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Abstract

The reaction–diffusion delay differential equation

ut (x, t) − uxx(x, t) = g
(
x,u(x, t), u(x, t − τ )

)
arises in many applications in the sciences. Group analysis is applied in the study of this equation. A new definition of an equiv-
alence Lie group for delay differential equations is given. As for the Lie group theory of differential equations, the determining
equations for the equivalence and admitted Lie groups are constructed. The general solutions of the determining equations are
obtained. The complete group classification of the reaction–diffusion equation with delay is presented in the manuscript and the
invariant solutions of this equation are constructed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The manuscript is devoted to applications of group analysis to the reaction–diffusion equation with delay.1 Delay
differential equations appear in problems with delaying links where certain information processing is needed, for ex-
ample, in population dynamics and bioscience problems, in control problems, electrical networks containing lossless
transmission lines [1–6].

Group analysis is one of the methods for constructing exact solutions [7]. This method was developed for partial
(ordinary as well) differential equations. An admitted Lie group plays the main role in this method. After obtaining an
admitted Lie group one can use it for constructing invariant solutions. Recently a definition of an admitted Lie group
for functional differential equations was given [8,9].2

* Corresponding author.
E-mail address: sergey@math.sut.ac.th (S.V. Meleshko).

1 The theory and applications of this equation can be found in [6].
2 There are also other approaches [10,11]. The method developed in [8,9] has some similarities with the approach [12].
0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
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For the sake of simplicity we give an introduction for constructing an admitted Lie group for a delay differential
equation with a single independent variable

Φ(t, x) ≡ x′(t) − F(t, xt ) = 0 (t ∈ J ). (1)

Here3 xt denotes the function x(t) ∈ D ⊂ R, which is defined in the interval [t − τ, t] by

xt (s) = x(t + s), s ∈ [−τ,0],
D is an open set in R, J is an interval in R, F is a functional. For delay differential equations the functional F has
the representation

F(t, xt ) ≡ f
(
t, x

(
g1(t)

)
, . . . , x

(
gm(t)

))
,

where f : [t0, β) × Dm → Rn, and gj (t) � t for t0 � t � β for each j = 1, . . . ,m. The function g1 is usually chosen
to be the identity mapping. Here we consider the case where m = 2, g1(t) = t , and g2(t) = t − τ .

The Cauchy problem for delay differential equations (1) is set as follows. The initial conditions are defined by a
function ψ : [−τ,0] → D,

x(t0 + s) = ψ(s), s ∈ [−τ,0]. (2)

A continuous function x(t), t ∈ [t0 − τ, t0 +β), is called a solution of the Cauchy problem (1), (2) if it is differentiable
in the interval (t0, β), satisfies Eqs. (1) in the interval [t0, β) and conditions (2) in the interval [t0 − τ, t0]. The value
x′(t0) is understood as the right-hand derivative. With some requirements4 for the functional F one can guarantee the
existence of the solution of the Cauchy problem (1), (2).

1.1. Admitted Lie group

Let there be given a one-parameter Lie group G1(X) of transformations

t̄ = f t (t, x, a), x̄ = f x(t, x, a) (3)

with the generator

X = ξ(t, x)∂t + η(t, x)∂x.

Definition. A one-parameter Lie group G1 of transformations (3) is a symmetry group admitted by Eq. (1) if G1 sat-
isfies the determining equation

(XΦ)
(
t, x(t)

) = 0 (4)

for any solution x(t) of Eqs. (1).

Here the operator X is the prolongation of the canonical Lie–Bäcklund operator equivalent to the generator X given
by

X = ζ x∂x + ζ x′
∂x′ + · · · ,

where ζ x = η − x′ξ , ζ x′ = Dtζ
x and Dt is the total derivative with respect to t . The actions of the derivatives ∂x

and ∂x′ are considered in terms of the Frechet derivatives.
Formally the determining equations (4) can be constructed similarly to those for integro-differential equa-

tions [9,13]. Assume that the Lie group G1(X) transforms a solution x0(t) of Eq. (1) into the solution xa(t) of
the same equation. The transformed function xa(t̄ ) is

xa(t̄ ) = f x
(
t, x0(t), a

)
3 The notations accepted in literature on functional differential equations are used.
4 These requirements are similar to the conditions used in ordinary differential equations (see, for example, in [4]).
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with the expression t = ψt(t̄;a) substituted, which is found from the relation t̄ = f t (t, x0(t), a). Differentiating the
equations Φ(t, xa) with respect to the group parameter a and considering these equations for the value a = 0, that is,(

∂

∂a
Φ(t, xa)

)∣∣∣
a=0

= 0, (5)

one obtains the determining equations (4). Equation (5) can also be obtained by the action of the operator X on the
delay differential equation. Thus the determining equations can be constructed without differentiation with respect to
the parameter a. To illustrate this we consider the equation

Φ(t, x) ≡ x′(t) − f
(
t, x(t), x(t − τ)

) = 0, (6)

where τ > 0. The action of the operator X on (6) gives

ζ x′ − f,2ζ
x − f,3ζ

x̄ = 0,

where f,i (i = 1,2,3) is the derivative of the function f (x1, x2, x3) with respect to xi and

ζ x = η
(
t, x(t)

) − x′(t)ξ
(
t, x(t)

)
, ζ x̄ = η

(
t − τ, x(t − τ)

) − x′(t − τ)ξ
(
t − τ, x(t − τ)

)
with ζ x′ = (Dtζ

x)(t, x(t), x′(t)). Here x(t) is an arbitrary solution of (6).
The main features of the determining equations in the given definition is that they must be satisfied for any solution

of Eq. (1). This allows splitting the determining equations with respect to arbitrary elements. Since arbitrary elements
of delay differential equations are similarly contained in the determining equations as for differential equations, the
process of solving the determining equations for delay differential equations is similar to finding the solutions of the
determining equations for differential equations.

Notice that the given definition is free from the requirement that the admitted Lie group should transform a solution
into a solution, and also it can be applied when finding an equivalence group, contact and Lie–Bäcklund transforma-
tions for functional differential equations.

Group classification is already defined for partial differential equations. For partial differential equations it is known
that each equation has an arbitrary function associated with it. For each function there is an admitted Lie group and
equations can be classified according to the admitted Lie group which in turn is used for the construction of invariant
solutions. We extend this notion to the treatment of delay differential equations. This is the first time that the complete
Lie group classification of delay differential equations is being given. As a result we will include all calculations
because there is a difference in the treatment of partial differential equations to that of delay differential equations.

This manuscript is devoted to the group classification of the reaction–diffusion equation with delay. For differential
equations there is a theorem that if one finds the admitted Lie group it can be used to construct invariant solutions.
However, for delay differential equations no such theorem exists. It appears that this can be applied to delay differential
equations and this article confirms it. In this article the found admitted Lie groups are applied for the construction of
invariant solutions of the reaction–diffusion equation with a delay.

The manuscript is organized as the following. Section 2 gives the new definition of an equivalence Lie group for
functional differential equations. In Section 3 we discuss the reaction–diffusion equation with a delay. In Section 4 the
equivalence Lie group for the reaction–diffusion equation with a delay is determined. In Sections 5–7 we determine
the admitted Lie group and the various cases arising for group classification. In Section 8, a summary of the group
classification is given and in Section 9 we construct the invariant solutions for the various cases arising.

2. Equivalence Lie group

A transformation of the independent and dependent variables, and arbitrary elements is called an equivalence
transformation of a system of differential equations if it conserves a differential structure of the equations. If a set
of equivalence transformations of partial differential equations composes a Lie group of transformations, then these
transformations can be found by solving the determining equations. Conversely, any solution of the determining
equations composes a Lie group of equivalence transformations of partial differential equations.

Since the Lie–Bäcklund representation of the determining equations of an equivalence Lie group for partial
differential equations is nowhere written down, we present it here. Formally these equations can be obtained by
differentiating with respect to the group parameter the transformed system of partial differential equations in which
the transformed solution has been substituted.
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2.1. Lie–Bäcklund representation of determining equations for the equivalence Lie group

We consider a system of partial differential equations with the independent variable x, dependent variable u, and
arbitrary element φ, which transfers a system of differential equations of the given class

Fk(x,u,p,φ) = 0 (k = 1,2, . . . , s) (7)

to the system of equations of the same class. Here (x,u) ∈ V ⊂ Rn+m, and φ :V → Rt .
The problem of finding equivalent transformations consists of the construction a transformation of the space

Rn+m+t (x, u,φ) that preserves the equations, while only changing their representative φ = φ(x,u). Assume that
a one-parameter Lie group of transformations of the space Rn+m+t with the group parameter a:

x′ = f x(x,u,φ;a), u′ = f u(x,u,φ;a), φ′ = f φ(x,u,φ;a) (8)

satisfies this property. The generator of this Lie group has the form

Xe = ξ∂x + ηu∂u + ηφ∂φ,

where the coordinates are

ξ i = ξ i(x,u,φ), ηuj = ηuj

(x,u,φ), ηφk = ηφk

(x,u,φ) (i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , t).

The equivalent Lie–Bäcklund form of this generator is

X̂e = ζ u∂u + ζφ∂φ. (9)

Here the coordinates are

ζ uj = ηuj − u
j
xξ, ζ φk = ηφk − ξDe

xφ
k,

where De
xi

= ∂xi
+ uxi

∂u + (φuuxi
+ φxi

)∂φ .
Any solution u0(x) of system (7) with the functions φ(x,u) is transformed by (8) into the solution u = ua(x

′) of
system (7) with the same functions Fk , and another (transformed) function φa(x,u). The function φa(x,u) is defined
as follows. Solving the relations

x′ = f x
(
x,u,φ(x,u);a)

, u′ = f u
(
x,u,φ(x,u);a)

for (x,u), one obtains

x = gx(x′, u′;a), u = gu(x′, u′;a). (10)

The transformed function is

φa(x
′, u′) = f φ

(
x,u,φ(x,u);a)

,

where, instead of (x,u), one has to substitute in their place the expressions (10). Because of the definition of the
function φa(x

′, u′), there is the identity with respect to x and u,(
φa ◦ (

f x,f u
))(

x,u,φ(x,u);a) = f φ
(
x,u,φ(x,u);a)

.

The transformed solution Ta(u) = ua(x) is obtained by solving the relations

x′ = f x
(
x,uo(x),φ

(
x,uo(x)

);a)
for x and substituting this solution x = ψx(x′;a) into

ua(x
′) = f u

(
x,uo(x),φ

(
x,uo(x)

);a)
.

As for the function φa , there is the identity with respect to x(
ua ◦ f x

)(
x,uo(x),φ

(
x,uo(x)

);a) = f u
(
x,uo(x),φ

(
x,uo(x)

);a)
. (11)

Formulae for transformations of the partial derivatives p′
a = f p(x,u,p,φ, . . . , a) are obtained by differentiating (11)

with respect to x′.
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Since the transformed function ua(x
′) is a solution of system (7) with the transformed arbitrary element φa(x

′, u′),
the equations

Fk
(
x′, ua(x

′),p′
a(x

′),φa

(
x′, ua(x

′)
)) = 0 (k = 1,2, . . . , s) (12)

are satisfied for an arbitrary x′. Because of a one-to-one correspondence between x and x′ one has

Fk
(
f x

(
z(x), a

)
, f u

(
z(x), a

)
, f p

(
zp(x), a

)
, f φ

(
z(x)

)) = 0 (k = 1,2, . . . , s), (13)

where z(x) = (x,uo(x),φ(x,uo(x))), zp(x) = (x,uo(x),φ(x,uo(x)),po(x), . . .).
Differentiating Eqs. (12) with respect to the group parameter a, and setting a = 0, one obtains the determining

equations in Lie–Bäcklund form5:

X̃eF k(x,u,p,φ)|(S) = 0 (k = 1,2, . . . , s). (14)

The prolonged operator for the equivalence Lie group

X̃e = X̂e + ζ ux ∂ux + · · ·
has the following coordinates. The coordinates related to the dependent functions are

ζ uλ = De
λζ

u, De
λ = ∂λ + uλ∂u + (φuuλ + φλ)∂φ,

where λ takes the values xi (i = 1,2, . . . , n). The sign |(S) means that the equations X̃eF k(x,u,p,φ) are considered
on any solution uo(x) of Eqs. (7).

The set of transformations, which is generated by one-parameter Lie groups corresponding to the generators Xe, is
called an equivalence Lie group. This group is denoted by GSe.

The determining equations (14) were obtained by using the existence of the solution of (7). After constructing (14)
one can use a geometrical approach in which the equivalence group is defined by Eqs. (14) without the requirement
of the existence a solution of (7). In this case the sign |(S) means that the equations X̃eF k(x,u,p,φ) are considered
on the manifold defined by Eqs. (7). The difference between these two approaches consists in defining the sign |(S).
Note that the same difference between the geometrical approach and the others lies in the definitions for obtaining an
admitted Lie group.

2.2. Equivalence Lie group of delay differential equations

For delay differential equations a notion of an equivalence Lie group is not defined. This section is devoted to a
reasonable generalization of the definition of an equivalence Lie group for delay differential equations. The idea of
the definition of an equivalence Lie group for delay differential equations is similar to the definition of an admitted
Lie group.

Firstly determining equations are constructed. These equations are obtained on the basis that a Lie group of trans-
formations of the independent and dependent variables, and arbitrary elements transforms a solution of the original
system of equations into the solution of a system of equations which differs from the original system only by arbi-
trary elements. The arbitrary elements are functions and constants which are not specified in the system of equations.
Differentiating with respect to the group parameter and assigning it to zero, one obtains the determining equations.

A solution of the determining equations gives the generator of a Lie group. This Lie group of transformations is
called a potential equivalence Lie group. Notice that for partial differential equations by virtue of the inverse function
theorem a potential equivalence Lie group simply becomes an equivalence Lie group.

Construction of a potential equivalence Lie group for the reaction–diffusion equation with a delay is given in the
next section.

5 In contrast, differentiating Eqs. (13) with respect to the group parameter a, and setting a = 0, one obtains the determining equations in classical
form [9].
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3. The reaction–diffusion equation with a delay

The manuscript is devoted to the study of group properties of the equation

ut (t, x) = uxx(t, x) + g
(
x,u(t, x), u(t − τ, x)

)
(t > to). (15)

The theory of existence of solutions of Eq. (15) can be found in [6]. For example, initial conditions are

u(s, x) = ϕ(s, x) (to − τ � s � to),

where the function ϕ(s, x) is an arbitrary function. Due to the arbitrariness of the function ϕ(s, x) one can conclude
that the values u(to, xo), u(to −τ, xo), ux(to, xo), ux(to −τ, xo), uxx(to, xo), uxx(to −τ, xo) and some other derivatives
are arbitrary. This will allow us to split the determining equations.

4. The equivalence Lie group of Eq. (15)

For the simplicity of the study let us introduce the new dependent variable v, which is related with u by the formula

v(t, x) = u(t − τ, x). (16)

Thus, Eq. (15) becomes the partial differential equations with two dependent variables

S ≡ ut − (uxx + g) = 0, (17)

where the arbitrary element is g = g(x,u, v). The generator of the Lie group will take the form

Xe = ξ∂x + η∂t + ζ∂u + ζ v∂v + ζ g∂g,

where ξ(t, x,u, v, g), η(t, x,u, v, g), ζ(t, x,u, v, g), ζ v(t, x,u, v, g), ζ g(t, x,u, v, g).
Applying the algorithm described earlier to Eq. (17), one obtains the determining equation(

ζ ut − ζ uxx − ζ g + ξDxg + ηDtg
)∣∣

(S)
= 0, (18)

where

ζ ut = Dt(ζ − ξuc − ηut ), ζ uxx = D2
x(ζ − ξux − ηut ). (19)

The determining equation related with Eq. (16) is{
ζ v

(
z(t, x)

) − ζ
(
z(t − τ, x)

) − vt (t, x)
(
ξ
(
z(t, x)

) − ξ
(
z(t − τ, x)

))
− vx(t, x)

(
η
(
z(t, x)

) − η
(
z(t − τ, x)

))}∣∣
(S)

= 0, (20)

where

z(t, x) = (
t, x, u(t, x), v(t, x), g

(
x,u(t, x), v(t, x)

))
.

Substituting the coefficients (16) into (18) and replacing the derivatives

utt = utgu + gvvt + uxxt , uxt = vxgv + guux + uxxx + gx,

ut = uxx + g, vt = vxx + ḡ,

found from (17), the determining equation (18) becomes

−v2
xuxξvv − v2

xuxxηvv + v2
x(−ηvvg − 2ηvgv + ζvv) − 2vxu

2
xξuv − 2vxuxuxxηuv

+ 2vxux(−ηuvg − ηugv − ηvgu − ξxv + ζuv) − 2vxuxx(ηxv + ξv) − u3
xξuu

+ 2vx(−ηxvg − ηvgx − ηxgv + ζxv) − u2
xuxxηuu − 2uxuxx(ηxu + ξu)

+ u2
x(−ηuug − 2ηugu − 2ξxu + ζuu) − 2vxuxxxηv − 2uxuxxxηu − 2uxxxηx

+ ux(ḡξv − 2ηxug − 2ηugx − 2ηxgu + ξt + ξug − ξxx + 2ζxu) + uxx(ḡηv + ηt + ηug − ηxx − 2ξx)

+ ḡ(ηvg − ζv) + ηtg + ηug
2 − ηxxg − 2ηxgx − ζt − ζug + ζxx + ζ g = 0.
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After splitting this equation with respect to ux,uxx, vx, uxxx and ḡ one obtains6

ηtg + ηug
2 − ηxxg − 2ηxgx − ζt − ζug + ζxx + ζ g = 0, (21)

−2ηxug − 2ηugx − 2ηxgu + ξt + ξug − ξxx + 2ζxu = 0, (22)

ηt + ηug − ηxx − 2ξx = 0, (23)

ηx = 0, ηu = 0, ηv = 0, ηxu + ξu = 0, ηxv + ξv = 0, ξv = 0, ηvg − ζv = 0, (24)

ξuu = 0, ηuu = 0, ηvv = 0, ηuv = 0, ξvv = 0, ξuv = 0,

−ηxvg − ηvgx − ηxgv + ζxv = 0, −ηvvg − 2ηvgv + ζvv = 0,

−ηuvg − ηugv − ηvgu − ξxv + ζuv = 0, −ηuug − 2ηugu − 2ξxu + ζuu = 0. (25)

From (24) one obtains

ηx = 0, ηu = 0, ηv = 0, ξu = 0, ξv = 0, ζv = 0.

Differentiating (23) with respect to x, one gets ξxx = 0. Hence ξ = ξ1x + ξ0, where ξ0 = ξ0(t) and ξ1 = ξ1(t), and
then ξ1 = ηt/2. The general solution of (25) is ζ = ζ1u + ζ0, where ζ1 = ζ1(t, x), ζ0 = ζ0(t, x). Solving Eq. (22), one
obtains ζ1 = −ξ ′

0x/2 − η′′x2/8 + ζ10, where ζ10(t).
For the sake of simplicity we study the case gx = 0. The assumption that the function g does not depend on t and x

gives the conditions

ζt = 0, ζx = 0, ζ
g
t = 0, ζ

g
x = 0.

These equations give η = 2k3t + k4, ξ0 = k7, ζ0x = 0. From Eq. (21) one finds

ζ g = ζ0t − 2k3g + gζ10.

From the equation ζ
g
t = 0 one obtains ζ0t t = 0, or

ζ0 = k2t + k1.

Thus,

ξ = 2k3t + k4, η = k3x + k6, ζ = k1 + k2t + k5u

or

Xe = k1X
e
1 + k2X

e
2 + k3X

e
3 + k4X

e
4 + ζ10X

e
5 + ξ0X

e
6 + ζ v∂v,

where

Xe
1 = ∂u, Xe

2 = ∂g + t∂u, Xe
3 = −2g∂g + 2t∂t + x∂x,

Xe
4 = ∂t , Xe

5 = g∂g + u∂u, Xe
6 = ∂x.

Equation (20) becomes

ζ v
(
z(t, x)

) = k1 + k2(t − τ) + k5v(t, x).

This gives

ζ v(t, x,u, v) = k1 + k2(t − τ) + k5v.

6 One could also split with respect to gu,gv .
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5. Admitted Lie group of Eq. (15)

The generator of a Lie group admitted by Eq. (15) is

X = ξ∂x + η∂t + ζ∂u,

where ξ, η and ζ are functions of x, t and u.
According to the algorithm for constructing a determining equation of an admitted Lie group, one obtains

−ζ ut + ζ uxx + guζ
u + gūζ

ū = 0, (26)

where

ζ u = ζ − uxξ − utη, ζ ū = ζ̄ − ūx ξ̄ − ūt η̄, ζ ux = Dxζ
u, ζ uxx = Dxζ

ux , ζ ut = Dtζ
u.

Here the bar over a function f (x, t) means f̄ (x, t) = f (x, t − τ). The determining equation has to be satisfied for any
solution u(x, t) of Eq. (15). Since the determining equation is considered on a solution of Eq. (15), the value f̄ for a
function f (x, t, u) is defined as f̄ (x, t) = f (x, t − τ,u(x, t − τ)).

Substituting into the determining equation (26) the derivatives ut , uxt , utt , ūt found from Eq. (15) and its prolon-
gations, we obtain

ḡgū(η − η̄) − 2ūxuxηugū + ūxgū(−2ηx + ξ − ξ̄ ) + ūxxgū(η − η̄) − u3
xξuu − u2

xuxxηuu

+ u2
x(−ηuug − 2ηugu − 2ξxu + ζuu) − 2uxuxx(ηxu + ξu) − 2uxuxxxηu

+ ux(−2ηxug − 2ηugx − 2ηxgu + ξt + ξug − ξxx + 2ζxu) + uxx(ηt + ηug − ηxx − 2ξx) − 2uxxxηx

+ ηtg + ηug
2 − ηxxg − 2ηxgx + guζ + gūζ + gxξ − ζt − ζug + ζxx = 0, (27)

where ḡ = g(u(x, t − τ), u(x, t − 2τ)). After splitting this equation with respect to the derivatives ux,uxx , uxxx , ūx ,
ūxx and using the property gū 	= 0, one obtains

ηtg + ηug
2 − ηxxg − 2ηxgx + guζ + gūζ̄ + gxξ − ζt − ζug + ζxx (28)

− 2ηxug − 2ηugx − 2ηxgu + ξt + ξug − ξxx + 2ζxu = 0, (29)

−ηuug − 2ηugu − 2ξxu + ζuu = 0, (30)

ηt + ηug − ηxx − 2ξx = 0, (31)

ηxu + ξu = 0, (32)

ξuu = 0, ηuu = 0, ηx = 0, ηu = 0, (33)

−2ηx + ξ − ξ̄ = 0, (34)

ηu = 0, (35)

η − η̄ = 0. (36)

Hence,

ηu = 0, ηx = 0, ξu = 0,

and

ξ(x, t − τ) = ξ(x, t), η(t − τ) = η(t).

From Eq. (31) one gets ξ = xηt/2 + ξ0, where ξ0 = ξ0(t). From Eq. (30) we obtain

ζ = uζ1 + ζ0,

where ζ1 = ζ1(x, t) and ζ0 = ζ0(x, t). Equation (29) becomes

ηttx + 2ξ0t + 4ζ1x = 0.

Integrating this equation with respect to x gives
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ζ1 = −ηttx
2/8 − xξ0t /2 + ζ10,

where ζ10 = ζ10(t). Thus, from Eqs. (28)–(36), Eq. (28) is the only unsolved equation. This equation becomes

8guζ0 + 8gūζ̄0 + guu
(−ηttx

2 − 4ξ0t x + 8ζ10
) + gūū

(−ηttx
2 − 4ξ0t x + 8ζ̄10

) + 4gx(ηtx + 2ξ0)

+ g
(
ηttx

2 + 8ηt + 4ξ0t x − 8ζ10
) + ηtttux2 − 2ηttu + 4ξ0t t ux − 8ζ0t + 8ζ0xx − 8ζ10t u = 0. (37)

Differentiating (37) with respect to u and ū, one obtains

8ζ0guu + 8ζ̄0guū + 8guηt + ηttt x
2 − ηttguūūx2 − ηttguuux2 − 2ηtt + 4ηtgxux − 4guūξ0t ūx

+ 8guūūζ̄10 + 8gxuξ0 − 4guuξ0t ux + 8guuuζ10 + 4ξ0t t x − 8ζ10t = 0, (38)

8ζ0guū + 8ζ̄0gūū + 8gū(ηt − ζ10 + ζ̄10) − ηttguūux2 − ηttgūūūx2 + 4ηtgxūx

− 4guūξ0t ux + 8guūuζ10 + 8gxūξ0 − 4gūūξ0t ūx + 8gūūūζ̄10 = 0. (39)

Equations (38) and (39) are linear algebraic equations with respect to ζ0 and ζ̄0. The determinant of the matrix of this
linear system of equations is equal to

 = g2
uū − guugūū.

6. Case � �= 0

If  	= 0, then one can find ζ0 and ζ̄0 as follows:

ζ0 = (
4ηt

(
2(gugūū − gūguū) + x(gxugūū − guūgxū)

) + ηttt gūūx
2 + ηtt

(
ux2 − 2gūū

) + 4ξ0t xu

+ 4ξ0t t xgūū + 8ξ0(gxugūū − guūgxū) + 8gūguū(ζ10 − ζ̄10) − 8u ¯ζ10 − 8gūūζ10t

)/
(8),

ζ̄0 = (
4ηt

(
2(gūguu − guguū) + x(guugxū − guūgxu)

) − ηttt guūx
2 + ηtt

(
ūx2 + 2guū

) + 4ξ0t ūx − 4guūξ0t t x

+ 8ξ0(guugxū − guūgxu) − 8gūguu(ζ10 − ζ̄10) − 8g2
uūūζ̄10 + 8guūζ10t + 8guugūūūζ̄10

)/
(8).

Here we assume that7

gx = 0.

Notice that in this case the kernel of admitted Lie algebras contains the shifts with respect to x and t :

X1 = ∂t , X2 = ∂x.

Splitting Eq. (37) with respect to x, one has

ηttttα4 + ηtttα3 + α2ηtt = 0, ξ0t t t β3 + ξ0t t β2 + β1ξ0t = 0, (40)

2ηttt gūū + 4ηt

(
g2

ugūū − 2gugūguū + g2
ūguu + g

) − 5ηttα3 + 4gū(guguū − gūguu)(ζ10 − ζ̄10) − 4gζ10

− 4gugūūζ10t + 4gūguū4ζ̄10t + 4gūūζ10t t = 0, (41)

where

β3 = α4 = −gūū, β2 = α3 = −(guūgū − gugūū), β1 = α2 = g.

The assumption η2
t t + ξ2

0t 	= 0 leads to a contradiction to the condition  	= 0. Since η(t − τ) = η(t) and ξ(t − τ) =
ξ(t), one finds that η(t) and ξ(t) are constant. Hence, ζ0, ζ̄0 and Eq. (41) become

ζ0 = α1ζ10t + β1ζ10 + γ1ζ̄10, ζ̄0 = α2ζ10t + β2ζ10 + γ2ζ̄10,

ζ10
(
gū(guūgu − guugū) − g

) − ζ̄10gū(guūgu − guugū) + gūguūζ̄10t − gugūūζ10t + gūūζ10t t = 0, (42)

7 The general case where gx 	= 0 is complicated for solving.
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where

α1 = −gūū/, β1 = −u + guūgū/, γ1 = −gūguū/,

α2 = guū/, β2 = −gūguu/, γ2 = −ū + gūguu/.

The case ζ10 = 0 is the trivial case, which corresponds to the kernel of admitted Lie algebras. Extension of the
kernel is possible if ζ10 	= 0. Firstly, we study the following two cases. In the first case we have,

ζ10t = −k0ζ10, ζ̄10 = −k1ζ10 (k1 	= 0), (43)

and in the second case we have,

ζ10t = −h2ζ10 − h1ζ̄10,

β1 − h2α1 = p1, γ1 − h1α1 = p2, β2 − h2α2 = p3, γ2 − h1α2 = p4. (44)

Here ki, hi (i = 1,2), pj (j = 1,2,3,4) are constant. Notice that the case where h1 = 0 is reduced to (43). Hence, it
is assumed that h1 	= 0.

6.1. Case (43)

In this case

ζ0 = (β1 − α1k0 − γ1k1)ζ10, ζ̄0 = (β2 − α2k0 − γ2k1)ζ10.

Since ζ0 and ζ̄0 do not depend on u and ū, one obtains that

β1 − k0α1 − k1γ1 = Co, β2 − k0α2 − k1γ2 = −Cok1.

Because  	= 0, the previous system of equations can be solved with respect to guū and guu,

guū = (
gūūk1(Co + ū) + gū(k1 + 1)

)/
(Co + u),

guu = (
k1(ū + Co)guū − k0

)/
(u + Co). (45)

Equation (42) becomes

−gūk1(Co + ū) + gu(Co + u) − g + k0(u + Co) = 0. (46)

Any function g(u, ū) satisfying (46) is also satisfies Eqs. (45). By virtue of the equivalence transformation correspond-
ing to the generator Xe

1, the constant Co is unessential since by shifting the dependent variable u it can be reduced to
zero. The general solution of Eq. (46) is

g(u, ū) = u
(−k0 ln(u) + ψ

(
ūuk1

))
, (47)

where ψ is an arbitrary function. Notice also that the general solution of (43) is ζ10 = Ce−k0t , where k1 = −ek0τ .
Thus, the extension of the kernel of admitted generators is

X = e−k0t u∂u. (48)

6.2. Case (44)

In this case

ζ0 = p1ζ10 + p2ζ̄10, ζ̄0 = p3ζ10 + p4ζ̄10.

Since h1 	= 0 we have

γ1 − h1α1 − p2 = 0, β1 − h2α1 − p1 = 0, γ2 − h1α2 − p4 = 0, β2 − h2α2 − p3 = 0.
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These equations can be solved with respect to guu, guū, gūū and gū to give

guu = (h1p3 − h2p4 − h2ū)

p1p4 + p1ū − p2p3 + p4u + uū
, guū = gū(p3 + p4 + ū)

p1p4 + p1ū − p2p3 + p4u + uū
,

gūū = g2
ū(p1 + p2 + u)((p1 + u)h1 − h2p2)(p4 + ū + p3)

(h1p1 + h1u − h2p2)(p1p4 + p1ū − p2p3 + p4u + uū)
, gū = −h1p1 − h1u + h2p2

p3 + p4 + ū
.

Considering (gū)u − guū = 0 and (gū)ū − gūū = 0 one obtains

h1(p1 + p2 + u)p3 − h2(p3 − p4 − ū)p2 = 0,(
h1(u + p1) − h2p2

)(
(u + p1 + p2)p3 + p2(ū + p3 + p4)

) = 0.

Since h1 	= 0, one finds p3 = 0 and p2 = 0. Because ζ̄0 = ζ̄10p4 and ζ0 = ζ10p1, one obtains p4 = p1. Hence,
gū + h1(p1 + u)/(p1 + ū) = 0, and Eq. (42) becomes

gu = g

(p1 + u)
− h2.

The general solution for the function g is

g = −(p1 + u)
(
h2 ln(p1 + u) + h1 ln(p1 + ū) + k3

)
.

As before the constant p1 is unessential and can be reduced to zero, that is,

g = −u
(
h2 ln(u) + h1 ln(ū) + k3

)
. (49)

In this case an extension of the kernel of admitted generators is

X = q(t)u∂u, (50)

where the function q(t) is a solution of the delay differential equation

q ′(t) + h2q(t) + h1q(t − τ) = 0. (51)

6.3. Case α1u 	= 0

Differentiating ζ0 with respect to u and ū, one obtains

ζ10t + β1u

α1u

ζ10 + γ1u

α1u

ζ̄10 = 0. (52)

Differentiating the previous equation with respect to u and ū, it gives(
β1u

α1u

)
u

ζ10 +
(

γ1u

α1u

)
u

ζ̄10 = 0,(
β1u

α1u

)
ū

ζ10 +
(

γ1u

α1u

)
ū

ζ̄10 = 0.

If β1u

α1u
or γ1u

α1u
is not constant, then the above system of equations leads to (43). Hence, one needs to study the case

β1u

α1u

= h2,
γ1u

α1u

= h1,

where h1 and h2 are constant.
Substituting the derivative ζ10t into the equations

ζ0ū = 0, ζ̄0u = 0, ζ̄0ū = 0,

one has



S.V. Meleshko, S. Moyo / J. Math. Anal. Appl. 338 (2008) 448–466 459
(β1ū − h2α1ū)ζ10 + (γ1ū − h1α1ū)ζ̄10 = 0,

(β2u − h2α2u)ζ10 + (γ2u − h1α2u)ζ̄10 = 0,

(β2ū − h2α2ū)ζ10 + (γ2ū − h1α2ū)ζ̄10 = 0.

If one of the coefficients of this linear system of equations (with respect to ζ10, ζ̄10) is not equal to zero, then this leads
to (43). If all of the coefficients are equal to zero, then this leads to (44).

A similar result is obtained for (α1ū)
2 + (α2u)

2 + (α2ū)
2 	= 0. Hence, to proceed one needs to study the only case

α1 = const, α2 = const.

6.4. Case α1 = const, α2 = const

Assume that α1 = p1, α2 = p2, where p1 and p2 are constant. Notice that because of  	= 0, one has p2
1 + p2

2 	= 0.
We first consider the case for which p1 	= 0. From the equations α1 = p1 and α2 = p2 we find the derivatives guū

and guu as

guū = −gūūp2/p1, guu = (
gūūp

2
2 + p1

)
/p2

1. (53)

The first equation can be integrated to give

gu = −p2gū/p1 + β,

where β = β(u) is an arbitrary function of the integration. Substituting this into the second equation of (53) and
integrating it, one obtains

β = u/p1 + Co,

where Co is constant. Notice that in this case  = gūū/p1 	= 0. Differentiating ζ0 with respect to u and ū, one has

gūūp
2
2(ζ10 − ζ̄10) + p1ζ10 = 0, (ζ10 − ζ̄10)gūūp2 = 0.

This gives a contradiction to ζ10 	= 0.
If p1 = 0, then p2 	= 0 and from the equations α1 = p1 and α2 = p2 one finds

gūū = 0, guū = 1/p2.

The equation ζ0u = 0 also gives the contradiction ζ10 = 0.

7. Case � = 0

7.1. Case gūū 	= 0

Let gūū 	= 0. In this case the general solution of the equation  = 0 is

gu = φ(gū),

where φ is an arbitrary function of the integration.
Excluding ζ0 and ζ̄0 from (38) and (39), one finds

8gūφ
′(−ηt + ζ10 − ζ̄10) + ηttt x

2 − 2ηtt + 8ηtφ + 4ξ0t t x − 8ζ10t = 0. (54)

Splitting this equation with respect to x, one has

ηttt = 0, ξ0t t = 0.

Hence,

η = a2t
2 + a1t + a0, ξ0 = b1t + b0,

where a0, a1, a2, b1, b0 are constants. Since ξ0(t) = ξ0(t − τ) and η(t) = η(t − τ), one gets ξ0 = b0 and a2 = a1 = 0.
Notice that for the existence of a nontrivial extension of the kernel of admitted Lie groups one needs that ζ 2 + ζ 2 	= 0.
0 10
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Equation (54) becomes

gūφ
′(ζ10 − ζ̄10) − ζ10t = 0. (55)

If φ′ = 0, then ζ̄10 = ζ10 are constant. In this case Eq. (39) is

ζ̄0 + ūζ̄10 = 0.

This leads to ζ0 = 0 and ζ10 = 0, which means that there is no any extension of the kernel of admitted Lie groups.
Hence, for extension of the kernel one needs to study φ′ 	= 0.

Differentiating (54) with respect to ū, one obtains

(gūφ
′)ū(ζ10 − ζ̄10) = 0. (56)

Let ζ̄10 − ζ10 = 0. Equation (54) gives that ζ10 is constant. Equations (38) and (39) are reduced to the equation

φ′ = − ζ̄0 + ūζ10

ζ0 + uζ10
. (57)

Differentiating this equation with respect to t and x, one gets

φ′ζ0t + ζ̄0t = 0, φ′ζ0x + ζ̄0x. (58)

Assume that φ′′ 	= 0, then from (58) one obtains that ζ0 is also constant. By virtue of the inverse function theorem,
from (57), one has

gū = h

(
ζ̄0 + ūζ10

ζ0 + uζ10

)
,

where h is the inverse function of the function φ′. Because gūū 	= 0, the constant ζ10 	= 0. Using the equivalence
transformation corresponding to the generators Xe

1 and Xe
5, one can account ζ0 = 0, ζ10 = 1. Since gu = φ(gū),

integrating these equations, one finds

g(u, ū) = uh

(
ū

u

)
+ k1u + k0, (59)

where k0 and k1 are constants of the integration.
Equation (37) becomes

guu + gūū − g = 0. (60)

Substituting in this equation the function g, one finds that k0 = 0. The extension of the kernel of admitted Lie algebras
is given by the generator

X = u∂u.

Let φ′′ = 0 or

gu = k1gū − k0, (61)

where k0 and k1 	= 0 are constant. Equation (57) gives ζ10 = 0 and

ζ̄0 = −k1ζ0. (62)

Equation (37) becomes

ζ0t = ζ0xx − k0ζ0.

If there exists a solution q(t, x) of the partial differential equation

qt = qxx − k0q, (63)

satisfying the condition
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q(t − τ, x) = −k1q(t, x), (64)

then the extension of the kernel is given by the generator

X = q(t, x)∂u.

Let ζ̄10 − ζ10 	= 0. Equation (56) leads to (gūφ
′)ū = 0 or φ = k1 ln(gū) + k0, where k0 and k1 	= 0 are constants of

the integration. Equations (54) and (39) give

ζ̄10 = ζ10 − ζ10t /k1, (65)

gūū = g2
ū(ζ10 − ζ̄10)

k1(ζ0 + uζ10) + gū(ζ̄0 + ūζ̄10)
. (66)

Differentiating (66) with respect to x and t , one obtains

gūζ̄0x + k1ζ0x = 0, (67)

and

gū

(
ū(ζ̄10ζ10t − ζ̄10t ζ10) + ζ̄0t (ζ̄10 − ζ10) − ζ̄0(ζ̄10t − ζ10t )

)
+ k1

(
u(ζ̄10ζ10t − ζ̄10t ζ10) + ζ0t (ζ̄10 − ζ10) − ζ0(ζ̄10t − ζ10t )

) = 0. (68)

Since gūū 	= 0, Eq. (67) gives that ζ0 = ζ0(t).
Notice that

ζ̄10ζ10t − ζ̄10t ζ10 = 1

k1

(
ζ10ζ10t t − ζ 2

10t

)
.

Assume that ζ̄10ζ10t − ζ̄10t ζ10 	= 0. Equation (67) can be solved with respect to gū,

gū = −k1
u + b

ū + c
, (69)

where

b = ζ̄0t (ζ̄10 − ζ10) − ζ̄0(ζ̄10t − ζ10t )

(ζ̄10ζ10t − ζ̄10t ζ10)
, c = ζ0t (ζ̄10 − ζ10) − ζ0(ζ̄10t − ζ10t )

(ζ̄10ζ10t − ζ̄10t ζ10)
.

Differentiating (69) with respect to t , we find that b and s are constants. Substituting the derivatives gū and gūū, found
from (69), into Eq. (66), one obtains

ū(ζ0 − bζ10) − u(ζ̄0 − cζ̄10) + cζ0 − bζ̄0 + cb(ζ̄10 − ζ10) = 0.

This leads to ζ0 = bζ10 and ζ̄0 = cζ̄10. Because ζ̄10 = ζ10(t − τ), ζ̄0 = ζ0(t − τ), and ζ̄10 − ζ10 	= 0, one gets c = b. By
virtue of the equivalence transformations corresponding to the generator Xe

1, one can account that b = 0. Integrating
the found derivatives gu and gū, one finds

g(u, ū) = λu − k1 ln(ū/u) + γ, (70)

where λ and γ are constant. Substituting (70) into (37), one obtains γ = 0. The extension of the kernel of admitted
Lie algebras is given by the generator

X = q(t)u∂u, (71)

where q(t) is a solution of the delay differential equation (65):

q ′(t) = k1
(
q(t) − q(t − τ)

)
. (72)

Assume that ζ̄10ζ10t − ζ̄10t ζ10 = 0. As was noticed the function ζ10(t) has to satisfy the equation

ζ10ζ10t t − ζ 2
10t = 0.

Hence, ζ10(t) = Ceλt , where C and λ are constant such that Cλ 	= 0. In this case
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ζ̄10 = kζ10,

where k = e−λτ . Hence, Eq. (68) becomes

gū(ζ̄0t ζ10 − ζ̄0ζ10t ) + k1(ζ0t ζ10 − ζ0ζ10t ) = 0.

Since gūū 	= 0, one obtains that

ζ0 = αζ10,

where α is constant. Without loss of generality one can account that α = 0. Equation (37) becomes

ugu + kūgū = g + λu.

The general solution of this equation is

g(u, ū) = λu ln(u) + uψ
(
ūu−k

)
. (73)

By virtue of the relation gu = k1gū + k0, the function ψ(z) has to satisfy the ordinary differential equation

k1 ln(ψ ′) + kzψ ′ = ψ + λ − k0. (74)

The extension of the kernel of admitted Lie algebras is given by the generator

X = eλtu∂u. (75)

7.2. Case gūū = 0

Assuming that gūū = 0, one has

g(u, ū) = k1ū + h(u),

where k1 	= 0 is a constant. Hence Eq. (39) gives

ζ̄10 = ζ10 − ηt .

Furthermore, if we let guu = h′′ 	= 0, we can define from (38)

ζ0 = u
(
x2ηtt + 4xξ0t − 8ζ10

)/
8 + (

2ηtt − 8ηth
′ + 8ζ10t − ηttt x

2 − 4ξ0t t x
)/

(8h′′).

Since ζ0u = 0, then(
ηttth

′′′ + ηtth
′′2)x2 + 4

(
h′′′ξ0t t + h′′2ξ0t

)
x − 2ηtth

′′′ + 8ηth
′′′h′ − 8ηth

′′2 − 8h′′′ζ10t − 8h′′2ζ10 = 0.

The last equation can be split with respect to x so that

ηttt

(
h′′′/h′′2) + ηtt = 0,

ξ0t t

(
h′′′/h′′2) + ξ0t = 0,

and (−ηtth
′′′ + 4ηth

′′′h′ − 4ηth
′′2)/(

4h′′2) − (
ζ10t

(
h′′′/h′′2) + ζ10

) = 0. (76)

Differentiating the first and the second equations with respect to u, one obtains

ηttt

(
h′′′/h′′2)′ = 0, ξ0t t

(
h′′′/h′′2)′ = 0.

Notice that if (h′′′/h′′2)′ 	= 0, then ηtt = 0, ξ0t = 0, and because of η(t − τ) = η(t), ξ(t − τ) = ξ(t), one obtains that
η = const and ξ = const. In this case (76) gives

ζ10 = 0,

which corresponds to the kernel of admitted Lie algebras. Thus, one needs to study the case (h′′′/h′′2)′ = 0 or h′′′ =
Kh′′2 with some constant K . This case also leads to the same result, that is, there is no extension of the kernel. In fact,
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differentiating (76) with respect to u, one obtains ηtK = 0. If K = 0, then ηtt = 0, which also gives that η = const.
This leads to ζ̄10 = ζ10. Similar analysis of the equations ξ0t tK + ξ0t = 0 and ξ(t − τ) = ξ(t) gives that ξ0 = const.
The function ζ10(t) has to satisfy the equations

ζ10tK + ζ10 = 0, ζ̄10 = ζ10.

The general solution of these equations is ζ10 = 0. Thus, the case guu 	= 0 does not give extensions of the kernel.

7.3. Case gūū = 0 and guu = 0

We extend our study to the case of a linear function

g(u, ū) = k1ū + k2u + k, (77)

where k1 	= 0. In this case (38) becomes

ηttt x
2 + 4ξ0t t x − 2(ηtt − 4ηtk2 + 4ζ10t ) = 0.

Splitting this equation with respect to x, one finds

ηttt = 0, ξ0t t = 0, ηtt − 4ηtk2 + 4ζ10t = 0.

By virtue of η(t − τ) = η(t) and ξ(t − τ) = ξ(t) the values η, ξ and ζ10 are constant. Equation (37) becomes

ζ0t = ζ0xx + k2ζ0 + k1ζ̄0 − ζ10k.

If k2 + k1 	= 0, then by using the equivalence transformation related with the generator Xe
1 the constant k0 can be

reduced to zero. In this case the extension of the kernel is given by the generators X = u∂u and Xq = q(t, x)∂u, where
the function q(t, x) satisfies the delay partial differential equation

qt (t, x) = qxx(t, x) + k2q(t, x) + k1q(t − τ, x). (78)

If k2 + k1 = 0, then introducing q = ζ0 − ζ10kx2/2, one gets that the extension of the kernel is given by the
generators Xq and

X = (
2u + kx2)∂u. (79)

8. Summary of the group classification

Case 1. Combining (47) and (73),

g(u, ū) = u
(−k0 ln(u) + ψ

(
ūuk1

))
, (80)

where ψ is an arbitrary function, k1 = −ek0τ , and

X = e−k0t u∂u. (81)

Case 2. Combining (49) and (70),

g = −u
(
h2 ln(u) + h1 ln(ū) + k3

)
(82)

and

X = q(t)u∂u, (83)

where the function q(t) is a solution of the delay differential equation

q ′(t) + h2q(t) + h1q(t − τ) = 0. (84)

A particular solution of Eq. (84) is q = e−k0t , where k0 = h2 + h1e
k0τ .
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Case 3. The general solution of Eq. (61) is

g(u, ū) = −k0u + ψ(ū + k1u) (k1 	= 0), (85)

where ψ is an arbitrary function. The extension of the kernel is given by the generator

X = q(t, x)∂u, (86)

where q(t, x) is a solution of equation

qt = qxx − k0q, (87)

satisfying the condition

q(t − τ, x) = −k1q(t, x). (88)

For particular cases of k0 and k1 the problem (87), (88) has a solution. For example, let k1 = −1, then a solution can
be sought in the form q = q(x), where

q ′′(x) − k0q(x) = 0.

If τ , k0 and k1 are related by the formula k1 = −ek0τ , then a particular solution of the problem (87) and (88) is
q = e−k0t .

Case 4. If the function g(u, ū) is a linear function

g(u, ū) = k1ū + k2u + k (k1 	= 0), (89)

then the extension of the kernel of admitted generators consists of the generators

Xq = q(t, x)∂u, (90)

where the function q(t, x) satisfies the reaction–diffusion equation with a delay

qt (t, x) = qxx(t, x) + k2q(t, x) + k1q(t − τ, x), (91)

and one more generator, which depends on the value of the constants k1 and k2. If k2 + k1 	= 0, then one can account
that k = 0, and the additional generator is

X = u∂u. (92)

If k2 + k1 = 0, then

X = (
2u + kx2)∂u. (93)

A particular solution of Eq. (91) is q = e−k0t , where k0 = −(k1e
k0τ + k2).

9. Invariant solutions

Invariant solutions can be sought for a subalgebra of an admitted Lie algebra. Essentially different invariant solu-
tions are obtained on the base of an optimal system of admitted subalgebras. The set of all generators nonequivalent
with respect to automorphisms composes an optimal system of one-dimensional subalgebras [7]. This set is used for
constructing nonequivalent invariant solutions. Equivalence of invariant solutions is considered with respect to an
admitted Lie algebra.

Apart from automorphisms for constructing the optimal system of subalgebras one has to use involutions. Equa-
tions (15) possess the involution E corresponding to the change x → −x.
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9.1. Optimal system of subalgebras

Let us consider the algebra L3 = {X1,X2,X3}, with the table of commutators

X1 X2 X3

X1 0 0 −k0X3

X2 0 0 0

X3 k0X3 0 0

Such algebras are admitted by Eq. (15) with the function g(u, ū) in (80), (82), (85) and (89). The generator X2
composes a center of the algebra L3.

The coordinates (x1, x2, x3) of the generator

X = x1X1 + x2X2 + x3X3

are simplified [7] by the automorphisms A1 and A3, which are defined by the table of commutators

A1: x′
3 = x3e

−k0a1 , A3: x′
3 = x3 + k0x1a2.

Here only changed coordinates are presented.
The optimal system of subalgebras of the algebra L3 with k0 	= 0 consists of the subalgebras

H1 = X3 + αX2, H2 = X1 + αX2, H3 = X2,

where α is an arbitrary constant.
Representations of the invariant solutions corresponding to the subalgebras H2 and H3 are

u = ϕ(x − αt), u = ϕ(t),

respectively. It is obvious that these representations reduce the number of the independent variables.

9.2. Invariant solutions with respect to H1

Case 1. For the function (80) the generator X3 = q(t)∂u and the representation of an invariant solution is

u = eβxq(t)ϕ(t),

where β = 1/α and q(t) = e−k0t . The reduced equation is

ϕ′(t) = ϕ(t)
(
β2q2 − k0 ln

(
ϕ(t)

) + ψ
(
ϕ(t − τ)ϕk1(t)

))
. (94)

Case 2. For the function (82) the generator X3 and the representation of an invariant solution is the same as in the
previous case. The reduced equation is

ϕ′(t) = ϕ(t)
(
β2q2 − h2 ln

(
ϕ(t)

) − h1 ln
(
ϕ(t − τ)

) + k3
)
. (95)

Case 3. For the function (85) in the case, where k1 = −ek0τ , the generator X3 = e−k0t ∂u, and the representation of an
invariant solution is u = βxe−k0t + ϕ(t). The reduced equation is

ϕ′(t) = −k0ϕ(t) + ψ
(
ϕ(t − τ) + k1ϕ(t)

)
. (96)

Case 4. If the function g(u, ū) is as given in (89) and the generator X3 = e−k0t ∂u, then the invariant solution is
u = βxe−k0t + ϕ(t), where the function ϕ(t) satisfies the reduced equation

ϕ′(t) = k1ϕ(t − τ) + k2ϕ(t) + k. (97)
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