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This memoir is divided in three peﬁtsPart | endeavours a general, new theory (inspired by
modern CR geometry) of Lie symmetries of completely intblgaDE systems, viewed from
their associated submanifold of solutions. Part Il builéseral combinatorial formulas for the
prolongations of vector fields to jet spaces. Part Il chismdwes explicitly flatness of some sys-
tems of second order. The results presented here are dagidaid not appear in print elsewhere;
most formulas of Parts Il and Ill were checked by means of l&#lease 7.

§1. COMPLETELY INTEGRABLE SYSTEMS OF PARTIAL DIFFERENTIAL EQUAIONS

1.1. General systemsLetK = RorC. Letn € Nwithn > 1andletr = (z!,...,2") €
K". Also, letm € Nwithm > 1andlety = (y',...,y™) € K™. Fora € N, we denote
by a subscripy,. the partial derivativé)*ly /02 of a local mapk” > = — y(z) € K™.

Letx € Nwithx > 1, letp € N with p > 1, choose a collection gi multiindices
B(1),...,0(p) € N*with |5(¢q)| = 1forqg = 1,...,p andmax;¢,<, |5(¢)| = &, and
choose integerg(1),...,j(p) with 1 < j(q) < mforqg=1,...,p. Inthe present Part |,
we study the Lie symmetries of a general system of analytiggbaifferential equations
of the form:

(©) e (@) = FL(,9(@), (1250 @) 1y, )
wherej with 1 < j < m anda € N” satisfy
(1.2) (J,) # (5,0) and  (j,@) # (j(9), B(q)).

In particular, all(x+1)-th partial derivatives of the unknown= y(x) depend on a certain
precise set of derivatives of order x: the system i€omplete In addition, all the other
partial derivatives of ordeg « do also depend on the same precise set of derivatives.

Here, we assume that= 0 is a local solution of the syster&) and that the functions
FJ areK-algebraic (in the sense of Nash)&+analytic, in a neighborhood of the origin in
K™*tm+P_Even if our concern will be local throughout, we will notiiatiuce any special
notation to speak of open subsets and simply refer to vaffigus We will study five
concrete instances, the first three ones being classical.

Date 2008-2-2.
1 Part Il of [Me20054] already appeared as [Me2005b].
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Example 1.3.Withn = m = k = 1, a second order ordinary differential equation

and more generally,~1 = F(z,y, Ys, - . . ,yxn) wherex .y €K, seeO
_4---1 N8
3].

Example 1.4.Withn > 2, m = 1 andx = 1, a complete system of second order
equations

(&) Uitz = Finia (2,9, 000), 1 <dnia <o,

see[Hal937, Ch1975, Su2001] and Part Il below.

Example 1.5. Dually, withn = 1, m > 2 andx = 1, an ordinary system of second order
(&) Yl = F/(x, 9 y)),  j=1,....m,

see[[Fel1995, Me2004] and the references therein.

Example 1.6.Withn = 1, m = 2 andx = 1, a system of the form
o = F(z,9",9" u;)
Yoo = G, 9", 9% u2).

Differentiating the first equation with respect toand substituting, we get the missing
equation:

(€4)

yim = Fx“‘yiFyl +y§Fy2 ‘I’y;mFy%
(1.7) =F,+y.Fp+y.Fe+GFy,
=: H(:L’,yl,y2,yi).
Example 1.8.With n = 2, m = 1 andx = 2, a system of the form
Yor = F (2, 2%y, Y1, Yo
{ Yozt = G (21, 2%y, Yo, Yo ).

Here, five equations are missing. Differentiating the ficgtagion with respect te! and
substituting:

(&)

Yply2 = le + Ya1 Fy + Ypigl Fyz1 T+ Ypigipt Fy 1,1
(19) = Lg1 + Yp Fy T Ygigl wa1 + Gwalxl

. 1 .2
= H([L’ YUYy Yl yx1x1)>
and then similarly foty,2,2, Yu12122, Ya12222, Yu2e222.

1.10. Finitely nondegenerate generic submanifolds dt"*™. Examples 1.3, 1.4, 1.6
and 1.8 (bunot 1.5) are intrinsically linked to real submanifolds of coexlsubmani-
folds.

Let M be a real algebraic or analytic local generid?@labmanifold ofC"*™ of codi-
mensionn > 1 and of CR dimension > 1, and letp € M. Classically, there exists local
holomorphic coordinatels= (z,w) € C* x C™ centered ap in which M is represented

by
(2.11) w’ :@j(z,i,w), j=1,...,m,

2 Fundamentals about Cauchy-Riemann geometry may be foufigloib991, BER1999, Me2005a,
[Me2005b " MP2005].
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for some localC-analytic mapo = (©1, ..., ©™) satisfying the identity
(1.12) w= @(z, z,0(z,z, w)),
reflecting the fact that/ is real.
Definition 1.13. (BER1999| Me20054a, Me200Eb, MP2003)) is finitely nondegenerate

if there exists an integer > 1 such that the local holomorphic map
_ vavi _ W\ Iism

(1.14) (z,w) — (O5(0, z,w))w;i

is of rankn + m at (z,w) = (0, 0).

From (1.12), the maps — ©(0,0,w) is already of rankm atw = 0. One
then verifies 5@@0005]) thatehexist multiindices
B(1),...,8(n) € N* with |5(k)| > 1for k = 1,...,n andmax; <<, |5(k)| = & to-
gether with integerg(1), ..., j(n) with 1 < j(k) < m such that the local holomorphic

map
(1.15) C™™™ 5 (2, %) — ((@j(o,z, w)) Y (@ﬁgﬁi)(o,z, w)>1<k<n> e Ccmin

is of rankn + m at(z,w) = (0,0).

1.16. Associated system of partial differential equationsGeneralizing an idea which
goes back to B. Segre in [Se1931, Sel932]£ m = 1), applied byE. Cartan
in [Ca1932a] and studied more recently[in [Su2001, GM2008a]may associate tb/

a system of partial differential equations of the foré) és follows. Complexifying the
variablesz andw, we introduce new independent variables C" and{ € C™ together
with the complex algebraic or analytic-codimensional submanifolé of C2*+™) de-
fined by

(1.17) w! = ( NI j=1,...,m

We then consider the “dependent variableg”as algebraic or analytic functions of the
“independent variables?*, with additional dependence on the extra “parametess).

Then by applying the differentiatiofl® /02 to (1.17), we getvl.(z) = ©.(z, ¢, €).
Assuming finite nondegeneracy and writing these equationg fa) = (j(k), 8(k)), we
obtain a system af. + n equations:

w(2) =0'(2,¢,6), j=1,...,m,
j k)
W () =00 (266, k=1,...n
By means of the implicit function theorem we can solve:

(1.19) (¢.€) = R(* 0/ (2), wli (2)).
Finally, for every pair(j, o) different from(j, 0) and from(;j(k), 3(k)), we may replace
(¢,€) by R in the differentiated expressian..(z) = ©7.(z, ¢, £), which yields

wha(2) = 8l (2, R, 0 (2), 0l (2)))
— FJ (z w’(2), wjf;(,z)(z)>.

This is thesystem of partial differential equations associatedllto

(1.18)

(1.20)
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Example 1.21.(Continued) Withn = m = 1,i.e. M c C?> andx = 1,i.e. M is Levi
nondegenerate of equation

(1.22) w=w+12z+ O,

wherez, z are assigned weight 1 and w weight 2, B. Segre [Se19B1] obtained, =
F(z,w,w,). J. Faran[Fal1980] found some examples of such equationsathaotcome
from a)M c C2. But the following was left unsolved.

Open problem 1.23.Characterize equationg,, = F'(z,y,y.) associated to a real an-
alytic, Levi nondegenerate (i.e. = 1) hypersurfacel/ c C2. Can on read the reality
condition(1.12)on F' ? In case of success, generalize to arbitradfyc C"*™.

Example 1.24.(Continued) Similarly, the systend{) comes from a Levi nondegenerate
hypersurfaceM/ ¢ C™*! ([Hal937,,[CM1974, Ch1975, Su2001]. Exercise: why)(
cannot come from any/ c C” ?

Example 1.25.(Continued) Withn = 1, m = 2 andx = 1, the system{,) comes from
aM c C? which is Levi nondegenerate and satisfies

(1.26) T°M + [T°M, T°M] + [T°M, [T°M,T°M]] = TM
at the origin, namely which has equations of the followingripafter some elementary
transformations [([Be1997, BES2005)):

w' = w' 4+ 1422+ Oy,

2

(1.27) I -
w® =w"+1z2z2(z+ Z) + Oy,

wherez, z are assigned weight 1 and, w?, w!, w? weight 2.

Example 1.28.(Continued) Withn = 2, m = 1 andx = 2, the system{;) comes from
a hypersurfaca/ c C* of equation ([Eb1998, GM2008b, FK2005a, FK2005b, Eb20086,
[GM2006]):

151 1,152 1512
(1.29) w:w+z'2” —i—zzzi—l—zzz L.,

1— 2272

wherezy, zi1, 29, Zo are assigned weight 1 and w weight 2, with the assumption that
the Levi form has rank exactly one at every point, and withdaesumption thafi/ is
2-nondegenerate at

1.30. Jet spaces, contact forms and Frobenius integrabiit Throughout the present
Part I, we assume that the systeff) (s completely integrablenamely that the Pfaffian
system naturally associated ) (in the appropriate jet space is involutive in the sense
of Frobenius. This holds automatically in cagg €omes from a generic submanifold
M c C™*™_ In general, we will construct aubmanifold of solutiongssociated tof).
So, we must explain complete integrability.

We denote by7r,, the space of-th jets of mapK™ > = — y(z) € K™. Let

Y

U | J J n+m—+mn+mn2+--+mn'
(1.31) (:)3 Y Yy Uiy g e e e s Yis i Z-N) e K

denote the natural coordinates off,, ~ K+t For instance(z, y,y1) €
Ji'1. We shall sometimes write them shortly:

(1.32) (a5 yp) € Krmrmlmesnt),

where € N" varies and satisfigg/| < x. Sometimes also, we consider these jet coordi-
nates only up to their symmetrigg ,, whereo is a permutation

of {1,2,..., A}, so that7y,, ~ K™ i, with O, = FF,

n+k k! n!
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Having these notations at hand, we may develope the carisgatam of contact forms

onJ,,, (IO11998], [Stk2000]):
¢ = dy’ — Z yi dz*,

k=1

95 = olyl1 Z yZl kdx

k=1

(1.33)

931 ..... et T dyfl ..... et Z ygl,...7z',{,17k da*.

\ k=1

For instance, withh = m = 1 andx = 2, we have)! = dy — y; dr andf] = dy; — y, dx.
These (linearly independent) one-forms generate a subspaf;,, of the cotangent
T+ 7y, whose dimension equals C;;}_,. For the duality between forms and vectors,
the orthogonalC77, )+ in T'7y,, is spanned by the + m C, ., vector fields:

(1.34)
0
Zyz 831 _I'Z Z yzk1 ”layﬁ 77

Jj1=1 J1=1 k1,kk—1=1

.....

the firstn ones belng the total differentiation operators, considlénePart Il. Forn =
m=1r=2, wegethryla ygaland <

Classically ([OI198] 5)), one assomate(%?i)ots skeleton\¢, namely
the (n + m + p)- dlmenS|onaI submanlfold Qﬁ’,;fj;bl simply defined by the graphed equa-

tions:

- (@
(1.35) v = F (79, (00 1y

for (j,a) # (5,0) and# (j(q), 8(q)) with || < k + 1. Clearly, the natural coordinates
on/A¢ are:

@ _ o 0 e
136) (2.9, (15D 1cyep) = (29 (D)1 0)1cgey) €K X K™ X K,

<P/ O\ 7 MU\

where), := |3(q)| and (11(q), . -, 1r,(q)) == 5(q)-
Next, in view of the form (1.34) of the generators (Wflf;r})L and in view of the
equations of\¢, the intersection

(1.37) (CT ) NTAg

is a vector subbundle df A¢ that is generated by linearly independent vector fields
obtained by restricting th®, to A¢, which yields:

(
J( . ViG] 9
Di = &Cﬁ Z A ( Y yﬁ(q1))5—y3+
(1.38) = )
qf .. ViG]
+Z Bz’( oy yﬁ(qb) 9@
q=1
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i =1,...,n, where the coefficientd’ andB! are given by:
N {yf if the variabley’ appears among thevariables;/é((f;l)),
' F’ otherwise
(1.39) . ngf)() _____ (@) fy{l((q)) _____ 1, ,, PPears among tmavarlabIeSy](q1
Z F/ . in, o Otherwise

Example 1.40.For (&), we getD = am + ax + F(x, y yl) ; exercise: treatd,)

and €;). For €,), we getD = 2 + y; 8y1 +F 2 a7 T+ G ;2. For (85) whose skeleton is

writteny, = F, y111 = G, yl,g =H,y112 = K with F G, H, K being functions of

('Tlv '1'27 Y, Y1, y1,1). we get

0 0 0

+y1181 Gaym’
0 0

0 0
D, = F—+H—+K )
7 Ox2 * oy * oy * Oy

)
Dl_ﬁ_ "oy

(1.41)

Definition 1.42. The system ) is completely integrablé the n vector fields (1 38)
satisfy the Frobenius integrability condition, namely veie bracket[D;,, D;,], 1
11,19 < m, IS a linear combination of the vector fiel@s, ..., D,,.

Because of their specific form (1.38), we must then have ih[@g, D;,] = 0. For
n = 1, the condition is of course void.

§2. SUBMANIFOLD OF SOLUTIONS

2.1. Fundamental foliation of the skeleton.As the vector field®; commute, they equip
the skeletomAs ~ K"+"*? with a foliation Fa, by n-dimensional integral manifolds
which are (approximately) directed along thexis. We draw a diagram (see only the
left side).

J(a)

A (yﬁ(tﬂ) Y

The (abstract, not numerical) integration &) (s thus straightforwardly completed:
the set of solutions coincides with the set of leave$ of. This is the true geometric
content, viewed in the appropriate jet space, of the assampt complete integrability.
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2.2. General solution and submanifold of solutions.To construct the submanifold of
solutionsM ) associated to) (sketched in the right hand side), we execute some ele-
mentary analytico-geometric constructions.

At first, we duplicate the coordlnateiyg((‘f] y') € KP x K™ by introducing a new
subspace of coordinatés, b) € K? x K™; thus, on the left diagram, we draw a vertical
plane together with- andb-axes. The leaves of the foliatiéia,. are uniquely determined
by their intersections with this plane, consisting of psiat coordinates0, a, b) € K" x
K?P x K™,

Such points0, a, b) correspond to thénitial conditions(ngiq)( 0),y(0)) for the general

solution of (£). In fact, the (concatenated, multiple) flow {d,,...,D,} is given by
(2.3)

exp (x”Dn ( - (exp(2'Dy(0, a, b))) - - )) = (x, I(z,a,b), Qz,a, b)) e K'"xK™xKP,
for some two local analytic magds = (IT!, ..., 1) and2 = (2}, ..., QP) and the next

lemma is straightforward.

Lemma 2.4. The general solution ) is

(2.5) y(x) =z, a,b),
where(a, b) varies inK? x K™. Furthermore, forg = 1,...,p:
(2.6) Oz, a,b) = Hjﬁ()q) (x,a,b).

This leads to introducing a fundamental geometric object.

Definition 2.7. The submanifold of solution¥s(€) associated taf) is the analytic sub-
manifold of K x K? x K}* defined by the Cartesian equations:

(2.8) 0=—1y +1I(z,a,b), j=1....m

There is a strong interplay between the study&f and the geometry obs(€). By
construction, the diffeomorphism:
(2.9)

A : K" [coordinates (27, af, b7)] — K" HP [coordinates ($ Yy, yé((z))ﬂ
Azt a®, b)) = ( IV(z,a,b), H]ﬁ(q)(x a,b), )

sends thdoliation F, by thevariablest whose leaves arfu = cst., b = cst.} (see the
diagram), to the previous foliatiofx, .

2.10.PDE system associated to a submanifoldinversely, letM be a submanifold of
K% x Ki' x KE x Kj* of the form

(2.11) v =1 (z,a,b), j=1,....m

A necessary condition for it to be the complexification of aggc M c C*™™ is that
p = n (answer to an exercise above).

Definition 2.12. M is solvable with respect to the parametiérs — 11(0, 0, b) of rank
m atb = 0 and if there exisk > 1, multiindicess(1),...,5(p) € N™ with |5(q)| > 1
for¢g = 1,...,p andmax;,<, |6(q)| = k, together with integerg(1),..., j(p) with
1 < j(q) < m such that the locaK-analytic map

(213)  K™73 (a,0) — ((IF(0,0,0))'F", (10, (0,0,0)) € K™

1<q<p>
is of rank equal ton + p at (a, b) = (0,0)
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When M is the submanifold of solutions of a syste&) (it is automatically solvable
with respect to the variables, the paiy$q), 5(¢)) being the same as in the arguments of
the right hand sides? in (£). Proceeding as if1.16, we may associate fof a system
of the form €). Since we need introduce some new notation, let us repeargfument.

Consideringy = y(z) = Il(x, a, b) as a function ofc with extra parameterg:, b) and
applying 0l /02, we getyl.(z) = Ill.(x,a,b). Writing only the relevan{m + p)
equations:

(2.14) {y]( ) =1V (z, a,b),

yig]g;) Hi%(l) (2, a,b),
the assumption of solvability with respect to parameteebéss to get

= Ay i),
i(q)

V=B (2 "yl D).

For every(j, o) # (5,0) and# (j(q), 5(q)), we then replacéa, b) in yl. = IT.:

o () = T (12, ey (), 550) (), B (2", 7 (), w0 (2)) )
= F (2", " (0). 5l ().

Proposition 2.17. There is a one-to-one correspondence

(2.18) (Epm) = (€) «— M = Mg

between completely integrable systems of partial diffeeequations of the general form
(€) and submanifoldéof solution$ M of the form(2.11)which are solvable with respect
to the parameters. Of course

(2.19) <€M<5)) = (&) and Mgy = M.

2.20. Transfer of total differentiations. We notice that the auxiliary function4? and
B’ enable to express the inversefof

@21 A7 (@) — (AT ) B ) )

More importantly, the total differentiation operator catesably simplifies when viewed
on M. This observation is useful for translating differentmalariants of £) as differen-
tial invariants ofM.

(2.15)

(2.16)

Lemma 2.22. ThroughA, fori = 1, ..., n, the pull-back of the total differentiation oper-
ator D, is simply%, or equivalently

0
(2.23) A*(%) —D,.
Proof. Let ¢ = ¢(a*, /7, yg((q ) be any function defined oA¢. Composing withA yields
the functionA := (o A, i.e.
(2.24) A(z,a,b) = €<xi, IV (z, a,b), Hi(ﬁq()q) (z,a, b))
Differentiating with respect ta*, we get, dropping the arguments:

ON O I~ O S i O
5 = ot g+ 2 Tl 5

(2.25)
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Replacing the appearing’.. for which (j,a) # (5,0) and# (j(q), 5(q)) by FJ, we
recoverD; as defined by (1.38), whenég: = D;/. O

2.26. Transfer of algebrico-differential expressions.The diffeomorphismA may be
used to translate algebrico-differential expressionsifiel to (£) and vice-versa:

(2.27) L (JXERHTD) s Ny (U2, F).

:c,a,b z,Y,Y1

Here,\ € N, the letterJ is used to denote jets, amd= 1, or = I (¢ is a polynomial or
more generally, a quotient of polynomials with respect $gjét arguments. Notice the
shift by x + 1 of the jet orders.

Example 2.28.Suppose: = m = 1 andx = 1. ThenF = II,,. As an exercise, let us
computeF;, F,, I, interms of.J? , II. We start with the identity
(2.29) F(z,y,1) = o (2, Az, y,11), B(z,y,1)),
that we differentiate with respect tg to y and toy;:
Fy = g + g As + Haap Ba,
(2.30) F, = Haza Ay + Haap By,
F, = Hypo Ay + gy By, -

Thus, we need to compute,, A,, A,,, B,, By, By,. This is easy: it suffices to differen-
tiate the two identities that definé and B as implicit functions, namely:

y =1(z,A(x,y,1), B(x,y,51))  and
Y1 = H:Jc (JI, A(JI, Y, y1>7 B(JI, Y, yl))
with respect tar, to y and toy,, which gives six new identities:

(2.31)

O:Hm+HaAm+Hbeu O:Hmm+HxaAm+beBm7
(2.32) 1= 1L, A, + 11, B,, 0= I, A, + 1L, B,
0= I, Ay, + 11 By, 1= I, Ay, + 11, By,

and to solve each of the three linear systems of two equalb@ased in a line, noticing
that their common determinaht, I1,,, — II, I1,;, does not vanish at the origin, sinde=
b+ xa + Os. By elementary Cramer formulas, we get:

( A — _Hb Hmm + H:p H:pb B. — _H:v Hma + Ha Hmm
o HbH:va_HaH:vb ’ e Hmea_HaHmb ’
_H:v H:va
(2.33) A, = b B, |
Hb H:va - Ha H:vb Hb Hma - Ha Hmb
Hb _Ha
. Hb H:va - Ha H:vb ’ . Hb Hma - Ha H:vb
Replacing in (2.30), no simplification occurs and we get wiatvanted:
( H:v:va - H H:v:v Hm H:v Hmm - Hm Hma Ha Hmm
Fx:Hxxx+ [ ’ hi b:|+ b[ - :|7
Hb H:va - Ha Hmb
_Hmma H:v Hmm Hma
(2.34) F, = b+ aab

Hb Hma - Ha Hmb ’
H:v:va Hb - H:v:vb Ha
Fyl = . ’
\ Hb H:va Ha Hmb
Onesee® F = F, + 11, F, + 11, F,, = I1,,, simply, as predicted by Lemma 2.22.
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Second order derivatives,,, F,, Fyy., Fyy, Fyy Fy, .y have still reasonable complex-
ity, when expressed in terms df,a,b I1. Beyond, the computations explode.

Open question 2.35A second order ordinary differential equatign, = F'(x, vy, y.) has
two fundamental differential invariants, naméJyr1896,Ca1924, GTW1989, OI1995]):
(2.36) )
o0°F
I%gl) = 8—%1 and
I%Sl) = DD(Fy1y1) — Fy, D(Fy1y1) - 4D(Fyy1) + 6Ly, —3F, Fyy +4F, Fy,.
Computd},,, andl?,, .

Although the notion of diffeomorphism is clear and appdseobvious from the intu-
itive, geometric and conceptual viewpoints, in concretgliaptions and in explicit com-
putations, it almost never straightforward to transfeebhico-differential objects.

Open problem 2.37.For general(£) and M, build closed combinatorial formulas exe-
cuting the double translatio(®.27)

2.38. Plan for the sequel.We will endeavour a general theory showing that the study of
systems £) and the study of submanifolds of solutiond gives complementary views
on the same object. In fact, Lie symmetries, equivalencblpnoes, Cartan connections,
normal forms and classification lists may be endeavouredotim $ides, yielding essen-
tially equivalent results, though the translation is seldsiraightforward. In Section 3, 4
and 5, we review some features from the siflg before studying some aspects from the
side of M. A more systematic and complete approach shall appear asagraphy.

§3. CLASSIFICATION PROBLEMS

3.1. Transformations of PDE systems. Through a localk-analytic change of variables
close to the identityz, y) — ¢(x,y) =: (2',v’), the system&) transforms to a similar
system, with primes:

() yela) = F (2 (), (5200 () 1cyey )

Example 3.2. Coming back temporarily to the notations €f.12(1l), withn = m =

k = 1, assume thaj,, = f(z,y,y,) transforms tdV'yx = F(X,Y,Yy) through a local
diffeomorphism(z, y) — (X,Y) = (X(z,y),Y(z,y)). How F is related tof ? By

symmetry, it suffices to computgéin terms of /', X, Y. The prolongation tcﬁ{%1 of the
diffeomorphism has components ([BK1989, Me2004]):

Yo +y. Y,
3.3 Yy=———2Y
(3.3) XS X TN,
and
XX — - 3 xzx
[Xx+yny}3 Y, Y, Y, Y
X, X X X
+yx-{2‘ R —' S }+
. x vy | _ xy Yy
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It then suffices to replacEy x above byF'(X, Y, Yx) and to solvey,,:

1 Y.ty Y, Xo Xow
e = ——— | [Xe + v:X, FXYi — +
Y. Y,
. Ja Y, Y Y. Y,
(3.5) N __Xnyy+2XX N
X,, X
+ zYxYx * v Y '})
Yozl {‘ Y,, Y,
=: f(z,v,Yz)

7

Open problem 3.6. Find general formulas expressing tig in terms of "7, z”*, /7.

Conversely, given two such systent$) @nd €’), when do they transform to each
other? Letr, , denote the projection frorﬁ’f:; to Ag: defined by

i ai 1) J i i 13(q)
(37) 7T,,{7p (ZL’I ,y/ >y/i17 s >y/i1 in+1) : ( ’y y,ﬁ(fI)>

.....

Let o“+1) be the(x + 1)-th prolongation ofs (Section 1(1I)).

Lemma 3.8. ([O11986, BK1989| OI1995]Y he following three conditions are equivalent
(1) ¢ transformg€) to (£);
(2) its (x + 1)-th prolongationp*+1) : 751 — 77+ " mapsAg to Ag;

(3) ptl) Tt — T ’ij mapsA¢ to Ag and the associated map

(3.9) Og e =, 0 (9"V]4)

sends every leaf ¢t to some leaf oF, , .

Equivalence problem 3.10.Find an algorithm to decide whether two givéh) and (&)
are equivalent.

Elie Cartan’s widely applicable method (not reviewed hf@e1937[ Ste1983, G1989,
[Fel1995, OI1995]) provides an answer “in princigtethis question by reducing
to an {e}-structure an initial G-structure associated &. (Due to the incredible size-
length-complexity of the underlying computations, thipagach almost never abutes: it
is forced to incompleteness. But in fact, the main questdn classify.

Classification problem 3.11.Classify system&), namely provide complete lists of all
possible such equations written in simplified “normal”, égsecognizable forms.

Both problems are deeply linked to the classification of Ugehras of local vector
fields. Forn = 1, m = 1 andx = 1, namely €:): y.. = F(z,vy,y.), Lie and Tresse
solved the two problerﬁsTabIe 7 of [OI1986], below reproduced, describes the tssul

3 The author knows no complete confirmation of the Lie-Tresassification by means d. Cartan’s
method of equivalence.
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| | Symmetry group | Dimension| Invariant equation ||

(1) 0 Yoo = F('Tu Y, yw)
(4) || O, €70, 2 You — Yo = I (yx )
(5) || Dr, O — Y0y, 220, — 2290, | 3 Yow = S5 + ey
(6) amu xam - y8 ' 3 - 6yym - 4y3+

220, — (2zy + 1)0, +c(yx —y?)3/2
(@) || O, Oy, O + aydy, 3 Vs = C(yx)i—if

a # 0, ;, 1,2
(8) || 0, 0y, 20, + (x + y)0, 3 Ypu = CE T
9) || O, Oys YOy 0y, YOy, 8 Yzz = 0

220, + xydy,, Tyd, + y*0,
Table 1.

However, the author knows no modern reference offering gobetie proof of this clas-
sification, with precise insight on the assumptions (sonrenabforms hold true only at
a generic point). In addition, the above Lie-Tresse listiit "ightly incomplete in the
sense that it does not precise which are the conditiondisdtlsy ' (Table 7 in [OI1986])
insuring in the first four lines thasYM(&, ) is indeed of small dimensian 1 or 2.

Open question 3.12.Specify some precise nondegeneracy conditions pionthe first
four lines of Table 1.
§4. PUNCTUAL AND INFINITESIMAL LIE SYMMETRIES

4.1. Lie symmetries of(£). Let ¢ = (¢,v) be a diffeomorphism ofK; x K} as
in (1.7)(1N).

Definition 4.2. ([OI11986,[OI1995/ BK1989]), is a (oca) Lie symmetryof (€) if it
transforms the graph of every solution éf) (nto the graph of another solution.

To explain, we must pass to jet spaces. Denote the compootthe (x + 1)-th
prolongationp" ™) 7xfL — 7t by
(4.3) Ut = (¢f 7, @ DT DL i)
The restric:tion,o(*”erl \A is obtained by replacing each jet varlaly&by F?, whenever

(7,) # (7,0) and=# (j(q), 3(q)), and wherever it appedrs the @],
Let 7, , denote the projection fronf ' f' to Ag ~ K™ +n+? deflned by

(4.4) T (T Yyl ) = (x W, yé({f])))
and introduce the map
(4.5) Pas = mepo (P ,) = <<P(93i,yj ) @5 (o, yé((?l))))

Lemma 4.6. ([OI1986,/011995, BK1989],{]) The following three conditions are equiv-
alent

‘4 Remind from Section 1(I1) that we have not (open problemyjated a complete explicit expression of
@] ;, forgenerah >1,m > 1and\ > 1.

TLyeees 1
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(1) the diffeomorphismp is a Lie symmetry off);
(2) <p(“+1>\Ag sendsA¢ to Ag;

(3) et \AS sendsA\¢ to Az andpa, = 7, (Y }Ag) is a symmetry of the folia-
tion Fa., namely it sends every leaf to some other leaf.
Then the set of Lie symmetries(6) constitutes a local Lie (pseudo)group.

4.7. Infinitesimal Lie symmetries of(£). Let

(4.8) L ;:1 X' (z,y) o + JEZI V' (x,y) oy

be a (local) vector field oK™ having analytic coefficients. Denote its flow by
oz, y) = exp(tL)(x,y), t € K. As in Section 1(Il), by differentiating the prolon-
gation (o)1) with respect tat at¢ = 0, we get the prolonged vector field“+") on
j,j;;l, having the general form (Part II):

(4.9) LD = £+ZZY318—J+ +Z Z Yi,... w@ya’L’

Jj=1 i1=1 7j=1 11,..., tet1=1 114y Trt1

with known explicit expressions for thYEﬁ1

Definition 4.10. £ is aninfinitesimal symmetrpf (£) if for every small¢, its time+ flow
map, is a Lie symmetry of£).
The restriction/:(““)\Ag is obtained by replacing eveny, by F7 in all coefficients

Y] .....Y] . . Thenthe coefficients become functions(of', 4, yg((‘“ ) only.

Lemma 4.11.([OI1986, 011995, BK1989],4]) The following three conditions are equiv-
alent

(1) the vector fieldC is an infinitesimal Lie symmetry ¢f);

(2) its (x + 1)-th prolongationZ“+1) is tangent to the skeleta,;

(3) £+ is tangent ta\¢ and the push-forward

(4.12) Lag = (mep)e (L], )
is an infinitesimal symmetry of the foliatiéi,, namely for every = 1,...,n,
the Lie bracket{ﬁAg, DZ} is a linear combination of D4, ...,D,}.

According to [OI1986, BK1989, OI1995], the set of infinitesl Lie symmetries con-
stitutes a Lie algebra, with the propeftg*+1), £/“+D] = [£, £/]"*". We summarize
by a diagram.

(k+1)

j’r’rij;i,l ® . j’rﬁj;i,l [:(N+1)
Tk, Tk,
(" "y \
A
Ag Pae = Ag ['As
Tk Tk
Tp Tp
Yy o YY [

K x K = K7 x Ky L
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4.13. Sophus Lie’s algorithm. We describe the general process. Its complexity will be
exemplified in Section 5 (to be read simultaneously).

The tangency ofZ*t1) to A is expressed by applying“*t!) to the equation§ =
—y? + FJ, which yields:

NS i O NS P NS i) OF
(4.14)  0=-Y)+ Zl e LY G Zl Yoo gy
i= = 9= Blq

for (j,a) # (4,0) and=# (j(q),5(q)). Restricting a coefﬁcien’h{f1 ..... i, 10 Ag, namely

replacing everywhere in it eagi, by F?, provides a specialized coefficient

(4.15) Y, =Yl Z_)\(xiljyjljyé((‘;ll)) I XA Y

’ "E7y ) :B,y

that dependsnearly on the)-th jet of the coefficients of, as confirmed by an inspection
of Part II's formulas. Here, we use the jet notatidh, Z := (8518512)‘01‘“51‘@. We
thus get equations

. i OF i
(4.16) 0=-Y,+) a2+ )
=1

i=1 Oz

OF] = oitg OF!
«a + Z YJ q a
1 B(a) o (g’

y q=1 ayﬁ(q)

involving only the variablegz™, 37", yé((?l))) :

Next, we develope every such equation with respect to th@m)mtyé((‘f;l)):

417) 0= > W) @)L, (g T ey

,B(p) QU] yeeey r L,y r L,y

The ) , . arelinear with respect to(.J; /' X", Jri1y7t), with certain coefficients

analytic with respect tdx, y), which depend intrinsically (but in a complex manner) on
the right hand sides?.

Proposition 4.18. The vector fieldC is an infinitesimal Lie symmetry () if and only if
its coefficientst, Y7t satisfy the lineaPDE system

(4.19) 0=’ s (x“,yjl Jrtl yin Jn+1yj1)

(€225 P rrxy ’ XLy

forall (j,a) # (j,0) and=# (j(q), B(q)) and for all (1, . .., p1,,) € NP.

In all known instances, a finite number of these equatiorfecest

Example 4.20.With n = m = x = 1, a second prolongatiof® = X - + Y £ +
Y, a% +Y, a% is tangent to the skeletah= —y, + F'(z,y,y:) of (&) if and only if
0=-Y, +XF, +YF,+Y,F,,or developing:
0= _yxx + [_ 2yxy + an::| n + [ - yyy + QXxy] (91)2 + [ny] (91)34'
(4.21) + [V, 22X F+ BX |y F+ [X] F+ [V] Ft
+ [y:v:| By + D}y - Xr} Y By, + [_ Xy} (y1)2 Ey,.

Developingl’ = >, -, (11)* Fi(z,v), we may obtain equations (4.19).



LIE SYMMETRIES AND CR GEOMETRY 15

§5. EXAMPLES

5.1. Second order ordinary differential equation. Pursuing the study o€{), according
to Section 7 below, we may assume thhat O(y, ), or equivalently'(z, y,0) = 0.

Convention 5.2. The lettersR will denote various functions dfz, v, y;), changing with
the context. Similarlyr = r(z,y), excluding the pure jet variablg. Hence, symboli-
cally:

(5.3) R=r+yr+ (y)?r+ (y)*r+---
So the skeleton is
(5.4) y2=Fla,y,y) = R=yir+ () r+ ()’ r+ -
Applying £, see (2.3)(ll) for its expression, we get:
(5.5) 0=-Yo+ XF,+VF,+Y,F,,.

Observe that), = (y; R), = ry; +r(y1)* + - - - and similarly forF,,, but that(y; R),,
r+ry.+r(y)?+---. Inserting above'y, Y, given by (2.6)(Il), replacing, by y; R and
computingmod (y;)*, we get:
= — Yoo+ [ = 2V + Xoa] 01 + [ = Vo + 2 X)) (10)” + [Xiy] (02)°+

[ =Yy +22] (pr+ ) r+ (W)’ r) + BA] (1) r+ ()’ r)+
(5.6) + [X] (yir+ @)’ r+ ()’ 0) + [ V] (yar+ (y)?r + (1) 1)+

+ (V] (r+yar+ () r+ (v1)°r)+

+ V=X (a4 )’ r+ W)’ r) + [ = &) () r+ (1)’r).
We gather the powerst., 11, (y1)? and(y;)?, equating their coefficients t@

0=V +P(Va),

0= =2V + Xow + P(Vy, X, X, Y, V1),
0=y +2X, +P(y, X, X, X, V, V),
0= Xy +P(Yy, X, X, X, 0, V,)

Convention 5.8. The letterP will denote varioudinear combinations of some precise
partial derivatives oft’, ) which have analytic coefficients i, y).

(5.7)

By cross-differentiations and substitutions in the aboxstesm, all third, fourth, fifth,
etc. order derivatives oft’, )) may be expressed ﬁ’s{X, YV, X, Xy, Vo, Vo Vays yyy).

Proposition 5.9. An infinitesimal Lie symmetey >+ ;. of (€1) is uniquely determined
by the eight initial Taylor coefficients

(5.10) X(0), Y(0), X2.(0), X,(0), V.(0), ¥,(0), Var (0), Vy,, (0).
The boundlim GYM(E;) < 8 is attained with#" = 0, whence alP = 0 and
A:=0,, E :=y0,,
B :=0,, F:=yo,,
(5.11)

C:=z0,, G = xx 0, + 2y 0y,
D :=x0,, H =2y 0, +yy0,.



16 JOEL MERKER

are infinitesimal generators of the group PGK) = Aut(F»(K)) of projective transfor-
mations

ar+PBy+vy dx+ny+e
5.12
(5.12) (x’y)’_)<)\:c+uy+u’)\x+uy+u’

stabilizing the collections of all affine lines &2, namely the solutions of thenodel
equationy,, = 0. Themodel Lie algebragl;(K) ~ sl3(K) is simple.

Theorem 5.13.The boundlim G (&) < 8 is attainedif and only if (&) is equiva-
lent, through a diffeomorphisifx, y) — (X,Y), to Yxx = 0.

Proof. The statement is well known[([Lie1883, EL1890, Tr1896, SHi19Cal932a,
(011986, HK1989[ 1b1992, OI1995, Sh1997, Su2001, N2003, 004D. We provide a
(new?) proof which has the advantage to enjoy direct geimatains to allPDE systems
whose model Lie algebras are semisimple, for instaéige (£5) and €5).

The Lie brackets between the eight generators (5.11) are:

| A | B e D |E [F |G | H
A0 0 0 0 A B C D+ 2F
B0 0 A B 0 0 E+2D | F
C 10 —A 0 -C|C |D-F|O0 G
D0 -B C 0 0 —F G 0
E | —-A 0 -C 0 0 F 0 H
F || —B 0 —-D+F\|F —F 10 H 0
G| -C —E—-2D |0 -G |0 H 0 0
H|-D-2FE|-F -G 0 —H 1|0 0 0

Table 2.

Assuming thatlim G99 (&) = 8, taking account of (5.7), after making some linear
combinations, there must exist eight generators of the form

A =0,+0(1), E' :=y0,+ 0(2),

B':=d,+ 0(1), F':=yd,+ 0(2),

C":=20,+ 0(2), G':=zx 0, +xy0, + O(3),

D' =20, +0(2), H' :=zy0d, +yyd, + O(3).

To insure that the Lie brackets between these vector fieklsraall perturbations of the
model ones, we can in advance replécey) by (ez, cy), so thaty,, = ¢ F(cxz, ey, y,)

isanO(e), hence all the remaindef3(1), O(2) andO(3) above are als®(¢). It follows
that the structure constants fdf, . . ., H’ ares-close to those of Table 2.

(5.14)

Theorem 5.15. ([OV1994]) Every semisimple Lie algebra ov& or C is rigid: small
deformations of the structure constants just give isomiorpie algebras.

Consequently, there exists a change of basis close to thatideading to new gener-
atorsA”, B”,...,G"”, H" having exactly the same structure constants as in Tableéh Th
A”(0) and B"(0) are still linearly independent. Sindel”, B”] = [A, B] = 0, there
exist local coordinate§X,Y’) centered ab in which A” = 0x and B” = 0y. Since
[A”,C"] = [A,C] = 0and[B",C"] = [B,C] = A, it follows thatC” = X9y. The
tangency td) = —Y; + F(X,Y, ;) (with 7(0) = 0) of (9x)® = dx, of (9y)® = oy
and of (Xdy)"” = X0y + oy, yields F = 0. 0
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Open question 5.16.Does this proof generalize t9..+1 = F(x, Yy Yy - - - ,yzﬂ) ?

5.17. Complete system of second ordekVe now summarize a generalization &)
According to Section 7 below, one may assume that the sulfobérof solutions is

=b+>", d [m’ + O(|z|?) + O(a) + O(b)}, whencey,iin = Fj, 4 (xi,y,yxk)
with F(z,y,0) = 0. Applying to the skeleto) = —y;, ;, + F},;, (2%, y,y,) a second
prolongationZ® having coefficientd’;, given by (3.9)(l) andY, ;, given by (3.20)(ll),
we get

k=1

n

+ 1,22 + Y 122
P+ 3 vl

8Fwil 112
Oxk

Replacingy;, ;, everywhere by, ;,, = y1 R+ --- + y, R, developping in powers of the
pure jet variableg; and picking the coefficients akt., of 3, of (yx)? and of ()3, we
get the linear system

lel2 P(ym)
5k y’@y—i_é{€ Vo iy T Z1;1c12 = P(y Xl%NXl V.V, l)
O Vyy — O XE, — 68 X5 =P(V,, X%, X XY, V)

ok Ak =P(V,, X2 XL XY, V),

01,12 119

(5.19)

upon which obvious linear combinations yield a known gelieation of Proposition 5.9.

Proposition 5.20. ([Su2001[ GM2003a]An infinitesimal Lie symmetry",_, X* a%v +
Y a% is uniquely determined by thé + 4n + 3 initial Taylor coefficients

(521) Xl(())? y(0>7 Xl% (0)7 Xl<0)7 yml(o)v yy<0)> y:vl (0)7 yy?J(O)

The boundlim SYM(&,) < n? +4n + 3 is attained with?;, ;,, = 0, whence alP = 0
and

A:=0,, E :=y0,,
B; = 0,4, F; =y 0y,
(5.22) C;:=1'0,, G, =2 (xl Opr + -+ 2" O0pm + yﬁy) + 2y 0y,
D;y =" O, H::y(xlala—l—---+x"0xn+y0y).

are infinitesimal generators of the group BGLK) = Aut(P,.:(K)) of projective
transformations

(5.23) (z,y)— (

oz + e+ By +y ot 40,2 gy e
Mt Nat +py + v a4 A2 o py v

stabilizing the collections of all affine planes&f !, namely the solutions of theodel
equationy,.,,» = 0. The model Lie algebragl, ,,(K) ~ sl,,»(K) is simple, hence
rigid.

Theorem 5.24.The boundlim GYM(E,;) < n? + 4n + 3 is attainedif and only if (&)
is equivalent, through a diffeomorphignad, y) — (X*,Y), t0 Yy, yr, = O.

The proof, similar to that of Theorem 5.13, is skipped.
The study of £3) also leads to the model algelygl,, . ,(K) ~ sl,,(K) and an analog
to Theorem 5.13 holds. Details are similar.
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§6. TRANSFER OFLIE SYMMETRIES TO THE PARAMETER SPACE

6.1. Stabilization of foliations. As announced i§2.38, we now transfer the theory of
Lie symmetries to submanifolds of solutions.

Restarting fron4.1, lety a Lie symmetry of £), namelypa, stabilizesF,,. The
diffeomorphismA defined by (2.9) transformis, to F,,. Conjugating, we get the self-
transformationA—! o o, o A of the (z, a, b)-space that must stabilize also the foliation
F,. Equivalently, it must have expression:

6.2)  [Aopa. oAl(z,a,b) = (B(x,a,b), f(a,b),gla,b)) € K" x KP x K™,
where, importantly, the last two components are indepdraféhe coordinate:, because
the leaves of, are just{a = cst., b = cst}.

Lemma 6.3. To every Lie symmetry of (£), there corresponds a transformation of the
parameters

(6.4) (a,0) = (f(a,b), g(a, b)) =: h(a,b)
meaning thaty transforms the local solutiop, ;(z) := Il(x, a,b) to the local solution
Yh(a,b) (JI) = H('Tv h(CL, b))

Unfortunately, the expression 8f ! o o, o A does not clearly show thgtandg are
independent of. Indeed, reminding the expressionsfoand of®, we have:

(65) PAg © A([L’, a, b) = (()0(1', H(%’, a, b))v (I)jg((?) (xilv Hjl (Z’, a, b)v H;EBq(lq)l) (‘Ta a, b))) :

To compose withA~! whose expression is given by (2.21), it is useful to split=

(¢,7) € K" x K™, so above we write

(66) QO(.CE, H(l’, a, b)) - (QS('I? H(l’, a, b))v w(xv H(l’, a, b)))a

and finally, droping the arguments:

(67)  [A " opa 0 A](wa,0) = (', A1(6", v, @), BI (6", 4, D40 ).

In case £) = (&), is an exercise to verify by computations that th&(-) and B/(-)

are independent af. In general however, the explicit expressiongf _; is unknown.
Unfortunately also, nothing shows hdvi(a, b), g(a, b)) is uniquely associated to(z, y).
Further explanations are needed.

6.8. Determination of parameter transformations. At first, we state a geometric refor-
mulation of the preceding lemma.

Lemma 6.9. Every Lie symmetryz,y) — ¢(z,y) of (£) induces a localk-analytic
diffeomorphism

(6.10) (2,y,a,b) — (p(z,), h(a,b))

of Ki; x K x KP x K3* that maps to itself the associated submanifold of solutions
(611) Mg = {(x,y7a,b) : y:H(ZE,CI,,b)}

Proof. In fact, we know that the.-dimensional leaf (z,II(z,a,b)) : = € K"} is sent
{(z,(z, h(a,b))) : z € K"}. O

Equivalently, setting: := (a, b) and writing(y, h) = (¢, ¢, h), we havey = I1(¢, h)
wheny = II(z, ¢), namely

(6.12) Y(z, H(z,c)) = H(P(z,I(z, ), h(c))
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Proposition 6.13. There exists a universal rational m&psuch that

(6.14) he) = H(Jshi e, o), J2 o, Tz, )

z,a,b
This shows unique determination from ¢, given €) or equivalently, givenl.

Proof. Differentiating a functiony(x, Il(z, ¢)) with respect tar®, k = 1,...,n, corre-
sponds to applying tg the vector field

0 +28Hj 0

A L, = — - —
(6 5) k axk axk (..'E, C) ayj Y

k=1,...,n.
j=1

Thus, applyind., to them scalar equations (6.12), we get

e Ol
(6.16) Ly’ = ul Le ¢,

=1

forl1 < k < nandl < j < m. It follows from the assumption that is a local

diffeomorphism thatlet (L, gbl(o))iﬁf;; +£ (0 also. So we may solve the first derivatives

I1, above: there exist universal polynomiﬁ{ssuch that

_ S 1< <ntm

(6.17) oy Si ({LW 1<k <n )

. . N1<U<n
Ox det (L ¢! )1<k/<n

Again, we apply thé, to these equations, getting, thanks to the chain rule:

: ] i 1</ <n+m

(6.18) ~ Il Ly 2 — Riix <{L’f’1|"€é90 }1<k’1,k;<n>
. orhigle *T T i<ii<n]?
la=1 [det (L ¢! )KW@]

Here,R; , are universal polynomials. Solving the second derivatives ,,, we get

. j i 1< <n+m
o117 511,12 <{Lk’1|—’f’290 }1<k{,k§<n

90 T et (L o) 2]

1<k <n

(6.19)

By induction, for everys € N™:
) ; 1 I <ndm
P _ S <{L5‘P B )

oxP A 1<l/<n 12181+
[det(Lk, ¢l)1<k/<n]

Wheresg are universal polynomials. Here, f6f € N”, we denote by.? the derivation
of order| 3’| defined by(L,)% - - - (L,,)".

Next, thanks to the assumption thit is solvable with respect to the parameters, there
exist integergi(1),...,7(p) with 1 < j(¢) < m and multiindices3(1),...,5(p) € N*
with |5(¢)| > 1 andmax;<,<, |3(q)| =  such that the locaK-analytic map

(6.20)

. <m 18()IT13(a)
(6.21) K3 e | (TF(0,¢))' ¥, 07(070) e Kptm
axﬁ(Q) 1<q<p
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has ranky+m atc = 0. We then consider in (6.20) only tlig-+m) equations written for
(7,0), (4(¢), B(q)) and we solvé:(c) by means of the analytic implicit function theorem:

(6.22)
§(1) B il 1<i’<n+m> i (p) < 8 1<’ <n+m)
S5(1) <{L ¥ p1<80)] Sa (L9 1<
N l<lign 21817 N 1<l<n ] 2B@I+
det [(Lk’ ¢ )1<k’<n] det [(Lk’ ¢! )1<k’<n]

Finally, by developping every derivative’ " (includingL,.¢" as a special case), taking
account of the fact that the coefficients of the depend directly oril, we get some
universal polynomiaP s (J:‘f I+ 11, J;L@' goi'). Inserting above, we get the méip O

~

h=H| o,

6.23. Pseudogroup of twin transformations.The previous considerations lead to intro-
ducing the following.

Definition 6.24. By G, ,, we denote the infinite-dimensional (pseudo)group of IdCal
analytic diffeomorphisms

(6.25) (2, y,a,0) — (p(z,9), h(a, b))
that respect the separation between the variables and theeters.

A converse to Lemma 6.3 holds.

Lemma 6.26.Let M be a submanifolg = I1(z, a, b) that is solvable with respect to the
parametersa, b). If a local K-analytic diffeomorphisniz, y, a,b) — (¢(x,y), h(a, b))
of K7 x Ki' x K& x Kj* belonging toG, , sendsM to M, then(z, y) — ¢(z,y) is a Lie
symmetry of theDE systent,, associated to\.

Proof. In fact, since(y, h) respects the separation of variables and stabiliggsit re-
spects the fundamental pair of foliatiofB,, F,), namely{(a,b) = (ao,bo)} N M is
sent to{(a,b) = h(ap,bo)} N M and{(x,y) = (zo,50)} N M is sent to{(z,y) =
o(zo,yo)} N M. HencegoAgM also stabilize$ x, . O

Corollary 6.27. Through the one-to-one corresponden@ «— M of Proposi-
tion 2.17, Lie symmetries ¢f) correspond to elements Gf , which stabilizeM.

Definition 6.28. Let Aut, ,(M) denote the local (pseudo)group(ef, i) € G, , stabiliz-
ing M. LetLie(€) denote the local (pseudo)group of Lie symmetriesc)f (

In summary:

(6.29) Lie(&) ~ Aut, (M) and Aut, ,(M) = Lie(En) |

6.30. Transfer of infinitesimal Lie symmetries. Let £L € SYM(E), i.e. La, is tangent
to A¢. Through the diffeomorphism, the push-forward of o, must be of the form

i 0 = )
(6.31) AY(La,) Z@xab—+z.7-"qab aq+;gj(a,b)@,

where the last two families df-analytic coeff|C|ents7-“‘1 andg’ depend only orfa, b).

Lemma 6.32.To every infinitesimal symmetgyof (£), we can associate an infinitesimal
symmetry

p 8 m '
* . q . J _—
(6.33) L ; Fila,b) 5— + ; G'(a,b)
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of the space of parameters which tells how the flow atts infinitesimally on the leaves
of Fa.. Furthermore £ + £* is tangent to the submanifold of solutiong .

Considering the flow of + £* reduces these assertions and the next to the arguments
of the preceding paragraphs. So we summarize.

Lemma 6.34. Let M be a submanifold) = II(z,a,b) that is solvable with respect to
the parameterga, b). If a vector field that respects the separation between égtgand
parameters, namely of the form

(6.35)

* i ; 9 , ) j i
L+L ; X(w,y) o +;y (#9) 5, +q:21f (a,0) 5= +; G (a,5) 7

is tangent taM, then. is an infinitesimal Lie symmetry ¢€,/)

Corollary 6.36. Through the one-to-one corresponden@&@® <«— M of Proposi-
tion 2.17, infinitesimal Lie symmetries @) correspond to vector field§ + £* tangent
to M.

Definition 6.37. Let &M (M) denote the Lie algebra of vector fields+ £* tangent
to M. Let &GYM(E) denote the Lie algebra of infinitesimal Lie symmetries&f. (

In summary:

(6.38) |SYM(E) ~ SYM(Me)) and SYM (M) =~ SYM(Ep) |

6.39. Dual defining equations.As in §2.10, letM C K} x Ki* x K x K" given by

0 = —y’ + Il/(x,a,b) and assume if to be solvable with respect to the parameters. |
particular, we can solve the, obtainingdual defining equations

(6.40) Y =1 (a,z,y), j=1,...,m,

for some locaK-analytic map mapl* = (II*', ..., II*™) satisfying

(6.41) b=II* (a, x, 11(z, a, b)) and y= H(x, a, 1T (a, x, y))

6.42. An algorithm for the computation of G99 (M). The tangency toM is ex-
pressed by applying the vector field (6.350te- —y7 + II7 (x a, b), which yields:

OZ—yj(x,y)+ZXi(x,y)H (z,a,b) +Z.7:qab 7o(x,a,b)

i=1 q=1

(6.43)
+ZQ (a,b) 1_[J (x,a,b),

forj = 1,...,m and for(z,y,a,b) € M. In fact, after replacing the variablg by

II(x, a,b), these equations should be interpreted as power seriegtieem K{z, a, b}.
Denote byA(z, a,b) the determinant of the (invertible) matr{l/, (z, a, b))1<z,j<m

and byD(z, a, b) its matrix of cofactors, so thal, ' = [A]~! D. Hence we can solvé

from (6.43):

(6.44)

G(a,b) = V(z,(z,a,b)) — Z X' (2, 11(z, a,b)) I (2, a,b)—

i=1

p
—> " FUa,b) Uy (z, a,b)
q=1
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Next, we aim to solve thé=9(a,b). Consequently, we gather all the other terms in the
brackets ad, (.} , 11, X, )):

L Vo2l %)

(645) Q(a, b) = M [_Z fq<a7 b) Haq(x7a7 b) A(CL‘ a b)

Az, a,b)

q=1
Here, U is linear with respect tgX', ), with polynomial coefficients of degree one in
Ji a bH.

Next, fork = 1,...,n, we differentiate this identity with respect iq. ThenG(a,b)
disappears and we chase the denominafor

;

p
- Z fq(a7 b) Haqu (Jf, a, b)

0= [AD] +
q=1
(6.46) p
+[AD,, — Ay, D] | =Y Fa,b) He(z,a,0) | +
q=1
\ + W (7 I T, XL T Y).

. . 1 1 . . - I
The Y, are linear with respect to/, X', J; | V), with polynomial coefficients i/, ,I1.

Then we further differentiate with respecttcand by induction, for every € N*, we
get:

4

p
—> " FUa,b) Hyous(x, a,b)

q=1

+ ) D, (P
1811<|B]

+ g (SO T X, ),

) :Biy ) :B,y

0= [AD] +

(6.47) =" FUa,b) Uyopo (z,a,b)

g=1

_|_

\

where the expressior3; s, are certainn x m matrices with polynomial coefficients in
the jetJfﬂle, and where the term\Qﬁ(J‘m“H, JQ'C@X, Jﬂy) are linear with respect

z,a,b

to (J;L@X : Jg'ci‘,y), with polynomial coefficients inffc':glﬂ.
Writing these identity for(j,5) = (j(q),5(q)), ¢ = 1,...,p, reminding
maxi<,<p |5(q¢)] = k, it follows from the assumption of solvability with respect

to the parameters (a boring technical check is needed) thatay solve

(6.48)  Fa,b) = @q(J“HH(x,a, b), Jr X (x,1(x,a,b)), Jj,yy(x,l_[(x,a, b))),

z,a,b ’Yx,y

for ¢ = 1,...,p, where each locaK-analytic function®, is linear with respect to
(J5X,J*Y) and rational with respect td**'II, with denominator not vanishing at
(x,a,b) :=(0,0,0).

Pursuing, we differentiate (6.48) with respectafofor [ = 1,...,n. ThenF4(a,b)
disappears and we get:
(6.49) 0= @y (S5 H(z, a,b), J5 X (2, 1z, a,b)), J5 V(2 H(z, a,b))),

x,a,b YLy y Yy
for1 < g < pandl <[ < n. In(6.46), we then replace the functiof$ by their values
P

(6.50) 0=y, (Jrb(z, a,b), J7, X (2, 1(x,a,b)), J5,V(x,1(z,a,b))),

z,a,b ’ X,y
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for1 < k£ < nandl < j < m. Then we replace the variabbeby 11*(a, z, y) in the
two obtained systems (6.49) and (6.50); taking account efftimctional identityy =
I1(z, a,I1*(a, z,y)) written in (6.41), we get

{0 = &y (S (2, a, 11 (a, 2, y)), Jo b X (2, y), JEE V(2. y),

x,a,b Yy Yy

(6.51) 0=y, (J“HH(x a, 11" (a, 2,y)), J; X (2,9), J7 Y (@,y)).

z,a,b Yo,y y Yy

Finally, we develope these equations in power series wipeet toa:
0= a Pguy(z,y, J5i5 X(w,y), 55 V(w,y)),

YENP

0 = Z a” \I/hm(x,y, J;yX( )»J;yy(%y))»

YENP

(6.52)

where the terme,,; , andV, ; , are linear with respect to the jets af, ).

Proposition 6.53. A vector field6.35)belongs taS9)9 (M) if and only if X'*, )7 satisfy
the linearPDE system

O = (I)(Llﬁ/(x? y? JH—HX( )7 J;—L_ly< ))7
0=y (z,y, J5, X (2,y), J5,V(2,9)),

wherel < ¢ <p,1<1<n,1<k<nandy € NP, ThenF defined by6.48)and G’
defined by(6.45)are independent of.

(6.54)

This provides a second algorithm, essentially equivale®dphus Lie’s.

Example 6.55.Fory,.(z) = F(z,y(x),y.(z)), the first line of (6.54) is (the second one
is redundant):

(6.56)
( 0=Xx [_H:caﬂxxxﬂb + HaH:chxxx - HxH:c:cabe + H:caH:cHxxb +

Fazalloe Iy — Hollpppllzs] +
+ YV [1aalpmp 4 Hpgally] +
+ X, [ 210, 11, 1Ty, + 210, 11,10,y + T IT, 0T, — T IT, 10,0 +
+ Vo [0 + o opp] +
+ &y [_BHmHmmHmaHb + 311 o Iy + (10, ) I — (H;p)2HaHmb] +
+ Yy e 1110, — T o gy — TL I, + TL I T, 0] +
+ Xy [—11 Hb va + LTI, +
+ Xy [2(1)* T, + 2(11, ) *TLIL,, | +
+Xz[< Hbm+mrmm@+
+ Voo (Il — HoIlp) +
+ Yy 2H I — 21T, TT,] +
\ + V2 [( ) I, — (Hm>2HaHmb:| -
We observe the similarity with (4.19): the expression igdinin the partial derivatives of
X, Y of order< 2, but the coefficients in the equation above are more contplican

fact, after dividing by—I1, I1,, + II, I1,;, this equation coincides with (4.21), thanks to
II, = y; and to the formulas (2.34) far,, F,, F,,.




24 JOEL MERKER

6.57. Infinitesimal CR automorphisms of generic submanifals. If the system £) is
associated to the complexificatiod = (M) of a genericM C C"™™ as in§1.16, then
a=(2)=¢(0b= (w) = & and the vector field* associated to an infinitesimal Lie
symmetry

n 4 a m - a
pum— v j —
(6.58) L ; X'(z,w) 5 + ; V(z,w) 5o
of (£) is simply the complexificatio of its conjugate’, namely
LA Sl
(6.59) £=L=3 ¥ aﬁé)ﬂ (69 5

Then the sumZ + £ is tangent toM and its flow stabilizes the two invariant fo-
liations, obtained by intersectingt by {(z,w) = cst.} or by {(¢,{) = cst.}.
In [Me20054, Me2008b], these two foliations, denotéd F, are called (conjugate)
Segre foliations, since its leaves are the complexificatiohthe (conjugate) classi-
cal Segre varieties[([Se1931, Pi1975, Pil1978, Well977, (BV18JT1985/ DF1988,
BER1999[ Su2001, Su2002, Su2003, GM2003a]) associatet taewed in its ambient
spaceC™™. The next definition is also classical ([Be1979, Lo1981, FRE5,Kr1987,
[KV1987,/Be198B, Vi1990, St1996, Be1997, BER1999, Lo20®2#05a/ FK2005h)]):
Definition 6.60. By hol()/) is meant the Lie algebra of local holomorphic vector fields
L=3Y", X(zw) 5%+ X Vi(z,w) 3% whose real flowexp (¢£)(z, w) induces
one-parameter families of local biholomorphic transfatiores of C"**™ stabilizing M .
Equivalently,

(6.61) 2ReL=L+L
is tangent taV/. Again equivalently + L is tangent toM = M°.

Then obviouslyyol(M) is a real Lie algebra.

Theorem 6.62.([Ca1932&, BER1999, GM2004The complexificatiohol(M) 2 C iden-
tifies with &M (£(M¢)). Furthermore, if)M is finitely nondegenerate and minimal at
the origin, both are finite-dimensional amd[(1/) is totally real in&GYM (E(M¢)).

The minimality assumption is sometimes presented by saksighe Lie algebra gen-
erated byI“M generated'M at the origin ([BER1999]). However, it is more natural
to proceed with the fundamental pair of foliations asseddb M ([Me2001,GM2004,
Me2005a] Me2005h]). Anticipating Sections 10 and 11 to White reader is referred,
we set.

Definition 6.63. A real analytic generic submanifold c C"*™ is minimalat one of its
pointsp if the fundamental pair of foliations of its complexificatioV is covering atp
(Definition 10.17).

Further informations may be found in Section 10. We conclwgdé&rmulating appli-
cations of Theorems 5.13 and 5.24.

Corollary 6.64. The bounddim hol(M) < 8 for a Levi nondegenerate hypersurface
M c C?is attained if and only if it is locally biholomorphic to thelsereS® c C2.

Corollary 6.65. The boundlim hol(M) < n? + 4n + 3 for a Levi nondegenerate hy-
persurfaceM c C"*!is attained if and only if it is locally biholomorphic to thelsere
S2n+1 C (Cn—l—l.
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§7. EQUIVALENCE PROBLEMS AND NORMAL FORMS

7.1. Equivalences of submanifolds of solutionsAs in §3.1, let €) and €’) be twoPDE
systems and assume thatransforms &) to (£’). Defining A’ similarly asA, it follows
that

(7.2) Ao Pe e 0 Az, a,b) = (0(x,a,b), fa,b), g(a, b)) =: (', a’ V)

transformsF, to F/, hence induces a mdp, b) — (d’,b'). The arguments of Section 6
apply here with minor modifications to provide two fundanaifdmmas.

Lemma 7.3. Every equivalencér, y) — (2/,y’) between taPDE systemg€) and (£')
comes with an associated transformatienb) — (o, b') of the parameter spaces such
that

(7.4) (#,y,a,0) — (2,4, ', 1)
is an equivalence between the associated submanifoldsutioss M ) — M.

Conversely, letM and M’ be two submanifolds oK} x K x Kf x Kj* and of
Ky x Kb x Ki, x Ky} represented by = I1(z,a,b) and byy' = 1I'(z', a’, ¥'), in the
samedimensions. Assume both are solvable with respect to trenpeters.

Lemma 7.5. Every equivalence

(7.6) (2,9, a,b) = (o(x,9), h(a,b))
betweenM and M’ belonging toG, , induces by projection the equivalenge y) —
¢(z, y) between the associatetE systemg €, ) and (E},/).

7.7. Classification problems.Consequently, classifyingDE systems under point trans-
formations (Section 3) is equivalent to the following.

Equivalence problem 7.8.Find an algorithm to decide whether two given submanifolds
(of solutions)M and. M’ are equivalent through an element®f,.

Classification problem 7.9. Classify submanifolds (of solutions)y1, namely pro-
vide a complete list of all possible such equations, ineigdheir automorphism group
Aut, (M) C Gy p.

7.10. Partial normal forms. Both problems above are of high complexity. At least as
a preliminary step, it is useful to try to simplify somehove ttiefining equations a1,

by appropriate changes of coordinates belonginG,tp To begin with, the next lemma
holds for M defined byy = I1(x, a, b) with the only assumption that— T1(0, 0, b) has
rankm atb = 0.

Lemma 7.11. ([CM1974,[BER1999, Me2005a]x]) In coordinates’ = (z'*,..., 2'")
andy = (y',...,y"™) an arbitrary submanifoldM’ defined byy = II'(«/,a’,¥) or
dually byt = T1"" (o, 2/, ') is equivalent to

(7.12) y=1(z,a,b) orduallyto b=1II"(a,z,y)

with

(7.13) 11(0,a,b) = 1(x,0,b) =b  ordually II"(0,z,y) = 11*(a,0,y) = v,
namelyll = b + O(za) andIl* = y + O(ax).
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Proof. We develope

(7.14) y =1100,d",0") + A'(2') + O(a'd).

Sincet’' — I1'(0,d’, V') has rankn at’ = 0, the coordinate change

(7.15) vV =11(0,d,0), d :=d, 2":=2, ' =y,

transformsM’ to M” defined by

(7.16) Yy =T10"(2",a", ") ="+ N(2") + O(a"a").

Solvingd” by means of the implicit function theorem, we get

(7.17) V' =1""(a",2",y") =y" — N(2") + O(a"2"),

and it suffices to sef := ¢y — A'(2"), z := 2" anda := a”, b :=b". O

Taking account of solvability with respect to the paramgténer normalizations holds.

Lemma 7.18.Withn = m = x = 1, every submanifold of solutiops= '+ '’ [1+ O]
ofy.,., = F'(«',y,y.,) is equivalent to

(7.19) Yoe = b+ 20 + O(z%a?).

Proof. Writing y' = ' + 2/[d’ + o’ A’(a’ b’) + O(«'a’)], whereA’ = Oy, we seta” :=
a +a A/(a/ b/) = b/ "n._ $/, y — y Whenceg” — [a//+o( 1" ”)}. Dually
' = y —d [J} 4oy A”(x”, y//) + O(x”x”a”)} . sowe selr := 2" + 22" A”(J}”, y//),
y:=vy",a:=d", b:=1". O

Corollary 7.20. Every second order ordinary differential equatigh,, = F'(2/, v, v.,)
is equivalent to

7.22. Complete normal forms. The Moser theory of normal forms may be transferred
with minor modifications to submanifolds of solutions asated to €;) and to €5).

Theorem 7.23.([CM1974,[Ja1990],4]) A local K-analytic submanifold of solutions
associated t@¢):

(7.24) y =b +2'd+0; = Z Z 1T, (D) M
K20 120

can be mapped, by a transformatiori, y'. o', ¥') — (z,y,a,b) belonging toG, ,, to a
submanifold of solutions of the specific form

(7.25)  y=b+aza+Tu(b)2’a’ + Myp(b)a’a* + > > > Myy(b) 2*d.
k=2 122 k+1>7
Solving (a, b) from y = IT andy, = I1, with I as above, we deduce the following.
Corollary 7.26. Everyy.,.. = F'(z',y, y.,) is equivalent to
Yoz = (y)? [27 Fao(y) + 2° r(x y)} +( ) [Foaly) +ar(z,y)]+

(7.27) +ZZ Z Frly ya ).

k=20 120 k+I12=5

For the completely integrable systeng;) having several dependent variables
(z',...,2"), n > 2, we have the following.



LIE SYMMETRIES AND CR GEOMETRY 27

Theorem 7.28.([CM1974], []) A local K-analytic submanifold of solutions associated
to (&;):

(7.29) y=t+ Y 2" +0,
1<k<n

can be mapped, by a transformatiar(, y', a’, V') — (z,y,a,b) belonging toG, ,, to a
submanifold of solutions of the specific form

(7.30) y=>b+ Z aFak + Z Z I (z, a,b)
1<k<n k>2 1>2

where
(7.31)

Mii(v,a,0) = ) > ey kit (b) (@) @) (@) (@)

with the termdl; ,, 11, 3 andl1l; 5 satisfying

(7.32) 0=All, = AATL 3 = AATI;, = AAAT,
where
82

1<k<n

Exercise: solvinga*,b) fromy = II andy,, = II,, with II as above, deduce a
complete normal form for&y,).

Open problem 7.34.Find complete normal forms for submanifolds of solutiorsoas
ated to(&,) and to(E&5).

§8. STUDY OF TWO SPECIFIC EXAMPLES

8.1. Study of the Lie symmetries of(€,). Its submanifold of solutions possesses two
equations:

(8.2) y' =11 (z,a,0, 1) y? = 11(x, 0,0, b7,

For instance, a generic submanifald ¢ C? of CR dimension 1 and of codimension 3
has equations of such a form.

AssumingVs(&,) to be twin solvable and having covering submanifold of sohg
(seeDefinition 10.17), it may be verified (fak/ c C?, see[Be1997]) that at a Zariski-
generic point, its equations are of the form:

y' =b' +za+ O(z®) + O(b') + O(b?),

y* = b+ za(z + a) + O(z*) + O(b") + O(b%).
The model has zero remainders with associated system

(8.4) i =2xy; + ()% vz =0,

the third equations = 2y} being obtained by differentiating the first.
We may put the submanifold in partial normal form. Procegdisin [BES2005], some
partial normalizations belonging @, , yield:

y'=b"+az+ a®[II5,(b) 2° + 1, (b) 2* + - -+ | + O(a’ 2?),
y = +alz® +15,(b)a" + -] + @[z + 15,(b) 2° + - -+ ] + O(a’ 2?).

(8.3)

(8.5)
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Redifferentiating, we get an appropriate, partially noizea system{,):
(8.6)

vi =y (e +g') + () (1 +8°) + (1)’s+ (1)'s + (1)’ s+ (1)°R,

vz = W)*h+ (1)’ R,

vs =1 (2+8,) + (1) (g2 + (20 +g")h) + (y1)°r + (v) r + ()’ r + (11)°R,
where, precisely:

e g!, g% andh are functions ofz, y', y?) satisfyingg’ = O(zz) + O(y!) + O(y?),
j=1,2andh = O(z) + O(y!) + O(y?);

e r ands are unspecified functions, varying in the context{.ofy', y?) with s =
O(z) + O(y') + O(y?), but possiblyr(0) # 0;

e Ris aremainder function of all the variables ', y?, yi) parametrizing\g, .
Letting £ = X ~ + yr-2 ayl + Y220 ay be a candldate |nf|n|te5|mal Lie symmetry and

applying £® = £ + Y} a Byl +Y29, +vl2 s + Y22 993 to Ag,, we obtain firstly,
computingmod (y;)°:

lay

0=-Y7+ [X](11(2+8,) + () gs + (1)’ r + (1) 1)+
+ () )+

DGk P P O )
+ [V + ) r+ () r + ()" )+
+Yi(2z+g" +yi(2+28%) + (ul)’s+

(8.7)

(11)*s + (1)"s),

S
and secondly, computingod (y{)*:
(8.8) 0=-Y}+2¢ylY!h

The third Lie equation involving’2 will be superfluous. Specializing (4.6)(Il) to = 2,
we getY] andY?:

1=Vt Vg = XJyi+ Vel vl + [ = Ap] )+ [ = Xp] v
(8.9) 2 212
Yi

Yi=V2+ [Valyi+ [ Ve — Xy
and alsoY 3 andY? (in fact superfluous):
(8.10)

Y5 = Voo + 2V — Xaa| 41 + [2V02] 07 + [Vyryr — 2 X ] (1) +
+|:2yyly2_ xy]ylyl [y;y]( 2)2+|:_X ](yl)+
+[=2&0] (1207 + [ = Xpepe] wh (12)2 + [V — 2] wit
+ [Vye] w3 + [—39( ylys + [—X Jutys + [ —2X,2] vi v,

=V + 2Dy + [2Y2 - m} yi + [yjlyl} (y%>2+

+ [2Vh, = 2K i vl + (Ve — 2 X2 ] (VD)7 4 [ — Xy ] (1) i+
+ [_ 2Xy1y2} y% (y%)z + [ Xy2y } D}yﬂ Y2 3+
+ Ve —2X )y + [ —2Xa ]yl s + [ Xl iy + [ —3Xe]yivs.
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InsertingY? and Y1 in the first Lie equation (8.7) in which? is replaced by the value
(8.6), it has onA¢, and still computingnod (y1)®, we get, again with, s being unspeci-
fied functions of(z, y', y?) with s(0) = 0:
(8.11)
=—V2+[-Vi]lyi+
F [V +X] (12 +gh) + (1)’ (1 +8) + (1)’s+ (y1)'s)+

Xp] (1) 22+ ") + ()’ (1 +g%) + (n)'s)+
2] ((01)?[22 + &'] + (1) (4o + 28") (1 + &%) + (y1)'(1 +5))+

(W (2+82) + (W) g + (1) r + ()" 1)+

(yir+ ) r+ ()’ r + (1) 1)+

(yir+ @)+ ()’ r+ ()" )+

(22 +g' +y1(2+28%) + (y1)7s + (1)°s + (y1)"s) +
— %] (1n(2r+8") + (1) (2+28%) + (11)*s + (1) "s) +

(1122 + &' + (41)*(22 + 8") (3 +3g%) + (1)° (2 +5) + (1)"s) +
(n)* 2z +g") + (1) (2 +28%) + (y1)"s) +
()22 + 8"+ (1)’ 2z + ") (3 +3g°) + (1) (2 +5)).

_|_

e
TTEEYYYRE R

<

)

0

y2

< ST

—

<
*7

2

|
i

yl

[ R S—

I
=

y2

Collecting the coefficients of the monomials:., y;, (y1)?, (vi)?, (y1)*, we get, after
slight simplification (in the coefficient afy; )?, the term(2z + g') X, annihilates with its
opposite; in the coefficient dfy; )2, two pairs annihilate and then, we divide By+ g?])
a system of five lineapDES:

0=—Y2+4 2z +g")V.,
0=—Vo—(2e+g")\Vo+2+g)X +rV' +r Y+
+(2428°)V, + 2+ gV + 20+ 'V,
0=-Vo4+ X +gi[l+g’ ] "X +rYV +r)*+
+sVL 42V —2X, + (62 +38°) V),
0=sVh+sX + (1+g)X, + 2z +g")(2+28°) X2+
Fr X+ Y Y sV sV 5K+ (245) Vp—
—(2+2g%) X — (20 +g")(3+ 3g%) Az,
0253752 +5Xm+sXy1+(1+S)Xy2+rX+ry1+ry2+sy;+syy11+
+sX, +sVp+sX — (249X,

(8.12)

We then simplify the remainders usieg+ s = s, r +s = r andr + r = r; we divide
(8.12) by (1 + s); we replace, obtained from (8.12)in (8.12),; we divide (8.12) by
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(1 + g?); we then solveX,: from (8.12) and finally we insert it in (8.12) we get:
0=-Y;+ (22 +g")V,,
0=-Vh— (2o +g")Ve+(2+g)X + (2+28°)V, + 2r +g")Vu+
+ [22 + gl]zyg}z +r Yt +r)?
(8.13) 0=—-VH — X, +2YV; + (62 +3g*) Ve +r YV +r)* +sV,+
+g[l+g°] 7',
0=—X1+ 248V +rX+rY +r)*+sX, +sV, +sV +5Va,
0=—-Xp+rX+rYV' +rY*+sX, +s), +syy11 —|—sy;2 —|—sy§2.
Similarly, developing the second equation (8.8) and coimguhod (y{)?, we get:
0=V, + [—2V0, + Xeo] Ul + [ — (42 +28") Ve — 2+ D)V)]+
+[20 3]y
Collecting the coefficients of the monomiails., y{, we get two more lineapDE's:
0=—Y,,
0=—2V;1 + Xpo — (42 4+ 28")V,. — 2+ )Y, + 20 Y.
Proposition 8.16. Setting as initial conditions the five specific differentaéfficients
(8.17) P:i=PX, VY V0 X)) =rX+rY' +r)’+r), +r X,

it follows by cross differentiations and by linear subdiitns from the seven equations
(8.13), 1 = 1,2,3,4,5, (8.15), j = 1,2, that X)n, X}p, y;l, yg;, 2, yjl, ng and
KXoy Xty X2, Vi, y;yl, y;yg are uniguely determined as linear combinations of

(X, V1, Y% VL X,), namely

(8.14)

(8.15)

V2EIP, x,ZP, Y. 2P

(818) Xyl é Pa y;1 g P, y51 g Pa X:cyl = Pa y;yl i Pa

9 1 10 9 11 12 113
Xp=P, V=P, YVr=P, Xp=P,  YV,.=P

Y

-

Then the expressiorisare stable under differentiation:
P, = P+ry§ + ryix—i— rX,. =P,
(8.19) Py =P+rXy+rVu+r Vi +rV, 41Xy =P,
Pe=P+rX,;+ ry;2 + ry§2 + ry;y2 +r&,,. =P,

and moreover, all other, higher order partial derivativesto of V! and of)? may be
expressed aB (X, V', V2, V), X, ).

Corollary 8.20. An infinitesimal Lie symmetry é£,) is uniquely determined by the five
initial Taylor coefficients

(8.21) X(0), Y'(0), ¥*(0), ¥;(0), X:(0).

Proof of the propositionWe notice that (8.18§)and (8.18) are given for free by (8.13)
and by (8.15). Differentiating (8.13) with respect tac, we get:

0= _yxy2 - X:c:c + 2y;y1 + (6 + 3g;)y;2 + (637 + 3g1)y;y2 + ry1+

8.22
(8.22) RNV N VA R ) Vel R O VA B30 VAR % G ol § N~ e
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By (8.15), s V! vanishes. We replacg? thanks to (8.13) Differentiating (8.13) with
respect tg/?, we may substract = —Y,,2 + (22 + ")V, . +r,. We get:
0= —Xpw+ 2V, + (42 428"V, 2+
+(643g) Ve +r X+ +r) 41V + gl + 277
By means of (8.15) we replace the first three terms and then SOI’SI/Qe

(8.24) Ve =rX+rY +r)?+rY, + k" X,
introducing a notation for a new function that should be rded:
(8.25) k*:=g?[l + g '[4+3g. —h]".
This is (8.18),. Next, we differentiate the obtained equation with respect getting:
(8.26) Vip =1t X +r YV 41V 41 Y +r X, + K X,
This is (8.18);. We replace the obtained value:tzlj2 in (8.13),, (8.13);, (8.15), and the
obtained value oy,;y2 in (8.15),. This yields a new, simpler system of seven equations:
0=-Y2+ (22 +g")V!,
0=V -2z +g")Ve+ 2+g)X + (2+28")V) + 2z +g" )Y+
+sX +rYV 4 r Y24 s Y+ K 2x + g P AL,

0=—Vo — X +2V; +sX +r V' +r)* +sY, + k(62 + 3g") A,
0=—Xp +rX+r V' +r)° +sY, +sX, +sV +sVn,
0= =X +rX+rY' +r)* +sV, +sX, +sY, +sVp,
0=V,

0=—2YV 1+ X (1 =K (4z+28") +rX +r V' +r)* +r Y, +sX,.
Restarting from this system, we differentiate (8 2Wjth respect toc:
0==Y2p — X +2V0a +r X +r YV +r Y+

+r X, 4 rVE Y2+ s Y+ k(67 + 3gh) AL,

We replace)?, we eras€);, and we add (8.27)
(8.29) 0=—V2p + K22 +g )Xo +rX +r V' +rY* +rY, +r X,
We differentiate (8.27)with respect tar:

0=-V0 —(2+g)V5— 2+ +rX + (2+g,)Xut
(8.30) +sV 4+ (2+28") V0, + 2+ 8)Vp + 2z + 8"V +r Xot

s YV VY V2 Y s YL K22+ g X

Differentiating (8.27) with respect tq/', we may substract= —)?2 . + (2z+g")V, . +
r V1, we replace)? and eras@’! ; we substract (8.29) multiplied b2z + g'); we get:
(8.31) 0==Vo4+(1+)Xo+Vy+rX+rY +r)*+r).
Comparing with (8.27)yields:
Vi=02+8)X +rX+rY +r) +rY),
Vo =@B+s) X +rX+rY' +r) +r),.

(8.23)

(8.27)

(8.28)

(8.32)
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These are (8.18)and (8.18),. Differentiating these two equations with respectito
replacing)’? and erasing/! , we get:

Vip =24 9)Xee +r X+ Y +r Y 41V +r X,

8.33
( ) yng:(3+S)Xmm+r)(+ryl+ry2+rym1+r)(m.

We then replace this value O’ijz in (8.29) and solvet,,: this yields (8.18).

To conclude, we replac#,, so obtained in (8.27) this yields (8.18). We replacey;1
andyyz2 from (8.32) in (8.27) and in (8.27): this yields (8.18) and this yields (8.18)
Thanks to (8.18)(got) we observe that

(8.34) P,=P+rY +rY+rX,=P.

Differentiating (8.18) (got) and (8.18) (got) with respect ta: then yields (8.18)and
(8.18),. We replace);, and})?, from (8.18) (got) and (8.18), (got) in (8.27): this
yields (8.18). Finally, to obtain the very last (8.18) we differentiate (8.18) (got) with
respect tor.

The proof of Proposition 8.16 is complete. O

We claim that the boundim GYM(E,) < 5 is attained for the model (8.4). Indeed,
with 0 = r = sand0 = g' = g* = h (whencek* = 0) (8.24) isY), = 0 and then the
seven equations (8.27) are:

(0=-V242z),,
0=-Vu—20Yh+2X+2Y, + 22V},
0= —ng - X+ 23?;1,

(8.35) 0=,
0=—X,.
0= _yal,‘a:7

0 = _2 yal;yl + X:B:m
having the general solution
X=a—d+ex,

(8.36) V=b+dr+2ey’,
V?=c+2ay' +3ey? +dax.

depending on five parameters, ¢, d, e € K. Five generators a9 (E&,) are:

( D ::l'ax —|—2y1 8y1 +3y20y2,
Ly = =0y + 30, + 210,

(8.37) LY =0, +2y' 0,
EQ = 8y1,
L £3 = 8y2.

The commutator table
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[D £ [£& [£ [Ls

D |0 —Ly | =L | 2Ly | —3L3

Li| L |0 —L510 0

ey (Lo |0 —2L310

Lo 2L510 2L3 |0 0

L3 3L31]0 0 0 0
Table 3.

shows that the subalgebra spanneddyy £, L., L5 is isomorphic to the unique irre-
ducible 4-dimensional nilpotent Lie algebs@ ([OV1994,[BES2005]). The®YM(E,)

is a semidirect product & with n}. The author ignores whether it is rigid. The following
accessible research will be pursued in a subsequent ptidtica

Open problem 8.38. Classify system&,) up to point transformations. Deduce a com-
plete classification, up to local biholomorphisms, of adllranalytic generic submanifolds
of codimension 2 i3, valid at a Zariski-generic point.

8.39. Almost everywhere rigid hypersurfaces.When studying and classifying differen-
tial objects, it is essentially no restriction to assumerthie symmetry groups to be of
dimension> 1, the study of objects having no infinitesimal symmetriesigean inde-
pendent field of research. In particular)if ¢ C**! (n > 1) is a connected real analytic
hypersurface, we may suppose tdan hol(M) > 1, at least. So leC be a nonzero
holomorphic vector field withiC + £ tangent tal/.

Lemma 8.40. ([Cal9324, St1996, BER1999f)in addition M is finitely nondegenerate,
then

(8.41) Si={peM: L(p) € T;M}
is a proper real analytic subset @ff.
In other words, at every point belonging to the Zariski-dense subgét >, the real

nonzero vectol(p) + L(p) € T,M supplementd M. StraighteningC in a neigh-
borhood ofp, there exist local coordinatés= (zi, ..., z,, w) with T§{M = {w = 0},
ToM = {Imw = 0}, whenceM is given bylmw = h(z, z, Rew), and with£ = 2.

The tangency og% + a% = a% to M entails that: is indendepent oi. Then the complex

equation ofM is of the precise form
(8.42) w=w+106(z, %),
with © = 2h simply. The reality ofh readsO(z, z) = O(z, z).

Definition 8.43. A real analytic hypersurfack/ ¢ C"*! is calledrigid at one of its points
p if there existsC € hol(M) with

(8.44) T,M =TsM ®R(L(p) + L(p)).
Similar elementary facts hold for general submanifoldsobfisons.

Lemma 8.45.Withn > 1 andm = 1, let M be a (connectejll submanifold of
solutions that is solvable with respect to the parameter§.thére exists a nonzero
L+ L* € GYPM(M), then at Zariski-generic points € M, we havel(p) € F,(p)

and there exist local coordinates centeregha which L = 8%, L= %, whenceM has
equation of the form
(8.46) y=>b+1l(z,a),

with IT independent of.
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The associated systerdi\) has then equations, that are all independent gf

8.47. Study of the Lie symmetries of&;). In Example 1.28, it is thus essentially no
restriction to assume the hypersurfadec C3 to be rigid.

Theorem 8.48.([GM2003b, FK2005&, FK2005b]jhe model hypersurface, of equa-
tion
11 1,152 s151.2
(8.49) w:u_)+i2zz +zzz_+zzz
1— 2222
has transitive Lie symmetry algebijal(1/,) isomorphic toso(3, 2) and is locally biholo-
morphic to a neighborhood of every geometrically smootimipaii the tube

(8.50) (Rew')? = (Re2})? + (Re 2})?

over the standard cone &°. Both are Levi-degenerate with Levi form of rank 1 at every
point and are 2-nondegenerate. The associ@eH system(Ey,)

1

Z (yml)za Yplglgl = 0

(plus other equations obtained by cross differentiatibas infinitesimal Lie symmetry
algebra isomorphic teo(5, C), the complexificatiomo(3,2) ® C.

Through tentative issued ([Eb2006, GM20D06]), it has beapetted thafl/, is the
right model in the category of real analytic hypersurfadésc C? having Levi form
of rank 1 that are 2-nondegenerate everywhere. Based oigttayr of the simple Lie
algebraso(5, C) (Theorem 5.15), Theorem 8.105 below will confirm this expgon.

(8.51) Yp2 =

8.52. Preparation. Thus, translating the considerations to HmE language, withn = 2
andm = 1, consider a submanifold of solutions of the form
y=>b+1l(z,a)
(8.53) 2zta + 2'ata® + alalx?
=b + + 04,

1 — 22a?

whereQy, is a function of(xz, a) only. The term2 z'a' corresponds to a Levi form of rank
> 1 at every point. The term'z'a? guarantees solvability with respect to the parameters
(compare Definition 2.12). Let us develope

(854) H(SL’, a) = Z Z Hkl,szl,lz (x1>kl <x2)k2 (CLl)ll <a2)l27

k1,k220 11,1220

with Hklyk27llyl2 e K. Of COUfSGHLO’LO =2, H270’071 =1 andHO,LQ,O =1.

Lemma 8.55. A transformation belonging tG, , insures

Ik, 5000 =0, ki +ky >0, o040, =0, L+l >0,
(8.56) Iy, ko0 =0, ky + ke > 2, I 00,0, =0, L+l =2,
Iy, ks20 =0, ki + ko = 2, 00,0, =0, L+l =2

Proof. Lemma 7.11 achieves the first line. The monomialbeing factored bya' +
O2(a)], we seta' := a' + O(a) to achievell, g, = 0,11 + I > 2. As in the proof
of Lemma 7.18, we pass to the dual equatica y — I1(z, a) to completdl;, x,10 =0,

ki + ko > 2. Finally, z' 2! is factored byja? + Oy (a)], so we proceed similarly to achieve
the third line. O
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Sincell(z, a) is assumed to be independentpthe assumption that the Levi form of
M c C? has exactly rank 1 at every point translates to:

(8.57) 0

M0 I,
L2, Il2,2

For later use, it is convenient to develope somehbwith respect to the powers of
(at, a®):
2ztat + 2'ata® + alata?
1 — 22a?
+a®b(x) + a'a® d(x) + a’a® e(x) + a'a'a' f(z) + a'a'a® g(x)+
+ (a")*R+ (a")*a* R+ a'(a®)*R + (a®)*R,

y=>0+
(8.58)

with R = R(z, a) being an unspecified remainder. Thanks to the previous lertima
coefficientsa of o' andc of a'a' must vanish. The functioh is anOs.

Lemma 8.59.The functiorb depends only on!, is anO3(z') and the functiorg satisfies
gm2$2(0) =0.

Proof. Developing[l — 2%a?]™! = 1 + 2%a® + (2%a?)? + O3(2%a?), inserting the right
hand side of
y—b=a'[2z'] + a*[z'z" + b(z)] + a'a' [2?] + a'a®[22"2* + d(2)]+
(8.60) +d’a’[z'z'a® + e(z)] + d'a'd [f(2)] + a'a'a®[272* + g(z) ]+
+ (a")*R+ (a")*a® R+ a'(a®)* R+ (a®)*R

in the determinant (8.57) and selecting the coefficientssof of a!, of «?> and ofa'a’,
we get fourPDES:

0=2b,2,

0=2d,2 —2b,1,

0=4e,2 —22'd,2 — 22 ' b,1 —d,2 by,
0=2g,2—2d, — [62' +3b,1] f,2.

(8.61)

The first one yield®d = b(z'), which must be ai®;(z'), because the whole remainder
is anQ,. Differentiating the fourth with respect te, it then follows thaig,,>(0) = 0.

8.62. AssociatedPDE system(&;). Next, differentiating (8.60) with respect to', to
r'z! and tox'z'z!, we computey,: andy,:,:, we substitute;, andy; ; and we push the
monomialse?a?, a'ata' anda'a'a? in the remainder:
(8.63)

y1 = 2a' + a®[22' + bu] + a'@®22° + dp] + (a*)*R+ (')’ R+ (a')? @*R,

Y11 = a’[2+bug] +a'@®[da] + (@®)*R+ (') R+ (a')?a®R,
Y111 = a*[byigigt] + ata®[dyigig] + (62)?R + (a')? R+ (a')?a®R.

Here, the written remainderannot incorporatea'a!, so it is said that the coefficient
of a*a' does vanish in each equation above. Solvingdoanda? from the first two
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equations, we get

(8.64)
gL 20" +b ] 272 + dn
RS T S B e
+ (y1.)* R+ (1)’ R+ (11)* w11 R,
]. d 1,1
2 xlx 2 3 2
= —| - — R R R.
a Y11 [2 +bx1x1:| Y1Y1,1 [2(2 +bx1x1)2} + (y1,1)" R+ (y1)” R+ (y1)“y1.1
We then get (notice the change of remainder):
(8.65)
1 22! + b, 222 + d
1.1 2 T 2 T 3 2
= - Sl et A = v R R
aa =~ (Y1) — v1y11 |:4+2b:v1m1:| (Y1)“y1,1 [8+4bm1x1] +(y1)° R+ (y11)° R,

1 dxlxl
@'’ =y LHT} - @) [ A12b,. 2 ] + (1)° R+ (y1.1)*R,

a’a® = (1)° R+ (y11)° R,
6! + 3b,1
16 + 8 b, 1,1

1 3 2
- R R.
3 +4bm1$1] + (y1)" R+ (y1,1)

a'a'a' = —(y1)*y1. [ } (1) R+ (11.1)*R,

a'a'a’® = (y1)2 Y11 [

Differentiating (8.60) with respect te?, substitutingy, for y,> and replacingl, by b,:
thanks to (8.61) we get
(8.66)
yo = a'a' + a'a®[22' + b] + d?a?[zla! + e,2] + atalal[f,2] + atala®[227 + g ]+
+ (@H*R + (a')?a®? R+ a'(a®)? R + (a*)®R.
Replacing the monomials (8.65), we finally obtain:

(8.67)
1 2g.2—2d, — (61’1 + 3 bxl)fo (21’1 + bxl) d, i

—— 2 2 _
Y2 =7 (y1)" + (y1)y1a 16+ 8b,1n (A1 2by)?

+ ()’ R+ (y1,1)2 R.

Thanks to (8.61) the first (big) coefficient ofy; )2y, 1 is zero; then the remainder coef-
ficient is anO(z'), hence vanishes at= 0, together with its partial first derivative with
respect tar?. Accordingly, bys* = s*(x!, 2?), we will denote an unspecified function
satisfying

(8.68) s'(0)=0 and s:»(0)=0|

2

Lemma 8.69. The skeleton of theDE system(&s) associated to the submanifold.58)
possesses three main equations of the form

(= L ) )t )+ ()R

4
oy [()?s" 4+ () r+ (w)* r+ (1)°r] + (111)*R,
1 .
(Ag,) 2 = Sy + ()1 + ()" + (1)1 + (1) Rt

+ya[()?r+ )’ r 4+ () r+ ()’ r] + (1)°R,
Y111 = (y1)’r+ (y1)'r+ Y11 [f +yr+ ()’ r+ (n)? r] +
L + (y)?[r+yr+ (W)’ r+ ()’ ] + (111)° R,
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where the letter denotes an unspecified function(ef, 22), and where the coefficiest
of (y1)?y1.1 in the first equation satisfig8.68)

Proof. To get the second equation, we compute:

Y12 = a1a2[2 + bxlml] + a’ a’ a [gm :BQ] (a1)3 R+ (a’2)2 R
(8.70) 1
= 5 Yy + (y1)%yrar+ (1)* R+ (y11)* R
The third equation is got similarly from (8.63)To conclude, we develope the first two
equationsnod [(y1)%, (y1,1)?] and the third onenod [(y1)*, (y11)%]. O

This precise skeleton will be referred to aAs. in the sequel. With the letter, the
computation rules arest.r = r+r =r+s* = r-r = r; sometimess* may be replaced
plainly byr.

8.71. Infinitesimal Lie symmetries of(&;). Letting £ = X' ;2 + &% ;% + Y 4. be a
candidate infinitesimal Lie symmetry and applying

0 0 0 )
5(3) — )(’1 XZ s Y v, 2
81+ 82“—:)) ‘|‘ 181+ 28y2+
(8.72) +Y T P I VA IV
. M s 12 5y 2’183/2,1 2282,2
0
+Y +-FY
B Oy 22 0Y22.2
to the skeleton\¢,, we obtain firstly, computingnod [(v1)®, y1.1]:
1
0=-Yo+ 51 Yit
(8.73) + ()’ r X+ () r?(l ( DR A2+ () r X2+
+Y 1 [(y)*r + ()’ DA+
+ Y11 [(n)s + (yl) r+ (y1)4 r],
secondly, computingrod [(y1)®, y1.1]:
1
0=-Yi2+ AL Y+
(8.74) F )P r X 4 () e X+ ()P r A+ ()t r 2+

+ Y [(y1)*r+ (1)’ + (g1)* r]+
+ Y11 () r+ ()’ r+ () 1],
and thirdly, computingnod [(y1)?, (y1.1)%]:
0=-Yi 11 +yi1 X'+ X+
Yy Xy X 4y (1) X i (n)? X%
+Y, [(yl)z r] + Y [r +yrir+ () r} + Y11 Y1 [r +yrir+ () r} +
+yi1 Y [r +yir+ (y1)? r} .

Specializing ton = 2 the formulas (3.9)(ll), (3.20)(Il) and (3.24)(ll), we g&f;, Y5,
Yi1, YicandYyqq:

(8.76) Y1 =Yu+ [V, - Xi|m+ |- X2+ [— X)) )+ [ — X ] vave.

(8.75)
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B77) Yo=Y+ |[—Xh|yi+ [V — X2 po+ [ — X vive + [ — X vove.

8.78

( )Y1,1 = Voo + 2Dy — Xpi | i + [ — X ] 2 + [V — 280, (11)*+
=280, pige + [ = X[ (0)° + [ A5 ] )0+
+ [yy —2 le} Yiat [— 2 Xfl} Yi,2 + [— 3)@1} YiYia+
+[- Xzﬂ Yyoyr1 + [ =2 Xyz} YiY1,2-

Y12—yx w2+[ym2 - xﬂ] y1+[yxy xﬂ} Yot
+ [ = Xhy] ) + [Vyy — X2y — Xy | vave + [ — X2, yovat
Xy 1)y + [ — X, 1 (y2)*+
} Y11+ [yy - Xx22 - XQH Yr,2 + [— Xﬁl} Yo,2+

(8.79) .
+[-
+ [ —2X, e+ [ - 2&)] oy

(Y111 = Vergie + [3 Vitaty — XL xlxl} Y1 + [ Xxlxlml} Yot
[3yryy 3Xxxy:|< ) [ BXxxy]y1y2+
[yyyy myy}( ) +[ BXmZyy]( )y2+
[ yyy} [ Xyzyy] (y ) Yot
(8.80) [3 N 3X 1 1} Y11+ [— 3X§121} Y12+
3 yyy } yiyia+[—3 Xﬁly} Yay1,1+
[ - } e+ [ — 6] (1) v + [ — 3 X5, yiyeyia+
[ 3)(2} y12+[—3Xqﬂ (y171)2+|:_3Xy2:| Y11Y1,2+
(Y, — 34, }y111+ [—=3XA ]y + [—4Xy1} Y1yt
[-

} YaYi,1,1 + [— 3)@2} Y1Yi,1,2-

+ o4+ + o+ o+

\

InsertingYs, Y12, Y111, Y1, Yy, in the three Lie equations (8.73), (8.74), (8.75),
replacingys, v1.2, y1.1,1 by the values they have ok, we get firstly five lineaPDEs by
picking the coefficients ofst., of y;, of (y;)?, of (y1)?, of (y1)* in (8.73):

(0= D,e,
Oszlz—F%yxh
0=V, + X% —2X1 +r Vo +5 Vg,
(8:81) S 0=2X) + X% +r X +r X241V 41, +r Xkt
Hr Vg +5 Vory +5" X,
0= 4+r X' +r X+ r Vo +rY, +r X +r Xh +r X+
\ 1 Vetpt + 1t Vary + 1 X + 8" X 57V, + 55 X

SCy’
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secondly, we get three more lineames by picking the coefficients dfy;)?, of (y1)3, of
(y1)*in (8.74):

(0=3Vy + X +4X5, —2X 0 +r X+ r X2 1 Vo +r Vg,
0=2Yy +2X%, —6X:, — X2 +r X +r X241V +rY, +r X+
(8.82) +r Vgt + 1 V1 +r X,
0=4X, +3X% +rX' +r X241V +rY, +rXn +r X +r X+
Vg + Vo Hr X +r X0 Yy, +r X,

and thirdly, we get five more line@pes by picking the coefficients ekt., of v, of y; 1,
of Y1Y1,1, of (y1)2y171 in (875)
(8.83)
(0= yxlxlml + rymlmla

0= —3Vypigty + Xhpip +r Vprgt +rVpry, +r X,

0=y =X +r X +r X2+ 1V +r Y, +r XL + 1V

3
0=—3 X 43V =90, +r X +r X2 +r X +r Vo + 1Y+
+ rXfl + r/'\fyl +r Vg +r Yy, + ré\f;lml,
1

0="6%X,, + ;ley Fr X X X At Y Yt XL X+ X+

\ +rygclgc1 +rygc1y+r~)(xllx1 _l_rX:?lxl +ryyy+r2(;1y.

Proposition 8.84. Setting as initial conditions the ten specific differentiakfficients
(8.85)
P:=P(X" X%V, X X%, Vor, Yy Xopo, Vi, Vi)

= X X Y X XLt Vo 1Yy 1 X A Vg + 1Yy,

it follows by cross differentiations and by linear subdiins from the Lie equations
(8.81), i = 1,2,3,4,5, (8.82), j = 1,2,3, (8.83), i = 1,2,3,4,5, that X, X2,
yx2s X121 Xy21 Xxllya XSC22502’ yx1x2s Xlgy’ X§2y’ yxlya Xyly’ yx2ya XSC21Z‘11‘2’ yxlxlxla XSC211‘21‘2

xT
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Vitwtazy Xy Vatarys Vatyys Vazgys Vyyy @re uniquely determined as linear combina-
tions of (X, X2, V., X}, X2, Vor, Vy, X2 1, Varar, Vyy ), Namely

3

(Xlﬂé , X:?l% s ym2:P7
xL 2P, X22p,

X;1y g P, X§2x2 ; P, ym1m2 i P7

X:§2y = P, X:v22y = P, Vaty = P,

Xyly 2 s yzQy g P7

(8.86) X%, 2p, Vatgizt = P,

X§1x2x2 g P, yxlxle 1:7 P7

X2 0, 2P, Vargry 2P,

ymlyy g P7

y:(:ny 2 P7

L Vyyy ZP.

Then the expressior® are stable under differentiation with respectitq to 22, to
y and moreover, all other, higher order partial derivativestd, of X2, of )V may be
expressed aB(X', X2V, X}, X2, Vo1, Vy, X212, Varar, Vyy ) -

Corollary 8.87. Every infinitesimal Lie symmetry of tR®E system(&s) is uniquely de-
termined by the ten initial Taylor coefficients

(888) X1(0)> X2(0)7 y(0>7 Xyl(0>7 X$22 (0)7 Vot (0)7 y?J(O)? X:§1$2 (0)7 Vitg (0)7 yyy<0)

Proof of the propositionAt first, (8.83) yields (8.86);; (8.81) yields (8.86); differen-
tiating (8.81) with respect tar! yields (8.86); differentiating (8.81,) with respect tay
yields (8.86),; differentiating (8.81) with respect tac'z! yields (8.86).; and differenti-
ating (8.81) with respect tayy yields (8.86),. Also, rewriting (8.81) as

1
(8.89) X = —5 Ve,
we get (8.86); and rewriting (8.81) as
1 1
(8.90) Xl = 3 X2 + 5 Yy +r Ve +5" Voran,

we get (8.86).

Next, differentiating (8.8L)with respect tor' and (8.81) with respect tor?, we get,
taking account 00 = V.2, = V1,2 = Vy1,1,2, replacingd;1 2 by —% V,1,1 and solving
for X2

1 1
O = Xx1$2 —'— 5 :)):lel7
XZ?QZ,Q = —(1 + S;Q) yxlxl -+ I’yxl.

This is (8.86). Differentiating (8.91) with respect tar!, taking account of (8.83) we
get (8.86):

(8.92) X2 oo =1Vt + 1 Vpipr.

(8.91)
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We then replacet’), from (8.90) in (8.81):

(8.93) 0= 42X, +rX' +r X +r X5 +rVn +r),+

+r Vgt + 5 Vor, +5" X0

We differentiate this equation with respectitq knowing),: = 0:

0=70 +2X5, +r X +r X +r X2 +r X+ X+ 1V + 1Y+
+t Vgt + St Yoty + Sk X1 + 5 Xptpige.

We replace:X’, from (8.89);X% ., from (8.91); we differentiate (8.81)with respect to

z'z! to replaceX’, , , byrY,.,1, thanks to (8.83) and we reorganize:
(8.95) 2. X +sh2 Vurytsie X1yt = =X o1 X r X241 X1 Vor 1 Yyt Vo
We differentiate (8.81)with respect tq; and (8.81) with respect ta':

(8.94)

1
X:r}Qy + 5 yxly =0,
yxly — 2)(21%,1 = _X§1x2 + ryml + ry:vlzvl-
For the three unknowng’’, ., V,1,, )(12y, we solve the three equations (8.95), (8,96)

T T

(8.96),, remindings’.(0) = 0:
Xy =r X +r X2+ r X2 4tV 1Y, + r Vg +r X2,
(8.97) Vg =t X+ 0 X2+ v X+t Vo + 1Y+t Vo +r X2,
Xy =r X 0 X2 4 r X+ 1V + 1Y, + 1t Vo +r X
We get (8.86), and (8.86).
Thus, we may replac&’, , and),:, in (8.81), to get (8.86):
(8.98) XL =—2X +r X' +rX?+r X0+ rVa +r Y+ Vg +r X
Next, we differentiate (8.83)with respect tox' and we replace:X’}, from (8.90);
X2 from (8.98); V.1, from (8.97); X!, , from (8.97); V,1,1,1 from (8.83); and we

compare with (8.83) we differentiate (8.96)with respect ta:! and (8.96) with respect
to z!; solving, we obtain four new relations:

Xhigig =1 X +r X2+ r X+ 1V +r Yy + 1 Vo + 1 X0,
Vpraty = 1 X +r X2+t X%+t Vo + 1Yy + 1 Vi +r X2,
Xy =1 X 122 1 X5 4+ 1V + 1Yy + 1t Vo +r X s,

X2 o =r X+ r X2+ r XS +r Y + r Yy +r Vora + rX2 .

We get (8.86), and (8.86),.
Next, in (8.81), we replace:X’!, from (8.90); X2 from (8.98);),., from (8.97); we
get:

(8.96)

(8.99)

(8.100) X =r X +r X+ X +r X+t Vo +r Y+t Vo +
. + s* szlml + s* yyy + s* Xml1y.

We differentiate (8.98) with respect td and we replaceX’; from (8.90); X2 from
(8.98); V.1, from (8.97); V,1,1,1 from (8.83); X2, . from (8.99); we get:

(8.101) A2 +2X;1y = rX1+rX2+er1+rX§2+ryx1 Yyt Vo +r X,
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In (8.82),, we replace:X’}, from (8.90); X}, , from (8.97); Y,:, from (8.97); and we
reorganize:

(8.102)

205, —6X0, — X1 = =2V +r X v X r A%+ Vo + 1 Yy 1 Vo +r X,
Differentiating (8.81) with respect toy, we replace:),., from (8.97); V,1,1, from
(8.99),; and we reorganize:

(8.103) X2, —2X)1, = =Yy +r X +r X2 v X0 1 Vo + 1Yy + 1 Vi +1 X
For the three unknowng?, ., X, , X% , we then solve the four equations (8.101),
(8.102), (8.103), (8.83)(in which we replace:t}, from (8.90); X% from (8.98); V.1,
from (8.97); X, . from (8.97)):
(8.104)

Ko =r X +r X2 v X v X 4tV 1Yy + Vi + 1 X + 1Yy,

Xy =t X +r X2 v X +r X%+t Vo +t Yy + 1 Vi + 1 X + 1Yy,

X, =r X v X v X+ X+t Vo + 0 Yy + 1 Vg +r X 1Yy,
We get (8.86) and (8.86),. Replacing thert?, ., X, in (8.100) gives

(8.105) X7 =r X' +r X +r X +r X%+ 1V + 1Yy +r Vo +r X +1Y,,.
This is (8.86).

Next, we differentiate (8.103) with respectitband we replaced’, from (8.90); X%
from (8.98);),1, from (8.97); V,1,1,1 from (8.83); X2 , , from (8.99); we get:

(8.106) Y1y + X o, —2 X1, = rX Hr X2 r X 1 Vo1 Yy +1 Vorn +r X

zlaly

Also, we differentiate (8.83)with respect toy and we replace?(y2 from (8.105);),1,
from (8.97); Xxﬁy from (8.104); V,1,1, from (8.99); we get:

(8.107) Vyryy— X1, = 1 X1 X241 X1 X2t Vot 1 Vbt Vorgr 1 X o+t V.

Also, we replace in (8.82) X, from (8.90); X2 from (8.98);),1, from (8.97); X, .
from (8.97); A7, from (8.104); X, from (8.104); we get:

(8.108) 4 X, +3 X2, = r X' r X241 X +r XAt Vor 1 Yyt Vorgn+1 Xl o+t V.

We differentiate this equation with respect:té and we replace ngyy by —2Y,1,,
from (8.89); X', from (8.98);X; from (8.97); (notice0 = V,1,2 = Vi2,); X2 ,» from
(8.91); X2 . ., from (8.92); we get:

(8.109)

=2Vt +3 X0, = T X 0 X2 X 1 X A1 Vot +1 Yyt Vot +1 X o +1 V.

For the three unknown&’), ., , Yy, X2
(8.107), (8.108); we get:
(8.110)

Xy =0 X +r X2 v X 0 X% 41V + 1Yy +r Vg + 1 X0 + 1Yy,

Yoty = rX1+rX2+er1 —|—rng Fr Yo +r Yy +r Vo +rX§1x2 +r Vyy,
Xy =0 X +r X2 v X v X% 1V + 1Y+t Vg + 1 X+ 1Yy,

We get (8.86), and (8.86).
Next, in (8.93), we replacey,:, from (8.97); X!, , from (8.97); we get:

(8.111) XA 42X, =rX' +r X +rXo+r YV +r Yy 4+t Vo +r X

,» We solve the three equations (8.106),
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We differentiate this equation with respectitand we replace?(y2 from (8.105); X% y
from (8.104); V,1, from (8.97); V,1,1, from (8.99); Xfley from (8.99),; we get:
(8.112) X, +2 X, = r X' +r X2 r X 1 X1 Vor 41 V1 Vorgr +1 X o1 V.

For the two unknowné?yly and 2

1y Ve solve the two equations (8.108) and (8.112); we
get:

(8 113) Xyly - I’Xl—l—rX2—|—er1 +FX§2 +rYVn, —|—I’yy—|—l’yx1x1 —I—r)(fle _|_ryyy7
: X, =r X v X2 v X +r X% + 1V 1Y+t Vg +r X+ 1Yy,

We get (8.86),.
Next, we differentiate (8.113with respect ta' and we replaceX s, X2, X1 , Yoy,
yxlxlxln Xx21$1$2| yxlyy; we get:

(8.114) X1, = r X +r X2 41 X, +r X 4+t Vo 4+ 1Yy + 1 Vg + 1 X 1Yy,

vy

Also, we differentiate (8.113)with respect ta:' and we replace:
(8.115) X1, = r X +r X2 r X +r X+t Vo1 + 1Yy + 1 Vg +1 X2 1Yy,

Also, we differentiate (8.83)with respect tg/; we replacelf;lyy from (8.114), we replace
X2, from (8.115); and we achieve other evident replacementgatie

rrxty
(8.116) Vyyy = r X' +r X2 +r X, +r X+t Vo + 1Y, + 1t Vo +r X + 1Yy,
This is (8.96),, which completes the proof. O

Theorem 8.117.The boundlim GYM(Es) < 10 is attained if and only if&;) is equiv-
alent, through a diffeomorphisfa?, 2%, y) — (X!, X2 Y), to the model system

(8118) Yx2 - 0, Yxlxlxl — 0
Proof. Firstly, settingr = s* = 0 everywhere, the solution to (8.81), (8.82), (8.83) is
X'=k+(c+j)a' —ba* —hy+ex'as' —da'a® + faly — ea?y,
(8.119) X% =g+ 2na' +2j2° —da*a? + 2ea's? — falal,
Y=a+2bz'+2cy+dztzt +2exly+ fyy,

wherea, b, c,d, e, f, g, h, j, k € K are arbitrary. Computing the third prolongations of the
ten vector fields

(8.120)
9 9 9
Oxl’ 0x?’ oy’
0 0 0 0 0 0 0 0
_ .2 9 1 9 1 9 o 1 9 2 U L 1 9
v 8w1+2w oy’ v 8w1+2y8y’ v 8w1+2w 0x?’ y8w1+2w 0x?’
0 0 0 0 0 0
1.2 9 22 0 1109 11 2.y 9 1.2 9 1.9
T o T 8w2+ww dy’ (' x wy)axl—i—%nw aw2+2w yay,
0 0
aly — —a2la' = 4 yy=—
Oxl Ox? oy

one verifies that they all are tangent to the skelefon= 1 (y1)%, 111 = 0. Thus
the bound is attained. One then verifids ([FK2005a]) thatstpenned Lie algebra is
isomorphic toso(5, C).
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Lemma 8.121.Assuming the normalizations of Lemma 8.54, the remaifiden (8.53)
isanOz(x', a'):

2z'al + 2'xta® + alal2?
2

(8.122) y = b+ + (') R+ (2")2%a' R+2'(a')*R+(a')*R.

1—22%a
Proof. Indeed, writing
(8.123) y=0b+ 2" AY 4+ ot A% ¢ 2'2t A?0 4 2tat AV 4 ata A%+ Os(2t ) at),
with A% = A% (2% a?), and developing the determinant (8.54) with respect to tvesps
of (2!, a'), the vanishing of the coefficients aft., of 2!, of a' yields the system
0=AL A%,
(8.124) 0=AM AL, —2A20 A% — AL ALY
0=AM A%, — AL A% —2A%7 AL
If the first equation yieldslellgO = 0, replacing in the second, using’ = a? + O,, we
deduce than’, = 0 also. Similarly,A”, = 0 impliesA';’ = 0. Since the coordinate
system satisfies the normalizatibif0, a) = II(x,0) = 0, necessarip\* = O(a?) and
A%t = O(z?). We deduce:

(8.125) 0=AY =A%

Redeveloping the determinant, the vanishing of the coefftsiofz'z!, of z'at, of alal
yields the system

0=A A%, —2A2) AL,

(8.126) 0= AM AL — AL AL — 4 AN,
0= A AN, —2A07 A

SinceA™'(0) = 2 # 0, we may divide byA™!, obtaining aPDE system with the three

z2a2
functionsA?y ,, AL ,, A%, in the left hand side. We observe that the normalizations of
Lemma 8.55 entail

(8.127) A*® = a® + O(2%a?), AN =24+ 0(2%a?), A%? = 2% + O(2%a?).
By cross differentiations in the mentionedEe system, it follows that all the Taylor coef-

ficients of A20, ALt A%2 are uniquely determined. As already discoveredin [GM2(03b
the unique solution

a® 2 x?
8.128 A= —— Abl= = AO2Z— &
( ) 1 — 22a?’ 1 — a2a?’ 1 — 22a?’
guarantees, when the remaind®y(z!, a') vanishes, that the determinant (8.45) indeed
vanishes identically. O

Conversely, suppose thditm G (E5) = 10 is maximal.

With ¢ # 0 small, replacindz!, 22, y, a', a®, b) by (ex!, 22, €%y, eal, a?, eeb) in (8.122)
and dividing byee, the remainder terms become small:
2z'al + 2'xta® + alal2?

1 — 22a?
Then all the remainders in the equatiahg, of the skeleton aré(s). We get ten gen-
erators similar to (8.120), plus dn(e) perturbation. Thanks to the rigidity @b (5, C),
Theorem 5.15 provides a change of generators, close ttkel 0 identity matrix, lead-
ing to the same structure constants as those of the ten \estttsr (8.120). As in the end

(8.129) y=>b-+ + O(e).
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of the proof of Theorem 5.13, we may then straighten someaatevector fields (exer-
cise) and finally check that their tangency to the skeletguligs that it is the model one.
Theorem 8.117 is proved. 0J

Corollary 8.130. Let M C C3? be a connected real analytic hypersurface whose Levi
form has uniform rank 1 that is 2-nondegenerate at everytpdinen

(8.131) dim hol(M) < 10,

and the bound is attained if and onlyMf is locally, in a neighborhood of Zariski-generic
points, biholomorphic to the modéf,,.

§9. DUAL SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

9.1. Solvability with respect to the variables.Let M be as in§2.10 defined by =
[I(x, a,b) or dually byb = 11*(a, =, y).

Definition 9.2. M is solvable with respect to the variabldsthere exist an integer
xk* > 1 and multiindicesi(1),...,0(n) € N with [6(])] > 1forl = 1,...,n and

maxi <<, |0(1)] = K%, together with integerg(1), ..., j(n) with 1 < j(I) < m such that
the localK-analytic map

©3) K73 (n,y) — ((7(0,2,9)' %", (120, (0,2,))
is of rank equal tov + m at (z,y) = (0, 0)

If M is a complexified generic submanifold, solvability withpest to the parameters
is equivalent to solvability with respect to the variablescausdl* = II. This is untrue
in general: withn = 2, m = 1, consider the system.. = 0, y,1,» = 0, whose general
solutions isy(z) = b + z1a with z* absent.

To characterize generally such a degeneration propertgewelope both

y =1(x,a,b) = Zxﬁﬂjab and
BeENT

YV =1"(a,z,y) = Zaﬂ*]xy

deNP

(9.4)

with analytic functionsﬂg( b), IT*}(z, y) and we introduce tw&>-valued maps

1<jsm
(9 5) QOO : a7 — (H ( )661\1" and
. . . 1< <m
Qoo : (x,y) — (H f5<x7y))éelilp

1<j<m 1<G<m

Sinceb — (I1)(0,b)) andy — (11%(0,y)) >~ are already both of rank at the
origin, the generic ranks of these two maps, defined by g#tie nonvanishing of minors

of their infinite Jacobian matrices, satisfy

genrk Q.. = m + pup and
(9.6) x
genrk Q5 = m + nyy

for some two integer8 < py < pand0 < ny < n. So at a Zariski-generic point, the
ranks areequal to m + py and tom + n .

Proposition 9.7. There exists a local propé€-analytic subser ,, of K x Kt x K x K3
whose equations, of the specific form

(9.8) Sy = {T’V(a, D)=0,veN, ri(ry) =0 pe N},



46 JOEL MERKER

are obtained by equating to zero & + pa) x (m + pag) mMinors ofJac Q. and all
(m+na) x (m+na) minors ofJac Q% , such that for every point = (z,, yp, a,, b,) &
Y m, there exists a local change of coordinates respecting épaation of the variables
(z,y) and(a, b)

(9.9) (x,y,a,b) — (o(z,9), ha, b)) =: (/. ¢/, d’, V)
by whichM is transformed to a submanifolti’ centered and localized at = p having
equations

(9.10) y =1'(2,d',b') anddually ¥ =1""(d,2,y)
with IT" andII”* independent of
(9.11) (2py1s--->x,) andof (ay .y,....a).

SoM’, may be considered to be living i x K7 x K2 x Ki and in such a smaller
space, ap’ = p, itis solvable both with respect to the parameters and tovtr@ables.

Interpretation: by forgetting some innocuous variablés, Zariski-generic point, any
M is both solvable with respect to the parameters and to thablas. These two as-
sumptions will be held up to the end of this Part I.

9.12. Dual system (£*) and isomorphisms GYM(E) =~ 6@9)2(]25(8)) =
SYM(Vs(E¥)) ~ SYM(E*). To a system §), we associate its submanifold of
solutionsM := Vs(€). Assuming it to be solvable with respect to the variables and
proceeding as ir§2.10, we can derive aual system of completely integrable partial
differential equationsf the form

(€ o (@) = G (a,0(@), (B9 (@) .-, )

where(j,v) # (7,0) and# (j(1),4(l)). Its submanifold of solution¥s(E*) = Vs(&)
has equations dual to those$(&).

Theorem 9.13.Under the assumption of twin solvability, we have
(9.14)  GYM(E) ~ 6YM(Vs(€)) = GYM(Vs(E)) ~ GYM(E),
throughl «— L+ L* = L* + L «—— L.

§10. FUNDAMENTAL PAIR OF FOLIATIONS AND COVERING PROPERTY

10.1. Fundamental pair of foliations on M. As in §2, let €) and M = Vs(&) be
defined byy = I1(x, a, b) or dually byb = 11*(a, x, y). Abbreviate

(10.2) z:=(z,y) and c:=(a,b).
Every transformatiotiz, ¢) — ((2), k(c)) belonging toG, , stabilizes both{z = cst.}
and{c = cst.}. Accordingly, the two foliations of\

(10.3) Fo=UMn{c=c} and F,:=|JMn{z=2}

are invariant under changes of coordinates. We(€allF,) the fundamental pair of foli-
ationson M. The leaves of théoliation byvariables, aren-dimensional:

(10.4) Fu(co) = {(z,co) Dy = H(x,co)}
The leaves of théoliation byparameter$, arep-dimensional:

(10.5) Fo(co) = {(20.¢) : b=1I"(a,2)}
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We draw a diagram. In it, the positive codimension is invisib
(10.6) m=dimM —dimF, —dimF, > 1

b )

Ye

10.7. ChainsI';, and dual chainsT;. Similarly as in [GM2004, Me2005a, Me2005b,
[MP2005] (in a CR context), we introduce two collectiofis)i<r<, and (L})1<q<p Of
vector fields whose integral manifolds coincide with thevéssaofF, and ofF:

( RN )
L, = — — b) — k=1,...
k axk +; axk (.T,CL, )8yj7 9 y 1,
(108) 0 < oI B
q aaq+; 8,1( ) 7y)@7 q=1, P

Let (z0,c0) = (20, Y0, a0,b0) € M be a fixed point, letr; := (z1,...,27) € K* and
define the multiple flow map
(10.9)

{ Lo, (%0, Yo, a0, bo) := exp(z1L)(po) := exp (%l— ( (eXp(x%Ll(Zo,Co))) - ))
= (xo + x1, H(xo + 21, ag, bo), ao, bo).
Similarly, fora; = (ai, ..., d}) € K?, define the multiple flow map
(10.10) L;, (o0, Yo, ao, bo) = (xo, Yo, ao + a1, II*(ap + ax, xo, yo))-
Starting from thg 2, ¢o) = (0, 0) and moving alternately alorfg,, F,, F,, etc, we obtain
[y (x1) == Ly, (0),
[y(21,a1) ==L ( .(0)),
P21, a1, 22) = Ly (L, (Lay (0))),
) = Lo, (Lay (L, (L, (0)))),
and so on. Generally, we gebainsT’y, := Iy ([zalx), where[zaly, = (z1, a1, 22, a2, .. .)
with exactlyk terms, where each, € K" and eachy; € K?.
If, instead, the first movement consists in moving alépgwe start withl;(a,) =
L; (0), I'5(ay, 1) == Ly, (L}, (0)), etc, and generally we getual chaind; ([az]i.), where

lax]y, == (a1, x1, a2, za, ... ), With exactlyk terms. Bothl', andl'; have range in\1.
Fork =1,2,3,-- -, integers;, ande; are defined inductively by

e1+ex+eg+ -+ ep = genrky (I'y),
el +es+es+ -+ e = genrkg (I';).
By (10.9) and (10.10), itis clear that = n, ex = p, e} = p, ande} = n.

(10.11)

F4($1, a1, T2, 02

(10.12)
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Example 10.13.For y,, = 0, the submanifold of solutiond/ is simplyy = b + xa,
whence

1—‘1('-'2:'1) = (.1'1,0,0,0),
(1014) Fg(l’l,al) = (.Tl, O,al, —xlal),

Ls(z1, a1, 22) = (21 + 29, X201, a1, —2101).

The rank at0, 0, 0) of I'; is equal to two, not more. However, its generic rank is equal t
three. Similar observations hold for the two submanifoldsadutionsy = b+ xxa + xaa
andy = b+ za! + zza® (in K5).

Lemma 10.15.If genrky (I'y+1) = genrkg (I'x), then for each positive integér> 1, we
havegenrky (I'y1;) = genrkg (I'x). The same stabilization property holds 1.

10.16. Covering property. We now formulate a central concept.

Definition 10.17. The pair of foliationgF,, F,,) is covering at the origiif there exists an
integerk such that the generic rank bf, is (maximal possible) equal timg M. Since
for a; = 0, the dual(k + 1)-th chainI';_, identifies with thek-th chainIl';, the same
property holds for the dual chains.

Example 10.18.With n = 1, m = 2 andp = 1 the submanifold defined by* = ' and
y? = b* + xa is twin solvable, but its pair of foliations is not coveringthe origin. Then
SYM(M) is infinite-dimensional, since far = a(y') an arbitrary function, it contains
a(y') Biyl +a(b') 2.

Because we aim only to study finite-dimensional Lie symmgtgups of partial dif-
ferential equations, in the remainder of this Part |, we wolhstantly assume the covering
property to hold.

By Lemma 10.15, there exist two well defined integgersand p* such that
es,eq,...,eu1 > 0, bute,;; = 0foralll > 2 and similarly,eti,,e;;,...,e’;“r1 > 0,
bute;.,, = 0forall / > 2. Since the pair of foliations is covering, we have the two

dimension equalities
n+p+es+---+eu =dimg M=n+m+p,

(10.19) . S
ptn+tes+---+e.y =dmg M=n+m+p.

By definition, the ranges df,,., and of ;. , cover (at least; more is true, see: Theo-
rem 10.28) an open subset®f. Also, it is elementary to verify the four inequalities

p<+m, pe< 1+m,
p<pt 41, WS pt L

In fact, sincel’;. .1 with z; = 0 identifies with[;, the second line follows.

(10.20)

Definition 10.21. Thetype of the covering pair of foliatiori§,, F,) is the pair of integers
(10.22) (py 1), with  max(p, 1) < 1+ m.

Example 10.23.(Continued) We write down the explicit expressiond’gfand ofI's:
(10.24)

Ly(21, a1, @2, a;0) = (21 + @2, 2201, a1 + ag, —T101 — T1a3 — T2as, ),
Ds(21, ar, @, as, ©3;0) = (21 4 @2 + @3, 201 + 2301 + T302, a1 + A

— T1a1 — Tr1a2 — .Z’QCLQ).
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Here,dim M = 3. By computing its Jacobian matriX;; is of rank 3 at every point
(71,a1,0, —ay, —21) € K> with a; # 0. Since (obviously)

(10.25) [s(21,a1,0,—ar, —z1) =0 € M,

we deduce thatl's is submersive (“covering”) from a small neighborhood of
(z1,a1,0, —a1, —z1) in K® onto a neighborhood of the origin it.

10.26. Covering a neighborhood of the origin inM. For (zy, ¢cy) € M fixed and close
to the origin, we denote by, ([zaly; (z0, co)) and byl'; ([az]y; (20, o)) the (dual) chains
issued from(zo, ¢o). For given parametetsal, = (x1, a1, o, ... ), we denote by—zaly
the collection(- - - , —z5, —a;, —x2) With minus signs and reverse order; similarly, we
introduce{—az|;. Notably, we havé _,, (L., (0)) = 0 (becausé _,, .., (-) = Lo(:) = Id),
and alsd__,, (L* , (L, (L;,(0)))) = 0 and generally:

(10.27) Ly ([—zaly; T ([zali; 0) = 0.
Geometrically speaking, by following backward theh chainl';,, we come back to.

Theorem 10.28.([Me20054 Me20085b],4]) The two mapg’,,, andI’;,.,, are sub-
mersive onto a neighborhood of the origin iat. Precisely, there exist two points
[zal9, ., € KWt andlax]),.,, € K+ 0P arbitrarily close to the origin with
Uy ([zaly, ;) = 0andTy,.  ([ax]y,. ;) = 0 such that the two maps

(10.29) { Kt Dntip - [xa]guﬂ — F2“+1([xa]zu+1) eM and

Ke W +0p 5 a9y 11— F§M*+1([ax]2u*+l) cM
are of rankn + m + p = dimg M at the points[za]3, and [az]5,. respectively. In

particular, the ranges of the two maps,,,, andI%,.,, cover a neighborhood of the
originin M.

Letn.(z,¢c) := z andn.(z, ¢) := ¢ be the two canonical projections. The next corollary
will be useful in Section 12. In the example above, it alstofet that the map

(10.30) [zaly — WC(F4([CL’G4])) = (a1 + o, —XT101 — T1a9 — x2a2) e K2
is of rank two at all pointgeal} := (9, a?, 0, —a?) with af # 0.

Corollary 10.31. ([Me2005a] Me2005b],+{]) There exist two pointgral, € K#r)
and [ax]9,. € K ") arbitrarily close to the origin withm.(I'y,([za]3,)) = 0 and
7. (I3, ([az]9,.)) = 0 such that the two maps

(10.32) { KHHP) 5 [zalg, — . (FQH([.TCL]2“)) e K™?  and

KM* (n+p) > [ax]Zu* = Tz (F;M*([CLJZ’]Q#*)) € K"+m

are of rankm + p at the pointfza]9, € K**) and of rankn + m at the pointjaz]},. €
K# (n+p)

In the casen = 1 (single dependent variable € K), the covering property always
hold with . = p* = 2.



50 JOEL MERKER

§11. FORMAL AND SMOOTH EQUIVALENCES BETWEEN SUBMANIFOLDS OF
SOLUTIONS

11.1. Transformations of submanifolds of solutionsLemma 7.3 shows that every
equivalencep between twoPDE systems &) and €’) lifts as a transformation which
respects the separation between variables and paramgtieesform

(11.2)

(z,y,a,b) — (o(x,y), ¥(x,y), f(a,b),9(a, b)) = (o(z,y), ha, b)) =: (', ¢/, d, V)

from the source submanifolds of solutiond := Vs(&) to the targetM’ = Vs (&),
whose equations are

y = Il(z,c) ordually b=1II"(a,2) and
y =1'(2',d) ordually b =1"(d, 7).
The study of transformations between submanifolds of Bmiatpossesses strong similar-

ities with the study of CR mappings between CR manifoldsi@?56] We197/7, DW1980,
BJT1985, DF1988, BER1999, Me2005a, Me2005b]). In fact,roag transfer the whole

theory of the analytic reflection principle to this more gexieontext. In the preseqi0
and in the nexg11, we select and establish some of the results that arel usehe Lie
theory. Some accessible open questions will also be foteudlila

(11.3)

Maps of the form (11.2) send leavesfofand ofF, to leaves of, and ofF, respec-
tively.

n+2m+ n+2m+p
K ! Fp K F/
 © 4‘; §§ A
e —
M M
¢+ ([az]s)] (¢, h)
—_ Tl L
] (¢(2),h(c)) >
. 3& { ] MRS P { ]
vV -
FQZ - —]
a1 TF*([az]z) B
0 z 14 2
[ - @ .
o _J o _J

11.4. Regularity and jet parametrization. Some strong rigidity properties underly the
above diagram. Especially, the smoothness of the two pijrsF,) and(F,, F,) governs
the smoothness @fo, h).

We shall study the regularity of purely formalmap (', ') = (¢(2), h(c)), namely
o(z) € K[z]"™™ andh(c) € K[c]"*™, assumingq{) and €’) to be analytic. Concretely,
the assumption thatp, ) mapsM to M’ reads as one of the four equivalent identities:

U(z,1(z,c)) = II'(¢(z,I1(z, ), h(c)),
U(2) =1 ((2), h(a, 11" (a, 2)),

9(a,11*(a, 2)) = 11" (f(a, H*(a 2)), (),
9(¢) = IV (F(c), ol T, ),

(11.5)

in K[z, c]™ and inK[a, 2]™.
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Theorem 11.6.Let (p,h) := M — M’ be a purely formal equivalence between two
local K-analytic submanifolds of solutions. Assume that the foreteal pair of foliations
(Fy, Fy) is covering at the origin, with typéu, ;.*) at the origin. Assume that1’ is both
r-solvable with respect to the parameters atidsolvable with respect to the variables.
Setl := u*(k + k*) and¢* := u(k* + k). Then there exist twi"*"-valued andK?*"-
valued localK-analytic mapsb, and H,-, constructible only by means &f I1*, IT', IT"*,
such that the following two formal power series identitietdh

p(2) = By(2, J1p(0)),
h(C) = HZ* (Ca Jf*h(O)),
in K[2]""™ and inK[c]"™™, where J‘ox(0) denotes the-th jet of i at the origin and

similarly for J° h(0). In particular, as a corollary, we have the following two autatic
regularity properties:

(11.7)

e o(z) € K{z}"*™ andh(c) € K{c}**™ are in fact convergent

e if in addition M and M’ are K-algebraic in the sense of Nash, thépand H-
are alsoK-algebraic, whencer(z) € Ax{z}"t" andh(c) € Ax{c}’*™ are in
fact K-algebraic.

Proof. We remind the explicit expressions of the two collectiongeaaftor fields spanning
the leaves of the two foliatiorfs, andF,:

( m ,
0 o1 0
L, = — —_— — =1,...
k 0xk ]z:; 0xk (.T, C) ay] ) ) , 1,
(11.6) oy )
I_q ::% Z 8aq (Q,Z)w, qzl,,p

\ j=1

Observe that differentiating the first line of (11.5) witlspect tar® amounts to applying
the derivationL,. Similarly, differentiating the third line of (11.5) withespect toa?
amounts to applying;. We thus get fo(z, c) € M

L) =3 T8 (6(:),h(e) Led(z) - and

=1

L0 =3 20 (0. 0(2) L £,

r=1

It follows from det (%)(0) # 0 anddet (24)(0) # 0 that the two formal determinants

(11.9)

1<i<n
1<k<n

1<r<p
1<g<p
have nonvanishing constant term. Consequently, these atoaes are invertible i [ ]
and inK][c]. So there exist universal polynomi&sandS*/ such that

(11.10) det (Ly, ¢'(2)) and  det (L} f"(c))

( : ./ i'<n+m
o1’ SI <{Lk' v (2) ik/<<n+ )
((2), k() = 127 and
G v 1<U<n
det(l—k” ¢ (z))1<k”<n
(11.11) | i (f1e i 1< <ptm
o’ % <{Lq’ h*(c) 1<g'<p >
8a/7' (f(C), SO('Z)) = * ' 1<r'<p ’
L det(l‘q’ f <C>) 1<q'<p
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for1 <j<m,forl <l<n,forl <r<pandfor(zc) e M.
Again, we apply the vector fields, to the obtained first line and the vector fieldsto
the obtained second line, getting, thanks to the chain rule:

(11.12)
¢ ; -/ 1<i’'<n+m
n 27T7/] R{ k ({Lkil—k’(pl (z) = ,\ / n)
I (5(2), 1)) Ly ¢(2) = — ) and
O/l 2 " 1<U<n ]2
lh=1 [det(l-k’ ¢ (Z))1<k/<n
. * | % 1,4 1<i' <p+m
LA | . pr B R gﬁ q ({Lq’ll‘qéh (C) 1<q’1,q’2<p)
Oa'" /"2 (f(c)’ SO(Z)) L‘l f (C) B / 1<r'<p| 2 7
= det(Ly f(c)) 50
for 1 < j <m,forl<ly,ly <n,forl <ryr, <pandfor(zc) € M. Here,R/ , and
R*ﬁl , are universal polynomials. Then applying once more Crasete, we get
, . . il 1</ <n+m
211" 551712 <{|—k{ I—k;‘P (2) 1<k’1,k§<n>
o (0(2),h(0) = and
O/l 2 " 1<l'<n 13
[det(Lk/ o (z))lgk,@]
(11.13) e
. * x| x 7,7 </ <p+m
i S (Ll D155
aa/rla/r2 (f(c)7 (p(z)) , 1<7',<p 3 .
\ [det(Ly /() 5020
By induction, for everyj with 1 < j < m and every two multiindices € N" ands € N?,
there exists two universal polynomleﬂ§ andS* such that
; ) ; rq 1</ <n+m
Bl Sh <{'-ﬁ # ()] 119 )
z),h(c)) = — and
ax/ﬁ v 1<U<n 2|6‘+1
det(Lk/ (b (Z))1<k,<ni|
(11.14)

. * *0" 1,1 I<i'<ptm
O o) = = L @b )
_ €), P\z .
8@“5 * / 1<r's 28+
\ _det (Lq/ fr (C))lgq’éz]

Here, for 3 < N, we denote bylL” the derivation of order|3’| defined by
(L)% -+ (L,)%. Similarly, for & € Np, L*' denotes the derivation of orde#’|
defined by(L})% - - - (L%)%.

Next, by the assumption thau’ is solvable with respect to the parameters, there exist
integersj(1),...,j(p) with 1 < j(¢) < m and multiindices3(1),...,5(p) € N™ with
|8(q)] = 1 andmax;<,<, |5(¢)| = x such that the locaK-analytic map

. m [ OB@ITTI@
(1115) Kptm 3 ¢ — (H,J(O,C/))1<J< ’ (W(Ovc,) c Kptm
1<g<p

is of rankp+m atc¢ = 0. Similarly, by the assumption thatt’ is solvable with respect to
the variables, there exist integers(1), ..., 7~ (n) with 1 < 57~ (I) < m and multiindices
d(1),...,d(p) € N™with [6(q)] > 1 andmax;<,<, |0(¢)| = x* such that the locakK-
analytic map

netm . r<iem (OO .
(1116) K™ 3 2 —s ((H’ 3(072,)) J , (W (O,Z,) c K
1<I<n

X'
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is of rankn +m at 2’ = 0. We then consider from the first line of (11.14) only the
(p + m) equations written for(j,0), (j(q), 5(¢)) and we solveh(c) by means of the
analytic implicit function theorem; also, in the seconceliof (11.14), we consider the
(n + m) equations written fo(j, 0), (7~ (1), (1)) and we solvep(z). We get:

( F(1) g i 1</ <n+m
- Sio) ({L7¢" @ s )
h(C) - H ¢(Z), 2‘6(1)"“17.”
v 1<U<n
det [(Lk/gb (Z))l<k’<n]
i(p) B " 1<z”<n+m)
Shiv) <{L 11<I6)
r<n 1218M@I+1 )7
det [ Lk/ ¢l/ 1ii€’in] ’
(11.17) { 5 </ <t
S*J ( L* ’hz ) NS m)
~ [6"[<|6(1)]
p(z) =@ [ f(e),

1<7"<p:| 2|5(1)|+1 rre

[det(L(’;/ frl<c>) I;q’;P

xJ~(n) %5 14! 1</ <p+m
>"5(m) <{L h*(c) \5'|<\5<n>\>

ey

1<T,<p] 215(n)|+1 | °

[det (LZ/ fr (C)) 1;«1’;10

\
for (z,c) € M. The mapsd and® depend only odl’, I1"*.

Lemma 11.18.For every3’ € N", there exists a universal polynomiBk in the jet
variables.J/” havingK-analytic coefficients irz, ¢) which depends only of, II* such
that, fori’ = 1,...,n +m:

U

(11.19) L 57 (2) = Py (z ¢, Jz‘ﬁ"gp"’(z)> .

A similar property holds fot**' 1" (c).

We deduce that there exist two lod&analytic mapping®{ and H such that we can
write

o(z) @8(2, c, Jf*h(c)),
(+4:20) { M) = HY (=, ¢, J(2),

for (z,c) € M. Concretely, this means that we have two equivalent paif®rofal
identities

(11.21)
h(a,1*(a, 2)) = Hy (2, a, IT*(a, 2), JEp(2))
in K[a,2]"™™ and inK[xz, c]”™™. We notice that, whereas and h area priori only

purely formal, by constructionp) and A are K-analytic near(O, 0, Jf*h(o)) and near
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Next, we introduce the following vector fields witk-analytic coefficients tangent to
M:

0 L omH! 0 ,
Vj:—a—yj 2 o (a,z)abl, j=1,...,m and
(1.22) B} m oI B
VJ _% Z%(l’,C)a—yl, jzl, ,m

Indeed, we check that;, (b2 — I1*/2(a, z)] = 0 and thav;, [y7> — 117 (z, ¢)] = 0.

For§’ € N, we observe that?' ¢ = 38‘(:;?. Applying thenL? with 3’ € N*, we get
fori=1,...,n+m:
(11.23) Lﬁlvglgpi(z) _ Qﬁ’ﬁ’ (z, c, JLB/\+|6/|¢i(z))’

with Qs & universal. Since the + m vector fieldsL, andV;, having coefficients de-
pending on(z, c), span the tangent spacelfgy x K7, the change of basis of derivations
yields, by induction, the following.

Lemma 11.24.For everya € N*™™ there exists a universal polynomi@), in its last
variables with coefficients beiri§-analytic in (z, ¢) and depending only of, IT* such
that,fori =1,...,n+ m:

(11.25) 92¢'(2) =Pq <Zv e, (L'V7¢'(2)) |5'\+|5'\<|a\) '

We are now in position to state and to prove the first fundaat@athnical lemma
which generalizes the two formulas (11.20) to arbitrarg.jet

Lemma 11.26.For every\ € N, there exist two locaK-analytic maps®) valued in

K+ Cmix, and HY valued inK ™ m+x, such that

J2o(z2)
J2h(c)

@8 (z, c, Jf*“‘h(c)),
A

11.27
( ) H (z, c, Jf“(p(z)).

Proof. Consider for instance the first line. To obtain it, it suffitespply the derivations
L'V with |3'| + |6'] < A to the first line of (11.20), to use the chain rule and to apply
Lemma 11.24. 0J

Letd € K, 1 € N, let Q(0) = (Qi(0), ..., Quizmip(0)) € K[O]"*™*" and let
a; € KP. As the multiple flow ofL* given by (10.10) does not act on the variakllesy),
we have the trivial but crucial property:

(11.28) v (Le, (Q0))) = ¢ (m:(L;,(Q(0)))) = ¢ (7-(Q(0))) = ¢ (Q(F)) -

At the end, we allow to suppress the projection this slight abuse of notation will
lighten slightly the writting of further formulas. More gerally, for A € N, a; € K?,
r1 € K"

J2o(L;,(Q0))) = J2¢(Q(0)) and

11.29
(29 (L (Q6) = 2h(Q().
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As a consequence, fak even and foRk + 1 odd, we have the following four cancellation
relations, useful below (we drap andr, after.J} and afterJh):

J2o(Lap(zala)) = J2o(Tor-1([zalae-1)),
20T ([ax]aw)) = J2h(Ts) ([ax)ar-1)),
T30 (T (laz)arsr)) = T2 (Do ([ax])),

Jc’\h(ng+1([xa]2k+1)) = Jg\h(f‘gk([xa]%))
We are now in position to state and to prove the second mamiesl proposition.

(11.30)

Proposition 11.31.For every even chain-lengttk and for every jet-heighk, there exist
two localK-analytic mapsp3, valued inK "+ m+x, and Hy, valued ink @+ pm-+
such that
(11.32) { T2 (T ([ax)ar)) = @3 ([az)ar, JE"F72(0))  and
J h (ng([l’a]gk)) = Hj, ([l’a]gk, Jh(rERT) £ go(O)) )
Similarly, for every odd chain lengthk + 1 and for every jet eighk, there exist two local
K-analytic maps,®), ., valued inK"+™Cmix and HJ,,, valued inK® ™ mir,
such that
(11.33) { JZASO (F2k+1([m]2k+1)) = (I)g\k—i-l ([m]%ﬂ’ Jf“(kﬂ)ﬂ*ﬂ h(O)) )
J2h (31 ([az]orsa)) = Hy iy (laz]or1, JUHRRT ©(0)) .
These maps depend only GnIT*, IT, IT"".

Proof. For 2k + 1 = 1, we replace(z, ¢) by I'y([za],) in the first line of (11.27) and
by I'i (Jaz];) in the second line. Taking crucially account of the cantielfaproper-
ties (11.29), we get:

( J2o(Ty([za),))

@y (Ti([waly), J (T ([wa)1)))
& (T (fwaly), J=h(0)))

=: &} ([zaly, JF TR(0)) ,
J2h(Ti(Jax))) = Hy

C

(11.34)

= H} ([am]l, Jf+’\<p(0)) .

Here, the third line define®} and the sixth line defined;. Thus, the proposition holds
for2k +1=1.

The rest of the proof proceeds by induction. We treat onlyirtdection step from an
odd chain-lengtl2k + 1 to an even chain-lengttk + 2, the other induction step being
similar.

To this aim, we replace the variables c) in the firstline of (11.27) by, ., ([ax]2k+2).
Taking account of the cancellation property and of the itidacassumption:

(11.35)

J2¢ (Thyo([az]onsa)) = ®) <F§k+2([ax]2k+2)a J?*+Ah(rzk+2([a$]2k+2))>
= 0 (Thpa(foehapsa), JE R (Tspp (lazlei)) )

= o) <F§k+2([ax]2k+2)a oy ([a$]2k+17 JC(HI)(HR*)H@(O)))

= DYty <[a9€]2k+27 Jc(kﬂ)(ﬁﬁ*)“‘ﬁ(o)) :
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The last line define®;, . ,. Similarly, we replacez, ¢) in the second line of (11.27)
by I'axio([zalarso). Taking account of the cancellation property and of the atidm
assumption:

(11.36)

J2h(Tokso([za)opsa)) = Hy (F2k+2([$a]2k+2)> Jf+’\90(F2k+2([ﬂfa]2k+2))>

o (F2k+2([$a]2k+2)7 JSHSO(F%H([UUQ]%H)))

0 (F2k+2([m]zk+2)> oY <[$a]2k+1> Jc(kﬂ)('f"%*)“h(o)))
= H3j pa ([0a]apsa, JEFIEEE1000(0))

This completes the proof. O

End of the proof of Theorem 11.68With (p, 1) being the type of(F,, F,) and with
[ax]gm given by Corollary 10.31, the rank property (10.32) insutes existence of an

affine (n + m)-dimensional spac& c K* (*™ passing throughaz]3,- and equipped
with a local parametrization

(11.37) K" 3 s+ [ax]gu(s) € H
satisfying[az]y,- (0) = [ax]3,-, such that the map
(11.38) K™ 3 5 — . (T3, ([az]ou- (5))) =: 2(s) € KM

is a local diffeomorphism fixing € K"*™. Replacing: by z(s) in ¢(z) and applying the
formula in the first line of (11.32) with = 0 and withk = 2u*, we obtain

p(2(5)) = ¢ (72 (I3, ([ax]2,(5)))
(11.39) = ¢ (T3, ([ax]2u (5)))
= (I)gu* ([ax]%* (s), Jg*(’ﬁﬁ*)@(o)) :
Invertings — z = z(s) asz — s = s(z), we finally get
p(2) = p(2(s(2))) = B ([azlzye ((2)), JLH0(0))
=: By (2, JL U p(0))

with ¢ := p*(k + x*), where the last line definek,. In conclusion, we have derived the
first line of (11.7). The second one is obtained similarly.

If I, IT*, IT', IT”* are algebraic, so at@,, I';, H, &, &), H), ®}, H} and®,, H,-.

The proof of Theorem 11.6 is complete. O

(11.40)
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[I: Explicit prolongations of infinitesimal Lie symmetries
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§1. JET SPACES AND PROLONGATIONS

1.1. Choice of notations for the jet space variablesLet K = R or C. Letn > 1 and
m > 1 be two positive integers and consider two sets of variables(z!, ..., z") € K»
andy = (y',...,y™). In the classical theory of Lie symmetries of partial diéfetial
equations, one considers certain differential systemsse/lfmcal) solutions should be
mappings of the formy = y(z). We refer to[[OI1986] and to [BK1989] for an exposi-
tion of the fundamentals of the theory. Accordingly, theiablesz are usually called
independentwhereas the variablesare calleddependentNot to enter in subtle regu-
larity considerations (as ih [Me2005b]), we shall assutttesmoothness of all functions
throughout this paper.

Letx > 1 be a positive integer. For us, in a very concrete way (wittidetr bundles),
the r-th jet space7,;,, consists of the spad§”+m+m% equipped with the affine co-
ordinates

(12) (1'27937?/?1»?/?1,1'27 “““ 7ygl,i2,...,in) )
having the symmetries

J —aJ
(13) yi17i27---7i>\ - yio(l)via(Q)v“'?ia(A)’

for every A with 1 < A < « and for every permutation of the set{1,...,\}. The
variableyfl,242,__.71.A is an independent coordinate corresponding to\tkiepartial derivative
Mgii;{]ﬂm. So the symmetries (1.3) are natural.

In the classical Lie theory[(JOL1979], [OI1986], [BK19893Il the geometric objects:
point transformations, vector fieldsic, are local, defined in a neighborhood of some
point lying in some affine spacE”. However, in this paper, the original geometric
motivations are rapidly forgotten in order to focus on conalborial considerations. Thus,
to simplify the presentation, we shall not introduce anycgdenotation t? speak of certain

(n+m)!

local open subsets &"*™, or of the jet spaceJ,;,, = K"+t etc: we will
always work in global affine spacés".

1.4. Prolongationy®) of a local diffeomorphism ¢ to the x-th jet space. In this para-
graph, we recall how the prolongation of a diffeomorphisrthix-th jet space is defined
([OL1979], [O11986], [BK1989]).

Let z, € K" be a central fixed point and let: K" — K"*™ be a diffeomorphism
whose Jacobian matrix is close to the identity matrix, asti@aa small neighborhood of
z,.. Let

. i, J J
(15) J;’;* T (xfmy*il?y*h,iy """ 7y*i17i27.__,i/@) € jrf,m‘x*
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be an arbitrary:-jet based at... The goal is to defined its transformatipf) (J* ) by .
To this aim, choose an arbitrary mappiKg > = — g(z) € K™ defined at least in a
neighborhood of, and representing thisth jet,i.e. satisfying

. Mg’
J _
(16) y*il ..... ’i>\ - axil - 81'” (x*)7
foreveryA € Nwith 0 < A\ < &, for all indicesiy, ..., iy with 1 < iq,...,7y < n and

for everyj € Nwith 1 < j < m. In accordance with the splitting:, y) € K" x K™ of
coordinates, split the components of the diffeomorphisasy = (¢, 1) € K" x K™.
Write (Z,7) the coordinates in the target space, so that the diffeonsphis:

(1.7) K™ 3 (2,y) — (Z,7) = (¢(z,y),¢(z,y)) € K™

Restrict the variable§z, y) to belong to the graph of, namely puty := ¢(z) above,
which yields

Y =v(z,g(x)).
As the differential ofp at z, is close to the identity, the first family of scalar equations

may be solved with respect tg by means of the implicit function theorem. Denote
x = X(7) the resulting mapping, satisfying by definition

(1.9) T=¢(X(@),9(X(T))) -
Replacer by Y (7) in the second family ofn scalar equations (1.8) above, which yields:
(1.10) y=v(X(@),9(x(x))) .

Denote simply byy = g(7) this last relation, wherg(-) := 1 (x(-), g(x(+))).

In summary, the graph = ¢g(x) has been transformed to the graph= 3(7) by the
diffeomorphismy.

Define then theransformed jeto™) (J% ) to be thex-th jet of g at the pointz, :=
¢(z,), namely:

(x) 'y s
Q1) o () = (o L ) e Tt

( ) gz - - - Oz 11,0y <0, 0KASK ’ ‘x
It may be shown that this jet does not depend on the choice @& graphy = g(x)
representing the:-th jet J; at z.. Furthermore, ifr, := 7, — K™ denotes the
canonical projection onto the first factor, the followinggram commutes:

r)

(
©
Tpm —= Tiim

ml lm_ .

Kn—l—m —<p> Kn-i—m

1.12. Inductive formulas for the x-th prolongation ¢*). To present them, we change
our notations. Instead ¢f, 7), as coordinates in the target spdce x K™, we shall use
capital letters:

(1.13) (X' XY YT
In the source spacE"*™ equipped with the coordinatés, y), we use the jet coordi-

nates (1.2) on the associatedh jet space. In the target spa&&™ equipped with the
coordinateg X, Y'), we use the coordinates

(1.14) (XY YT Y i Yy )

D GRS 'GP X » X1 X2, Xk
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on the associateghth jet space; to avoid confusion with,, v;, ., . . . in subsequent for-
mulas, we do not writ&;,,Y;, ,,,.... In these notations, the diffeomorphismwhose
first order approximation is close to the identity mapping imeighborhood af, may be
written under the form:

18 g (@) e (XV) = (X ), YT yT)
for someC*>-smooth functions\(z",y’), i = 1,...,n,andY’ (2", y/"),j = 1,...,m.
The first prolongatiop!) of ¢ may be written under the form:

118) O (" yd) e (X, Yy, Vi (2 ) )

for some functiondZ., <9:"', y' yjl> which depend on the pure first jet variabﬁ:s The
way how these functions depend on the first order partiavatvees functions’,, X;j,,
Y;i,, ijj, and on the pure first jet variablg%’ is provided (in principle) by the following
compact formulas(([BK1989]):

-1

Yy, DIX' ... Dlx» Dlyi
(1.17) : = : o : : ,

Y. DXt ... DlXxn DY
where, fori’ = 1,...,n, the symbolD} denotes the'-th first order total differentiation
operator

0 0

1.18 D)= — ) —.
(1.18) = +sz::1 Vi g7

Striclty speaking, these formulas (1.17) are not expllmzause an inverse matrix is in-
volved and because the termigy, X*, D! Y7 are not developed. However, it would be
feasible and elementary to write down the correspondiradlyogxplicit complete formu-

las for the functiony’?,, = Y7, (xl,yﬁ,yj)
1
Next, the second prolongatigrn? is of the form

(1.19)
SO(Z) : (xZ/v yjlv yiflv yi&,zé) L <S0(1) <xll7 yjlv yle) Y)](lezg <IE2/, yjla yilla yill,Z/2>> )
for some functlonéf;leQ (:ci', Y, yf,;, ny) which depend on the pure first and second
jet variables. For = 1,...,n, the expressions OY)Jsz are given by the following
compact formulas (again [BK1989)):
: o :

Yiia DIX' ... DIX D%Y]il

(1.20) : = L : :
1y1 .. 1 yvn 2

Y)J('Ll Xn DTLX DnX DnY)J('Ll
where, for’ = 1,.. ., n, the symbolD? denotes the-th second order total differentiation
operator
(121) Di’: 8Z Zyla]+z:lzylllaj.

! it =1

Again, these formulas (1.20) are not explicit in the senaedh inverse matrix is involved

and that the term®), X, DQY)”O1 are not developed. It would already be a nontrivial
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computational task to develope these expressions and tafindome nice satisfying
combinatorial formulas.

In order to present the general inductive non-explicit folas for the computation of
thex-th prolongationy*), we need some more notation. Le€ N be an arbitrary integer.
Fori = 1,...,n, letD; denotes th¢-th \-th order total differentiation operatoefined
precisely by:

(1.22)
4
D} = Ayt X g
J'=1i=1 2’1 =1 if,ih=1 21 i
y )
J -
-+ Z Z yi’,i’l,i’Q,...,ii\71 o,
\ =1 21 12 ZA 1= 7‘/1’7‘/2"“’7‘;\71
Then, fori = 1, ..., n, the expressions dfj{l1 ir1 y: are given by the following com-
pact formulas (aga|9]).
J n -1 AyJ
YXil___X’iA71xl D%Xl T D%X D YXll XA-1
(12.23) : = : e : :
7 1yl .. 1 yvn AV J
Yxh...Xi,\len D"X D"X Dnyxn X1

Again, these inductive formulas are incomplete and urfsatisry.
Problem 1.24.Find totally explicit complete formulas for theth prolongationy).

Except in the cases = 1,2, we have not been able to solve this problem. The case
r = 1is elementary. Complete formulas in the particular cases2, n = 1, m > 1
andn > 1, m = 1 are implicitely provided in[[Me2004] and in Section ?(?), avh
one observes the appearance of some modifications of thbidaadeterminant of the
diffeomorphismy, inserted in a clearly understandable combinatorics. dt) there is a
nice dictionary between the formulas fot?) and the formulas for the second prolongation
L£® of a vector fieldZ which were written in equation (43) of [GM2003a3eealso
equations (2.6), (3.20), (4.6) and (5.3) in the next pafatggh In the passage fropt?
to £?), a sort of formal first order linearization may be observed e reverse passage
may be easily guessed. However, fop 3, the formulas forp®) explode faster than the
formulas for thex-th prolongationZ ™) of a vector fieldZ. Also, the dictionary between
o) and £*) disappears. In fact, to elaborate an appropriate dictipma believe that
one should introduce before a sort of fornal— 1)-th order linearizations ap*, finer
than the first order linearizatiof). To be optimistic, we believe that the final answer to
Problem 1.24 is, nevertheless, accessible after hard work.

The present article is devoted to present totally explimitplete formulas for the-th
prolongationZ®) of a vector fieldZ to T forn > 1 arbitrary, form > 1 arbitrary and
for k > 1 arbitrary.

1.25. Prolongation of a vector field to thex-th jet space. Consider a vector field
"\ 0 U 0

1.2 = X’ — J

(1.26) c ; (x,y>axz+;y<x,y>

defined inK™*™ . Its flow:

(1.27) pi(,y) = exp (tL) (z,y)
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constitutes a one-parameter family of diffeomorphismK®f close to the identity. The
lift (¢,)™*) to thex-th jet space constitutes a one-parameter family of diffeqrnisms of
T+ By definition, them th prolongationC*) of L to the jet spacg,;,,, is the infinitesi-
mal generator of,)*), namely:

d

1.28 . &
(1.28) L i,

[(Sﬁt)(ﬁ)] :

1.29. Inductive formulas for the x-th prolongation L"), As a vector field defined in
Kt m S , thek-th prolongatlonc may be written under the general form:

£<*”~ ZXZ
(1.30) +ZZYH&U +Z Z Yw(w 4+t

7=1 i1=1 7=1 11,i9=1 2112

> YL - 5

J=1 d1,.ik=1 Ulyesln

Here, the coeﬁ‘icienté(” Y/ Y ;. are uniquely determined in terms of

11,427 " 11,82,5000

partial derivatives of the coefﬁuen@csZ andyJ of the original vector fieldC, together with
the pure jet varlable@“, ....y).), by means of the followindundamental inductive

formulas([M] [O11986], MQ])

Y] = Z D}
(1.31) Y} ., =D, (Y1) Z Dy, (X*) w1
Yzjl 12,eeny - DH (Yz'l i2,. ) - Z Dll,i (Xk) yzjl,iQ,...,i,ifl,m
\ k=1

where, for everys € N with 0 < A < «, and for everyi € N with 1 < ¢’ < n, thei'-th
\-th order total differentiation operatd?) was defined in (1.22) above.

Problem 1.32. Applying these inductive formulas, find totally explicinguete formulas
for the k-th prolongationZ ).

The present article is devoted to provide all the desireahtdas.

1.33. Methodology of induction. We have the intention of presenting our results in a
purely inductive style, based on several thorough visualgarisons between massive
formulas which will be written and commented in four diffateases:

(i) n=1andm = 1; k > 1 arbitrary;
(i) n > 1andm = 1; k > 1 arbitrary;
(i) n=1landm > 1;k > 1 arbltrary,
(iv) general casen > 1 andm > 1; k > 1 arbitrary.

Accordingly, we shall particularize and slightly lightemronotations in each of the
three (preliminary) cases (i) [Section 2], (ii) [SectionaBid (iii) [Section 4].
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§2. ONE INDEPENDENT VARIABLE AND ONE DEPENDENT VARIABLE

2.1. Simplified adapted notations.Assumen = 1 andm = 1, letk € Nwith x > 1 and
simply denote the jet variables by:

(22) (x7y7y17y27"'7yl€> € \71[71'

The k-th prolongation of a vector field = X a% +Yy a% will be denoted by:

0 0 0 0
2.3 LW =x = Y Y, —+---4+Y, —.
(2.3) a:ﬁy + 181+ 28y2+ + Dy
The coefficientsy, Y, ..., Y, are computed by means of the inductive formulas:

Y, := DY) — D' (X) y,
Y, := D*(Y;) — DY(X) ya,

(2.4)

where, forl < A < &:

o)
(2.5) DN = — 4y —

By direct elementary computations, for= 1 and forx = 2, we obtain the following two
very classical formulas :

Y=V + [V, — Xl + [-X,] (1),
(2.6) Yo = Vo2 + [2Vay — Xez] w1 + V2 — 28] (11)° + [= &2 (12)*+
+ Yy —2X] y2 + [=3 X, y1 e

Our main objective is talevise the general combinatoric¥hus, to attain this aim, we
have to achieve patiently formal computations of the negffadentsY;, Y, andY ;. We
systematically use parenthegedo single out every coefficient of the polynomidfs,
Y, andY; in the pure jet variables, 12, y3, y4 andys, putting every sign inside these
parentheses. We always put the monomials in the pure jetblasy, s, y3, y4 andys

after the parentheses. For completeness, let us providatdrenediate computation of
the third coefficieniY ;. In detail:

Y;=D*(Yy) — D' (X)y;

0 0 0 0
:<8_+y18 +y281+y38y)<%2+[2%y Xo2] y1+

+ [V — 24, (yl) + [—Xe] (y1)3+
-2 + (3] v )

- &. + [2 yx? - :cS] ?JID [yxy2 —2 Xﬁy] (y1)2@ + [_Xny] (3/1)3E+
(27) [y:cy -2 XxQ] yZD [ 3 Xxy] ylyZE + [mey] yl@“—
(2 = ) () P = 2 X))y =) ()
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+ Ve — 24, ylyZE + [=3 &p2] (y1)2y2D 2 Vay — Xy2] y2D

+ Ve — 24,2 ylyZ@ + [=Xy2] 3(y1) y2D [—3X,] (y2)° D+

+ [yy -2 Xx] y3- + [_3 Xy] y1y3-
— [ ]?Js@ (X ]ylyg@

We have underlined all the terms with a number appended. Bawctber refers to the
order of appearance of the terms in the final simplified exgioesof Y3, also written
in [BK1989] with different notations:

Y3 = Vs + [BVazy — Xzl y1 + [3 Va2 — 3 Xaz] (11)°+
+ [ny - 3wa2] ( 1)3 + [_XyS] ( 1)4 + [3 yry - 3Xw2] Yot
+ B2 — 9y Y1y + [—6 Xy2] (11)%y2 + [-3 &) (y2)+
+ Yy =3 X ys + [-4 X 11ys.

After similar manual computations, the intermediate detafi which we will not copy in
this Latex file, we get the desired expression¥gfand of Y. Firstly:

Y4 = yx4 + [4 yxa x4] Y1 + [6 yx2 4Xx3y] (y1)2+

[4yxy: - 6Xx2y ] ( 1)3 + [yy - 4Xxy3] (y1)4 + [_Xy4] (y1)5+
(6,2 — 4 X,s] y2 + [12 V52 — 18 X2, | 112+
[

(2.8)

4
(2.9) + [6ys — 24 X,2] (y1) w2 + [-10 Xs] (1) ya+
+ [BY,2 — 124, ] (y2)> + [—15X,2] w1 (y2)*+
+ [4Vey — 6 Xp2] ys + [4Vy2 — 16 Xy | y1ys + [—10 X2 ] (1) s+
+ [-10 Xy ] yoys + [Vy — 4 Xa] ya + [-5 Xy] y1ya.
Secondly:
(Y5 =V5 + [5Vp1y — Xos| y1 + [10 V52 — 5 Xy | (1) +
103@2 — 10 X,5,2] (Y1) + [5 Vgt — 10 X2,8] (1) +
Xyt ] (y )5 + [~ &) (1)® + [10 Vs, — 5 Xpa] ot
30 Vyzy2 — 30 Xysy | 192 + [30 Vyys — 60 X2 (y1)?ya+
10Vys — 50 Xypya ] (1) y2 + [—15 Xya ] (1) 'yt
(2.10)

45 Xys| (1) (y2)? + [—15 X,2] (y2)*+

10 Y,2, — 10 XIS] Yz + [20 Ve — 40 X2, | y1ys+

10Vys — 50 Xy ] (1) + [—20 X ] (1) s+

10Y,2 — 50 Xxy] Yays + [—60 X2 ] y1yays + [-10 X, (y3)*+

5 Yoy — 10 Xp2]ya + [5V,2 — 25 Xoy ] yiya + [—15 X,2] (1) ma+
15Xy yoys + [Vy — 5 Xy ys + [6 X[ y1ys.

+
+ [V
+ |
+ |
+ [15 V02 — 30 X2y | (12)? + [15 Vs — 75 Xy ] w1 (y2)+
[
+
+
+
n

[
+[-
2.11. Formal inspection, formal intuition and formal induction. Now, we have to
comment these formulas. We have written in length the fivgnmohialsY,, Y., Y3,

Y, andY; in the pure jet variableg,, y-, y3, y4 andys. Except the first “constant” term
V.=, all the monomials in the expression¥f, are of the general form

(212) (yM)m (yAQ)uQ T (ykd)ud )
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for some positive integet > 1, for some collection of strictly increasing jet indices:
(2.13) 1< A <A<~ <A\ <K,

and for some positive integers, . . ., g > 1. This and the next combinatorial facts may
be confirmed by reading the formulas giviyg, Y,, Y3, Y, andYs. It follows that the
integerd satisfies the inequality < « + 1. To include the first “constant” tery,.., we
shall make the convention that puttidg= 0 in the monomial (2.12) yields the constant
term1.

Furthermore, by inspecting the formulas givilg, Y,, Y3, Y, andY;, we see that
the following inequality should be satisfied:

(214) ,u1)\1+u2)\2+---+,ud)\d <K+ 1.

For instance, in the expression®f;, the two monomial$y, )3y, andy; (y2)* do appear,
but the two monomialgy; )*y» and(y;)?(y2)? cannot appear. All coefficients of the pure
jet monomials are of the general form:

(2.15) [AVpeyssr = B Xyarrys]

for some nonnegative integefs B, a, 5 € N. Sometimesi is zero, butB is zero only for
the (constant, with respect to pure jet variables) tg@rm Importantly,X is differentiated
once more with respect toand) is differentiated once more with respectitoAgain,
this may be confirmed by reading all the terms in the formuta$f;, Y-, Y3, Y, and

Ys.

In addition, we claim that there is a link between the couple3) and the collection
{p1, M1, ..., pa, Ag}. To discover it, let us write some of the monomials appeairintye
expressions oY 4 (first column) and ofY 5 (second column), for instance:

( [6 yx2y2 — 4 any] (y1)2, [5 yxy4 — 10 Xx2y3] (y1)4,

[12 yxy2 — 18 szy] Y1Y2, [30 yxy:s — 60 XnyQ] (yl)zyz,

(2.16) (=10 X,3] (1) e, (=15 Xa] (y1) 2,
[4 yy2 — 16 Xxy] Y1Ys, [10 ny — 50 X:cy] Y2Ys,

L [—10 X2] (1), [—60 X,2] y12ys.

After some reflection, we discover the hidden intuitive rulee partial derivatives oy
and of X’ associated with the monomig},, )* - - - (y», )¢ are, respectively:

(2.17)

ygg"*lﬂ)‘l*‘“*“d)‘d yr1tetig
X‘,Elfefulklfmfp,dktrkl yu1+~-+ud71 .
This may be checked on each of tHeexamples (2.16) above.
Now that we have explored and discovered the combinataribegure jet monomials,

of the partial derivatives and of the complete sum giving we may express that it is of
the following general form:

k+1

vo-ntY Y Y %

d=1 1< << <k i 2l,pwg 21 padi+-+pg g <n+1

(2.18) [A’(fh)\l) ----- (ka:Ad

K—pp A= —pgAgt+l yul+~~~+ud*1] :

\ (a7 ()™
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Here, we separate the first teph- from the general sum; it is the constant termyip,
which itself is a polynomial with respect to the jet variatlg. In this general formula, the
only remalnlng unknowns are the nonnegative integer caeffis A2 ¢ N

and B --rada) ¢ N In Section 3 below, we shall explain how we have discovered
their exact value.
At present, even if we are unable to devise their expliciregpion, we may observe

that the value of the special integer coefficieAf&" " and B%*"") which are attached to

the monomialst., y1, (v1)?, (v1)3, (y1)* and(y,)° are simple. Indeed, by inspecting the
first terms in the expressions &f, Y,, Y3, Y, and Y5, we of course recognize the
binomial coefficients. In general:

Lemma 2.19.Forx > 1,

(2.20) = +Z K ) e <Ai1) Aorrtiys ] )+

+ [—Xyn] (y1)" + remainder,
where the terrniemainder collects all remaining monomials in the pure jet variables.

In addition, let us remind what we have observed and used irevdqus co-signed
work.

Lemma 2.21. ([GM20034], p. 536¥or « > 4, nine among the monomials &, are of
the following general form

Y. = Vor + [Ch Yoy — Xow| Y1 + [C2 Vin2y — Ct Xpnr ] yot-
[ Yy — O3] s+ [C1 iy — 2 ] gt
+ [Ch Ve = K Xy | yry1 + [—CL X, yoyn—1+
+ [V — CL X, ] + [-Ciy X,] y1ys + remainder,

(2.22)

where the ternremainder denotes all the remaining monomials, and whéte =
#'),A, is a notation for the binomial coefficient which occupiessigpace in Latex
“equation mode” than the classical notation

(2.23) <’;) .

Now, we state directly the final theorem, without furtherdotive or intuitive informa-
tion.

Theorem 2.24.For x > 1, we have

k41

veney Y Y %

d=1 1< <<M\g<k p12l,pma 21 pa i+ +pgAg <+l

H”'(H_Ml)\l_"'_lud)\d—i_l)_y \ N _
(2.25) (MDA gl (AghHa g R TIIAL T TR it g
_fi"'(fi_,ul)\l —-~-—,ud)\d+2)(,u1)\1 —|—"“|‘,ud)\d)_

Dt - - - (Agl)Pa g

. Xm,{i#l)\lfmfud)\dJﬁl y"“1+m+"“d71 (y)\l);u'l - (y)\d)“d
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Once the correct theorem is formulated, its proof followsasgessible induction ar-
guments which will not be developed here. It is better to icwa through and to ex-
amine thorougly the case of several variables, since itlalp us considerably to ex-

plain how we discovered the exact values of the integer @ieffis AV a*) gng
Béﬂl,kl) ~~~~~ (Hd)\d)'

2.26. Verification and application. Before proceeding further, let us rapidly verify that
the above general formula (2.25) is correct by inspecting itvétances extracted from
Ys.
Firstly, the coefficient ofy,)%y; in Y; is obtained by putting: = 5, d = 2, A\, = 1,
i = 3, Ay = 3andus = 1 in the general formula (2.25), which yields:
0 5-4-3-2-1-6
(113 31 (3Ht 1!
This value is the same as in the original formula (2.10): cordtion.
Secondly, the coefficient af; (y2)? in Y5 is obtained bys = 5,d =2, A\ = 1, iy = 1,
A2 = 2 andu, = 2 in the general formula (2.25), which yields:
5-4-3-2-1y 5-4-3-2-5
(IDT1r 2Nz 207 ()1l (202 2!
This value is the same as in the original formula (2.10); mgeonfirmation.
Finally, applying our general formula (2.25), we deduceviiele ofY ¢ without having

to useY; and the induction formula@.4), which shortens substantially the computations.
For the pleasure, we obtain:

Yo = Vo + [6Vesy — Xas] g1 + [15Vanye — 6 Xos, ] (41)*+
20 Vysys — 15 Xpa2] (y1)° + [15 Vozyn — 20 Xyaya ] (11

(2.27)

xys} = [~20 X,3] .

(2.28)

waz} — 15,5 — T5 Xype] .

)+
6 Voys — 15 Xp2ya] (51)° + [Vys — 6 Xpys] (1) + [~ Xyo]
15 V1, — 6 Xys | yo + [60 Vysye — 45 Xy | y1yo+
90 Vy2,8 — 120 Xyay2| (y1)%y2 + [60 Yyt — 150 Xp2p8] (1) v+
15V,5 — 90 Xypa| (1) 'y + [—21 Xys ] (11)°yat
45 Voo — 60 Xyay ] (y2)? + [90 Vyys — 225 Xy2y2] 1 (y2)*+
45 Vs = 270 Xy ] (1) (y2)* + [—210 Xya ] (1) (y2)*+
15V, — 90 X, ] (y2)® + [—105 Xys] w1 (yo)+
20 YVy3y — 15 X:c4] Y3 + [60 Vy2y2 — 80 X3y | yrys+

+

[ (y1)"+
[

[

[

[

[

[

[

(60 Y,y 150?@2 2] (1)%ys + [20 Vs — 120 X, ] (1) s+
[

60

=

=

3

-

-

[

(2.29)

354, ] )ys + [60 Vs — 150 X2, | yoys+
— 360 X,y2 ] y1yoys + [—210 Xys] (y1) yys+

105 % 2] 2)%ys + [10,2 — 60 Xy ] (y3)>+

T0X,2] y1(ys)? + [15 Va2, — 20 Xy | yat

0Vay2 — T5 Xozy | yrya + [15 Vs — 90 Xy ] (11)°yat

35X,3] (y1)%ya + [15 V2 — 90 Xy | yoya+

105 X2 | y1y2ya + [—35 ] ysys + [6 Vay — 15 Xy2] ys+
6,2 — 36 Xy ] y195 + [—21 2] (11)%ys + [—21 X, ] yoys+
Yy — 6 Xy ye + [—7 X, y1ye.

4+ + o+ o+
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2.30. Deduction of the classical Fadi Bruno formula. Letz,y € K and letg = g(x),
f = f(y) be twoC>-smooth function& — K. Consider the compositiol := f o g,
namelyh(z) = f(g(x)). ForA € Nwith A > 1, simply denote by, the A-th derivative

d>‘ B . . dA
== and similarly forh,. Also, abbreviatef, := W{

By the classical formula for the derivative of a compositedtion, we havé,, = f; g;.
Further computations provide the following list of subsewgfuderivatives of::

((h1 = fi01,
ha = fa(g1)* + f1 9o,

hs = f3 (91)3+3f29192+f1937

hy = fi(g)* +6f3(91)% 92 + 3 f2(g2)*> +4 f291 93 + f1 94,

hs = f5(91)° 4+ 10 f1(91)° 92 + 15 f3(91)% g3 + 10 f3 g1 (92)°+
+10 f2 9293+ 5 f2.91 94 + f1 95,

he = fo(91)® + 15 f5(g1)" g2 + 45 f1(91)” (92)° + 15 f3 (g2)°+
+20 f1(91)% g3 + 60 f3.91 g2 93 + 10 f2 (93)* + 15 f3 (91)* ga+
+ 15 f29294 + 6 f291 95 + fi1 G-

(2.31)

Theorem 2.32.For every integer< > 1, the xk-th derivative of the composite function
h = f o g may be expressed as an explicit polynomial in the partiaivd¢ives off and
of g having integer coefficients

K

D S >

(2.33) d=1 1S <--<Aa<k pa 2l pa2l pida+-Apara=r
k! dnttaf (gt g\
A gyl Nk g dyrattia \ dar o :

This is the classicdfaa di Bruno formula Interestingly, we observe that this formula
is included as a subpart of the general formula¥qr after a suitable translation. Indeed,
in the formulas forY{, Y, Y3, Y4, Y5, Y and in the general sum faf ., pick only the
terms for whichu; A1 + - - - + ugAg = x and dropX’, which yields:

SREDSID SRS

(234) d=1 1< << \g<k p121,..., pa=l pi A4+ pghg=s

K;! I H
|:,ul!()\1!>“1 . 'I[,Ld!()\d!)'u‘d yy#1+m+ud:| <y>‘l) 1,.. (y)\d) d .

The similarity between the two formulas (2.33) and (2.34)a@/ clearly visible.
The Faa di Bruno formula may be established by means ofitutiss of power series

([F1969], p. 222), by means of the umbral calcullis ({[CS19396] by means of some
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induction formulas, which we write for completeness. Defimedifferential operators
(2.35)

0 0
Fy :928—g1+g1 <f2(9—fl>’

0 0 0
F3 ¢=g2a—gl+g3a—92+91 <f2—+f3—>,

Then we have

hg = F2(h1),

hs = F3(hy),
(2.36) 3 ( 2)

hy = F(hy_1)

§3. SEVERAL INDEPENDENT VARIABLES AND ONE DEPENDENT VARIABLE

3.1. Simplified adapted notations.As announced after the statement of Theorem 2.24,
it is only after we have treated the case of several indepgng®iables that we will
understand perfectly the general formula (2.25), validhea tase of one independent
variable and one dependent variable. We will discover masgirmal computations,
exciting our computational intuition.

Thus, assume > 1 andm = 1, letk € N with x > 1 and simply denote (instead
of (1.2)) the jet variables by:

(32) ('Iiuyuyil?yh,izw < Yiia,.., in) .
Also, instead of (1.30), denote theth prolongation of a vector field by:

(
AC(K ZXZ _+ZY“6 +Z Yz1z268 +

i1=1 i1,i2=1 21 i2

n 0
N Z Yi i, oy

01,82,y =1 158250000k

(3.3)

The induction formulas are

(

Yil = D1 Z D yku
(3'4) Yil,ig = D2 Z D Xk yll k>
Yil,ig ..... i DZ (Yihig,...,in,l) - Dilﬁ (Xk) Yivig,.oin_1,k>
k=1

where the total differentiation operatok) are defined as in (1.22), dropping the sums
>_7_, and the indiceg’.
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3.5. Two instructing explicit computations. To begin with, let us comput®’;,. With
D} = + Yir 3y 9 we have:

8:(:21

Y, = Z Dy, (X*) g,

k1=1

= Vo + Vi — > Xy, = > X i, v

k1=1 k1=1

(3.6)

Searching for formal harmony and for coherence with the tdat.6),, we must include
the term)/, y;, inside the sunElel [-] yx, . Using the Kronecker symbol, we may write:

n

(3.7) Vyvin = > 65 V] .

k1=1

Also, we may rewrite the last term of (3.6) with a double sum:

n

(3.8) — Z X;l Yi, Yp, = Z [—5511 X;ﬂ Yky Yks -

ki=1 k1,ka=1

From now on and up to equation (3.39), we shall abbreviatesany) ,_, from 1 ton
as)_,. Putting everything together, we get the final desired pedrpression oY, :

(39) yq _|_Z 5k1 Xkl yk1+z 5k1 Xk2 yklyk2~

k1,k2

This completes the first explicit computation.
The second one is abolY;, ;,. It becomes more delicate, because several algebraic
transformations must be achieved until the final satisfyorgiula is obtained. Our goal
is to present each step very carefully, explaining every dietail. Without such a care,
it would be impossible to claim that some of our subsequemtpedgations, for which we
will not provide the intermediate steps, may be redone anified Consequently, we
will expose our rules of formal computation thoroughly.
Replacing the value 6f; just obtained in the induction formu(a.4), and developing,
we may conduct the very first steps of the computation:

Yi i = D (Yi,) - Z Dj, (X]ﬁ) Yiy
k1
— (aaw + Yip, — 3y +Z Yio b o ) (y i _|_Z [5k1 Xk1]yk1+
+ Z [_521 X;ﬂ yklykz) - Z {Xkl + Yiy ngl] Yiy k1

k1,k2 k1
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(3.10)

< xm) (y i +Z [5’“1 Xkl}ykl + > [—51’?11 Xﬂ Yt | +

k1,k2

<yz2 —> (37 - Z [5'“ — &N } Uk + Y [—55? Xﬂ Yk Uks | +

k1,k2

Z Yio k1 % Vyin + Z [5’“ X’“ } Yky T+ Z [—5;“11 ngﬂ Yk Yks | +
k1 1

k1,k2
+) [ X'“} Yki,in T Z [ } YioYin by
k1

k k k
Vairgiz + Z [5 'Y zizy = xi11$i2:| Yy T Z [ 5211 zQy] Yk1 Yo+

k1,k2
k k
+ yxily Yio + Z |:5 ! yyy L1y} Yk1Yiy + Z |:_5i11 X;ﬁ] yklykzyi2+
k1,k2
Z [5k1 ] Yig,ky T Z [_5511 Xéﬁ] YkoYio k1 T Z [—5511 X;Q] Yk Yia kot
k17k‘2 k17k2

+ Z [ Xkl} ykl,zl + Z |: } yzzyzl,kl
k1

Some explanations are needed about the computation ofshsviaterms of line 11i.e.
about the passage from line 7 of (3.10) just above to line 14 h#e to compute:

(3.11) <Z Yiz,k %) (Z [_5511 sz} yklykg) )
k1 Ik

k1,k2

This term is of the form

3.12) <Z Ap, %) (Z [Bkl,kz]yklyk2> ;

kl k17k2

where the termd3,, ;, are independent of the pure first jet variables. By the rule of
Leibniz for the differentiation of a product, we may write

(Z Ak %) (Z [Bklvkz]yklykz) =

k1,k2

(313) = > By ko) s (Z Ary 57— ym ) + > [Bry kol vk (Z Ary 57— 8y (Y )

k1,k2 k1,ko

= Z (B ko] Yhy Ary + Z (B, ko) Uiy Aky -
k1,k2 k1,k2
This is how we have written line 11 of (3.10).
Next, the first term),.,, v;, in line 10 of (3.10) is not in a suitable shape. For reasons
of harmony and coherence, we must insert it inside a sum dothe) _, [-] y,. Hence,
using the Kronecker symbol, we transform:

(3.14) Yoy Ui = 3 (08 Vorry ] -

k1
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Also, we must “summify” the seven other terms, remainingimes$ 10, 11 and 12
of (3.10). Sometimes, we use the symmefry,, = v, ., Without mention. Similarly,
we get:

SV - 5 gy = S [5511 582 Y,y — 082 M y] .

k1 k1,k2
Z [_521 ng;} Yk Yk Yio = Z [_521 5523)(;@/2] Yk1YkoYks
k1,ko k1,k2,k3
Z [5511 yy Xlﬂ} Yk iy = Z [521611 5522 yy 5k2 Xklj| Yk Jeas

k1 k1,k2

Z [_5511 X;ﬂ Yko Yk in = Z [_5512 ijﬁ] Yhr Yk iz

kl,kz klyk2

Z [_511612 67{623 ngﬁ} Yk Yk ks3>

k1,k2,ks

(3.15)

Z [_5511 X;ﬂ Yk Ykoiz = Z [_521 5523 X;ﬂ Yk1 Yk k3

k1,k2 k1,k2,ks

Z [ Xkl] Yky,ia Z [ 5k2Xk1} Yk1 ko>

k1 k1,k2

Z [_X?fl] YisYki,in = Z [_X?j@] YioYka,in

kl k2

k1 ¢ks ko
§ : [_51'2 62‘1 Xy }y/ﬁyk%/%'
k1,k2,k3

In the sequel, for products of Kronecker symbols, it will lmaeenient to adopt the fol-
lowing self-evident contracted notation:

(3.16) oFr otz = gft generally : 6 0F2 -+ 0 = glbiEEy

11,12 ) 215,22, 05T\

Re-inserting plainly these eight summified terms (3.14)1%B in the last expres-
sion (3.10) ofY,, ;, (lines 10, 11 and 12), we get:

(3.17)
Y = yznxig.JrZ [5‘“ Vyiny — X } T { orr Ak } Uk Uk +
) 1 i1 Y2y 201 22 1 zi2y 1Yk2
. k1 @ k1,k2 @
k1,k k k
Z |: Z1y:| Yk + Z |:5111 122 yyy - 5 2 X L11 y] Yk Yko +
@ k1,k2 E
k ,k k ,k k k
+ Z [ 211 Z23 } Yk YkoYks  + Z [ 211 222 - 5 ;X 1] Yki ke T
k1,k2,k3 E k1,k2 E
k k k ks
+ Z |: 212 223 Xk1:| yklyk27k3 + Z |: 211, 223 Xk2:| yklyk27k3 +
k1,k2,k3 E k1,k2,k3 @

£ Y [+ 5 [0 A s,

k1,k2 E k1,k2,ks @
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Next, we gather the underlined terms, ordering them acogrth their number. This
yields 6 collections of sums of monomials in the pure jetalles:

Yi1,i2 = zleQ + Z |:5k1 L2y + 55:21 yxily Xk’bllmZQ] yk1+

+y [5’“17’” Yy — S5 X2 = 82 X8 Ty +

21,12 L2y L1y
k1,k2
k17k3
(318) + Z |: 11,12 :| yk1yk2yk5+
k1,k2,k3
k17k2 ko k’1 ko k1
T Z [521 io 5 X 52‘1 XxiQ] Yky ko T
k1,k2
k27k3 k1 k1,k3 ko k1,k3 ko
+ Z |: 11,192 X - 621 io X - 622 i1 X Yk1Yko k3-
k1,k2,ks

To attain the real perfect harmony, this last expressiorshitido be worked out a little
bit.

Lemma 3.19. The final expression & ;, ,, is as follows
( Yi17i2 = 7~1;B7«2 _|— Z 5k1 Z2y + 5521 yfpily szllng} yk’1+

T Z [5511722 Vyy — Ot X2 — o Al } Yky Yrot

zi2y ity
k1,k2
(3.20) + ) [ o X, ’“} Yker Yo Yhes +
k1,k2,k3
+ Z [5511’522 — 6;! XkQ o1 Xb} Yk kot
k1,k
+ 122: [ 5511,2122 ng _ 5513721621 ng 521612,21623 Xk1i| Ykey Yk s
k1,k2,k3

Proof. As promised, we explain every tiny detail.

The first lines of (3.18) and of (3.20) are exactly the samer the transformations
of terms in the second, in the third and in the fourth lines,use the following device.
Let Ty, x, be an indexed quantity which is symmetrit, ., = Yy, x,. Let Ax, x, be an
arbitrary indexed quantity. Then obviously:

(3.21) Z Apy ks Ty = Z Aka ey Thoy ey
k1,k2 k1,k2

Similar relations hold with a quantity;, ;, ., which is symmetric with respect to its
indices. Consequently, in the second, in the third and ifidheh lines of (3.18), we may
permute freely certain indices in some of the terms insi@ehttackets. This yields the
passage from lines 2, 3 and 4 of (3.18) to lines 2, 3 and 4 00§3.2

It remains to explain how we pass from the fifth (last) linei@) to the fifth (last) line
of (3.20). The bracket in the fifth line of (3.18) containsa@rterms:[—1, — T, — T3).
The term(T3 involves the produczizl’ff, which we rewrite aéf“’Z , in order that; appears
beforei,. Then, we rewrite the three terms in the new orﬁeTz — T5 —T1], which
yields:
(3.22) SO (o a ot k- 5 A e

i1,%2 i1,12 i1,42
k1,k2,k3
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It remains to observe that we can permiteandk; in the first term—175, which yields
the last line of (3.20). The detailed proof is complete. O

3.23. Final perfect expression ofY;, ;, ;. Thanks to similar (longer) computations, we
have obtained an expression %t ;, ., which we consider to be in final harmonious
shape. Without copying the intermediate steps, let us wloten the result. The com-
ments which are necessary to read it and to interpret itjsistrbelow.

o k1 k1 o k1 o k1
YZl,ZQ,ZS — lezsz; + Z |:5 22xb3y + 522 yx’blngy + 57/3 yxnxmy - Xibilfﬂi2"ﬂi3] yk1+
kl,kz k1,k2 k1,k2
+ Z |:6Z1 io y 23y2 + 6Z3 i1 y 22y2 + 6Z2 iz y 21y2_
k1,k2

_5k1 sz _ 5k1 XkQ o 5k1 sz ] Yo Uiy +

Z2I23y ’le’LSy zlw'LQy

I Z |:5k17k2,]93y _ gkuka ks skuks ks skuks ks }yklykgykﬁ

11,122,13 11,12 Ziy 11,13 22y 12,13 Zly
k1,k2,k3

k1,k2,ks yk
+ Z [_61‘172'2,2'3 Xyi’?] Yk Yko Yk Yka+
k1,k2,k3,ka

k1,k2 k1,k2 k1,k2
+ Z [521 12 Y z'3y 523 i1 Y zizy 512 i3 Y Ty

k1,k2
5k1 szzng3 5k1 ‘)C'kzzlw3 5k1 leQ Yk kot
T DLt v S AR e
1,R2,R3

k‘hk‘z k‘3 - k‘37k‘1 k‘z o kz,k; k:l
521723 Xxléy 52‘172'3 X xi2y 511,13 xi2y

k1,k2 ks k3,k1 ko ko,ks ki
_5Z2 i3 Xxily - 5@2 i3 x ity 522 i3 Xxi1y Yy Yk ks T

k1,k2,k3 kg ka,ks,k1 kg k3, ko,k1 pks
+ Z [ 5Z1,Z2,23 X B 521 i2,13 X o 5@1 i2,13 X
k1,k2,k3,ka

k3,kak1 ko k3,k1,ka ko k1,k3ka ko
621 22 i3 X - 521 22 i3 X - 621 22 i3 X yklykak37k4+

. Z [5123X4_5251X4 5312X4]yk1,kzyk3,k4+

i1,1%2,13 i1,142,13 i1,12,13
k1,k2,k3,ka

I Z [5%1#2#3 W _ ghuke Xka _ ghuks Xka _ ks st} Yks ookt

21,12,13 21,12 '3 21,13 x'2 12,13 x*
k1,k2,k3

n Z [5123X 5412X3—5341X2—5234Xyl}yklykz,k3,k4'

11,2,13 Yy 11,12,13 11,12,13 11,12,13
k1,k2,k3,ka

3.25. Comments, analysis and inductionFirst of all, by comparing this expression
of Y;, 4, ., With the expression (2.8) oY ;, we easily guess a part of the (inductional)
dictionary beween the cases= 1 and the case > 1. For instance, the three monomials
[(y1)?, [ y1y and[] (y1)? y2 in Y are replaced ifY;, ,, ;, by the following three sums:

(326) Z H Yk1YkoYks s Z H Yk1Yko k3> and Z H Yk YkoYks ky-
k1,k2,ks k1,k2,k3 k1,k2,k3,ka
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Similar formal correspondences may be observed for all tbeamials ofY,, Y,,, of
Y., Y, ., and of Y3, Y, 4, .. Generally and inductively speaking, the monomial

(3.27) [ (an)™ == ()™

appearing in the expression (2.25)%f. should be replaced by a certain multiple sum
generalizing (3.26). However, it is necessary to think, amge and to search for an
appropriate formalism before writing down the desired ipldtsum.

The jet variabley,, should be replaced by a jet variable correspondingitg-én partial
derivative, SAYYky,... kx, » wherek,, ..., ky, = 1,...,n. For the moment, to simplify
the discussion, we leave out the presence of a sum of the Em)w%. The y;-th

power (yy, )" should be replacedot by <yk1,___,kkl>m, but by a product of:; different

jet variablesyy, _x, of length A, with all indicesk, = 1,...,n being distinct This
rule may be confirmed by inspecting the expression¥ of of Y;, ;, and ofY;, ;, ;. SO
Ykt kir, should be developed as a product of the form

(3.28) yk17...7k)\1 yk)\l+1,...,k2)\1 te yk(ﬂlfl)Al‘Fl""’k“l)‘l’
where
(329) ]{71,...,]{})\1,...,]{7“1)\1:1,...,’”.

Consider now the produci,, )" (v»,)"*. How should it develope in the case of several
independent variables? For instance, in the expressidn,of ;,, we have developed the
product(y;)? y2 aSyk, Yk, Yks ks~ THUs, @ reasonable proposal of formalism would be that
the producty,, )" (yx,)"* should be developed as a product of the form

Yk,oskay Ykay115k2xn, =" Yk —1)ng 410k a

(3.30)

yk#1>\1+1""’kH1A1+A2 o ykuﬂl+(u2*1ﬂ2+1""’k#1>\1+#2A2’
where
(331) ]{51, ey k>\17 ey k,ul)\l? ey k#l>\1+ﬂ2>\2 = 1, o, .

However, when trying to write down the development of the egah monomial
(ua)™ (yan)™ + -+ (ya,)", we would obtain the complicated product

Ykt,oskay Ykx v1sokax, " Yk —1yn, +1500ku 0y
Ykuinit1 kg e = Ykuyxg 4 (ug - ag+ 1K Ay bup s
Ykping g iram+1omoRu g+ brg_idao1+ra
Yk a4 A SNy Lo Ry Ay b g
iAo g A g1+ (g =D A g+ H1AL HdAd

Essentially, this product is still readable. However, irstme of the integerk, have a
too long indexx, often involving a sum. Such a length @fwould be very inconvenient

appear in the final expression &f;, ;.. One should read in advance Theorem 3.73
below to observe the presence of such multiple Kroneckeibs{snConsequently, for
a=1,..., 1A, ..., 1\ + -+ ugAg, We have to denote the indices k., differently.
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Notational Convention 3.33.We denotel collection of.; groups of\; (a priori distinct)
integersk, = 1,...,n by

kl:l:la ey kl:l:)\lv ey kl:ulzla ey kl:p,lz)\lv
A - ~~ - N ~~ -

)\1 >\1

- -

M1

k2:1:17 R k2212)\27 R k2:,u2:17 R k2:,u2:)\27

(3.34) N . _

Correspondingly, we identify the set
(3.35) {1,...,A1,...,/L1)\1, ...... S AL F oA, e ,ul)\l—l-ug)\g—l-"'—l—,ud)\d}
of all integersa from 1 to py Ay + peAs + - - - + pgAg With the following specific set

(3.36) {L11, . LA, o LA, e 20 gy ey A gt Ag )
_}\;_z
H1A1
1A+ 2 A2

1AL Fp2 A2+ pgAg

written in a lexicographic way which emphasizes clearlyghbdivision ind collections
of 4 groups of)\; integers.

With this notation at hand, we see that the development,varaéindependent vari-
ables, of the general monomial,, )" - - - (y»,)", may be written as follows:

(337) ykl:l:ly---yklzlzkl Y ykl:ulilv---vklzulzkl e ykd:l:lv---vkdzlzkd ...... ykd:udzlv---vkd:;td:kd'

Formally speaking, this expression is better than (3.32)niyproduct symbols, we may
even write it under the slightly more compact form

(3.38) H Yktoy itk © H Yk ot ook giny
1< <1 1<vg<pa
Now that we have translated the monomial, we may add all therstion symbols:
the general expression &f, (which generalizes our three previous examples (3.26)) wil
be of the form:
(3.39)
rk+1

Yo=Y by Y > 2.

d=1 1< << <k i 2l,,pa 2l padi+-+pughg <+l
n n n n

Z Z ...... Z Z

kl:l:lynwkltlt)\l:l kl:u1:17~~~7k1:u1:)\1:1 kd:l:h“wkd:l:)\d:l kd:y.dzlynwkd:ud:)\d:l

? .
[] H ykl:V1:17~~~7k1:u1:)\1 H ykd:ud:h“wkd:ud:)\d'

1<vi<m 1<va<pa
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From now on, up to the end of the article, to be very preciseyilleestitute the bounds

> ., of all the previously abbreviated sun)s,. This is justified by the fact that,

since we shall deal in Section 5 below simultaneously witlessd independent variables
(x',...,2") and with several dependent variabl@s, . . ., y™), we shall encounter sums
> -, not to be confused with sun)s;;_,.

3.40. Combinatorics of the Kronecker symbols.Our next task is to determine what
appears inside the brackd® of the above equation. We will treat this rather delicate
guestion very progressively. Inductively, we have to guess we may pass from the
bracketed term of (2.25), namely from

K.”(K’—/“’Ll)\l_.'._/“bd)\d_‘_]').y _
()\1!);11 ,ull . ()\d!)ud ,ud' RTHIAL T —kgA g yH1 g
(3.41) LR (R A = = g+ 2) (A pada)
Oul it )
. Xxﬁfmhfwfud/\ﬁrl yu1+-~+ud71] 5

to the corresponding (still unknown) bracketed t¢@h
First of all, we examine the following term, extracted frone icomplete expression of
Y, 4,45 (first line of (3.24)):

n

(3.42) Z [5511 ymizrigy + 521 yxilxiSy + (5;21 yxilxhy - szll xiQIi3:| Yk -
k1=1

Here, the coefficien3 V,z, — X,s] of the monomialy, in Y3 is replaced by the above
bracketed terms.

Let us precisely analyze the combinatorics. Herg, is replaced by’(a’f}m%ig, where
the lower indices,, i5, i3 come fromY,, ;, ., and where the upper indéx is the sum-
mation index. Also, the integeXin 3),:, is replaced by a sum of exactly three terms,
each involving a single Kronecker symtl in which the lower index is always an index
1 = 11,12, 13 and in which the upper index is always equal to the summatidexk;. By
the way, more generally, we immediately observe that alktlezessive positive integers

(3.43) 1,3,1,3,3,1,3,1,3,3,3,9,6,3,1,3,4

appearing in the formula (2.8) fdr'; are replaced, in the formula (3.24) ffF;, ;, ;,, by
sums of exactly the same number of terms involving Kroneskerbols. This observation
will be a precious guide. Finally, in the symbijl, if 7 is chosen among the st , s, i3},
for instance ifi = 4, it follows that the development @¥,2, necessarily involves the
remaining indices, for instan¢g,.,.is,. Since there are three choices fet i, is, i3, we
recover the numbes.

Next, comparing),, — 2 X,,] (y1)? with the term

L3y.

(344) Z |:6£€117,£€22 yyy — 6511 Xfll?y — (Szk; szlllyi| Yk1Yka»
k1,ko=1

extracted from the complete expression¥gf ;, (second line of (3.18)), we learn and we
guess that the number of Kronecker symbols bejorgs must be equal to the number of
indicesk, minus~. This rule is confirmed by examining the term (second and tivie
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of (3.24))

k1,k2 ) k1,k2 ) k1,k2 )
> [85 Vi + O Vg + 08 Dy
(3.45) ki k

kl kl kl
5 ’LQZ”LSy - 6 'leZSy - 6 le’b2y] yk‘1yk)27

developing3 V,,» — 3 X,2,] (11)2.
Also, we may examine the following term

n

Z k1,ko ky k2 K1,k2 :
|:521 io y L3xl4y2 + 521 iz y L2xl4y2 + 521 ia y L2x13y2+

k1 k=1
(3.46) +5Z ’ZQ y ingiay? 5521 ’ZQ Vuiraisy2 + 5531 ’ZQ Vuir gizy> —
6k1 Zz;pls;puy - 6k1 HzlleSy - 6k1 Z1 zi2gidy
5k1 Xkll xzwgy] Yky Yk s

extracted fromY;, ;, ;, ., and developind6 ,2,2 — 4 X,3,] (y1)*. We would like to men-
tion that we have not written the complete expressio¥ gf,, ,, ;,, because it would cover
two and a half printed pages.

By inspecting the way how the indices are permuted in theiplaelKronecker symbols
of the first two lines of this expression (3.46), we obsenat the six terms correspond
exactly to the six possible choices of two complementargad couples of integers in
the set{1, 2, 3,4}, namely

{1,2} U {3, 4}, {1,3}U{2,4}, {1,4} U {2, 3},

(3-47) {2,3}U {1’4}7 {2,4}U{1,3}, {374}U{172}'

At this point, we start to devise the general combinatoBefore proceeding further, we
need some notation.

3.48. Permutation groups. For everyp € N with p > 1, we denote byS, the full
permutation group of the s¢t, 2,...,p — 1, p}. Its cardinal equalg!. The lettersr and
7 will be used to denote an element@‘, If p> 2, and ifq € N satisfies] < g <p-—1,
we denote byS? the subset of permutations € &, satisfying the two collectlons of
inequalities

(349) o(1)<o(2) < ---<oalq) and olg+1)<o(g+2)<---<a(p).

The cardinal of53¢ equalsC? = 2

=)
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Lemma 3.50. For « > 1, the development dR.20)to several independent variables
(... 2" is:

n
Y k1 . . k1
Y1177427---774n - yxll"ﬁ?"':ﬂﬁ + Z Z 57;.,.(1) yxl‘r(Q),..xlr(n)y o Xmilmi%--mi/@ yk?1+
ki=1 |re&L

n
ki, ko ) ) _ Z k1 ko2
+ Z Z 57;.,.(1),7;,,_(2) ysz(S),,,sz(ﬁ)yQ 6@'7_(1) XxiT@)...xiT(H)y yklyk2+
ki,ko=1 |17€&2 TESL

n
ki, k2, k3 ) ) .
+ Z Z 5ir(1),ir(2)7i7(3) yxlf(‘l)---gglf(ﬁ)yi’)

k1,k2,k3=1 [re&3

(3.51)
_ kl7 k2 ng
2. Oiviyiy oy Catr(@) it y2 | Y1kl
TEG?
+ ...... +
n
k17~~~7kn kl? ~~~~~~ 7kn71 ki
+ Z 5i17~~~7 ik ny - Z 6Z'T(1),...,Z'T(n71) XxiT(”)y"i*l ykl U ykn—i_
k1,...kk=1 Teggfl

n
k 7"'7kl<i kl{ H
+ Z [—52-117___7 e e “] Ykt *** Yk Ykeyr T remainder.
klv"'vkﬁvkﬁ+1:1
Here, the ternremainder collects all remaining monomials in the pure jet variables
Yk, ke

3.52. Continuation. Thus, we have devised how the parf¥f _;_ which involves only
the jet variableg,,, must be written. To proceed further, we shall examine thieviohg
term, extracted fronY;, ;, ;, (lines 12 and 13 of (3.24))

E : k1,ko,k3 kg ko ks,k1 kg k3,k2,k1 kg
|:_5i1,i2,i3 Xy2 - 5i1,i2,i3 Xy2 - 5i1,i2,i3 Xy2 -
(3.53) k1,k2,k3,ka

k3,ka,k1 ko k3,k1,ka ks k1,ks,ka ks
_5i1,z’2,z’3 Xyz - 5i1,z’2,z’3 Xyz - 5i1,z’2,z’3 Xyz Yk YkaYks ka >

which developes the terfa-6 X,2] (y1)%y» of Y3 (third line of (2.8)). During the compu-
tation which led us to the final expression (3.24), we orgashihe formula in order that,
in the six Kronecker symbols, the lower indicgsis, i3 are all written in the same order.
But then,what is the rule for the appearance of the four upper indices, k3, k4?

In April 2001, we discovered the rule by inspecting both 83.&nd the following com-
plicated term, extracted from the complete expressioW of, ;, ;, written in one of our
manuscripts:

ki,ko k3 vy kok1,k3 vy ka,k3,k1 _
> [@‘1, ia, i3 Votay? T 03,70, iy Yaaye 03757, Vgt

k1,k2,k3
AL Dy 021 Vs O Y
- # B D L Do+ Dt
+ 511621%]2 Viiny2 + 55922]:;12 Vainy2 + 55922]:3?]2 Vg2 —
o 5{61,192 xks _ 5{62,191 Xks _ 6{927/63 k1 _

i1, 12 '3 x4 i1, 12 '3 x4 i1, 12 i3
Yy Yy Yy



LIE SYMMETRIES AND CR GEOMETRY 79

o 51617/62 ks _ 5/627/61 ks _ 5k2,k3 ki
11, 13 7'2:[24:y 11, 23 Z2;p7'4y 11, 23 Z2;p7'4y
5k1,k2 _ 5kz2,k1 _ 5162,165
11, 14 L2xlsy 11, 14 Z2xl3y 11, 14 221’L3y
5k}17k‘2 k’3 ) _6]627]61 k::g ] _6]62,]95 k:‘1 ) _
12, 13 " Tx'lgtay 12,13 " Txllgtdy 12,13 " Txllgtdy
5k1,k2 ng o 5k2,k1 ch; o 5162,19; ki
12, 14 “Txilgi3y i2, 14 Tz xi3y 12, 14 " x'lz'3y
k1,k2 ks k2,k1 ks ko,k3 q-k1
523 ia X T zi2y 523 i4 X Tizizy 6@3, g TCilgizy Yk1 Yko ks -

This sum developes the terfti2 ), ,» — 18 X2, | y1y» Of Y3 (third line of (2.9)). Let us
explain what are the formal rules.

In the bracketed terms of (3.53), there are no permutatidhefndicesiy, i, i3, but
there is a certain unknown subset of all the permutationsefdur indices:,, ks, k3, k.
In the bracketed terms of (3.54), two combinatorics aregres

e there are some permutations of the indices,, is, i, and
e there are some permutations of the indikgsks, k5.

Here, the permutations of the indicgsi,, i3, i, are easily guessed, since they are the
same as the permutations which were introducej8id8 above. Indeed, in the first four
lines of (3.54), we see the four decompositions

(3.55) {i1,4a,03}U{ia},  {i1,02,0a}U{is},  {i1,43,0a}U{io},  {i2, 43,04} U{ir},
of the set{iy, is, i3, 4}, and in the last six lines of (3.54), we see the six decomioosit

{Iilu 7’2} U {i37 i4}7 {7:17 7’3} U {i27 7:4}7 {7:17 7'4} U {i27 7:3}7

{ig, i} U {i1, 14}, {ig, is} U {i1, i3}, {is,ia} U {i1, 2},

so that (3.54) may be written under the form

(3.56)

(3.57)
7(1)7 7(2) kT(3) Z Z ‘r(l) k7(2) ‘r(i)
Z Z Z Lr(1),8r(2) 507 (3) y ‘r(4)y L (1),0r(2) 273 2 7(4) Yk1Yko ks3>
ki.ka,ks | re&3 o€? re&? o€?

where in the two above sums __,, the lettero denotes a permutation of the dét 2, 3}
and where the sigR refers to two (still unknown) subset of the full permutatgoup&s;.
The only remaining question is to determine how the indi¢ceare permuted in(3.53)
and in(3.54).

The answer may be guessed by looking at the permutationecfei k1, ko, k3, k4}
which stabilize the monomialy, yi, vk, x, IN (3.53): we clearly have the following four
symmetry relations between monomials:

(3.58) Yty Yho Yk s = Yho Uk Vs b = Yoy Yo Yha ks = Yho Yy Yk ks s

and nothing more. Then the numlieof bracketed terms in (3.53) is exactly equal to the
cardinal24 = 4! of the full permutation group of the sét, ks, k3, k4} divided by the
number4 of these symmetry relations. The set of permutation$§ {1, 2, 3, 4} satisfying
these symmetry relations

(3.59) Ykoty Yo 2) Yo (3) ko (ay = Yha Yk Yis g
consitutes a subgroup &, which we will denote by Furthermore, the coset

(3.60) %’f’l (1,2) . 64/5542’1 J(1,2)
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(12 4) (1 4) (1 4>
1 2 4 ) 2 4 ) 3 4 )
(3.61)
1 2 4 1 4 1 4
(s373) (5703) (1313)

which exactly appear as the permutations of the upper isditeur example (3.53). Of
course, the question arises whether the choice of suchmiggentatives in the quotient
S4/9" ) is legitimate.

Fortunately, we observe that after conjugation by any peations € 6% we
do not perturb any of the six terms of (3.53), for instancethie term of (3.53) is not
perturbed, as shown by the following computation

ko(3):ko(2):ko(1) 4,Ko(4)
E: _52'1, i2, 13 Xy2 }yk1yk2yk37k4:
k1,k2,k3,ka

possesses the six representatives

W W W
N0 W N
W = W
wW = W

W N NN

172)

_ _ skaka k1 pRo(a)
(3.62) - Z { 5i1, ia, i3 Xy2 Yk 11y Yk =10y Yk =13y, k =1 ()
k1,k2,k3,ka

_ ks.ka,k1 ko)
- Z [_52‘1, i9, i3 Xy2 Yk1YkoYks, ka
k1,k2,k3,ka

thanks to the symmetry (3.59). Thus, as expected, the chbicarbitrary representatives

o € 3212 in the bracketed terms of (3.53) is free. In conclusion, weehshown
that (3.53) may be written under the form:

k k k k
o(1):Ma(2):Ma(3) o(4)
(3.63) E - E 52‘1, ia, i3 Xy2 Yk1Yko Yk ka5

k1,k2,k3,ka 063512’1)*(1’2)

This rule is confirmed by inspecting (3.54) (as well as all dtieer terms ofY;, ;, i,
and of Y}, ;,.,.:,)- Indeed, the permutationsof the set{ky, ks, k3} which stabilize the
monomialyy, yx, 1, CONsist just of the identity permutation and the transpwsif &, and

ks. The coset;/H5""""? has the three representatives

123 123 123
(3.64) (123)’ (213)’ (231)’

which appear in the upper index position of each of the teasliof (3.54). It follows
that (3.54) may be written under the form

ko) ko (2):ko(3) _
Z Z Z 6i7’(1)7i7(2)7i‘r(3) yx17(4)y2—

kukaks | T8 peg(th (12

ko1):ko2) 1Ko (3)
5%(1)7%@) i) gir (@) | Yk Yk ks

oe&? T€3g1,1),(1,2)

(3.65)

3.66. General complete expression df;, ;.. As in the incomplete expression (3.39)
of Y;, ., considerintegers < \; < --- < A\g < wandyu; > 1,...,u, > 1 satisfying
A+ pghg < kL Byﬁmxﬁ...%ﬂdkd, we denote the subgroup of permutations
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Spinit et 9, that leave unchanged the general monomial (3.38), namat\s#tisfy

H yko‘(l:ulzl)7"'7ko'(1:u1:)\1) Y H yko‘(d:udzl)7"wko'(d:ud:)\d) =

1< < 1<y <
(367) 1M1 dXMd
= H ykl:ulzlvnwkl:ul:)\l o H ykd:ud:h“wkd:ud:)\d'
1< <m 1<va<pa
The structure of this group may be described as follows. Feryee = 1,...,d, an

arbitrary permutation of the set

(3.68) {e:1:1, .. el e e 200,00 e 20, -0 et s L, e et A}

-~ -~

Ae Ae Ae
He
which leaves unchanged the monomial
(369) H yk"(‘f:“eil)""’ka("fil’e:)\e) = H yk5¢l’e¢17“'7ke:ue:>\e °
1SveSHe 1<ve pte

uniquely decomposes as the composition of

e 1. arbitrary permutations of the. groups of)\. integers{e:v.:1,... e:v.: A},
of total cardinal(\.!)*e;
e an arbitrary permutation between thegegroups, of total cardinat,!.

Consequently

(3.70) Card (ﬁ<“m)"~’<wd>) — i D) - gl (Ma) e,

B1Ar+tpdAd

Finally, define the coset

D)o (A AL (oA
(3.71) FUAA A = Gy g [ DL A
with
Card S(H17A1)7~~w(ﬂd7)‘d) _ Card (&0 4+ +para)
piAittpada N C d (11521 (Has Ad)
(3.72) ar ”6#1>\1+"'+ud)\d

_ (A1 + - -+ paAg)!
pat A gl (Nat)e

In conclusion, by means of this formalism, we may write doha ¢omplete generaliza-
tion of Theorem 2.24 to several independent variables.
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Theorem 3.73.For everyx > 1 and for every choice of indicesiy, ..., i, in the set
{1,2,...,n}, the general expression &f;, ;. is as follows
(3.74)
r+1
Vi = Vorrain £ D > >
d=1 1M <<Ag<k pr2liopg 2l pidi+-4pgAa<r+1
n n n n

>

kl:l:lv---vklzlzklzl

>

ngl’)\l) »»»»» (BqsAq)

>

kl:ultlv---yk1:u1:A1:1

>

A4 A
Egl;:l 1 HdAd

>

kd:l:lv---vkdzlzkdzl

>

kd:p,dzlv---vkd:p,dzkdzl

HIALE g A g
QAL = —paAatpa et pa )

N

ka(l:l:l)7"'7ka(l:y,1:>\1)7"'7ka(d:ud:>\d)
br(1) s otr(ug Ag) oot (py Ay g A g) 8$iT(M1A1+W+Hdkd+1) ..

>

A+ tpugrg—1
7_66/':1 1 HdAd

(11 521)5-- (g2 q)
Egul)\yk FrgAa

a/ﬂ—u1>\1—"'—Md)\d+ul+“‘+ﬂdXko'(d:,u,d:)\d)

Ot () (ay)u1+---+ud—1_

H ykd:udzlv---vkdzud:Ad :

1<va<pa

ko‘(l:l:l)7"'7ko'(1:,u,1:)\1)7"wko'(d:p‘d:)\d71)
7‘7’(1)7""7'7'(/,1.1)\1)7""27(/,L1)\1+~~+,u,d)\d—1) awiT(M1A1+"'+Md>‘d) .

H ykl:ulzlv---vklzulzkl T

1< <

Since the fundamental monomials appearing in the last fi&.84) just above are not
independent of each other, this formula has still to be medli& little bit. We refer to
Section 6 for details.

3.75. Deduction of a multivariate Fa di Bruno formula. Letn € N withn > 1, let
r = (z...,2") € K", letg = g(a* 2") be aC>-smooth function fromK" to
K, lety € Kand letf = f(y) be aC* function fromK to K. The goal is to obtain
an explicit formula for the partial derivatives of the comsimn » := f o g, namely

h(z',...,z") = f(g(z',...,2")). ForA € N with A > 1 and for arbitrary indices
i1,...,5y = 1,...,n, we shall abbreviate the partial derivatigg% by g:,..., and

similarly for ;, ;.. The derivativéfl;—{ will be abbreviated byf).
Appying the chain rule, we may compute:

filgil,
hivis = f2[9ir 9in) + f119010]
F319ix 9is Gis) + f2(Gis Ginsis + Gin Giris + Gis Ginin] + F1 [Gininis] »
fa19ix 9is Gis Gia] + 13 (905 Gis Giria + Gis Gis Ginyia + Giy Gia Gisiat
+9iy Gia Ginsis + Gis Gia Girsis + Gis Gis Girin] +
+ f2(Girin Gissia + Givsis Ginyia + Girsia Ginyis) +
+ f2(9iy Ginsinsia + Gis Girinsia + Gis Girinyia + Gia Girinyis) +
+ 1191 inisia] -

hzwws -

hl1722725724

(3.76)
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Introducing the derivations

Zg’“’ Do <f2 f>

(3.77) =l
Z kri 5o —+ Z k1 ki 5 0 + 9i <f2 % + f3 %) ;
ki=1 k1 k1,ko=1 g 1,k2 1 2

n
0 0
F’iA = Z gklfl 89 + Z g/ﬁ,k‘Q, ag + tt +

el ki g ke=1 k1,2
n
0
N SR W
k1,..,kx_1=1 Ghreeka—1
0 0
+9i<f28f +f38f '+f>\8f)\ 1>,

we observe that the following induction relations hold:
hiyir = I, (hiy)

h; F3 (hl1722)7

(3.78) it

o A
Rissigonin = F5 (Riyigeoin_y) -

To obtain the explicit version of the Faa di Bruno in the ca$eseveral variables
(z',...,2") and one variable, it suffices to extract from the expressionYf, ;. pro-
vided by Theorem 3.73 only the terms corresponding,to, + - - - + pugAs = &, dropping
all the X’ terms. After some simplifications and after a translatiom®ans of an elemen-
tary dictionary, we obtain a statement.

Theorem 3.79.For every integer > 1 and for every choice of indices, . . . , i, in the set
{1,2,...,n}, thex-th partial derivative of the composite functién= h(z*, ..., 2") =
f(g(zt, ... z™)) with respect to the variableg®, . . . 2= may be expressed as an explicit
polynomial depending on the derivativesfofon the partial derivatives of and having
integer coefficients

e Z 2. 2. 2

d=1 1< <<A\g<k p121,5pmq 21 prdi+-Fpgha=r

Mg
(3'80) Z H 8:1:7;0(1:1/1:1) e axiv(lwrh) T

Ueg’({!ﬂ,)q) ----- (rgAg) 1< <

ONig
H axio(d:udzl) . axio(d:“dS:Ad)

1<va<pa

drattia f
dyrattha

In this formula, the cosg "' ")~ *2) was defined in equation (3.71); we have made
the identification:
(3.81) {1, .k} ={1:1:0, 00 Loy A, e NOES B N SN TR ED VI -

and also, for the sake of clarity, we have restituted the detafinot abbreviated) notation
for the (partial) derivatives of and ofg.
We refer to Section 6 for the final writing of the above form(8280).
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§4. ONE INDEPENDENT VARIABLE AND SEVERAL DEPENDENT VARIABLES

4.1. Simplified adapted notations.Assumen = 1 andm > 1, letk € Nwithx > 1
and simply denote the jet variables by (instead of (1.2)):

(42) (x7yj7y{7y%77yi) S jlfjm'
Instead of (1.30), denote theth prolongation of a vector field by:

(
LF) — X_+Zyj +ZY] +ZY]5
Ya

(4.3)

\
The induction formulas are:

(4.4)

Y3 = D*(Y{_,) - D" (X) v},
where the total differentiation operataf® are denoted by (instead of (1.22)):

0 - 0 0 - 0
AL l l l
(4.5) D .——Ex+2 y1—9y1+§ y2—9y1+"‘+§ ?JA—az_
=1 =1 1 =1 Yx—1

Applying the definitions in the first two lines of (4.4), we cpuate, we simplify and we
organize the results in a harmonious way, using in an esderdy the Kronecker symbol.
Here, the computations are more elementary than the cotigndafY;, and ofY;, ;,
achieved thoroughly in the previous Section 3, so that wead@rovide a Latex track of
the details. Firstly and secondly:

Y{=yi+> [y;}l = Xx} vt Y [—551 Xylz] vy,
1=1

I1,la=1

m m
- - l | | .
YE =Y+ 3 200 =0 Xyl + D0 (W0 = 0 2, | uligl

(46) =1 l1,l2=1

+ Z [—5{1 Xy@yzg} ylyRyl + Z [3};[1 — 2/'\,’4 Yo+
1

l1,l2,l3

m
] j I, 1
+ Z |:_5l‘71 Xylg - 51'72 2 Xyll] yll y22

l1,la=1
Thirdly:
Yi=0 4> [3 Yoy =0, an} TR [3 Vi — O 3, 4 Yyt
h=1 lh,la=1
j j L, la,
(4.7) T Z [yg,llybyls - 5ljl 3 mel2yl3:| v Yy +

l1,l2,l3

m
+ Z |:_5l‘71 Xyl2yl3yl4:| yllly?yigyl Z |:3 y‘iyll o 5l‘71 3 X"E2:| yl21+

l1,l2,03,l4 =1
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m
) ) ) o
+ Z [3 y;hylz o 5ljl 3Xxylz - 5{2 6Xxyl1:| y11y22—|—
l1,la=1
m m
] j I 1o 1 i 1
T Z [_5;1 3Xy12yl3 a 5;3 3Xylly12} y11y12y23 + Z |:_61]3 3 Xylz} y21y22+
l1,l2,l3=1 l1,l2=1
3 [ -+ Y [0 A — o3 b
=1 l1,la=1
Fourthly:
m m
. . . . : . ) L
Y, = yiz; + lz:l [4 yi?’yll - 5131 Xﬁ} Y+ l ;1 [6 yilelyZZ — 5{1 4Xx3yl2} gyl 4
1= 1,l2=
m ) )
+ Z |:4 yiyll yl2yl3 o 6{1 6 Xx2yl2yl3:| ylll yl12yl13+
l1,l2,l3=1

m
J J liylo, 13, la
+ Z [y ylylaylayla 511 4Xxyl2y13yl4:| YT YT YT YTt

xT
l1,l2,l3,l4=1
m m
J by lo, 13,14, s J J b1
+ Z [_511 Xyl2y13yl4yl5:| YIYT YT Y1 YT+ Z [6 ymzyzl - 511 4 X3 Yy +
l1,l2,l3,l4,l5=1 hi=1

m
D0 1207 — O 6 Xy — O, 12X | whi U+

l1,l2=1
m
j ] j l1, L2, l:
(4.8) + Y [6 Vi yagss — O 12,0 — 6], 12 Xxyllyl2] gyl

l1,l2,l3=1

m

] ] Ui, la 13 1
+ Z [—5{1 6 Xpiayisyts — 5{4 4 X 10 yl3:| Yyl ys

l1,l2,03,l4=1

m
j j 1
+ 3 [3y;llylz — 6112 Xxylz} byl 4
I la=1

m m
+ Y [—5{1 3 X,y — 0], 12 xyllylg} gy + 3 [4 Vi — 6,6 sz] i+

l1,l2,l3=1 I1=1
m
. . ) ol
+ 3 [4 Vi o = O A X, — 6], 12 Xxyll} Yyl
l1,l2=1

m
i j Iy, 12, I
—|— E |:_6l‘71 4: Xyl2yl3 - 6{3 6 Xyll yl2:| yll y12y33+
11,l2,l3=1

m
j j Iy 1
+ Y [—5{1 4K, — 5 6Xyll] b+
l1,l2=1
m m
=1

D R S R REM P
11 l17l2:1

4.9. Inductive elaboration of the general formula. Now we compare the formula (2.9)
for Y, with the above formula (4.8) foY. The goal is to find the rules of transformation
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and of development by inspecting several instances, inr dodgevise how to transform
and to develope the formula (2.25) to several dependerdblas.

First of all, we have to develope the general monorigl )" - - - (y»,)**. In every
monomial present in the expressions¥f, of Y3, of Y} and of Y/ above, we see that
the number of indiceslis appearlng in all the sumgl a1 1S exactly equal tqi; +

-+ pq. To denote thesg; + - - - + p, indiceslz, we shaII use the notation:

(4.10) LETERRY TSR PRI Y

g '

A1 Hd
A - ~ -

pitetpa

inspired by Convention 3.33. With such a choice of notatisa,may avoid long sub-
scripts in the indice$;s, like [, ..., ,,. It follows that the development of the general
monomial (y,, )" - - - (ya,)" to several dependent variables yielas' "+« possible
choices:

(4- 1 1) H yill R H yi\d;d :

1< <m 1<vg<pa
where the indicesly.,... Ly, a1, .-, lay, take their values in the set
{1,2,...,m}. Consequently, the general expressioiYéfmust be of the form:

k41

=Vt d. ). 2. 2

d=1 1< <-<XAg<k 121, 10g 21 pa X4+ pgrg<e+1

(4.12) Sy D SNC
l11=1 ll:,u,lz1 lg:1=1 ld:p,dzl
l1;U1 ld:ud
M T s
1< 1Sva<pa

where the term in brackef®] is still unknown. To determine it, let us examine a few
instances.
According to (4.8) (fourth line), the ternt),z, — 4 X,s]y, of Y, developes as

S, |6YY, - 54X 3} ys in Y. Here, 6,2, just becomes yilel. Thus, we

suspect that the terr; 40—kl )

of (2.25) should simply be developed as

* yx’if“‘l)‘lf“‘fﬁl‘dkd y,u,1+~~~+,u,d Of the Second ||ne

AR = 1) (5 = puh = — pada + 1)
D il )
QA =~ Aatpa et a )

' (ax)'i_lilAl_"'_Nd)\dayll:l - ayllz,ul .. ayld:l . 8yld:“d :

(4.13)

This rule is confirmed by inspecting all the other monomidl¥9, of Y3, of Y} and of
Y.

It remains to determine how we must develope the tertki Eppearing in the last two
lines of (2.25). To begin with, let us rewrite in advance tieisn in the slightly different
shape, emphasizing a factorization:

(4.14)

H“'("i_ﬂl)\l_"'_ﬂd}\d+2)

()\1!)”1 ple ()\d!)“d 1!

(,ul)\l +--+ Nd)\d)XxNﬂul)q*‘“*ud)\d‘H yu1+~~~+ud71:| .
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Then we examine four instances extracted from the compigteession ofYZ:
m

j l1, la, l:
Z |:4yiyl1yl2y13 5 6 X, l2yl3i| Yy

m

Z |:12 yi’yllyl2 5 6X 2 12 6272 12 Xx2yl1:| yllly?a
(4.15) -
Z [—5{1 6Xylgylgyl4 — 5{4 4Xy11y12y13} Yy ylfyll’yQ ,

l1,l2,l3,l4=1

m
Z |:_5l]1 4 Xyl2yl3 B 61]3 6 XyllyIQ] yll y12y3 ’
l1,l2,l3=1

and we compare them to the corresponding terms of

[4 yxy 6Xx2 ] (y1)3>
[12Y,,2 — 18 X2, | 1192,
(=10 X,3] (y1)%y2,

[—10 X,z2] (y 1) 3.

In the development from (4.16) to (4.15), we see that the fotagers just beforet,
namely6 = 6, 18 = 6 + 12, 10 = 6 + 4 and10 = 4 + 6, are split in a certain manner.
Also, a single Kronecker symbé{a is added as a factowhat are the rule®

In the second splittind8 = 6 + 12, we see that the relative weight 6fand of12 is
the same as the relative weightlodnd?2 in the splitting3 = 1 + 2 issued from the lower
indices of the corresponding monomidly’:. Similarly, in the third splittingl0 = 6 + 4,
the relative weight o and of4 is the same as the relative weightiof- 1 + 1 and of
2 issued from the lower indices of the corresponding monoumfiat?y;*y4:. This rule
may be confirmed by inspecting all the other monomial¥ef Y3, of Y3, Y§ and of
Y., Y. For a generak > 1, the splitting of integers just amounts to decompose the
sum appearing inside the brackets of (4.14uak;, pis o, . . ., ptgAg. In fact, when we
wrote (4.14), we emphasized in advance the decomposalbbe fagh; + - - - + ud/\d)

Next, we have to determine what is the subsctiph the Kronecker symboij
claim that in the four instances (4.15), the subscaips intrinsically related to Welght
splitting. Indeed, recall that in the second line of (4.18g number6 of the splitting
18 = 6 + 12 is related to the numbérin the splitting3 = 1 + 2 of the lower indices of
the monomiay:’fyé2 It follows that the index, must bethe index/; of the monomial’".
Similarly, also in the second line of (4.15), the numbgrof the splittingl8 = 6 + 12
being related to the numbeérin the splitting3 = 1 + 2 of the lower indices of the
monomialy!'y2, it follows that the index,, attached to the secont term must be the
index!, of the monomlab2 .

This rule is still ambiguous. Indeed, let us examine thalthinre of (4.15). We have the
splitting 10 = 6 + 4, homologous to the splitting of relative weighits= (1 + 1+ 1) + 2
in the monomialy''y2y'3ykt.  Of course, it is clear that we must choose the index
l4 for the Kronecker symbol associated to the secahderm —4 X3, thus obtaining
—67 42X, ,.,5. However, since the monomia{'y?yi* has three indices, l» andls,
there arises a questiomhat index/, must we choose for the Kronecker symﬁiglat-
tached to the firsk’ term6 Xs: the index;, the index, or the indexi3?

(4.16)
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The answer is simpleany of the three indiceg, [, or I3 works Indeed, since the
monomialy!' 42y’ is symmetric with respect to all permutations of the set téeétindices
{l1, 13,13}, we have
(4.17)

J b, l2, 13 _ liyla, U3, la _
E |:—(5ll 6Xyl2yl3yl4 Y1 Y1 Y, y2 = g |: 5 6 X llylSyl4] YY1y Yy =
l1,l2,l3,l4=1 l1,l2,l3,l4=1

= > [—5?3 6 Xyzlyzgyu] Yy YRy
l1,l2,l3,l4=1

In fact, we have systematically used such symmetries duhegntermediate computa-
tions (not exposed here) which we achieved manually to olite final expressions of
Y7, of Y}, of Y} and of Y7. To fix ideas, we have always choosen the first index. Here,
the first index |sl1, in the fII’St sum of line 9 of (4.8), the first inddx for the second
weight12 is 5.

This rule may be confirmed by inspecting all the monomial¥éf of Y3, of Y (and
also ong, which we have computed in a manuscript, but not copied slthiex file).

From these considerations, we deduce that for the genemalfa, the weight decom-
position is simplyu; Ay, . . ., ugAg and that the Kronecker symhij] is intrinsically associ-
ated to the weights. In conclusion, building on inductivesenings, we have formulated
the following statement.

Theorem 4.18. For one independent variable, for several dependent variables

(y*,...,y™) and for x > 1, the general expression of the coefficievif of the
prolongation(4.3) of a vector field is
(4.19)

k41

HED DY > >
d=1 1< <<X\g<k 121, pmq 21 A+ pg g <k+1
m m m m

Kk —1)+ (kK — A+ + pghg + 2)
SR DI DY b

l11=1 ll:ulzl lga=1 ld:p.dzl

I A \ 8“‘“1)‘1—"'—Hd)\d+,ul+---+udyj -
— e — 1 B
(I{ 1“’1 1 )u’d d + )(aw)ﬁ—ﬂl)\1—...—/1/d>\dayl1:1 [P ayllzul . ayld:l . 8yld:“d
OF—HAL = —pgAg TRt

511 1 11 5 B
(aw)ﬁ—m)q—“'—ud)\d-i-layhﬂ L aylltul - 8yld:1 - ayld:ud
5 \ OF—HAL = —pradg 1t pa y
1y MdAd

L (ax)ﬁ_ﬂlAl_“'_ﬂd)‘d"l‘layll:l e ayllikq e (% e 8yldiﬂd

ll:ul ld:ud
H COVE H Yng -

1< <m 1<vg<pa

Here, the notatio@l means that the partial derivative is dropped.

Since the fundamental monomials appearing in the last €. ©9) just above are not
independent of each other, this formula has still to be medlié little bit. We refer to
Section 6 for details.

4.20. Deduction of a multivariate Fa di Bruno formula. Letm € Nwithm > 1, let
y= . ..,y") e K™ letf = f(y',...,y™) be aC>-smooth function frorTKm to K,
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letz € Kand letg! = g'(x),...,¢g™ = g™(x) beC> functions fromK to K. The goal
is to obtain an explicit formula for the derivatives, wittspect tox, of the composition
h = fog, namelyi(z) := f(¢'(x),...,g™(x )). For A € N with A\ > 1, and for

j = 1,...,m, we shall abbreviate the derlvatl\?ﬁ by gA and similarly forh,. The

partial derlvatlvesm will be abbreviated byf;, . ;,
Appying the chain rule, we may compute:

(4.22)
m
hl - Z fl1 gllla
=1
m m
Lo 1o I
Z fl17l2gl 91 +Z fllg27
l1,lo=1 l1=1
m m m
lh l2 I3 I lo I
Z fll,lz,lg gl gl gl +3 Z fll,lz gl 92 + Z fll 937
I,l2,ls=1 I1,la=1 =1
m
ha= Y fuisdsn 98 97 9P 0 +6 Z Frviogs 91 92 g5+
I,l2,05,l4=1 I1,la,l5=1
m m m
+3 ) fungd g7 +4 D fungt g+ Y fu gt
I,la=1 I1,la=1 =1
m m
hs = Z Pt dstats 95 97 9% g3t g% + 10 Z Pt tsie 97 92 9% g5+
I,02,03,l4,l5=1 11,02,15,l4=1

m m
Lol Lol 1
+15 Z S ot 91 92 95" +10 Z Ju o5 91" 917 95+

l1,l2,l3=1 l1,l2,l3=1
m m m
i 1 I 1 l
+ 10 Z fl1,l2 921 932 +5 Z fll,lg 911 942 + Z fl1 951
l1,la=1 l1,la=1 =1

Introducing the derivations

(4.22)
m 8 m
2. _ l l
F — Z 921 a ll + Z gll Z fl1,l2 8f 9
=1 9 =1 lo=1
m m
0
3. !
P S e S e S (3 gt 3 g,
=1 9T = 95 =1 lo—1 LR A l2,l3
m 8 m m
D ST S S A g
] 3 A1 X Al
li=1 991 li=1 99 li=1 9951

m m a
+Zgl11 Z Julo 55 f2 + Z Juods 55— 3f2, -+ Z Jiijoriy 75— T

=1 lo=1 Io,l5=1 loyely=1
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we observe that the following induction relations hold:

hg == F2 (hl) y

hs = 3 (hy),
(4.23) ’ (ha)

hy = F* (hy_1)

To obtain the explicit version of the Faa di Bruno in the cakene variabler and sev-
eral variablegy', ..., y™), it suffices to extract from the expression'¥{ provided by
Theorem 4.18 only the terms correspondingitd, + - - - + pgA\g = &, dropping all the
X terms. After some simplifications and after a translationmmsans of an elementary
dictionary, we may formulate a statement.

Theorem 4.24.For every integerx > 1, the x-th partial derivative of the composite
functionh = h(z) = f(g%(x),...,g™(x)) with respect tar may be expressed as an
explicit polynomial depending on the partial derivativésfoon the derivatives of and
having integer coefficients

(4. 25)

k!
dl’“ Z Z Z Z PRI N7 I W A VZZ |
d=1 1A <-<Ag<k p121,..,0921 pidi+-+pgrg=k ( 1) a ( d> Hd
m m
11:17---711:;1,1:1 ld:lv---vld:udzl
8H1++‘udf d)\]_gl]_:yl dAdgld:Ud
Lo Oyltns o Oylat - . Oylding H ded H dara
oy dy dy Ay 1< < 1<rg<pd

We refer to Section 6 for the final writing of the above form(#a25).

§5. SEVERAL INDEPENDENT VARIABLES AND SEVERAL DEPENDENT VARIABES

5.1. Expression Osz , of Y” and of Yfl in.is- APPlying the induction (1.31) and

working out the obtained formulas until they take a perféeise, we obtain firstly:

52 ¥, =3, 43 S [y Al 353 [ k]t

l1=1 k1=1 l1,lo=1 kq,ko=1
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Secondly:
(5.3) .

) k k k l

g171'2 - 11x12 + Z [5 1 y]’zyll T 6 ' yjllyll 5l x 111:522} yk11+

=1 ki1=1
m n
k ki k k k k Iy ,1
+ Z Z [ Z11, 222 y]llyl2 B 5] 6 'X lzzy - 6] 5 X 121yl1] yk11yk22+

l1,lo=1 ki,k2=1

m n
J ski,ke ks Iy, 12,13
+ Z Z { 5 511,22Xl1y12 yklykzyk3+
l1,l2,l3=1 k1,k2,kz=1

k,k | ok k k k
S DR D I G e R e e E

i1, 192
hi=1 ki,ke=1
m n
ko ks J sks.k1 J ski,k2
+ Z Z [_5 521 12 X 5 521 i2 X 5 511 i Xll yk1yk2yk3
l1,l2=1 k1,k2,k3=1
Thirdly:
m n
J _ k1 vy kl J k1 J _sT vk 1
Yi17i2,i3 _yllmlzmls Z Z [5 y@xl:’,yll yllggl:’,yll yllx@yh 5 Xllmlle?,] Y T
=1 k=1
m n
2 : kl,kz J k1,k2 ~)J k1,k2 ~)J
+ Z [ i1, i2 Y xi3yliyl2 + 523 i Y xi2yliyle + 522 i3 Y ziigyliyle
l1,lo=1 k1,k2=1
_ J sk _ 7 sk1 o 7 ¢k
5 6 X 125[713 Iy 6 5 X il 13 151 5 6 X lelzyll] yklyk2+
m n
k1,k2,k3 ~5i 57 skike yoks _
™ Z Z {511,127 23y ylyl2yls 5l3 51’1,2'2 XxiByllylz
l1,l2,l3=1 ki,k2,k3=1
_ s skike ks _5J skika ks
J 52'1, 3 Xxilel yl2 5l3 52'2, i3 X zilyliyle yk1yk2yk3+
m n
ki1,k2,k3 kg
+ Z Z [_5 521712,23 Xyllyl2yl3 yk1yk2yk3yk4+
l1,l2,l3,la=1 k1,k2,k3,ka=1
m n
E : k1,k2 ~,j k1,k2 ~,J k1,k2 ~,J
T Z |:521 i2 Y z'3yh 523 i1 Y zi2yl 5227 i3 Y zityll
=1 kike=1
_ k1 ko _ J sk1 ko kl
5l 5 XQ i3 51 5 Xll '3 5l 5 115(;12] ykl k2+
(5.4)

m n
k1,k2,k3 ~s7 k3,k1,k2 ~yJ k2,k3,k1 ~yJ
+ Z Z |:521722ylSyl1yl2+6117742 Zsyllylz+5l1,22,lsyllyl2_
l1,l2=1 k1,k2,k3=1
ko, k i cko,k i cko,k
_53 52’3Xk1 5 52,3Xk1 5 5.2’.3Xk1

i1, 12 z3y12 1y Vi1, 13 z2yl2 1y V2, i3 xi1y12
_si ska.kr ko _ sJ skak1 ko 57 skaki pka
5l 521 i2 X z13yl1 512 5117 i3 X zi2yl1 512 51’27 i3 Xxilyll

J ski,ke J ski,k2 J ski,k2 ks
_5 611 is X zi3ylt 6[2 521, i3 X zi2ylt 6[2 52‘27 i3 X zi1yl1 yk1yk2 k3+
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m n
J ski,k2ks yoka J skoks k1 kg J skakak1 kg
+ Z Z [ 513 5%1722,z3Xl1yl2 _5l55z1722,Z3Xl1yl2 _5l5521,22w3 Xyllyl2_
l1,l2,l3=1 k1,k2,k3,ka=1
_ 57 skakaki ko _5J skskika pka
612 i1, 12, 13 X yliyls 5l2 521, i, 13 “yl1yls

j sk1,k3ka yoko Iy l2 I3
_5l2 5217 i2, i3 Xyllyli] Yier YioYhea oa T

m n
+Z Z {5J5123X3 535241/1/3_5]541QXll}ykleyk3k4_’_

la 71, i2, i3 la Vi1, i2, i3 lo Vi1, i2, 13
l1,l2=1 ki1,k2,k3,ka=1

m n
DI DI [ R R R R R R R 1

i1, 12,13 l1 711, 12 l1 711, 13 Iy “iz, 13
I1=1 ki,ka,k3=1

P2 Y [kl g s o -
l1,lo=1 ki,ko,k3,ka=1
ko,k3,k k Iy ,1
_5131 Z12, 2; Zi X ; ] ykll yk22 k3,ka”
5.5. Final synthesis.To obtain the general formula fd\t’” _i.» We have to achieve the
synthesis between the two formulas (3.74) and (4.19). WEVBIL’I!] (3.74) and we modify
it until we reach the final formula onfl,mM
We have to add thg, +- - -+ pg SUMSY )" _ - - Zﬁulzl ------ D1 Zﬁzﬂdzl,

together with various indicds. About these indices, the only point which is not obvious
may be analyzed as follows.

A permutations € Su‘i;’fjr " Jr’fj:f;’:d yields the list:

o(1:1:1),...,0(1:1:Xy),...o(lipg:1), oo o(Tippi ), ...
o(d:1:1),...,0(1:1:Xg),...o(d:pg:1), ... 0(d: pa: ),

In the sixth line of (3.74), the last term(d : nq : \g) Of the above list appears as the
subscript of the upper inde¥, 4..,.,) of the termX*- (a0 According to the formal
rules of Theorem 4.19, we have to multiply the partial deiweof X*- (120 by a certain
Kronecker symbo&l{x. The question iswhat is the subscript and how to denote®t

As explained before the statement of Theorem 4.19, the gpbscis obtained as
follows. The termo (d: p4: \g) is of the form(e: v, : 7. ), for somee with 1 < e < d, for
somev, with 1 < v, < . and for somey, with 1 < v, < A.. The single pure jet variable

(5.6)

(5.7) yke BN U S
appears inside the total monomial
ll:yl ld:ud
(58) H ykl:V1:17~~~7k1:u1:)\1 e H ykd:ud:h"'vkd:ud:)\d’
1< <1 1<vg<pa

placed at the end of the formula fM{lM-H (seein advance formula (5.13) below; this
total monomial generalizes to several dependent varidbketotal monomial appearing
in the last line of (3.74)). According to the rule explainesfdre the statement of Theo-
rem 4.18, the indek, must be equal t¢..,_, sincel..,, is attached to the monomial (5.7).
Coming back to the term(d: 14: \;), we shall denote this index by

(59) le:zxE = lﬂ(e:ue:'ye) = lﬂa(d:ud:)\d)u
where the symbat denotes the projection from the set
(5.10) {1:1:0, 0 g Ay, e Ly di g A}
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to the set
(5.112) {1:1,. ., i,y di 1o d )

simply defined byr(e:v.:7.) = (e:v,).

In conclusion, by means of this formalism, we may write dowe tomplete gener-
alization of Theorems 2.24, 3.73 and 4.18 to several inddga&rnvariables and several
dependent variables

Theorem 5.12.For j = 1,...,m, for everyx > 1 and for every choice of indices
i1,...,ix inthe sef{1,2,...,n}, the general expression &f/ ; is as follows
(5.13)

"

k41

Ygl,...,in = ygquxm + Z Z Z Z

d=1 1< <<Ag<k 1 2l,,pa2l pidi++pgAg<a+1

ha=1 Iy, =1 lin=1  la,=1
n n n n
kl:l:ly"'7k1:1:>\1:1 kl:ulzlrnvkl:ul:)\l:l kd:l:lv“wkd:l:)\d:l kd:y.dzlynwkd:ud:)\d:l
Z Z 5ko(1:1:1)7"'7ko(1:u1:A1)7---7ka(d:Md:Ad) T
Lr(a)s ot (ugAy) ot (g Ay g Ag)

(1521 )50 (BgsAg) H1A g A g
0€§H1A1+'”+H(ﬂd TES

QA = =g Adtpa et d )g

axiT(#l)\1+“‘+Hd>\d+1) oo awiT(n) ayllzl “ o ayld:,u,d o

z : z : 5ko'(1:1:1)7""ko'(1:/,1.1:)\1)7"'7ko'(d:,u,d:)\d71)
ZT(].)7"'7ZT(M1A1)7"'7ZT(M1A1+"'+HdAd71)
(11,2150 (g A ) H1AL g Ag—1
JESMANLMJWd)\d TES,

6]' a"i_lﬂ)\l_‘“_Md)\d"'l‘l+“‘+Uka0(d¢#di>\d)
e

wo(d:ipg:\ ’ . . -
i (dipg:Xg) axlT(#l)‘l+“‘+“d>‘d) . al‘ZT("') 8y11:1 . aylwc(d:p‘dzkd) . ayld:ud i
ll:u1 ld:ud
H yklil/1117---7kl:1/1:>\1 a H ykd:udzlv---vkdzud:Ad :

1< < 1Sva<pd

In this formula, the cose(ffjﬁ’fﬁjﬁgr’;‘:j’jd) was defined in equation (3.71); as in Theo-

rem 3.73, we have made the identification:
(5.14) {1, .k} ={1:1:0, 00 Loy A, e A1, di g Mg}

Since the fundamental monomials appearing in the last . ©9) just above are not
independent of each other, this formula has still to be medlié little bit. We refer to
Section 6 for details.

5.15. Deduction of the most general multivariate Fa di Bruno formula. Letn € N
withn > 1, letx = (2!, ..., 2") € K", letm € Nwithm > 1, letg’ = ¢/(z*,...,2"),

j =1,...,m, beC>®-smooth functions froniK" to K™, lety = (y!,...,y™) € K™ and
let f = f(y',...,y™) be aC> function fromK™ to K. The goal is to obtain an explicit
formula for the partial derivatives of the composition= f o g, namely

(5.16) h(z',...,2") = f (gl(xl, . ..,x"),...,gm(xl,...,x")) .

Forj=1,...,m,for\ € Nwith A > 1and forarbitrary indices, ...,ix = 1,...,n,we
shall abbreviate the partial derivati% by 951,...,; and similarly forh;, ;. For

[ AT
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arbitrary indices,, ..., I, = 1,...,m, the partial derivativ% will be abbreviated

bY fir,...0,-
Appying the chain rule, we may compute:

(5.17)

m
b =3 fu [dh)]

11—1

m
ol !

hiy iy = Z Juto {921 923} + Z fu [91122] ’

l1,l2 1 =1

m
1 la I 1
hi iy = Z Fuotnts |90 9205+ 30 S [0 o g ol g ]+

l1,l2,l3=1 l1,l2=1
m
I
+ Z fll [gihiz,is] ’
=1
m
T f l1l213l4+
11,02,13,04 — ll2,l3,la |93y 95y 9ig Yiy
l1,l2,l3,l4=1

E L la 13
fl17l27l3 |:glz gig gi1,l4 + glg gll 922 14 + gll glz glg Z4+
l1,l2,l3=1

+911 914 gl2 i3 + gl2 924 gl‘; 21 + 923 gZ4 gll 22:| +

m
A lo
+ Z fllvl2 [gim’z 9i3,ia + 921 )03 922 14 + gl1724 gzz,ls} +
l1,la=1

1 l2
+ Z fllvl2 [gh Gia isia + 922 921 RERZ] + 923 921 12,14 + 924 921#2723} +
l1,la=1

m
l
+ Z I [Elﬁ,mmu} ‘

=1

Introducing the derivations

ZZ iy i l1+ng-1 thhaf ,

ki=1 l1=1 T lo=1
-y 3 i 5 LY S N
ki=1 l1=1 k‘l k1,ka=1 l1=1 k17k2
m
!
+> 9 Z fll,lz + Z fu o5 75— 8f ;
L=1 lo—1 Jio I la=1 l2,ls

(5.18) e
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n m

A -
Fi T Z kl, 8 11 + Z Z gk17k27 ll + +
kim1 =1 Ikr  kiko=1 =1 e, iy

n

0
+ Z Z k1 koo kn_ 1, aglli—’_

K1 kayenka_1=1 l1=1 S S

+> 0 DD fun e 8f + Z fu oy 75— 8f
l2 27

=1 lo=1 l2,l3=1

0
-+ E St da05, 0 7((% e
2503500900

l2,l3,..50x
we observe that the following induction relations hold:
hil,i2 = F2 (h21> )

(5.19) iinis = Fiy (i)

hil,iz,...,‘)\ - F;A/\ (hil,ig,...,ik,l) .

To obtain the explicit version of the Faa di Bruno in the ca$eseveral variables
(z',...,2") and several variablgg', . .., y™), it suffices to extract from the expression
of Y, ;. provided by Theorem 5.12 only the terms corresponding 2 +- - -4\ =
, dropping all theX terms. After some simplifications and after a translatiomi®ans
of an elementary dictionary, we obtain the fourth and thetrgeseral multivariate Faa di
Bruno formula.

Theorem 5.20.For every integerx > 1 and for every choice of indices, . . ., i, in the
set{1,2,...,n}, thex-th partial derivative of the composite function

(5.21) h=h('. . . 2" =Ff (gl(xl, ) ..,x”),...,gm(xl,...,x"))

with respect to the variables’, . . ., 2z~ may be expressed as an explicit polynomial de-
pending on the partial derivatives g¢f, on the partial derivatives of thg/ and having
integer coefficients

(5.22)

e O VDS 2. 2

d=1 1M <<Ag<k 121121 A+ +pghg=k

n n ottt f
Z o Z I ... bLipg oo lg: ... ld:py
l1:17-~wl1:u1:1 ld:l:“wld:udzl ay 8y ay 8y
i a)\l ll:ul 7

9
Z H axic(ltultl) e axio'(lzul:)\l) U

06351“1’/\1) ----- J(bgirg) 1<vi <

H aAdgld:ud
axic(d:udzl) e axic(d:ud:Ad)

1<va<pa
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[1l: Systems of second order
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§1. EXPLICIT CHARACTERIZATIONS OF FLATNESS

In 1883, S. Lie obtained the following explicit charactetinn of the local equivalence
of a second order ordinary differential equatiéh)( v.. = F(x,y, y.) to the Newtonian
free particle equation with one degree of freedggy = 0. All the functions are assumed
to be analytic.

Theorem 1.1. ([Lie1883], pp. 362—-365)etK = R of C. Letz € K andy € K. A local
second order ordinary differential equatiap, = F(z,y,y.) iS equivalent under an
invertible point transformationz, y) — (X (z,y),Y (z,y)) to the free particle equation
Yxx = 0if and only if the following two conditions are satisfied

() Fy.y.0.0. = 0, Or equivalentlyF' is a degree three polynomial i, namely there
exist four functionss, H, L and M of (x, y) such that/' can be written as

(1.2) F(z,y,9.) = Ga,y) +yo - H(z,y) + (4)? - Lz, y) + (42) - M (2, y);

(ii) the four functions$~, H, L and M satisfy the following system of two second order
quasi-linear partial differential equations

( 4 2
0:_2ny +§ xy_ngx+
2 4
+2(GLy—-2G,M -4GM,+-HL,—-HH,
(1.3) ) A 3 3
0:—§Hyy +§ny_2M:L‘x+
2 4
+2G My + 4Gy M = 2(H M), ~ Hy L+ 5 L L.

Open question 1.4.Deduce an explicit necessary and sufficient condition ferasoci-
ated submanifold of solutions= I1(z, a, b) to be locally equivalent t&” = B + X A.

AssumingF = F(z,y,) to be independent af, or equivalently assuming ¢, to be:

(1.5) y=>b+1l(x,a),
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the author has checked that equivalencEte B + X A holds if and only if two differ-
ential rational expressions annihilate:

LI ) AN L (M2 ) 4 Moz Mgt

(Meo)” (M)’ (Me)” (Ma)”
3
- Iz, Hm5a4 10 03 H:ﬂa?mﬂ 15 Ilz2q (fo) and
(1.6) (Hq:a) (H:ca) (Hq:a)
o | B B I 3,2 11,2, B I3, 112,42 B | R |
(Mea)® (ML)’ (Mew)”  (e)”
1,242 (Hx2a)2 g Hpzg g2 (Hx2a)3 02
+15 o) 110 e} e
(ML) (o) (ML)

As an application, this characterizes local sphericity oiged hypersurfacer = w +
i9(z,z) of C2. The answer for a genergl = TI(z, a, ), together with a proof, will
appear elsewhere.

A modern restitution of Lie’s original proof of Theorem 1.Jaynbe found in[[Me2004].
In this reference, we generalize Theorem 1.1 to several ralpe variablesy =
(v, v2, ...,y™). In the present Part Ill, we will instead pass to several pegelent vari-
ablesz = (2!, 22,...,2™).

Theorem 1.7.Let K = R or C, letn € N, suppose: > 2 and consider a sys-
tem of completely integrable partial differential equaisoin » independent variables
= (z',...,2") € K” and in one dependent variabjec K of the form

(18) Yot gia (‘T) = Fj17j2 (l’, y(flf),yml({lf), s 7y:c”(x))7 1 g jlvj? g n

where F/t72 = FJ271 Under a local change of coordinates:;,y) — (X,Y) =
(X (z,vy),Y(x,y)), this systenfl.8)is equivalent to theimplest‘flat” system

(1.9) Yy xi =0, I<j,j2<n
if and only if there existarbitraryfunctionsG;, ., Hj’jl o L"zl1 and M* of the variables

(x,y), for 1 < ji, jo, k1 < n, satisfying the two symmetry conditio@s, ;, = G, ;, and
HM .= H™ | such that the equatiofi.8)is of the specific cubic polynomial form

J1,J2 J2,J1?

= 1 1
(110) Yopitgiz = Gj1,j2 + Z Yykr (ijlljg + = 2 Yain L + = 2 Yyio L + Yz Yzpiz Mkl) )
k1=1

forjl,jgzl,...,n

It may seem quite paradoxical and counter-intuitive (omefadse?) thakeverysys-
tem (1.10), forarbitrary choices of functions:;, ;,, HJ’?]Q, L;?j andM*, isautomatically
equivalent toYyj; x» = 0. However, a strong hidden assumption holds: thatashplete

integrability. Shortly, this crucial condition amounts to say that
(1.12) Dj, (F¥2) = Dy, (Fis) |

for all ji,j2, 55 = 1,...,n, where, forj = 1,...,n, the D; are thetotal differentiation
operatorsiefined by

(1.12) D; = —— 0 + Z

oxJ ay:tl
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These conditions are non-void precisely when> 2. More concretely, developing
out (1.11) when theé/+72 are of the specific cubic polynomial form (1.10), after some
nontrivial manual computation, we obtain the complicatedic differential polynomial

in the variableg,,». Equating to zero all the coefficients of this cubic polynaimwe
obtain four familes (I'), (1I'), (IlI") and (IV’) of first order partial differential equations
satisfied byG;, j,, HI*;,, L and M

J1,J2?

n n
y . o ] k1 S k1 )
(I) {0 B Gjlvj%x]f’ Gj17j37$]2 + 2 : H]l 2 le’JS z : H]l J3 Gk1J2'

k1=1 k1=1

0 - 5k1 G.]17.727y 5k G]lv]?ny + Hkl - Hkl

J1,42,293 J1,73,%72

1
- 5 Gjhjz Lf;“'

k1 k k1 k
+5 L > Gy LY — 5531 Y G L+
(”’) ko=1 ko=1

k k k k
F308 Y G I = 308 3 G i+
ko=1 ko=1

k1
+ o G]17J3 L]Q

n

n
k1 ks Z k1 ko
+ Z sz NE Hh ,J2 sz \J2 Hj17j3'
\ ko=1 ko=1

( kay rrko(1) ko) r7ko(1)
0= Z (5 HJMM B 5 HJ1,J37 +
geB
1 &
0'(2) 0'(1) = o(2) 0'(1)
+2 5]2 L j1,293 2 5]’3 L 71, m92+

0(2) U(l) - 0(2) 0(1)

2 5}1 jo,xI3 2 5]1 j37:cj2+

o(2 o(2 k
‘|‘5 @ Gh J3 Mka(l) 6 . Gj17j2 Mo+
o<1> ’fo<2) aq MEs _ st Ko (1)s ’fo<2) G MFs 1
(nr) k3.7 g, k3,52
k‘3 1 k=1

skew o) ks L ke ko) 1 ks

2 Jl ZH’%JSL _2 J1 HksmL +

kg 1 kg 1

0(1) E H ko(2) Lks _ cr(1) E H ko(2) Lks_l_

2 J2 ks3,j3 2 J; k3,52

ks=1 ks=1

0(1) k3 0(2) 0(1) k3 0(2)

2 33 Z H]l,Jz k3 2 J2 § : H]l Js ) )

L ks=1 ks=1
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2 J3, Ji J2,y 92 J2,  J1 J3.y

”
_ 2: (1 se@ ko) 1 ko) 156:0(3) Fo@) Ry |
ceB3
_|_5 ko(3), ka(2) M ko (1) 6’%(3) Ko (2) M 0(1)+

xJ3 J3,  J1 xI2

(v k K
cr(s) o<1> ko) g rka cr(s) o<1> ko(2) 3 rka
E H 5 M E Hyr M™+
ka=1 ka=1
PIOR ka(S) }: Ly a<2) Lk‘* 1 PIG(OR ’fa(S) }: L) a<2> Lk‘*
4 J1 4 ]1 :
ks=1 ka=1

(These systems (I"), (1), (1I") and (IV’) should be distguished from the systems (1),
(1, (1) and (1V) of Theorem 1.7 in[[Me2004], although there quite similar.) Here,

the indicesjy, 2, J3, k1, ko, k3 vary in {1,2,...,n}. By &, and by&3, we denote the

permutation group of1, 2} and of{1, 2, 3}. To facilitate hand- and Latex-writing, partial
derivatives are denoted as indices after a comma; for iostéf}, ;, .;; is an abreviation

for G}, ;,/0x7. To deduce (I'), (II'), (1II") and (IV’) from equation (1.1}, we use the

fact that every cubic polynomial equation of the form

0=A+ Z By + Yum + Z Z Chi ks * Yukr Yuho T

k1=1 k1=1 ko=1

+ Z Z Z Dkl,szfs © Yzkt Ygka Yzks

k1=1 ko=1 ko=1
is equivalent to the annihilation of the following symmetsums of its coefficients:
0=A,
0= By,
0= Chiky + Cryps
0 = Dy ko ks + Diskrke + Digks s + Dy by ks + D ko by T Dy ks k-

forall ky, ko ks =1,...,n

In conclusion, the functions, ;,, H]’?h, L"C1 and)M*! in the statement of Theorem 1.7
are far from being arbitrary: they satisfy the complicatgdtem of first order partial
differential equations ('), (1), (IlI") and (IV’) above

Our proof of Theorem 1.7 is similar to the one provided[in [\@2], in the case of
systems of second order ordinary differential equatioaghat most steps of the proof
will be summarized.

In the end of this paper, we will delineate a complicatedesysbfsecondorder partial
differential equations satisfied lay;, ., HJ’?JQ, L’“1 andM/*t which is the exact analog of
the system described in the abstract. The maln technicabptire proof of Theorem 1.7
will be to establish that this second order system is a caresezg, by linear combinations

and by differentiations, of the first order system (I'), JJI(11I") and (1V’).

(1.13)

(1.14)

Open question 1.15.Are Theorems 1.1 and 1.7 true under weaker smoothness assump
tions, namely with &2 or a ;"™ right-hand side ?

loc

We refer to[Ma2003] for inspiration and appropriate tools.

Open question 1.16.Deduce from Theorem 1.7 an explicit necessary and sufficemt
dition for the associated submanifold of solutions: b+ I1(z¢, a*, b) to be locally equiv-
alenttoY = B+ XA 4 ... 4 X" A",
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As an application, this would characterize local spheriot a Levi nondegenerate
hypersurfacél/ ¢ C*™! withn > 2.

Generalizing the Lie-Tresse classification would be a grehievement.

Open problem 1.17.For n = 2 establish a complete list of normal forms of all possible
systemg1.?) according to their Lie symmetry group. In case of successsily Levi
nondegenerate real analytic hypersurface€éfup to biholomorphisms.

§2. COMPLETELY INTEGRABLE SYSTEMS OF
SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

2.1. Prolongation of a point transformation to the second oder jet space. LetK = R
orC, letn € N, supposer > 2, letz = (z!,...,2") € K" and lety € K. According to
the main assumption of Theorem 1.7, we have to consider & lloeaalytic diffeomor-
phism of the form

(2.2) (27, y) ¥ (X7 (2, y), Y(2,y)),

which transforms the system (1.8) to the systém, i, = 0, 1 < j1,j2 < n. Without
loss of generality, we shall assume that this transformaBocIose to the identity. To
obtain the precise expression (2.35) of the transformesy§l.8), we have to prolong

the above diffeomorphism to the second order jet space. Ykedince the coordinates
(7, Y, Ygir, Yz 232 ) ON the second orderjet space. Let

8

be thek-th total differentiation operator. Accordlng M,IU_TQ'Q'B], for
the first order partial derivatives, one has the (impliginpact) expression:

Yy DiX' . DyX"\ '/ DY
(2.4) : = : o : : ,
Y D, X' - D,X" D,Y

where (-)~! denotes the inverse matrix, which exists, since the tramsftion (2.2) is
close to the identity. For the second order partial derrestiagain according to [O11986,
[BK1989,011995], one has the (implicit, compact) expressio

Yyt DiX' . DyX"\ '/ DYy
(2.5) : = : : : )
Vi xn D, X' ... D,X" D,Yx:

forj = 1,...,n. Let DX denote the matriXDin)ifj;, where: is the index of lines

andj the index of columns, let’x denote the column matrid’s:), .,,, and letDY be
the column matrix DY), ¢; .-

By inspecting (2.5) above, we see that the equivalence leet(ije (i) and (iii) just
below is obvious:

Lemma 2.6. The following conditions are equivalent

(i) the differential equation¥y;x+» = 0 hold for1 < j, k <
(i) the matrix equation®;(Yy) = 0 holdforl < k < n;
(iii) the matrix equation® X - Dy (Yx) =0holdforl <k < n
(iv) the matrix equation8 = D (DX) - Yx — D(DY') hold forl < k < n.
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Formally, in the sequel, it will be more convenient to ackidéive explicit computations
starting from conditior{iv), since no matrix inversion at all is involved in it.

Proof. Indeed, applying the total differentiation operafey to the matrix equation (2.4)
written under the equivalent forth= DX - Yy — DY, we get:

(2.7) 0= Dy(DX)-Yyx + DX - Di(Yyx) — Dp(DY),
so that the equivalence betwe@i) and(iv) is now clear. O

2.8. An explicit formula in the casen = 2. Thus, we can start to develope explicitely
the matrix equations

(2.9) 0= Dp(DX) - Yy — Dy(DY).

In it, some huge formal expressions are hidden behind théslm,. Proceeding induc-
tively, we start by examinating the case= 2 thoroughly. By direct computations which
require to be clever, we reconstitute solne 3 determinants in the four (in fact three)
developed equations (2.9). After some work, the first equas:

XL X X, XhoxL XL,
0 =y - Xﬁl Xﬁz XS + Xﬁl X§2 Xilml +
Yo Ye Y, Yo Ye Yian
Xal:l Xq:12 Xxlly Xxllxl X:(1:2 Xyl
(2.10) + yml . 2 X‘zl Xig X:ily - X:illbl X‘32 X,j —'_
Yo Y Y, Yyg Y Y,
X;l Xxllxl X;
+ Y2 - § — Xﬁl Xilxl Xg +
Yo Yo Y,
XL XL XL XL, XL X]
+ Yzt Ygr - qu;l Xg(z;? ij -2 Xaz:ly X§2 Xy2 +
Yo Ye Y, Yo, Y Y,
Xp X, X,
+ y$]‘ me . —2 Xil X:?ly Xy2 +
Yo Y, Y,
Xz}y X:i2 Xyl
F Ypl Yul Y1 - § — ng X§2 X; +
Yyy Y Y,
XL X, X,
+ Ypt Yp1 Yg2 + § — Xil ng X;
Yoo Yy, Y,

This formula and the two next (2.22), (2.23) have been chidke Sylvain Neut and
Michel Petitot with the help of Maple.

2.11. Comparison with the coefficients of the second prolomdion of a vector field.
At present, it is useful to make an illuminating digressiomieia will help us to devise
what is the general form of the development of the equati2r®.(Consider an arbitrary
vector field of the form

n

d o
2.12 = (L —
(2.12) L:=) +Y Dy

k
Xz
k=1 0
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where the coefficientd’* and) are functions ofz?, y). According to [OI11986, BK1989,
[011995], there exists a unique prolongati®f of this vector field to the second order jet
space, of the form

(2.13) LU =L+ Y, Jua T > Y ETE
=1 Yart =1 ja2=1 Yuir a2

where the coefficientY ;,, Y, ;, may be computed by means of formulas (3.4) of Sec-
tion 3(1). In Part 1, we obtained the following perfect faulas:

y n
le’jQ = Vaingir + Z Yakr {5fll yﬁvmy + 5;?21 yrjly - X:lexh} +

k1=1

k1 k k1 ok k1 4ok
(2.14) + Z Z Yukr Yk {53'117]'22 Vyy — 5]'11 Xxfzy - 5j21 Xxf‘21y} +
k1=1 ko=1

k1,k
E300 S v {b )
\ k1=1 ko=1 ks=1
for 71,72 = 1,...,n. The expression oY ;, does not matter for us here. Specifying this

formula to the the case = 2 and taking account of the symme; , = Y,; we get the
following three second order coefficients:

( Yl,l = yxlml + Ygt {2ym1y - Xa}lxl} + Y2 {_Xxglxl} +
+ Yt Yo {yyy - 2X;p11y} T Yt Ya2 {_2 X;gly} +
Yo Yo Yo - { =Xy} + Yo Yo w2 - { =X,
Y1,2 - yxle + yxl : {nyy - X:Ellx2} + yq;Q ° {yxly - Xx21$2} _I_
+ Yt Ypr {_Xxgy} + Yzt Yg2 - {yyy - X:r}ly - Xa?Qy} +
+ Ya2 Ya2 - {_X;gly} +
Yo Yo Yoz - { =Xy} VYo Yoz w2 - { =X, ),
Y2,2 = yx2x2 + Yar {_X:v12m2} + Ya2 {2yx2y - X:v22m2} +
+ Yzt Yp2 {_2 Xxgy} T Ya2 Yg2 {yyy - 2‘)(‘1?2@/} +
\ F Yl Ya2 Ya2 - {_Xyly} + Y2 Yu2 Yo {_Xyzy} .
We would like to mention that the computation'®f, ;,, 1 < ji, j» < 2, above is easier
than the verification of (2.10). Based on the three formu?asy), we claim that we can
guess the second and the third equations, which would béneltdy developing and
by simplifying (2.9), namely withy,.,> and withy,2,2 instead ofy,1,2 in (2.10). Our

dictionary to translate from the first formula (2.15) to @.inay be described as follows.
Begin with theJacobian determinant

XL X X,
(2.16) X XL X,

Yy Y Y,
of the change of coordinates (2.2). Since this change ofitoates is close to the identity,
we may consider that the following Jacobian matrix appration holds:

(2.15)

XL XL X) 100
(2.17) X4 X% X2 =010
Vo Y Y, 001
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The jacobian matrix has three columns. There are six p@ssdaitond order derivatives
with respect to the variablés?', 2, i), namely

(2.18) () ) () 1z2, (‘)m%z? ('):Blzﬁ (‘)rva (‘)yy'

In the Jacobian determinant (2.16), by replacing any onéeftliree columns of first
order derivatives with a column of second order derivatiwesobtain exactly x 6 = 18
possible determinants. For instance, by replacing the totumn by the second order
derivative(-),1, or the first column by the second order derivativg:,:, we get:

X;l X::EL2 X;ly X;lml X;Blg X?:Jl
(2.19) X% X% X2, or X%, X%, X2
Yxl }/:’E2 }/:’Ely }/;Clxl YLL’2 }/’:L/

We recover the two determinants appearing in the secondfirf2.10). On the other
hand, according to the approximation (2.17), these twordetents are essentially equal
to

1 0 X;ly X;lml O 0
(2.20) 0 1 X2, |=Ya, or to X4, 1 0|=XAh
00 Yzfly }/;cl:(:l 01

Consequently, in the second line of (2.10), up to a changealigg@phic letters, we
recover the coefficient

(2.21) 2 Vu1y — X

of y,,, in the expression oY ; in (2.15). In conclusion, we have discovered how to pass
symbolically from the first equation (2.15) to the equati@riQ) and conversely.

Translating the second equation (2.15), we dedwdthout any further computatign
that the second equation which would be obtained by devado@.9) in length, is:

X;l X;Blg Xyl Xxll X;CLQ X;le
O:yzle. X§1 X§2 Xy2 + X§1 X§2 ngle +
Y:pl Y:p2 Yy Y:'cl Y:'(:Q Yx1x2
XL XL XL| | xL,. X5, X!
(222) + Yp1 - X§1 Xiz Xizy - ngle X§2 Xg +
Yo Y Y, Yo Yie Y,
XL XL XLo|| XL XL, X!
_'_ ny . Xil X:?Q Xily - X:?l Xile Xg +
Yo Y Yo, Yo Y Y,
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1 1 1
X, XL X]

_l'y:cl Yz - - X§2y Xig XZ? +
Yo, Y Y,
XL XL X, Xy Xpo X,
+ Yot Y2 X§1 X§2 Xyzy - X§1y Xig X; -
Yo Y Y, Y, Ye Y,
X, X, Xl X4 XL, Xl
— X:?l X§2y Xy2 + ny me - Xil Xily Xj _l_
Yo Y, Y, Yo Ya, Y,
X, XL X,
T Yat Yot Y2 0 § — Xyzy XJ2;2 X; +
Yy Yo Y,
X, X, X,
T+ Ypl Yg2 Yg2 - § — ngl Xyzy X;
Yoo Yy Yy

Using the third equation (2.15), we also dedueihout any further computatigthat the
third equation which would be obtained by developing (2:9ength, is:

XL X X, XLoXxL XL,
0 = Y22 - Xﬁl Xﬁz Xg =+ Xﬁl X§2 Xg%z +
Yoo Y Y Yo Y Yoo
Xi. XL X,
(223) + yxl . - X§1:E2 ng X,j —'_
Yo Y2 Y
Xal:l X;2 X;2y Xél Xalzzxz Xyl
‘I— yIZ 2 X‘zl ng ngy - Xgl X§2m2 Xy2 +
Y Y Yx2y Yoo Y Y
Xp, X X,
+ Ypl Y2 - § —2 ngy X§2 Xy2 +
Y:,czy Y2 Y,
X;l X;Q X;y X;l X;zy X;
tyeye s | X X X | -2 XL XD, XD o+
Y. Yo Yyy Y1 Y;zy Y,
X, XL X,
F Ypl Yp2 Y2 © & — ij X§2 Xy2 +
Yyy Y2 Y,
X;l X;y X!
T+ Yp2 Yg2 Yg2 - § — X§1 ij Xy2
Yo Y, VY,

2.24. Appropriate formalism. To describe the combinatorics underlying formu-
las (2.10), (2.22) and (2.23), as In [Me2004], let us int@lthe following notation for
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the Jacobian determinant:
X x!

x2 Y

(2.25) Az |2?y) = | X4 X% X
Yo Ye Y,

Here, in the notatiod\ (z*|22|y), the three spaces between the two vertical linefer
to the three columns of the Jacobian determinant, and thestet, 22, y in (z!|22|y)
designate the partial derivatives appearing in each cal#mecordingly, in the following
two examples omodified Jacobian determinants
( X, XL X}
A(z'2?|2?y) = | X2, X% X2 and
Yo Yor Y
XLoXhL XD,
A(r'a?aly) = | X2 X% X%,
Yo Yy Y

(2.26)

<

<

we simply mean which column of first order derivatives is aggld by a column of second
order derivatives in the original Jacobian determinant.

As there are possible second order derivative$, 1,1, (+)z1.2, (-)ztay, ()z222, (-)a2y
and (-),, together with3 columns, we obtair3 x 6 = 18 possible modified Jacobian
determinants:

(AEl)  AGe ) Al Rl
A2ly) Al ) AR a?l?)

A(z'y|2?y) Az |z'yly)  Az']2?|z'y)

(227) 2 .21..2 1.2 2 11..21..2. .2
Az z"|z%|y) Az |z"z%y) Az |z7|z"27)

A(z?y|2?|y) Alz'|2yly)  Alz']2?|2y)

L Ayy|2?|y) Al lyyly) Al |2?|yy).

Next, we observe that if we want to solve with respect tq. in (2.10), with respect
to y,1,2 In (2.22) and with respect tg,2,» in (2.23), we have to divide by the Jacobian

determinani\(z'|z?|y). Consequently, we introdude& newsquare functionas follows:
(2.28)

O ) W i ) S W ] )
o A(zt|22]y) v A(xta2]y) 7y T A (2 [22]y)
Dlz 2 = M D12 = M |:|1 . A(yyfwzfy)
z2x A(xt22|y) z2y A(zl|z2|y) Yy 7A(x1]w2]y)
2, 2 Aeklally) o AGlelefy) g Alellelyly)
o A(z!|2|y) v Azl |z2ly) 7y T A (2 a2]y)
12, 5 = Azl[2?z2ly) 2, = Azl |2?yly) . Alllyyly)
o A(zt|z?y) TV Axt |22 y) w T Azt z2]y)
D31 1= M D31 9 1= W D31 = M
o A(zt|z?y) v A(zt]z2y) w'y T TA (21 22]y)
D32 2 1= W D32 — M B .= M
o A(zz?]y) Y A(zt|2?|y) vy A(z1]72]y)

Thanks to these notations, we can rewrite the three equafibh0), (2.22) and (2.23)
in a more compact style.
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Lemma 2.29. A completely integrable system tbfeesecond order partial differential
equations
Yarar (v) = FU1 (2!, 2%, y(2), yor (2), Y22 (7))
(2.30) Yooz (2) = FY2 (21, 2%, y(2), yor (), ya2 (1)) ,
Yara2 (1) = F22 (21, 2%, y(2), yor (), Y22 (7)) ,
is equivalent to the simplest systéf x1 = 0, Yyi1x2 = 0, Yy2 y2 = 0, if and only if

there exist localk-analytic functionsX'!, X2, Y such that it may be written under the
specific form

Yplpl = —Di1r1 + Yy - <—2 Dily + Dilxl) + Yg2 - (Diuﬂ) +

+ Y1 Yyt - (—D‘Zy +2 Di1y> + Yyt Y2 - (2 D§1y> +
T Ypl Yg1 Y1 - (Dgljy) + Ypl Yp Yg2 - (Dzy) )
Ypl g2 = _Dilﬂ + Yp1 - <—Di2y + D;1z2> + Y2 - <—Di1y + Dz1zz) +

(2.31) a1 Yot - (Ohay ) 9 902 - (08, + Ok + 0%, ) +
T Yp2 Yg2 <Di1y> T Ygt Yt Y2 (D;y) T Ypl Yoz Yg2 (Dzy) )

Yp2p2 = —D‘zgxg + Ypt - (Dl ) + Y2 - (—2 Dizy + 02 > +

x2x2 x2x2

+ Y1 Yyp2 - <2 Dzlvgy) + Y2 Y2 - (—Dzy + 2 Di2y> +

T Yzl Y2 Yg2 (Dzl/y) T Ya2 Y2 Ya2 (Dzy) .

2.32. General formulas. The formal dictionary between the original determinarfoa
mulas (2.10), (2.22), (2.23), between the coefficientsyRdf the second order prolon-
gation of a vector field and between the new square formul&d ) 2&bove is evident.

Consequentlywithout any computatigrjust by translating the family of formulas (2.14),
we may deduce the exact formulation of the desired genatalizof Lemma 2.29 above.

Lemma 2.33. A completely integrable system of second order partiabdhfitial equa-
tions of the form

(2.34)  Yoingir (1) = F2 (2, y(2), yn (2), - an (), Jrsga =101,
is equivalent to the simplest systéf;, x.. = 0, j1,J2 = 1,...,n, if and only if there
exist localK-analytic functionsX’, Y such that it may be written under the specific form

( n
o n+1 E k1 k1 —n+1 k1 —n+1
Ypitgia = _ijlsz + ymkl : {(Dzjlmjg - 6]'1 Dmhy - 6]'2 Dzjly) +
ki=1

(2.35) 1 1
Y1 - (Dkl - 5{91 ng-l) + Yo - (Dkl - 51?1 DZ;—l) +

T2y 92 J2 xily 92 J1

Yuir Yoz - (D) -
Of course, to define the square functions in the context Bf2 independent variables

(z', 2%, ..., 2™), we introduce the Jacobian determinant
Xt ... x1  ox1
501 xn Y
2.36 A2 22 - |2 y) = P : : 7
(2.36) G = | G

Yy oo Y Y,
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together with its modifications
(2.37) A(x1\~-~|k1 le xj2|-~-|y),

in which thek;-th column of partial first order derivativés 1| is replaced by the col-
umn [kt 2712:92| of partial derivatives. Here, the indicés, j;, j» satisfyl < ki, j1, jo <
n + 1, with the convention that we adopt the notational equivegen

(2.38) "=y |

This convention will be convenient to write some of our gah&rmulas in the sequel.
As we promised to only summarize the proof of Theorem 1.7 isghper, we will not
develope the proof of Lemma 2.33: it is similar to the prookefnma 3.32 in[Me2004].

§3. FIRST AND SECOND AUXILIARY SYSTEM

3.1. Functions G}, j,, H]’?h, Lfll and M*1. To discover the four families of functions
appearing in the statement of Theorem 1.7, by comparing)2:3d (1.10), it suffices (of

course) to set:

( n+1
Gj17]2 Dmn 2
H’_fl _ Dkl o 5k1 e+t — 5k1 [+l
(3 2) J1,J2 21 g2 2y xIly?
) Lkl —9 Dkl 5]61 Dn-i—l
J1 zIly vy
ki . Mk
M =0

Consequently, we have shown the “only if” part of Theorem Wfich is the easiest
implication.

To establish the “if” part, by far the most difficult impligah, the very main lemma
can be stated as follows.

Lemma 3.3. The partial differerential relationgl’), (II'), (IlI") and (IV’) which express

in length the compatibility conditiond.11)are necessary and sufficient for the existence
of functionsX', Y of (21, y) satisfying the second order nonlinear system of partial
differential equationg3.2) above.

Indeed, the collection of equations (3.2) is a system ofigladifferential equations
with unknownsX', Y, by virtue of the definition of the square functions.

3.4. First auxiliary system. To proceed further, we observe that there (anet 1) more

square functions than functious;, ., H]’?h, Lfll and M*1, Indeed, a simple counting

yields:

#{ lesz} y’ #{Dxny}
(35) #{05) = n. gL,y = ety ”,

#{O} = #{D"“} -1,
whereas

. 1 2 1
. e = —”(”; Lo =D
#{LY =n?, LIMMY =,

Here, the indices, jo, k; satisfy1 < ji,j2, k1 < n. Similarly as in [Me2004], to

transform the system (3.2) in a true complete system, lettusduce functionﬂé‘Cl !, of
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(), wherel < ji, jo, k1 < n + 1, which satisfy the symmetrE{j1 i Hfllh, and let
us mtroduce the followingrst auxiliary system

k1 _ 11R1 ki _ 1T1k1 kl _ 11R1
(3 7) ijl xJ2 Hh j2) Dm]ly Hj1 n—+1> D Hn—i—l n+1>
) n+1 n+1 n+1 n+1 n+1 _ yn+1
Dxn xJ2 H]l \J2? D:(:le HJl n+1s Dyy - Hn+17n+1'

It is complete. The necessary and sufficient conditionsHerexistence of solutiong?,
Y follow by cross differentiations.

Lemma 3.8. For all j1,jq,73,k1 = 1,2,...,n + 1, we have the cross differentiation
relations

n+1 n+1
k1 _ — ko k1 k2
(3'9) (Dmllxﬂz)xﬂs (D:Nl:vjs zd2 Z Dm71x32 Dstku + Z Dm]lxﬂs xJkaQ'
ko=1 ko=1

The proof of this lemma is exactly the same as the proof of LarB0 in [Me2004].

As a direct consequence, we deduce that a necessary andestifficndition for the
existence of squUonH’“l1 ;, 1o the first auxiliary system is that they satisfy the follogi
compatibility partial differential relations:

k1 k1 n=1
(3 10) 8H]l J2 aHJl Js § : Hkg Hkl § : Hkg .
: Hxis Oz J1,J2 J3s kz J1,J3 J2J€2’
ko=1 ko=1

for all 71572, 73, ki = 1,....n+ 1.
We shall have to specify this system in length according ¢osilitting{1,2,...,n}
and{n + 1} of the indices of coordinates. We obtain six families of dtpres equivalent
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to (3.10) just above:
(3.11)
y

(Tpth) e — () == e, Ty — T et

J1,J2 J1,J3 Ji.g2 ~js,ke Ji,J2 ~Ti3m
ko=1

+ Z ke et + et et

J1,73 J2J€2 J1,J3 ~Tj2,n+1
ko=1

n+1 n _ n+1 1+l i+
(Hymz) (Hjl,n—irl)sz o E : H]l »J2 n+1,kz Hﬁ 2J2 11 n+1, n+1+
ko=1

n+1 n+1 n+1
Z Hﬁ n+1 sz k2 + Hjl,n—H HJ2 n+1s
ko=1

n n+1 _ n+1 n+1 n+
(Hh,n—i-l) (Hn+1,n+1)xj1 - § : H]hn'i‘l n+1,k2 Hh n+1 II +1 ntl +
ko=1

2 n+1 n+1 n+1
+ Hn—i—l n+1 Hjl ko + Hn-‘rl n+1 H 1, n+1 ’
ko=1

k1 o k1 _ ko kl n+1 k1
(Hjmz)xjs (Hjhja)sz - § : Hjmz Ja3,k2 Hh J2 H J3, n+1+
ko=1

Z Hk2 kl Hn-‘rl H

J1,J3 127/?2 J1,J3 ~ T j2,n+1
ko=1

k1 k1 _ k1 _ n+1 k1
(Hjmz)y (Hh,n—irl)sz - § : Hh J2 1_[n+1 k2 Hh J2 1L n+1n+1t
ko=1

n
+ E : H]l n+1 ]2 ko + Hh,n—irl sz n+1»
ko=1

k1 _ k1 n+1 k1
(Hjl,n—i-l) (Hn+1 n—i—l)xh - § : yl,n+1 Hn+1 ko Hjl n+1 H n+1, n+1+
ko=1

k1 n+1 k1
+ § 1_In—i-l n+1 Hjhkz + Hn+1,n+1 Hjl,n—i-l‘
\ ko=1

where the indiceg,, jo, js, k1 vary inthe sef{1,2,1,..., n}.

3.12. Principal unknowns. As there ardm + 1) more square (or Pi) functions than the
functionsGj, ,,, H]’?p, Lfll and M*, we cannot invert directly the linear system (3.2).
To quasi-inverse it, we choose the + 1) specific square functions

(3.13) el:=0L,.,, ©?:=0%, - Lot =0t
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calling themprincipal unknownsand we get the quasi-inversion:

(3.14)
(
k1 k1 ki = cki prie = cki gy k1 ]2 k1 j1
H.jl ]2 DSCJli2 H]l .72 2 5]1 Hj2 ]2 2 5]2 H]l ]1 2 5]1 @ 2 5.72 @
k k 1 k k n—|—1
mh L, =0 =Lk Ll
Jin+l T Tgiiy T 2 +3 2 71
kl _ k‘l . kl
Hn+1 n+1 Dyy - M )
n+1l _ —n+l Y
Hh J2 T Dmilzh - GJ1,J2>
Hn+1 Dn—l—l _ EH‘]l l@jl
Jint+l T —aily 9 I J1 2 :

3.15. Second auxiliary systemReplacing the five families of functiors?’ . , 115 .,

Hﬁ_h,_nﬂ’ 1+l 174, by their values obtained in (3.14) just above together with t
principal unknowns

(316) H;i J1 = ®j17 HZiin+1 = @n+1’
in the six equationg3.11), (3.11)9, (3.11)3, (3.11)4, (3.11)5 and (3.11)g, after hard
computations that we will not reproduce here, we obtainamilies of equations. From
now on, we abbreviate every sumj,_, asy_, .

Firstly:

k k
(3.17) 0= Gjyjoais = Gjjgar + D Gruma Hyljy = D G Hyl .
kl kl

This is (I') of Theorem 1.7. Just above and below, we plaintgerline the monomials
involving a first order derivative. Secondly:

.
@Jxljz = 2G]1]29+Hj1

J1,J1,292

§ : k1 J1 _E k1 ki
+ GJ2 le +5 H]l J1 J2 J2 H]l J2 kl k1

+

(3.18) . o
n—+ 1 1
B Gjl’j2 © 2 31 J1 ©7 — HJJ22J2 o7 + Z Hjlljz O+
+ 1 @jl @]é.
\ 2
Thirdly:
” .
n _ J1
@:le _'_ @Jl H]l J1, y
1
k‘1 kil kl
(3.19) N Z Gjl’kl M™ + 4 Z Hkhkl le_'_
kl kl
1 Hh @n+1 1 Lkl @/ﬁ 1 @j1 @n-i-l
+7 4 Iuin o 4 Z J1 a 4 '
\ ki
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Fourtly:
3 20)
k k k k
2 5]11 91293 - 5 5]11 91332 2 5]21 @gclﬂs - 5 5331 @gclﬂz -
— k1 _ k1 —6k1 15k1 .
J1,J2,%73 J1,d3,292 9 N Js NER SL‘J2 92 N J2 jo2,z93
k k
2 5331 J1 2J1s 9032 2 6121 Jl 1,93
1 k k k k
9 GJ'1J2 L 5 GJl J3 L , 4 5]31 ijll J1 Hyjjjz 4 5321 Hjjll J1 Hjjsgys_
k k k k k k k k k k
B Z H31212 Hjsl k2 Z H]f]s szl ko 5 6]21 H]f]s ij,kz 2 5]31 HJ12J2 Hk;/@_
5 5;2 Gy O™ + 2 5;? G, O™ —
k k j k k j
4 5321 Hjjll J1 O% + — 4 5331 Hjjlljl 0% — 4 5321 Hjjfjs o + - 4 5331 HJJ22]2 71—
k k k k k k
9 5331 Z ijyg 0%+ 9 5]21 Z Hyf]a Sl
kl kl
Z 5531 Q1 @2 + 5k1 Qi @
\
Fifthly:
(3. 21)
4

Ly OF + - L o — - Lshonit =

2 I 2 J2 2 J1 xI2

_ k k k: k k k k k
- Gj1,j2 M™ + 5 Z Hjllkg L P Z H312]2 Lk; - Z 5321 Z Hk227k2 Lj12_
ko ko

k nl k k k k 1 n+l1
46]21Hjj]1@+ 45JJZL2@2+45J21@3@+.
\ ko

Sixthly:

(frontt = —Lf +2MM +

J1,Y le

+22H1k2M’“2—5;?1 ZH,fijM’“?—— ZL’”L’“

oy MR ek 4 Lt gt @,

2 J1
ko

(3.22)

\

3.23. Solvmg@ﬂm, e, ot and ©7. From the six families of equations (3.17),

(3.18), (3.19), (3.20), (3.21) and (3.22), we can scﬂiie , ©21, 07 andOr . Not
mentioning the (hard) intermediate computations, we ob‘tEBtIy
(3.24)

Ji_ § : l J1 _§ : I
@x32_ G31]29+ J1J1:c32+ GJ2lL +5 HJ1J1 ]2]2 JlszlJ

_Gj17j2@ +1__Hj17j1 o — HJQ @] +Z J1]2 ie)j e’

2 J2,J2
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Secondly:
(3.25)
( 1 2

@Zl - _g Hjl ]1y+§L31 271 +3 GJl ]1M +3 Z GJllMl Z Hllvl Ll T
2
o> HN L - Z HL L = SO0 2 Ly
l

1 .
e AN
"3

Thirdly:
(3 26) .

n 2 1 1
@le 3HJ]131y+3Lj1xJ1+ GJlJlM +3 ZGJllMl__ZH” i+

1 1 l 1 1 n+1 l l
_'_gZHJ]llL __Z J1J1Lj__HleJ1@++ ZL '+
l

+ l @jl @n+1.
2

Fourtly:
(3.27)

oyttt =L} +2M) +2 Z HI' M — Z H M — Z LL LI+
Ml @l - @n-i—l @n-i-l.
R

These four families of partial differential equations ditse thesecond auxiliary system
By replacing these solutions in the three remaining famitéequations (3.20), (3.21)
and (3.22), we obtain supplementary equations (which wealacopy) that are direct
consequences of (1), (II"), (111"), (IV").

To complete the proof of the main Lemma 3.3 above, it suffiaes to establish the
first implication of the following list, since the other tler@dave been already established.

e Some given function§;, ;,, Hi', , L' andM* of (21, y) satisfy the four fami-
lies of partial differential equations (I'), (II), (IllNand (IV’) of Theorem 1.7.

\[%

e There exist function®’t, ©"+! satisfying the second auxiliary system (3.24),
(3.25), (3.26) and (3.27).

%

e These solution function®’*, ©"*! satisfy the six families of partial differential
equations (3.17), (3.18), (3.19), (3.20), (3.21) and (B.22

%

e There exist functlonﬁ’“1 of( y), 1 < j1,J2, k1 < m+ 1, satisfying the first
auxiliary system (3.7) of partlal d|fferent|a| eqguations.

%

e There exist functionsX’2, Y of (z",y) transforming the systeny,;, ,.. =
Fiviz(gh gy ), 41,52 = 1,...,n, to the simplest systemy,, vi» = 0,
j17j1 = 17"'7”'

3.28. Compatibility conditions for the second auxiliary sytem. We notice that the
second auxiliary system is also a complete system. Thusstablesh the first above
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implication, it suffices to show that the four families of cpatibility conditions:

0 (61112 ) 273 (@ilﬂs ) zi2 7
0= (6" @h -
529 (%), ~ (69,
0= (05,5 = (OF51) s
0= (635, = (0y"),

are a consequence of (I), (I"), (11I"), (IV").

For instance, ir{3.29),, repIacing@ilj2 by its expression (3.24), differentiating it with
respect tav’, replacingﬁiljg by its expression (3.24), differentiating it with respext {2
and substracting, we get:

3. 30)
J1 _gn
—2 G]l gayais T 2 G]l jayaiz T H]l j.ai2eis Hjh]’hx]"sxﬂ a+
J1 j2 J1 J2 _ J1 i3 J1 J3 _
@M 0% + 3 Lo er, @M C @ o,
_ EHh ‘ @ o th @J2 1HJ1 @j3 i 1 Hh @J3 o
9 T I1.g1,w73 9N J1 SL‘J3 2 J1,J1,292 9T J1 iz
1 , 1 1 1
I & ) Ji _ J1 J3 Ji J3 Jjio_
2 sz,jg,:wg © 2 ]2 J2 @xm 2 HB ,J3,292 S +5 9 ng ,J3 @xn
) n+1 n+1 n+1 n+1
- Gj17j2 x73 o - Gj17J2 @:vJS + G]l J3,292 S + Gh,J; @zn
l
+ Z J1,52,273 o + Z J1.J2 90]3 a Z J1733,$J2 z : J1,J3 wJ?
l l
+1H +1HJ1 J2 __1 J1 _ 33_1 Ji 73 o
92 "I, x93 J2 :J2 2 J1J1 77 jo,go,@d3 2 TTi1,41,w92 77303 9 TTILIL T s, g,32
_Z J1]2xJ3 Hll Z .71.]2 llSCJ3 Z ]1]35[7J2 Hll_'_ z : ]1]3 lll‘]2+
_I_ Z Gj27l7xj3 le + Gj27[ le,-’EjS - ng’l’xjg le - Gj3,l j1,$j2'
l l l l

Next, replacing the twelve first order partial derivativeslarlined just above:

J1 J2 Vil VE! J2 J3
(3.31) Ol O Ouny O, 07, O,
’ J1 J1 n+1 n+1 l l
o, e, eul eul e, e,
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by their values issued from (3.24), (3.26) and adapting timnensation indices, we get the
explicit developed form of the first family of compatibilibonditions(3.29);:
(3.32)

(0="=-2G; +2G;

J1,J2,293y J1,J3,a92y

E Tl E N e J3 o J2
- GJBJ,%J? Lj1 + Gj27171"3 le GJM? Y HJS \J3 + G11733 Y HJ2 Je

1
_2ZG”3 J1J2+2ZG”2 J1,33 Z 31]2I]3H”+Z JlJSIJ?HU_

2 2 2 2
— S HE G+ S HE o G = S L Gl + 5 17 Gl

3 J2:J2,Y 3 J3,J3:Y 3 73, x93 3 72 xJ2

l
B E : le z92 j:s,l + E , le,;pjs Gj2,l_
l

9 oy
3 Gm‘z Giags M + 5 Gjrjs Glae M” — 5 Z G Ggt M+

4 1
+ g Z Gjl,js Gj2,l M — 5 Z G]SIHjjlljl T35 Z GJ2lHJJ11]1 B
l l
1 1
—§ZGJ3lH5§p é'l_l_QZGthJJjJs ZGM;HH
+5 Z Gh J2 Hll - Z Gh J2 gj;lLl + g Z Gjh]ng];lLl
l

LG H L”+ G HL o LT —

3 J1,J3 J2,J2 3 J3.J3

_Z Z szp ]1]3LP+Z Z GJSID ]132
_ZZ 1132 +ZZ J1]s

Lemma 3.33. (,])Thls first famlly of compatibility conditions for the
second auxiliary system obtained by develoging9); in length, together with the three
remaining families obtained by developifi$)29),, (3.29)s, (3.29), in length, are con-
sequences, by linear combinations and by differentiatiohgl’), (1I'), (III"), (IV’), of
Theorem 1.7.

The summarized proof of Theorem 1.7 is complete. 0J
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