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THREE LECTURES ON 3-ALGEBRAS

JOSÉ MIGUEL FIGUEROA-O’FARRILL

Abstract. These notes are based on lectures given in Valencia in October 2008 and in Stock-
holm in November 2008, in the framework of the Nordita workshop “Geometrical aspects of
String Theory”. We introduce the notion of a metric 3-Lie algebra and review some of the
classification results. We explain the deconstruction of metric 3-Lie algebras in Lie algebraic
terms and introduce a general framework in which to describe other 3-algebras of relevance in
the description of three-dimensional superconformal Chern–Simons theories, particularly those
with N=6. The emphasis throughout is on the general ideas and concrete examples.
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1. “3 is the new 2”

In this lecture I will introduce metric 3-Lie algebras1, give some examples and state a number
of classification results.

1.1. Metric 3-Lie algebras. The Bagger–Lambert–Gustavsson (BLG) proposal [1, 2, 3] for
a superconformal field theory dual to a stack of M2-branes is essentially a maximally super-
symmetric Chern–Simons + matter theory. In three dimensions this means an N=8 theory
(i.e., a theory with 16 real supercharges) realising the Killing superalgebra osp(8|4) of the
near-horizon geometry S7 ×AdS4 of the M2 branes. This superalgebra has bosonic subalgebra
so(8) ⊕ so(3, 2) ∼= so(8) ⊕ sp(4, R) and odd subspace in their fundamentals, hence the name.
The novel feature of the BLG model is that the matter fields take values in a vector space V
with a trilinear bracket

V × V × V → V sending (x, y, z) 7→ [x, y, z] , (1)

1Until recently I used to call them Lie 3-algebras, but my n-categorical friends insist that I should call them
3-Lie algebras instead. I will nevertheless continue to use 3-algebra for the generic case.
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and a symmetric inner product

V × V → R denoted (x, y) 7→ 〈x, y〉 , (2)

satisfying a number of identities:

(1) total skewsymmetry of the bracket, whence it defines a linear map Λ3V → V ;
(2) metricity :

〈[x, y, z1], z2〉 = −〈[x, y, z2], z1〉 ; (3)

(3) and the so-called fundamental identity :

[x, y, [z1, z2, z3]] = [[x, y, z1], z2, z3] + [z1, [x, y, z2], z3] + [z1, z2, [x, y, z3]] , (4)

for all x, y, zi ∈ V . (This identity will be rewritten below in a more succinct and
conceptual manner.)

We will call such a vector space V with the bracket and the inner product a metric 3-Lie
algebra, a concept which — perhaps without the metricity assumption — is due to Filippov
[4].

The first remark is that this is a natural generalisation of the concept of a metric Lie algebra;
which is a vector space g together with a bilinear bracket g × g → g, sending (X, Y ) to [X, Y ]
and a symmetric inner product g × g → R, sending (X, Y ) to 〈X, Y 〉, obeying the following
identities:

(1) skewsymmetry of the bracket, whence it defines a linear map Λ2g → g;
(2) metricity :

〈[X, Y ], Z〉 = −〈[X, Z], Y 〉 ; (5)

(3) and the Jacobi identity :

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]] , (6)

for all X, Y, Z ∈ g.

Just like the Jacobi identity can be reinterpreted as saying that for all X ∈ g, adX := [X,−]
is a derivation over the bracket, the fundamental identity in a 3-Lie algebra V says that for all
x, y ∈ V , D(x, y) := [x, y,−] is a derivation over the 3-bracket. In fact, as we will see, many of
the known results for metric Lie algebras hold word for word (but after some reinterpretation)
also for metric 3-Lie algebras, and in fact even for metric n-Lie algebras, for n > 3, defined in
the obvious way.

The second remark, which is not to be taken too seriously, is that metric (2 -)Lie algebras ap-
pear prominently in two-dimensional superconformal field theory, via their rôle in the Sugawara
construction; metric 3 -Lie algebras appear prominently in three-dimensional superconformal
field theory, via their rôle in the BLG model; and that the self-dual five-form in AdS5 ×S5, a
crucial background in much of today’s interest on four -dimensional superconformal field theory,
defines a metric 4 -Lie algebra. (While curious, I do not expect this to generalise.)

1.2. The Nambu bracket. Being a geometrical meeting, let us start with a geometrical ex-
ample of a metric 3-Lie algebra. Let (M, ω) be a compact, oriented 3-dimensional manifold
and ω a nowhere-vanishing 3-form defining the orientation. We will also assume that M has no
boundary. Given three smooth functions f, g, h ∈ C∞(M) the wedge product of their differen-
tials is a 3-form which must be proportional to ω. We define the function {f, g, h} ∈ C∞(M)
by

df ∧ dg ∧ dh = {f, g, h}ω . (7)

This defines an alternating trilinear map

C∞(M) × C∞(M) × C∞(M) → C∞(M) , (8)
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sending (f, g, h) to {f, g, h}. This bracket, originally due to Nambu [5], obeys the following
properties:

(1) Leibniz rule:

{f, g, h1h2} = {f, g, h1}h2 + h1{f, g, h2} , (9)

(2) the fundamental identity :

{f, g, {h1, h2, h3}} = {{f, g, h1}, h2, h3} + {h1, {f, g, h2}, h3} + {h1, h2, {f, g, h3}} , (10)

for all f, g, hi ∈ C∞(M).

Only the last identity requires proof. We start by observing that the Leibniz rule says that
given f, g ∈ C∞(M), the map C∞(M) → C∞(M) sending h to {f, g, h} is a derivation, whence
it defines a vector field Xf,g. This vector field leaves ω invariant, as can be seen by contracting
it into both sides of equation (7):

df ∧ dg{f, g, h} = {f, g, h}ıXf,g
ω , (11)

whence

ıXf,g
ω = df ∧ dg , (12)

and hence

LXf,g
ω = dıXf,g

ω = d(df ∧ dg) = 0 . (13)

Now we differentiate

dh1 ∧ dh2 ∧ dh3 = {h1, h2, h3}ω (14)

with respect to Xf,g, using that the Lie and exterior derivatives commute, to obtain

d{f, g, h1}∧ dh2 ∧ dh3 + dh1 ∧ d{f, g, h2}∧ dh3 + dh1 ∧ dh2 ∧ d{f, g, h3} = {f, g, {h1, h2, h3}}ω ,
(15)

which, using equation (7) again on the three terms in the left-hand side, becomes equation (10).
Furthermore if we define an inner product on C∞(M) by

〈f, g〉 :=

∫

M

fgω , (16)

for all f, g ∈ C∞(M), then we have that

〈{f, g, h1}, h2〉 = −〈{f, g, h2}, h1〉 , (17)

for all f, g, hi ∈ C∞(M). Indeed,

〈{f, g, h1}, h2〉 =

∫

M

{f, g, h1}h2ω

=

∫

M

df ∧ dg ∧ dh1h2

=

∫

M

df ∧ dg ∧ d(h1h2) −

∫

M

df ∧ dg ∧ dh2h1

=

∫

M

d(h1h2df ∧ dg) −

∫

M

{f, g, h2}h1ω

= −〈{f, g, h2}, h1〉 ,

since M has no boundary.
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1.3. Structure of metric 3-Lie algebras. The Jacobi identity (6) for a Lie algebra g is
equivalent to [adX , adY ] = ad[X,Y ] in End g, for all X, Y ∈ g. Now we will reinterpret the
fundamental identity (4) of a 3-Lie algebra V in a similar way. Let us define D : Λ2V → End V
by extending

D(x ∧ y) = [x, y,−] (18)

linearly from monomials to arbitrary elements of Λ2V . Then the fundamental identity (4) is
equivalent to

[D(X), D(Y )] = D(D(X) · Y ) for all X, Y ∈ Λ2V , (19)

where the bracket on the left-hand side is the commutator in End V and the · in the right-hand
side is the natural action of End V on Λ2V ; i.e.,

D(X) · (x ∧ y) = D(X) · x ∧ y + x ∧ D(X) · y . (20)

Indeed, if we now take X = x∧ y and Y = z1 ∧ z2 and we apply (19) on z3 ∈ V , we obtain the
fundamental identity (4) upon using (20).

The fundamental identity in the form (19) says that the image of D is a Lie subalgebra of
gl(V ), or indeed so(V ) if metric. In the case of a metric Lie algebra, the Jacobi identity says
that ad : g → so(g) is a Lie algebra homomorphism. But what about in the case of (metric)
3-Lie algebras? By analogy with Lie algebras we could define a bracket on Λ2V by

[X, Y ] := D(X) · Y , (21)

in terms of which, the fundamental identity (19) applied to Z ∈ Λ2V becomes a version of the
Jacobi identity for a Lie algebra:

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]] . (22)

Since in general [X, Y ] 6= −[Y, X], Λ2V is not a Lie algebra but only a (left) Leibniz algebra
— a sort of noncommutative version of a Lie algebra, introduced by Loday in [6] and much
studied since. Nevertheless, the map D is still a Leibniz algebra homomorphism. (Notice that
a Lie algebra is in particular also a Leibniz algebra.) I will not say more about Leibniz algebras
here, except to note that they underlie many of the structural (an in particular cohomological)
properties of 3-Lie algebras (and their relatives). For instance, the deformation theory of a
3-Lie algebra V is governed by the cohomology of its associated Leibniz algebra Λ2V . Finally,
let me point out that the correspondence from 3-Lie algebras to Leibniz algebras sending V to
Λ2V is functorial.

Given the similarity between 3-Lie algebras and Lie algebras, it is worth contrasting the two.
There are many question one can ask and most have already been answered. We point out three
references: the original paper of Filippov [4], a later paper of Kasymov [7] and the PhD thesis
of Ling [8]. In these papers there is already a well-developed structure theory of 3-Lie algebras
with all the usual concepts (often refined): ideals and homomorphisms, nilpotency, solvability,
radical,... There is even a Levi-Malcev theorem stating that, just as for Lie algebras, a 3-Lie
algebra is a semidirect product of a semisimple 3-Lie algebra and a solvable 3-Lie algebra (its
radical). Just as for Lie algebras, a semisimple 3-Lie algebra is a direct sum of simple ideals,
but unlike in the case of Lie algebras, where there are infinite isomorphism classes of simple
Lie algebras, there is over the complex numbers a unique simple 3-Lie algebra: V = C4 with
basis (e1, . . . , e4) and bracket

[ei, ej , ek] = εijkℓeℓ , (23)

where the Levi-Cività symbol is normalised to ε1234 = 1. This result is proved in [8], also for
n-Lie algebras with n > 3. Over the real numbers, we simply attach signs σi to the right-hand
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side of the bracket:

[ei, ej, ek] = εijkℓσℓeℓ . (24)

It is an easy exercise to show that this defines on R4 the structure of a metric 3-Lie algebra
relative to the inner product

〈ei, ej〉 = σiδij . (25)

Taking all σi = 1, we obtain a 4-dimensional euclidean metric 3-Lie algebra, which we denote
A4. Similarly, we can define A3,1 and A2,2 by changing the sign of one or two of the σi and in
this way obtain lorentzian and split metric 3-Lie algebras, respectively. It turns out that A4

is the unique nonabelian indecomposable such metric 3-Lie algebra, a result conjectured in [9],
and proved independently in [10, 11, 12]. As discussed in [13], it also follows easily from the
classification of simple 3-Lie algebras. By way of contrast, the metric Lie algebras admitting a
positive-definite invariant inner product are the reductive Lie algebras, which are direct sums
of semisimple and abelian. Of course, the same is true for 3-Lie algebras (and indeed for n-Lie
algebras, n > 3), except that there is a unique such simple object.

Leaving questions of manifest unitarity of the lagrangian aside, every metric 3-Lie algebra
(of any signature) gives rise to a three-dimensional N=8 supersymmetric Chern–Simons theory
with matter. This suggests that the classification of metric 3-Lie algebras is an interesting
problem. If only to temper our expectations, one can ask what is known about metric Lie
algebras.

Given two metric Lie algebras one can take their orthogonal direct sum to construct another
metric Lie algebra. We say that a metric Lie algebra is indecomposable if it cannot be written
in this way. It is therefore only necessary to classify the indecomposable ones. The same holds
for 3-Lie algebras, and indeed for n-Lie algebras for n > 3.

There is no classification of metric Lie algebras beyond index 3. (I recall that the index of an
inner product of signature (p, q) is the minimum of p and q, whence index 0 is (by convention)
positive-definite, index 1 is lorentzian,...). The case of index 0 is classical: the indecomposable
objects are the compact simple Lie algebras and u(1). The case of index 1 is due to Medina
[14] and the cases of index 2 and 3 due to Kath and Olbrich [15, 16]. For later comparison,
here is the statement for the lorentzian case.

Theorem 1. Every (finite-dimensional) lorentzian Lie algebra g is the orthogonal direct sum
g = g0 ⊕ g1, where g0 is an indecomposable lorentzian Lie algebra and g0 is a positive-definite
(hence, reductive) Lie algebra. A finite-dimensional indecomposable lorentzian Lie algebra is
isomorphic to one of the following:

(1) one-dimensional with negative-definite inner product;
(2) sl(2, R) with respect to (the negative of) the Killing form; or
(3) E ⊕ Ru ⊕ Rv, where E is an even-dimensional euclidean vector space, and the inner

product 〈−,−〉 extends that of E by declaring u, v ⊥ E, 〈u, v〉 = 1 and 〈v, v〉 = 0, and
the Lie brackets are given by

[u, x] = J(x) and [x, y] = 〈J(x), y〉 v ,

for all x, y ∈ E and where J ∈ so(E) is a nondegenerate skewsymmetric endomorphism.

The simplest example of the third type is the famous Nappi–Witten Lie algebra [17], where
E = R2 and J is an orthogonal complex structure. It can also be interpreted as a central
extension of the Lie algebra of euclidean motions in two dimensions.

The most general result in the theory of metric Lie algebras is the structure theorem of
Medina and Revoy [18] (see also [19]), which says that the class of finite-dimensional metric Lie
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algebras is generated by the simple and the one-dimensional Lie algebras using two operations:
orthogonal direct sum and double extension. (We will not define this notion here.)

Based on this brief summary of the state of the art on metric Lie algebras, we should perhaps
not expect to do much better for metric 3-Lie algebras. In fact, in addition to the index 0 results
mentioned above, there are classifications for lorentzian [13] and index 2 [20] 3-Lie algebras. It
should be possible to go further and classify index-3 3-Lie algebras, but we have not found the
need (nor the energy) to do so. Moreover there is an identical-sounding structure theorem for
metric 3-Lie algebras [20] and for metric n-Lie algebras for n > 3 [21], except that the notion
of double extension is even more cumbersome to define.

I will finish this first lecture with the statement of the lorentzian result. A very similar result
holds also for metric n-Lie algebras for n > 3 [22].

Theorem 2. Every (finite-dimensional) lorentzian 3-Lie algebra V is the orthogonal direct sum
V = V0⊕V1, where V0 is an indecomposable lorentzian 3-Lie algebra and V1 is a positive-definite
3-Lie algebra. A finite-dimensional indecomposable lorentzian 3-Lie algebra is isomorphic to
one of the following:

(1) one-dimensional with negative-definite inner product;
(2) the simple 3-Lie algebra A3,1; or
(3) g⊕Ru⊕Rv, where g is a semisimple Lie algebra with a choice of positive-definite inner

product 〈−,−〉 which we extend to the whole space by declaring u, v ⊥ g, 〈u, v〉 = 1 and
〈v, v〉 = 0, and the 3-brackets are given by

[u, x, y] = [x, y] and [x, y, z] = −〈[x, y], z〉 v ,

for all x, y, z ∈ g.

The metric 3-Lie algebras in the third class were discovered independently in [23, 24, 25].
The index-2 classification is detailed in [20], but even just listing them would already take a

lot of space. In that paper we repackage some desirable physical properties of the BLG model as
3-algebraic criteria, which can then be applied to further refine the classification. This results
in two main classes of “physically interesting” index-2 3-Lie algebras, which are the subject of
a forthcoming paper [26].

2. “2 strikes back”

In this second lecture we relate metric 3-Lie algebras and, more generally, also other metric
3-Leibniz algebras of relevance in three-dimensional superconformal Chern–Simons theories, to
the representation theory of metric Lie algebras. This is done by adapting a general algebraic
construction due to Faulkner [27], which we will present at the end of the lecture. This lecture
is based on [28].

2.1. Deconstructing the metric 3-Lie algebras. Let V be a metric 3-Lie algebra, defined
by a linear map D : Λ2V → so(V ) obeying the fundamental identity (19), whence the image g

of D is a Lie subalgebra of so(V ). The surprising thing is that g is a metric Lie algebra relative
to the inner product defined by extending

(D(x ∧ y), D(u ∧ v)) = 〈[x, y, u], v〉 (26)

linearly to all of g. First of all, we notice that the above expression actually defines a sym-
metric bilinear form on g: indeed, metricity and the skewsymmetry of the 3-bracket, says that
〈[x, y, u], v〉 is totally skewsymmetric in all four arguments. In particular it is symmetric under
the interchange of pairs:

(D(x ∧ y), D(u ∧ v)) = (D(u ∧ v), D(x ∧ y)) . (27)
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Next we show that this bilinear form is non-degenerate. Let δ ∈ g be perpendicular to all of
D(u ∧ v). Then

(δ, D(u, v)) = 〈δu, v〉 = 0 for all u, v ∈ V .

Since the inner product on V is nondegenerate, this means δu = 0 for all u ∈ V , whence δ,
being an endomorphism, must vanish. This says that (−,−) so defined is a nondegenerate
symmetric bilinear form; that is, an inner product. Finally, we show that it is invariant. Let
X, Y, Z = u ∧ v ∈ Λ2V and consider

(D(X), [D(Y ), D(Z)]) = (D(X), D(D(Y ) · Z)) by (19)

= (D(X), D(Y ) · u ∧ v + u ∧ D(Y ) · v)

= 〈D(X) · D(Y ) · u, v〉 + 〈D(X) · u, D(Y ) · v〉

= 〈D(X) · D(Y ) · u, v〉 − 〈D(Y ) · D(X) · u, v〉

= 〈[D(X), D(Y )] · u, v〉

= ([D(X), D(Y )], D(Z)) .

Further we notice that every D(x ∧ y) is null because of the skewsymmetry of the bracket:

(D(x ∧ y), D(x ∧ y) = 〈[x, y, x], y〉 = 0 . (28)

In particular this means that (−,−) must have split signature and hence that g is even-
dimensional.

For example, for the positive-definite simple 3-Lie algebra A4, all D(ei ∧ ej) are linearly
independent for i < j, whence they span all of so(4). The inner product is

(D(ei ∧ ej), D(ek ∧ eℓ)) = εijkℓ , (29)

which is split. (In fact, it is just given by the wedge product, under the isomorphism of so with
Λ2.)

In summary, we have managed to deconstruct a metric 3-Lie algebra V into a metric Lie
subalgebra g < so(V ). It is important to remark that in general, the invariant inner product
on g need not be the restriction of an invariant inner product on so(V ). A natural question is
then whether one can reconstruct the metric 3-Lie algebra V from such data; namely a metric
Lie algebra g and a faithful orthogonal representation V .

2.2. Reconstructing a metric 3-Leibniz algebra. Let g, with inner product (−,−), be a
metric Lie algebra and let V be a faithful orthogonal representation, so that we can think of
g as a Lie subalgebra of so(V ). Given x, y ∈ V , we define D(x, y) ∈ g by transposing the
g-action:

(D(x, y), X) = 〈X · x, y〉 for all X ∈ g, (30)

where · denotes the g action. This defines D(x, y) uniquely, because (−,−) is nondegenerate.
We define a 3-bracket on V by

[x, y, z] := D(x, y) · z , (31)

for all x, y, z ∈ V . Since D(x, y) ∈ so(V ), we have the following identity

〈[x, y, z], w〉 = 〈D(x, y) · z, w〉

= −〈z, D(x, y) · w〉

= −〈z, [x, y, w]〉 .

Also we have that the symmetry of the inner product on g,

(D(x, y), D(u, v)) = (D(u, v), D(x, y)) (32)
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translates into

〈[x, y, u], v〉 = 〈[u, v, x], y〉 , (33)

which together with metricity implies that

[x, y, z] = −[y, x, z] ⇐⇒ D(x, y) = −D(y, x) , (34)

whence we may think of D as a linear map D : Λ2V → g. In addition, the 3-bracket obeys the
fundamental identity (19). Indeed, for all X, Y ∈ g and u, v ∈ V ,

([D(u ∧ v), X], Y ) = (D(u ∧ v), [X, Y ]) by invariance

= 〈[X, Y ] · u, v〉

= 〈X · Y · u, v〉 − 〈Y · X · u, v〉

= −〈Y · u, X · v〉 − 〈Y · X · u, v〉

= − (D(u ∧ X · v), Y ) − (D(X · u ∧ v), Y ) ,

whence

[X, D(u ∧ v)] = D(X · (u ∧ v)) ,

which is equivalent to the fundamental identity (19).
In summary, the result is a metric ternary algebra obeying the fundamental identity and

(33), but the bracket is not in general totally skewsymmetric. This is easy to see because we
saw that for a metric 3-Lie algebra, the inner product on g has split signature, so from any g

which is, say, odd-dimensional one cannot reconstruct a metric 3-Lie algebra.
By analogy with the relation between Lie and Leibniz algebras, let us define a (left) 3-

Leibniz algebra to be a vector space V with a trilinear bracket (x, y, z) 7→ [x, y, z] satisfy-
ing the fundamental identity (4), whereas a metric 3-Leibniz algebra possesses in addition a
symmetric inner product obeying the metricity axiom (3). The metric ternary algebras just
constructed are special types of metric 3-Leibniz algebras where, in addition, the symmetry
condition (33) is satisfied. These are precisely the metric 3-Leibniz algebras introduced by
Cherkis and Sämann in [29].

These 3-Leibniz algebras are such that the 3-bracket defines a linear map Λ2V ⊗ V → V .
Decomposing

Λ2V ⊗ V = Λ3V ⊕ V ⊕ V , (35)

we see that there are two interesting limiting cases of these algebras:

(1) the metric 3-Lie algebras, for which the 3-bracket is totally skew-symmetric; and
(2) the metric Lie triple systems, for which the 3-bracket obeys

[x, y, z] + [y, z, x] + [z, x, y] = 0 . (36)

A Lie triple system is such that g ⊕ V admits the structure of a 2-graded Lie algebra (not a
Lie superalgebra) in such a way that [x, y, z] = [[x, y], z], whence (36) becomes one component
of the Jacobi identity for g ⊕ V . The 2-graded Lie algebra g ⊕ V is known as the embedding
Lie algebra of the Lie triple system. The symmetry condition (33) together with (36) imply
that the 4-tensor 〈[x, y, z], w〉 has the symmetries of an algebraic curvature tensor. This is
not an accident: a metric Lie triple system is a linear approximation to a (pseudo)riemannian
symmetric space, in the same way that a (metric) Lie algebra is a linear approximation to a
Lie group (possessing a bi-invariant metric), and the 4-tensor 〈[x, y, z], w〉 coincides with the
Riemann curvature tensor of the symmetric space. It is a natural question (whose answer is not
known) whether there is any geometric object of which a 3-Lie algebra is a linear approximation.
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To summarise this lecture thus far, we started with a metric 3-Lie algebra V and we decon-
structed it into a metric Lie algebra g acting faithfully and orthogonally on V . Conversely,
starting from a metric Lie algebra g and a faithful orthogonal representation V , we arrived at
a strictly larger class of metric 3-Leibniz algebras, including as special cases the metric 3-Lie
algebras and the metric Lie triple systems. In general, of course, the general 3-Leibniz alge-
bra in this class is neither a Lie triple system nor 3-Lie. It is an interesting open problem to
characterise the metric 3-Lie algebras a priori from their Lie-algebraic data.

One important remark is that the inner product on g is an important part of the data. For
example, let us take g = so(4) and V = R

4 the fundamental representation. If we take for the
inner product on g (minus) the Killing form, then the resulting 3-Leibniz algebra is a Lie triple
system with embedding Lie algebra so(5), whence this is the Lie triple system approximat-
ing linearly the round 4-sphere thought of as the riemannian symmetric space SO(5)/SO(4).
Relative to an orthonormal basis ei for R4, the 3-brackets of this Lie triple system are given by

[ei, ej, ek] = δjkei − δikej . (37)

There is a one-parameter family of such 3-Leibniz algebras interpolating between this Lie triple
system and the simple 3-Lie algebra A4. This is, in fact, the unique deformation of A4 within the
class of all 3-Leibniz algebras. The deformation parameter can be understood as parametrising
the conformal classes of invariant inner products on so(4), which is the only part of the Lie
algebraic data which is not rigid.

2.3. The Faulkner construction. We end this lecture by describing a general algebraic con-
struction which underlies the above deconstruction/reconstruction.

Let g be a metric Lie algebra and let V be a faithful representation. In contrast with the
above discussion, we are not assuming an inner product on V for now. Let V ∗ denote the dual
representation, where if X ∈ g, α ∈ V ∗ and v ∈ V , then

(X · α)(v) = −α(X · v) . (38)

Given v ∈ V and α ∈ V ∗, we may define D(v, α) ∈ g by

(D(v, α), X) = α(X · v) for all X ∈ g. (39)

It follows easily that if X ∈ g is perpendicular to the image of D , then it obeys α(X · v) = 0
for all α ∈ V ∗ and v ∈ V , which is equivalent to X · v = 0 for all v ∈ V . Since V is a faithful
representation, this means that X = 0. This says that D is a surjective linear map V ⊗V ∗ → g.
This allows us to define “3-brackets” mixing V and V ∗ by

V × V ∗ × V → V

(v, α, w) 7→ D(v, α) · w
and

V × V ∗ × V ∗ → V ∗

(v, α, β) 7→ D(v, α) · β ,
(40)

which satisfy a version of the fundamental identity:

[D(v, α), D(w, β)] = D(D(v, α) · w, β) + D(w, D(v, α) · β) . (41)

One could not call this a ternary algebra, however, because we do not have a trilinear map
on a single vector space: the “brackets” — if they could be called that — involve both V and
V ∗. One way to obtain an honest ternary algebra on V is to identify V and V ∗ g-equivariantly,
which requires the existence of a g-invariant nondegenerate tensor in V ∗ ⊗ V ∗, e.g., an inner
product. There are seven elementary types of inner products on a vector space V , but only
three of them have a notion of signature. We concentrate on these because the inner product
on V appears in the kinetic terms of the matter fields in the three-dimensional superconformal
Chern–Simons theories and manifest unitarity would dictate that we use a positive-definite
inner product. The three types of positive-definite inner product are real symmetric, complex
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hermitian and quaternionic hermitian. This means that V is a real orthogonal, complex unitary
or quaternionic unitary representation of g, respectively. In the real and quaternionic cases,
the inner product identifies V and V ∗ as representations of g, whereas in the complex case it is
V ∗ and V which are identified. In this latter case, by restricting scalars to the reals and in this
way viewing V as a real representation (of twice the dimension) then we do have that again
V and V ∗ are identified, whence the above general construction gives in each case a metric
3-Leibniz algebra subject perhaps to further axioms. The real case was already discussed above
and as we saw gives rise to the 3-Leibniz algebras of Cherkis and Sämann. We will not discuss
the quaternionic case here, and simply refer the reader to [28], but in the next lecture, we will
concentrate instead in the complex case.

3. The metric 3-Leibniz algebras of the N=6 theories

In this third and last lecture we discuss in detail the case of the algebras underlying the N=6
theories. This lecture too is based on [28].

Aharony, Bergman, Jafferis and Maldacena (ABJM) [30] constructed an N=6 superconformal
Chern–Simons theory dual to multiple M2-branes at an orbifold singularity. Although written
down in a purely gauge-theoretic language, the model was reformulated in a 3-algebraic for-
malism by Bagger and Lambert in [31]. The 3-algebra underlying the simplest ABJM model is
defined on the complex vector space V of n × n matrices with complex entries. The 3-bracket
is given by

[x, y; z] = yz†x − xz†y , (42)

for all x, y, z ∈ V and where z† is the hermitian adjoint of z. Although the 3-bracket is real
trilinear, it is not complex trilinear due to the presence of the hermitian adjoint. Indeed, it
is evident from (42) that the 3-bracket is complex linear in the first two entries and complex
antilinear in the third — a fact that is reflected in the notation for the 3-bracket. It is similarly
evident that it is skewsymmetric in the first two entries:

[x, y; z] = −[y, x; z] . (43)

What may not be so evident is that, in addition, the 3-bracket satisfies a version of the funda-
mental identity

[[z, v; w], x; y] − [[z, x; y], v; w] − [z, [v, x; y]; w] + [z, v; [w, y; x]] = 0 . (44)

Indeed, expanding each term, we get

[[z, v; w], x; y] = xy†vw†z − xy†zw†v − vw†zy†x + zw†vy†x

−[[z, x; y], v; w] = −vw†xy†z + vw†zy†x + xy†zw†v − zy†xw†v

−[z, [v, x; y]; w] = −xy†vw†z + vy†xw†z + zw†xy†v − zw†vy†x

[z, v; [w, y; x]] = vw†xy†z − vy†xw†z − zw†xy†v + zy†xw†v ,

and adding them we see that the 16 monomials do indeed cancel pairwise. (The original
fundamental identity in [31] is different, but as shown in [28, Lemma 14] they are equivalent
for the class of algebras which obey (43).) Finally, the vector space V has a natural hermitian
inner product:

h(x, y) = Tr xy† , (45)

satisfying the following compatibility condition with the 3-bracket:

h([y, x; z], w) = h(y, [w, z; x]) . (46)



THREE LECTURES ON 3-ALGEBRAS 11

Indeed, expanding the left-hand side, we find

h([y, x; z], w) = Tr[y, x; z]w†

= Tr(xz†y − yz†x)w†

= Tr xz†yw† − Tr yz†xw†

= Tr y(w†xz† − z†xw†)

= Tr y(zx†w − wx†z)†

= Tr y[w, z; x]†

= h(y, [w, z; x]) .

3.1. Deconstructing the N=6 algebras. A complex hermitian vector space (V, h) with a
bracket (x, y, z) 7→ [x, y; z], complex linear in the first two entries and antilinear in the third,
satisfying properties (43), (44) and (46), can be deconstructed, as we did for metric 3-Lie
algebras in the second lecture, into a metric Lie algebra g acting on V faithfully and preserving
h. Let us first consider the map V × V → End V sending (x, y) to D(x, y) := [−, x; y]. Notice
that this map is sesquilinear: complex linear in the first entry and complex antilinear in the
second. In terms of this map, the fundamental identity (44) can be written as

[D(x, y), D(v, w)] = D(D(x, y) · v, w) − D(v, D(y, x) · w) (47)

and the symmetry condition (46) can be written as

h(D(x, z) · y, w) = h(y, D(z, x) · w) . (48)

Equation (47) says that the image of D is a complex Lie subalgebra of gl(V ) denoted gC, as it
will be seen to be the complexification of a real Lie algebra g.

To understand what g might be, we use the symmetry condition, which we would like to
reinterpret as a unitarity condition. Of course, a complex Lie algebra cannot leave a hermitian
inner product invariant: instead one has the condition

h(X · u, v) = −h(u, X · v) , (49)

for all X ∈ gC and where X 7→ X is a conjugation on the Lie algebra, whose fixed point set is
the real Lie algebra g we are after. From equation (48), we see that

D(x, z) = −D(z, x) , (50)

whence g is spanned by the real parts

E(x, y) := D(x, y) + D(x, y) = D(x, y) − D(y, x) . (51)

An easy consequence of the fundamental identity (47) is that

[E(x, y), E(v, w)] = E(E(x, y) · v, w) + E(v, E(x, y) · w) . (52)

Indeed, expanding the left-hand side and using (51), (47) and (51) again, we obtain

[E(x, y), E(v, w)] = [D(x, y) − D(y, x), D(v, w)− D(w, v)]

= D(D(x, y) · v, w) − D(v, D(y, x) · w) − D(D(y, x) · v, w)

+ D(v, D(x, y) · w) − D(D(x, y) · w, v) + D(w, D(y, x) · v)

+ D(D(y, x) · w, v) − D(w, D(x, y) · v)

= E(E(x, y) · v, w) + E(v, E(x, y) · w) .
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As in the second lecture, it is easy to show that g is metric, relative to the inner product

(E(x, y), E(u, v)) = Re h(E(x, y) · u, v) , (53)

which can again be shown to be symmetric, nondegenerate and g-invariant. Let us prove each
property in turn. To prove symmetry we simply calculate:

h(E(x, y) · u, v) = h(D(x, y) · u, v) − h(D(y, x) · u, v)

= h([u, x; y], v) − h([u, y; x], v)

= −h([x, u; y], v) + h([y, u; x], v) using (43)

= −h(x, [v, y; u]) + h(y, [v, x; u]) using (46)

= h(x, [y, v; u]) − h(y, [x, v; u]) using (43) again

= h(x, D(v, u) · y) − h(y, D(v, u) · x)

= h(D(u, v) · x, y) − h(D(v, u) · x, y) ,

whence taking real parts we find

Reh(E(x, y) · u, v) = Reh(E(u, v) · x, y) .

To prove nondegeneracy, let us assume that some linear combination X :=
∑

i E(xi, yi) is
orthogonal to all E(u, v), so that

Reh(X · u, v) = 0 for all u, v ∈ V .

Now, since h is nondegenerate, so is Reh because Imh(x, y) = Reh(−ix, y), whence this means
that X · u = 0 for all u, showing that the endomorphism X = 0. Finally, we show that it is
g-invariant. Using (52), we find

(E(z, w), [E(x, y), E(u, v)]) = (E(z, w), E(E(x, y) · u, v) + E(u, E(x, y) · v))

= Reh(E(z, w) · E(x, y) · u, v) + Reh(E(z, w) · u, E(x, y) · v)

= Reh(E(z, w) · E(x, y) · u, v) − Reh(E(x, y) · E(z, w) · u, v)

= Reh([E(z, w), E(x, y)] · u, v)

= ([E(z, w), E(x, y)], E(u, v)) ,

which is the ad-invariance of the inner product on g.
For example, for the algebra of equation (42), one finds

D(y, z) · x = yz†x − xz†y =⇒ E(y, z) · x = (yz† − zy†)x + x(y†z − z†y) . (54)

The n × n matrices yz† − zy† and y†z − z†y are skewhermitian, whence in u(n). Their traces
sum to zero, whence only the su(n) components act effectively on V . In other words, g =
su(n)⊕su(n) and V is the bifundamental representation (n, n). The inner product (53) on g has
split signature, being given by the difference of the traces in the fundamental representations:

(XL ⊕ XR, YL ⊕ YR) = Tr XLYL − Tr XRYR , (55)

for all XL, XR, YL, YR ∈ su(n).

3.2. Reconstructing the N=6 algebras. Conversely, let us start with a metric Lie algebra
g with inner product (−,−) and a faithful complex unitary representation (V, h). (In our
somewhat unusual conventions, the hermitian inner product is complex antilinear in the second
argument.) We will reconstruct a 3-bracket (x, y, z) 7→ [x, y; z] on V , complex linear in the
first two entries and antilinear in the third, obeying both the fundamental identity (44) and
the symmetry condition (46), but not in general the skewsymmetry condition (43), which lands
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us in a similar situation as with the metric 3-Lie algebras. This then prompts us to ask how
to characterise those 3-algebras which obey (43) and we will see that they are characterised
in terms of certain kinds of metric Lie superalgebras, in agreement with an observation in [32]
based on [33, 34].

Let gC denote the complexification of g. We extend the inner product complex bilinearly in
such a way that gC becomes a complex metric Lie algebra. Similarly we extend the action of g

on V to an action of gC, using the fact that V is already a complex vector space. This action
remains faithful, but it is no longer unitary. Instead, we have

h(X · v, w) = −h(v, X · w) , (56)

for all v, w ∈ V and X ∈ gC with X its complex conjugate. Given v, w ∈ V , we define
D(v, w) ∈ gC by transposing the action of gC on V . Explicitly, we have

(D(v, w), X) = h(X · v, w) , (57)

which shows that D(v, w) is complex linear in v, but complex antilinear in w, whence it defines
a sesquilinear map D : V × V → gC. As before, we see that image of D is all of gC, since if X
is perpendicular to the image of D, it must annihilate all v ∈ V , and since the representation
is faithful, then X = 0.

Complex conjugating (57), we find

(D(v, w), X) = h(X · v, w) by (57)

= h(w, X · v) since h is hermitian

= −h(X · w, v) by (56)

= −(D(w, v), X) ,

whence
D(v, w) = −D(w, v) . (58)

Now let X ∈ gC and v, w ∈ V . Then for all Y ∈ gC we have,

([D(v, w), X], Y ) = (D(v, w), [X, Y ]) since (−,−) is invariant

= h([X, Y ] · v, w) by (57)

= h(X · Y · v, w) − h(Y · X · v, w) since V is a representation

= −h(Y · v, X · w) − h(Y · X · v, w) by (56)

= −
(

D(v, X · w), Y
)

− (D(X · v, w), Y ) again by (57) ,

whence abstracting Y ,

[X, D(v, w)] = D(X · v, w) + D(v, X · w) . (59)

Substituting X = D(x, y), whence X = −D(y, x), we obtain equation (47). This in turn is
equivalent to the fundamental identity (44) for the “21

2
-bracket” V × V × V → V defined by

[x, y; z] := D(y, z) · x .

In terms of this bracket, equation (56) becomes (46), whereas the symmetry of the inner product
on gC, applied to (D(x, y), D(v, w)) becomes

h([x, v; w], y) = h([v, x; y], w) . (60)

However the condition (43) does not follow from the construction and must be imposed by
hand. This prompts the question of how to characterise the data g, (−,−) and (V, h) such that
condition (43) is satisfied. We still don’t know how to do this a priori, but we can nevertheless
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characterise those algebras which do in terms of metric Lie superalgebras. The details appear
in [28, Section 3.3]. To summarise, condition (43) turns out to be one component of the Jacobi
identity in a complex Lie superalgebra with underlying vector space gC ⊕ (V ⊕ V ) and whose
only nonvanishing odd-odd bracket is given by D : V ⊗V → gC, which being sesquilinear means
that [V, V ] = [V , V ] = 0. Furthermore this complex Lie superalgebra is the complexification
of a metric real Lie superalgebra with underlying vector space g ⊕ [[V ]], where [[V ]] is the real
vector space obtained from V by restricting scalars to R or, equivalently, [[V ]] ⊗ C = V ⊕ V .

In summary, there is a one-to-one correspondence between the metric 3-algebras in the
Bagger–Lambert description of the N=6 theories of ABJM-type and metric real Lie superalge-
bras g ⊕ [[V ]] with V a complex unitary representation of g whose only nonvanishing odd-odd
brackets are of mixed type. For the example (42), the corresponding Lie superalgebra is the
real form psu(n|n) of the simple Lie superalgebra A(n − 1, n − 1).

The emerging picture is thus the following: three-dimensional Chern–Simons + matter the-
ories admit a formulation in terms of metric ternary algebras, which can be constructed from a
metric Lie algebra and a faithful unitary representation. The generic ternary algebras obtained
in this way should correspond to theories with N ≤ 3 supersymmetry, whereas for N ≥ 4
supersymmetry, we need to specialise to ternary algebras obeying additional symmetry condi-
tions, as we have seen for the N=6 and the N=8 theories in this and the previous lectures.
The precise dictionary between the amount of supersymmetry and the type of ternary algebra
is the subject of a forthcoming publication.
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(1985) 553.
[19] J. M. Figueroa-O’Farrill and S. Stanciu, “On the structure of symmetric selfdual Lie algebras,” J. Math.

Phys. 37 (1996) 4121–4134, hep-th/9506152.
[20] P. de Medeiros, J. Figueroa-O’Farrill, and E. Méndez-Escobar, “Metric Lie 3-algebras in Bagger–Lambert

theory,” JHEP 08 (2008) 045, arXiv:0806.3242 [hep-th].
[21] J. Figueroa-O’Farrill, “Metric Lie n-algebras and double extensions,” arXiv:0806.3534 [math.RT].
[22] J. Figueroa-O’Farrill, “Lorentzian Lie n-algebras,” J. Math. Phys. 49 (2008) 113509,

arXiv:0805.4760 [math.RT].
[23] J. Gomis, G. Milanesi, and J. G. Russo, “Bagger-Lambert Theory for General Lie Algebras,” JHEP 06

(2008) 075, arXiv:0805.1012 [hep-th].
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