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Chapter 1

Basic Properties of Lie Algebras

1.1 Definition

Let K be a field. With a K-space we mean a vector space over K. For K-space V', End(V)
denotes the ring of K-linear maps from V to V. For a,b € End(V) define [a, b] := ab — ba.
[a, b] is called the commutator or bracket of a and b. The bracket operation has an amazing

property
[a, [b, c]] + [b, e, a]] + [¢, [a,b]] = 0

for all a,b,c € End(V). Indeed,
[a, [b,c]] + [b, [, a]] + [c, [a, b]]
= a(bc — cb) — (be — cb)a + b(ca — ac) — (ca — ac)b + c(ab — ba) — (ab — ba)c
= abc — acb — bea + cba + bea — bac — cab + acb + cab — cba — abe + bac
=0

Also note that [,] is K-bilinear and that [a,a] = 0. These observations motivate the
following definitions:

Definition 1.1.1 [def:algebra] Let K be a field, A a (left) vector space over K and - :
Ax A— A a K-bilinear map. Then (A,-) is called a K-algebra. If - is associative, then A
1s called an associative algebra.

Definition 1.1.2 [def: lie algebra] A K-algebra (A,[,]) is called a Lie algebra over K
provided that

(i) [a] [,] is symplectic, that isla,a] =0 for all a € A.
(ii) [b] [,] fullfills the Jacobi identity
[a, [b, c]] + [b, [e, a]] + [e, [a, b]] =0

for all a,b,c € A.
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From now on K is always a field and L a Lie algebra over K.

The prime example for a Lie algebra is (End(V),[,]). We denote this Lie algebra by
gl(V). L is called abelian if [a,b] = 0 for all a,b € L. Any K-space V' becomes an abelian
Lie algebra if one defines [a,b] = 0 for all a,b € V.

Let (A,-) be any associative K-algebra and define [a, b] := ab — ba for all a,b € A. Just
as for End(V') none shows that (A,[,]) is a Lie algebra over K. We denote this Lie algebra

by [(A).
Similar as for groups, rings and modules one defines homomorphisms, subalgebras, gen-
erations, ideals, .... For example a subalgebra of an algebra A is a K-subspace I of A such

that i-j € I for all 4,57 € I. Note that this equivalent to requiring that (I,-) is K-algebra.
If I is a K-subspace of A with i-a € I and a-i € [ for all a € A,i € I then [ is called
an ideal. In this case the quotient A/I is a K-algebra. The kernel ker ¢ of an homomor-
phism ¢ : A — B of K-algebras is an ideal in A and the First Isomorphism Theorem holds:
A/ ker ¢ = ¢(A) as K-algebras.

In general one needs to distinguish between left and right ideals. This is not necessary
for Lie algebras:

Lemma 1.1.3 [alternating]
(a) [a] [,] is alternating, that is [z,y] = —[y,x] for all z,y € L.

(b) [b] Let I be a K-subspace of L. Then I is an ideal (in L) iff I is a right ideal and iff
1 is a left ideal.

Proof: () 0= [z +y,z+y]=[z,2]+[z,9] + [y, 2] + [y,y] = [z, 9] + [y, 2].
follows immediately from @ U

We remark that if char K # 2, then xy = —yx for all z,y in an algebra A implies zz = 0.
Indeed xx = —zx and so 2zx = 0. As 2 is invertible we get za = 0.
Let V be a K-space and W a set of subspaces of V with 0 € W and V € W and W. Put

End(W) = {¢ € End(V) | ¢(W) < W YW € W}

Note that End(W) is a subalgebra of End(V). We denote the corresponding Lie algebra
by gl(W). Suppose that V has a finite basis (v1,v2,...,v,) and W consist of the n + 1
subspace Kvy + Kvg 4+ Kv;, 0 < i < n. The reader should verify that gl(J}V) now consist of
all the upper triangular matrices (with respect to the given basis).

Let f be a bilinear form on V, that is a K-bilinear function f : V x V — K. Define

d(f) ={aecgl(V)]| flav,w) + f(v,aw) =0 Vv,w e V

We claim that cI(f) is a Lie subalgebra of gl(V'). Clearly it’s a K-subspace. Let a, 8 €
cl(f) and v,w € V. Then
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f(la, Blo,w) = f(afv,w) — f(Bo, w)
= —f(Bv,aw) + f(av, fw)
= f(v,Bow) — f(v,afw)
= —f(v,[a, flw)

So [a, B8] € cl(f) and cl(f) is a Lie subalgebra of gl(V).

1.2 Structure constants

Let L be a Lie algebra over K and B a basis for L. So everry [ € L can be uniquely written
asl = Zbe 5 kv, where k; € K and all but finitely many of the ks are zero. Hence we can
deﬁnea €K, i, j,kebB, by

= Z afjk.

keB

The a ’s are called the structure constants of L with respect to B. Since [,] is bilinear
the Structure constants uniquely determine [, ]. Since [,] is symplectic, alternating and fulfils
the Jacobi identity we have for all 4, j, k,l € B.

ak =0

n

aZ+a§l:0

l l l
Z a7 Oy + Q51 G, + agiag,, = 0.
m
Conversely, given a set B and a . €K, 1,7,k € B which fulfill the above three identities

one easily obtains a Lie algebra Wlth basis B and the aU as structure constants.

As an example consider the case of a 2-dimensional Lie-algebra L with basis x,y. Put
a := [z,y]. Then [L,L] = Ka. If a = 0 then L is abelian.

Suppose that L is not abelian and choose b € L \ Ka. Then also (a,b) is a basis for L
and [a,b] = ka for some 0 # k € K. Replacing b by k~1b we may assume [a,b] = a. So up
to isomorphism there exists at most one 2-dimensional non abelian Lie Algebra. For later
use we record:

Lemma 1.2.1 [2 dim] If L is 2-dimensional and non-abelian, then L has a basis (a,b)
with [a,b] = a. O
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To show existence of such a Lie-algebra we could compute the structure constant and
verify the above identies. But its easier to exhibit such Lie-algebra as a subalgebra of gl(K?).

Namely choose
(0 0 b 0 0
- \1 0 “\0 1

1.3 Derivations

Definition 1.3.1 [def:derivation| Let A be a K-algebra. Then a derivation of A is a map
6: A — A such that

d(ab) = 6(a)b+ ad(b)
for all a,b € A. der(A) denotes the set of all derivations of A.

Lemma 1.3.2 [derivations are lie] Let A be a K-algebra. Then det(A) is a subalgebra of
gl(A).

Obviously der(A) is a K-subspace of gl(A). Now let v, € der(A) and a,b € A. Then

[v,0](ab) = ~d(ab) — dy(ab)
= 7(ad(b)) +((a)b) — d(ay(b)) — o
= 7(a)d(b) + ay(5(b)) +~(d(a))b+ o
—d(a)y(b) — ad(vy(b)) = 3(v(a))b
= a(y(8(b)) —d(v(b))) + (v(d(a)) — d(v()))b
= [v,0](a)b + a[y,d](b)

Lemma 1.3.3 [left multiplication] Let A be an assocative K-algebra and for a € A define
l(a)a: A — Ab— ab, r(a) : A — A,b— ba and ad (a) =1(a) —r(a). Let a,b,c€ A

(a) [a] 1(a),r(a) and ad (a) all are K-linear.

(b) [b] [a,bc] =a,c]+ [a,blc. That is ad (a) is a derivation of A
(c) [c] 1: A— End(A),a — l(a) is a homomorphism.

(d) [d] r: A— End(A),a — r(a) is an anti-homomorphism.

Proof: @ Obvious.
@ We compute

bla, c] + [a, blc = bac — bea + abe — bac = a(be) — (be)a = [a, bc]
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Also ad(a)(b) = ab — ba = [a,b] and the preceeding equation says that ad(a) is a
derivation of A.
and @ are readily verifed as A is associative. O

Lemma 1.3.4 [inner derivations| Define (ad)(a) : L — L,l — [a,l] and let a € L
(a) [a] ada is a derivation of L.

(b) [b] Let § € ver(L). Then [d,ada] = ad (d(a)).

(c) [c] ad: L — gl(L) is a homomorphism.

(d) [d] ad(L) is an ideal in der(L).

Proof: Let a,b,c € A. Then

ad (a)([b, c]) = [a, [b; ]} = =[b, [¢, a]] — [¢, [a, b]] = [b,ad a(¢)] + [ad (a)(b), c]

and so ad (a) is a derivation.
Let  be a derivation of A. Then

[0,ad (a)](b) = d(ad (a)(b)) — ad (a)(5(b))

Thus holds.
From (b)) applied to the derivation adb in place of § we have [adb,ad a] = ad ([b,a]) so

holds.
Finally @ follows from @ g

A derivation of the form ad (a) is called an inner derivation. All other derivations of a
Lie Algebra are called outer derivations.

1.4 Modules

In this section A is an associative or Lie algebra over the field K.

Definition 1.4.1 [def:rep for associative| Let A be an associative K-algebra and V a
K-space.

(a) [a] A representation for A over V is a homomorphism ® : A — End(V).
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(b) [b] An action for A onV is a bilinear map A xV — V, (a,v) — av such that
(ab)v = a(bv)
foralla,be A, veV.
Definition 1.4.2 [def:rep for lie] Let V' be a K-space.
(a) [a] A representation for L is a homomorphism ® : L — gl(V).
(b) [b] An action for L on V is a bilinear map L x V' — V,(a,v) — av such that
[a, blv = a(bv) — b(av)
foralla,be L,veV.

If A is a associative algebra, then by the left multiplication 1 is a representaion for
Aon A. And if L is a Lie algebra then by ad is a representation of L on L.

Lemma 1.4.3 [rep=action| Let A be an associative or a Lie algebra and V' a K-space.

(a) [a] Let ® be a representation for A over V. Then AxV — V,(a,v) — ®(a)(v) is an
action for A on V.

(b) [b] Suppose AxV — V,(a,v) — av is an action for A on V. Define & : A — End(V)
by ®(a)(v) = av for alla € A, v € V. Then ® is a representation for A over V.

Proof: Straightforward. 0
If A acts on V we say that V is a module for A.

Lemma 1.4.4 [associative to lie] Let V' be a module for the associative algebra A. Then
with the same action V is also a module for (A). In particular, left multiplication is an
action of the Lie-Algebra I(A) on A.

Proof: Let a,b € A and v in v. Then

[a,blv = (ab — ba)v = a(bv) — b(av).
(|

Definition 1.4.5 [def:centralizer| Let V' be a module for the associative or Lie algebra
A.

(a) [a] Cyv(A)={veV |av=0Vaec A}.
(b) [b] Ca(V)={a€eA|av=0Y eV}
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(c) [c] If Ca(V) =0 we say that V is a faithful A-module.

If @ is the representation corresponding to the module V', then Cy(V) = ker ®. In
particular, C4(V) is an ideal in A. Note that V is also a module for A/C4 (V) via (a +
Ca(V))v = av. Even more, V is faithful for A/C4(V).

Put Z(A) :={a€ A|ab=0Vb € A} = C4(A). Then Z(A) is an ideal in A called to
center of A. Note that L is abelian iff L = Z(L).

If X is a subsets of A and Y a subset of the A-module V', then we denote by XY the
K-subspace of V' generated by {zy | x € X,y € Y}. We say that Y is X-invariant if zy € X
forall z € X, y € Y. (Y) denotes the additive subgroup of V' generate by Y, while KY
denotes the K-subspace of V' generated by Y.

Lemma 1.4.6 [product of subspaces| Let A be a Lie or an associative algebra, V an
A-module, X a subset of A and Y an X-invariant subset of V.. Then KY is X -invariant.

Proof: Let z € X and put Z = {z €V | zz € KY'}. Then Z is an K-subspace of V' and
since Y C Z, KY C Z. Thus zKY C KY and KY is X-invariant. O

Lemma 1.4.7 [submodules and ideals] Let V' an L-module and I C L.
(a) [a] I is an ideal in L if and only if I is L-submodule of L.

(b) [b] If I is an ideal in L then IV and Cy(I) are L-submodule of V.

Proof: Clearly I is a submodule iff its a left ideal. As left ideals are the same as ideals,

@ holds.

For (b)) let v € V, i€ I and ! € L. Then I(iv) = ([l,4])v+ i(lv) € IV. In particular, IV
is a L-submodule. Moreover, if v € Cy (1) we get i(lv) = 0 and so lv € Cy (1) and Cy (1) is
an L-submodule. O

1.5 The universal enveloping algebra

We assume the reader to be familiar with the definitions of tensor products and symmetric
powers, see for example [Lal.

Definition 1.5.1 [universal]

(a) [a] LetV be a K-space. Then a tensor algebra for V is an associative algebra T with 1
together with an F-linear map ® such that whenever T is an associative K-algebra with
one and ® : V — T’ is K-linear, then there exists an unique K-algebra homomorphis
U:T — T with® =Vod.
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(b) [b] LetV be a K-space. Then a symmetric algebra for V' is a commutative and asso-
ciative algebra T with 1 together with an F-linear map ® such that whenever T' is a
commuative and associative K-algebra with one and ® : V. — T’ is K-linear, then there
exists an unique K-linear map ¥ : U — U’ with ® = ¥ o .

(c) [c] Let L be a Lie algebra over K. Then an universal enveloping algebra for L is
an associative K-algebra U with one together with a homomorphism ® : L — [(U)
such that whenever U’ is an associative K-algebra with one and ®' : L — (U') is an
homomorphism, then there exists an unique homomorphism of K-algebra ¥ : U — U’
with ® = Vo ®.

Lemma 1.5.2 [existence of universal]

(a) [a] LetV be a K-space. Then V' has a tensor algebra T(V') and T(V') is unique up to
isomorphism.

(b) [b] LetV be a K-space. Then V has a symmetric algebra &(V') and &(V') is unique
up to isomorphism.

(c) [c] Let L be a Lie algebra. Then L has a universal enveloping algebra $\(L) and (L)
is unique up to isomorphism.

Proof: The uniqueness statements follows easily from the definitions.
@ Define T = ;2 Q" V and define a multiplication on ¥ by

(N ®...QUp)(WI R ... Wy) =V R ... QU QW @ ... W,

The its is staighforward to check that ¥ is an associative algebra with 1. If 7" is an
associative algebra with 1, and ® : V' — T is linear. Define ¥ : € — T" by U(v1®. ..Quy,) =
D' (v1)D (va) ... D' (vpy,).

(b) Let &V be the n-th symmetric power of V and sefine & := b2, &'V, Proceed as
in (a)).

Let I be the ideal in T(L) generated by all the a®b—b® a — [a,b], a,b € L. Then
T/I is a universal enveloping algebra. O

Lemma 1.5.3 [basis for tensor]

(a) [a] Let I be set and for i € I let V; be a K-space with basis B;. Put B = Qic1B; =
(®ierbi | bi | by € BiVi € I). Then B is a basis for @Q;c; Vi.

(b) [b] LetV be a K-space with ordered basis B. Let n € N. Then (biba...by | by < by <
. < by, b; € B) is a basis for "V
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Proof: Wellknown. See for example [La]. O

Let A be any associative K-algebra. Note that the definition of an universal enveloping
algebra implies that the map

Hom((L), A) — Hom(L,[(4)), a—aod
is a bijection. For the case that A = End(V') for a K-space V' we conclude:
Lemma 1.5.4 [modules for universal] Let ¢ : L — 4l be an universal enveloping alebra.
Let V' an L-module. Then there exists a unique action of 8 on V with ¢(l)v = lv for

all | € L. The resulting map between the set of L-modules and the set of -modules is a
bijection.

O

Lemma 1.5.5 [d spans u| Let ¢ : L — 4 be an universal enveloping algebra for L. Also
let B be an ordered basis for L. Put $, = > 1" #(L)". Then

Uy = K(p(b1) ... o) | 0< i <m,bj € B,by <by<...<b).

Proof: By induction on m. Since we interpret the empty product as 1, the statement is
true for m = 0. Suppose its is true for m — 1. Let by,by € b, € B. Also let 0 < i < m and
put a =b1ba...bj—1 and ¢ = bjy3...by. Then

biby ... bm = abibi11c = abj1bic + a[bi, biJrl]

Thus
biba...by + U1 =b1...bi—1bip1bibiya .. by + Uy

and so for all 7 € Sym(m),

biba ... bm + U1 =br) - br(m) + Hin—1

Choosing 7 such that br(1) < br2) < ... < br(y) and we see that the lemma also holds
for m. O

Lemma 1.5.6 [action of 1 on s] Let B be an ordered basis for the Lie algebra L. Identify
L with is image in S := &(L). Let b € B and s € B". Define b < s if either n = 0 or
s = [l bi,bi € B with b <b; for all 1 <i < n. Then there exists a unique action - of L
on S such thatb-s=bs for allbe B, n € N and s € B" with b < s.

Proof: Put S, =3 ;" L™ < S. To show the uniqueness of - we show by induction on m
that the restriction of - to L x S, is unique and that
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1° 1]  w(b,s):=b-s—bs€ Sy forallbe L and s € Sy,.

Note that implies that b- s = bs +w(b, s) € Spm41

If m =0, the Sy =K and b-s = bs = sb for all s € Sy. Suppose now that m > 1. Let
s=dt € Bwithde B,tc B" ! and d <t. We need to compute b - s uniquely and show
that b-s —bs € S,,,. Note that dt =d - t.

If b <d, then b < s. So

2° [2]  b-s=bs, whenever b <s

Alsob-s—bs=0¢€ S,,.
If b > d, then since - is an action

3° [3]
b-s=b-(d-t)=d-(b-t)+[bd ¢

By induction on m, b-t and [b, d] -t are uniquely determined. Moreover, b-t = bt +w(b, t)
with w(b,t) € Sy—1 and [b,d] -t € Sy,. Since ¢ < bt we have d - (bt) = dbt = bs. Also by
induction d - w is uniquely determined and contained in .S,,. Thus the formula

4° [4]  b-s=dbt+d-w(b,t)+ [b,d]-t, wheneverb £ s

uniquely determines b - s. Moreover w(b, s) = d - w(b,t) + [b,d] - t € Sp,.

Thus - is unique and holds.

To prove existence we define b- s for b € B and s € B” by induction on m via and
. Once b--- s is defined for all s € B™, define [ - s for all | € L and s € S, by linear
extension. Note also that will hold inductively. So all terms are on the right side of
are defined at the time its used to define the left side.

We need to verify that - is an action.

Let a,b € L and s € S. We say that {a,b} actsonvifa-(b-s)—b-(a-s)=la,b]-s.
Note that set of s € S on which {a, b} acts is a K-subspae of V.

Suppose inductively that we have shown

5° [5]  Foralla,be L and all s € Sp—1, {a,b} acts on s.

Let a,b € B and s € B™. We need to show that {a, b} acts on s. This is obviously the
case then a = b. So suppose a # b

Suppose that a < s or b < s. Without loss a > b. Then b < s. Using the definition of
a-uforu="b-s (compare (3%) we get

6° [6] Ifa<s orb<s then {a,b} acts on all s € B™.
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Suppose next that a > s and b > s. Let s = dt = dcott be as above. Then

Since d < bs gives that {a,d} acts on bs. By induction {a,d} also acts on w(b, s) €
Sm—1 and so {a,d} acts on b-s = bs + w(b,s). This allows us to compute (using our
inductive assumption various times):

a-(b-(d-t)) = a-(d-(b-t)+1b,d- 1)

(a-(b-t))+[a,d]-(b-t)+[b,d]-(a-t)+|a,[b,d]] -t

ISURERS]

Since the situation is symmetric in a and b the above equation also holds with the roles
of a and b interchanged. Subtracting these two equations we obtain:

a-(b-dt)—b-(a-dt) = d-(a-(b-t)—>b-(a-t))+ [a,[b,d]]-t—[b,[a,d]] -t
= d-([a,b]-t) + [a,[b,d]] - t + [b,[d,a]] - t
= [av b] ’ (d ’ t) + ([d7 [a7 bH + [aa [b7 d]] + [b7 [d7 a]]) -t
= [a,b]-dt
Thus {a,b} acts on s = dt and so by induction L acts on S. O

Theorem 1.5.7 (Poincare-Birkhof-Witt) [pbw] Let ¢ : L — i be an universal en-
veloping algebra of L. Let B be the ordered basis of L and view &(L) as an L- (and so as

an Y(L)-) module via[1.5.6
(a) [a] The map ¥ : (L) — S(L),u — w1 is a isomorphism of K-spaces.

(b) [b]
D= (¢(b1)p(b2) ... ¢(bn) [n € N,by < by < ... < by € B)

is a basis for AL

(c) [c] @& is one to one.

Proof: Let b1,bo,...b0, be a nondecreasing sequence in B. The definition of the action of
L on &(L) implies that ¢(b1)p(ba) ... ¢(by) -1 = bibs...b,. Hence ¥(D) is a basis for §(L).
Thus ¥ is onto and D is linearly independent in 4. By KD = 4 and so D is a basis
for . Hence ¥ sends a basis of U to a basis of (L) and so is an isomorphism. Also ¢(B)
is linearly independent and so ¢ is one to one. O

From now on 4 denotes a universal envelpong algebra for L. In view of the Poincare-
Witt-Birkhoff Theorem we may and do identify L with its image in 4. In particular for
n € N we obtain the K-subspace L™ of U Also according to we view every L-module
V as an {-module. Indeed if ay,as,...,a, € L and v € V, then ajas...a, € U just acts
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(araz...an)v = ai(az(...(apv)...)).

In particular the adjoint action of L on L extends to an action of 4 on L. We denote
this action by U x L — L,u — w* (. For example a,b,l € L we have a *xl = [a,l] and
(ab) * 1 = [a, [b,1]]. With this notations we have

L"«L=L,L,...[L,L]..]]
-times

Lemma 1.5.8 [[L,L,n]] L™ « L < L"L.

Proof: The proof is by induction on n.. The statement is clearly true for n = 0. Suppose
now that L" '« L < IL". Letle Landa e L" 1« L. Thena € L™ and sol*a = la—al €
L™ Thus L" + L = L* (L" ' % L) < L"™*! and the lemma is proved. O

1.6 Nilpotent Action

Let R be a ring and X C R. We say that X is nilpotent if X™ = 0 for some n € N. Note
that for R = End(V') we have X" = 0 iff X"V = 0.

Now let A be an associative or Lie algebra and V' a module for A. Then we say that
X C A acts nilpotenly on V' if the image of X in End(V) is nilpotent. Note that that X
acts nilpotently on V' if and only if X"V = 0 for some n € N.

We say that L is nilpotent if L acts nilpotently on L, that is if L™ * L = 0 for some n.
Note that for associative algebra A a subalgebra B is nilpotent if an only if the action of B
on A by left multiplication is nilpotent. Indeed if B™ = 0, then B"A = 0 and if B"A =0
then B"*! = 0. The analog of this statement is not true for Lie algebras. For example
consider that Lie algebra L with basis x, y such that [z,y] = x. Then Ky is an abelian and
so a nilpotent subalgebra of L, but y does not act nilpotently on L. An the other hand if
I is an ideal in L, then [ is nilpotent if and only if I acts nilpotently on L.

We remark that if X acts nilpotently on V' then all elements in X act nilpotently on
V. The main goal of this section is to show that for finite dimensional Lie-algebras, the
converse holds. That is if all elements of the finite dimensional Lie-algebra L act nilpotently
on V, then also L acts nilpotenly on V.

We say that L acts trivially on V if LV = 0.

Lemma 1.6.1 |nilpotent and chains| Let A be an associative or Lie algebra. Let A be
an L-module. Then the following are equivalent:

(a) [a] A acts nilpotently on V.

(b) [b] There exists a finite chain of A submodules 0 =V, <V,_1 <...Vo =V such that
A acts trivially on each V;/Viq1.
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(¢) [c] There exists a finite chain of A submodules 0 =V, < V,_1 < ...Vy =V such that
A acts nilpotently on each V;/Vii1.
Proof: @:> @): Just put V; = AV,
@:> : This holds since trivial action is nilpotent.
()= (&): For 0 < i < n choose m; with A™i(V;/Viy1) = 0. Then A™V; < Viyy. Put
m = 31" m;. Then A™V = 0. O

Lemma 1.6.2 [nilpotent implies nilpotent]| Suppose L acts nilpotenly on the L-module
V. Then L/CL(V) is nilpotent.

Proof: Let L™V = 0 for some n > 1. Then by (L" Y% L)V = 0. Thus L" 1% L <
Cr(V) and L/Cr(V) is nilpotent. O

Lemma 1.6.3 |nilpotent + nilpotent| Let A be an associative or Lie algebra. Let V' be
an A-module, D, E subalgebras of A with [E,D] < D. If E and D acts nilpotently on V,
then E 4+ D acts nilpotently on V.

Proof: In the case that A is associative, we replace A by [(A). So A is now a Lie algebra.
Since [E, D] < D, D is an ideal in E + D. By [L.47([b) DV is an E + D-submodule. By
induction, D™V is a E + D-submodule. D acts trivially and so E + D acts nilpotenly on
D"V/D"1V for all n. Thus the lemma follows from O

Lemma 1.6.4 [associative and nilpotent] Let A be an associative K-algebra.
(a) [a] Let D, E < A be nilpotent with [E, D] < D. Then D + E is nilpotent.

(b) [b] Let D < A be nilpotent. Then D acts nilpotently on on [(A).

Proof: @ By D + E acts nilpotently on A and so is nilpotent.

() Since D™ = 0 we have (D)™ = 0 and (D)™ = 0. Also since A is associative 1(D)" and
r(D)™ commute. Thus (&) implies that 1(D) + r(D) is nilpotent. Since ad (a) = 1(a) — r(a)
we have ad (D) < 1(D) + r(D) and so ad (D) is nilpotent in End(A). and D so acts n
nilpotently [(A). O

Corollary 1.6.5 [nil on V and in L] Suppose that L acts faithfully on V and that X C L
acts nilpotently on V. Then X acts nilpotently on L.
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Proof: Let ® : L — gl(V) be the corresponding representation. Then by the definition
of nilpotent action, ®(X) is nilpotent in End(V). From the adjoint action of ®(X)
on gl(V) is nilpotent. Thus ®(X) acts nilpotently on ®(L) and as ® is one to one, X acts
nilpotently on L. (Il

Lemma 1.6.6 [normalizer of nilpotent| Suppose L acts nilpotenly on VW C V with
0 € W #V. Then there exists v € V\ W with Lv < W.

Proof: Since L isnilpotent on V and 0 € W, we can choose n € N minimal with L™V C W.
Since M # L, n # 0. By minmality of n, L™V £ W. Pick v € L'V \ W. Then
Lv < L(L" V) =L"V <W. O

For a subalgebra A < L put N.(A) = {l € L | [[,A] < A}. Note that Np(A) is
subalgebra of L and that A is an ideal in Np,(A).

Corollary 1.6.7 [normalizer of nilpotent II| Suppose tthat M is a subalgebra of L act-
ing nilpotenly on L. If M # L, then M < Np(M).

By (applied with (M, L, M) in the roles of (L,V,W)) there exists d € L\ M with
[M,d] < M. Then d € Np(M). O

Definition 1.6.8 [def:subideal] Let A be a K-algebra and I C A. We write I < A if I
is an ideal in A. We say that I is a subideal in A and write I < <A if there exists chain
I=0<L<...<]1,<41, = A.

Lemma 1.6.9 [subideals in nilpotent| Suppose L is nilpotent. Then every subalgebra in
L is an subideal in L.

Proof: Let n be minimal with L« L =0 and A < L. Let Z=L" '% L. Then L*Z =0,
that is Z < Z(L). Thus [A,Z + A] = [A,A] < Aand A Z+ A. Put L = L/Z. Since
L1« L <Z, "'« =0 By induction on n we may assume Z + A/Z < <L/Z. Thus
Z+A<<L and so Z < <L O

Theorem 1.6.10 [elementwise nilpotent| Let L be a finite dimensional Lie algebra and
V' a L-module. If all elements of L act nilpotently on V', then L acts nilpotently on V.

Proof: We may assume without loss that L is faithful on V. The proof is by induction
on dimV. Let M be a maximal subalgebra of L. By induction M acts nilpotently on
V. So by M acts nilpotenly on L. implies that there exists d € Ny (M) \ M.
Note that Kd is a subalgebra and M + Kd are subalgebras of L. By maximality of M,
L=M+Kd< Np(M). As d is nilpotent on V, Kd is nilpotent on V as well. Thus [L.6.3]
implies that L is nilpotent on V' .
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Corollary 1.6.11 (Engel) [engel| Let L be a finite dimensional Lie algebra all of whose
elements act nilpotently on L. Then L is nilpotent.

Proof: Apply[1.6.10] to the adjoint module. O

1.7 Finite Dimensional Modules

Definition 1.7.1 [series| Let A be Lie or an associate K-algebra and V' an A-module.

(a) [a] V is called simple if V' has no proper A-submodules. (that is O and V are the
only A-submodules. V is semisimple if its the direct sum of simple modules and its
homogeneous if its the direct sum of isomorphic simple modules.

(b) [b] A series for A onV is a chain S of A-submodules of V' such that

(a) [a] 0 €S andV € S.

(b) [b] S is closed under intersections and unions, that is for every nonempty D C S,

NDeS and|yD € S.

(Here a chain is a set of sets which is totally ordered with respect inclusion)

(c) [c] LetS be an A-series. A jump of S is pair (D, E)) such that D,E € S, D < E and
C e S with D < C < E implies C =D or S =E. In this case E/D ‘s called a factor
of S.

(d) [d] A composition series for A on S is a series all of whose factors are simple A-
modules.

(e) [e] Let S and T be A-series on V. We say that S and T have isomorphic factors if
there exists a bijection ® between the sets of factors of S and T such that for each factor
F of S, F and ®F are isomorphic A-modules. Such a ® is called an isomorphism of
the sets of factor.

(f) If] LetV and W be A-modules and ¢ € Hom(V,W). Then ¢ is called A-invariant if
¢(av) = ag(v) for alla € A, v € V. Homy(V, W) denotes the set of such ¢.

(9) [g] If X and Y are A-submodules o V with X <Y, then Y/X is called an A-section
of V.

Lemma 1.7.2 [lifting series| Let V' be an L-module and W an L-submodule of V. Let S
be a L-series on W and T and L-series on V/W. Let T be the inverse image of T in V.
(soT ={T/W |T €T}). Then SUT is a series for L on V. The factors of SUT are
the factors of S and T. In particular, SUT is an L-composition seres if and only if both
S and T are L-composition series.
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Proof: This follows readily from the definition. We leave the details as an exercise. [

Lemma 1.7.3 (Jordan Ho6lder) [jordan hoelder| Let A be a Lie or an associative K-
algebra. Suppose that there exists a finite composition series for A on V. Then any two
composition series for A on V have isomorphic factors.

Proof: Let S be a finite composition series for A on V and 7 any compostion series. For
a jump (B,C) of T choose D € S maximal with C ¢ B + D. Let E be minimal in S
with D < E. Then E/D is a factor of S, C/B is a factor of S and we will show that map
B/C — E/D is an isomorphism of the sets of factor.
By maximality of D we have
C<B+FE.

Thus C =CN(B+ FE)=B+ (CNE) and so
C/B2CNE/CNENB=CNE/BNE.
Since C £ B+ D, CNE % D and since E/D is simple, E = D + (C' N E). Thus
E/D=CnNnE/CND.

If BNE £ D, then E=(BNE)+D<B+DandsoC=<B+E < B+ D, contrary to
our choice of D. Thus BE < D and so BN E = BN D. Suppose that C N D £ B. Then
C = (CnND)+ B < B+ D, again a contradiction. Thus CND =BND = BNE and so

C/B=CnNE/BND=CNE/BNE=E/D.

It remains to show that our map between the factor sets is a bijection. Let (B’,C") be
a jump other than (B,C) and say C' < B. Then C'NE < BNE =BND < D and so
(B’,C") is not mapped to E/D. So our map is one to one.

Since S is finite we conclude that, 7 has finitely many jumps and so also 7 is finite and
|7| < |S|. But now the situation is symmetric in 7 and S. Thus |S| < |7, |S| = |7 | and
our map is a bijection. O

Lemma 1.7.4 [submodules for ideals] Let L be a Lie algebra L, V an L-module, I an
ideal in L, W an I-submodule in V andl € L. Let X be an I submodule of V' containing
[, QW

(a) [a] The map W — V/X w — lw+ X is I-invariant.
(b) [b] The map W — V/W,w — lw + W is I-invariant.

(c) [c] If [1,l] =0 then the map W — V,w — lw is I-invariant.
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Proof: @ Let ¢ be the map in question. Let i € I and w € W. Then ilw = liw+[i, lJw €
liw 4+ X and so i¢(w) = ¢(iw).

(]ED Since W is an I-submodule and I is an ideal, [I,{]/W < W and so we can apply @
with X = W.

Apply @ with X = 0.

Definition 1.7.5 [definil v| Let V' be a finite dimensional L-module.

(a) [a] Compy, (L) is the set of factors of some L-compositions series on V. (Note by the
Jordan Hélder Theorem, Compy, (L) is essentially independent from the choice of the
composition series)

(b) [b] Nilp(V) = {CL(W) | W € Compy (L)}

Lemma 1.7.6 [nil V] Let V be a finite dimensional L-module. Then Nilg, (V') is the unique
mazimal ideal of L acting nilpotently on V.

Proof: Nil, (V) is the intersection of ideals and so an ideal in L. By [L.6.1|(b]), Nil. (V) is
nilpotent on V. Now let I be an ideal of L acting nilpotently on V. Also letW a composition
factor for L on V. Then 0 # Cy (1) is an L-submodule of W and so Cy (I) = W, I < Cp(W)
and I < Nil, (V). O

Corollary 1.7.7 [Nil L] Let L be finite dimensional. Then L has a unique mazimal nilpo-
tent ideal Nil(L).

Proof: An ideal in L is nilpotent if and only if its acts nilpotently on L. So the lemma
follows from [1.7.6] applied to the adjoint module. O

We remark that there may not exist a unique largest nilpotenly acting subideal in L.
For example consider L = s[(K?) and let V = K2. Let

01 0 0 1 0
iU:ElQZ(O 0>, y:Em:(l O) andh:EnEzQ:(O _1>

Then [h,z] = 2z, [y, h] = 2y and [z,y| = h.

If charK = 2 we conclude that Kz + Kh is an ideal in s[(K?) and Kz is an ideal in
in Kz + Kh. Thus Kz is a subideal acting nilpotently on K2?. The same holds for Ky.
But s[(K?) is the subalgebra generated by z and y. Since sl[(K?)V =V, sl(K?) does not
act nilpotently on V and so Kz and KY are not contained in common nilpotently acting
subideal of L.

Definition 1.7.8 [def:vd] Let V' be finite dimesional L-module.

(a) [a] Sim(L) is the set of all isomorphism classes of finite dimensional simple L-modules.
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(b) [b] Simy = Simy (L) is the set the isomorphism classes of the L-composition factors
of V.

(c) [c] Let D C Sim(L). A D-module is an L-module W with Simy, C D (If W is simple
this means that the isomorphism class of W is in D.

(d) [d] Vp is the sum of all the simple D-submodules in V
(e) [e] Vp(0) =0 and inductively define the submodule Vp(n+ 1) of L in V by

Vp(n+1)/Vp(n) = (V/Vp(n))p.

(F) 1l Vi =UZo Vo (i)

(9) [g] Let A <L and A C Sim(A). Then A |* is the set of isomorphism classes of the
finite dimensional simple L-modules which are A-modules.

To digest the preceeding definitions we consider an example. Let L be the subalgebra
of gl(K?3) consisting of all 3 x 3 matrices of the form

0
0
0

S ¥ ¥
S *x *

Let V = K3 viewed as an L-module via left multiplication. Let (er,es,e3) be the
standard basis for K3. Let V; = Z?:O Ke;. Then

0=W<Vi<Vo< V3=V

is a composition series for L on V. Put I = Vi /Vi_1. Then I is a simple 1-dimensional
L-module. Note that LI = 0 and LIs = 0 while LIs # 0. So Iy = I3 but I; 2 I as
L-module. For an L-module W let [W] be the isomorphism class of W ( that is the class of
L-modules isomorphic to W. Then Simy = {[[1], [[2]}. For k = 1,2 let Dy = {[I]}. Also
put D = D; U Dy = Simy. Observe that any L-submodule of V is one of the V;.

By definition Vp, is the sum of all the simple L-submodule of V' isomorphic to I;. Vi
is the only simple L-submodule of V' and Vi = I; so Vp, = Vi. To compute Vp,, put
V = V/Vj. The only simple submodule of V is Iy = V5/V;. Since I) % I we get Vp, = 0.
Thus Vp, (2) = V;. It follows that Vp, (j) = V4 for all 7 > 1 and so also VE, =W

No submodule of V' is isomorphic to Iy and hence Vp, = 0. Thus V{5, = Vp,(j) = 0 for
all j > 0.

V1 is the only submodule of V' isomorphic to I; or I3 and so Vp = V. V,/V] is the only
submodule of V/V} isomorphic to I1 or Is. So (V/Vi)p = Va/Vi and Vp(2) = Vo. V/Va is
isomorphic to I; and so V = Vp(3) = V.

Definition 1.7.9 [def:linear indep]| Let V' be K-space and V a set of K-subspaces of V.
We say that V is linearly independent if >V = @ V.
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Lemma 1.7.10 [basic semisimple]| Let V be an L-modules and V a set of simple L-
submodules in V. Suppose that V. ="> V.

(a) [a] Let W be an L-submodule of V', Then there exists W C V such that V =W &P W.

(b) [b] Let X <Y be L-submodules. Then there exists W C V with Y/X = @ W as

L-modules.
(c) [c] Ewvery L-section of V is semisimple.

(d) [d] Ewvery composition factor of V is isomorphic to some member of V.

Proof: () Let C be the set of linearly independet subsets W of ¥V with W N Y W = 0.
Order C by inclusion. If D is a chain in C, then it is easy to verify that (D € C. So every
chain in C has an upper bound. By Zorn’s Lemma, C has a maximal elements WW. Suppose
that V' # W + >~ W. Then there exists U € V with U £ W + Y W. Since U is simple,
UN(W +> W) =0. But then WU {U} € C, contradicting the maximality of W. Thus
V =W + >> W and the definition of C implies that V. =W & @ W.

(b) By (d) there exists an L-submodule Z of V with V =Y @ X. Put V = V/Z. Then
Y 2V. Let W € Vwith W £ Z. Then WNZ =0and W = W+ Z/Z = W. Let
V={W|WeV,WLZ Then V=3 V. By @ applied to X <V there exists W C V
with V =X @ W. Hence Y/X 2Y /X = @ W and so (]EI) holds.

and (d)) follow directly from (). O

Lemma 1.7.11 [basic vd| Let V be a finite dimensional L-module and D C Sim(L).

(a) [z]| Let A < L and A C Sim(A). Then V is an A-module if and only if V is an
A |F-module.

(b) [a] Let A< B<C<LandACSim(A). Then A|B|®= A|°.

(c) [b] Let W be L-submodule of V.. Then V is an D-module if and only if W and V/W
are D-modules.

(d) [y] Vp is the unique mazimal semisimple D-submodule in V.
(e) [c] VS is the unique mazimal D-submodule of V.
(f) [x] Let & CSim(L). Then VENVE = Ve and Vi +VE < VE e

(9) [d] Let I Q<L and T C Sim(I). Put £L =T |¥ . Then V¥ is an L submodule and
Vi=V§.

(h) [e] Suppose I < Z(L),Z C Sim(I) and i € N. Then Vz(i) is an L-submodule of V.
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Proof:

@ Let & a composition series for L on V and choose a composition series R for A on
V with S C R. Then a factor A/B of S is a A |“-module iff all the factors C/D of R with
B<C <D< A are A-modules. Thus V is an A ]L—module iff each factor T of S is an
A |F-module iff each factor of R is a A-module iff V' is an A-module.

(]E[) Let X be finite dimensional C-module. Then by @, the following are equivalent.

X is an A |P|%module, X is an A |P-module, X is an A-module, X is an A |-
module.

follows from m
@ By 1.7.10, Vp is semisimple and by 1.7.10@, Vp is a D-module. Conversely every

semisimple D-module is a sum of simple D-modules and so contained in Vp.

@ Any composition factor of V is isomorphic to a compostion factor of some Vp(n +
1)/Vp(n) and so (by (d)) is D-module. So Vf is a D-module. Conversely let W be a
D-submodule and 0 = Wy < W7 < ... < W,, = W an L-composition series on W.

We show by induction on i that W; < Vp(i). For i = 0 this is obvious. So suppose
W; < Vp(i). Since W is a maximal submodule of W;;1 we either have W11 N Vp(i) = W;
or Wii1. In the latter case, Wi11 < Vp(i + 1)). In the former put V = V/Vp(i) and note
that W1 = Wiy /Wi is a simple D-module. Hence W;;; < Vp. Hence the defintion of
Vp(i + 1) implies W11 < Vp(i + 1).

In particular, W;,, < Vp(n) < V5 and (ED is proved.

@ This follow easily from @ We leave the details to the reader.

Suppose first that I is an ideal in L. Let W = V7. We claim that W is a L-
submodule. Let [ € L. Then by (]ED, ¢: W — V/W,w— lw+ W is [-invariant. Hence
¢(W) = W/ ker ¢ and so by (d), ¢(W) is an Z-submodule. Now ¢(W) = [W +W/W and so
by , IW+4+W isaZ. According to , W is a maximal Z-submodule. Thus IW +W =W,
IW < W and W is an L-submodule. By @ W is an L-submodule. Thus by @, W < VE.
Also by @, V£ is an Z-submodule and thus by , VESW.

So holds if I is an ideal. In the general can choose I <Iy...I, 1 <I. Put J =1,
and J = A |’. By induction on n, V¥ = V7. By (]EI), L = J |¥ and so by the ideal case
V% = V. Thus VF = V7. As the latter is an L-submodule, so is V7 and is proved.

Let l € L. By , {V7 is a sum of simple A-modules So [V7z < Vz. Thus V7 is
an L-submodule. The definition of Vz(n + 1) and induction on n now shows that holds.
O

Proposition 1.7.12 [clifford| Let I a subideal in L and V a finite dimensional simple L.
Then any two composition factors for I on'V are isomorphic. If in addition I < Z(L), then
V' is an homogenous I-module.

Proof: Let W be as simple I-submodule in V' and Z the isomorphism class of W. Then
by VF is a non-trival L-submodule of V. Since V is simple, V' = V7. Similarly if
I<Z(L),V=V O
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Lemma 1.7.13 (Schur) [schur] Let V be a simple L-module. Then Endr (V) is a skew-
field. If K is algebraicly closed and V is finite dimensional, then Endy (V) = K* = Kidy,
where K* is the image of K in Endg (V).

Proof: Let 0 # f € Endz(V). Then V # Cy(f) is L-submodule of V' and since V is
simple, Cy(f) =0. So fis 1 — 1. Similarly V' = fV and so f is onto. Simple calculations
show that f~! € Endz (V) and so Endy (V) is a skew field. Suppose now that V is finite
dimensional and K is algebraicly closed. Then Endy (V) is a finite field extension of K* and
so |Endr(V) = K*. O

Lemma 1.7.14 [simple for abelian| Let L be an abelian Lie algebra and V' a simple L-
module. Put D = Endp (V). Then D is a field, V is 1-dimensional over D and D = K*(L*),
where K* and L* are the images of K and L in End(V). If K is algebrilcy closed and V is

finite dimensional, then K =D and V is I-dimensional over K.

Proof: Note that L* is abelian and L* < Z(ID). Let E be the subfield of Z(ID) generated
by K* and L*. Let 0 £ v € V. Then Ev is an L-submodule and since V' is simple we get
V = Ev. Hence V is 1-dimensional over E. Moreover, if d € D, then dv = ev for some
e € E. Then (d—e)v =0, d =e, E=D and the E = D.

Suppose in addition that K is alegbraicly closed and V is finite dimensional. Then D is
a finite extension of K* and so D = K*. O

Lemma 1.7.15 [independence of d spaces| Let V' be finite dimensional L-module and
A a partition of Simy . Then (V5 | D € A) is linearly independent, that is

{5 | Deay={V5 I De A}

Proof: Let De Aand W =3 {V{|D # Ac A}. We need to show that VN W = 0.
For this put £ = (JA\ {D}. Then Vf is a D-module, W is an £-module and so VSNW
is an DN E-module. As A was a partition, DN E = (). Hence V5N W = 0. O

Definition 1.7.16 [def:trace| Let V be a finite dimensional L-module and u € 4. Then
try (u) = tr(u*), where u* is the image of u in End(V). try denotes the corresponding
function s — K, u — ty(u). trk denotes the restriction of try to L.

Lemma 1.7.17 [trace and series| Let V' be a finite dimensional L-module.

(a) [a] try is K-linear and try (ab) = try (ba) for all a,b € 4.

(b) [b] try(l) =0 for alll € [L, L]
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(c) [c] Let W the set of factors of some L-series on V. Then

try = Z tryy

Wew
(d) [d] If W is an L-module isomorphic to V', then try = tryy.

This follows from elementray facts about traces of linear maps. O



Chapter 2

The Structure Of Standard Lie
Algebras

2.1 Solvable Lie Algebras

Put L(® = L and inductively, L("+*Y) = [L(") L], We say that L is solvable if L*) =0
for some k < oo.

Lemma 2.1.1 [basic solvable]
(a) [a] Let I < L. Then L is solvable if and only if I and L/I are solvable.

(b) [b] Let A,B < L with A < Np(B). Then A+ B is solvable if and only if A and B are
solvable.

(c) [c] Suppose that L is finite dimensional. Then L has a unique mazimal solvable ideal

Sol(L).

Proof: () If L*®) = 0, then I*) = 0 and (L/I)®) = 0. If I = 0 and (L/1)™ = 0, then
L™ < T and L) = L)) = 0.

(o) Suppose A and B are solvable. Since A < Np(B), B< A+ B. Now B and
A+ B/B =~ AJ/AN B are solvable and so by (a) A+ B is solvable.

Since L is finite dimensional, there exists a maximal solvable ideal B in L. Let A be
any solvable ideal in L. Then by @, A + B is solvable ideal and so by maximality of B,
A< B. O

Lemma 2.1.2 [nilpotent is solvable]
(a) [a] L*+) < Lk« L.

(b) [b] Any nilpotent Lie algebra is solvable.

27
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(c) [c] IfNil(L) =0, then Sol(L) = 0.

Proof: @ Clear by induction on k.

@ follows from @

(c) If Sol(L) # 0 the last non-trival term of the derived series of L is an abelian and so
nilpotent ideal in L. O

Write I/ = [L, L] = LM, We say that L is perfect if L = L/. Let L(>) be the sum of
the perfect ideals in L. Then L("™/%) ig perfect and so the unique maximal perfect ideal in
L.

If L is finite dimensional there exists k € N with L(®¥) = LK*+1 Tt follows that L(°®) =
L®) | L/L(*) is solvable, L(>) is the unique ideal minimal such that L/L(>) is solvable and
L) ig the unique maximal perfect subalgebra in L.

Definition 2.1.3 [standard] We say K is standard if char K = 0 and K is algebraicly
closed. We say that L is standard if K is standard and L is finite dimensional. We say that
the L-module V is standard if L is standard and V is finite dimensional.

Proposition 2.1.4 [sol and simple] Let V' be a simple, standard L-module.
(a) [a] [Sol(L),L] < Sol(L)N L" < Sol(L) Nkertry = Sol(L) N Cr(V).
(b) [b] The elements of Sol(L) act as scalars on V.

Proof: Replacing L by L/Cr(V) we may assume that V' is faithful.

(a) Let I = Sol(L)Nker try. Obviously [Sol(L), L] < Sol(L)NL’ and Sol(L)NCL(V) < I.
By [L.7.17|(b), L’ < kertry. So we need to show that I < Cp(V) = 0. If not, let k be the
derived length of I and put J = I*~D. Then J is a non-trivial abelian ideal in L and
try(J) = 0. Let 0 # j € J and let Z be a simple J-submodule in V. Since K is algebraicly
closed, implies that Z is 1-dimensional over K. Hence there exists £k € K with
jz = kz for all z € Z. By all composition factors for J on V' are isomorphic and
o) implies that 0 = try(j) = dimV - k. Since charK = 0 we get &k = 0. Thus
J < Nil (V) < Cr(V) and (@) is proved.

[®) By (&), [Sol(L),L] < C(W) = 1. Thus Sol(L) < Z(L). Hence by [L.7.12| Sol(L) is
homogenous on V. Now Sol(L) is abelian and by all the simple Sol(L) submodules
in V' are 1-dimensional. Hence @ holds.

Theorem 2.1.5 (Lie) [lie] Let V be a standard L-module.
[Sol(L), L] < Sol(L) N L' < Nilp (V).

Proof: Let W be a composition factor for L on V. By Sol(L)N L' < CL(W) and so
Sol(L) N L' < Nilp (V). O
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Corollary 2.1.6 [solvable and flags| Suppose that L is solvable and V is a standard L-
module. Then

(a) [a] L' < Nily(V).

(b) [b] IfV is simple, then V is 1-dimensional.

(c) [c] There exists a series of L-submodules 0 = Vo < V; < ... <V, =V withdimV; = .
(d) [d] Nilp(V)={l€ L |1 acts nilpotently on V'}.

Proof: By L acts as scalars on any composition factor for L on V. Thus @—
holds.

(d) Clearly each elements of Nily, (V') acts nilpotently on V. Now let [ € L act nilpotently
on V. Then [ also acts nilpotently any every composition factor W of L on V. (]ED implies
that [ centralizes W and so [ € Nil (V).

Corollary 2.1.7 [[sol 1, 1] nilpotent| Let L be standard. Then
(a) [a] [Sol(L),L] < Sol(L)N L < Nil(L).

(b) [b] If L is solvable then L' is nilpotent and there exists a series of ideals 0 = Ly <
1 <...<L,=0Lin L withdimL; = 1.

Proof: Apply and to V being the adjoint module L.

2.2 Tensor products and invariant maps

Let V,W and Z be L-module. Then L acts on V @ W by

llv@w)=(lv)®w+v® (lw)
and L acts on Hom(V, W) by

(0)(v) = U(¢(v)) = ¢(I(v)).

In particular, if we view K as a trivial L-module, L acts on V* := Hom(V,K) by

(19)(v) = —¢(lv).

Let X C L and ¢ € Hom(V,W). We say that ¢ is X-invariant if ¢(lv) = I(¢(v)) for
all v € V and | € X. Note that this is the case if and only if ¢ = 0 for all [ € X.
Homy (V, W) denotes all the X-invariant K-linear maps from V' to W. So Homx (V, W) is
just the centralizer of X in Hom(V,W). Let f:V x W — Z be K-bilinear. Then f gives
rise to a unique K-linear map f : V@ W — Z with f(v ® w) = f(v,w). We say that f is
X invariant if f is X invariant. So f is X-invariant if and only if

flv,w) + (v, lw) = 1(f(v,w))
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foralll € X,v € V and w € W. In the special case that Z is a trivial L-module we see
that f is X-invariant if and only if

f(lv,w) = —f(v,lw)

forallle X,veV and we W.
Note that the sets of all [ in L which leave f invariant (that f is [-invariant) is equal to

Cr(f) and so forms a subalgebra of L.
Let f:V xW — Z be K-bilinear. For X C V define

Xt ={weW]| f(z,w) =0z € X}.
Similarly for Y C W define
LY ={veV|f(v,y) =0Vy €Y.

f is called non-degenerate, if V- =11 = 0.

Consider now the case where V = W. We say that f is symmetric if (for all v,w € W)
fv,w) = f(w,v), f is alternating if f(v,w) = —f(w,v) and f is sympletic if f(v,v) = 0.
Note that if f is symplectic then f is alternating. We say that f is L-symmetric, provided
that f(v,w) = 0 if and only if f(w,v) = 0. Observe that if f is symmetric or alternating,
then f is 1-symmetric.

If fis L-symmetric then V+ = 1V and we define rad(f) = V*.

Lemma 2.2.1 [basic bilinear| f : V x W — Z a L-invariant and K-bilinear. Let X be a
L-submodule of V then X+ is L-submodule of W .

Proof: Let we X+, 1€ L and z € X. Then Iz € X and so
f(z,lw) =1f(x,w) — f(lz,w) =10—-0=0.

Thus lw € X+ and X1 is a submodule of W. O

Lemma 2.2.2 [multiplications are invariant|

(a) [a] LetV be an L-module. Then the map [(U)xV — V, (u,v) — wv is L-invariant.(Here
we view [(YU) as an L-module via the adjoint representation.)

(b) [b] L x L — L,(a,b) — [a,b] is L-invariant.

(c) [c] LxU— 4 (a,u) — au is L-invariant. (Here we view L as an L-module via left
multiplication.)

(d) [d] L x L — (), (a,b) — ab is L-invariant. (Here we view (L) as an L-module via

the adjoint representation.)
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Proof: @ Let a € L, uw € U and v € V. Define f(u,v :) = uv. Then
flaxu,v)+ f(u,av) = [a,ulv + u(av) = a(uwv) = af(u,v).

(]E[) and are special cases of @
(d) Let a,b,c in L and define f(b,c) := be. Then using b

flaxb,c)+ f(b,ax*c)=la,blc+ bla,c|] = [a,bc] = ax f(b,c).

2.3 A first look at weights

Definition 2.3.1 [def:weights] A weight for L is a Lie-algebra homomorphism \ : L —
I(K). A(L) = Homp;e(L, (K)) is the set of all weights of L.

Note that a weight for A is nothing else as K-linear map A : L — K with L’ < ker .
Thus A(L) = A(L/L") = (L/L")*. For a weight A we denote by K, the L-module with
action L — K — K, (I, k) — A(D)k.

Lemma 2.3.2 [weights and simple| The map A — K, is a one to one correspondence
between weights of L and isomorphism classes of 1-dimensional L-modules.

Proof: Let V be a 1-dimensional L-module. Then lv = try({)v for all [ € L,v € V and
so try is a weight and V' = Ky,,,. Clearly two 1-dimensional L-modules are isomorphic if
and only their trace functions are equal. O

Corollary 2.3.3 [simple for solvable| Let L be standard and solvable. Then the map
A — K is one to one correspondence between the weights of L and finite dimensional
stmple L-modules.

Proof: (]ED and OJ

Let A be a weight for L. Since A corresponds to an isomorphism class of simple L-
modules we obtain from Definition the notations V), V(i) and VY. V) is called the
weight space for A on V.

A weight for A\ for L on V is a weight with V) # 0. Ay = Ay (L) is the set of weights
for L on V. VY is called the generalized weight space for A on V. We also will write V) (c0)
for V¢

Lemma 2.3.4 [weights and eigenspaces| Suppose that L = Kl is 1-dimensional, \ a
weight of for L, k = A\(1) and n € N.
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(a) [a] V) is the eigenspace for l on V corresponding to k,
(b) [b] Vi(n)=Cv((k—10)").
(c) [c] VY is the generalized eigenspace for 1 on V' corresponding to k.

Proof: @ By definition V) is the sum of all L-submodules isomorphic to Ky. Since
(k—=0DK)x =0, V), <Cy(k—1). Clearly Cy(k — ) is the sum of submodules isomorphic to
Ky and so V) = Cy(k —1).

() For n = 0 both sides are 0. By induction we may assume W = Vy(n — 1) =
Cy((k—1)" 1. Applying @ to V. =V/W we get

VA(n)/W =Vy = Cyp(k —1) = Oy ((k = 1)")/W.
So (]ED holds.
follows from (]ED O

Lemma 2.3.5 [weights and invariant maps| Let f : V x W — Z be L-invariant, K-
bilinear map of L-modules. Let X and p be weights of L and i,j € NU {oco}.Then

FVA(), Wu(5)) < Zagpli+35 —1).
Proof: We first consider the case i = j = 1. Let [ € L,v € V) and w € W,. Then

Lf(v,w) = [, w) + f(v, lw) = fAMDv, w) + f(v, p(l)w)
= ADf(v,w) +p)f(v,w) = A+ p)1)f(v,w).
So the lemma holds in this case.
Also the lemma is obviously true for ¢ = 0 or j = 0. If the lemma holds for all finite ¢
and j it also holds for ¢ = oo or j = oo.
So assume 1 <4 < oo and 1 < j < co. By induction on ¢ + j we also may assume that

S — 1), Wa(4)) < Zapu(i+7) and f(VA(3), Wp(i — 1)) < Zxyp(i + 7).
Put X = Vi(i)/Va(i — 1), Y = W,(j)/Wu(j — 1) and Z = Z/Zx;,(i + j). Then we obtain

a well defined L-invariant map f_: X xY — _Z with f(v,w) = f(v,w) for all v € V)(i)
and w e Wli(]) Note that X = X, and Y =Y. So by the “/ = j = 17-case we get that

f(X,Y) < Zy4,. Taking inverse images in V, W and Z we see that the lemma holds. [

Corollary 2.3.6 [weight formula] Let V be an L modules, A < L, X\ and p weights for
A andi,j € NU{oo}

(a) [a] LA(D)Vu(j) < Vagu(i+5 —1)
(b) [b] [LA(3), Lu(§)] < Lagpp(i+j—1).

Proof: By the map ({,v) — v is L- and so also A-invariant. Hence (&) follows from
is just a special case of (fl). O
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2.4 Minimal non-solvable Lie algebras

Proposition 2.4.1 [minimal non solvable| Let L be a standard Lie algebra such that all
proper subalgebras are solvable but L is not solvable. Then

(a) [a] L=1L".

(b) [b] Sol(L) is the unique mazimal ideal in L.

(¢) [¢] L/Sol(L) is simple.

(d) [d] Sol(L) = Cr(W), where W is any non-trivial, finite dimensional simple L-module.
(e) [e] Sol(L) = Nilp(V), where V is any non-trivial, finite dimensional L-module.

(f) [f] Sol(L) = Nil(L).

Proof: () If L’ # L, then both L’ and L/L’ are solvable. Thus L is solvable, a contra-
diction.
(]E[) Let I be any proper ideal in L. Then [ is solvable and so I < Sol(L).

By (]E[), L/Sol(L) has no proper ideals.
(d). Since W is non-trivial, Cr(W) # L. Thus Cr(W) < Sol(L). By (&), Sol(L) < L’

and so by Sol(L) < CL(W).

(€) Note that by (&) L/Cp(V) is perfect. If L acts nilpotently on V, then implies
that L/CL(V) is nilpotent and perfect, and so trivial. This contradictions shows that
L # Nil (V). By (d) Sol(L) < Nil(V) and so (b)) implies Sol(L) = Nil (V).

@Apply@toV:L. O

Theorem 2.4.2 [minimal simple| Let L be a non-solvable, standard simple Lie-algebra
all of whose proper subalgebra are solvable. Then L = sI(K?).

Proof: For X € L let X = Nilx(L). Also let A" be the set of elements in L acting
nilpotently on L.

1° 1]  Let X £ L, then X' < X =XNN. and X is is a nilpotent ideal in X .
Since X # L, X is solvable by assumption. Thus [2.1.5 X’ < Nilx (L) and by [2.1.6{(d),

X = XNN. Since L is non-abelian, L # Z(L) and since L is simple, Z(L) = 1. Thus L is
a faithful L-module and so by X is nilpotent.

Let A and B be distinct maximal subalgebras of L and D = AN B

2° 2] L=A+B anddimL/A=1=dimA/D = dim B/D = dim L/B.
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Since A is solvable applied to V' = L/A implies that there exists a 1-dimensional
A submodule W/A in L/A. Let w € W\ A. Then [A,W] < W as W is a A-submodule
of L. Also W = A+ Kw and so [w, W] = [w, A] < W. Thus [W,W] < W, that is W is
a subalgebra of L. The maximality of A implies L = W. So dim L/A = 1. By symmetry
dimL/B = 1. Since A # B, L = A+ B. Thus A/D = AJANB =~ A+ B/B = L/B and

holds.
3° [8] D is an ideal in A.

If D= A this is obvious. So suppose that A % D. Since D acts nllpotenly on A we get
fromthatD<N(D) ByAmD (ANN)ND =D and so N3(D) £ D. By
A/D is 1-dimensioanal and so

A= Nz(D)+ D < Na(D).
Thus holds.
4° 4 AND=BnND=D=0.

By (3 , Dis an ideal in A and by symmetry also in B. Thus D is anideal in L = A+ B,
and as L is simple, D = 0. By (1°) A’'nD < AnD = D. Thus (4°) holds.

5° [5] D is abelian and A’ is at most 1-dimensional.

By °) D' < A/ND=0. Also A/ 2 A'//AND= A"+ D/D < A/D and so by (27, A’
is at most 1-dimensional.

Let a € A\ D with a € A’ if possible. If A" = 0 the [a, A] = 0 and if A" # 0, then by
, A’ = Ka. In any case Ka is an ideal in A. Let Ay = trﬂga. Similarly, define b € B and

6° 6] L=Kao®DdKDand Ay =—Ap.

The first statement follows immediately from . In particular tr% = A4+ trg + AB.
Since D is abelian, tr3 = 0. Since L = [L, L], tr? = 0. Thus (6°) holds.

7° [7]  kerAg =ker A\p =0 and D is one-dimensional.

Note that [ker Ay, Ka + D] = 0 and since A = Ka + D we get ker \q < Z(A). By (67),
ker A\g = ker Ap and so kerA\y < Z(A)NZ(B) < Z(L) =0. If D =0, dimL = 2 and L
is solvable by a contradiction. Thus D # 0. Since dimD/ker Ay = dimA4(D) <
dim K = 1 we conclude that D is 1-dimensional.

In particular, we have A4 # 0 and so A4 is onto and there exists d € D with A4(d) = 1.
Also note that 0, A4 and Ap are the weights of D on V and are pairwise distinct. Also
Ka < Ly,(D),Kb < Ly, (D) and D < Ly(D). Thus [1.7.15 implies that Ly, (D) = Ka,
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Ly, (D) =Kb and Lo(D) = D. Now shows that [a,b] € D. Suppose that [a,b] = 0.
Then A is an ideal in L, a contradiction. Thus [a,b] = kd for some non-zero k € K.
Replacing b by k~1b we may assume [a,b] = d. Also from [d,a] = a and A\g = —\4 we have
[d,b] = —b. Thus

8° [8] a,b,d is a basis for L, [a,b] = d, [d,a] = a and [b,d] = b.

From we see that L is unique up to isomorphism. Since s[(K?) fullfils the assump-
tions of the theorem we get L = sl[(K?). O

2.5 The simple modules for sl(K?)

In this section L = s[(K?). Let x = E19,y = E2; and h = E1; — Fas. Then (x,y, h) is basis
for L with [h,z] = 2z, [y, h] = 2y and [z,y] = h. We call (z,y, h) the Chevalley basis for L.

Lemma 2.5.1 [autos for s12] Let L = sl(K?) with Chevalley basis (x,y,h).

(a) [a] Let ® : L — L be the K-linear map with ®(x) = x,®(y) =y and ®(h) = —h. Then
D is an anti-automorphism of L.

(b) [b] Let ®: L — L be the K-linear map with ®(x) =y, ®(y) = x and ®(h) = —h. Then
D is an automorphism of L.

(c) [c] Let ®: L — L be the K-linear map with ®(x) =y, ®(y) = = and ®(h) = h. Then
D is an anti-automorphism of L.

Proof: Readily verified from commutator relations of (z,y, h). O

Lemma 2.5.2 [u for sl2] Let L = sl(K?) with Chevalley basis (z,y,h) and let i € Z..
Then the following holds in L.

(a) [a] hy' =y'(h - 2i)
(b) [b] zy' =y'z+iy~'(h— (i 1)).
(c) [c] yat =y’ —iz""Y(h+i—1)

Proof: Readily verified using the commutator relations and induction on . ]

Corollary 2.5.3 [u for sl2 in char 0] Let L = sl(K?) with Chevalley basis (x,y,h). Sup-
pose char K = 0 and define 2 = %.ﬁ(}l and y() = %yl Leti € Z4 . Then

(a) [a] hy® =y@(h - 2i).
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() 1b] ay® =Dz + 4D (h — (i —1)).

This follows immediately from [2.5.2 (]

Theorem 2.5.4 [modules for sl2] Suppose K is standard, L = sl(K?), V is a an L-
module and (x,y,h) is the Chevalley basis for L. Let k € K and 0 £Av € V.

(a) [a] IfV is finite dimensional, then there exists 0 #v € V and k € K with xv =0 and
hv = kv.

(b) [b] Suppose that there exist 0 # v € V and k € K with xv = 0 and hv = kv. Let
m € N be minimal with y™ v = 0, if such an m exists and m = oo otherwise. Also let
W = U be the smallest L-submodule of V' containing v. Put v; = Y. Then

Y-

(a) [z] (vi|i€N,i<m) isa basis for W.

(b) la] yv; = (i + L)vigq.
(c)
(d) [c] zv; = (k— (i —1))vi_1, where v_1 = 0.

(e) [d] zyv; = (i +1)(m — i)y,

[
[
[b] hv; = (k — 2i)v;.
[
[
(f) le] If m < oo, then m =k =dimW — 1.

Proof: @ Let A = Kz + Kh. Then A is solvable and A" = Kz. Let Vj be a simple
A-submodule in V. Then by Vo is 1-dimensional. Let 0 # vy € Vy. Then xvy = 0 and
hvg = kvg for some k € K.

(b) yvi = yyPDvg = (i + 1)yt Yy = (i + 1)vig; and so (b:b)) holds.
From [2.5.3)(a) we have

hvi = hyWvg =y (h — 20)vg = y @ (k — 2i)ve = (k — 20)v;
and so (jb:c) holds. From (]ED

(3) zv; = 2yDvg = (Y2 4y D (h—(i—1))vo = 0+y T V(k—(i—1))vg = (k—(i—1))vi_1
and holds. follows from and .

By (b:c) v; is an eigenvector with eigenvalue k — 2i for h. Thus the non-zero v;’s are

linearly independent. From , (b:c)) and the K-space spanned by v}s invariant under
L and so equal to W. Thus holds.

Suppse now that m < co. By with i = m + 1 we get

0=20=2zvp41 = (k—m)u,

As v, #0 and K is a field, k = m. Thus holds. O
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2.6 Non-degenerate Bilinear Forms

In this section we establish some basic facts about non-degenerate bilinear forms that will
be of use later on.

Lemma 2.6.1 [basic non-deg bilinear| Let V' and W be finite dimensional K -spaces and
f:VxW — K be non-degenerate and K-bilinear.

(a) [a] There ezists a unique K-isomorphismt: W* — V, a — to with a(w) = f(tq,w) for
all o € W*, w e W. In particular, dimV = dim W.

(b) [b] Let (w; | i € I) be a basis for W. Then there a unique basis (v; | i € I) of V with
f(vi, wj) = 045 for alli,j € I.

(c) [c] Let X be a subspace of V.. Then dim X + dim X+ = dim V. In particular, X =V
if and only if X+ = 0.

Proof: () Note first that if we define ¢; € W* by ¢;(w;) = d;5, then (¢; | i € I) is a basis
for W*. In particular, dim W = dim W*. Since f is non-degenerate the map ¥ : V — W*
with ¥U(v)(w) = f(v,w) is one to one. Thus dimV =< dim W* = dim W,. By symmetry
dimW < dimV. So dimV = dim W and ¥ is an isomorphism. Putting t = U1 we see
that () holds

(b)) Just put w; = tg,.
(c) The form X x W/X*, (x,w + X+) — f(z,y) is well defined and non-degenerate.
Thus by (a) dim X = dim W/X* and so (d) holds. O

Definition 2.6.2 [def:omega] A quadratic form on the K-space V is a map q : V — K
such that q(kv) = k2q(v) for all k € K,v € V and such that the function s : V x V —
K, (v,w) — q(v+ w) — q(v) — q(w) is K-bilinear. Note that s is symmetric. We call s the
bilinear form associated to q. Let u € V with q(u) # 0. Define i = q(u)~'u and

s(v,u)
q(u)

wy:V—o>Vov—-ov—sv,a)u=v— u.

Lemma 2.6.3 [omega u] Let V be a K-space, q : V — K a quadratic form with associated
bilinear form s, u € V. with q(u) # 0.

(a) [c] s(v,v)=2q(v) for allveV.

(b) [d] q(a) =q(u)™t #0, 4 =u, s(u,i) =2 and w,(u) = —u.

(c) [a] Let0# ke K. Then ku = k™' and wyy = wy. In particular, w, = wy.
(d) le] wy is an isometry of q.

(¢) [f] Let o be an isometry of q. Then o(@) = o(u) and ow,o™ ' = Wo(u)-
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Proof:
() We have g(2v) = 4q(v) and g(v +v) = q(v) + sv(v, v) + q(v).
(b) a(@) = q(q(u) " u) = q(u) “2q(u) = q(u)~*. So i = (q(u) ") ~'q(u)~'u = u. Also
and s(u, @) = S((;é’g). So by @, s(u, @) = 2 and hence wy(u) =u —2u = —u

ku = q(ku) " ku = k~2q(u) " Tku

Wi (V) = v — s(v, ku)ku = v — s(v, k a)ku = v — s(v, @) u = wy(v).

@

q(wu(v)) = qv—s(v,d)u) =
= q(v) = s(v,a)(s(v,u) — s(v, q(u) " u)gq(v)) =

Lemma 2.6.4 [1/2 f] Suppose f is a non-degenerate symmetric form on the K-space V
and that charK # 2. Then q(v) := %f(v,v) is a quadratic form and f is its associated
bilinear form.

Proof: q(v+w) —q(v) — g(w) = 5(f(v +w) = f(v,v) = f(w,w0) = f(v,w) O

Lemma 2.6.5 [f circ] Let V and W be finite dimensional K-spaces and f: V x W — K
a non-degenerate bilinear form. Define ® : V@ W — (V@ W)* by ®(v @ w)(v' @ w') =
fo,w") f(v',w) for all v,v" € V and w,w' € W.

(a) [a] According to choose bases (vi,i € I) and (w;,i € I) for V and W such that
f(vi,wj) = 035. Then (P(v; ® wy))i; is the dual of the basis (v; ® w;)i; of VW

(b) [b] @ is an isomorphism.

(c) [c] Let fo=® ' (f). Then fo =3 ;v ®w.

(d) le] f(f°)=dimV

(e) [d] Suppose that V. and W are L-modules and f is L-invariant. Then ® is L-invariant
and Lf° = 0.
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Proof: We compute

(*) O (v; @ wy) (v @ wy) = fvi, wp) f(vg, ws) = 6.

Thus holds. follows directly from @
Let t =3, c;vi ® w;. Then by (*)

O(t)(vp @ w) =Y D(v; @ w)(vk @ wp) = Y Sl = 6y = f(vg,wy) = f(v @ wy)
i€l el

Thus ®(¢) = f and so t = ®~L(f) = f°
@ From we compute

:ZJ?(%'@U%)IZf(vi,wi)221:‘[‘ =dim V.

el el el

(EI) That ® is L-invariant is readily verified. Since f is L-invariant, Lf: 0. Since @ is
an L-isomorphism, Lf° = 0. O

2.7 The Killing Form

For a finite dimensional L-module V' we define fyy : L x L — K, (a,b) — try(ab). fy is
called the killing form of L with respect to V. In the case of the adjoint module, f7, is just
called the Killing form of L.

Lemma 2.7.1 [basic killing] Let V' be a finite dimension L-module.
(a) [a] fv is a symmetric, L-invariant bilinear form on L.
(b) [b] IfI<QL, then I QL and [I, 1] < rad(fy).
(c) [c] Let W be the set of factors for some L-series on V. Then
fv=">_ fw.
wew
(d) [d] Let I be an ideal in L. Then f1 |Lx1= fL |Lx1-
(e) [e] Nilp(V) <rad(fy).

(f) If] If L is finite dimensional, then Nil(L) < rad(fr).



40 CHAPTER 2. THE STRUCTURE OF STANDARD LIE ALGEBRAS

() Clearly fy is K-bilinear. Let a,b € . Then try (ab) = try (ba) so fy is symmetric.
Thus also shows that try ([a,b]) = try(ab — ba) = 0 and so try : 4 — K is L-invariant.
By the map my : L x L — 4 (a,b) — ab is L-invariant. So also fyy = try omyp i
L-invariant.

(]EI) The first statement follows from For the second, let i € I,j € I+ and | € L.
Then [4,1] € I+ and so since fy is L-invariant:

fV([ivj]vl) = _fV(i7 [], l]) =0.

Thus [4, j] € rad(fy).

(d) Follows from [1.7.17)(d).

@) By , fr = fr+frsr- Then I and so also LI acts trivially on L/I. Thus fr/1 |Lx1=
0 and @ holds.

(E[) Let W be composition factors for L on V. Then Nilp (V)W = 0 and so also
LNily (V)W = 0. Thus for all I € L and n € Nil (V) we have fiy(I,n) = trw (In) = 0. So
by fv(l,n) =0 and (€) holds.

@ This is (E[) applied to the adjoint module. ]

Theorem 2.7.2 (Cartan’s Solvabilty Criterion) [cartan| Suppose L posseses a stan-
dard, faithful L-module with fiy = 0. Then L is solvable.

Proof: Suppose L is a counter example with dim L minimal. Then all proper algebras
of L are solvable, but L is not. Thus by [2.4.1) and [2.4.2] L := L/Nilp(V) = sl(K?). Let
(x,y, h) be a Chevalley basis for L and choose Z and 3 in L which are mapped onto z and ¥.
Since L # Nilz (V') there exists a non-trivial compostion factor W for L on V. For any such
W we have Cp(W) = Nil (V) and implies that try(zy) is a positive integer.
Hence implies that fy (Z,y) = try(Zy) is a positive integer. This is contradiction
to fyy = 0 and the theorem is proved. O

Proposition 2.7.3 [rad=sol] Let V' be standard,faithful L-module. Then
[Sol(L), L] < Sol(L)N L' < Nily(V) < rad(fy) < Sol(L)
In particular, if L is perfect, then Sol(L) = Nilg (V) = rad(fy).
Proof: By Lie’s Theorem [2.1.5
[Sol(L), L] < Sol(L) N L' < Nilg (V).

By 2.7.3f(d), Nil.(V) < rad(fy). Finally, Cartan’s Solvabilty Criterion [2.7.2] (applied to
rad(fyv) in place of L), we have that rad(fy ) is solvable and so rad(fy) < Sol(L). O
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Corollary 2.7.4 [basic non-degenerate| Let V be a standard L-module with fy non-
degenerate. Then

(a) [a] V is faithful and Nilp, (V) = 0.
(b) [b] Sol(L) = Z(L) and Sol(L)N L' = 0.

(c) [c] If L is solvable, then L is abelian.

Proof: By[.7.1)(d), C(V) < Nil (V) <rad(fv) = 0. So (@) holds. (b)) now follows from
follows from the first statement in (b)) O

Corollary 2.7.5 [faithful=non-degenerate| Suppose Sol(L) = 0 and V is a standard
L-module. Then fy is non-degenerate if and only if V is faithful.

Proof: If fiy is non-degenerate, then V is faithful by @ Suppose now that V is
faithful. Then by rad(fy) < Sol(L) = 0 and so fy is non-degenerate. O

Lemma 2.7.6 [non-degenerate implies semisimple| Suppose that L is finite dimen-
stonal and f1, is non-degenerate. Then Sol(L) = 0.

Proof: By[2.7.1][¢), Nil(L) < rad(fz) = 0. So by 2.1.2|(d), Sol(L) = 0. O

Corollary 2.7.7 [semisimple=non-degenerate] Suppose L is standard. Then Sol(L) =
0 ¢f and only if fr is non-degenerate.

Proof: If f1 is non-degenerate, then by[2.7.6/Sol(L) = 0. If Sol(L) = 0, then also Z(L) = 0
and so the adjoint module is faithful. So by fL is non-degenerate. O

If f is a symmetric bilinear form on a vector space W, we write W = WD Wy if W;
are subspaces of W with W = Wy @ Wy and f(wy,ws) = 0 for all w; € W;. Note that in
this case, W is non-degenerate if and only if f |y, is non-degenerate for i = 1 and 2.

Proposition 2.7.8 [decomposing 1] Let V' be a finite dimensional L module and suppose
that fy is non-degenerate. Let I be an ideal in L with I N Sol(L) = 0. Then

(a) [a] [I,IM]=0.
(b) b] L=1DTI+.

(c) [c] I+ =CL().



42 CHAPTER 2. THE STRUCTURE OF STANDARD LIE ALGEBRAS

Proof: By @, [I,I1] <rad(fy) = 0. Thus @ holds and

(1) I < o).

Since I N CL(I) is an abelian ideal of L and since Sol(L) NI = 0, we get

(2) INCL(I)=0.
From (1) and (2)
3) Inrt=o.

From we have dim I + dim I+ = dim L and so (3) implies that @ holds. From @,
(1) and (2) we compute

crh=cphnL=Cc()NnI+IH)=(C(I)NI)+ T+ =T+
So holds. ]

Theorem 2.7.9 [composition of 1] Let V' be a finite dimensional L-module and sup-
pose that Sol(L) = 0 and fy is non-degenerate. Then there exists perfect, simple ideals
Li,Lo,...,L, in L such that

L=0L1DL,D .. DL,.

Proof: By induction on dim L. If L is simple we can choose n = 1 and L; = L. So suppose
that L is not simple and let I be proper ideal in L. Since Sol(L) = 0 the assumptions of
are fulfilled. Hence L = IO I+ and [I,I'] = 0. In particular, fy |; and fy |;. are
non-degenerate. Also any ideal in I or I is an ideal in L. By induction we can decompose
I and I+ into an orthogonal sum of ideals. Thus the same is true for L. Since Sol(L) = 0,
the L; are not abelian and so perfect. ]

Corollary 2.7.10 [decomposing standard] Let V' be a standard L-module with fy-non-
degenerate. Then L = I'D Z(L) and L is semisimple

Proof: By L' N Sol(L) = 0. So by L = L'DL*. In particular, [L'*+, L] <
L'NL* =0. Thus L't = Z(L), L = L*@ Z(L). Thus Sol(L’) is an ideal in L and hence
Sol(L') < L' N Sol(L) = 0. By L’ is semisimple. Clearly also Z(L) is semisimple and
so L is semisimple. ]

Corollary 2.7.11 [standard semisimple] Suppose L is standard and Sol(L) = 0. Then
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(a) [a] fr is non-degenerate.

(b) [b] There exists perfect,simple ideals L1, Lo ... Ly such that
L=L1OL,D .. .DL,.

(c) [¢] {L1,La,...Ly} is precisely the set of minimal ideals in L.

(d) [d] Ewvery ideal in L is a sum of some of the L;’s.

Proof: @ follows from

@ By @ we can apply with V the adjoint module. Thus @ holds.

Let I be a minimal ideal in L. Since Sol(L) =0, Z(L) = 0 and so by (b)), [Z, L;] # 0
for some i. As I is a minimal ideal and L; is simple, I = [I, L;] = L;.

@ Let I be anideal in L. Let A be the sum of the L;’s with L; < I and B the sum of the
remaining L;’s. Then A < I, L =A+Band [A,B] =0. Thus I = IN(A+B) = A+(INB).

Suppose that I N B # 0. Then I N B contains a minimal ideal and so by , L;<INB
for some 4. Since L; < I, L; < A. Since L; < B and [A, B] = 0 we conclude that [L;, L;] = 0,
a contradiction since L; is perfect.

Thus INB=0and I = A. O

We say that L is semisimple if L is the direct sum of simple ideals. Note that this is the
case if and only if the adjoint module is a semisimple L-module.

Corollary 2.7.12 [sol 1 and semisimple| Let L be standard. Then Sol(L) = 0 if and
only if L is perfect and semisimple.

Proof: One direction follows from 2.7.11] while the other is obvious. O

2.8 Non-split Extensions of Modules

In this section A is an associative algebra.

Definition 2.8.1 [def:extension]

(a) [a] An extensions of A-modules is a pair of A-modules (W, V) with W < V.

(b) [b] An extension of A-modules (W, V') is called split if there exists a A-submodule X
of VwithV =W ¢ X.

(c) [c] Let B and T be A-modules and (W,V') an extension of A-modules. We say that
(W, V) is an extension of B by T if W = B and V/W =T as A-modules.

Lemma 2.8.2 [basic split I] An extension (W, V) of A-modules. is split if and only if
there exists ¢ € Homa(V, W) with ¢ | W = idyy.
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Suppose first that V =W @& X for some A-submodule X of V. Let ¢ be the projection of
V onto X. Then ¢ is A-invariant and ¢y = idw .

Suppose next that ¢ : V' — W is A-invarinant with ¢ |y= idw. Let X = ker ¢. Then X
is submodule of V and XNW = 0. Let v € V. Then ¢(v) € W and so ¢(¢(v)) = ¢(v).Hence
¢(v—¢(v)) ==0. That is v — ¢(v) € kerp = X. So v = ¢(v) + (v — ¢p(v)) € W + X. Thus
V=W X and (W, V) splits. O

Lemma 2.8.3 [basic split II] Let (W, V) be an extension of A-modules. Let
® : Hom(V, W) — Hom(W, W)

be the restriction map. Then

(a) [a] @ is A-invariant and onto.

(b) [b] ker ® = Hom(V/W, W) and ker ® is submodule of Hom(V, W)

(c) [c] S:=® ' (Kidw) is an A-submodule of Hom(V, W) and S/ ker ® = K

(d) [e] (W,V) is split if and only if (ker ®,S) is split.

Proof:

@ Clearly ® is A-invariant. Note thate there exists K-subspace X of V with V =
W @ X. Let a € Hom(W, W) and define a(w + ) = a(w). Then ®(&) = a.. So @ is onto.

Since ® is A-invarinat, ker ® is an A-submodule.

Let o € ker @. Define §: V/W — Vv + W — «(v). Conversely let 8 € Hom(V/W, W)
define a: V. — W, a(v) = (v + W). Then « € ker ®.

follows from @

(d) Suppose first that (W, V) splits. Let ¢ be as in d. Then S = ker ® ® K¢ and
so (ker @, 5) splits.

Next suppose that (ker @, .S) splits and let Y be an A-submodule of S with § = ker PpY.
Then @ | Y : Y — Kidw,¢ — ¢ |w is an A-invariant isomorphism. Hence Y is a trivial
A-module, all ¢ € Y are A-invariant and there exists ¢ € Y with ¢ |y= idy. Thus by

(W, V) splits. O

Lemma 2.8.4 [b simple] Let T' be A-module and suppose there exists a non-split exten-
sion of a finite dimensional A-module by T'. Then there exists on-split extension of finite
dimensional simple A-module by T .

Proof: Let (W,V) be a non-split extension with V/W = T and W finite dimensional.
Since W is finite dimensional we can choose a submodule Y of W maximal such that
(W/Y,V/Y) is non-split. Since (V/Y)/(W/Y) = V/W = T, (W/Y,V/Y) has the same
properties as (W, V). So we may assume that Y = 0. Let B be a simple A-submodule of
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W. The maximality of Y implies that (W/B,V/B) is split. So V/B = W/B & X/B for
some A-submodule X of V with B< X. Then WNX =B and W + X = V. Thus

TEV/W=X+W/W=X/XNW =X/B.

Hence (B, X) is an extension of B by T. Suppose this extension is split. Then X =
B &Y for some A-submodule Y of X. Thus V =X+W =Y +B+W =Y + W and
YNW<YN(XnNW)+YNB=0. SoV =WaY, contrary to the assumptions. Thus
(B, X) is non-split and the lemma is proved. O

Corollary 2.8.5 [splitting reduction]

(a) [a] a Suppose there ezists a finite dimensional A-module which is not semisimple. Then
there exists a non-split extension of finite dimensional A-modules.

(b) [b] Suppose there exists a non-split extension of finite dimensional A-modules. Then
there non-split extension of finite dimensional simple A- module by K.

Proof:

@ Let V be a finite dimensional A-module of minimal dimension with respect to not
being semisimple. Let W be simple A-submodule of V. Suppose V = W & X for A-
submodule X of W. Then by minimalty of V, X is semisimple. But then also V is
semisimple.

() From there exist a non-split extension of a finite dimensional module by K.

(o) now follows from O

2.9 Casimir Elements and Weyl’s Theorem

In this section will show that a standard module for a perfect, semisimple Lie algebra is
semisimple.

Proposition 2.9.1 [casimir| Suppose L is finite dimensional and f : L x L — K is a
non-degenerate, L-invariant, K-bilinear form. Define ¥ : L ® L — 4 by V(a ® b) = ab. Let

[ be as in[2.6.9 and put c; = U(f°).
(a) [a] ¢y € Z(4h)N L2

(b) [b] Let (vi,i € I) and (w;, € I) be bases of L with f(v;,w;) = 6;5. Then

Cr = Zviwi

iel



46 CHAPTER 2. THE STRUCTURE OF STANDARD LIE ALGEBRAS

Proof: View U as L-module via the adjoint representation. By U is L-invariant, By
@ Lf° =0 and so [L,cy] = 0. Since il is generated by L as an associative algebra,
[Uycs] = 0. Thus ¢y € Z(U). Also ¢y € V(L ® L) = L?. So holds. (]ED follows
immediately from . O

The elements ¢y from the preceeding proposition is called the Casimir element of f.

Lemma 2.9.2 [cv]| Let V be a finite dimensional L-module and suppose that fy is non-
degenerate. Define cy = cy,, .

(a) [a] try(cy) = dim L.

(b) [b] Suppose K is algebraicly closed and V is simple. Then cy acts as a scalar k € K
on V. Moreover one of the following holds:

[a] char K {dimV and k = gllr’;l{;

1.
2. [b] char K | dimV and char K | dim L.

Proof: (EI) Let ¥ be defined as in Then by definiton of fy, fv = try o W. Thus

try (ev) = try (W(f°)) = f(f°)

So (@) follows from [2.6.5|(d).
[®) Since ¢y < Z(U), Schur’s Lemma [1.7.13] applied to the image of ¢y in Endp (V)
gives that cy acts as a scalar k£ € K. Thus try(cy) = kdim V and so (]ED holds. O

Theorem 2.9.3 (Weyl) [weyl]| Let L be standard, prefect and semisimple and V a finite
dimensional L-module. Then V is semisimple.

Proof: Byits suffices to show that any finite dimensional L-module extension (W, V)
with W simple and V/W = K splits. Since L/CL(V) is also semisimple we may assume
that V is faithful. By fv is non-degenerate. So by c:=cy € Z(4) N L2 Since
LV < W, cV < W. Since W is simple, Schur’s lemma applied to the image of ¢ in
Endy (V) gives that ¢ acts as a scalar k on W. Then

try (c) = trw(c) + tryw(c) = kdim W + 0.

By @ and since charK = 0, try(c) # 0 and so k # 0. Thus k~'cV < W and
k~lc acts idy on W. Thus k~'c induces an L-invarinat K-linear map ® : V. — W with

¢ |w=idw. Thus by , (W, V) splits. O
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2.10 Cartan Subalgebras and Cartan Decomposition

Definition 2.10.1 [def:cartan] H < L is called selfnormalizing if H = Np(H). A Cartan
subalgebra of L is a nilpotent, selfnormalizing subalgebra of L.

Lemma 2.10.2 [existence of cartan| Suppose that L is finite dimensional and |K| >
dim L. Then L has a Cartan subalgebra.

Proof: Choose d € L with H := L§(Kd) minimal. Note that a simple module with
weight 0 is a trivial module. So by , H is the largest Kd-submodule on which
d acts nilpotently. In particular, d € H. By [L§(Kd), L§(Kd)] < L§(Kd) so H is a
subalgebra. Let V' = L/H. Then V is an H-module and Cy(d) = 0. In particular, the
image d* of d in End(V) is invertible. Also Np(H)/H < Cy(d) = 0 and so H = Np(H).
To complete the proof we may assume that H is not nilpotent and derive a contradiction.
Let D < H such that d € D and D is maximal with respect to acting nilpotently on H.
Then D # H and by there exists h € Ny (D) \ D. Since the number of eigenvalues
for h*d*~1 on V is at most dim V' and since |K| > dim L > dim V, there exists k € K such
that k is not an eigenvalue of h*d*~!. Then h*d~! — kidy is invertible and so also h* — kd*
invertible. Put [ = h — kd. Then I € Ng(D) \ D and Cy(l) = 0. Hence Vj(¢)(kL) = 0. As
L§(KI) + H/H < V&(KL) = 0 we conclude LO(xL) < H. The minimality of H = L§(Kd)
implies that H = L§(Kl). Thus [ acts nilpotently on H. From [1.6.3|we conclude that D+Ki
acts nilpotently on H, contradicting the maximal choice of D. O

Lemma 2.10.3 [cartan decomposition] Let V' be a standard L-module and N a nilpotent
subideal in L. Then
v P W

/\GA\/(N)

Moreover, each of the V are L-submodule.

Proof: By 1.7.11, the V' are L-submodules. So it remains to prove the first statement.
If V is the direct sum of two proper N-submodules, we may by induction assume that the
lemma holds for both summands. But then it also holds for V. So we may and do assume

(*)  V is not the direct sum of proper N-submodules.

Let [ € N. Since N is nilpotent implies that Kl is subideal in N. The Jordan
Canonical Form of [ shows that V' is the direct sum of the generalized eigenspaces of [. But
the generalized eigenspaces are just the generalized weight spaces of KI. Hence
shows that the generalized eigenspaces are N-submodules. So by (*), [ has a unique eigen-
value A\; on V.

Let W be any N-composition factor on V. Then by W = K for some weight A
of N. Then A(l) is an eigenvalue for [ on V and A(l) = A\;. As ! € N was arbitrary, \ is
independent of the choice W and so V' = VY. g
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2.11 Perfect semsisimple standard Lie algebras

In this section we will investigate the structure of the perfect semisimple standard Lie
algebras. For this we fix the following

Notation 2.11.1 [not:semisimple]

(a) [a] L is a perfect, semisimple, standard Lie algebra.

(b) [b] H is a Cartan subalgebra of L.

(c) [c] A=AL(H) is the set of weights for H on L.

(d) [d] ® =A\{0}. The non-zero weights for H on L are called the roots of H.

(e) le] f= fr, and L is always meant with respect to f.

Lemma 2.11.2 [root decomposition]

(a) [a] L =D,eqLa
(b) [b] H = L.

(c) [e] [L&, LGl < Ly, g for all a, B € A.
Proof: (E This follows from applied with V =L, L =H and N = H.

@ By :1.7.11@, Lo(H) is the largest H-submodule of L, such that all compostion
factors for H on Ly(H) are trivial. Since H is nilpotent, all composition factors for H an H
are trivial. Thus H < L§. Suppose H # Lo and let A/H be a simple submodule of Lo/H.
By definition of Ly, A/H is a trivial module. Thus [A, H] < H, a contradiction since H is
selfnormalizing..

This follows from O

Lemma 2.11.3 [simple properties| Let o, € A and h € H.
(a) [a] f is non-degenerate.

() [b] trrg () = a(h) dim L,

(c) [c] If a(h) #0, then [h, L] = LS.
() [d] If B+ o Ig L L,

(e) [e] flu is non-degenerate.

(f) [f] H is abelian.

(9) [g] —a€A.
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(h) [b] Lo #0.
Proof: @ : @

Obvious.
. ) By 112, [h, LG] < L. Since a(h) # 0, Cre (h) = 0 and so the action of h on
¢ is 1nvert1ble

- < (K)gup Ha+p#0, (K) ﬂ—and@)holds
) By (d)), and [2.11.2 m@) L =HDH"'. Sosince f is non-degenerate, @ holds.
) This follows from @ and [2.7.4 -.

@D Otherwise @) would imply L¢ < L+ = 0.
(b)) Follows from the definition of A = Ar(H). d

Notation 2.11.4 [ta for 1] Since f|g is nondegenerate yields a K-isomorphism t :
H* — H,a — to with a(h) = f(ta,h) for alla € H*,h € H. For o, € H* and h € H
define q(h) = Sf(h.h), f*(o, B) = f(ta,tg) and q*(c) = q(ta). Recall the definition of h
and wo in[2.6.4 Note also that A C A(H) = H*.

Lemma 2.11.5 [x,y| Let a € &, z € L, andy € L_,. Put h = [z,y]. Then
(a) [a] he H.

(b) [b] Let 3 € A. Then there exists g € Q with S(h) = qa(h).

(c) [c] h =0 if and only if a(h) = 0.

(d) [d] h = [:an] = _f(xay)ta-
(e) [e] h=0 if and only if x L y.

Proof: @ follows from [2.11.2
@ Put V=3 ., L/?ﬂ_m. By 2.11.27 V' is invariant under = and y and so under h.

We compute:

0=try(h Z tree b Z ) +na(h))dim LG,
nez nez

and so

h)Y dim LG, ,, = —a(h) Y ndim L,
nez nez
So holds.
Suppose a(h) = 0, then by (]ED, B(h) =0 for all 5 € A. Hence h acts nilpotently on
L. Since H is abelian we get Kh < Nilg(L). Since f|g is non-degenerate, [2.7.4] -@ implies
Nily (L) = 0. So h = 0.
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@ Let a € H. Since y € L_,, [a,y] = —a(a)y. Since f is L-invariant we obtain:

f(h‘7 a’) = f([a:,y],a)) = f(:L’, [yva]) = —f(l’, [aay]) = —f(l’, _a(a)y) = a(a)f(x,y)

On the otherhand,

f(f(x7y>ta7a> = f(x7y)f<t047a) = f(x7y)a(a) = a(a)f<$7y)

Since f |z is non-degenerate, this implies h = f(x,y)tq.
follows immediately from @ O

Lemma 2.11.6 [dim la] Let a € ®.

(a) [a] Lo = LS is 1-dimensional.

(b) [c] Letn € Z. Then na € ® if and only if n = £1.
(c) [b] [La,L—_qa] =Ktg.

(d) [d] f(ta,ta) # 0.

Proof: Pick 0 #y € L_,. By 2.11.3@[)7 L = y* + LS. Hence there exists x € L¢ with
x Ly Put h=]|z,y]. By 2.11.5 and (E[), h # 0 and a(h) # 0. Put

V:KQ@H@ @ Lna-

neZy

By 2.11.2, V is invariant under x. Since y € L_,, [y, H] < Ky. Also [y,y] = 0 and so
V' is also invariant under y and h. Thus

0=try(h) = —a(h)+0+ > na(h)dim L,

nely

Since a(h) # 0 we can divide by a(h) to obtain:

> ndimL, =1

neEZy

Thus dim LS, = 0 for n > 1 and dim L¢, = 1. So (@) holds. Also (b)) holds for positive
n. Applying this result to —a we see that (]E[) holds. As L, and L_, are 1-dimensional,
[La, L_4] is at most 1-dimensional. But h = [x,y] # 0 and so [Lq, L] = Kh.

By R2.I1.5(d) ], h = f(z,y)ta and hence (d) is proved.

Finally 0 # a(h) = a(f(z,y)ta) = f(@,y)a(ta) = f(z,y)f(ta, ta) and so also (d)) holds.
(]
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Lemma 2.11.7 [xa =slw]| Let « € ®. Define H, = Kt,, Xo = Lo + L_o + Hy and
ho = to = mtw Then X, is a subalgebra of L, X, = sl(K?) and a(hs) = 2. More
precisely, if ©o € Lo and x_q € L_q with (x4, x_q] = hq, then there exists an isomorphism
form X, to sl(K?) with

(01 (00, (10
00/ Y71 o0 a7 \p -1

Proof: Note first that by 2.11.6@, f(ta,ta) # 0, so hy is well defined. By 2.11.6 we

can choose 1, as in the lemma. Now a(hy) = f(ta,ha) = f(tas mta) = 2 and so
[has Ta] = a(ha)ra = 224 and [2_q, ha] = —[ha,2—a)] = —(—a(ha))y = 22_, and so the
lemma holds. O

Notation 2.11.8 [def: a string] Let o € ®. We define an equivalence relation ~, on A
by B ~a v if B—7 € Za. We denote the set of equivalence classes by A/Za. The equivalence
classes for of ~ are called a-strings. If 3, are in the same a-string we say that 8 <, v if
v — B € Na. For 3 € ® let 8 —roga be the minimal and 8+ sqga be the maximal element
(with respect to <) in the a-string through (3. For an « string A define La = Y 5.5 Ls,

Lemma 2.11.9 [xa on 1] Let a € ® and A an a-string.

(a) [a] La is an X4-submodule and

L= @ L.

AEN/TLa

(b) [b] Let p € A and i € Z with ia + 3 € A. Then Lgyq is the eigenspaces for hy on
LA corresponding to the eigenvector 3(hey) + 2i.

(c) [c] Suppose o € A, then
(a) [a] A={—,0,a}.
(b) [b] La =X, ®kera.
(c) [c] kera=Cy(Xy)=HNHE.
(d) [d] Suppose that a ¢ A and let § € A.
(a) [b] A={f+ia|—rap <i<sap}
(b) [c] La is a simple Xo-module of dimension |A| =rqog+ sap + 1.
(¢) [d] Cra(La) = Lptsapa
(d) [e} [Lon Lﬁ] = La+p
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Proof: @ follows immediately from [2.11.2
@ Since a(hq) = 2, Lgtiq is contained in the eigenspace for h, corresponding to

ha) + 2. Since the G(hy) + 21, © € Z are pairwise distinct we conclude that Lgy,, is the
b B+
eigenspace corresponding to [5(hey) + 2i.

By RI1.6(b) , A = {a,0,—a}. Since a(ha) = 2 # 0, H = kera & H, and so
La =X, ®kera.

Cu(Xa) =Cu(La) NCy(L_o) NCu(H) =keraNker —aN H = kera.

By definition of t, f(t,h) = a(h) and so kera = H Nt = H N H.. Thus all parts of
are proved.

(d) For an X,-module I and k € K let d,(I) be the number of composition factor ( in
a given composition series) for H, on I on which h, acts by multiplication by k. Then

de(La) = > di(W).
WGCompLA(XQ)

Let W € Compy,, (Xo) and let my = dim W — 1. Then by

dw (k) =

{1 if k is an integer between —myy and my with K = myy  (mod 2)

0 otherwise

In particular, dy (0) + dw (1) = 1. Thus dr,, (0) + dr,(1) is the number of composition
factor for X, on La. On the otherhand by dr, (k) =1if k = (hqa) + 2i for some i € Z
such that 8 + i« is a root and dr,, (k) = 0 otherwise. Hence dy,, (0) + dr,(1) < 1. So there
exists a unique composition factor for X, on Lao. Hence L is simple and @ follows from

254 O

Lemma 2.11.10 [f(ta,hb)] Let o € &, A an a-string in A and 3 € A.

(a) [a] wa(B) € A.

(b) [b] Let A ={Bo,Bu,... 0k} with Bo <a i <a --. <a Be. Then wa(Bs) = Bre_s.
(c) [e] B(ha) = [*(B,&) =Tap — Sap € L.

Proof: If a € A, this is readily verified. So suppose a ¢ A. Let i = 3(hy). Then i is an
eigenvalue for h, on La and so by also —i is an eigenvalue. Since a(h,) = 2 we have
(B —ia)(ha) = —i and we conclude from 2.11.9([b) that 3 — i € A. Also

1= ﬁ(ha) = f(tﬁ7h6¥) = f*(ﬂ7 d)

and so

B —ia=p— [ (B, a)a=wa(f)
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Thus @ holds.
@ follows easily from the proof of @

From (]ED, Wa (B + sapa) = B — rqpa. Hence
B+ sapa — [F(B+ sapa, &) = B — ropa
508 — B(ha) — 2805 = —Tap
rap = Sap = B(ha) = [*(B,a).

Lemma 2.11.11 [h=sum ha] H =} .4 H,.

Proof: Let h € H with h L H, = 0 for all &« € ®. Then «a(h) = 0 for all @ € A. So
[h,Lo) = 0 and h € Z(L) = 0. Thus h = 0. Since f|g is non-degenerate and H is finite
dimensional the lemma now follows from [2.6.1f(d). O

Lemma 2.11.12 [q rational]

(a) [a] f*(,8) €Q for all a,B € ®.

(b) [b] The restriction of fo of [ to Q@ is a positive definite symmetric Q-bilinear form
on Q0.

(c) [c] Any Q-basis of Q® is a K-basis of H*.

Proof: Let h € H. Then f(h,h) = trp(h?). Since h acts trivially on H and acts as 3(h)
on the 1-dimensional space Lg we have

(1) f(hoh) =" B(h).

Bed

Since to € Hy = [Lq, Lg] we can apply 2.11.5@ to h = t,. So there exists gg € Q such
that

(2) f(tﬁata) = B(ta) = qg()l(ta) = qgf(ta’ta)
Plucking (2) into (1) with h = t, we obtain

f(ta,ta) = Z Q[Zif(taata)Q-
psed

Since (fta,ta)) # 0 we can divided by f(ta,ts) to conclude f(ta,ts) € Q. From (2)
we get [*(8,a) = f(tg,ta) € Q. Put Hg = ) .4 Qo and note that Hg = t(Q®). Then
f(h,1') € Q for all h,h' € Hgp. Thus also S(h) = f(tg,h) € Q for all b € ®, h € Hy. (1)
now implies that f(h,h) > 0. Suppose f(h,h) = 0 then B(h) = 0 for all 8 € ®. R.11.11]
shows that h € HNH+ =0. So f | Hg 18 positive definite and so @ holds.

Let B be a Q-basis for Hgy. By KB = H and so B contains a K-basis D for H.
Let h € Hg with h L QD. Then H = KD < h*. Hence h = 0 and by and ,
QD = Hg. So B=D and is proved.
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Chapter 3

Rootsystems

3.1 Definition and Rank 2 Rootsystems

Throughout this chapter F is a subfield of R, E a finite dimensional vector space over F
and (-,-) a positive definite symmetric bilinear form on E. E* = E'\ {0}.

Definition 3.1.1 [def:root system| A subset ® of E* is called a root system in E provided
that for all o, B € ®:

(i) [a] wg(a) € a+7ZB (that is (o, B) € Z.)
(ii) [b] wa(B) € .
(iii) [c] E =Fd

(iv) [d] Fan® ={a,—a}.

If only (@) to hold, then ® is called a weak root system. If only @) holds then ® is
called a pre-root system.

Note that by [2.11.10] [2.11.11] and [2.11.12| the non-zero weights of a perfect semisimple
standard Lie algebra are a root system in the dual of the Cartan subalgebra. The purpose of
this chapter is determine all the roots system up to ismomophism. This will be used in later
chapters to complete the classifications of the perfect semisimple standard Lie algebras.

Throughout this chapter ® denotes a weak root system in F.

Definition 3.1.2 [defiweyl groups| Let A C E* and o, b € EF,

(a) [a] W(A) is the subgroups of the isometry group of (-,-) generated by the wq,a € A.
(b) [b] W =W(®) is called the Weyl group of ®.
(c) [e] (A)=UA"® ={w(o) |weW(A),deA}.

95
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(d) [d] ap is the angle between o and (3, that is the real number § with 0 < § < 180 and

(o,8)

VACTINVACEN

(¢) le] mag = (a,0)(8, ).

Lemma 3.1.3 [rank 2 root] Let o, 3 € E*. Then

cosf =

(a) [a] cos®Pop = Tmag.

(b) [b] 0<myp <4.

(©) e I 2 5 then (55 = (523

(d) [d] Fa=TFb iff mas = 4. In this case a = 3(a, B)B.
Proof: B(Ba) 1 )
cos? Do = (0 ONP0S — L0, 5)(8,0) = Jrmas

and so (a]) holds. (]E[) follows immediately from @ follows easily from the definition of
&. For (d)) note that Fa = Fg iff ¥,5 € {0°,180°}, that is iff cos? 9,5 = 1. By @ this holds
iff mog = 4. Suppose now that Fa = Fb. Then (%(a,ﬁ)ﬁ, a) = %(a,ﬁ)(ﬁ, a)=2=(a,&)
and soa:%(a,ﬁ)ﬂ O

Lemma 3.1.4 [sab] Let {a, 8} € E* with (o, 3) € Z and (8,&) € Z and (o, ) > (B, 3).
Then one of the following holds:

(. 8) | (8.6) | costag | Yas | 5]
0 0 0] 90° | 7
1 1 2| 60° 1
1l a1 S|
1 o
2 1 v I
-2 1| -k 135 2
3 1 3300 3
3| -1 -—¥3|150°| 3
2 2 1| 0| 1| a=g8
2 -2 ~1[180°| 1| a=-8
4 1 1| 0°| 4| a=28
4| -1 ~1]180°| 1|a=-28

In particular, if Fa # F3, then |(8,&)| = 1.

Proof: Note that |(a,3)| > |(8,&)|. This follows easily from O
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Definition 3.1.5 [def:discret] For D C E define
min-d(D) = inf{(e —d,e —d) | d # e € D}
and
max-d(D) =sup{(e —d,e —d) | d # e € D}.
We say that D is discret if min-d(D) > 0 and that D is bounded if max-d(D) < oo

Lemma 3.1.6 [discret] Let A be linear indepdendent subset of E. Then ZA is discret.

Proof: Since ZDelta is closed under subtraction we need to show that inf,cyaz (¢,2) > 0.

Let d € A and put ¥ = A\ d. For e € E define f. € F and é € d*+ by e = f.d +¢&. Then
3 is a linear indepedent. By induction on A, m := inf, s (s,5) > 0. Let 0 # ¢t € ZA. If
t #0, then (7,7) > (t,£) >m. If t =0, then t € FdNZA = Zd and so (t,t) > (d,d). O

Lemma 3.1.7 [discret and bounded] Let A C E be discret and bounded. Then |A| is

finite and bounded by a function of ﬁ?jjg g)) and dim F.

Let | = min-d(D), u = max-d(D) and n = dimE. Let E; be a 1-dimensional supspace of
E and put Fy = Ef. Let 7; the the projection of E onto E;. Let D1 be a subset of 71(D)
with (d,e) > ﬁ for all d,e € D;. Since (d,e) < wu for all d,e € m1(D) we have

() |Di] < —

In particular, we can choose a maximal such D;. For e € D; let D(e) = {d € D |
(m(d),e) < . The maximality of Dy implies that

(xx) D= U D(e
eeDy

Now let e, f € D(e). Then (mi(e), m1(f)) < & and so (m2(e), m2(f)) > . In particular,
72 |p(ey is 1 =1 and by induction on n, [wa(D(e))| is bounded by a function of 2t and n—1.
(*) and (**) now imply the lemma. O

Lemma 3.1.8 [finite| Let ¥ be pre-root system in E. Then ZV is discret and ¥ is finite.

Proof: Since FE is finite dimensional and FF = FW¥ there exists a finite subset A of ¥ with

FA = FU. Let ¥ be the basis of E dual to A. Since (d,+) € Z for all 9» € ¥ we have

¥ C ZY. Hence also Z¥ < ZX. By 7Y is discret and so also ¥ and Z¥ are discret.
Put v = maxgsea (6,0 ) a € W. Then there exists 6 € A with («, ) # 0 and so by

(,ar) < 4(8,0) < 4u
thus V¥ is bounded. So by V¥ is finite.
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Lemma 3.1.9 [basic j;] Let A C EF.
(a) [a] W((A)) =W(A).

(b) [b] W(A)=W(A).

(c) [e] (A) =(A).

Proof: Put ¥ = (A). Clearly W(A) C W(¥). Let @« € ¥. Then a@ = w(f) for some
w € W(A) and 8 € A. Then by @ wa = wwgw ™! € W(A) and so W(¥) C W(A).
Thus @) holds. (]EI) follows from w, = wy and () follows from w(a) = w(&). O

Lemma 3.1.10 [basic root)|

(a) [a] ® is a weak root system in E. If ® is a root system, so is ®.
(b) [b] @ is W-invariant, that is w(®) = & for allw € W.

(c) [c] W acts faithfully on ®. In particular, ® is finite.

Proof: @ follows immediately from and the definition of a root system.
@) Put T = {w € GL(E) | w(®) = ®)}. Let o € ®. Note that wa(®) C @ and since
w2 =1
D = wy(wa(P)) Cwe(P) P

Thus w, € T. As T is a subgroup of GL(FE), we have conclude W < T.
Let w € W with w(a) = « for all @ € ®. Since ® spans E we get w(e) = 1 fro all

e € F and so w = 1. Hence W acts faithfully on ® and so the homomorphism from W to
Sym(®) is one to one. By ® is finite. Therefore also Sym(®) and W are finite. O

Definition 3.1.11 [def:span| Let ¥ C ® and R a subring of F (with1 € R and so Z < R).
Then

(a) [a] W is called a (weak) root subsystem of ® if VU is a (weak) root system in FW.
(b) [b] W is called R-closed if ¥ = RU N ®.

(c) [d] (¥)r denotes the smallest R-closed subset of ® containing V. (U)p is called the
R-closure of W.

We often just say “subsystem” for “weak root subsystem”. Note that of ® is a root
subsystem and ¥ a weak roots subsytem then W is already a root subsystem.

Lemma 3.1.12 [closure] Let ¥ C ® and R a subring of FF.

(a) [a] ¥ is a subsystem iff wa(B) € ¥ for all o, B € V.
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(b) [b] W is a subsystem iff ¥ is invariant under W ().
(c) [c] (U) C ® and VU is the smallest subsystem of ® containing V.
(d) [d] LetT be an R-submodule in E. Then H N ® is an R-closed subsystem of ®.

(e) [e] (¥)gr is a subsystem of ® and (V) C (¥)p =P N RY C RV.

Proof: @ The forward direction is obvious. For the backward let «, 3 € W. Then
—a = wqa(a) € ¥ and all the axiom of a root system are fulfilled.

(]E[) follows from @

Let 3 be a any root subsystem of ® containing W. Since ¥ is invariant under W (%),
w(y) € ¥ for all w e W(¥) < W(X) and ¢ € . Thus (¥) C ¥. In particular, (¥) C .

By definition of (¥), (¥) is invariant under W (). By W(¥) = W((¥)) and so
(W) is invariant under W ((¥)). Thus by (b)), (¥) is a root subsystem.

@ Let o, € TN ®. Then wg(e) = a— (o, f)8 € a+ZB € Ra+ RF < T and so
wa(B) € TN®. So by (&), TN ® is a subsystem of ®. Clearly TN & is R-closed and so (d)
holds.

Follows from @ applied to T'= RV. U

Lemma 3.1.13 [creating root systems] Let A C EF.

(a) [a] X:= {0 € ZA"|(6,5) € ZVS € A} is a weak roots system in FY.
(b) [c] Suppose A is a pre-root system. Then (A) is a weak root subsystem of .

(c) [d] Suppose A is linearly independent pre-root system. Then (A) is a root system in
FA

Proof: @ Let a, 0 € X.
1° [1] (o,a)p € Z.

Since v € ¥ C ZA, oo = ) 5. 5 nsd for some ns € Z, almost all 0. Since 3 € X, (6,3) € Z
for all 6 € A. So

(OZ,B) = Znﬁ(avﬂv) € Z.
0EA

2° [2] wpt € X,

By , (o, B) € Z and so wgla) = a — (o, 3)B € ZA. Let 6 € A. Then

(6, wp(e)") = (6,wp(@) ) = (wp(d),a) = (8~ (6,4)B,a) = (8,a) — (5,3)(8, &) € Z.
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Note that and imply .

(]E[) Since A is a pre-root system A C . So by (]ED, U is a weak root subsystem
of 3.

By , ¥ a weak root system and ¥ C 3 C ZA. Let n € F and o € ¥ with na € V.
We need to show that n = +1. Since « is conjugate under W (A) to some element in A we
may assume that a € A. As na € ¥ C ZA, na = ) ;.4 56 for some ns € Z. Since A is
linearly independent n = ngy € Z.

By ¥ =(A).

Also na = %d and a symmetric result shows % € Z. Thus n = £1. g

Definition 3.1.14 [def:a string 2] Let o, € ®. Then A = (8 + Fa) N ® is called the
a-sring through 3. Define a total ordering <, on A by vy <o 8 if 6 —v € F=%. Let B—raga
and 3 4 sqpa be the minimal and mazimal element in A with respect to <,.

Lemma 3.1.15 [a string] Suppose ® is a root system, o, € ® and A is the a-string
through (3.

(a) [d] Suppose o # £5. If (o, 3) <0, then a+ € ® and if (a,5) >0, a — [ € .

(b) [a] wq leaves A invariant and reverses the <4 ordering. So if A = {fo, b1, ... Pk} with
Bo <a P1 <a --- <a Bk, then wa(B;i) = Br—i-

(c) [b] If B =+« then A = {£a}. Otherwise
A={f+ia|—rep <i< 543,01 €L}
In particular, rog and sqg are integers.
(d) le] (B,@) =rap = sap-

Proof: () Suppose that (a,8) < 0. Without loss (a,a) > (3,8). Then by
(B,&) = —1. Thus S+ a = ws(B) € ®. The second statement follows from the first applied
to a and —0.

() Let 6 € A. Then wa(6) = 6 + (§,0)a € B+ Fa and so wa(d) € A. If v € A
with v < ¢, then 6 = v+ fa for a nonnegative f € F. Thus wq(d) = wa(y) — fa and so
wa(0) < wa(7)-

The case # = £« is obvious. So suppose o ¢ A. Without loss § = y. Then rog = 0.
Let f € F with 0 < f < s,3. We need to show that 6 := 8+ fa € ® iff f € Z. Since
wa(B) = by, we have by, = B+ sqpa and so wa(d) = B+ (sap — f)a. So replacing § by wq(0)
if necessary we may assume that (J, ) < 0.

Pick ¢ € N maximal with ¢ < f and v:= (8 +ia € ®. Put k = f —¢. Then 6 = v+ ka
and £ > 0. If Kk = 0 then f € Z and § € ®. So we may assume that £ > 0. Then
(v,a) < (8,) <0 and so by (&) v+ o € ®. The maximality of i shows i + 1 > f and
so k < 1. It remains to show that § ¢ ®. Suppose for a contradiction that 6 € ®. Then
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(6,a) = (y,a) + 2k As 0 < k < 1 and both (d,&) and (v, ) are integers this implies
k = 4. Hence ( = 2 + 3(a,%). Thus (%) is even. Since (o, ¥ ) < 0 and we conclude
fromj 4| that ( = —2. Hence

1
wyla) =a+2y = 2(’y+§a) =26

and we obtained a contradiction to the definition of a roots system.

@ Same proof as for . O

Definition 3.1.16 [def rank]
(a) [a] The rank of ® is the minimal size of subset A of ® with ® = (A).

(b) [b] @ is called disconnected if it is the disjoint union of two proper perpendicular
subsets. Otherwise, ® is called connected.

Let @ be a connected rank two roots system and choose a, 8 with ® = (o, 5). If a L 3
then ® = {£a} U {£4} and @ is disconnected. Also  # o« since otherwise ® = (a) as
rank 1. Using [3.1.4] and [3.1.12)[d) one now easily obtains a complete list of connected rank
2 root systems. See Figure [3.1]

3.2 A base for root systems

Definition 3.2.1 [def:base]

(a) [a] A subset I of ® is called base for ® provided that 11 is an F-basis for E and
O = Nd where for 8T =NIIND and P~ = —dT.

(b) [b] LetII be a base for ®. The elements of I1 are called simple roots and the element of
& are called positive roots. For e = Y acm Jaor define hte =3 p. fo. hte is called
the height of e with respect to the base 11.

In this section we show that ® has a base and that any two base are conjugate under
w.

Lemma 3.2.2 [no finite cover| Let V be an finite dimensional vector sapce over an infi-
nite field K and let H a finite set of proper subspace of V.. Then V # |JH.

By induction dim V. Each H € H lies in a hyperplane H of V. Since K is infinite there
exists infintely many hyperplane in V. So we can choose a hyperplane W of V with W # H
for all H € H. Then W # W N H and so by induction there exists w € W with w ¢ WNH
for all H € H. Thus w ¢ |JH. O
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[rank2]

Figure 3.1: The connected Rank 2 Root Systems

71 T+ T2 71+ 219
—7r1 1
=711+ 279 —r1 — 1o -1
T1 r1+ T2
-T2 T2
—Tr1 =12 —T1
2r1 4+ 3ro
r1+ 712 1+ 2719
1 r1 + 3rg
—T9 T9
—-Tr1 — 37“2 —T1
—r1 — 27“2 —T1 — 79

—27"1 — 37“2
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Definition 3.2.3 [defiregular| e € E is called regular if (a,e) # 0 for all a € ®.

Lemma 3.2.4 [not perp]| Let S be finite subset of E\ {0}. Then there exists e € E with
(s,e) #0 for all s € S. In particular, there exist reqular elements in E.

Proof: By[3.2.2V # J,cqat. O

Lemma 3.2.5 [s linear indep| Let S be a finite subset of V and e € E. Suppose that
(s,e)>0 and (s,t)<0
foralls#£te S ande € E. Then S is linearly independent.

Proof: Let f, € Fwith ) o fss=0. Let Sy ={s€ S| fs >0} and S_ =S5\ S;. Then

Yo fese= ) (Ffs)s-

8+€S+ s_€S_

and

Z Z f8+fs 3+73—) <0.

St €S+ s_€S_

Therefore u = 0 and 0 = (u,e) = >, cg fs.(s4,¢) = 0. Hence fs, = 0 for all
s+ € Sy. By symmetry, fs_ =0 for all s_ € S_ and so S is linearly independent. d

Proposition 3.2.6 (Existence of Bases) [existence of bases| Let e € E be regular.
with (a,e) # 0 for alla € ®. Put F = {a € | (a,e) > 0} and I, = F \ (BF + 7).
Then 11, is a base for ® and &+ (1I.) = O .

Proof: Let a, 3 € Il.. Since o« = (a—f3)+ 3 we have that a— ¢ ®F. Also f = (f—a)+«
and so 3 —a ¢ ®F. Soa— 3 € ® and by 3.1.15@, (o, ) < 0. Thus by I, is linearly

independent.

Let a € ®F. We will show by induction on («, € ) that a € NII. If v € Il this is obvious.
So suppose a = 3 + 7 for some 3,7 € ®F. Then (a,e) = (B,e) + (7,¢), (B,e) < (a,e)
and (v,e) < (o, e). So by induction # € NII, v € NII and so also o € NII.

Hence &7 = NII.N® = &7 (II.). Thus ® = 7 UP, = ¢+ (II,) UP (II.). In particular
as ® spans F, so does Il and Il. is a base for ®. O
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3.3 Elementary Properties of Basis

Lemma 3.3.1 [ch and sum]| Let A be a linearly independent subset of ® and e € (A).
Write e = ) 5. ns0. Then

and ((i’g)) Ng 1S an integer.

. 2(a, .

Proof: ¢= (e?e)e = Zf"eA %naa =3 nea Nad.
By a, € € (A) and hence by |3.1.13] e € ZA. The linear independence of A now
shows that ((i’?)) nq is an integer. O

Lemma 3.3.2 [basic base] Let II be a base for ®.
(a) (2] 11 is a base for ® and (d+) = (Phi)™.
(b) [a] Leta# B €ll. Thena— (¢ ® and (o, ) < 0.

(c) [b] Let « € ®. Then ht « is an integer, ht v is positive if and only if « is positive and
a € 11 if and only if hta = 1.

(d) [c] Let o € II. Then ®* \ {a} is wy invariant.

(e) [d] Let 3 € @ \II. Then there exists o € I1 with (o, 3) > 0. For any such «, both
wa(B) and B — a are in ®T and ht(we(3) < ht(8 —a) =ht 3 — 1.

(f) le] Letp e <I>f. Then there exists aq,ao, . ..oy € I1 such that 3 = Zle a; and for all
1<j<k Yl a;€.

(9) [f] Let B € ®*. Then there exists ap,a1,qs,...ar € I such that if we inductively
define Bop = o and B; = wq, (Bi—1) then 8= By and B; € @ for all 0 <i < k.

(h) [g] © = (II), W = W(II) and each root is conjugate under W to some root in II.

(i) [h] Put 6y =13 ®*. Then for all o € II, wa(6) = 6 — a.

Proof: () This follows from

@ Note that neither o — 8 nor § — « is in NII. So the definition of a base implies
a — (3 ¢ ®. The second statement now follows from [3.1.15
(c) Obvious.

@) Let 8 =2 cnnyyand i = (3,a).
wa(B) = —ia=(ng —i)a+ Z nyY.

aF#vyell
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Suppose that wa(f) € 7. Then n, =0 for all @ # v € ® and so f € NaN® = {a} and
B € 11, contrary to the assumptions.

@ 0<(8,8)=>pernna(f,a) and so (3,a) > 0 for some a € II. Suppose now that
a €Il with i := (8,&) > 0. By @ B —ia=ws(B) € dT. By@,ﬂ—aé@andso
B—a=ws(B)+(i—1aecdt.

@ By induction on ht 5. If ht 3 = 1, then 8 € II and @ holds with k£ =1 and oy = S.
So suppose htb > 1 and thus 3 ¢ II. Choose « as in . By induction @ holds for 3 —
and so also for (.

By induction on ht 8. If ht 8 = 1, then 8 € II and holds with £ =0 and «, = .
So suppose htb > 1 and thus 3 ¢ II. Choose « as in (¢). By induction (f) holds for we(b)
and so also for .

This follows from and 3.1.12.
il

i) By @, wq fixes %Za#;eq,+ B. Also wq(3) = 3a — a and so (i) holds. O

Lemma 3.3.3 [bases equals chambers| Any bases is of the form Il. for some regular
element.

Proof: Let IT be a base. Note that there exists a regular element e with IT C ®. . (Indeed
choose o* € E,« € Il with (a*,8) = dap and put e = > . a*.) Then &F(II) C ®F and
®~(II) C ®. Hence ® + (II) = &} and by [3.3.2(¢), @\ ( <1>+<1>+) II. O

3.4 Weyl Chambers

Define two regular elements e and d to be equivalent if ®F = <I>zlr. The equivalence classes
of this relation are called Weyl chambers. Note that there is natural 1-1 correspondence
between Weyl chambers and bases for ®. Also the equivalence relation is invariant under
W and so W acts on the set Weyl of chambers. For a regular element e let €(e) be the
Weyl chamber containing e. For a € ® let P,(e) ={d € E'| (a,e)(a,d) > 0}. Then

= ﬂ Py(e)
acd
Define Py(e) = {d € E | (o, e)(o,d) > 0 and €(e) = (\,eqp Pale). €(e) is called a
closed Weyl chamber. Topological, P,(e) and so also €(e) are open convex subsets of E.
P,(e) and €(e) are their closures.

Definition 3.4.1 [def:dominant] Given a base II of ®. Let e,d € E. We say that is
positive if 0 < e € FZI1. Define the relation < on E by d < e if e —d is positive. e is called
dominant if (e,&) > 0 for all o € 1. e is strictly dominat if (e,&) > 0 for all o € 1. Let
€ and € be the set of dominant and strictly dominant elements in E.

Let w e W. If w=wy for a simple root o, then w is called a simple reflection.

[(w) is the minimal integer such that there simple reflections wi,...,w, with w =
Wpwn—1 ... w1. n(w) =P~ Nn(P1)|.
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Observe that € = €(éy7) and € = &(dy).
Also I(1) = 0 and I(w) = 1 if and only if w is a simple reflection; and n(w) is the number
of positive roots whose image under w is negative.

Proposition 3.4.2 [existence of dominant| Let e € E and d be a element of mazimal
height in W (e). Then d is dominant. Inparticular, there exists w € W with w(e) € €. Ife
is reqular, then d is reqular and w(e) € €.

Let a € II. Then wy(d) € W (e) and wq(d) = d—(d, & o has height d—(d, & ). The maximal
choice of ht d implies that (d,&)0. Thus d € P(a) and d € €. O

Lemma 3.4.3 [reducing] Let w € W and (w1,wa,...w) be a tuple of simple reflections
with w = wywy—1 ... w1. Suppose that o a positive root with w(a) negative. Then there there
exists 1 < i < s with

Wy = WiWt—1 + - - Wg41Ws—1Ws—2 - . . W1 .

Proof: Put p; = wjw;—1...w; and §; = p;i(ap). Choose s minimal such that (s is negative.
Then (s_1 is positive and s = ws(Bs—1) is negative. Since wy is a simple refections there
exists § € Il with wy = ws with 6 € 7. Since ws(Bs—1) is negative, |3.3.2|(d)) implies have
Bs—1 = 6. Thus

—1
Ws =Ws =Wg,_1 = Wy, 1(a) = Ps—1WaPs_15

Ps = WsPs—1 = Ps—1wq and pswe = ps—1. Multiplying the last equation with wyw;—1 ... wst1
from the left gives the lemma. 0

Lemma 3.4.4 [n(w)=1(w)] Let w € W and a € IL.
(a) [b] If w(a) is negative, then l(wwa) = l(w) — 1 and n(wws) = n(w) — 1
() [¢] Ifw(a) is positive, then l(wwa) = l(w) + 1 and n(wwa) = n(w) + 1.
(¢) [a] 1(w) = n(w).

Proof: @ Let t = [(w) and choose simple roots wy, . ..,w; with w = wpwy_1 ... w1. Then
by l(wwy) <1 —1. Since wwawa = w, l(wWwy) > l(w) — 1 and so the first statement in
hold

Let ¥ = &+ \ {a}. By wa(X) = 2. Hence also w(X) N O~ = (wwy)(X) N O~
Now w(a) € &~ while (ww,)(a) ¢ . So also the second statement in () holds,

(b) We have wwq (o) = w(—a) is negative. So (b)) follows from (d) applied to wwa.

Since /(1) = n(1) this follows from () and (b)) and induction on I(w) O

Theorem 3.4.5 [transitivity on bases]
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(a) [a] Let w € W and e € € with w(e) € €. Then w(e) = e and w € W(IINet). If, in
addition, e € €, then w = 1.

(b) [b] Let® and®’ be Weyl chambers. Then there ezists a unique w € W with w(®) = D’.
(¢) [c] LetII and II' be bases for ®. Then there exists a ungive w € W with w(Il) = II'.
(d) [d] |W| is the number of Weyl chambers.

(e) [e] There exists a unique element wy € W with n(wy) mazimal. Moreover n(wgy) =
l(’u}o) = "I’+’, wo(H) = —II, w0(<I>+) =& and w% =1.

Proof: @ If e € €, then I N et = 0. So it suffices to proof first statement. If I(w) = 0,

w =1 and (a}) holds. So suppose I(w) > 0 and pick a simple root a with [(wwas) < I[(w).
Then by w(a) is negative. As both e and w(e) are in € we have

0<(e,a)=(w(e),w(a)) <0

Thus a € e*, wwa(e) = w(e) and the results follows by induction on I(w).

(o) Without loss @' = €. Pick d € D. Then by [3.4.2] there exists w € W with w(e) € €.
Then w(®) = €. Let w’ be any element of W with w/(® = €. Then w'w™!)(w(e)) =
w'(e) € C and so by (a)) appled to "w = w'w” and "e = w(e)” we have w'w™' = 1 and so
w' = w.

and @ follow immediately from (]ED

(e). Note that n(w) < [®~| = |®F]| for all w € W. Also n(w) = |®7] if and only if
w(®T) = &~ and so if and only if w(IT) = —II. By () such an w exists and is unique. Also
w?(IT) = II and so w? = 1. Thus (&) holds. O

Definition 3.4.6 [def:obtuse| A subset S of E\ {0} is called acute (obtuse) if (s,t) >0
((s,t) <0) forall s #t e E.

Lemma 3.4.7 [easy base| Let A be a linear independent obtuse preroot system in E. Then
A is base for the root system (A) in FA.

Proof: Put ® = (A). Then by ® is a root sytem.

Let a € ® and write a = ZﬁeA ngB with ng € Z. We need to show that the non-zero
ng all have the same sign. Suppose not and choose such an a with 3.y [n| minimal.
Since (o, «v is positive there exists § € A with ng(«,d) > 0. Replacing a by —« if necessary
we may assume that ns > 0. Then also (o, d) is positive. Note that a ¢ Fd and so by

@), a — 0 is a root. Now
a—0=(ns—1)0+ Z ngf

SABEA
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By the minimal choice of «, the non zero coefficents of o — § are either all positive or all
negative. Let 6 # 8 € A. If ng > 0 then n, > 0 for all ¥ < A, contrary to our assumptions.
Hence ng
leq0. Thus also ng —1 <0. But nsg—1 >0 and so ns — 1 =0 and ns = 1. Since (3,0) <0
this implies that

(a=6,0)= ) (848)=0.

SABEA

So (a,6) > (6,6) = 2. Note also that o # § and so implies that (6,0) < (a, ). On
the otherhand by [3.3.1 ((i’i))ng is an integer. Since ns = 1, this implies (6,0) > (o, ), a
contradiction. OJ

3.5 Orbits and Connected Components

Definition 3.5.1 [def:coxeter graph| Let ¥ C ®.

P(E) = {(a.8,i) |, f € @, (a, 0) # 0,1 € Zy,i < |(o, B)]}

We view I'(X) as a multiple edged directed graph on %, namely each (o, 3,1) € I'(X) is an
edge from a to 3. So if (o, 3)) = 0, then there exists no edge from o to (3, and if (af3,# )0,
then there exists |(a, )| edges from o to 3. T'(®) is called the Coxeter graph of ®. T(IT) is
called the Dynkin diagram of ®. For S C E let I'°(S) be the undirect graph without multiply
edges, where s,t are adjacent if and only if (s,t) # 0.

Note that for ¥ C ®, I'(X) and I'°(X) have the same connected component.

Lemma 3.5.2 [connected components| Let ® be a root system.

(a) [a] Leta,B € ® witha L (. Then a, B and wa () are in the same connected component
(with respect to the coxeter graph T'(®)).

(b) [b] Let D be the set of connected components of ® . Then E = D yepFA and W =
XAG'D W(A)

(c) [c] Let A be a connected component of ®. Then A is invariant under W, A is a
subsystem of ®, ANTI is a base for A, A = (D NII) and ANII is connected.

(d) [d] The map A — (A) is one 1-1 correspondence between the connected components if
IT and the connected components of ®.

(e) [e] @ is connected iff 11 is connected.
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Proof: Since v £ 3 we also have a £ wq(3) and so () holds.

Let A be a connected component of II. Also let A the connected component of ®
containing A . We claim that A is W-invariant. For this let « € ® and S € A. If a L 8
then w(8) = B € A. If a L B, then by wa(f), wa(B) and B are in the same connected
component of I'(®) and again we(8) € Delta. So A is invarinat under all w,, o € ® and so
also under W. Thus (A) = JAW () C A,

Put ¥ =1II'\ A. Then ¥ L A. HenceWW(A) centralizes W(X)] =1, W = W(A)W ().
In particular, (A) L < ¥) and (A) and (X) are W(A)W(X) = W invariant

Thus

o= " = Ja"u 2" = (A)u< D)

Since A is connected, this implies A C (A) and AN (X) = @. Hence A = (A) and so by
A is a base for A. Moreover DNII=AU(ANY) = A and so () holds.

Note that W (A) N W (X) centralizes FA +FY = E and so W(A)NW(X) = 1 and
W =W () x W(X). An easy induction proof now shows that (b)) holds.

@ and @ follow easily from from . O

Lemma 3.5.3 [z closed]| Let ® be a root system and ¥ C ®. Then VU is Z-closed iff
VU CVanda+BeV¥ foral a,0 €V witha+ (€ ®.

Proof: One direction id obvious. For the other suppose that —a € ¥ for all @ € ® and
a+ e Vforal o, € ¥ with a+ 3 € &. Let a € (U)z. Then o = Zﬁewnﬁﬁ with
ng € Z. Since ngfl = (—ng)(—F3) we may assume that ng > 0 for all § € ®.

Since > 5eq np(a, ) = (o, o) > 0 there exists § € ¥ with ng(a,d) > 0. Thus ng > 1
and (a,8) > 0. If « = +6, then a € V. If o # +§ then by B.LI5f), o — 8 € @.
Thus o — 3 € (¥)z and by induction on » 5.y ng we conclude that o — 3 € W. Thus
a=(a—-p)+pe V. O

Lemma 3.5.4 [root lengths| Let ® be a connected root system, L(P) = {(a, ) | a € P}.
Let r € L(®) and put &, ={a € @ | (a,a) =T1}.

(a) [a] E=F®, and ® = (®,)g

(b) [b] If r is minimal in L(D), then ® = ()7 < Z,.

(c) [c] W acts transitively on ®,.

(d) [e] Ifr is mazimal in L(P), then @, = (Phi,)yz is Z-closed.

(¢) [d] [£(D)] <2.
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Proof: Let 3 be an orbit for W on @, and let @ € ®. Suppose that o [ o for some o € 3.
Then

1

(0, @)

(%) o= (0 —wq(o)) € QX
Thus ® = (® N (QX)1) U (X)g and since ® is connected, ® = (X)g C< ®,)g C ® and
S0) @) holds. In particular, ¥+ N ® = (). If r is minimal in £(®), then (a,a) > (0,0). So

by either &« = +0 or (o,&) = £1. From (*) we get in any case that o € Z¥ and so
@ holds.

Suppose now that a € ®,. Then either « = +0 or (a,0) is a root system of type As.
In either case a and o are conjugate in W ({a, o). Thus holds.

Suppose that r is maximal. Let o, 5 € ®, with o+ 3 € ®. Then a # +b and so since

(,) = (8,5) implies (o, 5) > —1. Thus

(a+B,a+8)= (a)+2(a,B)+(3,8) =(a,a)+(,3)(3,8)+(83,6)
= (2 + saB)(B,8) > (8,8)

Soa+ (@€ P, now follows from
Let 5,1 € £(®) with s < I. Then by (a)) we can choose 3 € ®s and a € ®; with 8 £ .

Then by [3.1.4, L = Egg; € {2,3}. If |I(®)| > 2, we can choose s < <t € \(®). But then
t_ Lt

< = 47 is not a prime, a contradiction and @ holds. ]

Lemma 3.5.5 [dominant| Let ® be a root system in E and E an Euclidean F space with
E < E. Let A be an orbit for W on E and e € €. Then

(a) [a] A contains a unique dominant member d.

(b) [b] b=<d and for allb e A.

(c) [c] (e,b)<(e,d) forallbe A.

(d) [d] Let TINet is a basis for ® Net.

(e) [e] Letbe A with (e,b) = (e,d). Then there exists w € W(ILNet) with w(d) = b.

Proof:

() Let e and d be dominant in A. Then d = w(e) for some w € W and implies
that d = e.

(]E[) Choose a € A such that b < a and a is maximal in A with respect to <. We claim
that a is dominant. Otherwise there exists 3 € II with (a, ) < 0. Then a < a — (a, 3 )a =
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wg(a) € A, a contradiction to the maximality of a. Thus a is dominant and so by (ED a=d
and @ holds.

(c) By (]E[) d — b € NII and since e is dominant, (e,d —b) > 0.

Let 3 € ®*Net we need to show that 8 € N(IINet). If ht 3 = 1, then 3 € TINe*. So
suppose ht 3 > 1, that is 8 ¢ ®. Then by there exists « € [l with 6§ = 3 —a € ®T.
Since e € € both (e,a) and (e,d) are non-negative. Since 0 = (e,3) = (e,a) + (e,d) we
conclude that both o and § are in e*. ht § < ht 8 and so by induction on ht 3, § € N(IINne™).

(E[) If b is dominant, then by b = d and we are done. done. So suppose that b
is not dominant and and choose exists o € II with (b,c&¢) < 0. Then ¢ := wy(b) € ¥,
(e,c) = (e,b) — (B, )(e,a) > (e,¢). On the other hand, by (e,c) < (e,d). This
implies (e,c) = (e,d) and (e,a) = 0. So @ € ®Net and by induction on ht b, ¢ = w(d) for
some w € W(ITNet). Hence b = wy(c) = (waw)(d) and @ holds. O

3.6 Cramer’s Rule and Dual Bases

Lemma 3.6.1 (Cramer’s Rule) [cramer rule] Let I a finite set, R a commutative ring
with 1, A: I x 1 — R be I x I-matriz over R. Define (i,5) € I x I to be an edge if a;; # 0.
Let S(i,7) be the set of all direct paths s = (ig,i1,...,in) fori to j, where the i are pairwise
distinct Put |s| =n, m(s) = [[p_; ai,_,ip and I —s =1\ {io,i1,...15}. For J C I let Ay
be the restriction of A to I — J x I — J. Define

bij= Y (=DFIm(s)det A;_,.
s€S(4,7)
and B = (b;j). Then AB = det(A) Idy, where Idy is the I x I identity matriz.

Proof: Let i,j € I and define the matrix D = DY by dy; = ay if k # j and dji = d;. We
will show that b;; = det D. For K C I and o € Sym(K) define

a(o) = sgn(o) H Ak (k)
kel
Similarly define d(¢). Then

detD= Y d(r)

m€Sym(IT)

We investigate d(r) for 7 € Sym(w). If w(j) # 4, then djr; = dir; = 0 and so also d(m) = 0.
Suppose 7(j) = i. Let n € N be minimal with 77+1(3) = 4. For 0 < k < n, put i, = 7" (i)

and s = (ig,41,...,1,). The i) are pairwise distinct, i9 = ¢ and i, = j. If (ix_1,ix) not an
edge for some 1 < k <n, then d;,  ~(;,_,) = @i,_,i;, = 0 and so also d(m) =0.
Suppose s is a string and view s as a cycle in Sym({ig,...,i,}). Then 7 = so for a

unique ¢ € Sym(I — s). Now d(r) = d(s)d(c), sgns = (—1)" = (—1)*| and d;; = 1. Thus
d(s) = (=1)l*lm(s), d(o) = a(o) and so

d(r) = (=1)l¥lm(s)a(o).
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It follows that

detD = ) d(m)

m€Sym([I)

= Z Z (=) lm(s)a(o)

s€8(i,j) oeSym(I—s)

= > (=DFhm(s)det A,
s€S(i,j)
Thus indeed b;; = det D,
Note that > y aijbji = D¢ aij det D% is the determinant of the matrix E** obtained

from A by replacing row k of A by row i. Now det E%* = §;, det(A) and so AB = det AIdj.
]

Lemma 3.6.2 [dual basis| Let B be a basis for E. Forb € B define b* € E by (b,a) = dpq-
Put B* = {b* | b € B} and let A(B) be the I x I matriz ((a,b)).

(a) [a] Thend =7y 5 (d,b)b* =3 p5(d,b")b.
() [b] A(B) = AB)".
(c) [c] det A(B) > 0.

(d) [d] Suppose that B is obtuse. Then B* is acute and, for a,b € B, (a*,b*) > 0 if and
only if a and b lie in the same connected component of the 1 -graph on B.

@ Let d =) ;5 fob and let a € B. Then (d,a* ) = f,. Also B** = B and so @ holds.
(]E[) Let a € B. Then by @,

a=>) (a,b)b*=>"> (a,b)(b",d*)d
beB beB deB
and so (]ED holds.
Let £ be an orthogonal basis for £ and let D be the B x £ matrix defined by
b= > dpe. Then A(B) = DA(E)D" and so det A(B) = (det D)2 det A(E). Since A(E) is a
diagonal matrix with positive diagonal elements, det A(€) is positive and so holds.

(d) Let A= A(B). From (b)) and [3.6.1] we have
(@, *) = > (=1)"lm(s)det Ag_,.

s€S(a,b)

Since A is obtuse m(s) is the product of |s| negative elements. Hence (—1)¥lm(s) is positive.
By also det Ar_; is positive. Hence (a*,b*) is non-negative and (a*,b* ) = 0 if and only
if S(a,b) = 0. So (d) holds. O
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3.7 Minimal Weights

Throughout this section ® is root system. We call a root a long (short) if (o, ) > (3,3)
((,ar) < (B,8)) for all g € @, which are on the same connected component of ¢ as a.
Note that if ® has only one root length then all roots are long and short. ®; and ®5 denotes
the sets of long and short roots in @, respectively.

Definition 3.7.1 [def:weights for phi] Let A € E. We say that \ is an integral weight
of ® if (\,a) € Z. For o € Il define a* € E by (a*,8) = 64p for all B € II. For

€= EaEH faOé pUt e’ = EaEH faOé*-
A = A(®) is the set of integral weights and IT* = {a* | a € I}. AT is the set of
dominant integral weights.

Lemma 3.7.2 [z basis|

(a) [a] & CA.

(b) [b] Lete€ E. Thene=7Y . (e,;a)a*. In particular, € = F=0TI*.

(¢) [c] TI* is a Z-basis for A

(d) [d] & s acute and, if ® is connected, strictly acute.

(e) [e] Letec & then e = Y acm (& )a, (e,a*) >0 and if ® is connected, (e,a* ) > 0.

Proof: @ follows directly from the definition of a root system.

(]ED Follows from @

Since II is a base for @, every 3 € ® is a integral linear combination of II. This
implies that each o* for o in I is an integral weight. now follows from (]E[}

and follows easily from |3.6.2 O
(d) and (¢) y from [3.6.2]

Lemma 3.7.3 [along min] Let ® be a connected root system.

(a) [a] @) has contains unique dominant root oy and ®g has a unique dominant root as.

(b) [b] If a € ® with o # oy then there exists 3 € T with a + 3 € P.
(c) [c] Lete e and o € ®. Then — < a<a and —(e,q) < (e,;a) < (e,aq).

Proof: By W is transitive on ®;. So (@) follows from

For (]E suppose first that « is not dominant. Then there exists 5 € II with (a, ) < 0
and so by @l, a+ [ € ®. Suppose next that « is dominant. Since o # oy we conclude
that ® has two root lengths and o = as. By[3.7.2|(d) (cu, @) > 0 and so by [3.1.4] (a, ciy ) = 1.
Thus 3 := oy — v is a roots and (5,d;) =2 —1=1 > 0. Since ¢ is dominant this implies
B € ®* and so @ holds.
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Note that by , ay is the unique element of maximal height in ®. From (]ED and
induction on ht gy — ht o, @ < oy and so ) = a + ¢ for some ¢ € NII. Since (e,¢) > 0,
(e,a) < (e, ). Note that this results also holds for the base —II and so (| is proved. O

Definition 3.7.4 [defiminimal] X\ € A is called minimial if (A, «)) € {—1,0,1} for all
a € .

Proposition 3.7.5 [minimal 1] Let 0 # A € AT Then the following are eqiuvalent
(a) [a] A is minimal.

() [b] (Aon)=1.

(c) [c] A= pB* for some 3 € Il where ng =1 is defined by ay = Y 5o 160-

Proof: (@)= (b): Since )\ is dominant and minimal, (A\,a1) € {0,1}. If (A\,an) = 0,

then [3.7.3] implies A = 0.
()= (a): Suppose (A\,cq) = 1. Then by shows that A is minimal.

@<:> : Note that (A, c1) = > scpns(A,0).

By B.7.2[[¢) each ns is a positive integer. So we see that (X\,a1) = 1 iff the following
holds:

There exists a unique § € II with (A, 3) # 0; and for this 3, (A\,3) = 1 = ng.
Note that this is equivalent to (). O

Definition 3.7.6 [def:affine]
(a) [a] TI° =TTU{—a}. T'(II°) is called the affine diagram of ®.

(b) [b] wr is the unique element in W with wr(IT) = —II ( and so (—w)(II) =1I).

For an example let I = {0,1,...n} and let Ey be the euclidean F-space with orthonormal
basis (e; | i € I). For 0 # ¢ € I put oy = €1 —e;. Put Il = {o; | 1 < i < n and
® = (IT). Note that (as,a;) = 2if i = 5, —1if li—j| = 1 and 0if |i — j| > 1. In
particular, &; = «; and II is a linear independent pre-root system. Thus & is a root
system. Note that wq,(e;) = €;—1, wq,;(ei—1) = €; and wq,(ej) = e; if j # 4,1 — 1. Hence
if we view Sym([/) as a subgroup of GL(Ejy), then wy, is the cycle (i — 1,4) in Sym(I) and
W(II) = Sym(I). Thus the definition of (II) implies that ® = {e; —e; | ¢ # j € I}. Let
e = —3 icriei. Then (e,a;) =1 for all i € I and so e is a regular and dominant. Hence
¢t ={ae®|(e,a) >0} ={e;—ej|i<jel}. Let @« =ey— e,. Suppose that n > 1.
Then (o, 1) = (o, ) = 1 and (o, ;) =0 for 1 <i <n. If n =1 then (o,a; ) = 2. In
any case « is dominant, @ = oy and so II° = I[TU{—a}. Note that I'(I) is a string of lenght
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n with only single bonds. If n > 1 then I'(II°) is circle of length n + 1 with only single
bonds and if n = 1, then I'(II°) consist of two vertices with a double bond.

Let w € Sym(I) be defined by w(i) =n — 4. Then w(a;) = €,_(i—1) — €n—i = —Qpt1--
Thus w(II) = —II and so wy = w. Note that —w induces the unique non-trivial graph
automorphism on I'(IT).

Lemma 3.7.7 [phi-sigma invariant| Let ¥ C ®. Then &1 \ (X) is invarinant under
W(%).

Proof: By definition, (X) is invarinat under W (X). Hence also ®\ (X} is W (X)-invariant.
Let o € &+ \ (Sigma) and o € X. Then a # o and so by [3.3.2(d), w,(a) € ®+. Thus
Pt \ (X)) is wy-invariant and so also W (X) invariant. O

Proposition 3.7.8 [minimal 2| Let § € II and ¥ = II — 3. Then the following are
equivalent.

(a) [a] B* is minimal.
(b) [b] B is long and W (X) act transitively on &\ ().

(c) [e] ws(B)=a.

(d) [d] TI° is invariant under —ws,

(¢) [e] There exists a graph automorphism o of T(II°)) with o(f) = —a.
(f) [fl T(II° = B) and T(IT) are isomorphic graphs.

(9) gl ®={II°—-p).

Proof: @): (IEI): By [3.7.5/ng = 1. By [3.3.1 (B.5) ng is an integer and so (3,0) =

(al’al )

(a1, 1) and S is long.
Let § € & \ ¥. By @, (¥) = &N B and so (B3*,6) #. Since B* is minimal,

(85,6) =1= (8% a1). (b)) now follows from [3.5.5|(¢].
([O)=> (d): Since II is obtuse and wx(X) = —%, wx () is dominant on X. Since also

is dominant on ¥ and since wx () and «a; are conjugate under W (%, [3.5.5(la)) (applied to
() in place of ®) implies wx(f) = aj.
()= (d): We have —ws(¥) = ¥ and —wx(8) = —a. Since —wy has order 2,

—wyx(—ap) =  and so (d) holds.
(M= (&): By wx(B) € T and so —wx(B) # [. Since —wy, leaves II° and ¥

invariant we conclude —wx () = —ay. Also —wsy; is an isometry and so wsy; induces a graph
automorphism on I'(®°). So (e]) holds with ¢ = (—wyx |ge.
()= (@): Obvious.
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= (g): By (@ (II° — B) is a subroot system of ® isomorphic to (II) = ®. As ® is

finite, holds.
:> @): We have 3 € (II° — 3) and so & = noy + o for some n € Z and o € ZX. € b*+,

Thus 1 = (8*,8) = n(b*, 1) and so (b*, ;) = 1. Hence by (B* is minimal. O

For ® = A,, we have that II° is circle of lenght n + 1. Hence for all o € II, II° — « is
a string of length n and so isomorphic to II. Thus each o* for « € II is a minimal weight.
Also 0 is a minimal weight and hence A, has n + 1 minimal weights.

Definition 3.7.9 [def:cartan matrix| C' and E are the II x II matriz defined by cop =
(&,B) and eqp = w C is called the Cartan matrixz of ®. Put e, := eqq-

Lemma 3.7.10 [basic cartan matrix]
(a) [a] &=} gercapl™

(b) [b] @ =3 ger €aph-

(c) [c] E=C1.

Proof: (@] follows from [3.6.2)(a]) applied to B = II.
ByB-6.2ff), a* = T pen (07, )8 = T pen (07, 8) E25 = T ey eapl.
()

Follows easily from and (|b)). O

Proposition 3.7.11 [decomposing pi] Suppose ® is connected. Let o € I be long and
let A be the set of neighbors of a in T'(IT). Put ¥ =11 — « and let {6 | 0 € X} the basis of

FY dual to X. For 6 € A define é5 = (5’6)2& and rs = %‘:—?;. Then

(a) [a] FEach connected component of ¥ contains exactly one element of A.

(b) [b] & is a minimal dominant weight for (X).

(¢) [e] @=2" —>5epd.

(d) [d] =+ Y s5enrsbs = 2.

Proof: Let D be the set of connected components of 3. Note that
E=Fa*oFY =Foa*© @ pepFD.

and so

(%) é:ma*—Z)\D
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for some m € F and Ap € FD. Let g8 € (D). The (Ap,3) = —(5,¢&). Since II is linearly
independent, § ¢ Fa and since « is long we conclude that (3,&) € {—1,0,1}. Thus A\p is a
minimal weight for (D). Since II is obtuse, Ap is dominant for D. From we conclude
that Ap = 0 for some § € D. Then clearly ¢ is the unique element of A contained in D and
SO @ and (]E[) hold.

Note that 1 = (o*, ) = (a*,d)@ and so by (¥), 1 = m(a*,a*)(a’;‘) = meq,. Thus
m = é and follows from (*).

Note that
., 4
(Oé, &« ) - (Oé, «a ) I
(a* o ) = 1 (") 1 2%a") 2 1
ea €a’  ea ea  eqlat,af)(a,a)  (o,a)eq
and 05 0
NN €s ~
0,0) = —x="——
00 = 050) " )
Computing the squared lengths of both sides in we now obtain
4 2 1 2

= —+ ) 756
(Oé,Oé) (Oé,Oé)ea 6€A(O‘>O‘)

Multiplying with @ we get

1
2=— E Es.
o + rsés
dEA

Thus @ holds. O

Proposition 3.7.12 [composing pi| Let I be a finite set. For i € i let E; an euclidean
F-space, ®; a connected root system in E; with base I1; and 6; € I1;. Let {6 |0 € IL;} be the
basis dual to I1; in E; and put €; = M
alliel

. Also let | in F be positive. Suppose that for

(i) [a] &; is a minimal dominant weight for ;.

(ii) [b] ;= @S-ZT is an integer.

(ZZ’L) [C] Zie[riéi < 2.
Define e € F by % + > icrri€; = 2. Choose a one dimensional euclidean F space X and
z € X with (z,2)=2¢. PutE=X0®cE;. Puta= %(w = ier i), I = {a} Ul

€
and ® = (II). Then ® is a root system with base Il, « is a long root with (a,a) = I,
eo =€, o =x, {II; | i € I} is the set of connected components of Il — v and, for i € I,

(6;,&) = —1, and 6; is the unique neighbor of a in 1I;.
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Proof: A straight forward calculation shows that (o, ) =1 and so
a== - Z o;.

Hence (6;,¢) = —1 and (8, ¢ ) = 0 for all other d € II—a. Also (o, d; ) = ri(6;, &) = —7;
is a negative integer. Hence II is a linearly independent, obtuse pre-root system and so

bqu) is a root system.x L II — « and (z,a0) = 216(1: x) =1 Soxz = o and
2e
e = 2allatat) _ TP _ o O

Lemma 3.7.13 [echa] Let ((@)* | a € II) be the basis for E dual to II. Then (&)* =
(a2a)a and ez = eq,.

Proof: Letr:= (O"Qa). Then r& = . Clearly 3 L ra* for all a # 3 € II. Also

and so (&)* = ra*.

So e; = e, and the lemma is proved. O

Lemma 3.7.14 [pi a tree] Let ® be a connected root system.

(a) [a] TO(II) is a tree.

(b) [z] Let a €L Then ey > 5 with equality iff IT = {a}.

(c) [b] Suppose o € TIy with eq < 1. Then ® = A, a is an end-node of Il and e, = ;5.

(d) [c] Exactly one of the following holds:

1. [a] & = p* for a long root (€ II.
2. [b] ® = A, and & = B + B where p1 and [, are the end nodes of I1 ( with
ap =267 if II] =1).

3. [c] TII?) = - ° ° ° and &y = [*

for the short end-node B of 1.

(e) [y] If ®%# A, then aq is an end-node of II° and T'(I1°) is a tree.
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(f) [d] Suppose ® 2 A, and B € II such that 5* is a minimal weight. Then [ is an
end-node of 11I° and II.

Proof: @ Let o € 1I be long. By induction each connected component of Il — « is a tree.
Also by « is joint to exactly one vertex from each connected component of II — a.
Thus also II is tree.

By €q = €4. S0 (]EI) and (d) are true for (o, ®) iff they are true for (&, ®). So for
(]ED and we assume without loss that « is long.

y 3.7.11@ é + > 5enTs€s = 2. So eq > & with equality iff A = (. Since II is
connected (bf) holds.

If A =0, holds with n = 1. Suppose that |A| > 0. Then e, < 1 implies
> seaTs€s < 1. Thus A = {6}, rs =1 and é; < 1. So by induction on II, (IT — a) = Am, )
is an end-node of II — v and e5 = mlﬂ Thus ® = A,,+1 and i =2 m"}rl = zﬁ and
is proved.

Since ¢ is a dominant intergral weight & = Zle B for some (3; € II. Since

2=(m,q)=2= Zl 1 (87,00 ) and ((b), aq) is a positive integer we get, k < 2.

If £ = 2, then (8/,1) = 1, 5/ is a minimal weight and so by @, BF is long.
Also by -@ (57, 52 > 0 and so (dl,dl) (61,01) + (B2, P2). Since 3; is long,
(a1, 00 ) = (Bi, Bi ) and multiplication with (0101) gives 2 > eg, +ep,. So e, < 1 for at least
one i. By , d = A,. For ® = A, we have a1 = eg — €, and . holds in this case.

So suppose k =1 and put 8 = 31. If § is long, holds. So suppose that § is not

(alzal )

long. Put r = @AY By [3.7.13

(8, ﬂ) (8.8) 1

(8)* = pr="F—a = Can

Hence a; = 7(3)*. Since (§)* is an integral weight on ® we conclude that 7 divides
(ay, &) for all @ € . Choosing o« = oy we see that r = 2. If a € &; with o # +ag we get
a L a1. Let 6 be a long root of minimal distance from 3 in T'°(IT). Let ¥ be the set of
vertices of the path from 3 to 6. By[3.5.4]a we have ¥ C F((X);) and so there exists a long
root € € X1 with oy f/ e. Then o) = € € FX. Suppose p € II\ . Then o € FY implies
(p*, Oq) = 0, a contradiction to [3.7.2|(d). Thus ¥ = II and (d) holds.

e) By @ & = 3* for some 3 € II. Thus 3 is the unique neighbor of —ay in T°(TI°. By
@ FO(H) is a tree and so @ holds.

@ By @, —qy is an end-node of II°. Hence by @, also 3 is an end-node of ®°.

U

Lemma 3.7.15 [w pi] Let ® be a connected root system with [II| > 1. Put ¥ = I1 N af
and let a € 1T\ X.

(a) [a] win = wews = wows

(b) [b] a1 = (-wn)(a) +ws(a).
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(c) [c] TI\X = {a,(~wn)(a)}.
(d) [d] (—wn) [s= (~ws) |z

(e) [e] Each connected component of I'(X) is invariantt under —wr.

Proof: (a) Let 3 € ®* and put § = wx(8). We claim that (we,ws)(3) = wa(6) € &~
Since ¥ 1 ag we have wx(aq) = «y. Since wy, is an isometry,

(*)  (Byn) = (wsd, ws()) = (6, a1)

Suppose first that 3 L «). By @, dNaf =< MNai) = () and so B € (X). Thus
by definition of wy, 6 = wx(8) € 7. By (*), 6 L oy and s0 wq,(d) = € ¢~
Suppose next that (B, >)0. Then since wy, is an isomoetry and has order two

(wa1(5)7a1) = (6’(")041(0‘1) = —((5,()0[1) = _(ﬁv 041) <0

and again wq, (6) € 7.

This proves the claim and so wi = wqwy. Taking the inverse on both sides of this
equation gives wy = Wxwey,-

([ Since IT # {a}, B.7.2|[) implies a; # a and so (a,ci) = 1. Thus we, (@) = o — .
Also wy;(a1) = —ay and so by (b)) wi(e) = wy(we, (@) = ws(a) — .

Let I = ¥ U {o, (—wn)(a)}. Note that wx(a) < (o, ) < FII'. So by () also
a) < FIT'. Suppose that 5 € IT\ II', then (aq, %) = 0, a contradiction to .

@ Since wq, acts trivially on X, this follows from @

@ Let D be the set of connected componenent of ¥. Then —wy = —[] Aep WA fixes
each A € D. So (E[) follows from @ O

Proposition 3.7.16 [decomposing affine| Suppose that & = o* for a long root a. Re-
tain the notation from and for 6 € A let Ils be the connected component of X
containing 9.

(a) [a] eq =2.

(b) [b] —wx(d) =19 foralld € A.
(¢) [c] Ysearsts =3

(d) [d] One of the following holds.

. [a] |A| =3, 9 is long and 115 = {0} for all 6 € A.

. [b] A ={d,¢}, 6 and € are long, Il = {6} and é. = 1.

. [e] A={0,e}, I = {0}, IIc = {€}, ¢ is long and rc = 2.
. [d] A ={8}, & is long and &5 = 3.

N LB~
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5. le] A={d}, Il ={d} andrs = 3.

Proof: @ €0 = (a,a)(;*,a*)
(]EI) Note that (—wry) fixes oy and II and so also @ and A. By 3.7.15(@)7 wr also fixes

I; and so II6 N A = {§}. Thus (—wn)(8) = ¢ and (b)) follows from [3.7.15|(d).

Follows @ and 3.7.11@.
@ Let 6 € A. If &5 < 1, then by 3.7.14 (I1g) = A,, and § is an end-node in II;. Thus
(o) implies that n =1 and so (Ils) = {d}. (d) now follows easily from (d).

(o001 )(0n,81)
0410412041011 —9

Proposition 3.7.17 [composing affine| Retain the assumptions and notations of|3.7.12.
Suppose in addition that for all i € I,

(iti’) [a] 3 ;errici = %
(i’l)) [b] —wiHi(éi) = 51

Then oy = a 4+ w(a) and a; = o*.

Proof: Put A=} ., 6; and w = [Iic; wr,. Since —wry, normalizes II; and by fixes
6; we have —wy, (8;) = ;. Thus w(\) = —\. From we have e = 2 and @ = 2 — \.
Hence & +w(&) =« = a*. Since (z,2) = 7 = (&, &) we see that # = o+ w(a). By
« is long and so also and « is a long root. Since x = o™ is dominant and «; is the unique
dominant long root, & = qy. ([l

Lemma 3.7.18 [l-m| Let A\ and p dominant minimal integral weights on ®. Then also
A — i is minimal.

Proof: Let « € ®*. Then (\,a) € {0,1} and (y,a) € {0,1} and so (A —p, ) €
{~1,0,1}. O

Lemma 3.7.19 [basic min]

(a) [a] Let a,b € E with a=<b. Then a + Z® = b+ Zd.
(b) [b] If W acts trivially on A/Z®.

(c) [c] Letec & Then {bec €|b=e} is finite.

(d) [d] Every coset of Z& in A contains a dominant integral weight which is minimal in

9

AT wit respect to <.
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Proof: @ By definition of <, b — a € NII < Z®.

(b). Let A € A and @ € ®. Then wa(A) = o — (A, a )& € A + Zd.

(c) Let b € € with b<e. Then e —b € NIl and e + b € €. Thus (e +b,e —b) > 0 and
(b,b) < (e e). By ZI1 is discret Hence also b+ ZII is discret. Therefore {b € € | b=e}
is discret and bounded and so by finite.

@). Let A € A. Then w()) is dominant for some w € W. By () there exists b < w(\)
such that b is <-minimal in A*. Then by @ and (]EI), b, w(\) and A all lie in the same coset
of Z&. So (d) holds.

Lemma 3.7.20 [min equal min]

(a) [b] Let A € Z® be minimal. Then X = 0.

(b) [a] Let A € A*. Then X\ is <- minimal if and only if X is minimal.

(¢) [c] Every coset of Z® in A contains a unique dominant minimal weight.

Proof: Without loss @ is connected.

() By[3.4.2] there exists w € W such that w(A dominant. Then also w()) is minimal and
we may assume that A is dominant. Let A = 3 .y nad with n, € Z. Suppose that X # 0.
Let a € TI. By, (A, a*) > 0. So also ny, = %(/\, a*) > 0. Also (A, oy ) = 1 and since
(&, 07) € N we conclude that there existts a unique o € II with (&, ;) # 0. Moreover,

=1= (& a). and « is long. As a is long —1 < (B,&) < 1 for all +a # p € P.
Also II is obtuse and so —& is a dominant minimal weight on ¥ := II — «. Hence also
—wy(—a) = wx (&) is a dominant minimal weight on X. Since n, = 1 we have A — & € Z3..
By m@ o and and wy (@) lie in the same coset of ZY.. Thus A —w, (&) € ZY. By|3.7.18
A — wx (&) is a minimal weight on . Thus by induction A —wx (&) = 0. So A = wx(a&).
Thus & is a mimimal weight a contradiction to (o, &) = 2.

(]E[) and : We frist show that

(**)  If A € AT is <- minimal then \ is minimal.

For this it suffices to show that (A, a;) < 1. Choose a long root ¢ of minimal height with
(A, 0) = (A\,a),. Since X is <-minimal, A — J is not dominant and so there exists § € II
with (A —d,3) < 0. So

(%)- (A, B) < (8,9).

Suppose that § # 3. Then since 6 is long, (8,6) =1 and so (\,3) = 0. Hence (A wg(d)) =

(A, 6) = (N a) and wg(0) is a positive long root of smaller height than §, a contradiction to

the choice of §. Hence § = 3. So by (*) (A, ) = (A,8) < (§,6) = 2. Hence A is minimal.
Next we show that

(***) Every coset of Z® in A contains at most one minimal dominant weight.

For this let A\ and p be minimal dominant weights in the same coset of Z®. Then
A —p € Z& and by [3.7.18) A — p is minimal. So by (a), A — = 0 and A = p.
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Now let A be any dominant minimal weight in A. By 3.7.19@, A\ + Z® contains a
<-minimal element p. By (**) p is minimal and by (***) A = p. Thus (D] holds.

follows from (@, @ and (***). -

Definition 3.7.21 [o ab]
(a) [a] For a path p = (ag,au,...ay) in TO(®) define s(p) = [T |(di-1,0:)]-

(b) [b] Ifa,f €11 ie in the same connected component of I(®), then a8 denotes the unique
path in TO(IT) from a to 3.

(c) [c] detIl is the number of minimal dominant weights for ®.

Lemma 3.7.22 [basic det pi]
(a) [a] detII =|A/Z®D| = det C.

(b) [b] Let o,3 € 11 If a and (3 are in the same connected componenent of T°(II), then

eaﬁ - S(aﬂ)w Otherwz'se ea,@ = O

Proof: @ By 3 m. det IT = ] Z9|.

Define T € Endz(A) by T(a*) = & = 3 4cq; cap*. Then T(A) = Z(®) and so

|A/Z®| = |det T| = det C

Thus @ holds.

By E = C7!'. Let a,8 € II. Then there either exists no path or exactly
one path from a to 3 in T'O(IT). In the first case implies e,3 = 0. In the second let
af = (ag,a1...,ay). Then since II is obtuse,

n
1)” HC@i_lai = H ’(ai_17 dl )| = 3(0&7,8)
i=1 i=1
Thus by

— det C(IT — af
Cap = S(aﬁ)—etd et( C(ﬂ(;ﬂ)

(b) now follows from (al). O
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3.8 The classification of root system

In the section we determine all the connected roots systems up to isomorphism. We also
determine the affine diagrams, the action of —w on II and the minimal weights. we combine
all thus information in what we call the labeled affine diagram:

Recall that the non-zero minimal weights are all of the from a* for some root o € II.
We will label such an a with det(II — a. We also label —ay with det II. We use a filled node
to distinguish —qg from the remaining vertices for I1°. We also draw a dotted line betweeen
any two distinct elements of II which are interchanged by —wry.

Theorem 3.8.1 [labeled affine] The labeled affine diagrams of the connected root systems
are exactly as listed in Figure[3.8

Proof: By induction we assume that labeled affine diagrams of rank smaller than n are
exactly as in Figure [3.§

Suppose we know the affine diagrams for the rank connected roots sytems. Then [3.7.§[f]
gives us det IT and all a € II such that o* is minimal. From [3.7.15|and induction we obtain
the action of —wyr on II. Also by induction we can compute det(II — «).

So it remains to determine the affine diagrams.

In case [3.7.14)[d:2) [d:2 we see that the II° = A2 or II° = Cg.

So suppose that a; = o* for a long root a.
We now consider the different case of 3.7.16@.

In case [:1] II° = Dy.
In case II, is a connected rankn — 2 root system, é. = 1 and wyy, (¢) = €. Note that
by 3.7.22 lﬁ) €e = %ﬁ:e) and so e, can be computed from the labeled affine diagram of

II,.
Suppose that II. = A,,_2. Then since wyy, fixes €, we get n —2 =2k + 1 and

_ (detTI(Ag))?  (k+1)* k41
© detII(Aggy1) 2k+2 2

Thus k=1, n =5 and II° = D;.
If IIe = B,,_2, then € is the long end-node and II° = B, for n > 5.
If II. = C),,_o, then again ¢ is the long end-node, ”7_2 =1 and so n =4 and II° = Bj.
If II¢ = D,,_5 then either € is the left end-node or n — 2 = 4. In any case 1I° = D, .

According to Figure [3.8] no other possibilities occur in the current case.

In case II° = B3.

In case IIs is a connected rankn — 1 root system, é5 = % and wr; (0) = 4.

Iflls = A,1. n—1=2k+1 and % =é5 = (glji); = % Thus £k = 2, n = 6 and
II° = E§.

If II§ = C},—1, then € is the long end-node, ”T_l = % and so n =4 and II° = F}.

l1=e¢e
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If II; = D,,_1 then € is one of the right end-nodes end-node and ”T_l =5 son =7 and

Il° = E%.
If IIs = E7, then ¢ is the right end-node and II° = Eg.
According to Figure [3.8] no other possibilities occurs in the current case.

In case [d:5] II° = GS.
Finally we remark that ensures that all the root systems encounter actually do
exit. O
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Figure 3.2: The labeled affine diagrams
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