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Abstract. The systems of complex analytic second order ordinary differential

equations whose solutions close up to become rational curves are character-
ized by the vanishing of an explicit differential invariant, and form an infinite

dimensional family of integrable systems.

Contents

1. Introduction 2
1.1. The problem 2
1.2. The solution 2
1.3. Examples 3
1.4. Integrability 4
1.5. A note of sour skepticism 5
1.6. Optimism returns, with topology in tow 6
1.7. Why we study second order systems, not first order ones 7
1.8. An equation which is not straight 8
2. Path geometry 9
3. Elementary remarks on linearization 11
4. A first glance at surface path geometries 12
4.1. The structure equations 12
5. Review of Cartan connections 13
6. Inducing a Cartan connection on integral curves 16
7. Classification of Cartan connections on rational curves 16
8. A cornucopia of vector bundles 17
9. Kodaira deformation theory 18
10. Identifying line bundles 19
11. Dual surface path geometries 20
12. Rationality of integral curves and stalks for surface path geometries 22
13. Normal projective connections 22
14. Higher dimensional path geometries 23
15. Rational integral curves 25
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1. Introduction

1.1. The problem. For which complex analytic ordinary differential equations are
all solutions rational curves (i.e. topological spheres)? Use the phrase integral curve
to mean solution of a system of ordinary differential equations. We might wonder
if the differential equations may be analytically continued along any integral curve,
perhaps in some new system of coordinates, so that that integral curve closes up
to become a rational curve.

Definition 1. A system of second order complex analytic ordinary differential equa-
tions is straight if the associated path geometry is locally isomorphic to a path
geometry whose integral curves are all rational curves.

See definition 3 on page 9 for the definition of a path geometry. We shall first
consider some examples to motivate the definition. Our problem: to characterize
straightness. I shall shortly give an explicit local condition (which is easy to check),
characterizing straightness for second order systems of ordinary differential equa-
tions. Henceforth all manifolds and Lie groups are complex, and all maps, vector
bundles, functions, sections of vector bundles and connections are holomorphic.

Example 1. The fundamental example which guides our work is the differential
equation

d2y

dx2
= 0,

whose solutions are straight lines. This equation is invariant under translations in
both x and y, so that we can quotient to define the equation on a complex torus.
However, it is straight because it is locally isomorphic to the equation of projective
lines in projective space.

This problem of characterizing straight equations is similar to Painlevé’s problem
on systems with fixed singular points, but the answer is quite different.

1.2. The solution.

Definition 2. For a system of n ≥ 1 second order ordinary differential equations

d2yI

dx2
= f I

(
x, y,

dy

dx

)
.

in complex variables x, y1, . . . , yn, and for any function g (x, y, ẏ), define dg/dx to
mean

dg

dx
=
∂g

∂x
+

∂g

∂yI
ẏI +

∂g

∂ẏI
f I (x, y, ẏ) .

Define the Fels torsion [17] of the system to be:

ΦI
J = φI

J −
1
n
φK

Kδ
I
J

where

φI
J =

1
2
d

dx

∂f I

∂ẏJ
− ∂f I

∂yJ
− 1

4
∂f I

∂ẏK

∂fK

∂ẏJ
,
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with f I = f I (x, y, ẏ). For a single second order ordinary differential equation (i.e.
n = 1), say

d2y

dx2
= f

(
x, y,

dy

dx

)
,

clearly the Fels torsion vanishes by definition, and we define the Tresse torsion (see
[38, 9, 1]:

d2

dx2

∂2f

∂ẏ2
− 4

d

dx

∂2f

∂y∂ẏ
+
∂f

∂ẏ

(
4
∂2f

∂y∂ẏ
− d

dx

∂2f

∂ẏ2

)
− 3

∂f

∂y

∂2f

∂ẏ2
+ 6

∂2f

∂y2
.

The Fels torsion depends only on second derivatives of the functions f I , while
the Tresse torsion depends on derivatives of fourth order.

Theorem 1. A second order ordinary differential equation [system of equations] is
torsion-free (i.e. the Tresse [Fels] torsion vanishes) just when it is straight.

1.3. Examples.

Example 2. Lets return to our fundamental example,

d2y

dx2
= 0,

whose integral curves are straight lines. Lines analytically continue to become pro-
jective lines in projective space. The differential equation looks the same throughout
projective space, although one has to make projective linear changes of variable to
see what happens out at the hyperplane at infinity. There is no global choice of
variable x over which the integral curves can be graphed, because there are no
nonconstant functions on a projective line. Thus the variables x, y are not distin-
guished, and we must allow ourselves to use different variables in different regions.

Example 3. The straight linear second order systems with constant coefficients are
precisely those of the form

d2y

dx2
= A

dy

dx
+

(
a− 1

4
A2

)
y

where A is any constant complex n× n matrix, and a any complex scalar.

Example 4. None of Painlevé’s equations are straight.

Example 5. For any complex constant c, the equations

d2y1

dx2
=

(
dy1

dx

)2

d2y2

dx2
=

(
dy1

dx

)2

+ c
dy1

dx

dy2

dx
− 1

2
c

(
1− 1

2
c

) (
dy2

dx

)2

are straight.

Example 6. Second order equations with one dimensional symmetry group can be
brought by coordinate transformation to the form

d2y

dx2
= f

(
y,
dy

dx

)
;
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(for proof see Lie [29]). The conditions on f (y, ẏ) under which this equation is
straight form the fourth order equation

0 =ẏ2 ∂4f

∂y2∂ẏ2
+ 2ẏf

∂4f

∂y∂ẏ3
+ f2 ∂

4f

∂ẏ4
+ ẏ

∂3f

∂ẏ3

∂f

∂y
− 3

∂3f

∂y∂ẏ2
− 4ẏ

∂3f

∂y2∂ẏ
+ 4

∂f

∂ẏ

∂2f

∂y∂ẏ

− ẏ
∂f

∂ẏ

∂3f

∂y∂ẏ2
− 3

∂f

∂y

∂2f

∂y∂ẏ
+ 6

∂f

∂y2
,

so that the generic straight equation with symmetry group depends on 4 functions
of 2 variables. In particular, the generic equation with one dimensional symmetry
is not straight, and vice versa; straightness is independent of symmetry group.
Straightness is also independent of linearizability (see Merker [32]).

Example 7. All linear second order equations d2y
dx2 = a(x) dy

dx + b(x)y are straight.
However, coupled systems of linear second order equations are generally not straight.
Intuitively, the problem is analoguous to the problem of coupled harmonic oscilla-
tors being generically nonperiodic, while a single oscillator is periodic, because the
coupled oscillators have different periods. Indeed if we consider a single oscillator

d2y

dx2
= ω2y,

with ω constant, the solutions are

y = a+e
ωx + a−e

−ωx,

so that if we introduce the variable X = eωx, then

y = a+X +
a−
X
,

or
a+X

2 −Xy + a− = 0,
quadratic equations, so the (generic) solutions are smooth rational curves. Consider
a coupled system, say

d2y1
dx2

= ω2
1y1

d2y2
dx2

= ω2
2y2.

If ω1 6= ω2, then there is no choice of parameter X. For a general coupled system,
if all of the frequencies ωj are rational multiples of a common frequency ω, then
we can introduce a parameter X = eωx, and obtain algebraic equations for the
solutions. But the degrees are not low enough to keep the curves rational, unless
the frequencies ωj are all equal.

1.4. Integrability. Generic straight systems of second order differential equations
are integrable by geometric construction, as we shall see (also see Grossmann [22]).
So by calculating torsion, we have an explicit test for integrability; for example,
every straight ordinary differential equation (i.e. n = 1)

d2y

dx2
= f

(
x, y,

dy

dx

)
for which f is a sum of linear and quadratic terms in x, y, ẏ is integrable by use of
hypergeometric functions and quadratures, while this is certainly not true for the
generic second degree second order ordinary differential equation. Indeed, Cartan
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[9] can apparently integrate any straight ordinary differential equation by differen-
tiation and at most two quadratures. (But see subsection 1.5 for some concerns
about Cartan’s claim.) Moreover, straight systems remain straight under symme-
try reduction obviously, so they form a fascinating class of systems of ordinary
differential equations.

The ability to integrate straight equations is particularly exciting when we realize
that all of the second order ordinary differential equations of classical mathematical
physics are straight; see table 2 on the following page. Therefore all ordinary differ-
ential equations of mathematical physics before the 20th century, except Painlevé
equations, are apparently solved by Cartan’s method. Special function theory is
just one special case of the theory of straight equations. There are some well
known modern equations of mathematical physics which are not integrable without
adjoining new transcendental functions, even if we allow inversions of integrals of
elementary functions, and thus are not obtained by algebra and quadratures (see
table 3 on page 7); therefore they are not integrable by Cartan’s method, or by
symmetry reduction, and thus they cannot be straight; and of course, they are not
torsion-free. Indeed from the table, we see that torsion is found in all of them,
except in certain special cases. These cases turn out to all be well known degen-
eracies in which the general solution can be expressed in hypergeometric or elliptic
functions.

Having tested many equations (as the reader can see), my conclusion is that if
Cartan is correct, then his methods integrate in quadratures every equation known
to me for which such integration is known to be possible. It seems natural to
conjecture that Cartan’s method is the final answer to the problem of integration
in quadratures for a single second order equation.

1.5. A note of sour skepticism. If a second order ordinary differential equation
has a Lie group of symmetries of positive dimension, it would appear to invali-
date Cartan’s approach (which we shall see in section 15.3 on page 31) as Cartan
describes it, since the invariants do not provide enough conservation laws. Car-
tan does not point out this case, but integrability still follows as long as the Lie
group has dimension 2 or greater (see Lie [29]). Even if the symmetry group is not
solvable, the equation is integrable. For example, consider

d2y

dx2
= 0,

whose symmetry Lie algebra turns out to be sl (3,C), a simple Lie group. However,
one needs to know the symmetry group action explicitly to carry out this integra-
tion. The question of the integrability of a straight scalar second order ordinary
differential equation in the presence of a one dimensional Lie group of symmetries
is apparently not settled, in contrast to Cartan’s claim.

The equations of mathematical physics described above, as a consequence of the
theorems we shall prove below, are all locally equivalent under point transforma-
tions to the standard equation d2y/dx2 = 0, and therefore have simple Lie group of
point symmmetries, so that Lie’s method of reduction does not apply. The symme-
try groups are not explicit, and finding them explicitly appears to be as difficult as
solving the equations directly. Moreover, Cartan’s approach as he outlines it also
does not apply, since it depends on local invariants under point transformations.
It may be that Cartan has up his sleeve some deeper methods that apply in these
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Common name Equation

Airy d2y
dx2 = xy

Anger d2y
dx2 +

dy
dx

x +
(
1− a2

x2

)
y = x−a

πx2 sinπa

Bessel x2 d2y
dx2 + x dy

dx + (x2 + a)y = 0
Bessel (modified) x2 d2y

dx2 + x dy
dx − (x2 + a)y = 0

Bessel (spherical) x2 d2y
dx2 + 2x dy

dx + (x2 + a)y = 0
Bessel (modified spherical) x2 d2y

dx2 + 2x dy
dx − (x2 + a)y = 0

confluent hypergeometric x d2y
dx2 + (c− x) dy

dx − ay = 0
Coulomb wave d2y

dx2 +
(
1− a

x −
b

x2

)
y = 0

Eckart d2y
dx2 +

(
a edx

1+edx + b edx

(1+edx)2
+ c

)
y = 0

ellipsoidal d2y
dx2 =

(
a+ b sin(x)2 + c sin(x)4

)
y

elliptic x(1− x2) d2y
dx2 +

(
1− x2

)
dy
dx − 2x2 dy

dx − xy

error function d2y
dx2 + 2x dy

dx = 2ay
Euler x2 d2y

dx2 + ax dy
dx + by = 0

Gauß hypergeometric x(x− 1) d2y
dx2 + ((a+ b+ 1)x− c) dy

dx + aby = 0
Halm

(
1 + x2

)2 + d2y
dx2 + a dy

dx = 0
Hermite d2y

dx2 + 2x dy
dx = 2ay

Lienard d2y
dx2 + (ay + b) dy

dx +
(

1
9a

2y3 + 1
3aby

2 + cy + d
)

= 0

Liouville d2y
dx2 + g(y)

(
dy
dx

)2

+ f(x) dy
dx = 0

Mathieu d2y
dx2 + (a− 2b cos 2x) y = 0

Titchmarsh d2y
dx2 + (b− xa) y = 0

Table 2. Some straight equations from mathematical physics;
a, b, c, d any constants, f, g any functions. See Polyanin & Zait-
sev [34], Zwillinger [39]

“degenerate” cases, but he gives no indication. Nonetheless, it is amazing that the
basic ordinary differential equations of mathematical physics (before Painlevé) are
straight, that straightness is a rare property, and that no one has previously noticed
this.

1.6. Optimism returns, with topology in tow. The theory of second order
equations of mathematical physics appears from this point of view to be nearly
topological, in the sense that all of the above equations are locally point equivalent
to d2y/dx2 = 0, i.e. to the contact 3-manifold x, y, p with contact planes dy = p dx
and two Legendre foliations (a) dy = p dx, dp = 0 and (b) dx = dy = 0. The global
study of such “flat” double Legendre folations is thus at the core of physics, while
being locally completely elementary. This flavour of contact topology (i.e. with flat
double Legendre folation) is entirely mysterious.
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Common name Equation When torsion is found

Emden–Fowler x2 d
2y

dx2
+ 2x

dy

dx
+ x2ya a 6= 0, 1

modified Emden–Fowler
d2y

dx2
+ f(x)

dy

dx
+ ya a 6= 0, 1

Lagerstrom x
d2y

dx2
+ a

dy

dx
+ bxy

dy

dx
= 0 b 6= 0

Painlevé I
d2y

dx2
= 6y2 + x

Painlevé II
d2y

dx2
= 2y3 + xy + a

Painlevé III
d2y

dx2
=

dy
dx

2

y
−

dy
dx

x
+
ay2 + b

x
+ cy3 +

d

y
(a, b, c, d) 6= (0, 0, 0, 0)

Painlevé IV
d2y

dx2
=

dy
dx

2

2y
+

3y2

2
+

4y3x+ 2
(
x2 − a

)
y +

b

y

Painlevé V
d2y

dx2
=

(
1
2y

+
1

y − 1

)
dy

dx

2

−
dy
dx

x
+

(y − 1)2
(
ay + b

y

)
x2

+
cy

x
+
dy(y + 1)
y − 1

(a, b, c, d) 6= (0, 0, 0, 0)

Painlevé VI
d2y

dx2
=

1
2

(
1
y

+
1

y − 1
+

1
y − x

)
dy

dx

2

(a, b, c, d) 6=
(

0, 0, 0,
1
2

)
−

(
1
x

+
1

x− 1
+

1
y − x

)
dy

dx

+
y(y − 1)(y − x)Γ

x2(x− 1)2

Γ = a+
bx

y2
+
c(x− 1)
(y − 1)2

+
dx(x− 1)
(y − x)2

van der Pol
d2y

dx2
= a

(
1− y2

) dy
dx
− y a 6= 0

Table 3. Some equations of mathematical physics which are not
straight; a, b, c, d any constants

1.7. Why we study second order systems, not first order ones. All first
order systems of ordinary differential equations

dyI

dx
= f I(x, y)
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-0.2 0.2

-0.4

-0.4 0

-0.2

dy

0.4

0.4
0

0.2

y

Figure 1. The family of cubic curves in the plane

are straight, since the Frobenius theorem tells us that we can change coordinates
to arrange that f I = 0. Moreover, higher order systems can be rewritten as first
order systems, so it might appear that they are always straight. But this is not the
case, since changes of coordinates acting on second order equations are not quite
so powerful.

1.8. An equation which is not straight. For example consider the equation

d2y

dx2
= 6y2,

which is not torsion-free. Check that the function ẏ2−4y3 is constant along integral
curves. Therefore the integral curves are precisely the curves

ẏ2 = 4y3 +A

for any constant A. These curves are elliptic curves (hence not rational), filling out
the phase space, except for the curve with A = 0, which is a cuspidal cubic curve,
hence rational; see figure 1. Integrating, we find∫

dy√
4y3 +A

= x+B,

an elliptic integral on each elliptic curve; the constant B just translates the elliptic
curve along the x variable, and is defined up to periods. Going backwards, y(x) is
an elliptic function on each elliptic curve; in fact it is the Weierstraß ℘-function:
y(x) = ℘ (x− c) with modular parameters g2 = 0 and g3 = A. Globally we can
analytically continue all of the integral curves to the 3-manifold C × P2, with x a
coordinate function on C, and (y, ẏ) an affine chart on P2 and each integral curve
is an elliptic curve, except for the 1-parameter family of curves with A = 0 and
B arbitrary. The picture extends to the line at infinity on P2, because the elliptic
curves are smooth there too. We have to avoid the surface of points (x, y, ẏ) for (y, ẏ)
in the cuspidal cubic, where the curves don’t behave nicely. The ordinary differential
equation is not straight, since the elliptic curves are not rational. It doesn’t matter
how we treat points at infinity, or the cuspidal cubic, because even after cutting
out those points, or any other hypersurface, what remains of each integral curve
is still an elliptic curve minus some points, and therefore birational to an elliptic
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curve, and not to a rational curve. If we could find a birational isomorphism to a
differential equation with a rational integral curve, then we would be able to map
the rational curve to the corresponding elliptic curve, without branching, which is
impossible.

Rationality of integral curves of a system of second order ordinary differential
equations is birationally invariant, i.e. we can cut out hypersurfaces from the phase
space and glue in other ones. The surprise is that for some second order ordinary
differential equations, but not for most, it is possible to find a local isomorphism
to an equation with rational solutions. This is a consequence of our theorems for
which we know of no simple explanation. The Frobenius theorem straightens out
the curves by a local coordinate transformation of (x, y, ẏ) space to some other
3-manifold, but this is not local in (x, y) space.

We apologize to the reader that so much of this paper depends on results of other
papers, which we have tried to summarize. In particular, most of the results on
scalar second order ordinary differential equations have been previously presented
in the literature, but are presented again here to make the exposition clearer and
more self contained. This paper contains only a small collection of new results,
but the required information is scattered throughout the literature, and a proper
discussion of these ideas seems to demand a review of part of that literature. The
approach we take here is very similar to Hitchin [23] and Dunajski & Todd [15].
Merker [32] has a different approach, which characterizes very explicitly the systems
of ordinary differential equations equivalent to d2y/dx2 = 0. The papers [20, 33]
concern questions and constructions closely related to this paper.

2. Path geometry

We will want a global definition of second ordinary differential equations. A
path geometry on a manifold usually means a differential system locally given by a
system of second order ordinary differential equations, so that through any point, in
each direction, there is a unique immersed curve (called an integral curve) solving
those ordinary differential equations, passing through that point, tangent to that
direction. In local coordinates x, y1, . . . , yn on the manifold, the integral curves are
the solutions of an equation

d2y

dx2
= f

(
x, y,

dy

dx

)
.

Hitchin [23] shows that complex surfaces containing rational curves provide a source
of important path geometries. He demonstrates that straight path geometries play
a role in the Penrose twistor programme, being the most elementary example.

I shall give a slightly more general definition of path geometry:

Definition 3. A path geometry on a complex manifoldM is a pair of foliations whose
leaves are respectively called the integral curves and stalks, so that near any point
of M , there is a coordinate chart with coordinate functions x, y1, . . . yn, ẏ1, . . . , ẏn

and functions f I(x, y, ẏ) in which the integral curves intersect the coordinate chart
precisely in the solutions of

dyI = ẏI dx, dẏI = f I (x, y, ẏ) dx, I = 1, . . . , n,

and the stalks intersect the coordinate chart precisely in the solutions of

dyI = dx = 0, I = 1, . . . , n.
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The functions f I can change from one coordinate chart to another.

We shall refer to the path geometry consisting of lines in projective space (for
which M is the space of pointed lines in projective space) as the model.

Locally, there is a smooth quotient space of stalks, with coordinates x, y, but I
shall not require this space to be smooth globally. Following Cartan’s terminology,
call the space of stalks the space of points, and our original manifold M the space
of elements. Even if the space of points is smooth, the path geometry may appear
on it as a multivalued ordinary differential equation, in local coordinates, and there
might be no paths in certain directions (i.e. f(x, y, ẏ) might not be defined for
certain values of ẏ). I shall mollify this multivaluedness only slightly by assuming
that the space of elements is connected. I shall not require existence or uniqueness
of an integral curve in each direction at a given point x, y in the space of points;
however the discreteness of the set of such curves follows from the assumptions we
have made above.

In the process of travelling along an integral curve, one might carry out changes
of variables. So when we think of analytically continuing the differential equation
along an integral curve, we have in mind that we might repeatedly change variables
as we do so. In this sense the x variable appearing in the local coordinate presen-
tation is not distinguished, so the integral curves might not globally be graphs of
functions of an x variable. The two foliations are the only meaningful global data.

One motivation for this paper is that (as we shall see) both stalks and integral
curves are canonically locally identified with projective spaces, modulo projective
transformations. This might remind us of Riemannian geometry, where geodesics
are canonically equipped with arclength parameterization, defined up to choice of
a constant; the Riemannian manifold is complete just when the parameterization
is a local diffeomorphism from the real line. The geometry of more general second
order equations is more complicated, and more slippery, so we have local projective
parameterizations defined only up to projective transformation. Therefore it is nat-
ural to ask when both the stalks and the integral curves are projective spaces. We
shall say integral curves or stalks are rational if they are globally parameterized by
projective spaces. For integral curves, this is the natural analogue of completeness.
We shall prove:

Theorem 2. A stalk [integral curve] of a path geometry is rational just when it is
compact with finite fundamental group. Moreover this occurs just when the canon-
ical local identifications with projective spaces extend globally to a diffeomorphism.

Therefore rationality (of the leaves of either foliation) is a topological condition,
but with strong global consequences. We shall prove:

Theorem 3. The only path geometry on any connected complex manifold whose
integral curves and stalks are all rational is the path geometry on projective space
whose integral curves are projective lines.

Summing up, we have a topological criterion for isomorphism with the model.
Note that we do not assume that our complex manifold is compact or Kähler. We
will also prove:

Theorem 4. A path geometry is locally isomorphic to the path geometry of pro-
jective space just when it is locally isomorphic to some path geometry with rational
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integral curves, and also locally isomorphic to some path geometry with rational
stalks.

We will also locally characterize path geometries with rational integral curves
and those with rational stalks:

Theorem 5. A path geometry is straight just when it is torsion-free.

Theorem 6 (LeBrun [23]). If all of the stalks are rational, then (1) there is a
smooth space of points which bears a projective connection, (2) the space of elements
is invariantly mapped by local biholomorphism to the projectived tangent bundle
of the space of points, and (3) each integral curve is locally identified with the
family of tangent lines to a unique geodesic of the projective connection. Conversely,
every projective connection on any manifold gives rise to a path geometry on its
projectivized tangent bundle, with rational stalks (the projectived tangent spaces).
A path geometry is locally isomorphic to a path geometry with rational stalks, and
therefore is locally a projective connection, just when it satisfies

∂4f i

∂ẏI ẏJ ẏK ẏL
= 0,

for any four indices I, J,K,L = 1, . . . , n, i.e. has the form

d2y

dx2
=

∑
|α|≤3

fα (x, y)
(
dy

dt

)α

,

with α a multi-index α = (α1, . . . , αn) .

This paper uses methods from my paper [31]; the main theorem in that paper
exhausts the study of complete parabolic geometries, but there are many more ge-
ometries to which the methods apply. Path geometries turn out to impose parabolic
geometries, but these will not be assumed complete. Indeed completeness would
be equivalent to assuming that all integral curves and all stalks of the parabolic
geometry are rational.

Hitchin [23], Bryant, Griffiths & Hsu [3], Fels [17], and Grossman [22], use a more
restrictive definition of path geometry, requiring that there be a smooth space of
points and a smooth space of integral curves; we do not require either of these, but
the reader can easily see that those authors did not employ these hypotheses in
their calculations, only in their conclusions.

3. Elementary remarks on linearization

Recall the concept of linearization of a system of ordinary differential equations:
given a system

d2yI

dx2
= f I

(
x, y,

dy

dx

)
,

we linearize about a point (x, y) by first taking the solution y = y(x) through that
point, and then changing coordinates so that the solution becomes just y(x) = 0,
and the point (0, 0), and then we expand f I into a Taylor expansion and keep the
lowest order terms. It is thus elementary to see that
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Theorem 7. A system of second order ordinary differential equations is torsion-
free just when its linearization about any point is torsion-free, which occurs just
when its linearization about any point has the form

d2y

dx2
= A

dy

dx
+

(
a− 1

4
A2

)
y.

4. A first glance at surface path geometries

A path geometry will be called a surface path geometry to denote that there is
one y variable (and there is always only one x variable), i.e. that the space of points
is a (not necessarily Hausdorff) surface. Therefore the space of elements M is a
3-fold. We will see that path geometries are quite different in this special (lowest
possible) dimension.

Theorem 8. If the stalks [integral curves] of a surface path geometry are compact,
and there is a submersion from a nonempty open set π : U open ⊂ M3 → S2 and
whose fibers are stalks [integral curves] respectively, and the space of elements M is
connected, then all of the stalks [integral curves] are rational.

Proof. Take each point m ∈ U , construct the integral curve Cm ⊂ M through m,
and map m ∈ U 7→ π′(m)TmCm ∈ PTS. In local coordinates x, y, ẏ, evidently this
is a local biholomorphism, mapping stalks to fibers PTsS. By compactness of stalks,
this map is onto. Stalks are connected by definition, so the map is a covering map
on each stalk, and therefore is a biholomorphism, because the fibers PTsS = P1 are
simply connected. By analytic continuation, all stalks are rational. �

4.1. The structure equations. I will draw freely from Bryant, Griffiths & Hsu
[3]. They prove that given any surface path geometry, M bears a canonical choice
of principal bundle E →M (which they call BG3 →M), a principal right Gpt,line-
bundle, where Gpt,line ⊂ G = P GL (3,C) is the subgroup fixing a projective line in
the projective plane and a point on that line, i.e. the group of matrices of the form

g =

g0
0 g0

1 g0
2

0 g1
1 g1

2

0 0 g2
2

 ,
with Lie algebra gpt,line. (The square brackets indicate that the matrix is defined
up to rescaling, being an element of P GL (3,C)). Moreover, they define a canonical
1-form ω (which they write as φ) on E valued in g = sl (3,C) (the Lie algebra of
G = P GL (3,C)), so that

(1) ωe : TeE → g is a linear isomorphism
(2) ω (mod gpt,line) is semibasic for E →M , and

dω = −1
2

[ω, ω] +∇ω

where (writing ω =
(
ωi

j

)
)

∇ω =

0 K1ω
1
0 ∧ ω2

0 ω2
0 ∧

(
L1ω

1
0 + L2ω

2
1

)
0 0 K2ω

2
0 ∧ ω2

1

0 0 0

 .

Write rg : E → E for the right action of an element g ∈ Gpt,line on E.
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(3)
r∗gω = Ad−1

g ω,

(4) Given any local section σ of E → M , the integral curves are precisely the
solutions of the exterior differential system σ∗ω2

0 = σ∗ω2
1 = 0.

Bryant, Griffiths & Hsu don’t actually state the equation (3), but it follows imme-
diately as a simple calculation from the transformation properties of the various
components of ω as given in their article. They also don’t state (4), but it is clear
from their remarks on the top of p. A.2.

5. Review of Cartan connections

I won’t repeat the entire story of Cartan connections, most of which is contained
in my paper [31], but just repeat the definition and prove a few results which were
only sketched in that paper.

Definition 4. A Cartan pseudogeometry on a manifold M , modelled on a homoge-
neous space G/G0, is a principal right G0-bundle E → M , (with right G0 action
written rg : E → E for g ∈ G0), with a 1-form ω ∈ Ω1 (E) ⊗ g, called the Cartan
pseudoconnection (where g, g0 are the Lie algebras of G,G0), so that ω identifies
each tangent space of E with g. For each A ∈ g, let ~A be the vector field on E

satisfying ~A ω = A. A Cartan pseudogeometry is called a Cartan geometry (and
its Cartan pseudoconnection called a Cartan connection) if

~A =
d

dt
retA

∣∣∣∣
t=0

for all A ∈ g0, and r∗gω = Ad−1
g ω for all g ∈ G0.

Lemma 1. The 1-form ω of Bryant, Griffiths & Hsu is a Cartan connection on
M , modelled on G/Gpt,line = PTP2 = F (1, 2), the flag variety of pointed lines in
projective space.

Proof. We have only to check that ~A is the infinitesimal generator of the right
action, for A ∈ gpt,line. This follows immediately from the simple calculation that

L ~Aω = − [A,ω] .

�

Remark 1. Before going over the theory of Cartan geometries, I would like to meet
the concerns of Cartan geometry experts. Cartan (and followers, see Sharpe [36])
worked with Cartan geometries directly in terms of the differential form we have
called ω. Cartan geometries modelled on rational homogeneous varieties are known
as parabolic geometries. Recently, there have been great advances made the theory
of invariantly defined vector bundles on manifolds with parabolic geometries. See
C̆ap [5] for an excellent overview. The first step in this recent theory is to move away
from Cartan’s differential forms on principal bundles, and instead look at associated
vector bundles. Associated vector bundles are called tractor bundles. One uses
the 1-form ω to determine differential operators between tractor bundles. This
makes it easier to describe many invariantly defined linear differential operators on
tractor bundles, and sequences of such operators. Our concern in this article is with
submanifolds inside a manifold M with a Cartan geometry. These submanifolds, in
our case, will be the integral curves and stalks. We are not concerned principally
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with vector bundles onM , but with vector bundles on the integral curves and stalks.
Cartan’s point of view has the great strength that one can write various exterior
differential systems on the bundle E, in terms of the differential form ω. Recall that
exterior differential systems are systems of partial differential equations, described
in terms of differential forms. One easily sees when the integral manifolds of these
exterior differential systems project to submanifolds of M satisfying invariantly
defined differential equations, often nonlinear ones. One cannot so easily write
down exterior differential systems in terms of vector bundles and connections. The
Cartan geometries that we will induce on integral curves and stalks will not be
parabolic geometries. Even though the Cartan geometry that we will examine on
the space of elements is parabolic, we can not employ the powerful tools of the
parabolic theory (Lie algebra cohomology, BGG-sequences, tractor bundles, etc.),
because the Cartan geometries we wil study on integral curves and stalks are not
parabolic. I could have employed parabolic geometries on the stalks and integral
curves, as I did in [31], but they would be flat and modelled on the projective
line, so the parabolic theory would be trivial. Summing up: Cartan’s approach
makes it easy to think about differential equations for submanifolds. This paper is
about submanifolds (integral curves and stalks) defined by differential equations.
Therefore we have followed Cartan.

We will employ a host of results on vector bundles and Cartan geometries, all of
which have the same proof (well known and widely known), so we give the proof in
just one case:

Lemma 2. Consider a Cartan geometry π : E →M . The tangent bundle is

TM = E ×G0 (g/g0) .

Proof. At each point e ∈ E, the 1-form ωe : TeE → g is a linear isomorphism, taking
kerπ′(e) → g0. Therefore ωe : TeE/ kerπ′(e) → g/g0 is a linear isomorphism. Also
π′(e) : TeE/ kerπ′(e) → Tπ(e)M is an isomorphism. Given a function f : E → g/g0,
define vf a section of the vector bundle TE/ kerπ′, by the first isomorphism, and
a section v̄f of π∗TM by the second. Calculate that v̄f is G0-invariant just when
f is G0-equivariant, i.e. just when

r∗gf = Ad−1
g f.

This makes an isomorphism of sheaves between the sections of the tangent bundle
TM and the G0-equivariant functions E → g/g0, i.e. the sections of E ×G0 (g/g0),
so that they must be identical vector bundles. �

Definition 5. For G0 ⊂ G a closed subgroup, let ω ∈ Ω1 (G) be the left invariant
Maurer–Cartan 1-form. Then ω is a Cartan connection on the principal right G0-
bundle G→ G/G0, and the induced Cartan geometry on G/G0 is called the model
Cartan geometry. A Cartan geometry modelled on G/G0 is called flat if it is locally
isomorphic to the model Cartan geometry.

Definition 6. The expression ∇ω = dω + 1
2 [ω, ω] is called the curvature of the

Cartan geometry; equations on the curvature will be called structure equations.

Theorem 9 (Sharpe [36]). A Cartan geometry is flat just when its curvature van-
ishes.
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Proposition 1. Pick a flat Cartan geometry E → M on a compact, connected
and simply connected manifold M , modelled on G/G0 with G connected and G/G0

connected and simply connected. Then the Cartan geometry is isomorphic to the
model.

Proof. By theorem 3 of McKay [31], some covering space of M maps locally dif-
feomorphically to G/G0, and the Cartan geometry on that covering space is pulled
back. Because M is simply connected, that covering space is M itself. Because M
is compact, the local diffeomorphism is a covering map. Because G/G0 is connected
and simply connected, the map is a diffeomorphism. �

Definition 7. If G0 ⊂ G is a closed subgroup of a Lie group, and Γ ⊂ G is a
discrete subgroup, acting freely and discontinuously on G/G0, then we can let
E = G,M = Γ\G/G0, ω = g−1, dg, determining a flat Cartan geometry called a
locally Klein geometry.

Say that a group G defies a group H if every morphism G→ H has finite image.
We will not repeat the proof of:

Theorem 10 (McKay [31]). A flat Cartan geometry, modelled on G/G0, defined
on a compact connected base manifold M with fundamental group defying G, is a
locally Klein geometry.

Definition 8. If V is a vector space, a V -valued coframing on a manifold E is 1-
form ω ∈ Ω1 (E) ⊗ V , so that at each point e ∈ E, ωe : TeE → V is a linear
isomorphism. An isomorphism of coframings is a diffeomorphism matching up the
1-forms. If G0 ⊂ G is a closed Lie subgroup of a Lie group, with Lie algebras
g0 ⊂ g, and ω is a g-valued coframing, let ω̄ = ω mod g0 ∈ Ω1 (E) ⊗ (g/g0) . A
local Cartan geometry modelled on G/G0 is a g-valued coframing ω and a function
K : E → Λ2 (g/g0)⊗ g, for which

dω +
1
2

[ω, ω] = Kω̄ ∧ ω̄.

Definition 9. If E →M bears a Cartan geometry with Cartan connection ω, then ω
and the curvature K of ω are together called the associated local Cartan geometry.
We say that a local Cartan geometry is isomorphic to a Cartan geometry if it is
isomorphic to the associated local Cartan geometry.

Theorem 11. Every local Cartan geometry is locally isomorphic to a Cartan ge-
ometry.

Remark 2. This theorem is a well-known folk theorem, but we know of no source
for a proof, so we give a proof to make our exposition more self-contained.

Proof. Consider the foliation of E by the submanifolds ω̄ = 0. Since our result is
local, we can assume that this foliation is a fiber bundle E →M , and also that this
fiber bundle is trivial. Consider the vectors fields ~AE on E defined by the equation
~AE ω = A, for any A ∈ g0. Clearly these provide a Lie algebra action, whose orbits
are the fibers of E →M . Taking any local section of E →M , say σ : M → E, the
map

(m,A) ∈M × g0 7→ eAm ∈ E
is defined near A = 0, and a local diffeomorphism there. Therefore we can find an
open set of the form UM × Ug0 with UM ⊂ M and Ug0 ⊂ g0 open sets, on which
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the map is defined and is a diffeomorphism to its image. Because our results are
local, we can assume that M = UM , and the map is a global diffeomorphism, with
image all of E. Moreover, we can assume that the exponential map identifies Ug0

with an open subset UG0 ⊂ G0. We therefore have E = M × UG0 ⊂ M ×G0. On
M ×G0, define a 1-form Ω by

Ω(m,g0) = Ad−1
g0
ω(m,1)r

′
g−1
0

(m, g0) .

Check that Ω = ω on M × 1 and that L ~AΩ = −[A,Ω], for A ∈ g0, so that by
uniqueness of solutions of ordinary differential equations, Ω = ω on E. �

6. Inducing a Cartan connection on integral curves

Let C → M be any immersed integral curve. Consider the pullback subbundle
E|C . Since 0 = ω2

0 = ω2
1 along C on every local section of E →M , and 0 = ω2

0 = ω2
1

on the fibers, we find that 0 = ω2
0 = ω2

1 on all of E|C . Moreover, E|C → C is a
principal right Gpt,line-bundle.

Lemma 3. On E|C → C, ω is a flat Cartan connection.

Proof. The structure equations are identical to those of E →M , except that ∇ω =
0 because ω2

0 = ω2
1 = 0. �

7. Classification of Cartan connections on rational curves

Definition 10. A projective representation is a morphism of complex Lie groups α :
G→ P GL (n+ 1,C). A projective representation is transitive if G acts transitively
on Pn. Given a transitive projective representation, set G0 = kerα, E = G, and
ω = g−1 dg the left invariant Maurer–Cartan 1-form on G. Call this the Cartan
geometry associated to the transitive projective representation.

Theorem 12. Every flat Cartan geometry on Pn, with connected model G/G0, is
isomorphic to its model, hence isomorphic to the Cartan geometry associated to a
transitive projective representation.

Proof. Obviously, the construction beginning with a transitive projective represen-
tation determines a Cartan geometry. Conversely, any flat Cartan geometry on
Pn is obtained by taking a local biholomorphism to the model Pn → G/G0, so a
covering map (since Pn is compact). The deck transformations must be biholomor-
phisms of Pn, so projective linear transformations. However, every projective linear
transformation has a fixed point, so they can’t act as deck transformations unless
the covering group is trivial. Therefore the covering map is a biholomorphism. �

Corollary 1. Every Cartan geometry on a rational curve is associated to a tran-
sitive surjective projective representation.

Proof. Any Cartan geometry on P1 is flat, since the curvature is a semibasic 2-
form. No complex Lie subgroup of P GL (2,C) acts transitively on P1. Therefore
the projective representation G→ P GL (2,C) is surjective. �
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8. A cornucopia of vector bundles

If M3 bears a surface path geometry, then the stalks are curves transverse to
the integral curves. Let Θ ⊂ TM be the field of 2-planes spanned by the tangent
lines to integral curves and tangent lines to stalks. In local coordinates, x, y, ẏ, we
see that Θ = (dy = ẏ dx), so a contact structure.

Proposition 2. Let C be an immersed integral curve in a complex 3-fold M with
path geometry. Let E →M be the Cartan geometry associated to the path geometry.
Let Θ ⊂M be the canonical contact structure. Let S be the space of points. (If S is
not a smooth surface, then equations below involving S are meaningless, but the right
hand sides still define vector bundles.) Let νSC the normal bundle of the immersion
C → M → S (for which a similar proviso applies). Let G = P GL (n+ 1,C), Gpt

the subgroup preserving the point [e0], Gline the subgroup preserving the line through
[e0] and [e1], Gpt,line the subgroup preserving the point and the line, and write their
Lie algebras as g, gpt, etc. Then

TM |C = E|C ×Gpt,line

(
g/gpt,line

)
Θ|C = E|C ×Gpt,line

((
gline + gpt

)
/gpt,line

)
νMC = E|C ×Gpt,line

(
g/gline

)
TS|C = E|C ×Gpt,line

(
g/gpt

)
TC = E|C ×Gpt,line

(
gline/gpt,line

)
νSC = E|C ×Gpt,line

(
g/

(
gpt + gline

))
Proof. As in the proof of lemma 2. �

Intuitively, the equations above allow us to pretend to work with the space of
points S, even if it isn’t Hausdorff, by instead working with various vector bundles.

Recall that P1 bears line bundles O (p), defined as follows: think of P1 as the
space of lines through 0 in C2, and let O (−1) be the bundle whose fiber above
a line L is just L; then let O (p) = O (−1)⊕−p. So a local section of O (p) is a
choice of map z ∈ open ⊂ C2\0 → f(z)z for which f(λz) = λpf(z). Moreover, the
line bundles O (p) have global nonzero sections just when p > 0. Another way to
present these line bundles: Let

e0 =
(

1
0

)
∈ C2\0.

Write B for the group of matrices of the form:

g0 =
(
a b
0 1/a

)
(those which preserve the complex line through e0). Consider the principal right B
bundle SL (2,C) → P1 given by the map g ∈ SL (2,C) 7→ ge0 ∈ P1. Given an open
subset U ⊂ P1, let SL (2,C)U → U be the pullback bundle.

Lemma 4. Sections of O (p)U → U correspond to maps F : SL (2,C)U → C for
which

F (gg0) = apF (g),
for all g0 ∈ B.



18 BENJAMIN MCKAY

Proof. Pick a local section f of O (p), i.e. a choice of map f : Û ⊂ C2\0 → C,
where Û is the preimage of U under C2\0 → P1, and with f(az) = apz. Define
F (g) = f (ge0). Conversely, given F , define f(z) = F (gz) where

gz =
(
z1 0
z2 z−1

1

)
,

defined for all z1 6= 0 for which gz lies in the domain of F . �

In giving this proof, we are merely trying to avoid abstract Borel–Weil–Bott
theory, and give concrete expressions for these line bundles.

Corollary 2. On any rational integral curve,

TM |C = O (2)⊕O⊕2

Θ|C = O (2)⊕O (−1)

TM/Θ|C = O (1)

νMC = O⊕2

TS|C = O (2)⊕O (1)

TC = O (2)

νSC = O (1)

Proof. Calculate these on the model. (Note that the normal bundle of C = P1 ⊂
M = PTP2 has sections coming from the tangent bundle of the dual space P2∗;
from which it is easy to see that this normal bundle is trivial.) By the classification
of Cartan geometries on rational curves, the Cartan geometry on every rational
integral curve is isomorphic to the one found on the integral curves of the model,
making these vector bundles identical. �

9. Kodaira deformation theory

We give a brief review of Kodaira’s theory [26, 27, 28].

Definition 11. Let Y and M be complex manifolds and let πM : M × Y →M and
πY : M ×Y → Y be the obvious maps. A family of closed complex submanifolds of
the complex manifold M parameterized by Y is a complex submanifold F ⊂M×Y
such that the πY |F : F → Y is a proper submersion. Let Xy = F ∩M × {y}.

Definition 12. A morphism of families Fj ⊂ M × Yj (in the same manifold M),
j = 0, 1, is a map φ : Y0 → Y1 so that (m, y0) → (m,φ (y0)) takes F0 to F1.

Definition 13. We say that a submanifold X ⊂M belongs to a family {Xy}y∈Y if
X = Xy for some y ∈ Y .

Definition 14. A family {Xy}y∈Y is locally complete if, should one of the sub-
manifolds Xy belong to another family of complex submanifolds {Xz}z∈Z , say
Xy0 = Xz0 ⊂ M , then there is morphism of families U → Y defined on an open
neighborhood U ⊂ Z of z0, taking z0 7→ y0.

Definition 15. A closed complex submanifold X ⊂ M with normal bundle νX is
free if H1 (X, νX) = 0.
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Theorem 13 (Kodaira [26, 27, 28]). If X ⊂M is an immersed free closed complex
submanifold of a complex manifold, then X belongs to a family of submanifolds
{Xy}y∈Y , and there is an isomorphism TXY = H0 (X, νX). Moreover, this fam-
ily is locally complete. If H1 (X,TX) = 0, then every manifold in this family is
biholomorphic to every other.

Corollary 3. Let X be a closed complex manifold with H1 (X,TX) = 0. Let M
be a complex manifold, and Y the set of free closed complex submanifolds of M
biholomorphic to X. Then Y is either empty or a complex manifold of dimension
equal to the dimension of H0 (X, νX), and a locally complete family.

To make use of this, we need to know a little sheaf cohomology:

Lemma 5. For the sheaf O (p) on P1,

dimH0
(
P1,O (p)

)
=

{
p+ 1 p ≥ 0
0 p < 0

dimH1
(
P1,O (p)

)
=

{
0 p ≥ 0
−(p+ 1) p < 0

See Griffiths & Harris [21] for proof.

Corollary 4. If a surface path geometry has a rational integral curve [rational
stalk], and all integral curves [stalks] compact, then all of its integral curves [stalks]
are rational, and the space of integral curves [points] is a smooth surface.

10. Identifying line bundles

The main tool in my paper [31] is a method for computing which vector bundle
a given differential invariant lies in, when it is restricted to a rational curve. We
will try to make the method more transparent.

Suppose that G0 ⊂ G are connected Lie groups. Fix a Lie group morphism
SL (2,C) → G, whose image does not lie in G0. Let B ⊂ SL (2,C) be the Borel
subgroup, with Lie algebra b ⊂ sl (2,C). Let E → C be a Cartan geometry on a
rational curve, with Cartan connection ω, modelled on a homogeneous space G/G0.
Let ωB = ω mod b. So ω is b-valued modulo ωB . Therefore we can write

ω =
(
ω0

0 ω0
1

0 −ω0
0

)
(mod ωB).

Consider a function F : connected open ⊂ E → C. If there is a number p for
which

dF = pω0
0 (mod ωB),

then call p the weight of F .

Proposition 3. Suppose that E → C is a Cartan geometry on a rational curve. A
function F : connected open ⊂ E → C has integer weight p just when F is a local
section of O (p) on C.

Proof. Since E → C is isomorphic to the model, we can assume E = G,C =
G/G0 = P1. The action of SL (2,C) on G/G0 is not trivial, because the image of
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SL (2,C) → G is not contained in G0. There is only one one-dimensional homoge-
neous space of SL (2,C) ; therefore SL (2,C) acts on G/G0 as the usual action on
P1. Pull back F to SL (2,C). In explicit coordinates on B,(

a b
0 a

)
,

the equation on dF precisely demands that on SL (2,C), F (gg0) = a−p
0 F (g). �

Corollary 5. Functions of negative integer weight vanish.

11. Dual surface path geometries

It is an old observation that every surface path geometry has a dual surface path
geometry, given by interchanging the role of integral curves and stalks; see Bryant,
Griffiths and Hsu [3] or Crampin and Saunders [14]. We can see directly from
the structure equations of the Cartan geometry that this is just an interchange of
indices ωµ

ν ↔ ω2−ν
2−µ.

Example 8. For the model, this duality is the duality between lines in the projective
plane and points in the dual plane, i.e. between 2-planes through 0 in C3 and lines
through 0 in C3∗, given by Π 7→ Π⊥.

Example 9 (Hitchin [23] p. 83). The ordinary differential equation

d2y

dx2
=

1
4y3

has solutions
y2 = ax2 + bx+ c

for any complex constants a, b, c for which 4ac−b2 = 1. Now treat x, y as constants,
and think of the equation as determining a family of curves b = b(a), c = c(a).
Differentiating twice, we find the relationship:

d2c

da2
=

4Q(a dc
da + c+

√
Q)

(4ac− 1)(2a2 dc
da − 2ac+ 2a

√
Q+ 1)

,

the dual ordinary differential equation, where

Q = c2 − 2ac
dc

da
+ a2

(
dc

da

)2

+
dc

da
.

The integral curves of the dual equation consist precisely in the values of a, b, c which
will produce a solution y = y(x) of the original equation which passes through a
chosen point of the (x, y) plane.

Even though the equations

y2 = ax2 + bx+ c, 4ac− b2 = 1

are quadratic, so the integral curves and stalks are rational curves in the plane, the
original differential equation

d2y

dx2
=

1
4y3

is not torsion-free, detecting the singularity emerging in the ordinary differential
equation at y = 0. Nonetheless, the dual equation is torsion-free, and is straight,
as Hitchin explains.
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Example 10. The ordinary differential equation

d2y

dx2
=

1
2
y(y − 1) +

y − 1
2

y(y − 1)

(
dy

dx

)2

conserves the quantity

λ = y −

(
dy
dx

)2

y(y − 1)
,

from which we conclude that
dy

dx
=

√
y(y − 1)(y − λ),

i.e. an elliptic curve in phase space, giving

x+$ =
∫

dy√
y(y − 1)(y − λ)

,

where $ is the integral over a period. Our elliptic curve has equation

ẏ2 = y(y − 1)(y − λ).

Compute (as in Clemens [13] p. 59) that

d

(
ẏ

(y − λ)2

)
= −1

2
dy

ẏ
− 2(2λ− 1)

∂

∂λ

dy

ẏ
− 2λ(λ− 1)

∂2

∂λ2

dy

ẏ
.

Integrating both sides along the elliptic curve, avoiding ẏ = 0, we find the Picard–
Fuchs equation

0 = λ(λ− 1)
d2$

dλ2
+ (2λ− 1)

d$

dλ
+

1
4
$,

the dual path geometry, so that (x, y) are the variables on the original space, and
(λ,$) are the variables on the dual space. It is remarkable that the original equation
has nowhere vanishing Tresse torsion (which is easy to calculate, and fits with our
theory, since all of the integral curves are elliptic curves), but the Picard–Fuchs
equation is torsion-free, so straight.

Example 11. Similarly, returning to our previous example of

d2y

dx2
= 6y2,

the solutions are given implicitly by∫
dy√

4y3 +A
= x+B,

and the dual equation describes how to vary B as a function of A = g3, in order
to keep this elliptic function passing through a fixed point x0, y0, i.e. the relation
between the modular parameter g3 (with g2 = 0) and the period of the elliptic
integral. This is equivalent to solving for B as a function of A in the equation

y0 = ℘ (x0 +B)|g2=0
g3=A .

Again there is a Picard–Fuchs equation, but it is more difficult to find, and we will
not try to find it.
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12. Rationality of integral curves and stalks for surface path
geometries

Theorem 14 (Hitchin [23], Bryant, Griffiths, Hsu [3]). If the integral curves [stalks]
of a surface path geometry are rational, then K1 = 0 [K2 = 0].

Proof. Calculating the exterior derivatives of the structure equation in item 2 on
page 12, we find

∇
(
K1

K2

)
= d

(
K1

K2

)
+

(
5ω0

0 + 3ω1
1 0

0 4ω0
0 + 5ω1

1

) (
K1

K2

)
=

(
∇0

1K1ω
1
0 +∇0

2K1ω
2
0 + L1ω

2
1

∇0
1K2ω

1
0 + L2ω

2
0 +∇1

2K2ω
2
1

)
.

If C is a rational integral curve, the bundle EC → C has ω2
0 = ω2

1 = 0. Consider
the copy of sl (2,C) determined by

0 = ω•2 = ω2
• = ω0

0 + ω1
1 .

Our equations simplify to

d

(
K1

K2

)
=

(
−2 0
0 1

)
ω0

0

(
K1

K2

)
modulo semibasic terms, hence weights −2, 1 for K1,K2 respectively. Therefore
K1 = 0. Duality proves the results for stalks. �

Corollary 6. If the space of elements of a surface path geometry is connected,
and both the generic integral curve and the generic stalk are rational, then the path
geometry is locally isomorphic to the model.

Proof. We see that K1 = K2 = 0, and differentiate to find that all invariants vanish.
The structure equations are identical. Let ω be the Cartan connection of the path
geometry on E → M , and ω′ the Cartan connection of the model, say E′ → M ′.
Then on E × E′, the holonomic differential system ω = ω′ has integral manifolds
giving the graphs of local isomorphisms. �

Proposition 4 (Cartan [9]). Under any local choice of section of E → M , K1 is
Tresse torsion, up to multiplication by a nowhere vanishing function. In particular,
Tresse torsion vanishes just when K1 does.

13. Normal projective connections

A normal projective connection is complicated to define precisely.

Definition 16. A local affine connection on a manifold is a choice of open set and
affine connection defined on that open set. A covered normal projective connection
is a set of local affine connections whose open sets cover the manifold, so that on
overlaps of the open sets, the affine connections have the same geodesics modulo
reparameterization. A normal projective connection is a covered normal projective
connection which is not strictly contained in any other covered normal projective
connection.

The tricky issue that makes the definition so complicated is already seen in
projective space: projective space has no affine connection. Each affine chart has
the obvious flat affine connection. On the overlaps of the affine charts, the geodesics
(lines) agree. So projective space has a normal projective connection.
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Definition 17. The path geometry of a normal projective connection on a manifold S
is the manifoldM = PTS, with stalks the fibers of the obvious projection PTS → S,
and integral curves the curves in PTS each of which is composed of tangent lines
to a geodesic.

Theorem 15 (Hitchin [23], Bryant, Griffiths, Hsu [3]). If the stalks [integral curves]
are rational, then the path geometry is the path geometry of a normal projective
connection on the smooth space of points [integral curves].

Proof. Fels [17] p. 239 demonstrates very clearly how the requirement of being a
projective connection (i.e. the geodesic equation of an affine connection, in some
coordinates) is identified with having an equation of the form

d2y

dx2
= f

(
x, y,

dy

dx

)
=

3∑
k=0

ak(x, y)
(
dy

dx

)k

.

The surprising third order term arises because x is not necessarily the natural
parameter along the geodesic. Hitchin [23] gives a very clear demonstration that
this form of differential equation is ensured by rationality of the integral curves.
Cartan [7] shows that this form of differential equation is equivalent to vanishing
of K1, which turns out in local coordinates to be a multiple of ∂4f

∂ẏ4 . �

Bordag & Dryuma [2] make use of Cartan’s invariants of projective connections
to analyse second order ordinary differential equations.

14. Higher dimensional path geometries

Beyond surface path geometries, the story is more complicated. Following Mark
Fels [17], we can define a second order structure on the space of elements M , say
E →M . We will not go through the details of the construction of this second order
structure, which is quite involved, and is explained in detail in Fels’s paper [17].
Lets just say that the second order structure is modelled on the tower of bundles
P GL (n+ 2,C) → FPTPn+1 → PTPn+1. By FPTPn+1 we mean the bundle of
frames on PTPn+1, i.e. linear isomorphism of tangent spaces of PTPn+1 to C2n+1.
Tanaka has found a Cartan connection associated to any path geometry, using a
different normalization of torsion; this will be irrelevant to us, although it would
provide a more elegant set of structure equations than Fels’s. The interested reader
should consult Čap [5] for an elegant explanation and development of Tanaka’s
construction.

The structure equations of Fels’s second order structure are

dω +
1
2

[ω, ω] = ∇ω,

where ω ∈ Ω1 (E)⊗ g is a 1-form valued in g = sl (n+ 2,C), which we can write as

ω =

ω0
0 ω0

1 ω0
J

ω1
0 ω1

1 ω1
J

ωI
0 ωI

1 ωI
J


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where ω0
0 + ω1

1 + ωI
I = 0, with indices

µ, ν, σ, τ = 0, . . . , n+ 1
i, j, k, l = 1, . . . , n+ 1

I, J,K,L = 2, . . . , n+ 1

The terms ∇ω have the form

∇ωµ
ν =

1
2
tµνklω

k
0 ∧ ωl

0 + Tµ
νklω

k
1 ∧ ωl

0 + ]tµK
νl ω

1
K ∧ ωl

0.

These torsion terms satisfy a large collection of identities. For example, 0 = ∇ω1
0 =

∇ωI
0 . The torsion terms and many (perhaps all) of their identities are worked out

in Fels [17], while Grossman [22] assumes vanishing of the 1-torsion of his second
order structure, and therefore his identities do not cover the generality required for
our results.

The structure group of the second order structure is the group of projective
transformations fixing a pointed line. The second order structure is not necessarily
a Cartan connection, since ∇ω is not necessarily semibasic for the map E → M ,
i.e. is not necessarily a multiple of the 1-forms ω1

0 , ω
I
0 , ω

I
1 which span the semibasic

1-forms for that map. However, the mysterious ]t terms, which precisely form the
obstruction to being a Cartan connection, vanish in every term except ∇ω0

1 ,∇ω0
J ,

where they are

]t0K
1L =

1
n− 1

tK1L1

]t0K
J1 =

(
1 +

2
n− 1

)
tK1J1.

Lemma 6. Consider the 1-form ω on Fels’s second order structure E → M for
a path geometry on M . The obstructions to ω being a Cartan connection vanish
just precisely when the 1-torsion of the second order structure vanishes, i.e. when
∇ω1

0 = ∇ωI
0 = ∇ωI

1 = 0.

Proof. Grossman [22] p. 435 shows that the vanishing of tI1J1 ensures the vanishing
of tI1JK , and that this ensures the vanishing of all ]t terms. It is a long, but
not difficult, calculation which requires only differentiating the structure equations,
made much easier by using my notation. This is precisely the condition for vanishing
of the 1-torsion of the second order structure. �

The reader may be curious as to how to obtain the identities. The pattern one
observes in differentiating structure equations is straightforward: we have

dω + ω ∧ ω = ∇ω

so that taking exterior derivative gives the Bianchi identity

d∇ω = ∇ω ∧ ω − ω ∧∇ω.
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If ∇ω satisfies some identity, with constant coefficients, then so must d∇ω, from
which the above equation gives more identities on ∇ω. Computing out these equa-
tions gives

0 = ∇ω1
0 =⇒ 0 = ∇ω1

I ∧ ωI
0

0 = ∇ωI
0 =⇒ 0 = ∇ωI

1 ∧ ω1
0 +

(
∇ωI

J − δI
J∇ω0

0

)
∧ ωJ

0

0 = ∇ω0
0 +∇ω1

1 +∇ωI
I =⇒ 0 = ∇ω0

1 ∧ ω1
0 +∇ω0

J ∧ ωJ
0 .

Another observation which entails many identities is that in the process of the
method of equivalence, covariant derivatives ∇ are always semibasic. The 1-forms
ω1

0 , ω
I
0 , ω

I
1 (those under the diagonal of the matrix ω) are semibasic for E → M .

But since E is a second-order structure, it is built on a first order structure, say
E → F → M , and the on-diagonal entries ω0

0 , ω
1
1 , ω

I
J , together with the below

diagonal, are semibasic for E → F . Therefore

∇

ω1
0

ωI
0

ωI
1

 = 0 mod
(
ω1

0 , ω
K
0 , ω

K
1

)2
,

∇

ω0
0

ω1
1

ωI
J

 = 0 mod
(
ω1

0 , ω
K
0 , ω

K
1 , ω

0
0 , ω

1
1 , ω

K
L

)2
.

Proposition 5. The second order structure of Fels determines and is determined
by a unique path geometry. Moreover, every second order structure modelled on the
tower of bundles P GL (n+ 2,C) → FPTPn+1 → PTPn+1 is Fels’s second order
structure of a path geometry if and only if it satisfies ∇ω1

0 = ∇ωI
0 .

Proof. We will sketch the proof, which depends on the details of Fels’s argument
from Fels [17]. Given the path geometry, we leave it to Fels to construct the second
order structure. Given the second order structure, say E → M , pick any local
section σ. Following Fels’s definition of E (which is complicated), one finds that(
0 = σ∗ωI

0 = σ∗ω1
0

)
is the foliation by integral curves, while the foliation by stalks

is
(
0 = σ∗ω1

0 = σ∗ωI
0

)
. So if there is a path geometry inducing the second order

structure, then this is it. Retracing Fels’s steps, we can see that the second order
structure is now completely determined, since Fels’s algorithm for constructing the
second order structure depends only on having a given path geometry and forcing
the equations 0 = ∇ω1

0 = ∇ωI
0 , which is enough to determine the rest of his

equations on torsion. �

15. Rational integral curves

Clearly an integral curve is rational just when it is compact with finite funda-
mental group, by the classification of complex curves (see Forster [19]).

Theorem 16. If the generic integral curve of a path geometry on a manifold M2n+1

is rational, then the path geometry is torsion-free (i.e. its Fels/Tresse torsion van-
ishes).

Proof. We prove the result for n > 1, i.e. for the Fels torsion, since the result for
n = 1 is proven above. Let ι : C →M be an immersed integral curve, E →M the
bundle constructed by Fels, with 1-form ω ∈ Ω1 (E)⊗sl (n+ 2,C). On the pullback
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bundle ι∗E → C, ωI
0 = 0. The structure equations simplify greatly. Indeed ω forms

a flat Cartan connection on C, with ω ∈ Ω1 (ι∗E)⊗gline, modelled on Gline/Gpt,line,
the Cartan connection for a line in projective space, which is easy to check. Taking
exterior derivative of the structure equations, we find that on E the invariant tI1J1

satisfies

∇tI1J1 = dtI1J1 + 2
(
ω0

0 − ω1
1

)
tI1J1 + ωI

Kt
K
1J1 − tI1K1ω

K
J

= ∇0
Kt

I
1J1ω

K
0 +∇1

Kt
I
1J1ω

K
1 ,

for some functions ∇0
Kt

I
1J1 and ∇1

Kt
I
1J1. Fixing the subalgebra sl (2,C) ⊂ Gline

given by the structure equations 0 = ω0
J = ω1

J = ωI
J = ω0

0 + ω1
1 , we find

dtI1J1 = −4ω0
0t

I
1J1,

so that tI1J1 has weight −4. This ensures the vanishing of tI1J1 at every point of E;
Grossman [22] p. 435 takes exterior derivatives of the structure equations, to show
that vanishing of most of the other invariants follows, leaving only

∇ω = dω +
1
2

[ω, ω]

=

0 0 T 0
JKLω

K
1 ∧ ωL

1

0 0 T 1
JKLω

K
1 ∧ ωL

1

0 0 T I
JKLω

K
1 ∧ ωL

1

 .

At this stage, we may wonder if the weights of these invariants will kill them as
well. Once again taking exterior derivatives, as Grossman demonstrates,

∇

T 0
JKL

T 1
JKL

T I
JKL

 =d

T 0
JKL

T 1
JKL

T I
JKL


+

(
2ω0

0 + ω1
1

)
T 0

JKL −
(
T 0

MKLω
M
J + T 0

JMLω
M
K + T 0

JKMωM
L

)
+ ω0

1T
1
JKL + ω0

MTM
JKL(

ω0
0 + 2ω1

1

)
T 1

JKL −
(
T 1

MKLω
M
J + T 1

JMLω
M
K + T 1

JKMωM
L

)(
ω0

0 + ω1
1

)
T I

JKL + ωI
MTM

JKL −
(
T I

MKLω
M
J + T I

JMLω
M
K + T I

JKMωM
L

)


=

 0 ∇0
MT 0

JKL ∇1
MT 0

JKL

−T 0
JKL ∇0

MT 1
JKL ∇1

MT 1
JKL

0 ∇0
MT I

JKL ∇1
MT I

JKL

  ω1
0

ωM
0

ωM
1

 .

When I look on the same copy of sl (2,C), structure equations turn to

d

T 0
JKL

T 1
JKL

T I
JKL

 =

−ω0
0T

0
JKL + ω0

1T
1
JKL

ω0
0T

1
JKL − ω1

0T
0
JKL

0

 .

So T 0
JKL doesn’t have a weight, since it has a ω0

1 term, while the weights of
T 1

JKL, T
I
JKL are 1 and 0 respectively. Therefore we cannot conclude that these

invariants vanish; we will soon consider how they could come about. �

15.1. Segré geometries. We have just seen why rationality of integral curves
forces vanishing of torsion. We need to see why vanishing of torsion ensures ratio-
nality of integral curves (modulo local isomorphism). Grossman [22] proved that
torsion-free path geometries are locally isomorphic to path geometries derived from
Segré structures, so we will need to define and examine Segré structures to see if
the derived path geometries have rational integral curves.
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In the model case, of lines in projective space, i.e. the system of ordinary differ-
ential equations

d2yI

dx2
= 0,

the space of integral curves is the Grassmannian of lines in projective space, i.e. of
2-planes in Cn+1. Therefore we should try to understand the local geometry of the
Grassmannian clearly, and look for analogies when studying general second order
systems. Recall that the Grassmannian is G/Gline where G = P GL (n+ 1,C), and
Gline the subgroup of G fixing a projective line.

Definition 18. A Cartan geometry E → Λ modelled on the Grassmannian of 2-
planes in Cn+2 is called a Segré geometry. Let Gpt ⊂ G be the subgroup of trans-
formations preserving a point on the given projective line, and Gpt,line = Gpt∩Gline

the subgroup fixing the point and the line, so that the model Segré geometry is
Gr

(
2,Cn+2

)
= G/Gline. The space E/Gpt,line is called the space of elements of

the Segré geometry. The fibers of E/Gpt,line → E/Gline = Λ are called the integral
curves of the Segré geometry.

For the Grassmannian, the space of elements is the space of choices of a line in
projective space and a point on that line. The integral curves of the Grassmannian
are the choices of points lying in a given line in projective space. Keep in mind that
the integral curves of a Segré geometry E → Λ are not submanifolds of the base
manifold Λ, but rather the fibers of the space of elements M as a bundle M → Λ.

Lemma 7. The integral curves of a Segré geometry are rational curves.

Proof. They are copies of Gline/Gpt,line = P1. �

Lemma 8. The space of elements of a Segré geometry bears a canonical Cartan
geometry modelled on G/Gpt, for which all integral curves are rational curves.

Proof. Suppose that E → Λ is a Segré geometry, with Cartan connection ω. Let M
be the space of elements of that Segré geometry. One easy checks the hypotheses
of a Cartan connection to see that ω is a Cartan connection for E →M , modelled
on the space of pointed lines in projective space. �

Definition 19. Let G′ ⊂ Gline be the subgroup fixing a point of the Grassmannian
and fixing the tangent space to the Grassmannian at that point. A Segré geometry
E → Λ is called torsion-free if ∇ω = 0 (mod g′).

Torsion-freedom of a Segré geometry E → Λ ensures that the equations ω1
0 =

ωI
0 = 0 are holonomic (i.e. satisfy the conditions of the Frobenius), so that the

manifold E is foliated by the integral manifolds of this equation. Moreover, the
reader can check that each integral manifold maps to an immersed submanifold of
Λ, called naturally a stalk of the Segré geometry. Indeed the stalks foliate the space
of elements.

Theorem 17. A path geometry is straight just when it is torsion-free, which occurs
just when it is locally isomorphic to the path geometry of a unique torsion-free Segré
geometry.

Proof. We have seen that the integral curves of the Cartan connection of the space
of elements of a Segré geometry are rational, hence the path geometry is straight
and therefore torsion-free. If we have a torsion-free path geometry, then its Cartan
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connection satisfies the torsion-freedom condition required of a torsion-free Segré
geometry. By theorem 11, the Cartan connection is locally isomorphic to the Cartan
connection of a torsion-free Segré geometry. Therefore the space of elements of the
Segré geometry is identified locally with the path geometry.

If we have a torsion-free Segré geometry, then its structure equations are precisely
those of a torsion-free path geometry on the space of pointed lines, with its integral
curves as integral curves, and stalks as stalks. �

Proposition 6 (Grossman [22]). The general torsion-free Segré geometry on a
manifold Λ of dimension 2(n− 1) depends on n(n+ 1) arbitrary functions of n+ 1
variables.

Grossman’s proof unfortunately employs the Cartan–Kähler theorem, which is
not constructive. There is no known construction producing the torsion-free Segré
geometries, or even any large family of examples of them. It would be very inter-
esting to classify the homogeneous torsion-free Segré geometries, and those of low
cohomogeneity.

15.2. Segré structures. Just as for normal projective connections, we need to
take care in defining Segré structures.

Definition 20. A local Segré structure on a manifold Λ of dimension 2n is a choice
of an open set Ω ⊂ Λ, two vector bundles U, V on that open set of ranks 2 and n
respectively, and an isomorphism U ⊗ V = TΩ. The rank of a tangent vector is its
rank as a tensor in U ⊗V . Two local Segré structures are equivalent if the give the
same ranks to all tangent vectors. A covered Segré structure is a set of local Segré
structures, equivalent on overlaps of open sets, whose open sets cover the manifold.
One covered Segré structure is a refinement of another if it strictly contains the
other. A Segré structure is a covered Segré structure not strictly contained in any
other covered Segré structure.

The Grassmannian of 2-planes in Cn+2 has the obvious Segré structure, and we
can choose global vector bundles U and V :

TP Gr
(
2,Cn+2

) ∼= P ∗ ⊗
(
Cn+2/P

)
.

Definition 21. A Segré geometry has curvature given by

∇ωµ
ν = Kµab

νIJ

where µ, ν = 0, . . . , n, a, b = 0, 1, I, J = 2, . . . , n. Following Machida & Sato [30]
(who follow Tanaka [37]), we will say that ω is normal if KI01

0KL +KI10
0KL = 0.

Lemma 9 (Machida & Sato [30]). A Segré geometry determines a Segré struc-
ture. Conversely, a Segré structure uniquely determines a normal Segré geometry,
reversing the construction. The construction of each from the other is local and
smooth.

We will not give the proof, which is long but not conceptually difficult, following
Tanaka’s interpretation of Cartan’s method of equivalence. The group SL (n+ 2,C)
acts in the obvious representation on Cn+2. The group Gline is the group of pro-
jective transformations leaving invariant the subspace C2 ⊂ Cn+2, and write Cn

for Cn+2/C2. Under the projection, E → Λ, say e 7→ λ, ω identifies TmM with
g/gline = C2∗ ⊗ Cn. Thereby, ω determines a tensor product decomposition on
each tangent space of Λ. One has to be a little careful, since this is not a splitting
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into vector bundles defined on Λ. Taking any local section of E → M defined on
some open subset of M , say σ : open ⊂ M → E, we can use this prescription to
define a local Segré structure on that open set. This local prescription turns out to
determine a Segré structure.

The bundles U and V are not necessarily globally defined, because the expression

E ×Gline C2

doesn’t make sense: Gline doesn’t act on C2, being only a subgroup of G =
P SL (n+ 2,C). We can define the bundles E ×Gline P1 and E ×Gline Pn−1, which
we think of intuitively as PU and PV .

The distinction between local and global Segré geometries is not always clearly
made, nor is the distinction between Segré structures and Segré geometries. The
space of elements of a Segré structure is the total space of the bundle PU → Λ, and
the fibers are the integral curves.

Proposition 7 (Grossman [22] p. 415). Given a Segré geometry E → Λ, the
1-forms ωI

0 , ω
I
1 are semibasic. The symmetric 2-tensors

∆IJ = ωI
0ω

J
1 + ωJ

1 ω
I
0 − ωJ

0 ω
I
1 − ωI

1ω
J
0

descend from each point of E to determine symmetric 2-tensors at the corresponding
point of Λ. Their span is independent of the choice of point in E, depending only
on the corresponding point of Λ, defining a smooth vector subbundle of Sym2 (TΛ).

Proof. It is an easy calculation that the ∆IJ transform under the action of Gline

as combinations of one another just when the torsion vanishes, since we know how
ω transforms by definition of a Cartan connection; for details see Grossman [22] p.
416. �

Definition 22. Let U2 and V n be vector spaces of dimensions 2 and n respectively.
The Segré variety Σ ⊂ P (U ⊗ V ) is the set of elements of rank 1, i.e. pure tensors
u ⊗ v. In coordinates u0, u1 on U , and vI on V , we have coordinates wI

0 , w
I
1 on

U ⊗ V and the Segré variety is cut out by the equations wI
0w

J
1 = wJ

0w
I
1 .

Definition 23. The group G(U, V ) = (GL (U)×GL (V )) /∆ (where ∆ is the group
of pairs of scalar multiples of the identity of the form

(
λ, λ−1

)
) clearly acts as linear

transformations on U ⊗ V leaving the Segré variety invariant. If dimU = dimV ,
we can also take any linear isomorphisms φ, ψ : U → V , and map g(u ⊗ v) =
ψ−1(v)⊗ φ(u), giving an action of

G′(U, V ) = G(U, V ) t (Iso (U, V )× Iso (U, V )) /∆.

Lemma 10. The group of linear transformations of U ⊗ V preserving the Segré
variety is G(U, V ), unless dimU = dimV , in which case it is G′(U, V ).

The proof is just some linear algebra.

Corollary 7. A Segré structure on an even dimensional manifold (not of dimension
4) is equivalent to a choice of a smoothly varying family of subvarieties in the
projectivized tangent spaces of the manifold, with each variety linearly isomorphic
to the Segré variety. Equivalently, a Segré structure is equivalent to a choice of
a smoothly varying linear subspace of the symmetric 2-tensors isomorphic at each
point to the subspace spanned by the equations cutting out the Segré variety.
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For 4-dimensional manifolds, analoguous to Gr
(
2,C4

)
, we can consider a Segré

structure to be a choice of a family of Segré varieties in the projectived tangent
spaces, together with an analogue of an orientation, picking out which of the two
tensor product factors is which.

Grossman took this view of Segré geometries, as families of Segré varieties, which
seems quite natural. Nonetheless, it is not clear which point of view will make easier
the process of geometrically constructing all of the torsion-free Segré geometries, a
task which has yet to be done.

Proposition 8 (Machida & Sato [30]). Every Segré structure determines and is
determined by a unique normal Segré geometry, through a local construction. In
particular, the concept of torsion-freedom is defined for Segré structures.

15.3. Integrability. Grossman [22] considered in some detail the question of in-
tegrability for torsion-free path geometries. We will summarize his results, which
generalize Cartan’s [9]. Each torsion-free path geometry comes from a torsion-free
Segré structure. This Segré structure has an associated normal Segré geometry. Fels
[17] shows us how to compute the structure equations of the second order structure
E →M , which are precisely the structure equations of the Segré geometry E → Λ.
Therefore, even though we don’t see how to construct explicitly the base manifold
Λ of the Segré structure, i.e. the space of solutions, we can compute its curvature,
which lives on E. Just by differentiating, we can compute the covariant deriva-
tives of all orders of the curvature. Each of these invariants transforms under the
structure group Gline of E → Λ in some representation. If we can cobble together
a rational invariant (out of these covariant derivatives) which lives in the trivial
representation of Gline, then it will descend to a function on the unknown manifold
Λ, i.e. on the space of integral curves, and therefore it must be a constant on each
integral curve. As Cartan and Grossman prove, this process generically succeeds,
because there are invariants arising in this manner which, for generic torsion-free
Segré structures, have differential nonzero at a generic point. Indeed, in this man-
ner one can find enough conservation laws to reduce the determination of integral
curves to quadrature, integrating the original system of ordinary differential equa-
tions. Thus we have “integrated by differentiating.” This process can fail, but only
when too many invariants of the curvature and its covariant derivatives are con-
stant on E. For scalar equations (i.e. surface path geometries), Cartan’s methods
[8, 3] show that either there is a conserved quantity obtained from the differen-
tial equations, or the differential equation has a positive dimensional Lie group of
symmetries, so we can hope to reduce the equation using Lie’s method. More com-
plicated phenomena are observed in Grossman’s thesis [22], where the constancy
of one invariant, at least in low dimension, allows one to calculate further higher
order invariants which generically still ensure integrability. However, in general it is
unknown whether every torsion-free system of equations must either be integrable
with differential invariants as conservation laws or have a positive dimensional Lie
group of symmetries.

16. Rational stalks

Given a path geometry on a complex manifold M2n+1, let Σ ⊂ M be a stalk.
Take the Cartan geometry E|Σ → Σ, which is modelled on Gpt/Gpt,line. The ωI

1

are semibasic for this bundle, while ω1
0 = ωI

0 = 0. But at least one ω1
0 or ωI

0 term
appears in all of the curvature of E →M . Therefore E|Σ is flat.
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Theorem 18. A stalk of a path geometry on a complex manifold M2n+1 is rational
just when it is compact with fundamental group defying Gpt, and this occurs just
when its Cartan geometry is isomorphic to the Cartan geometry of the stalks of the
model.

Proof. The Cartan connection is flat, so by theorem 10 on page 15 our compact
stalk must be a locally Klein geometry Γ\Gpt/Gpt,line. But Gpt/Gpt,line = Pn−1,
so Γ must be a discrete group of projective linear transformations acting as deck
transformations on projective space. However, every linear transformation has an
eigenspace, so every projective linear transformation has a fixed point. Therefore
Γ = {1}. �

Lemma 11. The normal bundle of a rational stalk (as a submanifold of M) is
trivial O⊕n.

Proof. First consider the case of the model. Each Pn fiber of PTPn+1 lives inside the
open set PTAn+1 = An+1×Pn, so clearly has trivial normal bundle νPn = O⊕n+1.
Next, in the general case, construct the normal bundle as

νMΣ =
(
E|Σ ×

(
gpt/gpt,line

))
/Gpt,line.

Therefore νMΣ = O⊕n+1. But E|Σ → Σ is isomorphic to the model Gpt → Pn. �

Theorem 19. If the space of elements of a path geometry is connected, and all
stalks are compact, and one stalk has fundamental group defying Gpt, then all stalks
are rational, and the space of points is a smooth complex manifold, and the map
taking an element to its point is smooth.

Proof. Follows immediately from Kodaira theory. �

Lemma 12. If the stalks of a path geometry are rational, then the invariant T I
JKL

vanishes.

Proof. Following Fels [17] p. 235, we compute that

∇T I
JKL = dT I

JKL +
(
ω0

0 + ω1
1

)
T I

JKL +ωI
MTM

JKL−T I
MKLω

M
J −T I

JMLω
M
K −T I

JKMωM
L

is semibasic for the map E → M . Pick a number N from 2, . . . , n. Consider the
copy of sl (2,C) ⊂ Gpt given by the equations ω1

1 + ωN
N = 0 together with setting

every ω•• to 0 except for ω1
1 , ω

N
1 , ω

1
N , ω

N
N . Calculate that

dT I
JKL = T I

JKLω
1
1

(
δI
N − 1− δN

J − δN
K − δN

L

)
.

If I 6= N , then clearly this is a negative line bundle. Therefore T I
JKL = 0 as long

as I 6= N . But if I = N , then switch to a different choice of index N . �

Theorem 20. All of the stalks of a path geometry are rational just when then
the space of points is a smooth complex manifold, and the integral curves of the
path geometry project to the geodesics of a unique normal projective connection.
In particular, near any point of the point space, the projected integral curves are
precisely the geodesics of some affine connection.

Proof. Kodaira’s theorem ensures that the space of stalks is a complex manifold.
Following Fels [17] p. 238, the vanishing of T I

JKL is precisely the condition under
which the path geometry is locally that of a projective connection on some complex
manifold, which is locally identified with Kodaira’s moduli space. �
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Theorem 21. A path geometry is locally isomorphic to some path geometry with
rational stalks, and also to some path geometry with rational integral curves, just
when the path geometry is locally isomorphic to

d2y

dx2
= 0.

Proof. This is a long calculation: once the invariants T I
JKL and ]t are forced to

vanish, then all of the remaining invariants vanish, and then the Cartan geometry
on E is flat. �

Finally, we will prove theorem 3 on page 10: the only path geometry on a
connected manifold whose integral curves and stalks are all rational is the model
path geometry of lines in projective space.

Proof. The stalks are rational, so the path geometry is a normal projective connec-
tion on the space of points S, which is a smooth manifold. The normal projective
connection is flat, so a covering space S̃ of S is mapped to projective space, and
the normal projective connection pulled back. The integral curves of the path ge-
ometry project to the geodesics, so the geodesics are rational curves. Because each
geodesic is simply connected, and admits no smooth quotient curve, each geodesic
in S̃ maps bijectively to a projective line. Since any two points in projective space
lie on a projective line, the map S̃ → Pn+1 is a surjective local diffeomorphism.

Take a point s ∈ S̃, and suppose it is mapped to a point p ∈ Pn+1. Let B be the
blowup of Pn+1 at p. So points of B are pairs (`, q) with ` a line through p and q a
point of that line. Given (`, q), let ˜̀ be the geodesic through s which is mapped to
`. Since the map S̃ → Pn+1 is bijective on each geodesic, there is a unique point q̃
on ˜̀mapping to q. Map (`, q) ∈ B → q̃ ∈ S̃. Clearly the map has image consisting
precisely in the points which lie on a geodesic through s. Moreover, B is compact,
so the image of this map must be as well. Therefore the geodesics through any
point of S̃ cover a compact subset of S̃. The composition B → S̃ → Pn+1 is the
blowup map, so a local biholomorphism on a dense open set. Therefore B → S̃
is holomorphic, and on some open set a local biholomorphism. By Sard’s lemma,
the map B → S̃ is onto. Therefore S̃ is compact, and the map S̃ → Pn+1 is a
biholomorphism. �

17. Conclusion

How can we apply these ideas in algebraic geometry? If we have a collection
of rational curves in a complex manifold S, and the collection is locally described,
near one of these curves, as the integral curves of a (possibly multivalued) smooth
path geometry on M = PTS, then because the stalks are rational these must be the
geodesics of a projective connection. But because the integral curves are rational,
this projective connection must be flat, so S is locally identified with Pn, up to local
linear projective transformations, and the rational curves identified with projective
lines. So families of rational curves must pass through some singularity of S, or
be singular, or be laid out in some manner quite different from a path geometry, if
S 6= Pn.

Some open problems:
(1) Write software to symbolically integrate “generic” torsion-free systems of

ordinary differential equations.
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(2) For torsion-free systems for which there are not enough invariants to in-
tegrate (using curvature and its covariant derivatives to generate integrals
of motion), is there always some other process to integrate the equations,
by combination of those integrals of motion together with symmetry reduc-
tions?

(3) Find a straightness criterion for higher order equations, for example third
order scalar equations [10, 12, 35], fourth order scalar equations [4, 18], and
third order systems [16]. Dunajski and Todd [15] have recent solved this
problem for n-order scalar equations.

(4) One can adapt the methods of this article to a host of Cartan connections
and G-structures; for example for 2-plane fields on a 5-manifold, satisfying
a natural nondegeneracy condition (see Cartan [6]), one can ask when their
bicharacteristic curves are rational. The crucial idea is to look at a copy of
sl (2,C) appearing in the structure equations, and see how the torsion (or
curvature) varies under it, which we can read off directly from structure
equations.

(5) Can something be said about ordinary differential equations whose integral
curves are elliptic? The methods employed here seem powerless, since line
bundles on elliptic curves have moduli, so we couldn’t expect to read them
off from the structure equations.

(6) The requirement that a Segré structure be torsion-free is a collection of first
order partial differential equations, which has a lot of local solutions (the
Cartan–Kähler theorem tells us so). But there is no technique for construct-
ing solutions. We are not interested in flat solutions (i.e. locally isomorphic
to the Grassmannian of 2-planes in a vector space), but quite interested to
find the nonflat examples with largest possible symmetry groups, which
correspond to very special systems of ordinary differential equations.

(7) Cartan’s concept of “integrating by differentiating” applies to certain fam-
ilies of ordinary differential equations, which he refered to as classe C [9].
Is there actually a relation between straightness and class C? Presumably
straightness implies class C, but comments in Bryant [4] p. 35 suggest that
there is more to class C than straightness.

(8) We will follow this paper with a paper demonstrating constraints on the
characteristic classes of closed Kähler manifolds admitting path geometries.
In low dimensions, you might hope to classify the projective 3-folds which
admit path geometries, as Jahnke and Radloff [25, 24, ?] did for normal
projective connections and conformal structures.

(9) Perhaps if the path geometry is singular, but all the integral curves are still
rational, there is still some local information.
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