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Preface

The goal of this book is to present several concepts useful for the analysis of dy-
namical systems, and to illustrate, in the last two chapters, how they can be actually
applied to improve the state of the art for two classical topics in nonlinear systems
theory: the linearization of a nonlinear system by state immersion and the study of
stability of equilibrium points.

The main reasoning that led us to writing this book is that some concepts that
are already well developed in the literature become more important if presented
together. Three of such concepts are homogeneity, symmetries (and orbital symme-
tries for continuous-time systems) and Lie algebras, which, in our opinion, can be
better understood if symmetries are seen as a generalization of homogeneity, and
Lie algebras (seen as generators of Lie groups) as a generalization of symmetries.
Another very well known concept is that of first integral, that is particularly helpful
for researchers working on Hamiltonian systems, or on stability of switched sys-
tems. In our opinion, similar attention should be paid to the generalization of first
integrals represented by semi-invariants, which, in turn, have a special relation, that
will be explored in the book, with orbital symmetries.

Nonlinear systems theory was traditionally developed for continuous-time sys-
tems, i.e., systems of ordinary differential equations. Only most recently, with the
growth of the “digital world”, the attention of many researchers is concentrated on
discrete-time systems, i.e., systems of difference equations. For linear systems the
similarity between continuous-time and discrete-time systems is nowadays well un-
derstood and, with some important exceptions, the study of both kinds of systems
can be actually performed in parallel, obtaining very similar results. Since this is not
so true for nonlinear systems, in this book we have made a special effort to extend
some of the concepts that are standard and well known for continuous-time systems
to discrete-time ones; in some cases, we report some results, already existing for
discrete-time systems, but not so well known in the control literature, that turn out
to be the analogous of well known results in continuous-time.

We have tried to be self-contained as much as possible, and sometimes we have
reported not only the statements, but also the proofs of some very standard results,
for two reasons: first because we would like the book to reach a wider audience,



vi Preface

secondly because such derivations are often very similar to those that are needed
to develop the less standard topics. Most of the material in the first six chapters of
the book is not new, but, together with some new results, we sometimes propose an
alternative derivation of some known result that we consider more useful to better
understand the topic or its relationship with other results presented earlier.

Finally, we would like to apologize for the inevitable errors and omissions, espe-
cially in giving credit for the results presented in the book.

Rome, Italy Laura Menini
Antonio Tornambe
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Chapter 1
Notation and Background

1.1 Notation

Symbols R, C and Z represent the sets of real, complex and integer numbers, re-
spectively. Given a set A, with A being either R or Z, symbols A<, A=, A~ and
AZ denote the sets of all numbers @ € A such thata <0, a <0,a >0 and a > 0,
respectively; A", with A denoting either one of R, C or Z, denotes the set of all vec-
torsa=1[a; - a,]" (superscript T means transpose), with entries a; € A; A"
denotes the set of all n x m matrices

Air o Alm
A=| ],
An,m An,m

with entries A; ; € A; E denotes the identity matrix: the ith column of E is denoted
by e;. Since some of the concepts that are introduced in the book are not defined
on the whole R”, %/ denotes some (not necessarily, small) open and connected
subset of R"; % need not contain the origin of R"; if necessary, this is explicitly
assumed. It is worth pointing out that a set %7 of R”" is open if it contains a full
neighborhood of x?, for all x° € % ; this, in particular, implies that an open set %
has always non-zero measure. Note that, in this book, a neighborhood of a point x°
contains x°. Notation i (x) : ZZ — R™ denotes a vector function A (x) from Z to
R™; if it is not necessary to specify the domain % of the vector function, the simpler
notation a(x) € R™ is used, thus omitting that x € %/; if no confusion can arise, the
dependence of 4 (x) on x is omitted. The image of % through 4 is denoted by A (%).
Ifhix)eR", n=1, % (respectively, Vh = (%)T) denotes the row (respectively,
column) gradient of h; if h(x) e R*, n > 2, g—f’( is the Jacobian matrix of h. The
divergence div(h) of h(x) : % — R" is

dh = 9h;
div(h) := trace<a> = Z Bx,l- ,

i=1
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2 1 Notation and Background

where h; and x; are the ith entries of 4 and x, respectively. A vector function

h(x): % — R"is Cl at x = x°, with i € ZZ, if the partial derivatives %
X1 0Xp

Y i—1 Jk =1, exist and are continuous at x = x°. A vector function h(x) : % — R"
3'h(x)
8x'1j1 ---3)(,{”

tinuous at x = x? for all i > 0; a C°°-function is said to be smooth.

Both differential and difference equations are considered, with ¢ denoting the
independent variable that is called time; t € R in case of differential equations and
t € Z in case of difference equations; the case ¢ € R is denoted as the continuous-
time case and t € Z is denoted as the discrete-time case; if such two cases can be
jointly considered, the notation ¢ € T, with either T =R or T = Z, is used.

)

is C*° at x = x? if all partial derivatives . Y j_i Jk =1, exist and are con-

1.2 Analytic and Meromorphic Functions

This section deals with some basic facts about analytic and meromorphic functions:
the reader interested in a more extended exposition is referred to Sect. 1.1 of [35] or
to [63].

A function a(x) : R" — R is analytic at x° € R" if it admits a Taylor series
expansion centered at x = x°, which is convergent to «(x) for all x € %4, with
being a neighborhood of x?; « is analytic on % , with % being some open and
connected subset of R”, if « is analytic at each x? € % ; « is analytic on the whole
R”™ if it is analytic at each x? € R".
Example 1.1 The function a(x) =e~ !/ * of x € Ris not analytic on R; it is analytic
on the open intervals (—oo, 0), (0, +00), but not at x = 0, where it is only smooth.

In particular, such a function is flat at x =0, i.e., % lx=0 =0, for all i € Z=.

If (x?) =0, then x° € R” is a zero of «. Given a function «(x) € R being
analytic on a whole open and connected set % of R”, either «(x) is equal to zero
for all x € % or the set of the zeros of « in % has an empty interior (if n = 1, the
zeros of « in 7/ are isolated).

sin(1), ifx £0,
0, if x =0,
zeros in any neighborhood of x = 0, and therefore, since x = 0 is a zero of «(x) and
is not isolated, «(x) is not analytic at x = 0.

Example 1.2 Function «(x) = { has an infinite (countable) number of

Given an open and connected % C R”, the set 7, of all analytic functions
a(x) : % — R, endowed with the usual operations of sum and product between
functions, is a ring; denote by %, the set of all functions o = %, with a, b € <7,
with b that is not identically equal to zero; then, .7, is a field (the quotient field of
the ring of analytic functions): « € %, is called meromorphic. Actually, similarly to
the field of rational functions, ., is a field under the equivalence relation ~ defined
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as follows: aq, 0y € JH,, aj = Z—j, ai, b; € o, b; not identically equal to zero, are
equivalent, oy ~ o, if a1 (x)ba(x) = ax(x)b1(x), Vx € % ; one can say that o1 and
oy coincide on % . For instance, functions sin(x) and %55252;)) are equivalent (coin-
cide) on the whole R. Since a1b; and a;b; are analytic on %/, if o1 and o, coincide
on some open and connected % * C %, then they coincide on the whole % ; e.g.,

a1(x) = e 1 and ap(x) = {gil/x ' itf‘i Zg’ coincide on (0, +00), but they differ

on (—o0, 0): at the boundary point x = 0, they are not analytic but only smooth.
The zeros and the poles of a meromorphic function o = %, with a, b € &, and
b not identically equal to zero, are the zeros of a and b, respectively. If a € 7,
then there exists an open and connected subset % * of % such that « is analytic
on % *. The notations « = 0 or «(x) = 0 (respectively, o % 0 or «(x) # 0), for a
meromorphic function «, denote a function « that is (respectively, that is not) equal
to zero for all x € % ; note that «(x?) = 0 means that «(x) is equal to zero at x = x°.
Two vector functions a1 (x), ap(x) € R", with entries in .%;,, are co-linear over
J,, if there exists an element a of %, such that o] = aay; a set of vector func-

tions a1 (x), ..., o, (x) € R", with entries in J%,, are linear independent over ¢,
if there exist no ay, ..., a, € J,, with a; # 0 for at least one index i, such that

Z;"Zl a;a; = 0; otherwise, they are linearly dependent over J¢,. A matrix A, with
entries in %, has generic rank m, if there exists an m x m minor A of A such that
det(A) # 0, and all its minors A of dimension p X p, with p > m, are such that
det(A) = 0. If the vector functions o (x), ..., a; (x) € R", with entries in J,, are
linearly independent, then the n x m matrix [o] ... o] has generic rank m.

Property 1.1 Givenay,ay € %y, o = Z—j, a;, b; € @, b; # 0, then:

(1.1.1) ajan = Z:Z; € Ky,

(1.1.2) ajar =0 if and only if either 1 =0 or ap = 0;
(1.1.3) o) + oy = abatarbi o .

b1by
(dap . 0b;
doy _ oxj TTAx; )
(1.1.4) ax; = 2 € Ky,

(1.1.5) the equationlal & = ap in the unknown &, with o # 0, has a unique solution
in %, given by & = ¢Z.

The properties above need not hold when functions are not meromorphic; as

_ fel i ifx >0, o ifx; =0, .
for Property (1.1.2), let a;(x) = {0, ifx; <0, and ap(x) = . iy, <0, with

x e R%; clearly, such functions are smooth on the whole R, are not identically equal
to zero, but their product aja; is identically equal to zero; similarly, a; = [ ('] is
not identically equal to zero, but apc; is identically equal to zero. Let o1 = [%‘] and
oy = [a(;]; clearly, there exists no function a such that «r = aay, but det([«1 «2])
and a1 + ajap are identically equal to zero.

Let x € R; if 8 is the anti-derivative (or indefinite integral) of o € %7, i.e.,
Bx) = f a(x) dx, then 8 need not be meromorphic on %, but it is certainly analytic

on some open and connected set %7 * C % . For instance, a(x) = )lc is meromorphic
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on the whole R, but its anti-derivative B(x) = In(]x]|) is not, being analytic only on
the intervals (—o0, 0), (0, +00).

1.3 Differential and Difference Equations

Consider two vector functions f(x), F'(x) € R" and the associated continuous-time
(respectively, discrete-time) systems described by

dx ()

S~ =f(x®), xeR" reR, (1.1a)
x(t+1)=F(x(t)), xeR" reZ, (1.1b)
where x = [x1 ... x,]" is the state vector; symbol Ah(t) stands either for d’zi(tt) in

the continuous-time case (if # € R) or for (¢ + 1) in the discrete-time case (if t € Z),
for any scalar or vector function /#; T = R in the continuous-time case and T = 7Z
in the discrete-time case; for the sake of simplicity, it is assumed that all functions
are meromorphic on some open and connected set %7 of R” and, therefore, that they
are analytic on %/ *, with %/* being some open and connected set of % ; note that
% need not contain the origin of R” and vector functions f and F need not sat-
isfy f(0) =0 and F(0) = 0. If 0 must belong to % and equalities f(0) =0 and
F(0) = 0 must hold, this is explicitly assumed. Under the above assumptions, sys-
tems (1.1a) and (1.1b) have unique maximal solutions [119] x(t) = @ (t, x0), t € R,
t sufficiently close to 0 to avoid finite escape times, and x(¢t) = Wr(t,x9), t € Z, t
sufficiently close to 0, respectively, from the initial condition xg € % * at time ¢t = 0;
@ ¢ and Y are the continuous-time [7] and discrete-time flows (briefly, the CT-flow
and DT-flow) associated with f and F', respectively. If no confusion can arise be-
tween the continuous-time and discrete-time cases, the simpler nomenclature flow
is used instead of CT- and DT-flows.

Definition 1.1 Some meromorphic functions #;(x) : Z - R,i=1,...,m,m <n,
are functionally dependent [102] if there exists a meromorphic function
F(z1,...,zm) : R™ — R, which is not identically equal to zero, and an open and
connected set Z* C % such that F(hi(x), ..., hu(x)) =0 for all x € Z*; other-
wise, they are called functionally independent [102].

Note that, when meromorphic functions are considered, the functional depen-
dence and the functional independence are the only two possible cases; this is not
true, if the considered functions are, for instance, only smooth.

For the proof of the following theorem, which is omitted, see the Notes at the end
of Chap. 2 of [102].

Theorem 1.1 Some analytic functions hi(x) : % - R, i=1,...,m, m <n, are
functionally independent if and only if, letting h = [hy ... hy)", the Jacobian ma-
trix % of h has full rank over the field %, of meromorphic functions, i.e., % has
full rank for all x in some open and connected set U™* C U .
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Tox
= x1 is not identically equal to zero, k1 and h; are functlonally independent; note
that, for /21 and &> to be functionally 1ndependent need not have full rank for all

x € RZ,

Example 1.3 Take hy(x) = x1, ha(x) = x1x2. Since 2% — [xz X ] and det( ah(x))

Example 1.4 Take hi(x) = 3L, ha(x) = M)y =0, hy and h are
functionally dependent; as a matter of fact taklng F(z1, z2) =z2+ 2122 — 1, one
can verify that F (hy(x), h2(x)) = 0 for all admissible x € R2.

Consider a vector function g(x) € R" and the associated continuous-time system
(from now on, the dependencies on times #, T are omitted, if not necessary):

d—ng(x), xeR" teR. (1.2)
dr

Since it is assumed that g is meromorphic on %/, g is analytic on some % *;
therefore, system (1.2) has a unique maximal solution x (1) = @4 (7, x0), T €R,
sufficiently close to 0, from the initial condition xo € Z* at time 7 =0 (&, is the
CT-flow associated with g).

The dlrectzonal derivative L ¢h € R of a scalar function 2 by f is L ¢h := 3X by,
where 1s the gradient of & (L ¢h is often called the Lie derivative, as in [100]); the
dzrectzonal derivative Lyg € R" of g by f is the vector having L rg; as ith entry,
with g; being the ith entry of g,i.e., Lrg:= g—ff, where g—i is the Jacobian matrix
of g; the CT-Lie bracket [ f, g] € R" of f and g is [23, 69, 76, 100, 107]

9
L/ &l '——f——fg Lyg—Lgf,

and the DT-Lie bracket | F, g] € R" of F and g is [93]
oF
LF. 8] i=g(F) = ——g=goF —LgF,

where g—i, % and %—f are the Jacobian matrices of g, f and F, respectively, and
o denotes function composition. If no confusion can arise between the continuous-
time and discrete-time cases, the simpler nomenclature Lie bracket is used instead
of CT and DT-Lie brackets.

For a given %, consider the set .7, of all analytic functions «(x) :  — R.
A derivation on .7, is defined formally below; for more details, the reader is referred

to [40].

Definition 1.2 Consider a function D(@) : <7, — ,. If D is linear, D(aja1 +
aran) = a1 D(ay) + ax D(ap) for all real constants a;,a; € R and for all oy, an €
iy, then D is called a derivation on 7, if it satisfies the Leibniz rule

D(ajon) = D(a1)az + Do)y,  Voi,an € o,.
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Theorem 1.2 Consider a vector function f(x) € R", with entries f; € <,; then, the
function D defined by D(x) = Ly, Yo € y,, is a derivation on <,
Proof The proof of both the linearity and the Leibniz rule are direct:

%)
D(aja) +aran) = Lg(arag +a2a2)—al—f+ 2—f

=aiLyay+arLlfor

and

30[10{2
dx
= D(ay)ar + D(a)aj. O

D(ajaz) = Ly(ajon) =

¥ 3051f+ a(xzf L tall
=y — dX1— ] = o o o
275> ey oL rap +arLpon

Theorem 1.3 Let D be a derivation on <,. Then, there exists a vector function
f(x) e R", with entries f; € oy, such that D(a) = L ya, Vo € .

Proof Let fi(x) = D(x;), i =1,....,n, and f =[f; ... f,]"; then, by The-
orem 1.2, define the derivation D as D(a) = Lya, Va € o,. Clearly, also D

defined as D(a) = D(a) — D(oz), Ya € 47, is a derivation. Now, it is shown
that D(p,,) = 0, for any polynomial p,, of degree m > 0. First, it is shown than
D( pm) = 0 holds for m = 0 and m = 1. Then, under the induction assumption that
D(pm) =0, for any polynomial p,, of degree m, it is shown that D(pmH) =0, for
any polynomial p,,4; of degree m + 1. Consider the function « identically equal to
1; then, since & = acr, by applying D to such an equality, one concludes that

D(a) =2aD(e) =2D(a),

which shows that D(a) = 13(12 = 0; moreover, ﬁ(c) = gﬁ(l) = 0, for any con-
stant c. Since, by definition, D(x;) = D(x;), one has D(x;) =0, i =1,....,n
Hence, D(p1) = 0 for any polynomial p; of degree 1:

D(p1) = (Co + Zc,xl) =coD(1) + Zc,mxz) =

i=1 i=1

Any polynomial p,,4+1 € 27, of degree m + 1 can be rewritten as

Pr1(X) = py1(0) = ) Bi(x)xi,

i=1
where the f;’s are polynomials of degree lower than m + 1; then, applying D to
such an equality, one concludes that

n

D(pmi1) =) _(xiD(Bi) + Bi D(x;)) =0.

i=1
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The proof is completed because the only analytic function whose Taylor expansion
is zero is the function « that is identically equal to zero. g

Remark 1.1 For any scalar or vector function «(x) and for any pair of vector func-
tions f(x), g(x) € R, with entries in .7,, the following relation holds:

Lipga=LygLeox — LgLya,
which can be written in terms of operators as
Lifgr=LsLg— LgLy. (1.3)

Such a relation can be proven by considering the operator D(a) := LyL,a —
LgLya. Clearly, D(aia; + axan) = a1 D(a1) + axD(a), for all real constants
ai,as € R and for all o1, ap € <7, and
D(ajaz) = LLg(ajan) — LgL (arar2)
= Ly(a1Lgar +asLgay) — Lg(ay L pon + oz L pory)
=aiLygLgar +arLgLgay + (Lyar)(Lgan) + (Lpaz)(Lgoy)
—ajLgLyay —arLgL oy — (Lgay)(Lran) — (Lgan) (L ray)
=a(LyLeay — LgLyaz) +ax(LyLgay — LgL o)
= o1 D(an) + a2 D(ay);
hence, D(w) is a derivation and by Theorem 1.3 there exists 4 (x) € R", with entries

in &, such that Ly = D(a) = Ly Ly — Ly L ra, for all o € ;. By the proof of
Theorem 1.3, the entry h; of & is given by

hi(x)=D(x;))=LysLgx; —LgLyx;i=Lygi — Lgfi,

which coincides with the ith entry of [f, g]. Therefore, h = [f, g], thus show-
ing (1.3).

The directional derivative L sh and the function composition & o F are basic
operations in the book. They have analogous meaning when applied, respectively,
to continuous-time and discrete-time systems. Two of their properties are compared
below (where h1(x), ha(x) € R):

h hoL fhy —hiL¢h h hioF
Lf<_1>=2f]21f2’ (—1>0F=1° ’

h h3 ho hyoF
Ly(hihy)=hLshy+hoLrhy, (hihy)o F =(hio F)(hpo F).

Property 1.2 The CT-Lie bracket enjoys the following properties, with f(x), g(x),
h(x) e R" [23, 69, 76, 100, 107]:
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(1.2.1) [f, gl=—lg, f1 (skew-symmetry);
(1.2.2) [af + Bg, h]l = alf, h] + Blg,h] and [h,af + Bgl = alh, f]1+ Blh, gl.
with «, B € R being constants (bi-linearity);

1.2.3) [f. g, h]]1+ [g. [h, f11+ [k, Lf, g]] = O (the Jacobi identity).

Note that, in general, Properties 1.2 need not hold for the DT-Lie bracket (they
hold for the DT-Lie bracket when f, g and A are linear functions of x).

The proof of Properties (1.2.1) and (1.2.2) can be done by direct substitution. As
for the proof of the Jacobi identity (1.2.3), note that L ra = 0, for any scalar function
a(x) € R,if and only if f =0, i.e., if and only if L y = 0. Then, compute

Lisignn = LyLign — LigmLy=Ly(LgLp — LpLg) — (LgLpn — LpLg)Ly
=L¢LgLp—LyLpLyg—LgLpLy+ LyLgLy,
Lign.sm = LgLin.g1 = Lin.s1lg = Lg(LnLy — LyLp) = (LpLy — LyLp)Lg
=LgLpLy—LgLyLp—LpLfLg+ LyLpLg,
Linifen = LnLifg) — Lifgiln=Ln(LyLlg — LgLy) = (LyLg = LgLy)Lyp
=LpLfLg—LyLoLy—LyLgLp+ LoLyLy.
Sum Ly g m+ig. ik fI+HRfgl) = Lisilg.n + Lig.ta, s11 + L[ .11 is composed
by 12 terms, each one appearing in the sum twice, with opposite signs, whence the
sum is equal to 0.

Another useful property of the CT-Lie bracket is that, for any a(x) € R and
f(x), g(x) € R", one has

laf. gl=alf, gl = (Lya) f. (1.4)

Remark 1.2 A map y = ¢(x), with ¢(x) : R" — R”" being analytic on Z*, is
a diffeomorphism on a neighborhood Ao of x° € %* if det(=% 3<p(x) lx=xo) # 0; if

2* =R", then y = ¢(x) is a diffeomorphism of R"” onto R” (brleﬂy, a global
diffeomorphism [122]) if det( aw(x)) #0, Vx e R", and y = ¢(x) is a proper map,
i.e., if the inverse image of any compact set is compact. Given a diffeomorphism
y = ¢(x), a scalar function /2 (x) € R and a vector function f(x) € R" ift T =R (re-
spectively, F(x) € R" if T = Z), the push-forward of h by ¢ and the push-forward
of f (respectively, F) by ¢ are (see, e.g., [86, 107]):

Psh(y) =hogp N (y),
0
P f() = (a—‘”f> o9 l(y), IfT=R,
X

e F(y))=poFop '(y), ifT=Z.

Given a scalar function z(y) € R and a vector function f(y) € R if T=R (re-
spectively, F (y) e R" if T = Z), the pull-back of h by ¢ and the pull-back of f
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(respectively, F) by ¢ are
9 h(x) = ¢ h(x) =hop(x),
% -1z dp~! - .
) =9, fx)= Tf op(x), iIfT=R,
PFxX)=¢'Fx)=¢ 'oFog(x), ifT=Z.

If no confusion can arise, the shorter notations h=qh, f=¢.f, F=¢.F, h=
©*h, f =¢*f and F = ¢*F are used.

The following theorem shows how the directional derivative and the CT-Lie
bracket behave under the action of a diffeomorphism [100, 107].

Theorem 1.4 Let f(x), g(x) e R" and a(y) € R. Let y = ¢(x) be a diffeomorphism
with inverse x = ¢~ (y). Then,

(14.1) Ly, ra=g.Ls(@*a)=(Ly@op)op™;

(142) [puf. 0281 =0ul f. g1 = (321 f. gD oo,

Proof The proof of Statement (1.4.1) of the theorem can be obtained by the follow-
ing equalities:

_da aa (d¢ 4
L = — = —| — .
o fa ay@*f oy <8x f) o

~ _ da ) _ da (0 _
wraeene = ((5ee) (527)) oo = 5 (521

Statement (1.4.2) of the theorem is equivalent to Ly, 1.4, 410 = 14, for

L o

(FxLf:8Dop
any a(y) € R. Hence, by (1.3), a repeated application of Statement (1.4.1) of the
theorem yields:

Lig, fp.18 = Lo, Ly, a0 — LypgLy, ra
=Ly ((Lg@o9) 09™") = Lyg((L@og))op™)
=(LyLg@o@))og ' — (LgLy(@og))op™
=(LyLg(Gogp)—LgLp(@og))og ' = (Lisg@og))op™!

=L 11, gpop1 4 -

Since Lf(g—fg) is not, in general, equal to g—fog, then Ly, r(@s8) # @sLyrg,
in general, namely the directional derivative of a vector function g along f is not
invariant to diffeomorphisms, although by Statement (1.4.2) of Theorem 1.4, one
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concludes that

Lrp*f(ﬁo*g) - Lrp*g((p*f) = <P*Lfg - (p*Lgf-

Statement (1.4.2) of Theorem 1.4 is referred to as the invariance of the CT-Lie
bracket to diffeomorphisms.

Definition 1.3 Given g(x) € R", the continuous-time centralizer €c(g) (respec-
tively, the discrete-time centralizer €p(g)) of g is the set of all f(x) € R" such
that [ f, g] = —[g, f]1 = 0 (respectively, of all F € R" such that | F, g] =0). Given
B € R™", the set of all Ax, A € R"™", such that [Ax, Bx] = |Ax,Bx| =0 is
denoted by .Z,(Bx) and it is called the linear centralizer of Bx.

By the skew-symmetry of the CT-Lie bracket (see Property (1.2.1)),

fete(®) = gebc(f)
Ax € 4.(Bx) <<= Bxec Z.(Ax)

(in general, however, ¢ (g) # ¢ (f) and Z.(Bx) # £, (Ax)).

If f(x) = Ax, F(x) = Ax and g(x) = Bx, for some A, B € R"*", then
[f(x),gx)]=|F(x),g(x)] = (BA — AB)x and, therefore, .Z.(Bx) C ¢ (Bx)
and .Z.(Bx) C €p(Bx).

One of the key concepts in this book is that of first integral, which is widely used
in the continuous-time case (see, e.g., [56]), and has a natural generalization for the
discrete-time case (see, e.g., [82]).

Definition 1.4 A first integral of the continuous-time system (1.1a) (respectively,
of the discrete-time system (1.1b)) is a scalar function 7 (x) : Z* — R, analytic on
%*, such that L ¢ I(x) = 0 (respectively, I (F(x)) =1 o F(x) =1(x)),Vx € %*,
with 2/ * being an open and connected subset of %/; if I is a constant, then the
first integral is said to be trivial, non-trivial otherwise. Note that / (x) need not be
defined on the whole % .

The definition of first integral given in Definition 1.4 is strictly correlated with
the definition of generalized first integral given in [84, 85].

Clearly, L s 1 (x) =0is equivalentto / o @ ¢(¢t,x) = I(x) and [ o F(x) =1(x) is
equivalent to I o Wg(t, x) = I (x), for all admissible (¢, x) € R x % . For brevity, a
first integral of system (1.1a) (respectively, (1.1b)) is also called a CT-first integral
associated with f (a DT-first integral associated with F). Symbol .Z¢ (f) (respec-
tively, Zp(F)) denotes the set of all first integrals of system (1.1a) (respectively,
system (1.1b)). If no confusion can arise between the continuous-time and discrete-
time cases, the simpler nomenclature first integral is used instead of CT- and DT-first
integrals.

Remark 1.3 In the continuous-time case, assume f # [0 ... O]T; given n — 1 func-
tionally independent CT-first integrals Iy, ..., I,—1 € Zc(f), any I € Zc(f) can
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be expressed as I = C(ly, ..., I,_1), with C being an arbitrary function. Note that
there cannot be n functionally independent first integrals associated with f ;é 0; as
a matter of fact, condition L ¢ = g—; =0, with 7(x) € R”, implies that L has
generic rank less than n, whence the entries of I cannot be functionally 1ndepen-
dent. In the discrete-time case, set .#p(F') can be generated by m functionally inde-

pendent first integrals Iy, ..., I,, € .#p(F), where, under the respective assumption
F #[1 ... 117, m need not be equal to n — 1; any I € .#p(F) can be expressed as
I =C(,...,1I,), with C being an arbitrary function. This, in particular, implies

that, except for the case f =0 (any 7 is a CT-first integral associated with f = 0),
any scalar continuous-time system does not admit first integrals, whereas, under
the assumption F # 1 (any [ is a DT-first integral associated with F' = 1), a scalar
discrete-time system either admits no first integral or admits infinite functionally
dependent first integrals. In the rest of the book, the two trivial cases f =[0 ... 0]"
if T=Rand F=[1 ... 17 if T = Z are excluded.

Example 1.5 For any time-invariant mechanical system (subject to conservative
forces, only), a first integral is given by the total energy I, which is defined as
the sum of the kinetic and potential energies. As an example, /(x) = %(m1x32 +
mzxf) + %k(xl — x2)% is a first integral of the nonlinear mechanical system consti-
tuted by two point masses m1, my > 0, moving on a straight line and connected by
a nonlinear spring characterized by an elastic energy ks 4 corresponding to defor-
mation &, whose equations of motion are given by (see Sect. 5.1)
dx1

bl R
dr 3
dxo

=2
a !
d)C3 k 3
— =——(1 —x2)7,
o ml(l 2)

O mz(xl x2)7;

to be more precise,

X3
X4
k(%) —x2)°
1?"1 3
my (X1 —X2)°

Lel(x)=[k(x; —x2)° —k(x1—x2)° mix3 moxs]

As for the discrete-time Mobius-type system described by x (¢ 4+ 1) = F(x(¢)), with

_ (a+2bx cx? )2
b+cx

a+2bx — cx?\?
= () = .
F= a+bx —b + CcX
—b+cx

F(x) = f;fé‘x and a,b, c € R, a first integral is given by I (x) =
since

a+2bF — cF2\?
—b+cF

IoF(x):<
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Denote by @ either one of the CT-flows @y and @,; then, the following relations
hold whenever defined:

®(0,x) = x, (1.5a)
(11, P (12, x)) = (11 + 12, X), (1.5b)
D (—t,P(t,x)) = x. (1.5¢)

Thanks to the above properties, both @ ¢ and @, define a local one-parameter
group of transformations [102], y = ®@(¢t,x), and f and g are the infinitesimal
generators of the respective group: in particular, x = @(—z, y) is the inverse of
y = ®(t, x), for all admissible 7, x, y. Given a local one-parameter group of trans-
formations @ (¢, x), i.e., a vector function @(¢,x) € R” satisfying (1.5a)—(1.5¢),
there exists a vector function f(x) € R" such that @ (¢, x) = @ (¢, x) for all ad-

missible (z,x) in a neighborhood of the origin of R x R"; in particular, since
9P ,(z x)

lr=0 = f(P@r(t,x))|1=0 and @£ (0, x) = x, taking into account the unique-
ness of @ (2, x), the infinitesimal generator f of @ (¢, x) can be easily computed
by f(x) = ‘w(’ 2,0 (see [102]). As a matter of fact, letting f (x) = aq>(; 2|, o,
one can compute

0D (t,x) -1 Ot +T,x)— D(t, x) lim D(T,P(t,x)) — D(t,x)
a0+ T = oo T
= ( fim 2T%) — 4;(0’)6)) 0 @(t,x) = f(x) 0 D(t,x),
T—0t T

which, integrated from the initial condition @ (0, x) = x, yields @ (¢, x) = @ s (¢, x).
Finally, note that (1.5a), (1.5b) imply (1.5¢), for small |z|.

Example 1.6 As an example of a local one-parameter group of transformations, take
D(t,x) == x2 17 (see, Example 1.27(c) of [102]). Clearly, (1.5a) holds;

ltx

(1.5b) can be checked 1t)y direct substitution

X x) T
T T—trx
(11, P(1r. x)) = [1 P — ]
T T ERECTSE
T
— X1 X2 —
- [1*(I1+t2)xl 1*(f1+f2)X1] =P +12,%).

The infinitesimal generator of @ (¢, x) is

9o, x) _[ <} ]T
T Ld=tx? (=tx))?

ot

=[xl

fx) =

1=

x=0

1.4 Differential Forms

In this section, some facts about the integration of differential forms are recalled;
the reader interested in a more extensive treatment is referred to [35, 47, 107, 116].
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If I (x) € R, then:

(1) the differential of I is dI := % dx, where dx = [dx; ... dx,]";

(2) given a differential equation g—’t‘ = f(x), with f(x) € R", the directional dif-
ferential of I along the solutions of such a system is d/ = (% f)dt, with
% f = L1 being called the value of the differential of / on f (it coincides

with the directional derivative of I by f).

A one-formisa =a' dx = Y1 ai dx;, with a(x) € R" being a vector function.
The value of o on f is a(f) :=a' f; by abuse of notation, the row vector function
a' is also called a one-form. Let .%; be the set of all one-forms. Clearly, 7] is a
vector space of dimension n over the field .%;, of meromorphic functions.

A one-form « is locally exact [47, p. 67], if there exists a scalar function / such
that d/ = « in Z*, with %* being some open and connected subset of %/ (the
adverb locally is omitted in the following); such a scalar function is called a first
integral of the one-form and is (differently from what happens for continuous-time
and discrete-time systems, as discussed in Remark 1.3) locally unique, apart from
the sum of an arbitrary constant. If d/ = « on the whole R”, then [ is a global first
integral of «.

Example 1.7 Consider the one-form o = (x%jfxg)dxl + (—x%?x%)dxg. In a suf-
ficiently small neighborhood of any point (xg, x2) such that x, # 0, a first in-
tegral of the one-form « is I1(x) = arctan(%); in a sufficiently small neighbor-
hood of any point (x1, xp) such that x| # 0, a first integral of the one-form « is
Lx) = arctan(—;—?). Note that there exists no function / such that d/ = « holds
on the whole R? — {0}. However, it is worth pointing out that I; and I, are not

functionally independent, since I} = — arctan(m).

The wedge product of two one-forms o = }/_; a;dx; and g = 37}_, b; dx;,
aj,bj € 7, is denoted by o A B and is defined by

aABi=> " (aibj)dx; Adx;, (1.6)

i=1 j=1

where the wedge product A satisfies the following property (skew-symmetry):

dx; /\dxj =—de Adx;, ifi;éj,
dxl-/\dxj=0, 1fl=]

By the skew-symmetry, summation (1.6) can be rewritten as

a/\IB:Z Z (aibj—ajb,-)dx,-/\dxj. (1.7)

i=1 j=i+1
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A summation such as (1.7) is called a two-form. A two-form is the formal sum

n n
y=Y_ Y cjdyndy, cij€dp (1.8)

i=1 j=i+l

let ., be the set of all two-forms (1.8), which is a vector space of dimension @
over the field ./, of meromorphic functions. For any two-form y, there always exist
two one-forms «, 8 such that y = o A B.

Property 1.3 The elements of %, satisfy the following properties («, o, a2, 3 €
F1and ay, ar, a3 € Hy):

(1.3.1) (a1a1 + araz) A a3z =aja; Aoz + axay A a3 and o) A (apan + azas) =
ara A ag + azay A az (bi-linearity);,
(1.3.2) a Aa=0and a; A ap = —an A oy (skew-symmetry).

Example 1.8 In R?, one finds that
a A B = (arby)dxy Adxy + (arby) dxy A dxa + (azby) dxz A dxg
+ (axby) dxz A dxp
= (a1by — arby) dx1 A dxs.

In R3, one finds that

o A B = (a1by —arby)dx; Adxy + (a1b3 — azby)dx; Adxs
+ (aybz — azby) dxy A dxs.

In general, given some one-forms «, 8, ¥, §,...,a¢ A B A y is a three-form,
o A B Ay Aéisafour-form and so on, with the wedge product being associative.
A p-form is the formal summation

n n n
J/=§ E E Citsigenip A%y AdXiy Ave o ANAXG s Cipiy..iy € Tons

i1=lir=ij+1 l.p:llpfl'i‘l
(1.9

let .7, be the set of all p-forms (1.9), which is a vector space of dimension (Z) over
the field .%;, of meromorphic functions. For any p-form y, there always exists p
one-forms aq, ..., o, suchthat y = o A -+ Aap.

Property 1.4 The elements of .%), satisfy the following properties (8;, o; € %1 and
bi (S %1)

(14.1) 01B1+b2B) Ao A---Nap=bi1AapA---Nap+bafa ANaa A+ Aap,
and any other similar property obtained by substituting any «; in o] A a2 A
< Aap with by B1 + by fo;
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(1.42) ay Aap A--- Aap =01if a; = for some i # j;
(1.4.3) a1 Aaz A--- Aap changes sign if any two «;, a, i # j, are interchanged.

The derivative da of a one-form o = Y, a; dx; is a two-form defined by

n
da ::Zdai/\dxi,

i=1

the derivative dy of a two-form y = 37/_; >_; ¢ jdx; A dx; is a three-form
defined by

n

d)/ :ZZ i dC,‘,j/\dx,'/\d)Cj,

i=1 j=i+l

and so on.
The two-form do can be rewritten as

dx; Adxp

dxl/\dxn
dxy A dxs
dol:[cl‘z oo Clp €23 ... Cop ... Cnfl,n] : , (1.10)

dxy A dx,

| dx,—1 A dx, |

with ¢; ;’s being scalar functions; the transpose of the coefficient row vector in
(1.10) having the ¢; ;’s as entries is called the curl of the vector function a and
is denoted by curl(a).

Example 1.9 In R2, the derivative of the one-form « = a; dx; + a» dxs is

0 d d d
do = [ 28 duy + 2%y ) Adiy + (22 dwy + 22 4y ) A dny
0x1 0x X1 RBY)
0 d 0 0
=ﬂdx2/\dx1+£dx1/\dx2= ﬂ—ﬂ dx; Adxp.
3)(2 3X1 3)61 3)(2

The curl of the vector function a = [a; a»]" is the scalar curl(a) = g% — g%. InR3,
the derivative of the one-form o = aj dx| + ap dxp + a3 dx3 is

day daq day
da = —dx; + —dxy + —dx3 | Adx;
0x1 0x7 0x3

9 9 9
(22 4+ 22 a0y + 22 4xs ) A diy
x| 0x2 9x3
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8 8 5
+<J5dxr+l5dm4—§§dn>Adn
x3

3)61 8)(2
dap day dasz daj
=(———)dx; Ad — — — )dx; Adx
<8x1 8x2> FAda (8x1 8x3) H 3
d ad
9 _ dxy A dxs.
dxy  0x3

The curl of the vector function a = [a; ay az]" is the vector (note the special ar-
rangement of the entries of curl(a) in the case n = 3 to be conform with the usual
definition of curl in the vector calculus)

daz _ dap
dxp ax3
day das
curl(a) = ax  ax
day _ day
0x1 d9x2

The proof of the following theorem is omitted: the necessity is given by the
Poincaré Lemma (Lemma 2-15 of [116]) and the sufficiency is given by the con-
verse Poincaré Lemma (Theorem 2.19 of [116]) (see also [47]).

Theorem 1.5 A one-form a (respectively, a one-form a') is locally exact if and
only if da = 0 (respectively, curl(a) = 0).

A one-form « is closed [47, page 67] if do = 0; by Theorem 1.5, a one-form is
locally exact if and only if it is closed.

Remark 1.4 Let n =2 and assume that « is exact, namely assume the existence of
a scalar function / such that

Then,

0 ol d ol
da=dd/l = —— — ——
0x1 0xa  0xp 0xp

The proof of the following theorem, which is a version of the Frobenius Theorem,
is omitted (see Proposition 2.4 of [116] for the necessity and the lemma at p. 96
of [47] for the sufficiency).

Theorem 1.6 Let o # 0 be a one-form. There exists w(x) € R, w # 0, such that
%a is exact, namely such that d(ia) = 0 if and only if the following condition of
Frobenius holds:

do Ao =0. (1.11)
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Remark 1.5 Assume d(ia) =0, with w # 0. Since

1 1 1
d(—ot) =—— do Ao+ —da,
1) ) 1)
condition d(1a) = 0 implies do = L dw A &, whence do Aa = 2 dw Ao Ao =0.
If (1.11) holds, the function w(x) € R, w # 0, such that d(%(x) =0 is called an
inverse integrating factor of the one-form «. If (1.11) holds, then by the above
reasoning there exists an exact one-form B such that de = 8 A « (in particular,
B= ﬁ dw), whence w(x) = e?® ¢, where b(x) € R is the first integral of 8, db = g,
and ¢ € R is an arbitrary constant.

Example 1.10 Let a # 0 be a one-form. In R?, one finds that

day day
dao Ao = —= — — )dx; Adxo | A (a1 dx; + apdxp)
0x1  0x2
da, Jdag day dap
=ai| — — — Jdx; Adxp Adxy +ar| — — — Jdx; Adxy Adxp
dx;  dxo dx;  0x2

:O’

which means that an inverse integrating factor always exists when n = 2. In R3, one
finds that

0 0 0 0
da Ao = <(ﬂ — ﬂ)d)cl Adxy + (ﬂ — al)dxl Adxs

dx1 0x2 ax1 0x3
a ad
+ (ﬁ - ﬂ)dxz A dx3> A (ay dx1 + ay dx; + a3 dx3)
3)(2 3)63
3612 3(11 3(13 8a1
= T T i B\ T |2
ax]  0x ox;  0x3
ad d
ﬁ — ﬂ ap |dxy Adxy Adxs,
3XQ 3)63

which means that there exists an inverse integrating factor when n = 3 if and only if

dar  0day daz  0aj daz  Jdap

— —— |- |———— oo+ |———)ar=0.

dx1  0x2 dx;  dx3 dx2  0x3
Example 1.11 Let « = —xpdx; + x1dxz and compute do = 2dx; A dx». For any
exact one-form 8 = % dx; + % dx;, one computes S Ao = (%xl + %xz) dx; A
dxy; equality doe = B A « yields the partial differential equation %xl + %xz =2.
The characteristic equation associated with such a partial differential equation is
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‘iﬂ =do _ %. Two functionally independent first integrals of the characteris-
1 X2

tic equation are I| = ln(|%|) and I» = In(|xq|) — %b. Therefore, all first inte-
grals of the above partial differential equation are given by I, = C(I;), where
C is an arbitrary function. In particular, choosing C(I1) = %11, one computes
b(x) = In(|x1x2|), which yields the inverse integrating factor w(x) = x1x3 (choos-
ing ¢ = 1 as integration constant). With this choice, one obtains the exact one-form
iot = —i dx; + % dx,, with the first integral [ = ln(|§—f|).

Example 1.12 The one-form o = x2 dx1 + x3dxz 4+ x1 dx3 does not admit any in-
verse integrating factor, because da A @ = —(x1 + x2 + x3) dx; A dxp A dx3 is not
identically equal to zero.

Theorem 1.7 If w is an inverse integrating factor of the one-form « and I is the
corresponding first integral, i.e., zfg—; = %a, then @ = CLI is an inverse integrating
factor of a, where C # 0 is an arbitrary function of I; in particular, the first integral
of « corresponding to @ is i= f C(I)dl, where f C(I)dl is the indefinite integral
(the anti-derivative) of C(I).

Proof Clearly, g—){ = C(I)% = C(I)éa. 0

Remark 1.6 In this remark, assume that x € R3. Three basic operations of vector
calculus are the gradient, the curl and the divergence. Let V = [% 6372 %]T.
The gradient of a scalar function 4 (x) € R, and the curl and divergence of a vector
function f(x) € R3 are, respectively, defined as follows:

- oh
0x1
._ | 9k
Vh := |
Oh
L dx3 |
M0 ] s _
oxq fl dx2 ax3
S — | _ 3
V x f T | dx2 X f2 | 9x3 daxyp |
2 f o _ o
L dx3 _| x| dx
- 5
3)(] 1
. 9 f aft , 9f2  If3
Vil=lan || 2 =50 T Yo
2| LA !
L dx3

where x and - are, respectively, the cross and scalar product. Using the language
of differential forms, Vi corresponds to the one-form dh = % dx; + gj—)ﬁ dx; +

Mdxg, V x f corresponds to the two-form d¢, where ¢ is the one-form ¢ =

ax3
fidxi + frdv+ fides, e, dp = (GE — g v Advs + (5t — 58 des Adxy +
(% — %) dx; Adxo, and V - f corresponds to the three-form dy, where yx is the
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two-form y = fidxy Adxsz + fodxz Adx; 4+ fadx; Adxp,ie.,dy =dfi Adxa A
dxs +dfy Ades Adxy+dfs Ado Ade =G0+ 22 4 38y dy A dxg A das.
From vector calculus, it is known that the following properties hold in some open

and connected domain of R3:

(1.6.1) if Vi = 0 for some scalar function %, then 4 is constant;

(1.6.2) if V x f =0 for some vector function f, then there exists a scalar function
h such that f = Vh;

(1.6.3) if V- f =0 for some vector function f, then there exists a vector function
gsuchthat f =V x g;

(1.6.4) for any scalar function h, there exists a vector function f suchthat V- f = h.

In terms of differential forms, the above properties correspond to the following
respective properties:

(1.6.1") if dh = 0 for some scalar function #, then & is constant;
(1.6.2") if d¢ = 0 for some one-form ¢, then there exists a scalar function & such

that dh = ¢;

(1.6.3") if dy = 0 for some two-form ¥, then there exists a one-form ¢ such that
do = x;

(1.6.4") for any scalar function £, there exists a two-form yx such that dx = hdx; A
dxz VAN d)C3.

1.5 The Cauchy-Kovalevskaya Theorem

In this section, some facts about the Cauchy—Kovalevskaya Theorem are recalled,;

the reader interested in a more extensive treatment is referred to [36, 103].
Consider m scalar functions u; (x) e R, i =1, ..., m. Apart from a reordering of

the entries x; of x, consider the system of first order partial differential equations

duy oty

g%ll :kl(xvl'tl’"‘sum’ Oxa o o W)’
(1.12)
%MT}T ka(‘x7u1’ ""um’ g%’ AR ] gz’;’)v
where k; (£) : R*™+tD S R i =1,...,m,and x* =[x3 ... x,]"; system (1.12) is
said to be in the Kovalevskaya form.
Assumption 1.1 Take a point x” = [x} x7 ... x2]T. Consider the Cauchy initial
data
wi(x9,x0, ..., xp) =hi(x2,...,x,), i=1,...,m, (1.13)
where the functions %;(x, ..., x,) are analytic at [xp ... x]T = [xé’ x,‘l‘]T.
Let Z2(0) =[x u1(x) ... tp(x) (BLEHT (2l TT apd £° = 5 (x°). Let

functions k;(§),i =1, ..., m, be analytic at § = £°.
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The Cauchy—Kovalevskaya Theorem can be stated as follows (the proof can be
found in [36]).

Theorem 1.8 Under Assumption 1.1, the Cauchy problem (1.12), (1.13) has a
unique solution uy(x), ..., uy(x) in a neighborhood of x°, which is analytic at

x =x°.

Remark 1.7 1f n =1, system (1.12) reduces to a set of first order ordinary differen-
tial equations and Theorem 1.8 reduces to the classical Cauchy Theorem.

1.6 The Frobenius Theorem

Definition 1.5 Given m vector functions g{(x), ..., gn(x) € R", with entries in
Jy, the distribution & spanned by g1, ..., g, over the field of meromorphic func-
tions 7, is

m
P =spany {g1,....8m} = 18(x) €R" :g=2aig,-,ai e,
i=1

The distribution span ;. {g1, ..., gm} 1s involutive if, for each pair i, j € {1, ..., m},
there exist m functions ¢; j;¢ € Jn, =1, ..., m,such that

m
[gi.gjl= Zci,j;l ge.

=1

The following theorem shows that the involutive property of a distribution & is
independent of the basis {g1, ..., g} chosen to represent Z.

Lemma 1.1 A distribution 9 = span y {g1, ..., gm} is involutive if and only if
[f.gle P, forall f,geP.

Proof Given an involutive distribution & = span k7 {g1,---,8&m}, if f, g € Z, then

[f, 8] € Z; as a matter of fact, letting f =) 7" | &g and g = 2?‘21 Bjgj, for
a;, Bj € J,, one concludes that [ f, g] belongs to &, as shown by the following
equalities:

m m

[f.g1=) > leigiBigjl=Y_ > (Logi(Bjgj) — Lp;g; (@igi))
i=1i=1

i=1 j=1

Z Z (@iLg (Bjgj) — BjLg, (@ig)
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m m

=D (@iBiLggj +8iLgB)) — Bj(@iLg;gi + &iLg;))

Il
-
=

Zalﬁ,@g,g, Lg;8i) + (iLg B)gj — (BjLg;i)gi)

Il
NE

I
—
I
-

(iBjlgi  gj1+ (@iLgBj)gj — (BjLg,i)gi)-

I
™M:
M=

—

i=1

Clearly, if [f,g] € & for all f,g € 2, then [g;,g;] € &, whence [g;,g;] =
ZZL] Ci,j:t 8¢5 for some Ci,j:t € % ]

Lemma 1.2 Let y = ¢(x) be a diffeomorphism. Let 2 = span , {g1, ..., gm} and
9 = span . {081, ..., 0x8gm}. Then,

f€9 = ofe.

Proof If f =3 7., a;gi, then

gp*fz(gf ) Z(%—&) 07" =D (pea) (pugi)-

i=1 i=1

The converse is similar. 0
By Lemma 1.2, & is involutive if and only if 2 is involutive.

Definition 1.6 Let a distribution & = span A, {g1,...,8gm} be given, with g1, ...,
gm being linearly independent over .J%;,. Let G = [g| ... gn]. Point x? € R" is
regular for the distribution & if matrix G(x) has constant rank m for all x in a
neighborhood % * of x°.

By Lemma 1.2, if the domain of definition of the diffeomorphism y = ¢(x) con-
tains the regular point x? of 2, then y° = ¢(x°) is a regular point of 2.

The Frobenius Theorem can be stated as follows (for proof the reader is referred
to [35, 69, 100, 107]), letting e; denote the ith column of the identity matrix E.

Theorem 1.9 Let a distribution 9 = span . {g1,..., gm} be given,with gy, ..., gm
being linearly independent over Jy; let x° € R" be a regular point of 9. There
exists a diffeomorphism y = ¢(x), () : #* — R", with % * being some neighbor-
hood of x°, such that

span . {0«81, - -, Px&m} = span y fer, ..., em} (1.14)

if and only if 9 is involutive.
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By (1.14), any fe span s {¢«81, - -, ¥«gm} has the last n — m entries being
equal to zero; this means that the last n — m entries of ¢(x) are functionally inde-
pendent first integrals of any f* € span  {g1, ..., gn}, and therefore they are joint
functionally independent first integrals of g1, ..., gn.

Let h;(x) € R" be defined by the pull-back h; = ¢*e; = (g—f)_le,-, with ¢
being the diffeomorphism introduced in Theorem 1.9, under its assumptions;
such h;’s are pairwise commuting, [h;,h;] =0 (because [e;,e;] =0), and Z =
spanjgn{gl, e 8m) = span%{hl, ..., hy}. This means that any involutive distri-
bution is spanned, about an arbitrary regular point, by pairwise commuting vector
functions.

The reasoning in the following remark is used very often in the rest of the book.

Remark 1.8 Let y = ¢(x) be a diffeomorphism from % to R", with % being an
open and connected subset of R” such that det(%) #0forall x in % . Let g; be
the ith column of (g—ﬁ)_l; if ¢ has analytic entries on %/, then (g—ﬁ)_l has entries
being meromorphic on %, as well as its columns g;. In particular, the following
relation holds:

[gi,&j1=0, Vi, j. (1.15)

Vice versa, let g1 (x), ..., g,(x) € R" be n pairwise commuting meromorphic vector
functions (i.e., such that (1.15) holds) such that

det([g1 gn]) #0. (1.16)
Then, the n rows of [g] ... g,,]fl are exact one-forms, i.e., there exists an analytic
diffeomorphism y = ¢(x) such that g—f =[g1 ... gu1"" locally. Moreover, such

a diffeomorphism is global if and only if (1.15) and (1.16) hold for all x € R”
(i.e., Z = R") and the vector functions g; are complete [39, 104], i.e., the CT-flow
®,. (¢, x) associated with g; is defined for all (r,x) e R xR",i=1,...,n.Itis
worth pointing out that y = ¢(x) is the diffeomorphism that straightens jointly all

vector functions g;, i.e., 981 =e€1, ..., P«8n = €y, With ¢; being the ith column of
the n x n identity matrix E; in particular, for each j =1, ..., n, by construction
0, ifi#j,
Lgi Yj= P .
1, ifi=j,

where ¢; is the jth entry of ¢. As a consequence, the CT-flow associated with g; is
By, (1,x) =9~ (ei + 9 ().

)

Ll NS

Example 1.13 Clearly, y; = x1, y2 =x2 + xlz, with inverse x| = y1,x2 =y2 — ¥
99 (x) y—1
ax )
[ ! O], the two vector functions gi(x) = [_zlxl] and gr(x) = [?] are found.

—2x1 1
Clearly, [g1, g2] =0 for all x in R? and the CT-flows @, (1, x) =[ _» '3 | ]

is a global diffeomorphism y = ¢(x) from R? to R?. Then, from (
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and @, (1, x) =, +x2] associated with g; and g, respectively, are defined for all
(t,x) e R x R?, je., g1 and g are complete.

Example 1.14 Let g1(x) = [Xz"'z] and gr(x) = [x2+1] then, det([g; g2]) =1
and [g1, g2] = 0 on the whole R2. Since g1 and g are complete (their CT-flows

[ 2t4x 2 4tx, x5+t
Do, (1,x) = [ A ] and @, (1, x) = o | are defined for all

(#,x) € R x R?), the diffeomorphism y = ¢(x), which can be found by integrat-

ing the rows of [g1(x) g2(x)]~! = [_11 ;’2‘1_21], is global: choosing zero integration
constants, one finds the diffeomorphism y; = —%x% +x1—x2, 2= %x% —Xx1+2xp

with inverse x; =2y; + y2 + %(yl +¥2)%, X2 = y1 + 2.

A useful result concerning the inverse ¢~ !(y) can be derived from the property
By, (61, ) 0 Dy (§j.x) = ' (eibi +ej&j + 9(x)), Vi, J, (1.17)
which implies that
Dy (E1,) 0 Py, (52, ) 00Dy, (Epyx) =@ ! (e161 + 262 + -+ enn + 0(x))
=¢ ! (E+oW),
where £ = [&] ... Sn]T. Such an equality gives
9 (1) =Py (E1,7) 0 Dy, (€2, ) 0 -+ 0 By, (En, X) e =y —pv)- (1.18)
Similarly, if 0 € %, and ¢(0) = 0, then
Dy, (E1,7) 0 Py, (2, 0+ 0 Py, (§ns Dlg=yx=0 = ¢ ().
By (1.17), since ¢;&; +e;&; = ¢&; + ¢;&;, one concludes that
Py (§iy ) 0 Py (), x) =Py, (5, ) 0 Py, (§i, X)), (1.19)
which is a direct consequence of [g;, g;]1 =0.

Example 1.15 Consider again the diffeomorphism of Example 1.14. Since

26 +x1 + 5EF + Eaxp + 6o + AEE + £1(82 +X2)}

Dy (81, °) 0 Py, (52, X) = [ El+&+x

letting

1 1
51=Y1—<—EX§+X1—X2>, §2=y2—<§xg—x1+2xz>,
one concludes that

o) = | 2T s 0207
yi+y2
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The following theorem follows from the above reasoning (see [69]).

Theorem 1.10 Let g1, ..., g, be such that conditions (1.15) hold only for all i, j €
{1,...,m}, for some m < n, and condition (1.16) holds; denoting by x° any point of
U such that det([g1 (x°) ... go(x?)]) # 0, then the diffeomorphism y = ¢(x), with
¢~ (y) given by

670 =[Py (E1, ) 0 Py (B2, ) 0+ 0 Py (G, D)oL o (1.20)
straightens g1, . .., gm (but, in general, not g;,i > m+ 1) and satisfies 9~ (0) = x°.
Theorem 1.10 gives a procedure for the computation of a diffeomorphism y =
@(x) that straightens jointly m pairwise commuting vector functions. It is worth
pointing out that the last n — m entries of ¢(x) are functionally independent first

integrals of g1, ..., gn. This procedure is detailed in the following example in the
case m = 1.

Example 1.16 Consider g1(x) = [x1 3x2 + x%]T. The CT-flow @, (¢, x) associated
with g is

e’xl
Py (1, %) = [egtxz e 4 est)xd :

The vector function g can be completed with g»(x) = [0 11T ina neighborhood of
any x such that det([g(x) g2(x)]) # 0, where

0
det([g1(x) g2(x)]) = det <|:3x2x—:— 2 1]) =x1; (1.21)

actually, g1 and g, are not commuting (i.e., [g1, g2] = [0 — 3]T #0). The CT-flow
associated with g is

X1
P, (1, %) = [xz + t] ’

Compute the composition of the two CT-flows at x = x:

e’lxy
10)) ,' )o@ ,X%) = '
g 010 0Py (2, X = 5 (X5 + y2) + (=P eI (x9)?

Choosing x{ = 1 and x5 = 0 (by (1.21), one can choose any point such that x{ # 0),
one obtains the diffeomorphism x = ¢~ !(y), with

1 ey]
¢ ()= ey, — e e ;

note that gp_l(O) =x°=[10]".
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A special case is when all g; are linear, g;j(x) = A;jx, i = 1,...,n. Let
Al,..., A, € R™" be such that det([A;x° ... A,x°]) # 0, for some x° € R".
Then, the diffeomorphism that straightens Ajx, about x = x?, is y = ¢(x), with

€0_1 (y) = eAlyleAzyz . _eAnynxO_

Example 1.17 Consider g1(x) = A1x and g2(x) = Axx, with A| = [(1) ;] and Ay =
[8 5] (g1 and g, are clearly not commuting, [g1(x), g2(x)] = [x2 0]T # 0). Since
det([g1(x) g2(x)]) = —2x22, one can choose any point x° such that x5 # 0: e.g., take
x°=[0 1]T. Then, the diffeomorphism x = cp’l (y) is found,

11 01 Y 2 _en
(p_l(y):eAlyleAzyzx(]:e[O z]yle[oo]yZ [(1)} [e y2 +§yl € } 7

with inverse y = ¢(x) (with x in a neighborhood of x° such that x; > 0),
3 In(x2)

(p(x) = 1 + X[ —X2 *

NE
Note that L 4, ¢(x) =[10]" and ¢(x?) =0.

1.7 Semi-simple, Normal and Nilpotent Square Matrices

In this section, definitions and first standard properties of semi-simple, normal and
nilpotent matrices are reported [52, 83]; some more results, crucial for the sequel
of the book, are given in Sect. 2.1, where they are proven using results presented
earlier.

Definition 1.7 A matrix A € R"*" is semi-simple if it can be diagonalized over C;
A is normal if it commutes with its transpose under the matrix product, AAT =
ATA: Ais nilpotent if there exists an integer k € Z~ such that Ak =0.

Lemma 1.3 [f A is normal, then A is semi-simple.

Proof By the Schur triangularization theorem (see Theorem 4.10.2 of [83]), for any
matrix A there exists a unitary matrix U € C"** (UU*" = E) such that UAU*" =
Tand UATU*T =T*T, where T € C"*" is triangular. Hence

UAATU*T =UAU*TUATU*T =TT*T,
UATAU*T =UATUTUAU*T =T*TT.

Now, since A and AT are commuting, one concludes that TT*" = T*T T, Since
T is triangular, this is possible if and only if T is diagonal (this can be proven by
induction on the dimension of matrix 7). O
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By Lemma 1.3, a normal matrix is semi-simple, but the converse need not be
true. Examples of normal matrices are the symmetric and skew-symmetric ones.
A matrix A is nilpotent if and only if all its eigenvalues are equal to zero.

Example 1.18 Let A = [i fi’] be normal, i.e., AAT — AT A = 0. By solving the

algebraic system that is found by equating to O the entries of AAT — AT A, one
finds that there are two possible cases: b = ¢, for arbitrary a, c,d € R, i.e.,

a c
A= |:c d] , (1.22)
and a =d, b = —c, for arbitrary c,d € R, i.e,,
d —c
A= |:c d ] . (1.23)

Matrix A given in (1.22) has eigenvalues %d + %a + %\/ (a —d)? +4c2, %d + %a -
%\/(a —d)? + 4c2, which are always real for all a,c,d € R, whereas matrix A
given in (1.23) has eigenvalues d + ic,d — ic, which are always non-real for all
c,deR,c#0.

Lemma 1.4 Let A, B € R"*" be semi-simple and commuting, AB = BA. Then, A
and B are jointly diagonalizable.

Proof If both A and B have distinct eigenvalues, the proof of the theorem is partic-
ularly simple. Let v; be eigenvector of matrix A with eigenvalue A;, Av; = A;v;. If
Bv; =0, then v; is eigenvector of matrix B with eigenvalue y; = 0. If Bv; # 0, then

ABv,- = BAv,- =)\.ti[,

which shows that Bv; is eigenvector of matrix A with eigenvalue A;. Since the
eigenvalues of A are distinct, v; and Bv; are necessarily co-linear over C, i.e., there
exists a number y; such that Bv; = y;v;, whence v; is also eigenvector of B. From
this, A and B are jointly diagonalized by Q = [v] vz ... v,], where the columns
of Q are n linearly independent eigenvectors of A over C (whence, also linearly
independent eigenvectors of B over C).

Consider now the case of matrix A having repeated eigenvalues X;: let p; be
the algebraic multiplicity of the eigenvalue X; as root of the characteristic poly-
nomial of A. Since A is semi-simple, let Q € R"*" be such that A=07'A0 =
block_diag{A1, ..., Ap}, where A; = A; E;, E; being the identity matrix of dimen-
sions p; X p;, and A; # A; if i ;éj Note that, letting B = Q!B Q, condition
AB = BA holds if and only if AB = BA. Since AB = BA, it can be easily veri-
fied that necessarily B = block dlag{Bl, ... p} where B; is semi-simple and has
the same dimensions as A;. Each B;, bemg semi-simple can be diagonalized by
a transformation Q;; then, the transformation that jointly diagonalizes A and B is
0 = Qblock_diag{Q1, ..., 0,). O
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Example 1.19 Let

1 0 0
A=(0 1 1
0 0 2
and
1 2 =2
B=]0 2 -—-1];
0 0 1

A and B are commuting and semi-simple. Matrix A can be diagonalized by

1 -2 0
o=|-1 1 1/,
0 0 1]
"1 —2 0]7'[1 o0 0lf1 =2 0] [1 0 0
o 'ap=|-1 1 1 01 1||-1 1 1|=|0 1 0,
[0 0 1] 00 2][0 0 1 0 0 2
but the transformed B is not diagonal (it is only block-diagonal)
1 =2 017'T1 2 =271 =2 0] [5 -4 0
07 'Bo=|-1 1 1 0 2 —1||-1 1 1|=|3 =20
0 0 1 00 1 0 0 1] 0 0 1
Submatrix By = [ 5] can be diagonalized by 0 =3 73]

~ s~ T4 =317'[5 414 =31 2 o
QllBlle[s —3} [3 —2}[3 —3]=[0 1]'

Then, A and B are jointly diagonalized by

~ 1 —2 0][4 -3 0 2 30
01 0

Qo =0 =(-1 1 1 3 -3 0|l=|-1 01
0 1 0 o0 1]lo o 1 0 0 1

Remark 1.9 Let By, ..., B, be m < n diagonal matrices, B; = diag{b; 1, b2, ...,
bi n}, whence semi-simple and pairwise commuting. Since such matrices are pair-
wise commuting, by the Frobenius Theorem 1.9, the m continuous-time linear sys-
tems ‘é—’t‘ = gi(x) = B;x share n — m functionally independent first integrals. Define

the matrix

bin bra - bin
B=| 1 i
bm‘l bm,2 te bm,n
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It can be seen that /(x) = x; x]f . ~x,k,”, with k; real, is a first integral associated

with g; if and only if

bi 1
ky -~ kal| @ | =05
bi,n
this follows from
Ly, I(x)
R N IR WA Sy
bi1x1
bi2x2
X
bi,nxn
bi 1
bin
ki k i,
=(x11x22~~x£”)[k1 ko ... k] :
bi,n
Hence, I(x) = xf‘x];z -..xkn s a joint first integral associated with g1, ..., gm if

and only if vector k =[k; ... k,T belongs to ker(B).

Example 1.20 Consider the diagonal matrices

1 00 2
Bi=|0 1 0|, B=|0
00 2 0

112
Bz[z 1 1]'

The kernel of B is spanned by [1 — 3 1]7, and therefore a joint first integral associ-

ated with both Byx and Byx is I (x) = x)‘f, as can be checked by
2

0
1
0

—_ O O

Matrix B is given by

X XX x 100 1
Llel(x)=[§ -3 —é] 01 0||x]|=0,
0 0 2] |x)
20 0][x]
Lyl (x) = [—2 -3 é] 01 0||x]|=0.
0 0 1] |x




Chapter 2
Analysis of Linear Systems

2.1 The Linear Centralizer and Linear Normalizer of a Square
Matrix

Assume that systems (1.1a), (1.1b) are linear, i.e., f(x) = Ax (respectively, F(x) =
Ax),

M = Ax(t), teR (2.1a)
a AR TER o
x(t+1) = Ax(), €7, (2.1b)

where x € R"?, and A € R™*" is said to be the dynamic matrix (which is assumed to
be constant) of the linear system: a notation common to both (2.1a) and (2.1b) can
be adopted:

Ax(t)=Ax(), teT,

where Ax(f) = ® if T =R and Ax(r) = x(t + 1) if T = Z. Symbol .7 (Ax)
(respectively, .#p(Ax)) denotes the set of all first integrals of system (2.1a) (respec-
tively, system (2.1b)).

Assume also that system (1.2) is linear, g(x) = Bux,

dx
— = Bx =g(x), (2.2)
dr

where B € R"*" is constant. As well known,
x=el7y (2.3)

is the unique solution of system (2.2) at time t € R, starting from the initial condi-
tion x(0) = y, with y € R".
A one-parameter group of linear transformations is given by x = Q(7)y, if

Q(r) € R™" satisfies Q(0) = E, Q(71) Q(12) = Q(t1+12) and Q' (v) = Q(—7).

L. Menini, A. Tornambe, Symmetries and Semi-invariants in the Analysis 29
of Nonlinear Systems,
DOI 10.1007/978-0-85729-612-2_2, © Springer-Verlag London Limited 2011
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The family of linear transformations given in equation (2.3) qualifies as a one-
parameter group of linear transformations from R” to R": ¢80 = E, efrefn =
eB@+™) and (eB7)~! = e~ B7. Given any one-parameter group of linear transfor-
mations x = Q(t)y, there exists a constant matrix B € R"*" such that Q(r) = e®7.
This matrix can be computed by B = % |r=0. As a matter of fact, Q(t) = eBt
is obtained by integrating the following differential equation by the initial condition

00)=E:

do(@ _ . Q@ +T)— 0@ _ < lim M)Q(f)
dr T—0% T r—o% T
d
-(432] Jao-sar
=0

Example 2.1 Consider the one-parameter family of rotations in R? given by Q(7) =
cos(t) —sin(r) _

[Sin(r) cos(t) ]- Clearly, Q(0) = E and

cos(ty + ) —sin(t; + 1)

sin(t; + 1)  cos(ty + 1)

0(t)0(m) = [ ] = 0(11 + 1);

therefore, Q(t) is a one-parameter group of linear transformations. Then, Q(7) =

j— ‘
=0

Using (2.3) as a change of coordinates, one can rewrite systems (2.1a), (2.1b) in
the new y-coordinates, as follows:

_do()
T dr

B

o _ e BT ABTy (1), (2.4a)
dr
vyt +1)=e BT 4By (0). (2.4b)

From Theorem 1 of [37] (see, also, [52]), for Q € R"*", the equation Q = eB7,
with the requirement that B and t are real, has a solution (not necessarily unique,
also when 7 is fixed) if and only if det(Q) # 0 and each Jordan block of Q corre-
sponding to an eigenvalue with negative real part occurs an even number of times.
This shows that only a subset of the linear transformations from R" to R" can be put
into form (2.3), for some real t. Moreover, since e” = E + Bt + O(t?), with E
being the n x n identity matrix and O (r?) denoting second and higher order terms,
for T close to 0, transformation (2.3) is close to the identity transformation and (see
the subsequent Sect. 6.2), for the transformed system (2.4a), (2.4b) one has

e B7Ae?" = (E — Bt + O(«*))A(E + Bt + 0(?))
=A—(BA—AB)t+0(7%). (2.5)
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Definition 2.1 The linear transformation (2.3) is a linear symmetry of sys-
tems (2.1a), (2.1b) and system (2.2) is its infinitesimal generator if

e BT AeBTy = Ay, VyeR" VreR. (2.6)

If (2.6) holds, by abuse of notation, also the infinitesimal generator (2.2) is called
a linear symmetry of systems (2.1a), (2.1b); briefly, Bx is called a linear symmetry
of Ax.

Remark 2.1 If (2.6) holds, then e~ B7eA’eBT = ¢4 (respectively, e "B A’eBT = A7),
Vr eR,Vt €T (¢t >0, in the discrete-time case if det(A) = 0).

Definition 2.2 Given x¢ € R”, the orbit of systems (2.1a), (2.1b) passing through
xo is the set of the points x described by x = e’ xg if T = R (respectively, x = A’ xg
if T =7Z), when t € T varies from —oo to 400 (from 0 to 400, in the discrete-time
case if det(A) =0).

The meaning of relation (2.6) is that any orbit x(t) = e’ xo (respectively, x () =
A'xg) of systems (2.1a), (2.1b) is mapped into an orbit y(t) = ed Yo (respectively,
y(t) = A'yp) of the same systems (2.1a), (2.1b) by the linear transformation (2.3)
generated by system (2.2), y = e 87x and xg = e87yy, while preserving the time
parameterization along the orbit:

y(t)=e Bx(r) =e BTeMxg=e BreMeBTyy =My, ifT=R,

yt)=e Bx(r)y=e BT Axg=e BT ATl y = ATy, fT=2Z.

Example 2.2 Let A = [ (1)] and B = [ . 11], since e’ = [f‘;iﬁ’(;) CS:)I;E;;], Al =
[COS(”t) sin(% t)] [cos(r) sin(t)

—sin(51) cos(51) —sin(t) cos(t)
e and e BT AleBT = A7,

], it is easy to check that e BreAreBr —

The following definition and most of the following properties are standard (see,
e.g., [13, 18, 34]).

Definition 2.3 (2.3.1) Given two square matrices A, B € R"*" the Lie bracket (it
is often called matrix commutator) of A and B is

[A, B]:= BA — AB. 2.7

(2.3.2) The linear centralizer £.(B) of B is the set of all matrices A such that
[A, B] = —[B, A] =0 (see, also, Definition 1.3 at p. 10).

Letting g(x) = Bx, f(x) = Ax and F(x) = Ax, one finds that [ f(x), g(x)] =
[A, Blx, | F(x),g(x)] =[A, Blx;if [A, B] =0, then A and B commute under the
matrix product (briefly, A and B are commuting), and vice versa. In addition,

[A,.B]=0 <= [AT.B"]=0.
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Remark 2.2 If [A, B] = 0, then e} eBT = eB7eA? — eAT+B7T forallt, T € R.

Theorem 2.1 Relation (2.6) holds if and only if [A, B] =0, i.e., if and only if A
and B are commuting.

Proof By (2.5), condition [A, B] = 0 is certainly necessary for relation (2.6) to
hold. Since e BT AeBTy|,—o = Ay, Vy € R", equality (2.6) holds if and only if

0

a—(e*BfAery) =0, VyeR"VreR. (2.8)
T
In this way,
d
a—(e_B’AeB’y) = —¢ B"BAeBTy + e BTABeBTy = —e BT (BA — AB)eBTy
T

= —e B7[A, BleBTy.

Since e~B7 is invertible for all B and t, equality (2.8) holds if and only if

[A, B]=0. O
Thanks to Theorem 2.1, the following definition is equivalent to Definition 2.1.

Definition 2.4 The linear transformation (2.3) is a linear symmetry of sys-
tems (2.1a), (2.1b) and system (2.2) is its infinitesimal generator if [A, B] =0.

Remark 2.3 The Lie bracket of two square matrices enjoys the following properties,
with A, B, C € R™*" (which can be proven by simple substitution):

(2.3.1) [A, B] = —[B, A] (skew-symmetry);

(23.2) [@aB + BC, A] = «[B, A] 4+ B[C, A] and [A,aB + BC] = «a[A, B] +
BlA, C], with «, B € R being constants (bi-linearity);

(2.3.3) [A,[B,Cl1+[B,[C, All+[C,[A, B]] =0 (the Jacobi identity).

By the skew-symmetry (Statement (2.3.1) of Remark 2.3),
Ae Z.(B) <<= BeZ./(A),

although, in general, .Z,(B) # Z.(A).

Another useful property is the invariance of the matrix Lie bracket to linear trans-
formations, meaning the fact that, for any invertible Q € C, letting A = Q~'AQ and
B= 0~ 'BQ, one has

[A, B]=07'[A, BIQ. 2.9)
Some key facts about the linear centralizer of a square matrix are reviewed next,

since such properties are of great importance in the sequel.

Lemma 2.1 The linear centralizer £,.(A) of A € R™*" is a finite dimensional vec-

tor space over R. The dimension r of £.(A) satisfies n <r <n?>.
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Proof Tt is easy to see that the bi-linearity (2.3.2) implies that .%.(A) is a vector
space over R: if M|, M € Z.(A), then o M| +ay M, € £, (A), Va1, oy € R being
constant. The fact that .Z.(A) is finite dimensional is obvious, since .Z.(A) is a
subspace of R"*". As for its dimension r, the upper bound comes from the case
A =« E, with @ being a (possibly zero) constant and E being the identity matrix; in
such a case %, (A) = R"*" whence r = n2. As for the lower bound, in view of (2.9),

assume that A = block_diag{J1, ..., J,} is in the Jordan form, with Jordan blocks

1

J; of dimension r;; then, Jl.o, e Jl.ri_ are linearly independent over C. Therefore,

in case of real eigenvalues, the n matrices
block_diag{J{,0,...,0},...,block_diag{J;'~",0,...,0}, ...,
block_diag{O, ..., 0, JI(,)}, e block_diag{O, ..., 0, J;”_l} (2.10)

commute with A and are linearly independent, whence r > n. In case of com-
plex eigenvalues, a similar reasoning can be made by considering the real Jor-
dan form (for a definition of the real Jordan form see the proof of the subsequent
Lemma 2.5). O

As for the choice of a basis of .Z,.(A), it can be useful to take some of its elements
in a simple way; therefore, note that the identity matrix £ = A° can always be
included in the basis of .Z;(A), whereas A can be included except for the trivial case
A =0. More in general, if A%, A, ..., A"~! with m <r, are linearly independent
over R, then, with no loss of generality, one can assume that the first m elements
of a basis of .Z,.(A) are My=E, M; = A", ..., M,,_; = A"~!. A more powerful
result is the subsequent Theorem 2.2, which is proven by means of the two lemmas
below.

Lemma 2.2 Let J =block_diag{Ji, ..., J,} be a Jordan matrix whose p Jordan
blocks J;, of dimension r;, have distinct real eigenvalues A1, ..., \p. Then, all the
matrices commuting with J are of the form

B =block_diag{By, ..., B,}, (2.11)
where B; € R'i*"i and B; J; = J; B;.

Proof The proof of the fact that matrix B in (2.11) commutes with J is trivial.
To show the converse, assume that B commutes with J and partition it in blocks
according to the dimensions 7;:

Bi,i ... Bip
B=| : : |, BijeRTY
By ... Bpp

By looking at the diagonal blocks of BJ — JB, it is easy to see that BJ = JB
implies, foreach i € {1, ..., p}, that B; ; J; = J; B; ;, whence that matrices B; ; have



34 2 Analysis of Linear Systems

the property of matrices B; in (2.11). By looking at the off-diagonal blocks, it is
easy to see that BJ = J B implies that

BijJj=JiBij, Yi#]. (2.12)

Consider the chain of generalized right eigenvectors of J;, v1 =eq, ..., Up; = érj
(with e, being the hth column of the r; x r; identity matrix), that satisfy J;v; =
Ajvr, Jjvp = Ajvp +vp—1, h=2,...,r;, and the chain of generalized left eigen-
vectors of J;, namely u}r = é;ru,Tl = érTl_ that satisfy u;—Ji = )»iu,;r + ul—chrl’

k=1,....,ri—1,u}Ji = xu] (with & being the kth column of the r; x r; identity
matrix). Equation (2.12) left multiplied by uI and right multiplied by v; gives

1 1
0 0

300 01Bi; | [=x00...011Bi; | . |, (2.13)
0 0

which, since A; # A, implies that the entry of the first column and of the last row
of B; ; is zero. The equation similar to (2.13) obtained using v, instead of v; im-
plies that the entry of the second column and of the last row of B; ; is zero. Using
iteratively v, with increasing h instead of vy, one obtains that the last row of B; ;
is zero. In the same manner, the equations similar to (2.13) obtained using u,j with
decreasing k instead of u;'l— imply that the first column of B; ; is zero. The procedure
can be repeated using in the proper order all the u,j and vy, to prove that B; ; = 0.0

Lemma 2.3 Let J be a Jordan block of dimension r relative to a real eigenvalue.
Then, the dimension of £,(J) is r and (JO, JL, ..., J" W is a basis of £:(J).

Proof The statement is equivalent to saying that the set of the matrices that commute
with a Jordan block coincides with the set of all upper triangular Toepliz matrices,
i.e., all upper triangular matrices such that, for a given i € {0, ..., r — 2}, the entries
in position (k, k+h), k € {1, ..., r —h}, are equal. Assume that A € R"*” commutes
with J, i.e., AJ = JA. Taking into account the two entries in positions (r — 1, 1)
and (r,2) of AJ — JA, one derives that, for them to be zero, it is necessary and
sufficient that the entry A, | of A is zero. Considering the three entries in positions
r—2,1),(r —1,2) and (r,3) of AJ — J A, one concludes that it is necessary and
sufficient that A,_1,; and A, > are zero. Then, iterating on 4, which decreases from
r — 2 to 0, considering all the entries in positions (k + h, k), k € {1,...,r —h} of
AJ — J A, one obtains that it is necessary and sufficient that all the entries A; ; such
that i — j = h + 1 are zero. Therefore, A is upper triangular. Analogously, for each
he{l,...,r—1},theentries in positions (k,k+h),k €{l,...,r—h},of AJ—JA,
which must be zero, show that it is necessary and sufficient that all the entries A; ;
such that j —i =h — 1 are equal, i.e., A is Toepliz. O
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Results analogous to Lemmas 2.2 and 2.3 can be proven for the case of a matrix
A having some complex eigenvalues, so that the following theorem holds in the
general case.

Theorem 2.2 Let A € R™™". There exist linearly independent My, ..., M,_| €
Z:(A) over R, which are pairwise commuting, i.e., [M;, M;]=0. If there are no
Jordan blocks of A corresponding to the same eigenvalue, then £,(A) has dimen-
sionn and {My, ..., M,_1} is a basis of £.(A).

Proof If A has only real eigenvalues, in view of (2.9), assume that A is in the Jordan
form as in the proof of Lemma 2.1. It is easy to see that the matrices in (2.10), which
are linearly independent and belong to .Z,(A), are pairwise commuting, whence
they constitute the set {My, ..., M,_1}. To see that, when for each eigenvalue of A
there is just one Jordan block, such a set is indeed a basis of Z.(A), in the case of
real eigenvalues it suffices to consider Lemmas 2.2 and 2.3 to see that the n matrices
in (2.10) actually generate the whole .£.(A). In case of complex eigenvalues, a
similar reasoning can be made by considering the real Jordan form (see also the
proof of the subsequent Lemma 2.5). O

Corollary 2.1 If the Jordan form of A has not two Jordan blocks corresponding to
the same eigenvalue, then {A°, AY, ..., A" Y} is a basis of £.(A).

Proof The proof follows from the proof of Theorem 2.2, taking into account that
the minimal polynomial of A has degree n and, therefore, that {AO, Al, A”_l}
is a set of n linearly independent matrices that pairwise commute. 0

Theorem 2.3 Assume that {AO, Al A"’l} is a basis of £.(A). Then, any pair
By, By € £.(A) is commuting.

Proof Since {AO, Al A”’l} is a basis of Z.(A), By and B, can be written
as B = Z?;ol a; ;A" and By = Z’};éazyjAJ, for some constants aj ;,az; € R.
Therefore, [B], By] = Z;’:_Ol ;l-;(l)al,ifJZ,j[Ala Al]=0. O

Example 2.3 Let J = [{)1 JZ]’ with J; and J> being Jordan blocks of dimension

two and three, with real eigenvalues A1 and A;, respectively. Then, the following
matrices belong to .Z.(J), are linearly independent over R, and are commuting:

(L6 oL [6 ollo 2o s o 2]}

Furthermore, if A1 # A2, then they constitute a basis of .Z.(J).
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Example 2.4 Consider matrix

1 00
A=|-1 2 0],
-1 1 1

which is semi-simple with two coincident eigenvalues; .. (A) has dimension r =5
and one of its bases is

1 00 1 00 0 -1 1 0 00 1 00
o1 0,/ 0 0},]0 =1 1|,{0 O O],|0 1 O
0 0 1 0 0 0 0 0 O 1 00 010

There exist three linearly independent and commuting elements of .. (A) over R,
which can be constructed from the Jordan form of A,

1 00 1 0 O]t o o 1 0 0
-1 2 0ofl=|1 =1 of|lo 2 o]l 1 -1 of,
-1 1 1 2 -1 1J|0 0 1][-1 -1 1
as follows:
1 0o o]t o Ool][1 o 0] [1 0 O
Mg=|1 -1 0|0 0 O] 1 =1 ofl=|1 0 Of,
2 -1 1[0 0 Of[-1 =1 1] [2 00
(1 0o ol[o o O][1 o 0] [oOo O O
Mi=|1 -1 0o|l]0 2 0|1 =1 0|=|-2 2 o],
2 -1 1f|0 0 Of|-1 -1 1] |[-2 20
[1 0o ofJfo o ol[1 o O] [o 0 O
M,=|1 -1 0o||lo o of|[1 -1 0o|l=l0 0 O
2 -1 1]|0 0 1][-1 =1 1| [-1 =11

Such three matrices pairwise commute, but they do not constitute a basis of .Z,(A).

A nice consequence of Theorem 2.2 is that if matrix A is semi-simple with dis-
tinct (possibly, complex) eigenvalues, then {AO, Al A”_l} is a basis of .Z.(A).

Theorem 2.4 Assume that A is semi-simple with distinct eigenvalues; let Q € C"*",
det(Q) #0, be such that A = Q=Y AQ is diagonal. Then, B= Q"' BQ is diagonal
for all B € £.(A); furthermore, any B = QB Qil, with B diagonal, is an element
of Z.(A).

Proof By (2.9), if B € Z.(A), then B € Z.(A) for all Q € C"" such that
det(Q) #0. If A is semi-simple with distinct eiggnvalue§, ths:n {AO, 141, e A"‘l}
is a basis of Z.(A), whence a basis of .Z.(A) is {A°, A!,... A" 1}. If B e

%.(A), then there exist ug, i1, ..., iy—1 such that B = Z;:ol MiAi, whence B =
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er':(; Mi/ii, which implies that B is diagonal. Vice versa, if B is diagonal, then
B € Z.(A), whence B € Z,(A). O

If ~A is semi-simple, but with some coincidgnt eigenvalues, and [A, B] = 0,
then B = Q' BQ need not be diagonal also if A = Q~'AQ is diagonal (see also
Lemma 1.4 at p. 26).

Example 2.5 Let A = [_01 (1)]; since A is semi-simple with distinct eigenvalues (i),

any B € Z,(A) can be written as

_ 0 1_ 1 0 0 1| | mo m _
B =poA” + 1A —uo[o 1}""“[—1 ol == nol ui €R.

1 ~ .
Letting Q = | 5 ].onehas A= Q7 'AQ =, °]- Therefore, Q jointly diago-

1.

51

1 1 .

22 :[qurlm 0 }
li =l 0 Mo —ip

nalizes all elements of Z.(A):

[ |

It is now possible to prove two lemmas that are very important in the sequel.

Lemma 2.4 Any matrix A € R"" can be decomposed as A = As + A, where
Ag € R™" is semi-simple, A, € R"*" is nilpotent and Ay, A, commute under the
matrix product. Such matrices Ag and A, can be expressed as polynomials in A,
whence any matrix B that commutes under the matrix product with A also commutes
with As and A,,.

Proof 1t is sufficient to bring A into its complex Jordan form, A = QJ Q‘l, where
det(Q) # 0 and J = block_diag{Ji,..., Jp}, with J; being a Jordan block with
eigenvalue A;; if A has complex eigenvalues, then matrix Q has to be chosen so that
its two block columns Q; and Q; containing two corresponding chains of gener-
alized eigenvectors of A relative to A; and A; = A}, respectively, satisfy Q; = Q7.
Then, in the new coordinates, letting

o1 ... 0
Ji,szdiag{ki,...,ki} and Ji’nz . . K : y

00 ... 1

0 0 0

one has J; = Jis + J;,, with J;; semi-simple and J;, nilpotent. Let A; =
0J;0~! = Qblock_diag{J; , ..., Js}Q 7" and A, = 0J, 0~ = Qblock_diag
Nin, ... J p,n}Q_l. Obviously, A; is semi-simple and A, is nilpotent. Moreover,
in case of A having complex eigenvalues, thanks to the choice of Q required above,
it is easy to verify that Ay and A, are real. Now, to show that A; and A, can be
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written as polynomials in A, it is sufficient to show that J; and J, can be written
as polynomials in J. Taking into account the expression of the kth power of a Jor-
dan block, it is easy to see that if J, and J; are two Jordan blocks of dimensions
ng > np, relative to the same eigenvalue A, then letting J, ; = AE (where E has di-
mensions ng X ng), Jan = Ja — Jas, Jb,s = AE (where E has dimensions njp X np)
and Jp, = Jp — Jp 5, the equations Jp, ; = ps(Jp) and Jp , = p,(Jp) hold neces-
sarily, for any pair of polynomials ps(s) and p,(s) such that J, ; = ps(J,) and
Ja.n = pn(Ja). Now, let Jpin be a Jordan matrix with the same minimal polynomial
of J, but without repeated eigenvalues (obtained by selecting from J just one Jordan
block of highest dimension for each eigenvalue) and let D a diagonal matrix with
the same diagonal as Jmin; let N = Jpin — D. The structures of J and Jiip imply
that if there exists a pair of polynomials p,(s) and p, (s) such that D = ps(Jmin)
and N = p;,,(Jmin), then J; = py(J) and J,, = p,(J) hold necessarily. The existence
of ps(s) and p,(s) is ensured by Theorem 2.2 with A = Ji,ip and by Lemmas 2.2
and 2.3 (see also the beginning of the proof of Lemma 2.3). Hence, it is proven that
Ag and A, can be written as polynomials in A, and therefore that any matrix B that
commutes under the matrix product with A also commutes with A and A,,. Clearly,
if matrices Ay and A, can be expressed as polynomials in A, then Ag, A, commute
under the matrix product. g

Remark 2.4 The decomposition A = Ay + A,, with A being semi-simple and A,
being nilpotent is not unique; in general, there are many such decompositions with
Ay and A, that do not commute under the matrix product. But, as stated in [34,
Lemma 14 at p. 104], if one requires that Ay and A, commute, then such A; and
A, are unique. As an example, take

1 1 0
A=1]10 1 1];
0