g2

2

)
.

The structure equations of a foliated surface, i.e. the G-structure B ⊂ FM,
will look like

d

(
ω1

ω2

)
= −

(
γ1
1 0
γ2
1 γ2

2

)
∧

(
ω1

ω2

)
.

On the bundle B(1), the γi
j are defined.

The first step of a symmetry group H is the order k for which H acts
transitively on B(k) and not on B(k+1). The first step dimension of a symmetry
group H is the dimension of the orbits of H on B(k+1). Consequently, we will
divide our study into cases, according to the first step and first step dimension
of the symmetry group. If k is the first step, then dimH ≥ dimB(k), so if the
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manifold M has dimension n (which in our case is n = 2), and the dimension
of the structure groups are d0 = dim g, d1 = g(1), . . . then

dimH ≥ n+
k∑

j=0

dj .

For foliated surfaces, we let the reader check that

dim g(k) = k + 3

(easy to check by just carrying out the prolongation on the structure equations
a few times, until the pattern becomes clear), and so

dimH ≥ k2 + 7k + 10
2

.

See table 8.4. At the first step, the first step dimension must be at least
k2+7k+10

2 , and can not be as large as (k+1)2+7(k+1)+10
2 .

First step Dimension lower bound

k k2+7k+10
2

-1 2

0 5

1 9

2 14

3 20

4 27

5 35

6 44

7 54

8 65

9 77

10 90

Table 8.4. Limits on dimensions of symmetry groups of foliated surfaces

8.8.2 Induction

Question 20. This subsection is very unclear, because the induction step was
described quite a bit earlier.

We start with a G-structure B → M with symmetry group H acting tran-
sitively. After the first step, H is now acting transitively on a G0-structure
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B0 →M , with different structure group. We proceed inductively to the second
step, when once again the H-orbits are smaller than the ambient prolonga-
tion of the G0-structure. This is our algorithm. At each stage, we can use the
structure group to normalize torsion. The result is a tower of bundles, each
representing a G-structure over the previous one.

At each step, the bundle we construct is larger in dimension, and still no
larger in dimension than the symmetry group H itself. Therefore at some
stage the sequence will stabilize in dimension, the last step, and produce a
sequence of covering spaces, each a homogeneous H-space. Once the bundles
stabilize in dimension, each of these coverings will determine a coframing on
the previous one, up to the action of the covering group, a discrete group.
This discrete group structure is H-invariant, hence homogeneous, so all of its
torsion coefficients are constant.

Exercise 8.24 If Γ is a discrete group, and B →M is a Γ -structure, and M
is a connected manifold, then the symmetries of B →M which fix a point of
M form a discrete group.

Therefore, H itself must be a covering space of the first bundle in the tower
which has stabilized dimension.

Exercise 8.25 Give an example of a manifold which admits infinitely many
inequivalent group actions under which it is homogeneous.

Lemma 33. The symmetry group H of a homogeneous G-structure is diffeo-
morphic to the first bundle in the tower which has stabilized dimension.

Proof. The various groups g(k) are abelian groups, so their only discrete alge-
braically closed subgroups are trivial.

8.8.3 Compact stabilizer

Lets return to our search for foliated surfaces. If the stabilizer inH of a point of
M is compact, then the action preserves a Riemannian metric, which must be
of constant curvature, so the group acting must be a subgroup of the isometry
group of a constant curvature surface, and a cover of that group must act on
a simply connected surface of constant curvature, so must be a subgroup
of O (3) , SL (2,R) × {±1} or R3 o O (3). Moreover the maximal compact
subgroup of G is finite, ±1 × ±1, so the group H will be a two dimensional
subgroup of one of these groups. Leaving these cases as an exercise, assume
noncompact stabilizer of any point of M .

8.8.4 Groups of first step -1 and first step dimension 2

Any two dimensional group H acting transitively on the surface M must have
discrete stabilizer at any point, so after taking a cover (replacing M by H,
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say), we can arrange finite stabilizer, so again we reduce to the previous case.
Therefore, we will assume that our symmetry group H has more dimensions
than the manifold M that it acts on.

8.8.5 Example: the standard flat foliated surface

Consider the standard flat G-structure. The surface M is the plane, foliated
by parallel lines. The symmetry group is obviously infinite dimensional: take
functions X = X(x), Y = Y (x, y) with independent differentials at a point,
i.e. X ′(x) 6= 0 and ∂Y

∂y 6= 0, and near that point you get a local symmetry.
It is easy to arrange X and Y to make infinite dimensional families of global
symmetries. But it is not clear how to find finite dimensional subgroups of this
infinite dimensional group. If we take X and Y to be affine linear functions,
that will give a five dimensional group of symmetries, acting transitively, with
noncompact stabilizer of any point.

Question 21. Lets start with 5 dimensional groups, instead of 3. It would be
nice to see why 5 is the maximum dimension, as well. Point out that the
answer is the same over the complex numbers. I think 5 is not the maximal
dimension.

Question 22. How do we stop this process? Presumably we show that if H
has first step that is very large, then it has infinite dimension, perhaps by
computing on the infinite prolongation. Another approach might use a Lie
algebra decomposition theorem. Perhaps splitting into a semidirect product
of semisimple and solvable. The semisimple has a maximal compact subgroup
preserving a Riemannian metric, so having dimension strictly controlled. The
KAK decomposition of the semisimple part reduces the problem to finding a
dimension bound for an abelian symmetry group A and for a solvable group.
Of course abelian groups are solvable, so we only need to understand solvable
groups and their homogeneous spaces. Cartan classified the irreducible first
and second order homogeneous spaces, and showed that there are no higher
order irreducible homogeneous spaces. But if the group is not acting irre-
ducibly in the tangent spaces of the homogeneous space (hence, irreducible),
then all bets are off apparently. One can easily prove Cartan’s result using
the KAK decomposition of a simple Lie group.

8.8.6 Three dimensional groups

Let’s start with a three dimensional group H acting transitively as symmetries
of a foliated surface. Then H must act on the G-structure B as well. Since
the H action commutes with the G action on B (as is always the case with
symmetries), the H orbits are permutted by the G action. In particular, the
H orbits in B are all of the same dimension. The H orbits in B project to the
H orbits in M ; but we assumed that H acts transitively on M . Therefore the
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H orbits in B are all of dimension at least two. If they are two dimensional,
then each H orbit is a G′-structure on M , where G′ is finite, and we reduce
to the previous cases. Therefore, we can assume that the H orbits are three
dimensional, so that H is immersed into B. The 1-forms ω1 and ω2 must be
independent on the H orbit, since they are semibasic and the H orbit surjects
to the surface M . We will also need to have one of the γi

j 1-forms independent
of ω1 and ω2 on the H orbit. Let us suppose that γ1

1 is one such 1-form. (The
reader can work out the other cases.)

So on any orbit of H in B, we must have equations

γi
2 = ai

jω
j + biγ1

1

and these ai
j and bi must be constant on each orbit. However, the γi

j are not
really determined: they are determined only up to the action of the prolonga-
tion, i.e. up to replacing them by

γ1
1 7→ γ1

1 − p1
11ω

1 − p1
12ω

2

γ1
2 7→ γ1

2 − p1
21ω

1 − p1
22ω

2

γ2
2 7→ γ2

2 − p2
22ω

2

with p1
12 = p1

21. Moreover, we can move the orbit inside B(1) by action of
Go g(1), and under the G action

r∗gγ = Ad−1
g γ,

so we calculate for

g =

(
g1
1 g1

2

0 g2
2

)
that

r∗g

(
γ1
1 γ1

2

0 γ2
2

)
=

(
γ1
1

g2
2γ1

2+g1
2(γ1

1−γ2
2)

g2
2

0 γ2
2

)
.

From the G-action, we can force γ1
2 to have no γ1

1 term, i.e. b1 = 0, unless
b2 = 1.

Question 23. Should we always normalize via the G-action first, and then the
g(1)-action? Is G the normal subgroup of Go g(1)?

This enables us to force b1 = 0 or b2 = 1 and then (in either case) to force
a1
1 = a1

2 = a2
1 = a2

2 = 0, so(
γ1
1 γ1

2

0 γ2
2

)
=

(
1 b1

0 b2

)
γ1
1

with (
b1

b2

)
=

(
1
1

)
or

(
0
1

)
or

(
0

b2 6= 1

)
.

We split into cases:
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8.8.6.1 Case I

Question 24. I think I only pursued this case, so I might as well not give it a
subsection, and just say that I will only pursue this one case.

Assume (
b1

b2

)
=

(
1
1

)
.

The structure equations look like

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

1

0 γ1
1

)
∧

(
ω1

ω2

)
.

Take exterior derivative and apply the Cartan lemma to find

dγ1
1 = Kω1 ∧ ω2

and differentiate this to find

dK − 2Kγ1
1 = ∇1Kω

1 +∇2Kω
2.

But the structure is homogeneous, so K must be a constant, which forces
K = 0, so structure equations

dγ1
1 = 0.

If we simply replace ω1, ω2 by $1 = ω1 − ω2, $2 = ω2, we see the structure
equations of the flat web geometry. So this geometry is locally the standard
flat foliation of a surface by curves, but viewed at a funny angle. We leave the
many other cases for the reader to pursue.

Question 25. At this point, how do we plug in Cartan’s classification of the
second order homogeneous spaces and their maximal symmetry groups?

8.9 Upper bounds on order of homogeneous G-structures

The process we have described to catalogue the homogeneous G-structures,
possibly with some torsion condition, does not terminate, because the symme-
try group could have a large dimension, which is unknown a priori ; another
way to say this is that we have no upper bound on the orders of the possible
homogeneous spaces. We will work out the simplest example where we can
find a bound:
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8.9.1 One dimensional manifolds with any kind of G-structure

Theorem 16. A homogeneous G-structure on any one dimensional manifold
has order at most 2.

Proof. The structure equations of the frame bundle FR and its prolongations
are

dω(p) = −
p∑

k=−1

(p+ 1)!
(p− k)!(k + 1)!

ω(p−k) ∧ ω(k).

Lets write out the first few:

dω(−1) = −ω(0) ∧ ω(−1)

dω(0) = −ω(1) ∧ ω(−1)

dω(1) = −ω(2) ∧ ω(−1) − ω(1) ∧ ω(0) (8.1)

dω(2) = −ω(3) ∧ ω(−1) − 2ω(2) ∧ ω(0)

dω(3) = −ω(4) ∧ ω(−1) − 3ω(3) ∧ ω(0) − 2ω(2) ∧ ω(1)

dω(4) = −ω(5) ∧ ω(−1) − 4ω(4) ∧ ω(0) − 5ω(3) ∧ ω(1) (8.2)

dω(5) = −ω(6) ∧ ω(−1) − 5ω(5) ∧ ω(0) − 9ω(4) ∧ ω(1) − 5ω(3) ∧ ω(2)

...

If we impose a structure, of any order, this will put constraints on these 1-
forms, and produce relations among them. For a homogeneous structure, the
relations will have constant coefficients, and after finitely many steps, the
relations will force all subsequent ω(p) 1-forms to be multiples of earlier ones.

Suppose for example that the structure has order 4, so that the 1-forms
ω(−1), . . . , ω(3) are linearly independent on the appropriate prolongation, but
that (even on the next prolongation) ω(4) is not linearly independent, i.e. is
a multiple of these. Then the structure equation (8.2) above, forces ω(5) to
be also a multiple, and inductively all of the ω(p) 1-forms are multiples of
ω(−1), . . . , ω(3).

But the important observation is that not only will ω(4) be a multiple of
ω(−1), . . . , ω(3), but so will dω(4), because ω(−1), . . . , ω(3) will form a cofram-
ing. Moreover, ω(4) must be a constant coefficient multiple of ω(−1), . . . , ω(3),
by homogeneity. This will ensure that the right hand side of the equation
above for dω(4) involves only constant coefficient multiples of 2-forms already
encountered in earlier lines in the same set of equations. In particular, no
ω(3) ∧ω(1) term can appear in dω(4), because such a term has never appeared
before. This is a contradiction, since such a term does appear on the right
hand side of (8.2). So there can’t be a fourth-order structure.

A similar contradiction appears in the equation for dω(3), where we see the
ω(2)∧ω(1) term. So there can’t be a third-order structure. Since ω(1)∧ω(1) = 0,
there is no term to prevent second-order structures.
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In general, dω(p) has a term of the form

(p+ 1)!
2!(p− 2)!

ω(p−1) ∧ ω(1)

which prevents any higher order structures.

This procedure is very difficult to imitate in general, although the theory is
clear. Structure equations of more general G-structures are complicated only
by lots of indices interacting via the representation of the Lie algebra of the
structure group. Ultimately, one should be able to find bounds on orders of
many types of G-structures using only the representation theory of G, but
this approach has yet to be developed.

Exercise 8.26 (Lie, Brouwer [11]) Classify transitive actions of connected
Lie groups on the line and circle. You should get

1. the projective transformations of the projective line
2. the affine transformations of the affine line
3. the translations of the affine line

up to taking covering spaces.

Exercise 8.27 Classify actions of connected Lie groups on simply connected
Riemann surfaces.

Lie classified local Lie group actions on surfaces and wrote down without proof
the classification on three dimensional manifolds (see Olver [68], pp. 472–473);
he and Engel tried to extend the classification to 4 and 5 dimensional manifolds
as well (see Bryant [16], p.69).

Exercise 8.28 Let G ⊂ GL (n,R) be a Lie subgroup of the group ∆ of
diagonal invertible matrices. Prove that the symmetry group of a G-structure
has dimension at most 3n, with equality occuring only for G = ∆ and just for
∆-structures locally equivalent to the obvious ∆-structure on RP1×· · ·×RP1

(n copies), whose symmetry group is the group of projective transformations
on each RP1 together with the obvious permutations.

8.9.2 Homogeneous foliated surfaces

Consider the foliation of the plane by vertical lines. This is invariant under
the transformations

(x, y) 7→ (X(x), Y (x, y)) ,

where X can be any diffeomorphism of the line, and Y any function sat-
isfying ∂Y

∂y 6= 0 at every point. Among this infinite dimensional group of
transformations, we can find many finite dimensional subgroups, for exam-
ple allowing affine transformations of x, say X(x) = mx + b, and allowing



8.10 Pair structures 201

Y (x, y) = ny + p(x), where p(x) can be any polynomial of degree less than,
say, some fixed degree k. These form a group of dimension 3 + k. Clearly this
group acts faithfully, so there is no bound on the dimension (or order) of Lie
groups acting as symmetries of foliated surfaces. Note that the action on the
space of leaves of the foliation will always have order at most 2, dimension at
most 3. For another example, allow X = x+ b, Y = ny + f(x) where f(x) is
a Fourier series with integer frequencies in some interval, say from −N to N ;
in this fashion, we can construct examples on cylinders. See Olver [68] p. 61
for more on foliated surfaces.

Exercise 8.29 Generalize this example to show that the standard flat G-
structure for G any one of

GL (n,R) , SL (n,R) ,Sp (2n,R) ,GL (n,C) , SL (n,C)

(with n > 1) has arbitrarily large finite dimensional Lie groups of symmetries;
similarly for the standard examples of contact structures (hint: think of 1-
jets of curves in the plane), and holomorphic contact structures. Intuitively,
this teaches us to expect that if the symmetry pseudogroup can be infinite
dimensional, then it has a good chance of having arbitrarily large subgroups.

8.10 Pair structures

Question 26. This section is a huge mess.

Question 27. There is a serious disagreement about what the term “higher
order structure” should mean. Certainly it has to do with principal subbundles
of frame bundles FM (k+1). But it is a principal subbundle of FM (k+1) →M
or of FM (k+1) → FM (k)? I need to think this out carefully. Following Cartan’s
work on CR 3-manifolds, the right concept is clearly the latter. In fact, the
pseudoconnection Cartan builds in that case is not a pseudoconnection for the
former interpretation. The error in Coleman and Korté is in thinking along
the lines of the first interpretation. This is very restrictive.

The concept of Cartan geometry fits naturally into the study of finite type G-
structures, since often finite type G-structures give rise to Cartan geometries.
For the study of infinite type structures, we will use the notion of graded Lie
algebra.

Definition 39. Let G0 be a Lie group with Lie algebra g0. Let

g• =
∞⊕

k=−1

gk

be a graded Lie algebra (with g0 the Lie algebra of G0). Being graded means
that the bracket [x, y] takes x ∈ gp and y ∈ gq to [x, y] ∈ gp+q. Therefore
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the bracket makes each gk into a g0-representation; we call
(
G0, g•

)
a pair

if all of the gk are equipped with representations of G0 which extend their
g0-representations. A morphism of pairs

(
G0, g•

)
→
(
H0, h•

)
is a morphism

of Lie groups G0 → H0 and a G0-equivariant map of graded Lie algebras
g• → h•. A morphism is called a monomorphism if all of these maps are
monomorphisms, etc.

We can write V for V = g−1.

Exercise 8.30 The Jacobi identity for the Lie algebra g• ensures that the
expression [[x, v0] , v1] for x ∈ g1 and vj ∈ V is symmetric in v0, v1, giving a
G0-morphism

g1 →
(
g0
)(1)

.

This generalizes in the obvious manner to maps

gp → (gq)(p−q)
.

These maps determine a canonical morphism(
G0, g•

)
→
(
GL (V ) , gl (V )(•)

)
,

where V = g−1.

An embedded pair is one for which this canonical morphism is a monomor-
phism. A pair is said to be of involutive if the maps

gp →
⋂
q<p

(gq)(p−q)

are isomorphisms, for all sufficiently large p. It is said to be of finite type if
only finitely many terms g• are nonzero.

For any integer p, let
g≥p =

⊕
q≥p

gq.

We can build a group G• and a group G≥p which formally should have as Lie
algebras g• and g≥p: we let G• be the set of real analytic maps φ : open ⊂
V → V defined near the origin so that at every point x ∈ V where φ is defined
φ′(x) ∈ G and that the p-th derivative of φ(x) belongs to gp for all p. Let G≥p

be the subgroup for which φ agrees with the identity map up to p-th order at
x = 0. Let Gp,q = G≥p/G≥q+1.

Question 28. These groups are interesting and relevant, but I really need the
semidirect product group G0 o g1 o . . . , which I need to carefully define. It
will have to be my structure group, as it was for prolongations.
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We can define a
(
G0, g•

)
-structure in the obvious way, as a tower of bundles

. . . Bk+1 → Bk → · · · → B0 → B−1 = M , so that each Bk is a principal gk

bundle over Bk−1 for k > 0, and B0 →M is a G0-structure, with Bk →M a
principal G0,k-bundle, and all of these group actions commuting in the obvious
manner, together with embeddings Bk ⊂ FBk−1, equivariant via the map

Gk−1,k−1 → GL
(
gk−1

)
induced from the adjoint action of g•.

Question 29. There might have to be a little more equivariance of various
obvious group actions.

It is useful to consider such a tower which only extends up to a certain height.
If we have specified bundles B−1, B0, . . . , Bp satisfying these rules, but haven’t
picked out a Bp+1, Bp+2, . . . , we will call our tower of bundles a

(
G0, g•

)
-

structure of height p+1. If we don’t want to specify the pair, we can just call
such a thing a pair structure.

Even for an infinite order G0-structure, subsequent prolongations will de-
termine a

(
G0, g•

)
-structure (whose height is determined by how many pro-

longations are defined) for a suitable graded Lie algebra. So pair structures
form a reasonable category to work in. Given any Lie group G0 with represen-
tation V , we can construct the canonical pair

(
G0, g•

)
of this representation

by letting g0 be the Lie algebra of G0 and taking gp =
(
g0
)(p). For example,

GL (n,R) has a canonical pair. Generalizing this, if I have a pair
(
G0, g•

)
,

and fix a subspace hp ⊂ gp inside some of the graded terms, for some values
of p > 0, then I can define the generated pair to be the largest pair

(
G0, k•

)
which has kp ⊂ hp. (Keep in mind that successive prolongations will impose
constraints). For example, if I start with the canonical pair of GL (n,R), and
then pick the subspace Rn∗ ⊂ gl (n,R)(1), I obtain the canonical pair of pro-
jective structures. A pair structure for this pair of height 2 is precisely a
projective structure.

Question 30. Or is it a projective connection?

A morphism between pairs
(
G0, g•

)
→
(
H0, h•

)
is called an isomorphism

to order p if gq → hq is an isomorphism for q < p.

Theorem 17 (Coleman & Korté [36]). The canonical morphism(
G0, g•

)
→
(
GL (V ) , gl (V )(•)

)
of a pair is isomorphic to order 1 just when the pair is isomorphic to order 2
to the canonical pair of

1. GL (n,R),
2. projective structures,
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3. connections on the tangent bundle, or
4. connections on the determinant line bundle of the tangent bundle.

The canonical morphism is isomorphic to order 2 (order 3 if n = 1) just when
it agrees to all orders.

There are lots of higher order structures which are not pair structures. This
fact is perhaps slightly obscured in the paper of Coleman & Korté.

Proof. We won’t follow the proof of Coleman and Korté because, although
it involves explicit local coordinate calculations, we feel it is more helpful
to expose the representation theory and hide the coordinates, to make the
approach easier to generalize.

From section 7.2 on page 99, we can easily see that the successive pro-
longations of gl (n,R) are gl (n,R)(p) = Rn ⊗ Symp+1 (Rn∗), and their sum is
equipped with the Lie bracket

[a, b]iJ =
∑

J1J2|J

ai
J1kb

k
J2
−
∑

J1J2|J

biJ1ka
k
J2
.

The representation gl (n,R)(1) of GL (n,R) splits into irreducible repre-
sentations

gl (n,R)(1) = Rn ⊗ Sym2 (Rn∗)
= Rn∗ ⊕ Γ1,0,...,0,2

following the notation of Fulton & Harris [39] lecture 15; Fulton & Harris
make the result very explicit for sl (4,R), and the same calculations work in
general, without using the Weyl character formula, or any heavy machinery.
The representation Γ1,0,...,0,2 is the collection of tensors Q ∈ Rn⊗Sym2 (Rn∗)
for which Qi

ji = 0, and the second order structure consists in a choice of
connection on the determinant bundle of the tangent bundle. The represen-
tation Rn∗ is the one we encountered in discussing projective structures in
section 7.11 on page 154. This gives our first result.

Corollary 20. There are no homogeneous spaces M = G/H for which a finite
dimensional Lie group G can act transitively on M,FM and FM (1), except if
M = P1 in which case the group action must factor through G → PSL

(
P1
)
.

Even M = P1 does not have a group acting on it transitively on FM (2).

Proof. Question 31. Finish this.

A structure properly of order k, for some k > 2 is an A-subbundle of
FM (k−1) → FM (k−2) for A ⊂ gl (n,R)(k−1) a GL (n,R)-submodule. In fact,
A must be an h-submodule, where

h = gl (n,R) o gl (n,R)(1) o · · ·o gl (n,R)(k−2)
.
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We will then need to make h′ = h ⊕ A into a Lie algebra using the induced
bracket. The bracket is just the one which we constructed above and in sec-
tion 7.2 on page 99 (i.e. think of the structure equations as the Maurer–Cartan
1-forms, at least formally, of the diffeomorphism group, and that gives the Lie
algebra).

Lets assume that A is a structure properly of order 3. Up to irrelevant
constants, the bracket on elements of gl (n,R)(1) is[

∂

∂xi
dxp · dxq,

∂

∂xj
dxr · dxs

]
=

∂

∂xi

(
δp
j dx

q + δq
jdx

p
)
· dxr · dxs

− ∂

∂xj
(δr

i dx
s + δs

i dx
r) · dxp · dxq.

This gives

∂

∂x1
dx2dx3dx4,i = j = p = 1, q = 2, r = 3, s = 4

2
∂

∂x1
dx1dx2dx3,i = j = p = q = 1, r = 2, s = 3

∂

∂x1

(
dx1
)2
dx2,i = j = p = q = r = 1, s = 2.

Question 32. In dimension 1, this has to be zero. But I have already shown
the required result in dimension 1. So I really need to compare those proofs.

These must all belong to A, since h′ is closed under Lie bracket. By GL (n,R)
action, we can change the indices on the variables as we like. We don’t find
terms of the form

∂

∂x1

(
dx1
)3
.

However, we can use linear transformations to get

∂

∂x1

(
dx1
)2 (

dx1 + dx2
)
∈ A,

and then find that

∂

∂x1

(
dx1
)2 (

dx1 + dx2
)
− ∂

∂x1

(
dx1
)2
dx2 =

∂

∂x1

(
dx1
)3 ∈ A.

This ensures that all monomials lie in A, so A = gl (n,R)(2) is not properly a
3rd order structure.

For higher order structures beyond third order, the argument is very sim-
ilar, involving more indices.

Question 33. I will need to understand the relation of the symmetry group to
the graded Lie algebra.
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Question 34. The stated theorem of Coleman and Korté is wrong. Obviously
we can pick lots of higher order structures, just taking sections of FM (p)/A

for A ⊂ gl (n,R)(p) any vector subspace. But that is not quite what they are
getting at. We need a new notion to make sense out of their result.

Exercise 8.31 Suppose that you have a higher order structure on a one di-
mensional manifold M , say at order 4, a submanifold B ⊂ FM (3). Prove that
either B = FM (3) or else the torsion is nonconstant on the fibers of B →M .
Therefore we can try to reduce the structure group, and even if we fail to re-
duce the structure group, at least we can say that there are invariant defined
submanifolds of B cut out by level sets of the torsion.

Exercise 8.32 Generalize this last exercise to structures of all orders 4 or
more on one dimensional manifolds.

Exercise 8.33 Generalize the last two exercises to structures of all orders 3
or more in dimensions 2 or more.

The problem is that to really convince me that there is no meaning to
Coleman & Korté’s statements as they made them, I would need to find
an example of a properly higher order structure with no invariant choice of
induced reduction on any lower order bundle. But we can always try to reduce,
at least locally, by normalizing torsion, unless all of the torsion is constant on
all of the fibers. Keep in mind how complicated this is: in any region where the
torsion has differential of constant rank, we can specify a submanifold in the
Spencer cohomology transverse to the torsion, and cut out the submanifold on
which torsion lives there. But that won’t be a reduction of structure group.
To be sure that there is no way to reduce structure group by normalizing
torsion, one would have to think carefully about reduction. But lets just for
now say that failure to cut out a submanifold of any one of our bundles would
require torsion to be constant on fibers; this is not quite the same as failure
to obtain an invariant reduction of structure group. Therefore the problem
for Coleman and Korté is to convince me that the torsion of a higher order
structure cannot be constant unless it is the start of a pair structure.

Question 35. All of this Coleman and Korté stuff is getting close to a paper.

8.11 The symmetry Lie algebra

8.11.1 Equations for infinitesimal symmetries

Suppose that B is a G-structure on a manifold M , and that B is equipped
with a choice of pseudoconnection. Lets try to find explicit equations for the
symmetries of B as a G-structure, and be careful not to require that the
symmetries preserve the pseudoconnection.
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An infinitesimal symmetry is a vector field X on M whose prolongation
to frames preserves B ⊂ FM . The prolongation to frames of a vector field X
is the vector field X on FM , defined by the equation

X =
d

dt

∣∣∣∣
t=0

FetX

Recall prolongation to frames of a diffeomorphism (or local diffeomorphism)
was defined in section 2.1 on page 5.

With V = Rn as usual, for each vector field X on M we can define a
function fX : FM → V by fX(u) = u(X(x)) for u ∈ FmM,m ∈ M. This
function satisfies

r∗gfX = g−1fX ,

for any g ∈ GL (V ) . Conversely, each function satisfying this equation comes
about from a vector field X on M . Differentiating this equation gives

dfX + γfX = ∇ifXω
i

for some function ∇•fX : FM → V ⊗ V ∗.

Exercise 8.34 At points where X = 0, show that fX = 0 and that ∇•fX de-
scends to an endomorphism on TxM at such points, well known in dynamical
systems: the linearization.

One can check easily that on FM

X ω = fX .

Frequently it is useful to treat V = Rn as having a fixed basis, so that
ω =

(
ωi
)

in components. Then we can write fX =
(
Xi
)
, so that

dXi + γi
jX

j = ∇jX
iωj .

We want to see if a vector field X is a symmetry of the G-structure B. We
can restrict fX to B as a G-equivariant function fX : B → V . Our vector field
determines a vector field X on FM and we need to know when X is tangent
to a given G-structure B ⊂ FM . Recall from section 6.2 on page 59 that our
pseudoconnection γ on B induces a 1-form γ∗ on the tangent spaces of FM
at points of B, with γ∗ valued in gl (V ).

Lemma 34. The tangent directions to B are precisely the directions in which
γ∗ is valued in the Lie algebra g.

Proof. Consider any fattening up of structure group G ⊂ H. Returning to the
notations of section 6.2 on page 59, we see the diagram



208 8 Symmetries of G-structures

B ×G

��

// B ×H

��
B = B(G) // B(H)

and so the tangent directions to B inside B(H) are just the quotient by the
vertical of the tangent directions to B × G inside B ×H. The 1-form γ∗ on
TuB(H) (defined only for u ∈ B) pulls back to B ×H at the point (u, 1) to
become

γ∗ = h−1 dh+ Ad−1
h γ = dh+ γ,

and γ is valued in g, so that γ∗ lives in the tangent directions to B × G
just when dh ∈ g, i.e. just when γ∗ ∈ g. To apply this in our context, set
H = GL (V ) .

Lemma 35.
Z γ∗ =

(
∇jZ

i + T i
kjZ

k
)
∈ gl (V ) .

Proof. We work on FM entirely. First we will show that

LZω = 0.

Write π : FM → M for the obvious bundle map. From the definition of Z
and of ω, we can calculate that

etZ∗ωu = ωetZu

(
e−tZ

)′
= etZuπ′

(
e−tZ

)′
.

By definition of Z,

etZu = F
(
etZ
)
u

= u
(
e−tZ

)′
From the definition of Z, we see that πetZ = etZ . Therefore returning to the
previous calculation,

etZ∗ωu = u
(
e−tZ

)′
π′
(
e−tZ

)′
= u

(
e−tZπetZ

)′
= uπ′

= ωu.

Therefore
LZω = 0.

(Not surprising: Z is an infinitesimal equivalence of the GL (V )-structure FM
on M .)
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Fix a point u ∈ B and take Γ =
(
Γ i

j

)
any pseudoconnection for FM which

agrees with γ∗ at u. Using the Cartan equation

LZω = Z dω + d (Z ω)

we find

dZi = −Z
(
−Γ i

j ∧ ωj +
1
2
T i

jkω
j ∧ ωk

)
= −Γ i

jZ
jZ Γ i

j + T i
kjZ

kωj .

It is vital to note that the torsion of Γ at u ∈ FM is the same as that of γ at
u ∈ B. Inside the manifold B, we have

dZi = −γi
jZ

j +∇jZ
iωj .

A similar relation,
dZi = −Γ i

jZ
j +∇Γ

j Z
iωj

occurs in FM . We can unwind the definition of γ∗ to see easily that at the
point u,

∇Γ = ∇.
Therefore

Z Γ i
j = ∇jZ

i + T i
kjZ

k

Putting things together:

Proposition 38. A vector field Z on a manifold M with G-structure B →M
is an infinitesimal symmetry of B (not necessarily preserving any pseudocon-
nection) just when the expression

∇jZ
i + T i

kjZ
j

belongs to the Lie algebra of G, for some (and hence any) choice of pseudo-
connection.

Another way to say it:

Proposition 39. Suppose that Z is a vector field on a manifold M with a
G-structure B →M . Pick any pseudoconnection γ for this G-structure. Then
define the vector field Ẑ by

Ẑ ω = Z•

Ẑ γ = 0.

The vector field Z is an infinitesimal symmetry of the G-structure B → M
(not necessarily preserving the pseudoconnection) just when ω evolves along
the flow of Ẑ via transformations from the group G:

etẐ∗ωu = g(t, u)ω,

with g ∈ G.
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Proof. See section 7.8.4 on page 146.

Example 78 (Flat structures). On a flat e-structure, g = 0 so γ = 0, structure
equations are dω = 0 and a symmetry is just dX• = 0, i.e. X• is a constant
function.

Example 79 (Spheres). On M = Sn the sphere with its usual constant cur-
vature Riemannian metric (or indeed on any Riemannian manifold with unit
sectional curvature), the structure equations are

dωi = −γi
j ∧ ωj

dγi
j = −γi

j ∧ γk
j + ωi ∧ ωj .

There is no 1-torsion. We will write X• in components as Xi. Write ∇•X• as
∇jX

i so that
dXi = −γi

jX
j +∇jX

iωj .

Taking exterior derivative of this equation gives

d∇jX
i −∇kX

iγk
j +∇jX

kγi
k −Xjωi = ∇jkX

iωk

with ∇jkX
i = ∇kjX

i, by Cartan’s lemma. But ∇jX
i must be valued in the

Lie algebra of the structure group to provide an infinitesimal symmetry, and
our manifold Sn bears an SO (n)-structure. Thus the Lie algebra is so (n) , the
skew-symmetric matrices, so ∇jX

i +∇iX
j = 0, and ∇jkX

k is symmetric in
lower indices, and skew symmetric in any pair of upper and lower index, and
therefore vanishes. Thus we can specify Xi and ∇jX

i satisfying the coupled
system of ordinary differential equations

dXi + γi
jX

j = ∇jX
iωj

d∇jX
i − γj

k∇iX
k + γi

k∇jX
k = Xjωi −Xiωj .

At most we get to choose Xi ∈ Rn and ∇jX
i ∈ so (n) to determine a local

solution of these equations, so the Lie algebra of the symmetry group has at
most n + n(n − 1)/2 dimensions. Of course, the symmetry Lie algebra is in
fact so (n+ 1) , which has precisely these dimensions.

Example 80 (Almost complex structures). A GL (n,C)-structure B → M on
a manifold M is also called an almost complex structure. We can write the
structure equations in terms of complex-valued 1-forms as

dωi = −γi
j ∧ ωj +

1
2
T i

̄k̄ω
̄ ∧ ωk̄

where ωı̄ means the complex-valued 1-form ωi, i.e. when you plug a vector into
it, it spits out the complex conjugate of what ωi spits out. The intrinsic torsion
T lives in the representation V ⊗C Λ

0,2 (V ∗) , which is a subrepresentation of
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V ⊗R Λ
2 (V ∗) , so it determines a tensor, called the Nijenhuis tensor. A vector

field on an almost complex manifold is given by functions Xi satisfying

dXi + γi
jX

j = ∇Xi
jω

j +∇Xi
̄ω

̄.

The vector field is a symmetry of the almost complex structure just when
∇Xi

̄ = 0, forcing ∇•X• to live in the Lie algebra. Determine an almost
complex structure on B by asking that γ and ω be complex linear 1-forms.

Exercise 8.35 With torsion absorbed as above, show that this almost com-
plex structure on B is well defined.

The equations ∇̄X
i = 0 are precisely requiring Xi to be a holomorphic

function, since they require just that the differential dXi be a multiple of ωi

and γi
j , which span the complex linear 1-forms on B. Thus a vector field X on

M preserves the almost complex structure downstairs just when X• : B → V
is a holomorphic GL (n,C)-equivariant function.

Example 81 (Symmetries of contact geometry). In section 7.9 on page 147, we
found that the structure equations of contact geometry are

d

 ω

ωµ

ωµ

−
 γ ωµ 0
γµ γµ

ν γµν

γµ γµν δν
µγ − γν

µ

 ∧
 ω

ων

ων

 .

A vector field on a contact manifold is represented by functions X0, Xµ, Xµ

satisfying

d

X0

Xµ

Xµ

−
 γ 0 0
γµ γµ

ν γµν

γµ γµν δν
µγ − γν

µ


X0

Xν

Xν

+

∇0X
0 ∇νX

0 ∇νX0

∇0X
µ ∇νX

µ ∇νXµ

∇0Xµ ∇νXµ ∇νXµ

 .

The only torsion is the ωµ term in dω, so to be a symmetry, we need to have
the ∇X + TX in the Lie algebra, i.e.∇0X

0 ∇νX
0 +Xν ∇νX0 −Xν

∇0X
µ ∇νX

µ ∇νXµ

∇0Xµ ∇νXµ ∇νXµ


in the Lie algebra, so

Xν = −∇νX
0

Xν = ∇νX0

∇νXµ = ∇µXν

∇νXµ = δν
µ∇0X

0 −∇µX
ν .
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Clearly X0 determines the rest of the symmetry, so symmetries depend on at
most one function.

Exercise 8.36 The equation

∇X0 = dX0 + γX0

ensures that X0 represents a section of the line bundle dual to the bundle of
1-forms vanishing on the contact planes.

8.11.1.1 Lie’s method of symmetries

The approach of Sophus Lie to calculating symmetries of geometric structures
(particularly systems of partial differential equations) is explained in detail by
Olver [67], and in [4, 46, 5]. The general idea is that one can calculate a sys-
tem of linear differential equations whose solutions are the infinitesimal sym-
metries of a given system of differential equations. Applied to G-structures,
the method reveals just what we have found: the differential equation asking
∇•Z•+TZ• to belong to the Lie algebra of the structure group. Lie’s method
is somewhat more general, but practically this covers most of the interesting
examples.

8.11.2 The Lie bracket on infinitesimal symmetries

Now that we can write infinitesimal symmetries as functions on the total space
of our G-structure, we need to compute the Lie bracket on those symmetries.
We have found that symmetries can be described by functions Xi on our
bundle, so that

dXi + γi
jX

j = ∇jX
iωj

where ∇jX
i belongs to g, the Lie algebra of the structure group.

Proposition 40.

[X,Y ]i = −T i
jkX

jY k +Xj∇jY
i − Y j∇jX

i.

Proof. Suppose that we have two such symmetries, given by functions Xi and
Y i satisfying these sort of equations, associated to vector fields X and Y on
the base manifold M . We have equations

X• = X ω

Y • = Y ω

X = π∗X

Y = π∗Y

LXω = LY ω = 0
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which give
[X,Y ] = π∗ [X,Y ]

and
L[X,Y ]ω = 0

so that
[X,Y ] = [X,Y ] .

Calculate

dω (X,Y ) = LX (Y ω)− LY (X ω)− ω ([X,Y ])

and use
dω = −γ ∧ ω +

1
2
Tω ∧ ω

to find, putting it all together:

[X,Y ]i = −T i
jkX

jY k +Xj∇jY
i − Y j∇jX

i.

Example 82 (The sphere continued). We found ∇ij = 0 on the sphere, so that
the bracket has

[X,Y ]i = Xj∇jY
i − Y j∇jX

i.

Exercise 8.37 Calculate that on a unit sectional curvature Riemannian man-
ifold, the Lie bracket of infinitesimal symmetries is determined by the equation

∇k[X,Y ]i = ∇kX
j∇jY

i−∇kY
j∇jX

i+Xj
(
Y jδi

k − Y iδj
k

)
−Y j

(
Xjδi

k −Xiδj
k

)
.

In particular, the symmetry Lie algebra must be a subalgebra of the symmetry
Lie algebra of Sn, i.e. a subalgebra of so (n+ 1) . It is interesting that the Lie
algebra of symmetries of any unit sectional curvature Riemannian manifold
lives inside so (n+ 1) , while the manifold itself need not live inside the sphere.
For example, slice out a codimension two (or more) great subsphere (or a finite
number of them), and take the universal cover, to obtain an onion, which can
have a large symmetry group, and is not a submanifold of the original sphere.
Still, its symmetry Lie algebra lives in so (n+ 1) .

8.11.2.1 Remarks on symmetries

For numerous techniques for relating infinitesimal symmetries and global ge-
ometry on complex and especially Kähler manifolds, see Kobayashi [51]; in
particular the Carrell–Liebermann theorem and the Grothendieck–Riemann–
Roch theorem, see Griffiths & Harris [40]; and the notion of hyperbolicity,
see Kobayashi [52]. The search is underway for analogues of these results for
other types of geometry, especially elliptic G-structures.
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8.12 Example: 2 plane fields on 4 manifolds

Question 36. This section should be moved much earlier, since I didn’t really
use very much theory here.

A 2-plane field on a 4-manifold imposes a G1-structure where G1 is the group
of linear transformations of R4 preserving a 2-plane, i.e. the group of invertible
matrices of the form 

a1
1 a1

2 0 0
a2
1 a2

2 0 0
a3
1 a3

2 a3
3 a3

4

a4
1 a4

2 a4
3 a4

4

 .

Thus after a little absorption of torsion, the structure equations on the G1-
structure are

d


ω1

ω2

ω3

ω4

 = −


ω1

1 ω1
2 0 0

ω2
1 ω2

2 0 0
ω3

1 ω3
2 ω3

3 ω3
4

ω4
1 ω4

2 ω4
3 ω4

4

 ∧

ω1

ω2

ω3

ω4

+


t1ω3 ∧ ω4

t2ω3 ∧ ω4

0
0

 .

(The reader will notice that we are using notation similar to Cartan, calling the
pseudoconnection ωi

j just as we called the soldering form ωi.) Differentiating
reveals

d

(
t1

t2

)
= −

(
ω1

1 − ω3
3 − ω4

4 ω1
2

ω2
1 ω2

2 − ω3
3 − ω4

4

)(
t1

t2

)
modulo semibasic terms (i.e. modulo the ωj). So we either have t1 = t2 = 0
or else we can arrange t1 = 0, t2 = 1.

It is an immediate consequence of the Frobenius theorem that t1 = t2 = 0
everywhere precisely when the 2-plane field is the field of tangent planes to a
foliation by surfaces. Henceforth we will suppose that t1 and t2 do not both
vanish anywhere.

To figure out what to do with t1 and t2, lets look at an example. Consider
the example of the 2-jet bundle of real valued functions of a real variable. This
bundle has coordinates x, y, p, q with 2-plane field described by

η1 = dy − p dx
η2 = dp− q dx
η3 = dx

η4 = dq.

Exercise 8.38 These ηj are adapted coframes, i.e. a section of aG1-structure.
(To see this, just note that they satisfy the required structure equations.)
Moreover, for this section t1 = 0, t2 = 1.
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This guides our choices of how to normalize t1 and t2.
Let B2 be the subbundle of our G1 structure on which t1 = 0 and t2 = 1.

This B2 is a G2-structure, and we let the reader identify G2. The structure
equations are now

d


ω1

ω2

ω3

ω4

 = −


ω1

1 0 0 0
ω2

1 ω3
3 + ω4

4 0 0
ω3

1 ω3
2 ω3

3 ω3
4

ω4
1 ω4

2 ω4
3 ω4

4

∧

ω1

ω2

ω3

ω4

+


ω2 ∧

(
a1
3ω

3 + a1
4ω

4
)

ω2 ∧
(
a2
3ω

3 + a2
4ω

4
)

+ ω3 ∧ ω4

0
0


In our example of the 2-jet bundle,

a1
3 = −1, a1

4 = a2
3 = a2

4 = 0.

In fact, we can absorb the a2
3 and a2

4 functions into ω4
4 .

The differentials of the remaining a functions are

d

(
a1
3

a1
4

)
=

(
−ω1

1 + 2ω3
3 + ω4

4 ω4
3

ω3
4 −ω1

1 + ω3
3 + 2ω4

4

)(
a1
3

a1
4

)
which is a Lie algebra representation onto gl (2,R) , so that either we can
arrange a1

3 = −1, a1
4 = 0 or else we must have a1

3 = a1
4 = 0. Again we will

employ a constant type hypothesis, and break into these two cases. In the case
of a1

3 = a1
4 = 0, the foliation ω1 = 0 descends to the 4-manifold, so that it is

foliated by contact 3-manifolds. Conversely, any foliation of a 4-manifold by
3-manifolds carrying contact structures provides an example. So now we can
suppose that a1

3 = −1 and a1
4 = 0. This forces ω1

1 − 2ω3
3 − ω4

4 and ω3
4 to be

semibasic. Absorbing torsion, we find

d


ω1

ω2

ω3

ω4

 = −


2ω3

3 + ω4
4 0 0 0

ω2
1 ω3

3 + ω4
4 0 0

ω3
1 ω3

2 ω3
3 0

ω4
1 ω4

2 ω4
3 ω4

4

∧

ω1

ω2

ω3

ω4

+


ω3 ∧ ω2

ω3 ∧ ω4

cω3 ∧ ω4

0

 .

Taking two exterior derivatives of ω1 forces c = 0. We now have the structure
equations

d


ω1

ω2

ω3

ω4

 = −


2ω3

3 + ω4
4 0 0 0

ω2
1 ω3

3 + ω4
4 0 0

ω3
1 ω3

2 ω3
3 0

ω4
1 ω4

2 ω4
3 ω4

4

 ∧

ω1

ω2

ω3

ω4

+


ω3 ∧ ω2

ω3 ∧ ω4

0
0


which are the same as those of the example of 2-jets of real functions of a real
variable (or 2-jets of sections of a line bundle over a curve). It is clear that
the symmetry group of this example is infinite dimensional: local diffeomor-
phisms of one variable act on the 2-jet space. We can check that the structure
equations are in involution using the Cartan–Kähler theorem, so that
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Proposition 41. Every analytic 2-plane field of constant type on a 4-manifold
is either (1) a foliation by surfaces or (2) a foliation by contact 3-manifolds
or (3) an Engel2-plane field (i.e. locally equivalent to the canonical 2-plane
field on the 2-jet bundle of a line bundle on a curve).

We can see that the equations ω1 = ω2 = ω3 = 0 cut out a foliation of an
Engel 4-manifold into curves, called characteristic curves.

Exercise 8.39 Suppose that the foliation by characteristic curves is a fiber
bundle M4 → Q3 with connected fibers. Consider the family of 3-planes on
M described by ω1 = 0. (The reader will need to figure out why this equation
ω1 = 0 is defined on M , while ω1 is not.)

Exercise 8.40 Show that these 3-planes descend to a contact structure on
Q.

Exercise 8.41 Show that the quotient manifoldQ bears a Legendre foliation,
i.e. a foliation by curves tangent to the contact plane field.

Exercise 8.42 Reconstruct the Engel 4-manifold from its quotient contact
manifold.

Exercise 8.43 Every hypersurface in an Engel 4-manifold transverse to the
characteristic curves is a contact manifold.

Exercise 8.44 Every Engel 4-manifold has a finite cover with trivial tangent
bundle. For example, there is no Engel structure on S4,CP2, or S2×S2.

See papers of Montgomery & Zhitomirskii for more on this subject.

Question 37. We can try to use the Cartan–Kähler theorem to prove the ex-
istence of 2-plane fields on 4-manifolds which change type, and do so in some
nondegenerate manner. This then makes it possible to arrange such 2-plane
fields on lots of 4-manifolds, and with a bit of thought, we might be able to
show that they exist on any 4-manifold which has a 2-plane field. Cartan–
Kähler is not usually used this way; in fact we might need a more subtle
understanding of 2-plane fields than it can provide to get interesting global
results.

Question 38. A Kodaira–Merkulov type theorem for Engel 2-plane fields on
complex manifolds would be nice, identifying the obstructions and tangent
space to moduli space of deformations in terms of cohomology of sheaves. We
could look at deforming with fixed complex structure, giving a foliation of the
moduli space of Engel structures with varying complex structure. Or fix the
bicharacteristics. See papers of Zhitomirskii and of Richard Montgomery.

Question 39. What are the possible homogeneous examples? Use the idea that
the symmetry group embeds somewhere, and try the lowest order possibilities.
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8.13 Symmetry reduction

8.13.1 Constant type

Definition 40. Choose a G-structure B on a manifold M . Take Σ ⊂ M a
submanifold. The type of Σ at a point m ∈ Σ is the subspace u (TmΣ) ⊂ V
for some u ∈ Bm, where this subspace is thereby determined up to G action.
We will say that a submanifold has constant type if its type is the same at all
points. We will say that a group action has constant type if all of its orbits
have the same type at all points.

8.13.2 The reduced structure

Theorem 18. Suppose that H is a Lie group of symmetries of a G0-structure
B0 on a manifold M0, of constant type. Let M1 = H\M0. Suppose that M1

is a smooth manifold, and that M0 → M1 is a smooth submersion. Then
we can define the pushforward B1 of B0 as follows: fix a point u0 ∈ B0, let
W0 = u0 (Tm0Hm0),

1. let V1 = V0/W0,
2. let G1 = G/N where G ⊂ G0 is the subgroup leaving W0 ⊂ V0 invariant,

and N ⊂ G0 is the subgroup fixing each point of V0/W0,
3. map G0 → GL (V1), in the obvious manner,
4. let φ : M0 → M1 be the quotient map, and for all u ∈ B0 which map the

tangent space to orbit of H to W0, let ū be defined by

ū (φ′ (m0) v0) = u (v0) mod W0,

5. let B1 be the set of all such ū.

Then B1 →M1 is a G1-structure.

Proof. Since G0 ⊂ GL (V0) is a Lie subgroup, it is easy to see that G1 ⊂
GL (V1) is also a Lie subgroup. Let B ⊂ B0 be the G-subbundle consisting of
those u ∈ B0 taking the tangent space to the orbit to W0. By the constancy of
type, proposition 8 on page 39 tells us that B ⊂ B0 is a G0-structure on M0.
Clearly B/N → M0 is a principal right G bundle. We define B1 = H\B/N .
We have to show that B1 → M1 is a principal right G-bundle. Clearly G-
action on B/N commutes with H-action, so G1 = G/N -action is defined on
B1, and the quotient is B1/G1 = M1. We can map B → FM1 by mapping
u 7→ ū, and this map is both N and H invariant, and G equivariant, and
therefore is defined on B1.

To put the structure of a manifold onto B1, we will first work locally.
We can assume that M0 and M1 are open subsets of vector spaces, that
B0 = M0×G0 and B1 = M1×G1, and moreover, if we are willing to sacrifice
the group action of H for a mere Lie algebra action, then we can suppose that
M0 = M1 × Y for some Y an open subset of a vector space. So each point



218 8 Symmetries of G-structures

m0 ∈ M0 can be written m0 = (m1, y). With these simplifications, we can
write the map B0 → FM0 as

(m1, y, g0) ∈ B0 = M1 × Y ×G0 7→ (m1, y, g0f (m1, y)) ∈ FM0

for some smooth function f : M1 × Y → GL (V0). We still have the choice of
trivialization of B0 to make, which allows us to change f by a gauge trans-
formation. We may assume that M1 and Y are simply connected. We wish to
arrange that f (m1, y) · 0 × TyY = W0 at all (m1, y) ∈ M0, by using a gauge
transformation.

The map f must always take TyY to the G0-orbit of W0 in the Grass-
mannian of subspaces of V0 of dimension equal to that of W0. This orbit
must be G0W0 = G0/G, a homogeneous space, and G0 → G0/G is there-
fore a fiber bundle. So any map into G0/G lifts to a map into G0. Inverting
with this choice of element of G0 retracts our original map to G0/G into
a constant map. Therefore by gauge transformation, we can arrange that
f (m1, y) · 0 × TyY = W0. With this arrangement, B = M1 × Y × G, and
B1 = M1 × G is a smooth manifold, and is smoothly mapped into FM1 by
(m1, g) 7→ gf (m1, y) mod W0 ∈ FM1, for any choice of y = y (m1).

We now have to glue together these local pictures, which is just another
choice of gauge transformation.

Example 83 (Complex Hopf fibration). U (n+ 1) acts on Cn+1, leaving the
unit sphere S2n+1 invariant. Let M0 = S2n+1, G0 = U (n) acting on V0 =
R ⊕ Cn (acting trivially on R, and in the obvious representation on Cn). Let
H = U (1) be the subgroup of U (n+ 1) consisting of the matrices of the form
e
√
−1θ1n+1, for θ ∈ R. Then clearly M1 = H\M0 = U (1) \S2n+1 = CPn.

We take W0 = R ⊕ 0 ⊂ V0, and then G = G0 = U (n), and N = 1 so
G1 = G/N = U (n), we find a U (n)-structure on CPn. Next we will calculate
its structure equations.

8.13.3 Torsion in symmetry reduction

Continuing with the same notation, pick any splitting V0 = W0 ⊕ V1, not
necessarily G0 invariant. We will relate the torsion of B ⊂ FM0 (not B0) to
that of B1 ⊂ FM1. Split up the soldering form ω on B into

ω =

(
ω0

ω1

)

with ω0 ∈ Ω1 (B)⊗W0, ω
1 ∈ Ω1 (B)⊗ V1. Check that ω1 is the pullback via

the map B → B1 of the soldering 1-form on B1. Therefore, it must satisfy the
structure equations of B1,

dω1 = −γ1
1 ∧ ω1 +

1
2
T 1

11ω
1 ∧ ω1
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where γ1
1 can be any pseudoconnection on B1. The structure equations on B

must be

d

(
ω0

ω1

)
= −

(
γ0
0 γ0

1

0 γ1
1

)
∧

(
ω0

ω1

)
+

(
1
2T

0
00ω

0 ∧ ω0 + T 0
01ω

0 ∧ ω1 + 1
2T

0
11ω

1 ∧ ω1

1
2T

1
11ω

1 ∧ ω1

)
.

These torsion coefficients are not really well-defined, because they depend
on the choice of pseudoconnection, but the essential torsion lives in a G-
representation H1,2 (g) which maps to the torsion of B0, living in H1,2 (g1).

The torsion T 1
11 can be calculated directly upstairs. Moreover, the torsion

of B is clearly H invariant, so is defined on H\B → B0, a principal G bundle
over M1. We can define a torsion bundle(

(H\B)×H1,2 (g)
)
/G→M0,

which is a vector bundle, and the torsion of B lives in this bundle, which
quotients down to the torsion bundle of B1.

Example 84 (Complex Hopf fibration). Lets continue with our earlier example.
First we will need the structure equations of the G-structure B on S2n+1. This
is just the bundle

U (n) // U (n+ 1)

��
S2n+1.

The Maurer–Cartan 1-form of U (n+ 1) is (with the index convention that
Greek indices run 0, . . . , n, and Latin indices run 1, . . . , n)

d

(
ω00̄ ω0b̄

ωa0̄ ωab̄

)
= −

(
ω00̄ ω0c̄

ωa0̄ ωac̄

)
∧

(
ω00̄ ω0b̄

ωc0̄ ωcb̄

)
.

The 1-forms ωab̄ are valued in u (n), giving the pseudoconnection, while the
1-forms ω00̄, ωa0̄ are semibasic for the bundle map U (n+ 1)→ S2n+1, so give
the soldering form. The structure equations of the G-structure on the sphere
are therefore

d

(
ω00̄

ωa0̄

)
= −

(
0 0
0 (ωab̄ − δab̄ω00̄)

)
∧

(
ω00̄

ωb0̄

)
−

(
ω0b̄ ∧ ωb0̄

0

)
︸ ︷︷ ︸

torsion

.

Clearly there is torsion; in the notation above, we have T 0
00 6= 0. Nevertheless,

the torsion on the quotient manifold is T 1
11, which in our case is 0. Therefore

CPn has a torsion-free U (n)-structure (with U (n) acting in the Cn irreducible
representation), while S2n+1 has torsion in its U (n)-structure (with U (n)
acting in the R ⊕ Cn representation).
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Question 40. Can we package the entire G-structure B into some kind of
equivariant information on a principal bundle over M1? Here is a guess: we
take

X = { (m0, h0) ∈M0 ×H|h0m0 = m0} .

Then X →M1 defined by (m0, h0) 7→ φ (m0) should be a principal H-bundle.
We can also map X → M0 by (m0, h0) 7→ m0. We can get H to act on the
left by

h ∈ H, (m0, h0) 7→
(
hm0, hh0h

−1
)
.

This should make X → M1 into a principal right H-bundle. Next, I want to
encode the map B0 → FM0 into data on X. On the bundle X×M1 B1, I want
to build all possible choices of the manifold M1 and the G-structure B. For
each point on X×M1B1, I can look at all of the possible objects U : TxX → V0

with

1. kerU = ker [X →M0]
′,

2. u1 = U [X →M1]
′.

We could then try to set u0 = U [X →M0]
′. The idea is that I can try to

take a principal H bundle X → M1, and some family of these U objects on
X ×M1 B1, and see when some such family determines a G-structure on a
quotient of X, by a foliation whose leaves are just the kernels of the various
U guys, forming the orbits of various closed subgroups of H. Tricky.

Question 41. It might be possible to use G-structure-like notions to handle
singularities of analytic varieties, as long as the stabilizer of the tangent cone
is of constant type, in some sense. For example, if X is a projective variety
embedded in projective space, and Y is a smooth subvariety contained in the
singular locus of X, we could say that Y has constant type if the stabilizer of
the tangent cone to X and tangent space of Y acts on the tangent space of
Y at each point as a group always in the same conjugacy class of the general
linear group. Then Y would bear a G-structure.

Remark 28 (Averaging). If a Riemannian manifold M0 is mapped to any man-
ifold M1 by a fiber bundle mapping with compact stalks, then we can average
out the metric to produce a Riemannian metric on the base.

We can generalize this easily: if M0 is equipped with a G0-structure, and
a fiber bundle mapping M0 →M1, and the fibers are compact with constant
type W0, we can reduce to a G-structure, where G ⊂ G0 is the stabilizer of
W0. Let N ⊂ G be the normal subgroup acting trivially on V1 = V0/W0, and
let G1 = G/N . If G preserves a volume form on W0, and the homogeneous
space GL (V1) /G1 is equipped with an affine structure, then we can average
out the G0-structure to produce a G1-structure.
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Constructing G-structures with controlled
torsion

Lets try to use the Cartan–Kähler theorem to construct G0-reductions of a
G-structure, with torsion satisfying some equations. Suppose that we have
selected a G0-invariant submanifold X0 ⊂ V ⊗Λ2 (V ∗), and we want to build
a G0-reduction B0 → M of a given G-structure B → M , and we want the
torsion T0 of the reduction to lie in X0. To be more precise, we want to ensure
that there is a pseudoconnection on B0 with torsion T0 belonging to X0. We
will assume that B has constant type, and that it has been reduced as far as
possible. For every example of interest, the torsion T of B will be a constant.
In this chapter, we will never refer to the intrinsic torsion of B, since the
torsion of B is already reduced, so the expression [T ] means

T ∈ V ⊗ Λ2 (V ∗) 7→ [T ] ∈ H0,2 (g0) .

Let Z be the set of pairs (x, p) where x ∈M , p ∈ g⊗V ∗ and T (x)+δp ∈ X0.
Map (x, p) ∈ Z 7→ x ∈M . (In most examples, T will be a constant, so Z will
be a product Z = M × Z0.) Let Π : B(1) →M be the obvious bundle map.

To handle independence conditions, we will need to adopt a notation. If η
is a 1-form valued in a vector space W of dimension N , let

∧
η be η1∧· · ·∧ηN

for some choice of basis of W . If γ is a pseudoconnection on B, write γg0 for
any projection of γ to g0.

Lemma 36. Suppose that Z →M is a smooth fiber bundle. On the manifold
Π∗Z, every integral manifold of the exterior differential system γ̄ + p̄ω = 0,
on which the independence condition∧

ω ∧
∧
γg0 6= 0

is satisfied, locally determines a unique G0-reduction of B →M defined over
an open subset of M , together with a pseudoconnection with torsion in X0.
Conversely, every such reduction determines a unique integral manifold of that
exterior differential system, satisfying that independence condition.
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Question 42. In general, I should probably not useH as notation when I fatten
up. Instead I should fatten from G0 to G, and that will make the notation
consonant with this section.

Proof. Suppose that B0 ⊂ B is a G0-reduction, defined on some open set
M0 ⊂M , with a pseudoconnection γ0 whose torsion belongs to X0. Without
loss of generality, replacing M by M0, we can assume that M = M0. Consider
the set B′0

Take any pseudoconnection γ for B → M adapted to the choice of a
section S for G. We can fatten up B0 to B = B0 (G). Recall the notation
from subsection 6.2.3 on page 61 that (γ0)∗ means the 1-form which agrees
with γ0 in directions tangent to B0, and satisfies ~A (γ0)∗ = A for any A ∈ g.
For each point u0 ∈ B0, let p ∈ g ⊗ V ∗ satisfy γ = (γ0)∗ − pω. This defines
p : B0 → g ⊗ V ∗. However, we can change the choices of pseudoconnections
γ0 and γ, by adding on things like γ0 + q0ω, γ + qω, where q0 ∈ g

(1)
0 and

q ∈ g(1). This will change p by p − δq + δq0, not affecting T0. Let B′0 → B0

be the bundle whose sections are pairs (γ0, p) of pseudoconnections γ0 and
functions p : B0 → g ⊗ V ∗ for which the torsion T0 of γ0 lies in X0 and for
which T0 − δp = T . So B′0 → B0 is a fiber bundle, since γ0 is chosen from a
fiber bundle over X0 ×B0, with fiber g

(1)
0 , and p is chosen ???

Question 43. Why is B′0 → B0 a smooth bundle? This looks very tricky. If we
suppose that there is a choice of γ0 with required torsion, then at least we
can get started, but I think I will need some additional hypothesis to ensure
that B′0 → B0 is a smooth bundle. But in general, we can just make some
local choice of γ0, as given by hypothesis, and some smooth choice of p, since
δp = T0 − T is a nice smooth equation, determining p up to g(1) action, so it
should be a bundle, and a local section should give us a map B0 → B(1).

Map φ : B′0 → Π∗Z by (γ0, p) 7→ (γ, p) where γ = (γ0)∗ − pω. Then
φ∗ (γ̄ + p̄ω) = γ̄0 = 0, so φ : B′0 → Π∗Z is an integral manifold of I.

Question 44. I am messing up the independence condition. What is indepen-
dent on B′0?

Suppose that φ : N ⊂ Π∗Z is an integral manifold satisfying the indepen-
dence condition. Pulled back to N , γ + pω is a 1-form valued in g0, and

dω = −γ ∧ ω +
1
2
Tω ∧ ω

= − (γ + pω) ∧ ω +
1
2

(T + δp)ω ∧ ω.

By theorem 6 on page 91, after perhaps restricting to an open subset of N ,
there is a unique G0-structure B0 → M0 on some manifold M0, with these
structure equations. The fibers of B0 → M0 satisfy ω = 0, so locally map
to fibers of N → M . By independence of

∧
ω, the map M0 → M is a local

diffeomorphism. Replacing M0 by an open subset of itself, we can arrange
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that M0 is an open subset of M , and G0-equivariance ensures us that B0 is a
principal right G0 subbundle of B.

In most examples, the torsion T of the G-structure B →M is a constant, so
lets assume this. Moreover, calculations are made simpler by choosing a map
P : X0 → g⊗ V ∗ so that

T + δP (T0) = T0.

Call such a map a torsion gauge.

Question 45. I think it helps if the torsion gauge is transverse to g(1). It is
useful in carrying out Cartan’s count, I think.

Corollary 21. Assume that T is constant, and that P is a torsion gauge. On
the manifold B(1), every integral manifold of the exterior differential system
γ̄ + P̄ω = 0, on which the independence condition∧

ω ∧
∧
γg0 6= 0

is satisfied, locally determines a unique G0-reduction of B →M defined over
an open subset of M , together with a pseudoconnection with torsion in X0.
Conversely, every such reduction determines a unique integral manifold of that
exterior differential system, satisfying that independence condition.

Proof. Question 46. Finish this.

Question 47. From here on, we treat X0 as a submanifold of H0,2 (g). Make
this clear.

Proposition 42. Suppose that B →M is a G-structure with constant torsion
T , and that G0 ⊂ G is a Lie subgroup, with Lie algebras g0 ⊂ g. Write
quotients as A ∈ g 7→ Ā ∈ g/g0. Pick a submanifold X0 ⊂ H0,2 (g0). Let
P : X0 → g⊗ V ∗ be a smooth map so that

[T + δP ([T0])] = [T0]

for any [T0] ∈ X0. Given a G0-reduction ι : B0 → B with torsion in X0,
let BT

0 → B0 be the bundle whose sections are pseudoconnections γ0 on B0

with torsion T + δP . Then BT
0 → B0 is a principal right g0-bundle. Map

φ : BT
0 → B(1)×X0 by taking γ0 7→ (γ, [T0]) where γ = γ0 +Pω and T0 is the

intrinsic torsion of B0. For any G0-reduction ι : B0 → B with torsion in X0,
φ embeds into B(1) ×X0 and satisfies γ̄ + P̄ω = 0. Moreover, every integral
manifold of γ̄ + P̄ω = 0 transverse to the fibers of B(1) → M locally fattens
up to BT

0 for a unique G0-reduction B0 with torsion in X0.

Proof. Given a G0-reduction B0 ⊂ B with torsion [T0], let B′0 be the set of
1-forms γ0 at points of B0 satisfying ~A γ0 = A for all A ∈ g0, i.e. the bundle
whose sections are pseudoconnections. For each such γ0, we can compute its
intrinsic torsion T0, so
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dω = −γ0 ∧ ω +
1
2
T0ω ∧ ω.

Given a pseudoconnection γ for B → G, which is a section of B(1), it satisfies

dω = −γ ∧ ω +
1
2
Tω ∧ ω.

So (γ0)∗ − γ = qω for some q ∈ g(1).

Question 48. Finish this.

Question 49. The relevant transversality conditions are difficult to state. I
need to be clearer about them.

Question 50. Note that we haven’t taken advantage of the action of (g0 ⊗ V ∗)⊕
g(1) on Π∗Z, corresponding to changing our choices of γ0 and γ.

Question 51. What is the prolongation of this system?

Question 52. Eventually, I need to join this subsection with the discussion
earlier which I called “Counting generality”.

Question 53. This tower of bundles is a basic object in the study of reductions
of structure group; all of the calculations can be carried out order by order on
the tower directly, without having to resort to working with actual reductions.

This will be useful to constructing exterior differential systems for reduc-
tions of structure group with required torsion properties, and also for varia-
tions of substructures. But it won’t become useful until I figure out what sort
of differential forms and torsions are defined on each bundle, and how to set
up bundles for the torsions to live in, and how to write a differential system
to constrain torsion of a subbundle.

Question 54. There seem to be 2 very different problems we might want to
solve concerning the construction of reductions. The first is to construct a
reduction for which the intrinsic torsion lands in a given invariant submanifold
of the Spencer cohomology. The second is to construct a reduction whose
torsion is already reduced via a section. Both can be thought of as constructing
a reduction together with all possible pseudoconnections with extrinsic torsion
in a given subset of V ⊗Λ2 (V ∗). So perhaps this is the right problem to study.
If we study this general problem, we should get an exterior differential system
for it, and then it should be possible to simplify the story when the torsion
T of the original, unreduced structure is a constant, and then again when we
have a map P : X0 → g⊗ V ∗ so that δP (T0) = T − T0.

Question 55. A nice example might be to find out which projective structures
arise from Riemannian manifolds. Or even pseudo-Riemannian. The amazing
thing is that this question can be solved by exterior differential systems. Keep
in mind that the problem of determining whether an affine connection is the
Levi-Civita connection of a Riemannian or pseudo-Riemannian metric involves
holonomy groups.
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Question 56. A fairly simple example, to impose a Riemannian metric on a
manifold. There might be a nice way to see that that underlying geometry is
described by taking affine combinations, which might be useful to generalize.

9.1 Example: which projective structures arise from
Riemannian metrics?

Take B ⊂ FM (1) a projective structure (see section 7.11 on page 154); recall
that a projective structure on a manifold M is a choice of connection on the
tangent bundle of M up to reparameterization of geodesics. We want to deter-
mine if there is a Riemannian metric on M whose geodesics are the geodesics
of this projective structure; we will say that such a metric induces that projec-
tive structure. The sections of B → FM are precisely the pseudoconnections
on M with the required geodesics. If we had a Riemannian metric g whose
geodesics are those of the projective structure, then the Levi-Civita connec-
tion γg on the orthonormal frame bundle Bg would extend to a connection
(γg)∗ on FM which would belong to B. So we can map u ∈ Bg 7→ (γg)∗ ∈ B,
embedding Bg into B. Recall the structure equations of B (see proposition 29
on page 161):

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

(
ωjδ

i
k + ωkδ

i
j

)
∧ ωk +∇γi

j

dωi = γk
i ∧ ωk +∇ωi

∇γi
j =

1
2
Ki

jklω
k ∧ ωl

∇ωi =
1
2
Kijkω

j ∧ ωk

with

0 = Ki
jkl +Ki

jlk

0 = Ki
ikl

0 = Ki
jil

0 = Ki
jkl +Ki

klj +Ki
ljk

0 = Kjkl +Kjlk

0 = Kjkl +Kklj +Kljk.

On the submanifold Bg, γ must equal the Levi-Civita connection, by the
reproducing property. The structure equations of Riemannian geometry are

dωi = −γi
j ∧ ωj

dγi
j = −γi

k ∧ γk
j +

1
2
Ri

jklω
k ∧ ωl,
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with the usual Bianchi identities for Ri
jkl, and with γi

j + γj
i = 0. On Bg,

1
2
Ri

jklω
k ∧ ωl =

(
ωjδ

i
k + ωkδ

i
j

)
∧ ωk +

1
2
Ki

jklω
k ∧ ωl.

Symmetrizing in i and j gives

0 =
(
ωjδ

i
k + ωkδ

i
j + ωiδ

j
k + ωkδ

j
i −

1
2

(
Ki

jkl +Kj
ikl

))
∧ ωl) ∧ ωk.

By Cartan’s lemma,

ωjδ
i
k + ωkδ

i
j + ωiδ

j
k + ωkδ

j
i =

1
2

(
Ki

jkl +Kj
ikl

)
ωl + pijklω

l

for some pijkl with various symmetries. Summing over i = k,

(n+ 3)ωj =
1
2

(
Ki

jil +Kj
iil

)
ωl + pijilω

l.

So we can write
ωi = tijω

j

for some coefficients tij . Plugging back in gives

Ki
jkl + tjkδ

i
l + tlkδ

i
j − tjlδ

i
k − tklδ

i
j = Ri

jkl.

The first Bianchi identity

Ri
jkl +Ri

klj +Ri
ljk = 0

is satisfied by the left hand side. Using the identity 0 = Ri
jkl +Rj

ikl,

0 = Ki
jkl + tjkδ

i
l + tlkδ

i
j − tjlδ

i
k − tklδ

i
j +Kj

ikl + tikδ
j
l + tlkδ

j
i − tilδ

j
k − tklδ

j
i .

Again plug in k = i and sum:

0 = Ki
jil + tjl + tlj − ntjl − tjl +Kj

iil + tiiδ
j
l + tlj − tjl − tjl

= Ki
jil +Kj

jil + tiiδ
j
l − (n+ 2)tjl + 2tlj .

Let t = tii:

(n+ 2)tjl − 2tlj = tδj
l +Kj

iil

−2tjl + (n+ 2)tjl= tδl
j +Kl

iij

so that

tjl =
1

(n+ 2)2 − 4

(
(n+ 4)δjlt+ (n+ 2)Kj

iil + 2Kl
iij

)
.
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We have determined all of the ωi, up to choice of a function t. If we let
Kij = Ki

kkj , then plugging tjl back in gives:

0 = Ki
jkl +Kj

ikl +
1

(n+ 2)2 − 4
(2nδij (Klk −Kkl)

+ δil ((n+ 2)Kjk + 2Kkj)
+ δjl ((n+ 2)Kik + 2Kki)
− δik ((n+ 2)Kjl + 2Klj)
− δjk ((n+ 2)Kil + 2Kli)) .

These identities defined a subset B′ ⊂ B, and for every Riemannian metric g
inducing the given projective structure, Bg ⊂ B′. So we will always need to
restrict to B′ first, and check that B′ → B → M has a nonempty stalk over
each point of M .

Question 57. If I start with a homogeneous projective structure, and ask
whether it is induced by a Riemannian metric, I will have K a constant,
so if these identities are not satisfied, I will know right away. That would be
nice to see. The problem is that the only example for which the symmetry
group acts transitively on the projective structure bundle is the flat case. So
the orbit of the symmetry group in any nonflat case might pass through a re-
gion of the bundle in which the identities are not satisfied, even though there
is some locus away from there where they are satisfied. So I need to see how
to read off the existence of solutions of the identities even at other points,
i.e. the orbit of the locus satisfying the identities under the GL (n,R) o Rn∗

action. This looks like it might be difficult. The Rn∗ action on Ki
jkl is trivial,

so we need to ask what the GL (n,R) orbit of the identities is.





Part III

Exotic Delicacies
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Characteristic classes

Question 58. I might want to move all of this stuff after the definition of
variations of G-structure, so that I can vary bundles.

Question 59. I should be able to connect this theory to the theory of the
Atiyah class for connections on complex manifolds, and Gunning’s work on
Atiyah classes for complex manifolds with projective connection.

10.1 Cartan geometries and G-structures

Lemma 37. A Cartan geometry arises as the infinite prolongation of a finite
type G-structure just when it is locally effective.

Proof. Let π : B → M be the bundle. As above, define V = h/g, and let
ω = Ω (mod g). Check that ω is semibasic for B →M , so treat ω as a section
of π∗T ∗M ⊗ V . Map B → FM by u 7→ ωu. This is right G-equivariant, so
B → FM → M is a G-structure, not necessarily embedded. Let N ⊂ G be
the normal subgroup acting trivially on V , and let G0 = G/N . The image of
B → FM is an embedded G0-structure, call it B0. Moreover, the quotienting
map π1 : B → B0 is a principal right N -bundle.

Let n be the Lie algebra of N . We have Lie algebra morphisms

0→ g0 → h/n→ V → 0.

Pick any splitting as vector spaces:

h/n = V ⊕ g0.

We can then split
Ω + n = ω ⊕ γ.

Check that γ is semibasic for B → B0, and satisfies ~A γ = A for A ∈ g0. So
at each point u ∈ B, γ descends to a 1-form on the corresponding point of B0

(valued in g0). Map u ∈ B 7→ γu ∈ T ∗π1(u)B0 ⊗ g0.
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Calculate modulo g that

−1
2

[Ω,Ω] + g = −γ ∧ ω − 1
2

[ω, ω] .

Since ∇Ω is semibasic, so is the projection to g, so we find structure equations

dω = −γ ∧ ω +
1
2
Tω ∧ ω

with torsion Tω ∧ ω = πg∇Ω + [ω, ω].
Under N action, r∗nΩ = Ad−1

n Ω, so r∗nω = ω, and therefore r∗ndω = dω.
Similarly, r∗n∇Ω = Ad−1

n ∇Ω, and therefore T is N invariant, and so

(r∗nγ − γ) ∧ ω = 0.

Therefore γ varies only by elements of g(1), ensuring that u 7→ γu takes B →
B

(1)
0 . Let B1 be the image of this map.

In order to carry out induction, it helps to have better notation, writing
ω(0) instead of ω, and ω(1) instead of γ, and following the model of section 7.2
on page 99. At each stage, we have the same structure equations as the model,
except for torsion terms entering (which are getting more complicated at each
prolongation). Therefore we must eventually reach the structure equations of
H/N , with lots of torsion added to them.

There is a subtlety here to keep in mind. The G0-structure might even have
infinite order. For example, let H be the biholomorphism group of CP1, and
G the subgroup fixing a point. Then G0 = GL (1,C) and the G0-structure
is just the complex structure. However, the next bundle B1 → B0 might
be a subbundle of B(1)

0 . Eventually, just as in the model, we must reach a
substructure of some B(1)

k which has finite type, since H has finite dimension.

10.2 Characteristic classes of G-structures

If K ⊂ G is a maximal compact subgroup, then every G-structure B → FM
admits a reduction to a K-structure B0 → B. In general, we may not be
able to write down such a reduction, but nonetheless this can help in finding
topological obstructions to the existence of a G-structure. A K-structure will
induce a metric, and a morphism

Sym∗
(
so (n)∗

)SO(n) → Sym∗ (k)K

on characteristic classes.

Example 85 (Web geometry). G is the set of matrices of the form(
a 0
0 a

)
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with a 6= 0. The equation a = ±1 cuts out a maximal compact subgroup
K ⊂ G. Therefore every G-structure (i.e. web geometry) admits reduction to
a K structure (i.e. coframing up to sign). The only topological characteristic
class of a surface is its Euler characteristic, spanning so(2)∗. But k = 0, so the
Euler characteristic of any compact surface with web geometry must vanish.

This approach tells us nothing about characteristic classes of conformal struc-
tures.

10.3 Characteristic classes of Cartan geometries

For an introduction to characteristic classes, see Chern [30], Spivak [82] and
Milnor & Stasheff [64].

Lemma 38. A Cartan geometry Ω on B → M determines a connection on
B(H) → M (recall B(H) = (B ×H) /G, where G acts diagonally). Con-
versely, a connection on B(H) comes about from a Cartan geometry just when
the kernel of the connection does not meet the tangent space of B ⊂ B(H).

Proof. Sharpe [76], p. 365.

Recall the curvature form of a Cartan geometry:

∇Ω = dΩ +
1
2

[Ω,Ω] .

Lets try to imitate Chern–Weil theory of characteristic classes for Cartan
geometries.

Example 86. Riemannian geometry on an oriented surface gives a Cartan ge-
ometry modelled on H/G where H = SO (2) o R2 and G = SO (2). Let M
be the surface, and B → M the orthonormal frame bundle. The structure
equations are

dΩ = −1
2

[Ω,Ω] + κω1 ∧ ω2

where

Ω =

0 −γ ω1

γ 0 ω2

0 0 0


κ =

 0 K 0
−K 0 0
0 0 0

 ,

with K the Gauss curvature. The invariant K
2πω

1 ∧ ω2 descends to a closed
form on M . In this example, the characteristic forms from B(H) are trivial,
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since the invariant polynomials are generated by the Pontryagin polynomials,
given for A ∈ so (n) by

det (I + λκ) =
n∑

j=0

(2πλ)2j
pj(A).

But
det (I + λκ) = λ

(
λ2 +

(
Kω1 ∧ ω2

)2)
= λ3

giving only p0 = 1, trivial information about Pontryagin classes.

Remark 29. Generalizing this last example, if G is reductive, any Cartan ge-
ometry modelled on a homogeneous space H/G will have a Cartan connection
Ω valued in h, which splits into h = g⊕ g⊥, so we project Ω to g and obtain
a connection, which has the usual characteristic forms.

An elementary calculation:

Lemma 39 (The Bianchi identity).

d∇Ω = [∇Ω,Ω] .

Corollary 22. Let Sym∗ (h)H be the algebra of H-invariant polynomials. The
Chern–Weil morphism

p ∈ Symk (h)H 7→ p (∇Ω) ∈ Ω2k (M)

takes invariant polynomials to closed differential forms.

The proof is as usual. So we can always apply the Chern–Weil morphism to
B(H), while if G is reductive, we can apply it to B itself.

Example 87 (Conformal geometry). Recall that conformal geometry on a
manifold M gives a Cartan geometry B(1) → M modelled on H/G =
PO (p+ 1, q + 1) /CO (p, q) o R(p+q)∗. The Cartan connection looks like

Ω =

−σ −$ 0
ω α −$∗

0 ω∗ σ


and

∇Ω =

0 1
2Cω ∧ ω 0

0 1
2Wω ∧ ω 1

2 (Cω ∧ ω)∗

0 0 0

 .

Calculating the H-invariant polynomials on h = so (p+ 1, q + 1) we find the
Pontryagin forms

det (I + λ∇Ω) = (2πλ)2j
pj (∇Ω)

of B(H) look as if they were Pontryagin forms of a pseudo-Riemannian metric
on M , but computed in terms of (1/2)Wω ∧ ω.
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Question 60. How do I make use of this to show that the prescence of a flat
conformal structure on a compact manifold forces the Pontryagin classes of
its tangent bundle to vanish? To show that, I really need to show that the
inclusion B ⊂ B(H) of one bundle in another gives a relation between ratio-
nal characteristic classes which is just the obvious relation on the invariant
polynomials in the Lie algebras. That should not be difficult, just by fattening
up a connection.

Question 61. Morse theory is a method for reducing a structure group, every-
where but on some singular set which is made nice by making things generic.

Question 62. This stuff about characteristic classes has to be placed later in
the book, perhaps as the final chapter. Certainly it should be after the material
about conformal and projective geometry, since I use the conformal geometry
as the next example.

Question 63. The theory here badly needs to be developed. I think that the
bundle B → M of a Cartan geometry generally has no expression in terms
of ∇Ω for its characteristic classes. But in reductive cases, it probably does.
There is also the possibility of constructing characteristic classes directly out
of invariant theory applied to ∇Ω, but that should be computing just the
characteristic classes of (B ×H) /G, a principal H-bundle containing B. So
I believe that the more refined approach would be to find the characteristic
class of B, and relate them to characteristic classes of FM via the map B →
B/N → FM which I constructed above. I should be able to take any choice
of connection on B/N , or perhaps more generally any choice of section of
B → B/N , and use it as a connection, and pullback everything, in particular
pulling back the characteristic forms.

Ultimately, the only topology I have is that of the G-bundle B →M . This
is contractible to a K-bundle, say B0 ⊂ B, so I really only have the topology
of B0. The only characteristic classes I should be able to calculate are those
of B0. But I can’t always calculate even those, using only the curvature of
the Cartan connection. I can certainly calculate the rational characteristic
classes of B(H), the fattening up, because the Cartan connection determines
a connection on B(H). But it is sometimes possible to calculate more data
than that.
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Twistor theory

11.1 Quotienting G-structures

Let B be a G-structure on a manifold M . If G0 ⊂ G is a closed subgroup,
we can construct the bundle B/G0 → M , which is a bundle of homogeneous
spaces. For example, if M is a Riemannian manifold, so G = O (n), and we
take G0 = SO (n), then B/G0 is the bundle of orientations. Instead if keep
the same bundle B and Riemannian manifold M , and we take G0 ⊂ G the
group fixing a given nonzero vector v0 ∈ V , then B/G0 is the unit tangent
bundle, the bundle of unit vectors in the tangent spaces of M (or, canonically
diffeomorphic, the bundle of vectors of some fixed nonzero length).

Naturally we might expect to read off a G0-structure on B/G0 from the
G-structure on M = B/G. We might imagine just rearranging the structure
equations.

Example 88 (Foliated surfaces). A very simple toy example, of no practical
interest: let M be a surface foliated by curves. The reader can see that the
foliation is described by a G-structure, where G is the group of linear trans-
formations of V = R2 leaving R1 ⊕ 0 invariant. As matrices, these linear
transformations have the form (

g1
1 g1

2

0 g2
2

)
so that the structure equations are

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

0 γ2
2

)
∧

(
ω1

ω2

)
.

Taking exterior derivative gives the equations of the prolongation:

d

γ1
1

γ1
2

γ2
2

 = −

ξ111 ξ112
ξ121 ξ122
0 ξ222

 ∧
γ1

1

γ1
2

γ2
2

+

 0(
γ2
2 − γ1

1

)
∧ γ1

2

0

 .
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Consider the subgroup G0 consisting of the linear transformations which not
only leave R1 ⊗ 0 invariant, but actually fix it pointwise, so matrices of the
form (

1 g1
2

0 g2
2

)
.

Then B/G0 is the set of choices of nonzero vector tangent to the leaf of the
foliation at a given point of M . The 1-form γ1

1 is semibasic for the bundle map
B → B/G0; lets write ω̇ = γ1

1 to remind us that it is now being demoted to a
semibasic 1-form, i.e. a part of the soldering 1-form. (We might be tempted to
call it ω3, and this would be just as reasonable. I have opted in this book to use
ω̇ to denote any 1-form which “used to be” part of a pseudoconnection, and
got “demoted” to being part of the soldering 1-form.) We can just rearrange
the structure equations, writing ω̇ for γ1

1 , to get structure equations

d

ω1

ω2

ω̇

 = −

 0 γ1
2

0 γ2
2

ξ111 ξ112

 ∧
ω1

ω2

ω̇

+

ω1 ∧ ω̇
0
0


︸ ︷︷ ︸

torsion

.

Notice that ξ111 and ξ112 have now become part of the pseudoconnection on the
new bundle B(1) → B/G0. They “used to be” part of the pseudoconnection
of the prolongation B(1) → B. The new structure group is not G0, but rather
G0 o g(1), the structure group of B(1) → B/G0.

Example 89 (The unit tangent bundle of the 3-sphere). The structure equa-
tions of Riemannian geometry on the 3-sphere (i.e. of the usual SO (3)-
structure) are

dωi = −γij ∧ ωj

dγij = −γik ∧ γkj + ωi ∧ ωj

(i, j, k, l = 1, 2, 3). Take

v0 =

1
0
0

 ∈ R3,

and let G0 = SO (2) ⊂ SO (3) be the stabilizer of v0. The Lie algebra of G0

consists of the matrices of the form0 0 0
0 0 γ23

0 −γ23 0

 .

Thus B/G0 is the unit tangent bundle of the 3-sphere, and the 1-forms γ12

and γ13 are semibasic for B → B/G0. Keeping in mind that g(1) = 0, so that
B(1) = B, we see that B → B/G0 is an SO (2)-structure. Write
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ω̇2

ω̇3

)
=

(
γ12

γ13

)
.

Our structure equations are

d


ω1

ω2

ω3

ω̇2

ω̇3

 = −


0 0 0 0 0
0 0 γ23 0 0
0 −γ23 0 0 0
0 0 0 0 −γ23

0 0 0 γ23 0

∧

ω1

ω2

ω3

ω̇2

ω̇3

+


ω2 ∧ ω̇2 + ω3 ∧ ω̇3

ω̇2 ∧ ω1

ω̇3 ∧ ω1

ω1 ∧ ω3

ω1 ∧ ω2

 .

We see from the representation that the structure group preserves a contact
structure ω1 = 0, and preserves a complex structure on each contact plane.
The symmetry group of the Riemannian geometry was SO (4), and we can
now see that SO (4) is also precisely the symmetry group of the induced
SO (2)-structure on the unit tangent bundle.

Exercise 11.1 Generalize this last example to arbitrary Riemannian mani-
folds.

We can see the general picture:

Proposition 43. Suppose that G0 ⊂ G is a closed subgroup of a Lie group.
To any G-structure B →M of constant type (so that the prolongation B(1) →
B is defined), we can associate a G0 o g(1)-structure B(1) → B/G0 by the
following process. First, define the obvious map Π : B(1) → B/G0 given by

B(1) → B → B/G0.

Next take γ ∈ Ω1
(
B(1)

)
as defined in section 7.1 on page 93. Define the 1-

form ω̇ ∈ Ω1
(
B(1)

)
by ω̇ = γ (mod g0). Then define a map B(1) → F (B/G0)

by the same process described in section 6.7 on page 86: to each U ∈ B(1) we
associated the coframe Φ(U) ∈ F (B/G0) which satisfies

Φ(U)Π ′(U) = ω ⊕ ω̇.

Finally, since B(1) →M is already a Gog(1)-bundle, the group G0 og(1) acts
on B(1) in the obvious manner.

Proof. We have to check that this is a G0 og(1)-structure, i.e. that the map Φ
we have written down is well-defined and smooth, and G0 o g(1)-equivariant.
To see that Φ is well-defined, we have only to check that ω and ω̇ are semibasic
for Π : B(1) → B/G0. The fibers of Π are spanned by the vector fields ~A for
A ∈ g0 and ~Q for Q ∈ g(1). Clearly ω vanishes on these, and ~A γ = A ∈ g0,
and ~Q γ = 0, so ω̇ vanishes on these too. Therefore Φ is well-defined, and
we will let the reader show that it is smooth, perhaps by looking at local
coordinates. Equivariance under G0 o g(1) is immediate from the equations in
section 7.1 on page 93 for the Go g(1) action on ω and γ.
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11.2 Example: anti-self-dual metrics on 4-manifolds

Consider a Riemannian 4-manifold. Let B →M be the bundle of orthonormal
coframes. Its structure equations are

dωi = −γij ∧ ωj

dγij = −γik ∧ γkj +
1
2
Rijklωk ∧ ωl,

(i, j, k, l = 1, . . . , 4). The Lie algebra so (4) splits as so (4) = so (3) ⊕ so (3).
This splitting is invariant under the adjoint SO (4) action, although the two
summands get swapped under reflections from O (4). Therefore let us assume
that our manifold M is oriented, reducing the structure group from O (4) to
SO (4). We will still write the reduced bundle as B.

To make use of the splitting of the Lie algebra, note that there is no
complex structure on R4 invariant under SO (4), but if we could reduce the Lie
algebra to so (3)⊕so (2) , then the so (2) action would be a complex structure,
and the so (3) would commute with it. This is the fundamental idea. So we
want to take G0 to be the group whose Lie algebra is g0 = so (3) ⊕ so (2) ,
and see what sort of almost complex structure emerges on B/G0, and in
particular we will ask when B/G0 is a complex manifold. Throughout the
long computations that follow, we will hold on to this simple question: when
is B/G0 a complex manifold?

So far, this is just a story about Lie algebras, asking whether they pre-
serve complex structures. We want to analyze structure equations. It will
be convenient to recast these structure equations in a form that reflects the
splitting of the Lie algebra. Recall from example 22 on page 18 the morphism
Spin (4) = Sp (1)+ × Sp (1)− → SO (4) and the quaternionic formulation of
the structure equations of the flat Spin (4)-structure. Since structure equa-
tions depend only on the Lie algebra, and torsion-free structure equations are
the same for any torsion-free structures, we must still have the same structure
equations

dω = −γ+ ∧ ω − ω ∧ γ−
on our 4-manifold, with γ+ and γ− connection 1-forms valued in imaginary
quaternions. The structure equations for γ will be quite different, because of
the curvature. To relate these structure equations to the structure equations
of SO (4)-structures, we write left multiplication by a quaternion x as Lx, and
right multiplication by x as Rx. This allows us to write

dω = −Lγ+ ∧ ω +Rγ+ ∧ ω

so that to compare SO (4) and Spin (4) structure equations:

γ = Lγ+ −Rγ− .

In this way, we see the splitting. Sometimes we identify sp (1)+ = so (3) and
sp (1)− = so (3) with the imaginary quaternions, and other times we don’t. For
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differential forms α and β valued in quaternions, say α = α0 +α1i+α2j+α3k
with each αµ real valued, define

〈α ∧ β〉 = αµ ∧ βµ.

We let the reader check that for any quaternion q of unit length

〈qα ∧ qβ〉 = 〈αq ∧ βq〉 = 〈α ∧ β〉

This is pretty clear from the similar identity for 0-forms, and the fact that
the calculations don’t depend on commuting the components of the 0-forms.
A fancier way to think about it:

〈α ∧ β〉 =
∫

Sp(1)+

〈α, q〉 ∧ 〈β, q〉 dq,

and the identity is clear from translation invariance of the integral. Define
semibasic 2-forms Ω+ and Ω− valued in the imaginary quaternions, by

Ω+ =
1
2

(〈iω ∧ ω〉+ 〈jω ∧ ω〉+ 〈kω ∧ ω〉)

Ω− =
1
2

(〈ωi ∧ ω〉+ 〈ωj ∧ ω〉+ 〈ωk ∧ ω〉 .) .

We invite the reader to check the following complicated statements: the
Spin (4)-structure equations are

dω = −γ+ ∧ ω − ω ∧ γ−

dγ+ = −γ+ ∧ γ+ +
(
W− − s

24
14

)
Ω− + tSΩ+

where

S : B → sp (1)+ ⊗ sp (1)−
W+ : B → Sym2

0

(
sp (1)+

)
W− : B → Sym2

0

(
sp (1)−

)
s : M → R

and 14 is the 4× 4 identity matrix. We can relate these S,W+,W−, s to the
curvature tensor of M as follows: s is the scalar curvature, the Ricci curvature
(Rij) is

s

4
+


−s11 − s22 − s33 s23 − s32 −s13 + s31 s12 − s21

s23 − s32 −s11 + s33 + s22 −s12 − s21 −s13 − s31
−s13 + s31 −s12 − s21 −s22 + s33 + s11 −s23 − s32
s12 − s21 −s13 − s31 −s23 − s32 −s33 + s22 + s11


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where S = (spq) for p, q = 1, 2, 3. The components of the Weyl curvature W
are linear functions with constant coefficients of the components of W+ and
W−, and conversely, (too complicated to be worth specifying).

Identify so (4) = Λ2
(
R4
)
. The splitting so (4) = sp (1)+ ⊕ sp (1)− splits

Λ2
(
R4
)

= Λ2
+⊕Λ2

−. Consider the subgroup G0 = Sp (1)+×U (1)− ⊂ Spin (4)
consisting of the pairs (g+, g−) of unit quaternions commuting with (0, i).
Let us suppose that our manifold M actually has a Spin (4)-structure on it
(which is not an embedded type of structure, so be careful!), which we will
also shamelessly call B. We have its structure equations already. Consider the
manifold Z = B/G0. If we had quotiented out all of G = Spin (4), we would
have M = B/G, so not surprisingly:

Exercise 11.2 Z → M is a right principal G0-bundle. Using the splitting
Λ2
(
R4
)

= Λ2
+ ⊕ Λ2

−, we can split the bundle of 2-forms

Λ2 (TM) =
(
B × Λ2

(
R4
))
/Spin (4)

into a sum of two bundles

Λ2 (TM) = Λ2
+ (TM)⊕ Λ2

− (TM)

defined by
Λ2
± (TM) =

(
B × Λ2

±
)
/Spin (4) .

The bundle Z is the bundle of unit spheres inside Λ2
− (TM).

Exercise 11.3 Write γ± = γ1
±i + γ2

±j + γ3
±k. Define ω̇ = γ2

− − γ3
−i, so that

γ− = γ1
−+jω̇. The 1-forms ω and ω̇ are semibasic for the bundle map B → Z.

Exercise 11.4 Under right G-action on B,

r∗(g+,g−)

 ω

Ω+

Ω−

 =

 ḡ+ωg−
ḡ+Ω+g+

ḡ−Ω−g−

 .

The easiest way to check the representation on Ω± might be to use the integral

Ω+ =
1
2

∫
Sp(1)

〈qω, ω〉 q dq.

As for the functions representing curvature,

r∗(g+,g−)

W+

W−

S

 =

ḡ+W+g+
ḡ−W

−g−
ḡ+Sg−


and s is invariant under the structure group.
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Now if we restriction to the G0 o g(1) action on B, we find

r∗(g+,g−)ω̇ = ω̇g2
−.

The crucial observation is that ω and ω̇ are transforming under a represen-
tation that preserves the complex structure of right multiplication by i, since
i commutes with g− and so with G0 action. This gives Z an almost complex
structure.

To understand the complex structure in the flat case, note first that
M = H, Z =

(
H ⊕ Sp (1)−

)
/U (1)−, so the complex structure acts on T(0,i)Z

by acting on (v0 + v1i+ v2j + v3k,w2j + w3k) by right multiplication by i.
Check that this is just the usual complex structure on C2 ⊕ C given by com-
plex coordinates

v0 + v1
√
−1, v2 − v3

√
−1, w2 − w3

√
−1.

Returning to the general case, we can make the almost complex structure
more explicit by writing our structure equations in just these terms. Write

Ω1 = ω0 +
√
−1ω1

Ω2 = ω2 −
√
−1ω3

and calculate

d

(
Ω1

Ω2

)
= −

(√
−1
(
γ1
+ + γ1

−
)

−γ2
+ −
√
−1γ3

+

γ2
+ −
√
−1γ3

+

√
−1
(
γ1
+ − γ1

−
)) ∧(Ω1

Ω2

)
+

(
0 ω̇

−ω̇ 0

)
∧

(
Ω̄1

Ω̄2

)
︸ ︷︷ ︸

torsion

dω̇ = 2
√
−1γ1

− ∧ ω̇ + a12Ω
1 ∧Ω2 + apq̄Ω

p ∧Ωq̄ + a1̄2̄Ω
1̄ ∧Ω2̄

where

a12 =
1
2
(w−22 + w−33)−

s

24

a11̄ =
1
4
(
s13 + 2w−13 +

√
−1
(
s12 + w−12

))
a12̄ =

1
4
(
s22 − s33 −

√
−1 (s23 + s32)

)
a21̄ =

1
4
(
−s22 − s33 +

√
−1 (s23 − s32)

)
a22̄ =

1
4
(
2w−13 − s13 +

√
−1
(
2w−12 − s12

))
a1̄2̄ =

1
2
(
w−22 − w

−
33

)
+
√
−1w−23
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Exercise 11.5 Without computing this complicated rewriting of our struc-
ture equations, show that Ω+ is a (1, 1)-form in the almost complex structure,
and that Ω− = Ω1

−i+Ω2
−j+Ω3

−k where Ω1
− is a (1, 1)-form, and Ω2

− and Ω3
+

are mixed (2, 0) + (0, 2) real-valued forms. Conclude that W−

looks like

W− =

w−11 w−12 w−13
w−21 0 0
w−31 0 0


just when Z = B/G0 is a complex manifold, by the Newlander–Nirenberg
theorem (see [66],[44]). Use the G-action to show that W− = 0 just when Z
is a complex manifold.

Exercise 11.6 Why are the fibers of Z → M rational curves, i.e. complex
curves diffeomorphic to spheres?

Question 64. It would be nice to show how the same ideas can be used to
study quaternionic–Kähler manifolds, using Sp (n) ⊂ Sp (n)× Sp (1); see [74].
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Symmetry groups with orbits of given
dimension

Question 65. This chapter is absurdly titled. I need to split some stuff up here.

The fundamental principle: symmetries commute with the action of the struc-
ture group. Therefore if a group H acts on a manifold M as equivalences of
a G-structure B → M , then the orbits of H in B (under the prolongation of
the action) are permuted by the action of G. On each tangent space of each
orbit, we will have some relations among the soldering and pseudoconnection
1-forms. We have to be careful: the coefficients of those relations might change
when we change the pseudoconnection 1-form. We must therefore quotient out
by this action, to see what information from these coefficients is intrinisically
defined. The resulting quotient data will also change when we move around the
bundle B using the structure group. We can thus try to normalize that data
using the structure group. To make this approach work, we have to consider
the open subset of B on which the orbits have maximal dimension.

Question 66. An example would be nice.

12.1 Actions of a chosen symmetry group

Suppose that we wish to find all actions of a particular groupH on a particular
finite type G-structure. We could try to proceed as follows. Given a group H
and a manifold M with coframing ω ∈ Ω1 (M)⊗ V , we know that an action
of H on M is a map

φ : H ×M →M

satisfying
φ (h0, φ (h1, x0)) = φ (h0h1, x0)

and
φ (1, x0) = x0.

The graph of such a map φ is a submanifold X ⊂ H × M0 × M1 where
M0 = M1 = M and we will write ω0 for ω on M0, etc.
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On H ×M0 ×M1 we have a coframing

λ⊕ ω0 ⊕ ω1 ∈ Ω1 (H ×M0 ×M1)⊗ (h⊕ V ⊕ V )

where λ is the left invariant Maurer-Cartan 1-form on H:

λx(v) = Lxv ∈ h = T1H.

To have X be an action, we need it to be the graph of a function

φ : H ×M0 →M1

so λ and ω0 form a coframing on X.
We will also need each fiber of X over H to be an equivalence, matching

up the coframings ω0 and ω1. So on these fibers:

ω1 = ω0.

Therefore on X:
ω1 = ω0 + aλ

for some function
a : X → Lin (h, V ) .

Example 90. Consider the structure equations of Riemannian geometry on the
flat Euclidean plane. Take z = x +

√
−1y complex Cartesian coordinate on

R2 = C. The orthonormal frame bundle has coordinates (z, θ) where 0 ≤ θ <
2π. The number θ determines the coframe

e−iθdz.

Then the soldering 1-form ω is

ω = e−iθdz

and the connection 1-form γ is

γ = −dθ

with

d

(
ω

γ

)
=

(
−iγ ∧ ω

0

)
.

The action of a rotation by angle α on a coframe (z, θ) is

(z, θ) 7→ (z, θ + α).

Now if we take M to be the bundle of orthonormal coframes, we can let
M0 = M1 = M with coframe

ωj , γj
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on Mj . Then take H = S1 the circle group, and let H act on M by rotation.
The submanifold X is defined by the equations(

z1
θ1

)
=

(
eiα 0
0 1

)(
z0
θ0

)
+

(
0
α

)
.

Therefore

d

(
z1
θ1

)
=

(
eiαi 0
0 0

)
dα

(
z0
θ0

)
+

(
eiα 0
0 1

)
dα

(
dz0
dθ0

)
+

(
0
dα

)
.

Finally we find (
ω1

θ1

)
=

(
ω0

γ0

)
+

(
ie−iθ0z0

1

)
λ

where
λ = dα.

Note that

a =

(
ie−iθ0z0

1

)
is constant on group orbits.

If we let H = C with translation action(
z1
θ1

)
=

(
z0 + t

θ0

)

with
λ = dt

then we find

a =

(
e−iθ0

0

)
.

Returning to the general problem, we want to produce an exterior differen-
tial system on H ×M0 ×M1 whose integral manifolds X, if they satisfy an
appropriate independence condition, will be actions of H on M preserving ω.

The right action of H on itself,

Rh0h1 = h1h0

acts on λ by
Rhλ = Ad−1

x λ.

The left action
Lh0h1 = h0h1
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acts on λ by
Lhλ = λ.

If X is to be the graph of a group action, then a point

(h, x0, x1)

belongs to X precisely when

x1 = φ (h, x0) .

Therefore
h1x1 = φ (h1h, x0)

and so
(h1h, x0, h1x1) ∈ X.

This is the left action on X. It projects to H to be the left action on H, and
to H ×M0 to be the action

Lh1 (h, x0) = (h1h, x0) .

Therefore it satisfies
L∗h1

(λ⊕ ω0) = λ⊕ ω0.

To have a group action, clearly we also need ω1 to be invariant under the left
action. The right action is

Rh1 (h, x0, x1) =
(
hh1, h

−1
1 x0, x1

)
.

It projects to H ×M1 as

Rh1 (h, x1) = (hh1, x1)

so that
R∗h1

(λ⊕ ω1) = Ad−1
h1
λ⊕ ω1.

Again, to have a group action, ω0 must also be invariant under the right
action. On X

ω1 = ω0 + aλ.

Therefore the function a must be invariant under the left action, and under
right action must satisfy

R∗ha = aAdh .

Also, the left and right actions must commute. From the fact that X is the
graph of a function φ : H×M0 →M1 we see that X is canonically diffeomor-
phic to H ×M0, so that

a : H ×M0 → Lin (h, V ) .
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Then left invariance tells us that

a : M0 → Lin (h, V ) .

Right invariance says that the function a must satisfy

a (hx0) Adh = a (x0) .

Lemma 40. Conversely, suppose that X ⊂ H ×M0 ×M1 is a submanifold
for which the maps

H ×M0

X // H ×M0 ×M1

77oooooooooooo

''OOOOOOOOOOOO

H ×M1

are both local diffeomorphisms, and that on X,

ω1 = ω0 + aλ

where
a : M0 → Lin (h, V )

and that the function a satisfies

a (x1) = a (x0)Ad−1
h

whenever
(h, x0, x1) ∈ X.

Suppose moreover that
(1, x0, x0) ∈ X

for every x0 in an open subset of M0.
Then X is the graph of a local group action, at least near any point

(1, x0, x0).

Proof. By a local group action, we mean of course a map φ : open ⊂ H ×
M0 →M1 satisfying the definition of a group action, wherever it is defined.

To see this, we define φ near some element (1, x, x) by letting X be the
graph of φ. We need to show that if

φ (h0, x0) =x1

and
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φ (h1, x1) =x2

then
φ (h1h0, x0) = x2

as long as these expressions are defined. They hold immediately if h1 = 1, at
least for h0 near enough to the identity, since h1 = 1 forces x2 = x1. So we
need only show that these equations hold for h1 near the identity, say h1 = etA

for some A ∈ h.
We need to compare

y(t) = φ
(
etA, x1

)
with

z(t) = φ
(
etAh0, x0

)
.

These describe two curves in M1, with

y(0) = z(0)

so they start at the same point. Their velocities are

d

dt

(
etA, x1, y(t)

)
=
(
−→
A, 0,

dy

dt

)
and

d

dt

(
etAh0, x0, z(t)

)
=
(
←−
A, 0,

dy

dt

)

where
−→
A is an infinitesimal generator of the right action, and

←−
A is an in-

finitesimal generator of the left action, with A ∈ h. We find

ω1

(
dy

dt

)
=ω0 (0) + aλ

(−→
A
)

=a (x1)A

and

ω1

(
dz

dt

)
=ω0 (0) + aλ

(←−
A
)

=aAd−1
etAh1

A

=a (x0) Ad−1
h1
A

Now using the equation

a (x1) Adh1 = a (x0)



12.1 Actions of a chosen symmetry group 251

for all
(h1, x0, x1) ∈ X

we find that these two curves have the same velocity, so they are equal. There-
fore

φ
(
etA, φ (h1, x0)

)
= φ

(
etAh1, x0, x1

)
for all t near 0.

Proposition 44. Every group action

φ : H ×M →M

preserving a coframing ω ∈ Ω1 (M)⊗ V has as its graph an integral manifold
of the exterior differential system

I = (da− a0ω0, da− a1ω1 − aAdλ, ω1 − ω0 − aλ)

on the manifold

H ×M ×M × Lin (h, V )a × Lin (V ⊗ h, V )a0
× Lin (V ⊗ h, V )a1

on which the independence condition, that

λ⊕ ω0

is a coframing, is satisfied. Furthermore, X contains the submanifold

{ (1, x, x) | x ∈M}

Conversely, if X is an integral manifold of this exterior differential system,
satisfying that independence condition, and X contains an open subset of that
submanifold, then near that submanifold, X is the graph of a local group action
of H on M preserving the coframing ω = ω0 = ω1.

Proof. Given a group action φ of H on M preserving ω, we simply let X be
its graph inside H ×M ×M , and we find that

ω1 = ω0 + aλ

and that
da = a0ω0 = a1ω1 − aAdλ

for some functions a0 and a1, by differentiating the conditions that a be left
invariant, and that a satisfy the equation

a (x1) = a (x0) Ad−1
h (12.1)

whenever
(h, x0, x1) ∈ X.
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Conversely, if we have such an integral manifold, then we can see that the
function a is (locally) defined on M0, and so left invariant. It is also satisfies
the identity 12.1 on the previous page whenever

(h, x0, x1) ∈ X

is a point close enough to our submanifold, because differentiating this identity
gives

da
(−→
A
)

=− a [A,B]

=− aAd
λ
�−→

A
�B

and this identity is satisfied by hypothesis in our differential ideal. Integrating,
we recover the identity 12.1 on the preceding page. This enables us to apply
the previous lemma.

We have constructed an exterior differential system whose integral manifolds
are local actions of a given Lie group by equivalences. But plugging in ω1 =
ω0 + aλ we get a0 = a1 and

a0 (a (A1) , A2) = a ([A1, A2])

for all A1, A2 ∈ h. These conditions are generally quite singular. To man-
age this exterior differential system, one is forced to restrict to parts of
Lin (V ⊗ h, C) where various rank conditions are satisfied. This is not a prob-
lem as long as the result is going to be homogeneous, but in general there
could be serious problems with using this formalism.

Question 67. As an example, consider the symmetry groups of conformal
structures on 3-manifolds.

Question 68. How can we adapt this approach to study finite dimensional
group actions on G-structures which are not of finite type? Or to study Lie
pseudogroup actions?

12.2 Counting generality

Question 69. I would like to bring this discussion of Finsler geometry as far
forward in the book as I can, as an indication of the sort of techniques that
will later be covered in more detail. Then I need to make a new chapter about
the existence of G-structures with conditions on torsion.

Consider the case of Finsler surfaces again. We had the structure equations

d

ω1

ω2

ω3

 =

 ω3 ∧ ω2

(ω1 − Iω2) ∧ ω3

ω2 ∧ (Kω1 − Jω3)

 (12.2)
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with three functions appearing, I, J,K. If we apply the exterior derivative to
both sides of all three of these equations, we find equations for the exterior
derivatives of I, J,K:

d

 I

J

K

 =

 J I2 I3
−IK −K3 J2 J3

K1 K2 K3


ω1

ω2

ω3


Therefore the Cartan characters of this tableau are

s1 = 3, s2 = 3, s3 = 1

(just count the “free derivatives” in each column, and then reorder the columns
to make the numbers descending). Cartan’s count predicts that the general
real analytic coframing satisfying Cartan’s structure equations of Finsler ge-
ometry depends on a choice of one function of 3 variables (since s3 = 1 is the
last nonzero character, this gives 1 function of 3 variables). This is correct
since a Finsler metric is a hypersurface in the tangent bundle, so a 3 dimen-
sional manifold in a 4 manifold, and can be written as the graph of a function
over any other Finsler metric.

If we asked for I to be constant, then we would find that this forces J =
K = 0, and so we have d(I, J,K) = 0, and by the Frobenius theorem the
equations 12.2 give a foliation of the frame bundle of any surface; the leaves of
the foliation are three manifolds corresponding to the local Finsler structures
with this constant value for I. These are not Finsler metrics on any surface,
as we have seen in section 5.3 on page 47.

If we ask for J = K = 0, and don’t demand I constant, we find s1 =
1, s2 = 1, s3 = 0, so that solutions depend on one function of 2 variables. The
explicit construction of these solutions can be carried out as follows: first note
that the equations ω1 = ω2 = 0 determine a foliation by curves, which are
the circles in the tangent spaces of the Finsler surface. But also, the equations
ω2 = ω3 = 0, which are the geodesic equations, form a foliation by curves
(the geodesics) and if they are the fibers of a fiber bundle, we can let Λ be
the surface parameterizing the geodesics, i.e. the base of the bundle. From
the structure equations, we see that ω3 and ω2 ∧ ω3 are well defined on Λ,
although ω1, ω2 are not. Also, I is defined on Λ. We see from dω3 = 0 that
ω3 = dθ locally, for some function θ. With a bit of manipulation (inspired
by the flat case I = 0, which is the Euclidean plane), we can see that locally
there are functions s, t, θ and f(t, θ) so that

ω1 = ds+ df − t dθ
ω2 = dt+ s dθ

ω3 = dθ

where s, t are coordinates on Λ. Moreover, given any twice continuously dif-
ferentiable (not necessarily real analytic) function f(t, θ), we can plug it in to
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these structure equations to construct our Finsler structure. This is our one
function of 2 variables, correctly guessed (but not rigorously) by the Cartan–
Kähler analysis. This sort of manipulation of differential forms to produce
coordinate expressions is called integrating structure equations.

Supposing that these coordinates are globally defined, it is easy from here
to recover the Finsler surface. Its geodesics are the curves with constant θ, t.
The functions(

x

y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
s

t

)
−
∫ θ

0

f(t, φ)

(
− sinφ
cosφ

)
dφ

are coordinates on the base surface. The curves given by constant x, y must
therefore be closed, in order that they can be the unit circles of a Finsler
surface. The reader can easily invesigate the Fourier series of f in θ if we make
the further assumption that x, y are periodic in θ with period 2π, discovering
that f turns out to be periodic in θ, and with no 2π frequency terms. We have
found an infinite dimensional family of complete Finsler metrics on the plane
with vanishing Gauss-Finsler curvature and vanishing J invariant.

12.2.1 The Frobenius theorem and abelian systems

This reveals a useful idea that applies to many G-structures: since the struc-
ture equations tell you how to differentiate some 1-forms, you can easily look
for foliations perpendicular to some of those 1-forms, by the Frobenius theo-
rem. Assuming that the foliation is a fiber bundle, you can try to find objects
defined on the base.

A exceptionally pretty situation occurs when we find a collection of 1-
forms from our structure equations, say ϑi, so that all of the differentials
dθA of all of the 1-forms in the structure equations vanish modulo the ϑi.
Call such a family of 1-forms ϑi an abelian system. Not only does an abelian
system satisfy the Frobenius theorem, giving a foliation, but moreover the
remaining nonzero 1-forms θA in the structure equations can be integrated
to functions on the leaves of the foliation. For instance, a Finsler surface of
vanishing Gauss-Finsler curvature has the abelian system

(
ω3 = 0

)
. Note that

if the structure equations have only constants appearing in them, then they
define the local structure of a Lie group, and an abelian system determines
a abelian subgroup, hence the name abelian. A minimal abelian system, i.e.
containing as few 1-forms as possible, determines a maximal abelian subgroup.

Another useful idea: it helps to have an explicit example; in this case the
flat plane. Moreover, one should not attempt to choose coordinates until the
equivalence method has finished.

Question 70. This last comment doesn’t quite fit here.

Question 71. How does the general theory of Cartan’s count relate to the
equivalence method? Note that the finiteness of Spencer cohomology implies
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that there are finitely many obstructions to flatness emerging from the equiv-
alence method. But the Guillemin–Sternberg examples [41], among others,
shows that vanishing of these do not suffice to ensure flatness. I should also
explain in the preface that I decided not to pay too much attention to the
problem of flatness, i.e. calculating enough invariants to determine if a G-
structure is flat.

12.2.2 Exterior differential systems for G-structures

Question 72. This section is not very good. Needs more examples.

Pick a submanifold X ⊂ H0,2 (g) and ask for G-structures on a manifold M
with torsion belonging to X. A G-structure is a subbundle of FM , so we
can try to set up differential equations on FM whose solutions will be G-
structures with torsion in X. The structure equations of FM (j) have already
been presented. On FM we have

dω = −γ ∧ ω

with ω ∈ Ω1 (FM) ⊗ V and γ not well defined, but such a γ can be chosen
and lives in γ ∈ Ω1 (FM) ⊗ GL (V ). We want to find a subbundle B ⊂ FM
on which our intrinsic torsion will belong to X. But the γ that is chosen above
might not fill the bill, since it is chosen independently of the choice of bundle
B ⊂ FM . But, whatever γ is chosen, it must be possible to alter it, say to

γ + pω

where
p : FM → V ⊗ V ∗ ⊗ V ∗

so that γ + pω is a pseudoconnection for B:

dω = −(γ + pω) ∧ ω + pω ∧ ω.

Since the effect of p is trivial if it belongs to gl (V )(1), we can suppose that

p : FM → V ⊗ Λ2 (V ∗) .

On the submanifold B we need γ + pω to be valued in g, and we need the
intrinsic torsion [p] to be valued in X. So we must satisfy the equations

[p] ∈ X
γ + pω = 0 mod g

This gives us an approach to defining an exterior differential system: take
X̂ = [ ]−1

X ⊂ V ⊗ Λ2 (V ∗), and take the differential ideal on FM × X̂
generated by the equations
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Π(γ + pω) = 0

where p ∈ X̂ and
Π : gl (V )→ gl (V ) /g

is the obvious projection. So our ideal is generated by the components of this
Π in any basis.

Question 73. If we look at the prolongations, I think we will find relative
Spencer cohomology.

12.3 Variations of G-structure

Example 91 (Constant curvature metrics on the disk). Take metrics

gt =
4

(1 + tr2)2
(
dx2 + dy2

)
where r2 = x2 + y2 < −1/t. With coordinates (x, y, θ) on the orthonormal
frame bundle, and adding a coordinate t for the variation, we have soldering
forms (

ω1

ω2

)
=

2
1 + tr2

(
cos θ − sin θ
sin θ cos θ

)(
dx

dy

)
.

A short calculation gives

d

(
ω1

ω2

)
= −

(
0 −γ
γ 0

)
∧

(
ω1

ω2

)
− v dt ∧

(
ω1

ω2

)

where

γ = dθ − 2sjω
j

v = − r2

1 + tr2

with

s1 = ty cos θ + tx sin θ
s2 = ty sin θ − tx cos θ

Each choice of a constant value for t gives an SO (2)-structure. We view v as
the first variation of that SO (2)-structure.

A family B of G-structures on a manifold M is a principal G subbundle
B ⊂ FM × X → M × X where X is a manifold parameterizing the family.
Write structure equations on B ×X FX as
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dω = −γ ∧ ω +
1
2
Tω ∧ ω − vη ∧ ω

where η ∈ Ω1 (FX) ⊗W is the soldering 1-form on FX and γ ∈ Ω1 (B) ⊗ g
is a pseudoconnection 1-form, i.e. a g valued 1-form satisfying

γ
(
~A
)

= 0

for A ∈ g acting on B by the usual right action on FM , and

T : B ×X FX → H0,2 (g)

is the torsion, and

v : B ×X FX → (gl (V ) /g)⊗W ∗

is called the first variation of B.

Example 92. Notice that in previous example, the variation could be written

dω = −

(
v dt −γ
γ v dt

)
∧ ω

so that it is clearly conformal, since the parameters of the variation fit along
with γ into the Lie algebra of co (2).

Exercise 12.1 Let B0 → M be a G-structure, and Z a vector field on M .
Suppose that the flow of Z is defined for all time, i.e. Z is a complete vector
field. Consider the variation for which X = R, and B = B0 × X is mapped
into FM via the map (u, t) 7→ etZu. Show that the first variation v is

vi
j = ∇jZ

i + T i
kjZ

k (mod g)

in gl (V ) /g.

Question 74. It should not be too difficult to differentiate to obtain prolonged
structure equations of all orders.

Question 75. How do the torsion hypotheses on the G-structures parameter-
ized in this way impose equations on v?

Question 76. It would be nice to understand the calculus of variations for G-
structures. There should be easy ways to use representation theory to look
for invariant low order Lagrangians. For example, every G-structure can be
reduced to a K-structure, where K is a maximal compact subgroup of G.
Lagrangians should be integrated over M , not over B.
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Definition 41. Suppose that H ⊂ G is a Lie subgroup, with Lie algebra h ⊂ g.
Define H0,2 (h, g) by

0→ H0,2 (h, g)→ H0,2 (h)→ H0,2 (g) .

A Lagrangian for reductions of a G-structure to an H-structure is an H equiv-
ariant map

H0,2 (h, g)→ detV ∗.

In studying k-flat G-structures, we would naturally consider Lagrangians like

Hk+1,2 (h, g)→ detV ∗

involving higher torsion, or even allow covariant derivatives of torsion.

Example 93. Consider Lagrangians in pseudo-Riemannian geometry. If G =
SO (p, q), then

Hk,2 (g) = 0

for k 6= 1, while

H1,2 (g) = Rscalar ⊕ Sym2
0 (V )⊕Weyl (p, q)

splits into scalar curvature, traceless Ricci curvature and Weyl curvature. The
detV ∗ representation is trivial, so the unique (up to scalar multiple) linear G
equivariant map

H∗,2 (g)→ detV ∗

is the scalar curvature Ri
jij dV. Thus we are led to integrate the scalar curva-

ture, the Hilbert functional (see Besse [9] for more information). This leads to
Euler–Lagrange equations giving

Ricci = 0

if we apply it to the study of reductions to G-structures of the GL(V )-
structure FM . But if we start with an SL(V )-structure on M (a volume
form), and look for its G reductions, then the Euler–Lagrange equations are
the Einstein equations

R0 = 0.

Example 94. If we consider Lagrangians for SO (p, q)-reductions of a given
CO (p, q) structure, we employ the same analysis to find that the natural
Lagrangian is the scalar curvature, the Yamabe functional (see Aubin [6] for
more information).

Exercise 12.2 Consider almost complex structures. They have a Lagrangian
in six dimensions that has no analogue in other dimensions. (Robert Bryant
lectured on this once. I don’t know of any other source of information on it.)
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Question 77. What are all of the groups G for which there is a unique G
invariant linear map

H∗,2 (g)→ detV ∗

up to choice of a scalar?

Question 78. It might be possible not only to calculate Euler–Lagrange equa-
tions for Lagrangians, but also to see how representation theory controls the
characteristic cohomology.

Question 79. Consider variations of CR geometry with fixed contact structure.
What are the invariant low-order Lagrangians, and can we guarantee existence
of critical reductions on compact manifolds? Reminds me of papers of Jerrison
and Lee, where they put natural metrics on compact CR manifolds.

12.4 Connections and pseudoconnections

Every G-structure admits a connection, but there might be no natural choice
of one, since we would have to pick a G equivariant choice of where to put the
torsion of the connection in V ⊗ Λ2 (V ∗) , so that it would quotient down to
the correct intrinsic torsion in H0,2 (g) . Sometimes there is an invariant choice
of pseudoconnection (which can only happen when g(1) = 0). It is convenient
to know how to read the structure equations to see when a pseudoconnection
is actually a connection.

Proposition 45. If B →M is a G-structure, with structure equations

dω = −γ ∧ ω +
1
2
Tω ∧ ω

for a connection γ, then the intrinsic torsion is equivariant:

r∗gT = ρ(g)−1T

and
dγ = −γ ∧ γ + (T 2 +Q)ω ∧ ω (12.3)

for some function Q : B → δC2,1 (g). Here ρ is the representation of G on
Λ2 (V ∗) ⊗ V determined by the representation of G on V . The object T 2 is
defined by (

T 2
)i
jkl

=
2
3
(
T i

jmT
m
lk + T i

kmT
m
jl + T i

lmT
m
kj

)
The G representation δC2,1 (g) is defined in the appendix. This function Q is
also equivariant. Conversely, if γ satisfies an equation of the form 12.3, and
the group G is connected, then γ is a connection. The curvature of γ is

∇γ = (T 2 +Q)ω ∧ ω
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Proof. The proof is by direct calculation, first of the prolongation, and then,
using the definitions of soldering and pseudoconnection forms, and the Cartan
formula, and differentiating in g the expression

r∗gγ −Ad−1
g γ

(which vanishes for all g exactly when γ is a connection), finding a condition
on dγ.

From this result, we can easily see that the unique torsion free pseudoconnec-
tion of any SO (n) structure is a connection (the Levi-Civita connection), by
direct calculation.

Proposition 46. Given any pseudoconnection, there is a connection with the
same torsion precisely when that torsion is equivariant.

Proof. Remark: keep in mind that the torsion of a pseudoconnection lives in
V ⊗Λ2 (V ∗) , and quotients down to the intrinsic torsion. Suppose that there
is a global section of the G-structure, M → B. The result is proven by taking
the given pseudoconnection, asking that a connection agree with it on the
section, and extending from there by using the equation

r∗gγ = Ad−1
g γ

to define γ away from the section. When there is no global section of the G-
structure, we use affine combinations of connections from a partition of unity
to paste them together.

We see from direct calculation that the torsion-free pseudoconnection on any
O (p, q) structure is a connection, since the existence of a torsion free pseu-
doconnection implies existence of a torsion free connection, but also we have
uniqueness of the torsion free pseudoconnection.

The difference between any two connections with the same torsion is ex-
pressed by a section of the bundle

(g(1) ×B)/G

))SSSSSSSSSSSSSSSS
// Sym2 (T ∗M)⊗M TM

��
M

As an example, if H0,2 (g) = 0 then there is always a torsion-free pseu-
doconnection for any G-structure. By the last result, there is a torsion-free
connection.

Example 95. In conformal geometry, G = CO (p, q), this gives a torsion-free
connection, and says that two such connections differ by a 1-form. The study
of conformal geometry with a torsion-free connection is called Weyl geometry,
see O’Raifeartaigh [70].
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12.5 Generalized higher order structures

Current connections make sense, and can be easily defined. But current G-
structures can not. One would like an approach in terms of currents that
would enable one to study generalized G-structures, and generate current
characteristic classes, similar to the work of Harvey and Lawson. Since a G-
structure is a subbundle, it is a submanifold, and submanifolds can always
be generalized to currents. The major stumbling block is transversality. We
don’t have a mechanism to ensure that a generalized submanifold looks like
a generalized section of a bundle. This is because when we glue a bundle
together, we don’t use only affine maps. But other maps require multiplication
(their Taylor expansion about some point has quadratic terms), which is not
defined on currents. Therefore the only cases where we can have generalized
G-structures are those where GL (n,R) /G is an affine space.

However, this is always going to work for higher order structures, since
gl (V )(1) /g(1) is always a vector space. More generally, g(1)/h(1) is a vector
space, so generalized higher order reductions of structure group make sense.

12.6 The torsion operator

Torsion is not always a tensor, but a certain part of it, which we will christen
the torsion operator, always is.

Example 96 (Almost symplectic geometry). A Sp (2n,R)-structure is the same
as a choice of 2-form Ω so that Ωn 6= 0. The intrinsic torsion can be identified
with dΩ invariantly.

Given an element T ∈ V ⊗ Λ2 (V ∗) we can construct an operator

dT : Λ∗ (V ∗)→ Λ∗ (V ∗)

by contracting the V part, and wedging the Λ2 (V ∗) part, i.e.

dT η (v1, . . . , vk+1) =
∑
i<j

(−1)i+jη (T (vi, vj) , v1, . . . , v̂i, . . . , v̂j , . . . vk+1) .

(Compare this to the exterior derivative, thinking of these vi as translation
invariant vector fields on V .) If T = [, ] for a Lie algebra, then dT is the well
known differential from Lie algebra cohomology. But more general T can be
used. This operator clearly increases degree by one, and satisfies the Leibnitz
rule:

dT (ξ ∧ η) = (dT ξ) ∧ η + (−1)deg ξξ ∧ (dT η) .

Consequently d2
T = 0.

Lemma 41. Suppose that G ⊂ GL (V ) is a Lie subgroup. Take Q ∈ g⊗V ∗ and
let T = δ(Q) ∈ V ⊗ Λ2 (V ∗). (This δ is the Spencer cohomology differential.)
Then the differential dT vanishes on the G invariant forms Λ∗ (V ∗)G.
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Proof. Let η ∈ Λk (V ∗)G be a G invariant k-form. The G invariance

η (gv1, . . . , gvk) = η (v1, . . . , vk)

implies that for A ∈ g, ∑
j

η (v1, . . . , Avj , . . . vk) = 0.

Therefore, if T = δ(A⊗ ξ), for some A ∈ g and ξ ∈ V ∗, then

dT η (v1, . . . , vk+1)

=
∑
i<j

(−1)i+jη (T (vi, vj) , v1, . . . , v̂i, . . . , v̂j , . . . vk+1)

=
∑
i<j

(−1)i+jη (A (vi) ξ (vj)−A (vj) ξ (vi) , v1, . . . , v̂i, . . . , v̂j , . . . vk+1)

=
∑
i<j

(−1)i+jξ (vj) η (A (vi) v1, . . . , v̂i, . . . , v̂j , . . . vk+1)

−
∑
i<j

(−1)i+jξ (vi) η (A (vj) , v1, . . . , v̂i, . . . , v̂j , . . . vk+1)

= 0

Every Q ∈ g⊗ V ∗ can be written as a sum of elements of the form A⊗ ξ, so
that the result follows by linearity.

Exercise 12.3 The map

d : T ∈ V ⊗ Λ2 (V ∗) 7→ dT ∈ Der (Λ∗ (V ∗))

is an injective morphism of GL (V ) representations.

Corollary 23. The derivation dT when applied to G invariant forms depends
only on the H0,2 (g) class [T ] of T :

d[T ] : Λ∗ (V ∗)G → Λ∗ (V ∗)

for [T ] ∈ H0,2 (g). Note that the differential forms in the image will not in
general be G invariant. The map [T ]→ d[T ] gives a G equivariant map

d : H0,2 (g)→ Lin
(
Λ∗ (V ∗)G

, Λ∗ (V ∗)
)
.

Proposition 47. Suppose that η ∈ Λ∗ (V ∗) is a k-form, and that B ⊂ FM
is a G-structure, with soldering form ω. Define the differential form

η ◦ ω ∈ Ωk (B)
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by
η ◦ ω (v1, . . . , vk) = η (ω(v1), . . . , ω(vk)) .

Then
d (η ◦ ω) =

(
d[T ]η

)
◦ ω

where [T ] : B → H0,2 (g) is the torsion of B. If η is G invariant, then η ◦ ω
is the pull back from M of a unique k-form η∗ ∈ Ωk (M), so that

dη∗ =
(
d[T ]η

)
∗ .

i.e. d[T ]η ◦ ω is also defined on M . Note that

d[T ]η : B → Λk+1 (V ∗)

is not in general G invariant, but only G equivariant.

Proof. Since η ◦ω is G invariant, we can take any k vectors vi from a tangent
space TxM and pick some vectors wi from some T(x,u)B so that wi projects
down to vi, and look at the number

η ◦ ω (w1, . . . , wk) .

Because ω vanishes on the fibers, this number is independent of the choice of
wi vectors. By G invariance, it is independent of which point of B we project
from. This defines

η∗ (v1, . . . , vk) = η ◦ ω (w1, . . . , wk) .

Antisymmetry of η∗ is obvious. Smoothness is easily shown by choosing a local
section of B →M .

The rest follows easily from the structure equations

dω = −γ ∧ ω +
1
2
Tω ∧ ω.

A Lie subgroupG ⊂ GL (V ) is called admissable if it is defined by forms, in the
sense that every element of GL (V ) leaving invariant every G invariant form
must belong to G. For example, SO (n) is not admissable, while Sp (2n,R)
is. The group G is called strongly admissable if it is admissable, and the G
representation homomorphism

d : H0,2 (g)→ Lin
(
Λ∗ (V ∗)G

, Λ∗ (V ∗)
)

is an injection (so that all of the torsion is determined by the torsion operator).
The torsion of a strongly admissable group is representable by the tensor d[T ].
See [13] for an application of admissability. There is no classification of the
admissable or strongly admissable subgroups of GL (V ).
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Question 80. There should be a general theory of invariant operators for in-
variantly defined vector bundles (i.e. associated vector bundles), which would
enable me to ask when an invariant section satisfies a given invariant operator.
For example, the harmonicity of the Kähler form on Kähler manifolds.

Question 81. How does the theory of torsion operators generalize when instead
of B → H0,2 (g) we map to something like B → U → Y where U ⊂ H0,2 (g)
is a G invariant submanifold, and Y is a G-space, and the map is equivariant?
We need to understand this in dealing with torsion of variable type.

12.7 Order of osculation

Suppose that we have two G-structures, B0 ⊂ FM0 and B1 ⊂ FM1. and we
wish to see if they can be brought to k-th order contact by some diffeomor-
phism.

Theorem 19. Matching up G-structures to first order requires exactly match-
ing up their torsions. More precisely, take B0 ⊂ FM0 and B1 ⊂ FM1 G-
structures. The intrinsic torsions of B0 and B1 belong to the same G orbit in
H0,2 (g) at any point u0 ∈ B0 (resp. B1) above a point x0 ∈ M0 (resp. x1 ∈
M1) precisely when then there is a diffeomorphism φ : U0 ⊂ M0 → U1 ⊂ M1

between open subsets of M0 and M1 with φ(x0) = x1 and which matches up
B0 to B1 to first order (makes them tangent inside FM0).

Proof. Suppose (by using our G action) that at the points (x0, u0) and (x1, u1)
the torsions agree:

[T0] = [T1] .

We can take local coordinates x on M0 and y on M1 and coordinates (x, u)
on B0 and (y, v) on B0 so that the two points at which [T0] = [T1] are (0, I)
and (0, I). The G-structures are specified by maps

(x, u) ∈ B0 7→ (x, uF (x)) ∈ FM
(y, v) ∈ B1 7→ (x, vG(x)) ∈ FM

We can arrange that F (0) = G(0) = I. Then the torsions are

T0 = F ′(0) and T1 = G′(0).

The intrinsic torsions are

[T0] = δT0 = [F ′(0)] = [T1] = δT0 = [G′(0)] .

These agree, so
δ (F ′(0)−G′(0)) = 0

or in other words
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F ′(0)−G′(0) = a

where a ∈ Sym2 (V ∗)⊗ V . In components,(
∂F i

j

∂xk
−
∂Gi

j

∂yk

)
−
(
∂F i

k

∂xj
− ∂Gi

k

∂yj

)∣∣∣∣∣
x=y=0

= 0

so that

ai
jk =

∂F i
j

∂xk

∣∣∣∣∣
x=0

−
∂Gi

j

∂yk

∣∣∣∣∣
y=0

is symmetric in its lower indices. We define a map

y = φ(x) = x+
1
2
a(x, x)

or in indices
yi = xi +

1
2
ai

jkx
jxk

so that
φ′(0) = I + ax.

Then
Fφ(x, h) =

(
φ(x), hφ′(x)−1

)
so that

Fφ(x, uF (x)) =
(
φ(x), uF (x)φ′(x)−1

)
=
(
x+ a(x, x), uF (x)(I + ax+ . . . )−1

)
= (x+ a(x, x), u (F (0) + F ′(0)x+ . . . ) (I − ax+ . . . ))
= (x+ a(x, x), u (I + F ′(0)x+ . . . ) (I − ax+ . . . ))
= (x+ a(x, x), u (I + (F ′(0)− a)x+ . . . ))
= (x+ a(x, x), u (I +G′(0)x+ . . . ))
= (y, u (G(y) + · · · ))

where dots indicate terms of quadratic and higher order.
Conversely, since torsion is calculated with precisely one derivative, if the

intrinsic torsions do not agree at a point, then it is clear that first order contact
is impossible.

Question 82. Roughly, the order of osculation of G-structures is the order to
which their torsions match. But this must include also the covariant deriva-
tives. I would like a proof.

Question 83. Guillemin and Sternberg used the Levi counterexample to show
that some tricky things are happening with infinite order osculation. The ex-
amples of Imre Patyi of torsion-free non-flat almost complex structures on Ba-
nach manifolds show similar problems. Torsion-free almost symplectic struc-
tures on Banach manifolds are always flat, as proven by Weinstein. He used
Moser’s homotopy method.
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12.8 Jets of reductions

Consider a G-structure B ⊂ FM , where G ⊂ GL (V ), and pick a closed
subgroup G0 ⊂ G. Sections of the bundle B/G0 are precisely G0-reductions
of the given G-structure.

Example 97. If B = FM then we can pick G0 = SO (p, q) and get B/G0 →M
the bundle whose sections are pseudo-Riemannian metrics of signature p, q.
Such a bundle is canonically identified with the open subset of Sym2 (TM)
consisting of the quadratic forms of that signature.

Example 98. Again we take B = FM , but let G0 = Sp (n,R) and B/G0 is the
bundle of nondegenerate 2-forms in the tangent spaces of M , a subbundle of
Ω2 (M).

Example 99. Take B = FM and G0 the group of symmetries of a k-plane in
V , so that

B/G0 = Gr (k, TM)

is the Grassmann manifold of k-planes in the tangent spaces of M .

We have a diagram
B(1)

��
B

��

{{wwwwwwwww

B/G0

##GG
GG

GG
GG

G

M

where we map u ∈ B to uG0 ∈ B/G0.

12.8.1 The tower of prolongations

Pick a section S for the 1-torsion, as in section 5.1 on page 37, and use it to
prolong B → M . The points of B(1) consist in the triples (x, u, w) so that
u ∈ B and u : TxM → V and

w : TuB → g

is a pseudoconnection 1-form with torsion belonging to our section. Let us
label our maps in our diagram by writing [X → Y ] as the name of the map
taking a manifold X to a manifold Y . Then we have

[B → B/G0]
′ (u) : TuB → TuG0B/G0
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a linear map with kernel given by the tangent space to the G0 orbit through
u in B, which we can think of as g0, identifying a vertical vector with an
element of the Lie algebra. Composing,

[g→ g/g0] ◦ w : TuB → g/g0

is a linear map with kernel g0. Therefore this map is defined on TuG0B/G0:

w̄ = [g→ g/g0] ◦ w : TuG0B/G0 → g/g0

and this associates to each element w ∈ B(1) a linear map w̄ on a tangent
space of B/G0. We can put this together with u to create a V ⊕ g/g0 valued
coframe on B/G0:

(x, u, w) ∈ B(1) 7→ u ◦ [B/G0 →M ]′ (uG0)⊕ w̄ ∈ F (B/G0).

Two such coframes (x0, u0, w0) and (x1, u1, w1) will map to the same coframe
on B/G0 precisely when

x0 = x1, u0 = u1, and w0 − w1 = fu [B →M ]′ (u)

where f ∈ g
(1)
0 . Therefore we have bundles as illustrated in figure 12.1 on the

next page. On B/G0, we might have no invariantly defined differential forms.
On B(1)/g

(1)
0 , we have ω (a 1-form valued in V ) and γ̄ (a 1-form valued in

g/g0).



B(2)

��

||yy
yy

yy
yy

yy
// F

�
B(1)

�

����
��

��
��

��
��

��
��

�

F
�
B(1)/g

(1)
0

�

��

B(2)/g
(2)
0

oo

��

##GGGGGGGGG

B(1)

��

zzuuuuuuuuu
// FB

����
��

��
��

��
��

��
��

�

F (B/G0)

��

B(1)/g
(1)
0

oo

��

$$III
III

III
I

B

zztttttttttt

��

// FM

����
��

��
��

��
��

��
��

B/G0 B/G0
//oo

$$JJJ
JJJ

JJJ
J

M

Fig. 12.1. The tower of prolongations
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Maps

We have objects but no arrows. Suppose that M0 carries a G0-structure B0 ⊂
FM0, and M1 a G1-structure B1 ⊂ FM1. Take a smooth map φ : M0 →M1.
Any such map is an arrow in our category, but not every arrow is interesting.
We can construct the bundle

Bφ = B0 ×M0 φ
∗B1 →M0.

On each tangent space ofM0 we have the linear map φ′(x) : TxM0 → Tφ(x)M1,
and we can write it down in terms of frames from B0 and B1, i.e. on Bφ we
have points looking like

(x0, u0, u1) ∈ Bφ

with
x0 ∈M0, u0 : Tx0M0 → V0, u1 : Tφ(x0)M1 → V1

so that
u1 ◦ φ′ (x0) ◦ u−1

0 : V0 → V1

is a function on Bφ

λ = u1 ◦ φ′ ◦ u−1
0 : Bφ → Lin (V0, V1) .

Under the action of G0 ×G1 we have

r∗(g0,g1)
λ = g−1

1 λg0.

We find the equation
ω1 = λω0

on Bφ for the soldering forms ω0 of B0 and ω1 of B1. We can now apply
reduction, as usual, as long as this map has constant type, where the reduction
is going to carried out using a section S ⊂ Lin (V0, V1). (In terms of the
reduction theory from chapter 5, this makes

φ = id : X = Lin (V0, V1)→ Y = Lin (V0, V1)
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which is a little strange.) In other words, we want S ⊂ Lin (V0, V1) an im-
mersed submanifold transverse to the G0 × G1 orbits it intersects, and with
stabilizer H ⊂ G0 ×G1. If λ is conjugate to an element of S, at each point of
Bφ, then we can carry out reduction. This form of reduction is not recursive.
The result is not generally an embedded G-structure, but it is a G-structure.

We also have torsion of the bundles B0 and B1 available:

dω0 = −γ0 ∧ ω0 +
1
2
T0ω0 ∧ ω0

dω1 = −γ1 ∧ ω1 +
1
2
T1ω1 ∧ ω1

Assuming that B0 and B1 were already reduced as far as possible, it may still
be possible to first reduce Bφ by using λ and then reduce further by using the
torsion.

Example 100 (Symmetry group orbits). Suppose that π1 : B1 →M1 is a prin-
cipal G1 bundle, and α1 : B1 → FM1 makes it into a G1-structure(not neces-
sarily embedded), for some representation V1 of G1 (so FM1 is the bundle of
V1-valued frames). Let H be a Lie group of symmetries of the G1-structure,
i.e. H acts on M1 and B1 commuting with π1 and α1. Let u1 ∈ B1 be any
point, and let m1 = π1 (u1) . Let G0 = Hm1 be the stabilizer of m1 in H, and
M0 = H/Hm1 be the H-orbit of m1. Let φ : M0 →M1 be the inclusion of the
H-orbit. Let B0 = H, and map B0 → B1 by h 7→ hu1. Let V0 be the image
under u1 : Tm1M1 → V1 of the tangent space Tm1H/Hm1 to the H orbit of
m1 in M1. Let G0 act on V0 by

h ∈ G0, v0 ∈ V0 7→ u1h
′ (m1)u−1

1 v0 ∈ V0.

Map B0 → FM0 by
h 7→ α1 (hu1)|Tπ1(hm1)M0

.

Then B0 is a G0-structure over M0, and on Bφ, we have λ = 1 : V0 → V1 the
inclusion map.

13.1 Example: mapping real surfaces to complex surfaces

Consider the example of a map from a real surface to a complex surface. The
map λ takes R2 to C2, and has rank 0,1 or 2. Let us assume constant type.

13.1.1 Rank 0

If the rank is 0 everywhere, then λ = 0 and the map takes the real surface to
a point, so such maps are classified by the points of the complex surface.
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13.1.2 Rank 1

If the rank is 1, then the image is a real line, which we can easily arrange by
complex linear transformation to be any real line we like, and just as easily
arrange

λ =

(
1 0
0 0

)
.

This reduces the group down from G0 × G1 = GL (2,R) × GL (2,C) to the
group G2 of pairs of matrices of the form

g0 =

(
a0 0
b0 c0

)
, g1 =

(
a0 b1
0 c1

)

with none of a0, c0, c1 being zero. As equations on differential forms, we can
write the structure equations of our surfaces as

d

(
ω1

ω2

)
= −

(
γ1
1 γ1

2

γ2
1 γ2

2

)
∧

(
ω1

ω2

)

d

(
η1

η2

)
= −

(
σ1

1 σ1
2

σ2
1 σ2

2

)
∧

(
η1

η2

)

and we have arranged a subbundle B2 ⊂ Bφ on which

η1 = ω1

η2 = 0.

Differentiating gives

0 = dη2 = −σ2
1 ∧ η1 = −σ2

1 ∧ ω1

so that
σ2

1 = tη1 = tω1

for some function t : B2 → C. We can absorb such torsion into σ2
1 , so we

obtain the equations
η1 − ω1 = η2 = σ2

1 = 0.

One can easily check, via the Cartan–Kähler theorem, that these equations
are involutive. Let us carry this out, without explaining the Cartan–Kähler
theorem itself—for a detailed explanation, see Bryant et al. [12] or Ivey &
Landsberg [47] or Cartan [25]. The ideal is

(
η1 − ω1, η2, σ2

1

)
for which the

tableau is

d

η1 − ω1

η2

σ2
1

 = −

σ1
1 − γ1

1 −γ1
2

0 0
ξ211 0


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where the structure equations on the prolongation of B2 are

dσi
j = −σi

k ∧ σk
j + ξi

jk ∧ ηk

with all 1-forms being complex linear. The 1-forms in the first column of
the tableau matrix are complex, while in the second column they are real,
and therefore the characters are s1 = 4, s2 = 1. We can easily compute the
prolongation of these structure equations to find the Cartan integer: s = 6 =
s1 + 2s2, so the equations are in involution, with general solution depending
on s2 = 1 arbitrary function of 2 variables. Of course, the general solution is
given by taking a real curve in C2 (3 functions of 1 variable) and then mapping
the real surface to it (1 function of 2 variables).

13.1.3 Rank 2

The map λ is now an injection, and so the real surface is immersed into the
complex surface. Since we can carry out arbitrary linear transformations from
G0 = GL (2,R) , our map λ is entirely determined up to G0 action by its
image. But then its image is either a complex line (i.e. invariant under

√
−1)

or else a totally real 2-plane (i.e. containing no complex line). With some linear
algebra, we find that all complex lines are isomorphic under G1 = GL (2,C)
action, and all totally real 2-planes are also isomorphic. So there are two cases
of constant type: either we can arrange

λ =

(
1

√
−1

0 0

)

(the complex line case) or else

λ =

(
1 0
1 0

)

(the totally real case). In each case, the structure equations are immediately
brought to involution. The tangent spaces of an immersed real surface are
complex lines precisely when it is a complex curve. One easily finds that
a complex curve depends on 2 real functions of 1 real variable (giving one
holomorphic relation between two complex variables only requires describing
how the complex value of one depends on the real value of another). However,
the Cartan count shows that we have 2 functions of 2 variables worth of
solutions, because we require also a map of the given real surface into the
complex curve.

On the other hand, a totally real surface is just a generic map, so depends
on 4 real functions of 2 real variables.
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13.2 Example: Legendre fibrations of contact 3-manifolds

Let M3 be a contact 3-manifold foliated by Legendre curves, i.e. curves tan-
gent to the contact 2-planes.

13.2.1 Example

For example, take Q any surface, and let PT ∗Q be the bundle of lines in the
tangent planes of Q. Then in local coordinates x, y on Q, each line on which
dx 6= 0 is specified by parameters x, y, p according to an equation dy−p dx = 0
in T(x,y)Q. So x, y, p are local coordinates on PT ∗Q. The contact planes in
those coordinates have the equation dy − p dx = 0 (which means something
different from what it meant the first time we wrote it). The Legendre curves
are dx = dy = 0.

13.2.2 Structure equations

Let us return to the general case. Clearly M has a G0-structure, where G0 is
the group of linear transformations of R3 preserving a 2-plane and a line in
that 2-plane, i.e. matrices of the formg1

1 g1
2 g1

3

0 g2
2 g2

3

0 0 g3
3

 .

In other words, M has a flag geometry. Following the discussion of flag ge-
ometries in 3-manifolds from section 4.3, we see that the structure equations
of the associated G0-structure B0 →M look like

d

ω1

ω2

ω3

 = −

γ1
1 γ1

2 γ1
3

0 γ2
2 γ2

3

0 0 γ3
3

 ∧
ω1

ω2

ω3

+

 0
0

tω12


(with ω12 = ω1 ∧ ω2).

Exercise 13.1 The distinguished 2-plane field is a contact structure just
when t 6= 0.

Recall that in studying flag geometry, we showed that t varies under the
representation of the structure group given by

r∗gt =
g1
1g

2
2

g3
3

t.

Therefore we can arrange that t = 1 on a subbundle B, which is a G-structure,
where G consists in the matrices of the form
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1 g1

2 g1
3

0 g2
2 g2

3

0 0 g1
1g

2
2

 .

The structure equations are now

d

ω1

ω2

ω3

 = −

γ1
1 γ1

2 γ1
3

0 γ2
2 γ2

3

0 0 γ1
1 + γ2

2

 ∧
ω1

ω2

ω3

+

 0
0

t1ω
13 + t2ω

23 + ω12

 .

We can absorb t1 by changing the choice of γ1
1 , and similarly absorb t2 by

choice of γ2
2 . Now

d

ω1

ω2

ω3

 = −

γ1
1 γ1

2 γ1
3

0 γ2
2 γ2

3

0 0 γ1
1 + γ2

2

 ∧
ω1

ω2

ω3

+

 0
0
ω12

 .

At this stage, we carry out the Cartan count: s1 = 3 (independent γ’s in the
last column), s2 = 2 (independent γ’s, not already appearing in the previous
step, in the second column), s3 = 0 (nothing more independent of the γ’s we
have already used from the previous columns). We calculate the prolongation
as follows: try setting up some δγi

j so that it belongs to the Lie algebra and
so that δγi

j ∧ ωj = 0 (see appendix A). Writing out these equations

δ

γ1
1 γ1

2 γ1
3

0 γ2
2 γ2

3

0 0 γ1
1 + γ2

2

 ∧
ω1

ω2

ω3

 = 0,

we find (by repeated use of Cartan’s lemma) that

δ

γ1
1 γ1

2 γ1
3

0 γ2
2 γ2

3

0 0 γ1
1 + γ2

2

 =

a1
12ω

2 + a1
13ω

3 a1
12ω

1 + a1
22ω

2 + a1
23ω

3 a1
13ω

1 + a1
23ω

2 + a1
33ω

3

0 −a1
12ω

2 + a2
23ω

3 a2
23ω

2 + a2
33ω

3

0 0
(
a1
13 + a2

23

)
ω3

 .

These ai
jk coefficients parameterize the prolongation g(1), which therefore has

s = 7 dimensions. The Cartan test:

s1 + 2s2 + 3s3 = 3 + 2 · 2 + 3 · 0
= 7
= s.

Therefore the structure equations are in involution, and if the contact struc-
ture and foliation are analytic, then they have symmetry pseudogroup acting
transitively, with the general symmetry depending on s2 = 2 functions of 2
(from s2) variables.
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13.2.3 Constructing an equivalence with the hyperplane bundle

Suppose that the Legendre foliation of M is a fiber bundle, q : M → Q, over
a surface. Given any point m ∈M , we can attach to it a line Θm in TqQ, by
sending the contact plane through q′(m). Since the fibers of q : M → Q are
tangent to the contact 2-planes, Θm is a line. So Θ : M → PT ∗Q is a smooth
map, and clearly a fiber bundle map over Q.

Proposition 48. Θ : M → PT ∗Q is an equivalence.

Proof. Let B → M be the bundle of our G-structure on M . Let B̃ → PT ∗Q
be the corresponding G-structure on PT ∗Q. Suppose that its soldering form
is written ω̃, and γ̃ is a choice of pseudoconnection form for it. Let B0 → M
be the bundle

B0 = B ×M Θ∗B̃.

On B0 we have all of the forms ω, γ, ω̃, γ̃ defined. Both ω and ω̃ are semibasic
for B0 →M . Indeed,

ω̃ = λω

where
λ (u, ũ) = ũΘ′(m)u−1.

The 1-forms ω2, ω3 are semibasic for the map to Q, as are ω̃2, ω̃3, and indeed
either pair of 1-forms drops to a basis for the tangent space of Q, so they must
be invertible multiples of each other.

λ =

λ1
1 λ1

2 λ1
3

0 λ2
2 λ2

3

0 λ3
2 λ3

3

 ,

with invertible 2×2 in the lower right corner. Moreover, ω3 drops to a 1-form
on the tangent space of Q which is perpendicular to the line Θm, and ω̃3 must
satisfy the same condition, so they are invertible multiples of each other:

λ =

λ1
1 λ1

2 λ1
3

0 λ2
2 λ2

3

0 0 λ3
3


with the lower right 2 × 2 corner invertible. The bundle B0 has a G × G
action. We can now form a subbundle B1 ⊂ B0 on which the lower corner of
λ is normalized to

λ =

λ1
1 λ1

2 λ1
3

0 1 0
0 0 1

 .

Exercise 13.2 What is the structure group G1 ⊂ G × G of the principal
bundle B1?
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Calculate
dω3 ∧ ω3 = ω1 ∧ ω2 ∧ ω3

and similarly

dω̃3 ∧ ω̃3 = ω̃1 ∧ ω̃2 ∧ ω̃3

= λ1
1ω

1 ∧ ω2 ∧ ω3.

But ω̃3 = ω3 on B1, so their exterior derivatives must be equal, so λ1
1 = 1 and

we find λ invertible.

Exercise 13.3 We can now arrange on a principal G-subbundle B2 ⊂ B1

that λ = 13 is the 3× 3 identity matrix.

Consequently, Θ : M → PT ∗Q is a local equivalence.

Proposition 49. Every Legendre fibration of a contact 3-manifold is locally
equivalent to the bundle of tangent lines of a surface.

Proposition 50. Every holomorphic Legendre fibration of a holomorphic con-
tact 3-fold with rational curves as fibers is biholomorphically contactomorphic
to the bundle of complex tangent lines of a complex surface.

Proof. The same calculations work in the holomorphic category, but then
the rational curves, i.e. Riemann spheres, are simply connected, so the local
diffeomorphism to the fibers of PT ∗Q must be a diffeomorphism.
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13.3 Conclusions and suggestions

The equivalence method provides an embarrasment of riches: a host of differ-
ential invariants, computed with (hopefully elementary) representation theory.
It is surprising that one can find invariants of geometric structures without
integration or solving differential equations, but for G-structures the method
accomplishes just that. But the equivalence method does not interpret the
invariants. It is not a royal road to geometry. For example, we still don’t un-
derstand the I or J invariants of Finsler surfaces. Robert Bryant suggests that
the method should only be applied to problems where one has a specific geo-
metric question in mind, not just as a means of mindlessly generating differen-
tial invariants. As well, it helps to look carefully at how the invariants and the
1-forms move as we travel up the fibers of the G-structure. Perhaps we should
always try to relate the results of the equivalence method to local coordinate
expressions, so that we can see how to calculate these invariants explicitly.
Finding all of the homogeneous examples can be helpful. It is also very useful
to look for combinations of soldering and pseudoconnection 1-forms whose
differentials vanish modulo those 1-forms, to apply the Frobenius theorem to
construct invariant foliations.

There is a certain fiction about the equivalence method: we pretend that we
have a manifold in hand, with aG-structure, perhaps explicitly written in local
coordinates. We pretend that we want to identify it, i.e. to tell it apart from
others. What we really do is to examine all G-structures (on all manifolds)
which satisfy some geometric condition, usually a local condition, which we
translate into information about the torsion. The problems we might hope
to solve include, for instance, finding a class of partial differential equations
whose local solutions are somehow identified (preferably quite directly) with
the local G-structures satisfying our condition. At best we might hope to
exhibit a global construction of all solutions. This is extremely rare; we don’t
even know what all of the inextendable (or even compact) flat structures are.
More often we discover local invariants of G-structures, and try to interpret
them geometrically, as with the Riemann curvature tensor.

13.4 Things I don’t know about

1. G-structures on supermanifolds, see [59].
2. There is a lot known, particularly from the work of Guillemin and Stern-

berg, about the flatness of G-structures which are torsion free to all pro-
longations. The Lewy counterexample arose in this context.

3. Do any Lie group decomposition theorems help to understand the space
of all reductions from G to H ⊂ G?

4. Calculus of variations for G-structures, or H-reductions of a given G-
structure.
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5. Generic behaviour of G-structures, and of those which satisfy some torsion
assumption (Thom–Boardman theory).

6. Families of G-structures might occur on families of manifolds. In this
regard, I need to revisit the notion of deformation of G-structures. Perhaps
articles of Phillip Griffiths?

7. What does the theory of geodesics look like on higher order structures?
Consider conformal geometry and CR geometry.

13.5 Pseudogroups

Question 84. I should perhaps write about Olver’s and Fel’s ideas, and Kam-
ran’s, Maurer-Cartan forms, variations, classification of primitives.

Question 85. Consider the pseudogroup of birational maps of a complex al-
gebraic variety. In general, this is not a Lie pseudogroup, since there are no
differential equations which force solutions to be birationally defined (as far as
I know). Indeed, on complex projective spaces this is not a Lie pseudogroup.
But the birational group of complex projective space has a presentation pa-
rameterized by finite dimensional manifolds of generators and relations: the
linear and quadratic transformations generate, and the relations are finite
dimensional. There might be something to this idea.

13.6 Why frame bundles instead of jet bundles

Jet bundles allow us to encode arbitrary systems of partial differential equa-
tions as submanifolds. The method of equivalence only allows us to encode
geometric information that has a kind of “constant type”, i.e. encoding ge-
ometry into a bundle of coframes. But jet bundles do not have an obvious
choice of natural differential operator, or natural choices of objects to which
one may apply such an operator. Bundles of frames have a soldering 1-form,
and d is a diffeomorphism invariant differential operator.



Part V
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Appendix on Spencer cohomology

The material of this appendix is explained in greater detail by Ivey and Lands-
berg [47] and by Bryant et. al. [12].

A.1 Definition of tableaux and their prolongations

Suppose that V,W are vector spaces over a field k. Take A ⊂ Lin (V,W ) any
linear subspace of the linear maps from V to W . We call such A a tableau.
Intuitively, k is R or C and we want to study the problem of finding a smooth
map f : V → W whose derivative f ′(x) ∈ Lin (V,W ) at every point of V lies
in the subspace A, f ′(x) ∈ A. Relations are forced on the derivatives of all
orders by such a condition. These relations are called the prolongations of A.

Definition 42. The q-th prolongation of A ⊂ Lin (V,W ), written A(q), is
defined by

A(0) = A

and

A(q) =
{
p ∈ Symq+1 (V ∗)⊗W

∣∣ p(v, ·, . . . , ·) ∈ A(q−1), any v ∈ V
}

i.e. the q-th prolongation consists of the W valued degree q + 1 polynomials
p (also thought of as symmetric multilinear maps) so that when we plug a
vector v ∈ V into one of the q + 1 slots (i.e. differentiate in the direction v)
the polynomial given by the remaining q − 1 slots belongs to the prolongation
of next lowest order.

Clearly if a smooth map f : V → W satisfies f ′(x) ∈ A for any x, then its
Taylor expansion will consist of multilinear maps from the various prolonga-
tions.

Definition 43. A tableau A is of finite type if only finitely many prolonga-
tions A(k) are nonzero.
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Consequently, the maps f : V → W satisfying f ′(x) ∈ A for all x will be
polynomials of degree at most p+1 where A(p) is the last nonzero prolongation.
An infinite type tableau has formal power series solutions with infinitely many
nonvanishing terms.

A.2 Calculation

How do we calculate the first prolongation? Take linear coordinates on V and
W , and think of A as a family of matrices. For example, if V and W are both
2 dimensional, then A is a family of 2×2 matrices. For example, suppose that
A is the set of 2× 2 matrices (

γ1
1 γ1

2

γ2
1 γ2

2

)

(where now these γi
j are real numbers), so that γ1

1 = 2γ2
2 . We can write it as

a single 2× 2 matrix (
2γ2

2 γ1
2

γ2
1 γ2

2

)
,

and think of γ1
2 , γ

2
1 , γ

2
2 just as free variables. Lets write ω1, ω2 for the standard

basis of 1-forms on V . Elements of the prolongation are maps p : V → A with
the obvious symmetry, p (v0) v1 = p (v1) v0. If we write

p (v0) =

(
2γ2

2 (v0) γ1
2 (v0)

γ2
1 (v0) γ2

2 (v0)

)

then the γi
j are thought of as 1-forms γi

j on V . The symmetry condition on
p (v0) v1 is just(

2γ2
2 (v0) γ1

2 (v0)
γ2
1 (v0) γ2

2 (v0)

)
v1 =

(
2γ2

2 (v1) γ1
2 (v1)

γ2
1 (v1) γ2

2 (v1)

)
v0

which we can write, by thinking of the γi
j as 1-forms on V , as(

2γ2
2 γ1

2

γ2
1 γ2

2

)
∧

(
ω1

ω2

)
=

(
0
0

)
.

By Cartan’s lemma, this forces each γi
j to be of the form γi

j = ai
jkω

k, and
plugging that in above gives

2a2
22 = a1

21

a2
12 = a2

21
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so that γ1
2

γ2
1

γ2
2

 =

 a1
21ω

1 + a1
22ω

2

a2
11ω

1 + a2
12ω

2

a2
12ω

1 + 1
2a

1
21ω

2


giving 4 independent dimensions. The ai

jk appearing here are linear coordi-
nates on A(1), which is 4 dimensional.

A.3 Quotienting out a subspace

Definition 44. Suppose that A ⊂ Lin (V,W ) and that we have a subspace
U ⊂ V. We define A(q)/U to be the polynomials in A(q) which are constant in
the U directions, i.e.

A(q)/U :=
{
p ∈ A(q)

∣∣∣ p(v, ·, . . . , ·) = 0, any v ∈ U
}

Note that
(A/U)(q) := A(q)/U

If F = {Ui} is a flag in V ,

0 = U0 ⊂ U1 ⊂ U2 · · · ⊂ Un = V

we define the characters si of the pair (A,F ) to be

sk = dimA/Uk−1 − dimA/Uk

(how much more of the dimensions of A you see by probing the k directions
of Uk instead of just the k − 1 directions of Uk−1). We define the characters
of A to be those which occur for the generic flag (which are those for which
the character s1 is maximal, and for which s2 is maximal subject to the value
of s1, etc.). We define s = dimA(1).

A.4 Calculating characters

To calculate the characters of a tableau, we write down the tableau in linear
coordinates, for example A might be the set of matrices of the form(

2γ2
2 γ1

2

γ2
1 γ2

2

)
.

Then we calculate the number s1 of independent 1-forms in the first column.
We calculate the number s2 of independent 1-forms in the second column,
modulo the ones in the first column. We continue in this manner. This deter-
mines characters of the flag of subspaces given by U1 being the x1 axis in V ,



286 A Appendix on Spencer cohomology

U2 the x1, x2-plane, etc. in these coordinates. Finally, the characters of the
tableau are those for which s1 is maximal, s2 maximal subject to the value of
s1, etc. For example, in our case we find s1 = 2, s2 = 1, since there are s2 = 2
independent 1-forms (γ2

2 , γ
2
1) in the first column, and s2 = 1 1-forms (γ1

2) in
the second independent of those already considered.

Exercise A.1 Why is it that s1 = 2, s2 = 1 gives the characters of the
tableau A, i.e. why is s1 = 2 maximal, and s2 = 1 maximal subject to s1 = 2?

Question 86. Explain borrowing from later columns.

A.5 Elementary theory of characters

Proposition 51. If dimV = n, then

s ≤ s1 + 2s2 + · · ·+ nsn

i.e.
dimA(1) ≤ dimA/U0 + · · ·+ dimA/Un−1

Proof. Taking a pair of subspaces, say U ⊂ U+ ⊂ V , it is clear that polynomi-
als constant in U+ directions are constant in U directions as well. Conversely,
polynomials constant in U directions are constant in all of the U+ directions
precisely when they give 0 when differentiated in the U+/U directions. Taking
a basis x1, . . . , xk for U+/U we have

0 −−−−→ A(1)/U+ −−−−→ A(1)/U −−−−→
⊕k

A/U

where the last map is given by differentiating in each of the k directions xj .
This gives the inequality

dimA(1)/U − dimA(1)/U+ ≤ k · dimA/U

Applying this to a flag gives the result.

A.6 Involutivity

Definition 45. If for A ⊂ Lin (V,W ) the inequality of the last proposition is
an equality we say that A is involutive.

The failure of involutivity, reconsidering the proof of the last proposition,
is exactly that differentiating higher order polynomials in our prolongations
might not give rise to every polynomial in a lower order prolongation. Other-
wise put, we may not be able to integrate a low order polynomial satisfying
our equation f ′(x) ∈ A to produce a higher order one. This is related to the
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difficulty in trying to construct solutions order by order: we are seeing higher
order obstructions. Since we measure involutivity using generic flags, this is
related to order by order solving differential equations using noncharacteristic
initial data.

Proposition 52. The prolongation of an involutive tableau is involutive.

A.7 Spencer cohomology

To measure our obstructions, we construct a cohomology.

Definition 46. Let
Cp,q(A) := A(p−1) ⊗ Λq (V ∗)

if p ≥ 1 and q ≥ 0, and

C0,q(A) := W ⊗ Λq (V ∗)

for q ≥ 0.

The elements of Cp,q(A) should be thought of as differential forms on V of
degree q with coefficients being polynomials of degree p. Thus the differential
d is just the usual exterior derivative on differential forms. We will write it as
δ to avoid confusion. The resulting cohomology is called Spencer cohomology :

Hp,q (A) :=
ker δ : Cp,q(A)→ Cp−1,q+1(A)
im δ : Cp+1,q−1(A)→ Cp,q(A)

By the Poincaré lemma for homogeneous polynomial forms (proven using the
usual proof of the usual Poincaré lemma, by integration) we see that the
Spencer cohomology of the tableau A = Lin (V,W ) vanishes:

H∗,∗ (Lin (V,W )) = 0.

Theorem 20. Spencer cohomology vanishes precisely for involutive tableaux.

Theorem 21. Every tableau has an involutive prolongation.

Bryant et. al. [12] prove these results.

Question 87. What does relative Spencer cohomology describe? Perhaps some-
thing like, if you know how to solve one system of equations, can you solve
another one? What are the morphisms, what is excision, dimension, Meyer–
Vietoris?

Question 88. How do we calculate Spencer cohomology using a tableau? How
do we apply it to equivalence?
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Appendix on Signs

B.1 Linear Algebra

v1 ∧ · · · ∧ vp =
∑

σ∈Sym(p)

sgnσ · vσ(1) ⊗ · · · ⊗ vσ(p)〈
∂1 ∧ · · · ∧ ∂n, dx

1 ∧ · · · ∧ dxn
〉

= 1〈
v1 ∧ · · · ∧ vn, ξ

1 ∧ · · · ∧ ξn
〉

= det
(〈
vi, ξ

j
〉)

= ξ1 ∧ · · · ∧ ξp (v1, . . . , vp)

v ξ1 ∧ · · · ∧ ξp =
p∑

j=1

(−1)j+1
ξj(v)ξ1 ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξp

If α and β are exterior forms valued in an algebra A (which could be a Lie
algebra, not necessarily associative), of degrees a and b respectively, then

v1∧· · ·∧va+b α∧β =
∑

σ∈Sym(a+b)

sgnσ
a!b!

α
(
vσ(1), . . . , vσ(a)

)
β
(
vσ(a+1), . . . , vσ(a+b)

)
In case of a Lie algebra, we write α ∧ β as [α, β]. In particular, if we have a
Lie algebra representation ρ : g→ gl (N,R), and α and β both have degree a,
then

ρ(α) ∧ ρ(β) + (−1)ab+1ρ(β) ∧ ρ(α) = ρ ([α, β]) .

Moreover, the Jacobi identity tells us that

[α, [β, γ]] = [[α, β] , γ] + [β, [α, γ]] ,

for differential forms of all degrees. Suppose that A is an associative alge-
bra, and for x ∈ A write Lx for left multiplication by x and Rx for right
multiplication by x.
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Lα ∧ β = α ∧ β

Rα ∧ β = (−1)ab
β ∧ α

Lα ∧ Lβ = Lα∧β

Lα ∧Rβ = (−1)ab
Rβ ∧ Lα

Rα ∧Rβ = (−1)ab
Rβ∧α

and these wedge products are also associative.

Lemma 42 (Cartan–Poincaré). If ωj are linearly independent 1-forms
and Ωj are any 1-forms with ∑

j

Ωj ∧ ωj = 0

then there are real numbers aij = aji so that

Ωi =
∑

j

aijω
j .

More generally, if Ωi1...iq are any p-forms, symmetric in the indices ik, and∑
j

Ωi1...iq−1j ∧ ωj = 0

then there are (p− 1)-forms
αi1...iq+1

symmetric in the ik indices so that

Ωi1...iq
=
∑

j

αi1...iqj ∧ ωj .

Lemma 43 (∂̄ Cartan–Poincaré). If ωj are linearly independent (1, 0)
forms on a complex vector space, and Ωi1...it are any (p, q)-forms, symmetric
in the ik indices, with ∑

j

Ωi1...it−1j ∧ ωj = 0

then there are (p− 1, q)-forms αi1...it+1 symmetric in the ik indices so that

Ωi1...it =
∑

j

αi1...itj ∧ ωj .

A similar result holds for ωj (0, 1)-forms, by taking complex conjugation.
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B.2 Derivatives

φ∗X(p) =φ′
(
φ−1(p)

)
·X
(
φ−1(p)

)
[X,Y ](p) =− d

dt

∣∣∣∣
t=0

(
etX
∗ Y

)
(p)

= lim
t→0

Y (p)−
(
etX
∗ Y

)
(p)

t

LXY =[X,Y ]
=LXLY − LY LX

LX (ξ ⊗ ω) = (LXξ)⊗ ω + ξ ⊗ (LXω)
LXf =df(X)

LXω = lim
t→0

(
etX
)∗
ω − ω
t

=
d

dt

∣∣∣∣
t=0

(
etX
)∗
ω

Lai∂i
bj∂j =

(
ai∂ib

j − bi∂ia
j
)
∂j

LX (ξ ∧ ω) = (LXξ) ∧ ω + ξ ∧ (LXω)

etXetY =et(X+Y )+ t2
2 [X,Y ]+...

dω (X1, . . . , Xk+1) =
∑

i

(−1)i−1
LXi

(
ω
(
X1, . . . , X̂i, . . . , Xk+1

))
+
∑
i<j

(−1)i+j
ω
(
[Xi, Xj ] , X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1

)
d (ξ ∧ ω) = (dξ) ∧ ω + (−1)p

ξ ∧ (dω)

X,Y,Xi vector fields
ξ, ω differential forms
φ a diffeomorphism

ai, bi components of vector fields, in coordinates
ξ is a p-form
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B.3 Lie groups

B.3.1 Definitions

G is a Lie group, g = T1G its Lie algebra. Elements g, h, k ∈ G, A,B,C ∈ g,
ξ, η ∈ g∗.

adg(h) =ghg−1

Adg =ad′g(1)

Lgh =gh
Rgh =hg
−→
A (g) =L′g(1)A
←−
A (g) =R′g(1)A

etA =et
−→
A (1)

[A,B] = adAB =
d

dt
AdetA B

∣∣∣∣
t=0

λ(g) =L′g−1

ρ(g) =R′g−1

so that
λ, ρ ∈ Ω1 (G)⊗ g.
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B.3.2 Identities

(Lg)∗
−→
A =
−→
A

(Rg)∗
←−
A =
←−
A

(Lg)∗
←−
A =
←−−−−
Adg A

(Rg)∗
−→
A =
−−−−−→
Ad−1

g A
−→
A λ =A

−→
A ρ(g) =Adg A
←−
A λ(g) =Ad−1

g A
←−
A ρ =A
ρ(g) =Adg λ(g)

(Lg)
∗
λ =λ

(Rg)
∗
λ =Ad−1

g λ

(Lg)
∗
ρ =Adg ρ

(Rg)
∗
ρ =ρ[−→

A,
−→
B
]

=
−−−→
[A,B][←−

A,
←−
B
]

=−
←−−−
[A,B]

et
−→
A (g) =getA

et
←−
A (g) =etAg

dλ =− λ ∧ λ

=− 1
2

[λ, λ]

dρ =ρ ∧ ρ

=
1
2

[ρ, ρ]
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B.3.3 Matrix groups

Adg A =gAg−1

[A,B] = AdAB =AB −BA
λ =g−1 dg

ρ =dg g−1

−→
A (g) =gA
←−
A (g) =Ag
L−→

A
λ = [λ,A]

L←−
A
λ =0

L−→
A
ρ =0

L←−
A
ρ = [A, ρ]

WARNING: left invariant vector fields generate the right action, and vice
versa.

Question 89. I should point out the work of Robert Zimmer [?] somewhere.
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Hints

Chapter 2

2.6 The group G is the group of linear transformations of V fixing some
subspace V0 ⊂ V .

2.14 A flat 2-torus has a double covering, and a triple covering; consider the
disjoint union of these.

2.21 Try a partition of unity argument; note that an affine combination of
connections is always a connection.

2.22 Differentiate:

(Fφ)′ (x, g) · (ẋ, ġ) =
(
φ′(x) · ẋ, ġφ′(x)−1 − gφ′(x)−1 [φ′′(x) · x]φ′(x)−1

)
.

Pull back the standard flat connection

(ẋ, ġ) Fφ∗γ(x,g) = γFφ(x,g)Fφ
′(x, g) (ẋ, ġ)

= γ(φ(x),gφ′(x)−1)

(
φ′(x) · ẋ, ġφ′(x)−1 − gφ′(x)−1 [φ′′(x) · x]φ′(x)−1

)
= −

(
ġφ′(x)−1 − gφ′(x)−1 [φ′′(x) · x]φ′(x)−1

)
φ′(x)g−1

= −ġg−1 + gφ′(x)−1 [φ′′(x)ẋ] g−1.

Chapter 4

4.3 A G-structure always admits a reduction to a K-structure, where K ⊂ G
is the maximal compact subgroup. How do you get rid of the Klein bottle? For
web geometries, G consists of orientation preserving linear transformations.

Chapter 5
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5.5 Map a square in a plane with coordinates x, y to the bundle B, so that
the dy = 0 curves are mapped to ω2 = 0 geodesics, parameterized by ω2 =
dx (mod dy). Write ωi = ai dx + bi dy. Calculate dωi and plug in structure
equations. Now calculate

∂

∂y

∫
ω1.

Chapter 6

6.5 Use the Frobenius theorem.

Chapter 7

7.14 Look at structure equations.

7.15 Think about the symmetry group, and the associated subgroup with
these structure equations.

7.32 If the parameter is t, then on the lift of the geodesic to FM we have
dt = ω1. Use this as the definition of the parameterization. Show that the lifts
which occur are exactly the same.

Chapter 8

8.5 The adjoint representation factors through H̃ → H.

8.23 The first step is to consider the examples for which s 6= 0, and show
that we can reduce structure group to arrange s = 1. See Cartan [23] for the
answer.

8.24 If not, then there must be a vector field giving an infinitesimal symmetry,
preserving the soldering form.

8.25 A family of nonisomorphic Lie groups.

8.26 We know that ω(3) is a constant coefficient combination of ω(0), ω(1), ω(2).
Plug it into the structure equations and absorb torsion.

8.28 Either torsion reduces G, or else the structure equations are n copies of
the structure equations encountered in the proof of theorem 16 on page 199.

8.31 The bundle FM (3) → FM (2) has 1-dimensional fibers. If B ⊂ FM (3) has
codimension more than one, then it cannot be a bundle over FM (2), so is not a
purely 3rd order structure. If B ⊂ FM (3) is a 3rd order structure, its structure
group must be a subgroup of the structure group of FM (3) → FM (2), i.e. R,
so either B = FM (3) or B has codimension 1. There must be an equation

ω(4) = a0ω
(0) + a1ω

(1) + a2ω
(2) + a3ω

(3)
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on B. If the coefficients are constant on fibers over M , then they satisfy
daµ = a′µω

(0). Differentiating the equation for ω(4), we find a contradiction
coming from the ω(3) ∧ ω(2) term, just as we did in the proof of theorem 16
on page 199.

8.32 The ω(p−1) ∧ ω(2) term in dω(p) always gives rise to trouble.

8.33 The ω(2) ∧ ω(2) term is now the crucial one, since it isn’t 0 anymore. In
fact, our Lie algebra calculations in the proof of theorem 17 on page 203 show
that.

8.40 If X
(
ω1, ω2, ω3

)
= 0, show that LXω

1 is a multiple of ω1.

8.44 Every G-structure admits a reduction to a K-structure, where K ⊂ G
is the maximal compact subgroup.

Chapter 11

11.5 Check how they behave under the right multiplication by i.
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polycontact ideal, 144
polycontact structure, 145
principal Lie algebra

of Cartan geometry, 114
projective equivalence, 151
projective structure, 151

complete, 161
prolongation

of G-structure, 94
of Lie algebra, 24
to frames, 5

pseudoconnection, 20
complete, 76
form, 20

pseudogroup, 121, 166, 166, 168,
169, 188, 197, 260

Lie, 166
pullback

Cartan geometry, 116
of G-structure, 7, 12

pushforward
of family of vector fields, 70
of G-structure, 7

quotient
Cartan geometry, 116

reduction
of G-structure, 10

representation
admissable, 247
strongly admissable, 247

reproducing property, 6, 25, 28, 50,
60, 162

Riemann surface, 12
right Lie algebra action, 71
root, 181
root vector, 181

second order structure, 95
section, 37

simple, 38
sectional curvature, 108
semibasic, 8, 28
shear, 12
soldering form, 6
Spencer cohomology, 24, 56, 98,

113, 121, 146, 168, 245, 273
spin structure, 9
standard flat connection, 16, 19,

22, 74, 168
standard flat G-structure, 7, 16,

19, 20, 22, 74
step

first, 189
first–dimension, 189
last, 191

strongly admissable representation,
247

structure
contact, 145
polycontact, 145
projective, 151
second order, 95
Weyl, 244

structure equations, 21
structure function, 24
structure group

of Cartan geometry, 114



symmetry
of connection, 19, 77
of G-structure, 177

infinitesimal, 13, 81, 82, 84, 171–
173, 177, 178, 197, 200, 202–
204, 282

of G-structure, 7, 9, 11, 11, 12,
13, 19, 43, 45, 76, 81, 82, 84,
106, 107, 112, 116, 121, 128–
130, 133, 135, 139, 146, 161,
165, 223, 229, 236, 256, 260,
282

tableau
finite type, 269
involutive, 272

tensor
Nijenhuis, 201

torsion, 97
bundle, 25
intrinsic, 24
of pseudoconnection, 21

type
finite, tableau, 269
of G-structure, 37
of curve, 63
of submanifold, 207

variable type
G-structure, 37, 42

vertical vector, 16

weight vector, 183
Weyl structure, 244

Yamabe functional, 242
yield, see defiance


