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1. INTRODUCTION 

The class of ordinary second-order differential equations 

y ' =  P(x,y) + 3Q(x,y)y' + 3R(x,y)y '~ + S(x,y)y '3 (1.1) 

with a third-order polynomial in y' on the right-hand side is closed under point transformations 

.~ = ~(x, y), ~ = ~(x, y). (1.2) 

This means that the transformation (1.2) of Eq. (1.1) results in an equation of the stone form: 

.~,, =/5  (~, ~)) + 30 (37, ~1) ~)' + 3/) (:~, !))/),2 + ~ (~:, ~)) ~,3. (1.3) 

For two given equations (1.1) and (1.3), the problem on the existence of a point transformation 
(1.2) reducing one of the equations to the other is known as the equivalence problem.' Various 
aspects of this problem have been studied for a long time (see [1-22]). The paper [23] describes 
a scheme for the pointwise classification of equations of the fornl (1.1) and gives the complete list 
of possible cases appearing in the framework of that scheme. 

Let us increase the degree of the polynomial on the right-hand side in (1.1) by one; then we 
obtain the class of equations of the form 

y" = P(x, y) + 4Q(x, y)y' + 6R(x, y)y,2 + 4S(x, y)y,3 + L(x, y)y,4, (1.4) 

which is not closed under point transformations (1.2). Performing the transformation (1.2) in 
(1.4), we find that there appears a denonfinator; namely, 

,, P(x, y) + 4Q(x, y)y' + 6n(x, y)y'~ + 4S(x, y)y'3 + L(x, y)y'4 
Y = V ( x , y ) - X ( x , y ) y ,  (1.5) 

The class of equations of the form (1.5) is already closed under point transformations (1.2). It will 
be called the point extension of the class (1.4). The aim of the present paper is to describe some 
geometric structures induced by equations of the form (1.5) and playing an important role in the 
pointwise classification of such equations. 

2. POINT TRANSFORMATIONS 

The transformation (1.2) can be treated as the passage from some curvilinear coordinates on the 
plane to some other curvilinear coordinates. This interpretation leads to the geometric approach 

1 We mean the local equivalence of equations, since the class of transformations (1.2) is restricted only by the regularity 
(nondegeneracy) condition, which provides only the local invertibility of such transformations. 
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to problems related to point transforlnations.  TILe t ransformat ion (1.2) is assumed to be regular. 
By T and S we denote  the direct and inverse Jacobi matrices of this transforlnation; namely, 

S~--- XX'0 :Fo'I , T =  Xl,O 20.1 �9 (2.1) 

Yx.0 Y0.x /)x.0 ,00.x 

Following the nota t ion  in [2;/]. in the for thcoming considerations, we denote  partial  derivatives by 
double subscripts.  For exmnple, if f is a fimction of two variables, then .fp.q is the derivative of f of 
the order p with respect to the first a rgument  and the order q with respect to the second argument .  

The  first derivatives are transfomLed under  the point change of variables (1.2) according to the 
formula 

:/= (v,.o + / (xl.o + xo.,.0'). (2.2) 
For the second derivatives, the formula reads 

y t t  [(.T1. 0 _t_.E0.10t)('Y'2.0-I- 2 y l . l ~  t -Jr ~]0.2(y ')  2 -~ yo.,~] tr (2 .3 )  

' (  ")1/ -- (Yl.0 -t- U0.1Y ) 'F2.0 -~- 2.rx,ll)t  -]- ;1"0.2 (,0') 2 -It- Xo.lY (X'X.0 -[- Xo.xY ) �9 

The  subst i tu t ion of (2.2) and (2.3) into (1.5) deternfines the t ransfornmtion rule for the coefficients 
of Eq. (1.5) under  the point changes of variables (1.2). First,  we consider the t ransformat ion rule 
for the fimctional parameters  X and Y occurring in the denominator  on the r ight-hand side in (1.5): 

Here u = u(x, y) is an arbi t rary fimction of two variables. The  functional  ambigui ty  in (2.4) is due 
to the fact tha t  the numera tor  and denominator  in (1.5) ('all be nmltiplied by the stone function 
u(x,y)  # 0 without  changing the ratio and the character of dependence of the nmnera to r  and 
denomina tor  on y'. % be definite, we set u = 1. Then  the t ransformat ion rule for X and Y can 
be wri t ten  out  in matr ix  form via the matr ix  S given by (2.1): 

i 2 
IIX, r l l  = [Is)ll,j=  2 , ?  (2.5) 

The  rule (2.5) is the transfi)rlnation rule for tile components  of a vector under  a change of curvilinear 
coordinates on the  plane (for details, see [24]). Hence to X and Y we can assign the vector field ot 
with components  ~1 = X and u '2 = Y. Obviously, c~ # 0. since the s imultaneous vanishing of the 
components  of this field would imply the valfishing of the denominator  in (1.5). 

Along with t radi t ional  vector and tensor fields, the theory of point  t ransformat ions  of Eqs. (1.1) 
and (1.5) involves weighted pseudotensor  fields [23, 25]. 

D e f i n i t i o n  2.1. A pseudotensor field of the type (r, s) and weight m is an indexed array of 
quanti t ies Fj:...~: behavixxg under  transforlnatioxLs of the form (1.2) according to the rule 

Jl . . . i ~  Fj~...j. = (det T)'" s2, .. s ; ;  T �9 
" J l  " " ~ - "  q l . . . q . ,  " 

Iq , . , I 0  
ql ""q~ 

We subst i tu te  y, = z into the r ight-hand side of (1.5) and consider the resulting fraction oll the 
r ight-hand side as a rational function of the l)arameter z : 

f ( : )  = (P + 4Qz + 6 R z  2 + 4Sz 3 + Lz 4 ) / ( Y - X z ) .  (2.6) 

The  flmction (2.6) has a pole at the point z0 = Y / X .  We evaluate the residue of this function at 
the point  z0, and by fl = f~(.r, y) we denote  the quant i ty  

~-~ = - X  '~ Res f (z) .  (2.7) 
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We can readily obtain an explicit expression for the quantity ~ given by (2.7): 

= p X  4 + 4 Q X 3 y  + 6 R X 2 Y  2 + 4 S X Y  3 + L Y  4. (2.8) 

Next, we can readily see that under point changes of variables (1.2) the quantity (2.8) is transformed 
as a pseudoscalar field of weight -2 ;  namely, 

ft = (det T ) - ~ t .  (2.9) 

Relation (2.9) can be derived by straightforward computations with the use of transformation rules 
for the coefficients of Eq. (1.5). The transformation rules for P,  Q, R, S, and L under the changes 
of variables (1.2) are quite cumbersome, and we do not write them out explicitly. 

3. SPECIAL COORDINATES 

The subsequent analysis of Eqs. (1.5) is based on the following well-known theorem on the 
rectification of a vector field [26, 27]. 

T h e o r e m  3.1. For any nonzero vector field a on the plane with components a s and a 2 in the 
coordinates x and y, there exists a point transformation of the fo rm (1.2) such that in the new 
coordinates ~ and ~, the field ~ becomes the unit field: ~1  : 0 and 52 = 1. 

Applying tiffs theorem to Eq. (1.5), we obtain the following assertion. 

Corol lary .  Every equation (1.5) can be reduced to the form (1.4) with the use of a point 
transformation (1.2). 

Let x and y be special coordinates in which the vector field o~ has the unit components 

&l = 0, &2 = 1. (3 .1)  

Consider the changes of variables preserving condition (3.1). They form a special subclass in the 
class of general point transfornmtions of the form (1.2) and are given by the formulas 

= h(x) ,  ~ = y + g ( x ) .  (3.2) 

Differentiating (3.2), we can find the entries of the transition matrices S and T:  

1 1 0 h I 0 
S =  h' - g '  h' T =  g' 1 (3.3) 

The nondegeneracy condition for these matrices implies that det T = h'(x)  ~ O. 
It follows from (3.1) that in the special coordinates thus defined, Eq. (1.5) has the form (1.4). 

Let us consider the rule for the transformation of the parameters L and S in Eq. (1.4) under the 
change of variables (3.2) preserving the validity of condition (3.1): 

L = h ' -2L,  S = g 'h ' -2L  + h'-l '~.  (3.4) 

The first of these relations implies that the parameter L is transformed as a pseudoscalar field of 
weight -2 .  This is not surprising, since if condition (3.1) is satisfied, then formula (2.8) for the 
field ~ implies that ~t = L. 

Conc lus ion .  In the special coordinates, the parameter L determines a pseudoscalar field of 
weight -2 ,  which can be continued to the field [t in arbitrary coordinates. 

Let us supplement the field c~ by one more field ~b whose components in the special coordinates 
are defined as '~b 1 = L and ~ = - S .  This allows one to rewrite formulas (3.4) in matrix form as 

i 2 ,~S, ~2 T" ]]~/)I,'~2HT : h '-1 ]]Sj[[i.j=l Hence the field r defined in the special coordinates by the 
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relations ,//,1 = L and g,~ = - S  is a I)seudovector field of weight - 1 .  Note tha t  the condit ion of 
the noncollinearity of c~ and r implies that  L r 0 in special coordinates and f / ~  0 in arbi t rary  
coordinates.  This  conditions is necessarily satisfied for Eqs. (1.4) and (1.5). since its failure would 
reduce Eqs. (1.4) and (1.5) to the form (1.1), considered em'lier in [23]. 

Having specified the field r in special coordilmtes, we natural ly face the 1)roblem of comput ing  
its colnponents  in an arbi t rary coordinate systeln. By M and N we denote  the components  of the 
field r in arbi t rary coor(linates, i.e., (,1 = M and (,'-' = N.  We have the following fornmlas for 2II 
and N :  

M = Q X  a + 3 R X 2 Y  + 3 S X Y  ~ + L Y  a + (X/4)  (X2I].0 - X X L o Y  + X ~ l " ~ 1 " ; . 1  - -  Xo,~Y2),  

N = - P X  3 - 3QX~-} " -  3 R X Y  2 - S} '3 + (1"/4)(X2Y1.0-  x X , . o Y  + XYr0.1 - -  X 0 , 1 ] ( ' 2 )  �9 (3.5) 

To prove forlnulas (3.5). we show that  in the special coordilmte system with X = 0 and Y = 1 they  
become M = L and N = - S .  After that ,  we verify the t ransfornmtion rule 

,i 2 y f~  IIM, NII* (det T) -1 IlsjIl,,j=, 'r (3.6) 

under  the passage from one arbi t rary systeln of curvilinear coordinates to another.  This  can 
be performed by straightforward computa t ion  with regard for the t ransformat ion rules for the 
coefficients of Eq. (1.5) under  such a transfi)rmation. 

The  vector field c~. the pseudovector field ~b, and the pseudoscalar field 12 are related by the 
forlnula 

2 2 

i=0 j=o 

Here d o = 0 1 is the unit  skew-symmetric  2 x 2 matrix,  which deternfines a twice covariant 
-1 0 

pseudotensor  field of weight - 1 .  Perfornfing the sulnlnation on the right-halld side in (3.7), we can 
rewrite this relation as follows: 

[~ = M Y -  N X .  (3.8) 

In this form, relation (3.8) can readily 1)e verified by straightforward computa t ion  with regard 
for (2.8) a n d  (3.5). 

4. THE ASSOCIATED EQUATION 

We use the components  of the fieht a .  the compolmnts  of the field ~b, and the pseudoscalar field 
to define the flmction 

k(z) = ( X -  Mz )4 / ( f [~ (Y  - X z ) ) .  (4.1) 

The  functions k(z) and f ( : )  occurring in (4.1) mad (2.6) have simple poles at the stone point 
Zo = Y / X .  By virtue of (3.8) and (2.7), the residues of f ( z )  and k(z) at z0 also coincide; therefore, 
the difference of these flmctions is a polynonfial, i.e., 

f ( z )  - k(z) = P*(.r,y) + 3Q*(x,y)z  + 3R*(.r.y)z 2 + S*(x ,y )z  3. (4.2) 

Tile simplest way is to find tile coefficients of tile polynomial  (4.2) in tile special coordinate system 
in which X = 0 and Y = 1. In this case, we have P* = P -  S'4/L 3, Q* = 4 Q / 3 - 4 S 3 / L  2, 
R* = 2R - 2S2/L,  and S* = 0. The  coefficients of the polynomial  (4.2) in an arbi t rary coordinate 
system can be expressed in explicit form via the parameters  P. Q, R, S, L, X .  and Y. However, 
the corresponding expressions are quite cmnbersome;  thus we do not write them out  but  prove the 
following theorem. 

T h e o r e m  4.1. The coe~cients of the polynomial (4.2) arc uniquely determined by ttle differ- 
ential equation (1.5). 
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Proof .  We have already proved that the coefficients of the polynomial (4.2) are uniquely de- 
termined by the parameters P, Q, R, S, L, X, and Y. However, these parameters themselves are 
not uniquely determined by Eq. (1.5). Their choice admits the following gauge freedom related to 
the fact that the numerator and denominator of the fraction (1.5) can be multiplied by the same 
function ~(x, y) : 

V ~ ~(x, y)P, O ~ ~(~, y)Q, n ~ ~(x, y)n,  S --, ~(x, y)S, 
L ~ F ( x , y ) L ,  X ~ p ( x , y ) X ,  Y ~ p ( x , y ) Y .  (4.3) 

The substitution of (4.3) into formulas (3.5) for the components of the field r determines gauge 
transformations of the parameters M and N : 

M--*~(x,y)4M, N---*~(x,y)aN. (4.4) 

Substituting them, together with (4.3), into (3.8) and (4.1), we obtain the following transformation 
rule for the field ft : f~ --. ~(x, y)SfL Taking account of this rule and relation (4.4), we find that the 
function k(z) is invariant under gauge transformations (4.3). Consequently, the polynomial (4.2) 
is also invariant under such transformations. The proof of the theorem is complete. 

Let us derive the transformation rules for P*, Q*, R*, and S* under point trmlsformations (1.2). 
We substitute z = y' into the fraction (4.1) and use fommla (2.2) for the computation of the deriva- 
tive. Taking into account the transformation rules (2.5), (2.9), and (3.6), we obtain the relation 

k (y') = det S (xl,0 + x0.1y') -3 k (~)') �9 (4.5) 

Here k'(z) is a fraction of the form (4.1), where X, Y, M, N, and ft are replaced by .~, l), ~I, 

N, and ~). To derive transformation rules for the quantities P*, Q*, R*, and S* under point 
transformations (1.2), we rewrite Eq. (1.5) in the form 

y" = P*(x,y) + 3Q*(x,y)y' + 3n*(x,~)y '2 + s*(x,y)y  '3 + k(y') .  

Substituting (2.2) and (2.3) into the last equation, taking into account relation (4.5), and performing 
simple manipulations, we obtain the following main result of the present research. 

T h e o r e m  4.2. Under the point transformations (1.2), the coefficients P*(x,y), Q*(x,y), 
R*(x, y), and S*(x, y) of the polynomial (4.2) are transformed in the same way as the coefficients 
of the differential equation y" = P*(x, y) + 3Q*(x, y)y' + 3R*(x, y)y,2 + S*(x, y)y,'3. 

The equation given in Theorem 4.2 is referred to as a canonically associated equation of the 
form (1.1) for Eq. (1.5). Theorems 4.1 and 4.2 imply the following assertion. 

T h e o r e m  4.3. If two equations of the form (1.5) are pointwise equivalent [i.e., one of them is 
obtained from the other by a change of variables of the form (1.2)], then the corresponding associated 
equations are also pointwise equivalent. 
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