EXPLICIT DIFFERENTIAL CHARACTERIZATION
OF THE NEWTONIAN FREE PARTICLE SYSTEM
IN m > 2 DEPENDENT VARIABLES

JOEL MERKER

ABSTRACT. In 1883, as an early result, Sophus Lie establishedexpiicit neces-
sary and sufficient condition for an analytic second ordetinary differential equa-
tion y.o = F(z,y,y.) to be equivalent, through a point transformation y) —
(X (z,y),Y(z,y)), to the Newtonian free particle equatidfix x = 0. This result,
preliminary to the deep group-theoretic classification efand order analytic ordinary
differential equations, was parachieved later in 1896 bijhér Tresse, a French student
of S. Lie. In the present paper, following closely the oraistrategy of proof of S. Lie,
which we firstly expose and restitute in length, we genegaiiis explicit characteriza-
tion to the case of several second order ordinary diffeaeetijuations. LeK = R or
C, or more generally any field of characteristic zero equippéti a valuation, so that
K-analytic functions make sense. ket K, letm > 2, lety := (y',...,y™) € K™
and let

yalcw:Fl($=yayiL')7 """ vy;'ralc:Fm($=yvyiL')7
be a collection ofm analytic second order ordinary differential equationsgéneral
nonlinear. We provide an explicit necessary and sufficiemiddion in order that this
system is equivalent, under a point transformation

(x7y17 et ym) = (X(:B7y)7 Yl(x7y)7 et Ym(1'7 y)) b
to the Newtonian free particle systeﬁj(x = ... =Y = 0. Strikingly, the (com-

plicated) differential system that we obtain is of first ardethe casen > 2, whereas it
is of second order in S. Lie’s original case = 1.
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81. INTRODUCTION

1.1. Motivation. Since the deep mathematical investigations of S. &&ethe first chap-
ters of the historical monograph [H2001]), the symmetryugrof a system of partial
differential equations is now understood as its very cdne,most fundamental object
attached to it, invariant and coordinate-free, analogouwsiigorous sense to the Galois
group of an algebraic equation and as well hidden behind théecexpression of the
equation. In a specific class of differential systems, ifisroof great interest to focus the
mathematical attention on the most symmetric differemtiplations — namely on those
having a group of maximal possible dimension — at least astsfiep in classification.
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For instance, according to an early and often cited theoneentd S. Lie, the Newto-
nian free particle equatio¥iy x = 0, with one degre&” of freedom and one independent
variable X (we use the index notation to denote partial derivatives}hé unique (up
to coordinate changes) second order ordinary differeatjabtion which admits a point
symmetry group of maximal dimension equal to eight ; thesytametry group is unique
and consists of the full group of two-dimensional projeetiransformations. Sometimes,
this equation is calledat, such a terminology being inspired by the notion of zero aurv
ture in the sense of C.F. Gauss and B. Riemann, afteEth@artan attached in [Cal924]
a projective connection, together with some curvaturenip second order differential
equation, the class of equations equivalent{oy = 0 being precisely characterized by
thevanishingof the curvature. More importantly, S. Lie also obtained&83 an explicit
characterization of the local equivalence to the Newtofti@a particle equation with one
degree of freedonYx x = 0, which appears to be rather fundamental, with respect to
practical purposes.

Theorem 1.2. (Sophus LE, [Lie1883], pp. 362-365)et K = R of C. Letx € K
andy € K. A local second order ordinary differential equatign, = F(z,y,y.) is
equivalent under an invertible point transformatién, y) — (X(z,y),Y (x,y)) to the
free particle equatiorY’x x = 0 if and only if the following two conditions are satisfied
() Fy,y.v.y. = 0, Or equivalentlyF is a degree three polynomial in,, namely
there exist four function&, H, L and M of (x, y) such thatF’ can be written as

(1.3)  F(z,y.y2) = G, y) + Yo - H(z,y) + (y2)” - L(,y) + (Y2)® - M(z,9);

(ii) the four functiongz, H, L and M satisfy the following system of two second
order quasi-linear partial differential equations

4 2
2 4
+2(GLYy—2G, M —4GM,+>HL, — - HH,,
(1.4) ) A 3 3
2 4
+2G My +4Gy M —2(H M), — 2 Hy L+ 2 L Ly

Notice that the second equation in (1.4) is obtained foyrfatim the first equation
in (1.4), by replacindG, H, L, M) — (—M,—L,—H, —G) and(z, y) — (y, x).

Secction 2 of this paper is devoted to a detailed expositfaihe original proof of
Theorem 1.2 due to S. Lie himself; in fact, to the author'swiealge, there is no mod-
ern restitution of this proof in the contemporary liter&uwvhereas the description of an
alternative proof of Theorem 1.2 by meanskbfCartan’s equivalence method appears
in the references [HK1989], [GTW1989], [OL1995], [NS2008¢e[Ste1982], [G1989],
[OL1995] for background abou. Cartan’s theory. We note that in these references
(except notably [HK1989]), the already substantial corapiahs are stopped just after
the reduction to age}-structure on a eight-dimensional (local) principal bunaVer the
three-dimensional first order jet space. The vanishing of @mong four) fundamental
tensors in the structure equations of the obtaifgdstructure yields two partial differ-
ential equations satisfied by the right hand side:, y, v..), which are equivalent t)
and (i) of Theorem 1.2. We mention that with the help of Maple prograng, the
complete reduction to afie}-structureon the base(not only on the principal bundle)
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is achieved in [HK1989], in the simpler case of so-calfdgbr-preservingtransforma-
tions, namely point transformations leaving invariant thertical” foliation {z = ct.}.

In the classical reference [TR1896], applying S. Lie’s tlyeof differential invariants
(cf. [T1934], [OL1995]) and S. Lie’s group classification of sedoorder differential
equations, A. Tresse produces the complete list of difte@kmvariants for each class
of differential equation with fixed group, uneder generahptransformations. To the au-
tor's knowledge, the complete confirmation of A. Tresse&uts by means df. Cartan’s
method has never been achieved, possibly because the aimopstre much harder than
in S. Lie’s theory; even a complete modern rewriting of A.S&e's thesis would require
a substantial amount of work.

In sum, we would like to point out that for just charactergithe flat equation
Yxx =0, S. Lie’s original proof in [Lie1883] isfrom the point of view of the size of com-
putations much shorter than the reduction to{ar}-structure throug. Cartan’s method
of equivalence. Inthe references [GTW1989], [OL1995], PA83], most straightforward
intermediate computations for the reduction to{ag-structure are essentially left to the
reader (as well as in most & Cartan’s works), but they are consequent.

On the contrary, in this paper, since we want to prowwie generalizations of S. Lie’s
Theorem 1.2, we shatlarefully detail each intermediate computational stegeking first
the combinatorics of the formal calculations in the case- 1 and devising then the un-
derlying combinatorics for the case > 2. Actually, the size of differential expressions
is relatively impressive, as will become clear soon.

1.5. Systems of second-order ordinary differential equatins. First of all, letK = R or

C or more generally any field of characteristic zero equippid avaluation, so that the
local K-analyticity of formal power series with coefficientslihpossesses a mathematical
signification. Letr € K, letm > 2, lety := (y*,...,y™) € K™ and let

(1.6)  yuu(2) = F (z,y(2), yu(@)) .- .. Yre(®) = F™ (2,y(2), y2 (2))
be a collection ofk-analytic second order ordinary differential equatiorssgibly non-
linear, of the most general form. In [GG1983], it was showat the Lie symmetry group
of this system is at most of dimension’ + 4m + 3, with the upper bound attained for
the flat systen’Y){X =0,j = 1,...,m. The infinitesimal Lie symmetry algebra of this
system is isomorphic tel(m + 2, K). In [Ch1939] (for fiber-preserving transformations)
and in [Fe1995] (for arbitrary point transformations), fheCartan method of equiva-
lence is conducted trough absorptions of torsion, norraatins and prolongations up to
the reduction to afe}-structure. Because of their real complexity, the componatare
achieved in a non-parametric way in these references. Apebdyct of the uniqueness
of the obtained{e}-structure for which all invariants vanish, it is deducedfe1995]
that the flat system(){x =0,7=1,...,m,is, upto equivalence, the only system of sec-
ond order possessing a symmetry group of maximal dimenSionilar results appeared
previously in [G1988], where an explicit necessary and sigffit condition for the local
flatness of linear second order systems is given.

Our first main theorem provides the generalization of S.d feeorem to the case of
m > 2 dependent variables. Before stating it, we would like to tieenthat, through-
out this article, we shalhot adopt the summation convention. Indeed, from our point of
view, it is more convenient to see explicitely the classmainmation symbo} when
dealing with rather massive expressions, because it hefestclear differences between
apparently similar terms. In fact, although in the statenodrirheorems 1.7 and 1.23
below the summation convention applies implicitely so thia¢ can drop the sums and
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just look at repetitions of indices, it will happen in the sefjthat it is totally impossi-
ble to maintain the summation convention coherently, withmeing forced to mention
the numerous repeated indices that should not be sumseethr instance the majority
of the mathematical equations of Section 4, in which wegersum over the repeated
indices!l; or ls. This is whywe abandon this conventipdefinitely. Also, we always
put commas between the indices, to prevent ambiguities likees11 mean “one-one”
or “eleven™?”; finally, a partial differentiation of an inged quantity is always appended
in index notation, also separated from the indices by a comfiorainstanceL’

] l1,ls,y"2
denotes)L] , /dy' shortly.

Theorem 1.7. (m = 2: [N2003]) Supposen > 2. A local system ofn second order
ordinary differential equations’, = F’(z,y,y.),j = 1, ..., m, is equivalent under an
invertible point transformatioriz, y) — (X(x,y),Y (x,y)) to the free particle system
Y){X =0,j=1,...,m,ifand only if the following two conditions are satisfied

(i) There exist localK-analytic functionsG’, H{, Li , and M, where
j,li,la = 1,...,m, enjoying the symmetrids , = L] , andM,, ,, = My,

and depending only ofw, y) such that the right hand side’(z, y, y..) may be
written as the following specific cubic polynomial with resptoy, :

m m m m m
L8) yl, =G+ > Wb H +> > byl oyl > > yhy M,

I1=1 I1=1 lx=1 I1=1 l2=1

(i) The functionsG?, H{, L] , and M, ,, satisfy the following system éur
familiesof first orderpartial differential equations

0= —2G7, +26] G4, + H] , -] H? +
krJ j k1l
0 +23 GhL —20] YO GR LR+
k=1 k=1

1 m 1 m

j k l k j

+ 500, > HE HE 5 Y H H,
k=1 k=1
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where the indiceg, [, vary in {1 - m};
1 l l
0:—§Hl1y12+ 63 Hljy12+ 63 CH T
l l
+ Lll lo,x g 6-171 le,b,r - 6J Lli L1, x+

. 1 .
+ G Ml1-,lz — g 5?1 G2 ]\4{2_’12 — 5 5{2 lel! M11711+
ST TR L v
k=1 k=1
Jrk - k r1J
> HLLE,, + 5 Z Hy, L
k=1 k=
L1, = Z Hy; L2 )
k
Hh Lk 1 Lll
$*wat 43k

k=1
where the indiceg, I;,l; vary in{1,2,. .., m};

O_L —|—6 Mll,l27I —6;2 Ml1,l3,z+

(I

N | —

+0]
1

3
3

+ 67,

A/ /i
| =
Ms

W =

J
ly,l2,y's l1,l3,y'2

1 1 .
+3 H{ My, ., — 5 H] My, 1,+

1. & 1. &
— 6{1 Z Hllz Mlz,k — 5 6ljl Z Hllz Mlg,k+
(1 k=1 k=1

_ 5{3 Z Hlkl Mlz,k — 5 (Sljz Z Hlkl Mlg,k+

+ZLZI I3 s, ZLll l2 l3 k>

where the indlce§, l1,1s,13 varyin {1, ...m};and

m m
_ k k
) {0 = My, 1y yts — My gy e — Y Ifiy Migh + Y Lf 4y Miy i,
k=1 k=1

where the indices, lo, I3 vary in{1,...,m}.

Of course, the form of the right hand side in (1.8) is the agalicthe form of the right
hand side in (1.3) of S. Lie’s theorem (however, we noticetiraright hand side of (1.8)
is not the most general degree three polynomial in the vi@sal), j = 1,..., m: some
coefficients of the cubic terms vanish). On the contrary,neae the system satisfied by
the functionsz, H, L andM was of second order in S. Lie’s Theorem 1.2, fior> 2,
the system satisfied by the functiofié, i} , L{ ,, andM;, i, is of first order.

We mention that we recover the main theorem of [G1988] in thear case where
= Gl(x) + 0 v G (@) + Yo7, vl HY (x): putting this expression in the
system (l) (the three others vanlsh identically), one recsthe necessary and sufficient
condition discovered in [G1988] for local flatness of linegstems. We also mention
that in [Fe1995], the parametric computations are achiafted restriction to the identity
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of the (prolonged) (prolongedy-structure, which lightens substantially the computa-
tions. The vanishing of the two tensdP# andekl at the identityof the structure group,
namely, as computed in Lemma 4.1 of [Fe1995], yields (tegtimg} into our notation)

(1.9)

0= Gl = P~ 715 2 3 P Flogn
11=1 c€B3 ) !
0= (P) le(Fj)fFj AN
= W, 7 3 vi vi 7 o Ly
m m 1 m m
J k k l k
-Lal} (Z%)—ZFw—gZZFy;Fy; ,
k=1 k=1 k=1 l=1

where we seD := a +300 vk W +> a 3T ,andwhere, j, k, 1 =1,...,m.
Strikingly, one may check that the first equatlon is equivate the form (1.8) and then
that the second equation yields the (complicated) fourlfemof first order partial differ-
ential equations (1), (I1), (Ill) and (IV) of Theorem 1.7. Hee the necessary conditions
found in [Fe1995] (whose sufficiency was open) were in fasb aufficient! This phe-
nomenon may be explained as follows: as soon as the teﬁ%grsanish, the system
enjoys a projective connection (appendix of [Fe1995])hveitich a connection, the ten-
sorsﬁij then transform according to a specific rule via tensoriatioh formulas and their
general expression may be deduced from their expressitwe adéntity €f. [M2003]; a
similar phenomenon has been observed in [Bi2003]).

Finally, even if the expressions (1.9) are more compactthafequivalent) conditions
in Theorem 1.7, we prefer the expressions of Theorem 1.Z¢ghey are more explicit.
If the reader prefers compact expressions and “short” #resy (s)he may replace the
conditions of Theorem 1.7 by (1.9).

1.10. Complete systems of second order partial differentlaequations inn > 2
independent variables.We shall also study a second generalization of S. Lie’s theo-
rem to the case of one dependent variaple K andn > 2 independent variables

r = (2%,...,2") € K. Consider a complete system of lod&analytic second order
partial differential equations of the form

whereFJ1J2 = FJ2:31 . Of course, we assume that this system is completely irdbgra
namely that the vector field system associated to (1.11)enstitond order jet space
enjoys the Frobenius involutivity conditionf( for instance [Stk2000], Ch. 1). Concretely,
this integrability condition just amounts to say that

(1.12) Dy (FI292) = Dy, (FI133)

forall j1,j2,j3 = 1,...,n, where, forj = 1,...,n, the D, are thetotal differentiation
operatorslefined by

0 0 - 0
—— Y+ Y P —
oy ; QY1

(1.13) D,; =
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1.14. Moativation from Cauchy-Riemann geometry. The interest to such systems was
raised in the early beginnings of the domain of research dawa calledCauchy-
Riemann geometrfCR geometry for short). One of the main purposes of this fetd
study the invariants of real analytic hypersurfagésn C**! under the pseudo-group of
biholomorphic transformations, w) +— (Z(z,w), W (z,w)), whereZ!,..., Z" W are
holomorphic functions of thén 4 1) complex variablegz, w). Three classical founder
memoirs of the subject are [P1907], [Se1931] and [Cal193&]}.uk recall how systems
of the form (1.11) are naturally associated to real analyyjgersurfaces ifc"*!, an ob-
servation firstly made by B. Segre in [Se1931] and then etgudiurther in [Cal932],
[Ch1975]. We refer the reader to [BER1999], Ch. 1, for eletagnbackground about
the local geometry of CR manifolds (however, in this refeesmothing can be found
about differential symmetries and invariants of diffefehéquations) and to [Su2001],
[NS2003], [GM2003], [GM2004] for more about the canonicairespondence between
CR manifolds and certain systems of partial differentialagtpns.

In suitable local holomorphic coordinatés, w) = (z1,...,2,,w) € C**!, such a
real analytic hypersurface passing through the origin neasepresented locally as the set
of (z,w) € C"*! satisfying a holomorphic graphed equation of the form

(1.15) w=0(z,z,0),

where z, w are the complex conjugates of, w, where O(z,z,w) =
Daenn 2genn 2oren Oask 2* 27 wF is a power series converging in some neighbor-
hood of the origin inC2"*! which, together with its conjuga®®(z, z, w), satisfies the
functional equation

(1.16) w = 0(z,2,0(z,2,w)),

stemming from the fact thal/ is areal hypersurface itC"*!. Replacing nows andw
in (1.12) by new independent variables= (¢4, ...,¢,) € C™ andw € C, we may view
the sets

(1.17) {(z,w) € C"" . w—0(z,(,€) =0}

as a family ofcomplex hypersurfacegomplex submanifolds of codimension one in
Cn*1) graphed over the space and parametrized Wy, ¢) € C"*!. Differentiating
w with respecttoy, fork = 1,...,n, we get

In generic cases, the rank(@t &) = (0, 0) of the mapping

(1.19) (€,€) = (8(0,¢,€), ©,(0,¢,6), ... 10:,(0,¢,¢)) e C™

is maximal equal tow + 1; technically, this rank property holds if and only if the rea
analytic hypersurface ikevi-nondegeneratat the origin,cf. [BER1999], Ch. 1 for the
definition. In this circumstance, we can solve, by means@ttimplex analytic implicit
function theorem, the parametdis &) with respect to the variablgg, w, w.), which
yields

(1.20) (€,8) =V (z,w,w,),



8 JOEL MERKER

for some localC™*!-valued holomorphic mapping. Finally, differentiating twicew

with respect toz;, z;, for j1, jo = 1,...,n, and replacing¢, £), we obtain
th Zjy gzh Zjg (Za C7 6)
(121) :Gzhz]'z (Z;\P(vava»

=: FIvI2 (5 w,w,).

In conclusion we obtain a system of the form (1.11), withetiént notations. Of course,
the system (1.21) is completely integrable, just becawsg := O(z, ¢, ) was the gen-
eral solution from which it was constructed! More inforneaitiabout the correspondence
between a system of partial differential equations of thenf@1.9) and an associated
submanifold of solution®f equation{(z,w, (,&) € C* : w — 0(z,(, &) = 0} can be
found in [GM2003], [M20044a]. In particular, this referencentains a new theory of Lie
symmetries of partial differential equations, valuabl¢haK-analytic category, by con-
centrating on the submanifold of solutions instead of laglat the skeleton associated to
the differential system in the suitable jet space.

The equivalence method for Levi-nondegenerate hypersesfanC? has been con-
sidered byE. Cartan in part Il of [Ca1932]. In fact, immediately after tiscovered the
observation of B. Segre that a second order ordinary difteakequation may be asso-
ciated to a real analytic hypersurfaceGs, E. Cartan, who knew perfectly S. Lie's and
A. Tresse’s works on differential equations, started hisnoie on pseudo-conformal in-
variants of hypersurfaces @®. Later, in 1974, S.-S. Chern (a studenEofCartan) jointly
with J.K. Moser studied in [CM1974] the equivalence methard fevi nondegenerate hy-
persurfaces it ! for n > 2. In 1975, with slight modifications, S.-S. Chern applied
in [Ch1975] the equivalence method for complete, compleategbgrable systems of par-
tial differential equations of the form (1.21), coming frarhypersurface. As observed
in [Fa1980], not all systems of the form (1.11) come from daealytic hypersurface, but
the reduction to ade}-structure achieved by S.-S. Chern in [Ch1975] is valid hewitt
almost any modification, for all systems of the general fotm 1),cf. also [BN2002] and
[Bi2003]. Itis important to emphasize that S.-S. Chern'mpatations have never been
achieved in a parametric way, though there has been a vivitie@tion of S.-S. Chern
and J.K. Moser’s work on real analytic hypersurfaaésér instance [Wel977], [Be1979]
[Lo1981], [Kr1987], [Vi1990], [Is1996], [EIS1999], [LoZml], [Eb2001], [Su2002]. and
the references therein).

Recently, S. Neut implemented in [N2003] a general Maplgpm for theE. Cartan
equivalence algorithm. The program takes a differentiateay as input, the appropri-
ate G-structure (which depends on the chosen class of transfamnsa fiber preserving,
point, contact, Backlundetc) and it provides an associatéd}-structure together with
all relations between the tensors appearing in the finatistre equations. The main fruit
of this program is the characterization of differentialteyss for which all invariant ten-
sors on thee}-structure are constant, hence having in most cases a syyngnetp of
maximal possible dimension. For the time being, the progiass not incorporate the
discussion of the relations between invariants in the cakaver dimensional symmetry
groups, as is done for instance in [HK1989]. In the case 2, this program has been
applied to the system (1.11). After three hours of Maple catatons, the{e}-structure
obtained in a non-parametric way by S.-S. Chern in [Ch19¥bpitained parametrically
by the computer machine (with slightly different normatieas) together will all covari-
ant differential relations between the tensors, whoseagrcosts 1.1 Mo of memory;
one gets that the differential algebra generated by theoteris generated by a single
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tensor, over a family of forty eight. The vanishing of thiager yields the following lin-
ear system of second order partial differential equatiatisfeed by the right members
Fiviz(z y, vy, ), extracted from [BN2002] and [N2003]:

92l
B ayw2ayw2 ,
9222
A —
aywlaywl
2 71,2 21,1
(1.22) o~ o
ayw2 ayw2 8:1/@1 ayw2
e 92F2:2
YOyt OYp1 Oy
0 82F1,1 82F1,2 N 82F2,2
B aywlaywl aywlayw2 8yz28yw2 .

In fact, this system is easily seen to be equivalent to then@idetion of Theorem 1.23
just below, in the case = 2. In the casen = 3, the computer data are so huge that the
complete explicit computation of thfe'}-structure does not succed.

Our second main theorem treats the general gase by means of hand computations
and following the strategy of S. Lief. [M2003]. Since the proof resembles a lot to the
proof of Theorem 1.7, we shall not write down the details. Wauld like to mention
that C. Bieche also obtained recently in [Bi2003] a congplatoof of this theorem by
computing explicitely some (and sufficiently many) of theders of S.-S. Chern. But
of course, she does not compute all the tensors explicitdhych does the computer
program in the case = 2. Finally, we mention that for general > 2, theonly if part
of Theorem 1.23 just below was established in [BN2002], [0&{in a slightly different
form) and that the “if” part was stated there as an open proble

Theorem 1.23. (n = 2: [BN2002], [N2003]; generak > 2: [Bi2003], [M2003])
Supposer > 2. The above systerfi.11)is equivalent to the systemriy;, xi. = 0,

ji.j2 = 1,...,nifand only if there exisarbitraryfunctionsG;, ;,, Hi' . , L andM*

of the variableg(z!, ..., 2", y) for 1 < ji,j2,k1 < n satisfying(of course) the two
symmetry condition§;, ;, = G, ;, and H" . = H" _ such that the equatiofi.11)

. . . 2 J1,J2 J2,J1°
is of the specific cubic polynomial form
(1.24)
- 1 .. k k
Yzirziz = Gjl’j2 + Z Yk <HJ]'€11,J'2 + 9 Yain szl + 9 Yaiz Lj11 + Yuir Yuio M 1) )
klzl
forjl,jg =1,...,n.

Again, the explicit form of the right hand side of (1.24) ietanalog of the form of
the right hand side of (1.3) in S. Lie’s Theorem 1.2; howewes,again notice that the
right hand side of (1.24) is not the most general degree thwgamomial in the variables
y.i- Apparently, the statement seems to be much simpler (arfthpsmysterious or
maybe false!) than the statement of Theorem 1.7 above, aardsmpler than S. Lie's
Theorem 1.2 in the case = 1, because the analog of conditicfii$ there do not ap-
pear in Theorem 1.23. However, by generalizing S. Lie’s catatons for the proof of
Theorem 1.2, we shall see that there exists in fact a systesaaoind order partialdif-

ferential equations satisfied by the functiafis ;,, )", , L' and M** which is the
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combinatorial counterpart of the second order system ajueen (i) of Theorem 1.2.
By a strange phenomenon, this system of second order pdiffedential equations is in
fact a consequence of the compatibility conditions (1.1&)similar phenomenon also
holds for Theorem 1.7: there also exists a systersagiond order partialdifferential
equations satisfied by the functiofi$, H; L{ 1, andM;, ,, which is the combinatorial
counterpart of the second order system appearlr(g)nmf Theorem 1.2 and which is a
consequence of the four families of first order partial défgial equations (1), (11), (111)
and (1V).

Hence to see explicitely what is the analog of (1), (I1), (iind (V) in Theorem 1.23,
we must develope the compatibility conditions (1.12), ia tase where the right hand
sidesF71:72 are given by the cubic polynomial (1.24). After some nomdfivmanual
work, we obtain the equation (1.12) in length:

n
_ o ) E k1 E k1
(125) 0= Gjl-,jz-,fb“ Gj17j3-,1]2 + lev]3 HJl g2 le 2J2 HJl Js
k1=1 k1=1
rcki o k1 k1 B
533 Gh-,Jz-,y 532 Gjl Jsy H317J27I13 T M gs,ai2
1
.. Tk Tk
+_GJ17J3L' _§GJ17J2 Lj3+
k1 k2 k1 k2
+3 6]1 Z Gago Lz = 5 5j1 Z Ghojo LS
+ g yzkl kz 1 kz 1 +
n n
ki=1 1
ki ko ks ko
+35 D) 5]2 E G, js le D) 53'3 E Gy o L LT
ko=1 ko=1
n
k1 Z k1 ko
+ Z szu:. 31 2J2 szdz J1,J3
L ko=t ko=1 J
k2 rrki1 _ k2 k1 k2 k1 - k2 i
6 HJl sJ2Y 6 J1 ,J35 y 2 6J2 71, I3 2 6J3 J1, x72+
1 k
2 1T k1 = gko 7k
35 9 g1 sz xd3 2 6]1 LJ3 zJ2+
k2 k1 k2 k1
5]2 Gj s M 533 Gy, j. M™
kl,kz . k3 k17k52 . k3
6]1 \J2 2 : Gl s M 6]1 Js 2 : Gy o M™+
"oz ks=1 ks=1
+ E § Ygkr Ygko n 1 n
k1=1 ko=1 k1 E ko ks _ = ski § ko k3
! 2 2 5]1 Hkm]s J2 2 5]1 Hks \J2 L Jr
k3=1 k3=1
n n
k1 Z ko k3 _ k1 Z ko ks
2 6]2 Hk3 NERm it 2 6]3 Hks 2J2 LJl +
k3=1 k3=1
n
kl Z kg k2 _ kl Z k3 k2
+35 2 6J3 Hj17j2 k3 2 6]2 Hjl ,J3 ks
L ks=1 ks=1 i
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C 1k -
= sksika rk ks.ka 1k
2 5j3,j1 sz y 2 5]2 J1 LJJ y+

+ §ha-ka ]\/[k1 _ gkaske Mkl

J2,J1 xI3 J3,J1 1J2

+6k37k1 Z k2

J2,J1 ka,js
kai=1

n

+ Z Z Z xh1 Ygko Ygks - 5;23,;11 Z Hllccj 2 MP

k1=1 ka=1 kz=1 ka=1

k1,k k k
+45m; Z Ly Lhi-

ka=1

1k,k ks 7k
4 Jlljzd ZL2L4

ka=1
By identifying to zero all the coefﬁments of this cubic pobmial, we obtaln a system
of four families, (I), (1I"), (11I') and (V") ( seethe equations after (1.5) in [M2004b]) of
first order partial differential equations satisfied by tbedtionsG;, ., H]’?jz L’“1 and
MPF . Strikingly, this system is analogous to the system obthinérheorem 1. 7 by the
notational correspondence

(1.26)  (Gjujos HJY sy LN MFY) s (=M 1] — B —GY)

J1.J27 g0

Mk~

and by the exchange of coordinates, ..., 2", y) — (y!,...,y™, z), in the caser =
m of course. Based on this intuitive observation, one may thetuce formally that
Theorem 1.23 is a corollary of Theorem 1.7, and convers£lyNi2003], [M2004b]).

1.27. Acknowledgment.All the formulas obtained in Sections 2, 3 and 4 were first
treated completely by hand and then, some of them were cadiafterwards with the
help of MAPLE release 6 in the cases= 2 andm = 3. The author is deeply indebted
to Sylvain Neut and to Michel Petitot, from the Universityldfie 1, for their precious
help in computer checking. Also, it is a pleasure to thank BamBieche, Sylvain Neut
and Michel Petitot for fruitful exchanges about the methbdaquivalence.

1.28. Organization of the paper. Section 2 is devoted to a thorough restitution of S. Lie’s
original proof of Theorem 1.3. Section 3 is devoted to thenfalation of combinatorial
formulas yielding the general form of a system equivalenit{a, = 0, j = 1,...,m,
under a point transformation, for general > 2 ; the proof of the main technical
Lemma 3.32 is exposed in Section 5. Section 4 is devoted tdirtheproof of Theo-
rem 1.3. In [M2004b], the totally similar proof of Theoren23.is resumed.

1.29. Closing remark. According to the recent literature, Theorem 1.7 was comsitle
as an open problem. However, during the preparation of tbikywwe discovered that

in his thesis [Ha1937], M. Hachtroudi (a brilliant Iraniatudent ofE. Cartan) obtained

a proof of both Theorems 1.7 and 1.23. His techniques relyherso-callednethod of
equivalenceand on some tricky shortcuts of formal computations, iregpfrom the last
section ofE. Cartan’s work [Cal1924] on projective connections. Irt.fat [Ha1937],

all the invariant tensors building a projective conneciiothe case: > 2, m = 1 are
computed explicitely only in fon = 2. Thus, the generalization of S. Lie’s original
proof (totally different fromE. Cartan’s) that we provide in this paper and especially the
combinatorial formulas (3.14), (3.15), (3.33) and (3.3&lplv, seem to be new.
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§2. PROOF OFS. LIE'S THEOREM

2.1. Argument. This preliminary section contains a detailed expositioSokie’s orig-
inal proof of Theorem 1.2. Since our goal is to guess the coatbrics of computations
in several variables, it will be a crucial point for us to eaipl thoroughly and patiently
each step of S. Lie’'s computation. Without such an intuitieatrol, it would be hopeless
to conduct any generalization to several variables. Hereshall respect a fundamental
principle: always explain clearly and completely what ssrtomputation is achieved at
each step. Also, we shall many times introduce some ap@tegrew notation.

2.2. Combinatorics of the second order prolongation of a pait transformation. Let

K = RorC. Let(z,y) — (X(z,vy),Y(x,y)) be a localK-analytic invertible trans-
formation, defined in a neighborhood of the originki, which maps the second order
differential equationy,.., = F(x,y,y.) to the flat equatioi’x x = 0. By assumption, the
Jacobian determinant

X, X,

(2.3) Az|y) = Y, v,

is nowhere vanishing. Since the equatiépy = 0 is left unchanged by any affine trans-
formation in the(X,Y") space, we can (and we shall) assume that the transformation i
tangent to the identity at the origin, namely the above Jaromatrix equals the identity
matrix at(z,y) = (0,0).

The computation how the differential equation in i€, Y") coordinates is related to
the differential equation in théz, y)-coordinates is classicatf. [Lie1883], [TR1896],
[BK1989], [IB1992]: let us remind it. A local grapfy = y(x)} being transformed to a
local graph{Y = Y (X)}, we have a direct formula for the first derivativg :

_dY  dx-0Y(x,y(x))/0x Yy +y.Y,

2.4 Yy i = — = — )
(2:4) XTAX T da- 0X (z,y(x))/0x  Xg+yzXy
This yields the prolongation of the transformation to thstfarder jet space. For the sec-
ond order prolongation, introducing the second order tifedrentiation operator (which
geometrically corresponds to differentiation along gflr, y(«))}) defined by
0 0 0

2.5 D= —4Yp — + Yoo —,

(2.5) 5 TV 8y+y e

we may compute, simplify and reorder the expression of tieerset order derivative in
the (X, Y')-coordinates:

(2.6)

Y _DYx  D[(Ye+4.Yy)(Xe +yoXo) ]

Y- = = = =
XXX T DX X, + 42X,

1

[Xz + szyP {y [ Y y] " "
+ Yz [2(XaYay — YaXoy) — (XaaYy — Yau X)) +
+ Yolo [XoYyy — YaXyy — 2(Xoy Yy — Yoy X )] +
+ YaYzYa [_(nyyy - YyyXy)]} :
Even if not too complicated, the internal combinatoricsto$ expression has to be ana-
lyzed and expressed thoroughly. First of all,Yasx = 0 by assumption, we may erase
the cubic factof X, + y. X, ] 3. Next, as the factor af, in the right hand side of (2.6),
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we just recognize the Jacobidx(z|y) expressed in (2.3) above. Also, all the other fac-
tors are modifications of the Jacobiaz|y), whose combinatorics may be understood
as follows.

There exist exactly three possible distinct second ordevateses: xx, zy andyy.
There are also exactly two columns in (2.3). By replacindiez¢he two columns of first
order derivative inA(x|y) by any column of second order derivative (leaviigandY
unchanged), we may build exactly six new determinants

{ Azzly)  Alzyly)  Alyyly)

(2.7) Aalzz)  Azley)  Alzlyy)

where for instance

Xew X,

i X, X,
@) |ty | = ) y

and  A(z|ry) = V. v
v Yoy

X Y

Hence, by rewriting (2.6), we see that the equatipn = F(x,y,y.) equivalent to
Yxx = 0 may be written under the general explicit form, involvingeteninants

(2.9)

Y, Y, + Yg {2 } +
Xoy Xy

— X1 Xy
0= Yz * Yz Yy

Xy Xyy

Xow Xy
Yoo Yy

ny Xy

or equivalently, after solving ig...., i.e. after dividing by the JacobiafA(x|y):

A(z|zz) { Azlzy) | Azzly) }
! Afaly) 7 Alaly) " Alely)
A(zlyy) A(xyly)} 3 {A(yyly)}
+ (y)” - { +2 + (ye)® - :
LR BN E IR NE R PN
At this point, it will be convenient to slightly contract tmetation by introducing a new

family of square functionas follows. We first index the coordinatés, y) as(y°, y'),
namely we introduce the two notational equivalences

Y, Yy

-2

(2.10)

(2.12) ‘yo =z, yl=y

)

which will be very convenient in the sequel, especially tatevdown general combi-
natorial formulas anticipating our treatment of the casenof> 2 dependent variables
(y*,...,y™), to be achieved in Sections 3, 4 and 5 below. With this conwert hand,

our six square fUnCtiOHEZ;lyj2, symmetric with respect to the lower indices, where
0 < j1,J2, k1 < 1, are defined by
oo .= Ay o Aleyly) 0 . Alwly)
(2.12) U A(ly) T T Alaly) w = A(zly)
ot . Alzlzz) o Alzlzy) 1. Alzlyy)
U Aly) T T Alely) NET

Here of course, the upper index designates the column upamire second order de-
rivative appears, itself being encoded by the two lowerdesi Even if this is hidden in
the notation, we shall remember that the square functianexplicit rational expressions
in terms of the second order jet of the transformatiorny) — (X (z,y), Y (z,y)). How-

ever, we shall be aware of not confusing the index in the sgfiarctions with a second
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order partial derivative of some functiof¥”, denoted by the square symbol: indeed, the
partial derivatives are hidden in some determinant.
At this point, we may summarize what we have establishedrso fa

Lemma 2.13. The equationy,.. = F'(z,y,y.) IS equivalentto the flat equatidriy x = 0
if and only if there exist two locdK-analytic functionsX (z, y) andY (x, y) such that it
may be written under the form

At this point, for heuristic reasons, it may be useful to camgpthe right hand side
of (2.14) with the classical expression of the prolongat@tine second order jet space of
ageneral vector field of the forf := X (z,y) 2 +Y (z,y) a%’ which is given, according
to [Lie1883], [OL1986], [BK1989], by

(2.15)
=x? vy 2, Yo+ ye - (V) — Xo) + (42) - (X)) 2,
ox dy Y Y3 0y,
+ [YM‘ + Yo (QY:cy - XM) + (%)2 : (Yyy - QXCEy) + (%)3 : (_ny)+
0
+ Yoo - (Yy —2X5) + Yalza - (—3X,)] W

We immediately see that (up to an overall minus sign) thetrigind side of (2.14) is
formally analogous to the second line of (2.15) : the lefecorresponds to the symbol
0° and the letterY” corresponds to the symb@l'. This analogy is no mystery, just
because the formula fdi(?) is classically obtained by differentiatingat= 0 the second
order prolongatiofiexp(sL)(-)]® of the flow of L !

In fact, as we assumed that the transformatiary) — (X (z,y), Y (z,y)) is tangent
to the identity at the origin, we may think that, = 1, X, = 0, Y, = 0 andY, = 1,
whence the Jacobiai(z|y) = 1 and moreover

{ Dmc = XII) Dmy = lea Dyy = ny7

(2.16)
O, & Yi, D;y >~ Vi, D;y ~ Y,y

By means of this (abusive) notational correspondence, welsd, up to an overall mi-
nus sign, the right hand side of (2.14) transforms precigeiyne second line of (2.15).
This analogy will be useful in devisingcombinatorial foriasi for the generalization of
Lemma 2.13 to the case af > 2 variables(y!,...,y™), seeLemmas 3.22 and 3.32
below.

2.17. Continuation. Clearly, since the right hand side of (2.14) is a polynomiaegree
three iny,, condition(i) of Theorem 1.1 immediately holds. We are therefore led to
establish that conditio(ii) is necessary and sufficient in order that there exist twal loca
K-analytic functionsX (z, y) andY (z, y) which solve the following system of nonlinear
second order partial differential equations (remind thatgecond order jet dfX,Y) is
hidden in the square functions):

G= -0

xrx)

— 1 0
L=-0, +200,
_ 0
M =009,

(2.18)
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In the remainder of this section, following [Lie1883], p.&B6ve shall study this second
order system by introducing two auxiliary systems of paditierential equations which
arecompleteand we shall see i§2.38 below that the compatibility conditions (insuring
involutivity, hence complete integrability) of the secamakiliary system exactly provide
the two partial differential equations appearing as cooii) in S. Lie's Theorem 1.2.

2.19. First auxiliary system. We notice that in (2.18), there are two more square func-
tions19,, 009, 009, 00, OO0}, O}, than functions~, H, L and)M. Hence, as a trick,
let us introduce six new independent functicfrhgj2 of (z,y), symmetric with respect

to the lower indices, fof < ji,72,k1 < 1 and let us seek necessary and sufficient
conditions in order that there exist solutiai?s, Y') to thefirst auxiliary system

(2 20) { Dgx = H8,07 Dgy = H8,17 Dgy = H?,l’

1 _ g7l 1 _ 77l 1 _ 77l
DJ)J) - H0,07 Dly - H0,17 Dyy - Hl,l'

According to the (aprooximate) identities (2.16), thisteyslooks like a complete second
order system of partial differential equations in two vhlés(x, y) and in two unknowns
(X,Y). More rigorously, by means of elementary algebraic openatitaking account of
the fact thatX, = 1, X, = 0, Y, = 0 andY, = 1, one may transform this sytem in a true
second ordecompletesystem, solved with respect to the top order derivativesiaia
of the form

XJ)J):AO7 Xl :A07 X :A07
2.21) { 0,0 y 0,1 vy 1,1

_ Al Al et
YII - AO,O? me - AO.,l’ Yyy - Al,lv

where the&fll_’j2 are localK-analytic functions ofz,y, X, Y, X, X, Y;.,Y,). Forsucha
system, the compatibility conditions [which are necessay sufficient for the existence

of a solution(X, Y)] are easily formulated:

(2.22)

—
—
=
oo
[=)
N
<
Il
—
=
oo
=
S~—
8
—
=
oo
i
—
<
Il
—
i
—Oo
-
S~—
8

Equivalently, we may express the compatibility conditidivectly with the system (2.20),
without transforming it to the form (2.21). This direct s&gy will be more appropriate.

2.23. Compatibility conditions for the first auxiliary system. Indeed, to begin with,

let us remind that thé\(-|-) are determinant, hence we have the skew-symmetry relation
A(xoyblzcy?) = —A(xy?|x%y®) and the following two formulas for partial differentia-
tion

74 bxc d
(2.24) { [A(zy|zy?)]

=A@yl laty?) + Ayt y?),
[A(zy"|ay)], = A(

X
xayb+1|$cyd) + A(zaybmcyd-f-l).

With these formal rules at hand, as an exercise, let us caripuinstance the following
cross differentiation (remember that the lower index indtyeare functions isot a partial
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derivative):
0y _ oy -0 (Alzly)\ 0 (Alzyly) _
08, - ), = 5 (aen) ~ 5 (26
= Ao (Al Alaly) o+ Aarlyy) - Alely) -
—Alayly) - Alzaly) g~ Alzlyy) - Alzzly)—
(2.29) —Awzyly) - Aaly) o~ Alzyloy) - Alely)
+Azyly) - Alzaly) o+ Aleyly) - A(ﬂflﬂcy)} =
1
= AEE {A(zzlyy) - Azly) — Alzlyy) - A(rx|y)+
+A(zyly) - Alz|zy)}

Crucially, we observe that the third order derivatives &#ich other and disappeaee
the underlined terms witt®) appended. Also, two products of two determinaf{s|-)
involving a second order derivative upon one column of eathrdhinant kill each other:
they are underlined witth appended. Finally, by antisymmetry of determinants, thate
A(zy|zy) - A(x|y) vanishes gratuitously: it is underlined withappended.

However, there still remains one term involving second odggivatives upon thewo
columns of a determinant: it & (zz|yy).

We must transform this unpleasant tefx|yy) - A(x|y) and express it as a product
of two determinants, each involving a second order devigatnly in one column. To this
aim, we have:

Lemma 2.26. The following three relations between the differentialedetinantsA(-|-)
hold true

A(zz|ry) - Azly) = A(zzly) - A(z|zy) — A(zyly) - Alz|zz),
(2.27) A(zzlyy) - Azly) = Azzly) - Azlyy) — Alyyly) - A(z|zz),
Alzylyy) - Azly) = Alzyly) - Azlyy) — Alyyly) - Alz|zy).

Proof. Each of these three formal identities is an immediate dicecsequence of the
following Plucker type identity, easily verified by devplag all the determinants :

(2.28)
At Bi | |Gt Di|_|A Dy | |Ci Bi| | Bt Di| |G A
A2 BQ CQ D2 o A2 D2 Cg BQ Bg D2 CQ A2
where the variabled, A,, By, By, C1, Co, D1, Dy € K are arbitrary. O

Thanks to the second identity (2.27), we may therefore toarsthe result left above
in the last two lines of (2.25); as desired, it will remainetetinants having only one
second order derivative per column, so that after divisipri/(x|y)]?, we discovera
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quadratic expression involving only the square functidreselves

(2.29) :
(O2), — (Oay), = A Leely) - Alelyy) = Ayyly) - Alalez)-

—A(zlyy) - Azzly) + Aleyly) - Az|ey)}
- m {—Alyyly) - Alz|zz) + Azyly) - Az|zy)}
=07, - O, + 00, - O,

In sum, the result of the cross differentiatir?,, ), — ()9, ). is a quadratic expression in
terms of the square functions themselves! Following theesesnipe (with no surprise),
one may establish the following relations, listing all tleenpatibility conditions (the first

one is nothing else than (2.29)):

(Dgz)y - (Dgy)l = = Dclm ’ Dgy + Di«'y ’ Dgy’
(Dgy)y - (Dgy)z - Dgy ’ Dgw - Di«'y ’ Dgy + Dgy o + Dzlzy : Dgy’
(uk )y - (D;y)z - Dﬂocy ’ Dzl/x + Dgy O

zy
Instead of checking patiently each of the remaining thresxabove cross differentiation
identities, it is better to establish directly the followigeneral relation.

(2.30)

Lemma 2.31. Remind from(2.11)that we identifyy° with = andy* with y and let0 <
J1,J2,J3, k1 < 1. Then
(2.32)

1

1
k1 k1 _ § k2 k1 E L) k1
(Dyjly”)yfs B (Dyjlng)yjz T Oyirgsn - Hyiayre + Oyingss *Hyiayra:
ko=0 ko=0

This lemma is left to the reader; anyway, we shall completepttoof of a generaliza-
tion of Lemma 2.31 to the case of > 1 dependent variablgg!, . .., y™) in Section 2
below (Lemma 3.40).

Coming back to the first auxiliary system (2.20), we therefoave obtained a neces-
sary and sufficient condition for the existence(df,Y): the functionsl‘[;i{j2 should
satisfy the following system of first order partial diffetexh equations, just obtained
from (2.30) by replacing the square functions by the Pi fiomst
(2.33)

=
=

- Htl),o : H?,l + Hilm : H871,
— 09, - 105y — gy - TI9y + 119, - 105 o + 10, - TI9 4,
— Mg Mgy — Mg -0}, + 100 - 10}, + 105 - T 5,
- H8,1 ‘ H(1),1 + H?,l : H(l),o-

=)

SN—
<

=
8

o
o

|
=
8

I

= =
o= o OO0 oo
=

= =
== o= 2o oo
=

—
<
A~ I~ /—
I

o
~— ~— ~—
<

<
[

~—_— — ~— ~—
8

8

A~ I/~ /—

2.34. Second auxiliary systemlt is now time to come back to the functio6s H, L and
M and to get rid of the auxiliary “Pi” functions. Unfortunagelve cannot invert directly
the linear system (2.18), hence we must choose two specifarsdunctions aprincipal
unknowns and the best, from a combinatorial point of view, is to ctedd§, and(l},.
Remind that by (2.20), we have)), = 11 , andl,,, = II} ;. For clarity, it will be useful
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to adopt the notational equivalences
(2.35) 0 = H8,0 and ©O'= Hil.

We may therefore quasi-inverse the linear system (2.18jmibg that the four functions
11§ o, 115 1, 115, andIlY | may be expressed in terms of the functiéhsH, L andM and
in terms of the remaining two principal unknowns (2.35), ethyields:

Hé,O = Dil =-G

1 1
H(l),l :Diy: _§H+§®07

1 1
H8,1:D2y25L+§®17

o, =0y, = M.

(2.36)

Replacing now each of these four expressions in the coniligtiinnditions of the first
auxiliary system (2.33), solving the four equations withect ta9, , ©9, ©} ando;, we
get after hygienic simplifications what we shall call thecond auxiliary systemvhich
is a complete system of first order partial derivatives inrémaaining two principal un-
knowns©® and©!:

1 1 2
1 2 0 1
Oy = —Ly+2M; + HM — 5 L+ MO + 5 (O

1 1
) = —2G, + H,+GL— ; H* - GO+ (")

(2.37) 2 1 1 1 1 1
O, = —SHy+3Ly+2GM - HL--HO'+ L6+ 66,
1 2 1 1 1 1
0 1 0 0l
= —- SL,+2GM—--HL—--H - L - .
oY s Hy+ 3L +2G 5 SHO' +5Le"+ e

We do not comment the intermediate computations, sincedfieyno new combinatorial
discovery.

2.38. Precise rules for rigorous formal hygiene.Our formal hygiene implies that we re-
spect the following rules: we group first order derivativefdoe zeroth order derivatives;
in each group, we respect the lexicographic order of appeargiven by the sequencg
H, L, M, 0°% O'; we always put rational coefficient of every differential mesnial in
its left; consequently, we accept a minus sign just aftercprakity sign, as for instance in
(2.36), and in (2.37); for clarity, we prefer to write a complicated differenteduation
as0 = &, with 0 on the left, instead ob = 0, since® may incoporate 10, 20 and up to
150 monomials, as will happen for instance in the next sestiz®low.

2.39. Compatibility conditions for the second auxiliary system. Clearly, the necessary
and sufficient condition for the existence of solutidg’, ©') to the second auxiliary
system (2.37) is that the two cross differentiations vanish

{0 = (6%), = (8)), -

0= (62, (©))

Y/ x

(2.40)
Using (2.37), we shall see that we exactly obtain the twors@coder partial differential
equations written as conditidiii) in S. Lie’s Theorem 1.2. For completeness, we shall
perform completely the computation of the firt compatiiliondition (2.40) and leave
the second as an (easy) exercise.
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First of all, inserting (2.37) and using the rule of Leibnar the differentiation of
a product, let us write the crude result, performing neittwgy simplification nor any
reordering:

_ (@0 0
0= (8z), - (8y),
= —2Gy +H,+GyL+GL,—~HH,—G,0' —GO, + 0’0+
1 2 1 1
(2.41) +-Hpy— - Lew —2G. M —2GMp+ - Hy, L+ - HL,+
3 3 2 2
1 1 1
~H,0'+-HO. -~
+ > 0"+ 3 0, 5
Next, replacing each first order derivati&), 69, ©, and©, occuring in (2.41) by
its expression given in (2.37), we obtain (suffering aditths a brute result, before any

simplification (except that we put all second order derixeiin the beginning):
(2.42)

1 1 1
L,0°—-LO)—--0)0"--6"0].
0 -5 L0, -56;0'-20°6;

4 2

+GyL+GL,—HH,—G,©0'+GL,—2GM, —GHM+

1 1 1 2
+§G(L)2—GM®0—§G(@1)2—§Hy®0+§LI@0+

1 1 1 1

+2GM®0—§HL®0—§H®O®1+§L(®0)2+§(®0)2®1—
—QGIM—QGMI—F%H$L+%HLI+%H$®1+

1 1 1 1
+ g HLy— S HHy+ GHMfZ(H)QLfZ(H)QG)lJr

1 1 1 1 1
+-HLO+-HO"0' - -L1,0°+ G, L—-H,L—-G(L)?*+

4 4 2 2 2

L 1 11 0\2 1 1
+7HL+5GLO fZL(G)) +GyO' - S H, 0!
flGL@lJrlHQ@qulG(@l)Qfl (0% o -l

2 4 2 4 6"

1 1 1 1
+§Hy®07GM®O+ZHL®O+ZH®O®17ZL(G)O)Qf

1
T CHNCH

Now, we can simplify this brute expression by chasing venypde (or triple, or quadru-
ple) of terms killing each other. After (patient) simplift@an and lexicographic ordering,
we obtain the equation

4 2
0=—-2Gyy+ - Hyy — = Laot+
(2.43) 3 3 ) A
+2(GL)y —2G, M —4G M, + gHLI — gHHy7
which is exactly the first equation of (1.4). The treatmenthe second one is totally
similar. This completes the proof of Theorem 1.2. O

2.44. Interlude: about hand-computed formulas.In Section 4 below, when dealing
with several dependant variablgs . . ., ™, many simplifications of identities wich are
much more massive than (2.42) will occur several times thtésefore welcome to explain
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how we manage to achieve such computations, without mistatkine end and stricly by
hand. One of the trick is to use colors, which, unfortunatedynot be restituted in this
printed document. Another trick is tenderline and to number the terms which disap-
pear togetherby pair, by triple, by quadrupletc. This trick is illustrated in the detailed
identity (2.45) below, extracted from our manuscript, whis a copy of (2.42) together
with the designation of terms which vanish together. Hemaekeep a written track of
each intermediate step of every computation and of everplisication. Checking the
correctness of a computation simply by reading is then tkesgway. On the contrary,
in programming a digital computer, most intermediate stgsinvisible; the chase of
mistakes is by reading the program and by testing it on sewvetances, but all the finest
intuitions which may awake in the extreme inside of a long patation are essentially
absent, because the mind belives that the machine is stréogsuch tasks. This last
belief is in part true, in case straightforward known conagions are concerned, and in
part untrue, in case new hidden mathematical reality is @oredl. For us, howevethe
challenge is to control everything in a sea of sigr@omputations are to be organized
like a living giant coral tree, all part of which should be ally visible in a transparent
fluid of thought, and permanently subject to correctionsdekd, it often happens that
going through a problem involving massive formal compuotad, some disharmony or
some incoherency is discovered. Then one has to inspegtidxag atom in the preced-
ing branches of the growing coral tree of computations watihe very tiny or ridiculous
mistake is found. In addition to making easy the readinggrfectly rigorous way of writ-
ing the formal identities which respects a large amount dfrai conventions facilitates
to reorganize rapidly the coral tree after a mistake has bfemd The accumulation of
new virtual conventions, all of which we cannot speak, dtutstanother coral meta-tree
and another profound collection of trick. Finally, we uselank fluid corrector to avoid
copying to much.

Extracted from our hand manuscript, here is the identit¢ZPwith the underlining-
numbering of all the vanishing terms (without the originalaurs) until we get the final
equation (2.43):

4 2
= -2 S Huy— = Laos
0 Guy + 3 Hoy = 3 Leat

+G,L+GL,—HH,—-G,0'

1 2 0 1

+5G(L) @fGMG & 3

+2GM@0®—1HL@O —1H@°@1 +1L(@0)2 +l(@0)2@1 _
S 2G,M-2GM, +H, L+~ H L.+ H, 0" +
2 2 2 O

ot GLy—2G M, — GHMg

G (0")? “lye 20,00 4+
3" 3
© d ©

(2.45)

1 1 1 2 1 2 A1

“HL,—-HH HM . —~(H?L —=~(H
+5 3 H Hy+GH Mgy~ 7 (H) ®4()9@+

1 0 1 0 1 1 0 1 1 2
+-HLO" +-HO"0' —-L,0° +G,L—-H,L—=G(L)?* +

4 ® 4 @ 2 @© 2 2 @
+iH2L +igLe! fiL(@Of +Gy@1©71Hz®1 -

O 2 ® ®w — 2

loret +lmrer 1loey —le)e —lie
2 ® 4 @ 2 © 4 © 6 ©
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1 1 1
+oH 0" —GMO°y+ - HLO® +-HO'e" —-L(e°)" -
3 @ 4 ® 4 @ 4 ®

As may be observed, the order in which we discover the termshatanish is governed
by chance. After some terms are underlined, they are auicaligtdisregarded by the
eyes, which lightens the chasing of other terms to be siregliffo collect the remaining
terms in order to obtain the final expression (2.43), our wetik similar: we underline

the terms which may be summed together. However, whereasaéhe red pencil to

underline the vanishing terms, we use the green pencil terlind the remaining terms.
This small trick is to avoid as much as possible to copy sévenas some long formal

expressions. Finally, we reorder everything lexicogrealty, so as to get the conclu-
sion (2.43). In order to obtain the final equation (2.43) disieftly as possible, we read
the remaining terms, picking them directly in lexicograpbider. If, by lack of luck, one

or two terms are forgotten by the eyes and not written in thbtrplace, we copy once
more the very final result in the right order, or we use the blzorrector.

Of course, such a refined methodology could seem to be esl$estiperfluous for
such relatively accessible computations. However, whessipg to several dependent
variables, the current expressions will be approximagiViee times more massive. So,
we believe that a clever methodology of hand computatiohsligful in this category.

§3. SYSTEMS OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
EQUIVALENT TO FREE PARTICLES

3.1. Combinatorics of the second order prolongation of a pait transformation. In
this section, we endeavour to explain how S. Lie’s theoredhmoof may be generalized
to the case of several dependent variables. As in the statevh&heorem 1.7, let us as-

sume that the systepi,, = F7(z,y,y.), j = 1,...,m, is equivalent under an invertible
point transformatioriz, y) — (X (z,y),Y (z,y)) to the free particle systefiy, ,, = 0,
j=1,...,m. By assumption, the Jacobian determinant

X”f X:%l . Xy1m

v vhL ... Y.
(3.2) Aly'l- ™= 0

ymeymoLo v

does not vanish at the origin. As in the case= 1, since the flat systeri},, = 0

is left unchanged by any affine transformation, we can (andhel) assume that the
transformation is tangent to the identity at the origin, lsat the above Jacobian matrix
equals the identity matrix dt:, ) = (0,0), whence in a neighborhood of the origin it is
close to the identity matrix, namely

(3.3) X, =1, X,;=0, YJ/=0, yyﬂ}l o 55,'3_

Inductive formulas for the computation how the differehgéguation in the(X,Y)
coordinates is related to the differential equation in they) coordinates may be
found in [BK1989], [OL1995], [Su2002]; the explicit formag are not achieved in
these references. Let us recall the inductive formulag,dasthe computational level
(differential-geometric conceptional background aborgpy transformations may be
found in [OL1986], Ch. 2).
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First of all, we seek how thé’){ = %{j are explicitely related to thel.. It suffices to
replace, in the identity

(34) Yi- <Xz dr+ Y X, dyl> YidX =dY) = Y] dz + Z Y, dy'
=1 =1

the differentialsdy’ by y!. dz and then to identify the coefficient afx on both sides,
which rapidly yields the formulas

YIi+30, yIYJ

(3.5) Y =
X X:n + Zl:l ym Xy
forj=1,....,m
Next, we seek how th¥7, , := ‘fTY; = dYX are related to thg':, y'2 . It suffices to

again replace eacly; by y. dz and eachiym by y! . dz in the identity
(3.6)

Vi - (Xl. dr+ Y Xy dyl> =Y], -dX =dY}
=1

ade *Z Z

Cl)

l

Before entering the precise combinatorics of the expli}cﬁtression onj(X, let us ob-
serve that the last term of (3.6) simply writeXYs,) dz, whereD denotes theotal dif-
ferentiation operatofof order two) defined by

3.7) D= + Z yh — (’) Z Y, — 8y

SincedX = DX after replacing eachy' by y. dz, it follows that we may compactly
rewrite (3.6) as

(3.8) Viy DX <dv =D (Y{) do
Consequently, the expressions}gi (obtained in (3.5)) and oY){ y are
co) vio LY 4 yi. 2 (Y)?) DDY’ - DX — DDX - DY
. = — 1 = = .
px XX T Ty [DX]?

As, by assumption, the systeff, = F7(z, y, y..) transforms to the flat systetﬁt’;X =0,
after erasing the denominator of (3.7), we come to the egpusgti

(3.10) 0=DDY?.DX — DDX - DY,

for j = 1,...,m. However, this too simple and too compact expression of yiseem
yl.. = FJ(x,y,y.) is of no use and we must develope (patiently!) the expligitezsions
of DDY, of DX, of DDX and of DY/, using the complete expression Bfdefined
in (3.6).

At this point, we would like to stress thdt constitutes already a nontrivial com-
putational and combinatorial task to obtain a complete @ipformula for the system
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yl,, = FJ(x,y,vy,) hidden in the compact forig8.10), which would be the generaliza-
tion of the nice formula (2.9) involving modifications of tdacobian determinant. For
generaln > 2, the complete proofs are postponed to Section 5 below.

Since it would be intuitively unsatisfactory to provideetitly the final simplified ex-
pression of the development of (3.10) in the general ease 2, let us firstly describe
step by step how one may guess what is the generalization®)f (2

For instance, in the case = 2, by a direct and relatively short computation which
consists in developing plainly (3.10), we obtain foe 1, 2:

(3.11)
0= — X, Y + Y2 X+

+y; . |:_wa Y;/jl —+ Yz]z Xyl — 2Xzy1 YIJ + QYnyl X1:| +

+ yfc . |:_wa Y'ij —+ ijx Xy2 — 2Xzy2 YIJ + QYnyz X1:| +

fulyl [ C2 X VI 42V X — X Y4+ Y X+
ym yz | Ty yl I’yl Y Y-y x ylyl x

oyl [2X, 0 Y 42V Xpe -2 X, Y 42V, X,
Yz Yz L Ty* L y2 xzyl Y zy® Syl zy? MY

2 X1, Y7 42 YyJ;yQ Xw} +

22 }2 Xoyp Y +2Y7 . Xy = X2y Vi 4 Y0, Xz} n
Fylub [ X Y+ Y, Xyl} +

L - , ‘
T by [ Xy Y 4 Y Xy = 2 Xy Y 42V Xy | +

bRy [~ Xy Vb Voo Xy = 2 Xy Vi 4 2Y0 2 Ko | +

+ yi yg yg . _7Xy2y2 ij2 + ij2y2 Xy2:| +

b |~ X YY) Xe b2 { =Xy Y+ V) Xy b +

2 i j 1 j j
2, [nyQ YI YL X +yh- {nyz YA+ Y5 X, H .

Unfortunately,the above two equations are not solved with respegtitoand toy?,.
Consequently, if we abbreviate them as a linear system dbtine

3.12
(3.12) 0= A% {4l BY 442, B,

we have to solve fog, and fory2, by means of the classical rule of Cramer. Here, it is
rather quick to check manually that the determinant of thitesn has the following nice
expression:

B B;
Bf B3

= Az|yt|y?) - { Xe +yl Xop + 2 X2
(3.13) ‘ (zly'ly®) - { Yo X1 + 2 X2}

= A(zly'ly*) - DX.

However, the complete solving fert,, and fory?2, requires some more time. After a
direct and rather long hand computation (or alternateipguslaple or Mathematica) one
obtains formulas involving hiddeh x 3 determinants, which have to be guessed by the
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intuition; the first equation that we obtain, namely §gr. is as follows:

Xz
Y2
(3.14) +yl- <2
+15 12
Xz
+ Yy s - Yx;
YZ
Xz
tupur 2| Y
V7
Xz
+ sy Yz;
YZ
Xylyl
+ yalc yalc yalc Ty T Yylly1
Yy21 yl
XyQy‘Z
+ yalc y325 y?c N T Yylzy2
Yy22y2

Xy Xy X Xoo X2

Ytyll Y;}z + Yzl lez Y;}Z +

Y;1 Y;2 YZ2 wa Y;2

X Xppn X2 Xow X X2

YZ1 leyl Yyl2 — Yzlz Yyl1 Yyl2 +
Y2V, YR Y2 YL YY)

X:f Xgiyz X:%Z

Y, waQ Yy2 +

YI2 ny2 Y;2

Xylyl Xy2 Xzyl Xyl Xy2

Vi, Yh|-2| Yo ovhovhty

Y21 1 Y22 Y2 1 Y21 Y22

yly y Ty y y

Xylyz Xyz Xxyz Xyl Xyz

Yy11 y? Yylz 2 Yzlyz Yy11 Yylz —+

Yy21y2 Yy22 Y$2y2 Yy21 Yy22

X 2,2 X 2

Y% ! Y%

y;y2 y; +
X:?ll X:%Q L L ) X:?llyQ X:?ll X:%Q
Yyl Yy2 + Y Yr Uy - -2 Yy1y2 Yyl Yy2
YA Y2 Yie Yi Y2
X, X2

y y

YL Yl

y y

Y2 Y?

y y

This formula and the next have been checked by Sylvain NeditMinhel Petitot with
the help of Maple. We notice that the size is not negligiblg,fortunately, there appears
some combinatorics, much more visible than in (3.11). Thmisé equation that we
obtain, namely fog?_, is as follows:

X, X, X, X, X, Xoo
0= yix : Yzl Ytyll Y;}Z + Yzl Yyll lez +
Y2 YA Y3 Y2 Yi Y2

X, X,p X

(3.15) typo92| Yo Yo Yo o+
Y2 Y2 2
@ y? zy!
X, X,p X Xow X, X

+y2oQ2| Y, Y Yl - | Y., Y. Y. +

Y2 Y2 2 Y2 Y2 Y2
@ y? zy? T y? y?
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Xz Xyl ylyl
Fylys Q| Ye Vi Yo o+
Y2 YA Y,
L Xglc Xyll Xyllyz leyl Xyll Xylz
Y2 Yz § 2 YI2 Yy; Yy; v | T2 Yz2y1 Yy; Yy; +
Y; Yy1 Yyly2 wal Yy1 ng
X, X, X,2,2 X2 X, X,2
+ 2,2 Y? YZ{ YZ{ Y —9 Ya{y YZ{ YZ{ +
Yz Yz o Y Yy oy Y Yy
Yo Yh Yo Y. Yi Y3
. . ) X,%lyl XZ{I XZ{Q . ) ) X,%lyZ XZ{I XZ{Q
+ Yo Y Y — ?21y1 }};21 ?22 + Yr Uz Yz -2 }}jy;yQ }};21 }};22
yly! yt y? yly? yt y?
X%2y2 XZ{I XZ{Q
Furyayso | Ve Yy Y
Ve Yio Ve

Importantly, the obtained formulas seem to be analogoulsaddrmula (2.9), since we
observe that the coefficients of the degree three polyndmtaky! are modifications of
the Jacobian determinant(z|y*|y?).

To describe the underlying combinatorics, let us obseraéfttiere exist exactly six
possible distinct second order derivatives; zy', zy?, y'y', y'y? andy?y?. There are
also exactly three columns in the Jacobian determinanj.(8% replacing each of the
three columns of first order derivatives by a column of seconuiér detivatives (leaving
X, Y andY? unchanged), we may build exactly eighteen new determinants

Azzly'|y?) Azlzzly®)  Alzly'|zx)
Alzy'ly'y®) A(zley'ly®)  Alzly'|ey")
Alzy®ly'y?) A(zlzyly®)  Alzly'|ey?)
(316) A 1 111 2 A 1.1 2 A 1.1 1
Wyly lv) (zly 'y y*) (xly ly y)
APl ly?) Ayl Ay ly'y?)
AWl YY) Al Ay vy,
where for instance
XyllyQ Xyll Xy12
A(y1y2|y1|y2) = Yy21y2 Yy; Yy; and
Yl 2 Yl Y2
(3.17) ey
X, X, Xop
1 1 T
Alzly'lzy?) = | Yo Yo Y
2 Y2 V2,

Hence, using thé\-notation, we may rewrite the two equation (3.14) and (3urjer
a more compact form; after division by the Jacobian deteamtit\ (z|y*|y?), the first
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equation becomes:
(3.18)
A 2 A 1(,,2 A 1(,,2
0=yl + (:vleIyQ) N i~{2 (%Iﬂvy1 Iy2 ) (ﬂmly1 Iy2 )}
A(zlyty?) Alzly'ly?)  Alzlyty?)

2 {2 A(z|zy®ly?) } gt {A(l’lylyllzf) ) A(fcyllyllzﬁ)}Jr
! Azly!ly?) Tl Alzlytly?) A(z]yty?)
A$122 A.TJ212 A$222
+y;y3.{2 A(Iyy v*) o Alzy IzlJ |‘g)}+yiyi-{ A(Iyy Iy)}Jr

(z|yty?) A(z]yt|y?) (w|yty?)
Aly'y'lytly?) Aly'y?ly'y?)
+iii-{—7 F Y Yp s 2ot b
Yotz d Alaly'ly?) J 0= Alaly'ly?)

Fyly2e?. _A(y292|yl|92)
e Alzlytly?) |-

Similarly, the second equation takes the form:
(3.19)
Aalyler) 4 { A(ﬂclyllacyl)}
0=yze+ Azt T {2 Al (T
Azlytly?) Azlytly?)

Ty {2 A(zy'|zy?) B A(leyllyz)} Fylyl. {A(x|y1|y1y1) } N
’ Alzlytly?)  Alzlytly?) 2Tl Azlyty?)

A 1,,1,,2
+yiy3-{2 (lylly'y®) A xylyly }+

A(zly!|y?) Azlytly?)
S { (@ly?ly?y?) , Alzy’ly'ly®) }+
T Ayt Iy A(zly!|y?)
Aly'y'ly'ly Aly'y?ly'ly
+yxyzyz{ vy )}eriyiyi { 2 AWVl 1Y) +
Iy ly?2) xly ly?)
y2y2 Yty
+yylys- { |y| |y| )}-

Since the formulas are still of a consequent size, analdgoosvhat was achieved in
Section 2, we shall introduce a new family sijuare functionas follows. We first index

the coordinate¢r, 3!, ...,y™) as(y°, 4%, ...,4™), namely we introduce the notational
equivalence
(3.20) YO =a|,

which will be very convenient in the sequel, especially iderto write general formulas.
With this convention at hand, our eighteen square functgﬁylz, defined for0 <
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J1,J2, k1 < 2 are defined by

(3.21)
o Azly'ly?) 0o, . Aly'ly'ly*) 0o, . Aly’ly'ly?)
U Alzlyty?) W A(zlyty?) W A(zlyty?)
o AlWy'ly'ly?) o AWl o AWVl
D0 T TAGE ) T AGR ) T AGRY)
. Alzlzzly?) . Allryly?) at . Ally?ly?)
T A(x|yty?) =T A (z]yty?) =T A (z]yty?)
L Ally'y'ly?) A C1 ) L Ayl
D 1,1 .— D 1,2 .— D 2,2 .—
vy A(zlytly?) vy A(z|ytly?) vy A(zlyty?)
2 .- Ally'lz) o, o AGlylzy') 02, .o Allyy®)
U A(zlyty?) =T A 2]yt y?) = A 2]yt y?)
> Ally'ly'yh) > Ally'ly'y?) > Ally'ly’y?)
Dylyl = 11,2 Dy1y2 = 11,2 Dy2y2 = 10,2
A(zlytly?) A(z|yty?) A(zlyty?)

Obviously, the square functions are symmetric with resgecthe lower indices:
D’;’}lylz = D’;’}zyll. Here, the upper index designates the column upon whichebe s
ond order derivative appears, itself being encoded by tleeltwer indices. Even if
this is hidden in the notation, we shall remember tihat square functions are explicit
rational expressions in terms of the second order jet of thasformation(z,y) —

(X (z,9),Y(z,y)). Atthis point, we may summarize what we have establishedrso f

Lemma 3.22. The system dfwo second order ordinary differential equations, =
Fl(x,y,y.) andy?, = F?(z,y,y.) is equivalent, under a point transformation, to the
flat systemYy = 0 andYZ = 0 if and only if there exist three locaK-analytic
functionsX (z,y), Y!(z,y) andY?(z, y) such that it may be written under the form
(3.23)
+ yalc yalc : (Dzljlyl -2 Dgyl) + yalcyi : (2 Dzljlyz -2 Dgyz) + yi yi : (D;Qyz) +
1,11 0 1,1 2 0 1,2,2 0
1,1 2 1,2 2 0 2,2 2 0
F U Us Uy (“Opiyn) 92 vz yz - (2001,2) +u2uz vz - (—Opeye) -

3.24. Second Lie prolongation of a vector field At this point, instead of proceeding
further with the casen = 2, it is now time to pass to the general case> 2. First
of all, we would like to remind from [GM2003] the complete dixji expression of the
point prolongation to the second order jet space of a gewe@br field of the form
L=X&+X7T, Y/ 505 itis a vector field of the form

0 .0 T T
3.25 L® = x — Yyl — R/ — R, —
(3.25) c’)erj; 8y3+; 1ay;+; > oyl

where the coefficientR{ and Rg are polynomials in the jet space variables having as
coefficients certain specific linear combinations of firal aacond order derivatives af
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and of theYJ:

Ri=/ 43 o [ -, 6]+ 30 D0 a6 X
12:1

11=1

—

1=

Ry =Y+ ol 2V

zyll
=1

— 4 Xm} +

o
+ Z Z Yy - [Yyllylz - 5{1 Xayix = 5{2 wall} +
o
3N byl [ Xy +
=t
S ]

303 bl 6, Xy 20, X,

However, since the notations in [GM2003] are different amtes the general case of
n > 1 independent variables and > 1 dependent variables is considered there, it is
certainly easier to reconstiture formulas (3.26) direbtiyneans of the inductive formulas
described in [OL1986], [BK1989]).

Analogously to the observation made in Section 2, we guesdtbre exists a formal
correspondence between the term&dfnot involving yL . and the explicit form of the
equationy?, = F’(z,y,y,) equivalent toYy. . = 0. In the casen = 2, we claim that
this formal correspondence also holds true. Indeed, itcsfio write formula (3.26) for
R, modulo they' ., which yields two expressions in total analogy with the twpliit
polynomials appearing in the right hand side of (3.23):

(3.27)
Ry (mod y4,) = Voo + 45 - {2Y0 — Xaw} + 02 - {2Y02 ) +yave - {Vyiyn —2 X0y} +
Fusye {2V =2 X2t + 02y (Yo b+
F Yo Ya Vo Xy} T U Vo ¥n {2 Xy} Hynvivs { X2},
R3 (mod y,) = Yo, + 45 {2Y0 )+ - {200 — Xoo} +ypvp - {Y ) +
F Yo Ya Vo Xy T vays {2 Xy} Hynvn v { X2},
Except for inductive inspiratiorsgethe formulation of Lemma 3.32 below), this obser-

vation will not be used further. At this stage, it helps aslda maintain a strong intuitive
control of the correctness of the underlying combinatorics

(3.26)

3.28. System equivalent to the flat systenBy induction, we therefore guess that the
analogy holds for generah > 2, namely we guess the following combinatorics, which
requires some preliminaries.

As in the beginning 0£3.1, letz € K, lety = (y,...,y™) € K™, let (z,y) —
(X (z,y),Y(z,y)) be a localK-analytic transformation defined in a neighborhood of
the origin inK™*! and assume that the systef), = F/(2,9,9.), j = 1,...,m, is
equivalent to the flat systerﬁ)];x =0,j = 1,...,m. By assumption, the Jacobian
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matrix of the equivalence equals the identity matrix at thigin. Remind that we identify
x withy°. For allky, 1,1, = 0,...,m, we define a modification

(3.29) Alz). .. [Pyt ™)

of the Jacobian determinant as follows. We replaceitfh column of the determi-
nant (3.2), which consists of first order derivatives , by a column which consists of
second order derivativeg, ... In (3.29), the notatiof* designates thé;-th column,
the first one being labelled by, = 0 and the last one bi; = m. With this notation at
hand, we may define the square functions

(3.30 g Al Byt

y'y'2 A(z|...|fryka] . oym) 7

which are rational expression in the second order jet of taestormation(z,y) —
(X (z,y),Y (z,y)). As before, the denominator is the Jacobian determinahecftiange
of coordinates. _

Since, according to (3.26), the expressiomRdf (mod 3., ) is
(3.31)

RJ (HlOd yzz + Z y : |:2 Yzjyh 5l]1 X:b:c:| +
Z Z g [V, o = 0, Xy — 8, Xy ] +
+ Z Z Z Y [_5{1 Xyl?yl?*} )
li=1 la=1 l3=1

and since, in the cases = 1 andm = 2, we have already observed strong analogies
between (3.31) and the complete explicit expression of yseemyl . = Fi(z,y,y.)
equivalent to the flat systeii. , = 0, we guess that the following lemma is formally
true.

Lemma 3.32. The systeny), = F/(z,y,y.), j = 1,...,m, is equivalent to the flat
systemYy, = 0, j = 1,...,m, if and only if there exist locaK-analytic functions
X(x,y)andY’(x,y),j = 1,...,m, such that it may be written under the specific form

0=yl + 0%, + >yl [200,, — &, 00, ] +
=1

(3.33) + Z Z vl [ e — 8, D0y — o, 00,

=1 lx=1

Z Z yz ym : |:_D211y12:| .

I1=1 lx=1

The complete proof of this lemma involves only linear algetwnsiderations, although
with rather massive terms. This makes it rather lengthy.s€éqoently, we postpone it to
the final Section 5 below.
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3.34. First auxiliary system.

GJ
Hj

(3.35) L

= [
= 20V

li,lo
]\4[1_’12 =

JOEL MERKER

Clearly, if we set

TxT)

+4] 00

xrx)

+67 00, +6], 00,

zylt

_D yliyle
Dyllylza

we immediately see that conditigi) of Theorem 1.7 holds true. Moreover, we claim that
there aren + 1 more square functions than functiofis, Hjl, L{l Iy and;, ;,. Indeed,
taking account of the symmetries, we denumber:

#{0%.} = m, #{00, ) =1,
@336) 4 #OLut=m" #{O0,,}=m
HOp = T HEf - D)
whereas
#{G}=m H{H] Y = m?
(3.37) HL - W 0,1,y = D,

Similarly as in Section 2, fo§,ly,l> = 0,1,...,m, let us introduce functionﬁ{hl2 of
(z,y',...,y™), symmetric with respect to the lower indices, and let us semessary
and sufficient conditions in order that there exist solwioR,Y") to thefirst auxiliary
systendefined precisely by:

0 _ 0 o 0 _ 10
3.38 Dzz - 1_[O,Oa D HO I Dyhylz - Hl1,l27
(3:38) v, =11 DJ =11 ¥, ., =10

zz = 110,05 aylt 0,0 yliylz = Tl

3.39. Compatibility conditions for the first auxiliary system. As in Section 2, the com-

patibility conditions for this system will simply be obt&d by computing the cross dif-
ferentiations. The following statement generalizes Lerd34 and also provides a proof
of it, in the casen = 1.

Lemma 3.40.Forall j, 11,102,153 =0,1,...,

J J _ k
(341) (Dyhylz)yla - (Dyl1yl3)yl2 - Z DyllyZQ :
k=0

Proof. To begin with, as a preliminary, let us generalize the Pdiiétentity (2.28). Let
Cy,Cy,...,Ch, D, E be (m + 2) column vectors ifK™ and introduce the following
notation for then x (m + 2) matrix consisting of these vectors:

(3.42) [C1]|Cs| -+ |Cm|DIE] .

Extracting columns from this matrix, we shall constructx m determinants which are
modification of the following “fundamental” determinant

(3.43) IC1l- - 1Cml = |[Cal - 17 Cju| - [2C | -+ ||

Here and in the sequel, we use a double vertical line in thenbaw and in the end to
denote a determinant. Also, we emphasize two distinct cofyrihej; -th and thej,-th,

m, we have the cross differentiation relations

m
J k ey
Dylgyk +Z Dyhyls Dylgyk'
k=0
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wherej, > j1, since we will modify them. For instance in this matrix, lstreplace these
two columns by the colum® and by the columi¥, which yields the determinant

(3.44) Gyl D] P2 B O

In this notation, one should understand tbaly the j;-th and thej,-th columns are dis-
tinct from the columns of the fundamental x m determinant (3.43). With this notation
at hand, we can now formulate and prove a preliminary lemraguiiil be useful later.

Lemma 3.45. The following quadratic identity between determinantsisdiue
HC1|---IleI---IjZEI---ICnH : ”Cll"'|j10j1|"'|j20j2|"'|CnH =

(3.46) = HCl "'|j1D|"'|j2Cj2|"'|CnH . HC1|---|j10j1|---|j2E|---|CnH —
HC1 J1E| |J2CJ2|---|CnH . HC1|---I“lel---|J2D|---|CnH-

Proof. After some permutations of columns, this identity amouats t

|C1l -+ |Crna| DIE] - |Cr - - - [Con2| Ot | Con | =
(3.47) = [Cil- - |Cr—a| DICm| - [C1] - - |Crn2| O | B =
=[Gl - - [Cn2| E|C] - [C1] - - [Crn2| o1 | D -

To establish this identity, we introduce some notationd ind B are vertical vectors in

K™ and ifiy,io = 1,...,m with i; < is, we denote
A, B
2 R 11 11
(3.48) Aj i, (AB) = ’ A B.
If |A1]Az|As|---| A is @am x m determinant, and ify, i = 1,...,m with i; < o,
we denote by\éf{fo(A3| -|A;) the(m — 2) x (m — 2) determinant obtained from the

matrix [As| - - - |A,,] by erasing thé,-th line and the-th line. Without proof, we recall
an elementary classical formula

||A1|A2|A3| T |Am|| =
(3.49) = N (CLTRTIAZ (A As) - M (As] - [Am),

11,12 91,12
1<ii<ia<m

which may be established by developing the determifdmtAs|As| - - - |A,,| with re-
spect to its first column, and then re-developing all the iobth(m — 1) x (m — 1)
determinants with respect to their first columns. To esthb(B.47), we start with an
equivalent version of the identity (2.28):

A2, (D|E C1]C) = A2, (D|Cy) - OB
(350) { 7’1’12( | ) i3, 7’4( 1| 2) 11, 12( | 2) i3, 14( 1| )

— A2 (E|Cy) - A2, (C4|D),

01,12 i3, 14(

wherel < i; < iy < mandl < i3 < iy < m. Multiplying by (—1)iFizFisFia=2
multiplying by M~ 2(C3| - - - |C,, ), and multiplying byM ™= 2(Cs| - - - |C,,,) applying

11,12 13,14
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the double summation | ; i, <, D 1<iyciy<m» WE g€t
(3.51) o T

Z ( 1)z1+12+13+z4 2 AQ (D|E) . 13 " (Cl|02)

11, 12
1<i1<io<m 1<iz<ia<m

M (Gl |Cn) - ML (O] -+ |O) =
= Z Z (_1)i1+12 ! (_1)i3+i4_1 [Ai i (D|02) : 13 Q4 (Cl|E)

1<iy <io<m 1<iz<is<m

—AF, i, (B|C2) - A, (CLID)] - MiT 3 3(C -+ |Com) - M7y 2(Cs| -+ |Con).

11,12 01,12 13,14

Thanks to the relation (3.49), this last identity coincidesctly with the desired iden-
tity (3.47). The proof is complete. O

We can now establish Lemma 3.40. As a preliminary obsemalip the Leibniz rule
for the differentiation of a determinant, we must diffeiate every column:

[A @y b)), = Ay ]yt
{ +A (YY)
Using also the rule for the differentiation of a quotient, mvay endeavour to compute the
cross differentiations{D;hyb)yls - (Dj )ylz of the left hand side of (3.41). This

(3.52)

y'iy's
will generalize (2.25). Sometimes in the computation, wallskbbreviate the Jacobian
determinani\ (y°| - - - |[y™) using the shorter notatiah; as before, a product between two

elements oK will often be denoted by the sign™; for clarity. Here is the computation:
(3.53)

(Djy“yl?)ylg a (DjyllyLS)yzz -
_ 9 A(yolmljy“ylzlmlym) 0 (AW Pyhy ™)

Ay l3| Pyt lz| ) A '

+A(y |...|Jyldyl1 l2| |ym)-A®—|—---—|—

SaE | AWyt lyhyT) A B

—A(y0|---|jylly12|---|ym) [ (0 lsl |ym)+...+
+A (y [ Jy"y™)]

A (5092 Pylyte] - Jy™) - A +
FA WPyl ) - A
TR | TAW YRl
=AW Pyhyl e ly™) - [

+

@
A
Ayl y™)

i +A (y [y y™) ]

Crucially, we observe that all the determinants involvirigied order derivative upon one
of their columns kill each other and disappear: we have Uimgeithem with@appended.
However, it still remains plenty of determinants involviagecond order derivative upon
two different columns. We must transform all of them and esgrthem in terms of
determinants involving a second order derivative upon only column. To this aim, as




EXPLICIT DIFFERENTIAL CHARACTERIZATION OF NEWTONIAN FREEPARTICLES 33

an application of our preliminary Lemma 3.45, we have thWihg relations, valid for

j17j27l1,127l3,l4 = 0,...,mandj1 <j2:
(3.54)
AL Py PPty ) A (0] P PRy ) =
= A0 Py R ™) A O Py PRy ™)
A0 Pryleytel 2y ey ™) A (O] Py Ry R ™)

With these formulas, we may transform the lines number 3,@n&8, 9, 10 of (3.53).
Also, we observe that the lines 6, 7 and 11, 12 of (3.53) irzaleterminants having a
single second order derivative. Taking account ofﬁ\l@ factor, we deduce that the lines
6, 7and 11, 12 of (3.53) may already be expressed as sumsaredgunctions. Achieving
all these transformations, we may rewrite (3.53) as follows

(3.55)
(D;“yl?)ylg o (D;llyZS)yzQ =
Ay Py ™) - A Pyl ™) =]
X =AYy Y ) A0 Py YR )
:ﬁ Lt
APy ) AL Py Ry -
| _A(y0|...|j ym|...|ym).A(y0|...|jyg‘| |yh l2)
Z llylz
k=
(0l2| Py ™) A WO Pyt ™) =]
X Ayt Py ™) A (YO Pyt ™) +
_W +...+ +
HA Py ) A O Py ™) -
L =AYy ) A (O] Py Yy
+ Z D;“W Dzlzy’“'
k=0

Notice that two pairs of ¢dot s” terms + - - - + appearing in the lines 3, 4 and 8, 9
of (3.53) are replaced by a singledot s” term + - - - + in the lines 4 and 9 of (3.55).
Importantly, we point that in the “middle” of the twatlot s” terms+ - - - + appearing
in the lines 4 and 10 of (3.55) just above, there are two terimstwdo not occur: they
simply correspond to the two underlined terms havigppended appearing in the lines
4 and 9 (3.53).
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Now, taking account of the fact%, we can re-express all the terms of (3.55) as
sums of square functions:

Dj ) (Dj ) )
( yliyl2 yls yliyls yl2
m
Dk Dj — |:|
ylayk yliyle 11y12 lsy

k=0; k#j k=0; k#j
m
_ J
(3.56) Z R
Z D yl2yk D yliyls + Z D llyls l2y
k=0; k#j k=0; k#j

m
§ J k
+ DyllylS Dylzy’“'

Finally, we observe that in the two pairs of sums havingt j appearing in the lines 2
and 4 just above, we can include the tekna= j in each pair, because these two terms
are immediately killed inside the corresponding pair. Indasion, after a final obvious
killing of four (among six) complete sums in this modificatiof (3.56), we obtain the
desired formula (3.41), with two sums. This completes tloopof Lemma 3.40 and also
at the same occasion, the proof of Lemma 2.31. O

3.57. Compatibility conditions for the first auxiliary system. According to the (ap-
proximate) identities (3.3), taking account of the expli@finitions (3.30) of the square
functions, we have

0 0 0
358 Dg;g; = Xll) nyl = X yl1s Dyllyl = X yliyl2,
(3:58) o, ~Y), OF, =y’ o, =Y

T T zyll xyll)? yliyle ™ Tyligle”

Consequently, the first auxiliary system (3.38) looks apjmnatively like a complete sec-
ond order system of partial differential equations in the+ 1) independent variables
(x,y) and in the(m + 1) dependent variablgsy, Y'). By means of elementary algebraic
operations, one may transform this system in a true secated@mpletesystem, solved
with respect to the top order derivatives, namely of the form

__AO __AO
azx = AO 0 Xzy — AO ll’ XyllyLZ — All,lz’
J — AJ J J —_ AJ
Vi, =M, Y. =A,, Yy = A

zylt T 1,027

(3.59)

where theA’Cl j, are localK-analytic functions of(z, Y, XY X, Xy Y YJ L)
For such a system the compatibility conditions [which ageassary and suff|C|ent for
the existence of a solutiofX, Y)] follow by obvious cross differentiation. Coming back
to the system 3.38, these compatibility conditions amoaitihé quadratic-like compati-
bility conditions expressed in Lemma 3.40. In conclusioa,have proved the following
intermediate statement.

Proposition 3.60. There exist functionX’, Y7 solving the first auxiliary systerf8.38)
of nonlinear second order partial differential equatiahand only if the right hand side
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functionsH{h 1, (x, y) satisfy the quadratic compatibility conditions

3.61 O, 1y _ My _ T k., 1
(3.61) Oyls B Oytz __Z liyle 13k+z lts 1, g

forj7l15127l3 :0,1,...,m

3.62. Principal unknowns. As there ardm + 1) more square (or Pi) functions than the
functionsG/, Hjl, L{hl2 andM;, ;, defined by (3.35), we cannot invert directly the linear
system (3.35) (which is of maximal rank). Hence we must ch@os+ 1) specific square
functions, calling thenprincipal unknownsand similarly as ir§2.34, the best choice is
to choose 1%, andl/_, for j = 1,...,m. For clarity, it will be useful to adopt the
notational equivalences

(3.63) e'=1, and © = 1T ;.
Then we may quasi-inverse the system (3.35), which yields :
(3.64) . .
Mo =0, = —G,
; 1
Héh 7Di‘yl1 :7_Hj + 5 605
j l2 1 l l
H{MZQ:D;LIW: L{112+ 5J L1212+ 5JL ity 5 ®2+ 5 o,
1oy,
g, =09, sl +3 @ll
Hl17l2 - Dgllyb = Ml17l2-

Before replacing these new expressions of the functidfy, 117, , II , , TIY , and
Hfill into the compatibility conditions (3.61), it is necessargkpound first (3.61), taking
account of the original splitting of the indices in the twdss€0} and{1,2,...,m}.
This yields six families of compatibility conditions, tdiiaequivalent to the compact
identities (3.61):

(3.65)

(Hé,o>yl1—(nfnl) —Tloo 11, ZHooH{ p + 1000, 00+ZH0Z1H0k7
k=1 k=1

m m
J J _ 0 J } : k J 0 J E : k J
(Hll,l2> - (Hl1,0>yl2 - _Hllzlz Ho,o - Hh,lz HO,k + Hll,O Hl2,0 + Hll,O Hl2,k7

k=1 k=1
m m
J J _ _ 179 J _ E k J 0 J E k J
<Hl1,l2) la (Hll,l3> o Hl1,l2 ng,O Hl1,l2 ng,k + thls ng,O + thls ng,k’
v'e v k=1 k=1
15 15 =TI o I1Y Ik, 1 5, 115 g, 109
( o,o)yz1 —( 0,11) ool 00y~ 0,0 7, & + o, 00®+ 0,;; Ho,x,
k=1 k=1
0 0 0 k 0 0 0 k 0
(I 05 ), = (W 0) iy = — T4 TG0 — E 000 TG0k + 00 0 17, 0 + E JRLTHRR I A
k=1 k=1

m m
0 0 0 0 k 0 0 0 k 0
(T, 1) s — (T, ) oy = =100,y THEg 0 = D T 0y T e+ 100, I, 0 + ) T, 4 1O,
k=1 k=1
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3.66. Convention about sums.Up to the end of Section 4, we shall abbreviate any sum
Yo, or Z;le as)_, or)_ . Such sums will appear very frequently. For all other sums,
we shall precisely write down the domain of variation of thengnation index.

3.67. Continuation. Thus, we have to replace (3.64) in the six identities (3.6%stly,
let us expose all the intermediate steps in dealing with theiflentity(3.65),. Replacing
plainly (3.64) in(3.65),, we get:

(3.68)

J J _ J J 0 _
(102),. - (), =G i~ Lo 2=
_ Lo L qogo
_56 HZI—E(SZIG 0" —

A 1, 1,
-2 (—Gk) (—Lfl,k + 50 Lik + 5 0 Ly, + 507, 0" + S 0} ek) +
k

1, 1 ]
+ (EL&Z1 +56 1) (~¢7)+
1 1 1 . 1
+§k <75Hﬁ+§5ﬁ@°) (751{;+§5;®°> =

1 j 0 1 0 0 k13 1 k rk 1 ol
=3 Hl,© @fﬁ(s{l@ O =Y G Ly + 58, Y G L+ ;G LY, +
- k k -

1 1 . 1 . 1 . 1 ;
+§6flZGk®k+§GJ®“Of§GJL“ 75G3(9“0+ZZH[“1H,i7
k c c k

I1,l1
b

1 j 0 1 j 0 1 00
- Hi,© O’ZHljle O+Z5{1@ e°.

Eliminating the underlined vanishing terms with the letierb, c andd appended, multi-
plying by —2 and reorganizing the identity so as to put the téflneg solely in the left
hand side, we obtain the relation

6,00 =—=2G) +H] ,+2) G'L] -8 > GFL} -
k k

(3.69) 1 o -
-5 S HEH] -6 Y Ghof + 24, 676"
k k

3.70. Conventions for simplifications of formal expressios. Before proceeding fur-
ther, let us explain how we will organize the computationghwihe formal expressions
we shall encounter until the end of Sectior@ur main goal is to devise a methodology of
writing formal computations which enables to check evemuatation visuallywithout
being forced to rebuild any intermediate step. In fact, it would be unsatisfactory to
just claim that Theorem 1.7 follows by hidden massive foromhputations, so that we
have to guide the rigorous and demanding reader until theesdremal branches of our
coral tree of formal computations.

As an example, suppose that we have to simplify the equétienA, + B, + A —
B+2C—-1iD—-2A+ {D+E+ B-2C. Inthe beginning, the termd, and B,
are differentiated once and they do not simplify with otlegnts. To distinguish them, we
underline them plainly and we copy the nine remaining terfies\aards:

1 2 1
+A-B~+2C—=-D_ —2A 4+-D 4+ E—+B~—2Cx.
@ @ 3 . 3 . 6 . @ @

(3.71)
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Here, each remaining term is also underlined, with a numbeuith a letter appended.
For reasons of typographical readability, we never undetlie signs+- or — of each term;
however, it should be understood tlegery term always includes iisot underlinedyign
Until the end of Section 4, we shall use the roman alphabetiersa, b, ¢, etc. inside
an octagorn ) to exhibit the vanishing terms. As readily checked by theseyee indeed
have—§@+ §®: 0 andﬁ@— E@: 0. Also, until the end of Section 4, we shall
use the numbers, 2, 3, etc. inside a squar&l to exhibit the remaining terms, collected
in a certain order. The numbers have the following significatafter the simplifications,
the equation (3.71) may be written

{ 0=A;+ By+
1 1
+3 A— G D+E.
Here, the plainly underlined term¥s, + B,, do not count in the numbering (their number
is zero, for instance) anthe first term of the second Iin?A correspond to the addition
of all termg[1]in (3.69). Analogously, the second tem% D correspond to the addition
of all termg 2]in (3.69). Again, this guiding facilitates the checking bétcorrectness of
the computation, using simply the eyes. No hidden delicatepuitational step is “left to
the reader” for the convenience of the writer.

This principle will be constantly used until the end of Sent#; it has been systemati-
cally used in [M2003], [M2004b] and it could be applied in s other contexts. Again,
the advantage is that it enables to check the correctnefistod formal computations just
by reading, without having to write anything more. This isaaliseful for the author.

(3.72)

3.73. Choice of an ordering. Until the end of Section 4, we shall have to deal with terms
G, H, L, M, © together with indices and partial derivatives up to ordes.twn order

to organize the formal expressions in a way which providesasier deciphering, it is
convenient to introduce an order between these diffedlemitamomials. In a symbolic
index-free notation, we choose:

(3.74) G<H<L<M<O.

It follows for instance that; < GH < GL < HHL < HLM®©. Also, if a sum appears,
we chooseGM < Y~ GM.

Here, we have only considered terms of order zero, withouigbdifferentiation. The
first order partial differentiations are), and(-),, again in symbolic notation, dropping
the indices. We choose:

(375) Gu<Gy<H,<Hy<Ly<L,<My<M,;<0,<0,<G<---
For second order derivatives, we choose:

(3.76) Goz < Gpy <Gy < Hpp < <Oy <Gy < -0

As a final general example including indices we have the inkiigs

m m
. k l k
<G'My, 4, < E G" My, < E , Hy2 Hi s
k=1 k=1

(3.77) HY

J
ly,y'2 < Lll

2,z

extracted from (ll) of Theorem 1.7.
In the sequel, we shall call
e termsof order0 monomials likeG, H, L M,G H M;
e termsof orderl monomials likeG,, G, M, L, ©;
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e termsof order2 monomials likeGy,, Ly,, M., (our terms of order two will
always be linear),

according to the top order partial derivatives.

3.78. A mean of checking intuitively the validity of partial differential relations. Be-
fore replacing (3.64) in the five remaining identiti€s65)2, (3.65)3, (3.65)4, (3.65)5
and (3.65)g, let us observe that if we assume thatt 13 in (3.69), then all the terms
involving © vanish, so that we obtain timentrivial partial differential equations

) . o 1 .
(3.79) 0=-2G), +H} ,+2) G*Lj,—5 > HH,
- k k

for j # ;. Here, we have underlined the first order terms plainly, oheotto distinguish
them from the terms of order zero. These equations coineiités(l) of Theorem 1.7,
again specialized with # [1. Importantly, we notice that the choice of indicgs: [; is
possible only ifm > 2. Thus, we have derivea subpart of (I) as a necessary condition
for the point equivalence t¥, = 0,j = 1,...,m > 2. These first order equations
show at once that there is a strong difference with the pase1l.

How can we confirm (at least informally) that the functiai@s, Hlj1 andL{hl2 given
by (3.35) in terms ofX andY’ do indeed satisfy these equations fo# [;? Dropping
the zero order terms in (3.79) above, we obtain an approgidneguation
(3.80) = -2 G;ll + Hj .
Here, the sigre precisely means:fiodulo zero order terisWe claim that this approx-
imated equation is a consequence of the existenceé, af7.

Indeed, according to the approximation (3.58), togethdh wie definition (3.35) of
the functionsG/ andHljl, we have

Gl =¥, =Y
(3.81) {

H] =-—200 , =-2Y!

zyll”
Differentiation of the first line with respect tg* and of the second line with respectito
yields:

(3.82) Giy'll ~ _yJ and H} ~-2Y/

zxyll l1,x zylix’

so that we indeed have= —2G,, + Hj

11,2
of order0, 1 and2 of the functionsX, Y.

Similar verifications have been effected constantly in tremuscript [M2003] in or-
der to control the truth of the formal computations that wallsexpose until the end of
Section 4.

approximatively and modulo the derivatives

3.83. Continuation. From now on and up to the end of Section 4, the hardest computa-
tional core of the proof may — at last — be developed. Furtihesizing computational
obstacles will be encountered.
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Replacing plainly (3.64) ir{3.65)2, we get:
(3.84)
() = (1), = o+ L Ll Ll

+3 Lol ol + 5 H{lw -5 5{1 Oy, =

0 J } : 0 J E : k Jj
- _Hllvlz 'HO,O - Hll,l2 : O,k + Hll,O : H12,0 + Hll,O 'Hl2,k -

1 .
+ 5 0, O+

; 1
= Mll»l2 G’ — Z (_thb + 5 611 LZ lo +5 512 ll 1y +5 511 ®l2 +5 612 @ll)
k

1o 1
.(_—H;+55;@°)+
+(2Lﬁll %@ll)'(——HJ-I- &7 @)+
1 k 1 k 0
> (-~ HE +5050%)
k

; 1 1 1 1
. (-L{ka +59, Ly s+ 553 L2, + 3 0%, oF + 3 0 912) .

Developing the products and ordering each monomial, we get:

1 )
=G Mlhlz. D) Z Hli thb HJ LE l20+ H] LﬁiJl O+
:
1 i ol 1 i eh lLJ 0 1 5] Iy 0
T30 @Jr 4k O+ Iy ,12 ®* Li 1, -

1o 0 1o qoqt 1 40 Al P
__6 Ly, © ®_15’1@ @2®——612@ ®1®_ZH L l1®+
i 0 1 N . 1 L
cas) itk O - jHLO" +ig €6 XL, -
| . ’
i, ilmre, -ls S mber —imiew -
4 11 Mk,k 4 l2l2 4 Iy 151 1 i @
H - —
1 0 1 0 . o 1 . o
3 b © 1 ol 2L, © o1 5] Li}, © ®+1652® e IEJF

+ i 5 e’e" .
W

We simplify according to our general principles and we reoige the equality between
the first two lines of (3.84) and (3.85) so as to put all tefsin the left hand side of
the equality and to put all remaining terms in the right haide srespecting the order of
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§3.73. We get:

—5{1@l2+ 5, @ll——aﬂ e, =

1 . .
- _5 Hlj1,yl2 + Lgl,lmz B 6lJ1 lz laz 6] llvllﬁ +
(3.86) + &M —

ZHJ lllz+ ZHll I,k

f—(WZHllL —5JZH11®’“+ &

Ll1 @0
+3 5J CRCES

11,0

Here, we have underlined plainly the four first order termsegping in the second line
Next, replacing plainly (3.64) i(3.65)s, we get

l1,l3

(1,0.),, ~ ()
2 ) iy I

) S
— _LJ + — 57 2
l1,l2,y'3 2

; 1
2sirh i ol J l1
la,l2,y'3 + 2 0 l1,l1,y'8 T3 5l1 @ + 6 @
+ I’ _ 1 J rl3 1 Jorh _ - 6j @ls _ - 6] 911
ly,l3, yl 9 "l Tigig,yt2 2 t I1,01,y'2 L ls
0 0
- 7Hl1, 13 0 E : Hll Iy * 3,k + Hh,ls ' lg 0 + E : thls : lg,k -

=My, - ( H] + 5 o ) 72 (7Lf1,lz + 5511 L
(3.87)

lo, 12
k
1
3 o, Lyt

1 ; 1
AT R @“) . (*Lfs,ﬁg% Lyt
1
SsirLle
+2

j k 1 1
30,0 +—6;@3)+

+ My, - ( HJ )

k 1 [
> (*Lll st 5 5y Li2 1+
&
1 1 1 [ k 1 k
+§613 Lli l1+_511 3+ 5 ) ( k+§5l]2 Ly xt
1
~ 0L L2
+2

l2l2+ 6J ®k+§6i612)
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Developing the products and ordering each monomial, we get:

(3.88)
) 1 . ) 1 .
5 Hiy Miyao = 5 81, Miy i, e >N Liu,Li,, + 5 0y oL, Liw +
1 1 k k I j
+ Lll,lz Ll; l3 By 6{3 Z Lll,lQ @ + Lll,lz @ 3 + 5 lz,lz L{g,,ll -
L 1 1 1= 1 1 1 L L 1
‘V Ly, Lli,hE 5] Lija, Ll;ls@* 71 % L3, © o 4 5] L3, © 3®+
1 j 1 1 1 7 1 1
+ 5 Lli,ll L{3J2 2 6{3 Lli,ll Ll;l2® 6J li 153 Ll;ls O_ a1 6{3 Lli,ll © 26
L 1 L L 1 1= 1
- —53 o, @30+ Lo o -3 Yoo, @2@— Lol riz o -
Ll emen _lsieten +5 S A S 5f Lz, e -
4 3 ® 4l ® l3,l2 ® la,la EI
1 . 1 1 A i Al ol
R T U jo.ee -
Lo 1 s QY : K
- 5 le Mll,lg + 5 lo Mll-,ls + Z Ll1 I3 l2 B Z Lll ls Lk*k B
[2] [15] 5] 5]
1 1. i 1 N B
T2 Lgl-,ls le,b ©_ 9 61]2 Z l1,l3 o ) L-ljl I3 © 2®_ 9 Ll;ls L-l]2-,llo+
! 1 1. ! 1 !
T ‘53 2 Ligts Lo 1 7 ‘53 s Lig g L, b T ‘5 Ly, 0" T ‘5 L, 0" —
D @ )
1 j L. ! !
~ 2 tua L12,13®+ 5 Ly, Lli,lsoJr 5 Ll g, L, O+ 5 L, © 3E+
1 .
l J l 7 7l l 7 7l l:
+3 L5 zlzﬁz@*ngQ,zl@SO* Lsi b 11@30+ Ls L, O

1 1
+4 53 ekl y-§ ekel: -/ eh 4= 53 Ls, e +
4 1 2 2,03 @ 3,3 EI

El (o) 11

l
+ (W le Iy

o +15{2®h o' +15{3@ll ek .
© 4 © 4 ®

We simplify and we reorganize the equality between the steonl third lines of (3.88)
and (3.85) so as to put all ternt, in the left hand side of the equality and to put all
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remaining terms in the right hand side, respecting the artigB.73. We get:
(3.89)

1
§5glel2 ——(W oL, + 5 (W o, ——(W o,

. 1 .
— 77 J ] l
B Ll1,l27yl3 B LlhlS y'2 + 5 ls lsy'2 9 6l1 Ll§712,yl3+
J l
T3 5 Ly} 1y s 5 lihylﬂL
1 ] 1 1 l l l
+ 5 Hiy Musie = 5 H], Miyis + 7 o T ‘W o Lz, Loyt
+ Z Lll I3 jz Z Lll l2 k+
k j k k
Z Lll l2 - 5 512 Z Ll1,lg Lk,k+
1 l l 1 l l l
+ = 5 llll@df—(stlill@QﬁL 5lejld®17_5]Ll§lz®1+

k k
Z Lf .0 —5552 > oLf 0k
k

. 1 .. 1 .. 1 ..
+3 5;2 My, 1y 0% = 2 87, Miy 1, ©° + 7 6, ©F O — .5 6" 0"

Next, replacing plainly (3.64) i43.65) 4, we get:

(Hgao)yll B (Hg ll)

0 ! 1
:eyll - 2Llil1z_§(911 =
=Ty - H?1,0®— Z 5o - 117, 5 + 105, - H8,0®+ Z Mg, Mo, =
K K
@%0)  __y <_Gk) (M) + 3 (g 5 850°)-
%

1ok k
. —L —_ f—
1
:E:Glelkf—E:Hllkaf—E HE 0" + = Lgll@%Z@”@“.
k

Reorganizing the equality so as to put the tefisand®,, alone in the left hand side, we
get:

1
—5 07 +0y, = Lo+

2 l1 llz

1 ,
(3.91) + Z G My p — 5 Z HE Ly, —

4>|>~

Z Hf 6F+
k

+4L 50"+ Leven,
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Next, replacing plainly (3.64) i3.65)5, we get:

0 0
(thlZ)x - (tho)ylz =
1 1
= Mll7l27$ - 5 Lli,ll,yu - 5 ®y112 =

0 k 0 0 0 k 0
= —Iljy 1, - go — E I g, - Mo + 105, 0 - Ty 0 + E I o - My =
[ %

1 1
=M, ,,0° - Z (*Lﬁ,lz 35 8ty L2 1y + 3 8ty Lk, +
(3.92) ;

1 1 1 1
+5 01, O + 5 0, (9“) : (— Liw+5 @’“) +

! 1 1 1
( Lli’ll+§@1)-( in,12+§®2)+

1
+Z (—5 H + §5f1 @0) My =
2

0 1 k k 1 k 1 l
=M1, O+ 5 L, Liw + 5 > Li.,© in,b Ly,
: : ca b G
(3] D
1 1 1
1 g,lz llo_ 1 Lﬁ I g,lzo_ 4 Lﬁ,ll " O_ 1 Lﬁyll IQD_
a b c 4
[N 1 1 1 1
—-01te" f—L2 et — -1 + L L?, +
4 @ lo,lo {EI 4 {EI Il lzylz®
1 1 1 1 [N
4o, e 4ok e +—@1@2 HE M,
4 ol © 4 T2yl @ 4 zk: 1 e

o Px

1
+ = My, e’

PR

Multiplying by —2 and reorganizing the equality, we get:

L _ _7h
@y =—L}, e

k
Z Hll Ml27 +5 2 Lll 1 l2 l2 Z Lll l2 ,k

+ 2 Ml1,l2,z+

(3.93)

1
+5 L, O +3 Liz, 0" — Z Lf, eF+

1
2

1
+ ]\%1712 o0 + 5 ol glz,



44 JOEL MERKER
Next, replacing plainly (3.64) if3.65)4, we get:

(H?hlz)yls - (H?hls)ylz =
=M

ly,la,yt3 = Mllyls,yb -

0 0 k 0 0 0 k 0
= —1IL, 1, - 1y 0 — E I gy - T g+ T0, gy - TH, 0 + E T, gy - T0, =
k k

1 . 1 1
:7M[1,12 (5 Lig,lg +§@l3) 72 Mlg,k (7Lf1,l2+§6lkl Lg,l2+
(3.94) k
1 k 7l
+§ 512 L?

Il

1 1
+ 55{“1 o +55{g @’1) +

+

12,1 i3,l3

1 1 1 )
+ My g (5 L2, + 3 912) + Z M, i (*Lﬁ,z3 +t3 5, Ly
K

1 1 . 1
+5 Sty Lyt + 5 or e + 5 o, @ll) :

Developing the products and ordering each monomial, we get:

- ) L ;ls My, Oi 9 M, 1, © SOJF Z Llhlz Mk ) Ll;,lz Mg, —
a b k =

1 1 1 1 1 i
M. — = M. 2 — =M, ! = L?, M,
lsJQ@ 2 3,01 © ® 2 l3,l2 S} ®+ 2 13,01 O+

—_ lLll
9 M1 la,l2o

e c

(3.95)

B 3,13 l1,l1
d
© B @

1 ) 1
+ 2 My 1y e ®+ 9 My i e"

1 .. 1
+t3 My, 4, ©" Z Li gy My + 5 L3, My, + 5 L', My, O+
—_— k

®

Simplifying, we obtain the family (IV) in the statement of @brem 1.7:

(396) 0= Ml17l2.’yl3 — ]\411_’13&12 — Z thk Mlg,k + Z LZJS Mlg,k-
k k

3.97. Solving©?, @211, el and @;52. It is now easy to solve all first order partial

derivatives of the function®° and®'’. Equation (3.93) already provides the solution for
@;112. We state the result as an independent proposition.

Proposition 3.98. As a consequence of the six families of equat{8r&9) (3.86) (3.89)
(3.91) (3.93)and(3.96)the first order derivative®?, @211 ,0h and@i;l2 of the principal
unknowns are given by

l l
0y = —2G ), + H! +

1 ,
(3.99) 2 GML =D GNLE -5 > H Hy -

1
- Grer+ e’
k
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2 1
0o _ Iy 1
Gyll - g Llhll; 3 Hl1 yll+

2 i 1
+ gGll M, + 3 Z G My, — 3 Z Hy! Lh nt
k k

1 ko7l 1 ke 1 k ok
+§ZHzlei,k_§thLk,k—§ ZHlle +
% % %

1

(3.100)

1
+5 Lk, 00+ 5000

@ll o 72 Hl1 + l 11

3 Iy,yh 3 Lll,luIJr

2 ,
+ § Gll Mll-,ll + § Z G* Mll,k — Z ];Il1 Lll,ll
k
1 k 1k k k
3 ZHll 1k72 ZHllLk,k7§ZH11@ +
k k

1 l 0 0!
+5 L0, © +§@ on.

(3.101)

®Ilyll2 - 7Ll1

l l le +2Ml1 l2 I+

+ Z HF My, o+ =

k
(3.102) . )
+ 5 Lity, O + 5 Li:

l
9 l2[2®1 ZLlllz

1
+ Mll,lQ Q0 + 5 0l @z,

l .
5 Ll1 b L Z L, 1, Ly xt

We notice that the right hand side of (3.99) should be inddpetofi;; this phenom-
enon will be explained in a while.

Proof. For®Y in (3.99), it suffices to puf := [; in (3.69).
To obtain@‘; we putj := [, andl, := [; in (3.86), which yields:

1
n o1 o I
@z - 5 eyll = — = H +

1
+ G My, — B Z ! L;Cl,ll—ﬁ-
k

1 1
+ 3 Z szl Lﬁk 1 Z Hlkl Lﬁi,k—

1
S ONTS VIS E

(3.103)

We may easily soIv@Zh and©! thanks to this equation (3.103) and thanks to (3.91):
indeed, to obtain (3.100), it suffices to compgte(3.91) + 2 - (3.103); to obtain (3.101),

it suffices to computé - (3.91) + 3 - (3.103). Finally, (3.102) is a copy of (3.93). This
completes the proof. O
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3.104. Appearance of the crucial four families of first orderpartial differential rela-
tions (1), (1), (1) and (IV) of Theorem 1.7. However, in solving®?, @211, Ok and
@;112 from our six families of equations (3.69), (3.86), (3.898,91), (3.93) and (3.96),
only a subpart of these equations has been used. We nottdaehtavo families of equa-
tions (3.91) and (3.93) have been used completely and tedathily of equations (3.96),
which does not involvé®, coincides precisely with the system (V) of Theorem 1.7. To
insure that®?, @211, oL and 6112 as written in Proposition 3.98 are true solutions, it
is necessary and sufficient that they satisfy the remainin@#ons. Thus, we have to
replace these solutions (3.99), (3.100), (3.101) and &.it0the three remaining fami-
lies (3.69), (3.86) and (3.89).

Firstly, let us insert inside (3.69) the value®§ given by the equation (3.99), in which
the index; is replaced in advance by an arbitrary indexWe get:

-5 H

llz g,z
+2 Z G L Li, _25{1 Z G* Lgk _651 Z G Lik +
& k —k  ®
(3.105) v Z ¢tk -1 Z HY, H + 35, Z HY HP
@
1 .
75J ZGk@k +57 ZGk@k + 57 (90@0O 55111(9090
0 ®)

0=-2G7, +25) G3, + +

o

We simplify, which yields the family () of partial differeial relations of Theorem 1.7:

0= —2G), +26 G%, +H], , 6 H? +

lQI

+22GkL{ w26 ZGkle

Iy
’§ZHZI§H1J¢+§5?1 > HEHE.
k k

(3.106)

Secondly, let us insert inside (3.86) the value®f, ©'2 given by (3.101) and the
value of@Zl1 given by (3.100). We place all the terms in the right hand sitiéhe
equality and we place the first order terms in the beginnimgt(tiiree lines just below).
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We obtain:
(3.107)
0=—5 H e Ay A R X A A
9 zl,yb. ll,lg,zlzl 2 %1 LQ,LQ,zE 2 %1 ll,ll,zE
T 1 1 1
+ g 6l1 Hlj’ylz{zl - g 6l1 Lli,lg,w{zl + g 6l2 Hlll’yll 3 - g 5l2 Lli,ll,w{zl+

1 1
+39, L2 -5 H? +

l2,l2yz{E| 6 l2,y12{z|
v 1 v 1 )
+ GJMll,lz. -3 S OHIL{ ., + 3 > HL L,
k k

1 .
=30, D HE Lix
k

53]
=30, > HLO" +16, L}, 0 +4,6"e"
K ® © @

2 1
-3 G My, — 39, > G M, .
k

1 lo 1k 1 k oyl
+ 3 6{1 Z Hy? Liy 1, T3 5l]1 Z Hi, Ll;k +
k &

0]

1 k ok 1 E ok 1o 0 1 qogl
+70, > HE Ly, + 19, > HLe" - 100, Li21, © - 19,0°0 2®
k k
© ®
-3 o, G My, — 3 5,3 G My, + 3 &, > HYLi,., - 3 §, > HL LY, +

1 E Ak 1 0 1. ~0.~0
+1652;Hh@ -39, i} (9@*1&@@ +

1 k rk
+7 o7, Z Hy, Lk (A Iy @
‘ ® ® ‘
1 2 1 1
+ 30, G Miya, 28, DG My =20 Y HP L, 0 D HL L, -

1 k ok 1 k Ak 1 0 1 ~oql
—ZagIZHbLk,k —15512%9 +00, L,,0° +70,0°67 .
k @ k ® @ ®

Simplifying and ordering, we obtain the family (ll) of patidifferential relations of
Theorem 1.7:

(3.108)
. 1 . 1 .
0= 2 Hljl-,yl2 + 6 5{1 Hllzz-,yl2 T 3 5{2 Hllll,y“Jr
Ll Lsipie 2 50 b
+ l1,la,x § Iy Plglax § l2 ll,l17I+

) 1 . 2 1 .
+ G My, g, — 3 o7, G2 M, 1, — 3 o, Gh My, g, + 3 o, Z GF My, i~
%

1 . k 1 i Tk 1 k j

-3 5], Z G" Mk — 5 Z H L}, + 3 Z Hj Ly, i+
k k k

1 1 1 o 1l

+ 6 61]1 Z sz Li,lz - 6 61]1 Z HlkZ Ll;k’—’—
%

k
L Ik Lo ko7l
+ 50, D H L, — 500, D HE Ly
k k
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Thirdly, let us insert inside (3.89) the values@fls, of 9;312’ of @;113 and of@iﬁ2
given by (3.102). We place all the terms in the r|ght hand sifithe equality and we
place the first order terms in the beginning (first four linest pelow). We obtain:

1 . 1. )
0= 2 i, le,lz,yZS @7 7551 JV[IQ’“"’””@+ 2 3, Lli,llﬂylf} @7 5, Mlhls’wEI*
1 . ) 1 .. ]
J o7l J i 1 j
2 611 Ll;lmylz @+ 611 M13712’1®_ 3 613 Lli,ll,yl2 ©+ 613 Mll’lmz.""
(3.109) L 71
J . 287 1ls YA 2
+ Lll’l%yls{zl Llhls’yb{zl + 2 511 ng,lg,yl2 @ B 511 le,lg,yl’d ®+
1 J orh
+ 6 ll7l1 U @7 5 6l2 Lll,ll,yll‘} @J’»
1 1 . N . . l
+ 2 Hi, Mll’IQE 2 Hi, Mll’ZSD + 5J s Ligs Ly - 6J Ly, Ly gy +
k i & )
+ Z Lll’l3 Liz,k - Z Llhlz ng,k +
k i =
1 1 .
+50, oL, Lk — 5%, > Lia, Liw +
! i) L l j ol l
+ 5 11’11@3®7_5 11,11@2O+ 6 lsnlg,@l@i_d Lli,l2®1®+

. b k 1 k k
5,3 Li., 0 - 30, > Lii, O +
k ® k O
1 o 1 o L lsigugh _lsiglgh
+§5l2Ml1,13@@75613Ml1712®®+15l2® © Oiz 13@ ©

®

1 1
— 5 5{1 Z HLkQ Mls,k 5] E,lQ L;i,ld + 5 5{1 Z Ll2,l3 Lz,k -
k @ e PG o

1 . . 1 .
4 61]1 L2, 0% - 6J Li; i3 Ch + b 6{1 Z l2,l3 eF -
© W) &

L2,
)
1 0 Lo ol gls
— 30, Mi,,©° 6, 076
D) @
1 .
oL D M -3 st o+ b S sk -
k

m 0
1 1. 1 1 j k
_6LJZL11,11@3 __5J ng 13@1 +_6{2 Z llyls@ -
4 2

0] 0) % ©

1 0 [ RPN AN
_EaljZMll’lS@@_Zézg@d@l +

r

1 1
50 > Hi, My +3 5 L, Lgh@— 50 D Ligts L +
k E B — k ®
o + 5 L, e% —= 5J Z L, ©F +
“ ®

+ 5

13 I3

+%5 Mi,.,©0° +— (V oo 4+
) @
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=60, > Hfy, My, x +t1 5J Ly L2 12®— 5 5J Z L, Liw +

k @ — ®
+3 5] L, 0" +7 5] L2, en ZLh 1, OF +
© ®

+3 5 M, 1, ©° + 5 o't ek

q

Simplifying and ordering, we obtaln the famlly (i) of pat differential relations of
Theorem 1.7:

_7J J J J
0= Ll1712ayl3 B Lll,lsfylz + 513 Mlhlz’w B 512 Mllvl3’7“'+

1 1 .
+3 H{ My, 1, — 5 H] My, 1,+
1 1 .
Y Hk M o Hk M
(3110) + 2 h ; ls a2k 9 It ; l2 I3,k T

1 1 .
_653 Z Hlkl My, 1 — 5 6ng Z Hlkl My, 1+

+ Z Lll ls gz Z Lll l2 L‘l]3
3.111. Arguments for the proof of Theorem 1.7: necessity ansufficiency of (1), (Il),
(1, (IV).  Let us summarize the implications that have been establisbéar, from the
beginning of Section 3. Recall that > 2.
e There exist functions X, Y7 of
Yio FJ(w Yole) J = 1,
7=1,.
\

e There exist functlonsﬂJ 1, Of (z,9), 0 < j,01,la < m, satisfying the first
auxiliary system (3. 38) of partial differential equations
4

e There exist (principal unknowns) functio®?, ©7 satisfying the six families of
partial differential equations (3.69), (3.86), (3.89)9B), (3.93) and (3.96).
I

e The functionsG?, H{ , Lj, 1, andM;, ,, satisfy the four families of partial dif-
ferential equations (1), (II) (III) and (1V) of Theorem 1.7

The four families of first order partial differential equats (3.99), (3.100), (3.101)

and (3.102) satisfied by the principal unknowns will be ahtfeesecond auxiliary system
It is a complete system.

(z,y) transforming the system
,m, to the free particle syste}., = 0,

To achieve the proof of Theorem 1.7, we have to establisheherse implications
More precisely:

e Some given function&”, H. Lfl L, = ng,ll and My, i, = M, 1, of (z,y)

satisfy the four families of partlal differential equati(), (1), (I11) and (IV) of

Theorem 1.7, or equivalently, the partial differential ations (3.106), (3.108),
(3.110) and (3.96).

4

e There exist function®?, ©7 satisfying the second auxiliary system (3.99),
(3.100), (3.101) and (3.102).
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U

e These solution function®?, ©7 satisfy the six families of partial differential
equations (3.69), (3.86), (3.89), (3.91), (3.93) and (B.96

4 .

e There exist functiondlj , of (z,y), 0 < j,11,l> < m, satisfying the first
auxiliary system (3.38) of partial differential equations

I

e There exist functions X, Y7 of (x,y) transforming the system
yl, = Fi(z,y,y:), 5 = 1,...,m, to the free particle systey., = 0,
7=1,...,m.

The above last three implications have been already intlycestablished in the pre-
ceding paragraphs, as may be checked by inspecting Lemfalddthe formal compu-
tations afte§3.62.

Thus,it remains only to establish the first implication in the abaeverse list Since
the second auxiliary system (3.99), (3.100), (3.101) antio@ is complete and of first
order, a necessary and sufficient condition for the exigtensolutions follows by writing
out the following four families of cross-differentiations

(3.112)

In the hardest techical part of this paper (Section 4 belove),verify that these four
families of compatibility conditions are a consequenceIpf (1), (1) and (1V). For
reasons of space, we shall in fact only study the first famfilyamnpatibility conditions,
i.e. the first line of (3.112). In the manuscript [M2003], we haxeated the remaining
three families of compatibility conditions similarly andropletely, up to the very end of
every branch of the coral tree of computations. However, wald/like to mention that
typesetting the remaining three cases would add at legspéfjes of Latex to Section 4.
Thus, we prefer to expose thoroughly the treatment of thefaraily of compatibility
conditions, explaining implicitely how to guess the treatrhof the remaining three.

§4. COMPATIBILITY CONDITIONS FOR THE SECOND AUXILIARY SYSTEM

So, we have to develope the first line of (3.112): we rep@itéy its expression (3.99),
we differentiate it with respect tg"1, we replaceegl1 by its expression (3.100), we
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differentiate it with respect te and we substract. We get:

(4.1)
0=(62),:, ~ (93“>w
=9 Gi,lzlyzl + Hllll,acyll +

kool kol kork k 1k
T2 Gy Lt t23 0 GO Ly =20 Gy Lo =3 G Ly
k k k k
1 k n o1 k oyl ko ok k ok
D) Z Hy yn Hy = 9 Z Hyy Hkl,yll - Z Gy ©° — Z G" O+
k k k k

+0°e), -
_ ngl + lHll

3 Thhze 3 liylte

[OVR I

2 2 4
—3 G My, — 3 G Miy iy e — ; GE My, 5, — 3 ; G* My, oot

1 1 k 1 1 k 1 k 1 1 k L
t3 > HP L, + 3 > HE LY 40— 3 S HE LY, - 3 >OHELE .+
k k k k

+ B ; Hy| o Ly + 2 ; Hy Ly ko + B ; Hy . ©" + B} ; H;, ©5—

1 0.0
2@ [S)e

1 0 1 0 1 0l
- ELllJlax@ - 5L11J1%7 5%@ ' -

Here, we underline twice the second order terms. Also, we lbaderlined once the six
terms: @’;’ll, Chm o}, 0, 89 ande!:. They must be replaced by their values given
in (3.99), (3.100), (3.101) and (3.102). In this replacetnsame double sums appear.
As before, we use the first indéx= 1, ..., m for single summation and then the second
indexp = 1,..., m for double summation. Finally, we put all the second ordentein
the first line, not disturbing the order of appearance of theemaining terms. We get:
4.2)

! 4 2
0=-2 Gylllyh + g Hlll,acyll - g Lli7l1,ﬂc$+
ksl kgl E ok ko k
+2 Z Gyll Lli,k +2 Z G Lli,k,yll - Z Gyll Lik  — Z G Lk,k,yll
k {zl k EI k {EI k @
1 k 1 1 k oyl ko Ak
) Z Hy o B = 9 Z Hyy Hkl,yll - Z Gy €0 +

EY @ L —2Y G
k k

1 1
=3 > G*H M, , - 3 SNGH LKLY, 4> Gy, Lh, - 5 > GF L
k 2 EI k ® k P @ k
- % dMoGtLr, ef +> N Gt ip, er -y G M, 00 - % Y Gtetelr +
k @ k P @ k @ k @

©
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2 0 1 0
+ L, e 3 o o

4 1 1
+ 5011 My, 1, @°®+ 3> G M0 =2 > HY L, 0 2 D Hi L), 0" -
- k @ k ® k ®
1 E ook 0 l 1 l
f§ZHhLM@ f—ZHh@@ + = Llhe@o+2@@@1©
k © k )
2 2 4 4
—SGE My, — LG My . — = Z Gy M,k —= Z G* My ko +
3 E 3 EI 3 - 3 -
1 1 k 1 l k
+t3 S HR L., o+ 3 YOHMLG . - % Z Hi; o LY, Z Hi LYy,
k

1 1 1
3 Z Hi o Liw  + 2 Z H Lige.  + B Z Hi .08 —
k E k EI k ©)
- % SToHEHE .+ % Y HLLir. +
+§ZH{§G’“M;€,k +%ZZH[“1GPM;W
k @I k P @
1 1
— I D HEHPLY, =7 D) HiHRO' +
k P k P

SN Sabayy,  +3Y. > HLHLE,
k P @ k P

1 1
i Z P Lie©" + 1 Z H} 6"
k

C»JI»—!
Wl

B

[26] w © —= @
1. 0
-3+
Gll Ih o _

11 11. 9 Tl ZIJIE

kol 1 1 kol k 1 oyl 1 k
=D GNL L Ll g D GV Lk g D0 HI H L, > Gh Ly, ef -
&

w|>—n

1 4,

00
— 1L, @®+
1
"0 g il
e ®
1 1 1
-y G*rp,en +§ZG’“L;,€@“ +ZZH[“1H,QI@“ +§ZGk@k@“
k © k © k ©® k ®
7290909“ +
)
clgn g0 Ll o
3 11,yl ® 6 l1,l1,@
1
GllMl,l ZG’“ k0% + 3 ZH“LZIJIG)O —3 D Hi L, 0" +
© ®© k O]
1 k pk 0 1 kE A0 ok 1 0 40 1 0,040
+ZZHZILM@ +ZZH11@ S} —ZLl;h@ @O—Z@ S} @10
k ® k @ n )
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As usual, all the terms underlined with the 15 roman alphabettersa, b, ..., n, o ap-
pended vanish evidently. Furthermore, we claim that thbtegrms underlined with the
8 Greek alphabetic letters, 3, v, 9, €, ¢, n andf also vanish:

(4.3)

027_72 lel @k+Gll 51 4= Z Hll, @ *—Hll

I,z

l l 1 k 1 k l 1
+Z Z G* Lklleh; Gh Ly 0" — 4 ; ; Hf, H{ " + 4 ; Hf He".
Indeed, it sufflces to observe that this identity coincidél w
(4.4) Z Ch ( (B106)|j— e 11214 1 :l1> :

Simplifying then (4.2), we get the explicit formulation dfe first family of compatibility
conditions for the second auxiliary system:

0=7=2G"%, , +2H  —2Lh

yliyll 3 lzylt 3 i,z

o'+

2 1 k !
= 3G My, — Z G Miy g+ Gl L+
S X
(4.5) 1. o .
__Hllz 11711_3ZH117L k+ ZHllszk“F
1 . X
+ g Z Hkl’z Lll’ll - Z ll yl1 Hkl Z ch wyll Hll_
_Z Z H ok Hf —
1
-3 Z L}y Hi + 3 SO Lia . HE +
k
k
+2 Z L11 k yll B

10
- Mll,ll,w Gh - 3 Z My, 0 G*—
3

> Liwa Hiy+
k

wilno

3
fZZGkH,fMll,p+§ZG’“HﬁMk,k+
*ZG Liy Lii,wZZG Liy, Uy
-3 Z > Hi, H,‘,“Li’k+§ Z Z Hf, HY Ly ,—
k P
fi SN HLH LY+~ ZHh HY Ly,
k P

We can now state the main technical Iemma of this section &tidsopaper.

>N G HE My,
k P

Wl

Lemma 4.6. The second order partial differential relationg.5) hold true fori =

1,...,m, and they are a consequence, by differentiations and byatdisembinations,
of the fundamental first order partial differential equat&(3.106) (3.108) (3.110)and

(3.96)
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4.7. Reconstitution of the appropriate linear combinatiors. The remaining of Sec-
tion 4 is entirely devoted to the proof of this statement.nritbe manual computational
point of view, the difficulty of the task is due to the fact tloaite has to manipulate formal
expressions having from 10 to 50 terms. So the real questidmoiw can we reconsti-
tute the linear combinations and the differentiations wHizad to the goaf4.5)from the
data(3.106) (3.108) (3.110)and(3.96)~.

The main trick is to first neglect the first order and the zedeoterms in the goal (4.5).
Using the symbol£” to denote ‘modulo first order and the zero order tetpvge formu-
late the following sub-goal:

(4.8) 0=r= 2G4, , +2Hh .~ 2ph

yliyl 3 T hayh 3 l1,l,x2)

forl; = 1,..., m. Before estabilishing that these partial differentiaatigins are a con-
sequence of the data (3.106), (3.108), (3.110) and (3.96}t¢w with a similar sigre),
let us check that they are a consequence of the existence @htinge of coordinates
(z,y) — (X,Y) (however, recall that, in establishing the reverse implee 0f§3.111,
we still do not know that such a change of coordinates readigt®); this will confirm
the coherence and the validity of our computations. Impaltawe have been able to
achieve systematic corrections of our computations by vehiecking them alongside
with the existence of the change of coordingtey)) — (X,Y).
Coming back to the definition (3.35) and to the approximaf®h8), we have:
Gh=-0b, =2-vh

xrx)

(4.9) Hp =200, +00, = -2Y], + X,
l l 0 ~ l
Ly, =—00, , +200,, ==Y | +2X,,..

Differentiating the first two lines with respect {0 and the third line with respect to,

and replacing the sig# by the sign= (in a hon-rigorous way, this corresponds essen-
tially to neglecting the derivatives of ordey 1, 2 and3 of X, Y7 and to neglecting the
difference between the Jacobian matrix of the transfolonatnd the identity matrix), we
get:

15 — _Yll
yliglt = coyliyll’
15 - 151
(410) Hll,zyll - QYzyllzyll + Xzzzyll )
Iy — Iy
Lllvllvzz = _Yyllyllzz + 2‘Xﬂvyllﬂm'

Hence the linear combination2 - (4.10); + 3 - (4.10)2 — 2(4.10)3 yields the desired
result:

4 2
—o— ! ! !
0=7=-2 Gylllyll + 5 Hlll,zyll - g Lli,ll,zz
(4.11) _ oy 8y 4 2y :
=92 nglcyllyll @7 3 gml/llwyll ®+ 3 wawyll ®+ 3 KlllllylleU@i 3 wall zx

=0, indeed!

Thanks to this straightforward computation, we guess thatapproximate partial dif-
ferential relations (4.8) are a consequence of the appbeimelations (3.106), (3.108),
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(3.110) and (3.96), namely:

(3.106)m0d . 0= *2Gjll +25j Glz + llz—(sj Hlljz,
1

(3.108)™°d . 0= H{ otz 5J CHE +3 5ﬂ CH
4.12 la 5t
( ) + Ll1 l2 r 9 5{1 le,lQ,I - g 5l]2 Llhll,w7
(3110 0=1L] . L{l otz F 00 Mis o e = 61, Miy iy,
(3.96)™°0 s 0= My, g, s — My g, 400

Here, the sigre means modulo zero order terriisBefore proceding further, recall the
correspondence between partial differential relations:
() = (3.106)
(I = (3.108),
(1) = (3.110),
(IV) = (3.96).

(4.13)

However, these couples of equivalent identities are wristeghtly differently, as may be
read by comparison. To fix ideas and to facilitate the eyesking of our subsequent
computationswe shall only use and refer to the exact writing (8f106) of (3.108)
of (3.110)and of(3.96).

4.14. Construction of a guide.So we want to show that the approximate relation (4.8) is
a consequence, by differentiations and by linear comhinatiof the approximate iden-
tities (4.12). The interest of working with approximaterndiées is that formal computa-
tions are lightened substantially. After having discodemhich linear combinations and
which differentiations are appropriateg. after having constructed a “guide”, §#.22
below, we shall write down the complete computations, iditig all zero order terms,
following our guide.

We shall use two indicels andl, with 1 <[4, 15 < m and, crucially/, # [;. Again,
the assumptiom > 2 is used strongly.

Firstly, putj := [; in (3.106)™°4 with [, # I, and differentiate with respect {g::
+2G2 4+ H" — H

ylzylt ly,zylt ly,myl1”

(4.15) 0=-2 Gll

yliylt
Secondly, puj := I in (3.106)™°4 with [; # I, and differentiate with respect tg2:

(4.16) =-2G2 | +H"?

l11l2 Iy, zy

Thirdly, putj := I5 in (3.108)™°4 with [; # I, and differentiate with respect ta

Tuno oy 2

li,ylix 1,12, xzig I1,l1,zx"

(4.17) 0= 7% e

l1,y2x

Fourthly, putj := [y in (3.108)™°d with I, # [; and differentiate with respect ta

I 1. 1 1
(4.18) =5 H oo T 5 HL oo T s — 5 LG 12 00
Fithly, permute the indicef1, l2) — (I2,11):

_ 1.y 1. 1 1
(4.19) =5 H] e T g H e TG nee — 5 L0 s
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Finally, compute the linear combinatid#.15) + (4.16) + 2 - (4.17) — 2 - (4.19):

_ l l 1 1
= QGlzl ll[zl G211y12©+ Hlll,zy“{zl_Hl;,zyll ®_
L 1
2G 211 yl2 O+ Hlf,zylz ©_
(4.20) ! 2
—H e @Jr 3 Hzf,zl,zyh.z +2 mex@ ll,Ll,m.
+ H?

la, zyll @ l1 zylll -2 levll YEL @+ g Llivllvzzl.
We indeed get the desired approximate identity:

4 2
(4.21) =—2G4 , +-HL o —ZLh

ylyht T og eyt g Tl heas

4.22. Complete computation.Now that the guide is constructed, we can achieve the
complete computations.
Firstly, putj := [ in (3.106) with I # I; and differentiate with respect g+
(4.23)
=-2G1

yliylt

+H*  —H? | 4+

yl2ylt ly,2yl1 ly,zyll

+22G511L’1k+226‘ Ll el 220’;@5; fZZG L eyt

1 l 1 l
2 Z Hh o Hy' = 2 Z Hi, Hkl n T 92 Z lz g Hi 2 Z Hi, szyll
k k

+2G"

Secondly, puj := I5 in (3.106) with [; # I, and differentiate with respect 10:
(4.24)
0=-2G%, ,, +H? .+

ly,zy'2

1

kgl kol !

2ZGyl2L2k+2ZG Llf,k,uQiQ Z llyl2Hk27
k k

N | =

Z Hll k ylZ
k

Thirdly, putj := 5 in (3.108) with [; # [ and differentiate with respect ta
(4.25)
1

1
_ lo l1
0= —3 Hll,ylzz + 3 Hll,yllz

+ Lk 2 b +

ly,lo,zx g l1,l1,z2

2 2
+ G? My, 1, + G2 Mll Iz — 3 G? My 1, — 3 G" My, 1y -
1
-3 Z GE My, — = Z Gk My gz — 3 Z le L;CIJQ -3 Z Hy? Lfl,lz,z—"
k
1
+§ ZHH, Ll2k+ ZHll Lézkz—"_ Z H thll—"_g ZHllel L;Cl,llyz_
k k

-3 X Hhalix - g X B
k
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Fourthly, putj := 13 in (3.108) with Iy # [1, differentiate with respect to and permute
the indiceq(l1, l2) — (I2,11):
(4.26)

= SHE L +zHD 4L A

2 Tlaylta 1yl lo,ly, e g Il

1 1
B 5 Gécl M11J1 -3 Gll M117117$+

1
+ = Z Gy My, + 3 Z G" My, ko — Z H2, Liy i, — > Z Hy2 Ly 1, ot
1 k 1 l l
+§ZH12,L2I¢+QZH12 l1k1+ ZHklz 11,11+ ZHILHJL
k

1 k i 1
~ & S HE L LY~ 5 Z Hi Lty o
k k

+ Gif My, +G® Mlz,ll,x

Finally, compute the linear combinatid.23) + (4.24) + 2 - (4.25) — 2 - (4.26):
(4.27)
0=—-2G", +— no_2pn

yliyl Iy,xyll 3 lylaw

- %G? My, 1, — 3 zk: Gﬁ My, 1+
+2> Go Lt =2 Gy L2 42 Z Gy L2 o+
k k

+ 3 B L+ S HL I, - Z b= Y M 2
k

EPIEIES DI RS DI

__Z kyll_ ZthL?Hlil__ZHll kylz

+Z L o Hiy + 3 Z Ly H = % L} . Hf — Z L . Hiy+
k k k

+2 Xk: Lﬁ’k’yll Gk 19 Xk: Liik’yb -2 Z Zaan G

2 4
— s My ah - 3 Z Mll,k,zG
k

Wl =

3

In this partial differential relation, importantly, thesed order terms are exactly the
same as in our goal (4.5). Unfortunately, the first order &edzero order terms are not
the same.

4.28. Formulation of a new goal.Thus, in order to get rid of the second order expression
2GU, i +5 H! =3 2L}, 40 We substract{4.5)— (4.27). In the result, we write the

first order terms ina certam way, adapted in advance to dagesjuent computations. For

this substraction yielding (4.29) just below, we have natentined the terms in (4.5) and

in (4.27). However, they may be underlined with a pencil teaththat the result (4.29) is
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correct. We get:

(4.29)
0=7=

, 1 , 1
== Gy Lip + G Ly + 3 STHE L LEx - S HY LY+
k

1, 2 L1yl

k
k la k lo
+2 Z Gyll le,k - Z Hll,z Ll2,k_
k k

=230 Gy L+ D Hiyo it
K K

wilno

1 l k 1 k k l k
+ 5 Z Hk%yb Hll a 5 Z Hk’y’“ Hll B Z Lli,k,w Hll +
k k

k k
> Liws Hi —
k k

1 l k l k
N 5 Z Hk’?yll Hl? + Z Llik’,x I_Ilz+
k k

1 k T | ! .
* 2 Z Hy, e He =~ 9 Z Hy, i Hi+
k

k
Lo k 12 k k
+2 Z le,k,yll G" -2 Z Lh,k,zﬂ? G" -2 Z M1y, G7 =
k k k

k 2 k ook 1 b
— Y GEHE M+ 3 GEHE Mkt 5 S0 ST 6P HE Mip—
k. p k k p
kol 1 k 1 k ok
=G L+ Y G 1, — 5 S Y HEH L+
k k P k P
L k k 1 k 1 kol pl
*3 > D HEHYLL, - 1 DD HEHY LY, + 1 Y HLH! LY,
k D k P k
We have underlined plainly the first order terms appearidimés1, 2, 3, 4, 5, 6 and7.

4.30. Reconstitution of the subgoal.29)from (3.106) from (3.108)and from (3.110)
Now, it suffices to establish that the first order partialefiéntial relations (4.29) for <
l1,lo < mandls # [y (crucial assumption) are a consequence of (3.106), of 83.4:8d
of (3.110) by linear combinations. The auxiliary indexwhich is absentin the goal (4.5),
will disappear at the end. Differentiations will not be a@pdlanymore. Also, the partial
differential relations (3.96), which were not used abovil, veither be used in the sequel.
However, they are strongly used in the treatment of the neimgithree compatibility
conditions(3.112)9, (3.112)3 and(3.112)4, the detail of which we do not copy in the
typesetted paper ([M2003]). Finally, the construction afiade for the subgoal (4.29)
may be guessed similarly as §4.14 above. We shall provide the final computations
directly, without any guide: they consists of tevenpartial differential relations (4.32),
(4.33), (4.35), (4.37), (4.39), (4.43) and (4.45) below. th¢ end, we shall make the
addition (4.47) below, producing the desired subgoal (#:294.32) + (4.33) + (4.35)
+ (4.37) + (4.39) + (4.43) + (4.45), with the numerotation@frhs corresponding to the
order of appearance of the terms of (4.29), as usual.

Firstly, putj := k, l; := [; andly := [; in (3.106):

0=—2Gy, +26, G, +Hiy . — 0, Hy!

I,z

k k 1 1 k 1 k i
2 GULY =20 Yy GU LY, — 5 > HE Hy+ oo Y Hf H
P P P

P

+

(4.31)
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Apply the operatof Y-, Lj ,(-) to the preceding equality, namely compgté ", Lj ,-
(4.31). This yields:

k ok 1 1 ko ok 1. 1
0 = —% Gyll Lk,k + Gylll + 5 % Hll,z Lk,k — 5 Hlll,x Lli,ll—"_
1
e S S b, S, LYY mm
k 2 2 k D

1
+3 > HE HR LY.
P

Secondly, apply the operater ), Lﬁ;k(-) to (4.32), namely compute- >, Lﬁ;k .
(4.32). This yields:
(4.33)

0=2% Gy, L —2G0, L2y, — > Hi o L2y + Hyl L, L

k k

Lo,y 2, Ly, Mgty

1

l k ! l k oyl

—2) D GUL Ly +2 D GULE Lt D > HE Hy L -
k p P kP

1 Lol
—5 > HLH) L,
p

Thirdly, putj := k, l; := Iy andly := [y with I3 # [1 in (3.106):

0=—2Gh, +20f, G, + Hl , —of, HJ! .+

1,z

1 1
R S WEETD SYCITINES SRR Sy )
p p p p

(4.34)

Next, apply the operatoy Lﬁik(-) to (4.34), namely compute’, Lﬁjyk - (4.34). This
yields:
(4.35)

0=-23 Guo Li? , +2G0, L2, + Y Hiyo L — HY L2
k k

l1,l2

k l 1 l 1 kgl
2D ) GPLL, Ltk =2 GP L, L, — 3 DD HE Hy L it
k P P k P

1
P 1 l
+5 > HpHYLE
P

Jr

1 l,l2 I1,x

ly,l2”

Fourthly, putj := I3, [; := k andis := I3 in (3.108):

(4.36)
0= —Lpt L stz g L e L2
= 75 kyl2 6 k Io,yl2 + g k,yk + kyo,x ™
1 e 2
) o1, Lli,lz,x -3 Ly ot

1 2 1
+G" My, — 3 8y G My 1, — 3 G" My + 3 52y G My, ,—
p
1 1 1 1 1 1y 1
—3 2 G My =5 Y HZ Lt D HULE g 00 Y HY L, -
r p 3

P
1y l 1 k 1 k
— G D HLLE 5 D Hy LY~ 2 D HILL,.
P P P
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Next, apply the operator ), H’“( to (4.), namely compute >, H’C (4.36). This
yields:

:%zkj HE L HE - HE R - ; HE o HE -
- Z Ly Ao Hf, + LE,LQ, lllz JF% Z I
k
-3 G A M+ G H[ My, + > G M-
— % Z G” H)? My, p + % SN GrHS My, +% Z Z Hf HP LY, —
k P
P> > A HLLy, - : O HE Y Z Hi2 HE, L2~

-3 ZZHllHkLZk+ ZZHLalLM

(4.37)

Fithly, putj := 5, [y := k andis := [; in (3.108):

1
0:_5 kyll + 612 Hll +Lk llz_ 612 Lﬁ,ll o
1
—‘rGl Mkll——6l2Gl1Mllll+ 5LQZGPMIIP—§ZHZQL}C[1+

(4.38)

P

1 l 1 l 1
+§ZHPL13P EékQZHlLflll_ 6QZHPL11P
p

P

Next, apply the operatoy Hl’z(-) to (4.38), namely computg_, Hl"; - (4.38). This

yields:
(4.39)
1
0—7— Z HZ oy iy + 5 ) H’2+Z LE, , Hiy—
Lll HlQ+
3 1,01,z iy

1 1
+Z G Hlkz M1, — gGll Hllj My g, + 3 Z G* Hllzz M, p—
1 1 1 1 1 Iy 77l
3 ZHI2H2L’éz1+§ DD HLHPLY 45 D Hig Hy' L),
k k P P

1 ly 17p 71
—EZHQH b
p

l1,p*

Sixthly, we form the expression:

(4.40) (3. 108)|J =k L=y loi=ls - (3. 108)|J =k lyi=lo; loi=ly
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Writing term by term the substractions, we get:

(4.41)
0=—3 H{;WE + % H{;yllE + % i H;;WE - é 5 Hj;yllE+
ras H;;,th -3t D e D s
Lt Ui * Sah B~ 2o By * 2ol Uty
+G* Miy iy = G* My, ., o % 5 G Mlmm + % o, G1 Mll,th
- %5{; G" My, + géfl G My,  + éafl Y G M,, - %55; > G M,

(]

7]

P P

1 1 1 1
ERPICEUVIES LD LS TR DL AR D O
: @ g {EI P © p ©
1 k 1 k 1 k 1 1 k .
+ 5 Z Hlpl le,p - 5 Z Hlpz LllvP + g 611 Z sz Lvalz - g 6[2 Z le Lg)l’ll
P P - ~

(]

1 g 1
6 o1, Z Hlpz L,
D

5]

2]

1 !
+ 6512 Z Hl’; Ly
P

(3]

1 k L
+3 o5 Z H} LY,

P

[14]

1 k 1
—3% SOHPLY
P

1 1
- 30 ) HE L,
p

1 1
+§6l1 Z Hlp2 Ll;p
p

[5e]

Simplifying, we get:

]

(4.42)
B 1 & 1 k 1 k 1 1 k 1
0= ,5 Hll,yb + 5 le,yh — 6 511 Hlj,yLZ + g 512 Hlll’yl1+
1 kol 1 k 7l
+ 3 o Lyl g0 — 3 Oy Ly 1y o

1 1 2 2
+3 8, G™ My, — 3 Sty G My, 1, + 3 5, > GP My, — 3 5ty Y GP My, p+
p p

1 k 1 k 1 k l
+ 92 Z Hlpl Lig,p = 9 Z Hl’; Liyp = 5511 Z Hy LfQ,Lz
p r

1 1
- 8512 Z Hlp1 Lig e
P

1 1
+ 6 o,y Z Hlpz L
P

1
+55{ZZH§LP +

I1,0
p p
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Next, apply the operator ", H,ff(-) to (4.42), namely compute >, H,lj - (4.42).
This yields:
(4.43)

1 k ! 1 k ! 14 l
0= 5 Z thyL? sz B 5 Z Hl27yll sz + 8 Hlj,yZQ thi
K k

_ 1 I H2 — lLl2
6 liylt Tl g Tlalaw

1 1 2
— g G H{? Miy gy + 5 G H2 Miy iy — 5 37 G HJ? Miy i+
p

1
Hp? + 3 L g

ly,ly,e Tl

3
2 1 1 1 k 1 l k
t3 > GPH?E M, - 3 >N HZHE L, , + 5 >N HZEHE LY ,+
P k P k P
1 l 1 1 l 1 1 l l
+ g Z Hl12 HP2 szJz B g Z HlQZ le LflJl - g Z Hl12 Hlpz Ll§71)+
P p p
1 l 1
+3 > HPHP LY,
p
Seventhly, puy := lo, 1 := k, ls :=[2 andl3 := [; in (3.108):

0=1L" — Ik — M1y 2+

k,lg,ylt k,l1,y'2

1 1 1 1
+ g HY Myt = 5 Hp? My, + 5 62 Y Hp My p = =62 ) HE, Miy p—
P

(4.44) -
1 . ,
o 5 Z Hls My p + Z LZJI lem - Z Li,b Llip’
P P p
and then apply the operatary~, G*(-):
l k l k k
0=2 Z L;l%yll G" -2 Z Lkz,ll,yb G" -2 Z Mgty 2 G"+
k k k

+Y G H? My, =Y G H? My, + Y G Hf, My, ,—
k

- P
72 G Hl’; le,p*Z G* HY My, p +2 Z Z Gt Lz,h Lg,pi
P kE p

p
—2)y > GIR, L,
k P
Finally, achieve the addition
(4.46) (4.32) + (4.33) + (4.35) + (4.37) + (4.39) + (4.43) + (4.45).

We copy these seven formal expression, we underline thehviaugiterms and we number
the remaining terms so as to respect the order of appeardribe terms of the sub-

(4.45)

goal (4.29):
(4.47)
0= -3 Gl Lh +Cl, o+ S HhLLbe - SHEL DN, o+
: 4
+Y N GPLE LY, - GPLY, LY, ’i NS H HY LY, +
kE p @ P @ kE p EI

1 R P
SIS,
p

L1yl
]
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k 2 I lo k l2 51 I
+2) G lis - 2Gn b = > HivaLil +M®_
—ff] Ty
5

1 k l 1 1 k rl
=2 Y GPLE L, 42 GULE L, tg )0 > HEH LG, -
k P @ P ® k P @

1 17l
—5 2 HLHP LG, -
F ®

k 1 L 1 k 1 L 1
—2) G, L2, +2G% L, ©+ YoOHbL L, —HIL L2, o8
T Ve e T g
1
k 1 l l k rl
T2 Y GP LG Lt =2 GPLY L, =5 Y Y HEH L, +
k P P k P

© ® )

1 o7l
+5 > HE H LY, +
L ®

N =

1 1

l k 1 1 k k

+ Z Hlij? Hy = 6 Hl;yl2 Hl12®_ 3 Z Hy e Hiy  —
k E— k

S )
L2 HF Lpe g 2 LY, Hf
- e A P A Z kokyz 11
e B
1 2
=3 G2 Hf My, + 3 G H}2 M12,12®+ 3 > GMH My -
k - k

® =

SEDDICLTUMINE D ) DI RVRIEN D b DRV N
p k P

© —F [22] ®
1 1 1
g DD HEHPLY, — o HPHPLY,,, oY HPHLLE, -
1 1
IS ma, Y Y abari,
£z [25] £z [ 26]
1 Hl2 Hk 1 Hl1 le le Hk
- 5 Z k,yl l2 + 6 I1,yl1 lo ©+ Z ky,x 2 -
: = T
1 j
- ngi,ll,x H;? +
) 1 1
+ Z G Hf My, - 3 Gl H le,ll®+ 3 Z GP H}* My,
k © L o)
1 k r7ls 7P 1 k o7l 1 lo 77l 7P
—5 2 D HLHPLY, +5 > > HLH{LZ, + 6 > Hp HY L,
k 4 @ k P ® P @
1 ! J
— 5 2 HpHL LY, +
p

&)
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1 k 1y 1, I
_22];H H? + Hl%yH@_

lo,ylt 6 lg ™1l

1 1

l l l 1 1 1 1
- —H! l le Y lzlz l2 +_Ll1lz 2
6 liy't 2© 3 lal2, 1® 3 Tl

1 k 1
* 2 Z Hllyylz Hy
&

Ly
®
1 lo ly 1 15 lo 2 P rrl2
— 5 G H;’ Mlmo+ 3 G H Mll,h@f 3 > GPHEM,, +
n P
®
2 1 1 1 k 1 1 k
SIS e, LY Y abm i, LY Y ek,
P @ k P @ k p @
1 P 1 lo 17l 1 1 1
g D HHY LY, — g DO HHY LY =5 YO HHL LG, +
P @ i O p ®
1 1 1
+g > M HE Ly, +
P o)
! k ! k
+2 Z Lkz,lz,yll G -2 Z Lkz,ll,yLZ G
K K

(7]

k ol
+Z G Hl12 M, 1,
k

23 My, . G* +

Y G <Y R,

@ £ w £ @

- Z G Hi, My, p — Z Z G HY My, +2 Z Z G Ly, Lﬁzw -
P o F_» [20] A @®

—2) > GNIRL LY,
k P

Q)

In conclusion, there is exact coincidence with the subgh@9). The proof that the
first family (3.112); of compatibility conditions of the second auxiliary systé8199),
(3.100), (3.101) and (3.102) are a consequence of (1),((I),and (IV) of Theorem 1.7
is complete. Granted that the treatment of the other thrediés of compatibility con-
ditions (3.112)3, (3.112)5 and(3.112), is similar (and as well painful), we consider that
the proof of Theorem 1.7 is complete, now. O

§5. GENERAL FORM OF THE POINT TRANSFORMATION
OF THE FREE PARTICLE SYSTEM

This section is devoted to the exposition of a complete pobdemma 3.32. To start
with, we must develope the fundamental equations (3.10) fe 1,..., m. Recalling
that the total differentiation operatoris given By= 2+ 7", yit - 557 +3717_ yit,-

—9_ we compute first
Oyt

(5.1)

DDX =D | X, + Y yi - X,

=1

m m m m
= Xoa +2 Z vi! "Xy + Z Z vy Xynyta + Z Yike "Xy

l1=1 I1=1 l>=1 l1=1
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and
(5.2)

DDY? =D Y7+ 4l

=1

R RE zwa >l wﬁzy

=1 l1=1 lp=1 =1

Now, we can develope the equation= —DY7 - DDX + DX - DDY, which yields

0= —

Xm+2iy§;-x

=1

m
Y:EJ + Z ylml ’ ijh

=1

—i—ZZylyz leyZQ-i—Zy le

I1=1 l>=1 =1

m
D SIS TH I FRED SR e
=1 li=1

m m m
T DL R Yy D ik Y

11=1 l2=1 l1=1

(5.3)

= — XY+ Y X+
37 gl {72 X Y +2Y7 X,
l1:1

~Xoa Y, + YL, Xyzl} -

+Z Zym yz{ leyzZY JrYllleXzf
11=1 l>=1

—2 X, Vi, +2Y7 Xyll} +

zyl2

Z Z yil y?yid : [_Xybyls Y + YZQ yls Xyzl} +
2=1 l3=1

+

MS [ MS

yh . [XLIY +Y7 X]+

=
Il
-

ylzlz ylzz : |:_Xy11 ijl2 + ijzl Xyb} .

+
NE
NE

=
Il
-
~
M
Il
—

The goal is to show that after solving theseequations forj = 1, ..., m with respect to
theyl,,l =1,...,m, one obtains the expression (3.33) of Lemma 3.32, or ecpritig|
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using theA notation instead of the square notation, one obtains
0=yl Azly']---y™) + A (zly'] - Paz|---[y™) +

+Zy (zly'| - Pay] - Jy™) —
=1
58, A (waly |- ly™)] +

+ZZyzyI A (zly' - Pyhy] - ly™) -

I1=1 l2=1

(5.4)

2], A (ay"ly |- ly™) | +
m m m )
0D byl [*551 A (ylzyblyllmlym)}-
11=1 l>=1 I3=1

Unfortunately, the equatlons (5.3) are not solved with eespo they? ., because in its
last line, we notice that thg/2. are mixed with the,':. Consequently, we have to solve a
linear system ofn equations with the unknowng,, of the form

(5.5)
0= A+ Z yh . lell \ %4 +ny;1 X, + Z yl - [7Xyll ijb +Y7j;1 Xyzz} ] ,
11:1 l2:1
forj = 1,...,m, whereA’ is an abbreviation for the terms appearing in the lines 5, 6, 7
8, 9 and 10 of (5.3), or even more compactly, changing thexiride the indext
5.6 {o:mz - B
11:1
fork=1,...,m, whereBl’C1 is an abbreviation for the terms in the brackets in (5.5).
Thanks to the assumption that the determinant (3.2) is thstity determinant at

(z,y) = (0,0), we deduce that the determinant of thex m matrix (B} )12 is

also the identity determinant &t, v, y..) = (0,0,0). It follows that the determinant of
them x m matrix (Bz]i)iéi%; is nonvanishing in a neighborhood of the origin in the

first order jet space. Consequently, we can apply the ruleraf@r to solve they
explicitely interms of theA” and of theB}’ as follows

B% oA L B'rln

(5.7) I s e
ww Bf ... B ... Bl

B® ... Bpm ... pBm

where on the numerator, the only modification of the deteamtinof the matrix
(Bf )12 2r s the replacement of itg-th column by the column vectot. We have to
show that after replacing thé* and theBl’C1 by their complete expressions, one indeed
obtains the desired equation (5.4). As in (3.43), we shaibduce a notation for the two
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m x m determinants appearing in (5.6): we write this quotientarrile form

5.8) yj :_“B{C|---|jAk|---|B,];||
w HB{C||jBJk||BTk‘;L”,
where it is understood that}, ..., BY, ..., BY, andA* are column vectors whose index

k (for their lines) varies froni to m. This representation of determinants emphasizing
only its columns will be appropriate for later manipulaton

Our first task is to compute the determinant in the denomirddi(b.8). Recalling that
we make the notational identificatigfl = z, it will be convenient to reexpress tlﬂ]},‘“1 in
a slightly compacter form, using the total differentiatmperatorD:

59 BY = =X, YE4YE X+ Y o [-X0 Vi 4V Xy | =
5. lx=1

=Y} -DX - X,, - DY

Lemma 5.10. We have the following expression for the determinant of tlaérim
(B )i 2m’

(5.1 { |V - DX = X0 - DYF[-- |Vl - DX — Xy - DY*| =
' = [DX]" 1 A (ly'] - ly™)

Proof. By multilinearity, we may develope the determinant writtenthe first line
of (5.11). Since it contains two terms in each columns, weaukhobtain a sum o2™
determinants. However, since the obtained determinamisivaas soon as the column
DY* (multiplied by various factors(,:) appears at least two different places, it remains
only (m + 1) nonvanishing determinants, those for which the coluRii* appears at
most once:
(5.12)

|vE DX — X0 - DY*|-- |V}t - DX — Xym - DY*|| =

= [DX]™ - |YE|- - V|| = [DX]" 7 Xy - | DYFIVE] - [V

— [DX]™ 7 Xym -

VAL [V IDY’“H .

To establish the desired expression appearing in the sdomaf (5.11), we factor
out by [DX]™~! and we develope all the remaining total differentiation rapers D.
Sincey’ = x, we havey) = 1, and this enables us to contrakt + >.;" v X,
asZZl:O yl X, - So, we achieve the following computation (further expteares and
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comments just afterwards):
(5.13)

= {Z yll X gl ‘Yk |Y;j€m

11=0

- kol -
11=0

SIED DE'-D 0 | S PP )

m
l k
yh
11=0

- [DX]m_l . {Z yil Xy - HYykl| T |Yyk

11=0
—yl X1 ||yy"~1 |yy"~2| . |yy’€m

Xy |[YEVE -V

—xgm.‘

YE[- YV Y

P Xy,

e Y [V

j

= [Dx]mfl-{Xz-Hi@"”’l|---|Yy’fm” — X, - HYf|YJE|---| ym” e

—Xym - Hy’g "'|Yykm—1|Yf
= [DX]™ 7 {Aly'] - ly™)}

For the passage to the equality of line 4, using the fact thdgtarminant having two
identical columns vanishes, we observe that in each offthmmszz’fzo appearing in
lines 2 and 3 (including thedot s), there remains only two non-vanishing determinants.
For the passage to the equality of line 7, we just sum up allittear combinations of
determinants appearing in lines 4, 5 and 6. Finally, for thgspge to the equality of line
9, we recognize the development of the fundamental Jacalgterminant (3.2) along
its first line (X, X1, ..., X,=), modulo some permutations of columns in thex m
minors. The proof is complete. O

Our second task, similar but computationnally more hea/g compute the determi-
nantin the numerator of (5.8). First of all, we have to reresp thed” defined implicitely
between (5.3) and (5.5) using the total differentiationrapes to contract them as follows
(5.14)

Ak:DXWKQ—[W*u&m+2§:yQW@XWKQI—Dqu&

gyl
l1:1

3030wt DXV Y X)
ll 112 1

+

Replacing this expression af* in (5.8), taking account of the expression of the denom-
inator already obtained in the second line of (5.11) ande@batingA (z|y'| - - - [y™) as
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A, we may write (5.8) in length and then develope it by lingeais follows
(5.15)
[ |V - DX — X, - DY*|- - T

DX -YE - DY*.YE +

P 123 g [DX Y, - DYR X ]+

2 = DX, A h=1

30wyl [DX Y - DY X ]|

I1=1 l2=1

|V - DX — Xy - DY

Y DX - X, -DY". .
yk y kl
---|jDX-YIkI—DYk-XM|---
e |YE DX — Xy - DYF| +
+2 )yl ||V - DX — X0 - DYF[--
li=1
DX Y, = DYF X
|V - DX — Xym - DYF| +

+D 0Nyl v DX — X0 DYH|-

11=1 lx=1
VDX Y[, = DY X

11 yl2

++|Yy - DX — Xym - DY"| |

As it is delicate to read, let us say that lines 2, 3 and 4 justess thej-th colum|’ A¥|
of the determinaniB1k|---|j A*|---|BF |, after replacement oft* by its complete
expression (5.14).

In lines 6, 7, 8; in lines 9, 10, 11; and in lines 12, 13, 14, ¢hare three families
of m x m determinants containing a linear combination (souswagthaving exactly
two terms in each column. As in the proof of Lemma 5.10, by ifindtrity, we have to
develope each such determinant. In principle, for eachldpueent, we should get™
terms, but since the obtained determinants vanish as sabe aslumnDY* (modulo a
multiplication by some factor) appears at least twice fitans only(m+1) nonvanishing
determinants, those for which the colunilY’* appears at most once. In addition, for
each of the obtained determinant, the fa¢foX |~ appears (sometimes even the factor
[DX]™), so that this factor compensates the fa¢foX ™~ in the numerator. In sum,
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the continuation of the huge computation yields:

(5.16) |
'DX.Hyy’g|...|akaz ...|yykm”, ;
nyl.”DYk...|J'yk|...|yk
Xm.||yk |- P Yk ...|DkaJr
+2 Z Yo DX - ‘Yy’ﬂ...|jyzkyll|...|yyka,
ll 1
_2Zyilel,HDyk|,..|jyzkyll|.._|Y;ka
=1
,QZyllX ‘Yk |]DYk||Yyka7—
I 1 =1
yzz__Z' m
_QZyllX ‘ Kl Y |---|DY"~’H+
=1
#2030 e DX Pl I
11=1 l2=1
-3 yl;y;?Xyl-HDYk |ay,1ylz|...|yyk;nH,...f
l1 1l2 1
=Dy Xy - YR P DY YR = -
11=1 lx=1
=D D YRR Xy HYy’% |JYlly12|~~~|DY"~’H
L 11:1 l2:1 i

To establish the desired expression (5.4), we must develbplee total differentiation
operatorsD of the termsDX placed as factor and of the termi&* placed in various
columns of determinants. We notice that in developing*, we obtain columnst’i
(multiplied by the factor,’) and foronly three (or two) values of = 0, 1,...,m, this
column does not already appear in the corresponding detantiso thatm — 1) deter-
minants vanish and onBy/(or 2) remain nonzero. Taking account of these simplifications,
we have the continuation

(5.17) —yd A =T+ +11I,

where the term | is the development of lines 1, 2, 3, 4 of (5.4 term Il is the devel-
opment of lines 5, 6, 7, 8 of (5.16); and the term Ill is the depment of lines 9, 10, 11,
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12 of (5.16). So we get firstly (further explanations follQws

Zy X ’Yk |j erkx|"'|y'ykm
1=0 E
- X1 ||sz| c. |J' ymkm o |yy’<?m|| _

_ yglc Xy Hyykl| .. |J' Yk yykm HE,

yJ||Jszz||Yyka__

_yxX }

(5.18) I:= ,
X [Vl P YE - Y] =

yll"'ley'?I"'leka _
— Xym - Hyy’g|...|j Ymkx|"'|sz|| _
— Y™ Xym - Hyy’” |J yzkz|...|yykm‘

|E_

1||Jymkm|| yi |l

— y; XynL . ‘

and secondly (we discuss afterwards the annihilation ofititkerlined terms):

2229 szl'HYk |jszyll|"'|Yyka o
I1=1 [=0 EI

DI TN RN MEICA
I1=1

_QZym yz ‘ y1|...|jyzkylll...|yyka _

1=1 EI

l1 1
(5.19) IMI:= _9 Z yh Xy - ||yy’€1 Yk H _
=1
23l Xy [V Y]
l1 1
—2 3y Xy |V P YR
=1

m
_9 Z Yy Xym HYykl||J yzkyl1|...|yyka _
11=1 EI

=1

9y
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and where thirdly (we are nearly the end of the proof):

IDIDI T TSI IR

11=1 l2=1 =0
m m
l
—DL > v
11=1 l>=1
m m
—L ) wnX
la=1

I1=1

RGP I

2]

N SR AR B

Yy

Vil P Yl

Yy

vyl Xy [YEL P Yl

NE
Ms

N
=
Il
i
o
Il
-

I := YR Xy - [V Y Y| -

NgE
NgE

(5.20)

N
oy
Il
-
o
Il
—

y’g|...|jyy7§_|...|y;km

Y

vl
NE

TRTNES S

~
=
Il
N
o
Il
-

byl Xym |Vl P Yyl Y

NE
NIE

N
oy
Il
-
o
Il
—

S P Y al o Y| =

2]

Yoyl Y Xy ‘

plqs
Ms

N
oy
Il
-
o
Il
—

| Yl1y12|"'|yykﬂ

I1=1 lx=1

Now, we explain the annihilation of the underlined terms.n€lder I: in the first sum
>, all the terms except only the two corresponding te 0 and tol = j are anni-
hilated by the other terms wifhu] appended: indeed, one must take account of the fact
that in the expression of |, we have two sums representedigsdot s, the nature of
which was defined without ambiguity in the passage from (5td%5.16).

Similar simplifications occur for Il and for Ill. Consequéntwve obtain firstly:

X, - yyyk’l|...|jyk ..|yyka+

<
g%,

Xy].Hyy’g|...|J'yk ..|yyk;n||f
— Xy ||sz||]Ymk$ ...|yyk;n||f
—yl Xy yj|...|jy$k$| --|Yy"°;n, —
(>21) b= Xm.Hyykl|...|J'ywk|...|yyk;n”_
— ) Xy - PYE YR -
_Xym.Hyyfg|...|jyxkx|...|yzk”_
— gl Xy - |VRL- P Y] Y
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just above, the first two lines consist of the two terms in the sinderlined at the first
line of (5.18) which are not annihilated; secondly we ohtain

23 4l X VAL P Y+

I1=1
m . .

+22 yhy? X, ‘ y1|...|JyﬂC’<?yl1|...|Yy’€m
l1=1

m
—2 Z Yt X Hyz’q ] ymkyll |- YR
=1

,QZ yh oy yl.Hyy’ﬂ...|jyzkyll|...|yyka,
11=1

(5.22) II:=
_QZ yllX ‘yk |jyxk|...|yykm”_

l1=1

m
11=1

—QthX ‘

=1

_22 Yyl ym"’5@13|"'|jymkyzl|"'|%]§

l1=1

il Yl Y

b

similarly, the first two lines above consist of the two termgtie sum underlined at the
first line of (5.19) which are not annihilated; and thirdly wietain:

Z Z m”y;ﬁ |Jylly12|...|yyka+

1=1 lx=1

—

n
NERS
Ms

Yty Yl Xy HY’“ IJYzlyz2|~-~|Yyka*

N
oy
Il
-
o
Il
—

vl
NE

yil yiz Xy - ‘

| |Jyllyl2|"'|yrykm

N
=
Il
i
o
Il
-

(5.23) III:=

Vi
Ms

Yi Y vh Xy ‘ bR |Y11y12|...|yyka,...,

~
oy
Il
-
o
Il
—

M-
NE

f Xyllyl? ) Hyykl| T |j sz| T |5/;/km H -

N
oy
Il
-
o
Il
—

Vi
NE

Yyl X e Hyy/g| YR YR,

N
=
Il
i
o
Il
—
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m m
=3 D e Xy [V P Yl

I1=1 lx=1

- Z Z ym yz ym HY 11y12| |

=1 la=

Collecting the odd lines of (5.21), we obtain exadtly + 1) terms which correspond
to the development of the determinah{z|--- |/ xz|- - |y™) along its first line, mod-
ulo permutations of columns of the associated< m minors; collecting the even lines
of (5.21), we obtain exactlym + 1) terms which correspond to the development of the
determinant-yZ - A(zz|yt| - - - |y™) alongits first lines, modulo permutations of columns
of the associateth x m minors. Similar observations hold about Il and III.

In, we may rewrite the final expressions of these three tefinsdly

I=A] [ az]--|y™) =yl - Azzly']---[y™),

HJZy : Pyt ™ -

11=1

—2yIZy Yyt ™),

=1

I = Z Z v s Al Pyt g™ -

11=1 l>=1

—y) Z Z vl AR ).

=1 l2=1

(5.24)

Coming back to (5.17), we obtain the desired expressior).(5.4
The proof of the — awfully technical, though involving onlynéar algebra —
Lemma 3.32 is complete. O
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