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Preface

The goal of this book is to present several concepts useful for the analysis of dy-
namical systems, and to illustrate, in the last two chapters, how they can be actually
applied to improve the state of the art for two classical topics in nonlinear systems
theory: the linearization of a nonlinear system by state immersion and the study of
stability of equilibrium points.

The main reasoning that led us to writing this book is that some concepts that
are already well developed in the literature become more important if presented
together. Three of such concepts are homogeneity, symmetries (and orbital symme-
tries for continuous-time systems) and Lie algebras, which, in our opinion, can be
better understood if symmetries are seen as a generalization of homogeneity, and
Lie algebras (seen as generators of Lie groups) as a generalization of symmetries.
Another very well known concept is that of first integral, that is particularly helpful
for researchers working on Hamiltonian systems, or on stability of switched sys-
tems. In our opinion, similar attention should be paid to the generalization of first
integrals represented by semi-invariants, which, in turn, have a special relation, that
will be explored in the book, with orbital symmetries.

Nonlinear systems theory was traditionally developed for continuous-time sys-
tems, i.e., systems of ordinary differential equations. Only most recently, with the
growth of the “digital world”, the attention of many researchers is concentrated on
discrete-time systems, i.e., systems of difference equations. For linear systems the
similarity between continuous-time and discrete-time systems is nowadays well un-
derstood and, with some important exceptions, the study of both kinds of systems
can be actually performed in parallel, obtaining very similar results. Since this is not
so true for nonlinear systems, in this book we have made a special effort to extend
some of the concepts that are standard and well known for continuous-time systems
to discrete-time ones; in some cases, we report some results, already existing for
discrete-time systems, but not so well known in the control literature, that turn out
to be the analogous of well known results in continuous-time.

We have tried to be self-contained as much as possible, and sometimes we have
reported not only the statements, but also the proofs of some very standard results,
for two reasons: first because we would like the book to reach a wider audience,
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vi Preface

secondly because such derivations are often very similar to those that are needed
to develop the less standard topics. Most of the material in the first six chapters of
the book is not new, but, together with some new results, we sometimes propose an
alternative derivation of some known result that we consider more useful to better
understand the topic or its relationship with other results presented earlier.

Finally, we would like to apologize for the inevitable errors and omissions, espe-
cially in giving credit for the results presented in the book.

Laura Menini
Antonio Tornambè

Rome, Italy
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Chapter 1
Notation and Background

1.1 Notation

Symbols R, C and Z represent the sets of real, complex and integer numbers, re-
spectively. Given a set A, with A being either R or Z, symbols A

<, A
≤, A

> and
A

≥ denote the sets of all numbers a ∈ A such that a < 0, a ≤ 0, a > 0 and a ≥ 0,
respectively; A

n, with A denoting either one of R, C or Z, denotes the set of all vec-
tors a = [a1 · · · an]� (superscript � means transpose), with entries ai ∈ A; A

n×m

denotes the set of all n × m matrices

A =
⎡
⎢⎣

A1,1 · · · A1,m

... · · · ...

An,m · · · An,m

⎤
⎥⎦ ,

with entries Ai,j ∈ A; E denotes the identity matrix: the ith column of E is denoted
by ei . Since some of the concepts that are introduced in the book are not defined
on the whole R

n, U denotes some (not necessarily, small) open and connected
subset of R

n; U need not contain the origin of R
n; if necessary, this is explicitly

assumed. It is worth pointing out that a set U of R
n is open if it contains a full

neighborhood of xo, for all xo ∈ U ; this, in particular, implies that an open set U
has always non-zero measure. Note that, in this book, a neighborhood of a point xo

contains xo. Notation h(x) : U → R
m denotes a vector function h(x) from U to

R
m; if it is not necessary to specify the domain U of the vector function, the simpler

notation h(x) ∈ R
m is used, thus omitting that x ∈ U ; if no confusion can arise, the

dependence of h(x) on x is omitted. The image of U through h is denoted by h(U ).
If h(x) ∈ R

n, n = 1, ∂h
∂x

(respectively, ∇h = ( ∂h
∂x

)�) denotes the row (respectively,
column) gradient of h; if h(x) ∈ R

n, n ≥ 2, ∂h
∂x

is the Jacobian matrix of h. The
divergence div(h) of h(x) : U → R

n is

div(h) := trace

(
∂h

∂x

)
=

n∑
i=1

∂hi

∂xi

,

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
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2 1 Notation and Background

where hi and xi are the ith entries of h and x, respectively. A vector function

h(x) : U → R
n is Ci at x = xo, with i ∈ Z

≥, if the partial derivatives ∂ih(x)

∂x
j1
1 ···∂x

jn
n

,
∑n

k=1 jk = i, exist and are continuous at x = xo. A vector function h(x) : U → R
n

is C∞ at x = xo if all partial derivatives ∂ih(x)

∂x
j1
1 ···∂x

jn
n

,
∑n

k=1 jk = i, exist and are con-

tinuous at x = xo for all i ≥ 0; a C∞-function is said to be smooth.
Both differential and difference equations are considered, with t denoting the

independent variable that is called time; t ∈ R in case of differential equations and
t ∈ Z in case of difference equations; the case t ∈ R is denoted as the continuous-
time case and t ∈ Z is denoted as the discrete-time case; if such two cases can be
jointly considered, the notation t ∈ T, with either T = R or T = Z, is used.

1.2 Analytic and Meromorphic Functions

This section deals with some basic facts about analytic and meromorphic functions:
the reader interested in a more extended exposition is referred to Sect. 1.1 of [35] or
to [63].

A function α(x) : R
n → R is analytic at xo ∈ R

n if it admits a Taylor series
expansion centered at x = xo, which is convergent to α(x) for all x ∈ B, with B
being a neighborhood of xo; α is analytic on U , with U being some open and
connected subset of R

n, if α is analytic at each xo ∈ U ; α is analytic on the whole
R

n if it is analytic at each xo ∈ R
n.

Example 1.1 The function α(x) = e−1/x2
of x ∈ R is not analytic on R; it is analytic

on the open intervals (−∞,0), (0,+∞), but not at x = 0, where it is only smooth.

In particular, such a function is flat at x = 0, i.e., diα(x)

dxi |x=0 = 0, for all i ∈ Z
≥.

If α(xo) = 0, then xo ∈ R
n is a zero of α. Given a function α(x) ∈ R being

analytic on a whole open and connected set U of R
n, either α(x) is equal to zero

for all x ∈ U or the set of the zeros of α in U has an empty interior (if n = 1, the
zeros of α in U are isolated).

Example 1.2 Function α(x) =
{

sin( 1
x
), if x 	= 0,

0, if x = 0,
has an infinite (countable) number of

zeros in any neighborhood of x = 0, and therefore, since x = 0 is a zero of α(x) and
is not isolated, α(x) is not analytic at x = 0.

Given an open and connected U ⊆ R
n, the set An of all analytic functions

α(x) : U → R, endowed with the usual operations of sum and product between
functions, is a ring; denote by Kn the set of all functions α = a

b
, with a, b ∈ An,

with b that is not identically equal to zero; then, Kn is a field (the quotient field of
the ring of analytic functions): α ∈ Kn is called meromorphic. Actually, similarly to
the field of rational functions, Kn is a field under the equivalence relation ∼ defined
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as follows: α1, α2 ∈ Kn, αi = ai

bi
, ai, bi ∈ An, bi not identically equal to zero, are

equivalent, α1 ∼ α2, if a1(x)b2(x) = a2(x)b1(x),∀x ∈ U ; one can say that α1 and
α2 coincide on U . For instance, functions sin(x) and 1

2
sin(2x)
cos(x)

are equivalent (coin-
cide) on the whole R. Since a1b2 and a2b1 are analytic on U , if α1 and α2 coincide
on some open and connected U ∗ ⊆ U , then they coincide on the whole U ; e.g.,

α1(x) = e−1/x2
and α2(x) =

{
e−1/x2

, if x > 0,

0, if x ≤ 0,
coincide on (0,+∞), but they differ

on (−∞,0): at the boundary point x = 0, they are not analytic but only smooth.
The zeros and the poles of a meromorphic function α = a

b
, with a, b ∈ An and

b not identically equal to zero, are the zeros of a and b, respectively. If α ∈ Kn,
then there exists an open and connected subset U ∗ of U such that α is analytic
on U ∗. The notations α = 0 or α(x) = 0 (respectively, α 	= 0 or α(x) 	= 0), for a
meromorphic function α, denote a function α that is (respectively, that is not) equal
to zero for all x ∈ U ; note that α(xo) = 0 means that α(x) is equal to zero at x = xo.

Two vector functions α1(x), α2(x) ∈ R
n, with entries in Kn, are co-linear over

Kn, if there exists an element a of Kn such that α1 = aα2; a set of vector func-
tions α1(x), . . . , αm(x) ∈ R

n, with entries in Kn, are linear independent over Kn

if there exist no a1, . . . , am ∈ Kn, with ai 	= 0 for at least one index i, such that∑m
i=1 aiαi = 0; otherwise, they are linearly dependent over Kn. A matrix A, with

entries in Kn, has generic rank m, if there exists an m × m minor Ā of A such that
det(Ā) 	= 0, and all its minors Â of dimension p × p, with p > m, are such that
det(Â) = 0. If the vector functions α1(x), . . . , αm(x) ∈ R

n, with entries in Kn, are
linearly independent, then the n × m matrix [α1 . . . αm] has generic rank m.

Property 1.1 Given α1, α2 ∈ Kn, αi = ai

bi
, ai, bi ∈ An, bi 	= 0, then:

(1.1.1) α1α2 = a1a2
b1b2

∈ Kn;
(1.1.2) α1α2 = 0 if and only if either α1 = 0 or α2 = 0;
(1.1.3) α1 + α2 = a1b2+a2b1

b1b2
∈ Kn;

(1.1.4) ∂αi

∂xj
= bi

∂ai
∂xj

−ai
∂bi
∂xj

b2
i

∈ Kn;

(1.1.5) the equation α1 ξ = α2 in the unknown ξ , with α1 	= 0, has a unique solution
in Kn given by ξ = α2

α1
.

The properties above need not hold when functions are not meromorphic; as

for Property (1.1.2), let a1(x) =
{

e1/x2
1 , if x1 ≥ 0,

0, if x1 < 0,
and a2(x) =

{
0, if x1 ≥ 0,

e1/x2
1 , if x1 < 0,

with

x ∈ R
2; clearly, such functions are smooth on the whole R, are not identically equal

to zero, but their product a1a2 is identically equal to zero; similarly, α1 = [ a1
0

]
is

not identically equal to zero, but a2α1 is identically equal to zero. Let α1 = [ a1
0

]
and

α2 = [ 0
a2

]
; clearly, there exists no function a such that α2 = aα1, but det([α1 α2])

and a2α1 + a1α2 are identically equal to zero.
Let x ∈ R; if β is the anti-derivative (or indefinite integral) of α ∈ Kn, i.e.,

β(x) = ∫
α(x)dx, then β need not be meromorphic on U , but it is certainly analytic

on some open and connected set U ∗ ⊆ U . For instance, α(x) = 1
x

is meromorphic
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on the whole R, but its anti-derivative β(x) = ln(|x|) is not, being analytic only on
the intervals (−∞,0), (0,+∞).

1.3 Differential and Difference Equations

Consider two vector functions f (x),F (x) ∈ R
n and the associated continuous-time

(respectively, discrete-time) systems described by

dx(t)

dt
= f

(
x(t)

)
, x ∈ R

n, t ∈ R, (1.1a)

x(t + 1) = F
(
x(t)

)
, x ∈ R

n, t ∈ Z, (1.1b)

where x = [x1 . . . xn]� is the state vector; symbol Δh(t) stands either for dh(t)
dt

in
the continuous-time case (if t ∈ R) or for h(t +1) in the discrete-time case (if t ∈ Z),
for any scalar or vector function h; T = R in the continuous-time case and T = Z

in the discrete-time case; for the sake of simplicity, it is assumed that all functions
are meromorphic on some open and connected set U of R

n and, therefore, that they
are analytic on U ∗, with U ∗ being some open and connected set of U ; note that
U need not contain the origin of R

n and vector functions f and F need not sat-
isfy f (0) = 0 and F(0) = 0. If 0 must belong to U and equalities f (0) = 0 and
F(0) = 0 must hold, this is explicitly assumed. Under the above assumptions, sys-
tems (1.1a) and (1.1b) have unique maximal solutions [119] x(t) = Φf (t, x0), t ∈ R,
t sufficiently close to 0 to avoid finite escape times, and x(t) = ΨF (t, x0), t ∈ Z, t

sufficiently close to 0, respectively, from the initial condition x0 ∈ U ∗ at time t = 0;
Φf and ΨF are the continuous-time [7] and discrete-time flows (briefly, the CT-flow
and DT-flow) associated with f and F , respectively. If no confusion can arise be-
tween the continuous-time and discrete-time cases, the simpler nomenclature flow
is used instead of CT- and DT-flows.

Definition 1.1 Some meromorphic functions hi(x) : U → R, i = 1, . . . ,m,m ≤ n,
are functionally dependent [102] if there exists a meromorphic function
F(z1, . . . , zm) : R

m → R, which is not identically equal to zero, and an open and
connected set U ∗ ⊆ U such that F(h1(x), . . . , hm(x)) = 0 for all x ∈ U ∗; other-
wise, they are called functionally independent [102].

Note that, when meromorphic functions are considered, the functional depen-
dence and the functional independence are the only two possible cases; this is not
true, if the considered functions are, for instance, only smooth.

For the proof of the following theorem, which is omitted, see the Notes at the end
of Chap. 2 of [102].

Theorem 1.1 Some analytic functions hi(x) : U → R, i = 1, . . . ,m, m ≤ n, are
functionally independent if and only if, letting h = [h1 . . . hm]�, the Jacobian ma-
trix ∂h

∂x
of h has full rank over the field Kn of meromorphic functions, i.e., ∂h

∂x
has

full rank for all x in some open and connected set U ∗ ⊆ U .
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Example 1.3 Take h1(x) = x1, h2(x) = x1x2. Since ∂h(x)
∂x

= [ 1 0
x2 x1

]
and det( ∂h(x)

∂x
)

= x1 is not identically equal to zero, h1 and h2 are functionally independent; note
that, for h1 and h2 to be functionally independent, ∂h

∂x
need not have full rank for all

x ∈ R
2.

Example 1.4 Take h1(x) = x1
x2

, h2(x) = x2
x1+x2

. Since det( ∂h(x)
∂x

) = 0, h1 and h2 are
functionally dependent; as a matter of fact, taking F(z1, z2) = z2 + z1z2 − 1, one
can verify that F(h1(x), h2(x)) = 0 for all admissible x ∈ R

2.

Consider a vector function g(x) ∈ R
n and the associated continuous-time system

(from now on, the dependencies on times t, τ are omitted, if not necessary):

dx

dτ
= g(x), x ∈ R

n, τ ∈ R. (1.2)

Since it is assumed that g is meromorphic on U , g is analytic on some U ∗;
therefore, system (1.2) has a unique maximal solution x(τ) = Φg(τ, x0), τ ∈ R, τ

sufficiently close to 0, from the initial condition x0 ∈ U ∗ at time τ = 0 (Φg is the
CT-flow associated with g).

The directional derivative Lf h ∈ R of a scalar function h by f is Lf h := ∂h
∂x

f ,
where ∂h

∂x
is the gradient of h (Lf h is often called the Lie derivative, as in [100]); the

directional derivative Lf g ∈ R
n of g by f is the vector having Lf gi as ith entry,

with gi being the ith entry of g, i.e., Lf g := ∂g
∂x

f , where ∂g
∂x

is the Jacobian matrix
of g; the CT-Lie bracket [f,g] ∈ R

n of f and g is [23, 69, 76, 100, 107]

[f,g] := ∂g

∂x
f − ∂f

∂x
g = Lf g − Lgf,

and the DT-Lie bracket �F,g� ∈ R
n of F and g is [93]

�F,g� := g(F ) − ∂F

∂x
g = g ◦ F − LgF,

where ∂g
∂x

, ∂f
∂x

and ∂F
∂x

are the Jacobian matrices of g, f and F , respectively, and
◦ denotes function composition. If no confusion can arise between the continuous-
time and discrete-time cases, the simpler nomenclature Lie bracket is used instead
of CT and DT-Lie brackets.

For a given U , consider the set An of all analytic functions α(x) : U → R.
A derivation on An is defined formally below; for more details, the reader is referred
to [40].

Definition 1.2 Consider a function D(α) : An → An. If D is linear, D(a1α1 +
a2α2) = a1D(α1) + a2D(α2) for all real constants a1, a2 ∈ R and for all α1, α2 ∈
An, then D is called a derivation on An if it satisfies the Leibniz rule

D(α1α2) = D(α1)α2 + D(α2)α1, ∀α1, α2 ∈ An.
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Theorem 1.2 Consider a vector function f (x) ∈ R
n, with entries fi ∈ An; then, the

function D defined by D(α) = Lf α, ∀α ∈ An, is a derivation on An.

Proof The proof of both the linearity and the Leibniz rule are direct:

D(a1α1 + a2α2) = Lf (a1α1 + a2α2) = a1
∂α1

∂x
f + a2

∂α2

∂x
f

= a1Lf α1 + a2Lf α2

and

D(α1α2) = Lf (α1α2) = ∂α1α2

∂x
f = α2

∂α1

∂x
f + α1

∂α2

∂x
f = α2Lf α1 + α1Lf α2

= D(α1)α2 + D(α2)α1. �

Theorem 1.3 Let D be a derivation on An. Then, there exists a vector function
f (x) ∈ R

n, with entries fi ∈ An, such that D(α) = Lf α, ∀α ∈ An.

Proof Let fi(x) = D(xi), i = 1, . . . , n, and f = [f1 . . . fn]�; then, by The-
orem 1.2, define the derivation D̂ as D̂(α) := Lf α, ∀α ∈ An. Clearly, also D̃

defined as D̃(α) := D(α) − D̂(α), ∀α ∈ An, is a derivation. Now, it is shown
that D̃(pm) = 0, for any polynomial pm of degree m ≥ 0. First, it is shown than
D̃(pm) = 0 holds for m = 0 and m = 1. Then, under the induction assumption that
D̃(pm) = 0, for any polynomial pm of degree m, it is shown that D̃(pm+1) = 0, for
any polynomial pm+1 of degree m + 1. Consider the function α identically equal to
1; then, since α = αα, by applying D̃ to such an equality, one concludes that

D̃(α) = 2αD̃(α) = 2D̃(α),

which shows that D̃(α) = D̃(1) = 0; moreover, D̃(c) = cD̃(1) = 0, for any con-
stant c. Since, by definition, D̂(xi) = D(xi), one has D̃(xi) = 0, i = 1, . . . , n.
Hence, D̃(p1) = 0 for any polynomial p1 of degree 1:

D̃(p1) = D̃

(
c0 +

n∑
i=1

cixi

)
= c0D̃(1) +

n∑
i=1

ciD̃(xi) = 0.

Any polynomial pm+1 ∈ An of degree m + 1 can be rewritten as

pm+1(x) − pm+1(0) =
n∑

i=1

βi(x)xi,

where the βi ’s are polynomials of degree lower than m + 1; then, applying D̃ to
such an equality, one concludes that

D̃(pm+1) =
n∑

i=1

(
xiD̃(βi) + βiD̃(xi)

)= 0.
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The proof is completed because the only analytic function whose Taylor expansion
is zero is the function α that is identically equal to zero. �

Remark 1.1 For any scalar or vector function α(x) and for any pair of vector func-
tions f (x), g(x) ∈ R

n, with entries in An, the following relation holds:

L[f,g]α = Lf Lgα − LgLf α,

which can be written in terms of operators as

L[f,g] = Lf Lg − LgLf . (1.3)

Such a relation can be proven by considering the operator D(α) := Lf Lgα −
LgLf α. Clearly, D(a1α1 + a2α2) = a1D(α1) + a2D(α2), for all real constants
a1, a2 ∈ R and for all α1, α2 ∈ An, and

D(α1α2) = Lf Lg(α1α2) − LgLf (α1α2)

= Lf (α1Lgα2 + α2Lgα1) − Lg(α1Lf α2 + α2Lf α1)

= α1Lf Lgα2 + α2Lf Lgα1 + (Lf α1)(Lgα2) + (Lf α2)(Lgα1)

− α1LgLf α2 − α2LgLf α1 − (Lgα1)(Lf α2) − (Lgα2)(Lf α1)

= α1(Lf Lgα2 − LgLf α2) + α2(Lf Lgα1 − LgLf α1)

= α1D(α2) + α2D(α1);
hence, D(α) is a derivation and by Theorem 1.3 there exists h(x) ∈ R

n, with entries
in An, such that Lhα = D(α) = Lf Lgα − LgLf α, for all α ∈ An. By the proof of
Theorem 1.3, the entry hi of h is given by

hi(x) = D(xi) = Lf Lgxi − LgLf xi = Lf gi − Lgfi,

which coincides with the ith entry of [f,g]. Therefore, h = [f,g], thus show-
ing (1.3).

The directional derivative Lf h and the function composition h ◦ F are basic
operations in the book. They have analogous meaning when applied, respectively,
to continuous-time and discrete-time systems. Two of their properties are compared
below (where h1(x), h2(x) ∈ R):

Lf

(
h1

h2

)
= h2Lf h1 − h1Lf h2

h2
2

,

(
h1

h2

)
◦ F = h1 ◦ F

h2 ◦ F
,

Lf (h1h2) = h1Lf h2 + h2Lf h1, (h1h2) ◦ F = (h1 ◦ F)(h2 ◦ F).

Property 1.2 The CT-Lie bracket enjoys the following properties, with f (x), g(x),
h(x) ∈ R

n [23, 69, 76, 100, 107]:
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(1.2.1) [f,g] = −[g,f ] (skew-symmetry);
(1.2.2) [αf + βg,h] = α[f,h] + β[g,h] and [h,αf + βg] = α[h,f ] + β[h,g],

with α,β ∈ R being constants (bi-linearity);
(1.2.3) [f, [g,h]] + [g, [h,f ]] + [h, [f,g]] = 0 (the Jacobi identity).

Note that, in general, Properties 1.2 need not hold for the DT-Lie bracket (they
hold for the DT-Lie bracket when f,g and h are linear functions of x).

The proof of Properties (1.2.1) and (1.2.2) can be done by direct substitution. As
for the proof of the Jacobi identity (1.2.3), note that Lf a = 0, for any scalar function
a(x) ∈ R, if and only if f = 0, i.e., if and only if Lf = 0. Then, compute

L[f,[g,h]] = Lf L[g,h] − L[g,h]Lf = Lf (LgLh − LhLg) − (LgLh − LhLg)Lf

= Lf LgLh − Lf LhLg − LgLhLf + LhLgLf ,

L[g,[h,f ]] = LgL[h,f ] − L[h,f ]Lg = Lg(LhLf − Lf Lh) − (LhLf − Lf Lh)Lg

= LgLhLf − LgLf Lh − LhLf Lg + Lf LhLg,

L[h,[f,g]] = LhL[f,g] − L[f,g]Lh = Lh(Lf Lg − LgLf ) − (Lf Lg − LgLf )Lh

= LhLf Lg − LhLgLf − Lf LgLh + LgLf Lh.

Sum L[f,[g,h]]+[g,[h,f ]]+[h,[f,g]] = L[f,[g,h]] + L[g,[h,f ]] + L[h,[f,g]] is composed
by 12 terms, each one appearing in the sum twice, with opposite signs, whence the
sum is equal to 0.

Another useful property of the CT-Lie bracket is that, for any α(x) ∈ R and
f (x), g(x) ∈ R

n, one has

[αf,g] = α[f,g] − (Lgα)f. (1.4)

Remark 1.2 A map y = ϕ(x), with ϕ(x) : R
n → R

n being analytic on U ∗, is
a diffeomorphism on a neighborhood Bxo of xo ∈ U ∗ if det( ∂ϕ(x)

∂x
|x=xo ) 	= 0; if

U ∗ = R
n, then y = ϕ(x) is a diffeomorphism of R

n onto R
n (briefly, a global

diffeomorphism [122]) if det( ∂ϕ(x)
∂x

) 	= 0, ∀x ∈ R
n, and y = ϕ(x) is a proper map,

i.e., if the inverse image of any compact set is compact. Given a diffeomorphism
y = ϕ(x), a scalar function h(x) ∈ R and a vector function f (x) ∈ R

n if T = R (re-
spectively, F(x) ∈ R

n if T = Z), the push-forward of h by ϕ and the push-forward
of f (respectively, F ) by ϕ are (see, e.g., [86, 107]):

ϕ∗h(y) = h ◦ ϕ−1(y),

ϕ∗f (y) =
(

∂ϕ

∂x
f

)
◦ ϕ−1(y), if T = R,

ϕ∗F(y) = ϕ ◦ F ◦ ϕ−1(y), if T = Z.

Given a scalar function h̃(y) ∈ R and a vector function f̃ (y) ∈ R
n if T = R (re-

spectively, F̃ (y) ∈ R
n if T = Z), the pull-back of h̃ by ϕ and the pull-back of f̃
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(respectively, F̃ ) by ϕ are

ϕ∗h̃(x) = ϕ−1∗ h̃(x) = h̃ ◦ ϕ(x),

ϕ∗f̃ (x) = ϕ−1∗ f̃ (x) =
(

∂ϕ−1

∂y
f̃

)
◦ ϕ(x), if T = R,

ϕ∗F̃ (x) = ϕ−1∗ F̃ (x) = ϕ−1 ◦ F̃ ◦ ϕ(x), if T = Z.

If no confusion can arise, the shorter notations h̃ = ϕ∗h, f̃ = ϕ∗f , F̃ = ϕ∗F , h =
ϕ∗h̃, f = ϕ∗f̃ and F = ϕ∗F̃ are used.

The following theorem shows how the directional derivative and the CT-Lie
bracket behave under the action of a diffeomorphism [100, 107].

Theorem 1.4 Let f (x), g(x) ∈ R
n and ã(y) ∈ R. Let y = ϕ(x) be a diffeomorphism

with inverse x = ϕ−1(y). Then,

(1.4.1) Lϕ∗f ã = ϕ∗Lf (ϕ∗ã) = (Lf (ã ◦ ϕ)) ◦ ϕ−1;
(1.4.2) [ϕ∗f,ϕ∗g] = ϕ∗[f,g] = (

∂ϕ
∂x

[f,g]) ◦ ϕ−1.

Proof The proof of Statement (1.4.1) of the theorem can be obtained by the follow-
ing equalities:

Lϕ∗f ã = ∂ã

∂y
ϕ∗f = ∂ã

∂y

(
∂ϕ

∂x
f

)
◦ ϕ−1,

(
Lf (ã ◦ ϕ)

) ◦ ϕ−1 =
((

∂ã

∂y
◦ ϕ

)(
∂ϕ

∂x
f

))
◦ ϕ−1 = ∂ã

∂y

(
∂ϕ

∂x
f

)
◦ ϕ−1.

Statement (1.4.2) of the theorem is equivalent to L[ϕ∗f,ϕ∗g]ã = L
(

∂ϕ
∂x [f,g])◦ϕ−1 ã, for

any ã(y) ∈ R. Hence, by (1.3), a repeated application of Statement (1.4.1) of the
theorem yields:

L[ϕ∗f,ϕ∗g]ã = Lϕ∗f Lϕ∗gã − Lϕ∗gLϕ∗f ã

= Lϕ∗f
((

Lg(ã ◦ ϕ)
) ◦ ϕ−1)− Lϕ∗g

((
Lf (ã ◦ ϕ)

) ◦ ϕ−1)

= (
Lf Lg(ã ◦ ϕ)

) ◦ ϕ−1 − (
LgLf (ã ◦ ϕ)

) ◦ ϕ−1

= (
Lf Lg(ã ◦ ϕ) − LgLf (ã ◦ ϕ)

) ◦ ϕ−1 = (
L[f,g](ã ◦ ϕ)

) ◦ ϕ−1

= L
(

∂ϕ
∂x

[f,g])◦ϕ−1 ã. �

Since Lf (
∂ϕ
∂x

g) is not, in general, equal to ∂ϕ
∂x

Lf g, then Lϕ∗f (ϕ∗g) 	= ϕ∗Lf g,
in general, namely the directional derivative of a vector function g along f is not
invariant to diffeomorphisms, although by Statement (1.4.2) of Theorem 1.4, one
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concludes that

Lϕ∗f (ϕ∗g) − Lϕ∗g(ϕ∗f ) = ϕ∗Lf g − ϕ∗Lgf.

Statement (1.4.2) of Theorem 1.4 is referred to as the invariance of the CT-Lie
bracket to diffeomorphisms.

Definition 1.3 Given g(x) ∈ R
n, the continuous-time centralizer CC(g) (respec-

tively, the discrete-time centralizer CD(g)) of g is the set of all f (x) ∈ R
n such

that [f,g] = −[g,f ] = 0 (respectively, of all F ∈ R
n such that �F,g� = 0). Given

B ∈ R
n×n, the set of all Ax, A ∈ R

n×n, such that [Ax,Bx] = �Ax,Bx� = 0 is
denoted by Lc(Bx) and it is called the linear centralizer of Bx.

By the skew-symmetry of the CT-Lie bracket (see Property (1.2.1)),

f ∈ CC(g) ⇐⇒ g ∈ CC(f ),

Ax ∈ Lc(Bx) ⇐⇒ Bx ∈ Lc(Ax)

(in general, however, CC(g) 	= CC(f ) and Lc(Bx) 	= Lc(Ax)).
If f (x) = Ax, F(x) = Ax and g(x) = Bx, for some A,B ∈ R

n×n, then
[f (x), g(x)] = �F(x), g(x)� = (BA − AB)x and, therefore, Lc(Bx) ⊂ CC(Bx)

and Lc(Bx) ⊂ CD(Bx).
One of the key concepts in this book is that of first integral, which is widely used

in the continuous-time case (see, e.g., [56]), and has a natural generalization for the
discrete-time case (see, e.g., [82]).

Definition 1.4 A first integral of the continuous-time system (1.1a) (respectively,
of the discrete-time system (1.1b)) is a scalar function I (x) : U ∗ → R, analytic on
U ∗, such that Lf I (x) = 0 (respectively, I (F (x)) = I ◦ F(x) = I (x)), ∀x ∈ U ∗,
with U ∗ being an open and connected subset of U ; if I is a constant, then the
first integral is said to be trivial, non-trivial otherwise. Note that I (x) need not be
defined on the whole U .

The definition of first integral given in Definition 1.4 is strictly correlated with
the definition of generalized first integral given in [84, 85].

Clearly, Lf I (x) = 0 is equivalent to I ◦ Φf (t, x) = I (x) and I ◦ F(x) = I (x) is
equivalent to I ◦ ΨF (t, x) = I (x), for all admissible (t, x) ∈ R × U . For brevity, a
first integral of system (1.1a) (respectively, (1.1b)) is also called a CT-first integral
associated with f (a DT-first integral associated with F ). Symbol IC(f ) (respec-
tively, ID(F)) denotes the set of all first integrals of system (1.1a) (respectively,
system (1.1b)). If no confusion can arise between the continuous-time and discrete-
time cases, the simpler nomenclature first integral is used instead of CT- and DT-first
integrals.

Remark 1.3 In the continuous-time case, assume f 	= [0 . . . 0]�; given n − 1 func-
tionally independent CT-first integrals I1, . . . , In−1 ∈ IC(f ), any I ∈ IC(f ) can
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be expressed as I = C(I1, . . . , In−1), with C being an arbitrary function. Note that
there cannot be n functionally independent first integrals associated with f 	= 0; as
a matter of fact, condition Lf I = ∂I

∂x
f = 0, with I (x) ∈ R

n, implies that ∂I
∂x

has
generic rank less than n, whence the entries of I cannot be functionally indepen-
dent. In the discrete-time case, set ID(F) can be generated by m functionally inde-
pendent first integrals I1, . . . , Im ∈ ID(F), where, under the respective assumption
F 	= [1 . . . 1]�, m need not be equal to n − 1; any I ∈ ID(F) can be expressed as
I = C(I1, . . . , Im), with C being an arbitrary function. This, in particular, implies
that, except for the case f = 0 (any I is a CT-first integral associated with f = 0),
any scalar continuous-time system does not admit first integrals, whereas, under
the assumption F 	= 1 (any I is a DT-first integral associated with F = 1), a scalar
discrete-time system either admits no first integral or admits infinite functionally
dependent first integrals. In the rest of the book, the two trivial cases f = [0 . . . 0]�
if T = R and F = [1 . . . 1]� if T = Z are excluded.

Example 1.5 For any time-invariant mechanical system (subject to conservative
forces, only), a first integral is given by the total energy I , which is defined as
the sum of the kinetic and potential energies. As an example, I (x) = 1

2 (m1x
2
3 +

m2x
2
4) + 1

4k(x1 − x2)
4 is a first integral of the nonlinear mechanical system consti-

tuted by two point masses m1,m2 > 0, moving on a straight line and connected by
a nonlinear spring characterized by an elastic energy 1

4kξ4 corresponding to defor-
mation ξ , whose equations of motion are given by (see Sect. 5.1)

dx1

dt
= x3,

dx2

dt
= x4,

dx3

dt
= − k

m1
(x1 − x2)

3,

dx4

dt
= k

m2
(x1 − x2)

3;

to be more precise,

Lf I (x) = [
k(x1 − x2)

3 −k(x1 − x2)
3 m1x3 m2x4

]
⎡
⎢⎢⎣

x3
x4

− k
m1

(x1 − x2)
3

k
m2

(x1 − x2)
3

⎤
⎥⎥⎦= 0.

As for the discrete-time Möbius-type system described by x(t + 1) = F(x(t)), with

F(x) = a+bx
−b+cx

and a, b, c ∈ R, a first integral is given by I (x) = ( a+2bx−cx2

−b+cx
)2,

since

I ◦ F(x) =
(

a + 2bF − cF 2

−b + cF

)2∣∣∣∣
F= a+bx

−b+cx

=
(

a + 2bx − cx2

−b + cx

)2

= I (x).
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Denote by Φ either one of the CT-flows Φf and Φg ; then, the following relations
hold whenever defined:

Φ(0, x) = x, (1.5a)

Φ
(
t1,Φ(t2, x)

) = Φ(t1 + t2, x), (1.5b)

Φ
(−t,Φ(t, x)

) = x. (1.5c)

Thanks to the above properties, both Φf and Φg define a local one-parameter
group of transformations [102], y = Φ(t, x), and f and g are the infinitesimal
generators of the respective group: in particular, x = Φ(−t, y) is the inverse of
y = Φ(t, x), for all admissible t, x, y. Given a local one-parameter group of trans-
formations Φ(t, x), i.e., a vector function Φ(t, x) ∈ R

n satisfying (1.5a)–(1.5c),
there exists a vector function f (x) ∈ R

n such that Φ(t, x) = Φf (t, x) for all ad-
missible (t, x) in a neighborhood of the origin of R × R

n; in particular, since
∂Φf (t,x)

∂t
|t=0 = f (Φf (t, x))|t=0 and Φf (0, x) = x, taking into account the unique-

ness of Φf (t, x), the infinitesimal generator f of Φ(t, x) can be easily computed
by f (x) = ∂Φ(t,x)

∂t
|t=0 (see [102]). As a matter of fact, letting f (x) = ∂Φ(t,x)

∂t
|t=0,

one can compute

∂Φ(t, x)

∂t
= lim

T →0+
Φ(t + T ,x) − Φ(t, x)

T
= lim

T →0+
Φ(T ,Φ(t, x)) − Φ(t, x)

T

=
(

lim
T →0+

Φ(T ,x) − Φ(0, x)

T

)
◦ Φ(t, x) = f (x) ◦ Φ(t, x),

which, integrated from the initial condition Φ(0, x) = x, yields Φ(t, x) = Φf (t, x).
Finally, note that (1.5a), (1.5b) imply (1.5c), for small |t |.

Example 1.6 As an example of a local one-parameter group of transformations, take
Φ(t, x) = [ x1

1−tx1

x2
1−tx1

]� (see, Example 1.27(c) of [102]). Clearly, (1.5a) holds;
(1.5b) can be checked by direct substitution

Φ
(
t1,Φ(t2, x)

) =
[ x1

1−t2x1

1−t1
x1

1−t2x1

x2
1−t2x1

1−t1
x1

1−t2x1

]�

= [ x1
1−(t1+t2)x1

x2
1−(t1+t2)x1

]� = Φ(t1 + t2, x).

The infinitesimal generator of Φ(t, x) is

f (x) = ∂Φ(t, x)

∂t

∣∣∣∣
x=0

=
[

x2
1

(1−tx1)
2

x1x2
(1−tx1)

2

]�∣∣∣
t=0

= [
x2

1 x1x2
]�

.

1.4 Differential Forms

In this section, some facts about the integration of differential forms are recalled;
the reader interested in a more extensive treatment is referred to [35, 47, 107, 116].
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If I (x) ∈ R, then:

(1) the differential of I is dI := ∂I
∂x

dx, where dx = [dx1 . . . dxn]�;
(2) given a differential equation dx

dt
= f (x), with f (x) ∈ R

n, the directional dif-

ferential of I along the solutions of such a system is dI = ( ∂I
∂x

f )dt , with
∂I
∂x

f = Lf I being called the value of the differential of I on f (it coincides
with the directional derivative of I by f ).

A one-form is α = a� dx =∑n
i=1 ai dxi , with a(x) ∈ R

n being a vector function.
The value of α on f is α(f ) := a�f ; by abuse of notation, the row vector function
a� is also called a one-form. Let F1 be the set of all one-forms. Clearly, F1 is a
vector space of dimension n over the field Kn of meromorphic functions.

A one-form α is locally exact [47, p. 67], if there exists a scalar function I such
that dI = α in U ∗, with U ∗ being some open and connected subset of U (the
adverb locally is omitted in the following); such a scalar function is called a first
integral of the one-form and is (differently from what happens for continuous-time
and discrete-time systems, as discussed in Remark 1.3) locally unique, apart from
the sum of an arbitrary constant. If dI = α on the whole R

n, then I is a global first
integral of α.

Example 1.7 Consider the one-form α = (
x2

x2
1+x2

2
)dx1 + (− x1

x2
1+x2

2
)dx2. In a suf-

ficiently small neighborhood of any point (x1, x2) such that x2 	= 0, a first in-
tegral of the one-form α is I1(x) = arctan( x1

x2
); in a sufficiently small neighbor-

hood of any point (x1, x2) such that x1 	= 0, a first integral of the one-form α is
I2(x) = arctan(− x2

x1
). Note that there exists no function I such that dI = α holds

on the whole R
2 − {0}. However, it is worth pointing out that I1 and I2 are not

functionally independent, since I1 = − arctan( 1
tan(I2)

).

The wedge product of two one-forms α = ∑n
i=1 ai dxi and β = ∑n

j=1 bj dxj ,
ai, bj ∈ Kn, is denoted by α ∧ β and is defined by

α ∧ β :=
n∑

i=1

n∑
j=1

(aibj )dxi ∧ dxj , (1.6)

where the wedge product ∧ satisfies the following property (skew-symmetry):

{
dxi ∧ dxj = −dxj ∧ dxi, if i 	= j,

dxi ∧ dxj = 0, if i = j.

By the skew-symmetry, summation (1.6) can be rewritten as

α ∧ β =
n∑

i=1

n∑
j=i+1

(aibj − ajbi)dxi ∧ dxj . (1.7)
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A summation such as (1.7) is called a two-form. A two-form is the formal sum

γ =
n∑

i=1

n∑
j=i+1

ci,j dxi ∧ dxj , ci,j ∈ Kn; (1.8)

let F2 be the set of all two-forms (1.8), which is a vector space of dimension n(n−1)
2

over the field Kn of meromorphic functions. For any two-form γ , there always exist
two one-forms α,β such that γ = α ∧ β .

Property 1.3 The elements of F2 satisfy the following properties (α,α1, α2, α3 ∈
F1 and a1, a2, a3 ∈ Kn):

(1.3.1) (a1α1 + a2α2) ∧ α3 = a1α1 ∧ α3 + a2α2 ∧ α3 and α1 ∧ (a2α2 + a3α3) =
a2α1 ∧ α2 + a3α1 ∧ α3 (bi-linearity);

(1.3.2) α ∧ α = 0 and α1 ∧ α2 = −α2 ∧ α1 (skew-symmetry).

Example 1.8 In R
2, one finds that

α ∧ β = (a1b1)dx1 ∧ dx1 + (a1b2)dx1 ∧ dx2 + (a2b1)dx2 ∧ dx1

+ (a2b2)dx2 ∧ dx2

= (a1b2 − a2b1)dx1 ∧ dx2.

In R
3, one finds that

α ∧ β = (a1b2 − a2b1)dx1 ∧ dx2 + (a1b3 − a3b1)dx1 ∧ dx3

+ (a2b3 − a3b2)dx2 ∧ dx3.

In general, given some one-forms α, β , γ , δ, . . . , α ∧ β ∧ γ is a three-form,
α ∧ β ∧ γ ∧ δ is a four-form and so on, with the wedge product being associative.

A p-form is the formal summation

γ =
n∑

i1=1

n∑
i2=i1+1

· · ·
n∑

ip=ip−1+1

ci1,i2,...,ip dxi1 ∧ dxi2 ∧ · · · ∧ dxip , ci1,i2,...,ip ∈ Kn;

(1.9)

let Fp be the set of all p-forms (1.9), which is a vector space of dimension
(
n
p

)
over

the field Kn of meromorphic functions. For any p-form γ , there always exists p

one-forms α1, . . . , αp such that γ = α1 ∧ · · · ∧ αp .

Property 1.4 The elements of Fp satisfy the following properties (βi,αi ∈ F1 and
bi ∈ Kn):

(1.4.1) (b1β1 +b2β2)∧α2 ∧· · ·∧αp = b1β1 ∧α2 ∧· · ·∧αp +b2β2 ∧α2 ∧· · ·∧αp ,
and any other similar property obtained by substituting any αi in α1 ∧ α2 ∧
· · · ∧ αp with b1β1 + b2β2;
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(1.4.2) α1 ∧ α2 ∧ · · · ∧ αp = 0 if αi = αj for some i 	= j ;
(1.4.3) α1 ∧ α2 ∧ · · · ∧ αp changes sign if any two αi,αj , i 	= j , are interchanged.

The derivative dα of a one-form α =∑n
i=1 ai dxi is a two-form defined by

dα :=
n∑

i=1

dai ∧ dxi,

the derivative dγ of a two-form γ = ∑n
i=1

∑n
j=i+1 ci,j dxi ∧ dxj is a three-form

defined by

dγ :=
n∑

i=1

n∑
j=i+1

dci,j ∧ dxi ∧ dxj ,

and so on.
The two-form dα can be rewritten as

dα = [
c1,2 . . . c1,n c2,3 . . . c2,n . . . cn−1,n

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx1 ∧ dx2
...

dx1 ∧ dxn

dx2 ∧ dx3
...

dx2 ∧ dxn

...

dxn−1 ∧ dxn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.10)

with ci,j ’s being scalar functions; the transpose of the coefficient row vector in
(1.10) having the ci,j ’s as entries is called the curl of the vector function a and
is denoted by curl(a).

Example 1.9 In R
2, the derivative of the one-form α = a1 dx1 + a2 dx2 is

dα =
(

∂a1

∂x1
dx1 + ∂a1

∂x2
dx2

)
∧ dx1 +

(
∂a2

∂x1
dx1 + ∂a2

∂x2
dx2

)
∧ dx2

= ∂a1

∂x2
dx2 ∧ dx1 + ∂a2

∂x1
dx1 ∧ dx2 =

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2.

The curl of the vector function a = [a1 a2]� is the scalar curl(a) = ∂a2
∂x1

− ∂a1
∂x2

. In R
3,

the derivative of the one-form α = a1 dx1 + a2 dx2 + a3 dx3 is

dα =
(

∂a1

∂x1
dx1 + ∂a1

∂x2
dx2 + ∂a1

∂x3
dx3

)
∧ dx1

+
(

∂a2

∂x1
dx1 + ∂a2

∂x2
dx2 + ∂a2

∂x3
dx3

)
∧ dx2
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+
(

∂a3

∂x1
dx1 + ∂a3

∂x2
dx2 + ∂a3

∂x3
dx3

)
∧ dx3

=
(

∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 +

(
∂a3

∂x1
− ∂a1

∂x3

)
dx1 ∧ dx3

+
(

∂a3

∂x2
− ∂a2

∂x3

)
dx2 ∧ dx3.

The curl of the vector function a = [a1 a2 a3]� is the vector (note the special ar-
rangement of the entries of curl(a) in the case n = 3 to be conform with the usual
definition of curl in the vector calculus)

curl(a) =

⎡
⎢⎢⎣

∂a3
∂x2

− ∂a2
∂x3

∂a1
∂x3

− ∂a3
∂x1

∂a2
∂x1

− ∂a1
∂x2

⎤
⎥⎥⎦ .

The proof of the following theorem is omitted: the necessity is given by the
Poincaré Lemma (Lemma 2-15 of [116]) and the sufficiency is given by the con-
verse Poincaré Lemma (Theorem 2.19 of [116]) (see also [47]).

Theorem 1.5 A one-form α (respectively, a one-form a�) is locally exact if and
only if dα = 0 (respectively, curl(a) = 0).

A one-form α is closed [47, page 67] if dα = 0; by Theorem 1.5, a one-form is
locally exact if and only if it is closed.

Remark 1.4 Let n = 2 and assume that α is exact, namely assume the existence of
a scalar function I such that

α = dI = ∂I

∂x1
dx1 + ∂I

∂x2
dx2.

Then,

dα = d dI =
(

∂

∂x1

∂I

∂x2
− ∂

∂x2

∂I

∂x1

)
dx1 ∧ dx2 = 0.

The proof of the following theorem, which is a version of the Frobenius Theorem,
is omitted (see Proposition 2.4 of [116] for the necessity and the lemma at p. 96
of [47] for the sufficiency).

Theorem 1.6 Let α 	= 0 be a one-form. There exists ω(x) ∈ R, ω 	= 0, such that
1
ω
α is exact, namely such that d( 1

ω
α) = 0 if and only if the following condition of

Frobenius holds:

dα ∧ α = 0. (1.11)
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Remark 1.5 Assume d( 1
ω
α) = 0, with ω 	= 0. Since

d

(
1

ω
α

)
= − 1

ω2 dω ∧ α + 1

ω
dα,

condition d( 1
ω
α) = 0 implies dα = 1

ω
dω ∧ α, whence dα ∧ α = 1

ω
dω ∧ α ∧ α = 0.

If (1.11) holds, the function ω(x) ∈ R, ω 	= 0, such that d( 1
ω
α) = 0 is called an

inverse integrating factor of the one-form α. If (1.11) holds, then by the above
reasoning there exists an exact one-form β such that dα = β ∧ α (in particular,
β = 1

ω
dω), whence ω(x) = eb(x)c, where b(x) ∈ R is the first integral of β , db = β ,

and c ∈ R is an arbitrary constant.

Example 1.10 Let α 	= 0 be a one-form. In R
2, one finds that

dα ∧ α =
((

∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2

)
∧ (a1 dx1 + a2 dx2)

= a1

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 ∧ dx1 + a2

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 ∧ dx2

= 0,

which means that an inverse integrating factor always exists when n = 2. In R
3, one

finds that

dα ∧ α =
((

∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 +

(
∂a3

∂x1
− ∂a1

∂x3

)
dx1 ∧ dx3

+
(

∂a3

∂x2
− ∂a2

∂x3

)
dx2 ∧ dx3

)
∧ (a1 dx1 + a2 dx2 + a3 dx3)

=
((

∂a2

∂x1
− ∂a1

∂x2

)
a3 −

(
∂a3

∂x1
− ∂a1

∂x3

)
a2

+
(

∂a3

∂x2
− ∂a2

∂x3

)
a1

)
dx1 ∧ dx2 ∧ dx3,

which means that there exists an inverse integrating factor when n = 3 if and only if
(

∂a2

∂x1
− ∂a1

∂x2

)
a3 −

(
∂a3

∂x1
− ∂a1

∂x3

)
a2 +

(
∂a3

∂x2
− ∂a2

∂x3

)
a1 = 0.

Example 1.11 Let α = −x2 dx1 + x1 dx2 and compute dα = 2 dx1 ∧ dx2. For any
exact one-form β = ∂b

∂x1
dx1 + ∂b

∂x2
dx2, one computes β ∧α = ( ∂b

∂x1
x1 + ∂b

∂x2
x2)dx1 ∧

dx2; equality dα = β ∧ α yields the partial differential equation ∂b
∂x1

x1 + ∂b
∂x2

x2 = 2.
The characteristic equation associated with such a partial differential equation is
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dx1
x1

= dx2
x2

= db
2 . Two functionally independent first integrals of the characteris-

tic equation are I1 = ln(| x1
x2

|) and I2 = ln(|x1|) − 1
2b. Therefore, all first inte-

grals of the above partial differential equation are given by I2 = C(I1), where
C is an arbitrary function. In particular, choosing C(I1) = 1

2I1, one computes
b(x) = ln(|x1x2|), which yields the inverse integrating factor ω(x) = x1x2 (choos-
ing c = 1 as integration constant). With this choice, one obtains the exact one-form
1
ω
α = − 1

x1
dx1 + 1

x2
dx2, with the first integral I = ln(| x2

x1
|).

Example 1.12 The one-form α = x2 dx1 + x3 dx2 + x1 dx3 does not admit any in-
verse integrating factor, because dα ∧ α = −(x1 + x2 + x3)dx1 ∧ dx2 ∧ dx3 is not
identically equal to zero.

Theorem 1.7 If ω is an inverse integrating factor of the one-form α and I is the
corresponding first integral, i.e., if ∂I

∂x
= 1

ω
α, then ω̂ = ω

C(I)
is an inverse integrating

factor of α, where C 	= 0 is an arbitrary function of I ; in particular, the first integral
of α corresponding to ω̂ is Î = ∫

C(I)dI , where
∫

C(I)dI is the indefinite integral
(the anti-derivative) of C(I).

Proof Clearly, ∂Î
∂x

= C(I) ∂I
∂x

= C(I) 1
ω
α. �

Remark 1.6 In this remark, assume that x ∈ R
3. Three basic operations of vector

calculus are the gradient, the curl and the divergence. Let ∇ = [ ∂
∂x1

∂
∂x2

∂
∂x3

]�.
The gradient of a scalar function h(x) ∈ R, and the curl and divergence of a vector
function f (x) ∈ R

3 are, respectively, defined as follows:

∇h :=

⎡
⎢⎢⎣

∂h
∂x1
∂h
∂x2
∂h
∂x3

⎤
⎥⎥⎦ ,

∇ × f :=

⎡
⎢⎢⎣

∂
∂x1
∂

∂x2
∂

∂x3

⎤
⎥⎥⎦×

⎡
⎣

f1
f2
f3

⎤
⎦=

⎡
⎢⎢⎣

∂f3
∂x2

− ∂f2
∂x3

∂f1
∂x3

− ∂f3
∂x1

∂f2
∂x1

− ∂f1
∂x2

⎤
⎥⎥⎦ ,

∇ · f :=

⎡
⎢⎢⎣

∂
∂x1
∂

∂x2
∂

∂x3

⎤
⎥⎥⎦ ·

⎡
⎣

f1
f2
f3

⎤
⎦= ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3
,

where × and · are, respectively, the cross and scalar product. Using the language
of differential forms, ∇h corresponds to the one-form dh = ∂h

∂x1
dx1 + ∂h

∂x2
dx2 +

∂h
∂x3

dx3, ∇ × f corresponds to the two-form dφ, where φ is the one-form φ =
f1 dx1 +f2 dx2 +f3 dx3, i.e., dφ = (

∂f3
∂x2

− ∂f2
∂x3

)dx2 ∧dx3 + (
∂f1
∂x3

− ∂f3
∂x1

)dx3 ∧dx1 +
(

∂f2
∂x1

− ∂f1
∂x2

)dx1 ∧ dx2, and ∇ · f corresponds to the three-form dχ , where χ is the
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two-form χ = f1 dx2 ∧ dx3 + f2 dx3 ∧ dx1 + f3 dx1 ∧ dx2, i.e., dχ = df1 ∧ dx2 ∧
dx3 + df2 ∧ dx3 ∧ dx1 + df3 ∧ dx1 ∧ dx2 = (

∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

)dx1 ∧ dx2 ∧ dx3.
From vector calculus, it is known that the following properties hold in some open
and connected domain of R

3:

(1.6.1) if ∇h = 0 for some scalar function h, then h is constant;
(1.6.2) if ∇ × f = 0 for some vector function f , then there exists a scalar function

h such that f = ∇h;
(1.6.3) if ∇ · f = 0 for some vector function f , then there exists a vector function

g such that f = ∇ × g;
(1.6.4) for any scalar function h, there exists a vector function f such that ∇ ·f = h.

In terms of differential forms, the above properties correspond to the following
respective properties:

(1.6.1′) if dh = 0 for some scalar function h, then h is constant;
(1.6.2′) if dφ = 0 for some one-form φ, then there exists a scalar function h such

that dh = φ;
(1.6.3′) if dχ = 0 for some two-form χ , then there exists a one-form φ such that

dφ = χ ;
(1.6.4′) for any scalar function h, there exists a two-form χ such that dχ = hdx1 ∧

dx2 ∧ dx3.

1.5 The Cauchy–Kovalevskaya Theorem

In this section, some facts about the Cauchy–Kovalevskaya Theorem are recalled;
the reader interested in a more extensive treatment is referred to [36, 103].

Consider m scalar functions ui(x) ∈ R, i = 1, . . . ,m. Apart from a reordering of
the entries xi of x, consider the system of first order partial differential equations

⎧⎪⎪⎨
⎪⎪⎩

∂u1
∂x1

= k1(x,u1, . . . , um, ∂u1
∂xa , . . . , ∂um

∂xa ),

...
∂um

∂x1
= km(x,u1, . . . , um,

∂u1
∂xa , . . . , ∂um

∂xa ),

(1.12)

where ki(ξ) : R
n(m+1) → R, i = 1, . . . ,m, and xa = [x2 . . . xn]�; system (1.12) is

said to be in the Kovalevskaya form.

Assumption 1.1 Take a point xo = [xo
1 xo

2 . . . xo
n]�. Consider the Cauchy initial

data

ui(x
o
1 , x2, . . . , xn) = hi(x2, . . . , xn), i = 1, . . . ,m, (1.13)

where the functions hi(x2, . . . , xn) are analytic at [x2 . . . xn]� = [xo
2 . . . xo

n]�.

Let Ξ(x) = [x� u1(x) . . . um(x) (
∂u1(x)
∂xa )� . . . (

∂um(x)
∂xa )�]� and ξo = Ξ(xo). Let

functions ki(ξ), i = 1, . . . ,m, be analytic at ξ = ξo.
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The Cauchy–Kovalevskaya Theorem can be stated as follows (the proof can be
found in [36]).

Theorem 1.8 Under Assumption 1.1, the Cauchy problem (1.12), (1.13) has a
unique solution u1(x), . . . , um(x) in a neighborhood of xo, which is analytic at
x = xo.

Remark 1.7 If n = 1, system (1.12) reduces to a set of first order ordinary differen-
tial equations and Theorem 1.8 reduces to the classical Cauchy Theorem.

1.6 The Frobenius Theorem

Definition 1.5 Given m vector functions g1(x), . . . , gm(x) ∈ R
n, with entries in

Kn, the distribution D spanned by g1, . . . , gm over the field of meromorphic func-
tions Kn is

D = spanKn
{g1, . . . , gm} =

{
g(x) ∈ R

n : g =
m∑

i=1

αigi, αi ∈ Kn

}
.

The distribution spanKn
{g1, . . . , gm} is involutive if, for each pair i, j ∈ {1, . . . ,m},

there exist m functions ci,j ;� ∈ Kn, � = 1, . . . ,m, such that

[gi, gj ] =
m∑

�=1

ci,j ;� g�.

The following theorem shows that the involutive property of a distribution D is
independent of the basis {g1, . . . , gm} chosen to represent D .

Lemma 1.1 A distribution D = spanKn
{g1, . . . , gm} is involutive if and only if

[f,g] ∈ D , for all f,g ∈ D .

Proof Given an involutive distribution D = spanKn
{g1, . . . , gm}, if f,g ∈ D , then

[f,g] ∈ D ; as a matter of fact, letting f = ∑m
i=1 αigi and g = ∑m

j=1 βjgj , for
αi,βj ∈ Kn, one concludes that [f,g] belongs to D , as shown by the following
equalities:

[f,g] =
m∑

i=1

m∑
j=1

[αigi, βjgj ] =
m∑

i=1

m∑
i=1

(
Lαigi

(βjgj ) − Lβj gj
(αigi)

)

=
m∑

i=1

m∑
i=1

(
αiLgi

(βjgj ) − βjLgj
(αigi)

)
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=
m∑

i=1

m∑
i=1

(
αi(βjLgi

gj + gjLgi
βj ) − βj (αiLgj

gi + giLgj
αi)

)

=
m∑

i=1

m∑
i=1

(
αiβj (Lgi

gj − Lgj
gi) + (αiLgi

βj )gj − (βjLgj
αi)gi

)

=
m∑

i=1

m∑
i=1

(
αiβj [gi, gj ] + (αiLgi

βj )gj − (βjLgj
αi)gi

)
.

Clearly, if [f,g] ∈ D for all f,g ∈ D , then [gi, gj ] ∈ D , whence [gi, gj ] =∑m
�=1 ci,j ;� g�, for some ci,j ;� ∈ Kn. �

Lemma 1.2 Let y = ϕ(x) be a diffeomorphism. Let D = spanKn
{g1, . . . , gm} and

D̃ = spanKn
{ϕ∗g1, . . . , ϕ∗gm}. Then,

f ∈ D ⇐⇒ ϕ∗f ∈ D̃ .

Proof If f =∑m
i=1 αigi , then

ϕ∗f =
(

∂ϕ

∂x
f

)
◦ ϕ−1 =

m∑
i=1

(
αi

∂ϕ

∂x
gi

)
◦ ϕ−1 =

m∑
i=1

(ϕ∗αi)(ϕ∗gi).

The converse is similar. �

By Lemma 1.2, D is involutive if and only if D̃ is involutive.

Definition 1.6 Let a distribution D = spanKn
{g1, . . . , gm} be given, with g1, . . . ,

gm being linearly independent over Kn. Let G = [g1 . . . gm]. Point xo ∈ R
n is

regular for the distribution D if matrix G(x) has constant rank m for all x in a
neighborhood U ∗ of xo.

By Lemma 1.2, if the domain of definition of the diffeomorphism y = ϕ(x) con-
tains the regular point xo of D , then yo = ϕ(xo) is a regular point of D̃ .

The Frobenius Theorem can be stated as follows (for proof the reader is referred
to [35, 69, 100, 107]), letting ei denote the ith column of the identity matrix E.

Theorem 1.9 Let a distribution D = spanKn
{g1, . . . , gm} be given, with g1, . . . , gm

being linearly independent over Kn; let xo ∈ R
n be a regular point of D . There

exists a diffeomorphism y = ϕ(x), ϕ(·) : U ∗ → R
n, with U ∗ being some neighbor-

hood of xo, such that

spanKn
{ϕ∗g1, . . . , ϕ∗gm} = spanKn

{e1, . . . , em} (1.14)

if and only if D is involutive.
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By (1.14), any f̃ ∈ spanKn
{ϕ∗g1, . . . , ϕ∗gm} has the last n − m entries being

equal to zero; this means that the last n − m entries of ϕ(x) are functionally inde-
pendent first integrals of any f ∈ spanKn

{g1, . . . , gm}, and therefore they are joint
functionally independent first integrals of g1, . . . , gm.

Let hi(x) ∈ R
n be defined by the pull-back hi = ϕ∗ei = (

∂ϕ
∂x

)−1ei , with ϕ

being the diffeomorphism introduced in Theorem 1.9, under its assumptions;
such hi ’s are pairwise commuting, [hi, hj ] = 0 (because [ei, ej ] = 0), and D =
spanKn

{g1, . . . , gm} = spanKn
{h1, . . . , hm}. This means that any involutive distri-

bution is spanned, about an arbitrary regular point, by pairwise commuting vector
functions.

The reasoning in the following remark is used very often in the rest of the book.

Remark 1.8 Let y = ϕ(x) be a diffeomorphism from U to R
n, with U being an

open and connected subset of R
n such that det( ∂ϕ(x)

∂x
) 	= 0 for all x in U . Let gi be

the ith column of (
∂ϕ
∂x

)−1; if ϕ has analytic entries on U , then (
∂ϕ
∂x

)−1 has entries
being meromorphic on U , as well as its columns gi . In particular, the following
relation holds:

[gi, gj ] = 0, ∀i, j. (1.15)

Vice versa, let g1(x), . . . , gn(x) ∈ R
n be n pairwise commuting meromorphic vector

functions (i.e., such that (1.15) holds) such that

det
([g1 . . . gn]

) 	= 0. (1.16)

Then, the n rows of [g1 . . . gn]−1 are exact one-forms, i.e., there exists an analytic
diffeomorphism y = ϕ(x) such that ∂ϕ

∂x
= [g1 . . . gn]−1 locally. Moreover, such

a diffeomorphism is global if and only if (1.15) and (1.16) hold for all x ∈ R
n

(i.e., U = R
n) and the vector functions gi are complete [39, 104], i.e., the CT-flow

Φgi
(t, x) associated with gi is defined for all (t, x) ∈ R × R

n, i = 1, . . . , n. It is
worth pointing out that y = ϕ(x) is the diffeomorphism that straightens jointly all
vector functions gi , i.e., ϕ∗g1 = e1, . . . , ϕ∗gn = en, with ei being the ith column of
the n × n identity matrix E; in particular, for each j = 1, . . . , n, by construction

Lgi
ϕj =

{
0, if i 	= j,

1, if i = j,

where ϕj is the j th entry of ϕ. As a consequence, the CT-flow associated with gi is

Φgi
(t, x) = ϕ−1(ei t + ϕ(x)

)
.

Example 1.13 Clearly, y1 = x1, y2 = x2 + x2
1 , with inverse x1 = y1, x2 = y2 − y2

1 ,

is a global diffeomorphism y = ϕ(x) from R
2 to R

2. Then, from (
∂ϕ(x)

∂x
)−1 =[ 1 0

−2x1 1

]
, the two vector functions g1(x) = [ 1

−2x1

]
and g2(x) = [ 0

1

]
are found.

Clearly, [g1, g2] = 0 for all x in R
2 and the CT-flows Φg1(t, x) = [ t+x1

−t2−2tx1+x2

]
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and Φg2(t, x) = [ x1
t+x2

]
associated with g1 and g2, respectively, are defined for all

(t, x) ∈ R × R
2, i.e., g1 and g2 are complete.

Example 1.14 Let g1(x) = [
x2+2

1

]
and g2(x) = [

x2+1
1

]
; then, det([g1 g2]) = 1

and [g1, g2] = 0 on the whole R
2. Since g1 and g2 are complete (their CT-flows

Φg1(t, x) = [ 2t+x1+ 1
2 t2+tx2

t+x2

]
and Φg2(t, x) = [

x1+ 1
2 t2+tx2+t

t+x2

]
are defined for all

(t, x) ∈ R × R
2), the diffeomorphism y = ϕ(x), which can be found by integrat-

ing the rows of [g1(x) g2(x)]−1 = [ 1 −x2−1
−1 x2+2

]
, is global: choosing zero integration

constants, one finds the diffeomorphism y1 = − 1
2x2

2 +x1 −x2, y2 = 1
2x2

2 −x1 +2x2

with inverse x1 = 2y1 + y2 + 1
2 (y1 + y2)

2, x2 = y1 + y2.

A useful result concerning the inverse ϕ−1(y) can be derived from the property

Φgi
(ξi, ·) ◦ Φgj

(ξj , x) = ϕ−1(eiξi + ej ξj + ϕ(x)
)
, ∀i, j, (1.17)

which implies that

Φg1(ξ1, ·) ◦ Φg2(ξ2, ·) ◦ · · · ◦ Φgn
(ξn, x) = ϕ−1(e1ξ1 + e2ξ2 + · · · + enξn + ϕ(x)

)

= ϕ−1(ξ + ϕ(x)
)
,

where ξ = [ξ1 . . . ξn]�. Such an equality gives

ϕ−1(y) = Φg1(ξ1, ·) ◦ Φg2(ξ2, ·) ◦ · · · ◦ Φgn
(ξn, x)|ξ=y−ϕ(x). (1.18)

Similarly, if 0 ∈ U , and ϕ(0) = 0, then

Φg1(ξ1, ·) ◦ Φg2(ξ2, ·) ◦ · · · ◦ Φgn
(ξn, x)|ξ=y,x=0 = ϕ−1(y).

By (1.17), since eiξi + ej ξj = ej ξj + eiξi , one concludes that

Φgi
(ξi, ·) ◦ Φgj

(ξj , x) = Φgj
(ξj , ·) ◦ Φgi

(ξi, x), (1.19)

which is a direct consequence of [gi, gj ] = 0.

Example 1.15 Consider again the diffeomorphism of Example 1.14. Since

Φg1(ξ1, ·) ◦ Φg2(ξ2, x) =
[

2ξ1 + x1 + 1
2ξ2

2 + ξ2x2 + ξ2 + 1
2ξ 2

1 + ξ1(ξ2 + x2)

ξ1 + ξ2 + x2

]
,

letting

ξ1 = y1 −
(

−1

2
x2

2 + x1 − x2

)
, ξ2 = y2 −

(
1

2
x2

2 − x1 + 2x2

)
,

one concludes that

ϕ−1(y) =
[

2y1 + y2 + 1
2 (y2 + y1)

2

y1 + y2

]
.
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The following theorem follows from the above reasoning (see [69]).

Theorem 1.10 Let g1, . . . , gn be such that conditions (1.15) hold only for all i, j ∈
{1, . . . ,m}, for some m ≤ n, and condition (1.16) holds; denoting by xo any point of
U such that det([g1(x

o) . . . gn(x
o)]) 	= 0, then the diffeomorphism y = ϕ(x), with

ϕ−1(y) given by

ϕ−1(y) = [
Φg1(ξ1, ·) ◦ Φg2(ξ2, ·) ◦ · · · ◦ Φgn(ξn, x)

]
ξ=y,x=xo , (1.20)

straightens g1, . . . , gm (but, in general, not gi , i ≥ m+1) and satisfies ϕ−1(0) = xo.

Theorem 1.10 gives a procedure for the computation of a diffeomorphism y =
ϕ(x) that straightens jointly m pairwise commuting vector functions. It is worth
pointing out that the last n − m entries of ϕ(x) are functionally independent first
integrals of g1, . . . , gm. This procedure is detailed in the following example in the
case m = 1.

Example 1.16 Consider g1(x) = [x1 3x2 + x2
1 ]�. The CT-flow Φg1(t, x) associated

with g1 is

Φg1(t, x) =
[

et x1

e3t x2 + (−e2t + e3t )x2
1

]
.

The vector function g1 can be completed with g2(x) = [0 1]� in a neighborhood of
any x such that det([g1(x) g2(x)]) 	= 0, where

det
([

g1(x) g2(x)
])= det

([
x1 0

3x2 + x2
1 1

])
= x1; (1.21)

actually, g1 and g2 are not commuting (i.e., [g1, g2] = [0 − 3]� 	= 0). The CT-flow
associated with g2 is

Φg2(t, x) =
[

x1
x2 + t

]
.

Compute the composition of the two CT-flows at x = xo:

Φg1(y1, ·) ◦ Φg2(y2, x
o) =

[
ey1xo

1

e3y1(xo
2 + y2) + (−e2y1 + e3y1)(xo

1 )2

]
.

Choosing xo
1 = 1 and xo

2 = 0 (by (1.21), one can choose any point such that xo
1 	= 0),

one obtains the diffeomorphism x = ϕ−1(y), with

ϕ−1(y) =
[

ey1

e3y1y2 − e2y1 + e3y1

]
;

note that ϕ−1(0) = xo = [1 0]�.
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A special case is when all gi are linear, gi(x) = Aix, i = 1, . . . , n. Let
A1, . . . ,An ∈ R

n×n be such that det([A1x
o . . . Anx

o]) 	= 0, for some xo ∈ R
n.

Then, the diffeomorphism that straightens A1x, about x = xo, is y = ϕ(x), with

ϕ−1(y) = eA1y1 eA2y2 · · · eAnynxo.

Example 1.17 Consider g1(x) = A1x and g2(x) = A2x, with A1 = [ 1 1
0 2

]
and A2 =[ 0 1

0 0

]
(g1 and g2 are clearly not commuting, [g1(x), g2(x)] = [x2 0]� 	= 0). Since

det([g1(x) g2(x)]) = −2x2
2 , one can choose any point xo such that xo

2 	= 0: e.g., take
xo = [0 1]�. Then, the diffeomorphism x = ϕ−1(y) is found,

ϕ−1(y) = eA1y1 eA2y2xo = e

[
1 1
0 2

]
y1 e

[
0 1
0 0

]
y2

[
0
1

]
=
[

ey1y2 + e2y1 − ey1

e2y1

]
,

with inverse y = ϕ(x) (with x in a neighborhood of xo such that x2 > 0),

ϕ(x) =
[

1
2 ln(x2)

1 + x1−x2√
x2

]
.

Note that LA1xϕ(x) = [1 0]� and ϕ(xo) = 0.

1.7 Semi-simple, Normal and Nilpotent Square Matrices

In this section, definitions and first standard properties of semi-simple, normal and
nilpotent matrices are reported [52, 83]; some more results, crucial for the sequel
of the book, are given in Sect. 2.1, where they are proven using results presented
earlier.

Definition 1.7 A matrix A ∈ R
n×n is semi-simple if it can be diagonalized over C;

A is normal if it commutes with its transpose under the matrix product, AA� =
A�A; A is nilpotent if there exists an integer k ∈ Z

> such that Ak = 0.

Lemma 1.3 If A is normal, then A is semi-simple.

Proof By the Schur triangularization theorem (see Theorem 4.10.2 of [83]), for any
matrix A there exists a unitary matrix U ∈ C

n×n (UU∗� = E) such that UAU∗� =
T and UA�U∗� = T ∗�, where T ∈ C

n×n is triangular. Hence

UAA�U∗� = UAU∗�UA�U∗� = T T ∗�,

UA�AU∗� = UA�U∗�UAU∗� = T ∗�T .

Now, since A and A� are commuting, one concludes that T T ∗� = T ∗�T . Since
T is triangular, this is possible if and only if T is diagonal (this can be proven by
induction on the dimension of matrix T ). �
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By Lemma 1.3, a normal matrix is semi-simple, but the converse need not be
true. Examples of normal matrices are the symmetric and skew-symmetric ones.
A matrix A is nilpotent if and only if all its eigenvalues are equal to zero.

Example 1.18 Let A = [
a b
c d

]
be normal, i.e., AA� − A�A = 0. By solving the

algebraic system that is found by equating to 0 the entries of AA� − A�A, one
finds that there are two possible cases: b = c, for arbitrary a, c, d ∈ R, i.e.,

A =
[
a c

c d

]
, (1.22)

and a = d, b = −c, for arbitrary c, d ∈ R, i.e.,

A =
[
d −c

c d

]
. (1.23)

Matrix A given in (1.22) has eigenvalues 1
2d + 1

2a + 1
2

√
(a − d)2 + 4c2, 1

2d + 1
2a −

1
2

√
(a − d)2 + 4c2, which are always real for all a, c, d ∈ R, whereas matrix A

given in (1.23) has eigenvalues d + ic, d − ic, which are always non-real for all
c, d ∈ R, c 	= 0.

Lemma 1.4 Let A, B ∈ R
n×n be semi-simple and commuting, AB = BA. Then, A

and B are jointly diagonalizable.

Proof If both A and B have distinct eigenvalues, the proof of the theorem is partic-
ularly simple. Let vi be eigenvector of matrix A with eigenvalue λi , Avi = λivi . If
Bvi = 0, then vi is eigenvector of matrix B with eigenvalue γi = 0. If Bvi 	= 0, then

ABvi = BAvi = λiBvi,

which shows that Bvi is eigenvector of matrix A with eigenvalue λi . Since the
eigenvalues of A are distinct, vi and Bvi are necessarily co-linear over C, i.e., there
exists a number γi such that Bvi = γivi , whence vi is also eigenvector of B . From
this, A and B are jointly diagonalized by Q = [v1 v2 . . . vn], where the columns
of Q are n linearly independent eigenvectors of A over C (whence, also linearly
independent eigenvectors of B over C).

Consider now the case of matrix A having repeated eigenvalues λi : let pi be
the algebraic multiplicity of the eigenvalue λi as root of the characteristic poly-
nomial of A. Since A is semi-simple, let Q ∈ R

n×n be such that Ã = Q−1AQ =
block_diag{A1, . . . ,Ap}, where Ai = λiEi , Ei being the identity matrix of dimen-
sions pi × pi , and λi 	= λj if i 	= j . Note that, letting B̃ = Q−1BQ, condition
AB = BA holds if and only if ÃB̃ = B̃Ã. Since AB = BA, it can be easily veri-
fied that necessarily B̃ = block_diag{B̃1, . . . , B̃p}, where B̃i is semi-simple and has
the same dimensions as Ai . Each B̃i , being semi-simple can be diagonalized by
a transformation Q̄i ; then, the transformation that jointly diagonalizes A and B is
Q̂ = Qblock_diag{Q̄1, . . . , Q̄p}. �
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Example 1.19 Let

A =
⎡
⎣

1 0 0
0 1 1
0 0 2

⎤
⎦

and

B =
⎡
⎣

1 2 −2
0 2 −1
0 0 1

⎤
⎦ ;

A and B are commuting and semi-simple. Matrix A can be diagonalized by

Q =
⎡
⎣

1 −2 0
−1 1 1
0 0 1

⎤
⎦ ,

Q−1AQ =
⎡
⎣

1 −2 0
−1 1 1
0 0 1

⎤
⎦

−1⎡
⎣

1 0 0
0 1 1
0 0 2

⎤
⎦
⎡
⎣

1 −2 0
−1 1 1
0 0 1

⎤
⎦=

⎡
⎣

1 0 0
0 1 0
0 0 2

⎤
⎦ ,

but the transformed B is not diagonal (it is only block-diagonal)

Q−1BQ =
⎡
⎣

1 −2 0
−1 1 1
0 0 1

⎤
⎦

−1⎡
⎣

1 2 −2
0 2 −1
0 0 1

⎤
⎦
⎡
⎣

1 −2 0
−1 1 1
0 0 1

⎤
⎦=

⎡
⎣

5 −4 0
3 −2 0
0 0 1

⎤
⎦ .

Submatrix B̃1 = [ 5 −4
3 −2

]
can be diagonalized by Q̃1 = [ 4 −3

3 −3

]
,

Q̃−1
1 B̃1Q̃1 =

[
4 −3
3 −3

]−1 [5 −4
3 −2

][
4 −3
3 −3

]
=
[

2 0
0 1

]
.

Then, A and B are jointly diagonalized by

Qtot = Q

[
Q̃1 0

0 1

]
=
⎡
⎣

1 −2 0
−1 1 1
0 0 1

⎤
⎦
⎡
⎣

4 −3 0
3 −3 0
0 0 1

⎤
⎦=

⎡
⎣

−2 3 0
−1 0 1
0 0 1

⎤
⎦ .

Remark 1.9 Let B1, . . . ,Bm be m < n diagonal matrices, Bi = diag{bi,1, bi,2, . . . ,

bi,n}, whence semi-simple and pairwise commuting. Since such matrices are pair-
wise commuting, by the Frobenius Theorem 1.9, the m continuous-time linear sys-
tems dx

dt
= gi(x) = Bix share n − m functionally independent first integrals. Define

the matrix

B :=
⎡
⎢⎣

b1,1 b1,2 · · · b1,n

...
...

...
...

bm,1 bm,2 · · · bm,n

⎤
⎥⎦ .
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It can be seen that I (x) = x
k1
1 x

k2
2 · · ·xkn

n , with ki real, is a first integral associated
with gi if and only if

[k1 · · · kn]
⎡
⎢⎣

bi,1
...

bi,n

⎤
⎥⎦= 0;

this follows from

Lgi
I (x)

=
[
k1
(
x

k1−1
1 x

k2
2 · · ·xkn

n

)
k2
(
x

k1
1 x

k2−1
2 · · ·xkn

n

)
. . . kn

(
x

k1
1 x

k2
2 · · ·xkn−1

n

)]

×

⎡
⎢⎢⎢⎣

bi,1x1
bi,2x2

...

bi,nxn

⎤
⎥⎥⎥⎦

= (
x

k1
1 x

k2
2 · · ·xkn

n

)[k1 k2 . . . kn]

⎡
⎢⎢⎢⎣

bi,1
bi,2
...

bi,n

⎤
⎥⎥⎥⎦ .

Hence, I (x) = x
k1
1 x

k2
2 · · ·xkn

n is a joint first integral associated with g1, . . . , gm if
and only if vector k = [k1 . . . kn]� belongs to ker(B).

Example 1.20 Consider the diagonal matrices

B1 =
⎡
⎣

1 0 0
0 1 0
0 0 2

⎤
⎦ , B2 =

⎡
⎣

2 0 0
0 1 0
0 0 1

⎤
⎦ .

Matrix B is given by

B =
[

1 1 2
2 1 1

]
.

The kernel of B is spanned by [1 − 3 1]�, and therefore a joint first integral associ-
ated with both B1x and B2x is I (x) = x1x3

x3
2

, as can be checked by

LB1xI (x) =
[

x3

x3
2

−3 x1x3
x4

2

x1
x3

2

]⎡⎣
1 0 0
0 1 0
0 0 2

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦= 0,

LB2xI (x) =
[

x3

x3
2

−3 x1x3
x4

2

x1

x3
2

]⎡⎣
2 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦= 0.



Chapter 2
Analysis of Linear Systems

2.1 The Linear Centralizer and Linear Normalizer of a Square
Matrix

Assume that systems (1.1a), (1.1b) are linear, i.e., f (x) = Ax (respectively, F(x) =
Ax),

dx(t)

dt
= Ax(t), t ∈ R, (2.1a)

x(t + 1) = Ax(t), t ∈ Z, (2.1b)

where x ∈ R
n, and A ∈ R

n×n is said to be the dynamic matrix (which is assumed to
be constant) of the linear system: a notation common to both (2.1a) and (2.1b) can
be adopted:

Δx(t) = Ax(t), t ∈ T,

where Δx(t) = dx(t)
dt

if T = R and Δx(t) = x(t + 1) if T = Z. Symbol IC(Ax)

(respectively, ID(Ax)) denotes the set of all first integrals of system (2.1a) (respec-
tively, system (2.1b)).

Assume also that system (1.2) is linear, g(x) = Bx,

dx

dτ
= Bx = g(x), (2.2)

where B ∈ R
n×n is constant. As well known,

x = eBτ y (2.3)

is the unique solution of system (2.2) at time τ ∈ R, starting from the initial condi-
tion x(0) = y, with y ∈ R

n.
A one-parameter group of linear transformations is given by x = Q(τ)y, if

Q(τ) ∈ R
n×n satisfies Q(0) = E, Q(τ1)Q(τ2) = Q(τ1 +τ2) and Q−1(τ ) = Q(−τ).

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
DOI 10.1007/978-0-85729-612-2_2, © Springer-Verlag London Limited 2011
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The family of linear transformations given in equation (2.3) qualifies as a one-
parameter group of linear transformations from R

n to R
n: eB0 = E, eBτ1 eBτ2 =

eB(τ1+τ2) and (eBτ )−1 = e−Bτ . Given any one-parameter group of linear transfor-
mations x = Q(τ)y, there exists a constant matrix B ∈ R

n×n such that Q(τ) = eBτ .
This matrix can be computed by B = dQ(τ)

dτ
|τ=0. As a matter of fact, Q(τ) = eBτ

is obtained by integrating the following differential equation by the initial condition
Q(0) = E:

dQ(τ)

dτ
= lim

T →0+
Q(τ + T ) − Q(τ)

T
=
(

lim
T →0+

Q(T ) − E

T

)
Q(τ)

=
(

dQ(τ)

dτ

∣∣∣∣
τ=0

)
Q(τ) = BQ(τ).

Example 2.1 Consider the one-parameter family of rotations in R
2 given by Q(τ) =[ cos(τ ) − sin(τ )

sin(τ ) cos(τ )

]
. Clearly, Q(0) = E and

Q(τ1)Q(τ2) =
[

cos(τ1 + τ2) − sin(τ1 + τ2)

sin(τ1 + τ2) cos(τ1 + τ2)

]
= Q(τ1 + τ2);

therefore, Q(τ) is a one-parameter group of linear transformations. Then, Q(τ) =
eBτ , with

B = dQ(τ)

dτ

∣∣∣∣
τ=0

=
[

0 −1
1 0

]
.

Using (2.3) as a change of coordinates, one can rewrite systems (2.1a), (2.1b) in
the new y-coordinates, as follows:

dy(t)

dt
= e−BτAeBτy(t), (2.4a)

y(t + 1) = e−BτAeBτy(t). (2.4b)

From Theorem 1 of [37] (see, also, [52]), for Q ∈ R
n×n, the equation Q = eBτ ,

with the requirement that B and τ are real, has a solution (not necessarily unique,
also when τ is fixed) if and only if det(Q) �= 0 and each Jordan block of Q corre-
sponding to an eigenvalue with negative real part occurs an even number of times.
This shows that only a subset of the linear transformations from R

n to R
n can be put

into form (2.3), for some real τ . Moreover, since eBτ = E + Bτ + O(τ 2), with E

being the n × n identity matrix and O(τ 2) denoting second and higher order terms,
for τ close to 0, transformation (2.3) is close to the identity transformation and (see
the subsequent Sect. 6.2), for the transformed system (2.4a), (2.4b) one has

e−BτAeBτ = (
E − Bτ + O

(
τ 2))A(E + Bτ + O

(
τ 2))

= A − (BA − AB)τ + O
(
τ 2). (2.5)
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Definition 2.1 The linear transformation (2.3) is a linear symmetry of sys-
tems (2.1a), (2.1b) and system (2.2) is its infinitesimal generator if

e−BτAeBτy = Ay, ∀y ∈ R
n, ∀τ ∈ R. (2.6)

If (2.6) holds, by abuse of notation, also the infinitesimal generator (2.2) is called
a linear symmetry of systems (2.1a), (2.1b); briefly, Bx is called a linear symmetry
of Ax.

Remark 2.1 If (2.6) holds, then e−Bτ eAt eBτ = eAt (respectively, e−BτAteBτ = At ),
∀τ ∈ R, ∀t ∈ T (t ≥ 0, in the discrete-time case if det(A) = 0).

Definition 2.2 Given x0 ∈ R
n, the orbit of systems (2.1a), (2.1b) passing through

x0 is the set of the points x described by x = eAtx0 if T = R (respectively, x = Atx0
if T = Z), when t ∈ T varies from −∞ to +∞ (from 0 to +∞, in the discrete-time
case if det(A) = 0).

The meaning of relation (2.6) is that any orbit x(t) = eAtx0 (respectively, x(t) =
Atx0) of systems (2.1a), (2.1b) is mapped into an orbit y(t) = eAty0 (respectively,
y(t) = Aty0) of the same systems (2.1a), (2.1b) by the linear transformation (2.3)
generated by system (2.2), y = e−Bτx and x0 = eBτ y0, while preserving the time
parameterization along the orbit:

y(t) = e−Bτ x(t) = e−Bτ eAtx0 = e−Bτ eAteBτy0 = eAty0, if T = R,

y(t) = e−Bτ x(t) = e−BτAtx0 = e−BτAteBτ y0 = Aty0, if T = Z.

Example 2.2 Let A = [ 0 1
−1 0

]
and B = [ 1 1

−1 1

]
; since eAt = [ cos(t) sin(t)

− sin(t) cos(t)

]
, At =

[ cos( π
2 t) sin( π

2 t)

− sin( π
2 t) cos( π

2 t)

]
, eBτ = eτ

[ cos(τ ) sin(τ )

− sin(τ ) cos(τ )

]
, it is easy to check that e−Bτ eAteBτ =

eAt and e−BτAteBτ = At .

The following definition and most of the following properties are standard (see,
e.g., [13, 18, 34]).

Definition 2.3 (2.3.1) Given two square matrices A,B ∈ R
n×n, the Lie bracket (it

is often called matrix commutator) of A and B is

[A,B] := BA − AB. (2.7)

(2.3.2) The linear centralizer Lc(B) of B is the set of all matrices A such that
[A,B] = −[B,A] = 0 (see, also, Definition 1.3 at p. 10).

Letting g(x) = Bx, f (x) = Ax and F(x) = Ax, one finds that [f (x), g(x)] =
[A,B]x, �F(x), g(x)	 = [A,B]x; if [A,B] = 0, then A and B commute under the
matrix product (briefly, A and B are commuting), and vice versa. In addition,

[A,B] = 0 ⇐⇒ [
A�,B�]= 0.
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Remark 2.2 If [A,B] = 0, then eAteBτ = eBτ eAt = eAt+Bτ , for all t, τ ∈ R.

Theorem 2.1 Relation (2.6) holds if and only if [A,B] = 0, i.e., if and only if A

and B are commuting.

Proof By (2.5), condition [A,B] = 0 is certainly necessary for relation (2.6) to
hold. Since e−BτAeBτ y|τ=0 = Ay,∀y ∈ R

n, equality (2.6) holds if and only if

∂

∂τ

(
e−BτAeBτy

)= 0, ∀y ∈ R
n,∀τ ∈ R. (2.8)

In this way,

∂

∂τ

(
e−BτAeBτ y

) = −e−BτBAeBτy + e−BτABeBτ y = −e−Bτ (BA − AB)eBτ y

= −e−Bτ [A,B]eBτ y.

Since e−Bτ is invertible for all B and τ , equality (2.8) holds if and only if
[A,B] = 0. �

Thanks to Theorem 2.1, the following definition is equivalent to Definition 2.1.

Definition 2.4 The linear transformation (2.3) is a linear symmetry of sys-
tems (2.1a), (2.1b) and system (2.2) is its infinitesimal generator if [A,B] = 0.

Remark 2.3 The Lie bracket of two square matrices enjoys the following properties,
with A,B,C ∈ R

n×n (which can be proven by simple substitution):

(2.3.1) [A,B] = −[B,A] (skew-symmetry);
(2.3.2) [αB + βC,A] = α[B,A] + β[C,A] and [A,αB + βC] = α[A,B] +

β[A,C], with α,β ∈ R being constants (bi-linearity);
(2.3.3) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (the Jacobi identity).

By the skew-symmetry (Statement (2.3.1) of Remark 2.3),

A ∈ Lc(B) ⇐⇒ B ∈ Lc(A),

although, in general, Lc(B) �= Lc(A).
Another useful property is the invariance of the matrix Lie bracket to linear trans-

formations, meaning the fact that, for any invertible Q ∈ C, letting Ã = Q−1AQ and
B̃ = Q−1BQ, one has

[
Ã, B̃

]= Q−1[A,B]Q. (2.9)

Some key facts about the linear centralizer of a square matrix are reviewed next,
since such properties are of great importance in the sequel.

Lemma 2.1 The linear centralizer Lc(A) of A ∈ R
n×n is a finite dimensional vec-

tor space over R. The dimension r of Lc(A) satisfies n ≤ r ≤ n2.
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Proof It is easy to see that the bi-linearity (2.3.2) implies that Lc(A) is a vector
space over R: if M1,M2 ∈ Lc(A), then α1M1 +α2M2 ∈ Lc(A), ∀α1, α2 ∈ R being
constant. The fact that Lc(A) is finite dimensional is obvious, since Lc(A) is a
subspace of R

n×n. As for its dimension r , the upper bound comes from the case
A = αE, with α being a (possibly zero) constant and E being the identity matrix; in
such a case Lc(A) = R

n×n, whence r = n2. As for the lower bound, in view of (2.9),
assume that A = block_diag{J1, . . . , Jp} is in the Jordan form, with Jordan blocks

Ji of dimension ri ; then, J 0
i , . . . , J

ri−1
i are linearly independent over C. Therefore,

in case of real eigenvalues, the n matrices

block_diag
{
J 0

1 ,0, . . . ,0
}
, . . . ,block_diag

{
J

r1−1
1 ,0, . . . ,0

}
, . . . ,

block_diag
{
0, . . . ,0, J 0

p

}
, . . . ,block_diag

{
0, . . . ,0, J

rp−1
p

}
(2.10)

commute with A and are linearly independent, whence r ≥ n. In case of com-
plex eigenvalues, a similar reasoning can be made by considering the real Jor-
dan form (for a definition of the real Jordan form see the proof of the subsequent
Lemma 2.5). �

As for the choice of a basis of Lc(A), it can be useful to take some of its elements
in a simple way; therefore, note that the identity matrix E = A0 can always be
included in the basis of Lc(A), whereas A can be included except for the trivial case
A = 0. More in general, if A0,A1, . . . ,Am−1, with m ≤ r , are linearly independent
over R, then, with no loss of generality, one can assume that the first m elements
of a basis of Lc(A) are M0 = E,M1 = A0, . . . ,Mm−1 = Am−1. A more powerful
result is the subsequent Theorem 2.2, which is proven by means of the two lemmas
below.

Lemma 2.2 Let J = block_diag{J1, . . . , Jp} be a Jordan matrix whose p Jordan
blocks Ji , of dimension ri , have distinct real eigenvalues λ1, . . . , λp. Then, all the
matrices commuting with J are of the form

B = block_diag{B1, . . . ,Bp}, (2.11)

where Bi ∈ R
ri×ri and BiJi = JiBi .

Proof The proof of the fact that matrix B in (2.11) commutes with J is trivial.
To show the converse, assume that B commutes with J and partition it in blocks
according to the dimensions ri :

B =
⎡
⎢⎣

B1,1 . . . B1,p

...
...

...

Bp,1 . . . Bp,p

⎤
⎥⎦ , Bi,j ∈ R

ri×rj .

By looking at the diagonal blocks of BJ − JB , it is easy to see that BJ = JB

implies, for each i ∈ {1, . . . , p}, that Bi,iJi = JiBi,i , whence that matrices Bi,i have
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the property of matrices Bi in (2.11). By looking at the off-diagonal blocks, it is
easy to see that BJ = JB implies that

Bi,j Jj = JiBi,j , ∀i �= j. (2.12)

Consider the chain of generalized right eigenvectors of Jj , v1 = ē1, . . . , vrj = ērj

(with ēh being the hth column of the rj × rj identity matrix), that satisfy Jjv1 =
λjv1, Jjvh = λjvh + vh−1, h = 2, . . . , rj , and the chain of generalized left eigen-
vectors of Ji , namely u�

1 = ê�
1 , . . . , u�

ri
= ê�

ri
that satisfy u�

k Ji = λiu
�
k + u�

k+1,
k = 1, . . . , ri − 1, u�

ri
Ji = λiu

�
ri

(with êk being the kth column of the ri × ri identity
matrix). Equation (2.12) left multiplied by u�

ri
and right multiplied by v1 gives

λj [0 . . . 0 1]Bi,j

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦= λi[0 . . . 0 1]Bi,j

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ , (2.13)

which, since λi �= λj , implies that the entry of the first column and of the last row
of Bi,j is zero. The equation similar to (2.13) obtained using v2 instead of v1 im-
plies that the entry of the second column and of the last row of Bi,j is zero. Using
iteratively vh with increasing h instead of v1, one obtains that the last row of Bi,j

is zero. In the same manner, the equations similar to (2.13) obtained using u�
k with

decreasing k instead of u�
ri

imply that the first column of Bi,j is zero. The procedure
can be repeated using in the proper order all the u�

k and vh to prove that Bi,j = 0. �

Lemma 2.3 Let J be a Jordan block of dimension r relative to a real eigenvalue.
Then, the dimension of Lc(J ) is r and {J 0, J 1, . . . , J r−1} is a basis of Lc(J ).

Proof The statement is equivalent to saying that the set of the matrices that commute
with a Jordan block coincides with the set of all upper triangular Toepliz matrices,
i.e., all upper triangular matrices such that, for a given h ∈ {0, . . . , r −2}, the entries
in position (k, k+h), k ∈ {1, . . . , r−h}, are equal. Assume that A ∈ R

r×r commutes
with J , i.e., AJ = JA. Taking into account the two entries in positions (r − 1,1)

and (r,2) of AJ − JA, one derives that, for them to be zero, it is necessary and
sufficient that the entry Ar,1 of A is zero. Considering the three entries in positions
(r − 2,1), (r − 1,2) and (r,3) of AJ − JA, one concludes that it is necessary and
sufficient that Ar−1,1 and Ar,2 are zero. Then, iterating on h, which decreases from
r − 2 to 0, considering all the entries in positions (k + h, k), k ∈ {1, . . . , r − h} of
AJ −JA, one obtains that it is necessary and sufficient that all the entries Ai,j such
that i − j = h + 1 are zero. Therefore, A is upper triangular. Analogously, for each
h ∈ {1, . . . , r −1}, the entries in positions (k, k+h), k ∈ {1, . . . , r −h}, of AJ −JA,
which must be zero, show that it is necessary and sufficient that all the entries Ai,j

such that j − i = h − 1 are equal, i.e., A is Toepliz. �
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Results analogous to Lemmas 2.2 and 2.3 can be proven for the case of a matrix
A having some complex eigenvalues, so that the following theorem holds in the
general case.

Theorem 2.2 Let A ∈ R
n×n. There exist linearly independent M0, . . . ,Mn−1 ∈

Lc(A) over R, which are pairwise commuting, i.e., [Mi,Mj ] = 0. If there are no
Jordan blocks of A corresponding to the same eigenvalue, then Lc(A) has dimen-
sion n and {M0, . . . ,Mn−1} is a basis of Lc(A).

Proof If A has only real eigenvalues, in view of (2.9), assume that A is in the Jordan
form as in the proof of Lemma 2.1. It is easy to see that the matrices in (2.10), which
are linearly independent and belong to Lc(A), are pairwise commuting, whence
they constitute the set {M0, . . . ,Mn−1}. To see that, when for each eigenvalue of A

there is just one Jordan block, such a set is indeed a basis of Lc(A), in the case of
real eigenvalues it suffices to consider Lemmas 2.2 and 2.3 to see that the n matrices
in (2.10) actually generate the whole Lc(A). In case of complex eigenvalues, a
similar reasoning can be made by considering the real Jordan form (see also the
proof of the subsequent Lemma 2.5). �

Corollary 2.1 If the Jordan form of A has not two Jordan blocks corresponding to
the same eigenvalue, then {A0,A1, . . . ,An−1} is a basis of Lc(A).

Proof The proof follows from the proof of Theorem 2.2, taking into account that
the minimal polynomial of A has degree n and, therefore, that {A0,A1, . . . ,An−1}
is a set of n linearly independent matrices that pairwise commute. �

Theorem 2.3 Assume that {A0,A1, . . . ,An−1} is a basis of Lc(A). Then, any pair
B1,B2 ∈ Lc(A) is commuting.

Proof Since {A0,A1, . . . ,An−1} is a basis of Lc(A), B1 and B2 can be written
as B1 = ∑n−1

i=0 a1,iA
i and B2 = ∑n−1

j=0 a2,jA
j , for some constants a1,i , a2,i ∈ R.

Therefore, [B1,B2] =∑n−1
i=0

∑n−1
j=0 a1,ia2,j [Ai,Aj ] = 0. �

Example 2.3 Let J = [ J1 0
0 J2

]
, with J1 and J2 being Jordan blocks of dimension

two and three, with real eigenvalues λ1 and λ2, respectively. Then, the following
matrices belong to Lc(J ), are linearly independent over R, and are commuting:

{[
J 0

1 0
0 0

]
,

[
J 1

1 0
0 0

][
0 0
0 J 0

2

]
,

[
0 0
0 J 1

2

]
,

[
0 0
0 J 2

2

]}
.

Furthermore, if λ1 �= λ2, then they constitute a basis of Lc(J ).
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Example 2.4 Consider matrix

A =
⎡
⎣

1 0 0
−1 2 0
−1 1 1

⎤
⎦ ,

which is semi-simple with two coincident eigenvalues; Lc(A) has dimension r = 5
and one of its bases is

⎧⎨
⎩

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ ,

⎡
⎣

1 0 0
1 0 0
0 0 0

⎤
⎦ ,

⎡
⎣

0 −1 1
0 −1 1
0 0 0

⎤
⎦ ,

⎡
⎣

0 0 0
0 0 0
1 0 0

⎤
⎦ ,

⎡
⎣

1 0 0
0 1 0
0 1 0

⎤
⎦
⎫⎬
⎭ .

There exist three linearly independent and commuting elements of Lc(A) over R,
which can be constructed from the Jordan form of A,

⎡
⎣

1 0 0
−1 2 0
−1 1 1

⎤
⎦=

⎡
⎣

1 0 0
1 −1 0
2 −1 1

⎤
⎦
⎡
⎣

1 0 0
0 2 0
0 0 1

⎤
⎦
⎡
⎣

1 0 0
1 −1 0

−1 −1 1

⎤
⎦ ,

as follows:

M0 =
⎡
⎣

1 0 0
1 −1 0
2 −1 1

⎤
⎦
⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣

1 0 0
1 −1 0

−1 −1 1

⎤
⎦=

⎡
⎣

1 0 0
1 0 0
2 0 0

⎤
⎦ ,

M1 =
⎡
⎣

1 0 0
1 −1 0
2 −1 1

⎤
⎦
⎡
⎣

0 0 0
0 2 0
0 0 0

⎤
⎦
⎡
⎣

1 0 0
1 −1 0

−1 −1 1

⎤
⎦=

⎡
⎣

0 0 0
−2 2 0
−2 2 0

⎤
⎦ ,

M2 =
⎡
⎣

1 0 0
1 −1 0
2 −1 1

⎤
⎦
⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦
⎡
⎣

1 0 0
1 −1 0

−1 −1 1

⎤
⎦=

⎡
⎣

0 0 0
0 0 0

−1 −1 1

⎤
⎦ .

Such three matrices pairwise commute, but they do not constitute a basis of Lc(A).

A nice consequence of Theorem 2.2 is that if matrix A is semi-simple with dis-
tinct (possibly, complex) eigenvalues, then {A0,A1, . . . ,An−1} is a basis of Lc(A).

Theorem 2.4 Assume that A is semi-simple with distinct eigenvalues; let Q ∈ C
n×n,

det(Q) �= 0, be such that Ã = Q−1AQ is diagonal. Then, B̃ = Q−1BQ is diagonal
for all B ∈ Lc(A); furthermore, any B = QB̃Q−1, with B̃ diagonal, is an element
of Lc(A).

Proof By (2.9), if B ∈ Lc(A), then B̃ ∈ Lc(Ã) for all Q ∈ C
n×n such that

det(Q) �= 0. If A is semi-simple with distinct eigenvalues, then {A0,A1, . . . ,An−1}
is a basis of Lc(A), whence a basis of Lc(Ã) is {Ã0, Ã1, . . . , Ãn−1}. If B ∈
Lc(A), then there exist μ0,μ1, . . . ,μn−1 such that B =∑n−1

i=0 μiA
i , whence B̃ =
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∑n−1
i=0 μiÃ

i , which implies that B̃ is diagonal. Vice versa, if B̃ is diagonal, then
B̃ ∈ Lc(Ã), whence B ∈ Lc(A). �

If A is semi-simple, but with some coincident eigenvalues, and [A,B] = 0,
then B̃ = Q−1BQ need not be diagonal also if Ã = Q−1AQ is diagonal (see also
Lemma 1.4 at p. 26).

Example 2.5 Let A = [ 0 1
−1 0

]
; since A is semi-simple with distinct eigenvalues (±i),

any B ∈ Lc(A) can be written as

B = μ0A
0 + μ1A

1 = μ0

[
1 0
0 1

]
+ μ1

[
0 1

−1 0

]
=
[

μ0 μ1
−μ1 μ0

]
, μi ∈ R.

Letting Q = [ 1
2

1
2

1
2 i − 1

2 i

]
, one has Ã = Q−1AQ = [ i 0

0 −i

]
. Therefore, Q jointly diago-

nalizes all elements of Lc(A):

B̃ =
[

1 −i
1 i

][
μ0 μ1

−μ1 μ0

][ 1
2

1
2

1
2 i − 1

2 i

]
=
[
μ0 + iμ1 0

0 μ0 − iμ1

]
.

It is now possible to prove two lemmas that are very important in the sequel.

Lemma 2.4 Any matrix A ∈ R
n×n can be decomposed as A = As + An, where

As ∈ R
n×n is semi-simple, An ∈ R

n×n is nilpotent and As,An commute under the
matrix product. Such matrices As and An can be expressed as polynomials in A,
whence any matrix B that commutes under the matrix product with A also commutes
with As and An.

Proof It is sufficient to bring A into its complex Jordan form, A = QJQ−1, where
det(Q) �= 0 and J = block_diag{J1, . . . , Jp}, with Ji being a Jordan block with
eigenvalue λi ; if A has complex eigenvalues, then matrix Q has to be chosen so that
its two block columns Qi and Qj containing two corresponding chains of gener-
alized eigenvectors of A relative to λi and λj = λ∗

i , respectively, satisfy Qj = Q∗
i .

Then, in the new coordinates, letting

Ji,s = diag{λi, . . . , λi} and Ji,n =

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
0 0 . . . 0

⎤
⎥⎥⎥⎦ ,

one has Ji = Ji,s + Ji,n, with Ji,s semi-simple and Ji,n nilpotent. Let As =
QJsQ

−1 = Qblock_diag{J1,s , . . . , Jp,s}Q−1 and An = QJnQ
−1 = Qblock_diag

{J1,n, . . . , Jp,n}Q−1. Obviously, As is semi-simple and An is nilpotent. Moreover,
in case of A having complex eigenvalues, thanks to the choice of Q required above,
it is easy to verify that As and An are real. Now, to show that As and An can be



38 2 Analysis of Linear Systems

written as polynomials in A, it is sufficient to show that Js and Jn can be written
as polynomials in J . Taking into account the expression of the kth power of a Jor-
dan block, it is easy to see that if Ja and Jb are two Jordan blocks of dimensions
na ≥ nb, relative to the same eigenvalue λ, then letting Ja,s = λE (where E has di-
mensions na × na), Ja,n = Ja − Ja,s , Jb,s = λE (where E has dimensions nb × nb)
and Jb,n = Jb − Jb,s , the equations Jb,s = ps(Jb) and Jb,n = pn(Jb) hold neces-
sarily, for any pair of polynomials ps(s) and pn(s) such that Ja,s = ps(Ja) and
Ja,n = pn(Ja). Now, let Jmin be a Jordan matrix with the same minimal polynomial
of J , but without repeated eigenvalues (obtained by selecting from J just one Jordan
block of highest dimension for each eigenvalue) and let D a diagonal matrix with
the same diagonal as Jmin; let N = Jmin − D. The structures of J and Jmin imply
that if there exists a pair of polynomials ps(s) and pn(s) such that D = ps(Jmin)

and N = pn(Jmin), then Js = ps(J ) and Jn = pn(J ) hold necessarily. The existence
of ps(s) and pn(s) is ensured by Theorem 2.2 with A = Jmin and by Lemmas 2.2
and 2.3 (see also the beginning of the proof of Lemma 2.3). Hence, it is proven that
As and An can be written as polynomials in A, and therefore that any matrix B that
commutes under the matrix product with A also commutes with As and An. Clearly,
if matrices As and An can be expressed as polynomials in A, then As,An commute
under the matrix product. �

Remark 2.4 The decomposition A = As + An, with As being semi-simple and An

being nilpotent is not unique; in general, there are many such decompositions with
As and An that do not commute under the matrix product. But, as stated in [34,
Lemma 14 at p. 104], if one requires that As and An commute, then such As and
An are unique. As an example, take

A =
⎡
⎣

1 1 0
0 1 1
0 0 2

⎤
⎦ ;

clearly,

As =
⎡
⎣

1 0 0
0 1 0
0 0 2

⎤
⎦

is semi-simple,

An =
⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

is nilpotent and A = As + An, but

AnAs − AsAn =
⎡
⎣

0 0 0
0 0 1
0 0 0

⎤
⎦
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is not zero: it is easy to verify that neither As nor An can be expressed as a polyno-
mial function of A. Bringing A in the Jordan form,

A =
⎡
⎣

1 −1 −1
1 0 −1
1 0 0

⎤
⎦
⎡
⎣

2 0 0
0 1 1
0 0 1

⎤
⎦
⎡
⎣

0 0 1
−1 1 0
0 −1 1

⎤
⎦ ,

and then letting

As =
⎡
⎣

1 −1 −1
1 0 −1
1 0 0

⎤
⎦
⎡
⎣

2 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣

0 0 1
−1 1 0
0 −1 1

⎤
⎦=

⎡
⎣

1 0 1
0 1 1
0 0 2

⎤
⎦ ,

An =
⎡
⎣

1 −1 −1
1 0 −1
1 0 0

⎤
⎦
⎡
⎣

0 0 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣

0 0 1
−1 1 0
0 −1 1

⎤
⎦=

⎡
⎣

0 1 −1
0 0 0
0 0 0

⎤
⎦ ,

one concludes that A = As + An, AnAs − AsAn = 0; as a consequence, since

⎡
⎣

2 0 0
0 1 0
0 0 1

⎤
⎦ = 2

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦− 2

⎡
⎣

2 0 0
0 1 1
0 0 1

⎤
⎦+

⎡
⎣

2 0 0
0 1 1
0 0 1

⎤
⎦

2

,

⎡
⎣

0 0 0
0 0 1
0 0 0

⎤
⎦ = −2

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦+ 3

⎡
⎣

2 0 0
0 1 1
0 0 1

⎤
⎦−

⎡
⎣

2 0 0
0 1 1
0 0 1

⎤
⎦

2

,

one finds that As = 2A0 − 2A1 + A2 and An = −2A0 + 3A1 − A2.

Lemma 2.5 For any matrix A, there exists an invertible Q ∈ R
n×n, det(Q) �= 0,

such that Ã = Q−1AQ can be uniquely decomposed as Ã = Ãs,n + Ãn, where
Ãs,n ∈ R

n×n is normal, Ãn ∈ R
n×n is nilpotent and Ãn, Ã

�
n and their powers

Ãi
n, (Ã

�
n )i , i ∈ Z

≥, commute with Ãs,n under the matrix product.

Proof It is sufficient to proceed as in the proof of Lemma 2.4, but considering real
Jordan blocks instead of (complex) Jordan blocks. In particular, choose Q so that
Ã is in the real Jordan form, i.e., a Jordan form in which each pair Ji , Jj of Jordan
blocks of the same dimension ri = rj corresponding to λi = α + iβ and λj = λ∗

i =
α − iβ , α,β ∈ R, is substituted by a single block of dimension 2ri that is the sum of
a block-diagonal matrix whose ri diagonal blocks are

[ α β

−β α

]
and a matrix having

the only 2ri − 2 non-zero elements, which are equal to 1, in positions (k,h), where
h = k + 2. �
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Example 2.6 Let

A =

⎡
⎢⎢⎣

1 1 1 1
−1 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

− 1
2 − 1

2 0 1

− 1
2 i 1

2 i −1 0

0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

1 + i 0 0 0
0 1 − i 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 i i 1 + i
−1 −i −i 1 − i
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ .

Then,

As =

⎡
⎢⎢⎢⎣

− 1
2 −1

2 0 1

− 1
2 i 1

2 i −1 0

0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

1 + i 0 0 0
0 1 − i 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 i i 1 + i
−1 −i −i 1 − i
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 1 1 1
−1 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

is semi-simple, but it is not normal, and

An =

⎡
⎢⎢⎢⎣

− 1
2 − 1

2 0 1

− 1
2 i 1

2 i −1 0

0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 i i 1 + i
−1 −i −i 1 − i
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

is nilpotent, with A = As +An; by construction, such matrices As,An are commut-
ing. Consider the real transformation represented by

Q =

⎡
⎢⎢⎣

1 0 0 1
0 1 −1 0
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦ ;
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then,

Ã = Q−1AQ =

⎡
⎢⎢⎣

1 0 0 1
0 1 −1 0
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

1 1 1 1
−1 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 1
0 1 −1 0
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 1 0 0
−1 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ ,

whence Ã = Ãs,n + Ãn, with

Ãs,n =

⎡
⎢⎢⎣

1 1 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Ãn =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ;

clearly, Ãs,n is normal, Ãn is nilpotent, and matrices Ãs,n, Ãn (respectively,
Ãs,n, Ã

�
n ) are commuting.

The following definition extends the concept of linear symmetry to the concept
of linear orbital symmetry, in the continuous-time case.

Definition 2.5 Assume T = R.
(2.5.1) The linear transformation (2.3) is a linear orbital symmetry of sys-

tem (2.1a) and system (2.2) is its infinitesimal generator if

[A,B] = μA, (2.14)

for some constant μ ∈ R. When (2.14) holds, by abuse of notation, also the infinites-
imal generator (2.2) is called a linear orbital symmetry of system (2.1a); briefly, Bx

is called a linear orbital symmetry of Ax.
(2.5.2) The linear normalizer Ln(A) of A is the set of all matrices B such that

[A,B] = μA, for some constant μ ∈ R.

Remark 2.5 The linear orbital symmetry introduced in Definition 2.5 maps an orbit
of system (2.1a) into an orbit of the same system, but the time parameterization
along the orbit is not preserved when μ �= 0, as can be seen in the following. If B is
a linear orbital symmetry of A, then

BA = AB + μA = A(B + μE),

with E being the n × n identity matrix; left multiplying such an equation by B ,

B2A = BA(B + μE) = A(B + μE)2,
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and iterating such a process, one concludes that

BhA = A(B + μE)h, ∀h ∈ Z
≥. (2.15)

Hence,

e−BτA =
+∞∑
h=0

(−τ)h

h! BhA =
+∞∑
h=0

(−τ)h

h! A(B + μE)h

= Ae−(B+μE)τ ,

from which

e−BτAeBτ = Ae−μτ . (2.16)

This shows that dx
dt

= Ax is transformed by the linear change of coordinates

x = eBτ y into dy
ds

= Ay, where ds
dt

= e−μτ , with s being the new time variable cor-
responding to the new time parameterization of the system thus transformed.

Example 2.7 Let A = [ 0 1
0 0

]
and B = [ 1 0

0 3

]
; B is a linear orbital symmetry of A,

because [A,B] = −2A. Then, e−BτAeBτ = e2τA.

The following theorem, which can be easily proven by means of (2.9), shows that
the concepts of linear symmetry and linear orbital symmetry do not depend on the
particular coordinates chosen.

Theorem 2.5 Let Ã = Q−1AQ and B̃ = Q−1BQ, with Q being an invertible
square matrix. Then,

[A,B] = μA ⇐⇒ [
Ã, B̃

]= μÃ,

namely

B ∈ Ln(A) ⇐⇒ B̃ ∈ Ln

(
Ã
)
.

Theorem 2.6 Let A be semi-simple with distinct eigenvalues. Then, Ln(A) =
Lc(A).

Proof If n = 1, then Ln(A) = Lc(A) = R, and the theorem holds. Assume n ≥ 2.
By definition Lc(A) ⊆ Ln(A); hence, if Ln(A) ⊆ Lc(A), then the theorem is
proven. By Theorem 2.5, it can be assumed that

A = block_diag

{
λ1, . . . , λnr ,

[
α1 β1

−β1 α1

]
, . . . ,

[
αnc

βnc

−βnc αnc

]}
,

with nr + 2nc = n, λi ∈ R, λi �= λj if i �= j , and αi,βi ∈ R, βi �= 0, and αi + iβi �=
αj + iβj , if i �= j . Under this assumption, it is now shown that AM − MA = μA



2.1 The Linear Centralizer and Linear Normalizer of a Square Matrix 43

implies μ = 0, whence that M ∈ Ln(A) implies M ∈ Lc(A). In the simpler case
nc = 0, when A has no complex eigenvalues, it is easily seen that all the diagonal
elements of AM − MA are structurally equal to zero; this, in view of the fact that
at least one eigenvalue λi of A is not zero, implies that μ = 0. As for the general
case, if nr > 0 and there is a real eigenvalue λi �= 0 of A, then the equality μ = 0
follows as above from the fact that the ith diagonal element of AM − MA is zero.
Otherwise (i.e., if nr = 0, or nr = 1 and λ1 = 0), consider the 2 × 2 diagonal block
of AM − MA whose upper left element is in position (nr + 1, nr + 1) and impose
that it is equal to the same block of matrix μA, to obtain

[
β1L2 β1L1
β1L1 −β1L2

]
=
[

μα1 μβ1
−μβ1 μα1

]
,

where L1 = Mnr+2,nr+2 − Mnr+1,nr+1 and L2 = Mnr+2,nr+1 − Mnr+1,nr+2. Then,
since β1 �= 0, the two equations β1L1 = μβ1 and β1L1 = −μβ1 imply μ = 0. �

The following Theorem 2.7 shows that the linear normalizer Ln(A) and the lin-
ear centralizer Lc(A) ⊆ Ln(A) of A are closed under the Lie bracket operation;
in particular, since B1,B2 ∈ Ln(A) implies [B1,B2] ∈ Lc(A), by the analysis of
the subsequent Sect. 6.2 and taking into account the subsequent Theorem 2.9, one
concludes that Ln(A) is a Lie sub-algebra of the Lie algebra of matrices over R,
and Lc(A) is a Lie ideal of Ln(A).

Theorem 2.7 If B1x and B2x are two linear orbital symmetries (possibly, linear
symmetries) of Ax, then [B1,B2]x is a linear symmetry of Ax.

Proof From [A,B1] = μ1A and [A,B2] = μ2A, with μ1 and μ2 being (possibly,
equal to zero) real constants, one finds that (taking into account the Jacobi iden-
tity (2.3.3) reported in Remark 2.3):

[
A, [B1,B2]

] = −[B1, [B2,A]]− [
B2, [A,B1]

]= [B1,μ2A] − [B2,μ1A]
= −μ1μ2A + μ1μ2A = 0. �

In particular, the following theorem shows that, if A is semi-simple with distinct
eigenvalues and B1 and B2 commute with A, then [B1,B2] = 0 (i.e., B1 and B2 are
commuting).

Theorem 2.8 Let A be semi-simple with distinct eigenvalues. Then, all elements of
Lc(A) are commuting, i.e., if B1,B2 ∈ Lc(A), then [B1,B2] = 0.

Proof By the invariance of the matrix Lie bracket to linear transformations, assume
that A is diagonal, with distinct eigenvalues. Then, all B ∈ Lc(A) are diagonal, but
two diagonal matrices B1,B2 are necessarily commuting. �
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Example 2.8 Let A = [ 1 2
0 3

]
, which is semi-simple with distinct eigenvalues. A basis

of Lc(A) is given by A0 and A1. Let B1 and B2 be two elements of Lc(A), then

B1 = a1

[
1 0
0 1

]
+ a2

[
1 2
0 3

]
=
[
a1 + a2 2a2

0 a1 + 3a2

]
,

B2 = a3

[
1 0
0 1

]
+ a4

[
1 2
0 3

]
=
[
a3 + a4 2a4

0 a3 + 3a4

]
.

Clearly, [B1,B2] = 0, for all ai ∈ R.

The following theorem shows that Ln(A) has the structure of a finite dimensional
vector space over R, similarly to Lc(A).

Theorem 2.9 The linear normalizer Ln(A) of A is a finite dimensional vector
space over R of dimension n ≤ r ≤ n2.

Proof If B1,B2 ∈ Ln(A), then there exist two constant μ1,μ2 ∈ R such that
[A,B1] = μ1A and [A,B2] = μ1A; by the bi-linearity of the Lie bracket operation,
one finds that

[A,α1B1 + α2B2] = α1[A,B1] + α2[A,B2] = (α1μ1 + α2μ2)A, ∀α1, α2 ∈ R,

and, therefore, that α1B1 + α2B2 ∈ Ln(A). Since Ln(A) ⊆ R
n×n, its dimension

satisfies r ≤ n2. In addition, since Lc(A) ⊆ Ln(A), the dimension r of Ln(A)

satisfies r ≥ n. �

Clearly, Lc(A) ⊆ Ln(A). Determining the linear centralizer Lc(A) (respec-
tively, the linear normalizer Ln(A)) of A is equivalent to solving a set of n2 al-
gebraic (linear for each fixed μ) equations having the entries of B (respectively,
the entries of B and the real number μ) as unknowns, as detailed in the following
example.

Example 2.9 Consider matrix A = [ 0 1
α β

]
with α,β ∈ R; such a matrix is not semi-

simple when α = −λ2, β = 2λ for some constant λ ∈ R. Letting B = [ b1 b2
b3 b4

]
, from

condition

0 = [A,B] =
[

b2α − b3 b1 + b2β − b4
b4α − αb1 − βb3 b3 − b2α

]
,

one has the following system of four linear algebraic equations:

⎡
⎢⎢⎣

0 α −1 0
−α 0 −β α

1 β 0 −1
0 −α 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

b1
b2
b3
b4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .
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Since the rank of the coefficient matrix of the above system is equal to 2 for all
α,β ∈ R, and matrices M0 = E and M1 = A are linearly independent over R, one
concludes that Lc(A) = span

R
{E,A}. Consider now the case α = 0, β = 0. The

condition [A,B] = μA leads to

b1 = c2 + c3, b2 = c1, b3 = 0, b4 = c2, μ = c3,

with c1, c2, c3 ∈ R being arbitrary constants, which shows that Ln(A) has dimen-
sion 3. As basis of Ln(A), one can take the basis of Lc(A) (corresponding to the
choice c3 = 0) completed with the matrix B found by letting c1 = 0, c2 = 0 and
c3 = 1.

2.2 Darboux Polynomials and First Integrals

The following classical theorem, which is also used in other chapters, is stated and
proven here because its statement and proof have strong similarities with the subse-
quent results. The theorem itself can be proven directly in the discrete-time case, and
by an alternative simpler proof based on the Jordan form of A in the continuous-time
case.

Theorem 2.10 Let 	(t) = det(eAt ) if T = R (respectively, 	(t) = det(At ) if
T = Z); then d	(t)

dt
= trace(A)	(t) if T = R (respectively, 	(t + 1) = det(A)	(t)

if T = Z) and 	(0) = 1.

Proof Clearly, 	(0) = det(E) = 1 (also when T = Z and det(A) = 0). Let
vi(t) ∈ R

n be the ith column of matrix eAt (respectively, At ); then, Δvi = Avi

and vi(0) = ei , with ei being the ith column of the n × n identity matrix E. The
proof follows from the multi-linearity of the determinant in the continuous-time
case:

Δ	 = Δdet
([v1 v2 . . . vn]

)

= det
([Δv1 v2 . . . vn]

)+ det
([v1 Δv2 . . . vn]

)+ · · · + det
([v1 v2 . . . Δvn]

)

= det
([Av1 v2 . . . vn]

)+ det
([v1 Av2 . . . vn]

)+ · · · + det
([v1 v2 . . . Avn]

)

= trace(A)det
([v1 v2 . . . vn]

)= trace(A)	, if T = R,

and by the following relationships in the discrete-time case:

Δ	 = Δdet
([v1 v2 . . . vn]

)

= det
([Δv1 Δv2 . . . Δvn]

)= det
([Av1 Av2 . . . Avn]

)

= det(A)det
([v1 v2 . . . vn]

)= det(A)	, if T = Z. �

The concept of the Darboux polynomial extends the concept of polynomial first
integral and the concept of left eigenfunction for linear systems. The definition of the
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Darboux polynomial is given in the literature (see, e.g., [56, 88, 96]) for nonlinear
systems but, in view of the importance of this concept, the special properties of
Darboux polynomials for linear systems are studied in this section.

Definition 2.6 A scalar polynomial ω(x) is a Darboux polynomial (a polynomial
semi-invariant) of systems (2.1a), (2.1b) if there exists a λ ∈ R such that the follow-
ing relation holds for all x ∈ R

n:

Δω = λω, (2.17)

with Δω = LAxω if T = R (respectively, Δω = ω ◦ Ax if T = Z). The number λ is
called characteristic value.

In the subsequent Chaps. 3 and 4, the definition of the Darboux polynomial is
given for nonlinear systems, by allowing λ to be a polynomial function of x. Here,
a simple reasoning on the degree of polynomials and the linearity of systems (2.1a),
(2.1b) imply that λ is necessarily constant. Therefore, there is no loss of generality
in assuming λ constant as is done in Definition 2.6.

From Definition 2.6, a polynomial first integral is a Darboux polynomial with
λ = 0 if T = R (respectively, λ = 1 if T = Z). It is worth pointing out that, if not
empty, the set Iω of all x ∈ R

n such that ω(x) = 0, with ω(x) being a Darboux
polynomial of systems (2.1a), (2.1b), is an invariant subspace of systems (2.1a),
(2.1b), i.e., if x(0) ∈ R

n is such that ω(x(0)) = 0, then ω(x(t)) = 0, ∀t ∈ T (t ≥ 0
if T = Z and det(A) = 0), along the solutions of systems (2.1a), (2.1b). To be more
precise, by (2.17), ω(t) = eλtω(0) if T = R (respectively, ω(t) = λtω(0) if T = Z),
whence ω(t) = 0,∀t ∈ T (t ≥ 0 if T = Z and det(A) = 0), if and only if ω(0) = 0.
Clearly, the same is true for a polynomial first integral.

The following four theorems characterize the Darboux polynomials of sys-
tems (2.1a), (2.1b).

Theorem 2.11 Let T = R and Mi ∈ Ln(A), i = 1, . . . , n − 1. Assume that the
function ω(x) defined as follows:

ω(x) := det
(
Ω(x)

)
, Ω(x) = [Ax M1x . . . Mn−1x], (2.18)

is not identically equal to zero. Then, the following properties hold:

(2.11.1) relation (2.17) holds with λ = trace(A), i.e., ω is a Darboux polynomial of
system (2.1a), with characteristic value λ = trace(A);

(2.11.2) if the polynomial ω can be factorized as ω =∏
i ω

νi

i , with ωi’s being co-
prime real polynomials and νi ∈ Z

>, then there exist constants λi ∈ R

such that
∑

i νiλi = trace(A) and such that (2.17) holds with ω = ωi and
λ = λi .

Proof Consider, first, Statement (2.11.1) of the theorem. By linear algebra, applying
Δ to ω, one finds that

Δω = det
([AΔx M1x . . . Mn−1x])+ det

([Ax M1Δx . . . Mn−1x])
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+ · · · + det
([Ax M1x . . . Mn−1Δx]);

since Δx = Ax along the solutions of (2.1a), it follows that

Δω = det
([AAx M1x . . . Mn−1x])+ det

([Ax M1Ax . . . Mn−1x])

+ · · · + det
([Ax M1x . . . Mn−1Ax]);

MiA = AMi + μiA, because Mi ∈ Ln(A), which implies

Δω = det
([AAx M1x . . . Mn−1x])

+ det
([Ax AM1x + μ1Ax . . . Mn−1x])

+ · · · + det
([Ax M1x . . . AMn−1x + μn−1Ax]),

and, therefore, by linear algebra, one concludes that

Δω = trace(A)det
([Ax M1x . . . Mn−1x])= trace(A)ω,

thus proving Statement (2.11.1) of the theorem. As for Statement (2.11.2) of the
theorem, from ω =∏

i ω
νi

i , one finds that

LAxω

ω
=
∑

i

νi

LAxωi

ωi

. (2.19)

Since LAxωi = ∂ωi

∂x
Ax, it follows that LAxωi

ωi
is a proper rational function. Since

all denominators of the rational functions LAxωi

ωi
are co-prime, such functions do

not have common poles (common roots of the denominators). Let xo be a root of
ωj : then, ωj (x

o) = 0 and ωi(x
o) �= 0, ∀i �= j ; since LAxω

ω
is constant,

∑
i νi

LAxωi

ωi

is constant only if LAxωj (x
o) = 0; then, iterating through all roots of the poly-

nomials ωi , and taking into account that each LAxωi

ωi
is proper, one concludes that

each LAxωi

ωi
is equal to a certain constant λi . Finally, equation (2.19) shows that∑

i νiλi = trace(A), taking into account that LAxω
ω

= trace(A) and LAxωi

ωi
= λi , thus

proving Statement (2.11.2) of the theorem. �

Note that Theorem 2.11 extends Theorem 2.10 (in the case T = R), because
if x(0) is chosen so that ω(x(0)) = 1, then ω(x(t)) is just the function 	(t) of
Theorem 2.10.

The next theorem is the analogous of Theorem 2.11 for discrete-time systems, but
two important differences have to be stressed: in the discrete-time case, matrices Mi

are required to commute with A and a statement analogous to Statement (2.11.2) of
Theorem 2.11 does not hold.

Theorem 2.12 Let T = Z and Mi ∈ Lc(A), i = 1, . . . , n− 1. Assume that the func-
tion ω(x) defined as follows:

ω(x) := det
(
Ω(x)

)
, Ω(x) = [Ax M1x . . . Mn−1x],
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is not identically equal to zero. Then, relation (2.17) holds with λ = det(A), i.e., ω

is a Darboux polynomial of system (2.1b), with characteristic value λ = det(A).

Proof Taking into account that MiA = AMi , one has

Δω = det
(
Ω(Δx)

)= det
(
Ω(Ax)

)= det
([AAx M1Ax . . . Mn−1Ax])

= det
([AAx AM1x . . . AMn−1x])= det(A)det

(
Ω(x)

)= det(A)ω(x),

as to be proven. �

By Theorem 2.6, if matrix A is semi-simple and has distinct eigenvalues, then
Ln(A) = Lc(A); for this reason, the continuous-time and discrete-time cases are
considered jointly in the next theorem.

Theorem 2.13 Consider jointly both cases T = R and T = Z. Let A be semi-simple
with distinct eigenvalues, let nr be the number of real eigenvalues of A, let nc be the
number of pairs of complex conjugate eigenvalues of A (in particular, nr +2nc = n),
and let the eigenvalues of A be ordered as

{
λ1, . . . , λnr , λnr+1, λ

∗
nr+1, . . . , λnr+nc , λ

∗
nr+nc

}
.

Then, the polynomial ω(x) defined in Theorems 2.11 and 2.12 can be factorized as
follows:

ω(x) = k ω̂1(x) · · · ω̂nr+nc (x), (2.20)

where k ∈ R is a constant, and

ω̂i(x) =
{

u�
i x, i = 1, . . . , nr ,

(u�
i x)(u�

i x)∗, i = nr+1, . . . , nr + nc,

with u�
i being the left eigenvector relative to eigenvalue λi , i = 1, . . . , nr + nc.

Proof Let Ω(x) be defined as in Theorems 2.11 and 2.12. Since one of the bases of
Lc(A) is given by {E,A, . . . ,An−1}, one has Ω(x) = Ω̄(x)T for some invertible
matrix T ∈ R

n×n, where

Ω̄(x) = [
Ex Ax . . . An−1x

]
. (2.21)

For i = 1, . . . , nr + nc, one has

u�
i Ω̄(x) = [

u�
i Ex u�

i Ax . . . u�
i An−1x

]

= [(
u�

i x
)
λi

(
u�

i x
)

. . . λn−1
i

(
u�

i x
)]

= (
u�

i x
)[

1 λi . . . λn−1
i

];
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hence, defining the (possibly, complex) matrices

U :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u�
1
...

u�
nr

u�
nr+1
...

u�
nr+nc

u∗�
nr+1
...

u∗�
nr+nc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 λ1 . . . λn−1
1

...
... . . .

...

1 λnr . . . λn−1
nr

1 λnr+1 . . . λn−1
nr+1

...
... . . .

...

1 λnr+nc
. . . λn−1

nr+nc

1 λ∗
nr+1 . . . (λ∗

nr+1)
n−1

...
... . . .

...

1 λ∗
nr+nc

. . . (λ∗
nr+nc

)n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

one obtains

UΩ(x) = UΩ̄(x)T

= diag
{
u�

1 x, . . . , u�
nr

x, u�
nr+1x, . . . , u�

nr+nc
x,u∗�

nr+1x, . . . , u∗�
nr+nc

x
}
V T ;

taking the determinant of both sides of the above equation, one proves the theorem
with k = det(V )det(T )

det(U)
, where det(V ) �= 0 because the eigenvalues of A are distinct. �

The following theorem shows, also in the case that matrix A has repeated eigen-
values, that a Darboux polynomial can be computed by starting from every left
eigenvector of matrix A.

Theorem 2.14 Let u� be a left eigenvector of A, i.e., u�A = λu�. Then,

ω(x) =
{

u�x, if λ ∈ R,

(u�x)(u�x)∗, if λ /∈ R,

is a Darboux polynomial of systems (2.1a), (2.1b).

Proof If λ ∈ R, then

Δω(x) = Δu�x = u�Δx = u�Ax = λu�x

= λω(x),

i.e., ω(x) is a Darboux polynomial with characteristic value λ. Consider now the
case λ /∈ R. When T = Z,

Δω(x) = Δ
(
u�x

)
Δ
(
u∗�x

)= (
u�Δx

)(
u∗�Δx

)= (
u�Ax

)(
u∗�Ax

)

= (
λu�x

)(
λ∗u∗�x

)= λλ∗(u�x
)(

u∗�x
)

= |λ|2ω(x),
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i.e., ω(x) is a Darboux polynomial with characteristic value |λ|2. When T = R,

Δω(x) = (
u∗�x

)
Δ
(
u�x

)+ (
u�x

)
Δ
(
u∗�x

)

= (
u∗�x

)(
u�Δx

)+ (
u�x

)(
u∗�Δx

)

= (
u∗�x

)(
u�Ax

)+ (
u�x

)(
u∗�Ax

)

= λ
(
u∗�x

)(
u�x

)+ λ∗(u�x
)(

u∗�x
)

= (
λ + λ∗)ω(x) = 2 Re(λ)ω(x),

i.e., ω(x) is a Darboux polynomial with characteristic value 2 Re(λ). �

Remark 2.6 Let ω1 and ω2 be two Darboux polynomials of systems (2.1a), (2.1b)
with characteristic values λ1 and λ2, respectively: Δωi = λiωi , i = 1,2. Then, ω =
ω

ν1
1 ω

ν2
2 , with νi ∈ Z

≥, is still a Darboux polynomial of systems (2.1a), (2.1b), with
characteristic value λ = ν1λ1 + ν2λ2 if T = R (λ = λ

ν1
1 λ

ν2
2 if T = Z). To be more

precise, if T = R, then

Δω = ν1ω
ν1−1
1 ω

ν2
2 Δω1 + ν2ω

ν1
1 ω

ν2−1
2 Δω2 = (ν1λ1 + ν2λ2)ω

ν1
1 ω

ν2
2

= (ν1λ1 + ν2λ2)ω,

whereas, if T = Z, then

Δω = (Δω1)
ν1(Δω2)

ν2 = λ
ν1
1 λν2

2 ω
ν1
1 ω

ν2
2 = λ

ν1
1 λ

ν2
2 ω.

The second part of the next remark suggests a practical way for the computation
of first integrals for linear systems.

Remark 2.7 Following the same reasoning of the proof of Statement (2.11.2) of
Theorem 2.11, one can demonstrate the following claims. If T = R and I is a ra-
tional first integral of system (2.1a), then I can be factorized as I =∏

i ω
νi

i , with
ωi being Darboux polynomials of system (2.1a) and νi being (positive or nega-
tive) integers. Conversely, both in the continuous-time and discrete-time cases, if
ω1,ω2, . . . are Darboux polynomials of systems (2.1a), (2.1b), Δωi = λiωi , such
that

∑
i νiλi = 0 (respectively,

∏
i λ

νi

i = 1), with νi being either positive or negative
integers, then I =∏

i ω
νi

i is a rational first integral of systems (2.1a), (2.1b).

Example 2.10 Constants λi ∈ R appearing in Statement (2.11.2) of Theorem 2.11
need not be eigenvalues of matrix A. For instance, if A = [ 1 1

−1 1

]
, then

ω(x) = det
([Ax x])= det

([
x1 + x2 x1

−x1 + x2 x2

])
= x2

1 + x2
2

satisfies

Δω =
{[2x1 2x2]

[ x1+x2
−x1+x2

]= 2(x2
1 + x2

2), if T = R,

(F 2
1 + F 2

2 )|F1=x1+x2,F2=x2−x1 = 2(x2
1 + x2

2), if T = Z,
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with 2 that is not eigenvalue of A (where det(A) = trace(A) = 2).

In the next example, the concept of irreducible polynomial is needed. A poly-
nomial with real coefficients is said to be irreducible over R if it is not constant
and cannot be rewritten as the product of two non-constant polynomials with real
coefficients.

Example 2.11 Consider matrix

A =
⎡
⎣

0 1 0
0 0 1

λ1λ2λ3 −λ1λ3 − λ1λ2 − λ2λ3 λ1 + λ3 + λ2

⎤
⎦ ,

with λ1, λ2, λ3 being scalars. If λ1, λ2, λ3 ∈ R, then such a matrix has three real
eigenvalues λ1, λ2 and λ3 with respective real left eigenvectors:

u1 =
⎡
⎣

λ2λ3
−λ3 − λ2

1

⎤
⎦ , u2 =

⎡
⎣

λ1λ3
−λ1 − λ3

1

⎤
⎦ , u3 =

⎡
⎣

λ1λ2
−λ1 − λ2

1

⎤
⎦ ,

which are linearly independent over R when λi �= λj , i �= j . Two linear symmetries
of Ax, such that det(Ω) �= 0, are given by Ex and A2x, thus yielding

ω(x) = det
(
Ω(x)

)= det
([

Ax Ex A2x
])

= (
λ2λ3x1 − (λ3 + λ2)x2 + x3

)(
λ1λ3x1 − (λ1 + λ3)x2 + x3

)

× (
λ1λ2x1 − (λ1 + λ2)x2 + x3

)

= (
u�

1 x
)(

u�
2 x
)(

u�
3 x
)
.

Note that if λ1 = α + iβ and λ2 = α − iβ , for some constants α,β ∈ R, β �= 0, then
the two complex factors (u�

1 x)(u�
2 x) lead to a real Darboux polynomial associated

with Ax, irreducible over R,

ω4 = (
u�

1 x
)(

u�
2 x
)

= (
2λ3α + λ2

3 + α2 + β2)x2
2 + (−2λ2

3α − 2λ3β
2 − 2λ3α

2)x1x2

+ (−2λ3 − 2α)x2x3 + (
λ2

3α
2 + λ2

3β
2)x2

1 + 2λ3αx1x3 + x2
3 ,

such that Δω4 = λω4, where λ = λ1 + λ2 = 2α if T = R (respectively, λ = λ1λ2 =
α2 + β2 if T = Z). Moreover, note that the same factor (u�

i x) appears more than
once as a factor of ω(x) in case of multiple eigenvalues.

Example 2.12 Consider again matrix A of Example 2.11 with λ1 = λ2 = λ3 = 0.
Let

M =
⎡
⎣

1 0 0
0 3 0
0 0 5

⎤
⎦ .
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Clearly, Ex and Mx are two linear symmetries of Ax. Let

ω(x) = det
([Ax Ex Mx])= det

⎛
⎝
⎡
⎣

x2 x1 x1
x3 x2 3x2
0 x3 5x3

⎤
⎦
⎞
⎠= −2x3

(
2x1x3 − x2

2

);

let ω1(x) = x3 and ω2(x) = 2x1x3 − x2
2 . Clearly, ω1(x) = [0 0 1]x, where [0 0 1] is

a left eigenvector of A with eigenvalue λ = 0, is a Darboux polynomial associated
with Ax, both in the continuous-time and discrete-time cases. Furthermore, since

LAxω2(x) = [2x3 −2x2 2x1]
⎡
⎣

x2
x3
0

⎤
⎦= 0,

ω2 is another Darboux polynomial of the continuous-time system (not correspond-
ing to any left eigenvector), whereas since

ω2 ◦ Ax = (
2F1F3 − F 2

2

)∣∣
F1=x2,F2=x3,F3=0 = −x2

3 ,

the factor ω2 of ω is not a Darboux polynomial of the discrete-time system.

Remark 2.8 Example 2.12 shows that, although there is a strong relationship be-
tween left eigenvectors and Darboux polynomials associated with Ax, there may
exist Darboux polynomials of (2.1a), (2.1b) that are not generated by left eigenvec-
tors.

Theorem 2.15 Assume that {A0,A1, . . . ,An−1} is a basis of Lc(A). Let Ω(x) =
[A0x A1x . . . An−1x] and ω = det(Ω). Then, all linear systems Δx = Bx, with
B ∈ Lc(A), B �= 0, have ω as a Darboux polynomial.

Proof If B ∈ Lc(A), B �= 0, then B = ∑n−1
i=0 μiA

i , with μj �= 0 for at least one
index j . Let Ω̂(x) = [Bx A1x . . . An−1x] and ω̂ = det(Ω̂); assume that ω̂ �= 0,
otherwise define Ω̂ as the matrix obtained from Ω by replacing one of the last n−1
columns with Bx. By construction, ω̂ is a Darboux polynomial of Δx = Bx, and in
addition

ω̂(x) = det
([

Bx A1x . . . An−1x
])= det

([
n−1∑
i=0

μiA
ix A1x . . . An−1x

])

= det
([

μ0A
0x A1x . . . An−1x

])= μ0 det
([

A0x A1x . . . An−1x
])

= μ0ω(x),

where μ0 �= 0 by ω̂ �= 0. �

By Corollary 2.1, recall that if either A is semi-simple with distinct eigenvalues
or if A is a Jordan block, then {A0,A1, . . . ,An−1} is a basis of Lc(A).
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Example 2.13 Let A = [ 0 1
−1 0

]
; a basis of Lc(A) is {A0,A1}; hence, any B ∈

Lc(A) can be written as B = μ0A
0 + μ1A

1 = [ μ0 μ1
−μ1 μ0

]
, for constant μ0,μ1 ∈ R.

Then, letting Ω(x) = [A0x A1x] = [ x1 x2
x2 −x1

]
, one computes ω(x) = det(Ω(x)) =

−(x2
1 + x2

2). Under the assumption that μ0 �= 0, letting

Ω̂(x) = [
Bx A1x

]=
[

μ0x1 + μ1x2 x2
−μ1x1 + μ0x2 −x1

]
,

one computes ω̂(x) = det(Ω̂(x)) = −μ0(x
2
1 + x2

2) �= 0; similarly, if μ1 �= 0, letting

Ω̂(x) = [
A0x Bx

]=
[
x1 μ0x1 + μ1x2
x2 −μ1x1 + μ0x2

]
,

one computes ω̂(x) = det(Ω̂(x)) = −μ1(x
2
1 + x2

2) �= 0. This shows that all systems
having a dynamic matrix in Lc(A) share the same Darboux polynomial x2

1 + x2
2 .

Example 2.14 Let A = [ 1 1
−1 −1

]
; A is not semi-simple. The linear centralizer Lc(A)

has dimension two and Lc(A) = spanR{A0,A1}. Any B ∈ Lc(A) can be expressed
as B = μ0A

0 + μ1A
1 = [μ0+μ1 μ1

−μ1 μ0−μ1

]
, for constant μ0,μ1 ∈ R. Then, by Ω(x) =

[A0x A1x] = [ x1 x1+x2
x2 −x1−x2

]
, one computes ω(x) = det(Ω(x)) = −(x1 + x2)

2. Under
the assumption that μ0 �= 0, letting

Ω̂(x) = [
Bx A1x

]=
[

(μ0 + μ1)x1 + μ1x2 x1 + x2
−μ1x1 + (μ0 − μ1)x2 −x1 − x2

]
,

one computes ω̂(x) = det(Ω̂(x)) = −μ0(x1 + x2)
2 �= 0; similarly, under the as-

sumption that μ1 �= 0, letting

Ω̂(x) = [
A0x Bx

]=
[
x1 (μ0 + μ1)x1 + μ1x2
x2 −μ1x1 + (μ0 − μ1)x2

]
,

one computes ω̂(x) = det(Ω̂(x)) = −μ1(x1 + x2)
2 �= 0. This shows how all sys-

tems having a dynamic matrix belonging to Lc(A) have (x1 + x2)
2 as Darboux

polynomial (x1 + x2 in the continuous-time case).

Remark 2.9 Assume that the Jordan form of A has not two Jordan blocks corre-
sponding to the same eigenvalue, i.e., that A0, A1, . . . ,An−1 are linearly indepen-
dent over R; since [Ai,Aj ] = 0, by the analysis carried out in Sect. 1.6, one con-
cludes that the rows of Ω−1(x) = [A0x A1x . . . An−1x]−1 are exact one-forms.
Then, the diffeomorphism y = ϕ(x) such that ∂ϕ

∂x
= Ω−1 satisfies LAixϕ = ei+1,

with ei being the ith column of the n × n identity matrix E. This can be useful to
compute n − 1 independent first integrals of dx

dt
= Ax, when A is not semi-simple,

as illustrated in the following example.
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Example 2.15 Let

A =
⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ ;

then,

Ω(x) = [
A0x A1x A2x

]=
⎡
⎣

x1 x2 x3
x2 x3 0
x3 0 0

⎤
⎦ .

The rows of Ω−1 are exact one-forms and yield, by integration, the diffeomorphism
y = ϕ(x), with

ϕ(x) =

⎡
⎢⎢⎣

ln(|x3|)
x2
x3

x1
x3

− 1
2

x2
2

x2
3

⎤
⎥⎥⎦ ;

it is not difficult to see that the first and last entry of ϕ(x) are functionally indepen-
dent first integrals of dx

dt
= Ax.



Chapter 3
Analysis of Continuous-Time Nonlinear Systems

3.1 Semi-invariants and Darboux Polynomials
of Continuous-Time Nonlinear Systems

The semi-invariants (using the name given in [118]) are widely studied in the litera-
ture under various names, such as: second integrals, special integrals (polynomials),
eigenpolynomials, Darboux polynomials (curves), algebraic invariant curves (man-
ifolds), particular algebraic solutions; an introductory reference is Sect. 2.5 in [56]
in case of polynomial semi-invariants, with polynomial characteristic function. The
concept of semi-invariant dates back to Darboux [38] (see also [30, 105]).

Definition 3.1 A semi-invariant of system (1.1a) is a meromorphic function ω(x) ∈
R such that

Lf ω = λω, (3.1)

with λ(x) ∈ R being meromorphic and such that there is no zero/pole cancelation
between λ and ω; if ω and λ are polynomial in x, then ω is said to be a Darboux
polynomial; λ is called the characteristic function (respectively, the characteristic
polynomial) of the semi-invariant (respectively, of the Darboux polynomial). If λ is
constant, it is called the characteristic value.

A semi-invariant (respectively, a Darboux polynomial) of system (1.1a) is also
called a CT-semi-invariant (respectively, a CT-Darboux polynomial) associated
with f . If no confusion can arise between the continuous-time and discrete-time
cases, the simpler nomenclature semi-invariant is used instead of CT-semi-invariant.

Clearly, if not empty, set Iω = {x ∈ U : ω(x) = 0} is invariant, i.e., if x(0) ∈
Iω, then x(t) ∈ Iω for all real t belonging to some interval [0, T ). From Defini-
tion 3.1, a first integral associated with f is a semi-invariant associated with f , with
characteristic value λ = 0.

Remark 3.1 For any α(x) ∈ R, function ω = eα satisfies (3.1) with λ = Lf α:

Lf ω = Lf eα = (Lf α)eα = λω,

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
DOI 10.1007/978-0-85729-612-2_3, © Springer-Verlag London Limited 2011
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but in such a case set Ieα is empty. Definition 3.1 could be amended to exclude
such trivial semi-invariants (including the constant ones), by requiring that set Iω

is not empty, but this would be paid by a more cumbersome exposition; moreover,
such a change would not drop out other trivial semi-invariants. As a matter of fact, if
ω is a semi-invariant of system (1.1a), with characteristic function λ, then ωeα is a
semi-invariant of system (1.1a) for any analytic scalar function α, with characteristic
function λ + Lf α. To be more precise,

Lf

(
ωeα

)= eα(Lf ω) + ω
(
Lf eα

)= eαλω + ωeα(Lf α) = (λ + Lf α)ωeα;
functions ωeα are trivial extensions of the semi-invariant ω.

For simplicity, the following theorem considers the Darboux polynomials associ-
ated with polynomial f , although some of such properties hold for semi-invariants
and non-polynomial f too, subject to the necessary amendments.

Theorem 3.1 Assume that f is polynomial.

(3.1.1) If I = ω1
ω2

is a first integral of system (1.1a), with ω1 and ω2 being co-prime
polynomials, then ω1 and ω2 are Darboux polynomials of system (1.1a),
with the same characteristic polynomial λ1 = λ2.

(3.1.2) Let ω, ω1 and ω2 be Darboux polynomials of system (1.1a) with respective
characteristic polynomials λ, λ1 and λ2; then, all irreducible factors of ω

are Darboux polynomials of system (1.1a), and the product ω
n1
1 ω

n2
2 is a

Darboux polynomial of system (1.1a) for arbitrary constants n1, n2 ∈ Z
≥,

with characteristic polynomial n1λ1 + n2λ2.

Proof As for Statement (3.1.1) of the theorem, since I is a first integral of sys-
tem (1.1a), it follows that

0 = Lf I = ω2Lf ω1 − ω1Lf ω2

ω2
2

.

Then, taking into account that ω1 and ω2 are co-prime and that ω2Lf ω1 = ω1Lf ω2,
one concludes that ω1 is a factor of Lf ω1 and ω2 is a factor of Lf ω2, with λ1 =
Lf ω1
ω1

and λ2 = Lf ω2
ω2

being the respective characteristic polynomials; substituting
these expressions in ω2Lf ω1 = ω1Lf ω2, one concludes that ω1ω2(λ1 − λ2) = 0,
which shows that (λ1 −λ2) = 0, because ω1ω2 is not the zero function. As for State-
ment (3.1.2) of the theorem, in order to show that ω

n1
1 ω

n2
2 is a Darboux polynomial

of system (1.1a), compute

Lf

(
ω

n1
1 ω

n2
2

) = ω
n2
2 Lf ω

n1
1 + ω

n1
1 Lf ω

n2
2

= n1ω
n1−1
1 ω

n2
2 Lf ω1 + n2ω

n1
1 ω

n2−1
2 Lf ω2 = (n1λ1 + n2λ2)ω

n1
1 ω

n2
2 .

In order to show that all irreducible factors of ω are Darboux polynomials of sys-
tem (1.1a), let ω = ω

n1
1 ω2, with ω1 being irreducible and pair ω1, ω2 being co-prime.
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Then,

Lf ω = Lf

(
ω

n1
1 ω2

)= n1ω
n1−1
1 ω2Lf ω1 + ω

n1
1 Lf ω2,

which implies (because Lf ω = λω)

n1ω
n1−1
1 ω2Lf ω1 + ω

n1
1 Lf ω2 = λω

n1
1 ω2.

Hence, ωn1
1 divides n1ω

n1−1
1 ω2Lf ω1 +ω

n1
1 Lf ω2; since ω1 and ω2 are co-prime, ω1

must divide Lf ω1, where
Lf ω1
ω1

is the characteristic polynomial of ω1. �

If Î (x) ∈ R satisfies Lf Î = 1, then I (t, x) = Î (x) − t is a time-varying first
integral associated with f , since

dI

dt
= ∂I

∂t
+ ∂I

∂x
f = −1 + Lf Î = 0.

The following theorem shows that the knowledge of a semi-invariant with a con-
stant characteristic value leads to a time-varying first integral.

Theorem 3.2 It ω is a semi-invariant of system (1.1a) with a constant characteristic
value λ �= 0, then Î = 1

λ
ln(|ω|) satisfies Lf Î = 1.

Proof The theorem is proven by Lf Î = Lf ( 1
λ

ln(|ω|)) = 1
λ

1
ω
Lf ω = 1. �

Definition 3.2 Assume that f (x) is analytic at x = xo, with xo ∈ U ; the point xo

is regular for f (x) ∈ R
n if f (xo) �= 0, singular if f (xo) = 0.

The following theorem is known as the flow box theorem and is a particular case
of Theorem 1.10 at p. 24; it gives the conditions for the local straightening of the
flow of system (1.1a).

Theorem 3.3 Assume that f (x) is analytic at x = xo, with xo ∈ U . Around any
regular point xo ∈ U of f (x) ∈ R

n, there exists an open and connected subset U ∗
of U , containing xo, and an analytic diffeomorphism y = ϕ(x), ϕ(·) : U ∗ → R

n,
such that Lf ϕ = e1, where e1 is the first column of the n × n identity matrix E.

Proof Since f (xo) �= 0, apart from a reordering of the entries xi of x, assume that
f1(x

o) �= 0, so that det([f (xo) e2 . . . en]) �= 0. Hence, relation ϕ∗f = e1, which is
equivalent to Lf ϕ = e1, can be rewritten in the Kovalevskaya form (1.12):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ϕ1
∂x1

= 1
f1

(
1 − ∂ϕ1

∂x2
f2 − · · · − ∂ϕ1

∂xn
fn

)
,

∂ϕ2
∂x1

= − 1
f1

(
∂ϕ2
∂x2

f2 + · · · + ∂ϕ2
∂xn

fn

)
,

...

∂ϕn

∂x1
= − 1

f1

(
∂ϕn

∂x2
f2 + · · · + ∂ϕn

∂xn
fn

)
,

(3.2)
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with the right-hand sides being analytic in a neighborhood of xo, when ϕ is an-
alytic in a neighborhood of xo. The Cauchy–Kovalevskaya Theorem 1.8 at p. 20
guarantees that such a system, with the Cauchy initial data

ϕ
(
xo

1 , x2, . . . , xn

)= [
0 x2 − xo

2 . . . xn − xo
n

]�
, (3.3)

has a unique solution in a neighborhood of xo, being analytic at x = xo; by the first
of (3.2) computed at x = xo and by the chosen Cauchy initial data, y = ϕ(x) is a
diffeomorphism in a neighborhood of xo. The solution of such a Cauchy problem is

ϕ−1(y1, y2, . . . , yn) = Φf

(
y1, x

o +
n∑

i=2

yiei

)
, (3.4)

which satisfies ϕ−1(0, y2, . . . , yn) = Φf (0, xo +∑n
i=2 yiei) = xo +∑n

i=2 yiei , i.e.,
the Cauchy initial data (3.3). In addition, condition ϕ∗f (y) = e1, is equivalent to
Φϕ∗f (t, y) = y + te1 and, by y = ϕ(x), one has

Φϕ∗f (t, y) = ϕ
(
Φf

(
t, ϕ−1(y)

))= ϕ

(
Φf

(
t,Φf

(
y1, x

o +
n∑

i=2

yiei

)))

= ϕ

(
Φf

(
t + y1, x

o +
n∑

i=2

yiei

))

= ϕ
(
ϕ−1(t + y1, y2, . . . , yn)

)= y + te1.

Notice that x = ϕ−1(y) is actually a diffeomorphism about y = 0; in particular,

taking into account that
∂Φf (t,x)

∂t
|t=0 = f (x) and

∂Φf (t,x)

∂x
|t=0 = E,

∂ϕ−1(y)

∂y

∣∣∣∣
y=0

=
[
∂Φf (t, x)

∂t

∂Φf (t, x)

∂x
e2 . . .

∂Φf (t, x)

∂x
en

]∣∣∣∣ t=y1,

x=xo+∑n
i=2 yiei

∣∣∣∣
y=0

= [
f (xo) e2 . . . en

]
,

which has full rank by the assumption f1(x
o) �= 0. �

Remark 3.2 If fj (x
o) �= 0 instead of f1(x

o) �= 0, then formula (3.4) becomes

ϕ−1(y1, y2, . . . , yn) = Φf

(
yj , x

o +
n∑

i=1,i �=j

yiei

)
.

It is noted that such an analytic diffeomorphism y = ϕ(x) can also be computed
by (1.20), as detailed in Examples 1.16 at p. 24 and 1.17 at p. 25.

Remark 3.3 Actually, for any n ≥ 1, the flow box Theorem 3.3 still holds if f (x) is
C1 at the considered regular point xo, with the resulting diffeomorphism being C1
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at xo. When n = 1, f only needs to be continuous at a regular point xo, f (xo) �= 0.
As a matter of fact, it is sufficient to define

ϕ(x) :=
∫

1

f (x)
dx + c, (3.5)

where c is such that ϕ(xo) = 0; since f (x) is continuous and satisfies f (x) �= 0 for
all x in a neighborhood B of xo, y = ϕ(x) is a C1-diffeomorphism on B, for which

ϕ∗f (y) = 1. As an example, considerf (x) =
{

1, if x < 1,

x, if x ≥ 1.
By (3.5), one computes

the diffeomorphism y = ϕ(x), about xo = 1, with ϕ(x) =
{

x − 1, if x < 1,

ln(x), if x ≥ 1,
being C1

at xo = 1, for which ϕ∗f (y) = 1.

The important point to note here is that, by the flow box Theorem 3.3, locally
about regular points, any system is diffeomorphic to any other system having the
same dimension. To this end, consider two systems dx

dt
= f (x) and dξ

dt
= h(ξ), x, ξ ∈

R
n, with f and h being arbitrary. System dx

dt
= f (x) (respectively, dξ

dt
= f (ξ)) can

be transformed by some diffeomorphism y = ϕ(x) (respectively, y = ϕ̂(ξ)), in a
neighborhood of any regular xo (respectively, ξo), into dy

dt
= e1; hence, dx

dt
= f (x)

can be transformed into dξ
dt

= h(ξ) by ξ = ϕ̂−1 ◦ ϕ(x). As an example, consider
f (x) = x and h(ξ) = −ξ ; the rectifying diffeomorphisms are ϕ(x) = ln(x) and
ϕ̂(ξ) = ln( 1

ξ
), taking any xo > 0 and ξo > 0; then, dx

dt
= x is transformed into dξ

dt
=

−ξ , by ξ = ϕ̂−1 ◦ ϕ(x) = 1
ey |y=ln(x) = 1

x
. Note that such a diffeomorphism is not

defined at the singular point x = 0.

Remark 3.4 By the flow box Theorem 3.3, the entries I1 = ϕ2, . . . , In−1 = ϕn of ϕ

are n − 1 functionally independent first integrals of system (1.1a); by Remark 1.3
at p. 10, any first integral of system (1.1a) can be expressed as I = C(ϕ2, . . . , ϕn),
where C is an arbitrary function of the arguments.

Example 3.1 Consider system (1.1a) with f = g1 and g1(x) = [x1 3x2 +x2
1 ]� given

in Example 1.16 at p. 24. The CT-flow Φf (t, x) associated with f is

Φf (t, x) =
[

et x1

e3t x2 + (−e2t + e3t )x2
1

]
.

Then, letting xo = [1 0]�, one has

ϕ−1(y) =
[

et x1

e3t x2 + (−e2t + e3t )x2
1

]

t=y1,x1=1,x2=y2

=
[

ey1

e3y1y2 − e2y1 + e3y1

]
,

which coincides with the diffeomorphism found in Example 1.16 at p. 24. By in-
verting (in a neighborhood of x = xo) the diffeomorphism x1 = ey1 , x2 = e3y1y2 −
e2y1 + e3y1 , one finds y1 = ln(x1), y2 = x2+x2

1−x3
1

x3
1

. Clearly, I1(x) = x2+x2
1−x3

1

x3
1

is a

first integral associated with f , and any other first integral I associated with f can
be expressed as I = C(I1), with C(·) being an arbitrary function.
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3.2 Symmetries and Orbital Symmetries of Continuous-Time
Nonlinear Systems

The concept of (orbital) symmetry of a differential equation was introduced by
S. Lie [81] in the second half of the 19th century, as an attempt of generalizing
the theory of Galois, and it was primarily used for the solution in closed form of dif-
ferential equations admitting given orbital symmetries. In [80], S. Lie proven that a
planar system, described by a pair of first order time-invariant differential equations,
(or, equivalently, one time-varying differential equation) admits an inverse integrat-
ing factor, whence by quadrature a (non-trivial) first integral, if and only if it admits
a (non-trivial) orbital symmetry. Modern reference on the subject can be found in
many books, among which [5, 20–22, 34, 67, 102, 111].

One of the oldest applications of symmetries is based on fixing a (possibly, sim-
ple) vector function and then look for all systems admitting the given vector function
as orbital symmetry (with a simple vector function, one can also generate very cum-
bersome systems admitting it as orbital symmetry): this was, for instance, used by
[73] for tabularizing classes of differential equations for which the solution can be
written in closed form by quadrature, and it is now used in symbolic algebraic ma-
nipulation languages (see, e.g., [28]) for the automatic generation of the solutions
of differential equations.

For any g(x) ∈ R
n and for any admissible τ (to be considered as a constant

parameter),

x = Φg(τ, y) (3.6)

qualifies as a local analytic diffeomorphism; system (1.1a) is transformed, according
to such a diffeomorphism, as follows:

dy

dt
=
(

∂Φg

∂y

)−1

f ◦ Φg. (3.7)

Since Φg(τ, y) = Ey + g(y)τ + O(τ2), with E being the n × n identity matrix
and O(τ 2) denoting second and higher order terms, for τ close to 0, (3.6) is close
to the identity transformation; moreover, by a Taylor series expansion with respect
to τ , it can be seen that

(
∂Φg

∂y

)−1

f ◦ Φg = f − [f,g]τ + O
(
τ 2)= f + [g,f ]τ + O

(
τ 2). (3.8)

In particular, a possible and alternative definition of the CT-Lie bracket is [23]

[g,f ] := lim
τ→0

(
∂Φg

∂y
)−1f ◦ Φg − f

τ
. (3.9)

By (3.9), [g,f ] can be interpreted as the “derivative” of f along g (by some
authors, it is indicated by Lgf , but not in this book); the reader is advised not to
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confuse the Lie bracket [g,f ] = ∂f
∂x

g − ∂g
∂x

f with the directional derivative Lgf =
∂f
∂x

g.

Definition 3.3 The diffeomorphism (3.6) is a symmetry of system (1.1a) and sys-
tem (1.2) is its infinitesimal generator if

(
∂Φg

∂y

)−1

f ◦ Φg(τ, y) = f (y), ∀(τ, y) ∈ V , (3.10)

with V being an open and connected subset of R × R
n including {0} ×U . If (3.10)

holds, by abuse of notation, also the infinitesimal generator (1.2) is called a symme-
try of system (1.1a); briefly, g is called a CT-symmetry of f .

If no confusion can arise between the continuous-time and discrete-time cases,
the simpler nomenclature symmetry is used instead of CT-symmetry.

Theorem 3.4 Vector function g is a symmetry of f if and only if [f,g] = 0.

Proof By (3.8), condition [f,g] = 0 is certainly necessary. Since Φg(0, y) = y, one

finds that
∂Φg

∂y
|τ=0 = I . Since

((
∂Φg

∂y

)−1

f ◦ Φg(τ, y)

)∣∣∣∣∣
τ=0

= f (y), (3.11)

equality (3.10) holds if and only if

∂

∂τ

((
∂Φg

∂y

)−1

f ◦ Φg(τ, y)

)
= 0. (3.12)

In this way,

∂

∂τ

∂Φg

∂y
= ∂

∂y

∂Φg

∂τ
= ∂g(Φg)

∂y
= ∂g

∂x

∣∣∣∣
x=Φg

∂Φg

∂y
.

If X(τ) is a square invertible matrix, then from XX−1 = I , it follows that ∂X
∂τ

X−1 +
X ∂X−1

∂τ
= 0, which implies

∂X−1

∂τ
= −X−1 ∂X

∂τ
X−1. (3.13)

Hence, if ∂
∂τ

X = JX, for some square matrix J , then one concludes that ∂X−1

∂τ
=

−X−1J . This shows that ∂
∂τ

(
∂Φg

∂y
)−1 = −(

∂Φg

∂y
)−1 ∂g

∂x
|x=Φg . Thus,

∂

∂τ

((
∂Φg

∂y

)−1

f ◦ Φg(τ, y)

)
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= −
(

∂Φg

∂y

)−1(
∂g

∂x
f

)∣∣∣∣
x=Φg

+
(

∂Φg

∂y

)−1
∂f

∂x

∣∣∣∣
x=Φg

∂Φg

∂τ

= −
(

∂Φg

∂y

)−1(
∂g

∂x
f

)∣∣∣∣
x=Φg

+
(

∂Φg

∂y

)−1(
∂f

∂x
g

)∣∣∣∣
x=Φg

= −
(

∂Φg

∂y

)−1

[f,g]
∣∣∣∣
x=Φg

,

whence (3.12) holds if and only if [f,g] = 0. �

By Definition 1.3 at p. 10 and by Theorem 3.4, the set of all symmetries g of f

is given by the centralizer CC(f ) of f . Similarly to Theorem 3.4, by computations
wholly similar to those yielding (1.19), it is possible to show that

[f,g] = 0 ⇐⇒ Φf (t, ·) ◦ Φg(τ, x) = Φg(τ, ·) ◦ Φf (t, x).

Remark 3.5 If [f,g] = 0, with g(x) = Bx for some B ∈ R
n×n, then (3.10) becomes

e−Bτf (eBτ y) = f (y), which implies f (eBτ y) = eBτ f (y).

Thanks to Theorem 3.4, the following definition is equivalent to Definition 3.3.

Definition 3.4 The diffeomorphism (3.6) is a symmetry of system (1.1a) and sys-
tem (1.2) is its infinitesimal generator if [f,g] = 0.

The following definition extends the concept of symmetry to the concept of or-
bital symmetry.

Definition 3.5 The diffeomorphism (3.6) is an orbital symmetry of system (1.1a)
and system (1.2) is its infinitesimal generator if [f,g] = μf , with μ being a mero-
morphic scalar function. The normalizer NC(f ) of f is the set of all g such that
[f,g] = μf , for some μ(x) ∈ R.

The following theorem shows that the normalizer NC(f ) and the centralizer
CC(f ) of f are closed under the Lie bracket operation, i.e., g1, g2 ∈ NC(f ) implies
[g1, g2] ∈ NC(f ) and g1, g2 ∈ CC(f ) implies [g1, g2] ∈ CC(f ).

Theorem 3.5 If g1 and g2 are two orbital symmetries (respectively, symmetries) of
f , then [g1, g2] is an orbital symmetry (respectively, symmetry) of f .

Proof From [f,g1] = μ1f and [f,g2] = μ2f , it follows that (taking into account
the Jacobi identity, given in Property (1.2.3)):

[
f, [g1, g2]

] = −[g1, [g2, f ]]− [
g2, [f,g1]

]= [g1,μ2f ] − [g2,μ1f ]
= μ2[g1, f ] + (Lg1μ2)f − μ1[g2, f ] + (Lg2μ1)f
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= (Lg1μ2 + Lg2μ1)f.

In particular, if μ1 = μ2 = 0, then [f, [g1, g2]] = 0. �

Theorem 3.6 Let J be a first integral of (1.2) (i.e., LgJ = 0) such that Lf J �= 0. If
g is an orbital symmetry of f , then g is a symmetry of

f̂ := 1

Lf J
f.

Proof Compute [f̂ , g] = 1
Lf J

[f,g] − f Lg(
1

Lf J
). Then, L[f,g]J = Lf LgJ −

LgLf J = −Lg(Lf J ); taking into account that [f,g] = μf , one finds that
L[f,g]J = μLf J and, therefore, that Lg(Lf J ) = −μ(Lf J ); finally, since Lg(

1
Lf J

)

= − 1
(Lf J )2 Lg(Lf J ), one concludes that Lg(

1
Lf J

) = μ 1
Lf J

, which implies

[
f̂ , g

]= 1

Lf J
[f,g] − f Lg

(
1

Lf J

)
= 1

Lf J
μf − f μ

1

Lf J
= 0,

as to be shown. �

Remark 3.6 Since g is a symmetry of f̂ = 1
Lf J

f , for any τ for which Φg(τ, y) is

defined, x = Φg(τ, y) maps any orbit of dx
ds

= f̂ into the same orbit, while preserv-
ing the time parameterization. Furthermore, since dx

ds
= 1

Lf J
f leads to dx

dt
= f , with

ds
dt

= Lf J , it is easy to see that dx
ds

= f̂ and dx
dt

= f have the same orbits (except

for the possible equilibrium points of f̂ that do not coincide with those of f ), but
with different time parameterizations; this shows that x = Φg(τ, y) maps any orbit
of dx

dt
= f into the same orbit (except for the possible equilibrium points of f̂ that

do not coincide with those of f ), but with a different time parameterization.

Theorem 3.7 If g is an orbital symmetry of f , then g is an orbital symmetry of
f̃ = αf , for any arbitrary α(x) ∈ R, α �= 0.

Proof If [f,g] = μf , then [αf,g] = α[f,g]−f Lgα = (αμ−Lgα)f = αμ−Lgα

α
αf .
�

Remark 3.7 By the flow box Theorem 3.3, about any regular point of g, there are
local coordinates such that g = e1, with e1 being the first column of the n × n

identity matrix. Consider first the case n = 2 and g = [1 0]�. Let f have g as
symmetry; then, the equalities

[
0
0

]
= [f,g] =

[
0 0
0 0

][
f1
f2

]
−
[

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

][
1
0

]
= −

[
∂f1
∂x1
∂f2
∂x1

]
,
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imply ∂f1
∂x1

= 0 and ∂f2
∂x1

= 0, namely f has g as symmetry if and only if

f =
[
α

β

]
,

with α and β being arbitrary functions of x2. If f has g as orbital symmetry, then
condition [f,g] = μf implies − ∂f1

∂x1
= μf1 and − ∂f2

∂x1
= f2, namely f has g as

orbital symmetry if and only if

f =
[

1
β

]
α,

with α being an arbitrary function of x1 and x2, and β being an arbitrary function
of x2 (then, μ = − 1

α
∂α
∂x1

). In the general case, assume g = e1, with e1 being the first
column of the n × n identity matrix E; similarly, it is easy to show that

(3.7.1) f has g as symmetry if and only if

f =

⎡
⎢⎢⎢⎣

α

β1
...

βn−1

⎤
⎥⎥⎥⎦ ,

with α and βi being arbitrary functions of x2, . . . , xn;
(3.7.2) f has g as orbital symmetry if and only if

f =

⎡
⎢⎢⎢⎣

1
β1
...

βn−1

⎤
⎥⎥⎥⎦α,

with α being an arbitrary function of x1, x2, . . . , xn and βi being an arbitrary
function of x2, . . . , xn, i = 1, . . . , n − 1.

Theorem 3.8 Let y = ϕ(x) be an analytic diffeomorphism on U . Then, ϕ∗g is an
orbital symmetry (respectively, a symmetry) of ϕ∗f if and only if g is an orbital
symmetry (respectively, a symmetry) of f :

[f,g] = μf ⇐⇒ [ϕ∗f,ϕ∗g] = (ϕ∗μ)(ϕ∗f ).

Proof Follows from the invariance of the Lie bracket to diffeomorphisms:
[(

∂ϕ

∂x
f

)
◦ ϕ−1,

(
∂ϕ

∂x
g

)
◦ ϕ−1

]
=
(

∂ϕ

∂x
[f,g]

)
◦ ϕ−1.

�

Theorem 3.9 Let g be given. Let J0, J1, . . . , Jn−1 be functionally independent and
such that LgJ0 = 1 and LgJi = 0, i = 1, . . . , n − 1. Let J = [J0 J1 . . . Jn−1]�.
Then,
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(3.9.1) f has g as symmetry if and only if

f =
(

∂J

∂x

)−1

⎡
⎢⎢⎢⎣

α

β1
...

βn−1

⎤
⎥⎥⎥⎦ , (3.14)

with α and βi ’s being arbitrary functions of J1, . . . , Jn−1;
(3.9.2) f has g as orbital symmetry if and only if

f =
(

∂J

∂x

)−1

⎡
⎢⎢⎢⎣

1
β1
...

βn−1

⎤
⎥⎥⎥⎦α,

with α being an arbitrary function of x and βi being an arbitrary function
of J1, . . . , Jn−1, i = 1, . . . , n − 1.

Proof The proof follows easily from Remark 3.7 and Theorem 3.8. �

Remark 3.8 By the analysis of the subsequent Sect. 6.3, the centralizer CC(g)

of g is a Lie algebra over the field IC(g) of the meromorphic functions of
J1, . . . , Jn−1; Statement (3.9.1) of Theorem 3.9 shows that CC(g) is a vector space
over IC(g) spanned by the columns g1, . . . , gn of ( ∂J

∂x
)−1 (which, by construc-

tion, satisfy [gi, gj ] = 0), with coefficients being arbitrary meromorphic functions
of J1, . . . , Jn−1, whereas Theorem 3.5 shows that CC(g) is closed under the Lie
bracket.

Example 3.2 Let g(x) = [x1 − x2]�. Then, letting J0(x) = 1
2 ln(| x1

x2
|) and J1(x) =

x1x2, one verifies that LgJ0 = 1 and LgJ1 = 0. Then, all f having g as symmetry
are given by (3.14), with J (x) = [ 1

2 ln(| x1
x2

|) x1x2]�,

f (x) =
[

x1
1

2x2

−x2
1

2x1

][
α

β

]
=
[

x1α + 1
2x2

β

−x2α + 1
2x1

β

]
, (3.15)

where α and β are arbitrary functions of J1. Similarly, all f having g as orbital
symmetry are given by

f (x) =
[

x1
1

2x2

−x2
1

2x1

][
1
β

]
α,

with α and β being arbitrary functions of x and J1, respectively.

The following theorem characterizes the centralizer CC(Bx), which is consti-
tuted by all f such that [f (x),Bx] = 0; for a more deep analysis see [34].
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Theorem 3.10 Assume g(x) = Bx. Let {M0, . . . ,Mr−1} be a basis of Lc(B).
Hence, g is a symmetry of f if and only if

f (x) = μ0M0x + μ1M1x + · · · + μr−1Mr−1x, (3.16)

where μi ∈ IC(Bx), i = 0, . . . , r − 1.

Proof By Remark 3.5, g(x) = Bx is a symmetry of f if and only if f (eBtx) =
eBtf (x). Then, the f given in (3.16) has g as symmetry, since

f
(
eBtx

) = μ0
(
eBtx

)
M0eBtx + μ1

(
eBtx

)
M1eBtx + · · · + μr−1

(
eBtx

)
Mr−1eBtx

= μ0(x)eBtM0x + μ1(x)eBtM1x + · · · + μr−1(x)eBtMr−1x

= eBtf (x).

As for the necessity, note that r ≥ n. By Theorem 2.2 at p. 35, there exist Ni ∈
Lc(B), i = 1, . . . , n−1, such that B,N1, . . . ,Nn−1 are linearly independent over R

and pairwise commuting; then, letting Ω(x) = [Bx N1x . . . Nn−1x], one concludes
that the rows of Ω−1 are exact one-forms, i.e., there exists a J (x) ∈ R

n such that
∂J
∂x

= Ω−1. From this, (3.14) can be rewritten as

f (x) = αBx + β1N1x + · · · + βn−1Nn−1x,

thus proving the theorem. �

As for the computation of all first integrals of Bx, the case when B is semi-simple
is solved by Remarks 1.9 at p. 27 and 2.7 at p. 50, whereas, when B is not semi-
simple, the computations can be carried out as suggested in Remark 2.9 at p. 53 and
Example 2.15 at p. 54.

The linear centralizer Lc(Bx) is found by taking a linear combination, with
constant parameters, of M0x, . . . ,Mr−1x, where {M0, . . . ,Mr−1} is any basis of
Lc(B), whereas the centralizer CC(Bx) is found by taking a linear combination,
with coefficients belonging to IC(Bx), of M0x, . . . ,Mr−1x, whence Lc(Bx) ⊂
CC(Bx). The following pictorial symbols can be used to represent Lc(Bx) and
CC(Bx): Lc(Bx) = R ⊗ Lc(B) and CC(Bx) = IC(Bx) ⊗ Lc(B).

The representation CC(Bx) = IC(Bx) ⊗ Lc(B) is somewhat redundant if
r > n, because it gives any element of CC(Bx) as linear combination of r linear
symmetries of Bx, with coefficients in IC(Bx), whereas, by (3.14), it is known
that it is possible to express any element of CC(Bx) as linear combination of just n

symmetries of Bx with coefficients in IC(Bx), where such n symmetries are given
by the columns of ( ∂J

∂x
)−1, with the first one being trivial as it coincides with g.

Theorem 3.11 For a given g(x) ∈ R
n, let h1, . . . , hn ∈ CC(g) be such that matrix

[h1 . . . hn] has generic rank equal to n. Then, any h ∈ CC(g) can be rewritten as

h(x) =
n∑

i=1

μi(x)hi(x), (3.17)
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with μi ∈ IC(g), i = 1, . . . , n, and, conversely, any h of the form (3.17), with μi ∈
IC(g), i = 1, . . . , n, belongs to CC(g).

Proof Since rankKn
([h1 . . . hn]) = n, it is clear that for any h ∈ CC(g) there exist n

scalar functions μ1, . . . ,μn such that (3.17) holds. To prove that h ∈ CC(g) implies
that such functions μi are first integrals of g, property (1.2.2) (bi-linearity) and
equation (1.4) are used to write:

[h,g] = μ1[h1, g] + · · · + μn[hn,g] − (Lgμ1)h1 − · · · − (Lgμn)hn. (3.18)

The first terms are zero because [hi, g] = 0, whence h ∈ CC(g) implies

[h1 . . . hn]
⎡
⎢⎣

Lgμ1
...

Lgμn

⎤
⎥⎦= 0;

since rankKn
([h1 . . . hn]) = n, the above equation implies that Lgμ1 = 0, . . . ,

Lgμn = 0, namely that μi ∈ IC(g). On the other hand, formula (3.18) clearly im-
plies that any h of form (3.17), with μi ∈ IC(g), i = 1, . . . , n, is a symmetry of g. �

Theorem 3.11 implies that any n independent symmetries h1, . . . , hn ∈ CC(Bx)

can be taken as basis to generate, by linear combination with coefficients in IC(g),
the whole CC(Bx), as well as its subset Lc(Bx), as illustrated in the following
example.

Remark 3.9 Take

B =
⎡
⎣

1 0 0
0 1 0
0 0 2

⎤
⎦ ;

one has Lc(B) = span
R
{M0, . . . ,M4}, Lc(Bx) = span

R
{M0x, . . . ,M4x} and

CC(Bx) = spanIC(Bx){M0x, . . . ,M4x}, where

M0 =
⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦ , M1 =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦ , M2 =

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦ ,

M3 =
⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , M4 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦

and IC(Bx) is the set of arbitrary functions of J1 = x1
x2

and J2 = x2
1

x3
. Since Bx,

M1x, and M2x are linearly independent over the field of meromorphic functions,

Ω(x) =
⎡
⎣

x1 x2 0
x2 0 x1

2x3 0 0

⎤
⎦ , det

(
Ω(x)

)= 2x1x2x3 �= 0,
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Theorem 3.11 implies that CC(Bx) = spanIC(Bx){Bx,M1x,M2x}. Moreover,
since Lc(Bx) ⊂ CC(Bx), then any Ax ∈ Lc(Bx) can be obtained by taking lin-
ear combination of Bx, M1x, and M2x, with coefficients in IC(Bx). For instance,
M0x = Ω(x)(Ω−1(x)M0x), with the entries of Ω−1(x)M0x belonging to IC(Bx),

Ω−1(x)M0x =
⎡
⎣

x1 x2 0
x2 0 x1

2x3 0 0

⎤
⎦

−1⎡
⎣

x1
0
0

⎤
⎦=

⎡
⎣

0
x1
x2
0

⎤
⎦ ,

namely M0x = x1
x2

M1x.

Remark 3.10 The set of all f such that [f (x),Bx] = μ(x)f (x) (which should not
be confused with the normalizer NC(Bx) of Bx, which is the set of all g such that
[Bx,g(x)] = μ(x)Bx) can be easily constructed by multiplying any f ∈ CC(Bx)

for an arbitrary function α. To be more precise, by Theorem 3.6, if f is such
that [f (x),Bx] = μ(x)f (x), then f̂ = 1

Lf J
f ∈ CC(Bx), with J ∈ IC(Bx) such

that Lf J �= 0. Conversely, by Theorem 3.7, if f ∈ CC(Bx), then f̂ = αf satisfies
[f̂ (x),Bx] = μ(x)f̂ (x) for some μ(x) ∈ R.

Example 3.3 Consider again the vector function g introduced in Example 3.2. Since
g(x) = Bx, with B = diag{1,−1} being semi-simple, a basis of Lc(B) is given by
B0 and B1; set IC(Bx) is constituted by all functions of J1(x) = x1x2. Then, any
f having g as symmetry can be rewritten as

f (x) = μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[
1 0
0 −1

][
x1
x2

]
=
[
(μ0 + μ1)x1
(μ0 − μ1)x2

]
,

where μ0 and μ1 are arbitrary functions of J1. Formula (3.15) is thus recovered by
taking μ0(J1) = 1

2
β(J1)

J1
and μ1(J1) = α(J1).

Let B1, . . . ,Bm ∈ R
n×n be m < n linearly independent and pairwise com-

muting matrices, [Bi,Bj ] = 0. Let Lc(B1, . . . ,Bm) be the linear centralizer of
{B1, . . . ,Bm}, i.e., the set of all matrices A commuting with Bi , [A,Bi] = 0,
i = 1, . . . ,m; clearly, Lc(B1, . . . ,Bm) is a vector space over R; let {M0, . . . ,Mr̄−1}
be a basis of such a linear centralizer Lc(B1, . . . ,Bm). Let IC(B1x, . . . ,Bmx) be
the set of all joint first integrals associated with g1(x) = B1x, . . . , gm(x) = Bmx:
namely, IC(B1x, . . . ,Bmx) is the set of all J (x) such that Lgi

J = 0, i = 1, . . . ,m.
Since [Bi,Bj ] = 0, by the Frobenius Theorem 1.9 at p. 21, there exist n − m

functionally independent functions J1(x), . . . , Jn−m(x) ∈ R such that any J ∈
IC(B1x, . . . ,Bmx) can be expressed by J = C(J1, . . . , Jn−m), where C is an arbi-
trary function.

The proof of the following theorem is omitted since it is similar to the proof of
Theorem 3.10.

Theorem 3.12 Let B1, . . . ,Bm ∈ R
n×n be m < n linearly independent and pairwise

commuting matrices, [Bi,Bj ] = 0. Then, the set of all f (x) ∈ R
n having g1(x) =
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B1x, . . . , gm(x) = Bmx as symmetries is parameterized by

f (x) = μ0M0x + μ1M1x + · · · + μr̄−1Mr̄−1x,

where {M0, . . . ,Mr̄−1} is a basis of Lc(B1, . . . ,Bm) and μi ∈ IC(B1x, . . . ,Bmx),
i = 0, . . . , r̄ − 1.

Example 3.4 Let

B1 =
⎡
⎣

−1 0 0
0 2 0
0 0 3

⎤
⎦ , B2 =

⎡
⎣

1 0 0
0 −1 0
0 0 2

⎤
⎦ ,

which are clearly linearly independent over R and pairwise commuting. A basis of
Lc(B1,B2) is

⎧⎨
⎩M0 =

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦ , M1 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , M2 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦
⎫⎬
⎭ .

To compute the joint first integral associated with both B1x and B2x, take any ele-
ment of Lc(B1,B2) being linearly independent of B1 and B2; for instance, take M0.
Since B1,B2 and M0 are pairwise commuting, then the rows of [B1x B2x M0x]−1

are exact one-forms; hence, the first integral of the last row of [B1x B2x M0x]−1 is

a joint first integral associated with both B1x and B2x, thus obtaining ln(| x1x
5/7
2

7√x3
|);

therefore, set IC(B1x,B2x) is constituted by the arbitrary functions of J (x) =
x1x

5/7
2

7√x3
. Finally, all vector functions f (x) having both B1x and B2x as symmetries

are parameterized by

f (x) = μ0

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦+ μ1

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦+ μ2

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦

=
⎡
⎣

μ0x1
μ1x2
μ2x3

⎤
⎦ ,

where μ0,μ1,μ2 are arbitrary functions of J .

The following theorem shows that, if [f,g] = μf , then the knowledge of a first
integral associated with f yields another (possibly, trivial) first integral associated
with f , and the knowledge of a first integral associated with g yields a (possibly,
trivial) semi-invariant associated with g.
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Theorem 3.13 Assume that g is an orbital symmetry of f , [f,g] = μf .

(3.13.1) If I is a first integral of system (1.1a), then LgI is again a first integral of
system (1.1a).

(3.13.2) If J is a first integral of system (1.2), then Lf J is a semi-invariant of
system (1.2), with characteristic function −μ, provided that there is no
zero/pole cancelation between Lf J and μ.

Proof Since L[f,g] = Lf Lg − LgLf and Lμf = μLf , by [f,g] = μf , it follows
that Lf Lg − LgLf = μLf . Let I be a first integral of system (1.1a), i.e., Lf I = 0;
then, Lf LgI −LgLf I = μLf I implies that Lf LgI = 0. Let J be a first integral of
system (1.2), i.e., LgJ = 0; then, Lf LgJ − LgLf J = μLf J implies Lg(Lf J ) =
−μ(Lf J ). �

3.3 Continuous-Time Homogeneous Nonlinear Systems

The easiest standard concept of homogeneity defines a scalar function h(x) to be ho-
mogeneous of degree m if h(αx) = αmh(x), for a scalar α. In this way, a polynomial
of x is homogeneous if all its terms are monomials of the same order; homogene-
ity allows for example to recognize which terms of a polynomial are dominant for
small x, and, consequently, to derive approximations about the origin. A natural ex-
tension of this concept is that of homogeneity with respect to a dilation [9, 55], and
a further extension is that of homogeneity with respect to a vector function [64, 74,
75]. Both such extensions have been used to study the stability of equilibrium points
by means of the concept of stability in the first approximation [11, 64, 106], which
extends the well known method based on the study of the linearized system. Most
of the introductory definitions and results of this section, and some further material,
can be found in [9, 11, 64, 74, 75].

Definition 3.6 Given a vector of real numbers w = [w1 . . . wn]� (w1, . . . ,wn are
called weights), a dilation δw

ε x is defined as δw
ε x := [εw1x1 . . . εwnxn]�, with δw

ε ∈
R

n×n, δw
ε = diag{εw1 , . . . , εwn}, for any ε ∈ R such that εwi is defined for all i ∈

{1, . . . , n}. A function h(x) : R
n → R is homogeneous of degree m ∈ R with respect

to dilation δw
ε x if:

h
(
δw
ε x
)= εmh(x), whenever defined. (3.19)

If all wi are rational numbers, negative integers or positive integers, then δw
ε x is

referred to as a rational, negative integer or positive integer dilation, respectively.
If (3.19) holds for all x ∈ R

n and for all ε ∈ R, then h is said to be homogeneous on
the whole R

n with respect to δw
ε x. If all weights wi are equal to 1, then the dilation

is said to be standard.

Since δw
ε−1 = δ−w

ε , the case of a negative integer dilation can always be reduced
to the case of a positive integer dilation, when (3.19) holds for all ε ∈ R.
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For positive ε, letting τ = ln(ε) and Bw = diag{w1, . . . ,wn}, one has δw
ε = eBwτ .

Given a positive integer dilation δw
ε x, any function h(x) ∈ R, analytic on a neigh-

borhood of the origin of R
n, can be expanded in an infinite series h = ∑+∞

i=0 h[i],
with h[i] being polynomial and homogeneous of degree i with respect to δw

ε x: this
can be done by expanding h(δw

ε x) in Taylor series with respect to ε, about ε = 0,
h(δw

ε x) = ∑+∞
i=0 h[i](x)εi , and then formally letting ε = 1; this can be certainly

done if x is taken in a sufficiently small neighborhood of the origin of R
n, because

h(δw
ε x) is a function of ε analytic at ε = 0, for any x in a sufficiently small neigh-

borhood of the origin of R
n, if wi > 0, i = 1, . . . , n. If h(δw

ε x) =∑+∞
i=i∗ h[i](x)εi ,

for some i∗ ≥ 0, then h[i∗](x) is called the first approximation of h(x) with respect
to δw

ε x.

Example 3.5 Let w = [1 2]� and consider the function h(x) = x2 sin(x1); then,
h(δw

ε ) = ε2x2 sin(εx1) = x1x2ε
3 + (− 1

6x3
1x2)ε

5 + O(ε7), whence one concludes
that h[0](x) = 0, h[1](x) = 0, h[2](x) = 0, h[3](x) = x1x2, h[4](x) = 0, h[5](x) =
− 1

6x3
1x2 and h[6](x) = 0. The first approximation of h with respect to δw

ε x is
h[3](x) = x1x2.

Definition 3.7 Given a dilation δw
ε x and a number m ∈ R, the vector function

f (x) = [f1(x) . . . fn(x)]� : R
n → R

n is homogeneous of degree m with respect
to δw

ε x if fi is homogeneous of degree wi − m with respect to δw
ε x, namely if:

fi

(
δw
ε x
)= εwi−mfi(x), whenever defined, i = 1, . . . , n. (3.20)

Note that for wi − m to be positive for i = 1, . . . , n, it is necessary and sufficient
that m < min{w1, . . . ,wn}. Similarly to the scalar case, the vector function f can be
expanded with respect to δw

ε x by expanding each entry fj of f with respect to δw
ε x;

then, collecting all terms according to their degree of homogeneity with respect to
δw
ε x, one concludes that f =∑i∗

i=−∞ f [i], where f [i] is homogeneous of degree i

with respect to δw
ε x; hence, f [i∗] is called the first approximation of f with respect

to δw
ε x.

The following example shows that, given a positive integer dilation, one can con-
struct a homogeneous system on the whole R

n (i.e., a system described by a vector
function f homogeneous on the whole R

n): note that, if a function is analytic and
homogeneous on the whole R

n with respect to a positive integer dilation, then it is
necessarily a polynomial. The following example also illustrates that the same does
not hold if the dilation is not positive integer.

Example 3.6 Consider the positive integer dilation δw
ε x, with w = [1 2]�. Let Pi

be the set of all scalar functions being analytic and homogeneous of degree i, with
respect to δw

ε x, on the whole R
2 (the letter P is used because such functions are

polynomials): P0 = c0, P1 = {c1x1}, P2 = {c1x
2
1 +c2x2}, P3 = {c1x

3
1 +c2x1x2},

P4 = {c1x
4
1 + c2x

2
1x2 + c3x

2
2 }, and so on, with the constants ci ∈ R being arbitrary.

Let f [i] = [f [i]
1 f

[i]
2 ]� be a vector function analytic and homogeneous of degree i

on the whole R
2; then, f [i]

1 is homogeneous of degree 1− i and f
[i]
2 is homogeneous
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of degree 2 − i. Hence,

f [0] =
[

a1x1

b1x
2
1 + b2x2

]
, f [−1] =

[
a1x

2
1 + a2x2

b1x
3
1 + b2x1x2

]
,

f [−2] =
[

a1x
3
1 + a2x1x2

b1x
4
1 + b2x

2
1x2 + b3x

2
2

]
,

and so on, with constants ai, bi ∈ R being arbitrary. Note that h1(x) = (x1 + x2
2)1/2

is homogeneous of degree 1 with respect to δw
ε x, with w = [2 1]�, but it is not

analytic at x = 0; h2(x) = sin(x1x2) is analytic and homogeneous of degree 0, with
respect to δw

ε x, with w = [−1 1]�, on the whole R
2, but the two weights have not

the same sign; h3(x) = x2 sin(x1) is analytic and homogeneous of degree 1, with
respect to δw

ε x, with w = [0 1]�, on the whole R
2, but one of the two weights is

equal to zero.

Example 3.7 Consider the integer dilation δw
ε x, with w = [w1 w2]� = [−1 1]�.

Since w1 + w2 = 0, all monomials of degree −1 are xh+1
1 xh

2 and all monomials of

degree 1 are xh
1 xh+1

2 , for h ∈ Z
≥. If f [0] = [f [0]

1 f
[0]
2 ]� is analytic and homogeneous

of degree 0, with respect to δw
ε x, on the whole R

2, then f
[0]
1 has degree −1,

f
[0]
1 (x) =

+∞∑
h=0

ahx
h+1
1 xh

2 = x1

+∞∑
h=0

ah(x1x2)
h = x1α(x1x2),

and f
[0]
2 has degree 1,

f
[0]
2 (x) =

+∞∑
h=0

bhx
h
1 xh+1

2 = x2

+∞∑
h=0

bhx
h
1 xh

2 = x2β(x1x2),

with α,β being arbitrary analytic functions. Similarly, if f [−1] = [f [−1]
1 f

[−1]
2 ]� is

analytic and homogeneous of degree −1, on the whole R
2, then

f
[−1]
1 (x) = γ (x1x2), f

[−1]
2 (x) = x2

2δ(x1x2),

with γ (·), δ(·) being arbitrary analytic functions of the argument.

Theorem 3.14 Let h(x) ∈ R and f (x) ∈ R
n be homogeneous of degree m with

respect to δw
ε x. Then,

Lgwh = mh, whenever defined, (3.21a)

[f,gw] = mf, whenever defined, (3.21b)

where gw(x) := Bwx and Bw := diag{w1, . . . ,wn}.
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Proof Since h is homogeneous of degree m with respect to δw
ε x,

h
(
εw1x1, . . . , ε

wnxn

)= εmh(x1, . . . , xn),

taking the derivative with respect to ε of the above equation

∂h(x)

∂x1

∣∣∣∣
x=δw

ε x

w1ε
w1−1x1 + · · · + ∂h(x)

∂xn

∣∣∣∣
x=δw

ε x

wnε
wn−1xn = mεm−1h(x)

and letting ε = 1, one concludes that

∂h(x)

∂x1
w1x1 + · · · + ∂h(x)

∂xn

wnxn = mh(x),

namely Lgwh = mh. Since f is homogeneous of degree m with respect to δw
ε x, the

ith entry fi of f is homogeneous of degree wi − m, namely Lgwfi = (wi − m)fi ,
which implies Lgwf = diag{w1 − m, . . . ,wn − m}f = (Bw − mE)f , where Bw =
diag{w1, . . . ,wn}; since Lf gw = Bwf , one concludes that

[f,gw] = Lf gw − Lgwf = Bwf − (Bw − mE)f = mf. �

The vector function gw(x) = Bwx is called the Euler vector function associated
with the dilation δw

ε x; note that eBw ln(ε) = δw
ε .

Example 3.8 Consider again the functions h1, h2 and h3, introduced in Exam-
ple 3.6; then, letting gw

1 (x) = [2x1 x2]�, gw
2 (x) = [−x1 x2]� and gw

3 (x) = [0 x2]�,
it is easily checked that Lgw

1
h1 = h1, Lgw

2
h2 = 0 and Lgw

3
h3 = h3. Consider the vec-

tor function f [−1] introduced in Example 3.7; then, letting gw(x) = [−x1 x2]�, it is
easily checked that [f [−1], gw] = −f [−1].

By (3.21b), gw is a symmetry (respectively, an orbital symmetry, but not a sym-
metry) of f , if f is homogeneous of degree m = 0 (respectively, m �= 0) with respect
to δw

ε x. Let a dilation δw
ε x be given; if the corresponding gw is an orbital symmetry

of f , then kgw is an orbital symmetry of f for any number k �= 0. If f is homoge-
neous of degree m with respect to δw

ε x, i.e., if [f,gw] = mf , then [f, kgw] = kmf .
Therefore, if m �= 0, one can take k = − 1

m
, so that [f, kgw] = −f . Similarly, if

Lgwh = mh, then Lkgwh = kmh; therefore, also in this case, if m �= 0, one can take
k = − 1

m
, so that Lkgwh = −h. This reasoning implies that by rescaling the vector

of weights, one could just consider the two cases m = 0 and m = −1.
Let an analytic diffeomorphism y = ϕ(x) be given. Then, by the invariance of

the Lie bracket to diffeomorphisms, [f,gw] = mf if and only if [ϕ∗f,ϕ∗gw] =
m(ϕ∗f ). This justifies the following general definition of homogeneity.

Definition 3.8 Let f (x), g(x) ∈ R
n and h(x) ∈ R. Scalar function h is homoge-

neous of degree m ∈ R with respect to g if Lgh = mh. Vector function f is homo-
geneous of degree m ∈ R with respect to g if [f,g] = mf .



74 3 Analysis of Continuous-Time Nonlinear Systems

Note that [f,g] = mf implies Lgfi = (ri − m)fi when g(x) = [w1x1 . . .

wnxn]�, but this implication need not hold for a general g.

Theorem 3.15 Let f (x), g(x) ∈ R
n and h(x) ∈ R; let x = Φg(τ, y) be the flow

associated with g. Then,

Lgh = mh ⇐⇒ h(x) ◦ Φg(τ, y) = emτh(y),

[f,g] = mf ⇐⇒
(

∂Φg

∂y

)−1

f (x) ◦ Φg(τ, y) = e−mτf (y),

Lgh = m1h

[f,g] = m2f

}
⇒ LgLf h = (m1 − m2)Lf h.

Proof Clearly, h ◦ Φg = emτh holds if and only if h = e−mτh ◦ Φg holds. Such a
relation is satisfied for τ = 0; since the left-hand side of h = e−mτh ◦ Φg is inde-
pendent of τ , then such a relation holds if and only if ∂

∂τ
(e−mτh ◦ Φg) = 0, for all

admissible τ ∈ R. Now,

∂

∂τ

(
e−mτh ◦ Φg

) = −me−mτh ◦ Φg + e−mτ ∂h

∂x

∣∣∣∣
x=Φg

∂Φg

∂τ

= −me−mτh ◦ Φg + e−mτ

(
∂h

∂x
g

)
◦ Φg

= e−mτ (−mh + Lgh) ◦ Φg,

whence condition Lgh = mh is equivalent to condition d
dτ

(e−mτh ◦ Φg) = 0, for all
admissible τ ∈ R.

Similarly, since f = emτ (
∂Φg

∂y
)−1f ◦Φg and such a relation is satisfied for τ = 0,

one has to show that ∂
∂τ

(emτ (
∂Φg

∂y
)−1f ◦ Φg) = 0. By The proof of Theorem 3.4,

∂

∂τ

((
∂Φg

∂y

)−1

f ◦ Φg

)
= −

(
∂Φg

∂y

)−1

[f,g] ◦ Φg,

and therefore

∂

∂τ

(
emτ

(
∂Φg

∂y

)−1

f ◦ Φg

)
= emτ

(
∂Φg

∂y

)−1(
mf − [f,g]) ◦ Φg,

which is identically equal to zero if and only if [f,g] = mf .
Finally, since Lf Lg − LgLf = L[f,g], it follows that

LgLf h = Lf Lgh − L[f,g]h = m1Lf h − m2Lf h = (m1 − m2)Lf h. �

Remark 3.11 If g is a symmetry of f , then f is homogeneous of degree 0 with
respect to g and vice versa.
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The following theorem characterizes all scalar functions h homogeneous of de-
gree m with respect to a vector function g.

Theorem 3.16 Let xe = [x� h]� and ge = [g� mh]�. Consider the set IC(g) of
all first integrals J (x) associated with g and the set IC(ge) of all first integrals
J (xe) associated with ge. Let J1, . . . , Jn−1 be n − 1 functionally independent ele-
ments of IC(g) and let Jn(x,h) ∈ IC(ge) be such that J1, . . . , Jn are functionally
independent as functions of xe. Then, all functions h, being homogeneous of degree
m with respect to δw

ε x, are given by the solution in h of

Jn(x,h) = C
(
J1(x), . . . , Jn−1(x)

)
, (3.22)

where C is an arbitrary function of the arguments.

Proof The proof is based on the method of the characteristic equation for solv-
ing partial differential equations (see, [46]). Condition Lgh = mh yields the partial
differential equation

∂h

∂x1
g1 + · · · + ∂h

∂xn

gn = mh, (3.23)

where gi is the ith entry of g. The characteristic equation associated with (3.23) is

dx1

g1
= dx2

g2
= · · · = dxn

gn

= dh

mh
. (3.24)

To solve (3.23), one writes the characteristic equation

dx1

g1
= dx2

g2
= · · · = dxn

gn

(3.25)

of the homogeneous equation of (3.23), that is,

∂h

∂x1
g1 + · · · + ∂h

∂xn

gn = 0. (3.26)

The set of solutions of (3.26) is just IC(g); such functions are also called first inte-
grals of (3.25), and each of them can be written as a function of J1(x), . . . , Jn−1(x).
All solutions of (3.23) are found by equating one particular first integral of ge, be-
ing not trivial and not belonging to IC(g), namely Jn(x,h), and equating it to the
general first integral of (3.25). In this way, (3.22) is obtained. Note also that, with
the notation introduced here, the set of first integrals of (3.24) is just IC(ge). �

Example 3.9 Suppose that one wants to find all h(x) ∈ R, x ∈ R
2, being homoge-

neous of degree 3 with respect to the dilation δw
ε x, with w = [1 2]�. Then, gw(x) =

Bwx and gw
e (xe) = Bw,exe, where Bw = diag{1,2} and Bw,e = diag{1,2,3}. An el-

ement of IC(gw), which is not constant, is I1(x) = x2
1

x2
, whereas an element I2 of
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IC(gw
e ), being functionally independent of I1, is I2(x,h) = h

x3
1

. Then, all functions

h homogeneous of degree 3 with respect to δw
ε x are found by solving I2 = C(I1),

where C(·) is an arbitrary function of the argument; in particular, from h

x3
1

= C(
x2

1
x2

),

it follows that h(x) = x3
1C(

x2
1

x2
). If, in addition, one imposes that h is analytic on the

whole R
2, then C(I1) = a + b 1

I1
, namely h(x) = x3

1(a + b
x2
x2

1
) = ax3

1 + bx1x2, with

a, b ∈ R being arbitrary constants.

Example 3.10 Suppose that one wants to find all h(x) ∈ R, x ∈ R
2, being homoge-

neous of degree 4 with respect to g(x) = [x1 x3
2 ]�: note that there exists no diffeo-

morphism y = ϕ(x) analytic at x = 0 such that ϕ∗g is linear (this will be clear in the
subsequent Sect. 3.12). Let ge(xe) = [x1 x3

2 4h]�. Clearly, I1(x) = ln(|x1|) + 1
2x2

2
,

which is not constant, is an element of IC(gw) and I2(x,h) = h

x4
1

is and element of

IC(gw
e ), being functionally independent of I1. Then, all functions h homogeneous

of degree 4 with respect to g are found by solving I2 = C(I1), where C(·) is an arbi-
trary function of the argument; in particular, from h

x4
1

= C(ln(|x1|)+ 1
2x2

2
), it follows

that h(x) = x4
1C(ln(|x1|) + 1

2x2
2
).

Theorem 3.17 [92] Let g(x) ∈ R
n. Let J0, J1, . . . , Jn−1 be functionally inde-

pendent and such that LgJ0 = 1 and LgJi = 0, i = 1, . . . , n − 1. Let J =
[J0 J1 . . . Jn−1]�. Then, f (x) ∈ R

n is homogeneous of degree m with respect
to g if and only if

f =
(

∂J

∂x

)−1

⎡
⎢⎢⎢⎣

β0
β1
...

βn−1

⎤
⎥⎥⎥⎦ e−mJ0 , (3.27)

with βi ’s being arbitrary functions of J1, . . . , Jn−1.

Proof In the local coordinates y = ϕ(x), with ϕ = [J0 J1 . . . Jn−1]�, one has
ϕ∗g = e1. Then, letting f̃ = ϕ∗f , equality [ϕ∗f,ϕ∗g] = m(ϕ∗f ) reduces to the
following set of partial differential equations:

−∂f̃i

∂y1
= mf̃i, i = 1, . . . , n,

with solution f̃i (y) = e−my1Ci(y2, . . . , yn), where Ci is an arbitrary function of the
arguments. Then, (3.27) is found by the pull-back f = ϕ∗f̃ . �

The proof of the following corollary is similar to the proof of Theorem 3.10.
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Corollary 3.1 Assume g(x) = Bx. Let {M0, . . . ,Mr−1} be a basis of Lc(B).
Hence, f is homogeneous of degree m with respect to g if and only if

f (x) = e−mη(μ0M0x + · · · + μr−1Mr−1x),

where μi ∈ IC(g), i = 0, . . . , r − 1, and η is a scalar function such that Lgη = 1.

Example 3.11 Let B = [ 0 1
0 0

]
; then, Lc(B) = span

R
{B,E}. Let Ω(x) = [Bx Ex];

by integrating the rows of

Ω−1(x) =
[

1
x2

− x1
x2

2

0 1
x2

]
,

one concludes that η(x) = x1
x2

satisfies LBxη = 1 and that all continuous-time first
integrals associated with Bx are given by the arbitrary functions of x2. Then, all f

being homogeneous of degree m with respect to g(x) = Bx are given by

f (x) = e
−m

x1
x2

(
μ0

[
0 1
0 0

][
x1
x2

]
+ μ1

[
1 0
0 1

][
x1
x2

])

=
[

e
−m

x1
x2 μ1x1 + e

−m
x1
x2 μ0x2

e
−m

x1
x2 μ1x2

]
,

where μ0,μ1 ∈ IC(Bx), i.e., μ0 and μ1 are arbitrary functions of x2.

Remark 3.12 Let h(x) ∈ R and g(x) ∈ R
n; let Φg(τ, x) be the flow associated

with g. The following statements are equivalent:

(3.12.1) h is homogeneous of degree 0 with respect to g;
(3.12.2) h is a first integral associated with g;
(3.12.3) Lgh = 0;
(3.12.4) h ◦ Φg = h.

Similarly, the following statements are equivalent:

(3.12.5) h is homogeneous of degree m with respect to g;
(3.12.6) h is a semi-invariant associated with g, with a characteristic value λ = m;
(3.12.7) Lgh = mh;
(3.12.8) h ◦ Φg = emτh.

Remark 3.13 Let f (x), g(x) ∈ R
n; let Φf and Φg be the flows associated with f

and g, respectively. The following statements are equivalent:

(3.13.1) f is homogeneous of degree 0 with respect to g;
(3.13.2) [f,g] = 0;
(3.13.3) (

∂Φg

∂y
)−1f ◦ Φg = f ;

(3.13.4) Φf (t, ·) ◦ Φg(τ, x) = Φg(τ, ·) ◦ Φf (t, x).
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Similarly, the following statements are equivalent:

(3.13.5) f is homogeneous of degree m with respect to g;
(3.13.6) [f,g] = mf ;
(3.13.7) (

∂Φg

∂y
)−1f ◦ Φg = e−mτf ;

(3.13.8) Φf (t, ·) ◦ Φg(τ, x) = Φg(τ, ·) ◦ Φf (te−mτ , x).

As for a scalar function h[m](x) ∈ R, if Lgh[m] = mh[m], letting τ = ln(ε), ε > 0,
in (3.12.8), one finds that h[m] ◦Φg(ln(ε), x) = εmh[m](x). Therefore, for a not nec-
essarily homogeneous h(x) ∈ R, under the assumption that h ◦ Φg(ln(ε), x) admits
a convergent Laurent series expansion with respect to ε, one can write

h ◦ Φg

(
ln(ε), x

)=
+∞∑

m=m∗
εmh[m](x),

where h[m] is homogeneous of degree m with respect to g. This means that
h = ∑+∞

m=m∗ h[m] is the homogeneous series expansion of h with respect to g; in
particular, h[m∗] is the first approximation of h with respect to g.

Remark 3.14 It is worth pointing out that such an expansion with respect to a gen-
eral g may fail to exist. For instance, if h(x) = sin(x1 + x2) and g = [x2 0]�, since
Φg(τ, x) = [x1 + τx2 x2]�, it is easy to check that

h ◦ Φg

(
ln(ε), x

)= sin
(
x1 + (

1 + ln(ε)
)
x2
)

does not admit a convergent Laurent series expansion with respect to ε.

Similarly, for a vector function f [m](x) ∈ R
n, if [f [m], g] = mf [m], letting τ =

ln(ε), ε > 0, in (3.13.7), one finds that

(
∂Φg(ln(ε), x)

∂x

)−1

f [m] ◦ Φg

(
ln(ε), x

)= ε−mf [m](x).

Therefore, for a not necessarily homogeneous vector function f (x) ∈ R
n, under the

assumption that each entry of (
∂Φg(ln(ε),x)

∂x
)−1f ◦ Φg(ln(ε), x) admits a convergent

Laurent series expansion with respect to ε, one can write

(
∂Φg(ln(ε), x)

∂x

)−1

f ◦ Φg

(
ln(ε), x

)=
m∗∑

m=−∞
ε−mf [m],

where f [m] is homogeneous of degree m with respect to g. This means that
f = ∑m∗

m=−∞ f [m] is the homogeneous series expansion of f with respect to g;
in particular, f [m∗] is the first approximation of f with respect to g.
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Example 3.12 Let f (x) = [sin(x1 + x2) x1 cos(x2)]� and g(x) = [x1 2x2]�. Since
Φg(τ, x) = [eτ x1 e2τ x2]�, one computes

(
∂Φg(ln(ε), x)

∂x

)−1

f ◦ Φg

(
ln(ε), x

)

=
[

0
x1

]
ε−1 +

[
x1
0

]
+
[
x2
0

]
ε +

[
− 1

6x3
1

0

]
ε2 +

[
− 1

2x2
1x2

− 1
2x1x

2
2

]
ε3 + O

(
ε4),

which implies the homogeneous series expansion f (x) = ∑1
m=−∞ f [m](x) given

by

f [1](x) =
[

0
x1

]
, f [0](x) =

[
x1
0

]
, f [−1](x) =

[
x2
0

]
,

f [−2](x) =
[
− 1

6x3
1

0

]
, f [−3](x) =

[
−1

2x2
1x2

−1
2x1x

2
2

]
, . . . .

Obviously, such homogeneous terms can also be computed by letting sin(x1 +x2) =
(x1 + x2) − 1

6 (x1 + x2)
3 + · · · and x1 cos(x2) = x1 − 1

2x1x
2
2 + · · · and considering

that the first scalar entry of f [i] must be homogeneous of degree 1− i and the second
one must be homogeneous of degree 2 − i with respect to δw

ε x, with w = [1 2]�.

3.4 Characteristic Solutions of Continuous-Time Homogeneous
Nonlinear Systems

Characteristic solutions are a generalization of the concept of eigensolutions for a
linear system. This sections follows the spirit of Sect. 17 of [60], where the charac-
teristic solutions are defined for a continuous-time nonlinear system being homoge-
neous with respect to the standard dilation.

Assume that f (x) ∈ R
n is homogeneous of degree m �= 0 with respect to g(x) ∈

R
n, i.e., [f,g] = mf ; this assumption implies that (

∂Φg

∂y
)−1f ◦ Φg(ln(ε), y) =

ε−mf (y) and Φf (t, ·) ◦ Φg(ln(ε), y) = Φg(ln(ε), ·) ◦ Φε−mf (t, y). The changes
of coordinates x = Φg(ln(ε), y), s = ε−mt , ds = ε−m dt transform the equation
dx
dt

= f (x) into dy
ds

= f (y). This implies that a change of the time scale can be
compensated by a transformation on the state space,

Φf

(
ε−mt, y

)= Φε−mf (t, y) = Φg

(− ln(ε), ·) ◦ Φf (t, ·) ◦ Φg

(
ln(ε), y

)
.

Let J (x) ∈ R be homogeneous of degree k > 0 with respect to g: assume
that J (x) is a positive definite function, J (x) > 0,∀x �= 0, J (0) = 0. Define the
state immersion R

n → R
n+1 given by ρk = J (x) and by the diffeomorphism
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y = Φg(− ln(ρ), x): ρ is taken non-negative. By the homogeneity of J (x) with
respect to g,

J (y) = J
(
Φg

(− ln(ρ), x
))= ρ−kJ (x) = 1,

which implies that J (y) = 1, for all ρ �= 0; this shows that the dynamics of the ho-
mogeneous system have been projected on the hyper-surface J (y) = 1 by the above
immersion x → (ρ, y). Taking the derivative of ρk along f (i.e., the derivative with
respect to t), one finds

kρk−1 dρ

dt
= Lf J (x);

since J (x) is homogeneous of degree k and f is homogeneous of degree m with
respect to g, Lf J is homogeneous of degree k −m with respect to g, which implies
that Lf J (x) = Lf J ◦ Φg(ln(ρ), y) = ρk−mLf J (y), whence that

dρ

dt
= 1

k
ρ1−mLf J (y). (3.28)

Furthermore, taking into account that y = Φg(− ln(ρ), x), one concludes that

dy

dt
= ∂Φg(τ, x)

∂τ

∣∣∣∣
τ=− ln(ρ)

(
− 1

ρ

)
1

k
ρ1−mLf J (y) + ∂Φg(− ln(ρ), x)

∂x
f (x)

= g ◦ Φg

(− ln(ρ), x
)(− 1

ρ

)
1

k
ρ1−mLf J (y) + ρ−mf ◦ Φg

(− ln(ρ), x
)

= ρ−m

(
f (y) − Lf J (y)

k
g(y)

)
. (3.29)

Form (3.29), it follows that

dJ (y)

dt
= ∂J (y)

∂y
ρ−m

(
f (y) − Lf J (y)

k
g(y)

)

= ρ−m

(
Lf J (y) − 1

k

(
Lf J (y)

)(
LgJ (y)

))

= ρ−mLf J (y)
(
1 − J (y)

)
,

which shows that the set of points characterized by J (y) = 1 is invariant, as ex-
pected.

Assume that there exists a non-zero real solution y0 of the equation f (y) =
Lf J (y)

k
g(y). Clearly, y(t) = y0 is a solution of (3.29). Then, from (3.28), one has

dρ

dt
= aρ1−m, a := Lf J (y0)

k
,
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which, if m ∈ Z, m �= 0, yields

ρm(t) − ρm(0) = mLf J (y0)

k
t,

namely (taking ρ non-negative)

ρ(t) =
(

ρm(0) + mLf J (y0)

k
t

)1/m

.

If m = 0, then ρ(t) = eatρ(0). If m ∈ Z, m �= 0, the solution of the original system
corresponding to [ρ(t) y0]� is called characteristic solution and it is given by

x(t) = Φg

(
ln

(
ρm(0) + mLf J (y0)

k
t

)1/m

, y0

)
;

the initial condition satisfies x(0) = Φg(ln(ρ(0)), y0) = ρ(0)y0, where ρk(0) =
J (x(0)), i.e., x0

k
√

J (x0)
= y0.

For a given real constant a �= 0 and for an integer m ∈ Z, m �= 0, assuming that
ρ(0) > 0, the behavior of the solution ρ(t) = (ρm(0) + mat)1/m of dρ

dt
= aρ1−m

depends on the values of a and m. If a < 0 and m < 0, the quantity ρm(0) + mat

is always positive for a non-negative t , and therefore ρ(t) asymptotically goes to
0 as t → +∞; since ρ is a positive definite function of x, this means that x(t)

tends to the origin. If a > 0 and m < 0, the quantity ρm(0) + mat is equal to 0 at
t∗ = −ρm(0)

ma
> 0, which is a finite escape time (limt→t∗ ρ(t) = +∞), after which the

solution of the differential equation cannot be continued. If m > 0, there is no finite
escape time; if a < 0, there exists a finite time t∗ = − ρm(0)

ma
> 0 such that ρ(t∗) = 0,

but from that time the solution is no longer unique if m is odd (ρ(t) = −(−ma(t −
t∗))1/m and ρ(t) = 0, t ≥ t∗, are two different solutions starting from ρ(t∗) = 0) or
the solution is ρ(t) = 0, t ≥ t∗, if m is even; if a > 0, ρ(t) asymptotically goes to
+∞ as t → +∞.

Example 3.13 If g(x) = x, x ∈ R
n, then J (x) = x�x, k = 2, Lf J (x) = 2x�f (x),

ρ(t) = (ρm(0) + m(y�
0 f (y0))t)

1/m, f (y) − Lf J (y)

k
g(y) = f (y) − (y�f (y))y. If

for example f (x) = [2x1x2 x2
2 − x2

1 ]�, m = −1, then the non-zero solutions of

0 = f (y) − (
y�f (y)

)
y =

[
2y1y2 − y3

1y2 − y1y
3
2

y2
2 − y2

1 − y2
1y2

2 − y4
2

]

are y0 = [0 ± 1]�. Taking into account that y�
0 f (y0) = ±1, these yield the char-

acteristic solutions ρ(t) = 1
1

ρ(0)
∓t

: the first solution, from x(0) = [0 x2,0]� with

x2,0 > 0, has a finite escape time at t = ρ(0), whereas the second solution, from
x(0) = [0 x2,0]� with x2,0 < 0, asymptotically goes to 0 as t → +∞, because ρ(t)

tends to zero and ρ = ‖x‖2.
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Remark 3.15 For a linear system dx
dt

= Ax, it is easy to see that the eigensolutions
x(t) = eλtv, with x(0) = v being an eigenvector of A relative to the eigenvalue λ,
are characteristic solutions of dx

dt
= Ax corresponding to g(x) = x and J (x) = x�x

(with m = 0 and k = 2).

3.5 Reduction of Continuous-Time Nonlinear Systems

The knowledge of a symmetry allows to reduce by one the dimension of the state
vector of a continuous-time nonlinear system [67]; this section shows how this can
be achieved.

Let f (x), g(x) ∈ R
n be such that [f,g] = 0. Then, by the analysis of Sect. 1.6,

about any regular point of the distribution spanKn
{f,g}, there exist n functionally

independent functions I1, I2, . . . , In such that

{
Lf I1 = 1,

Lf Ii = 0, i �= 1,
and

{
LgI2 = 1,

LgIi = 0, i �= 2.
(3.30)

As a matter of fact, by the Frobenius Theorem 1.9 at p. 21, there exists a dif-
feomorphism y = ϕ(x) such that ϕ∗f = e1 and ϕ∗g = e2; then, letting Ii = ϕi ,
i = 1,2, (3.30) hold. Set IC(g) is constituted by all J that are arbitrary functions
of I1, I3, . . . , In (see Remark 1.3 at p. 10). Let J1, . . . , Jn−1 be functionally inde-
pendent elements of IC(g); then, Ji = Ci(I1, I3, . . . , In), where the Ci’s are func-
tionally independent functions of I1, I3, . . . , In. Hence,

Lf Ji = ∂Ci

∂I1
Lf I1 +

n∑
k=3

∂Ci

∂Ik

Lf Ik = ∂Ci

∂I1

is an arbitrary function of I1, I3, . . . , In. Therefore, by the projection R
n → R

n−1

given by ξi = Ci(I1(x), I3(x), . . . , In(x)) = C̆i(x), i = 1, . . . , n−1, one can write a
nonlinear system of reduced dimension n−1. The reduced system does not describe
wholly the original system, but it can be useful to study it. As an example, if the
reduced system has an equilibrium, this corresponds to an invariant set along which
the original dynamics are of order one. This analysis, illustrated in the following
example, is generalized in Sect. 3.17.

Example 3.14 Let f (x) = [x1 2x2 +x3
1 4x3 −x3

1 ]�; since such an f is homogeneous
of degree 0 with respect to a dilation with weights w1 = 1, w2 = 3 and w3 = 3,
a simple symmetry of f is g(x) = [x1 3x2 3x3]�. Two functionally independent first

integrals associated with g are J1(x) = x3
1

x2
and J2(x) = x3

1
x3

. Then, taking ξ1 = x3
1

x2
and
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ξ2 = x3
1

x3
as state variables in the projected space, since

Lf ξ1 =
[

3
x2

1
x2

− x3
1

x2
2

0

]⎡⎢⎣
x1

2x2 + x3
1

4x3 − x3
1

⎤
⎥⎦= x3

1

x2
− x6

1

x2
2

= ξ1 − ξ2
1 ,

Lf ξ2 =
[

3
x2

1
x3

0 − x3
1

x2
3

]⎡⎢⎣
x1

2x2 + x3
1

4x3 − x3
1

⎤
⎥⎦= −x3

1

x3
+ x6

1

x2
3

= −ξ2 + ξ 2
2 ,

one has the planar reduced system dξ
dt

= f̂r (ξ), with f̂r (ξ) = [ξ1 − ξ2
1 −ξ2 + ξ2

2 ]�.

Since ξ1 = 1, ξ2 = 1 is an equilibrium of dξ
dt

= f̂r (ξ), the original system has the
curve {x2 = x3

1 , x3 = x3
1 } as invariant set, along which the dynamics are described

by dx1
dt

= x1. A symmetry ĝr of f̂r is ĝr (ξ) = [ξ1 − ξ 2
1 0]�; a first integral associated

with gr is J3(ξ) = ξ2. Clearly, taking η = ξ2 as state variable in the projected space,
one obtains the scalar reduced system dη

dt
= f̃r (η), with f̃r (η) = −η + η2.

Remark 3.16 If g is an orbital symmetry of f , a reduced system is found by tak-
ing, as state variables in the projected space, n − 1 functionally independent first
integrals associated with g, but an additional change in the independent variable t

may be necessary, as shown in the following example (see Statement (3.13.2) of
Theorem 3.13).

Example 3.15 Let f (x) = [−x3
1 + x2 − x2

1x2 + x3 − x2
1x3]�. Since f is homoge-

neous of degree m = −2, with respect to the dilation with weights w1 = 1, w2 = 3
and w3 = 5, a simple orbital symmetry of f is g(x) = [x1 3x2 5x3]�. Two function-

ally independent first integrals associated with g are J1(x) = x3
1

x2
and J2(x) = x5

1
x3

.

Taking ξ1 = x3
1

x2
and ξ2 = x5

1
x3

as state variables in the projected space, since

Lf ξ1 = x2
1

(
3 − 2

x3
1

x2
− x1x3

x2
2

)
= x2

1

(
−2ξ1 + 3 − ξ2

1

ξ2

)
,

Lf ξ2 = x2
1

(
−4

x5
1

x3
+ 5

x2
1x2

x3

)
= x2

1

(
−4ξ2 + 5

ξ2

ξ1

)
,

one has the planar reduced system dξ
dτ

= fr(ξ), where dt
dτ

= 1
x2

1
and

fr(ξ) =
⎡
⎣−2ξ1 + 3 − ξ2

1
ξ2

−4ξ2 + 5 ξ2
ξ1

⎤
⎦ .
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Since ξ1 = 5
4 , ξ2 = 25

8 is an equilibrium of dξ
dt

= f̂r (ξ), the original system has the
curve {x2 = 4

5x3
1 , x3 = 8

25x3
1 } as invariant set, along which the dynamics are simply

described by dx
dt

= − 1
5x3

1 .

3.6 Continuous-Time Nonlinear Planar Systems

This section collects several results relating symmetries and semi-invariants for pla-
nar systems (i.e., x ∈ R

2). This section is based on some derivations in [117, 118]
and extends some results in [88, 96]). Some of the results described here are ex-
tended to the general case n > 2 in the remainder of the book.

Theorem 3.18 Let

Ω = [f g], ω = det(Ω).

Under the assumption that ω �= 0, the following equation holds:

[f,g] =
(

div(g) − 1

ω
Lgω

)
f +

(
−div(f ) + 1

ω
Lf ω

)
g. (3.31)

Proof Since Ω is invertible over the field of meromorphic functions, any meromor-
phic vector function, whence also [f,g], can be expressed as a linear combination
of f and g, with the coefficients being meromorphic functions of x; in particular,
one finds that

[f,g] = [f g]
[
α1
α2

]
,

where, by the Cramer rules, α1 = ω1
ω

and α2 = ω2
ω

, with ω1 = det([[f,g] g]) and
ω2 = det([f [f,g]]). It is easy to see that

ω1 = det
([Lf g − Lgf g])= det

([Lf g g])− det
([Lgf g]),

ω2 = det
([f Lf g − Lgf ])= det

([f Lf g])− det
([f Lgf ]),

and that

Lgω = Lg det
([f g])= det

([Lgf g])+ det
([f Lgg]),

Lf ω = Lf det
([f g])= det

([Lf f g])+ det
([f Lf g]).

Then,

ω1 + Lgω = det
([Lf g g])+ det

([f Lgg])= det
([

∂g
∂x

f g

])
+ det

([
f

∂g
∂x

g

])

= trace

(
∂g

∂x

)
det
([f g])= div(g)ω,
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which implies α1 = ω1
ω

= div(g) − 1
ω
Lgω, and

ω2 − Lf ω = −det
([f Lgf ])− det

([Lf f g])

= −det
([

f
∂f
∂x

g

])
− det

([
∂f
∂x

f g

])
= − trace

(
∂f

∂x

)
det
([f g])

= −div(f )ω,

which implies α2 = ω2
ω

= −div(f ) + 1
ω
Lf ω. �

By the analysis of Sect. 1.4, a one-form

[β1 β2], (3.32)

with β1(x),β2(x) ∈ R, is exact if ∂β1
∂x2

= ∂β2
∂x1

. A function ω is an inverse integrating

factor of the one-form (3.32) if the one-form 1
ω
[β1 β2] is exact.

Let f = [f1 f2]� and let ω be the inverse integrating factor (which certainly
exists by the analysis of Example 1.10) of the one-form [f2 −f1], namely assume
that one-form

1

ω
[f2 −f1] (3.33)

is exact. Then, there exists a first integral I of system (1.1a) such that

∂I

∂x1
= f2

ω
,

∂I

∂x2
= −f1

ω
; (3.34)

note that, when ω is known, such a first integral can be computed by integration,

I (x1, x2) =
∫

f2(x1, x2)

ω(x1, x2)
dx1 + C(x2), (3.35a)

dC(x2)

dx2
= −f1(x1, x2)

ω(x1, x2)
−
∫

∂

∂x2

(
f2(x1, x2)

ω(x1, x2)

)
dx1. (3.35b)

It should be noted that, despite its apparent form, the right-hand side of (3.35b)
does not depend on x1, as one can easily check by differentiating such a quantity
with respect to x1, on the basis of the subsequent relation (3.36a),

− ∂

∂x1

(
f1(x1, x2)

ω(x1, x2)

)
− ∂

∂x2

(
f2(x1, x2)

ω(x1, x2)

)
= −div

(
1

ω
f

)
= 0,

and therefore a single integration of (3.35b) gives C(x2).

Definition 3.9 A function ω(x) ∈ R, ω �= 0, is an inverse integrating factor of sys-
tem (1.1a) (briefly, associated with f ) if the one-form (3.33) is exact.
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Theorem 3.19 A function ω �= 0 is an inverse integrating factor of system (1.1a) if
and only if one of the following two equivalent conditions holds:

div

(
1

ω
f

)
= 0, (3.36a)

div(f ) = 1

ω
Lf ω. (3.36b)

Proof As for the proof of (3.36a), if (3.33) is exact, then
∂( 1

ω
f2)

∂x2
= ∂(− 1

ω
f1)

∂x1
,

which implies
∂( 1

ω
f1)

∂x1
+ ∂( 1

ω
f2)

∂x2
= 0 and, therefore, div( 1

ω
f ) = 0. Taking into ac-

count (3.36a) and the following relations

div

(
1

ω
f

)
= ∂

∂x1

(
1

ω
f1

)
+ ∂

∂x2

(
1

ω
f2

)

= − 1

ω2

∂ω

∂x1
f1 + 1

ω

∂f1

∂x1
− 1

ω2

∂ω

∂x2
f2 + 1

ω

∂f2

∂x2
= 1

ω
div(f ) − 1

ω2

∂ω

∂x
f

= 1

ω
div(f ) − 1

ω2 Lf ω = 1

ω

(
div(f ) − 1

ω
Lf ω

)
,

relation (3.36b) is proven. �

Theorem 3.20 If g is an orbital symmetry of f , i.e., [f,g] = μf , and

ω = det
([f g]) (3.37)

is not identically equal to zero, then ω is an inverse integrating factor of sys-
tem (1.1a), namely div( 1

ω
f ) = 0. If div( 1

ω
f ) = 0 for some ω �= 0, then any g such

that (3.37) holds is an orbital symmetry of f .

Proof If [f,g] = μf and ω �= 0, then from (3.31):

div(f ) = 1

ω
Lf ω, (3.38)

and therefore, by (3.36b), ω is an inverse integrating factor of system (1.1a). Con-
versely, if ω is an inverse integrating factor of system (1.1a), then (3.38) holds, and
therefore, by (3.31), [f,g] = μf holds with μ = div(g) − 1

ω
Lgω. �

Theorem 3.21 If ω and ω̂ are two inverse integrating factors of system (1.1a), then
I = ω

ω̂
is a (possibly, trivial) first integral of system (1.1a).

Proof If ω and ω̂ are two inverse integrating factors, then

Lf ω = ω div(f ), Lf ω̂ = ω̂ div(f ).

Then, Lf I = ω̂Lf ω−ωLf ω̂

ω̂2 = ω̂ω div(f )−ωω̂ div(f )

ω̂2 = 0. �



3.6 Continuous-Time Nonlinear Planar Systems 87

As a consequence of the above theorem, if ω is an inverse integrating factor of
system (1.1a) and I is any (non-trivial) first integral of system (1.1a), all inverse
integrating factors ω̂ of system (1.1a) are parameterized by:

ω̂ = ωC(I),

where C is an arbitrary function, C �= 0.
If ω is an inverse integrating factor and I is a first integral of system (1.1a), then

all orbital symmetries g = [g1 g2]� of f are given by the solutions g1, g2 of

ωC(I) = f1g2 − f2g1,

which exist provided that f �= 0; for instance, if f1 �= 0, then

g =
[
g1

ωC(I)+f2g1
f1

]�
(3.39)

parameterizes all (non-trivial) orbital symmetries of f , with g1 being an arbitrary
function (a similar expression can be found if f2 �= 0); an orbital symmetry g of f

is trivial if det([f g]) = 0 (e.g., f is a trivial orbital symmetry of f ). The orbital
symmetry g resulting from (3.39) by letting C(I) = 0 is trivial, because the resulting
g = g1

f1
f is co-linear with f over Kn.

Remark 3.17 If ω is an inverse integrating factor of system (1.1a) and div(f ) �= 0,
then an orbital symmetry g of f can be computed by

g = 1

div(f )

[− ∂ω
∂x2

∂ω
∂x1

]
; (3.40)

as a matter of fact,

det
([f g]) = det

([
f1 − 1

div(f )
∂ω
∂x2

f2
1

div(f )
∂ω
∂x1

])
= 1

div(f )

∂ω

∂x1
f1 + 1

div(f )

∂ω

∂x2
f2

= 1

div(f )
Lf ω;

since ω is an inverse integrating factor, one finds that div(f ) = 1
ω
Lf ω, which im-

plies that det([f g]) = ω. Note that, thanks to the choice made in (3.40), ω is a
first integral associated with g, Lgω = 0; hence, one can think as ω and g to be
associated to each other (see [93]).

Theorem 3.22 Let g be an orbital symmetry of f , i.e., [f,g] = μf , and let
ω = det([f g]) �= 0; then, Lf ω = div(f )ω. Thus, if there are no zero/pole can-
celations between ω and div(f ), then ω is a semi-invariant associated with f , with
characteristic function div(f ); if f and g are polynomial, then ω is a Darboux
polynomial associated with f , as well as its irreducible factors.
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Proof From (3.31), one concludes that −div(f ) + 1
ω
Lf ω = 0. �

When ω is not polynomial, all factors of ω as meromorphic function are candi-
dates to be semi-invariants.

Remark 3.18 Some classes of nonlinear planar systems having a simple orbital sym-
metry, whence such that an inverse integrating factor can be easily computed, are
pointed out. Specific examples for these classes are given later.

(3.18.1) f is homogeneous of degree m, but non necessarily analytic at x = 0, with
respect a dilation δw

ε x, with weights w1 and w2; g(x) = [w1x1 w2x2]� is
an orbital symmetry of f and the corresponding inverse integrating factor
is

ω(x) = det

([
f1(x) w1x1
f2(x) w2x2

])
= w2x2f1(x) − w1x1f2(x).

(3.18.2) f has the form f (x) = μ0Ex + μ1Ax, with μ0,μ1 ∈ IC(Ax), for some
A ∈ R

2×2; g(x) = Ax is a symmetry of f and the corresponding inverse
integrating factor is

ω(x) = det
([μ0Ex + μ1Ax Ax])= det

([μ0Ex Ax]).
(3.18.3) f is area-preserving (i.e., div(f ) = 0); in this case, ω = 1 is an inverse in-

tegrating factor of f and an orbital symmetry of f is g = 1
f 2

1 +f 2
2
[−f2 f1]�,

if f 2
1 + f 2

2 �= 0.

(3.18.4) f satisfies the conditions ∂f1
∂x1

= ∂f2
∂x2

and ∂f1
∂x2

= − ∂f2
∂x1

; if f 2
1 + f 2

2 �= 0, then

g = [−f2 f1]� is an orbital symmetry of f and the corresponding inverse
integrating factor is

ω = det

([
f1 −f2
f2 f1

])
= f 2

1 + f 2
2 .

(3.18.5) f (x) = [a(x1)b(x2) c(x1)d(x2)]�, with a, b, d �= 0 (the variables are sep-
arable); an orbital symmetry of f is g = [0 d

b
]�, with the corresponding

inverse integrating factor

ω(x) = det

([
a(x1)b(x2) 0

c(x1)d(x2)
d(x2)
b(x2)

])
= a(x1)d(x2).

As a matter of fact, the one-form 1
ω
[f2 − f1] = [ c(x1)

a(x1)
b(x2)
d(x2)

] is exact.

(3.18.6) f admits a known first integral I . Since [ ∂I
∂x1

∂I
∂x2

] = 1
ω
[f2 −f1], let either

ω = f2
∂I
∂x1

if f2 �= 0 (i.e., if ∂I
∂x1

�= 0) or ω = − f1
∂I
∂x2

if f1 �= 0 (i.e., if ∂I
∂x2

�= 0);

the respective orbital symmetries are either g = [ ω
f2

0]� if f2 �= 0 or g =
[0 − ω

f1
]� if f1 �= 0.
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Remark 3.19 If ω = det([f g]) �= 0 and f is homogeneous of degree m with
respect to g, then by (3.31), in addition to Lf ω = div(f )ω, one finds that
div(g) − 1

ω
Lgω = m, i.e., Lgω = (div(g) − m)ω. In particular, if g(x) = Bwx, with

Bw = diag{w1,w2}, then ω is homogeneous of degree w1 + w2 − m; furthermore,

if the degree of f1 is w1 − m, then the degree of ∂f1
∂x1

is w1 − m − w1 = −m, as well

as the degree of ∂f2
∂x2

, which shows that div(f ) is homogeneous of degree −m with

respect to g(x) = Bwx.

Example 3.16 Consider f (x) = [x2 − x3
1 −x2

1x2]�. Since f is homogeneous of de-
gree −2 with respect to the integer dilation δw

ε x, with w = [1 3]�, g(x) = [x1 3x2]�
is an orbital symmetry of f . Then,

ω(x) = det

([
x2 − x3

1 x1

−x2
1x2 3x2

])
= x2

(
3x2 − 2x3

1

)
.

The factors ω1(x) = x2 and ω2(x) = 3x2 − 2x3
1 of ω are Darboux polynomials

associated with f , with respective characteristic polynomials λ1(x) = −x2
1 and

λ2(x) = −3x2
1 .

Example 3.17 Take g(x) = Bx, with B = [ 0 1
−1 0

]
; then, Lc(B) = spanR{B,E}, and

set IC(Bx) is constituted by all functions J = C(x2
1 + x2

2) of x2
1 + x2

2 . Then, any

element of CC(Bx) can be expressed as f (x) = μ0Bx + μ1Ex = [ μ1x1+μ0x2
−μ0x1+μ1x2

]
,

with μ0,μ1 ∈ IC(Bx). An inverse integrating factor associated with f is then given
by

ω(x) = det
([f (x) g(x)])= det

([
μ1x1 + μ0x2 x2

−μ0x1 + μ1x2 −x1

])
= −(x2

1 + x2
2

)
μ1,

which shows that ω1(x) = x2
1 + x2

2 is a semi-invariant associated with f , for all
μ0,μ1 ∈ IC(Bx), μ1 �= 0, with characteristic function λ = 2μ1, provided that there
is no zero/pole cancelation between μ1 and x2

1 + x2
2 ; it is observed that μ1 is a

function of ω1. In particular, the choice μ1 = 1 − ω1 leads to Lgω1 = 2(1 − ω1)ω1;
from this, ω1 = 0 and ω1 = 1 are two algebraic invariant curves for any μ0: ω1 = 0
is unstable and ω1 = 1 is asymptotically stable. It is worth pointing out that this is
true for any choice of μ0, even not differentiable at x = 0. A well-known system
(e.g., see (3.719) of [20]) is found by taking μ1 = 1 − ω1 = 1 − (x2

1 + x2
2) and

μ0 = √
ω1 =

√
x2

1 + x2
2 :

f (x) =
⎡
⎣ x1(1 − (x2

1 + x2
2)) + x2

√
x2

1 + x2
2

−x1

√
x2

1 + x2
2 + x2(1 − (x2

1 + x2
2))

⎤
⎦ .
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3.7 Parameterization of Continuous-Time Nonlinear Planar
Systems Having a Given Orbital Symmetry

In this section, a sort of partial classification of planar systems is reported, by study-
ing systems that have an orbital symmetry with a given structure [90]. For such
systems, using the results in Sect. 3.6, it is easy to find semi-invariants.

Consider two vector functions f (x), g(x) ∈ R
2 and let xo ∈ R

2 be a regular point
of g, i.e., g(xo) �= 0; by the flow box Theorem 3.3, in a neighborhood of xo, there
exists a diffeomorphism y = J (x), J = [J0 J1]�, such that the vector function g is
straightened in such coordinates: J∗g = ( ∂J

∂x
g) ◦ J−1 = e1, with e1 being the first

column of the 2 × 2 identity matrix.
By Theorems 3.9 and 3.17, the set of all f [m] such that [f [m], g] = mf [m], with

m ∈ Z, is parameterized by

f [m] =
(

∂J

∂x

)−1 [
C1(J1)

C2(J1)

]
e−mJ0 , (3.41)

where C1,C2 are arbitrary scalar functions of J1, whereas the set of all f such that
[f,g] = μf , for some scalar function μ, is parameterized by

f =
(

∂J

∂x

)−1 [
C1(J1)

C2(J1)

]
C0(J0, J1), (3.42)

where C0,C1,C2 are arbitrary scalar functions of the arguments.

Case 1: orbital symmetry g = [P(x1) + Q(x2) 0]� Assume that there exists
a point xo ∈ U such that g(xo) �= 0. Then, there exists an open and connected
subset U ∗ ⊂ U such that P(x1) + Q(x2) �= 0 in U ∗. A diffeomorphism y = J (x)

straightening the vector function g is given by:

J0 =
∫

1

P(x1) + Q(x2)
dx1, J1 = x2.

In particular, taking into account that

(
∂J

∂x

)−1

=
[
P + Q (P + Q)

∂Q
∂x2

∫ 1
(P+Q)2 dx1

0 1

]
,

all vector functions f [m] being homogeneous of order m with respect to g are pa-
rameterized by:

f [m] =
[
P + Q (P + Q)

∂Q
∂x2

∫ 1
(P+Q)2 dx1

0 1

][
C1
C2

]
e−m

∫ 1
P+Q

dx1 ,

whereas the set of all f having g as orbital symmetry is parameterized by

f =
[
P + Q (P + Q)

∂Q
∂x2

∫ 1
(P+Q)2 dx1

0 1

][
C1
C2

]
C0,
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where C1 and C2 are arbitrary functions of x2 and C0 of x1, x2. As for the system
described by the above f , to compute the semi-invariants, let

ω = det
([f g])= −(P + Q)C2C0,

which shows that any system belonging to this class has ω1 = P(x1)+Q(x2), ω2 =
C2(x2) and ω3 = C0(x1, x2) as candidates to be semi-invariants, as well as their
possible factors. Such functions are actually semi-invariants if there are not zero-
pole cancelations among them and div(f ).

Example 3.18 Consider the case P(x1) = ax1 and Q(x2) = bx2. All vector func-
tions f [m] being homogeneous of order m with respect to g are parameterized by

f [m](x) =
[
ax1 + bx2 − b

a

0 1

][
C1(x2)

C2(x2)

]
(ax1 + bx2)

− m
a ,

where C1 and C2 are arbitrary functions of x2; in particular, for m = 0, one has

f [0](x) =
[
(ax1 + bx2)C1(x2) − b

a
C2(x2)

C2(x2)

]
. (3.43)

All vector functions f having g as orbital symmetry are parameterized by

f (x) =
[
ax1 + bx2 − b

a

0 1

][
C1(x2)

C2(x2)

]
C0(x1, x2),

where C0 is an arbitrary function of x1, x2. Then,

ω(x) = −(ax1 + bx2)C0C2,

which shows that any system belonging to the considered class has ω1(x) = ax1 +
bx2, ω2(x) = C2(x2) and ω3(x) = C0(x1, x2) as candidates to be semi-invariants, as
well as their possible factors.

Remark 3.20 The proposed technique allows to parameterize all vector functions
f having g as orbital symmetry, around one of its regular points. Often, it can be
used also to find such vector functions f defined at one of the singular points xs

of g. As a matter of fact, being g analytic, if g is not identically equal to zero, in
any neighborhood of xs there are regular points xo of g where the technique can be
applied. Some of the vector functions f computed about xo can be well defined also
at xs . This happens, e.g., in Example 3.18 when m = 0: the vector functions f [0]
given in (3.43) are analytic at x = 0 if C1 and C2 are chosen as analytic at x = 0.

Case 2: orbital symmetry g = [P(x1) Q(x1)]� Assume that both functions
P(x1) and Q(x1) are not identically equal to zero. This implies that there exists a
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point xo such that g(xo) �= 0. In a neighborhood of xo, a diffeomorphism y = J (x)

straightening g is

J0(x) =
∫

1

P(x1)
dx1, J1(x) = x2 −

∫
Q(x1)

P (x1)
dx1.

In particular, taking into account that

(
∂J (x)

∂x

)−1

=
[
P(x1) 0
Q(x1) 1

]
,

all vector functions f [m] being homogeneous of order m with respect to g are pa-
rameterized by:

f [m] =
[
P(x1) 0
Q(x1) 1

][
C1(J1)

C2(J1)

]
e
−m

∫ 1
P (x1)

dx1
,

where C1(J1) and C2(J1) are arbitrary functions of J1, whereas the set of all vector
functions f having g as orbital symmetry is parameterized by

f =
[
P 0
Q 1

][
C1(J1)

C2(J1)

]
C0 =

[
PC0C1

QC0C1 + C0C2

]
,

where C0 is an arbitrary function of x1, x2. Then,

ω = det

([
PC0C1 P

QC0C1 + C0C2 Q

])
= −PC0C2,

which shows that any system in this class has ω1(x) = C2(x2 − ∫
Q(x1)
P (x1)

dx1),
ω2(x) = P(x1) and ω3(x) = C0(x1, x2) as candidates to be semi-invariants, as well
as their possible factors.

Case 3: orbital symmetry g = [P(x1) Q(x2)]� Assume that both functions
P(x1) and Q(x2) are not identically equal to zero. This implies that there exists a
point xo such that g(xo) �= 0. In a neighborhood of xo, a diffeomorphism y = J (x)

straightening g is

J0(x) =
∫

1

P(x1)
dx1, J1(x) =

∫
1

P(x1)
dx1 −

∫
1

Q(x2)
dx2.

In particular, taking into account that

(
∂J (x)

∂x

)−1

=
[
P(x1) 0
Q(x2) −Q(x2)

]
,

all vector functions f [m] being homogeneous of order m with respect to g are pa-
rameterized by:

f [m] =
[
P(x1) 0
Q(x2) −Q(x2)

][
C1(J1)

C2(J1)

]
e−mJ0,
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whereas the set of all f having g as orbital symmetry is parameterized by

f =
[
P(x1) 0
Q(x2) −Q(x2)

][
C1(J1)

C2(J1)

]
C0(x1, x2) =

[
PC0C1

QC0(C1 − C2)

]
,

where C0,C1 and C2 are arbitrary functions of the arguments. Then,

ω = det

([
PC0C1 P

QC0(C1 − C2) Q

])
= PQC0C2,

which shows that any system belonging to this class has ω1(x) = P(x1), ω2(x) =
Q(x2), ω3(x) = C2(J1) and ω4(x) = C0(x1, x2) as candidates to be semi-invariants,
as well as their possible factors.

Case 4: orbital symmetry g = [Q(x2)
P (x1)

0]� Assume that both functions P(x1) and
Q(x2) are not identically equal to zero (note that such a g includes the case of a lin-
ear, non-zero and nilpotent g(x) = [x2 0]�). A diffeomorphism y = J (x) straight-
ening g is

J0(x) = 1

Q(x2)

∫
P(x1)dx1, J1(x) = x2.

In particular, taking into account that

(
∂J (x)

∂x

)−1

=
[

Q(x2)
P (x1)

1
Q(x2)P (x1)

∂Q2(x2)
∂x2

∫
P(x1)dx1

0 1

]
,

all vector functions f [m] being homogeneous of order m with respect to g are pa-
rameterized by:

f [m] =
[

Q
P

1
QP

∂Q2
∂x2

∫
P dx1

0 1

][
C1
C2

]
e−mJ0 ,

whereas the set of all f having g as orbital symmetry is parameterized by

f =
[

Q
P

1
QP

∂Q2
∂x2

∫
P dx1

0 1

][
C1
C2

]
C0 =

[
Q
P

C1C0 + 1
QP

∂Q2
∂x2

∫
P dx1C2C0

C2C0

]
,

where C1 and C2 are arbitrary functions of x2 and C0 of x1, x2.

Remark 3.21 One of the motivations for the study carried out above is that it can be
useful for creating systems that have a desired semi-invariant, or a desired invariant
set.
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3.8 The Inverse Jacobi Last Multiplier

Now, the analysis of Sect. 3.6 is extended to the general case f (x) ∈ R
n. In partic-

ular, next theorem generalizes Theorem 3.20.

Theorem 3.23 Let g1(x), . . . , gn−1(x) ∈ R
n be n − 1 orbital symmetries of f ,

[f,gi] = μif . Let

Ω = det
([f g1 g2 . . . gn−1]

)
, ω = det(Ω),

and assume that ω is not identically equal to zero. Then,

Lf ω = div(f )ω. (3.44)

Thus, if there is no zero/pole cancelation between ω and div(f ), then ω is a semi-
invariant associated with f , with characteristic function div(f ); if f and g are
polynomial, then ω is a Darboux polynomial associated with f , as well as its irre-
ducible factors.

Proof First, it is noted that

Lf ω = det
([Lf f g1 g2 . . . gn−1]

)+
n−1∑
i=1

det
([f g1 . . . Lf gi . . . gn−1]

)
.

From [f,gi] = μif (i.e., from Lf gi −Lgi
f = μif ), it follows that Lf gi = Lgi

f +
μif , from which

Lf ω = det
([Lf f g1 g2 . . . gn−1]

)+
n−1∑
i=1

det
([f g1 . . . Lgi

f . . . gn−1]
)

+
n−1∑
i=1

det
([f g1 . . . μif . . . gn−1]

)
.

In this way, taking into account that det([f g1 . . . μif . . . gn−1]) = 0 for any i,
one concludes that

Lf ω = det
([Lf f g1 g2 . . . gn−1]

)+
n−1∑
i=1

det
([f g1 . . . Lgi

f . . . gn−1]
)

= det
([

∂f
∂x

f g1 g2 . . . gn−1

])

+
n−1∑
i=1

det
([

f g1 . . .
∂f
∂x

gi . . . gn−1

])
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= trace

(
∂f

∂x

)
det
([f g1 g2 . . . gn−1]

)= div(f )ω,

as to be shown. �

Note that the vector functions g1, g2, . . . , gn−1 need not be commuting, i.e., con-
dition [gi, gj ] = 0 is not required in Theorem 3.23. When ω is not polynomial, all
factors of ω as meromorphic function are candidates to be semi-invariants.

The following definition extends the concept of the inverse integrating factor to
the concept of the inverse Jacobi last multiplier.

Definition 3.10 A function ω(x) ∈ R, ω �= 0, is an inverse Jacobi last multiplier of
system (1.1a) (briefly, associated with f (x)) if div( 1

ω
f ) = 0.

An inverse Jacobi last multiplier is an inverse integrating factor when n = 2.

Remark 3.22 Since div( 1
ω
f ) = 1

ω
div(f ) − 1

ω2
∂ω
∂x

f = 1
ω

div(f ) − 1
ω2 Lf ω, from re-

lation Lf ω = div(f )ω, under the assumptions and notation of Theorem 3.23, one
finds that div( 1

ω
f ) = 0 if ω = det(Ω); therefore, if different from zero, det(Ω) is an

inverse Jacobi last multiplier associated with f . Let ω1 and ω2 be two inverse Jacobi
last multipliers associated with f ; then, I = ω1

ω2
is a first integral of system (1.1a),

since:

Lf I = ω2Lf ω1 − ω1Lf ω2

ω2
2

= −ω2ω1 div(f ) + ω1ω2 div(f )

ω2
2

= 0.

The following theorem shows how an inverse Jacobi last multiplier is modified
by a state diffeomorphism.

Theorem 3.24 Let y = ϕ(x) be a diffeomorphism. Under the assumptions and no-
tations of Theorem 3.23, let Ω̃ = [ϕ∗f ϕ∗g1 . . . ϕ∗gn−1] and ω̃ = det(Ω̃). Then,
ω̃ ◦ ϕ = det( ∂ϕ

∂x
)ω, i.e., ω̃ = ϕ∗(det( ∂ϕ

∂x
)ω).

Proof The proof is based on the following computations:

ω̃ = det
([ϕ∗f ϕ∗g1 . . . ϕ∗gn−1]

)

= det

([(
∂ϕ

∂x
f

)
◦ ϕ−1

(
∂ϕ

∂x
g1

)
◦ ϕ−1 . . .

(
∂ϕ

∂x
gn−1

)
◦ ϕ−1

])

= det

(
∂ϕ

∂x

)
det
([f g1 . . . gn−1]

) ◦ ϕ−1. �

The following theorem shows how a first integral associated with f can be com-
puted from an inverse Jacobi last multiplier (see [56]).
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Theorem 3.25 Let I1, I2, . . . , In−2 be n− 2 functionally independent first integrals
of system (1.1a). Then, the knowledge of an inverse Jacobi last multiplier allows
the computation of another first integral In−1 of system (1.1a), being functionally
independent of I1, I2, . . . , In−2.

Proof The equations y1 = I1, . . . , yn−2 = In−2 constitute a partial diffeomorphism
that can be completed by defining two extra variables yn−1 := Jn−1(x) and yn :=
Jn(x), so that

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

I1(x)
...

In−2(x)

Jn−1(x)

Jn(x)

⎤
⎥⎥⎥⎥⎥⎥⎦

=: ϕ(x),

qualifies as a diffeomorphism in an open and connected domain; apart from a re-
ordering of the state variables, it is always possible to assume that yn−1 = xn−1 and
yn = xn. In these new coordinates, the push-forward of f takes the form

f̃ (y) = ϕ∗f (y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

0
f̃n−1(y1, . . . , yn−2, yn−1, yn)

f̃n(y1, . . . , yn−2, yn−1, yn)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

for some functions f̃n−1 and f̃n. By Theorem 3.24, if ω is an inverse Jacobi last mul-
tiplier associated with f , then ω̃ = ϕ∗(ω det( ∂ϕ

∂x
)) is an inverse Jacobi last multiplier

associated with f̃ . Since, y1, . . . , yn−2 are constants, y1 = c1, . . . , yn−2 = cn−2, one
concludes that ω̃0 = ω̃(c1, . . . , cn−2, yn−1, yn) is an inverse Jacobi last multiplier of
the following planar system (therefore, it is an inverse integrating factor):

dyn−1

dt
= f̃n−1(c1, . . . , cn−2, yn−1, yn),

dyn

dt
= f̃n(c1, . . . , cn−2, yn−1, yn);

hence, the one-form 1
ω̃0

[f̃n − f̃n−1] is exact and its first integral Ĩn−1(yn−1, yn)

can be computed by integration since ω̃0 is known; moreover, since Ĩn−1 does not
depend on y1, . . . , yn−2, its pull-back In−1 = ϕ∗Ĩn−1 is a first integral of the original
system being functionally independent of the other first integrals I1, . . . , In−2. �

Example 3.19 Consider f (x) = [x2 − ax3
1 x3 − ax2

1x2 −ax2
1x3]�. It is easy to

see that ω1(x) = x3 and ω2(x) = −2x1x3 + x2
2 are two functionally independent

Darboux polynomials associated with f , with respective characteristic polynomials
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λ1(x) = −ax2
1 and λ2(x) = −2ax2

1 . Since λ2 = 2λ1, I1(x) = ω2(x)

ω2
1(x)

= −2x1x3+x2
2

x2
3

is

a first integral of system (1.1a); moreover, by the reasoning at the beginning of Re-
mark 3.22, since div(f (x)) = −5ax2

1 = 5λ1(x), ω(x) = ω5
1(x) = x5

3 is an inverse
Jacobi last multiplier associated with f . Let y1 = I1(x), y2 = x2 and y3 = x3, so
that

ϕ−1(y) =
⎡
⎢⎣

1
2

y2
2−y1y2

3
y3

y2
y3

⎤
⎥⎦ .

Clearly,

ω̃0(y2, y3) = ω̃(c1, y2, y3) =
(

ω(x)
∂I1(x)

∂x1

)∣∣∣∣
x=ϕ−1(y)

= −2y4
3

is an inverse integrating factor of the reduced system

dy2

dt
= (

y3 − ax2
1y2

)∣∣
x1=− 1

2
c1y2

3−y2
2

y3

= y3 − 1

4
a
(c1y

2
3 − y2

2)2

y2
3

y2,

dy3

dt
= (−ax2

1y3
)∣∣

x1=− 1
2

c1y2
3−y2

2
y3

= −1

4
a
(c1y

2
3 − y2

2)2

y3
,

whence the one-form (in the variables y2, y3)
[

a

8y5
3

(
c1y

2
3 − y2

2

)2 1

2y3
3

− a

8y6
3

(
c1y

2
3 − y2

2

)2
y2

]

is exact, and its first integral is

Ĩ2(y) = ay2

120

3y4
2 − 10c1y

2
2y2

3 + 15c2
1y

4
3

y5
3

− 1

4y2
3

.

The new first integral I2(x) for the original system is computed as follows:

I2(x) = Ĩ2(y)|c1=I1(x),y2=x2,y3=x3

= 1

60

4ax5
2 − 20ax1x

3
2x3 + 30ax2

1x2x
2
3 − 15x3

3

x5
3

.

In particular, this shows that ω3(x) = 4ax5
2 − 20ax1x

3
2x3 + 30ax2

1x2x
2
3 − 15x3

3 is
another Darboux polynomial of the considered system: Lf ω3(x) = −5ax2

1ω3(x).

Example 3.20 Consider f (x) = [x2 x3 − bx5
1 −bx4

1x2]�. It is easy to see that

g1(x) =
⎡
⎣

x1
3x2
5x3

⎤
⎦ , g2(x) =

⎡
⎣

0
1
x2

0

⎤
⎦
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are two orbital symmetries of f . The determinant ω of matrix

Ω(x) = [
f (x) g1(x) g2(x)

]=
⎡
⎢⎣

x2 x1 0
x3 − bx5

1 3x2
1
x2

−bx4
1x2 5x3 0

⎤
⎥⎦

is ω(x) = det(Ω(x)) = −5x3 − bx5
1 . This is clearly a Darboux polynomial associ-

ated with f ; actually, since div(f ) = 0, one concludes that I1 = ω is a first integral
of system (1.1a). Let y1 = I1(x), y2 = x1 and y3 = x2, so that

ϕ−1(y) =
⎡
⎣

y2
y3

−1
5y1 − b

5y3
2

⎤
⎦ .

Clearly,

ω̃0(y2, y3) = ω̃(c1, y2, y3) =
(

ω(x)det

(
∂ϕ(x)

∂x

))∣∣∣∣
x=ϕ−1(c1,y2,y3)

= −5c1,

is an inverse integrating factor of the reduced system

dy2

dt
= x2|x=ϕ−1(c1,y2,y3)

= y3,

dy3

dt
= (

x3 − bx5
1

)∣∣
x=ϕ−1(c1,y2,y3)

= −c1

5
− 6

5
by5

2 .

Since ω̃0 is constant, it is not necessary to use it; as a matter of fact, the one-form
[− c1

5 − 6
5by5

2 −y3
]

is exact, and its first integral is

Ĩ2(y) = −b

5
y6

2 − 1

2
y2

3 − c1

5
y2.

The new first integral I2(x) for the original system is computed as follows:

I2(x) = Ĩ2(y)|c1=I1(x),y2=x1,y3=x2 = x1x3 − 1

2
x2

2 .

3.9 Matrix Integrating Factors

Definition 3.11 A skew-symmetric matrix function Σ(x) ∈ R
n×n, Σ� = −Σ , for

which there exists I (x) ∈ R such that

∂I

∂x
= f �Σ (3.45)

is called a matrix integrating factor associated with f .
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As shown in the subsequent Sect. 5.5, given a non-trivial first integral I associ-
ated with f , there exists a skew-symmetric matrix function S(x) ∈ R

n×n such that

f � = −∂I

∂x
S.

If det(S(x)) �= 0, then the one-form

∂I

∂x
= −f �S−1 (3.46)

is exact, whence Σ = −S−1 is a matrix integrating factor.

Example 3.21 If n = 2, then any f can be written as

[
f1
f2

]
=
[

0 −ω

ω 0

][ ∂I
∂x1
∂I
∂x2

]
, (3.47)

where ω is an inverse integrating factor associated with f and I is the corresponding
first integral. From (3.47), if ω �= 0, one obtains the one-form (3.33),

[
∂I
∂x1

∂I
∂x2

]
= [f1 f2]

[
0 − 1

ω
1
ω

0

]
= [

1
ω
f2 − 1

ω
f1
]
.

If a skew-symmetric matrix has odd dimension, then it has necessarily zero de-
terminant, whence (3.46) does not hold. Nevertheless, matrix integrating factors can
exist also in this case, as shown in the following example.

Example 3.22 Consider the continuous-time system

dx1

dt
= −3x2x3,

dx2

dt
= 3x1x3,

dx3

dt
= −x1x2.

Multiplying the first equation by x1, the second by 2x2 and the third by 3x3, and
summing the results, one obtains x1

dx1
dt

+ 2x2
dx2
dt

+ 3x3
dx3
dt

= 0, which can be easily
integrated, thus obtaining the first integral I1 = 1

2x2
1 +x2

2 + 3
2x2

3 . Similarly, multiply-
ing the first equation by x1 and the second equation by x2, and summing the results,
one obtains x1

dx1
dt

+ x2
dx2
dt

= 0, which can be easily integrated, thus obtaining the
first integral I2 = 1

2 (x2
1 + x2

2). In particular, for each first integral, the corresponding
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matrix integrating factor can be found by requiring that (3.45) holds:

[x1 2x2 3x3] = [−3x2x3 3x1x3 −x1x2]

⎡
⎢⎢⎣

0 − 2
3x3

− 1
x2

2
3x3

0 0
1
x2

0 0

⎤
⎥⎥⎦ ,

[x1 x2 0] = [−3x2x3 3x1x3 −x1x2]
⎡
⎢⎣

0 − 1
3x3

0
1

3x3
0 0

0 0 0

⎤
⎥⎦ .

3.10 Lax Pairs for Continuous-Time Nonlinear Systems

Lax pairs are a powerful tool for the computation of first integrals of continuous time
nonlinear systems; in view of the connection with first integrals, many physical sys-
tems admit a Lax pair representation (see, for instance, [49]). Most of the material
in this section is adapted from [56], but the extension in Remark 3.25, which gen-
eralizes Lax pairs to connect them to semi-invariants, is from [94]. The notation in
this section is somewhat different from the one in the rest of the book, e.g., matrices
A and B are not constant here.

Let a vector function f (x) ∈ R
n be given. Given a matrix function A(x) ∈ R

ν×ν ,
with entries Ai,j (x), define the symbol Lf A as the matrix function having Lf Ai,j

as entries.

Definition 3.12 Given a vector function f (x) ∈ R
n, a CT-Lax pair (briefly, a Lax

pair if no confusion can arise) associated with f (x) is an ordered pair of matrix
functions (A,B), with A(x),B(x) ∈ R

ν×ν , ν2 ≥ n, such that

Lf A = [A,B], (3.48)

where [A,B] is the Lie bracket of matrices A,B , [A,B] = BA − AB .

Theorem 3.26 Let (A,B) be a Lax pair associated with a given f . Then, for any
k ∈ Z

≥, I = trace(Ak) is a first integral associated with f .

Proof It is worth pointing out that Lf trace(A) = trace(Lf A), trace(AB) =
trace(BA) and that trace(A + B) = trace(A) + trace(B). Hence,

Lf trace
(
Ak
) = trace

(
(Lf A)Ak−1 + A(Lf A)Ak−2 + A2(Lf A)Ak−3 + · · ·

+ Ak−1(Lf A)
)= trace

(
BAk − ABAk−1 + ABAk−1 − A2BAk−2

+ A2BAk−2 − A3BAk−3 + · · · + Ak−1BA − Ak−1AB
)

= trace
(
BAk − AkB

)= trace
(
BAk

)− trace
(
AkB

)= 0,

as to be proven. �
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Since trace(A1A2) = trace(A2A1), for any pair A1,A2 ∈ R
ν×ν , if A = CΛC−1,

then trace(A) = trace(CΛC−1) = trace(ΛC−1C) = trace(Λ). Denoting by Λ the
Jordan form of A, this implies that trace(Ak) = trace(Λk) =∑ν

i=1 λk
i , where λi is

eigenvalue of A. Since the functions αk(λ1, . . . , λν) = ∑ν
i=1 λk

i , k = 1, . . . , ν, are
functionally independent as functions of λ1, . . . , λν , the eigenvalues of A, as well
as the coefficients of the characteristic polynomial of A, as well as det(A) =∏

i λi ,
are first integrals associated with f . This, in particular, shows that at most ν of n−1
functionally independent first integrals associated with f can be computed from the
knowledge of A.

Remark 3.23 For given A(x),B(x) ∈ R
ν×ν and an unknown f (x) ∈ R

n, (3.48) is
a set of ν2 algebraic equations in the n unknown entries of f . If such a system has
a unique solution f , then (A,B) is called a regular Lax pair associated with the
vector function f thus identified. For instance, take ν = 2 and n = 3,

A(x) =
[
x1 x2
1 x3

]
, B(x) =

[
1 + x3 x2

1
1+x3−x2
x1−x3

x2

]
;

then,

Lf A(x) =
[
f1 f2
0 f3

]
,

[
A(x),B(x)

] =
⎡
⎣

−x2−x2x3−x2
1x3+x3

1+x2
2

x1−x3
x2 + x2x3 + x2

1x3 − x3
1 − x2

2

0 −−x2−x2x3−x2
1x3+x3

1+x2
2

x1−x3

⎤
⎦ ,

from which (A,B) is a regular Lax pair associated with

f (x) =

⎡
⎢⎢⎢⎣

−x2−x2x3−x2
1x3+x3

1+x2
2

x1−x3

x2 + x2x3 + x2
1x3 − x3

1 − x2
2

x2+x2x3+x2
1x3−x3

1−x2
2

x1−x3

⎤
⎥⎥⎥⎦ .

Hence, I1(x) = trace(A(x)) = x1 + x3 and I2(x) = trace(A2(x)) = x2
1 + 2x2 + x2

3
are two functionally independent first integrals associated with f . Clearly, the co-
efficients of the characteristic polynomial of A and the determinant of A are first
integrals associated with f , and they can be written as functions of I1 and I2:

pA(λ) = λ2 − (x1 + x3)λ + x1x3 − x2 = λ2 − I1λ + 1

2
I 2

1 − 1

2
I2,

det(A) = 1

2
I 2

1 − 1

2
I2.

Theorem 3.27 Let (A,B) be a Lax pair associated with a given f . Let α : R → R

be a polynomial scalar function of the argument. Then, (α(A),B) is a Lax pair
associated with f .
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Proof First, it is shown how (Ak,B) is a Lax pair associated with f , for any k ∈ Z
≥,

Lf Ak = (Lf A)Ak−1 + A(Lf A)Ak−2 + A2(Lf A)Ak−3 + · · · + Ak−1(Lf A)

= (BA − AB)Ak−1 + A(BA − AB)Ak−2 + A2(BA − AB)Ak−3 + · · ·
+ Ak−1(BA − AB)

= BAk − ABAk−1 + ABAk−1 − A2BAk−2 + A2BAk−2 − A3BAk−3 + · · ·
+ Ak−1BA − AkB

= BAk − AkB = [
Ak,B

]
.

Clearly, if (A,B) is a Lax pair associated with f , then (aA,B) is a Lax pair asso-
ciated with f , for any constant a ∈ R. Finally, if (A1,B) and (A2,B) are two Lax
pairs associated with f , then (A1 + A2,B) is a Lax pair associated with f ,

[A1 + A2,B] = [A1,B] + [A2,B] = Lf A1 + Lf A2 = Lf (A1 + A2). �

Theorem 3.28 Let (A,B1) be a Lax pair associated with a given f . Then, (A,B2)

is a Lax pair associated with f if and only if [A,B1 − B2] = 0.

Proof If (A,B1) and (A,B2) are two Lax pairs associated with f , then

Lf A = [A,B1], Lf A = [A,B2]
↓

[A,B1] = [A,B2].
Vice versa, if Lf A = [A,B1] and [A,B1] = [A,B2], then Lf A = [A,B2]. �

Example 3.23 Let f (x) = [x1(x2 − x3) x2(x3 − x1) x3(x1 − x2)]�. Take

A(x) =
⎡
⎣

0 1 x1
x2 0 1
1 x3 0

⎤
⎦ , B(x) =

⎡
⎣

x1 + x2 0 1
1 x2 + x3 0
0 1 x1 + x3

⎤
⎦ .

Since both Lf A(x) and [A(x),B(x)] are equal to the matrix

⎡
⎣

0 0 x1(x2 − x3)

x2(x3 − x1) 0 0
0 x3(x1 − x2) 0

⎤
⎦ ,

one concludes that (A,B) is a Lax pair associated with f . Now, since

trace
(
A(x)

) = trace

⎛
⎝
⎡
⎣

0 1 x1
x2 0 1
1 x3 0

⎤
⎦
⎞
⎠= 0,
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trace
(
A2(x)

) = trace

⎛
⎝
⎡
⎣

x1 + x2 x1x3 1
1 x2 + x3 x1x2

x2x3 1 x1 + x3

⎤
⎦
⎞
⎠= 2(x1 + x2 + x3),

trace
(
A3(x)

) = trace

⎛
⎝
⎡
⎣

1 + x1x2x3 x1 + x2 + x3 x2
1 + x1x2 + x1x3

x2
2 + x2x3 + x1x2 1 + x1x2x3 x1 + x2 + x3

x1 + x2 + x3 x2x3 + x1x3 + x2
3 1 + x1x2x3

⎤
⎦
⎞
⎠

= 3(1 + x1x2x3),

I1(x) = x1 + x2 + x3 and I2(x) = 1 + x1x2x3 are two first integrals associated
with f . Clearly, the coefficients of the characteristic polynomial of A and the deter-
minant of A are first integrals associated with f ,

pA(λ) = λ3 − (x1 + x2 + x3)λ − (1 + x1x2x3) = λ3 − I1λ − I2,

det
(
A(x)

) = 1 + x1x2x3 = I2(x).

Theorem 3.29 Let (A,B) be a Lax pair associated with a given f . Then, for any
matrix M(x) ∈ R

ν×ν invertible over the field of meromorphic functions, pair (Ã, B̃),
with

Ã = MAM−1, B̃ = (Lf M)M−1 + MBM−1, (3.49)

is a Lax pair associated with f .

Proof Taking into account that Lf M = (B̃ − MBM−1)M , one concludes that (see
relation (3.13))

Lf Ã = (Lf M)AM−1 + M(Lf A)M−1 − MAM−1(Lf M)M−1

= (
B̃ − MBM−1)MAM−1 + M(BA − AB)M−1

− MAM−1(B̃ − MBM−1)

= B̃Ã − ÃB̃ − MBAM−1 + MBAM−1 − MABM−1 + MABM−1

= [
Ã, B̃

]
. �

Theorem 3.30 Let I1, . . . , Im be m < n functionally independent first integrals as-
sociated with a given f . Let M(x) ∈ R

n×n be invertible over the field of meromor-
phic functions. Then,

A = MΛM−1, B = (Lf M)M−1, (3.50)

where Λ = diag{I1, . . . , Im, cm+1, . . . , cn} and the ci ’s are arbitrary constants, is a
Lax pair associated with f .

Proof The proof follows from Theorem 3.29, taking into account that (Λ,0) is a
Lax pair associated with f , since Lf Λ = diag{Lf I1, . . . ,Lf Im,0, . . . ,0} = 0. �
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The Lax pair given in (3.50) is not regular, but a regular one can be obtained
about any regular point, as shown in the following theorem.

Theorem 3.31 About any regular point xo of f , f (xo) �= 0, there exists a regular
Lax pair A(x),B(x) ∈ R

n×n associated with f .

Proof About any regular point xo, f (xo) �= 0, by the flow box Theorem 3.3, there
exist n functionally independent functions I0, I1, . . . , In−1 such that Lf I0 = 1 and
Lf Ii = 0, i = 1, . . . , n − 1. Define

A :=

⎡
⎢⎢⎢⎢⎢⎣

I1 I0 . . . 0 0
0 I2 . . . 0 0
...

...
. . .

...
...

0 0 . . . In−1 0
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

and B := diag{I−1
0 ,0, . . . ,0}. Since

[A,B] =

⎡
⎢⎢⎢⎣

I1I
−1
0 1 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

I1I
−1
0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 1 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦= Lf A,

one concludes that (A,B) is a Lax pair associated with f . Since the equations
Lf I0 = 1 and Lf Ii = 0, i = 1, . . . , n − 1, uniquely define the vector function
f about xo, then pair (A,B) is regular. Any pair (Ã, B̃) obtained from (A,B)

by (3.49) is a regular Lax pair associated with f . �

Example 3.24 Take I0(x) = x1, I2(x) = x2 + x2
1 . Equations Lf I0(x) = f1 = 1 and

Lf I2(x) = 2x1f1 +f2 = 0, define uniquely the vector function f (x) = [1 −2x1]�,
and

A(x) =
[
x2 + x2

1 x1
0 0

]
, B(x) =

[
1
x1

0

0 0

]

is a regular pair associated with f .

From A = MΛM−1, letting Â(t) = A(x(t)) and M̂(t) = M(x(t)), and taking
into account that Λ is constant along any solution x(t) of the system, Λ(x(t)) =
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Λ(x(0)), one has

Â(t) = N̂(t)Â(0)N̂−1(t),

where N̂(t) = M̂(t)M̂−1(0).
Theorem 3.30 may be particularly helpful to generate polynomial systems having

polynomial first integrals and a polynomial Lax pair, as shown in the following
example.

Example 3.25 Take two functionally independent polynomials of x ∈ R
3, I1 = x1x2

and I2 = x2
1 + x2

3 . Take a simple polynomial matrix M(x), with polynomial inverse,

M(x) =
⎡
⎣

1 0 x2
x1 1 x3
0 0 1

⎤
⎦ , M−1(x) =

⎡
⎣

1 0 −x2
−x1 1 −x3 + x1x2

0 0 1

⎤
⎦ .

Compute Lf M(x) with respect to a vector function f having arbitrary entries f1,
f2 and f3,

Lf M(x) =
⎡
⎣

0 0 f2
f1 0 f3
0 0 0

⎤
⎦ .

Let (any constant value is acceptable as the (3,3)-entry of Λ)

Λ(x) =
⎡
⎣

x1x2 0 0
0 x2

1 + x2
3 0

0 0 1

⎤
⎦ ;

then,

A(x)

= M(x)Λ(x)M−1(x)

=
⎡
⎣

x1x2 0 −x1x
2
2 + x2

x2
1x2 − x3

1 − x1x
2
3 x2

1 + x2
3 −x2

1x2
2 − x2

1x3 + x3
1x2 − x3

3 + x1x2x
2
3 + x3

0 0 1

⎤
⎦ ,

B(x) = (
Lf M(x)

)
M−1(x) =

⎡
⎣

0 0 f2
f1 0 −f1x2 + f3
0 0 0

⎤
⎦ .

By imposing the equality Lf A = [A,B], one obtains the following algebraic system
in the unknowns f1, f2, f3:

0 = x2f1 + x1f2,

0 = −x1(−x2 + 2x1)f1 + x2
1f2 − 2x1x3f3,

0 = 2x1f1 + 2x3f3,
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0 = −x2
2f1 − x1x2f2,

0 = x1
(−x2

2 − 2x3 + 2x1x2
)
f1 − x2

1x2f2 + 2x3(−x3 + x1x2)f3,

with solution f1(x) = − x3
x1

f3(x), f2(x) = x3
x2

1
x2f3(x), where f3 is an arbitrary

function of x. Letting f3(x) = x2
1 , one verifies that I1 and I2 are two function-

ally independent first integrals associated with f (x) = [−x3x1 x2x3 x2
1 ]� and

that (A,B) is a Lax pair associated with f . Clearly, trace(A) = 1 + I1 + I2 and
trace(A2) = 1 + I 2

1 + I 2
2 are two functionally independent polynomial first integrals

associated with the polynomial f .

Remark 3.24 Let X be the set of all g(x) ∈ R
n with entries in Kn. Two linear

operators L1 and L2 from X to X are said to be compatible if L2L1g = L1L2g,
for all g ∈ X. Given two matrix functions A(x),B(x) ∈ R

n×n and a vector function
f (x) ∈ R

n, with entries in Kn, consider the two linear operators L1 = A and L2 =
Lf − B that associate to each g ∈ X the vector functions L1g,L2g ∈ X defined as
L1g := Ag and L2g := Lf g − Bg. Clearly, L1 and L2 are compatible if and only if
(A,B) is a Lax pair associated with f . As a matter of fact,

L2L1g = Lf (Ag) − BAg = (Lf A)g + ALf g − BAg,

L1L2g = ALf g − ABg,

now, by the arbitrariness of g, the compatibility condition L2L1g = L1L2g is
satisfied if and only if (Lf A) + ALf − BA = ALf − AB , i.e., if and only if
Lf A = [A,B], as to be shown.

Remark 3.25 Once a Lax pair (A,B) of the vector function f has been identified,
some of the first integrals associated with f can be computed, as well as (by possi-
ble factorization) some of the semi-invariants associated with f . The concept of the
Lax pair can be generalized for the direct computation of semi-invariants. A gen-
eralized Lax pair associated with f is an ordered pair (A,B) of matrix functions
A(x),B(x) ∈ R

ν×ν such that Lf A − [A,B] and A are co-linear over the field of
meromorphic functions, i.e., such that

Lf A = αA + [A,B],
for some meromorphic scalar function α(x) ∈ R. In such a case, for any k ∈ Z

≥,
if trace(Ak) and α have not zero/pole in common, then ω = trace(Ak) is a semi-
invariant associated with f , with characteristic function kα. As a matter of fact,

Lf ω = trace
(
Lf Ak

)= k trace
(
Ak−1Lf A

)= k trace
(
αAk + Ak−1BA − AkB

)

= kα trace
(
Ak
)= kαω.

If M(x) ∈ R
ν×ν is invertible over the field of meromorphic functions and (A,B)

is a generalized Lax pair associated with f , then the pair (Ã, B̃) given in (3.49) is
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a generalized Lax pair associated with f , for the same function α. Define the di-
agonal matrix Λ := diag{ω1, . . . ,ωm,0, . . . ,0}, with the ωi ’s being semi-invariants
associated with f , with the same characteristic function λi = α. Clearly, (Λ,0) is
a generalized Lax pair associated with f , Lf Λ = αΛ. Therefore, A = MΛM−1

and B = (Lf M)M−1 is a generalized Lax pair associated with f , for any matrix
M(x) ∈ R

n×n being invertible over the field of meromorphic functions.

Example 3.26 Consider the vector function

f (x) =

⎡
⎢⎢⎣

x1 + x2
1 + x2x4 − x2x3

x2 + x1x3 + x2
2 − x1x2 − x1x4 − x2

1
x3 + x2

2 − x2
1−x2x4 + x2x3 + x4 − x2

2

⎤
⎥⎥⎦ .

A generalized Lax pair associated with f is (A,B),with

A(x) =
[
x3 x1
x2 x4 + x1

]
, B(x) =

[
x1 x2
x1 x2

]
,

which satisfy Lf A = A + [A,B]. Then, ω1(x) = trace(A(x)) = x3 + x4 + x1 and
ω2(x) = trace(A2(x)) = x2

3 + 2x1x2 + x2
4 + 2x1x4 + x2

1 are two Darboux polynomi-
als associated with f , with characteristic values λ1 = 1 and λ2 = 2.

3.11 A “Computational” Result for the Darboux Polynomials
of Continuous-Time Nonlinear Systems

Aim of this section is to give an algorithm [53, 91] for the computation of the Dar-
boux polynomials associated with a given f , which, for the sake of simplicity, is
assumed to be polynomial; note that this algorithm can be adapted to cover the
computation of semi-invariants associated with f , when f is not polynomial.

Assume that ω is a Darboux polynomial associated with f , with characteristic
polynomial λ, i.e., Lf ω = λω. Assume, in addition, that ω is a linear combination
with real and constant coefficients ci of some functionally independent polynomials
p1,p2, . . . , pk , for some k > 0, ω =∑k

i=1 cipi . Consider the square k × k matrix

Γ =

⎡
⎢⎢⎢⎣

p1 p2 . . . pk

Lf p1 Lf p2 . . . Lf pk

...
...

...
...

Lk−1
f p1 Lk−1

f p2 . . . Lk−1
f pk

⎤
⎥⎥⎥⎦ , (3.51)

where L1
f pj = Lf pj and Li+1

f pj = Lf Li
f pj .

Theorem 3.32 [91] Under the above positions, if det(Γ ) �= 0, then ω is a factor of
det(Γ ).
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Proof Assume ω =∑k
i=1 cipi , for ci ∈ R; with no loss of generality, apart from a

reordering of polynomials pi , assume that ck �= 0. First, note that if ω is a Darboux
polynomial associated with f , with characteristic polynomial λ, i.e., Lf ω = λω,
then for any i ∈ Z

>, Li
f ω = λiω, for some polynomial λi , with λ1 = λ. This fact

can be proven by induction: the base step, for i = 1, is trivial, whereas the induction
step is proven as follows:

Li+1
f ω = Lf

(
Li

f ω
)= Lf (λiω) = ωLf λi + λiLf ω = (Lf λi + λiλ1)ω = λi+1ω,

where λi+1 = Lf λi +λiλ1. Note that if λ is constant, then λi = λi , and if λ = 0, then

λi = 0, i ≥ 1. Since ω = ∑k
i=1 cipi , it follows that L

j
f ω = ∑k

i=1 ciL
j
f pi , which

implies that

Γ ·

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
...

...
...

0 0 . . . 1 ck−1
0 0 . . . 0 ck

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

p1 p2 . . .
∑k

i=1 cipi

Lf p1 Lf p2 . . .
∑k

i=1 ciLf pi

...
...

...
...

Lk−1
f p1 Lk−1

f p2 . . .
∑k

i=1 ciL
k−1
f pi

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

p1 p2 . . . ω

Lf p1 Lf p2 . . . Lf ω
...

...
...

...

Lk−1
f p1 Lk−1

f p2 . . . Lk−1
f ω

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

p1 p2 . . . ω

Lf p1 Lf p2 . . . λ1ω
...

...
...

...

Lk−1
f p1 Lk−1

f p2 . . . λk−1ω

⎤
⎥⎥⎥⎦

=: Γ̃ ,

whence det(Γ ) = 1
ck

det(Γ̃ ), from which the theorem follows. �

Remark 3.26 When det(Γ ) �= 0, Theorem 3.32 guarantees that if a Darboux poly-
nomial ω, associated with f , is a linear combination with constant coefficients of
p1, . . . , pk , then ω is a factor of det(Γ ). But in the application of the theorem, all
factors of det(Γ ) or of the determinants of its minors, not only those that are lin-
ear combinations of p1, . . . , pk , are good candidates to be Darboux polynomials
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associated with f , because Γ could be a minor of another matrix Γ̌ found with an
enlarged choice of the polynomials p1, . . . , pǩ

.

Remark 3.27 When det(Γ ) = 0, Theorem 3.32 cannot be applied: in such a case,
good candidates to be Darboux polynomials associated with f are the factors of the
determinants of minors of Γ that are not zero. As a matter of fact, one typical reason
for det(Γ ) to be identically equal to zero is that two or more different linear com-
binations, with constant coefficients, of some polynomials p1, . . . , pk are Darboux
polynomials associated with f , with the same characteristic polynomial.

Remark 3.28 In [11, 64, 106], it is shown that the first homogeneous approximation
f [m] of f with respect to a given g (g(0) = 0 and g being analytic on a neighbor-
hood of the origin) can be used, under some technical assumption, for the stability
analysis of the origin, thus giving an extension of the Lyapunov Theorem of stabil-
ity in the first approximation [60]. By simply extending the reasoning used in [56]
when the linear part of g is semi-simple and has real eigenvalues (being all positive
or all negative) and there are no resonant terms in g, one concludes that if ω is a
Darboux polynomial associated with f , then the first approximation ω[m] of ω with
respect to g is a Darboux polynomial, homogeneous with respect to g, associated
with f [m]. In this way, if there are enough homogeneous Darboux polynomials ω

[m]
i

associated with the homogeneous f [m] to construct a Lyapunov function V , with
negative definite derivative for such a first approximation (Lf [m]V < 0), then one

has proven the asymptotic stability of the origin of dx
dt

= f [m], which, under some
technical conditions, implies the asymptotic stability of the origin of dx

dt
= f .

Example 3.27 Consider f (x) = [−x1 x2
1 − 4x2 −6x3 + 2x3

1 + 3x1x2]�. Such an f

is homogeneous of degree 0 with respect to g(x) = [x1 2x2 3x3]�, i.e., [f,g] = 0.
Clearly, ω1(x) = x1 is a Darboux polynomial associated with f , homogeneous of
degree 1 with respect to g, with characteristic value λ1 = −1, since

Lf ω1(x) = −x1 = λ1ω1(x).

Consider the Darboux polynomials associated with f , being homogeneous of de-
gree 2 with respect to g; these polynomials are generated by taking as basis the set
of all monomials of degree 2, p1(x) = x2

1 and p2(x) = x2:

Γ (x) =
[

x2
1 x2

−2x2
1 x2

1 − 4x2

]
, det

(
Γ (x)

)= x2
1

(
x2

1 − 2x2
);

in particular, ω2(x) = x2
1 − 2x2 is a Darboux polynomial associated with f , homo-

geneous of degree 2 with respect to g, with characteristic value λ2 = −4, since

Lf ω2(x) = −4
(
x2

1 − 2x2
)= λ2ω2(x).

Finally, consider the Darboux polynomials associated with f , being homogeneous
of degree 3 with respect to g; these polynomials are generated by taking as basis the
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set of all monomials of degree 3, p1(x) = x3
1 , p2(x) = x1x2 and p3(x) = x3:

Γ (x) =
⎡
⎣

x3
1 x1x2 x3

−3x3
1 −5x1x2 + x3

1 −6x3 + 2x3
1 + 3x1x2

9x3
1 25x1x2 − 8x3

1 −15x3
1 − 33x1x2 + 36x3

⎤
⎦ ,

det
(
Γ (x)

) = x4
1

(−x2
1 + 2x2

)(
9x1x2 − x3

1 − 3x3
);

in particular, ω3(x) = 9x1x2 − x3
1 − 3x3 is a Darboux polynomial associated with

f , with characteristic value λ3 = −6, since

Lf ω3(x) = −6
(
9x1x2 − x3

1 − 3x3
)= λ3ω3(x).

When f is not polynomial and homogeneous, it could be difficult to guess a priori
the structure of a semi-invariant: this is the case, for instance, when ω is polynomial
but its degree depends on some unknown parameters. Nevertheless, the procedure
previously outlined endowed with some additional tricks, can be still successfully
applied, as shown in the following example.

Example 3.28 Consider the planar system, described by f (x) = [x1x2 −ax2
2 ]�, for

some unknown constant a ∈ Z, a ≥ 1. It is easy to see that such a system admits
the monomial first integral I (x) = xa

1 x2; since the degree a + 1 of such a monomial
depends on the parameter a, it seems difficult to a priori guess the basis p1, . . . , pk

so that xa
1 x2 is a factor of det(Γ ): nevertheless, a simple choice of the basis and an

additional trick allows to also find such a first integral, by the procedure previously
outlined. Consider the Darboux polynomials associated with f that are functions of
p1(x) = x1 and p2(x) = x2:

Γ (x) =
[

x1 x2

x1x2 −ax2
2

]
, det

(
Γ (x)

)= −(a + 1)x1x
2
2;

this yields two Darboux polynomials associated with f : ω1(x) = x1 with char-
acteristic polynomial λ1(x) = x2 and ω2(x) = x2 with characteristic polynomial
λ2(x) = −ax2. If ω1 and ω2 are Darboux polynomials associated with f , then
ω3 = ω

k1
1 ω

k2
2 is also a Darboux polynomial associated with f , for any constant

k1, k2, with characteristic polynomial k1λ1 + k2λ2 (see Statement (3.1.2) of Theo-
rem 3.1); then, imposing that λ1k1 +k2λ2 = 0, one finds the condition k1 −ak2 = 0,
whence, taking k1 = a and k2 = 1, one concludes that I is a first integral associated
with f .

3.12 The Poincaré–Dulac Normal Form of Continuous-Time
Nonlinear Systems

The concept of the Poincaré–Dulac normal form arises when one tries to find a
diffeomorphism that linearizes a given f (x) ∈ R

n, having a linear part characterized
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by a semi-simple matrix A. When the given f can be linearized, its Poincaré–Dulac
normal form is linear, otherwise its Poincaré–Dulac normal form is as close to be
linear as possible, in a sense that will be clear later. When the matrix A of the
linear part of f is not semi-simple, similar results are obtained using the Belitskii
normal form described in Sect. 3.14. Among the numerous works dealing with the
Poincaré–Dulac normal form, the reader is referred to [5, 14, 16, 25, 31, 32, 34, 45,
50, 58, 113, 117].

Throughout this section, assume that f (x) ∈ R
n is analytic at x = 0, f (0) = 0.

The linear part of f is Ax, with A = ∂f (x)
∂x

|x=0. If not otherwise specified, assume
throughout this section that A is semi-simple.

Definition 3.13 Vector function f (x) = Ax+h(x), with A being semi-simple, h(x)

being analytic at x = 0, h(0) = 0, and having linear part equal to zero, is in the
Poincaré–Dulac normal form if

[
h(x),Ax

]= 0. (3.52)

Remark 3.29 The Poincaré–Dulac normal form is often introduced under the as-
sumption that the linear part Ax of f is characterized by A being normal, in-
stead of simply semi-simple. The two definitions coincide, apart from a linear
transformation, because, by Lemma 2.5 at p. 39, any semi-simple matrix can be
rendered normal by a linear transformation, and any normal matrix is certainly
semi-simple. Let f (x) = Asx + hs(x), with As being semi-simple; let x = Qy,
det(Q) �= 0, be a linear transformation such that Ãs,n = Q−1AsQ is normal, and let
h̃s,n(y) = Q−1hs(Qy). By Statement (1.4.2) of Theorem 1.4, the following relation
holds:

[
hs(x),Asx

]= 0 ⇐⇒ [
h̃s,n(y), Ãs,ny

]= 0.

Case A = 0 is trivial, because any h satisfies (3.52) for such an A, whence the
Poincaré–Dulac normal form of a system with a zero linear part does not give any
insight about its properties.

Remark 3.30 Since [Ax,Ax] = 0, for any A ∈ R
n×n, from (3.52) and by the bi-

linearity of the Lie bracket (see Property (1.2.2)), it follows that [f (x),Ax] = 0.
Hence, the following statements are equivalent:

(3.30.1) f is analytic at x = 0, f (0) = 0, and it is in the Poincaré–Dulac normal
form;

(3.30.2) Ax is a symmetry of f (conversely, f is a symmetry of Ax), with f being
analytic at x = 0, f (0) = 0, and f having Ax as linear part;

(3.30.3) f is analytic at x = 0, f (0) = 0, has linear part Ax and it is homogeneous
of degree 0 with respect to Ax;

(3.30.4) f is analytic at x = 0, f (0) = 0, has linear part Ax and belongs to CC(Ax).
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Given A ∈ R
n×n, let {M0, . . . ,Mr−1} be a basis of Lc(A). By Theorem 3.10, all

f ∈ CC(Ax) are parameterized by

f (x) = μ0M0x + μ1M1x + · · · + μr−1Mr−1x, (3.53)

with μi ∈ IC(Ax), i = 0, . . . , r − 1. By Statement (3.30.4) of Remark 3.30, given
the linear part Ax of f , the set of all f being in the Poincaré–Dulac normal form can
be found from (3.53) by requiring that the resulting f is analytic at x = 0, f (0) = 0,
and has Ax as linear part. Note that, when A is semi-simple, the computation of the
first integrals associated with Ax can be made as in Remark 2.9 at p. 53 or, if A is
diagonal, as in Remark 1.9 at p. 27.

Another interpretation can be given of the Poincaré–Dulac normal form, thus
yielding the notion of resonance. Thanks to the invariance of the Lie bracket to
diffeomorphisms, assume that A ∈ R

n×n is diagonal (possibly, complex); h(x) is
the linear combination (possibly, infinite) of terms

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek, (3.54)

where ek is the kth column of the n × n identity matrix E and n1, n2, . . . , nn ∈ Z
≥

are such that n1 + n2 + · · ·+ nn ≥ 2. Since A is diagonal and therefore semi-simple
(each eigenvector ek of A is mapped by A into a vector co-linear with ek over C,
i.e., λkek), the operator [·,Ax] is linear and semi-simple too, in the sense that each
term (x

n1
1 x

n2
2 · · ·xnn

n )ek is mapped by the operator [·,Ax] into a term co-linear with
(x

n1
1 x

n2
2 · · ·xnn

n )ek over C:

[(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek,Ax

]

= Aek

(
x

n1
1 x

n2
2 · · ·xnn

n

)− ek

[
n1
(
x

n1−1
1 x

n2
2 · · ·xnn

n

)
. . . nn

(
x

n1
1 x

n2
2 · · ·xnn−1

n

)]
Ax

= ek

(
λk − (n1λ1 + n2λ2 + · · · + nnλn)

)(
x

n1
1 x

n2
2 · · ·xnn

n

)
.

Then, condition [h(x),Ax] = 0 is equivalent to [(xn1
1 x

n2
2 · · ·xnn

n )ek,Ax] = 0 for
each (n1, . . . , nn, k), and condition [(xn1

1 x
n2
2 · · ·xnn

n )ek,Ax] = 0 holds if and only if
the following continuous-time resonance condition (briefly, resonance condition if
no confusion can arise between the continuous-time and discrete-time cases) among
the eigenvalues of A holds:

n1λ1 + n2λ2 + · · · + nnλn = λk, ni ∈ Z
≥,

n∑
i=1

ni ≥ 2. (3.55)

If (3.55) holds, then term (3.54) is called resonant; note that such a resonant term
need not appear into the linear combination constituting h(x) (it depends on the
value of its coefficient into the linear combination constituting h).

If A is not diagonal, but only semi-simple, the resonant terms h are those belong-
ing to the kernel of the linear operator [·,Ax].
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Remark 3.31 Resonance condition (3.55) is equivalent to the condition

LAx

(
x

n1
1 x

n2
2 · · ·xnn

n

)= λk

(
x

n1
1 x

n2
2 · · ·xnn

n

)
, (3.56)

i.e., term x
n1
1 x

n2
2 · · ·xnn

n ek is resonant if and only if the monomial x
n1
1 x

n2
2 · · ·xnn

n is
homogeneous of degree λk with respect to Ax. A monomial x

n1
1 x

n2
2 · · ·xnn

n being
homogeneous of degree λ with respect to Ax, with λ being eigenvalue of A, is said
to be resonant.

Remark 3.32 There are three possible cases of Poincaré–Dulac normal forms: the
number of n-plets (n1, . . . , nn) such that (3.55) holds for some k ∈ {1, . . . , n} is
equal to zero, it is finite, it is infinite. If f is in the Poincaré–Dulac normal form and
there are no resonances among the eigenvalues of its linear part, then f is necessarily
linear: the Poincaré–Dulac normal form of such an f coincides with its linear part.
Of course, the absence of resonances among the eigenvalues of the linear part of f

is not necessary for f to be linear: it is sufficient that the corresponding resonant
term “is not present” in the Poincaré–Dulac normal form, where the term “is not
present” is better specified in the subsequent Example 3.33. If there is an n-plet
(m1, . . . ,mn) such that

m1λ1 + · · · + mkλk + · · · + mnλn = 0, mi ∈ Z
≥,

n∑
i=1

mi ≥ 1, (3.57)

then there is an infinite number of resonances among {λ1, . . . , λn}; to be more pre-
cise, since the following relation (which is not a resonance condition) clearly holds:

(0)λ1 + · · · + (1)λk + · · · + (0)λn = λk,

one has

(�m1)λ1 + · · · + (�mk + 1)λk + · · · + (�mn)λn = λk, (3.58)

which is a resonance condition for each � ∈ Z, � ≥ 1. Vice versa, if (3.55) holds with
nk ≥ 1, then (3.57) holds with mi = ni , i �= k, and mk = nk − 1, whence there is an
infinite number of resonances among {λ1, . . . , λn}.

It is worth pointing out that the resonance condition (3.55) implies that

x
n1
1 x

n2
2 · · ·xnn

n

xk

∈ IC(Ax);

as a matter of fact, letting ω1(x) = x
n1
1 x

n2
2 · · ·xnn

n and ω2(x) = xk , one finds that
condition (3.55) is equivalent to LAxω1 = λkω1, and (since A is diagonal) LAxω2 =
λkω2: ω1 and ω2 are two Darboux polynomials associated with Ax, with the same
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characteristic value. Then, ω1
ω2

is a first integral associated with Ax, whence

x
n1
1 x

n2
2 · · ·xnn

n ek = x
n1
1 x

n2
2 · · ·xnn

n

xk

[0 . . . ek . . . 0]

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
...

xk

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since the coefficient matrix M̄k−1 := [0 . . . ek . . . 0] commutes with matrix A

and the coefficient
x

n1
1 x

n2
2 ···xnn

n

xk
is a first integral of dx

dt
= Ax, one concludes that

h(x) = ∑n−1
i=0 μiM̄ix, with M̄0, M̄1, . . . , M̄n−1 belonging to the linear centralizer

Lc(A) of A and the coefficients μi being first integrals of dx
dt

= Ax.

Example 3.29 Let A = [ 1 1
0 2

]
; A is semi-simple with distinct eigenvalues; a basis of

Lc(A) is given by
{[ 1 0

0 1

]
,
[−1 1

0 0

]}
. Set IC(Ax) is constituted by arbitrary functions

of I1(x) = (x1−x2)
2

x2
. The set of all f ∈ CC(Ax) is given by

f (x) = μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[−1 1
0 0

][
x1
x2

]
=
[
x1(μ0 − μ1) + x2μ1

x2μ0

]
,

with μ0,μ1 being arbitrary functions of I1. In order that such an f is in the
Poincaré–Dulac normal form, it is now enough to impose that f is analytic at
x = 0, f (0) = 0, and has Ax as linear part. This holds if and only if μ0 = 2 + aI1,
μ1 = 1 + aI1, with constant a ∈ R being arbitrary. Such a Poincaré–Dulac normal
form can be deduced in an alternative way. Diagonalize A with the linear transfor-
mation x = Qy,

Q =
[−1 1

0 1

]
, Ã = Q−1AQ =

[
1 0
0 2

]
.

There is only one resonance between the two eigenvalues λ1 = 1 and λ2 = 2 of Ã,
λ2 = (2)λ1 + (0)λ2, which yields the resonant term y2

1y0
2e2 = y2

1 [0 1]�. Then, in
the y-coordinates, the Poincaré–Dulac normal form is characterized by

f̃ (y) =
[

1 0
0 2

][
y1
y2

]
+ by2

1

[
0
1

]
,

where constant b ∈ R is arbitrary. Then, by the pull-back to the original coordinates,
one finds that

f (x) = Qf̃ ◦ (Q−1x
)=

[−1 1
0 1

]−1 [
y1

2y2 + by2
1

]

y1=−x1+x2,y2=x2

=
[
x1 + x2 + b(−x1 + x2)

2

2x2 + b(−x1 + x2)
2

]
,
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and such an f coincides with the one above if b = a.

Example 3.30 Let

A =
⎡
⎣

3 −4 0
2 −3 0
1 0 2

⎤
⎦ ;

the eigenvalues of A are λ1 = 1, λ2 = 2 and λ3 = −1, whence there are infinite
resonances among the eigenvalues of A,

λ1 = (n1)λ1 + (n2)λ2 + (n1 + 2n2 − 1)λ3, ∀ni ∈ Z
≥,2n1 + 3n2 − 1 ≥ 2,

λ2 = (n1)λ1 + (n2)λ2 + (n1 + 2n2 − 2)λ3, ∀ni ∈ Z
≥,2n1 + 3n2 − 2 ≥ 2,

λ3 = (n1)λ1 + (n2)λ2 + (n1 + 2n2 + 1)λ3, ∀ni ∈ Z
≥,2n1 + 3n2 + 1 ≥ 2.

Since A is semi-simple with distinct eigenvalues, a basis of the linear centralizer
Lc(A) is {A0,A1,A2}. Set IC(Ax) is constituted by all arbitrary functions of
I1(x) = (x1 − 2x2)(x1 − x2) and I2(x) = (x1 − 2x2)

2(x1 − 4
5x2 + 3

5x3). From this,
all f , f (0) = 0, having linear part Ax and being in the Poincaré–Dulac normal form
are parameterized by f (x) = Ax + h(x), with h(x) = μ0A

0x + μ1A
1x + μ2A

2x,
where μ0, μ1 and μ2 are arbitrary functions of I1, I2, such that h is analytic at
x = 0, h(0) = 0, and the linear part of h(x) is zero:

f (x) =
⎡
⎣

(3 + μ0 + 3μ1 + μ2)x1 + (−4μ1 − 4)x2
(2 + 2μ1)x1 + (−3 + μ0 − 3μ1 + μ2)x2

(1 + μ1 + 5μ2)x1 − 4μ2x2 + (2 + μ0 + 2μ1 + 4μ2)x3

⎤
⎦ .

Remark 3.33 Assume that A ∈ R
n×n is diagonal, with integer and positive eigen-

values; by this assumption, the number of resonances among the eigenvalues of A

is finite. Then, denoting by x
n1
1 x

n2
2 · · ·xnn

n ek a resonant term, one concludes that a
nonlinear system having Ax as linear part and being in the Poincaré–Dulac normal
form can always be linearized by a finite dimensional state immersion, by taking as
additional state variables just the resonant monomials x

n1
1 x

n2
2 · · ·xnn

n (see [51, 87,
89]). As a matter of fact, since LAx(x

n1
1 x

n2
2 · · ·xnn

n ) = λk(x
n1
1 x

n2
2 · · ·xnn

n ) by the res-
onance condition (3.55), and [f (x),Ax] = 0, because f is in the Poincaré–Dulac
normal form, one concludes that the monomial x

n1
1 x

n2
2 · · ·xnn

n is homogeneous of de-
gree λk with respect to Ax and f is polynomial and homogeneous of degree 0 with
respect to Ax; by Theorem 3.15, this implies that Lf (x

n1
1 x

n2
2 · · ·xnn

n ) is polynomial
and homogeneous of degree λk with respect to Ax (i.e., LAxLf (x

n1
1 x

n2
2 · · ·xnn

n ) =
λkLf (x

n1
1 x

n2
2 · · ·xnn

n )), whence it is a linear combination of all resonant monomials
of degree λk (any monomial of degree λk with respect to A is resonant!), as to be
shown.

Example 3.31 Let A = diag{λ1, λ2, λ3}, with λ1 = 1, λ2 = 2 and λ3 = 4; since, in
this case, the only resonances are given by

λ2 = (2)λ1 + (0)λ2 + (0)λ3 ⇒ e2x
2
1 ,
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λ3 = (4)λ1 + (0)λ2 + (0)λ3 ⇒ e3x
4
1 ,

λ3 = (2)λ1 + (1)λ2 + (0)λ3 ⇒ e3x
2
1x2,

λ3 = (0)λ1 + (2)λ2 + (0)λ3 ⇒ e3x
2
2 ,

all f , f (0) = 0, with linear part Ax and being in the Poincaré–Dulac normal form
are given by

f (x) =
⎡
⎣

x1

2x2 + a1x
2
1

4x3 + a2x
4
1 + a3x

2
1x2 + a4x

2
2

⎤
⎦ ,

with constants ai ∈ R being arbitrary; any such an f can be linearized by taking as
additional state variables x4 = x2

1 , x5 = x4
1 , x6 = x2

1x2 and x7 = x2
2 . To be more pre-

cise, the dynamics of x4 are described by Lf x4 = Lf x2
1 = 2x2

1 = 2x4, the dynamics
of x5 are described by Lf x5 = Lf x4

1 = 4x4
1 = 4x5, the dynamics of x6 are described

by Lf x6 = Lf x2
1x2 = a1x

4
1 + 4x2

1x2 = a1x5 + 4x6, and the dynamics of x7 are de-
scribed by Lf x7 = Lf x2

2 = 2a1x
2
1x2 + 4x2

2 = 2a1x6 + 4x7. Then, collecting such
dynamics, one has the extended linear system dxe

dt
= Aexe , with

Ae =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 2 0 a1 0 0 0
0 0 4 0 a2 a3 a4
0 0 0 2 0 0 0
0 0 0 0 4 0 0
0 0 0 0 a1 4 0
0 0 0 0 0 2a1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, xe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that, under the assumption that the real numbers ai are non-zero, the Jordan
form of Ae is

Je =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 2 1 0 0 0 0
0 0 2 0 0 0 0
0 0 0 4 1 0 0
0 0 0 0 4 1 0
0 0 0 0 0 4 1
0 0 0 0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

namely, although the original A is semi-simple, the state immersion has generated
in Ae Jordan blocks of dimension greater than 1 (Ae is not semi-simple), and this
justifies the name resonance used to represent this phenomenon. It is worth pointing
out that if some ai is equal to zero, i.e., if some resonant term is missing in the
Poincaré–Dulac normal form, then the Jordan form of Ae may differ from the above
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reported Je . For instance, if a1 = 0, the Jordan form of Ae is

J̄e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 1
0 0 0 0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

More details about the linearization by state immersion are reported in Chap. 7.

Definition 3.14 A diffeomorphism y = ϕ(x) is near-identity if it is analytic on a
neighborhood of the origin of R

n, ϕ(0) = 0, and ∂ϕ(x)
∂x

|y=0 = E.

A diffeomorphism y = ϕ(x) is near-identity if and only if its inverse x = ϕ−1(y)

is near-identity.
Let g(y) ∈ R

n be expanded as g(y) = By + ∑+∞
h=2 gh(y), where the entries

of gh(y) ∈ R
n are homogeneous of degree h with respect to the standard dila-

tion, i.e., [gh(y), y] = (1 − h)gh(y). As well known, the flow associated with g

can be expanded in Taylor series about τ = 0 as Φg(τ, y) = ∑+∞
i=0

τ i

i! L
i
gy, where

L0
gf = f and Li+1

g f = LgLi
gf , i ∈ Z

≥, f (y) ∈ R
n. Clearly, y = Φg(−τ, x) =∑+∞

i=0
(−τ)i

i! Li
gx is the inverse of x = Φg(τ, y). Since eBτ y is the linear part of

Φg(τ, y) (see Lemma 2 of [93]), if B = 0, then y = Φg(−τ, x) is near-identity.
By statement (a) of Proposition 6.1 of [57], for any formal near-identity diffeomor-
phism y = ϕ(x) and for any arbitrary τ ∈ R

>, there exists a formal g(x) such that
ϕ(x) = Φg(−τ, x), which need not be unique; g can be called the logarithm of ϕ

(see also [93]).

Remark 3.34 If A = [ 1 0
0 1

]
, since the eigenvalues of A are coincident positive real

numbers, then (see [37]) A = eB has an uncountable set of solutions; for instance,

B = [ −2 ac+bd
ad−bc

hπ 2 a2+b2
ad−bc

hπ

−2 c2+d2
ad−bc

hπ 2 ac+bd
ad−bc

hπ

]
is solution of A = eB for any integer h (including h = 0)

and for any reals a, b, c, d such that ad − bc �= 0. Hence, g(x) = − 1
τ
Bx is solution

of x = Φg(−τ, x), for any τ > 0.

Assume that B = 0, g(y) =∑+∞
h=2 gh(y). Since the entries of Li

gh
y are homoge-

neous of degree i with respect to the standard dilation, i.e., [Li
gh

y, y] = (1− i)Li
gh

y,

the entries of Li
gy have degree greater than or equal to i ≥ 2. The Taylor expan-

sion of Φg(τ, y) (respectively, Φg(−τ, x)) with respect to y (respectively, x), up

to order m ≥ 2, coincides with the Taylor expansion of
∑m

i=0
τ i

i! L
i
gy (respectively,∑m

i=0
(−τ)i

i! Li
gx); actually, if the Taylor expansion is limited to order m, then g can

be substituted with
∑m

h=2 gh.
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Example 3.32 Consider the near-identity diffeomorphism y = ϕ(x), with ϕ(x) =
[x1 x2 + x1x2 + x2

2 ]�. The objective is to find g(x) ∈ R
2 such that the Taylor

expansions of ϕ(x) and of Φg(−1, x) coincide up to order 3 and, consequently,
that the Taylor expansions of ϕ−1(y) and of Φg(1, y) coincide up to order 3. Let
g = g2 + g3, with

g2(x) =
[
a1x

2
1 + a2x1x2 + a3x

2
2

a4x
2
1 + a5x1x2 + a6x

2
2

]
,

g3(x) =
[
b1x

3
1 + b2x

2
1x2 + b3x1x

2
2 + b4x

3
2

b5x
3
1 + b6x

2
1x2 + b7x1x

2
2 + b8x

3
2

]
.

By imposing that the Taylor expansion up to order 3 of

3∑
i=0

(−1)i

i! Li
gx = x − g2(x) − g3(x) + 1

2
Lg2+g3

(
g2(x) + g3(x)

)

coincides with the Taylor expansion up to order 3 of ϕ(x), the coefficients ai of g2
and bi of g3 can be determined uniquely,

g2(x) =
[

0
−x1x2 − x2

2

]
, g3(x) =

[
0

1
2x2

1x2 + 3
2x1x

2
2 + x3

2

]
.

The following result, known as the Poincaré–Dulac Theorem (see [5, 34]), gives
sufficient conditions for transforming a continuous-time nonlinear system into its
Poincaré–Dulac normal form and, in particular, for linearizing a continuous-time
nonlinear system by a near-identity diffeomorphism.

Theorem 3.33 Let f (x) ∈ R
n be analytic at x = 0, f (0) = 0, and A = ∂f (x)

∂x
|x=0

be semi-simple. If the eigenvalues of A belong to the Poincaré domain (i.e., the
convex hull of the n points λ1, . . . , λn in the complex plane does not contain the
origin of C), then there exists a near-identity diffeomorphism y = ϕ(x) such that
ϕ∗f (y) = Ay + h̃(y), with h̃(y) ∈ R

n, h̃(0) = 0, h̃ having zero linear part, such
that [h̃(y),Ay] = 0; in particular, if there are no resonances among the eigenvalues
λi of A (i.e., condition (3.55) does not hold), then ϕ∗f is linear, ϕ∗f (y) = Ay.

By the proof of the Poincaré–Dulac Theorem 3.33, which is omitted for space
reasons, any f with a semi-simple linear part can be formally transformed into its
normal form through a formal series; in many cases, some convergence conditions
like the belonging to the Poincaré domain used in Theorem 3.33 (e.g, the Siegel
criterion, the Pliss criterion, the Bruno criterion and the BMW-C theory: see [50])
guarantee that such a transformation is analytic at x = 0. When the series is not
convergent, by the Borel Lemma [62], there exists a C∞-transformation such that
the transformed f differs from its normal form for a vector function being flat at
x = 0 (see [16] and the subsequent Theorem 3.34), i.e., by a vector function that is
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C∞ in a neighborhood of the origin and has all derivatives equal to zero at x = 0;
this also means that, for any arbitrarily large integer m > 0, there exists a polynomial
diffeomorphism such that the transformed f differs from its normal form for terms
of order higher than m.

Although the proof of the Poincaré–Dulac Theorem 3.33 is not reported, it is
worth pointing out that the near-identity diffeomorphism y = ϕ(x), when it exists,
can always be made as the composition

ϕ = ϕ2 ◦ ϕ3 ◦ ϕ4 ◦ · · · ,
where ϕk is a near-identity diffeomorphism satisfying

ϕk(x) = x + ψk(x),

with the entries ψk,i(x) ∈ R of ψk(x) ∈ R
n being homogeneous of degree k with

respect to the standard dilation (namely, Lxψk,i = kψk,i and [ψk(x), x] = (1 −
k)ψk(x)). Let f (x) = Ax +∑+∞

h=2 fh(x), with the entries fh,i(x) ∈ R of fh(x) ∈ R
n

being homogeneous of degree h with respect to the standard dilation (namely,
Lxfh,i = hfh,i and [fh(x), x] = (1 − h)fh(x)). Consider the near-identity diffeo-
morphism y = ϕk(x). Hence, taking into account that ϕ−1

k (y) = y − ψk(y) + · · ·
(where · · · denotes terms of degree higher than k), one concludes that

ϕk∗f (y) = Ay +
k−1∑
h=2

fh(y) + fk(y) − [
ψk(y),Ay

]+ · · · ,

where · · · denotes terms of degree higher than k: the terms Ax +∑k−1
h=2 fh(x) of

f (x) having degree less than k are not affected by the near-identity diffeomorphism
y = ϕk(x), the term fk(x) becomes fk(y) − [ψk(y),Ay], and the terms of f (x)

having degree greater than k are modified, but their push-forward is not reported.
Letting

fk(y) =
∑

n1,n2,...,nn,k

an1,n2,...,nn,k

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek,

ψk(y) =
∑

n1,n2,...,nn,k

bn1,n2,...,nn,k

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek,

since

[
ψk(y),Ay

]=
∑

n1,n2,...,nn,k

bn1,n2,...,nn,k

(
λk −(n1λ1 +· · ·+nnλn)

)(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek,

each non-resonant term an1,n2,...,nn,k(x
n1
1 x

n2
2 · · ·xnn

n )ek of fk(y) can be removed by
taking

bn1,n2,...,nn,k = an1,n2,...,nn,k

λk − (n1λ1 + n2λ2 + · · · + nnλn)
,
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whereas if the term an1,n2,...,nn,k(x
n1
1 x

n2
2 · · ·xnn

n )ek of fk(y) is resonant with respect
to the eigenvalues of A, then it cannot be removed by the near-identity diffeomor-
phism y = ϕk(x).

The following Example 3.33 shows that, although a vector function f does not
contain resonant terms, there may exist near-identity diffeomorphisms y = ϕ(x)

such that ϕ∗f (y) contains resonant terms; in particular, this show that the lack of
resonant terms in f does not guarantee that such an f can be linearized. On the
contrary, the subsequent Example 3.34 shows that the lack of resonant terms in f is
not necessary for f to be linearizable.

Example 3.33 Consider f (x) = [−x1 + x3
2 x2 + x4

1x2]�; the linear part of f is Ax,
with A = diag{−1,1}, and the Poincaré–Dulac normal form associated with A is
Ax + h(x), with h(x) = [(μ0 − μ1)x1 (μ0 + μ1)x2]�, where μ0,μ1 are arbitrary
functions of x1x2 such that h(x) is analytic at x = 0 and has zero linear part. Clearly,
the two nonlinear terms x3

2e1 and x4
1x2e2 appearing in f are not resonant: so one

could say that “no resonant term is present in f ”, which is not true. As a matter of
fact, consider the near-identity diffeomorphism y = ϕ(x), ϕ(x) = [x1 − 1

4x3
2 x2]�,

which is chosen with the aim of eliminating the nonlinear term x3
2e1 of lower degree

appearing in f . The resulting push-forward of f is

ϕ∗f (y) =
[
−y1 − 3

4y3
2(y1 + 1

4y3
2)4

y2 + (y1 + 1
4y3

2)4y2

]
;

now, ϕ∗f (y) contains two resonant terms, − 3
4y3

2y4
1e1 and y3

1y4
2e2.

Example 3.34 Consider

f (x) =
[

x1

2x3
1+x2

1+4x1x2+3x2
1+x1

]
=
[

x1
3x2

]
+
[

0
x2

1 + x1x2

]
+
[

0
x3

1 − x2
1x2

]
+ · · · ;

by the Taylor expansion of f it is easy to check that A = diag{1,3} is the dynamic
matrix of the linear part Ax of f and that the resonant term x3

1e2 is present into f .
Nevertheless, ϕ∗f (y) = Ay, for the near-identity diffeomorphism y = ϕ(x), with

ϕ(x) = [x1
x2+x2

1
1+x1

]� and ϕ−1(y) = [y1 y2 − y2
1 + y1y2]�. The resonant term x3

1e2
does not imply that f cannot be linearized, because it disappears when the first
transformation ϕ2 is applied in order to eliminate the second order terms.

Remark 3.35 The two examples above have clarified that the transformation com-
puted to eliminate nonlinearities of order k may introduce or remove resonant terms
of order higher than k. Assume that matrix A of the linear part Ax of f is diag-
onal. If either all monomials contained in f (x) − Ax are resonant or there are no
non-resonant monomials in f (x) − Ax of degree lower than a resonant one, then
there exists no near-identity diffeomorphism y = ϕ(x) such that ϕ∗f (y) = Ay. For
instance, f (x) = [x1 2x2 + x2

1 ]� and f (x) = [x1 + x1x
2
2 2x2 + x2

1 ]� are not lin-
earizable by a near-identity diffeomorphism.
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Remark 3.36 Let f (x) = Asx + hs(x), with As being semi-simple, hs(0) = 0,
hs having zero linear part. Let x = Qξ , det(Q) �= 0, be a linear transforma-
tion such that Ãs,n = Q−1AsQ is normal, and let f̃ (ξ) = Q−1f (Qξ) = Ãs,nξ +
h̃s,n(ξ). Assume that ξ = φ̃(η) is a near-identity diffeomorphism such that f̂ (η) =
(
∂φ̃
∂η

)−1f̃ ◦ φ̃(η) is in the Poincaré–Dulac normal form, f̂ (η) = Ãs,nη + ĥs,n(η),

where [ĥs,n(η), Ãs,nη] = 0. Then, f̄ (y) = Qf̂ (Q−1y) is in the Poincaré–Dulac
normal form, f̄ (y) = Asy + h̄s(y), because [h̄s(y),Asy] = 0, by the invariance
of the Lie bracket to diffeomorphisms. Hence, f (x) = Asx + hs(x) can be directly
transformed into f̄ (y) = Asy + h̄s(y), with [h̄s(y),Asy] = 0, by the near-identity
diffeomorphism x = φ(y), where φ(y) = Qφ̃(Q−1y). This can be represented by
the following commutative diagram:

f (x) = Asx + hs(x)
ξ=Q−1x

x=φ(y)

f̃ (ξ) = Ãs,nξ + h̃s,n(ξ)

ξ=φ̃(η)

{
f̄ (y) = Asy + h̄s(y)

[h̄s (y),Asy] = 0

{
f̂ (η) = Ãs,nη + ĥs,n(η)

[ĥs,n(η), Ãs,nη] = 0y=Qη

Theorem 3.34 For any given vector function f (x) ∈ R
n being C∞ in a neigh-

borhood of the origin of R
n, with linear part Ax (A being semi-simple), there ex-

ists a diffeomorphism y = ϕ(x) being C∞ in a neighborhood of the origin of R
n,

with ϕ(0) = 0 and ∂ϕ(x)
∂x

|x=0 = E, such that the push-forward of f takes the form
ϕ∗f (y) = Ay + h(y) + α(y), where Ay + h(y) is in the Poincaré–Dulac normal
form and α(y) is flat.

Combining the Poincaré–Dulac Theorem 3.33 with the concept of symmetry, one
can prove the following theorem, which gives necessary and sufficient conditions for
the linearization of f .

Theorem 3.35 Assume that f (x) ∈ R
n is analytic at x = 0 with f (0) = 0 and

with linear part Ax, where A need not be semi-simple. There exists a near-identity
diffeomorphism y = ϕ(x) such that the push-forward of f takes the form ϕ∗f (y) =
Ay if and only if there exists a g(x) ∈ R

n, analytic at x = 0, g(0) = 0, such that
[f,g] = 0, and the linear part of g is x.

Proof If f̃ (y) = Ay, then g̃(y) = y satisfies [f̃ , g̃] = 0. Hence, by the pull-back
of g̃, one obtains g(x) = ϕ∗g̃(x) = (

∂ϕ
∂x

)−1ϕ(x) that is analytic at x = 0, satisfies
g(0) = 0, and has x as linear part. Furthermore, by the invariance of the Lie bracket
to diffeomorphisms, [f,g] = 0. Conversely, for any g being analytic at x = 0,
g(0) = 0, and with linear part x, the Poincaré–Dulac Theorem 3.33 implies the ex-
istence of a near-identity diffeomorphism y = ϕ(x) such that the push-forward of g
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takes the form ϕ∗g(y) = y, by virtue of the absence of resonances among the eigen-
values of the linear part of g. If [f,g] = 0, then [ϕ∗f (y),ϕ∗g(y)] = [ϕ∗f (y), y] =
0; condition [ϕ∗f (y), y] = 0 implies that ϕ∗f is homogeneous of degree 0 with
respect to the standard dilation (i.e., the dilation with all weights being equal to 1);
since ϕ∗f is analytic at y = 0 and ϕ∗f (0) = 0, ϕ∗f is necessarily linear. �

Remark 3.37 Let g(x) ∈ R
n be analytic at x = 0, g(0) = 0, with linear part x.

Hence, by the Poincaré–Dulac Theorem 3.33, there exists a near-identity diffeo-
morphism y = ϕ(x) such that ϕ∗g(y) = y. By statement (a) of Proposition 6.1
of [57], such a near-identity diffeomorphism can be formally computed by express-
ing ϕ(x) = Φh(−τ, x), for some τ ∈ R

> and h(x) ∈ R
n being analytic at x = 0,

h(0) = 0, with zero linear part. With no loss of generality, let τ = 1. Hence, one has

Φh∗g = g + [h,g] + 1

2

[
h, [h,g]]+ 1

3!
[
h,
[
h, [h,g]]]+ · · · (3.59)

Letting h(y) = h2(y)+h3(y)+h4(y)+· · · , g(y) = y+g2(y)+g3(y)+g4(y)+· · · ,
and g̃ = Φh∗g, where the entries of hi and gi are polynomial and homogeneous
of degree i with respect to the standard dilation, [hi, y] = (1 − i)hi and [gi, y] =
(1 − i)gi , one finds that g̃(y) = y + g̃2(y) + g̃3(y) + g̃4(y) + · · · , where

g̃2 = g2 + [h2, y],
g̃3 = g3 + [h2, g2] + [h3, y] + 1

2

[
h2, [h2, y]],

g̃4 = g4 + [h2, g3] + [h3, g2] + [h4, y] + 1

2

[
h2, [h2, g2]

]

+ 1

2

[
h2, [h3, y]]+ 1

2

[
h3, [h2, y]]+ 1

3!
[
h2,

[
h2, [h2, y]]], . . .

Therefore, one can obtain g̃(y) = y by letting g̃i = 0, i ∈ Z, i ≥ 2. Taking into
account that [hi(y), y] = (1 − i)hi(y), the equations g̃i = 0, i ∈ Z, i ≥ 2, can be
solved uniquely in hi , i ∈ Z, i ≥ 2: at the first step, one computes uniquely

h2 = g2;

at the second step, using the knowledge of h2 and some simplifications, one com-
putes uniquely

h3 = 1

2
g3;

then, using the knowledge of h2 and h3 and some simplifications, one computes
uniquely

h4 = 1

3
g4 + 1

12
[g2, g3];
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proceeding in the same manner, one obtains

h5 = 1

4
g5 + 1

12
[g2, g4],

h6 = 1

5
g6 + 3

40
[g2, g5] + 1

60
[g3, g4] − 1

240

[
g3, [g2, g3]

]+ 1

360

[
g2, [g2, g4]

]

− 1

720

[
g2,

[
g2, [g2, g3]

]]
,

h7 = 1

6
g7 + 1

15
[g2, g6] + 1

48
[g3, g5] + 1

180

[
g2, [g3, g4]

]− 1

144

[
g3, [g2, g4]

]

+ 1

240

[
g2, [g2, g5]

]− 1

720

[
g2,

[
g3, [g2, g3]

]]− 1

720

[
g2,

[
g2, [g2, g4]

]]
.

If the desired order of approximation is higher than 7, the same computations can be
performed by increasing the order of approximation of h and g. It is worth pointing
out that if g(x) = x + gk(x), for some k ∈ Z, k ≥ 2, then the unique solution of the
above equations is h(x) = 1

k−1gk(x).

Example 3.35 Consider g(x) = x + g2(x), where g2(x) = [x2
2 x2

1 ]�. Then, letting
h(x) = g2(x) = [x2

2 x2
1 ]�, one finds that Φh∗g(y) = y, where

y = Φh∗(−1, x) = x − h(x) + 1

2
Lhh(x) − 1

3!L
2
hh(x) + O

(
x5)

=
[
x1
x2

]
−
[
x2

2

x2
1

]
+ 1

2

[
2x2

1x2

2x1x
2
2

]
− 1

3!

[
4x1x

3
2 + 2x4

1

2x4
2 + 4x3

1x2

]
+ O

(
x5)

x = Φh∗(1, y) = y + h(y) + 1

2
Lhh(y) + 1

3!L
2
hh(y) + O

(
y5)

=
[
y1
y2

]
+
[
y2

2

y2
1

]
+ 1

2

[
2y2

1y2

2y1y
2
2

]
+ 1

3!

[
4y1y

3
2 + 2y4

1

2y4
2 + 4y3

1y2

]
+ O

(
y5).

The following theorem gives necessary and sufficient conditions for the trans-
formation of f into its Poincaré–Dulac normal form when the linear part of f is
semi-simple; it can be seen as an extension of Theorem 3.35.

Theorem 3.36 Assume that f (x) ∈ R
n is analytic at x = 0, f (0) = 0, and with

linear part Ax, where A is semi-simple. There exists a near-identity diffeomorphism
y = ϕ(x) such that the push-forward ϕ∗f of f is in the Poincaré–Dulac normal
form if and only if there exist g1(x) ∈ R

n and g2(x) ∈ R
n, analytic at x = 0, g1(0) =

0 and g2(0) = 0, such that [f,g1] = 0 and [g1, g2] = 0, with the linear part of g1
being Ax and the linear part of g2 being x.

Proof If f̃ (y) = Ay + h̃, where h̃ satisfies [h̃(y),Ay] = 0, then g̃1(y) = Ay and
g̃2(y) = y satisfy [f̃ , g̃1] = 0 and [g̃1, g̃2] = 0. Hence, by the pull-backs of g̃1
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and g̃2, one concludes that g1 = ϕ∗g̃1 and g2 = ϕ∗g̃2 are analytic at x = 0, satisfy
g1(0) = 0 and g2(0) = 0, and have Ax and x as linear part, respectively. Moreover,
by the invariance of the Lie bracket to diffeomorphisms, [f,g1] = 0 and [g1, g2] =
0. Conversely, for any g2 being analytic at x = 0, g2(0) = 0, and with linear part
x, the Poincaré–Dulac Theorem 3.33 implies the existence of a near-identity diffeo-
morphism y = ϕ(x) such that in these coordinates ϕ∗g2(y) = y. If [g1, g2] = 0, then
[ϕ∗g1(y),ϕ∗g2(y)] = [ϕ∗g1(y), y] = 0; condition [ϕ∗g1(y), y] = 0 implies that
ϕ∗g1 is homogeneous of degree 0 with respect to the standard dilation; since ϕ∗g1
is analytic at y = 0, it is necessarily linear, ϕ∗g1(y) = Ay. Similarly, if [f,g1] = 0,
then [ϕ∗f (y),ϕ∗g1(y)] = [ϕ∗f (y),Ay] = 0; condition [ϕ∗f (y),Ay] = 0 implies
that ϕ∗f is homogeneous of degree 0 with respect to the Ay; since ϕ∗f is analytic
at y = 0, ϕ∗f (0) = 0, and has Ay as linear part, condition [ϕ∗f (y),Ay] = 0 implies
that ϕ∗f is necessarily in the Poincaré–Dulac normal form. �

Remark 3.38 Assume that g is analytic at x = 0, g(0) = 0, and has x as linear part.
By the proof of Theorem 3.35, g = (

∂ϕ
∂x

)−1ϕ. Then, all f ∈ CC(g) being analytic
at x = 0 are jointly linearized by y = ϕ(x). Assume that g2 is analytic at x = 0,
g2(0) = 0, and has x as linear part. By the proof of Theorem 3.36, g2 = (

∂ϕ
∂x

)−1ϕ.
Let g1 ∈ CC(g2) be analytic at x = 0, with linear part Ax and A being semi-simple;
then, all f ∈ CC(g1) being analytic at x = 0 and having the same linear part Ax as
g1 are jointly transformed in the Poincaré–Dulac normal form by y = ϕ(x).

The next result, valid for scalar systems, can be seen as a corollary of Theo-
rem 3.35, but has a constructive proof.

Corollary 3.2 Assume that f �= 0. Under the assumptions of Theorem 3.35, if
n = 1, then f (x) = λx + k(x), with λ = ∂f (x)

∂x
|x=0 and k(x) denoting second and

higher order terms, can be linearized by a near-identity diffeomorphism y = ϕ(x)

(i.e., ϕ∗f (y) = λy) if and only if λ �= 0.

Proof If f can be linearized by a near-identity diffeomorphism y = ϕ(x), then the
push-forward of f takes the form ϕ∗f (y) = λy. Since case ϕ∗f = 0 has been ex-
cluded by the assumption f �= 0, one finds that λ �= 0. The sufficiency follows
from Theorem 3.35 by taking g = 1

λ
f . In this simple case, a more concrete suf-

ficiency proof can be provided. The linearizing diffeomorphism can be recast as
y = x + xϑ(x), where ϑ(0) = 0. Then, letting f (x) = λx + x2k̄(x), k̄(x) analytic
at x = 0, by dy

dt
= λy, one obtains

(
1 + ϑ(x) + x

dϑ(x)

dx

)(
λx + x2k̄(x)

)= λ
(
x + xϑ(x)

)
,

which can be rewritten as the following Cauchy problem:

dϑ(x)

dx
= − (1 + ϑ(x))k̄(x)

λ + xk̄(x)
, ϑ(0) = 0, (3.60)
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which by well known existence results (see, e.g., the Cauchy–Kovalevskaya Theo-
rem 1.8 at p. 20) has a local solution ϑ(x) analytic at x = 0. �

Example 3.36 Let f (x) = sin(x). Then, since sin(x) = x − 1
6x3 +O(x4), one finds

that λ = 1 and k̄(x) = sin(x)−x

x2 = − 1
6x + O(x2). Relation (3.60) can be rewritten as

dϑ

(1 + ϑ)
=
(

− k̄(x)

λ + xk̄(x)

)
dx,

namely

dϑ

(1 + ϑ)
=
(

− sin(x) − x

x sin(x)

)
dx.

By integration,

ln
(
1 + ϑ(x)

)= ln

(
c

sin(x)

x(1 + cos(x))

)
,

where c is a constant, whence one finds that ϑ(x) = c sin(x)−x−x cos(x)
x(1+cos(x))

= ( 1
2c − 1) +

1
24cx2 + O(x3); imposing that ϑ(0) = 0, one can fix the value of c, c = 2, thus

obtaining the linearizing transformation y = x + xϑ(x) = 2 sin(x)
1+cos(x)

= x + 1
12x3 +

O(x4), which satisfies Lf ϕ = ϕ, with ϕ(x) = x + xϑ(x).

Corollary 3.3 Assume that f (x) ∈ R
n and g(x) ∈ R

n are analytic at x = 0,
f (0) = 0 and g(0) = 0, with linear parts Ax and Bx, respectively; A and B need
not be semi-simple. If there exist two constants a, b ∈ R such that aA + bB = E

and [f,g] = 0, then there exists a near-identity diffeomorphism y = ϕ(x) such that
ϕ∗f (y) = Ay.

Proof If [f,g] = 0, then [f, ĝ] = 0, with ĝ = af + bg; since the linear part of ĝ is
x, the proof of the theorem follows from Theorem 3.35. �

Corollary 3.4 Let n = 2. Assume that f (x) ∈ R
2 and g(x) ∈ R

2 are analytic at
x = 0, f (0) = 0 and g(0) = 0, with diagonal linear parts Ax and Bx, and such
that [f,g] = 0. If Ax and Bx are not co-linear over R (i.e., if det([Ax Bx]) �= 0),
then there exist two constants a, b ∈ R such that aA + bB = E, whence there exists
a near-identity diffeomorphism y = ϕ(x) such that ϕ∗f (y) = Ay.

Proof Clearly, from A = diag{A1,1,A2,2} and B = diag{B1,1,B2,2}, taking into ac-
count that det([Ax Bx]) = (A1,1B2,2 − A2,2B1,1)x1x2, one concludes that condi-
tion det([Ax Bx]) �= 0 is equivalent to A1,1B2,2 − A2,2B1,1 �= 0. Now, aA + bB =
diag{aA1,1 + bB1,1, aA2,2 + bB2,2}, whence from aA + bB = E, one obtains

a = B2,2−B1,1
A1,1B2,2−A2,2B1,1

and b = A1,1−A2,2
A1,1B2,2−A2,2B1,1

. �
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Example 3.37 Let f (x) = [ c1x1

c2x2+c3x
2
1

]
, g(x) = [ x1

2x2

]
, which clearly satisfy [f,g] =

0 (by construction, f represents the set of all vector functions being polynomial and
homogeneous of degree 0 with respect to g); the linear parts of f and g are Ax

and Bx, respectively, where A = [ c1 0
0 c2

]
and B = [ 1 0

0 2

]
. By aA + bB = a

[ c1 0
0 c2

]+
b
[ 1 0

0 2

]= [ ac1+b 0
0 ac2+2b

]
, imposing that aA + bB = E, one obtains a = 1

2c1−c2
, b =

c1−c2
2c1−c2

, under the assumption that 2c1 − c2 �= 0, which is equivalent to say that term
[ 0

x2
1

]
is not resonant. Then, ĝ(x) = 1

2c1−c2

[ c1x1

c2x2+c3x
2
1

]+ c1−c2
2c1−c2

[ x1
2x2

]= [ x1

x2+ c3
2c1−c2

x2
1

]

is a symmetry of f , analytic at x = 0, ĝ(0) = 0, and with linear part x, which
implies, by Corollary 3.3, that f can be linearized; in particular, the linearizing
near-identity diffeomorphism is y = ϕ(x), with

ϕ(x) =
[

x1

x2 − c3
2c1−c2

x2
1

]
,

which satisfies Lf ϕ = Aϕ.

The following theorem shows how to compute a diffeomorphism y = ϕ(x), when
it exists. Some hints for its applicability are given in [92].

Theorem 3.37 There exists a diffeomorphism y = ϕ(x), ϕ(x) : U ∗ → R
n, for some

open and connected U ∗ ⊆ U , with 0 ∈ U ∗, such that g = (
∂ϕ
∂x

)−1ϕ if and only if
there exist h1(x), . . . , hn(x) ∈ R

n (hi being analytic on U ∗) such that

hi + [g,hi] = 0, i = 1, . . . , n, (3.61a)

[hi, hj ] = 0, i, j ∈ {1, . . . , n}, (3.61b)

det(H) �= 0, (3.61c)

where H = [h1 . . . hn]. Furthermore, the rows of H(0)H−1(x) are exact one-forms
and ∂ϕ(x)

∂x
= H(0)H−1(x), which means that y = ϕ(x) can be computed by integrat-

ing the Jacobian matrix H(0)H−1(x). If (3.61a)–(3.61c) hold on the whole R
n and

the vector functions hi are complete (i.e., the flow associated with hi is defined for
all (t, x) ∈ R × R

n), then the diffeomorphism y = ϕ(x) thus computed is global.

Proof Necessity of (3.61a)–(3.61c): let g̃(y) = Ey and define h̃i (y) := ei , where ei

is the ith column of the n × n identity matrix E. Then,

h̃i + [
g̃, h̃i

] = h̃i + Lg̃h̃i − L
h̃i

g̃ = ei − ei = 0,

[
h̃i , h̃j

] = [ei, ej ] = 0.

Then, hi(x) = (
∂ϕ(x)

∂x
)−1ei , i = 1, . . . , n, satisfy (3.61a) and (3.61b), by the invari-

ance of the Lie bracket to diffeomorphisms, and also (3.61c), because with this
choice H(x) = (

∂ϕ(x)
∂x

)−1 and H(0) = E.
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Sufficiency of (3.61a)–(3.61c): let K(x) = H(x)H−1(0), and let ki(x) denote
the ith column of K(x). It is easy to see that

ki + [g, ki] = 0, i = 1, . . . , n, (3.62a)

[ki, kj ] = 0, i, j ∈ {1, . . . , n}, (3.62b)

K(0) = E. (3.62c)

By the Frobenius Theorem 1.9 at p. 21, in view of (3.62b) and (3.62c) the rows
of matrix K−1(x) = H(0)H−1(x) are exact one-forms. Let ∂ ϕ

∂x
= K−1(x), i.e., de-

fine each ϕi(x), i = 1, . . . , n, as the integral of the ith row of K−1(x) such that
ϕi(0) = 0. In view of (3.62a)–(3.62c), ϕ(x) is a near-identity diffeomorphism. Since
k̃i (y) = (

∂ ϕ
∂x

ki) ◦ ϕ−1(y) = ei , i = 1, . . . , n, (3.62a) implies that

ei + [g̃, ei] = 0, i = 1, . . . , n,

whence, taking into account that g(0) = 0 ⇒ g̃(0) = 0, one has that g̃(y) = y.
If (3.61a) and (3.61b) hold in the whole R

n, where all the functions involved are
assumed to be analytic, det(H)(x) �= 0 in the whole R

n, and the vector functions
hi are complete (i.e., the flow Φhi

(t, x) is defined for all (t, x) ∈ R × R
n), for

all i = 1, . . . , n, then y = ϕ(x) is a global diffeomorphism, as well as its inverse
x = ϕ−1(y). �

Example 3.38 Consider

f (x) =
⎡
⎢⎣

x2 + x2
1

x1 − 2x1x2 − 2x3
1

−4x1x2 + 4x1x
2
2 + 4x3

1x2 − 2x3
1 + x3 + x2

1 + x2
2

⎤
⎥⎦ .

The linear part of f is given by

A = ∂f (x)

∂x

∣∣∣∣
x=0

=
⎡
⎣

0 1 0
1 0 0
0 0 1

⎤
⎦ ,

which has λ1 = λ2 = 1 and λ3 = −1 as eigenvalues; matrix A is semi-simple, but
with an infinite number of resonances: therefore, the linearization of f cannot be
addressed by the Poincaré–Dulac Theorem 3.33. Nevertheless, f can be actually
linearized because it admits the following symmetry:

g(x) =
⎡
⎣

x1

x2 − x2
1

x3 − x2
1 − x2

2 + 2x2
1x2

⎤
⎦
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having as linear part

B = ∂g(x)

∂x

∣∣∣∣
x=0

=
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ .

Theorem 3.37 can be used to linearize g(x). Define

h1(x) :=
⎡
⎣

0
0
1

⎤
⎦ , h2(x) :=

⎡
⎣

0
1

−2x2

⎤
⎦ , h3(x) :=

⎡
⎣

1
−2x1

−2x1 + 4x1x2

⎤
⎦ .

Then, it is easy to check that (3.61a) and (3.61b) hold. Hence, defining

H(x) :=
⎡
⎣

0 0 1
0 1 −2x1
1 −2x2 −2x1 + 4x1x2

⎤
⎦ ,

since condition (3.61c) holds, one can compute the linearizing transformation by
integrating the three rows of

H(0)H−1(x) =
⎡
⎣

0 0 1
0 1 0
1 0 0

⎤
⎦
⎡
⎣

2x1 2x2 1
2x1 1 0
1 0 0

⎤
⎦=

⎡
⎣

1 0 0
2x1 1 0
2x1 2x2 1

⎤
⎦ ,

which define the global diffeomorphism y = ϕ(x), with

ϕ(x) =
⎡
⎣

x1

x2 + x2
1

x3 + x2
1 + x2

2

⎤
⎦ ;

in this case, it is easy to compute the flows of h1, h2 and h3 and verify that h1, h2
and h3 are complete.

Theorem 3.38 Assume that B ∈ R
n×n is semi-simple and that h(x) ∈ R

n is analytic
at x = 0, h(0) = 0. Then,

[
Bx,

[
Bx,h(x)

]]= 0 ⇐⇒ [
Bx,h(x)

]= 0.

Proof The implication [Bx, [Bx,h(x)]] = 0 ⇐= [Bx,h(x)] = 0 is trivial. Consider
the implication [Bx, [Bx,h(x)]] = 0 =⇒ [Bx,h(x)] = 0. Since B is semi-simple,
both operators [Bx, [Bx, ·]] and [Bx, ·] are linear and semi-simple. By the invari-
ance of the Lie bracket to diffeomorphisms, assume that B is diagonal. Hence, con-
sider each monomial term x

n1
1 · · ·xnn

n ek constituting h(x), in its formal Taylor series
expansion, separately from the others. Now, from

[
Bx,

[
Bx,x

n1
1 · · ·xnn

n ek

]] = (n1λ1 + · · · + nnλn − λk)
2x

n1
1 · · ·xnn

n ek,[
Bx,x

n1
1 · · ·xnn

n ek

] = (n1λ1 + · · · + nnλn − λk)x
n1
1 · · ·xnn

n ek,
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it is easy to see that [Bx, [Bx,x
n1
1 · · ·xnn

n ek]] = 0 implies that n1λ1 + · · · + nnλn −
λk = 0, which implies that [Bx,x

n1
1 · · ·xnn

n ek] = 0. �

Next theorem states that if a symmetry g of f is in the Poincaré–Dulac normal
form, then the linear part of g is also a symmetry of f . This is a very technical result
that is useful in Chap. 7.

Theorem 3.39 Assume that f (x) ∈ R
n and g(x) ∈ R

n are analytic at x = 0,
f (0) = 0 and g(0) = 0, with linear parts characterized by A = ∂f (x)

∂x
|x=0 and

B = ∂g(x)
∂x

|x=0, f (x) = Ax +h(x) and g(x) = Bx +k(x). Assume that A and B are
semi-simple. If g(x) is in the Poincaré–Dulac normal form, [Bx, k(x)] = 0, then

[
f (x), g(x)

]= 0 =⇒ [
f (x),Bx

]= 0.

Proof Let h(x) = ∑−1
i=−∞ h[i](x) and k(x) = ∑−1

i=−∞ k[i](x), where h[i](x) and
k[i](x) are homogeneous of degree i with respect to the standard dilation, i.e.,
[h[i](x), x] = ih[i](x) and [k[i](x), x] = ik[i](x). Then, relation [f (x), g(x)] = 0
can be rewritten as

0 = [
f (x), g(x)

]= [
Ax + h[−1](x) + . . . ,Bx + k[−1](x) + · · · ]

= ([Ax,Bx])+ ([
Ax,k[−1](x)

]+ [
h[−1](x),Bx

])

+ ([
Ax,k[−2](x)

]+ [
h[−1](x), k[−1](x)

]+ [
h[−2](x),Bx

])+ · · · ,

where [Ax,Bx] is homogeneous of degree 0 with respect to the standard dilation,
[Ax,k[−1](x)]+ [h[−1](x),Bx] of degree −1, [Ax,k[−2](x)]+ [h[−1](x), k[−1](x)]
+ [h[−2](x),Bx] of degree −2 and so on. Therefore, condition 0 = [f (x), g(x)] is
equivalent to conditions

[Ax,Bx] = 0, (3.63a)
[
Ax,k[−1](x)

] = [
Bx,h[−1](x)

]
, (3.63b)

...

where the dots indicate the countable equations corresponding respectively to brack-
ets of a given degree of homogeneity. From (3.63b), one obtains

[
Bx,

[
Ax,k[−1](x)

]]= [
Bx,

[
Bx,h[−1](x)

]]; (3.64)

by the Jacobi identity,
[
Bx,

[
Ax,k[−1](x)

]]= [
Ax,

[
Bx, k[−1](x)

]]+ [
k[−1](x), [Ax,Bx]],

from which it can be deduced that [Bx, [Ax,k−1(x)]] = 0, because [Ax,Bx] = 0
and condition [Bx, k(x)] = 0 implies [Bx, k[−1](x)] = 0. Hence, by (3.64),

[
Bx,

[
Bx,h[−1](x)

]]= 0,
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which, taking into account that B is semi-simple, implies (by Theorem 3.38) that
[Bx,h[−1](x)] = 0. Proceeding in this way, one can show that [Bx,h[i](x)] = 0 for
all i ∈ Z

<, whence that [f (x),Bx] = 0. �

3.13 Homogeneity and Resonance of Continuous-Time
Nonlinear Systems

Aim of this section is to point out the relationship existing between homogeneity
and resonance in the continuous-time case.

Let f [m] and g be analytic at x = 0, with f [m](0) that need not be equal to
zero. Assume that g is linear, g(x) = Bx, with B being real and diagonal, B =
diag{γ1, . . . , γn}. Assume that f [m] is homogeneous of degree m ∈ Z with respect
to g, [f [m](x),Bx] = mf [m](x). Since B is semi-simple, operator [·,Bx] is linear
and semi-simple too. Therefore, each term (x

n1
1 · · ·xnn

n )ek , ni ∈ Z
≥, of f [m] satisfies

[(
x

n1
1 · · ·xnn

n

)
ek,Bx

]= m
(
x

n1
1 · · ·xnn

n

)
ek; (3.65)

taking into account that, if f̂ (x) = (x
n1
1 · · ·xnn

n )ek , then

L
f̂
Bx = (

x
n1
1 · · ·xnn

n

)
Bek = γk

(
x

n1
1 · · ·xnn

n

)
ek,

LBxf̂ (x) = (n1γ1 + · · · + nnγn)
(
x

n1
1 · · ·xnn

n

)
ek,

condition (3.65) leads to the following continuous-time generalized resonance con-
dition (briefly, generalized resonance condition):

γk − m = n1γ1 + · · · + nnγn, ni ∈ Z
≥. (3.66)

This means that if f [m] is analytic at x = 0 and homogeneous of degree m with
respect to g, then it is polynomial and each its term (x

n1
1 · · ·xnn

n )ek satisfies the
generalized resonance condition (3.66).

Example 3.39 Consider B = diag{γ1, γ2, γ3}, with γ1 = γ2 = 1 and γ3 = 2. Let
m = 2. Then, the generalized resonance conditions relative to γ1 and γ2 (i.e., for
k ∈ {1,2} in (3.66)) are never satisfied; the generalized resonance condition relative
to γ3 (i.e., for k = 3) yields

γ3 − 2 = n1γ1 + n2γ2 + n3γ3 ⇒ x
n1
1 x

n2
2 x

n3
3 e3

0 = (0)γ1 + (0)γ2 + (0)γ3 ⇒ e3
,

which is satisfied if and only if n1 = n2 = n3 = 0. This means that the term
x0

1x0
2x0

3e3 is the only one that can be present is f [2], which is therefore given by

f [2](x) = a1e3 =
⎡
⎣

0
0
a1

⎤
⎦ .
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Let m = 1. Then, the generalized resonance condition relative to γ1 yields

γ1 − 1 = n1γ1 + n2γ2 + n3γ3 ⇒ x
n1
1 x

n2
2 x

n3
3 e1

0 = (0)γ1 + (0)γ2 + (0)γ3 ⇒ e1
;

the generalized resonance condition relative to γ2 yields

γ2 − 1 = n1γ1 + n2γ2 + n3γ3 ⇒ x
n1
1 x

n2
2 x

n3
3 e2

0 = (0)γ1 + (0)γ2 + (0)γ3 ⇒ e2
;

the generalized resonance condition relative to γ3 yields

γ3 − 1 = n1γ1 + n2γ2 + n3γ3 ⇒ x
n1
1 x

n2
2 x

n3
3 e3

1 = (1)γ1 + (0)γ2 + (0)γ3 ⇒ x1e3
1 = (0)γ1 + (1)γ2 + (0)γ3 ⇒ x2e3

;

hence,

f [1](x) = a1e1 + a2e2 + a3x1e3 + a4x2e3 =
⎡
⎣

a1
a2

a3x1 + a4x2

⎤
⎦ .

Let m = 0. Then, the generalized resonance condition relative to γ1 yields

γ1 − 0 = n1γ1 + n2γ2 + n3γ3 ⇒ x
n1
1 x

n2
2 x

n3
3 e1

1 = (1)γ1 + (0)γ2 + (0)γ3 ⇒ x1e1
1 = (0)γ1 + (1)γ2 + (0)γ3 ⇒ x2e1

;

the generalized resonance condition relative to γ2 yields

γ2 − 0 = n1γ1 + n2γ2 + n3γ3 ⇒ x
n1
1 x

n2
2 x

n3
3 e2

1 = (1)γ1 + (0)γ2 + (0)γ3 ⇒ x1e2
1 = (0)γ1 + (1)γ2 + (0)γ3 ⇒ x2e2

;

the generalized resonance condition relative to γ3 yields

γ2 − 0 = n1γ1 + n2γ2 + n3γ3 ⇒ x
n1
1 x

n2
2 x

n3
3 e3

2 = (2)γ1 + (0)γ2 + (0)γ3 ⇒ x2
1e3

2 = (1)γ1 + (1)γ2 + (0)γ3 ⇒ x1x2e3

2 = (0)γ1 + (2)γ2 + (0)γ3 ⇒ x2
2e3

2 = (0)γ1 + (0)γ2 + (1)γ3 ⇒ x3e3

;

hence,

f [0](x) = a1x1e1 + a2x2e1 + a3x1e2 + a4x2e2 + a5x
2
1e3 + a6x1x2e3

+ a7x
2
2e3 + a8x3e3
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=
⎡
⎣

a1x1 + a2x2
a3x1 + a4x2

a5x
2
1 + a6x1x2 + a7x

2
2 + a8x3

⎤
⎦ .

3.14 The Belitskii Normal Form of Continuous-Time Nonlinear
Systems

The Belitskii normal form is a concept similar to the Poincaré–Dulac normal form
that applies also when the linear part of f is not semi-simple [16, 45, 113].

Throughout this section, assume that f (x) ∈ R
n is analytic at x = 0, f (0) = 0.

The linear part of f is Ax, with A = ∂f (x)
∂x

|x=0 that need not be semi-simple. As-
sume that matrix A can be expressed as A = As,n + An, where As,n ∈ R

n×n is
normal, An ∈ R

n×n is nilpotent, and [As,n,An] = [As,n,A
�
n ] = 0 (by Lemma 2.5 at

p. 39, this can be obtained for any A ∈ R
n×n using a real linear transformation).

Example 3.40 If A = [
λ 1
0 λ

]
, then As,n = [

λ 0
0 λ

]
and An = [ 0 1

0 0

]
.

If

A =

⎡
⎢⎢⎣

0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ ,

then

As,n =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ and An =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Definition 3.15 Vector function f (x) = Ax + h(x), with h(x) being analytic at
x = 0, h(0) = 0, and having linear part equal to zero, is in the Belitskii normal form
if

[
h(x),A�x

]= 0. (3.67)

By Remark 3.5, under the above positions, f is in the Belitskii normal form if
and only if

h
(
eA�t x

)= eA�t h(x).

Given A ∈ R
n×n, let {M0, . . . ,Mr−1} be a basis of Lc(A

�). All h ∈ CC(A�x)

are parameterized by h(x) = μ0M0x + · · · + μr−1Mr−1x, where μ0, . . . ,μr−1 ∈
IC(A�x). Hence, f (x) = Ax + h(x) is in the Belitskii normal form if and only if
h ∈ CC(A�x), h is analytic at x = 0, h(0) = 0, with zero linear part.
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Remark 3.39 If A is normal, a system in the Belitskii normal form is in the
Poincaré–Dulac normal form, and vice versa.

Remark 3.40 By Lemma 2.4 at p. 37, taking A� = A�
s,n + A�

n , with A�
s,n be-

ing normal, A�
n being nilpotent and [A�

s,n,A
�
n ] = [A�

s,n,An] = 0, one concludes
that Lc(A

�) = Lc(A
�
s,n + A�

n ) = Lc(A
�
s,n) ∩ Lc(A

�
n ); if As,n is diagonal, then

Lc(A
�) = Lc(As,n) ∩ Lc(A

�
n ). Under the above assumptions, this means that, in

order to find all f in the Belitskii normal form and with linear part Ax, one can first
find all fs,n being in the Poincaré–Dulac normal form with linear part As,nx, then
f (x) = Ax + fs,n(x) is in the Belitskii normal form under the additional require-
ment that [f (x),A�x] = 0; such a further requirement generally restricts the set of
admissible f .

Example 3.41 Let

A =
⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ ;

such an A is nilpotent. A basis of Lc(A
�) is {E,A�, (A�)2}; set IC(A�x) is

constituted by all arbitrary functions of I1(x) = x1 and I2(x) = 2x1x3 − x2
2 . Then,

the set of all f being in the Belitskii normal form is parameterized by

f (x) =
⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦+

⎛
⎝μ0

⎡
⎣

x1
x2
x3

⎤
⎦+ μ1

⎡
⎣

0
x1
x2

⎤
⎦+ μ2

⎡
⎣

0
0
x1

⎤
⎦
⎞
⎠

=
⎡
⎣

x2
x3
0

⎤
⎦+

⎡
⎣

μ0x1
μ0x2 + μ1x1

μ0x3 + μ1x2 + μ2x1

⎤
⎦ ,

where μ0, μ1, μ2 are arbitrary functions of I1, I2, such that h(x) = f (x) − Ax is
analytic at x = 0, h(0) = 0, with zero linear part.

Example 3.42 Let

A =
⎡
⎣

1 1 0
0 1 0
0 0 2

⎤
⎦ ;

then, A = As,n + An, where

As,n =
⎡
⎣

1 0 0
0 1 0
0 0 2

⎤
⎦
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is normal and

An =
⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦

is nilpotent. A basis of Lc(A
�) is {E,A�, (A�)2}; set IC(A�x) is constituted by

all arbitrary functions of I1(x) = x2
1

x3
and I2(x) = − x2

x1
+ ln(| x3

x1
|). Then, the set of all

f having Ax as linear part, in the Belitskii normal form, is parameterized by

f (x) =
⎡
⎣

x1 + x2
x2

2x3

⎤
⎦+

⎛
⎝μ0

⎡
⎣

x1
x2
x3

⎤
⎦+ μ1

⎡
⎣

x1
x1 + x2

2x3

⎤
⎦+ μ2

⎡
⎣

x1
2x1 + x2

4x3

⎤
⎦
⎞
⎠

=
⎡
⎣

x1 + x2 + μ0x1 + μ1x1 + μ2x1
x2 + μ0x2 + μ1(x1 + x2) + μ2(2x1 + x2)

2x3 + μ0x3 + 2μ1x3 + 4μ2x3

⎤
⎦ ,

where μ0, μ1 and μ2 are arbitrary functions of I1, I2 such that h(x) = f (x) − Ax

is analytic at x = 0, h(0) = 0, with zero linear part. In particular, h(x) = f (x)−Ax

is analytic at x = 0, h(0) = 0, with zero linear part, if and only if μ0 = aI1, μ1 =
−2aI1 and μ2 = aI1, for an arbitrary a ∈ R,

f (x) =
⎡
⎣

x1 + x2
x2

2x3 + ax2
1

⎤
⎦ . (3.68)

For deducing the Belitskii normal form associated with the given matrix A, one can
use the procedure described in Remark 3.40. All fs,n in the Poincaré–Dulac normal
form, with linear part As,nx, are given by fs,n(x) = As,nx + hs,n(x), where

hs,n(x) =
⎡
⎣

0
0

a1x
2
1 + a2x1x2 + a3x

2
2

⎤
⎦ .

The three reals a1, a2, a3 are now to be taken so that [hs,n(x),A�x] = 0; since

[
hs,n(x),A�x

]=
⎡
⎣

0
0

−a2x
2
1 − 2a3x1x2

⎤
⎦ ,

it must be a2 = a3 = 0, with a1 ∈ R being arbitrary; then the resulting f (x) =
Ax + hs,n(x) coincides with the f given in (3.68), with a = a1.

The following theorem is taken from [16].

Theorem 3.40 Assume that A = As,n +An, where As,n ∈ R
n×n is normal and An ∈

R
n×n is nilpotent, and satisfy [As,n,An] = [As,n,A

�
n ] = 0. Given a vector function
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f (x) = Ax + h(x), being C∞ at x = 0 and with h(x) having zero linear part, there
exists a diffeomorphism y = ϕ(x) being C∞ in a neighborhood of the origin of R

n,
with ϕ(0) = 0 and ∂ϕ(x)

∂x
|x=0 = E, such that the push-forward of f takes the form

ϕ∗f = f̃b + α, with f̃b in the Belitskii normal form and with the vector function α

being C∞ and flat at y = 0.

The meaning of the above theorem is that any C∞-system can be transformed
in the Belitskii normal form though a polynomial diffeomorphism, up to a certain
order of approximation, which can be arbitrarily fixed.

Under further convergence conditions, the diffeomorphism y = ϕ(x) of Theo-
rem 3.40 is analytic at x = 0.

3.15 Nonlinear Transformations of Linear Systems

Let f (x), g(x) ∈ R; let x = Φg(τ, y) be the flow associated with g. Expanding in
Taylor series with respect to τ , one obtains the following formula known as the
Hadamard Lemma:
(

∂Φg

∂y

)−1

f ◦ Φg = f + τ [g,f ] + τ 2

2!
[
g, [g,f ]]+ τ3

3!
[
g,
[
g, [g,f ]]]+ · · · .

(3.69)

Example 3.43 Take f (x) = [x1 + x2 x2
1 ]� and g(x) = [x1 −2x2 + x2

1 ]�. The flow
associated with g is Φg(τ, y) = [eτ y1 e−2τ y2 + ( 1

4 e2τ − 1
4 e−2τ )y2

1 ]�. Then,

(
∂Φg

∂y

)−1

f ◦ Φg(τ, y)

=
[

y1 + y2e−3τ + 1
4 eτ y2

1 − 1
4y2

1 e−3τ

1
2y2

1 e4τ − 1
2y1eτ y2 − 1

8y3
1 e5τ + 1

4y3
1eτ + 1

2y2
1 + 1

2 e−3τ y1y2 − 1
8 e−3τ y3

1

]

=
[
y1 + y2

y2
1

]
+ τ

[ −3y2 + y2
1−2y1y2 + 2y2

1

]
+ τ2

2!
[

9y2 − 2y2
1

4y1y2 + 8y2
1 − 4y3

1

]
+ O

(
τ 3),

where
[
y1 + y2

y2
1

]
= f (y),

[ −3y2 + y2
1−2y1y2 + 2y2

1

]
= [

g(y), f (y)
]
,

[
9y2 − 2y2

1
4y1y2 + 8y2

1 − 4y3
1

]
= [

g(y),
[
g(y), f (y)

]]
.

Formula (3.69) is particularly useful to understand which nonlinear terms can
be generated from a linear system by a near-identity diffeomorphism x = Φg(τ, y),
for some g; note that, given a vector function g analytic at x = 0, for Φg(τ, y) to
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be near-identity it is necessary and sufficient that the linear part of g is zero: this
is assumed hereafter. By Statement (a) of Proposition 6.1 of [57], for any formal
near-identity diffeomorphism y = ϕ(x) and for any arbitrary τ ∈ R

>, there exists a
formal g(x) such that ϕ(x) = Φg(−τ, x); g can be called the logarithm of ϕ (see
also [93]). In particular, note that Φg(τ, y) ≈ y + τg(y), for a small τ . Therefore,
the following reasoning applies to arbitrary near-identity diffeomorphisms.

Assume that f (x) = Ax; hence, formula (3.69) can be rewritten as

(
∂Φg

∂y

)−1

AΦg(τ, y) = Ay + τ
[
g(y),Ay

]+ τ 2

2!
[
g(y),

[
g(y),Ay

]]

+ τ 3

3!
[
g(y),

[
g(y),

[
g(y),Ay

]]]+ · · · . (3.70)

Now, if g(x) is homogeneous of degree m with respect to the standard dilation,
[g(x), x] = mg(x), i.e., its entries are of degree 1 − m, then the vector function
appearing in (3.70) multiplied by τh is homogeneous of degree hm with respect to
the standard dilation, for h ∈ Z

>: [g(y),Ay] has degree m, [g(y), [g(y),Ay]] has
degree 2m, [g(y), [g(y), [g(y),Ay]]] has degree 3m and so on.

Example 3.44 Take A = diag{1,2}; then, the only resonant term is x2
1e2. Take a

vector function g being homogeneous of degree −1 with respect to x,

g(x) =
[
a1x

2
1 + a2x1x2 + a3x

2
2

a4x
2
1 + a5x1x2 + a6x

2
2

]
. (3.71)

Then, from

[
g(x),Ax

]=
[−a1x

2
1 − 2a2x1x2 − 3a3x

2
2−a5x1x2 − 2a6x

2
2

]
,

which is homogeneous of degree −1 with respect to x, one can easily check that
x2

1e2 cannot be generated by any near-identity diffeomorphism. This, in particular,
implies that the push-forward ϕ∗f (y), with f (x) = [x1 2x2 +x2

1 ]�, cannot be equal
to Ax, for any near-identity diffeomorphism y = ϕ(x).

Example 3.45 Take A = diag{1,3}; then, the only resonant term is x3
1e2. Take

the vector function g being homogeneous of degree −1 with respect to x, given
in (3.71). Then, from

[
g(x), [g(x),Ax]]=

[
G1(x)

G2(x)

]
,

where

G1(x) = −4a2a4x
3
1 + (2a1a2 − 2a2a5 − 12a3a4)x

2
1x2 + (8a1a3 − 8a3a5)x1x

2
2

+ (2a2a3 − 4a3a6)x
3
2 ,
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G2(x) = (4a4a1 − 2a5a4)x
3
1 + (8a2a4 − 8a6a4)x

2
1x2 + (12a3a4 + 2a2a5

− 2a5a6)x1x
2
2 + 4a5a3x

3
2 ,

one can easily see that the resonant term x3
1e2 appears in the push-forward of Ax if

and only if 4a4a1 − 2a5a4 �= 0.

3.16 Invariant Distributions and Dual Semi-Invariants

In the above sections, it has been shown that the concept of semi-invariant asso-
ciated with f , Lf ω = λω, generalizes the concept of left eigenvector of a square
matrix A ∈ R

n×n, u�A = λu�, in the sense that ω(x) = u�x is a semi-invariant of
the linear system dx

dt
= Ax. Assume that A is semi-simple. Then, there are n left

eigenvectors u1, . . . , un of A being linearly independent over C, u�
i A = λiu

�
i , and

matrix U = [u1 . . . un]� is invertible. Let vi be the ith column of matrix V = U−1;
as well known, vi is a right eigenvector of matrix A, Avi = λivi . The left and right
eigenvectors thus defined are dual, in the sense that

u�
i vj =

{
1, if i = j,

0, if i �= j.

Objective of this section is to give a dual concept of semi-invariant of a nonlinear
system, thus generalizing the concept of right eigenvector.

Definition 3.16 A vector function d(x) ∈ R
n, d �= 0, is a column semi-invariant of

system (1.1a) if it satisfies

[d,f ] = λd, (3.72)

for some characteristic function λ(x) ∈ R.

If f (x) = Ax and d = v, with v being a right eigenvector of matrix A, then
[d,f ] = λd , where λ is the eigenvalue associated with v.

A vector function d satisfying (3.72) is nothing else that a vector function having
f as orbital symmetry. In particular, let I be a first integral associated with f (i.e.,
Lf I = 0) such that LdI �= 0; then, according to Theorem 3.6, f has d̂ := 1

LdI
d as

symmetry. Vice versa, if g is any symmetry of f , then [d,f ] = λd holds with d = g

and λ = 0.
Furthermore, let D be the distribution spanned by d , D = spanKn

{d}; then,
according to Definition 3.41 of [100] (see also [69]), D is f -invariant, i.e.,
[D, f ] ⊆ D . By the assumption d �= 0, let xo be a regular point of D . Then,
there exists a diffeomorphism y = ϕ(x), ϕ(·) : U ∗ → R

n, with U ∗ being some
neighborhood of xo, such that the push-forward of d takes the form ϕ∗d = e1 and
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[e1, ϕ∗f ] = (ϕ∗λ)e1. Now, [e1, ϕ∗f ] = (ϕ∗λ)e1 is equivalent to the condition that
the last n − 1 entries of f̃ = ϕ∗f do not depend on the first entry y1 of y,

dy1
dt

= f̃1(y1, y2, . . . , yn),

dy2
dt

= f̃2(y2, . . . , yn),
...

dyn

dt
= f̃n(y2, . . . , yn).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.73)

Now, under the further assumption that there exist y∗
2 , . . . , y∗

n such that f̃i (y
∗
2 , . . . ,

y∗
n) = 0, i = 2, . . . , n, then the set of points Id = {x ∈ R

n : ϕi(x) = y∗
i , i =

2, . . . , n} is invariant. It is worth pointing out that the above assumption is certainly
satisfied if xo is a singular point of f .

Example 3.46 Let f (x) = [x1 −x2 + x2
1 ]�; it is easy to see that d1(x) = [1 2

3x1]�
and d2(x) = [0 1

3 ]� satisfy [d1, f ] = d1 and [d2, f ] = −d2, namely they satisfy con-
dition (3.72) with respective characteristic functions λ1 = 1 and λ2 = −1. Clearly,
xo = 0 is a singular point for f and a regular point for both d1 and d2. Consider the
diffeomorphism y = ϕ(x), with ϕ(x) = [x1 3x2 −x2

1 ]�, ϕ(0) = 0, in a neighborhood
of xo = 0; since Ldi

ϕ = ei , i = 1,2, then Id1 = {x ∈ R
2 : ϕ2(x) = 3x2 − x2

1 = 0}
and Id2 = {x ∈ R

2 : ϕ1(x) = x1 = 0} are invariant for the considered system.

Note that, if the first of (3.73) is neglected, the remaining ones constitute a re-
duction of the given system, according to the terminology introduced in Sect. 3.5.
The approach of obtaining a reduction using f -invariant distributions is generalized
in Sect. 3.17.

Definition 3.17 Assume that system (1.1a) has n functionally independent semi-
invariants ωi , Lf ωi = λiωi , i = 1, . . . , n. Moreover, assume that system (1.1a) has
n column semi-invariants di , [di, f ] = λidi , being linearly independent over Kn

and having the same respective characteristic function λi . If

⎛
⎜⎝ ∂

∂x

⎡
⎢⎣

ω1
...

ωn

⎤
⎥⎦

⎞
⎟⎠

−1

= [d1 . . . dn], (3.74)

then ωi and di , i = 1, . . . , n, are called dual semi-invariants of system (1.1a).

If condition (3.74) holds, then, by Remark 1.8 at p. 22, the vector functions di

are necessarily pairwise commuting, [di, dj ] = 0, ∀i, j , and matrix [d1 . . . dn] has
rank n in some open and connected set U ∗.
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Theorem 3.41 Assume the existence of n column semi-invariants di(x) ∈ R
n such

that

(3.41.1) [di, f ] = λidi , for some characteristic function λi , i = 1, . . . , n;
(3.41.2) [di, dj ] = 0, ∀i, j , and matrix [d1 . . . dn] has rank n in some open and

connected set U ∗.

Then, there exist n functionally independent functions ωi satisfying (3.74) such
that Lf ωi = γi(ωi), for some function γi of ωi , i = 1, . . . , n. In particular, γi(ωi) =
λiωi if and only if λi is constant; in such a case, ωi is a semi-invariant of sys-
tem (1.1a) with characteristic value λi .

Proof By conditions (3.41.2) of the theorem, the rows of matrix [d1 . . . dn]−1 are
exact one-forms and the diffeomorphism y = ϕ(x) given by yi = ωi , i = 1, . . . , n,
with the function ωi obtained by integrating the ith row of [d1 . . . dn]−1, jointly
straightens d1, . . . , dn, which in the y-coordinates become ϕ∗d1 = e1, . . . , ϕ∗dn =
en, with ei being the ith column of the identity matrix E. By the invariance of the
Lie bracket to diffeomorphisms, [ei, ϕ∗f ] = (ϕ∗λi)ei ; hence, letting f̃ = ϕ∗f and
λ̃i = ϕ∗λi , one concludes that

∂f̃i(y)

∂yj

=
{

λ̃i , if i = j,

0, if i �= j,

which shows that both λ̃i and f̃i are functions of yi = ωi , f̃i (yi) = ∫ yi

0 λ̃i (θ)dθi +ci ,

for some constant ci . Since dyi

dt
= f̃i , then Lf ωi = γi(ωi) with γi(ωi) = f̃i (ωi).

Clearly,
∫ yi

0 λ̃i (θ)dθi + ci is a linear function of yi if and only if λ̃i is constant and
ci = 0. �

Corollary 3.5 If the assumptions of Theorem 3.41 hold and the characteristic func-
tions λi are constant, then system (1.1a) is linear in the local coordinates yi = ωi ,
i = 1, . . . , n.

Example 3.47 Continue Example 3.46. Clearly, d1 and d2 are commuting, [d1, d2] =
0, and therefore the rows of matrix [d1(x) d2(x)]−1 = [ 1 0

−2x1 3

]
are exact one-

forms; then, by integration, one can compute two semi-invariants of system (1.1a):
ω1(x) = x1 and ω2(x) = −x2

1 + 3x2, with respective characteristic functions λ1 = 1
and λ2 = −1. Thus, d1 and d2 are dual of semi-invariants ω1 and ω2, respectively.

Example 3.48 Consider f (x) = [ −ax2
1+2bx1x2+ax2

2

−bx2
1−2ax1x2+bx2

2

]
; hence, ω1(x) = x2

1 + x2
2 and

ω2(x) = bx1 +ax2 are two functionally independent semi-invariants associated with
f , with respective characteristic functions λ1(x) = 2(−ax1 + bx2) and λ2(x) =
2(−ax1 +bx2). Hence, ω1 and ω2 are two functionally independent semi-invariants
associated with the normalized f̄ (x) = 1

−ax1+bx2
f (x), with respective characteristic
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values λ1 = 2 and λ2 = 2. By computing d1 and d2 as:

[
d1(x) d2(x)

]=
(

∂

∂x

[
ω1(x)

ω2(x)

])−1

=
[− 1

2
a

−ax1+bx2

x2−ax1+bx2
1
2

b
−ax1+bx2

− x1−ax1+bx2

]
,

and verifying that [di, f̃ ] = 2di , i = 1,2, one concludes that d1(x) = [− 1
2

a
−ax1+bx2

1
2

b
−ax1+bx2

]

and d2(x) = [ x2−ax1+bx2

− x1−ax1+bx2

]
are dual of semi-invariants ω1 and ω2. In particular, by

Corollary 3.5, the system characterized by f̄ can be linearized by a change of coor-
dinates, and therefore the system characterized by f can be linearized by a change
of coordinates and a state-dependent change of time scale.

3.17 Decomposition of Continuous-Time Nonlinear Systems

The decomposition of nonlinear systems has been widely used in connection with
structural properties of nonlinear control systems (see, e.g., [69, 100]).

The following theorem shows that a decomposition of a nonlinear system follows
from the existence of invariant distributions.

Theorem 3.42 Let D be an involutive distribution, having constant rank m in a
neighborhood of a regular point x = xo. Assume that such a distribution is f -
invariant, [D, f ] ⊆ D . Then, in a neighborhood of the regular point x = xo, there
exists a diffeomorphism y = ϕ(x) such that the nonlinear system (1.1a) can be de-
composed, in the local y-coordinates, as

dya

dt
= f̃a(ya, yb), (3.75a)

dyb

dt
= f̃b(yb), (3.75b)

where ya = [y1 . . . ym]�, yb = [ym+1 . . . yn]� and f̃ � = [f̃ �
a f̃ �

b ], f̃ = ϕ∗f .

Proof By the Frobenius Theorem 1.9 at p. 21, there exist hi(x) ∈ R
n, i = 1, . . . ,m,

such that [hi, hj ] = 0, rankR([h1(x) . . . hm(x)]) = m, for all x in a neighborhood
of xo, and D = spanKn

{h1, . . . , hm}. Let y = ϕ(x) be a diffeomorphism that, in
a neighborhood of the regular point xo, jointly straightens h1, . . . , hm, which be-
come ϕ∗hi = ei , i = 1, . . . ,m. Let D̃ = spanKn

{e1, . . . , em} and f̃ = ϕ∗f . Now,

since all d̃ ∈ D̃ have the form d̃(y) = [d̃1(y) . . . d̃m(y) 0 . . . 0]� and condition
[D̃, f̃ ] ⊆ D̃ implies condition [ei, f̃ ] ⊆ D̃ , i = 1, . . . ,m, this allows to conclude
that the last n − m entries of f̃ do not depend on y1, . . . , ym, and therefore that the
nonlinear system (1.1a) can be decomposed, in the local y-coordinates, as in (3.75a),
(3.75b). �
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A stronger structure of the nonlinear system can be recognized if the vector func-
tions h1, . . . , hm, in addition to the above assumptions, are column semi-invariants
associated with f ; as a matter of fact, this implies that [ei, f̃ ] = λ̃iei , and therefore
that the ith entry of f̃ , with i = 1, . . . ,m, depends only on yi, yb instead of ya, yb.

Example 3.49 Consider

f (x) =
⎡
⎢⎣

x1 + x3 + x3
1

−x2
1 + 2x1x3 + 2x4

1 + 3x2 − x2
3 − 2x3

1x3 − x6
1

−3x3
1 − 3x2

1x3 − 3x5
1 + x2

3 + 2x3
1x3 + x6

1

⎤
⎥⎦ ;

let h1(x) = [1 2x1 −3x2
1 ]� and h2(x) = [0 1 0]�. Clearly, h1 and h2 are two col-

umn semi-invariants associated with f , since [h1, f ] = h1, [h2, f ] = 3h2; more-
over, since [h1, h2] = 0 and rankR([h1(x) h2(x)]) = 2 on the whole R

3, the dis-
tribution D spanned by h1, h2 is regular on the whole R

3, it is involutive and f -
invariant. In particular, consider the global diffeomorphism y = ϕ(x), with ϕ(x) =
[x1 x2 − x2

1 x3 + x3
1 ]�. Since Lhi

ϕ = ei , then in the y-coordinates, the system is
decomposed with respect to the given distribution,

f̃ (y) =
⎡
⎢⎣

y1 + y3

3y2 − y2
3

y2
3

⎤
⎥⎦ . (3.76)

The proof of the following theorem is classical (see, e.g., [69, 100]).

Theorem 3.43 Assume f (x, t) = f0(x) + ∑p

i=1 fi(x)ui(t), for some functions
ui(t) of t . Let D be an involutive distribution, having constant rank m in a neigh-
borhood of a regular point x = xo. Assume that such a distribution is f0-invariant,
[D, f0] ⊆ D . If fi ∈ D , i = 1, . . . , p, then, in a neighborhood of xo, there exists a
diffeomorphism y = ϕ(x) such that the nonlinear system (1.1a) can be decomposed,
in the local y-coordinates, as

dya

dt
= f̃0,a(ya, yb) +

p∑
i=1

f̃i,a(ya, yb)ui, (3.77a)

dyb

dt
= f̃0,b(yb), (3.77b)

where ya = [y1 . . . ym]�, yb = [ym+1 . . . yn]� and f̃ �
i = [f̃ �

i,a f̃ �
i,b], f̃i = ϕ∗fi ,

i = 0,1, . . . , p.

Example 3.50 Continue Example 3.49. Let f0 be equal to the f given in Exam-
ple 3.49. Let p = 1 and f1(x) = h1(x) + x3h2(x) = [1 2x1 + x3 −3x2

1 ]�, which
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belongs by construction to D . Clearly, f̃0 is equal to the f̃ given in (3.76), whereas

f̃1(y) =
⎡
⎣

1
y3 − y3

1
0

⎤
⎦ ,

according to (3.77a), (3.77b).

The decomposition (3.77a), (3.77b) clarifies that the functions ui do not influ-
ence in any way the state variables in yb . Another important decomposition can be
obtained when the nonlinear systems is endowed with output variables; for simplic-
ity, just the case of a scalar output is studied here (see [69, 100] for the general
case).

Consider now the nonlinear system (1.1a) endowed with an output function

dx

dt
= f (x), (3.78a)

y = h(x), (3.78b)

where h(x) ∈ R is meromorphic. Consider the directional derivatives of h by f ,
L0

f h = h and Li+1
f h = Lf (Li

f h). Let index q be such that L0
f h, . . . ,L

q−1
f h are

functionally independent, but L0
f h, . . . ,L

q
f h are functionally dependent. Then,

there exists a meromorphic function Θ(z1, . . . , zq+1) such that Θ(L0
f h, . . . ,L

q
f h) =

0 identically. Since L0
f h, . . . ,L

q−1
f h are functionally independent, it is impossible

that
∂Θ(z1,...,zq+1)

∂zq+1
is identically equal to zero, whence Θ(L0

f h, . . . ,L
q
f h) = 0 im-

plies that the identity L
q
f h = Ξ1(L

0
f h, . . . ,L

q−1
f h) holds locally, for some mero-

morphic function Ξ1. This means that

ξ =
⎡
⎢⎣

ξ1
...

ξq

⎤
⎥⎦=

⎡
⎢⎢⎣

L0
f h(x)

...

L
q−1
f h(x)

⎤
⎥⎥⎦

qualifies as a partial diffeomorphism such that nonlinear system (3.78a), (3.78b) is
transformed into:

dξ1

dt
= ξ2,

...

dξq−1

dt
= ξq,

dξq

dt
= Ξ1(ξ1, . . . , ξq),
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dη

dt
= Ξ2(ξ1, . . . , ξq, η),

y = ξ1,

where η ∈ R
n−q are suitable additional state variables that complete the choice of

the local variables ξ . Note that, letting ya = η and yb = ξ , the structure (3.75a),
(3.75b) is again obtained.

3.18 Symmetries of Algebraic Equations

After having considered symmetries of differential equations, one can deal with the
conceptually simpler case of symmetries for a system of algebraic equations:

ai(x) = 0, i = 1, . . . , ν, (3.79)

for ν ∈ Z
> and ai(x) ∈ R, i = 1, . . . , ν, being analytic functions on U . Here, the

adjective algebraic is only used to distinguish this simpler case from the case of
systems of differential equations previously considered. Consider the infinitesimal
generator dx

dτ
= g(x) of a one-parameter group of transformations x = Φg(τ, y),

where Φg is the flow associated with g.
Two possible definitions of symmetry of an algebraic system can be given [102]:

(1) a symmetry transforms any solution of the algebraic system (3.79) into a solu-
tion of the same system;

(2) a symmetry transforms the algebraic system (3.79) into the same system.

Such two different concepts are defined formally as follows.

Definition 3.18 A point x = xs , xs ∈ U , is a solution of the algebraic system (3.79)
if ai(x

s) = 0 for i = 1, . . . , ν. The one-parameter group of transformations x =
Φg(τ, y) (briefly, the infinitesimal generator g) is a symmetry for the solutions of
the algebraic system (3.79) if x = Φg(τ, x

s) is a solution of (3.79), ai(Φg(τ, x
s)) =

0, i = 1, . . . , ν, for any admissible τ ∈ R and for any solution x = xs , xs ∈ U ,
of (3.79), whereas it is a symmetry for the algebraic system (3.79) if ai(Φg(τ, y)) =
ai(y), ∀y ∈ U , i = 1, . . . , ν, for any admissible τ ∈ R.

Remark 3.41 Clearly, if x = Φg(τ, y) is a symmetry for the algebraic system (3.79),
it is necessarily a symmetry for its solutions, whereas the converse need not be true.
As an example, consider g(x) = [x1 3x2]� and compute Φg(τ, y) = [eτ y1 e3τ y2]�.
Clearly, x = Φg(τ, y) is a symmetry for the solutions of the algebraic equation 3x2 −
2x3

1 = 0, whose solutions are parameterized by x1 = c, x2 = 2
3c3, for c ∈ R, but not

for the equation; as a matter of fact, letting [x1 x2]� = [eτ y1 e3τ y2]�
y1=c,y2= 2

3 c3 =
[eτ c 2

3 e3τ c3]�, one has (3x2 − 2x3
1)|

x1=eτ c,x2= 2
3 e3τ c3 = 0, for any c ∈ R, but it is

worth pointing out that (3x2 − 2x3
1)|x1=eτ y1,x2=e3τ y2

= e3τ (3y2 − 2y3
1) �= 3y2 − 2y3

1
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if τ �= 0. In the same way, it is easy to see that the same x = Φg(τ, y) is a symmetry

for the algebraic equation (and hence for its solutions) 3 − 2
x3

1
x2

= 0; as a matter of

fact, (3 − 2
x3

1
x2

)|x1=eτ y1,x2=e3τ y2
= 3 − 2

y3
1

y2
for all y ∈ R

2, y2 �= 0.

Theorem 3.44 The one-parameter group of transformations x = Φg(τ, y) (briefly,
the infinitesimal generator g) is a symmetry for the algebraic system (3.79) if and
only if ai is a first integral associated with g, ai ∈ IC(g) (i.e., Lgai = 0), i =
1, . . . , ν; x = Φg(τ, y) is a symmetry for the solutions of the algebraic system (3.79)
if and only if

Lgai |a1=0,...,aν=0 = 0, i = 1, . . . , ν; (3.80)

in particular, if ai is a semi-invariant associated with g (i.e., Lgai = λiai ) for
i = 1, . . . , ν, then x = Φg(τ, y) a symmetry for the solutions of the algebraic sys-
tem (3.79).

Proof Condition

ai

(
Φg(τ, y)

)= ai(y), ∀y ∈ U , i = 1, . . . , ν, (3.81)

is equivalent to the same condition computed at τ = 0 (which certainly holds since
x = Φg(τ, y) is the identity for τ = 0) and the condition obtained by taking the
derivative of both sides of (3.81) by τ :

(Lgai) ◦ Φg(τ, y) = 0, ∀y ∈ U , i = 1, . . . , ν, (3.82)

which is clearly satisfied if and only if Lgai = 0, i = 1, . . . , ν, i.e., if and only if ai

is a first integral associated with g. The proof of (3.80) is similar. Moreover, if ai is
a semi-invariant associated with g, Lgai = λiai , then (3.80) holds. �

Example 3.51 Consider again the vector function g(x) = [x1 3x2]� introduced in
Remark 3.41. Clearly, ω1(x) = 3x2 − 2x3

1 is a Darboux polynomial associated with

g and I (x) = 3 − 2
x3

1
x2

is a first integral associated with g.

3.19 Symmetries and Dimensional Analysis

Dimensional analysis is probably one of the concepts in engineering that have wider
applicability, because it is used in many fields such as fluid-dynamics or heat transfer
problems (see, e.g., [15, 24, 26] and the references therein), both to prove theorems
or to have suggestions on how to describe efficiently some problems by the use of
dimensionless quantities. Here, to relate the dimensional analysis to the topics in
this book, its application to the very simple case of the oscillations of a pendulum is
considered.
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Consider a mechanical pendulum constituted by a pendulum blob of mass m,
suspended from a frictionless joint by a link of length l, in a gravitational field of
acceleration g, without other forces or torques acting on it. Consider a motion of
the pendulum of constant period 2π

�
, and let θ be the positive angular position of the

pendulum when the angular velocity of the pendulum changes the sign. The physical
dimensions of these five parameters, which are seen as the entries of a vector x, are

x x1 x2 x3 x4 x5
m l g � θ

[x] M L LT −2 T −1 1

where M is the mass unit, L the length unit and T the time unit. It is known that
the process under study is completely described by the parameters above and that
there is some further relationship among them, in the sense that observations (or the
knowledge of the problem) indicate that not all of them are functionally indepen-
dent.

Assume that the three units are changed according to the rules M → eτ1M , L →
eτ2L and T → eτ3T ; the physical dimensions of the five parameters are changed
accordingly m → eτ1m, l → eτ2 l, g → eτ2 e−2τ3g, � → e−τ3� , θ → θ , which is a
three-parameters group of transformations

Φ(τ1, τ2, τ3, x) =

⎡
⎢⎢⎢⎢⎣

eτ1x1
eτ2x2

eτ2 e−2τ3x3
e−τ3x4

x5

⎤
⎥⎥⎥⎥⎦

.

The three infinitesimal generators g1, g2 and g3 of the group are obtained by the
formula gi(x) = ∂Φ(τ1,τ2,τ3,x)

∂τi
|τ1=0,τ2=0,τ3=0,

g1(x) =

⎡
⎢⎢⎢⎢⎣

x1
0
0
0
0

⎤
⎥⎥⎥⎥⎦

, g2(x) =

⎡
⎢⎢⎢⎢⎣

0
x2
x3
0
0

⎤
⎥⎥⎥⎥⎦

, g3(x) =

⎡
⎢⎢⎢⎢⎣

0
0

−2x3
−x4

0

⎤
⎥⎥⎥⎥⎦

.

Now, by looking for the first integrals that g1, g2 and g3 have in common (by the
technique shown in Remark 1.9 at p. 27), one easily obtains 5 − 3 = 2 dimension-
less quantities; in particular, matrix B (which, in this framework, is called the units
matrix) is

B =
⎡
⎣

1 0 0 0 0
0 1 1 0 0
0 0 −2 −1 0

⎤
⎦ .
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The kernel of B is spanned by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

0
1

−1
2
0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

and each element of the basis corresponds to a dimensionless quantity

I1(x) = x2x
2
4

x3
= l� 2

g
, I2(x) = x5 = θ.

Now, by the Buckingham Pi Theorem [26], any dimensionless relationship among
the five quantities can be expressed as a function of I1 and I2, only. Hence, if the
given five parameters are related, this has to be through an equation of the form

H(l� 2

g
, θ) = 0. As an example, this means that

� = h(θ)

√
g

l
,

where h(θ) is some function to be determined. Note that, since m does not appear in
I1 and I2, the mass m of the pendulum blob can be neglected in the above analysis.

3.20 Symmetries of Scalar Ordinary Differential Equations

Systems of ordinary differential equations of first order have been considered in the
previous sections. Such an analysis is extended in this section by considering scalar
ordinary differential equations of an arbitrary finite order n [20, 22, 67, 111],

h
(
t, y, y(1), . . . , y(n)

)= 0, (3.83)

where t ∈ R is the independent variable (the time), y(t) ∈ R is dependent variable

and y(i)(t) = di y(t)

dt i
, i = 1, . . . , n.

The meaning of the following technical assumption will be clarified later.

Assumption 3.1 The partial derivatives ∂h
∂t

, ∂h
∂y

, . . . , ∂h

∂y(n) of h, considered as func-

tions of t, y, . . . , y(n), are not all identically equal to zero when h = 0.

The analysis of the previous sections is widened by considering the above scalar
equation in the sense that h may depend on time t , equation h = 0 may be an implicit
function of y(n), and the order n of the equation may be greater than 1. Note that
the case of a scalar ordinary differential equation can always be reduced to the case
of a system of ordinary differential equations, dx

dt
= f (x), x ∈ R

n, when the scalar
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equation h = 0 can be rendered explicit with respect to y(n) and h does not depend
explicitly on time t , by taking x = [y y(1) . . . y(n−1)]� as state vector. Consider the
function g : R

2 → R
2 given by

g(t, y) =
[
τ(t, y)

θ(t, y)

]
,

where τ(t, y), θ(t, y) ∈ R. Clearly, the flow Φg associated with g,
[
t

y

]
= Φg

(
ε,

[
t̃

ỹ

])
, ε ∈ R,

qualifies as a one-parameter group of transformations, which can be rewritten as:

t = t
(
ε, t̃, ỹ

)= t̃ + ετ
(
t̃ , ỹ

)+ O
(
ε2),

y = y
(
ε, t̃, ỹ

)= ỹ + εθ
(
t̃ , ỹ

)+ O
(
ε2),

where O(ε2) denotes second and higher order terms with respect to ε. Let ỹ(i)(t̃ ) =
di ỹ(t̃ )

dt̃ i
, i = 1, . . . , n. Clearly, such a transformation on t, y yields an induced transfor-

mation on the derivatives of y, (t, y, . . . , y(i)(t)) → ỹ(i), i = 1, . . . , n. It is possible
to show [102] that the whole transformation,

⎡
⎢⎢⎢⎢⎢⎣

t

y

y(1)

...

y(n)

⎤
⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎣

t̃

ỹ

ỹ(1)

...

ỹ(n)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.84)

is again a one-parameter group of transformation, whose infinitesimal generator,

ge

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

t

y

y(1)

...

y(n)

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎣

τ

θ

θ [1]
...

θ [n]

⎤
⎥⎥⎥⎥⎥⎦

, (3.85)

with θ [i](t, y, y(1), . . . , y(i)) ∈ R, i = 1, . . . , n, can be computed as follows. By def-
inition,

ỹ(1) = dỹ

dt̃
= d(ỹ + εθ + O(ε2))

d(t̃ + ετ + O(ε2))
= dỹ + ε dθ + O(ε2)

dt̃ + ε dτ + O(ε2)

=
dỹ

dt̃
+ ε dθ

dt̃
+ O(ε2)

1 + ε dτ
dt̃

+ O(ε2)
;
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hence, taking into account that (3.84) becomes the identity transformation when
ε = 0, the infinitesimal generator θ [1] is given by:

θ [1] = dỹ(1)

dε

∣∣∣∣
ε=0

= ( dθ
dt

+ O(ε))(1 + ε dτ
dt

+ O(ε2)) − (
dy
dt

+ ε dθ
dt

+ O(ε2))( dτ
dt

+ O(ε2))

(1 + ε dτ
dt

+ O(ε2))2

∣∣∣∣
ε=0

,

namely

θ [1] = dθ

dt
− dτ

dt
y(1), (3.86a)

where it is stressed that d
dt

denotes the total derivative with respect to t ,

θ [1] = ∂θ

∂t
+ ∂θ

∂y
y(1) −

(
∂τ

∂t
+ ∂τ

∂y
y(1)

)
y(1).

Similarly, one has

θ [i+1] = dθ [i]

dt
− dτ

dt
y(i+1), i = 1, . . . , n − 1. (3.86b)

Example 3.52 Let τ = at and θ = by. Hence,

θ [1] = dθ

dt
− dτ

dt
y(1) = (b − a)y(1),

θ [2] = dθ [1]

dt
− dτ

dt
y(2) = (b − 2a)y(2),

and, by induction, one has θ [i] = (b − ia)y(i), i = 1, . . . , n.

Substituting (3.84) into the left-hand side of (3.83), one obtains the following
function of t̃ , ỹ, ỹ(1), . . . , ỹ(n):

h
(
t
(
ε, t̃ , ỹ

)
, y
(
ε, t̃, ỹ

)
, y(1)

(
ε, t̃, ỹ, ỹ(1)

)
, . . . , y(n)

(
ε, t̃, ỹ, ỹ(1), . . . , ỹ(n)

))
.

(3.87)

Definition 3.19 Vector function g = [τ θ ]� is a symmetry of the scalar ordinary
differential equation (3.83) if

h
(
t
(
ε, t̃, ỹ

)
, y
(
ε, t̃, ỹ

)
, y(1)

(
ε, t̃, ỹ, ỹ(1)

)
, . . . , y(n)

(
ε, t̃ , ỹ, ỹ(1), . . . , ỹ(n)

))

= h
(
t̃ , ỹ, ỹ(1), . . . , ỹ(n)

)
, ∀t̃ , ỹ, ỹ(1), . . . , ỹ(n) ∈ R, (3.88)

for any ε ∈ R for which both sides of the above equation are defined.
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Clearly, (3.88) holds for ε = 0. Compute the derivative of (3.88) with respect to
ε and then let ε = 0 in the result,

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂y(1)
θ [1] + · · · + ∂h

∂y(n)
θ [n] = 0, (3.89)

where θ [k] is computed iteratively by (3.86a), (3.86b).
Hence, g = [τ θ]� is a symmetry of (3.83) only if (3.89) holds. Actually, under

Assumption 3.1, it is possible to show [111] that g = [τ θ ]� is a symmetry of (3.83)
if and only if (3.89) holds, where it is worth pointing out that (3.89) must hold, mod-
ulo the equality h = 0, which constrains t, y, y(1), . . . , y(n) all together. The suffi-
ciency can be proven easily as in [111], by taking into account that equality (3.89)
is invariant with respect to diffeomorphisms. By the flow box Theorem 3.3, apart
from a diffeomorphism about any regular point of g, assume that τ = 1 and θ = 0,
which implies θ [i] = 0 for any i = 1, . . . , n. Hence, equality (3.89) becomes

∂h

∂t
= 0, (3.90)

which shows that h does not depend explicitly on time t . The one-parameter group
of transformation is

t = t̃ + ε, y = ỹ, y(i) = ỹ(i), i = 1, . . . , n,

which substituted into an equation h = 0 independent of t yields exactly the same
equation; this shows that if (3.90) holds, then g = [1 0]� is a symmetry of h = 0,
which by the invariance to diffeomorphisms proves the sufficiency of (3.89).

By Assumption 3.1, equations like (y(1) − ty)2 = 0 are ruled out; for the above
equation, ∂h

∂t
= −2(y(1) − ty)y, ∂h

∂y
= −2(y(1) − ty)t and ∂h

∂y(1) = 2(y(1) − ty), which

are all equal to zero when (y(1) − ty)2 = 0, although the scalar ordinary differential
equation depends on time t . This shows that Assumption 3.1 means that condition
∂h
∂t

= 0 implies that h is independent of t .

Remark 3.42 Consider h(t, y, ẏ) = ẏ −f (t, y), where ẏ = y(1). Let θ = ḡ(t, y) and
θ [1] = dḡ

dt
− dτ

dt
ẏ. Hence,

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂ẏ
θ [1] = −∂f

∂t
τ − ∂f

∂y
ḡ + ∂ḡ

∂t
+ ∂ḡ

∂y
ẏ −

(
∂τ

∂t
+ ∂τ

∂y
ẏ

)
ẏ.

Substituting ẏ = f (t, y), one obtains

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂ẏ
θ [1] = −∂f

∂t
τ − ∂f

∂y
ḡ + ∂ḡ

∂t
+ ∂ḡ

∂y
f −

(
∂τ

∂t
+ ∂τ

∂y
f

)
f.

For instance, if τ = 0, then one has

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂ẏ
θ [1] = ∂ḡ

∂t
+ [f, ḡ],
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namely, in such a case, g = [0 ḡ]� is a symmetry of h if and only if

∂ḡ

∂t
= −[f, ḡ].

Note that, when ḡ does not depend on t , the concept of symmetry of the previous
sections is recovered. Let τ = at and θ = by, which yield θ [1] = (b − a)ẏ. Hence,

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂ẏ
θ [1] = −∂f

∂t
at − ∂f

∂y
by + (b − a)ẏ

= −∂f

∂t
at − ∂f

∂y
by + (b − a)f.

Letting ḡ = [at by]�, condition ∂h
∂t

τ + ∂h
∂y

θ + ∂h
∂ẏ

θ [1] = 0 is equivalent to Lḡf =
(b − a)f , i.e., ḡ is a symmetry of the equation ẏ = f (t, y) if and only if f is a
homogeneous function of t, y of degree b−a with respect to ḡ. For instance, letting
b − a = k and ḡe = [at by kf ]�, two functionally independent first integrals associ-
ated with ḡe are I1 = yat−b and I2 = fy−k/b, whence, by Theorem 3.16, all scalar
ordinary differential equations ẏ = f (t, y) having ḡ as symmetry are characterized
by f (t, y) = yk/bC(yat−b), where C is an arbitrary function of the argument.

Example 3.53 Consider the equation h = 0, with h(t, y, ẏ, ÿ) = ÿ − thyk , h, k ∈ Z,
h, k ≥ 1, where ẏ = y(1) and ÿ = y(2). Take τ = at and θ = by, which yields θ [1] =
(b − a)ẏ and θ [2] = (b − 2a)ÿ. Hence,

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂ẏ
θ [1] + ∂h

∂ÿ
θ [2] = −hth−1ykat − kthyk−1by + (b − 2a)ÿ

= −(ha + bk)thyk + (b − 2a)ÿ.

Substituting ÿ = thyk , one has

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂ẏ
θ [1] + ∂h

∂ÿ
θ [2] = −((h + 2)a + (k − 1)b

)
thyk,

which is identically equal to zero if and only if a = −(k − 1)c and b = (h+ 2)c, for
an arbitrary c ∈ R.

Example 3.54 Consider the equation h = 0, with h(y, y(1), y(2), y(3)) = 2y(1)y(3) −
3(y(2))2. Take τ = at and θ = by, which yields θ [i] = (b − ia)y(i), i = 1,2,3.
Hence, one has the relation

2y(3)(b − a)y(1) + 2y(1)(b − 3a)y(3) − 6y(2)(b − 2a)y(2) = 0,

from which

2(b − 2a)
(

2y(1)y(3) − 3
(
y(2)

)2
)

= 0.

Condition h = 0 implies that the above equation holds for any a, b ∈ R.
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About any regular point of g, assume that g = [0 1]�, namely that τ = 0 and
θ = 1, which implies that θ [i] = 0, i ∈ Z

>. By condition

∂h

∂t
τ + ∂h

∂y
θ +

n∑
i=1

∂h

∂y(i)
θ [i] = ∂h

∂y
= 0,

one concludes that g is a symmetry of the equation h = 0 if and only if h does not
depend on y, h(t, y(1), y(2), . . . , y(n−1)); hence, by defining z := y(1), the equation
of reduced order h(t, z, z(1), . . . , z(n−1)) = 0 is obtained.

Example 3.55 Consider the equation h = 0, with h(t, y, ẏ, ÿ) = ÿ + α1(t)ẏ +
α0(t)y, where ẏ = y(1) and ÿ = y(2) and α0(t), α1(t) ∈ R. Let τ = 0 and θ = by,
which implies θ [1] = bẏ and θ [2] = bÿ. Hence,

∂h

∂t
τ + ∂h

∂y
θ + ∂h

∂ẏ
θ [1] + ∂h

∂ÿ
θ [2] = b(α0y + α1ẏ + ÿ) = 0.

Hence, g = [0 by]� is a symmetry of the equation h = 0 for any b ∈ R. For the sake
of simplicity, let b = 1. Let t̃ = t and ỹ = ln(|y|) be a diffeomorphism straightening
g (i.e., Lgt̃ = 0 and Lgỹ = 1). Hence,

dỹ

dt̃
= 1

y

dy

dt
,

d2ỹ

dt̃2
= − 1

y2

(
dy

dt

)2

+ 1

y

d2y

dt2 ,

which can be rewritten as

dy

dt
= y

dỹ

dt̃
,

d2y

dt2
= y

d2ỹ

dt̃2
+ y

(
dỹ

dt̃

)2

;

by substituting the above expressions into the equation h = 0, one obtains

y
d2ỹ

dt̃2
+ y

(
dỹ

dt̃

)2

+ α1y
dỹ

dt̃
+ α0y = 0,

namely (if y �= 0) the Riccati differential equation

dz̃

dt̃
+ z̃2 + α1z̃ + α0 = 0,

where z̃ = dỹ

dt̃
.





Chapter 4
Analysis of Discrete-Time Nonlinear Systems

4.1 Semi-invariants and Darboux Polynomials of Discrete-Time
Nonlinear Systems

In this section, the results of Sect. 3 are extended to the discrete-time case [93].

Definition 4.1 A semi-invariant of system (1.1b) is a meromorphic scalar function
ω(x) ∈ R such that

ω ◦ F = λω,

with λ(x) ∈ R being meromorphic and such that there is no zero/pole cancelation
between λ and ω; if ω and λ are polynomial, then ω is said to be a Darboux poly-
nomial; λ is called the characteristic function (respectively, the characteristic poly-
nomial) of the semi-invariant (respectively, of the Darboux polynomial). If λ is con-
stant, then it is called the characteristic value.

A semi-invariant (respectively, a Darboux polynomial) of system (1.1b) is also
called a DT-semi-invariant (respectively, a DT-Darboux polynomial) associated
with F . If no confusion can arise between the continuous-time and discrete-
time cases, the simpler nomenclature semi-invariant is used instead of DT-semi-
invariant.

Clearly, if not empty, set Iω = {x ∈ U : ω(x) = 0} is invariant, i.e., if x(0) ∈
Iω, then x(t) ∈ Iω for all t ∈ Z, t ≥ 0, possibly close to 0; as a matter of fact,
letting ω̄(t) = ω(x(t)) and λ̄(t) = λ(x(t)), if ω̄(t) = 0, then ω̄(t +1) = λ̄(t)ω̄(t) = 0
(clearly, if λ̄(t) �= 0, then ω̄(t +1) = 0 implies ω̄(t) = 0). From Definition 4.1, a first
integral associated with F is a semi-invariant associated with F , with λ = 1.

For simplicity, the following theorem considers the Darboux polynomials associ-
ated with F , although some of such properties hold for semi-invariants too, subject
to some amendments.

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
DOI 10.1007/978-0-85729-612-2_4, © Springer-Verlag London Limited 2011
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Theorem 4.1 Assume that F is polynomial.

(4.1.1) If I = ω1
ω2

is a first integral of system (1.1b), with ω1 and ω2 being co-prime
polynomials, then ω1 and ω2 are Darboux polynomials of system (1.1b),
with the same characteristic polynomial λ1 = λ2.

(4.1.2) Let ω1 and ω2 be Darboux polynomials of system (1.1b) with respective
characteristic polynomials λ1 and λ2; then, the product ω

n1
1 ω

n2
2 is a Dar-

boux polynomial of system (1.1b) for any pair n1, n2 ∈ Z
≥, with character-

istic polynomial λ
n1
1 λ

n2
2 .

Proof First, consider Statement (4.1.1) of the theorem. Since I is a first integral
of system (1.1b), it follows that I ◦ F = ω1◦F

ω2◦F = ω1
ω2

, which implies (ω1 ◦ F)ω2 =
(ω2 ◦ F)ω1; this last equality shows, taking into account that ω1 and ω2 are co-
prime, that ω1 is a factor of ω1 ◦ F and ω2 is a factor of ω2 ◦ F , with λ1 = ω1◦F

ω1

and λ2 = ω2◦F
ω2

being the respective characteristic polynomials; substituting these
expressions in (ω1 ◦ F)ω2 = (ω2 ◦ F)ω1, one finds that ω1ω2(λ1 − λ2) = 0, which
shows that (λ1 − λ2) = 0, because ω1ω2 is not identically equal to zero. As for
statement (4.1.2) of the theorem, the computations
(
ω

n1
1 ω

n2
2

) ◦ F = (ω1 ◦ F)n1(ω2 ◦ F)n2 = (λ1ω1)
n1(λ2ω2)

n2 = (
λ

n1
1 λ

n2
2

)(
ω

n1
1 ω

n2
2

)
,

show that ω
n1
1 ω

n2
2 is a Darboux polynomial of system (1.1b). �

Remark 4.1 To compare Theorem 4.1 with the similar Theorem 3.1 at p. 56 that
holds in the continuous-time case, recall that if ω = ω1ω2 is a Darboux polynomial
of system (1.1a), with ω1 and ω2 being polynomials, one concludes that its factors
ω1 and ω2 are certainly Darboux polynomials associated with f ; the same need not
hold in the discrete-time case. As an illustrative example, let F(x) = [x2 x3 0]�;
clearly, ω(x) = x3p(x) is a Darboux polynomial associated with F , with character-
istic value λ = 0, for any polynomial p(x), as well as its factor ω1(x) = x3,

ω ◦ F = (
F3p(F)

)∣∣
F1=x2,F2=x3,F3=0 = 0,

but the other factor p(x), being an arbitrary polynomial, is not, in general, a Darboux
polynomial associated with F .

4.2 A “Computational” Result for the Darboux Polynomials
of Discrete-Time Nonlinear Systems

For the sake of simplicity, assume that F is polynomial, and consider its Darboux
polynomials; note that the algorithm proposed in this section can be adapted to cover
the computation of semi-invariants associated with F , when F is not polynomial,
as shown in the subsequent Examples 4.2, 4.3 and 4.4.

Assume that ω is a Darboux polynomial associated with F , with characteristic
polynomial λ, i.e., ω ◦ F = λω. Assume, in addition, that ω is a linear combination
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with real and constant coefficients ci of some functionally independent polynomials
p1,p2, . . . , pk , for some k > 0, ω = ∑k

i=1 cipi . Consider the square k × k matrix

Γ =

⎡
⎢⎢⎢⎣

p1 p2 . . . pk

Δp1 Δp2 . . . Δpk

...
...

...
...

Δk−1p1 Δk−1p2 . . . Δk−1pk

⎤
⎥⎥⎥⎦ , (4.1)

where Δpj = pj ◦ F , Δ2pj = pj ◦ F ◦ F and so on.

Theorem 4.2 [93] Under the above positions, if det(Γ ) �= 0, then ω is a factor of
det(Γ ).

Proof Assume ω = ∑k
i=1 cipi , for ci ∈ R; with no loss of generality, apart from a

reordering of polynomials pi , assume that ck �= 0. First, note that if ω is a Darboux
polynomial associated with F , with characteristic polynomial λ, i.e., Δω = λω, then
for any i ∈ Z

>, Δiω = λiω, for some polynomial λi , with λ1 = λ. This fact can be
proven as follows:

Δω = λω = λ1ω, λ1 := λ,

Δ2ω = (Δλ1)(Δω) = (Δλ1)λ1ω = λ2ω, λ2 := (Δλ1)λ1,

...
...

Δk−1ω = λk−1ω, λk−1 := (Δλk−2)λk−2;

note that if λ is constant, Δλ = λ, whence λi = λi ; in particular, if λ = 0,
then λi = 0, i = 1, . . . , k − 1. Since ω = ∑k

i=1 cipi , it follows that Δjω =∑k
i=1 ciΔ

jpi, j = 0, . . . , k − 1. For this reason,

Γ ·

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
...

...
...

0 0 . . . 1 ck−1
0 0 . . . 0 ck

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

p1 p2 . . .
∑k

i=1 cipi

Δp1 Δp2 . . .
∑k

i=1 ciΔpi

...
...

...
...

Δk−1p1 Δk−1p2 . . .
∑k

i=1 ciΔ
k−1pi

⎤
⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎣

p1 p2 . . . ω

Δp1 Δp2 . . . Δω
...

...
...

...

Δk−1p1 Δk−1p2 . . . Δk−1ω

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

p1 p2 . . . ω

Δp1 Δp2 . . . λ1ω
...

...
...

...

Δk−1p1 Δk−1p2 . . . λk−1ω

⎤
⎥⎥⎥⎦ = Γ̂ ,

whence det(Γ ) = 1
ck

det(Γ̂ ), from which the theorem follows. �

Remark 4.2 When det(Γ ) �= 0, Theorem 4.2 guarantees that if a Darboux poly-
nomial ω, associated with F , is a linear combination with constant coefficients of
p1, . . . , pk , then ω is a factor of det(Γ ). But in the application of the theorem, all
factors of det(Γ ) or of the determinants of its minors, not only those that are lin-
ear combinations of p1, . . . , pk , are good candidates to be Darboux polynomials
associated with F , because Γ could be a minor of another matrix Γ̌ found with an
enlarged choice of the polynomials p1, . . . , pǩ

.

Remark 4.3 When det(Γ ) = 0, Theorem 4.2 cannot be applied: in such a case, good
candidates to be Darboux polynomials associated with F are the factors of the de-
terminants of minors of Γ that are not zero. As a matter of fact, one typical reason
for det(Γ ) to be identically equal to zero is that two or more different linear com-
binations, with constant coefficients, of some polynomials p1, . . . , pk are Darboux
polynomials associated with F , with the same characteristic polynomial.

Example 4.1 Let F(x) = [x2 x2 +x2
2 −x2

1 ]�. Take as basis polynomials p1(x) = x2,
p2(x) = x2

1 . Then,

Γ (x) =
[

x2 x2
1

x2 + x2
2 − x2

1 x2
2

]
,

with det(Γ (x)) = (x2
1 − x2)(x

2
1 − x2

2). Let ω(x) = x2
1 − x2; since

Δω(x) = [
F 2

1 − F2
]
F1=x2,F2=x2+x2

2−x2
1
= x2

1 − x2 = ω(x),

ω is a Darboux polynomial associated with F , with characteristic value equal to 1,
i.e., ω is a first integral associated with F .
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Example 4.2 Let F(x) = x−3
1+x

. Take as basis polynomials p1(x) = 1, p2(x) = x,

p3(x) = x2. Then,

Γ (x) =

⎡
⎢⎢⎣

1 x x2

1 x−3
1+x

(x−3)2

(1+x)2

1 − 3+x
x−1

(3+x)2

(x−1)2

⎤
⎥⎥⎦ ,

with det(Γ (x)) = −2 (3+x2)3

(1+x)2(x−1)2 . Let ω1(x) = 3 + x2 and ω2(x) = (3+x2)3

(1+x)2(x−1)2 ;
since

Δω1(x) = (
3 + F 2)∣∣

F= x−3
1+x

= 4
3 + x2

(1 + x)2
= λ1ω1(x),

with λ1(x) = 4
(1+x)2 , and

Δω2(x) = (3 + F 2)3

(1 + F)2(F − 1)2

∣∣∣∣
F= x−3

1+x

= (3 + x2)3

(1 + x)2(x − 1)2 = λ2ω2(x),

with λ2 = 1, one concludes that ω1 and ω2 are semi-invariants associated with F ;
in particular, since λ2 = 1, ω2 is a first integral associated with F .

Example 4.3 Consider the algorithm for the computation of the square root of a
positive real number a2, with a > 0, as described by the discrete-time system (1.1b),

with F(x) = a2−1
a2 x + 1

x
. Take as basis polynomials p1(x) = 1 and p2(x) = x. Then,

Γ (x) =
[

1 x

1 a2−1
a2 x + 1

x

]

with det(Γ (x)) = − x2−a2

a2x
. Clearly,

Δ
(
x2 − a2) = (

F 2 − a2)∣∣
F= a2−1

a2 x+ 1
x

= (a2x − x + a)(a2x − x − a)

a4x2

(
x2 − a2),

which shows that ω(x) = x2 − a2 is a semi-invariant associated with F , with char-

acteristic function λ(x) = (a2x−x+a)(a2x−x−a)

a4x2 .

Example 4.4 Consider the Lyness-type system characterized by F(x) = [x2
x2
x1

]�
(see, e.g., [77]). Take as basis polynomials p1(x) = x1, p2(x) = x2, p3(x) = x2

1 ,
p4(x) = x1x2, p5(x) = x2

2 , p6(x) = x3
1 , p7(x) = x2

1x2, p8(x) = x1x
2
2 , p9(x) = x3

2
(i.e., all monomials of degree less than 4, with respect to the standard dilation).
Matrix Γ corresponding to such a choice has not full generic rank (its generic rank
is 6). Taking the minor Γ̂ , found from Γ deleting the columns 4, 6 and 9 and the
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rows 7, 8 and 9 (actually, this corresponds to exclude monomials p4, p6 and p9
from the chosen basis),

Γ̂ (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x2
1 x2

2 x2
1x2 x1x

2
2

x2 x2/x1 x2
2 x2

2/x2
1 x3

2/x1 x3
2/x2

1

x2/x1 1/x1 x2
2/x2

1 1/x2
1 x2

2/x3
1 x2/x

3
1

1/x1 1/x2 1/x2
1 1/x2

2 1/(x2x
2
1) 1/(x1x

2
2)

1/x2 x1/x2 1/x2
2 x2

1/x2
2 x1/x

3
2 x2

1/x3
2

x1/x2 x1 x2
1/x2

2 x2
1 x3

1/x2
2 x3

1/x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and computing its determinant, one finds that det(Γ̂ ) = qω1ω2, where ω1(x) = x1 +
x2 + x1x

2
2 + x2

1x2 + x2
1 + x2

2 , ω2(x) = x1+x2+x1x
2
2+x2

1x2+x2
1+x2

2
x1x2

and q(x) is another

rational function; in particular, ω1 and ω2 are semi-invariants associated with F ,
with respective characteristic functions λ1(x) = x2

x2
1

and λ2(x) = 1: actually, ω2 is a

first integral associated with F .

4.3 Symmetries of Discrete-Time Nonlinear Systems

For any admissible τ (to be considered as a constant parameter),

x = Φg(τ, y) (4.2)

qualifies as a local analytic diffeomorphism (actually, it is a local one-parameter
group of transformations), with inverse

y = Φg(−τ, x); (4.3)

system (1.1b) is transformed, according to such a diffeomorphism, as follows:

Δy = Φg(−τ, ·) ◦ F(·) ◦ Φg(τ, y). (4.4)

Definition 4.2 [93] The diffeomorphism (4.2) is a symmetry of system (1.1b) and
system (1.2) is its infinitesimal generator if

Φg(−τ, ·) ◦ F(·) ◦ Φg(τ, y) = F(y), ∀(τ, y) ∈ V , (4.5)

where V is an open and connected set of R × R
n including {0} × U . If (4.5) holds,

by abuse of notation, also the infinitesimal generator (1.2) is called a symmetry of
the discrete-time system (1.1b); similarly, g is called a DT-symmetry of F .

If no confusion can arise between the continuous-time and discrete-time cases,
the simpler nomenclature symmetry is used instead of DT-symmetry. It is worth



4.3 Symmetries of Discrete-Time Nonlinear Systems 159

pointing out that symmetries for higher order difference equations can be de-
fined [66] similarly to what has been done in Sect. 3.20 for higher order differential
equations.

Theorem 4.3 Vector function g is a symmetry of F if and only if �F,g	 = 0.

Proof Clearly, condition (4.5) is equivalent to:

F(·) ◦ Φg(τ, x) = Φg(τ, ·) ◦ F(x). (4.6)

Condition (4.6) holds for τ = 0. Taking the derivative with respect to τ of both sides
of (4.6), one obtains

(
∂F

∂x
g

)
◦ Φg = g ◦ F ◦ Φg,

whence �F,g	 ◦ Φg = 0. �

If y = F(x) qualifies as a diffeomorphism in some open and connected subset
of R

n and �F,g	 = 0 therein, then each orbit of dx
dτ

= g(x) is mapped by y = F(x)

into the same orbit of the same system, preserving the time-parameterization along
the orbit; to be more precise,

dy

dτ
= ∂F (x)

∂x

dx

dτ
= ∂F (x)

∂x
g(x) = g

(
F(x)

) = g(y).

Remark 4.4 If symmetry g is linear, g(x) = Bx for some B ∈ R
n×n, then (4.6)

becomes F(eBτx) = eBτF (x), according to the fact that �F(x),Bx	 = [F(x),Bx].

Remark 4.5 By a simple modification of the flow box Theorem 3.3 at p. 57, about
any regular point of g, there exist local coordinates such that g(x) = x1e1, where e1

is the first column of the n × n identity matrix E. First, consider the case n = 2 and
g(x) = [x1 0]�. Let F have g as symmetry; then, the equalities

[
0
0

]
=

[
F1
0

]
−

[
∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

][
x1
0

]
=

[
F1
0

]
−

[
x1

∂F1
∂x1

x1
∂F2
∂x1

]
,

imply

x1
∂F1

∂x1
= F1,

∂F2

∂x1
= 0,

namely F has g as symmetry if and only if

F(x) =
[
x1β1
β2

]
,
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where β1 and β2 are arbitrary functions of x2. In the general case, assume that
g(x) = x1e1, with e1 being the first column of the n × n identity matrix E; with a
similar reasoning, it is easy to show that F has g as symmetry if and only if

F(x) =

⎡
⎢⎢⎢⎣

x1β1
β2
...

βn

⎤
⎥⎥⎥⎦ ,

with the βi ’s being arbitrary functions of x2, . . . , xn.

Theorem 4.4 Let y = ϕ(x) be a diffeomorphism analytic on U . Let ϕ∗F = ϕ ◦F ◦
ϕ−1 and ϕ∗g = (

∂ϕ
∂x

g) ◦ ϕ−1. Then, ϕ∗g is a symmetry of ϕ∗F if and only if g is a
symmetry of F ,

�ϕ∗F,ϕ∗g	 = 0 ⇐⇒ �F,g	 = 0.

Proof Equation (4.6) yields

ϕ ◦ F ◦ ϕ−1 ◦ ϕ ◦ Φg ◦ ϕ−1 = ϕ ◦ Φg ◦ ϕ−1 ◦ ϕ ◦ F ◦ ϕ−1; (4.7)

since ϕ∗F = ϕ ◦ F ◦ ϕ−1 and Φϕ∗g = ϕ ◦ Φg ◦ ϕ−1, (4.7) becomes (ϕ∗F) ◦ Φϕ∗g =
Φϕ∗g ◦ (ϕ∗F), which holds (by Theorem 4.3) if and only if �ϕ∗F,ϕ∗g	 = 0. �

Remark 4.5 and Theorem 4.4 yield the following theorem.

Theorem 4.5 Let g(x) ∈ R
n be given. Let y = ϕ(x) be a diffeomorphism such that

the push-forward of g is ϕ∗g(y) = y1e1, with e1 being the first column of the n × n

identity matrix. Then, F has g as symmetry if and only if

F(x) = ϕ−1 ◦

⎡
⎢⎢⎢⎣

y1β1
β2
...

βn

⎤
⎥⎥⎥⎦ ◦ ϕ(x),

with the βi ’s being arbitrary functions of y2 = ϕ2(x), . . . , yn = ϕn(x).

Example 4.5 Let g(x) = [x1 − x2]�. A diffeomorphism y = ϕ(x), such that the
push-forward of g is g̃(y) = ϕ∗g(y) = [y1 0]�, is given by ϕ(x) = [x1 x1x2]�,
with inverse ϕ−1(y) = [y1

y2
y1

]�. Then, the set of all F̃ having g̃ as symmetry is
parameterized by

F̃ (y) =
[
y1β1
β2

]
,
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where β1, β2 are arbitrary functions of y2. By the pull-back of F̃ , one concludes
that the set of all F having g as symmetry is parameterized by

F(x) = ϕ−1 ◦ F̃ ◦ ϕ(x) =
⎡
⎣

⎡
⎣F̃1

F̃2

F̃1

⎤
⎦

F̃1=y1β1,F̃2=β2

⎤
⎦

y1=x1,y2=x1x2

=
[
x1β1

1
x1

β2
β1

]
, (4.8)

where β1, β2 are arbitrary functions of x1x2.

Note that the diffeomorphism y = ϕ(x) in Example 4.5 is not invertible at x = 0.
Nevertheless, it can be used to find vector functions F(x) ∈ R

2 that are analytic
at x = 0; as an example, letting β2 = x1x2β1 with β1 analytic at x = 0, one has
F(x) = [x1β1 x2]�, which is analytic at x = 0.

Remark 4.6 By the definitions [f,g] = Lf g − Lgf and �F,g	 = g ◦ F − LgF ,
it is easy to see that �F(x),Bx	 = BF(x) − LBxF(x) = [F(x),Bx], whereas
�Ax,g(x)	 = g(Ax) − LgAx need not coincide with [Ax,g(x)]. Since the g

considered in Example 4.5 is linear, the set of all F having g as DT-symmetry,
given in (4.8), is coincident with the set of all f having g as CT-symmetry, given
in (3.15). As a matter of fact, the two sets coincide by letting β1 = α + β

2x1x2
,

β2 = −x1x2α
2 + 1

4x1x2
β2, where α and β are arbitrary functions of x1x2. In par-

ticular, by Theorem 3.10 at p. 66, if g(x) = Bx and {M0, . . . ,Mr−1} is a basis
of Lc(B), then g is both a CT-symmetry and a DT-symmetry of any element of
IC(Bx) ⊗ Lc(B) ≡ CC(Bx) ≡ CD(Bx) (see the notation introduced just before
Theorem 3.11 at p. 66).

4.4 Symmetries of Scalar Discrete-Time Nonlinear Systems

The following theorem (which is inspired by [82]) gives a necessary and sufficient
condition for a scalar discrete-time nonlinear system to be diffeomorphic to the
special form

y(t + 1) = y(t) + c, (4.9)

with c ∈ R.

Theorem 4.6 Let F(x) ∈ R. There exists a diffeomorphism y = ϕ(x) such that
ϕ∗F(y) = y + c, where c ∈ R is a constant, if and only if there exists a symme-
try g(x) ∈ R, g �= 0, of F(x), �F,g	 = 0. In such a case, there exists a (non-trivial)
first integral I (x) associated with F(x).

Proof Assume that ϕ∗F(y) = y +c. Let g̃(y) = 1; clearly, �ϕ∗F, g̃	 = 0, and there-
fore, by Theorem 4.4, one has �F,g	 = 0, with g = ϕ∗g̃ �= 0. Conversely, assume
that �F,g	 = 0, with g �= 0. Let y = ϕ(x), with ϕ(x) = ∫ x

0
1

g(ξ)
dξ , which is well
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defined in a neighborhood of any regular point of g. Hence, ϕ∗g(y) = ( 1
g(x)

g(x)) ◦
ϕ−1(y) = 1. By Theorem 4.4, condition �F,g	 = 0 implies �ϕ∗F,ϕ∗g	 = 0. Now,

since �F̃ (y), ϕ∗g(y)	 = 1 − ∂F̃ (y)
∂y

for any F̃ (y) ∈ R, condition �ϕ∗F,ϕ∗g	 = 0 im-

plies that ∂ϕ∗F(y)
∂y

= 1, i.e., ϕ∗F(y) = y + c. Note that if c = 0 in (4.9), then ϕ(x) is

a first integral associated with F ; conversely, if ϕ(x) is a non-constant first integral
associated with F , then y = ϕ(x) is a diffeomorphism such that ϕ∗F(y) = y. For
c �= 0, a first integral of (4.9) is Ĩ (y) = sin( 2π

c
y), whence I = ϕ∗Ĩ . As a matter of

fact, letting F̃ (y) = y + c, one has Ĩ ◦ F̃ (y) = sin( 2π
c

(y + c)) = sin( 2π
c

y + 2π) =
sin( 2π

c
y) = Ĩ (y). �

Remark 4.7 Theorem 4.6 gives a complete picture of scalar discrete-time systems
admitting a symmetry, which can be summarized by saying that the following state-
ments are equivalent:

(4.7.1) the scalar discrete-time system admits a symmetry g(x);
(4.7.2) the scalar discrete-time system is diffeomorphic by y = ϕ(x) to form (4.9),

for some c ∈ R;
(4.7.3) the scalar discrete-time system admits a (non-trivial) first integral I (x).

If g is a symmetry associated with F , then ϕ(x) = ∫ x

0
1

g(ξ)
dξ ; if c = 0, then

I (x) = ϕ(x), otherwise I (x) = sin( 2π
c

ϕ(x)). If y = ϕ(x) is a diffeomorphism such

that ϕ∗F(y) = y + c, then g = (
∂ϕ
∂x

)−1 is a symmetry associated with F ; as before,
if c = 0, then I (x) = ϕ(x), otherwise I (x) = sin( 2π

c
ϕ(x)). If I is a first integral

associated with F , then g = ( ∂I
∂x

)−1 is a symmetry associated with F and the dif-
feomorphism y = ϕ(x), with ϕ = I , is such that ϕ∗F(y) = y.

Example 4.6 Let F(x) = ax+b
cx+d

and look for a symmetry of F of the form g(x) =
αx2 + βx + γ ; from

g ◦ F(x) = α
(ax + b)2

(cx + d)2
+ β

ax + b

cx + d
+ γ,

∂F (x)

∂x
g(x) = ad − cb

(cx + d)2

(
αx2 + βx + γ

)
,

one has that �F,g	 = 0 if and only if the following algebraic system has a real
solution in the unknowns α,β, γ :

(
ad − cb − a2)α − acβ − c2γ = 0, (4.10a)

−2abα − 2bcβ − 2cdγ = 0, (4.10b)

−b2α − bdβ + (−d2 − cb + ad
)
γ = 0. (4.10c)

In particular, one of the solutions of (4.10a)–(4.10c) is α = −c,β = a − d, γ = b,
which yields the symmetry g(x) = −cx2 + (a − d)x + b. For the sake of simplicity,



4.4 Symmetries of Scalar Discrete-Time Nonlinear Systems 163

consider the case a = 3, b = 1, c = −1 and d = 1,

F(x) = 3x + 1

1 − x
, g(x) = x2 + 2x + 1.

The resulting diffeomorphism, which is well defined in a neighborhood of x = 0, is
y = ϕ(x), with

ϕ(x) =
∫ x

0

1

ξ 2 + 2ξ + 1
dξ = x

x + 1
,

with inverse ϕ−1(y) = y
1−y

. It is easy to verify that ϕ∗F(y) = ϕ ◦ F ◦ ϕ−1(y) =
(( F

F+1 )|
F= 3x+1

1−x
)|x= y

1−y
= y + 1

2 . Since a first integral associated with ϕ∗F is

sin(4πy), a first integral associated with F is I (x) = sin(4π x
x+1 ); as a matter of

fact, one can check

I ◦ F(x) = sin

(
4π

3x + 1

(1 − x)( 3x+1
1−x

+ 1)

)
= sin

(
4π

x

x + 1
+ 2π

)

= sin

(
4π

x

x + 1

)

= I (x).

Now, consider the case a = 1, b = −3, c = 1 and d = 1,

F(x) = x − 3

x + 1
, g(x) = −x2 − 3.

The resulting diffeomorphism, which is well defined in a neighborhood of x = 0, is
y = ϕ(x), where

ϕ(x) =
∫ x

0

1

−ξ2 − 3
dξ = − 1√

3
arctan

(
x√
3

)
,

with inverse ϕ−1(y) = −√
3 tan(

√
3y). It is easy to verify that ϕ∗F(y) = y +

√
3π
9 .

In Example 4.2, it has been shown that the diffeomorphism y = (3+x2)3

(1+x)2(x−1)2 trans-

forms system x(t + 1) = x(t)−3
x(t)+1 into the linear system y(t + 1) = y(t). Hence, a

symmetry g(x) of F(x) can be computed as follows:

g(x) =
(

∂ϕ(x)

∂x

)−1

= (1 + x)3(x − 1)3

2(3 + x2)2(x2 − 9)x
;

it is left to the reader to show that �F,g	 = 0 for this choice.

Theorem 4.6 is extended to the case n > 1 by the following theorem.
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Theorem 4.7 Let F(x) ∈ R
n. There exists a diffeomorphism y = ϕ(x) such that

ϕ∗F(y) = y + c, where c ∈ R
n is a constant, if and only if there exist n symme-

tries gi(x) ∈ R
n of F(x), �F,gi	 = 0, i = 1, . . . , n, such that [gi, gj ] = 0, for all

i, j ∈ {1, . . . , n}, and det([g1 . . . gn]) �= 0. In such a case, there exist n functionally
independent first integrals Ii(x), i = 1, . . . , n, associated with F(x).

Proof Assume that ϕ∗F(y) = y + c. Let g̃i (y) = ei , i = 1, . . . , n; clearly,
�ϕ∗F, g̃i	 = 0, and therefore, by Theorem 4.4, one has �F,gi	 = 0, with gi = ϕ∗g̃i ,
i = 1, . . . , n; in particular, by construction, the vector functions gi are pairwise
commuting, [gi, gj ] = 0, and satisfy det([g1 . . . gn]) �= 0. Conversely, assume that
�F,gi	 = 0, with the vector functions gi being pairwise commuting, [gi, gj ] = 0,
and satisfying det([g1 . . . gn]) �= 0. Hence, by Remark 1.8 at p. 22, all rows of
[g1 . . . gn]−1 are exact one-forms. Let y = ϕ(x) be a diffeomorphism such that

∂ϕ(x)

∂x
= [

g1(x) . . . gn(x)
]−1

,

which is well defined about any point xo such that det([g1(x
o) . . . gn(x

o)]) �= 0.
Hence, ϕ∗gi(y) = ([g1(x) . . . gn(x)]−1gi(x)) ◦ ϕ−1(y) = ei . By Theorem 4.4,
condition �F,gi	 = 0 implies �ϕ∗F,ϕ∗gi	 = 0. Now, since �F̃ (y), ϕ∗gi(y)	 =
ei − ∂F̃ (y)

∂yi
for any F̃ (y) ∈ R

n, condition �ϕ∗F,ϕ∗gi	 = 0 implies that ∂ϕ∗F(y)
∂yi

= ei ,

i.e., ϕ∗F(y) = yiei + ci(y1, . . . , yi−1, yi+1, . . . , yn), for some function ci being in-
dependent of yi . Letting i vary in {1, . . . , n}, one concludes that ϕ∗F(y) = y + c,
for a constant c = [c1 . . . cn]�. If ci = 0, then Ĩi (y) = yi is a first integral as-
sociated with ϕ∗F , otherwise Ĩi (y) = sin( 2π

c
yi) is a first integral associated with

ϕ∗F . In particular, such first integrals are functionally independent. By the pull-back
to the original coordinates, one obtains the functionally independent first integrals
Ii = ϕ∗Ĩi , i = 1, . . . , n, associated with F(x). �

Example 4.7 Consider the discrete-time system described by

F(x) =
[−4x4

2 − 8x1x
2
2 + 4x3

2 − 4x2
1 + 4x1x2 − 4x2

2 − 3x1 + 2x2

−2x2
2 − 2x1 + x2 − 1

]
.

Let

g1(x) =
[

1 + 4x1x2 + 4x3
2−2x1 − 2x2

2

]
, g2(x) =

[−2x2
1

]
.

It is easy to check that �F,gi	 = 0, i = 1,2, [g1, g2] = 0 and det([g1 g2]) �= 0.
Hence the rows of

[
g1(x) g2(x)

]−1 =
[

1 2x2

2x1 + 2x2
2 1 + 4x1x2 + 4x3

2

]

are exact one-forms and their integrals yield the diffeomorphism y = ϕ(x), with

ϕ(x) =
[

x1 + x2
2

x2 + x2
1 + 2x1x

2
2 + x4

2

]
, ϕ−1(y) =

[
y1 − y2

2 + 2y2y
2
1 − y4

1
y2 − y2

1

]
.
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Compute the push-forward

ϕ∗F(y) =
[

1 + y1
y2

]
;

the first integrals associated with ϕ∗F(y) are Ĩ1(y) = sin(2πy1) and Ĩ2(y) = y2.
Hence, two functionally independent first integrals associated with F(x) can be
computed by the pull-back to the original coordinates,

I1(x) = ϕ∗Ĩ1(x) = sin
(
2π

(
x1 +x2

2

))
, I2(x) = ϕ∗Ĩ2(x) = x2 +x2

1 +2x1x
2
2 +x4

2 .

4.5 Reduction of Discrete-Time Nonlinear Systems

Let F(x), g(x) ∈ R
n be such that �F,g	 = 0. Let IC(g) be the set of the CT-first

integrals associated with g, i.e., by Remark 3.12 at p. 77, the set of all functions
being homogeneous of degree 0 with respect to g. Then, there exist n − 1 function-
ally independent elements J1, . . . , Jn−1 of IC(g) that generate the whole IC(g),
i.e., any J ∈ IC(g) can be expressed as C(J1, . . . , Jn−1), where C is an arbitrary
function of the arguments. Since Ji ∈ IC(g), it follows that Ji ◦ F ∈ IC(g): as a
matter of fact, taking into account that �F,g	 = 0 implies F ◦Φg = Φg ◦F and that
Ji ∈ IC(g) implies Ji ◦ Φg = Ji , one concludes that

Ji ◦ F ◦ Φg = Ji ◦ Φg ◦ F = Ji ◦ F,

as to be shown. Since Ji ◦ F ∈ IC(g), there exists a function Ci such that Ji ◦ F =
Ci(J1, . . . , Jn−1). Therefore, by the projection R

n → R
n−1 given by ξi = Ji(x),

i = 1, . . . , n − 1, a discrete-time nonlinear system, of reduced dimension n − 1, is
found.

As in the continuous-time case, the reduced system does not describe wholly
the given system, but, being of lower dimension, it can be useful to study it. For
instance, the meaning of an equilibrium point of the reduced system is the same as
in the continuous-time case.

Example 4.8 Consider F(x) = [x1 + x2 x2 3x3 + a1x
2
1 + a2x1x2 + a3x

2
2 ]�, g(x) =

[x1 x2 2x3]�; clearly, �F,g	 = 0. Two functionally independent CT-first integrals
associated with g are J1(x) = x2

x1
and J2(x) = x3

x2
1

; then, by the projection ξ1 = x2
x1

,

ξ2 = x3
x2

1
, taking into account that (with the substitution, F1(x) = x1 +x2, F2(x) = x2

and F3(x) = 3x3 + a1x
2
1 + a2x1x2 + a3x

2
2 )

ξ1 ◦F(x) = F2(x)

F1(x)
=

x2
x1

1 + x2
x1

, ξ2 ◦F(x) = F3(x)

F 2
1 (x)

=
a1 + 3 x3

x2
1

+ a2
x2
x1

+ a3
x2

2
x2

1

1 + 2 x2
x1

+ x2
2

x2
1

,

one obtains Δξ = Fr(ξ), with Fr(ξ) = [ ξ1
1+ξ1

a1+3ξ2+a2ξ1+a3ξ
2
1

(1+ξ1)
2 ]�.



166 4 Analysis of Discrete-Time Nonlinear Systems

4.6 A Property of Discrete-Time Nonlinear Planar Systems

Throughout this section assume that x ∈ R
2.

Definition 4.3 A scalar function ω �= 0 is an inverse integrating factor associated
with F if

ω ◦ F = det

(
∂F

∂x

)
ω. (4.11)

Actually, any function ω such that (4.11) holds is a semi-invariant associated
with F , with characteristic function λ = det( ∂F

∂x
), provided that there is no zero/pole

cancelation between λ and ω.
The name “inverse integrating factor” given in Definition 4.3 is motivated by the

following reasoning. Assume that there exist a δT ∈ R, δT > 0, and a vector func-
tion f (x) ∈ R

n such that F(x) = Φf (δT , x), i.e., the discrete-time system (1.1b)
is the sampling of the continuous-time system (1.1a) with sampling time δT or,
equivalently, f is the logarithm of F (see [93]). If ω is an inverse integrating fac-
tor associated with f , in the sense of Definition 3.9 at p. 85, then ω is an inverse
integrating factor associated with F , in the sense of Definition 4.3.

Lemma 4.1

(4.1.1) If ω1 and ω2 are two inverse integrating factors associated with F , then
I = ω1

ω2
is a first integral associated with F .

(4.1.2) If ω and I are, respectively, an inverse integrating factor and a first integral
associated with F , then ω̂ = ωI is an inverse integrating factor associated
with F .

(4.1.3) If ω1 and ω2 are two inverse integrating factors associated with F , then ω =
a1ω1 +a2ω2 in an inverse integrating factor associated with F , ∀a1, a2 ∈ R.

Proof Proof of (4.1.1). If ωi ◦ F = det( ∂F
∂x

)ωi , i = 1,2, then

I ◦ F = ω1 ◦ F

ω2 ◦ F
= det( ∂F

∂x
)ω1

det( ∂F
∂x

)ω2
= ω1

ω2
= I.

Proof of (4.1.2). If ω ◦ F = det( ∂F
∂x

)ω and I ◦ F = I , then

ω̂ ◦ F = (ω ◦ F)(I ◦ F) =
(

det

(
∂F

∂x

)
ω

)
(I ) = det

(
∂F

∂x

)
ω̂.

Proof of (4.1.3). If ωi ◦ F = det( ∂F
∂x

)ωi , i = 1,2, then

ω ◦ F = a1ω1 ◦ F + a2ω2 ◦ F = a1 det

(
∂F

∂x

)
ω1 + a2 det

(
∂F

∂x

)
ω2

= det

(
∂F

∂x

)
(a1ω1 + a2ω2) = det

(
∂F

∂x

)
ω. �
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Example 4.9 Take F(x) = [x1 3x2 + x2
1 ]�. Compute the semi-invariants associated

with F that are linear combinations of p1(x) = x1 and p2(x) = x2, by the technique
of Sect. 4.2; then, from

Γ (x) =
[
x1 x2

x1 3x2 + x2
1

]
,

one computes det(Γ (x)) = x1(2x2 + x2
1), from which ω1(x) = x1 and ω2(x) =

2x2 + x2
1 are found as candidates to be semi-invariants associated with F . In partic-

ular, ω1 ◦ F = λ1ω1 and ω2 ◦ F = λ2ω2, with λ1 = 1 and λ2 = 3; since, λ1 = 1 and
λ2 = det( ∂F

∂x
), ω1 is a first integral and ω2 is an inverse integrating factor associated

with F .

Theorem 4.8 If ω and I are, respectively, an inverse integrating factor and a first
integral associated with F , then

g = ωS

(
∂I

∂x

)�
, (4.12)

where S = [ 0 −1
1 0

]
, is a symmetry of F . Vice versa, if g is a symmetry of F and I

is a first integral associated with both g and F (LgI = 0 and I ◦ F = F ), then g

can be rewritten as g = ωS( ∂I
∂x

)� for some ω that is an inverse integrating factor
associated with F .

Proof First, it is pointed out that BSB� = det(B)S, for any matrix B , as shown by:

[
a b

c d

][
0 −1
1 0

][
a c

b d

]
=

[
0 bc − ad

ad − bc 0

]
= (ad − bc)

[
0 −1
1 0

]
;

furthermore, note that I ◦ F = I implies ∂I
∂x

|x=F
∂F
∂x

= ∂I
∂x

. Since

g ◦ F = (ω ◦ F)S

(
∂I

∂x

∣∣∣∣
x=F

)�
= det

(
∂F

∂x

)
ωS

(
∂I

∂x

∣∣∣∣
x=F

)�
,

and

∂F

∂x
g = ω

(
∂F

∂x

)
S

(
∂I

∂x

)�
= ω

(
∂F

∂x

)
S

(
∂F

∂x

)�(
∂I

∂x

∣∣∣∣
x=F

)�

= ω det

(
∂F

∂x

)
S

(
∂I

∂x

∣∣∣∣
x=F

)�
,

one concludes that g ◦ F = ∂F
∂x

g. Vice versa, if I is a CT-first integral associated
with g, then g can be rewritten as in (4.12), for some ω; in addition, if I is a DT-first
integral associated with F , then ∂I

∂x
|x=F

∂F
∂x

= ∂I
∂x

. Therefore, since g is a symmetry
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of F , g ◦ F = ∂F
∂x

g; therefore,

(ω ◦ F)S

(
∂I

∂x

∣∣∣∣
x=F

)�
= det

(
∂F

∂x

)
ωS

(
∂I

∂x

∣∣∣∣
x=F

)�
,

which implies ω ◦ F = det( ∂F
∂x

)ω. �

Example 4.10 Consider again the vector function F introduced in Example 4.9.
A symmetry g of F is

g(x) = ω2S

(
∂ω1(x)

∂x

)�
= (

2x2 + x2
1

)[
0 −1
1 0

][
1
0

]
=

[
0

x2
1 + 2x2

]
.

4.7 Lax Pairs for Discrete-Time Nonlinear Systems

The concept of the Lax pair, which is classical in the continuous-time case, can be
extended to the discrete-time case (see [94]). The notation in this section is some-
what different from the one in the rest of the book, e.g., matrices A and B are not
constant here.

Let a vector function F(x) ∈ R
n be given. Given a matrix function A(x) ∈ R

ν×ν ,
with entries Ai,j (x), the symbol A ◦ F clearly denotes the matrix function having
Ai,j ◦ F as entries.

Definition 4.4 Given a vector function F(x) ∈ R
n, a DT-Lax pair (briefly, a Lax

pair if no confusion can arise) associated with F(x) is an ordered pair of matrix
functions (A,B), with A(x),B(x) ∈ R

ν×ν , ν2 ≥ n, and B being invertible over the
field of meromorphic functions, such that

A ◦ F = BAB−1. (4.13)

Theorem 4.9 Let (A,B) be a Lax pair associated with a given F . Then, for any
k ∈ Z

≥, I = trace(Ak) is a first integral associated with F .

Proof Taking into account that trace(AB) = trace(BA), one concludes that

I ◦ F = trace
(
(A ◦ F)k

) = trace
(
BAkB−1) = trace

(
Ak

) = I. �

Using a reasoning similar to the one used in the continuous-time case, it is possi-
ble to show that the eigenvalues of A, as well as the coefficients of the characteristic
polynomial of A, as well as det(A) = ∏

i λi , are first integrals associated with F .
This, in particular, shows that at most ν functionally independent first integrals as-
sociated with F can be computed from the knowledge of A.
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Remark 4.8 For given A(x),B(x) ∈ R
ν×ν and an unknown F(x) ∈ R

n, (4.13) is a
set of ν2 algebraic equations in the n unknown entries of F . If such a system has
a unique solution F , then (A,B) is called a regular Lax pair associated with the
vector function F thus identified. For instance, take ν = 2 and n = 3,

A(x) =
[
x1 x2
1 x3

]
, B(x) =

[
2 + x1 − x2 − x3 1

1 1

]
;

then,

A ◦ F(x) =
[
F1 F2
1 F3

]
,

BAB−1 =
[
x1 − x2 + 1 −x2x3 + x3 − x2

2 + x1x2 + 3x2 − x1 − 1
1 x2 + x3 − 1

]
,

from which (A,B) is a regular Lax pair associated with

F(x) =
⎡
⎣

−x2 + x1 + 1
−x2x3 + x3 − x2

2 + x1x2 + 3x2 − x1 − 1
x3 + x2 − 1

⎤
⎦ . (4.14)

Hence, I1(x) = trace(A(x)) = x1 + x3 and I2(x) = trace(A2(x)) = x2
1 + 2x2 + x2

3
are two functionally independent first integrals associated with F .

Theorem 4.10 Let (A,B) be a Lax pair associated with a given F . Let α : R → R

be a polynomial scalar function of the argument. Then, (α(A),B) is a Lax pair
associated with F .

Proof First, it is shown how (Ak,B) is a Lax pair associated with f , for any k ∈ Z
≥,

Ak ◦ F = (A ◦ F)k = BAkB−1.

Clearly, if (A,B) is a Lax pair associated with F , then (aA,B) is a Lax pair asso-
ciated with F , for any constant a ∈ R. Finally, if (A1,B) and (A2,B) are two Lax
pairs associated with F , then (A1 + A2,B) is a Lax pair associated with F ,

(A1 + A2) ◦ F = A1 ◦ F + A2 ◦ F = BA1B
−1 + BA2B

−1 = B(A1 + A2)B
−1.

�

Theorem 4.11 Let (A,B1) be a Lax pair associated with a given F . Then, (A,B2),
with det(B2) �= 0, is a Lax pair associated with F if and only if [A,B−1

2 B1] = 0.

Proof If (A,B1) and (A,B2) are two Lax pairs associated with F , then
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A ◦ F = B1AB−1
1 , A ◦ F = B2AB−1

2

↓
B−1

2 B1A = AB−1
2 B1.

Vice versa, if A◦F = B1AB−1
1 and B−1

2 B1A = AB−1
2 B1, then A◦F = B2AB−1

2 . �

Theorem 4.12 Let (A,B) be a Lax pair associated with a given F . Then, for any
matrix M(x) ∈ R

ν×ν invertible over the field of meromorphic functions, pair (Ã, B̃),
with

Ã = MAM−1, B̃ = (M ◦ F)BM−1, (4.15)

is a Lax pair associated with F .

Proof Taking into account that A ◦ F = BAB−1, one concludes that

Ã ◦ F = (M ◦ F)(A ◦ F)(M ◦ F)−1 = (M ◦ F)BAB−1(M ◦ F)−1

= (M ◦ F)BM−1ÃMB−1(M ◦ F)−1 = B̃ÃB̃−1. �

Theorem 4.13 Let I1, . . . , Im be m ≤ n functionally independent first integrals as-
sociated with a given F . Let M(x) ∈ R

n×n be invertible over the field of meromor-
phic functions. Then,

A = MΛM−1, B = (M ◦ F)M−1

where Λ = diag{I1, . . . , Im, cm+1, . . . , cn} and the ci ’s are arbitrary constants, is a
Lax pair associated with f .

Proof The proof follows from Theorem 4.12, taking into account that (Λ,E) is a
Lax pair associated with F . �

Example 4.11 Consider the vector function F given in (4.14); I1(x) = x1 + x3 and
I2(x) = x2

1 + 2x2 + x2
3 are two functionally independent first integrals associated

with F . Take the simple polynomial matrix M(x), with polynomial inverse

M(x) =
⎡
⎣

1 0 x2
x1 1 x3
0 0 1

⎤
⎦ , M−1(x) =

⎡
⎣

1 0 −x2
−x1 1 −x3 + x1x2

0 0 1

⎤
⎦ ,

for which

M ◦ F(x) =
⎡
⎣

1 0 −x2x3 + x3 − x2
2 + x1x2 + 3x2 − x1 − 1

x1 − x2 + 1 1 x2 + x3 − 1
0 0 1

⎤
⎦ .



4.7 Lax Pairs for Discrete-Time Nonlinear Systems 171

Let (any constant value is acceptable as the (3,3)-entry of Λ)

Λ(x) =
⎡
⎣

x1 + x3 0 0
0 x2

1 + 2x2 + x2
3 0

0 0 1

⎤
⎦ ;

then, (A,B) with

A(x) = M(x)Λ(x)M−1(x)

=
⎡
⎣

x1 + x3 0
x2

1 + x1x3 − x3
1 − 2x1x2 − x1x

2
3 x2

1 + 2x2 + x2
3

0 0

−x1x2 − x2x3 + x2

−x2
1x2 − x1x2x3 − x2

1x3 + x3
1x2 − 2x2x3 + 2x1x

2
2 − x3

3 + x1x2x
2
3 + x3

1

⎤
⎦ ,

and

B(x) = (
M ◦ F(x)

)
M−1(x)

=
⎡
⎣

1 0 2x2 − 1 − x2x3 + x3 − x2
2 + x1x2 − x1

−x2 + 1 1 −(x1 − x2 + 1)x2 + x1x2 + x2 − 1
0 0 1

⎤
⎦

is a Lax pair associated with F (different from the regular one given in Remark 4.8).

Remark 4.9 Once a Lax pair (A,B) of the vector function F has been identified,
some of the first integrals associated with F can be computed, as well as (by possible
factorization) some of the semi-invariants associated with F . The concept of the Lax
pair can be generalized for the direct computation of semi-invariants. A generalized
DT-Lax pair (briefly, a generalized Lax pair) associated with F is an ordered pair
(A,B) of matrices A,B ∈ R

n×n such that A ◦ F and BAB−1 are co-linear over the
field of meromorphic functions, i.e., such that

A ◦ F = αBAB−1,

for some scalar function α(x) ∈ R. In such a case, if trace(Ak) and α have not
zero/pole in common, then ω = trace(Ak) is a semi-invariant associated with F ,
with characteristic function αk . As a matter of fact,

ω ◦ F = trace
(
(A ◦ F)k

) = trace
(
αkBAkB−1) = αk trace

(
Ak

)

= αkω.

If M(x) ∈ R
ν×ν is invertible over the field of meromorphic functions and (A,B) is

a generalized Lax pair associated with F , then the pair (Ã, B̃) given in (4.15) is a
generalized Lax pair associated with F , for the same function α. Define the diagonal
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matrix Λ := diag{ω1, . . . ,ωm,0, . . . ,0}, with the ωi ’s being semi-invariants associ-
ated with F , with the same characteristic function λi = α. Clearly, (Λ,E) is a gen-
eralized Lax pair associated with F , since Λ ◦ F = αΛ. Therefore, A = MΛM−1

and B = (M ◦ F)M−1 constitute a generalized Lax pair associated with F , for any
matrix M(x) ∈ R

n×n being invertible over the field of meromorphic functions.

Example 4.12 Consider the vector function

F(x) =

⎡
⎢⎢⎣

x2
2x3 + x5

2 − x1 − x2
2x4 − x1x

2
2−x2

−x3 − x3
2−x2

2x3 − x5
2 + x2

2x4 + x1x
2
2 + x3

2 − x4

⎤
⎥⎥⎦ .

A generalized Lax pair associated with F is (A,B), with

A =
[
x3 x1
x2 x4 + x1

]
, B =

[
1 x2

2
0 1

]
,

which satisfy A ◦ F = −BAB−1. Then, ω1 = trace(A) = x1 + x3 + x4 and ω2 =
trace(A2) = x2

3 +2x1x2 +x2
4 +2x1x4 +x2

1 are two Darboux polynomials with char-
acteristic values λ1 = −1 and λ2 = 1.

4.8 The Poincaré–Dulac Normal Form for Discrete-Time
Nonlinear Systems

In this section, the Poincaré–Dulac normal form is introduced for discrete-time non-
linear systems [5, 29, 57].

Throughout this section, assume that F(x) ∈ R
n is analytic at x = 0, F(0) = 0.

The linear part of F is Ax, with A = ∂F (x)
∂x

|x=0. If not otherwise specified, assume
throughout this section that A is semi-simple, i.e., that can be diagonalized over C.

Definition 4.5 Vector function F(x) = Ax + H(x), with A being semi-simple,
H(x) being analytic at x = 0, H(0) = 0, and having linear part equal to zero, is
in the Poincaré–Dulac normal form if

⌊
Ax,H(x)

⌋ = 0. (4.16)

Remark 4.10 The Poincaré–Dulac normal form is often introduced under the as-
sumption that the linear part Ax of F is characterized by A being normal, in-
stead of simply semi-simple. The two definitions coincide, apart from a linear
transformation, because, by Lemma 2.5 at p. 39, any semi-simple matrix can be
rendered normal by a linear transformation, and any normal matrix is certainly
semi-simple. Let F(x) = Asx + Hs(x), with As being semi-simple; let x = Qy,
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det(Q) �= 0, be a linear transformation such that Ãs,n = Q−1AQ is normal, and let
H̃s,n(y) = Q−1Hs(Qy). By Theorem 4.4, the following relation holds:

⌊
Asx,Hs(x)

⌋ = 0 ⇐⇒ ⌊
Ãs,ny, H̃s,n(y)

⌋ = 0.

Case A = E is trivial, because any H satisfies (4.16) in such a case,

⌊
Ex,H(x)

⌋ = H(Ex) − EH(x) = 0,

whence the Poincaré–Dulac normal form of a system with a linear part Ex does not
give any insight about its properties.

Theorem 4.14 �Ax,H(x)	 = 0 ⇐⇒ H(Atx) = AtH(x).

Proof The proof that �Ax,H(x)	 = 0 implies H(Atx) = AtH(x) is done by in-
duction on integer t . Such an implication is clearly satisfied for t = 0 and for
t = 1, taking into account that �Ax,H(x)	 = H(Ax) − AH(x). Assume that
H(Atx) = AtH(x), then

H(At+1x) = H(Ay) = AH(y) = AH(Atx) = At+1H(x),

where y = Atx. The converse can be proven by letting t = 1 in H(Atx) =
AtH(x). �

Theorem 4.15 Assume that A is semi-simple and that 0 is not eigenvalue of A.
Let {M0,M1, . . . ,Mr−1} be a basis of the linear centralizer Lc(A) of A and let
ID(Ax) be the set of all first integrals of the discrete-time system Δx = Ax. Assume
that H is analytic at x = 0, H(0) = 0, with zero linear part. Then

⌊
Ax,H(x)

⌋ = 0 ⇐⇒ H(x) =
r−1∑
i=0

μiMix, μi ∈ ID(Ax).

Proof If μ ∈ ID(Ax), then μ(Atx) = μ(x). Then,

H
(
Atx

) =
r−1∑
i=0

μi

(
Atx

)
MiA

tx = At

r−1∑
i=0

μi(x)Mix = AtH(x)

implies, by Theorem 4.14, that �Ax,H(x)	 = 0. Conversely, thanks to Theorem 4.4,
assume that A is diagonal, A = diag{λ1, . . . , λn}; H is the linear combination (pos-
sibly, infinite) of terms (with ni ∈ Z

≥,
∑n

i=1 ni ≥ 2)

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek, (4.17)

where ek if the kth column of the n × n identity matrix E. First, note that, since A

is semi-simple, the operator �Ax, ·	 is linear and semi-simple too, in the sense that
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each term x
n1
1 x

n2
2 · · ·xnn

n ek is mapped by the operator �Ax, ·	 into a term propor-
tional to (x

n1
1 x

n2
2 · · ·xnn

n )ek :

⌊
Ax,

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek

⌋ = (λ1x1)
n1(λ2x2)

n2 · · · (λnxn)
nnek − (

x
n1
1 x

n2
2 · · ·xnn

n

)
Aek

= (
λ

n1
1 λ

n2
2 · · ·λnn

n − λk

)(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek.

Then, condition �Ax,H(x)	 = 0 is equivalent to �Ax, (x
n1
1 x

n2
2 · · ·xnn

n )ek	 = 0
for each (n1, . . . , nn, k), and condition �Ax, (x

n1
1 x

n2
2 · · ·xnn

n )ek	 = 0 holds if and
only if the following discrete-time resonance condition (briefly, resonance condi-
tion if no confusion can arise between the continuous-time and discrete-time cases)
among the eigenvalues of A holds:

λ
n1
1 λ

n2
2 · · ·λnn

n = λk, ni ∈ Z
≥,

n∑
i=1

ni ≥ 2. (4.18)

If (4.18) holds, then the term (4.17) is called resonant; note that such a resonant
term need not appear into the linear combination constituting H (it depends on the
values of its coefficient into the linear combination constituting H ). A monomial
x

n1
1 x

n2
2 · · ·xnn

n is resonant if (4.18) holds for some k. It is worth pointing out that the

resonance condition (4.18) implies that
x

n1
1 x

n2
2 ···xnn

n

xk
is a first integral of the discrete-

time system Δx = Ax, since λk �= 0 implies:

Δ
x

n1
1 x

n2
2 · · ·xnn

n

xk

= (Δx1)
n1(Δx2)

n2 · · · (Δxn)
nn

Δxk

= (λ1x1)
n1(λ2x2)

n2 · · · (λnxn)
nn

λkxk

= (x
n1
1 x

n2
2 · · ·xnn

n )

xk

.

Then,

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek = x

n1
1 x

n2
2 · · ·xnn

n

xk

[0 . . . ek . . . 0]

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
...

xk

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since the coefficient matrix M̄k := [0 . . . ek+1 . . . 0] commutes with matrix A

and the coefficient
x

n1
1 x

n2
2 ···xnn

n

xk
is a first integral of the discrete-time system Δx =

Ax, one finds that H(x) = ∑n−1
i=0 μiM̄ix, with M̄0, M̄1, . . . , M̄n−1 belonging to the

linear centralizer Lc(A) of A and the coefficients μi being DT-first integrals of
Δx = Ax. �

By Proposition 2.1 of [57], any F , analytic at x = 0, with a semi-simple linear
part can be formally transformed into its Poincaré–Dulac normal form through a for-
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mal series; some convergence conditions guarantee, in some cases, that such a trans-
formation is analytic. When the series does not converge, by the Borel Lemma [62],
there exists a C∞-diffeomorphism such that the push-forward of F differs from its
normal form for a vector function being flat at x = 0; this means that, for any arbi-
trarily large integer m > 0, there exists a polynomial diffeomorphism such that the
push-forward of F differs from its normal form for terms of order higher than m.

Remark 4.11 Consider the simplest case n = 1. Let A = λ, with λ being real. If
λ = 0, since �λx,H(x)	 = H(λx) − λH(x), condition �λx,H(x)	 = 0 is satisfied
by any H(x), analytic at x = 0, with H(0) = 0, ∂H(x)

∂x
|x=0 = 0. Assume that λ �= 0.

The linear centralizer of A is spanned by E = 1; if |λ| �= 1, then the discrete-time
system Δx = λx has no first integrals and, therefore, the Poincaré–Dulac normal
form associated with A is F(x) = λx. If λ = 1, then a first integral of the discrete-
time system Δx = x is x and, therefore, the Poincaré–Dulac normal form associated
with A is F(x) = x + xμ(x), where μ is an arbitrary function of x (in such a case,
no insight about the dynamics of the system can be found from the Poincaré–Dulac
normal form). Finally, if λ = −1, then a first integral of the discrete-time system
Δx = −x is x2 and, therefore, the Poincaré–Dulac normal form associated with A

is F(x) = x + xμ(x2), where μ is an arbitrary function of x2.

Example 4.13 Let A = [ 2 0
0 4

]
. The linear centralizer of A is spanned by E and

A, whereas the set of all first integrals of the discrete-time system Δx = Ax is

constituted by all arbitrary functions of
x2

1
x2

; then, the Poincaré–Dulac normal form
F(x) = Ax + H(x) associated with such an A is characterized by

H(x) = μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[
2 0
0 4

][
x1
x2

]
=

[
(μ0 + 2μ1)x1
(μ0 + 4μ1)x2

]
,

where μ0 and μ1 are arbitrary functions of I (x) = x2
1

x2
such that H is analytic at

x = 0, H(0) = 0, with zero linear part. Then, necessarily μ1(I ) + 2μ2(I ) = 0 and

μ1(I ) + 4μ2(I ) = aI = a
x2

1
x2

, for some a ∈ R. Then, one concludes that F(x) =
[2x1 4x2 + ax2

1 ]�, with the only resonant term [0 ax2
1 ]�.

Example 4.14 Let A = [ 1 0
0 2

]
. The linear centralizer of A is spanned by E and

A, whereas the set of all first integrals of the discrete-time system Δx = Ax is
constituted by all arbitrary functions of x1; then, the Poincaré–Dulac normal form
F(x) = Ax + H(x) associated with such an A is characterized by

H(x) = μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[
1 0
0 2

][
x1
x2

]
=

[
(μ0 + μ1)x1
(μ0 + 2μ1)x2

]
,

where μ0 and μ1 are arbitrary functions of I (x) = x1 such that H is analytic at
x = 0, H(0) = 0, with zero linear part, which yields

F(x) =
[

x1(1 + μ0 + μ1)

x2(2 + μ0 + 2μ1)

]
.
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Example 4.15 Let A = [ 1 0
0 −1

]
. The linear centralizer of A is spanned by E and

A, whereas the set of all first integrals of the discrete-time system Δx = Ax is
constituted by all arbitrary functions of x1 and x2

2 ; then, the Poincaré–Dulac normal
form F(x) = Ax + H(x) associated with such an A is characterized by

H(x) = μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[
1 0
0 −1

][
x1
x2

]
=

[
(μ0 + μ1)x1
(μ0 − μ1)x2

]
,

where μ0 and μ1 are arbitrary functions of I1(x) = x1 and I2(x) = x2
2 such that H

is analytic at x = 0, H(0) = 0, with zero linear part, which yields

F(x) =
[

x1(1 + μ0 + μ1)

x2(−1 + μ0 − μ1)

]
.

Example 4.16 Let A = [ 1
2 0
0 2

]
. The linear centralizer of A is spanned by E and A,

whereas the set of all first integrals of the discrete-time system Δx = Ax is con-
stituted by all arbitrary functions of x1x2; then, the Poincaré–Dulac normal form
F(x) = Ax + H(x) associated with such an A is characterized by

H(x) = μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[
1
2 0
0 2

][
x1
x2

]
=

[
(μ0 + 1

2μ1)x1

(μ0 + 2μ1)x2

]
,

where μ0 and μ1 are arbitrary functions of I (x) = x1x2 such that H is analytic at
x = 0, H(0) = 0, with zero linear part, which yields

F(x) =
[
( 1

2 + μ0 + 1
2μ1)x1

(2 + μ0 + 2μ1)x2

]
.

Example 4.17 Let A = [ 0 1
−1 0

]
. The linear centralizer of A is spanned by E and A. In

order to find all first integrals of the discrete-time system Δx = Ax, apply the proce-
dure of Sect. 4.2. Taking as basis polynomials p1(x) = x1, p2(x) = x2, p3(x) = x2

1 ,
p4(x) = x1x2 and p5(x) = x2

2 , one has

Γ (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2 x2
1 x1x2 x2

2

x2 −x1 x2
2 −x1x2 x2

1

−x1 −x2 x2
1 x1x2 x2

2

−x2 x1 x2
2 −x1x2 x2

1

x1 x2 x2
1 x1x2 x2

2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The generic rank of Γ is 4. Computing the minor Γ̂ found by deleting the fifth
column and fifth row of Γ , one finds that det(Γ̂ (x)) = 4x1x2(x

2
1 + x2

2)2. Letting
ω1(x) = x1x2 and ω2(x) = x2

1 +x2
2 , one concludes that Δω1 = −ω1 and Δω2 = ω2,

which shows that I1(x) = ω2
1(x) = x2

1x2
2 and I2(x) = ω2(x) = x2

1 + x2
2 are DT-first
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integrals of the discrete-time system Δx = Ax. Then, the Poincaré–Dulac normal
form F(x) = Ax + H(x) associated with such an A is characterized by

H(x) = μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[
0 1

−1 0

][
x1
x2

]
=

[
μ0x1 + μ1x2
μ0x2 − μ1x1

]
,

where μ0 and μ1 are arbitrary functions of I1(x) = ω2
1(x) = x2

1x2
2 and I2(x) =

ω2(x) = x2
1 + x2

2 such that H is analytic at x = 0, H(0) = 0, with zero linear part,
which yields

F(x) =
[

μ0x1 + (1 + μ1)x2
−(1 + μ1)x1 + μ0x2

]
.

Remark 4.12 Assume that A = diag{λ1, . . . , λn}, for λi ∈ R
>, and that there ex-

ists some ε > 0 such that γi := ln(λi )
ln(ε)

, i = 1, . . . , n, are positive integers; this

means that A = eG ln(ε), where G = diag{γ1, . . . , γn}. Assume that the number of
DT-resonances among the eigenvalues of A is finite, which implies that the num-
ber of CT-resonances among the eigenvalues of G is finite. Assume that F(x) =
Ax + H(x) is in the Poincaré–Dulac normal form, i.e, �Ax,H(x)	 = 0; hence,

⌊
Ax,F (x)

⌋ = ⌊
Ax,Ax + H(x)

⌋ = (
Ax + H(x)

) ◦ Ax − A
(
Ax + H(x)

)

= A2x + H(Ax) − A2x − AH(x) = ⌊
Ax,H(x)

⌋ = 0.

This yields F ◦ (Ax) = AF(x). Let ω(x) ∈ R be homogeneous of degree m with
respect to Gx; by Theorem 3.15 at p. 74, ω(Ax) = ω(eG ln(ε)x) = em ln(ε)ω(x) =
εmω(x). If ω(x) = x

n1
1 x

n2
2 · · ·xnn

n is a resonant monomial, λ
n1
1 λ

n2
2 · · ·λnn

n = λk , then
ω(Ax) = λ

n1
1 λ

n2
2 · · ·λnn

n ω(x) = λkω(x) = εγkω(x), which implies that the reso-
nant monomial is homogeneous of degree γk with respect to Gx. Vice versa, if
ω is analytic at x = 0 and homogeneous of degree γk with respect to Gx, then
it is a linear combination with real coefficients of resonant monomials of de-
gree λk . Under the assumption that ω(x) = x

n1
1 x

n2
2 · · ·xnn

n is a resonant monomial,
by ω ◦ F ◦ (Ax) = ω ◦ (AF) = εγk (ω ◦ F), one concludes that ω ◦ F is a linear
combination with real coefficients of resonant monomials of degree λk . Since the
number of resonant monomials has been assumed to be finite, one concludes that a
discrete-time nonlinear system in the Poincaré–Dulac normal form can be linearized
by taking as additional state variables the resonant monomials (see [95]).

Example 4.18 Let A = diag{λ1, λ2, λ3}, with λ1 = 2, λ2 = 4 and λ3 = 8; hence,
λi = eγi ln(ε), i = 1,2,3, with γ1 = 1, γ2 = 2, γ3 = 3 and ε = 2. Since λ2 = λ2

1λ
0
2λ

0
3,

λ3 = λ3
1λ

0
2λ

0
3 and λ3 = λ1

1λ
1
2λ

0
3 are the only resonances among the eigenvalues of A,

all discrete-time systems, having Ax as linear part, in the Poincaré–Dulac normal
form are parameterized by

F(x) =
⎡
⎢⎣

2x1

4x2 + a1x
2
1

8x3 + a2x
3
1 + a3x1x2

⎤
⎥⎦ ,
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where a1, a2 and a3 are constant parameters. Such a system can be linearized by
taking as additional state variables x4 = x2

1 , x5 = x3
1 and x6 = x1x2. To be more pre-

cise, the dynamics of x4 are described by Δx4 = F 2
1 (x) = 4x2

1 = 4x4, the dynamics
of x5 are described by Δx5 = F 3

1 (x) = 8x3
1 = 8x5, and the dynamics of x6 are de-

scribed by Δx6 = F1(x)F2(x) = 2a1x
3
1 + 8x1x2 = 2a1x5 + 8x6. Then, one has the

extended linear system Δxe = Aexe, with

Ae =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
0 4 0 a1 0 0
0 0 8 0 a2 a3
0 0 0 4 0 0
0 0 0 0 8 0
0 0 0 0 2a1 8

⎤
⎥⎥⎥⎥⎥⎥⎦

, xe =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note that, under the assumption that the real numbers ai are non-zero, the Jordan
form of Ae is

Je =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
0 4 1 0 0 0
0 0 4 0 0 0
0 0 0 8 1 0
0 0 0 0 8 1
0 0 0 0 0 8

⎤
⎥⎥⎥⎥⎥⎥⎦

,

namely, although the original A is semi-simple, the state immersion has generated
in Ae Jordan blocks of dimension greater than 1 (Ae is not semi-simple), and this
justifies the name resonance used to represent this phenomenon. It is worth pointing
out that if some ai is equal to zero, i.e., if some resonant term is missing in the
Poincaré–Dulac normal form, then the Jordan form of Ae may differ from the above
reported Je . For instance, if a3 = 0, the Jordan form of Ae is

J̄e =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
0 4 1 0 0 0
0 0 4 0 0 0
0 0 0 8 1 0
0 0 0 0 8 0
0 0 0 0 0 8

⎤
⎥⎥⎥⎥⎥⎥⎦

.

4.9 Linearization of Discrete-Time Nonlinear Systems

The following theorem is the extension of Theorem 3.35 at p. 121 to the discrete-
time case, giving a necessary and sufficient condition for the linearization of a
discrete-time system.

Theorem 4.16 Assume that F(x) ∈ R
n is analytic at x = 0, F(0) = 0, with linear

part Ax, where A need not be semi-simple. There exists a near-identity diffeomor-



4.10 Homogeneity and Resonance of Discrete-Time Nonlinear Systems 179

phism y = ϕ(x) such that ϕ∗F(y) = ϕ ◦ F ◦ ϕ−1(y) = Ay if and only if there exists
a g(x) ∈ R

n, analytic at x = 0, g(0) = 0, such that �F,g	 = 0 and the linear part
of g is x.

Proof If F̃ (y) = Ay, then g̃(y) = y satisfies �F̃ , g̃	 = 0. By the pull-back of g̃ one
obtains g(x) = (

∂ϕ(x)
∂x

)−1ϕ(x) that is analytic at x = 0, satisfies g(0) = 0, and has
x as linear part. Furthermore, by Theorem 4.4, �F,g	 = 0. Conversely, for any g

being analytic at x = 0, g(0) = 0, and with linear part x, the Poincaré–Dulac Theo-
rem 3.33 at p. 118 implies the existence of a near-identity diffeomorphism y = ϕ(x)

such that ϕ∗g(y) = y, by virtue of the absence of resonances among the eigenvalues
of the linear part of g. If �F,g	 = 0, then �ϕ∗F(y),ϕ∗g(y)	 = �ϕ∗F(y), y	 = 0;
since �ϕ∗F(y),By	 = [ϕ∗F(y),By], for any B ∈ R

n×n, condition �ϕ∗F(y), y	 = 0
implies that ϕ∗F is homogeneous of degree 0 with respect to the standard dilation;
since ϕ∗F is analytic at y = 0, ϕ∗F(0) = 0, it is necessarily linear. �

Example 4.19 Consider

F(x) =
[

x2 + x2
1

−x1 − x2
2 − 2x2

1x2 − x4
1

]
, g(x) =

[
x1

x2 − x2
1

]
,

and call F1 and F2 the two entries of F . Since �F(x), g(x)	 = 0, g is a symmetry
of F . In particular, since g is analytic at x = 0, g(0) = 0, and the linear part of
g is x, there exists a diffeomorphism y = ϕ(x) such that the push-forward of g is
ϕ∗(y) = y; therefore, such a diffeomorphism y = ϕ(x) linearizes the discrete-time
system. In particular, ϕ(x) = [x1 x2 + x2

1 ]� and

ϕ∗F(y) = ϕ ◦ F ◦ ϕ−1(y) =
[

F1(x)

F2(x) + F 2
1 (x)

]

x1=y1,x2=y2−y2
1

=
[

y2
−y1

]
.

4.10 Homogeneity and Resonance of Discrete-Time Nonlinear
Systems

The definition of homogeneity of a vector function in the discrete-time case must
be properly amended with respect to the continuous-time case, whereas it remains
unchanged in case of scalar functions.

Definition 4.6 Let g(x) = Bx, with B ∈ R
n×n being semi-simple and such that

there exist a G ∈ R
n×n and a positive scalar ε such that B = eG ln(ε). Then, Δx =

F(x) is homogeneous of degree m with respect to g if F(Bx) = BmF(x), namely
if �Bx,F (x)	 = −BF(x) + BmF(x).

By [37], the equation B = eG ln(ε) has real solutions G ∈ R
n×n, ε ∈ R

≥0, if and
only if det(B) �= 0 and each Jordan block of B corresponding to a negative eigen-
value appears an even number of times in the Jordan form of B .
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According to Definition 4.6, which holds in the discrete-time case, if F(x) ∈ R
n

is homogeneous of degree 1 with respect to Bx, then �Bx,F (x)	 = 0; note that,
according to Definition 3.8 at p. 73, which holds in the continuous-time case, if
[Bx,f (x)] = 0, then f (x) ∈ R

n is homogeneous of degree 0 with respect to Bx.
If ω(x) ∈ R is homogeneous of degree m with respect to Gx, then ω(Bx) =

ω(eG ln(ε)x) = em ln(ε)ω(x) = εmω(x).

Theorem 4.17 �Bx,F (x)	 = −BF(x) + BmF(x) ⇐⇒ F(Btx) = BmtF (x),
∀t ∈ Z

≥.

Proof Note that det(B) �= 0, by B = eG ln(ε). If �Bx,F (x)	 = −BF(x)+ BmF(x),
namely if F(Bx) = BmF(x), then clearly F(Btx) = BmtF (x),∀t ∈ Z. Con-
versely, if F(Btx) = BmtF (x),∀t ∈ Z, letting t = 1, one concludes that F(Bx) =
BmF(x). �

In the remainder of this section, assume that F is analytic at x = 0. For the sake of
simplicity, assume that B is diagonal B = diag{γ1, . . . , γn}. Under the assumption
that F(x) is analytic at x = 0, then it is the (possibly, infinite) sum of terms

(
x

n1
1 x

n2
2 . . . xnn

n

)
ek,

where ek is the kth column of the n × n identity matrix. Since B is semi-simple
and diagonal, then �Bx, ·	 is semi-simple too. Then, condition �Bx,F (x)	 =
−BF(x) + BmF(x) is satisfied if and only if

⌊
Bx,

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek

⌋ = −B
(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek + Bm

(
x

n1
1 x

n2
2 · · ·xnn

n

)
ek;

such a condition holds if and only if the following discrete-time generalized reso-
nance condition (briefly, generalized resonance condition) holds:

γ
n1
1 γ

n2
2 · · ·γ nn

n = γ m
k , (4.19)

for some n1, n2, . . . , nn ∈ Z
≥ such that n1 + n2 + · · · + nn ≥ 1.

Example 4.20 Let B = diag{γ1, γ2}, with γ1 = 2 and γ2 = 4. Let m = 1. Then, the
generalized resonance condition relative to γ1 yields

γ 1
1 = γ

n1
1 γ

n2
2 ⇒ x

n1
1 x

n2
2 e1

2 = γ 1
1 γ 0

2 ⇒ x1e1
;

the generalized resonance condition relative to γ2 yields

γ 1
2 = γ

n1
1 γ

n2
2 ⇒ x

n1
1 x

n2
2 e2,

4 = γ 2
1 γ 0

2 ⇒ x2
1e2

4 = γ 0
1 γ 1

2 ⇒ x2e2

;
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hence,

F [1](x) = a1x1e1 + a2x
2
1e2 + a3x2e2 =

[
a1x1

a2x
2
1 + a3x2

]
.

Let m = 2. Then, the generalized resonance condition relative to γ1 yields

γ 2
1 = γ

n1
1 γ

n2
2 ⇒ x

n1
1 x

n2
2 e1

22 = γ 2
1 γ 0

2 ⇒ x2
1e1

22 = γ 0
1 γ 1

2 ⇒ x2e1

;

the generalized resonance condition relative to γ2 yields

γ 2
2 = γ

n1
1 γ

n2
2 ⇒ x

n1
1 x

n2
2 e2

42 = γ 4
1 γ 0

2 ⇒ x4
1e2

42 = γ 2
1 γ 1

2 ⇒ x2
1x2e2

42 = γ 0
1 γ 2

2 ⇒ x2
2e2

;

hence,

F [2](x) = a1x
2
1e1 + a2x2e1 + a3x

4
1e2 + a4x

2
1x2e2 + a5x

2
2e2

=
[

a1x
2
1 + a2x2

a3x
4
1 + a4x

2
1x2 + a5x

2
2

]
.

Let m = 3. Then, the generalized resonance condition relative to γ1 yields

γ 3
1 = γ

n1
1 γ

n2
2 ⇒ x

n1
1 x

n2
2 e1

23 = γ 3
1 γ 0

2 ⇒ x3
1e1

23 = γ 1
1 γ 1

2 ⇒ x1x2e1

;

the generalized resonance condition relative to γ2 yields

γ 3
2 = γ

n1
1 γ

n2
2 ⇒ x

n1
1 x

n2
2 e2

43 = γ 6
1 γ 0

2 ⇒ x6
1e2

43 = γ 4
1 γ 1

2 ⇒ x4
1x2e2

43 = γ 2
1 γ 2

2 ⇒ x2
1x2

2e2

43 = γ 0
1 γ 3

2 ⇒ x3
2e2

;

hence,

F [3](x) = a1x
3
1e1 + a2x1x2e1 + a3x

6
1e2 + a4x

4
1x2e2 + a5x

2
1x2

2e2 + a6x
3
2e2

=
[

a1x
3
1 + a2x1x2

a3x
6
1 + a4x

4
1x2 + a5x

2
1x2

2 + a6x
3
2

]
.
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4.11 The Belitskii Normal Form of Discrete-Time Nonlinear
Systems

Throughout this section, assume that F(x) ∈ R
n is analytic at x = 0, F(0) = 0. The

linear part of F is Ax, with A = ∂F (x)
∂x

|x=0 that need not be semi-simple. Assume
that matrix A can be expressed as A = As,n + An, where As,n ∈ R

n×n is normal,
An ∈ R

n×n is nilpotent, and [As,n,An] = [As,n,A
�
n ] = 0 (by Lemma 2.5 at p. 39,

this can be obtained for any A ∈ R
n×n using a real linear transformation).

Definition 4.7 Vector function F(x) = Ax + H(x), with H(x) being analytic at
x = 0, H(0) = 0, and having linear part equal to zero, is in the Belitskii normal
form if

⌊
A�x,H(x)

⌋ = 0. (4.20)

Remark 4.13 If A is normal, then the Belitskii normal form of a discrete-time non-
linear system coincides with its Poincaré–Dulac normal form.

By the definition of the DT-Lie bracket, under the above positions, F is in the
Belitskii normal form if and only if

H
(
A�x

) = A�H(x),

which implies

H
((

A�)t
x
) = (

A�)t
H(x), ∀t ∈ Z

(
t ≥ 0 if det(A) = 0

)
.

Given A ∈ R
n×n, with 0 that is not eigenvalue of A, let {M0, . . . ,Mr−1} be a

basis of Lc(A
�). All H ∈ CD(A�x) are parameterized by H(x) = μ0M0x + · · · +

μr−1Mr−1x, with μ0, . . . ,μr−1 ∈ ID(A�x). Hence, F(x) = Ax + H(x) is in the
Belitskii normal form if and only if H ∈ CD(A�x), H is analytic at x = 0, H(0) =
0, with zero linear part.

By Proposition 2.1 of [57], any F , analytic at x = 0, can be formally transformed
into its Belitskii normal form through a formal series; some convergence conditions
guarantee, in some cases, that such a transformation is analytic. When the series
does not converge, by the Borel Lemma [62], there exists a C∞-diffeomorphism
such that the push-forward of F differs from its normal form for a vector function
being flat at x = 0; this also means that, for any arbitrarily large integer m > 0, there
exists a polynomial diffeomorphism such that the push-forward of F differs from
its normal form for terms of order higher than m.

Remark 4.14 By Lemma 2.4 at p. 37, since A� = A�
s,n + A�

n , with A�
s,n be-

ing normal, A�
n being nilpotent and [A�

s,n,A
�
n ] = [A�

s,n,An] = 0, one concludes
that Lc(A

�) = Lc(A
�
s,n + A�

n ) = Lc(A
�
s,n) ∩ Lc(A

�
n ); if As,n is diagonal, then

Lc(A
�) = Lc(As,n) ∩ Lc(A

�
n ). This means that in order to find all F in the Be-

litskii normal form and with linear part Ax, one can first find all Fs,n being in the
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Poincaré–Dulac normal form with linear part As,nx, then F(x) = Anx + Fs,n(x) is
in the Belitskii normal form if it satisfies the further requirement �A�x,F (x)	 = 0.

Example 4.21 Let A = [ 1 1
0 1

]
; Lc(A

�) = spanR{E,A�}, and the set of all first in-

tegrals of the discrete-time system Δx = A�x is given by all arbitrary functions of
x1; then, the Belitskii normal form associated with such an A is

F(x) =
[

1 1
0 1

][
x1
x2

]
+ μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[
1 0
1 1

][
x1
x2

]

=
[

(1 + μ0 + μ1)x1 + x2
μ1x1 + (1 + μ0 + μ1)x2

]
,

where μ0 and μ1 are arbitrary functions of I (x) = x1, such that F is analytic at
x = 0, F(0) = 0, with linear part Ax.

Example 4.22 Let A = [ −1 1
0 −1

]
. The linear centralizer of A� is spanned by E and

A�, and the set of all first integrals of the discrete-time system Δx = A�x is con-
stituted by all arbitrary functions of x2

1 ; then the Belitskii normal form associated
with such an A is

F(x) =
[−1 1

0 −1

][
x1
x2

]
+ μ0

[
1 0
0 1

][
x1
x2

]
+ μ1

[−1 0
1 −1

][
x1
x2

]

=
[

(−1 + μ0 − μ1)x1 + x2
μ1x1 + (−1 + μ0 − μ1)x2

]
,

where μ0 and μ1 are arbitrary functions of I (x) = x2
1 , such that F is analytic at

x = 0, F(0) = 0, with linear part Ax.

Example 4.23 Let

A =
⎡
⎣

2 1 0
0 2 0
0 0 4

⎤
⎦ ,

which can be decomposed as A = As,n + An,

As,n =
⎡
⎣

2 0 0
0 2 0
0 0 4

⎤
⎦ , An =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦ ,

with As,n being normal and An being nilpotent. There are three resonances among
the eigenvalues of As,n,

222040 = 4 ⇒ x2
1e3, 212140 = 4 ⇒ x1x2e3,

202240 = 4 ⇒ x2
2e3,
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thus obtaining Hs,n,

Hs,n(x) =
⎡
⎣

0
0

a1x
2
1 + a2x1x2 + a3x

2
2

⎤
⎦ .

Now, since

Hs,n(A
�x) =

⎡
⎣

0
0

(a3 + 4a1 + 2a2)x
2
1 + (4a3 + 4a2)x1x2 + 4a3x

2
2

⎤
⎦

A�Hs,n(x) =
⎡
⎣

0
0

4a1x
2
1 + 4a2x1x2 + 4a3x

2
2

⎤
⎦ ,

the condition Hs,n(A
�x) = A�Hs,n(x) leads to the equations

(a3 + 4a1 + 2a2) = 4a1, (4a3 + 4a2) = 4a2, 4a3 = 4a3,

which have solution a2 = 0, a3 = 0 and a1 arbitrary, which yields the following F

in the Belitskii normal form:

F(x) =
⎡
⎣

2 1 0
0 2 0
0 0 4

⎤
⎦

⎡
⎣

x1
x2
x3

⎤
⎦ +

⎡
⎣

0
0

a1x
2
1

⎤
⎦ =

⎡
⎣

2x1 + x2
2x2

4x3 + a1x
2
1

⎤
⎦ .

4.12 Decomposition of Discrete-Time Nonlinear Systems

This section extends some of the results of Sect. 3.17 to discrete-time systems (some
related results can be found in [100]).

Theorem 4.18 Let g1(x), . . . , gm(x) ∈ R
n be m linearly independent (over Kn)

and pairwise commuting symmetries of F , i.e.,

�F,gi	 = 0, i = 1, . . . ,m, (4.21a)

rankKn

([g1 . . . gm]) = m, (4.21b)

[gi, gj ] = 0, i, j ∈ {1, . . . ,m}. (4.21c)

Then, there exist local coordinates y = ϕ(x) such that the nonlinear system (1.1b)
can be decomposed in the y-coordinates as

ya(t + 1) = F̃a

(
ya(t), yb(t)

)
,

yb(t + 1) = F̃b

(
yb(t)

)
,

where ya = [y1 . . . ym]�, yb = [ym+1 . . . yn]� and F̃� = [F̃�
a F̃ �

b ].
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Proof By (4.21b), (4.21c), there exists a diffeomorphism y = ϕ(x) such that the
push-forward of gi is straightened ϕ∗gi = ei , i = 1, . . . ,m. Then, the condition
�ϕ∗F,ϕ∗gi	 = 0 can be rewritten as follows, with F̃ = ϕ∗F :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
1
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F̃1
∂yi

...
∂F̃i−1
∂yi

∂F̃i

∂yi

∂F̃i+1
∂yi

...
∂F̃n

∂yi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, . . . ,m,

which shows that the last n − m entries of F̃ do not depend on yi , i = 1, . . . ,m. �

Consider now the nonlinear system (1.1b) endowed with an output function,
which, for simplicity, is assumed to be scalar,

Δx = F(x), (4.22a)

y = h(x), (4.22b)

where h(x) ∈ R is meromorphic. Consider the functions Δ0h = h, Δi+1h =
Δ(Δih) = h ◦ F ◦ · · · ◦ F︸ ︷︷ ︸

(i+1)-times

. Let index q be such that Δ0h, . . . ,Δq−1h are func-

tionally independent, but Δ0h, . . . ,Δqh are functionally dependent. Then, there
exists a meromorphic function Θ(z1, . . . , zq+1) such that Θ(Δ0h, . . . ,Δqh) = 0
identically. Since Δ0h, . . . ,Δq−1h are functionally independent, it is impossible

that
∂Θ(z1,...,zq+1)

∂zq+1
is identically equal to zero, whence Θ(Δ0h, . . . ,Δqh) = 0 im-

plies that Δqh = Ξ1(Δ
0h, . . . ,Δq−1h) holds locally, for some meromorphic func-

tion Ξ1. This means that

ξ =
⎡
⎢⎣

Δ0h(x)
...

Δq−1h(x)

⎤
⎥⎦

qualifies as a partial diffeomorphism such that the nonlinear system (4.22a), (4.22b)
is transformed into

Δξ1 = ξ2,

...

Δξq−1 = ξq,
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Δξq = Ξ1(ξ1, . . . , ξq),

Δη = Ξ2(ξ1, . . . , ξq , η),

y = ξ1,

where η ∈ R
n−q are suitable additional state variables that complete the choice of

the local variables ξ .



Chapter 5
Analysis of Hamiltonian Systems

5.1 Euler–Lagrange Equations

Consider a mechanical system whose configuration is described by a vector q ∈ R
ν

of generalized coordinates: similarly, q̇ := dq
dt

and q̈ := d2q

dt2 are the vectors of gen-
eralized velocities and generalized accelerations, respectively. The kinetic energy
of the mechanical system is T (q, q̇) = 1

2 q̇�B(q)q̇ , where B(q) ∈ R
ν×ν is the gen-

eralized inertia matrix, with det(B(q)) �= 0 and B(q) being symmetric and pos-
itive definite. Let U(q) be the potential energy of the system and assume that it
is possible to neglect the non-conservative forces (such as friction). Then, letting
L(q, q̇) = T (q, q̇) − U(q) = 1

2 q̇�B(q)q̇ − U(q) be the Lagrangian function, from
the Hamilton least action principle (see [54]), one concludes that the motion of the
mechanical system is described by the Euler–Lagrange equations

(
d

dt

∂L

∂q̇
− ∂L

∂q

)�
= 0, (5.1)

which can be rewritten as

B(q)q̈ + dB(q)

dt
q̇ +

(
∂U(q)

∂q

)�
= 0. (5.2)

Consider a nonlinear system dq
dτ

= g(q), g(q) ∈ R
ν ; let Φg(τ, q) be the flow as-

sociated with g. Consider the one-parameter group of transformations q = Φg(τ, q̃)

and compute, accordingly, q̇ = ∂Φg(τ,q̃)

∂q̃
˙̃q . Then, the Lagrangian function can be

rewritten as a function of q̃ and ˙̃q as follows:

L̃(q̃, ˙̃q) = L

(
Φg(τ, q̃),

∂Φg(τ, q̃)

∂q̃
˙̃q
)

. (5.3)

Definition 5.1 [6] The one-parameter group of transformations q = Φg(τ, q̃) (also,
briefly, its infinitesimal generator g) is a symmetry of the Lagrangian function

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
DOI 10.1007/978-0-85729-612-2_5, © Springer-Verlag London Limited 2011
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L(q, q̇) if

L̃(q, q̇) = L(q, q̇), for any admissible pair (q, q̇) ∈ R
ν × R

ν, (5.4)

namely if the Lagrangian function is invariant under the one-parameter group of
transformations (see, also, Sect. 3.18).

Remark 5.1 The Euler–Lagrange equation (5.2) can be rewritten as a first-order
system by defining as state vector x� = [x�

1 x�
2 ] := [q� q̇�],

dx1

dτ
= x2, (5.5a)

dx2

dτ
= B−1(x1)

(
−dB(x1)

dt
x2 −

(
∂U(x1)

∂x1

)�)
. (5.5b)

Given g(x1) ∈ R
ν , according to Sect. 3.20 , let g[1](x1, x2) = ∂g(x1)

∂x
x2. Clearly, if

g(q) is a symmetry of the Lagrangian function L(q, q̇), then

ge(x1, x2) =
[

g(x1)

g[1](x1, x2)

]
(5.6)

is a symmetry of system (5.5a), (5.5b). It is worth pointing out that there exist sym-
metries ge(x) of system (5.5a), (5.5b) that have not form (5.6).

Theorem 5.1 If the one-parameter group of transformations q = Φg(τ, q̃) is a sym-
metry of the Lagrangian function L(q, q̇), then I = ∂L

∂q̇
g is a first integral of the

Euler–Lagrange (5.1).

Proof By (5.4), L̃ is independent of τ , i.e., ∂L̃
∂q

dq
dτ

+ ∂L̃
∂q̇

dq̇
dτ

= 0. By (5.4), ∂L̃
∂q

= ∂L
∂q

and ∂L̃
∂q̇

= ∂L
∂q̇

, which yields

∂L

∂q

dq

dτ
+ ∂L

∂q̇

dq̇

dτ
= 0.

By the Euler–Lagrange equation (5.1), ∂L
∂q

= d
dt

∂L
∂q̇

, whence

(
d

dt

∂L

∂q̇

)
dq

dτ
+ ∂L

∂q̇

d dq
dt

dτ
= 0.

This implies d
dt

( ∂L
∂q̇

dq
dτ

) = 0, namely d
dt

( ∂L
∂q̇

g) = 0. �

Example 5.1 Let q = [ q1
q2

]
, qi ∈ R, T = 1

2 [q̇1 q̇2]B(q2)
[ q̇1

q̇2

]
and U = U(q2) (i.e.,

the Lagrangian function is independent of q1). Let g(q) = e1, with e1 being the first
column of the 2 × 2 identity matrix; Φg(τ, q) = [τ + q1 q2]� is the flow associated
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with g. Then, for a constant τ , letting q1 = τ + q̃1, q2 = q̃2 yields q̇1 = ˙̃q1, q̇2 = ˙̃q2;
thus,

L̃
(
q̃, ˙̃q)= 1

2

[ ˙̃q1 ˙̃q2
]
B(q̃2)

[ ˙̃q1˙̃q2

]
− U(q̃2) = L

(
q̃, ˙̃q),

whence g is a symmetry of L. Therefore, I = ∂L
∂q̇

g = ∂L
∂q̇

e1 = ∂L
∂q̇1

is a first integral
of the Euler–Lagrange equations, according to the fact that if L does not depend
on q1, ∂L

∂q1
= 0, then by the Euler–Lagrange equations (5.1), one concludes that

d
dt

∂L
∂q̇1

= ∂L
∂q1

= 0.

Example 5.2 Consider g(q) = Sq , where S ∈ R
ν×ν is constant and skew-symmet-

ric; the flow associated with g is Φg(τ, q) = eSτ q . Defining the transformation q =
eSτ q̃ , one concludes that q̇ = eSτ ˙̃q . Let the Lagrangian function L be given by L =
1
2 q̇�Bq̇ −U(q), for a constant generalized inertia matrix B , with the corresponding
Euler–Lagrange equations q̈�B + ∂U

∂q
= 0. In particular, assume that B ∈ Lc(S),

which implies that B ∈ Lc(eSτ ), and assume that U ∈ IC(Sx), which implies that
U(eSτ q) = U(q) and LSqU = 0. Therefore, q = eSτ q̃ is a symmetry of L,

L̃(q̃, ˙̃q) = 1

2
˙̃q�eS�τBeSτ ˙̃q − U

(
eSτ q̃

)= 1

2
˙̃q�e−Sτ eSτB ˙̃q − U(q̃)

= 1

2
˙̃q�B ˙̃q − U(q̃) = L

(
q̃, ˙̃q).

Hence, I = ∂L
∂q̇

g = q̇�BSq is a first integral of the Euler–Lagrange equations. As a
matter of fact,

İ = q̈�BSq + q̇�BSq̇ = −∂U

∂q
Sq + q̇�BSq̇

and both terms ∂U
∂q

Sq and q̇�BSq̇ are equal to zero; the first one is equal to zero

since ∂U
∂q

Sq = LSqU and the second one is equal to zero because matrix BS is skew-

symmetric, (BS)� = S�B = −SB = −BS. As a simple example, take L(q, q̇) =
1
2m(q̇2

1 + q̇2
2 )− 1

2k(q2
1 +q2

2 ), for constant m,k ∈ R; g(q) = [q2 −q1]� is a symmetry
of L, whence I = ∂L

∂q̇
g = m(q̇1q2 − q̇2q1) is a first integral of the corresponding

Euler–Lagrange equations.

5.2 Hamiltonian Systems

The special class of nonlinear systems termed as Hamiltonian is considered in this
section, in view of its importance for modeling many physical systems; the reader
interested in a more extensive treatment is referred to [6, 54, 86, 100, 102], where
most of the topics analyzed in this section are reported.
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Let H be the set of all functions H(x) ∈ R being analytic in some open and
connected domain U of R

n, hereafter called the Hamiltonian functions. More in
general, H could be meromorphic, because in that case there exists an open and
connected domain U where it is analytic. For any u ∈ H , ∇u = ( ∂u

∂x
)� is the col-

umn gradient of u.

Definition 5.2 Assume that an operation {·, ·} : H × H → H is defined so to
satisfy the following properties, with functions u,v, z ∈ H and constants a, b ∈ R

being arbitrary:

(5.2.1) {u,v} = −{v,u} (skew-symmetry);
(5.2.2) {au + bv, z} = a{u, z} + b{v, z} and {u,av + bz} = a{u,v} + b{u, z} (bi-

linearity);
(5.2.3) {u, {v, z}} + {v, {z,u}} + {z, {u,v}} = 0 (the Jacobi identity);
(5.2.4) {u,vz} = {u,v}z + {u, z}v (the Leibniz rule);

such an operation {u,v} is called the Poisson bracket [6, 54, 86, 100] of u and v.

By the bi-linearity (5.2.2) and the Leibniz rule (5.2.4), given an analytic function
v ∈ H , map u → {u,v} defines a derivation on H , and hence, by Theorem 1.3
at p. 6, there exists a locally unique vector function fv(x) ∈ R

n such that Lfv
u =

{u,v}, for any u ∈ H (see also [102, p. 392]).

Definition 5.3 Let a Poisson bracket {·, ·} be given. The vector function fv(x) ∈ R
n

such that Lfvu = {u,v}, for any u ∈ H , is the Hamiltonian vector function associ-
ated with the Hamiltonian function v ∈ H . Let FH be the set of all Hamiltonian
vector functions fv , v ∈ H , associated with the given Poisson bracket {·, ·}.

The proof of Theorem 1.3 at p. 6 yields the following formula for the Hamiltonian
vector function fv(x) associated with the Hamiltonian function v ∈ H :

fv(x) =

⎡
⎢⎢⎢⎣

{x1, v}
{x2, v}

...

{xn, v}

⎤
⎥⎥⎥⎦ , (5.7)

which can be used as an alternative definition of the Hamiltonian vector function.
The following theorem is very important in the subsequent Sect. 5.5, where the

generality of the Hamiltonian approach is explored.

Theorem 5.2 Let an operation {·, ·} : H ×H → H be given, satisfying the skew-
symmetry (5.2.1), the bi-linearity (5.2.2) and the Leibniz rule (5.2.3). For an ar-
bitrary z ∈ H , let fz(x) be the vector function such that Lfz

u = {u, z}, for any
u ∈ H . Then,

Lfz{u,v} = {Lfzu, v} + {u,Lfzv}, ∀u, z ∈ H , (5.8)

is equivalent to the Jacobi identity.
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Proof Clearly, {Lfzu, v} = {{u, z}, v} and {u,Lfzv} = {u, {v, z}}, and therefore,
equation (5.8) becomes

{{u,v}, z}= {{u, z}, v}+ {u, {v, z}},
which, by skew-symmetry and bi-linearity, gives

−{z, {u,v}}= {v, {z,u}}+ {u, {v, z}},
i.e., the Jacobi identity. On the other hand, if the Jacobi identity holds, then

{Lfzu, v} + {u,Lfzv} = {{u, z}, v}+ {u, {v, z}}= {v, {z,u}}+ {u, {v, z}}

= −{z, {u,v}}= {{u,v}, z}

= Lfz{u,v},
thus obtaining (5.8). �

By (5.7),

Lfvu =
n∑

i=1

∂u

∂xi

fv,i =
n∑

i=1

∂u

∂xi

{xi, v} = −
n∑

i=1

∂u

∂xi

{v, xi}

= −
n∑

i=1

∂u

∂xi

n∑
j=1

∂v

∂xj

{xj , xi}

=
n∑

i=1

n∑
j=1

∂u

∂xi

∂v

∂xj

{xi, xj } = ∂u

∂x
S ∇v,

where the (i, j)th entry of matrix function S(x) ∈ R
n×n is equal to {xi, xj },

Si,j (x) = {xi, xj }. Since Lfvu = ∂u
∂x

fv , the arbitrariness of u implies that

fv(x) = S(x)∇v(x). (5.9)

Note that (5.9) is often used an another alternative definition of the Hamiltonian
vector function.

Since LfH
I = {I,H } for any I (x) ∈ R, I is a first integral associated with fH if

and only if {I,H } = 0; since {H,H } = 0 (by the skew-symmetry), then H is a first
integral associated with fH , for any H ∈ H . If K1 and K2 are two first integrals
associated with fH , {Ki,H } = 0, then {K1,K2} is a (possibly, trivial) first integral
associated with fH . As a matter of fact, by the Jacobi identity,

{
H, {K1,K2}

}+ {K1, {K2,H }}+ {K2, {H,K1}
}= 0,

one has
{{K1,K2},H

}= −{H, {K1,K2}
}= 0.
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Theorem 5.3 Let a Poisson bracket {·, ·} be given. If fH ,fK ∈ FH , then
[fH ,fK ] ∈ FH and, precisely, [fH ,fK ] = −f{H,K} = f{K,H } for all H,K ∈ H .

Proof Equality [fH ,fK ] = −f{H,K} is equivalent to L[fH ,fK ]a = −Lf{H,K}a for
any a ∈ H (actually, since Lf xi is the ith entry of f , for any vector function f , it
is necessary and sufficient to take a = xi , i = 1, . . . , n); therefore,

L[fH ,fK ]a = LfH
LfK

a − LfK
LfH

a = −LfH
{K,a} − LfK

{a,H }
= {H, {K,a}}+ {K, {a,H }}= −{a, {H,K}}= −Lf{H,K}a. �

Note the inversion of position of H and K in equality [fH ,fK ] = f{K,H }.

Definition 5.4 Let a Poisson bracket {·, ·} be given. Vector function g is a symmetry
of fH ∈ FH if [fH ,g] = 0; g is a Noether symmetry [6, 100] of fH if, in addition
to [fH ,g] = 0, one has g ∈ FH , namely if there exists K ∈ H such that g = fK .

Theorem 5.4 Let a Poisson bracket {·, ·} be given; fK ∈ FH is a Noether symme-
try of fH ∈ FH if and only if {K,H } = c, for some constant c ∈ R.

Proof Clearly, fK ∈ FH is a Noether symmetry of fH ∈ FH if and only if
[fH ,fK ] = 0; since [fH ,fK ] = f{K,H }, one has f{K,H } = 0 if and only {K,H } = c,
for some constant c ∈ R. �

By Theorem 5.4, if K is a first integral associated with fH , i.e., {K,H } = 0, then
fK is a symmetry of fH . Conversely, if fK is a symmetry of fH , then K need not
be a first integral associated with fH ; actually, if {K,H } = c, then I = K − ct is a
time-varying first integral associated with fH in the sense that dI

dt
= ∂I

∂t
+LfK

I = 0.

Theorem 5.5 Let a Poisson bracket {·, ·} be given. Then there exists a matrix func-
tion S(x) ∈ R

n×n such that {u,v} = ∂u
∂x

S ∇v, for any u,v ∈ H .

Proof By (5.9), letting Si,j (x) = {xi, xj }, i, j ∈ {1, . . . , n}, one has

{u,v} = Lfvu = ∂u

∂x
S ∇v. �

Theorem 5.6 Given a matrix function S(x) ∈ R
n×n, {u,v} = ∂u

∂x
S ∇v is a Poisson

bracket if and only if

(5.6.1) S is skew-symmetric, S� = −S;
(5.6.2) the entries Si,j of S satisfy

n∑
�=1

(
Si,�

∂Sj,k

∂x�

+ Sj,�

∂Sk,i

∂x�

+ Sk,�

∂Si,j

∂x�

)
= 0, ∀i, j, k ∈ {1, . . . , n}.

(5.10)
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Proof By definition, the operation {u,v} = ∂u
∂x

S ∇v is automatically bi-linear and
satisfies the Leibniz rule. The skew-symmetry of matrix S is clearly equivalent to
the skew-symmetry of the Poisson bracket. Thus, one only needs to verify the equiv-
alence of (5.10) with the Jacobi identity. Here, it is shown that (5.10) is equivalent
to

{
xi, {xj , xk}

}+ {xj , {xk, xi}
}+ {xk, {xi, xj }

}= 0, ∀i, j, k ∈ {1, . . . , n}, (5.11)

leaving the equivalence of (5.11) with the Jacobi identity to the proof of Proposi-
tion 6.8 of [102]. Clearly,

{
xi, {xj , xk}

} = −{{xj , xk}, xi

}= −{Sj,k, xi} = −
n∑

�=1

∂Sj,k

∂x�

{x�, xi}

=
n∑

�=1

∂Sj,k

∂x�

{xi, x�} =
n∑

�=1

Si,�

∂Sj,k

∂x�

,

and similarly

{
xj , {xk, xi}

}=
n∑

�=1

Sj,�

∂Sk,i

∂x�

,
{
xk, {xi, xj }

}=
n∑

�=1

Sk,�

∂Si,j

∂x�

.

Then, (5.10) is equivalent to (5.11). �

Definition 5.5 Any matrix S(x) ∈ R
n×n satisfying conditions (5.6.1) and (5.6.2) of

Theorem 5.6 is called a structure matrix.

Remark 5.2 Any constant and skew-symmetric matrix S ∈ R
n×n satisfies condi-

tions (5.6.1) and (5.6.2) of Theorem 5.6, whence it is a structure matrix.

The results above indicate that, in given local coordinates (e.g., x), a practical
way to describe a Poisson bracket is to specify its structure matrix S(x), satisfying
conditions (5.6.1) and (5.6.1) of Theorem 5.6. For later use, the symbol {·, ·}S(x)

indicates the Poisson bracket characterized by the structure matrix S(x), in the x-
coordinates. The indication of S(x) is omitted when this causes no confusion.

Remark 5.3 Let n = 3; for any w ∈ H , let

S =
⎡
⎢⎣

0 − ∂w
∂x3

∂w
∂x2

∂w
∂x3

0 − ∂w
∂x1

− ∂w
∂x2

∂w
∂x1

0

⎤
⎥⎦ . (5.12)

By direct substitution it is easy to check such a matrix S satisfies conditions (5.6.1)
and (5.6.2) of Theorem 5.6, whence it is a structure matrix (see also Sect. 5.5).
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Remark 5.4 The “mechanical” systems considered in Sect. 5.1 can be very naturally
recast in the Hamiltonian formalism, so that Hamiltonian systems can be seen as a
generalization of Euler–Lagrange systems. To describe the systems considered in
Sect. 5.1 as Hamiltonian systems, define the generalized momenta p := ( ∂L

∂q̇
)� =

B(q)q̇; hence, define the Hamiltonian function as the total energy of the mechanical
system:

H := T + U =
(

1

2
q̇�B(q)q̇ + U(q)

)∣∣∣∣
q̇=B−1(q)p

= 1

2
p�B−1(q)p + U(q).

Then, by definition,

dq

dt
= B−1(q)p =

(
∂H

∂p

)�
,

and (taking into account (5.1))

dp

dt
=
(

d

dt

∂L

∂q̇

)�
=
(

∂L

∂q

)�
= −

(
∂H

∂q

)�
,

where the last equality can be proven taking into account that L = T − U and,

by (3.13), that ∂B
∂qi

= −B ∂B−1

∂qi
B:

∂

∂qi

(
q̇�B(q)q̇

) = q̇� ∂B(q)

∂qi

q̇ = −q̇�B
∂B−1

∂qi

Bq̇ = −p� ∂B−1

∂qi

p

= − ∂

∂qi

(
p�B−1(q)p

)
.

Letting x = [q� p�]� and S = [ 0 E
−E 0

]
, one concludes that

dx

dt
= S

(
∂H

∂x

)�
=: fH (x),

where fH is the Hamiltonian vector function associated with the Hamiltonian func-
tion H , through the Poisson bracket defined by such a matrix S, which is certainly
a structure matrix being constant and skew-symmetric.

Using Theorem 5.5, it is possible to understand how a diffeomorphism y = ϕ(x)

(with inverse x = φ(y)) transforms the structure matrix S(x) of a given Poisson
bracket (given in the x-coordinates) into the structure matrix S̃(y) of the same Pois-
son bracket (expressed in the y-coordinates). By Theorem 5.5, there exists a matrix
function S̃(y) such that

(
∂u(x)

∂x
S(x)∇v(x)

)
◦ φ(y) = ∂u(φ(y))

∂y
S̃(y)∇v

(
φ(y)

)
,
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where the symbol ∇ in the right-hand side is referred to the y -coordinates; hence,
it follows that

S ◦ φ(y) = ∂φ(y)

∂y
S̃(y)

(
∂φ(y)

∂y

)�
, (5.13)

or, equivalently,

S̃(y) =
(

∂ϕ(x)

∂x
S(x)

(
∂ϕ(x)

∂x

)�)
◦ φ(y)

=
(

∂φ(y)

∂y

)−1

S(x) ◦ φ(y)

(
∂φ(y)

∂y

)−�
. (5.14)

Definition 5.6 Let a Poisson bracket {·, ·} be given. A diffeomorphism y = ϕ(x)

(with inverse x = φ(y)) is a Poisson map if it preserves the given Poisson bracket,
i.e., if

S̃(y) = S(y), ∀y ∈ ϕ(U ), (5.15)

where S̃(y) is given in (5.14).

Example 5.3 Let

S(x) =
⎡
⎣

0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤
⎦ ,

which clearly satisfies conditions (5.6.1) and (5.6.2) of Theorem 5.6. Let x = φ(y),
with

φ(y) =
⎡
⎢⎣

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

⎤
⎥⎦
⎡
⎣

y1
y2
y3

⎤
⎦ .

Since (5.15) holds, x = φ(y) is a Poisson map.

The following theorem shows that a Poisson map x = φ(y) transforms the
Hamiltonian vector function fH associated with the Hamiltonian function H into
the Hamiltonian vector function fH◦φ associated with the Hamiltonian function
H ◦ φ.

Theorem 5.7 Let a Poisson bracket {·, ·} be given. If x = φ(y) is a Poisson map,
then

(
∂φ

∂y

)−1

fH ◦ φ = fH◦φ. (5.16)
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Proof Consider the ith entry fH,i of fH , for which one has

fH,i ◦ φ = {xi,H } ◦ φ = {xi ◦ φ,H ◦ φ} = {φi,H ◦ φ} = ∂φi

∂y
fH◦φ;

hence, fH ◦ φ = ∂φ
∂y

fH◦φ . �

If ϕ(x) = φ−1(x), then (5.16) can be rewritten as

ϕ∗fH = fϕ∗H .

Example 5.4 Consider the Poisson bracket defined by the structure matrix S(x)

given in Example 5.3. Let H(x) = 1
2 (

x2
1

I1
+ x2

2
I2

+ x2
3

I3
) for some constant Ii �= 0, i =

1,2,3. Then, the Hamiltonian vector function fH associated with H is

fH (x) =
⎡
⎣

0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤
⎦
⎡
⎢⎣

x1
I1
x2
I2
x3
I3

⎤
⎥⎦=

⎡
⎢⎢⎣

I2−I3
I2I3

x2x3

I3−I1
I1I3

x1x3

I1−I2
I1I2

x1x2

⎤
⎥⎥⎦ .

Hence, dx
dt

= fH (x) is the system of the equations of motion of a rigid body that
rotates about its center of mass, with inertia matrix I = diag{I1, I2, I3}. Let

φ(y) =
⎡
⎢⎣

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

⎤
⎥⎦
⎡
⎣

y1
y2
y3

⎤
⎦ ,

which is a Poisson map by Example 5.3. The Hamiltonian function is transformed
into

H̃ (y) = H ◦ φ(y) = 1

2

(
(−1

3y1 + 2
3y2 + 2

3y3)
2

I1
+ ( 2

3y1 − 1
3y2 + 2

3y3)
2

I2

+ ( 2
3y1 + 2

3y2 − 1
3y3)

2

I3

)
.

The Hamiltonian vector function associated with H̃ is

fH̃
(y) = S̃(y)∇H̃ (y) = S(y)∇H̃ (y)

=
⎡
⎣

0 −y3 y2
y3 0 −y1

−y2 y1 0

⎤
⎦
⎡
⎢⎣

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

− 1
3 y1+ 2

3 y2+ 2
3 y3

I1
2
3 y1− 1

3 y2+ 2
3 y3

I2
2
3 y1+ 2

3 y2− 1
3 y3

I3

⎤
⎥⎥⎥⎥⎦

,
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which coincides with vector function fH transformed by x = φ(y), i.e., f
H̃

(y) =
ϕ∗fH (x), if ϕ = φ−1.

Theorem 5.8 Let a Poisson bracket {·, ·} be given. For any K ∈ H , let ΦfK
be the

flow associated with the Hamiltonian vector function fK . Then, x = ΦfK
(τ, y) is a

Poisson map for any admissible τ ∈ R.

Proof Diffeomorphism x = ΦfK
(τ, y) is a Poisson map if

{
u ◦ ΦfK

(τ, y), v ◦ ΦfK
(τ, y)

}= {u,v} ◦ ΦfK
(τ, y), ∀u,v ∈ H . (5.17)

Such an equation holds for all admissible τ ∈ R if and only if it holds for τ = 0 and
the relation obtained by taking the derivative of both sides of (5.17) with respect
to τ is satisfied for all admissible τ ∈ R. Clearly, (5.17) holds for τ = 0, because

x = ΦfK
(0, y) is the identity transformation. Taking into account that

dΦfK
(τ,y)

dτ
=

fK ◦ ΦfK
, the derivative of (5.17) with respect to τ yields the following equation

computed at x = ΦfK
(τ, y):

{LfK
u, v} + {u,LfK

v} = LfK
{u,v}. (5.18)

Now, since LfK
u = {u,K} and LfK

v = {v,K} and LfK
{u,v} = {{u,v},K}, (5.18)

becomes the Jacobi identity, which is satisfied since {·, ·} is a Poisson bracket. �

Remark 5.5 Any constant and skew-symmetric matrix S satisfies conditions (5.6.1)
and (5.6.2) of Theorem 5.6, whence it is a structure matrix. Since all eigenvalues
of any skew-symmetric matrix S have zero real part (see Statement 4.7.20 of [83]),
then det(S) = 0 if n is odd, because in such a case S has necessarily an eigenvalue
equal to zero; in particular, the rank of S is even, rankR(S) = 2ν, where the number
of eigenvalues equal to zero is n − 2ν ≥ 0. For any constant and skew-symmetric
matrix S, there exists a constant Q ∈ R

n×n, with Q� = Q−1 (it is a consequence of
Statement 4.10.3 of [83]), such that Q−1SQ = Q�SQ is in the real Jordan form,
which, taking into account that S is semi-simple, takes the form:

Q�SQ = Q−1SQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ω1 . . . 0 0 0 . . . 0
−ω1 0 . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

...
...

0 0 . . . 0 ων 0 . . . 0
0 0 . . . −ων 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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for constant ωi ∈ R
>, i = 1, . . . , ν. This implies that there exists a constant Q̂ (in

such a case Q̂� need not be the inverse of Q̂) such that

Q̂�SQ̂ =
⎡
⎣

0 E 0
−E 0 0

0 0 0

⎤
⎦ ,

where E is the ν × ν identity matrix.

Remark 5.5 can be extended to the case of non-constant structure matrices by the
subsequent Theorem 5.9, which is called the Darboux Theorem [102].

Definition 5.7 A point xo ∈ R
n is a regular point of the Poisson bracket character-

ized by the structure matrix S(x) if S(x) has constant rank 2ν ≤ n in a neighborhood
U ∗ of xo; 2ν is called the rank of the Poisson bracket at xo.

Theorem 5.9 Let xo ∈ R
n be a regular point of the Poisson bracket; in particular,

let 2ν be the rank of the Poisson bracket at xo and m = n − 2ν ≥ 0. Then, there
exists a diffeomorphism y = ϕ(x), with ϕ(·) : U ∗ → R

n, with inverse x = φ(y),
where U ∗ is a neighborhood of xo, such that the transformed structure matrix S̃(y)

given by (5.14) takes the canonical form:

S̃(y) =
⎡
⎣

0 E 0
−E 0 0

0 0 0

⎤
⎦ , (5.19)

with E being the ν × ν identity matrix.

Proof If the rank of the Poisson bracket at xo is 0, then S is identically equal to zero
in U ∗, and therefore it is of form (5.19), with ν = 0. Then, assume ν ≥ 1. By this
assumption, there exists a z ∈ H such that xo is a regular point of fz, fz(x

o) �= 0.
Let y = ϕ(x) be the diffeomorphism straightening fz, Lfzϕ = e1. Take u equal to
the first entry of ϕ, which implies {u, z} = Lfz

u = 1. Since [fz, fu] = f{u,z} and
{u, z} = 1, one concludes that [fz, fu] = 0, namely that fu and fz are commuting
and both have xo as regular point. By the Frobenius Theorem 1.9 at p. 21, there exist
n − 2 functions ψ1, . . . ,ψn−2 that are joint first integrals associated with both fu

and fz, and such that {u, z,ψ1, . . . ,ψn−2} is a set of n functions being functionally
independent at x = xo. Hence, letting q1 = u, p1 = z and yi = ψi , i = 1, . . . , n − 2,
one concludes that

{q1,p1} = Lfz
u = 1,

{yi, q1} = Lfzyi = 0, i = 1, . . . , n − 2,

{yi,p1} = Lfuyi = 0, i = 1, . . . , n − 2.
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This means that, in such coordinates, the structure matrix has the form
⎡
⎣

0 1 0
−1 0 0
0 0 Ŝ

⎤
⎦ ,

where Ŝ ∈ R
(n−2)×(n−2) need not be constant. By the Jacobi identity,
{
q1, {yi, yj }

}+ {yi, {yj , q1}
}+ {yj , {q1, yi}

}= 0,

one shows that
{{yi, yj }, q1

}= 0;
in addition,

{{yi, yj }, q1
} = {Ŝi,j , q1

}=
[
∂Ŝi,j

∂q1

∂Ŝi,j

∂p1

∂Ŝi,j

∂y

]⎡
⎣

0 1 0
−1 0 0
0 0 Ŝ

⎤
⎦
⎡
⎣

1
0
0

⎤
⎦

= −∂Ŝi,j

∂p1
,

which shows that
∂Ŝi,j

∂p1
= 0. Similarly, it can be shown that

∂Ŝi,j

∂q1
= 0, namely that

matrix Ŝ is independent of (q1,p1) and hence is the structure matrix of a Poisson
bracket in the y-variables of rank two less than that of S, from which the induction
step is proven, up to the final step at which the remaining Ŝ is equal to zero or
vanishes. �

Example 5.5 Consider the structure matrix

S(x) =
⎡
⎣

0 0 1
0 0 −2x1

−1 2x1 0

⎤
⎦ ,

which has rank 2 on the whole R
3. Consider the Hamiltonian function v(x) = x3 +

x2
1 + x3

2 and the associated Hamiltonian vector function

fv(x) =
⎡
⎣

0 0 1
0 0 −2x1

−1 2x1 0

⎤
⎦
⎡
⎢⎣

2x1

3x2
2

1

⎤
⎥⎦=

⎡
⎣

1
−2x1

−2x1 + 6x1x
2
2

⎤
⎦ ,

which has no singular points. Such a Hamiltonian vector function fv is straightened
by the diffeomorphism y = ϕ(x), with

ϕ(x) =
⎡
⎢⎣

x1

x3 + x2
1 + x3

2

x2 + x2
1

⎤
⎥⎦ .
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Define u(x) := x1, which yields

fu(x) =
⎡
⎣

0 0 1
0 0 −2x1

−1 2x1 0

⎤
⎦
⎡
⎣

1
0
0

⎤
⎦=

⎡
⎣

0
0

−1

⎤
⎦ .

Clearly, z(x) = x2 + x2
1 is a first integral associated with both fu and fv , and there-

fore the diffeomorphism y = ϕ(x) brings the structure matrix S(x) in canonical
form. As a matter of fact,

∂ϕ(x)

∂x
S(x)

(
∂ϕ(x)

∂x

)�
=
⎡
⎣

1 0 0
2x1 3x2

2 1
2x1 1 0

⎤
⎦
⎡
⎣

0 0 1
0 0 −2x1

−1 2x1 0

⎤
⎦
⎡
⎣

1 2x1 2x1

0 3x2
2 1

0 1 0

⎤
⎦

=
⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦ .

Remark 5.6 Apart from a diffeomorphism y = ϕ(x), assume that

S̃(y) =
⎡
⎣

0 E 0
−E 0 0

0 0 0

⎤
⎦ .

In particular, letting

q =
⎡
⎢⎣

q1
...

qν

⎤
⎥⎦ , p =

⎡
⎢⎣

p1
...

pν

⎤
⎥⎦ , z =

⎡
⎢⎣

z1
...

zm

⎤
⎥⎦ , y =

⎡
⎣

q

p

z

⎤
⎦ ,

the Poisson bracket takes the form

{u,v}
S̃

=
ν∑

i=1

(
∂u

∂qi

∂v

∂pi

− ∂u

∂pi

∂v

∂qi

)
;

such local coordinates are called canonical and satisfy

{qi, qj } = 0, {pi,pj } = 0, ∀i, j,

{qi,pj } =
{

1, if i = j,

0, if i �= j,
∀i, j,

{qi, zj } = {pi, zj } = {zi, zj } = 0, ∀i, j.
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The Hamiltonian vector function f
H̃

associated with the Hamiltonian function H̃ is
therefore

f
H̃

(q,p, z) =
⎡
⎣

0 E 0
−E 0 0

0 0 0

⎤
⎦

⎡
⎢⎢⎢⎣

( ∂H̃
∂q

)�

( ∂H̃
∂p

)�

( ∂H̃
∂z

)�

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

( ∂H̃
∂p

)�

−( ∂H̃
∂q

)�

0

⎤
⎥⎥⎦ .

This means that there exist local canonical coordinates (q,p, z) such that any
Hamiltonian system can be written as

dq

dt
=
(

∂H̃

∂p

)�
,

dp

dt
= −

(
∂H̃

∂q

)�
,

dz

dt
= 0,

from which it is easy to see that the functions zi , i = 1, . . . ,m, are first integrals
associated with H , for any H , namely {zi,H } = 0 is equal to zero for any H . Such
functions zi(x) are called either Casimir’s functions, when one is referred to the
Poisson bracket, or distinguished first integrals, when one is referred to any Hamil-
tonian system associated with the Poisson bracket. Note that the m = n − 2ν func-
tionally independent Casimir functions do not depend on the specific Hamiltonian
function H , but only on the Poisson bracket. Clearly, {c,H } is equal to zero for
any H and for any constant c; such trivial quantities are not referred to as Casimir’s
functions.

Example 5.6 Let S(x) be given as in (5.12), for a given non-constant w ∈ H . Since

{w,v}S =
[

∂w
∂x1

∂w
∂x2

∂w
∂x3

]
⎡
⎢⎢⎣

0 − ∂w
∂x3

∂w
∂x2

∂w
∂x3

0 − ∂w
∂x1

− ∂w
∂x2

∂w
∂x1

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂v
∂x1
∂v
∂x2
∂v
∂x3

⎤
⎥⎥⎦= 0

and

[
∂w
∂x1

∂w
∂x2

∂w
∂x3

]
⎡
⎢⎢⎣

0 − ∂w
∂x3

∂w
∂x2

∂w
∂x3

0 − ∂w
∂x1

− ∂w
∂x2

∂w
∂x1

0

⎤
⎥⎥⎦= [0 0 0],



202 5 Analysis of Hamiltonian Systems

one concludes that {w,v}S = 0 for any v, whence that w is a Casimir function
associated with the Poisson bracket {·, ·}S . Any Hamiltonian system described by

fH =

⎡
⎢⎢⎣

0 − ∂w
∂x3

∂w
∂x2

∂w
∂x3

0 − ∂w
∂x1

− ∂w
∂x2

∂w
∂x1

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂H
∂x1
∂H
∂x2
∂H
∂x3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

∂w
∂x2

∂H
∂x3

− ∂w
∂x3

∂H
∂x2

∂w
∂x3

∂H
∂x1

− ∂w
∂x1

∂H
∂x3

∂w
∂x1

∂H
∂x2

− ∂w
∂x2

∂H
∂x1

⎤
⎥⎥⎦

has w as distinguished first integral, in addition to the first integral H , for any Hamil-
tonian function H .

Let S ∈ R
n×n be a constant and skew-symmetric matrix; then, {u,v}S = ∂u

∂x
S ∇v

is a Poisson bracket. If H(x) = 1
2x�Px, with P ∈ R

n×n being constant and sym-
metric, then the Hamiltonian vector function fH associated with H is linear,
fH (x) = SPx. Vice versa, under the assumption that det(S) �= 0 (which implies
that n is even), f (x) = Ax is Hamiltonian if and only if A is S−1-symmetric,
namely if and only if S−1A is symmetric; in particular, the corresponding Hamilto-

nian function is H(x) = 1
2x�S−1Ax. Since det(S) �= 0, assume S = [ 0 E

−E 0

]
. Then

S−1 = [ 0 −E
E 0

]= −S, and therefore S−1A is symmetric (A is S−1-symmetric) if and

only if SA is symmetric (A is S-symmetric). Thanks to the structure of S, by the
equalities SA = (SA)� = A�S� = −A�S, A is S-symmetric if and only if

SA + A�S = 0. (5.20)

Letting A = [Aq,q Aq,p

Ap,q Ap,p

]
, (5.20) becomes

[
Ap,q − A�

p,q Ap,p + A�
q,q

−Aq,q − A�
p,p −Aq,p + A�

q,p

]
=
[

0 0
0 0

]
.

Hence, A is S-symmetric if and only if Aq,p and Ap,q are symmetric, and

Ap,p + A�
q,q = 0.

If n = 2, this reduces to the fact that A is S-symmetric if and only if it has zero
trace.

5.3 Normal Forms of Hamiltonian Systems

In this section, apart from a diffeomorphism, assume that

S =
⎡
⎣

0 E 0
−E 0 0

0 0 0

⎤
⎦ ,

where ν is the dimension of E, and let m = n − 2ν ≥ 0.
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Remark 5.7 Let fK be a Noether symmetry of fH , i.e., {K,H } = c, for some con-
stant c ∈ R. Assume that H and K are analytic at x = 0 and H(0) = K(0) = 0 and
∂H(x)

∂x
|x=0 = ∂K(x)

∂x
|x=0 = 0. Hence, {K(x),H(x)}|x=0 = ∂K(x)

∂x
|x=0 S ∇H(x)|x=0

= 0, which implies that if {K,H } = c, then c = 0.

Theorem 5.10 [98] Let H = H2 +H≥3 be analytic at x = 0, with H2(x) = 1
2x�Px,

for some constant and symmetric P ∈ R
n×n, and H≥3 denoting third and higher

order terms with respect to x = 0. Let A = SP and assume that A is semi-simple.
Then, fH is in the Poincaré–Dulac normal form if and only if H≥3 ∈ IC(Ax).

Proof Clearly, fH = fH2 + fH≥3 , where fH2(x) = SPx and fH≥3 = S ∇H≥3. Un-
der the assumptions of the theorem, fH is in the Poincaré–Dulac normal form if and
only if [fH≥3 , fH2 ] = 0. Since [fH≥3 , fH2 ] = −f{H≥3,H2}, fH is in the Poincaré–
Dulac normal form if and only if {H≥3,H2} = c. Now, c = 0 by Remark 5.7, and
{H≥3,H2} = 0 is equivalent to the fact that H≥3 is a first integral associated with
fH2(x) = Ax. �

The Poincaré–Dulac normal form for Hamiltonian systems takes also a special
name as in the following definition.

Definition 5.8 Let H = H2 + H≥3 be analytic at x = 0, with H2(x) = 1
2x�Px

and H≥3 denoting third and higher order terms with respect to x = 0. Let A = SP

and assume that A is semi-simple. If H≥3 ∈ IC(Ax), then H is in the Birkhoff–
Gustavson normal form [19, 59].

The proof of the following corollary follows from the proof of Theorem 5.4.

Corollary 5.1 Let H = H2 + Ĥ , where H2(x) = 1
2x�Px, for some constant and

symmetric P ∈ R
n×n; let A = SP . Then, the Hamiltonian vector function fH (x) =

Ax + S∇Ĥ (x) has the Hamiltonian vector function fH2(x) = Ax as symmetry if
Ĥ ∈ IC(Ax), namely if {Ĥ ,H2} = 0. Vice versa, if the Hamiltonian vector function
fH has the Hamiltonian vector function fH2 = Ax as symmetry, then {Ĥ ,H2} = c,
for some constant c.

Example 5.7 Let H(x) = 1
2x�Px + Ĥ , with P = [ 1 0

0 1

]
and Ĥ being analytic at

x = 0. Then, A = [ 0 1
−1 0

]
is semi-simple and IC(Ax) is constituted by all arbitrary

functions of I (x) = q2 +p2. Then, fH is in the Poincaré–Dulac normal form if and

only if Ĥ is an arbitrary function of q2 + p2, such that Ĥ (0) = 0, ∂Ĥ (x)
∂x

|x=0 = 0

and ∂2Ĥ (x)

∂x2 |x=0 = 0. For instance, if Ĥ (x) = I 2(x) = (q2 +p2)2, then the following
fH is in the Poincaré–Dulac normal form:

fH (x) =
[

0 1
−1 0

][
q

p

]
+ 4
(
q2 + p2)

[
0 1

−1 0

][
q

p

]
=
[

p + 4p(q2 + p2)

−q − 4q(q2 + p2)

]
.
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According to Corollary 5.1, if Ĥ does not satisfy Ĥ (0) = 0, ∂Ĥ (x)
∂x

|x=0 = 0 and
∂2Ĥ (x)

∂x2 |x=0 = 0, but still satisfies Ĥ ∈ I (Ax), although the resulting fH is not
in the Poincaré–Dulac normal form, fH has f 1

2 x�Px
(x) = Ax as symmetry. For

instance, taking Ĥ (x) = √
I (x) =√q2 + p2, the resulting

fH (x) =
[

0 1
−1 0

][
q

p

]
+
[

0 1
−1 0

]⎡
⎣

q√
q2+p2

p√
q2+p2

⎤
⎦=

(
1+ 1√

q2 + p2

)[
0 1

−1 0

][
q

p

]

is not in the Poincaré–Dulac normal form, but has Ax as symmetry, because it is
co-linear with Ax, with a multiplicative coefficient 1 + 1√

q2+p2
∈ I (Ax).

Theorem 5.11 Assume that n = 2ν. Let H = H2 + H≥3 be analytic at x = 0,
with H2(x) = 1

2x�Px, for some constant and symmetric P ∈ R
n×n, and H≥3

denoting third and higher order terms with respect to x = 0. Let A = SP and
assume that A = As,n + An, with As,n being normal, An being nilpotent and
[As,n,An] = [As,n,A

�
n ] = 0. Then, fH is in the Belitskii normal form if and only if

H≥3 ∈ IC(A�x).

Proof Clearly, fH = fH2 + fH≥3 , where fH2(x) = SPx and fH≥3 = S ∇H≥3. Un-
der the assumptions of the theorem, fH is in the Belitskii normal form if and only
if [fH≥3(x),A�x] = 0. The assumption n = 2ν implies that S is invertible with
inverse S−1 = −S. Since A = SP , one concludes that P̄ = S−1A� = −SPS� is
symmetric. Since [fH≥3(x),A�x] = −f{H≥3(x), 1

2 x�P̄ x}(x), fH is in the Poincaré–

Dulac normal form if and only if {H≥3(x), 1
2x�P̄ x} = c. Now, c = 0 by Re-

mark 5.7, and {H≥3(x), 1
2x�P̄ x} = 0 implies that H≥3 is a first integral associated

with fH2(x) = A�x. �

Example 5.8 Let H(x) = 1
2x�Px + H≥3(x), with P = [ 1 0

0 0

]
. Then, A = [ 0 1

0 0

]
is

nilpotent and IC(A�x) is constituted by all arbitrary functions of I (x) = q . Then,
fH is in the Poincaré–Dulac normal form if and only if H≥3 is an arbitrary function

of q , such that H≥3(0) = 0, ∂H≥3(x)

∂x
|x=0 = 0 and ∂2H≥3(x)

∂x2 |x=0 = 0. For instance, if

H≥3(x) = 1
3q3, then the following fH is in the Belitskii normal form:

fH (x) =
[

0 1
0 0

][
q

p

]
+
[

0 1
−1 0

][
q2

0

]
=
[

0 1
0 0

][
q

p

]
−q

[
0 0
1 0

][
q

p

]
=
[

p

−q2

]
.

Let H be a Hamiltonian function and fH be the associated Hamiltonian vec-
tor function. Let K be a Hamiltonian function, fK be the associated Hamiltonian
vector function and ΦfK

(τ, x̃) be the flow associated with fK ; by Theorem 5.8,
x = ΦfK

(1, x̃) is a Poisson map (assume that τ = 1 is admissible). Hence, letting
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H̃ (x̃) = H(x) ◦ ΦfK
(1, x̃) and denoting by f

H̃
(x̃) the associated Hamiltonian vec-

tor function, by (3.69), one concludes that

fH̃
(x̃) = fH (x̃) + [fK(x̃), fH (x̃)

]+ 1

2!
[
fK(x̃),

[
fK(x̃), fH (x̃)

]]+ · · · .

Therefore,

H̃ (x̃) = H(x̃) − {K(x̃),H(x̃)
}+ 1

2!
{
K(x̃),

{
K(x̃),H(x̃)

}}− · · · .

Given H(x), the objective is to choose K(x̃) so that H̃ (x̃) is simpler than H(x),
for instance so that H̃ (x̃) is in the Birkhoff–Gustavson normal form, and therefore
quadratic in absence of resonances.

Now, note that if Ki (respectively, Hj ) is homogeneous of degree i (respec-
tively, j ) with respect to the standard dilation, then {Ki,Hj } is homogeneous of
degree i + j − 2 with respect to the standard dilation. Therefore, if H =∑+∞

j=2 Hj ,
then

H̃ =
+∞∑
j1=2

Hj1 −
{

K,

+∞∑
j2=2

Hj2

}
+ 1

2!

{
K,

{
K,

+∞∑
j3=2

Hj3

}}
− · · ·

=
+∞∑
j1=2

Hj1 −
+∞∑
j2=2

{K,Hj2} + 1

2!
+∞∑
j3=2

{
K, {K,Hj3}

}− · · · .

In particular, if K = Ki is homogeneous of degree i ≥ 3, then {K,Hj2} has
degree i + j2 − 2 (its degree is equal to i when j2 = 2), {K, {K,Hj3}} has de-
gree 2i + j3 − 3 (its degree is equal to 2i when j3 = 3) and so on. There-
fore, letting H̃ = ∑+∞

j=2 H̃j , one finds that H̃j = Hj for all j ∈ {2, . . . , i − 1},
H̃i = Hi − {Ki,H2}. This shows how the canonical transformation x = ΦfK

(1, x̃)

with K = Ki , i ≥ 3, does not alter the homogeneous terms of H having degree less
than i, modifies the homogeneous term Hi of H having degree i with a change
given by H̃i = Hi −{Ki,H2}, whereas the terms of order higher than i are modified
in a more cumbersome way, but irrelevant, as shown in the following example; for
instance, the Poisson map linearizing a Hamiltonian system, when it exists, can be
obtained by a sequence of such diffeomorphisms, by taking first i = 3, then i = 4
and so on. It is worth pointing out that if a Hamiltonian system is not linearizable
by a Poisson map, then this need not imply that such a Hamiltonian system is not
linearizable by a diffeomorphism.

Example 5.9 Let n = 2 and x = [q p]�. Let H =∑12
j=2 Hj , where H2(x) = q2 +

2p2, H3(x) = 4pq2, H4(x) = 2q4 + 2qp3, H5(x) = 6p2q3, H6(x) = 6pq5 + p6,
H7(x) = 6p5q2 + 2q7, H8(x) = 15p4q4, H9(x) = 20p3q6, H10(x) = 15p2q8,
H11(x) = 6pq10 and H12(x) = q12. Consider first the Poisson map x = ΦfK3

(1, x̃),
with K3 being homogeneous of degree 3 with respect to the standard dilation:

K3(x̃) = a1q̃
3 + a2q̃

2p̃ + a3q̃p̃2 + a4p̃
3,
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where the coefficients ai are real numbers to be fixed so that

H̃3(x̃) = H3(x̃) − {K3(x̃),H2(x̃)
}

= 2a2q̃
3 + (4 − 12a1 + 4a3)q̃

2p̃ + (−8a2 + 6a4)q̃p̃2 − 4a3p̃
3

is as simple as possible. In particular, by imposing that H̃3 = 0 identically, one
obtains the following algebraic system:

2a2 = 0,

4 − 12a1 + 4a3 = 0,

−8a2 + 6a4 = 0,

−4a3 = 0,

with the unique solutions a1 = 1
3 , a2 = 0, a3 = 0, a4 = 0, which yields K3(x̃) =

1
3 q̃3. The Hamiltonian system with the Hamiltonian function K3 is described by
the Hamiltonian vector function fK3(x) = [0 −q̃2]�; the flow of such a system
is ΦfK3

(τ, x̃) = [q̃ −q̃2τ + p̃]�. Then, letting τ = 1 and H̃ (q̃, p̃) = H(q̃,−q̃2 +
p̃), one finds that H̃ = H̃2 + H̃4 + H̃6, where H̃2(x̃) = q̃2 + 2p̃2, H̃4(x̃) = 2q̃p̃3

and H̃6(x̃) = p̃6. Consider now the Poisson map x̃ = ΦfK4
(1, x̂), with K4 being

homogeneous of degree 4 with respect to the standard dilation:

K4(x̂) = b1q̂
4 + b2q̂

3p̂ + b3q̂
2p̂2 + b4q̂p̂3 + b5p̂

4,

where the coefficients bi are real numbers to be fixed so that

Ĥ4(x̂) = H̃4(x̂) − {K4(x̂), H̃2(x̂)
}= 2b2q̂

4 + (4b3 − 16b1)q̂
3p̂

+ (6b4 − 12b2)q̂
2p̂2 + (2 + 8b5 − 8b3)q̂p̂3 − 4b4p̂

4

is as simple as possible. In particular, by imposing that Ĥ4 = 0 identically, one
obtains the following algebraic system:

2b2 = 0,

−16b1 + 4b3 = 0,

−12b2 + 6b4 = 0,

−8b3 + 2 + 8b5 = 0,

−4b4 = 0,

with the following set of solutions:

b1 = 1

16
+ 1

4
c, b2 = 0, b3 = 1

4
+ c, b4 = 0, b5 = c,
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where c ∈ R is an arbitrary constant. Then, K4(x̂) = ( 1
16 + 1

4c)q̂4 + ( 1
4 + c)q̂2p̂2 +

cp̂4; for instance, choosing c = − 1
4 , one has K4(x̂) = − 1

4 p̂4. The Hamiltonian
system with the Hamiltonian function K4 is described by the Hamiltonian vec-
tor function fK4(x̂) = [−p̂3 0]�; the flow of such a system is ΦfK4

(τ, x̂) =
[−p̂3τ + q̂ p̂]�. Then, letting τ = 1 and Ĥ (q̂, p̂) = H̃ (−p̂3 + q̂, p̂), one finds
that Ĥ = Ĥ2, with Ĥ2(x̂) = q̂2 + 2p̂2. In conclusion, by defining the Poisson map
ΦfK3

(1, x̃) ◦ ΦfK4
(1, x̂),

q = −p̂3 + q̂,

p = −(−p̂3 + q̂
)2 + p̂,

with inverse

q̂ = q + (p + q2)3, (5.21a)

p̂ = p + q2, (5.21b)

one concludes that H = (q + (p + q2)3)2 + 2(p + q2)2 = q̂2 + 2p̂2, namely that
the Hamiltonian system can be linearized by the Poisson map (5.21a), (5.21b).

5.4 Hamiltonian Planar Systems

When n = 2, any skew-symmetric matrix S(x) can be rewritten as S = [ 0 ω
−ω 0

]
,

where ω(x) ∈ R; if S is the structure matrix of a Poisson bracket, then ω(x) =
{x1, x2}. When considering the Jacobi condition

{
xi, {xj , xk}

}+ {xj , {xk, xi}
}+ {xk, {xi, xj }

}= 0, (5.22)

for all i, j, k ∈ {1,2}, there are only two possible cases: either all indices are equal
(in this case (5.22) trivially holds) or only two of them are equal. In this last case,
for instance, assume i = j = 1 and k = 2; then,

{
x1, {x1, x2}

}+ {x1, {x2, x1}
}+ {x2, {x1, x1}

}= {x1,ω(x)
}+ {x1,−ω(x)

}
,

which shows that (5.22) holds, whence that S is a structure matrix, for all ω(x) ∈ R.
Therefore, apart from a diffeomorphism, assume that coordinates x ∈ R

2, x =
[x1 x2]� = [q p]�, are canonical. This imply that either S = [ 0 1

−1 0

]
or S = 0; the

last case, which corresponds to fH = 0 for any H ∈ H , is trivial. Thus, in the rest
of this section, assume that S = [ 0 1

−1 0

]
. In this simple case, the Hamiltonian vector

function fH (x) ∈ R
2 associated with H is

fH = S

(
∂H

∂x

)�
=
[

∂H
∂x2

− ∂H
∂x1

]
. (5.23)
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Note that the class FH given by (5.23) coincides with the class of all f (x) ∈ R
2

having an inverse integrating factor ω equal to 1; as a matter of fact, if ω = 1 is an
inverse integrating factor associated with f , then [f2 −f1] is exact, i.e., there exists
a first integral I such that ∂I

∂x1
= f2 and ∂I

∂x2
= −f1, which is locally unique apart

from the sum of an arbitrary constant. Hence, f = fH , with H = −I . Conversely,
an inverse integrating factor associated with (5.23) is ω = 1. Since Lf ω = div(f )ω,
if ω = 1, then div(f ) = 0; vice versa, if div(f ) = 0, then any constant (whence,
also ω = 1) is an inverse integrating factor associated with f . Therefore, condition
ω = 1 is equivalent to condition div(f ) = 0.

Consider a diffeomorphism x = φ(x̃), with x̃ = [q̃ p̃]�, where x̃ = [x̃1 x̃2]� =
φ−1(x) = ϕ(x) is the inverse. Let H̃ (x̃) = H ◦ φ(x̃) and f

H̃
(x̃) be the associ-

ated Hamiltonian vector function. Is it true that f
H̃

= (
∂φ
∂x̃

)−1fH ◦ φ, namely that
∂φ
∂x̃

f
H̃

= fH ◦φ? A partial answer is already known from the general case (see The-

orem 5.7): if φ is a Poisson map, then ∂φ
∂x̃

f
H̃

= fH ◦ φ holds. The complete answer
in the planar case can be obtained by the following relations:

∂φ

∂x̃
fH̃

= ∂φ

∂x̃
S

(
∂H̃

∂x̃

)�
,

fH ◦ φ = S

(
∂H

∂x

)�
◦ φ;

taking into account that ∂H̃
∂x̃

= ( ∂H
∂x

◦ φ)
∂φ
∂x̃

, it follows that

∂φ

∂x̃
fH̃

= ∂φ

∂x̃
S

(
∂φ

∂x̃

)�(
∂H

∂x

)�
◦ φ.

Since BSB� = det(B)S, for any matrix B ∈ R
2×2, one concludes that

∂φ

∂x̃
fH̃

= det

(
∂φ

∂x̃

)
S

(
∂H

∂x

)�
◦ φ.

Therefore, ∂φ
∂x̃

f
H̃

= fH ◦φ if and only if det( ∂φ
∂x̃

) = det( ∂ϕ
∂x

) = 1. Let ϕ = [u v]�;
then:

det

(
∂ϕ

∂x

)
= det

([
∂u
∂q

∂u
∂p

∂v
∂q

∂v
∂p

])
= ∂u

∂q

∂v

∂p
− ∂u

∂p

∂v

∂q

= {u,v},
namely the Poisson bracket {u,v} of u and v coincides with the determinant of
the Jacobian matrix of ϕ = [u v]�. Local coordinates q̃ = u(q,p) and p̃ = v(q,p)

are canonical coordinates if {u,v} = 1; similarly, diffeomorphism φ (respectively,
ϕ) is called canonical. Clearly, {q,p} = 1. By the above analysis, (

∂φ
∂x̃

)−1fH ◦ φ

is Hamiltonian with the Hamiltonian function H̃ = H ◦ φ if and only if q̃, p̃ are
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canonical, namely the following diagram is commutative if and only if q̃, p̃ are
canonical:

H(x)
x̃=ϕ(x)

H̃ (x̃)

fH (x)
x̃=ϕ(x)

f
H̃

(x̃)

Note that q̃ = p, p̃ = −q is a canonical diffeomorphism, since {p,−q} =
{q,p} = 1. This shows that the role of generalized coordinate and generalized mo-
mentum can be interchanged.

Example 5.10 Pair (q̃, p̃) = (ln( 1
q

sin(p)), q cot(p)) is canonical (see, also, [54]),

{q̃, p̃} = det

([ − 1
q

cos(p)
sin(p)

cot(p) −(1 + cot2(p))q

])
= 1.

Pair (q̃, p̃) = (ln(1 + √
q cos(p)),2(1 + √

q cos(p))
√

q sin(p)) is canonical (see,
also, [54]),

{q̃, p̃} = det

⎛
⎝
⎡
⎣

1
2
√

q
cos(p)

1+√
q cos(p)

−√
q

sin(p)
1+√

q cos(p)

( 1√
q

+ 2 cos(p)) sin(p) 2(
√

q cos(p) − q sin2(p) + q cos2(p))

⎤
⎦
⎞
⎠

= 1.

Remark 5.8 Let x̃ = ϕ(x) be a canonical diffeomorphism, ϕ = [u v]� and {u,v} =
det( ∂ϕ

∂x
) = 1. Let [f g] = (

∂ϕ
∂x

)−1; by construction f and g are commuting,
[f,g] = 0, and ω = 1 is an inverse integrating factor associated with both f and g,
whence both f and g are Hamiltonian. Since ∂ϕ

∂x
[f g] = E, u is a first integral asso-

ciated with g and v is a first integral associated with f . In particular, denoting by fi

and gi the ith entries of f and g, respectively, since
[ f1 g1

f2 g2

]−1 = [ g2 −g1
−f2 f1

]
, K = −u

is the Hamiltonian function associated with g and H = v is the Hamiltonian func-
tion associated with f . For instance, as in Example 5.10, choose u = ln( 1

q
sin(p))

and v = q cot(p). Then, by

(
∂ϕ

∂x

)−1

=
[

− 1
q

cos(p)
sin(p)

cot(p) (−1 − cot2(p))q

]−1

=
[
q(−1 − cot2(p)) − cos(p)

sin(p)

− cot(p) − 1
q

]
,

one shows that fH (x) = [ q(−1−cot2(p))
− cotp

]
is Hamiltonian with the Hamiltonian func-

tion H(x) = v(x) = q cot(p), fK(x) = [− cos(p)
sin(p)

− 1
q

]
is Hamiltonian with the Hamilto-

nian function K(x) = −u(x) = − ln( 1
q

sin(p)), and [fK,fH ] = f{H,K} = 0.
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Remark 5.9 By Remark 5.8 and the analysis of Sect. 1.6, the flow of a Hamil-
tonian fK can be rewritten as ΦfK

(τ, x) = ϕ−1(τe1 + ϕ(x)), for some canonical

diffeomorphism x̃ = ϕ(x). Since det(
∂ΦfK

(τ,x)

∂x
) = (

∂ϕ−1(x)
∂x

◦ (τe1 + ϕ(x)))
∂ϕ(x)

∂x

and det( ∂ϕ(x)
∂x

) = det( ∂ϕ−1(x̃)
∂x̃

) = 1, one concludes that ΦfK
(τ, x) is a canonical

diffeomorphism for any Hamiltonian fK (in agreement with Theorem 5.8). As
an example, consider the Hamiltonian vector function fK(x) = [1 sin(q)]� as-
sociated with the Hamiltonian function H(x) = p + cos(q); then, ΦfK

(τ, x) =
[τ + q p + cos(q) − cos(τ + q)]�. Since

det

(
∂ΦfK

(τ, x)

∂x

)
= det

([
1 0

− sin(q) + sin(τ + q) 1

])
= 1,

ΦfK
(τ, x) is a canonical diffeomorphism for any τ ∈ R.

Remark 5.10 A linear transformation x = Qx̃,Q ∈ R
2×2, is canonical if and only

if det(Q) = 1.

By Theorem 2.10 at p. 45, for a square matrix B , one finds that �(τ) =
etrace(B)τ�(0), where �(τ) = det(eBτ ). Hence, taking into account that �(0) = 1,

trace(B) = 0 ⇐⇒ �(τ) = 1, ∀τ ∈ R.

This means that if g(x) = Bx is Hamiltonian, then Q = eBτ is a canonical linear
transformation for any ∀τ ∈ R and, vice versa, if Q = eBτ is a canonical linear
transformation for any ∀τ ∈ R, then g(x) = Bx is Hamiltonian. However, note that
Q = [−1 1

0 −1

]
is a canonical linear transformation since det(Q) = 1, but there exists

no B ∈ R
2×2 such that Q = eBτ , for some τ ∈ R, because B has an odd number

of Jordan blocks with negative eigenvalues. Actually, there exists no Hamiltonian
vector function fH (x) ∈ R

2 analytic at x = 0, fH (0) = 0, such that ΦfH
(τ, x) = Qx

for some τ ∈ R, because if fH (x) = Bx + · · · and ΦfH
(τ, x) = Q1(τ )x + · · · , then

eBτ = Q1(τ ).

Remark 5.11 When n = 2, the proof that the Poisson bracket described by S =[ 0 1
−1 0

]
satisfies properties (5.2.1)–(5.2.4) of Definition 5.2, with u(q,p), v(q,p),

z(q,p) ∈ R, can be carried out by substitution.
Proof of (5.2.1):

{u,v} = det

([
∂u
∂q

∂u
∂p

∂v
∂q

∂v
∂p

])
= −det

([
∂v
∂q

∂v
∂p

∂u
∂q

∂u
∂p

])
= −{v,u}.

Proof of (5.2.2):

{au + bv, z} = det

([
a ∂u

∂q
+ b ∂v

∂q
a ∂u

∂p
+ b ∂v

∂p

∂z
∂q

∂z
∂p

])
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= a det

([
∂u
∂q

∂u
∂p

∂z
∂q

∂z
∂p

])
+ b det

([
∂v
∂q

∂v
∂p

∂z
∂q

∂z
∂p

])
= a{u, z} + b{v, z}.

Proof of (5.2.3): the statement is easily proven by summing the following three
equalities

{
u, {v, z}} = ∂u

∂q

∂

∂p
{v, z} − ∂u

∂p

∂

∂q
{v, z}

= ∂u

∂q

∂

∂p

(
∂v

∂q

∂z

∂p
− ∂v

∂p

∂z

∂q

)
− ∂u

∂p

∂

∂q

(
∂v

∂q

∂z

∂p
− ∂v

∂p

∂z

∂q

)

= ∂u

∂q

(
∂2v

∂q∂p

∂z

∂p
+ ∂v

∂q

∂2z

∂p2 − ∂2v

∂p2

∂z

∂q
− ∂v

∂p

∂2z

∂q∂p

)

− ∂u

∂p

(
∂2v

∂q2

∂z

∂p
+ ∂v

∂q

∂2z

∂q∂p
− ∂2v

∂q∂p

∂z

∂q
− ∂v

∂p

∂2z

∂q2

)
,

{
v, {z,u}} = ∂v

∂q

(
∂2z

∂q∂p

∂u

∂p
+ ∂z

∂q

∂2u

∂p2 − ∂2z

∂p2

∂u

∂q
− ∂z

∂p

∂2u

∂q∂p

)

− ∂v

∂p

(
∂2z

∂q2

∂u

∂p
+ ∂z

∂q

∂2u

∂q∂p
− ∂2z

∂q∂p

∂u

∂q
− ∂z

∂p

∂2u

∂q2

)
,

{
z, {u,v}} = ∂z

∂q

(
∂2u

∂q∂p

∂v

∂p
+ ∂u

∂q

∂2v

∂p2 − ∂2u

∂p2

∂v

∂q
− ∂u

∂p

∂2v

∂q∂p

)

− ∂z

∂p

(
∂2u

∂q2

∂v

∂p
+ ∂u

∂q

∂2v

∂q∂p
− ∂2u

∂q∂p

∂v

∂q
− ∂u

∂p

∂2v

∂q2

)
.

Proof of (5.2.4):

{u,vz} = det

([
∂u
∂q

∂u
∂p

∂vz
∂q

∂vz
∂p

])

= det

([
∂u
∂q

∂u
∂p

z ∂v
∂q

z ∂v
∂p

])
+ det

([
∂u
∂q

∂u
∂p

v ∂z
∂q

v ∂z
∂p

])

= {u,v}z + {u, z}v.

The equations of motion of a planar Hamiltonian system can be rewritten, using
the Poisson bracket, as

dq

dt
= {q,H },

dp

dt
= {p,H }.
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Consider now the Noether symmetries defined in Definition 5.4 and recall Theo-
rem 5.4. It is easy to see that the Noether symmetry fK of fH , {K,H } = c, is trivial
if and only if c = 0; if {K,H } = 0, then K is a first integral associated with fH ,
whence K = C(H) for some function C, because the Hamiltonian system is planar
and, therefore, cannot have more than one functionally independent first integral.

Now, excluding the trivial Noether symmetries corresponding to case c = 0 and,
apart from the division for a constant c �= 0, all the Noether symmetries are given
by fK , with {K,H } = 1. Let {K,H } = 1 (if {K,H } = c, for c �= 0, then take 1

c
K

instead of K). By the above discussion, q̃ = K(q,p), p̃ = H(q,p) is a canonical
diffeomorphism and q̃, p̃ qualify as canonical coordinates. In the local coordinates
q̃, p̃, both fH and fK are straightened; as a matter of fact, the dynamics of the
system are described, in the local coordinates q̃, p̃, by

dq̃

dt
= {K,H } = 1,

dp̃

dt
= {H,H } = 0,

whereas the dynamics of the Noether symmetry are described, in the local coordi-
nates q̃, p̃, by

dq̃

dt
= {K,K} = 0,

dp̃

dt
= {H,K} = −1.

The following theorem parametrizes all the Noether symmetries of a Hamiltonian
vector function fH , whereas the parameterization of all symmetries (not necessarily
of the Noether type) is given in Theorem 3.9 at p. 64.

Theorem 5.12 Let K̄ �= 0 be a particular solution of {K,H } = 1 (whose existence
is ensured about any regular point of fH ); then, all solutions of {K,H } = 1 are
given by K = K̄ + C(H), where C is an arbitrary function of H .

Proof By the bi-linearity of the Poisson bracket, the set of all solutions in K of
{K,H } = 1, is generated by finding a particular solution K̄ of {K,H } = 1 and by
adding to K̄ an arbitrary solution of the homogeneous equation {K,H } = 0. Any
solution of {K,H } = 0 is a first integral associated with fH ; in the planar case, all
first integrals associated with fH are functions of H . �

Example 5.11 Consider the Hamiltonian function H(x) = p−q2 and the associated
vector function

fH (x) =
[

0 1
−1 0

][−2q

1

]
=
[

1
2q

]
.



5.4 Hamiltonian Planar Systems 213

A solution of {K,H } = 1 is K̄(x) = q , since {q,p − q2} = det
([ 1 0

−2q 1

])= 1. Then,

all solutions of {K,H } = 1 are K(x) = q + C(p − q2), where C is an arbitrary
function of the argument. Then, apart from the division for some non-zero constant,
all the non-trivial Noether symmetries of fH are given by fK ,

fK(x) =
[

0 1
−1 0

][
1 − 2qG

G

]
=
[

G

−1 + 2qG

]
,

where G(ξ) = dC(ξ)
dξ

is an arbitrary function of p − q2. For instance, taking G =
(p − q2)2 (i.e., C = 1

3(p − q2)3), one concludes that a Noether symmetry of fH

is given by fK(x) = [(p − q2)2 − 1 + 2q(p − q2)2]�. As a matter of fact, the
Hamiltonian function associated with fK is K(x) = q + 1

3 (p − q2)3 and

[
fH (x), fK(x)

] =
[

4q(−p + q2) 2p − 2q2

2(−p + q2)(−p + 5q2) −4q(−p + q2)

][
1

2q

]

−
[

0 0
2 0

][
(p − q2)2

−1 + 2q(p − q2)2

]
=
[

0
0

]
.

Both fH and fK are straightened by the canonical diffeomorphism q̃ = K(x) =
q + 1

3 (p−q2)3, p̃ = H(x) = p−q2, as can be easily verified by taking into account
that {H,H } = 0, {K,K} = 0 and {K,H } = 1.

Remark 5.12 Let f (x) = Ax. By relation (5.20), f = fH for some H ∈ H
(namely, Ax is Hamiltonian) if and only if A has zero trace. Let fH (x) = Ax and
fK(x) = Bx be Hamiltonian, i.e., let A and B have zero trace, A = [ a b

c −a

]
and

B = [ α β
γ −α

]
. Then, fK is a Noether symmetry of fH if and only if A and B are

commuting. Since

[A,B] =
[

βc − γ b 2αb − 2βa

2γ a − 2αc γ b − βc

]
,

A and B are commuting if and only if A and B are co-linear over R, i.e., B = κA,
for some constant κ ∈ R. Therefore, fK is a trivial Noether symmetry of fH .

Theorem 5.13 Let H be a Hamiltonian function and fH be the associated vector
function. Then, there are local canonical coordinates (q̃, p̃) = (u(q,p), v(q,p)),
{u,v} = 1, such that f

H̃
is linear with H̃ (u(x), v(x)) = H(x) if and only if

H̃ (u, v) = 1
2 [u v]P [ u

v

]
, for some constant and symmetric P ∈ R

2×2.

Proof If H̃ (u, v) = 1
2 [u v]P [ u

v

]
for some u,v such that {u,v} = 1, then letting

(q̃, p̃) = (u, v), one has that H̃ is a quadratic function of q̃ , p̃, whence the associated
f

H̃
is linear, f

H̃
(x) = SPx. Conversely, if f

H̃
is linear, then the associated Hamil-

tonian function (choosing zero integration constant) is a quadratic function of q̃ , p̃,
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H̃ (q̃, p̃) = 1
2 [q̃ p̃]P [ q̃

p̃

]
. If (u, v) is a canonical diffeomorphism, {u,v} = 1, then

the Hamiltonian function of the transformed Hamiltonian system is H = H̃ (u, v). �

Corollary 5.2 Let H be a Hamiltonian function and fH be the associated vector
function. Then, there are local canonical coordinates (q̃, p̃) = (u(q,p), v(q,p)),
{u,v} = 1, such that f

H̃
is linear, f

H̃
(x) = SPx, with SP being diagonal, if and

only if H̃ (u, v) = −λuv, with λ ∈ R being constant. In particular, u and v are two
semi-invariants associated with fH .

Proof Let H̃ (u, v) = 1
2 [u v]P [ u

v

]
; then, A = SP and, therefore, P = −SA, with A

being diagonal with zero trace:

P =
[

0 −1
1 0

][−λ 0
0 λ

]
=
[

0 −λ

−λ 0

]
.

Therefore, H̃ (u, v) = 1
2 [u v][ 0 −λ

−λ 0

][ u
v

]= −λuv. �

Corollary 5.2 is particularly helpful when the Hamiltonian function is polyno-
mial, as shown in the following example.

Example 5.12 Let H(x) = qp + ap4, which can be clearly factorized as H(x) =
(q + ap3)p. Since {q + ap3,p} = det

([
1 3ap2

0 1

]) = 1, then defining the canonical

coordinates q̃ := q + ap3 and p̃ := p, one obtains a linear system

dq̃

dt
= {q + ap3, qp + ap4}= det

([
1 3ap2

p q + 4ap3

])
= q + ap3 = q̃,

dp̃

dt
= {p,qp + ap4}= det

([
0 1
p q + 4ap3

])
= −p = −p̃.

5.5 Systems Having an Inverse Jacobi Last Multiplier Equal to 1

Goal of this section is to show that any vector function f having an inverse Jacobi
last multiplier (as defined in Sect. 3.8) equal to one can be written as a Hamiltonian
vector function. In particular, by using the concept of the Nambu bracket [99], it is
possible to define a Poisson bracket having as the Casimir functions some function-
ally independent first integrals associated with f , so that the considered system can
be rewritten as Hamiltonian with respect to such a Poisson bracket.

In the first part of this section, assume that x ∈ R
3, x = [x1 x2 x3]�: such an

assumption is removed in the final part of the section. Let xo ∈ R
3 be a regular point

of f (x) ∈ R
3, f (xo) �= 0. By the flow box Theorem 3.3 at p. 57, there exists an

analytic diffeomorphism y = ϕ(x) : U → R
3 such that Lf ϕ = e1, with U being a

neighborhood of xo. In particular, f is just the first column of (
∂ϕ
∂x

)−1, namely f
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is the solution of ∂ϕ
∂x

f = e1, and the other two columns g1 and g2 of (
∂ϕ
∂x

)−1 are
two commuting symmetries of f . Letting ϕ = [I0 I1 I2]�, one obtains Lf I0 = 1,
Lf I1 = 0 and Lf I2 = 0; hence, I0 − t is a time-varying first integral associated with
f , whereas I1 and I2 are first integrals. Letting f = [f1 f2 f3]�, by the Cramer
rules applied to ∂ϕ

∂x
f = e1, one finds that fi = σ0σi, i = 1,2,3, where

σ−1
0 = det

(
∂ϕ

∂x

)
= det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

∂I0
∂x1

∂I0
∂x2

∂I0
∂x3

∂I1
∂x1

∂I1
∂x2

∂I1
∂x3

∂I2
∂x1

∂I2
∂x2

∂I2
∂x3

⎤
⎥⎥⎦

⎞
⎟⎟⎠

and

σ1 = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 ∂I0
∂x2

∂I0
∂x3

0 ∂I1
∂x2

∂I1
∂x3

0 ∂I2
∂x2

∂I2
∂x3

⎤
⎥⎥⎦

⎞
⎟⎟⎠ , σ2 = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

∂I0
∂x1

1 ∂I0
∂x3

∂I1
∂x1

0 ∂I1
∂x3

∂I2
∂x1

0 ∂I2
∂x3

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ,

σ3 = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

∂I0
∂x1

∂I0
∂x2

1
∂I1
∂x1

∂I1
∂x2

0
∂I2
∂x1

∂I2
∂x2

0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

Since the cross product a × b of vectors a = [a1 a2 a3]� and b = [b1 b2 b3]� is
formally given by

a × b = det

⎛
⎝
⎡
⎣

e1 e2 e3
a1 a2 a3
b1 b2 b3

⎤
⎦
⎞
⎠ ,

where ei is the ith column of the 3 × 3 identity matrix E, one concludes that

⎡
⎣

σ1
σ2
σ3

⎤
⎦= ∇I1 × ∇I2.

Finally, since σ0 = det( ∂ϕ
∂x

)−1 = det([f g1 g2]), then ω = σ0 is an inverse Jacobi
last multiplier associated with f ; in particular, it is called the inverse Jacobi last
multiplier corresponding to I1 and I2, because a different choice of I1 and I2 would
yield a different ω. Hence, any f can be locally rewritten as

f = ω∇I1 × ∇I2, (5.24)

where I1 and I2 are two functionally independent first integrals associated with f

and ω is the corresponding inverse Jacobi last multiplier.
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Let a = [a1 a2 a3]� and define the skew-symmetric matrix

S(a) :=
⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦ ; (5.25)

clearly, a × b = S(a)b, for any a, b ∈ R
3. Then, (5.24) can be rewritten as

f = ωS(∇I1)∇I2. (5.26)

Definition 5.9 Given the functions u,v, z ∈ H , the Nambu bracket 〈u,v, z〉 of the
ordered triplet (u, v, z) is [86, 99]

〈u,v, z〉 = det

⎛
⎝ ∂

∂x

⎡
⎣

u

v

z

⎤
⎦
⎞
⎠ .

Given a scalar function G(x) ∈ R and writing S(∇G) as in (5.25), define the
candidate Poisson bracket {·, ·}S(∇G) associated with G as follows:

{K,H }S(∇G) := ∂K

∂x
(∇G × ∇H) = ∂K

∂x
S(∇G)∇H. (5.27)

Note that such a candidate Poisson bracket can be rewritten as a Nambu bracket,
since

{K,H }S(∇G) = 〈K,G,H 〉.
It is easy to verify that {·, ·}S(∇G) satisfies the skew-symmetry property,

the bi-linearity and the Leibniz rule. Let fH = S(∇G)∇H ; clearly, LfH
K =

{K,H }S(∇G) = 〈K,G,H 〉, for any K ∈ H . Then, taking into account the prop-
erties of the matrix determinant,

LfH
{F,K}S(∇G) = LfH

〈F,G,K〉
= 〈LfH

F,G,K〉 + 〈F,LfH
G,K〉 + 〈F,G,LfH

K〉
= 〈〈F,G,H 〉,G,K

〉+ 〈F, 〈G,G,H 〉,K〉+ 〈F,G, 〈K,G,H 〉〉

= 〈〈F,G,H 〉,G,K
〉+ 〈F,G, 〈K,G,H 〉〉

= {LfH
F,K}S(∇G) + {F,LfH

K}S(∇G).

Thus, the Jacobi identity follows from Theorem 5.2, and it is proven that
{·, ·}S(∇G) is actually a Poisson bracket.

Lemma 5.1 The following equalities hold:

{K,H }S(∇G) = {G,K}S(∇H) = {H,G}S(∇K).



5.5 Systems Having an Inverse Jacobi Last Multiplier Equal to 1 217

Proof Since {K,H }S(∇G) = 〈K,G,H 〉, the lemma follows from the properties
of the determinant. For instance, {K,H }S(∇G) = 〈K,G,H 〉 and {G,K}S(∇H) =
〈G,H,K〉, but

〈K,G,H 〉 = det

⎛
⎝ ∂

∂x

⎡
⎣

K

G

H

⎤
⎦
⎞
⎠= det

⎛
⎝ ∂

∂x

⎡
⎣

G

H

K

⎤
⎦
⎞
⎠= 〈G,H,K〉.

�

Since e�
i S(∇I1)∇I2 = {xi, I2}S(∇I1), by (5.26) one has

f = ωS(∇I1)∇I2 = ωES(∇I1)∇I2 = ω

⎡
⎢⎣

{x1, I2}S(∇I1)

{x2, I2}S(∇I1)

{x3, I2}S(∇I1)

⎤
⎥⎦ ,

namely, any system in R
3 can be locally written as

dxi

dt
= ω{xi, I2}S(∇I1), i = 1,2,3,

where ω is an inverse Jacobi last multiplier and I1, I2 are two functionally indepen-
dent first integrals associated with f .

The next remark is the crucial result of this section written for the case n = 3.

Remark 5.13 In R
3, any system admitting an inverse Jacobi last multiplier ω equal

to 1, namely any system that can be written as

dxi

dt
= {xi,H }S(∇G), i = 1,2,3,

is Hamiltonian, where G(x) ∈ R defines the Poisson bracket and H(x) ∈ R is the
Hamiltonian function; all first integrals of the Hamiltonian systems are arbitrary
functions of the distinguished first integral G and of the first integral H .

Example 5.13 Let G(x) = 1
2 (x2

1 + x2
2 + x2

3) and H(x) = 1
2 (

x2
1

I1
+ x2

2
I2

+ x2
3

I3
) for some

constant Ii �= 0, i = 1,2,3. Then, the corresponding Hamiltonian system is charac-
terized by

fH (x) = S
(∇G(x)

)∇H(x) =
⎡
⎣

0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤
⎦
⎡
⎢⎣

x1
I1
x2
I2
x3
I3

⎤
⎥⎦=

⎡
⎢⎢⎣

I2−I3
I2I3

x3x2

I3−I1
I1I3

x1x3

I1−I2
I2I1

x1x2

⎤
⎥⎥⎦ ,

thus obtaining the Euler equations, which describe the motion of a rigid body rotat-
ing around its center of mass [54, 56, 69].
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Example 5.14 Let G(x) = 1
2(x2

1 − x2
2) and H(x) = 1

2 (x2
2 − x2

3). Then, the corre-
sponding Hamiltonian system is characterized by

fH (x) = S
(∇G(x)

)∇H(x) =
⎡
⎣

0 0 −x2
0 0 −x1
x2 x1 0

⎤
⎦
⎡
⎣

0
x2

−x3

⎤
⎦=

⎡
⎣

x2x3
x1x3
x1x2

⎤
⎦ .

The Nambu bracket for n = 3 has been a useful tool in order to prove that the
operation {·, ·}S(∇G) is indeed a Poisson bracket. The next remark specifies that, in
a neighborhood of a regular point, any non-trivial Poisson bracket can be written in
such a form.

Remark 5.14 For a given Poisson bracket in R
3, let xo be one of its regular points

and let rank(S(x)) = 2, with S(x) being its structure matrix. By the Darboux Theo-
rem 5.9, there exists a diffeomorphism y = ϕ(x) such that in the y-coordinates the
structure matrix of the Poisson bracket is

S̃(y) =
⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦ .

In the y-coordinates, S̃(y) = S(∇G̃(y)), where G̃(y) = −y3. Going back to the
original x-coordinates, one has that S(x) = S(∇G(x)), with G(x) = G̃ ◦ ϕ−1(x).

The results that have been described for n = 3 can be replicated for the general
case n ∈ Z

>, by defining the Nambu bracket of n functions (u1, u2, . . . , un−1, un)

as

〈u1, u2, . . . , un−1, un〉 := det

(
∂u

∂x

)
,

where u(x) = [u1(x) . . . un(x)]�. Let Su2,...,un−1(x) be the skew-symmetric matrix
such that (its existence is ensured by the multi-linearity of the determinant)

〈u1, u2, . . . , un−1, un〉 = ∂u1

∂x
Su2,...,un−1 ∇un.

It can be shown that Su2,...,un−1 is a structure matrix for all u2, . . . , un−1 ∈ H
and that it defines the Poisson bracket

{u1, un}Su2,...,un−1
= 〈u1, u2, . . . , un−1, un〉.

By a reasoning wholly similar to the one used to obtain (5.26), any f (x) ∈ R
n can

be written as f = ωSI1,...,In−2 ∇In−1, where ω is the inverse Jacobi last multiplier
corresponding to the functionally independent first integrals I1, . . . , In−2, In−1 as-
sociated with f ; if ω = 1, then f is the Hamiltonian vector function corresponding
to the Hamiltonian function In−1 and to the Poisson bracket defined by the structure
matrix SI1,...,In−2 . Moreover, the functions u2, . . . , un−1 are the Casimir functions
associated with the Poisson bracket {u1, un}Su2,...,un−1

.
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Example 5.15 Assume n = 4 and consider a(x), b(x), c(x), d(x) ∈ R, being non-
constant; let bi = ∂b

∂xi
and ci = ∂c

∂xi
, i = 1, . . . ,4. Then,

〈a, b, c, d〉 = ∂a

∂x
Sb,c∇d,

where

Sb,c =

⎡
⎢⎢⎣

0 b3c4 − b4c3 −b2c4 + c2b4 b2c3 − c2b3
−b3c4 + b4c3 0 b1c4 − c1b4 −b1c3 + c1b3
b2c4 − c2b4 −b1c4 + c1b4 0 b1c2 − c1b2

−b2c3 + c2b3 b1c3 − c1b3 −b1c2 + c1b2 0

⎤
⎥⎥⎦

is a structure matrix and, therefore, defines a Poisson bracket; b and c are the
Casimir functions of such a Poisson bracket.

In order to appreciate the generality of the theory developed in this section, two
considerations can be made. If, after a first choice of the straightening diffeomor-
phism, it turns out that ω(x) �= 1, then it might be that with a different choice of the
first integrals I1, . . . , In−1 one can obtain ω(x) = 1. In particular, note that the role
of In−1 (the Hamiltonian function) is not to be considered here different from the
role of any of the Casimir functions I1, . . . , In−2. On the other hand, if ω(x) �= 1,
one can consider a state-dependent time scaling such that the new time variable τ

satisfies dτ = ω(x)dt , so that in the new time scale the system is described by

dx

dτ
= SI1,...,In−2∇In−1,

and it is therefore Hamiltonian. Apart from some possible equilibrium points,
a state-dependent time scaling does not alter the orbits of the system, but only their
time parameterization, as already discussed for orbital symmetries.





Chapter 6
Lie Algebras

6.1 Abstract Lie Algebras

Lie algebras, as well as some operations defined on them, can be defined in an
abstract way. In this section, basic definitions and properties are recalled; the reader
interested in a more deep description is referred, i.e., to [44, 65, 68, 70, 107, 109,
114].

Given a subset X of a vector space Z over a field F and an operation
[·, ·] : Z × Z → Z, which is bilinear (i.e., [a1f1 + a2f2, g] = a1[f1, g] + a2[f2, g]
and [g, a1f1 + a2f2] = a1[g,f1] + a2[g,f2], ∀a1, a2 ∈ F , f1, f2, g ∈ Z), skew-
symmetric (i.e., [f,g] = −[g,f ] and [f,f ] = 0, ∀f,g ∈ Z) and satisfies the Ja-
cobi identity (i.e., [f, [g,h]] + [g, [h,f ]] + [h, [f,g]] = 0, ∀f,g,h ∈ Z), X is a
Lie algebra over F if X is a vector space over F and X is closed under [·, ·],
[X,X] ⊆ X, where symbol [X,X] ⊆ X means [f,g] ∈ X, ∀f,g ∈ X. Such an oper-
ation [·, ·] : Z × Z → Z is called the Lie bracket.

A basis (respectively, the dimension) of X as a Lie algebra is a basis (respectively,
the dimension) of X as a vector space over F : if {f1, . . . , fr } is a basis of a finite
dimensional Lie algebra X, then one can write X = spanF {f1, . . . , fr}, saying that
X is spanned by {f1, . . . , fr}.

Let Y ⊆ X be a vector subspace of X. Hence, Y is a Lie algebra if [Y,Y] ⊆ Y: Y

is called a Lie sub-algebra of X; Y is called a Lie ideal of X if [X,Y] ⊆ Y. Clearly, a
Lie ideal is also a Lie sub-algebra. Given f1, . . . , fp ∈ X, denote by {f1, . . . , fp}F
the smallest Lie sub-algebra of X containing f1, . . . , fp ; {f1, . . . , fp}F is called
the Lie algebra generated by f1, . . . , fp over F . The Lie algebra X generated by
f1, . . . , fp over F can be computed by induction on integer i as follows: let X0 =
spanF {f1, . . . , fp}; let {f1, . . . , fpi

} be a basis of Xi as vector space over F and
define

Xi+1 := spanF

{
f1, . . . , fpi

, [f1, f2], . . . , [f1, fpi
], [f2, f3], . . . ,

[f2, fpi
], . . . , [fpi−1, fpi

]};

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
DOI 10.1007/978-0-85729-612-2_6, © Springer-Verlag London Limited 2011
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hence, X = limi→+∞ Xi . If Z as vector space over F is finite dimensional, then X

can be computed in a finite number of steps, because there exists an integer i∗ such
that Xi∗+1 = Xi∗ , which implies X = Xi∗ .

Since the Lie algebra X is closed under the Lie bracket, [X,X] ⊆ X, if X has fi-
nite dimension r and {f1, . . . , fr} is one of its bases, then there exist a finite number
of scalars ci,j ;� ∈ F such that [fi, fj ] = ∑r

k=� ci,j ;�f�; the scalars ci,j ;� are called
the structure scalars and the rules [fi, fj ] = ∑r

k=� ci,j ;�f� are called commutation
relations. Conversely, if X is a vector space over F with a basis {f1, . . . , fr} satisfy-
ing the commutation relations [fi, fj ] = ∑r

k=� ci,j ;�f� for some scalars ci,j ;� ∈ F ,
then X is a Lie algebra.

The following definition of isomorphism is one of the most important concepts
related with Lie algebras, because it allows a classification of Lie algebras that is
very useful.

Definition 6.1 Two Lie algebras X = spanF {f1, . . . , fr } and Y = spanF {g1, . . . ,

gr}, having the same dimension r , are isomorphic if there exists a linear transforma-
tion gi = ∑r

j=1 Qi,j ḡj , where matrix Q with entries Qi,j ∈ F satisfies det(Q) �= 0,
such that

[fi, fj ] =
r∑

�=1

ci,j ;�f� ⇐⇒ [ḡi , ḡj ] =
r∑

�=1

ci,j ;�ḡ�,

for some structure scalars ci,j ;� ∈ F .

Remark 6.1 Under the assumption that F = R, it is known (see [70]) that any Lie
algebra of dimension r ∈ {1,2,3} is isomorphic to one of the following Lie alge-
bras.

(Case r = 1) The only Lie algebra of dimension one, X = spanF {f }, is described
by

(6.1.1) [f,f ] = 0.

(Case r = 2) There are only two non-isomorphic Lie algebras of dimension two,
X = spanF {f1, f2}:
(6.1.2) [f1, f2] = 0;
(6.1.3) [f1, f2] = f1.

(Case r = 3) There are five classes of non-isomorphic Lie algebras of dimension
three, X = spanF {f1, f2, f3}:
(6.1.4) [fi, fj ] = 0, ∀i, j ∈ {1,2,3};
(6.1.5) [f1, f2] = f3, [f1, f3] = 0, [f2, f3] = 0 (the Heisenberg Lie algebra);
(6.1.6) [f1, f2] = f1, [f1, f3] = 0, [f2, f3] = 0;
(6.1.7) [f1, f2] = 0, [f1, f3] = A1,1f1 + A1,2f2, [f2, f3] = A2,1f1 + A2,2f2,

where matrix A having entries Ai,j satisfies det(A) �= 0;
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(6.1.8) [f1, f2] = f3, [f1, f3] = af2, [f2, f3] = bf1, where a, b ∈ R are arbi-
trary constants, ab �= 0 (when a = 2 and b = −2, one has the split three-
dimensional simple Lie algebra, whereas when a = −1 and b = 1, one has
the Lie algebra of rotations in R

3).

For the proof of the above statements the reader is referred to [70]. Just as
an example, the proof of Statement (6.1.3) is reported. Let {g1, g2} be a ba-
sis of a two-dimensional Lie algebra, with the commutation relation [g1, g2] =
c1,2;1g1 + c1,2;2g2, with one of the constants c1,2;� �= 0. Consider the trans-
formation f1 = Q1,1g1 + Q1,2g2, f2 = Q2,1g1 + Q2,2g2, with inverse g1 =

1
Q1,1Q2,2−Q1,2Q2,1

(Q2,2f1 − Q1,2f2), g2 = 1
Q1,1Q2,2−Q1,2Q2,1

(−Q2,1f2 + Q1,1f2).
Hence,

[f1, f2] = (Q1,1Q2,2 − Q1,2Q2,1)[g1, g2]
= c1,2;1(Q2,2f1 − Q1,2f2) + c1,2;2(−Q2,1f2 + Q1,1f2)

= (c1,2;1Q2,2 − c1,2;2Q2,1)f1 + (−c1,2;1Q1,2 + c1,2;2Q1,1)f2

= c̃1,2;1f1 + c̃1,2;2f2,

which yields the transformation law for the structure constants
[
c̃1,2;1
c̃1,2;2

]
=

[
Q2,2 −Q2,1

−Q1,2 Q1,1

][
c1,2;1
c1,2;2

]
. (6.1)

To obtain the relation [f1, f2] = f1, let c̃1,2;1 = 1 and c̃1,2;2 = 0; then, solve the
resulting equation (6.1) in the unknowns Qi,j . If c1,2;1 �= 0, one can choose Q1,2 =
Q1,1

c1,2;2
c1,2;1 ,Q2,2 = Q2,1c1,2;2+1

c1,2;1 , for arbitrary Q2,1,Q1,1 ∈ F , whereas if c1,2;2 �= 0,

one can choose Q2,1 = Q2,2c1,2;1−1
c1,2;2 ,Q1,1 = Q1,2

c1,2;1
c1,2;2 , for arbitrary Q1,2,Q2,2 ∈ F .

Assume that X is a finite dimensional Lie algebra. A sequence of Lie algebras
X0,X1, . . . can be recursively defined by X0 = X and Xi+1 = [X,Xi] (Xi is a Lie
ideal of X); since Xi+1 ⊆ Xi and X0 is finite dimensional, such a sequence termi-
nates, i.e., there exists an integer i∗ such that Xi∗+1 = Xi∗ ; if Xi∗ = ∅, then X is
said to be nilpotent (if i∗ = 1, then X is said to be Abelian). Another sequence of
Lie algebras X0,X1, . . . can be similarly defined by X0 = X and Xi+1 = [Xi ,Xi];
since Xi+1 ⊆ Xi and X0 is finite dimensional, such a sequence terminates, i.e., there
exists an integer i∗ such that Xi∗+1 = Xi∗ ; if Xi∗ = ∅, then X is said to be solvable.
If X is nilpotent, then X is solvable. Clearly, X1 = X1 =: X′; X′ is called the derived
Lie algebra; X is solvable if and only if X′ is nilpotent [70].

Remark 6.2 Lie algebras (6.1.1), (6.1.2) and (6.1.4) are Abelian, whence both nilpo-
tent and solvable; the Lie algebra (6.1.5) is nilpotent, whence solvable, but not
Abelian; Lie algebras (6.1.3), (6.1.6) and (6.1.7) are solvable, but not nilpotent
neither Abelian; Lie algebras (6.1.8) are not solvable, whence neither Abelian nor
nilpotent.
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6.2 Lie Algebras of Matrices

The notion of linear symmetry given in Definition 2.1 at p. 31 has been generalized
to the notion of linear orbital symmetry given in Definition 2.5 at p. 41, which can
be further generalized to the notion of Lie algebra of matrices [44] over R.

Definition 6.2 Let M1, . . . ,Mr ∈ R
n×n be r matrices being linearly independent

over R. If there exist some structure constants ci,j ;� ∈ R such that

[Mi,Mj ] =
r∑

�=1

ci,j ;�M�,

then M = span
R
{M1, . . . ,Mr} is a matrix Lie algebra over R of dimension r .

Clearly, for any vector subspace M of R
n×n, M is a Lie algebra of matrices if

and only if [A,B] ∈ M for all A,B ∈ M.

Remark 6.3 Since [B1,B2] ∈ R
n×n for all B1,B2 ∈ R

n×n, one concludes that
R

n×n endowed with the Lie bracket [·, ·] is a Lie algebra over R; a basis of
R

n×n is {e1e

1 , . . . , e1e


n , . . . , ene


1 , . . . , ene


n }, where ei is the ith column of the

n × n identity matrix E. For any matrix A ∈ R
n×n, since [B1,B2] ∈ Lc(A) for all

B1,B2 ∈ Ln(A) (whence, also for all B1,B2 ∈ Lc(A)) and Lc(A) ⊆ Ln(A), then
Ln(A) is a Lie sub-algebra of R

n×n and Lc(A) is a Lie ideal of Ln(A).

Remark 6.4 Some Lie algebras of matrices A ∈ R
n×n, with entries Ai,j , are listed

in the following:

(6.4.1) the set M of all diagonal A, i.e., Ai,j = 0 if i �= j : a basis of M is given by
eie


i , for i ∈ {1, . . . , n};

(6.4.2) the set M of all skew-symmetric A, i.e., A + A = 0: a basis of M is given
by eie


j − ej e


i , for i, j ∈ {1, . . . , n}, i < j ;

(6.4.3) the set M of all upper (respectively, lower) triangular A, i.e., Ai,j = 0 if
i < j (respectively, if i > j ): a basis of M is given by eie


j , for i, j ∈

{1, . . . , n}, i ≥ j (respectively, i ≤ j );
(6.4.4) the set M of all strictly upper (respectively, lower) triangular A, i.e., Ai,j =

0 if i ≤ j (respectively, if i ≥ j ): a basis of M is given by eie

j , for i, j ∈

{1, . . . , n}, i > j (respectively, i < j );
(6.4.5) the set of all A having zero trace, i.e., trace(A) = ∑n

i=1 Ai,i = 0;
(6.4.6) given B ∈ R

m×n (respectively, B ∈ R
n×m), the set of all A such that BA = 0

(respectively, AB = 0).

It is worth pointing out that the matrix Lie algebra (6.4.4) is nilpotent, whence solv-
able, whereas the matrix Lie algebra (6.4.3) is solvable, but not necessarily nilpotent.
Since any skew-symmetric matrix has zero trace, the matrix Lie algebra (6.4.2) is a
Lie sub-algebra of (6.4.5).
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Theorem 6.1 Let M be a matrix Lie algebra (possibly coincident with R
n×n)

and let t ∈ R. Then, e−BtAeBt ∈ M for all A,B ∈ M and t ∈ R. In particular,
e−BtAeBt = A for all B ∈ M if and only if [M, {A}] = {0}.

Proof Taking into account that deBt

dt
= BeBt = eBtB , one can compute

d

dt

(
e−BtAeBt

) = −e−BtBAeBt + e−BtABeBt

= e−Bt [B,A]eBt ,

which, for any A ∈ M, shows that taking the derivative of e−BtAeBt with respect
to t is equivalent to substituting matrix A with the Lie bracket [B,A], and therefore
by induction on integer h ≥ 1 that

dh

dth

(
e−BtAeBt

) = e−Bt
[
B, . . .

[
B, [B︸ ︷︷ ︸

h times

,A]] . . .]eBt .

Hence, one obtains the following formula known as the Hadamard Lemma:

e−BtAeBt = A + t[B,A] + t2

2!
[
B, [B,A]]+ t3

3!
[
B,

[
B, [B,A]]]+ · · · . (6.2)

Now, since the fact that M is a Lie algebra implies [M,M] ⊆ M, if A,B ∈ M,
then A, [B,A], [B, [B,A]], [B, [B, [B,A]]] ∈ M, and so on; hence, the Hadamard
Lemma implies that e−BtAeBt ∈ M. The last statement is trivial since (6.2) implies
that e−BtAeBt = A, ∀t ∈ R, if and only if [B,A] = 0. �

Example 6.1 Consider the set M of matrices A ∈ R
2×2, with zero trace, i.e.,

A = [
a b
c −a

]
, with a, b, c ∈ R being arbitrary; since the trace of a matrix is a lin-

ear operation, such a set is a vector space over R; to be more precise, if A1,A2 have
zero trace, then α1A1 + α2A2 has zero trace for all α1, α2 ∈ R. Clearly, a basis of
M is

{
M1 =

[
1 0
0 −1

]
, M2 =

[
0 1
0 0

]
, M3 =

[
0 0
1 0

]}
.

Since

[M1,M2] = −2M2, [M1,M3] = 2M3, [M2,M3] = −M1,

M is a Lie algebra over R. As an example, for

A =
[
a b

c −a

]
, B =

[
2 1
0 −2

]
, eBt =

[
e2t 1

4 e2t − 1
4 e−2t

0 e−2t

]
,
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it is easy to see that

e−BtAeBt =
(

a + 1

4
c − 1

4
ce4t

)
M1

+
(

1

2
a + 1

8
c − 1

16
ce4t +

(
b − 1

2
a − 1

16
c

)
e−4t

)
M2 + (

ce4t
)
M3,

namely that e−BtAeBt ∈ M, for all a, b, c ∈ R.

6.3 Lie Algebras of Vector Functions

Let Z be the set of all f (x) ∈ R
n with entries in Kn. Let f1, f2 ∈ Z. Since α1f1 +

α2f2 ∈ Z for all real constants α1, α2 ∈ R, Z has the structure of vector space over
R, which is infinite dimensional. Since α1f1 + α2f2 ∈ Z for all α1, α2 ∈ Kn, Z has
also the structure of vector space over Kn, which has finite dimension n. To be
more precise, let f1, . . . , fn ∈ Z be n vector functions such that det([f1 . . . fn]) �=
0; then, any f ∈ Z can be expressed as f = α1f1 + · · · + αnfn, where functions
αi are meromorphic. If a vector space X ⊆ Z over Kn (respectively, R), possibly
coincident with Z, is closed under the Lie bracket, [X,X] ⊆ X, then there exist
structure functions ci,j ;� ∈ Kn (respectively, structure constants ci,j ;� ∈ R), such
that [fi, fj ] = ∑n

�=1 ci,j ;�fk ; under the above assumption, X endowed with [·, ·] is
a Lie algebra of meromorphic vector functions over Kn (respectively, R). Clearly, Z
is a Lie algebra over Kn of dimension n and it is an infinite dimensional Lie algebra
over R.

Definition 6.3 A point xo ∈ R
n is regular for a Lie algebra X ⊆ Z of vector

functions over either R or Kn if there exists a basis {f1, . . . , fr } of X such that
[f1(x) . . . fr(x)] has constant rank over R for all x ∈ Bxo , where Bxo is a neigh-
borhood of xo.

A distribution D = spanKn
{f1, . . . , fr }, with [f1 . . . fr ] having full generic rank

r , is a Lie sub-algebra of Z over Kn if and only if it is involutive.
By the Hadamard Lemma (3.69), it is possible to show that

(
∂Φg

∂y

)−1

f ◦ Φg ∈ X, ∀f,g ∈ X,

if and only if X ⊆ Z is closed under the Lie bracket, [X,X] ⊆ X. In particular, if
f,g ∈ X, then f , [g,f ], [g, [g,f ]] ∈ X and so on, which yields (

∂Φg

∂y
)−1f ◦Φg ∈ X.

Remark 6.5 Given a vector function g(x) ∈ R
n, let J0, J1, . . . , Jn−1 be function-

ally independent functions such that LgJ0 = 1 and LgJi = 0, i = 1, . . . , n − 1; let
J = [J0 J1 . . . Jn−1]. By statement (3.9.1) of Theorem 3.9 at p. 64, the centralizer
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CC(g) is spanned by the columns f1, . . . , fn of ( ∂J
∂x

)−1 (which are pairwise com-
muting, [fi, fj ] = 0), with coefficients being arbitrary meromorphic functions of
J1, . . . , Jn−1, CC(g) = spanIc(g){f1, . . . , fn}, which is a Lie algebra over the field
Ic(g) of the meromorphic functions of J1, . . . , Jn−1.

Remark 6.6 If the symmetry g mentioned in Remark 6.5 is linear with positive
integer eigenvalues, g(x) = Bx, B = diag{λ1, . . . , λn}, λi ∈ Z, the subset C̄C(g) of
CC(g), which is constituted by all the vector functions that are analytic at x = 0, is
a finite dimensional Lie algebra over R. For instance, if g(x) = [x1 mx2], m ∈ Z,
m ≥ 2, then a basis of C̄C(g) is

f1(x) =
[
x1
0

]
, f2(x) =

[
0
x2

]
, f3(x) =

[
0

xm
1

]
,

with the commutation relations [f1, f2] = 0, [f1, f3] = mf3, [f2, f3] = −f3.

Example 6.2 Consider again the Lie algebra M of matrices with zero trace, consid-
ered in Example 6.1. The vector functions associated with the considered basis of
M are

f1(x) = M1x =
[

x1
−x2

]
, f2(x) = M2x =

[
x2
0

]
, f3(x) = M3x =

[
0
x1

]
,

and satisfy the commutation relations

[f1, f2] = −2f2, [f1, f3] = 2f3, [f2, f3] = −f1.

The set X of all linear combinations of f1, f2 and f3 over R is a Lie algebra of
dimension three. Let F be the field of all rational functions of I (x) = x1

x2
and note

that

Lf1I (x) = 2
x1

x2
= 2I (x), Lf2I (x) = 1, Lf3I (x) = −x2

1

x2
2

= −I 2(x),

namely that Lfi
I ∈ F for any I ∈ F . Consider the set Y generated by taking linear

combinations of f1 and f2 (but a similar result can be obtained by replacing f1 or
f2 with f3) over F . It is easy to check that

f3(x) = −x1

x2
f1(x) + x2

1

x2
2

f2(x) ∈ Y.

Let g = ∑2
i=1 αifi , with αi ∈ F ; then, taking into account that [∑2

i=1 αifi, fj ] =∑1
i=0(αi[fi, fj ]+ (Lfj

αi)fi) ∈ Y, one concludes that Y is a Lie algebra over F of
dimension two. In particular, one has that X ⊂ Y as a set, but X is not a sub-algebra
of Y because X and Y are not algebras over the same field.

Remark 6.7 Apart from a diffeomorphism about a regular point, any two-dimen-
sional Lie algebra of vector functions f (x) ∈ R

2 over R is isomorphic to one of the
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following Lie algebras spanned over R by the following pairs (see [68]):

(6.7.1) f1(x) = [ 1
0

]
, f2(x) = [ 0

1

]
, [f1, f2] = 0, det([f1 f2]) �= 0;

(6.7.2) f1(x) = [ 0
1

]
, f2(x) = [ 0

x1

]
, [f1, f2] = 0, det([f1 f2]) = 0;

(6.7.3) f1(x) = [ 0
1

]
, f2(x) = [ x1

x2

]
, [f1, f2] = f1, det([f1 f2]) �= 0;

(6.7.4) f1(x) = [ 0
1

]
, f2(x) = [ 0

x2

]
, [f1, f2] = f1, det([f1 f2]) = 0.

Remark 6.8 Apart from a diffeomorphism about a regular point, any three-dimen-
sional Lie algebra of vector functions f (x) ∈ R

2 over R is isomorphic to one of the
following Lie algebras spanned over R by the following triplets (see [68]):

(6.8.1) f1(x) = [ 1
1

]
, f2(x) = [ x1

x2

]
, f3(x) = [ x2

1

x2
2

]
, [f1, f2] = f1, [f1, f3] = 2f2,

[f2, f3] = f3, rankKn
([f1 f2 f3]) = 2;

(6.8.2) f1(x) = [ 1
0

]
, f2(x) = [ 2x1

x2

]
, f3(x) = [

x2
1

x1x2

]
, [f1, f2] = 2f1, [f1, f3] = f2,

[f2, f3] = 2f3, rankKn
([f1 f2 f3]) = 2;

(6.8.3) f1(x) = [ 0
1

]
, f2(x) = [ 0

x2

]
, f3(x) = [ 0

x2
2

]
, [f1, f2] = f1, [f1, f3] = 2f2,

[f2, f3] = f3, rankKn
([f1 f2 f3]) = 1;

(6.8.4) f1(x) = [ 1
0

]
, f2(x) = [ 0

1

]
, f3(x) = [ x1

ax2

]
, a /∈ {0,1}, [f1, f2] = 0,

[f1, f3] = f1, [f2, f3] = af2, rankKn
([f1 f2 f3]) = 2;

(6.8.5) f1(x) = [ 0
1

]
, f2(x) = [ 0

x1

]
, f3(x) = [ (1−a)x1

x2

]
, a /∈ {0, 1}, [f1, f2] = 0,

[f1, f3] = f1, [f2, f3] = af2, rankKn
([f1 f2 f3]) = 2;

(6.8.6) f1(x) = [ 1
0

]
, f2(x) = [ 0

1

]
, f3(x) = [ x1

x2

]
, [f1, f2] = 0, [f1, f3] = f1,

[f2, f3] = f2, rankKn
([f1 f2 f3]) = 2;

(6.8.7) f1(x) = [ 0
1

]
, f2(x) = [ 0

x1

]
, f3(x) = [ 0

x2

]
, [f1, f2] = 0, [f1, f3] = f1,

[f2, f3] = f2, rankKn
([f1 f2 f3]) = 1;

(6.8.8) f1(x) = [ 1
0

]
, f2(x) = [ 0

1

]
, f3(x) = [ x1+x2

x2

]
, [f1, f2] = 0, [f1, f3] = f1,

[f2, f3] = f1 + f2, rankKn
([f1 f2 f3]) = 2;

(6.8.9) f1(x) = [ 0
1

]
, f2(x) = [ 0

x1

]
, f3(x) = [ 1

x2

]
, [f1, f2] = 0, [f1, f3] = f1,

[f2, f3] = f2 − f1, rankKn
([f1 f2 f3]) = 2;

(6.8.10) f1(x) = [ 1
0

]
, f2(x) = [ 0

1

]
, f3(x) = [ x1

0

]
, [f1, f2] = 0, [f1, f3] = f1,

[f2, f3] = 0, rankKn
([f1 f2 f3]) = 2;

(6.8.11) f1(x) = [ 0
1

]
, f2(x) = [ 0

x1

]
, f3(x) = [ x1

x2

]
, [f1, f2] = 0, [f1, f3] = f1,

[f2, f3] = 0, rankKn
([f1 f2 f3]) = 2;

(6.8.12) f1(x) = [ 1
0

]
, f2(x) = [ 0

1

]
, f3(x) = [ 0

x1

]
, [f1, f2] = 0, [f1, f3] = f2,

[f2, f3] = 0, rankKn
([f1 f2 f3]) = 2;

(6.8.13) f1(x) = [ 0
1

]
, f2(x) = [ 0

x1

]
, f3(x) = [ 0

p(x1)

]
, p(x1) �= 0, [f1, f2] = 0,

[f1, f3] = 0, [f2, f3] = 0, rankKn
([f1 f2 f3]) = 1,

where a is any real number and p(x1) is any meromorphic function.
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6.4 Representation of Lie Algebras by Vector Functions

By the Ado Theorem [114, Sect. 3.17], it is known that any abstract finite dimen-
sional Lie algebra X over R can be represented by a matrix Lie algebra. Any fi-
nite dimensional Lie algebra admits various matrix representations: one of these
is the adjoint matrix representation. For each f ∈ X, denote by adf (·) : X → X

the linear mapping h → [f,h], ∀h ∈ X, which is called the adjoint representa-
tion of f . The mapping adf (·) is usually represented [70] by a matrix M , which
has as entries of the ith row the coordinates of adf (fi) with respect to the basis
{f1, . . . , fr}. Let {f1, . . . , fr } be a basis of X, such that [fi, fj ] = ∑r

�=1 ci,j ;�f�; let
Mi be the matrix representing the linear mapping adfi

(·). Then, by [70], it is known
that {M1, . . . ,Mr } spans a matrix Lie algebra such that [Mi,Mj ] = ∑r

�=1 ci,j ;�M�,
for the same structure constants ci,j ;�: it is worth pointing out that the dimension
of spanR{M1, . . . ,Mr } may be less than r , because matrices M1, . . . ,Mr can be
linearly dependent. For proving the statement above, it is sufficient to show that

ad[f,g](h) = [
adf (h), adg(h)

]
, ∀f,g,h ∈ X, (6.3)

as in the following relations (see (1.3)):

ad[f,g](h) = [[f,g], h] = [
f, [g,h]]− [

g, [f,h]]

= adf

([g,h])− adg

([f,h]) = adf

(
adg(h)

)− adg

(
adf (h)

)

= [
adf (h), adg(h)

]
.

As a matter of fact, using relation (6.3), one has

[
adfi

(h), adfj
(h)

] = ad[fi ,fj ](h) = ad∑r
�=1 ci,j ;�f�

(h)

=
r∑

�=1

ci,j ;� adf�
(h),

which proves the assertion thanks to the arbitrariness of h ∈ X. Therefore, {f̂1(x) =
M1x, . . . , f̂r (x) = Mrx} is a representation of the given Lie algebra with linear vec-
tor functions. Since x is a linear symmetry of any of the above fi(x), X can be
represented by nonlinear vector functions of dimension n − 1, which are obtained
by the projection y1 = x1

xn
, . . . , yn−1 = xn−1

xn
(according to Sect. 3.5, the yi ’s are first

integrals of the symmetry x).

Example 6.3 Consider the split three-dimensional simple Lie algebra X defined
by [70]

[f1, f2] = 2f1, [f1, f3] = f2, [f2, f3] = 2f3.

The adjoint map adf1(·) is defined by adf1(f1) = [f1, f1] = 0, adf1(f2) =
[f1, f2] = 2f1 and adf1(f3) = [f1, f3] = f2; the matrix M1 representing adf1(·)
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is

M1 =
⎡
⎣

0 0 0
2 0 0
0 1 0

⎤
⎦ .

The adjoint map adf2(·) is defined by adf2(f1) = [f2, f1] = −2f1, adf2(f2) =
[f2, f2] = 0 and adf2(f3) = [f2, f3] = 2f3; the matrix M2 representing adf2(·) is

M2 =
⎡
⎣

−2 0 0
0 0 0
0 0 2

⎤
⎦ .

Finally, the adjoint map adf3(·) is defined by adf3(f1) = [f3, f1] = −f2, adf3(f2) =
[f3, f2] = −2f3 and adf3(f3) = [f3, f3] = 0; the matrix M3 representing adf3(·) is

M3 =
⎡
⎣

0 −1 0
0 0 −2
0 0 0

⎤
⎦ .

It is easy to verify that [M1,M2] = 2M1, [M1,M3] = M2 and [M2,M3] = 2M3, as
expected. Therefore, X is represented by the Lie algebra of vector functions spanned
over R by the three-dimensional linear vector functions

f̂1(x) =
⎡
⎣

0
2x1
x2

⎤
⎦ , f̂2(x) =

⎡
⎣

−2x1
0

2x3

⎤
⎦ , f̂3(x) =

⎡
⎣

−x2
−2x3

0

⎤
⎦ .

By the projection y1 = x1
x3

, y2 = x2
x3

, from the triplet f̂1, f̂2, f̂3, one obtains a repre-
sentation of X by the Lie algebra of vector functions over R spanned by the two-
dimensional nonlinear vector functions:

f̃1(y) =
[ −y1y2

2y1 − y2
2

]
, f̃2(y) =

[−4y1
−2y2

]
, f̃3 =

[−y2
−2

]
.

It is easy to check that [f̃1, f̃2] = 2f̃1, [f̃1, f̃3] = f̃2 and [f̃2, f̃3] = 2f̃3, as expected.

Example 6.4 Consider the Lie algebra X given in Statement (6.1.7) of Remark 6.1:
[f1, f2] = 0, [f1, f3] = A1,1f1 +A1,2f2, [f2, f3] = A2,1f1 +A2,2f2, where matrix
A having entries Ai,j satisfies det(A) �= 0. A matrix representation of X is given by

M1 =
⎡
⎣

0 0 0
0 0 0

A1,1 A1,2 0

⎤
⎦ , M2 =

⎡
⎣

0 0 0
0 0 0

A2,1 A2,2 0

⎤
⎦ ,

M3 =
⎡
⎣

−A1,1 −A1,2 0
−A2,1 −A2,2 0

0 0 0

⎤
⎦ .
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A representation of X by nonlinear vector functions is

f1(x) =
[−A1,1x

2
1 − A1,2x1x2

−A1,1x1x2 − A1,2x
2
2

]
, f2(x) =

[−A2,1x
2
1 − A2,2x1x2

−A2,1x1x2 − A2,2x
2
2

]
,

f3(x) =
[−A1,1x1 − A1,2x2
−A2,1x1 − A2,2x2

]
.

6.5 Nonlinear Superposition

After the works of S. Lie [81], the concept of nonlinear superposition principle indi-
cates a pair of formulas (the explicit and implicit nonlinear superposition formulas)
that allow to express the general solution of a system of ordinary differential equa-
tions in terms of a finite number of particular solutions and of a certain number
of arbitrary constants. Systems of linear time-invariant differential equations are a
remarkable case, in which the explicit superposition formula allows to express the
general solution as a linear combination of n particular solutions, with n arbitrary
constants, where n is the dimension of the state. Other important classes of systems
admitting a nonlinear superposition principle are the bilinear ones [44] and the lin-
ear switched systems [84]. The knowledge of an explicit nonlinear superposition
formula is important not only for the possibility of computing any solution of the
considered system, but also for the possibility of deducing some properties of the
general solution (such as stability and attractivity), on the basis of the properties
of some particular solutions. For some classes of systems, the computation of the
nonlinear superposition formulas has been achieved in closed form [2, 110].

Consider the class of time-varying nonlinear systems

dx(t)

dt
= f

(
t, x(t)

)
, (6.4)

where x(t), f (t, x) ∈ R
n; it is assumed that a unique solution of (6.4) exists for

an open set of initial conditions and small times t . A special subclass of systems
belonging to class (6.4) is constituted by the linear ones:

dx(t)

dt
= A(t)x(t), (6.5)

where A(t) ∈ R
n×n. Class (6.5) is very important because of the linear superposi-

tion principle; given n solutions ξ i(t) ∈ R
n, i = 1, . . . , n, of (6.5),

dξ i(t)

dt
= A(t)ξ i(t), i = 1, . . . , n, (6.6)

such that det([ξ1(t0) . . . ξn(t0)]) �= 0, for some initial time t0, the linear superposi-
tion principle allows to express any solution x(t) ∈ R

n of (6.5) as a linear combina-
tion of ξ1(t), . . . , ξn(t),

x(t) = k1ξ
1(t) + · · · + knξ

n(t), (6.7)
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where the constant vector k = [k1 . . . kn] ∈ R
n is given by

k = [
ξ1(t) . . . ξn(t)

]−1
x(t), (6.8)

and the inverse [ξ1(t) . . . ξn(t)]−1 exists for all t in a sufficiently small open interval
Tt0 containing the initial time t0. Equation (6.7) is the explicit linear superposition
formula and (6.8) is the implicit linear superposition formula for systems (6.5). It is
worth pointing out that each entry of the vector on the right-hand side of (6.8) is a
first integral of the extended system constituted by system (6.5) and its replicas (6.6),
i.e.,

∂k

∂x
A(t)x +

n∑
i=1

∂k

∂ξ i
A(t)ξ i = 0, ∀t ∈ Tt0 .

Example 6.5 Consider a linear oscillator with time-varying frequency,
{dx1

dt
= x2,

dx2
dt

= −ω(t)x1,
(6.9)

where ω(t) is the time-varying oscillation frequency. Consider two replicas of the
oscillator, ⎧⎨

⎩
dξ1

1
dt

= ξ1
2 ,

dξ1
2

dt
= −ω(t)ξ1

1 ,

⎧⎨
⎩

dξ2
1

dt
= ξ2

2 ,

dξ2
2

dt
= −ω(t)ξ2

1 .

(6.10)

The explicit and implicit superposition formulas are, respectively,

[
x1
x2

]
= k1

[
ξ 1

1

ξ 1
2

]
+ k2

[
ξ2

1

ξ 2
2

]
,

[
k1
k2

]
=

⎡
⎢⎣

ξ2
2 x1−ξ2

1 x2

ξ1
1 ξ2

2 −ξ2
1 ξ1

2

ξ1
1 x2−ξ1

2 x1

ξ1
1 ξ2

2 −ξ2
1 ξ1

2

⎤
⎥⎦ .

In this section, only time-varying nonlinear systems (6.4) that are sufficiently
“close” to class (6.5) are considered: in particular, only those nonlinear systems that
admit superposition formulas similar to (6.7) and (6.8).

Consider m particular solutions of (6.4), i.e., m functions ξ i(t) ∈ R
n, i =

1, . . . ,m, such that

dξ i(t)

dt
= f

(
t, ξ i(t)

)
, i = 1, . . . ,m; (6.11)

conditions on integer m and functions ξ i(t) are given in the following.
Following S. Lie (see [111]), equation (6.4) admits a nonlinear superposition

principle if there exists a function Ψ : R
n(m+1) → R

n such that any solution x(t)

of (6.4) can be written for all t in a sufficiently small open interval Tt0 containing
the initial time t0 as

x(t) = Ψ
(
ξ 1(t), . . . , ξm(t), k

)
, (6.12)
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where k ∈ R
n is constant; in particular, it is required that (6.12) computed at t = t0

is locally invertible with respect to k, so that k can be expressed as a function of
x(t0), ξ

1(t0), . . . , ξ
m(t0). It is worth pointing out that function Ψ does not depend

explicitly on time t . Equation (6.12) is called an explicit nonlinear superposition
formula. By the Implicit Function Theorem (see [48]), the explicit superposition
formula (6.12) can be locally inverted with respect to k, i.e., there exists a function
Θ : R

n(m+1) → R
n such that the following equation holds for all t ∈ Tt0 :

k = Θ
(
x(t), ξ1(t), . . . , ξm(t)

); (6.13)

equation (6.13) is called an implicit nonlinear superposition formula. In general,
the implicit nonlinear superposition formula (6.13) holds on an open dense sub-
set of R

n(m+1) rather than on the whole R
n(m+1). It is worth pointing out that for-

mula (6.13) is invariant with respect to any permutation of the m + 1 vector argu-
ments of Θ ; for example, in case m = 1, if Θ(x(t), ξ 1(t)) is a first integral of the
extended system, then Θ(ξ1(t), x(t)) is a first integral too.

Example 6.6 Consider the single-input linear control system dx(t)
dt

= Ax(t)+Bu(t),
x(t) ∈ R

n, A ∈ R
n×n, u(t) ∈ R, B ∈ R

n; let t0 = 0. Consider m = n + 1 partic-
ular solutions ξ i(t) ∈ R

n, i = 0, . . . , n, of such a control system, i.e., such that
dξ i (t)

dt
= Aξi(t) + Bu(t), i = 0, . . . , n. Clearly, letting γ i(t) = ξ i(t) − ξ0(t), one

has dγ i (t)
dt

= Aγ i(t), i = 1, . . . , n, and therefore letting Γ = [γ 1 . . . γ n], one has
dΓ (t)

dt
= AΓ (t), which yields Γ (t) = eAtΓ (0); this implies eAt = Γ (t)Γ −1(0), un-

der the assumption that det(Γ (0)) �= 0 (this is the condition to be satisfied in order
that the particular solutions ξ0(t), . . . , ξn(t) can be used in the superposition for-
mula). Finally, since x(t) = eAtc + ξ0(t), for some constant c ∈ R

n, the explicit and
implicit nonlinear superposition formulas are, respectively, obtained:

x = ξ0 + [
ξ1 − ξ 0 . . . ξ n − ξ 0]k = ξ 0 +

n∑
i=1

(
ξ i − ξ0)ki,

k = [
ξ1 − ξ0 . . . ξn − ξ0]−1(

x − ξ0).

The following theorem dates back to S. Lie [111].

Theorem 6.2 The time-varying nonlinear system (6.4) admits the superposition for-
mulas (6.12), (6.13) if and only if

f (t, x) =
p∑

i=1

ui(t)fi(x), (6.14)

where ui(t) ∈ R, i = 1, . . . , p, are some functions of time and f1(x), . . . , fp(x) ∈
R

n are time-invariant vector functions such that the smallest Lie algebra over R that
contains f1(x), . . . , fp(x) is finite dimensional.
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Proof Although the proof of the theorem is outside the scope of the book, a sketch
of it is given for the simplest case n = 1, i.e., x(t), f (t, x) ∈ R.

(Necessity) Assume that k = Θ(x, ξ1, . . . , ξm), with Θ(·, ·, . . . , ·) : R
m+1 → R,

is an implicit nonlinear superposition formula for system (6.4). Define the extended
vector function

f̄ (t, x, ξ1, . . . , ξm) :=

⎡
⎢⎢⎢⎣

f (t, x)

f (t, ξ1)
...

f (t, ξm)

⎤
⎥⎥⎥⎦ .

Clearly, Lf̄ (t,x,ξ1,...,ξm)Θ(x, ξ 1, . . . , ξm) = 0 for all t ∈ Tt0 . Fix t1, . . . , tm such that

f̄1(x, ξ1, . . . , ξm) := f̄ (t1, x, ξ1, . . . , ξm), . . . , f̄m(x, ξ1, . . . , ξm) := f̄ (tm, x, ξ1,

. . . , ξm) are linearly independent over R. The m time-invariant vector functions
f̄1, . . . , f̄m ∈ R

m+1 share the same first integral k = Θ(x, ξ1, . . . , ξm) and, by
the Frobenius Theorem 1.9 at p. 21, they span an involutive distribution, whence
they span an m-dimensional Lie algebra over the field of meromorphic functions;
therefore, there exist structure functions ci,j ;�(x, ξ1, . . . , ξm) such that [f̄i , f̄j ] =∑m

�=1 ci,j ;�f̄�. Consider the Lie bracket

[f̄1, f̄2] =

⎡
⎢⎢⎢⎢⎣

∂f (t2,x)
∂x

0 . . . 0

0 ∂f (t2,ξ
1)

∂ξ1 . . . 0
...

...
. . .

...

0 0 . . .
∂f (t2,ξ

m)
∂ξm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f (t1, x)

f (t1, ξ
1)

...

f (t1, ξ
m)

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

∂f (t1,x)
∂x

0 . . . 0

0 ∂f (t1,ξ
1)

∂ξ1 . . . 0
...

...
. . .

...

0 0 . . .
∂f (t1,ξ

m)
∂ξm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f (t2, x)

f (t2, ξ
1)

...

f (t2, ξ
m)

⎤
⎥⎥⎥⎦ .

Looking at the first entry of [f̄1, f̄2] = ∑m
�=1 c1,2;�f̄�, one has

∂f (t2, x)

∂x
f (t1, x) − ∂f (t1, x)

∂x
f (t2, x) =

m∑
�=1

c1,2;�
(
x, ξ1, . . . , ξm

)
f (t�, x),

which implies that the structure functions c1,2;�, � = 1, . . . ,m, are independent of
ξ1, . . . , ξm; this and the similar relations obtained by considering the other entries
of [f̄1, f̄2] = ∑m

�=1 c1,2;�f̄� show that the structure functions c1,2;�, � = 1, . . . ,m,
are constant. Repeating this reasoning for all the Lie brackets [f̄i , f̄j ] shows that
f̄1, . . . , f̄m span an m-dimensional Lie algebra over R, as well as the scalar func-
tions f1(x) := f (t1, x), . . . , fm(x) := f (tm, x). The arbitrariness of times t1, . . . , tm
imply that f (t, x) belongs to the Lie algebra over R spanned by f1(x), . . . , fm(x)

for all t ∈ Tt0 , i.e., there exist functions ui(t), i = 1, . . . ,m, such that (6.14) holds
with p = m.
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(Sufficiency) Let r be the dimension of the Lie algebra X generated by the vector
functions f1(x), . . . , fp(x) ∈ R

n over R and let {g1, . . . , gr} be a basis of X; then,
fi(x) = ∑r

j=1 Qi,jgj (x), for Qi,j ∈ R; this, in particular, implies that

f (t, x) =
p∑

i=1

ui(t)

r∑
j=1

Qi,j gj (x) =
r∑

j=1

p∑
i=1

Qi,jui(t)gj (x)

=
r∑

j=1

vj (t)gj (x),

where vj (t) = ∑p

i=1 Qi,jui(t). Therefore, there is no loss of generality in assuming
that p = r , that X = spanR{f1, . . . , fr} is an r-dimensional Lie algebra over R and
that {f1, . . . , fr } is an arbitrary basis of X. Define the extended vector functions

fi,e

(
x, ξ1, . . . , ξ r

) :=

⎡
⎢⎢⎢⎣

fi(x)

fi(ξ
1)

...

fi(ξ
r )

⎤
⎥⎥⎥⎦ , i = 1, . . . , r.

Clearly, f1,e(x), . . . , fr,e(x) span a Lie algebra over R, Xe = spanR{f1,e, . . . , fr,e}.
Since Xe is r-dimensional and [Xe,Xe] ⊆ Xe, the vector functions f1,e(x), . . . ,

fr,e(x) admit a joint first integral Θ(x, ξ 1, . . . , ξ r ). It can be seen that, since
fi �= 0, Θ must depend on X, whence the implicit nonlinear superposition formula
k = Θ(x, ξ1, . . . , ξ r ) is obtained; the explicit nonlinear superposition formula is
obtained by the Implicit Function Theorem (see [48]). �

As explained in the proof above, there is no loss of generality in assuming that
p = r , that X = spanR

{f1, . . . , fr } is an r-dimensional Lie algebra over R and that
{f1, . . . , fr} is an arbitrary basis of X.

Remark 6.9 According to Theorem 6.2, for any time-varying linear system (6.5),
one can write

A(t)x(t) =
n∑

i=1

n∑
j=1

Ai,j (t)Mi,j x(t),

where the n2 matrices Mi,j := eie

j constitute a basis of the matrix Lie algebra

R
n×n.

Since functions Ψ and Θ appearing in the nonlinear superposition formu-
las (6.12) and (6.13) are independent of time, the expressions of Ψ and Θ do
not depend on scalar functions ui(t) ∈ R, i = 1, . . . , r , but only on vector func-
tions f1(x), . . . , fr(x) ∈ R

n; two systems dx(t)
dt

= ∑r
i=1 ui(t)fi(x) and dx(t)

dt
=∑r

i=1 vi(t)fi(x) are described by the same superposition formulas, by the arbitrari-
ness of functions ui and vi .
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By (6.13), it is easy to see that the entries Θi , i = 1, . . . , n, of Θ are func-
tionally independent first integrals of the extended system constituted by equa-
tions (6.4), (6.11), whence, by the arbitrariness of the scalar functions ui(t), they
are functionally independent joint first integrals associated with the extended vector
functions

f1,e

(
x, ξ1, . . . , ξm

) =

⎡
⎢⎢⎢⎣

f1(x)

f1(ξ
1)

...

f1(ξ
m)

⎤
⎥⎥⎥⎦ , . . . , fr,e

(
x, ξ1, . . . , ξm

) =

⎡
⎢⎢⎢⎣

fr(x)

fr(ξ
1)

...

fr(ξ
m)

⎤
⎥⎥⎥⎦ ,

which certainly exist when m is taken sufficiently high, because f1,e, . . . , fr,e gen-
erate a finite dimensional Lie algebra over R. In particular, taking into account
that fi,e(xo, ξ

1
o , . . . , ξm

o ) ∈ R
n(m+1), if there exists a point (xo, ξ

1
o , . . . , ξm

o ) such
that f1,e(xo, ξ

1
o , . . . , ξm

o ), . . . , fr,e(xo, ξ
1
o , . . . , ξm

o ) are linearly independent, then the
number of first integrals associated with f1,e, . . . , fr,e , being functionally indepen-
dent about point (xo, ξ

1
o , . . . , ξm

o ), is n(m + 1) − r , which must be greater than or
equal to n, thus yielding the inequality nm ≥ r .

Remark 6.10 An important class of systems that can be written as (6.4) is that of
bilinear systems [44],

dx

dt
= A0x +

ν∑
i=1

Aixui(t),

for which nonlinear superposition formulas always exist, because A0x, . . . ,Aνx

generate a finite dimensional Lie algebra for any A0, . . . ,Aν ∈ R
n×n.

Remark 6.11 Two operations preserve the structure of the Lie algebra, whence the
existence of nonlinear superposition formulas, although their expressions in closed
form may change: a nonlinear transformation on the state x, and a linear transfor-
mation on the time functions ui .

(6.11.1) Given a finite dimensional Lie algebra over R spanR{f1, . . . , fr} and a
diffeomorphism y = ϕ(x), one has that spanR{ϕ∗f1, . . . , ϕ∗fr} is a finite
dimensional Lie algebra over R, characterized by the same characteristic
constants as spanR{f1, . . . , fr}.

(6.11.2) Given an invertible matrix Q ∈ R
r×r , u = Qv, where u = [u1 . . . ur ]

and v = [v1 . . . vr ], (6.14) can be recast as follows:

f (t, x) =
r∑

i=1

ui(t)fi(x) =
r∑

i=1

r∑
j=1

Qi,j vj (t)fi(x)

=
r∑

j=1

r∑
i=1

Qi,j fi(x)vj (t) =
r∑

j=1

vj (t)gj (x),
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where gj (x) = ∑r
i=1 Qi,j fi(x), j = 1, . . . , r . The two Lie algebras

spanR{f1, . . . , fr } and spanR{g1, . . . , gr} over R are isomorphic, but
in general they are described by different structure constants (see Re-
mark 6.1).

Example 6.7 Consider the case n = 1. By [111], it is known that any Lie algebra
over R spanned by scalar functions is at most three-dimensional. Hence, assume
that X is three-dimensional, i.e., X = spanR

{f1, f2, f3}, with {f1, f2, f3} being a
basis of X, and that rankK1{f1, f2, f3} = 1. About a regular point of fi , apart from
a diffeomorphism, it can be assumed that fi = 1; by [1, g] = ∂g

∂x
, one concludes

that any g commuting with fi satisfies g = cfi , for some constant c. Therefore,
it can be assumed that [fi, fj ] is not identically equal to zero, because otherwise
{f1, f2, f3} is not a basis of X. By Remark 6.1 (see [70]), it is known that the
only three-dimensional Lie algebras over R satisfying the conditions [fi, fj ] �= 0,
i, j ∈ {1,2,3}, i �= j , are, apart from a proper choice of the Lie algebra basis, the
Lie algebras listed in Statement (6.1.1) of Remark 6.1; in particular, if f1, f2, f3 are
scalar functions of x ∈ R, then it can be shown [111] that, apart from a proper choice
of the Lie algebra basis, the only Lie algebra satisfying the conditions [fi, fj ] �= 0,
i, j ∈ {1,2,3}, i �= j , is the split three-dimensional simple Lie algebra, described by
the commutation relations

[f1, f2] = 2f1, [f1, f3] = f2, [f2, f3] = 2f3.

Assume, apart from a diffeomorphism about any regular point, that f1(x) = 1.
Hence,

[f1, f2] = 2f1 =⇒ ∂f2(x)

∂x
= 2 =⇒ f2(x) = 2x + c2,

[f1, f3] = f2 =⇒ ∂f3(x)

∂x
= 2x + c2 =⇒ f3(x) = x2 + c2x + c3,

[f2, f3] = 2f3 =⇒ c2
2 − 4c3 = 0 =⇒ c3 = 1

4
c2

2,

which shows that {1,2x + c2, x
2 + c2x + 1

4c2
2} is a basis of X; another basis of X is

{1, x, x2}, which shows that any scalar differential equation, which admits nonlinear
superposition formulas, is diffeomorphic to the scalar Riccati differential equation

dx(t)

dt
= u1(t) + u2(t)x + u3(t)x

2. (6.15)

Let f1(x) = 1, f2(x) = x, f3(x) = x2 and define the extended vector functions

f1,e

(
ξ 0, ξ1, ξ2, ξ3) :=

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , f2,e

(
ξ 0, ξ 1, ξ 2, ξ3) :=

⎡
⎢⎢⎣

ξ0

ξ1

ξ2

ξ3

⎤
⎥⎥⎦ ,
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f3,e

(
ξ 0, ξ1, ξ2, ξ3) :=

⎡
⎢⎢⎣

(ξ0)2

(ξ 1)2

(ξ 2)2

(ξ 3)2

⎤
⎥⎥⎦ ,

where ξ0 = x. All first integrals associated with f1,e are given by arbitrary functions
of ξ i − ξj , for i, j ∈ {0,1,2,3}; all first integrals associated with f2,e are given

by arbitrary functions of ξ i−ξj

ξh−ξk for i, j, h, k ∈ {0,1,2,3}, (i, j) �= (h, k); all first

integrals associated with f3,e are given by arbitrary functions of 1
ξ i − 1

ξj = ξ j −ξ i

ξ i ξ j ,
for i, j ∈ {0,1,2,3}. Hence, these three vector functions admit as joint first integrals
the arbitrary functions of the following quantity, which is often referred to as the
cross ratio:

Θ = (ξ 0 − ξ1)(ξ 2 − ξ3)

(ξ 0 − ξ2)(ξ 1 − ξ3)
.

This gives the implicit nonlinear superposition formula k = Θ ; by solving such an
equation by x = ξ0, one obtains the explicit nonlinear superposition formula x = Ψ ,
with

Ψ = kξ2(ξ 1 − ξ 3) − ξ1(ξ 2 − ξ 3)

k(ξ1 − ξ 3) − (ξ2 − ξ3)
.

Similar explicit nonlinear superposition formulas can be easily determined by a per-
mutation of the solutions ξ1, ξ 2, ξ3; for instance, if the triplet (ξ1, ξ2, ξ 3) is replaced
with the triplet (ξ2, ξ3, ξ 1), one obtains the explicit nonlinear superposition formula

x = kξ 3(ξ2 − ξ 1) − ξ2(ξ3 − ξ 1)

k(ξ2 − ξ 1) − (ξ3 − ξ 1)
.

Now, consider a planar linear system dy
dt

= A(t)y, where y ∈ R
2 and

A(t) =
[
A1,1(t) A1,2(t)

A2,1(t) A2,2(t)

]
.

Since [A(t),E] = 0 for any t ∈ R, according to Sect. 3.5, consider the projection
x = y1

y2
, which transform dy

dt
= A(t)y into

dx

dt
=

[
1
y2

− y1

y2
2

][
A1,1(t) A1,2(t)

A2,1(t) A2,2(t)

][
y1
y2

]

= A1,2(t) + (
A1,1(t) − A2,2(t)

)y1

y2
− A2,1(t)

y2
1

y2
2

= A1,2(t) + (
A1,1(t) − A2,2(t)

)
x − A2,1(t)x

2,

i.e., the Riccati differential equation (6.15) with u1(t) = A1,2(t), u2(t) = A1,1(t) −
A2,2(t) and u3(t) = −A2,1(t). Therefore, this shows that any scalar differential
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equation that admits nonlinear superposition formulas can be immersed into a pla-
nar linear system (see [111]), thus justifying the assertion that the scalar nonlinear
systems that admit nonlinear superposition formulas are “close” to the linear ones.

If one of the scalar functions ui(t) appearing in (6.14) is identically equal to zero,
the computation of the explicit and implicit nonlinear superposition formulas can be
simplified as shown in the following example, which shows also that the explicit and
implicit nonlinear superposition formulas, also modulo permutation of the particular
solutions, are not unique.

Example 6.8 Consider again the linear oscillator with time-varying frequency (6.9).
Define the vector functions f1(x) := [x2 0] and f2(x) := [0 x1]. Compute
the Lie bracket [f1(x), f2(x)] = [−x1 x2] and let f3(x) := [−x1 x2]. Since
[f1, f2] = f3, [f1, f3] = −2f1 and [f2, f3] = 2f2, X = spanR{f1, f2, f3} is a three-
dimensional Lie algebra. Compute the extended vector functions f1,e(x, ξ1, ξ2) =
[x2 0 ξ1

2 0 ξ2
2 0], f2,e(x, ξ1, ξ2) = [0 x1 0 ξ1

1 0 ξ2
1 ] (there is no need to compute

f3,e). Two joint functionally independent first integrals associated with f1,e and f2,e

are given by x1ξ
1
2 − ξ1

1 x2 and x1ξ
2
2 − ξ2

1 x2. The implicit superposition formula is

k1 = x1ξ
1
2 − ξ 1

1 x2,

k2 = x1ξ
2
2 − ξ 2

1 x2;
by the inverse with respect to x, the explicit superposition formula,

x1 = k1ξ
2
1 − k2ξ

1
1

ξ 1
2 ξ 2

1 − ξ 1
1 ξ 2

2

,

x2 = k1ξ
2
2 − k2ξ

1
2

ξ 1
2 ξ 2

1 − ξ 1
1 ξ 2

2

,

is obtained under the assumption that det([ξ1 ξ 2]) = ξ 1
1 ξ2

2 − ξ1
2 ξ2

1 is not identically
zero.

Example 6.9 (A knife edge [8]) Consider the kinematic equations of motion of a
knife edge

dx1

dt
= cos(x3)u1(t),

dx2

dt
= sin(x3)u1(t),

dx3

dt
= u2(t).

Define f1(x) := [cos(x3) sin(x3) 0] and f2(x) := [0 0 1]. Since [f1(x), f2(x)] =
[sin(x3) −cos(x3) 0], define f3(x) := [sin(x3) −cos(x3) 0]. Since [f1, f2] = f3,
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[f1, f3] = 0 and [f2, f3] = −f1, one concludes that X = spanR{f1, f2, f3} is a
three-dimensional Lie algebra over R. Compute the extended vector functions
f1,e(x, ξ1) = [cos(x3) sin(x3) 0 cos(ξ1

3 ) sin(ξ1
3 ) 0], f2,e(x, ξ1) = [0 0 1 0 0 1]

(there is no need to compute f3,e). Three joint functionally independent first in-
tegrals associated with f1,e and f2,e are x1 − ξ1

1 cos(ξ 1
3 − x3) − ξ 1

2 sin(ξ1
3 − x3),

x2 + ξ1
1 sin(ξ1

3 − x3) − ξ1
2 cos(ξ1

3 − x3) and (x3 − ξ1
3 ), thus obtaining the implicit

nonlinear superposition formula:

k1 = x1 − ξ 1
1 cos

(
ξ 1

3 − x3
)− ξ1

2 sin
(
ξ1

3 − x3
)
,

k2 = x2 + ξ 1
1 sin

(
ξ1

3 − x3
)− ξ1

2 cos
(
ξ1

3 − x3
)
,

k3 = x3 − ξ 1
3 ;

by the inverse, the explicit nonlinear superposition formula is obtained,

x1 = ξ1
1 cos(k3) − ξ1

2 sin(k3) + k1,

x2 = ξ1
1 sin(k3) + ξ1

2 cos(k3) + k2,

x3 = ξ1
3 + k3.

Example 6.10 (Chained system [8]) Consider a three-dimensional chained system:

dx1

dt
= u1(t),

dx2

dt
= u2(t),

dx3

dt
= x2u1(t).

Define f1(x) := [1 0 x2] and f2(x) := [0 1 0]. Letting f3(x) := [0 0 1], it is
easy to see that [f1, f2] = −f3, [f1, f3] = 0 and [f2, f3] = 0, whence that X =
spanR{f1, f2, f3} is a three-dimensional Lie algebra over R. Compute the extended
vector functions f1,e(x, ξ1) = [1 0 x2 1 0 ξ1

2 ], f2,e(x, ξ1) = [0 1 0 0 1 0] (there
is no need to compute f3,e). Three joint functionally independent first integrals as-
sociated with f1,e and f2,e are given by x1 − ξ1

1 , x2 − ξ1
2 and x3 − ξ1

3 − ξ1
1 x2 + ξ1

1 ξ 1
2 ,

thus obtaining the implicit nonlinear superposition formula:

k1 = x1 − ξ 1
1 ,

k2 = x2 − ξ 1
2 ,

k3 = x3 − ξ 1
3 − ξ1

1 x2 + ξ 1
1 ξ 1

2 ;
by the inverse, the explicit nonlinear superposition formula is obtained,

x1 = ξ1
1 + k1,
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x2 = ξ1
2 + k2,

x3 = ξ1
3 + ξ1

1 k2 + k3.

Example 6.11 (DC-to-DC electric power conversion systems [44]) Consider a DC-
to-DC electric power conversion systems described by

dx1

dt
= u(t) − 1

L
x2 + E

L
,

dx2

dt
= −u(t) − 1

L
x1 − 1

RC
x2,

where the DC supply is E and the load resistance is R. The state variables are the
current x1 through the inductor L and the output voltage x2 on the capacitor C; u(t)

is a piecewise constant function of time, u(t) ∈ {0,1}. Since the system parameters
E,L,R and C my be subject to time-varying uncertainties, it would be nice to
obtain a superposition formula independent of them. Define

f1(x) :=
[
x1
0

]
, f2(x) :=

[
x2
0

]
, f3(x) :=

[
0
x1

]
,

f4(x) :=
[

0
x2

]
, f5(x) :=

[
1
0

]
, f6(x) :=

[
0
1

]
,

which span a six-dimensional Lie algebra over R, described by the commutation
relations [f1, f2] = −f2, [f1, f3] = −f3, [f1, f4] = 0, [f1, f5] = −f5, [f1, f6] =
0, [f2, f3] = f4 − f1, [f2, f4] = −f2, [f2, f5] = 0, [f2, f6] = −f5, [f3, f4] = f3,
[f3, f5] = −f6, [f3, f6] = 0, [f4, f5] = 0, [f4, f6] = −f6, [f5, f6] = 0. Proceeding
as in the previous examples, explicit and implicit nonlinear superposition formulas
are, respectively, obtained:

x1 = ξ 1
1 + (

ξ2
1 − ξ1

1

)
k1 + (

ξ3
1 − ξ 1

1

)
k2,

x2 = ξ 1
2 + (

ξ2
2 − ξ1

2

)
k1 + (

ξ3
2 − ξ 1

2

)
k2,

and

k1 = −ξ3
2 x1 + ξ1

1 ξ 3
2 + ξ1

2 x1 + ξ3
1 x2 − ξ3

1 ξ1
2 − ξ 1

1 x2

−ξ2
1 ξ3

2 + ξ 2
1 ξ1

2 + ξ1
1 ξ 3

2 + ξ3
1 ξ 2

2 − ξ 3
1 ξ 1

2 − ξ1
1 ξ 2

2

,

k2 = ξ2
2 x1 − ξ 1

1 ξ 2
2 − ξ1

2 x1 − ξ 2
1 x2 + ξ2

1 ξ1
2 + ξ1

1 x2

−ξ2
1 ξ3

2 + ξ 2
1 ξ1

2 + ξ1
1 ξ 3

2 + ξ3
1 ξ 2

2 − ξ 3
1 ξ 1

2 − ξ1
1 ξ 2

2

.
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6.6 Nonlinear Superposition Formulas for Solvable Lie Algebras

Let X be a finite dimensional Lie algebra (of vector functions f (x) ∈ R
n) over R;

let r be its dimension and {f1, . . . , fr} be one of its bases. There exist structure
constants ci,j ;� ∈ R such that [fi, fj ] = ∑r

�=1 ci,j ;�f�; the Lie algebra is uniquely
described by the basis {f1, . . . , fr } and by the structure constants ci,j ;�. According
to [114], as is well known, if X is solvable, then there exists a basis {f1, . . . , fr }
such that for i = 1, . . . , r :

[f1, fi] = c1,i;1f1, (6.16a)

[f2, fi] = c2,i;1f1 + c2,i;2f2, (6.16b)

...

[fr, fi] = cr,i;1f1 + cr,i;2f2 + · · · + cr,i;rfr . (6.16c)

For the sake of simplicity, assume the existence of a regular point xo ∈ R
n of the

Lie algebra such that rankR{f1(x
o), . . . , fr (x

o)} = r , although the procedure out-
lined in the following can be easily extended in the case of a regular point xo ∈ R

n

of the Lie algebra such that rankR{f1(x), . . . , fr(x)} is constant about xo, but less
than r . Assume that n ≥ r . The computation of nonlinear superposition formu-
las can be carried out by a repeated application of the flow box Theorem 3.3 at
p. 57. Since f1(x

o) �= 0, there exists about xo a diffeomorphism y = ϕ(x) such
that ϕ∗f1(y) = e1, where e1 is the first column of the n × n identity matrix E.
From (6.16a) rewritten in the y-coordinates, [e1, ϕ∗fi] = c1,i;1e1, i = 2, . . . , r , it
follows that

ϕ∗fi =
[
c1,i;1y1 + αi(yb)

f̃i(yb)

]
,

where yb = [y2 . . . yn], αi(yb) ∈ R and f̃i(yb) ∈ R
n−1. Now, consider the

r − 1 vector functions f̃i(yb) ∈ R
n−1, i = 2, . . . , r , which satisfy relations (6.16b),

(6.16c), i = 2, . . . , r , with c1,i;1 = · · · = cr,i;1 = 0; this can be easily seen by notic-
ing that vector functions ϕ∗fi satisfy relations (6.16a)–(6.16c) with fi substituted
by ϕ∗fi for all (y1, yb), whence also for all (0, yb). Since f̃2(y

o
b ) �= 0, where

yo = ϕ(xo) = [yo
1 (yo

b )], there exists about yo
b a diffeomorphism zb = χ(yb)

such that χ∗f̃2(z) = e1, where e1 is now the first column of the (n − 1) × (n − 1)

identity matrix. From (6.16b), with c2,i;1 = 0, rewritten in the zb-coordinates,
[e1, χ∗f̃i] = c2,i;2e1, i = 3, . . . , r , it follows that

χ∗f̃i =
[
c2,i;2z2 + βi(zc)

f̂i(zc)

]
,
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where zb = [z3 . . . zn], βi(zc) ∈ R and f̂i(zc) ∈ R
n−2. Proceeding in this way,

one concludes, apart from a diffeomorphism about the regular point xo, that vector
functions f1, . . . , fr can be rewritten as

f1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f2(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,2;1x1 + α2(x2, . . . , xn)

1
0
0
...

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f3(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,3;1x1 + α3(x2, . . . , xn)

c2,3;2x2 + β3(x3, . . . , xn)

1
0
...

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

fr(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,r;1x1 + αr(x2, . . . , xn)

c2,r;2x2 + βr(x3, . . . , xn)

c3,r;3x3 + γr(x4, . . . , xn)

c4,r;4x4 + δr (x5, . . . , xn)
...

cr−1,r;r−1xr−1 + ωr(xr , . . . , xn)

1
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As shown in the following with reference to Lie algebras of dimension two, since
in these local coordinates the vector functions fi have such a special triangular
structure, the computation of first integrals, whence of the nonlinear superposition
formulas, is highly simplified. Therefore, by a pull-back, nonlinear superposition
formulas can be computed in the original coordinates.
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6.6.1 Two-Dimensional Lie Algebras

Consider f (t, x) = u1(t)f1(x) + u2(t)f2(x), where f1(x), f2(x) ∈ R
n span a two-

dimensional Lie algebra over R. Assume n ≥ 2. By Remark 6.1 (see [70]), it is
known that, apart from a change of basis of the Lie algebra (which corresponds
to a linear transformation in the control inputs), there are only two possible cases:
[f1, f2] = 0 and [f1, f2] = f1, which are analyzed in the following sections.

6.6.1.1 The Lie Algebra [f1,f2] = 0

This case can be split into two different cases: f1 and f2 are not (respectively, are)
co-linear over Kn.

(1) Assume that f1 and f2 are not co-linear over Kn. Let xo ∈ R
n be a regular

point of the Lie algebra such that rankR([f1(x
o) f2(x

o)]) = 2. Since f1 and f2 are
commuting, about xo there exists a diffeomorphism y = ϕ(x), with inverse x =
φ(y), such that f̃1(y) = ϕ∗f1(y) = e1 and f̃2(y) = ϕ∗f2(y) = e2, where ei is ith
column of the identity matrix E. Define the extended vector functions f̃1,e(y, η) :=
[f̃ 

1 (y) f̃ 
1 (η)] and f̃2,e(y, η) := [f̃ 

2 (y) f̃ 
2 (η)], where η = ϕ(ξ); in this case,

superposition formulas with m = 1 can be found. It is easy to see that f̃1,e and f̃2,e

admit 2n − 1 functionally independent joint first integrals:

I1 = y1 − η1, I2 = y2 − η2, I3 = y3, . . . , In = yn,

In+1 = η3, . . . , I2n−1 = ηn,

from which one of the possible implicit nonlinear superposition formulas is obtained
by noticing that Ii − In+i−1, i = 2, . . . , n, are functionally independent joint first
integrals associated with f̃1,e and f̃2,e:

k = y − η.

By the pull-back to the original coordinates, an implicit nonlinear superposition
formula is obtained in the original coordinates:

k = ϕ(x) − ϕ(ξ).

An explicit nonlinear superposition formula is obtained by inversion:

x = φ
(
k + ϕ(ξ)

)
.

(2) Now, assume that f1 and f2 are co-linear over Kn; exclude the trivial case
f2 = af1, for a constant a ∈ R. Let xo ∈ R

n be a regular point of the Lie algebra,
i.e., a point such that rankR([f1(x

o) f2(x
o)]) = 1. About xo, there exists a diffeo-

morphism y = ϕ(x), with inverse x = φ(y), such that f̃1(y) = ϕ∗f1(y) = e1. Since
f2 is co-linear with f1 over Kn, one concludes that f̃2(y) = ϕ∗f2(y) = α(y)e1,
for some scalar function α(y) ∈ R. Condition [f̃1, f̃2] = 0, which is equivalent to
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∂f̃2
∂y

e1 = 0, implies that α does not depend on y1. Since α is not constant by as-

sumption, apart from a reordering of the variables yi , assume that ∂α
∂y2

�= 0; there-

fore, z = χ(y) = [y1 α(y2, . . . , yn) y3 . . . yn] qualifies as a diffeomorphism such
that f̂1(z) = χ∗f̃1(z) = e1 and f̂2(z) = χ∗f̃2(z) = z2e1. Define the extended vector
functions f̂ 

i,e(z, ζ
1, ζ 2) := [f̂ 

i (z) f̂ 
i (ζ 1) f̂ 

i (ζ 2)], i = 1,2, where ζ i = χ ◦ϕ(ξ i),
i = 1,2; in this case, superposition formulas with m = 2 can be found. Proceeding as
in the previous case, an implicit nonlinear superposition formula is easily obtained
on the basis of two particular solutions ζ 1(t), ζ 2(t) ∈ R

n:

k1 = z1 − ζ 1
1

z2 − ζ 1
2

− z1 − ζ 2
1

z2 − ζ 2
2

,

ki = zi, i = 2, . . . , n.

Let J = ϕ ◦ χ , so that z = J (x); by the pull-back to the original coordinates, an
implicit nonlinear superposition formula is obtained in the original coordinates on
the basis of two particular solutions ξ1 = J−1(ζ 1) and ξ2 = J−1(ζ 2):

k1 = J1(x) − J1(ξ
1)

J2(x) − J2(ξ 1)
− J1(x) − J1(ξ

2)

J2(x) − J2(ξ2)
,

ki = Ji(x), i = 2, . . . , n,

where Ji(x) denotes the ith entry of J (x).

6.6.1.2 The Lie Algebra [f1,f2] = f1

Also this case can be split into two different cases: f1 and f2 are not (respectively,
are) co-linear over Kn.

(3) Assume that f1 and f2 are not co-linear over Kn. Let xo ∈ R
n be a regular

point of the Lie algebra such that rankR([f1(x
o) f2(x

o)]) = 2. About xo, there exists
a diffeomorphism y = ϕ(x), with inverse x = φ(y), such that f̃1(y) = ϕ∗f1(y) = e1
and f̃2(y) = ϕ∗f2(y) = (y1 + α(y2, y3, . . . , yn))e1 + e2, where ei is ith column of
the identity matrix E and α(y2, y3, . . . , yn) ∈ R. Consider the additional diffeomor-
phism

z = χ(y) =
[
y1 −

∫ y2

0
e(y2−θ)α(θ, y3, . . . , yn)dθ y2 . . . yn

]
;

in the z-coordinates, one has χ∗f̃1(z) = e1 and χ∗f̃2(z) = z1e1 + e2. Let J = ϕ ◦ χ ,
so that z = J (x). Proceeding as in the previous case, an implicit nonlinear superpo-
sition formula is easily obtained on the basis of one particular solution ζ(t) ∈ R

n,
ζ = J (ξ) (therefore, m = 1 in this case):

k1 = (z1 − ζ1)e
−ζ2 ,
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k2 = z2 − ζ2,

ki = zi, i = 3, . . . , n.

By the pull-back to the original coordinates, an implicit nonlinear superposition
formula is obtained in the original coordinates on the basis of one particular solution
ξ = J−1(ζ ):

k1 = (
J1(x) − J1(ξ)

)
e−J2(ξ),

k2 = J2(x) − J2(ξ),

ki = Ji(x), i = 3, . . . , n,

where Ji(x) denotes the ith entry of J (x).
(4) Now, assume that f1 and f2 are co-linear over Kn; exclude the trivial case

f2 = af1, for a constant a ∈ R. Let xo ∈ R
n be a regular point of the Lie algebra,

i.e., a point such that rankR([f1(x
o) f2(x

o)]) = 1. About xo, there exists a diffeo-
morphism y = ϕ(x), with inverse x = φ(y), such that f̃1(y) = ϕ∗f1(y) = e1. Since
f2 is co-linear with f1 over Kn, one concludes that f̃2(y) = ϕ∗f2(y) = α(y)e1,
for some scalar function α(y) ∈ R. Condition [f̃1, f̃2] = f̃1, which is equivalent to
∂f̃2
∂y

e1 = e1, yields α(y) = y1 +β(y2, . . . , yn). As in case (3), consider the additional
diffeomorphism

z = χ(y) =
[
y1 −

∫ y2

0
e(y2−θ)α(θ, y3, . . . , yn)dθ y2 . . . yn

]
;

in the z-coordinates, one has χ∗f̃1(z) = e1 and χ∗f̃2(z) = z1e1. Let J = ϕ ◦ χ .
Proceeding as in the previous case, an implicit nonlinear superposition formula is
easily obtained on the basis of one particular solution ζ(t) ∈ R

n, ζ = J (ξ) (there-
fore, m = 1 in this case):

k1 = z1

ζ1
,

ki = zi, i = 2, . . . , n.

By the pull-back to the original coordinates, an implicit nonlinear superposition
formula is obtained in the original coordinates on the basis of one particular solution
ξ = J−1(ζ ):

k1 = J1(x)

J1(ξ)
,

ki = Ji(x), i = 2, . . . , n,

where Ji(x) denotes the ith entry of J (x).
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6.7 Darboux Polynomials of a Lie Algebra

The following definition extends Definition 3.1 at p. 55 to the case of the time-
varying system (6.4), (6.14), where, for the sake of simplicity, it is assumed that
f1, . . . , fp are polynomial vector functions; the extension to semi-invariants in case
of meromorphic vector functions is easy.

Definition 6.4 A Darboux polynomial of system (6.4), (6.14) is a scalar polynomial
ω(x) ∈ R such that its derivative dω(x)

dt
along the solutions of (6.4), (6.14) satisfies,

for any p-plet of functions u1(t), . . . , up(t), the following equation:

dω(x)

dt
= λ(t, x)ω(x), (6.17)

where λ(t, x) ∈ R is a polynomial in x with time-varying coefficients being func-
tions of u1, . . . , up ; λ(t, x) is called the characteristic polynomial. If λ(t, x) is
identically equal to zero, then ω(x) is called a polynomial first integral of sys-
tem (6.4), (6.14).

If f1, . . . , fp generate a finite dimensional Lie algebra {f1, . . . , fp}R over R, tak-
ing into account that f (t, x) in (6.14) is an element of {f1, . . . , fp}R for arbitrary
constant functions u1, . . . , up , the arbitrariness of the functions u1, . . . , up shows
that any Darboux polynomial of system (6.4), (6.14) is a joint Darboux polynomial
associated with all f ∈ {f1, . . . , fp}R, whence, in particular, it is a joint Darboux
polynomial associated with all f1, . . . , fp . Conversely, any joint Darboux polyno-
mial ω(x) ∈ R associated with all f1, . . . , fp, Lfi

ω(x) = λi(x)ω(x), i = 1, . . . , p,
is a Darboux polynomial of system (6.4), (6.14),

dω(x)

dt
=

p∑
i=1

ui(t)Lfi
ω(x) =

(
p∑

i=1

ui(t)λi(x)

)
ω(x).

If f1, . . . , fp generate a finite dimensional Lie algebra {f1, . . . , fp}R, a Darboux
polynomial of system (6.4), (6.14) can be termed as a Darboux polynomial of the
Lie algebra {f1, . . . , fp}R.

If not empty, the set Iω = {x ∈ U : ω(x) = 0} is invariant along the solutions of
system (6.4), (6.14), i.e., if x(0) ∈ Iω, then x(t) ∈ Iω for all t ∈ R, possibly close
to 0.

The following theorem describes some characteristics of the Darboux polynomi-
als of system (6.4), (6.14).

Theorem 6.3 (6.3.1) If I (x) = ω1(x)
ω2(x)

, with ω1 and ω2 being co-prime polynomi-

als, satisfies dI
dt

= 0 for any choice of u1, . . . , up (it is a rational first integral
of system (6.4), (6.14)), then ω1(x) and ω2(x) are Darboux polynomials of sys-
tem (6.4), (6.14), with characteristic polynomials λ1(t, x) and λ2(t, x) such that
λ1(t, x) − λ2(t, x) = 0.
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(6.3.2) Let ω(x), ω1(x) and ω2(x) be Darboux polynomials of system (6.4),
(6.14) with respective characteristic polynomials λ(t, x), λ1(t, x) and λ2(t, x); then,
all irreducible factors of ω(x) are Darboux polynomials of system (6.4), (6.14), and
the product ω

n1
1 (x)ω

n2
2 (x) is a Darboux polynomial of system (6.4), (6.14) for arbi-

trary constants n1, n2 ∈ Z
≥, with characteristic polynomial n1λ1(t, x)+n2λ2(t, x).

Proof As for Statement (6.3.1) of the theorem, one finds that

0 = dI

dt
= ω2

dω1
dt

− ω1
dω2
dt

ω2
2

.

Taking into account that ω1 and ω2 are co-prime and that ω2
dω1
dt

= ω1
dω2
dt

, one con-

cludes that ω1 is a factor of dω1
dt

and ω2 is a factor of dω2
dt

, with λ1 = 1
ω1

dω1
dt

and

λ2 = 1
ω2

dω2
dt

being the respective characteristic polynomials; substituting these ex-

pressions in ω2
dω1
dt

= ω1
dω2
dt

, one concludes that ω1ω2(λ1 − λ2) = 0, which shows
that λ1 −λ2 = 0, because ω1ω2 is not the zero polynomial. As for Statement (6.3.2)
of the theorem, in order to show that ω

n1
1 ω

n2
2 is a Darboux polynomial of sys-

tem (6.4), (6.14), compute

dω
n1
1 ω

n2
2

dt
= ω

n2
2

dω
n1
1

dt
+ ω

n1
1

dω
n2
2

dt
= n1ω

n1−1
1 ω

n2
2

dω1

dt
+ n2ω

n1
1 ω

n2−1
2

dω2

dt

= (n1λ1 + n2λ2)ω
n1
1 ω

n2
2 .

In order to show that all irreducible factors of ω are Darboux polynomials of sys-
tem (6.4), (6.14), let ω = ω

n1
1 ω2, with ω1 being irreducible and pair ω1, ω2 being

co-prime. Then,

dω

dt
= dω

n1
1 ω2

dt
= n1ω

n1−1
1 ω2

dω1

dt
+ ω

n1
1

dω2

dt
,

which implies (because dω
dt

= λω)

n1ω
n1−1
1 ω2

dω1

dt
+ ω

n1
1

dω2

dt
= λω

n1
1 ω2.

From this equality, ω
n1
1 divides n1ω

n1−1
1 ω2

dω1
dt

+ ω
n1
1

dω2
dt

; now, since ω1 and ω2

are co-prime, ω1 must divide dω1
dt

, with the ratio 1
ω1

dω1
dt

being the characteristic
polynomial of ω1. �

Remark 6.12 A greatest common divisor of polynomials pi(x),pj (x) ∈ R is a poly-
nomial h(x) ∈ R such that:

(6.12.1) h divides p1 and p2,
(6.12.2) if k(x) ∈ R is another polynomial that divides p1 and p2, then k divides h.

A polynomial h(x) ∈ R is a least common multiple of pi(x),pj (x) ∈ R if:
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(6.12.3) pi divides h and pj divides h,
(6.12.4) h divides any polynomial that both pi and pj divide.

Similar definitions can be given in case of multiple polynomials p1(x), . . . ,

pk(x) ∈ R. A greatest common divisor of some polynomials p1(x), . . . , pk(x) ∈ R

is denoted by GCD(p1, . . . , pk); note that GCD(p1, . . . , pk) = p1···pk

LCM(p1,...,pk)
, where

LCM(p1, . . . , pk) is a least common multiple of p1, . . . , pk . Both GCD(p1, . . . , pk)

and LCM(p1, . . . , pk) are unique up to multiplication by a constant.

Assume that {f1, . . . , fr } is a basis of a Lie algebra of vector functions f (x) ∈ R
n

over R and that r ≥ n. Let

Ω(x) = [
f1(x) . . . fr(x)

]
,

and assume that the generic rank of Ω is n; let {p1, . . . , pk} be the set of the deter-
minants of all n × n minors of Ω .

Theorem 6.4 Under the above assumptions and positions, polynomial ω(x) =
GCD(p1(x), . . . , pk(x)) is a Darboux polynomial of system (6.4), (6.14).

Proof Assume first that r = n. Compute the directional derivative of ω along any
one of the vector functions fi , say f1, where ω = det(Ω). Taking into account that
Lf1fj − Lfj

f1 = [f1, fj ] = ∑r
k=1 c1,j ;kfk , it is found that

Lf1ω = det
([Lf1f1 f2 . . . fr ]

)+ det
([f1 Lf1f2 . . . fr ]

)

+ · · · + det
([f1 f2 . . . Lf1fr ]

)

= det
([Lf1f1 f2 . . . fr ]

)+ det

([
f1 Lf2f1 +

r∑
k=1

c1,2;kfk . . . fr

])

+ · · · + det

([
f1 f2 . . . Lfr

f1 +
r∑

k=1

c1,r;kfk

])

= det

([
∂f1

∂x
f1 f2 . . . fr

])
+ det

([
f1

∂f1

∂x
f2 + c1,2;2f2 . . . fr

])

+ · · · + det

([
f1 f2 . . .

∂f1

∂x
fr + c1,r;rfr

])
;

therefore, by the multi-linearity of the determinant, one has

Lf1ω(x) =
(

div
(
f1(x)

)+
r∑

k=2

c1,k;k

)
ω(x).
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Similarly,

Lfi
ω(x) =

(
div

(
fi(x)

)+
r∑

k=1,k �=i

ci,k;k

)
ω(x), i = 1, . . . , r,

which implies

dω(x)

dt
=

(
r∑

i=1

ui(t)

(
div

(
fi(x)

)+
r∑

k=1,k �=i

ci,k;k

))
ω(x).

For the general case r > n, it is sufficient to repeat the same arguments for each
n × n minor of Ω , and then taking the greatest common divisor. �

Remark 6.13 Assume that r < n. In this case, a good candidate to be a Darboux
polynomial is a greatest common divisor of the determinants of all r × r minors of
Ω = [f1 . . . fr ]. As another possibility, one can augment the set {f1, . . . , fr } with
other vector functions fr+1(x), . . . , fr̄ (x) ∈ R

n such that r̄ ≥ n and {f1, . . . , fr̄ }
is a basis of a Lie algebra having spanR

{f1, . . . , fr } as sub-algebra (this is always
possible) and such that Ω = [f1 . . . fr̄ ] has full generic rank equal to n. It is worth
pointing out that such a choice should be judicious, because a generic choice of
fr+1, . . . , fr̄ would yield a Darboux polynomial equal to 1.

Now, assume r = n and consider any polynomial diffeomorphism y = ϕ(x) with
inverse x = ϕ−1(y). Let

Ω̃(y) = [
ϕ∗f1(y) . . . ϕ∗fn(y)

];

clearly,

det
(
Ω̃(y)

) =
(

det

(
∂ϕ

∂x

)
det(Ω)

)
◦ ϕ−1(y),

which shows how the Darboux polynomial computed with this technique is changed
by a polynomial diffeomorphism.

Example 6.12 Consider the Lie algebra of vector functions over R spanned by

f1(x) =
[

2
x1

]
, f2(x) =

[
x2

1 − 2x2
x2x1

]
, f3(x) =

[
2x1
4x2

]
,

satisfying the commutation relations [f1, f2] = f3, [f1, f3] = 2f1, [f2, f3] = −2f2.
The determinants of the minors of dimension two of

Ω(x) =
[

2 x2
1 − 2x2 2x1

x1 x1x2 4x2

]
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are

p1(x) = 2x2
(
x2

1 − 4x2
)
, p2(x) = −2

(
x2

1 − 4x2
)
, p3(x) = −x1

(
x2

1 − 4x2
)
,

which yield the Darboux polynomial ω(x) = GCD(p1(x),p2(x),p3(x)) =
x2

1 − 4x2. It is worth pointing out that Lf1ω(x) = 0, Lf2ω(x) = 2x1ω(x) and
Lf3ω(x) = 4ω(x) and, consequently, dω

dt
= (2x1u2 + 4u3)ω.

Example 6.13 Consider the Lie algebra of vector functions over R spanned by

f1(x) =
[
x2

1 + 1
x1x2

]
, f2(x) =

[
x1x2

x2
2 + 1

]
, f3(x) =

[−x2
x1

]
,

satisfying the commutation relations [f1, f2] = −f3, [f1, f3] = f2, [f2, f3] = −f1.
The determinants of the minors of dimension two of

Ω(x) =
[
x2

1 + 1 x1x2 −x2

x1x2 1 + x2
2 x1

]

are

p1(x) = x2
1 +x2

2 + 1, p2(x) = x1
(
x2

1 +x2
2 + 1

)
, p3(x) = x2

(
x2

1 +x2
2 + 1

)
,

which yield the Darboux polynomial ω(x) = GCD(p1(x),p2(x),p3(x)) = x2
1 +

x2
2 + 1. It is worth pointing out that Lf1ω(x) = 2x1ω(x), Lf2ω(x) = 2x2ω(x) and

Lf3ω(x) = 0 and, consequently, dω
dt

= (2x1u1 + 2x2u2)ω.

Remark 6.14 Theorem 6.4 can be applied to all the non-isomorphic Lie algebras
listed in Remark 6.8 for which matrix Ω(x) has full generic rank, thus obtaining:

(6.14.1) Ω(x) = [ 1 x1 x2
1

1 x2 x2
2

]
, rankK2(Ω(x)) = 2, GCD

(
x2 − x1, (x2 − x1)(x1 +

x2), x1x2(x2 − x1)
) = x2 − x1;

(6.14.2) Ω(x) = [ 1 2x1 x2
1

0 x2 x1x2

]
, rankK2(Ω(x)) = 2, GCD(x2, x1x2, x

2
1x2) = x2;

(6.14.3) Ω(x) = [ 0 0 0
1 x2 x2

2

]
, rankK2(Ω(x)) = 1;

(6.14.4) Ω(x) = [ 1 0 x1
0 1 ax2

]
, rankK2(Ω(x)) = 2, GCD(1, ax2,−x1) = 1;

(6.14.5) Ω(x) = [ 0 0 (1−a)x1
1 x1 x2

]
, rankK2(Ω(x)) = 2, GCD(0,−(1 − a)x1,−(1 −

a)x2
1) = x1;

(6.14.6) Ω(x) = [ 1 0 x1
0 1 x2

]
, rankK2(Ω(x)) = 2, GCD(1, x2,−x1) = 1;

(6.14.7) Ω(x) = [ 0 0 0
1 x1 x2

]
, rankK2(Ω(x)) = 1;

(6.14.8) Ω(x) = [ 1 0 x1+x2
0 1 x2

]
, rankK2(Ω(x)) = 2, GCD(1, x2,−x1 − x2) = 1;

(6.14.9) Ω(x) = [ 0 0 1
1 x1 x2

]
, rankK2(Ω(x)) = 2, GCD(0,−1,−x1) = 1;
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(6.14.10) Ω(x) = [ 1 0 x1
0 1 0

]
, rankK2(Ω(x)) = 2, GCD(1,0,−x1) = 1;

(6.14.11) Ω(x) = [ 0 0 x1
1 x1 x2

]
, rankK2(Ω(x)) = 2, GCD(0,−x1,−x2

1) = x1;

(6.14.12) Ω(x) = [ 1 0 0
0 1 x1

]
, rankK2(Ω(x)) = 2, GCD(1, x1,0) = 1;

(6.14.13) Ω(x) = [ 0 0 0
1 x1 p(x1)

]
, rankK2(Ω(x)) = 1.

Example 6.14 Consider the linear system dx
dt

= Ax + bu, where A ∈ R
n×n and

b ∈ R
n. Such a system can be rewritten as dx

dt
= u1(t)f1(x) + u2(t)f2(x), where

f1(x) = Ax, f2(x) = b, u1(t) = 1 and u2(t) = u(t). Consider the Lie algebra over
R spanned by Ax,b,Ab, . . . ,An−1b: the proof that such vector functions span a
Lie algebra is very simple, taking into account the Cayley–Hamilton Theorem (see
Theorem 3.28.2 of [83]), by [Aib,Abj ] = 0 and [Aib,Ax] = Ai+1b. Let

Ω(x) = [Ax b Ab . . . An−1b].
Since det([b Ab . . . An−1b]) of Ω is constant, the only possibility for ω to be non-
constant is that pair (A,b) is not controllable. As an example, take A = [ a1 0

0 a2

]
and

b = [ b1
b2

]
, which yield

Ω(x) =
[
a1x1 b1 a1b1
a2x2 b2 a2b2

]
.

Condition 0 = det
([ b1 a1b1

b2 a2b2

]) = b1b2(a2 − a1) yields two possible cases: one of
the two entries bi of b, say b1, is equal to zero, and the two eigenvalues of
A coincide, a1 = a2. In the first case, one has the Darboux polynomial ω(x) =
GCD(0, a1a2b2x1, a1b2x1) = x1, i.e., if x1(0) = 0, then x1(t) = 0 for all t ≥ 0,
for any input function u(t); in the second case, one has the Darboux polyno-
mial ω(x) = GCD(0, a2

2(b2x1 − b1x2), a2(b2x1 − b1x2)) = b2x1 − b1x2, i.e., if
b2x1(0) = b1x2(0), then b2x1(t) = b1x2(t) for all t ≥ 0, for any input function u(t).

As in the example above, Darboux polynomials can be used to study the control-
lability also for nonlinear systems written in the form (6.4), (6.14). If the Lie algebra
generated by {f1, . . . , fp} has a non-constant Darboux polynomial, then this allow
to identify the invariant set Iω, if not empty; the inputs ui do not influence the
solution of (6.4), (6.14) along Iω.

6.8 The Joint Poincaré–Dulac Normal Form

The problem of finding a diffeomorphism that jointly linearizes a set of nonlinear
systems is relatively old one [108]. Such a problem can be relaxed to finding a
diffeomorphism such that the transformed systems are in the joint Poincaré–Dulac
normal form [34].
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Definition 6.5 Let vector functions fi(x) ∈ R
n, i = 1, . . . , r , be analytic at x = 0,

fi(0) = 0, with linear part Aix, where Ai = ∂fi (x)
∂x

|x=0 is semi-simple. Then,
fi(x) = Aix + hi(x), i = 1, . . . ,m, are in the joint Poincaré–Dulac normal form
if the following relation holds for each i ∈ {1, . . . , r}:

[
hi(x),Ajx

] = 0, j = 1, . . . , r.

For the proof of the following theorem see [34].

Theorem 6.5 Let vector functions fi(x) ∈ R
n, i = 1, . . . , r , be analytic at x = 0,

fi(0) = 0, with linear part Aix, where Ai = ∂fi (x)
∂x

|x=0 is normal. Assume that
{f1, . . . , fr} is a basis of a nilpotent Lie algebra X of vector functions over R. Then,
there exists a formal diffeomorphism y = ϕ(x) such that the push-forwards ϕ∗fi are
in the joint Poincaré–Dulac normal form. Under further convergence conditions,
y = ϕ(x) is analytic at x = 0.

Since {f1, . . . , fr} is a basis of a finite dimensional nilpotent Lie algebra
X of vector functions over R, it satisfies the commutation relations [fi, fj ] =∑r

�=1 ci,j ;�f�, for some structure constants ci,j ;�; therefore, the linear vector
functions A1x, . . . ,Arx satisfy the commutation relations [Aix,Ajx] =∑r

�=1 ci,j ;�A�x, for the same structure constants, whence the distribution D =
spanKn

{A1x, . . . ,Arx} is involutive. Now, assume that, about a regular point of
such a distribution, its rank is r̂ . By the Frobenius Theorem 1.9 at p. 21, there
exists n − r̂ functionally independent functions I1(x), . . . , In−r̂ (x) ∈ IC(A1x) ∩
· · · ∩ IC(Arx), namely joint first integrals of the linear systems dx

dt
= Aix,

i = 1, . . . , r . Note that the linear parts A1x, . . . ,Arx could be linearly depen-
dent. Let {M0, . . . ,Mr̄−1} be a basis of the linear centralizer Lc(A1, . . . ,Ar), i.e.,
of the set of all matrices B that commute under the matrix product with all Ai ,
BAi − AiB = 0, i = 1, . . . , r . Then, fi(x) = Aix + hi(x), i = 1, . . . , r , are in the
joint Poincaré–Dulac normal form if and only if

hi(x) = μi,0M0x + · · · + μi,r̄−1Mr̄−1x,

where μi,j ∈ IC(A1x) ∩ · · · ∩ IC(Arx), and hi(x) is analytic at x = 0, hi(0) = 0,
with zero linear part.

Example 6.15 Consider the matrices A1 = diag{0,0,0,1}, A2 = diag{1,−1,0,0}
and A2 = diag{1,0,1,1}. Compute the kernel of

A =
⎡
⎣

0 0 0 1
1 −1 0 0
1 0 1 1

⎤
⎦ ,
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which is spanned by [−1 − 1 1 0]. Then, set IC(A1x) ∩ IC(A2x) ∩ IC(A3x) is
constituted by the arbitrary functions of I = x3

x1x2
. A basis of Lc(A1,A2,A3) is

M0 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , M1 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

M2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , M3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ .

Therefore, for each i ∈ {1,2,3}, fi(x) = Aix +hi(x) is in the joint Poincaré–Dulac
normal form if hi(x) = [x1μi,0 x2μi,1 x3μi,2 x4μi,3], hi(x) is analytic at x = 0,
hi(0) = 0, with zero linear part, where μi,j are arbitrary functions of x3

x1x2
. Clearly,

the only possible hi , i = 1,2,3, are obtained by taking μi,0 = 0, μi,1 = 0, μi,2 =
ai

x1x2
x3

, μi,3 = 0, thus obtaining hi(x) = [0 0 aix1x2 0], where ai is an arbitrary
real, i = 1,2,3. It is worth pointing out that the three vector functions

f1(x) =

⎡
⎢⎢⎣

0
0

a1x1x2
x4

⎤
⎥⎥⎦ , f2(x) =

⎡
⎢⎢⎣

x1
−x2

a2x1x2
0

⎤
⎥⎥⎦ , f3(x) =

⎡
⎢⎢⎣

x1
0

x3 + a3x1x2
x4

⎤
⎥⎥⎦

span an Abelian Lie algebra over R.

6.9 The Exponential Notation

The formalism introduced in this section (similar to the formalisms used in [1]) has
the advantage of simplifying the computations related with the solution of nonlinear
differential equations, and involving flows associated with vector functions and the
Lie brackets.

Given a vector function f (x) ∈ R
n, f = [f1 . . . fn], the vector field Xf as-

sociated with f is defined as Xf := f1
∂

∂x1
+ · · · + fn

∂
∂xn

. Given a scalar func-
tion h(x) ∈ R, the Lie derivative of h by f , Lf h, can also be denoted by Xf h =
f1

∂h
∂x1

+ · · · + fn
∂h
∂xn

; similarly, given a vector function h(x) ∈ R
n, the vector field

associated with the vector function Lf h is denoted by Xf h = (Lf h1)
∂

∂x1
+ · · · +

(Lf hn)
∂

∂xn
. Since [f,g] = Lf g − Lgf , g(x) ∈ R

n, then it is natural to define
the Lie bracket of the vector fields Xf and Xg associated with f and g, respec-
tively, as [Xf ,Xg] := Xf Xg − XgXf , which is again a vector field. Given a vector
field Xf associated with a vector function f , the flow Φf (t, x) associated with
f is represented by etXf x: since, by Theorem 3.4 at p. 61, relation [f,f ] = 0
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implies Lf Φf (t, x) = ∂Φf (t,x)

∂x
f (x) = f ◦ Φf (t, x), the notation Xf etXf x de-

notes
∂Φf (t,x)

∂x
f (x) (whence, Xf e−tXf x denotes (

∂Φf (t,x)

∂x
)−1f (x)) and the no-

tation etXf Xf x denotes f ◦ Φf (t, x), from which the formal property that Xf

and etXf commute in the product, Xf etXf x = etXf Xf x, i.e., e−tXf Xf etXf x =
etXf Xf e−tXf x = Xf x. Similarly, etXf etXg x represents Φg(t, ·) ◦ Φf (t, x); for in-
stance, if f (x) = Ax and g(x) = Bx, then etXf etXgx represents eBteAtx (note the
inversion of ordering). Similarly, if f (x) = Ax and g(x) = Bx, then etXgXf x is
the vector field that represents the vector function AeBtx and Xf etXgx is the vector
field that represents the vector function eBtAx. Since d

dt
Φf (t, x) = f ◦ Φf (t, x) =

∂Φf (t,x)

∂x
f (x), one derives the formal property d

dt
etXf x = Xf etXf x = etXf Xf x,

which justify the use of the exponential notation etXf for the formal series etXf =
X0

f + ∑+∞
i=1

t i

i! X
i
f , where Xi

f = Xf Xf · · ·Xf︸ ︷︷ ︸
i times

, and X0
f is the identity vector field

defined by X0
f x = x. In this way, etXf |t=0 = X0

f and d
dt

etXf = Xf etXf = etXf Xf .

Taking the derivative with respect to t of etXgXf e−tXgx, it is found that

d

dt

(
etXgXf e−tXgx

) = etXgXgXf e−tXgx − e−tXgXf XgetXg x

= −etXg (Xf Xg − XgXf )e−tXg x

= −etXg [Xf ,Xg]e−tXg x.

It is worth pointing out that if f (x) = Ax and g(x) = Bx, then etXgXf e−tXg x

represents e−BtAeBtx, whence d
dt

(e−BtAeBtx) = −e−Bt [A,B]eBtx, as expected.
Taking into account that etXgXf e−tXgx|t=0 = Xf x, this yields the formal prop-

erty

etXgXf e−tXgx = Xf x ⇐⇒ [Xf ,Xg] = 0,

which is equivalent to the property stated in Theorem 3.4:

(
∂Φg(t, x)

∂x

)−1

f ◦ Φg(t, x) = f ⇐⇒ [f,g] = 0.

Similarly, one has

(
etXf etXg − etXg etXf

)∣∣
t=0 = 0,

(
d

dt

(
etXf etXg − etXg etXf

))∣∣∣∣
t=0

= (
Xf etXf etXg + etXf XgetXg − XgetXg etXf − etXgXf etXf

)∣∣
t=0

= Xf + Xg − Xg − Xf = 0,
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and

(
d2

dt2

(
etXf etXg − etXg etXf

))∣∣∣∣
t=0

= (
X2

f etXf etXg + Xf etXf XgetXg + Xf etXf XgetXg + etXf X2
getXg

− X2
getXg etXf − XgetXgXf etXf − XgetXgXf etXf − etXgX2

f etXf
)∣∣

t=0

= X2
f + Xf Xg + Xf Xg + X2

g − X2
g − XgXf − XgXf − X2

f

= 2[Xf ,Xg],

which shows the formal property

etXf etXgx − etXg etXf x = t2[Xf ,Xg]x + O
(
t3),

where O(t3) denotes terms of order higher than or equal to 3; this is equivalent to
the formula:

Φg(t, ·) ◦ Φf (t, x) − Φf (t, ·) ◦ Φg(t, x) = t2[f,g] + O
(
t3),

which shows that [f,g] is a “measure” of how much Φf (t, x) and Φg(t, x) fail to
commute.

As above, it is easy to compute

d

dt

(
etXgXf e−tXg

) = etXg [Xg,Xf ]e−tXg

d2

dt2

(
etXgXf e−tXg

) = d

dt

(
etXg [Xg,Xf ]e−tXg

) = etXg
[
Xg, [Xg,Xf ]]e−tXg

dh

dth

(
etXgXf e−tXg

) = etXg
[
Xg, . . .

[
Xg, [Xg,Xf ]] . . .]︸ ︷︷ ︸

h times

e−tXg , h ≥ 2.

Hence, since

(
etXgXf e−tXg

)∣∣
t=0 = Xf ,

(
dh

dth

(
etXgXf e−tXg

))∣∣∣∣
t=0

= [
Xg, . . .

[
Xg, [Xg,Xf ]] . . .]︸ ︷︷ ︸

h times

, h ≥ 1,

taking the Taylor series expansion of etXgXf e−tXgx with respect to t , one obtains
the following formula known as the Hadamard Lemma:
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etXgXf e−tXg = Xf + t[Xg,Xf ] + t2

2!
[
Xg, [Xg,Xf ]]

+ t3

3!
[
Xg,

[
Xg, [Xg,Xf ]]]+ · · · , (6.18)

which is equivalent to the formula (3.69) with τ replaced by t . Let XX be the finite
dimensional Lie algebra of the vector fields Xf associated with the vector func-
tions f ∈ X, where X is a Lie algebra of meromorphic vector functions over R.
By (6.18), if Xf ,Xg ∈ XX, then etXgXf e−tXg ∈ XX. In particular, if {f1, . . . , fr }
is a basis of X, and {Xf1 , . . . ,Xfr } is the corresponding basis of XX, then X and XX

are isomorphic and, in particular, they are described by the same structure constants.
Hence, if Xf ,Xg ∈ XX, then etXgXf e−tXg = a1(t)Xf1 +· · ·+ar(t)Xfr

, where the
scalar functions a1(t), . . . , ar(t) ∈ R only depend on the structure constants repre-
senting the Lie algebra: they do not depend on the particular vector fields used for
the representation of the Lie algebra, and particularly they do not depend on the
local coordinates chosen to represent the vector fields.

The following examples show how the scalar functions a1(t), . . . , ar(t) ∈ R can
be computed in practice.

Example 6.16 Assume that X = spanR
{f1, f2}, where [f1, f2] = f1 and f1, f2 are

linearly independent over R. First, compute etXf2 Xf1 e−tXf2 . By a repeated substi-
tution of [Xf2 ,Xf1 ] = −Xf1 in (6.18), one obtains

etXf2 Xf1 e−tXf2 = Xf1 + t[Xf2 ,Xf1 ] + t2

2!
[
Xf2 , [Xf2 ,Xf1]

]

+ t3

3!
[
Xf2 ,

[
Xf2 , [Xf2 ,Xf1 ]

]]+ · · ·

= Xf1 − tXf1 + t2

2!Xf1 − t3

3!Xf1 + · · ·
= e−tXf1 .

A second approach consists in taking the derivative with respect to t of the equality
etXf2 Xf1 e−tXf2 = a1Xf1 + a2Xf2 , where a1(t), a2(t) ∈ R:

etXf2 [Xf2 ,Xf1 ]e−tXf2 = da1

dt
Xf1 + da2

dt
Xf2 ,

which yields

−etXf2 Xf1 e−tXf2 = da1

dt
Xf1 + da2

dt
Xf2 ,

namely

−a1Xf1 − a2Xf2 = da1

dt
Xf1 + da2

dt
Xf2 .
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This equation, by the linear independence of Xf1 ,Xf2 over R, yields the differential
equations

da1

dt
= −a1,

da2

dt
= −a2;

from Xf1 = (etXf2 Xf1 e−tXf2 )|t=0 = a1(0)Xf1 + a2(0)Xf2 , one has a1(0) = 1 and
a2(0) = 0. Therefore, a1(t) = e−t and a2(t) = 0. A slight modification of the second
approach is based on the fact that the solution a1, a2 of equation etXf2 Xf1 e−tXf2 =
a1Xf1 + a2Xf2 is independent of the particular representation of the Lie algebra.
Hence, one can choose a matrix representation spanR

{M1,M2} of X, with the re-
quirement that M1 and M2 are linearly independent. For instance, in this case, one
can choose the adjoint matrix representation:

M1 =
[

0 0
1 0

]
, M2 =

[−1 0
0 0

]
.

The term e−tM2M1etM2 , which is a representation of etXf2 Xf1 e−tXf2 , can be com-
puted explicitly,

e−tM2M1etM2 =
[

et 0
0 1

][
0 0
1 0

][
e−t 0
0 1

]
=

[
0 0

e−t 0

]
,

and therefore the scalar functions a1, a2 can be computed by solving the linear equa-
tion e−tM2M1etM2 = a1M1 + a2M2,

[
0 0

e−t 0

]
= a1

[
0 0
1 0

]
+ a2

[−1 0
0 0

]
=

[−a2 0
a1 0

]
,

which has the unique solution a1 = e−t and a2 = 0. Now, compute etXf1 Xf2 e−tXf1 .
By a repeated substitution of [Xf1 ,Xf2 ] = Xf1 in (6.18), one obtains

etXf1 Xf2 e−tXf1 = Xf2 + t[Xf1 ,Xf2 ] + t2

2!
[
Xf1 , [Xf1 ,Xf2]

]

+ t3

3!
[
Xf1 ,

[
Xf1 , [Xf1 ,Xf2 ]

]]+ · · ·
= Xf2 + tXf1 .

The same result can be computed by taking the derivative with respect to t of
etXf1 Xf2 e−tXf1 = a1Xf1 + a2Xf2 , where a1(t), a2(t) ∈ R:

etXf1 [Xf1 ,Xf2 ]e−tXf1 = da1

dt
Xf1 + da2

dt
Xf2 ,

which yields

etXf1 Xf1 e−tXf1 = da1

dt
Xf1 + da2

dt
Xf2 ,
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namely

Xf1 = da1

dt
Xf1 + da2

dt
Xf2 .

This equation, by the linear independence of Xf1 ,Xf2 over R, yields the differential
equations

da1

dt
= 1,

da2

dt
= 0;

similarly, from Xf2 = (etXf1 Xf2 e−tXf1 )|t=0 = a1(0)Xf1 + a2(0)Xf2 , one has
a1(0) = 0 and a2(0) = 1. Hence, a1(t) = t and a2(t) = 1. Finally, the term
e−tM1M2etM1 , which is a representation of etXf1 Xf2 e−tXf1 , with M1,M2 as above,
can be computed explicitly,

e−tM1M2etM1 =
[

1 0
−t 1

][−1 0
0 0

][
1 0
t 1

]
=

[−1 0
t 0

]
,

and therefore the scalar functions a1, a2 can be computed by solving the linear equa-
tion e−tM1M2etM1 = a1M1 + a2M2,

[−1 0
t 0

]
= a1

[
0 0
1 0

]
+ a2

[−1 0
0 0

]
=

[−a2 0
a1 0

]
,

which has the unique solution a1 = t and a2 = 1.

Example 6.17 Consider again the split three-dimensional simple Lie algebra intro-
duced in Example 6.3, X = spanR{f1, f2, f3}, where [f1, f2] = 2f1, [f1, f3] = f2
and [f2, f3] = 2f3, where f1, f2, f3 are linearly independent. A matrix representa-
tion of X is given by the adjoint matrix representation:

M1 =
⎡
⎣

0 0 0
2 0 0
0 1 0

⎤
⎦ , M2 =

⎡
⎣

−2 0 0
0 0 0
0 0 2

⎤
⎦ ,

M3 =
⎡
⎣

0 −1 0
0 0 −2
0 0 0

⎤
⎦ .

(6.19)

Clearly, etXfi Xfi
e−tXfi = Xfi

, i = 1,2,3. The three procedures outlined in Exam-
ple 6.16 can be applied to compute etXfi Xfj

e−tXfi , i �= j .

(1) Computation of etXf1 Xf2 e−tXf1 . By a repeated substitution of [Xf1 ,Xf2 ] =
2Xf1 in (6.18), one obtains:

etXf1 Xf2 e−tXf1 = Xf2 + t[Xf1 ,Xf2 ] + t2

2!
[
Xf1 , [Xf1 ,Xf2]

]

+ t3

3!
[
Xf1 ,

[
Xf1 , [Xf1 ,Xf2 ]

]]+ · · ·
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= Xf2 + 2tXf1 .

The same result can be computed by taking the derivative with respect to t of
etXf1 Xf2 e−tXf1 = a1Xf1 + a2Xf2 + a3Xf3 , where a1(t), a2(t), a3(t) ∈ R:

etXf1 [Xf1 ,Xf2 ]e−tXf1 = da1

dt
Xf1 + da2

dt
Xf2 + da3

dt
Xf3 ,

which yields

2etXf1 Xf1e−tXf1 = da1

dt
Xf1 + da2

dt
Xf2 + da3

dt
Xf3 ,

namely

2Xf1 = da1

dt
Xf1 + da2

dt
Xf2 + da3

dt
Xf3 .

This equation, by the linear independence of Xf1,Xf2,Xf3 over R, yields the dif-
ferential equations

da1

dt
= 2,

da2

dt
= 0,

da3

dt
= 0;

similarly, from Xf2 = (etXf1 Xf2 e−tXf1 )|t=0 = a1(0)Xf1 + a2(0)Xf2 + a3(0)Xf3 ,
one has a1(0) = 0, a2(0) = 1 and a3(0) = 0. Therefore, a1(t) = 2t , a2(t) =
1 and a3(t) = 0. Finally, the term e−tM1M2etM1 , which is a representation of
etXf1 Xf2 e−tXf1 , with M1,M2 in (6.19), can be computed explicitly,

e−tM1M2etM1 =
⎡
⎣

1 0 0
−2t 1 0
t2 −t 1

⎤
⎦
⎡
⎣

−2 0 0
0 0 0
0 0 2

⎤
⎦
⎡
⎣

1 0 0
2t 1 0
t2 t 1

⎤
⎦ =

⎡
⎣

−2 0 0
4t 0 0
0 2t 2

⎤
⎦ ,

and therefore the scalar functions a1, a2, a3 can be computed by solving the linear
equation e−tM1M2etM1 = a1M1 + a2M2 + a3M3,

⎡
⎣

−2 0 0
4t 0 0
0 2t 2

⎤
⎦ =

⎡
⎣

−2a2 −a3 0
2a1 0 −2a3
0 a1 2a2

⎤
⎦ ,

which has the unique solution a1 = 2t , a2 = 1 and a3 = 0.
(2) Computation of etXf1 Xf3 e−tXf1 . By a repeated substitution of [Xf1 ,Xf3 ] =

Xf2 and [Xf1 ,Xf2 ] = 2Xf1 in (6.18), one obtains:

etXf1 Xf3 e−tXf1 = Xf3 + t[Xf1 ,Xf3 ] + t2

2!
[
Xf1 , [Xf1 ,Xf3]

]

+ t3

3!
[
Xf1 ,

[
Xf1 , [Xf1 ,Xf3 ]

]]+ · · ·
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= Xf3 + tXf2 + t2Xf1 .

The same result can be computed by taking the derivative with respect to t of
etXf1 Xf3 e−tXf1 = a1Xf1 + a2Xf2 + a3Xf3 , where a1(t), a2(t), a3(t) ∈ R:

etXf1 [Xf1 ,Xf3 ]e−tXf1 = da1

dt
Xf1 + da2

dt
Xf2 + da3

dt
Xf3 ,

which yields

etXf1 Xf2 e−tXf1 = da1

dt
Xf1 + da2

dt
Xf2 + da3

dt
Xf3 ,

namely

Xf2 + 2tXf1 = da1

dt
Xf1 + da2

dt
Xf2 + da3

dt
Xf3 .

This equation, by the linear independence of Xf1,Xf2,Xf3 over R, yields the dif-
ferential equations

da1

dt
= 2t,

da2

dt
= 1,

da3

dt
= 0;

similarly, from Xf3 = (etXf1 Xf3 e−tXf1 )|t=0 = a1(0)Xf1 + a2(0)Xf2 + a3(0)Xf3 ,
one has a1(0) = 0, a2(0) = 0 and a3(0) = 1. Therefore, a1(t) = t2, a2(t) =
t and a3(t) = 1. Finally, the term e−tM1M3etM1 , which is a representation of
etXf1 Xf3 e−tXf1 , with M1,M3 in (6.19), can be computed explicitly,

e−tM1M3etM1 =
⎡
⎣

1 0 0
−2t 1 0
t2 −t 1

⎤
⎦
⎡
⎣

0 −1 0
0 0 −2
0 0 0

⎤
⎦
⎡
⎣

1 0 0
2t 1 0
t2 t 1

⎤
⎦

=
⎡
⎣

−2t −1 0
2t2 0 −2
0 t2 2t

⎤
⎦ ,

and therefore the scalar functions a1, a2, a3 can be computed by solving the linear
equation e−tM1M2etM1 = a1M1 + a2M2 + a3M3,

⎡
⎣

−2t −1 0
2t2 0 −2
0 t2 2t

⎤
⎦ =

⎡
⎣

−2a2 −a3 0
2a1 0 −2a3
0 a1 2a2

⎤
⎦ ,

which has the unique solution a1 = t2, a2 = t and a3 = 1. By applying the same
methods, it is possible to compute:

etXf2 Xf1e−tXf2 = e−2tXf1 , etXf2 Xf3 e−tXf2 = e2tXf3 ,

etXf3 Xf1e−tXf3 = Xf1 − tXf2 + t2Xf3 , etXf3 Xf2e−tXf3 = Xf2 − 2tXf3 .
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6.10 The Wei–Norman Equations

Consider the time-varying system (6.4), (6.14), where p = r and {f1, . . . , fr} is
a basis of a Lie algebra X over R. Let Xf = u1Xf1 + · · · + urXfr be the vector
field associated with the vector function f (t, x) = u1(t)f1(x) + · · · + ur(t)fr(x).
The goal here is to express the solution of system (6.4), (6.14) from the ini-
tial condition x(0) = x0 in the form x(t) = Φfr

(γr(t), ·) ◦ · · · ◦ Φf2(γ2(t), ·) ◦
Φf1(γ1(t), x0), where γ1(t), . . . , γr (t) ∈ R are functions of time to be computed,
satisfying γi(0) = 0. Clearly, using the exponential notation, such an expression can
be found if and only if

d

dt

(
eγ1Xf1 eγ2Xf2 · · · eγrXfr

)

= eγ1Xf1 eγ2Xf2 · · · eγrXfr (u1Xf1 + u2Xf2 + · · · + urXfr ). (6.20)

From (6.20), it follows that

dγ1

dt
Xf1 eγ1Xf1 eγ2Xf2 · · · eγrXfr + dγ2

dt
eγ1Xf1 Xf2 eγ2Xf2 · · · eγrXfr + · · ·

+ dγr

dt
eγ1Xf1 eγ2Xf2 · · ·Xfr

eγrXfr

= eγ1Xf1 eγ2Xf2 · · · eγrXfr (u1Xf1 + u2Xf2 + · · · + urXfr ),

from which by left multiplying for e−γrXfr · · · e−γ2Xf2 e−γ1Xf1 , one concludes that

dγ1

dt
e−γrXfr · · · e−γ2Xf2 e−γ1Xf1 Xf1 eγ1Xf1 eγ2Xf2 · · · eγrXfr

+ dγ2

dt
e−γrXfr · · · e−γ2Xf2 Xf2 eγ2Xf2 · · · eγrXfr + · · · + dγr

dt
e−γrXfr Xfr

eγrXfr

= u1Xf1 + u2Xf2 + · · · + urXfr .

Taking into account that

e−γrXfr · · · e−γ2Xf2 e−γ1Xf1 Xf1 eγ1Xf1 eγ2Xf2 · · · eγrXfr

= a1,1Xf1 + a1,2Xf2 + · · · + a1,rXfr ,

e−γrXfr · · · e−γ2Xf2 Xf2 eγ2Xf2 · · · eγrXfr

= a2,1Xf1 + a2,2Xf2 + · · · + a2,rXfr ,

...

e−γrXfr Xfr eγrXfr

= ar,1Xf1 + ar,2Xf2 + · · · + ar,rXfr ,
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where the functions ai,j (γ1, . . . , γr ), which can be computed as in Sect. 6.9, only
depend on the structure constants of the Lie algebra X, and not on its particular
representation given by {Xf1 , . . . ,Xfr }, one has

r∑
i=1

dγi

dt

r∑
j=1

ai,jXfj
=

r∑
j=1

ujXfj
;

hence,
r∑

j=1

(
r∑

i=1

dγi

dt
ai,j

)
Xfj

=
r∑

j=1

ujXfj
,

which, taking into account the linear independence of Xf1 , . . . ,Xfr
over R, yields

the differential equations:

r∑
i=1

dγi

dt
ai,j = uj , j = 1, . . . , r. (6.21)

System (6.21) can be rewritten in compact form as

A(γ )
dγ

dt
= u,

where ai,j is the (i, j)th entry of A(γ ), γ = [γ1 . . . γr ] and u = [u1 . . . ur ].
In [120, 121], it is proven that matrix A(γ ) is invertible for small t ≥ 0, whence for
small γ ; the Wei–Norman equations are given in vector form by

dγ

dt
= A−(γ )u. (6.22)

This means that for small t ≥ 0 the solution of (6.4), (6.14), from the initial
condition x(0) = x0, is given by

x(t) = Φfr (γr , ·) ◦ Φfr−1(γr−1, ·) ◦ · · · ◦ Φf1(γ1, x0),

where γ = [γ1 . . . γr ] is the solution of (6.22) from the initial condition γ (0) = 0.
In [121], it is proven that, when X is solvable, there exists a choice of the basis of
its representation such that A(γ ) is invertible for all t ≥ 0.

Remark 6.15 If all vector functions f1, . . . , fr are pairwise commuting, [fi, fj ] =
0, then the Wei–Norman equation (6.22) becomes dγ

dt
= u.

Example 6.18 Consider the Lie algebra having {f1, f2} as basis, with [f1, f2] = f1.
From

d

dt

(
eγ1Xf1 eγ2Xf2

) = eγ1Xf1 eγ2Xf2 (u1Xf1 + u2Xf2),
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it can be found

dγ1

dt
Xf1 eγ1Xf1 eγ2Xf2 + dγ2

dt
eγ1Xf1 Xf2 eγ2Xf2

= eγ1Xf1 eγ2Xf2 (u1Xf1 + u2Xf2). (6.23)

From (6.23), by left multiplication for e−γ2Xf2 e−γ1Xf1 , one has

dγ1

dt
e−γ2Xf2 e−γ1Xf1 Xf1 eγ1Xf1 eγ2Xf2 + dγ2

dt
e−γ2Xf2 Xf2 eγ2Xf2 = (u1Xf1 + u2Xf2).

Since e−γ1Xf1 Xf1eγ1Xf1 = Xf1 , e−γ2Xf2 Xf1eγ2Xf2 = eγ2Xf1 and e−γ2Xf2 Xf2 eγ2Xf2

= Xf2 , it can be found that

dγ1

dt
eγ2Xf1 + dγ2

dt
Xf2 = u1Xf1 + u2Xf2 ,

from which one concludes that

dγ1

dt
eγ2 = u1,

dγ2

dt
= u2,

namely the Wei–Norman equations are obtained

dγ1

dt
= e−γ2u1,

dγ2

dt
= u2.

By integration, it is found that

γ1(t) =
∫ t

0
exp

(
−
∫ τ

0
u2(θ)dθ

)
u1(τ )dτ,

γ2(t) =
∫ t

0
u2(τ )dτ.

For instance, letting u1(t) = t and u2(t) = 1, one computes γ1(t) = −e−t t −e−t +1
and γ2(t) = t . As a particular example, the solution of (6.4), (6.14), with

f1(x) =
[

0
x1

]
, f2(x) =

[−x1
0

]
, u1(t) = t, u2(t) = 1,

for which [f1, f2] = f1, is given by x(t) = Φf2(γ2, ·) ◦ Φf1(γ1, x0), where

Φf1(γ1, x) = [ x1
γ1x1+x2

]
and Φf2(γ2, x) = [ e−γ2x1

x2

]
, namely

x(t) =
[

e−γ2x0,1
γ1x0,1 + x0,2

]∣∣∣∣
γ1=−e−t t−e−t+1,γ2=t

=
[

e−t x0,1
(−e−t t − e−t + 1)x0,1 + x0,2

]
.
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Example 6.19 Let g(x) = [x1 2x2]. Consider the set X of all vector functions
f being homogeneous of degree 0 with respect to g, [f,g] = 0. Clearly, X is a Lie
algebra over R of dimension three and one of its basis is {f1, f2, f3}, where f1(x) =
[x1 0], f2(x) = [0 x2] and f3(x) = [0 x2

1 ]. The flows associated with f1, f2 and
f3 are, respectively, Φf1(t, x) = [et x1 x2], Φf2(t, x) = [x1 et x2] and Φf3(t, x) =
[x1 x2

1 t + x2]. The objective is the computation of the solution of (6.4), (6.14),
r = 3, from an arbitrary initial condition x(0) = x0, for u1 = 1, u2 = 1 and u3 = t .
Clearly, [f1, f2] = 0, [f1, f3] = 2f3 and [f2, f3] = −f3. From

d

dt

(
eγ1Xf1 eγ2Xf2 eγ3Xf3

) = eγ1Xf1 eγ2Xf2 eγ3Xf3 (u1Xf1 + u2Xf2 + u3Xf3),

it can be found

dγ1

dt
Xf1 eγ1Xf1 eγ2Xf2 eγ3Xf3 + dγ2

dt
eγ1Xf1 Xf2 eγ2Xf2 eγ3Xf3

+ dγ3

dt
eγ1Xf1 eγ2Xf2 Xf3 eγ3Xf3

= eγ1Xf1 eγ2Xf2 eγ3Xf3 (u1Xf1 + u2Xf2 + u3Xf3).

From the above equation, by left multiplication for e−γ3Xf3 e−γ2Xf2 e−γ1Xf1 , one has

dγ1

dt
e−γ3Xf3 e−γ2Xf2 e−γ1Xf1 Xf1 eγ1Xf1 eγ2Xf2 eγ3Xf3

+ dγ2

dt
e−γ3Xf3 e−γ2Xf2 Xf2 eγ2Xf2 eγ3Xf3 + dγ3

dt
e−γ3Xf3 Xf3 eγ3Xf3

= (u1Xf1 + u2Xf2 + u3Xf3).

Since e−γiXfi Xfi
eγiXfi = Xfi

, i = 1,2,3, e−γ2Xf2 Xf1 eγ2Xf2 = Xf1 , e−γ3Xf3 Xf1

eγ3Xf3 = Xf1 + 2γ3Xf3 and e−γ3Xf3 Xf2 eγ3Xf3 = Xf2 − γ3Xf3 , it is found that

dγ1

dt
Xf1 + dγ2

dt
Xf2 +

(
2γ3

dγ1

dt
− γ3

dγ2

dt
+ dγ3

dt

)
Xf3 = u1Xf1 + u2Xf2 + u3Xf3 ,

from which one concludes that

dγ1

dt
= u1,

dγ2

dt
= u2, 2γ3

dγ1

dt
− γ3

dγ2

dt
+ dγ3

dt
= u3,

namely the Wei–Norman equations are obtained,

dγ1

dt
= u1,

dγ2

dt
= u2,

dγ3

dt
= −2γ3u1 + γ3u2 + u3.
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Letting u1 = 1, u2 = 1 and u3 = t , one computes

γ1(t) = t, γ2(t) = t, γ3(t) = e−t + t − 1.

From

Φf3(γ3, ·) ◦ Φf2(γ2, ·) ◦ Φf1(γ1, x0) =
[

eγ1x0,1

e2γ1γ3x
2
0,1 + eγ2x0,2

]
,

the solution of the considered system is obtained

x(t) =
[

et x0,1

e2t (e−t + t − 1)x2
0,1 + et x0,2

]
.

Example 6.20 Consider the linear oscillator with time-varying frequency (6.9),
which can be rewritten as

dx

dt
= u1(t)f1(x) + u2(t)f2(x) + u3(t)f3(x),

where u1(t) = 1, u2(t) = −ω(t) and u3(t) = 0, and the three vector functions
f1(x) = [x2 0], f2(x) = [0 x1] and f3(x) = [−x1 x2] satisfy the commuta-
tion relations [f1, f2] = f3, [f1, f3] = −2f1 and [f2, f3] = 2f2. Proceeding as in
Example 6.19, one has

dγ1

dt
e−γ3Xf3 e−γ2Xf2 e−γ1Xf1 Xf1 eγ1Xf1 eγ2Xf2 eγ3Xf3

+ dγ2

dt
e−γ3Xf3 e−γ2Xf2 Xf2 eγ2Xf2 eγ3Xf3 + dγ3

dt
e−γ3Xf3 Xf3 eγ3Xf3

= (u1Xf1 + u2Xf2 + u3Xf3).

Since

e−γiXfi Xfi
eγiXfi = Xfi

, i = 1,2,3,

e−γ2Xf2 Xf1 eγ2Xf2 = Xf1 − γ 2
2 Xf2 + γ2Xf3 ,

e−γ3Xf3 Xf1 eγ3Xf3 = e−2γ3Xf1 , e−γ3Xf3 Xf2 eγ3Xf3 = e2γ3Xf2 ,

it is found that

dγ1

dt

(
e−2γ3Xf1 − γ 2

2 e2γ3Xf2 + γ2Xf3

)+ dγ2

dt
e2γ3Xf2 + dγ3

dt
Xf3

= (u1Xf1 + u2Xf2 + u3Xf3),

from which one concludes that

e−2γ3
dγ1

dt
= u1,

dγ2

dt
e2γ3 − e2γ3

dγ1

dt
γ 2

2 = u2,
dγ3

dt
+ dγ1

dt
γ2 = u3,



6.11 Commutation Rules 267

namely (substituting u1(t) = 1, u2(t) = −ω(t) and u3(t) = 0) the Wei–Norman
equations are obtained

dγ1

dt
= e2γ3 ,

dγ2

dt
= −e−2γ3ω + e2γ3γ 2

2 ,

dγ3

dt
= −e2γ3γ2.

6.11 Commutation Rules

Theorem 6.6 Assume that {f1, . . . , fr} is a basis of a finite dimensional Lie al-
gebra X of vector functions over R. For any f ∈ X, there exist r functions
γ1(t), . . . , γr (t) ∈ R such that

etXf x = eγ1(t)Xf1 · · · eγr−1(t)Xfr−1 eγr (t)Xfr x, ∀t ∈ T0,

namely such that

Φf (t, x) = Φfr

(
γr (t), ·

) ◦ Φfr−1

(
γr−1(t), ·

) ◦ · · · ◦ Φf1

(
γ1(t), x

)
, ∀t ∈ T0,

where T0 is a sufficiently small interval containing t = 0.

Proof Choosing functions ui being constant, ui(t) = bi , i = 1, . . . , r , by the Wei–
Norman formula (6.22), it can be concluded, for arbitrary bi, i = 1, . . . , r , the exis-
tence (at least for small |t |) of functions γ1(t), . . . , γr (t) ∈ R such that

et (b1Xf1+···+brXfr )x = eγ1(t)Xf1 · · · eγr−1(t)Xfr−1 eγr (t)Xfr x,

namely such that

Φb1f1+···+brfr
(t, x) = Φfr

(
γr (t), ·

) ◦ Φfr−1

(
γr−1(t), ·

) ◦ · · · ◦ Φf1

(
γ1(t), x

);
since f ∈ X implies the existence of constants b1, . . . , br ∈ R such that f = b1f1 +
· · ·+ brfr , there exist (at least for small |t |) functions γ1(t), . . . , γr(t) ∈ R such that

etXf x = eγ1(t)Xf1 · · · eγr−1(t)Xfr−1 eγr (t)Xfr x. �

Note that the functions γ1(t), . . . , γr(t) only depend on the structure constants
of the Lie algebra, and not on its particular representation; in particular, they can
be computed by integration of the Wei–Norman formula (6.22) from the initial con-
dition γ (0) = 0. More easily, such functions can be computed through a matrix
representation of the Lie algebra, as detailed in the following example.



268 6 Lie Algebras

Example 6.21 Consider a Lie algebra of vector functions over R with basis {f1, f2},
such that [f1, f2] = f1. A matrix representation of the Lie algebra is M1 = [ 0 0

1 0

]
and M2 = [−1 0

0 0

]
. An arbitrary element f = c1f1 + c2f2, c1, c2 ∈ R, is represented

by M = c1M1 + c2M2 = [−c2 0
c1 0

]
; for the sake of simplicity, assume that ci �= 0,

i = 1,2. Compute

eγ1M1 =
[

1 0
γ1 1

]
, eγ2M2 =

[
e−γ2 0

0 1

]
, etM =

[
e−tc2 0

−c1
e−tc2 −1

c2
1

]
.

From the equality etM = eγ2M2 eγ1M1 ,

[
e−tc2 0

−c1
e−tc2 −1

c2
1

]
=

[
e−γ2 0
γ1 1

]
,

one can determine in a unique manner γ1(t) = c1
c2

(1 − e−tc2), γ2(t) = tc2, thus ob-
taining the relation

etXf x = e
c1
c2

(1−e−tc2 )Xf1 etc2Xf2 x, ∀t ∈ R,

namely

Φf (t, x) = Φf2(tc2, ·) ◦ Φf1

(
c1

c2

(
1 − e−tc2

)
, x

)
, ∀t ∈ R.

The following theorem generalizes Theorem 6.6 (in case of linear vector fields,
see [44]).

Theorem 6.7 Assume that X = {f1, . . . , fp}R, the Lie algebra generated by the
vector functions f1(x), . . . , fp(x) ∈ R

n over R, is finite dimensional. For any f ∈ X,
there exist an integer q , q functions γ1(t), . . . , γq(t) ∈ R, and q integers i1, . . . , iq ∈
{1, . . . , p} such that

etXf x = e
γ1(t)Xfi1 · · · e

γq−1(t)Xfiq−1 e
γq(t)Xfiq x, ∀t ∈ T0,

namely such that

Φf (t, x) = Φfiq

(
γq(t), ·) ◦ Φfiq−1

(
γq−1(t), ·

) ◦ · · · ◦ Φfi1

(
γ1(t), x

)
, ∀t ∈ T0,

where T0 is a sufficiently small interval containing t = 0.

Proof If spanR
{f1, . . . , fp} = {f1, . . . , fp}R, then the theorem is proven by The-

orem 6.6. Otherwise, there exist two fi, fj , i, j ∈ {1, . . . , p}, such that [fi, fj ] ∈
{f1, . . . , fp}R, but [fi, fj ] /∈ spanR{f1, . . . , fp}. Hence, by the Hadamard Lem-
ma 6.18, eτXfi Xfj

e−τXfi = Xfj
+ τ [Xfi

,Xfj
] + · · · , there exists a sufficiently
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small |τ | such that eτXfi Xfj
e−τXfi ∈ {Xf1 , . . . ,Xfp }R, but such that eτXfi Xfj

e−τXfi

/∈ spanR{Xf1 , . . . ,Xfp }. Let fp+1(x) ∈ R
n be the vector function such that Xfp+1 =

eτXfi Xfj
e−τXfi ; clearly, etXfp+1 = eτXfi etXfj e−τXfi . Now, if spanR{f1, . . . , fp,

fp+1} = {f1, . . . , fp}R, then the theorem is proven by Theorem 6.6, taking

into account that etXfp+1 = eτXfi etXfj e−τXfi . Otherwise, there exist two fh,fk ,
for h, k ∈ {1, . . . , p,p + 1}, such that [fh,fk] ∈ {f1, . . . , fp}R, but [fh,fk] /∈
spanR{f1, . . . , fp, fp+1}. By the Hadamard Lemma,

eθXfh Xfk
e−θXfh = Xfk

+ θ [Xfh
,Xfk

] + · · · ,

there exists a sufficiently small |θ | such that eθXfh Xfk
e−θXfh ∈ {Xf1 , . . . ,Xfp }R,

but eθXfh Xfk
e−θXfh /∈ span

R
{Xf1 , . . . ,Xfp

,Xfp+1}. Let fp+2(x) ∈ R
n be the

vector function such that Xfp+2 = eθXfh Xfk
e−θXfh ; clearly, one has etXfp+2 =

eθXfh etXfk e−θXfh . Note that if fk = fp+1, then etXfp+2 = eθXfh eτXfi etXfj e−τXfi

e−θXfh . Continuing in this way, one can compute fp+1(x), . . . , fr (x), where r is the
dimension of {f1, . . . , fp}R, such that span

R
{f1, . . . , fp, . . . , fr } = {f1, . . . , fp}R

and such that, for each j ∈ {p + 1, . . . , r}, one can write

etXfj x = e
γ1(t)Xfi1 · · · e

γm−1(t)Xfim−1 eγm(t)Xfim x,

where m ∈ Z
> and i1, . . . , im ∈ {1, . . . , p}. The proof is then completed by Theo-

rem 6.6. �

Remark 6.16 Theorem 6.7 can be easily understood in case of rotations of a rigid
body, which is represented by the matrix Lie algebra spanned by

Mx =
⎡
⎣

0 0 0
0 0 −1
0 1 0

⎤
⎦ , My =

⎡
⎣

0 0 1
0 0 0

−1 0 0

⎤
⎦ , Mz =

⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ .

Assume that two reference frames are defined: an inertial reference frame and a
moving reference frame rigidly connected with the body. At the initial time t = 0,
the two frames coincide, and their origins coincide with the center of mass of the
body. Assume that the body can rotate about its x- and y-axes, but not about its
z-axis (this can be due to underactuation). The objective is to rotate the body of
a certain angle α about the z-axis of the inertial frame. Although the rigid body
cannot rotate about its z-axis, the objective can be achieved, because Mz belongs
to the Lie algebra {Mx,My}R generated by Mx,My . As an example, the objective
can be easily obtained by (1) a rotation about the x-axis of the moving frame of π

2
radians so that the y-axis of the moving frame is aligned and orientated as the z-
axis of the inertial frame, (2) a rotation about the y-axis of the moving frame of the
angle α, (3) a rotation about the x-axis of the moving frame of −π

2 radians. This is
equivalent to the formula eMzα = eMxπ/2eMyαe−Mzπ/2, which can be easily checked
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as follows:
⎡
⎣

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

⎤
⎦ =

⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦
⎡
⎣

cos(α) 0 sin(α)

0 1 0
− sin(α) 0 cos(α)

⎤
⎦
⎡
⎣

1 0 0
0 0 1
0 −1 0

⎤
⎦ .

In particular, this means that for any three-dimensional Lie algebra spanR
{fx,fy, fz}

of vector functions over R satisfying the commutation relations

[fx,fy] = −fz, [fx,fz] = fy, [fy,fz] = −fx,

one has

Φfz(α, x) = Φfx (π/2, ·) ◦ Φfy (α, ·) ◦ Φfx (−π/2, x).

Example 6.22 Consider the Lie algebra X generated by f1(x), f2(x) ∈ R
2 over R,

where f1(x) = [1 1] and f2(x) = [x2
1 x2

2 ]. It is easy to see that {f1, f2}R is three-
dimensional and has {f1, f2, f3} as basis, where f3(x) = [x1 x2]. The commuta-
tion relations of {f1, f2}R are

[f1, f2] = 2f3, [f1, f3] = f1, [f2, f3] = −f2.

Consider the matrix representation of {f1, f2}R given by

M1 =
⎡
⎣

0 0 0
0 0 2
1 0 0

⎤
⎦ , M2 =

⎡
⎣

0 0 −2
0 0 0
0 −1 0

⎤
⎦ , M3 =

⎡
⎣

−1 0 0
0 1 0
0 0 0

⎤
⎦ ,

and the respective exponential matrices:

eM1t =
⎡
⎣

1 0 0
t2 1 2t

t 0 1

⎤
⎦ , eM2t =

⎡
⎣

1 t2 −2t

0 1 0
0 −t 1

⎤
⎦ , eM3t =

⎡
⎣

e−t 0 0
0 et 0
0 0 1

⎤
⎦ .

Compute

e−M1tM2eM1t =
⎡
⎣

−2t 0 −2
0 2t 2t2

t2 −1 0

⎤
⎦ ;

clearly, e−M1tM2eM1t ∈ spanR{M1,M2,M3} (in particular, e−M1tM2eM1t = t2M1 +
M2 + 2tM3) for all t ∈ R, but e−M1tM2eM1t /∈ spanR{M1,M2}. For the sake of sim-
plicity, let t = 1 and

N3 = e−M1M2eM1 =
⎡
⎣

−2 0 −2
0 2 2
1 −1 0

⎤
⎦ .
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By construction, {M1,M2,N3} is another basis of {M1,M2}R. This means that there
exists a solution to the equation eM3t = eM1γ1 eM2γ2 eN3γ3 , where

eN3γ3 =
⎡
⎣

1 − 2γ3 + γ 2
3 γ 2

3 2γ 2
3 − 2γ3

γ 2
3 1 + 2γ3 + γ 2

3 2γ 2
3 + 2γ3

γ3 − γ 2
3 −γ3 − γ 2

3 1 − 2γ 2
3

⎤
⎦ ;

in particular, one computes two solutions

γ1(t) = e
1
2 t − et , γ2(t) = e− 1

2 t − 1, γ3(t) = −1 + e
1
2 t , (6.24a)

γ1(t) = −e
1
2 t − et , γ2(t) = −e− 1

2 t − 1, γ3(t) = −1 − e
1
2 t . (6.24b)

Taking into account that eN3γ3 = e−M1 eM2γ3eM1 , one obtains

eM3t = eM1γ1 eM2γ2 e−M1 eM2γ3eM1 ,

which implies

etXf3 = eXf1 eγ3Xf2 e−Xf1 eγ2Xf2 eγ1Xf1 ,

where γi , i = 1,2,3, are given in (6.24a), (6.24b). Taking into account that

Φf1(t, x) =
[
t + x1
t + x2

]
, Φf2(t, x) =

[ x1
1−tx1

x2
1−tx2

]
, Φf3(t, x) =

[
et x1
et x2

]
,

it is easy to verify that

Φf3(t, x) = Φf1(γ1, ·) ◦ Φf2(γ2, ·) ◦ Φf1(−1, ·) ◦ Φf2(γ3, ·) ◦ Φf1(1, x).

For sufficiently small t, τ ≥ 0, the Campbell–Baker–Hausdorff formula is

etXf eτXgx = eXhx, (6.25)

where (see [114])

h = (tf + τg) + 1

2
[tf, τg] + 1

12

([[tf, τg], τg
]− [[tf, τg], tf ])

− 1

48

([
τg,

[
tf, [tf, τg]]]+ [

tf,
[
τg, [tf, τg]]])+ · · · , (6.26)

and the dots denote repeated Lie brackets involving only f and g; this yields that if
f,g ∈ X, then there exists h ∈ X such that (6.25) holds. Therefore, as before, there
exists (at least for small t, τ ≥ 0) functions γ1(t, τ ), . . . , γr(t, τ ) ∈ R such that

etXf eτXgx = eγ1(t,τ )Xf1 · · · eγr−1(t,τ )Xfr−1 eγr (t,τ )Xfr x,
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namely that

Φg(τ, ·) ◦ Φf (t, x)

= Φfr

(
γr(t, τ ), ·) ◦ Φfr−1

(
γr−1(t , τ ), ·) ◦ · · · ◦ Φf1

(
γ1(t, τ ), x

)
.

For the sake of compactness, introduce the iterated Lie bracket

[X1,X2, . . . ,Xp−1,Xp] = [
X1,

[
X2, . . . , [Xp−1,Xp] . . .]],

and the compact notation

[
X

h1
1 ,X

h2
2 , . . . ,X

hp−1
p−1 ,X

hp
p

] = [X1, . . . ,X1︸ ︷︷ ︸
h1 times

,X2, . . . ,X2︸ ︷︷ ︸
h2 times

, . . . ,Xp, . . . ,Xp︸ ︷︷ ︸
hp times

].

The following combinatorial expression for the Campbell–Baker–Hausdorff expan-
sion (with τ = t ) is due to Dynkin [43]:

etXf etXg =
∑
p≥1

(−1)p+1

p

1

(i1 + j1) + · · · + (ip + jp)

1

i1!j1! · · · ip!jp!

× [
tX

i1
f , tX

j1
g , . . . , tX

ip
f , tX

jp
g

]
,

where the sum is taken over all non-negative 2p-tuples (i1, j1, . . . , ip, jp) satisfying
ih + jh ≥ 1.

Example 6.23 If {f1, f2} is a basis of a two-dimensional Lie algebra X of vec-
tor functions over R characterized by [f1, f2] = c1f1 + c2f2, the above reasoning
shows that the equation

eγ1Xf1 eγ2Xf2 = eη2Xf2 eη1Xf1 ,

in the unknowns η1, η2, has solution for small |γ1|, |γ2|. In particular, since such a
solution does not depend on the particular representation of the Lie algebra, the ex-
pressions of η1 and η2 can be found by considering a matrix representation of X. For
instance, a matrix representation of X is given by M1 = [ 0 0

c1 c2

]
and M2 = [−c1 −c2

0 0

]
.

For the sake of simplicity, assume ci �= 0, i = 1,2. In particular, the equation
eγ2M2eγ1M1 = eη1M1 eη2M2 ,

[
e−γ2c1 c2

e−γ2c1 −1
c1

0 1

][
1 0

c1
eγ1c2−1

c2
eγ1c2

]

=
[

1 0
c1

eη1c2 −1
c2

eη1c2

][
e−η2c1 c2

e−η2c1 −1
c1

0 1

]
,
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in the unknowns η1, η2 has the unique solution

η1 = − ln(e−γ2c1+γ1c2 − eγ1c2 + 1) − γ1c2 + γ2c1

c2
,

η2 = − ln(e−γ2c1+γ1c2 − eγ1c2 + 1)

c1
.

Note that limc1→0 η1 = γ1 and limc1→0 η2 = eγ1c2γ2.





Chapter 7
Linearization by State Immersion

7.1 Sufficient Conditions for the Existence of a Linearizing State
Immersion

The aim of this section is to study the following problem (see [89, 95]).

Problem 7.1 Find a state immersion xe = ϕe(x), with ϕe(·) : R
n → R

ne and ne ≥ n,
such that systems (1.1a), (1.1b) expressed in the new xe-coordinates are linear and
the rank of ∂ϕe

∂x
is full in some open and connected subset U ∗ of U .

The concept of immersion is used in the literature (see [101] and references
therein) for systems having inputs and outputs, to indicate a mapping transform-
ing the state (and possibly increasing its dimension) but preserving the input-output
map for an open set of initial conditions. Here the concept is similar (the definition
given in [101] applies), but with the simplification that there are no inputs and the
output is the original state vector. The use of the word “immersion” made in this
section is coherent with the one given at p. 35 of [100], referred to a map between
smooth manifolds.

Remark 7.1 The use of monomials x
h1
1 · · ·xhn

n as additional state variables is a step
of the classical Carleman linearization (see [112], where such a procedure is used
for obtaining a bilinear approximation of a nonlinear control system); the drawback
of the Carleman linearization is that the resulting linear system is, in general, infi-
nite dimensional, and only finite dimensional approximations of the given nonlinear
system can be obtained.

The following two sections, which extend the analysis carried out in Remark 3.33
at p. 115 and Remark 4.12 at p. 177 through the Poincaré–Dulac normal forms, give
an answer to Problem 7.1, without any assumption on the position of the eigenvalues
of the linear part of f , such as the belonging to the Poincaré domain or that the
number of the possible resonant terms associated with f is finite.

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
DOI 10.1007/978-0-85729-612-2_7, © Springer-Verlag London Limited 2011

275
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7.1.1 Linearization of Continuous-Time Systems by State
Immersion

In this section, the continuous-time case is considered only.

Theorem 7.1 [89] Let g be a symmetry of f and let there exists a diffeomor-
phism y = ϕ(x) such that ϕ∗g = (

∂ϕ
∂x

g) ◦ ϕ−1 is in the Poincaré–Dulac normal
form, ϕ∗g(y) = By + k(y), with B diagonal, k(y) ∈ R

n and [By, k(y)] = 0. If the
following conditions hold:

(7.1.1) ϕ∗f = (
∂ϕ
∂x

f ) ◦ ϕ−1 is analytic at y = 0,
(7.1.2) all eigenvalues of B are rational and have the same sign, then system (1.1a)

can be immersed into a finite dimensional extended linear system.

Proof If g is a symmetry of f , then ϕ∗g is a symmetry of ϕ∗f . If ϕ∗g(y) =
By + k(y) is in the Poincaré–Dulac normal form and the vector function ϕ∗f
is analytic at y = 0, then ĝ(y) = By is a linear symmetry of ϕ∗f [34]. Let
ĝ(y) = [w1y1 . . . wnyn]�, with the eigenvalues wi being rational, different from
0, and having the same sign: if ĝ(y) = By is a symmetry of ϕ∗f , then ǧ(y) = kBy

is a symmetry of ϕ∗f for any non-zero integer k; hence, with no loss of generality,
it is assumed that the wi’s are all positive integers, possibly repeated and ordered so

that 0 < w1 ≤ w2 ≤ · · · ≤ wn. Let J0(y) = 1
w1

ln(|y1|), J1(y) = y
w2
1

y
w1
2

, . . . , Jn−1(y) =
y

wn
1

y
w1
n

; clearly, LgJ0 = 1 and LgJi = 0, i = 1,2, . . . , n − 1 and det( ∂J
∂y

) 	= 0. There-

fore, one concludes that

(
∂J (y)

∂y

)−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

w1y1 0 . . . 0

w2y2 − 1
w1

y
w1+1
2

y
w2
1

. . . 0

...
...

. . .
...

wnyn 0 . . . − 1
w1

y
w1+1
n

y
wn
1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then, by Statement (3.9.1) of Theorem 3.9, all vector functions f̃ having ĝ(y) =
[w1y1 . . . wnyn]� as a symmetry are given by

f̃ (y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

w1y1C0

w2y2C0 − 1
w1

y
w1+1
2

y
w2
1

C1

...

wnynC0 − 1
w1

y
w1+1
n

y
wn
1

Cn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

with the Ci ’s being arbitrary functions of
y

w2
1

y
w1
2

, . . . ,
y

wn
1

y
w1
n

. For the sake of simplic-

ity assume that wi 	= wj (the case of repeated eigenvalues is similar); moreover,
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for the sake of brevity, consider most of the following equalities valid locally in
a neighborhood U ∗ of the origin. If f̃ is analytic at y = 0, then C0 is necessar-
ily constant, C0 = a0, whence the first entry of f̃ is f̃1(y) = a0w1y1; if w2 is
an integer multiple of w1 (i.e., if w2 = h2,1w1, for some positive integer h2,1),

then necessarily C1 = a1
y

w2
1

y
w1
2

+ a2(
y

w2
1

y
w1
2

)
1+ h2,1

w2 , whence the second entry of f̃ is

f̃2(y) = (w2a0 − a1
w1

)y2 − 1
w1

a2y
h2,1
1 ; if w2 is not an integer multiple of w1, then

necessarily C1 = a1
y

w2
1

y
w1
2

, whence the second entry of f̃ is f̃2(y) = (w2a0 − a1
w1

)y2;

and so on. In this way, it is easy to see that f̃ = ϕ∗f is polynomial and homoge-
neous of degree 0 with respect to δw

ε x, with w = [w1 . . . wn]�. Once f has been
transformed by ϕ into a block triangular form f̃ , corresponding to the fact that f̃ is
polynomial and homogeneous of degree 0 with respect to a positive integer dilation,
then it can be easily immersed into a larger state space so that the nonlinear system
thus immersed is finite dimensional and linear; as a matter of fact, let M wn be the
set of all monomials having degree less than or equal to wn, with respect to the
given dilation: such a set is clearly finite. Let y

h1
1 · · ·yhn

n ∈ M wn be of degree m, for

arbitrary h1, . . . , hn ∈ Z
≥; since f̃ has degree 0, then L

f̃
(y

h1
1 · · ·yhn

n ) has degree m

and therefore it is an element of M wn . �

Note that if g satisfies the conditions of the Poincaré–Dulac Theorem 3.33 at
p. 118, then there exists a near-identity diffeomorphism, analytic at x = 0, such that
the symmetry g in the new coordinates is in the Poincaré–Dulac normal form; a
further linear transformation can be used to render its linear part diagonal.

Remark 7.2 Condition (7.1.2) of Theorem 7.1 can seen a strong one, but it is actu-
ally necessary for the solvability of Problem 7.1 at least for two notable classes of
systems. First, the existence of a symmetry of f having the identity as linear part
is a necessary and sufficient condition for the linearization of a nonlinear system
through a change of coordinates (see Theorem 3.35 at p. 121). Secondly, it can be
proven that any f with a semi-simple linear part whose eigenvalues are real and
belong to the Poincaré domain admits a symmetry g with rational eigenvalues hav-
ing the same sign: this class includes the systems considered in Remark 3.33 at
p. 115. To prove this statement, with no loss of generality, assume that in the orig-
inal x-coordinates the linear part of f is diagonal, and consider the near-identity
diffeomorphism y = ϕ(x) such that dy

dt
= f̃ (y) is in the Poincaré–Dulac normal

form, which is indeed characterized by a finite number of resonances; in particular,
assuming that all eigenvalues have been ordered so that λi ≤ λj if i ≤ j , the kth
resonance is characterized by the following equation:

λik = �1,kλ1 + �2,kλ2 + · · · + �ik−1,kλik−1, (7.1)

where �j,k ∈ Z, �j,k ≥ 0, �1,k + �2,k + · · · + �ik,k ≥ 2. Consider the following alge-
braic linear system:

ξik = �1,kξ1 + �2,kξ2 + · · · + �ik−1,kξik−1, k = 1, . . . ,N, (7.2)
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in the n unknowns ξi , i = 1, . . . , n. It can be easily seen that, since its coefficients are
integer numbers, and it admits at least a non-zero solution (the set of the eigenvalues
λi ), then the vector space of its solutions has a basis of m vectors {v1, . . . , vm} hav-
ing integer elements. By construction, given any ξ1, . . . , ξn solution of system (7.2)
the vector function

g̃(y) = [ξ1y1 . . . ξnyn]� (7.3)

is a symmetry of f̃ . Now, note that the vector [λ1 . . . λn]� (whose elements are ei-
ther all positive or all negative) can be written as a linear combination of the vectors
v1, . . . , vm with real coefficients ci ; then, by a sufficiently accurate rational approx-
imation of such a linear combination (obtained substituting each ci with a rational
approximation ĉi ), an approximation ξ̂1, . . . , ξ̂n of the eigenvalues λ1, . . . , λn can
be obtained, such that all ξ̂i have the same sign. Considering the vector g̃ obtained
by replacing ξi in (7.3) by ξ̂i , one concludes that g = (

∂ϕ
∂x

)−1g̃ ◦ ϕ is a symmetry of
f satisfying condition (7.1.2) of Theorem 7.1.

Remark 7.3 The dimension ne of the state space of the extended system is at most
the number of elements of M wn . In some cases, an extended system of lower di-
mension can be obtained, if some of the monomials in M wn do not appear in f nor
in any of the directional derivatives of the elements of M wn by f .

Remark 7.4 The assumption that the eigenvalues of B have the same sign (besides
being rational) is crucial. Let a 	= 0; all vector functions f described by f (x) =
[ax1C0 C1]�, with C0 and C1 being analytic functions of x2 ∈ R, are analytic on the
whole R

2 and have g(x) = [ax1 0]� as symmetry. Clearly, the systems described by
such an f cannot be, in general, immersed into extended linear systems. On the other
hand, all vector functions f described by f (x) = [ax1C0 − ax2C0 + x1x

2
2C1]�,

with C0 and C1 being analytic functions of x1x2, are analytic on the whole R
2 and

have g(x) = [ax1 − ax2]� as a symmetry. Such systems too cannot be, in general,
immersed into extended linear systems.

Next, some examples are proposed to illustrate the applicability of Theorem 7.1.
In the first example, the vector w of weights has repeated entries.

Example 7.1 Let g(x) = [x1 + x2
2 x2 − x1 + x2

2 + 2x3]� and J0(x) = ln(|x1 −
x2

2 |), J1(x) = x1−x2
2

x2
, J2(x) = (x1−x2

2 )2

x3−x1+x2
2

, satisfying LgJ0 = 1, LgJ1 = 0 and

LgJ2 = 0; then, all vector functions f having g as a symmetry are given by
f = ( ∂J

∂x
)−1[C0 C1 C2]�, with J = [J0 J1 J2]� and the Ci’s being arbitrary

functions of J1, J2. By a simple analysis, it is easy to see that f is analytic
at x = 0 if and only if C0 = a1 + a2

1
J1

, C1 = a2 + a3J1 + a4J
2
1 and C2 =

a5J2 +a6J
2
2 +2a2

J2
J1

+a7
J 2

2
J1

+a8
J 2

2
J 2

1
, where the ai ’s are arbitrary reals. Consider the

transformation y1 = x1 − x2
2 , y2 = x2, y3 = x3 − x1 + x2

2 ; in the new y-coordinates,
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one finds that g̃(y) = [y1 y2 2y3]� and

f̃ (y) =
⎡
⎣

a1y1 + a2y2
−a4y1 + (−a3 + a1)y2

−a6y
2
1 − a7y1y2 − a8y

2
2 + (−a5 + 2a1)y3

⎤
⎦ .

Such a system can be immersed into a larger state space with the positions y4 = y2
1 ,

y5 = y1y2, y6 = y2
2 .

Note that the classical approaches for linearization through state immersion [12,
72, 112] can be applied to the system dx

dt
= f (x) considered in Example 7.1, because

there exist an integer m and matrices Mk such that

Lm
f x =

m−1∑
k=0

MkL
k
f x; (7.4)

actually, in such a case, the integer m can be either 2 or 3, depending on the values
of the parameters ai . However, Theorem 7.1 can be applied to systems for which
such existing approaches do not work, as shown in the next example.

Example 7.2 Consider the system (1.1a) with

f (x) =
⎡
⎣ x1(x1 + 1)

2x2 + x2
1

(x1+1)2

⎤
⎦ .

It is easy to show that

Lk
f x =

⎡
⎣(k + 1)!xk+1

1 + pk(x1)

2kx2 + bk
x2

1
(x1+1)2

⎤
⎦ ,

where, for each k ≥ 1, pk(x1) is a polynomial of order smaller than k + 1 and
bk is a real constant. Hence, it is clear that condition (7.4) cannot be satisfied by
any integer m. On the other hand, consider g(x) = [x1(x1 + 1) 2x2]�, which is
a symmetry of f . Since the ith component of g is a function of xi only, and the
eigenvalues of its linear part are not zero, then the diffeomorphism y = ϕ(x) =
[ x1
x1+1 x2]� that brings g into its Poincaré–Dulac normal form g̃(y) = [y1 2y2]�

can be computed by integration. Such a g satisfies conditions (7.1.1) and (7.1.2) of
Theorem 7.1, since f̃ (y) = [y1 2y2 + y2

1 ]� and B = diag{1,2}, whence the given
system can be immersed into a linear system by the state immersion

xe = ϕe(x) =

⎡
⎢⎢⎣

x1
x1+1

x2

x2
1

(x1+1)2

⎤
⎥⎥⎦ .
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Note that the system (1.1a) considered in Example 7.2 (and the one considered
in Example 7.1 as well, if a6, a7 and a8 are not all zero) cannot be linearized by a
diffeomorphism because of the non-zero resonant term x2

1e2. Hence, such a system
cannot be immersed into a linear system by means of the classical techniques.

7.1.2 Linearization of Discrete-Time Systems by State Immersion

In this section, the discrete-time case is considered only.

Theorem 7.2 [95] Let g be a symmetry of F and let there exists a diffeomorphism
y = ϕ(x) such that ϕ∗g = (

∂ϕ
∂x

g) ◦ ϕ−1 is linear, ϕ∗g(y) = By, with B ∈ R
n×n

diagonal. If the following conditions hold:

(7.2.1) ϕ∗F(y) = ϕ ◦ F ◦ ϕ−1(y) is analytic at y = 0,
(7.2.2) all eigenvalues of B are rational and have the same sign, then, system (1.1b)

can be immersed into a finite dimensional extended linear system.

Proof By Theorem 4.4 at p. 160, consider all vector functions expressed in the
y-coordinates. Since 
ϕ∗F(y),By� = 0 implies [ϕ∗F(y),By] = 0 and ϕ∗F(y) is
analytic at y = 0, then ϕ∗F(y) is polynomial and homogeneous of degree 0 with re-
spect to δw

ε y, with w = [w1 . . . wn]� and 0 ≤ w1 ≤ · · · ≤ wn being the eigenvalues
of B , B = diag{w1, . . . ,wn}. This means that ϕ∗F(eBτ y) = eBτϕ∗F(y). Let M wn

be the set of all monomials having degree less than or equal to wn, with respect to
δw
ε y: such a set is clearly finite, since wi > 0, ∀i. Let k(y) = y

h1
1 · · ·yhn

n ∈ M wn ; in
particular, m is its degree if and only if k(eBτy) = emτ k(y). Clearly, k◦ϕ∗F ∈ M wn

and its degree is still m, since

k ◦ ϕ∗F
(
eBτ y

) = k
(
ϕ∗F

(
eBτ y

)) = k
(
eBτϕ∗F(y)

) = emτ k
(
ϕ∗F(y)

)
. �

Note that if g satisfies the conditions of the Poincaré–Dulac Theorem 3.33, then
there exists a near-identity diffeomorphism, analytic at x = 0, such that the sym-
metry g in the new coordinates is in the Poincaré–Dulac normal form. For g to be
useful for Theorem 7.2, its Poincaré–Dulac normal form has to be linear; a further
linear transformation can be used to render its linear part diagonal.

Remark 7.5 Theorem 7.2 is somewhat weaker than the corresponding Theorem 7.1
valid in continuous-time. In fact, for continuous-time systems, one needs to know
a symmetry g of f and the change of coordinates that brings g in the Poincaré–
Dulac normal form (which need not be linear), whereas for discrete-time systems,
the Poincaré–Dulac normal form of the symmetry g must be linear.

Remark 7.6 The dimension ne of the state space of the extended system is at most
the number of elements of M wn . In some cases, an extended system of lower di-
mension could be obtained, if some of the monomials in M wn do not appear in the
vector function.
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Example 7.3 Let

F(x) =
⎡
⎣

a1x1

a2x2 + a3x
2
1

a4x3 + a5x
3
1 + a6x1x2

⎤
⎦ ,

for arbitrary constants a1, . . . , a6 ∈ R; F is homogeneous of degree 0 with re-
spect to the integer dilation δw

ε x, with w = [1 2 3]�, according to Definition 3.7
at p. 71. Set M 3 is given by M 3 = {x1, x2, x

2
1 , x3, x

3
1 , x1x2}. Define the vari-

ables x4 := x2
1 , x5 := x3

1 and x6 := x1x2 and compute their dynamics, Δx4 =
F 2

1 = (a1x1)
2 = a2

1x2
1 = a2

1x4, Δx5 = F 3
1 = (a1x1)

3 = a3
1x3

1 = a3
1x5 and Δx6 =

F1F2 = a1a3x
3
1 + a1a2x1x2 = a1a3x5 + a1a2x6. Hence, the extended linear system

Δxe = Aexe is obtained, with

Ae =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0 0 0
0 a2 0 a3 0 0
0 0 a4 0 a5 a6

0 0 0 a2
1 0 0

0 0 0 0 a3
1 0

0 0 0 0 a1a3 a1a2

⎤
⎥⎥⎥⎥⎥⎥⎦

, xe =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

7.2 Computation of the Flow by State Immersion

Assume the existence of a state immersion xe = ϕe(x), with ϕe(·) : R
n → R

ne and
ne ≥ n, such that system (1.1a) (respectively, (1.1b)) expressed in the new coordi-
nates xe is linear, Δxe = Aexe. Apart from a preliminary diffeomorphism, assume
that the first n entries of ϕe(x) coincide with x. Then, the flow associated with f

(respectively, F ) is given by

Φf (t, x) = [E 0]eAetϕe(x),
(
respectively, ΨF (t, x) = [E 0]At

eϕe(x)
)
,

where E is the n × n identity matrix and matrix [E 0] is used to select the first n

entries of the vector on the right.

Example 7.4 Let f (x) = F(x) = [c1x1 c2x2 + c3x
2
1 c4x3 + c5x

3
1 + c6x1x2]�. Both

in the continuous-time and discrete-time cases, the system can be linearized by tak-
ing as additional state variables x4 = x2

1 , x5 = x3
1 and x6 = x1x2, obtaining the ex-

tended linear system characterized by Ae = AC,e in the continuous-time case and
by Ae = AD,e in the discrete-time case, where

AC,e =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 0 0 0 0 0
0 c2 0 c3 0 0
0 0 c4 0 c5 c6
0 0 0 2c1 0 0
0 0 0 0 3c1 0
0 0 0 0 c3 c1 + c2

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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and

AD,e =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 0 0 0 0 0
0 c2 0 c3 0 0
0 0 c4 0 c5 c6

0 0 0 c2
1 0 0

0 0 0 0 c3
1 0

0 0 0 0 c1c3 c1c2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As an example assume that the three monomials x2
1 , x3

1 and x1x2 are resonant,
c4 = 3c1, c2 = 2c1, in the continuous-time case, and c4 = c3

1, c2 = c2
1, in the

discrete-time case; under such an assumption, one has

eAC,et =

⎡
⎢⎢⎢⎢⎢⎢⎣

etc1 0 0 0 0 0
0 e2tc1 0 c3te2tc1 0 0
0 0 e3tc1 0 1

2 te3tc1(2c5 + c6c3t) c6te3tc1

0 0 0 e2tc1 0 0
0 0 0 0 e3tc1 0
0 0 0 0 c3te3tc1 e3tc1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which yields

Φf (t, x) =
⎡
⎣

etc1 0 0 0 0 0
0 e2tc1 0 c3te2tc1 0 0
0 0 e3tc1 0 1

2 te3tc1(2c5 + c6c3t) c6te3tc1

⎤
⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3

x2
1

x3
1

x1x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

etc1x1

e2tc1x2 + tc3e2tc1x2
1

e3tc1x3 + 1
2 te3tc1(2c5 + tc6c3)x

3
1 + tc6e3tc1x1x2

⎤
⎥⎦ ,

and

At
D,e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ct
1 0 0 0 0 0

0 c2t
1 0 c3tc

2t−2
1 0 0

0 0 c3t
1 0 1

2c6c3t (t − 1)c−5+3t
1 + tc5c

3t−3
1 c6tc

3t−3
1

0 0 0 c2t
1 0 0

0 0 0 0 c3t
1 0

0 0 0 0 c3tc
3t−2
1 c3t

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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which yields

ΨF (t, x) =
⎡
⎣

ct
1 0 0 0 0 0

0 c2t
1 0 c3tc

2t−2
1 0 0

0 0 c3t
1 0 1

2c6c3t (t − 1)c−5+3t
1 + tc5c

3t−3
1 c6tc

3t−3
1

⎤
⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3

x2
1

x3
1

x1x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

ct
1x1

c2t
1 x2 + c3tc

2t−2
1 x2

1

c3t
1 x3 + ( 1

2 c6c3t (t − 1)c−5+3t
1 + c5tc

3t−3
1 )x3

1 + c3t−3
1 c6tx1x2

⎤
⎥⎦ .

7.3 Computation of a Linearizing Diffeomorphism by Using
Semi-invariants

Under the assumptions of Theorems 7.1 and 7.2, in order to simplify the exposi-
tion, assume that g is linear and diagonal, with integer and positive eigenvalues, and
that f , F are polynomial and homogeneous of degree 0 with respect to g, using
Definition 3.8 of homogeneity even when the discrete-time system is considered;
this corresponds to being already in the y-coordinates mentioned in Theorems 7.1
and 7.2. Denote by Ax the linear part of f or F , A = ∂f (x)

∂x
|x=0 = ∂F (x)

∂x
|x=0, and

by Ae the dynamic matrix of the extended linear system obtained by the state im-
mersion: let xe be the state of the extended linear system thus obtained and ne be its
dimension.

Let u be a real (respectively, complex) left eigenvector of matrix Ae with a
real (respectively, complex) eigenvalue λ, u�Ae = λu�; then, ω(xe) = u�xe (re-
spectively, ω(xe) = (u∗�xe)(u

�xe), where ∗ means complex conjugate) is a semi-
invariant of the extended linear system. Then, by the pull-back to the original coor-
dinates, if ω̂(x) = ω(xe) = ω ◦ ϕe(x), then ω̂(x) is a semi-invariant of the original
nonlinear systems (1.1a), (1.1b). Hence, the set of points x ∈ R

n such that ω̂(x) = 0
is invariant for the nonlinear systems (1.1a), (1.1b).

Example 7.5 Let g(x) = [x1 3x2]�; any f , F polynomial and homogeneous of
degree 0 with respect to g are given by f (x) = F(x) = [a1x1 a2x2 + a3x

3
1 ]�, with

a1, a2, a3 being arbitrary reals. Such a system can be linearized with the position
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x3 = x3
1 , thus obtaining

AC,e =
⎡
⎣

a1 0 0
0 a2 a3
0 0 3a1

⎤
⎦

in the continuous-time case and

AD,e =
⎡
⎣

a1 0 0
0 a2 a3

0 0 a3
1

⎤
⎦

in the discrete-time case. Under the assumption of absence of resonances (i.e.,
a2 	= 3a1 in the continuous-time case and a2 	= a3

1 in the discrete-time case), matrix
Ae has three left eigenvectors being linearly independent over R: u�

1 = [1 0 0], with
eigenvalue λ1 = a1, u

�
2 = [0 0 1], with eigenvalue λ2 = 3a1 if T = R and λ2 = a3

1 if
T = Z, and u�

3 = [0 a2 − 3a1 a3] if T = R, and u�
3 = [0 a2 − a3

1 a3] if T = Z, with
eigenvalue λ3 = a2. The semi-invariants of the extended linear system Δxe = Aexe

are ωi(xe) = u�
i xe, i = 1,2,3. Consequently, the semi-invariants associated with f

are ω̂1(x) = x1, ω̂2(x) = x3
1 , ω̂3(x) = (a2 − 3a1)x2 + a3x

3
1 and the semi-invariants

associated with F are ω̂1(x) = x1, ω̂2(x) = x3
1 , ω̂3(x) = (a2 − a3

1)x2 + a3x
3
1 .

Using the concept of semi-invariant and a simple extension of it, it is possible to
prove the following theorem, similar to Theorem 3.35 at p. 121 and Theorem 4.16
at p. 178, whose constructive proof gives an expression in closed form of the trans-
formation y = ϕ(x), assuming a diagonal linear symmetry g, having generic integer
positive eigenvalues.

Theorem 7.3 Let f , F be polynomial and homogeneous of degree 0 with respect
to g(x) = Bx, with B diagonal and having integer and positive eigenvalues. Let
A = ∂ f (x)

∂x
|x=0 = ∂F (x)

∂x
|x=0 and let Ae be the dynamic matrix of the extended linear

system obtained by state immersion. If, for each left Jordan chain {u�
1 , . . . , u�

h } of
A relative to the eigenvalue λ (such as u�

i A = λu�
i + ui+1, i = 1, . . . , h − 1, and

u�
h A = λu�

h ), there exist h vectors {ū1, . . . , ūh} such that {[u�
1 ū�

1 ], . . . , [u�
h ū�

h ]}
is a left Jordan chain of Ae, relative to the eigenvalue λ, then there exist n function-
ally independent scalar functions vi(x) such that yi = vi(x), i = 1, . . . , n, qualifies
as a diffeomorphism at x = 0 and the systems (1.1a), (1.1b) expressed in the new
coordinates are linear.

Remark 7.7 If A is semi-simple, the condition on its Jordan chains is simply that
for each left eigenvector u� of A, relative to the eigenvalue λ, there exists ū� such
that [u� ū�] is a left eigenvector of Ae, relative to the eigenvalue λ. Note that if the
eigenvalues of g are all different, then necessarily A is diagonal (and therefore its
left eigenvectors u� are trivial, although it is not always true that, for each of them,
there exists ū� such that [u� ū�] is a left eigenvector of Ae). Another special case
is when the eigenvalues of A have the same algebraic multiplicity as eigenvalues of
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Ae: in such a case, from the triangular form of Ae, it follows that the hypothesis of
Theorem 7.3 on the left Jordan chains of A is satisfied.

Proof The proof of the theorem is completely detailed in the case of real eigen-
values of A, leaving some details about the case of complex eigenvalues to the
reader. For each eigenvalue λ of A, with algebraic multiplicity μ and geometric
multiplicity m, 1 ≤ m ≤ μ, there exist μ generalized left eigenvectors of A, rela-
tive to λ, linearly independent over C and organized in m Jordan chains as follows:
{u�

1,1, u
�
1,2, . . . , u

�
1,h1

}, . . . , {u�
k,1, u

�
k,2, . . . , u

�
k,hk

}, . . . , {u�
m,1, u

�
m,2, . . . , u

�
m,hm

}, with∑m
k=1 hk = μ, and, for each generalized left eigenvector u�

k,j of A, there exists

ūk,j such that w�
k,j = [u�

k,j ū�
k,j ] is a generalized left eigenvector of Ae, rela-

tive to λ. Then, for each real eigenvalue λ, consider the corresponding μ func-
tions ωk,j (xe) = w�

k,j xe, for which Δωk,j (xe) = λωk,j (xe) + ωk,j+1(xe) for j =
1, . . . , hk − 1, or Δωk,j (xe) = λωk,j (xe) for j = hk ; writing them in the origi-
nal coordinates, for the corresponding μ functions vk,j (x) = ωk,j (ϕ(x)), one has
Δvk,j (x) = λvk,j (x) + vk,j+1(x) for j = 1, . . . , hk − 1 or Δvk,j (x) = λvk,j (x) for
j = hk . Note that the m functions ωk,hk

(xe) = w�
k,hk

xe are semi-invariants of the ex-
tended linear system, such that Δωk,hk

(xe) = λωk,hk
(xe); writing them in the orig-

inal coordinates, the corresponding m functions vk,hk
(x) = ωk,hk

(ϕ(x)), are semi-
invariants of the original system such that Δvk,hk

(x) = λvk,hk
(x). Then, the set of

n functions vi(x), i = 1, . . . , n, can be taken collecting μr functions for each real
eigenvalue λr of A with algebraic multiplicity μr and 2μr functions (found in a
similar way) for each pair (λr, λ

∗
r ) of complex conjugate eigenvalues of A having

algebraic multiplicity μr . It is easy to see that such functions are functionally inde-
pendent, and that, assuming a proper ordering of them, letting y = [y1 . . . yn]�, one
has Δy = Aq,dy, with matrix Aq,d being block diagonal in the real Jordan form. �

Example 7.6 Continue Example 7.5. As for the continuous-time case, if a2 	= 3a1
(in which case the eigenvalues of A have the same algebraic multiplicity as eigen-
values of Ae), then the two left eigenvectors of A, namely [1 0] and [0 a2 −3a1], can
be “extended” to the corresponding left eigenvectors u�

1 and u�
3 (using the notation

in Example 7.5) of Ae ; therefore y1 = x1, y2 = (a2 − 3a1)x2 + a3x
3
1 qualifies as a

polynomial diffeomorphism. In the new y-coordinates, one finds that dy1
dt

= a1y1,
dy2
dt

= a2y2. As for the discrete-time case, if a2 	= a3
1 (in which case the eigenvalues

of A have the same algebraic multiplicity as eigenvalues of Ae), then the two left
eigenvectors of A, namely [1 0] and [0 a2 − a3

1], can be “extended” to the corre-
sponding left eigenvectors u�

1 and u�
3 (using the notation in Example 7.5) of Ae;

therefore y1 = x1, y2 = (a2 − a3
1)x2 + a3x

3
1 qualifies as a polynomial diffeomor-

phism. In the new y-coordinates, one computes Δy1 = a1y1, Δy2 = a2y2.

7.4 Linearization of Hamiltonian Planar Systems

In this section, it is assumed that x = [x1 x2]� ∈ R
2 and that {u,v} = ∂u

∂x

[ 0 1
−1 0

]∇v.
For all notations and basic concepts about Hamiltonian systems see Chap. 5.
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Theorem 7.4 [87] Consider the Hamiltonian function H(x) = K ◦ h(x), where
h(x) = [h1(x) h2(x)]� ∈ R

2 is analytic at x = 0, h(0) = 0 and such that
{h1, h2} = 1. Assume that K(y) is polynomial and homogeneous of degree k =
w1 + w2 with respect to δw

ε y, with w = [w1 w2]�, w1,w2 ∈ Z, w1,w2 > 0. Let fH

be the Hamiltonian vector function associated with H . Then,

(7.4.1) g(x) = (
∂h(x)
∂x

)−1[w1h1(x) w2h2(x)]� is a (not necessarily Hamiltonian)
symmetry of fH ;

(7.4.2) g can be linearized by y = h(x), thus finding in the new coordinates g̃(y) =
[w1y1 w2y2]�;

(7.4.3) since the Hamiltonian vector function f̃K(y) = ( ∂h
∂x

fH ) ◦ h−1(y) is an-
alytic at y = 0 and homogeneous of degree 0 with respect to g̃(y) =
[w1y1 w2y2]�, f̃K can be rendered linear by a finite dimensional state im-
mersion;

(7.4.4) if w1 = w2 = 1, then f̃K is linear.

Proof First, note that y = h(x) qualifies as a canonical diffeomorphism. In the
y-coordinates, one finds that g̃(y) = ( ∂h

∂x
g) ◦ h−1(y) = [w1h1 w2h2]� ◦ h−1(y) =

[w1y1 w2y2]�, thus proving Statement (7.4.2) of the theorem. In these coordinates,
the Hamiltonian function H(x) takes the form K(y), and the Hamiltonian system
takes the form f̃K(y) = [ ∂K(y)

∂y2
− ∂K(y)

∂y1
]�. Then, clearly, ∂K

∂y2
is polynomial and

homogeneous of degree k − w2 = w1 and − ∂K
∂y1

is polynomial and homogeneous

of degree k − w1 = w2, whence f̃K is polynomial and homogeneous of degree 0
with respect to δw

ε y, whence g̃(y) = [w1y1 w2y2]� is a symmetry of f̃K . Thanks
to the invariance of the Lie bracket to diffeomorphisms, g = ( ∂h

∂x
)−1[w1h1 w2h2]�

is a symmetry of fH , thus proving Statement (7.4.1) of the theorem. Since if f̃K is
polynomial and homogeneous of degree 0 with respect to δw

ε y, with r = [1 1]�, one
concludes that f̃K is linear, thus proving Statement (7.4.4) of the theorem. If f̃K

is polynomial and homogeneous of degree 0 with respect to δw
ε y, then f̃K,i is the

sum of some monomials m
wi

j = y
j1
1 y

j2
2 homogeneous with respect to δw

ε y of degree
wi . If u(y) is any function homogeneous with respect to δw

ε y of a certain degree,
then L

f̃K
u = {u,K} is homogeneous with respect to δw

ε y of the same degree, which

shows how f̃K can be linearized by taking as state variables all monomials m
wi

j ,
i = 1,2, thus proving Statement (7.4.3) of the theorem. �

Example 7.7 Take h(x) = [x1 + x2
2 x2]�, K(h) = 1

2h�Bh and B = [ 1 −1
−1 2

]
(re-

spectively, B = [ 1 2
2 3

]
), which yields the Hamiltonian system described by

fH (x) =
[

2x3
2 − 3x2

2 + (2x1 + 2)x2 − x1

−x1 − x2
2 + x2

]

(
respectively, fH (x) =

[
2x3

2 + 6x2
2 + (2x1 + 3)x2 + 2x1

−x1 − x2
2 − 2x2

])
;



7.4 Linearization of Hamiltonian Planar Systems 287

a symmetry g of fH is g(x) = [x1 − x2
2 x2]� (note that such a symmetry is

not Hamiltonian, because div(g) = 2 	= 0). It is easy to check that g can be lin-
earized by y = [x1 + x2

2 x2]�, thus finding g̃(y) = [y1 y2]�; by the same dif-
feomorphism, one has f̃K(y) = [−y1 + 2y2 − y1 + y2]� (respectively, f̃K(y) =
[2y1 + 3y2 − y1 − 2y2]�). Clearly, H(x) = 1

2h�(x)Bh(x) is a first integral associ-

ated with f , Lf H = 0. In the second case, matrix
[ 2 3

−1 −2

]
has u�

1 = [1 1], λ1 = 1

and u�
2 = [1 3], λ2 = −1 as real (left eigenvector, eigenvalue) pairs; this yields

two Darboux polynomials of the original system, ω1(x) = u�
1 h(x) = x1 + x2

2 + x2

and ω2(x) = u�
2 h(x) = x1 + x2

2 + 3x2. As a matter of fact, Lf ω1 = ω1 and
Lf ω2 = −ω2; actually, note that H = 1

2ω1ω2, according to the fact that Lf H =
1
2 (ω2Lf ω1 + ω1Lf ω2) = 1

2 (ω1ω2 − ω1ω2) = 0.

Example 7.8 Take h(x) = [x1 + 1
2x2

2 x1 +x2 + 1
2x2

2 ]� and K(h) = ah1h2 + b
3 h3

1; it is
easy to see that K is homogeneous of degree 3 with respect to δw

ε h, with w = [1 2]�,
and that {h1, h2} = det

([ 1 x2
1 1+x2

]) = 1. The corresponding Hamiltonian system is

described by fH = [fH,1 fH,2]�, with fH,1(x) = 1
4bx5

2 + (a + bx1)x
3
2 + 3

2ax2
2 +

(2ax1 + bx2
1)x2 + ax1 and fH,2(x) = − 1

4bx4
2 + (−a − bx1)x

2
2 − ax2 − 2ax1 − bx2

1 ;
a symmetry g of fH is then (note that such a symmetry is not Hamiltonian, because
div(g) = 3 	= 0)

g(x) =
[
x1 − 3

2x2
2 − x1x2 − 1

2x3
2

x1 + 1
2x2

2 + 2x2

]
.

With the diffeomorphism y1 = x1 + 1
2x2

2 , y2 = x1 + x2 + 1
2x2

2 , one has

g̃(y) =
[

y1
2y2

]
, f̃K(y) =

[
ay1

−ay2 − by2
1

]
.

Clearly, f̃K can be immersed into a linear system with the position y3 = y2
1 , thus

finding the extended linear system

dy1

dt
= ay1,

dy2

dt
= −ay2 − by3,

dy3

dt
= 2ay3.

The flow of the above extended linear system is

ΦAeye
(t, ye) = eAet

⎡
⎣

y1
y2
y3

⎤
⎦ =

⎡
⎢⎣

eat y1

e−aty2 − 1
3b e2ta−e−at

a
y3

e2tay3

⎤
⎥⎦ ,

which, taking into account that y3 = y2
1 , yields the following flow of the system

dy
dt

= f̃K(y):

Φ
f̃K

(t, y) =
[

eaty1

e−aty2 − 1
3b e2ta−e−at

a
y2

1

]
.
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From Φ
f̃K

(t, y), taking into account that x1 = y1 − 1
2y2

2 +y2y1 − 1
2y2

1 , x2 = y2 −y1,
one can compute the flow of the original Hamiltonian system.

Such results can be easily extended to the case when some dissipation is present
in the Hamiltonian system, as explained in the following. Consider a Hamiltonian
function H = 1

2h�Bh, with the entries h1 and h2 of h satisfying {h1, h2} = 1, and
the corresponding Hamiltonian system described by fH = ( ∂h

∂x
)−1SBh, with S =[ 0 1

−1 0

]
; a symmetry of fH is g = ( ∂h

∂x
)−1h. Some dissipative effects, which maintain

some of the structure of the system, can be taken into account by substituting matrix
S with matrix Sd = [ 0 1

−1 −d

]
, with d being a real constant: fH,d = ( ∂h

∂x
)−1SdBh.

Since the entries of y = h(x) qualify as canonical coordinates, both fH,d and g can
be linearized by y = h(x), f̃K,d = ( ∂h

∂x
fH,d) ◦ h−1(y) = SdBy and g̃(y) = ( ∂h

∂x
g) ◦

h−1(y) = y; g is a symmetry of fK,d , since g̃ is a symmetry of f̃K,d .

Example 7.9 Take B = [ −1 0
0 1

]
; since H = 1

2h�Bh = 1
2(h2

2 − h2
1) is not positive

definite, the classical approach of using H as a Lyapunov function is not effective
in this case. The semi-invariants of the Hamiltonian system, with the dissipation
described by the vector function fH,d , are ω1 = h1(

1
2d − 1

2

√
d2 + 4)+h2 and ω2 =

h1(
1
2d + 1

2

√
d2 + 4) + h2 with respective (constant) characteristic functions λ1 =

1
2d + 1

2

√
d2 + 4 and λ2 = 1

2d − 1
2

√
d2 + 4: the origin of the Hamiltonian system

is clearly unstable for all values of d (λ1 is a positive function of d , and λ2 is a
negative function of d).

The philosophy behind Theorem 7.4 is simple: given a Hamiltonian system, find
one of its symmetries such that there exists a diffeomorphism linearizing the sym-
metry and jointly transforming the Hamiltonian system into a polynomial form,
homogeneous of degree 0 with respect to a certain integer dilation. Then, it is of
interest to compute all symmetries of a Hamiltonian system.

Consider the Hamiltonian function H and the corresponding Hamiltonian vector
function fH . Let K(x) be a function such that {K,H } = 1: since

{K,H } = det

([
∂K
∂x
∂H
∂x

])
,

condition {K,H } = 1 can hold only about a regular point xo of fH , fH (xo) 	= 0
(namely, such that ∂H(x)

∂x
|x=xo 	= 0), according to the Frobenius Theorem 1.9 at

p. 21. In the canonical coordinates y1 = K(x) and y2 = H(x), the Hamiltonian
function takes the form H̃ (y) = y2, and the Hamiltonian system expressed in these

coordinates is straightened, f̃
H̃

(y) = [ ∂H̃ (y)
∂y2

− ∂H̃ (y)
∂y1

]� = [1 0]�. All symmetries

of f̃
H̃

are parameterized by g̃(y) = [C0(y2) C1(y2)]�, where Ci(y2) is an arbitrary
function of y2, whence (by Statement (1.4.1) of Theorem 1.4 at p. 9) all symmetries
g of fH are parameterized by

g =
(

∂

∂x

[
K

H

])−1 [
C0(H)

C1(H)

]�
.
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Example 7.10 Consider the Hamiltonian function H(x) = ax1x2 + b
3x3

1 , with a 	= 0,
and the corresponding Hamiltonian system given by fH (x) = [ax1 − ax2 − bx2

1 ]�.

Define K(x) := 1
a

ln(x1), for which {K(x),H(x)} = det
([ 1

ax1
0

ax2+bx2
1 ax1

]) = 1. Then,

all symmetries g of fH are parameterized by

g(x) =
[

ax1C0

(−ax2 − bx2
1)C0 + 1

ax1
C1

]
,

with C0 and C1 being arbitrary functions of H . In particular, taking C0 = 1
a

and
C1 = 3H = 3(ax1x2 + b

3 x3
1), one obtains the symmetry g(x) = [x1 2x2]�, according

to the fact that fH is homogeneous of degree 0 with respect to δw
ε , w = [1 2]�.

It is also of interest, given a vector function g, to compute all the Hamilto-
nian systems having g as symmetry. Assume the existence of two functions J0 and
J1 such that LgJ0 = 1, LgJ1 = 0 and {J0, J1} = 1. This means that y1 = J0(x),
y2 = J1(x) qualify as canonical coordinates with respect to the given Poisson
bracket and, in particular, in these coordinates g is straightened: g̃(y) = [1 0]�.
If fH is Hamiltonian and has g as a symmetry, then system dx

dt
= fH (x) trans-

formed into the y-coordinates dy
dt

= f̃
H̃

(y) is still Hamiltonian and has g̃(y) as a

symmetry, because y1 and y2 are canonical. All f̃
H̃

having g̃ as a symmetry are pa-
rameterized by f̃

H̃
= [C0 C1]�, with C0 and C1 being arbitrary functions of y2; if

f̃
H̃

is Hamiltonian, then it must be area preserving (namely, div(f̃
H̃

) = 0): then, all
the Hamiltonian vector functions f̃

H̃
having g̃ as a symmetry are parameterized by

f̃
H̃

(y) = [C0(y2) C1]�, with C0 being an arbitrary function of y2 and C1 being con-
stant, with the respective Hamiltonian function K(y1, y2) = ∫

C0(y2)dy2 − C1y1

(clearly,
∫

C0(y2)dy2 is an arbitrary function of y2). By the pull-back to the original
x-coordinates, one concludes that all the Hamiltonian vector functions fH having g

as a symmetry are parameterized by

fH =
(

∂

∂x

[
J0
J1

])−1 [
C0(J1)

C1

]
,

with the Hamiltonian function H(x) = K(J0, J1) = ∫
C0(y2)dy2|y2=J1 − C1J0.

Example 7.11 Consider g(x) = [1 + x2 − 1]�. Clearly, J0(x) = x1 + 1
2x2

2 and
J1(x) = x1 + x2 + 1

2x2
2 satisfy LgJ0 = 1, LgJ1 = 0 and {J0, J1} = 1. Then, all

the Hamiltonian fH having g as a symmetry are parameterized by the Hamiltonian
function H(x) = C2(x1 +x2 + 1

2x2
2)− (x1 + 1

2x2
2)C1, where C2(y2) = ∫

C0(y2)dy2

is an arbitrary function of y2 and C1 is a constant. For instance, taking C2(y2) = 1
2y2

2
and C1 = 1, one obtains the Hamiltonian function H(x) = 1

2 (x1 + x2 + 1
2x2

2)2 −
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(x1 + 1
2x2

2), with the respective Hamiltonian system described by

fH (x) =
[
x1 + x1x2 + 3

2x2
2 + 1

2x3
2

−(x1 + x2 + 1
2x2

2 − 1)

]
.

7.5 Linearization of Higher Order Hamiltonian Systems

In this section assume that S = [ 0 E
−E 0

]
and x = [q� p�]�. The proof of the follow-

ing theorem is omitted; it is similar to the one of Theorem 7.4.

Theorem 7.5 Let H(x) = K ◦ h(x), where h(x) ∈ R
2n is analytic at x = 0,

h(0) = 0. Assume that K(h) is polynomial and homogeneous of degree k = wi +
wi+n, i = 1, . . . , n, with respect to δw

ε h, with w = [w1 . . . wn wn+1 . . . w2n]�,
wi ∈ Z, wi > 0. Consider the Hamiltonian vector function fH associated with H ;
assume that

{hi, hj } = 0, {hi+n,hj+n} = 0,

{hi, hj+n} =
{

0, if i 	= j,

1, if i = j,
∀i, j ∈ {1, . . . , n}.

Then,

(7.5.1) g = ( ∂h
∂x

)−1[w1h1 . . . w2nh2n]� is a (not necessarily Hamiltonian) symme-
try of f ;

(7.5.2) g can be linearized by y = h(x), thus finding in the new coordinates g̃(y) =
[w1y1 . . . w2ny2n]�;

(7.5.3) since f̃K(y) = ( ∂h
∂x

fH ) ◦ h−1(y) is analytic at y = 0 and homogeneous of

degree 0 with respect to g̃(y) = [w1y1 . . . w2ny2n]�, f̃K can be rendered
linear by a finite dimensional state immersion;

(7.5.4) if wi = wi+n = 1, i = 1, . . . , n, then f̃K is linear.

Example 7.12 Assume that K(y) is polynomial and homogeneous of degree 4
with respect to a dilation, with the vector of weights w = [2 1 2 3]�, K(y) =
a1y1y

2
2 + a2y3y

2
2 + a3y1y3 + a4y

4
2 + a5y2y4. Let yi = hi(x), i = 1, . . . ,4, and as-

sume, in addition, that functions hi ’s satisfy the following conditions: {h1, h2} = 0,
{h1, h3} = 1, {h1, h4} = 0, {h2, h3} = 0, {h2, h4} = 1, and {h3, h4} = 0. These con-
ditions ensure that yi = hi(x), i = 1, . . . ,4, qualify as canonical coordinates, such
that the transformed Hamiltonian system is described by the following vector func-
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tion:

f̃K(y) =

⎡
⎢⎢⎢⎢⎢⎣

∂K
∂y3
∂K
∂y4

− ∂K
∂y1

− ∂K
∂y2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

a2y
2
2 + a3y1
a5y2

−a1y
2
2 − a3y3

−2a1y1y2 − 2a2y2y3 − 4a4y
3
2 − a5y4

⎤
⎥⎥⎦ .

This system can be linearized by the state immersion y5 = y2
2 , y6 = y3

2 , y7 = y1y2,
and y8 = y2y3.





Chapter 8
Stability Analysis

8.1 Background

This brief section summarizes some classical results that are explained in more de-
tail in many textbooks such as, e.g., [9, 11, 60, 76, 115].

For x ∈ C
n, ‖x‖ = √

x�x denotes the Euclidean norm of x. Such a choice is not
restrictive, since all norms on x ∈ C

n are equivalent (see [41, Sect. 2]).

Definition 8.1 An equilibrium point xe ∈ R
n of systems (1.1a), (1.1b), f (xe) = 0

and F(xe) = xe, is stable if for any ε > 0, there exists a δε > 0, such that, for every
initial condition x(0) ∈ R

n for which ‖x(0) − xe‖ < δε , the solution Φf (t, x(0))

(respectively, ΨF (t, x(0))) of systems (1.1a), (1.1b) through x(0) at t = 0 satisfies
the inequality ‖Φf (t, x(0))− xe‖ < ε (respectively, ‖ΨF (t, x(0))− xe‖ < ε) for all
t ≥ 0. The equilibrium point xe is said to be unstable if it is not stable.

Definition 8.2 An equilibrium point xe ∈ R
n of systems (1.1a), (1.1b) is attractive

if there exists a δ > 0 such that limt→+∞ ‖Φf (t, x(0)) − xe‖ = 0 (respectively,
limt→+∞ ‖ΨF (t, x(0)) − xe‖ = 0), for all x(0) ∈ R

n for which ‖x(0) − xe‖ < δ.
If the above limits hold for all x(0) ∈ R

n, then the equilibrium point xe of (1.1a),
(1.1b) is globally attractive.

Definition 8.3 An equilibrium point xe ∈ R
n of systems (1.1a), (1.1b) is asymptoti-

cally stable (respectively, globally asymptotically stable) if it is stable and attractive
(respectively, globally attractive).

In the following, it will be assumed that the equilibrium is the origin, xe = 0,
with no loss of generality apart from a translation y = x − xe.

Definition 8.4 A function V (x) ∈ R, continuous at x = 0, is positive definite (re-
spectively, positive semi-definite) about x = 0 if V (0) = 0 and V (x) > 0 (respec-
tively, V (x) ≥ 0) for all x ∈ U ∗, x 
= 0, with U ∗ being a neighborhood of x = 0;

L. Menini, A. Tornambè, Symmetries and Semi-invariants in the Analysis
of Nonlinear Systems,
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V is globally positive definite if U ∗ = R
n. Function V is negative definite (re-

spectively, negative semi-definite) if −V is positive definite (respectively, positive
semi-definite); V is globally negative definite if −V is globally positive definite.
Function V is radially unbounded if

lim‖x‖→+∞V (x) = +∞.

Note that, in the following, when V is used for a continuous-time system, it will
be implicitly required that V is C1, so that Lf V is well defined.

Theorem 8.1 Let V (x) be analytic at x = 0. Let δw
ε x be a positive dilation, with

w = [w1 . . . wn]�, with constants wi > 0. Consider the Taylor expansion of
V (δw

ε x) with respect to ε = 0, for x in a sufficiently small neighborhood U ∗ of
x = 0,

V
(
δw
ε x

) = εmV [m](x) + O
(
εm+1).

If V [m](x) is positive definite about x = 0, then V (x) is positive definite about x = 0.

Proof The proof follows from the fact that there exists a positive ε∗ such that

V [m](x) > O(ε), ∀ε ∈ (
0, ε∗),

for each x ∈ U ∗ for which V [m](x) > 0, since y = δw
ε x comprises a neighborhood

of y = 0 (apart from y = 0), when x and ε vary in U ∗ and (0, ε∗), respectively. �

Example 8.1 Consider V (x) = x6
1 − 2x3

1x3
3 − 2x2

1x2
2 + x2

2 + x4
3 . Using the standard

dilation w = [1 1 1]�, one has

V
(
δw
ε x

) = [
x6

1 − 2x3
1x3

3 − 2x2
1x2

2 + x2
2 + x4

3

]
x1=εx1,x2=εx2,x3=εx3

= ε2x2
2 + ε4(x4

3 − 2x2
1x2

2

) + O
(
ε6)

and no conclusion about the positive definiteness of V (x) can be inferred. Consider
the dilation with the vector of weights w = [2 6 3]� and compute

V
(
δw
ε x

) = [
x6

1 − 2x3
1x3

3 − 2x2
1x2

2 + x2
2 + x4

3

]
x1=ε2x1,x2=ε6x2,x3=ε3x3

= ε12(x6
1 + x2

2 + x4
3

) + O
(
ε13).

Since V [12](x) = x6
1 +x2

2 +x4
3 is positive definite about x = 0, then V (x) is positive

definite too.

The following theorems are classical (see, e.g., [60, 115]).

Theorem 8.2 (The first Lyapunov theorem) Assume that f (0) = F(0) = 0 and that
f and F are C1 at x = 0. If there exists a function V (x) being positive definite and
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such that Lf V (x) if T = R (respectively, V ◦ F(x) − V (x) if T = Z) is negative
semi-definite, then the origin of systems (1.1a), (1.1b) is a stable equilibrium point.

A function satisfying the conditions of the first Lyapunov Theorem 8.2 is said to
be a (weak) Lyapunov function.

Theorem 8.3 (The second Lyapunov theorem) Assume that f (0) = F(x) = 0 and
that f and F are C1 at x = 0. If there exists a function V (x) being positive definite
and such that Lf V (x) if T = R (respectively, V ◦F(x)−V (x) if T = Z) is negative
definite, then the origin of systems (1.1a), (1.1b) is an asymptotically stable equilib-
rium point. If, in addition, V is globally positive definite and radially unbounded
and Lf V (x) if T = R (respectively, V ◦ F(x) − V (x) if T = Z) is globally negative
definite, then the origin is a globally asymptotically stable equilibrium point.

A function satisfying the conditions of the second Lyapunov Theorem 8.3 is said
to be a (strict) Lyapunov function. Note that if there exists an interval (ti, tf ) such
that Lf V (x(t)) < 0 or V ◦ F(x(t)) − V (x(t)) < 0 for all t ∈ (ti , tf ), then V (x(t))

is strictly decreasing on (ti , tf ).
The following theorem, due to Kurzweil [78] (see also Theorem 2.4 of [11])

in the continuous-time case and due to other several authors in the discrete-time
case (see Remark 5 at p. 429 of [10]), gives the converse statement of the second
Lyapunov Theorem 8.3.

Theorem 8.4 Let f (x) and F(x) be continuous at x = 0. If the origin of sys-
tems (1.1a), (1.1b) is an asymptotically stable equilibrium point, then there exists
a strict Lyapunov function V (x), C∞ at x = 0 if T = R (respectively, C0 at x = 0 if
T = Z).

Remark 8.1 Assume T = R. If the origin is an asymptotically stable equilibrium
point, and the convergence to 0 is exponential (in such a case the origin is exponen-
tially stable), i.e., if there exist k,λ, δ > 0 such that

∥∥Φf (t, x)
∥∥ ≤ ke−λt‖x‖, ∀t ∈ R

≥, ∀‖x‖ < δ,

where ‖a‖ = √
a�a for a ∈ R

n, then the construction of a Lyapunov function is
very simple. Define

V (x) := lim
T →+∞

∫ T

0
Φ�

f (τ, x)Φf (τ, x)dτ. (8.1)

Clearly,

V (x) = lim
T →+∞

∫ T

0

∥∥Φf (τ, x)
∥∥2

dτ ≤ lim
T →+∞

∫ T

0
k2e−2λτ‖x‖2 dτ ≤ k2

2λ
‖x‖2,

which shows that V (x) in (8.1) is well defined (and non-negative) for all ‖x‖ < δ.
By the uniqueness of the solution, Φf (τ, x) = 0 if and only if x = 0, whence such
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a V (x) is positive definite. Let x(t) = Φf (t, ξ) and consider now W(t) = V (x(t))

and compute the time derivative of W(t) (which coincides with Lf V (x(t))),

Lf V
(
x(t)

) = d

dt
lim

T →+∞

∫ T

0
Φ�

f

(
τ,Φf (t, ξ)

)
Φf

(
τ,Φf (t, ξ)

)
dτ

= lim
T →+∞

∫ T

0
2Φ�

f

(
τ,Φf (t, ξ)

)(∂Φf (τ, x)

∂x

)
◦ Φf (t, ξ)

∂Φf (t, ξ)

∂t
dτ.

Now, by definition of flow,
∂Φf (t,ξ)

∂t
= f ◦ Φf (t, ξ), whence

Lf V
(
x(t)

) = lim
T →+∞

∫ T

0
2Φ�

f

(
τ,Φf (t, ξ)

)(∂Φf (τ, x)

∂x
f (x)

)
◦ Φf (t, ξ)dτ.

Since [f,f ] = 0, by Theorem 3.4, one has
∂Φf (τ,x)

∂x
f (x) = f (x) ◦ Φf (τ, x), which

yields the negative definite function

Lf V
(
x(t)

) = lim
T →+∞

∫ T

0
2Φ�

f

(
τ,Φf (t, ξ)

)
f (x) ◦ Φf

(
τ,Φf (t, ξ)

)
dτ

= lim
T →+∞

∫ T

0
2Φ�

f

(
τ,Φf (t, ξ)

)∂Φf (τ,Φf (t, ξ))

∂τ
dτ

= lim
T →+∞

[
Φ�

f

(
τ,Φf (t, ξ)

)
Φf

(
τ,Φf (t, ξ)

)]T
0

= −Φ�
f

(
0,Φf (t, ξ)

)
Φf

(
0,Φf (t, ξ)

) = −Φ�
f (t, ξ)Φf (t, ξ)

= −x�(t)x(t).

Example 8.2 Consider f (x) = [−x1 − 3x2 + ax2
1 ]�, where a is an arbitrary real

constant. The flow of f can be easily computed for any a,

Φf (t, x) =
[

e−t x1

e−3t x2 + a(e−2t − e−3t )x2
1

]
.

By (8.1), one computes V (x) = 1
2x2

1 + 1
6x2

2 + a
15x2x

2
1 + a2

60x4
1 , which is clearly pos-

itive definite, with the negative definite derivative Lf V (x) = −x2
1 − x2

2 .

The following theorem is due to Krasowskii and LaSalle in the continuous-time
case (see, [60]) and it can be found in [79] for the discrete-time case.

Theorem 8.5 (Krasowskii-LaSalle Theorem) Assume that f (0) = 0, F(0) = 0 and
that f and F are C1 at x = 0. Let V be a weak Lyapunov function. If the greatest
invariant set contained in {x ∈ U ∗ : Lf V (x) = 0} if T = R (respectively, {x ∈ U ∗ :
V ◦ F(x) − V (x) = 0} if T = Z), then the origin of systems (1.1a), (1.1b) is an
asymptotically stable equilibrium point.
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The following theorem is well known [60, 79].

Theorem 8.6 (Stability analysis by linearization) Assume that f (0) = 0, F(0) = 0
and that f and F are C1 at x = 0. Let AC = ∂f (x)

∂x
|x=0 and AD = ∂F (x)

∂x
|x=0.

(8.6.1) If all eigenvalues of AC have negative real part in the continuous-time case
(respectively, all eigenvalues of AD have modulus less than 1 in the discrete-
time case), then the origin of systems (1.1a), (1.1b) is asymptotically stable.

(8.6.2) If matrix AC has one eigenvalue with positive real part in the continuous-
time case (respectively, matrix AD has one eigenvalue with modulus greater
than 1 in the discrete-time case), then the origin of systems (1.1a), (1.1b) is
unstable.

Remark 8.2 Although the proof of Statement (8.6.1) is omitted, Statement (8.6.1)
can be easily understood in the continuous-time case, when:

(8.2.1) AC (not necessarily semi-simple) has negative eigenvalues that do not
present resonances, and

(8.2.2) AC is semi-simple with negative integer eigenvalues.

In case (8.2.1), taking into account the Poincaré–Dulac Theorem 3.33 at p. 118
and Remark 3.40 at p. 133, system (1.1a) is diffeomorphic to its linear part. In
case (8.2.2), since all eigenvalues of AC are negative, by the Poincaré–Dulac
Theorem 3.33 at p. 118, there exists a near-identity diffeomorphism y = ϕ(x),
analytic at x = 0, such that the push-forward of the nonlinear system is in the
Poincaré–Dulac normal form. Hence, apart from such a diffeomorphism, assume
that f (x) = ACx + h(x), [h(x),ACx] = 0, h(x) analytic at x = 0, h(0) = 0, with
zero linear part. By Remark 3.33 at p. 115, taking as additional state variables the
resonant monomials in h(x), the nonlinear system can be immersed into an extended
linear system having all eigenvalues of its dynamic matrix with negative real part.

8.2 Scalar Nonlinear Systems

Consider first the continuous-time case.
Assume that n = 1 and that f (x) is C1 at x = 0. As discussed in [61], in the

case of a scalar differential equation, if every solution with initial value close to 0
approaches 0 as t → +∞, then it follows that 0 is stable, namely in case of scalar
systems the attractivity implies the stability. However, this is not true when n > 1
and the concepts of stability and attractivity are, in general, independent.

Theorem 8.7 The equilibrium point x = 0 of (1.1a) with f (0) = 0 and n = 1 is:

(8.7.1) stable if there is a δ > 0 such that xf (x) ≤ 0 for all x ∈ R, |x| < δ;
(8.7.2) asymptotically stable if there is a δ > 0 such that xf (x) < 0 for all x ∈ R,

|x| < δ, x 
= 0;
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(8.7.3) unstable if there is a δ > 0 such that xf (x) > 0 for all x ∈ R, with either
0 < x < δ or −δ < x < 0.

Proof The proof of Statements (8.7.1) and (8.7.2) of the theorem can be easily done
with the Lyapunov function V = 1

2x2. The proof of Statement (8.7.3) of the theorem
follows from the fact that, for any ε < δ, solutions starting in any arbitrarily small
neighborhood of x, on the side where xf (x) > 0, satisfy ‖x(t)‖ > ε for t sufficiently
large. In this case, it can be said that the origin is repulsive. �

Theorem 8.8 If f is analytic at x = 0, then the sufficient conditions of State-
ments (8.7.1) and (8.7.3) of Theorem 8.7 are also necessary.

Proof If f = 0, then the condition of Statement (8.7.1) of Theorem 8.7 must hold.
Let f (x) = xhψ(x), with ψ(0) 
= 0 and h ≥ 1 being an arbitrary integer. By The-
orem 2.1 of [16], properly amended to include the case of f analytic at x = 0,
there exists an analytic diffeomorphism y = ϕ(x), ϕ(x) : U0 → R

n, with U0 being
a neighborhood of the origin, ϕ(0) = 0 and ∂ϕ(x)

∂x
|x=0 = 1, such that

ϕ∗f (y) = ahy
h + a2h−1y

2h−1, (8.2)

with ah 
= 0 (note that if h = 1, ϕ∗f (y) = by, with b = 2a1). Therefore, there are
only four possible cases: (i) h even and ah < 0, (ii) h even and ah > 0, (iii) h odd
and ah < 0 and (iv) h odd and ah > 0. If, for any sufficiently small ε > 0, there exist
initial conditions arbitrarily close to y = 0, such that the corresponding solutions
become larger that ε, one of the three cases (i), (ii) and (iv) happens, and therefore
the condition of Statement (8.7.3) of Theorem 8.7 must necessarily hold. �

Example 8.3 If f (x) = x, f (x) = ±x2 + a3x
3 or f (x) = x3 + a5x

5, then the equi-
librium point at x = 0 is unstable. If f (x) = −x or f (x) = −x3 + a5x

5, then the
equilibrium point at x = 0 is asymptotically stable. If f (x) is analytic at x = 0,
f (0) = 0, then the equilibrium point at x = 0 is stable but not asymptotically stable
if and only if f = 0.

Example 8.4 If f (x) is not analytic at x = 0, the analysis is more cumbersome than
the one depicted by Theorem 8.8. Let [61]

f (x) =
{

0, if x = 0,

−x3 sin( 1
x
), if x 
= 0.

The equilibrium points of f (x) are given by xe,k = 1
kπ

, k ∈ Z, k 
= 0, and by xe = 0.
Clearly, xe = 0 is an equilibrium point that is an accumulation point of the other
equilibrium points xe,k for |k| → +∞. By applying Statement (8.7.3) of Theo-
rem 8.7, it is easy to see that the equilibrium point xe,k is unstable if (i) k is even and
positive, and (ii) k is odd and negative, whereas it is asymptotically stable if (i) k is
even and negative, and (ii) k is odd and positive. Hence, xe = 0 is stable, but not
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asymptotically stable. Although xe = 0 is stable, condition of Statement (8.7.1) of
Theorem 8.7 does not hold (there exists no δ > 0 such that xf (x) ≤ 0 for all x ∈ R

such that |x| < δ), and Theorem 8.8 cannot be applied since f is not analytic at
x = 0.

Consider now the discrete-time case.
Combining together the analysis carried out in Sect. 4.8 and Proposition 5.1

of [57], the stability analysis of scalar discrete-time systems Δx = F(x), with F

being analytic at x = 0, can be carried out as follows. Note that, despite F is ana-
lytic at x = 0, some of the involved diffeomorphisms may be only formal, but this
does not invalidate the proposed results, because, in view of the comments made
right after Theorem 3.33, this just implies that arbitrarily high order terms (irrele-
vant for the results discussed here) are neglected.

Let λx, with λ ∈ R, be the linear part of F(x). Assume that F(x) is already in
the Poincaré–Dulac normal form, F(x) = λx + H(x), with H(x) being analytic at
x = 0, H(0) = 0, ∂H(x)

∂x
|x=0 = 0 and �λx,H(x)� = 0. The linear centralizer of λ is

spanned by 1, for any λ. Therefore, H(x) = μ(x)x, where μ ∈ ID(Ax).
(i) If |λ| 
= 1 and λ 
= 0, set ID(Ax) is constituted by constants and, therefore,

H(x) = 0, which implies that

F(x) = λx;
if |λ| < 1 (respectively, |λ| > 1), the origin of the discrete-time system is asymptot-
ically stable (respectively, unstable).

(ii) If λ = 0, since �λx,H(x)� = H(λx) − λH(x), condition �λx,H(x)� = 0 is
satisfied by any H(x), analytic at x = 0 with H(0) = 0, ∂H(x)

∂x
|x=0 = 0, namely

F(x) = H(x) = xH̃ (x),

for some H̃ (x) analytic at x = 0, H̃ (0) = 0. Taking as a Lyapunov function
V (x) = x2, one computes ΔV (x) − V (x) = x2(H̃ 2(x) − 1), which is negative def-
inite. Hence, the origin of the discrete-time system is asymptotically stable.

(iii.a) If λ = 1, set ID(Ax) is constituted by arbitrary functions of x. Therefore,
one has that H(x) = C(x)x, where C(x) is an arbitrary function of x, such that
C(0) = 0. Let h ≥ 2 be such that H(x) = xhĤ (x), with Ĥ (0) 
= 0. By Proposi-
tion 5.1 of [57], there exists a formal diffeomorphism, y = ϕ(x) such that

ϕ∗F(y) = y + ahy
h + a2h−1y

2h−1,

with ah 
= 0. Consider the Lyapunov function V (y) = y2, for which

ΔV (y) − V (y) = (
y + ahyh + a2h−1y

2h−1)2 − y2

= 2ahy
h+1 + (

a2
h + 2a2h−1

)
y2h + 2y3h−1aha2h−1 + a2

2h−1y
4h−2,

which is negative definite (respectively, positive definite) if h is odd and ah < 0
(respectively, ah > 0), and therefore the origin is asymptotically stable (respectively,
unstable) in such a case.
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(iii.b) If λ = −1, set ID(Ax) is constituted by arbitrary functions of x2. There-
fore, H(x) = C(x2)x, where C is an arbitrary function of the argument, such that
C(0) = 0. Let h ≥ 3 be that odd number such that H(x) = xhĤ (x), with Ĥ (0) 
= 0.
By Proposition 5.1 of [57], there exists a formal diffeomorphism y = ϕ(x) such that

ϕ∗F(y) = −y + ahy
h + a2h−1y

2h−1,

with ah 
= 0. Consider the Lyapunov function V (y) = y2, for which

ΔV (y) − V (y)

= (−y + ahy
h + a2h−1y

2h−1)2 − y2

= −2ahy
h+1 + (

a2
h − 2a2h−1

)
y2h + 2aha2h−1y

3h−1 + a2
2h−1y

4h−2,

which is negative definite (respectively, positive definite) if ah > 0 (respectively,
ah < 0), and therefore the origin is asymptotically stable (respectively, unstable) in
such a case.

8.3 Semi-invariants and Center Manifold for Planar Systems

In this section, the connection between semi-invariants and center manifold is
pointed out, by using the Poincaré–Dulac normal form. For simplicity, the analy-
sis is restricted to the planar case.

Consider first the continuous-time case.
When the linear part of a planar system has one simple eigenvalue equal to zero,

the center manifold theory (see [27, 58] and [69]) is one of the most powerful tools
for studying the stability of the origin.

As already mentioned, if ω is a semi-invariant, then the manifold described by
ω = 0, if not empty, is invariant. Assume that the matrix A of the linear part of f

is diagonal and has two real eigenvalues λ1 = 0 and λ2 = b 
= 0, A = diag{0, b};
assume also that b < 0, otherwise the origin is unstable by Theorem 8.6. Call the
center the subspace of R

2 spanned by the eigenvector with eigenvalue λ1. If ω = 0
is tangent with the center at x = 0, then ω = 0 is a center manifold. Such planar
systems can be studied easily either by the Shoshitaishvili Theorem (see [33, 34]),
or by using the Poincaré–Dulac normal form. Let y = ϕ(x) be the (possibly, for-
mal) change of coordinates transforming f (x) into its Poincaré–Dulac normal form
f̃ (y). The linear centralizer of A is spanned by {E,A}, with E being the identity
matrix; all first integrals of dy

dt
= Ay are of the form I = G(y1), with G being an

arbitrary function of y1. Then,

f̃ (y) = Ay + μ0Ey + μ1Ay =
[

μ0y1
by2 + y2(μ0 + bμ1)

]
, (8.3)
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with μ0 and μ1 being arbitrary functions of y1, being analytic at y1 = 0 and satis-
fying

μ0(0) = μ1(0) = 0 and
∂μ0(y1)

∂y1

∣∣∣∣
y1=0

= ∂ μ1(y1)

∂y1

∣∣∣∣
y1=0

= 0.

Note that, since μ1 + 1
b
μ0 + 1 > 0 in a neighborhood of the origin, one can define

the normalized system dy
dt

= f̃N (y), where

f̃N (y) = 1

μ1 + 1
b
μ0 + 1

f̃ (y) =
[

bμ0
b+μ0+bμ1

y1

by2

]
;

the phase portrait of the normalized system is topologically equivalent to the phase
portrait of dy

dt
= f̃ (y) and, in particular, the stability properties of the origin are

the same for both systems. The reasoning above coincides with the Shoshitaishvili
Theorem, restricted to planar systems.

A symmetry g̃ of f̃ is given by

g̃(y) = Ay =
[

0
by2

]
.

The corresponding inverse integrating factor is given by ω(y) = bμ0y1y2 (i.e.,
ω = det([f̃ g̃]) as in Sect. 3.6). This gives giving two semi-invariants ω1(y) = y1

and ω2(y) = y2. The center manifold is described by ω2 = 0, and dy1
dt

= y1μ0(y1)

is the corresponding reduced system. For b < 0, the origin is asymptotically sta-
ble for the given system if and only if it is such for the reduced system, i.e., if
and only if μ0(y1) < 0 for all y1 
= 0 belonging to a neighborhood of y1 = 0;
this can be verified, in the original coordinates, using as a Lyapunov function
V (x) = 1

2ω2
1(x) + 1

2ω2
2(x). Under the above assumption, if the transformation ϕ(x)

is convergent (respectively, formal), the system has at least two (respectively, for-
mal) semi-invariants that coincide with the entries of ϕ(x).

Example 8.5 Consider

f (x) =
[
x2

2(3x2
1 + 2x1 − 2) − x3

1 + x6
2 − x4

2(3x1 + 2)

x1x2 − x3
2 − x2

]
;

it can be checked that g(x) = [2x2
2 x2]� is a symmetry of f . The corresponding in-

verse integrating factor is ω(x) = −(x1 − x2
2)3x2, which yields two Darboux poly-

nomials ω1(x) = x1 − x2
2 and ω2(x) = x2, with corresponding characteristic func-

tions λ1(x) = −ω2
1 and λ2(x) = −1 + ω1. The center manifold is characterized by

ω2 = 0, which implies x2 = 0; the corresponding reduced system is obtained from
dx1
dt

= f1(x1, x2) by letting x2 = 0, thus obtaining dx1
dt

= −x3
1 (this already clarifies

that the origin is asymptotically stable by the center manifold theory). Note that y1 =
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ω1(x), y2 = ω2(x) qualifies as a polynomial diffeomorphism, such that the push-
forward of f is in the Poincaré–Dulac normal form, ϕ∗f (y) = [−y3

1 −y2 +y1y2]�.
Clearly, the origin is an asymptotically stable equilibrium point, as can be shown
with the Lyapunov function V (x) = 1

2ω2
1(x) + 1

2ω2
2(x) = 1

2(x1 − x2
2)2 + 1

2x2
2 , hav-

ing directional derivative along f : Lf V (x) = −ω4
1(x) + (−1 + ω1(x))ω2

2(x) =
−(x1 − x2

2)4 + (−1 + x1 − x2
2)x2

2 .

Consider now the discrete-time case.
If ω is a semi-invariant, then the manifold described by ω = 0, if not empty,

is invariant. Assume that the matrix A of the linear part of F is diagonal and has
two real eigenvalues λ1 = ±1 and λ2 = b, |b| < 1, A = diag{λ1, b}: for simplicity,
assume also b 
= 0. Call center the subspace of R

2 spanned by the eigenvector with
eigenvalue λ1. If ω = 0 is tangent with the center at x = 0, then ω = 0 is a center
manifold.

Similarly to the continuous-time case, the analysis of the stability properties of
the origin can be done using the Poincaré–Dulac normal form. Let y = ϕ(x) be the
(possibly, formal) change of coordinates transforming F(x) into its Poincaré–Dulac
normal form F̃ (y). The linear centralizer of A is spanned by {E,A}, being E the
identity matrix; all first integrals of dy

dt
= Ay are of the form I = G(y1) if λ1 = 1

and of the form I = G(y2
1) if λ1 = −1, with G being an arbitrary function. Then,

F̃ (y) = Ay + μ0Ey + μ1Ay =
[

(μ0 ± (μ1 + 1))y1
(μ0 + b(μ1 + 1))y2

]
, (8.4)

with μ0 and μ1 being arbitrary functions of I , such that H(y) = μ0Ey + μ1Ay is
analytic at x = 0, H(0) = 0 and ∂ H(y)

∂y
|y=0 = 0.

Clearly, ω1(y) = y1 and ω2(y) = y2 are two semi-invariants with characteristic
functions λ1(y) = λ1(y) = μ0 ± μ1 ± 1 and λ2(y) = μ0 + bμ1 + b. The center
manifold is described by ω2 = 0, and Δy1 = (μ0 ± (μ1 +1))y1 is the corresponding
reduced system. For |b| < 1, the origin is asymptotically stable for the given system
if and only if it is such for the reduced system. The fact that the reduced system must
be asymptotically stable, if the whole system is such, is evident because a solution
of the reduced system can be rewritten in the original coordinates as a solution of
the whole system. To prove that asymptotic stability of the reduced system implies
the asymptotic stability of the whole system, consider a strict Lyapunov function
V1(y1) for the reduced system (which exists by Theorem 8.4), and use it to write the
Lyapunov function V (x) = V1(ω1(x))+ω2

2(x) for the whole system. By computing
ΔV in the y-coordinates, one has

ΔV (y) = ΔV1(y1) + (
λ2

2(y1) − 1
)
y2

2 .

Since V1 is a strict Lyapunov function for the reduced system and λ2(0) = b,
|b| < 1, then there exists a neighborhood of the origin of R

2 in which ΔV is neg-
ative definite, thus proving asymptotic stability. Note that a sufficient condition for
asymptotic stability of the reduced system is |μ0 ± (μ1 + 1)| < 1 for all y1 
= 0
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belonging to a neighborhood of y1 = 0. Under the above assumption, if the trans-
formation ϕ(x) is convergent (respectively, formal), the system has at least two (re-
spectively, formal) semi-invariants that coincide with the entries of ϕ(x).

Example 8.6 Consider

F(x) =
[
−x4

1x2
2 − 4x3

1x4
2 + x3

1 − 6x2
1x6

2 + 2x2
1x2

2 − 4x1x
8
2 + x1x

4
2 − x1 − x10

2 − 5
4x2

2

x2
1x2 + 2x1x

3
2 + x5

2 + 1
2x2

]
;

it can be checked that ω1(x) = x1 + x2
2 and ω2(x) = x2 are two Darboux poly-

nomials, with characteristic functions λ1(x) = (x1 + x2
2 − 1)(x1 + x2

2 + 1) and
λ2(x) = x2

1 + 2x1x
2
2 + x4

2 + 1
2 , respectively. The center manifold is characterized

by ω2 = 0, which implies x2 = 0; the corresponding reduced system is obtained
from Δx1 = F1(x1, x2) by letting x2 = 0, thus obtaining Δx1 = x3

1 − x1, which
has x1 = 0 as an asymptotically stable equilibrium point, as one can see with the
Lyapunov function W(x1) = x2

1 , for which

ΔW(x1) − W(x1) = −(
2 − x2

1

)
x4

1 .

Note that y1 = ω1(x), y2 = ω2(x) qualifies as a polynomial diffeomorphism, such
that the push-forward of F is in the Poincaré–Dulac normal form,

ϕ∗F(y) =
[

y3
1 − y1

y2y
2
1 + 1

2y2

]
.

Clearly, the origin is an asymptotically stable equilibrium point of the original
discrete-time system, as can be shown with the Lyapunov function V (x) = ω2

1(x)+
ω2

2(x) = (x1 + x2
2)2 + x2

2 ; to see that ΔV − V is negative definite, it is sufficient to
expand ΔV − V in series of homogeneous terms with respect to the dilation δw

ε x,
with w = [2 1]�,

ΔV
(
δw
ε x

) − V
(
δw
ε x

) = −ε4
(

2x4
1 + 3

4
x2

2

)
+ O

(
ε6).

8.4 Stability of Continuous-Time Critical Planar Systems

In this section, the analysis is restricted to the continuous-time case, with n = 2.
Assume that f is analytic at x = 0, f (0) = 0; let A = ∂f (x)

∂x
|x=0. By Theorem 8.6,

the only cases in which the stability analysis cannot be done from the linear approx-
imation are those in which one eigenvalue of A has zero linear part, and the second
eigenvalue has non-positive real part: such cases are called critical. Apart from the
case A = 0 (which is still very challenging) and apart from a linear transformation,
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there are only three critical cases studied in the following sections:

A =
[

0 a

−a 0

]
, a ∈ R

>, (8.5a)

A =
[

0 0
0 λ

]
, λ ∈ R

<, (8.5b)

A =
[

0 1
0 0

]
. (8.5c)

8.4.1 Linear Part with Imaginary Eigenvalues

Let f be in the Poincaré–Dulac normal form, with a linear part described by the
dynamic matrix given in (8.5a); with no loss of generality, since a linear time scal-
ing does not change the stability properties, assume that a = 1. Since the linear
centralizer of A (i.e., the set of all matrices B commuting with A) is spanned by
the identity matrix E and by A and since all first integrals of dx

dt
= Ax are arbitrary

functions of x2
1 +x2

2 , the vector function f is given by f = Ax +μ0x +μ1Ax, with
μ0 and μ1 being arbitrary functions of x2

1 + x2
2 such that μi(0) = 0, i = 1,2. Then,

g = Ax = [x2 − x1]� is a symmetry of f . The corresponding inverse integrating
factor is

ω = det

([
x2 + μ0x1 + μ1x2 x2

−x1 + μ0x2 − μ1x1 −x1

])
= −(

x2
1 + x2

2

)
μ0.

Hence, one has the semi-invariant ω = x2
1 + x2

2 , with characteristic function λ =
2μ0:

Lf ω = 2μ0(ω)ω. (8.6)

Clearly, the origin x = 0 of system (1.1a) is asymptotically stable if and only if
the origin ω = 0 of the scalar system (8.6) is asymptotically stable. Since μ0(ω)

is assumed analytic at ω = 0, if μ0 
= 0, then in a neighborhood of the origin one
has μ0(ω) ≈ bmωm, for some integer m; if bm < 0, independently of the fact that m

is even or odd, then, with the Lyapunov function V = 1
2ω2 = 1

2 (x2
1 + x2

2)2, having
derivative Lf V = 2μ0ω

2 ≈ 2bm(x2
1 + x2

2)m+2, it is easy to see that the origin of
system (1.1a) is an asymptotically stable equilibrium point (exponentially stable if
m = 0), independently of the expression of function μ1 (see also [42, 58]).

8.4.2 A Simple Proof of a Bendixson Result for Planar
Continuous-Time Systems

The aim of this section is to give a new and simple proof of the subsequent Theo-
rem 8.9, which resumes some results ascribed to Bendixson [17], giving a necessary
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and sufficient condition for asymptotic stability of the origin for a class of planar
systems having the linear part with eigenvalues λ1 = 0 and λ2 < 0, without using
the center manifold.

Note that there are systems, with the origin being an asymptotically stable equi-
librium point, for which the origin is not asymptotically stable for the first approx-
imation, for all admissible dilations. In the following Example 8.7 (which is a well
known case study, see, e.g., [11]), it is shown that the Darboux polynomials may be
actually used for the construction of Lyapunov functions also in this case. Later on,
the connection with the mentioned Bendixson result is pointed out.

Example 8.7 Consider f = f 〈3〉 + f 〈4〉, where

f 〈3〉(x) =
[−x3

1−x2

]
, f 〈4〉(x) =

[
a1x1x2 + a2x

4
1

a3x1x2 + a4x
4
1

]
.

It is clear that f 〈3〉 cannot be the first approximation with respect to any integer
dilation; in fact, if f 〈3〉 was homogeneous (of order m) with respect to some dilation
with positive weights w1 and w2, then it would be w1 −m = 3w1 and w2 −m = w2,
thus implying m = 0 and w1 = 0. A symmetry of f 〈3〉 is g(x) = [k1x

3
1 k2x2]�, with

k1 
= k2; the resulting inverse integrating factor is

ω〈3〉(x) = det

([−x3
1 k1x

3
1−x2 k2x2

])
= (k1 − k2)x

3
1x2,

which yields two Darboux polynomials ω1(x) = x1 and ω2(x) = x2. Since all mono-
mials appearing in f 〈3〉 are homogeneous of degree 3 with respect to δw

ε x, with
w = [1 3]�, and all monomials appearing in f 〈4〉 are homogeneous of degree 4 with
respect to the same δw

ε x, instead of constructing a Lyapunov function homogeneous
with respect to δw

ε x, it is required that ∂V
∂x1

and ∂V
∂x2

are homogeneous with respect
to δw

ε x with the same degree, so that Lf 〈3〉V and Lf 〈4〉V are homogeneous with re-
spect to δw

ε x with the degree of Lf 〈4〉V being equal to the degree of Lf 〈3〉V plus 1.

In particular, such a Lyapunov function is V (x) = 1
4ω4

1(x) + 1
2ω2

2(x) = 1
4x4

1 + 1
2x2

2

( ∂V (x)
∂x1

= x3
1 and ∂V (x)

∂x2
= x2 are both homogeneous with respect to δw

ε x of degree 3);
then,

Lf V
(
δw
ε x

) = Lf 〈3〉V
(
δw
ε x

) + Lf 〈4〉V
(
δw
ε x

) = ε6Lf 〈3〉V (x) + ε7Lf 〈4〉V (x),

with

Lf 〈3〉V (x) = −x6
1 − x2

2 and Lf 〈4〉V (x) = a1x
4
1x2 + a2x

7
1 + a3x1x

2
2 + a4x

4
1x2.

Since Lf 〈3〉V is negative definite, there exists ε∗ such that Lf V (x) is negative def-
inite for x = δw

ε x, ‖x‖ = 1 and ε ∈ (0, ε∗), which implies that the origin of the
system dx

dt
= f 〈3〉(x)+f 〈4〉(x) is asymptotically stable for all possible values of the

parameters ai ’s. Not surprisingly, the Lyapunov function V (x) = 1
2x2

1 + 1
2x2

2 , which
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seems to be natural for the stability analysis of the origin of dx
dt

= f 〈3〉(x), is not
useful for the stability analysis of the origin of dx

dt
= f 〈3〉(x) + f 〈4〉(x).

In the remainder of this section, the rationale that has been used in Example 8.7,
i.e., the search for a Lyapunov function that is not homogeneous itself but having
directional derivatives with respect to different parts of f that are (in the scalar
sense) homogeneous with respect to a suitable dilation, is used for a constructive
proof of the subsequent Theorem 8.9. Such a result is concerned with the systems
considered in Sect. 8.3. Rather than finding the center manifold and studying the
reduced system, or finding the Poincaré–Dulac normal form, the stability of the
origin can be studied simply (and directly in the original coordinates), using the
theory due to Bendixson, recalled hereafter.

Consider the system dx
dt

= f (x) written component-wise:

dx1

dt
= h1(x1, x2),

dx2

dt
= bx2 + h2(x1, x2),

where b ∈ R
< and functions h1 and h2 are zero at the origin together with their

first order derivatives. By the Implicit Function Theorem (see [48]), there exists
a unique solution x2 = k(x1), k(0) = 0, of the equation 0 = bx2 + h2(x1, x2) in
a neighborhood of x = 0. For subsequent developments, it is important to stress
that ∂ k

∂x1
|x1=0 = 0. Define the function G(x1) := h1(x1, k(x1)) and assume that there

exists a finite integer p ≥ 2 such that G(x1) = apx
p

1 + · · · , with ap 
= 0 (function G

is assumed to be neither identically equal to zero in a neighborhood of x1 = 0 nor
flat at x1 = 0). The following theorem collects some results ascribed to [17] (see
also [42] and [71]).

Theorem 8.9 Assume b < 1. If p is odd, the origin of dx
dt

= f (x) is asymptotically
stable (respectively, unstable) if and only if ap < 0 (respectively, ap > 0).

It is to be noted that the Bendixson analysis deals also with the case of p even,
concluding that, in such a case, since the origin is a saddle-node, it is unstable.

Before giving the new proof of Theorem 8.9, the simplicity of its application is
illustrated by means of the following classical example, taken from [27].

Example 8.8 Consider the system:

dx1

dt
= x1x2 + ax3

1 + bx1x
2
2 ,

dx2

dt
= −x2 + cx2

1 + dx2
1x2.
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The equation 0 = −x2 + cx2
1 + dx2

1x2 has the solution x2 = c
x2

1
1−dx2

1
, which yields

G(x1) = (c + a)x3
1 + (

cd + bc2)x5
1 + (

cd2 + 2bc2d
)
x7

1 + · · · ,

where the dots stand for higher order terms. The origin is asymptotically stable
(respectively, unstable) if

(8.8.1) c + a < 0 (respectively, c + a > 0),
(8.8.2) c + a = 0 and cd + bc2 < 0 (respectively, cd + bc2 > 0),
(8.8.3) c + a = 0, cd + bc2 = 0 and cd2 + 2bc2d < 0 (respectively, cd2 +

2bc2d > 0).

Note that if c + a = 0, c(d + bc) = 0 and cd(d + 2bc) = 0, then either a = c = 0
(with b and c arbitrary) or b = d = 0 and a = −c. In both cases the proposed method
does not apply, because G(x1) = 0; however, G(x1) = 0 implies that the origin is
not an isolated equilibrium, therefore it is not asymptotically stable.

The proof of Theorem 8.9 has been given, in a rather complicated way, by the
Bendixson method or by the Frommer method (see for instance [4]). Aim of this
section is to show that the proof can be done in a much simpler way, by the selection
of a Lyapunov function V , according to what has been done in Example 8.7. The
advantage of the presented proof is its simplicity and the construction in closed
form of a Lyapunov function; in addition, it seems that such an analysis can easily
be extended to the case of a non-planar system of the form dx1

dt
= h1(x1, x2),

dx2
dt

=
Ax2 + h2(x1, x2), x1 ∈ R, x2 ∈ R

n−1, with hi containing second and higher order
terms and with the spectrum of A in the open left half-plane [69].

Proof Consider the change of coordinates y1 = x1, y2 = x2 − k(x1) and the corre-
sponding transformed system. Taking the time derivative of y1, one has

dy1

dt
= h1

(
y1, y2 + k(y1)

);

defining χ1(θ) := h1(y1, θy2 + k(y1)), from the equality

χ1(1) − χ1(0) =
∫ 1

0

∂χ1

∂θ
dθ

it follows that

h1
(
y1, y2 + k(y1)

) − h1
(
y1, k(y1)

) = F1(y1, y2)y2,

where

F1(y1, y2) =
∫ 1

0

∂h1(x1, x2)

∂x2

∣∣∣∣
x1=y1,x2=θy2+k(y1)

dθ
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is analytic in a neighborhood of y1 = 0 and satisfies F1(0,0) = 0. With such a
definition, in the new coordinates

dy1

dt
= G(y1) + F1(y1, y2)y2.

By similarly expanding h2(y1, y2 + k(y1)), and taking into account the definition of
k(x1) given above, one has

dy2

dt
= by2 + bk(y1) + h2

(
y1, y2 + k(y1)

) − ∂k(y1)

∂y1

(
G(y1) + F1(y1, y2)y2

)

= by2 + bk(y1) + h2
(
y1, k(y1)

) +
∫ 1

0

∂h2(x1, x2)

∂x2

∣∣∣∣
x1=y1,x2=θy2+k(y1)

dθy2

− ∂k(y1)

∂y1

(
G(y1) + F1(y1, y2)y2

) = by2 − ∂k(y1)

∂y1
G(y1) + F2(y1, y2)y2,

where

F2(y1, y2) =
∫ 1

0

∂h2(x1, x2)

∂x2

∣∣∣∣
x1=y1,x2=θy2+k(y1)

dθ − ∂k(y1)

∂y1
F1(y1, y2)

is analytic in a neighborhood of y1 = 0 and satisfies F2(0,0) = 0. Hence, in the new
coordinates the system under study is given by

dy1

dt
= G(y1) + F1(y1, y2)y2,

dy2

dt
= by2 − ∂k(y1)

∂y1
G(y1) + F2(y1, y2)y2.

In the case ap < 0, the Lyapunov function V (y) = 1
p+1y

p+1
1 + 1

2y2
2 has the follow-

ing time derivative:

dV

dt
= y

p

1

(
G(y1) + F1(y1, y2)y2

) + y2

(
by2 − ∂k(y1)

∂y1
G(y1) + F2(y1, y2)y2

)
;

since F1(0,0) = F2(0,0) = ∂ k
∂y1

|y1=0 = 0, the first term of the homogeneous ex-

pansion of dV
dt

with respect to the dilation characterized by the vector of weights

w = [1 p]� is apy
2p

1 + by2
2 , which, being negative definite, shows that dV

dt
is

negative definite in a sufficiently small neighborhood of the origin, thus implying
asymptotic stability of the origin; an estimate of the basin of attraction is given by
Uε = {y ∈ R

2 : 1
p+1y

p+1
1 + 1

2y2
2 ≤ ε}, for a sufficiently small ε > 0. If, on the other

hand, ap > 0, consider the function V (y) = 1
p+1y

p+1
1 − 1

2y2
2 , which is zero at the

origin and is such that the origin is an accumulation point of the set in which V > 0.
The first term of the homogeneous expansion of dV

dt
with respect to the same dila-

tion considered above is apy
2p

1 − by2
2 , which, being positive definite, shows that dV

dt
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is a positive definite in a sufficiently small neighborhood of the origin, thus imply-
ing instability of the origin in view of the Lyapunov first instability theorem (see
Exercise 4.11 of [76]). �

The following example illustrates how the new proof of Theorem 8.9 allows
to find Lyapunov functions for studying the stability of the origin for the system
considered in Example 8.8.

Example 8.9 (Example 8.8 continued) Since k(x1) = c
x2

1
1−dx2

1
, consider the change

of coordinates y1 = x1, y2 = x2 −c
x2

1
1−dx2

1
. In case (8.8.1) (c+a 
= 0), one has p = 3,

whence if c + a < 0, the Lyapunov function that shows the asymptotic stability of
the origin is V (y) = 1

4y4
1 + 1

2y2
2 , whereas if c + a > 0, the function that shows

the instability of the origin is V (y) = 1
4y4

1 − 1
2y2

2 . In case (8.8.2) (c + a = 0 and
c(d + bc) 
= 0), one has p = 5, whence if cd + bc2 < 0, the Lyapunov function
that shows the asymptotic stability of the origin is V (y) = 1

6y6
1 + 1

2y2
2 , whereas

if cd + bc2 > 0, the function that shows the instability of the origin is V (y) =
1
6y6

1 − 1
2y2

2 . Finally, in case (8.8.3) (c + a = 0, c(d + bc) = 0 and cd(d + 2bc) 
= 0),
one has p = 7, whence if cd2 + 2bc2d < 0, the Lyapunov function that shows the
asymptotic stability of the origin is V (y) = 1

8y8
1 + 1

2y2
2 , whereas if cd2 +2bc2d > 0,

the function that shows the instability of the origin is V (y) = 1
8y8

1 − 1
2y2

2 .

8.4.3 Stability Analysis for Planar Systems in the Belitskii Normal
Form

In this section, a necessary and sufficient condition for asymptotic stability of the
origin for a large class of planar systems having as linear part dx1

dt
= x2, dx2

dt
= 0

(up to a linear change of coordinates) is provided. An example showing that such
a condition can be used for the stabilization of the origin is given in [97]. As a
preliminary step for the discussion to follow, a result due to Andreev [3] is resumed
here.

Consider a nonlinear system of the following form:

dx1

dt
= x2 + f1(x1, x2),

dx2

dt
= f2(x1, x2),

where f1(x1, x2) and f2(x1, x2) (which need not be polynomial) contain second
and higher order terms. Assume that x2 = φ(x1), φ(0) = 0, is such that φ(x1) +
f1(x1, φ(x1)) = 0,∀x1 in a neighborhood of x1 = 0 (the existence of such a function
φ is ensured by the Implicit Function Theorem (see [48])). Let

G1(x1) = f2
(
x1, φ(x1)

) = γ xh
1 + · · · ,
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G2(x1) =
(

∂f1

∂x1
+ ∂f2

∂x2

)∣∣∣∣
x2=φ(x1)

= ηxk
1 + · · · ,

for some non-zero real numbers γ,η and positive integers h, k; for the sake of sim-
plicity, the cases when G1 or G2 are identically equal to zero (or flat) are excluded.
Note that such a requirement on G1(x1) implies that the origin is an isolated equi-
librium.

Following Andreev [3], it is known that:

(Q.1) if h is odd, k is even, γ < 0 and h > 2k + 1, then x = 0 is a (either attractive
or repulsive) node;

(Q.2) if h is odd, k is even, γ < 0, h = 2k + 1 and η2 + 4γ (k + 1) ≥ 0, then x = 0
is a (either attractive or repulsive) node;

(Q.3) if h is odd, γ < 0, h = 2k + 1 and η2 + 4γ (k + 1) < 0, then x = 0 is a center
or a (either attractive or repulsive) focus;

(Q.4) if h is odd, γ < 0 and h < 2k + 1, then x = 0 is a center or a (either attractive
or repulsive) focus;

in all other cases, the origin is neither a node nor a center/focus (it is a cusp or a sad-
dle or a saddle-node, or the phase portrait presents an elliptic sector), and therefore
it is not asymptotically stable nor even stable.

The organization of the remainder of the section is as follows: first, for systems
in the Belitskii normal form, a necessary and sufficient condition for asymptotic
stability of the origin is stated in Theorem 8.10, which covers three possible cases,
and in Lemma 8.1, which partially covers a fourth, more complex, situation. After
such two results, Theorem 8.11 and the discussion leading to it illustrate how to deal
with systems that are not given in the Belitskii normal form.

Consider system (1.1a) with f (x) in the Belitskii normal form, in the case its
linear part Ax is described by

A =
[

0 1
0 0

]
. (8.7)

Since the linear centralizer of A� is spanned by the identity matrix E and by
A�, and since all first integrals of dx

dt
= A�x are of the form I = C(x1), with C(x1)

being an arbitrary function of x1, then the vector function f in the Belitskii normal
form is given by

fb(x) = Ax + α(x1)x + β(x1)A
�x =

[
x2 + α(x1)x1

α(x1)x2 + β(x1)x1

]
, (8.8)

where α and β are arbitrary functions of x1 (that need not be polynomial), analytic
at x1 = 0 and satisfying α(0) = β(0) = 0. As for the application of Andreev result,
clearly,

φ(x1) = −α(x1)x1, (8.9a)

G1(x1) = x1
(−α2(x1) + β(x1)

)
, (8.9b)
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G2(x1) = α(x1) + x1
∂α(x1)

∂x1
+ α(x1). (8.9c)

Now, let α(x1) = amxm
1 + · · · and β(x1) = bnx

n
1 + · · · for some non-zero real num-

bers am and bn and positive integers m and n, if function β(x1) is not identically
equal to zero, otherwise use the same notation for α(x1) and let n = +∞ (G2(x1)

not identically equal to zero implies that α(x1) is not identically equal to zero).
Hence, G2(x1) can be expanded as follows:

G2(x1) = am(2 + m)xm
1 + · · · ,

from which one has k = m and η = am(2 + m), whereas, excluding for simplicity
the special case when 2m = n and bn = a2

m, one has

G1(x1) =

⎧⎪⎨
⎪⎩

−a2
mx2m+1

1 + · · · , if 2m < n,

(bn − a2
m)x2m+1

1 + · · · , if 2m = n and bn − a2
m 
= 0,

bnx
n+1
1 + · · · , if 2m > n.

Consequently, since h is given by

h =
{

2m + 1, if 2m ≤ n,

n + 1, if 2m > n,

it can be seen that case (Q.1) of Andreev’s study cannot occur; note that this is a
consequence of the exclusion of the case when 2m = n and bn = a2

m. Therefore,
taking also into account that

γ =

⎧⎪⎨
⎪⎩

−a2
m, if 2m < n,

bn − a2
m, if 2m = n and bn − a2

m 
= 0,

bn, if 2m > n,

the following four cases of interest, can be identified:

(A) if 2m < n and m is even, then all conditions of case (Q.2) are satisfied and
x = 0 is a (either attractive or repulsive) node;

(B) if 2m = n, m is even, and both

bn − a2
m < 0, (8.10a)

m2a2
m + 4(m + 1)bn ≥ 0, (8.10b)

then all conditions of case (Q.2) are satisfied and x = 0 is a (either attractive or
repulsive) node;

(C) if 2m = n, m is even, and both

bn − a2
m < 0, (8.11a)

m2a2
m + 4(m + 1)bn < 0, (8.11b)
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then all conditions of case (Q.3) are satisfied and x = 0 is either a center or a
(either attractive or repulsive) focus;

(D) if 2m > n, n and m are even and bn < 0, then all conditions of case (Q.4) are
satisfied and x = 0 is either a center or a (either attractive or repulsive) focus.

It is to be stressed that, apart from the special case of 2m = n and bn = a2
m, for

all systems that do not belong to any of the classes (A)–(D), the origin is either a
cusp or a saddle or a saddle-node or the phase portrait presents an elliptic sector (in
all such cases the origin is unstable) or the origin is a center-focus. The problem
of distinguishing a center from a focus is one of the classical unsolved problems in
mathematics [53], and is partially dealt with in cases (C) and (D).

Note that the difference between cases (B) and (C) is the value of the parameter
ξ defined as

ξ := η2 + 4γ (k + 1) = m2a2
m + 4(m + 1)bn;

in case (B) the two inequalities (8.10a), (8.10b) are equivalent to − m2a2
m

4(m+1)
≤ bn < a2

m

(i.e., bn can be positive or negative but with “small” absolute value), whereas in case
(C) the two inequalities (8.11a)–(8.11b) are equivalent to

bn < − m2a2
m

4(m + 1)
. (8.12)

The following Theorem 8.10, which is reported from [97], gives a simple neces-
sary and sufficient condition for asymptotic stability of the origin in the three cases
(A), (B) and (C); the proof is based on the use of Lyapunov functions derived on
the basis of Darboux polynomials for the first approximation of the given system
with respect to a given dilation. The more complicate case (D) is dealt with partially
in the subsequent Lemma 8.1; note that the necessary and sufficient condition in
Theorem 8.10 and in Lemma 8.1 is the same.

Theorem 8.10 Assume that the functions G1(x1) and G2(x1) defined in (8.9a)–
(8.9c) are not identically equal to zero. Assume that the hypotheses of either one
of the cases (A), (B) and (C) are satisfied. Then, the origin x = 0 is asymptotically
stable for system dx

dt
= fb(x), with fb(x) analytic at x = 0 and of the form (8.8), if

and only if

am < 0. (8.13)

Proof The proof uses the first approximation of fb(x) in (8.8) with respect to the
vector function g = [x1 (m+1)x2]�. By the assumptions made, the first approxima-
tion of fb(x) with respect to g has degree j∗ = −m in all three cases (A), (B) and
(C): it is denoted by f [−m](x) and is given by f [−m](x) = [x2 +amxm+1

1 amxm
1 x2]�

in case (A), and by f [−m](x) = [x2 + amxm+1
1 amxm

1 x2 + bnx
2m+1
1 ]� in cases

(B) and (C). The inverse integrating factor associated with the pair (f [−m], g) is
ω = det([f [−m] g]) (see Sect. 3.6). In case (A), ω can be factorized as ω = ω1ω2,
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thus yielding the two Darboux polynomials (with the respective characteristic poly-
nomials):

ω1(x) = x2, λ1 = amxm
1 ,

ω2(x) = (m + 1)x2 + mamxm+1
1 , λ2 = (m + 1)amxm

1 .

Following [88, 96], the positive definite Lyapunov function is

V (x) = 1

2
x2

2 + 1

2

(
(m + 1)x2 + mamxm+1

1

)2
,

for which

Lf [−m]V (x) = amxm
1 x2

2 + (m + 1)amxm
1

(
(m + 1)x2 + mamxm+1

1

)2
.

By Andreev’s result applied to the first approximation, the origin is a node and there-
fore it can be either asymptotically stable or unstable (in the second case completely
repulsive). If condition (8.13) holds, then dV

dt
is negative semi-definite. Hence, the

first approximation is asymptotically stable, thus proving asymptotic stability of the
origin for the system dx

dt
= fb(x), with fb(x) of the form (8.8), in view of [11, 106].

If, conversely, am > 0, then, with the same Lyapunov function, asymptotic stability
of the origin can be proven for the system dx

dt
= −fb(x), thus showing that the ori-

gin is unstable for system dx
dt

= fb(x). In case (B), the inverse integrating factor ω

can be factorized as ω = (m + 1)ω1ω2, thus yielding the two Darboux polynomials
(with the respective characteristic polynomials):

ω1(x) = x2 − (−amm + √
ξ)

2(m + 1)
xm+1

1 , λ1(x) = 1

2

(
am(m + 2) − √

ξ
)
xm

1 ,

ω2(x) = x2 − (−amm − √
ξ)

2(m + 1)
xm+1

1 , λ2(x) = 1

2

(
am(m + 2) + √

ξ
)
xm

1 .

If am < 0, then 1
2 (am(m + 2) − √

ξ) is negative; hence, λ2
xm

1
is negative if and only if

λ1λ2
x2m

1
is positive; in particular

λ1(x)λ2(x)

x2m
1

= 1

4

(
a2
m(m + 2)2 − ξ 2) = (

a2
m − bn

)
(m + 1), (8.14)

which is positive by condition (8.10a). Then, a Lyapunov function is V = 1
2ω2

1 +
1
2ω2

2, whose time derivative dV
dt

, under condition (8.13), is negative semi-definite;
since also in case (B) the origin is a node for the first approximation, the same
reasoning made above for case (A) proves asymptotic stability of the origin for
system dx

dt
= fb(x), with fb(x) of the form (8.8). If, conversely, am > 0, then

1
2 (am(m + 2) + √

ξ) is positive; since λ1λ2
x2m

1
is positive (because (8.14) still holds),

then also 1
2 (am(m+2)−√

ξ) is positive; hence, dV
dt

is positive semi-definite and the
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instability of the origin follows, as in case (A), considering the system dx
dt

= −fb(x).
In case (C), the inverse integrating factor ω is

ω(x) = [
xm+1

1 x2
][−bn

amm
2

amm
2 (m + 1)

][
xm+1

1
x2

]
.

Since the inequality (8.12) implies that bn is negative, then, using also condition
(8.11a)–(8.11b), it can be seen that ω is a positive definite function of x, to be used
as a Lyapunov function:

V (x) = x2
2(m + 1) + ammx2x

m+1
1 − bnx

2+2m
1 ,

with time derivative

dV

dt
= (2 + m)amxm

1

(
x2

2(m + 1) + ammx2x
m+1
1 − bnx

2+2m
1

)
.

If condition (8.13) holds, dV
dt

is negative semi-definite, and, using the Krasowskii–
LaSalle Theorem 8.5, it can be shown that the origin is asymptotically stable for the
first approximation and, as a consequence [11, 106], for system dx

dt
= fb(x), with

fb(x) of the form (8.8). If, conversely, am > 0, then dV
dt

is positive semi-definite; in
this case, the Krasowskii–LaSalle Theorem 8.5 can be used to prove that the origin is
asymptotically stable for system dx

dt
= −fb(x) and is therefore unstable for system

dx
dt

= fb(x). �

The following lemma partially deals with case (D); it is somewhat weaker than
Theorem 8.10 because in its proof the asymptotic stability of the origin for system
dx
dt

= fb(x) is not proven by means of its first approximation.

Lemma 8.1 Assume that the functions G1(x1) and G2(x1) defined in (8.9a)–(8.9c)
are not identically equal to zero. Assume that the hypotheses of case (D) are satisfied
and, moreover, β(x1) = bnx

n
1 + ∑+∞

s=s̄ b̄sx
n+s
1 , for some s̄ such that 2s̄ > 2m − n.

Then, the equilibrium point x = 0 is asymptotically stable for system dx
dt

= fb(x)

with fb(x) of the form (8.8) if and only if

am < 0. (8.15)

Proof In this case, using the first approximation of fb(x) with respect to the vector
function g = [2x1 (n + 2)x2]�, which is given by

dx1

dt
= x2,

dx2

dt
= bnx

n+1
1 ,

the corresponding inverse integrating factor,

ω(x) = det

([
x2 2x1

bnx
n+1
1 (n + 2)x2

])
= (n + 2)x2

2 − 2bnx
2+n
1 ,
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is a positive definite function of x, by condition bn < 0, and can be used as a Lya-
punov function V = ω. However, its time derivative is identically equal to zero
for the first approximation, whence higher order terms are to be taken into ac-
count in order to distinguish between a center and a focus. In particular, letting
α(x1) = amxm

1 + ∑+∞
h=1 āhxm+h

1 , the time derivative dV
dt

of V = ω for the whole
system dx

dt
= fb(x) can be written as

dV

dt
= 2(n + 2)xm

1

(
amW1(x) + W2(x)

)
,

W1(x) = x2
2 − bnx

2+n
1 ,

W2(x) =
+∞∑
h=1

āhx
h
1

(
x2

2 − bnx
2+n
1

) + x1x2

+∞∑
s=s̄

b̄sx
n+s−m
1 .

Since W1 is a positive definite homogeneous function of order 2(n+2), with respect
to the mentioned dilation, and, under the hypothesis on s̄, W2 only contains terms
of order higher than 2(n + 2), then dV

dt
is negative semi-definite if condition (8.15)

holds, whereas it is positive semi-definite if am > 0. The proof can be completed by
the same reasoning made in case (C) of Theorem 8.10. �

It is stressed that the approach considered in this section is quite powerful, be-
cause the knowledge of the “exact” Belitskii normal form of the system (and of the
change of coordinates that leads to it, which needs not be convergent) is not needed
to study the asymptotic stability of the origin with the help of Theorem 8.10. Con-
sider a given vector function f , being C ν at x = 0 for a (sufficiently high) integer ν.
If f (0) = 0 and (8.7) holds, then there exists a near-identity polynomial diffeomor-
phism y = Tν(x) (it can be found with simple computations, [16]) such that in the
new coordinates

dy

dt
= f̃ (y) = fb,ν(y) + rb,ν(y), (8.16)

where fb,ν(y) is polynomial and in the Belitskii normal form and rb,ν(y) is of order
higher than ν (with respect to the standard dilation). If f is analytic or C ∞ at x = 0,
then fb,ν(y) represents the “ν-order approximation” of the exact Belitskii normal
form (which is, in general, hard to compute). In the cases when Theorem 8.10 proves
asymptotic stability of the origin for the system dy

dt
= fb,ν(y), the proof of Theo-

rem 8.10 uses asymptotic stability of the first approximation of fb,ν(y) with respect
to [y1 (m + 1)y2]� and uses the Darboux polynomials corresponding to such a first
approximation to find a Lyapunov function whose time derivative is negative semi-
definite; in view of the results in [11] (Theorem 5.8, see also [106]), it is known that
another Lyapunov function V exists for the first approximation with the property of
being homogeneous and with time derivative with respect to the first approximation
that is homogeneous and negative definite, this means that V can be used to infer
asymptotic stability of the origin for the whole system. Such a reasoning allows to
prove the following theorem.
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Theorem 8.11 (8.11.1) Consider system (1.1a) where f is C ν at x = 0 and (8.7)
holds. Let fb,ν(y) be defined as in (8.16). If the assumptions and hypotheses of
Theorem 8.10 hold for fb,ν(y), condition (8.13) holds, and ν ≥ 2m + 1, then the
origin is an asymptotically stable equilibrium for system (1.1a).

(8.11.2) Consider system (1.1a) and assume that f is analytic at x = 0 and there
exists an analytic change of coordinates z = ϕ(x) that brings the system in the exact
Belitskii normal form fb(z). If the assumptions and hypotheses of Theorem 8.10 hold
for fb(z), then there exists an integer ν such that such assumptions and hypotheses
hold for its ν-order approximation fb,ν(y), and ν ≥ 2m + 1.

Remark 8.3 From a practical point of view Statement (8.11.1) above is stronger
than Statement (8.11.2); as a matter of fact it implies that one can infer the asymp-
totic stability of the origin just computing fb,ν(y) without even worrying about the
existence of an analytic transformation yielding the exact Belitskii normal form. On
the other hand, Statement (8.11.2) clarifies that Statement (8.11.1) can be actually
applied to a large class of systems. The condition ν ≥ 2m+ 1 is necessary to ensure
that the chosen order of approximation is sufficiently high.

8.5 Construction of Lyapunov Functions Through Darboux
Polynomials for Linear Systems

The following theorem gives a way to construct Lyapunov functions, for studying
the stability of a linear system, on the basis of Darboux polynomials. It is important
to remark that the same Lyapunov function is found both in the continuous-time and
discrete-time cases.

Theorem 8.12 Let ωi(x) be co-prime Darboux polynomials of systems (2.1a),
(2.1b), Δωi = λiωi .

(8.12.1) If all real numbers λi are negative in case T = R (respectively, have
absolute value less than 1 in case T = Z), then the set described by
ω1 = 0,ω2 = 0, . . ., if not empty, is asymptotically stable.

(8.12.2) If V = 1
2

∑
i ω

2
i is a positive definite function of x ∈ R

n and all real num-
bers λi are negative in case T = R (respectively, have absolute value less
than 1 in case T = Z), then the origin of systems (2.1a), (2.1b) is asymp-
totically stable.

(8.12.3) If one of the real numbers λi is equal to zero in case T = R (respectively,
equal to either 1 or −1 in case T = Z), then the origin of systems (2.1a),
(2.1b) is not attractive, whence it is not asymptotically stable.

(8.12.4) If one of the real numbers λi is greater than 0 in case T = R (respectively,
has absolute value greater than 1 in case T = Z), then the origin of systems
(2.1a), (2.1b) is unstable.
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Proof First, note that ωi(0) = 0, ∀i. Under the assumptions of Statements (8.12.1)
and (8.12.2) of the theorem, one can observe that V is a positive definite func-
tion of ω1,ω2, . . . and dV

dt
(respectively, ΔV − V ) is a negative definite function

of ω1,ω2, . . . ; hence, Statement (8.12.1) of the theorem follows directly, whereas
Statement (8.12.2) of the theorem follows by remarking that since V = 0 has unique
solution x = 0, system ω1 = 0,ω2 = 0, . . . has unique solution x = 0, which again
implies that dV

dt
= 0 (respectively, ΔV − V = 0) has unique solution x = 0 because

all real numbers λi (respectively, λi − 1) are negative; this, noticing that dV
dt

(re-
spectively, ΔV − V ) is non-positive, shows that dV

dt
(respectively, ΔV − V ) is neg-

ative definite, thus proving (8.12.1). Under the assumptions of Statement (8.12.3)
of the theorem, if λi = 0 when T = R (respectively, |λi | = 1 when T = Z), then
|ωi(x(t))| = |ωi(x(0))| 
= 0 for all times t ∈ T and for all initial conditions x(0)

arbitrarily close to the origin of R
n such that ωi(x(0)) 
= 0, which prevents the at-

tractivity to hold. Under the assumptions of Statement (8.12.4) of the theorem, if
λi > 0 (respectively, |λi | − 1 > 0), then ωi(x(t)) tends to infinity for all initial con-
ditions x(0) arbitrarily close to the origin of R

n such that ωi(x(0)) 
= 0; since ωi

is a (non-constant) polynomial of x, at least one of the entry xi(t) of x(t) tends to
infinity for all initial conditions x(0) arbitrarily close to the origin of R

n such that
ωi(x(0)) 
= 0. �

Example 8.10 Consider again the matrix A introduced in Example 2.9 at p. 44. In
this case, one computes

ω(x) = det
(
Ω(x)

) = det
([Ax x]) = det

([
x2 x1

αx1 + βx2 x2

])

= x2
2 − βx1x2 − αx2

1 . (8.17)

(1) If β = 0 and α = −γ 2, γ 
= 0, then matrix A has a pair of imaginary eigen-
values; the resulting ω(x) = x2

2 + γ 2x2
1 yields the Lyapunov function candidate

V = 1
2 (x2

2 + γ 2x2
1)2, for which

LAxV = (
x2

2 + γ 2x2
1

)[
2γ 2x1 2x2

][
x2

−γ 2x1

]
= 0, if T = R,

which shows that the origin is stable in the continuous-time case, and

V ◦ Ax − V = 1

2

(
F 2

2 + γ 2F 2
1

)2∣∣
F1=x2,F2=−γ 2x1

− 1

2

(
x2

2 + γ 2x2
1

)2

= 1

2

(
γ 4 − 1

)(
x2

2 + γ 2x2
1

)2
, if T = Z,

which shows in the discrete-time case that the origin is asymptotically stable if 0 <

|γ | < 1, stable if |γ | = 1 and unstable if |γ | > 1.
(2) If α = −λ1λ2 and β = λ1 + λ2, with λ1, λ2 ∈ R and λ1 
= λ2, then matrix A

has a pair of negative eigenvalues (λ1, λ2); the resulting ω(x) can be factorized as
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ω(x) = ω1(x)ω2(x), with ω1(x) = (λ2x1 −x2) and ω2(x) = (λ1x1 −x2); its factors
can be used to construct the Lyapunov function candidate V = 1

2 (λ2x1 − x2)
2 +

1
2 (λ1x1 − x2)

2, for which

LAxV = λ1(λ2x1 − x2)
2 + λ2(λ1x1 − x2)

2, if T = R,

which shows that the origin is asymptotically stable in the continuous-time case if
λ1, λ2 < 0, and

V ◦ Ax − V = 1

2

(
λ2

1 − 1
)
(λ2x1 − x2)

2 + 1

2

(
λ2

2 − 1
)
(λ1x1 − x2)

2, if T = Z,

which shows that the origin is asymptotically stable in the discrete-time case if
|λ1|, |λ2| < 1.

Under the assumptions of Theorem 2.15 at p. 52, the use of Darboux polynomials
of systems (2.1a)–(2.1b) for the construction of a Lyapunov function associated
with A, yields that the same Lyapunov function can be used for all systems having
dynamic matrix B (and this is useful especially in case of hybrid systems), as shown
in the following example.

Example 8.11 Let A = [ 0 1
−2 −3

]
: such a matrix is semi-simple with distinct eigen-

values, whence Lc(A) = spanR{E,A}. Hence, any B ∈ Lc(A) can be expressed
as

B = μ0

[
0 1

−2 −3

]
+ μ1

[
1 0
0 1

]
=

[
μ1 μ0

−2μ0 −3μ0 + μ1

]
.

By letting Ω(x) = [Ax x] and ω(x) = det(Ω(x)) = (x1 + x2)(2x1 + x2), one finds
that a Lyapunov function for all systems having the dynamic matrix belonging to
Lc(A) is V = 1

2 (x1 +x2)
2 + 1

2 (2x1 +x2)
2, both in the continuous-time and discrete-

time cases. If T = R, then

LBxV = [5x1 + 3x2 3x1 + 2x2]
[

μ1x1 + μ0x2
−2μ0x1 + (−3μ0 + μ1)x2

]

= (−2μ0 + μ1)(x1 + x2)
2 + (μ1 − μ0)(2x1 + x2)

2,

which implies that the origin of the continuous-time system dx
dt

= Bx is asymptoti-
cally stable if −2μ0 + μ1 < 0 and μ1 − μ0 < 0; it can be seen, in this simple case,
that the matrix B is Hurwitz if and only if such two conditions hold. If T = Z, then

V ◦ Bx − V

=
(

1

2
(F1 + F2)

2 + 1

2
(2F1 + F2)

2
)∣∣∣∣

F1=μ1x1+μ0x2,F2=−2μ0x1+(−3μ0+μ1)x2

− 1

2
(x1 + x2)

2 − 1

2
(2x1 + x2)

2
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= 1

2

(
(−2μ0 + μ1)

2 − 1
)
(x1 + x2)

2 + 1

2

(
(μ1 − μ0)

2 − 1
)
(2x1 + x2)

2,

which implies that the origin of the discrete-time system x(t +1) = Bx(t) is asymp-
totically stable if (−2μ0 + μ1)

2 < 1 and (μ1 − μ0)
2 < 1; also in the discrete-time

case, it can be verified that the eigenvalues of B have both modulus smaller than
one if and only if such two conditions hold.

8.6 Construction of Lyapunov Functions Through Darboux
Polynomials for Nonlinear Systems

What has been done in Sect. 8.5 can be extended to the nonlinear case, as shown in
the following example, used to motivate the subsequent Theorem 8.13.

Example 8.12 Let π = R and assume that f is polynomial and homogeneous of
degree −2 with respect to the dilation δw

ε x, with the vector of weights w = [1 3]�,
i.e., let

f (x) =
[

a1x2 + a2x
3
1

a3x
5
1 + a4x

2
1x2

]
;

note that the linear part of f is nilpotent and non-zero if a1 
= 0 (its linear approx-
imation cannot be directly used for stability analysis). Letting g(x) = [x1 3x2]�, a
Darboux polynomial is given by the inverse integrating factor

ω(x) = det
([

f (x) g(x)
]) = 3a1x

2
2 + (3a2 − a4)x

3
1x2 − a3x

6
1 .

Since ω = 0, if not empty, is an invariant set, then the possible curves obtained by
letting ω = 0 divide the plane into open sectors such that if the initial state is in
one of these sectors then the state remains there for all times. Darboux polynomials
are given by the possible irreducible factors of ω, depending on the values of the
parameters ai ’s. Consider the systems SA, SB and SC , described, respectively, by:

f A(x) =
[
x2 − x3

1

−x2x
2
1

]
, f B(x) =

[
x2 − x3

1

−x2x
2
1 + x5

1

]
,

f C(x) =
[

x2 − x3
1

−x2x
2
1 + 8

3x5
1

]
;

the respective inverse integrating factors are

ωA(x) = x2
(
3x2 − 2x3

1

)
,

ωB(x) = (
3x2 + x3

1

)(
x2 − x3

1

)
,

ωC(x) = 1

3

(
3x2 + 2x3

1

)(
3x2 − 4x3

1

)
.
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Fig. 8.1 In black the state
trajectories of system SA.
In blue the invariant set Iω1 ,
in red the invariant set Iω2 .
In green the level set
{x : V A(x) = 1}

By computing the irreducible factors of the inverse integrating factor, one has two
Darboux polynomials in each case:

ωA
1 (x) = x2, ωA

2 (x) = 3x2 − 2x3
1 ,

ωB
1 (x) = 3x2 + x3

1 , ωB
2 (x) = x2 − x3

1 ,

ωC
1 (x) = 3x2 + 2x3

1 , ωC
2 (x) = 3x2 − 4x3

1 ,

with respective characteristic polynomials:

λA
1 (x) = −x2

1 , λA
2 (x) = −3x2

1 ,

λB
1 (x) = 0, λB

2 (x) = −4x2
1 ,

λC
1 (x) = x2

1 , λC
2 (x) = −5x2

1 .

In case A, by choosing the Lyapunov function

V A(x) = 1

2

(
ωA

1 (x)
)2 + 1

2

(
ωA

2 (x)
)2 = 1

2
x2

2 + 1

2

(
3x2 − 2x3

1

)2
,

one has

dV A

dt
= −x2

1

(
ωA

1 (x)
)2 − 3x2

1

(
ωA

2 (x)
)2 = −x2

1x2
2 − 3x2

1

(
3x2 − 2x3

1

)2
,

which is negative semi-definite and, therefore, shows that the origin is stable; the

further remark that the origin is the largest invariant set contained in dV A

dt
= 0 shows,

by the Krasowskii–LaSalle Theorem 8.5, that the origin is asymptotically stable
(since V A is radially unbounded, then the origin is globally asymptotically stable).
State trajectories and invariant sets of system SA are depicted in Fig. 8.1. In case B ,
by choosing the Lyapunov function
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Fig. 8.2 In black the state
trajectories of system SB .
In blue the invariant set Iω1 ,
in red the invariant set Iω2 .
In green the level set
{x : V B(x) = 1}

V B(x) = 1

2

(
ωB

1 (x)
)2 + 1

2

(
ωB

2 (x)
)2 = 1

2

(
3x2 + x3

1

)2 + 1

2

(
x2 − x3

1

)2
,

one has

dV B

dt
= −4x2

1

(
ωB

2 (x)
)2 = −4x2

1

(
x2 − x3

1

)2
,

which is negative semi-definite and, therefore, shows that the origin is stable; since
the curve described by ωB

1 = c (namely, x2 = − 1
3x3

1 + c
3 ) is invariant for any real

c (because
dωB

1
dt

= 0), it does not pass through the origin for c 
= 0, and for c 
= 0
arbitrarily small it passes through points arbitrarily close to x = 0, then the origin
is not attractive (this could have been deduced easily before proving stability since
x2 = x3

1 is a set of equilibrium points). State trajectories and invariant sets of system
SB are depicted in Fig. 8.2. In case C, instability of the origin can be proven by
means of the Chetaev Theorem (see [115]) using

V C(x) = 1

2

(
ωC

1 (x)
)2 − 1

2

(
ωC

2 (x)
)2

,

because, for all x in the set A = {x1 > 0 and x2 > 1
3x3

1}, one has both V C(x) > 0

and dV C(x)
dt

> 0, and V C(x) = 0 for x ∈ ∂A . State trajectories and invariant sets
of system SC are depicted in Fig. 8.3. Note that f A contains monomials of degree
less than or equal to 3 with respect to the standard dilation, whereas f B and f C are
obtained from f A by adding a term of higher degree with respect to the standard
dilation; in particular, the origin of SA, which is asymptotically stable, is rendered
simply stable by adding to f A the term hB(x) = [0 x5

1 ]� (f B = f A + hB ) and
unstable by adding to f A the term hC(x) = [0 8

3x5
1 ]� (f C = f A + hC ). Actually,

this has been simply done because f A and the additional terms hB , hC have the
same degree with respect to the chosen dilation, with weights w1 = 1, w2 = 3.
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Fig. 8.3 In black the state
trajectories of system SC .
In blue the invariant set Iω1 ,
in red the invariant set Iω2

Now, the following theorem can be proven, which gives conditions for the sta-
bility analysis of the origin for systems (1.1a), (1.1b); in the cases when it can be
applied, its proof gives also a Lyapunov function in closed form.

Theorem 8.13 Assume that f and F are polynomial, with f (0) = F(0) = 0.
(8.13.1) Let ωi, i = 1,2, . . . ,m, be Darboux polynomials of systems (1.1a),

(1.1b), with λi being the respective characteristic polynomials. Let λ = [λ1 λ2 . . .

λm]]�; if there exist k ≥ 1 row vectors of positive integers hi = [hi,1 hi,2 . . . hi,m],
i = 1,2, . . . , k, such that λ̃i := hiλ ≤ 0 if T = R (|λ̃i | ≤ 1, with λ̃i := ∏m

j=1 λ
hi,j

j ,
if T = Z) in a neighborhood of the origin, and if x = 0 is the only solution of∑k

i=1 ω̃2
i = 0, with ω̃i = ∏m

�=1 ω
hi,�

� , then the origin is stable for systems (1.1a),

(1.1b). If the greatest invariant set contained in
∑k

i=1 λ̃i ω̃
2
i = 0 is x = 0, then the

origin is asymptotically stable.
(8.13.2) Assume T = R. Let ωi, i = 1,2, . . . ,m, be Darboux polynomials of sys-

tem (1.1a), with λi being the corresponding characteristic polynomials. Let λ =
[λ1 λ2 . . . λm]�; if there exists a row vector of positive integers h = [h1 h2 . . . hm]
such that λ̃ := hλ ≥ 0 in a neighborhood of the origin, and ∂ω̃(x)

∂x
|x=0 
= 0, with

ω̃ = ∏m
�=1 ω

h�

� , then the origin is not attractive.

Proof Consider Statement (8.13.1). Since x = 0 is the only solution in a neigh-
borhood of the origin of

∑k
i=1 ω̃2

i = 0, then V = 1
2

∑k
i=1 ω̃2

i is a positive definite
function of x in a neighborhood of x = 0; then, the statement follows from the ob-
servation that Lf V and V ◦ F − V are negative semi-definite.

Consider Statement (8.13.2). By construction, ω̃ is a Darboux polynomial with
characteristic polynomial λ̃. Since, by hypothesis, ∂ω̃(x)

∂x
|x=0 
= 0, then y = ω̃(x)

qualifies as a partial diffeomorphism (it can be completed with other coordinates
so to obtain a diffeomorphism in a neighborhood of the origin), such that dy

dt
=
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λ̃y. Since λ̃ ≥ 0 in a neighborhood of the origin, if y(0) > 0, then dy
dt

≥ 0 for all
admissible t , whence the origin is not attractive. �

The following example illustrates the applicability of Theorem 8.13 based on the
computation of orbital symmetries.

Example 8.13 Let T = R and f (x) = [−x1x
2
2 x3

1 − 1
10x3

2 ]�; f is homogeneous of
degree −2 with respect to g = [x1 x2]�, ω = det([f g]) = ω1ω2ω3, with

ω1 = x1, ω2 = x1 + 3

√
9

10
x2, ω3 = x2

1 − 3

√
9

10
x1x2 + 3

√
81

100
x2

2 ,

and the respective characteristic functions are

λ1 = −x2
2 , λ2 = 3

√
9

10
x2

1 − 3

√
81

100
x1x2 − 1

10
x2

2 ,

λ3 = − 3

√
9

10
x2

1 + 3

√
81

100
x1x2 − 1

5
x2

2 ;

λ2 and λ3 are not definite nor semi-definite, whereas both λ1 and λ̃2(x) := λ2(x) +
λ3(x) = − 3

10x2
2 are negative semi-definite. Hence, the positive definite function

V (x) = 1

2
ω2

1(x) + 1

2

(
ω2(x)ω3(x)

)2 = 1

2
x2

1 + 1

2

(
x3

1 + 9

10
x3

2

)2

(obtained as in the proof of Theorem 8.13, with h1 = [1 0 0] and h2 = [0 1 1]) is such
that dV

dt
= −x2

2x2
1 − 3

10x2
2(x3

1 + 9
10x3

2)2. By the Krasowskii–LaSalle Theorem 8.5, the
asymptotic stability of the origin follows.

In the following example, it is shown that the center manifold theory can be
generalized through the concept of semi-invariant.

Example 8.14 Consider again system SC of Example 8.12. The equation ωC
2 =

3x2 − 4x3
1 = 0 can be locally rendered explicit with respect to x2, obtaining x2 =

ϕ2(x1) = 4
3x3

1 ; the corresponding reduced system along ωC
2 = 0 is dx1

dt
= h2(x1) =

1
3x3

1 . Since x1h2(x1) = 1
3x4

1 is positive for any x1 
= 0, then the origin of SC is un-
stable. Consider again system SB of Example 8.12. The equation ωB

2 = x2 − x3
1 = 0

can be locally rendered explicit with respect to x2, obtaining x2 = ϕ2(x1) = x3
1 ; the

corresponding reduced system is dx1
dt

= h2(x1) = 0. Since h2 = 0 for all x1, then the
origin of SB is not attractive. Note that, for systems SB and SC , the center manifold
cannot be defined because the linear approximation has two eigenvalues at the ori-
gin. Nevertheless, thanks to semi-invariants, it is still possible to study the stability
on a reduced system. This concept can be extended to systems with n > 2.
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To conclude this section, the following example shows that it is not necessary
that f is analytic at x = 0 for the semi-invariants to be used for the stability analysis
of the origin.

Example 8.15 Consider again the system studied in Example 3.17 at p. 89. Then,
there are two semi-invariants ω1(x) = x2

1 +x2
2 and ω2(x) = x2

1 +x2
2 −1, functionally

dependent because ω2 = ω1 − 1. Since dω1
dt

= 2ω1(ω1 − 1), then the equilibrium
point ω1 = 0 and the invariant set ω1 = 1 are, respectively, asymptotically stable
and unstable (use, respectively, the Lyapunov functions V = 1

2ω2
1 and V = 1

2ω2
2).

8.7 Examples of Construction of Lyapunov Functions

In this last section, some examples are proposed of derivation of Lyapunov functions
using semi-invariants. Some of the considered systems are classical ones. Despite
the fact that all such examples are continuous-time systems, many of the concepts
involved can be used, with minor modifications, also for discrete-time systems.

Example 8.16 Let f (x) = [−x1 − x2 + x2
1 + x3

1 ]�. Clearly the origin of this
system is at least locally exponentially stable, because the linear part of f has

two eigenvalues equal to −1. Since Lf y2 = 0, then y2 = 1
2

2x2+2x2
1+x3

1−3x1
x1

is a

first integral associated with f , and ω1 = 2x2 + 2x2
1 + x3

1 − 3x1 and ω2 = x1

are two Darboux polynomials with respective characteristic polynomials λ1 = −1
and λ2 = −1. The origin is globally asymptotically stable, as can be seen with
the (positive definite in the whole and radially unbounded) Lyapunov function
V = 1

2ω2
1 + 1

2ω2
2 = 1

2 (2x2 + 2x2
1 + x3

1 − 3x1)
2 + 1

2x2
1 , with (negative definite in

the whole) derivative dV
dt

= −ω2
1 − ω2

2 = −(2x2 + 2x2
1 + x3

1 − 3x1)
2 − x2

1 .

Example 8.17 Let f (x) = [x1ψ(x1x2) x2ϕ(x1x2)]�, where ψ and ϕ are arbitrary
functions of the argument. Clearly, such a vector function is homogeneous of degree
0 with respect to the dilation δw

ε x, with w = [−1 1]�. Then, a symmetry of f is
g = [−x1 x2]�; the corresponding inverse integrating factor is

ω = det

([
x1ψ −x1
x2ϕ x2

])
= x1x2(ψ + ϕ).

Two semi-invariants are given by ω1 = x1 and ω2 = x2, with corresponding char-
acteristic functions λ1 = ψ and λ2 = ϕ. Since ψ(ξ) and ϕ(ξ) are assumed an-
alytic at ξ = 0, then in a neighborhood of the origin one has ψ(ξ) ≈ aξn and
ϕ(ξ) ≈ bξm; if a, b < 0 and integers n,m are even, then, with the Lyapunov
function V = 1

2ω2
1 + 1

2ω2
2 = 1

2x2
1 + 1

2x2
2 having derivative dV

dt
= ψω2

1 + ϕω2
2 ≈

a(x1x2)
nx2

1 + b(x1x2)
mx2

2 , it is easy to see that the origin is a stable equilibrium
point (exponentially stable if n = 0 and m = 0).
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Example 8.18 Let

f (x) =
[
(−2 + 2 cos(x1 + 2x2) − x1 sin(x1x2))

�
(1 − cos(x1 + 2x2) + x2 sin(x1x2))

�
]

;

since div(f ) = 0, the system is area preserving, and, by Statement (3.18.3) of Re-
mark 3.18, an orbital symmetry g of f is given by:

g(x) =
⎡
⎣

−2+2 cos(x1+2x2)−x1 sin(x1x2)

(−2+2 cos(x1+2x2)−x1 sin(x1x2))
2+(1−cos(x1+2x2)+x2 sin(x1x2))

2

1−cos(x1+2x2)+x2 sin(x1x2)

(−2+2 cos(x1+2x2)−x1 sin(x1x2))
2+(1−cos(x1+2x2)+x2 sin(x1x2))

2

⎤
⎦ .

The corresponding inverse integrating factor is ω = 1. The one-form [f2 − f1]
is exact and its integration yields the first integral I = x1 + 2x2 − sin(x1 + 2x2) −
cos(x1x2) (i.e., Lf I = 0). Since the curve x1 +2x2 −sin(x1 +2x2)−cos(x1x2) = C,
with C being an arbitrary constant, is invariant and does not pass through the origin
if C 
= −1, whereas for C 
= −1 and |C + 1| arbitrarily small such a curve pass
through points arbitrarily close to the origin, then the origin is not attractive (this
is strictly correlated with the fact that the system is area preserving). Consider the
standard dilation with the vector of weights w = [1 1]�; then f (δw

ε x) = ε2f [−1] +
O(ε3), where f [−1] = [−(x1 +2x2)

2 1
2 (x1 +2x2)

2]� is the vector function describ-
ing the dynamics of the system in the first approximation. An orbital symmetry g[−1]
of f [−1] is g[−1] = [x1 x2]�, for which [f [−1], g[−1]] = −f [−1]; the corresponding

inverse integrating factor is ω[−1] = det
([ −(x1+2x2)

2 x1
1
2 (x1+2x2)

2 x2

]) = − 1
2 (x1 + 2x2)

3. In this

case, one has the Darboux polynomial ω
[−1]
1 = x1 +2x2, with characteristic polyno-

mial λ
[−1]
1 = 0. Along the invariant curve x1 + 2x2 = C, with C being an arbitrary

constant, one has x1 = C − 2x2, along which the dynamics of the first approxima-
tion are described by dx2

dt
= 1

2C2, which shows the instability of the origin of the first

approximation. Since dx2
dt

= 1
2C2 is the first approximation of the dynamics of the

original system along the invariant curve x1 +2x2 − sin(x1 +2x2)−cos(x1x2) = C,
thus proving the instability of the origin.

Example 8.19 Let

f (x) =
[
−ax2

1 + 2bx1x2 + ax2
2

−bx2
1 − 2ax1x2 + bx2

2

]
,

with a, b being arbitrary real numbers. Since ∂f1(x)
∂x1

= ∂f2(x)
∂x2

= −2ax1 + 2bx2 and
∂f1(x)
∂x2

= − ∂f2(x)
∂x1

= −2ax1 + 2bx2, by Statement (3.18.4) of Remark 3.18, a sym-
metry g of f is

g(x) =
[

bx2
1 + 2ax1x2 − bx2

2

−ax2
1 + 2bx1x2 + ax2

2

]
.
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The corresponding inverse integrating factor is

ω(x) = det

([
−ax2

1 + 2bx1x2 + ax2
2 bx2

1 + 2ax1x2 − bx2
2

−bx2
1 − 2ax1x2 + bx2

2 −ax2
1 + 2bx1x2 + ax2

2

])

= (
a2 + b2)(x2

1 + x2
2

)2
.

Since such an f is also homogeneous with respect to the standard dilation, then
another inverse integrating factor is

ω̂(x) = det

([
−ax2

1 + 2bx1x2 + ax2
2 x1

−bx2
1 − 2ax1x2 + bx2

2 x2

])
= (

x2
1 + x2

2

)
(bx1 + ax2).

Hence, I (x) = ω(x)
ω̂(x)

= (a2 + b2)
x2

1+x2
2

bx1+ax2
is a first integral associated with f . The

first integral I (x) = x2
1 +x2

2
bx1+ax2

implies that the curve x2
1 + x2

2 − C(bx1 + ax2) = 0

is invariant for any arbitrary constant C. Assume b 
= 0. For any initial condi-
tion such that bx1(0) + ax2(0) 
= 0, the corresponding orbit is a circle, with cen-
ter (x1,c, x2,c) = (Cb

2 , Ca
2 ) and radius equal to C

2

√
a2 + b2, passing through x = 0,

which shows that there are initial conditions arbitrarily close to x = 0 for which the
corresponding solution, after going arbitrarily far from the origin, tends to zero as
time goes to infinity (for such initial conditions, although the origin is attractive,
one has an unstable behavior). If bx1(0) + ax2(0) = 0, since the set bx1 + ax2 = 0
is invariant (it corresponds to ω2 = 0), one has x1 = − a

b
x2; the corresponding re-

duced dynamics is dx2
dt

= a2+b2

b
x2

2 , which shows that the origin is unstable (actu-
ally, one has a finite escape time for all initial conditions (x1, x2) = (− a

b
x2, x2),

with a2+b2

b
x2

2 > 0). Assuming that the two points at infinity of the straight line
bx1 + ax2 = 0 are the same point, then this is (for a = 0 and b = 1, it is the same
example used in [60] and [107]) an example of a system having an unstable, but
attractive equilibrium point.

Example 8.20 Let f (x) = [sin(x2) −x3
1 ]�. Since f1 is a function of x2 and f2 is

a function of x1, then g(x) = [0 1
sin(x2)

]� is an orbital symmetry of f . The corre-
sponding inverse integrating factor is ω = 1. Also this system is area preserving,
and therefore its origin can be at most stable. A first integral associated with f is
I = 1

4x4
1 − cos(x2), i.e., Lf I = 0. Since − cos(x2) = −1 + 1

2x2
2 + O(x4

2), then a
Lyapunov function is V = 1

4x4
1 − cos(x2) + 1 = 1

4x4
1 + 1

2x2
2 + O(x4

2), which shows
the stability of the origin because Lf V = 0. Note that this is a critical case that
cannot be studied with the linearized system.

Example 8.21 Consider a generalized Lotka–Volterra planar system described by

f (x) = [
a1x1 + b1x1x2 a2x2 + b2x1x2

]�
,
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with a1, a2, b1, b2 being arbitrary real numbers. It is well known (see Example 4.1.8
of [56]) that a first integral of this system is I = −b2x1 + b1x2 − a2 ln |x1| +
a1 ln |x2|. Since ∂I

∂x1
= −b2 − λ2

x1
, then an orbital symmetry of f is given by

g = [− x1
b2x1+a2

0]�. The corresponding inverse integrating factor is

ω = det

([
a1x1 + b1x1x2 − x1

b2x1+a2

a2x2 + b2x1x2 0

])
= x1x2.

One has two Darboux polynomials ω1 = x1 and ω2 = x2, with respective charac-
teristic polynomials λ1 = (a1 + b1x2) and λ2 = (a2 + b2x1); V = 1

2ω2
1 + 1

2ω2
2 =

1
2x2

1 + 1
2x2

2 is a Lyapunov function, with derivative dV
dt

= λ1ω
2
1 + λ2ω

2
2 = (a1 +

b1x2)x
2
1 + (a2 +b2x1)x

2
2 , and the origin is asymptotically stable (actually, exponen-

tially stable) if a1, a2 < 0 (as could easily be seen from the linearized system).

Example 8.22 Let f (x) = [x2 − 2x1(1 + 3x2
1)(1 + x2

1)− 3(1 + 3x2
1)x2]�; note that

A = ∂f
∂x

|x=0 = [ 0 1
−2 −3

]
is a Hurwitz matrix. Hence, the origin is locally asymptoti-

cally stable. An orbital symmetry is g(x) = [ x1+x3
1

1+3x2
1

x2]�; the corresponding inverse

integrating factor is

ω(x) = det

([
x2

x1+x3
1

1+3x2
1−2x1(1 + 3x2

1)(1 + x2
1) − 3(1 + 3x2

1)x2 x2

])

= (
x2 + x1 + x3

1

)(
x2 + 2x1 + 2x3

1

)
.

One has two Darboux polynomials ω1 = x2 + x1 + x3
1 and ω2 = x2 + 2x1 + 2x3

1 ,
with respective characteristic polynomials λ1 = −2(3x2

1 + 1) and λ2 = −(3x2
1 + 1).

One can construct the Lyapunov function V = 1
2ω2

1 + 1
2ω2

2 = 1
2 (x2 + x1 + x3

1)2 +
1
2 (x2 + 2x3

1 + 2x1)
2, with derivative

dV

dt
= −2

(
3x2

1 + 1
)
ω2

1 − (
3x2

1 + 1
)
ω2

2

= −2
(
3x2

1 + 1
)(

x2 + x1 + x3
1

)2 − (
3x2

1 + 1
)(

x2 + 2x3
1 + 2x1

)2
.

Since V is positive definite in the whole and radially unbounded and dV
dt

is negative
definite in the whole, then the origin is a globally asymptotically stable equilibrium
point.

Example 8.23 Let f (x) = [x2 − x3
1 + x4

1 x2
1(x1 − 1)(x2 − x3

1 + x4
1)]�. This is of

the form f (x) = [x2 + ax1 ax2 + a2x1]�, with a = −x2
1 + x3

1 ; hence, it is in the
Belitskii normal form. An orbital symmetry is g = [0 1]�; the corresponding inverse
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integrating factor is

ω(x) = det

([
x2 − x3

1 + x4
1 0

x2
1(x1 − 1)(x2 − x3

1 + x4
1) 1

])
= x2 − x3

1 + x4
1 .

One Darboux polynomial is given by the inverse integrating factor ω1 = x2 − x3
1 +

x4
1 , with characteristic polynomial λ1 = (−4 + 5x1)x

2
1 and a second one by the first

integral ω2 = ∫
a(x1)dx1 − x2 = − 1

3x3
1 + 1

4x4
1 − x2, with characteristic polynomial

λ2 = 0. Then, one can construct a positive definite Lyapunov function V = 1
2ω2

1 +
1
2ω2

2 = 1
2 (x2 − x3

1 + x4
1)2 + 1

2 (−1
3x3

1 + 1
4x4

1 − x2)
2, with derivative dV

dt
= λ1ω

2
1 +

λ2ω
2
2 = (−4+5x1)x

2
1(x2 −x3

1 +x4
1)2 being negative semi-definite, which proves the

stability of the origin. Since ω1 = 0 is an invariant set, one can consider the reduced
system along it. The dynamics of the reduced system are described by dx1

dt
= 0, thus

showing that the origin is not attractive.

Example 8.24 Consider f = f [−2] + f [−3], where f [−2] and f [−3] are poly-
nomial and homogeneous of respective degrees −2 and −3 with respect to
g = [x1 3x2]�, i.e., [f [−2], g] = −2f and [f [−3], g] = −3f . Take f [−2] =
[x2 − x3

1 −x2
1x2]� and f [−3] = [a1x

4
1 + a2x1x2 a3x

3
1x2 + a4x

6
1 ]�, where the

ai ’ are arbitrary reals. The inverse integrating factor associated with f [−2] is

ω[−2] = det
([ x2−x3

1 x1

−x2
1x2 3x2

]) = x2(3x2 −2x3
1); the corresponding Darboux polynomials

are ω
[−2]
1 = x2 and ω

[−2]
2 = 3x2 − 2x3

1 , with corresponding characteristic polyno-
mials λ1 = −x2

1 and λ2 = −3x2
1 . A Lyapunov function for the first approxima-

tion, with the characteristic of being homogeneous of degree 6 with respect to the
given dilation, is V = 1

2 (ω
[−2]
1 )2 + 1

2 (ω
[−2]
2 )2 = 1

2x2
2 + 1

2 (3x2 − 2x3
1)2; in particu-

lar, Lf V = Lf [−2]V + Lf [−3]V , with Lf [−2]V = −x2
1x2

2 − 3x2
1(3x2 − 2x3

1)2 being

negative semi-definite and homogeneous of degree 8 and Lf [−3]V = x2
1b(x), where

it is remarked that b(x) = 12a1x
7
1 − 6a4x

7
1 − 6a3x

4
1x2 + 12a2x

4
1x2 − 18a1x

4
1x2 +

10x4
1a4x2 + 10x1a3x

2
2 − 18a2x1x

2
2 is homogeneous of degree 7. Therefore, from

Lf V (δr
εx) = ε8Lf [−2]V + ε9Lf [−3]V = −ε8x2

1((x2
2 + 3(3x2 − 2x3

1)2) − εb(x)),

since x2
2 + 3(3x2 − 2x3

1)2 is positive definite, there exists ε∗ such that Lf V (x) is
semi-definite negative for x = δr

εx, ‖x‖ = 1 and ε ∈ (0, ε∗), which implies that the
origin is stable; then, since the largest invariant subspace contained in Lf V (x) = 0
is the origin, by the Krasowskii–LaSalle theorem, the origin is asymptotically stable.
Note that, by the method of stability in the first approximation [11, 106], the analy-
sis could have been carried out just on the first approximation f [−2], thus obtaining
the same result.
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Joint Poincaré–Dulac normal form, 253
Jordan form, 30, 33–35, 37, 39, 52, 101, 116,

178, 197, 210, 284, 285
complex, 37
real, 39, 197
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K
Knife edge, 239

L
Lagrangian function, 187–189
Laurent series, 78
Lax pair

CT–Lax pair, 100
DT–Lax pair, 168

LCM, 248
Least common multiple, 248
Leibniz rule, 5, 6, 190, 193, 216
Lie algebra, 43, 65, 221–223

Abelian, 223
abstract definition, 221
basis, 221
characteristic polynomial, 247
derived Lie algebra, 223
dimension, 221
generated by f1, . . . , fp , 221
Heisenberg, 222
Jacobi identity, 221
nilpotent, 223
of matrices, 43, 224
of vector functions, 226
regular point, 226, 242–246
rotations in R3, 223
solvable, 223
spanned by f1, . . . , fr , 221
split three-dimensional simple, 223
structure constants, 224
structure scalars, 222

Lie algebras
isomorphic, 222

Lie bracket, 5, 222, 224, 226, 271
CT–Lie bracket, 5, 7, 8, 10, 60–65, 73, 111,

121, 234
DT–Lie bracket, 5, 8, 182
iterated, 272
of square matrices, 31, 43, 100, 225
of vector fields, 254

Lie bracket of matrices
Jacobi identity, 43

Lie derivative, 5, 254
Lie ideal

abstract definition, 221
of matrices, 43

Lie sub-algebra
abstract definition, 221

Linear centralizer
of a set of matrices, 68
of a square matrix, 31–36, 42–44, 47, 52,

66–69, 77, 112, 133, 161, 173, 182,
189, 224, 253, 254

Linear independence, 3, 21, 26, 33, 35, 45, 51,
53, 66–69, 138, 184, 224, 236,
257–261, 263, 285

Linear normalizer, 41, 43, 46, 224
Linear orbital symmetry, 41, 224
Linear oscillator, 232
Linear part of a vector function, 111, 132, 172,

182
Linear superposition formula

explicit, 232
implicit, 232

Linear symmetry, 31, 41, 51, 52, 66, 224, 229,
276, 284

Logarithm of a nonlinear system, 117, 136,
166

Lotka–Volterra planar system, 326
Lyapunov function, 109, 288, 295–301,

304–308, 312–318, 320, 324, 327
strict, 295
weak, 295

Lyness-type system, 157

M
Matrix

nilpotent, 25, 37–41, 93, 132–134, 182,
183, 204, 319

normal, 25, 39, 40, 111, 134, 172, 182,
183, 204, 253

semi-simple, 25, 36–38, 40, 42, 48, 66,
111, 130, 132, 172, 179, 180, 182,
197, 203, 253

Matrix commutator, 31
Matrix integrating factor, 98, 100
Matrix Lie bracket

bi-linearity, 32, 44
Jacobi identity, 32
skew-symmetry, 32

Maximal solutions, 4
Meromorphic, 2
Meromorphic function

equivalence, 3
pole, 3
zero, 3

Möbius-type system, 11

N
Nambu bracket, 214, 216, 218
Near-identity diffeomorphism, 117–125, 135,

179, 277, 279, 280, 297
Nilpotent matrix, 25, 37–41, 93, 132–134, 182,

183, 204, 319
Noether symmetry, 192, 203, 212
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Nonlinear superposition formula
explicit, 233
implicit, 233

Nonlinear superposition principle, 231–235,
237–241, 243–246

Normal matrix, 25, 39, 40, 111, 134, 172, 182,
183, 204, 253

Normalizer, 62, 68

O
One-form, 13–19, 85, 86, 88, 96–99, 325

closed, 16
derivative, 15
exact, 13, 16, 22, 53, 54, 66, 69, 85, 86, 88,

96–99, 126, 139, 164, 208, 325
first integral, 13, 17, 18, 22, 54, 66, 85, 96,

126, 139, 164, 208, 325
inverse integrating factor, 17

One-parameter group of linear
transformations, 29, 30

One-parameter group of transformations, 12,
143, 147, 149, 158, 187, 188

Orbit, 31
Orbital symmetry, 62–65, 70, 73, 83, 86–88,

90, 91, 93, 94, 98, 137, 219, 323,
325–327

trivial, 87

P
Partial differential equation, 17, 19, 75
Planar systems

continuous-time, 84, 88, 90, 96, 110, 300,
304, 309, 326

discrete-time, 166
Hamiltonian, 207, 285
parameterization, 90

Poincaré domain, 118, 275
Poincaré Lemma, 16

converse, 16
Poincaré–Dulac normal form, 110, 121, 133,

134, 172, 182, 183, 203, 253, 275,
276, 297, 299, 300, 302–304

joint, 253
Poincaré–Dulac Theorem, 118, 121, 124, 127,

179, 277, 280, 297
Poisson bracket, 214

bi-linearity, 190, 212
Jacobi identity, 190, 191, 197, 216
Leibniz rule, 190, 193, 216
rank, 198
regular point, 198, 218
skew-symmetry, 190, 191, 193, 216
structure matrix, 193

Poisson map, 195, 204–208

Pole
meromorphic function, 3

Polynomial
irreducible, 51, 56, 87, 94, 248, 319

Polynomial first integral, 46, 105, 247
Projection

continuous-time system, 82, 229, 230, 238
discrete-time, 165

Proper map, 8
Pull-back, 8, 22, 76, 96, 114, 121, 123, 161,

165, 179, 243–246, 283, 289
Push-forward, 8, 96, 119–124, 135, 136, 160,

165, 175, 179, 182, 185, 253, 297,
299, 302, 303

Q
Quotient field, 2

R
Rational first integral, 50, 247
Regular

CT–Lax pair, 101, 104
DT–Lax pair, 169, 171

Regular point
distribution, 21, 82, 137, 138, 140, 141
Lie algebra, 226, 242–246
Poisson bracket, 198, 218
vector function, 57–59, 63, 90, 104, 138,

149, 151, 159, 162, 198, 212, 214,
237, 288

Resonance, 109, 112–116, 118–120, 122, 126,
131, 136, 174, 175, 177–181, 183,
205, 275, 277, 280, 282, 284, 297

Resonance condition
continuous-time, 112
discrete-time, 174
generalized

continuous-time, 130
discrete-time, 180

Resonant monomial
continuous-time, 113
discrete-time, 174

Resonant term
continuous-time, 112
discrete-time, 174

Riccati differential equation, 151, 237
Rigid body, 196, 217, 269
Ring, 2

S
Semi-invariant, 55–59, 69, 77, 87, 90, 100,

106, 107, 109, 110, 137–139, 141,
144, 153, 154, 166, 171, 172, 247,
283, 288, 300, 302, 304, 323
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Semi-invariant (cont.)
column, 137–139, 141
polynomial, 46

Semi-simple matrix, 25, 36–38, 40, 42, 48, 66,
111, 130, 132, 172, 179, 180, 182,
197, 203, 253

Separable variables, 88
Shoshitaishvili Theorem, 300
Singular point, 57, 59, 91, 138, 199
Skew-symmetry

CT–Lie bracket, 8, 10
matrix Lie bracket, 32
of the wedge product, 13
of two-forms, 14
Poisson bracket, 190, 191, 193, 216

Split three-dimensional simple Lie algebra,
223

State vector, 4, 29
Straightening, 25, 57, 63, 90, 92, 104, 149,

151, 159, 198, 214, 219, 242
joint, 22, 139, 212

Structure constants, 223, 226, 229, 237, 242,
253, 257

Structure functions, 226, 234
Structure matrix of a Poisson bracket,

193–200, 207, 218
Structure scalars of an abstract Lie algebra,

222
Superposition principle

linear, 231
nonlinear, 232

Symmetric
S-symmetric, 202

Symmetry, 61, 158

linear, 31, 41, 51, 52, 66, 224, 229, 276,
284

linear orbital, 41, 224
Noether, 192, 203, 212
of an algebraic system, 143
of Lagrangian function, 187
of the solutions of an algebraic system, 143
orbital, 62–65, 70, 73, 83, 86–88, 90, 91,

93, 94, 98, 137, 219, 323, 325–327

T
Time, 2
Toepliz matrices, 34
Trivial first integral, 10
Two-form, 14

U
Units matrix, 145

V
Vector field, 254–261
Vector function

regular point, 57–59, 63, 90, 104, 138, 149,
151, 159, 162, 198, 212, 214, 237,
288

W
Wedge product, 13

skew-symmetry, 13
Wei–Norman equations, 262–266

Z
Zero

analytic function, 2
meromorphic function, 3
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