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Chapter 1

Basic Properties of Lie Algebras

1.1 Definition

Let K be a field. With a K-space we mean a vector space over K. For K-space V , End(V )
denotes the ring of K-linear maps from V to V . For a, b ∈ End(V ) define [a, b] := ab− ba.
[a, b] is called the commutator or bracket of a and b. The bracket operation has an amazing
property

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c ∈ End(V ). Indeed,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]]
= a(bc− cb)− (bc− cb)a+ b(ca− ac)− (ca− ac)b+ c(ab− ba)− (ab− ba)c
= abc− acb− bca+ cba+ bca− bac− cab+ acb+ cab− cba− abc+ bac

= 0

Also note that [, ] is K-bilinear and that [a, a] = 0. These observations motivate the
following definitions:

Definition 1.1.1 [def:algebra] Let K be a field, A a (left) vector space over K and · :
A×A→ A a K-bilinear map. Then (A, ·) is called a K-algebra. If · is associative, then A
is called an associative algebra.

Definition 1.1.2 [def: lie algebra] A K-algebra (A, [, ]) is called a Lie algebra over K
provided that

(i) [a] [, ] is symplectic, that is[a, a] = 0 for all a ∈ A.

(ii) [b] [, ] fullfills the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c ∈ A.
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6 CHAPTER 1. BASIC PROPERTIES OF LIE ALGEBRAS

From now on K is always a field and L a Lie algebra over K.
The prime example for a Lie algebra is (End(V ), [, ]). We denote this Lie algebra by

gl(V ). L is called abelian if [a, b] = 0 for all a, b ∈ L. Any K-space V becomes an abelian
Lie algebra if one defines [a, b] = 0 for all a, b ∈ V .

Let (A, ·) be any associative K-algebra and define [a, b] := ab− ba for all a, b ∈ A. Just
as for End(V ) none shows that (A, [, ]) is a Lie algebra over K. We denote this Lie algebra
by l(A).

Similar as for groups, rings and modules one defines homomorphisms, subalgebras, gen-
erations, ideals, . . . . For example a subalgebra of an algebra A is a K-subspace I of A such
that i · j ∈ I for all i, j ∈ I. Note that this equivalent to requiring that (I, ·) is K-algebra.
If I is a K-subspace of A with i · a ∈ I and a · i ∈ I for all a ∈ A, i ∈ I then I is called
an ideal. In this case the quotient A/I is a K-algebra. The kernel kerφ of an homomor-
phism φ : A→ B of K-algebras is an ideal in A and the First Isomorphism Theorem holds:
A/ kerφ ∼= φ(A) as K-algebras.

In general one needs to distinguish between left and right ideals. This is not necessary
for Lie algebras:

Lemma 1.1.3 [alternating]

(a) [a] [, ] is alternating, that is [x, y] = −[y, x] for all x, y ∈ L.

(b) [b] Let I be a K-subspace of L. Then I is an ideal ( in L) iff I is a right ideal and iff
I is a left ideal.

Proof: (a) 0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].
(b) follows immediately from (a). �

We remark that if char K 6= 2, then xy = −yx for all x, y in an algebra A implies xx = 0.
Indeed xx = −xx and so 2xx = 0. As 2 is invertible we get xx = 0.

Let V be a K-space and W a set of subspaces of V with 0 ∈ W and V ∈ W and W. Put

End(W) = {φ ∈ End(V ) | φ(W ) ≤W ∀W ∈ W}.

Note that End(W) is a subalgebra of End(V ). We denote the corresponding Lie algebra
by gl(W). Suppose that V has a finite basis (v1, v2, . . . , vn) and W consist of the n + 1
subspace Kv1 + Kv2 + Kvi, 0 ≤ i ≤ n. The reader should verify that gl(W) now consist of
all the upper triangular matrices (with respect to the given basis).

Let f be a bilinear form on V , that is a K-bilinear function f : V × V → K. Define

cl(f) = {α ∈ gl(V ) | f(αv,w) + f(v, αw) = 0 ∀ v, w ∈ V

We claim that cl(f) is a Lie subalgebra of gl(V ). Clearly it’s a K-subspace. Let α, β ∈
cl(f) and v, w ∈ V . Then
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f([α, β]v, w) = f(αβv,w)− f(βα,w)
= −f(βv, αw) + f(αv, βw)
= f(v, βαw)− f(v, αβw)
= −f(v, [α, β]w)

So [α, β] ∈ cl(f) and cl(f) is a Lie subalgebra of gl(V ).

1.2 Structure constants

Let L be a Lie algebra over K and B a basis for L. So everry l ∈ L can be uniquely written
as l =

∑
b∈B kbb, where kb ∈ K and all but finitely many of the k′bs are zero. Hence we can

define ak
ij ∈ K, i, j, k ∈ B, by

[i, j] =
∑
k∈B

ak
ijk.

The ak
ij ’s are called the structure constants of L with respect to B. Since [, ] is bilinear

the structure constants uniquely determine [, ]. Since [, ] is symplectic, alternating and fulfils
the Jacobi identity we have for all i, j, k, l ∈ B.

ak
ii = 0

ak
ij + ak

ji = 0

∑
m

am
ija

l
km + am

jka
l
im + am

kia
l
jm = 0.

Conversely, given a set B and ak
ij ∈ K, i, j, k ∈ B which fulfill the above three identities

one easily obtains a Lie algebra with basis B and the ak
ij as structure constants.

As an example consider the case of a 2-dimensional Lie-algebra L with basis x, y. Put
a := [x, y]. Then [L,L] = Ka. If a = 0 then L is abelian.

Suppose that L is not abelian and choose b ∈ L \ Ka. Then also (a, b) is a basis for L
and [a, b] = ka for some 0 6= k ∈ K. Replacing b by k−1b we may assume [a, b] = a. So up
to isomorphism there exists at most one 2-dimensional non abelian Lie Algebra. For later
use we record:

Lemma 1.2.1 [2 dim] If L is 2-dimensional and non-abelian, then L has a basis (a, b)
with [a, b] = a. �
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To show existence of such a Lie-algebra we could compute the structure constant and
verify the above identies. But its easier to exhibit such Lie-algebra as a subalgebra of gl(K2).
Namely choose

a :=
(

0 0
1 0

)
b :=

(
0 0
0 1

)

1.3 Derivations

Definition 1.3.1 [def:derivation] Let A be a K-algebra. Then a derivation of A is a map
δ : A→ A such that

δ(ab) = δ(a)b+ aδ(b)

for all a, b ∈ A. der(A) denotes the set of all derivations of A.

Lemma 1.3.2 [derivations are lie] Let A be a K-algebra. Then der(A) is a subalgebra of
gl(A).

Obviously der(A) is a K-subspace of gl(A). Now let γ, δ ∈ der(A) and a, b ∈ A. Then

[γ, δ](ab) = γδ(ab)− δγ(ab)
= γ(aδ(b)) + γ(δ(a)b)− δ(aγ(b))− δ(γ(a)b)
= γ(a)δ(b) + aγ(δ(b)) + γ(δ(a))b+ δ(a)γ(b)

−δ(a)γ(b)− aδ(γ(b))− δ(γ(a))b− γ(a)δ(b)
= a(γ(δ(b))− d(γ(b))) + (γ(δ(a))− δ(γ(α)))b
= [γ, δ](a)b+ a[γ, d](b)

Lemma 1.3.3 [left multiplication] Let A be an assocative K-algebra and for a ∈ A define
l(a)a : A→ A, b→ ab, r(a) : A→ A, b→ ba and ad (a) = l(a)− r(a). Let a, b, c ∈ A

(a) [a] l(a), r(a) and ad (a) all are K-linear.

(b) [b] [a, bc] = [a, c] + [a, b]c. That is ad (a) is a derivation of A

(c) [c] l : A→ End(A), a→ l(a) is a homomorphism.

(d) [d] r : A→ End(A), a→ r(a) is an anti-homomorphism.

Proof: (a) Obvious.
(b) We compute

b[a, c] + [a, b]c = bac− bca+ abc− bac = a(bc)− (bc)a = [a, bc]
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Also ad (a)(b) = ab − ba = [a, b] and the preceeding equation says that ad (a) is a
derivation of A.

(c) and (d) are readily verifed as A is associative. �

Lemma 1.3.4 [inner derivations] Define ( ad)(a) : L→ L, l→ [a, l] and let a ∈ L

(a) [a] ad a is a derivation of L.

(b) [b] Let δ ∈ der(L). Then [δ, ad a] = ad (δ(a)).

(c) [c] ad : L→ gl(L) is a homomorphism.

(d) [d] ad (L) is an ideal in der(L).

Proof: Let a, b, c ∈ A. Then

ad (a)([b, c]) = [a, [b, c]] = −[b, [c, a]]− [c, [a, b]] = [b, ad a(c)] + [ad (a)(b), c]

and so ad (a) is a derivation.
Let δ be a derivation of A. Then

[δ, ad (a)](b) = δ(ad (a)(b))− ad (a)(δ(b))
= δ([a, b])− [a, δ(b)]
= [δ(a), b] + [a, δ(b)]− [a, δ(b)]
= ad (δ(a))(b)

Thus (b) holds.
From (b) applied to the derivation ad b in place of δ we have [ad b, ad a] = ad ([b, a]) so

(c) holds.
Finally (d) follows from (b). �

A derivation of the form ad (a) is called an inner derivation. All other derivations of a
Lie Algebra are called outer derivations.

1.4 Modules

In this section A is an associative or Lie algebra over the field K.

Definition 1.4.1 [def:rep for associative] Let A be an associative K-algebra and V a
K-space.

(a) [a] A representation for A over V is a homomorphism Φ : A→ End(V ).
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(b) [b] An action for A on V is a bilinear map A× V → V, (a, v) → av such that

(ab)v = a(bv)

for all a, b ∈ A, v ∈ V .

Definition 1.4.2 [def:rep for lie] Let V be a K-space.

(a) [a] A representation for L is a homomorphism Φ : L→ gl(V ).

(b) [b] An action for L on V is a bilinear map L× V → V, (a, v) → av such that

[a, b]v = a(bv)− b(av)

for all a, b ∈ L, v ∈ V .

If A is a associative algebra, then by 1.3.3 the left multiplication l is a representaion for
A on A. And if L is a Lie algebra then by 1.3.4 ad is a representation of L on L.

Lemma 1.4.3 [rep=action] Let A be an associative or a Lie algebra and V a K-space.

(a) [a] Let Φ be a representation for A over V . Then A × V → V, (a, v) → Φ(a)(v) is an
action for A on V .

(b) [b] Suppose A× V → V, (a, v) → av is an action for A on V . Define Φ : A→ End(V )
by Φ(a)(v) = av for all a ∈ A, v ∈ V . Then Φ is a representation for A over V .

Proof: Straightforward. �

If A acts on V we say that V is a module for A.

Lemma 1.4.4 [associative to lie] Let V be a module for the associative algebra A. Then
with the same action V is also a module for l(A). In particular, left multiplication is an
action of the Lie-Algebra l(A) on A.

Proof: Let a, b ∈ A and v in v. Then

[a, b]v = (ab− ba)v = a(bv)− b(av).

�

Definition 1.4.5 [def:centralizer] Let V be a module for the associative or Lie algebra
A.

(a) [a] CV (A) = {v ∈ V | av = 0∀a ∈ A}.

(b) [b] CA(V ) = {a ∈ A | av = 0∀v ∈ V }
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(c) [c] If CA(V ) = 0 we say that V is a faithful A-module.

If Φ is the representation corresponding to the module V , then CA(V ) = ker Φ. In
particular, CA(V ) is an ideal in A. Note that V is also a module for A/CA(V ) via (a +
CA(V ))v = av. Even more, V is faithful for A/CA(V ).

Put Z(A) := {a ∈ A | ab = 0∀b ∈ A} = CA(A). Then Z(A) is an ideal in A called to
center of A. Note that L is abelian iff L = Z(L).

If X is a subsets of A and Y a subset of the A-module V , then we denote by XY the
K-subspace of V generated by {xy | x ∈ X, y ∈ Y }. We say that Y is X-invariant if xy ∈ X
for all x ∈ X, y ∈ Y . 〈Y 〉 denotes the additive subgroup of V generate by Y , while KY
denotes the K-subspace of V generated by Y .

Lemma 1.4.6 [product of subspaces] Let A be a Lie or an associative algebra, V an
A-module, X a subset of A and Y an X-invariant subset of V . Then KY is X-invariant.

Proof: Let x ∈ X and put Z = {z ∈ V | xz ∈ KY }. Then Z is an K-subspace of V and
since Y ⊆ Z, KY ⊆ Z. Thus xKY ⊆ KY and KY is X-invariant. �

Lemma 1.4.7 [submodules and ideals] Let V an L-module and I ⊆ L.

(a) [a] I is an ideal in L if and only if I is L-submodule of L.

(b) [b] If I is an ideal in L then IV and CV (I) are L-submodule of V .

Proof: Clearly I is a submodule iff its a left ideal. As left ideals are the same as ideals,
(a) holds.

For (b) let v ∈ V , i ∈ I and l ∈ L. Then l(iv) = ([l, i])v + i(lv) ∈ IV . In particular, IV
is a L-submodule. Moreover, if v ∈ CV (I) we get i(lv) = 0 and so lv ∈ CV (I) and CV (I) is
an L-submodule. �

1.5 The universal enveloping algebra

We assume the reader to be familiar with the definitions of tensor products and symmetric
powers, see for example [La].

Definition 1.5.1 [universal]

(a) [a] Let V be a K-space. Then a tensor algebra for V is an associative algebra T with 1
together with an F-linear map Φ such that whenever T ′ is an associative K-algebra with
one and Φ′ : V → T ′ is K-linear, then there exists an unique K-algebra homomorphis
Ψ : T → T ′ with Φ′ = Ψ ◦ Φ.
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(b) [b] Let V be a K-space. Then a symmetric algebra for V is a commutative and asso-
ciative algebra T with 1 together with an F-linear map Φ such that whenever T ′ is a
commuative and associative K-algebra with one and Φ′ : V → T ′ is K-linear, then there
exists an unique K-linear map Ψ : U → U ′ with Φ′ = Ψ ◦ Φ.

(c) [c] Let L be a Lie algebra over K. Then an universal enveloping algebra for L is
an associative K-algebra U with one together with a homomorphism Φ : L → l(U)
such that whenever U ′ is an associative K-algebra with one and Φ′ : L → l(U ′) is an
homomorphism, then there exists an unique homomorphism of K-algebra Ψ : U → U ′

with Φ′ = Ψ ◦ Φ.

Lemma 1.5.2 [existence of universal]

(a) [a] Let V be a K-space. Then V has a tensor algebra T(V ) and T(V ) is unique up to
isomorphism.

(b) [b] Let V be a K-space. Then V has a symmetric algebra S(V ) and S(V ) is unique
up to isomorphism.

(c) [c] Let L be a Lie algebra. Then L has a universal enveloping algebra U(L) and U(L)
is unique up to isomorphism.

Proof: The uniqueness statements follows easily from the definitions.
(a) Define T =

⊕∞
i=0

⊗i V and define a multiplication on T by

(v1 ⊗ . . .⊗ vm)(w1 ⊗ . . . wn) = v1 ⊗ . . .⊗ vm ⊗ w1 ⊗ . . . wn

The its is staighforward to check that T is an associative algebra with 1. If T ′ is an
associative algebra with 1, and Φ′ : V → T ′ is linear. Define Ψ : T → T ′ by Ψ(v1⊗. . .⊗vm) =
Φ′(v1)Φ′(v2) . . .Φ′(vm).

(b) Let SnV be the n-th symmetric power of V and sefine S :=
⊕∞

i=0 SiV . Proceed as
in (a).

(c) Let I be the ideal in T(L) generated by all the a⊗ b− b⊗ a− [a, b], a, b ∈ L. Then
T/I is a universal enveloping algebra. �

Lemma 1.5.3 [basis for tensor]

(a) [a] Let I be set and for i ∈ I let Vi be a K-space with basis Bi. Put B = ⊗i∈IBi =
(⊗i∈Ibi | bi | bi ∈ Bi∀i ∈ I). Then B is a basis for

⊗
i∈I Vi.

(b) [b] Let V be a K-space with ordered basis B. Let n ∈ N. Then (b1b2 . . . bn | b1 ≤ b2 ≤
. . . ≤ bn, bi ∈ B) is a basis for SnV .
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Proof: Wellknown. See for example [La]. �

Let A be any associative K-algebra. Note that the definition of an universal enveloping
algebra implies that the map

Hom(U(L), A) → Hom(L, l(A)), α→ α ◦ Φ

is a bijection. For the case that A = End(V ) for a K-space V we conclude:

Lemma 1.5.4 [modules for universal] Let φ : L→ U be an universal enveloping alebra.
Let V an L-module. Then there exists a unique action of U on V with φ(l)v = lv for
all l ∈ L. The resulting map between the set of L-modules and the set of U-modules is a
bijection.

�

Lemma 1.5.5 [d spans u] Let φ : L → U be an universal enveloping algebra for L. Also
let B be an ordered basis for L. Put Um =

∑m
i=0 φ(L)i. Then

Um = K〈φ(b1) . . . φ(bi) | 0 ≤ i ≤ m, bj ∈ B, b1 ≤ b2 ≤ . . . ≤ bi〉.

Proof: By induction on m. Since we interpret the empty product as 1, the statement is
true for m = 0. Suppose its is true for m− 1. Let b1, b2 ∈ bm ∈ B. Also let 0 ≤ i < m and
put a = b1b2 . . . bi−1 and c = bi+2 . . . bm. Then

b1b2 . . . bm = abibi+1c = abi+1bic+ a[bi, bi+1]

Thus
b1b2 . . . bm + Um−1 = b1 . . . bi−1bi+1bibi+2 . . . bn + Um−1

and so for all π ∈ Sym(m),

b1b2 . . . bm + Um−1 = bπ(1) . . . bπ(m) + Um−1

Choosing π such that bπ(1) ≤ bπ(2) ≤ . . . ≤ bπ(m) and we see that the lemma also holds
for m. �

Lemma 1.5.6 [action of l on s] Let B be an ordered basis for the Lie algebra L. Identify
L with is image in S := S(L). Let b ∈ B and s ∈ Bn. Define b ≤ s if either n = 0 or
s =

∏n
i=1 bi, bi ∈ B with b ≤ bi for all 1 ≤ i ≤ n. Then there exists a unique action · of L

on S such that b · s = bs for all b ∈ B, n ∈ N and s ∈ Bn with b < s.

Proof: Put Sm =
∑m

i=0 L
m ≤ S. To show the uniqueness of · we show by induction on m

that the restriction of · to L× Sm is unique and that
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1◦ [1] w(b, s) := b · s− bs ∈ Sm for all b ∈ L and s ∈ Sm.

Note that (1◦) implies that b · s = bs+ w(b, s) ∈ Sm+1

If m = 0, the S0 = K and b · s = bs = sb for all s ∈ S0. Suppose now that m ≥ 1. Let
s = dt ∈ B with d ∈ B, t ∈ Bm−1 and d ≤ t. We need to compute b · s uniquely and show
that b · s− bs ∈ Sm. Note that dt = d · t.

If b ≤ d, then b ≤ s. So

2◦ [2] b · s = bs, whenever b ≤ s

Also b · s− bs = 0 ∈ Sm.
If b > d, then since · is an action

3◦ [3]
b · s = b · (d · t) = d · (b · t) + [b, d] · t

By induction on m, b ·t and [b, d] ·t are uniquely determined. Moreover, b ·t = bt+w(b, t)
with w(b, t) ∈ Sm−1 and [b, d] · t ∈ Sm. Since c ≤ bt we have d · (bt) = dbt = bs. Also by
induction d · w is uniquely determined and contained in Sm. Thus the formula

4◦ [4] b · s = dbt+ d · w(b, t) + [b, d] · t, whenever b � s

uniquely determines b · s. Moreover w(b, s) = d · w(b, t) + [b, d] · t ∈ Sm.
Thus · is unique and (1◦) holds.
To prove existence we define b · s for b ∈ B and s ∈ Bm by induction on m via (2◦) and

(4◦). Once b · · · s is defined for all s ∈ Bm, define l · s for all l ∈ L and s ∈ Sm by linear
extension. Note also that (1◦) will hold inductively. So all terms are on the right side of
(4◦) are defined at the time its used to define the left side.

We need to verify that · is an action.
Let a, b ∈ L and s ∈ S. We say that {a, b} acts on v if a · (b · s) − b · (a · s) = [a, b] · s.

Note that set of s ∈ S on which {a, b} acts is a K-subspae of V .
Suppose inductively that we have shown

5◦ [5] For all a, b ∈ L and all s ∈ Sm−1, {a, b} acts on s.

Let a, b ∈ B and s ∈ Bm. We need to show that {a, b} acts on s. This is obviously the
case then a = b. So suppose a 6= b

Suppose that a ≤ s or b ≤ s. Without loss a > b. Then b ≤ s. Using the definition of
a · u for u = b · s ( compare (3◦)) we get

6◦ [6] If a ≤ s or b ≤ s then {a, b} acts on all s ∈ Bm.
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Suppose next that a > s and b > s. Let s = dt = d cot t be as above. Then
Since d ≤ bs (6◦) gives that {a, d} acts on bs. By induction {a, d} also acts on w(b, s) ∈

Sm−1 and so {a, d} acts on b · s = bs + w(b, s). This allows us to compute (using our
inductive assumption (5◦) various times):

a · (b · (d · t)) = a · (d · (b · t) + [b, d] · t)
= d · (a · (b · t)) + [a, d] · (b · t) + [b, d] · (a · t) + [a, [b, d]] · t

Since the situation is symmetric in a and b the above equation also holds with the roles
of a and b interchanged. Subtracting these two equations we obtain:

a · (b · dt)− b · (a · dt) = d · (a · (b · t)− b · (a · t)) + [a, [b, d]] · t− [b, [a, d]] · t
= d · ([a, b] · t) + [a, [b, d]] · t+ [b, [d, a]] · t
= [a, b] · (d · t) + ([d, [a, b]] + [a, [b, d]] + [b, [d, a]]) · t
= [a, b] · dt

Thus {a, b} acts on s = dt and so by induction L acts on S. �

Theorem 1.5.7 (Poincare-Birkhof-Witt) [pbw] Let φ : L → U be an universal en-
veloping algebra of L. Let B be the ordered basis of L and view S(L) as an L- (and so as
an U(L)-) module via 1.5.6.

(a) [a] The map Ψ : U(L) → S(L), u→ u · 1 is a isomorphism of K-spaces.

(b) [b]
D := (φ(b1)φ(b2) . . . φ(bn) | n ∈ N, b1 ≤ b2 ≤ . . . ≤ bn ∈ B)

is a basis for U.

(c) [c] φ is one to one.

Proof: Let b1, b2, . . . bn be a nondecreasing sequence in B. The definition of the action of
L on S(L) implies that φ(b1)φ(b2) . . . φ(bn) ·1 = b1b2 . . . bn. Hence Ψ(D) is a basis for S(L).
Thus Ψ is onto and D is linearly independent in U. By 1.5.5 KD = U and so D is a basis
for U. Hence Ψ sends a basis of U to a basis of S(L) and so is an isomorphism. Also φ(B)
is linearly independent and so φ is one to one. �

From now on U denotes a universal envelpong algebra for L. In view of the Poincare-
Witt-Birkhoff Theorem we may and do identify L with its image in U. In particular for
n ∈ N we obtain the K-subspace Ln of U Also according to 1.5.4 we view every L-module
V as an U-module. Indeed if a1, a2, . . . , an ∈ L and v ∈ V , then a1a2 . . . an ∈ U just acts
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(a1a2 . . . an)v = a1(a2(. . . (anv) . . .)).

In particular the adjoint action of L on L extends to an action of U on L. We denote
this action by U × L → L, u → u ∗ l. For example a, b, l ∈ L we have a ∗ l = [a, l] and
(ab) ∗ l = [a, [b, l]]. With this notations we have

Ln ∗ L = [L, [L, . . . [L︸ ︷︷ ︸
n-times

, L]] . . .]].

Lemma 1.5.8 [[l,l,n]] Ln ∗ L ≤ Ln+1.

Proof: The proof is by induction on n.. The statement is clearly true for n = 0. Suppose
now that Ln−1 ∗L ≤ Ln. Let l ∈ L and a ∈ Ln−1 ∗L. Then a ∈ Ln and so l ∗ a = la− al ∈
Ln+1. Thus Ln ∗ L = L ∗ (Ln−1 ∗ L) ≤ Ln+1 and the lemma is proved. �

1.6 Nilpotent Action

Let R be a ring and X ⊆ R. We say that X is nilpotent if Xn = 0 for some n ∈ N. Note
that for R = End(V ) we have Xn = 0 iff XnV = 0.

Now let A be an associative or Lie algebra and V a module for A. Then we say that
X ⊆ A acts nilpotenly on V if the image of X in End(V ) is nilpotent. Note that that X
acts nilpotently on V if and only if XnV = 0 for some n ∈ N.

We say that L is nilpotent if L acts nilpotently on L, that is if Ln ∗ L = 0 for some n.
Note that for associative algebra A a subalgebra B is nilpotent if an only if the action of B
on A by left multiplication is nilpotent. Indeed if Bn = 0, then BnA = 0 and if BnA = 0
then Bn+1 = 0. The analog of this statement is not true for Lie algebras. For example
consider that Lie algebra L with basis x, y such that [x, y] = x. Then Ky is an abelian and
so a nilpotent subalgebra of L, but y does not act nilpotently on L. An the other hand if
I is an ideal in L, then I is nilpotent if and only if I acts nilpotently on L.

We remark that if X acts nilpotently on V then all elements in X act nilpotently on
V . The main goal of this section is to show that for finite dimensional Lie-algebras, the
converse holds. That is if all elements of the finite dimensional Lie-algebra L act nilpotently
on V , then also L acts nilpotenly on V .

We say that L acts trivially on V if LV = 0.

Lemma 1.6.1 [nilpotent and chains] Let A be an associative or Lie algebra. Let A be
an L-module. Then the following are equivalent:

(a) [a] A acts nilpotently on V .

(b) [b] There exists a finite chain of A submodules 0 = Vn ≤ Vn−1 ≤ . . . V0 = V such that
A acts trivially on each Vi/Vi+1.
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(c) [c] There exists a finite chain of A submodules 0 = Vn ≤ Vn−1 ≤ . . . V0 = V such that
A acts nilpotently on each Vi/Vi+1.

Proof: (a)=⇒ (b): Just put Vi = AiV .

(b)=⇒ (c): This holds since trivial action is nilpotent.

(c)=⇒ (a): For 0 ≤ i < n choose mi with Ami(Vi/Vi+1) = 0. Then AmiVi ≤ Vi+1. Put

m =
∑n−1

i=0 mi. Then AmV = 0. �

Lemma 1.6.2 [nilpotent implies nilpotent] Suppose L acts nilpotenly on the L-module
V . Then L/CL(V ) is nilpotent.

Proof: Let LnV = 0 for some n ≥ 1. Then by 1.5.8 (Ln−1 ∗ L)V = 0. Thus Ln−1 ∗ L ≤
CL(V ) and L/CL(V ) is nilpotent. �

Lemma 1.6.3 [nilpotent + nilpotent] Let A be an associative or Lie algebra. Let V be
an A-module, D,E subalgebras of A with [E,D] ≤ D. If E and D acts nilpotently on V ,
then E +D acts nilpotently on V .

Proof: In the case that A is associative, we replace A by l(A). So A is now a Lie algebra.
Since [E,D] ≤ D, D is an ideal in E + D. By 1.4.7(b) DV is an E + D-submodule. By
induction, DnV is a E + D-submodule. D acts trivially and so E + D acts nilpotenly on
DnV/Dn+1V for all n. Thus the lemma follows from 1.6.1. �

Lemma 1.6.4 [associative and nilpotent] Let A be an associative K-algebra.

(a) [a] Let D,E ≤ A be nilpotent with [E,D] ≤ D. Then D + E is nilpotent.

(b) [b] Let D ≤ A be nilpotent. Then D acts nilpotently on on l(A).

Proof: (a) By 1.6.3 D + E acts nilpotently on A and so is nilpotent.
(b) SinceDn = 0 we have l(D)n = 0 and r(D)n = 0. Also since A is associative l(D)n and

r(D)n commute. Thus (a) implies that l(D) + r(D) is nilpotent. Since ad (a) = l(a)− r(a)
we have ad (D) ≤ l(D) + r(D) and so ad (D) is nilpotent in End(A). and D so acts n
nilpotently l(A). �

Corollary 1.6.5 [nil on V and in L] Suppose that L acts faithfully on V and that X ⊆ L
acts nilpotently on V . Then X acts nilpotently on L.
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Proof: Let Φ : L → gl(V ) be the corresponding representation. Then by the definition
of nilpotent action, Φ(X) is nilpotent in End(V ). From 1.6.4 the adjoint action of Φ(X)
on gl(V ) is nilpotent. Thus Φ(X) acts nilpotently on Φ(L) and as Φ is one to one, X acts
nilpotently on L. �

Lemma 1.6.6 [normalizer of nilpotent] Suppose L acts nilpotenly on V W ⊂ V with
0 ∈W 6= V . Then there exists v ∈ V \W with Lv ≤W .

Proof: Since L is nilpotent on V and 0 ∈W , we can choose n ∈ N minimal with LnV ⊆W .
Since M 6= L, n 6= 0. By minmality of n, Ln−1V � W . Pick v ∈ Ln−1V \ W . Then
Lv ≤ L(Ln−1V ) = LnV ≤W . �

For a subalgebra A ≤ L put NL(A) = {l ∈ L | [l, A] ≤ A}. Note that NL(A) is
subalgebra of L and that A is an ideal in NL(A).

Corollary 1.6.7 [normalizer of nilpotent II] Suppose tthat M is a subalgebra of L act-
ing nilpotenly on L. If M 6= L, then M � NL(M).

By 1.6.6 (applied with (M,L,M) in the roles of (L, V,W )) there exists d ∈ L \M with
[M,d] ≤M . Then d ∈ NL(M). �

Definition 1.6.8 [def:subideal] Let A be a K-algebra and I ⊆ A. We write I E A if I
is an ideal in A. We say that I is a subideal in A and write I E EA if there exists chain
I = I0 E I1 E . . .E In E In = A.

Lemma 1.6.9 [subideals in nilpotent] Suppose L is nilpotent. Then every subalgebra in
L is an subideal in L.

Proof: Let n be minimal with Ln ∗L = 0 and A ≤ L. Let Z = Ln−1 ∗L. Then L ∗Z = 0,
that is Z ≤ Z(L). Thus [A,Z + A] = [A,A] ≤ A and A E Z + A. Put L = L/Z. Since
Ln−1 ∗ L ≤ Z, Ln−1 ∗ L = 0. By induction on n we may assume Z + A/Z E EL/Z. Thus
Z +AE EL and so Z E EL �

Theorem 1.6.10 [elementwise nilpotent] Let L be a finite dimensional Lie algebra and
V a L-module. If all elements of L act nilpotently on V , then L acts nilpotently on V .

Proof: We may assume without loss that L is faithful on V . The proof is by induction
on dimV . Let M be a maximal subalgebra of L. By induction M acts nilpotently on
V . So by 1.6.5 M acts nilpotenly on L. 1.6.6 implies that there exists d ∈ NL(M) \M .
Note that Kd is a subalgebra and M + Kd are subalgebras of L. By maximality of M ,
L = M + Kd ≤ NL(M). As d is nilpotent on V , Kd is nilpotent on V as well. Thus 1.6.3
implies that L is nilpotent on V �.



1.7. FINITE DIMENSIONAL MODULES 19

Corollary 1.6.11 (Engel) [engel] Let L be a finite dimensional Lie algebra all of whose
elements act nilpotently on L. Then L is nilpotent.

Proof: Apply 1.6.10 to the adjoint module. �

1.7 Finite Dimensional Modules

Definition 1.7.1 [series] Let A be Lie or an associate K-algebra and V an A-module.

(a) [a] V is called simple if V has no proper A-submodules. (that is O and V are the
only A-submodules. V is semisimple if its the direct sum of simple modules and its
homogeneous if its the direct sum of isomorphic simple modules.

(b) [b] A series for A on V is a chain S of A-submodules of V such that

(a) [a] 0 ∈ S and V ∈ S.

(b) [b] S is closed under intersections and unions, that is for every nonempty D ⊂ S,⋂
D ∈ S and

⋃
D ∈ S.

(Here a chain is a set of sets which is totally ordered with respect inclusion)

(c) [c] Let S be an A-series. A jump of S is pair (D,E)) such that D,E ∈ S, D < E and
C ∈ S with D ≤ C ≤ E implies C = D or S = E. In this case E/D is called a factor
of S.

(d) [d] A composition series for A on S is a series all of whose factors are simple A-
modules.

(e) [e] Let S and T be A-series on V . We say that S and T have isomorphic factors if
there exists a bijection Φ between the sets of factors of S and T such that for each factor
F of S, F and ΦF are isomorphic A-modules. Such a Φ is called an isomorphism of
the sets of factor.

(f) [f] Let V and W be A-modules and φ ∈ Hom(V,W ). Then φ is called A-invariant if
φ(av) = aφ(v) for all a ∈ A, v ∈ V . HomA(V,W ) denotes the set of such φ.

(g) [g] If X and Y are A-submodules o V with X ≤ Y , then Y/X is called an A-section
of V .

Lemma 1.7.2 [lifting series] Let V be an L-module and W an L-submodule of V . Let S
be a L-series on W and T and L-series on V/W . Let T be the inverse image of T in V
(so T = {T/W | T ∈ T }). Then S ∪ T is a series for L on V . The factors of S ∪ T are
the factors of S and T . In particular, S ∪ T is an L-composition seres if and only if both
S and T are L-composition series.
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Proof: This follows readily from the definition. We leave the details as an exercise. �

Lemma 1.7.3 (Jordan Hölder) [jordan hoelder] Let A be a Lie or an associative K-
algebra. Suppose that there exists a finite composition series for A on V . Then any two
composition series for A on V have isomorphic factors.

Proof: Let S be a finite composition series for A on V and T any compostion series. For
a jump (B,C) of T choose D ∈ S maximal with C � B + D. Let E be minimal in S
with D < E. Then E/D is a factor of S, C/B is a factor of S and we will show that map
B/C → E/D is an isomorphism of the sets of factor.

By maximality of D we have
C ≤ B + E.

Thus C = C ∩ (B + E) = B + (C ∩ E) and so

C/B ∼= C ∩ E/C ∩ E ∩B = C ∩ E/B ∩ E.

Since C � B +D, C ∩ E � D and since E/D is simple, E = D + (C ∩ E). Thus

E/D ∼= C ∩ E/C ∩D.

If B ∩E � D, then E = (B ∩E) +D ≤ B +D and so C =≤ B +E ≤ B +D, contrary to
our choice of D. Thus BE ≤ D and so B ∩ E = B ∩D. Suppose that C ∩D � B. Then
C = (C ∩D) +B ≤ B +D, again a contradiction. Thus C ∩D = B ∩D = B ∩ E and so

C/B ∼= C ∩ E/B ∩D = C ∩ E/B ∩ E ∼= E/D.

It remains to show that our map between the factor sets is a bijection. Let (B′, C ′) be
a jump other than (B,C) and say C ′ ≤ B. Then C ′ ∩ E ≤ B ∩ E = B ∩ D ≤ D and so
(B′, C ′) is not mapped to E/D. So our map is one to one.

Since S is finite we conclude that, T has finitely many jumps and so also T is finite and
|T | ≤ |S|. But now the situation is symmetric in T and S. Thus |S| ≤ |T |, |S| = |T | and
our map is a bijection. �

Lemma 1.7.4 [submodules for ideals] Let L be a Lie algebra L, V an L-module, I an
ideal in L, W an I-submodule in V and l ∈ L. Let X be an I submodule of V containing
[I, l]W

(a) [a] The map W → V/X,w → lw +X is I-invariant.

(b) [b] The map W → V/W,w → lw +W is I-invariant.

(c) [c] If [I, l] = 0 then the map W → V,w → lw is I-invariant.
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Proof: (a) Let φ be the map in question. Let i ∈ I and w ∈W . Then ilw = liw+[i, l]w ∈
liw +X and so iφ(w) = φ(iw).

(b) Since W is an I-submodule and I is an ideal, [I, l]W ≤W and so we can apply (a)
with X = W .

(c) Apply (b) with X = 0.

Definition 1.7.5 [def:nil v] Let V be a finite dimensional L-module.

(a) [a] CompV (L) is the set of factors of some L-compositions series on V . (Note by the
Jordan Hölder Theorem, CompV (L) is essentially independent from the choice of the
composition series)

(b) [b] NilL(V ) =
⋂
{CL(W ) |W ∈ CompV (L)}

Lemma 1.7.6 [nil V] Let V be a finite dimensional L-module. Then NilL(V ) is the unique
maximal ideal of L acting nilpotently on V .

Proof: NilL(V ) is the intersection of ideals and so an ideal in L. By 1.6.1(b), NilL(V ) is
nilpotent on V . Now let I be an ideal of L acting nilpotently on V . Also letW a composition
factor for L on V . Then 0 6= CW (I) is an L-submodule ofW and so CW (I) = W , I ≤ CL(W )
and I ≤ NilL(V ). �

Corollary 1.7.7 [Nil L] Let L be finite dimensional. Then L has a unique maximal nilpo-
tent ideal Nil(L).

Proof: An ideal in L is nilpotent if and only if its acts nilpotently on L. So the lemma
follows from 1.7.6 applied to the adjoint module. �

We remark that there may not exist a unique largest nilpotenly acting subideal in L.
For example consider L = sl(K2) and let V = K2. Let

x = E12 =
(

0 1
0 0

)
, y = E21 =

(
0 0
1 0

)
and h = E11 − E22 =

(
1 0
0 −1

)
Then [h, x] = 2x, [y, h] = 2y and [x, y] = h.
If char K = 2 we conclude that Kx + Kh is an ideal in sl(K2) and Kx is an ideal in

in Kx + Kh. Thus Kx is a subideal acting nilpotently on K2. The same holds for Ky.
But sl(K2) is the subalgebra generated by x and y. Since sl(K2)V = V , sl(K2) does not
act nilpotently on V and so Kx and KY are not contained in common nilpotently acting
subideal of L.

Definition 1.7.8 [def:vd] Let V be finite dimesional L-module.

(a) [a] Sim(L) is the set of all isomorphism classes of finite dimensional simple L-modules.
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(b) [b] SimV = SimV (L) is the set the isomorphism classes of the L-composition factors
of V .

(c) [c] Let D ⊆ Sim(L). A D-module is an L-module W with SimW ⊆ D (If W is simple
this means that the isomorphism class of W is in D.

(d) [d] VD is the sum of all the simple D-submodules in V

(e) [e] VD(0) = 0 and inductively define the submodule VD(n+ 1) of L in V by

VD(n+ 1)/VD(n) = (V/VD(n))D.

(f) [f] V c
D =

⋃∞
i=0 VD(i).

(g) [g] Let A ≤ L and A ⊆ Sim(A). Then A |L is the set of isomorphism classes of the
finite dimensional simple L-modules which are A-modules.

To digest the preceeding definitions we consider an example. Let L be the subalgebra
of gl(K3) consisting of all 3× 3 matrices of the form0 ∗ ∗

0 ∗ ∗
0 0 0

 .

Let V = K3 viewed as an L-module via left multiplication. Let (e1, e2, e3) be the
standard basis for K3. Let Vi =

∑3
j=0 Kej . Then

0 = V0 < V1 < V2 < V3 = V

is a composition series for L on V . Put Ik = Vk/Vk−1. Then Ik is a simple 1-dimensional
L-module. Note that LI1 = 0 and LI3 = 0 while LI2 6= 0. So I1 ∼= I3 but I1 6∼= I2 as
L-module. For an L-module W let [W ] be the isomorphism class of W ( that is the class of
L-modules isomorphic to W . Then SimV = {[I1], [I2]}. For k = 1, 2 let Dk = {[Ik]}. Also
put D = D1 ∪ D2 = SimV . Observe that any L-submodule of V is one of the Vi.

By definition VD1 is the sum of all the simple L-submodule of V isomorphic to I1. V1

is the only simple L-submodule of V and V1
∼= I1 so VD1 = V1. To compute VD1 , put

V = V/V1. The only simple submodule of V is I2 = V2/V1. Since I1 6∼= I2 we get V D1 = 0.
Thus VD1(2) = V1. It follows that VD1(j) = V1 for all j ≥ 1 and so also V c

D1
= V1.

No submodule of V is isomorphic to I2 and hence VD2 = 0. Thus V c
D2

= VD2(j) = 0 for
all j ≥ 0.

V1 is the only submodule of V isomorphic to I1 or I2 and so VD = V1. V2/V1 is the only
submodule of V/V1 isomorphic to I1 or I2. So (V/V1)D = V2/V1 and VD(2) = V2. V/V2 is
isomorphic to I1 and so V = VD(3) = V c

D.

Definition 1.7.9 [def:linear indep] Let V be K-space and V a set of K-subspaces of V .
We say that V is linearly independent if

∑
V =

⊕
V.
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Lemma 1.7.10 [basic semisimple] Let V be an L-modules and V a set of simple L-
submodules in V . Suppose that V =

∑
V.

(a) [a] Let W be an L-submodule of V , Then there exists W ⊆ V such that V = W ⊕
⊕
W.

(b) [b] Let X ≤ Y be L-submodules. Then there exists W ⊆ V with Y/X ∼=
⊕
W as

L-modules.

(c) [c] Every L-section of V is semisimple.

(d) [d] Every composition factor of V is isomorphic to some member of V.

Proof: (a) Let C be the set of linearly independet subsets W of V with W ∩
∑
W = 0.

Order C by inclusion. If D is a chain in C, then it is easy to verify that
⋂
D ∈ C. So every

chain in C has an upper bound. By Zorn’s Lemma, C has a maximal elements W. Suppose
that V 6= W +

∑
W. Then there exists U ∈ V with U � W +

∑
W. Since U is simple,

U ∩ (W +
∑
W) = 0. But then W ∪ {U} ∈ C, contradicting the maximality of W. Thus

V = W +
∑
W and the definition of C implies that V = W ⊕

⊕
W.

(b) By (c) there exists an L-submodule Z of V with V = Y ⊕X. Put V = V/Z. Then
Y ∼= V . Let W ∈ V with W � Z. Then W ∩ Z = 0 and W = W + Z/Z ∼= W . Let
V = {W | W ∈ V,W � Z. Then V =

∑
V. By (a) applied to X ≤ V there exists W ⊆ V

with V = X ⊕W. Hence Y/X ∼= Y /X =
⊕
W and so (b) holds.

(c) and (d) follow directly from (b). �

Lemma 1.7.11 [basic vd] Let V be a finite dimensional L-module and D ⊆ Sim(L).

(a) [z] Let A ≤ L and A ⊆ Sim(A). Then V is an A-module if and only if V is an
A |L-module.

(b) [a] Let A ≤ B ≤ C ≤ L and A ⊆ Sim(A). Then A |B|C= A |C .

(c) [b] Let W be L-submodule of V . Then V is an D-module if and only if W and V/W
are D-modules.

(d) [y] VD is the unique maximal semisimple D-submodule in V .

(e) [c] V c
D is the unique maximal D-submodule of V .

(f) [x] Let E ⊆ Sim(L). Then V c
D ∩ V c

E = V c
D∩E and V c

D + V c
E ≤ V c

D∪E .

(g) [d] Let I E EL and I ⊆ Sim(I). Put L = I |L . Then V c
I is an L submodule and

V c
A = V c

L.

(h) [e] Suppose I ≤ Z(L), I ⊆ Sim(I) and i ∈ N. Then VI(i) is an L-submodule of V .
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Proof:
(a) Let S a composition series for L on V and choose a composition series R for A on

V with S ⊆ R. Then a factor A/B of S is a A |L-module iff all the factors C/D of R with
B ≤ C < D ≤ A are A-modules. Thus V is an A |L-module iff each factor T of S is an
A |L-module iff each factor of R is a A-module iff V is an A-module.

(b) Let X be finite dimensional C-module. Then by (b), the following are equivalent.
X is an A |B|C-module, X is an A |B-module, X is an A-module, X is an A |C-

module.
(c) follows from 1.7.2
(d) By 1.7.10(c), VD is semisimple and by 1.7.10(d), VD is a D-module. Conversely every

semisimple D-module is a sum of simple D-modules and so contained in VD.
(e) Any composition factor of V c

D is isomorphic to a compostion factor of some VD(n+
1)/VD(n) and so (by (d)) is D-module. So V c

D is a D-module. Conversely let W be a
D-submodule and 0 = W0 < W1 < . . . < Wn = W an L-composition series on W .

We show by induction on i that Wi ≤ VD(i). For i = 0 this is obvious. So suppose
Wi ≤ VD(i). Since Wi is a maximal submodule of Wi+1 we either have Wi+1 ∩ VD(i) = Wi

or Wi+1. In the latter case, Wi+1 ≤ VD(i + 1)). In the former put V = V/VD(i) and note
that Wi+1

∼= Wi+1/Wi is a simple D-module. Hence Wi+1 ≤ V D. Hence the defintion of
VD(i+ 1) implies Wi+1 ≤ VD(i+ 1).

In particular, Wn ≤ VD(n) ≤ V c
D and (e) is proved.

(f) This follow easily from (e). We leave the details to the reader.
(g) Suppose first that I is an ideal in L. Let W = V c

I . We claim that W is a L-
submodule. Let l ∈ L. Then by 1.7.4(b), φ : W → V/W,w → lw+W is I-invariant. Hence
φ(W ) ∼= W/ kerφ and so by (c), φ(W ) is an I-submodule. Now φ(W ) = lW +W/W and so
by (c), lW +W is a I. According to (e), W is a maximal I-submodule. Thus lW +W = W ,
lW ≤ W and W is an L-submodule. By (a) W is an L-submodule. Thus by (e), W ≤ V c

L.
Also by (a), V c

L is an I-submodule and thus by (e), V c
L ≤W .

So (g) holds if I is an ideal. In the general can choose I E I1 . . . In−1 E I. Put J = In−1

and J = A |J . By induction on n, V c
I = VJ . By (b), L = J |L and so by the ideal case

V c
J = VL. Thus V c

I = V c
L. As the latter is an L-submodule, so is V c

I and (g) is proved.
(h) Let l ∈ L. By 1.7.4(c), lVI is a sum of simple A-modules So lVI ≤ VI . Thus VI is

an L-submodule. The definition of VI(n+ 1) and induction on n now shows that (h) holds.
�

Proposition 1.7.12 [clifford] Let I a subideal in L and V a finite dimensional simple L.
Then any two composition factors for I on V are isomorphic. If in addition I ≤ Z(L), then
V is an homogenous I-module.

Proof: Let W be as simple I-submodule in V and I the isomorphism class of W . Then
by 1.7.11 V c

I is a non-trival L-submodule of V . Since V is simple, V = V c
I . Similarly if

I ≤ Z(L), V = VI �
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Lemma 1.7.13 (Schur) [schur] Let V be a simple L-module. Then EndL(V ) is a skew-
field. If K is algebraicly closed and V is finite dimensional, then EndL(V ) = K∗ = KidV ,
where K∗ is the image of K in EndK(V ).

Proof: Let 0 6= f ∈ EndL(V ). Then V 6= CV (f) is L-submodule of V and since V is
simple, CV (f) = 0. So f is 1− 1. Similarly V = fV and so f is onto. Simple calculations
show that f−1 ∈ EndL(V ) and so EndL(V ) is a skew field. Suppose now that V is finite
dimensional and K is algebraicly closed. Then EndL(V ) is a finite field extension of K∗ and
so |EndL(V ) = K∗. �

Lemma 1.7.14 [simple for abelian] Let L be an abelian Lie algebra and V a simple L-
module. Put D = EndL(V ). Then D is a field, V is 1-dimensional over D and D = K∗(L∗),
where K∗ and L∗ are the images of K and L in End(V ). If K is algebrilcy closed and V is
finite dimensional, then K = D and V is 1-dimensional over K.

Proof: Note that L∗ is abelian and L∗ ≤ Z(D). Let E be the subfield of Z(D) generated
by K∗ and L∗. Let 0 6= v ∈ V . Then Ev is an L-submodule and since V is simple we get
V = Ev. Hence V is 1-dimensional over E. Moreover, if d ∈ D, then dv = ev for some
e ∈ E. Then (d− e)v = 0, d = e, E = D and the E = D.

Suppose in addition that K is alegbraicly closed and V is finite dimensional. Then D is
a finite extension of K∗ and so D = K∗. �

Lemma 1.7.15 [independence of d spaces] Let V be finite dimensional L-module and
∆ a partition of SimV . Then (V c

D | D ∈ ∆) is linearly independent, that is∑
{V c

D | D ∈ ∆} =
⊕

{V c
D | D ∈ ∆}.

Proof: Let D ∈ ∆ and W =
∑
{V c

A | D 6= A ∈ ∆}. We need to show that V c
D ∩W = 0.

For this put E =
⋃

∆ \ {D}. Then V c
D is a D-module, W is an E-module and so V c

D ∩W
is an D ∩ E-module. As ∆ was a partition, D ∩ E = ∅. Hence V c

D ∩W = 0. �

Definition 1.7.16 [def:trace] Let V be a finite dimensional L-module and u ∈ U. Then
trV (u) = tr(u∗), where u∗ is the image of u in End(V ). trV denotes the corresponding
function U → K, u→ tV (u). trL

V denotes the restriction of trV to L.

Lemma 1.7.17 [trace and series] Let V be a finite dimensional L-module.

(a) [a] trV is K-linear and trV (ab) = trV (ba) for all a, b ∈ U.

(b) [b] trV (l) = 0 for all l ∈ [L,L]
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(c) [c] Let W the set of factors of some L-series on V . Then

trV =
∑

W∈W
trW

(d) [d] If W is an L-module isomorphic to V , then trV = trW .

This follows from elementray facts about traces of linear maps. �



Chapter 2

The Structure Of Standard Lie
Algebras

2.1 Solvable Lie Algebras

Put L(0) = L and inductively, L(n+1) = [L(n), L(n)]. We say that L is solvable if L(k) = 0
for some k <∞.

Lemma 2.1.1 [basic solvable]

(a) [a] Let I E L. Then L is solvable if and only if I and L/I are solvable.

(b) [b] Let A,B ≤ L with A ≤ NL(B). Then A+B is solvable if and only if A and B are
solvable.

(c) [c] Suppose that L is finite dimensional. Then L has a unique maximal solvable ideal
Sol(L).

Proof: (a) If L(k) = 0, then I(k) = 0 and (L/I)(k) = 0. If I(n) = 0 and (L/I)(m) = 0, then
L(m) ≤ I and L(m+k) = L(m)(k) = 0.

(b) Suppose A and B are solvable. Since A ≤ NL(B), B E A + B. Now B and
A+B/B ∼= A/A ∩B are solvable and so by (a) A+B is solvable.

(c) Since L is finite dimensional, there exists a maximal solvable ideal B in L. Let A be
any solvable ideal in L. Then by (b), A + B is solvable ideal and so by maximality of B,
A ≤ B. �

Lemma 2.1.2 [nilpotent is solvable]

(a) [a] L(k+1) ≤ Lk ∗ L.

(b) [b] Any nilpotent Lie algebra is solvable.

27
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(c) [c] If Nil(L) = 0, then Sol(L) = 0.

Proof: (a) Clear by induction on k.
(b) follows from (a).
(c) If Sol(L) 6= 0 the last non-trival term of the derived series of L is an abelian and so

nilpotent ideal in L. �

Write L′ = [L,L] = L(1). We say that L is perfect if L = L′. Let L(∞) be the sum of
the perfect ideals in L. Then L(infty) is perfect and so the unique maximal perfect ideal in
L.

If L is finite dimensional there exists k ∈ N with L(k) = L(k+1). It follows that L(∞) =
L(k), L/L(∞) is solvable, L(∞) is the unique ideal minimal such that L/L(∞) is solvable and
L(∞) is the unique maximal perfect subalgebra in L.

Definition 2.1.3 [standard] We say K is standard if charK = 0 and K is algebraicly
closed. We say that L is standard if K is standard and L is finite dimensional. We say that
the L-module V is standard if L is standard and V is finite dimensional.

Proposition 2.1.4 [sol and simple] Let V be a simple, standard L-module.

(a) [a] [Sol(L), L] ≤ Sol(L) ∩ L′ ≤ Sol(L) ∩ ker trV = Sol(L) ∩ CL(V ).

(b) [b] The elements of Sol(L) act as scalars on V .

Proof: Replacing L by L/CL(V ) we may assume that V is faithful.
(a) Let I = Sol(L)∩ker trV . Obviously [Sol(L), L] ≤ Sol(L)∩L′ and Sol(L)∩CL(V ) ≤ I.

By 1.7.17(b), L′ ≤ ker trV . So we need to show that I ≤ CL(V ) = 0. If not, let k be the
derived length of I and put J = I(k−1). Then J is a non-trivial abelian ideal in L and
trV (J) = 0. Let 0 6= j ∈ J and let Z be a simple J-submodule in V . Since K is algebraicly
closed, 1.7.14 implies that Z is 1-dimensional over K. Hence there exists k ∈ K with
jz = kz for all z ∈ Z. By 1.7.12 all composition factors for J on V are isomorphic and
so 1.7.17 implies that 0 = trV (j) = dimV · k. Since char K = 0 we get k = 0. Thus
J ≤ NilL(V ) ≤ CL(V ) and (a) is proved.

(b) By (a), [Sol(L), L] ≤ CL(W ) = 1. Thus Sol(L) ≤ Z(L). Hence by 1.7.12 Sol(L) is
homogenous on V . Now Sol(L) is abelian and by 1.7.14 all the simple Sol(L) submodules
in V are 1-dimensional. Hence (b) holds.

Theorem 2.1.5 (Lie) [lie] Let V be a standard L-module.

[Sol(L), L] ≤ Sol(L) ∩ L′ ≤ NilL(V ).

Proof: Let W be a composition factor for L on V . By 2.1.4 Sol(L)∩L′ ≤ CL(W ) and so
Sol(L) ∩ L′ ≤ NilL(V ). �
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Corollary 2.1.6 [solvable and flags] Suppose that L is solvable and V is a standard L-
module. Then

(a) [a] L′ ≤ NilL(V ).

(b) [b] If V is simple, then V is 1-dimensional.

(c) [c] There exists a series of L-submodules 0 = V0 ≤ V1 ≤ . . . ≤ Vn = V with dimVi = i.

(d) [d] NilL(V ) = {l ∈ L | l acts nilpotently on V }.

Proof: By 2.1.6(b) L acts as scalars on any composition factor for L on V . Thus (a)-(c)
holds.

(d) Clearly each elements of NilL(V ) acts nilpotently on V . Now let l ∈ L act nilpotently
on V . Then l also acts nilpotently any every composition factor W of L on V . (b) implies
that l centralizes W and so l ∈ NilL(V ).

Corollary 2.1.7 [[sol l, l] nilpotent] Let L be standard. Then

(a) [a] [Sol(L), L] ≤ Sol(L) ∩ L′ ≤ Nil(L).

(b) [b] If L is solvable then L′ is nilpotent and there exists a series of ideals 0 = L0 ≤
L1 ≤ . . . ≤ Ln = L in L with dimLi = i.

Proof: Apply 2.1.5 and 2.1.6 to V being the adjoint module L.

2.2 Tensor products and invariant maps

Let V,W and Z be L-module. Then L acts on V ⊗W by

l(v ⊗ w) = (lv)⊗ w + v ⊗ (lw)

and L acts on Hom(V,W ) by

(lφ)(v) = l(φ(v))− φ(l(v)).

In particular, if we view K as a trivial L-module, L acts on V ∗ := Hom(V,K) by

(lφ)(v) = −φ(lv).

Let X ⊆ L and φ ∈ Hom(V,W ). We say that φ is X-invariant if φ(lv) = l(φ(v)) for
all v ∈ V and l ∈ X. Note that this is the case if and only if lφ = 0 for all l ∈ X.
HomX(V,W ) denotes all the X-invariant K-linear maps from V to W . So HomX(V,W ) is
just the centralizer of X in Hom(V,W ). Let f : V ×W → Z be K-bilinear. Then f gives
rise to a unique K-linear map f̃ : V ⊗W → Z with f̃(v ⊗ w) = f(v, w). We say that f is
X invariant if f̃ is X invariant. So f is X-invariant if and only if

f(lv, w) + f(v, lw) = l(f(v, w))
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for all l ∈ X, v ∈ V and w ∈ W . In the special case that Z is a trivial L-module we see
that f is X-invariant if and only if

f(lv, w) = −f(v, lw)

for all l ∈ X, v ∈ V and w ∈W .
Note that the sets of all l in L which leave f invariant (that f is l-invariant) is equal to

CL(f̃) and so forms a subalgebra of L.
Let f : V ×W → Z be K-bilinear. For X ⊂ V define

X⊥ = {w ∈W | f(x,w) = 0 ∀x ∈ X}.

Similarly for Y ⊆W define

⊥Y := {v ∈ V | f(v, y) = 0 ∀y ∈ Y.

f is called non-degenerate, if V ⊥ = ⊥W = 0.
Consider now the case where V = W . We say that f is symmetric if (for all v, w ∈W )

f(v, w) = f(w, v), f is alternating if f(v, w) = −f(w, v) and f is sympletic if f(v, v) = 0.
Note that if f is symplectic then f is alternating. We say that f is ⊥-symmetric, provided
that f(v, w) = 0 if and only if f(w, v) = 0. Observe that if f is symmetric or alternating,
then f is ⊥-symmetric.

If f is ⊥-symmetric then V ⊥ = ⊥V and we define rad(f) = V ⊥.

Lemma 2.2.1 [basic bilinear] f : V ×W → Z a L-invariant and K-bilinear. Let X be a
L-submodule of V then X⊥ is L-submodule of W .

Proof: Let w ∈ X⊥, l ∈ L and x ∈ X. Then lx ∈ X and so

f(x, lw) = lf(x,w)− f(lx, w) = l0− 0 = 0.

Thus lw ∈ X⊥ and X⊥ is a submodule of W . �

Lemma 2.2.2 [multiplications are invariant]

(a) [a] Let V be an L-module. Then the map l(U)×V → V, (u, v) → uv is L-invariant.(Here
we view l(U) as an L-module via the adjoint representation.)

(b) [b] L× L→ L, (a, b) → [a, b] is L-invariant.

(c) [c] L × U → U, (a, u) → au is L-invariant. (Here we view U as an L-module via left
multiplication.)

(d) [d] L × L → l(U), (a, b) → ab is L-invariant. (Here we view l(U) as an L-module via
the adjoint representation.)
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Proof: (a) Let a ∈ L, u ∈ U and v ∈ V . Define f(u, v :) = uv. Then

f(a ∗ u, v) + f(u, av) = [a, u]v + u(av) = a(uv) = af(u, v).

(b) and (c) are special cases of (a).
(d) Let a, b, c in L and define f(b, c) := bc. Then using 1.3.3 b

f(a ∗ b, c) + f(b, a ∗ c) = [a, b]c+ b[a, c] = [a, bc] = a ∗ f(b, c).

�

2.3 A first look at weights

Definition 2.3.1 [def:weights] A weight for L is a Lie-algebra homomorphism λ : L →
l(K). Λ(L) = HomLie(L, l(K)) is the set of all weights of L.

Note that a weight for Λ is nothing else as K-linear map λ : L → K with L′ ≤ kerλ.
Thus Λ(L) ∼= Λ(L/L′) = (L/L′)∗. For a weight λ we denote by Kλ the L-module with
action L→ K → K, (l, k) → λ(l)k.

Lemma 2.3.2 [weights and simple] The map λ → Kλ is a one to one correspondence
between weights of L and isomorphism classes of 1-dimensional L-modules.

Proof: Let V be a 1-dimensional L-module. Then lv = trV (l)v for all l ∈ L, v ∈ V and
so trV is a weight and V ∼= KtrV . Clearly two 1-dimensional L-modules are isomorphic if
and only their trace functions are equal. �

Corollary 2.3.3 [simple for solvable] Let L be standard and solvable. Then the map
λ → Kλ is one to one correspondence between the weights of L and finite dimensional
simple L-modules.

Proof: 2.1.6(b) and 2.3.2. �

Let λ be a weight for L. Since λ corresponds to an isomorphism class of simple L-
modules we obtain from Definition 1.7.8 the notations Vλ, Vλ(i) and V c

λ . Vλ is called the
weight space for λ on V .

A weight for λ for L on V is a weight with Vλ 6= 0. ΛV = ΛV (L) is the set of weights
for L on V . V c

λ is called the generalized weight space for λ on V . We also will write Vλ(∞)
for V c

λ

Lemma 2.3.4 [weights and eigenspaces] Suppose that L = Kl is 1-dimensional, λ a
weight of for L, k = λ(1) and n ∈ N.
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(a) [a] Vλ is the eigenspace for l on V corresponding to k,

(b) [b] Vλ(n) = CV ((k − l)n).

(c) [c] V c
λ is the generalized eigenspace for l on V corresponding to k.

Proof: (a) By definition Vλ is the sum of all L-submodules isomorphic to Kλ. Since
(k − l)Kλ = 0, Vλ ≤ CV (k − l). Clearly CV (k − l) is the sum of submodules isomorphic to
Kλ and so Vλ = CV (k − l).

(b) For n = 0 both sides are 0. By induction we may assume W = Vλ(n − 1) =
CV ((k − l)n−1). Applying (a) to V̄ = V/W we get

Vλ(n)/W = V̄λ = CV̄ (k − l) = CV ((k − l)n)/W.

So (b) holds.
(c) follows from (b). �

Lemma 2.3.5 [weights and invariant maps] Let f : V ×W → Z be L-invariant, K-
bilinear map of L-modules. Let λ and µ be weights of L and i, j ∈ N ∪ {∞}.Then

f (Vλ(i),Wµ(j)) ≤ Zλ+µ(i+ j − 1).

Proof: We first consider the case i = j = 1. Let l ∈ L,v ∈ Vλ and w ∈Wµ. Then

lf(v, w) = f(lv, w) + f(v, lw) = f(λ(l)v, w) + f(v, µ(l)w)
= λ(l)f(v, w) + µ(l)f(v, w) = (λ+ µ)(l)f(v, w).

So the lemma holds in this case.
Also the lemma is obviously true for i = 0 or j = 0. If the lemma holds for all finite i

and j it also holds for i = ∞ or j = ∞.
So assume 1 ≤ i <∞ and 1 ≤ j <∞. By induction on i+ j we also may assume that

f(Vλ(i− 1),Wµ(j)) ≤ Zλ+µ(i+ j) and f(Vλ(i),Wµ(i− 1)) ≤ Zλ+µ(i+ j).

Put X̄ = Vλ(i)/Vλ(i− 1), Ȳ = Wµ(j)/Wµ(j − 1) and Z̄ = Z/Zλ+µ(i+ j). Then we obtain
a well defined L-invariant map f̄ : X̄ × Ȳ → Z̄ with f̄(v̄, w̄) = f(v, w) for all v ∈ Vλ(i)
and w ∈ Wµ(j). Note that X̄ = X̄λ and Ȳ = Ȳµ. So by the “i = j = 1”-case we get that
f̄(X̄, Ȳ ) ≤ Z̄λ+µ. Taking inverse images in V,W and Z we see that the lemma holds. �

Corollary 2.3.6 [weight formula] Let V be an L modules, A ≤ L, λ and µ weights for
A and i, j ∈ N ∪ {∞}
(a) [a] Lλ(i)Vµ(j) ≤ Vλ+µ(i+ j − 1)

(b) [b] [Lλ(i), Lµ(j)] ≤ Lλ+µ(i+ j − 1).

Proof: By 2.2.2 the map (l, v) → v is L- and so also A-invariant. Hence (a) follows from
2.3.5. (b) is just a special case of (a). �
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2.4 Minimal non-solvable Lie algebras

Proposition 2.4.1 [minimal non solvable] Let L be a standard Lie algebra such that all
proper subalgebras are solvable but L is not solvable. Then

(a) [a] L = L′.

(b) [b] Sol(L) is the unique maximal ideal in L.

(c) [c] L/Sol(L) is simple.

(d) [d] Sol(L) = CL(W ), where W is any non-trivial, finite dimensional simple L-module.

(e) [e] Sol(L) = NilL(V ), where V is any non-trivial, finite dimensional L-module.

(f) [f] Sol(L) = Nil(L).

Proof: (a) If L′ 6= L, then both L′ and L/L′ are solvable. Thus L is solvable, a contra-
diction.

(b) Let I be any proper ideal in L. Then I is solvable and so I ≤ Sol(L).
(c) By (b), L/Sol(L) has no proper ideals.
(d). Since W is non-trivial, CL(W ) 6= L. Thus CL(W ) ≤ Sol(L). By (a), Sol(L) ≤ L′

and so by 2.3.3, Sol(L) ≤ CL(W ).
(e) Note that by (a) L/CL(V ) is perfect. If L acts nilpotently on V , then 1.6.2 implies

that L/CL(V ) is nilpotent and perfect, and so trivial. This contradictions shows that
L 6= NilL(V ). By (d) Sol(L) ≤ NilL(V ) and so (b) implies Sol(L) = NilL(V ).

(f) Apply (e) to V = L. �

Theorem 2.4.2 [minimal simple] Let L be a non-solvable, standard simple Lie-algebra
all of whose proper subalgebra are solvable. Then L ∼= sl(K2).

Proof: For X ∈ L let X̃ = NilX(L). Also let N be the set of elements in L acting
nilpotently on L.

1◦ [1] Let X � L, then X ′ ≤ X̃ = X ∩N . and X̃ is is a nilpotent ideal in X.

Since X 6= L, X is solvable by assumption. Thus 2.1.5 X ′ ≤ NilX(L) and by 2.1.6(d),
X̃ = X ∩N . Since L is non-abelian, L 6= Z(L) and since L is simple, Z(L) = 1. Thus L is
a faithful L-module and so by 1.6.2 X̃ is nilpotent.

Let A and B be distinct maximal subalgebras of L and D = A ∩B

2◦ [2] L = A+B and dimL/A = 1 = dimA/D = dimB/D = dimL/B.
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Since A is solvable 2.1.6 applied to V = L/A implies that there exists a 1-dimensional
A submodule W/A in L/A. Let w ∈ W \ A. Then [A,W ] ≤ W as W is a A-submodule
of L. Also W = A + Kw and so [w,W ] = [w,A] ≤ W . Thus [W,W ] ≤ W , that is W is
a subalgebra of L. The maximality of A implies L = W . So dimL/A = 1. By symmetry
dimL/B = 1. Since A 6= B, L = A + B. Thus A/D = A/A ∩ B ∼= A + B/B = L/B and
(2◦) holds.

3◦ [3] D̃ is an ideal in A.

If D̃ = Ã, this is obvious. So suppose that Ã 6= D̃. Since D̃ acts nilpotenly on Ã we get
from 1.6.7 that D̃ � N

Ã
(D̃). By (1◦), Ã ∩D = (A ∩ N ) ∩D = D̃ and so N

Ã
(D̃) � D. By

(2◦) A/D is 1-dimensioanal and so

A = N
Ã
(D̃) +D ≤ NA(D̃).

Thus (3◦) holds.

4◦ [4] A′ ∩D = B′ ∩D = D̃ = 0.

By (3◦), D̃ is an ideal in A and by symmetry also in B. Thus D̃ is an ideal in L = A+B,
and as L is simple, D̃ = 0. By (1◦) A′ ∩D ≤ Ã ∩D = D̃. Thus (4◦) holds.

5◦ [5] D is abelian and A′ is at most 1-dimensional.

By (4◦) D′ ≤ A′ ∩D = 0. Also A′ ∼= A′/A′ ∩D ∼= A′ +D/D ≤ A/D and so by (2◦), A′

is at most 1-dimensional.

Let a ∈ A \D with a ∈ A′ if possible. If A′ = 0 the [a,A] = 0 and if A′ 6= 0, then by
(5◦), A′ = Ka. In any case Ka is an ideal in A. Let λA = trD

Ka. Similarly, define b ∈ B and
λB.

6◦ [6] L = Ka⊕D ⊕Kb and λA = −λB.

The first statement follows immediately from (2◦). In particular trD
L = λA + trD

D + λB.
Since D is abelian, trD

D = 0. Since L = [L,L], trD
L = 0. Thus (6◦) holds.

7◦ [7] kerλA = kerλB = 0 and D is one-dimensional.

Note that [kerλA,Ka+D] = 0 and since A = Ka+D we get kerλA ≤ Z(A). By (6◦),
kerλA = kerλB and so kerλA ≤ Z(A) ∩ Z(B) ≤ Z(L) = 0. If D = 0, dimL = 2 and L
is solvable by 1.2.1, a contradiction. Thus D 6= 0. Since dimD/ kerλA = dimλA(D) ≤
dim K = 1 we conclude that D is 1-dimensional.

In particular, we have λA 6= 0 and so λA is onto and there exists d ∈ D with λA(d) = 1.
Also note that 0, λA and λB are the weights of D on V and are pairwise distinct. Also

Ka ≤ LλA
(D),Kb ≤ LλB

(D) and D ≤ L0(D). Thus 1.7.15 implies that LλA
(D) = Ka,
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LλB
(D) = Kb and L0(D) = D. Now 2.3.6 shows that [a, b] ∈ D. Suppose that [a, b] = 0.

Then A is an ideal in L, a contradiction. Thus [a, b] = kd for some non-zero k ∈ K.
Replacing b by k−1b we may assume [a, b] = d. Also from [d, a] = a and λB = −λA we have
[d, b] = −b. Thus

8◦ [8] a, b, d is a basis for L, [a, b] = d, [d, a] = a and [b, d] = b.

From (8◦) we see that L is unique up to isomorphism. Since sl(K2) fullfils the assump-
tions of the theorem we get L ∼= sl(K2). �

2.5 The simple modules for sl(K2)

In this section L = sl(K2). Let x = E12, y = E21 and h = E11 −E22. Then (x, y, h) is basis
for L with [h, x] = 2x, [y, h] = 2y and [x, y] = h. We call (x, y, h) the Chevalley basis for L.

Lemma 2.5.1 [autos for sl2] Let L = sl(K2) with Chevalley basis (x, y, h).

(a) [a] Let Φ : L→ L be the K-linear map with Φ(x) = x,Φ(y) = y and Φ(h) = −h. Then
Φ is an anti-automorphism of L.

(b) [b] Let Φ : L→ L be the K-linear map with Φ(x) = y,Φ(y) = x and Φ(h) = −h. Then
Φ is an automorphism of L.

(c) [c] Let Φ : L → L be the K-linear map with Φ(x) = y,Φ(y) = x and Φ(h) = h. Then
Φ is an anti-automorphism of L.

Proof: Readily verified from commutator relations of (x, y, h). �

Lemma 2.5.2 [u for sl2] Let L = sl(K2) with Chevalley basis (x, y, h) and let i ∈ Z+.
Then the following holds in U.

(a) [a] hyi = yi(h− 2i)

(b) [b] xyi = yix+ iyi−1(h− (i− 1)).

(c) [c] yxi = xyi − ixi−1(h+ i− 1)

Proof: Readily verified using the commutator relations and induction on i. �

Corollary 2.5.3 [u for sl2 in char 0] Let L = sl(K2) with Chevalley basis (x, y, h). Sup-
pose char K = 0 and define x(i) = 1

i!x
i and y(i) = 1

i!y
i. Let i ∈ Z+.Then

(a) [a] hy(i) = y(i)(h− 2i).
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(b) [b] xy(i) = y(i)x+ y(i−1)(h− (i− 1)).

This follows immediately from 2.5.2 �

Theorem 2.5.4 [modules for sl2] Suppose K is standard, L = sl(K2), V is a an L-
module and (x, y, h) is the Chevalley basis for L. Let k ∈ K and 0 6= v ∈ V .

(a) [a] If V is finite dimensional, then there exists 0 6= v ∈ V and k ∈ K with xv = 0 and
hv = kv.

(b) [b] Suppose that there exist 0 6= v ∈ V and k ∈ K with xv = 0 and hv = kv. Let
m ∈ N be minimal with ym+1v = 0, if such an m exists and m = ∞ otherwise. Also let
W = Uv be the smallest L-submodule of V containing v. Put vi = vy

y! . Then

(a) [z] (vi | i ∈ N, i ≤ m) is a basis for W .

(b) [a] yvi = (i+ 1)vi+1.

(c) [b] hvi = (k − 2i)vi.

(d) [c] xvi = (k − (i− 1))vi−1, where v−1 = 0.

(e) [d] xyvi = (i+ 1)(m− i)vi

(f) [e] If m <∞, then m = k = dimW − 1.

Proof: (a) Let A = Kx + Kh. Then A is solvable and A′ = Kx. Let V0 be a simple
A-submodule in V . Then by 2.1.6 V0 is 1-dimensional. Let 0 6= v0 ∈ V0. Then xv0 = 0 and
hv0 = kv0 for some k ∈ K.

(b) yvi = yy(i)v0 = (i+ 1)y(i+1)v0 = (i+ 1)vi+1 and so (b:b) holds.
From 2.5.3(a) we have

hvi = hy(i)v0 = y(i)(h− 2i)v0 = y(i)(k − 2i)v0 = (k − 2i)vi

and so (b:c) holds. From 2.5.3(b)

(3) xvi = xy(i)v0 = (y(i)x+y(i−1)(h−(i−1))v0 = 0+y(i−1)(k−(i−1))v0 = (k−(i−1))vi−1

and (b:d) holds. (b:e) follows from (b:b) and (b:d).
By (b:c) vi is an eigenvector with eigenvalue k − 2i for h. Thus the non-zero vi’s are

linearly independent. From (b:b),(b:c) and (b:d) the K-space spanned by v′is invariant under
L and so equal to W . Thus (b:a) holds.

Suppse now that m <∞. By (b:d) with i = m+ 1 we get

0 = x0 = xvm+1 = (k −m)vm

As vm 6= 0 and K is a field, k = m. Thus (b:f) holds. �
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2.6 Non-degenerate Bilinear Forms

In this section we establish some basic facts about non-degenerate bilinear forms that will
be of use later on.

Lemma 2.6.1 [basic non-deg bilinear] Let V and W be finite dimensional K-spaces and
f : V ×W → K be non-degenerate and K-bilinear.

(a) [a] There exists a unique K-isomorphism t : W ∗ → V, α→ tα with α(w) = f(tα, w) for
all α ∈W ∗, w ∈W . In particular, dimV = dimW .

(b) [b] Let (wi | i ∈ I) be a basis for W . Then there a unique basis (vi | i ∈ I) of V with
f(vi, wj) = δij for all i, j ∈ I.

(c) [c] Let X be a subspace of V . Then dimX + dimX⊥ = dimV . In particular, X = V
if and only if X⊥ = 0.

Proof: (a) Note first that if we define φi ∈W ∗ by φi(wj) = δij , then (φi | i ∈ I) is a basis
for W ∗. In particular, dimW = dimW ∗. Since f is non-degenerate the map Ψ : V → W ∗

with Ψ(v)(w) = f(v, w) is one to one. Thus dimV =≤ dimW ∗ = dimW ,. By symmetry
dimW ≤ dimV . So dimV = dimW and Ψ is an isomorphism. Putting t = Ψ−1 we see
that (a) holds

(b) Just put wi = tφi
.

(c) The form X ×W/X⊥, (x,w + X⊥) → f(x, y) is well defined and non-degenerate.
Thus by (a) dimX = dimW/X⊥ and so (c) holds. �

Definition 2.6.2 [def:omega] A quadratic form on the K-space V is a map q : V → K
such that q(kv) = k2q(v) for all k ∈ K, v ∈ V and such that the function s : V × V →
K, (v, w) → q(v + w) − q(v) − q(w) is K-bilinear. Note that s is symmetric. We call s the
bilinear form associated to q. Let u ∈ V with q(u) 6= 0. Define ǔ = q(u)−1u and

ωu : V → V, v → v − s(v, ǔ)u = v − s(v, u)
q(u)

u.

Lemma 2.6.3 [omega u] Let V be a K-space, q : V → K a quadratic form with associated
bilinear form s, u ∈ V with q(u) 6= 0.

(a) [c] s(v, v) = 2q(v) for all v ∈ V .

(b) [d] q(ǔ) = q(u)−1 6= 0, ˇ̌u = u, s(u, ǔ) = 2 and ωu(u) = −u.

(c) [a] Let 0 6= k ∈ K. Then ǩu = k−1ǔ and ωku = ωu. In particular, ωu = ωǔ.

(d) [e] ωu is an isometry of q.

(e) [f] Let σ be an isometry of q. Then σ(ǔ) = ˇσ(u) and σωuσ
−1 = ωσ(u).
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Proof:
(a) We have q(2v) = 4q(v) and q(v + v) = q(v) + s(v, v) + q(v).
(b) q(ǔ) = q(q(u)−1u) = q(u)−2q(u) = q(u)−1. So ˇ̌u = (q(u)−1)−1q(u)−1u = u. Also
and s(u, ǔ) = s(u,u)

q(u) . So by (a), s(u, ǔ) = 2 and hence ωu(u) = u− 2u = −u.
(c) ǩu = q(ku)−1ku = k−2q(u)−1ku = k−1ǔ and

ωku(v) = v − s(v, ǩu)ku = v − s(v, k−1ǔ)ku = v − s(v, ǔ)u = ωu(v).

(d)

q(ωu(v)) = q(v − s(v, ǔ)u) = q(v)− s(v, ǔ)s(v, u) + s(v, ǔ)2q(u)
= q(v)− s(v, ǔ)(s(v, u)− s(v, q(u)−1u)q(v)) = q(v).

(e) ˇσ(u) = q(σ(u)−1σ(u)) = q(u)−1σ(u) = σ(q(u)−1u) = σ(ǔ) and

(σωuσ
−1)(v) = σ(σ−1(v)− s(σ−1(v)v, ǔ) = v − s(v, ˇσ(u))σ(u) = ωσu(v).

�

Lemma 2.6.4 [1/2 f] Suppose f is a non-degenerate symmetric form on the K-space V
and that char K 6= 2. Then q(v) := 1

2f(v, v) is a quadratic form and f is its associated
bilinear form.

Proof: q(v + w)− q(v)− q(w) = 1
2(f(v + w)− f(v, v)− f(w,w) = f(v, w) �

Lemma 2.6.5 [f circ] Let V and W be finite dimensional K-spaces and f : V ×W → K
a non-degenerate bilinear form. Define Φ : V ⊗W → (V ⊗W )∗ by Φ(v ⊗ w)(v′ ⊗ w′) =
f(v, w′)f(v′, w) for all v, v′ ∈ V and w,w′ ∈W .

(a) [a] According to 2.6.1 choose bases (vi, i ∈ I) and (wi, i ∈ I) for V and W such that
f(vi, wj) = δij. Then (Φ(vi ⊗ wj))ij is the dual of the basis (vj ⊗ wi)ij of V ⊗W

(b) [b] Φ is an isomorphism.

(c) [c] Let f◦ = Φ−1(f̃). Then f◦ =
∑

i∈I vi ⊗ wi.

(d) [e] f̃(f◦) = dimV

(e) [d] Suppose that V and W are L-modules and f is L-invariant. Then Φ is L-invariant
and Lf◦ = 0.
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Proof: We compute

(∗) Φ(vi ⊗ wj)(vk ⊗ wl) = f(vi, wl)f(vl, wj) = δilδjk.

Thus (a) holds. (b) follows directly from (a).
(c) Let t =

∑
i∈I vi ⊗ wi. Then by (*)

Φ(t)(vk ⊗ wl) =
∑
i∈I

Φ(vi ⊗ wi)(vk ⊗ wl) =
∑
i∈I

δilδik = δkl = f(vk, wl) = f̃(vk ⊗ wl)

Thus Φ(t) = f̃ and so t = Φ−1(f̃) = f◦

(d) From (c) we compute

f̃(f◦) =
∑
i∈I

f̃(vi ⊗ wi) =
∑
i∈I

f(vi, wi) =
∑
i∈I

1 = |I| = dimV.

(e) That Φ is L-invariant is readily verified. Since f is L-invariant, Lf̃ = 0. Since Φ is
an L-isomorphism, Lf◦ = 0. �

2.7 The Killing Form

For a finite dimensional L-module V we define fV : L × L → K, (a, b) → trV (ab). fV is
called the killing form of L with respect to V . In the case of the adjoint module, fL is just
called the Killing form of L.

Lemma 2.7.1 [basic killing] Let V be a finite dimension L-module.

(a) [a] fV is a symmetric, L-invariant bilinear form on L.

(b) [b] If I E L, then I⊥ E L and [I, I⊥] ≤ rad(fV ).

(c) [c] Let W be the set of factors for some L-series on V . Then

fV =
∑

W∈W
fW .

(d) [d] Let I be an ideal in L. Then fI |L×I= fL |L×I .

(e) [e] NilL(V ) ≤ rad(fV ).

(f) [f] If L is finite dimensional, then Nil(L) ≤ rad(fL).
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(a) Clearly fV is K-bilinear. Let a, b ∈ U. Then trV (ab) = trV (ba) so fV is symmetric.
Thus also shows that trV ([a, b]) = trV (ab − ba) = 0 and so trV : U → K is L-invariant.
By 2.2.2 the map mL : L × L → U, (a, b) → ab is L-invariant. So also fV = trV ◦ mL i
L-invariant.

(b) The first statement follows from 2.2.1. For the second, let i ∈ I, j ∈ I⊥ and l ∈ L.
Then [j, l] ∈ I⊥ and so since fV is L-invariant:

fV ([i, j], l) = −fV (i, [j, l]) = 0.

Thus [i, j] ∈ rad(fV ).
(c) Follows from 1.7.17(c).
(d) By (c), fL = fI +fL/I . Then I and so also LI acts trivially on L/I. Thus fI/L |L×I=

0 and (d) holds.
(e) Let W be composition factors for L on V . Then NilL(V )W = 0 and so also

LNilL(V )W = 0. Thus for all l ∈ L and n ∈ NilL(V ) we have fW (l, n) = trW (ln) = 0. So
by (c) fV (l, n) = 0 and (e) holds.

(f) This is (e) applied to the adjoint module. �

Theorem 2.7.2 (Cartan’s Solvabilty Criterion) [cartan] Suppose L posseses a stan-
dard, faithful L-module with fV = 0. Then L is solvable.

Proof: Suppose L is a counter example with dimL minimal. Then all proper algebras
of L are solvable, but L is not. Thus by 2.4.1 and 2.4.2, L := L/NilL(V ) ∼= sl(K2). Let
(x, y, h) be a Chevalley basis for L and choose x̃ and ỹ in L which are mapped onto x and y.
Since L 6= NilL(V ) there exists a non-trivial compostion factor W for L on V . For any such
W we have CL(W ) = NilL(V ) and 2.5.4(b:e) implies that trW (x̃ỹ) is a positive integer.
Hence 1.7.17(c) implies that fV (x̃, ỹ) = trV (x̃ỹ) is a positive integer. This is contradiction
to fV = 0 and the theorem is proved. �

Proposition 2.7.3 [rad=sol] Let V be standard,faithful L-module. Then

[Sol(L), L] ≤ Sol(L) ∩ L′ ≤ NilL(V ) ≤ rad(fV ) ≤ Sol(L)

In particular, if L is perfect, then Sol(L) = NilL(V ) = rad(fV ).

Proof: By Lie’s Theorem 2.1.5

[Sol(L), L] ≤ Sol(L) ∩ L′ ≤ NilL(V ).

By 2.7.1(d), NilL(V ) ≤ rad(fV ). Finally, Cartan’s Solvabilty Criterion 2.7.2 (applied to
rad(fV ) in place of L), we have that rad(fV ) is solvable and so rad(fV ) ≤ Sol(L). �
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Corollary 2.7.4 [basic non-degenerate] Let V be a standard L-module with fV non-
degenerate. Then

(a) [a] V is faithful and NilL(V ) = 0.

(b) [b] Sol(L) = Z(L) and Sol(L) ∩ L′ = 0.

(c) [c] If L is solvable, then L is abelian.

Proof: By 2.7.1(c), CL(V ) ≤ NilL(V ) ≤ rad(fV ) = 0. So (a) holds. (b) now follows from
2.7.3. (c) follows from the first statement in (b). �

Corollary 2.7.5 [faithful=non-degenerate] Suppose Sol(L) = 0 and V is a standard
L-module. Then fV is non-degenerate if and only if V is faithful.

Proof: If fV is non-degenerate, then V is faithful by 2.7.4(a). Suppose now that V is
faithful. Then by 2.7.3 rad(fV ) ≤ Sol(L) = 0 and so fV is non-degenerate. �

Lemma 2.7.6 [non-degenerate implies semisimple] Suppose that L is finite dimen-
sional and fL is non-degenerate. Then Sol(L) = 0.

Proof: By 2.7.1(e), Nil(L) ≤ rad(fL) = 0. So by 2.1.2(c), Sol(L) = 0. �

Corollary 2.7.7 [semisimple=non-degenerate] Suppose L is standard. Then Sol(L) =
0 if and only if fL is non-degenerate.

Proof: If fL is non-degenerate, then by 2.7.6 Sol(L) = 0. If Sol(L) = 0, then also Z(L) = 0
and so the adjoint module is faithful. So by 2.7.5, fL is non-degenerate. �

If f is a symmetric bilinear form on a vector space W , we write W = W1
iW2 if Wi

are subspaces of W with W = W1 ⊕W2 and f(w1, w2) = 0 for all wi ∈ Wi. Note that in
this case, W is non-degenerate if and only if f |Wi is non-degenerate for i = 1 and 2.

Proposition 2.7.8 [decomposing l] Let V be a finite dimensional L module and suppose
that fV is non-degenerate. Let I be an ideal in L with I ∩ Sol(L) = 0. Then

(a) [a] [I, I⊥] = 0.

(b) [b] L = I iI⊥.

(c) [c] I⊥ = CL(I).
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Proof: By 2.7.1(b), [I, I⊥] ≤ rad(fV ) = 0. Thus (a) holds and

(1) I⊥ ≤ CL(I).

Since I ∩ CL(I) is an abelian ideal of L and since Sol(L) ∩ I = 0, we get

(2) I ∩ CL(I) = 0.

From (1) and (2)

(3) I ∩ I⊥ = 0.

From 2.6.1(c) we have dim I + dim I⊥ = dimL and so (3) implies that (b) holds. From (b),
(1) and (2) we compute

CL(I) = CL(I) ∩ L = CL(I) ∩ (I + I⊥) = (CL(I) ∩ I) + I⊥ = I⊥

So (c) holds. �

Theorem 2.7.9 [composition of l] Let V be a finite dimensional L-module and sup-
pose that Sol(L) = 0 and fV is non-degenerate. Then there exists perfect, simple ideals
L1, L2, . . . , Ln in L such that

L = L1
iL2

i. . . iLn.

Proof: By induction on dimL. If L is simple we can choose n = 1 and L1 = L. So suppose
that L is not simple and let I be proper ideal in L. Since Sol(L) = 0 the assumptions of
2.7.8 are fulfilled. Hence L = I iI⊥ and [I, I⊥] = 0. In particular, fV |I and fV |I⊥ are
non-degenerate. Also any ideal in I or I⊥ is an ideal in L. By induction we can decompose
I and I⊥ into an orthogonal sum of ideals. Thus the same is true for L. Since Sol(L) = 0,
the Li are not abelian and so perfect. �

Corollary 2.7.10 [decomposing standard] Let V be a standard L-module with fV -non-
degenerate. Then L = L′ iZ(L) and L is semisimple

Proof: By 2.7.4 L′ ∩ Sol(L) = 0. So by 2.7.8, L = L′ iL′⊥. In particular, [L′⊥, L] ≤
L′ ∩ L′⊥ = 0. Thus L′⊥ = Z(L), L = L⊥ iZ(L). Thus Sol(L′) is an ideal in L and hence
Sol(L′) ≤ L′ ∩ Sol(L) = 0. By 2.7.9 L′ is semisimple. Clearly also Z(L) is semisimple and
so L is semisimple. �

Corollary 2.7.11 [standard semisimple] Suppose L is standard and Sol(L) = 0. Then
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(a) [a] fL is non-degenerate.

(b) [b] There exists perfect,simple ideals L1, L2 . . . Ln such that

L = L1
iL2

i. . . iLn.

(c) [c] {L1, L2, . . . Ln} is precisely the set of minimal ideals in L.

(d) [d] Every ideal in L is a sum of some of the Li’s.

Proof: (a) follows from 2.7.7.
(b) By (a) we can apply 2.7.9 with V the adjoint module. Thus (b) holds.
(c) Let I be a minimal ideal in L. Since Sol(L) = 0, Z(L) = 0 and so by (b), [I, Li] 6= 0

for some i. As I is a minimal ideal and Li is simple, I = [I, Li] = Li.
(d) Let I be an ideal in L. Let A be the sum of the Li’s with Li ≤ I and B the sum of the

remaining Li’s. Then A ≤ I, L = A+B and [A,B] = 0. Thus I = I∩(A+B) = A+(I∩B).
Suppose that I ∩B 6= 0. Then I ∩B contains a minimal ideal and so by (c), Li ≤ I ∩B

for some i. Since Li ≤ I, Li ≤ A. Since Li ≤ B and [A,B] = 0 we conclude that [Li, Li] = 0,
a contradiction since Li is perfect.

Thus I ∩B = 0 and I = A. �

We say that L is semisimple if L is the direct sum of simple ideals. Note that this is the
case if and only if the adjoint module is a semisimple L-module.

Corollary 2.7.12 [sol l and semisimple] Let L be standard. Then Sol(L) = 0 if and
only if L is perfect and semisimple.

Proof: One direction follows from 2.7.11 while the other is obvious. �

2.8 Non-split Extensions of Modules

In this section A is an associative algebra.

Definition 2.8.1 [def:extension]

(a) [a] An extensions of A-modules is a pair of A-modules (W,V ) with W ≤ V .

(b) [b] An extension of A-modules (W,V ) is called split if there exists a A-submodule X
of V with V = W ⊕X.

(c) [c] Let B and T be A-modules and (W,V ) an extension of A-modules. We say that
(W,V ) is an extension of B by T if W ∼= B and V/W ∼= T as A-modules.

Lemma 2.8.2 [basic split I] An extension (W,V ) of A-modules. is split if and only if
there exists φ ∈ HomA(V,W ) with φ |W = idW .
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Suppose first that V = W ⊕X for some A-submodule X of V . Let φ be the projection of
V onto X. Then φ is A-invariant and φW = idW .

Suppose next that φ : V →W is A-invarinant with φ |W = idW . Let X = kerφ. Then X
is submodule of V and X∩W = 0. Let v ∈ V . Then φ(v) ∈W and so φ(φ(v)) = φ(v).Hence
φ(v− φ(v)) == 0. That is v− φ(v) ∈ kerφ = X. So v = φ(v) + (v− φ(v)) ∈W +X. Thus
V = W ⊕X and (W,V ) splits. �

Lemma 2.8.3 [basic split II] Let (W,V ) be an extension of A-modules. Let

Φ : Hom(V,W ) → Hom(W,W )

be the restriction map. Then

(a) [a] Φ is A-invariant and onto.

(b) [b] kerΦ ∼= Hom(V/W,W ) and ker Φ is submodule of Hom(V,W )

(c) [c] S := Φ−1(KidW ) is an A-submodule of Hom(V,W ) and S/ ker Φ ∼= K

(d) [e] (W,V ) is split if and only if (ker Φ, S) is split.

Proof:
(a) Clearly Φ is A-invariant. Note thate there exists K-subspace X of V with V =

W ⊕X. Let α ∈ Hom(W,W ) and define ã(w + x) = α(w). Then Φ(α̃) = α. So Φ is onto.
(b) Since Φ is A-invarinat, kerΦ is an A-submodule.
Let α ∈ ker Φ. Define β : V/W → V, v +W → α(v). Conversely let β ∈ Hom(V/W,W )

define α : V →W,α(v) = β(v +W ). Then α ∈ ker Φ.
(c) follows from (a).
(d) Suppose first that (W,V ) splits. Let φ be as in 2.8.2 d. Then S = ker Φ ⊕ Kφ and

so (kerΦ, S) splits.
Next suppose that (kerΦ, S) splits and let Y be an A-submodule of S with § = kerΦ⊕Y .

Then Φ | Y : Y → KidW , φ → φ |W is an A-invariant isomorphism. Hence Y is a trivial
A-module, all φ ∈ Y are A-invariant and there exists φ ∈ Y with φ |W = idW . Thus by
2.8.2, (W,V ) splits. �

Lemma 2.8.4 [b simple] Let T be A-module and suppose there exists a non-split exten-
sion of a finite dimensional A-module by T . Then there exists on-split extension of finite
dimensional simple A-module by T .

Proof: Let (W,V ) be a non-split extension with V/W ∼= T and W finite dimensional.
Since W is finite dimensional we can choose a submodule Y of W maximal such that
(W/Y, V/Y ) is non-split. Since (V/Y )/(W/Y ) ∼= V/W ∼= T , (W/Y, V/Y ) has the same
properties as (W,V ). So we may assume that Y = 0. Let B be a simple A-submodule of
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W . The maximality of Y implies that (W/B, V/B) is split. So V/B = W/B ⊕ X/B for
some A-submodule X of V with B ≤ X. Then W ∩X = B and W +X = V . Thus

T ∼= V/W = X +W/W ∼= X/X ∩W = X/B.

Hence (B,X) is an extension of B by T . Suppose this extension is split. Then X =
B ⊕ Y for some A-submodule Y of X. Thus V = X + W = Y + B + W = Y + W and
Y ∩W ≤ Y ∩ (X ∩W ) + Y ∩ B = 0. So V = W ⊕ Y , contrary to the assumptions. Thus
(B,X) is non-split and the lemma is proved. �

Corollary 2.8.5 [splitting reduction]

(a) [a] a Suppose there exists a finite dimensional A-module which is not semisimple. Then
there exists a non-split extension of finite dimensional A-modules.

(b) [b] Suppose there exists a non-split extension of finite dimensional A-modules. Then
there non-split extension of finite dimensional simple A- module by K.

Proof:
(a) Let V be a finite dimensional A-module of minimal dimension with respect to not

being semisimple. Let W be simple A-submodule of V . Suppose V = W ⊕ X for A-
submodule X of W . Then by minimalty of V , X is semisimple. But then also V is
semisimple.

(b) From 2.8.3 there exist a non-split extension of a finite dimensional module by K.
(b) now follows from 2.8.4 �

2.9 Casimir Elements and Weyl’s Theorem

In this section will show that a standard module for a perfect, semisimple Lie algebra is
semisimple.

Proposition 2.9.1 [casimir] Suppose L is finite dimensional and f : L × L → K is a
non-degenerate, L-invariant, K-bilinear form. Define Ψ : L⊗L→ U by Ψ(a⊗ b) = ab. Let
f◦ be as in 2.6.5 and put cf = Ψ(f◦).

(a) [a] cf ∈ Z(U) ∩ L2.

(b) [b] Let (vi, i ∈ I) and (wi,∈ I) be bases of L with f(vi, wj) = δij. Then

cf =
∑
i∈I

viwi
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Proof: View U as L-module via the adjoint representation. By 2.2.2, Ψ is L-invariant, By
2.6.5(e) Lf◦ = 0 and so [L, cf ] = 0. Since U is generated by L as an associative algebra,
[U, cf ] = 0. Thus cf ∈ Z(U). Also cf ∈ Ψ(L ⊗ L) = L2. So (a) holds. (b) follows
immediately from 2.6.5(c). �

The elements cf from the preceeding proposition is called the Casimir element of f .

Lemma 2.9.2 [cv] Let V be a finite dimensional L-module and suppose that fV is non-
degenerate. Define cV = cfV

.

(a) [a] trV (cV ) = dimL.

(b) [b] Suppose K is algebraicly closed and V is simple. Then cV acts as a scalar k ∈ K
on V . Moreover one of the following holds:

1. [a] charK - dimV and k = dim L
dim V .

2. [b] charK | dimV and charK | dimL.

Proof: (a) Let Ψ be defined as in 2.9.1. Then by definiton of fV , f̃V = trV ◦Ψ. Thus

trV (cV ) = trV (Ψ(f◦)) = f̃(f◦)

So (a) follows from 2.6.5(d).
(b) Since cV ≤ Z(U), Schur’s Lemma 1.7.13 applied to the image of cV in EndL(V )

gives that cV acts as a scalar k ∈ K. Thus trV (cV ) = k dimV and so (b) holds. �

Theorem 2.9.3 (Weyl) [weyl] Let L be standard, prefect and semisimple and V a finite
dimensional L-module. Then V is semisimple.

Proof: By 2.8.5 its suffices to show that any finite dimensional L-module extension (W,V )
with W simple and V/W ∼= K splits. Since L/CL(V ) is also semisimple we may assume
that V is faithful. By 2.7.5 fV is non-degenerate. So by 2.9.1 c := cV ∈ Z(U) ∩ L2. Since
LV ≤ W , cV ≤ W . Since W is simple, Schur’s lemma 1.7.13 applied to the image of c in
EndL(V ) gives that c acts as a scalar k on W . Then

trV (c) = trW (c) + trV/W (c) = k dimW + 0.

By 2.9.2(a) and since char K = 0, trV (c) 6= 0 and so k 6= 0. Thus k−1cV ≤ W and
k−1c acts idW on W . Thus k−1c induces an L-invarinat K-linear map Φ : V → W with
φ |W = idW . Thus by 2.8.2 , (W,V ) splits. �
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2.10 Cartan Subalgebras and Cartan Decomposition

Definition 2.10.1 [def:cartan] H ≤ L is called selfnormalizing if H = NL(H). A Cartan
subalgebra of L is a nilpotent, selfnormalizing subalgebra of L.

Lemma 2.10.2 [existence of cartan] Suppose that L is finite dimensional and |K| ≥
dimL. Then L has a Cartan subalgebra.

Proof: Choose d ∈ L with H := Lc
0(Kd) minimal. Note that a simple module with

weight 0 is a trivial module. So by 1.7.11(h), H is the largest Kd-submodule on which
d acts nilpotently. In particular, d ∈ H. By 2.3.6 [Lc

0(Kd), Lc
0(Kd)] ≤ Lc

0(Kd) so H is a
subalgebra. Let V = L/H. Then V is an H-module and CV (d) = 0. In particular, the
image d∗ of d in End(V ) is invertible. Also NL(H)/H ≤ CV (d) = 0 and so H = NL(H).
To complete the proof we may assume that H is not nilpotent and derive a contradiction.
Let D ≤ H such that d ∈ D and D is maximal with respect to acting nilpotently on H.
Then D 6= H and by 1.6.7 there exists h ∈ NH(D) \ D. Since the number of eigenvalues
for h∗d∗−1 on V is at most dimV and since |K| ≥ dimL > dimV , there exists k ∈ K such
that k is not an eigenvalue of h∗d∗−1. Then h∗d−1 − kidV is invertible and so also h∗ − kd∗
invertible. Put l = h− kd. Then l ∈ NH(D) \D and CV (l) = 0. Hence V0(c)(κL) = 0. As
Lc

0(Kl) +H/H ≤ V c
0 (KL) = 0 we conclude L0

c(κL) ≤ H. The minimality of H = Lc
0(Kd)

implies that H = Lc
0(Kl). Thus l acts nilpotently on H. From 1.6.3 we conclude that D+Kl

acts nilpotently on H, contradicting the maximal choice of D. �

Lemma 2.10.3 [cartan decomposition] Let V be a standard L-module and N a nilpotent
subideal in L. Then

V =
⊕

λ∈ΛV (N)

V c
λ

Moreover, each of the V c
λ are L-submodule.

Proof: By 1.7.11(g), the V c
λ are L-submodules. So it remains to prove the first statement.

If V is the direct sum of two proper N -submodules, we may by induction assume that the
lemma holds for both summands. But then it also holds for V . So we may and do assume

(*) V is not the direct sum of proper N -submodules.

Let l ∈ N . Since N is nilpotent 1.6.7 implies that Kl is subideal in N . The Jordan
Canonical Form of l shows that V is the direct sum of the generalized eigenspaces of l. But
the generalized eigenspaces are just the generalized weight spaces of Kl. Hence 1.7.11(g)
shows that the generalized eigenspaces are N -submodules. So by (*), l has a unique eigen-
value λl on V .

Let W be any N -composition factor on V . Then by 2.3.3 W ∼= Kλ for some weight λ
of N . Then λ(l) is an eigenvalue for l on V and λ(l) = λl. As l ∈ N was arbitrary, λ is
independent of the choice W and so V = V c

λ . �
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2.11 Perfect semsisimple standard Lie algebras

In this section we will investigate the structure of the perfect semisimple standard Lie
algebras. For this we fix the following

Notation 2.11.1 [not:semisimple]

(a) [a] L is a perfect, semisimple, standard Lie algebra.

(b) [b] H is a Cartan subalgebra of L.

(c) [c] Λ = ΛL(H) is the set of weights for H on L.

(d) [d] Φ = Λ \ {0}. The non-zero weights for H on L are called the roots of H.

(e) [e] f = fL, and ⊥ is always meant with respect to f .

Lemma 2.11.2 [root decomposition]

(a) [a] L =
⊕

α∈Λ L
c
α

(b) [b] H = Lc
0.

(c) [c] [Lc
α, L

c
β ] ≤ Lc

α+β for all α, β ∈ Λ.

Proof: (a) This follows from 2.10.3 applied with V = L,L = H and N = H.
(b) By 1.7.11(e), L0(H) is the largest H-submodule of L, such that all compostion

factors for H on L0(H) are trivial. Since H is nilpotent, all composition factors for H an H
are trivial. Thus H ≤ Lc

0. Suppose H 6= L0 and let A/H be a simple submodule of L0/H.
By definition of L0, A/H is a trivial module. Thus [A,H] ≤ H, a contradiction since H is
selfnormalizing..

(c) This follows from 2.3.6. �

Lemma 2.11.3 [simple properties] Let α, β ∈ Λ and h ∈ H.

(a) [a] f is non-degenerate.

(b) [b] trLc
α
(h) = α(h) dimLc

α.

(c) [c] If α(h) 6= 0, then [h, Lc
α] = Lc

α.

(d) [d] If β 6= −α, Lc
α ⊥ Lc

β.

(e) [e] f |H is non-degenerate.

(f) [f] H is abelian.

(g) [g] −α ∈ Λ.
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(h) [h] Lα 6= 0.

Proof: (a) : 2.7.11(a).
(b) Obvious.
(c) By 2.11.2(c), [h, Lc

α] ≤ Lc
α. Since α(h) 6= 0, CLc

α
(h) = 0 and so the action of h on

Lc
α is invertible.

(d) By 2.3.5 f(Lc
α, L

c
β) ≤ (K)c

α+β. If α+ β 6= 0, (K)c
α+β = and (d) holds.

(e) By (d), and 2.11.2(a), L = H iH⊥. So since f is non-degenerate, (e) holds.
(f) This follows from (e) and 2.7.4(c).
(g) Otherwise (d) would imply Lc

α ≤ L⊥ = 0.
(h) Follows from the definition of Λ = ΛL(H). �

Notation 2.11.4 [ta for l] Since f |H is nondegenerate 2.6.1 yields a K-isomorphism t :
H∗ → H,α → tα with α(h) = f(tα, h) for all α ∈ H∗, h ∈ H. For α, β ∈ H∗ and h ∈ H
define q(h) = 1

2f(h, h), f∗(α, β) = f(tα, tβ) and q∗(α) = q(tα). Recall the definition of ȟ
and ωα in 2.6.2. Note also that Λ ⊂ Λ(H) = H∗.

Lemma 2.11.5 [x,y] Let α ∈ Φ, x ∈ Lc
α and y ∈ L−α. Put h = [x, y]. Then

(a) [a] h ∈ H.

(b) [b] Let β ∈ Λ. Then there exists q ∈ Q with β(h) = qα(h).

(c) [c] h = 0 if and only if α(h) = 0.

(d) [d] h = [x, y] = −f(x, y)tα.

(e) [e] h = 0 if and only if x ⊥ y.

Proof: (a) follows from 2.11.2.
(b) Put V :=

∑
n∈Z L

c
β+nα. By 2.11.2(c), V is invariant under x and y and so under h.

We compute:

0 = trV (h) =
∑
n∈Z

trLc
β+nα

h =
∑
n∈Z

(β(h) + nα(h)) dimLc
β+nα

and so
β(h)

∑
n∈Z

dimLc
β+nα = −α(h)

∑
n∈Z

n dimLc
β+nα.

So (b) holds.
(c) Suppose α(h) = 0, then by (b), β(h) = 0 for all β ∈ Λ. Hence h acts nilpotently on

L. Since H is abelian we get Kh ≤ NilH(L). Since f |H is non-degenerate, 2.7.4(b) implies
NilH(L) = 0. So h = 0.
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(d) Let a ∈ H. Since y ∈ L−α, [a, y] = −α(a)y. Since f is L-invariant we obtain:

f(h, a) = f([x, y], a)) = f(x, [y, a]) = −f(x, [a, y]) = −f(x,−α(a)y) = α(a)f(x, y)

On the otherhand,

f(f(x, y)tα, a) = f(x, y)f(tα, a) = f(x, y)α(a) = α(a)f(x, y)

Since f |H is non-degenerate, this implies h = f(x, y)tα.
(e) follows immediately from (d). �

Lemma 2.11.6 [dim la] Let a ∈ Φ.

(a) [a] Lα = Lc
α is 1-dimensional.

(b) [c] Let n ∈ Z. Then nα ∈ Φ if and only if n = ±1.

(c) [b] [Lα, L−α] = Ktα.

(d) [d] f(tα, ta) 6= 0.

Proof: Pick 0 6= y ∈ L−α. By 2.11.3(d), L = y⊥ + Lc
α. Hence there exists x ∈ Lc

α with
x 6⊥ y. Put h = [x, y]. By 2.11.5(c) and (e), h 6= 0 and α(h) 6= 0. Put

V := Ky ⊕H ⊕
⊕

n∈Z+

Lnα.

By 2.11.2(c), V is invariant under x. Since y ∈ L−α, [y,H] ≤ Ky. Also [y, y] = 0 and so
V is also invariant under y and h. Thus

0 = trV (h) = −α(h) + 0 +
∑

n∈Z+

nα(h) dimLc
nα.

Since α(h) 6= 0 we can divide by α(h) to obtain:∑
n∈Z+

n dimLc
nα = 1

Thus dimLc
nα = 0 for n > 1 and dimLc

α = 1. So (a) holds. Also (b) holds for positive
n. Applying this result to −α we see that (b) holds. As Lα and L−α are 1-dimensional,
[Lα, L−α] is at most 1-dimensional. But h = [x, y] 6= 0 and so [Lα, L−α] = Kh.

By 2.11.5(d) ], h = f(x, y)tα and hence (c) is proved.
Finally 0 6= α(h) = α(f(x, y)tα) = f(x, y)α(tα) = f(x, y)f(tα, tα) and so also (d) holds.

�
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Lemma 2.11.7 [xa =slw] Let α ∈ Φ. Define Hα = Ktα, Xα = Lα + L−α + Hα and
hα = ťα = 2

f(tα,tα) tα. Then Xα is a subalgebra of L, Xα
∼= sl(K2) and α(hα) = 2. More

precisely, if xα ∈ Lα and x−a ∈ L−a with [xα, x−α] = hα, then there exists an isomorphism
form Xα to sl(K2) with

x→
(

0 1
0 0

)
, y →

(
0 0
1 0

)
and hα →

(
1 0
0 −1

)
Proof: Note first that by 2.11.6(d), f(tα, tα) 6= 0, so hα is well defined. By 2.11.6(c) we
can choose x±α as in the lemma. Now α(hα) = f(tα, hα) = f(tα, 2

f(tα,tα) tα) = 2 and so
[hα, xα] = α(hα)xα = 2xα and [x−α, hα] = −[hα, x−α] = −(−α(hα))y = 2x−α and so the
lemma holds. �

Notation 2.11.8 [def: a string] Let α ∈ Φ. We define an equivalence relation ∼α on Λ
by β ∼α γ if β−γ ∈ Zα. We denote the set of equivalence classes by Λ/Zα. The equivalence
classes for of ∼α are called α-strings. If β, γ are in the same α-string we say that β ≤α γ if
γ − β ∈ Nα. For β ∈ Φ let β − rαβα be the minimal and β + sαβα be the maximal element
(with respect to ≤α) in the α-string through β. For an α string ∆ define L∆ =

∑
δ∈∆ Lδ,

Lemma 2.11.9 [xa on l] Let α ∈ Φ and ∆ an α-string.

(a) [a] L∆ is an Xα-submodule and

L =
⊕

∆∈Λ/Zα

L∆.

(b) [b] Let β ∈ ∆ and i ∈ Z with iα + β ∈ ∆. Then Lβ+iα is the eigenspaces for hα on
L∆ corresponding to the eigenvector β(hα) + 2i.

(c) [c] Suppose α ∈ ∆, then

(a) [a] ∆ = {−α, 0, α}.
(b) [b] L∆ = Xα ⊕ kerα.

(c) [c] kerα = CH(Xα) = H ∩H⊥
α .

(d) [d] Suppose that α /∈ ∆ and let β ∈ ∆.

(a) [b] ∆ = {β + iα | −rαβ ≤ i ≤ sαβ}
(b) [c] L∆ is a simple Xα-module of dimension |∆| = rαβ + sαβ + 1.

(c) [d] CL∆
(Lα) = Lβ+sαβα.

(d) [e] [Lα, Lβ] = Lα+β
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Proof: (a) follows immediately from 2.11.2.
(b) Since α(hα) = 2, Lβ+iα is contained in the eigenspace for hα corresponding to

β(hα) + 2i. Since the β(hα) + 2i, i ∈ Z are pairwise distinct we conclude that Lβ+iα is the
eigenspace corresponding to β(hα) + 2i.

(c) By 2.11.6(b) , ∆ = {α, 0,−α}. Since α(hα) = 2 6= 0, H = kerα ⊕ Hα and so
L∆ = Xα ⊕ kerα.

CH(Xα) = CH(Lα) ∩ CH(L−α) ∩ CH(H) = kerα ∩ ker−α ∩H = kerα.

By definition of tα, f(tα, h) = α(h) and so kerα = H ∩ t⊥α = H ∩H⊥
α . Thus all parts of (c)

are proved.
(d) For an Xα-module I and k ∈ K let dκ(I) be the number of composition factor ( in

a given composition series) for Hα on I on which hα acts by multiplication by k. Then

dk(L∆) =
∑

W∈CompL∆
(Xα)

dk(W ).

Let W ∈ CompL∆
(Xα) and let mW = dimW − 1. Then by 2.5.4

dW (k) =

{
1 if k is an integer between −mW and mW with k ≡ mW (mod 2)
0 otherwise

.

In particular, dW (0) + dW (1) = 1. Thus dL∆
(0) + dLδ

(1) is the number of composition
factor for Xα on L∆. On the otherhand by (b) dL∆

(k) = 1 if k = β(hα) + 2i for some i ∈ Z
such that β + iα is a root and dL∆

(k) = 0 otherwise. Hence dL∆
(0) + dLδ

(1) ≤ 1. So there
exists a unique composition factor for Xα on L∆. Hence L∆ is simple and (d) follows from
2.5.4 �

Lemma 2.11.10 [f(ta,hb)] Let α ∈ Φ, ∆ an α-string in Λ and β ∈ ∆.

(a) [a] ωα(β) ∈ Λ.

(b) [b] Let ∆ = {β0, β1, . . . βk} with β0 <α β1 <α . . . <α βk. Then ωα(βi) = βk−i.

(c) [c] β(hα) = f∗(β, α̌) = rαβ − sαβ ∈ Z.

Proof: If α ∈ ∆, this is readily verified. So suppose α /∈ ∆. Let i = β(hα). Then i is an
eigenvalue for hα on L∆ and so by 2.5.4 also −i is an eigenvalue. Since α(hα) = 2 we have
(β − iα)(hα) = −i and we conclude from 2.11.9(b) that β − iα ∈ ∆. Also

i = β(hα) = f(tβ, hα) = f∗(β, α̌)

and so
β − iα = β − f∗(β, α̌)α = ωα(β)
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Thus (a) holds.
(b) follows easily from the proof of (a).
(c) From (b), ωα(β + sαβα) = β − rαβα. Hence

β + sαβα− f∗(β + sαβα, α̌)α = β − rαβα

sαβ − β(hα)− 2sαβ = −rαβ

rαβ − sαβ = β(hα) = f∗(β, ǎ).

�

Lemma 2.11.11 [h=sum ha] H =
∑

α∈ΦHα.

Proof: Let h ∈ H with h ⊥ Hα = 0 for all α ∈ Φ. Then α(h) = 0 for all α ∈ Λ. So
[h, Lα] = 0 and h ∈ Z(L) = 0. Thus h = 0. Since f |H is non-degenerate and H is finite
dimensional the lemma now follows from 2.6.1(c). �

Lemma 2.11.12 [q rational]

(a) [a] f∗(α, β) ∈ Q for all α, β ∈ Φ.

(b) [b] The restriction of f∗Q of f∗ to QΦ is a positive definite symmetric Q-bilinear form
on QΦ.

(c) [c] Any Q-basis of QΦ is a K-basis of H∗.

Proof: Let h ∈ H. Then f(h, h) = trL(h2). Since h acts trivially on H and acts as β(h)
on the 1-dimensional space Lβ we have

(1) f(h, h) =
∑
β∈Φ

β(h)2.

Since tα ∈ Hα = [La, La] we can apply 2.11.5(b) to h = tα. So there exists qβ ∈ Q such
that

(2) f(tβ, tα) = β(tα) = qβα(tα) = qβf(tα, tα)

Plucking (2) into (1) with h = tα we obtain

f(tα, ta) =
∑
β∈Φ

q2βf(tα, tα)2.

Since (ftα, tα)) 6= 0 we can divided by f(tα, tα) to conclude f(tα, tα) ∈ Q. From (2)
we get f∗(β, α) = f(tβ , tα) ∈ Q. Put HQ =

∑
α∈Φ Qtα and note that HQ = t(QΦ). Then

f(h, h′) ∈ Q for all h, h′ ∈ HQ. Thus also β(h) = f(tβ , h) ∈ Q for all b ∈ Φ, h ∈ HQ. (1)
now implies that f(h, h) ≥ 0. Suppose f(h, h) = 0 then β(h) = 0 for all β ∈ Φ. 2.11.11
shows that h ∈ H ∩H⊥ = 0. So f |HQ is positive definite and so (b) holds.

Let B be a Q-basis for HQ. By 2.11.11, KB = H and so B contains a K-basis D for H.
Let h ∈ HQ with h ⊥ QD. Then H = KD ≤ h⊥. Hence h = 0 and by (b) and 2.6.1(c),
QD = HQ. So B = D and (c) is proved.
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Chapter 3

Rootsystems

3.1 Definition and Rank 2 Rootsystems

Throughout this chapter F is a subfield of R, E a finite dimensional vector space over F
and (·, · ) a positive definite symmetric bilinear form on E. E] = E \ {0}.

Definition 3.1.1 [def:root system] A subset Φ of E] is called a root system in E provided
that for all α, β ∈ Φ:

(i) [a] ωβ(α) ∈ α+ Zβ (that is (α, β̌ ) ∈ Z)

(ii) [b] ωα(β) ∈ Φ.

(iii) [c] E = FΦ

(iv) [d] Fα ∩ Φ = {α,−α}.

If only (i) to (iii) hold, then Φ is called a weak root system. If only (i) holds then Φ is
called a pre-root system.

Note that by 2.11.10, 2.11.11 and 2.11.12 the non-zero weights of a perfect semisimple
standard Lie algebra are a root system in the dual of the Cartan subalgebra. The purpose of
this chapter is determine all the roots system up to ismomophism. This will be used in later
chapters to complete the classifications of the perfect semisimple standard Lie algebras.

Throughout this chapter Φ denotes a weak root system in E.

Definition 3.1.2 [def:weyl groups] Let ∆ ⊆ E] and α, b ∈ E].

(a) [a] W (∆) is the subgroups of the isometry group of (·, · ) generated by the ωα, α ∈ ∆.

(b) [b] W = W (Φ) is called the Weyl group of Φ.

(c) [c] 〈∆〉 =
⋃

∆W (∆) = {w(δ) | w ∈W (∆), δ ∈ ∆}.

55



56 CHAPTER 3. ROOTSYSTEMS

(d) [d] ϑαβ is the angle between α and β, that is the real number θ with 0 ≤ θ ≤ 180 and
cos θ = (α,β )√

(α,α )
√

(β,β )
.

(e) [e] mαβ = (α, β̌ )(β, α̌ ).

Lemma 3.1.3 [rank 2 root] Let α, β ∈ E]. Then

(a) [a] cos2 ϑαβ = 1
4mαβ.

(b) [b] 0 ≤ mαβ ≤ 4.

(c) [c] If α 6⊥ β then (α,α )
(β,β ) = (α,β̌ )

(β,α̌ ) .

(d) [d] Fa = Fb iff mαβ = 4. In this case α = 1
2(α, β̌ )β.

Proof:

cos2 ϑαβ =
(α, β )(β, α )
(α, α )(β, β )

=
1
4
(α, β̌ )(β, α̌ ) =

1
4
mαβ

and so (a) holds. (b) follows immediately from (a). (c) follows easily from the definition of
α̌. For (d) note that Fa = Fβ iff ϑαβ ∈ {0◦, 180◦}, that is iff cos2 ϑαβ = 1. By (a) this holds
iff mαβ = 4. Suppose now that Fα = Fb. Then (1

2(α, β̌ )β, α̌ ) = 1
2(α, β̌ )(β, α̌ ) = 2 = (α, α̌ )

and so α = 1
2(α, β̌ )β �

Lemma 3.1.4 [sab] Let {α, β} ∈ E] with (α, β̌ ) ∈ Z and (β, α̌ ) ∈ Z and (α, α ) ≥ (β, β ).
Then one of the following holds:

(α, β̌ ) (β, α̌ ) cosϑαβ ϑαβ
(α,α )
(β,β )

0 0 0 90◦ ?
1 1 1

2 60◦ 1
−1 −1 −1

2 120◦ 1
2 1 1√

2
45◦ 2

−2 −1 − 1√
2

135◦ 2

3 1
√

3
2 30◦ 3

−3 −1 −
√

3
2 150◦ 3

2 2 1 0◦ 1 α = β
−2 −2 −1 180◦ 1 α = −β

4 1 1 0◦ 4 α = 2β
−4 −1 −1 180◦ 1 α = −2β

In particular, if Fα 6= Fβ, then |(β, α̌ )| = 1.

Proof: Note that |(α, β̌ )| ≥ |(β, α̌ )|. This follows easily from 3.1.3 �
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Definition 3.1.5 [def:discret] For D ⊆ E define

min-d(D) = inf{(e− d, e− d ) | d 6= e ∈ D}

and
max-d(D) = sup{(e− d, e− d ) | d 6= e ∈ D}.

We say that D is discret if min-d(D) > 0 and that D is bounded if max-d(D) <∞

Lemma 3.1.6 [discret] Let ∆ be linear indepdendent subset of E. Then Z∆ is discret.

Proof: Since ZDelta is closed under subtraction we need to show that inft∈Z∆] (t, t ) > 0.
Let d ∈ ∆ and put Σ = ∆ \ d. For e ∈ E define fe ∈ F and ẽ ∈ d⊥ by e = fed+ ẽ. Then

Σ̃ is a linear indepedent. By induction on ∆, m := infs∈ZΣ] (s, s ) > 0. Let 0 6= t ∈ Z∆. If
t̃ 6= 0, then (τ, τ ) ≥ (t̃, t̃ ) ≥ m. If t̃ = 0, then t ∈ Fd ∩ Z∆ = Zd and so (t, t ) ≥ (d, d ). �

Lemma 3.1.7 [discret and bounded] Let ∆ ⊆ E be discret and bounded. Then |∆| is
finite and bounded by a function of max-d(D)

min-d(D) and dimE.

Let l = min-d(D), u = max-d(D) and n = dim E. Let E1 be a 1-dimensional supspace of
E and put E2 = E⊥1 . Let πi the the projection of E onto Ei. Let D1 be a subset of π1(D)
with (d, e ) ≥ l

4 for all d, e ∈ D1. Since (d, e ) ≤ u for all d, e ∈ π1(D) we have

(∗) |D1| ≤
4u
l

In particular, we can choose a maximal such D1. For e ∈ D1 let D(e) = {d ∈ D |
(π1(d), e ) < l

4 . The maximality of D1 implies that

(∗∗) D =
⋃

e∈D1

D(e)

Now let e, f ∈ D(e). Then (π1(e), π1(f) ) ≤ l
2 and so (π2(e), π2(f) ) ≥ l

2 . In particular,
π2 |D(e) is 1−1 and by induction on n, |π2(D(e))| is bounded by a function of 2u

l and n−1.
(*) and (**) now imply the lemma. �

Lemma 3.1.8 [finite] Let Ψ be pre-root system in E. Then ZΨ is discret and Ψ is finite.

Proof: Since E is finite dimensional and E = FΨ there exists a finite subset ∆ of Ψ with
F∆ = FΨ. Let Σ be the basis of E dual to ∆̌. Since (ď, ψ ) ∈ Z for all ψ ∈ Ψ we have
Ψ ⊆ ZΣ. Hence also ZΨ ≤ ZΣ. By 3.1.6, ZΣ is discret and so also Ψ and ZΨ are discret.

Put u = maxδ∈∆ (δ, δ ) α ∈ Ψ. Then there exists δ ∈ ∆ with (α, δ ) 6= 0 and so by 3.1.4

(α, α ) ≤ 4(δ, δ ) ≤ 4u

thus Ψ is bounded. So by 3.1.7 Ψ is finite.



58 CHAPTER 3. ROOTSYSTEMS

Lemma 3.1.9 [basic ¡¿] Let ∆ ⊆ E].

(a) [a] W (〈∆〉) = W (∆).

(b) [b] W (∆) = W (∆̌).

(c) [c] 〈∆〉̌ = 〈∆̌〉.

Proof: Put Ψ = 〈∆〉. Clearly W (∆) ⊆ W (Ψ). Let α ∈ Ψ. Then α = w(β) for some
w ∈ W (∆) and β ∈ ∆. Then by 2.6.3(e) ωα = wωβw

−1 ∈ W (∆) and so W (Ψ) ⊆ W (∆).
Thus (a) holds. (b) follows from ωα = ωǎ and (c) follows from ˇw(α) = w(α̌). �

Lemma 3.1.10 [basic root]

(a) [a] Φ̌ is a weak root system in E. If Φ is a root system, so is Φ̌.

(b) [b] Φ is W -invariant, that is w(Φ) = Φ for all w ∈W .

(c) [c] W acts faithfully on Φ. In particular, Φ is finite.

Proof: (a) follows immediately from 2.6.1 and the definition of a root system.
(b) Put T = {w ∈ GL(E) | w(Φ) = Φ)}. Let α ∈ Φ. Note that ωα(Φ) ⊆ Φ and since

ω2
α = 1

Φ = ωα(ωα(Φ)) ⊆ ωα(Φ) ⊆ Φ

Thus ωα ∈ T . As T is a subgroup of GL(E), we have conclude W ≤ T .
(c) Let w ∈ W with w(α) = α for all α ∈ Φ. Since Φ spans E we get w(e) = 1 fro all

e ∈ E and so w = 1. Hence W acts faithfully on Φ and so the homomorphism from W to
Sym(Φ) is one to one. By 3.1.8, Φ is finite. Therefore also Sym(Φ) and W are finite. �

Definition 3.1.11 [def:span] Let Ψ ⊆ Φ and R a subring of F (with 1 ∈ R and so Z ≤ R).
Then

(a) [a] Ψ is called a (weak) root subsystem of Φ if Ψ is a (weak) root system in FΨ.

(b) [b] Ψ is called R-closed if Ψ = RΨ ∩ Φ.

(c) [d] 〈Ψ〉R denotes the smallest R-closed subset of Φ containing Ψ. 〈Ψ〉R is called the
R-closure of Ψ.

We often just say “subsystem” for “weak root subsystem”. Note that of Φ is a root
subsystem and Ψ a weak roots subsytem then Ψ is already a root subsystem.

Lemma 3.1.12 [closure] Let Ψ ⊆ Φ and R a subring of F.

(a) [a] Ψ is a subsystem iff ωα(β) ∈ Ψ for all α, β ∈ Ψ.
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(b) [b] Ψ is a subsystem iff Ψ is invariant under W (Ψ).

(c) [c] 〈Ψ〉 ⊆ Φ and Ψ is the smallest subsystem of Φ containing Ψ.

(d) [d] Let T be an R-submodule in E. Then H ∩ Φ is an R-closed subsystem of Φ.

(e) [e] 〈Ψ〉R is a subsystem of Φ and 〈Ψ〉 ⊆ 〈Ψ〉R = Φ ∩RΨ ⊆ RΨ.

Proof: (a) The forward direction is obvious. For the backward let α, β ∈ Ψ. Then
−α = ωα(α) ∈ Ψ and all the axiom of a root system are fulfilled.

(b) follows from (a).
(c) Let Σ be a any root subsystem of Φ containing Ψ. Since Σ is invariant under W (Σ),

w(ψ) ∈ Σ for all w ∈W (Ψ) ≤W (Σ) and ψ ∈ Ψ. Thus 〈Ψ〉 ⊆ Σ. In particular, 〈Ψ〉 ⊆ Φ.
By definition of 〈Ψ〉, 〈Ψ〉 is invariant under W (Ψ). By 3.1.9 W (Ψ) = W (〈Ψ〉) and so

〈Ψ〉 is invariant under W (〈Ψ〉). Thus by (b), 〈Ψ〉 is a root subsystem.
(d) Let α, β ∈ T ∩ Φ. Then ωβ(α) = α − (α, β̌ )β ∈ α + Zβ ∈ Rα + Rβ ≤ T and so

ωα(β) ∈ T ∩Φ. So by (a), T ∩Φ is a subsystem of Φ. Clearly T ∩Φ is R-closed and so (d)
holds.

(e) Follows from (d) applied to T = RΨ. �

Lemma 3.1.13 [creating root systems] Let ∆ ⊆ E].

(a) [a] Σ := {σ ∈ Z∆] | (δ, σ̌ ) ∈ Z∀δ ∈ ∆} is a weak roots system in FΣ.

(b) [c] Suppose ∆ is a pre-root system. Then 〈∆〉 is a weak root subsystem of Σ.

(c) [d] Suppose ∆ is linearly independent pre-root system. Then 〈∆〉 is a root system in
F∆

Proof: (a) Let α, β ∈ Σ.

1◦ [1] (σ, α̌ )β ∈ Z.

Since α ∈ Σ ⊆ Z∆, α =
∑

δ∈∆ nδd for some nδ ∈ Z, almost all 0. Since β ∈ Σ, (δ, β̌ ) ∈ Z
for all δ ∈ ∆. So

(α, β̌ ) =
∑
δ∈∆

nδ(α, β̌ ) ∈ Z.

2◦ [2] ωβα ∈ Σ.

By (1◦), (α, β̌ ) ∈ Z and so ωβ(α) = α− (α, β̌ )β ∈ Z∆. Let δ ∈ ∆. Then

(δ, ωβ(α)̌ ) = (δ, ωβ(α̌) ) = (ωβ(δ), α̌ ) = (δ − (δ, β̌ )β, α̌ ) = (δ, α̌ )− (δ, β̌ )(β, α̌ ) ∈ Z.



60 CHAPTER 3. ROOTSYSTEMS

Note that (1◦) and (2◦) imply (a).
(b) Since ∆ is a pre-root system ∆ ⊆ Σ. So by 3.1.12(b), Ψ is a weak root subsystem

of Σ.
(c) By (b), Ψ a weak root system and Ψ ⊆ Σ ⊆ Z∆. Let n ∈ F and α ∈ Ψ with nα ∈ Ψ.

We need to show that n = ±1. Since α is conjugate under W (∆) to some element in ∆ we
may assume that α ∈ ∆. As nα ∈ Σ ⊆ Z∆, nα =

∑
δ∈∆ nδδ for some nδ ∈ Z. Since ∆ is

linearly independent n = nα ∈ Z.
By 3.1.9 Ψ̌ = 〈∆̌〉.
Also ňα = 1

n α̌ and a symmetric result shows 1
n ∈ Z. Thus n = ±1. �

Definition 3.1.14 [def:a string 2] Let α, β ∈ Φ. Then ∆ = (β + Fα) ∩ Φ is called the
α-sring through β. Define a total ordering ≤α on ∆ by γ ≤α δ if δ−γ ∈ F≥0α. Let β−rαβα
and β + sαβα be the minimal and maximal element in ∆ with respect to ≤α.

Lemma 3.1.15 [a string] Suppose Φ is a root system, α, β ∈ Φ and ∆ is the α-string
through β.

(a) [d] Suppose α 6= ±β. If (α, β ) < 0, then α+ β ∈ Φ and if (α, β ) > 0, α− β ∈ Φ.

(b) [a] ωα leaves ∆ invariant and reverses the ≺α ordering. So if ∆ = {β0, β1, . . . βk} with
β0 <α β1 <α . . . <α βk, then ωα(βi) = βk−i.

(c) [b] If β = ±α then ∆ = {±α}. Otherwise

∆ = {β + iα | −rαβ ≤ i ≤ sαβ , i ∈ Z}

In particular, rαβ and sαβ are integers.

(d) [c] (β, α̌ ) = rαβ − sαβ.

Proof: (a) Suppose that (α, β ) < 0. Without loss (α, α ) ≥ (β, β ). Then by 3.1.4
(β, α̌ ) = −1. Thus β+α = ωα(β) ∈ Φ. The second statement follows from the first applied
to α and −β.

(b) Let δ ∈ ∆. Then ωα(δ) = δ + (δ, α̌ )α ∈ β + Fα and so ωα(δ) ∈ ∆. If γ ∈ ∆
with γ ≤ δ, then δ = γ + fα for a nonnegative f ∈ F. Thus ωα(δ) = ωα(γ) − fα and so
ωα(δ) ≤ ωα(γ).

(c) The case β = ±α is obvious. So suppose α /∈ ∆. Without loss β = β0. Then rαβ = 0.
Let f ∈ F with 0 ≤ f ≤ sαβ . We need to show that δ := β + fα ∈ Φ iff f ∈ Z. Since
ωα(β) = bk we have bk = β + sαβα and so ωα(δ) = β + (sαβ − f)α. So replacing δ by ωα(δ)
if necessary we may assume that (δ, α ) ≤ 0.

Pick i ∈ N maximal with i ≤ f and γ := β + iα ∈ Φ. Put k = f − i. Then δ = γ + kα
and k ≥ 0. If k = 0 then f ∈ Z and δ ∈ Φ. So we may assume that k > 0. Then
(γ, α ) < (δ, α ) ≤ 0 and so by (a) γ + α ∈ Φ. The maximality of i shows i + 1 > f and
so k < 1. It remains to show that δ /∈ Φ. Suppose for a contradiction that δ ∈ Φ. Then
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(δ, α̌ ) = (γ, α̌ ) + 2k. As 0 < k < 1 and both (δ, α̌ ) and (γ, α̌ ) are integers this implies
k = 1

2 . Hence (δ, γ̌ ) = 2 + 1
2(α, γ̌ ). Thus (α, γ̌ ) is even. Since (α, γ̌ ) < 0 and we conclude

from 3.1.4 that (α, γ̌ ) = −2. Hence

ωγ(α) = α+ 2γ = 2(γ +
1
2
α) = 2δ

and we obtained a contradiction to the definition of a roots system.
(d) Same proof as for 2.11.10(c). �

Definition 3.1.16 [def rank]

(a) [a] The rank of Φ is the minimal size of subset ∆ of Φ with Φ = 〈∆〉.

(b) [b] Φ is called disconnected if it is the disjoint union of two proper perpendicular
subsets. Otherwise, Φ is called connected.

Let Φ be a connected rank two roots system and choose α, β with Φ = 〈α, β〉. If α ⊥ β
then Φ = {±α} ∪ {±β} and Φ is disconnected. Also β 6= ±α since otherwise Φ = 〈α〉 as
rank 1. Using 3.1.4 and 3.1.12(c) one now easily obtains a complete list of connected rank
2 root systems. See Figure 3.1.

3.2 A base for root systems

Definition 3.2.1 [def:base]

(a) [a] A subset Π of Φ is called base for Φ provided that Π is an F-basis for E and
Φ = Φ+ ∩ Φ− where for Φ+ = NΠ ∩ Φ and Φ− = −Φ+.

(b) [b] Let Π be a base for Φ. The elements of Π are called simple roots and the element of
Φ+ are called positive roots. For e =

∑
α∈Π fαα define ht e =

∑
α∈Pi fα. ht e is called

the height of e with respect to the base Π.

In this section we show that Φ has a base and that any two base are conjugate under
W .

Lemma 3.2.2 [no finite cover] Let V be an finite dimensional vector sapce over an infi-
nite field K and let H a finite set of proper subspace of V . Then V 6=

⋃
H.

By induction dimV . Each H ∈ H lies in a hyperplane H̃ of V . Since K is infinite there
exists infintely many hyperplane in V . So we can choose a hyperplane W of V with W 6= H̃
for all H ∈ H. Then W 6= W ∩H and so by induction there exists w ∈W with w /∈W ∩H
for all H ∈ H. Thus w /∈

⋃
H. �
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[rank2]

Figure 3.1: The connected Rank 2 Root Systems
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Definition 3.2.3 [def:regular] e ∈ E is called regular if (α, e ) 6= 0 for all α ∈ Φ.

Lemma 3.2.4 [not perp] Let S be finite subset of E \ {0}. Then there exists e ∈ E with
(s, e ) 6= 0 for all s ∈ S. In particular, there exist regular elements in E.

Proof: By 3.2.2 V 6=
⋃

s∈S α
⊥. �

Lemma 3.2.5 [s linear indep] Let S be a finite subset of V and e ∈ E. Suppose that

(s, e ) > 0 and (s, t ) ≤ 0

for all s 6= t ∈ S and e ∈ E. Then S is linearly independent.

Proof: Let fs ∈ F with
∑

s∈S fss = 0. Let S+ = {s ∈ S | fs > 0} and S− = S \S+. Then

u :=
∑

s+∈S+

fs+s+ =
∑

s−∈S−

(−fs−)s−

and

0 ≤ (u, u ) =
∑

s+∈S+

∑
s−∈S−

(−fs+fs−)(s+, s− ) ≤ 0.

Therefore u = 0 and 0 = (u, e) =
∑

s+∈S+
fs+(s+, e ) ≥ 0. Hence fs+ = 0 for all

s+ ∈ S+. By symmetry, fs− = 0 for all s− ∈ S− and so S is linearly independent. �

Proposition 3.2.6 (Existence of Bases) [existence of bases] Let e ∈ E be regular.
with (α, e ) 6= 0 for all α ∈ Φ. Put Φ+

e = {α ∈ Φ | (α, e ) > 0} and Πe = Φ+
e \ (Φ+

e + Φ+
e ).

Then Πe is a base for Φ and Φ+(Πe) = Φ+
e .

Proof: Let α, β ∈ Πe. Since α = (α−β)+β we have that α−β /∈ Φ+
e . Also β = (β−α)+α

and so β−α /∈ Φ+
e . So α−β 6∈ Φ and by 3.1.15(a), (α, β ) ≤ 0. Thus by 3.2.5 Πe is linearly

independent.
Let α ∈ Φ+

e . We will show by induction on (α, e ) that α ∈ NΠ. If α ∈ Πe, this is obvious.
So suppose α = β + γ for some β, γ ∈ Φ+

e . Then (α, e ) = (β, e ) + (γ, e ), (β, e ) < (α, e )
and (γ, e ) < (α, e ). So by induction β ∈ NΠ, γ ∈ NΠ and so also α ∈ NΠ.

Hence Φ+
e = NΠe ∩Φ = Φ+(Πe). Thus Φ = Φ+

e ∪Φ−e = Φ+(Πe)∪Φ−(Πe). In particular
as Φ spans E, so does Πe and Πe is a base for Φ. �
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3.3 Elementary Properties of Basis

Lemma 3.3.1 [ch and sum] Let ∆ be a linearly independent subset of Φ and e ∈ 〈∆〉.
Write e =

∑
δ∈∆ nδδ. Then

ε̌ =
∑
α∈∆

(α, α )
(e, e )

nαα̌.

and (α,α )
(e,e ) nα is an integer.

Proof: ě = 2
(e,e )e =

∑
α∈∆

2(α,α )
(e,e )(α,α )nαα =

∑
α∈∆ nαα̌.

By 3.1.9(c) a, ě ∈ 〈∆̌〉 and hence by 3.1.13, e ∈ Z∆̌. The linear independence of ∆ now
shows that (α,α )

(e,e ) nα is an integer. �

Lemma 3.3.2 [basic base] Let Π be a base for Φ.

(a) [z] Π̌ is a base for Φ̌ and (Φ+)̌ = (P̌ hi)+.

(b) [a] Let α 6= β ∈ Π. Then α− β /∈ Φ and (α, β ) ≤ 0.

(c) [b] Let α ∈ Φ. Then htα is an integer, htα is positive if and only if α is positive and
α ∈ Π if and only if htα = 1.

(d) [c] Let α ∈ Π. Then Φ+ \ {α} is ωα invariant.

(e) [d] Let β ∈ Φ+ \ Π. Then there exists α ∈ Π with (α, β ) > 0. For any such α, both
ωα(β) and β − α are in Φ+ and ht(ωα(β) ≤ ht(β − α) = htβ − 1.

(f) [e] Let β ∈ Φ+. Then there exists α1, α2, . . . αk ∈ Π such that β =
∑k

i=1 αi and for all
1 ≤ j ≤ k,

∑j
i=1 αi ∈ Φ.

(g) [f] Let β ∈ Φ+. Then there exists α0, α1, α2, . . . αk ∈ Π such that if we inductively
define β0 = α0 and βi = ωαi(βi−1) then β = βk and βi ∈ Φ+ for all 0 ≤ i ≤ k.

(h) [g] Φ = 〈Π〉, W = W (Π) and each root is conjugate under W to some root in Π.

(i) [h] Put δΠ = 1
2

∑
Φ+. Then for all α ∈ Π, ωα(δ) = δ − α.

Proof: (a) This follows from 3.3.1
(b) Note that neither α − β nor β − α is in NΠ. So the definition of a base implies

α− β /∈ Φ. The second statement now follows from 3.1.15.
(c) Obvious.
(d) Let β =

∑
γ∈Π nγγ and i = (β, α̌ ).

ωα(β) = β − iα = (nα − i)α+
∑

α 6=γ∈Π

nγγ.
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Suppose that ωα(β) ∈ Φ−. Then nγ = 0 for all α 6= γ ∈ Φ and so β ∈ Nα ∩ Φ = {α} and
β ∈ Π, contrary to the assumptions.

(e) 0 < (β, β ) =
∑

α∈Π nα(β, α ) and so (β, α ) > 0 for some α ∈ Π. Suppose now that
α ∈ Π with i := (β, α̌ ) > 0. By (d), β − iα = ωα(β) ∈ Φ+. By 3.1.15(a), β − α ∈ Φ and so
β − α = ωα(β) + (i− 1)α ∈ Φ+.

(f) By induction on htβ. If htβ = 1, then β ∈ Π and (f) holds with k = 1 and α1 = β.
So suppose ht b > 1 and thus β /∈ Π. Choose α as in (e). By induction (f) holds for β − α
and so also for β.

(g) By induction on htβ. If htβ = 1, then β ∈ Π and (g) holds with k = 0 and αo = β.
So suppose ht b > 1 and thus β /∈ Π. Choose α as in (e). By induction (f) holds for ωα(b)
and so also for β.

(h) This follows from (g) and 3.1.12(c).
(i) By (d), ωα fixes 1

2

∑
α 6=β∈Φ+ β. Also ωα(1

2α) = 1
2α− α and so (i) holds. �

Lemma 3.3.3 [bases equals chambers] Any bases is of the form Πe for some regular
element.

Proof: Let Π be a base. Note that there exists a regular element e with Π ⊆ Φ+
e . . (Indeed

choose α∗ ∈ E,α ∈ Π with (α∗, β ) = δαβ and put e =
∑

α∈π α
∗.) Then Φ+(Π) ⊆ Φ+

e and
Φ−(Π) ⊆ Φ−e . Hence Φ + (Π) = Φ+

e and by 3.3.2(e), Φ+ \ (Φ+Φ+) = Π. �

3.4 Weyl Chambers

Define two regular elements e and d to be equivalent if Φ+
e = Φ+

d . The equivalence classes
of this relation are called Weyl chambers. Note that there is natural 1-1 correspondence
between Weyl chambers and bases for Φ. Also the equivalence relation is invariant under
W and so W acts on the set Weyl of chambers. For a regular element e let C(e) be the
Weyl chamber containing e. For α ∈ Φ let Pα(e) = {d ∈ E | (α, e )(α, d ) > 0}. Then

C(e) =
⋂
α∈Φ

Pα(e)

Define Pα(e) = {d ∈ E | (α, e )(α, d ) ≥ 0 and C(e) =
⋂

α∈Φ Pα(e). C(e) is called a
closed Weyl chamber. Topological, Pα(e) and so also C(e) are open convex subsets of E.
Pα(e) and C(e) are their closures.

Definition 3.4.1 [def:dominant] Given a base Π of Φ. Let e, d ∈ E. We say that is
positive if 0 < e ∈ F≥0Π. Define the relation ≺ on E by d ≺ e if e−d is positive. e is called
dominant if (e, α̌ ) ≥ 0 for all α ∈ Π. e is strictly dominat if (e, α̌ ) > 0 for all α ∈ Π. Let
C and C be the set of dominant and strictly dominant elements in E.

Let w ∈W . If w = ωα for a simple root α, then w is called a simple reflection.
l(w) is the minimal integer such that there simple reflections ω1, . . . , ωn with w =

ωnωn−1 . . . ω1. n(w) = |Φ− ∩ n(Φ+)|.
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Observe that C = C(δΠ) and C = C(δΠ).
Also l(1) = 0 and l(ω) = 1 if and only if ω is a simple reflection; and n(w) is the number

of positive roots whose image under w is negative.

Proposition 3.4.2 [existence of dominant] Let e ∈ E and d be a element of maximal
height in W (e). Then d is dominant. Inparticular, there exists w ∈ W with w(e) ∈ C. If e
is regular, then d is regular and w(e) ∈ C.

Let α ∈ Π. Then ωα(d) ∈W (e) and ωα(d) = d−(d, α̌ )α has height d−(d, α̌ ). The maximal
choice of ht d implies that (d, α̌ )0. Thus d ∈ P (α) and d ∈ C. �

Lemma 3.4.3 [reducing] Let w ∈ W and (ω1, ω2, . . . ωt) be a tuple of simple reflections
with w = ωtωt−1 . . . ω1. Suppose that α a positive root with w(α) negative. Then there there
exists 1 ≤ i ≤ s with

wωα = ωtωt−1 . . . ωs+1ωs−1ωs−2 . . . ω1.

Proof: Put ρi = ωiωi−1 . . . ω1 and βi = ρi(α0). Choose s minimal such that βs is negative.
Then βs−1 is positive and βs = ωs(βs−1) is negative. Since ωs is a simple refections there
exists δ ∈ Π with ωs = ωδ with δ ∈ π. Since ωδ(βs−1) is negative, 3.3.2(d) implies have
βs−1 = δ. Thus

ωs = ωδ = ωβs−1 = ωρs−1(α) = ρs−1ωαρ
−1
s−1,

ρs = ωsρs−1 = ρs−1ωα and ρsωα = ρs−1. Multiplying the last equation with ωtωt−1 . . . ωs+1

from the left gives the lemma. �

Lemma 3.4.4 [n(w)=l(w)] Let w ∈W and α ∈ Π.

(a) [b] If w(α) is negative, then l(wωα) = l(w)− 1 and n(wωα) = n(w)− 1

(b) [c] If w(α) is positive, then l(wωα) = l(w) + 1 and n(wωα) = n(w) + 1.

(c) [a] l(w) = n(w).

Proof: (a) Let t = l(w) and choose simple roots ω1, . . . , ωt with w = ωtωt−1 . . . ω1. Then
by 3.4.3 l(wωα) ≤ l− 1. Since wωαωα = w, l(wωα) ≥ l(w)− 1 and so the first statement in
(c) hold

Let Σ = Φ+ \ {α}. By 3.3.2(d) ωα(Σ) = Σ. Hence also w(Σ) ∩ Φ− = (wωα)(Σ) ∩ Φ−.
Now w(α) ∈ Φ− while (wωα)(α) /∈ Φ−. So also the second statement in (c) holds,

(b) We have wωα(α) = w(−α) is negative. So (b) follows from (c) applied to wωα.
(c) Since l(1) = n(1) this follows from (a) and (b) and induction on l(w) �

Theorem 3.4.5 [transitivity on bases]
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(a) [a] Let w ∈ W and e ∈ C with w(e) ∈ C. Then w(e) = e and w ∈ W (Π ∩ e⊥). If, in
addition, e ∈ C, then w = 1.

(b) [b] Let D and D′ be Weyl chambers. Then there exists a unique w ∈W with w(D) = D′.

(c) [c] Let Π and Π′ be bases for Φ. Then there exists a unqiue w ∈W with w(Π) = Π′.

(d) [d] |W | is the number of Weyl chambers.

(e) [e] There exists a unique element w0 ∈ W with n(w0) maximal. Moreover n(w0) =
l(w0) = |Φ+|, w0(Π) = −Π, w0(Φ+) = Φ− and w2

0 = 1.

Proof: (a) If e ∈ C, then Π ∩ e⊥ = 0. So it suffices to proof first statement. If l(w) = 0,
w = 1 and (a) holds. So suppose l(w) > 0 and pick a simple root α with l(wωα) < l(w).
Then by 3.4.4, w(α) is negative. As both e and w(e) are in C we have

0 ≤ (e, α ) = (w(e), w(α) ) ≤ 0

Thus α ∈ e⊥, wωα(e) = w(e) and the results follows by induction on l(w).
(b) Without loss D′ = C. Pick d ∈ D. Then by 3.4.2 there exists w ∈W with w(e) ∈ C.

Then w(D) = C. Let w′ be any element of W with w′(D = C. Then w′w−1)(w(e)) =
w′(e) ∈ C and so by (a) appled to ′′w = w′w′′ and ′′e = w(e)′′ we have w′w−1 = 1 and so
w′ = w.

(c) and (d) follow immediately from (b).
(e). Note that n(w) ≤ |Φ−| = |Φ+| for all w ∈ W . Also n(w) = |Φ+| if and only if

w(Φ+) = Φ− and so if and only if w(Π) = −Π. By (c) such an w exists and is unique. Also
w2(Π) = Π and so w2 = 1. Thus (e) holds. �

Definition 3.4.6 [def:obtuse] A subset S of E \ {0} is called acute (obtuse) if (s, t ) ≥ 0
((s, t ) ≤ 0) for all s 6= t ∈ E.

Lemma 3.4.7 [easy base] Let ∆ be a linear independent obtuse preroot system in E. Then
∆ is base for the root system 〈∆〉 in F∆.

Proof: Put Φ = 〈∆〉. Then by 3.1.13 Φ is a root sytem.
Let α ∈ Φ and write α =

∑
β∈∆ nββ with nβ ∈ Z. We need to show that the non-zero

nβ all have the same sign. Suppose not and choose such an α with
∑

β∈Ψ |nβ| minimal.
Since (α, α is positive there exists δ ∈ ∆ with nδ(α, δ ) ≥ 0. Replacing α by −α if necessary
we may assume that nδ > 0. Then also (α, δ ) is positive. Note that α /∈ Fδ and so by
3.1.15(a), α− δ is a root. Now

α− δ = (nδ − 1)δ +
∑

δ 6=β∈∆

nββ
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By the minimal choice of α, the non zero coefficents of α − δ are either all positive or all
negative. Let δ 6= β ∈ ∆. If nβ > 0 then nγ > 0 for all γ E ∆, contrary to our assumptions.
Hence nβ

leq0. Thus also nδ − 1 ≤ 0. But nδ − 1 ≥ 0 and so nδ − 1 = 0 and nδ = 1. Since (β, δ ) ≤ 0
this implies that

(α− δ, δ ) =
∑

δ 6=β∈∆

(β, δ ) ≥ 0.

So (α, δ̌ ) ≥ (δ, δ̌ ) = 2. Note also that α 6= δ and so 3.1.4 implies that (δ, δ ) < (α, α ). On
the otherhand by 3.3.1 (δ,δ )

(α,α )nδ is an integer. Since nδ = 1, this implies (δ, δ ) ≥ (α, α ), a
contradiction. �

3.5 Orbits and Connected Components

Definition 3.5.1 [def:coxeter graph] Let Σ ⊆ Φ.

Γ(Σ) = {(α, β, i) | α, β ∈ Φ, (α, β̌ ) 6= 0, i ∈ Z+, i ≤ |(α, β̌ )|}

We view Γ(Σ) as a multiple edged directed graph on Σ, namely each (α, β, i) ∈ Γ(Σ) is an
edge from α to β. So if (α, β̌ )) = 0, then there exists no edge from α to β, and if (αβ, ˇ6=)0,
then there exists |(α, β̌ )| edges from α to β. Γ(Φ) is called the Coxeter graph of Φ. Γ(Π) is
called the Dynkin diagram of Φ. For S ⊆ E let Γ0(S) be the undirect graph without multiply
edges, where s, t are adjacent if and only if (s, t ) 6= 0.

Note that for Σ ⊆ Φ, Γ(Σ) and Γ0(Σ) have the same connected component.

Lemma 3.5.2 [connected components] Let Φ be a root system.

(a) [a] Let α, β ∈ Φ with α 6⊥ β. Then α, β and ωα(β) are in the same connected component
(with respect to the coxeter graph Γ(Φ)).

(b) [b] Let D be the set of connected components of Φ . Then E = i
Λ∈DFΛ and W =

\/Λ∈DW (Λ).

(c) [c] Let ∆̃ be a connected component of Φ. Then ∆̃ is invariant under W , ∆̃ is a
subsystem of Φ, ∆̃ ∩Π is a base for ∆̃, ∆̃ = 〈D̃ ∩Π〉 and ∆̃ ∩Π is connected.

(d) [d] The map ∆ → 〈∆〉 is one 1-1 correspondence between the connected components if
Π and the connected components of Φ.

(e) [e] Φ is connected iff Π is connected.
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Proof: Since α 6⊥ β we also have α 6⊥ ωα(β) and so (a) holds.
Let ∆ be a connected component of Π. Also let ∆̃ the connected component of Φ

containing ∆ . We claim that ∆̃ is W -invariant. For this let α ∈ Φ and β ∈ ∆̃. If α ⊥ β
then ωα(β) = β ∈ ∆̃. If α 6⊥ β, then by ωα(β), ωα(β) and β are in the same connected
component of Γ(Φ) and again ωα(β) ∈ D̃elta. So ∆̃ is invarinat under all ωα, α ∈ Φ and so
also under W . Thus 〈∆〉 =

⋃
∆W (∆) ⊆ ∆̃.

Put Σ = Π \∆. Then Σ ⊥ ∆. HenceW (∆) centralizes W (Σ)] = 1, W = W (∆)W (Σ).
In particular, 〈∆〉 ⊥< Σ〉 and 〈∆〉 and 〈Σ〉 are W (∆)W (Σ) = W invariant

Thus
Φ =

⋃
ΠW =

⋃
∆W ∪

⋃
ΣW = 〈∆〉∪ < Σ〉

Since ∆̃ is connected, this implies ∆̃ ⊆ 〈∆〉 and ∆̃∩ 〈Σ〉 = ∅. Hence ∆̃ = 〈∆〉 and so by
3.4.7 ∆ is a base for ∆̃. Moreover D̃ ∩Π = ∆ ∪ (∆̃ ∩ Σ) = ∆ and so (c) holds.

Note that W (∆) ∩ W (Σ) centralizes F∆ + FΣ = E and so W (∆) ∩ W (Σ) = 1 and
W = W (δ)×W (Σ). An easy induction proof now shows that (b) holds.

(d) and (e) follow easily from from (c). �

Lemma 3.5.3 [z closed] Let Φ be a root system and Ψ ⊆ Φ. Then Ψ is Z-closed iff
−Ψ ⊆ Ψ and α+ β ∈ Ψ for all α, β ∈ Ψ with α+ β ∈ Φ.

Proof: One direction id obvious. For the other suppose that −α ∈ Ψ for all α ∈ Φ and
α + β ∈ Ψ for all α, β ∈ Ψ with α + β ∈ Φ. Let α ∈ 〈Ψ〉Z. Then α =

∑
β∈Ψ nββ with

nβ ∈ Z. Since nββ = (−nβ)(−β) we may assume that nβ ≥ 0 for all β ∈ Φ.
Since

∑
β∈Ψ nβ(α, β ) = (α, α ) > 0 there exists δ ∈ Ψ with nδ(α, δ ) > 0. Thus nδ ≥ 1

and (α, δ ) > 0. If α = ±δ, then α ∈ Ψ. If α 6= ±δ then by 3.1.15(a), α − β ∈ Φ.
Thus α − β ∈ 〈Ψ〉Z and by induction on

∑
β∈Ψ nβ we conclude that α − β ∈ Ψ. Thus

α = (α− β) + β ∈ Ψ. �

Lemma 3.5.4 [root lengths] Let Φ be a connected root system, L(Φ) = {(α, α ) | α ∈ Φ}.
Let r ∈ L(Φ) and put Φr = {α ∈ Φ | (α, α ) = r}.

(a) [a] E = FΦr and Φ = 〈Φr〉Q

(b) [b] If r is minimal in L(Φ), then Φ = 〈Φr〉Z ≤ ZΦr.

(c) [c] W acts transitively on Φr.

(d) [e] If r is maximal in L(Φ), then Φr = 〈Phir〉Z is Z-closed.

(e) [d] |L(Φ)| ≤ 2.
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Proof: Let Σ be an orbit for W on Φr and let α ∈ Φ. Suppose that α 6⊥ σ for some σ ∈ Σ.
Then

(∗) α =
1

(σ, α̌ )
(σ − ωα(σ)) ∈ QΣ

Thus Φ = (Φ ∩ (QΣ)⊥) ∪ 〈Σ〉Q and since Φ is connected, Φ = 〈Σ〉Q ⊆< Φr〉Q ⊆ Φ and
so (a) holds. In particular, Σ⊥ ∩ Φ = ∅. If r is minimal in L(Φ), then (α, α ) ≥ (σ, σ ). So
by 3.1.4 either α = ±σ or (σ, α̌ ) = ±1. From (*) we get in any case that α ∈ ZΣ and so
(b) holds.

Suppose now that α ∈ Φr. Then either α = ±σ or 〈α, σ〉 is a root system of type A2.
In either case α and σ are conjugate in W (〈α, σ〉. Thus (c) holds.

Suppose that r is maximal. Let α, β ∈ Φr with α + β ∈ Φ. Then α 6= ±b and so since
(α, α ) = (β, β ) 3.1.4 implies (α, β̌ ) ≥ −1. Thus

(α+ β, α+ β ) = (α, α ) + 2(α, β ) + (β, β ) = (α, α ) + (α, β̌ )(β, β ) + (β, β )
= (2 + sαβ)(β, β ) ≥ (β, β )

So α+ β ∈ Φr. (c) now follows from 3.5.3.
Let s, l ∈ L(Φ) with s < l. Then by (a) we can choose β ∈ Φs and α ∈ Φl with β 6⊥ α.

Then by 3.1.4, l
s = (α,α )

(β,β ) ∈ {2, 3}. If |l(Φ)| > 2, we can choose s < l < t ∈ λ(Φ). But then
t
s = l

s
t
l is not a prime, a contradiction and (e) holds. �

Lemma 3.5.5 [dominant] Let Φ be a root system in E and Ẽ an Euclidean F space with
E ≤ Ẽ. Let ∆ be an orbit for W on Ẽ and e ∈ C. Then

(a) [a] ∆ contains a unique dominant member d.

(b) [b] b ≺ d and for all b ∈ ∆.

(c) [c] (e, b ) ≤ (e, d ) for all b ∈ ∆.

(d) [d] Let Π ∩ e⊥ is a basis for Φ ∩ e⊥.

(e) [e] Let b ∈ ∆ with (e, b ) = (e, d ). Then there exists w ∈W (Π ∩ e⊥) with w(d) = b.

Proof:
(a) Let e and d be dominant in ∆. Then d = w(e) for some w ∈W and 3.4.5(a) implies

that d = e.
(b) Choose a ∈ ∆ such that b ≺ a and a is maximal in ∆ with respect to ≺. We claim

that a is dominant. Otherwise there exists β ∈ Π with (a, β̌ ) < 0. Then a ≺ a− (a, β̌ )a =



3.6. CRAMER’S RULE AND DUAL BASES 71

ωβ(a) ∈ ∆, a contradiction to the maximality of a. Thus a is dominant and so by (a) a = d
and (b) holds.

(c) By (b) d− b ∈ NΠ and since e is dominant, (e, d− b ) ≥ 0.
(d) Let β ∈ Φ+∩e⊥ we need to show that β ∈ N(Π∩e⊥). If htβ = 1, then β ∈ Π∩e⊥. So

suppose htβ > 1, that is β /∈ Φ. Then by 3.3.2(e) there exists α ∈ Π with δ = β − α ∈ Φ+.
Since e ∈ C both (e, α ) and (e, δ ) are non-negative. Since 0 = (e, β ) = (e, α ) + (e, δ ) we
conclude that both α and δ are in e⊥. ht δ < htβ and so by induction on htβ, δ ∈ N(Π∩e⊥).

(e) If b is dominant, then by (a) b = d and we are done. done. So suppose that b
is not dominant and and choose exists α ∈ Π with (b, α̌ ) < 0. Then c := ωα(b) ∈ Ψ,
(e, c ) = (e, b ) − (β, α̌ )(e, α ) ≥ (e, c ). On the other hand, by (c) (e, c ) ≤ (e, d ). This
implies (e, c ) = (e, d ) and (ε, α ) = 0. So α ∈ Φ∩ e⊥ and by induction on ht b, c = w(d) for
some w ∈W (Π ∩ e⊥). Hence b = ωα(c) = (ωαw)(d) and (e) holds. �

3.6 Cramer’s Rule and Dual Bases

Lemma 3.6.1 (Cramer’s Rule) [cramer rule] Let I a finite set, R a commutative ring
with 1, A : I × I → R be I × I-matrix over R. Define (i, j) ∈ I × I to be an edge if aij 6= 0.
Let S(i, j) be the set of all direct paths s = (i0, i1, . . . , in) for i to j, where the ik are pairwise
distinct Put |s| = n, m(s) =

∏n
k=1 aik−1ik and I − s = I \ {i0, i1, . . . ik}. For J ⊆ I let AJ

be the restriction of A to I − J × I − J . Define

bij =
∑

s∈S(i,j)

(−1)|s|m(s) detAI−s.

and B = (bij). Then AB = det(A) IdI , where IdI is the I × I identity matrix.

Proof: Let i, j ∈ I and define the matrix D = Dij by dkl = akl if k 6= j and djl = δil. We
will show that bij = detD. For K ⊆ I and σ ∈ Sym(K) define

a(σ) = sgn(σ)
∏
k∈I

akσ(k).

Similarly define d(σ). Then
detD =

∑
π∈Sym(Π)

d(π)

We investigate d(π) for π ∈ Sym(π). If π(j) 6= i, then djπj = δiπj = 0 and so also d(π) = 0.
Suppose π(j) = i. Let n ∈ N be minimal with πn+1(i) = i. For 0 ≤ k ≤ n, put ik = πk(i)

and s = (i0, i1, . . . , in). The ik are pairwise distinct, i0 = i and in = j. If (ik−1, ik) not an
edge for some 1 ≤ k ≤ n, then dik−1π(ik−1) = aik−1ik = 0 and so also d(π) = 0.

Suppose s is a string and view s as a cycle in Sym({i0, . . . , in}). Then π = sσ for a
unique σ ∈ Sym(I − s). Now d(π) = d(s)d(σ), sgns = (−1)n = (−1)|s| and dji = 1. Thus
d(s) = (−1)|s|m(s), d(σ) = a(σ) and so

d(π) = (−1)|s|m(s)a(σ).



72 CHAPTER 3. ROOTSYSTEMS

It follows that

detD =
∑

π∈Sym(I)

d(π)

=
∑

s∈S(i,j)

∑
σ∈Sym(I−s)

(−1)|s|m(s)a(σ)

=
∑

s∈S(i,j)

(−1)|s|m(s) detAI−s

Thus indeed bij = detDij .
Note that

∑
j∈J aijbjk =

∑
j∈J aij detDjk is the determinant of the matrix Eik obtained

from A by replacing row k of A by row i. Now detEik = δik det(A) and so AB = detA IdI .
�

Lemma 3.6.2 [dual basis] Let B be a basis for E. For b ∈ B define b∗ ∈ E by (b, a ) = δba.
Put B∗ = {b∗ | b ∈ B} and let A(B) be the I × I matrix ((a, b )).

(a) [a] Then d =
∑

b∈B (d, b )b∗ =
∑

b∈B (d, b∗ )b.

(b) [b] A(B∗) = A(B)−1.

(c) [c] detA(B) > 0.

(d) [d] Suppose that B is obtuse. Then B∗ is acute and, for a, b ∈ B, (a∗, b∗ ) > 0 if and
only if a and b lie in the same connected component of the ⊥-graph on B.

(a) Let d =
∑

b∈B fbb and let a ∈ B. Then (d, a∗ ) = fa. Also B∗∗ = B and so (a) holds.
(b) Let a ∈ B. Then by (a),

a =
∑
b∈B

(a, b )b∗ =
∑
b∈B

∑
d∈B

(a, b )(b∗, d∗ )d

and so (b) holds.
(c) Let E be an orthogonal basis for E and let D be the B × E matrix defined by

b =
∑
dbee. Then A(B) = DA(E)DT and so detA(B) = (detD)2 detA(E). Since A(E) is a

diagonal matrix with positive diagonal elements, detA(E) is positive and so (c) holds.
(d) Let A = A(B). From (b) and 3.6.1 we have

(a∗, b∗ ) =
∑

s∈S(a,b)

(−1)|s|m(s) detAB−s.

Since A is obtuse m(s) is the product of |s| negative elements. Hence (−1)|s|m(s) is positive.
By (c) also detAI−s is positive. Hence (a∗, b∗ ) is non-negative and (a∗, b∗ ) = 0 if and only
if S(a, b) = ∅. So (d) holds. �
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3.7 Minimal Weights

Throughout this section Φ is root system. We call a root α long (short) if (α, α ) ≥ (β, β )
((α, α ) ≤ (β, β )) for all β ∈ Φ, which are on the same connected component of Φ as α.
Note that if Φ has only one root length then all roots are long and short. Φl and Φs denotes
the sets of long and short roots in Φ, respectively.

Definition 3.7.1 [def:weights for phi] Let λ ∈ E. We say that λ is an integral weight
of Φ if (λ, α ) ∈ Z. For α ∈ Π define α∗ ∈ E by (α∗, β ) = δαβ for all β ∈ Π. For
e =

∑
α∈Π fαα put e∗ =

∑
α∈Π fαα

∗.
Λ̆ = Λ̆(Φ) is the set of integral weights and Π∗ = {α∗ | α ∈ Π}. Λ̆+ is the set of

dominant integral weights.

Lemma 3.7.2 [z basis]

(a) [a] Φ̌ ⊂ Λ̆.

(b) [b] Let e ∈ E. Then e =
∑

α∈Π (e, α )α∗. In particular, C = F≥0 Π∗.

(c) [c] Π∗ is a Z-basis for Λ̆

(d) [d] C
] is acute and, if Φ is connected, strictly acute.

(e) [e] Let e ∈ C
] then e =

∑
α∈Π (e, α∗ )α, (e, a∗ ) ≥ 0 and if Φ is connected, (e, α∗ ) > 0.

Proof: (a) follows directly from the definition of a root system.
(b) Follows from 3.6.2(a).
(c) Since Π is a base for Φ, every β ∈ Φ is a integral linear combination of Π. This

implies that each α∗ for α in Π is an integral weight. (c) now follows from (b).
(d) and (e) follows easily from 3.6.2 �

Lemma 3.7.3 [along min] Let Φ be a connected root system.

(a) [a] Φl has contains unique dominant root αl and Φs has a unique dominant root αs.

(b) [b] If α ∈ Φ with α 6= αl then there exists β ∈ Φ+ with α+ β ∈ Φ.

(c) [c] Let e ∈ C
] and α ∈ Φ. Then −αl ≺ α ≺ αl and −(e, αl ) ≤ (e, α ) ≤ (e, αl ).

Proof: By 3.5.4(c) W is transitive on Φl. So (a) follows from 3.5.5.
For (b) suppose first that α is not dominant. Then there exists β ∈ Π with (α, β ) < 0

and so by 3.1.15(b), α+β ∈ Φ. Suppose next that α is dominant. Since α 6= αl we conclude
that Φ has two root lengths and α = αs. By 3.7.2(d) (αl, α ) > 0 and so by 3.1.4 (α, α̌l ) = 1.
Thus β := αl − α is a roots and (β, α̌l ) = 2− 1 = 1 > 0. Since αl is dominant this implies
β ∈ Φ+ and so (b) holds.
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(c) Note that by (b), αl is the unique element of maximal height in Φ. From (b) and
induction on htαl − htα, α ≺ αl and so αl = α + φ for some φ ∈ NΠ. Since (e, φ ) > 0,
(ε, α ) ≤ (e, αl ). Note that this results also holds for the base −Π and so (c) is proved. �

Definition 3.7.4 [def:minimal] λ ∈ Λ̆ is called minimial if (λ, α )) ∈ {−1, 0, 1} for all
α ∈ Φ.

Proposition 3.7.5 [minimal 1] Let 0 6= λ ∈ Λ̆+ Then the following are eqiuvalent

(a) [a] λ is minimal.

(b) [b] (λ, αl ) = 1.

(c) [c] λ = β∗ for some β ∈ Π where nβ = 1 is defined by αl =
∑

δ∈Π nδδ.

Proof: (a)=⇒ (b): Since λ is dominant and minimal, (λ, αl ) ∈ {0, 1}. If (λ, αl ) = 0,

then 3.7.3 implies λ = 0.
(b)=⇒ (a): Suppose (λ, αl ) = 1. Then by 3.7.3(c) shows that λ is minimal.

(b)⇐⇒ (c): Note that (λ, αl ) =
∑

δ∈Π nδ(λ, δ ).

By 3.7.2(e) each nδ is a positive integer. So we see that (λ, αl ) = 1 iff the following
holds:

There exists a unique β ∈ Π with (λ, β ) 6= 0; and for this β, (λ, β ) = 1 = nβ.

Note that this is equivalent to (c). �

Definition 3.7.6 [def:affine]

(a) [a] Π◦ = Π ∪ {−αl}. Γ(Π◦) is called the affine diagram of Φ.

(b) [b] wΠ is the unique element in W with wΠ(Π) = −Π ( and so (−wΠ)(Π) = Π).

For an example let I = {0, 1, . . . n} and let E0 be the euclidean F-space with orthonormal
basis (ei | i ∈ I). For 0 6= i ∈ I put αi = ei−1 − ei. Put Π = {αi | 1 ≤ i ≤ n and
Φ = 〈Π〉. Note that (αi, αj ) = 2 if i = j, −1 if |i − j| = 1 and 0 if |i − j| > 1. In
particular, α̌i = αi and Π is a linear independent pre-root system. Thus Φ is a root
system. Note that ωαi(ei) = ei−1, ωαi(ei−1) = ei and ωαi(ej) = ej if j 6= i, i − 1. Hence
if we view Sym(I) as a subgroup of GL(E0), then ωai is the cycle (i− 1, i) in Sym(I) and
W (Π) = Sym(I). Thus the definition of 〈Π〉 implies that Φ = {ei − ej | i 6= j ∈ I}. Let
e = −

∑
i∈I iei. Then (e, αi ) = 1 for all i ∈ I and so e is a regular and dominant. Hence

Φ+ = {α ∈ Φ | (e, α ) > 0} = {ei − ej | i < j ∈ I}. Let α = e0 − en. Suppose that n > 1.
Then (α, α1 ) = (α, αn ) = 1 and (α, αi ) = 0 for 1 < i < n. If n = 1 then (α, α1 ) = 2. In
any case α is dominant, α = αl and so Π◦ = Π∪{−α}. Note that Γ(Π) is a string of lenght
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n with only single bonds. If n > 1 then Γ(Π◦) is circle of length n + 1 with only single
bonds and if n = 1, then Γ(Π◦) consist of two vertices with a double bond.

Let w ∈ Sym(I) be defined by w(i) = n− i. Then w(αi) = en−(i−1) − en−i = −αn+1−i.
Thus w(Π) = −Π and so wΠ = w. Note that −w induces the unique non-trivial graph
automorphism on Γ(Π).

Lemma 3.7.7 [phi-sigma invariant] Let Σ ⊆ Φ. Then Φ+ \ 〈Σ〉 is invarinant under
W (Σ).

Proof: By definition, 〈Σ〉 is invarinat under W (Σ). Hence also Φ\ 〈Σ〉 is W (Σ)-invariant.
Let α ∈ Φ+ \ 〈Sigma〉 and σ ∈ Σ. Then α 6= σ and so by 3.3.2(d), ωσ(α) ∈ Φ+. Thus
Φ+ \ 〈Σ〉 is ωσ-invariant and so also W (Σ) invariant. �

Proposition 3.7.8 [minimal 2] Let β ∈ Π and Σ = Π − β. Then the following are
equivalent.

(a) [a] β∗ is minimal.

(b) [b] β is long and W (Σ) act transitively on Φ+
l \ 〈Σ〉.

(c) [c] wΣ(β) = αl.

(d) [d] Π◦ is invariant under −wΣ

(e) [e] There exists a graph automorphism σ of Γ(Π◦)) with σ(β) = −αl.

(f) [f] Γ(Π◦ − β) and Γ(Π) are isomorphic graphs.

(g) [g] Φ = 〈Π◦ − β〉.

Proof: (a)=⇒ (b): By 3.7.5 nβ = 1. By 3.3.1 (β,β )
(αl,αl )

nβ is an integer and so (β, β ) =

(αl, αl ) and β is long.
Let δ ∈ Φ+

l \ Σ. By 3.5.5(d), 〈Σ〉 = Φ ∩ β∗⊥ and so (β∗, δ ) 6=. Since β∗ is minimal,
(β∗, δ ) = 1 = (β∗, αl ). (b) now follows from 3.5.5(e).

(b)=⇒ (c): Since Π is obtuse and wΣ(Σ) = −Σ, wΣ(β) is dominant on Σ. Since also αl

is dominant on Σ and since wΣ(β) and αl are conjugate under W (Σ, 3.5.5(a) (applied to
〈Σ〉 in place of Φ) implies wΣ(β) = αl.

(c)=⇒ (d): We have −wΣ(Σ) = Σ and −wΣ(β) = −αl. Since −wΣ has order 2,

−wΣ(−αl) = β and so (d) holds.
(d)=⇒ (e): By 3.7.7 wΣ(β) ∈ Φ+ and so −wΣ(β) 6= β. Since −wΣ leaves Π◦ and Σ

invariant we conclude −wΣ(β) = −αl. Also −wΣ is an isometry and so wΣ induces a graph
automorphism on Γ(Φ◦). So (e) holds with σ = (−wΣ |Φ◦ .

(e)=⇒ (f): Obvious.
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(f)=⇒ (g): By (f) 〈Π◦ − β〉 is a subroot system of Φ isomorphic to 〈Π〉 = Φ. As Φ is

finite, (g) holds.
(g)=⇒ (a): We have β ∈ 〈Π◦−β〉 and so α = nαl +σ for some n ∈ Z and σ ∈ ZΣ ∈ b∗⊥.

Thus 1 = (β∗, β ) = n(b∗, αl ) and so (b∗, αl ) = 1. Hence by 3.7.5, β∗ is minimal. �

For Φ = An we have that Π◦ is circle of lenght n + 1. Hence for all α ∈ Π, Π◦ − α is
a string of length n and so isomorphic to Π. Thus each α∗ for α ∈ Π is a minimal weight.
Also 0 is a minimal weight and hence An has n+ 1 minimal weights.

Definition 3.7.9 [def:cartan matrix] C and E are the Π × Π matrix defined by cαβ =
(α̌, β ) and eαβ = (α∗,β∗ )(β,β )

2 . C is called the Cartan matrix of Φ. Put eα := eαα.

Lemma 3.7.10 [basic cartan matrix]

(a) [a] α̌ =
∑

β∈Π cαββ
∗.

(b) [b] α∗ =
∑

β∈Π eαββ̌.

(c) [c] E = C−1.

Proof: (a) follows from 3.6.2(a) applied to B = Π.
(b) By 3.6.2(a), α∗ =

∑
β∈Π (α∗, β∗ )β =

∑
β∈Π (α∗, β∗ ) (β,β )

2 β̌ =
∑

β∈Π eαββ̌.
(c) Follows easily from (a) and (b). �

Proposition 3.7.11 [decomposing pi] Suppose Φ is connected. Let α ∈ Π be long and
let ∆ be the set of neighbors of α in Γ(Π). Put Σ = Π− α and let {σ̃ | σ ∈ Σ} the basis of
FΣ dual to Σ. For δ ∈ ∆ define ẽδ = (δ,δ )(δ̃,δ̃ )

2 and rδ = (α,α )
(δ,δ ) . Then

(a) [a] Each connected component of Σ contains exactly one element of ∆.

(b) [b] δ̃ is a minimal dominant weight for 〈Σ〉.

(c) [c] α̌ = α∗

eα
−

∑
δ∈D δ̃.

(d) [d] 1
eα

+
∑

δ∈∆ rδ ẽδ = 2.

Proof: Let D be the set of connected components of Σ. Note that

E = Fα∗ fFΣ = Fα∗ f i
D∈D FD.

and so

(∗) ǎ = mα∗ −
∑
D∈D

λD
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for some m ∈ F and λD ∈ FD. Let β ∈ 〈D〉. The (λD, β ) = −(β, α̌ ). Since Π is linearly
independent, β /∈ Fα and since α is long we conclude that (β, α̌ ) ∈ {−1, 0, 1}. Thus λD is a
minimal weight for 〈D〉. Since Π is obtuse, λD is dominant for D. From 3.7.5 we conclude
that λD = δ̃ for some δ ∈ D. Then clearly δ is the unique element of ∆ contained in D and
so (a) and (b) hold.

Note that 1 = (α∗, α ) = (α∗, α̌ ) (α,α )
2 and so by (*), 1 = m(α∗, α∗ ) (α,α )

2 = meα. Thus
m = 1

eα
and (c) follows from (*).

Note that

(α̌, α̌ ) =
4

(α, α )
,

(
α∗

eα
,
α∗

eα
) =

1
eα

(α∗, α∗ )
eα

=
1
eα

2(α∗, α∗ )
(α∗, α∗ )(α, α )

=
2

(α, α )
1
eα

and
(δ̃, δ̃ ) =

2ẽδ
(δ, δ )

=
2

(α, α )
rδ ẽδ

Computing the squared lengths of both sides in (c) we now obtain

4
(α, α )

=
2

(α, α )
1
eα

+
∑
δ∈∆

2
(α, α )

rδ ẽδ

Multiplying with (α,α )
2 we get

2 =
1
eα

+
∑
δ∈∆

rδ ẽδ.

Thus (d) holds. �

Proposition 3.7.12 [composing pi] Let I be a finite set. For i ∈ i let Ei an euclidean
F-space, Φi a connected root system in Ei with base Πi and δi ∈ Πi. Let {δ̃ | δ ∈ Πi} be the
basis dual to Πi in Ei and put ẽi = (δi,δi )(δ̃i,δ̃i )

2 . Also let l in F be positive. Suppose that for
all i ∈ I

(i) [a] δ̃i is a minimal dominant weight for Φi.

(ii) [b] ri := l
(δi,δi ) is an integer.

(iii) [c]
∑

i∈I riẽi < 2.

Define e ∈ F by 1
e +

∑
i∈I riẽi = 2. Choose a one dimensional euclidean F space X and

x ∈ X with (x, x ) = 2e
l . Put E = X f i

i∈IEi. Put α = l
2(x

e −
∑

i∈I δ̃i), Π = {α}∪
⋃

i∈I Πi

and Φ = 〈Π〉. Then Φ is a root system with base Π, α is a long root with (α, α ) = l,
eα = e, α∗ = x, {Πi | i ∈ I} is the set of connected components of Π − α and, for i ∈ I,
(δi, α̌ ) = −1, and δi is the unique neighbor of α in Πi.
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Proof: A straight forward calculation shows that (α, α ) = l and so

α̌ =
x

e
−

∑
i∈I

δ̃i.

Hence (δi, α̌ ) = −1 and (δ, α̌ ) = 0 for all other d ∈ Π−α. Also (α, ďi ) = ri(δi, α̌ ) = −ri
is a negative integer. Hence Π is a linearly independent, obtuse pre-root system and so
by 3.1.13 Φ is a root system.x ⊥ Π − α and (x, α ) = l

2e(x, x ) = 1. So x = α∗ and

eα = (α,α )(α∗,α∗ )
2 = l 2e

l
2 = e. �

Lemma 3.7.13 [echa] Let ((α̌)∗ | α ∈ Π) be the basis for E dual to Π̌. Then (α̌)∗ =
(α,α )

2 α∗ and eα̌ = eα.

Proof: Let r := (α,α )
2 . Then rα̌ = α. Clearly β̌ ⊥ rα∗ for all α 6= β ∈ Π. Also

(rα∗, α̌ ) = (α∗, rα̌ ) = (α∗, α̌ ) = 1

and so (α̌)∗ = rα∗.

2eǎ = (ǎ, ǎ ) · ((ǎ)∗, (α̌)∗ ) = (ǎ, ǎ ) · (rα∗, rα∗ )
= (rǎ, rǎ ) · (α∗, α∗ ) = (α, α ) · (α∗, α∗ ) = 2eα.

So eǎ = eα and the lemma is proved. �

Lemma 3.7.14 [pi a tree] Let Φ be a connected root system.

(a) [a] Γ0(Π) is a tree.

(b) [z] Let α ∈ Πl. Then eα ≥ 1
2 with equality iff Π = {α}.

(c) [b] Suppose α ∈ Πl with eα < 1. Then Φ ∼= An, α is an end-node of Π and eα = n
n+1 .

(d) [c] Exactly one of the following holds:

1. [a] α̌l = β∗ for a long root β ∈ Π.

2. [b] Φ ∼= An and α̌l = β∗1 + β∗n where β1 and βn are the end nodes of Π ( with
α̌l = 2β∗1 if |Π| = 1).

3. [c] Γ(Π◦) = r b b . . . b b b> < and α̌l = β∗

for the short end-node β of Π.

(e) [y] If Φ 6∼= An then αl is an end-node of Π◦ and Γ(Π◦) is a tree.
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(f) [d] Suppose Φ 6∼= An and β ∈ Π such that β∗ is a minimal weight. Then β is an
end-node of Π◦ and Π.

Proof: (a) Let α ∈ Π be long. By induction each connected component of Π−α is a tree.
Also by 3.7.11, α is joint to exactly one vertex from each connected component of Π − α.
Thus also Π is tree.

By 3.7.13 eα = eǎ. So (b) and (c) are true for (α,Φ) iff they are true for (α̌, Φ̌). So for
(b) and (c) we assume without loss that α is long.

(b) By 3.7.11(d) 1
eα

+
∑

δ∈∆ rδ ẽδ = 2. So eα ≥ 1
2 with equality iff ∆ = ∅. Since Π is

connected (b) holds.
(c) If ∆ = ∅, (c) holds with n = 1. Suppose that |∆| > 0. Then eα < 1 implies∑

δ∈∆ rδ ẽδ < 1. Thus ∆ = {δ}, rδ = 1 and ẽδ < 1. So by induction on Π, 〈Π− α〉 ∼= Am, δ
is an end-node of Π− α and eδ = m

m+1 . Thus Φ ∼= Am+1 and 1
eα

= 2− m
m+1 = m+2

m+1 and (c)
is proved.

(d) Since α̌l is a dominant intergral weight α̌l =
∑k

i=1 β
∗
i for some βi ∈ Π. Since

2 = (αl, α̌l ) = 2 =
∑l

i=1 (β∗i , αl ) and ((b∗i , αl ) is a positive integer we get, k ≤ 2.
If k = 2, then (β∗i , αl ) = 1, β∗i is a minimal weight and so by 3.7.8(b), β∗i is long.

Also by 3.7.2(d), (β∗1 , β
∗
2 ) > 0 and so (α̌l, α̌l ) > (β1, β1 ) + (β2, β2 ). Since βi is long,

(αl, αl ) = (βi, βi ) and multiplication with (αl,αl )
2 gives 2 > eβ1 + eβ2 . So eβi

< 1 for at least
one i. By (c), Φ ∼= An. For Φ = An we have αl = e0 − en and (d:2) holds in this case.

So suppose k = 1 and put β = β1. If β is long, (d:1) holds. So suppose that β is not
long. Put r = (αl,αl )

(β,β ) . By 3.7.13,

(β̌)∗ =
(β, β )

2
β∗ =

(β, β )
2

α̌l =
1
r
αλ.

Hence αl = r(β̌)∗. Since (β̌)∗ is an integral weight on Φ̌ we conclude that r divides
(αl, α̌ ) for all α ∈ Φ. Choosing α = αl we see that r = 2. If α ∈ Φl with α 6= ±αl we get
α ⊥ αl. Let δ be a long root of minimal distance from β in Γ0(Π). Let Σ be the set of
vertices of the path from β to δ. By 3.5.4 a we have Σ ⊆ F(〈Σ〉l) and so there exists a long
root ε ∈ Σ+ with αl 6⊥ ε. Then αl = ε ∈ FΣ. Suppose ρ ∈ Π \ Σ. Then αl ∈ FΣ implies
(ρ∗, αl ) = 0, a contradiction to 3.7.2(d). Thus Σ = Π and (d) holds.

(e) By (d), α̌l = β∗ for some β ∈ Π. Thus β is the unique neighbor of −αl in Γ0(Π◦. By
(a), Γ0(Π) is a tree and so (e) holds.

(f) By (e), −αl is an end-node of Π◦. Hence by 3.7.8(e), also β is an end-node of Φ◦.
�

Lemma 3.7.15 [w pi] Let Φ be a connected root system with |Π| > 1. Put Σ = Π ∩ α⊥l
and let α ∈ Π \ Σ.

(a) [a] wΠ = ωαl
wΣ = ωαl

wΣ

(b) [b] αl = (−wΠ)(α) + wΣ(α).
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(c) [c] Π \ Σ = {α, (−wΠ)(α)}.

(d) [d] (−wΠ) |Σ= (−wΣ) |Σ.

(e) [e] Each connected component of Γ(Σ) is invariantt under −wΠ.

Proof: (a) Let β ∈ Φ+ and put δ = wΣ(β). We claim that (ωαl
wΣ)(β) = ωα(δ) ∈ Φ−.

Since Σ ⊥ αl we have wΣ(αl) = αl. Since wΣ is an isometry,

(∗) (β, αl ) = (wΣδ, wΣ(αl) ) = (δ, αl )

Suppose first that β ⊥ αl. By 3.5.5(d), Φ∩α⊥l =< Π∩α⊥l 〉 = 〈Σ〉 and so β ∈ 〈Σ〉. Thus
by definition of wΣ, δ = wΣ(β) ∈ Φ−. By (*), δ ⊥ αl and so ωαl

(δ) = δ ∈ Φ−.
Suppose next that (βαl, > )0. Then since ωαl

is an isomoetry and has order two

(ωαl
(δ), αl ) = (δ, ωαl

(αl) = −(δ, ( )αl ) = −(β, αl ) < 0

and again ωαl
(δ) ∈ Φ−.

This proves the claim and so wΠ = ωαl
wΣ. Taking the inverse on both sides of this

equation gives wΠ = wΣωαl
.

(b) Since Π 6= {α}, 3.7.2(e) implies αl 6= α and so (α, α̌l ) = 1. Thus wαl
(α) = α − αl.

Also wΣ(αl) = −αl and so by (a) wΠ(α) = wΣ(wαl
(α)) = wΣ(α)− αl.

(c) Let Π′ = Σ ∪ {α, (−wΠ)(α)}. Note that wΣ(α) ≤ 〈α,Σ〉 ≤ FΠ′. So by (a) also
αl ≤ FΠ′. Suppose that β ∈ Π \Π′, then (αl, β

∗ ) = 0, a contradiction to 3.7.2(e).
(d) Since ωαl

acts trivially on Σ, this follows from (a).
(e) Let D be the set of connected componenent of Σ. Then −wΣ = −

∏
∆∈D w∆ fixes

each ∆ ∈ D. So (e) follows from (d). �

Proposition 3.7.16 [decomposing affine] Suppose that α̌l = α∗ for a long root α. Re-
tain the notation from 3.7.11 and for δ ∈ ∆ let Πδ be the connected component of Σ
containing δ.

(a) [a] eα = 2.

(b) [b] −wΣ(δ) = δ for all δ ∈ ∆.

(c) [c]
∑

δ∈∆ rδ ẽδ = 3
2 .

(d) [d] One of the following holds.

1. [a] |∆| = 3, δ is long and Πδ = {δ} for all δ ∈ ∆.

2. [b] ∆ = {δ, ε}, δ and ε are long, Πδ = {δ} and ẽε = 1.

3. [c] ∆ = {δ, ε}, Πδ = {δ}, Πε = {ε}, δ is long and rε = 2.

4. [d] ∆ = {δ}, δ is long and ẽδ = 3
2 .
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5. [e] ∆ = {δ}, Πδ = {δ} and rδ = 3.

Proof: (a) εα = (α,α )(α∗,α∗ )
2 = (αl,αl )(α̌l,α̌l )

2 = 2.
(b) Note that (−wΠ) fixes αl and Π and so also α and ∆. By 3.7.15(e), wΠ also fixes

Πδ and so Πδ ∩∆ = {δ}. Thus (−wΠ)(δ) = δ and (b) follows from 3.7.15(d).
(c) Follows (a) and 3.7.11(d).
(d) Let δ ∈ ∆. If ẽδ < 1, then by 3.7.14(c) 〈Πd〉 ∼= An and δ is an end-node in Πδ. Thus

(b) implies that n = 1 and so 〈Πδ〉 = {d}. (d) now follows easily from (d).

Proposition 3.7.17 [composing affine] Retain the assumptions and notations of 3.7.12.
Suppose in addition that for all i ∈ I,

(iii’) [a]
∑

i∈I riẽi = 3
2

(iv) [b] −wiΠi(δi) = δi.

Then αl = α+ w(α) and ǎl = α∗.

Proof: Put λ =
∑

i∈I δ̃i and w =
∏

i∈I wΠi . Since −wΠi normalizes Πi and by (iv) fixes
δi we have −wΠi(δ̃i) = δ̃i. Thus w(λ) = −λ. From (iii’) we have e = 2 and ǎ = 1

2x − λ.
Hence α̌+w(α̌) = x = α∗. Since (x, x ) = 4

l = (α̌, α̌ ) we see that x̌ = α+w(α). By 3.7.12,
α is long and so also and x is a long root. Since x = α∗ is dominant and αl is the unique
dominant long root, x̌ = αl. �

Lemma 3.7.18 [l-m] Let λ and µ dominant minimal integral weights on Φ. Then also
λ− µ is minimal.

Proof: Let α ∈ Φ+. Then (λ, α ) ∈ {0, 1} and (µ, α ) ∈ {0, 1} and so (λ− µ, α ) ∈
{−1, 0, 1}. �

Lemma 3.7.19 [basic min]

(a) [a] Let a, b ∈ E with a≺̌b. Then a+ ZΦ̌ = b+ ZΦ̌.

(b) [b] If W acts trivially on Λ̆/ZΦ̌.

(c) [c] Let e ∈ C. Then {b ∈ C | b≺̌e} is finite.

(d) [d] Every coset of ZΦ̌ in Λ̆ contains a dominant integral weight which is minimal in
Λ̆+ wit respect to ≺̌.
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Proof: (a) By definition of ≺̌, b− a ∈ NΠ̌ ≤ ZΦ̌.
(b). Let λ ∈ Λ̆ and α ∈ Φ. Then ωα(λ) = α− (λ, α )α̌ ∈ λ+ ZΦ̌.
(c) Let b ∈ C with b≺̌e. Then e − b ∈ NΠ̌ and e + b ∈ C. Thus (e+ b, e− b ) ≥ 0 and

(b, b ) ≤ (e, e ). By 3.1.6, ZΠ̌ is discret Hence also b+ZΠ is discret. Therefore {b ∈ C | b≺̌e}
is discret and bounded and so by 3.1.7 finite.

(d). Let λ ∈ Λ̆. Then w(λ) is dominant for some w ∈ W . By (c) there exists b ≺ w(λ)
such that b is ≺̌-minimal in Λ̆+. Then by (a) and (b), b, w(λ) and λ all lie in the same coset
of ZΦ̌. So (d) holds.

Lemma 3.7.20 [min equal min]

(a) [b] Let λ ∈ ZΦ̌ be minimal. Then λ = 0.

(b) [a] Let λ ∈ Λ̆+. Then λ is ≺̌- minimal if and only if λ is minimal.

(c) [c] Every coset of ZΦ̌ in Λ̆ contains a unique dominant minimal weight.

Proof: Without loss Φ is connected.
(a) By 3.4.2 there exists w ∈W such that w(λ dominant. Then also w(λ) is minimal and

we may assume that λ is dominant. Let λ =
∑

a∈Π nαα̌ with nα ∈ Z. Suppose that λ 6= 0.
Let a ∈ Π. By 3.7.2(e), (λ, α∗ ) > 0. So also nα = 2

αα(λ, α∗ ) > 0. Also (λ, αl ) = 1 and since
(α̌, αl ) ∈ N we conclude that there existts a unique α ∈ Π with (α̌, αl ) 6= 0. Moreover,
nα = 1 = (α̌, αl ). and α is long. As α is long −1 ≤ (β, α̌ ) ≤ 1 for all ±α 6= p ∈ Φ.
Also Π is obtuse and so −α̌ is a dominant minimal weight on Σ := Π − α. Hence also
−ωΣ(−α̌) = ωΣ(α̌) is a dominant minimal weight on Σ. Since nα = 1 we have λ− α̌ ∈ ZΣ̌.
By 3.7.19(b), α and and ωΣ(α̌) lie in the same coset of ZΣ̌. Thus λ−ωσ(α̌) ∈ ZΣ̌. By 3.7.18
λ − ωΣ(α̌) is a minimal weight on Σ. Thus by induction λ − ωΣ(α̌) = 0. So λ = ωΣ(α̌).
Thus α̌ is a mimimal weight a contradiction to (α, α̌ ) = 2.

(b) and (c): We frist show that

(**) If λ ∈ Λ̆+ is ≺̌- minimal then λ is minimal.

For this it suffices to show that (λ, αl ) ≤ 1. Choose a long root δ of minimal height with
(λ, δ ) = (λ, α )λ. Since λ is ≺̌-minimal, λ − δ̌ is not dominant and so there exists β ∈ Π
with (λ− ď, β ) < 0. So

(∗). (λ, β ) < (β, δ̌ ).

Suppose that δ 6= β. Then since δ is long, (β, δ̌ ) = 1 and so (λ, β ) = 0. Hence (λ, ωβ(δ) ) =
(λ, δ ) = (λ, α ) and ωβ(δ) is a positive long root of smaller height than δ, a contradiction to
the choice of δ. Hence δ = β. So by (*) (λ, αl ) = (λ, δ ) < (δ, δ̌ ) = 2. Hence λ is minimal.

Next we show that

(***) Every coset of ZΦ̌ in Λ̆ contains at most one minimal dominant weight.

For this let λ and µ be minimal dominant weights in the same coset of ZΦ̌. Then
λ− µ ∈ ZΦ̌ and by 3.7.18, λ− µ is minimal. So by (a), λ− µ = 0 and λ = µ.
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Now let λ be any dominant minimal weight in Λ̆. By 3.7.19(d), λ + ZΦ̌ contains a
≺̌-minimal element µ. By (**) µ is minimal and by (***) λ = µ. Thus (b) holds.

(c) follows from (b), 3.7.19(d) and (***). �

Definition 3.7.21 [o ab]

(a) [a] For a path p = (α0, α1, . . . αn) in Γ0(Φ) define s(p) =
∏n

i=1 |(α̌i−1, αi )|.

(b) [b] If α, β ∈ Π ie in the same connected component of Γ(Φ), then αβ denotes the unique
path in Γ0(Π) from α to β.

(c) [c] det Π is the number of minimal dominant weights for Φ.

Lemma 3.7.22 [basic det pi]

(a) [a] det Π = |Λ̆/ZΦ̌| = detC.

(b) [b] Let α, β ∈ Π If α and β are in the same connected componenent of Γ0(Π), then
eαβ = s(αβ)det(Π−αβ)

detΠ . Otherwise eαβ = 0.

Proof: (a) By 3.7.20(c), detΠ = |Λ̆/ZΦ̌|.
Define T ∈ EndZ(Λ̆) by T (α∗) = α̌ =

∑
β∈Π cαββ

∗. Then T (Λ̆) = Z(Φ̌) and so

|Λ̆/ZΦ̌| = |detT | = detC

Thus (a) holds.
By 3.7.10(c) E = C−1. Let α, β ∈ Π. Then there either exists no path or exactly

one path from α to β in Γ0(Π). In the first case 3.6.1 implies eαβ = 0. In the second let
αβ = (α0, α1 . . . , αn). Then since Π is obtuse,

(−1)n
n∏

i=1

cαi−1αi =
∏
i=1

|(ǎi−1, α̌i )| = s(αβ).

Thus by 3.6.1

eαβ = s(αβ)
detC(Π− αβ)

detC(Π)
.

(b) now follows from (a). �
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3.8 The classification of root system

In the section we determine all the connected roots systems up to isomorphism. We also
determine the affine diagrams, the action of −wΠ on Π and the minimal weights. we combine
all thus information in what we call the labeled affine diagram:

Recall that the non-zero minimal weights are all of the from α∗ for some root α ∈ Π.
We will label such an α with det(Π−α. We also label −αl with det Π. We use a filled node
to distinguish −αl from the remaining vertices for Π◦. We also draw a dotted line betweeen
any two distinct elements of Π which are interchanged by −wΠ.

Theorem 3.8.1 [labeled affine] The labeled affine diagrams of the connected root systems
are exactly as listed in Figure 3.8.

Proof: By induction we assume that labeled affine diagrams of rank smaller than n are
exactly as in Figure 3.8.

Suppose we know the affine diagrams for the rank connected roots sytems. Then 3.7.8[f]
gives us detΠ and all α ∈ Π such that α∗ is minimal. From 3.7.15 and induction we obtain
the action of −wΠ on Π. Also by induction we can compute det(Π− α).

So it remains to determine the affine diagrams.
In case 3.7.14(d:2),d:2 we see that the Π◦ = A◦n or Π◦ = C◦n.
So suppose that αl = α∗ for a long root α.
We now consider the different case of 3.7.16(d).

In case d:1 Π◦ ∼= D◦
4.

In case d:2 Πε is a connected rankn− 2 root system, ẽε = 1 and wΠε(ε) = ε. Note that
by 3.7.22(b), ẽε = det(Πε−ε)

detΠε
and so eε can be computed from the labeled affine diagram of

Πε.
Suppose that Πε = An−2. Then since wΠε fixes ε, we get n− 2 = 2k + 1 and

1 = ẽε =
(detΠ(Ak))2

det Π(A2k+1)
=

(k + 1)2

2k + 2
=
k + 1

2
.

Thus k = 1, n = 5 and Π◦ = D◦
5.

If Πε = Bn−2, then ε is the long end-node and Π◦ = B◦n for n ≥ 5.
If Πε = Cn−2, then again ε is the long end-node, n−2

2 = 1 and so n = 4 and Π◦ = B◦4 .
If Πε = Dn−2 then either ε is the left end-node or n− 2 = 4. In any case Π◦ = D◦

n.
According to Figure 3.8 no other possibilities occur in the current case.

In case d:3 Π◦ = B◦3 .

In case d:4 Πδ is a connected rankn− 1 root system, ẽδ = 3
2 and wΠδ

(δ) = δ.

If Πδ = An−1. n − 1 = 2k + 1 and 3
2 = ẽδ = (k+1)2

2k+2 = k+1
2 . Thus k = 2, n = 6 and

Π◦ = E◦6 .
If Πδ = Cn−1, then ε is the long end-node, n−1

2 = 3
2 and so n = 4 and Π◦ = F ◦4 .
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If Πδ = Dn−1 then ε is one of the right end-nodes end-node and n−1
4 = 3

2 so n = 7 and
Π◦ = E◦7 .

If Πδ = E7, then δ is the right end-node and Π◦ = E◦8 .
According to Figure 3.8 no other possibilities occurs in the current case.

In case d:5 Π◦ = G◦2.
Finally we remark that 3.7.17 ensures that all the root systems encounter actually do

exit. �
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Figure 3.2: The labeled affine diagrams
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Figure 3.2: The labeled affine diagrams
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