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Abstract. The well known formula [X, Y ] = 1
2

∂2

∂t2
|0(FlY−t ◦FlX−t ◦FlYt ◦FlXt ) for

vector fields X, Y is generalized to arbitrary bracket expressions and arbitrary curves

of local diffeomorphisms.

Let M be a smooth manifold. It is well known that for vector fields X,Y ∈ X(M)
we have

0 = ∂
∂t

∣∣
0

(FlY−t ◦FlX−t ◦FlYt ◦FlXt ),

[X,Y ] = 1
2

∂2

∂t2 |0(FlY−t ◦FlX−t ◦FlYt ◦FlXt ).

We give the following generalization:

1. Theorem. Let M be a manifold, let ϕi : R × M ⊃ Uϕi → M be smooth
mappings for i = 1, . . . , k where each Uϕi is an open neighborhood of {0} × M

in R ×M , such that each ϕi
t is a diffeomorphism on its domain, ϕi

0 = IdM , and
∂
∂t

∣∣
0
ϕi

t = Xi ∈ X(M). We put [ϕi
t, ϕ

j
t ] := (ϕj

t )−1 ◦ (ϕi
t)
−1 ◦ ϕj

t ◦ ϕi
t. Then for each

formal bracket expression B of length k we have

0 = ∂`

∂t` |0B(ϕ1
t , . . . , ϕ

k
t ) for 1 ≤ ` < k,

B(X1, . . . , Xk) = 1
k!

∂k

∂tk |0B(ϕ1
t , . . . , ϕ

k
t ) ∈ X(M)

in the sense explained in 3 below.
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2 MAUHART, MICHOR

In fact this theorem is a special case of the more general theorem 10 below. The
somewhat unusual choice of the commutator of flows is explained by the fact that
the bracket on the Lie algebra of the diffeomorphism group is the negative of the
usual Lie bracket of vector fields.

2. Lemma. Let c : R → M be a smooth curve. If c(0) = x ∈ M , c′(0) =
0, . . . , c(k−1)(0) = 0, then c(k)(0) is a well defined tangent vector in TxM which is
given by the derivation f 7→ (f ◦ c)(k)(0) at x.

Proof. We have

((f.g) ◦ c)(k)(0) = ((f ◦ c).(g ◦ c))(k)(0) =
k∑

j=0

(
k
j

)
(f ◦ c)(j)(0)(g ◦ c)(k−j)(0)

= (f ◦ c)(k)(0)g(x) + f(x)(g ◦ c)(k)(0),

since all other summands vanish: (f ◦ c)(j)(0) = 0 for 1 ≤ j < k. �

3. Curves of local diffeomorphisms. Let ϕ : R×M ⊃ Uϕ → M be a smooth
mapping where Uϕ is an open neighborhood of {0} ×M in R×M , such that each
ϕt is a diffeomorphism on its domain and ϕ0 = IdM . We say that ϕt is a curve of
local diffeomorphisms though IdM .

From lemma 2 we see that if ∂j

∂tj |0ϕt = 0 for all 1 ≤ j < k, then X := 1
k!

∂k

∂tk |0ϕt

is a well defined vector field on M . We say that X is the first non-vanishing
derivative at 0 of the curve ϕt of local diffeomorphisms. We may paraphrase this
as (∂k

t |0ϕ∗t )f = k!LXf .

4. Natural vector bundles. See [KMS, 6.14]. Let Mfm denote the category
of all smooth m-dimensional manifolds and local diffeomorphisms between them.
A vector bundle functor or natural vector bundle is a functor F which associates a
vector bundle (F (M), pM ,M) to each manifold M and a vector bundle homomor-
phism

F (M)
F (f)−−−−→ F (N)

pM

y ypN

M −−−−→
f

N

to each f : M → N inMfm, which covers f and is fiber wise a linear isomorphism.
If f is the embedding of an open subset of N then this diagram turns out to be
a pullback diagram. We also point out that f 7→ F (f) maps smoothly parameter-
ized families to smoothly parameterized families, see [KMS, 14.8]. Assuming this
property all vector bundle functors were classified by [T]: They correspond to linear
representations of higher jet groups, they are associated vector bundles to higher
order frame bundles, see also [KMS, 14.8].

Examples of vector bundle functors are tangent and cotangent bundles, tensor
bundles, and also the trivial bundle M × R which will give us theorem 1.
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5. Pullback of sections. Let F be a vector bundle functor onMfm as described
in 4. Let M be an m-manifold and let ϕt be a curve of local diffeomorphisms
through IdM on M . Then the flow ϕt, for fixed t, is a diffeomorphism defined on
an open subset Uϕt

of M . The mapping

F (M) ←−−−− F (Uϕt
)

F (ϕt)−−−−→ F (M)

pM

y y ypM

M ←−−−− Uϕt −−−−→
ϕt

M

is then a vector bundle isomorphism.
We consider a section s ∈ C∞(F (M)) of the vector bundle (F (M), pM ,M) and

we define for t ∈ R
ϕ∗t s := F (ϕ−1

t ) ◦ s ◦ ϕt.

This is a local section of the bundle F (M). For each x ∈ M the value (ϕ∗t s)(x) ∈
F (M)x := p−1

M (x) is defined, if t is small enough. So in the vector space F (M)x the
expression d

dt |0(ϕ∗t s)(x) makes sense and therefore the section d
dt |0(ϕt)∗s is globally

defined and is an element of C∞(F (M)). If ϕt = FlXt is the flow of a vector field
X on M this section

LXs := d
dt |0(FlXt )∗s

is called the Lie derivative of s along X. It satisfies LXLY − LY LX = L[X,Y ], see
[KMS, 6.20].

6. Lemma. Let ϕt be a smooth curve of local diffeomorphisms through IdM with
first non-vanishing derivative k!X = ∂k

t |0ϕt. Then for any vector bundle functor F
and for any section s ∈ C∞(F (M)) we have the first non-vanishing derivative

k!LXs = ∂k
t |0ϕ∗t s.

Proof. This is again a local question, so let x ∈ M . We choose a complete Rie-
mannian metric on M and we denote by Uk the open ball with radius rk > 0
and center x for this metric, and let let Uk be its closure. Since ϕ0 = IdM we
may choose a chart (U, u : U → Rm) of M with x ∈ U and u(U) = Rm, radii
r0 > r1 > r2 > r3 > r4 > 0 and ε > 0 such that the following hold: ϕ is defined
and smooth on ((−2ε, 2ε) × U0), ϕ([−ε, ε] × U1) ⊂ U , ϕ((−ε, ε) × U2) ⊃ U3, and
ϕ((−ε, ε) × U4) ⊂ U3. Let E be the set of all f ∈ C∞(U1, U) such that f |U2 is
a diffeomorphism onto its image, f(U2) ⊃ U3, and f(U4) ⊂ U3. Then via the
linear isomorphism u∗ : C∞(U1, U) → C∞(U1,Rm) which we suppress from now
on, the set E is an open subset of the Frechét space C∞(U1,Rm) for the compact
C∞-topology, since the closures Uk are compact for each rk > 0 by completeness
of the metric.
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By cartesian closedness [FK, 4.4.13] or [KMb, 1.8] the curve ϕ̌ : (−ε, ε) →
C∞(U1,Rm) is smooth and takes values in the open subset E .

Claim. Let L(C∞(F (M)), C∞(F (U4))) denote the space of all bounded linear map-
pings between the convenient vector spaces indicated which are equipped with the
compact C∞-topology, and let P : C∞(U1,Rm) ⊃ E → L(C∞(F (M)), C∞(F (U4)))
be the mapping given by P (f)(s) = f∗s = F (f−1) ◦ s ◦ f . Then P is smooth.

First we check that P takes values in the space of bounded (i. e. smooth) linear
mappings. We have to check that P (f) maps smooth curves in C∞(F (M)) to
smooth curves in C∞(F (U4)). A curve c : R → C∞(F (M)) is smooth if and
only if the canonically associated mapping č : R × M → F (M) is smooth, see
[KMa,7.7.2]. But clearly P (f)(ct)(x) = (F ((f |U2)−1|U3) ◦ ct ◦ f |U4)(x) is smooth
in (t, x) ∈ R× U4.

Now we check that P itself is smooth, i.e. maps smooth curves in E to smooth
curves in L(C∞(F (M)), C∞(F (U4))). So let f : R→ E ⊂ C∞(U1,Rm) be smooth,
by cartesian closedness this means that f̂ : R × U1 → Rm is smooth. By the
finite dimensional implicit function theorem the mapping (t, x) 7→ f−1

t (x) is also
smooth for (t, x) ∈ R×U3. But then for each section s ∈ C∞(F (M)) the mapping
(t, x) 7→ (P (ft)s)(x) = (F ((ft|U2)−1|U3) ◦ s ◦ ft|U4)(x) is also smooth since F
respects smoothly parameterized families.

By the smooth uniform boundedness principle [FK, remark on page 89, also
4.4.7], see also [KMb, 1.7.2], the assignment t 7→ P (ft) is smooth as a mapping

(−ε, ε)→ L(C∞(F (M)), C∞(F (U4)))

if and only if the composition

(−ε, ε)→ L(C∞(F (M)), C∞(F (U4))) evs−−→ C∞(F (U4))

is smooth for each s ∈ C∞(F (M)). We have already checked this condition, so the
claim follows.

Now the smooth curve ϕ̌ takes values in E , so we may compute for 1 ≤ ` ≤ k as
follows:

∂`
t |0ϕ∗t s = ∂`

t |0(evs ◦P ◦ ϕ̌)(t)

= d(evs ◦P )(ϕ0)(∂`
t |0ϕt) + 0

since each other term contains a derivative at 0 of ϕt of order less than ` which is
0, and thus we get ∂`

t |0ϕ∗t s = 0 for ` < k and

∂k
t |0ϕ∗t s = d(evs ◦P )(IdU2)(∂k

t |0ϕt)

= d(evs ◦P )(IdU2)(k!X)

= k!d(evs ◦P )(IdU2)(∂t|0 FlXt )

= k!∂t|0(evs ◦P ◦ FlX)(t) = k!∂t|0(FlXt )∗s = k!LXs. �
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7. Lemma. Let M be a smooth manifold and let F be a vector bundle functor
on Mfm. Let ϕt, ψt be curves of local diffeomorphisms through IdM and let s ∈
C∞(F (M)) be a section of the vector bundle F (M)→M . Then we have

∂k
t |0(ϕt ◦ ψt)∗s = ∂k

t |0(ψ∗tϕ
∗
t )s =

k∑
j=0

(
k
j

)
(∂j

t |0ψ∗t )(∂k−j
t |0ϕ∗t )s.

Also the multinomial version of this formula holds:

∂k
t |0(ϕ1

t ◦ . . . ◦ ϕ`
t)
∗s =

∑
j1+···+j`=k

k!
j1! . . . j`!

(∂j`
t |0(ϕ`

t)
∗) . . . (∂j1

t |0(ϕ1
t )∗)s.

Proof. We only prove the binomial version. The question is local on M , so let U
be an open neighborhood of some point x in M such that ϕ is defined and smooth
on (−ε, ε) × U . From the claim in the proof of lemma 6 we know that t 7→ ϕ∗t is
am smooth curve in the convenient vector space L(C∞(F (M)), C∞(F (U))) of all
bounded linear mappings.

Now let V ⊂M be an open neighborhood of x such that ψ is defined on (−ε, ε)×
V and ψ((−ε, ε)× V ) ⊆ U . By the arguments just given the mapping t 7→ ψ∗t is a
smooth mapping (−ε, ε)→ L(C∞(F (U)), C∞(F (V ))) also. Composition

L(C∞(F (M)), C∞(F (U)))× L(C∞(F (U)), C∞(F (V )))→
→ L(C∞(F (M)), C∞(F (V )))

is smooth and bilinear, see [FK, 4.4.16] and we may just apply the Leibniz formula
for higher derivatives of bilinear expressions of functions. We evaluate first at
s ∈ C∞(F (M)) and then at x ∈M to obtain the formula �

8. Lemma. Let ϕt be a curve of local diffeomorphisms through IdM with first non-
vanishing derivative k!X = ∂k

t |0ϕt. Then the inverse curve of local diffeomorphisms
ϕ−1

t has first non-vanishing derivative −k!X = ∂k
t |0ϕ−1

t .

Proof. For we have ϕ−1
t ◦ ϕt = Id, so by lemma 7 we get for 1 ≤ j ≤ k

0 = ∂j
t |0(ϕ−1

t ◦ ϕt)f =
j∑

i=0

(
j
i

)
(∂i

t |0ϕ∗t )(∂j−i
t (ϕ−1

t )∗)f =

= ∂j
t |0ϕ∗t (ϕ−1

0 )∗f + ϕ∗0∂
j
t |0(ϕ−1

t )∗f,

i.e. ∂j
t |0ϕ∗t f = −∂j

t |0(ϕ−1
t )∗f as required. �
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9. Lemma. Let M be a manifold, let F be a vector bundle functor, let s be a
smooth section of F (M), let ϕt be a curve of local diffeomorphisms through IdM

with first non-vanishing derivative m!X = ∂m
t |0ϕt, and let ψt be a curve of local

diffeomorphisms through IdM with first non-vanishing derivative n!Y = ∂n
t |0ψt.

Then the curve of local sections [ϕt, ψt]∗s = (ψ−1
t ◦ ϕ−1

t ◦ ψt ◦ ϕt)∗s has first
non-vanishing derivative

(m+ n)!L[X,Y ]s = ∂m+n
t |0[ϕt, ψt]∗s.

Proof. From lemmas 6 and 8 we have the following first non-vanishing derivatives

m!LXs = ∂m
t |0ϕ∗t s, n!LY s = ∂n

t |0ψ∗t s,(1)

m!L−Xs = ∂m
t |0(ϕ−1

t )∗s, n!L−Y s = ∂n
t |0(ψ−1

t )∗s.

By the multinomial version of lemma 7 we have

ANs : = ∂N
t |0(ψ−1

t ◦ ϕ−1
t ◦ ψt ◦ ϕt)∗s

=
∑

i+j+k+`=N

N !
i!j!k!`!

(∂i
t |0ϕ∗t )(∂j

t |0ψ∗t )(∂k
t |0(ϕ−1

t )∗)(∂`
t |0(ψ−1

t )∗)s.

Let us suppose that 1 ≤ n ≤ m, the case m ≤ n is similar. If N < n all summands
are 0. If N = n we have by lemma 8

ANs = (∂n
t |0ϕ∗t )s+ (∂n

t |0ψ∗t )s+ (∂n
t |0(ϕ−1

t )∗)s+ (∂n
t |0(ψ−1

t )∗)s = 0.

If n < N ≤ m we have, using again lemma 8

ANs =
∑

j+`=N

N !
j!`!

(∂j
t |0ψ∗t )(∂`

t |0(ψ−1
t )∗)s+ δm

N

(
(∂m

t |0ϕ∗t )s+ (∂m
t |0(ϕ−1

t )∗)s
)

= (∂N
t |0(ψ−1

t ◦ ψt)∗)s+ 0 = 0.

Now we come to the difficult case m,n < N ≤ m+ n.

ANs = ∂N
t |0(ψ−1

t ◦ ϕ−1
t ◦ ψt)∗s+

(
N
m

)
(∂m

t |0ϕ∗t )(∂N−m
t |0(ψ−1

t ◦ ϕ−1
t ◦ ψt)∗)s

+ (∂N
t |0ϕ∗t )s,(2)

by lemma 7, since all other terms vanish, see (4) below. By lemma 7 again we get:

∂N
t |0(ψ−1

t ◦ ϕ−1
t ◦ ψt)∗s =

∑
j+k+`=N

N !
j!k!`!

(∂j
t |0ψ∗t )(∂k

t |0(ϕ−1
t )∗)(∂`

t |0(ψ−1
t )∗)s

=
∑

j+`=N

(
N
j

)
(∂j

t |0ψ∗t )(∂`
t |0(ψ−1

t )∗)s+
(
N
m

)
(∂N−m

t |0ψ∗t )(∂m
t |0(ϕ−1

t )∗)s(3)

+
(
N
m

)
(∂m

t |0(ϕ−1
t )∗)(∂N−m

t |0(ψ−1
t )∗)s+ ∂N

t |0(ϕ−1
t )∗s

= 0 +
(
N
m

)
(∂N−m

t |0ψ∗t )m!L−Xs+
(
N
m

)
m!L−X(∂N−m

t |0(ψ−1
t )∗)s

+ ∂N
t |0(ϕ−1

t )∗s, using (1)

= δN
m+n(m+ n)!(LXLY − LY LX)s+ ∂N

t |0(ϕ−1
t )∗s

= δN
m+n(m+ n)!L[X,Y ]s+ ∂N

t |0(ϕ−1
t )∗s
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From the second expression in (3) one can also read off that

(4) ∂N−m
t |0(ψ−1

t ◦ ϕ−1
t ◦ ψt)∗s = ∂N−m

t |0(ϕ−1
t )∗s.

If we put (3) and (4) into (2) we get, using lemmas 7 and 8 again, the final result
which proves lemma 9:

ANs = δN
m+n(m+ n)!L[X,Y ]s+ ∂N

t |0(ϕ−1
t )∗s

+
(
N
m

)
(∂m

t |0ϕ∗t )(∂N−m
t |0(ϕ−1

t )∗)s+ (∂N
t |0ϕ∗t )s

= δN
m+n(m+ n)!L[X,Y ]s+ ∂N

t |0(ϕ−1
t ◦ ϕt)∗s

= δN
m+n(m+ n)!L[X,Y ]s+ 0. �

10. Theorem. Let M be a manifold, let ϕi be smooth curves of local diffeomor-
phisms through IdM for i = 1, . . . , j with non-vanishing first derivative ∂ki

t |0ϕi
t =

ki!Xi ∈ X(M). Let F be a vector bundle functor and let s ∈ C∞(F (M)) be a
section. Then for each formal bracket expression B of length j we have

0 = ∂`

∂t` |0B(ϕ1
t , . . . ϕ

k
t )∗s for 1 ≤ ` < k,

LB(X1,...,Xk)s = 1
k!

∂k

∂tk |0B(ϕ1
t , . . . ϕ

k
t )∗s ∈ C∞(F (M)),

where k = k1 + · · ·+ kj.

Proof. Apply lemma 9 recursively. �

11. Proposition. Let ϕ be a curve of local diffeomorphisms through IdM with
first non-vanishing derivative k!X = ∂k

t |0ϕt. Then the curve of local vector fields
(∂tϕt) ◦ ϕ−1

t has as first non-vanishing derivative

k!X = ∂k−1
t |0

(
(∂tϕt) ◦ ϕ−1

t

)
.

Proof. Using lemma 7 for f ∈ C∞(M,R) we have for 1 ≤ ` < k:

∂`−1
t |0((∂tϕt) ◦ ϕ−1

t )f = ∂`−1
t |0(ϕ−1

t )∗∂tϕ
∗
t f

=
`−1∑
j=0

(
`−1

j

)
(∂j

t |0(ϕ−1
t )∗)(∂`−j

t |0ϕ∗t )f

= (ϕ−1
0 )∗(∂`

t |0ϕ∗t )f + 0

= δk
` k!LXf. �
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12. Corollary. Let G be a Lie group with Lie algebra g. For g, h ∈ G we consider
the group commutator [g, h] = ghg−1h−1. Then for any bracket expression B of
length k and Xi ∈ g we have

k!B(X1, . . . , Xk) = ∂k
t |0B(exp tX1, . . . , exp tXk)

= ∂k−1
t |0

(
TλB(exp tX1,...,exp tXk)−1)(∂tB(exp tX1, . . . , exp tXk))

)
,

where λg denotes left translation by g.

The first equation is a generalization of the well known ‘Trotter product formula’,
i. e. the case of B = [ , ].

Proof. The flow of the left invariant vector field LX corresponding to X ∈ g is the
right translation ρexp tX by exp tX, so we just apply theorem 1 to get

k!B(LX1 , . . . , LXk
) = ∂k

t |0B(ρexp tX1 , . . . , ρexp tXk
)

= ∂k
t |0ρ(B(exp tX1, . . . , exp tXk)),(1)

where in the first line the commutator of flows is applied, and in the second line
the group commutator with reversed order. Evaluating both sides at e ∈ G gives
the first formula. From (1) and proposition 11 we get

k!B(LX1 , . . . , LXk
) =

= ∂k−1
t |0

(
(∂tρ(B(exp tX1, . . . , exp tXk))) ◦ ρ(B(exp tX1, . . . , exp tXk))−1

)
.

We evaluate this at e ∈ G and get

k!B(X1, . . . , Xk) =

= ∂k−1
t |0

(
(∂tρ(B(exp tX1, . . . , exp tXk)))(B(exp tX1, . . . , exp tXk)−1)

)
= ∂k−1

t |0
(
TλB(exp tX1,...,exp tXk)−1)(∂tB(exp tX1, . . . , exp tXk))

)
. �
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