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Abstract
The reaction—diffusion delay differential equation

ur(x,t) —uxx(x,t) :g(x,u(x,t),u(x,t— r))

arises in many applications in the sciences. Group analysis is applied in the study of this equation. A new definition of an equiv-
alence Lie group for delay differential equations is given. As for the Lie group theory of differential equations, the determining
equations for the equivalence and admitted Lie groups are constructed. The general solutions of the determining equations are
obtained. The complete group classification of the reaction—diffusion equation with delay is presented in the manuscript and the
invariant solutions of this equation are constructed.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The manuscript is devoted to applications of group analysis to the reaction—diffusion equation with delay.! Delay
differential equations appear in problems with delaying links where certain information processing is needed, for ex-
ample, in population dynamics and bioscience problems, in control problems, electrical networks containing lossless
transmission lines [1-6].

Group analysis is one of the methods for constructing exact solutions [7]. This method was developed for partial
(ordinary as well) differential equations. An admitted Lie group plays the main role in this method. After obtaining an
admitted Lie group one can use it for constructing invariant solutions. Recently a definition of an admitted Lie group
for functional differential equations was given [8,9].2

* Corresponding author.
E-mail address: sergey @math.sut.ac.th (S.V. Meleshko).
1 The theory and applications of this equation can be found in [6].
2 There are also other approaches [10,11]. The method developed in [8,9] has some similarities with the approach [12].
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For the sake of simplicity we give an introduction for constructing an admitted Lie group for a delay differential
equation with a single independent variable

D(t,x)=x't)—Ft,x))=0 (el). €Y
Here? x, denotes the function x(f) € D C R, which is defined in the interval [t — 7, ¢] by
xi(s)=x({+s), sel[—r,0],

D is an open set in R, J is an interval in R, F' is a functional. For delay differential equations the functional F has
the representation

Ft,x)=f(t,x(g1(D),....x(gn (D)),
where f:[tg, B) x D™ — R", and g;(t) <t for fp <t < B foreach j =1, ..., m. The function g; is usually chosen
to be the identity mapping. Here we consider the case where m =2, g1(t) =¢, and g2(¢) =1 — 7.
The Cauchy problem for delay differential equations (1) is set as follows. The initial conditions are defined by a
function ¢ : [—7,0] — D,
x(to+s)=v(s), se€[-1,0l (@)

A continuous function x(¢), t € [ty — 7, fo + B), is called a solution of the Cauchy problem (1), (2) if it is differentiable
in the interval (fy, B), satisfies Egs. (1) in the interval [#y, 8) and conditions (2) in the interval [fy — T, fo]. The value
x'(tp) is understood as the right-hand derivative. With some requirements* for the functional F one can guarantee the
existence of the solution of the Cauchy problem (1), (2).

1.1. Admitted Lie group

Let there be given a one-parameter Lie group G'(X) of transformations
f=f'(t,x,a), Xx=f*@t,x,a) 3)
with the generator
X =£&(t,x)0; +n(t, x)0x.

Definition. A one-parameter Lie group G' of transformations (3) is a symmetry group admitted by Eq. (1) if G! sat-
isfies the determining equation

(X®)(1,x(1)) =0 “)
for any solution x(¢) of Egs. (1).
Here the operator X is the prolongation of the canonical Lie-Bicklund operator equivalent to the generator X given
by
X =0 0+ ¢% 00+,

where ¢ =n — x'¢, ;‘xl = D;¢* and Dy is the total derivative with respect to t. The actions of the derivatives 9,
and 0,/ are considered in terms of the Frechet derivatives.

Formally the determining equations (4) can be constructed similarly to those for integro-differential equa-
tions [9,13]. Assume that the Lie group G'(X) transforms a solution xo(¢) of Eq. (1) into the solution x,(#) of
the same equation. The transformed function x, (7 ) is

xa(f) = fx(tv-xo(t)aa)

3 The notations accepted in literature on functional differential equations are used.
4 These requirements are similar to the conditions used in ordinary differential equations (see, for example, in [4]).
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with the expression ¢ = ¥’ (f; a) substituted, which is found from the relation r = f’(t, xo(t), a). Differentiating the
equations @ (t, x,) with respect to the group parameter a and considering these equations for the value a = 0, that is,

2
(aa ( ,Xa)>

one obtains the determining equations (4). Equation (5) can also be obtained by the action of the operator X on the
delay differential equation. Thus the determining equations can be constructed without differentiation with respect to
the parameter a. To illustrate this we consider the equation

@1, x)=x"(t) — f(t,x(1), x(t — 7)) =0, (6)

where 7 > 0. The action of the operator X on (6) gives
¢¥ — fat* — f3¢" =0,
where f; (i =1, 2, 3) is the derivative of the function f(xi, x2, x3) with respect to x; and
¢ =n(t,x(0) — X' (1, x (1)), =t -, x(—1) =Xt —DE( —T,x(t — 1))

with g“x/ = (D;Z*)(t, x (1), x'(¢)). Here x(¢) is an arbitrary solution of (6).

The main features of the determining equations in the given definition is that they must be satisfied for any solution
of Eq. (1). This allows splitting the determining equations with respect to arbitrary elements. Since arbitrary elements
of delay differential equations are similarly contained in the determining equations as for differential equations, the
process of solving the determining equations for delay differential equations is similar to finding the solutions of the
determining equations for differential equations.

Notice that the given definition is free from the requirement that the admitted Lie group should transform a solution
into a solution, and also it can be applied when finding an equivalence group, contact and Lie-Bécklund transforma-
tions for functional differential equations.

Group classification is already defined for partial differential equations. For partial differential equations it is known
that each equation has an arbitrary function associated with it. For each function there is an admitted Lie group and
equations can be classified according to the admitted Lie group which in turn is used for the construction of invariant
solutions. We extend this notion to the treatment of delay differential equations. This is the first time that the complete
Lie group classification of delay differential equations is being given. As a result we will include all calculations
because there is a difference in the treatment of partial differential equations to that of delay differential equations.

This manuscript is devoted to the group classification of the reaction—diffusion equation with delay. For differential
equations there is a theorem that if one finds the admitted Lie group it can be used to construct invariant solutions.
However, for delay differential equations no such theorem exists. It appears that this can be applied to delay differential
equations and this article confirms it. In this article the found admitted Lie groups are applied for the construction of
invariant solutions of the reaction—diffusion equation with a delay.

The manuscript is organized as the following. Section 2 gives the new definition of an equivalence Lie group for
functional differential equations. In Section 3 we discuss the reaction—diffusion equation with a delay. In Section 4 the
equivalence Lie group for the reaction—diffusion equation with a delay is determined. In Sections 5—7 we determine
the admitted Lie group and the various cases arising for group classification. In Section 8, a summary of the group
classification is given and in Section 9 we construct the invariant solutions for the various cases arising.

0 =0 ®)

a=

2. Equivalence Lie group

A transformation of the independent and dependent variables, and arbitrary elements is called an equivalence
transformation of a system of differential equations if it conserves a differential structure of the equations. If a set
of equivalence transformations of partial differential equations composes a Lie group of transformations, then these
transformations can be found by solving the determining equations. Conversely, any solution of the determining
equations composes a Lie group of equivalence transformations of partial differential equations.

Since the Lie—Bicklund representation of the determining equations of an equivalence Lie group for partial
differential equations is nowhere written down, we present it here. Formally these equations can be obtained by
differentiating with respect to the group parameter the transformed system of partial differential equations in which
the transformed solution has been substituted.
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2.1. Lie—Bdcklund representation of determining equations for the equivalence Lie group

We consider a system of partial differential equations with the independent variable x, dependent variable u, and
arbitrary element ¢, which transfers a system of differential equations of the given class

FrGu, p,¢p)=0 (k=1,2,...,5) (7

to the system of equations of the same class. Here (x,u) € V C R™™ and ¢p:V — R

The problem of finding equivalent transformations consists of the construction a transformation of the space
R+ (x u, ¢) that preserves the equations, while only changing their representative ¢ = ¢ (x, #). Assume that
a one-parameter Lie group of transformations of the space R"™"*! with the group parameter a:

= udia), W= u¢ia), ¢ =000 u, ¢ a) ®)
satisfies this property. The generator of this Lie group has the form
X¢=&d 4+ 1"y + %0y,
where the coordinates are
=t g, 1 =n"Coug). 1 =n"wu¢) G(=1...nj=1..mk=1...1).
The equivalent Lie-Bécklund form of this generator is
X =10"0, +¢%0,. )
Here the coordinates are
¢ =0 —ule, ¢ =0 Do,
where D;i =0y, + Uy, 0y + (Pulty; + Gy, )0p.
Any solution ug(x) of system (7) with the functions ¢ (x, u) is transformed by (8) into the solution u = u,(x’) of

system (7) with the same functions F' k and another (transformed) function ¢a(x, u). The function ¢, (x, u) is defined
as follows. Solving the relations

x'= f(x,u, ¢ (x,u); a), u'= f"(x,u,¢(x,u);a)
for (x, u), one obtains

x=g"',u';a), u=g"(x',u’;a). (10)
The transformed function is

$a (' 1) = £ (x.u,p(x, 1) a),

where, instead of (x, u), one has to substitute in their place the expressions (10). Because of the definition of the
function ¢, (x’, u’), there is the identity with respect to x and u,

(da o (5, ) (xus @ Cx,w); @) = [ (x4, §(x,4); a).
The transformed solution 7, (u) = u,(x) is obtained by solving the relations
xl = fx(-xa uo(x)a ¢(-x? MO(-X)); a)
for x and substituting this solution x = ¥*(x’; a) into
ua(x") = f(x, 10 (x), p(x, uo(x)); a).
As for the function ¢,, there is the identity with respect to x
(a0 f5)(x, uo(x), @(x, uo(x)); a) = f(x,u0(x), d(x, up(x)); a). (11)

Formulae for transformations of the partial derivatives p/, = f?(x,u, p, ¢, ..., a) are obtained by differentiating (11)
with respect to x’.
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Since the transformed function u, (x") is a solution of system (7) with the transformed arbitrary element ¢, (x’, u’),
the equations

Fk(x/, ua(x"), ph(x"), da (x/, ua(x/))) =0 (k=1,2,...,5) (12)

are satisfied for an arbitrary x’. Because of a one-to-one correspondence between x and x’ one has

FE(f*(z(x), a), f*(z(x),a), fP(zp(x),a), fO(z(0)) =0 (*k=1,2,...,5), (13)

where z(x) = (x, uo(x), @ (x, uo(x))), 2p(x) = (x, U (x), P (x, up(x)), po(x),...).
Differentiating Egs. (12) with respect to the group parameter a, and setting a = 0, one obtains the determining
equations in Lie-Bécklund form?:

X P, u, p. sy =0 (k=1,2,....5). (14)

The prolonged operator for the equivalence Lie group

§e=5f\e+§’”3ux+"'

has the following coordinates. The coordinates related to the dependent functions are

" =D5g", DY =0y + updy + (Puusr + $1)0g,

where A takes the values x; (i =1, 2,...,n). The sign |(S) means that the equations XeFk (x, u, p, ) are considered
on any solution u,(x) of Egs. (7).

The set of transformations, which is generated by one-parameter Lie groups corresponding to the generators X¢, is
called an equivalence Lie group. This group is denoted by G S¢.

The determining equations (14) were obtained by using the existence of the solution of (7). After constructing (14)
one can use a geometrical approach in which the equivalence group is defined by Eqgs. (14) without the requirement
of the existence a solution of (7). In this case the sign |(s5) means that the equations X¢Fk (x,u, p, @) are considered
on the manifold defined by Eqgs. (7). The difference between these two approaches consists in defining the sign |s).
Note that the same difference between the geometrical approach and the others lies in the definitions for obtaining an
admitted Lie group.

2.2. Equivalence Lie group of delay differential equations

For delay differential equations a notion of an equivalence Lie group is not defined. This section is devoted to a
reasonable generalization of the definition of an equivalence Lie group for delay differential equations. The idea of
the definition of an equivalence Lie group for delay differential equations is similar to the definition of an admitted
Lie group.

Firstly determining equations are constructed. These equations are obtained on the basis that a Lie group of trans-
formations of the independent and dependent variables, and arbitrary elements transforms a solution of the original
system of equations into the solution of a system of equations which differs from the original system only by arbi-
trary elements. The arbitrary elements are functions and constants which are not specified in the system of equations.
Differentiating with respect to the group parameter and assigning it to zero, one obtains the determining equations.

A solution of the determining equations gives the generator of a Lie group. This Lie group of transformations is
called a potential equivalence Lie group. Notice that for partial differential equations by virtue of the inverse function
theorem a potential equivalence Lie group simply becomes an equivalence Lie group.

Construction of a potential equivalence Lie group for the reaction—diffusion equation with a delay is given in the
next section.

5 In contrast, differentiating Eqs. (13) with respect to the group parameter a, and setting a = 0, one obtains the determining equations in classical
form [9].
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3. The reaction—diffusion equation with a delay

The manuscript is devoted to the study of group properties of the equation
ur(t,x) =uyx(t,x) + g(x, u(t,x), u(t — r,x)) (t>1,). (15)
The theory of existence of solutions of Eq. (15) can be found in [6]. For example, initial conditions are
u(s, x) =@(s,x) (o =7 <5< tp),

where the function ¢(s, x) is an arbitrary function. Due to the arbitrariness of the function ¢(s, x) one can conclude
that the values u(t,, x,), u(t, — T, xo), ux (ty, Xo), Uy (ty — T, Xp), Uxx (o, Xo), Uxx (t, — T, X,) and some other derivatives
are arbitrary. This will allow us to split the determining equations.

4. The equivalence Lie group of Eq. (15)

For the simplicity of the study let us introduce the new dependent variable v, which is related with u by the formula
v(t,x)=u(t —1,x). (16)
Thus, Eq. (15) becomes the partial differential equations with two dependent variables
S=ur — (uxx +8) =0, (17)
where the arbitrary element is g = g(x, u, v). The generator of the Lie group will take the form
X¢ =§&0x +10; + 0y +§U3v +§gaga
where &(7, x,u, v, 8), n(t, x,u, v, 8), ¢t x,u,v,8),¢"(t, x,u,v,8),;8(t,x,u,v,8).
Applying the algorithm described earlier to Eq. (17), one obtains the determining equation
(é.ut_é-“xx_Cg_i_Eng_i_nDtg)‘(S):O’ (18)

where

¢ =Di(§ —Euc—nup). £ = DIC — Euy —nup). (19)
The determining equation related with Eq. (16) is

{¢°(z0. 1) = ¢ (2t — 7.%)) — v (0. X) (E(2(2, %)) — & (2t — 7. %))
— e (1, ) (n(z(t, %)) = (2t — 7, 1))} |(5) =0, (20)

where

z(t,x) = (t, x,u(t,x),v(t, x), g(x, u(t, x), v(t, x))).
Substituting the coefficients (16) into (18) and replacing the derivatives

Uy = Ur8u + vVt + Uxxt, Uxt = Ux&8u + Gullx + Uxxx + &x,
Uy =uxx + g, U =Vyx + 8,

found from (17), the determining equation (18) becomes

—V3UEpy — VyllexTow + Ui (— w08 — 210080 + Luv) — 20xt3Euy — 20xllxllax Ny
+ 205t (— w8 — Mu&v — M8 — Exv + Cuv) — 20l (v + £) — U
+ 20y (—7x08 — Mw8x — Mx&v + Cxv) — UylhxTuu — 2Wxltcx (N + Eu)
+ 12 (~ g — 20u8u — 2Exu + Cun) — 2Vxlxxx Ny — 2xlhyxx iy — 2Ny
+ux(85v — 2nxu& — 21u8x — 20x8u + &t + 8ug — Sxx + 28xu) + txx (§0v + M + Nug — Nxx — 28x)
+ 808 — &) + Mg+ Mug” — Nxe8 — 20x8x — &t — Lug + Lxx + {5 =0.



454 S.V. Meleshko, S. Moyo / J. Math. Anal. Appl. 338 (2008) 448—466

After splitting this equation with respect to Uy, Uyy, Uy, Uxxy and g one obtains®

g + Mg — Mxx8 — 2Mx8x — &t — Cug + Lax +£5 =0,

—20xu8 — 2Nu8x — 20x&u + & +&ug — Sxx + 28w =0,

Nt + Mug — Nxx — 26: =0,

Ny =0, N =0, =0, Nxu + & =0, Ny +& =0, § =0, Mg — & =0,
Euu =0, Nuu = 0, Ny =0, Nuy = 0, §vw =0, & =0,

—Nxv8 — Nu8x — Nx&v + Lxv =0, —Nwg — 2Mv&v + Lvw =0,

—Nuvg — Nu&v — Mv&u — &xv + Cuv =0, —Nuug — 2Nu8u — 2&xu + Suu = 0.

From (24) one obtains

Ux:Os 77u:0a ﬂvZO, SMZO, %_v:Oa {vZO-

2
(22)
(23)
(24)

(25)

Differentiating (23) with respect to x, one gets &, = 0. Hence & = &1 x + &), where &y = &y (¢) and &; = &1(¢), and
then &1 =1, /2. The general solution of (25) is ¢ = {1u + o, where &1 = £ (¢, x), Lo = ¢o(¢, x). Solving Eq. (22), one

obtains {1 = —&jx /2 — n"x2/8 + 10, where Z10(t).

For the sake of simplicity we study the case g, = 0. The assumption that the function g does not depend on ¢ and x

gives the conditions
;l‘ = 09 é‘x = 0’ Ctg = O’ é‘)‘(g = O

These equations give n = 2k3t + k4, &9 = k7, {ox = 0. From Eq. (21) one finds
¢8 = Cor — 2k3g + g0

From the equation {,g = 0 one obtains {y;; =0, or
Co = kot + ki.

Thus,

& =2k3t + ky, n = k3x + ke, ¢ =ki + kot + ksu

or
X =k X{+ ko X5+ k3X§ +kaX§ + C10X$+ E0X¢ + £V 0y,

where
X{ =0y, X5 = 0g + 10y, X§ =—2g0, + 219, + x0x,
X5 =20, X§ =80, +udy, X¢ = 0y.

Equation (20) becomes

¢V (z(t, %)) =ki +ka(t — ) + ksv(t, x).

This gives

cV(t, x,u,v) =ki +ko(t — ) + ksv.

6 One could also split with respect to gy, gv-
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5. Admitted Lie group of Eq. (15)

The generator of a Lie group admitted by Eq. (15) is
X =80+ 10 + {0y,

where &, n and ¢ are functions of x, t and u.
According to the algorithm for constructing a determining equation of an admitted Lie group, one obtains
—CM 4 gt gad" =0, (26)

where

¢ =0 —uck —um, (=1 — iy — i, ¢" = Dyig", ¢ = Dyg™, ¢" =Dy

Here the bar over a function f(x, ) means f(x, ) = f(x,t — 7). The determining equation has to be satisfied for any
solution u(x, t) of Eq. (15). Since the determining equation is considered on a solution of Eq. (15), the value f for a
function f(x, ¢, u) is defined as f(x, )= f(x,t —t,ulx,t —1)).

Substituting into the determining equation (26) the derivatives u;, uy;, U, ; found from Eq. (15) and its prolon-
gations, we obtain

8gi(n — 1) — 2y uxugi + itxa(—21x +& — &) + itx ga (N — 1) — U3 &y — Ut Nuu
U2 (=g — 20ugu — 26w + Gu) — 2t (N + &) — 2ttt xx
F ot (=208 — 2Nu8x — 212 8u + & +Eug — Exx + 28xu) + uxx (M + 1Mug — Nxx — 26x) — 2ty xx My
+ 008+ 8" — Nxx8 — 20x8x + 8ul + 8al + 8x& — & — Cug + Cex =0, (27)

where g = g(u(x,t — 1), u(x,t —27)). After splitting this equation with respect to the derivatives uy, Uy, Uxxx, Uy,
uyxx and using the property g; # 0, one obtains

N8+ Nug” — Nexg — 20x&x + 8ul + 8l + gk — & — Lug + L (28)

—21xu8 — 2Mugx — 2Mx8u + & +Eug — Exx + 28xu =0, (29)
—Nuug — 2Nu8u — 2&xu + Suu =0, (30)
N+ Mug — Nex — 26 =0, (31)
Nxu + &0 =0, (32)
& =0, Nuu =0, ne =0, nu =0, (33)
2 +E—E=0, (34)
nu =0, (35)
n—in=0. (36)

Hence,

7h¢=0, szo’ SMZO’

and
§(x,t —1)=§(x,1), n —1)=n().

From Eq. (31) one gets & = xn;/2 + &y, where &y = £y(¢). From Eq. (30) we obtain
¢ =ul1 + o,

where ¢ = ¢{1(x, t) and ¢y = {o(x, t). Equation (29) becomes

Nux + 280 +4¢1, =0.

Integrating this equation with respect to x gives
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&1 = —nux?/8 — x€0/2 + Lo,
where ¢19 = ¢10(?). Thus, from Egs. (28)—(36), Eq. (28) is the only unsolved equation. This equation becomes

88ut0 + 88al0 + guut(—nux® — 4E0ix + 8210) + gait (—nix? — 4E0rx + 8L10) + 4gx (nix + 2£0)
+ g(’?ttx2 + 8n, + 4&0ix — 8(10) + Terux® — 2041 + 4Eorux — 820, + 8C0xx — 8C100u = 0. (37

Differentiating (37) with respect to « and i, one obtains

8208uu + 8208ui + 8&ur + NureX? — Ner Quaix® — Ner uuttx* — 20er + 411 8w X — Aguaoriix

+ Sguﬁﬁglo + ngué() - 4guu§01u-x + Sguuué‘lo + 4";:Oltx - 8;10t =0, (38)
8¢08ui + 8Z08ai + 88 (1 — £10 + £10) — e Quattx® — Ner Qaalhx” + 41 g X
— dguatorux + 8guaul10 + 8griko — 4ganboriix + 8gaaitl1o = 0. (39)

Equations (38) and (39) are linear algebraic equations with respect to ¢y and g:o. The determinant of the matrix of this
linear system of equations is equal to

A =gl — Quugii-
6. Case A #0

If A # 0, then one can find o and ¢ as follows:
g0 = (41 (2(gugia — gagui) + X (gxugai — Guigx)) + Mire aax” + Ner (Ux*A — 2ggi) + 480, xu A
+ 4601 x giiit + 850(8xu i — Quan&xir) + 88aui(C10 — L10) — BuAlio — 8gaalior) [ (8A),
EO = (477t (z(gﬁguu — 8u&uit) + X (§uu8xii — guﬁgxu)) - ntttguﬁxz + Nt (’/_‘sz + Zguﬁ) + 48oiux A — 4guiSonx
+ 880 (8uugxii — Guia&xu) — 88i&uu(C10 — £10) — 8817 s10 + 8guil10r + 8guugaaitC10) / (BA).
Here we assume that’
8x=0.
Notice that in this case the kernel of admitted Lie algebras contains the shifts with respect to x and ¢:
X1 =20, Xy = 0.

Splitting Eq. (37) with respect to x, one has

Nie1104 + Nyrr0t3 + e =0, &0t B3 + o1t B2 + Br&or =0, (40)
2010 gia + 411 (808 — 28ugaguii + 84 Guu + 8A) — S0z + 4gi (guguis — 8agun) (C10 — $10) — 48 AL10
—dgugaalior + 4gaguitCior + 4gailion =0, (41)
where
B3 = o4 = —gia, B2 =03 =—(gua&i — gu&ui)» B1=ox=gA.

The assumption ntz, + 531 # 0 leads to a contradiction to the condition A # 0. Since n(t —t) =n(t) and (¢t — 1) =
£(t), one finds that () and &(¢) are constant. Hence, o, ¢o and Eq. (41) become

o =a1&i0e + B1&io + viios 0 = aatior + B2t10 + v210s
¢10(8a(Quiagu — Suugit) — 8A) — 108 (Quiau — Suugi) + gaguili0r — u&aal10r + gaalione =0, (42)

7 The general case where gy # 0 is complicated for solving.
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where

a1 = —gui/ A, B1=—u+guaga/A, V1 = —8a&ui/ A,
a2:guﬁ/A» ﬂZz_gﬁguu/A’ V2=_ﬁ+gﬁguu/A~

The case ¢10 = 0 is the trivial case, which corresponds to the kernel of admitted Lie algebras. Extension of the
kernel is possible if {19 # 0. Firstly, we study the following two cases. In the first case we have,

S10r = —koZ10, Cio=—ki¢io (k1 #0), (43)

and in the second case we have,
1o = —hag10 — hio,
B1 — haay = py, Y1 —hioy = po, B2 — haay = p3, Y2 —hioo = py. (44)

Here ki, h; (i =1,2), pj (j =1,2,3,4) are constant. Notice that the case where /1 = 0 is reduced to (43). Hence, it
is assumed that i1 # 0.

6.1. Case (43)

In this case
¢o = (B1 — arko — y1k1) S0, o = (B2 — azko — y2k1)<10.
Since o and &y do not depend on u and i, one obtains that
B1 — koay — k1y1 = C,, B2 — koas — k1yr = —Coki.
Because A # 0, the previous system of equations can be solved with respect to g,; and g,

gui = (gaak1(Co + i) + g (k1 + 1)) /(Co + u),

Guu = (k1 (@t + Co)guis — ko) / (u + Cy). (45)
Equation (42) becomes

—8ik1(Co +u) + gu(Cop +u) — g +ko(u +Cp) =0. (46)

Any function g(u, u) satisfying (46) is also satisfies Eqs. (45). By virtue of the equivalence transformation correspond-
ing to the generator X{, the constant C, is unessential since by shifting the dependent variable u it can be reduced to
zero. The general solution of Eq. (46) is

g(u, it) = u(—koIn(u) + ¥ (i), 47

where Y is an arbitrary function. Notice also that the general solution of (43) is {190 = C e %! where k; = —ekoT,
Thus, the extension of the kernel of admitted generators is

X =e*'yp,. (48)
6.2. Case (44)

In this case

to = pi¢i0 + p2io0, Zo = p3¢i0 + padio-
Since k1 # 0 we have

vi —hiay — p2 =0, B1 — haay — p1 =0, v2 —hiay — ps =0, B2 — haap — p3 =0.
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These equations can be solved with respect to g, guii, i and g; to give

G = (hlps_— hapsa — haut) _ gui = gﬁ(_ps + pa+u) _
P1P4+ p1u — pap3 + pau +uu P1P4+ piu — p2p3 + pau +uu
B g2 (p1+ p2+uw)(p1 +why — hap2)(pa+ it + p3) _ —hipr—hwu+hypy
T (hipy 4 b — hapa) (P pa + prit — paps + pau + uit)’ s = p3tpatu .

Considering (g;;), — gui = 0 and (g;); — giiz = 0 one obtains
hi(p1+ p2 +u)p3 — ha(p3 — ps — ) p2 =0,
(h1(u+ p1) — hap2)((u + p1+ p2) p3 + paii + p3 + pa)) =

Since Ay # 0, one finds p3 = 0 and p> = 0. Because o = C1op4 and Co = {19p1, one obtains ps = pi. Hence,
gi+hi(p1+u)/(p1+u)=0, and Eq. (42) becomes

gu=—S5—
T (pr+u)

The general solution for the function g is
g =—(p1+uw)(haIn(py +u) + hy In(py + it) + k3).
As before the constant p; is unessential and can be reduced to zero, that is,
g= —u(hz In(u) + hyIn(n) + k3). 49)
In this case an extension of the kernel of admitted generators is
X =q(t)udy, (50)

where the function ¢ (¢) is a solution of the delay differential equation
q'(t) +haq(t) +h1q(t — ) =0. )]
6.3. Case a1, #0

Differentiating ¢y with respect to u and i, one obtains

B lu
Cior+ 10+ 59 =00, (52)
Ay Ay

Differentiating the previous equation with respect to # and i, it gives
P -
( . C + é“ 10 =
Ay alu
A1
( - § 10+ tio =
(22¥7] Ay )

If fﬁ or 0}% is not constant, then the above system of equations leads to (43). Hence, one needs to study the case
u u

/glu Yiu
- =h25 - =h15
Ay Ay

where i1 and h, are constant.
Substituting the derivative ¢, into the equations

é‘oﬁ = Os EOM = Oa EOL_t = Oa

one has
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(Bra — haa12)¢10 + (v1a — hieni) S0 = 0,
(Bou — h222) 810 + (You — hioy) 10 =0,
(Bois — h22i)C10 + (v2i — hioog) 1o = 0.

If one of the coefficients of this linear system of equations (with respect to 19, £10) is not equal to zero, then this leads
to (43). If all of the coefficients are equal to zero, then this leads to (44).

A similar result is obtained for (cr17)% + (a24)* + (c2i)? # 0. Hence, to proceed one needs to study the only case
o] = const, oy = const.

6.4. Case o1 = const, orp = const

Assume that o1 = p1, oy = p2, where p1 and p; are constant. Notice that because of A # 0, one has p% + p% #0.
We first consider the case for which p; # 0. From the equations a1 = p; and a» = py we find the derivatives g,;
and g, as

Guii = —8&iii P2/ P1s guu = (gaap3 + 1)/ p7- 43

The first equation can be integrated to give

gu =—p2gi/pP1+ B,

where = B(u) is an arbitrary function of the integration. Substituting this into the second equation of (53) and
integrating it, one obtains

ﬂ = u/pl + C()v
where C, is constant. Notice that in this case A = gz;;/p1 # 0. Differentiating ¢y with respect to u and u, one has

gai 3 (10 — £10) + p1¢10 =0, (¢10 — C10)gaap2 = 0.

This gives a contradiction to {19 # 0.
If p1 =0, then ps # 0 and from the equations «; = p1 and @ = p» one finds

gaa =0, gui =1/ p2.
The equation ¢, = 0 also gives the contradiction ¢19 = 0.
7. Case A=0

7.1. Case gii #0

Let gz # 0. In this case the general solution of the equation A =0 is

gu =9 (gi),

where ¢ is an arbitrary function of the integration.
Excluding ¢ and ¢p from (38) and (39), one finds

8 (—nr + £10 — £10) + Nerex® — 2140 + 81, + 4E011x — 810 = 0. (54)

Splitting this equation with respect to x, one has

Nier =0, &0ir =0.
Hence,
n=axt* +ait + ao, & = b1t + by,

where ag, ay, a2, by, by are constants. Since §y(t) = §o(r — 7) and n(¢t) =n(t — 1), one gets §o = bp and a, = a; =0.
Notice that for the existence of a nontrivial extension of the kernel of admitted Lie groups one needs that ;g + ;120 #0.
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Equation (54) becomes

g9’ (L10 — ¢10) — 10 = 0. (55)
If ¢’ =0, then ;:10 = {10 are constant. In this case Eq. (39) is
Zo+ii¢10=0.

This leads to {p = 0 and &19 = 0, which means that there is no any extension of the kernel of admitted Lie groups.
Hence, for extension of the kernel one needs to study ¢’ # 0.
Differentiating (54) with respect to u, one obtains

(a9 (10 — C10) = 0. (56)
Let é:lo — ¢10 = 0. Equation (54) gives that ¢ is constant. Equations (38) and (39) are reduced to the equation

¢/:_C0+u§10. (57)
So+utio
Differentiating this equation with respect to ¢ and x, one gets
¢'Cor + Lo =0, ¢'Cox + Lo (58)

Assume that ¢” # 0, then from (58) one obtains that ¢y is also constant. By virtue of the inverse function theorem,
from (57), one has

. =h<é:0+ﬁ§10>
! So+utin)’

where h is the inverse function of the function ¢’. Because gz; # 0, the constant ¢19 # 0. Using the equivalence
Fransfor.mation corresppnding to the generators X{ and X<, one can account {o = 0, ¢10 = 1. Since g, = ¢(ga),
integrating these equations, one finds

g(u,ﬁ):uh(%) + kiu + ko, (59)

where ko and k; are constants of the integration.
Equation (37) becomes

guu + giu —g=0. (60)

Substituting in this equation the function g, one finds that kg = 0. The extension of the kernel of admitted Lie algebras
is given by the generator

X =ud,.
Let ¢” =0 or
&u = k1ga — ko, (61)
where kg and k| # O are constant. Equation (57) gives {10 = 0 and
o = —kio. (62)

Equation (37) becomes

Sor = Coxx — koo-

If there exists a solution g (¢, x) of the partial differential equation

qt = qxx — koq, (63)

satisfying the condition
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qt —7,x)=—kiq(t, x), (64)
then the extension of the kernel is given by the generator
X =q(t,x)0y.
Let 4210 — ¢10 # 0. Equation (56) leads to (g;z¢")z = 0 or ¢ = k; In(g;) + ko, where kg and k; # O are constants of
the integration. Equations (54) and (39) give
t10 = ¢10 — L1oe/ k1, (65)
g2(¢10 — C10)

i = —. (66)
k1(So +uti0) + ga(So + ut10)
Differentiating (66) with respect to x and ¢, one obtains
gilox +ki1ox =0, (67)

and

ga (i (Z10100 — £10:€10) + S0 (10 — 10) — Z0(C10r — C100))
+ k1 (u(Z10¢10f — $10:€10) + S0r (€10 — £10) — Z0(C10r — C101)) =O. (63)
Since g;; # 0, Eq. (67) gives that o = {o(2).
Notice that

_ _ 1 5
Z10810r — L10: 610 = E(Cloﬁ()n — ior)-

Assume that 2104“10, — Zlot;m # 0. Equation (67) can be solved with respect to g,

u—+b
gu——klﬁ_i_c, (69)
where
b ¢0e(€10 — €10) — Zo(C10r — C10r) e 20:(€10 — €10) — Zo(C10r — C10r)
(108106 — C10¢£10) ' (108106 — C10¢£10) .

Differentiating (69) with respect to ¢, we find that b and s are constants. Substituting the derivatives g; and gz, found
from (69), into Eq. (66), one obtains

i(Zo — blo) — u(Zo — cz10) + co — blo + ¢b(Z19 — ¢19) = 0.

This leads to ¢y = bl1o and Eo = cg:m. Because g:m =10t —1), g:o =¢o(t — 1), and EIO — 10 # 0, one gets ¢ = b. By
virtue of the equivalence transformations corresponding to the generator X¢, one can account that b = 0. Integrating
the found derivatives g, and g;, one finds

gu,u)=ru—kiIn(u/u)+y, (70)

where A and y are constant. Substituting (70) into (37), one obtains y = (. The extension of the kernel of admitted
Lie algebras is given by the generator

X =q(0)udy, (71)
where ¢ (¢) is a solution of the delay differential equation (65):
q' (1) =ki(q(t) —q(t —1)). (72)
Assume that 510;“10; — ElOzClo = 0. As was noticed the function ¢1¢(¢) has to satisfy the equation

C10810r — ¢, = 0.

Hence, ¢19(t) =C e, where C and ) are constant such that CA # 0. In this case
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10 = k¢1o,
where k = ¢—*7. Hence, Eq. (68) becomes

8i(20:C10 — CoC10r) + k1(C0r 10 — CoC10:) = 0.

Since gi;; # 0, one obtains that

o = alio,
where « is constant. Without loss of generality one can account that « = 0. Equation (37) becomes
ugy +kugs =g+ Au.

The general solution of this equation is

g(u, it) = Auln(u) + uy (iu="). (73)
By virtue of the relation g, = k1g; + ko, the function ¥ (z) has to satisfy the ordinary differential equation
kiIn(y') + kzy' = + A — ko. (74)

The extension of the kernel of admitted Lie algebras is given by the generator

X =eMud,. (75)
7.2. Case gy =0

Assuming that g;; = 0, one has
g(u,u) =k + h(u),
where k1 # 0 is a constant. Hence Eq. (39) gives
t10=2¢10 — -
Furthermore, if we let g,, = h” # 0, we can define from (38)
fo= u(x27ltt +4x80 — 8@10)/8 + (2nn — 8n,h' +8¢100 — 77mx2 - 4"§Ottx)/(8h”)-
Since ¢p, = 0, then
(nmh/// + n”h//Z)XZ + 4(]1///%_0” + h//ZEOt)x _ 277nh"’ + 877;/’!///]1/ _ 87];]’!”2 _ 8]’/”{10; _ 8]1”2{10 —=0.
The last equation can be split with respect to x so that
Nite (hw/ h//z) + 0 =0,
§oun (") 1"?) + 601 =0,
and
(_rmh/// +477thmh/ _ 4nth//2)/(4h//2) _ (§10t (h////h//2) + {10) 0. (76)
Differentiating the first and the second equations with respect to #, one obtains
nttt(hm/ h//z)/ =0, §Ott(h//// h//z)/ =0.

Notice that if (k" /h"?)" # 0, then n,; = 0, &, = 0, and because of n(t — ) = (1), £(t — T) = £(1), one obtains that
n = const and & = const. In this case (76) gives

t10=0,

which corresponds to the kernel of admitted Lie algebras. Thus, one needs to study the case (h”"/h"?) =0 or h"" =
K h"'? with some constant K . This case also leads to the same result, that is, there is no extension of the kernel. In fact,
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differentiating (76) with respect to u, one obtains 7K = 0. If K =0, then n;; = 0, which also gives that 1 = const.
This leads to ¢19 = ¢10. Similar analysis of the equations &y K + &)y = 0 and £(r — ) = &(¢) gives that §y = const.
The function ¢1¢(¢) has to satisfy the equations

e K + ¢10=0, 10 = ¢10-

The general solution of these equations is ¢19 = 0. Thus, the case g, 7 0 does not give extensions of the kernel.
7.3. Case gz =0and g, =0

We extend our study to the case of a linear function
g(u, i) =kiu + kou +k, )
where k1 # 0. In this case (38) becomes

7lmx2 + 4&orex — 2(er — 4Anika +48100) = 0.

Splitting this equation with respect to x, one finds

Neee =0, §oir =0, Nee — 4neka + 4810 = 0.
By virtue of n(t — t) = n(t) and £(t — 7) = £(¢) the values 7, £ and {j¢ are constant. Equation (37) becomes

Cor = oxx + k280 + k120 — Ciok.

If k2 + k1 # 0, then by using the equivalence transformation related with the generator X{ the constant ko can be
reduced to zero. In this case the extension of the kernel is given by the generators X = ud, and X, = ¢g(t, x)d,, where
the function g (¢, x) satisfies the delay partial differential equation

qr(t,x) =qux(t,x) +koq(t,x) +ki1g(t — 7, x). (78)

If ky 4+ k; = 0, then introducing ¢ = ¢y — ¢10kx?/2, one gets that the extension of the kernel is given by the
generators X, and

X = (2u + kx?)d. (79)
8. Summary of the group classification

Case 1. Combining (47) and (73),

g(u, it) = u(—ko In(u) + ¥ (i), (80)
where 1 is an arbitrary function, k; = —ekoT and
X =My, (81)

Case 2. Combining (49) and (70),

g =—u(hoIn(u) + hy In(t) + k3) (82)
and

X =q(t)udy, (83)
where the function ¢ (¢) is a solution of the delay differential equation

q'(t) +h2q(t) + hi1g(t — ) =0. (84)

A particular solution of Eq. (84) is g = e~ko! where kg = hy + hjekoT.
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Case 3. The general solution of Eq. (61) is

gu,u) = —kou + Y (u+kiu) (ki #0), (85)
where 1 is an arbitrary function. The extension of the kernel is given by the generator

X:q(t,x)au, (86)
where ¢ (t, x) is a solution of equation

qr = qxx — koq., (87)
satisfying the condition

q(t —1,x)=—kiq(t, x). (88)

For particular cases of ky and k; the problem (87), (88) has a solution. For example, let k; = —1, then a solution can
be sought in the form ¢ = g (x), where

q"(x) — kog (x) = 0.

If 7, ko and k; are related by the formula ky = —ekoT | then a particular solution of the problem (87) and (88) is
_ ,—kot
g =e 0",

Case 4. If the function g(u, u) is a linear function

g, u)=kiu+ku+k (k1 #0), (89)
then the extension of the kernel of admitted generators consists of the generators

Xq=q(t,x)d, (90)

where the function ¢ (, x) satisfies the reaction—diffusion equation with a delay

41 (1, ) = qux (1, %) + kaq (1, x) + k1g(t — 7, X), oD

and one more generator, which depends on the value of the constants k; and k. If ky 4 k1 # 0, then one can account
that k = 0, and the additional generator is

X =ud,. 92)
If ko + k1 =0, then

X = (2u + kx?)2,. (93)

A particular solution of Eq. (91)is ¢ = ekt where kg = — (k€507 + k).
9. Invariant solutions

Invariant solutions can be sought for a subalgebra of an admitted Lie algebra. Essentially different invariant solu-
tions are obtained on the base of an optimal system of admitted subalgebras. The set of all generators nonequivalent
with respect to automorphisms composes an optimal system of one-dimensional subalgebras [7]. This set is used for
constructing nonequivalent invariant solutions. Equivalence of invariant solutions is considered with respect to an
admitted Lie algebra.

Apart from automorphisms for constructing the optimal system of subalgebras one has to use involutions. Equa-
tions (15) possess the involution E corresponding to the change x — —x.
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9.1. Optimal system of subalgebras

Let us consider the algebra L3 = {X1, X2, X3}, with the table of commutators

X1 X X3
X1 0 0 —koX3
X5 0 0 0
X3 koX3 0 0

Such algebras are admitted by Eq. (15) with the function g(u, ) in (80), (82), (85) and (89). The generator X,
composes a center of the algebra L3.
The coordinates (x1, x2, x3) of the generator

X=x1X1+xX2+x3X3
are simplified [7] by the automorphisms A and A3, which are defined by the table of commutators
Ar: xé = x3e—k0a1 , As: xé =x3 + koxian.

Here only changed coordinates are presented.
The optimal system of subalgebras of the algebra L3 with ko # O consists of the subalgebras

Hi = X3+ aX;, H) =X +aX;, H3 = X,

where « is an arbitrary constant.
Representations of the invariant solutions corresponding to the subalgebras H, and H3 are

U= —at), u=q(),
respectively. It is obvious that these representations reduce the number of the independent variables.

9.2. Invariant solutions with respect to Hy

Case 1. For the function (80) the generator X3 = g (¢)9, and the representation of an invariant solution is
U= eﬂXq(t)(/)(t),

where 8 = 1/« and ¢ (1) = e %’ The reduced equation is
¢'(1) = 9(1)(B%4* — ko In(p(1) + ¥ (0t — D" (1)). (94)

Case 2. For the function (82) the generator X3 and the representation of an invariant solution is the same as in the
previous case. The reduced equation is

¢ (1) = o(1)(8%¢* — haln(p(1)) — hy In(p(t — T)) + k3). (95)

Case 3. For the function (85) in the case, where k| = —ek"f, the generator X3 = e kot dyu, and the representation of an
invariant solution is u = Bxe %’ 4 ¢(r). The reduced equation is

¢ (1) = —kop(1) + ¥ (p(t — T) + k19(1)). (96)

Case 4. If the function g(u,u) is as given in (89) and the generator X3 = e~ %075, then the invariant solution is
u = Bxe X" 4 (1), where the function ¢(r) satisfies the reduced equation

¢'(t) =kip(t — 1) + kagp(t) + k. )
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