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4 SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS

HERVÉ GAUSSIER AND JÖEL MERKER

ABSTRACT. We establish a link between the study of completely integrable systems of partial
differential equations and the study of generic submanifolds inCn. Using the recent developments
of Cauchy-Riemann geometry we provide the set of symmetriesof such a system with a Lie group
structure. Finally we determine the precise upper bound of the dimension of this Lie group for
some specific systems of partial differential equations.
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1. INTRODUCTION

To study the geometry of a real analytic Levi nondegenerate hypersurfaceM in C2, one of
the principal ideas of H. Poincaré, of B. Segre and ofÉ. Cartan in the fundamental memoirs
[20], [21], [22], [3] was to associate toM a system(EM ) of (partial) differential equations, in
order to solve the so-called equivalence problem. Establishing a natural correspondence between
the local holomorphic automorphisms ofM and the Lie symmetries of(EM ) they could use the
classification results on differential equations achievedby S. Lie in [5] and pursued by A. Tresse
in [28].

Starting with such a correspondence, we shall establish a general link between the study of
a real analytic generic submanifold of codimensionm in Cn+m and the study of completely
integrable systems of analytic partial differential equations. We shall observe that the recent the-
ories in Cauchy-Riemann (CR) geometry may be transposed to the setting of partial differential
equations, providing some new information on their Lie symmetries.

Indeed consider forK = R or C aK-analytic system(E) of the following general form:

(E) uj
xα(x) = F j

α

(

x, u(x), (u
j(q)

xβ(q) (x))1≤q≤p

)

.

Herex = (x1, . . . , xn) ∈ K
n, u = (u1, . . . , um) ∈ K

m, the integersj(1), . . . , j(p) satisfy
1 ≤ j(q) ≤ m for q = 1, . . . , p, andα and the multiindicesβ(1), . . . , β(p) ∈ Nn satisfy
|α|, |β(q)| ≥ 1. We also require(j, α) 6= (j(1), β(1)), . . . , (j(p), β(p)). Forj = 1, . . . ,m and
α ∈ Nn, we denote byuj

xα the partial derivative∂|α|uj/∂xα. We assume that the system(E)
is completely integrable, namely that the Pfaffian system naturally associated in thejet space is
involutive in the sense of Frobenius. We note that in that case (E) is locally solvable, meaning that
through every point(x∗, u∗, u∗β, u

∗
α) in the jet space, satisfyingu∗α = Fα(x∗, u∗, u∗β) (written in a

condensed form), there exists a localK-analytic solutionu = u(x) of (E) satisfyingu(x∗) = u∗

anduxβ(x∗) = u∗β. Consequently the Lie theory ([18]) may be applied to such systems. We shall
associate with(E) thesubmanifold of solutionsM in Kn+2m+p given byK-analytic equations

Date: 2008-2-1.
1991Mathematics Subject Classification.Primary: 32V40, 34C14. Secondary 32V25, 32H02, 32H40, 32V10.

1

http://arXiv.org/abs/math/0404246v1


2 HERVÉ GAUSSIER AND JÖEL MERKER

of the form

(1) uj = Ωj(x, ν, χ), j = 1, . . . ,m,

whereν ∈ Km and whereχ ∈ Kp. Moreover the integerm + p is the number of initial
conditions for the general solutionu(x) := Ω(x, ν, χ) of (E), whose existence and unique-
ness follow from complete integrability. Precisely, the parametersν, χ correspond to the data
u(0), (u

j(q)

xβ(q)(0))1≤q≤p. In the special case where the system(E) is constructed from a generic
submanifoldM as in [21], [24] (see also Subsection 2.2 below), the corresponding submanifold
of solutions is exactly the extrinsic complexification ofM .

A pointwise K-analytic transformation(x′, u′) = Φ(x, u) defined in a neighbourhood of
the origin and sufficiently close to the iedntity mapping is called aLie symmetry of(E) if it
transforms the graph of every solution to the graph of an other local solution. A vector field
X =

∑n

l=1 Q
l(x, u) ∂/∂xl +

∑m

j=1 R
j(x, u) ∂/∂uj is called aninfinitesimal symmetry of(E)

if for everys close to zero inK the local diffeomorphism(x, u) 7→ exp(sX)(x, u) associated to
the flow ofX is a Lie symmetry ofE . According to [18] (Chapter 2) the infinitesimal symmetries
of (E) form a Lie algebra of vector fields defined in a neighbourhood of the origin inKn ×Km,
denoted bySym(E). Inspired by recent developments in CR geometry we shall provide in
Section 2 nondegeneracy conditions onM insuring firstly thatSym(E) may be identified with
the Lie algebraSym(M) of vector fields of the form

(2)
n
∑

l=1

Ql(x, u)
∂

∂xl

+

m
∑

j=1

Rj(x, u)
∂

∂uj
+

m
∑

j=1

Πj(ν, χ)
∂

∂νj
+

p
∑

q=1

Λq(ν, χ)
∂

∂χq

,

which are tangent toM, and secondly thatSym(M) ∼= Sym(E) is finite dimensional. The
strength of this identification is to provide some (non optimal) bound on the dimension of
Sym(E) for arbitrary systems of partial differential equations with an arbitrary number of vari-
ables, see Theorem 3.

In the second part of the paper (Sections 3, 4 and 5), using theclassical Lie theory (cf. [5],
[18], [19] and [2]), we provide an optimal upper bound on the dimension ofSym(E) for a
completely integrableK-analytic system(E) of the following form:

(E) uj
xα = F j

α(x, u(x), (uxβ (x))1≤|β|≤κ−1), α ∈ Nn, |α| = κ, j = 1, . . . ,m.

This system is a special case of the system studied in Section2. For instance thehomogeneous
system(E0) : uj

xk1
···xkκ

(x) = 0 is completely integrable. The solutions of (E0) are the

polynomials of the formuj(x) =
∑

β∈Nn, |β|≤κ−1 λ
j
β x

β , j = 1, . . . ,m, whereλj
β ∈ K and a

Lie symmetry of(E0) is a transformation stabilizing the graphs of polynomials of degree≤ κ−1.
We prove the following Theorem:

Theorem 1. Let (E) be theK-analytic system of partial differential equations of order κ ≥ 2,
with n independent variables andm dependent variables, defined just above. Assume that(E) is
completely integrable. Then the Lie algebraSym(E) of its infinitesimal symmetries satisfies the
following estimates:

(3)

{

dimK(Sym(E)) ≤ (n+m+ 2)(n+m), if κ = 2,
dimK(Sym(E)) ≤ n2 + 2n+m2 +mCκ−1

n+κ−1, if κ ≥ 3,

where we denoteCκ−1
n+κ−1 := (n+κ−1)!

n! (κ−1)! . Moreover the inequalities (3) become equalities for the
homogeneous system(E0).

We remark that there is no combinatorial formula interpolating these two estimates. Theorem 1
is a generalization of the following results. Forn = m = 1, S. Lie proved that the dimension
of theLie algebraSym (E) is less than or equal to 8 ifκ = 2 and is less than or equal toκ+ 4
if κ ≥ 3, these bounds being reached for the homogeneous system (cf. [5]). For n = 1, m ≥ 1
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andκ = 2, F. González-Gascón and A. González-López proved in [11] that the dimension of
Sym (E) is less than or equal to(m + 3)(m + 1). Forn = 1, m ≥ 1 andκ = 2, using the
equivalence method due tóE. Cartan, M. Fels [6] proved that the dimension ofSym (E) is less
than or equal tom2 + 4m + 3, with equality if and only if the system (E) is equivalent to the
systemuj

x2 = 0, j = 1, . . . ,m. He also generalized this result to the casen = 1,m ≥ 1, κ = 3.
Forn ≥ 1, m ≥ 1 andκ = 2, A. Sukhov proved in [24] that the dimension ofSym (E) is less
than or equal to(n +m + 2)(n + m) (the first inequality in Theorem 1), with equality for the
homogeneous systemuj

xk1
xk2

= 0.
Consequently, for the caseκ = 2, we will only give the general form of the Lie symmetries of

the homogeneous system (E0) (see Subsection 5.2). We will prove Theorem 1 for the caseκ ≥ 3.
The formulas obtained in Sections 3, 4 and 5 were checked withthe help of MAPLE release 6.

Acknowledgment.This article was written while the first author had a six months delegation
position at the CNRS. He thanks this institution for providing him this research opportunity. The
authors are indebted to Gérard Henry, the computer ingénieur (LATP, UMR 6632 CNRS), for his
technical support.

2. SUBMANIFOLD OF SOLUTIONS

2.1. Preliminary. Let K = R or C. Let n ≥ 1 and letx = (x1, . . . , xn) ∈ N. We denote by
K{x} the local ring ofK-analytic functionsϕ = ϕ(x) defined in some neighbourhood of the
origin in Kn. If ϕ ∈ K{x} we denote bȳϕ the function inK{x} satisfyingϕ(x) ≡ ϕ̄(x̄). Recall
that aK-analytic functionϕ defined in a domainU ⊂ Kn is calledK-algebraic(in the sense
of Nash) if there exists a nonzero polynomialP = P (X1, . . . , Xn,Φ) ∈ K[X1, . . . , Xn,Φ]
such thatP (x, ϕ(x)) ≡ 0 on U . All the considerations in this paper will be local: functions,
submanifolds and mappings will always be defined in a small connected neighbourhood of some
point (most often the origin) inKn.

2.2. System of partial differential equations associated to a generic submanifold of Cn+m.
Let M be a real algebraic or analytic local submanifold of codimensionm in Cn+m, passing
through the origin. We assume thatM is generic, namelyT0M + iT0M = T0Cn+m. Classically
(cf. [1]) there exists a choice of complex linear coordinatest = (z, w) ∈ C

n × C
m centered

at the origin such thatT0M = {Imw = 0} and such that there existm complex algebraic or
analytic defining equations representingM as the set of(z, w) in a neighbourhood of the origin
in Cn+m which satisfy

(4) w1 = Θ1(z, z̄, w̄), . . . . . . , wm = Θm(z, z̄, w̄).

Furthermore, the mappingΘ = (Θ1, . . . ,Θm) satisfies the functional equation

(5) w ≡ Θ(z, z̄,Θ(z̄, z, w)),

which reflects the reality of the generic submanifoldM . It follows in particular from (5) that the
local holomorphic mappingCm ∋ w̄ 7→ (Θj(0, 0, w̄))1≤j≤m ∈ Cm is of rankm at w̄ = 0.

Generalizing an idea due to B. Segre in [21] and [22], exploited byÉ. Cartan in [3] and more
recently by A. Sukhov in [24], [25], [26], we shall associatetoM a system of partial differential
equations. For this, we need some general nondegeneracy condition, which generalizes Levi
nondegeneracy. Letℓ0 ∈ N with ℓ0 ≥ 1. We shall assume thatM is ℓ0-finitely nondegenerate
at the origin,cf. [1], [17], [8]. This means that there exist multiindicesβ(1), . . . , β(n) ∈ Nn

with |β(k)| ≥ 1 for k = 1, . . . , n andmax1≤k≤n |β(k)| = ℓ0, and integersj(1), . . . , j(n) with
1 ≤ j(k) ≤ m for k = 1, . . . , n such that the local holomorphic mapping

(6) C
n+m ∋ (z̄, w̄) 7−→

(

(Θj(0, z̄, w̄))1≤j≤m,
(

Θj(k),zβ(k)(0, z̄, w̄)
)

1≤k≤n

)

∈ C
m+n
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is of rank equal ton + m at (z̄, w̄) = (0, 0). Here, we denote the partial derivative
∂|β|Θj(0, z̄, w̄)/∂zβ simply by Θj,zβ (0, z̄, w̄). ThenM is Levi nondegenerate at the origin
if and only if ℓ0 = 1. By complexifying the variables̄z andw̄, we get new independent vari-
ablesζ ∈ Cn and ξ ∈ Cm together with a complex algebraic or analyticm-codimensional
submanifoldM in C2(n+m) of equations

(7) wj = Θj(z, ζ, ξ), j = 1, . . . ,m,

called theextrinsic complexification ofM . In the defining equations (7) ofM, following [21]
and [24], we may consider the “dependent variables”w1, . . . , wm as algebraic or analytic func-
tions of the “independent variables”z = (z1, . . . , zn), with additional dependence on the ex-
tra “parameters”(ζ, ξ) ∈ Cn+m. Then by applying the differential operator∂|α|/∂zα to (7),
we obtainwj,zα(z) = Θj,zα(z, ζ, ξ). Writing these equations for(j, α) = (j(k), β(k)) with
k = 1, . . . , n, we obtain a system ofm+ n equations

(8)

{

wj(z) = Θj(z, ζ, ξ), j = 1, . . . ,m,

wj(k),zβ(k) (z) = Θj(k),zβ(k)(z, ζ, ξ), k = 1, . . . , n.

In this system (8), by the assumption ofℓ0-finite nondegeneracy (6), the algebraic or ana-
lytic implicit function theorem allows to solve the parameters(ζ, ξ) in terms of the variables
(zk, wj(z), wj(k),zβ(k) (z)), providing a local algebraic or analyticCn+m-valued mappingR
such that(ζ, ξ) = R

(

zk, wj(z), wj(k),zβ(k) (z)
)

. Finally, for every pair(j, α) different from
(1, 0), . . . , (m, 0), (j(1), β(1)), . . . , (j(n), β(n)), we may replace(ζ, ξ) by R in the differenti-
ated expressionwj,zα(z) = Θj,zα(z, ζ, ξ). This yields

(9)
wj,zα(z) = Θj,zα

(

z,R(zk, wj(z), wj(k),zβ(k) (z))
)

=: Fj,α

(

zk, wj(z), wj(k),zβ(k) (z)
)

.

This is thesystem of partial differential equations associated withM. As argued by B. Segre
in [21], the geometric study of generic submanifolds ofCn may gain much information from
the study of their associated systems of partial differential equations (cf. [24], [25]). The next
paragraphs are devoted to provide ageneral one-to-one correspondencebetween completely
integrable systems of analytic partial differential equations and their associated “submanifolds
of solutions” (to be defined precisely below) likeM above. Afterwards, we shall observe that
conversely, the study of systems of analytic partial differential equations also gains much infor-
mation from the direct study of their associated submanifolds of solutions.

2.3. Completely integrable systems of partial differential equations. Let nown, m, p ∈ N

with n, m, p ≥ 1, letκ ∈ N with κ ≥ 2 and letu = (u1, . . . , um) ∈ Km. Consider a collection
of pmultiindicesβ(1), . . . , β(p) ∈ Nn with |β(q)| ≥ 1 for q = 1, . . . , p andmax1≤q≤p |β(q)| =
κ − 1. Consider alsop integersj(1), . . . , j(p) with 1 ≤ j(q) ≤ m for q = 1, . . . , p. Inspired
by (9), we consider a general system of partial differentialequations ofn independent variables
(x1, . . . , xn) andm dependent variables(u1, . . . , um) which is of the following form:

(E) uj
xα(x) = F j

α

(

x, u(x), (u
j(q)

xβ(q) (x))1≤q≤p

)

,

where(j, α) 6= (j(1), β(1)), . . . , (j(p), β(p)) andj = 1, . . . ,m, |α| ≤ κ. Here, we assume
thatu = 0 is a local solution of the system(E) and that the functionsF j

α areK-algebraic or
K-analytic in a neighbourhood of the origin inKn+m+p. Among such systems are included
ordinary differential equations of any orderκ ≥ 2, systems of second order partial differential
equation as studied in [24],etc.

Throughout this article, we shall assume the system(E) completely integrable. By analyzing
the application of the Frobenius theorem in jet spaces, one can show (we will not develop this)
that the general solution of the system (E) is given byu(x) := Ω(x, ν, χ), where the parameters
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ν ∈ Kn andχ ∈ Kn essentially correspond to the “initial conditions”u(0) and(u
j(q)

xβ(q)(0))1≤q≤p,
andΩ is a K-analyticKn-valued mapping. In the case of a generic submanifold as in Subsec-
tion 2.2 above, we recover the mappingΘ. In the sequel, we shall use the following terminology:
the coordinates(x, u) will be called thevariablesand the coordinates(ν, χ) will be called the
parametersor theinitial conditions. In Subsection 2.5 below, we shall introduce a certain duality
where the rôles between variables and parameters are exchanged.

2.4. Associated submanifold of solutions.The existence of the functionΩ and the analogy
with Subsection 2.2 leads us to introduce thesubmanifold of solutions associated to the com-
pletely integrable system(E), which by definition is them-codimensionalK-analytic submani-
fold of K

n+2m+p, equipped with the coordinates(x, u, ν, χ), defined by the Cartesian equations

(10) uj = Ωj(x, ν, χ), j = 1, . . . ,m.

Let us denote this submanifold byM. We stress that in general such a submanifold cannot
coincide with the complexification of a generic submanifoldof Cm+n, for instance becauseK
may be equal toR or, if K = C, because the integerp is not necessarily equal ton. Also,
even if K = C andn = p, the mappingΩ does not satisfy a functional equation like (5). In
fact, it may be easily established that the submanifold of solutions of a completely integrable
system of partial differential equations like(E) coincides with the complexification of a generic
submanifoldif and only if K = C, p = n and the mappingΩ satisfies a functional equation
like (5).

Let nowM be a submanifold ofKn+2n+p of the form (10), but not necessarily constructed as
the submanifold of solutions of a system(E). We shall always assume thatΩj(0, ν, χ) ≡ νj . We
say thatM is solvable with respect to the parametersif there exist multiindicesβ(1), . . . , β(p) ∈
Nn with |β(q)| ≥ 1 for q = 1, . . . , p and integersj(1), . . . , j(p) with 1 ≤ j(q) ≤ m for
q = 1, . . . , p such that the localK-analytic mapping

(11) K
m+p ∋ (ν, χ) 7−→

(

(Ωj(0, ν, χ)1≤j≤m,
(

Ωj(q),xβ(q)(0, ν, χ)
)

1≤q≤p

)

∈ K
m+p

is of rank equal tom + p at (ζ, χ) = (0, 0) (notice that sinceΩj(0, ν, χ) ≡ νj , then them first
components of the mapping (11) are already of rankm). We remark that the submanifold of
solutions of a system(E) is automatically solvable with respect to the variables, the multiindices
β(q) and the integersj(q) being the same as in the arguments of the right hand side termsF j

α in
(E).

2.5. Dual system of defining equations.SinceΩj(0, ν, χ) ≡ νj , we may solve the equa-
tions (10) with respect toν by means of the analytic implicit function theorem, gettingan equiv-
alent system of equations forM:

(12) νj = Ω∗
j (χ, x, u), j = 1, . . . ,m.

We call this thedual system of defining equations forM. By construction, we have the functional
equation

(13) u ≡ Ω(x,Ω∗(χ, x, u), χ),

implying the identityΩ∗
j (0, x, u) ≡ uj . We say thatM is solvable with respect to the variables

if there exist multiindicesδ(1), . . . , δ(n) ∈ Np with |δ(l)| ≥ 1 for l = 1, . . . , n and integers
j(1), . . . , j(n) with 1 ≤ j(l) ≤ m for l = 1, . . . ,m such that the localK-analytic mapping

(14) K
n+m ∋ (x, u) 7−→

(

(Ω∗
j (0, x, u))1≤j≤m,

(

Ω∗
j(l), χδ(l)(0, x, u)

)

1≤l≤n

)

∈ K
m+n

is of rank equal ton + m at (x, u) = (0, 0) (notice that sinceΩ∗
j (0, x, u) ≡ uj, them fisrt

components of the mapping (14) are already of rankm).



6 HERVÉ GAUSSIER AND JÖEL MERKER

In the case whereM is the complexification of a generic submanifold then the solvability with
respect to the parameters is equivalent to the solvability with respect to the variables sinceΩ∗ ≡
Ω. However we notice that a submanifoldM of solutions of a system(E) is not automatically
solvable with respect to the variables, as shows the following trivial example.

Example1. Letn = 2,m = 1 and let(E) denote the systemux2 = 0, ux1x1 = 0, whose general
solutions areu(x) = ν + x1χ =: Ω(x1, x2, ν, χ). Notice that the variablex2 is absent from the
dual equationν = u − x1χ1 =: Ω∗(χ, x1, x2, u). It follows thatM is not solvable with respect
to the variables.

2.6. Symmetries of(E), their lift to the jet space and their lift to the parameter space. We
denote byJ κ

n,m the space of jets of orderκ of K-analytic mappingsu = u(x) from Kn to Km.
Let

(15) (xl, u
j, U i1

l1
, U i1

l1,l2
, . . . , U i1

l1,...,lκ
) ∈ K

n+m Cκ
κ+n

denote the natural coordinates onJ κ
n,m. Here, the superscriptsj, i1 and the subscripts

l, l1, l2, . . . , lκ satisfy j, i1 = 1, . . . ,m and l, l1, l2, . . . , lκ = 1, . . . , n. The independent co-
ordinateU i1

l1,...,lλ
corresponds to the partial derivativeui1

xl1
...xlλ

. Finally, by symmetry of partial

differentiation, we identity every coordinateU i1
l1,...,lλ

with the coordinatesU i1
σ(l1),...,σ(lλ), where

σ is an arbitrary permutation of the set{1, . . . , λ}. With these identifications, theκ-th order jet
spaceJ κ

n,m is of dimensionn+mCκ
κ+n, whereCq

p := p!
q! (p−q)! denotes the binomial coefficient.

Also, we shall sometimes use an equivalent notation for coordinates onJ κ
n,m:

(16) (xl, u
j, U i

β) ∈ K
n+m Cn

κ+n ,

whereβ ∈ Nn satisfies|β| ≤ κ and where the independent coordinateU i
β corresponds to the

partial derivativeui
xβ .

associated to the system(E) is the so-calledskeleton∆E , which is theK-analytic submanifold
of dimensionn + m + p in J κ

n,m simply defined by replacing the partial derivatives of the
dependent variablesuj by the independent jet variables in(E):

(17) U j
α = F j

α

(

x, u, (U
j(q)
β(q))1≤q≤p

)

,

for (j, α) 6= (j(1), β(1)), . . . , (j(p), β(p)) and j = 1, . . . ,m, |α| ≤ κ. Clearly, the natural
coordinates on the submanifold∆E of J κ

n,m are then+m+ p coordinates

(18)
(

x, u, (U
j(q)
β(q))1≤q≤p

)

.

Let h = h(x, u) be a localK-analytic diffeomorphism ofKn+m close to the identity mapping
and letπκ : J κ

n,m → Kn+m be the canonical projection. According to [18] (Chapter 2) there
exists a unique lifth(κ) of h to J κ

n,m such thatπκ ◦ h
(κ) = h ◦ πκ. The components ofh(κ)

may be computed by means of universal combinatorial formulas and they are rational functions
of the jet variables (15), their coefficients being partial derivatives of the components ofh, see
for instance§3.3.5 of [2]. By definition,h is a local symmetry of(E) if h transforms the graph of
every local solution of(E) into the graph of another local solution of(E). This definition seems
to be rather uneasy to handle, because of the abstract quantification of “every local solution”, but
we have the following concrete characterization forh to be a local symmetry of(E), cf. Chapter 2
in [18].

Lemma 1. The following conditions are equivalent:

(1) The local transformationh is a local symmetry of(E).
(2) Its κ-th prolongationh(κ) is a local self-transformation of the skeleton∆E of (E).
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These considerations have an infinitesimal version. Indeed, letX =
∑n

l=1 Q
l(x, u) ∂/∂xl +

∑m

j=1 R
j(x, u) ∂/∂uj be a local vector field withK-analytic coefficients which is defined in

a neighbourhood of the origin inKn+m. Let s ∈ K and consider the flow ofL as the one-
parameter familyhs(x, u) := exp(sX)(x, u) of local transformations. We recall thatX is an
infinitesimal symmetryof (E) if for every smalls ∈ K, the mappinghs(x, u) := exp(sX)(x, u)
is a local symmetry of(E). By differentiating with respect tos theκ-th prolongation(hs)

(κ)

of hs at s = 0, we obtain a unique vector fieldX(κ) on theκ-th jet space, called theκ-th
prolongation ofX and which satisfies(πk)∗(X

(κ)) = X . In Subsections 3.1 and 3.2 below, we
shall analyze the combinatorial formulas for the coefficients ofX(κ), since they will be needed
to prove Theorem 1.

Let XE be the projection to the restricted jet spaceKm+n+p, equipped with the coordi-
nates (18), of the restriction ofX(κ) to ∆E , namely

(19) XE := (πκ,p)∗(X
(κ)|∆E

).

The following Lemma, called theLie criterion, is the concrete characterization forX to be an
infinitesimal symmetry of(E) and is a direct corollary of Lemma 1,cf. Chapter 2 in [18]. This
criterion will be central in the next Sections 3, 4 and 5.

Lemma 2. The following conditions are equivalent:

(1) The vector fieldX is an infinitesimal symmetry of(E).
(2) Its κ-th prolongationX(κ) is tangent to the skeleton∆E .

We denote bySym(E) the set of infinitesimal symmetries of (E). Since it may be easily
checked that(cX + dY )(κ) = cX(κ) + dY (κ) and that[X(κ), Y (κ)] = ([X,Y ])

(κ), seeTheo-
rem 2.39 in [18], it follows from Lemma 2(2) thatSym(E) is a Lie algebra of locally defined
vector fields. Our main question in this section is the following: under which natural conditions
is Sym(E) finite-dimensional ?

Example2. We observe that the Lie algebraSym(E) of the system (E) presented in Example 1
is infinite-dimensional, since it includes all vector fieldsof the formX = Q2(x1, x2, u) ∂/∂x2,
as may be verified. As we will argue in Proposition 2 below, this phenomenon is typical, the
main reason lying in the first order relationux2 = 0.

By analyzing the construction of the submanifold of solutionsM associated to the system
(E), we may establish the following correspondence (we shall not develop its proof).

Proposition 1. To every infinitesimal symmetryX =
∑n

l=1 Q
l(x, u) ∂/∂xl +

∑m

j=1 R
j(x, u) ∂/∂uj of (E), there corresponds a unique vector field of the form

(20) X =

m
∑

j=1

Πj(ν, χ)
∂

∂νj
+

p
∑

q=1

Λq(ν, χ)
∂

∂χq

,

whose coefficients depend only on the parameters(ν, χ), such thatX + X is tangent to the
submanifold of solutionsM.

This leads us to define the Lie algebraSym(M) of vector fields of the form

(21)
n
∑

l=1

Ql(x, u)
∂

∂xl

+

m
∑

j=1

Rj(x, u)
∂

∂uj
+

m
∑

j=1

Πj(ν, χ)
∂

∂νj
+

p
∑

q=1

Λq(ν, χ)
∂

∂χq

which are tangent toM. We shall say that the submanifoldM is degenerateif there ex-
ists a nonzero vector field of the formX =

∑n

l=1 Q
l(x, u) ∂/∂xl +

∑m

j=1 R
j(x, u) ∂/∂uj

which is tangent toM, which means that the correspondingX part is zero. In this case, we
claim thatSym(M) is infinite dimensional. Indeed there exists then a nonzero vector field
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T =
∑n

l=1Q
l(x, u)∂/∂xl +

∑m

j=1 R
j(x, u)∂/∂uj tangent toM. Consequently, for every

K-analytic functionA(x, u), the vector fieldA(x, u)T belongs toSym(M), henceSym(M)
is infinite dimensional.

By developing the dual defining functions ofM with respect to the powers ofχ, we may
write

(22) νj = Ω∗
j (χ, x, u) =

∑

γ∈Np

χγΩ∗
j,γ(x, u),

where the functionsΩ∗
j,γ(x, u) areK-analytic in a neighbourhood of the origin, we may formu-

late a criterion forM to be non degenerate with respect to the variables (whose proof is skipped).

Proposition 2. The submanifoldM is notdegenerate with respect to the variables if and only if
there exists an integerk such that the generic rank of the localK-analytic mapping

(23) (x, u) 7−→
(

Ω∗
j,γ(x, u)

)

1≤j≤m, γ∈Np, |γ|≤k

is equal ton+m.

Seeking for conditions which insure thatSym(M) is finite-dimensional, it is therefore natural
to assume that the generic rank of the mapping (23) is equal ton+m. Furthermore, to simplify
the presentation, we shall assume that therank at(x, u) = (0, 0) (not only the generic rank)of
the mapping (23) is equal ton+m for k large enough. This is a “Zariski-generic” assumption.
Coming back to (14), we observe that this means exactly thatM is solvable with respect to the
variables. Then we denote byℓ∗0 the smallest integerk such that the rank at(x, u) = (0, 0)
of the mapping (23) is equal ton + m and we say thatM is ℓ∗0-solvable with respect to the
variables. Also, we denote byℓ0 the integermax1≤q≤p |β(q)| and we say thatM is ℓ0-solvable
with respect to the parameters.

2.7. Fundamental isomorphism betweenSym(E) and Sym(M). In the remainder of this
Section 2, we shall assume thatM is ℓ0-solvable with respect to the parameters andℓ∗0-solvable
with respect to the variabes. In this case, viewing the variables(ν1, . . . , νm) in the dual equations
νj = Ω∗

j (χ, x, u) ofM as a mapping ofχ with (dual) “parameters”(x, u) and proceeding as
in Subsection 2.2, we may construct adual system of completely integrable partial differential
equationsof the form

(E∗) νj
χγ (χ) = Gj

γ

(

χ, ν(χ), (ν
j(l)

χδ(l) (χ))1≤l≤n

)

,

where(j, γ) 6= (j(1), δ(1)), . . . , (j(n), δ(n)). This system has its own infinitesimal symmetry
Lie algebraSym(E∗).

Theorem 2. IfM is both solvable with respect to the parameters and solvablewith respect to
the variables, we have the following two isomorphisms:

(24) Sym(E) ∼= Sym(M) ∼= Sym(E∗),

namelyX ←→ X + X ←→ X .

In Subsection 2.10 below, we shall introduce a second geometric condition which is in general
necessary forSym(M) to be finite-dimensional.

2.8. Local (pseudo)groupSym(M) of point transformations of M. We shall study the ge-
ometry of a localK-analytic submanifoldM of Kn+2m+p whose equations and dual equations
are of the form

(25)

{

uj = Ωj(x, ν, χ), j = 1, . . . ,m,

νj = Ω∗
j (χ, x, u), j = 1, . . . ,m.
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Let t := (x, u) ∈ Kn+m andτ := (ν, χ) ∈ Kn+m. We are interested in describing the set of
localK-analytic transformations of the spaceK

n+2m+p which are of the specific form

(26) (t, τ) 7−→ (h(t), φ(τ)),

and which stabilizeM, in a neighborhood of the origin. We denote the local Lie pseudogroup
of such transformations (possibly infinite-dimensional) by Sym(M). Importantly, each transfor-
mation ofSym(M) stabilize both the sets{t = ct.} and the sets{τ = ct.}. Of course, the Lie
algebra ofSym(M) coincides withSym(M) defined above.

2.9. Fundamental pair of foliations onM. Let p0 ∈ Kn+2m+p be a fixed point of coordinates
(tp0 , τp0). Firstly, we observe that the intersectionM∩{τ = τp0} consists of then-dimensional
K-analytic submanifold of equationu = Ω(x, τp0 ). As τp0 varies, we obtain a localK-analytic
foliation ofM by n-dimensional submanifolds. Let us denote this first foliation byFp and
call it the foliation ofM with respect to parameters. Secondly, and dually, we observe that the
intersectionM∩ {t = tp0} consists of thep-dimensionalK-analytic submanifold of equation
ν = Ω∗(χ, tp0). As tp0 varies, we obtain a localK-analytic foliation ofM by p-dimensional
submanifolds. Let us denote this second foliation byFv and call it thefoliation ofM with
respect to the variables. We call(Fp,Fv) the fundamental pair of foliations onM.

2.10. Covering property of the fundamental pair of foliations. We wish to formulate a geo-
metric condition which says that starting from the origin inM and following alternately the
leaves ofFp and the leaves ofFv, we cover a neighborhood of the origin inM. Let us introduce
two collections(Lk)1≤k≤n and(L∗q)1≤q≤p of vector fields whose integral manifolds coincide
with the leaves ofFp andFv:

(27)



























Lk :=
∂

∂xk

+

m
∑

j=1

∂Ωj

∂xk

(x, ν, χ)
∂

∂uj
, k = 1, . . . , n,

L∗q :=
∂

∂χq

+

m
∑

j=1

∂Ω∗
j

∂χq

(χ, x, u)
∂

∂νj
, k = 1, . . . , n.

Let p0 be a fixed point inM of coordinates(xp0 , up0 , νp0 , χp0) ∈ Kn+2m+p, let x1 :=
(x1,1, . . . , x1,n) ∈ Kn be a “multitime” parameter and define the multiple flow map
(28)
{

Lx1(xp0 , up0 , νp0 , χp0) := exp(x1L)(p0) := exp(x1,nLn(· · · (exp(x1,1L1(p0))) · · · )) :=

:= (xp0 + x1,Ω(xp0 + x1, νp0 , χp0), νp0 , χp0).

Similarly, forχ = (χ1,1, . . . , χ1,p) ∈ Kp, define the multiple flow map

(29) L∗χ1
(xp0 , up0 , νp0 , χp0) := (xp0 , up0 ,Ω

∗(χp0 + χ1, xp0 , up0), χp0 + χ1).

We may define now the mappings which correspond to start from the origin and to move alter-
nately along the two foliationsFp andFv. If the first movement consists in moving along the
foliationFv, we define

(30)



















Γ1(x1) := Lx1(0),

Γ1(x1, χ1) := L∗χ1
(Lx1(0)),

Γ3(x1, χ1, x2) := Lx2(L
∗
χ1

(Lx1(0))),

Γ4(x1, χ1, x2, χ2) := L∗χ2
(Lx2(L

∗
χ1

(Lx1(0)))).

Generally, we may define the mapsΓk([xχ]k), where[xχ]k = (x1, χ1, x2, χ2, . . . ) with exactly
k terms and where eachxl belongs toKn and eachχl belongs toKp. On the other hand, if
the first movement consists in moving along the foliationFp, we start withΓ∗

1(χ1) := L∗χ1
(0),

Γ∗
2(χ1, x1) := Lx1(L

∗
χ1

(0)), etc., and generally we may define the mapsΓ∗
k([χx]k), where
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[χx]k = (χ1, x1, χ2, x2, . . . ), with exactlyk terms. The range of both mapsΓk and Γ∗
k is

contained inM. We callΓk thek-th chainandΓ∗
k thek-th dual chain.

Definition 1. The pair of foliations(Fp,Fv) is calledcovering at the originif there exists an
integerk such that the generic rank ofΓk is (maximal possible) equal todimK M. Since the
dual(k + 1)-th chainΓ∗

k+1 for χ1 = 0 identifies with thek-th chainΓk, it follows that the same
property holds for the dual chains.

In terms of Sussmann’s approach [27], this means that thelocal orbitof the two systems of
vector fields(Lk)1≤k≤n and(L∗q)1≤q≤p is of maximal dimension. Reasoning as in [27] (using
the so-calledbackward trickin Control Theory,seealso [17]), it may be shown that there exists
the smallesteven integer2µ0 such that the ranks of the two mapsΓ2µ0 andΓ∗

2µ0
at the origin

(not only their generic rank) inKnµ0+pµ0 are both equal todimK M. This means thatΓ2µ0 and
Γ∗

2µ0
are submersive onto a neighborhood of the origin inM. We callµ0 the type of the pair of

foliations(Fp,Fv). It may also be established thatµ0 ≤ m+ 2.

Example2.46. We give an example of a submanifold which is both1-solvable with respect to
the parameters and with respect to the variables but whose pair of foliations is not covering: with
n = 1, m = 2 andp = 1, this is given by the two equationsu1 = ν1, u2 = ν2 + xχ1. Then
Sym(M) is infinite-dimensional since it contains the vector fieldsa(u1) ∂/∂u1 + a(ν1) ∂/∂ν1,
wherea is an arbitraryK-analytic function. For this reason, we shall assume in the sequel that
the pair of foliations(Fp,Fv) is covering at the origin.

2.11. Estimate on the dimension of the local symmetry group of the submanifold of solu-
tions. We may now formulate the main theorem of this section, which shows that, under suitable
nondegeneracy conditions,Sym(M) is a finite dimensional local Lie group of local transforma-
tions. If t ∈ K

n+m, we denote by|t| := max1≤k≤n+m |tk|. If (h, φ) ∈ Sym(M) we denote
by Jk

t h(0) thek-th order jet ofh at the origin and byJk
τ φ(0) thek-th order jet ofφ at the origin.

Also, we shall assume thatM is eitherK-algebraic orK-analytic. Of course, theK-algebraicity
of the submanifold of solutions does not follow from theK-algebraicity of the right hand sides
F j

α of the system of partial differential equations(E).

Theorem 3. Assume that theK-algebraic or K-analytic submanifold of solutionsM of the
completely integrable system of partial differential equations(E) is bothℓ0-sovable with respect
to the parameters andℓ∗0-solvable with respect to the variables. Assume that the fundamental
pair of foliations(Fp,Fv) is covering at the origin and letµ0 be its type at the origin. Then
there existsε0 > 0 such that for everyε with 0 < ε < ε0, the following four properties hold:

(a) The (pseudo)groupSym(M) of local K-analytic diffeomorphisms defined for{(t, τ) ∈
K

n+2m+p : |t| < ε, |τ | < ε} which are of the form(t, τ) 7→ (h(t), φ(τ)) and which
stabilizeM is a local Lie pseudogroup of transformations of finite dimensiond ∈ N.

(b) Letκ0 := µ0(ℓ0 + ℓ∗0). Then there exist twoK-algebraic orK-analytic mappingsHκ0

and Φκ0 which depend only onM and which may be constructed algorithmically by
means of the defining equations ofM such that every element(h, φ) ∈ Sym(M), suffi-
ciently close to the identity mapping, may be represented by

(31)

{

h(t) =Hκ0(t, J
κ0
t h(0)),

φ(τ) = Φκ0(τ, J
κ0
τ φ(0)).

Consequently, every element ofSym(M) is uniquely determined by itsκ0-th jet at the
origin and the dimensiond of the Lie algebraSym(M) is bounded by the number of
components of the vector(Jκ0

t h(0), Jκ0
τ φ(0)), namely we have

(32) dimK Sym(E) = dimK Sym(M) ≤ (n+m)Cκ0
n+m+κ0

+ (m+ p)Cκ0
m+p+κ0

.
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(c) There existsε′ with 0 < ε′ < ε and aK-algebraic orK-analytic mapping(HM, ΦM)
which may be constructed algorithmically by means of the defining equations ofM,
defined in a neighbourhood of the origin inKn+2m+p × Kd with values inKn+2m+p

and which satifies(HM(t, 0), ΦM(τ, 0)) ≡ (t, τ), such that every element(h, φ) ∈
Sym(M) defined on the set{(t, τ) ∈ Kn+2m+p : |t| < ε′, |τ | < ε′}, sufficiently
close to the identity mapping and stabilizingM may be represented as(h(t), φ(τ)) ≡
(HM(t, sh,φ), ΦM(τ, sh,φ)) for a unique elementsh,φ ∈ Kd depending on the mapping
(h, φ).

(d) The mapping(t, τ, s) 7−→ (HM(t, s),ΦM(τ, s)) defines a localK-algebraic or K-
analytic Lie group of localK-algebraic orK-analytic transformations stabilizingM.

2.12. Applications. The proof of Theorem 3, which possesses strong similaritieswith the proof
of Theorem 4.1 in [8], will not be presented. It seems that Theorem 3, together with the argu-
mentation on the necessity of assumptions thatM be solvable with respect to the variables and
that its fundamental pair of foliations be covering, is a newresult about the finite-dimensionality
of a completely integrable system of partial differential equations having an arbitrary number of
independent and dependent variables. The main interest lies in the fact that we obtain the algo-
rithmically constructible representation formula (31) together with the local Lie group structure
mapping(HM, ΦM). In particular, we get as a corollary that every transformation (h(t), φ(τ))
given by a formal power series (not necessarily convergent)is as smooth as the applications
(Hκ0 , Φκ0) are, namely every formal element ofSym(M) is necessarilyK-algebraic orK-
analytic. As a counterpart of its generality, Theorem 3 doesnot provide optimal bounds, as
shows the following illustration.

Example2.46. Letn = m = 1, let κ ≥ 3 and let(E) denote the ordinary differential equation
uxκ(x) = F (x, u(x), ux(x), . . . , uxκ−1(x)). Then the submanifold of solutionsM is of the
form u = ν + xχ1 + · · ·+ xκ−1χκ−1 + O(|x|κ) + O(|χ|2). It may be checked thatℓ0 = κ− 1,
ℓ∗0 = 1 andµ0 = 3, henceκ0 = 3κ. Then the dimension estimate in (32) is:dimK Sym(E) ≤
2C3κ

2+3κ + κC3κ
4κ . This bound is much larger than the optimal bounddimK Sym(E) ≤ κ + 4

due to S. Lie (cf. [5]; seealso the casen = m = 1 of Theorem 1).

Untill now we focused on providing the set of Lie symmetries of a general system of partial
differential equations with a local Lie group structure. Asa byproduct we obtained the (non
optimal) dimensional upper bound (32) of Theorem 3. In the next Sections 3, 4 and 5, using the
classical Lie algorithm based on the Lie criterion (see Lemma 2), we provide an optimal bound
for some specific systems of partial differential equations, answering an open problem raised
in [19] page 206.

3. LIE THEORY FOR PARTIAL DIFFERENTIAL EQUATIONS

3.1. Prolongation of vector fields to the jet spaces.Consider the followingK-analytic system
(E) of non linear partial differential equations:

(33) uj
xk1

···xkκ
(x) = F j

k1,...,kκ

(

x, u(x), ui1
xl1

(x), . . . , ui1
xl1

···xlκ−1
(x)
)

,

where1 ≤ k1 ≤ · · · ≤ kκ ≤ n, 1 ≤ j ≤ m, andF j
k1,...,kκ

are analytic functions of

n + mCκ−1
n+κ−1 variables, defined in a neighbourhood of the origin. We assume that (E)

is completely integrable. The Lie theory consists in studying theinfinitesimal symmetries
X =

∑n
l=1 Q

l(x, u) ∂/∂xl +
∑m

j=1 R
j(x, u) ∂/∂uj of (E). Consider theskeletonof (E),

namely the complex subvariety∆E of codimensionmCκ
κ+n−1 in the jet spaceJ κ

n,m, defined by

(34) U j
k1,...,kκ

= F j
k1,...,kκ

(

x, u, U i1
l1
, . . . , U i1

l1,...,lκ−1

)

,
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wherej, i1 = 1, . . . ,m andk1, . . . , kκ, l1, . . . , lκ−1 = 1, . . . , n. Fork = 1, . . . , n letDk be the
k-th operator of total differentiation, characterized by the property that for every integerλ ≥ 2
and for every analytic functionP = P (x, u, U i1

l1
, . . . , U i1

l1,...,lλ−1
) defined in the jet spaceJ λ−1

n,m ,
the operatorDk is the unique formal infinite differential operator satisfying the relation

(35)











[DkP ]
(

x, u(x), ui1
xl1

(x), . . . , ui1
xl1

···xlλ−1
(x)
)

≡

∂

∂xk

[

P
(

x, u(x), ui1
xl1

(x), . . . , ui1
xl1

···xlλ−1
(x)
)]

.

Note that this identity involves only the troncature ofDk to orderλ, denoted byDλ
k , and defined

by

(36)



























Dλ
k :=

∂

∂xk

+

m
∑

i1=1

U i1
k

∂

∂ui1
+

m
∑

i1=1

n
∑

l1=1

U i1
k,l1

∂

∂U i1
l1

+ · · ·+

+

m
∑

i1=1

n
∑

l1,...,lλ−1=1

U i1
k,l1,...,lλ−1

∂

∂U i1
l1,...,lλ−1

.

According to Theorem 2.36 of [18], theprolongation of orderκ of a vector fieldX =
∑n

l=1 Q
l(x, u) ∂/∂xl +

∑m

j=1 R
j(x, u) ∂/∂uj, denoted byX(κ), is the unique vector field on

the spaceJ κ
n,m of the form

(37)



























X(κ) = X +

m
∑

j=1

n
∑

k1=1

R
j
k1

∂

∂U j
k1

+

m
∑

j=1

n
∑

k1,k2=1

R
j
k1,k2

∂

∂U j
k1,k2

+ · · ·+

+

m
∑

j=1

n
∑

k1,...,kκ=1

R
j
k1,...,kκ

∂

∂U j
k1,k2,...,kκ

,

corresponding to the infinitesimal action of the flow ofX on the jets of orderκ of the graphs of
mapsu = u(x), and whose coefficients are computed recursively by the formulas

(38)



























































R
j
k1

:= D1
k1

(Rj)−

n
∑

l1=1

D1
k1

(Ql1)U j
l1
,

R
j
k1,k2

:= D2
k2

(Rj
k1

)−

n
∑

l1=1

D1
k2

(Ql1)U j
k1,l1

,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

R
j
k1,k2,...,kλ

:= Dλ
kλ

(Rj
k1,...,kλ−1

)−

n
∑

l1=1

D1
kλ

(Ql1)U j
k1,...,kλ−1,l1

.

For a better comprehension of the general computation, let us start by computingRκ in the case
n = m = 1.

3.2. Computation of Rκ when n = m = 1. A direct application of the preceding formulas
leads to the following classical expressions:

(39)











R
1 = Rx + [Ru −Qx]U1 + [−Qu] (U1)

2.

R
2 = Rx2 + [2Rxu −Qx2 ]U1 + [Ru2 − 2Qxu] (U1)2 + [−Qu2 ] (U1)3+

+ [Ru − 2Qx]U2 + [−3Qu]U1U2.

Observe that these expressions are polynomial in the jet variables, their coefficients being differ-
ential expressions involving a partial derivative ofR (with a positive integer coefficient) and a
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partial derivative ofQ (with a negative integer coefficient). We have also:

(40)







































































































R
3 = Rx3 + [3Rx2u −Qx3 ]U1 + [3Rxu2 − 3Qx2u] (U1)2+

+ [Ru3 − 3Qxu2] (U1)3 + [−Qu3 ] (U1)4 + [3Rxu − 3Qx2]U2+

+ [3Ru2 − 9Qxu]U1U2 + [−6Qu2 ] (U1)2U2 + [−3Qu] (U2)2+

+ [Ru − 3Qx]U3 + [−4Qu]U1U3.

R
4 = Rx4 + [4Rx3u −Qx4 ]U1 + [6Rx2u2 − 4Qx3u] (U1)2+

+ [4Rxu3 − 6Qx2u2 ] (U1)3 + [Ru4 − 4Qxu3] (U1)4 + [−Qu4 ] (U1)5+

+ [6Rx2u − 4Qx3]U2 + [12Rxu2 − 18Qx2u]U1U2+

+ [6Ru3 − 24Qxu2 ] (U1)2U2 + [−10Qu3] (U1)3U2+

+ [3Ru2 − 12Qxu] (U2)2 + [−15Qu2]U1(U2)2 + [4Rxu − 6Qx2]U3+

+ [4Ru2 − 16Qxu]U1U3 + [−10Qu2 ] (U1)2U3 + [−10Qu]U2U3+

+ [Ru − 4Qx]U4 + [−5Qu]U1U4.

Remark that all the brackets involved in equations (40) are of the form[λRxaub+1 −µQxa+1ub ],
whereλ, µ ∈ N anda, b ∈ N.

In what follows we will not need the complete form ofRκ but only the following partial form:

Lemma 3. For κ ≥ 4:

(41)



































R
κ = Rxκ +

[

C1
κRxκ−1u −Qxκ

]

U1 +
[

C2
κRxκ−2u − C

1
κQxκ−1

]

U2+

+
[

C2
κ Rx2u − C

3
κQx3

]

Uκ−2 +
[

C1
κRxu − C

2
κQx2

]

Uκ−1+

+
[

C1
κ Ru2 − κ2Qxu

]

U1 Uκ−1 +
[

−C2
κ+1Qu

]

U2Uκ−1+

+
[

Ru − C
1
κ Qx

]

Uκ +
[

−C1
κ+1Qu

]

U1Uκ+

+ Remainder,

where the termRemainderdenotes the remaining terms in the expansion ofRκ.

We note that the formula (41) is valid forκ = 3, comparing with (40), with the convention that
the termsUκ−2 andUκ−1 vanish (they coincide withU1 andU2), and replacing the coefficient
−C2

κ+1Qu = −C2
4 Qu = −6Qu of the monomialU2 Uκ−1 by −3Qu, as it appears in (40).

The proof goes by a straightforward computation, applying the recursive definition of this partial
formula.

3.3. Computation of Rκ in the general case.Following the exact same scheme as in the case
n = 1 we give the general partial formula forRκ. We start with the first three families of
coefficientsRj

k1
, Rj

k1,k2
andR

j
k1,k2,k3

. Let δq
p be the Kronecker symbol, equal to1 if p = q and

to 0 if p 6= q. More generally, thegeneralized Kronecker symbolsare defined byδq1,...,qk
p1,...,pk

:=
δq1
p1
δq2
p2
· · · δqk

pk
.

By convention, the indicesj, i1, i2, . . . , iλ run in the set{1, . . . ,m}, the indicesk, k1, k2, . . . ,
kλ andl, l1, l2, . . . , lλ running in{1, . . . , n}. Hence we will write

∑m

i1=1

∑m

i2=1 · · ·
∑m

iλ=1 as
∑

i1,...,iλ
and

∑n

l1=1

∑n

l2=1 · · ·
∑n

lλ=1 as
∑

l1,...,lλ
. The lettersi1, i2, . . . , iλ andl1, l2, . . . , lλ

will always be used for the summations in the development ofR
j
k1,k2,...,kλ

. We will always use

the indicesj andk1, k2, . . . , kλ to write the coefficientRj
k1,k2,...,kλ

.
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We have:

(42)



















R
j
k1

= Rj
xk1

+
∑

i1

∑

l1

[

δl1
k1
Rj

ui1
− δj

i1
Ql1

xk1

]

U i1
l1

+

+
∑

i1,i2

∑

l1,l2

[

−δj
i2
δl1
k1
Ql2

ui1

]

U i1
l1
U i2

l2
.

ForRj
k1,k2

we have:

(43)















































































R
j
k1,k2

= Rj
xk1

xk2
+
∑

i1

∑

l1

[

δl1
k2
Rj

xk1
ui1

+ δl1
k1
Rj

xk2
ui1
− δj

i1
Ql1

xk1
xk2

]

U i1
l1

+

+
∑

i1,i2

∑

l1,l2

[

δl1,l2
k1,k2

Rj

ui1ui2
− δj

i2

(

δl1
k1
Ql2

xk2
ui1

+ δl1
k2
Ql2

xk1
ui1

)]

U i1
l1
U i2

l2
+

+
∑

i1,i2,i3

∑

l1,l2,l3

[

−δj
i3
δl1,l2
k1,k2

Ql3
ui1ui2

]

U i1
l1
U i2

l2
U i3

l3
+

+
∑

i1

∑

l1,l2

[

δl1,l2
k1,k2

Rj

ui1
− δj

i1
δl1
k2
Ql2

xk1
− δj

i1
δl1
k1
Ql2

xk2

]

U i1
l1,l2

+

+
∑

i1,i2

∑

l1,l2,l3

[

−δj
i2
δl1,l2
k1,k2

Ql3
ui1
− δj

i2
δl3,l1
k1,k2

Ql2
ui1
− δj

i1
δl2,l3
k1,k2

Ql1
ui2

]

U i1
l1
U i2

l2,l3
.

Since we also treat systems of orderκ ≥ 3, it is necessary to computeRj
k1,k2,k3

. We write this
as follows:

(44) R
j
k1,k2,k3

= I + II + III,

where the first term I involves only polynomials inU i1
l1

:

(45)



































































































I = Rj
xk1

xk2
xk3

+
∑

i1

∑

l1

[

δl1
k1
Rj

xk2
xk3

ui1
+ δl1

k2
Rj

xk1
xk3

ui1
+ δl1

k3
Rj

xk1
xk2

ui1
−

−δj
i1
Ql1

xk1
xk2

xk3

]

U i1
l1

+
∑

i1,i2

∑

l1,l2

[

δl1,l2
k1,k2

Rj

xk3
ui1ui2

+ δl1,l2
k3,k1

Rj

xk2
ui1ui2

+

+δl1,l2
k2,k3

Rj

xk1
ui1ui2

− δj
i2
δl1
k1
Ql2

xk2
xk3

ui1
− δj

i2
δl1
k2
Ql2

xk1
xk3

ui1
−

−δj
i2
δl1
k3
Ql2

xk1
xk2

ui1

]

U i1
l1
U i2

l2
+
∑

i1,i2,i3

∑

l1,l2,l3

[

δl1,l2,l3
k1,k2,k3

Rj

ui1ui2ui3
−

−δj
i3
δl1,l2
k1,k2

Ql3
xk3

ui1ui2
− δj

i3
δl1,l2
k2,k3

Ql3
xk1

ui1ui2
−

−δj
i3
δl1,l2
k1,k3

Ql3
xk2

ui1ui2

]

U i1
l1
U i2

l2
U i3

l3
+

+
∑

i1,i2,i3,i4

∑

l1,l2,l3,l4

[

−δj
i4
δl1,l2,l3
k1,k2,k3

Ql4
ui1ui2ui3

]

U i1
l1
U i2

l2
U i3

l3
U i4

l4
,
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the second term II involves at least once the monomialU i1
l1,l2

:

(46)



















































































































































II =
∑

i1

∑

l1,l2

[

δl1,l2
k1,k2

Rj

xk3
ui1

+ δl1,l2
k3,k1

Rj

xk2
ui1

+ δl1,l2
k2,k3

Rj

xk1
ui1
−

−δj
i1

(

δl1
k1
Ql2

xk2
xk3

+ δl1
k2
Ql2

xk1
xk3

+ δl1
k3
Ql2

xk1
xk2

)]

U i1
l1,l2

+

+
∑

i1,i2

∑

l1,l2,l3

[

δl1,l2,l3
k1,k2,k3

Rj

ui1ui2
+ δl3,l1,l2

k1,k2,k3
Rj

ui1ui2
+ δl2,l3,l1

k1,k2,k3
Rj

ui1ui2
−

−δj
i1

(

δl2,l3
k1,k2

Ql1
xk3

ui2
+ δl2,l3

k3,k1
Ql1

xk2
ui2

+ δl2,l3
k2,k3

Ql1
xk1

ui2

)

−

−δj
i2

(

δl1,l2
k1,k2

Ql3
xk3

ui1
+ δl1,l2

k3,k1
Ql3

xk2
ui1

+ δl1,l2
k2,k3

Ql3
xk1

ui1
+

+δl3,l1
k1,k2

Ql2
xk3

ui1
+ δl3,l1

k3,k1
Ql2

xk2
ui1

+ δl3,l1
k2,k3

Ql2
xk1

ui1

)]

U i1
l1
U i2

l2,l3
+

+
∑

i1,i2,i3

∑

l1,l2,l3,l4

[

−δj
i3

(

δl1,l2,l3
k1,k2,k3

Ql4
ui1ui2

+ δl1,l4,l2
k1,k2,k3

Ql3
ui1ui2

+

δl3,l1,l2
k1,k2,k3

Ql4
ui1ui2

)

− δj
i1

(

δl3,l2,l4
k1,k2,k3

Ql1
ui2ui3

+ δl4,l3,l2
k1,k2,k3

Ql1
ui2ui3

+

+δl2,l3,l4
k1,k2,k3

Ql1
ui1ui2

)]

U i1
l1
U i2

l2
U i3

l3,l4
+
∑

i1,i2

∑

l1,l2,l3,l4

[

−δj
i2

(

δl1,l2,l3
k1,k2,k3

Ql4
ui1

+

+δl3,l1,l2
k1,k2,k3

Ql4
ui1

+ δl2,l3,l1
k1,k2,k3

Ql4
ui1

)]

U i1
l1,l2

U i2
l3,l4

and the third term III involves at least once the monomialU i1
l1,l2,l3

(note that there is no term

involving simultaneouslyU i1
l1,l2

andU i1
l1,l2,l3

):

(47)



































III =
∑

i1

∑

l1,l2,l3

[

δl1,l2,l3
k1,k2,k3

Rj

ui1
− δj

i1

(

δl1,l2
k2,k3

Ql3
xk1

+ δl1,l2
k3,k1

Ql3
xk2

+

+δl1,l2
k1,k2

Ql3
xk3

)]

U i1
l1,l2,l3

+
∑

i1,i2

∑

l1,l2,l3,l4

[

−δj
i1
δl2,l3,l4
k1,k2,k3

Ql1
ui2
−

−δj
i2

(

δl1,l2,l3
k1,k2,k3

Ql4
ui1

+ δl4,l1,l2
k1,k2,k3

Ql3
ui1

+ δl3,l4,l1
k1,k2,k3

Ql2
ui1

)]

U i1
l1
U i2

l2,l3,l4
.

Before giving the partial expression ofRκ we introduce some notations. Forp ∈ N with p ≥ 1,
let Sp be the group of permutations of{1, 2, . . . , p}. Forq ∈ N with 1 ≤ q ≤ p− 1, let Sq

p be
the set of permutationsσ ∈ Sp such thatσ(1) < σ(2) < · · · < σ(q) andσ(q+1) < σ(q+2) <
· · · < σ(p). Its cardinal isCq

p . Let Cp be the group of cyclic permutations of{1, 2, . . . , p}.

Reasoning recursively from the formula ofR
j
k1,k2,k3

given by (44), we may generalize Lemma 3:

Lemma 4. For everyκ ≥ 4 and for everyj = 1, . . . ,m, k1, . . . , kκ = 1, . . . , n, we have:

(48) R
j
k1,k2,...,kκ

= I1 + · · ·+ I9 + Remainder

whereI1 = Rj
xk1

xk2
...xkκ

,

I2 =
∑

i1

∑

l1





∑

σ∈S1
κ

δl1
kσ(1)

Rj

xkσ(2)
···xkσ(κ)

ui1
− δj

i1
Ql1

xk1
...xkκ



U i1
l1
,
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I3 =
∑

i1

∑

l1,l2





∑

σ∈S2
κ

δl1,l2
kσ(1),kσ(2)

Rj

xkσ(3)
···xkσ(κ)

ui1
−

−δj
i1





∑

σ∈S1
κ

δl1
kσ(1)

Ql2
xkσ(2)

···xkσ(κ)







U i1
l1,l2

,

I4 =
∑

i1

∑

l1,...,lκ−2





∑

σ∈S
κ−2
κ

δ
l1,......,lκ−2

kσ(1),...,kσ(κ−2)
Rj

xkσ(κ−1)
xkσ(κ)

ui1
−

−δj
i1





∑

σ∈S
κ−3
κ

δ
l1,......,lκ−3

kσ(1),...,kσ(κ−3)
Qlκ−2

xkσ(κ−2)
xkσ(κ−1)

xkσ(κ)







U i1
l1,...,lκ−2

,

I5 =
∑

i1

∑

l1,...,lκ−1





∑

σ∈S
κ−1
κ

δ
l1,......,lκ−1

kσ(1),...,kσ(κ−1)
Rj

xkσ(κ)
ui1
−

−δj
i1





∑

σ∈S
κ−2
κ

δ
l1,......,lκ−2

kσ(1),...,kσ(κ−2)

lκ−1
xkσ(κ−1)

xkσ(κ)







U i1
l1,...,lκ−1

,

I6 =
∑

i1,i2

∑

l1,...,lκ





∑

τ∈Cκ

δ
lτ(1),...,lτ(κ)

k1,......,kκ
Rj

ui1ui2
− δj

i1





∑

σ∈S
κ−1
κ

δl1,......,lκ
kσ(1),...,kσ(κ−1)

Ql1
xkσ(κ)

ui2



−

−δj
i2





∑

σ∈S
κ−1
κ

(

δ
l1,......,lκ−1

kσ(1),...,kσ(κ−1)
Qlκ

xkσ(κ)
ui1

+ · · ·+ δl3,......,l1
kσ(1),...,kσ(κ−1)

Ql2
xkσ(κ)

ui2

)







×

× U i1
l1
U i2

l2,...,lκ
,

I7 =
∑

i1,i2

∑

l3,...,lκ+1

[

−δj
i1

(

δ
l2,...,lκ+1

k1,...,kκ
Ql1

ui2
+ · · ·+ δ

lκ+1,...,l2
k1,...,kκ

Ql1
ui2

)

−

−δj
i2





∑

τ∈S2
κ

δ
lτ(1),...,lτ(κ)

k1,......,kκ
Q

lκ+1

ui1







U i1
l1,l2

U i2
l3,...,lκ+1

,

I8 =
∑

i1

∑

l1,...,lκ



δl1,...,lκ
k1,...,kκ

Rj

ui1
− δj

i1





∑

σ∈S
κ−1
κ

δ
l1,......,lκ−1

kσ(1),...,kσ(κ−1)
Qlκ

xkσ(κ)







U i1
l1,...,lκ

,

I9 =
∑

i1,i2

∑

l1,...,lκ+1

[

−δj
i1
δ

l2,...,lκ+1

k1,...,kκ
Ql1

ui2
− δj

i2

(

δl1,...,lκ
k1,...,kκ

Q
lκ+1

ui1
+ · · ·+ δl3,...,l1

k1,...,kκ
Ql2

ui1

)]

×

× U i1
l1
U i2

l2,...,lκ+1

and where the termRemainder denotes the remaining terms in the expansion ofRj
k1,k2,...,kκ

.

In I6 the summation on the upper indices(l1, . . . , lκ) gets on all the circular permutations of
{1, 2, . . . , κ} except the identity. InI7 the summation gets on all the circular permutations of
{2, 3, . . . , κ + 1}. In I9 the summation gets on all the circular permutations of{1, 2, . . . , κ +
1} except the one transforming(l1, l2, . . . , lκ+1) into (l2, l3, . . . , l1). For κ = 3, comparing
with (44), we see that the formula remains valid, with the same conventions as in the casen = 1.

3.4. Lie criterion and defining equations ofSym(E). We recall the Lie criterion, presented in
Subsection 2.6 (seeTheorem 2.71 of [18]):
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A vector fieldX is an infinitesimal symmetry of the completely integrable system(E) if and
only if its prolongationX(κ) of orderκ is tangent to the skeleton∆E in the jet spaceJ κ

n,m.
The set of infinitesimal symmetries of(E) forms a Lie algebra, since we have the relation

[X,X ′](κ) = [X(κ), X ′(κ)
] (cf. [18]). We will denote bySym(E) this Lie algebra. The aim of

the forecoming Section is to obtain precise bounds on the dimension of the Lie algebraSym(E)
of infinitesimal symmetries of (E). For simplicity we start with the casen = m = 1.

4. OPTIMAL UPPER BOUND ONdimK Sym(E) WHEN n = m = 1.

4.1. Defining equations for Sym(E). Applying the Lie criterion, the tangency condition of
X(κ) to ∆E is equivalent to the identity:

(49) R
κ −

[

Q
∂F

∂x
+R

∂F

∂u
+ R

1 ∂F

∂U1
+ R

2 ∂F

∂U2
+ · · ·+ R

κ−1 ∂F

∂Uκ−1

]

≡ 0,

on the subvariety∆E , that is to a formal identity inK{x, u, U1, . . . , Uκ−1}, in which we
replace the variableUκ by F (x, u, U1, . . . , Uκ−1) in the two monomialsUκ andU1Uκ of
R

κ, cf. Lemma 3. ExpandingF and its partial derivatives in power series of the variables
(U1, . . . , Uκ−1) with analytic coefficients in(x, u), we may rewrite (49) as follows:

(50)











∑

µ1,...,µκ−1≥0

[

Φµ1,...,µκ−1 (x, u, (Qxkul)k+l≤κ, (Rxkul)k+l≤κ)
]

×

×(U1)µ1 . . . (Uκ−1)µκ−1 ≡ 0,

where the expressions

(51) Φµ1,...,µκ−1 (x, u, (Qxkul)k+l≤κ, (Rxkul)k+l≤κ)

are linear with respect to the partial derivatives((Qxkul)k+l≤κ, (Rxkul)k+l≤κ), with analytic
coefficients in(x, u). By construction these coefficients essentially depend on the expansion of
F . The tangency condition (50) is equivalent to the followinginfinite linear system of partial
differential equations, calleddefining equations ofSym(E):

(52) Φµ1,...,µκ−1 (x, u, (Qxkul(x, u))k+l≤κ, (Rxkul(x, u))k+l≤κ) = 0,

satisfied by(Q(x, u), R(x, u)). The Lie method consists in studying the solutions of this linear
system of partial differential equations.

4.2. Homogeneous system.As mentioned in the introduction, we focus our attention on the
caseκ ≥ 3. Denote by(E0) the homogeneous equationuxκ = 0 of orderκ. The general solution
u =

∑κ−1
l=0 λl x

l consists of polynomials of degree≤ κ − 1 and the defining equation (49)
reduces toRκ = 0. Using the expression (41), expanding (50), (51) and considering only the
coefficients of the five monomialsct., Uκ−2, Uκ−1, U1 Uκ−1 andU2Uκ−1, we obtain the five
following partial differential equations, which are sufficient to determineSym(E0):

(53)











































Rxκ = 0,

Rx2u −
(κ− 2)

3
Qx3 = 0,

Rxu −
(κ− 1)

2
Qx2 = 0,

Ru2 − κQxu = 0,

Qu = 0.

The general solution of this system is evidently:

(54)

{

Q = A+B x+ C x2,

R = (κ− 1)C xu +Du+ E0 + E1 x+ · · ·+ Eκ−1 xκ−1,



18 HERVÉ GAUSSIER AND JÖEL MERKER

where the(κ + 4) constantsA, B, C, D, E0, E1, . . . , Eκ−1 are arbitrary. Computing ex-
plicitely the flows of the(κ+4) generators∂/∂x, x∂/∂x, x2 ∂/∂x+(κ− 1)xu ∂/∂u, u ∂/∂u,
∂/∂u, x∂/∂u, . . . , xκ−1 ∂/∂u, we check easily that they stabilize the graphs of polynomials of
degree≤ κ− 1. Moreover they span a Lie algebra of dimension(κ+ 4) and the general form of
a Lie symmetry is:

(55) (x, u) 7−→

(

α0 + α1x

1 + εx
,
βu+ γ0 + γ1x+ · · ·+ γκ−1x

κ−1

(1 + εx)κ−1

)

.

4.3. Nonhomogeneous system.Consider forκ ≥ 3 the equation (49) after replacing the vari-
ableUκ by F . Let Φ(Uλ) denote an arbitrary term of the formφ(x, u)Uλ, whereφ(x, u)
is an analytic function. We consider the five following termsΦ(ct.), Φ(Uκ−2), Φ(Uκ−1),
Φ(U1 Uκ−1) and Φ(U2 Uκ−1). Since some multiplications of monomials appear in the ex-
pression (49), we must be aware of the fact thatΦ(U1 Uκ−1) ≡ Φ(U1)Φ(Uκ−1) and
Φ(U2 Uκ−1) ≡ Φ(U2)Φ(Uκ−1). Consequently in the expansion of (49) we must take into ac-
count the seven types of monomialsΦ(ct.), Φ(U1), Φ(U2), Φ(Uκ−2), Φ(Uκ−1), Φ(U1 Uκ−1)
andΦ(U2 Uκ−1). The(κ+1) derivatives∂F/∂x, ∂F/∂u, ∂F/∂U1, . . . , ∂F/∂Uκ−1 appearing
in the brackets of (49), and the termF appearing in the expression ofR

κ after replacingUκ by
F (cf. the last two monomialsUκ andU1 Uκ in (41)) may all contain the seven monomialsct.,
U1, U2, Uκ−2, Uκ−1, U1 Uκ−1 andU2Uκ−1. ForF and its(κ+ 1) first derivatives we use the
generic simplified notation

(56) Φ(ct.) + Φ(U1) + Φ(U2) + Φ(Uκ−2) + Φ(Uκ−1) + Φ(U1 Uκ−1) + Φ(U2 Uκ−1),

to name the seven monomials appearinga priori. Hence, expanding (49), picking up the only
terms which may contain the five monomials we are interested in, and using the formula of
Lemma 3 forRλ (1 ≤ λ ≤ κ), we obtain the following expression:
(57)


















































































































































Rxκ +
[

C2
κRx2u − C

3
κQx3

]

Uκ−2 +
[

C1
κ Rxu − C

2
κ Qx2

]

Uκ−1+

+
[

C1
κRu2 − κ2Qxu

]

U1 Uκ−1 +
[

−C2
κ+1Qu

]

U2 Uκ−1+

+
{

Ru − C
1
κQx +

[

−C1
κ+1Qu

]

U1
}

×

×
{

Φ(ct.) + Φ(U1) + Φ(U2) + Φ(Uκ−2) + Φ(Uκ−1) + Φ(U1 Uκ−1) + Φ(U2 Uκ−1)
}

−

−
{

Q+R+Rx + [Ru −Qx]U1 +Rx2 + [2Rxu −Qx2 ]U1+

+ [Ru − 2Qx]U2 + · · ·+Rxκ−3 +
[

C1
κ−3 Rxκ−4u −Qxκ−3

]

U1+

+
[

C2
κ−3Rxκ−5u − C

1
κ−3Qxκ−4

]

U2 + Rxκ−2+

+
[

C1
κ−2Rxκ−3u −Qxκ−2

]

U1 +
[

C2
κ−2Rxκ−4u − C

1
κ−2Qxκ−3

]

U2+

+
[

Ru − C
1
κ−2Qx

]

Uκ−2 +
[

−C1
κ−1Qu

]

U1 Uκ−2+

+Rxκ−1 +
[

C1
κ−1Rxκ−2u −Qxκ−1

]

U1+

+
[

C2
κ−1Rxκ−3u − C

1
κ−1Qxκ−2

]

U2 +
[

C1
κ−1Rxu − C

2
κ−1Qx2

]

Uκ−2+

+
[

C1
κ−1Ru2 − (κ− 1)2Qxu

]

U1 Uκ−2 +
[

Ru − C
1
κ−1Qx

]

Uκ−1+

+
[

−C1
κQu

]

U1 Uκ−1
}

×

×
{

Φ(ct.) + Φ(U1) + Φ(U2) + Φ(Uκ−2) + Φ(Uκ−1) + Φ(U1 Uκ−1) + Φ(U2 Uκ−1)
}

+ Remainder ≡ 0.

Here the termRemainder consists of the monomials, in the jet variables, different from the five
ones we are concerned with. The first four lines before the sign “−” developR

κ and the third
line consists of the factorF replaced by (56). In the last line (note that this is multiplied by the
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nine preceding lines) we replaced the(κ + 1) first partial derivatives ofF appearing in (49) by
the term (56) which we factorized.

By expanding the product appearing in this expression (57),and equaling to zero the co-
efficients of the five monomialsct., Uκ−2, Uκ−1, U1Uκ−1 andU2 Uκ−1, we obtain the five
following partial differential equations

(58)























































Rxκ = Π(x, u,Q,Qx, R,Rx, . . . , Rxκ−1 , Ru),

C2
κ Rx2u − C

3
κQx3 = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1 , Ru, Rxu),

C1
κRxu − C

2
κQx2 = Π(x, u,Q,Qx, R,Rx, . . . , Rxκ−1 , Ru),

C1
κRu2 − κ2Qxu = Π(x, u,Q,Qx, . . . , Qxκ−1 , Qu, R,Rx, . . . Rxκ−1 ,

Ru, Rxu, . . . , Rxκ−2u),

−C2
κ+2Qu = Π(x, u,Q,Qx, . . . , Qxκ−2 , R,Rx, . . . Rxκ−1 ,

Ru, Rxu, . . . , Rxκ−3u).

Here by conventionΠ denotes any linear quantity inQ, R and some of their derivatives, of the
form

(59)















Π(x, u,Qxa1ub1 , . . . , Qxapubp , Rxc1ud1 , . . . , Rxcq udq ) =

=

p
∑

i=1

φi(x, u)Qxaiubi (x, u) +

q
∑

j=1

ψj(x, u)Rx
cj u

dj (x, u),

whereφi andψj are analytic in(x, u). For instance, the differentiation ofΠ(x, u,Q,R,Ru)
with respect to x gives the expressionΠ(x, u,Q,Qx, R,Rx, Rxu). Let us intro-
duce the following collection of(κ + 4) partial derivatives of (Q,R) defined by
J := (Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru). The aim is now to make linear substitutions
on the system (58) to obtain the system (68) where the five second members depend only on the
collectionJ . The desired estimatedimK Sym(E) ≤ κ+ 4 will follow from (68).

Let us differentiate the third equation of (58) with respectto x. Dividing byC1
κ we obtain:

(60) Rx2u −
(κ− 1)

2
Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ , Ru, Rxu).

SolvingRx2u andQx3 by the second equality in (58) and by (4.3) we find

(61)

{

Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ , Ru, Rxu),

Rx2u = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ , Ru, Rxu).

ReplacingRxκ by its value given by the first equality in (58) we obtain forQx3 :

(62) Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru, Rxu).

If we write the third equality in (58) as

(63) Rxu = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1 , Ru),

we may replaceRxu in (62). This gives the desired dependence ofQx3 on the collectionJ :

(64) Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).

We may now differentiate the equalities (63) and (64) with respect tox up to the orderl. At
each differentiation we replaceQx3 ,Rxu andRxκ by their values in (63), in (64) and in the first
equality in (58) respectively. We obtain forl ∈ N:

(65)

{

Qxl+3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru),

Rxl+1u = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).
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Replacing these values in the fifth equality of (58), we obtain

(66) Qu = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).

By replacing the fourth equality of (58) we obtain finally

(67) Ru2 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).

To summarize, using the first equality of (58), using (66), (67), (63) and (64), we obtained the
desired system:

(68)































Rxκ = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru),

Qu = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru),

Ru2 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru),

Rxu = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru),

Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).

We recall that the termsΠ are linear expressions of the form (59). Let us differentiate every
equation of system (68) with respect tox at an arbitrary order and let us replace in the right
hand side the termsRxκ , Rxu andQx3 that may appear at each step by their value in (68),
and then differentiate with respect tou at an arbitrary order. We deduce thatall the partial
derivatives of the five functionsRxκ , Qu, Ru2 , Rxu andQx3 are also linear functions of the
(κ + 4) partial derivatives(Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru). Thus the analytic functions
Q andR are determined uniquely by the value at the origin of the(κ + 4) partial derivatives
(Q,Qx, Qx2, R,Rx, . . . , Rxκ−1 , Ru). This ends the proof of the inequalitydimK Sym (E) ≤
κ+ 4. �

5. OPTIMAL UPPER BOUND ONdimK Sym(E) IN THE GENERAL DIMENSIONAL CASE

5.1. Defining equations forSym(E). In the general dimensional case, the tangency condition
of the prolongationXκ of X to the skeleton gives the following equations forj = 1, . . . ,m and
k1, . . . , kκ = 1, . . . , n:

(69)



























R
j
k1,...,kκ

−

[

n
∑

l=1

Ql
∂F j

k1,...,kκ

∂xl

+
m
∑

i=1

Ri
∂F j

k1,...,kκ

∂ui
+

+
∑

i1

∑

l1

R
i1
l1

∂F j
k1,...,kκ

∂U i1
l1

+ · · ·+
∑

i1

∑

l1,...,lκ−1

R
i1
l1,...,lκ−1

∂F j
k1,...,kκ

∂U i1
l1,...,lκ−1



 ≡ 0,

on ∆E , by replacing the variablesU i1
l1,...,lκ

by F i1
l1,...,lκ

wherever they appear. Let us expand

F j
k1,...,kκ

and their partial derivatives and use the fact thatR
j
k1,...,kλ

are polynomials expressions

of the jets variables(U i1
l1
, . . . , U i1

l1,...,lλ
), with coefficients being linear expressions of the partial

derivatives of order≤ λ+1 ofQl andRj . We obtain forj = 1, . . . ,m andk1, . . . , kκ = 1, . . . , n
some identities of the form
(70)










∑

i1, ...,l1,...

Φj;i1,......
k1,...,kκ; l1,......

(

x, u, (Ql
xαuβ )1≤l≤n, |α|+|β|≤κ+1, (R

j

xαuβ )1≤j≤m, |α|+|β|≤κ+1

)

×

×U
i1
l1

. . . U
iµ1
lµ1

× U
iµ1+1

lµ1+1,lµ1+2
· · ·U

iµ1+µ2−1

lµ1+2µ2
−1

U
iµ1+µ2
lµ1+2µ2

× · · · · · · ≡ 0,

satisfied if and only if the functionsQl andRj are solutions of the following system of partial
differential equations

(71) Φj,i1,......
k1,...,kκ; l1,......

(

x, u, (Ql
xαuβ )1≤l≤n, |α|+|β|≤κ+1, (R

j

xαuβ )1≤j≤m, |α|+|β|≤κ+1

)

= 0.
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5.2. Homogeneous system.We start by giving the general form of the symmetries of the
homogeneous system in the caseκ = 2. Then we prove the equalitydimK(Sym(E0)) =
n2 + 2n+m2 +mCκ−1

n+κ−1 in the caseκ ≥ 3.

In the caseκ = 2 we obtain:

(72)







































































Ql(x, u) = Al +

n
∑

k1=1

Bl
k1
xk1 +

m
∑

i1=1

Cl
i1
ui1+

+
n
∑

k1=1

Dk1 xl xk1 +
m
∑

i1=1

Ei1 xl u
i1 ,

Rj(x, u) = F j +

n
∑

k1=1

Gj
k1
xk1 +

m
∑

i1=1

Hj
i1
ui1+

+

n
∑

k1=1

Dk1 xk1 u
j +

m
∑

i1=1

Ei1 u
i1 uj .

Here the(n+m)(n+m+2) constantsAl, Bl
k1
, Cl

i1
, Dk1 , Ei1 , F

j , Gj
k1
, Hj

i1
∈ K are arbitrary.

Moreover one can check that the vector space spanned by the(n+m)(n+m+ 2) vector fields

(73)



















































∂

∂xk1

, xk1

∂

∂xk2

, ui1
∂

∂xk1

,

xk1

(

x1
∂

∂x1
+ · · ·+ xn

∂

∂xn

+ u1 ∂

∂u1
+ · · ·+ um ∂

∂um

)

,

ui1

(

x1
∂

∂x1
+ · · ·+ xn

∂

∂xn

+ u1 ∂

∂u1
+ · · ·+ um ∂

∂um

)

,

∂

∂ui1
, xk1

∂

∂ui1
, ui1

∂

∂ui2

is stable under the Lie bracket action and that the flow of eachof these generators is a Lie
symmetry of the system(E0). This proves thatSym(E0) is indeed aLie algebrawith dimension
(n +m)(n +m + 2). Finally the corresponding transformations close to the identity mapping
are projective, represented by the formula:

(74)























(x, u) 7−→

(

(

αl,0 +
∑n

k=1 αl,k xk +
∑m

i=1 αl,n+i u
i

1 +
∑n

k=1 γk xk +
∑m

i=1 γn+i ui

)

1≤l≤n

,

(

βj,0 +
∑n

k=1 βj,k xk +
∑m

i=1 βj,n+i u
i

1 +
∑n

k=1 γk xk +
∑m

i=1 γn+i ui

)

1≤j≤m

)

.

It is clear that these transformations preserve all the solutions of(E0) : uj
xk1

xk2
= 0, the graphs

of affine maps fromKn to Km.
In the caseκ ≥ 3 we consider the homogeneous system(E0) in which the second members

F j
k1,...,kκ

vanish identically. Its solutions are the graphs of polynomial maps of degree≤ (κ −

1) from Kn to Km. The defining equations of its Lie algebra of infinitesimal symmetries are
R

j
k1,...,kκ

= 0, after having replaced the variablesU i1
l1,...,lκ

by 0 = F i1
l1,...,lκ

in I8 andI9 in (48).
We will keep in this system the only equations coming from thevanishing of the coefficients of
the five families of monomialsct.,U i1

l1,...,lκ−2
,U i1

l1,...,lκ−1
,U i1

l1
U i2

l2,...,lκ
andU i1

l1,l2
U i2

l3,...,lκ+1
(this

is inspired from the computations in Subsection 4.2). The coefficients of these five monomials
families already appear in the expression (48). Moreover wefix l1 = l2 = · · · = lκ+1 = l and
i1 = i2, except for the coefficient of the monomialU i1

l U i2
l,...,l, where we fix firsti1 = i2 and
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theni1 6= i2. This provides the six partial differential linear equations:

(75)



















































































































































































0 = Rj
xk1

xk2
···xkκ

,

0 =
∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Rj

xkσ(κ−1)
xkσ(κ)

ui1
−

− δj
i1





∑

σ∈S
κ−3
κ

δl,.........,l
kσ(1),...,kσ(κ−3)

Ql
xkσ(κ−2)

xkσ(κ−1)
xkσ(k)



 ,

0 =
∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Rj

xkσ(κ)
ui1
−

− δj
i1





∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Ql
xkσ(κ−1)

xkσ(κ)



 ,

0 = κ δl,......,l
k1,...,kκ

Rj

ui1ui1
− κ δj

i1





∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1



 ,

0 = 2κ δl,......,l
k1,...,kκ

Rj

ui1ui2
− κ δj

i1





∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui2



−

− κ δj
i2





∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1



 , i1 6= i2,

0 = − C2
κ+1 δ

j
i1
δl,......,l
k1,...,kκ

Ql
ui1 .

To solve the system (75) we fix the indicesk1 = · · · = kκ = l andj = i1 in the sixth equation,
implyingQl

ui1
= 0. Hence the terms followingδj

i1
andδj

i2
in the fourth and in the fifth equations

vanish identically. Let us choose the indicesk1 = · · · = kκ in the fourth and the fifth equations
(this last equation is satisfied only fori1 6= i2). We obtain first three simple equations, without
any restriction on the indices:

(76)















0 = Rj
xk1

xk2
···xkκ

,

0 = Ql
ui1 ,

0 = Rj

ui1ui2
.

Finally we specify the indices in the third equation of (75) as follows: l = kκ = · · · = k3 =
k2 = k1 ; thenl = kκ = · · · = k3 = k2 6= k1 ; finally l = kκ = · · · = k3, k3 6= k2, k3 6= k1.
This gives the three following equations:

(77)



















0 = C1
κR

j

xk1
ui1
− C2

κ δ
j
i1
Qk1

xk1
xk1

,

0 = Rj

xk1
ui1
− C1

κ−1 δ
j
i1
Qk2

xk1
xk2

, k2 6= k1,

0 = − δj
i1
Qk3

xk1
xk2

, k3 6= k1, k3 6= k2.

We specify the indices in the second equation of (75) as follows: l = kκ = · · · = k3 = k2 = k1 ;
then l = kκ = · · · = k3 = k2 6= k1 ; thenl = kκ = · · · = k3, k3 6= k2, k3 6= k1 ; finally
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l = kκ = · · · = k4, l 6= k1, l 6= k2, l 6= k3. This gives the four following equalities:

(78)































0 = C2
κR

j

xk1
xk1

ui1
− C3

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

0 = C1
κ−1R

j

xk1
xk2

ui1
− C2

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

0 = Rj

xk1
xk2

ui1
− C1

κ−2 δ
j
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

0 = − δj
i1
Ql

xk1
xk2

xk3
, l 6= k1, l 6= k2, l 6= k3.

Let us differentiate now the equations (77) with respect to the variablesxl as follows: we dif-
ferentiate (77)1 with respect toxk1 ; then we differentiate (77)2 with respect toxk2 ; finally we
differentiate (77)3 with respect toxk3 . This gives the three following equations:

(79)



















0 = C1
κR

j

xk1
xk1

ui1
− C2

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

0 = Rj

xk1
xk2

ui1
− C1

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

0 = − δj
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2.

The seven equations given by the systems (78) and (79) may be considered as three systems of
two equations (of two variables) with a nonzero determinant, to which we add the last equation
(78)4. We get immediately:

(80)































0 = Rj

xk1
xk1

ui1
= δj

i1
Qk1

xk1
xk1

xk1
,

0 = Rj

xk1
xk2

ui1
= δj

i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

0 = Rj

xk1
xk2

ui1
= δj

i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

0 = δj
i1
Ql

xk1
xk2

xk3
, l 6= k1, l 6= k2, l 6= k3.

It follows from these relations and from the relationsQl
ui1

= Rj

ui1ui2
= 0 obtained in (76) that

all the third order partial derivatives ofQl vanish identically, this being also satisfied by the third
order partial derivatives ofRj containing at least one partial derivative with respect toui1 :

(81)







0 = Ql
xk1

xk2
xk3

= Ql
xk1

xk2
ui1 = Ql

xk1
ui1ui2 = Ql

ui1ui2ui3 ,

0 = Rj

xk1
xk2

ui1
= Rj

xk1
ui1ui2

= Rj

ui1ui2ui3
.

It follows from the equations (76) and (81) that all the functionsQl are polynomials of degree
≤ 2 with respect to the variablesxk1 and all the functionsRj are a sum of a polynomial of degree
≤ (κ−1) in the variablesxk1 and of monomials of the formui1 andxk1u

i1 . Let us develop now
the relations (77) separately forj = i1 andj 6= i1. We obtain the five equations:

(82)











































0 = C1
κR

i1
xk1

ui1
− C2

κQ
k1
xk1

xk1
,

0 = C1
κR

j

xk1
ui1
, j 6= i1,

0 = Ri1
xk1

ui1
− C1

κ−1Q
k2
xk1

xk2
, k2 6= k1,

0 = Rj

xk1
ui1
, j 6= i1,

0 = −Qk3
xk1

xk2
, k3 6= k1, k3 6= k2.
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According to the equations (76), (81), (82), we have the following form of the general solution:

(83)











































Ql(x, u) = Al +

n
∑

k1=1

Bl
k1
xk1 +

n
∑

k1=1

Ck1 xk1 xl,

Rj(x, u) =

n
∑

k1=1

(κ− 1)Ck1 xk1 u
j +

m
∑

i1=1

Dj
i1
ui1 + Ej,0 +

n
∑

k1=1

Ej,1
k1
xk1+

+ · · ·+
∑

1≤k1≤···≤kκ−1≤n

Ej,κ−1
k1,...,kκ−1

xk1 · · ·xkκ−1 .

Here then + n2 + n + m2 + mCκ−1
n+κ−1 constantsAl, Bl

k1
, Ck1 , D

j
i1
, Ej,0, Ej,1

k1
, . . . ,

Ej,κ−1
k1,...,kκ−1

∈ K are arbitrary. Moreover one can check that the vector space spanned by the
vector fields

(84)































∂

∂xk1

, xk1

∂

∂xk2

,

xk1

(

x1
∂

∂x1
+ · · ·+ xn

∂

∂xn

+ (κ− 1)

(

u1 ∂

∂u1
+ · · ·+ um ∂

∂um

))

,

ui1
∂

∂ui2
,

∂

∂ui1
, xk1

∂

∂ui1
, . . . . . . , xk1 · · ·xkκ−1

∂

∂ui1
,

is stable under the Lie bracket action and that the flow of eachof these generators is indeed a Lie
symmetry of the system(E0). Finally the Lie symmetries of(E0) have the following form:
(85)

(x, u) 7−→

(

(

αl,0 +
∑n

k=1 αl,k xk

1 +
∑n

k=1 εk xk

)

1≤l≤n

,





∑m
i1=1 β

j
i1

ui1 + γ0,j +
∑n

k1=1 γ
1,j
k1

xk1
+ · · · +

∑

k1≤···≤kκ−1
γ

κ−1,j
k1,...,kκ−1

xk1
· · ·xkκ−1

[1 +
∑n

k=1 εk xk]κ−1





1≤j≤m






.

We note again that these transformations preserve the solutions of(E0) : uj
xk1

···xkκ
= 0, namely

the graphs of polynomial maps of degree≤ (κ− 1) from Kn to Km.

5.3. Nonhomogeneous system.Let κ ≥ 3. Let us expand the defining equations (69) as
done in (70). We will write only the coefficients of the five monomial familiesct., U i1

l1,...,lκ−2
,

U i1
l1,...,lκ−1

, U i1
l1
U i2

l2,...,lκ
andU i1

l1,l2
U i2

l3,...,lκ+1
. Moreover, we fix alwaysl1 = l2 = · · · = lκ =

lκ+1 = l and i1 = i2, except for the fourth family of monomials where we distinguish the
two casesi1 = i2 andi1 6= i2. Thus we obtain six linear equations of partial derivatives, the
members on the left side (coming from the expression ofR

j1
k1,...,kκ

given by Lemma 4) coin-
cide with the members on the right hand side of (75). Furthermore, the members on the right
hand side are exactly the same as those obtained in (58), withmore indices! We use the letters
l′, k′1, . . . , k

′
κ = 1, . . . , n andj′, i′1 = 1, . . . ,m for the indices of the arguments of the expres-

sionsΠ, obtaining the six following equations, which generalize the equations (58):

(86) [1] : Rj
xk1

xk2
···xkκ

= Π

(

x, u,Ql′ , Ql′

xk′
1

, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

u
i′
1

)

,
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[1] : Rj
xk1

xk2
···xkκ

= Π

(

x, u,Ql′ , Ql′

xk′
1

, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

u
i′1

)

.

[2] :
∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Rj

xkσ(κ−1)
xkσ(κ)

ui1
−

− δj
i1





∑

σ∈S
κ−3
κ

δl,.........,l
kσ(1),...,kσ(κ−3)

Ql
xkσ(κ−2)

xkσ(κ−1)
xkσ(k)



 =

= Π

(

x, u,Ql′ , Ql′

xk′
1

, Ql′

xk′
1
xk′

2

, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

u
i′
1
, Rj′

xk′
1
u

i′
1

)

.

[3] :
∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Rj

xkσ(κ)
ui1
−

− δj
i1





∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Ql
xkσ(κ−1)

xkσ(κ)



 =

= Π

(

x, u,Ql′ , Ql′

xk′
1

, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

u
i′
1

)

.

[4] : κ δl,......,l
k1,...,kκ

Rj

ui1ui1
− κ δj

i1





∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1



 =

= Π

(

x, u,Ql′ , Ql′

xk′
1

, . . . , Ql′

xk′
1
···xk′

κ−1

, Ql′

ui′1
, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

,

, Rj′

ui′1
, Rj′

xk′
1
ui′1
, . . . , Rj′

xk′
1
···xk′

κ−2
ui′1

)

.

[5] : 2κ δl,......,l
k1,...,kκ

Rj

ui1ui2
− κ δj

i1





∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui2



−

− κ δj
i2





∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1



 , i1 6= i2.

= Π

(

x, u,Ql′ , Ql′

xk′
1

, . . . , Ql′

xk′
1
···xk′

κ−1

, Ql′

ui′1
, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

,

, Rj′

u
i′1
, Rj′

xk′
1
u

i′1
, . . . , Rj′

xk′
1
···xk′

κ−2
u

i′1

)

.

[6] : −C2
κ+1 δ

j
i1
δl,......,l
k1,...,kκ

Ql
ui1 =

= Π

(

x, u,Ql′ , Ql′

xk′
1

, . . . , Ql′

xk′
1
···xk′

κ−2

, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

,

, Rj′

u
i′
1
, Rj′

xk′
1
u

i′
1
, . . . , Rj′

xk′
1
···xk′

κ−3
u

i′
1

)

.

Then we get the following Lemma:
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Lemma 5. LetJ denote the collection ofn+ n2 + n+mCκ−1
n+κ−1 +m2 partial derivatives

(87) J :=

(

Ql′ , Ql′

xk′
1

, Q
k′

1
xk′

1
xk′

1
, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

u
i′1

)

.

After linear combinations on the system (86) we obtain the following equations:

(88)































































Π(x, u, J) = Rj
xk1

···xkκ
,

Π(x, u, J) = Ql
ui1 ,

Π(x, u, J) = Rj

ui1ui2
,

Π(x, u, J) = Ql
xk1

xk2
xk3

,

Π(x, u, J) = Rj

xk1
ui1
,

Π(x, u, J) = Qk1
xk1

xk2
, k1 6= k2,

Π(x, u, J) = Ql
xk1

xk2
, l 6= k1, l 6= k2.

Moreover all the partial derivatives (with respect toxl andui) up to order three of the coefficients
Ql andRj of the vector fieldX ∈ Sym(E) are of the formΠ(x, u, J). Hence every functionQl

andRj is uniquely determined by the values at the origin of then+ n2 + n+mCκ−1
n+κ−1 +m2

partial derivatives (87). This implies thatdimK Sym(E) ≤ n2 + 2n+m2 +mCκ−1
n+κ−1.

Proof. Since the second part of Lemma 5 is immediate let us establish only the identities (88). We
first specify the indices in the equation (86)[3] as follows:l = kκ = · · · = k3 = k2 = k1 ; then
l = kκ = · · · = k3 = k2 6= k1 ; and finallyl = kκ = · · · = k3, k3 6= k2, k3 6= k1. This gives
three equations whose members on the right hand side are the same as those in the equation (77)
and whose members on the left hand side are the same as those inthe equation (86)[3]:
(89)






























Π

(

x, u, Q
l′
, Q

l′

x
k′
1

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

, R
j′

u
i′
1

)

= C
1
κ R

j

xk1
ui1

− C
2
κ δ

j
i1

Q
k1
xk1

xk1
,

Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

, R
j′

u
i′1

)

= R
j

xk1
ui1

− C
1
κ−1 δ

j
i1

Q
k2
xk1

xk2
, k2 6= k1,

Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

, R
j′

u
i′
1

)

= −δ
j
i1

Q
k3
xk1

xk2
, k3 6= k1, k3 6= k2.

We remark that these three equations (after specializationof j = i1 or of j 6= i1 and after
some easy linear combinations) provide directly the fifth, sixth and seventh equations of (88). In
particular we may replace the values of the partial derivativesRj′

xj′
1
u

i′
1

andQl′

xk′
1
xk′

2

with k′1 6= k′2

or l′ 6= k′1, l
′ 6= k′2 appearing in the expressionsΠ of the second member of (86)[1] by their

values just obtained from the fifth, the sixth and the seventhequations of (88). This gives the first
equation of (88).

Then we specify the indices in (86)[2] as follows: l = kκ = · · · = k3 = k2 = k1 ; then
l = kκ = · · · = k3 = k2 6= k1 ; then l = kκ = · · · = k3, k3 6= k2, k3 6= k1 ; and finally
l = kκ = · · · = k4, l 6= k1, l 6= k2, l 6= k3. This gives four equations, whose members on the
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right hand side are the same as those in (78) and the members onthe left hand side are the same
as those in (86)[2]:

(90)















































































































Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, Q
l′

x
k′
1

x
k′
2

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

, R
j′

u
i′
1
, R

j′

x
k′
1

u
i′
1

)

=

= C
2
κ R

j

xk1
xk1

ui1
− C

3
κ δ

j
i1

Q
k1
xk1

xk1
xk1

,

Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, Q
l′

x
k′
1

x
k′
2

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

, R
j′

u
i′
1
, R

j′

x
k′
1

u
i′
1

)

=

= C
1
κ−1 R

j

xk1
xk2

ui1
− C

2
κ−1 δ

j
i1

Q
k2
xk1

xk2
xk2

, k2 6= k1,

Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, Q
l′

x
k′
1

x
k′
2

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

, R
j′

u
i′
1
, R

j′

x
k′
1

u
i′
1

)

=

= R
j

xk1
xk2

ui1
− C

1
κ−2 δ

j
i1

Q
k3
xk1

xk2
xk3

, k3 6= k1, k3 6= k2,

Π

(

x, u, Q
l′
, Q

l′

x
k′
1

, Q
l′

x
k′
1

x
k′
2

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

, R
j′

u
i′
1
, R

j′

x
k′
1

u
i′
1

)

=

= −δ
j
i1

Q
l
xk1

xk2
xk3

, l 6= k1, l 6= k2, l 6= k3.

Using the fifth, the sixth and the seventh equations of (88) just obtained, we may replace the
partial derivativesRj′

xj′
1
u

i′
1

andQl′

xk′
1
xk′

2

with k′1 6= k′2 or l′ 6= k′1, l′ 6= k′2 appearing in the

expressionsΠ of (90), providing four new equations in which the argumentsof Π are the desired
ones:(x, u, J), whereJ is defined in (87):

(91)































Π(x, u, J) = C2
κR

j

xk1
xk1

ui1
− C3

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

Π(x, u, J) = C1
κ−1R

j

xk1
xk2

ui1
− C2

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

Π(x, u, J) = Rj

xk1
xk2

ui1
− C1

κ−2 δ
j
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

Π(x, u, J) = − δj
i1
Ql

xk1
xk2

xk3
, l 6= k1, l 6= k2, l 6= k3.

Let us differentiate now the equations (89) with respect to the variablesxl as follows: first
we differentiate (89)1 with respect toxk1 ; then we differentiate (89)2 with respect toxk2 ;
finally we differentiate (89)3 with respect toxk3 . The arguments in the expressionsΠ in the

equation (89) contain now the termsRj′

xk′
1
···xk′

κ
; we replace them by their value given in the first

equation of (88) already obtained. The arguments also contain the termsRj′

xj′1
u

i′
1

andQl′

xk′
1
xk′

2

with k′1 6= k′2 or l′ 6= k′1, l′ 6= k′2. We replace them by their value given by the fifth, the sixth
and the seventh equations of (88). We obtain three new equations in which the arguments of the
expressionsΠ are the desired ones:(x, u, J), whereJ is defined in (87):

(92)



















Π(x, u, J) = C1
κR

j

xk1
xk1

ui1
− C2

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

Π(x, u, J) = Rj

xk1
xk2

ui1
− C1

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

Π(x, u, J) = −δj
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2.

The seven equations (91) and (92) may be considered as three systems of two linear equations of
two variables with a nonzero determinant, the seventh equation being the last equation in (91).
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We immediately obtain:

(93)































Π(x, u, J) = Rj

xk1
xk1

ui1
= δj

i1
Qk1

xk1
xk1

xk1
,

Π(x, u, J) = Rj

xk1
xk2

ui1
= δj

i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

Π(x, u, J) = Rj

xk1
xk2

ui1
= δj

i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

Π(x, u, J) = δj
i1
Ql

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

giving the fourth equation in (88).
It remains now to obtain the second and the third equations in(88). Let us write firstly

equation (86)[6] with the choice of the indicesj = i1, l = k1 = · · · = kκ. This gives the
equation:

(94)



















Ql
ui1 = Π

(

x, u,Ql′ , Ql′

xk′
1

, . . . , Ql′

xk′
1
···xk′

κ−2

, Rj′ , Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

,

, Rj′

ui′1
, Rj′

xk′
1
ui′1
, . . . , Rj′

xk′
1
···xk′

κ−3
ui′1

)

.

We observe first that the differentiation with respect to thevariablesxl of one of the expressions
Π(x, u, J) remains an expressionΠ(x, u, J). Indeed we see from (87) that there appears, in the
partial derivativeJxl

, derivativesQl′

xk′
1
xk′

2

with k′1 6= k′2 or l′ 6= k′1, l
′ 6= k′2. We may replace

them by their value obtained in the sixth and the seventh equations of (88). It also appears some
derivativesQl′

xk′
1
xk′

2
xk′

3

(we replace them by their value obtained in the fourth equation of (88)),

some derivativesRj′

xk′
1
···xk′

κ
(we replace them by their value obtained in the first equationof (88))

and some derivativesRj′

xk′
1
u

i′1
(we replace them by their value obtained in the fifth equation

of (88)). Consequently we may write:

(95) [Π(x, u, J)]xl
= Π(x, u, J).

It follows that any derivative with respect toxl (to any order) of the fourth and the fifth equations
of (88) provides expressions of the formΠ(x, u, J). In other words for any integerλ ≥ 3 and
any integerµ ≥ 1 we have

(96)







Π(x, u, J) = Ql
xk1

xk2
xk3

···xkλ
,

Π(x, u, J) = Rj

xk1
···xkµ ui1

.

We may replace then these values in the equation (94), replacing also the derivativesQl′

xk′
1
xk′

2

with k′1 6= k′2 or l′ 6= k′1, l
′ 6= k′2 by their values obtained in the sixth and the seventh equations

of (88). This gives the second equation of (88).
We also remark that by a differentiation with respect to the variablesxl, the second equation

Ql
ui1

= Π(x, u, J) just obtained implies, using (95):

(97) Π(x, u, J) = Ql
xk1

ui1 .

It remains finally to write (86)[4] first with the choice of indicesl = k1 = · · · = kκ, j = i1
then with the choice of indicesl = k1 = · · · = kκ, j 6= i1. We also write (86)[5] first with the
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choice of indicesl = k1 = · · · = kκ, j = i2 then with the choice of indicesl = k1 = · · · = kκ,
j 6= i1, j 6= i2. We obtain four new equations:

(98)


































































































































R
i1

ui1ui1
− κ Q

k1

xk1
ui1

= Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, . . . , Q
l′

x
k′
1
···x

k′
κ−1

, Q
l′

u
i′
1
, R

j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

,

, R
j′

u
i′1

, R
j′

x
k′
1

u
i′1

, . . . , R
j′

x
k′
1
···x

k′
κ−2

u
i′1

)

,

R
j

ui1ui1
= Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, . . . , Q
l′

x
k′
1
···x

k′
κ−1

, Q
l′

u
i′1

, R
j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

,

, R
j′

u
i′
1
, R

j′

x
k′
1

u
i′
1
, . . . , R

j′

x
k′
1
···x

k′
κ−2

u
i′
1

)

, j 6= i1,

2R
i2

ui1ui2
− κ Q

k1

xk1
ui1

= Π

(

x, u, Q
l′
, Q

l′

x
k′
1

, . . . , Q
l′

x
k′
1
···x

k′
κ−1

, Q
l′

u
i′
1
, R

j′
, R

j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

,

, R
j′

u
i′
1
, R

j′

x
k′
1

u
i′
1
, . . . , R

j′

x
k′
1
···x

k′
κ−2

u
i′
1

)

, i1 6= i2,

R
j

ui1ui2
= Π

(

x, u, Q
l′

, Q
l′

x
k′
1

, . . . , Q
l′

x
k′
1
···x

k′
κ−1

, Q
l′

u
i′
1
, R

j′

, R
j′

x
k′
1

, . . . , R
j′

x
k′
1
···x

k′
κ−1

,

, R
j′

u
i′1

, R
j′

x
k′
1

u
i′1

, . . . , R
j′

x
k′
1
···x

k′
κ−2

u
i′1

)

, i1 6= i2, j 6= i2, j 6= i2.

Using the equations of (88) we already obtained (namely all except the second equation), us-
ing (96) and (97), we may simplify these four equations:

(99)



























Π(x, u, J) = Ri1
ui1ui1

,

Π(x, u, J) = Rj

ui1ui1
, j 6= i1,

Π(x, u, J) = Ri1
ui1ui2

, i1 6= i2,

Π(x, u, J) = Rj

ui1ui2
, i1 6= i2, j 6= i1, j 6= i2.

This gives the second equation of (88), completing the proofof Lemma 5 and consequently the
proof of Theorem 1. �
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