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CHAPTER I

Modules over rings of differential operators with

polynomial coefficients

1. Hilbert polynomials

Let A =
⊕∞

n∈ZA
n be a graded nötherian commutative ring with identity 1

contained in A0. Then A0 is a commutative ring with identity 1. Assume that
An = 0 for n < 0.

1.1. Lemma. (i) A0 is a nötherian ring.
(ii) A is a finitely generated A0-algebra.

Proof. (i) Put A+ =
⊕∞

n=1A
n. Then A+ is an ideal in A and A0 = A/A+.

(ii) A+ is finitely generated. Let x1, x2, . . . , xs be a set of homogeneous gen-
erators of A+ and denote di = deg xi, 1 ≤ i ≤ s. Let B be the A0-subalgebra
generated by x1, x2, . . . , xs. We claim that An ⊆ B, n ∈ Z+. Clearly, A0 ⊆ B.
Assume that n > 0 and y ∈ An. Then y ∈ A+ and therefore y =

∑s
i=1 yixi where

yi ∈ An−di . It follows that the induction assumption applies to yi, 1 ≤ i ≤ s. This
implies that y ∈ B. �

The converse of 1.1 follows from Hilbert’s theorem which states that the poly-
nomial ring A0[X1, X2, . . . , Xn] is nötherian if the ring A0 is nötherian.

Let M =
⊕

n∈ZM
n be a finitely generated graded A-module. Then each Mn,

n ∈ Z, is an A0-module. Also, Mn = 0 for sufficiently negative n ∈ Z.

1.2. Lemma. The A0-modules Mn, n ∈ Z, are finitely generated.

Proof. Let mi, 1 ≤ i ≤ k, be homogeneous generators ofM and deg mi = ri,
1 ≤ i ≤ k. For j ∈ Z+ denote by zi(j), 1 ≤ i ≤ ℓ(j), all homogeneous monomials in

x1, x2, . . . , xs of degree j. Let m ∈ Mn. Then m =
∑k
i=1 yimi where yi ∈ An−ri ,

i ≤ i ≤ k. By 1.1, yi =
∑

j aijzj(n − ri), with aij ∈ A0. This implies that

m =
∑

i,j aijzj(n−ri)mi; henceM
n is generated by (zj(n−ri)mi; 1 ≤ j ≤ ℓ(n−ri),

1 ≤ i ≤ k). �

Let Mfg(A
0) be the category of finitely generated A0-modules. Let λ be a

function onMfg(A
0) with values in Z. The function λ is called additive if for any

short exact sequence:

0 −→M ′ −→M −→M ′′ −→ 0

we have

λ(M) = λ(M ′) + λ(M ′′).

Clearly, additivity implies that λ(0) = 0.

1



2 I. DIFFERENTIAL OPERATORS WITH POLYNOMIAL COEFFICIENTS

1.3. Lemma. Let

0→M0 →M1 →M2 → · · · →Mn → 0

be an exact sequence in Mfg(A
0). Then

n
∑

i=0

(−1)iλ(Mi) = 0.

Proof. Evident. �

Let Z[[t]] be the ring of formal power series in t with coefficients in Z. Denote
by Z((t)) the localization of Z[[t]] with respect to the multiplicative system {tn |
n ∈ Z+}.

Let M be a finitely generated graded A-module. Then the Poincaré series
P (M, t) of M (with respect to λ) is

P (M, t) =
∑

n∈Z

λ(Mn) tn ∈ Z((t)).

For example, let A = k[X1, X2, . . . , Xs] be the algebra of polynomials in s
variables with coefficients in a field k graded by the total degree. Then, A0 = k and
for every finitely generated graded A-module M , we have dimkMn < ∞. Hence,
we can define the Poincaré series for λ = dimk. In particular, for the A-module A
itself, we have

P (A, t) =
∑

n∈Z

dimk A
n tn =

∞
∑

n=0

(

s+ n− 1

s− 1

)

tn =
1

(1− t)s
.

The next result shows that Poincaré series in general have an analogous form.

1.4. Theorem (Hilbert, Serre). For any finitely generated graded A-module M
we have

P (M, t) =
f(t)

∏s
i=1(1− t

di)

where f(t) ∈ Z[t, t−1].

Proof. We prove the theorem by induction in s. If s = 0, A = A0 and M is
a finitely generated A0-module. This implies that Mn = 0 for sufficiently large n.
Therefore, λ(Mn) = 0 except for finitely many n ∈ Z and P (M, t) is in Z[t, t−1].

Assume now that s > 0. The multiplication by xs defines an A-module endo-
morphism f of M . Let K = ker f , I = im f and L = M/I. Then K, I and L are
graded A-modules and we have an exact sequence

0 −→ K −→M
f
−→M −→ L −→ 0.

This implies that

0 −→ Kn −→Mn xs−→Mn+ds −→ Ln+ds −→ 0

is an exact sequence of A0-modules for all n ∈ Z. In particular, by 1.3,

λ(Kn)− λ(Mn) + λ(Mn+ds)− λ(Ln+ds) = 0,
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for all n ∈ Z. This implies that

(1 − tds)P (M, t) =
∑

n∈Z

λ(Mn) tn −
∑

n∈Z

λ(Mn) tn+ds

=
∑

n∈Z

(λ(Mn+ds)− λ(Mn)) tn+ds

=
∑

n∈Z

(λ(Ln+ds)− λ(Kn)) tn+ds

= P (L, t)− P (K, t) tds ,

i.e.,

(1− tds)P (M, t) = P (L, t)− tdsP (K, t).

From the construction it follows that xs act as multiplication by 0 on L and K, i.e.,
we can view them as A/(xs)-modules. Hence, the induction assumption applies to
them. This immediately implies the assertion. �

Since the Poincaré series P (M, t) a rational function, we can talk about the
order of its pole at a point. Let dλ(M) be the order of the pole of P (M, t) at 1.

By the theorem, f(t) =
∑

k∈Z akt
k with ak ∈ Z and ak = 0 for all k ∈ Z except

finitely many. Let p be the order of zero of f at 1. Assume that p > 0. Then
f(t) = (1 − t)g(t) where g(t) =

∑

k∈Z bkt
k, with bk ∈ Q and bk = 0 for all k ∈ Z

except finitely many. Moreover, we have ak = bk− bk−1 for all k ∈ Z. By induction
in k this implies that bk ∈ Z. By repeating this procedure if necessary, we see that
f(t) = (1 − t)pg(t) where g(t) =

∑

k∈Z bkt
k, with bk ∈ Z and bk = 0 for all k ∈ Z

except finitely many. Moreover, g(1) 6= 0.

1.5. Corollary. If di = 1 for 1 ≤ i ≤ s, the function n 7−→ λ(Mn) is equal
to a polynomial with rational coefficients of degree dλ(M)− 1 for sufficiently large
n ∈ Z.

Proof. Let p be the order of zero of f at 1. Then we can write f(t) =
(1− t)pg(t) with g(1) 6= 0. In addition, we put d = dλ(M) = s− p, hence

P (M, t) =
g(t)

(1 − t)d
.

Now,

(1− t)−d =
∞
∑

k=0

d(d+ 1) . . . (d+ k − 1)

k!
tk =

∞
∑

k=0

(

d+ k − 1

d− 1

)

tk,

and if we put g(t) =
∑N

k=−N akt
k we get

λ(Mn) =
N
∑

k=−N

ak

(

d+ n− k − 1

d− 1

)

for all n ≥ N . This is equal to

N
∑

k=−N

ak
(d+ n− k − 1)!

(d− 1)!(n− k)!
=

N
∑

k=−N

ak
(n− k + 1)(n− k + 2) . . . (n− k + d− 1)

(d− 1)!
,
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hence λ(Mn) is a polynomial in n with the leading term
(

N
∑

k=−N

ak

)

nd−1

(d− 1)!
= g(1)

nd−1

(d− 1)!
6= 0.

�

We call the polynomial which gives λ(Mn) for large n ∈ Z the Hilbert polyno-
mial of M (with respect to λ). From the proof we see that the leading coefficient

of the Hilbert polynomial of M is equal to g(1)
(d−1)! .

Returning to our example of A = k[X1, X2, . . . , Xs], we see that

dimk A
n =

(

s+ n− 1

s− 1

)

=
ns−1

(s− 1)!
+ . . . .

Hence, the degree of the Hilbert polynomial for A = k[X1, X2, . . . , Xs] is equal to
s− 1.

Now we are going to prove a characterization of polynomials (with coefficients
in a field of characteristic 0) having integral values for large positive integers. First,
we remark that, for any s ∈ Z+ and q ≥ s, we have

qs = s!

(

q

s

)

+Q(q)

where Q is a polynomial of degree s− 1. Therefore any polynomial P of degree d,
for large q, can be uniquely written as

P (q) = c0

(

q

d

)

+ c1

(

q

d− 1

)

+ . . .+ cd−1

(

q

1

)

+ cd,

with suitable coefficients ci, 0 ≤ i ≤ d. Since binomial coefficients are integers, if
ci, 0 ≤ i ≤ d, are integers, the polynomial P has integral values for integers n ≥ d.
The next result is a converse of this observation.

1.6. Lemma. If the polynomial

q 7−→ P (q) = c0

(

q

d

)

+ c1

(

q

d− 1

)

+ . . .+ cd−1

(

q

1

)

+ cd

takes integral values P (n) for large n ∈ Z, all its coefficients ci, 0 ≤ i ≤ d, are
integers.

Proof. We prove the statement by induction in d. If d = 0 the assertion is
obvious. Also

P (q + 1)− P (q) =
d
∑

i=0

ci

(

q + 1

d− i

)

−
d
∑

i=0

ci

(

q

d− i

)

=
d
∑

i=0

ci

((

q + 1

d− i

)

−

(

q

d− i

))

=
d−1
∑

i=0

ci

(

q

d− i− 1

)

,

using the identity
(

q + 1

s

)

=

(

q

s

)

+

(

q

s− 1

)

for q ≥ s ≥ 1. Therefore, q 7−→ P (q + 1) − P (q) is a polynomial with coefficients
c0, c1, . . . , cd−1, and P (n) ∈ Z for large n ∈ Z. By the induction assumption all ci,
0 ≤ i ≤ d− 1, are integers. This immediately implies that cd is an integer too. �
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We shall need another related remark. If F is a polynomial of degree d with
the leading coefficient a0,

G(n) = F (n)− F (n− 1)

= (a0n
d + a1n

d−1 + . . . )− (a0(n− 1)d + a1(n− 1)d−1 + . . .) = a0dn
d−1 + . . .

is polynomial in n of degree d− 1 with the leading coefficient da0. The next result
is a converse of this fact.

1.7. Lemma. Let F be a function on Z such that

G(n) = F (n)− F (n− 1),

is equal to a polynomial in n of degree d− 1 for large n ∈ Z. Then F is equal to a
polynomial in n of degree d for large n ∈ Z.

Proof. Assume that G(n) = P (n−1) for n ≥ N ≥ d, where P is a polynomial
in n of degree d− 1. Then by 1.6 we have

P (n) =

d−1
∑

i=0

ci

(

n

d− i− 1

)

Hence, for n ≥ N + 1,

F (n) =

n
∑

k=N+1

(F (k)−F (k− 1))+F (N) =

n
∑

k=N+1

G(k)+F (N) =

n
∑

k=d

P (k− 1)+C

where C is a constant. Also, by the identity used in the previous proof,

(

q

s

)

=

q
∑

j=s+1

((

j

s

)

−

(

j − 1

s

))

+1 =

q
∑

j=s+1

(

j − 1

s− 1

)

+ 1 =

q
∑

j=s

(

j − 1

s− 1

)

for q > s ≥ 1. This implies that

n
∑

k=d

P (k − 1) =

n
∑

k=d

d−1
∑

i=0

ci

(

k − 1

d− i− 1

)

=

d−1
∑

i=0

ci

(

n
∑

k=d

(

k − 1

d− i− 1

)

)

=
d−1
∑

i=0

ci

(

n
∑

k=d−i

(

k − 1

d− i− 1

)

)

−
d−1
∑

i=1

ci

(

d−1
∑

k=d−i

(

k − 1

d− i− 1

)

)

=

d−1
∑

i=0

ci

(

n

d− i

)

+ C′

for some constant C′. �

In particular, it follows that the sum
∑

n≤N λ(M
n) is equal to a polynomial of

degree dλ(M) for large N ∈ Z. In addition, if we put
∑

n≤N

λ(Mn) = a0N
d + a1N

d−1 + . . .+ ad−1N + ad

for large N ∈ Z, then d! a0 is an integer.
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For example, if A = k[X1, X2, . . . , Xs], the dimension of the space of all poly-
nomials of degree ≤ N is equal to

N
∑

n=0

dimk(A
n) =

N
∑

n=0

(

s+ n− 1

s− 1

)

=

(

s+N

s

)

=
Ns

s!
+ . . . .

2. Dimension of modules over local rings

2.1. Lemma (Nakayama). Let A be a local ring with the maximal ideal m. Let
V be a finitely generated A-module such that mV = V . Then V = 0.

Proof. Assume that V 6= 0. Then we can find a minimal system of generators
v1, , . . . , vs of V as an A-module. By the assumption, vs =

∑s
i=1mivi for some

mi ∈ m. Therefore, (1 − ms)vs =
∑s−1
i=1 mivi. Since 1 − ms is invertible, this

implies that v1, . . . , vs−1 generate V , contrary to our assumption. �

In the following we assume that A is a nötherian local ring, m its maximal
ideal and k = A/m the residue field of A.

2.2. Lemma. dimk(m/m2) < +∞.

Proof. By the nötherian assumption m is finitely generated. If a1, . . . , ap are
generators of m, their images ā1, . . . , āp in m/m2 span it as a vector space over
k. �

Let s = dimk(m/m2). Then we can find a1, . . . , as ∈ m such that ā1, . . . , ās
form a basis ofm/m2. We claim that they generatem. Let I be the ideal generated
by a1, . . . , as. Then I + m2 = m and m(m/I) = m/I. Hence, by 2.1, we have
m/I = 0. Therefore, we proved:

2.3. Lemma. The positive integer dimk(m/m2) is equal to the minimal number
of generators of m.

Any s-tuple (a1, . . . , as) of elements from m such that (ā1, . . . , ās) form a basis
of m/m2 is called a coordinate system in A.

Clearly, mp, p ∈ Z+, is a decreasing filtration of A. Therefore, we can form
GrA =

⊕∞
p=0 m

p/mp+1. We claim that GrA is a finitely generated algebra over

k and therefore a nötherian graded ring. Actually, the map Xi 7−→ āi ∈ m/m2 ⊂
GrA extends to a surjective morphism of k[X1, . . . , Xs] onto GrA.

Let M be a finitely generated A-module. Then we can define a decreasing
filtration of M by mpM , p ∈ Z+, and consider the graded GrA-module GrM =
⊕∞

p=0 m
pM/mp+1M .

2.4. Lemma. IfM is a finitely generated A-module, GrM is a finitely generated
GrA-module.

Proof. From the definition of the graded module GrM we see that m ·
GrpM = Grp+1M for all p ∈ Z+. Hence Gr0M = M/mM generates GrM .
On the other hand, M/mM is a finite dimensional linear space over k. �

This implies, by 1.2, that dimk(m
pM/mp+1M) < +∞, in particular, the A-

modules mpM/mp+1M are of finite length. Since length is clearly an additive
function, by 1.5 we see that p 7−→ lengthA(m

pM/mp+1M) = dimk(m
pM/mp+1M)
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is equal to a polynomial in p with rational coefficients for large p ∈ Z+. Moreover,
the function

p 7−→ lengthA(M/mpM) =

p−1
∑

q=0

lengthA(m
qM/mq+1M)

is equal to a polynomial with rational coefficients for large p ∈ Z+, and its leading

coefficient is of the form e p
d

d! , where e, d ∈ Z+. We put d(M) = d and e(M) = e,
and call these numbers the dimension and multiplicity of M .

Now we want to discuss some properties of the function M 7−→ d(M). The
critical result in controlling the filtrations of A-modules is the Artin-Rees lemma.

2.5. Theorem (Artin, Rees). Let M be a finitely generated A-module and N
its submodule. Then there exists m0 ∈ Z+ such that

mp+m0M ∩N = mp(mm0M ∩N)

for all p ∈ Z+.

Proof. PutA∗ =
⊕∞

n=0 m
n. Then A∗ has a natural structure of a graded ring.

Let (a1, . . . , as) be a coordinate system in A. Then we have a natural surjective
morphism A[a1, . . . , as] −→ A∗, and A∗ is a graded nötherian ring. Let M∗ =
⊕∞

n=0 m
nM . Then M∗ is a graded A∗-module. It is clearly generated by M∗0 =M

as an A∗-module. Since M is a finitely generated A-module, we conclude that M∗

is a finitely generated A∗-module.
In addition, put N∗ =

⊕∞
n=0(N ∩mnM) ⊂M∗. Then

mp(N ∩mnM) ⊂mpN ∩mn+pM ⊂ N ∩mn+pM

implies that N∗ is an A∗-submodule of M∗. Since A∗ is a nötherian ring, N∗ is
finitely generated. There exists m0 ∈ Z+ such that

⊕m0

n=0(N ∩mnM) generates
N∗. Then for any p ∈ Z+,

N ∩mp+m0M =

m0
∑

s=0

mp+m0−s(N ∩msM) ⊂mp(N ∩mm0M) ⊂ N ∩mp+m0M.

�

This result has the following consequence — the Krull intersection theorem.

2.6. Theorem (Krull). Let M be a finitely generated A-module. Then
∞
⋂

p=0

mpM = {0}.

Proof. Put E =
⋂∞
p=0 m

pM . Then, by 2.5,

E = mp+m0M ∩E = mp(mm0M ∩ E) = mpE,

in particular, mE = E, and E = 0 by Nakayama lemma. �

2.7. Lemma. Let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of finitely generated A-modules. Then

(i) d(M) = max(d(M ′), d(M ′′));
(ii) if d(M) = d(M ′) = d(M ′′), we have e(M) = e(M ′) + e(M ′′).
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Proof. We can view M ′ as a submodule of M . If we equip M with the
filtration mpM , p ∈ Z+, and M

′ and M ′′ with the induced filtrations M ′ ∩mpM ,
p ∈ Z+, and mpM ′′, p ∈ Z+, we get the exact sequence

0 −→ GrM ′ −→ GrM −→ GrM ′′ −→ 0.

This implies that for any p ∈ Z+

lengthA(m
pM/mp+1M)

= lengthA((M
′ ∩mpM)/(M ′ ∩mp+1M)) + lengthA(m

pM ′′/mp+1M ′′)

and, by summation,

lengthA(M/mpM) = lengthA(M
′/(M ′ ∩mpM)) + lengthA(M

′′/mpM ′′).

Therefore the function p 7−→ lengthA(M
′/(M ′ ∩mpM)) is equal to a polynomial

in p for large p ∈ Z+. On the other hand, by 2.5,

mp+m0M ′ ⊂mp+m0M ∩M ′ ⊂mpM ′;

hence, for large p ∈ Z+, the functions p 7−→ lengthA(M
′/(M ′ ∩mpM)) and p 7−→

lengthA(M
′/mpM ′) are given by polynomials in p with equal leading terms. �

2.8. Corollary. Let A be a nötherian local ring with s = dimk(m/m2). Then,
for any finitely generated A-module M we have d(M) ≤ s.

Proof. By 2.7 it is enough to show that d(A) ≤ s. This follows immediately
from the existence of a surjective homomorphism of k[X1, . . . , Xs] onto GrA, and
the fact that the dimension of the space of polynomials of degree ≤ n in s variables
is a polynomial in n of degree s. �

A nötherian local ring is called regular if d(A) = dimk(m/m2).

2.9. Theorem. Let A be a nötherian local ring and (a1, a2, . . . , as) a coordinate
system in A. Then the following conditions are equivalent:

(i) A is a regular local ring;
(ii) the canonical morphism of k[X1, X2, . . . , Xs] into GrA defined by Xi 7−→

āi, 1 ≤ i ≤ s, is an isomorphism.

Proof. By definition, the canonical morphism of k[X1, . . . , Xs] into GrA is
surjective. Let I be the graded ideal which is the kernel of the natural surjection
of k[X1, . . . , Xs] onto GrA. If I 6= 0, it contains a homogeneous polynomial P of
degree d > 0. Let J be the ideal in k[X1, X2, . . . , Xs] generated by P . Then its

Poincaré series is P (J, t) = td

(1−t)s . Clearly,

P (k[X1, X2, . . . , Xs]/J, t) = P (k[X1, X2, . . . , Xs], t)− P (J, t)

=
1− td

(1− t)s
=

1 + t+ · · ·+ td−1

(1− t)s−1
.

The order of the pole of the Poincaré series P (k[X1, X2, . . . , Xs]/J, t) at 1 is s− 1,
and by 1.5 the function dimk(k[X1, X2, . . . , Xs]/J)n is given by a polynomial in n of
degree s−2 for large n ∈ Z+. It follows that the function dimk(k[X1, . . . , Xs]/I)n =
dimk GrnA is given by a polynomial in n of degree ≤ s− 2 for large n ∈ Z+. This
implies that d(A) ≤ s− 1. Therefore, I = 0 if and only if d(A) = s. �

2.10. Theorem. Let A be a regular local ring. Then A is integral.
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Proof. Let a, b ∈ A and a 6= 0, b 6= 0. Then, by 2.6, we can find p, q ∈ Z+

such that a ∈mp, a /∈mp+1, and b ∈mq, b /∈mq+1. Then their images ā ∈ GrpA
and b̄ ∈ Grq A are different form zero, and since GrA is integral by 2.9, we see that
āb̄ 6= 0. Therefore, ab 6= 0. �

Finally we want to discuss an example which will play an important role later.
Let k be a field, A = k[X1, X2, . . . , Xn] be the ring of polynomials in n-variables

with coefficients in k and Â = k[[X1, X2, . . . , Xn]] the ring of formal power series

in n-variables with coefficients in k. It is easy to check that Â is a local ring with
maximal ideal m̂ generated by X1, X2, . . . Xn. Also, the canonical morphism from
k[X1, X2, . . . , Xn] into Gr Â is clearly an isomorphism.

For any x ∈ kn we denote by mx the maximal ideal in A generated by Xi−xi,
1 ≤ i ≤ n. Then its complement in A is a multiplicative system in A, and we denote
by Ax the corresponding localization of A. It is isomorphic to the ring of all rational
functions on kn regular at x. This is clearly a nötherian local ring. The localization
ofmx is the maximal ideal nx = (mx)x of all rational functions vanishing at x. The
automorphism of A defined by Xi 7−→ Xi − xi, 1 ≤ i ≤ n, gives an isomorphism of
A0 with Ax for any x ∈ kn. On the other hand, the natural homomorphism of A
into Â extends to an injective homomorphism of A0 into Â. This homomorphism
preserves the filtrations on these local rings and induces a canonical isomorphism
of GrA0 onto Gr Â. Therefore we have the following result.

2.11. Proposition. The rings Ax, x ∈ kn, are n-dimensional regular local
rings.

3. Dimension of modules over filtered rings

Let D be a ring with identity and (Dn ; n ∈ Z) an increasing filtration of D by
additive subgroups such that

(i) Dn = {0} for n < 0;
(ii)

⋃

n∈ZDn = D ;
(iii) 1 ∈ D0;
(iv) Dn ·Dm ⊂ Dn+m, for any n,m ∈ Z;
(v) [Dn, Dm] ⊂ Dn+m−1, for any n,m ∈ Z.

Then GrD =
⊕

n∈Z GrnD =
⊕

n∈ZDn/Dn−1 is a graded ring with identity. The

property (v) implies that it is commutative. In particular, D0 = Gr0D is a com-
mutative ring with identity. Therefore, we can view GrD as an algebra over D0.
Let’s assume in addition that D satisfies

(vi) GrD is a nötherian ring;
(vii) Gr1D generates GrD as a D0-algebra.

Then, by 1.1, D0 is a nötherian ring. Moreover, by (vi), (vii) and 1.2 we know
that we can choose finitely many elements x1, x2, . . . , xs ∈ Gr1D such that GrD is
generated by them as a D0-algebra. Clearly, by (vii), we also have

Grn+1D = Gr1D ·GrnD for n ∈ Z+

and therefore

Dn+1 = Dn ·D1 for n ∈ Z+.
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Let D◦ be the opposite ring of D. Then the filtration (Dn ; n ∈ Z) has the
same properties with respect to the multiplication of D◦. Moreover, the identity
map D −→ D◦ induces an isomorphism of graded rings GrD and GrD◦.

LetM be a D-module. An increasing filtration FM = (FnM ; n ∈ Z) ofM by
additive subgroups is a D-module filtration if Dn · FmM ⊂ Fm+nM , for n,m ∈ Z.
In particular, FnM are D0-modules.

A D-module filtration FM is hausdorff if
⋂

n∈Z FnM = {0}. It is exhaustive if
⋃

n∈Z FnM = M . It is called stable if there exists m0 ∈ Z such that Dn · FmM =
Fm+nM for all n ∈ Z+ and m ≥ m0.

A D-module filtration is called good if

(i) FnM = {0} for sufficiently negative n ∈ Z;
(ii) the filtration FM is exhaustive;
(iii) FnM , n ∈ Z, are finitely generated D0-modules;
(iv) the filtration FM is stable.

In particular, a good filtration is hausdorff.

3.1. Lemma. Let FM be an exhaustive hausdorff D-module filtration of M .
Then the following statements are equivalent:

(i) FM is a good filtration;
(ii) GrD-module GrM is finitely generated.

Proof. First we prove (i)⇒(ii). There exists m0 ∈ Z such that Dn ·Fm0 M =
Fn+m0 M for all n ∈ Z+. Therefore GrnD · Grm0 M = Grn+m0 M for all n ∈ Z+.
It follows that

⊕

n≤m0
GrnM generates GrM as a GrD-module. Since FnM are

finitely generated D0-modules, GrnM are finitely generated D0-modules too. This
implies, since FnM = {0} for sufficiently negative n ∈ Z, that

⊕

n≤m0
GrnM is a

finitely generated D0-module.
(ii)⇒(i). Clearly, GrnM = {0} for sufficiently negative n ∈ Z. Also, by 1.2, all

GrnM are finitely generated D0-modules. The exact sequence

0 −→ Fn−1M −→ FnM −→ GrnM −→ 0

implies that FnM = Fn−1M for sufficiently negative n, hence there exists n0 ∈ Z

such that
⋂

n∈Z FnM = Fn0 M . Since the filtration FM is hausdorff, Fn0 M = {0}.
This implies, by induction in n, that all FnM are finitely generated D0-modules.
Let m0 ∈ Z be such that

⊕

n≤m0
GrnM generates GrM as GrD-module. Let

m ≥ m0. Then

Grm+1M =
⊕

k≤m0

Grm+1−kD ·GrkM

=
⊕

k≤m0

Gr1D ·Grm−kD ·GrkM ⊂ Gr1D ·GrmM ⊂ Grm+1M,

i.e., Gr1D ·GrmM = Grm+1M . This implies that

Fm+1M = D1 · FmM + FmM = D1 · FmM

and by induction in n,

Fm+nM = D1 ·D1 · . . . ·D1 · FmM ⊂ Dn · FmM ⊂ Fm+nM.

Therefore, Fm+nM = Dn · FmM for all n ∈ Z+. Hence, FM is a good filtration.
�
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In particular, (Dn ; n ∈ Z) is a good filtration of D considered as a D-module
for left multiplication.

3.2. Remark. From the proof it follows that the stability condition in the
definition of a good filtration can be replaced by an apparently weaker condition:

(iv)’ There exists m0 ∈ Z such that Dn · Fm0M = Fm0+nM for all n ∈ Z+.

3.3. Lemma. Let M be a D-module with a good filtration FM . Then M is
finitely generated.

Proof. By definition,
⋃

n∈Z FnM = M and Fn+m0 M = Dn · Fm0M for n ∈
Z+ and some sufficiently large m0 ∈ Z. Therefore, Fm0 M generates M as a D-
module. Since Fm0 M is a finitely generated D0-module, the assertion follows. �

3.4. Lemma. Let M be a finitely generated D-module. Then M admits a good
filtration.

Proof. Let U be a finitely generated D0-module which generates M as a D-
module. Put FnM = 0 for n < 0 and FnM = Dn ·U for n ≥ 0. Then U = Gr0M ,
and

GrnM = FnM/Fn−1M = (Dn · U)/(Dn−1 · U) ⊂ GrnD ·Gr0M ⊂ GrnM,

i.e., GrnM = GrnD · Gr0M for all n ∈ Z+. Hence, GrM is finitely generated as
a GrD-module. The statement follows from 3.1. �

The lemmas 3.1 and 3.3 imply that the D-modules admitting good filtrations
are precisely the finitely generated D-modules.

3.5. Proposition. The ring D is a left and right nötherian.

Proof. Let L be a left ideal in D. The natural filtration of D induces a
filtration (Ln = L ∩ Dn ; n ∈ Z), on L. This is evidently a D-module filtration.
The graded module GrL is naturally an ideal in GrD, and since GrD is a nötherian
ring, it is finitely generated as GrD-module. Therefore, the filtration (Ln ; n ∈ Z) is
good by 3.1, and L is finitely generated by 3.3. This proves that D is left nötherian.

To get the right nötherian property one has to replace D with its opposite ring
D◦. �

If we have two filtrations FM and F′M of a D-module M , we say that FM is
finer than F′M if there exists a number k ∈ Z+ such that FnM ⊂ F′n+kM for all

n ∈ Z. If FM is finer than F′M and F′M finer than FM , we say that they are
equivalent.

3.6. Lemma. Let FM be a good filtration on a finitely generated D-module M .
Then FM is finer than any other exhaustive D-module filtration on M .

Proof. Fix m0 ∈ Z+ such that Dn · Fm0 M = Fn+m0 M for all n ∈ Z+. Let
F′M be another exhaustive D-module filtration on M . Then Fm0 M is finitely
generated as a D0-module. Since F′M is exhaustive, it follows that there exists
p ∈ Z such that Fm0 M ⊂ F′pM . Since FM is a good filtration, there exists
n0 such that Fn0 M = {0}. Put k = p + |n0|. Clearly, for m ≤ n0, we have
FmM = 0 ⊂ F′m+kM . For n0 < m ≤ m0, we have −|n0| ≤ n0 < m and
p = −|n0|+ k < m+ k. This yields

FmM ⊂ Fm0 M ⊂ F′pM ⊂ F′m+kM.
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Finally, for m > m0, we have m − m0 ≤ m since m0 is positive, and p ≤ k. It
follows that

FmM = Dm−m0 · Fm0 M ⊂ Dm · F
′
pM ⊂ F′m+pM ⊂ F′m+kM.

�

3.7. Corollary. Any two good filtrations on a finitely generated D-module
are equivalent.

Let M be a finitely generated D-module and FM a good filtration on M .
Then GrM is a finitely generated GrD-module, hence we can apply the results on
Hilbert polynomials from §1. Let λ be an additive function on finitely generated
D0-modules. Assume also that λ takes only nonnegative values on objects of the
categoryMfg(D0) of finitely generated D0-modules. Then, by 1.5,

λ(FnM)− λ(Fn−1M) = λ(GrnM)

is equal to a polynomial in n for large n ∈ Z+. By 1.7 this implies that λ(FnM) is
equal to a polynomial in n for large n ∈ Z+. If F′M is another good filtration on
M , by 3.7 we know that FM an F′M are equivalent,i.e., there is a number k ∈ Z+

such that

FnM ⊂ F′n+kM ⊂ Fn+2kM

for all n ∈ Z. Since λ is additive and takes nonnegative values only, we conclude
that

λ(FnM) ≤ λ(F′n+kM) ≤ λ(Fn+2kM)

for all n ∈ Z. This implies that the polynomials representing λ(FnM) and λ(F′nM)
for large n have equal leading terms. We denote the common degree of these
polynomials by dλ(M) and call it the dimension of theD-moduleM (with respect to
λ). By 1.6 the leading coefficient of these polynomials has the form eλ(M)/dλ(M)!
where eλ(M) ∈ N. We call eλ(M) the multiplicity of the D-moduleM (with respect
to λ).

Let

0 −→M ′
f
−→M

g
−→M ′′ −→ 0

be an exact sequence of D-modules. IfM is equipped by aD-module filtration FM ,
it induces filtrations FM ′ = (f−1(f(M ′) ∩ FnM) ; n ∈ Z) on M ′ and FM ′′ =
( g(FnM) ; n ∈ Z) on M ′′. Clearly, these filtrations are D-module filtrations.

Moreover, the sequence

0 −→ GrM ′
Gr f
−−−→ GrM

Gr g
−−−→ GrM ′′ −→ 0

is exact. If the filtration FM is good, GrM is a finitely generated GrD-module,
hence both GrM ′ and GrM ′′ are finitely generated GrD-modules. By 3.1, FM ′

and FM ′′ are good filtrations. Therefore, we proved the following result.

3.8. Lemma. Let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of D-modules. If FM is a good filtration on M , the induced
filtrations FM ′ and FM ′′ are good.
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By the preceding discussion

λ(GrnM) = λ(GrnM ′) + λ(GrnM ′′)

for all n ∈ Z. This implies, by induction in n, that

λ(FnM) = λ(FnM
′) + λ(FnM

′′)

for all n ∈ Z. This leads to the following result.

3.9. Proposition. Let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of finitely generated D-modules. Then

(i) dλ(M) = max(dλ(M
′), dλ(M

′′));
(ii) if dλ(M) = dλ(M

′) = dλ(M
′′), then eλ(M) = eλ(M

′) + eλ(M
′′).

Finally, let φ be an automorphism of the ring D such that φ(D0) = D0. We

can define a functor φ̃ from the category M(D) of D-modules into itself which

attaches to a D-module M a D-module φ̃(M) with the same underlying additive
group structure and with the action of D given by (T,m) 7−→ φ(T )m for T ∈ D

and m ∈M . Clearly, φ̃ is an automorphism of the categoryM(D), and it preserves
finitely generated D-modules.

3.10. Proposition. Let M be a finitely generated D-module. Then

dλ(φ̃(M)) = dλ(M).

Proof. Let T1, T2, . . . , Ts be the representatives in D1 of classes in Gr1D
generating GrD as a D0-algebra. Then there exists d ∈ N such that φ(Ti) ∈ Dd

for 1 ≤ i ≤ s. Since T1, T2, . . . , Ts and 1 generate D1 as a D0-module, we conclude
that φ(D1) ⊂ Dd.

Let FM be a good filtration of M . Define a filtration F φ̃(M) by

Fp φ̃(M) = FdpM for p ∈ Z.

Clearly, F φ̃(M) is an increasing filtration of φ̃(M) by finitely generatedD0-submodules.
Also,

D1 · Fm φ̃(M) = φ(D1) FdmM ⊂ Dd FdmM ⊂ Fd(m+1)M = Fm+1 φ̃(M)

for m ∈ Z. Hence, by induction, we have

Dn · Fm φ̃(M) = D1 ·Dn−1 · Fm φ̃(M) ⊂ D1 Fm+n−1 φ̃(M) ⊂ Fm+n φ̃(M)

for all n,m ∈ Z, i.e., F φ̃(M) is a D-module filtration. By 3.6, there exists a good

filtration F′ φ̃(M) which is finer than this filtration, i.e, there exists k ∈ Z+ such
that

F′n φ̃(M) ⊂ Fn+k φ̃(M) = Fd(n+k)M

for all n ∈ Z. Therefore,

λ(F′n φ̃(M)) ≤ λ(Fd(n+k)M)

for n ∈ Z. For large n ∈ Z, λ(Fd(n+k)M) is equal to a polynomial in n with the
leading term equal to

eλ(M)ddλ(M)

dλ(M)!
ndλ(M).
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Since λ(F′n φ̃(M)) is also given by a polynomial of degree dλ(φ̃(M)) for large n ∈ Z,

we conclude that dλ(φ̃(M)) ≤ dλ(M). By applying the same reasoning to φ−1 we
also conclude that

dλ(M) = dλ(φ̃
−1(φ̃(M))) ≤ dλ(φ̃(M)).

�

4. Dimension of modules over polynomial rings

Let A = k[X1, . . . , Xn] where k is an algebraically closed field. We can filter A
by degree of polynomials, i.e., we can put Am = {

∑

cIx
I | cI ∈ k, |I| ≤ m}. Then

GrA = k[X1, . . . , Xn], hence A satisfies properties (i)-(vii) from the preceding
section.

Since A0 = k we can take for the additive function λ the function dimk. This
leads to notions of dimension d(M) and multiplicity e(M) of a finitely generated
A-module M .We know that for any p ∈ Z+, we have

dimk Ap =

(

n+ p

n

)

=
pn

n!
+ lower order terms in p,

i.e., d(A) = n and e(A) = 1. In addition, for any finitely generated A-module M
we have an exact sequence

0 −→ K −→ Ap −→M −→ 0,

hence, by 3.9, d(M) ≤ n. We shall give later a geometric interpretation of d(M).
Let x ∈ kn and denote by mx be the maximal ideal in k[X1, . . . , Xn] of all

polynomials vanishing at x. We denote by Ax the localization of A at x, i.e., the
ring of all rational k-valued functions on kn regular at x. As we have seen in
2.11, Ax is an n-dimensional regular local ring with the maximal ideal nx = (mx)x
consisting of all rational k-valued functions on kn vanishing at x. Let M be an
A-module. Its localization Mx at x is an Ax-module. We define the support of M
by supp(M) = {x ∈ kn |Mx 6= 0}.

4.1. Lemma. Let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of A-modules. Then

supp(M) = supp(M ′) ∪ supp(M ′′).

Proof. By exactness of localization we see that

0 −→M ′x −→Mx −→M ′′x −→ 0

is an exact sequence of Ax-modules. This immediately implies our statement. �

For an ideal I ⊂ k[X1, . . . , Xn] we denote V (I) = {x ∈ kn | f(x) = 0 for f ∈ I}.

4.2. Proposition. LetM be a finitely generated A-module and I its annihilator
in A. Then supp(M) = V (I).

Proof. We prove the statement by induction in the number of generators of
M .

Assume first that M has one generator, i.e., M = A/I. Then Mx = (A/I)x =
Ax/Ix. Let x ∈ V (I). Then I ⊂ mx and Ix ⊂ nx. Hence Ix 6= Ax. It follows that
(A/I)x 6= 0 and x ∈ supp(M). Conversely, if x /∈ V (I), there exists f ∈ I such
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that f(x) 6= 0, i.e., f /∈ mx. Therefore, f is invertible in the local ring Ax and
f ∈ Ix implies that Ix = Ax. Hence (A/I)x = 0 and x /∈ supp(A/I). Therefore,
supp(A/I) = V (I).

Now we consider the general situation. Let m1, . . . ,mp be a set of generators
ofM . Denote byM ′ the submodule generated by m1, . . . ,mp−1. Then we have the
exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

and M ′′ is cyclic. Moreover, by 4.1, supp(M) = supp(M ′) ∪ supp(M ′′). Hence,
by the induction assumption, supp(M) = V (I ′) ∪ V (I ′′) where I ′ and I ′′ are the
annihilators of M ′ and M ′′ respectively.

Clearly, I ′ · I ′′ is in the annihilator I of M . On the other hand, I annihilates
M ′ and M ′′, hence I ⊂ I ′ ∩ I ′′. It follows that

I ′ · I ′′ ⊂ I ⊂ I ′ ∩ I ′′.

This implies that

V (I ′) ∪ V (I ′′) ⊂ V (I ′ ∩ I ′′) ⊂ V (I) ⊂ V (I ′ · I ′′).

Let x /∈ V (I ′) ∪ V (I ′′). Then there exist f ∈ I ′ and g ∈ I ′′ such that f(x) 6= 0 and
g(x) 6= 0. It follows that (f · g)(x) = f(x) · g(x) 6= 0 and x /∈ V (I ′ · I ′′). Hence,
V (I ′ · I ′′) ⊂ V (I ′) ∪ V (I ′′) and all inclusions above are equalities. Hence, we have
V (I) = V (I ′) ∪ V (I ′′) and supp(M) = V (I). �

This immediately implies the following consequence.

4.3. Corollary. Let M be a finitely generated A-module. Then its support
supp(M) is a Zariski closed subset in kn.

The next lemma is useful in some reduction arguments.

4.4. Lemma. Let B be a nötherian commutative ring and M 6= 0 be a finitely
generated B-module. Then there exist a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂
Mn = M of M by B-submodules, and prime ideals Ji of B such that Mi/Mi−1

∼=
B/Ji, for 1 ≤ i ≤ n.

Proof. For any x ∈ M we put Ann(x) = {a ∈ B | ax = 0}. Let A be the
family of all such ideals Ann(x), x ∈ M , x 6= 0. Because B is a nötherian ring,
A has maximal elements. Let I be a maximal element in A. We claim that I is
prime. Let x ∈M be such that I = Ann(x). Then ab ∈ I implies abx = 0. Assume
tha b /∈ I, i.e., bx 6= 0. Then I ⊂ Ann(bx) and a ∈ Ann(bx). By the maximality
of I, a ∈ Ann(bx) = I, and I is prime. Therefore, there exists x ∈ M such that
J1 = Ann(x) is prime. If we put M1 = Bx, M1

∼= B/J1. Now, denote by F the
family of all B-submodules of M having filtrations 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nk = N
such that Ni/Ni−1 ∼= B/Ji for some prime ideals Ji. SinceM is a nötherian module,
F contains a maximal element L. Assume that L 6= M . Then we would have the
exact sequence:

0 −→ L −→M −→ L′ −→ 0,

and by the first part of the proof, L′ would have a submodule N ′ of the form B/J ′

for some prime ideal J ′, contradicting the maximality of L. Hence, L = M . This
proves the existence of the filtration with required properties. �

4.5. Theorem. Let M be a finitely generated A-module and supp(M) its sup-
port. Then d(M) = dim supp(M).
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This result has the following companion local version. The localization Ax of
A at x ∈ kn is a nötherian local ring. Moreover, its maximal ideal nx is the ideal
generated by the polynomials Xi − xi, 1 ≤ i ≤ n, and their images in nx/n

2
x span

it as a vector space over k. Therefore, Xi−xi, 1 ≤ i ≤ n, form a coordinate system
in Ax. For any finitely generated A-module M , its localizationMx at x is a finitely
generated Ax-module, hence we can consider its dimension d(Mx).

For any algebraic variety V over k and x ∈ V we denote by dimx V the local
dimension of V at x.

4.6. Theorem. Let M be a finitely generated A-module and x ∈ supp(M).
Then d(Mx) = dimx(supp(M)).

We shall simultaneously prove 4.5 and 4.6. First we observe that if we have an
exact sequence of A-modules:

0 −→M ′ −→M −→M ′′ −→ 0

and 4.5 and 4.6 hold for M ′ and M ′′, we have, by 3.9 and 4.1, that

d(M) = max(d(M ′), d(M ′′)) = max(dim supp(M ′), dim supp(M ′′))

= dim(supp(M ′) ∪ supp(M ′′)) = dim supp(M).

Also, for any x ∈ supp(M), by the exactness of localization we have the exact
sequence:

0 −→M ′x −→Mx −→M ′′x −→ 0;

hence, by 2.7 and 4.1,

d(Mx) = max(d(M ′x), d(M
′′
x )) = max(dimx supp(M

′), dimx supp(M
′′))

= dimx(supp(M
′) ∪ supp(M ′′)) = dimx supp(M).

Assume that 4.5 and 4.6 hold for all M = A/J where J is a prime ideal. Then
the preceding remark, 4.4 and an induction in the length of the filtration would
prove the statements in general.

Hence we can assume thatM = A/J with J prime. Assume first that J is such
that A/J is a finite-dimensional vector space over k. Then A/J is an integral ring
and it is integral over k. Hence it is a field which is an algebraic extension of k. Since
k is algebraically closed, A/J = k and J is a maximal ideal. In this case, by Hilbert
Nulstellenatz, supp(M) = V (J) is a point x in kn, i.e., dim supp(M) = 0. On the
other hand, sinceMx is one-dimensional linear space, d(Mx) = 0, and the assertion
is evident. It follows that we can assume that J is not of finite codimension in A,
in particular it is not a maximal ideal. Let J1 ⊃ J be a prime ideal different form
J . Then there exists f ∈ J1 such that f /∈ J . It follows that J ⊂ (f) + J ⊂ J1 and
J 6= (f) + J . Therefore, A/J1 is a quotient of A/((f) + J), and A/((f) + J) is a
quotient of A/J . In addition, A/((f) + J) =M/fM . Consider the endomorphism
of M given by multiplication by f . Then, if g + J is in the kernel of this map,
0 = f(g + J) = fg + J and fg ∈ J . Since J is prime and f /∈ J it follows that
g ∈ J , g+ J = 0 and the map is injective. Therefore, we have an exact sequence of
A-modules:

0 −→M
f
−→M −→M/fM −→ 0.



4. DIMENSION OF MODULES OVER POLYNOMIAL RINGS 17

This implies, by 3.9, that d(M/fM) ≤ d(M). If d(M/fM) = d(M), we would have
in addition that e(M) = e(M) + e(M/fM), hence e(M/fM) = 0. This is possible
only if d(M/fM) = 0, and in this case it would also imply that d(M) = 0 andM is
finite-dimensional, which is impossible by our assumption. Therefore, d(M/fM) <
d(M). Since A/J1 is a quotient of M/fM , this implies that d(A/J1) < d(A/J).

Let x ∈ V (J1). Then, by localization, we get the exact sequence:

0 −→Mx
f
−→Mx −→Mx/fMx −→ 0

of Ax-modules. This implies, by 2.7, that d(Mx/fMx) ≤ d(Mx). If d(Mx/fMx) =
d(Mx), we would have in addition that e(Mx) = e(Mx) + e(Mx/fMx), hence
e(Mx/fMx) = 0. This is possible only if d(Mx/fMx) = 0, and in this case it would
imply that mx(Mx/fMx) =Mx/fMx and, by Nakayama lemma, Mx/fMx = 0. It
would follow that the multiplication by f is surjective on Mx, and, since f ∈ mx,
by Nakayama lemma this would imply that Mx = 0 contrary to our assumptions.
Therefore, d(Mx/fMx) < d(Mx). Since A/J1 is a quotient of M/fM this implies
that d((A/J1)x) < d((A/J)x).

Let
Z0 = {x} ⊂ Z1 ⊂ · · · ⊂ Zn−1 ⊂ Zn = kn

be a maximal chain of nonempty irreducible closed subsets of kn. Then

I(Z0) = mx ⊃ I(Z1) ⊃ · · · ⊃ I(Zn−1) ⊃ I(Zn) = {0}

is a maximal chain of prime ideals in A. By the preceding arguments we have the
following sequences of strict inequalities

0 ≤ d(A/I(Z0)) < d(A/I(Z1)) < · · · < d(A/I(Zn)) = d(A) = n,

and

0 ≤ d((A/I(Z0))x) < d((A/I(Z1))x) < · · · < d((A/I(Zn))x) = d(Ax) = n,

by 2.11. It follows that

d((A/I(Zj))x) = d(A/I(Zj)) = j = dimZj

for 0 ≤ j ≤ n. Since every closed irreducible subset Z can be put in a maximal
chain, it follows that d((A/I(Z))x) = d(A/I(Z)) = dimZ for any closed irreducible
subset Z ⊂ kn and any x ∈ Z. On the other hand, this implies that d((A/J)x) =
d(A/J) = dimV (J) for any prime ideal J in A and x ∈ V (J). By 4.2, this ends
the proof of 4.5 and 4.6.

Next result follows immediately from 4.5 and 4.6.

4.7. Corollary. Let M be a finitely generated A-module. Then

d(M) = sup
x∈supp(M)

d(Mx).

Finally, we prove a result we will need later.

4.8. Lemma. Let be I an ideal in A. Then dimV (I) = dim V (Gr I).

Proof. The short exact sequence of A-modules

0 −→ I −→ A −→ A/I −→ 0,

where the modules are equipped with the filtrations induced by the natural filtration
of A leads to the short exact sequence

0 −→ Gr I −→ A −→ Gr(A/I) −→ 0
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of graded A-modules. Hence, we have

dimk Fp(A/I) =

p
∑

q=0

(dimk Fq(A/I)− dimk Fq−1(A/I))

=

p
∑

q=0

dimk Grp(A/I) =

p
∑

q=0

(dimk GrpA− dimGrp I)

= dimk FpA− dimk FpGr I = dimk Fp(A/Gr I).

Therefore, d(A/I) = d(A/Gr I). The assertion follows from 4.4 and 4.5. �

5. Rings of differential operators with polynomial coefficients

Let k be a field of characteristic zero. Let A be a commutative algebra over k.
Let Endk(A) be the algebra of all k-linear endomorphisms of A. It is a Lie algebra
with the commutator [S, T ] = ST − TS for any S, T ∈ Endk(A). Clearly, Endk(A)
contains, as a subalgebra, the set EndA(A) of all A-linear endomorphisms of A.
To any element a ∈ A we can attach the A-linear endomorphism of A defined by
b 7−→ ab for b ∈ A. Since this endomorphism takes the value a on 1, this map is
clearly an injective morphism of algebras.

On the other hand, if T ∈ EndA(A), we have

T (b) = bT (1) = T (1)b

for any b ∈ A, i.e., T is given by multiplication by T (1). This implies the folowing
result.

5.1. Lemma. The algebra homomorphism which attaches to an element a ∈ A
the A-linear endomorphism b 7−→ ab, b ∈ A, is an isomorphism of A onto EndA(A).

In the following, we identify A with the subalgebra EndA(A) of Endk(A).
A k-derivation of A is a T ∈ Endk(A) such that

T (ab) = T (a)b+ aT (b)

for any a, b ∈ A. In particular, [T, a](b) = T (ab) − aT (b) = T (a)b, i.e., [T, a] =
T (a) ∈ A for any a ∈ A. This implies that [[T, a0], a1] = 0 for any a0, a1 ∈ A.

This leads to the following definition. Let n ∈ Z+. We say that an element
T ∈ Endk(A) is a (k-linear) differential operator on A of order ≤ n if

[. . . [[T, a0], a1], . . . , an] = 0

for any a0, a1, . . . , an ∈ A. We denote by Diffk(A) the space of all differential
operators on A.

5.2. Lemma. Let T, S be two differential operators of order ≤ n, ≤ m respec-
tively. Then T ◦ S is a differential operator of order ≤ n+m.

Proof. We prove the statement by induction in n + m. If n = m = 0,
T, S ∈ EndA(A), hence T ◦ S ∈ Enda(A) and it is a differential operator of order 0.

Assume now that n+m ≤ p. Then

[T ◦ S, a] = TSa− aTS = T [S, a] + [T, a]S,

and [T, a] and [S, a] are differential operators of order ≤ n− 1 and ≤ m− 1 respec-
tively. By the induction assumption, this differential operator is of order≤ n+m−1.
Therefore T ◦ S is of order ≤ n+m. �
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Therefore Diffk(A) is a subalgebra of Endk(A). We call it the algebra of all
k-linear differential operators on A. Also, we put FnDiffk(A) = {0} for n < 0 and

FnDiffk(A) = {T ∈ Diffk(A) | order(T ) ≤ n}

for n ≥ 0. clearly, this is an increasing exhaustive filtration of Diffk(A) by vector
subspaces over k. This filtration is compatible with the ring structure of Diffk(A),
i.e., it satisfies

FnDiffk(A) ◦ FmDiffk(A) ⊂ Fn+mDiffk(A)

for any n,m ∈ Z.

5.3. Lemma. (i) F0 Diffk(A) = A.
(ii) F1 Diffk(A) = Derk(A)⊕A.
(iii) [FnDiffk(A),FmDiffk(A)] ⊂ Fn+m−1 Diffk(A) for any n,m ∈ Z+.

Proof. (i) is evident.
(ii) As we remarked before, Derk(A) ⊂ F1 Diffk(A). Also, for any T ∈ Derk(A),

we have T (1) = T (1·1) = 2T (1), hence T (1) = 0. This implies that Derk(A)∩A = 0.
Let S ∈ F1 Diffk(A) and T = S−S(1). Then T (1) = 0, hence T (a) = [T, a](1),

and

T (ab) = [T, ab](1) = ([T, a]b)(1) + (a[T, b])(1)

= (b[T, a])(1) + (a[T, b])(1) = T (a)b+ aT (b),

i.e., T ∈ Derk(A).
(iv) Let T, S be of order ≤ n, ≤ m respectively. We claim that [T, S] is of order

≤ n+m− 1. We prove it by induction on n +m. If n = m = 0, there is nothing
to prove. In general, by Jacobi identity, we have

[[T, S], a] = [[T, a], S] + [T, [S, a]]

where [T, a] and [S, a] are of order ≤ n − 1 and ≤ m − 1 respectively. Hence, by
the induction assumption, [[T, S], a] is of order ≤ n +m − 2 and [T, S] is of order
≤ n+m− 1. �

This implies that the graded ring GrDiffk(A) is a commutative A-algebra. In
addition, Diffk(A) satisfies properties (i)-(v) from §3.

Let n ≥ 1. Let T be a differential operator on A of order ≤ n. Then we can
define a map from An into Diffk(A) by

σn(T )(a1, a2, . . . , an−1, an) = [[. . . [[T, a1], a2], . . . , an−1], an].

Since σn(T )(a1, a2, . . . , an−1, an) is of order ≤ 0, we can consider this map as a map
from An into A.

5.4. Lemma. Let T be a differential operator on A of order ≤ n. Then:

(i) the map σn(T ) : A
n −→ A is a symmetric k-multilinear map;

(ii) the operator T is of order ≤ n− 1 if and only if σn(T ) = 0.

Proof. (i) We have to check the symmetry property only. To show this, we
observe that, by the Jacobi identity, we have

[[S, a], b] = [[S, b], a]
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for any S ∈ Diffk(A) and a, b ∈ A. This implies that

σn(T )(a1, a2, . . . , ai, ai+1, . . . , an−1, an)

= [[. . . [[. . . [[T, a1], a2], . . . , ai], ai+1] . . . , an−1], an]

= [[. . . [[. . . [[T, a1], a2], . . . , ai+1], ai] . . . , an−1], an]

= σn(T )(a1, a2, . . . , ai+1, ai, . . . , an−1, an),

hence σ(T ) is symmetric.
(ii) is obvious. �

Now we want to discuss a special case. Let A = k[X1, X2, . . . , Xn]. Then we
put D(n) = Diffk(A). We call D(n) the algebra of all differential operators on kn.
Let ∂1, ∂2, . . . , ∂n be the standard derivations of k[X1, X2, . . . , Xn]. For I, J ∈ Zn+
we put

XI = X i1
1 X

i2
2 . . . X in

n

and

∂J = ∂j11 ∂
j2
2 . . . ∂jnn .

ThenXI∂J ∈ D(n), and it is a differential operator of order≤ |J | = j1+j2+· · ·+jn.
Moreover, if T is a differential operator given by

T =
∑

|I|≤p

PI(X1, X2, . . . , Xn)∂
I ,

with polynomials PI ∈ k[X1, X2, . . . , Xn], we see that T is of order ≤ p.

5.5. Lemma. The derivations (∂i ; 1 ≤ i ≤ n) form a basis of the free k[X1, . . . , Xn]-
module Derk(k[X1, X2, . . . , Xn]).

Proof. Let T ∈ Derk(k[X1, X2, . . . , Xn]). Put Pi = T (Xi) for 1 ≤ i ≤ n, and
define S =

∑n
i=1 Pi∂i. Clearly,

S(Xi) =

n
∑

j=1

Pj ∂j(Xi) = Pi = T (Xi)

for all 1 ≤ i ≤ n. Since X1, X2, . . . , Xn generate k[X1, X2, . . . , Xn] as a k-algebra it
follows that T = S. Therefore, (∂i ; 1 ≤ i ≤ n) generate the k[X1, X2, . . . , Xn]-
module Derk(k[X1, X2, . . . , Xn]). Assume that

∑n
i=1Qi∂i = 0 for some Qi ∈

k[X1, X2, . . . , Xn]. Then 0 = (
∑n

j=1Qj∂j)(Xi) = Qi for all 1 ≤ i ≤ n. This

implies that ∂i, 1 ≤ i ≤ n, are free generators of Derk(k[X1, X2, . . . , Xn]). �

Let T be a differential operator of order ≤ p on k[X1, X2, . . . , Xn]. If p < 0,
T = 0 and we put Symbp(T ) = 0. If p = 0, T ∈ A, and we put Symb0(T ) = T . For
p ≥ 1, we define a polynomial Symbp(T ) in k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn] in the
following way. Let (ξ1, ξ2, . . . , ξn) ∈ kn. Then we can define a linear polynomial
ℓξ =

∑n
i=1 ξiXi ∈ k[X1, X2, . . . , Xn] and the function

(ξ1, ξ2, . . . , ξn) 7−→
1

p!
σp(T )(ℓξ, ℓξ, . . . , ℓξ)

on kn with values in k[X1, X2, . . . , Xn]. Clearly, one can view this function as a poly-
nomial inX1, X2, . . . , Xn and ξ1, ξ2, . . . , ξn homogeneous of degree p in ξ1, ξ2, . . . , ξn,
and denote it by Symbp(T ). The polynomial Symbp(T ) is called the p-symbol
of the differential operator T . By its definition, Symbp(T ) vanishes for T of
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order < p. Therefore, for p ≥ 0, it induces a k-linear map of GrpD(n) into
k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn]. We denote by Symb the corresponding k-linear
map of GrD(n) into k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn].

5.6. Theorem. The map Symb : GrD(n) −→ k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn]
is a k-algebra isomorphism.

The proof of this result consists of several steps. First we prove the symbol
map is an algebra morphism.

5.7. Lemma. Let T, S ∈ D(n) of order ≤ p and ≤ q respectively. Then

Symbp+q(TS) = Symbp(T ) Symbq(S).

Proof. Let ξ ∈ kn, and define the map τξ : D(n) −→ D(n) by τξ(T ) = [T, ℓξ].
Then

τξ(TS) = [TS, ℓξ] = TSℓξ − ℓξTS = [T, ℓξ]S + T [S, ℓξ] = τξ(T )S + Tτξ(S).

Therefore, for any k ∈ Z+, we have

τkξ (TS) =

k
∑

i=0

(

k

i

)

τk−iξ (T ) τ iξ(S).

This implies that

Symbp+q(TS) =
1

(p+ q)!
σp+q(T )(ℓξ, ℓξ, . . . , ℓξ) =

1

(p+ q)!
τp+qξ (TS)

=
1

p!q!
τpξ (T ) τ

q
ξ (S) = Symbp(T ) Symbq(S).

�

Since Symb0(Xi) = Xi and Symb1(∂i) = ξi, 1 ≤ i ≤ n, we see that for XI∂J

with p = |J | we have

Symbp(X
I∂J) = XIξJ .

In particular, for

T =
∑

|J|≤p

PI(X1, X2, . . . , Xn)∂
I ,

with polynomials PI ∈ k[X1, X2, . . . , Xn], we see that

Symbp(T ) =
∑

|I|=p

PI(X1, X2, . . . , Xn)ξ
I .

Hence, the symbol morphism is surjective. It remains to show that the symbol map
is injective.

5.8. Lemma. Let T ∈ FpD(n). Then Symbp(T ) = 0 if and only if T is of
order ≤ p− 1.

Proof. We prove the statement by induction in p. It is evident if p = 0.
Therefore we can assume that p > 0. Let ξ ∈ kn, and define the map τξ :

D(n) −→ D(n) by τξ(T ) = [T, ℓξ]. Then, for any λ ∈ k and η ∈ kn, we have

τξ+λη(T ) = [T, ℓξ+λη] = [T, ℓξ] + λ[T, ℓη] = τξ(T ) + λτη(T ).
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Since τξ and τη commute we see that, for any k ∈ Z+, we have

τkξ+λη(T ) =
k
∑

i=0

(

k

i

)

λi τk−iξ (τ iη(T )).

By our assumption, τpξ+λη(T ) = 0 for arbitrary λ ∈ k. Therefore, since the field k is

infinite, τp−iξ (τ iη(T )) = 0 for 0 ≤ i ≤ p. In particular, we see that τp−1ξ (τη(T )) = 0

for any ξ, η ∈ kn. This implies that Symbp−1([T, ℓη]) = 0 for any η ∈ kn, in
particular

Symbp−1([T,Xi]) = 0

for 1 ≤ i ≤ n, and by the induction assumption, [T,Xi], 1 ≤ i ≤ n, are of order
≤ p− 2. Let P,Q ∈ k[X1, X2, . . . , Xn]. Then

[T, PQ] = TPQ− PQT = [T, P ]Q+ P [T,Q],

hence the order of [T, PQ] is less than or equal to the maximum of the orders of
[T, P ] and [T,Q]. Since Xi, 1 ≤ i ≤ n, generate k[X1, X2, . . . , Xn] we conclude that
the order of [T, P ] is ≤ p− 2 for any polynomial P . This implies that the order of
T is ≤ p− 1. �

This also ends the proof of 4.6. In particular, we see that D(n) satisfies prop-
erties (i)-(vii) from §3. From 3.5 we immediately deduce the following result.

5.9. Theorem. The ring D(n) is right and left nötherian.

5.10. Corollary. (XI∂J ; I, J ∈ Zn+) is a basis of D(n) as a vector space over
k.

Proof. If |J | = p, the p-symbol of XI∂J is equal to XIξJ and (XIξJ ; I, J ∈
Zn+) form a basis of k[X1, . . . , Xn, ξ1, . . . , ξn] as a vector space over k. �

The following caracterization of D(n) is frequently useful.

5.11. Theorem. The k-algebra D(n) is the k-algebra generated by X1, X2, . . . , Xn

and ∂1, ∂2, . . . , ∂n satisfying the defining relations [Xi, Xj ] = 0, [∂i, ∂j ] = 0 and
[∂i, Xj ] = δij for all 1 ≤ i, j ≤ n.

Proof. Let B be the k-algebra generated by X1, X2, . . . , Xn and ∂1, ∂2, . . . , ∂n
satisfying the defining relations [Xi, Xj] = 0, [∂i, ∂j ] = 0 and [∂i, Xj] = δij for
all 1 ≤ i, j ≤ n. Since these relations hold in D(n) and it is generated by
X1, X2, . . . , Xn and ∂1, ∂2, . . . , ∂n we conclude that there is a unique surjective mor-
phism of B onto D(n) which maps generators into the corresponding generators.
Clearly, B is spanned by (XI∂J ; I, J ∈ Zn+). Therefore, by 5.10, this morphism is
also injective. �

5.12. Proposition. The center of D(n) is equal to k · 1.

Proof. Let T be a central element of D(n). Then, [T, P ] = 0 for any polyno-
mial P , and T is of order ≤ 0. Therefore, by 5.3, T ∈ k[X1, X2, . . . , Xn]. On the
other hand, 0 = [∂i, T ] = ∂i(T ) for 1 ≤ i ≤ n. This implies that T is a constant
polynomial. �

Let D(n)◦ be the opposite algebra of D(n). Then, by 5.11, there exists a unique
isomorphism φ : D(n)◦ −→ D(n) which is defined by φ(Xi) = Xi and φ(∂i) = −∂i
for 1 ≤ i ≤ n. The morphism φ is called the principal antiautomorphism of D(n).
This proves the following result.
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5.13. Proposition. The algebra D(n)◦ is isomorphic to D(n).

Moreover, by 5.11, we can define an automorphism F of D(n) by F(Xi) =
∂i and F(∂i) = −Xi for 1 ≤ i ≤ n. This automorphism is called the Fourier
automorphism of D(n). The square F2 of F is an automorphism ι of D(n) which
acts as ι(Xi) = −Xi and ι(∂i) = −∂i for 1 ≤ i ≤ n. Clearly, ι2 = 1.

In contrast to the filtration by the order of differential operators, D(n) has
another filtration compatible with its ring structure which is not defined on more
general rings of differential operators. We put

Dp(n) =
{

∑

aIJX
I∂J

∣

∣

∣ |I|+ |J | ≤ p
}

for p ∈ Z. Clearly, (Dp(n) | p ∈ Z) is an increasing exhaustive filtration of D(n) by
finite-dimensional vector spaces over k.

5.14. Lemma. For any p, q ∈ Z we have

(i) Dp(n) ◦Dq(n) ⊂ Dp+q(n);
(ii) [Dp(n), Dq(n)] ⊂ Dp+q−2(n).

Proof. By 5.10 and the definition of the filtration (Dp(n) ; p ∈ Z), it is enough
to check that

[∂I , XJ ] ∈ D|I|+|J|−2(n).

We prove this statement by an induction in |I|. If |I| = 1, we have ∂I = ∂i for some

1 ≤ i ≤ n and [∂i, X
J ] = ∂i(X

J) ∈ D|J|−1(n). If |I| > 1, we can write ∂I = ∂I
′

∂i
for some I ′ ∈ Zn+ and 1 ≤ i ≤ n. This leads to

[∂I , XJ ] = [∂I
′

∂i, X
J ] = ∂I

′

∂iX
J −XJ∂I

′

∂i

= ∂I
′

[∂i, X
J ] + [∂I

′

, XJ ]∂i = [∂I
′

, [∂i, X
J ]] + [∂i, X

J ]∂I
′

+ [∂I
′

, XJ ]∂i,

hence, by the induction assumption, [∂I , XJ ] ∈ D|I|+|J|−2(n). �

This implies that (Dp(n) ; p ∈ Z) is a filtration compatible with the ring struc-
ture on D(n). In addition, the graded ring GrD(n) is a commutative k-algebra. If
we define the linear map Ψp from Dp(n) into k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn] by

Ψp

(

∑

|I|+|J|≤p

aIJX
I∂J

)

=
∑

|I|+|J|=p

aIJX
IξJ

we see that it is a linear isomorphism of GrpD(n) into the homogeneous polynomials
of degree p. Therefore, it extends to a linear isomorphism

Ψ : GrD(n) −→ k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn].

By 5.14 we see that this map is an isomorphism of k-algebras. Therefore, the ring
D(n) equipped with the filtration (Dp(n) ; p ∈ Z) satisfies the properties (i)-(vii)
from §3. The filtration (Dp(n) ; p ∈ Z) is called the Bernstein filtration of D(n).

Evidently, the principal antiautomorphism and the Fourier automorphism of
D(n) preserve the Bernstein filtration.
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6. Modules over rings of differential operators with polynomial

coefficients

In this section we study the category of modules over the rings D(n) of differen-
tial operators with polynomial coefficients. Denote byML(D(n)), resp.MR(D(n))
the categories of left, resp. right, D(n)-modules. These are abelian categories. The
principal antiautomorphism φ of D(n) defines then an exact functor from the cat-
egoryMR(D(n)) into the categoryML(D(n)) which maps the module M into its
transposeM t, which is equal toM as additive group and the action of D(n) is given
by the map (T,m) 7−→ φ(T )m for T ∈ D(n) and m ∈ M . An analogous functor
is defined from ML(D(n)) into MR(D(n)). Clearly these functors are mutually
inverse isomorphisms of categories. If we denote by ML

fg(D(n)) and MR
fg(D(n))

the corresponding full subcategories of finitely generated modules, we see that these
functors also induce their equivalence. Therefore in the following we can restrict
ourselves to the discussion of left modules and drop the superscript L from our
notation (except in the cases when we want to stress that we deal with right mod-
ules). Since D(n) is a nötherian ring, the full subcategoryMfg(D(n)) ofM(D(n))
is closed under taking submodules, quotient modules and extensions.

First we considerD(n) as a ring equipped with the Bernstein filtration. Since in
this case D0(n) = k we can define the dimension of modules fromML

fg(D(n)) and

MR
fg(D(n)) using the additive function dimk on the category of finite-dimensional

vector spaces over k. This dimension d(M) and the corresponding multiplicity
e(M) of a module M are called the Bernstein dimension and the Bernstein multi-
plicity respectively. Since the principal antiautomorphism preserves the Bernstein
filtration we see that d(M) = d(M t) for any finitely generated D(n)-module M .

For any finitely generatedD(n)-moduleM we have an exact sequenceD(n)p −→
M −→ 0, hence d(M) ≤ d(D(n)). In addition, from 5.6 we conclude the following
result.

6.1. Lemma. For any finitely generated D(n)-module M we have d(M) ≤ 2n.

6.2. Example. Consider the algebra D(1) of polynomial differential operators
in one variable. Let M be a finitely generated D(1)-module different from 0. Then
its Bernstein dimension d(M) can be 0, 1 or 2. Clearly, d(M) = 0 would imply
that for any good filtration FM of M , the function p 7−→ dimFpM is constant for
large p ∈ Z. Since FM is exhaustive, this would mean thatM is finite dimensional.
Denote by π(x) and π(∂) the linear transformations on M induced my the action
of x and ∂ respectively. Then we have [π(x), π(∂)] = 1M . Taking the trace of both
sides of this equality we would get dimkM = 0, i.e., contradicting our assumption
that M 6= 0. It follows that d(M) is either 1 or 2.

The main result of the dimension theory of D(n) is the following statement
with generalizes the above example.

6.3. Theorem (Bernstein). Let M be a finitely generated D(n)-module and
M 6= 0. Then d(M) ≥ n.

Proof. Since M is a finitely generated D(n)-module, by 3.4, we can equip
it with a good filtration. Also, by shift in indices, we can clearly assume that
FnM = 0 for n < 0 and F0M 6= 0.

For any p ∈ Z+ we can consider the linear map Dp(n) −→ Homk(FpM,F2pM)
which attaches to T ∈ Dp(n) the linear map m 7−→ Tm. We claim that this map
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is injective. For p ≤ 0 this is evident. Assume that it holds for p − 1 and that
T ∈ Dp(n) satisfies Tm = 0 for all m ∈ FpM . Then, for any v ∈ Fp−1M and
1 ≤ i ≤ n we have Xiv ∈ FpM and ∂iv ∈ FpM , hence

[Xi, T ]v = XiTv − TXiv = 0

and
[∂i, T ]v = ∂iTv − T∂iv = 0

and [Xi, T ], [∂i, T ] ∈ Dp−1(n) by 5.14. By the induction assumption this implies
that [Xi, T ] = 0 and [∂i, T ] = 0 for 1 ≤ i ≤ n, and T is in the center of D(n). Since
the center of D(n) is equal to k by 5.12, we conclude that T = 0. Therefore,

dimk(Dp(n)) ≤ dimk(Homk(FpM,F2pM)) = dimk(FpM) · dimk(F2pM)

for any p ∈ Z. On the other hand, for large p ∈ Z+ the left side is equal to a
polynomial in p of degree 2n with positive leading coefficient and the right side is
equal to a polynomial in p of degree 2d(M) with positive leading coefficient. This
is possible only if d(M) ≥ n. �

In the next section we are going to give a geometric interpretation of the Bern-
stein dimension.

Finally, ifM is aD(n)-module, we can define its Fourier transform F(M) as the
module which is equal toM as additive group and the action of D(n) is given by the
map (T,m) 7−→ F(T )m for T ∈ D(n) and m ∈M . Clearly the Fourier transform is
an automorphism of the categoryM(D(n)). It also induces an automorphism of the
category Mfg(D(n)). From the fact that the Fourier automorphism F preserves
the Bernstein filtration (or 3.9) we conclude that the following result holds.

6.4. Lemma. Let M be a finitely generated D(n)-module. Then d(F(M)) =
d(M).

7. Characteristic variety

Now we want to study an invariant of finitely generated D(n)-modules which
has a more geometric flavor. In particular, it will be constructed using the filtration
FD(n) of D(n) by the degree of differential operators instead of the Bernstein
filtration. In contrast to the Bernstein filtration, the degree filtration makes sense
for rings of differential operators on arbitrary smooth affine varieties.

First, since any D(n)-module M can be viewed as a k[X1, X2, . . . , Xn]-module,
we can consider its support supp(M) ⊂ kn.

7.1. Proposition. Let M be a finitely generated D(n)-module. Then supp(M)
is a closed subvariety of kn.

Proof. Fix a good filtration FM on M . Then, for x ∈ kn, Mx = 0 is equiva-
lent to (FpM)x = 0 for all p ∈ Z. Therefore, by the exactness of localization, it is
equivalent to (GrM)x = 0. Let Ip be the annihilator of the k[X1, X2, . . . , Xn]-
module GrpM , p ∈ Z. Since GrpM are finitely generated k[X1, X2, . . . , Xn]-
modules, by 4.2 their supports supp(GrpM) are equal to V (Ip). This implies
that supp(M) =

⋃

p∈Z V (Ip). Let m1,m2, . . . ,ms be a set of homogeneous gen-

erators of GrD(n)-module GrM . Then the annihilator I of m1,m2, . . . ,ms in
k[X1, X2, . . . , Xn] annihilates whole GrM . Therefore, there is a finite subset S of
Z such that ∩p∈SIp = I ⊂ Iq for all q ∈ Z. This implies that ∪p∈SV (Ip) = V (I) ⊃
V (Iq) for all q ∈ Z, and supp(M) = V (I). �
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Let D be a filtered ring with a filtration FD satisfying the properties (i)-(vii)
from the beginning of 3. Let M be a finitely generated D-module and FM a good
filtration of M . Then GrM is a graded GrD-module. Let I be the annihilator of
GrM in GrD. This is clearly a graded ideal in GrD. Hence, its radical r(I) is
also a graded ideal. In general, I depends on the choice of the good filtration on
M , but we also have the following result.

7.2. Lemma. Let M be a finitely generated D-module and FM and F′M two
good filtrations onM . Let I, resp. I ′ be the annihilators of the corresponding graded
GrD-modules GrM and Gr′M . Then r(I) = r(I ′).

Proof. Let T ∈ r(I) ∩ GrpD. Then there exists s ∈ Z+ such that T s ∈ I. If
we take Y ∈ FpD such that Y +Fp−1D = T , we get Y s FqM ⊂ Fq+sp−1M for all
q ∈ Z. Hence, by induction we get

Y ms FqM ⊂ Fq+msp−mM

for all m ∈ N and q ∈ Z. On the other hand, by 3.7, we know that FM and F′M
are equivalent. Hence there exists l ∈ Z+ such that FqM ⊂ F′q+lM ⊂ Fq+2lM for
all q ∈ Z. This leads to

Y ms F′qM ⊂ Y
ms Fq+lM ⊂ Fq+l+msp−mM ⊂ F′q+2l+msp−mM

for all q ∈ Z andm ∈ N. If we takem > 2l, it follows that Y ms F′qM ⊂ F′q+msp−1M
for any q ∈ Z, i.e., Tms ∈ I ′. Therefore, T ∈ r(I ′) and we have r(I) ⊂ r(I ′). Since
the roles of I and I ′ are symmetric we conclude that r(I) = r(I ′). �

Therefore the radical of the annihilator of GrM is independent of the choice
of a good filtration on GrM . We call it the characteristic ideal of M and denote
by J(M).

Now we can apply this construction toD(n). Since GrD(n) = k[X1, . . . , Xn, ξ1, . . . , ξn]
by 5.6, we can define the closed algebraic set

Ch(M) = V (J(M)) ⊂ k2n

which we call the characteristic variety of M .
Since J(M) is a homogeneous ideal in last n variables, we immediately obtain

the following result.

7.3. Lemma. The characteristic variety Ch(M) of a finitely generated D(n)-
module M has the following property: if (x, ξ) ∈ Ch(M) then (x, λξ) ∈ Ch(M) for
any λ ∈ k.

We say that Ch(M) is a conical variety.

7.4. Proposition. Let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of finitely generated D(n)-modules. Then

Ch(M) = Ch(M ′) ∪ Ch(M ′′).

Proof. Let FM be a good filtration on M . Then it induces a filtration FM ′

on M ′ and FM ′′ on M ′′. By 3.8 we know that these filtrations are also good.
Moreover, we have the exact sequence

0 −→ GrM ′ −→ GrM −→ GrM ′′ −→ 0
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of finitely generated k[X1, . . . , Xn, ξ1, . . . , ξn]-modules, and their supports are, by
4.2, the characteristic varieties of D(n)-modules M , M ′ and M ′′ respectively.
Therefore the assertion follows from 4.1. �

The next two results shed some light on the relationship between the charac-
teristic variety and the support of a finitely generated D(n)-module.

Let π : k2n −→ kn be the map defined by π(x, ξ) = x for any x, ξ ∈ kn.

7.5. Proposition. LetM be a finitely generatedD(n)-module. Then supp(M) =
π(Ch(M)).

Proof. Denote by m1,m2, . . . ,ms a set of homogeneous generators of GrM .
Then, as in the proof of 7.1, the annihilator I ofm1,m2, . . . ,ms in k[X1, X2, . . . , Xn]
satisfies supp(M) = V (I). On the other hand, if J is the annihilator ofm1,m2, . . . ,ms

in k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn], it is a homogeneous ideal in ξ1, ξ2, . . . , ξn which
satisfies I = k[X1, X2, . . . , Xn] ∩ J , and Ch(M) = V (J). This implies that x ∈
V (I) = supp(M) is equivalent with (x, 0) ∈ V (J) = Ch(M). Since Ch(M) is
conical this implies the assertion. �

Let M be a finitely generated D(n)-module. Define the singular support of M
as

sing supp(M) = {x ∈ kn | (x, ξ) ∈ Ch(M) for some ξ 6= 0}.

Clearly, we have sing supp(M) ⊂ supp(M).

7.6. Lemma. Let M be a finitely generated D(n)-module. Then sing supp(M)
is a closed subvariety of supp(M).

Proof. Let p : kn − {0} −→ Pn−1(k) be the natural projection. Then

1× p : kn × (kn − {0}) −→ kn × Pn−1(k)

projects Ch(M)−(kn×{0}) onto the closed subvariety of kn×Pn−1(k) correspond-
ing to the ideal J(M) which is homogeneous in ξ1, ξ2, . . . , ξn. Finally, the projection
to the first factor kn×Pn−1(k) −→ kn maps it onto sing supp(M). Since Pn−1(k) is
a complete variety, the projection kn×Pn−1(k) −→ kn is a closed map. Therefore,
sing supp(M) is closed. �

The fundamental result about characteristic varieties is the following theorem.
It also gives a geometric description of the Bernstein dimension.

7.7. Theorem. Let M be a finitely generated D(n)-module. Then

dimCh(M) = d(M).

To prove the theorem we need some preparation.
We shall consider first the D(n)-module M = D(n)/L where L is a left ideal

in D(n). The exact sequence of D(n)-modules

0 −→ L −→ D(n) −→M −→ 0

with filtrations induced by the filtration by the degree of the differential operators
on D(n) the leads to the exact sequence

0 −→ GrL −→ GrD(n) −→ GrM −→ 0

of A-modules, where A = GrD(n) = k[X1, . . . , Xn, ξ1, . . . , ξn]. Therefore, GrM
is the quotient A/GrL and the annihilator of GrM is equal to GrL. Hence, by
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definition, V (GrL) is the characteristic variety of M . Hence, we have to establish
that dim V (GrL) = d(D(n)/L) in this case.

To prove this we start with some general remarks. Let A = k[X1, X2, . . . , Xn].

Let t = (t1, . . . , tn) ∈ Nn. We define the grading Gr(t)A by putting Gr(t)m A to be
the linear span of XI such that

∑n
j=1 tjij = m. Clearly, in this way A becomes a

graded ring. Moreover, we can define the corresponding filtration F(t)A by F(t)
p A =

∑

m≤pGr(t)m A. Clearly, if we denote by FA the natural filtration of A by degree of
polynomials and put t = max1≤i≤n ti, we have

F(t)
p A ⊂ FpA and FpA ⊂ F

(t)
tp A

for any p ∈ Z.
Let I be an ideal in A. Then we can consider the exact sequence

0 −→ I −→ A −→ A/I −→ 0

of A-modules equipped with the filtrations induced by the filtrations on A. Then
we have

F(t)
p (A/I) ⊂ Fp(A/I) and Fp(A/I) ⊂ F

(t)
tp (A/I)

for any p ∈ Z. This in turn implies the following lemma.

7.8. Lemma. For any p ∈ Z, we have

dimk F
(t)
p (A/I) ≤ dimk Fp(A/I) and dimk Fp(A/I) ≤ dimk F

(t)
tp (A/I).

Let s ∈ N. Then we define a filtration F(s)D(n) of the algebra D(n) by

F(s)
m D(n) =

{

T ∈ D(n)
∣

∣

∣
T =

∑

|I|+s|J|≤m

cI,JX
I∂J , cI,J ∈ k

}

.

Clearly, F(1)D(n) is the Bernstein filtration of D(n). The filtrations F(s)D(n)
have the properties (i)-(iii) of the ring filtrations considered in §3. Moreover, T ∈

F(s)
m D(n) if and only if T ∈ F(1)

p D(n) and the order of T is ≤ q for some p and

q satisfying m = p + (s − 1)q. Therefore, if T ∈ F(s)
m D(n) and S ∈ F

(s)
m′ D(n),

there exist p, p′ and q, q′ such that m = p + (s − 1)q and m′ = p′ + (s − 1)q′,

T ∈ F(1)
p D(n), S ∈ F

(1)
p′ D(n), and the orders of T and S are ≤ q and ≤ q′

respectively. This implies that the order of TS is ≤ q + q′ and TS ∈ F
(1)
p+p′ D(n).

It follows that TS ∈ F
(s)
m+m′ D(n). Hence, the filtration F(s)D(n) satisfies also

(iv), i.e., it is a ring filtration. In the same way we can check that (v) holds, i.e.,

the graded ring Gr(s)D(n) is commutative. Moreover, the graded ring Gr(s)D(n)
is isomorphic to the graded ring A = k[X1, . . . , Xn, ξ1, . . . , ξn] with the graded
structure corresponding to s = (1, . . . , 1, s, . . . , s). We denote that graded module

by Gr(s)A and its associated filtration by F(s)A.
Moreover, we have

F(s)
p D(n) ⊂ F(1)

p D(n) and F(1)
p D(n) ⊂ F(s)

sp D(n)

for any p ∈ Z.
Consider again the exact sequence

0 −→ L −→ D(n) −→ D(n)/L −→ 0
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of D(n)-modules equipped with the filtrations induced by the filtrations on D(n).
Then we have

F(s)
p (D(n)/L) ⊂ F(1)

p (D(n)/L) and F(1)
p (D(n)/L) ⊂ F(s)

sp (D(n)/L)

for any p ∈ Z. This in turn implies the following lemma analogous to 7.8.

7.9. Lemma. For any p ∈ Z, we have

dimk F
(s)
p (D(n)/L) ≤ dimk F

(1)
p (D(n)/L)

and

dimk F
(1)
p (D(n)/L) ≤ dimk F

(s)
sp (D(n)/L).

7.10. Lemma. Let L be a left ideal in D(n). Then

d(D(n)/L) = dim V (Gr(s) L)

for any s ∈ N.

Proof. The exact sequence

0 −→ L −→ D(n) −→ D(n)/L −→ 0,

where D(n) is equipped with the filtration F(s)D(n) and L and D(n)/L with the

induced filtrations F(s) L and F(s)(D(n)/L) respectively, leads to the exact sequence

0 −→ Gr(s) L −→ Gr(s)D(n) −→ Gr(s)(D(n)/L) −→ 0.

Clearly, as a graded ring Gr(s)D(n) = Gr(s)A. This implies that

dimk F
(s)
p (D(n)/L) =

p
∑

q=0

(dimk F
(s)
q (D(n)/L)− dimk F

(s)
q−1(D(n)/L))

=

p
∑

q=0

dimk Gr(s)q (D(n)/L) =

q
∑

q=0

(dimk Gr(s)q D(n)− dimk Gr(s)q L)

=

p
∑

q=0

(dimk Gr(s)q A− dimk Gr(s)q L) =

p
∑

q=0

dimk Gr(s)q (A/Gr(s) L)

= dimk F
(s)
p (A/Gr(s) L)

for any p ∈ Z. This in turn implies, using 7.8 and 7.9 that

dimk F
(1)
p (D(n)/L) ≤ dimk F

(s)
sp (D(n)/L) = dimk F

(s)
sp (A/Gr(s) L)

≤ dimk Fsp(A/Gr(s) L)

and

dimk Fp(A/Gr(s) L) ≤ dimk F
(s)
sp (A/Gr(s) L) = dimk F

(s)
sp (D(n)/L)

≤ dimk F
(1)
sp (D(n)/L).

Since the functions p 7−→ dimk F
(1)
p (D(n)/L) and p 7−→ dimk Fp(A/Gr(s) L) are

represented by polynomials for large p ∈ Z, these polynomials have to have equal

degrees. This in turn implies that d(D(n)/L) = d(A/Gr(s) L). Since Gr(s) L is the

annihilator of A/Gr(s) L, the statement follows from 4.5. �
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For any s ∈ N, we denote by σ
(s)
p (T ) the projection of T ∈ F

(s)
p D(n) in

Gr(s)p D(n) = A. Also, for the natural filtration on A given by the degree of the
polynomials, we denote by σp the map which attaches to a polynomial of degree p
its homogeneous component of degree p.

7.11. Example. Let D = D(1) and T ∈ D given by T = x3∂ + ∂2. Then the
degree of T is equal to 2 and Symb2(T ) = ξ2. Hence, σ2(Symb2(T )) = ξ2.

On the other hand, we have σ
(1)
4 (T ) = x3ξ; σ

(2)
5 (T ) = x3ξ, σ

(3)
6 (T ) = x3ξ + ξ2

and σ
(s)
2s (T ) = ξ2 for s > 3.

Hence, for large s, the σ(s)(T ) becomes equal to σ(Symb(T )). This holds in
general, more precisely we have the following result.

7.12. Lemma. Let T be a differential operator in D(n) of order ≤ m such that
its symbol Symbm(T ) is a polynomial of degree p. Then there exists s0 such that

σp(Symbm(T )) = σ
(s)
p+(s−1)m(T )

for s ≥ s0.

Proof. By our assumption

T =
∑

|J|≤m

cI,JX
I∂J .

Also, we can fix q0 such that cI,J 6= 0 implies that |I| ≤ q0. Then we have

Symbm(T ) =
∑

|J|=m

cI,JX
IξJ

is a polynomial of degree p and its leading term is

σp(Symbm(T )) =
∑

|I|=p−m,|J|=m

cI,JX
IξJ .

On the other hand, the terms XI∂J are in F
(s)
|I|+s|J|D(n). Assume that cI,J 6= 0.

Then we have the following possibilities:

(i) |J | = m and |I| = p−m: XI∂J is in F
(s)
p+(s−1)mD(n).

(ii) |J | = m and |I| < p−m: XI∂J in F
(s)
p+(s−1)m−1D(n).

(iii) m ≥ 1, |J | < m and |I| ≤ q0: XI∂J is in F
(s)
q0+s(m−1)

D(n). Moreover,

q0 + s(m− 1) = q0 + sm− s = q0 +m− s+ (s− 1)m.

Hence, if s ≥ s0 = q0 + m − p + 1, we have q0 + s(m − 1) ≤ p + (s −
1)m− 1. It follows that in this case the differential operator XI∂J is also

in F
(s)
p+(s−1)m−1D(n).

This implies that for s ≥ s0 we have

σ
(s)
p+(s−1)m(T ) = σ

(s)
p+(s−1)m





∑

|I|=p−m,|J|=m

cI,JX
I∂J





=
∑

|I|=p−m,|J|=m

cI,JX
IξJ = σp(Symbm(T )).

�
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In particular, we can pick finitely many Di ∈ L, 1 ≤ i ≤ k, such that
σ(Symb(Di)) generate Gr(GrL). By 7.12, there exists s such that σ(Symb(Di)) =

σ(s)(Di) for any 1 ≤ i ≤ k. Therefore, we have Gr(GrL) ⊂ Gr(s) L and V (Gr(GrL)) ⊃

V (Gr(s) L). This in turn implies that dimV (Gr(GrL)) ≥ dimV (Gr(s) L). By 4.8
and 7.10, we finally see that dimV (GrL) ≥ d(D(n)/L).

The converse inequality is much simpler. First, let D ∈ F(1)
p (D(n)). Then,

its degree is ≤ p, and Symb(D) is a polynomial of degree ≤ p. Therefore, F(1)
p (L)

contains only differential operators of degrees ≤ p, and GrF(1)
p (L) ⊂ Fp(GrL).

Since F(1)
p (L) is finite dimensional, and its filtration by the degree of differential

operators if hausdorff and exhaustive, we have

dimk F
(1)
p (L) = dimk GrF(1)

p (L) ≤ dimk Fp(GrL).

Therefore, it follows that

dimk F
(1)
p (D(n)/L) = dimkDp(n)− dimk F

(1)
p (L)

≥ dimk FpA− dimk Fp(GrL) = dimk Fp(A/GrL)

for any p ∈ N. This in turn implies that d(D(n)/L) ≥ d(A/GrL). Since GrL is
the annihilator of A/GrL, from 4.5 we conclude that d(D(n)/L) ≥ dim V (GrL).

Hence we proved that

d(D(n)/L) = dimV (GrL).

To prove the theorem in the general case we consider the exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

where M has q generators, M ′ has q − 1 generators and M ′′ is cyclic. Therefore,
M ′ is isomorphic to D(n)/L for some left ideal L.

By the first part of the proof, we have d(M ′′) = dimCh(M ′′). In addition, by
the induction assumption, we have d(M ′) = dimCh(M ′). From 3.9 and 7.4 we see
that

d(M) = max(d(M ′), d(M ′′)) = max(dimCh(M ′), dimCh(M ′′))

= dim(Ch(M ′) ∪ Ch(M ′′)) = dimCh(M).

This completes the proof of 7.7.
In particular, by combining 6.3 and 7.7, we get the following result.

7.13. Theorem. Let M be a finitely generated D(n)-module, M 6= 0, and
Ch(M) its characteristic variety. Then dimCh(M) ≥ n.

8. Holonomic modules

Let M be a nontrivial finitely generated D(n)-module. Then, by 7.13, the
dimension of its characteristic variety Ch(M) is ≥ n.

We say that a finitely generated D(n)-module is holonomic if the dimension of
its characteristic variety Ch(M) is ≤ n. Therefore, M is holonomic if either M = 0
or dimCh(M) = n.

Roughly speaking, holonomic modules are the modules with smallest possible
characteristic varieties.

The following result is the fundamental observation about holonomic modules.

8.1. Theorem. (i) Holonomic modules are of finite length.
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(ii) Submodules, quotient modules and extensions of holonomic modules are
holonomic.

Proof. (ii) follows immediately from 3.9.
(i) LetM be a holonomicD(n)-module different from zero. Then, by definition,

its the dimension of its characteristic variety Ch(M) is equal to n. By 7.7, its
Bernstein dimension d(M) is also equal to n. Since M is finitely generated and
D(n) is a nötherian ring, there exists a maximal D(n)-submoduleM ′ ofM different
from M . Therefore we have an exact sequence

0 −→M ′ −→M −→M/M ′ −→ 0.

By (ii), M ′ and M/M ′ are holonomic and M/M ′ is an irreducible D(n)-module.
If M ′ 6= 0, we conclude from 3.9 that e(M ′) < e(M). Therefore, by induction in
e(M), it follows that M has finite length. �

Therefore, the full subcategoryHol(D(n)) of the categoryMfg(D(n)) is closed
under taking submodules, quotient modules and extensions. Moreover, if we denote
byMfl(D(n)), the full subcategory ofMfg(D(n)) consisting of D(n)-modules of
finite length, we see that Hol(D(n)) is a subcategory ofMfl(D(n)). One can show
that Hol(D(n)) is strictly smaller thanMfl(D(n)) for n > 1.

In addition, the transpose functor and the Fourier functor map holonomic mod-
ules into holonomic modules.

Now we are going to discuss some examples of holonomic modules.

8.2. Example. LetOn = k[X1, X2, . . . , Xn]. ThenOn = D(n)/(D(n)(∂1, ∂2, . . . , ∂n))
is a finitely generated D(n)-module. Moreover, if we put FpOn = 0 for p < 0 and
FpOn = On for p ≥ 0, the filtration FOn is a good filtration for the degree filtra-
tion of D(n). The corresponding graded module GrOn is such that GrpOn = 0
for p 6= 0 and Gr0On = k[X1, X2, . . . , Xn]. It follows that the annihilator of GrOn
is equal to the ideal in k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn] generated by ξ1, ξ2, . . . , ξn.
This implies that Ch(On) = kn × {0} ⊂ k2n. In particular, dimCh(On) = n and
On is holonomic. Moreover, supp(On) = kn and the projection π : k2n −→ kn is
an bijection of Ch(On) onto O.

By differentiation, we see that any submodule of On has to contain contants.
Therefore, On is irreducible.

8.3. Example. Consider now ∆n = F(On). Then, we have ∆n = D(n)/(D(n)(X1, X2, . . . , Xn)).
Clearly, ∆n is holonomic and irreducible. Let δ be the vector corresponding to
1 ∈ O1. Then Xiδ = 0 for any 1 ≤ i ≤ n. Clearly, ∆n is spanned by δ(I) = ∂Iδ,
I ∈ ZI+. Let F∆n be a filtration of ∆n such that: Fp∆n = {0} for p < 0

and Fp∆n is spanned by δ(I), |I| ≤ p, for p ≥ 0. Denote be ǫi the multiindex
(0, . . . , 0, 1, 0, . . . , 0) with 1 ant i-th position. Then, by the definition of the Fourier
transform, we have

∂jδ
(I) = δ(I+ǫj) and Xjδ

(I) = −ijδ
(I−ǫj)

for all 1 ≤ j ≤ n and I ∈ ZI+. This implies that Fp∆n are k[X1, X2, . . . , Xn]-
submodules of ∆n. Moreover, ∂i Fp∆n ⊂ Fp+1 ∆n for all 1 ≤ i ≤ n and p ∈ Z.
Hence, F∆n is an exhaustive D(n)-module filtration for D(n) filtered by the order

of differential operators. Let δ̄(I) be the cosets represented by δ(I) in Gr|I|∆n.
Then Grp∆n is spanned by δ̄(I) for I ∈ Z+ such that |I| = p. Clearly, Xi act
as 0 on Gr∆n, and ξi map δ̄(I) into δ̄(I+ǫi). Therefore, δ̄ generates Gr∆n as a
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k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn]-module, and F∆n is a good filtration. Moreover,
the annihilator of Gr∆n is the ideal generated by Xi, 1 ≤ i ≤ n. Hence the
characteristic variety of ∆n is Ch(∆n) = {0} × kn ⊂ k2n. The support supp(∆n)
of ∆n is {0} ⊂ kn.

Now we want to construct more holonomic modules. We start with a simple
criterion for holonomicity.

8.4. Lemma. Let D(n) be equipped with the Bernstein filtration. Let M be a
D(n)-module and FM an exhaustive D(n)-module filtration on M . If

dimk FpM ≤
c

n!
pn + (lower order terms in p)

for all p ∈ Z+, M is a holonomic D(n)-module and its length is ≤ c.
In particular, M is a finitely generated D(n)-module.

Proof. Let N be a finitely generated D(n)-submodule of M . Then FM in-
duces an exhaustive D(n)-module filtration on N . By 3.6 there exists a good
filtration F′N of N and s ∈ Z+ such that F′pN ⊂ Fp+sN for any p ∈ Z. It follows
that

dimk F
′
pN ≤ dimk Fp+sN ≤ dimk Fp+sM ≤

c

n!
pn + (lower order terms in p)

for p ∈ Z+. Therefore, d(N) ≤ n and N is holonomic. If N 6= 0, we have
e(N) ≤ c. Clearly this implies that the length of N is ≤ e(N) ≤ c. It follows that
any increasing sequence of finitely generated D(n)-submodules ofM stabilizes, and
that M itself is finitely generated. �

8.5. Example. Let n = 1 and put D = D(1). Consider the D-modules Mα =
D/D(z∂ − α) for any α ∈ k.

Let E = z∂. As in the proof of 5.10, we see that the operators (zpEq, ∂pEq ; p, q ∈
Z+) form a basis of D as a linear space over k. Moreover, the ideal D(z∂ − α) is
spanned by the elements (zpEq(E − α), ∂pEq(E − α) ; p, q ∈ Z+). Hence, Mα is
spanned by the cosets corresponding to (zp, ∂p ; p ∈ Z+).

Clearly,

[E, z] = z∂z − z2∂ = z

and

[E, ∂] = z∂2 − ∂z∂ = −∂.

Therefore, we have

Ez = z(E + 1) and E∂ = ∂(E − 1).

This immediately implies that the coset of zn is an eigenvector of E with eigenvalue
α + n for any n ∈ Z+. On the other hand, the coset of ∂n is an eigenvector of E
with eigenvalue α−n for any n ∈ Z+. Therefore, the spectrum of E onMα is equal
to {α+ n ; n ∈ Z}, and the multiplicity of each eigenvalue is equal to 1.

The Fourier transform of Mα is isomorphic to

D/D(−∂z − α) = D/D(z∂ + α+ 1) =M−α−1.

Assume first that α /∈ Z. Then, E is a linear isomorphism and z must be sur-
jective. Since z maps the eigenspace for the eigenvalue α + n onto the eigenspace
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for the eigenvalue α + n + 1, z is also injective. Therefore, we can construct in-
ductively a family of vectors zα+n, n ∈ Z, such that Ezα+n = (α + n)zα+n and
zzα+n = zα+n+1. Clearly, these vectors form a basis of Mα. Moreover,

∂zα+n = ∂zzα+n−1 = [∂, z]zα+n−1 + Ezα+n−1 = (α+ n)zα+n−1

for any n ∈ Z. This immediately implies that Mα
∼=Mα+p for any integer p ∈ Z.

Moreover, any nonzero D-submodule of M is invariant under E, so it contains
an eigenvector of E. This in turn implies that it contains zα+p for some p ∈ Z.
It follows that it contains all zα+n, n ∈ Z, i.e., it is equal to Mα. Hence, Mα are
irreducible D-modules.

We define a filtration FMα of Mα by: FpMα = {0} for p < 0; and FpMα is
the span of {zα+n ; |n| ≤ p} for p ≥ 0. Clearly, FMα is an increasing exhaustive
filtration of Mα by linear subspaces. Moroever, by the above remarks, z FpMα ⊂
Fp+1Mα and ∂ FpMα ⊂ Fp+1Mα for any p ∈ Z. Therefore, FMα is a D-module
filtration for D equipped by Bernstein filtration. Since dimk FpMα = 2p + 1 for
p ≥ 0, by 8.4, we see that Mα is holonomic.

To calculate its characteristic variety, consider the another filtration FMα such
that FnMα = {0} for n < 0 and FnMα is spanned by {zα+p ; p ≥ −n} for n ≥
0. Clearly, this is an exhaustive fitration of FMα by modules over the ring of
polynomials in z. Moreover, ∂ FpMα = Fp+1Mα, for any p ∈ Z+, and this a a
goodD-module filtration for the filtration ofD by the order of differential operators.
The graded module GrMα is a direct sum of GrpMα, where GrnMα = 0 for n < 0;
Gr0Mα is equal to the span of zα+p for p ≥ 0; and GrpMα is spanned by the
coset of zα−p modulo {zα+q ; q > −p}. Therefore, z annihilates GrpMα for p 6= 0,
and the symbol ξ of ∂ annihilates Gr0Mα and maps GrpMα onto Grp+1Mα for
p > 0. It follows that the annihilator of GrMα is the ideal generated by zξ in
k[z, ξ]. Hence, the characteristic variety Ch(Mα) is the union of lines {z = 0} and
{ξ = 0} in k2.

Assume now that α ∈ Z. Then the eigenvalues of E are integers. If v is a
nonzero eigenvector of E for an eigenvalue m 6= 0, ∂v is an eigenvector of E for
eigenvalue m− 1 and z∂v = mv 6= 0. Therefore, z maps all eigenspaces of E with
eigenvalues q 6= −1 onto the eigenspaces for the eigenvalue q + 1.

Assume first that n = −α > 0. Then the coset of zn−1, is an eigenvector of
E for the eigenvalue −1. Therefore, z maps the eigenspace of E for eigenvalue −1
onto the eigenspace for the eigenvalue 0. Hence, in this case, we can select basis
vectors vm for the eigenspaces for the eigenvalues m ∈ Z, such that zvm = vm+1

for m ∈ Z. We have

∂vm = ∂zvm−1 = [∂, z]vm−1 + Evm−1 = mvm−1

for all m ∈ Z. This implies that all M−n, n > 0, are mutually isomorphic.
Moreover, by an inspection of the action of z and ∂, we see that the vectors

vm, m ∈ Z+, span a D-submodule N−n isomorphic to O1 from 8.2. In particular
M−n is reducible.

Clearly, zv−1 ∈ N−n. It follows that the coset δ ∈ M−n/N−n of v−1 satisfies
zδ = 0.

The spectrum ofE on L−n =M−n/N−n consists of all strictly negative integers.
Therefore, ∂ is injective on L−n. Hence δ(m) = ∂mδ are nonzero eigenvectors of
E for eigenvalues −(m + 1), m ∈ Z+, i.e., they are proportional to the cosets of
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v−(m+1). Clearly, we have

zδ(m) = z∂δ(m−1) = −mδ(m−1)

for all m > 0. It follows immediately that L−n is isomorphic to the D-module ∆1

described in 8.3. Hence we have the exact sequence

0 −→ O1 −→M−n −→ ∆1 −→ 0

and this exact sequence doesn’t split. In particular, all these D-modules are iso-
morphic to M−1.

By Fourier transform, we see that D-modules Mn, n ≥ 0, are isomorphic to
M0. Moreover, we have the exact sequence

0 −→ ∆1 −→M−n −→ O1 −→ 0

which also doesn’t split.
Since O1 and ∆1 are holonomic by 8.2 and 8.3, by 8.1 we see that Mn, n ∈ Z,

are holonomic. Moreover, from 7.4 we conclude that we have

Ch(Mn) = Ch(O1) ∪ Ch(∆1)

for all n ∈ Z. Hence, by 8.2 and 8.3, they are equal to the union of lines {z = 0}
and {ξ = 0} in k2.

From the above example we see that the characteristic varieties do not de-
termine the corresponding D-modules. Moreover, the characteristic variety of an
irreducible holonomic D(n)-module can be reducible.

Now we are going to generalize the construction of the module M−1 from the
above example.

Let M be a D(n)-module and P ∈ k[X1, X2, . . . , Xn]. Then on the localization
MP of M we can define k-linear maps ∂i :MP −→MP by

∂i(
m

P p
) = −p∂i(P )

m

P p+1
+
∂im

P p

for any m ∈M and p ∈ Z+. By direct calculation we can check that

[∂i, ∂j ](
m

P p
) = 0

and

[∂i, xj ](
m

P p
) = δij

m

P p

for any 1 ≤ i, j ≤ n and p ∈ Z+. By 5.11 this defines a structure of D(n)-module
on MP .

8.6. Proposition. LetM be a holonomic D(n)-module and P ∈ k[X1, X2, . . . , Xn].
Then MP is a holonomic D(n)-module.

Proof. We can clearly assume that P 6= 0. Let FM be a good filtration on
M such that FpM = 0 for p ≤ 0 and m = degP . Define FpMP = 0 for p < 0 and

FpMP =
{ v

P p

∣

∣

∣
v ∈ F(m+1)pM

}

for p ∈ Z+. Clearly FpMP , p ∈ Z, are vector subspaces of MP .

Let w ∈ FpMP , p ≥ 0. Then w = v
Pp = Pv

Pp+1 for some v ∈ F(m+1)pM . Since
Pv ∈ F(m+1)p+mM ⊂ F(m+1)(p+1)M , we see that w ∈ Fp+1MP . This proves that
the filtration FMP is increasing.
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Let v ∈ FqM . Then v
Pp = P sv

Pp+s for any s ∈ Z+. Also, P sv ∈ Fq+smM for
any s ∈ Z+. Moreover, (m + 1)(p + s) − (q + sm) = s + (m + 1)p − q ≥ 0 for
s ≥ q − (m+ 1)p. Hence

P sv ∈ Fq+smM ⊂ F(m+1)(p+s)M

and v
Pp ∈ Fp+sMP . Therefore, the filtration FMP is exhaustive.
It remains to show that it is aD(n)-module filtration. First, for v ∈ F(m+1)pM ,

xiPv ∈ F(m+1)(p+1)M , hence xi
v
Pp = xiPv

Pp+1 ∈ Fp+1MP . Also,

∂i

( v

P p

)

=
−p∂i(P )v + P∂iv

P p+1

and −p∂i(P )v + P∂iv ∈ F(m+1)(p+1)M ; hence ∂i
(

v
Pp

)

∈ Fp+1MP .
Therefore, we constructed an exhaustive D(n)-module filtration on MP . Since

dimk FpMP ≤ dimk F(m+1)pM ≤ e(M)
((m+ 1)p)n

n!
+ (lower order terms in p)

for p ∈ Z+, MP is holonomic by 8.4. �

8.7. Corollary. Let P ∈ k[X1, X2, . . . , Xn]. Then k[X1, X2, . . . , Xn]P is a
holonomic D(n)-module.

9. Exterior tensor products

Let X = kn and Y = km in the following, and denote by DX and DY the
corresponding algebras of differential operators with polynomial coefficients. Then
we can consider the algebra DX ⊠ DY which is equal to DX ⊗k DY as a vector
space over k, and the multiplication is defined by (T ⊗S)(T ′⊗S′) = TT ′⊗SS′ for
T, T ′ ∈ DX and S, S′ ∈ DY . We call DX ⊠DY the exterior tensor product of DX

and DY .
The following result is evident.

9.1. Lemma. DX ⊠DY = DX×Y .

If M and N are DX -, resp. DY -modules, we can define DX×Y -module M ⊠N
which is equal to M ⊗k N as a vector space over k, and the action of DX ⊠DY =
DX×Y is given by (T ⊗ S)(m ⊗ n) = Tm⊗ Sn for any T ∈ DX , S ∈ DY , m ∈ M
and n ∈ N .

9.2. Lemma. Let M be a finitely generated DX-module and N a finitely gen-
erated DY -module. Then M ⊠N is a finitely generated DX×Y -module.

Proof. Let e1, e2, . . . , ep and f1, f2, . . . , fq be generators of M and N respec-
tively. Then for any m ∈ M and n ∈ N , we have m =

∑

Tiei, Ti ∈ DX ,
and n =

∑

Sjfj , Sj ∈ DY . This implies that m ⊗ n =
∑∑

Tiei ⊗ Sjfj =
∑∑

(Ti ⊗ Sj)(ei ⊗ fj), and ei ⊗ fj, 1 ≤ i ≤ p, 1 ≤ j ≤ q, generate M ⊠N . �

Our main goal in this section is to prove the following result.

9.3. Theorem. Let M be a finitely generated DX-module and N a finitely
generated DY -module. Then d(M ⊠N) = d(M) + d(N).

This result has the following important consequence.

9.4. Corollary. Let M be a holonomic DX-module and N a holonomic DY -
module. Then M ⊠N is a holonomic DX×Y -module.
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Let DX and DY be equipped with the Bernstein filtration. Let M and N
be finitely generated DX -, resp. DY -modules with good filtrations FM and FN
respectively. Define the product filtration on M ⊠N by

Fj(M ⊠N) =
∑

p+q=j

FpM ⊗k Fq N

for any j ∈ Z. Clearly the product filtration on DX ⊠DY = DX×Y agrees with the
Bernstein filtration. Therefore, F(M⊠N) is an exhaustive hausdorffDX×Y -module
filtration.

To prove that this filtration is good we need some preparation in linear algebra.
We start with the following lemma.

9.5. Lemma. Let M , M ′, N and N ′ be linear spaces over k, and φ :M −→M ′

and ψ : N −→ N ′ linear maps. Then they define a linear map φ⊗ψ :M ⊗kN −→
M ′ ⊗k N

′. We have

(i)
im(φ⊗ ψ) = imφ⊗ imψ;

(ii)
ker(φ⊗ ψ) = kerφ⊗k N +M ⊗k kerψ.

Proof. (i) This is obvious from the definition.
(ii) By (i), to prove (ii) we can assume that φ and ψ are surjective. In this

case, we have short exact sequences

0 −→M ′′ −→M
φ
−→M ′ −→ 0

where M ′′ = kerφ, and

0 −→ N ′′ −→ N
ψ
−→ N ′ −→ 0

where N ′′ = kerψ.
Clearly, we have φ⊗ ψ = (φ ⊗ idN ′) ◦ (idM ⊗ ψ). Since the tensoring with N ′

is exact, the first exact sequence implies that the sequence

0 −→M ′′ ⊗k N
′ −→M ⊗k N

′ φ⊗idN′

−−−−−→M ′ ⊗k N
′ −→ 0

is exact. Hence, ker(φ ⊗ idN ′) = M ′′ ⊗k N ′ = kerφ ⊗k N ′. Therefore, an element
z in M ⊗k N is in the kernel of φ⊗ ψ if and only if (idM ⊗ ψ)(z) is in kerφ⊗k N ′.

Since

0 −→M ⊗k N
′′ −→M ⊗k N

idM⊗ψ
−−−−−→M ⊗k N

′ −→ 0

is also exact, kerφ ⊗k N maps surjectively onto kerφ ⊗k N ′ and ker(idM ⊗ ψ) =
M ⊗k N ′′ = M ⊗k kerψ. Therefore, z is in the kernel of φ ⊗ ψ if and only if
z ∈ kerφ⊗k N +M ⊗k kerψ. �

9.6. Lemma. Let X1, X2, . . . , Xn be linear subspaces which span a linear space
X. If

Xi ∩
∑

j 6=i

Xj = {0}

for 1 ≤ i ≤ n, the linear space X is the direct sum of X1, X2, . . . , Xn.

Proof. Let xi ∈ Xi, 1 ≤ i ≤ n, be such that x1 + x2 + · · · + xn = 0. Then
xi = −

∑

j 6=i xj ∈ Xi ∩
∑

j 6=iXj , and by our assumption is equal to 0, for any
1 ≤ i ≤ n. �
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Now we want to describe Gr(M ⊠N). Let j ∈ Z. If p+ q = j we have a well-
defined k-linear map FpM ⊗k Fq N −→ Fj(M ⊠N). Hence, we have a well-defined

k-linear map FpM⊗kFq N −→ Grj(M⊠N). By 9.5, the kernel of the natural map
FpM ⊗k FqN −→ GrpM ⊗kGrq N is Fp−1M ⊗k FqN +FpM ⊗k Fq−1N , i.e., it is

contained in Fj−1(M ⊠N). Hence, the linear map FpM ⊗k Fq N −→ Grj(M ⊠N)
factors through GrpM ⊗k Grq N . This leads to the linear map

π :
⊕

p+q=j

GrpM ⊗k GrqN −→ Grj(M ⊠N).

Clearly, by its construction, this map is surjective. Moreover, its restriction to each
summand GrpM ⊗k Grq N in the direct sum is injective. Let Xp,q be the image of

GrpM ⊗k Grq N in Grj(M ⊠N). Since we have

Fp−1M⊗kFq N+FpM⊗kFq−1N = (FpM⊗kFq N)∩

(

∑

p′+q′=j, p′ 6=p, q′ 6=q

Fp′ M⊗kFq′ N

)

,

we see that

Xp,q ∩

(

∑

p′+q′=j, p′ 6=p, q′ 6=q

Xp′,q′

)

= {0}.

Hence, by 9.6 the map is an isomorphism. This implies that Grj(M ⊠ N) =
⊕

p+q=j GrpM ⊗k GrqN for any j ∈ Z.
If we define analogously the algebra GrDX ⊠GrDY with grading given by the

total degree, we see that GrDX ⊠GrDY = GrDX×Y . In addition, GrM ⊠GrN
becomes a graded GrDX×Y -module isomorphic to Gr(M ⊠ N) by the preceding
discussion. Since the filtrations FM and FN are good, GrM and GrN are finitely
generated GrDX-, resp. GrDY -modules by 3.1. By an analogue of 9.2, Gr(M ⊠N)
is a finitely generated GrDX×Y -module. This implies that the product filtration is
a good filtration on M ⊠N .

Let

P (M, t) =
∑

p∈Z

dimk(GrpM) tp

and

P (N, t) =
∑

q∈Z

dimk(Grq N) tq

be the Poincaré series of GrM and GrN . Then

P (M, t)P (N, t) =
∑

p∈Z

∑

q∈Z

dimk(GrpM) dimk(GrqN) tp+q

=
∑

j∈Z





∑

p+q=j

dimk(GrpM) dimk(GrqN)



 tj

=
∑

j∈Z





∑

p+q=j

dimk(GrpM ⊗k Grq N)



 tj

=
∑

j∈Z

dimk Grj(M ⊠N) tj = P (M ⊠N, t)



10. INVERSE IMAGES 39

is the Poincaré series ofM⊠N . Therefore, the order of the pole at 1 of P (M⊠N, t)
is the sum of the orders of poles of P (M, t) and P (N, t). From 1.5, we see that this
immediately implies 9.3.

We can deduce 9.3 also by considering characteristic varieties. Consider DX ,
DY and DX×Y as rings filtered by the order of differential operators. LetM and N
be finitely generated DX-, resp. DY -modules, equipped with good filtrations FM
and FN . As above, we define a DX×Y -module filtration F(M ⊠ N) on M ⊠ N .
Then, as in the above argument, we see that F(M ⊠ N) is a good filtration of
M ⊠N . Let I be the annihilator of GrM in GrDX and J the annihilator of GrN
in GrDY . Then, by 9.5, we see that the annihilator of Gr(M ⊠N) is equal to the
ideal I ⊗k GrDY +GrDX ⊗k J in GrDX×Y = GrDX ⊠GrDY .

We can identify GrDX with the polynomial ring k[x1, . . . , xn, ξ1, . . . , ξn] and
GrDY with the polynomial ring k[y1, . . . , ym, η1, . . . , ηm]. Moroever, we can identify
GrDX×Y with the polynomial ring k[x1, . . . , xn, y1, . . . , ym, ξ1, . . . , ξn, η1, . . . , ηm].
Then the annihilator of Gr(M⊠N) corresponds to the ideal in k[x1, . . . , xn, y1, . . . , ym,
ξ1, . . . , ξn, η1, . . . , ηm] generated by the images of I and J in that ring. If we define
the map q : k2n × k2m −→ k2(n+m) by

q(x1, . . . , xn, ξ1, . . . , ξn, y1, . . . , ym, η1, . . . , ηm)

= (x1, . . . , xn, y1, . . . , ym, ξ1, . . . , ξn, η1, . . . , ηm),

we have the following result.

9.7. Theorem. Let M and N be finitely generated DX-, resp. DY -modules.
Then we have

Ch(M ⊠N) = q(Ch(M)× Ch(N)).

This in turn implies that dimCh(M ⊠N) = dimCh(M) + dimCh(N), and by
7.7, we get another proof of 9.3.

Either by using (the proof of) 7.1 and arguing like in the above proof, or by
using 7.5 we also see that the following result holds.

9.8. Proposition. Let M and N be finitely generated DX-, resp. DY -modules.
Then we have

supp(M ⊠N) = supp(M)× supp(N).

10. Inverse images

Let X = kn and Y = km and denote by x1, x2, . . . , xn and y1, y2, . . . , ym the
canonical coordinate functions onX and Y respectively. LetR(X) = k[x1, x2, . . . , xn]
and R(Y ) = k[y1, y2, . . . , ym] denote the rings of regular functions on X and Y re-
spectively.

Let F : X −→ Y be a polynomial map, i.e.,

F (x1, x2, . . . , xn) = (F1(x1, x2, . . . , xn), F2(x1, x2, . . . , xn), . . . , Fm(x1, x2, . . . , xn))

with Fi ∈ R(X). Then F defines a ring homomorphism φF : R(Y ) −→ R(X) by
φF (P ) = P ◦ F for P ∈ R(Y ). Therefore we can view R(X) as an R(Y )-module.
Hence, we can define functor F ∗ from the categoryM(R(Y )) of R(Y )-modules into
the categoryM(R(X)) of R(X)-modules given by the following formula

F ∗(N) = R(X)⊗R(Y ) N
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for any R(Y )-module N . Clearly F ∗ : M(R(Y )) −→ M(R(X)) is a right exact
functor. We call it the inverse image functor from the categoryM(R(Y )) into the
categoryM(R(X)).

Now we want to extend this functor to D-modules. Denote now by DX and
DY the algebras of differential operators with polynomial coefficients on X and Y
respectively. If N is a left DY -module, we want to define a DX -module structure on
the inverse image F ∗(N). (As we remarked at the beginning of §6, the transposition
functor is an equivalence of the category of left D-modules with the category of right
D-modules, hence we can analogously treat right modules.) First we consider the
bilinear map

(P, v) 7−→
∂P

∂xi
⊗ v +

n
∑

j=1

P
∂Fj
∂xi
⊗

∂

∂yj
v,

from R(X)×N into R(X)⊗R(Y ) N . Since

∂P (Q ◦ F )

∂xi
⊗ v +

n
∑

j=1

P (Q ◦ F )
∂Fj
∂xi
⊗

∂

∂yj
v

=
∂P

∂xi
⊗Qv +

n
∑

j=1

P

(

∂Q

∂yj
◦ F

)

∂Fj
∂xi
⊗ v +

n
∑

j=1

P (Q ◦ F )
∂Fj
∂xi
⊗

∂

∂yj
v

=
∂P

∂xi
⊗Qv +

n
∑

j=1

P
∂Fj
∂xi
⊗ (

∂Q

∂yj
v +Q

∂

∂yj
v)

=
∂P

∂xi
⊗Qv +

n
∑

j=1

P
∂Fj
∂xi
⊗

∂

∂yj
(Qv)

for any Q ∈ R(Y ), this map factors through a linear endomorphism of F ∗(N) which
we denote by ∂

∂xi
. By direct calculation we get

[

∂

∂xi
,
∂

∂xj

]

(P ⊗ v) = 0

and
[

∂

∂xi
, xj

]

(P ⊗ v) = δij(P ⊗ v),

hence, by 5.11, we see that F ∗(N) has a natural structure of a left DX -module.
Its structure can be described in another way. Let

DX→Y = F ∗(DY ) = R(X)⊗R(Y ) DY .

Then, as we just described, DX→Y has the structure of a left DX-module. But
it also has a structure of a right DY -module given by the right multiplication on
DY . These two actions clearly commute, hence DX→Y is a (left DX , right DY )-
bimodule. Moreover, for any DY -module N we have

F ∗(N) = R(X)⊗R(Y ) N = (R(X)⊗R(Y ) DY )⊗DY
N = DX→Y ⊗DY

N

and the action of DX on F ∗(N) is given by the action on the first factor in the last
expression.

We denote this DX -module by F+(N) and call it the inverse image of the
DY -module N .
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It is evident that the inverse image functor F+ is a right exact functor from
ML(DY ) intoML(DX). Its left derived functors LiF+ are given by

LiF+(N) = TorDY

−i (DX→Y , N)

for a left DY -module N .
Let For denote the forgetful functor from the category of DX -modules (resp.

DY -modules) into the category of R(X)-modules (resp. R(Y )-modules). Then the
following diagram of functors commutes

M(DY )
F+

−−−−→ M(DX)

For





y





y
For

M(R(Y ))
F∗

−−−−→ M(R(X))

.

We claim that analogous statement holds for the left derived functors, i.e., we
have the following statement.

10.1. Proposition. The following diagram of functors commutes

M(DY )
LiF+

−−−−→ M(DX)

For





y





y
For

M(R(Y ))
LiF∗

−−−−→ M(R(X))

.

for any i ∈ Z.

Proof. Let F · be a left resolution of a DY -module N by free DY -modules.
Since a free DY -module is also a free R(Y )-module by 5.10, by the above remark,
we have

For(LiF+(N)) = For(Hi(F+(F ·))) = Hi(For(F+(F ·)))

= Hi(F ∗(ForF i)) = LiF ∗(ForN)

for any i ∈ Z. �

Now we want to study the behavior of derived inverse images for compositions
of morphisms. First we need an acyclicity result.

10.2. Lemma. Let P be a projective left DY -module. Then F ∗(P ) is a projective
R(X)-module.

Proof. Let P be a projective DY -module. Then it is a direct summand
of a free DY -module (DY )

(I). This implies that F+(P ) is a direct summand of

F+(D
(I)
Y ). Since DY is a free R(Y )-module, For(F+(D

(I)
Y )) = R(X)⊗R(Y ) D

(I)
Y is

a free R(X)-module. �

10.3. Theorem. Let X = kn, Y = km and Z = kp, and F : X −→ Y and
G : Y −→ Z polynomial maps. Then

(i) the the inverse image functor (G ◦ F )+ from ML(DZ) into ML(DX) is
isomorphic to F+ ◦G+;

(ii) for any left DZ-module N there exist a spectral sequence with E2-term
Epq2 = LpF+(LqG+(N)) which converges to Lp+q(G ◦ F )+(N).
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Proof. (i) We consider first the polynomial ring structures. In this case

(G ◦ F )∗(N) = R(X)⊗R(Z) N = R(X)⊗R(Y ) (R(Y )⊗R(Z) N) = F ∗(G∗(N))

for any DZ -module N .
On the other hand,

∂

∂xi
(P ⊗ v) =

∂

∂xi
(P ⊗ (1⊗ v))

=
∂P

∂xi
⊗ (1⊗ v) +

m
∑

j=1

P
∂Fj
∂xi
⊗

∂

∂yj
(1⊗ v)

=
∂P

∂xi
⊗ v +

m
∑

j=1

P
∂Fj
∂xi
⊗

(

p
∑

k=1

∂Gk
∂yj

⊗
∂

∂zk
v

)

=
∂P

∂xi
⊗ v +

p
∑

k=1

P

m
∑

j=1

∂Fj
∂xi

(

∂Gk
∂yj

◦ F

)

⊗
∂

∂zk
v

=
∂P

∂xi
⊗ v +

p
∑

k=1

P
∂(Gk ◦ F )

∂xi
⊗

∂

∂zk
v

for any P ∈ R(X) and v ∈ N . Hence the DX-actions agree.
(ii) By 10.1 and 10.2, for any projectiveDZ-module P , the inverse imageG+(P )

is F+-acyclic. Therefore, the statement follows from the Grothendieck spectral
sequence. �

This result has the immediate following consequence.

10.4. Corollary. Let X = kn, Y = km and Z = kp, and F : X −→ Y and
G : Y −→ Z polynomial maps. Then

(i) DX→Z = DX→Y ⊗DY
DY→Z ;

(ii) TorDY

j (DX→Y , DY→Z) = 0 for j ∈ N.

Proof. (i) By 10.3.(i) we have

DX→Z = (G ◦ F )+(DZ) = F+(G+(DZ)) = F+(DY→Z) = DX→Y ⊗DY
DY→Z .

(ii) As we remarked in the proof of 10.3.(ii), by 10.1 and 10.2, we see that
DY→Z = G+(DZ) is F

+-acyclic. Hence, for j > 0, we have

0 = L−jF+(G+(DZ)) = TorDY

j (DX→Y , G
+(DZ)) = TorDY

j (DX→Y , DY→Z).

�

Now we consider two simple examples. First, let p be the projection of X × Y
defined by p(x, y) = y for x ∈ X , y ∈ Y . Then, as it is well known, R(X × Y ) =
R(X)⊠R(Y ). Therefore, for a R(Y )-module N we have

p∗(N) = R(X × Y )⊗R(Y ) N = (R(X)⊠R(Y ))⊗R(Y ) N = R(X)⊠N

as a module over R(X × Y ) = R(X) ⊠ R(Y ). On the other hand, if N is a
DY -module, it follows immediately that the actions ∂

∂xi
and ∂

∂yj
also agree, i.e.,

p+(N) = R(X)⊠N . From 9.3 and 9.4 we immediately get the following result.

10.5. Proposition. Let p : X × Y −→ Y be the canonical projection. Then,

(i) p+ is an exact functor from ML(DY ) intoM
L(DX×Y );
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(ii) p+(N) = R(X)⊠N for any left DY -module N ;
(iii) p+(N) is a finitely generated DX×Y -module if N is a finitely generated;
(iv) d(p+(N)) = d(M) + n for any finitely generated left DY -module N .

In particular, a finitely generated DY -module N is holonomic if and only if p+(N)
is holonomic.

Now we consider another example. Let i be the canonical injection of X into
X × Y given by i(x) = (x, 0) for any x ∈ X . Then

DX→X×Y = i∗(DX×Y ) = R(X)⊗R(X)⊠R(Y )(DX⊠DY ) = DX⊠DY /((y1, y2, . . . , ym)DY )

with the obvious actions ofDX by left multiplication in the first factor andDX×Y =
DX ⊠DY by the right multiplication.

Assume in addition that m = 1. Then we have the exact sequence

0 −→ DY
y1
−→ DY −→ DY /y1DY −→ 0

where the second arrow is given by left multiplication by y1. By tensoring with
DX , we get the short exact sequence

0 −→ DX×Y
y1
−→ DX×Y −→ DX→X×Y −→ 0

of left DX -modules for left multiplication and right DX×Y -modules for right mult-
plication. Therefore, we can consider the first two terms of this exact sequence as a
left resolution of DX→X×Y by (left DX , right DX×Y )-bimodules which are free as
DX×Y -modules. Therefore, for a DX×Y -module N , the cohomology of the complex

0 −→ N
y1
−→ N −→ 0

computes the derived inverse images. In particular, we have the following lemma.

10.6. Lemma. Let dimY = 1. Let i be the canonical injection of X into X×Y .
Then, for any DX×Y -module N we have

(i) i+(N) = coker y1;
(ii) L−1i+(N) = ker y1;
(iii) Lpi+(N) = 0 for p different from 0 or −1.

In particular, the left cohomological dimension of i+ is ≤ 1.

The last statement has an obvious generalization for arbitrary Y .

10.7. Lemma. Let i be the canonical injection of X into X × Y . Then, the left
cohomological dimension of i+ is ≤ dimY .

Proof. The proof is by induction in dimY . We already established the result
for dimY = 1. We can represent Y = Y ′ × Y ′′ where Y ′ = km−1 and Y ′′ = k.
Denote by i′ the canonical inclusion of X into X × Y ′ and by j the canonical
inclusion of X × Y ′ into X × Y ′× Y ′′ = X × Y . Then i = j ◦ i′. Moreover, by 10.6,
the left cohomological dimension of j+ is ≤ 1, and by the induction assumption the
left cohomological dimension of i′+ is ≤ dimY ′. Therefore, from the Grothendieck
spectral sequence in 10.3.(ii) we conclude that derived inverse images L−pi+ vanish
for p ≥ dimY ′ + 1 = dimY . �

Let F : X −→ X be an isomorphism of X and G its inverse. Then the map
α : R(X) −→ R(X) defined by α(f) = f ◦F is an automorphism of the ring R(X).
Its inverse is β given by β(f) = f ◦ G for f ∈ R(X). If M is a R(X)-module,
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F ∗(M) is isomorphic to M as a linear space over k via the map φ : m 7−→ 1⊗m.
On the other hand, for f ∈ R(X), we have

fφ(m) = f ⊗m = f ◦G ◦ F ⊗m = 1⊗ (f ◦G)m = φ(β(f)m)

for any m ∈M , i.e., the R(X)-module F ∗(M) is isomorphic to M with the R(X)-
module structure given by (f,m) 7−→ β(f)m. for f ∈ R(X) and m ∈M .

Now we want to give an analogous description of F+(M). First we want to
extend the automorphism β to DX .

Let T be a differential operator on X , and put β̃(T )(f) = β(Tα(f)) for any

f ∈ R(X). Clearly, β̃(T ) is a k-linear endomorphism of R(X). Moreover, T 7−→
β̃(T ) is a linear map. In addition, for two differential operators T and S in DX , we
have

β̃(TS)(f) = β(TSα(f)) = β(Tα(β(Sα(f))))

= β(Tα(β(Sα(f)))) = β(Tα(β̃(S)(f))) = β̃(T )(β̃(S)(f))

for all f ∈ R(X), i.e., β̃ is a homomorphism of the k-algebra DX into the algebra
of k-linear endomorphisms of R(X). Since for g ∈ R(X) we have

β̃(g)f = β(gα(f)) = β(g)f

for all f ∈ R(X), we see that β̃ extends the automorphism β of R(X). This in

turn implies that ω(T ) ∈ DX for T ∈ DX , i.e., β̃ is an automorphism of DX which
extends the automorphism β of R(X). Therefore, we can denote it simply by β.

Let 1 ≤ i ≤ n. Then we have

β(∂i)(f) = β(∂iα(f)) = β(∂i(f ◦ F ))

= β





n
∑

j=1

((∂jf) ◦ F ) ∂iFj



 =

n
∑

j=1

((∂iFj) ◦G) ∂jf =





n
∑

j=1

β(∂iFj) ∂j



 (f).

Consider now the bimodule DX→X attached to the map F . The linear map ϕ :
f ⊗ T 7−→ β(f)T , identifies it with DX . The DX -module structures given by right
multiplication are identical. On the other hand,

ϕ(∂i(1⊗ T )) = ϕ





n
∑

j=1

∂iFj ⊗ ∂jT



 =

n
∑

j=1

β(∂iFj)∂jT = β(∂i)ϕ(1 ⊗ T )

for any T ∈ DX and 1 ≤ i ≤ n. Therefore, the bimodule DX→X is isomorphic to
DX with right action by right multiplication and left action of by the composition
of β and left multiplication. This in turn implies that F+(M) is isomorphic to
M with the DX-module structure given by (T,m) 7−→ β(T )m for T ∈ DX and
m ∈M .

Therefore, by 3.10, we established the following result.

10.8. Lemma. Let F : X −→ X be an isomorphism of X.

(i) Let M be a DX-module. Then F+(M) is equal to M as a linear space
with the DX-action given by (T,m) 7−→ β(T )m for T ∈ DX and m ∈M .

(ii) The functor F+ :ML(DX) −→ML(DX) is exact.



10. INVERSE IMAGES 45

(iii) The functor F+ maps finitely generated DX-modules into finitely gen-
erated DX-modules. If M is a finitely generated DX-module, we have
d(F+(M)) = d(M).

In particular, F+ maps holonomic modules into holonomic modules.

We can make the above statement more precise by describing the characteristic
variety Ch(F+(M)) for a finitely generated DX-module M . First, from the above
calculations we see that the automorphism β of DX induces an automorphism Grβ
of GrDX = k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn] which is defined by Xi 7−→ β(Xi) = Gi
and ξi 7−→

∑n
j=1 β(∂iFj)ξj =

∑n
j=1((∂iFj) ◦G) ξj for 1 ≤ i ≤ n.

Now we want ot describe this construction in more geometric terms. If x =
(x1, x2, . . . , xn) is a point in X = kn, we identify the cotangent space T ∗x (X) at x
with kn via the map df(x) 7−→ ((∂1f)(x), (∂2f)(x), . . . , (∂nf)(x)). Therefore, the
cotangent bundle T ∗(X) of X can be identified with k2n via the map (x, df(x)) 7−→
(x1, . . . , xn, (∂1f)(x), . . . , (∂nf)(x)) for x ∈ X . Let F : X 7−→ X be an isomor-
phism of X and G its inverse. Then the map G maps a point x in X into G(x) and
F maps G(X) into x. Their differentials Tx(G) and TG(x)(F ) are mutually inverse
linear isomorphisms between the tangent spaces Tx(X) and TG(x)(X). Therefore,
their adjoints Tx(G)

∗ : T ∗G(x)(X) −→ T ∗x (X) and TG(x)(F )
∗ : T ∗x (X) −→ T ∗G(x)(X)

are mutually inverse linear isomorphisms. This implies that we can define an iso-
morphism γ of the cotangent bundle T ∗(X) of X by (x, ξ) 7−→ (G(x), TG(x)(F )

∗ξ)

for ξ ∈ T ∗x (X) and x ∈ X . If we identify T ∗(X) with k2n, by inspecting the above
formulas, we see that (Gr β)(P ) = P ◦γ for any P ∈ k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn].

LetM be a finitely generated DX -module with a good filtration FM . Then we
can realize F+(M) as M with the action described above. Clearly, FM is a good
filtration of F+(M) realized that way. Therefore, GrF+(M) can be identified with
GrM equipped with the action (Q,m) 7−→ (Gr β)(Q)m forQ ∈ k[X1, X2, . . . , Xn, ξ1, ξ2, . . . , ξn]
and m ∈ GrM . Hence, if Q is in the annihilator of GrF+(M) if and only if
(Grβ)(Q) is in the annihilator of GrM . If I is the annihilator of GrF+(M),
(Grβ)I is the annihilator of GrM . Hence, (x, ξ) is in Ch(F+(M)) if and only if
γ−1(x, ξ) is in Ch(M).

10.9. Lemma. Let M be a finitely generated DX-module. Then

Ch(F+(M)) = γ(Ch(M)).

Finally, this allows to give an estimate of the left cohomological dimension of
the inverse image functor.

10.10. Theorem. Let X = kn, Y = km and F : X −→ Y a polynomial map.
Then the left cohomological dimension of F+ is ≤ dimY .

Proof. To prove this statement we use the graph construction. Let i : X × Y
be the morphism given by i(x) = (x, 0) for x ∈ X . Let Φ : X × Y −→ X × Y be
the morphism given by Φ(x, y) = (x, y + F (x)) for x ∈ X and y ∈ Y . Finally, let
p : X × Y −→ Y be the projection given by p(x, y) = y for all x ∈ X and y ∈ Y .
Then F = p ◦ Φ ◦ i. Moreover, Φ is an isomorphism of X × Y with the inverse
(x, y) 7−→ (x, y − F (x)).

By 10.3, F+ = i+ ◦ Φ+ ◦ p+. Moreover, by 10.5 and 10.8, the functors p+ and
Φ+ are exact. Therefore, LqF+ = Lqi+ ◦ Φ+ ◦ p+ for all q ∈ Z. By 10.7, it follows
that LqF+ = 0 for q < − dimY . �
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11. Direct images

Let X = kn, Y = kn and F : X −→ Y a polynomial map, as in the last section.
The composition with F defines a natural ring homomorphism F̂ : R(Y ) −→ R(X).
This homomorphism in turn defines a functor F∗ form the category of R(X)-
modules into the category of R(Y )-modules. For any R(X)-module M we define
F∗(M) as the module which is equal to M as a linear space over k, and the action

of R(Y ) is given by (f,m) 7−→ F̂ (f) ·m, for any f ∈ R(Y ) and m ∈M . The functor
F∗ :M(R(X)) −→ M(R(Y )) is called the direct image functor. Clearly, F∗ is an
exact functor.

Unfortunately, if M is a DX -module, the direct image F∗(M) doesn’t allow
a DY -module structure in general. For example, if we consider the inclusion i of
X = {0} into Y = k, DX = R(X) is equal to k and DY is the algebra of all
differential operators with polynomial coefficients in one variable. The category of
DX-modules is just the category of linear spaces over k. By 6.2, the inverse image
of a nonzero finite-dimensional DX -module M cannot have a structure of a DY -
module. Therefore, the direct images for D-modules will not be related to direct
images for modules over the rings of regular functions, as in the case of inverse
images.

If we apply the transposition to the both actions on DX→Y we get the (left
DY , right DX)-bimodule DY←X . This allows the definition of the left DY -module

F+(M) = DY←X ⊗DX
M

for any left DX -module M . Clearly, F+ is a right exact functor fromML(DX) into
ML(DY ). We call it the direct image functor. The left derived functors LiF+ of
F+ are given by

L−jF+(M) = TorDX

j (DY←X ,M)

for a left DX -module M .
Let X = kn, Y = km and Z = kp, and F : X −→ Y and G : Y −→ Z

polynomial maps. If we transpose the actions 10.4 implies the following statements

DZ←X = DZ←Y ⊗DY
DY←X

and
TorDY

j (DZ←Y , DY←X) = 0

for j ∈ N.

If P is a projective left DX-module, P ⊕Q = D
(I)
X for some left DX -module Q

and some I. Therefore, F+(P ) ⊕ F+(Q) = F+(D
(I)
X ) = (DY←X)(I). This implies

the following result.

11.1. Lemma. Let P be a projective left DX-module. Then

TorDY

j (DZ←Y , F+(P )) = 0

for j ∈ N.

11.2. Theorem. Let X = kn, Y = km and Z = kp, and F : X −→ Y and
G : Y −→ Z polynomial maps. Then

(i) the direct image functor (G ◦ F )+ from ML(DX) into ML(DZ) is iso-
morphic to G+ ◦ F+;

(ii) for any left DX-module M there exist a spectral sequence with E2-term
Epq2 = LpG+(L

qF+(M)) which converges to Lp+q(G ◦ F )+(M).
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Proof. (i) For any left DX -module M by 10.4.(i) we have

(G ◦ F )+(M) = DZ←X ⊗DX
M = (DZ←Y ⊗DY

DY←X)⊗DX
M

= DZ←Y ⊗DY
(DY←X ⊗DX

M) = DZ←Y ⊗DY
F+(M) = G+(F+(M)).

(ii) By 11.1, for any projective DX -module P , the direct image F+(P ) is G+-
acyclic. Therefore, the statement follows from the Grothendieck spectral sequence.

�

Now we consider a simple example. Let i be the canonical injection of X into
X × Y given by i(x) = (x, 0) for any x ∈ X . Then

DX→X×Y = i+(DX×Y ) = i+(DX ⊠DY ) = DX ⊠DY /((y1, y2, . . . , ym)DY )

and

DX×Y←X = DX ⊠DY /(DY (y1, y2, . . . , ym)).

This implies that

i+(M) =M ⊠DY /(DY (y1, y2, . . . , ym))

for any left DX -module M . Moreover, the module DY /(DY (y1, y2, . . . , ym)) is
isomorphic to ∆m discussed in 8.3.

11.3. Proposition. Let i : X −→ X × Y be the injection defined by i(x) =
(x, 0) for x ∈ X. Then,

(i) i+ is an exact functor from ML(DX) intoML(DX×Y );
(ii) i+(M) =M ⊠DY /(DY (y1, y2, . . . , ym)) for any left DX-module M ;
(iii) i+(M) is finitely generated DX×Y -module ifM is a finitely generated DX-

module;
(iv) d(i+(M)) = d(M) +m for any finitely generated left DX-module M .

In particular, a finitely generated DX-module M is holonomic if and only if i+(M)
is holonomic.

Proof. We already proved (ii), and it immediately implies (i). As we remarked
in 8.3, DY /(DY (y1, y2, . . . , ym)) is an irreducible holonomic DY -module, hence (iii)
follows from 9.2. To prove (iv) we first remark that by 9.3, we have

d(i+(M)) = d(M) + d(DY /(DY (y1, y2, . . . , ym))).

Since (DY /(DY (y1, y2, . . . , ym)) is holonomic, its dimension is equal to m. �

Now we want to study the direct image of a projection p : X × Y −→ Y given
by p(x, y) = y for x ∈ X and y ∈ Y .

Consider first the case of dimX = 1. Then

DX×Y→Y = p+(DY ) = DX/DX(∂1)⊠DY .

Hence, DY←X×Y = DX/((∂1)DX)⊠DY . We have an exact sequence

0 −→ DX×Y
∂1−→ DX×Y −→ DY←X×Y −→ 0

of (left DY , right DX×Y )-bimodules, where the second arrow represents left multi-
plication by ∂1. Clearly, this is a left resolution of DY←X×Y by free right DX×Y -
modules, hence the cohomology of the complex

. . . −→ 0 −→M
∂1−→M −→ 0 −→ . . .
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is Tor
DX×Y

−· (DY←X×Y ,M) = L·p+(M) for any DX×Y -module M . It follows that
that Lqp+(M) = 0 for q /∈ {0,−1}.

Therefore, we established the following result.

11.4. Lemma. Let dimX = 1. Let p be the canonical projection of X ×Y onto
Y . Then, for any DX×Y -module M we have

(i) p+(M) = coker∂1;
(ii) L−1p+(N) = ker∂1;
(iii) Lqp+(N) = 0 for q different from 0 or −1.

In particular, the left cohomological dimension of p+ is ≤ 1.

The last statement has the following generalization for arbitrary X .

11.5. Lemma. Let p be the canonical injection of X×Y onto Y . Then, the left
cohomological dimension of p+ is ≤ dimX.

Proof. Let X ′ = {xn = 0} ⊂ X , and denote by p′ the canonical projection
of X ′ × Y onto Y . Also, denote by p′′ the canonical projection of X × Y onto
X ′ × Y . Then p = p′ ◦ p′′. Hence, by 11.2.(ii), 11.4 and the induction assumption
we conclude that Lqp+(M) = for q < − dimX . �

Let F : X −→ X be an isomorphism of X and G its inverse. As in §10, we
define the automorphisms α and β of DX . We identified there the bimodule DX→X

attached to F with DX equipped with actions given by right multiplication and left
multiplication composed with β. Applying α to it, we see that it is also isomorphic
to DX equipped with actions given by right multiplication composed with α and
left multiplication. By applying the principal antiautomorphism we see that the
bimodule DX←X is isomorphic to DX with actions given by left multiplication
composed with α and right multiplication. This in turn implies that for any DX -
module M , the direct image F+(M) is isomorphic to M with the action given by
(T,m) 7−→ α(T )m. In particular, F+(M) = G+(M).

Therefore, from 10.8, we immediately deduce the following result.

11.6. Lemma. Let F : X −→ X be an isomorphism of X and G : X −→ X its
inverse.

(i) Let M be a DX-module. Then F+(M) is equal to M as a linear space
with the DX-action given by (T,m) 7−→ α(T )m for T ∈ DX and m ∈M .

(ii) The functor F+ :ML(DX) −→ML(DX) is exact.
(iii) The functor F+ maps finitely generated DX-modules into finitely gen-

erated DX-modules. If M is a finitely generated DX-module, we have
d(F+(M)) = d(M).

In particular, F+ maps holonomic modules into holonomic modules.

In addition, F+ = G+ and F+ = G+, and these functors are mutiually quasi-
inverse equivalences of categories.

As in the last section, this allows to give an estimate of the left cohomological
dimension of the direct image functor.

11.7. Theorem. Let X = kn, Y = km and F : X −→ Y a polynomial map.
Then the left cohomological dimension of F+ is ≤ dimX.
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Proof. As in the proof of 10.10, we use the graph construction. Let i : X×Y
be the morphism given by i(x) = (x, 0) for x ∈ X . Let Φ : X × Y −→ X × Y be
the morphism given by Φ(x, y) = (x, y + F (x)) for x ∈ X and y ∈ Y . Finally, let
p : X × Y −→ Y be the projection given by p(x, y) = y for all x ∈ X and y ∈ Y .
Then F = p ◦ Φ ◦ i. Moreover, Φ is an isomorphism of X × Y with the inverse
(x, y) 7−→ (x, y − F (x)).

By 11.2, F+ = p+ ◦ Φ+ ◦ i+. Moreover, by 11.3 and 11.6, the functors i+ and
Φ+ are exact. Therefore, LqF+ = Lqp+ ◦ Φ+ ◦ i+ for all q ∈ Z. By 11.5, it follows
that LqF+ = 0 for p < − dimX . �

12. Kashiwara’s theorem

Let X = kn and Y = {xn = 0} ⊂ X . We put also Z = {x1 = x2 = · · · =
xn−1 = 0} ∼= k. Hence X = Y ×Z. This also implies that DX = DY ⊠DZ . Let M
be a DX -module and put

Γ[Y ](M) = {m ∈M | xpnm = 0 for some p ∈ N}.

12.1. Lemma. Let M be a DX-module. Then:

(i) Γ[Y ](M) is a DX-submodule of M ;
(ii) supp(Γ[Y ](M)) ⊂ Y ;
(iii) if N is a DX-submodule of M with supp(N) ⊂ Y , then N ⊂ Γ[Y ](M).

Proof. (i) Let m ∈ Γ[Y ](M). Then xim ∈ Γ[Y ](M) and ∂jm ∈ Γ[Y ](M) for
1 ≤ i ≤ n and 1 ≤ j < n. It remains to check that ∂nm ∈ Γ[Y ](M). We have

xj+1
n ∂nm = [xj+1

n , ∂n]m+ ∂nx
j+1
n m = −(j + 1)xjnm+ ∂nx

j+1
n m

for any j ∈ N. Hence, if xjnm = 0, we see that xj+1
n ∂nm = 0.

(ii) If x /∈ Y , xn /∈mx and the localization Γ[Y ](M)x = 0.
(iii) Assume that N is a DX-submodule of M with supp(N) ⊂ Y . Let m ∈ N

and denote by N ′ the R(X)-submodule generated by m. Then supp(N ′) ⊂ Y .
Since N ′ is finitely generated, by 4.2, its support is equal to the variety determined
by its annihilator I in R(X). By Nullstelensatz we see that r(I) ⊃ (xn). This
implies that xjn annihilates N ′ for some j ∈ N, i.e., m ∈ Γ[Y ](M). �

Therefore Γ[Y ](M) is the largest DX -submodule of M supported in Y .
The multiplication by xn defines an endomorphism of M as DY -module. Let

M0 = kerxn ⊂ Γ[Y ](M)

and
M1 = cokerxn =M/xnM.

Denote by i the natural inclusion of Y into X . As we established in 10.6, i+(M) =
M1, L

−1i+(M) =M0 and all other inverse images vanish.
Consider the biadditive map DX × M0 −→ M . Clearly, it factors through

DX ⊗DY
M0 −→ M . Moroever, by the definition of M0, the latter morphism

vanishes on the image of DXxn ⊗DY
Mo in DX ⊗DY

Mo. As we remarked in §11,

DX←Y = DY ⊠DZ/DZxn =
∞
⊕

j=0

∂jnDY .

Therefore, the above morphism induces a natural DX -module morphism

i+(M0) = DX←Y ⊗DY
M0 −→M.
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Clearly, its image is contained in Γ[Y ](M). It is easy to check that this is actually

a morphism of the functor i+ ◦ L
−1i+ into Γ[Y ].

The critical result of this section is the next lemma.

12.2. Lemma. The morphism i+(M0) −→ Γ[Y ](M) is an isomorphism of DX-
modules.

Proof. We first show that the morphism is surjective. We claim that

{m ∈M | xpnm = 0} ⊂ DX ·M0

for any p ∈ N. This is evident for p = 1. If p > 1 and xpnm = 0 we see that

0 = ∂n(x
p
nm) = xp−1n (pm+ xn∂nm),

and by the induction hypothesis,

pm+ xn∂nm ∈ DX ·M0.

Also, by the induction hypothesis, xnm ∈ DX ·M0. This implies that

(p− 1)m = pm+ [xn, ∂n]m = pm+ xn∂nm− ∂nxnm ∈ DX ·M0

and m ∈ DX ·M0. Hence the map is surjective.
Now we prove injectivity. By the preceding discussion

i+(M0) = DX←Y ⊗DY
M0 =

∞
⊕

j=0

∂jnM0.

Let (m0, ∂nm1, . . . , ∂
q
nmq, 0, . . .) be a nonzero element of this direct sum which maps

into 0, i.e.,

m0 + ∂nm1 + · · ·+ ∂qnmq = 0,

with minimal possible q. Then

0 = xn(

q
∑

j=0

∂jnmj) =

q
∑

j=1

[xn, ∂
j
n]mj = −

q
∑

j=1

j∂j−1n mj

and we have a contradiction. Therefore, the kernel of the map is zero. �

12.3. Corollary. xnΓ[Y ](M) = Γ[Y ](M).

Proof. By 12.2 any element of Γ[Y ](M) has the form
∑

j∈Z+
∂jnmj with mj ∈

M0. On the other hand,

xn
∑

j∈Z+

1

j + 1
∂j+1
n mj = −

∑

j∈Z+

∂jnmj .

�

12.4. Corollary. Let M be a DX-module. Then

(i) Γ[Y ](M) is a finitely generated DX-module if and only if M0 is a finitely
generated DY -module;

(ii) d(Γ[Y ](M)) = d(M0) + 1.

In particular, Γ[Y ](M) is holonomic if and only if L−1i+(M) =M0 is holonomic.
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Proof. (i) From 12.2 and 11.3.(iii) we see that Γ[Y ](M) is finitely generated if
M0 is finitely generated. Assume that Γ[Y ](M) is a finitely generated DX-module.
Let Nj, j ∈ N, be an increasing sequence of DY -submodules of M0. Then they
generate DX -submodules i+(Nj) =

⊕∞
p=0 ∂

p
nNj of Γ[Y ](M). Since Γ[Y ](M) is a

finitely generated DX -module, the increasing sequence i+(Nj), j ∈ N, stabilizes.
Moreover, Nj is the kernel of xn in i+(Nj) and the sequence Nj , j ∈ N, must also
stabilize. Therefore, M0 is finitely generated.

(ii) Follows from 12.2 and 11.3.(iv). �

12.5. Corollary. LetM be a holonomic DX-module. ThenM0 is a holonomic
DY -module.

Proof. IfM is holonomic, Γ[Y ](M) is also holonomic. Therefore, the assertion
follows from 12.4. �

Let MY (DX) be the full subcategory of M(DX) consisting of DX -modules
with supports in Y . Denote by Mfg,Y (DX) and HolY (DX) the corresponding
subcategories of finitely generated, resp. holonomic, DX-modules with supports in
Y . Then, by 12.1, we haveM = Γ[Y ](M) for anyM inMY (DX). By 10.6 and 12.3

we see that i+(M) = 0 for any M in MY (DX), hence L−1i+ is an exact functor
from MY (DX) into M(DY ). On the other hand, i+ defines an exact functor in
the opposite direction, and by 12.2 the composition i+ ◦L−1i+ is isomorphic to the
identity functor on MY (DX). Also it is evident that L−1i+ ◦ i+ is isomorphic to
the identity functor onM(DY ).

This leads us to the following basic result.

12.6. Theorem (Kashiwara). The direct image functor i+ defines an equiva-
lence of the categoryM(DY ) (resp.Mfg(DY ), Hol(DY )) with the categoryMY (DX)
(resp.Mfg,Y (DX), HolY (DX)). Its inverse is the functor L−1i+.

Proof. It remains to show only the statements in parentheses. They follow
immediately from 12.4. �

13. Preservation of holonomicity

In this section we prove that direct and inverse images preserve holonomic
modules. We start with a simple criterion for holonomicity.

Let X = kn and Y = km. Let F : X −→ Y be a polynomial map. We want
to study the behavior of holonomic modules under the action of inverse and direct
image functors.

First we use again graph construction to reduce the problem to special maps.
As in the proof of 10.10 and 11.7:

X
F

−−−−→ Y

i





y

p

x





X × Y
Φ

−−−−→ X × Y

where i(x) = (x, 0) for all x ∈ X , p(x, y) = y for all x ∈ X and y ∈ Y ; and
Φ(x, y) = (x, y + F (x)) for x ∈ X and y ∈ Y .

By 10.5, we know that p+ is exact and maps holonomic modules into holonomic
modules. By 11.3, we know that i+ is exact and maps holonomic modules into
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holonomic modules. Moreover, by 10.8 and 11.6 we know that Φ+ and Φ+ are
exact and map holonomic modules into holonomic modules.

Therefore, it remains to study the derived functors of i+ and p+.
We first discuss the immersion i : X −→ X × Y .

13.1. Lemma. Let N is a holonomic DX×Y -module. Then the DX-modules
Lqi+(N), q ∈ Z, are holonomic.

Since the submodules, quotient modules and extensions of holonomic modules
are holonomic by 8.1.(ii), as in the proof of 10.7 by the spectral sequence argument
we can reduce the proof to the case dim Y = 1. In this situation, if we denote by

y the natural coordinate on Y , and consider the DX -module morphism N
y
−→ N ,

we have i+(N) = coker y and L−1i+(N) = ker y and all other derived inverse
images vanish, as we established in 10.6. Moreover, if N is holonomic L−1i+(N) is
holonomic by 12.4. Hence, it remains to treat i+(N).

13.2. Lemma. Let N be a holonomic DX×Y -module. Then i+(N) is holonomic.

Proof. Let N̄ = N/Γ[X](N). Then ve can consider the short exact sequence

0 −→ Γ[X](N) −→ N −→ N̄ −→ 0.

Since i+ is a right exact functor, this leads to the exact sequence

i+(Γ[X](N)) −→ i+(N) −→ i+(N̄) −→ 0.

On the other hand, by 12.3, we see that i+(Γ[X](N)) = 0. Therefore, the natural

map i+(N) −→ i+(N̄) is an isomorphism.
Let v̄ ∈ Γ[X](N̄) ⊂ N̄ and denote by v ∈ N the representative of v̄. Then

ypv̄ = 0 for sufficiently large p ∈ Z+. Therefore, ypv ∈ Γ[X](N). This in turn

implies that yp+qv = yq(ypn) = 0 for sufficiently large q ∈ Z+. Hence, v ∈ Γ[X](N)

and v̄ = 0. It follows that Γ[X](N̄) = 0.

In addition, if N is a holonomic DX×Y -module, N̄ is a holonomic DX×Y -
module.

Therefore, we can assume from the beginning that Γ[X](N) = 0. This means
that the multiplication by y is injective on N , and N imbeds into its localization
Ny. Consider the exact sequence

0 −→ N −→ Ny −→ L −→ 0.

Since N is a holonomic DX×Y -module, from 8.6 we know that Ny is a holo-
nomic. Hence, L is a holonomic DX×Y -module. By the above discussion, this
implies L−1i+(L) is a holonomic DX -module.

Applying the long exact sequence of inverse images of i to our short exact
sequence, we get

· · · → L−1i+(Ny)→ L−1i+(L)→ i+(N)→ i+(Ny)→ i+(L)→ 0.

Since the multiplication by y on Ny is invertible, by 10.6 we see that

i+(Ny) = L−1i+(Ny) = 0.

Hence, it follows that i+(N) ∼= L−1i+(L). By the preceding discussion we conclude
that i+(N) is a holonomic DX-module. �

Therefore, by 10.3, we get the following result.
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13.3. Theorem. Let F : X −→ Y be a polynomial map and M a holonomic
DY -module. Then LqF+(M), q ∈ Z, are holonomic DX-modules.

Now we want to study the direct images of p.

13.4. Lemma. Let M is a holonomic DX×Y -module. Then the DY -modules
Lqp+(M), q ∈ Z, are holonomic.

Proof. Since the submodules, quotient modules and extensions of holonomic
modules are holonomic by 8.1.(ii), as in the proof of 11.5 by the spectral sequence
argument we can reduce the proof to the case dimX = 1. In this situation, if we
denote by ∂ the derivative with respect to the coordinate x on X , and consider the

DY -module morphism M
∂
−→M , we have p+(M) = coker∂ and L−1p+(M) = ker ∂

and all other derived inverse images vanish, as we established in 11.4. By applying
the Fourier transform we get the complex

. . . −→ 0 −→ F(M)
x
−→ F(M) −→ 0 −→ . . .

which calculates F(L·p+(M)). By the arguments from the proof of 13.2, we see that
this complex calculates the inverse images of the canonical inclusion j : Y −→ X×Y
given by j(y) = (0, y) for y ∈ Y . Therefore, its cohomologies are holonomic by 13.2.
By 6.4, we see that Lqp+(M) are holonomic for all q ∈ Z. �

Therefore, by 11.2, we get the following result.

13.5. Theorem. Let F : X −→ Y be a polynomial map and M a holonomic
DX-module. Then LqF+(M), q ∈ Z, are holonomic DY -modules.

13.6. Remark. The statements analogous to 13.4 and 13.5 for finitely gen-
erated modules are false. For example, if we put X = {0}, Y = k and denote
by i : X −→ Y the natural inclusion, the inverse image i+(DY ) is an infinite-
dimensional vector space over k. Analogously, if p is the projection of Y into a
point, p+(DY ) is an infinite-dimensional vector space over k.





CHAPTER II

Sheaves of differential operators on smooth

algebraic varieties

1. Differential operators on algebraic varieties

Let X be an affine variety over an algebraically closed field k of characteristic
zero. Let OX be the structure sheaf of X , and denote by R(X) its global sections,
i.e. the ring of regular functions on X . Then R(X) is a commutative k-algebra
and we can define the ring D(X) of k-linear differential operators on the ring R(X)
as in ??. We call this ring the ring of differential operators on X . The order of
differential operators defines an increasing ring filtration (Dp(X); p ∈ Z) on D(X)
which satisfies the properties (i)–(v) from the beginning of 3 in Ch. 1.

As we discussed in ??, in the case X = kn we know that D(X) = D(n) is the
ring of differential operators with polynomial coefficients in n-variables.

We can realize X as a closed subset of some affine space kn for some n ∈ Z+.
Let I(X) be the ideal of all polynomials in k[X1, X2, . . . , Xn] vanishing on X . Then
R(X) = k[X1, X2, . . . , Xn]/I(X) and we denote by r the restriction homomorphism
of the ring k[X1, X2, . . . , Xn] onto R(X). Define

A = {T ∈ D(n) | T (I(X)) ⊂ I(X)}.

Clearly A is a subalgebra of D(n).
Let T ∈ A. Then T induces a linear endomorphism φ(T ) of k[X1, X2, . . . , Xn]/I(X).

The map φ is a homomorphism of A into the ring of all linear endomorphisms of
R(X). Clearly, A equipped with the filtration by the order of differential operators
is a filtered ring.

Moreover, k[X1, X2, . . . , Xn] is a subring of A. Therefore, we have the following
commutative diagram

k[X1, . . . , Xn]
r

−−−−→ R(X)




y





y

A −−−−→
φ

Endk(R(X)).

In particular, for any polynomial P ∈ k[X1, . . . , Xn], φ(P ) is the multiplication by
r(P ) on X . Let T ∈ A ∩Dp(n) and a (p+ 1)-tuple f0, f1, . . . , fp of elements from
R(X). Then we can pick P0, P1, . . . , Pp ∈ k[X1, X2, . . . , Xn] such that r(Pi) = fi
for 0 ≤ i ≤ p. Hence,

[[. . . [[φ(T ), f0], f1] . . . , fp−1], fp] = φ([[. . . [[T, P0], P1] . . . , Pp−1], Pp]) = 0.

Hence, φ(T ) is a differential operator of order ≤ p on X . It follows that φ :
A −→ D(X) is a ring homomorphism compatible with the filtrations by the order
of differential operators.

55
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In addition,

J(X) = {T ∈ D(n) | T (k[X1, X2, . . . , Xn]) ⊂ I(X)}

is a two-sided ideal of A. Clearly, J(X) is in the kernel of φ.

1.1. Lemma. Let T ∈ D(n). Then the following conditions are equivalent:

(i) T ∈ J(X);
(ii) T =

∑

PI∂
I with PI ∈ I(X).

Proof. It is clear that if the coefficients PI of T vanish on X , the differential
operator T is in J(X). Conversely, if T is in J(X), P0 = T (1) vanishes on X , i.e.,
P0 ∈ I(X). Assume that PI ∈ I(X), |I| < m. Then, T ′ =

∑

|I|<m PI∂
I is in J(X).

Therefore, T ′′ = T − T ′ ∈ J(X). On the other hand, for any J ∈ Zn+, |J | = m,

T ′′(XJ) =





∑

|I|≥m

PI∂
I



 (XJ) = J !PJ

vanish onX , i.e., PJ ∈ I(X). Hence, by induction onm we conclude that PI ∈ I(X)
for all I ∈ Zn+. �

Denote by D the quotient ring A/J(X). The filtration of A by the order of
differential operators induces a quotient ring filtration (Dp; p ∈ Z) on D which
satisfies the conditions (i)–(v) from the beginning of I.3.

Since J(X) is in the kernel of φ, it defines a homomorphism Φ of D into D(X).
Clearly, Φ is a homomorphism ofD intoD(X) compatible with their ring filtrations.

1.2. Proposition. The morphism Φ : D −→ D(X) is an isomorphism of
filtered rings.

First we show that Φ is injective. Let T ∈ A be such that φ(T ) = 0. This
implies that φ(T )(P + I(X)) = T (P ) + I(X) = 0, i.e., T (P ) ∈ I(X) for any
P ∈ k[X1, X2, . . . , Xn]. Hence, T ∈ J(X) and Φ is injective.

To begin the proof of surjectivity we make the following remark.

1.3. Lemma. Let p ∈ Z+ and let PI ∈ k[X1, X2, . . . , Xn], I ∈ Zn+, |I| ≤ p. Then
there exists a differential operator T ∈ D(n) of order ≤ p such that T (XI) = PI
for all I ∈ Zn+, |I| ≤ p.

Proof. Evidently, the assertion is true for p = 0. Assume that p > 0 and that
the assertion holds for p−1. By the induction assumption there exists a differential
operator T ′ of order ≤ p − 1 such that T ′(XI) = PI for all I ∈ Zn+, |I| ≤ p − 1.

Put T ′(XI) = QI , QI ∈ k[X1, X2, . . . , Xn], for all I ∈ Zn+, |I| = p. Obviously ∂J ,

|J | = p, annihilate XI , |I| ≤ p − 1, and ∂J(XI) = I!δI,J for |I| = |J | = p. This

implies that if we define T ′′ =
∑

|J|=p
PJ−QJ

J! ∂J , T ′′ annihilates XI , |I| ≤ p − 1,

and

T ′′(XI) =





∑

|J|=p

PJ −QJ
J !

∂J



 (XI) = PI −QI

for any I ∈ Zn+, |I| = p. Therefore (T ′ + T ′′)(XI) = PI for I ∈ Zn+, |I| = p, and

(T ′ + T ′′)(XI) = T ′(XI) = PI for I ∈ Zn+, |I| < p. �
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Now we claim that for any T ∈ Dp(X) and S ∈ D(n) of order ≤ p, T (r(XI)) =
r(S(XI)) for I ∈ Zn+, |I| ≤ p, implies that T ◦ r = r ◦ S. If p = 0 there is nothing
to prove. Assume that p > 0. Then, for 1 ≤ j ≤ n, we have

[T, r(Xj)](r(X
I)) = Tr(XjX

I)− r(Xj)T (r(X
I))

= r(S(XjX
I))− r(XjS(X

I)) = r([S,Xj ](X
I))

for all I ∈ Zn+, |I| ≤ p − 1, and the orders of [T, r(Xj)] and [S,Xj ] are ≤ p − 1.
Therefore, by the induction assumption [T, r(Xj)] ◦ r = r ◦ [S,Xj ]. In particular,
for any I ∈ Zn+, we have

T (r(XjX
I)) = [T, r(Xj)](r(X

I)) + r(Xj)T (r(X
I))

= r([S,Xj ](X
I))+r(Xj)T (r(X

I)) = r(S(XjX
I))+r(Xj)[T (r(X

I))−r(S(XI ))].

Hence, by the induction on |I| it follows that T (r(XI)) = r(S(XI)) for all I ∈ Zn+,
which proves our assertion.

Let T be a differential operator of order ≤ p on X . Then we can choose
PI ∈ k[X1, X2, . . . , Xn], I ∈ Zn+, |I| ≤ p, such that T (r(XI)) = r(PI ) for all I ∈ Zn+,
|I| ≤ p. By 1.3, there exists a differential operator S ∈ D(n) of order ≤ p such that
S(XI) = PI for all I ∈ Zn+, |I| ≤ p. This implies that T (r(XI)) = r(S(XI)) for
I ∈ Zn+, |I| ≤ p.

By the previous result this yields T ◦ r = r ◦ S. In particular, we see that
r(S(I(X))) = T (r(I(X))) = 0, i.e. S ∈ A. Evidently, φ(S) = T and Φ is surjective.
This ends the proof of 1.2.

1.4. Corollary. Let X be an affine algebraic variety. For any p ∈ Z+, Dp(X)
is a finitely generated R(X)-module for left (and right) multiplication.

Proof. We can assume that X is a closed subset in kn. From I.8.9. we know
that the statement holds for X = kn. Since k[X1, X2, . . . , Xn] is a nötherian ring,
A∩FpD(n) is a finitely generated k[X1, X2, . . . , Xn]-module for the left (and right)
multiplication, and Dp is a finitely generated R(X)-module for left (and right)
multiplication for any p ∈ Z. The assertion follows from 1.2. �

Let f ∈ R(X), f 6= 0, and Xf = {x ∈ X | f(x) 6= 0} the corresponding
principal open set in X . Then Xf is an affine variety, and R(Xf ) = R(X)f .
Denote by rf the restriction map from R(X) into R(Xf ).

1.5. Proposition. Let T ∈ Dp(X). Then there exists a unique differential
operator T̄ ∈ Dp(Xf ) such that the following diagram is commutative:

R(X)
T

−−−−→ R(X)

rf





y

rf





y

R(Xf )
T̄

−−−−→ R(Xf ).

First we show the uniqueness of T̄ . It is enough to prove the following lemma.

1.6. Lemma. Let S ∈ D(Xf ) be such that S(g) = 0 for any g ∈ rf (R(X)).
Then S = 0.

Proof. We prove this statement by induction on the order p of S. If p = 0,
S ∈ R(Xf) and the condition immediately leads to S = 0. Assume now that
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p > 0. Then S′ = [S, f ] ∈ Dp−1(Xf ) and it annihilates rf (R(X)). Hence, by
the induction assumption, S′ = 0. This implies that S commutes with f . Let
h ∈ R(Xf ). Then there exists n ∈ Z+ such that fnh ∈ rf (R(X)). This implies that
fnS(h) = S(fnh) = 0. Since 1

f
∈ R(Xf ) we conclude that S(h) = 0. Therefore,

S = 0. �

It remains to show the existence of T̄ .
First, we discuss the case of X = kn. Since D(n) is generated by Xi, ∂i,

1 ≤ i ≤ n, as a k-algebra, it is enough to show the existence of T̄ for T = ∂i,
1 ≤ i ≤ n. But the derivations ∂i extend to the field k(X1, X2, . . . , Xn) of rational
functions and satisfy

∂i

(

g

fm

)

=
∂i(g)f −mg∂i(f)

fm+1

for any g ∈ k[X1, X2, . . . , Xn] and m ∈ Z+. Therefore, they induce derivations of
k[X1, X2, . . . , Xn]f . This ends the proof of existence for D(n).

It remains to show the existence of T̄ in the general situation. We can assume
that X is imbedded in some kn as a closed subset. Let P be the polynomial in
k[X1, X2, . . . , Xn] which restricts to f on X and denote by U the affine open set in
kn which is the complement of the set of zeros of P . Then X ∩U = Xf . By 1.2 we
can find S ∈ A∩FpD(n) such that φ(S) = T . This differential operator extends to
the differential operator S̄ on U of order ≤ p.

1.7. Lemma. Let S ∈ A. Then S̄ maps I(X)P into itself.

Proof. We prove this statement by induction on the order p of S. If p = 0
the statement is evident. Assume that p > 0. Then S′ = [S, P ] ∈ A and its order
is ≤ p− 1. Therefore, by the induction assumption, S̄′ maps I(X)P into itself. Let
Q ∈ I(X). Then

S̄

(

Q

Pm

)

= S̄′
(

Q

Pm+1

)

+ PS̄

(

Q

Pm+1

)

and, by the induction assumption

S̄

(

Q

Pm+1

)

− P−1S̄

(

Q

Pm

)

∈ I(X)P

for any m ∈ Z+. By induction on m this implies that S̄
(

Q
Pm

)

∈ I(X)P for any

m ∈ Z+. �

Therefore, S̄ induces a linear endomorphism of k[X1, X2, . . . , Xn]P /I(X)P =
R(X)f = R(Xf ). As in the discussion preceding 1.2, we see that this is actually
a differential operator on Xf . Also, on rf (R(X)) it agrees with T . Therefore, we
constructed T̄ . This ends the proof of 1.5.

Let X be an affine algebraic variety and f ∈ R(X), f 6= 0. Then, by 1.5, we
have a well-defined restriction map ρf of D(X) into D(Xf ). The uniqueness part
of 1.5 implies that ρf is a morphism of rings, hence we have the following result.

1.8. Proposition. The map ρf : D(X) −→ D(Xf ) is a morphism of filtered
rings.

In particular, ρf is a morphism of R(X)-modules for left (and right) multipli-
cation.
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1.9. Lemma. Let D(X)f be the localization of D(X) considered as an R(X)-
module for left multiplication. Then the morphism ρf induces an isomorphism βf
of D(X)f onto D(Xf ).

Proof. We first assume that Xf is dense in X . In this case the natural map

rf : R(X) −→ R(Xf) is injective. Hence, βf

(

1
fmT

)

= T̄
fm = 0 for some T ∈ D(X)

implies that for any g ∈ R(X) there exists some s ∈ Z+ such that f sT (g) = 0.
Therefore, T (g) = 0 for all g ∈ R(X), i.e., T = 0. It follows that βf is injective.

To show that βf is surjective, it is enough to prove that for any T ∈ D(Xf ) there
exists m ∈ Z+ such that (fmT )(R(X)) ⊂ R(X). We shall prove this statement by
induction on the order p of T . If p = 0 the statement is evident.

Assume that p > 0. Denote by g1, g2, . . . , gn the generators of the k-algebra
R(X). By the induction assumption, there existsm ∈ Z+ such that fm[T, gi](R(X)) ⊂
R(X), 1 ≤ i ≤ n, and fmT (1) ∈ R(X). This implies that, if h ∈ R(X) satisfies
fmT (h) ∈ R(X), we have

fmT (gih) = fm[T, gi](h) + fmgiT (h) ∈ R(X).

Using fmT (1) ∈ R(X) and an induction on the length of monomials gi11 g
i2
2 . . . ginn

we see that this relation implies that fmT (R(X)) ⊂ R(X). Therefore, βf is an
isomorphism in this case.

Now we can consider the general situation. Assume that Xf is not dense
in X . We claim that then there exists f ′ ∈ R(X) such that Xf and Xf ′ are
disjoint and their union is dense in X . First, if Xf is not dense in X , we can find
a1 ∈ R(X) such that a1 6= 0 and it vanishes on Xf . This implies that Xf and Xa1

are disjoint and Xf+a1 = Xf ∪ Xa1 . If Xf+a1 is not dense in X we can repeat
this construction, and since X is a nötherian topological space, after finitely many
steps we construct a sequence a1, a2, . . . , as such that Xf , Xa1 , Xa2 , . . . , Xas are
mutually disjoint principal open sets in X and their union is dense in X . If we put
f ′ = a1 + a2 + · · ·+ as, it evidently has the required property.

Now we claim that D(Xf+f ′) = D(Xf ) ⊕ D(Xf ′). Evidently, R(Xf+f ′) =
R(Xf) ⊕ R(Xf ′). Let χ, χ′ ∈ R(Xf+f ′) be the characteristic functions of Xf and
Xf ′ respectively. Then we claim that for any T ∈ Dp(Xf+f ′), [T, χ] = [T, χ′] = 0.
This is true if T is of order ≤ 0. We proceed by induction on the order of T . Let
p > 0. If the order of T is ≤ p we know, by the induction assumption, that the
assertion holds for [T, χ]. Therefore,

0 = [[T, χ], χ′] = [T, χ]χ′ − χ′[T, χ] = −χTχ′ − χ′Tχ

or χTχ′ = −χ′Tχ. By right multiplication with χ we get χTχ′ = χ′Tχ = 0.
Therefore, Tχ = (χ+ χ′)Tχ = χTχ, and analogously χ′T = χ′T (χ+ χ′) = χ′Tχ′.
Because of the symmetry we also have χT = χTχ, which finally leads to [T, χ] = 0.
Therefore, T (g) = T (χg) = χT (g) for g ∈ R(Xf ), and T (R(Xf)) ⊂ R(Xf ). An
analogous argument using χ′ implies that T (R(Xf ′)) ⊂ R(Xf ′). Therefore, T
induces differential operators S and S′ on Xf , resp. Xf ′ , and T = S ⊕ S′.

By the first part of the proof, βf+f ′ : D(X)f+f ′ −→ D(Xf ) ⊕ D(Xf ′) is an
isomorphism. Localizing with respect to χ we get that βf : D(X)f −→ D(Xf ) is
an isomorphism. �

Let U be an open set in X . Denote by PU the family of all principal open
sets contained in U ordered by inclusion. If V,W ∈ PU and V ⊂ W , there exists
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a natural ring homomorphism rWV : D(W ) −→ D(V ). Evidently (D(V ); rWV ) is an
inverse system of rings. We denote by D(U) its inverse limit. Clearly, DX : U 7−→
D(U) is a presheaf of rings on X . By 9, this is a sheaf of OX -modules for left
multiplication. This implies the following result.

1.10. Proposition. DX is a sheaf of rings on X.

We call DX the sheaf of local differential operators on X .

1.11. Theorem. Let X be an affine variety and DX the sheaf of local differen-
tial operators on X. Then for any affine open subset U ⊂ X we have Γ(U,DX) =
D(U).

Proof. The statement is clear if U is a principal open set of X . Let U be any
affine open subset of X . Let f ∈ R(X) be such that Xf ⊂ U . Then, if we denote
g = f |U , we see that Ug = Xf . This implies that

Γ(Ug,DU ) = D(Ug) = D(Xf ) = Γ(Xf ,DX).

In addition, these isomorphisms are compatible with the restriction morphisms.
Since principal open sets {Xf | f ∈ R(X)} form a basis of topology of X , the ones
contained in U form a basis of the topology of U . Moreover, since DX |U and DU
are sheaves on U and agree on a basis of its topology we see that they are equal.
This implies that Γ(U,DX) = Γ(U,DU ) = D(U). �

Let X be any algebraic variety over k. For any open set U in X denote by
BU the family of all affine open subsets of U ordered by inclusion. If V,W ∈ BU
and V ⊂ W , there exists a natural ring homomorphism rWV : D(W ) −→ D(V ).
Evidently (D(V ); rWV ) is an inverse system of rings. We denote by D(U) its inverse
limit. Again, DX : U 7−→ D(U) is a presheaf of rings on X .

1.12. Proposition. Let X be an algebraic variety over k. Then DX is a sheaf
of rings on X.

This result, as well as 10, is a special case of the following lemma. Let C be
a category which has the property that any inverse system of objects in C has an
inverse limit in C. Let X be a topological space and B a basis of open sets for the
topology of X . We call a presheaf F on B with values in C a family of objects
F(U), U ∈ B, and a family of morphisms ρVU : F(V ) −→ F(U) defined for any pair
(U, V ) such that U ⊂ V , satisfying the conditions

(i) ρUU =identity for any U ∈ B,
(ii) ρWU = ρVU ◦ ρ

W
V for any U, V,W ∈ B such that U ⊂ V ⊂W .

Then we can define a presheaf F ′ on X by putting F ′(U) to be equal to the
inverse limit of F(V ) for all V ∈ B such that V ⊂ U . Moreover, for any U ∈ B, we
have F ′(U) = F(U).

1.13. Lemma. The presheaf F ′ on X is a sheaf on X if F satisfies the following
condition:

(F) For any covering (Ui; i ∈ I) of U ∈ B by Ui ∈ B and for any object
T ∈ C, the map which attaches to f ∈ Hom(T,F(U)) the family ρUUi

◦ f ∈
∏

i∈I Hom(T,F(Ui)) is a bijection of Hom(T,F(U)) onto the set of all

(fi; i ∈ I) such that ρUi

V ◦ fi = ρ
Uj

V ◦ fj for any pair of indices (i, j) and
V ∈ B such that V ⊂ Ui ∩ Uj.
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Proof. Let B′ be another basis of topology on X contained in B. Then we can
define another presheaf F ′′ which is attached to the presheaf on B′ defined by F .
By the definition of inverse limit, for any open set U on X there exists a canonical
morphism of F ′(U) into F ′′(U). If U ∈ B, this canonical morphism is a morphism
from F(U) into F ′′(U). We claim that this morphism is an isomorphism. In fact,
by the condition (F), the canonical morphisms of F ′′(U) into F(V ), V ∈ B′, V ⊂
U , factor through F(U). Morevover, by the universal property, the compositions
in both orders of this canonical morphism F ′′(U) −→ F(U) and the morphism
F(U) −→ F ′′(U) we described before are the identity morphisms. This proves
our assertion. On the other hand, this also implies that, for any open set U in
X , the morphisms F ′′(U) −→ F ′′(V ) = F(V ) for V ∈ B and V ⊂ U satisfy the
conditions for the inverse limit of the inverse system (F(V );V ⊂ U, V ∈ B), hence
F ′′(U) = F ′(U).

Assume now that U is an open subset of X , (Ui) a covering of U by open
subsets, and let B′ be the subfamily of B consisting of elements contained in at
least one (Ui). It is clear that B′ is a basis of the topology on U , hence F ′(U) (resp
F ′(Ui)) is an inverse limit of F(V ) for V ∈ B′ and V ⊂ U (resp. V ⊂ Ui). From
the definition of inverse limit now follows that F ′ is a sheaf. �

Let U be an open set in X and T ∈ DX(U). We say that T is of order ≤ p
if for any affine open set V ⊂ U , the differential operator rVU (T ) is a differential
operator of order ≤ p. This defines an increasing filtration FDX(U) on DX(U).

1.14. Lemma. The filtration FDX(U) on DX(U) is exhaustive.

Proof. Let T ∈ DX(U). Since U is quasicompact, we can find a finite open
cover (Ui; 1 ≤ i ≤ s) of U consisting of affine open sets. Let p ∈ Z be such that
the restrictions of T to the elements of the cover have orders ≤ p. Let V be an
arbitrary affine open subset of U and S = rUV (T ). We claim that S has order
≤ p. Let f0, f1, . . . , fp ∈ R(V ). Then R = [. . . [[S, f0], f1], . . . , fp] is a differential
operator on V , and its restrictions to V ∩Ui are zero for all 1 ≤ i ≤ s. This implies
that R = 0, and S is of order ≤ p. �

Therefore, this filtration satisfies the properties (i)-(v) from the beginning of I.3.
Clearly, in this way we get a filtration FDX of the sheaf DX of local differential
operators on X by subsheaves of vector spaces over k. We call it the filtration
by the order of differential operators. On any affine open set U in X we have
FpDX(U) = Dp(U) for p ∈ Z. Therefore, we can consider the graded sheaf of rings
GrDX . It is a sheaf of commutative rings and Gr0DX = OX .

1.15. Theorem. Let X be an algebraic variety over k. Then:

(i) the sheaf DX is a quasicoherent OX-module for left (and right) multipli-
cation;

(ii) the sheaves FpDX , p ∈ Z, are coherent OX-modules for left (and right)
multiplication;

(iii) the sheaves GrpDX , p ∈ Z, are coherent OX-modules.

Proof. Since the assertions are local, we can assume that X is affine. Then,
for left multiplication, (i) follows from 8, (ii) from 3. and (iii) from (ii). Since
left and right multiplication on GrpDX define the same OX -module structure, (iii)
follows. On the other hand,

0 −→ Fp−1DX −→ FpDX −→ GrpDX −→ 0
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is an exact sequence for the right and left multiplication, hence by induction on p
we get (ii) for right multiplication. Since DX is the direct limit of FpDX , p ∈ Z,
(i) follows. �

Let X be an algebraic variety. For any affine open set U in X we denote
TX(U) = Derk(R(U)). By I.8.2.(iii) we have D1(U) = R(U)⊕TX(U). Let V be an
affine open subset of U . Then, for any T ∈ TX(U), we have rUV (T )(1) = T (1) = 0,
hence rUV (T ) ∈ TX(V ) and the restriction maps are compatible with this direct sum
decomposition. This implies that the assignment U 7−→ TX(U) defines a presheaf
on the basis B of all affine open sets in X . We denote the corresponding presheaf
on X by TX . Since F1DX = OX ⊕TX and both F1DX and OX are sheaves, TX is
a sheaf on X . We call it the tangent sheaf of X . Its local sections over an open set
U ⊂ X are called local vector fields on U . Clearly it has a natural structure of an
OX -module and as such it is isomorphic to Gr1DX . From 14.(iii) we conclude the
following result.

1.16. Proposition. Let X be an algebraic variety over k. Then:

(i) The tangent sheaf TX of X is a coherent OX-module.
(ii) F1DX = OX ⊕ TX .

Clearly, if T, T ′ are two vector fields on U , their commutator [T, T ′] is a vector
field on U . Therefore, TX is a sheaf of Lie algebras over k.

2. Smooth points of algebraic varieties

LetX be an algebraic variety over an algebraically closed field k of characteristic
zero. Denote by OX its structure sheaf. Let x ∈ X and denote by Ox = OX,x the
stalk of OX at x. Then Ox is a nötherian local ring with the maximal ideal mx

consisting of germs of functions vanishing at x.

2.1. Lemma. Let x ∈ X. Then d(OX,x) = dimxX.

Proof. Since the assertion is local, we can assume that the variety X is a
closed subset of some kn. Then the restriction map defines a surjective homo-
morphism of the ring k[X1, X2, . . . , Xn] onto R(X) with kernel I consisting of all
polynomials vanishing on X . We can consider the exact sequence

0 −→ I −→ k[X1, X2, . . . , Xn] −→ R(X) −→ 0

of k[X1, X2, . . . , Xn]-modules and its localization

0 −→ Ix −→ k[X1, X2, . . . , Xn]x −→ R(X)x −→ 0

at x. This identifies the quotient of Okn,x = k[X1, X2, . . . , Xn]x by Ix with OX,x =
R(X)x. Moreover, if we denote by Mx the maximal ideal in k[X1, X2, . . . , Xn]
generated by the polynomials Xi−xi, 1 ≤ i ≤ n, we see that the quotient morphism
maps its localization (Mx)x onto mx. This implies that the filtration (mp

x; p ∈ Z+)
on OX,x agrees with the filtration ((Mx)

p
xOX,x; p ∈ Z+) of the Okn,x-module OX,x.

Therefore, the dimension d(OX,x) of the local ring OX,x is equal to the dimension
of the module OX,x over the local ring Okn,x. By I.4.2. and I.4.6, we conclude that
d(OX,x) = dimx(supp(R(X))) = dimx V (I) = dimxX . �

We call the vector space T ∗x (X) = mx/(mx)
2 the cotangent space to X at x

and its linear dual Tx(X) the tangent space to X at x.
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2.2. Proposition. Let x ∈ X. Then the tangent space Tx(X) is finite-
dimensional and

dimk Tx(X) ≥ dimxX.

Proof. This follows immediately from 1. and I.2.8. �

Let f ∈ Ox. Then f − f(x) ∈mx and we denote by df(x) its image in T ∗x (X).

2.3. Lemma. The linear map d : Ox −→ T ∗x (X) satisfies

d(fg)(x) = f(x)dg(x) + g(x)df(x)

for any f, g ∈ Ox.

Proof. We have

d(fg)(x) = fg − f(x)g(x) +m2
x = fg − f(x)g(x) − (f − f(x))(g − g(x)) +m2

x

= g(x)(f − f(x)) + f(x)(g − g(x)) +m2
x = f(x)dg(x) + g(x)df(x).

�

For example, if X = kn, we have

df(x) =

n
∑

i=1

(∂if)(x)dXi(x)

for any germ f ∈ k[X1, X2, . . . , Xn]x, and (dX1(x), dX2(x), . . . , dXn(x)) form a
basis of T ∗x (k

n). Therefore, the map which attaches to any vector (ξ1, ξ2, . . . , ξn) ∈
kn the tangent vector f 7−→

∑

ξi(∂if)(x) is an isomorphism of kn with Tx(k
n).

Let X and Y be two algebraic varieties over k and φ a morphism of X into
Y . Then, for any x ∈ X it induces a morphism φx : OY,φ(x) −→ OX,x defined
by φx(f) = f ◦ φ for f ∈ OY,φ(x). Clearly, φx(mφ(x)) ⊂ mx, which implies that

φx(m
2
φ(x)) ⊂ m2

x, and we get a linear map T ∗x (φ) : T ∗φ(x)(Y ) −→ T ∗x (X). If f ∈

OY,φ(x), we have

T ∗x (φ)(df(φ(x))) = d(φx(f))(x) = d(f ◦ φ)(x).

The transpose Tx(φ) : Tx(X) −→ Tφ(x)(Y ) of T ∗x (φ) is called the tangent linear
map of φ at x. Let ξ ∈ Tx(X) and f ∈ OY,φ(x). Then

(Tx(φ)(ξ))(df(φ(x))) = ξ(T ∗x (φ)(df(φ(x)))) = ξ(d(f ◦ φ)(x)).

2.4. Lemma. (i) Let X,Y and Z be algebraic varieties and α : X −→ Y ,
β : Y −→ Z morphisms of algebraic varieties. Let x ∈ X. Then

Tx(β ◦ α) = Tα(x)(β) ◦ Tx(α).

(ii) Let Y be a subvariety of X and j : Y −→ X the canonical injection. Then
Ty(j) : Ty(Y ) −→ Ty(X) is an injection for any y ∈ Y .

Proof. (i) This statement follows from the definition.
(ii) The statement is local, so we can assume that Y is closed in X and X is

affine. Let I be the ideal in R(X) consisting of all functions vanishing on Y . Then
OY,x is the localization at x of the ring R(X)/I, and by the exactness of localization,
it is a quotient of OX,x. This implies that the linear map T ∗x (j) : T

∗
x (X) −→ T ∗x (Y )

is surjective, and its transpose Tx(j) is injective. �
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Assume now that X is a closed subspace of some kn. By the preceding discus-
sion and 4.(ii) we see that the tangent linear map Tx(j) of the natural inclusion
j : X −→ kn identifies Tx(X) with a linear subspace of kn. The following result
identifies precisely this subspace. As before, denote by I the ideal of all polynomials
in k[X1, X2, . . . , Xn] vanishing on X .

2.5. Lemma. For any x ∈ X we have

Tx(X) = {(ξ1, ξ2, . . . , ξn) ∈ k
n |

n
∑

i=1

ξi(∂iP )(x) = 0, P ∈ I}.

Proof. By definition and the discussion in the proof of 4.(ii) we see that
Tx(X) is the orthogonal to the kernel of T ∗x (j) : k

n −→ T ∗x (X). On the other hand,
kerT ∗x (j) = {df(x) | f ∈ Ix}. Any germ f ∈ Ix is a germ of a rational function
P
Q

with Q(x) 6= 0 and P ∈ I. Therefore, by 3, we have df(x) = 1
Q(x)dP (x) and

{df(x) | f ∈ Ix} = {dP (x) | P ∈ I}. �

Now we consider the function x 7−→ dimk Tx(X) on an algebraic variety X .

2.6. Proposition. The function x 7−→ dimk Tx(X) on an algebraic variety X
is upper semicontinuous.

Proof. The statement is local, so we can assume that X is a closed subspace
of some kn. By 6. we can identify the tangent space Tx(X) with

{(ξ1, ξ2, . . . , ξn) ∈ k
n |

n
∑

i=1

ξi(∂iP )(x) = 0, P ∈ I}.

If dimTx(X) = p, there exist polynomials P1, P2, . . . , Pn−p ∈ I such that the matrix
[ (∂iPj)(x) ] has rank n − p. This implies that in some neighborhood U of x its
rank is equal to n− p. In particular, dimk Ty(X) ≤ p for y ∈ U ∩X . �

We say that a point x ∈ X is smooth if dimk Tx(X) = dimxX . In different
words, x ∈ X is smooth if and only if the local ring Ox is regular.

2.7. Theorem. Let X be an algebraic variety over k. Then:

(i) The set of all smooth points of X is open and dense in X.
(ii) A smooth point x ∈ X is contained in a unique irreducible component of

X.

Proof. The second statement follows immediately from I.2.10. Denote by
V1, V2, . . . , Vr the irreducible components of X and let Y = ∪i6=jVi ∩ Vj . Then Y is
a closed subset ofX and its complement is dense inX . Moreover, by (ii), Y contains
no smooth points of X . Therefore, we can assume that X is a disjoint union of its
irreducible components. This reduces the proof to the case of irreducible variety.

By 2. and 6, the set of all smooth points is open in X , and the proof of the
theorem reduces to showing the existence of a smooth point in an irreducible affine
variety X .

Let n = dimX . By Nöther normalization lemma we can find f1, f2, . . . , fn ∈
R(X) such that the homomorphism of k[X1, X2, . . . , Xn] into R(X) defined by
P 7−→ P (f1, . . . , fn) is injective and R(X) is integral over its image B. Geometri-
cally, this defines a surjective finite morphism p of X onto kn. The field of rational
functions R(X) is an algebraic extension of the quotient field L of B which is iso-
morphic to k(X1, X2, . . . , Xn). Since R(X) is finitely generated k-algebra, R(X)
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is generated over L by finitely many elements of R(X). This implies that the field
R(X) is a finite extension of L. Moreover, since k is of characteristic zero, by the
theorem on the primitive element, we know that there exists an element g ∈ R(X)
which generates R(X) over L.

First we claim that we can assume that g ∈ R(X). Let S be the multiplicative
system B−{0}, and let S−1R(X) be the corresponding ring of fractions. We claim
that S−1R(X) = R(X). Let f ∈ S−1R(X). Since R(X) is an algebraic extension
of L, f is algebraic over L, i.e., there exist b1, b2, . . . , bn ∈ L such that

fn + b1f
n−1 + · · ·+ bn−1f + bn = 0

and bn 6= 0. This implies that

1

f
= −

1

bn
(fn−1 + b1f

n−2 + · · ·+ bn−1) ∈ S
−1R(X).

Therefore, S−1R(X) is a field containing L and R(X). Hence, it is equal to R(X).
It follows that any primitive element is of the form g = h

b
with h ∈ R(X) and

b ∈ B − {0}. This implies that h ∈ R(X) is also a primitive element.
Therefore we fix in the following a primitive element g ∈ R(X). Let Ω be the

algebraic closure of R(X). Then Ω is the algebraic closure of L. Let s be the degree
of R(X) over L. Then the orbit of g under the action of the group AutL(Ω) of
L-automorphisms of Ω consists of s elements g0 = g, g1, . . . , gs−1. Since g is integral
over B and AutL(Ω) leaves B fixed, we see that gi, 0 ≤ i ≤ s− 1, are integral over
B. Let

V (λ1, λ2, . . . , λs) =
∏

i<j

(λi − λj).

Then, for any T ∈ AutL(Ω) we have

T (V (g0, g1, . . . , gs−1)
2) = V (g0, g1, . . . , gs−1)

2.

Therefore, D = V (g0, g1, . . . , gs−1)
2 is in L. Moreover it is integral over B. Since

B is integrally closed, we conclude that D ∈ B.
Clearly 1, g, g2, . . . , gs−1 form a basis of the vector space R(X) over L. There-

fore, for any h ∈ R(X) there exist a0, a1, . . . , as−1 ∈ L such that

h =

s−1
∑

i=0

aig
i.

If we put

hj =

s−1
∑

i=0

aig
i
j

for 0 ≤ j ≤ s−1, we see that h0 = h, h1, . . . , hs−1 are integral over B. By Cramer’s
rule

aj =
∆j

V (g0, g1, . . . , gs−1)

with

∆j =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 g0 g20 . . . gj−10 h0 gj+1
0 . . . gs−10

1 g1 g21 . . . gj−11 h1 gj+1
1 . . . gs−11

...
...

...
. . .

...
...

...
. . .

...

1 gs−1 g2s−1 . . . gj−1s−1 hs−1 gj+1
s−1 . . . gs−1s−1

∣

∣

∣

∣

∣

∣

∣

∣

∣
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for 0 ≤ j ≤ s− 1. This leads to

aj =
∆jV (g0, g1, . . . , gs−1)

D

for 0 ≤ j ≤ s− 1. Since B is integrally closed, ajD ∈ L and ∆jV (g0, g1, . . . , gs−1)
is integral over B, we conclude that ajD ∈ B for 0 ≤ j ≤ s− 1. This implies that

h =

s−1
∑

i=0

aiD
gi

D
.

Therefore, gi

D
, 0 ≤ i ≤ s − 1, generate a B-submodule of R(X) which contains

R(X).
Let Y = {y ∈ kn | D(y) 6= 0} and X ′ = {x ∈ X | (D ◦ p)(x) 6= 0}. Then p

maps X ′ onto Y . Let y ∈ Y and x ∈ X ′ such that p(x) = y. By our construction,
D is the discriminant of the minimal polynomial µ of g over L. Moreover,

µ(X) = Xs + c1X
s−1 + · · ·+ cs−1X + cs =

s−1
∏

i=0

(X − gi).

Therefore its coefficients cj , 1 ≤ j ≤ s are integral over B, and since B is integrally
closed, they are in B. Since D is a symmetric polynomial in gi, 0 ≤ i ≤ s−1, it is a
polynomial in elementary symmetric polynomials c1, c2, . . . , cs. In particular, this
implies that D(y) is the discriminant of the polynomial P (X) = Xs+ c1(y)X

s−1+
· · ·+ cs−1(y)X + cs(y). Since D(y) 6= 0, this polynomial has s distinct roots in k.
Clearly, one of its roots in k is g(x). This implies that its derivative P ′ satisfies

P ′(g(x)) = sg(x)s−1 + (s− 1)c1(y)g(x)
s−2 + · · ·+ cs−1(y) 6= 0.

Therefore, if T ∈ Tx(X) is in the kernel of Tx(p), we have

0 = T (d(gs + (c1 ◦ p)g
s−1 + · · ·+ (cs−1 ◦ p)g + cs ◦ p)(x))

= P ′(g(x))T (dg(x))+T (g(x)s−1d(c1 ◦p)(x)+ · · ·+g(x)d(cs−1 ◦p)(x)+d(cs ◦p)(x))

= P ′(g(x))T (dg(x)) + g(x)s−1Tx(p)(T )(dc1(y)) + · · ·+ g(x)Tx(p)(T )(dcs−1(y))

+ Tx(p)(T )(dcs(y)) = P ′(g(x))T (dg(x))

and this leads to T (dg(x)) = 0. Let now h ∈ R(X) be arbitrary. Then, by the

previous discussion, h =
∑s−1

i=0 (bi ◦ p)g
i with bi ∈ R(Y ). Therefore,

T (dh(x)) =
s−1
∑

i=0

g(x)iT (d(bi ◦ p)(x)) =
s−1
∑

i=0

g(x)iTx(p)(T )(dbi(y)) = 0.

Finally, if f ∈ OX,x, f = h
a
for some a, h ∈ R(X) with a(x) 6= 0 and

df(x) =
a(x)dh(x) − h(x)da(x)

a(x)2
.

Therefore, T (df(x)) = 0 for any f ∈ OX,x, and we conclude that T = 0 and Tx(p)
is injective. Since Ty(k

n) is n-dimensional we see that dimk Tx(X) ≤ n. By 2. it
follows that dimk Tx(X) = n and x is a smooth point. �

An algebraic variety X is smooth if all its points are smooth.
By 7.(ii) we have the following result.



2. SMOOTH POINTS OF ALGEBRAIC VARIETIES 67

2.8. Proposition. Let X be a smooth algebraic variety. Then its irreducible
components are equal to its connected components.

This implies in particular that the function x 7−→ dimkX is locally constant
on a smooth variety X .

Now we want to analyze a neighborhood of a smooth point of X . We claim the
following result.

2.9. Theorem. Let X be an algebraic variety and x ∈ X a smooth point such
that dimxX = n. Then there exist:

(i) an open affine neighborhood U of x;
(ii) regular functions f1, f2, . . . , fn and vector fields D1, D2, . . . , Dn on U such

that Di(fj) = δij for 1 ≤ i, j ≤ n.

Proof. Since the statement is local, we can assume that X is a smooth
irreducible affine variety imbedded in some km as a closed subset. Let I be
the ideal of all polynomials in A = k[X1, X2, . . . , Xm] vanishing on X . Since
dimk Tx(X) = dimX = n, by 6. we can find polynomials Pn+1, Pn+2, . . . , Pm ∈ I
such that the matrix [(∂iPj)(x)] has rank m−n. This implies that the rank of this
matrix is equal to m− n on some neighborhood V of x ∈ km , and

Tx(X) = {(ξ1, ξ2, . . . , ξm) ∈ km |
m
∑

i=1

ξi(∂iPj)(x) = 0, n+ 1 ≤ j ≤ m}.

Denote by J the ideal in A generated by Pn+1, Pn+2, . . . , Pm. We first claim
that Jx = Ix. Clearly, from the definition it follows that J ⊂ I. Let Y be the set
of all zeros of J in km. Then X ⊂ Y . We have

dimx Y ≥ dimX = dimk Tx(X) = dimk Tx(Y ) ≥ dimx Y.

This implies that dimX = dimx Y . Therefore, X is an irreducible component of
Y . On the other hand, since dimx Y = dimk Tx(Y ), x is a smooth point of Y and
lies in a unique irreducible component of Y by 7.(ii). This implies that there exists
a neighborhood V ′ ⊂ V of x in km which doesn’t intersect any other irreducible
components of Y . Therefore we conclude that r(J)x = Ix. Consider the local ring
(A/J)x. Its maximal ideal is nx = mx/Jx, and we have npx = mp

x/Jx for any
p ∈ Z+. Therefore, the dimension of the local ring (A/J)x is equal to its dimension
as an Ax-module. By I.4.5. we conclude that d((A/J)x) = dimx(V (J)) = dimx Y =
dimX = n. On the other hand, we have an exact sequence of finite dimensional
vector spaces

0 −→ (Jx +m2
x)/m

2
x −→mx/m

2
x −→ nx/n

2
x −→ 0,

(Jx + m2
x)/m

2
x = {df(x)|f ∈ Jx} is spanned by dPi(x), n + 1 ≤ i ≤ m, and

mx/m
2
x
∼= km by previous identifications. This implies that dimk(nx/n

2
x) = n and

(A/J)x is a regular local ring. By I.2.10. it is integral, hence Jx is prime. This
finally leads to Jx = Ix.

This implies that the support of the A-module I/J doesn’t contain x. In
particular, there exists g ∈ A such that the principal open set V ′′ ⊂ V ′ in km

determined by g is disjoint from supp(I/J). Therefore, (I/J)g = 0 and Jg = Ig.
We can find polynomials P1, P2, . . . , Pn ∈ A such that the matrix [(∂iPj)(x); 1 ≤

i, j ≤ m] is regular. Therefore, by changing g if necessary, we can also assume that
it is regular on the principal open set V ′′. Denote by Q the inverse of this matrix.
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Then the matrix coefficients of Q are in Ag. Therefore, on V ′′ we can define the
differential operators δi =

∑m
j=1Qij∂j , for any 1 ≤ i ≤ n. Clearly they satisfy

δiPj =

m
∑

k=1

Qik∂kPj = δij

for any 1 ≤ j ≤ m. Since any f ∈ Jg can be represented as f =
∑m

j=n+1 hjPj with
hj ∈ Ag, we have

δi(f) = δi(

m
∑

j=n+1

hjPj) =

m
∑

j=n+1

(δi(hj)Pj + hjδi(Pj)) =

m
∑

j=n+1

δi(hj)Pj ∈ Jg,

i.e., Jg = Ig is invariant under the action of δi, 1 ≤ i ≤ n. This implies that δi,
1 ≤ i ≤ n, induce local vector fields on U = X ∩ V ′′ which we denote by Di,
1 ≤ i ≤ n. Moreover, if we denote by fi, 1 ≤ i ≤ n, the restrictions of Pi to U we
see that

Di(fj) = δi(Pj) = δij .

�

We call (f1, f2, . . . , fn;D1, D2, . . . , Dn) a coordinate system on U ⊂ X .

2.10. Lemma. Let X be an algebraic variety and x ∈ X a smooth point such that
dimxX = n. Then there exists an open affine neighborhood U of x and a coordinate
system (f1, f2, . . . , fn;D1, D2, . . . Dn) on U ⊂ X such that D1, D2, . . . , Dn form a
basis of TX(U) as a free OX(U)-module.

Also, [Di, Dj] = 0 for any 1 ≤ i, j ≤ n.

Proof. Since any smooth point lies in a unique irreducible component of X ,
we can assume that the neighborhood U from 9. is irreducible. Then dimU = n.
LetR(U) be the field of rational functions on U . Since U is n-dimensional, the tran-
scendence degree of R(U) over k is equal to n. Let (f1, f2, . . . , fn;D1, D2, . . . , Dn)
be a coordinate system on U .

We claim that f1, f2, . . . , fn are algebraically independent over k. Otherwise we
could find a polynomial P ∈ k[X1, X2, . . . , Xn] different from zero and of minimal
possible degree which satisfies P (f1, f2, . . . , fn) = 0. This would imply that

0 = Di(P (f1, f2, . . . , fn)) =

n
∑

j=1

(∂jP )(f1, f2, . . . , fn)Di(fj) = (∂iP )(f1, f2, . . . , fn),

and by the minimality of the degree of P , ∂iP = 0 for all 1 ≤ i ≤ n. Since k is
of characteristic 0, we conclude that P is a constant polynomial, which is clearly
impossible.

Let K be the subfield of R(U) generated by f1, f2, . . . , fn. Then the transcen-
dence degree of K over k is also equal to n and R(U) is an algebraic extension of
K.

Since a vector field on U is a derivation of R(U), it extends to a derivation of
R(U). On the other hand, R(U) is an algebraic extension of K. Hence, by implicit
differentiation, we see that this derivation is uniquely determined by its restriction
to K. It follows that a vector field on U is completely determined by its restriction
to the subring of R(U) generated by f1, f2, . . . , fn.
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Let T ∈ TX(U) and put gi = T (fi), 1 ≤ i ≤ n. Then

(T −
n
∑

i=1

giDi)(fj) = T (fj)−
n
∑

i=1

giDi(fj) = 0,

and from the preceding discussion we conclude that T =
∑n

i=1 giDi, i.e., D1, D2, . . .Dn

generate TX(U). On the other hand, if
∑n

i=1 hiDi = 0 for some hi ∈ R(U), it fol-
lows that

0 = (

n
∑

i=1

hiDi)(fj) = hj ,

for 1 ≤ j ≤ n. Hence, the OX(U)-module TX(U) is free and (D1, D2, . . . Dn) is its
basis.

Finally, for any 1 ≤ i, j, k ≤ n we have

[Di, Dj ](fk) = Di(Dj(fk))−Dj(Di(fk)) = 0,

which implies that [Di, Dj ] = 0. �

Let x ∈ X and T ∈ TX,x. Then T determines a derivation of the local ring
OX,x. Clearly, for any f ∈ m2

x we have T (f) ∈ mx. Moreover, for f ∈ Ox, we
have T (f)(x) = T (f − f(x))(x) and the result depends only on df(x). Therefore,
the map f −→ T (f)(x) factors through T ∗x (X) and defines a tangent vector T (x) ∈
Tx(X) which satisfies T (x)(df(x)) = T (f)(x) for any f ∈ Ox. It follows that we
constructed a linear map from TX,x into Tx(X). Evidently it determines a linear
map from the geometric fiber Ox/mx ⊗Ox

TX,x into Tx(X).

2.11. Proposition. Let x be a smooth point of an algebraic variety X. Then
the canonical map of Ox/mx ⊗Ox

TX,x into Tx(X) is an isomorphism of vector
spaces.

Proof. Let n = dimxX . We know from 10. that TX,x is a free Ox-module.
More precisely, there exist f1, f2, . . . , fn ∈ Ox and D1, D2, . . . , Dn ∈ TX,x, which
satisfy Di(fj) = δij , 1 ≤ i, j ≤ n, such that (D1, D2, . . . , Dn) is a basis of the free
Ox-module TX,x. This implies that the images of D1, D2, . . . , Dn in Ox/mx ⊗Ox

TX,x form its basis as a vector space over k.
On the other hand, Di(x) satisfy Di(x)(dfj(x)) = δij , 1 ≤ i, j ≤ n, hence

they are linearly independent. Since the tangent space Tx(X) is n-dimensional, we
conclude that (Di(x), 1 ≤ i ≤ n) is a basis of Tx(X) and the map is bijective. �

10. and 11. imply the following result.

2.12. Theorem. Let X be a smooth algebraic variety. Then the tangent sheaf
TX is a locally free OX-module of finite rank. For any x ∈ X, the geometric fiber
of TX is naturally isomorphic to Tx(X).

Let X be a smooth algebraic variety and T (X) = {(x, ξ) | ξ ∈ Tx(X), x ∈ X}.
We want to define a natural structure of an algebraic variety on T (X).

Assume first that the tangent sheaf TX on X is a free OX -module. Let
(T1, T2, . . . , Tn) be a basis of TX . Then we have a bijection φ from X × kn onto
T (X) defined by

φ(x, ξ1, ξ2, . . . , ξn) = (x,

n
∑

i=1

ξiTi(x)).
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We can define the structure of an algebraic variety on T (X) by requiring that
φ : X × kn −→ T (X) is an isomorphism. Let (T ′1, T

′
2, . . . , T

′
n) be another basis of

the free OX -module TX and φ′ : X × kn −→ T (X) the corresponding map. Then
there exists a regular matrix Q with entries in R(X) such that T ′i =

∑n
j=1QjiTj,

which implies that

φ′(x, ξ1, ξ2, . . . , ξn) = (x,
n
∑

i=1

ξiT
′
i (x))

= (x,

n
∑

i,j=1

ξiQji(x)Tj(x)) = φ(x,Q(x)(ξ1, ξ2, . . . , ξn))

and φ′ is an isomorphism if and only if φ is an isomorphism. Therefore, the algebraic
structure on X is independent of the choice of a basis of TX .

Consider now an arbitrary smooth algebraic variety X . By 12. we can find
an open cover (U1, U2, . . . , Us) of X such that TX |Ui = TUi

are free OUi
-modules.

Clearly, T (X) is the union of T (Ui), 1 ≤ i ≤ s, and by the preceding discussion each
T (Ui) has a natural structure of an algebraic variety. Moreover, since this structure
is independent of the choice of the basis, we see that the structures induced on the
intersections T (Ui) ∩ T (Uj) by the structures on T (Ui) resp. T (Uj), 1 ≤ i, j ≤ s,
are the same. This defines a structure of an algebraic variety on T (X). We call
T (X) the tangent bundle of X . We have natural maps i : X −→ T (X) and
p : T (X) −→ X defined by i(x) = (x, 0) and p(x, ξ) = x for ξ ∈ Tx(X), x ∈ X .
Clearly these maps are morphisms of algebraic varieties. Moreover, we have the
following evident result.

2.13. Proposition. Let X be a smooth algebraic variety. Then:

(i) the tangent bundle T (X) is a smooth algebraic variety and

dim(x,ξ) T (X) = 2 dimxX.

(ii) the fibration p : T (X) −→ X is locally trivial.

Analogously, if X is a smooth variety, we can define the OX -module

T ∗X = HomOX
(TX ,OX)

onX . Since TX is locally free of finite rank, so is T ∗X . This implies that its geometric
fiber at x ∈ X is naturally isomorphic to the cotangent space T ∗x (X). Let U ⊂ X be
an open set and f ∈ OX(U). Then it defines an element of HomOX

(TX ,OX)(U) =
HomOX(U)(TX(U),OX(U)) given by T 7−→ T (f), which we denote by df and call
the differential of f . Clearly, we have

df(T )(x) = T (f)(x) = T (x)(df(x))

for any x ∈ U , hence we can view df(x) as the element of the geometric fiber T ∗x (X)
of T ∗X determined by the local section df .

If (f1, f2, . . . , fn;D1, D2, . . . , Dn) is a coordinate system on a sufficiently small
affine open set U , by 10. (D1, D2, . . . , Dn) form a basis of TX(U) as a free OX(U)-
module. It follows that (df1, df2, . . . , dfn) is the dual basis of the free OX(U)-module
T ∗X(U).

As in the case of the tangent bundle, we can define T ∗(X) = {(x, ω) | ω ∈
T ∗x (X), x ∈ X} and a structure of an algebraic variety on T ∗(X) such that on any
sufficiently small affine open set U ⊂ X with coordinate system (f1, f2, . . . , fn;D1, D2, . . . , Dn),
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such that (df1, df2, . . . , dfn) is the dual basis of the free OX(U)-module T ∗X(U), we
have an isomorphism U × kn −→ T ∗(U) ⊂ T ∗(X) given by

φ∗(x, ξ1, ξ2, . . . , ξn) = (x,

n
∑

i=1

ξidfi(x)).

This variety is called the cotangent bundle of X . We have natural maps ι : X −→
T ∗(X) and π : T ∗(X) −→ X defined by ι(x) = (x, 0) and π(x, ω) = x for ω ∈
T ∗x (X), x ∈ X . Clearly these maps are morphisms of algebraic varieties.

2.14. Proposition. Let X be a smooth algebraic variety. Then:

(i) the cotangent bundle T ∗(X) is a smooth algebraic variety and

dim(x,ω) T
∗(X) = 2 dimxX.

(ii) the fibration π : T ∗(X) −→ X is locally trivial.

Finally, we include a remark about “Taylor series” of germs of regular functions
at smooth points.

If X is an algebraic variety and x a smooth point in X , its local ring Ox is a
regular local ring. If n = dimxX , by 10, there exists an affine open neighborhood
U of x and a coordinate system (f1, f2, . . . , fn;D1, D2, . . . , Dn) on U such that
f1(x) = f2(x) = · · · = fn(x) = 0 and D1(x), D2(x), . . . , Dn(x) form a basis of
Tx(X). Therefore, df1(x), df2(x), . . . , dfn(x) form a basis of T ∗x (X) and f1, f2, . . . , fn
define a coordinate system in the regular local ring Ox. Hence, we have a natural
morphism k[X1, X2, . . . , Xn] −→ Ox given by P −→ P (f1, f2, . . . , fn). Clearly, the
image of any polynomial with nonzero constant term is invertible in Ox. Therefore,
this morphism extends to a morphism φ : A = k[X1, X2, . . . , Xn]0 −→ Ox of local
rings. Since Ox is a regular local ring, by I.2.9, we see that Grφ is an isomorphism
of GrA onto GrOx. Since the filtration of A is hausdorff, this implies that φ :
A −→ Ox is injective. Hence, we can view A as a subring of Ox. The natural
homomorphism A −→ Ox −→ Ox/mx

∼= k is surjective. Thereofre, its kernel
A∩mx is a maximal ideal in A, i.e., it is equal tom. This implies that mp ⊂ A∩mp

x

for any p ∈ Z+. Therefore, we have natural maps A/mp −→ Ox/mp
x for all p ∈ Z+,

and the diagram

0 −−−−→ Grp A −−−−→ A/mp+1 −−−−→ A/mp −−−−→ 0




y





y





y

0 −−−−→ GrpOx −−−−→ Ox/mp+1
x −−−−→ Ox/mp

x −−−−→ 0

commutes. Since the rows are exact and the first vertical arrow is an isomorphism,
if the last one is also an isomorphism, the middle arrow is an isomorphism by the
five lemma. Therefore, by induction on p, we conclude that A/mp −→ Ox/mp

x

are isomorphisms for all p ∈ Z+. It follows that mp = A ∩mp
x for all p ∈ Z+.

Moreover, A+mp
x = Ox for any p ∈ Z+. Hence, A is dense in Ox and the mx-adic

topology induces the m-adic topology on A. This implies that the completion rings
of A and Ox are isomorphic. Since the completion Â of A is the ring of formal
power series k[[X1, X2, . . . , Xn]] we see that Ox can be identified with a subring of
k[[X1, X2, . . . , Xn]].
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Let m̂ be the maximal ideal in the local ring Â = k[[X1, X2, . . . , Xn]], i.e.,

m̂ = {F | F =
∑

|I|≥1

aIX
I}.

This implies that

m̂p = {F | F =
∑

|I|≥p

aIX
I}.

Let X̄1, X̄2, . . . , X̄n be the images of X1, X2, . . . , Xn in m̂/m̂2. Then we imme-

diately see that (X̄i; 1 ≤ i ≤ n) is a coordinate system in Â. Moreover, the

natural homomorphism k[X̄1, X̄2, . . . , X̄n] into Gr Â is an isomorphism. Therefore,

Â = k[[X1, X2, . . . , Xn]] is a regular local ring.
Clearly, we havem = A∩m̂ andmp ⊂ m̂p for all p ∈ Z+. The natural inclusion

of A into Â induces an isomorphism of GrA into Gr Â. Therefore, as before, we
have a commutative diagram

0 −−−−→ GrpA −−−−→ A/mp+1 −−−−→ A/mp −−−−→ 0




y





y





y

0 −−−−→ Grp Â −−−−→ Â/m̂p+1 −−−−→ Â/m̂p −−−−→ 0

and by induction we again conclude that the vertical arrows are isomorphisms. This
implies that mp = A ∩ m̂p, i.e.,

mp = {f ∈ A | f =
∑

|I|≥p

aIX
I}.

Let T be a vector field on U . Then it induces a derivation of Ox. By induction
on p, we see that T (mp

x) ⊂mp−1
x for p ∈ N. Therefore, T is continuous in the mx-

adic topology of Ox, and it extends to a continuous derivation of the completion
of Ox. On the other hand, the polynomial ring k[X1, X2, . . . , Xn] is dense in the
formal power series ring k[[X1, X2, . . . , Xn]], hence any continuous derivation of
k[[X1, X2, . . . , Xn]] is completely determined by its action on Xi, 1 ≤ i ≤ n. Since
Di(fj) = δij for 1 ≤ i, j ≤ n, this implies that, under the described isomorphism,
Di correspond to ∂i for 1 ≤ i ≤ n.

Any formal power series F ∈ k[[X1, X2, . . . , Xn]] can be uniquely written as its
Taylor series

F =
∑

I∈Zn
+

(∂IF )(0)

I!
XI .

This, together with the previous discussion, immediately yields the following result.

2.15. Lemma. Let x be a smooth point of an algebraic variety X and (f1, f2, . . . , fn;D1, D2, . . . , Dn)
a coordinate system in a neighborhood of x. Then, for any f ∈ Ox and p ∈ Z+, the
following conditions are equivalent:

(i) f ∈mp
x;

(ii) (DIf)(x) = 0 for all I ∈ Zn+ such that |I| < p.

In particular, (DIf)(x) = 0 for all I ∈ Zn+ implies that f = 0.
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3. Sheaves of differential operators on smooth varieties

Let X be a smooth algebraic variety over an algebraically closed field k of
characteristic zero. Denote by DX the sheaf of local differential operators on X
and by FDX the filtration by the order of differential operators. Let GrDX be the
corresponding graded sheaf of rings on X .

First we shall describe the structure of GrDX . Let U be an affine open set
in X . Then, by definition, Γ(U,DX) = D(U). As in I.8, for any p ∈ Z+ and
T ∈ Dp(U) we can define a map σp(T ) : R(U)p −→ R(U) by

σp(T )(f1, f2, . . . , fp) = [[. . . [[T, f1], f2], . . . , fp−1], fp].

As we proved in I.8.3. this map is a symmetric k-multilinear map and σp(T ) = 0 if
and only if T ∈ Dp−1(U). Moreover, for any 1 ≤ i ≤ p, the map

f 7−→ σp(T )(f1, f2, . . . , fi−1, f, fi+1, . . . , fp)

is a vector field on U . Since σp(T ) is symmetric, to prove this we can assume that
i = p. Clearly, this is a differential operator on U of order ≤ 1 and it vanishes on
constants. Hence, it is a vector field by 1.16.(ii). Therefore, σp(T )(f1, f2, . . . , fp)(x)
depends only on the differentials dfi(x) of fi, 1 ≤ i ≤ p, at x. It follows that we
can define a function Symbp(T ) on the cotangent bundle T ∗(U) of U by

Symbp(T )(x, ω) =
1

p!
σp(T )(f, f, . . . , f)(x)

where f ∈ R(U) is such that df(x) = ω.

3.1. Lemma. (i) The function Symbp(T ) is regular on T ∗(U).
(ii) For a fixed x ∈ U the function Symbp(T ) is a homogeneous polynomial of

degree p on T ∗x (X).

Proof. Since the statement is local, we can assume by 2.10. that U is suffi-
ciently small so that there exists a coordinate system (f1, f2, . . . , fn;D1, D2, . . . , Dn)
on U and the mapping (x, ξ1, ξ2, . . . , ξn) 7−→ (x,

∑n
i=1 ξidfi(x)) is an isomorphism

of U × kn onto T ∗(U). On the other hand,

(x, ξ1, ξ2, . . . , ξn) 7−→
1

p!
σp(T )

(

∑

ξifi,
∑

ξifi, . . . ,
∑

ξifi

)

(x)

is a regular function on U × kn, which implies that Symbp(T ) is regular on T
∗(U).

The second statement is evident. �

We call the function Symbp(T ) the p-symbol of the differential operator T .
Let π : T ∗(X) −→ X be the natural projection defined by π(x, ω) = x for any

ω ∈ T ∗x (X), x ∈ X . Since π is a locally trivial fibration and the fiber at x ∈ X
is T ∗x (X), we see that the natural grading by homogeneous degree of polynomials
on T ∗x (X) induces a structure of a graded sheaf of rings on the direct image sheaf
π∗(OT∗(X)). Clearly the symbol map Symbp defines a morphism of the sheaf FpDX
into Grp π∗(OT∗(X)) which we denote by the same name. It vanishes on the sub-
sheaf Fp−1DX , hence it determines a morphism of the sheaf GrpDX into the p-th
homogeneous component of π∗(OT∗(X)). Let Symb : GrDX −→ π∗(OT∗(X)) be the
corresponding morphism of graded sheaves.

3.2. Theorem. The symbol map Symb : GrDX −→ π∗(OT∗(X)) is an isomor-
phism of sheaves of graded OX -algebras.
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The proof of this result consists of several steps. First we prove the the symbol
map is a morphism of sheaves of k-algebras.

3.3. Lemma. Let U be an open subset of X and T, S ∈ DX(U) of order ≤ p
and ≤ q respectively. Then

Symbp+q(TS) = Symbp(T ) Symbq(S).

Proof. Let f ∈ OX(U), and define the map τ : DX(U) −→ DX(U) by τ(T ) =
[T, f ]. Then

τ(TS) = [TS, f ] = TSf − fTS = [T, f ]S + T [S, f ] = τ(T )S + Tτ(S).

Therefore, for any k ∈ Z+, we have

τk(TS) =
k
∑

i=0

(

k

i

)

τk−i(T ) τ i(S).

This implies that if we fix x ∈ X and ω ∈ T ∗x (X) such that df(x) = ω, we have

Symbp+q(TS)(x, ω) =
1

(p+ q)!
σp+q(T )(f, f, . . . , f)(x) =

1

(p+ q)!
τp+q(TS)(x)

=
1

p!q!
τp(T )(x) τq(S)(x) = Symbp(T )(x, ω) Symbq(S)(x, ω).

�

Clearly, since the fibration π : T ∗(X) −→ X is locally trivial, the zeroth homo-
geneous component of the sheaf π∗(OT∗(X)) of graded rings is equal to OX and the
symbol map Symb0 is the identity map. On the other hand, the first homogeneous
component of π∗(OT∗(X)) is naturally isomorphic to TX . Moreover,

Symb1(T )(x, df(x)) = [T, f ](x) = T (f)(x) = T (x)(df(x))

for any vector field T and regular function f on a neighborhood of x. Since F1DX =
OX ⊕ TX by 1.15.(ii), we conclude that Symb1 is an isomorphism of Gr1DX onto
the first homogeneous component of π∗(OT∗(X)). By the local triviality of π, the
sheaf π∗(OT∗(X)) of graded rings is generated by its zeroth and first homogeneous
components. Therefore, the image of the symbol map is equal to π∗(OT∗(X)). It
remains to show that its kernel is zero.

3.4. Lemma. Let T ∈ FpDX(U). Then Symbp(T ) = 0 if and only if T is of
order ≤ p− 1.

Proof. The statement is local, so we can assume that U is affine. We prove
the statement by induction on p. It is evident if p = 0. Therefore we can assume
that p > 0. Fix f ∈ OX(U). Then [T, f ] is a differential operator of order ≤ p− 1.
Let x ∈ U and ω ∈ T ∗x (X). Put η = df(x). Since we can shrink U if necessary, we
can fix g ∈ OX(U) such that dg(x) = ω. For any h ∈ OX(U) we can define the
map τh : DX(U) −→ DX(U) by τh(T ) = [T, h]. Then for any λ ∈ k, we have

τf+λg(T ) = [T, f + λg] = [T, f ] + λ[T, g] = τf (T ) + λτg(T ).

Since τf and τg commute, we see that, for any k ∈ Z+, we have

τkf+λg(T ) =

k
∑

i=0

(

k

i

)

λi τk−ig (τ if (T )).
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By our assumption the map

λ −→ Symbp(T )(x, η + λω) =
1

p!
τpf+λg(T )(x)

vanishes identically on k. Since k is infinite, τp−ig (τ if (T ))(x) = 0 for 1 ≤ i ≤ p. In
particular, we see that

Symbp−1([T, f ])(x, ω) =
1

(p− 1)!
τp−1g (τf (T ))(x) =

1

(p− 1)!
τp−1g ([T, f ])(x) = 0

for any ω ∈ T ∗x (X). Since x ∈ U was arbitrary, by the induction assumption, we
see that [T, f ] is of order ≤ p− 2. This implies that the order of T is ≤ p− 1. �

This ends the proof of 2.

3.5. Proposition. The sheaf DX of local differential operators on a smooth
variety X is a locally free OX-module for left (resp. right) multiplication.

More precisely, every point x ∈ X has an open affine neighborhood U and a
coordinate system (f1, f2, . . . , fn;D1, D2, . . . , Dn) on U such that

(i) DI ◦DJ = DI+J for any I, J ∈ Zn+;

(ii) (DI ; I ∈ Zn+, |I| ≤ p) is a basis of the free OX(U)-module FpDX(U) for
the left (resp. right) multiplication;

(iii) (DI ; I ∈ Zn+) is a basis of the free OX(U)-module DX(U) for the left
(resp. right) multiplication.

Proof. Let U be a neighborhood of x and (f1, f2, . . . , fn;D1, D2, . . . , Dn) a
coordinate system on U as in 2.10. Then [Di, Dj ] = 0 for any 1 ≤ i, j ≤ n, and (i)
holds.

Denote ξi = Symb1(Di) for 1 ≤ i ≤ n. Then π∗(OT∗(X))(U) is a free OX(U)-

module with a basis (ξI ; I ∈ Zn+), and its homogeneous components are free OX(U)-
modules. From the exact sequence

0 −→ Fp−1DX −→ FpDX −→ GrpDX −→ 0

and 2, by induction on p we conclude that FpDX(U) is a free OX(U)-module and
that it is generated by (DI ; I ∈ Zn+, |I| ≤ p). If

∑

|I|≤p fID
I = 0, by taking the

pth-symbol we conclude that fI = 0 for |I| = p and
∑

|I|≤p−1 fID
I = 0. Hence, by

downward induction, we get that fI = 0 for |I| ≤ p. This implies (ii) and (iii). �

3.6. Proposition. Let X be a smooth affine variety over an algebraically closed
field of characteristic zero. Then:

(i) GrD(X) is a nötherian ring;
(ii) GrD(X) is an R(X)-algebra generated by Gr1D(X).

Proof. Since π : T ∗(X) −→ X is a locally trivial fibration and the fibers are
vector spaces, we conclude that π is an affine morphism. This implies that T ∗(X)
is an affine variety. Hence,

GrD(X) = Γ(X,GrDX) ∼= Γ(X, π∗(OT∗(X))) = Γ(T ∗(X),OT∗(X)) = R(T ∗(X))

is a finitely generated k-algebra and a nötherian ring. Moreover, since π∗(OT∗(X)) is
generated as an OX -algebra by its first degree homogeneous component, the natural
morphism of π∗(OT∗(X))1⊗OX

π∗(OT∗(X))p into π∗(OT∗(X))p+1 is an epimorphism
for any p ∈ Z+. Since X is affine this implies that the corresponding morphism of
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global sections is surjective. Therefore, GrD(X) is generated as an R(X)-algebra
by Gr1D(X). �

3.7. Theorem. Let X be a smooth affine variety over an algebraically closed
field of characteristic zero. Then:

(i) D(X) is a left and right nötherian ring;
(ii) the ring D(X) is generated by R(X) and global vector fields on X.

Proof. By 6. it follows that D(X) is a filtered ring satisfying the conditions
(i)-(vii) from the beginning of I.3. Hence, (i) follows from I.3.4.

Let A be the subring of D(X) generated by R(X) and global vector fields on X .
Let FA be the induced filtration on A. Then we have an injective homomorphism
of GrA into GrD(X), which is also surjective by 6.(ii). This implies that A =
D(X). �



CHAPTER III

Modules over sheaves of differential operators

on smooth algebraic varieties

1. Quasicoherent DX-modules

Let X be a topological space and A a sheaf of rings with identity on X . Denote
byM(A) the category of sheaves of A-modules on X . This is an abelian category.
Let A = Γ(X,A) be the ring of global sections of A. Let M(A) be the category
of A-modules. Then we have the natural additive functor of global sections Γ =
Γ(X,−) : M(A) −→ M(A). Moreover, we have the natural isomorphism of the
functor HomA(A,−) into the functor Γ(X,−) which sends a morphism T : A −→ V
into T (1X) ∈ Γ(X,V).

We can also define the localization functor ∆ :M(A) −→M(A) given by

∆(V ) = A⊗A V.

Clearly ∆ is an additive functor. Moreover, it is also right exact.
By the standard arguments, we have

HomA(A⊗A V,W) = HomA(V,HomA(A,W))

for any V ∈ M(A) and W ∈M(A). Hence,

HomA(∆(V ),W) = HomA(V,Γ(X,W)),

for any V ∈ M(A) and W ∈M(A); i.e., ∆ is a left adjoint functor to the functor
of global sections Γ.

In particular, there exist adjointness morphisms ϕ from the identity functor
into Γ ◦∆ and ψ from ∆ ◦ Γ into the identity.

Consider now the special case where X is an algebraic variety and A = OX
the structure sheaf on X . In this case, as before, we denote by R(X) the ring of
regular functions on X .

If X is affine, we say that V inM(OX) is a quasicoherent OX -module if there
exists an R(X)-module V such that V ∼= ∆(V ).

If X is an arbitrary algebraic variety, V is a quasicoherent OX -module if each
point x ∈ X has an open affine neighborhood U such that V|U is a quasicoherent
OU -module. Quasicoherent OX -modules form a full subcategory ofM(OX) which
we denote byMqc(OX). One can check thatMqc(OX) is an abelian category.

Clearly, ∆ is a functor from M(R(X)) into Mqc(OX). If X is affine, by a
theorem of Serre, ∆ :M(R(X)) −→Mqc(OX) is an equivalence of categories, and
Γ :Mqc(OX) −→M(R(X)) is its quasiinverse.

Let DX be the sheaf of differential operators on X . Then we have a natural
homomorphism ι : OX −→ DX . It defines the forgetful functor from the category
M(DX) into the categoryM(OX). We say that a DX -module V is quasicoherent,
if it is a quasicoherent OX -module.

77
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Let Mqc(DX) be the full subcategory of M(DX) consisting of quasicoherent
DX -modules. ThenMqc(DX) is an abelian category.

Assume now in addition that X is an affine variety. Let DX = Γ(X,DX) be
the ring of global differential operators on X .

Then, by Serre’s theorem, Γ : Mqc(DX) −→ M(DX) is an exact functor.
Moreover, ∆ is a functor from M(DX) into Mqc(DX). We have the following
analogue of Serre’s theorem.

1.1. Theorem. Let X be an affine variety. Then Γ :Mqc(DX) −→ M(DX)
is an equivalence of categories. The localization functor ∆ :M(DX) −→Mqc(DX)
is its quasiinverse.

Proof. Let V ∈ M(DX). Then there exists an exact sequence D
(I)
X −→

D
(J)
X −→ V −→ 0 of DX -modules, and after applying ∆ we get the exact sequence

D
(I)
X −→ D

(J)
X −→ ∆(V ) −→ 0 of DX -modules. The functor Γ ◦ ∆ is a right

exact functor fromM(DX) into itself. Moreover, for any V ∈ M(DX) we have the
adjointness morphism ϕV : V −→ Γ(X,∆(V )). We claim that it is an isomorphism.
Clearly, ϕF : F −→ Γ(X,∆(F )) is an isomorphism for any free DX -module F .

Therefore, if we take the exact sequence D
(I)
X −→ D

(J)
X −→ V −→ 0 of DX -

modules, we get the following commutative diagram

D
(I)
X −−−−→ D

(J)
X −−−−→ V −−−−→ 0





y

ϕ
D

(I)
X





y

ϕ
D

(J)
X





y

ϕV

D
(I)
X −−−−→ D

(J)
X −−−−→ Γ(X,∆(V )) −−−−→ 0

of DX -modules. Its rows are exact and first two vertical arrows are isomorphisms.
Therefore, ϕV is an isomorphism.

Consider now the other adjointness morphism. For any quasicoherent DX -
module V there exists a natural morphism ψV of ∆(Γ(X,V)) into V . We claim that
it is an isomorphism.

Consider the exact sequence

0 −→ K −→ ∆(Γ(X,V))
ψV

−−→ V −→ C −→ 0

of quasicoherent DX -modules. Since Γ(X,−) is exact, we get the exact sequence

0 −→ Γ(X,K) −→ Γ(X,∆(Γ(X,V))) −→ Γ(X,V) −→ Γ(X, C) −→ 0.

of DX -modules. By the first part of the proof, the middle arrow is an isomorphism,
hence Γ(X,K) = Γ(X, C) = 0. By Serre’s theorem, we finally conclude that K =
C = 0. �

Recall that the support supp(F) of a sheaf F on X is the complement of the
largest open set U such that F|U = {0}. Therefore, the support of a sheaf is closed.
Let U be an open set in X and s a local section of F over U . Then supp(s) is the
complement of the largest open set V ⊂ U such that s|V = 0.

1.2. Lemma. For any s ∈ F(U), we have

supp(s) = {x ∈ U | sx 6= 0}.

Proof. Clearly, if x /∈ supp(s), there exists an open neighborhood V of x such
that s|V = 0 and sx = 0. On the other hand, if sx = 0, there exists an open
neighborhood V ⊂ U of x such that s|V = 0 and x /∈ supp(s). �
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In addition we have the following result.

1.3. Proposition. Let F be a sheaf on X. Then supp(F) is the closure of the
set {x ∈ X | Fx 6= 0}.

Proof. Clearly, supp(F) should contain the supports of all its sections. There-
fore, {x ∈ X | Fx 6= 0} must be contained in the support. Since the support of F
is closed, it also contains the closure of {x ∈ X | Fx 6= 0}. Let x be a point outside
of the closure of {x ∈ X | Fx 6= 0}. Then there exists an open neighborhood U of x
such that Fy = 0 for all y ∈ V . But this implies that F|V = 0 and V ∩supp(F) = ∅.
It follows that x /∈ supp(F). �

Let X = kn and V a D(n)-module. Then V = ∆(V ) is a quasicoherent DX -
module. Moreover, Vx = Vx for any x ∈ X . Therefore, by 1.3, supp(V) is equal to
the closure of supp(V ) in sense of the definition from I.4. 1

1.4. Proposition. Let

0 −→ F1 −→ F2 −→ F3 −→ 0

be a short exact sequence of sheaves on X. Then

supp(F2) = supp(F1) ∪ supp(F3).

Proof. By the assumption the sequences

0 −→ F1,x −→ F2,x −→ F3,x −→ 0

are exact for all x ∈ X . Therefore, we have

{x ∈ X | F2,x 6= 0} = {x ∈ X | F1,x 6= 0} ∪ {x ∈ X | F1,x 6= 0}.

Hence, by taking closure and using 1.3 the assertion follows. �

2. Coherent DX -modules

Assume now that X is a smooth affine variety. Then DX is a nötherian ring.
Therefore, the full subcategoryMfg(DX) ofM(DX) consisting of finitely generated
DX-modules is an abelian category. We say that V is a coherent DX -module if
V ∼= ∆(V ) for some finitely generated DX -module V . We denote byMcoh(DX) the
full subcategory of M(DX) consisting of coherent DX -modules. Clearly, Γ maps
Mcoh(DX) intoMfg(DX) and ∆ mapsMfg(DX) intoMcoh(DX). Therefore, Γ :
Mcoh(DX) −→ Mfg(DX) is an equivalence of categories, and ∆ :Mfg(DX) −→
Mcoh(DX) is its quasiinverse. Therefore, in this case we can view coherence as a
sheafified version of finite generation.

2.1. Lemma. Let X be a smooth affine variety and V a quasicoherent DX-
module. Then the following conditions are equivalent:

(i) V is a coherent DX-module;
(ii) for any x ∈ X there exists an open neighborhood U of x and an exact

sequence

DpU −→ D
q
U −→ V|U −→ 0.

1Some authors define the support of the sheaf F as {x ∈ X | Fx 6= 0} to avoid this.
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Proof. (i)⇒(ii) Assume that V is coherent. Then V ∼= ∆(V ) where V is a
finitely generated DX -module. Since DX is a nötherian ring, there exists an exact
sequence

Dp
X −→ Dq

X −→ V −→ 0

for some p, q ∈ Z+. By localizing, we get the exact sequence

DpX −→ D
q
X −→ ∆(V ) −→ 0.

Since V ∼= ∆(V ), this implies that there exists an exact sequence

DpX −→ D
q
X −→ V −→ 0.

Therefore, we can take U = X for arbitrary x ∈ X .
(ii)⇒(i) There exists f ∈ R(X) such that f(x) 6= 0 and Xf ⊂ U . Therefore, by

shrinking U we can assume that it is a principal open set. Then (ii) implies that
the sequence

Dp
U −→ Dq

U −→ Γ(U,V) −→ 0.

is exact, i.e., Γ(U,V) is a finitely generated DU -module. Now, Γ(U,V) = Γ(X,V)f
and there exist v1, . . . , vn ∈ Γ(X,V) such that their restrictions to U generate V|U
as a DU -module. All such principal opens sets form a open covering of X . Since
X is quasicompact we can take its finite subcovering and therefore we can find
w1, . . . , wm ∈ Γ(X,V) such that each stalk Vx is generated as a DX,x-module by
their images. Therefore, we have a surjective morphism DmX −→ V . Therefore, we
have a surjective morphism Dm

X −→ Γ(X,V), and Γ(X,V) is a finitely generated
DX-module. Hence, V is coherent. �

Let X be an arbitrary smooth algebraic variety. We say that a quasicoherent
DX -module V on X is coherent, if for any x ∈ X there exists an open neighborhood
U of x and an exact sequence

DpU −→ D
q
U −→ V|U −→ 0.

By 1, this definition agrees with the previous one for affine varieties. Moreover,
1. implies the following result.

2.2. Proposition. Let V be a quasicoherent DX-module on a smooth algebraic
variety X. Then the following conditions are equivalent:

(i) V is a coherent DX-module;
(ii) for any open affine subset U in X, the restriction V|U is a coherent DU -

module;
(iii) for a cover (U1, . . . , Un) of X by open affine subsets, the restrictions V|Ui

are coherent DUi
-modules for 1 ≤ i ≤ n.

LetMcoh(DX) be the full subcategory ofMqc(DX) consisting of coherent DX -
modules. Then 2. implies thatMcoh(DX) is an abelian category.

For coherent DX -modules we can improve on 1.3.

2.3. Proposition. Let V be a coherent DX-module. Then

supp(V) = {x ∈ X | Vx 6= 0}.

Proof. By 1.3 it is enough to show that {x ∈ X | Vx 6= 0} is a closed set.
Let y be a point in the closure of this set. Let U be an affine neighborhood of
y. Then, by 1, V(U) is a finitely generated DU -module. Let s1, . . . , sn be the
sections in V(U) generating it as a DU -module. Then these sections also generate
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V|U as a DU -module. Let Z =
⋃n
i=1 supp(si). Then Z is a closed subset of U

contained in {x ∈ X | Vx 6= 0}. Assume that y is not in Z. Then there is a open
neighborhood V ⊂ U of y such that s1, . . . , sn vanish on V . It follows that V|V = 0,
and y /∈ supp(V) contradicting 1.3. Therefore, y ∈ Z. �

Let U be an open subset ofX . Let F be anOX -module and G anOU -submodule
of F|U . Denote by Ḡ the subsheaf of F defined by

Ḡ(V ) = {s ∈ F(V ) | s|V ∩ U ∈ G(V ∩ U)}.

Clearly, Ḡ is an OX -submodule of F . It is called the canonical extension of G.

2.4. Lemma. Let F be a quasicoherent OX-module and G a quasicoherent OU -
submodule of F|U . Then the canonical extension Ḡ of G is a quasicoherent OX -
module.

Proof. Let i be the natural inclusion of U into X . Denote by H the quotient
of F|U by G. Then H is a quasicoherent OU -module. Consider the natural mor-
phism α : i∗(F|U) −→ i∗(H) of quasicoherent OX -modules. Its composition with
the canonical morphism F −→ i∗(F|U) defines a morphism φ : F −→ i∗(H) of
quasicoherent OX -modules. Hence, its kernel is quasicoherent and

kerφ(V ) = {s ∈ F(V ) | φV (s) = 0} = {s ∈ F(V ) | αV ∩U (s|V ∩ U) = 0}

= {s ∈ F(V ) | s|V ∩ U ∈ G(V ∩ U)} = Ḡ(V ).

�

Let V be a quasicoherent DX -module and W a quasicoherent DU -submodule
of V|U . Then the canonical extension W̄ of W is a quasicoherent DX -submodule
of V .

A nonzero quasicoherent DX -module V is irreducible if any quasicoherent DX -
submodule W of V is either {0} or equal to V .

2.5. Lemma. Let U be an open set in X and V an irreducible quasicoherent
DX-module. Then V|U is either an irreducible quasicoherent DU -module or zero.

Proof. Assume that V|U 6= 0. Let W be a quasi-coherent DU -submodule of
V|U . Denote by W̄ its canonical extension to a DX -submodule of V . Since V is
irreducible, W̄ is either V or 0. This implies that W is either V|U or 0. �

In particular, this result has the following consequence.

2.6. Proposition. Let V be an irreducible quasicoherent DX-module. Then V
is coherent.

Proof. Let U be an affine open set in X . Then, by 5, V|U is either irreducible
or 0. If V|U is irreducible, by 1.1, Γ(U,V) must be an irreducible DU -module.
Hence, V|U is a coherent DU -module. The assertion follows from 2. �

2.7. Proposition. Let V be an irreducible quasicoherent DX-module. Then
the support supp(V) is an irreducible closed subvariety of X.

Proof. By definition, supp(V) is a closed subvariety of X . First we claim
that supp(V) is connected. Assume that supp(V) is a disjoint union of two closed
subvarieties Z1 and Z2 of X and that Z1 6= ∅. Let U = X−Z1 and denote byW the
canonical extension of the zero DU -submodule of V|U . Since V is irreducible, W is
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either V or 0. Let x ∈ Z1 and V an affine open neighborhood of x which doesn’t
intersect Z2. Then the support of V|V is equal to Z1∩V = (X−U)∩V = V −(V ∩U).
On the other hand,

Γ(V,W) = {s ∈ Γ(V,V) | s|V ∩ U = 0} = Γ(V,V),

and W 6= 0. Hence, W = V , and V|U = 0. Hence, Z2 = ∅. Therefore, supp(V) is
connected.

Now we want to prove that supp(V) is irreducible. Assume the opposite. Let
Z1 be an irreducible component of supp(V) and Z2 the union of all other irreducible
components. Then supp(V) = Z1 ∪ Z2. Let Z = Z1 ∩ Z2 and U = X − Z. Then
V|U 6= 0. By 4, it is an irreducible DU -module. Clearly, its support is equal to
(Z1∪Z2)− (Z1∩Z2) = (Z1− (Z1∩Z2))∪ (Z2− (Z1∩Z2)). By the preceding result,
this space must be connected, hence Z2 − (Z1 ∩ Z2) = ∅. It follows that Z2 ⊂ Z1,
and we have a contradiction. �

A quasicoherent DX -module V is of finite length, if it has a finite increasing
filtration

{0} = V0 ( V1 ( · · · ( Vn = V

by quasicoherentDX -modules, such that Vp/Vp−1 are irreducible DX -modules. The
number ℓ(V) = n is called the length of V . Clearly, by induction on the length of
V and 6, we immediately see that any quasicoherent DX -module of finite length is
coherent.

2.8. Lemma. Let V be a quasicoherent DX-module. Then the following condi-
tions are equivalent:

(i) V is of finite length;
(ii) for any open subset U in X, the restriction V|U is of finite length;
(iii) there is an open covering (Ui; 1 ≤ i ≤ n) of X such that V|Ui

, 1 ≤ i ≤ n,
are of finite length.

Proof. Clearly, by 5, (i) implies (ii). Also, (ii) implies (iii).
To prove that (iii) implies (i) we shall use induction on

∑n
j=1 ℓ(V|Uj

). If this

sum is 0, V|Uj
= 0 for all 1 ≤ j ≤ n, and V = 0. Assume that this sum is strictly

positive. If V is irreducible, we are done. If V is not irreducible, there exists a
nontrivial quasicoherent DX -submodule U , i.e., we have the exact sequence

0 −→ U −→ V −→W −→ 0

where neither U nor W is zero. Since

ℓ(V|Uj
) = ℓ(U|Uj

) + ℓ(W|Uj
)

for 1 ≤ j ≤ n, we see that

n
∑

j=1

ℓ(V|Uj
) =

n
∑

j=1

ℓ(U|Uj
) +

n
∑

j=1

ℓ(W|Uj
),

and neither summand on the right side is equal to zero. Therefore, the induction
assumption applies to both of them. It follows that U and W are of finite length,
hence V is of finite length. �
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3. Characteristic varieties

In this section we generalize the construction of the characteristic variety to
arbitrary coherent DX -modules.

First, we assume thatX is a smooth affine variety. LetDX be the corresponding
ring of differential operators on X . Then DX is a left and right nötherian ring by
II.3.7. Moreover, it has the natural filtration FDX by the order of differential
operators, and by II.3.6, as a filtered ring equipped with such filtration satisfies the
axioms of I.3.

Let π : T ∗(X) −→ X be the cotangent bundle of X . Since π is a locally trivial
fibration, the morphism π is affine. Therefore, T ∗(X) is an affine variety. As we
remarked in the proof of II.3.6, we have

GrDX = Γ(X,GrDX) = Γ(X, π∗(OT∗(X))) = Γ(T ∗(X),OT∗(X)) = R(T ∗(X)).

Any finitely generated DX -module V has a good DX -module filtration F V
and GrV is a finitely generated module over GrDX = R(T ∗(X)). Let I be the
annihilator of Gr V . Then, by I.10.2, the radical r(I) doesn’t depend on the choice
of good filtration on V . We call it the characteristic ideal of V and denote by J(V ).
The zero set of J(V ) in T ∗(X) is called the characteristic variety of V and denoted
by Ch(V ). These definitions agree with the definitions in I.10 for modules over
differential operators on kn.

Now we are going to sheafify these notions.
Let V be a coherent DX -module on X . Then we say that the characteristic

variety Ch(V) of V is the characteristic variety of the DX -module Γ(X,V).
We say that an increasing DX -module filtration FV of V by coherent OX -

submodules is good if

(i) Fn V = {0} for sufficiently negative n ∈ Z;
(ii) the filtration FV is exhaustive (i.e.

⋃

n∈Z Fn V = V);
(iii) the filtration FV is stable, i.e., there existsm0 ∈ Z such that FnDX Fm V =

Fm+n V for all n ∈ Z+ and m ≥ m0.

Let FV be a good filtration of V . Then Γ(X,Fp V) are finitely generated R(X)-
submodules of Γ(X,V) and (Γ(X,Fp V); p ∈ Z) is a good filtration of the DX -
module Γ(X,V).

3.1. Lemma. Let V be a coherent DX-module. Then

(i) V admits a good filtration;
(ii) the map (Fp V ; p ∈ Z) 7−→ (Γ(X,Fp V); p ∈ Z) is a bijection from the set

of good filtrations of V onto the set of good filtrations of Γ(X,V).

Proof. (i) The DX -module Γ(X,V) is finitely generated. Therefore it admits
a good filtration FΓ(X,V). By Serre’s theorem, we have V = ∆(Γ(X,V)), and
Fp V = ∆(Fp Γ(X,V)) are naturally identified with coherent OX -submodules of V .
It is straightforward to check that FV is a good filtration on V .

(ii) Follows immediately from Serre’s theorem. �

Let FV be a good filtration of V . Then GrV is a module over GrDX =
π∗(OT∗(X)). Moreover, since X is affine, we have

Γ(X,GrV) = Gr Γ(X,V)

where Γ(X,V) is equipped with the good filtration {Γ(X,Fp V), p ∈ Z}. Since
GrΓ(X,V) is a finitely generated R(T ∗(X))-module, by an obvious generalization
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of I.4.2 to A = R(T ∗(X)), we conclude that

Ch(V) = Ch(Γ(X,V)) = supp(Gr Γ(X,V)) = supp(Γ(X,GrV)).

This implies that the construction of the characteristic variety is local in nature,
i.e., we have the following result. Let U be an open set in X . Then we can view
T ∗(U) as an open subset π−1(U) = {(x, ω) ∈ T ∗(X) | ω ∈ T ∗x (X), x ∈ U} of
T ∗(X).

3.2. Lemma. Let U be an open affine set in X. Then

Ch(V|U ) = Ch(V) ∩ π−1(U).

Consider now the general case. Let X be a smooth algebraic variety and DX
the sheaf of differential operators on X . As before, let π : T ∗(X) −→ X be the
cotangent bundle of X .

Let V be a coherent DX -module.

3.3. Lemma. There exists a unique closed subvariety M of T ∗(X) such that
for any affine open set U ⊂ X we have Ch(V|U ) =M ∩ π−1(U).

Proof. Let U and V be two affine open subsets of X . Then, by 3.1, we have

Ch(V|U ) ∩ π
−1(U ∩ V ) = Ch(V|U∩V ) = Ch(V|V ) ∩ π

−1(U ∩ V ).

Therefore, the set M consisting of all pairs (x, ω), ω ∈ T ∗x (X), such that (x, ω) ∈
Ch(V|U ) for some affine open neighborhood of x, is well defined and has the required
property. �

The variety M described in the preceding lemma is the characteristic variety
Ch(V) of V .

Clearly, the definition of a good filtration of a coherent DX -module makes sense
even is X is not affine. Now we are going to show the existence of such filtrations.

First we need an auxiliary result. Let X be an algebraic variety. We show that
coherent OX -submodules can be extended from open subvarieties.

3.4. Proposition. Let F be a quasicoherent OX-module on X and G a coherent
OU -submodule of F|U . Then there exists a coherent OX-submodule G′ od F such
that G′|U = G.

Proof. Assume first that X is affine. Let Ḡ be the canonical extension of
G. Then Γ(X, Ḡ) is a direct limit of an increasing family of finitely generated
Γ(X,OX)-submodules. Let {Hi; i ∈ I} be the localizations of these submodules.
Then they form an increasing system of coherent OX -submodules of F , and their
direct limit is Ḡ. Since Ḡ|U = G is coherent, the system {Hi|U ; i ∈ I} stabilizes,
i.e., there exists i0 ∈ I such that Hi|U = G for i ≥ i0.

Consider now the general case. The proof is by induction on the cardinality of
a finite affine open cover of X . Assume that (Vi; 1 ≤ i ≤ n) is an affine open cover

of X and Y =
⋃n−1
i=1 Vi. Then by the induction assumption, there exists a coherent

OY -submodule H of F|Y such that H|Y ∩U = G|Y ∩U . The canonical extension H̄
of H to a submodule of F restricted to U contains G. Applying the first part of the
proof, there exists a coherent submodule K of H̄|Vn such that K|Vn∩U = G|Vn∩U .
Let G′ be the canonical extension of K to a submodule of H̄. Then G′|U contains
G. Moreover, G′|Y ∩ U ⊂ H̄|Y ∩ U = G|Y ∩ U , i.e., G′|Y ∩ U = G|Y ∩ U . Also,
G′|Vn ∩ U = K|Vn ∩ U = G|Vn ∩ U . Therefore, G′|U = G|U . On the other hand,
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since G′|Y ⊂ H̄|Y = H is coherent, and G′|Vn = K is also coherent, G′ is a coherent
OX -submodule of F . �

Let X be a smooth algebraic variety over k and DX the sheaf of differential
operators on X .

3.5. Theorem. Let V be a coherent DX-module. Then V admits a good filtra-
tion.

Proof. First we claim that there exists a coherent OX -submodule U of V such
that the morphism DX ⊗OX

U −→ V is an epimorphism. Let (Ui; 1 ≤ i ≤ n) be an
affine open cover of X . Then, for each 1 ≤ i ≤ n, Γ(Ui,V) is a finitely generated
DUi

-module. By 3, there exist coherent OX -submodules Gi of V such that Γ(Ui,Gi)
generate Γ(Ui,V) as a DUi

-module. Therefore, their sum has the required property.
Now we can define Fn V as the image of FnDX ⊗OX

U under the morphism
DX ⊗OX

U −→ V . Clearly, FV is a good filtration of V . �

Let V be a coherent DX -module and FV a good filtration of V . Let GrV
be the corresponding graded π∗(OT∗(X))-module. Then, for any open set U in
X , the filtration Fp(V|U ) = (Fp V)|U , p ∈ Z, is a good filtration of V|U . Also,
we have GrV|U = Gr(V|U ). Therefore, on affine open sets U in X , we have
Γ(U,GrV) = GrΓ(U,V). As we already remarked, the variety T ∗(U) is affine and
Γ(U, π∗(OT∗(X))) = R(T ∗(U)). Hence, if we localize Γ(U,GrV) as an R(T ∗(U))-

module, we get a unique OT∗(U)-module ṼU on U , with the property that π∗(ṼU ) =

GrV|U . Since Γ(U,GrV) is a finitely generated R(T ∗(U))-module, ṼU is a coherent

OT∗(U)-module. By glueing ṼU together, we get a unique coherent OT∗(X)-module

Ṽ on T ∗(X) with the property that π∗(Ṽ) = GrV .
This immediately implies the following generalization of the formula for char-

acteristic varieties of coherent modules on smooth affine varieties.

3.6. Proposition. Let V be a coherent DX-module, FV a good filtration of V
and GrV the corresponding graded π∗(OT∗(X))-module. Then:

(i) there exists a unique coherent OT∗(X)-module Ṽ on T ∗(X) such that π∗(Ṽ) =
GrV;

(ii)

Ch(V) = supp(Ṽ).

The following result is a generalization of I.10.4. Since the statement is local,
we can check it on affine open sets. There the argument is identical to the one in
I.10.4.

3.7. Proposition. Let

0 −→ V1 −→ V2 −→ V3 −→ 0

be a short exact sequence of coherent DX-modules. Then

Ch(V2) = Ch(V1) ∪ Ch(V3).

Let M be a subvariety of the cotangent variety T ∗(X) of X . We say that M is
a conical subvariety if (x, ω) ∈M implies (x, λω) ∈M for all λ ∈ k.

The generalizations of I.10.3 and I.10.7 are given in the following statements.
Since the statements are local, it is enough to check them on “small” affine open
sets U in the sense of II.2.10. Then π−1(U) ∼= U×kn where n = dimxX . Under this
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isomorphism, R(T ∗(U)) ∼= R(U)⊗kk[ξ1, . . . , ξn] = R(U)[ξ1, . . . , ξn] and the grading
is the natural grading of a polynomial ring. The annihilator of GrΓ(U,V) is a ho-
mogeneous ideal in R(U)[ξ1, . . . , ξn]. In this situation, the necessary modifications
of the proofs of I.10.3 and I.10.7 are straightforward.

3.8. Proposition. Let V be a coherent DX-module on X. Then the charac-
teristic variety Ch(V) is a conical subvariety of T ∗(X).

3.9. Theorem. Let V be a coherent DX-module on X. Then

π(Ch(V)) = supp(V).

4. Coherentor

In this section we introduce some basic definitions and results about O-modules
on algebraic varieties.

First, letX be an arbitrary algebraic variety over the algebraically closed field k.
We denote byM(OX) the category of OX -modules on X , and byMqc(OX) its full
subcategory of quasicoherent OX -modules. The functor Γ(X,−) of global sections
is a left exact functor from M(OX) into the category M(R(X)) of modules over
the ring R(X) of regular functions on X . By ([1], III.2.7) the right cohomological
dimension of Γ(X,−) is ≤ dimX .

4.1. Lemma. The forgetful functor For from the categoryMqc(OX) intoM(OX)
has a right adjoint functor QX :M(OX) −→Mqc(OX).

Proof. It is enough to show for any W ∈ M(OX) there exists Q(W) ∈
Mqc(OX) such that

HomOX
(V ,W) = HomOX

(V , Q(W))

for any V ∈ Mqc(OX).
First we assume that X is an affine variety. Then Γ(X,−) is an equivalence of

the categoryMqc(OX) withM(R(X)). Moreover, for any R(X)-moduleM denote

by M̃ = OX ⊗R(X) M its localization. Then M −→ M̃ is an exact functor from
M(R(X)) intoMqc(OX) and it is a quasi-inverse of Γ(X,−). Therefore,

HomOX
(V ,W) = HomOX

(Γ(X,V )̃ ,W)

= HomOX
(OX ⊗R(X) Γ(X,V),W) = HomR(X)(Γ(X,V),HomOX

(OX ,W))

= HomR(X)(Γ(X,V),Γ(X,W)) = HomOX
(V ,Γ(X,W )̃ ),

for any V ∈ Mqc(OX), and QX(W) = Γ(X,W )̃ in this case.
Now, let U be an oppen affine subset of an affine variety X and i : U −→ X

the natural immersion. Then, for any V ∈ Mqc(OX) and W ∈M(OU ), we have

HomOX
(V , i∗(W)) = HomOU

(V|U,W)

= HomOU
(V|U,QU(W)) = HomOX

(V , i∗(QU (W))).

Since the direct image preserves quasicoherence ([1], II.5.8), i∗(QU (W)) ∈ Mqc(OX),
and

QX(i∗(W)) = i∗(QU (W)),

i.e. the functors QX ◦ i∗ and i∗ ◦QU are isomorphic.
Now we consider the general situation. Let X be an arbitrary variety and let

U = (U1, U2, . . . , Un) be its cover by affine open sets. Denote by fi : Ui −→ X , fij :
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Ui ∩ Uj −→ X the natural immersions. From the corresponding Čech resolution,
we have the following exact sequence

0 −→W −→
n
⊕

i=1

fi∗(W|Ui) −→
⊕

i<j

fij∗(W|Ui ∩ Uj)

for anyW ∈M(OX). Fix 1 ≤ i ≤ n and denote by gij : Ui∩Uj −→ Ui the natural
inclusions for any j 6= i. Then fij = fi ◦ gij , and the morphism of fi∗(W|Ui) −→
⊕i6=jfij∗(W|Ui∩Uj) is obtained by applying the direct image of fi to the morphism
W|Ui −→ ⊕i6=jgij∗(W|Ui ∩ Uj). Since Ui and Ui ∩ Uj are open affine subvarieties,
by applying QUi

to this morphism and using the result of the preceding paragraph,
we get a morphism QUi

(W|Ui) −→ ⊕i6=jgij∗(QUi∩Uj
(W|Ui ∩ Uj)) such that the

following diagram commutes for any V ∈ Mqc(OX)

HomOX
(V , fi∗(W|Ui)) −−−−→ HomOX

(V , fij∗(W|Ui ∩ Uj))
∥

∥

∥

∥

∥

∥

HomOUi
(V|Ui,W|Ui) −−−−→ HomOUi

(V|Ui, gij∗(W|Ui ∩ Uj))
∥

∥

∥

∥

∥

∥

HomOUi
(V|Ui, QUi

(W|Ui)) −−−−→ HomOUi
(V|Ui, gij∗(QUi∩Uj

(W|Ui ∩ Uj)))
∥

∥

∥

∥

∥

∥

HomOX
(V , fi∗(QUi

(W|Ui))) −−−−→ HomOX
(V , fij∗(QUi∩Uj

(W|Ui ∩ Uj)))

.

The first differential

d1 :

n
⊕

i=1

fi∗(W|Ui) −→
⊕

i<j

fij∗(W|Ui ∩ Uj)

of the Čech resolution C·(U,W) determines by this correspondence the morphism

δ :

n
⊕

i=1

fi∗(QUi
(W|Ui)) −→

⊕

i<j

fij∗(QUi∩Uj
(W|Ui ∩ Uj)).

We denote by Q(W) the kernel of this morphism. Clearly, it is a quasicoherent
OX -module. Then, by left exactness of the the functor HomOX

(V ,−) we conclude
that HomOX

(V ,W) = HomOX
(V , Q(W)). �

The functor QX :M(OX) −→Mqc(OX) is called the coherentor.

4.2. Proposition. (i) The functor QX : M(OX) −→ Mqc(OX) is left
exact.

(ii) QX maps injective objects in M(OX) into injective objects inMqc(OX).
(iii) The composition QX◦For is isomorphic to the identity functor onMqc(OX).
(iv) Let U be an open subvariety of X and i : U −→ X the natural inclusion.

Then the functors QX ◦ i∗ and i∗ ◦QU are isomorphic.

Proof. (i) This is a property of any right adjoint functor.
(ii) This is a property of any right adjoint of an exact functor.
(iii) This is evident from the definition of QX .
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(iv) For any V ∈Mqc(OX) and W ∈M(OU ), we have

HomOX
(V , i∗(W)) = HomOU

(V|U,W)

= HomOU
(V|U,QU(W)) = HomOX

(V , i∗(QU (W))).

Since the inverse image preserves quasicoherence, i∗(QU (W)) ∈Mqc(OX), and

QX(i∗(W)) = i∗(QU (W)),

i.e., the functors QX ◦ i∗ and i∗ ◦QU are isomorphic. �

4.3. Theorem. The category Mqc(OX) has enough injectives.

Proof. Let V be a quasicoherent OX -module. Then there exists an injective
OX -module and a monomorphism ǫ : V −→ I. Since QX is left exact by 2.(i),
QX(ǫ) : QX(V) −→ QX(I) is a monomorphism. Moreover, by 2.(ii), QX(I) is
injective inMqc(OX). Finally, by 2.(iii), QX(V) ∼= V . �

4.4. Lemma. Let X be an affine variety and W ∈M(OX). Then RpQX(W) =
Hp(X,W )̃ .

Proof. We have seen in the proof of 1. that QX is isomorphic to the compo-
sition of the localization functor and the functor of global sections Γ(X,−). Let
I· be an injective resolution of W . Then Hp(X,W) = Hp(Γ(X, I·)). Since the
localization functor is exact,

Hp(X,W )̃ = Hp(Γ(X, I·)̃ ) = Hp(QX(I·)) = RpQX(W).

�

The following lemma is critical in the proof of various properties of the coher-
entor.

4.5. Lemma. Let V be an OX -module satisfying the condition:

(V) The cohomology Hp(U,V) = 0 for p ≥ 1 and any affine open set U ⊂ X.

Then, for any affine open set U ⊂ X, the direct image sheaf i∗(V|U) is QX-acyclic.

Proof. First we remark that the higher direct images Rpi∗(V|U) vanish. Fix
p > 0. For an arbitrary sheaf F on U , Rpi∗(F) is the sheaf attached to the presheaf
V 7−→ Hp(i−1(V ),F) = Hp(U ∩ V,F). If V is an affine open set, U ∩ V is also
affine, hence Hp(U ∩V,V) = 0. This implies that this presheaf vanishes on all affine
open sets. Since affine open sets form a basis of the topology of X , it follows that
the corresponding sheaf is zero.

Let I· be an injective resolution of V|U in M(OX). Then, by the previous
remark, the complex i∗(I·) is a resolution of i∗(V|U). Moreover, since i∗ is the
right adjoint of the restriction functorM(OX) −→M(OU ), it maps injectives into
injectives, i.e., i∗(I·) is an injective resolution of i∗(V|U) inM(OX). Therefore,

RpQX(i∗(V|U)) = Hp(QX(i∗(I
·)) = Hp(i∗(QU (I

·))),

because of 2.(iv). By 4,

Hp(QU (I
·)) = RpQU (V|U) = Hp(U,V )̃ = 0

for p > 0. Therefore, QU (I·) is an acyclic complex consisting of quasicoherent
OU -modules. Since i : U −→ X is an affine morphism, i∗ is an exact functor from
Mqc(OU ) into Mqc(OX). Therefore, the complex i∗(QU (I·)) is also acyclic, i.e.,
RpQX(i∗(V|U)) = 0 for p > 0. �
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4.6. Proposition. Quasicoherent OX-modules are acyclic for QX .

Proof. Let U = (U0, U1, . . . , Un) be an affine open cover of X . Let V be a
quasicoherent OX -module. Then V satisfies the condition (V) from the preceding
lemma. Therefore, the modules in the Čech complex C·(U,V) of V are all QX -
acyclic. It follows that C·(U,V) is a QX -acyclic resolution of V . Hence, by 2.(iii),
we have

RpQX(V) = Hp(QX(C·(U,V))) = Hp(C·(U,V)) = 0

for p > 0. �

This result implies the following basic fact.

4.7. Theorem. Let V ,W be two quasicoherent OX-modules. Then

Ext·Mqc(OX)(V ,W) = Ext·M(OX )(V ,W).

Proof. Let

0 −→W −→ I0 −→ I1 −→ . . . −→ In −→ . . .

be an injective resolution of W inM(OX). Then, by 2.(ii), 2.(iii) and 6,

0 −→W −→ QX(I0) −→ QX(I1) −→ . . . −→ QX(In) −→ . . .

is an injective resolution of W inMqc(OX). Hence,

ExtpM(OX)(V ,W) = Hp(HomOX
(V , I·)) = Hp(HomOX

(V , QX(I·))) = ExtpMqc(OX)(V ,W),

for any p ∈ Z+. �

Therefore, without any confusion we can denote

Ext·OX
(V ,W) = Ext·Mqc(OX)(V ,W) = Ext·M(OX)(V ,W),

for any two quasicoherent OX -modules V and W .

4.8. Theorem. The right cohomological dimension of QX is finite.

Proof. Fix an affine open cover U = (U0, U1, . . . , Un) of X .
First we observe the following fact:
Let V be an OX -module satisfying the condition (V) from 5. Then RpQX(V) =

0 for p > n.
As in the preceding proof, by 5, the modules in the Čech complex C·(U,V) of V

are all QX -acyclic. It follows that C·(U,V) is a QX -acyclic resolution of V . Hence,
we have RpQX(V) = Hp(QX(C·(U,V))) for p ≥ 0. This yields RpQX(V) = 0 for
p > n.

Now, we want to establish the following generalization of this:
Let V be an OX -module satisfying the condition:

(Vq) The cohomology Hp(U,V) = 0 for p > q and any affine open set U ⊂ X .

Then, RpQX(V) = 0 for p > q + n.
We established this result for q = 0. To prove the induction step we use the

induction in p. Assume that the statement holds for some q ≥ 0. Let V be an
OX -module such that Hp(U,V) = 0 for p > q + 1 and any affine open set U ⊂ X .
Let

0 −→ V −→ I −→W −→ 0

be a short exact sequence, with I an injective OX -module. Then for any affine
open set U ⊂ X , the restriction I|U is an injective OU -module. Therefore, from
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the long exact sequence of cohomology we conclude that the connecting homomor-
phism Hp(U,W) −→ Hp+1(U,V) is an isomorphism for p ≥ 1. This implies that
Hp(U,W) = 0 for p > q, i.e., the induction assumption applies toW . From the long
exact sequence of derived functors ofQX we conclude that the connecting morphism
RpQX(W) −→ Rp+1QX(V) is an isomorphism for p ≥ 1. Since RpQX(W) = 0 for
p > q + n, RpQX(V) = 0 for p > q + 1 + n. Therefore, (Vq+1) holds.

Since the right cohomological dimension of the functors Γ(U,−) is ≤ dimU ≤
dimX , we see that all OX -modules satisfy (VdimX). Therefore, for any quasico-
herent OX -module V , RpQX(V) = 0 for p > dimX + n. �

5. D-modules on projective spaces

Let X = Pn be the n-dimensional projective space over k. Denote by Y =
kn+1 and Y ∗ = Y − {0}. Let π : Y ∗ −→ X be the natural projection given by
π(x0, x1, . . . , xn) = [x0, x1, . . . , xn].

Let U0 = {[x0, x1, . . . , xn] ∈ Pn | x0 6= 0}. Then U0 is an open set in Pn

isomorphic to kn and the isomorphism c : kn −→ U0 is given by c(x1, x2, . . . , xn) =
[1, x1, x2, . . . , xn]. Moreover, π−1(U0) = {(y0, y1, y2, . . . , yn) | y0 6= 0}. Therefore
the map φ : k∗ × kn −→ π−1(U0) defined by

φ(t, z1, z2, . . . , zn) = (t, tz1, tz2, . . . , tzn)

is an isomorphism of k∗×kn with π−1(U0) such that π(φ(t, z1, . . . , zn)) = [1, z1, . . . , zn],
Therefore, the following diagram commutes:

k∗ × kn
φ

−−−−→ π−1(U0)

1×c





y





y

π

k∗ × U0
pr2
−−−−→ U0

.

Clearly, α = φ ◦ (1 × c)−1 : k∗ × U0 −→ π−1(U0) is an isomorphism given by the
formula

α(t, [1, x1, x2, . . . , xn]) = (t, tx1, tx2, . . . , txn)

and it trivializes the fibration π : Y ∗ −→ X over the open set U0. Since, GL(n+1, k)
acts transitively on Pn this proves following assertion.

5.1. Lemma. The morphism π : Y ∗ −→ X is a locally trivial fibration with
fibres isomorphic to k∗.

Clearly, U0 and π−1(U0) are affine varieties. Therefore, by ..., if V is a quasi-
coherent DX -module, we have

Γ(π−1(U0), π
+(V)) = R(π−1(U0))⊗R(U0) Γ(U0,V).

On the other hand, the isomorphism α : k∗ × U0 −→ π−1(U0) induces an isomor-
phism α∗ : R(π−1(U0)) −→ R(k∗) ⊗k R(U0). Under this isomorphism, the R(U0)-
module action corresponds to the multiplication in the second factor. Therefore,
this isomorphism induces the isomorphism of Γ(π−1(U0), π

+(V)) with R(k∗) ⊗k
Γ(U0,V).

Using again the transitivity of the GL(n+1, k)-action, we immediately get the
following consequence.

5.2. Lemma. The inverse image functor π+ : Mqc(DX) −→ Mqc(DY ∗) is
exact.
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Therefore, if

0 −→ V1 −→ V2 −→ V3 −→> 0

is an exact sequence of quasicoherent DX -modules, we have the exact sequence

0 −→ π+(V1) −→ π+(V2) −→ π+(V3) −→ 0

of quasicoherent DY ∗ -modules. In addition, if we denote by j : Y ∗ −→ Y the
natural immersion, we have the exact sequence of

0 −→ j+(π
+(V1)) −→ j+(π

+(V2)) −→ j+(π
+(V3)) −→ K −→ 0

of quasicoherent DY -modules, and K is supported at {0}. Since Y is an affine space,
this implies that

0 −→ Γ(Y, j+(π
+(V1))) −→ Γ(Y, j+(π

+(V2))) −→ Γ(Y, j+(π
+(V3))) −→ Γ(Y,K) −→ 0

is an exact sequence of D(n+1)-modules. For any DY ∗ -module W , since j+(W) =
j·(W), we have Γ(Y, j+(W)) = Γ(Y ∗,W). Hence, we conclude that

0 −→ Γ(Y ∗, π+(V1)) −→ Γ(Y ∗, π+(V2)) −→ Γ(Y ∗, π+(V3)) −→ Γ(Y,K) −→ 0

is an exact sequence of D(n+ 1)-modules.
Let E =

∑n
i=0 yi

∂
∂yi

be the Euler operator on Y . The differential operator E

is a vector field on Y . If y = (y0, y1, . . . , yn) is a point in Y ∗, E(y) is the tangent
vector to the curve t 7−→ (ty0, ty1, . . . , tyn) at y. Hence, we have the following
result.

5.3. Lemma. For any y ∈ Y ∗, the value of the Euler operator E at y is in the
kernel of the differential of π : Y ∗ −→ X.

Under the isomorphism α : k∗ × U0 −→ π−1(U0), the Euler operator corre-
sponds to the differential operator t ∂

∂t
on k∗×U0, where t is the natural coordinate

on k∗. Clearly, R(k∗) is the ring k((t)) which is the localization of the ring of
polynomials k[t] with respect to the multiplicative system tn, n ∈ Z+. Therefore,
under the isomorphism given by α, we have

Γ(π−1(U0), π
+(V)) ∼= k((t)) ⊗k Γ(U0,V).

Therefore, every section of Γ(π−1(U0), π
+(V)) is annihilated by

∏

p∈S(E−p), where
S is a finite subset of Z depending on the section.

5.4. Lemma. Let V be a quasicoherent DX-module. Then Γ(Y ∗, π+(V)) is a
direct sum of E-eigenspaces for eigenvalues from Z.

Proof. Since finitely many translates of U0 under the action of GL(n+ 1, k)
cover X , the finitely many translates of π−1(U0) cover Y ∗. By the preceding ar-
gument, for any global section v of V , there exists a finite subset S ⊂ Z such that
∏

p∈S(E − p)v = 0. �

Therefore, the exact sequence we considered splits under the E-action in an
infinite family of exact sequences corresponding to the different eigenvalues of E.
In particular, if we denote by Γ(Y ∗, π+(V))(p) the E-eigenspace of Γ(Y ∗, π+(V))
for the eigenvalue p ∈ Z, we have

0 −→ Γ(Y ∗, π+(V1))(p) −→ Γ(Y ∗, π+(V2))(p) −→ Γ(Y ∗, π+(V3))(p) −→ Γ(Y,K)(p) −→ 0,

for any p ∈ Z.
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On the other hand, we have the natural linear maps γU : Γ(U,V) −→ Γ(π−1(U), π+(V))
which are compatible with restrictions, i.e., the diagram

Γ(U,V)
γU
−−−−→ Γ(π−1(U), π+(V))

rV,U





y





y

r
π−1(V ),π−1(U)

Γ(V,V)
γV
−−−−→ Γ(π−1(V ), π+(V))

commutes for any two open sets V ⊂ U in X . Clearly, γU0 corresponds to the map
v 7−→ 1⊗ v|U0 from Γ(U0,V) into k((t))⊗k Γ(U0,V) under the above identification.
Therefore, it is an isomorphism of Γ(U0,V) onto Γ(π−1(U0), π

+(V))(0). Hence, we

can view γ = γX as a linear map from Γ(X,V) into Γ(Y ∗, π+(V))(0).
Clearly, γ(v) = 0 implies γ(v)|U0 = 0 and therefore v|U0 = 0. Hence, by using

again the transitivity of the action of GL(n + 1, k) on X , we conclude that v = 0.
It follows that γ : Γ(X,V) −→ Γ(Y ∗, π+(V))(0) is injective.

5.5. Lemma. Let V be a quasicoherent DX -module. Then γ : Γ(X,V) −→
Γ(Y ∗, π+(V))(0) is an isomorphism.

Proof. Let s be a global section of Γ(Y ∗, π+(V))(0). Then, by the preceding

discussion, its restriction to π−1(U0) is equal to γU0(v0) for some section v0 ∈ V(U0).
Since finitely many translates of U0 under the action of GL(n + 1, k) cover X , we
see that there is a cover U0, . . . , Um of X and sections v0, . . . , vm of V on these open
sets, such that γUk

(vk) = s|π−1(Uk) for 0 ≤ k ≤ m. Since γUk
are injective and Uk

and π−1(Uk) affine varieties, by localization we conclude that γUk∩Ul
are injective.

Therefore, vk|Uk∩Ul
= vl|Uk∩Ul

for every pair 0 ≤ k < l ≤ m. It follows that there
exists a global section v of V such that v|Uk

= vk for any 0 ≤ k ≤ m. Therefore,

γ(v)|π−1(Uk) = γUk
(v|Uk

) = γUk
(vk) = s|π−1(Uk)

for 0 ≤ k ≤ m, and γ(v) = s. This proves surjectivity of γ. �

The following result follows by direct calculation.

5.6. Lemma. For any 0 ≤ i ≤ n we have

(i) [E, yi] = yi;
(ii) [E, ∂

∂yi
] = − ∂

∂yi
.

5.7. Lemma. Let Y = kn+1 and V be a quasicoherent DY -module supported at
{0}. Then Γ(Y,V) is the direct sum of E-eigenspaces for eigenvalues {−(n+k) | k ∈
N}.

Proof. Let V = Γ(Y,V). By I.13.7, we see that V is generated by the subspace
V0 of all global sections of V annihilated by yi, 0 ≤ i ≤ n. Let v ∈ V0. Then
v = [∂i, yi]v = −yi∂iv; hence Ev = −(n+ 1)v. Moreover, V = ⊕I∈Zn+1

+
∂IV0. By 6,

for any w = ∂Iv, v ∈ V0, we have

Ew = E∂Iv = ∂IEv − |I|∂Iv = (−(n+ 1)− |I|)∂Iv = −(n+ 1 + |I|)w,

i.e. V is a direct sum of eigenspaces of E with eigenvalues {−(n+ k) | k ∈ N}. �

In particular, since K is supported at {0}, we see that Γ(Y,K)(0) = {0}, and

0 −→ Γ(X,V1) −→ Γ(X,V2) −→ Γ(X,V3) −→ 0

is exact. Therefore, Γ(X,−) is an exact functor onMqc(DX).
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5.8. Theorem. Let V be a quasicoherent DX-module on n-dimensional projec-
tive space X = Pn. Then Hp(X,V) = 0 for p ∈ N.

Proof. By ..., V has a right resolution I· by injective quasicoherent DX -
modules. By ..., injective quasicoherent DX -modules are Γ-acyclic. Therefore,
Hp(X,V) = Hp(Γ(X, I·)) = 0 for p > 0 since Γ is exact on quasicoherent DX -
modules. �

Therefore, if we denote by DX = Γ(X,DX) global differential operators on X ,
Γ : Mqc(DX) −→ M(DX) is an exact functor. We can also define the functor
∆ :M(DX) −→M(DX) by ∆(V ) = DX ⊗DX

V . Then ∆ is a right exact functor.

Let V ∈ M(DX). Then there exists an exact sequence D
(I)
X −→ D

(J)
X −→ V −→ 0

of DX -modules, and after applying ∆ we get the exact sequence D
(I)
X −→ D

(J)
X −→

∆(V ) −→ 0 of DX -modules. Therefore, ∆(V ) is a quasicoherent DX -module.
The functor Γ ◦∆ is a right exact functor fromM(DX) into itself. Moreover,

for any V ∈ M(DX) there exists a natural morphism λV : V −→ Γ(X,∆(V )).
Clearly, λ is a natural transformation of the identity functor into Γ ◦∆.

5.9. Lemma. The natural transformation λ is an isomorphism of the identity
functor on M(DX) into the functor Γ ◦∆.

Proof. Clearly, λF : F −→ Γ(X,∆(F )) is an isomorphism for any free DX -

module F . Therefore, if we take the exact sequence D
(I)
X −→ D

(J)
X −→ V −→ 0 of

DX-modules, we get the following commutative diagram

D
(I)
X −−−−→ D

(J)
X −−−−→ V −−−−→ 0





y

λ
D

(I)
X





y

λ
D

(J)
X





y
λV

D
(I)
X −−−−→ D

(J)
X −−−−→ Γ(X,∆(V )) −−−−→ 0

of DX -modules. Its rows are exact and first two vertical arrows are isomorphisms.
Therefore, λV is an isomorphism. �

5.10. Lemma. Let V be a quasicoherent DX-module. If Γ(X,V) = 0, then
V = 0.

Proof. Assume that Γ(X,V) = 0. By 4.(ii), this implies that Γ(Y ∗, π+(V))(0) =
0. We claim that actually Γ(Y ∗, π+(V)) = 0. Assume the opposite. By 4.(i),
this implies that Γ(Y ∗, π+(V))(s) 6= 0 for some s ∈ Z − {0}. If s > 0 and

v ∈ Γ(Y ∗, π+(V))(s), v 6= 0, E∂iv = (s − 1)∂iv for 0 ≤ i ≤ n by 5.(ii). Clearly,
∂iv = 0 for all 0 ≤ i ≤ n is impossible, since it would imply that Ev = 0. There-
fore, Γ(Y ∗, π+(V))(s−1) 6= 0, and by downward induction in s, we get a contra-

diction. Hence, s must be negative. In this case, if v ∈ Γ(Y ∗, π+(V))(s), v 6= 0,
Eyiv = (s + 1)yiv for 0 ≤ i ≤ n by 5.(i). If yiv = 0, the support of the section v
is contained in the intersction of Y ∗ with the ith-coordinate hyperplane. Since the
intersection of all coordinate hyperplanes with Y ∗ is empty, yiv 6= 0 for at least one
0 ≤ i ≤ n. This implies that Γ(Y ∗, π+(V))(s+1) 6= 0, and by induction in s we get
to a contradiction again.

It follows that Γ(Y, j+(π
+(V))) = Γ(Y ∗, π+(V)) = 0, and since Y is an affine

variety, j+(π
+(V)) = 0. This, in turn implies that π+(V) = 0 and V = 0. �
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For any quasicoherent DX -module V there exists a natural morphism µV of
∆(Γ(X,V)) into V . Clearly, µ is a natural transformation of the functor ∆ ◦Γ into
the identity functor onMqc(DX).

5.11. Lemma. The natural transformation µ is an isomorphism of the functor
∆ ◦ Γ into the identity functor onM(DX).

Proof. Consider the exact sequence

0 −→ K −→ ∆(Γ(X,V)) −→ V −→ C −→ 0

of quasicoherent DX -modules. Since Γ(X,−) is exact by 8, we get the exact se-
quence

0 −→ Γ(X,K) −→ Γ(X,∆(Γ(X,V))) −→ Γ(X,V) −→ Γ(X, C) −→ 0.

of DX -modules. By 9, the middle arrow is an isomorphism, hence Γ(X,K) =
Γ(X, C) = 0. By 10, we finally conclude that K = C = 0. �

This immediately implies the following result.

5.12. Theorem. The functor Γ(X,−) is an equivalence of the categoryMqc(DX)
withM(DX). Its inverse is ∆.

5.13. Corollary. Any quasicoherent DX-module on X = Pn is generated by
its global sections.

Now we want to extend these results to products of smooth affine varieties and
projective spaces. Let X = Pn and Y a smooth affine variety. Let π : X×Y −→ X
be the natural projection. Then π is an affine morphism. In fact, if U ⊂ X is an
open affine subvariety, π−1(U) = U × Y is an open affine subvariety of X × Y .
Therefore, by ...,

Hp(X × Y,V) = Hp(X, π∗(V)), p ∈ Z,

for any quasicoherent OX -module V .
If V is a DX×Y -module, and U ⊂ X an open affine subset, then

π∗(V)(U) = V(π−1(U)) = V(U × Y ) = Γ(U × Y,V)

is an D(U × Y )-module. Since D(U × Y ) = D(U) ⊗k D(Y ) by ..., π∗(V)(U) has
a natural D(U)-module structure induced by the map T 7−→ T ⊗ 1 from D(U)
into D(U) ⊗k D(Y ). Therefore, π∗(V) has a natural structure of a DX -module.
This structure is compatible with the OX -module structure. Since π∗ preserves
quasicoherence, if V is a quasicoherent DX×Y -module, the direct image π∗(V) is a
quasicoherent DX -module. Hence, by 8, we have

Hp(X × Y,V) = Hp(X, π∗(V)) = 0, p > 0,

and the functor Γ(X × Y,−) is exact onMqc(DX×Y ). On the other hand, if

0 = Γ(X × Y,V) = Γ(X, π∗(V)),

we have π∗(V) = 0 by 10. If U ⊂ X is an open affine subset,

0 = π∗(V)(U) = V(U × Y ).

Since U × Y is an affine variety and V is quasicoherent, it follows that V|U×Y = 0.
Since U is arbitrary, this implies that V = 0.

This proves the following generalization of 12.
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5.14. Theorem. Let X = Pn and Y a smooth affine variety. Then the functor
Γ(X × Y,−) is an equivalence of the category Mqc(DX×Y ) with M(DX×Y ). Its
inverse is ∆.

In particular, quasicoherent DX×Y -modules are generated by their global sec-
tions.





CHAPTER IV

Direct and inverse images of D-modules

1. The bimodule DX→Y

Let X be an algebraic variety. Let V and W be two OX -modules. A k-linear
morphism T of V into W is called a differential morphism of order ≤ n if for any
open set U and (n + 1)-tuple of regular functions f0, f1, . . . , fn ∈ R(U) we have
[. . . [[T, f0], f1], . . . , fn] = 0 on U . Let Diff(V ,W) be the space of all differential
morphisms of V intoW . Also, let FpDiff(V ,W) = 0 for p < 0 and FpDiff(V ,W) the
subspace of differential morphisms of order ≤ p for positive p. Clearly, FDiff(V ,W)
is an exhaustive filtration of Diff(V ,W). This notion generalizes the notion of a
differential operator on X ; if V =W = OX , the differential endomorphisms of OX
are exactly the differential operators on X .

Analogously, we can define the sheaf Diff(V ,W) of differential morphisms of
V into W .

1.1. Lemma. Let T, S be two differential morphisms of order ≤ n, ≤ m respec-
tively. Then T ◦ S is a differential endomorphism of order ≤ n+m.

Proof. We prove the statement by induction on n +m. If n = m = 0, T, S
are morphisms of OX -modules, hence T ◦ S is a morphism of OX -modules and it
is a differential morphism of order ≤ 0.

Assume now that n+m > 0. Then

[T ◦ S, f ] = TSf − fTS = T [S, f ] + [T, f ]S,

and [T, f ], [S, f ] are differential morphisms of order≤ n−1 and ≤ m−1 respectively.
By the induction assumption, this differential morphism is of order ≤ n +m − 1.
Therefore T ◦ S is of order ≤ n+m. �

Therefore, all differential endomorphisms of an OX -module V form a filtered
ring and the local differential endomorphisms form a sheaf of filtered rings.

Let X and Y be smooth varieties and φ : X −→ Y a morphism of varieties. Let
DX→Y = φ∗(DY ). Then this is an OX -module and also a right φ−1DY -module for
the right multiplication. Let C be the sheaf of all local differential endomorphisms
of the OX -module DX→Y which are also φ−1DY -endomorphisms. In the following
we want to describe the structure of the sheaf of rings C.

First, we remark that OX is naturally a subring of F0 C.
The tangent sheaf TY is an OY -submodule of DY . Let JY be the sheaf of left

ideals in DY generated by TY . Let y ∈ Y , then by ..., there exists an affine open
neighborhood U of y and a coordinate system (f1, . . . , fm;D1, . . . , Dm) on it, such
that (DI ; I ∈ Z+) is a basis of the free OU -module DU for the left multiplication.
The sheaf of left ideals JY |U is spanned by (DI ; I ∈ Z+, |I| > 0). Therefore, we

97
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have DY = OY ⊕ JY . This leads to the direct sum decomposition

DX→Y = OX ⊕ φ
∗(JY )

as OX -modules. Let α : DX→Y −→ OX be the corresponding projection.
Let S ∈ C(U). We claim that φ∗(JY )|U is S-invariant. By restriction, we can

assume that U is affine and the image φ(U) is contained inside a “small” affine open
set V with coordinate system (f1, . . . , fm;D1, . . . , Dm). Then, the global sections
of φ∗(JY )|U are a free R(U)-module with basis (1 ⊗DI ; I ∈ Z+, |I| > 0). Since S
is an endomorphism of the right DV -module DX→Y (U), we have

S





∑

|I|>0

gI ⊗D
I



 =
∑

|I|>0

S(gI ⊗ 1)DI ∈ φ∗(JY )

for any gI ∈ R(U). Therefore, φ∗(JY )|U is invariant under S.
It follows that φ∗(JY ) is a C-submodule of DX→Y . This implies that the

quotient DX→Y /φ∗(JY ) is a C-module. By the preceding discussion, the compo-
sition of the natural monomorphism OX −→ DX→Y with this quotient map is
an isomorphism of OX -modules. In turn, this isomorphism defines a morphism
γ : C −→ Endk(OX) of sheaves of rings given by

γU (S)(f) = α(S(f ⊗ 1))

for f ∈ OX(U); clearly, γ is identity on OX . Hence, γ maps C into differential endo-
morphisms of OX , i.e., local differential operators on X . Therefore, we constructed
a homomorphism γ : C −→ DX of sheaves of filtered rings. The main result of this
section is the following theorem.

1.2. Theorem. The map γ : C −→ DX is an isomorphism of sheaves of filtered
rings.

First we prove that γ is a monomorphism. We start the proof with a special
case.

1.3. Lemma. Let U ⊂ X be an open set in X and S an element of C(U) of
order ≤ 0. Then S = f ∈ OX(U).

Proof. Since S is of order ≤ 0, it is in fact an endomorphism of the OU -
module DX→Y |U . It is enough to prove that the restriction of S to elements of an
open cover of U is given by functions. Therefore, we can assume that U is affine and
the image φ(U) is contained inside a “small” affine open set V in Y with coordinate
system (f1, . . . , fm;D1, . . . , Dm). More precisely, by 2.10. and 3.5, we can assume
that there exists a coordinate system (f1, f2, . . . , fm;D1, D2, . . . , Dm) on Y such
that

(i) [Di, Dj] = 0 for 1 ≤ i ≤ m;
(ii) DI , I ∈ Zm+ , are a basis of the free R(V )-module DV (with respect to the

left multiplication).

Therefore, in this case DX→Y (U) = R(U) ⊗R(V ) DV is a free R(U)-module with

a basis 1 ⊗DI , I ∈ Zm+ . Since S commutes with left multiplication by elements of
R(X) and right multiplication by elements of DY , it is completely determined by
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its value on 1⊗ 1. Let S(1⊗ 1) =
∑

aI ⊗DI for some aI ∈ R(X). Then

∑

aI ⊗D
Ifj = S(1⊗ 1)fj = S(1⊗ fj) = S(fj ◦ φ⊗ 1)

= (fj ◦ φ)S(1 ⊗ 1) =
∑

aI(fj ◦ φ) ⊗D
I =

∑

aI ⊗ fjD
I

for any 1 ≤ j ≤ m. This implies that
∑

aI ⊗ [DI , fj ] = 0 for any 1 ≤ j ≤ m.
Let I = (i1, i2, . . . , im). Clearly, if ij = 0 we have [DI , fj ] = 0. If ij > 0 and

we put I ′ = (i1, i2, . . . , ij−1, ij − 1, ij+1, . . . , im), we have [DI , fj ] = ijD
I′ . This

immediately leads to aI = 0 for I 6= 0. Therefore, S = a0. �

Now we can prove injectivity of γU . Let S ∈ C(U) and γU (S) = 0. We prove
that S = 0 by induction on the order p of S. If p = 0, S = f ∈ OX(U) by 4,
and γU (S) = γU (f) = f . Hence, S = 0. Assume that the statement holds for all
T ∈ C(V ) with order ≤ p− 1, p > 1 and all open sets V ⊂ X . If S has order ≤ p,
we see that γ([S, g]) = [γ(S), g] = 0 for any g ∈ OX(V ), V ⊂ U , and since [S, g]
are of order ≤ p− 1, by the induction assumption [S, g] = 0. This implies that S is
of order ≤ 0, and S = 0 by the first part of the proof.

This shows that γ : C −→ DX is a monomorphism.
It remains to show that γ is an epimorphism.
We first show that all local vector fields are in the image of γ. Let TX and TY

be the tangent sheaves of X and Y respectively. By 2.12, the OY -module TY is a
locally free module of finite rank. Therefore, its inverse image φ∗(TY ) is a locally
free OX -module of finite rank. Hence, a section of φ∗(TY ) over an open set U ⊂ X
is completely determined by its images in the geometric fibres

Tx(φ
∗(TY )) = OX,x/mX,x ⊗OY,φ(x)

TY,φ(x) = Tφ(x)(Y )

for all x ∈ U . Let Ψ ∈ HomOX
(TX , φ∗(TY )). Then, for any x ∈ X , this morphism

determines a linear map between the geometric fibres,

Tx(X) = Tx(TX)
Tx(Ψ)
−−−−→ Tx(φ

∗(TY )) = Tφ(x)(Y ).

1.4. Lemma. There exists a unique morphism Φ : TX −→ φ∗(TY ) of OX -
modules, such that the induced linear map Tx(Φ) of the geometric fibre of TX into
the geometric fibre of φ∗(TY ) is equal to the tangent linear map Tx(φ) : Tx(X) −→
Tφ(x)(Y ) for any x ∈ X.

Proof. Clearly, the uniqueness follows from the above remark. Let U be an
open set in X and T a vector field on U . Let U = (Ui; 1 ≤ i ≤ n) be an open
cover of U consisting of sets with the property that their image in Y is contained
in a “small” open set, i.e., φ(Ui) ⊂ Vi and on Vi there exists a coordinate system
(f1, . . . , fm;D1, . . . , Dm). In this case, for any tangent vector ξ ∈ Tx(X), x ∈ Ui,
we have Tx(φ)(ξ) =

∑m
j=1 ajDj(φ(x)). Moreover,

(Tx(φ)(ξ))(dfj(φ(x))) =

m
∑

k=1

akDk(φ(x))(dfj(φ(x))) =

m
∑

k=1

akDk(fj)(φ(x)) = aj

for any 1 ≤ j ≤ m. Hence,

aj = ξ(T ∗x (φ)(dfj(φ(x)))) = ξ(d(fj ◦ φ)(x))
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for 1 ≤ j ≤ m. This finally yields

Tx(φ)(ξ) =

m
∑

j=1

ξ(d(fj ◦ φ)(x))Dj(φ(x)).

The functions x 7−→ ((T |Ui
)(fj ◦ φ))(x), 1 ≤ j ≤ m, are regular on Ui. It follows

that
m
∑

j=1

(T |Ui
)(fj ◦ φ) ⊗Dj

is a section of φ∗(TY ) on Ui. Moreover, by the preceding formulae, for any x ∈ Ui,
the image of this section in the geometric fibre Tφ(x)(Y ) of φ∗(TY ) at φ(x) is equal
to
∑m

j=1 T (fj ◦ φ)(x)Dj(φ(x)) =
∑m
j=1 T (x)(d(fj ◦ φ)(x))Dj(φ(x)) = Tx(φ)(T (x)).

Therefore, we constructed a section on Uj with the image Tx(φ)(T (x)) in the geo-
metric fibre Tφ(x)(Y ) at x ∈ Ui. Since the sections are completely determined by
their images in the geometric fibres, this section is unique. We can glue together
these sections over all elements of U to get a section Φ(T ) over U . Clearly, the map
Φ : T 7−→ Φ(T ) has the required property. �

Now, we remark that locally TY is an OY -module direct summand of DY ,
hence the canonical morphism φ∗(TY ) −→ DX→Y is a monomorphism, and we can
identify φ∗(TY ) with a submodule of DX→Y . Therefore, we can view Φ a morphism
of TX into DX→Y .

1.5. Lemma. Let U ⊂ X be an open set. Let T be a vector field on U . Then
there is a unique element δU (T ) ∈ C(U) such that

δU (T )|V (g ⊗ 1) = T (g)⊗ 1 + gΦ(T )|V

for any g ∈ OX(V ) and any open set V ⊂ U .

Proof. Assume that there exists an element S ∈ C(U) which satisfies

S|V (g ⊗ 1) = T (g)⊗ 1 + gΦ(T )|V

for any g ∈ OX(V ) and any open set V ⊂ U . Let x ∈ U . Then there exists an
affine open neighborhood W of φ(x) in Y and an affine open neighborhood V of
x, V ⊂ U such that φ(V ) ⊂ W . Therefore, DX→Y (V ) = R(V ) ⊗R(W ) DW . Then,
for any g ∈ R(V ) and Q ∈ DW , we have S|V (g ⊗ Q) = S(g ⊗ 1)Q since S|V is
an endomorphism of the right DW -module. It follows that such S|V is unique.
Therefore, S is uniquely determined by the above property.

By the uniqueness, to show the existence, it is enough to show the existence
for U replaced by elements of an open cover of U . Therefore, we can assume from
the beginning that U is an affine open set such that φ(U) is contained in a “small”
affine open setW ⊂ Y with coordinate system (f1, . . . , fm;D1, . . . , Dm). As above,
in this case we have DX→Y (V ) = R(V )⊗R(W ) DW . First, we can define a bilinear
map from R(V )×DW into R(V )⊗R(W ) DW by

(g, S) 7−→ T (g)⊗ S + gΦ(T )|V S.

Consider now h ∈ R(W ); its composition with φ|V is a regular function on V . Then
we claim that

Φ(T )|V h− (h ◦ φ)Φ(T )|V = T (h ◦ φ)⊗ 1.
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Using the calculation from the proof of 4, we see that

Φ(T )|V h− (h ◦ φ)Φ(T )|V =

m
∑

j=1

(T (fj ◦ φ)⊗Djh− (h ◦ φ)T (fj ◦ φ)⊗Dj)

=

m
∑

j=1

T (fj ◦ φ)⊗ [Dj , h] =

m
∑

j=1

T (fj ◦ φ)⊗Dj(h) =

m
∑

j=1

T (fj ◦ φ)(Dj(h) ◦ φ)⊗ 1,

i.e., this expression is a function. Its value at x ∈ V is

m
∑

j=1

T (fj ◦ φ)(x)Dj(h)(φ(x)) =
m
∑

j=1

T (x)(d(fj ◦ φ)(x))Dj(φ(x))(dh(φ(x)))

= (Tx(φ)(T (x)))(dh(φ(x))) = T (x)(d(h ◦ φ)(x)) = T (h ◦ φ)(x),

which proves the above relation. Therefore, we have

T (g(h ◦ φ)) ⊗ S + g(h ◦ φ)Φ(T )S

= T (g)⊗ hS + gT (h ◦ φ)⊗ S + g(h ◦ φ)Φ(T )S = T (g)⊗ hS + gΦ(T )hS

for any h ∈ R(Y ), hence this map factors through DX→Y (V ). Therefore, it defines
δV (T ) ∈ Endk(DX→Y (V )). If Vf , f ∈ R(V ), is a principal open set in V , we have
DX→Y (Vf ) = R(Vf ) ⊗R(W ) DW = R(V )f ⊗R(W ) DW . Therefore, by localization,
δV (T ) “extends” to an endomorphism DX→Y (Vf ) which is given by essentially the
same formula, and therefore equal to δVf

(T ). This implies that δV (T ) defines an
element of Endk(DX→Y ). Clearly,

[δV (T ), g](h⊗ 1) = δV (T )(gh⊗ 1)− gδV (T )(h⊗ 1)

= T (gh)⊗ 1− gT (h)⊗ 1 = T (g)(h⊗ 1)

for any g, h ∈ R(V ). Hence, δV (T ) is a differential endomorphism. Moreover, it
also commutes with the right action of DW , hence δV (T ) ∈ C(V ). This completes
the proof of existence. �

On the other hand, since φ∗(TY ) ⊂ φ∗(JY ) = kerα, we have

γ(δ(T ))(g) = α(δ(T )(g ⊗ 1)) = α(T (g)⊗ 1) = T (g)

for any g ∈ OX , i.e., (γ ◦ δ)(T ) = T . This implies that the image of γ contains all
vector fields on X , and since they and OX generate sheaf of rings DX by 3.7.(ii), γ
is an epimorphism. This completes the proof of 2.

Therefore, we can consider DX→Y as a sheaf of bimodules, with left DX -action
and right φ−1(DY )-action.

Now we discuss the case whereX = kn and Y = km. In this case we constructed
in I.12. a left DX -module structure on DX→Y given by

∂

∂xi
(P ⊗ S) =

∂P

∂xi
⊗ S +

m
∑

j=1

P
∂(yj ◦ φ)

∂xi
⊗

∂

∂yj
S

for any P ∈ R(X) and S ∈ DY . Clearly, this left DX -action on DX→Y agrees with
the one we just defined in general. Hence, the sheaf of bimodules DX→Y is the
natural generalization of the construction from I in the case of polynomial maps.
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1.6. Remark. Assume that U is an open subset of a smooth algebraic variety
X . Consider the natural inclusion i : U −→ X . Then, i−1(DX) = DX |U = DU .
Hence, DU→X is isomorphic to DU as a right i−1(DU )-module. Clearly, DU→X
has is a left DU -module by the action given by left multiplication. This action
commutes with the right i−1(DX)-action. Hence, in this way, we get a natural
morphism of DU into C. From the definition of the morphism γ : C −→ DU , we
know that for any open set V ⊂ U and a vector field T ∈ DU (V ), we have

γV (T )(f) = α(T (f)) = α([T, f ] + fT ) = T (f).

Hence, the composition of the natural inclusion with the morphism γ is an isomor-
phism on local vector fields. Since DU is locally generated by vector fields, this
implies that this composition is an isomorphism of DU . Therefore, the action of
DU in the bimodule DU→X is the natural action of DU .

Let X , Y and Z be smooth varieties, and φ : X −→ Y and ψ : Y −→ Z
morphisms of varieties. Then

DX→Z = (ψ ◦ φ)∗(DZ) = φ∗(ψ∗(DZ)) = φ∗(DY→Z)

= OX ⊗φ−1(OY ) φ
−1(DY→Z) = OX ⊗φ−1(OY ) (φ

−1(DY )⊗φ−1(DY ) φ
−1(DY→Z))

= (OX ⊗φ−1(OY ) φ
−1(DY ))⊗φ−1(DY ) φ

−1(DY→Z)

= DX→Y ⊗φ−1(DY ) φ
−1(DY→Z).

This isomorphism is clearly compatible with the OX -module structure given by
left multiplication in DX→Z and DX→Y respectively. The same holds for right
(ψ ◦ φ)−1(DZ) = φ−1(ψ−1(DZ))-module structure given by right multiplication in
DX→Z and φ−1(DY→Z) respectively. We claim that the left DX -module actions
are also compatible.

Let x ∈ X and T a vector field on an affine open neighborhood U of x. Then,
we have

(DX→Y ⊗φ−1(DY ) φ
−1(DY→Z))x = DX→Y,x ⊗DY,φ(x)

DY→Z,φ(x).

Let f be the germ of a regular function at x. Then

T (f ⊗ 1) = T (f)⊗ 1 +
∑

gi ⊗ Ti

in DX→Y , where gi ∈ OX,x and Ti ∈ JY,φ(x). This implies that the action of T on
(f ⊗ 1)⊗ (1⊗ 1) in the stalk DX→Y,x ⊗DY,φ(x)

DY→Z,φ(x) is given by

T ((f ⊗ 1)⊗ (1⊗ 1)) = T (f ⊗ 1)⊗ (1 ⊗ 1)

= (T (f)⊗ 1)⊗ (1⊗ 1) +
∑

(gi ⊗ Ti)⊗ (1⊗ 1)

= (T (f)⊗ 1)⊗ (1 ⊗ 1) +
∑

(gi ⊗ 1)⊗ Ti(1⊗ 1).

We already remarked that ψ∗(JZ)φ(x) is DY,φ(x)-invariant. Moreover, by the con-
struction of the action, any local vector field S at φ(x) maps 1⊗ 1 into ψ∗(JZ)φ(x).
This implies that Ti(1 ⊗ 1) ∈ ψ∗(JZ)φ(x) for all i. Therefore, under the above
isomorphism, T ((f ⊗ 1)⊗ (1⊗ 1)) maps into T (f)⊗ 1+

∑

j hj ⊗Sj where Sj are in
JZ,ψ(φ(x)). This implies that the two actions of T agree. Therefore, we established
the following result.
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1.7. Proposition. Let X, Y and Z be smooth algebraic varieties and φ :
X −→ Y and ψ : Y −→ Z morphisms of algebraic varieties. Then

DX→Z = DX→Y ⊗φ−1(DY ) φ
−1(DY→Z)

as sheaves of bimodules.

2. Inverse and direct images for affine varieties

Let X and Y be two smooth affine varieties and φ : X −→ Y a morphism of
algebraic varieties. Then, DX→Y = Γ(X,DX→Y ) has a natural structure of a (left
DX , right DY )-bimodule. We define the following two right exact functors:

(i) the inverse image functor φ+ :ML(DY ) −→ML(DX) by

φ+(M) = DX→Y ⊗DY
M

for any left DY -module M ; and
(ii) the direct image functor φ+ :MR(DX) −→MR(DY ) by

φ+(N) = N ⊗DX
DX→Y

for any right DX -module N .

Clearly, these definitions generalize the definitions from I.12 of these functors in the
case of affine spaces.

Let Z be another smooth affine variety and ψ : Y −→ Z a morphism of
varieties. Then, by ..., we have a natural morphism of DX→Y ⊗DY

DY→Z into
DX→Z compatible with the left DX -module and right DZ-module action.

2.1. Proposition. DX→Z = DX→Y ⊗DY
DY→Z .

Proof. We have, by ...,

DX→Z = Γ(X,DX→Z) = Γ(X, (ψ ◦ φ)∗(DZ)) = Γ(X,φ∗(ψ∗(DZ)))

= Γ(X,φ∗(DY→Z)) = R(X)⊗R(Y ) Γ(Y,DY→Z) = R(X)⊗R(Y ) DY→Z

= R(X)⊗R(Y ) (DY ⊗DY
DY→Z) = (R(X)⊗R(Y ) DY )⊗DY

DY→Z

= DX→Y ⊗DY
DY→Z

�

This immediately implies that

(φ+ ◦ ψ+)(M) = φ+(ψ+(M)) = DX→Y ⊗DY
(DY→Z ⊗DZ

M)

= (DX→Y ⊗DY
DY→Z)⊗DZ

M = DX→Z ⊗DZ
M = (ψ ◦ φ)+(M)

for every left DZ-module M ; and

(ψ+ ◦ φ+)(N) = ψ+(φ+(N)) = (N ⊗DX
DX→Y )⊗DY

DY→Z

= N ⊗DX
(DX→Y ⊗DY

DY→Z) = N ⊗DX
DX→Z = (ψ ◦ φ)+(N)

for every right DX -module N . Therefore, we established the following result.

2.2. Theorem. Let X, Y and Z be smooth affine varieties and φ : X −→ Y
and ψ : Y −→ Z morphisms of varieties. Then

(i) φ+ ◦ ψ+ = (ψ ◦ φ)+;
(ii) ψ+ ◦ φ+ = (ψ ◦ φ)+.
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Now we want to study the left derived functors of the inverse image φ+ and
the direct image φ+.

We start with the following result.

2.3. Lemma. Let V be a locally free OX-module of finite rank on an affine
variety X. Then Γ(X,V) is a projective R(X)-module.

Proof. First we remark that Γ(X,V) is a finitely generated R(X)-module.
Hence, for any R(X)-module N we have

Ext1R(X)(Γ(X,V), N)x = Ext1OX,x
((Vx, Nx)

for any x ∈ X by an analogue of I.6.1. By the assumption, each Vx is a free OX,x-
module. Therefore, Ext1R(X)(Γ(X,V), N)x = 0 for any x ∈ R(X), which implies

that Ext1R(Y )(Γ(X,V), N) = 0 and Γ(X,V) is a projective R(X)-module. �

2.4. Corollary. Let X be a smooth affine variety. Then DX is a projective
R(X)-module for left multiplication.

Proof. Let p ∈ N. Then we have an exact sequence

0 −→ Fp−1DX −→ FpDX −→ GrpDX −→ 0

of OX -modules. Since X is affine, this implies that

0 −→ Γ(X,Fp−1DX) −→ Γ(X,FpDX) −→ Γ(X,GrpDX) −→ 0

is an exact sequence of R(X)-modules. By ... , GrpDX is a locally free OX -module
of finite rank. Therefore, by 3, Γ(X,GrpDX) is a projective R(X)-module. The
above exact sequence splits, and we have

Γ(X,FpDX) = Γ(X,Fp−1DX)⊕ Γ(X,GrpDX).

By induction this implies that

Γ(X,FpDX) =

p
⊕

i=0

Γ(X,GriDX)

and

DX = Γ(X,DX) =

∞
⊕

i=0

Γ(X,GriDX),

as an R(X)-module. Therefore, DX is a direct sum of projective R(X)-modules,
and therefore projective. �

2.5. Lemma. Let φ : X −→ Y be a morphism of smooth affine varieties. Then
DX→Y = R(X)⊗R(Y ) DY is a projective R(X)-module.

Proof. By 4, DY is a projective R(Y )-module, hence it is a direct summand of
a free R(Y )-module. It follows that DX→Y = R(X)⊗R(Y )DY is a direct summand
of a free R(X)-module, and therefore a projective R(X)-module. �

2.6. Proposition. Let X, Y and Z be smooth affine varieties, and φ : X −→ Y
and ψ : Y −→ Z morphisms of affine varieties. Then TorDY

j (DX→Y , DY→Z) = 0
for j ∈ N.
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Proof. Let M be a left DY -module and F · its left resolution by free DY -
modules. Since, by 4, DY is a projective R(Y )-module for left multiplication, we
can also view it as a resolution by projective R(Y )-modules. This implies that

Tor
R(Y )
j (R(X),M) = H−j(R(X)⊗R(Y ) F

·)

= H−j((R(X)⊗R(Y ) DY )⊗DY
F ·) = TorDY

j (DX→Y ,M).

Since DY→Z is a projective R(Y )-module by 5, Tor
R(Y )
j (R(X), DY→Z) = 0 for

j ∈ N, and our assertion follows. �

The next result generalizes I.12.2 and I.12.6. to smooth affine varieties.

2.7. Theorem. Let X, Y and Z be three smooth affine varieties, and φ : X −→
Y and ψ : Y −→ Z morphisms of varieties. Then

(i) for any left DZ-module M there exists a spectral sequence with E2-term
Epq2 = Lpφ+(Lqψ+(M)) which converges to Lp+q(ψ ◦ φ)+(M);

(ii) for any right DX-module N there exists a spectral sequence with E2-term
Epq2 = Lpψ+(L

qφ+(N)) which converges to Lp+q(ψ ◦ φ)+(M).

Proof. Both statements follow from the Grothendieck spectral sequence.
(i) Let P be a projective left DZ -module. Then it is a direct summand of a

free DZ-module. Therefore, ψ+(P ) is a direct summand of D
(I)
Y→Z for some I. By

6, this implies that ψ+(P ) is φ+-acyclic.
(ii) Let Q be a projective right DX-module. Then it is a direct summand of

a free DX -module. Therefore φ+(Q) is a direct summand of D
(J)
X→Y for some J .

Applying 6. again, we see that φ+(Q) is ψ+-acyclic. �

3. Inverse image functor

Let X and Y be two smooth algebraic varieties and φ : X −→ Y a morphism
of algebraic varieties. We define the functor

φ+(V) = DX→Y ⊗φ−1(DY ) φ
−1(V)

from the categoryML(DY ) of left DY -modules into the categoryML(DX) of left
DX -modules. This functor is called the inverse image functor. Since the functor
φ−1 is exact and the functor DX→Y ⊗φ−1(DY ) − is right exact, the inverse image
functor is right exact.

3.1. Remark. Let U be an open subset in X . Then, by 1.6, we know that
DU→X = DU . Hence, we see immediately that i+(V) = i−1(V) = V|U , i.e., the
inverse image of i is the functor V 7−→ V|U of restriction to U . In particular, it is
an exact functor.

3.2. Lemma. The class of flat left DY -modules is left adapted for φ+.

Proof. The class of flat left DY -modules is closed under direct sums, and
every left DY -module is a quotient of a flat module.

Let F be a flat left DY -module. Then Fy is a flat left DY,y-module for any
y ∈ Y . Therefore, for any x ∈ X , φ−1(F)x = Fφ(x) is flat over φ

−1(DY )x = DY,φ(x).
Hence, φ−1(F) is a flat left φ−1(DY )-module.

Therefore, if F · is an acyclic complex of flat left DY -modules bounded above,
φ−1(F ·) is an acyclic complex of flat left φ−1(DY )-modules bounded above. It
follows that φ+(F ·) is an acyclic complex bounded above.
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This implies that the class of all flat left DY -modules is left adapted for φ+. �

Therefore we can define the left derived functor

Lφ+ : D−(ML(DY )) −→ D−(ML(DX)).

3.3. Lemma. The left cohomological dimension of the functor φ+ is finite.

Proof. Let V be a left DY -module and let F · be a left resolution of V by flat
left DY -modules. Then, by 3.2,

Lpφ+(V) = Hp(φ+(F ·)) = Hp(DX→Y ⊗φ−1(DY ) φ
−1(F ·)).

Let x ∈ X . Then F ·φ(x) is a DY,φ(x)-flat resolution of Vφ(x). Hence,

(Lpφ+(V))x = Hp(DX→Y ⊗φ−1(DY ) φ
−1(F ·))x

= Hp((DX→Y ⊗φ−1(DY ) φ
−1(F ·))x) = Hp(DX→Y,x ⊗φ−1(DY )x φ

−1(F ·)x)

= Hp(DX→Y,x ⊗DY,φ(x)
F ·φ(x)) = Tor

DY,φ(x)

−p (DX→Y,x,Vφ(x)).

Since the homological dimension of the ring DY,φ(x) is ≤ 2 dimY by ..., it follows

that (Lpφ+(V))x = 0 for p < −2 dimY . Moreover, since x ∈ X was arbitrary,
Lpφ+ = 0 for p < −2 dimY . �

Therefore, the left derived functor Lφ+ can be extended to the derived functor
Lφ+ : D(ML(DY )) −→ D(ML(DX)) between derived categories of unbounded
complexes.

3.4. Lemma. Let V · be a complex of left DY -modules. Then

Lφ+(V ·) = DX→Y
L
⊗ φ−1(DY ) φ

−1(V ·).

Proof. Let F be a flat left DY -module. As we explained in the proof of
3.2, φ−1(F) is a flat left φ−1(DY )-module. Hence, it is acyclic for the functor
DX→Y ⊗φ−1(DY ) −. �

Let V be a left DY -module. Then

φ+(V) = DX→Y ⊗φ−1(DY ) φ
−1(V) = (OX ⊗φ−1(OY ) φ

−1(DY ))⊗φ−1(DY ) φ
−1(V)

= OX ⊗φ−1(OY ) (φ
−1(DY )⊗φ−1(DY ) φ

−1(V)) = OX ⊗φ−1(OY ) φ
−1(V) = φ∗(V),

i.e., if we forget the DX -module structure, the D-module inverse image φ+(V) is
equal to the O-module inverse image φ∗(V). Now we prove that this remains valid
for derived functors. First we need the following result.

3.5. Lemma. Let F be a flat left DY -module. Then F is a flat OY -module.

Proof. Let y ∈ Y . It is enough to show that Fy is a flat OY,y-module. By the
assumption, Fy is a flat left DY,y-module. Let W be a right OY,y-module. Then
we have

W ⊗OY,y
Fy =W ⊗OY,y

(DY,y ⊗DY,y
Fy) = (W ⊗OY,y

DY,y)⊗DY,y
Fy.

Since DY,y is a free OY,y-module for the left multiplication by ..., it follows that
W 7−→W ⊗OY,y

DY,y is an exact functor. Hence, W 7−→ (W ⊗OY,y
DY,y)⊗DY,y

Fy
is also an exact functor. This immediately implies thatW 7−→W⊗OY,y

Fy is exact,
i.e., Fy is OY,y-flat. �

This leads to the following result.
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3.6. Theorem. If the vertical arrows denote the forgetful functors, the following
diagram of functors

D(ML(DY ))
Lφ+

−−−−→ D(ML(DX))




y





y

D(M(OY ))
Lφ∗

−−−−→ D(M(OX))

commutes up to an isomorphism.

Proof. This follows by applying 4. and the theorem about the derived functors
of the composition of functors to the composition of the forgetful functor and φ+,
and φ∗ and the forgetful functor respectively. �

This result, combined with ..., has the following immediate consequence.

3.7. Theorem. Let V · be a complex of left DY -modules such that Hp(V ·) are
quasicoherent for all p ∈ Z. Then the cohomology modules Hp(Lφ+(V ·)) are qua-
sicoherent left DX-modules for all p ∈ Z.

Assume now that X and Y are smooth affine varieties. In general, for an
arbitrary left DY -module V , we have a natural morphism

DX→Y ⊗DY
Γ(Y,V) −→ Γ(X,φ+(V)).

The next result implies that this morphism is an isomorphism for quasicoherent V .

3.8. Proposition. Let X and Y be affine smooth varieties and φ : X −→ Y
a morphism of algebraic varieties. Then, for any quasicoherent left DY -module V,
we have

Γ(X,Lpφ+(V)) = TorDY

−p (DX→Y ,Γ(Y,V))

for p ∈ Z.

Proof. First, we remark that if V = DY , φ+(DY ) = DX→Y and the above
morphism is clearly an isomorphism. Now, consider an arbitrary quasicoherent left
DY -module V . Let F · be a free left resolution of Γ(Y,V). Then its localization
F · = ∆(F ·) is a free resolution of V , i.e., it is a DY -flat resolution of V . Therefore,

Lpφ+(V) = Hp(Lφ+(D(V))) = Hp(φ+(F ·))

for p ∈ Z. Since φ+(F ·) is a complex of quasicoherent DX -modules,

Γ(X,Lpφ+(V)) = Γ(X,Hp(φ+(F ·))) = Hp(Γ(X,φ+(F ·))).

Finally, since Γ(X,−) and φ+ commute with direct sums, from the first part of the
proof it follows that

Γ(X,Lpφ+(V)) = Hp(DX→Y ⊗DY
F ·) = TorDY

−p (DX→Y ,Γ(Y,V))

for p ∈ Z. �

Hence, in the case of morphisms of smooth affine varieties and quasicoherent
D-modules, we recover the old definition from §2.
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Let X , Y and Z be three smooth algebraic varieties, φ : X −→ Y and ψ :
Y −→ Z two morphisms of algebraic varieties. Then, for any left DZ-module V ,
we have

(φ+ ◦ ψ+)(V) = DX→Y ⊗φ−1(DY ) φ
−1(ψ+(V))

= DX→Y ⊗φ−1(DY ) φ
−1(DY→Z ⊗ψ−1(DZ) ψ

−1(V))

= DX→Y ⊗φ−1(DY ) (φ
−1(DY→Z)⊗φ−1(ψ−1(DZ)) φ

−1(ψ−1(V)))

= (DX→Y ⊗φ−1(DY ) φ
−1(DY→Z))⊗(ψ◦φ)−1(DZ) (ψ ◦ φ)

−1(V).

Hence, by ..., it follows that

(φ+ ◦ ψ+)(V) = DX→Z ⊗(ψ◦φ)−1(DZ) (ψ ◦ φ)
−1(V) = (ψ ◦ φ)+(V).

Therefore, we proved the following result.

3.9. Lemma. φ+ ◦ ψ+ = (ψ ◦ φ)+.

The next result generalizes this to derived categories.

3.10. Theorem. The exact functors Lφ+◦Lψ+ and L(ψ◦φ)+ from D(ML(DZ))
into D(ML(DX)) are isomorphic.

Proof. Because of the preceding discussion and 1, we only have to check that
ψ+(F) is φ+-acyclic for any flat left DZ -module F . By 5, it enough to show that
ψ∗(F) is φ∗-acyclic. This follows from 4. and ... . �

Clearly, we have

φ+(DY ) = DX→Y ⊗φ−1(DY ) φ
−1(DY ) = DX→Y .

Since DY is a flat left DY -module, by 1, we get

Lφ+(D(DY )) = D(DX→Y ).

Hence, by 9, we get

D(DX→Z) = L(ψ ◦ φ)+(D(DZ)) = Lφ+(Lψ+(D(DZ)))

= Lφ+(D(DY→Z)) = DX→Y
L
⊗ φ−1(DY )D(φ−1(DY→Z)).

3.11. Corollary. We have

D(DX→Z) = D(DX→Y )
L
⊗ φ−1(DY )D(φ−1(DY→Z)).

4. Projection formula

Let X and Y be two topological spaces and φ : X −→ Y a continuous map.
Let R be a sheaf of rings on Y . Then φ−1(R) is a sheaf of rings on X .

Let A be a right φ−1(R)-module on X and B a left R-module on Y . Then we
can consider the sheaves of abelian groups φ·(A ⊗φ−1(R) φ

−1(B)) and φ·(A) ⊗R B
on Y . The first one is given by

V 7−→ φ•(A⊗φ−1(R) φ
−1(B))(V ) = (A⊗φ−1(R) φ

−1(B))(φ−1(V ))

and the second is the sheaf associated to the presheaf

V 7−→ φ•(A)(V )⊗R(V ) B(V ) = A(φ−1(V ))⊗R(V ) B(V ).



4. PROJECTION FORMULA 109

Since A⊗φ−1(R) φ
−1(B) is associated to the presheaf

U 7−→ A(U)⊗φ−1(R)(U) φ
−1(B)(U)

on X , for any open set V ⊂ Y , there is a natural morphism of

A(φ−1(V ))⊗R(V ) B(V )

into

A(φ−1(V ))⊗φ−1(R)(φ−1(V )) φ
−1(B)(φ−1(V ))

and into the group

(A⊗φ−1(R) φ
−1(B))(φ−1(V )).

Therefore, we have a natural morphism

φ•(A)⊗R B −→ φ•(A⊗φ−1(R) φ
−1(B)).

This is clearly a morphism of bifunctors. Therefore, it induces a morphism of cor-
responding bifunctors between homotopic categories of complexes bounded above,
i.e., if A· is a complex of right φ−1(R)-modules bounded above and B· a complex
of left R-modules bounded above, then we have the canonical morphism

φ•(A
·)⊗R B

· −→ φ•(A
· ⊗φ−1(R) φ

−1(B·)).

Assume now that φ· has finite right cohomological dimension. Then we have a
canonical morphism

φ•(A
· ⊗φ−1(R) φ

−1(B·)) −→ Rφ•(A
· ⊗φ−1(R) φ

−1(B·)).

Assume that A· is φ·-acyclic and B· is R-flat. Then, since φ−1(B·) is φ−1(R)-flat,
we have a canonical morphism

φ•(A
·)⊗R B

· −→ Rφ•(A
· ⊗φ−1(R) φ

−1(B·)) = Rφ•(A
·
L
⊗ φ−1(R) φ

−1(B·)).

Finally, since any complex of right φ−1(R)-modules bounded above is quasiisomor-
phic to a φ•-acyclic complex bounded above, and any complex of left R-modules
bounded above is quasiisomorphic to an R-flat complex bounded above, we get the
natural morphism

Rφ•(A
·)

L
⊗R B

· −→ Rφ•(A
·
L
⊗ φ−1(R) φ

−1(B·)).

Therefore, we have a morphism of corresponding bifunctors between the derived
categories.

Under certain conditions, this natural morphism is an isomorphism. The cor-
responding statement is usually called a projection formula. For example, assume
that X and Y are algebraic varieties and φ : X −→ Y a morphism of algebraic
varieties. In this case φ• has finite right cohomological dimension.

4.1. Proposition. Let X and Y be two algebraic varieties and φ : X −→ Y a
morphism of algebraic varieties. Then

Rφ•(V
·)

L
⊗OY

W · = Rφ•(V
·
L
⊗ φ−1(OY ) φ

−1(W ·))

for any V · in D−(M(φ−1(OY ))) and W · in D−(Mqc(OY )).
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Proof. It is enough to show that the canonical morphism induces an iso-
morphism on cohomology groups. Since the right cohomological dimension of φ·
is finite, by truncation, we can assume that W · is a bounded complex. Moreover,
since all quasicoherentOY -modules form a generating class for the bounded derived
category, we can assume thatW · = D(W) whereW is a quasicoherent OY -module.

Since the statement is local with respect to Y , we can also assume that Y is an
affine variety. In this case we can replaceW with a free resolution F ·. Since φ• com-
mutes with direct sums, it is evident that the natural morphism is an isomorphism
in this case. �

Analogously we can prove the following statement.

4.2. Proposition. Let X and Y be two algebraic varieties and φ : X −→ Y a
morphism of algebraic varieties. Then

Rφ•(V
·)

L
⊗DY

W · = Rφ•(V
·
L
⊗ φ−1(DY ) φ

−1(W ·))

for any V · in D−(MR(φ−1(DY ))) and W · in D−(ML
qc(DY )).

Assume that Y is a smooth variety. Then the homological dimension of OY,y
is ≤ dim Y and the homological dimension of DY,y is ≤ 2 dimY . Therefore, using
the standard truncation argument, we can establish the following variants of the
previous two results.

4.3. Proposition. Let X and Y be two smooth algebraic varieties and φ :
X −→ Y a morphism of algebraic varieties. Then

Rφ•(V
·)

L
⊗OY

W · = Rφ•(V
·
L
⊗ φ−1(OY ) φ

−1(W ·))

for any V · in D(M(φ−1(OY ))) and W · in Db(Mqc(OY )).

4.4. Proposition. Let X and Y be two smooth algebraic varieties and φ :
X −→ Y a morphism of algebraic varieties. Then

Rφ•(V
·)

L
⊗DY

W · = Rφ•(V
·
L
⊗ φ−1(DY ) φ

−1(W ·))

for any V · in D(MR(φ−1(DY ))) and W · in Db(ML
qc(DY )).

In particular, we shall need the projection formula in the following form. Let
φ : X −→ Y and ψ : Y −→ Z be morphisms of smooth algebraic varieties.

4.5. Lemma. Let V · be a complex of right φ−1(DY )-modules. Then we have a
natural isomorphism of complexes of right ψ−1(DZ)-modules

Rφ•(V
·)

L
⊗DY

DY→Z = Rφ•(V
·
L
⊗ φ−1(DY ) φ

−1(DY→Z))

in D(MR(ψ−1(DZ))).

Proof. We can view the bimodule DY→Z as a sheaf of modules over the sheaf
of rings DY ⊗kψ−1(D

opp
Z ), where DoppZ is the sheaf of opposite rings of DZ . Clearly,

a flat DY ⊗k ψ−1(D
opp
Z )-module is flat as a DY -module. Therefore, the canonical

morphism of functors

Rφ•(V
·)

L
⊗DY

DY→Z −→ Rφ•(V
·
L
⊗ φ−1(DY ) φ

−1(DY→Z))

from D(MR(φ−1(DY ))) into D(MR(ψ−1(DZ))) induces the canonical morphism
from 4, if we forget the ψ−1(DoppZ )-module action. On the other hand, this mor-
phism is an isomorphism by 4. �
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5. Direct image functor

Let X and Y be two smooth algebraic varieties and φ : X −→ Y a morphism
of algebraic varieties. Since the homological dimension of DX,x, x ∈ X , is ≤
2 dimX , the functor U 7−→ U ⊗DX

DX→Y has finite left cohomological dimension.

Therefore, we have the functor V · 7−→ V ·
L
⊗DX

DX→Y between D(MR(DX)) and
D(MR(φ−1(DY ))). On the other hand, φ· has also finite cohomological dimension,

hence we have the functor V · 7−→ Rφ·(V ·
L
⊗DX

DX→Y ) from D(MR(DX)) into
D(MR(DY )). We call this functor the direct image functor φ+ : D(MR(DX)) −→
D(MR(DY )), in particular

φ+(V
·) = Rφ•(V

·
L
⊗DX

DX→Y )

for any V · in D(MR(DX)).

5.1. Lemma. The exact functor φ+ : D(MR(DX)) −→ D(MR(DY )) has finite
amplitude.

Proof. Since U 7−→ U ⊗DX
DX→Y has finite left cohomological dimension,

the functor V · 7−→ V ·
L
⊗DX

DX→Y has finite amplitude by ... . Analogously, Rφ•
has finite amplitude. This implies that their composition has finite amplitude. �

5.2. Remark. Let U be an open set in X and i : U −→ X the natural inclusion.
Then, by 1.6, we have DU→X = DU . Hence, in this case we have

i+(V
·) = Ri•(V

·)

for any complex V · of right DU -modules. In particular, we see that in the case of
open inclusions, the direct image functor is equal to the right derived functor of the
sheaf direct image functor i•.

Let Z be another smooth variety and ψ : Y −→ Z a morphism of algebraic
varieties.

5.3. Theorem. The exact functors ψ+ ◦ φ+ and (ψ ◦ φ)+ from D(MR(DX))
into D(MR(DZ)) are isomorphic.

Proof. Let V · be a complex in D(MR(DX)). Then

(ψ+ ◦ φ+)(V
·) = ψ+(φ+(V

·)) = Rψ•(φ+(V
·)

L
⊗DY

DY→Z)

= Rψ•(Rφ•(V
·
L
⊗DX

DX→Y )
L
⊗DY

DY→Z).

By the projection formula, we have

Rφ•(V
·
L
⊗DX

DX→Y )
L
⊗DY

DY→Z = Rφ•((V
·
L
⊗DX

DX→Y )
L
⊗ φ−1(DY ) φ

−1(DY→Z)).

Hence, by ..., we have

(ψ+ ◦ φ+)(V
·) = Rψ•(Rφ•(V

·
L
⊗DX

(DX→Y
L
⊗ φ−1(DY ) φ

−1(DY→Z))))

= R(ψ ◦ φ)•(V
·
L
⊗DX

DX→Z) = (ψ ◦ φ)+(V
·).

�
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Let φ : X −→ Y be a morphism of smooth algebraic varieties. Let V be an
open set in Y and U = φ−1(V ). Let V · be a complex of right DX -modules. Then

φ+(V
·)|V = Rφ•(V

·
L
⊗DX

DX→Y )|V = R(φ|U )•((V
·
L
⊗DX

DX→Y )|U )

= R(φ|U )•(V
·|U

L
⊗DU

DU→V ) = (φ|U )+(V
·|U ),

i.e., the direct image functor is local with respect to the target variety.
Assume now that X and Y are smooth affine varieties. Then for any quasico-

herent right DX -module V , let F · be a free resolution of Γ(X,V). Then F · = ∆(F ·)
is a free resolution of V . Therefore,

φ+(D(V)) = Rφ•(D(V)
L
⊗DX

DX→Y ) = Rφ•(F
· ⊗DX

DX→Y ).

Clearly, for any p ∈ Z, Fp ⊗DX
DX→Y is a direct sum of copies of DX→Y , hence

it is a quasicoherent left DX -module. In particular, it is acyclic for φ· by .... This
implies that

φ+(D(V)) = φ•(F
· ⊗DX

DX→Y ).

5.4. Lemma. If φ : X −→ Y is a morphism of smooth affine varieties, we have

(i) Hp(φ+(D(DX))) = 0 for p 6= 0;
(ii) H0(φ+(D(DX))) = φ•(DX→Y ) is a quasicoherent right DY -module.

Proof. Clearly,

φ+(D(DX)) = φ•(D(DX)⊗DX
DX→Y ) = D(φ•(DX→Y )).

This implies (i). It remains to check that H0(φ+(D(DX))) = φ•(DX→Y ) is quasi-
coherent. First we remark that

Γ(Y, φ•(DX→Y )) = Γ(X,DX→Y ) = R(X)⊗R(Y ) DY ,

since DX→Y is a quasicoherent DX -module. Let g ∈ R(Y ) and f = g ◦ φ. Then
φ−1(Yg) = Xf , and since φ+ is local,

H0(φ+(D(DX)))|Yg
= H0(φ+(D(DXf

))),

and

φ•(DX→Y )(Yg) = H0(φ+(D(DX)))(Yg) = H0(φ+(D(DXf
)))(Yg)

= Γ(Yg, (φ|Xf
)·(DXf→Yg

)) = R(Xf)⊗R(Yg) DYg
= R(X)f ⊗R(Yg) DYg

= (R(X)⊗R(Y ) R(Yg))⊗R(Yg) DYg
= R(X)⊗R(Y ) DYg

= (R(X)⊗R(Y ) DY )g = (DX→Y )g

where the localization is with respect to the right multiplication in the second factor.
This implies that φ•(DX→Y ) is the localization of DX→Y as a right DY -module.
Hence it is quasicoherent. �

Therefore, the right DY -modules in φ•(F ·⊗DX
DX→Y ) are quasicoherent. This

implies that the cohomology groups of this complex are also quasicoherent right
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DY -modules. It follows that Hp(φ+(D(V))) are quasicoherent right DY -modules.
Moreover,

Γ(Y,Hp(φ+(D(V)))) = Hp(RΓ(φ+(D(V))))

= Hp(RΓ(φ•(F
· ⊗DX

DX→Y ))) = Hp(RΓ(F · ⊗DX
DX→Y ))

= Hp(F · ⊗DX
DX→Y ) = Hp(Γ(X,V)

L
⊗DX

DX→Y ) = TorDX

−p (Γ(X,V), DX→Y ).

Therefore, we proved the following result.

5.5. Proposition. Let φ : X −→ Y be a morphism of smooth affine varieties.
Let V be a quasicoherent right DX-module. Then:

(i) Hp(φ+(D(V))) are quasicoherent right DY -modules for p ∈ Z;
(ii) Hp(φ+(D(V))) = 0 for p > 0;
(iii) for p < 0, we have

Γ(Y,Hp(φ+(D(V)))) = TorDX

−p (Γ(X,V), DX→Y ).

Therefore, in the case of quasicoherent right D-modules on smooth affine vari-
eties, our definition agrees with the old one from ... .

Assume that φ : X −→ Y is an affine morphism. Therefore, for an affine open
set V ⊂ Y , the set U = φ−1(V ) is also an affine open subset of X . Let V be a
quasicoherent right DX -module. Then

φ+(D(V))|V = (φ|U )+(D(V|U )).

Therefore, the preceding result has the following consequence.

5.6. Corollary. Let φ : X −→ Y be an affine morphism of smooth varieties.
Let V be a quasicoherent right DX-module. Then:

(i) Hp(φ+(D(V))) are quasicoherent right DY -modules for p ∈ Z;
(ii) Hp(φ+(D(V))) = 0 for p > 0;

The first statement holds also in the general situation. First we consider a
specal case of the above result.

5.7. Corollary. Let U be an affine open set in X and i : U −→ X the natural
inclusion. Let V be a quasicoherent right DU -module. Then Hp(i+(D(V))) = 0 for
p 6= 0 for any quasicoherent right DU -module V. Moreover, the functor H0◦i+◦D =
i• from the category of quasiciherent right DU -modules into the category of right
DX-modules is exact.

Now we can prove the following generalization of the above result.

5.8. Theorem. Let φ : X −→ Y be a morphism of smooth algebraic varieties.
Let V · be a complex of right DX-modules such that Hp(V ·) are quasicoherent right
DX-modules for all p ∈ Z. Then Hp(φ+(V ·)) are quasicoherent right DY -modules
for all p ∈ Z.

Proof. Let U be an affine open subset of X and i : U −→ X the natu-
ral immersion. Let W be a quasicoherent right DU -module. Then i+(D(W)) =
Ri•(D(W)) = D(i•(W)) is a complex with quasicoherent cohomology by 5.7. Now,
since φ ◦ i : U −→ Y is an affine morphism, φ+(i+(D(W))) = (φ ◦ i)+(D(W))
is a complex with quasicoherent cohomology by 5.6. Since the modules of the
form i•(W) generate Db

qc(M
R(DX)) by [2, ??], we see that the statement holds
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for bounded complexes. The final statement follows by the standard truncation
argument [2, ??]. �

6. Direct images for immersions

Let X be a smooth algebraic variety and Y its smooth subvariety. Let n =
dimX and m = dim Y . Let i : Y −→ X be the canonical immersion. We consider
the categories MR(DY ) and MR(DX) of right D-modules on X , resp. Y . Let
Db(MR(DY )) and Db(MR(DX)) be the corresponding bounded derived categories.
Then we have the direct image functor i+ : Db(MR(DY )) −→ Db(MR(DX)).

6.1. Proposition. The module DY→X is a locally free DY -module.

To prove this result we first construct a local coordinate system adapted to our
situation.

6.2. Lemma. Let Y be a smooth m-dimensional subvariety of a smooth n-
dimensional variety X. Let y ∈ Y . Then there exist an open affine neighborhood
U of the point y in X and a coordinate system (f1, f2, . . . , fn;D1, D2, . . . , Dn) on
U with the following properties:

(i) U ∩ Y is a closed subvariety of U ;
(ii) the ideal I(U∩Y ) in R(U) of all functions vanishing on U∩Y is generated

by fm+1, fm+2, . . . , fn.
(iii) the vector fields D1, D2, . . . , Dm map the ideal I(U ∩ Y ) into itself.

Proof. The proof of this result is a minor variation of the proof of 2.9. Since
the statement is local, we can clearly assume that Y is closed in X and X is a
closed subvariety of some kp. Let IX and IY be the ideals of all polynomials in
A = k[X1, X2, . . . , Xp] vanishing on X and Y respectively. Clearly, IX ⊂ IY . Since
dimk Ty(X) = dimX = n and dimk Ty(Y ) = dimY = m, by 2.6. we can find
polynomials Pm+1, Pm+2, . . . , Pp ∈ IY such that:

(a) Pn+1, Pn+2, . . . , Pp are in IX ;
(b) the matrix [(∂iPj)(y)] has rank p−m.

This implies that the rank of this matrix is equal to p−m on some neighborhood
V of y ∈ kp , and

Ty(X) = {(ξ1, ξ2, . . . , ξp) ∈ k
p |

p
∑

i=1

ξi(∂iPj)(y) = 0, n+ 1 ≤ j ≤ p}

and

Ty(Y ) = {(ξ1, ξ2, . . . , ξp) ∈ k
p |

p
∑

i=1

ξi(∂iPj)(y) = 0,m+ 1 ≤ j ≤ p}.

Now, as in the proof of 2.9, we can find g ∈ A such that (IX)g is generated by
Pn+1, . . . , Pp in Ag and (IY )g is generated by Pm+1, . . . , Pp in Ag.

We can find polynomials P1, P2, . . . , Pm ∈ A such that the matrix [(∂iPj)(y); 1 ≤
i, j ≤ p] is regular. Therefore, by changing g if necessary, we can also assume that
it is regular on the principal open set V ′ in kp. Denote by Q the inverse of this
matrix. Then the matrix coefficients of Q are in Ag. Therefore, on V

′ we can define
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the differential operators δi =
∑p
j=1Qij∂j , for any 1 ≤ i ≤ n. Clearly they satisfy

δi(Pj) =

p
∑

k=1

Qik∂kPj = δij

for any 1 ≤ j ≤ p. Since any f ∈ (IX)g can be represented as f =
∑p
j=n+1 hjPj

with hj ∈ Ag, we have

δi(f) = δi(

p
∑

j=n+1

hjPj) =

p
∑

j=n+1

(δi(hj)Pj + hjδi(Pj)) =

p
∑

j=n+1

δi(hj)Pj ∈ (IX)g,

i.e., (IX)g is invariant under the action of δi, 1 ≤ i ≤ n. Let U = X ∩ V ′. Since
R(U) = Ag/(IX)g, this implies that δi, 1 ≤ i ≤ n, induce local vector fields on
U = X ∩ V ′, which we denote by Di, 1 ≤ i ≤ n.

Clearly, I(U ∩ Y ) = (IY )g/(IX)g, hence it is generated by the functions fi =
Pi|U , m+ 1 ≤ i ≤ n. This proves (ii).

By the analogous calculation we also see that (IY )g is invariant under the action
of δi, 1 ≤ i ≤ m. Therefore, D1, D2, . . . , Dm map the ideal I(U ∩ Y ) into itself.
Clearly,Di(fj) = δi(Pj) = δij , hence (f1, f2, . . . , fn;D1, D2, . . . , Dn) is a coordinate
system on U . �

Now we can prove 1. First we assume that X is “small” in the following sense.
There exists a coordinate system (f1, f2, . . . , fn;D1, D2, . . . , Dn) on X such that:

(i) DI ◦DJ = DI+J for all I, J ∈ Zn+;

(ii) (DI ; I ∈ Zn+) is a basis of the freeR(X)-moduleDX for the left (resp. right)
multiplication;

(iii) the ideal I(Y ) in R(X) of all functions vanishing on Y is generated by
fm+1, . . . , fn;

(iv) the vector fields D1, D2, . . . , Dm map the ideal I(Y ) into itself.

By 3.5. and 8. any point y ∈ Y has a neighborhood U such that U is “small”
in this sense. Moreover, by (iv), D1, D2, . . . , Dm induce vector fields T1, T2, . . . , Tm
on Y . If we denote by gi the restriction of fi to Y , 1 ≤ i ≤ m, we see that
(g1, g2, . . . , gm;T1, T2, . . . , Tm) is a coordinate system on Y . By shrinking X if
necessary, by 3.5. we can assume in addition that

(v) (T I ; I ∈ Zm+ ) is a basis of the free R(Y )-module DY for left (resp. right)
multiplication.

Under these conditions we have the following result.

6.3. Lemma. (DI ; I ∈ {0}×Zn−m+ ) is a basis of the free left DY -module DY→X .

Proof. By (ii) we see that the exact sequence

0 −→ I(Y ) −→ R(X) −→ R(Y ) −→ 0

leads to the exact sequence

0 −→ I(Y )⊗R(X) DX −→ DX −→ DY→X −→ 0

of (R(X), right DX)-bimodules. Since Di, 1 ≤ i ≤ m, leave I(Y ) invariant, the
left multiplication by Di maps I(Y )⊗R(X)DX into itself, and induces a differential
endomorphism of the R(Y )-module DY→X which commutes with the right action
of DX . Moreover, it maps g ⊗ 1 ∈ DY→X into Ti(g)⊗ 1 + g ⊗Di, hence it is equal
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to the left action of Ti on DY→X . Therefore the left action of Ti, 1 ≤ i ≤ m, on
DY→X is given by

Ti(g ⊗ S) = Ti(g)⊗ S + g ⊗DiS

for g ∈ R(Y ) and S ∈ DX . This implies that T I(1 ⊗ DJ) = 1 ⊗ DI+J for any
I ∈ Zm+ ×{0} ⊂ Zn+ and J ∈ {0}×Zn−m+ ⊂ Zn+. In particular, (DI ; I ∈ {0}×Zn−m+ )

generates the left DY -module DY→X . Since, by (ii), (DI ; I ∈ Zn+) is a basis of the

free R(Y )-module DY→X we conclude from (v) that (DI ; I ∈ {0} × Zn−m+ ) is a
basis of the free left DY -module DY→X . �

Therefore, by 1, for any bounded complex in Db(MR(DY )), we have

i+(V
·) = Ri·(V

·
L
⊗DY

DY→X) = Ri·(V
· ⊗DY

DY→X).

The next result shows that i+ is a right derived functor for immersions.

6.4. Theorem. Let Y be a smooth subvariety of a smooth variety X, and let
i : Y −→ X be the canonical immersion. Then:

(i) the functor H0 ◦ i+ ◦D :MR(DY ) −→MR(DX) given by

V 7−→ H0(i+(D(V))) = i•(V ⊗DY
DY→X)

is left exact.
(ii) The functor i+ is the right derived functor of H0 ◦ i+ ◦D :MR(DY ) −→
MR(DX).

(iii) The support of H0(i+(D(V))) is equal to the closure of supp(V) in X.

Proof. (i) This assertion is evident, since

H0(i+(D(V))) = H0(Ri•(D(V)⊗DY
DY→X))

= H0(Ri•(D(V ⊗DY
DY→X))) = i•(V ⊗DY

DY→X),

the functor V 7−→ V ⊗DY
DY→X is exact by 1, and i• is left exact.

(ii) Let I be an injective right DY -module. There is an open covering {Uj; 1 ≤
j ≤ p} of Y such that DY→X |Uj

is a free DUj
-module. This implies that the

restriction (I ⊗DY
DY→X)|Uj

is a direct sum of infinitely many copies of I|Uj
.

Since I|Uj
is also injective, it is flabby and therefore (I ⊗DY

DY→X)|Uj
is flabby.

It follows that the exact functor V 7−→ V ⊗DY
DY→X maps injective objects in

MR(DY ) into flabby sheaves, i.e., into sheaves acyclic for i•. This implies that the
composition of corresponding derived functors V · 7−→ Ri•(V

· ⊗DY
DY→X) is the

right derived functor of the left exact functor V 7−→ i•(V ⊗DY
DY→X).

(iii) Let U be an open set in X . Then

H0(i+(D(V)))(U) = i•(V ⊗DY
DY→X)(U) = (V ⊗DY

DY→X)(U ∩ Y ).

Therefore, the restriction of H0(i+(D(V))) to any open set in the complement of
supp(V) is equal to 0. Hence,

supp(H0(i+(D(V)))) ⊂ supp(V).

Let y ∈ supp(V). Assume first that y is not in supp(H0(i+(D(V))). Then there
would exist a “small” affine neighborhood U of y in X described in 2, such that
H0(i+(D(V)))(U) = 0. By 3, (DI ; I ∈ 0× Zn−m+ ) is a basis of the free DY -module
DY→X . This implies that (V ⊗DY

DY→X)|U∩Y is a direct sum of infinitely many
copies of V|U∩Y . Hence, H0(i+(D(V)))(U) = 0 would imply V|U∩Y = 0, which
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is impossible. Therefore, y ∈ supp(H0(i+(D(V))). It follows that supp(V) ⊂
supp(H0(i+(D(V))). This proves that

supp(V) ⊂ supp(H0(i+(D(V)))).

�

Combining this with ... we get the following result.

6.5. Corollary. Let i : Y −→ X be an affine immersion. Then the functor
H0 ◦ i+ ◦D :MR

qc(DY ) −→M
R
qc(DX) is exact.

If Y is a closed smooth subvariety of X , i• is an exact functor. Therefore, we
have the following result.

6.6. Corollary. Let Y be a smooth closed subvariety of X. Then the functor
H0 ◦ i+ ◦D :MR(DY ) −→MR(DX) is exact.

Proof. Since i• is an exact functor,

V 7−→ H0(i+(D(V))) = i•(V ⊗DY
DY→X)

is an exact functor from the categoryMR(DY ) into the categoryMR(DX). �

By abuse of notation, in this case, we denote the functor H0 ◦ i+ ◦D also by
i+. Therefore, we have

i+(V) = i•(V ⊗DY
DY→X)

for any V inMR(DY ), and (i+(V ·))p = i+(Vp) for any V · in Db(MR(DX)).

6.7. Proposition. Let Y be a closed smooth subvariety of X. Then, for any
coherent right DY -module V, the right DX -module i+(V) is also coherent.

Proof. It is enough to show that for any affine open set U in X , i+(V)|U is
a coherent DU -module. Therefore, by replacing X with U and Y with Y ∩ U , we
can assume that X is a smooth affine variety. In this case, i+(V) is the localization
of the right DX-module Γ(Y,V) ⊗DY

DY→X . By ..., it is enough to prove that
Γ(Y,V) ⊗DY

DY→X is a finitely generated right DX -module. Since Y is a closed
subvariety of X , R(Y ) is a quotient of R(X), and DY→X = R(Y )⊗R(X)DX is the
quotient of DX as a right DX -module. Therefore, it is generated by the element
1⊗1. By our assumption, Γ(Y,V) is a finitely generated DY -module. Let v1, . . . , vn
be a family of generators of this module. Then v1 ⊗ 1⊗ 1, . . . , vn ⊗ 1⊗ 1 generate
Γ(Y,V)⊗DY

DY→X as a right DX -module. �

In particular, if V is a coherent right DY -module, we can compare the charac-
teristic varieties of V and i+(V). Let x ∈ Y . Then Tx(Y ) ⊂ Tx(X), hence we have
the natural projection px : T ∗x (X) −→ T ∗x (Y ).

Let Y be a closed subset in an algebraic variety X . Then we put dimY X =
supx∈Z(dimxX).

6.8. Theorem. Let Y be a closed smooth subvariety of X. Then, for any
coherent right DY -module V we have

Ch(i+(V)) = {(x, ω) ∈ T
∗(X) | (x, px(ω)) ∈ Ch(V)}.

In particular,

dimp−1
X

(x)Ch(i+(V)) = dimp−1
Y

(x) Ch(V) + codimx Y.
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Proof. Since the support of i+(V) is in Y , it is enough to show that every
point y ∈ Y has an open neighborhood U in X such that

Ch(i+(V)|U ) = {(x, ω) ∈ T
∗(U) | (x, px(ω)) ∈ Ch(V|Y ∩U )}.

Therefore, we can assume that the neighborhood satisfies the conditions of 2. By
replacing X by this neighborhood, we can assume that X is “small”. In this case,
by 3, DY→X is a free left DY -module. Let V = Γ(Y,V). Hence, i+(V) is the
localization of the right DX -module V ⊗DY

DY→X and

Γ(X, i+(V)) = V ⊗DY
DY→X =

⊕

I∈{0}×Zn−m
+

V ⊗k D
I

as a vector space. Let FV be a good filtration of the right DY -module V . Then,
by I.3.1, GrV is a finitely generated GrDY -module. We can define a filtration of
Γ(X, i+(V)) by

Fp Γ(X, i+(V)) =
⊕

I∈{0}×Zn−m
+ , s+|I|≤p

Fs V ⊗D
I .

This is clearly an exhaustive increasing filtration and Fp Γ(X, i+(V)) = 0 for suffi-
ciently negative p ∈ Z.

We claim that this is a right DX -module filtration. Let v ⊗DI ∈ Γ(X, i+(V)),
v ∈ FsV , I ∈ {0} × Zn−m+ . We claim that, for any f ∈ R(X), we have

(v ⊗DI)f ∈ Fs+|I| Γ(X, i+(V)).

The proof is by induction on |I|. If |I| = 0, we have

(v ⊗ 1)f = vf |Y ⊗ 1 ∈ Fs V ⊗ 1.

Assume that |I| > 0. Then we can find m + 1 ≤ j ≤ n and I ′ ∈ {0} × Zn−m+ ,

|I ′| = |I| − 1, such that DI = DI′Dj . Hence

(v ⊗DI)f = (v ⊗DI′)Djf = (v ⊗DI′)Dj(f) + (v ⊗DI′)fDj.

By the induction assumption, (v⊗DI′)Dj(f) and (v⊗DI′)f are in Fs+|I′| Γ(X, i+(V)).
Hence,

(v ⊗DI′)fDj ∈ Fs+|I′| Γ(X, i+(V))Dj ⊂ Fs+|I| Γ(X, i+(V)).

This proves our assertion, i.e., F Γ(X, i+(V)) is a filtration by R(X)-submodules.
Let 1 ≤ j ≤ n. We claim that we have

(v ⊗DI)Dj ∈ Fs+|I|+1 Γ(X, i+(V)).

This is evident if m+ 1 ≤ j ≤ n. If 1 ≤ j ≤ m, we have

(v ⊗DI)Dj = vTj ⊗D
I ∈ Fs+|I|+1 Γ(X, i+(V)),

since vTj ∈ Fs+1 V . By ..., this implies that FΓ(X, i+(V)) is a DX -module filtra-
tion.

Clearly,

GrΓ(X, i+(V)) = Gr V ⊗k k[ξm+1, . . . , ξn]

and Grp Γ(X, i+(V)) is spanned by elements v ⊗ ξI with v ∈ Grs V and I ∈
{0} × Zn−m+ , |I| = p − s. Also, GrDX = R(X)[ξ1, . . . , ξn] = R(X)[ξ1, . . . , ξm] ⊗k
k[ξm+1, . . . , ξn]. The action of GrDX on GrΓ(X, i+(V)) is given as follows: f ∈
R(X) act as multiplication by the restriction f |Y in the first factor; ξj , 1 ≤ j ≤ m,
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act as multiplication in the first factor; and ξj , m+1 ≤ j ≤ n, act as multiplication
in the second factor.

Therefore, if v1, . . . , vk are generators of Gr V as a GrDY -module, v1⊗1, . . . , vk⊗
1 generate Gr Γ(X, i+(V)) as a GrDX -module. It follows that Gr Γ(X, i+(V)) is a
finitely generated GrDX -module. Hence. by I.3.1, FΓ(X, i+(V)) is a good filtra-
tion.

Let A ⊂ R(Y )[ξ1, . . . , ξm] be the annihilator of GrV in GrDY . The re-
striction f 7−→ f |Y defines a homomorphism of R(X) onto R(Y ). It induces a
homomorphism φ of R(X)[ξ1, . . . , ξm] onto R(Y )[ξ1, . . . , ξm]. Let B = φ−1(A).
Then B ⊗k k[ξm+1, . . . , ξn] annihilates Gr Γ(X, i+(V)). Let S ⊗ ξJ be a homoge-
neous element of the annihilator of GrΓ(X, i+(V)). Then, for v ∈ Gr V , we have
(S ⊗ ξJ)(v ⊗ 1) = Sv ⊗ ξJ = 0, and Sv = 0, i.e., S ∈ B. This implies that the
annihilator of GrΓ(X, i+(V)) is equal to B ⊗k k[ξm+1, . . . , ξn].

Our identification of R(T ∗(Y )) with R(Y )[ξ1, . . . , ξm] corresponds to the iden-
tification of T ∗(Y ) with Y × km given by (y, η) 7−→ (y, (η(T1(y)), . . . , η(Tm(y))).
Analogously, the identificaton of R(T ∗(X)) with R(X)[ξ1, . . . , ξn] corresponds to
the identification of T ∗(X) withX×kn given by (x, ω) 7−→ (x, (ω(D1(x)), . . . , ω(Dn(x))).
Under these identifications, the characteristic variety Ch(V) corresponds to a sub-
variety of Y × km which is the set of zeros of A, and the characteristic vari-
ety Ch(i+(V)) corresponds to a subvariety of X × kn which is the set of ze-
ros of B ⊗k k[ξm+1, . . . , ξn]. We can imbed Y × km into X × kn via the map
(y, ξ1, . . . , ξm) 7−→ (y, ξ1, . . . , ξm, 0, . . . , 0). This imbedding corresponds to the nat-
ural projection of R(X)[ξ1, . . . , ξn] onto R(Y )[ξ1, . . . , ξm]. Under this imbedding
we have the identification Ch(i+(V)) = Ch(V) × kn−m. This immediately implies
that

dimCh(i+(V)) = dimCh(V) + n−m.

Moreover, a point (x, ω) is in Ch(i+(V)) if and only if (x, (ω(D1(x)), . . . , ω(Dm(x)))
corresponds to a point in Ch(V). Hence, x ∈ Y . Since ω(Di(x)) = px(ω)(Ti(x)) for
any x ∈ Y and 1 ≤ i ≤ m, we see that (x, ω) ∈ Ch(i+(V)) is equivalent to x ∈ Y
and (x, px(ω)) ∈ Ch(V). �

Let V be a nonzero coherent DX -module on X . For any x ∈ X , denote

holdefx(V) = dimp−1
X

(x) Ch(V)− dimxX.

We call this number the holonomic defect at x of V . Clearly, the holonomic defect
of V is equal to − dimxX for any x /∈ supp(V).

6.9. Corollary. Let Y be a closed smooth subvariety of X. Then, for any
nonzero coherent right DY -module V we have

holdefx(V) = holdefx(i+(V))

for any x ∈ Y .

7. Bernstein inequality

Let X be a smooth variety. The next result is of fundamental importance for
the theory of D-modules. It generalizes ....

7.1. Theorem (Bernstein’s inequality). Let V be a coherent DX-module. Then

dimp−1
X

(x)Ch(V) ≥ dimxX
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for any x ∈ supp(V).

Proof. Assume that V 6= 0. Then we can choose a point x ∈ supp(V) and a
connected open affine neighborhood U of x such that p−1x (U) intersects only the irre-
ducible components of Ch(V) intersecting p−1X (x). Therefore, dimU = dimxX , and
V|U is a nonzero coherent DU -module such that dimCh(V|U ) = dimp−1

X
(x) Ch(V).

Clearly, it is enough to prove the statement for V|U . In this case we can assume
that U is a closed smooth subvariety of the affine space kn for some n ∈ Z+. Let
i : U −→ kn be the corresponding closed immersion. By ??, we have

dimp−1
X

(x) Ch(V)− dimxX = dimp−1
X

(x)Ch(V|U )− dimx U = holdefx(V|U )

= holdefx(i+(V|U )) = dimCh(i+(V|U ))− n.

Now, ?? implies that Ch(i+(V|U )) ≥ n. �

8. Closed immersions and Kashiwara’s theorem

Let X be a smooth variety and Y a closed smooth subvariety of X . Let i :
Y −→ X be the natural inclusion of Y into X . We proved in ... that the direct
image functor

i+(V) = i·(V ⊗DY
DY→X)

is an exact functor fromMR(DY ) intoMR(DX).

8.1. Proposition. The functor i+ : MR(DY ) −→ MR(DX) has a right ad-
joint i! :MR(DX) −→MR(DY ).

Proof. Clearly, since i : Y −→ X is a closed immersion, the direct image
functor i· :MR(i−1(DX)) −→ MR(DX) has the right adjoint i−1 :MR(DX) −→
MR(i−1(DX)). Therefore, for any V inMR(DY ) andMR(DX) we have

HomDX
(i+(V),W) = HomDX

(i·(V ⊗DY
DY→X),W)

= Homi−1(DX)(V ⊗DY
DY→X , i

−1(W)).

Now, using the properties of the tensor product, we see that

HomDX
(i+(V),W) = HomDY

(V ,Homi−1(DX)(DY→X , i
−1(W))).

Therefore, the functor

i!(W) = Homi−1(DX)(DY→X , i
−1(W))

is the right adjoint of i+. �

Clearly, the right adjoint i! : MR(DX) −→ MR(DY ) is a left exact functor.
Moreover, since i+ is exact, i! maps injective module into injective modules.

Now we want to find another description of i!. Clearly,

i!(W) = Homi−1(DX)(DY→X , i
−1(W))

= Homi−1(DX)(OY ⊗i−1(OX) i
−1(DX), i−1(W)) = Homi−1(OX)(OY , i

−1(W)).

Let J be a sheaf of ideals in OX consisting of functions vanishing along Y . Then
we have the natural exact sequence

0 −→ i−1(J ) −→ i−1(OX) −→ OY −→> 0,
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which leads to the exact sequence

O −→ Homi−1(OX)(OY , i
−1(W)) −→ Homi−1(OX)(i

−1(OX), i−1(W))

−→ Homi−1(OX)(i
−1(J ), i−1(W)).

The map T 7−→ T (1) identifiesHomi−1(OX)(i
−1(OX), i−1(W)) with i−1(W). Under

this isomorphism Homi−1(OX)(OY , i
−1(W)) corresponds to the subsheaf W0 of all

sections of i−1(W) annihilated by all elements of i−1(J ).
Assume that Z is a closed smooth subvariety of Y and j : Z −→ Y the natural

inclusion. Then (i ◦ j)+ = i+ ◦ j+ by .... Therefore, from the uniqueness of the
adjoint functors we conclude the following fact.

8.2. Lemma. We have (i ◦ j)! ∼= j! ◦ i!.

Finally, the functor i! preserves quasicoherence, i.e., we have the following
result.

8.3. Proposition. Let V be a quasicoherent right DX -module. Then i!(V) is
a quasicoherent right DY -module.

Proof. To prove this result, we first remark that this result is local and that
we only need to consider the OY -module structure. Therefore, we can assume that
X is connected affine with global coordinate system (f1, . . . , fn;D1, . . . , Dn) such
that Y is the set of zeros of (fm+1, . . . , fn). In this situation, the sets Yk of common
zeros of (fk+1, . . . , fn), m ≤ k ≤ n, are closed smooth subvarieties of X containing
Y . Since Ym=Y , and Ym ⊂ Ym+1 is of codimension one, by 2, we can reduce the
proof to the case of Y of codimension one in X . Hence, we can assume that Y is
the set of zeros of the function f = fn. Therefore, since J is generated by f in this
case by ..., we can consider the exact sequence

0 −→ OX
f
−→ OX −→ OX/J −→ 0,

where the first morphism is the multiplication by f . By restricting it to Y , we get
the exact sequence

0 −→ i−1(OX)
f
−→ i−1(OX) −→ OY −→ 0.

Therefore, the complex

0 −→ i−1(OX)
f
−→ i−1(OX) −→ 0

is a free resolution of OY by i−1(OX)-modules. By tensoring this resolution with
i−1(V) over i−1(DX) we get a complex

0 −→ i−1(V)
f
−→ i−1(V) −→ 0

which represents Li∗(D(V)). It follows that, as an OY -module, i!(V) = L−1i∗(V).
By ..., this implies that for quasicoherent DX -module V , the OY -module i!(V) is
also quasicoherent. �

Now we want to study the adjointness morphisms id −→ i!◦i+ and i+◦i
! −→ id.

Since DY→X = OY ⊗i−1(OX) i
−1(DX), it has the canonical section determined

by 1 ⊗ 1. Therefore, we have the canonical morphism DY −→ DY→X given by
T 7−→ T (1 ⊗ 1). From the local description of DY→X as a DY -module in ..., we
conclude that this morphism is a monomorphism, and we have an exact sequence

0 −→ DY −→ DY→X −→ Q −→ 0
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of DY -modules, and Q is a locally free DY -module. Moreover, the image of DY is
contained in the subsheaf of DY→X of sections which are annihilated by i−1(J )

Let V be a right DY -module. Then, by tensoring it over DY with the canonical
morphism DY −→ DY→X , we have a natural monomorphism

V −→ V ⊗DY
DY→X = i−1(i+(V)),

and its image is contained in i!(i+(V)) = (i+(V))0. Therefore, we have the canonical
monomorphism αV : V −→ i!(i+(V)). Clearly, this morphism is just one of the
adjointness morphisms.

Let y ∈ Y . Then we can find a connected affine neighborhood U of y with coor-
dinate system (f1, . . . , fn;D1, . . . , Dn) such that Y is the set of zeros of fm+1, . . . , fn.
In this case, as we discussed in ..., DY→X |U is a free DY ∩U -module with basis
(DI ; I ∈ {0} × Zn−m+ ). Let

E =

n
∑

j=m+1

fjDj .

The following result follows by direct calculation.

8.4. Lemma. (i) [E, fj] = fj for m+ 1 ≤ j ≤ n;
(ii) [E,DI ] = −|I|DI for I ∈ {0} × Zn−m+ .

Let V be a right DY -module. Then

i+(V)y = Vy ⊗DY,y
DY→X,y

and DY→X,y is a free left DY,y-module. Moreover, the images of DI , I ∈ {0} ×
Zn−m+ , form a basis of the free DY,y-module DY→X,y. Hence, we have

i+(V)y =
⊕

I∈{0}×Zn−m
+

VyD
I .

Let v ∈ i+(V)y. Then we have a unique decomposition v =
∑

I vID
I , vI ∈ Vy. We

put
ord(v) = max{|I| | vI 6= 0}.

Since
vIE =

∑

j

vIfjDj = 0,

we have
vE =

∑

I

vID
IE =

∑

I

vI [D
I , E] =

∑

I

|I|vID
I .

Therefore, we have the following result.

8.5. Lemma. Let v ∈ i+(V)y. Then

(i) ord(vfj) ≤ ord(v)− 1 for m+ 1 ≤ j ≤ n;
(ii) ord(v(E − ord(v))) ≤ ord(v)− 1.

Proof. (i) Let v =
∑

I vID
I with vI ∈ Vy. Then,

vfj =
∑

I

vID
Ifj =

∑

I

vI [D
I , fj ].

If I = (i1, . . . , ij, . . . , in) and I ′ = (i1, . . . , ij − 1, . . . , in), we see that [DI , fj] =

ijD
I′ . This immediately implies (i).
(ii) follows immediately from the above formulae. �
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Now we can analyze the first adjointness morphism.

8.6. Lemma. The morphism αV induces an isomorphism of V onto i!(i+(V)).

Proof. We only need to prove that αV is an epimorphism, or equivalently, that
αV,y : Vy −→ i!(i+(V))y is surjective. Let v be a germ of a section in i!(i+(V))y.
Then vfj = 0 for m+ 1 ≤ j ≤ n. Hence, vE = 0, and by the above calculations, it
follows that ord(v) = 0, i.e., v ∈ Vy. �

Therefore, the adjointness morphism id −→ i!◦i+ is an isomorphism of functors.
Now we want to study the other adjointness morphism i+ ◦ i! −→ id. Let W

be a DX -module and βW : i+(i
!(W)) −→W , the corresponding natural morphism.

8.7. Lemma. The morphism βW : i+(i
!(W)) −→W is a monomorphism.

Proof. Let y ∈ Y . We have to show that βW,y : i+(i
!(W))y −→ Wy is

injective. Assume that βW,y is not injective. Consider an element v 6= 0 in the
kernel of βW,y. If p = ord(v) > 0, there exists m + 1 ≤ j ≤ n such that vfj 6= 0.
By 5.(i), we have ord(vfj) ≤ p − 1. Hence, by downward induction on ord(v) we
conclude that there exists v 6= 0 in the kernel of βW,y with ord(v) = 0. But this is
clearly impossible, since i!(W)y is a subspace of Wy. �

Therefore, we can view i+(i
!(W)) as a submodule of W . Since it is supported

in Y , it is a submodule of the module ΓY (W) of all local sections of W supported
in Y .

Inductively we construct a sequence (J p; p ∈ Z+), of decreasing sheaves of
ideals defined by

J 0 = OX , J p is the image of J p−1 ⊗OX
J −→ OX , p ∈ N.

Let V be a OX -module. Then we can define V[Y,p] as the subsheaf of all sections
annihilated by all elements of J p. Then V[Y,p] are OX -submodules of V . Clearly,
sections of V[Y,p] are supported in Y , therefore, they are submodules of the sheaf
ΓY (V) of local sections of V supported in Y . Clearly, V[Y,p] ⊂ V[Y,p+1] for all
p ∈ Z+. Let Γ[Y ](V) be the union of all subsheaves V[Y,p], p ∈ Z+. Then Γ[Y ](V) is
an OX -submodule of ΓY (V).

8.8. Lemma. Let W be a right DX-module. Then

Γ[Y ](W) = i+(i
!(W)).

Proof. Let y ∈ Y and v ∈ i+(i
!(W))y. We claim that

{v ∈ i+(i
!(W))y | ord(v) < p} =W[Y,p],y

for all p ∈ N. Clearly, ord(v) = 0 if and only if v ∈ i!(W)y =W[Y,1],y. This proves
the relation for p = 1. Assume that it holds for some p ≥ 1.

First we prove that

{v ∈ i+(i
!(W))y | ord(v) < p+ 1} ⊂ W[Y,p+1],y.

If ord(v) = p + 1, by 5.(i), we have ord(vfj) ≤ p for any m + 1 ≤ j ≤ n. Hence,
by the induction assumption, it follows that vfj ∈ W[Y,p],y for any m+ 1 ≤ j ≤ n.
From this we conclude that that v ∈ W[Y,p+1],y.

Now, if v ∈ W[Y,p+1],y, for each m + 1 ≤ j ≤ n, we have vfj ∈ W[Y,p],y.

By the induction assumption, it follows that vfj ∈ i+(i
!(W))y and ord(vfj) < p.



124 IV. DIRECT AND INVERSE IMAGES

Therefore, vE =
∑n

j=m+1 vfjD
j ∈ i+(i!(W))y and ord(vE) ≤ p. In addition, by

5.(ii),

v(E − p)fj = vEfj − pvfj = v[E, fj ] + vfjE − pvfj = vfj(E − (p− 1))

is an element of order < p − 1. Hence, v(E − p)fj ∈ W[Y,p−1],y for any m + 1 ≤
j ≤ n. Therefore, v(E − p) ∈ W[Y,p],y and by the induction assumption v(E − p) ∈

i+(i
!(W))y and ord(v(E − p)) < p. Hence, pv = vE − v(E − p) ∈ i+(i!(W))y and

has order ≤ p. Since p > 0, it follows that v ∈ i+(i!(W))y and ord(v) < p+ 1. �

Therefore, Γ[Y ](W) is a DX -submodule of W . Moreover, since i+ is an exact

functor and i! is left exact, we immediately get the following consequence.

8.9. Proposition. The functor Γ[Y ] :M(DX) −→M(DX) is left exact.

Finally, we have the following result, which gives the description of both ad-
jointness morphisms.

8.10. Theorem. Let Y be a closed smooth subvariety of a smooth variety X
and i : Y −→ X the natural inclusion. Then i! ◦ i+ ∼= id and i+ ◦ i! ∼= Γ[Y ].

On the other hand, we have the following simple fact.

8.11. Lemma. Let V be a quasicoherent OX-module. Then Γ[Y ](V) = ΓY (V).

Proof. We can assume that X is affine and Y 6= X . Let v ∈ Γ(X,V) be
a section supported in Y . Let g ∈ R(X) be a function different from zero which
vanishes on Y , and U be the principal open set attached to g. Then v|U = 0. Also,
Γ(U,V) = Γ(X,V)g, which yields gpv = 0 for sufficiently large p ∈ Z+. �

Hence, if we apply the last result to quasicoherent DX -modules, we get the
following result.

8.12. Proposition. If V is a quasicoherent right DX-module, ΓY (V) = i+(i
!(V)).

In particular, if V is a quasicoherent right DX -module with support contained
in Y we have i+(i

!(V)) = V . This proves the following result due to Kashiwara.

Denote by MR
qc,Y (DX) (MR

coh,Y (DX), resp. HolRY (DX)) the full subcategory of

MR
qc(DX) (MR

coh(DX), resp. HolR(DX)) consisting of modules supported in Y .

8.13. Theorem (Kashiwara). (i) The functor i+ :MR
qc(DY ) −→M

R
qc(DX)

is an equivalence of the categoryMR
qc(DY ) withM

R
qc,Y (DX). The functor

i! is a quasiinverse of i+.
(ii) These equivalences induce equivalences of MR

coh(DY ) with MR
coh,Y (DX)

which preserve holonomic defect.

Proof. (i) follows immediately from 3, 10 and 12.
(ii) Follows from ... and ... �

9. Local cohomology of D-modules

Let Y be a closed smooth subvariety of a smooth varietyX . Denote by i : Y −→
X the natural immersion. Let U = X−Y and j : U −→ X the corresponding open
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immersion. Then for any complex V · of right DX -modules bounded from below we
have a distinguished triangle

Rj·(V ·|U )

[1]

~~}}
}}

}}
}}

}}
}}

}}
}

RΓY (V ·) // V ·

]]::::::::::::::

in D+(MR(DX)) and this triangle is functorial in V · (see, for example, [3]).

9.1. Lemma. The right cohomological dimension of the functor ΓY is ≤ dimX+
1.

Proof. The long exact sequence attached to the above distinguished triangle
for D(V) implies that there is a natural epimorphism from Rpj·(V) into H

p+1
Y (V).

Since the right cohomological dimension of j· is ≤ dimX , the assertion follows. �

Therefore, there exists the right derived functor RΓY : D(MR(DX)) −→
D(MR(DX)). SinceD+(MR

qc(DX)) is equivalent to the full subcategory ofD+(MR(DX))
consisting of complexes with quasicoherent cohomology by ..., injective quasicoher-
ent DX -modules are flabby by ..., and flabby sheaves are ΓY -acyclic, we see that
RΓY induces an exact functor from D+(MR

qc(DX)) into itself, isomorphic to the

right derived functor of ΓY :MR
qc(DX) −→MR

qc(DX).

As before, we can consider the pair of adjoint functors i+ : MR
qc(DY ) −→

MR
qc(DX) and i! : MR

qc(DX) −→ MR
qc(DY ). As we remarked before, i+ is exact,

and i! is a left exact functor. Therefore, we can consider its derived functor Ri! :
D+(MR

qc(DX)) −→ D+(MR
qc(DY )). From ... we immediately conclude that

RΓY ∼= i+ ◦Ri
!

as functors from D+(MR
qc(DX)) into itself. In particular, if V is a quasicoherent

right DX -module, we have

Hp
Y (V) = i+(R

pi!(V))

for any p ∈ Z+. This implies, by ..., that

i!(Hp
Y (V)) = i!(i+(R

pi!(V))) = Rpi!(V),

for any p ∈ Z+. This, combined with 1, proves the following result.

9.2. Lemma. The right cohomological dimension of the functor i! :MR
qc(DX) −→

MR
qc(DY ) is ≤ dimX + 1.

Therefore, there exists the right derived functor Ri! : D(MR
qc(DX)) −→ DMR

qc(DY )).
By ... and the preceding discussion we get the following result.

9.3. Theorem. The functors RΓY and i+◦Ri! are isomorphic as exact functors
from the triangulated category D(MR

qc(DX)) into itself.

9.4. Lemma. Let V be a right DX-module with support in Y . Then V is ΓY -
acyclic.
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Proof. As we remarked before, from the long exact sequence of cohomology
attached to the the distinguished triangle

Rj·(D(V|U ))

[1]

||xx
xx

xx
xx

xx
xx

xx
xx

x

RΓY (D(V)) // D(V)

``AAAAAAAAAAAAAAA

we get that Hp+1
Y (V) is a quotient of Rpj·(V|U ) for p ∈ Z+. Since V|U = 0, this

implies that Hp
Y (V) = 0 for p ≥ 1. �

Since Rpi!(V) = i!(Hp
Y (V)), p ∈ Z+, for quasicoherent right DX -module V , this

immediately implies the following result.

9.5. Corollary. Let V be a quasicoherent right DX-module with support in
Y . Then V is i!-acyclic.

As before, we denote byMR
qc,Y (DX) the full subcategory ofMR

qc(DX) consist-
ing of modules with support contained in Y . This category is a thick subcategory of
MR

qc(DX). Let D∗Y (M
R
qc(DX)) be the full subcategory of D∗(MR

qc(DX)) consisting
of complexes V · such that Hp(V ·) are supported in Y for all p ∈ Z. By ..., this is a
triangulated subcategory of D∗(MR

qc(DX)). Clearly, RΓY (V ·) is in DY (MR
qc(DX))

for any complex V · of quasicoherent right DX -modules.
Consider now the natural transformation of RΓY into the identity functor on

D(MR
qc(DX)). Its restriction to DY (MR

qc(DX)) induces a natural transformation α

of the functor RΓY : DY (MR
qc(DX)) −→ DY (MR

qc(DX)) into the identity functor.

9.6. Proposition. The natural transformation α of functor RΓY : DY (M
R
qc(DX)) −→

DY (M
R
qc(DX)) into the identity functor is an isomorphism of functors.

Proof. Assume first that V · ∈ DY (MR
qc(DX)) is a complex bounded from

below. Then from the distinguished triangle

Rj•(V ·|U )

[1]

~~}}
}}

}}
}}

}}
}}

}}
}

RΓY (V ·) // V ·

]]::::::::::::::

we see that the the statement is equivalent to Rj•(V ·|U ) = 0. But this is obvious,
since Hp(V ·|U ) = Hp(V ·)|U = 0 for all p ∈ Z. The general case follows from ...
. �

This result, combined with Kashiwara’s theorem, has the following immediate
consequence.

9.7. Theorem. The functor i+ : D(MR
qc(DY )) −→ DY (MR

qc(DX)) is an equiv-

alence of triangulated categories. A quasiinverse is the functor Ri! : DY (MR
qc(DX)) −→

D(MR
qc(DY )).
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Proof. From 3. and 6. we conclude that i+ ◦ Ri! is isomorphic to the iden-
tity functor on DY (MR

qc(DX)). On the other hand, since the modules of the form

i+(W), W ∈ MR
qc(DY ), are i

!-acyclic by 5, we also conclude that Ri! ◦ i+ is iso-
morphic to the identity functor. �

In particular, every complex V · in DY (MR
qc(DX)) is isomorphic to i+(Ri

!(V ·))
consisting of DX -modules with support in Y .

Now, consider the closed smooth subvariety Z of Y and the natural immersion
i1 : Z −→ Y . Then we have the following result.

9.8. Theorem. R(i ◦ i1)! ∼= Ri!1 ◦ Ri
! as functors from D(MR

qc(DX)) into

D(MR
qc(DZ)).

Proof. We know, by ..., that (i◦i1)! = i!1◦i
!. Since i! is the right adjoint of the

exact functor i+, it maps injective quasicoherent right DX -modules into injective
quasicoherent right DY -modules. �

Now, we want to prove a sharper estimate for the right cohomological dimension
of ΓY :MR

qc(DX) −→MR
qc(DX) and i! :MR

qc(DX) −→MR
qc(DY ).

9.9. Theorem. (i) The right cohomological dimension of ΓY :MR
qc(DX) −→

MR
qc(DX) is ≤ dimX − dim Y .

(ii) The right cohomological dimension of i! : MR
qc(DX) −→ MR

qc(DY ) is
≤ dimX − dimY .

Proof. Since Rpi!(V) = i!(Hp
Y (V)) for any quasicoherent right DX -module

and p ∈ Z+, these results are equivalent.
Moreover, since injectivity of sheaves is a local property, the first assertion is

clearly local. Therefore, to prove it, we can assume that X is affine, admits a
coordinate system (f1, . . . , fn;D1, . . . , Dn), and Y is the set of common zeros of
fm+1, . . . , fn.

The proof is by induction on n−m. Consider first the case m = n− 1. In this
case, U = {x ∈ X | fn(x) 6= 0}, i.e., it is a principal open set in X . Therefore, U
is affine and j : U −→ X is an affine morphism. This implies that Rpj·(V|U ) = 0

for any quasicoherent right DX -module V and p ≥ 1. Since Hp+1
Y (V) is a quotient

of Rpj·(V|U ) for p ∈ Z+, we see that Hp
Y (V) = 0 for p ≥ 2. Therefore, (i) and (ii)

also hold in this situation.
Assume now that m < n − 1. Then we can consider the smooth subvariety

Z = {x ∈ X | fn(x) = 0}. Let i1 : Y −→ Z and i2 : Z −→ X be the canonical
immersions. By the induction assumption, i!1 and i!2 have the property (ii). Hence,
by 8, it also holds for their composition i. �

Finally, we remark the following special case of base change.

9.10. Lemma. Let Y be a closed smooth subvariety of X, U = X − Y and
i : Y −→ X and j : U −→ X the natural immersions. Then Ri! ◦ Rj· = 0 on
D(Mqc(DU )).

Proof. Let W · be a complex of quasicoherent DU -modules bounded from
below. Then there exists a j·-acyclic complex J · and a quasiisomorphism W −→
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J ·. Hence, we have the commutative diagram

Rj·(W ·) −−−−→ Rj·(Rj·(W ·)|U )




y





y

j·(J ·)
=

−−−−→ j·(j·(J ·)|U )

where the vertical lines are isomorphisms and the lower horizontal arrow is the
identity. This implies that the upper horizontal arrow is also an isomorphism.
From the distinguished triangle

Rj·(Rj·(W ·)|U )

[1]

zzuuuuuuuuuuuuuuuuuu

RΓY (Rj·(W ·)) // Rj·(W ·)

bbEEEEEEEEEEEEEEEEE

we conclude thatRΓY (Rj·(W
·)) = 0. Hence, by ..., i+◦Ri

!◦Rj· = 0 onD+(MR
qc(DU )).

Hence, by 7,

0 = R!i ◦ i+ ◦Ri
! ◦Rj· ∼= Ri! ◦Rj·

on D+(MR
qc(DU )). By the standard truncation argument ... we conclude that the

same holds on D(MR
qc(DU )). �

10. Base change

Let X , Y and S be three algebraic varieties and f : X −→ S, g : Y −→ S two
morphisms of varieties. Then we can consider the following diagram of algebraic
varieties

X × Y
p1

−−−−→ X

p2





y





y
φ

Y −−−−→
ψ

S

,

where p1 and p2 are the projections to the first and second factor respectively. Let
∆S is the diagonal in S×S. Since S is a variety, ∆S is a closed subvariety in S×S.
Put

X ×S Y = {(x, y) ∈ X × Y | φ(x) = ψ(y)}

= {(x, y) ∈ X×Y | (φ ◦ p1)(x, y) = (ψ ◦ p2)(x, y)} = ((φ ◦ p1)× (ψ ◦ p2))
−1(∆S),

then this is a closed subvariety of X × Y . We call X ×S Y the fibre product of X
and Y over S. The projections p1 and p2 induce morphisms of the fibre product
X ×S Y into X and Y such that the diagram

X ×S Y
ψ′

−−−−→ X

φ′





y





y
φ

Y −−−−→
ψ

S
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commutes. The fibre product has the following universal property. Let T be an
algebraic variety, α : T −→ X and β : T −→ Y two morphisms of varieties such
that the diagram

T
α

−−−−→ X

β





y





y
φ

Y −−−−→
ψ

S

commutes. Then, by the universal property of the product we get a morphism
γ : T −→ X × Y such that α = p1 ◦ γ and β = p2 ◦ γ. Therefore, γ(T ) ⊂ X ×S Y ,
and γ induces a morphism δ : T −→ X ×S Y such that α = ψ′ ◦ δ and β = φ′ ◦ δ.

Let Z be another algebraic variety and χ : Z −→ Y . Then, we have the
following commutative diagram

(X ×S Y )×Y Z
χ′

−−−−→ X ×S Y
ψ′

−−−−→ X

φ′′





y
φ′





y





y
φ

Z −−−−→
χ

Y −−−−→
ψ

S

.

By the universal property of the fibre product, we get a morphism ω : (X×S Y )×Y
Z −→ X ×S Z.

10.1. Lemma. The morphism ω : (X×SY )×Y Z −→ X×SZ is an isomorphism.

Proof. By the preceding discussion,

(X ×S Y )×Y Z = {(x, y, z) ∈ X × Y × Z | φ′(x, y) = χ(z), (x, y) ∈ X ×S Y }

= {(x, y, z) ∈ X × Y × Z | y = χ(z), φ(x) = ψ(y)}

and ω(x, y, z) = (x, z). Therefore, the image of ω is equal to

X ×S Z = {(x, z) ∈ X × Z | φ(x) = ψ(χ(z))}

and the inverse map is given by the restriction of (p1, χ ◦ p2, p2) to X ×S Y . �

Now consider two special cases. Assume that Y is a closed subvariety of S, and
i : Y −→ S is the natural immersion. Then

X ×S Y = {(x, y) ∈ X × Y | φ(x) = y} ⊂ X × S

is equal to the intersection of the graph Γφ of φ with X × Y . Therefore, ψ′ :
X ×S Y −→ X is an isomorphism onto the closed subvariety φ−1(Y ) of X . Hence,
the fibre product diagram looks like

φ−1(Y )
i′

−−−−→ X

φ′





y





y
φ

Y −−−−→
i

S

,

where ψ′ is the restriction of ψ and i′ the natural inclusion.
Let Y = Z×S and ψ : Y −→ S be the projection to the second variable. Then

we can consider Y as the fibre product for α : Z −→ {pt} and β : S −→ {pt}.
Hence, by 1,

(Z × S)×S X = Z ×X,
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and the fibre product diagram looks like

Z ×X
p2

−−−−→ X

id×φ





y





y
φ

Z × S −−−−→
ψ

S

.

If ψ : Y −→ S is an arbitrary morphism we can use the graph decomposition
ψ = α ◦ β, where β is the isomorphism of Y onto the graph Γφ ⊂ Y × S and
α : Y × S −→ S is the projection to the second factor. Hence, by 1, every fibre
product can be viewed as obtained in two steps, each of which is of one of the above
described special types.

The main result of this section is the following theorem.

10.2. Theorem. Let X, Y and S be smooth algebraic varieties and φ : X −→ S
and ψ : Y −→ S morphisms of algebraic varieties such that the fibre product X×SY
is a smooth algebraic variety. Then the commutative diagram

X ×S Y
ψ′

−−−−→ X

φ′





y





y
φ

Y −−−−→
ψ

S

determines an isomorphism

ψ! ◦ φ+ ∼= φ′+ ◦ ψ
′!

of functors from D(Mqc(DX)) into D(Mqc(DY )).

Proof. As we remarked before, the construction of the fibre product can be
always divided into two steps. In the first step one morphism is a projection, in
the second a closed immersion. In the case of product, the smoothness of the
fibre product is automatic. In the case of closed immersion, this is an additional
condition.

Consider first the latter case. Assume that i : Y −→ S is a closed immersion
such that i−1(Y ) is a smooth closed subvariety ofX . Let i′ be the natural immersion
of i−1(Y ) into X . Let U = S−Y and j : U −→ S the natural immersion. Also, let
V = X − φ−1(S) = φ−1(U). Then we have the following diagram

φ−1(Y )
i′

−−−−→ X
j′

←−−−− φ−1(U)

φ′





y





y
φ





y
φ′′

Y −−−−→
i

S ←−−−−
j

U

,

where φ′ and φ′′ are the corresponding restrictions of φ.
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Assume first that V · be a complex of quasicoherent DX -modules bounded from
below. Consider the distinguished triange

Rj′·(V
·|U )

[1]

����
��

��
��

��
��

��
��

��
��

RΓφ−1(Y )(V
·) // V ·

ZZ4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

in D(Mqc(DX)). By applying the derived functor φ+ we get the distinguished
triangle

φ+(Rj
′
·(V
·|U ))

[1]

}}zz
zz

zz
zz

zz
zz

zz
zzz

zz
zzz

φ+(RΓφ−1(Y )(V
·)) // φ+(V ·)

]]<<<<<<<<<<<<<<<<<<<<

in D(Mqc(DS)). Hence, by applying the derived functor Ri! we get the distin-
guished triangle

Ri!(φ+(Rj
′
·(V
·|U ))

[1]

zzvvvvvvvvvvvvvvvvvvvvvvvvv

Ri!(φ+(RΓφ−1(Y )(V
·))) // Ri!(φ+(V ·))

aaBBBBBBBBBBBBBBBBBBBBBB

in D(Mqc(DY )). Since

φ+(Rj
′
·(V
·|φ−1(U))) = (φ ◦ j′)+(V

·|φ−1(U)) = (j ◦ φ′′)+(V
·|φ−1(U))

= Rj·(φ
′′
+(V|φ−1(U))) = Rj·(φ+(V)|U ),

we see that

Ri!(φ+(Rj
′
·(V
·|φ−1(U)))) = Ri!(Rj·(φ+(V)|U )).

By ..., this implies that Ri!(φ+(Rj
′
·(V
·|φ−1(U)))) = 0. Therefore, the natural mor-

phism

Ri!(φ+(RΓφ−1(Y )(V
·))) −→ Ri!(φ+(V

·))

is an isomorphism functorial in V ·. Since all functors in involved have finite cohomo-
logical dimension, by the truncation argument ..., we see that this natural morphism
is an isomorphism for arbitrary complexes V · of quasicoherent DX -modules.
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On the other hand, by ... and ..., we have

Ri!(φ+(RΓφ−1(Y )(V
·))) = Ri!(φ+(i

′
+(Ri

′!(V ·)))) = Ri!((φ ◦ i′)+(Ri
′!(V ·)))

= Ri!((i ◦ φ′)+(Ri
′!(V ·))) = Ri!(i+(φ

′
+(Ri

′!(V ·)))) = φ′+(Ri
′!(V ·)).

Therefore, we proved the assertion in this special case.
Consider now the case of projections. If p : Z × S −→ S is the projection

to the second factor, as we remarked before, we get the following fibre product
commutative diagram:

Z ×X
p2

−−−−→ X

idZ×φ





y





y
φ

Z × S −−−−→
p

S

.

Then, by ..., we have

(p! ◦ φ+)(V
·) = Lp+(φ+(V

·))[− dimS] = OZ ⊠ φ+(V
·)[− dimS] =

(idZ × φ)+((OZ ⊠ V ·)[− dimS]) = (idZ × φ)+(p
+
2 (V

·)[− dimS])

= (idZ × φ)+(p
!
2(V
·)) = ((idZ × φ)+ ◦ p

!
2)(V

·),

and this establishes the base change in this case. �

This allows to generalize 9.10.

10.3. Corollary. Let X, Y and Z be smooth algebraic varieties, φ : X −→ Z
and ψ : Y −→ Z morphisms of algebraic varieties such that φ(X)∩ψ(Y ) = ∅. Then
ψ! ◦ φ+ = 0 on D(Mqc(DX)).
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Holonomic D-modules

1. Holonomic D-modules

Let X be a smooth algebraic variety. Let T ∗X(X) be its cotangent bundle and
pX : T ∗X(X) −→ X the corresponding natural projection. for any coherent DX -
module V , its characteristic variety Ch(V) is a closed subvariety of T ∗X(X). Under
the map pX the characteristic variety Ch(V) project onto the support supp(V)
of V . We proved in ?? that for any point x in the support supp(V) we have
dimp−1

X
(x)Ch(V) ≥ dimxX . Therefore, we say that a coherent DX -module is holo-

nomic if dimChp−1
X

(x)(V) = dimxX for any x ∈ supp(V). This generalizes the

definition from ??.
We denote by Hol(DX) the full subcategory of Mcoh(DX) consisting of all

holonomic DX -modules.

1.1. Theorem. Let X be a smooth variety. Let

0 −→ V1 −→ V2 −→ V3 −→ 0

be a short exact sequence of coherent DX-modules. Then:

(i) if V2 is a holonomic module, V1 and V3 are also holonomic;
(ii) if V1 and V2 are holonomic, V2 is holonomic.

Proof. The assertions are clearly true if either V1 or V3 is zero. If they are
nonzero, by ??, we see that Ch(V2) = Ch(V1) ∪Ch(V3). This immediately implies
that dimp−1

X
(x)Ch(V2) = max(dimp−1

X
(x)Ch(V1), dimp−1

X
(x) Ch(V3)). Moreover, by

??, we know that supp(V2) = supp(V1) ∪ supp(V3). Hence, the assertion follows
immediately. �

Therefore, the full subcategory Hol(DX) ofMcoh(DX) is abelian and thick.

1.2. Lemma. Let X be a smooth variety and Y a closed smooth subvariety. Let
i : Y −→ X be the natural inclusion. Then, for any DY -module V the following
statements are equivalent:

(i) the module V is holonomic;
(ii) the module i+(V) is holonomic.

Proof. Clearly, by Kashiwara’s theorem, V is zero if and only if i+(V) is zero.
Moreover, by ??, we have

holdefx(V) = holdefx(i+(V))

for any x ∈ supp(V). Hence, dimp−1
Y

(x)Ch(V) = dimx Y if and only if dimp−1
X

(x) Ch(i+(V)) =

dimxX for any x ∈ supp(V). �

The next result generalizes ??.

133
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1.3. Theorem. Every holonomic DX-module is of finite length.

Proof. Clearly, the restriction of a holonomic module to an open set is holo-
nomic. Since by II.2.8 being of finite length is a local property, it is enough to prove
the assertion for smooth affine varieties. In this case we can assume that X is a
smooth closed subvariety of the affine space kn. Let i : X −→ kn be the natural
inclusion. Then, by 1.2, for a holonomic module V the module i+(V) is holonomic.
By I.8.1, we conclude that i+(V) is of finite length. Clearly, any submodule or
quotient module of i+(V) is supported in X . Hence, the length of i+(V), as an
object in the category of all D-modules is equal to the length of it as a module
in the subcategory of all modules supported in X . By Kashiwara’s theorem, this
implies that V is of finite length. �

2. Connections

Let X be a smooth algebraic variety over an algebraically closed field k of
characteristic zero and DX the sheaf of differential operators on X . In this section
we describe some very simple holonomic DX -modules.

A DX -module V is called a connection if it is coherent as an OX -module.

2.1. Theorem. Let X be a connected smooth algebraic variety and V a coherent
DX-module different from zero. Then the following conditions are equivalent:

(i) V is a connection;
(ii) the characteristic variety Ch(V) of V is contained in the zero section of

the cotangent bundle T ∗(X);
(iii) the characteristic variety Ch(V) of V is the zero section of the cotangent

bundle T ∗(X);
(iv) V is a locally free OX -module of finite rank.

Proof. Clearly (iv)⇒(i) and (iii)⇒(ii).
(iv)⇒(iii) Since V is a locally free OX -module of finite rank, the dimension of

the geometric fiber Tx(V) = Vx/mxVx is locally constant. Because X is connected,
this implies that it is a nonzero constant and therefore supp(V) = X . We can
define a filtration FV on V by Fp V = 0 for p < 0 and Fp V = V for p ≥ 0. This
is clearly a good filtration on V . The graded module GrV has all its homogeneous
components equal to 0 except Gr0 V = V . Therefore, the annihilator of GrV
contains

⊕∞
p=1 GrpDX and the characteristic variety of V is contained in the zero

section of T ∗(X). Since, by 3.8, it projects onto supp(V), we conclude that Ch(V)
is equal to the zero section of T ∗(X).

(ii)⇒(i) The statement is local, hence, by II.2.10, we can assume that X is
affine and has a global coordinate system (f1, f2, . . . , fn;D1, D2, . . . , Dn) such that
(DI ; I ∈ Zn+) form a basis of the free R(X)-module of differential operators on
X . Assume that FV is a good filtration of V and J the annihilator of Γ(X,GrV)
in R(T ∗(X)). Then the zero set of J in T ∗(X) is contained in the zero section of
T ∗(X). By the Hilbert Nullstellensatz, the radical of J contains the ideal generated
by the symbols of D1, D2, . . . , Dn. This implies that there exists m ∈ Z+ such that
the symbols of Dm

1 , D
m
2 , . . . , D

m
n annihilate Γ(X,GrV). Moreover, qth-symbol of

any differential operator of order q ≥ nm annihilates Γ(X,GrV). Since Γ(X,GrV)
is a finitely generated GrDX -module this implies that Grp V = 0 for sufficiently
large p ∈ Z+. Therefore, Fp V = V for sufficiently large p ∈ Z+ and V is a coherent
OX -module.
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(i)⇒(iv) Since the statement is local we can assume that X is affine and
“small”. Let x ∈ X . Since V is a coherent OX -module, the geometric fiber
Tx(V) = Vx/mxVx = Ox/mx ⊗Ox

Vx is a finite-dimensional vector space over
k. Let s1, s2, . . . , sq be a family of global sections of V with the property that their
images s1(x), s2(x), . . . , sq(x) in Tx(V) form a basis of this vector space. These
sections define a natural morphism of the free OX -module OqX into V . Denote its
image by U . Then we have the exact sequence

OqX −→ V −→ V/U −→ 0

of coherent OX -modules, which leads to the exact sequence

Tx(O
q
X) −→ Tx(V) −→ Tx(V/U) −→ 0.

Since the first arrow is surjective by the construction, we conclude that Tx(V/U) = 0
and by Nakayama lemma (I.2.1), it follows that (V/U)x = 0. Therefore, x is not
in the support of the coherent OX -module V/U . By shrinking X we can assume
that V/U = 0, i.e., V is generated by s1, s2, . . . , sq. In this situation, for any global
vector field T on X we have

Tsi =

q
∑

j=1

ajisj

with aji ∈ R(X).
We want to prove that s1, s2, . . . , sq is a basis of a free Ox-module Vx. Let

∑

gisi = 0, where g1, g2, . . . , gq ∈ Ox. We claim that this implies that g1, g2, . . . , gq ∈
mp
x for any p ∈ Z+.
Since s1(x), s2(x), . . . , sq(x) are linearly independent,

∑

gi(x)si(x) = 0 implies
that g1(x) = g2(x) = · · · = gq(x) = 0, and we conclude that g1, g2, . . . , gq ∈ mx.
Therefore, the statement holds for p = 1. Assume that it holds for p− 1. For any
global vector field T on X we have

0 = T

(

q
∑

i=1

gisi

)

=

q
∑

i=1

(T (gi)si + giTsi)

=

q
∑

i=1

T (gi)si +

q
∑

i,j=1

ajigisj =

q
∑

i=1

(

T (gi) +

q
∑

j=1

aijgj

)

si.

Hence, by the induction assumption, we have T (gi) +
∑q
j=1 aijgj ∈ mp−1

x and

gi ∈ mp−1
x for 1 ≤ i ≤ q. This implies that T (gi) ∈ mp−1

x for 1 ≤ i ≤ q. In
particular, Dj(gi) ∈ mp−1

x for 1 ≤ i ≤ q, 1 ≤ j ≤ n. This leads to DIgi ∈ mx for
all I ∈ Zn+ such that |I| < p, and by II.2.15. we conclude that gi ∈mp

x for 1 ≤ i ≤ q.
Therefore, by induction on p, gi ∈ mp

x for 1 ≤ i ≤ q for all p ∈ Z+. Hence,
g1 = · · · = gq = 0. It follows that s1, s2, . . . , sq is a basis of the free Ox-module Vx.

Therefore, we can consider the natural short exact sequence

0 −→ K −→ OqX −→ V −→ 0

whereK is the kernel of the natural morphism ofOqX onto V . Clearly, K is a coherent
OX -module, and by the preceding result, Kx = 0. It follows that x /∈ supp(K),
and by shrinking X if necessary we can assume that K = 0. This means that
s1, s2, . . . , sq is a basis of the free OX -module V . �

This result has the following obvious consequence.
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2.2. Corollary. Connections are holonomic DX-modules.

The preceding proof shows that if X is sufficiently “small” and V a connection
on X , we can find a basis s1, s2, . . . , sq of the free OX -module V which identifies
V with OqX . Let Ψ : OqX −→ V be the corresponding OX -module isomorphism
given by Ψ(f1, f2, . . . , fq) =

∑

fisi. Then there exist q × q-matrices Ai = (Aijk),
1 ≤ i ≤ n, with entries from R(X) such that

Disj =

q
∑

k=1

Aikjsk.

Then

(Di ◦Ψ)(f1, . . . , fq) = Di





q
∑

j=1

fjsj



 =

q
∑

j=1

(Di(fj)sj + fjDisj)

=

q
∑

j=1

(

Di(fj)sj +

q
∑

k=1

fjAikjsk

)

=

q
∑

j=1

(

Di(fj) +

q
∑

k=1

fkAijk

)

sj .

Hence

Ψ−1 ◦Di ◦Ψ = Di +Ai

for any 1 ≤ i ≤ n. Moreover, since [Di, Dj] = 0 on V , we have

0 = [Di+Ai, Dj+Aj ] = [Di, Aj ]+ [Ai, Dj ]+ [Ai, Aj ] = Di(Aj)−Dj(Ai)+[Ai, Aj ],

i.e.,

Dj(Ai)−Di(Aj) = [Ai, Aj ]

for all 1 ≤ i, j ≤ n. Therefore, connections correspond locally to the classical notion
of the integrable connections.

3. Preservation of holonomicity under direct images

In this section we prove that holonomicity is preserved under direct images.
First we consider the case of morphisms of smooth affine varieties. Let X and Y

be two smooth affine varieties and φ : X −→ Y a morphism. Let DX andDY be the
rings of differential operators on X and Y respectively andMR(DX) andMR(DY )
the corresponding categories of right D-modules. Then we can consider the functor
φ+ :MR(DX) −→MR(DY ) of direct image and its left derived functors Lpφ+.

3.1. Theorem. Let V be a holonomic right DX-module. Then Lpφ+(V ) are
holonomic right DY -modules.

Proof. In the case of affine spaces X = kn and Y = km this result was proved
in I.13.5. Now we shall reduce the proof of the theorem to this case. Clearly, we
can imbed X and Y into affine spaces kn and km as closed algebraic sets. Let
iX : X −→ kn and iY : Y −→ km. By Kashiwara’s theorem, the direct image
functors iX,+ : MR

qc(DX) −→ MR
qc(Dkn) and iY,+ : MR

qc(DY ) −→ MR
qc(Dkm) are

exact. By abuse of notation we denote by the same letters the corresponding direct
image functor between the categories MR(DX) (resp. MR(DY )) and MR(D(n))
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(resp.MR(D(n))). Therefore, we have the commutative diagram of exact functors
for X

MR(DX)
iX,+
−−−−→ MR(D(n))





y





y

MR
qc(DX) −−−−→

iX,+

MR
qc(Dkn)

,

where the vertical arrows are localization functors, and an analogous diagram for
Y . Since the vertical arrows are equivalences of categories, and the lower arrow
is fully faithful by the Kashiwara’s theorem, we conclude that the top horizontal
arrow is also fully faithful and establishes the equivalence ofMR(DX) with the full
subcategory ofMR(D(n)) consisting of modules supported in X .

Let Φ : kn −→ km be a polynomial map which is induces φ : X −→ Y . Then
we have the following commutative diagram of morphisms

X
iX−−−−→ kn

φ





y





y
Φ

Y −−−−→
iY

km

.

By IV.2.7, we know that

LpΦ+ ◦ iX,+ = Lp(Φ+ ◦ iX,+) = Lp(iY,+ ◦ φ+) = iY,+ ◦ L
pφ+

for any p ∈ −Z+.
Let V be a holonomic rightDX -module onX . Since the functor iX,+ maps holo-

nomic modules into holonomic modules by 1.2, the module iX,+(V ) is a holonomic
right D(n)-module. Hence, by I.13.5, LpΦ+(iX,+(V )) are holonomic D(n)-modules
for all p ∈ −Z+. This implies that iY,+(L

pφ+(V )) are holonomic D(n)-modules.
Using again 1.2, we conclude that Lpφ+(V ) are holonomic DY -modules for all
p ∈ −Z+. �

By localizing 3.1, we see that for any holonomic right DX -module V , the right
DY -modules Hp(φ+(D(V))) are holonomic for any p ∈ Z.

Now we consider the general situation. We say that a complex V · of DX -
modules is a holonomic complex if Hp(V ·), p ∈ Z, are holonomic DX -modules. Let
Db(M(DX)) be the bounded derived category of DX -modules. Since the category
Hol(DX) is a thick abelian subcategory of the category of DX -modules, the full
subcategory Db

hol(M(DX)) of Db(M(DX)) consisting of all holonomic complexes
is a triangulated subcategory. The next result is a special case of [2, ??].

3.2. Proposition. Holonomic DX -modules form a generating class of the tri-
angulated category Db

hol(M(DX)).

Actually, we can find a smaller generating class in Db
hol(M(DX)). Let U ⊂ X

be an affine open set and i : U −→ X the natural inclusion. Let V be a holonomic
module on U . We claim that i+(V) is a holonomic module on X . In fact, since
holonomicity is a local property, it is enough to show that for any affine open set
V ⊂ X , the restriction i•(V)|V is holonomic. Let j : U ∩ V −→ V be the natural
inclusion. Then i•(V)|V = j•(V|U∩V ), and since U ∩ V is affine, by the first part
of the discussion, j•(V|U∩V ) is a holonomic module. This proves that i•(V) is a
holonomic module.
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3.3. Proposition. Let U = (U1, U2, . . . , Un) be an affine open cover of X and
ij : Uj −→ X the natural inclusions. Then the family G of modules ij,•(V), where
V are arbitrary holonomic modules on Uj and 1 ≤ j ≤ n, form a generating family
of Db

hol(M(DX)).

Proof. Let U be a holonomic module on X and C·(U,U) its Čech resolution
[3, ??]. Then U is quasiisomorphic to C·(U,U). By [2, ??], we see that G is a
generating class of Db

hol(M(DX)). �

This finally allows us to prove the following generalization of I.13.5.

3.4. Theorem. Let X and Y be smooth algebraic varieties and φ : X −→ Y
a morphism of varieties. If V · is a bounded holonomic complex of DX-modules,
φ+(V ·) is a bounded holonomic complex of DY -modules.

Proof. Since holonomicity is a local property, we can assume that Y is affine
smooth variety.

Let U be an affine open set in X , i : U −→ X the natural immersion and V
a holonomic module on U . Then i+(V) is a holonomic module. Since i+(D(V)) =
D(i•(V)) by 5.7, we see that

φ+(D(i•(V))) = φ+(i+(D(V))) = (φ ◦ i)+(D(V))

by ??. Since φ ◦ i : U −→ Y is a morphism of affine varieties, by localization of 3.1,
we see that Hp(φ+(D(i•(V)))) are holonomic modules on Y for p ∈ Z. Therefore,
by 3.3 and [2, ??] the result follows. �

4. A classification of irreducible holonomic modules

Now we want to give a classification of irreducible holonomic DX -modules. It
is based on the following result.

4.1. Lemma. Let U be an open subset of X, i : U −→ X the natural immersion
and V an irreducible holonomic DU -module. Then

(i) i•(V) contains a unique irreducible DX-submodule W;
(ii) W|U = V.

Proof. By 3.4, i•(V) is a holonomic DX -module. Therefore, by 1.3, it is of
finite length. Let W be an irreducible DX -submodule of i•(V). Since i• is the
right adjoint to the restriction functor to U , the restriction of W|U is nonzero and
therefore equal to V . This implies that the intersection of any two irreducible
DX -submodules of i•(V) is different from zero, i.e., W is the unique irreducible
DX -submodule of V . �

This result implies the following extension result for irreducible holonomic mod-
ules.

4.2. Corollary. Let U be an open subset of X and V an irreducible holo-
nomic DU -module. Then there exists an irreducible holonomic DX-module W such
that W|U is isomorphic to V. Moreover, W is unique up to an isomorphism and
supp(W) is the closure of supp(V) in X.

Proof. The existence part follows immediately from 4.1. Let W ′ be another
irreducible holonomic DX -module such that W ′|U is isomorphic to V . Since i• is
the right adjoint of the restriction to U there exists a natural morphism α :W ′ −→
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i•(V) such that α|U is the isomorphism of W ′|U onto V . Since W ′ is irreducible
the kernel of α is zero, and its image is an irreducible DX -submodule of i•(V). By
4.1, it must be equal to W .

Clearly, supp(W) ∩ U = supp(V). Therefore, the closure in X of the support
of V is contained in the support of W . On the other hand, the support of W is
contained in supp(i•(V)), which is equal to the closure of supp(V) in X . �

Let V be an connected smooth subvariety in X and j : V −→ X the natural
immersion. Let τ be an irreducible connection on V . Then the direct image

I(V, τ) = j+(τ)

is a holonomic DX -module called the standard D-module attached to (V, τ). By 4.2,
its support is equal to V̄ . Since V is locally closed in X , we can find an open set
U ⊂ X such that V is a closed subvariety of U . Denote by jU the immersion of V
into U and by i the open immersion of U into X . Then, by ??, we have

I(V, τ) = j+(τ) = i+((jU )+(τ)).

By Kashiwara’s theorem, the direct image of (jU )+(τ) is an irreducible holonomic
DU -module with support equal to V . By 4.1, it extends to an irreducible holonomic
DX -module which is the unique irreducible submodule of I(V, τ). We denote by
L(V, τ) and call it irreducible module attached to the data (V, τ). By 4.2, the
support of L(V, τ) is equal to V̄ . Therefore, we proved the first part of following
result.

4.3. Proposition. Let I(V, τ) be the standard DX-module attached to (V, τ).
Then it contains the unique irreducible submodule L(V, τ). The support of L(V, τ)
is equal to V̄ and the support of I(Q, τ)/L(Q, τ) is contained in V̄ − V .

Proof. It remains to show that the support ofQ = I(V, τ)/L(V, τ) is in V̄ −V .
Consider the short exact sequence

0 −→ L(V, τ) −→ I(V, τ) −→ Q −→ 0.

Let U = X − (V̄ − V ). Then U is an open subset of X and V is closed in U .
Therefore, by the preceding discussion and 4.1, from this short exact sequence
restricted to U we conclude that Q|U = 0. Hence, supp(Q) ⊂ V̄ − V . �

Now we can classify irreducible holonomic modules on X .

4.4. Theorem. (i) Let V be an irreducible holonomic DX-module. Then
there exist an irreducible open smooth affine subvariety V of the support
of V and an irreducible connection τ on V such that V is isomorphic to
L(V, τ).

(ii) Let V, V ′ be two irreducible smooth affine subvarieties of X and τ, τ ′ irre-
ducible connections on V, V ′ respectively. Then L(V, τ) is isomorphic to
L(V ′, τ ′) if and only if
(a) V̄ = V̄ ′;
(b) there exists a nonempty open affine subvariety V ′′ of V ∩V ′ such that

τ |V ′′ ∼= τ ′|V ′′.

Proof. (i) By ??, the support of V is an irreducible closed subset of X . Hence,
there exists an open affine subset U of X such that V = supp(V) ∩ U is a closed
smooth subvariety of U . Clearly, V|U is an irreducible holonomic DU -module.



140 V. HOLONOMIC D-MODULES

If we denote by jV the natural immersion of V into U , by Kashiwara’s theorem
there exists an irreducible holonomic DV -module W such that (jV )+(W) ∼= V|U .
In addition, supp(W) = V . Therefore, by ??, there exists an open dense affine
subvariety V ′ of V such that W|V ′ is a connection. Hence, by shrinking U if
necessary, we can assume in addition that W is a connection. If we put τ = W ,
it follows that V|U and L(V, τ)|U are isomorphic. By 4.2, this implies that V and
L(V, τ) are isomorphic.

(ii) If L(V, τ) is isomorphic to L(V ′, τ ′), their supports are equal and (a) follows.
Therefore we can assume that L(V, τ) and L(V ′, τ ′) have common support S. It
follows that V and V ′ are open and dense in S, hence V ∩ V ′ is a nonempty open
affine subvariety of V and V ′. Let V ′′ be a nonempty open affine subvariety of
V ∩ V ′. Then V ′′ is irreducible. Let U be an open subset of X such that V ′′ =
S∩U . Then, by 4.2, L(V, τ)|U and L(V ′, τ ′)|U are isomorphic irreducible holonomic
DU -modules with support equal to V ′′ if and only if L(V, τ) and L(V ′, τ ′) are
isomorphic. In addition, if we denote by j the immersion of V ′′ into U , L(V, τ)|U =
j+(τ |V ′′) and L(V ′, τ ′)|U = j+(τ

′|V ′′). Since V ′′ is a smooth closed subvariety of
U , by Kashiwara’s theorem j+(τ |V ′′) is isomorphic to j+(τ

′|V ′′) if and only if τ |V ′′

is isomorphic to τ ′|V ′′. �

5. Local cohomology of holonomic modules

Let Y be a closed smooth subvariety of X and U = X−Y . Denote by i : Y −→
X and j : U −→ X the canonical inclusion maps.

Let V · be a bounded holonomic complex of DX -modules. Then, the restriction
V ·|U of V · to the open set U is clearly a bounded holonomic complex od DU -
modules. Therefore, by ??, j+(V ·|U ) = Rj•(V ·|U ) is a bounded holonomic complex
of DX -modules. From the distinguished triangle

Rj•(V ·|U )

[1]

~~}}
}}

}}
}}

}}
}}

}}
}

RΓY (V ·) // V ·

]]::::::::::::::

we see that RΓY (V ·) is also a bounded holonomic complex of DX -modules.
Therefore, we proved the following result.

5.1. Lemma. Let V · be a bounded holonomic complex of DX-modules. Then
RΓY (V ·) is a bounded holonomic complex of DX-modules.

6. Preservation of holonomicity under inverse images

By the results from ?? we know that RΓY (V ·) = i+(Ri
!(V ·)).

By applying Ri! and using ??, we see that Ri!(V ·) is also a bounded holo-
nomic complex of DY -modules. This in turn implies that Li+(V ·) is a a bounded
holonomic complex of DY -modules.

Therefore, we proved the following result.

6.1. Lemma. Let V · be a bounded holonomic complex of DX-modules. Then
Li+(V ·) is a bounded holonomic complex of DY -modules.
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On the other hand, if p : X×Y −→ Y is the projection map, we have p+(V ·) =
OX ⊠V ·. Hence, + :Mqc(DY ) −→Mqc(DX×Y ) is an exact functor. Moreover, we
have the following result.

6.2. Lemma. Let V · be a bounded holonomic complex of DY -modules. Then
p+(V ·) is a bounded holonomic complex of DX×Y -modules.

By combining these results with the graph construction and using ??, we get
the following result which generailzes ??.

6.3. Theorem. Let F : X −→ Y be a morphism of smooth algebraic varieties.
Then the inverse image functor Lf+ maps bounded holonomic complexes of DY -
module into bounded holonomic complexes of DX-modules.
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