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GEOMETRY OF THIRD ORDER ODE SYSTEMS

Alexandr Medvedev

Abstract. We compute cohomology spaces of Lie algebras that describe
differential invariants of third order ordinary differential equations. We prove
that the algebra of all differential invariants is generated by 2 tensorial
invariants of order 2, one invariant of order 3 and one invariant of order 4.
The main computational tool is a Serre-Hochschild spectral sequence and
the representation theory of semisimple Lie algebras. We compute differential
invariants up to degree 2 as application.

1. Introduction

The main aim of the article is to compute cohomology spaces which describe
invariants of a system of 3rd order ODEs. Geometry of differential equations of finite
type is studied in the paper [3] and is based on the interpretation of differential
equation as first-order geometric structures on filtered manifolds.

A filtered manifold is a smooth manifold equipped with a filtration of the tangent
bundle compatible with the Lie bracket of vector fields. The theory of geometric
structures on filtered manifold was developed in the works of N. Tanaka [8, 9]
and T. Morimoto [7]. We recall that a system of a filtered manifold is defined as a
graded nilpotent Lie algebra associated with the filtration of the tangent space at
a fixed point. It plays the key role in the study of structures on filtered manifolds.
The symbol of a geometric structure is defined in a similar way. It consists of a
graded Lie algebra g with the negative part g− =

∑
i<0 gi equal to the symbol

of a filtered manifold and of a certain subalgebra g0 of Der0(g−) defined by the
geometric structure.

If some additional conditions on the Lie algebra g are satisfied, then every
geometric structure on a filtered manifold with symbol g can be equipped in a
natural way with a so-called normal Cartan connection. In particular this allows to
solve the problem of local equivalence of these structures and to describe differential
invariants for each structure of this kind. It is known (see [10]) that the generators
in the algebra of differential invariants are in the one-to-one correspondence with
the positive part of the cohomology space H2(g−, g). Thus, one of the major steps
in study of geometric structures on filtered manifolds is the computation of this
space.

2000 Mathematics Subject Classification: primary 34A26; secondary 17B56, 53B15.
Key words and phrases: geometry of ordinary differential equations, normal Cartan connections,

cohomology of Lie algebras.

http://www.emis.de/journals/AM/


352 A. MEDVEDEV

In this paper we compute explicitly cohomology space H2(g−, g) in the case,
when the Lie algebra g corresponds to an arbitrary system of 3rd order ODEs. The
case of a single ordinary differential equation is studied in [1]. In the cases of n ≥ 1
ordinary differential equations of second order and a single equation of third order
the Lie algebra g is simple, and the computation of cohomology spaces H2(g−, g)
can be done with the help of Kostant theorem [6].

We consider the case of 3rd order ODEs with the number of equations two
or more. In this case the symbol g of a system of 3rd order ODEs is no longer
semisimple. That is why Kostant theorem is not applicable. To compute H2(g−, g)
space we apply Serre spectral sequence defined by the abelian ideal of g. This
sequence stabilizes in the second term, so that we can obtain our results.

2. System of 3rd order ODEs symbol

A symbol g of system, which consists of m equations of (n+ 1)-order, is equal
to the semidirect product of the Lie algebra sl2(R)× glm(R) and an abelian ideal
V . The ideal V has form Vn ⊗W , where Vn is an irreducible sl2(R)-module of
dimension n+ 1 and W is the standard representation of glm(R). Let us denote a
Lie algebra sl2(R)× glm(R) as a.

This article is dedicated to studying third order equation. We work with the
following symbol:

g = (sl2(R)× glm(R))i (V2 ⊗W ) .
Let us fix a basis of the algebra g in the following way. Let x, y, h be the standart

basis if an algebra sl2(R) with relations:

[x, y] = h , [h, x] = 2x , [h, y] = −2y .
In the matrix form this basis is the following:

x =
(

0 1
0 0

)
, h =

(
1 0
0 −1

)
, y =

(
0 0
1 0

)
.

Let vectors e0, e1, e2 define a basis of the module V2, which is fixed by relations
xei = ei−1. We denote the standart basis of the vector space W and the induced
basis of the Lie algebra glm(R) as Ei and Eij . We have equality EijEi = Ej .

Let us define a grading of the Lie algebra g in the following way:

g1 = 〈y〉 ,
g0 = 〈h,Eij〉 ,

g−1 = 〈x〉+ 〈e2 ⊗W 〉 ,
g−2 = 〈e1 ⊗W 〉 ,
g−3 = 〈e0 ⊗W 〉 .

According to results of [3], we have the correspondence between invariants of
an ordinary differential equation and the positive part of the second cohomology
space H2(g−, g). We use Serre spectral sequence [4] to compute this cohomology
space. Let Ep,qi be spectral sequence corresponding to the ideal V .
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The following lemmas are either elementary or easy to prove by direct computa-
tion.

Lemma 1. The space of cohomology classes H2(g−, g) is the direct sum of two
spaces E1,1

2 and E0,2
2 , where E1,1

2 and E0,2
2 have the following form:

E1,1
2 = H1(Rx,H1(V, g)

)
,

E0,2
2 = H0(Rx,H2(V, g)

)
.

Let V = Vn1 ⊕ Vn2 ⊕ · · · ⊕ Vnk be the irreducible decomposition of an arbitrary
sl2-module V . It is easy to see that

Hn(Rx, V ) = ⊕ki=1H
n(Rx, Vni) .

Lemma 2. Let Vm be an irreducible sl2-module and v0 and vm be the vectors of
Vm such that x · v0 = 0 and y · vm = 0. Then

H0(Rx, Vm) = Rv0 ,

H1(Rx, Vm) = Rx∗ ⊗ vm .

In other words Lemma 2 is equivalent to the following:

H0(Rx, Vm) = Invx(Vm) ,
H1(Rx, Vm) = Invy(Vm) .

We describe cohomology spaces Hn(V, g) by means of the Spenser operator S:

Sn : Hom(∧nV, α)→ Hom(∧n+1V, V ) ,

Sn(ϕ)(v1 ∧ v2 ∧ · · · ∧ vn+1) =
n+1∑
i=1

(−1)iϕ(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vn+1)vi .

Lemma 3. We have H0(V, g) = V and

Hn(V, g) = kerSn⊕Hom(∧nV, V )/ imSn−1 .

Next lemma allows us to calculate the degree of cohomology space vectors.

Lemma 4. For any cohomology class [c] ∈ Hk(g−, g) we have

h · c = αc , z · c = βc ,

where z =
∑n
i=1 E

i
i . Then cohomology class [c] is part of Hk

p (g−, g) space, where

p = −2β − α

2 .

Lemma 5. Map S1 is injective.

Proof. Nagano [5] lists all linear reductive Lie algebras, for which map S1 has
non-zero kernel. The algebra a ⊂ gl(V ) is not present there. This proves the
lemma. �
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3. Characterization of the space E1,1
2

In this part we describe E1,1
2 part of the cohomology space H2(g−, g).

Theorem 1. The space E1,1
2 has the following form

x∗ ⊗
(
Ry2 ⊗ gl(W ) + Ry ⊗ sl(W )

)
.

Elements ϕ ∈ E1,1
2 which have form ϕ : Rx → Ry ⊗ sl(W ) have degree 2 and

elements which have form ϕ : Rx→ Ry2 ⊗ gl(W ) have degree 3.

Proof. We know that E1,1
2
∼= H1(Rx,H1(V, g)). The space H1(V, g) is equal to:

kerS1⊕Hom(V, V )/ imS0 .

From Lemma 5 we have kerS1 = 0. The operator S0 has the following form:

S0 : Hom(R, a)→ Hom(V, V ) , S0(ϕ)(v) = −ϕ(1)(v) .

Thus imS0 = a. Therefore:

E1,1
2 = H1(Rx, gl(V )/a) = Invy

(
gl(V )

)
.

The space Invy
(
gl(V )

)
has the following structure

Ry2 ⊗ gl(W )⊕ Ry ⊗ sl(W ) .

This fact follows from the decomposition

gl(V ) ∼= V ∗2 ⊗W ∗ ⊗ V2 ⊗W ∼= (V4 ⊕ V2 ⊕ V0)⊗ gl(W ) .

Applying Lemma 4 we get degree of these cohomology elements. This completes
the proof. �

4. Characterization of the space E2,0
2

Let us describe the space InvxH2(V, g). As we know,

H2(V, g) = kerS2⊕Hom(V ∧ V, V )
imS1 .

The space kerS2 is described by the following theorem.

Theorem 2. The space kerS2 is equal as an a-module to a space:

V0 ⊗ S2(W ∗) + V2 ⊗ idW , if m = 2 ,
V0 ⊗ S2(W ∗) , if m ≥ 3 .

Proof. We show that V0 ⊗ S2(W ∗) ∈ kerS2. The module V2 is equal to algebra
sl2(R) as an sl2(R)-module. The isomorphism has the following form:

(1) v0 → −2x, v1 → h, v2 → y .

Isomorphism (1) induces an isomorphism α : V ∧ V → sl2:

α(v1 ∧ v2) = [v1, v2] .
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For every bilinear form β ∈ S2(W ∗) define the cochain αβ : ∧2V → sl2(R)⊕glm(R)
in the following way:

αβ(v ⊗ v, v′ ⊗ w′) = [v, v′] · β(w,w′) +K(v, v′)β̂(w,w′) ,

where the form β̂ ∈ §2W ∗ ⊗ gl(W ) is

β̂(w,w′)w′′ = β(w,w′′)w′ − β(w′, w′′)w′ .

A form K(v, v′) is the Killing form of sl2(R). Let us verify that S2 α = 0. Denote a
cyclic sum of three variables as { }. We have:

S2 α(v ⊗ w,v′ ⊗ w′, v′′ ⊗ w′′) = {[[v, v′], v′′]⊗ β(w,w′)w′′}
+ {K(v, v′)v′′ ⊗ (β(w,w′′)w′ − β(w′, w′′)w)}

= {([[v, v′], v′′] +K(v′, v′′)v −K(v, v′′)v′)⊗ β(w,w′)w′′}.

Moreover, it is easy to verify that:

[[v, v′], v′′] +K(v′, v′′)v −K(v, v′′)v′ = 0 .

Direct computation shows that V0 ⊗ S2(W ∗) is a unique cohomology class in case
m > 2. In the case m = 2 computation shows that dim kerS2 = 6 and it has a
structure given above. �

Now we describe the structure of E0,2
2 = InvxH2(V, g).

Theorem 3. The space E0,2
2 has the following parts in the direct sum decomposition

Space contained in degree

V6 ⊗ ∧2(W ∗)⊗W Hom(∧2V, V )/ imS1 0
V4 ⊗ S2

0(W ∗)⊗W Hom(∧2V, V )/ imS1 0
V4 ⊗ ∧2(W ∗)⊗W Hom(∧2V, V )/ imS1 0
V2 ⊗ ∧2

0W
∗ ⊗W Hom(∧2V, V )/ imS1 1

V0 ⊗ S2
0(W ∗)⊗W Hom(∧2V, V )/ imS1 2

V0 ⊗ S2(W ∗) kerS2 ⊂ Hom(∧2V, a) 4
V2, m = 2 kerS2 ⊂ Hom(∧2V, a) 3

Here we denote traceless part of spaces S2(W ∗)⊗W and ∧2(W ∗)⊗W as S2
0(W ∗)⊗

W and ∧2
0(W ∗)⊗W respectively.

Proof. The space Hom(∧2V, V ) has the following sl2(R) decomposition:

Hom(∧2V, V ) =
(
S2(V ∗2 )⊗ ∧2W ∗ + ∧2V ∗2 ⊗ S2(W ∗)

)
⊗ V2 ⊗W

=
(
(V4 ⊕ V0)⊗ V2

)
⊗ ∧2W ∗ ⊗W + V2 ⊗ V2 ⊗ S2(W ∗)⊗W

= (V6 ⊕ V4 ⊕ 2V2)⊗ ∧2W ∗ ⊗W + (V4 ⊕ V2 ⊕ V0)⊗ S2(W ∗)⊗W .
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Note that the space imS1 is equal to Hom(V, a), which has the following struc-
ture:

Hom(V, a) = V ∗2 ⊗W ∗ ⊗ (V2 + V0 ⊗W ∗ ⊗W ) = (V4 ⊕ V2 ⊕ V0)⊗W ∗

+ V2 ⊗W ∗ ⊗W ∗ ⊗W .

Let α ∈ Hom(V, a). Then the map S1(α) ∈ Hom(V ∧ V, V ) acts in the following
way:

(2) S1(α)(v1 ⊗ w1, v2 ⊗ w2) = α(v1 ⊗ w1) · v2 ⊗ w2 − α(v2 ⊗ w2) · v1 ⊗ w1 .

We see from the formula (2) that

Hom(∧2V, V )/(V ∗2 ⊗W ∗ ⊗W ∗ ⊗W ) =
= (V6 ⊕ V4 ⊕ V2)⊗ ∧2W ∗ ⊗W ⊕ (V4 ⊕ V0)⊗ S2(W ∗)⊗W.

It follows from (??) that

V2 ⊗W ∗ ⊂ V2 ⊗ ∧2W ∗ ⊗W ,

V0 ⊗W ∗ ⊂ V0 ⊗ S2(W ∗)⊗W .

The space V2⊗∧2W ∗⊗W/V2⊗W ∗ is identified with traceless part of V2⊗∧2W ∗⊗W
space, the space V0 ⊗ S2(W ∗) ⊗W/V0 ⊗W ∗ is identified with traceless part of
V0 ⊗ S2(W ∗)⊗W . �

5. Normal Cartan connection

Consider a system of third-order ordinary differential equations of the form

(3) (yi)′′′ = f i
(
x, yj , (yk)′, (yl)′′

)
,

where i, j = 1, . . . ,m with m ≥ 2. It determines a holonomic differential equation
E ⊂ J3(Rm+1, 1) whose solutions are 1-dimensional submanifolds in Rm+1. The
functions

x, y1, . . . , ym, p1 = y1
1 , . . . , pm = y1

m , q1 = y1
1 , . . . , qm = y1

m

form a coordinate system on the equation E .
We choose the following co-frame on E :

θx = dx ;
θi−1 = dqi − f i(x, y, p, q) dx , i = 1, . . . ,m ;
θi−2 = dpi − qi dx , i = 1, . . . ,m ;
θi−3 = dyi − pi dx , i = 1, . . . ,m .

We use below Einstein summation convention. For any function F ∈ C∞(E), we
have

dF = dF

dx
θx + ∂F

∂yi
θi−3 + ∂F

∂pi
θi−2 + ∂F

∂qi
θi−1 ;
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where
dF

dx
= ∂F

∂x
+ pi

∂F

∂yi
+ qi

∂F

∂pi
+ f i

∂F

∂qi
.

The coframe θ has the following structure equations:
dθx = 0
dθi−3 = θx ∧ θi−2

dθi−2 = θx ∧ θi−1

dθi−1 = ∂f i

∂yj
θx ∧ θi−3 + ∂f i

∂pj
θx ∧ θi−2 + ∂f i

∂qj
θx ∧ θi−1.

From [3] we know that there is a Cartan connection on E with model G/H that
is naturally associated with the equation (3). The group G is a semisimple product:

G = (SL(2,R)×GL(m,R))i (V (2)⊗W ) ,
Let h be the nonnegative part of g:

h = g0 + g1 .

Assume that H is a subgroup of G with the Lie algebra h.

H =
(
a b
0 a−1

)
×A , a ∈ R∗ , b ∈ R , A ∈ GLm(R) .

Let us define the family of Cartan connections adapted to the equation (3). We
call a co-frame ωx, ωi−1, ω

i
−2, ω

i
−3 adapted to equation (3) if the following conditions

holds:
〈ωi−3〉 = 〈θi−3〉 ,

〈ωi−3, ω
i
−2〉 = 〈θi−3, θ

i
−2〉 ,

〈ωi−3, ω
i
−2, ω

i
−1〉 = 〈θi−3, θ

i
−2, θ

i
−1〉 ,

〈ωi−3, ω
i
−2, ω

x〉 = 〈θi−3, θ
i
−2, θx〉 .

We can express this conditions in coordinate free manner. First, there is a filtration
C = C−1 ⊂ C−2 ⊂ C−3 = TE ,

where C−i−1 = [C−i, C−1]. There is a one-dimensional distribution E whose
integral curves are the lifts of solutions of equation (3). Let π2

1 be the canonical
projection from the second jet space J2(M) to the first jet space J1(M). We define
kernel of the projection π2

1 as F . This kernel F is an m-dimensional distribution.
The distribution C is the direct sum of the distributions E and F . The distributions
E, V have the form

E =
〈 ∂

∂x
+ pi

∂

∂yi
+ qi

∂

∂pi
+ f i

∂

∂qi

〉
;

V =
〈 ∂

∂qi

〉
,

where i, j = 1, . . . ,m. We say that coframe is adapted to the equation (3) if
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– the annihilator of forms ωi−3, ωi−2, ωx is V ;
– the annihilator of forms ωi−3, ωi−2, ωi−1 is E;
– the annihilator of forms ωi−1 is C−2.

Let π : P → E be a principle H-bundle. We say that a Cartan connection ω on a
principal H-bundle is adapted to equation (3), if for any local section s of π the
set {s∗ωx, s∗ωi−1, s

∗ωi−2, s
∗ωi−3} is an adapted co-frame on E .

Now any adapted Cartan connection can be written down explicitly. Let ω : TP →
g be the Cartan connection that we are looking for. We shall write ω as follows:

ω = ωi−3v0 ⊗ ei + ωi−2v1 ⊗ ei + ωi−1v2 ⊗ ei + ωxx+ ωhh+ ωije
j
i + ωhh .

Lemma 6. We can uniquely define a section s : E → P by the following conditions

s∗ωi−3 = θi−3 ,

s∗ωh ≡ 0 mod 〈θi−3, θ
i
−2, θ

i
−1〉 ,

s∗ωx ≡ −θx mod 〈θi−3, θ
i
−2, θ

i
−1〉 .

Now we define ω : P → g by the formula ω = s∗ω. Let Ω be the curvature tensor
of ω, and let Ω = s∗Ω. We see that

Ω = Ωi−3v0 ⊗ ei + Ωi−2v1 ⊗ ei + Ωi−1v2 ⊗ ei + Ωxx+ Ωhh+ Ωjie
i
j + Ωyy

= (dωi−3 + ωx ∧ ωi−2 + 2ωh ∧ ωi−3 + ωij ∧ ω
j
−3)v0 ⊗ ei

+ (dωi−2 + ωx ∧ ωi−1 + ωij ∧ ω
j
−2 + 2ωy ∧ ωi−3)v1 ⊗ ei

+ (dωi−1 − 2ωh ∧ ωi−1 + ωij ∧ ω
j
−1 + 2ωy ∧ ωi−2)v2 ⊗ ei

+ (dωx + 2ωh ∧ ωx)x+ (dωh + ωx ∧ ωy)h

+ (dωij + ωik ∧ ωkj )eji + (dωy − 2ωh ∧ ωy)y .

Now we define an arbitrary Cartan connection adapted to equation (3) as

ωi−3 = θi−3 ;

ωi−2 = αijθ
j
−2 +Ai−3

j θj−3 ;

ωi−1 = βijθ
j
−1 +Bi−2

j θj−2 + Ci−3
j θj−3 ;

ωx = −θx + djθ
j
−2 + e−3

j θj−3 ;

ωh = F−1
j θj−1 + F−2

j θj−2 + F−3
j θj−3 ;

ωij = Gi,xj θx +Gi,−1
jk θk−1 +Gi,−2

jk θk−2 +Gi,−3
jk θk−3 ;

ωy = Hxθx +H−1
j θj−1 +H−2

j θj−2 +H−3
j θj−3 .

We assign a degree to each of the coefficients in the above expressions by assuming
that all these equalities are homogeneous. We will compute the normal Cartan
connection by applying normal conditions on curvature degree by degree.
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Degree 0. There are two following differentials in this degree:
dωi−3 = θx ∧ θi−2 ;

dωi−2 = θx ∧ θi−1 +Aijθ
x ∧ θj−2 + dAij ∧ θ

j
−3 .

We have only two nonzero components:
Ωi−3 mod 〈θ−2 ∧ θ−2, θ−3〉 = θx ∧ θi−2 − αijθx ∧ θ

j
−2 ;

Ωi−2 mod 〈θ−2, θ−3〉 = θx ∧ θi−1 − βijθx ∧ θ
j
−1 .

We see from these equalities that we can make all Degree 0 coefficients equal to
zero. Thus, we obtain αij = δij and βij = δij .

Degree 1. We will use one additional differential:

dωi−1 = ∂f i

∂qj
θx ∧ θi−1 + ∂f i

∂pj
θx ∧ θi−2 + ∂f i

∂yj
θx ∧ θi−3 .

We have only 4 nonzero components. The first component is:

Ωi−3 mod 〈θ−2 ∧ θ−3, θ−3 ∧ θ−3〉 =

− θx ∧Ajiθ
j
−3 + djθ

j
−2 ∧ θi−2 +Gi,xj θx ∧ θj−3 +Gi,−1

jk θk−1 ∧ θ
j
−3 + 2F−1

j θj−1 ∧ θi−3 .

We can make every component of Ωi−3 equal to 0 and get

dj = 0 , Gi,xj = Aij , G
i,−1
jk = −2δjiF

−1
k .

The second component is:

Ωi−2 mod 〈θ−2 ∧ θ−2, θ−3〉 =

Aijθ
x ∧ θj−2 + d−2

j θj−2 ∧ θi−1 − θx ∧Bijθ
j
−2 +Gi,xj θx ∧ θj−2

+Gi,−1
jk θk−1 ∧ θ

j
−2 + 2H−1

j θj−1 ∧ θi−2 .

Zero condition on this part of curvature implies:
Bij = 2Aij , G

i,−1
jk = 0, F−1

k = 0 .
The third component is:

Ωi−1 mod 〈θ−2, θ−3〉 =
∂f i

∂qj
θx ∧ θj−1 +Bijθ

x ∧ θi−1 − 2F−1
j θj−1 ∧ θi−1 +Gi,xj θx ∧ θj−1 +Gi,−1

jk θk−1 ∧ θ
j
−1 .

Now zero conditions give us:

Aij = −1
3
∂f i

∂qj
, Gi,−1

jk = 2F−1
k δij .

The last component Ωx mod 〈θ−2, θ−3〉 is equal to zero.
Let us summarize conditions on the Cartan connection we obtain in Degree 1:

Aij = Gi,xj = 1
2B

i
j = −1

3
∂f i

∂qj
, F−1

j = Gi,−1
jk = 0 .
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Degree 2. Starting from this degree calculation becomes more complicated. The-
refore we will list only parts of calculation we need to obtain invariants and the
normal form of the Cartan connection.

Ωi−2 mod 〈θ−2 ∧ θ−3, θ−3 ∧ θ−3〉 =
dAij
dx

θx ∧ θj−3 +
∂Aij
∂qk

θk−1 ∧ θ
j
−3 − θx ∧ Cijθ

j
−3 + ejθ

j
−3 ∧ θi−1 +Gi,xj θx ∧Ajkθ

k
−3

+ 2Hxθx ∧ θi−3 + 2H−1
j θj−1 ∧ θi−3 +Gi,−2

jk
θk−2 ∧ θ

j
−2 +Gi,−1

jk
θ−1
k ∧A

j
l θ
−3
l .

In coefficient θk−1 ∧ θ
j
−3 we obtain the first invariant. We denote it by I2:

∂Aij
∂qk
− ejδik + 2H−1

k δij .

Explicitly, invariant I2 will be the following:

I2 = tr0

( ∂2f i

∂qj∂qk

)
,

there by tr0 we denote traceless part of the tensor. Coefficient θx ∧ θj−3 we can
make equal to zero and get:

Cij =
dAij
dx

+AikA
k
j + 2Hkδij .

In coefficient θx∧θj−2 of the curvature part Ωi−1 we obtain the generalized Wilczynski
invariant (see [2]). We denote it by W2.

Ωi−1 mod 〈θ−2 ∧ θ−2, θ−3〉 =

∂f i

∂pj
θx ∧ θj−2 + 2

dAij
dx

θx ∧ θj−2 + 2
∂Aij
∂qk

θk−1 ∧ θ
j
−2 + Cijθ

x ∧ θi−2 − 2F−2
j θj−2 ∧ θi−1

+Gi,−2
jk θk−2 ∧ θ

j
−1 + 2Hxθx ∧ θi−2 + 2H−1

j θj−1 ∧ θi−2 +Gi,xk θx ∧Bkj θ
j
−2 .

The coefficient θx ∧ θj−2 is the following:

∂f i

∂pj
+ 2

dAij
dx

+ Cij + 2Hx + 2AikAkj = ∂f i

∂pj
+ 3

dAij
dx

+ 3AikAkj + 4Hxδij .

The second degree generalized Wilczynski invariant is the following:

W2 = tr0

(∂f i
∂pj
− d

dx

∂f i

∂qj
+ 1

3
∂f i

∂qk

∂fk

∂qj

)
.

From Theorems 1 and 3 we know that I2 and W2 is are the only invariants in
Degree 2.
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