
Some Geometric Evolution Equations

Arising as Geodesic Equations on Groups of

Diffeomorphisms Including the Hamiltonian

Approach

Peter W. Michor ⋆

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien,
Austria; and Erwin Schrödinger International Institute of Mathematical Physics,
Boltzmanngasse 9, A-1090 Wien, Austria.
peter.michor@esi.ac.at

Key words: Diffeomorphism group, connection, Jacobi field, symplectic
structure, Burgers’ equation, KdV equation.
2000 Mathematics Subject Classification: Primary 58B20, 58D05, 58D15,
58F07, 58E12, 35Q53

In: Phase space analysis of Partial Differential Equations.

Series: Progress in Non Linear Differential Equations and Their Applications, Vol.69.

Bove, Antonio; Colombini, Ferruccio; Santo, Daniele Del (Eds.).

Birkhauser Verlag 2006. Pages 133-215

⋆ Supported by ‘Fonds zur Förderung der wissenschaftlichen Forschung’, Projekt
P 17108. Work partly done at the Program for Evolutionary Dynamics, Harvard
University



2 Peter W. Michor

Table of contents

Introduction
1. A general setting and a motivating example
2. Weak symplectic manifolds
3. Right invariant weak Riemannian metrics on Lie groups
4. The Hamiltonian approach
5. Vanishing geodesic distance on groups of diffeomorphisms
6. The regular Lie group of rapidly decreasing diffeomorphisms
7. The diffeomorphism group of S1 or R, and Burgers’ hierarchy
8. The Virasoro-Bott group and the Korteweg-de Vries hierarchy
Appendix A. Smooth Calculus beyond Banach spaces
Appendix B. Regular infinite dimensional Lie groups
References



Geometric Evolution Equations 3

Introduction

This is the extended version of a lecture course given at the University of
Vienna in the spring term 2005. Many thanks to the audience of this course
for many keen questions. The main aim of this course was to understand the
papers [11] and [13].

The purpose of this review article is to give a complete account of existence
and uniqueness of the solutions of the members of higher order of the hierar-
chies of Burgers’ equation and the Korteweg-de Vries equation, including their
derivation and all the necessary background. We do this both on the circle,
and on the real line in the setting of rapidly decreasing functions. These are
all geodesic equations of infinite dimensional regular Lie groups, namely the
diffeomorphism group of the line or the circle and the corresponding Virasoro
group.

Let us describe the content: Appendix A is a short description of con-
venient calculus in infinite dimensions (beyond Banach spaces) where every-
thing is based on smooth curves: A mapping is C∞ if it maps smooth curves
to smooth curves. It is a theorem that smooth curves in a space of smooth
functions are just smooth functions of one variable more; this is the basic as-
sumption of variational calculus. Appendix B gives a short account of infinite
dimensional regular Lie groups. Here regularity means that a smooth curve in
the Lie algebra can be integrated to a smooth curve in the group whose right
(or left) logarithmic derivative equals the given curve. No infinite dimensional
Lie group is known which is not regular. Section 1, as a motivating example,
computes the geodesics and the curvature of the most naive Riemannian met-
ric on the space of embeddings of the real line to itself and shows that this can
be converted into Burgers’ equation. Section 2 treats Hamiltonian mechanics
on infinite dimensional weak symplectic manifolds. Here ‘weak’ means that
the symplectic 2-form is injective as a mapping from the tangent bundle to
the cotangent bundle. Section 3 computes geodesics and curvatures of right
invariant Riemannian metrics on regular Lie groups as done by Arnold [4].
Section 4 redoes this in the symplectic approach and computes the associ-
ated momentum mappings and conserved quantities. Section 5 shows that the
geodesic distance vanishes on any full diffeomorphis group for the right invari-
ant metric coming from the L2-metric on the Lie algebra of vector fields for
a given Riemannian metric on a manifold. In particular, Burgers’ equation is
the geodesic equation of such a metric. Section 6 treats the group of diffeo-
morphisms of the real line which decrease rapidly to the identity as a regular
Lie group. This will be important for Burgers’ equation as geodesic equation
on this group, and also for the KdV equation. Here we also give a short pre-
sentation of Sobolev spaces on the real line and of the scale of HCn-spaces for
which we were able to give simple proofs of the results which we need later.
Section 7 treats geodesic equations on the diffeomorphism groups of the real
line or S1 which leads to Burgers’ hierarchy. We solve these equations start-
ing at certain higher order, following [13]. Section 8 does this for the Virasoro
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groups on the real line or S1. For the solution of the higher order equations
we follow [11].

Note that in this paper we concentrate on in the smooth (= C∞) aspect.
We also do not treat complete integrability for Burgers’ and KdV equation,
although we prepared almost all of the necessary background.

1. A general setting and a motivating example

1.1. The principal bundle of embeddings

Let M and N be smooth finite dimensional manifolds, connected and sec-
ond countable without boundary, such that dimM ≤ dimN . Then the space
Emb(M,N) of all embeddings (immersions which are homeomorphisms on
their images) from M into N is an open submanifold of C∞(M,N) which
is stable under the right action of the diffeomorphism group of M . Here
C∞(M,N) is a smooth manifold modeled on spaces of sections with com-
pact support Γc(f

∗TN). In particular the tangent space at f is canonically
isomorphic to the space of vector fields along f with compact support in M .
If f and g differ on a non-compact set then they belong to different con-
nected components of C∞(M,N). See [31] and [37]. Then Emb(M,N) is the
total space of a smooth principal fiber bundle with structure group the diffeo-
morphism group of M ; the base is called B(M,N), it is a Hausdorff smooth
manifold modeled on nuclear (LF)-spaces. It can be thought of as the ”non-
linear Grassmannian” or ”differentiable Chow variety” of all submanifolds of
N which are of type M . This result is based on an idea implicitly contained
in [51], it was fully proved in [7] for compact M and for general M in [36].
See also [37], section 13 and [31]. If we take a Hilbert space H instead of
N , then B(M,H) is the classifying space for Diff(M) if M is compact, and
the classifying bundle Emb(M,H) carries also a universal connection. This is
shown in [38].

1.2

If (N, g) is a Riemannian manifold then on the manifold Emb(M,N) there
is a naturally induced weak Riemannian metric given, for s1, s2 ∈ Γc(f

∗TN)
and ϕ ∈ Emb(M,N), by

Gφ(s1, s2) =

∫

M

g(s1, s2) vol(φ∗g), φ ∈ Emb(M,N),

where vol(g) denotes the volume form on N induced by the Riemannian metric
g and vol(φ∗g) the volume form on M induced by the pull back metric φ∗g.
The covariant derivative and curvature of the Levi-Civita connection induced
by G were investigated in [6] if N = Rdim M+1 (endowed with the standard
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inner product) and in [25] for the general case. In [40] it was shown that
the geodesic distance (topological metric) on the base manifold B(M,N) =
Emb(M,N)/Diff(M) induced by this Riemannian metric vanishes.

This weak Riemannian metric is invariant under the action of the diffeo-
morphism group Diff(M) by composition from the right and hence it induces
a Riemannian metric on the base manifold B(M,N).

1.3. Example

Let us consider the special case M = N = R, that is, the space Emb(R, R) of
all embeddings of the real line into itself, which contains the diffeomorphism
group Diff(R) as an open subset. The case M = N = S1 is treated in a
similar fashion and the results of this paper are also valid in this situation,
where Emb(S1, S1) = Diff(S1). For our purposes, we may restrict attention
to the space of orientation-preserving embeddings, denoted by Emb+(R, R).
The weak Riemannian metric has thus the expression

Gf (h, k) =

∫

R

h(x)k(x)|f ′(x)| dx, f ∈ Emb(R, R), h, k ∈ C∞
c (R, R).

We shall compute the geodesic equation for this metric by variational calculus.
The energy of a curve f of embeddings is

E(f) = 1
2

∫ b

a

Gf (ft, ft)dt = 1
2

∫ b

a

∫

R

f2
t fx dxdt.

If we assume that f(x, t, s) is a smooth function and that the variations are
with fixed endpoints, then the derivative with respect to s of the energy is

∂s|0E(f( , s)) = ∂s|0 1
2

∫ b

a

∫

R

f2
t fx dxdt

= 1
2

∫ b

a

∫

R

(2ftftsfx + f2
t fxs)dxdt

= − 1
2

∫ b

a

∫

R

(2fttfsfx + 2ftfsftx + 2ftftxfs)dxdt

= −
∫ b

a

∫

R

(
ftt + 2

ftftx

fx

)
fsfxdxdt,

so that the geodesic equation with its initial data is:

ftt = −2
ftftx

fx
, f( , 0) ∈ Emb+(R, R), ft( , 0) ∈ C∞

c (R, R) (1)

=: Γf (ft, ft),
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where the Christoffel symbol Γ : Emb(R, R) × C∞
c (R, R) × C∞

c (R, R) →
C∞

c (R, R) is given by symmetrisation:

Γf (h, k) := −hkx + hxk

fx
= − (hk)x

fx
. (2)

For vector fields X,Y on Emb(R, R) the covariant derivative is given by
the expression ∇Emb

X Y = dY (X) − Γ (X,Y ). The Riemannian curvature
R(X,Y )Z = (∇X∇Y − ∇Y ∇X − ∇[X,Y ])Z is then determined in terms of
the Christoffel form by

R(X,Y )Z = (∇X∇Y −∇Y ∇X −∇[X,Y ])Z

= ∇X(dZ(Y ) − Γ (Y,Z)) −∇Y (dZ(X) − Γ (X,Z))

− dZ([X,Y ]) + Γ ([X,Y ], Z)

= d2Z(X,Y ) + dZ(dY (X)) − Γ (X, dZ(Y ))

− dΓ (X)(Y,Z) − Γ (dY (X), Z) − Γ (Y, dZ(X)) + Γ (X,Γ (Y,Z))

− d2Z(Y,X) − dZ(dX(Y )) + Γ (Y, dZ(X))

+ dΓ (Y )(X,Z) + Γ (dX(Y ), Z) + Γ (X, dZ(Y )) − Γ (Y, Γ (X,Z))

− dZ(dY (X) − dX(Y )) + Γ (dY (X) − dX(Y ), Z)

= −dΓ (X)(Y,Z) + Γ (X,Γ (Y,Z)) + dΓ (Y )(X,Z) − Γ (Y, Γ (X,Z)

so that

Rf (h, k)ℓ =

= −dΓ (f)(h)(k, ℓ) + dΓ (f)(k)(h, ℓ) + Γf (h, Γf (k, ℓ)) − Γf (k, Γf (h, ℓ))

= −hx(kℓ)x

f2
x

+
kx(hℓ)x

f2
x

+

(
h (kℓ)x

fx

)
x

fx
−

(
k (hℓ)x

fx

)
x

fx
(3)

=
1

f3
x

(
fxxhxkℓ − fxxhkxℓ + fxhkxxℓ − fxhxxkℓ + 2fxhkxℓx − 2fxhxkℓx

)
.

Now let us consider the trivialisation of T Emb(R, R) by right translation (this
is most useful for Diff(R)). The derivative of the inversion Inv : g 7→ g−1 is
given by

Tg(Inv)h = −T (g−1) ◦ h ◦ g−1 = − h ◦ g−1

gx ◦ g−1

for g ∈ Emb(R, R), h ∈ C∞
c (R, R). Defining

u := ft ◦ f−1, or, in more detail, u(t, x) = ft(t, f(t, )−1(x)),

we have

ux = (ft ◦ f−1)x = (ftx ◦ f−1)
1

fx ◦ f−1
=

ftx

fx
◦ f−1,
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ut = (ft ◦ f−1)t = ftt ◦ f−1 + (ftx ◦ f−1)(f−1)t

= ftt ◦ f−1 − (ftx ◦ f−1)
1

fx f−1
(ft f−1)

which, by (1) and the first equation becomes

ut = ftt ◦ f−1 −
(

ftxft

fx

)
◦ f−1 = −3

(
ftxft

fx

)
◦ f−1 = −3uxu.

The geodesic equation on Emb(R, R) in right trivialization, that is, in Eulerian
formulation, is hence

ut = −3uxu , (4)

which is just Burgers’ equation.
Finally let us solve Burgers’ equation and also describe its universal com-

pletion, see see [10], [2], or [26].
In R2 with coordinates (x, y) consider the vector field Y (x, y) = (3y, 0) =

3y∂x with differential equation ẋ = 3y, ẏ = 0. It has the complete flow
FlYt (x, y) = (x + 3ty, y).

Let now t 7→ u(t, x) be a curve of functions on R. We ask when the graph
of u can be reparametrized in such a way that it becomes a solution curve
of the push forward vector field Y∗ : f 7→ Y ◦ f on the space of embeddings
Emb(R, R2). Thus consider a time dependent reparametrization z 7→ x(t, z),
i.e., x ∈ C∞(R2, R). The curve t 7→ (x(t, z), u(t, x(z, t))) in R2 is an integral
curve of Y if and only if

(
3u ◦ x

0

)
= ∂t

(
x

u ◦ x

)
=

(
xt

ut ◦ x + (ux ◦ x) · xt

)

⇐⇒
{

xt = 3u ◦ x

0 = (ut + 3uux) ◦ x

This implies that the graph of u(t, ·), namely the curve t 7→ (x 7→ (x, u(t, x))),
may be parameterized as a solution curve of the vector field Y∗ on the space
of embeddings Emb(R, R2) starting at x 7→ (x, u(0, x)) if and only if u is a
solution of the partial differential equation ut + 3uux = 0. The parameteriza-
tion z 7→ x(z, t) is then given by xt(z, t) = 3u(x(t, z)) with x(0, z) = z ∈ R.

This has a simple physical meaning. Consider freely flying particles in R,
and trace a trajectory x(t) of one of the particles. Denote the velocity of a
particle at the position x at the moment t by u(t, x), or rather, by 3u(t, x) :=
ẋ(t). Due to the absence of interaction, the Newton equation of any particle
is ẍ(t) = 0.

Let us illustrate this: The flow of the vector field Y = 3u∂x is tilting the
plane to the right with constant speed. The illustration shows how a graph of
an honest function is moved through a shock (when the derivatives become
infinite) towards the graph of a multivalued function; each piece of it is still
a local solution.
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Fig. 1. The characteristic flow of the inviscid Burgers’ equation tilts the plane.

2. Weak symplectic manifolds

2.1. Review

For a finite dimensional symplectic manifold (M,ω) we have the following
exact sequence of Lie algebras:

0 → H0(M) → C∞(M, R) −gradω

→ X(M,ω) −→ H1(M) → 0.

Here H∗(M) is the real De Rham cohomology of M , the space C∞(M, R)
is equipped with the Poisson bracket { , }, X(M,ω) consists of all vector
fields ξ with Lξω = 0 (the locally Hamiltonian vector fields), which is a Lie
algebra for the Lie bracket. Furthermore, gradω f is the Hamiltonian vector
field for f ∈ C∞(M, R) given by i(gradω f)ω = df and γ(ξ) = [iξω]. The
spaces H0(M) and H1(M) are equipped with the zero bracket.

Consider a symplectic right action r : M × G → M of a connected Lie
group G on M ; we use the notation r(x, g) = rg(x) = rx(g) = x.g. By
ζX(x) = Te(rx)X we get a mapping ζ : g → X(M,ω) which sends each
element X of the Lie algebra g of G to the fundamental vector field X. This
is a Lie algebra homomorphism (for right actions!).

H0(M)
i // C∞(M, R)

gradω

// X(M,ω)
γ // H1(M)

g

j

ddIIIIIIIIII
ζ

;;wwwwwwwww

A linear lift j : g → C∞(M, R) of ζ with gradω ◦j = ζ exists if and only
if γ ◦ ζ = 0 in H1(M). This lift j may be changed to a Lie algebra ho-
momorphism if and only if the 2-cocycle ̄ : g × g → H0(M), given by
(i ◦ ̄)(X,Y ) = {j(X), j(Y )}− j([X,Y ]), vanishes in the Lie algebra cohomol-
ogy H2(g,H0(M)), for if ̄ = δα then j− i◦α is a Lie algebra homomorphism.
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If j : g → C∞(M, R) is a Lie algebra homomorphism, we may associate
the moment mapping µ : M → g′ = L(g, R) to it, which is given by µ(x)(X) =
χ(X)(x) for x ∈ M and X ∈ g. It is G-equivariant for a suitably chosen (in
general affine) action of G on g′.

2.2

We now want to carry over to infinite dimensional manifolds the procedure of
subsection (2.1). First we need the appropriate notions in infinite dimensions.
So let M be a manifold, which in general is infinite dimensional.

A 2-form ω ∈ Ω2(M) is called a weak symplectic structure on M if it is
closed (dω = 0) and if its associated vector bundle homomorphism ω̌ : TM →
T ∗M is injective.

A 2-form ω ∈ Ω2(M) is called a strong symplectic structure on M if it is
closed (dω = 0) and if its associated vector bundle homomorphism ω̌ : TM →
T ∗M is invertible with smooth inverse. In this case, the vector bundle TM has
reflexive fibers TxM : Let i : TxM → (TxM)′′ be the canonical mapping onto
the bidual. Skew symmetry of ω is equivalent to the fact that the transposed
(ω̌)t = (ω̌)∗ ◦ i : TxM → (TxM)′ satisfies (ω̌)t = −ω̌. Thus, i = −((ω̌)−1)∗ ◦ ω̌
is an isomorphism.

2.3

Every cotangent bundle T ∗M , viewed as a manifold, carries a canonical weak
symplectic structure ωM ∈ Ω2(T ∗M), which is defined as follows. Let π∗

M :
T ∗M → M be the projection. Then the Liouville form θM ∈ Ω1(T ∗M) is
given by θM (X) = 〈πT∗M (X), T (π∗

M )(X)〉 for X ∈ T (T ∗M), where 〈 , 〉
denotes the duality pairing T ∗M×M TM → R. Then the symplectic structure
on T ∗M is given by ωM = −dθM , which of course in a local chart looks
like ωE((v, v′), (w,w′)) = 〈w′, v〉E − 〈v′, w〉E . The associated mapping ω̌ :
T(0,0)(E × E′) = E × E′ → E′ × E′′ is given by (v, v′) 7→ (−v′, iE(v)), where
iE : E → E′′ is the embedding into the bidual. So the canonical symplectic
structure on T ∗M is strong if and only if all model spaces of the manifold M
are reflexive.

2.4

Let M be a weak symplectic manifold. The first thing to note is that the
Hamiltonian mapping gradω : C∞(M, R) → X(M,ω) does not make sense in
general, since ω̌ : TM → T ∗M is not invertible. Namely, gradω f = (ω̌)−1 ◦df
is defined only for those f ∈ C∞(M, R) with df(x) in the image of ω̌ for all
x ∈ M . A similar difficulty arises for the definition of the Poisson bracket on
C∞(M, R).
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Definition

For a weak symplectic manifold (M,ω) let Tω
x M denote the real linear sub-

space Tω
x M = ω̌x(TxM) ⊂ T ∗

x M = L(TxM, R), and let us call it the smooth
cotangent space with respect to the symplectic structure ω of M at x in view
of the embedding of test functions into distributions. These vector spaces fit
together to form a subbundle of T ∗M which is isomorphic to the tangent
bundle TM via ω̌ : TM → TωM ⊆ T ∗M . It is in general not a splitting
subbundle.

2.5. Definition

For a weak symplectic vector space (E,ω) let

C∞
ω (E, R) ⊂ C∞(E, R)

denote the linear subspace consisting of all smooth functions f : E → R such
that each iterated derivative dkf(x) ∈ Lk

sym(E; R) has the property that

dkf(x)( , y2, . . . , yk) ∈ Eω

is actually in the smooth dual Eω ⊂ E′ for all x, y2, . . . , yk ∈ E, and that the
mapping

k∏
E → E

(x, y2, . . . , yk) 7→ (ω̌)−1(df(x)( , y2, . . . , yk))

is smooth. By the symmetry of higher derivatives, this is then true for all
entries of dkf(x), for all x.

2.6. Lemma.
For f ∈ C∞(E, R) the following assertions are equivalent:

(1) df : E → E′ factors to a smooth mapping E → Eω.
(2) f has a smooth ω-gradient gradω f ∈ X(E) = C∞(E,E) which satisfies

df(x)y = ω(gradω f(x), y).
(3) f ∈ C∞

ω (E, R).

Proof. Clearly, (3) ⇒ (2) ⇔ (1). We have to show that (2) ⇒ (3).
Suppose that f : E → R is smooth and df(x)y = ω(gradω f(x), y). Then

dkf(x)(y1, . . . , yk) = dkf(x)(y2, . . . , yk, y1)

= (dk−1(df))(x)(y2, . . . , yk)(y1)

= ω
(
dk−1(gradω f)(x)(y2, . . . , yk), y1

)
.⊓⊔
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2.7

For a weak symplectic manifold (M,ω) let

C∞
ω (M, R) ⊂ C∞(M, R)

denote the linear subspace consisting of all smooth functions f : M → R

such that the differential df : M → T ∗M factors to a smooth mapping M →
TωM . In view of lemma (2.6) these are exactly those smooth functions on
M which admit a smooth ω-gradient gradω f ∈ X(M). Also the condition
(2.6.1) translates to a local differential condition describing the functions in
C∞

ω (M, R).

2.8. Theorem.
The Hamiltonian mapping gradω : C∞

ω (M, R) → X(M,ω), which is given by

igradω fω = df or gradω f := (ω̌)−1 ◦ df

is well defined. Also the Poisson bracket

{ , } : C∞
ω (M, R) × C∞

ω (M, R) → C∞
ω (M, R)

{f, g} := igradω f igradω gω = ω(gradω g, gradω f) =

= dg(gradω f) = (gradω f)(g)

is well defined and gives a Lie algebra structure to the space C∞
ω (M, R), which

also fulfills
{f, gh} = {f, g}h + g{f, h}.

We have the following long exact sequence of Lie algebras and Lie algebra
homomorphisms:

0 → H0(M) → C∞
ω (M, R) −gradω

→ X(M,ω) −γ→ H1
ω(M) → 0,

where H0(M) is the space of locally constant functions, and

H1
ω(M) =

{ϕ ∈ C∞(M ← TωM) : dϕ = 0}
{df : f ∈ C∞

ω (M, R)}

is the first symplectic cohomology space of (M,ω), a linear subspace of the
De Rham cohomology space H1(M).

Proof. It is clear from lemma (2.6), that the Hamiltonian mapping gradω is
well defined and has values in X(M,ω), since by [31], 34.18.6 we have

Lgradω fω = igradω fdω + digradω fω = ddf = 0.

By [31], 34.18.7, the space X(M,ω) is a Lie subalgebra of X(M). The Poisson
bracket is well defined as a mapping { , } : C∞

ω (M, R) × C∞
ω (M, R) →



12 Peter W. Michor

C∞(M, R); it only remains to check that it has values in the subspace
C∞

ω (M, R).
This is a local question, so we may assume that M is an open subset of

a convenient vector space equipped with a (non-constant) weak symplectic
structure. So let f , g ∈ C∞

ω (M, R), then {f, g}(x) = dg(x)(gradω f(x)), and
we have

d({f, g})(x)y = d(dg( )y)(x). gradω f(x) + dg(x)(d(gradω f)(x)y)

= d(ω(gradω g( ), y)(x). gradω f(x) + ω
(
gradω g(x), d(gradω f)(x)y

)

= ω
(
d(gradω g)(x)(gradω f(x)) − d(gradω f)(x)(gradω g(x)), y

)
,

since gradω f ∈ X(M,ω) and for any X ∈ X(M,ω) the condition LXω = 0
implies ω(dX(x)y1, y2) = −ω(y1, dX(x)y2). So (2.6.2) is satisfied, and thus
{f, g} ∈ C∞

ω (M, R).
If X ∈ X(M,ω) then diXω = LXω = 0, so [iXω] ∈ H1(M) is well defined,

and by iXω = ω̌ oX we even have γ(X) := [iXω] ∈ H1
ω(M), so γ is well

defined.
Now we show that the sequence is exact. Obviously, it is exact at H0(M)

and at C∞
ω (M, R), since the kernel of gradω consists of the locally constant

functions. If γ(X) = 0 then ω̌ ◦X = iXω = df for f ∈ C∞
ω (M, R), and clearly

X = gradω f . Now let us suppose that ϕ ∈ Γ (TωM) ⊂ Ω1(M) with dϕ = 0.
Then X := (ω̌)−1 ◦ ϕ ∈ X(M) is well defined and LXω = diXω = dϕ = 0, so
X ∈ X(M,ω) and γ(X) = [ϕ].

Moreover, H1
ω(M) is a linear subspace of H1(M) since for ϕ ∈ Γ (TωM) ⊂

Ω1(M) with ϕ = df for f ∈ C∞(M, R) the vector field X := (ω̌)−1◦ϕ ∈ X(M)
is well defined, and since ω̌ oX = ϕ = df by (2.6.1) we have f ∈ C∞

ω (M, R)
with X = gradω f .

The mapping gradω maps the Poisson bracket into the Lie bracket, since
by [31], 34.18 we have

igradω{f,g}ω = d{f, g} = dLgradω fg = Lgradω fdg =

= Lgradω f igradω gω − igradω gLgradω fω

= [Lgradω f , igradω g]ω = i[gradω f,gradω g]ω.

Let us now check the properties of the Poisson bracket. By definition, it is
skew symmetric, and we have

{{f, g}, h} = Lgradω{f,g}h = L[gradω f,gradω g]h = [Lgradω f ,Lgradω g]h =

= Lgradω fLgradω gh − Lgradω gLgradω fh = {f, {g, h}} − {g, {f, h}}
{f, gh} = Lgradω f (gh) = (Lgradω fg)h + gLgradω fh =

= {f, g}h + g{f, h}.

Finally, it remains to show that all mappings in the sequence are Lie algebra
homomorphisms, where we put the zero bracket on both cohomology spaces.
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For locally constant functions we have {c1, c2} = Lgradω c1
c2 = 0. We have al-

ready checked that gradω is a Lie algebra homomorphism. For X,Y ∈ X(M,ω)

i[X,Y ]ω = [LX , iY ]ω = LX iY ω + 0 = diX iY ω + iXLY ω = diX iY ω

is exact. ⊓⊔

2.9. Weakly symplectic group actions

Let us suppose that an infinite dimensional regular Lie group G with Lie
algebra g acts from the right on a weak symplectic manifold (M,ω) by r :
M × G → M in a way which respects ω, so that each transformation rg is a
symplectomorphism. This is called a symplectic group action. We shall use the
notation r(x, g) = rg(x) = rx(g). Let us list some immediate consequences:

(1) The space C∞
ω (M)G of G-invariant smooth functions with ω-gradients

is a Lie subalgebra for the Poisson bracket, since for each g ∈ G and f, h ∈
C∞(M)G we have (rg)∗{f, h} = {(rg)∗f, (rg)∗h} = {f, h}.

(2) For x ∈ M the pullback of ω to the orbit x.G is a 2-form, invariant
under the action of G on the orbit. In the finite dimensional case the orbit is an
initial submanifold. In our case this has to be checked directly in each example.
In any case we have something like a tangent bundle Tx(x.G) = T (rx)g. If
i : x.G → M is the embedding of the orbit then rg ◦ i = i ◦ rg, so that
i∗ω = i∗(rg)∗ω = (rg)∗i∗ω holds for each g ∈ G and thus i∗ω is invariant.

(3) The fundamental vector field mapping ζ : g → X(M,ω), given by
ζX(x) = Te(rx)X for X ∈ g and x ∈ M , is a homomorphism of Lie algebras,
where g is the Lie algebra of G (for a left action we get an anti homomorphism
of Lie algebras). Moreover, ζ takes values in X(M,ω). Let us consider again
the exact sequence of Lie algebra homomorphisms from (2.8):

0 // H0(M)
α // C∞

ω (M)
gradω

// X(M,ω)
γ // H1

ω(M) // 0

g

j

ff

ζ

OO

One can lift ζ to a linear mapping j : g → C∞(M) if and only if γ ◦ ζ = 0. In
this case the action of G is called a Hamiltonian group action, and the linear
mapping j : g → C∞(M) is called a generalized Hamiltonian function for the
group action. It is unique up to addition of a mapping α◦τ for τ : g → H0(M).

(4) If H1
ω(M) = 0 then any symplectic action on (M,ω) is a Hamiltonian

action. But if γ◦ζ 6= 0 we can replace g by its Lie subalgebra ker(γ◦ζ) ⊂ g and
consider the corresponding Lie subgroup G which then admits a Hamiltonian
action.

(5) If the Lie algebra g is equal to its commutator subalgebra [g, g], the
linear span of all [X,Y ] for X,Y ∈ g (true for all full diffeomorphism groups),
then any infinitesimal symplectic action ζ : g → X(M,ω) is a Hamiltonian
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action, since then any Z ∈ g can be written as Z =
∑

i[Xi, Yi] so that ζZ =∑
[ζXi

, ζYi
] ∈ im(gradω) since γ : X(M,ω) → H1(M) is a homomorphism into

the zero Lie bracket.
(6) If j : g → (C∞

ω (M), { , }) happens to be not a homomorphism of Lie
algebras then c(X,Y ) = {j(X), j(Y )} − j([X,Y ]) lies in H0(M), and indeed
c : g×g → H0(M) is a cocycle for the Lie algebra cohomology: c([X,Y ], Z)+
c([Y,Z],X)+c([Z,X], Y ) = 0. If c is a coboundary, i.e., c(X,Y ) = −b([X,Y ]),
then j + α ◦ b is a Lie algebra homomorphism. If the cocycle c is non-trivial
we can use the central extension H0(M) ×c g with bracket [(a,X), (b, Y )] =
(c(X,Y ), [X,Y ]) in the diagram

0 // H0(M)
α // C∞

ω (M)
gradω

// X(M,ω)
γ // H1

ω(M) // 0

H1(M) ×c g
pr2 //

̄

OO

g

ζ

OO

where ̄(a,X) = j(X) + α(a). Then ̄ is a homomorphism of Lie algebras.

2.10. Momentum mapping.
For an infinitesimal symplectic action, i.e. a homomorphism ζ : g → X(M,ω)
of Lie algebras, we can find a linear lift j : g → C∞

ω (M) if and only if there
exists a mapping

J ∈ C∞
ω (M, g∗) := {f ∈ C∞(M, g∗) : 〈f( ),X〉 ∈ C∞

ω (M) for all X ∈ g}

such that
gradω(〈J,X〉) = ζX for all X ∈ g.

The mapping J ∈ C∞
ω (M, g∗) is called the momentum mapping for the

infinitesimal action ζ : g → X(M,ω). Let us note again the relations between
the generalized Hamiltonian j and the momentum mapping J :

J : M → g∗, j : g → C∞
ω (M), ζ : g → X(M,ω)

〈J,X〉 = j(X) ∈ C∞
ω (M), gradω(j(X)) = ζ(X), X ∈ g, (1)

iζ(X)ω = dj(X) = d〈J,X〉,

where 〈 , 〉 : g∗ × g → R is the duality pairing.

2.11. Basic properties of the momentum mapping

Let r : M × G → M be a Hamiltonian right action of an infinite dimensional
regular Lie group G on a weak symplectic manifold M , let j : g → C∞

ω (M) be a
generalized Hamiltonian and let J ∈ C∞

ω (M, g∗) be the associated momentum
mapping.

(1) For x ∈ M , the transposed mapping of the linear mapping dJ(x) :
TxM → g∗ is
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dJ(x)⊤ : g → T ∗
x M, dJ(x)⊤ = ω̌x ◦ ζ,

since for ξ ∈ TxM and X ∈ g we have

〈dJ(ξ),X〉 = 〈iξdJ,X〉 = iξd〈J,X〉 = iξiζX
ω = 〈ω̌x(ζX(x)), ξ〉.

(2) The closure of the image dJ(TxM) of dJ(x) : TxM → g∗ is the anni-
hilator g◦x of the isotropy Lie algeba gx := {X ∈ g : ζX(x) = 0} in g∗, since
the annihilator of the image is the kernel of the transposed mapping,

im(dJ(x))◦ = ker(dJ(x)⊤) = ker(ω̌x ◦ ζ) = ker(evx ◦ζ) = gx.

(3) The kernel of dJ(x) is the symplectic orthogonal

(T (rx)g)⊥,ω = (Tx(x.G))⊥,ω ⊆ TxM,

since for the annihilator of the kernel we have

ker(dJ(x))◦ = im(dJ(x)⊤) = im(ω̌x ◦ ζ) =

= {ω̌x(ζX(x)) : X ∈ g} = ω̌x(Tx(x.G)).

(4) If G is connected, x ∈ M is a fixed point for the G-action if and only if x
is a critical point of J , i.e. dJ(x) = 0.

(5) (Emmy Noether’s theorem) Let h ∈ C∞
ω (M) be a Hamiltonian function

which is invariant under the Hamiltonian G action. Then dJ(gradω(h)) = 0.
Thus the momentum mapping J : M → g∗ is constant on each trajectory (if
it exists) of the Hamiltonian vector field gradω(h). Namely,

〈dJ(gradω(h)),X〉 = d〈J,X〉(gradω(h)) = dj(X)(gradω(h)) =

= {h, j(X)} = −dh(gradω j(X)) = dh(ζX) = 0.

E. Noether’s theorem admits the following generalization.

2.12. Theorem.
Let G1 and G2 be two regular Lie groups which act by Hamiltonian actions r1

and r2 on the weakly symplectic manifold (M,ω), with momentum mappings
J1 and J2, respectively. We assume that J2 is G1-invariant, i.e. J2 is constant
along all G1-orbits, and that G2 is connected.

Then J1 is constant on the G2-orbits and the two actions commute.

Proof. Let ζi : gi → X(M,ω) be the two infinitesimal actions. Then for
X1 ∈ g1 and X2 ∈ g2 we have

Lζ2
X2

〈J1,X1〉 = iζ2
X2

d〈J1,X1〉 = iζ2
X2

iζ1
X1

ω = {〈J2,X2〉, 〈J1,X1〉}
= −{〈J1,X1〉, 〈J2,X2〉} = −iζ1

X1
d〈J2,X2〉 = −Lζ1

X1
〈J2,X2〉 = 0
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since J2 is constant along each G1-orbit. Since G2 is assumed to be con-
nected, J1 is also constant along each G2-orbit. We also saw that each Pois-
son bracket {〈J2,X2〉, 〈J1,X1〉} vanishes; by gradω 〈Ji,Xi〉 = ζi

Xi
we conclude

that [ζ1
X1

, ζ2
X2

] = 0 for all Xi ∈ gi which implies the result if also G1 is con-
nected. In the general case we can argue as follows:

(rg1

1 )∗ζ2
X2

= (rg1

1 )∗ gradω 〈J2,X2〉 = (rg1

1 )∗(ω̌−1d〈J2,X2〉)
= (((rg1

1 )∗ω)̌)−1d〈(rg1

1 )∗J2,X2〉 = (ω̌−1d〈J2,X2〉 = gradω 〈J2,X2〉 = ζ2
X2

.

Thus rg1

1 commutes with each r
exp(tX2)
2 and thus with each rg2

2 , since G2 is
connected. ⊓⊔

3. Right invariant weak Riemannian metrics on Lie

groups

3.1. Notation on Lie groups

Let G be a Lie group which may be infinite dimensional, but then is supposed
to be regular, with Lie algebra g. See appendix (B) for more information. Let
µ : G × G → G be the multiplication, let µx be left translation and µy be
right translation, given by µx(y) = µy(x) = xy = µ(x, y).

Let L,R : g → X(G) be the left and right invariant vector field mappings,
given by LX(g) = Te(µg).X and RX = Te(µ

g).X, respectively. They are
related by LX(g) = RAd(g)X(g). Their flows are given by

FlLX

t (g) = g. exp(tX) = µexp(tX)(g), FlRX

t (g) = exp(tX).g = µexp(tX)(g).

We also need the right Maurer-Cartan form κ = κr ∈ Ω1(G, g), given

by κx(ξ) := Tx(µx−1

) · ξ. It satisfies the right Maurer-Cartan equation dκ −
1
2 [κ, κ]∧ = 0, where [ , ]∧ denotes the wedge product of g-valued forms on
G induced by the Lie bracket. Note that 1

2 [κ, κ]∧(ξ, η) = [κ(ξ), κ(η)]. The
(exterior) derivative of the function Ad : G → GL(g) can be expressed by

d Ad = Ad .(ad ◦κl) = (ad ◦κr).Ad,

since we have d Ad(Tµg.X) = d
dt |0 Ad(g. exp(tX)) = Ad(g). ad(κl(Tµg.X)).

3.2. Geodesics of a right invariant metric on a Lie group

Let γ = 〈 , 〉 : g×g → R be a positive definite bounded (weak) inner product.
Then

γx(ξ, η) = 〈T (µx−1

) · ξ, T (µx−1

) · η)〉 = 〈κ(ξ), κ(η)〉 (1)

is a right invariant (weak) Riemannian metric on G, and any (weak) right
invariant bounded Riemannian metric is of this form, for suitable 〈 , 〉.



Geometric Evolution Equations 17

Let g : [a, b] → G be a smooth curve. The velocity field of g, viewed in the
right trivializations, coincides with the right logarithmic derivative

δr(g) = T (µg−1

) · ∂tg = κ(∂tg) = (g∗κ)(∂t), where ∂t =
∂

∂t
.

The energy of the curve g(t) is given by

E(g) = 1
2

∫ b

a

Gg(g
′, g′)dt = 1

2

∫ b

a

〈(g∗κ)(∂t), (g
∗κ)(∂t)〉 dt.

For a variation g(s, t) with fixed endpoints we have then, using the right
Maurer-Cartan equation and integration by parts,

∂sE(g) = 1
2

∫ b

a

2〈∂s(g
∗κ)(∂t), (g∗κ)(∂t)〉 dt

=

∫ b

a

〈∂t(g
∗κ)(∂s) − d(g∗κ)(∂t, ∂s), (g∗κ)(∂t)〉 dt

=

∫ b

a

(−〈(g∗κ)(∂s), ∂t(g
∗κ)(∂t)〉 − 〈[(g∗κ)(∂t), (g

∗κ)(∂s)], (g∗κ)(∂t)〉) dt

= −
∫ b

a

〈(g∗κ)(∂s), ∂t(g
∗κ)(∂t) + ad((g∗κ)(∂t))

⊤((g∗κ)(∂t))〉 dt

where ad((g∗κ)(∂t))
⊤ : g → g is the adjoint of ad((g∗κ)(∂t)) with respect to

the inner product 〈 , 〉. In infinite dimensions one also has to check the exis-
tence of this adjoint. In terms of the right logarithmic derivative u : [a, b] → g

of g : [a, b] → G, given by u(t) := g∗κ(∂t) = Tg(t)(µ
g(t)−1

) · g′(t), the geodesic
equation has the expression:

ut = − ad(u)⊤u (2)

This is, of course, just the Euler-Poincaré equation for right invariant systems
using the Lagrangian given by the kinetic energy (see [34], section 13).

3.3. The covariant derivative

Our next aim is to derive the Riemannian curvature and for that we develop
the basis-free version of Cartan’s method of moving frames in this setting,
which also works in infinite dimensions. The right trivialization, or framing,
(πG, κ) : TG → G × g induces the isomorphism R : C∞(G, g) → X(G), given
by R(X)(x) := RX(x) := Te(µ

x) · X(x), for X ∈ C∞(G, g) and x ∈ G. Here
X(G) := Γ (TG) denote the Lie algebra of all vector fields. For the Lie bracket
and the Riemannian metric we have
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[RX , RY ] = R(−[X,Y ]g + dY · RX − dX · RY ), (1)

R−1[RX , RY ] = −[X,Y ]g + RX(Y ) − RY (X),

γx(RX(x), RY (x)) = γ(X(x), Y (x)) , x ∈ G.

In the sequel we shall compute in C∞(G, g) instead of X(G). In particular,
we shall use the convention

∇XY := R−1(∇RX
RY ) for X,Y ∈ C∞(G, g).

to express the Levi-Civita covariant derivative.

Lemma.
Assume that for all ξ ∈ g the adjoint ad(ξ)⊤ with respect to the inner product
〈 , 〉 exists and that ξ 7→ ad(ξ)⊤ is bounded. Then the Levi-Civita covariant
derivative of the metric (3.2.1) exists and is given for any X,Y ∈ C∞(G, g)
in terms of the isomorphism R by

∇XY = dY.RX + 1
2 ad(X)⊤Y + 1

2 ad(Y )⊤X − 1
2 ad(X)Y. (2)

Proof. Easy computations show that this formula satisfies the axioms of a
covariant derivative, that relative to it the Riemannian metric is covariantly
constant, since

RXγ(Y,Z) = γ(dY.RX , Z) + γ(Y, dZ.RX) = γ(∇XY,Z) + γ(Y,∇XZ),

and that it is torsion free, since

∇XY −∇Y X + [X,Y ]g − dY.RX + dX.RY = 0.⊓⊔

For ξ ∈ g define α(ξ) : g → g by α(ξ)η := ad(η)⊤ξ. With this notation,
the previous lemma states that for all X ∈ C∞(G, g) the covariant derivative
of the Levi-Civita connection has the expression

∇X = RX + 1
2 ad(X)⊤ + 1

2α(X) − 1
2 ad(X). (3)

3.4. The curvature

First note that we have the following relations:

[RX , ad(Y )] = ad(RX(Y )), [RX , α(Y )] = α(RX(Y )), (1)

[RX , ad(Y )⊤] = ad(RX(Y ))⊤, [ad(X)⊤, ad(Y )⊤] = − ad([X,Y ]g)
⊤.

The Riemannian curvature is then computed by

R(X,Y ) = [∇X ,∇Y ] −∇−[X,Y ]g+RX(Y )−RY (X)

= [RX + 1
2 ad(X)⊤ + 1

2α(X) − 1
2 ad(X), RY + 1

2 ad(Y )⊤ + 1
2α(Y ) − 1

2 ad(Y )]
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− R−[X,Y ]g+RX(Y )−RY (X) − 1
2 ad(−[X,Y ]g + RX(Y ) − RY (X))⊤

− 1
2α(−[X,Y ]g + RX(Y ) − RY (X)) + 1

2 ad(−[X,Y ]g + RX(Y ) − RY (X))

= − 1
4 [ad(X)⊤ + ad(X), ad(Y )⊤ + ad(Y )] (2)

+ 1
4 [ad(X)⊤ − ad(X), α(Y )] + 1

4 [α(X), ad(Y )⊤ − ad(Y )]

+ 1
4 [α(X), α(Y )] + 1

2α([X,Y ]g).

If we plug in all definitions and use 4 times the Jacobi identity we get the
following expression

γ(4R(X,Y )Z,U) = +2γ([X,Y ], [Z,U ]) − γ([Y,Z], [X,U ]) + γ([X,Z], [Y,U ])

− γ(Z, [U, [X,Y ]]) + γ(U, [Z, [X,Y ]]) − γ(Y, [X, [U,Z]]) − γ(X, [Y, [Z,U ]])

+ γ(ad(X)⊤Z, ad(Y )⊤U) + γ(ad(X)⊤Z, ad(U)⊤Y )

+ γ(ad(Z)⊤X, ad(Y )⊤U) − γ(ad(U)⊤X, ad(Y )⊤Z) (3)

− γ(ad(Y )⊤Z, ad(X)⊤U) − γ(ad(Z)⊤Y, ad(X)⊤U)

− γ(ad(U)⊤X, ad(Z)⊤Y ) + γ(ad(U)⊤Y, ad(Z)⊤X).

This yields the following expression which is useful for computing the sectional
curvature:

4γ(R(X,Y )X,Y ) = 3γ(ad(X)Y, ad(X)Y ) − 2γ(ad(Y )⊤X, ad(X)Y )

− 2γ(ad(X)⊤Y, ad(Y )X) + 4γ(ad(X)⊤X, ad(Y )⊤Y ) (4)

− γ(ad(X)⊤Y + ad(Y )⊤X, ad(X)⊤Y + ad(Y )⊤X).

3.5. Jacobi fields, I

We compute first the Jacobi equation directly via variations of geodesics. So
let g : R2 → G be smooth, t 7→ g(t, s) a geodesic for each s. Let again
u = κ(∂tg) = (g∗κ)(∂t) be the velocity field along the geodesic in right
trivialization which satisfies the geodesic equation ut = − ad(u)⊤u. Then
y := κ(∂sg) = (g∗κ)(∂s) is the Jacobi field corresponding to this variation,
written in the right trivialization. From the right Maurer-Cartan equation we
then have:

yt = ∂t(g
∗κ)(∂s) = d(g∗κ)(∂t, ∂s) + ∂s(g

∗κ)(∂t) + 0

= [(g∗κ)(∂t), (g
∗κ)(∂s)]g + us

= [u, y] + us.

Using the geodesic equation, the definition of α, and the fourth relation in
(3.4.1), this identity implies

ust = uts = ∂sut = −∂s(ad(u)⊤u) = − ad(us)
⊤u − ad(u)⊤us

= − ad(yt + [y, u])⊤u − ad(u)⊤(yt + [y, u])
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= −α(u)yt − ad([y, u])⊤u − ad(u)⊤yt − ad(u)⊤([y, u])

= − ad(u)⊤yt − α(u)yt + [ad(y)⊤, ad(u)⊤]u − ad(u)⊤ ad(y)u .

Finally we get the Jacobi equation as

ytt = [ut, y] + [u, yt] + ust

= ad(y) ad(u)⊤u + ad(u)yt − ad(u)⊤yt

− α(u)yt + [ad(y)⊤, ad(u)⊤]u − ad(u)⊤ ad(y)u ,

ytt = [ad(y)⊤ + ad(y), ad(u)⊤]u − ad(u)⊤yt − α(u)yt + ad(u)yt . (1)

3.6. Jacobi fields, II

Let y be a Jacobi field along a geodesic g with right trivialized velocity field u.
Then y should satisfy the analogue of the finite dimensional Jacobi equation

∇∂t
∇∂t

y + R(y, u)u = 0

We want to show that this leads to same equation as (3.5.1). First note that
from (3.3.2) we have

∇∂t
y = yt + 1

2 ad(u)⊤y + 1
2α(u)y − 1

2 ad(u)y

so that, using ut = − ad(u)⊤u, we get:

∇∂t
∇∂t

y = ∇∂t

(
yt + 1

2 ad(u)⊤y + 1
2α(u)y − 1

2 ad(u)y
)

= ytt + 1
2 ad(ut)

⊤y + 1
2 ad(u)⊤yt + 1

2α(ut)y

+ 1
2α(u)yt − 1

2 ad(ut)y − 1
2 ad(u)yt

+ 1
2 ad(u)⊤

(
yt + 1

2 ad(u)⊤y + 1
2α(u)y − 1

2 ad(u)y
)

+ 1
2α(u)

(
yt + 1

2 ad(u)⊤y + 1
2α(u)y − 1

2 ad(u)y
)

− 1
2 ad(u)

(
yt + 1

2 ad(u)⊤y + 1
2α(u)y − 1

2 ad(u)y
)

= ytt + ad(u)⊤yt + α(u)yt − ad(u)yt

− 1
2α(y) ad(u)⊤u − 1

2 ad(y)⊤ ad(u)⊤u − 1
2 ad(y) ad(u)⊤u

+ 1
2 ad(u)⊤

(
1
2α(y)u + 1

2 ad(y)⊤u + 1
2 ad(y)u

)

+ 1
2α(u)

(
1
2α(y)u + 1

2 ad(y)⊤u + 1
2 ad(y)u

)

− 1
2 ad(u)

(
1
2α(y)u + 1

2 ad(y)⊤u + 1
2 ad(y)u

)
.
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In the second line of the last expression we use

− 1
2α(y) ad(u)⊤u = − 1

4α(y) ad(u)⊤u − 1
4α(y)α(u)u

and similar forms for the other two terms to get:

∇∂t
∇∂t

y = ytt + ad(u)⊤yt + α(u)yt − ad(u)yt

+ 1
4 [ad(u)⊤, α(y)]u + 1

4 [ad(u)⊤, ad(y)⊤]u + 1
4 [ad(u)⊤, ad(y)]u

+ 1
4 [α(u), α(y)]u + 1

4 [α(u), ad(y)⊤]u + 1
4 [α(u), ad(y)]u

− 1
4 [ad(u), α(y)]u − 1

4 [ad(u), ad(y)⊤ + ad(y)]u,

where in the last line we also used ad(u)u = 0. We now compute the curvature
term using (3.4.2):

R(y, u)u = − 1
4 [ad(y)⊤ + ad(y), ad(u)⊤ + ad(u)]u

+ 1
4 [ad(y)⊤ − ad(y), α(u)]u + 1

4 [α(y), ad(u)⊤ − ad(u)]u

+ 1
4 [α(y), α(u)] + 1

2α([y, u])u

= − 1
4 [ad(y)⊤ + ad(y), ad(u)⊤]u − 1

4 [ad(y)⊤ + ad(y), ad(u)]u

+ 1
4 [ad(y)⊤, α(u)]u − 1

4 [ad(y), α(u)]u + 1
4 [α(y), ad(u)⊤ − ad(u)]u

+ 1
4 [α(y), α(u)]u + 1

2 ad(u)⊤ ad(y)u .

Summing up we get

∇∂t
∇∂t

y + R(y, u)u = ytt + ad(u)⊤yt + α(u)yt − ad(u)yt

− 1
2 [ad(y)⊤ + ad(y), ad(u)⊤]u

+ 1
2 [α(u), ad(y)]u + 1

2 ad(u)⊤ ad(y)u .

Finally we need the following computation using (3.4.1):

1
2 [α(u), ad(y)]u = 1

2α(u)[y, u] − 1
2 ad(y)α(u)u

= 1
2 ad([y, u])⊤u − 1

2 ad(y) ad(u)⊤u

= − 1
2 [ad(y)⊤, ad(u)⊤]u − 1

2 ad(y) ad(u)⊤u .

Inserting we get the desired result:

∇∂t
∇∂t

y + R(y, u)u = ytt + ad(u)⊤yt + α(u)yt − ad(u)yt

− [ad(y)⊤ + ad(y), ad(u)⊤]u.
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3.7. The weak symplectic structure on the space of Jacobi fields

Let us assume now that the geodesic equation in g

ut = − ad(u)⊤u

admits a unique solution for some time interval, depending smoothly on the
choice of the initial value u(0). Furthermore we assume that G is a regular
Lie group (B.9) so that each smooth curve u in g is the right logarithmic
derivative of a smooth curve g in G which depends smoothly on u, so that
u = (g∗κ)(∂t). Furthermore we have to assume that the Jacobi equation along
u admits a unique solution for some time, depending smoothly on the initial
values y(0) and yt(0). These are non-trivial assumptions: in (A.4) there are
examples of ordinary linear differential equations ‘with constant coefficients’
which violate existence or uniqueness. These assumptions have to be checked
in the special situations. Then the space Ju of all Jacobi fields along the
geodesic g described by u is isomorphic to the space g × g of all initial data.

There is the well known symplectic structure on the space Ju of all Jacobi
fields along a fixed geodesic with velocity field u, see e.g. [28], II, p.70. It is
given by the following expression which is constant in time t:

ω(y, z) : = 〈y,∇∂t
z〉 − 〈∇∂t

y, z〉
= 〈y, zt + 1

2 ad(u)⊤z + 1
2α(u)z − 1

2 ad(u)z〉
− 〈yt + 1

2 ad(u)⊤y + 1
2α(u)y − 1

2 ad(u)y, z〉
= 〈y, zt〉 − 〈yt, z〉 + 〈[u, y], z〉 − 〈y, [u, z]〉 − 〈[y, z], u〉
= 〈y, zt − ad(u)z + 1

2α(u)z〉 − 〈yt − ad(u)y + 1
2α(u)y, z〉.

It is worth while to check directly from the Jacobi field equation (3.5.1) that
ω(y, z) is indeed constant in t. Clearly ω is a weak symplectic structure on
the relevant vector space Ju

∼= g× g, i.e., ω gives an injective (but in general
not surjective) linear mapping Ju → J ∗

u . This is seen most easily by writing

ω(y, z) = 〈y, zt − Γg(u, z)〉|t=0 − 〈yt − Γg(u, y), z〉|t=0

which is induced from the standard symplectic structure on g×g∗ by applying
first the automorphism (a, b) 7→ (a, b−Γg(u, a)) to g×g and then by injecting
the second factor g into its dual g∗.

For regular (infinite dimensional) Lie groups variations of geodesics exist,
but there is no general theorem stating that they are uniquely determined
by y(0) and yt(0). For concrete regular Lie groups, this needs to be shown
directly.
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4. The Hamiltonian approach

4.1. The symplectic form on T ∗G and G × g
∗

For an (infinite dimensional regular) Lie group G with Lie algebra g, elements
in the cotangent bundle π : (T ∗G,ωG) → G are said to be in material or
Lagrangian representation. The cotangent bundle T ∗G has two trivializations,
the left one

(πG, κl) : T ∗G → G × g∗,

T ∗
g G ∋ αg 7→ (g, Te(µg)

∗αg = T ∗
g (µg−1)αg),

also called the body coordinate chart, and the right one,

(πG, κr) : T ∗G → G × g∗,

T ∗G ∋ αg 7→ (g, Te(µ
g)∗αg = T ∗

g (µg−1

)αg), (1)

Tg(µ
g−1

)∗α ← (g, α) ∈ G × g∗

also called the space or Eulerian coordinate chart. We will use only this from
now on. The canonical 1-form in the Eulerian chart is given by (where 〈 , 〉 :
g∗ × g → R is the duality pairing):

θG×g∗(ξg, α, β) := (((π, κr)−1)∗θG)(g,α)(ξg, α, β)

= θG(T(g,α)(π, κr)−1(ξg, α, β))

=
〈
πT∗G(T(g,α)(π, κr)−1(ξg, α, β)), T (π)(T(g,α)(π, κr)−1(ξg, α, β))

〉

=
〈
(π, κr)−1(πG, πg∗)(ξg, α, β), T (π ◦ (π, κr)−1)(ξg, α, β))

〉

=
〈
(π, κr)−1(g, α), T (pr1)(ξg, α, β))

〉
=

〈
Tg(µ

g−1

)∗α, ξg

〉

= 〈α, Tg(µ
g−1

)ξg〉 = 〈α, κr(ξg)〉 (2)

Now it is easy to to take the exterior derivative: For Xi ∈ G, thus RXi
∈ X(G)

right invariant vector fields, and g∗ ∋ βi ∈ X(g∗) constant vector fields, we
have

θG×g∗(RXi
(g), (α, βi)) = 〈α,Xi〉

θG×g∗(RXi
, βi) = 〈Idg∗ ,Xi〉 = 〈 ,Xi〉

ωG×g∗((RX1
, β1), (RX2

, β2)) = −dθG×g∗((RX1
, β1), (RX2

, β2))

= −(RX1
, β1)(θG×g∗(RX2

, β2)) + (RX2
, β2)(θG×g∗(RX1

, β1))

+ (θG×g∗([(RX1
, β1), RX2

, β2)])

= −(RX1
, β1)(〈 ,X2〉) + (RX2

, β2)(〈 ,X1〉)
+ (θG×g∗(−R[X1,X2], 0g∗)
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= −〈β1,X2〉 + 〈β2,X1〉 − 〈 , [X1,X2]〉
(ωG×g∗)(g,α)((T (µg).X1, β1), (T (µg)X2, β2))

= 〈β2,X1〉 − 〈β1,X2〉 − 〈α, [X1,X2]〉 (3)

4.2. The symplectic form on TG and G × g and the momentum
mapping

We consider an (infinite dimensional regular) Lie group G with Lie algebra
g and a bounded weak inner product γ : g × g → R with the property the
transpose of the adjoint action of G on g,

γ(Ad(g)⊤X,Y ) = γ(X,Ad(g)X),

exists. It is then unique and a right action of G on g. By differentiating it
follows that then also the transpose of the adjoint operation of g exists:

γ(ad(X)⊤Y,Z) = ∂t|0γ(Ad(exp(tX))⊤Y,Z) = γ(Y, ad(X)Z)

exists.
We exted γ to a right invariant Riemannian metric, again called γ on G

and consider γ : TG → T ∗G. Then we pull back the canonical symplectic
structure ωG to G × g in the right or Eulerian trivialization:

γ : G × g → G × g∗, (g,X) 7→ (g, γ(X))

(γ∗ω)(g,X)((T (µg).X1,X, Y1), (T (µg)X2,X, Y2))

= ω(g,γ(X))((T (µg).X1, γ(X), γ(Y1)), (T (µg)X2, γ(X), γ(Y2)))

= 〈γ(Y2),X1〉 − 〈γ(Y1),X2〉 − 〈γ(X), [X1,X2]〉
= γ(Y2,X1) − γ(Y1,X2) − γ(X, [X1,X2]) (1)

Since γ is a weak inner product, γ∗ω is again a weak symplectic structure on
TG ∼= G × g. We compute the Hamiltonian vector field mapping (symplectic
gradient) for functions f ∈ C∞

γ∗ω(G × g) admitting such gradients:

(γ∗ω)(g,X)

(
gradγ∗ω(f)(g,X), (T (µg)X2,X, Y2)

)
= df(T (µg)X2;X,Y2)

= d1f(g,X)(T (µg)X2) + d2f(g,X)(Y2)

= γ(κr(gradγ
1(f)(g,X)),X2) + γ(gradγ

2(f)(g,X), Y2)

= γ(X1, Y2) + γ(−Y1 − ad(X1)
⊤X,X2) by ((1)).

Thus the Hamiltonian vector field of f ∈ C∞
γ∗ω(G × g) = C∞

γ (G × g) is

gradγ∗ω(f)(g,X) = (2)
(
T (µg) gradγ

2(f)(g,X),X,− ad(gradγ
2(f)(g,X))⊤X − κr(gradγ

1(f)(g,X))
)
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In particular, the Hamiltonian vector field of the function (g,X) 7→ γ(X,X) =
‖X‖2

γ on TG is given by:

gradγ∗ω( 1
2‖ ‖2

γ)(g,X) = (T (µg)X;X,− ad(X)⊤X) (3)

We can now compute again the flow equation of the Hamiltonian vector field
gradγ∗ω( 1

2‖ ‖2
γ): For gt(t) ∈ TG we have

(πG, κr)(gt(t)) = (g(t), u(t)) = (g(t), T (µg(t)−1

)gt(t))

and
∂t(g, u) = gradγ∗ω( 1

2‖ ‖2
γ)(g, u) = (T (µg)u, u,− ad(u)⊤u). (4)

which reproduces the geodesic equation from (3.2).

4.3. The momentum mapping

Under the assumptions of (4.2), consider the right action of G on G and
its prolongation to a right action of G on TG in the Eulerian chart. The
corresponding fundamental vector fields are then given by:

T (µg) : TG → TG,

(π, κr)T (µg)T (µh)X = (π, κr)T (µhg)X = (h.g,X), (h,X) 7→ (hg,X)

ζG×g

X (h, Y ) = ∂t|0(h. exp(tX), Y ) = (T (µh)X, 0Y ) ∈ TG × Tg (1)

Consider now the diagram from (2.1) in the case of the weak symplectic man-
ifold (M = G × g, γ∗ω):

H0 // C∞
γ∗ω(G × g, R)

gradγ∗ω

// X(G × g, γ∗ω) // H1
γ∗ω

g

j

eeLLLLLLLLLLL
ζ

99sssssssssss

From the formulas derived above we see that for j(X)(h, Y ) := γ(Ad(h)X,Y )
we have:

γ(gradγ
2(j(X))(h, Y ), Z) = d2(j(X))(h, Y )(Z) = γ(Ad(h)X,Z)

gradγ
2(j(X))(h, Y ) = Ad(h)X

γ(gradγ
1(j(X))(h, Y ), T (µh)Z) = d(j(X))(T (µh)Z, Y, 0)

= γ(d Ad(T (µh)Z)(X), Y ) = γ(((ad ◦κr)Ad)(T (µh)Z)(X), Y )

= γ(ad(Z)Ad(h)X,Y ) = −γ([Ad(h)X,Z], Y ) = −γ(Z, ad(Ad(h)X)⊤Y )

κr(gradγ
1(j(X))(h, Y )) = − ad(Ad(h)X)⊤Y

Thus the momentum mapping is
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J : G × g → g∗, J ∈ C∞
γ∗ω(G × g, g∗) =

= {f ∈ C∞(G × g, g∗) : 〈f( ),X〉 ∈ C∞
γ∗ω(G × g) ∀X ∈ g}

〈J(h, Y ),X〉 = j(X)(h, Y ) = γ(Ad(h)X,Y ) = γ(Ad(h)⊤Y,X)

= 〈γ(Ad(h)⊤Y ),X〉,
J(h, Y ) = γ(Ad(h)⊤Y ) ∈ g∗

J̄ := γ−1 ◦ J : G × g → g,

J̄(h, Y ) = Ad(h)⊤Y ∈ g. (2)

(3) Note that the momentum mapping J : G×g → g∗ is equivariant for the
right G-action and the coadjoint action, and that J̄ : G×g → g is equivariant
for the right action Ad( )⊤ on g:

〈J(hg, Y ),X〉 = 〈γ(Ad(hg)⊤Y ),X〉 = γ(Ad(g)⊤ Ad(h)⊤Y,X)

= γ(Ad(h)⊤Y,Ad(g)X) = 〈γ(Ad(h)⊤Y ),Ad(g)X〉
= 〈Ad(g)∗γ(Ad(h)⊤Y ),X〉 = 〈Ad(g)∗J(h, Y ),X〉

J̄(hg, Y ) = Ad(hg)⊤Y = Ad(g)⊤J̄(h, Y ).

(4) For x ∈ G × g, the transposed mapping of dJ̄(x) : Tx(G × g) → g is

dJ̄(x)⊤ : g → T ∗
x (G × g), dJ̄(x)⊤ = (γ∗ω)x ◦ ζ,

since for ξ ∈ Tx(G × g) and X ∈ g we have

γ(dJ̄(ξ),X) = dγ(J̄ ,X)(ξ) = dj(X)(ξ) = 〈(γ∗ω)(ζX), ξ〉.

(5) For x ∈ G × g, the closure dJ̄(Tx(G × g)) of the image of dJ̄(x) :
Tx(G× g) → g is the γ-orthogonal space g⊥,γ

x of the isotropy Lie algeba gx :=
{X ∈ g : ζX(x) = 0} in g, since the annihilator of the image is the kernel of
the transposed mapping,

im(dJ(x))◦ = ker(dJ(x)⊤) = ker((γ∗ω)x ◦ ζ) = ker(evx ◦ζ) = gx.

Attention: the orthogonal space with respect to a weak inner product need
not be a complement.

(6) For (h, Y ) ∈ G × g, the G-orbit (h, Y ).G = G × {Y } is a submanifold
of G × g. The kernel of dJ̄(h, Y ) is the symplectic orthogonal space

(T(h,Y )(G × {Y }))⊥,γ∗ω ⊂ T (µh)g × g

since for the annihilator of the kernel we have

ker(dJ̄(h, Y ))◦ = im(dJ̄(h, Y )⊤) = im((γ∗ω(h,Y ) ◦ ζ), by ((4)),

= {(γ∗ω)(h,Y )(ζX(x)) : X ∈ g} = (γ∗ω)(h,Y )(T(h,Y )(G × {Y })),
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=
(
(T(h,Y )(G × {Y }))⊥,γ∗ω

)◦
.

The last equality holds by the bipolar theorem for the usual duality pairing.
(7) Thus, for (h, Y ) ∈ G × g,

T (µh)X1, Y1) ∈ ker(dJ̄(h, Y ))

⇐⇒ (γ∗ω)(h,Y )((T (µh)X1, Y1), (T (µh)Z, 0)) = 0 for all Z ∈ g

⇐⇒ 0 = 0 − γ(Y1, Z) − γ(Y, [X1, Z]) = −γ(Y1 + ad(X1)
⊤Y,Z) ∀ Z ∈ g

⇐⇒ Y1 = − ad(X1)
⊤Y.

(8) (Emmy Noether’s theorem) Let h ∈ C∞
ω (G×g) be a Hamiltonian func-

tion which is invariant under the right G-action. Then dJ̄(gradγ∗ω(h)) = 0 ∈
g and also dJ(gradγ∗ω(h)) = 0 ∈ γ(g) ⊆ g∗. Thus the momentum mappings
J̄ : G × g → g and J : G × g → γ(g) ⊂ g∗ are constant on each trajectory

(if it exists) of the Hamiltonian vector field gradγ∗ω(h). Namely, consider the
function γ(J̄ ,X) = 〈J,X〉 = j(X).

γ(dJ̄(gradγ∗ω(h)),X) = gradγ∗ω(h)(γ(J̄ ,X)) =

= {h, γ(J̄ ,X)} = −{j(X), h} = −ζX(h) = 0.

〈dJ(gradγ∗ω(h)),X〉 = gradγ∗ω(h)(〈J,X〉) =

= {h, j(X)} = −{j(X), h} = −ζX(h) = 0.

4.4. The geodesic equation via conserved momentum

We consider a smooth curve t 7→ g(t) in G and (πG, κr)gt(t) = (g(t), u(t)) =

(g(t), T (µg(t)−1

)gt(t)) as in (4.2.4). Applying J̄ : G × g → g to it we get
J̄(g, u) = Ad(g)⊤u. We claim that the curves t 7→ g(t) in G for which
J̄(g(t), u(t)) is constant in t are exactly the geodesics in (G, γ). Namely, by
(3.1) we have

0 = ∂t Ad(g(t))⊤u(t) =
(
(ad ◦κr)(∂tg(t)).Ad(g(t))

)⊤
u(t) + Ad(g(t))⊤∂tu(t)

= Ad(g(t))⊤
(
ad(u(t))⊤u(t) + ut(t)

)

⇐⇒ ut = − ad(u)⊤u.

4.5. Symplectic reduction to transposed adjoint orbits

Under the assumptions of (4.2) we have the following:
(1) For X ∈ J̄(G × g) the inverse image J̄−1(X) ⊂ G × g is a manifold.

Namely, it is the graph of a smooth mapping:

J̄−1(X) = {(h, Y ) ∈ G × g : Ad(h)⊤Y = X}
= {(h,Ad(h−1)⊤X) : h ∈ G} ←∼=− G.⊓⊔
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(2) At any point of J̄−1(X), the kernel of the pullback of the symplectic
form γ∗ω on G × g from (4.2.1) equals the tangent space to the orbit of the
isotropy group GX := {g ∈ G : Ad(g)⊤X = X} through that point.

For (h, Y = Ad(h−1)⊤X) ∈ J̄−1(X) the GX -orbit is h.GX × {Y } and its
tangent space at (h, Y ) is T (µh)gX × 0 where gX = {Z ∈ g : ad(Z)⊤X = 0}.
The tangent space at (h, Y ) of J̄−1(X) is

T(h,Ad(h−1)⊤X)J̄
−1(X) = {∂t|0(exp(tZ).h,Ad((exp(tZ).h)−1)⊤X) : Z ∈ g}

= {(T (µh)Z,− ad(Z)⊤ Ad(h−1)⊤X) : Z ∈ g} ⊂ ThG × g.

For Z1, Z2 ∈ g consider the tangent vectors (T (µh)Ad(h)Z1, Y,− ad(Z1)X)
and (T (µh)Z, Y,− ad(Z)⊤ Ad(h−1)⊤X) in T(h,Y )J̄

−1(X). From (4.2.1), we get

(γ∗ω)(h,Y )

(
(T (µh)Ad(h)Z1,−ad(Z1)

⊤X), (T (µh)Z2,−ad(Z2)
⊤ Ad(h−1)⊤X)

)

= γ(− ad(Z2)
⊤ Ad(h−1)⊤X,Ad(h)Z1) − γ(− ad(Z1)

⊤X,Z2)

− γ(Y, [Ad(h)Z1, Z2])

= −γ(Ad(h−1)⊤X, ad(Z2)Ad(h)Z1) + γ(ad(Z1)
⊤X,Z2)−

− γ(Ad(h−1)⊤X, [Ad(h)Z1, Z2])

= γ(ad(Z1)
⊤X,Z2) = 0 ∀Z2 ∈ g ⇐⇒ Z1 ∈ gX . ⊓⊔

(3) The reduced symplectic manifold J̄−1(X)/GX with symplectic form
induced by γ∗ω|J̄−1(X) is symplectomorphic to the adjoint orbit Ad(G)⊤X ⊂ g

with symplectic form the pullback via γ : g → g∗ of the Kostant Kirillov
Souriou form

ωα(ad(Y1)
∗α, ad(Y2)

∗α) = 〈α, [Y1, Y2]〉
which is given by

ωZ(ad(Y1)
⊤Z, ad(Y2)

⊤Z) = ωγ(Z)(γ ad(Y1)
⊤Z, γ ad(Y2)

⊤Z)

= ωγ(Z)(ad(Y1)
∗γZ, ad(Y2)

∗γZ) = 〈γ(Z), [Y1, Y2]〉 = γ(Z, [Y1, Y2]),

since for Y,Z, U ∈ g we get

〈γ ad(Y )⊤Z,U〉 = γ(ad(Y )⊤Z,U) = γ(Z, ad(Y )U) =

= 〈γ(Z), ad(Y )U〉 = 〈ad(Y )∗γ(Z), U〉.

The quotient space is J̄−1(X)/GX = {(h.GX ,Ad(h−1)⊤X) : h ∈ G} ∼=
Ad(G)⊤X ∼= G/GX . The 2-form γ∗ω|J̄−1(X) induces a symplectic form on
the quotient by (2) and it remains to check that it agrees with the pullback
of the Kirillov Kostant Souriou symplectic form. But this is obvious from the
last computation in (2) (for the special case h = e if the reader insists). ⊓⊔

(4) Reconsider the geodesic equation on the reduced space J̄−1(X)/GX
∼=

Ad(G)⊤X. The energy function is E(Ad(g)⊤X) = 1
2‖Ad(g)⊤X‖2

γ . For Z =

Ad(g)⊤X ∈ Ad(G)⊤X the tangent space is given by TZ(Ad(G)⊤X) =
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{ad(Y )⊤Z : Y ∈ g}. We look for the Hamiltonian vector field of E in the
form gradω E(Z) = ad(HE(Z))⊤Z, for a vector field HE . The differential
of the energy function is dE(Z)(ad(Y )⊤Z) = γ(Z, ad(Y )⊤Z) = γ([Y,Z], Z)
which equals ωZ(gradω E(Z), ad(Y )⊤Z) = ωZ(ad(HE(Z))⊤Z, ad(Y )⊤Z) =
γ(Z, [HE(Z), Y ]) from which we conclude that HE(Z) = −Z will do (which is
defined up to annihilator of Z). Thus gradω E(Z) = − ad(Z)⊤Z which leads
us back to the geodesic equation ut = − ad(u)⊤u again.

5. Vanishing H0-geodesic distance on groups of

diffeomorphisms

This section is based on [40].

5.1 The H0-metric on groups of diffeomorphisms

Let (N, g) be a smooth connected Riemannian manifold, and let Diffc(N) be
the group of all diffeomorphisms with compact support on N , and let Diff0(N)
be the subgroup of those which are diffeotopic in Diffc(N) to the identity; this
is the connected component of the identity in Diffc(N), which is a regular Lie
group in the sense of [42], section 38. This is proved in [31], section 42. The Lie
algebra is Xc(N), the space of all smooth vector fields with compact support
on N , with the negative of the usual bracket of vector fields as Lie bracket.
Moreover, Diff0(N) is a simple group (has no nontrivial normal subgroups),
see [18], [50], [35]. The right invariant H0-metric on Diff0(N) is then given as
follows, where h, k : N → TN are vector fields with compact support along ϕ
and where X = h ◦ ϕ−1, Y = k ◦ ψ−1 ∈ Xc(N):

γ0
ϕ(h, k) =

∫

N

g(h, k) vol(ϕ∗g) =

∫

N

g(X ◦ ϕ, Y ◦ ϕ)ϕ∗ vol(g)

=

∫

N

g(X,Y ) vol(g). (1)

5.2. Theorem.
Geodesic distance on Diff0(N) with respect to the H0-metric vanishes.

Proof. Let [0, 1] ∋ t 7→ ϕ(t, ) be a smooth curve in Diff0(N) between ϕ0

and ϕ1. Consider the curve u = ϕt ◦ ϕ−1 in Xc(N), the right logarithmic
derivative. Then for the length and the energy we have:

Lγ0(ϕ) =

∫ 1

0

√∫

N

‖u‖2
g vol(g) dt (1)

Eγ0(ϕ) =

∫ 1

0

∫

N

‖u‖2
g vol(g) dt (2)
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Lγ0(ϕ)2 ≤ Eγ0(ϕ) (3)

(4) Let us denote by Diff0(N)E=0 the set of all diffeomorphisms ϕ ∈ Diff0(N)
with the following property: For each ε > 0 there exists a smooth curve from
the identity to ϕ in Diff0(N) with energy ≤ ε.
(5) We claim that Diff0(N)E=0 coincides with the set of all diffeomorphisms
which can be reached from the identity by a smooth curve of arbitraily short
γ0-length. This follows by (3).
(6) We claim that Diff0(N)E=0 is a normal subgroup of Diff0(N). Let ϕ1 ∈
Diff0(N)E=0 and ψ ∈ Diff0(N). For any smooth curve t 7→ ϕ(t, ) from the
identity to ϕ1 with energy Eγ0(ϕ) < ε we have

Eγ0(ψ−1 ◦ ϕ ◦ ψ) =

∫ 1

0

∫

N

‖Tψ−1 ◦ ϕt ◦ ψ‖2
g vol((ψ−1 ◦ ϕ ◦ ψ)∗g)

≤ sup
x∈N

‖Txψ−1‖2 ·
∫ 1

0

∫

N

‖ϕt ◦ ψ‖2
g(ϕ ◦ ψ)∗ vol((ψ−1)∗g)

≤ sup
x∈N

‖Txψ−1‖2 · sup
x∈N

vol((ψ−1)∗g)

vol(g)
·
∫ 1

0

∫

N

‖ϕt ◦ ψ‖2
g (ϕ ◦ ψ)∗ vol(g)

≤ sup
x∈N

‖Txψ−1‖2 · sup
x∈N

vol((ψ−1)∗g)

vol(g)
· Eγ0(ϕ).

Since ψ is a diffeomorphism with compact support, the two suprema are
bounded. Thus ψ−1 ◦ ϕ1 ◦ ψ ∈ Diff0(N)E=0.
(7) We claim that Diff0(N)E=0 is a non-trivial subgroup. In view of the sim-
plicity of Diff0(N) mentioned in (5.1) this concludes the proof.

It remains to find a non-trivial diffeomorphism in Diff0(N)E=0. The idea
is to use compression waves. The basic case is this: take any non-decreasing
smooth function f : R → R such that f(x) ≡ 0 if x ≪ 0 and f(x) ≡ 1 if
x ≫ 0. Define

ϕ(t, x) = x + f(t − λx)

where λ < 1/max(f ′). Note that

ϕx(t, x) = 1 − λf ′(t − λx) > 0,

hence each map ϕ(t, ) is a diffeomorphism of R and we have a path in the
group of diffeomorphisms of R. These maps are not the identity outside a
compact set however. In fact, ϕ(x) = x + 1 if x ≪ 0 and ϕ(x) = x if x ≫ 0.
As t → −∞, the map ϕ(t, ) approaches the identity uniformly on compact
subsets, while as t → +∞, the map approaches translation by 1. This path is
a moving compression wave which pushes all points forward by a distance 1
as it passes. We calculate its energy between two times t0 and t1:

Et1
t0 (ϕ) =

∫ t1

t0

∫

R

ϕt(t, ϕ(t, )−1(x))2dx dt =

∫ t1

t0

∫

R

ϕt(t, y)2ϕy(t, y)dy dt
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=

∫ t1

t0

∫

R

f ′(z)2 · (1 − λf ′(z))
dz

λ
dt

≤ max f ′2

λ
· (t1 − t0) ·

∫

supp(f ′)

(1 − λf ′(z))dz

If we let λ = 1 − ε and consider the specific f given by the convolution

f(z) = max(0,min(1, z)) ⋆ Gε(z),

where Gε is a smoothing kernel supported on [−ε,+ε], then the integral is
bounded by 3ε, hence

Et1
t0 (ϕ) ≤ (t1 − t0)

3ε
1−ε .

We next need to adapt this path so that it has compact support. To do
this we have to start and stop the compression wave, which we do by giving
it variable length. Let:

fε(z, a) = max(0,min(a, z)) ⋆ (Gε(z)Gε(a)).

The starting wave can be defined by:

ϕε(t, x) = x + fε(t − λx, g(x)), λ < 1, g increasing.

Note that the path of an individual particle x hits the wave at t = λx− ε and
leaves it at t = λx + g(x) + ε, having moved forward to x + g(x). Calculate
the derivatives:

(fε)z = I0≤z≤a ⋆ (Gε(z)Gε(a)) ∈ [0, 1]

(fε)a = I0≤a≤z ⋆ (Gε(z)Gε(a)) ∈ [0, 1]

(ϕε)t = (fε)z(t − λx, g(x))

(ϕε)x = 1 − λ(fε)z(t − λx, g(x)) + (fε)a(t − λx, g(x)) · g′(x) > 0.

This gives us:

Et1
t0 (ϕ) =

∫ t1

t0

∫

R

(ϕε)
2
t (ϕε)xdx dt

≤
∫ t1

t0

∫

R

(fε)
2
z(t − λx, g(x)) · (1 − λ(fε)z(t − λx, g(x)))dx dt

+

∫ t1

t0

∫

R

(fε)
2
z(t − λx, g(x)) · (fε)a(t − λx, g(x))g′(x)dx dt

The first integral can be bounded as in the original discussion. The second
integral is also small because the support of the z-derivative is −ε ≤ t−λx ≤
g(x) + ε, while the support of the a-derivative is −ε ≤ g(x) ≤ t − λx + ε, so
together |g(x) − (t − λx)| ≤ ε. Now define x1 and x2 by g(x1) + λx1 = t + ε
and g(x0) + λx0 = t − ε. Then the inner integral is bounded by
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∫

|g(x)+λx−t|≤ε

g′(x)dx = g(x1) − g(x0) ≤ 2ε,

and the whole second term is bounded by 2ε(t1− t0). Thus the length is O(ε).
The end of the wave can be handled by playing the beginning backwards.

If the distance that a point x moves when the wave passes it is to be g(x), so
that the final diffeomorphism is x 7→ x + g(x), then let b = max(g) and use
the above definition of ϕ while g′ > 0. The modification when g′ < 0 (but
g′ > −1 in order for x 7→ x + g(x) to have positive derivative) is given by:

ϕε(t, x) = x + fε(t − λx − (1 − λ)(b − g(x)), g(x)).

Consider the figure showing the trajectories ϕε(t, x) for sample values of x.
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It remains to show that Diff0(N)E=0 is a nontrivial subgroup for an arbi-
trary Riemannian manifold. We choose a piece of a unit speed geodesic con-
taining no conjugate points in N and Fermi coordinates along this geodesic;
so we can assume that we are in an open set in Rm which is a tube around
a piece of the u1-axis. Now we use a small bump function in the slice or-
thogonal to the u1-axis and multiply it with the construction from above for
the coordinate u1. Then it follows that we get a nontrivial diffeomorphism in
Diff0(N)E=0 again. ⊓⊔

Remark

Theorem (5.2) can be proved directly without the help of the simplicity of
Diff0(N). For N = R one can use the method of (5.2.7) in the parameter
space of a curve, and for general N one can use a Morse function on N to
produce a special coordinate for applying the same method.
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5.3. Geodesics and sectional curvature for γ0 on Diff(N)

According to (3.2), (3.4), or (4.4), for a right invariant weak Riemannian
metric G on an (possibly infinite dimensional) Lie group the geodesic equation
and the curvature are given in terms of the transposed operator (with respect
to G, if it exists) of the Lie bracket by the following formulas:

ut = − ad(u)∗u, u = ϕt ◦ ϕ−1

G(ad(X)∗Y,Z) := G(Y, ad(X)Z)

4G(R(X,Y )X,Y ) = 3G(ad(X)Y, ad(X)Y ) − 2G(ad(Y )∗X, ad(X)Y )

− 2G(ad(X)∗Y, ad(Y )X) + 4G(ad(X)∗X, ad(Y )∗Y )

− G(ad(X)∗Y + ad(Y )∗X, ad(X)∗Y + ad(Y )∗X)

In our case, for Diff0(N), we have ad(X)Y = −[X,Y ] (the bracket on the Lie
algebra Xc(N) of vector fields with compact support is the negative of the
usual one), and:

γ0(X,Y ) =

∫

N

g(X,Y ) vol(g)

γ0(ad(Y )∗X,Z) = γ0(X,−[Y,Z]) =

∫

N

g(X,−LY Z) vol(g)

=

∫

N

g
(
LY X + (g−1LY g)X + divg(Y )X,Z

)
vol(g)

ad(Y )∗ = LY + g−1LY (g) + divg(Y ) IdT N = LY + β(Y ),

where the tensor field β(Y ) = g−1LY (g) + divg(Y ) Id : TN → TN is self
adjoint with respect to g. Thus the geodesic equation is

ut = −(g−1Lu(g))(u) − divg(u)u = −β(u)u, u = ϕt ◦ ϕ−1.

The main part of the sectional curvature is given by:

4G(R(X,Y )X,Y ) =

=

∫

N

(
3‖[X,Y ]‖2

g + 2g((LY + β(Y ))X, [X,Y ]) + 2g((LX + β(X))Y, [Y,X])

+ 4g(β(X)X,β(Y )Y ) − ‖β(X)Y + β(Y )X‖2
g

)
vol(g)

=

∫

N

(
−‖β(X)Y − β(Y )X + [X,Y ]‖2

g − 4g([β(X), β(Y )]X,Y )
)

vol(g)

So sectional curvature consists of a part which is visibly non-negative, and
another part which is difficult to decompose further.

5.4 Example: n-dimensional analog of Burgers’ equation

For (N, g) = (Rn, can) or ((S1)n, can) we have:
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(ad(X)Y )k =
∑

i

((∂iX
k)Y i − Xi(∂iY

k))

(ad(X)∗Z)k =
∑

i

(
(∂kXi)Zi + (∂iX

i)Zk + Xi(∂iZ
k)

)
,

so that the geodesic equation is given by

∂tu
k = −(ad(u)⊤u)k = −

∑

i

(
(∂kui)ui + (∂iu

i)uk + ui(∂iu
k)

)
,

the n-dimensional analog of Burgers’ equation.

5.5. Stronger metrics on Diff0(N)

A very small strengthening of the weak Riemannian H0-metric on Diff0(N)
makes it into a true metric. We define the stronger right invariant semi-
Riemannian metric by the formula:

GA
ϕ (X ◦ ϕ, Y ◦ ϕ) =

∫

N

(g(X,Y ) + Adivg(X).divg(Y )) vol(g).

Then the following holds:

Theorem.
For any distinct diffeomorphisms ϕ0, ϕ1, the infimum of the lengths of all
paths from ϕ0 to ϕ1 with respect to GA is positive.

Proof. We may suppose that ϕ0 = IdN . If ϕ1 6= IdN , there are two functions
ρ and f on N with compact support such that:

∫

N

ρ(y)f(ϕ1(y)) vol(g)(y) 6=
∫

N

ρ(y)f(y) vol(g)(y).

Now consider any path ϕ(t, y) between ϕ0 = IdN to ϕ1 with left logarithmic
derivative u = T (ϕ)−1 ◦ ϕt and a path in Xc(N). Then we have:

∫

N

ρ(f ◦ ϕ1) vol(g) −
∫

N

ρf vol(g) =

∫ 1

0

∫

N

ρ∂tf(ϕ(t, ) vol(g)dt

=

∫ 1

0

∫

N

ρ(df.ϕt) vol(g) dt =

∫ 1

0

∫

N

ρ(df.Tϕ.u) vol(g)dt

=

∫ 1

0

∫

N

(df.Tϕ.(ϕu)) vol(g)dt

Locally, on orientable pieces of N , we have:

div((f ◦ ϕ)ρu) vol(g) = L(f◦ϕ)ρu vol(g) = (i(f◦ϕ)ρud + di(f◦ϕ)ρu) vol(g)

= d((f ◦ ϕ)iρu vol(g)) = d(f ◦ ϕ) ∧ iρu vol(g) + ρdiv(u) vol(g),
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= d(f ◦ ϕ)(ρu) vol(g) + (f ◦ ϕ) div(ρu) vol(g), since

d(f ◦ ϕ) ∧ iρu vol(g) = −iρu(d(f ◦ ϕ) ∧ vol(g)) + (iρud(f ◦ ϕ)) vol(g)).

Thus on N we have:

0 =

∫

N

div((f ◦ ϕ)ρu) vol(g)

=

∫

N

d(f ◦ ϕ)(ρu) vol(g) +

∫

N

(f ◦ ϕ) div(ρu) vol(g)

and hence

0 ≤
∣∣∣
∫

N

ρ(f ◦ ϕ1) vol(g) −
∫

N

ρf vol(g)
∣∣∣ =

∣∣∣
∫ 1

0

∫

N

d(f ◦ ϕ)(ϕu)) vol(g)dt
∣∣∣

=
∣∣∣
∫ 1

0

∫

N

−(f ◦ ϕ) div(ρu) vol(g)dt
∣∣∣

≤ sup |f | ·
∫ 1

0

√∫

N

Cρ‖u‖2 + C ′
ρ|div(u)|2 vol(g) dt

for constants Cρ, C
′
ρ depending only on ρ. Clearly the right hand side gives a

lower bound for the length of any path from ϕ0 to ϕ1. ⊓⊔

5.6. Geodesics and sectional curvature for GA on Diff(R)

We consider the groups Diffc(R) or Diff(S1) with Lie algebras Xc(R) or X(S1)
whose Lie brackets are ad(X)Y = −[X,Y ] = X ′Y − XY ′. The GA-metric
equals the H1-metric on Xc(R), and we have:

GA(X,Y ) =

∫

R

(XY + AX ′Y ′)dx =

∫

R

X(1 − A∂2
x)Y dx,

GA(ad(X)∗Y,Z) =

∫

R

(Y X ′Z − Y XZ ′ + AY ′(X ′Z − XZ ′)′)dx

=

∫

R

Z(1 − ∂2
x)(1 − ∂2

x)−1(2Y X ′ + Y ′X − 2AY ′′X ′ − AY ′′′X)dx,

ad(X)∗Y = (1 − ∂2
x)−1(2Y X ′ + Y ′X − 2AY ′′X ′ − AY ′′′X)

ad(X)∗ = (1 − ∂2
x)−1(2X ′ + X∂x)(1 − A∂2

x)

so that the geodesic equation in Eulerian representation u = (∂tf) ◦ f−1 ∈
Xc(R) or X(S1) is

∂tu = − ad(u)∗u = −(1 − ∂2
x)−1(3uu′ − 2Au′′u′ − Au′′′u), or

ut − utxx = Auxxx.u + 2Auxx.ux − 3ux.u,

which for A = 1 is the dispersionless version of the Camassa-Holm equation,
see (7.3.4). Note that here geodesic distance is a well defined metric describing
the topology.
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6. The regular Lie group of rapidly decreasing

diffeomorphisms

6.1. Lemma.
For smooth functions of one variable we have:

(f ◦ g)(p)(x) = p!
∑

m≥0

f (m)(g(x))

m!

∑

α∈N
m
>0

α1+···+αm=p

m∏

i=1

g(αi)(x)

αi!

=
∑

m≥0

f (m)(g(x))
∑

λ=(λn)∈N
N>0
≥0

P

n λn=m
P

n λnn=p

p!

λ!

∏

n>0

(
g(n)(x)

n!

)λn

Let f ∈ C∞(Rk) and let g = (g1, . . . , gk) ∈ C∞(Rn, Rk). Then for a multiin-
dex γ ∈ Nn the partial derivative ∂γ(f ◦ g)(x) of the composition is given by
the following formula, where we use multiindex-notation heavily.

∂γ(f ◦ g)(x) =

=
∑

β∈Nk

(∂βf)(g(x))
∑

λ=(λiα)∈N
k×(N

n\0)
P

α λiα=βi
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα ∏

i,α>0

(∂αgi(x))λiα

=
∑

λ=(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα (
∂

P

α λαf
)

(g(x))
∏

i,α>0

(∂αgi(x))λiα

The one dimensional version is due to Faà di Bruno [19], the only beatified
mathematician.

Proof. We compose the Taylor expansions of

f(g(x) + h) : j∞g(x)f(h) =
∑

m≥0

f (m)(g(x))

m!
hm,

g(x + t) : j∞x g(t) = g(x) +
∑

n≥1

g(n)(x)

n!
tn,

f(g(x + t)) : j∞x (f ◦ g)(t) =
∑

m≥0

f (m)(g(x))

m!


∑

n≥1

g(n)(x)

n!
tn




m

=
∑

m≥0

f (m)(g(x))

m!

∑

α1,...,αm>0

(
m∏

i=1

g(αi)(x)

αi!

)
tα1+···+αm .
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Or we use the multinomial expansion

( q∑

j=1

aj

)m

=
∑

λ1,...,λq∈N≥0

λ1+···+λq=m

m!

λ1! . . . λq!
aλ1
1 . . . aλq

q

to get

j∞x (f ◦ g)(t) =
∑

m≥0

f (m)(g(x))

m!

∑

λ=(λn)∈N
N>0
≥0

P

n λn=m

m!

λ!

(∏

n>0

(
g(n)(x)

n!

)λn
)

t
P

n λnn

where λ! = λ1!λ2! . . . ; most of the λi are 0. The multidimensional formula
just uses more indices. ⊓⊔

6.2

The space S(R) of all rapidly decreasing smooth functions f for which x 7→
(1 + |x|2)k∂n

x f(x) is bounded for all k ∈ N and all n ∈ N≥0, with the locally
convex topology described by these conditions, is a nuclear Fréchet space. The
dual space S ′(R) is the space of tempered distributions.

S(R) is a commutative algebra under pointwise multiplication and convo-
lution (u ∗ v)(x) =

∫
u(x − y)v(y)dy. The Fourier transform

F(u)(ξ) = û(ξ) =

∫
e−ixξu(x)dx, F−1(a)(x) =

1

2π

∫
eixξa(ξ)dξ,

is an isomorphism of S(R) and also of L2(R) and has the following further
properties:

∂̂xu(ξ) = −iξ · û(ξ), x̂ · u(ξ) = −i∂ξû(ξ),

̂u(x − a)(ξ) = eiaξû(ξ), ̂eiaxu(x)(ξ) = eiaξû(ξ),

û(ax)(ξ) = 1
|a| û( ξ

a ), û(−x)(ξ) = û(−ξ),

û · v = û ∗ v̂, û ∗ v = û · v̂.

In particular, for any polynomial P with constant coefficients we have

F(P (−i∂x)u)(ξ) = P (ξ)û(ξ).

S(R) satisfies the uniform V-boundedness principle for every point separating
set V of bounded linear functionals by [31], 5.24, since it is a Fréchet space;
in particular for the set of all point evaluations {evx : S(R) → R, x ∈ R}.
Thus a linear mapping ℓ : E → S(R) is bounded (smooth) if and only if evx ◦f
is bounded for each x ∈ R.

6.3. Lemma.
The space C∞(R,S(R)) of smooth curves in S(R) consists of all functions
f ∈ C∞(R2, R) satisfying the following property:
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• For all n,m ∈ N≥0 and each t ∈ R the expression (1 + |x|2)k∂n
t ∂m

x f(t, x)
is uniformly bounded in x, locally in t.

Proof. We use (A.3) for the set {evx : x ∈ R} of point evaluations in S ′(R).
Note that S(R) is reflexive. Here ck(t) = ∂k

t f(t, ). ⊓⊔

6.4. Diffeomorphisms which decrease rapidly to the identity

Any orientation preserving diffeomorphism R → R can be written as Id +f
for f a smooth function with f ′(x) > −1 for all x ∈ R. Let us denote by
DiffS(R)0 the space of all diffeomorphisms Id+f : R → R (so f ′(x) > −1 for
all x ∈ R) for f ∈ S(R).

Theorem.
DiffS(R)0 is a regular Lie group.

Proof. Let us first check that DiffS(R)0 is closed under multiplication. We
have

((Id +f) ◦ (Id +g))(x) = x + g(x) + f(x + g(x)), (1)

and x 7→ f(x + g(x)) is in S(R) by the Faà di Bruno formula (6.1) and the
following estimate:

f (m)(x + g(x)) = O
( 1

(1 + |x + g(x)|2)k

)
= O

( 1

(1 + |x|2)k

)
(2)

which holds since g(x) → 0 for |x| → ∞ and thus

1 + |x|2
1 + |x + g(x)|2 is globally bounded.

Let us check next that multiplication is smooth. Suppose that the curves
t 7→ Id+f(t, ), Id +g(t, ) are in C∞(R,DiffS(R)0) which means that the
functions f, g ∈ C∞(R2, R) satisfy the conditions of lemma (6.2). Then

(1 + |x|2)k∂n
t ∂m

x f(t, x + g(t, x))

is bounded in x ∈ R, locally in t, by the 2-dimensional Faá di Bruno formula
(6.1) and the more elaborate version of estimate (2)

(∂(n,m)f)(t, x + g(t, x)) = O
( 1

(1 + |x + g(t, x)|2)k

)
= O

( 1

(1 + |x|2)k

)
(3)

which follows from (6.3) for f and g. Thus the multiplication respects smooth
curves and is smooth.

To check that the inverse (Id +g)−1 is again an element in DiffS(R)0 for
g ∈ S(R), we write (Id +g)−1 = Id+f and we have to check that f ∈ S(R).

(Id +f) ◦ (Id +g) = Id =⇒ x + g(x) + f(x + g(x)) = x
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=⇒ x 7→ f(x + g(x)) = −g(x) is in S(R). (4)

Now consider

∂x(f(x + g(x))) = f ′(x + g(x))(1 + g′(x))

∂2
x(f(x + g(x))) = f ′′(x + g(x))(1 + g′(x))2 + f ′(x + g(x))g′′(x)

∂3
x(f(x + g(x))) = f (3)(x + g(x))(1 + g′(x))3+ (5)

+ 3f ′′(x + g(x))(1 + g′(x))g′′(x) + f ′(x + g(x))g(3)(x)

∂m
x (f(x + g(x))) = f (m)(x + g(x))(1 + g′(x))m+

+

m−1∑

k=1

f (m−k)(x + g(x))amk(x),

where ank ∈ S(R) for n ≥ k ≥ 1. We have 1 + g′(x) ≥ ε > 0 thus 1
1+g′(x)

is bounded and its derivative is in S(R). Hence we can conclude that (1 +
|x|2)kf (n)(x+g(x)) is bounded for each k. Since (1+|x+g(x)|2)k = O(1+|x|2)
we conclude that (1 + |x + g(x)|2)kf (n)(x + g(x)) is bounded for all k and n.
Inserting y = x+g(x) it follows that f ∈ S(R). Thus inversion maps DiffS(R)
into itself.

Let us check that inversion is also smooth. So we assume that g(t, x) is a
smooth curve in S(R), satisfies (6.3), and we have to check that then f does
the same. Retracing our considerations we see from (4) that f(t, x+g(t, x)) =
−g(t, x) satisfies (6.3) as a function of t, x, and we claim that f then does the
same. Applying ∂n

t to the equations in (5) we get

∂n
t ∂m

x (f(t, x + g(t, x))) = (∂(n,m)f)(t, x + g(t, x))(1 + ∂xg(t, x))m+

+
∑

k1≤n
k2≤m+n

(∂(k1,k2)f)(t, x + g(t, x))ak1,k2
(t, x),

where ak1,k2
(t, x) = O( 1

(1+|x|2)k ) uniformly in x and locally in t. Again 1 +

∂xg(t, x) ≥ ε > 0, locally in t and uniformly in x, thus the function 1
1+∂xg(t,x) is

bounded with any derivative in S(R) with respect to x. Thus we can conclude
f satisfies (6.3). So the inversion is smooth and DiffS(R) is a Lie group.

We claim that DiffS(R) is also a regular Lie group. So let t 7→ X(t, ) be
a smooth curve in the Lie algebra S(R)∂x,i.e., X satisfies (6.3). The evolution
of this time dependent vector field is the function given by the ODE

Evol(X)(t, x) = x + f(t, x),
{

∂t(x + f(t, x)) = ft(t, x) = X(t, x + f(t, x)),

f(0, x) = 0.
(6)

We have to show that f satisfies (6.3). For 0 ≤ t ≤ C we consider
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|f(t, x)| ≤
∫ t

0

|ft(s, x)|ds =

∫ t

0

|X(s, x + f(s, x))| ds. (7)

Since X(t, x) is uniformly bounded in x, locally in t, the same is true for
f(t, x) by (7). But then we may insert X(s, x+f(s, x)) = O( 1

(1+|x+f(s,x)|2)k ) =

O( 1
(1+|x|2)k ) into (7) and can conclude that f(t, x) = O( 1

(1+|x|2)k ) globally in

x, locally in t, for each k. For ∂n
t ∂m

x f(t, x) we differentiate equation (6) and
arrive at a system of ODE’s with functions in S(R) which we can estimate in
the same way. ⊓⊔

6.5. Sobolev spaces and HCn-spaces

The differential operator

Ak = Pk(−i∂x) =

k∑

i=0

(−1)i∂2i
x , P (ξ) =

k∑

i=0

ξ2i,

will play an important role later on. We consider the Sobolev spaces, namely
the Hilbert spaces

Hn(R) = {f ∈ S ′(R) : f, f ′, f (2), . . . f (n) ∈ L2(R)}.

In terms of the Fourier transform f̂ we have, by the properties listed in (6.2):

f ∈ Hn ⇐⇒ (1 + |ξ|)nf̂(ξ) ∈ L2 ⇐⇒ (1 + |ξ|2)n/2f̂(ξ)) ∈ L2

⇐⇒ (1 + |ξ|)n−2kPk(ξ)f̂(ξ) ∈ L2 ⇐⇒ Ak(f) ∈ Hn−2k.

We shall use the norm

‖f‖Hn := ‖f̂(ξ)(1 + |ξ|)n‖L2

on Hn(R). Moreover, for 0 < α ≤ 1 we consider the Banach space

C0,α
b (R) = {f ∈ C0(R) : sup

x∈R

|f(x)| + sup
x6=y∈R

|f(x) − f(y)|
|x − y|α < ∞}

of bounded Hölder continuous functions on R, and the Banach spaces

Cn,α
b (R) = {f ∈ Cn(R) : f, f ′, . . . , f (n−1) bounded, and f (n) ∈ C0,α

b (R)}.

Finally we shall consider the space

HCn(R) = Hn(R) ∩ Cn
b (R), ‖f‖HCc = ‖f‖Hn + ‖f‖Cn

b
.

6.6. Lemma.
Consider the differential operator Ak =

∑k
i=0(−1)i∂2i

x .
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(1) Ak : S(R) → S(R) is a linear isomorphism of the Fréchet space of rapidly
decreasing smooth functions.

(2) Ak : Hn+2k(S1) → Hn(S1) is a linear isomorphism of Hilbert spaces for
each n ∈ Z, where Hn(S1) = {f ∈ L2(S1) : An(f) ∈ L2(S1)}. Note that
Hn(S1) ⊆ Ck(S1) if n > k + 1/2 (Sobolev inequality).

(3) Ak : C∞(S1) → C∞(S1) is a linear isomorphism.
(4) Ak : HCn+2k(R) → HCn(R) is a linear isomorphism of Banach spaces

for each n ≥ 0.

Proof. Without loss we may consider complex-valued functions.
(1) Let F : C∞(S1) → s(Z) be the Fourier transform which is an iso-

morphism on the space of rapidly decreasing sequences. Since F(fxx)(n) =
−(2πn)2F(f)(n) we have F◦Ak◦F−1 : (cn) 7→ ((1+(2πn)2+· · ·+(2πn)2k) cn)
which is a linear bibounded isomorphism.

(2) This is obvious from the definition.
(3) can be proved similarly to (1), using that the Fourier series expansion

is an isomorphism between C∞(S1) and the space ∫ of rapidly decreasing
sequences.

(4) follows from (2). ⊓⊔

6.7. Sobolev inequality.
We have bounded linear embeddings (0 < α ≤ 1):

Hn(R) ⊂ Ck
b (R) if n > k + 1

2 ,

Hn(R) ⊂ Ck,α
b (R) if n > k + 1

2 + α.

Proof. Since ∂k
x : Hn(R) → Hn−k(R) is bounded we may assume that k = 0.

So let n > 1
2 . Then we use the Cauchy-Schwartz inequality:

2π|u(x)| =

∣∣∣∣
∫

eixξû(ξ) dξ

∣∣∣∣ ≤
∫

|û(ξ)| dξ =

∫
|û(ξ)|(1 + |ξ|)n 1

(1 + |ξ|)n
dξ

≤
(∫

|û(ξ)|2(1 + |ξ|)2n dξ

) 1
2

(∫
1

(1 + |ξ|)2n
dξ

) 1
2

= C‖u‖Hn

where

C =

(∫
1

(1 + |ξ|)2n
dξ

) 1
2

< ∞

depends only on n > 1
2 . For the second assertion we use x > y and

eixξ − eiyξ = (x − y)

∫ 1

0

iξei(y+t(x−y))ξdt,

∣∣eixξ − eiyξ
∣∣ ≤ |x − y|.|ξ|

to obtain
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2π

∣∣∣∣
u(x) − u(y)

(x − y)α

∣∣∣∣ ≤
∫ ∣∣∣∣

eixξ − eiyξ

x − y

∣∣∣∣
α

.
∣∣eixξ − eiyξ

∣∣1−α |û(ξ)| dξ

≤ 2

∫
|û(ξ)|(1 + |ξ|)n |ξ|α

(1 + |ξ|)n
dξ

≤ 2

(∫
|û(ξ)|2(1 + |ξ|)2ndξ

) 1
2

(∫ |ξ|2α

(1 + |ξ|)2n
dξ

) 1
2

= C1‖u‖Hn

where C1 depends only on n − α > 1
2 . ⊓⊔

6.8. Banach algebra property.
If n > 1

2 then pointwise multiplication S(R) × S(R) → S(R) extends to a
bounded bilinear mapping Hn(R) × Hn(R) → Hn(R).

For n ≥ 0 multiplication HCn(R)×HCn(R) → HCn(R) is bounded bilin-
ear.

See [17] for the most general version of this on open Riemannian manifolds
with bounded geometry.

Proof. For f, g ∈ Hn(R) we have to show that for 0 ≤ k ≤ n we have

(f.g)(k) =
k∑

l=0

(
k

l

)
f (l).g(k−l) ∈ L2(R)

with norm bounded by a constant times ‖f‖Hn .‖g‖Hn . If l < n then f (l) ∈
C0

b (R) by the Sobolev inequality and g(k−l) ∈ H l ⊂ L2 so the product is in
L2 with the required bound on the norm. If l = 0 we exchange f and g.

In the case of HCn, the L2-norm of each product in the sum is bounded
by the sup-norm of the first factor times the L2-norm of the second one. And
the sup-norm is clearly submultiplicative. ⊓⊔

6.9. Differentiability of composition.
If n ≥ 0 then composition S(R) × S(R) → S(R) extends to a weakly Ck-
mapping HCn+k(R) × (IdR +HCn(R)) → HCn(R).

A mapping f : E → F is weakly C1 for Banach spaces E,F if df : E×E →
F exists and is continuous. We call it strongly C1 if df : E → L(E,F ) is
continuous for the operator norm on the image space. Similarly for Ck. Since
I could not find a convincing proof of this result for the spaces Hn under the
assumtion n > 1

2 , I decided to use the spaces HCn(R). This also inproves on
the degree n which we need.

Proof. We consider the Taylor expansion

f(x + g(x)) =

k∑

p=0

1

p!
f (p)(x).g(x)p+

+

∫ 1

0

(1 − t)k−1

(k − 1)!

(
f (k)(x + tg(x)) − f (k)(x)

)
dt .g(x)k
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For fixed f this is weakly Ck in g by invoking the Banach algebra property
and by estimating the integral in the remainder term. We have to show that
the integrand is continuous at (f (k), g = 0) as a mapping Hn × Hn → Hn.
The integral from 0 to 1 does not disturb this so we disregard it. By (6.1) we
have

∂p
x(f (k)(x + g(x)) − f (k)(x)) =

= p!

p∑

m=0

f (k+m)(x + g(x))

m!

∑

α1,...,αm>0
α1+···+αm=p

∂α1
x (x + g(x))

α1!
. . .

∂αm
x (x + g(x))

αm!

The most dangerous term is the one for p = n. As soon as a derivative of g of
order ≥ 2 is present, this is easily estimated. The most difficult term is

f (k+n)(x + g(x)) − f (k+n)(x)

which should go to 0 in L2 ∩ C0
b for fixed f and for g → 0 in HCn. f (k) is

continuous and in L2. Off some big compact intervall it has small Hn-norm
and small sup-norm (the latter by the lemma of Riemann-Lebesque). On this
compact intervall f (k) is uniformly continuous and if we choose ‖g‖Cn small
enough, f (k)(x + tg(x)) − f (k)(x) is uniformly small there, thus small in the
sup-norm, and also small in L2 (which involves the length of the compact
intervall – but we can still choose g smaller). ⊓⊔

The last result cannot be improved to strongly Ck since we have:

6.10. Attention.
Composition HCn(R) × (IdR +HCn(R)) → HCn(R) is only continuous and
not Lipschitz in the first variable.

Proof. To see this, consider (f, t) 7→ f( −t.g) for a given bump function
g which equals 1 on a large intervall. For each t > 0 we consider a bump
function f with support in (− t

2 , t
2 ) with ‖f‖L2 = 1. Then we have ‖f −

f( −t)‖L2 =
√

2 by Pythagoras, and consequently ‖f − f( −t.g)‖HCn ≥
‖f − f( −t)‖L2 =

√
2. ⊓⊔

6.11. The topological group Diff(R)

For n ≥ 1 we consider f : R → R of the form f(x) = x + g(x) for g ∈ HCn.
Then f is a Cn-diffeomorphism iff g′(x) > −1 for all x. The inverse is also of
the form f−1(y) = y + h(y) for h ∈ HCn(R) iff g′(x) ≥ −1 + ε for a constant
ε. Indeed, h(y) = −g(f−1(y)). Let us call DiffHCn(R) the group of all these
diffeomorphsms.

Lemma.
Inversion DiffHCn+k(R) → DiffHCn(R) is weakly Ck.
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Proof. As we saw above, DiffHCn+k(R) is stable under inversion. (f, g) 7→ f◦g
is a weak Ck submersion by (6.9). So we can use the implicit function theorem
for the equation f ◦ f−1 = Id. ⊓⊔

6.12 Proposition.
For n ≥ 1 and a ∈ HCn(R), the mapping HCn(R) × DiffHCn(R) →
HCn−1(R) given by (f, g) 7→ (a∂x(f ◦ g−1)) ◦ g is continuous and Lipschitz in
f .

For n > k + 1
2 and for each linear differential operator D of order k,

the mapping HCn(R) × DiffHCn(R) → HCn−k(R) given by (f, g) 7→ (D(f ◦
g−1)) ◦ g is continuous and Lipschitz in f .

Here Diff(R) = {IdR +h : ‖h′‖C0
b

> −1}.
Proof. We have

(a∂x(f ◦ g−1)) ◦ g =
(
a.(fx ◦ g−1)

1

gx ◦ g−1

)
◦ g = (a ◦ g).fx.

1

gx

which is Lipschitz by the results above. ⊓⊔

6.13 Proposition.
For the operator Ak =

∑k
i=0(−1)i∂2i

x and for n ≥ 2k, the mapping
(f, g) 7→ (A−1

k (f ◦g−1))◦g is Lipschitz HCn(R)×DiffHCn(R) → HCn+2k(R).

Proof. The inverse of Ak is given by the pseudo differential operator

(A−1
k f)(x) =

∫

R2

ei(x−y)ξf(y)
1

1 + ξ2 + +ξ2n
dξ dy

Thus the mapping is given by

(A−1
k (f ◦ g−1))(g(x)) =

∫

R2

ei(g(x)−y)ξf(g−1(y))
1

1 + ξ2 + +ξ2n
dξ dy

=

∫

R2

ei(g(x)−g(z))ξf(z)
g′(z)

1 + ξ2 + +ξ2n
dξ dz

which is a genuine Fourier integral operator. By the foregoing results this is
visibly locally Lipschitz. ⊓⊔

7. The diffeomorphism group of S1 or R, and Burgers’

hierarchy

7.1. Burgers’ equation and its curvature

We consider the Lie groups DiffS(R) and Diff(S1) with Lie algebras XS(R)
and X(S1) where the Lie bracket [X,Y ] = X ′Y − XY ′ is the negative of
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the usual one. For the L2-inner product γ(X,Y ) = 〈X,Y 〉0 =
∫

X(x)Y (x) dx
integration by parts gives

〈[X,Y ], Z〉0 =

∫

R

(X ′Y Z − XY ′Z)dx

=

∫

R

(2X ′Y Z + XY Z ′)dx = 〈Y, ad(X)⊤Z〉,

which in turn gives rise to

ad(X)⊤Z = 2X ′Z + XZ ′, (1)

α(X)Z = ad(Z)⊤X = 2Z ′X + ZX ′, (2)

(ad(X)⊤ + ad(X))Z = 3X ′Z, (3)

(ad(X)⊤ − ad(X))Z = X ′Z + 2XZ ′ = α(X)Z. (4)

Equation (4) states that − 1
2α(X) is the skew-symmetrization of ad(X) with

respect to the inner product 〈 , 〉0. From the theory of symmetric spaces
one then expects that − 1

2α is a Lie algebra homomorphism and indeed one
can check that

− 1
2α([X,Y ]) =

[
− 1

2α(X),− 1
2α(Y )

]

holds for any vector fields X,Y . From (1) we get the geodesic equation, whose
second part is Burgers’ equation [10]:

{
gt(t, x) = u(t, g(t, x))

ut = − ad(u)⊤u = −3uxu
(5)

Using the above relations and the general curvature formula (3.4.2), we get

R(X,Y )Z = −X ′′Y Z + XY ′′Z − 2X ′Y Z ′ + 2XY ′Z ′

= −2[X,Y ]Z ′ − [X,Y ]′Z = −α([X,Y ])Z. (6)

Sectional curvature is non-negative and unbounded:

−G0
a(R(X,Y )X,Y ) = 〈α([X,Y ])(X), Y 〉 = 〈ad(X)⊤([X,Y ]), Y 〉

= 〈[X,Y ], [X,Y ]〉 = ‖[X,Y ]‖2,

k(X ∧ Y ) = − G0
a(R(X,Y )X,Y )

‖X‖2‖Y ‖2 − G0
a(X,Y )2

=
‖[X,Y ]‖2

‖X‖2‖Y ‖2 − 〈X,Y 〉2 ≥ 0. (7)

Let us check invariance of the momentum mapping J̄ from (4.3):

γ(J̄(g,X), Y ) = γ(Ad(g)⊤X,Y ) = γ(X,Ad(g)Y ) =

∫
X((g′Y ) ◦ g−1)dx
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=

∫
X(g′ ◦ g−1)(Y ◦ g−1)dx = sign(g′)

∫
(X ◦ g)(g′)2Y dx

= sign(g′)γ((g′)2(X ◦ g), Y )

J̄(g,X) = sign(gx).(gx)2(X ◦ g). (8)

Along a geodesic t 7→ g(t, ), according to (5) and (4.3), the momentum

J̄(g, u = gt ◦ g−1) = g2
xgt is constant. (9)

This is what we found in (1.3) by chance.

7.2. Jacobi fields for Burgers’ equation

A Jacobi field y along a geodesic g with velocity field u is a solution of the
partial differential equation (3.5.1), which in our case becomes:

ytt = [ad(y)⊤ + ad(y), ad(u)⊤]u − ad(u)⊤yt − α(u)yt + ad(u)yt (1)

= −3u2yxx − 4uytx − 2uxyt

ut = −3uxu.

If the geodesic equation has smooth solutions locally in time it is to be ex-
pected that the space of all Jacobi fields exists and is isomorphic to the space
of all initial data (y(0), yt(0)) ∈ C∞(S1, R)2 or C∞

c (R, R)2, respectively. The
weak symplectic structure on it is given by (3.7):

ω(y, z) = 〈y, zt − 1
2uxz + 2uzx〉 − 〈yt − 1

2uxy + 2uyx, z〉

=

∫

S1or R

(yzt − ytz + 2u(yzx − yxz)) dx. (2)

7.3. The Sobolev Hk-metric on Diff(S1) and Diff(R)

On the Lie algebras Xc(R) and X(S1) with Lie bracket [X,Y ] = X ′Y − XY ′

we consider the Hk-inner product

γ(X,Y ) = 〈X,Y 〉k =
k∑

i=0

∫
(∂i

xX)(∂i
xY ) dx =

∫
Ak(X)(Y ) dx

=

∫
XAk(Y ) dx, where Ak =

k∑

i=0

(−1)i∂2i
x (1)

is a linear isomorphism Xc(R) → Xc(R) or X(S1) → X(S1) whose inverse
is a pseudo differential operator. Ak is also a bounded linear isomorphism
between the Sobolev spaces H l+2k(S1) → H l(S1), see lemma (6.5). On the
real line we have to consider functions with fixed support in some compact
set [−K,K] ⊂ R.
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Integration by parts gives

〈[X,Y ], Z〉k =

∫

R

(X ′Y − XY ′)Ak(Z)dx =

∫

R

(2X ′Y Ak(Z) + XY Ak(Z ′))dx

=

∫

R

Y AkA−1
k

(
2X ′Ak(Z) + XAk(Z ′)

)
dx = 〈Y, ad(X)⊤,k, Z〉k,

which in turn gives rise to

ad(X)⊤,kZ = A−1
k

(
2X ′Ak(Z) + XAk(Z ′)

)
,

αk(X)Z = ad(Z)⊤,k(X) = A−1
k

(
2Z ′Ak(X) + ZAk(X ′)

)
(2)

Thus the geodesic equation is





gt(t, x) = u(t, g(t, x))

ut = − ad(u)⊤,ku = −A−1
k

(
2uxAk(u) + uAk(ux)

)

= −A−1
k

(
2ux

k∑

i=0

(−1)i∂2i
x u + u

k∑

i=0

(−1)i∂2i+1
x u

)
.

(3)

For k = 0 the second part is Burgers’ equation, and for k = 1 it becomes

ut − utxx = −3uux + 2uxuxx + uuxxx (4)

⇐⇒ ut + uux + (1 − ∂2
x)−1(u2 + 1

2u2
x)x = 0

which is the dispersionfree version of the Camassa-Holm equation, see [11],
[44], [29]. We met it already in (5.6), and will meet the full equation in (8.7).
Let us check the invariant momentum mapping from (4.3.2):

γ(J̄(g,X), Y ) = 〈Ad(g)⊤X,Y 〉k = 〈X,Ad(g)Y 〉k

=

∫
Ak(X)(g′ ◦ g−1)(Y ◦ g−1)dx = sign(g′)

∫
(Ak(X) ◦ g)(g′)2Y dx

= sign(g′)
〈
A−1

k

(
(g′)2(Ak(X) ◦ g)

)
, Y

〉
k

J̄(g,X) = sign(gx).A−1
k

(
(gx)2(Ak(X) ◦ g)

)
. (5)

Along a geodesic t 7→ g(t, ), by (3) and (4.3), the expressions

sign(gx)J̄(g, u = gt ◦ g−1) = A−1
k

(
(gx)2(Ak(u) ◦ g)

)
(6)

and thus also (gx)2(Ak(u) ◦ g) are constant in t.

7.4. Theorem.
Let k ≥ 1. There exists a HC2k+1-open neighborhood V of (Id, 0) in Diff(S1)×
X(S1) such that for each (g0, u0) ∈ V there exists a unique C3 geodesic g ∈
C3((−2, 2),Diff(S1)) for the right invariant Hk Riemann metric, starting at
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g(0) = g0 in the direction gt(0) = u0◦g0 ∈ Tg0
Diff(S1). Moreover, the solution

depends C1 on the initial data (g0, u0) ∈ V .
The same result holds if we replace Diff(S1) by DiffS(R) and X(S1) by

XS(R) = S(R)∂x.

This result is stated in [13], and also this proof follows essentially [13]. But
there is a mistake in [13], p 795, where the authors assume that composition
and inversion on Hn(S1) are smooth. This is wrong. One needs to use (6.12)
and (6.13). The mistake was corrected in [12], for the more general case of the
Virasoro group.

In the following proof, Diff, X, DiffHCn, HCn should stand for either
Diff(S1), X(S1), DiffHCn(S1), HCn(S1) or for DiffS(R), XS(R), DiffHCn(R),
HCn(R), respectively.

Proof. For u ∈ HCn, n ≥ 2k + 1, we have

Ak(uux) =

k∑

i=0

(−1)i∂2i
x (uux) =

k∑

i=0

(−1)i
2i∑

j=0

(
2i
j

)
(∂j

xu)(∂2i−j+1
x u)

= uAk(ux) +

k∑

i=0

(−1)i
2i∑

j=1

(
2i
j

)
(∂j

xu)(∂2i−j+1
x u)

=: u Ak(ux) + Bk(u),

where Bk : HCn → HCn−2k is a bounded quadratic operator. Recall that we
have to solve

ut = − ad(u)⊤,ku = −A−1
k

(
2uxAk(u) + uAk(ux)

)

= −A−1
k

(
2uxAk(u) + Ak(uux) − Bk(u)

)

= −uux − A−1
k

(
2uxAk(u) − Bk(u)

)

=: −uux + A−1
k Ck(u),

where Ck : HCn → HCn−2k is a bounded quadratic operator, and where
u = gt ◦ g−1 ∈ X. Note that

Ck(u) = −2uxAk(u) + Bk(u)

= −2uxAk(u) +

k∑

i=0

(−1)i
2i∑

j=1

(
2i
j

)
(∂j

xu)(∂2i−j+1
x u).

We put





gt =: v = u ◦ g

vt = ut ◦ g + (ux ◦ g)gt = ut ◦ g + (uux) ◦ g = A−1
k Ck(u) ◦ g

= A−1
k Ck(v ◦ g−1) ◦ g =: pr2(Dk ◦ Ek)(g, v), where

(1)

Ek(g, v) = (g, Ck(v ◦ g−1) ◦ g), Dk(g, v) = (g,A−1
k (v ◦ g−1) ◦ g).
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Now consider the topological group and Banach manifold DiffHCn described
in (6.11).
(2) Claim. The mapping Dk : DiffHCn ×HCn−2k → DiffHCn ×HCn is
strongly C1.

First we check that all directional derivatives exist and are in the right
spaces.

For w ∈ HCn we have

∂s|0(u ◦ (g + sw)) = (ux ◦ g)w

∂s|0(g + sw)−1 = − w ◦ g−1

gx ◦ g−1

∂s|0 pr2 Dk(g + sw, v) =

= ∂s|0A−1
k (v ◦ g−1) ◦ (g + sw) + ∂s|0(A−1

k (v ◦ (g + sw)−1)) ◦ g

= ((∂xA−1
k (v ◦ g−1)) ◦ g)w − (A−1

k ((vx ◦ g−1) w◦g−1

gx◦g−1 )) ◦ g

= (A−1
k (v ◦ g−1)x.(w ◦ g−1)) ◦ g − (A−1

k ((v ◦ g−1)x(w ◦ g−1))) ◦ g.

Therefore,

Ak((∂s|0 pr2 Dk(g + sw, v)) ◦ g−1) =

= Ak(A−1
k (v ◦ g−1)x.(w ◦ g−1)) − (v ◦ g−1)x(w ◦ g−1)

= (v ◦ g−1)x.(w ◦ g−1) +

k∑

i=0

2i−1∑

j=0

(
2i

j

)
∂j+1

x A−1
k (v ◦ g−1).∂2k−j

x (w ◦ g−1)

− (v ◦ g−1)x(w ◦ g−1) ∈ HCn−2k.

By (6.12) and (6.13) this is locally Lipschitz jointly in v, g, w. Moreover we
have ∂s|0 pr2 Dk(g +sw, v) ∈ HCn, and Dk is linear in v. Thus Dk is strongly
C1.
(3) Claim. The mapping Ek : DiffHCn ×HCn → DiffHCn ×HCn−2k is
strongly C1. This can be proved similarly, again using (6.12) and (6.13).

By the two claims equation (1) can be viewed as the flow equation of a
C1-vector field on the Hilbert manifold DiffHCn ×HCn. Here an existence
and uniqueness theorem holds. Since v = 0 is a stationary point, there exist
an open neighborhood Wn of (Id, 0) in DiffHCn ×HCn such that for each
initial point (g0, v0) ∈ Wn equation (1) has a unique solution Flnt (g0, v0) =
(g(t), v(t)) defined and C2 in t ∈ (−2, 2). Note that v(t) = gt(t), thus g(t) is
even C3 in t. Moreover, the solution depends C1 on the initial data.

We start with the neighborhood

W2k+1 ⊂ DiffHC2k+1 ×HC2k+1 ⊃ DiffHCn ×HCn for n ≥ 2k + 1

and consider the neighborhood Vn := W2k+1 ∩ DiffHCn ×HCn of (Id, 0)
(4) Claim. For any initial point (g0, v0) ∈ Vn the unique solution Flnt (g0, v0) =
(g(t), v(t)) exists, is C2 in t ∈ (−2, 2), and depends C1 on the initial point in
Vn.
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We use induction on n ≥ 2k + 1. For n = 2k + 1 the claim holds since
V2k+1 = W2k+1. Let (g0, v0) ∈ V2k+2 and let Fl2k+2

t (g0, v0) = (g̃(t), ṽ(t))
be maximally defined for t ∈ (t1, t2) ∋ 0. Suppose for contradiction that
t2 < 2. Since (g0, v0) ∈ V2k+2 ⊂ V2k+1 the curve Fl2k+2

t (g0, v0) = (g̃(t), ṽ(t))
solves (1) also in DiffHC2k+1 ×HC2k+1, thus Fl2k+2

t (g0, v0) = (g̃(t), ṽ(t)) =
(g(t), v(t)) := Fl2k+1

t (g0, v0) for t ∈ (t1, t2)∩(−2, 2). By (7.3.6), the expression

J̃(t) = J̃(g, v, t) = gx(t)2Ak(u(t)) ◦ g(t) = gx(t)2Ak(v(t) ◦ g(t)−1) ◦ g(t) (5)

is constant in t ∈ (−2, 2). Actually, since we used C∞-theory for deriving
this, one should check it again by differentiating. Since u = gt ◦ g−1 we get
the following (the exact formulas can be computed with the help of Faà di
Bruno’s formula (6.1).

ux = (gtx ◦ g−1)(g−1)x =
gtx

gx
◦ g−1

∂2
xu = (

∂2
xgt

g2
x

− gtx
∂2

xg

g3
x

) ◦ g−1

∂x(g−1) =
1

gx
◦ g−1

∂2
x(g−1) ◦ g = −∂2

xg

g3
x

∂2k
x (g−1) ◦ g = − ∂2k

x g

g2k+1
x

+ lower order terms in g

(∂2k
x u) ◦ g =

∂2k
x gt

g2k
x

− gtx
∂2k

x g

g2k+1
x

+ lower order terms in g, gt = v.

Thus

(−1)kg2k−1
x J̃(t) = gx∂2k

x gt − gtx∂2k
x g + lower order terms in g, gt = v.

Hence for each t ∈ (−2, 2):

gx∂2k
x gt − gtx∂2k

x g = (−1)kg2
x

(
g2k−3

x J̃(t) + Pk(g, v)
)

, where

Pk(g, v) =
Qk(g, ∂xg, . . . , ∂2k−1

x g, v, ∂xv, . . . , ∂2k−1
x v)

g2
x

for a polynomial Qk. Since J̃(t) = J̃(0) we obtain that

(
∂2k

x g(t)

gx(t)

)

t

= (−1)k
(
g2k−3

x (t)J̃(0) + Pk(g(t), v(t))
)

for all t ∈ (−2, 2).

This implies

∂2k
x g(t)

gx(t)
=

∂2k
x g(0)

gx(0)
+ (−1)k

∫ t

0

(
g2k−3

x (s)J̃(0) + Pk(g(s), v(s))
)

ds.
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For t ∈ (t1, t2) we have

∂2k
x g̃(t) =

∂2k
x g0

∂xg0
gx(t)+ (6)

+ (−1)kgx(t)

∫ t

0

(
g2k−3

x (s)J̃(0) + Pk(g(s), v(s))
)

ds.

Since (g0, v0) ∈ V2k+2 we have J̃(0) = J̃(g0, v0, 0) ∈ HC2 by (5). Since
k ≥ 1, by (6) we see that ∂2k

x g̃(t) ∈ HC2. Moreover, since t2 < 2, the limit
limt→t2− ∂2k

x g̃(t) exists in HC2, so limt→t2− g̃(t) exists in HC2k+2. As this
limit equals g(t2), we conclude that g(t2) ∈ DiffHC2k+2. Now ṽ = g̃t; so we
may differentiate both sides of (6) in t and obtain similarly that limt→t2− ṽ(t)
exists in HC2k+2 and equals v(t2). But then we can prolong the flow line
(g̃, ṽ) in DiffHC2k+2 ×HC2k+2 beyond t2, so (t1, t2) was not maximal.

By the same method we can iterate the induction. ⊓⊔

8. The Virasoro-Bott group and the Korteweg-de Vries

hierarchy

8.1. The Virasoro-Bott group

Let Diff denote any of the groups DiffHC+(S1), Diff(R)0 (diffeomorphisms
with compact support), or DiffS(R) of section (6). For ϕ ∈ Diff let ϕ′ :
S1 or R → R+ be the mapping given by Txϕ · ∂x = ϕ′(x)∂x. Then

c : Diff ×Diff → R

c(ϕ,ψ) :=
1

2

∫

S1

log(ϕ ◦ ψ)′d log ψ′ =
1

2

∫

S1

log(ϕ′ ◦ ψ)d log ψ′

satisfies c(ϕ,ϕ−1) = 0, c(Id, ψ) = 0, c(ϕ, Id) = 0, and is a smooth group
cocycle, i.e.,

c(ϕ2, ϕ3) − c(ϕ1 ◦ ϕ2, ϕ3) + c(ϕ1, ϕ2 ◦ ϕ3) − c(ϕ1, ϕ2) = 0,

called the Bott cocycle.

Proof. Let us check first:
∫

log(ϕ ◦ ψ)′d log ψ′ =

∫
log((ϕ′ ◦ ψ)ψ′)d log ψ′ =

=

∫
log(ϕ′ ◦ ψ)d log ψ′ +

∫
log(ψ′)d log ψ′,

∫
log(ψ′)d log ψ′ = 1

2

∫
d log(ψ′)2 = 0.

2c(Id, ψ) =

∫
log(1)d log ψ′ = 0.
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2c(ϕ, Id) =

∫
log(ϕ′)d log(1) = 0.

2c(ϕ−1, ϕ) =

∫
log((ϕ−1 ◦ ϕ)′)d log ϕ′ =

∫
log(1)d log ϕ′ = 0.

c(ϕ,ϕ−1) = 0.

For the cocycle condition we add the following terms:

2c(ϕ2, ϕ3) =

∫
log(ϕ′

2 ◦ ϕ3)d log ϕ′
3

−2c(ϕ1 ◦ ϕ2, ϕ3) = −
∫

log((ϕ1 ◦ ϕ2)
′ ◦ ϕ3)d log ϕ′

3

= −
∫

log((ϕ′
1 ◦ ϕ2 ◦ ϕ3)(ϕ

′
2 ◦ ϕ3))d log ϕ′

3

= −
∫

log(ϕ′
1 ◦ ϕ2 ◦ ϕ3)d log ϕ′

3 −
∫

log(ϕ′
2 ◦ ϕ3)d log ϕ′

3

2c(ϕ1,ϕ2 ◦ ϕ3) =

∫
log(ϕ′

1 ◦ ϕ2 ◦ ϕ3)d log(ϕ2 ◦ ϕ3)
′

=

∫
log(ϕ′

1 ◦ ϕ2 ◦ ϕ3)d log((ϕ′
2 ◦ ϕ3)ϕ

′
3)

=

∫
log(ϕ′

1 ◦ ϕ2 ◦ ϕ3)d log(ϕ′
2 ◦ ϕ3) +

∫
log(ϕ′

1 ◦ ϕ2 ◦ ϕ3)d log ϕ′
3

=

∫
log(ϕ′

1 ◦ ϕ2)d log ϕ′
2 +

∫
log(ϕ′

1 ◦ ϕ2 ◦ ϕ3)d log ϕ′
3

−2c(ϕ1, ϕ2) = −
∫

log(ϕ′
1 ◦ ϕ2)d log ϕ′

2 ⊓⊔

The corresponding central extension group S1 ×c DiffHC+(S1), called the
periodic Virasoro-Bott group, is a trivial S1-bundle S1 × DiffHC+(S1) that
becomes a regular Lie group relative to the operations

(
ϕ

α

)(
ψ

β

)
=

(
ϕ ◦ ψ

αβ e2πic(ϕ,ψ)

)
,

(
ϕ

α

)−1

=

(
ϕ−1

α−1

)

for ϕ,ψ ∈ DiffHC+(S1) and α, β ∈ S1. Likewise we have the central extension
group with compact supports R ×c Diff(R)0 with group operations

(
ϕ

α

)(
ψ

β

)
=

(
ϕ ◦ ψ

α + β + c(ϕ,ψ)

)
,

(
ϕ

α

)−1

=

(
ϕ−1

−α

)

for ϕ,ψ ∈ DiffHC+(R) and α, β ∈ R. Finally there is the central extension of
the rapidly decreasing Virasoro-Bott group R ×c Diff+

S (R) which is given by
the same formulas.
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8.2. The Virasoro Lie algebra

Let us compute the Lie algebra of the two versions of the the Virasoro-Bott
group. Consider R ×c Diff, where again Diff denotes any one of the groups
DiffHC+(S1), Diff(R)0, or DiffS(R). So let ϕ,ψ : R → Diff with ϕ(0) =
ψ(0) = Id and ϕt(0) = X, ψt(0) = Y ∈ Xc(R), X(S1), or S(R)∂x. For
completeness’ sake we also consider α, β : R → R with α(0) = 0, β(0) = 0.
Then we compute:

Ad

(
ϕ(t)

α(t)

)(
Y

β′(0)

)
= ∂s|0

(
ϕ(t)

α(t)

)(
ψ(s)

β(s)

)(
ϕ(t)−1

−α(t)

)

= ∂s|0
(

ϕ(t) ◦ ψ(s) ◦ ϕ(t)−1

α(t) + β(s) + c(ϕ(t), ψ(s)) − α(t) + c(ϕ(t) ◦ ψ(s), ϕ(t)−1)

)

=

(
ϕ(t)∗Y = Ad(ϕ(t))Y

βt(0) + ∂s|0c(ϕ(t), ψ(s)) + ∂s|0c(ϕ(t) ◦ ψ(s), ϕ(t)−1)

)
(1)

[( X

αt(0)

)
,

(
Y

βt(0)

)]
=

= ∂t|0
(

(FlXt )∗Y = Ad(ϕ(t))Y

βt(0) + ∂s|0c(ϕ(t), ψ(s)) + ∂s|0c(ϕ(t) ◦ ψ(s), ϕ(t)−1)

)

=

( −[X,Y ]

∂t|0∂s|0c(ϕ(t), ψ(s)) + ∂t|0∂s|0c(ϕ(t) ◦ ψ(s), ϕ(t)−1)

)
(2)

Now we differentiate the Bott cocycle, where sometimes f ′ = ∂xf :

2∂s|0c(ϕ(t), ψ(s)) = ∂s|0
∫

log(ϕ(t)′ ◦ ψ(s)) d log(ψ(s)′)

=

∫
(ϕ(t)′′ ◦ ψ(0))Y

ϕ(t)′ ◦ ψ(0)
d log(ψ(0)′︸ ︷︷ ︸

=1

) +

∫
log(ϕ(t)′) dY ′

=

∫
log(ϕ(t)′)Y ′′ dx

2∂t|0∂s|0c(ϕ(t), ψ(s)) = ∂t|0
∫

log(ϕ(t)′)Y ′′ dx =

∫
X ′Y ′′

ϕ(0)′
dx =

∫
X ′Y ′′dx.

For the second term we first check:

(ϕ−1)x =
1

ϕx ◦ ϕ−1
, (ϕ−1)xx = − ϕxx ◦ ϕ−1

(ϕx ◦ ϕ−1)3
,

ϕ−1(x) = y,
1

ϕx ◦ ϕ−1
dx = dy

d log((ϕ−1)x) = − ϕ′′ ◦ ϕ−1

(ϕ′ ◦ ϕ−1)2
dx = −ϕ′′

ϕ′
dy

and continue to compute
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2∂s|0c(ϕ(t) ◦ ψ(s), ϕ(t)−1) = ∂s|0
∫

log((ϕ(t) ◦ ψ(s))x ◦ ϕ(t)−1) d log(ϕ(t)−1
x )

=

∫
(ϕ(t)′′◦ ϕ(t)−1)(Y ◦ ϕ(t)−1) + (ϕ(t)′◦ ϕ(t)−1)(Y ′◦ ϕ(t)−1)

(ϕ(t)′ ◦ ϕ(t)−1)(ψ(0)′ ◦ ϕ(t)−1)
d log(ϕ(t)−1

x )

= −
∫

(ϕ(t)′′)2 Y + ϕ(t)′ϕ(t)′′ Y ′

(ϕ(t)′)2
dy

2∂t|0∂s|0c(ϕ(t) ◦ ψ(s), ϕ(t)−1) = −∂t|0
∫

(ϕ(t)′′)2 Y + ϕ(t)′ϕ(t)′′ Y ′

(ϕ(t)′)2
dy

= −
∫

0 + 0 + ϕ(0)′X ′′ Y ′ − 0

(ϕ(0)′ = 1)4
dy

= −
∫

X ′′Y ′ dy =

∫
X ′Y ′′ dx.

Finally we get from (2):

[(
X

a

)
,

(
Y

b

)]
=

(−[X,Y ]

ω(X,Y )

)
=

(
X ′Y − XY ′

ω(X,Y )

)
(3)

where

ω(X,Y ) = ω(X)Y =

∫
X ′dY ′ =

∫
X ′Y ′′dx = 1

2

∫
det

(
X ′ Y ′

X ′′ Y ′′

)
dx,

is the Gelfand-Fuchs Lie algebra cocycle ω : g × g → R, which is a bounded
skew-symmetric bilinear mapping satisfying the cocycle condition

ω([X,Y ], Z) + ω([Y,Z],X) + ω([Z,X], Y ) = 0.

It is a generator of the 1-dimensional bounded Chevalley cohomology H2(g, R)
for any of the Lie algebras g = X(S1), Xc(R), or S(R)∂x. The Lie algebra of the
Virasoro-Bott Lie group is thus the central extension R ×ω g of g induced by
this cocycle. We have H2(Xc(M), R) = 0 for each finite dimensional manifold
of dimension ≥ 2 (see [21]), which blocks the way to find a higher dimensional
analog of the Korteweg – de Vries equation in a way similar to that sketched
below.

For further use we also note the expression for the adjoint action on the
Virasoro-Bott groups which we computed along the way. For the integral in
the central term in (1) we have:

1

2

∫ (
log(ϕ′)Y ′′− (ϕ′′)2Y + ϕ′ϕ′′Y ′

(ϕ′)2

)
dx =

1

2

∫ (
−2

ϕ′′

ϕ′
Y ′−

(ϕ′′

ϕ′

)2

Y
)

dx =

=

∫ ((ϕ′′

ϕ′

)′

− 1

2

(ϕ′′

ϕ′

)2)
Y dx =

∫
S(ϕ)Y dx,

where a new character appears on stage, the Schwartzian derivative:
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S(ϕ) =
(ϕ′′

ϕ′

)′

− 1

2

(ϕ′′

ϕ′

)2

=
ϕ′′′

ϕ′
− 3

2

(ϕ′′

ϕ′

)2

= log(ϕ′)′′ − 1

2
(log(ϕ′)′)2 (4)

which measures the deviation of ϕ from being a Moebius transformation:

S(ϕ) = 0 ⇐⇒ ϕ(x) =
ax + b

cx + d
for

(
a b
c d

)
∈ SL(2, R).

Indeed, S(ϕ) = 0 if and only if g = log(ϕ′)′ = ϕ′′

ϕ′ satisfies the differential

equation g′ = g2/2, so that 2 dg
g2 = dx or −2

g = x+ d
c which means log(ϕ′)′(x) =

g(x) = −2
x+d/c or again log(ϕ′(x)) =

∫
−2dx
x+d/c = −2 log(x + d/c) − 2 log(c) =

log( 1
(cx+d)2 ). Therefore, ϕ′(x) = 1

(cx+d)2 = ∂x
ax+b
cx+d .

For completeness’ sake, let us note here the Schwartzian derivative of a
composition and an inverse (which follow since the adjoint action (5) below
is an action):

S(ϕ ◦ ψ) = (S(ϕ) ◦ ψ)(ψ′)2 + S(ψ), S(ϕ−1) = −S(ϕ)

(ϕ′)2
◦ ϕ−1

So finally, the adjoint action is given by:

Ad

(
ϕ

α

)(
Y

b

)
=

(
Ad(ϕ)Y = ϕ∗Y = Tϕ ◦ Y ◦ ϕ−1

b +
∫

S(ϕ)Y dx

)
(5)

8.3. H0-Geodesics on the Virasoro-Bott groups

We shall use the L2-inner product on R×ωg, where g = X(S1),Xc(R),S(R)∂x:

〈(
X

a

)
,

(
Y

b

)〉

0

:=

∫
XY dx + ab. (1)

Integrating by parts we get
〈

ad

(
X

a

)(
Y

b

)
,

(
Z

c

)〉

0

=

〈(
X ′Y − XY ′

ω(X,Y )

)
,

(
Z

c

)〉

0

=

∫
(X ′Y Z − XY ′Z + cX ′Y ′′) dx

=

∫
(2X ′Z + XZ ′ + cX ′′′)Y dx

=

〈(
Y

b

)
, ad

(
X

a

)⊤(
Z

c

)〉

0

, where

ad

(
X

a

)⊤(
Z

c

)
=

(
2X ′Z + XZ ′ + cX ′′′

0

)
.

Using matrix notation we get therefore (where ∂ := ∂x)
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ad

(
X

a

)
=

(
X ′ − X∂ 0

ω(X) 0

)

ad

(
X

a

)⊤

=

(
2X ′ + X∂ X ′′′

0 0

)

α

(
X

a

)
= ad

( )⊤(
X

a

)
=

(
X ′ + 2X∂ + a∂3 0

0 0

)

ad

(
X

a

)⊤

+ ad

(
X

a

)
=

(
3X ′ X ′′′

ω(X) 0

)

ad

(
X

a

)⊤

− ad

(
X

a

)
=

(
X ′ + 2X∂ X ′′′

−ω(X) 0

)
.

Formula (3.2.2) gives the H0 geodesic equation on the Virasoro-Bott group:

(
ut

at

)
= − ad

(
u

a

)⊤(
u

a

)
=

(−3uxu − auxxx

0

)
where (2)

(
u(t)

a(t)

)
= ∂s

(
ϕ(s)

α(s)

)
.

(
ϕ(t)−1

−α(t)

)∣∣∣
s=t

= ∂s

(
ϕ(s) ◦ ϕ(t)−1

α(s) − α(t) + c(ϕ(s), ϕ(t)−1)

)∣∣∣
s=t

=

(
ϕt ◦ ϕ−1

αt −
∫

ϕtxϕxx

2ϕ2
x

dx

)

since we have

2∂sc(ϕ(s), ϕ(t)−1)|s=t = ∂s

∫
log(ϕ(s)′ ◦ ϕ(t)−1) d log((ϕ(t)−1)′)|s=t

=

∫
ϕt(t)

′ ◦ ϕ(t)−1

ϕ(t)′ ◦ ϕ(t)−1

(
− ϕ(t)′′ ◦ ϕ(t)−1

(ϕ(t)′ ◦ ϕ(t)−1)2

)
dx by (8.2)

= −
∫

ϕ′
tϕ

′′

(ϕ′)2
dy = −

∫
ϕtxϕxx

ϕ2
x

dx.

Thus a is a constant in time and the geodesic equation is hence the Korteweg-
de Vries equation

ut + 3uxu + auxxx = 0. (3)

with its natural companions

ϕt = u ◦ ϕ, αt = a +

∫
ϕtxϕxx

2ϕ2
x

dx.

It is the periodic equation, if we work on S1.
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The derivation above is direct and does not use the Euler-Poincaré equa-
tions; for a derivation of the Korteweg-de Vries equation from this point of
view see [34], section 13.8.

Let us compute the invariant momentum mapping from (4.3.2). First we
need the transpose of the adjoint action (8.2.5):

〈
Ad

(
ϕ

α

)⊤ (
Y

b

)
,

(
Z

c

)〉

0

=

〈(
Y

b

)
,Ad

(
ϕ

α

)(
Z

c

)〉

0

=

〈(
Y

b

)
,

(
ϕ∗Z

c +
∫

S(ϕ)Z dx

)〉

0

=

∫
Y ((ϕ′ ◦ ϕ−1)(Z ◦ ϕ−1) dx + bc +

∫
bS(ϕ)Z dx

=

∫
((Y ◦ ϕ)(ϕ′)2 + bS(ϕ))Z dx + bc

Ad

(
ϕ

α

)⊤ (
Y

b

)
=

(
(Y ◦ ϕ)(ϕ′)2 + bS(ϕ)

b

)
.

Thus the invariant momentum mapping (4.3.2) turns out as

J̄

((
ϕ

α

)
,

(
Y

b

))
= Ad

(
ϕ

α

)⊤(
Y

b

)(
(Y ◦ ϕ)(ϕ′)2 + bS(ϕ)

b

)
. (4)

Along a geodesic t 7→ g(t, ) =
(
ϕ(t, )

α(t)

)
, according to (3) and (4.3), the

momentum

J̄

((
ϕ

α

)
,

(
u = ϕt ◦ ϕ−1

a

))
=

(
(u ◦ ϕ)ϕ2

x + aS(ϕ)

a

)
=

(
ϕtϕ

2
x + aS(ϕ)

a

)

(5)
is constant in t.

8.4. The curvature

The computation of the curvature at the identity element has been done
independently by [41] and Misiolek [42]. Here we proceed with a completely
general computation that takes advantage of the formalism introduced so far.

Inserting the matrices of differential- and integral operators ad
(
X
a

)⊤
, α

(
X
a

)
,

and ad
(
X
a

)
etc. given above into formula (3.4.2) and recalling that the matrix

is applied to vectors of the form
(
Z
c

)
, where c is a constant, we see that

4R
((

X1

a1

)
,
(
X2

a2

))
is the following 2 × 2-matrix whose entries are differential-

and integral operators:
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4(X1X
′′
2 − X ′′

1 X2) + 2(a1X
(4)
2 − a2X

(4)
1 )

+(8(X1X
′
2 − X ′

1X2) + 10(a1X
′′′
2 − a2X

′′′
1 ))∂

+18(a1X
′′
2 − a2X

′′
1 )∂2

+(12(a1X
′
2 − a2X

′
1) + 2ω(X1,X2))∂

3

−X ′′′
1 ω(X2) + X ′′′

2 ω(X1)

2(X ′′′
1 X ′

2 − X ′
1X

′′′
2 )

+2(X1X
(4)
2 − X

(4)
1 X2)

+(a1X
(6)
2 − a2X

(6)
1 )

ω(X2)(4X
′
1 + 2X1∂ + a1∂

3)

−ω(X1)(4X
′
2 + 2X2∂ + a2∂

3)
0




Therefore, 4R
((

X1

a1

)
,
(
X2

a2

)) (
X3

a3

)
has the following expression




4(X1X
′′
2 − X ′′

1 X2)X3 + 2(a1X
(4)
2 − a2X

(4)
1 )X3

+ (8(X1X
′
2 − X ′

1X2) + 10(a1X
′′′
2 − a2X

′′′
1 ))X ′

3

+ 18(a1X
′′
2 − a2X

′′
1 )X ′′

3 + 12(a1X
′
2 − a2X

′
1)X

′′′
3

+ 2X ′′′
3

∫
X ′

1X
′′
2 dx − X ′′′

1

∫
X ′

2X
′′
3 dx + X ′′′

2

∫
X ′

1X
′′
3 dx

+ 2a3(X
′′′
1 X ′

2−X ′
1X

′′′
2 ) + 2a3(X1X

(4)
2 −X

(4)
1 X2) + a3(a1X

(6)
2 −a2X

(6)
1 )

∫
X ′′′

3 (a1X
′′′
2 − a2X

′′′
1 )dx

+

∫
2X ′

3(X1X
′′′
2 − X ′′′

1 X2 − 2X ′
1X

′′
2 + 2X ′′

1 X ′
2)dx




which coincides with formula (2.3) in Misiolek [42]. This in turn leads to the
following expression for the sectional curvature

〈
4R

((
X1

a1

)
,
(
X2

a2

)) (
X1

a1

)
,
(
X2

a2

)〉
0

=

=

∫ (
4(X1X

′′
2 − X ′′

1 X2)X1X2 + 8(X1X
′
2 − X ′

1X2)X
′
1X2

+ 2(a1X
(4)
2 − a2X

(4)
1 )X1X2 + 10(a1X

′′′
2 − a2X

′′′
1 )X ′

1X2

+ 18(a1X
′′
2 − a2X

′′
1 )X ′′

1 X2

+ 12(a1X
′
2 − a2X

′
1)X

′′′
1 X2 + 2ω(X1,X2)X

′′′
1 X2

− X ′′′
1 ω(X2,X1)X2 + X ′′′

2 ω(X1,X1)X2

+ 2(X ′′′
1 X ′

2 − X ′
1X

′′′
2 )a1X2

+ 2(X1X
(4)
2 − X

(4)
1 X2)a1X2

+ (a1X
(6)
2 − a2X

(6)
1 )a1X2

+ (4X ′
1X1X

′′′
2 + 2X1X

′
1X

′′′
2 + a1X

′′′
1 X ′′′

2

− 4X ′
2X1X

′′′
1 − 2X2X

′
1X

′′′
1 − a2X

′′′
1 X ′′′

1 )a2

)
dx
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=

∫ (
− 4[X1,X2]

2 + 4(a1X2 − a2X1)(X1X
(4)
2 − X ′

1X
′′′
2 + X ′′′

1 X ′
2 − X

(4)
1 X2)

− (X ′′′
2 )2a2

1 + 2X ′′′
1 X ′′′

2 a1a2 − (X ′′′
1 )2a2

2

)
dx

+3ω(X1,X2)
2.

This formula shows that the sign of the sectional curvature is not constant.
Indeed, choosing h1(x) = sin x, h2(x) = cos x we get −π(8+a2

1+a2
2−3π) which

can be positive and negative by choosing the constants a1, a2 judiciously.

8.5. Jacobi fields

A Jacobi field y =
(
y
b

)
along a geodesic with velocity field

(
u
a

)
is a solution of

the partial differential equation (3.5.1) which in our case looks as follows.

(
ytt

btt

)
=

[
ad

(
y

b

)⊤

+ ad

(
y

b

)
, ad

(
u

a

)⊤
] (

u

a

)

− ad

(
u

a

)⊤(
yt

bt

)
− α

(
u

a

)(
yt

bt

)
+ ad

(
u

a

)(
yt

bt

)

=

[(
3yx yxxx

ω(y) 0

)
,

(
2ux + u∂x uxxx

0 0

)](
u

a

)

+

(
−2ux − 4u∂x − a∂3

x −uxxx

ω(u) 0

) (
yt

bt

)
,

which leads to

ytt = −u(4ytx + 3uyxx + ayxxxx) − ux(2yt + 2ayxxx) (1)

− uxxx(bt + ω(y, u) − 3ayx) − aytxxx,

btt = ω(u, yt) + ω(y, 3uxu) + ω(y, auxxx). (2)

Equation (2) is equivalent to:

btt =

∫
(−ytxxxu + yxxx(3uxu + auxxx))dx. (2′)

Next, let us show that the integral term in equation (1) is constant:

bt + ω(y, u) = bt +

∫
yxxxu dx =: B1. (3)

Indeed its t-derivative along the geodesic for u (that is, u satisfies the
Korteweg-de Vries equation) coincides with (2′):
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btt +

∫
(ytxxxu+ yxxxut) dx = btt +

∫
(ytxxxu+ yxxx(−3uxu−auxxx)) dx = 0.

Thus b(t) can be explicitly solved from (3) as

b(t) = B0 + B1t −
∫ t

a

∫
yxxxu dx dt. (4)

The first component of the Jacobi equation on the Virasoro-Bott group is a
genuine partial differential equation. Thus the Jacobi equations are given by
the following system:

ytt = −u(4ytx + 3uyxx + ayxxxx) − ux(2yt + 2ayxxx)

− uxxx(B1 − 3ayx) − aytxxx, (5)

ut = −3uxu − auxxx,

a = constant,

where u(t, x), y(t, x) are either smooth functions in (t, x) ∈ I×S1 or in (t, x) ∈
I × R, where I is an interval or R, and where in the latter case u, y, yt have
compact support with respect to x.

Choosing u = c ∈ R, a constant, these equations coincide with (3.1) in
Misiolek [42] where it is shown by direct inspection that there are solutions
of this equation which vanish at non-zero values of t, thereby concluding
that there are conjugate points along geodesics emanating from the identity
element of the Virasoro-Bott group on S1.

8.6. The weak symplectic structure on the space of Jacobi fields on
the Virasoro Lie algebra

Since the Korteweg - de Vries equation has local solutions depending smoothly
on the initial conditions (and global solutions if a 6= 0), we expect that the
space of all Jacobi fields exists and is isomorphic to the space of all initial
data (R×ω X(S1))× (R×ω X(S1)). The weak symplectic structure is given in
section (3.7):

ω

((
y

b

)
,

(
z

c

))
=

〈(
y

b

)
,

(
zt

ct

)〉

0

−
〈(

yt

bt

)
,

(
z

c

)〉

0

+

〈[(
u

a

)
,

(
y

b

)]
,

(
z

c

)〉

0

−
〈(

y

b

)
,

[(
u

a

)
,

(
z

b

)]〉

0

−
〈[(

y

b

)
,

(
z

c

)]
,

(
u

a

)〉

0

=

∫
(yzt − ytz + 2u(yzx − yxz)) dx

+ b(ct + ω(z, u)) − c(bt + ω(y, u)) − aω(y, z)

=

∫
(yzt − ytz + 2u(yzx − yxz)) dx (1)
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+ bC1 − cB1 − a

∫
y′z′′ dx, (1)

where the constant C1 relates to c as B1 does to b, see (8.5.3) and (8.5.4).

8.7. The geodesics of the Hk-metric on the Virasoro group

We shall use the Hk-inner product on R×ωg, where g is any of the Lie algebras
X(S1) or XS(R) = S(R)∂x. The Lie algebra Xc(R) does not work here any

more since Ak =
∑k

j=0(−1)j∂2j
x is no longer a linear isomorphism here.

〈(
X

a

)
,

(
Y

b

)〉

k

: =

∫
(XY + X ′Y ′ + · · · + X(k)Y (k)) dx + ab (1)

=

∫
Ak(X)Y dx + ab =

∫
XAk(Y ) dx + ab,

where Ak =
k∑

i=0

(−1)i∂2i
x as in (7.3.1).

Integrating by parts we get

〈
ad

(
X

a

)(
Y

b

)
,

(
Z

c

)〉

k

=

〈(
X ′Y − XY ′

ω(X,Y )

)
,

(
Z

c

)〉

k

=

∫
(X ′Y Ak(Z) − XY ′Ak(Z) + cX ′Y ′′) dx

=

∫
(2X ′Y Ak(Z) + XY Ak(Z ′) + cX ′′′) dx

=

∫
Y AkA−1

k (2X ′Ak(Z) + XAk(Z ′) + cX ′′′) dx

=

〈(
Y

b

)
, ad

(
X

a

)⊤(
Z

c

)〉

0

, where

ad

(
X

a

)⊤(
Z

c

)
=

(
A−1

k (2X ′Ak(Z) + XAk(Z ′) + cX ′′′)

0

)
. (2)

Using matrix notation we get therefore (where ∂ := ∂x)

ad

(
X

a

)
=

(
X ′ − X∂ 0

ω(X) 0

)

ad

(
X

a

)⊤

=

(
A−1

k .(2X ′.Ak + XAk.∂x) A−1
k (X ′′′)

0 0

)

α

(
X

a

)
= ad

( )⊤(
X

a

)
=

(
A−1

k .(Ak(X ′) + 2Ak(X)∂x + a∂3) 0
0 0

)
.
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Formula (3.2.2) gives the geodesic equation on the Virasoro-Bott group:

(
ut

at

)
= − ad

(
u

a

)⊤(
u

a

)
=

(−A−1
k (2uxAk(u) + uAk(ux) + auxxx)

0

)
, (3)

where

(
u(t)

a(t)

)
=

(
ϕt ◦ ϕ−1

αt −
∫

ϕtxϕxx

2ϕ2
x

dx

)

as in (8.3.2) Thus a is a constant in time and the geodesic equation contains
the equation from the Korteweg-de Vries hierarchy:

Ak(ut) = −2uxAk(u) − uAk(ux) − auxxx (4)

For k = 0 this gives the Korteweg–de Vries equation.
For k = 1 we get the equation

ut − utxx = −3uux + 2uxuxx + uuxxx − auxxx,

the Camassa-Holm equation, [13], [36]. See (7.3.4) for the dispersionfree ver-
sion.

Let us compute the invariant momentum mapping from (4.3.2). First we
need the transpose of the adjoint action (8.2.5):

〈
Ad

(
ϕ

α

)⊤ (
Y

b

)
,

(
Z

c

)〉

k

=

〈(
Y

b

)
,Ad

(
ϕ

α

) (
Z

c

)〉

k

=

〈(
Y

b

)
,

(
ϕ∗Z

c +
∫

S(ϕ)Z dx

)〉

k

=

∫
Ak(Y )(ϕ∗Z) dx + bc +

∫
bS(ϕ)Z dx

=

∫
Ak(Y )((ϕ′Z) ◦ ϕ−1) dx + bc +

∫
bS(ϕ)Z dx

=

∫
(Ak(Y ) ◦ ϕ)(ϕ′)2Z dy + bc +

∫
bS(ϕ)Z dx

=

∫
((Ak(Y ) ◦ ϕ)(ϕ′)2 + bS(ϕ))Z dx + bc

=

∫
AkA−1

k ((Ak(Y ) ◦ ϕ)(ϕ′)2 + bS(ϕ))Z dx + bc

=

〈(
A−1

k ((Ak(Y ) ◦ ϕ)(ϕ′)2 + bS(ϕ))

b

)
,

(
Z

c

)〉
.

Ad

(
ϕ

α

)⊤ (
Y

b

)
=

(
A−1

k ((Ak(Y ) ◦ ϕ)(ϕ′)2 + bS(ϕ))

b

)

Thus the invariant momentum mapping (4.3.2) turns out as
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J̄

((
ϕ

α

)
,

(
Y

b

))
= Ad

(
ϕ

α

)⊤(
Y

b

)
=

(
A−1

k ((Ak(Y ) ◦ ϕ)(ϕ′)2 + bS(ϕ))

b

)
.

(5)

Along a geodesic t 7→ g(t, ) =
(
ϕ(t, )

α(t)

)
, according to (4) and (4.3), the

momentum

J̄

((
ϕ

α

)
,

(
u = ϕt ◦ ϕ−1

a

))
=

(
A−1

k

(
Ak(u) ◦ ϕ)ϕ2

x + aS(ϕ)
)

a

)

=

(
A−1

k

(
(Ak(ϕt ◦ ϕ−1) ◦ ϕ)ϕ2

x + aS(ϕ)
)

a

)
(6)

is constant in t, and thus also

J̃(a, ϕ) :=
(
Ak(ϕt ◦ ϕ−1) ◦ ϕ

)
ϕ2

x + aS(ϕ) (7)

is constant in t.

8.8. Theorem.
[12] Let k ≥ 2. There exists a HC2k+1-open neighborhood V of (Id, 0) in the
space (S1 ×c Diff(S1)) × (R ×ω X(S1)) such that for each (g0, α, u0, a) ∈ V
there exists a unique C3 geodesic g ∈ C3((−2, 2), S1 ×c Diff(S1)) for the right
invariant Hk Riemann metric, starting at g(0) = g0 in the direction gt(0) =
u0 ◦ g0 ∈ Tg0

Diff(S1). Moreover, the solution depends C1 on the initial data
(g0, u0) ∈ V .

The same result holds if we replace S1 ×c Diff(S1) by R ×c DiffS(R) and
X(S1) by S(R)∂x = XS(R).

In the following proof Diff, X, DiffHCn, HCn will mean either Diff(S1),
X(S1), DiffHCn(S1), HCn(S1), or DiffS(R), XS(R), DiffHCn(R), HCn(R),
respectively.

Proof. For u ∈ HCn, n ≥ 2k + 1, we have as in the proof of (7.4)

Ak(uux) = uAk(ux) +

k∑

i=0

(−1)i
2i∑

j=1

(
2i
j

)
(∂j

xu)(∂2i−j+1
x u) =: u Ak(ux) + Bk(u),

where Bk : HCn → HCn−2k is a bounded quadratic operator. Recall from
(8.7.4) that we have to solve (where a is a real constant)

ut = −A−1
k

(
2uxAk(u) + uAk(ux) + auxxx

)

= −A−1
k

(
2uxAk(u) + Ak(uux) − Bk(u) + auxxx

)

= −uux − A−1
k

(
2uxAk(u) − Bk(u) + auxxx

)

=: −uux + A−1
k Ck(u, a),

where u = gt ◦ g−1 ∈ X, and where Ck : HCn → HCn−2k is a bounded
polynomial operator, given by
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Ck(a, u) = −2uxAk(u) + Bk(u) − auxxx

= −2uxAk(u) +

k∑

i=0

(−1)i
2i∑

j=1

(
2i
j

)
(∂j

xu)(∂2i−j+1
x u) − auxxx.

Note that here we need 2k ≥ 3. In [43] this result was obtained for k ≥ 3/2.
We put





gt =: v = u ◦ g

vt = ut ◦ g + (ux ◦ g)gt = ut ◦ g + (uux) ◦ g = A−1
k Ck(a, u) ◦ g

= A−1
k Ck(a, v ◦ g−1) ◦ g =: pr2(Dk ◦ Ek)(g, v), where

(1)

Ek(a, g, v) = (g, Ck(a, v ◦ g−1) ◦ g), Dk(g, v) = (g,A−1
k (v ◦ g−1) ◦ g).

Now consider the topological group and Banach manifold DiffHCn.
Claim. The mapping Dk : DiffHCn ×HCn−2k → DiffHCn ×HCn is

strongly C1.
Let us assume that we have C1-curves s 7→ g(s) ∈ DiffHCn and s 7→ v(s) ∈

HCn−2k. Then we have:

∂s pr2 Dk(a, g(s), v(s)) = ∂sA
−1
k (v ◦ g−1) ◦ g

= A−1
k (vs ◦ g−1) ◦ g + A−1

k

(
(vx ◦ g−1)(− gs ◦ g−1

gx ◦ g−1
)

)
◦ g

+ (A−1
k (v ◦ g−1)x ◦ g)gs

Ak

((
∂s pr2 Dk(a, g(s), v(s))

)
◦ g−1

)
=

= vs ◦ g−1 − (v ◦ g−1)x(gs ◦ g−1) + Ak(A−1
k (v ◦ g−1)x(gs ◦ g−1))

= vs ◦ g−1 − (v ◦ g−1)x(gs ◦ g−1) + (v ◦ g−1)x(gs ◦ g−1)+

+

k∑

i=0

2i−1∑

j=0

(
2i

j

)
(∂j+1

x (A−1
k (v ◦ g−1))∂2i−j

x (gs ◦ g−1) ∈ HCn−2k

∂s pr2 Dk(a, g(s), v(s)) = A−1
k (vs ◦ g−1) ◦ g

+

k∑

i=0

2i−1∑

j=0

(
2i

j

)
A−1

k

((
∂j+1

x (A−1
k (v ◦ g−1)

)
∂2i−j

x (gs ◦ g−1)
)
◦ g

and by (6.12) and (6.13) we can conclude that this is continuous in a, g, gs, v, vs

jointly and Lipschitz in gs and vs. Thus Dk is strongly C1.
Claim. The mapping Ek : DiffHCn ×HCn → DiffHCn ×HCn−2k is

strongly C1.
This can be proved in a similar way as the last claim.
By the two claims equation (1) can be viewed as the flow equation of a

C1-vector field on the Hilbert manifold DiffHCn ×HCn. Here an existence
and uniqueness theorem holds. Since v = 0 is a stationary point, there exists
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an open neighborhood Wn of (Id, 0) in DiffHCn ×HCn such that for each
initial point (g0, v0) ∈ Wn equation (1) has a unique solution Flnt (g0, v0) =
(g(t), v(t)) defined and C2 in t ∈ (−2, 2). Note that v(t) = gt(t), thus g(t) is
even C3 in t. Moreover, the solution depends C1 on the initial data.

We start with the neighborhood

W2k+1 ⊂ DiffHC2k+1 ×HC2k+1 ⊃ DiffHCn ×HCn for n ≥ 2k + 1

and consider the neighborhood Vn := W2k+1 ∩ DiffHCn ×HCn of (Id, 0).
Claim. For any initial point (g0, v0) ∈ Vn the solution Flnt (g0, v0) =

(g(t), v(t)) exists, is unique, is C2 in t ∈ (−2, 2), and depends C1 on the
initial point in Vn.

We use induction on n ≥ 2k + 1. For n = 2k + 1 the claim holds since
V2k+1 = W2k+1. Let (g0, v0) ∈ V2k+2 and let Fl2k+2

t (g0, v0) = (g̃(t), ṽ(t))
be maximally defined for t ∈ (t1, t2) ∋ 0. Suppose for contradiction that
t2 < 2. Since (g0, v0) ∈ V2k+2 ⊂ V2k+1 the curve Fl2k+2

t (g0, v0) = (g̃(t), ṽ(t))
solves (1) also in DiffHC2k+1 ×HC2k+1, thus Fl2k+2

t (g0, v0) = (g̃(t), ṽ(t)) =
(g(t), v(t)) := Fl2k+1

t (g0, v0) for t ∈ (t1, t2)∩(−2, 2). By (7.3.6), the expression

J̃(t) = J̃(g, v, t) = gx(t)2Ak(u(t)) ◦ g(t) = gx(t)tAk(v(t) ◦ g(t)) ◦ g(t) (2)

is constant in t ∈ (−2, 2). Actually, since we used C∞-theory for deriving
this, one should check it again by differentiating. Since u = gt ◦ g−1 we get
the following (the exact formulas can be computed with the help of Faà di
Bruno’s formula (6.1):

ux = (gtx ◦ g−1)(g−1)x =
gtx

gx
◦ g−1

∂2
xu = (

∂2
xgt

g2
x

− gtx
∂2

xg

g3
x

) ◦ g−1

∂x(g−1) =
1

gx
◦ g−1

∂2
x(g−1) ◦ g = −∂2

xg

g3
x

∂2k
x (g−1) ◦ g = − ∂2k

x g

g2k+1
x

+ lower order terms in g

(∂2k
x u) ◦ g =

∂2k
x gt

g2k
x

− gtx
∂2k

x g

g2k+1
x

+ lower order terms in g, gt = v.

Thus

(−1)kg2k−1
x J̃(t) = gx∂2k

x gt − gtx∂2k
x g + lower order terms in g, gt = v.

Hence for each t ∈ (−2, 2):

gx∂2k
x gt − gtx∂2k

x g = (−1)kg2
x

(
g2k−3

x J̃(t) + Pk(g, v)
)

, where
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Pk(g, v) =
Qk(g, ∂xg, . . . , ∂2k−1

x g, v, ∂xv, . . . , ∂2k−1
x v)

g2
x

for a polynomial Qk. Since J̃(t) = J̃(0) we obtain that

(
∂2k

x g(t)

gx(t)

)

t

= (−1)k
(
g2k−3

x (t)J̃(0) + Pk(g(t), v(t))
)

for all t ∈ (−2, 2).

This implies

∂2k
x g(t)

gx(t)
=

∂2k
x g(0)

gx(0)
+ (−1)k

∫ t

0

(
g2k−3

x (s)J̃(0) + Pk(g(s), v(s))
)

ds.

For t ∈ (t1, t2) we have

∂2k
x g̃(t) =

∂2k
x g0

∂xg0
gx(t)+ (3)

+ (−1)kgx(t)

∫ t

0

(
g2k−3

x (s)J̃(0) + Pk(g(s), v(s))
)

ds.

Since (g0, v0) ∈ V2k+2 we have J̃(0) = J̃(g0, v0, 0) ∈ HC2 by (2). Since
k ≥ 1, by (3) we see that ∂2k

x g̃(t) ∈ HC2. Moreover, since t2 < 2, the limit
limt→t2− ∂2k

x g̃(t) exists in HC2, so limt→t2− g̃(t) exists in HC2k+2. As this
limit equals g(t2), we conclude that g(t2) ∈ DiffHC2k+2. Now ṽ = g̃t; so we
may differentiate both sides of (3) in t and obtain similarly that limt→t2− ṽ(t)
exists in HC2k+2 and equals v(t2). But then we can prolong the flow line
(g̃, ṽ) in DiffHC2k+2 ×HC2k+2 beyond t2, so (t1, t2) was not maximal.

By the same method we can iterate the induction. ⊓⊔

Appendix A. Smooth calculus beyond Banach spaces

The traditional differential calculus works well for finite dimensional vector
spaces and for Banach spaces. For more general locally convex spaces we sketch
here the convenient approach as explained in [20] and [30]. The main difficulty
is that the composition of linear mappings stops to be jointly continuous at
the level of Banach spaces, for any compatible topology. We use the notation
of [30] and this is the main reference for the whole appendix. We list results
in the order in which one can prove them, without proofs for which we refer
to [30]. This should explain how to use these results. Later we also explain
the fundamentals about regular infinite dimensional Lie groups.

A.1. Convenient vector spaces

Let E be a locally convex vector space. A curve c : R → E is called smooth
or C∞ if all derivatives exist and are continuous - this is a concept without
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problems. Let C∞(R, E) be the space of smooth functions. It can be shown
that C∞(R, E) does not depend on the locally convex topology of E, but only
on its associated bornology (system of bounded sets).

E is said to be a convenient vector space if one of the following equivalent
conditions is satisfied (called c∞-completeness):

1. For any c ∈ C∞(R, E) the (Riemann-) integral
∫ 1

0
c(t)dt exists in E.

2. A curve c : R → E is smooth if and only if λ ◦ c is smooth for all λ ∈ E′,
where E′ is the dual consisting of all continuous linear functionals on E.

3. Any Mackey-Cauchy-sequence (i. e. tnm(xn−xm) → 0 for some tnm → ∞
in R) converges in E. This is visibly a weak completeness requirement.

The final topology with respect to all smooth curves is called the c∞-topology
on E, which then is denoted by c∞E. For Fréchet spaces it coincides with
the given locally convex topology, but on the space D of test functions with
compact support on R it is strictly finer.

A.2. Smooth mappings

Let E and F be locally convex vector spaces, and let U ⊂ E be c∞-open.
A mapping f : U → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F ) for all
c ∈ C∞(R, U). The main properties of smooth calculus are the following.

1. For mappings on Fréchet spaces this notion of smoothness coincides with
all other reasonable definitions. Even on R2 this is non-trivial.

2. Multilinear mappings are smooth if and only if they are bounded.
3. If f : E ⊇ U → F is smooth then the derivative df : U×E → F is smooth,

and also df : U → L(E,F ) is smooth where L(E,F ) denotes the space of
all bounded linear mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.
5. The space C∞(U,F ) is again a convenient vector space where the structure

is given by the obvious injection

C∞(U,F ) →
∏

c∈C∞(R,U)

C∞(R, F ) →
∏

c∈C∞(R,U),λ∈F ′

C∞(R, R).

6. The exponential law holds:

C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomeorphism of convenient vector spaces. Note that this is
the main assumption of variational calculus.

7. A linear mapping f : E → C∞(V,G) is smooth (bounded) if and only if
E −f→ C∞(V,G) −evv→ G is smooth for each v ∈ V . This is called the
smooth uniform boundedness theorem and it is quite applicable.
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A.3. Theorem. [20], 4.1.19..
Let c : R → E be a curve in a convenient vector space E. Let V ⊂ E′ be a
subset of bounded linear functionals such that the bornology of E has a basis
of σ(E,V)-closed sets. Then the following are equivalent:

1. c is smooth
2. There exist locally bounded curves ck : R → E such that ℓ ◦ c is smooth

R → R with (ℓ ◦ c)(k) = ℓ ◦ ck.

If E is reflexive, then for any point separating subset V ⊂ E′ the bornology of
E has a basis of σ(E,V)-closed subsets, by [20], 4.1.23.

A.4. Counterexamples in infinite dimensions against common
beliefs on ordinary differential equations

Let E := s be the Fréchet space of rapidly decreasing sequences; note
that by the theory of Fourier series we have s = C∞(S1, R). Consider
the continuous linear operator T : E → E given by T (x0, x1, x2, . . . ) :=
(0, 12x1, 2

2x2, 3
2x3, . . . ). The ordinary linear differential equation x′(t) =

T (x(t)) with constant coefficients has no solution in s for certain initial values.
By recursion one sees that the general solution should be given by

xn(t) =
n∑

i=0

(
n!
i!

)2
xi(0)

tn−i

(n − i)!
.

If the initial value is a finite sequence, say xn(0) = 0 for n > N and xN (0) 6= 0,
then

xn(t) =
N∑

i=0

(
n!
i!

)2
xi(0)

tn−i

(n − i)!

=
(n!)2

(n − N)!
tn−N

N∑

i=0

(
1
i!

)2
xi(0) (n−N)!

(n−i)! tN−i

|xn(t)| ≥ (n!)2

(n − N)!
|t|n−N

(
|xN (0)|

(
1

N !

)2 −
N−1∑

i=0

(
1
i!

)2 |xi(0)| (n−N)!
(n−i)! |t|

N−i

)

≥ (n!)2

(n − N)!
|t|n−N

(
|xN (0)|

(
1

N !

)2 −
N−1∑

i=0

(
1
i!

)2 |xi(0)||t|N−i

)

where the first factor does not lie in the space s of rapidly decreasing sequences
and where the second factor is larger than ε > 0 for t small enough. So at least
for a dense set of initial values this differential equation has no local solution.

This shows also, that the theorem of Frobenius is wrong, in the following
sense: The vector field x 7→ T (x) generates a 1-dimensional subbundle E of
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the tangent bundle on the open subset s \ {0}. It is involutive since it is
1-dimensional. But through points representing finite sequences there exist
no local integral submanifolds (M with TM = E|M). Namely, if c were a
smooth nonconstant curve with c′(t) = f(t).T (c(t)) for some smooth function
f , then x(t) := c(h(t)) would satisfy x′(t) = T (x(t)), where h is a solution of
h′(t) = 1/f(h(t)).

As next example consider E := RN and the continuous linear operator T :
E → E given by T (x0, x1, . . . ) := (x1, x2, . . . ). The corresponding differential
equation has solutions for every initial value x(0), since the coordinates must
satisfy the recusive relations xk+1(t) = x′

k(t) and hence any smooth functions

x0 : R → R gives rise to a solution x(t) := (x
(k)
0 (t))k with initial value

x(0) = (x
(k)
0 (0))k. So by Borel’s theorem there exist solutions to this equation

for any initial value and the difference of any two functions with same initial
value is an arbitray infinite flat function. Thus the solutions are far from being
unique. Note that RN is a topological direct summand in C∞(R, R) via the
projection f 7→ (f(n))n, and hence the same situation occurs in C∞(R, R).

Let now E := C∞(R, R) and consider the continuous linear operator T :
E → E given by T (x) := x′. Let x : R → C∞(R, R) be a solution of the
equation x′(t) = T (x(t)). In terms of x̂ : R2 → R this says ∂

∂t x̂(t, s) =
∂
∂s x̂(t, s). Hence r 7→ x̂(t − r, s + r) has vanishing derivative everywhere and
so this function is constant, and in particular x(t)(s) = x̂(t, s) = x̂(0, s + t) =
x(0)(s + t). Thus we have a smooth solution x uniquely determined by the
initial value x(0) ∈ C∞(R, R) which even describes a flow for the vector
field T in the sense of (A.6) below. In general this solution is however not
real-analytic, since for any x(0) ∈ C∞(R, R), which is not real-analytic in a
neighborhood of a point s the composite evs ◦x = x(s+ ) is not real-analytic
around 0.

A.5. Manifolds and vector fields

In the sequel we shall use smooth manifolds M modelled on c∞-open subsets
of convenient vector spaces. Since we shall need it we also include some results
on vector fields and their flows.

Consider vector fields Xi ∈ C∞(TM) and Yi ∈ Γ (TN) for i = 1, 2, and
a smooth mapping f : M → N . If Xi and Yi are f-related for i = 1, 2, i. e.
Tf ◦ Xi = Yi ◦ f , then also [X1,X2] and [Y1, Y2] are f-related.

In particular if f : M → N is a local diffeomorphism (so (Txf)−1 makes
sense for each x ∈ M), then for Y ∈ Γ (TN) a vector field f∗Y ∈ Γ (TM) is
defined by (f∗Y )(x) = (Txf)−1.Y (f(x)). The linear mapping f∗ : Γ (TN) →
Γ (TM) is then a Lie algebra homomorphism.
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A.6. The flow of a vector field

Let X ∈ Γ (TM) be a vector field. A local flow FlX for X is a smooth mapping
FlX : M ×R ⊃ U → M defined on a c∞-open neighborhood U of M × 0 such
that

1. d
dt FlXt (x) = X(FlXt (x)).

2. FlX0 (x) = x for all x ∈ M .
3. U ∩ ({x} × R) is a connected open interval.
4. FlXt+s = FlXt ◦FlXs holds in the following sense. If the right hand side exists

then also the left hand side exists and we have equality. Moreover: If FlXs
exists, then the existence of both sides is equivalent and they are equal.

Let X ∈ Γ (TM) be a vector field which admits a local flow FlXt . Then for
each integral curve c of X we have c(t) = FlXt (c(0)), thus there exists a unique
maximal flow. Furthermore, X is FlXt -related to itself, i. e. T (FlXt ) ◦ X =
X ◦ FlXt .

Let X ∈ Γ (TM) and Y ∈ Γ (TN) be f-related vector fields for a smooth
mapping f : M → N which have local flows FlX and FlY . Then we have
f ◦ FlXt = FlYt ◦f , whenever both sides are defined.

Moreover, if f is a diffeomorphism we have Flf
∗Y

t = f−1 ◦ FlYt ◦f in the
following sense: If one side exists then also the other side exists, and they are
equal.

For f = IdM this implies that if there exists a flow then there exists a
unique maximal flow FlXt .

A.7. The Lie derivative

There are situations where we do not know that the flow of X exists but
where we will be able to produce the following assumption: Suppose that
ϕ : R × M ⊃ U → M is a smooth mapping such that (t, x) 7→ (t, ϕ(t, x) =
ϕt(x)) is a diffeomorphism U → V , where U and V are open neighborhoods
of {0}×M in R×M , and such that ϕ0 = IdM and ∂tϕt = X ∈ Γ (TM). Then
again ∂t|0(ϕt)

∗f = ∂t|0f ◦ ϕt = df ◦ X = X(f).
In this situation we have for Y ∈ Γ (TM), and for a k-form ω ∈ Ωk(M):

∂t|0(ϕt)
∗Y = [X,Y ],

∂t|0(ϕt)
∗ω = LXω.

Appendix B. Regular infinite dimensional Lie groups

B.1. Lie groups

A Lie group G is a smooth manifold modelled on c∞-open subsets of a conve-
nient vector space, and a group such that the multiplication µ : G × G → G
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and the inversion ν : G → G are smooth. We shall use the following notation:
µ : G × G → G, multiplication, µ(x, y) = x.y.
µa : G → G, left translation, µa(x) = a.x.
µa : G → G, right translation, µa(x) = x.a.
ν : G → G, inversion, ν(x) = x−1.
e ∈ G, the unit element.

The tangent mapping T(a,b)µ : TaG × TbG → TabG is given by

T(a,b)µ.(Xa, Yb) = Ta(µb).Xa + Tb(µa).Yb

and Taν : TaG → Ta−1G is given by

Taν = −Te(µ
a−1

).Ta(µa−1) = −Te(µa−1).Ta(µa−1

).

B.2. Invariant vector fields and Lie algebras

Let G be a (real) Lie group. A vector field ξ on G is called left invariant, if
µ∗

aξ = ξ for all a ∈ G, where µ∗
aξ = T (µa−1) ◦ ξ ◦ µa. Since we have µ∗

a[ξ, η] =
[µ∗

aξ, µ∗
aη], the space XL(G) of all left invariant vector fields on G is closed

under the Lie bracket, so it is a sub Lie algebra of X(G). Any left invariant
vector field ξ is uniquely determined by ξ(e) ∈ TeG, since ξ(a) = Te(µa).ξ(e).
Thus the Lie algebra XL(G) of left invariant vector fields is linearly isomorphic
to TeG, and on TeG the Lie bracket on XL(G) induces a Lie algebra structure,
whose bracket is again denoted by [ , ]. This Lie algebra will be denoted
as usual by g, sometimes by Lie(G).

We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g → XL(G), X 7→ LX , where LX(a) = Teµa.X. Thus
[X,Y ] = [LX , LY ](e).

Similarly a vector field η on G is called right invariant, if (µa)∗η = η for
all a ∈ G. If ξ is left invariant, then ν∗ξ is right invariant. The right invariant
vector fields form a sub Lie algebra XR(G) of X(G), which is again linearly
isomorphic to TeG and induces the negative of the Lie algebra structure on
TeG. We will denote by R : g = TeG → XR(G) the isomorphism discussed,
which is given by RX(a) = Te(µ

a).X.
If LX is a left invariant vector field and RY is a right invariant vector

field, then [LX , RY ] = 0. So if the flows of LX and RY exist, they commute.
Let ϕ : G → H be a smooth homomorphism of Lie groups. Then ϕ′ :=

Teϕ : g = TeG → h = TeH is a Lie algebra homomorphism.

B.3. One parameter subgroups

Let G be a Lie group with Lie algebra g. A one parameter subgroup of G is
a Lie group homomorphism α : (R,+) → G, i.e. a smooth curve α in G with
α(s + t) = α(s).α(t), and hence α(0) = e.
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Note that a smooth mapping β : (−ε, ε) → G satisfying β(t)β(s) = β(t+s)
for |t|, |s|, |t + s| < ε is the restriction of a one parameter subgroup. Namely,
choose 0 < t0 < ε/2. Any t ∈ R can be uniquely written as t = N.t0 + t′ for
0 ≤ t′ < t0 and N ∈ Z. Put α(t) = β(t0)

Nβ(t′). The required properties are
easy to check.

Let α : R → G be a smooth curve with α(0) = e. Let X ∈ g. Then the
following assertions are equivalent.

1. α is a one parameter subgroup with X = ∂tα(t).
2. α(t) is an integral curve of the left invariant vector field LX , and also an

integral curve of the right invariant vector field RX .
3. FlLX (t, x) := x.α(t) (or FlLX

t = µα(t)) is the (unique by (A.6)) global flow
of LX in the sense of (A.6).

4. FlRX (t, x) := α(t).x (or FlRX

t = µα(t)) is the (unique) global flow of RX .

Moreover, each of these properties determines α uniquely.

B.4. Exponential mapping

Let G be a Lie group with Lie algebra g. We say that G admits an exponential
mapping if there exists a smooth mapping exp : g → G such that t 7→ exp(tX)
is the (unique by (B.3)) 1-parameter subgroup with tangent vector X at 0.
Then we have by (B.3)

1. FlLX (t, x) = x. exp(tX).
2. FlRX (t, x) = exp(tX).x.
3. exp(0) = e and T0 exp = Id : T0g = g → TeG = g since T0 exp .X =

∂t|0 exp(0 + t.X) = ∂t|0 FlLX (t, e) = X.
4. Let ϕ : G → H be a smooth homomorphism between Lie groups admitting

exponential mappings. Then the diagram

g
ϕ′

//

expG

²²

h

expH

²²
G

ϕ // H

commutes, since t 7→ ϕ(expG(tX)) is a one parameter subgroup of H and
∂t|0ϕ(expG tX) = ϕ′(X), so ϕ(expG tX) = expH(tϕ′(X)).

We shall strengthen this notion in (B.9) below and call it a ‘regular Fréchet
Lie groups’.

If G admits an exponential mapping, it follows from (B.4).(3) that exp
is a diffeomorphism from a neighborhood of 0 in g onto a neighborhood of
e in G, if a suitable inverse function theorem is applicable. This is true for
example for smooth Banach Lie groups, also for gauge groups, but it is wrong
for diffeomorphism groups.
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If E is a Banach space, then in the Banach Lie group GL(E) of all bounded
linear automorphisms of E the exponential mapping is given by the von Neu-
mann series exp(X) =

∑∞
i=0

1
i!X

i.
If G is connected with exponential mapping and U ⊂ g is open with 0 ∈ U ,

then one may ask whether the group generated by exp(U) equals G. Note that
this is a normal subgroup. So if G is simple, the answer is yes. This is true for
connected components of diffeomorphism groups and many of their important
subgroups.

B.5. The adjoint representation

Let G be a Lie group with Lie algebra g. For a ∈ G we define conja : G → G
by conja(x) = axa−1. It is called the conjugation or the inner automorphism
by a ∈ G. This defines a smooth action of G on itself by automorphisms.

The adjoint representation Ad : G → GL(g) ⊂ L(g, g) is given by Ad(a) =
(conja)′ = Te(conja) : g → g for a ∈ G. By (B.2) Ad(a) is a Lie algebra

homomorphism. By (B.1) we have Ad(a) = Te(conja) = Ta(µa−1

).Te(µa) =

Ta−1(µa).Te(µ
a−1

).
Finally we define the (lower case) adjoint representation of the Lie algebra

g, ad : g → gl(g) := L(g, g), by ad := Ad′ = Te Ad.
We shall also use the right Maurer-Cartan form κr ∈ Ω1(G, g), given

by κr
g = Tg(µ

g−1

) : TgG → g; similarly the left Maurer-Cartan form κl ∈
Ω1(G, g) is given by κl

g = Tg(µg−1) : TgG → g.

1. LX(a) = RAd(a)X(a) for X ∈ g and a ∈ G.
2. ad(X)Y = [X,Y ] for X,Y ∈ g.
3. d Ad = (ad ◦κr).Ad = Ad .(ad ◦κl) : TG → L(g, g).

B.6. Right actions

Let r : M × G → M be a right action, so ř : G → Diff(M) is a group
anti-homomorphism. We will use the following notation: ra : M → M and
rx : G → M , given by rx(a) = ra(x) = r(x, a) = x.a.

For any X ∈ g we define the fundamental vector field ζX = ζM
X ∈ X(M)

by ζX(x) = Te(rx).X = T(x,e)r.(0x,X).
In this situation the following assertions hold:

1. ζ : g → X(M) is a Lie algebra homomorphism.
2. Tx(ra).ζX(x) = ζAd(a−1)X(x.a).
3. 0M × LX ∈ X(M × G) is r-related to ζX ∈ X(M).

B.7. The right and left logarithmic derivatives

Let M be a manifold and let f : M → G be a smooth mapping into a Lie
group G with Lie algebra g. We define the mapping δrf : TM → g by the
formula
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δrf(ξx) := Tf(x)(µ
f(x)−1

).Txf.ξx for ξx ∈ TxM.

Then δrf is a g-valued 1-form on M , δrf ∈ Ω1(M ; g). We call δrf the right
logarithmic derivative of f , since for f : R → (R+, ·) we have δrf(x).1 =
f ′(x)
f(x) = (log ◦f)′(x).

Similarly the left logarithmic derivative δlf ∈ Ω1(M, g) of a smooth map-
ping f : M → G is given by

δlf.ξx = Tf(x)(µf(x)−1).Txf.ξx.

Let f, g : M → G be smooth. Then the Leibniz rule holds:

δr(f.g)(x) = δrf(x) + Ad(f(x)).δrg(x).

Moreover, the differential form δrf ∈ Ω1(M ; g) satifies the ‘left Maurer-
Cartan equation’ (left because it stems from the left action of G on itself)

dδrf(ξ, η) − [δrf(ξ), δrf(η)]g = 0,

or dδrf − 1

2
[δrf, δrf ]g∧ = 0,

where ξ, η ∈ TxM , and where for ϕ ∈ Ωp(M ; g), ψ ∈ Ωq(M ; g) one puts

[ϕ,ψ]g∧(ξ1, . . . , ξp+q) :=
1

p!q!

∑

σ

sign(σ)[ϕ(ξσ1, . . . ), ψ(ξσ(p+1), . . . )]
g.

For the left logarithmic derivative the corresponding Leibniz rule is uglier, and
it satisfies the ‘right Maurer Cartan equation’:

δl(fg)(x) = δlg(x) + Ad(g(x)−1)δlf(x),

dδlf +
1

2
[δlf, δlf ]g∧ = 0.

For ‘regular Lie groups’ a converse to this statement holds, see [30], 40.2.
The proof of this result in infinite dimensions uses principal bundle geometry
for the trivial principal bundle pr1 : M ×G → M with right principal action.
Then the submanifolds {(x, f(x).g) : x ∈ M} for g ∈ G form a foliation of
M × G whose tangent distribution is complementary to the vertical bundle
M × TG ⊆ T (M × G) and is invariant under the principal right G-action.
So it is the horizontal distribution of a principal connection on M × G → G.
Thus this principal connection has vanishing curvature which translates into
the result for the right logarithmic derivative.

B.8

Let G be a Lie group with Lie algebra g. For a closed interval I ⊂ R and for
X ∈ C∞(I, g) we consider the ordinary differential equation



Geometric Evolution Equations 75

{
g(t0) = e

∂tg(t) = Te(µ
g(t))X(t) = RX(t)(g(t)), or κr(∂tg(t)) = X(t),

(1)

for local smooth curves g in G, where t0 ∈ I.

(2) Local solution curves g of the differential equation (1) are unique.
(3) If for fixed X the differential equation (1) has a local solution near each

t0 ∈ I, then it has also a global solution g ∈ C∞(I,G).
(4) If for all X ∈ C∞(I, g) the differential equation (1) has a local solution

near one fixed t0 ∈ I, then it has also a global solution g ∈ C∞(I,G) for
each X. Moreover, if the local solutions near t0 depend smoothly on the
vector fields X then so does the global solution.

(5) The curve t 7→ g(t)−1 is the unique local smooth curve h in G which
satifies

{
h(t0) = e

∂th(t) = Te(µh(t))(−X(t)) = L−X(t)(h(t)), or κl(∂th(t)) = −X(t).

B.9. Regular Lie groups

If for each X ∈ C∞(R, g) there exists g ∈ C∞(R, G) satisfying





g(0) = e,

∂tg(t) = Te(µ
g(t))X(t) = RX(t)(g(t)),

or κr(∂tg(t)) = δrg(∂t) = X(t),

(1)

then we write

evolrG(X) = evolG(X) := g(1),

EvolrG(X)(t) := evolG(s 7→ tX(ts)) = g(t),

and call it the right evolution of the curve X in G. By lemma (B.8) the solution
of the differential equation (1) is unique, and for global existence it is sufficient
that it has a local solution. Then

EvolrG : C∞(R, g) → {g ∈ C∞(R, G) : g(0) = e}

is bijective with inverse the right logarithmic derivative δr.
The Lie group G is called a regular Lie group if evolr : C∞(R, g) → G

exists and is smooth.
We also write

evollG(X) = evolG(X) := h(1),

EvollG(X)(t) := evollG(s 7→ tX(ts)) = h(t),
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if h is the (unique) solution of





h(0) = e

∂th(t) = Te(µh(t))(X(t)) = LX(t)(h(t)),

or κl(∂th(t)) = δlh(∂t) = X(t).

(2)

Clearly evoll : C∞(R, g) → G exists and is also smooth if evolr does, since we
have evoll(X) = evolr(−X)−1 by lemma (B.8).

Let us collect some easily seen properties of the evolution mappings. If
f ∈ C∞(R, R), then we have

Evolr(X)(f(t)) = Evolr(f ′.(X ◦ f))(t).Evolr(X)(f(0)),

Evoll(X)(f(t)) = Evoll(X)(f(0)).Evoll(f ′.(X ◦ f))(t).

If ϕ : G → H is a smooth homomorphism between regular Lie groups then
the diagram

C∞(R, g)
ϕ′

∗ //

evolG

²²

C∞(R, h)

evolH

²²
G

ϕ // H

commutes, since ∂tϕ(g(t)) = Tϕ.T (µg(t)).X(t) = T (µϕ(g(t))).ϕ′.X(t).
Note that each regular Lie group admits an exponential mapping, namely

the restriction of evolr to the constant curves R → g. A Lie group is regular
if and only if its universal covering group is regular.

Up to now the following statement holds:

All known Lie groups are regular.

Any Banach Lie group is regular since we may consider the time dependent
right invariant vector field RX(t) on G and its integral curve g(t) starting
at e, which exists and depends smoothly on (a further parameter in) X. In
particular finite dimensional Lie groups are regular.

For diffeomorphism groups the evolution operator is just integration of
time dependent vector fields with compact support.

B.10. Extensions of Lie groups

Let H and K be Lie groups. A Lie group G is called a smooth extension of
H with kernel K if we have a short exact sequence of groups

{e} → K −i→ G −p→ H → {e}, (1)

such that i and p are smooth and one of the following two equivalent conditions
is satisfied:
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2 p admits a local smooth section s near e (equivalently near any point),
and i is initial (i. e. any f into K is smooth if and only if i◦ f is smooth).

1. i admits a local smooth retraction r near e (equivalently near any point),
and p is final (i. e. f from H is smooth if and only if f ◦ p is smooth).

Of course by s(p(x))i(r(x)) = x the two conditions are equivalent, and then G
is locally diffeomorphic to K×H via (r, p) with local inverse (i◦pr1).(s◦pr2).

Not every smooth exact sequence of Lie groups admits local sections as
required in (2). Let for example K be a closed linear subspace in a convenient
vector space G which is not a direct summand, and let H be G/K. Then
the tangent mapping at 0 of a local smooth splitting would make K a direct
summand.

Let {e} → K −i→ G −p→ H → {e} be a smooth extension of Lie groups.
Then G is regular if and only if both K and H are regular.

B.11. Subgroups of regular Lie groups

Let G and K be Lie groups, let G be regular and let i : K → G be a smooth
homomorphism which is initial (see (B.10)) with Tei = i′ : k → g injective.
We suspect that K is then regular, but we know a proof for this only under
the following assumption. There is an open neighborhood U ⊂ G of e and
a smooth mapping p : U → E into a convenient vector space E such that
p−1(0) = K ∩ U and p constant on left cosets Kg ∩ U .
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