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Abstract. This is a lecture for mathematics graduate students which I gave

at Duke University in 1998. Linear differential equations have vector spaces
of solutions: a flat geometry. Sometimes the space of solutions of a nonlinear

equation has a curved geometry.

1. First order ODE

The easiest ode of all is
ẋ(t) = 0

The solutions are just
x(t) = constant

so the solutions form a line. I don’t have much to say about this line.

2. Second order ODE

Consider the next easiest:
ẍ(t) = 0

The solutions are affine linear functions

x(t) = ξt + τ

We get to choose the constants ξ, τ any way we like, so the space of solutions is
a plane. By linearity, we can add solutions, so this plane is a vector space. But
what about the space of solutions of a more general ordinary differential equation?
What geometry lives there?

Consider a more difficult equation like

ẍ(t) = − ẋ

2t

The general solution is given by the equation

ξ(τ + x)2 = t

where ξ, τ are arbitrary constants. The ξ, τ plane is the space of solutions, because
a solution x(t) is defined by the values of ξ, τ appearing in the general solution.
Look at this equation again, but let ξ and τ be variables, and x, t be constants.
Then if we differentiate the equation twice, we find that

ξ̈(τ) =
3ξ̇2

2ξ
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Figure 1. Solutions (of some second order ODE) with different
initial ẋ

on the ξ, τ plane. Classically these were refered to as dual ordinary differential
equations.

ẍ(t) = − ẋ
2t

oo // ξ̈(τ) = 3ξ̇2

2ξ

In a picture, what we are doing looks like a pair of maps
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where X is the x, t plane, Y is the ξ, τ plane (the space of solutions), and Z is the
space of “pointed solutions”. A pointed solution is a choice of a solution of the x, t
ordinary differential equation, together with a point on that solution, as in figure 2.
We map Z → X by taking the point, and Z → Y by taking the solution. The
idea behind dual equations is that if X is the x, t plane with a second order ODE
on it, then this picture is symmetric in X and Y : the dual equation is defined by
switching X and Y .

We can draw the stalks of the map Z → X as in figure 1: the solutions passing
through a point of X. We can also draw the stalks of the map Z → Y as the points
lying on a given solution, as in figure 2, imagining that the solution is fixed, but
the point is allowed to vary.

Each point of Y corresponds to a curve in X: we take the stalk of that point up
in Z, and project that stalk down to X, as in figure 4. These are just the solutions
of our differential equation. The dual equation describes the curves we get in the
same way, after switching X and Y , as in figure 5.

What is the purpose of the dual equation? In geometry, we find curvatures
of geometric structures. The duality between X and Y means that the notion
of curvature for second order equations must admit some kind of symmetry: it
describes the geometry of the equation on X, but also the geometry of the dual
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Figure 2. A pointed solution
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Figure 3. Z is three dimensional, X and Y are surfaces

X Y

Z

Figure 4. A point of Y is a curve on X ...

equation on Y . How do the curvatures help to find the solutions of the differential
equations?

In general, we don’t know how to solve ordinary differential equations, even
second order ODEs for 1 function of 1 variable:

ẍ(t) = f(t, x(t), ẋ(t))

But we can calculate curvatures explicitly, because they are purely defined in terms
of calculating derivatives, in this case derivatives of the function f , and putting
them together into a geometrically meaningful package.
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Figure 5. ... and point of X is a curve on Y

A. Tresse first found the curvatures to all orders in his prize winning (unpub-
lished) 1893 PhD thesis. The lowest order curvatures of the geometric structure on
Z come in pairs κ1, κ2. Cartan, in [3] showed that κ2 vanishes precisely when the
differential equation

ẍ(t) = f(t, x, ẋ)
is a 3rd degree polynomial in ẋ:

ẍ(t) = a(t, x) + b(t, x)ẋ + c(t, x)ẋ2 + d(t, x)ẋ3

for some choice of coordinates x, t. The curvature κ1 vanishes precisely when the
dual equation has such a form. They both vanish precisely when either one, and
hence both, equations are linear (in some coordinates).

Note that the curvatures κ1 and κ2 are defined on Z. The amazing result of
Cartan is that if the κ1 curvature vanishes, then κ2 becomes well defined on the
space Y of solutions, i.e. it is constant as we move along a solution. So if κ1 = 0,
then κ2 is a conservation law. We can differentiate it, and get more conservation
laws, enough to solve the original differential equation

ẍ(t) = f(t, x, ẋ)

explicitly. Cartan calculated that the vanishing of κ1 is exactly the condition

d2

dt2
fpp − 4

d

dt
fpx + fp

(
4fpx −

d

dt
fpp

)
− 3fxfpp + 6fxx = 0

for the function
f(t, x, p)

The fact that we can explicitly calculate curvatures (if we have to) means that we
can prove results like this by calculation. This is a single 4th order nonlinear pde,
about which little is known, but the general solution depends on 4 functions of
2 variables, an absolutely huge family of explicitly integrable ordinary differential
equations.

3. Third order ODE

What is next? Try
...
x (t) = 0

the easiest third order ODE. The solutions are parabolas,

x(t) = at2 + bt + c
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Figure 6. The discriminant cone for
...
x = 0

Again the solutions are a vector space. We get to choose the constants a, b, c
arbitrarily. Picking any one solution, say the zero solution, x(t) = 0, we can look
at how other solutions

X(t) = at2 + bt + c

intersect it. This is described by the discriminant

b2 − 4ac

More generally, a solution
x0(t) = at2 + bt + c

intersects another

x1(t) = (a + δa)t2 + (b + δb)t + (c + δc)

with a double point precisely when

δb2 − 4 · δa · δc = 0

This is the equation of a cone. We can draw this as in figure 6 At each point (a, b, c)
of this 3 dimensional space, we have a cone of vectors (δa, δb, δc) which satisfy the
discriminant equation

δb2 − 4 · δa · δc = 0
A physicist when faced with a cone like this thinks of relativity: the light cone. But
in our case the cones are in a 3 dimensional space, so the space of solutions of

...
x (t) = 0

is just Minkowski 2 + 1 space.
This last example is very rich. We don’t expect a vector space structure of

solutions to make sense for a general third order ODE
...
x (t) = f(t, x, ẋ, ẍ)
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Figure 7. The discriminant cone tells how a solution intersects
nearby solutions

but what about the discriminant/light cones? Since the equation
...
x (t) = 0

is our “model flat geometry”, we might hope that even in “curved geometries”, i.e.
nonlinear ODEs, these cones might survive. The cones measure whether or not a
solution with a perturbation of that solution in a double point, and this definition
can be used to define the cones in the space of solutions of any third order ODE. But
do they form light cones? Light cones in general relativity must be the solutions of
a quadratic equation, as in the example of special relativity above. K. Wunschmann
and S.S. Chern, [6], figured out when these cones are given by quadratic equations:
it depends on a certain type of curvature, which Chern called I. If the equation

...
x (t) = f(t, x, ẋ, ẍ)

has curvature I = 0, then the discriminant cones are quadratic. This I is a function
of f and its derivatives. Indeed if

f = f(t, x, p, q)

then

I = −fx −
1
3
fpfq −

2
27

f3
q +

1
2

d

dt
fp +

1
3
fq

d

dt
fq −

1
6

d2

dt2
fq

The equation I = 0 is 3rd order PDE, and its general solution depends on 3 arbitrary
functions of 3 variables. Nothing much is known about it.

We begin to see that equations satisfying Chern’s I = 0 will provide us with
some kind of 2+1 dimensional general relativities. If we calculate the curvatures of
these general relativistic space times, we get conservation laws for our differential
equations

...
x (t) = f(t, x, ẋ, ẍ)
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So in case the curvature I of Chern vanishes, our ODE can be solved explicitly.
Not every 2 + 1 dimensional general relativity occurs from this construction, and
Cartan in [4] determined exactly which general relativistic space times arise in this
way.

4. Fourth order ODE

Finally, we come to 4th order equations, which can give rise to very beautiful
structures on their spaces of solutions. See R.L. Bryant’s amazing paper [1] and
N. Hitchin’s survey [8] for more of the story, known as twistor theory, which is
largely due to Roger Penrose and his collaborators. Hitchin’s [7] gives examples
of explicit constructions of asymptotically locally Euclidean Einstein metrics using
these ideas.
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