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1. Sheaves of Differential Operators

1.1 Twisted Sheaves of Differential Operators

Let X be a smooth algebraic variety over an algebraically closed field & of
characteristic zero, Ox the structure sheaf of X, 7x the tangent sheaf of X
and Dx the sheaf of differential operators on X. We consider the category of
pairs (A, i), where A is a sheaf of associative k-algebras with identity on X
and i : Ox — A a morphism of k-algebras with identity. The sheaf Dx with
the natural inclusion 7x : Ox — Dx is an object of this category. We say
that a pair (D, 1) is a twisted sheaf of differential operators on X if it is locally
isomorphic to the pair (Dx,ix), i. e. if X admits a cover by open sets U such
that (D|U, '1,|U) = (DU, ZU)

Now we want to discuss the natural parametrization of twisted sheaves of
differential operators on X. First we need some preparation.

Lemma 1. Let ¢ be an endomorphism of (Dx,ix). Then there exists a closed
1-form w on X such that

$(§) =€ —w(§)

for any local vector field ¢ € Tx, and ¢ is completely determined by w. In
particular, ¢ is an automorphism of (Dx,ix).

Proof. Let f € Ox and £ € Tx. Then
[6(8), f1=[(£), d(f)] = o([&, f]) = ¢(&(f)) = £(S)-

Evaluating this on the function 1 we get

P(€)(f) = &(f) + fo()(1).

Therefore, we can put w(€) = —¢(£)(1). Obviously, w is a 1-form on X. Also,
we have

for £, € Tx. Therefore,
dw(§ A n) = §(w(n)) — n(w(§)) —w([En]) =0
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for £,m € Tx, i. e. dw = 0 and w is closed. It is evident that ¢ is completely
determined by w. Also, ¢ preserves the filtration of Dx and the induced endo-
morphism Gr ¢ of GrDyx is the identity morphism. This clearly implies that
¢ is an automorphism. O
By 1, every automorphism ¢ of (Dx,ix) determines a closed 1-form w
on X. Evidently, this map is an monomorphism of the multiplicative group
Aut(Dx,ix) into the additive group Z'(X) of closed 1-forms on X.

Lemma 2. The natural morphism of Aut(Dx,ix) into Z1(X) is an isomor-
phism.

Proof. It remains to show this morphism is surjective. Let w be a closed 1-form
on X. Then we can define a map ¢ of Tx into Dx by ¢(§) = & — w(§), for
¢ € Tx. Evidently, ¢ satisfies conditions (ii) and (iii) of (D.0.13). Also, since
w is closed, for &£, € Tx, we have

o[, m]) = [€,n] — w([¢, 77]) [€,n] — &(w(n)) + n(w(§))
=[§ —w(§),n—wmn)] = [o(&), p(n)];

i. e. the condition (i) is also satisfied. Therefore, ¢ extends to an endomorphism
of (Dx,ix). By 1, ¢ is actually an automorphism. O
Let (D,i) be a twisted sheaf of differential operators on X. Then there
exists an open cover U = (U;;1 < j < n) such that (D,)|U; is isomorphic
to (Dy,,iy;) for 1 < j < n. For each j fix an isomorphism ¢; : (D,4)|U; —
(Dy,,iv;)- Then there exist an automorphism ¢, of (Dy;nuv,,iv,nv,) such
that the diagram

('D,i)|Uj NU, —— (D,i)|Uj NU

o ol

. o .
(Du,nu, » tu;nuy ) —r (Du,nvy» tu;nuy )

commutes, i. e. 1); = ¢;x 0P By 2, there exists a closed 1-form wj; on U; NUy
which determines ¢,;. If U; N Uy NU; # () we have on it

Vi = Qjr 0 Y, = dji © Pr1 0 Yy,

hence, ¢j; = ;i 0 Yry on U; N U, N U;. This in turn implies that
$j1(§) = & — wji(§) = (Pjx © dr1) (&) = Pjx (€ — wri(§)) = & — wjn(§) — wri(§)

for 5 S TUjﬂUkﬂU[) Le
Wil = Wik + Wkl
on Uj NU, NU;. 3
Let Z} be the sheaf of closed 1-forms on X, and C" (U4, Z%) the Cech

complex of Z% corresponding to the cover U. Then w = (wjr;1 < j < k < n)
is an element of C'(U, Z%) and dw = 0, i. e. w € Z'(U, Z%). Assume now
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that we take another set of local isomorphisms ¢} : (D,1)|U; — (Du;, iv;),

1 < 7 < n. This would lead to another set (qﬁ}k; 1 < j <k <n)and another

w' € Z1(U, Z%). Applying 2 again, we can get automorphisms o; of (Du,,iv; ),

1 < 5 < n, such that w;- = ojo; for 1 < j < n and closed 1-forms p;,

1 < j < n, associated to them. Evidently, p = (p;; 1 < j < n) is an element of
C°(U, Z%). Now, we have

0j 0Bk 0Py = 0joth; =i = Py 0 by = Py 0 op 0 Yy,
on U; N Uy, hence o 0 ¢ji, = qS;.k o 0. This leads to

pj + wik = Wiy + pi

on U; N Uy. It follows that w' — w = dp. Therefore, the twisted sheaf of
differential operators (D, ) determines an element of H(U, Z%).

Therefore we have a well-defined map ¢ : (D,i) — t(D,i) € H' (X, Z%)
from the isomorphism classes of twisted sheaves of differential operators into
the first Cech group of X with coefficients in Z%.

Theorem 3. The map t defines a bijection between the isomorphism classes of
twisted sheaves of differential operators on X and the elements of H'(X, Z%).

Proof. First, we shall check that this map is injective. Let D and D’ be two
twisted sheaves of differential operators such that ¢(D) = ¢(D’). Then both of
them determine an open cover U = (Uj;1 < j < n) and w,w’ € ZYU, Z%)
such that they define the same element of H'(X, Z%); and families of local
isomorphisms ¢; : D|U; — Dy;, 1 <j <n,and ¢; : D'|U; — Dy,, 1 <j <
n, as explained in the previous discussion. By taking possibly a refinement of
U, we can assume that w —w’ = dp for some p = (pj;1 < j <n) € C°U, Z%).
Let 0 : Dy; — Dy, be the automorphism determined by p;, 1 < j < n. Then
¢ = ojod}, 1 < j < n,isafamily of local isomorphisms ¢”; : D'|Uj — Dy;,
with the property that

ajo¢;-ko7,b;c:(Ijogb;-:w;-’:¢;-’ko —qﬁjkoakowk

and therefore o; o /k ¢’k o og, 1. €. qﬁ = o0j0 qﬁ}k o ak_l on U; N Uy.
This implies that wi = wiy + pj — pr on U NUg, i. e. W' =W +dp = w.
This finally implies that ¢;; = ¢%;, on U; N Ug. Define local isomorphisms
0; : D|U; — D'|U; by 0; = ¢/ o4p; for 1 < j < n. Then, on U; N Uy, we
have

0; =9 onp; = (g o) Lo ik ot = P oty = Oy,

and 6 extends to a global isomorphism of D onto D’.
The proof of the surjectivity is the standard “recollement” argument using
2. O
Now we shall describe a construction of some twisted sheaves of differential
operators on X. Let £ be an invertible Ox-module on X and D, the sheaf of
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all differential endomorphisms of L. Because L is locally isomorphic to Ox,
D, is a twisted sheaf of differential operators on X. Let O% be the subsheaf
of invertible elements in Ox. Then, as it is well-known, the Picard group
Pic(X) is equal to H'(X, O%). There exists a natural homomorphism d log :
O% — Z% of sheaves of abelian groups given by the logarithmic derivative,
i. e. dlogf = f~df, for any f € O%. It induces morphisms HP(dlog) :
H?(X,0%) — HP(X, Z%) of cohomology groups. Let i(£) be the element
of H'(X, O%) corresponding to £. Then we have the following result.

Proposition 4. For any invertible Ox-module £ on X,

t(Dc) = H*(dlog)(i(L)).

Proof. Let U = (U;;1 < i < n) be an open cover of X such that L|U; is
isomorphic to Ox |U; for all 4, 1 < i < n. Denote by «; : L|U; — Ox|U;, 1 <
¢ < n, the corresponding Ox-module isomorphisms, and by s;; the sections
of O% on U; N Uy defined by s;i = a;(a; '(1)) for all 1 < j < k < n. Then,
for a section s of L|U; N Uy,

a;(s) = aj(ay; (ak(s))) = sjpan(s),

i.e.s=(sjr;1 <j <k <n)isa l-cocycle which represents i(L). Also, o
defines an isomorphism ; of D.|U; onto Dx|U; by ¥;(u) = ajouo ai_l for
all 1 <17 <n. This implies that

Y;i(u)(f) = (aj oo a;h)(f) = aj(ule;(f)))

= siwek(u(ay (5 1)) = sinn(u) (s5. f),
for any f € Ox|U; N Uy. Therefore, 1;(u) = sjkwk(u)sj_kl. It follows that
$in(D) = sjiDsy,
for any D € Dx|U; N Uy. Let ¢ € Tx|U; N Uy. Then,
$in(C) = sjnC s = ¢ — 573, Cs5m),

ie wjp= sj_kl dsjr. Therefore, the 1-cocycle w which represents ¢(D,) is given
by (sj_kldsjk;lgi<j§n). O

Now we want to study the functoriality questions.

Let X and Y be two smooth algebraic varieties, ¢ : X — Y a morphism
of algebraic varieties and D a twisted sheaf of differential operators on Y.
Then Dx_,y = ¢*(D) is an Ox-module for the left multiplication and a right
¢~ 1(D)-module for the right multiplication. We denote by D¥ the sheaf of
all differential endomorphisms of the right ¢~ !(D)-module Dx_,y. Evidently,
D¥ is a sheaf of associative algebras on Y. There is also a natural morphism
of sheaves of algebras i, : Ox — D¥. Hence, from (D.0.15) we know that
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the pair (D¥,1,) is locally isomorphic to (Dx,ix), i. e. D¥ is a twisted sheaf
of differential operators on X.

By 3, D¥ determines an element ¢(D¥) of H'(X, Z%). Now we want to
calculate ¢(D?).

First we need a lifting result. Let (C,4) and (D, j) be two twisted sheaves
of differential operators on Y, and ¢ : (C,i) — (D,j) an isomorphism.
Therefore, 1 is an Oy-module isomorphism for the structures given by both
left and right multiplication. Hence, 9 induces an Ox-module isomorphism
©* () : Cx_y — Dx_y of Ox-modules. Also, if u € Cx_y, v € ¢ 1(C),
we have

0" (1) (uv) = ™ (1) (w)e ™" (1) (v).

It follows that, for any z € C¥, u € Dx_,y, v € ¢~ (D), we have

(2(e* (@ N (we (¥ H(v)))
((z* () ()™ (™) (v))
= (*()2@* (™)) (u)v,

i. e. p*(¥)zp*(¢p~1) € D¥. Hence, if we put

" () (2) = 0" () 24" (¥ 1),

©# (1)) : C¥ — D¥ is an isomorphism of sheaves of k-algebras on X. Ev-
idently, j, = ¢¥(¢) o i,. Therefore, ¢¥(¢)) is an isomorphism of twisted
sheaves of differential operators. We call it the lifting of . Also, for any
z€C? ueCx_y, we have

(™ (¥)(2))* () (u) = ¢*(¥)(2u).

Now, we consider the special case of an automorphism « of Dy. By 2, it is
determined by a closed 1-form w on Y. By D.0O.15, there is a natural iso-
morphism ¢ of the pair (Dx,ix) with (D¥,iy,,). We want to calculate the
automorphism induced by the lifting ¢ (a) of & on Dx; more precisely, the
closed 1-form on X it determines by 2.

Let x € X and U a small open neigborhood of ¢(z) € Y such that we can
find f; € Oy (U), 1 <i < dimY, such that df;, 1 <i < dimY, form a basis of
the free Oy-module T xy |U. Let 0;, be the dual basis in 7y |U. Then, as we
have seen in D.O, for a local vector field £ around x, we have

Y(@* (@) (€)(1) = Bl (@) (©) (1@ 1)) = Ble* () (E(1 @ 1))

(" (@)D _&(fio @) @ ™10y)))

O _&(ficw) @9 Had) = =D &(fio p)w(d:)
—w()_E(fiop)di) = —(¢*w)(2),

here we denoted by ¢*w the 1-form on X induced by w. Therefore p*w is the
closed 1-form associated to ¢# ().

I
= @
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Now we can apply this fact to the calculation of ¢(D¥). Let U = (U;; 1 <
i < n) be an open cover of X and ¢; : (D,i)|U; — (Dy,iy)|U; the corre-
sponding isomorphisms. As before, for 1 < j < k < n, denote by ¢;;, the auto-
morphisms of (Dy, iy )|U;NUj, such that ¢; = o, Let V = (Vi;1 <i < n)
be the open cover of X given by V; = ¢~ 1(U;), 1 < i < n. Then, the lifting
©* (¢;) is an isomorphism of (D¥,i,)|U; onto (Dx,ix)|U;, and the liftings
©* (¢;1) are automorphisms of (Dy, iy)|U; N Uy, such that

o7 (1) = 0™ (dj1) 0 ©* (Yn),

for 1 < 5 < k < n. From the previous discussion it follows that, if
w = (wjr;1 < j < k < n)is a l-cocycle of closed 1-forms on Y corre-
sponding to D, then (¢*wjr;1 < j < k < n) is a 1-cocycle of closed 1-forms
on X corresponding to D¥. The map w — ¢*w of closed 1-forms on Y into
closed 1-forms on X induces a morphism ¢p~!(Z{.) — Z% of the sheaves of
vector spaces. This morphism, using ([Téhoku], 3.2.2), induces linear maps
ZP(p) : HP(Y, Z4) — HP(X, Z%) for each p € Z . Therefore, our previous
discussion actually proves the following result.

Proposition 5. Let ¢ : X — Y be a morphism of smooth algebraic varieties,
and D a twisted sheaf of differential operators on Y. Then

t(D?) = Z'(¢)(t(D)).

Moreover, the construction behaves well with respect to the composition
of morphisms.

Proposition 6. Let o : X — Y and ¢ : Y — Z be morphisms of smooth
algebraic varieties and D a twisted sheaf of differential operators on Z. Then
D¥°% s naturally isomorphic to (D¥)%.

Proof. Evidently,

(Y0 ©)*(D) = ¢*(¥*(D)) = ¢*(Dy—z) = Ox @p-1(0y) ¢ (Dy—z)
= Ox ®p-1(0y) ¢~ (D?) ®p-1(pvy ¢~ (Dyz)
= (D¥)xLy Rp-1(D¥) ¢ ' (Dy_z)

as an Ox-module and right (1 o ¢)~!(D)-module. Also, the action of (DY)
on the first factor in the last expression evidently commutes with the right
action of (1) o ¢)~(D). Therefore, there is a natural morphism of (D¥)% into
D¥°%. By 1, this morphism is an isomorphism of twisted sheaves of differential
operators. O

In the following we shall identify (D¥)¥ with D¥°% using this isomorphism.

Another construction we want to discuss is the twist of a twisted sheaf of
differential operators D on a smooth algebraic variety X by an invertible O x-
module L. If we consider D as an O x-module for the left multiplication, we can
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form the Ox-module L&p, D. The sheat L&, D is a right D-module for the
right multiplication on the second factor. Therefore, we can consider the sheaf
D~ of local differential endomorphisms of the right D-module £ ®c0, D. It is
obviously a sheaf of k-algebras on X. Also, because L&p, D is an Ox-module,
there is a natural homomorphism i, : Ox — D*. We claim that (D%, i.) is
a twisted sheaf of differential operators on X. Let & = (U;;1 < i < n) be an
open cover of X such that £|U; is isomorphic to Ox |U; and D|U; is isomorphic
to Dx|U;. Therefore, as an Ox|U;-module, (£ ®p, D)|U; is isomorphic to
Dx|U;. Also, under this isomorphism, the right D|U;-action on (£ ®e, D)|U;
corresponds to the right D x|U;-action on Dx|U;. This induces an isomorphism
of the sheaves of differential endomorphisms, and therefore identifies D*|U;
with the sheaf of differential endomorphisms of Dx |U; considered as a right
Dx|U;-module. Evidently, this sheaf of algebras is naturally isomorphic to
Dx |U;. Therefore, D* is a twisted sheaf of differential operators on X. It is
called the tunst of D by L.
We start the study of twists with the following result.

Lemma 7. Let L be an invertible Ox -module on a smooth algebraic variety
X. Then the twist (Dx)* of the sheaf of differential operators Dx is naturally
tsomorphic to Dp.

Proof. Let Zx be the left ideal in Dx generated by 7x. Then, we have an
exact sequence of Ox-modules

0—Zx —Dx — Ox —0,
and, by tensoring with L,
0 —L®v,Ix — L®p, Dx — L — 0.

From the construction of (Dx)* is clear that this is an exact sequence of
(Dx)*-modules. Therefore there is a natural morphism of (Dx)¥ into D.. By
1, it is an isomorphism of twisted sheaves of differential operators. O

In the following we shall identify (Dx)* with D, using this isomorphism.

Proposition 8. Let D be a twisted sheaf of differential operators on a smooth
algebraic variety X and L an invertible Ox -module. Then

t(D*) = t(D) + H'(dlog) (i(L)).

Proof. Let U = (U;; 1 < i < n) be an open cover of X, and «; : L|U; — Ox|U;
and v; : (D,i)|[Ui — (Dx,ix)|U;, 1 < i < n, local isomorphisms. As in the
proofs of 3. and 4, we denote by ¢;; the automorphisms of (Dx,ix)|U; N Uy
such that ¢; = ¢j1, 0 ¢ and sjx = aj(ag (1)) € O% for 1 < j < k < n.
For1 <i<m,o;=0;%;: (L R0y D)|U; — Dx|U; is an isomorphism of
Ox-modules, and
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oi(s ® uv) = ai(s)pi(uv) = ai(s)Yi(u)i(v) = oi(s ® u)ei(v),

for s € L|U;, u,v € D|U;. Therefore, if we identify the differential endo-
morphisms of Dx, considered as a right Dx-module for the right multipli-

cation, with Dx via the map T — T'(1), we have a natural isomorphism
7i : DF|U; — Dx |U; given by

7i(u) = (ciouwoo; M) (1) = oi(u(a; (1) ®1)).
Also, for 1 < j < k <n,
0j(s ®v) = a;(s)P;(v) = sjrar(s) i (Y (v) = sjxdjr(or(s @ v)),
for any s € L|U; N Uy, and v € D|U; N Uy, what implies that
7j(u) = oj(ulaj (1) © 1)) = sjpdjr(or(u(sya; (1) ©1)))
= sikbjk(or(ulog ' (1) ® Sj_kl))) = sikdjk(ok(u(a; (1) @ 1)s5,))
(or(u(a ' (1) ©1))s3 = sjkdin(Tr(w)sy;

for u € DX|U; N Uy, If we put

= Sikdjk

pik(v) = 5101 (V)57

for v € Dx|U; N Uk, we get an automorphism pji, of Dx|U; N Uy, such that
T; = pjk © Tk As before, denote by w = (wjr;1 < j < k < n) the element of
CY(U, Z%) corresponding to (¢jr;1 < j < k < n). Let £ € Tx|U; N Ug. Then

pik(€) = sjudin(©)s5y = sjn(€ — win(€))sjy = € — 55 dsn(€) — win(€),

hence, the element of C'(U, Z}) corresponding to (pjr;1 < j < k < n) is
equal to (wji + sj_kl dsjr;1 < j <k <n). 0

Proposition 9. Let D be a twisted sheaf of differential operators on X and
L and L' two invertible Ox-modules. Then the twisted sheaf of differential
operators (D)~ is naturally isomorphic to D ®ox~.

Proof. Evidently,
L' ®oy LBy D= (L ®0x D) ®pe (L @0, D),

as an Ox-module and right D-module. Therefore, the right action of (DL)LI
on the first factor in the second expression commutes with the right D-action.
This gives a natural morphism of (Dﬁ)y into DL'®ox £ By 1, this morphism
is an isomorphism of twisted sheaves of differential operators. O

In the following we shall identify (D£)£" with D4 ®ox £ using this isomor-
phism.

Proposition 10. Let ¢ : X — Y be a morphism of smooth algebraic va-
rieties, D a twisted sheaf of differential operators on Y and L an invertible
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Oy -module. Then the twisted sheaf of differential operators (D)% is naturally
isomorphic to (D®)?" (£,

Proof. Evidently,

*

¢*(D) = ¢* (L7 ®0, L ®0, D) = ¢*(L) " ®o, ¢*(L ®o, D)
e (L)~ ®ox (D*)xoy ®p-1(pey ¢~ (L ®oy D)
= (¢*(L) " ®oy (DF)?) @peye (DX)xoy ®p-1(pey ¢~ (L @0y D),

Dx_y =

as a Ox-module and right ¢~ (D)-module. It is clear that the left action of
((D*)#)*"(£) on the first factor commutes with the right action of ¢~1(D).
Therefore there is a natural morphism of ((D%)#)#"(£) into D¥. By 1, this is
an isomorphism of twisted sheaves of differential operators. By twisting this
natural isomorphism by ¢*(£) and using 9, we get that (D)% is naturally
isomorphic to (D¥)®"(£), 0

If A is a sheaf of k-algebras on X, we denote by A° the opposite sheaf of
k-algebras on X.

Proposition 11. Let (D,i) be a twisted sheaf of differential operators on
a smooth algebraic variety X. Then (D°,i) is a twisted sheaf of differential
operators on X.

Let n = dim X and wx be the sheaf of differential forms of degree n on
X. Then there is a natural action of the sheaf of Lie algebras 7x on the sheaf
wx; a vector field { acts by the corresponding Lie derivative L¢. In fact, if U
is an open set in X, w € wx (U), and &, 1,72, ... ,n, local vector fields on U,
we have

n

(ng)(§1/\772/\. : -/\nn) = f(w(m/\nz/\- . -/\nn))_z W(m/\- . -/\[5’ 771]/\- . '/\nn)'

Let ¢ and ¢’ be local vector fields on U. Then

([Le, Lew)(m A - Amn) = E((Lerw)(m Ao A )

n

—&((Lew)(m A - A ) — Z(Ls'W)(m A NG A A )
+ Z(LsW)(m A ANES A A ) = (6 (wlm A An))

+Z wim A AETE I A An)

—Z wim A AETE A A )
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S

=[£,Nwm A ... Amy)) — . wm A ANEE ] A A )

= (L[f,f’]w)(nl VAN ’I]n),

showing that this is an action of a sheaf of Lie algebras.
Also, for a regular function f on U an a vector field £ we have

Le(fw)m Ao Ann) = E(fwlm A Ann))

—~ wa(m A NEMIA L AN) = (E(Hw+ FLe(W) (L Ao Amg).

This immediately implies that [L¢, f] = £(f), i. e. L¢ is a first order differential
operator on wy.

Taking a small U, we can assume that 7y is a free Op-module, i. e. we
can find local vector fields ny,72,...,m, on U which form a Oy-basis of Ty .
Then we can represent € as £ = Y ;| g;n; for some g; € Oy. This implies that

(Lgew)(m Ao Amn) = fE(wm A ... Ann))

=~ wlm A A eI A An)
=1
= fE(wim A ... Amn) =D fwlp A A& m] AL A )
i=1
+ 3wl A AD(EA . ADL) = fLe(W) (A - A1)
=1

+ Zm(f)giw(m Ao A) = (fLe(w) + EHW) (M A - Amy)

= Le(fw)m Ama Ao Any),

i. e. Lye = L¢f. This implies that the map A : £ = —L¢ is an Ox-module
morphism from 7x into D, , considered as an Ox-module for the right mul-
tiplication. It has the property that

AUE ) = [A(m), AE)]

for £, € Tx. Therefore, it extends, by (D.0.13), to a morphism of the sheaf
of k-algebras Dx into D, which is the identity on Ox. By 1, this implies
that it is actually an isomorphism.

Hence, we have the following result.

Lemma 12. Let X be a smooth algebraic variety of dimension n. Let wx be
the invertible Ox -module of differential n-forms on X. Then the pair (D%, ix)
is naturally isomorphic to (Dy .y, lwy )-
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This result immediately implies 11. Therefore, we can calculate the iso-
morphism class of D°.

Proposition 13. Let X be a smooth algebraic variety and D a twisted sheaf
of differential operators on X. Then

t(D°) = —t(D) + H'(dlog)(i(wx)).

Proof. Let U = (U;; 1 <i < n) be an open cover of X, and v; : (D,)|U; —
(Dy,,iu,) corresponding isomorphisms. As before, for 1 < j < k < n, denote
by ¢ the automorphisms of (Dy;nv,,iv;nv,) such that ©; = ¢ o Yy. Let
wjr be the closed 1-form determined by ¢;; by 2, i. e. such that ¢;,(§) =
¢ — wji(&) for any local vector field & on U; N Uy. Then ¢;, 1 < i < n,
are also isomorphisms of (D°,4)|U; onto (D%, ix)|U;. The composition with
the map A which we introduced in the proof of 11. gives us isomorphisms
7 ¢ (D°,9)|Ui — (Duwy,twy)|Ui, 1 < i < n. Also, the automorphisms ¢y
define, by oj;, = Aopji o A™1, automorphisms of (D, iwy )|U; N Uy, such that
Tj = 0k 0 Tk, 1 < j < k < n. Evidently, o;; is determined by

aik(AE)) = A@jr(€)) = A€ — wjr(€)) = A(§) — wjr(E)

for any local vector field £ on U; N Uy. We can assume that, the open sets
U; are so small that there exist Op,-module isomorphisms «; : wy, — Oy,
1 < i < n. Then they define isomorphisms f3; : (Din,ini) — (Dy,,iv,),
1 <i<mn,byBi(n) = aionoai_l for any n € Dy, . Also, as in the proof of 4, we
put sjx = a;(az (1)) for all 1 < j < k < n. The composition v; = ;0 7; is an
isomorphism of (D°,4)|U; onto (Dy,,iy,) for 1 < i < n. The automorphisms
djk zﬁjoajkoﬁk_l, 1 <j <k <n, satisfy
’}/J :/BjOTj :,BjOO'jkOTk :5jk07k-

Let £ be a local vector field on U; N Uy. Then, for f € Ox,

BiME)(f) = ai(ME)ai () = as(A(E) (fa; (1))
= —ai(Le(fai ' (1)) = —€(f) + Bi(A€)) (1),
hence, we have
B (&) = =& + Bi(AE) ().
This leads to
351 (€) = Bi (o (B, (€)) = —B;(a(A(€))) + Bu(A(€)) (1)
= =B (M9;k(€))) + Be(A(€)) (1) = =B;(A(€)) + wjn(&) + Br(A(§))(1)
= &+ w;n(€) — B;(ME) (L) + Br(A(€)) (1)

As in the proof of 4, we see that 5;(A(£)) = sjkﬁk()\(f))s;kl, what implies that

Bi(A€)(1) = suBrME) (s7) = —sin&(57) + Br(AE) (1),



12 1. Sheaves of Differential Operators

and finally

0k (§) = & + wir(§) — B (AME)) (1) + Be(AE))(1)
= &+ wr(§) — 53, dsjr(§) = € — (—wji + 555 dsji)(€).0

1.2 Homogeneous Twisted Sheaves of Differential
Operators

Let G be a connected algebraic group over an algebraically closed field £ of
characteristic zero and X its homogeneous space. By differentiation of the
action of GG on the structure sheaf Ox of X we get an algebra homomorphism
T7:U(g) — I'(X,Dx). Clearly, this map is G-equivariant.

Let D be a twisted sheaf of differential operators on X with an algebraic
action v of G and a morphism of algebras « : U(g) — I'(X, D) such that

(i) the multiplication in D is G-equivariant;

(ii) the differential of the G-action on D agrees with the action T —
[a(€),T) for ( € gand T € D.

(iii) the map « : U(g) — I'(X, D) is a morphism of G-modules.
Then the triple (D,7,«) is called a homogeneous twisted sheaf of differen-
tial operators on X. In this section we shall classify all homogeneous twisted
sheaves of differential operators on X.

Clearly, Dx with the natural action of G and the homomorphism 7 defines
a homogeneous twisted sheaf of differential operators on X.

On the sheaf U° = Ox ® U(g) of vector spaces on X we can define a
structure of the tensor product of U(g)-modules by putting

E(feon) =1l feont fan,

for £ € g, n € U(g) and f € Ox. On the other hand, U° = Ox ®; U(g) has a
structure of an Ox-module, by multiplication on the first factor. Moreover,

£, 9](f@h)=¢gfon) —gé(fen) =1E) (g fen=[7(&),9]lf®n

for £ € g, n € U(g) and f,g € Ox. This implies that U(g) acts by differential
operators on U°, and the corresponding homomorphism ¥ of U(g) into the
ring of differential operators Diff (1/°) on U° is compatible with the filtrations
by degree. We can extend ¥ to a Ox-module morphism of Ox ®; U(g) into
Diff (4°) which attaches to f ® &, f € Ox and £ € U(g), the differential
operator f¥ (&) € Diff(U°). For f € Ox and & € U(g) we have

P(felel)=frElel)=[fef,

what implies that ¥ : Ox @ U(g) — Diff (U°) is injective. We claim that its
image is a sheaf of subrings of Diff(¢/°). Clearly, it is an Ox-module for the
left multiplication and a right ¥(U(g))-module for the right multiplication.
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Therefore, it remains to show that for any f € Ox, £ € g, the differential
operator ¥ (&) f is in the image of ¥. On the other hand,

(&) f = [W(&), f1+ f#() =T f + [P(E)

and the last expression is evidently in ¥ (Ox ®j U(g)). This implies that U°
has a natural structure of a sheaf of rings such that ¥ : Y° — Diff (U°) is a
homomorphism. Moreover, the multiplication is given by

(f@&gen) =fr)gen+ fag@&n

for any f,g € Ox, & € g and n € U(g). From this it follows that 7 extends
to a homomorphism of the sheaf of rings U° into Dx. Let g° = Ox ® g,
considered as Ox-submodule of ¢/°. Then

fe@&gon =fr)gen—grn)f @&+ fg@ &, 1]

for any f,g € Ox and &,n € g; what implies that g° is a sheaf of Lie algebras
with this operation. By this calculation, we see that 7 defines a homomorphism
of g° into the sheaf of local vector fields Tx on X, which we denote by 7 too.

Lemma 1. The morphism 7 : g° — Tx is an epimorphism.

Proof. Both Ox-modules g° and 7Tx are locally free, hence the statement

follows from the fact that the linear map T, (7) the morphism 7 induces on

geometric fibres of g° and 7x at any x € X is surjective. O
We can define an increasing filtration on U° by putting

F,U° = Ox ® F,U(g) for any p € Z,

where FU(g) is the standard filtration of the enveloping algebra U(g). Clearly,
this filtration is compatible with the algebra structure on U° and with the
homomorphism 7 : Y° — Dx. Also,

Fouo :OX s F1L{° :OXEBQO,

and F; U° generates U° as a sheaf of algebras.
Denote by b° the kernel of 7: g° — Tx. Then b° is a sheaf of ideals in
g°. Moreover, if > f; ® & € b° and g € Ox, we have

[Zfz’ ® &g ® 1] = fir(&)g@1=0;
and this implies that J; = b°U° is a sheaf of two-sided ideals in U/°.

Proposition 2. (i) The morphism 7 : U° — Dx is an epimorphism.
(i) The kernel of 7 : U° — Dx is the sheaf of ideals Jp.

Proof. (i) Follows from 1. and the fact that Dx is generated by Ox and Tx.
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(ii) Clearly, Joy = b°U° is contained in the kernel of 7. Also, for any x € X,
the geometric fibre T, (Jy) = b1 (g) is the kernel of the linear map T, (7) from
the geometric fibre T, (U°) = U(g) of U° into the geometric fibre of Dx at
. O

Now we want to prove an analogous result for homogeneous twisted
sheaves of differential operators on X.

Let (D,, ) be a homogeneous twisted sheaf of differential operators on
X. Then, by (ii), for any £ € g and f € Oy,

[(§), f1=1[7(8), Fl=7(&)f.

In particular, we see that [[«(£), f],g] = 0 for arbitrary f,g € Ox, hence «(¢)
is of degree < 1 for any & € g. We define a map U° — D by fQT — fa(T)
for f € Ox and T € U(g), and by abuse of notation, denote it by « again.
Then

a((fR&en) =a(fr()g@n+ fg@&n) = fr(§)(9) a(n) + fga(én)
= fla(§), gla(n) + fga(§)a(n) = fal§)ga(n)
=a(f ®@&a(g®n),

for any f,g € Ox and &,n € g. Therefore, o extends to a morphism
of sheaves of rings which is compatible with the natural filtrations. Since
GrD = S(Tx) = GrDx and it is generated by Gr; D as an Ox-algebra, we
immediately conclude that Gra = Gr7 and Gra : GrUY° — GrD is an epi-
morphism of sheaves of rings. This implies that «(b°) C Ox, i. e. « defines a
G-equivariant morphisms ¢ of the G-homogeneous Ox-module b° into Ox.

Fix a base point zo € X. Its stabilizer By acts in on the dual space b§ of
bo. Denote by I(bf) the subspace of By-invariants in bjj. Then we have the nat-
ural linear isomorphism between I(b{) and the space of all G-equivariant mor-
phisms o of the G-homogeneous Ox-module b° into Ox. Therefore, (D, vy, «)
determines an element of I(b).

To each A € I(b}) we can associate a G-equivariant morphism o of the
G-homogeneous O x-module b° into Ox. Let ¢y : b° — U° given by ) (s) =
s —ox(s), s € b°. Then im ¢, generates a sheaf of two-sided ideals Jy in U°.
We put

Dxx=U°/Tx.

This is a sheaf of algebras on X.

Proposition 3. The sheaf of algebras Dx  is a twisted sheaf of differential
operators on X.

We say that Dx » is the homogeneous twisted sheaf of differential opera-
tors on X associated to A.

As a consequence of the preceding discussion and 3, we have the following
result.
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Theorem 4. The map A — Dx » is an isomorphism of I(b) onto the set of
isomorphism classes of homogeneous twisted sheaves of differential operators
on X.

Proof. Let (D,~,«a) be a homogeneous twisted sheaf of differential operators
on X. Then, by the preceding discussion it determines a unique A € I(by).
Moreover, 7y is in the kernel of the homomorphism « : Y° — D. This implies
that o induces a homomorphism 3 : Dx x — D of sheaves of rings which is
compatible with the filtrations of Dx » and D, and with the natural maps of
U(g) into I'(X, Dx ) and I'(X, D) respectively. Also, Gr 3 is an isomorphism
of graded sheaves of rings. This implies that 8 is an isomorphism too. a

To prove 3, by 2. and the G-homogeneity, it is enough to find a neighbor-
hood U of the base point x( and a local automorphism ¥y of U°|U such that
!p)\|OU =1 and Ep)\(j0|U) = j)\|U

Let U be an open set in X. Now we want to describe some automorphisms
p of U°|U with the following properties:

(i) p(f) = f for any f € Ov,

(ii) Grp is the identity.

Clearly, p is completely determined by its values on 1®¢, £ € g. Moreover,
(ii) implies that p(1®¢) = 1® & — w(§) @ 1 where w(§) € O(U). By (i) we
also have

p(f@=fo- ful@)®1
for any f € Oy and £ € g. To be an automorphism, p has to satisfy also

([l 1@n]) =[p(1®&),p(1en)]=11[¢,n] —T(w(n) @ 1+ T(Nw(§) @1,

- w(iE,m) = 7(E)wln) — r(M)w(E) (1)

for any &,n € g. Therefore, w is a linear map from g into O(U) which is anni-
hilated by the differential of the Lie algebra cohomology of g with coefficients
in O(U). Moreover, we can extend w to an Oy-module morphism of g°|U into
Oy given by

w(f®¢&) = fw(§) for f € Oy and £ € g.

The relation (1) implies that

w(lf®&g@n]) = faw(& n])+ fr(€)(g)w(n) — gr(n)(fw(l)
= [1(§)(gw(n)) — g7(n)(fw(§))
=7(f®&wlgen) —1(g@n)(w(f ®E));

i. e. for any two sections s, s’ € g°|U we have

w([s, sT) = 7(s)(w(s) = 7(s) (w(s)). (2)

Also, we remark that w is local, i. e. if s € g° is such that s(z) = 0 for some
xz € U it follows that w(s)(xz) = 0. Moreover, by (2), for s € b° and s’ € g°|U,
we have
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w([s', s]) = 7(s") (w(5)),

what implies that the map w from b°|U into Oy is g°|U-module morphism.
We shall need the following result.

Lemma 5. Let ¢ : b°|U — Oy be a local g°|U-module morphism and x € U.
If {(s)(x) = 0 for any s € b°, there exists a neighborhood V. C U of x such
that C|[V = 0.

Proof. Let & € g. Then,
(T(©)(¢(s))) () = C([L @&, 8])(x) = 0.

It follows that all derivatives of ((s) at x vanish, hence the germ of {(s) at x
is zero. By the coherence of b° we see that ( vanishes in a neighborhood of
T. O

On the other hand, if we have a linear map w : g — O(U) satisfying the
relation (1), it defines an automorphism p,, of U°|U, which satisfies (i) and
(ii), by

po(f@8) =f&— fu(§)®1

for any f € Oy and € € g.

Clearly, all such w form a vector space.

Now we want to construct some maps w satisfying the above properties.

(I) Let x be a character of By. Let s be a section of the homogeneous
invertible Ox-module O(x) over U. For £ € g we put

§s = w(¢)s
Then
w([& nl)s = [§,mls = E(ns) — n(&s) = E(w(n)s) — n(w(§)s)
= 7(§)(w(n)s — 7(n)(w(§))s + w(n)és — w(&)ns
= ((€)(wn) — T(n)(w(€)))s,
i. e. w satisfies our conditions.
(IT) Let

0—kk—V —%F—0

be an exact sequence of algebraic representations of By, where By acts trivially
on k. Let
0 —O0x —V—0x —0

be the corresponding exact sequence of G-homogeneous locally free Ox-
modules. Let s’ be the section of V which is the image of the section 1 of
Ox, and s” a local section of V such that its germ at zy maps into the germ
of 1. Then there is a neighborhood U of xg such that s’ and s” form a basis
of V|U as an Op-module, and

¢s" =w(¢)s’ and £s' =0
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for any £ € g. Then
w([€,n))s" = [€n]s" = E(w(n)s) — n(w(&)s') = (T(O)(w(n)) — T(M)(w(E)))s".

Hence, w again has the required property.

Now, we want to prove 3. First, any By-invariant linear form A on by van-
ishes on [bg, bp]. Let Cp be the identity component of the commutator sub-
group of By. Then Cj is a closed normal subgroup of By. The quotient group
Dy = By/Cy is an algebraic group with commutative identity component, and
Lie algebra 09 = bg/[bo, bg]. Let Dy = LoUy be a Levi decomposition of Dy.
Then Uj is an abelian unipotent subgroup, and the identity component of L
is the torus consisting of all semisimple elements in the identity component
of Dy. Therefore, we have a direct sum decomposition 09 = [y @ 1y, and both
summands are Dy-invariant. This implies that the Dg-invariant linear form p
on 0y, defined by A, can be written as a sum of two Dgy-invariant linear forms
i1 and po which vanish on [y, resp. ug. By composing these linear forms with
the projection of by onto 9y we get the decomposition of A into the sum of Ay
and X2. We can define a representation of Uy on k2 such that u € Uy acts via

the matrix
1 pi(logu) |
0 1 ’

evidently it extends to a representation of Dy in which Lg acts trivially. More-
over, we can interpret it as a representation of By. Applying the construction
from (II) we construct in a neighborhood U of z( a linear map wy from g into
O(U) which satisfies (1) and such that wy|bg = A;.

On the other hand, any linear form on [y is a linear combination of dif-
ferentials of characters of the identity component of Ly. By averaging, using
the component group of Ly, we conclude that every Lg-invariant linear form
on [y is a linear combination of Ly-invariant characters, i. e. of differentials
of one-dimensional representations of Ly. Applying the construction from (I)
we get in a neighborhood U of xg a linear map wy from g into O(U) which
satisfies (1) and such that wa|by = A2. Therefore, we get in a neighborhood
U of zp, a linear map w from g into O(U) which satisfies (1) and such that
w|bp = A. The corresponding g°|U-morphism w : b°|{U — Oy agrees, by 5,
with o) on some smaller neighborhood V' of xy. This in turn implies that p,,
is an automorphism of U°|V such that p,|Oy =1 and p,(Jo|V) = TA|V.



C. Cohomology of Dy-modules

C.1 Homogeneous Twisted Sheaves of Differential
Operators on Flag Varieties

In this section we want to specialize our construction of homogeneous twisted
sheaves of differential operators from ... to the case of a connected semisimple
algebraic group G acting on its flag variety X.

Let g be a complex semisimple Lie algebra, and G the group of inner
automorphisms of the Lie algebra g. Then the flag variety X of g can be
identified with the variety of Borel subalgebras of g. The group G acts naturally
on the trivial vector bundle X x g — X, and the tautological vector bundle
B of Borel subalgebras is a homogeneous vector subbundle of it. We denote,
for each x € X, the corresponding Borel subalgebra of g by b,, and by n, the
nilpotent radical of b,. Hence, we have the homogeneous vector subbundle
N of B of nilpotent radicals. Moreover, let B, be the Borel subgroup of G
corresponding to b,. Then B, is the stabilizer of x in G.

Let # = B/N. Then H is a homogeneous vector bundle over X with the
fiber h, = b, /n, over z € X. The group B, acts trivially on b, /n,, hence H
is a trivial vector bundle over X with global sections h naturally isomorphic
to by /n, for any x € X. We call the abelian Lie algebra b the Cartan algebra
for g.

Let Ox be the structure sheaf of the algebraic variety X. As in ..., let
g° = Ox ®c g be the sheaf of local sections of the trivial bundle X x g. Denote
by b° and n° the corresponding subsheaves of local sections of B and N,
respectively. If we denote by 7 the natural homomorphism of the Lie algebra
g into the Lie algebra of vector fields on X, we define a structure of a sheaf
of complex Lie algebras on g° by putting

fe@&gon =fr)gen—gr(n)f @&+ fg@ &, 1]

for f,g € Ox and &,n € g. If we extend 7 to the natural homomorphism of g°
into the sheaf of Lie algebras of local vector fields on X, ker 7 is exactly b°.
In addition, we have the following result.

Lemma 1. (i) The sheaf b° is a sheaf of ideals in g°. The commutator on b°
1s Ox -linear.
(ii) The sheaf n° is a sheaf of ideals in g°.
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Proof. The first assertion in (i) follows from the fact that b® = ker 7. Moreover,
if Y fi®& €b°, ge Ox and n € g we have

Do fi®&,g@n =3 fig®[&,n+ > fit(§)g@n—> g9gt(n)fi @&
=g fi®&, 1®n);

this proves immediately the second assertion. Also, by this formula, to prove
(ii) we need only to check that for any > f; ® & € n® and n € g, the commu-
tator [Y_ fi ®&;, 1 ®n] is in n°. By the homogeneity, g(>_ fi ® &;) € n° for any
g € G. By differentiation, this implies that

ST fi®&+> fi ®[n,&] €n®

for any n € g; and, by definition of the bracket, this expression is equal to
[L®@n, > fi ®&l. O
The quotient sheaf h° = b°/n° is the sheaf of local sections of H, and is
therefore equal to the sheaf of abelian Lie algebras Ox ®c b.
Similarly, we defined in ... a multiplication in the sheaf U° = Ox ®c U(g)
by
(f@&en) =Ffr€)g®n+ fe©&n

where f,g € Ox and £ € g, n € U(g). In this way U° becomes a sheaf of
complex associative algebras on X. Evidently, g° is a subsheaf of ¢/°, and
the natural commutator in ¢/° induces the bracket operation on g°. It follows
from 1. that the sheaf of right ideals n°U° generated by n° in U° is a sheaf
of two-sided ideals in /°. Therefore, the quotient Dy = U°/n°U° is a sheaf of
complex associative algebras on X.

The natural morphism of g° into Dy induces a morphism of the sheaf of
Lie subalgebras h° into Dy, hence there is a natural homomorphism ¢ of the
enveloping algebra U(h) of h into the global sections of Dy. The action of the
group G on the structure sheaf Ox and U(g) induces a natural G-action on
U° and Dy. On the other hand, the triviality of H implies that the induced
G-action on b is trivial. It follows that ¢ maps U(h) into the G-invariants of
I'(X, Dy).

Lemma 2. (i) The natural morphism ¢ of U(h) into the subalgebra of all
G-invariants in I'(X, Dy) is injective.
(ii) The image of ¢ is in the center of Dy.

Proof. (i) Let x € X. Then the geometric fibre T, (Dy) of the Ox-module Dy,
at = is equal to U(g)/n;U(g). The composition of ¢ with the evaluation of a
section at x corresponds to the natural map

Uh) — U(bz)/nzU (b)) — U(g)/nU(g),

which is injective by the Poincaré-Birkhoff-Witt theorem. Therefore, ¢ is in-
jective.
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(ii) Differentiating the G-action we see that elements of ¢(U(h)) commute
with the image of g in Dy. Since Dy, is generated by Ox and the image of g,
the assertion follows. O

Let z € X and b, the Borel subalgebra corresponding to x. Let n be the
nilpotent radical of a Borel subalgebra opposite to b,, and N the correspond-
ing connected subgroup of G. Then, by Bruhat decomposition ([Bo], 14.11),
the orbit map N — X defined by 7 — fiz is an isomorphism of the variety
N onto an open neighborhood U of x € X. Let s : U — N be the inverse
map. Clearly, the inclusion of ¢(n) into U(g) induces a injective morphism of
the sheaf of algebras Oy ®@c U(n) into U°|U. It follows that we have a natu-
ral morphism of the sheaf of algebras Oy ®c U (i) into Dy. Moreover, if we
consider the tensor product (Oy ®c U (1)) @c U(h) as a sheaf of algebras, by
the previous discussion we have a natural morphism of sheaves of algebras 1
from (Opy ®c U(n)) ®c U(h) into Dy |U.

Lemma 3. The morphism
Y1 (Ou ®@cU(n)) @cU(h) — Dy|U

is an isomorphism of sheaves of algebras.

Proof. As in the proof 2.(i), we conclude that the composition of 1) with
the evaluation map at u € U corresponds to the evaluation map of (Oy ®c
U(n)) ®c U(h) at u composed with the natural linear map of U(n) ¢ U(h)
into U(g)/n,U(g). By the Poincaré-Birkhoff-Witt theorem, the last map is an
injection. This implies the injectivity of 1. It remains to show its surjectivity.
Clearly, Dy|U is generated, as a sheaf of algebras, by Oy and the image of g
in Dy|U. On the other hand, as a vector space, g = n @ b, for any v € U,
hence we have a well-defined linear isomorphism ((u) of g into itself, which is
the identity on n and Ad s(u) on b,. Therefore, any £ € g determines a section
Ceru — ((u)€ of g° on U. It follows that Dy|U is generated by Oy and the
images of the sections u — ((u)¢ in Dy|U for £ € g. But, if £ € n, we have
C(u)¢ = ¢ for any u € U, hence this section is in the image of ¢, and if £ € b,,,
the corresponding section is in the image of ¢ either. It follows that v is also
surjective. O

In particular, if we view Dy as an U(h)-module, we have the following
consequence.

Corollary 4. The U(h)-module Dy, is locally free.
Also, we can improve 2.(i).

Lemma 5. The natural morphism ¢ of U(h) into the subalgebra of all G-
invariants in I'(X,Dy) is an isomorphism.

Proof. By 2.(i) we know that ¢ is injective. If s is a G-invariant global section
of Dy, its value at  must be B,-invariant. This implies that, if we fix a



C.1 Flag Varieties 21

Cartan subalgebra ¢ in b,, s(x) must be of weight zero with respect to ¢ in
U(g)/n.U(g). Therefore it is in the image of U(h), i. e. there is a section ¢
in ¢(U(h)) such that ¢ — s is a G-invariant section which vanishes at z. By
G-invariance, this implies that ¢ — s vanishes at any point of X. By 3, Dy is
locally free as an Ox-module for the left multiplication, hence this implies
that t — s =0, and s =t € ¢p(U(h)). O

On the other hand, we have the natural homomorphism of U(g) into
Dy, which induces a natural homomorphism of the center Z(g) of U(g) into
I'(X, Dy). Its image is contained in the subalgebra of G-invariants of I'(X, Dy ),
hence, by 5, it is in ¢(U(h)). Finally, we have the canonical Harish-Chandra
homomorphism v : Z(g) — U(h) ([LG], Ch. VIII, §6, no. 4), defined in the
following way. First, for any z € X, the center Z(g) is contained in the sum of
the subalgebra U(b,) and the right ideal n,U(g) of U(g). Therefore, we have
the natural projection of Z(g) into

Its composition with the natural isomorphism of #(h,) with ¢ (h) is indepen-
dent of z and, by definition, equal to ~.

Proposition 6. The diagram

Z(g) ——  U(h)

| ‘|
Z(g) —— I'(X.Dy)

of natural algebra homomorphisms is commutative.

Proof. By 3, Dy is locally free as the Ox-module for the left multiplication.
Therefore it is enough to show that the compositions of ¢o~y and the canonical
homomorphism of Z(g) into Dy with the evaluation map are equal for any
xz € X. But this follows immediately from T, (Dy) = U(g)/n.U(g). O
Let x € X. Fix a Cartan subalgebra ¢ in b,. Let R be the root system of
g in ¢* and
ga ={E €90 =an)f for nec}

the root subspace of g determined by the root o € R. We define the ordering
on R by choosing the set R™ of positive roots by

RT ={a € R|gys Cny}.

Then the canonical isomorphism ¢ — h, — b induces an isomorphism of
the triple (¢*, R, RT) with the triple (h*, X, XT), where X is a root system in
h* and YT a set of positive roots in X. Clearly, ¥ and X+ are independent
of the choice of z € X. We call the triple (h*, X, XT) the Cartan triple of g;
and the inverse isomorphism of the Cartan triple (h*, X, ¥T) onto (¢*, R, RT)
a specialization at x.



22 C. Cohomology of Dy-modules

Let W be the Weyl group of Y. Denote by p the half-sum of all pos-
itive roots in X. The enveloping algebra U(h) of b is naturally isomorphic
to the algebra of polynomials on h*, and therefore any A € h* determines a
homomorphism of U(h) into C. Let I, be the kernel of the homomorphism
@x : U(h) — C determined by A + p. Then v~1(I,) is a maximal ideal in
Z(g), and, by a result of Harish-Chandra ([LG], Ch. VIII, §8, Cor. 1 of Th. 2),
for A\, p € b*,

v~ HI\) =y~ '(1,) if and only if wA = y for some w € W.

For any A € h*, by 3, the sheaf IyDy is a sheaf of two-sided ideals in Dy;
therefore Dy = Dy /I Dy is a sheaf of complex associative algebras on X. In
the case when A = —p, we have I_, = hUd(h), hence D_, = U°/b°U°, i. e. it
is the sheaf of local differential operators on X. In general Dy, A € bh*, are
homogeneous twisted sheaves of differential operators on X. This follows from
... or directly from 3. In the parametrization of twisted sheaves of differential
operators which we used in ... we have

Dy = DX,A—i—pa A€ [)*

Let 0 be a Weyl group orbit in h* and X € 6. Denote by Jg = v~ 1(Iy) the
maximal ideal in Z(g) determined by 6. We denote by x» the homomorphism
of Z(g) into C with ker yx = Jy. As we remarked before, x» depends only
on the Weyl group orbit # of A\. The elements of Jy map into the zero section
of Dy. Therefore, we have a canonical morphism of Uy = U(g)/Jeld(g) into
I'(X,Dy). We shall see in §6 that this morphism is actually an isomorphism.

The objects of the category M (Uy) of Up-modules can also be viewed as
U(g)-modules with infinitesimal character x.

The category M (D)) of all Dy-modules has enough injective objects
([Hartshorne], II1.2.2). Moreover, injective Dy-modules are flasque (ibid.,
I11.2.4). This implies that the cohomology modules H*(X,V) of a Dy-module
V have natural structures of I'(X, Dy)-modules. In particular, by the previous
remark, they can be viewed as Up-modules. It follows that we have a family
of functors

HY(X,-): M(Dy) — M(Up) for 0<i<dimX.

In next few sections we shall study their basic properties.

C.2 Translation Principle for Dy-modules

In this section we collect certain technical results we need to study the coho-
mology of Dy-modules.

Let Q(X) be the root lattice in h*. For any A € h*, we denote by W) the
subgroup of the Weyl group W given by

Wy={weW]lwr-XeQ(X)}.



C.2 Translation Principle for Dy-modules 23

Let 2™ be the root system in h dual to X; and for any a € Y, we denote by
o € X7 the dual root of a. Then, by ([LG], Ch. VI, §2, Ex. 2), we know that
Wy is the Weyl group of the root system

Ih={ae X | a’ () €Z}.

We define the order on ¥y by putting ¥ = X+ N X. This defines a set of
simple roots ITy of Xy, and the corresponding set of simple reflections S). Let
5 be the length function on (Wy, Sy). We say that A € h* is regular if a7 ())
is different from zero for any oo € X and that A is antidominant if a”(\) is not
a strictly positive integer for any oo € XT. We put

n(A) = min{/y(w) | w € Wy, wA is antidominant }.

In particular, n(\) = 0 is equivalent to A being antidominant. Let P(X) be
the weight lattice in h*. Clearly, u € P(X) determines naturally a homoge-
neous invertible Ox-module O(p) on X. If V is a Dy-module on X, then
its twist V() =V ®o, O(u) by the invertible Ox-module O(p) is a Dyy-
module on X (...). This construction defines a covariant functor from the
category M (D)) into the category M(Dx4,). We call this functor the geo-
metric translation functor. It is evidently an equivalence of categories, and it
induces also an equivalence of M.(Dy), resp. Mcop(Dy), with Mge(Datp),
resp. Meon(Datp)-

Geometric translation is closely related to another construction. Let F' be
a finite-dimensional g-module. Then the sheaf F = Ox ®¢ F has a natural
structure of a U°-module. We shall define its filtration which is related to the
weight structure of the module F'.

Fix a base point zg € X. The b, -module F' has a filtration

0=Fy,CF; C"'CFm,
where m = dim F', such that
dlm(F,/Fz_l) =1 and n%Fi CF,_1 for 1<i<m.

Therefore, b, /n,, acts naturally on F;/F;_; and this action induces, by spe-
cialization, an action of the Cartan algebra h on F;/F;_1 given by a weight
v; € P(X). Clearly, v; < v; implies that ¢ > j. The sheaf F is the sheaf of
local sections of the trivial homogeneous vector bundle X x FF — X. The
filtration of F' induces a filtration of this vector bundle by the homogeneous
vector subbundles with fibres F;, 1 < ¢ < m, at the base point xy. Let F;,
1 < ¢ < m, be the sheaves of local sections of these subbundles. They are
locally free coherent Ox-modules and also U/°-modules. On the other hand,
Fi/Fi—1 = O(v;) as a U°-module, i. e. F;/F;_; is naturally a D,,_,-module.
Let V be a quasi-coherent Dy-module on X. Then the Ox-module V ®p, F
has a natural structure of a #/°-module given by

EvRs)=vRs+v®Es
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for ¢ € g, and local sections v and s of V and F, respectively. We can define its
U°-module filtration by the submodules V®p, Fi, 1 <1i < m. By the previous
discussion, the corresponding graded module is the direct sum of V(v;),1 < i <
m. Therefore, for any £ € Z(g), the product [ [, ,.,, (£ —Xxr4v, (§)) annihilates
VY ®0, F. By the elementary linear algebra, V ®p, F decomposes into the
direct sum of its generalized Z(g)-eigensheaves.

Let V be a U°-module and A € h*. Denote by V|, the generalized Z(g)-
eigensheaf of V corresponding to y.

Lemma 1. Let A € b*, p € P(X) and w € W be such that w\ and —wp
are antidominant. Let F' be the irreducible finite-dimensional g-module with
the highest weight wy. Then, V — (V(—p) ®oy F)[y] s a covariant functor
from M(D)) into itself, naturally equivalent to the identity functor.

Proof. The filtration of V(—u) ®o, F has V(—p+v) as its composition factors,
where v ranges over the set of all weights of F'. Therefore, Z(g) acts on them
with the infinitesimal character x—_,,. Assume that

SA=A—pu+v
for some s € W. Then, if we put s’ = wsw™! and X' = w), we have
SN =N =wv —wp,

and since wy and wv are weights of F', s'A'— X € Q(X). Therefore, s' € Wy.
Now, since wy is the highest weight of F', wv — wpu is a sum of negative roots.
On the other hand, since A’ is antidominant, '\’ — A’ is a sum of roots from
Z;\L C X*. Therefore, s\ = A and g = v, and the generalized eigensheaf of
V(—p) ®o F corresponding to x, is isomorphic to V. O

Lemma 2. Let A € b*, yp € P(X) and w € W be such that wA and —wp are
antidominant. Assume that the stabilizers of A and A\ — p in W are equal. Let
F' be the irreducible finite-dimensional g-module with the lowest weight —wp.
Then, V — (V(1) ®ox F)ia—y) @8 a covariant functor from M(Dx_,) into
itself, naturally equivalent to the identity functor.

Proof. The filtration of V(i) ®p, F has V(i + v) as its composition factors,
where v varies over the set of all weights of F'. Therefore Z(g) acts on them
with the infinitesimal character xx4,. Assume that

A—p=sA+v)
for some s € W. Then, if we put s’ = wsw™! and X' = w), we have
N —s'N = s'wv +wp,

and, since —wy is the lowest weight of F', s'wv +wp is a sum of positive roots.
Therefore, s € Wy, and since w is antidominant, it follows that s\ = A. By
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our assumption, s stabilizes A — u, what implies that v = —u. Therefore, the
generalized eigensheaf of V(1) ®p, F corresponding to xa—_, is V. O

Let A € h* be such that n(A) =k, & > 0. Then there exists w € W) such
that £y(w) = k and w is antidominant. Let

w = 8ﬂ18g2 "'S,Bk

be a reduced expression of w in (Wy,S)). Let @« = w™'p;, and v’ = sg,w.
Then we have w’ = sg, ...sg, and £)(w’) = k — 1. It follows that

W'SaA = 88, WS\ = g, SwaWA = WA
is antidominant, which implies that
n(sqA) < Uy(w') =k — 1.

Now, the antidominance of wA implies that 87(w)) € —Z,; also, Bi(wA) =0
would imply that w'A = sg, wA = w is antidominant, contradicting the choice
of w. Therefore,

p=—pi(wA) €N.

Let Cy be the Weyl chamber corresponding to E;r, then the equation
B1(1) = 0 determines a wall of C). Evidently, the X-regular points of C) are
partitioned in finitely many Weyl chambers for Y, and at least one of them
shares this wall with C'y. Let C' be one of such Weyl chambers.

Let 0 € P(X) N C, such that $i(c) = p. Then wA — sg,0 is in the wall
determined by (£7. Also, because of

Yn=Xpr= Ew)\—531cr
and
s (T — {B1}) = 27 — {Bi},
we see that, for 8 € E;\L — {p1}, we have
B (wA —sg,0) = B (wA) — (sp,8) (o) € —Z4,
and wA — sg, 0 is antidominant. Hence, because of
w' (A = sqw™lo) = sg,w(A — saw o) = sp, (WA — 85,0) = WA — 55,0,

it follows that
n(\ — sqw™ o) < ly(w') =k — 1.

Now, let V be a Dy-module. Then its translation V(pa) is a D4 pe-module.
Also, we have

A4 pa=A—Fi(wA)a=\—a (A)a = s

Analogously, the translation V(—s,w™t0) is a Dy_,_,-1,-module.
Let F be the irreducible finite-dimensional g-module with extremal weight
o. Let
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G = (V(—saw ™ '0) @0y F)p-
Then the filtration of V(—s,w™'0) @, F induces the filtration

gi =gn (V(—saw_la) ®ox f’b)? <1< m,

of G. This filtration has the property that G; = G;_1, except in the case when
X and X — sqw ™o + v; lie in the same Weyl group orbit 6. If this condition is
satisfied, we have

gi/gi_1 = V(—saw_lcr + V,').

Therefore, to get a better insight into the structure of G we have to find all
weights v of F' such that

A —sqw to 4+ v =35\
for some s € W. This implies that
SA—A=v—sqw o€ Q(X),

hence s € Wy. Therefore s’ = wsw™! satisfies

sSWA —wA =w(sA — ) = wv — sqw™ o) = wv — sp,0,

and since w is antidominant,

s'(wA) — wA = Z mgB, mg € L.
BEII

It follows that
58,0 — WV = — Z mgf3.

BEILy

By the choice of C, the set of all positive roots X+ (C) in X' (with respect to
the order defined by C) contains X Hence, if we denote by IT(C) the set of
simple roots in X' determined by C, wr — sg, o is a sum of roots from II(C).
Since the root 3 is in II(C), sp,wv — o = sg, (wv — sg, ) is the difference of a
sum of roots from I7(C') and 31, 7 € Z. On the other hand, sg, wv is a weight
and o the highest weight of F' for the order defined by C, hence o — sg, wv is
a sum of roots from I7(C). This finally implies that o — sg, wv = ¢31 for some
q € Z. Therefore,

s'wA — w\ = wv — sg,0 = —sp, (0 — sp,wWr) = qPi;
and, if we introduce the standard W-invariant bilinear form on h*, we get
IAIZ = [Is"wAll* = [wA + B = A + 2q(wA|B1) + ¢*[|Bo]I*;

what implies that either ¢ = 0 or ¢ = —f1(wA) = p.

In the first case, v = s,w ™10 is an extremal weight of F. It follows that
Gi/Gi—1 =V when v; = v, and this happens for only one i, 1 <4 < m. In the
second case,
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wv = sg,0 +pP1 = s, (0 —pP1) =0,

15 is an extremal weight of F' again. Now

hence v = w™
—sqw to+v=—s,w o +w o = (wo)a = Bi(0)a = pa,

what implies that G;/G;_1 = V(pa) when v; = v, and this happens for only
one j, 1 < 5 < m. Therefore, the 4°-module G has a composition series of
length two, and the corresponding subquotients are V and V(p«). Finally,

a=w"lp = 58, -+-58,01 = =58, ...58,1 € —E}\L c-xt,

by ([LG], Ch. VI, Cor. 2 of Prop. 17), what leads to

vi=w o <w o —pa=wto - Bi(0)a

—w o —a(wlo)a =sw e = v,
and, by a previous remark, ¢+ < j. This gives us the exact sequence
00—V —§G— V(pa) — 0.

of U°-modules. Clearly, the whole construction is functorial, therefore we have
the following result.

Lemma 3. There exists a covariant functor from M(D)) into the category of
short exact sequences of U°-modules which maps any V € M(D)) into

00—V —§G— V(pa) — 0.

C.3 A Vanishing Theorem for Cohomology of
Dy-modules

In this section we shall discuss some vanishing results for cohomology of quasi-
coherent Dy-modules.

Theorem 1. Let V be a quasi-coherent Dy-module on the flag variety X.
Then the cohomology groups H'(X,V) vanish for i > n(\).

This, in particular, includes the vanishing of all H*(X,V), i > 0, for an-
tidominant A € h*, i. e. we have the following consequence.

Corollary 2. Let A € bh* be antidominant. Then the functor I' is an exact
functor from Mge(Dy) into M(Up).

First we shall prove 2, and later use the induction in n(\) to complete the
proof of 1.
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Let G be any Ox-module, and p € P(X) a dominant weight. Denote
by F' the finite-dimensional irreducible g-module with highest weight u. In
2. we defined a filtration of the Ox-module 7 = Ox ®c F by locally free
Ox-submodules (F;;0 < i < dim F) such that F; = O(u). Therefore, we
have a monomorphism ig of G = G(—p) ®o, O(p) = G(—p) o, Fi into
g(_:u') Pox F.

Let A € b* be antidominant, V a quasi-coherent Dy-module, and ¢ :
G — V a morphism of Ox-modules. Then it induces the morphism ¢(—p) :
G(—p) — V(—p), and also o(—p) @ 1 : G(—p) ®ox F —> V(—p) ®ox F.
Also, we have natural imbeddings ig : § — G(—p) Qo F and iy : V —
V(—p) @, F such that the following diagram commutes:

g S NN %
iGJ( ivl jvT.
G(—p) @ox F L2 vy oy F

Therefore on the level of cohomology, we have
H'(p(—p) ® 1) 0 H'(ig) = H'(iv) o H'(¢)
for 0 <17 <dim X. Also,
HY(X,G(—p) ®oy F) = H'(X,G(—p)) ®c F,

since F is a free Ox-module. Assume, in addition, that G is a coherent Ox-
module. The invertible Ox-module O(—2p) is ample, hence, we can find a
dominant weight y such that H*(X,G(—pu)) = 0 for 1 <4 < dim X. Tt follows
that for such p € P(X), we have H'(iy) o H*(p) = 0 for 1 < i < dim X. By
2.1, V(—p) ®oy F is a direct sum of V and its Z(g)-invariant complement,
i. e. iy has a left inverse jy : V(—pu) ®o, F — V. Hence, we conclude that
Hi(p) = H'(jy) o H'(iy) o H*(¢) = 0 for 1 <4 < dim X.

Any quasi-coherent Ox-module is a direct limit of its coherent sub-
modules ([EGA], 1.6.9.9), and the cohomology commutes with direct limits
([Hartshorne], I11.2.9), what implies that H*(j) = 0, 1 <4 < dim X, for the
identity morphism j : ¥V — V. This finally implies that H*(X,V) = 0 for
1 <4 < dim X, and finishes the proof of 2.

To prove 1. we use 2.3. Assume that A € b* and n(A) = k. Then, we have
the exact sequence

00—V —G—Vipa) —0,

where

g = (V(—saw_lcr) Koy f)[)\]

As we have shown there, n(A + pa) < k and n(\ — soaw™ o) < k. Therefore,
by the induction assumption, we have

H'(X,G) = H'(X,V(squw™'0) ®oy F)pn = (H' (X, V(sqw ') ®c F)py =0
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and .
H'(X,V(pa)) =0

for + > k — 1. The long exact sequence of cohomology, applied to the above
short exact sequence, implies that H*(X,V) = 0 for i > k.

C.4 A Nonvanishing Theorem for Cohomology of
Dy-modules

Let A € h* and § = W - A. The category of quasi-coherent Dy-modules
Me(Dy) is a thick subcategory in M(D)), therefore we can consider the full
subcategory Dg.(M(Dy)) of the derived category D(M(D,)) of Dy-modules
which consists of complexes with quasi-coherent cohomology. Let D(Uy) be the
derived category of Up-modules. The category M(D,) has sufficiently many
injective objects, and they are flasque sheaves. Moreover, the right cohomo-
logical dimension of the functor I" of global sections is less than or equal to
dim X. Therefore, one can define the derived functor RI" from D(M(D,))
into D(Uy).

Our main goal in this section is

Theorem 1. Let A € b* be regular. Let C', D" € Dye(M(Dy)) and f : C —>
D' a morphism. Then the following conditions are equivalent:

(i) f is a quasi-isomorphism,

(ii) RI'(f) is a quasi-isomorphism.

Clearly, (i) implies (ii). The other implication follows from the following
special case of 1.

Lemma 2. Let A € h* be regular and C' € Dyo.(M(Dy)) be such that RI'(C') =
0. Then C = 0.

First, let’s show that 2. implies 1. Let C'f be the mapping cone of f. Then
we have the standard triangle

C—D —C; —C1],
and the distinguished triangle
RI'(C') — RI'(D') — RI'(C;) — RI'(C)[1].

If RI'(f) is a quasi-isomorphism, from the long exact sequence of cohomology
we conclude that Hi(RF(Cf)) = 0 for i € Z, i. e. RI'(C;) = 0. By 2, we
conclude that C; = 0, and f is a quasi-isomorphism.

It remains to prove 2. The proof is by induction in n()).

Assume that n(A) = 0. Then, by 3.2, I' is exact on My.(Dy). Also we
can assume that C' consists of I'-acyclic Dy-modules. In this case RI'(C") =
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I'(C). Assume that H*(C") is a quasi-coherent Dy-module different from zero.
Because O(—2p) is ample, we conclude that there is a dominant weight u €
P(X) such that H*(C")(—u) has nontrivial global sections. By 2.2, if we denote
by F' the irreducible finite-dimensional g-module with lowest weight —u and
F = Ox ®¢ F, we see that

INX,H(C))®c F=TX,H (C)®0, F) #0.

Hence, I'(X, H*(C')) # 0. On the other hand, if we consider the short exact
sequences

0 — kerd® — C* — imd* — 0,
0 — imd"~' — kerd" — H'(C') — 0,
by the long exact sequence of cohomology we conclude that
H"(X,imd") = H"" (X, kerd") for n>1,
and
H"(X,imd"™') = H*(X,kerd") for n>2.
Hence, it follows that
H"(X,imd') = H""(X,imd"™"') for n>1,

and by finiteness of right cohomological dimension of I', H"(X,imd') = 0 for
n > 0 and arbitrary ¢ € Z. This in turn yields H"(X,kerd’) = 0 for n > 0
and arbitrary ¢ € Z. Finally we get

I'(X,H'(C))=HYI(C)) for icZ,

what contradicts H*(I'(C")) = 0. This implies that H*(C*) = 0 for all i € Z.

Assume now that n(A) = k£ > 0. We can assume again that C' consists
of I'-acyclic Dy-modules. Then, 0 = RI'(C') = I'(C"). Now, we shall use the
notation from discussion preceding 2.3. Put u = XA — s,w~'o. What we have
shown there is that wA and wp are antidominant. Also, wA — wp = sg,0 €
P(X). Let 7 be a regular dominant weight such that n = 7 4+ w(u — \) is
dominant. Denote by F_. the finite-dimensional representation with lowest
weight —7. Let F_, = Ox ®c F_,. Then, by 2.2, we have

C'(—w_lT) = (C Roy f—'r)[w)\—T]v

and . , . .
H'(X,C(—w™'7)) = H'(X,C? ®0y F—r)[wr—1]
= (HZ(X, C]) Qc F—T)[w)\—T] =0

-1

for i > 0, i. e. the complex C'(—w™'7) consists of I'-acyclic Dy_,,-1,-modules.

This implies that

RE(C(—w™ i) =T(C(—w™ ') = I'(C ®0x Fr)wr—r]
= (I'(C") ®c F_7)wr—r] = 0.
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On the other hand, if we take F' to be the finite-dimensional representation
with highest weight n and 77 = Ox ®c F", by 2.1. it follows that

(C (=™ 7) ®ox FM)ju = C (=™ (1 —n)) = C'(n—A).

Applying the same argument as before we see that C'(u — A) consists of I'-
acyclic D,-modules and get that

I'(C(—sqw™ta))=T(C(u—N))=0.

Now, let
G = (C(—saw™'0) ®oy F)n-

Clearly, G consists of I'-acyclic U°-modules and I'(G') = 0. Applying 2.3, we
conclude that C (pa) consists of I'-acyclic D x-modules and I'(C (pa)) = 0.
This implies that RI'(C (pa)) = 0. By our construction n(sqA) < k, hence we
can apply the induction assumption. It follows that C'(pa) = 0, and finally
that C* = 0. This completes the proof of 2.

Corollary 3. Let A € bh* be reqular and V € Mgy.(Dy) such that all its
cohomology modules H (X, V), i € Z, vanish. Then V = 0.

Corollary 4. Let A € h* be antidominant and reqular. Then any V €
M ye(Dy) is generated by its global sections.

Proof. Denote by W the Dy-submodule of V generated by all global sections.
Then, by 3.2, we have an exact sequence

0—I'(X,W)—TIrX,V) —IX,V/W) —0,

of Up-modules, and therefore I'(X,V/W) = 0. Hence, by 3, V/W =0, and V
is generated by its global sections. a

C.5 Borel-Weil-Bott Theorem

Let n = dim X. Let A € P(X) and O(A) the corresponding invertible Ox-
module. Then O(A) is a Dy_,-module, coherent as an Ox-module. By the gen-
eral results from algebraic geometry (see for example [Hartshorne], Ch. III),
we know that

(i) H*(X,O(\)) are finite-dimensional g-modules,

(ii) if we denote by O(A)” the dual of the invertible sheaf O(X) and by
wx the sheaf of local n-forms on X, then the Serre duality implies that
the dual of the vector space H*(X,O())) is isomorphic to the vector space
H"Y(X,0()\) ®0y wx)-

Of course, O(N\)" ®o, wx = O(—A + 2p). Let wy be the longest element
in . Denote by w one of the longest elements in W such that w(A — p) is
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antidominant. Then £(w) > n(A — p) and the strict inequality holds if and
only if A — p is not regular. On the other hand, wow(—X + p) is antidominant
too, hence

n(=XA+ p) < L(wow) = L(w  wy ) = L(w  we) = L(wo) — L(w) =n — L(w),
by ([LG], Ch. VI, Cor. 3 of Prop. 17). It follows that
n(A—p) <L(w) <n—n(=A+p). (1)

Suppose that H!(X,O(\)) # 0. Then, 3.1. applied to O(A) implies that i <
n(A — p); on the other hand, if we also use (ii), n —i < n(—X + p). Therefore,

n—n(=A+p) <i<nd—p). (2)

We see from (1) and (2) that ¢ = ¢(w) = n(A — p). By the previous remark,
this implies that A — p is regular.

It remains to study H*")(X,O(\)) in the case of regular A — p. Then
p = w(A — p) is a regular antidominant weight. In the following we use the
notation and results from 2.3. If we put ¥V = O(A), then V(—s,w~to) =
O(XA—sqw™to) and X — sqw™lo — p is not regular. Therefore, all cohomology
groups of it vanish. This implies that all cohomology groups of G vanish either.
Therefore, the exact sequence

00— 00N\ —G— OA+pa) —0
implies that H*(X, O(X + pa)) = HT(X,0O(N)) as a g-module for i € Z,.
Now p = —a” (A — p), so
A pa=saA—p)+p=wtspwA—p)+p=wlsgpu+p=w""p+p.
It follows, by the induction in length of w, that
H'™(X,0(\)) = I'(X,0(u+ p))-

By 2.2, if F,, 1, is the irreducible g-module with lowest weight ;2 + p and we
put F,4, = Ox ®&c Fj4,, we have

O+ p) = (Futo) -

Hence,

I'(X,0(p+p) = I'(X, (Furp)iu) = T'(X, Ox @c Fuyp)ip)
= (F(Xv OX) ®(C Fp,—{—p)[u,] = Fl’f‘f’ﬂ'
This ends the proof of the Borel-Weil-Bott theorem.

Theorem 1 (Borel-Weil-Bott). Let A € P(X). Then

(i) if X — p is not regular, H (X, O(\)) =0 fori € Z,,

(ii) if X\ — p is reqular and p € P(X) an antidominant weight such
that X — p = wp for some w € W, then H(X,O(\)) = 0 for i # L(w)
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and HY™) (X, O(N)) is the irreducible finite-dimensional g-module with lowest
weight p + p.

Denote, as in 1, by N the vector bundle of nilpotent radicals over the flag
variety X and by n° the locally free Ox-module of local sections of A/. Let

W) ={weWl[l(w)=7}, 0<j<dimX.

Lemma 2. Let 0 < j < dim X. Then
H{(X,Nn) =0 if i#j
and H7 (X, Nn°) is the trivial g-module of dimension Card W (j).

Proof. Choose a base point zo € X. Evidently, A7n°® is the Ox-module of
local sections of the G-homogeneous vector bundle A N which is determined
by the natural representation of the Borel subgroup B, on F; = A/n,,. The
B, -action on Fj defines a natural Jordan-Holder filtration by B -invariant
subspaces I, 0 < k < dim F}, such that dim Fj, = k, n, Fj, C Fjg—1 and
the Cartan algebra b acts on Fji/Fj,_1 by a weight v, which is a sum of j
different roots from X'T for 0 < k£ < dim F};. This filtration induces a filtration
of the vector bundle A A/ by G-homogeneous subbundles. We denote by Fik,
0 < k < dim F}, the corresponding coherent Ox-modules of local sections.
It is evident that Fj/Fjr—1 = O(vj;) for 0 < k < dim Fj. To calculate the
cohomology of A7n° we have to understand better the structure of the family
{vjr |0 <k <dimFj, 0 < j < dim X} which is equal to the family of sums
of roots from all subsets of X*. For each & C X" we denote by v(&) the sum
of all roots from @. Let

S={v(®) —pldcC Xt}

Then, because v(®) — p is the difference of the half-sum of roots from & and
half-sum of roots from XT — @, it is evident that S is invariant under the
action of the Weyl group W. Let S_ be the set of antidominant weights in
S. Then, clearly S = W - S_. Let u be a regular element of S_. Denote by
wq the fundamental weight corresponding to simple root o € I1. Then p is a
linear combination of w,, a € II, with strictly negative integral coefficients.
Therefore, p+ p is still antidominant. On the other hand it also must be a sum
of positive roots. This implies that it is equal to 0, hence y = —p. It follows
that the only regular elements of S are —wp, w € W. In these cases

p—wp=v(ITN(—w(E))).

Also, we remark that £(w) = Card(XT N (—w(X7T))). From the Borel-Weil-
Bott theorem we know that

HY(X,0(vj)) =0 forall 0<i<dimX
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if v, — p is singular. On the other hand, if vj;, — p is regular, by previous
discussion v = p — wp for some w € W (j). Hence, in this case, we have

HY(X,0(vjr)) =0 for i
and . _
HJ(X7O(ij)) = H’(X,0(p—wp)) =I'(X,0x) =C.

Using this information and the long exact sequence of cohomology, the induc-
tion in k, 0 < k < dim F};, applied to the short exact sequence

0— fjk—l — fjk — O(ij) — 0

implies easily our assertion. O

C.6 Cohomology of Dy

In this section we want to prove

Theorem 1. (i) The natural map of Uy into Dy induces an isomorphism of
Uy onto I'(X,Dy).
(ii) H(X,Dy) = 0 fori > 0.

Let C* be the graded module U° ®p, An°, i. e. C* =U° ®o, A™'n° for all
1 € Z. First we remark that C* has a structure of a left g-module, by left mul-
tiplication on the first factor. The exterior algebra An® has a natural structure
of a left g-module. Also, U° is a right g-module for right multiplication, so we
can define another structure of a left g-module on C* by

K€ (u®v)=—-ul@v+u®f-v,

for £ € g, u € U° and v € An°. To see that this definition makes sense, we
remark that if we consider the biadditive map (), £ € g, from U° x An® into
U° ®p, An° given by

p(§)(u,0) = —uf@v+u®& v
for u € U° and v € An°, we have

e(&)(uf,v) — (&) (u, fv) = —(uf){@v+uf @& v+ul® fv—u®E- (fv)
=uw(f)RQutuf@E-v—uE(flv —u® fE-v=0

for any f € Ox, u € U° and v € An®; hence it factors through U° ®p, An°
and induces k(&). By the construction it is evident that the two left g-module
actions on C° commute. Therefore, we can consider C* as a left g x g-module
via

(&, mw = §w + K(nw
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for £,mn € gand w € C'. Also, the group G acts on C’ with the tensor product
of the adjoint action on U(g) with the adjoint action on Ag. The differential
of this action is equal to the restriction of the g x g-action to the diagonal.
Therefore. we can view C™ as a (g X g, G)-module. Consider map

k
d(u@vr Ava A+ Avg) = (1) uw; @ vi Avy A Adi A=+ Ay
i=1
+ > (DM u@ v, v Avi A A A A A A,
1<i<j<k
for u € U° and vy, ve, ..., v, € n°. It is well-defined, because sections of Ox

and n° commute in #°, and it maps C* into C**!. Also, by definition it com-
mutes with the g-action given by left multiplication and the G-action. Since
the difference of the differential of the G-action and the left multiplication
action gives the action given by &, d is a morphism of (g x g, G)-modules. By
calculation one also checks that d?> = 0, i. e. C' is a complex of (g x g, G)-
modules.

Lemma 2. The complex C* is acyclic.

Proof. First we introduce a filtration of the complex C'. The sheaf of algebras
U° has a natural filtration (F,U°;p € Z). We put F,,C" = 0 for p < 0 and

0
FpC =Y Fprgll® ®o, A if peZy.
q=-P

The differential d maps Fj, C" into itself for any p € Z; hence, C" is a filtered
complex. The corresponding graded bicomplex has the form

GrP9C = F,(U° ®oy, A"°)/Fp_1(U° ®o, A"Mn°) = SPTI(g°) @0, A~ In°,

with the differential § = Grd of bidegree (0,1) given by the formula

k
d(u@uvy Avg A+ Awg) :Z(—l)”lum@vl/\Ug/\---/\@i/\---/\vk,
i=1
for u € SP7F(g°) and vy, va, ..., v, € n°.

Let U be a sufficiently small affine open set, such that g°|U and n°|U
are free Oy-modules. Then, using the standard results on Koszul complexes
([Alg], Ch. X, §9, no. 3) it follows that Gr C'|U is acyclic. Therefore, Gr C" is
acyclic.

It follows that for any p € Z we have an exact sequence of complexes

0 —F, .C —F,C—G"C —0

with Gr? C* acyclic. This implies that H*(F,_1C’) = H*(F,C’) for k € —N
and p € Z. Now, F,,C" = 0 for p < 0 implies that



36 C. Cohomology of Dy-modules

H*F,C)=0 forall k€ -N and pcZ,

i. e. all F, C" are acyclic.
Let £ € U° ®o, AFn°, k > 0, be such that d¢ = 0. Since the filtration of
C is exhaustive, there exists p € Z such that ¢ € F,C". Therefore, by the
acyclicity of F,,C’, there exists n € F,_j_1U° ®0, A¥F1n° such that £ = dn.
O
Putting everything together we get the following result.

Proposition 3. The compler C° = U° ®p, An° is a left resolution of the
(g X g, G)-module Dy,

Clearly,

HY (X, U° @0, Nn°) = H (X,U(g) ®c Nn°)
=U(g) ©c H'(X,Nn°)  for i,j € Zy,

as a (g x g, G)-module. By 5.2, the action of g x g on U(g) is the natural action
given by left and right multiplication, i. e.

(51752)7] = 5177 - ,'7527 for é_lv 52 €g, ne Z/[(g),

the group G acts on U(g) by the adjoint action, and the actions on the second
factors are trivial. Moreover, H*(X,U° ®¢p, AIn°) vanishes for i # j and is a
direct sum of Card W () copies of U(g) for i = j. This implies that the spectral
sequence ([T6hoku], 2.4, Remark 3), which calculates the cohomology of D
using this resolution, converges in its E?-term, and we conclude that

(i) HY(X,Dy) = 0 for i > 0,

(ii) I'(X, Dy), considered as a (g X g, G)-module, has a finite increasing
filtration

0=FoI'(X,Dy) CF, I'(X,Dy) C --- C F, ['(X,Dy) = I'(X, Dy)

such that Fy, I'(X, Dy)/ Fr—1 I'(X, Dy) is a direct sum of Card W (k) copies of
U(g) equipped with the (g x g, G)-module structure described above.

By the construction, the filtration F I'(X, Dy) is a G-module filtration
for the natural G-module structure on Dy and it induces a filtration on the
subalgebra of G-invariants of I'(X, Dy). By 1.5, this subalgebra is isomorphic
to U(h) via the map ¢. Since the group G is semisimple and its action on
I'(X,Dy) is algebraic, the G-module I'(X,Dy) is semisimple. This implies
that the G-invariants of Gr I'(X, Dy) are equal to Gr ¢(U(h)). By taking the
G-invariants in the statement (i) above, we see immediately that:

(iii) Fr p(U(H))/ Fr—1 ¢(U(H)) is a direct sum of Card W (k) copies of Z(g).

We can view U(h) as a Z(g)-module via the Harish-Chandra homomor-
phism. This immediately implies the following result.

Lemma 4. The universal enveloping algebra U(h) is a free Z(g)-module of
rank Card W.
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On the other hand, we can form U(g) ®z(y) U(h), which has a natural
structure of an associative algebra. It has a natural G-action given by the
adjoint action on the first factor and the trivial action on the second factor.
Clearly, U(h) is the subalgebra of G-invariants of this algebra. By 1.6, there
exists a natural algebra homomorphism

v U(g) ®Z(Q)U(h) — I'(X, Dy)

given by the tensor product of the natural homomorphism of U(g) into
I'(X,Dy) and ¢.

We transfer, via the isomorphism ¢, the filtration of ¢(U(h)) to U(h) and
define a filtration on U(g) ®z ) U(h) by

Fp(U(g) @z(g) U(h)) = U(g) ©z(g) Fp(U(h)).

The map ¥ is evidently compatible with the filtrations. Consider the corre-
sponding graded morphism Gr¥ from U(g) ® z(5) Gr U(h) into Gr I'(X, Dy).
By the previous discussion we know that GrI'(X,Dy), considered as a
(g x g, G)-module, is the direct sum of Card W copies of U(g). Hence, there ex-
ist G-invariant elements ey, es, ... ,eq, ¢ = Card W, such that GrI'(X, Dy) =
Bi<k<qh(g)er, and Gr ¢(U(h)) = @i1<k<qZ(g)er. Hence, Gr¥ is evidently an
isomorphism. This implies in turn that ¥ is also an isomorphism. Therefore,
we proved the following result.

Theorem 5. (i) I'(X,Dy) = U(g) @z (g U(h).
(ii) H'(X,Dy) = 0 fori > 0.

Now, let V' a h-module. Then, by 1.6, we have the natural map from
U(g) ®z(g) V Into I'(X, D,y () V). Let

e A i e S i B A Vg

be a left free U(h)-module resolution of V. Then, by tensoring with Dy over
U(h) we get

"'—>Dh®u(h)F_p—>"'—>Dh®u(h)F0—>Dh®u(h)v—>0-

By 1.4, Dy is locally U(h)-free, hence this is an exact sequence. Therefore, by
5.(ii), it is a left resolution of Dy ®y ) V by I'(X, —)-acyclic sheaves. This
implies first that all higher cohomologies of Dy ®y () V vanish. Also, it gives,
using 5.(i), the exact sequence

s U()Rg () F TP — s — U(9)®2(g) F' — T'(X, Dy®uy) V) — 0,
which combined with 4, implies that U(g) ®zg) V = I'(X, Dy Qu ) V) and
Torf ©)(U(g), V) = 0 for p € N. Therefore, we have the following result.

Corollary 6. Let V' be an arbitrary U(H)-module. Then
(i) (X, Dy ®u) V) = U(g) ®z(g) V
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(ii) Hi(X, Dy Qui() V) =0 fori>0.

In particular, if A € h* and Cy4, the one dimensional h-module on which
b acts via A + p, we finally get 1.



L. Localization of Ug-modules

L.1 Localization of Ug-modules

Let A € b* and 6 the corresponding Weyl group orbit. Then we can define a
right exact covariant functor Ay from M(Up) into My.(Dy) by

AA(V) = DA ®u9 Vv
for any V€ M(Up). Tt is called the localization functor. Since
I'(X,W) = Homp, (D, W)

for any W € M(D,), it follows that Ay is a left adjoint functor to the functor
of global sections I, i. e.

Homp, (Ax(V), W) = Homy, (V, I'(X, W)),

for any V- € M(Up) and W € M(D,). In particular, there exists a functorial
morphism ¢ from the identity functor into I" o Ay. For any V' € M(Up), it is
given by the natural morphism ¢y : V. — I'(X, Ay (V)).

Assume first that A € h* is antidominant.

Lemma 1. Let X € b* be antidominant. Then the natural map oy of V into
I'(X,Ax(V)) is an isomorphism of g-modules.

Proof. If V' = Uy this follows from C.6.1. Also, by C.3.2, we know that I is
exact in this situation. This implies that I" o Ay is a right exact functor. Let

(Up)) — (U)) —V — 0
be an exact sequence of g-modules. Then we have the commutative diagram
U)D —  U)D —— vV —0
I(X, A\Ug))Y) —— T'(X, Ax\(Up)) D —— I'(X,Ax\(V)) —— 0

with exact rows, and the first two vertical arrows are isomorphisms. This
implies that the third one is also an isomorphism. a
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On the other hand, the adjointness gives also a functorial morphism
from Ay o I' into the identity functor. For any ¥V € M(D,), it is given by the
natural morphism 1y of Ay(I'(X,V)) = Dy ®uy, I'(X,V) into V. Assume that
V € M4(Dy). Let K be the kernel and C the cokernel of 4y,. Then we have
the exact sequence of quasi-coherent Dy-modules

0 —K— Al(X,V) —V—C—0
and by applying I' and using C.3.2. we get the exact sequence
0 — I'X,K) — I'(X, A\(I'(X, V) — I['(X,V) — I'(X,C) — 0.

Hence, by 1. we see that I'(X,K) = 0 and I'(X,C) = 0. This implies the
following result.

Denote by OM,.(Dy) the quotient category of M,.(Dy) with respect
to the subcategory of all quasi-coherent Dy-modules with no global sec-
tions ([Tohoku], 1.11). Let @ be the quotient functor from M,.(D,) into
QM (D). Clearly, I' induces an exact functor from QM .(Dy) into M (Up)
which we also denote, by abuse of notation, by I".

Theorem 2. Let A € h* be antidominant. Then the functor Q o Ay from
M(Up) into QM 4e(Dy) is an equivalence of categories. Its inverse is I

If X is antidominant and regular, by C.4.4, all objects in My.(Dy) are
generated by their global sections. Therefore, in this case, QM4.(Dy) =
Mge(Dy).

Corollary 3. Let A € b* be antidominant and regular. Then the functor Ay
from M(Uyg) into My.(Dy) is an equivalence of categories. Its inverse is I.

As the first application of this equivalence of categories we shall prove a
result on homological dimension of the ring Uy.

Theorem 4. Let 0 be a Weyl group orbit in b* consisting of reqular elements.
Then the homological dimension dh(Uy) of Up is < dim X + % Card Xy.

Proof . Let A € 0 be antidominant. By ([BDM], VI.1.10(ii)), we know that
the homological dimension of Dx , is equal to dim X. Since D) is a twisted
sheaf of differential operators, we conclude that dh(Dj ;) = dim X. Moreover,
by ([Téhoku], 4.2.2), we have

Exty, (V,U)y = Extly (Vi Us)
for any i € Zy, V € Mcon(Dy) and U € Myo(Dy). This implies that
Extly (V,U) =0 for i > dim X.

On the other hand, we have the spectral sequence
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H?(X,Ext}, (V,U)) = Ext (V. U)

([Téhoku|, 4.2.1), and cohomology of any sheaf of abelian groups van-
ishes in all degrees above dim X ([Hartshorne|, I11.2.7). It follows that
Exth (V,U) = 0 for i > 2dim X. Now, by 3, M(Up) is equivalent to M.(Dy)
and localization of any finitely generated Up-module is in M on(Dy). This
implies that ExtLG(V, U) =0 for ¢ > 2dimX for any V. € M;,(Uy) and
U € M(Up). By ([Alg], Ch. X, §8, no. 3, Cor. of Prop. 4) we see that
dh(Uy) < 2dim X.

If V is any coherent Dy-module, Ext%k (V,Dy), i € Zy, are coherent D_ -

1

modules (...). Since A is regular antidominant, n(—A) = 5 Card ¥\ < dim X,

and by C.3.1. the cohomology of 81‘1&’@ (V,Dy) vanishes above %Card .
Therefore, as in the preceding argument, we conclude that Exté)k(v, Dyx)=0
for ¢+ > dimX + %Card 2’y. By the equivalence of categories this imme-
diately implies that Extj, (V,Up) = 0 for any V € Myy(Up) and i >
dim X + 3 Card Xy.

Assume now that V and U are in M ¢,(Uy). Since Uy is left notherian, we
have an exact sequence

0 —U —U) —U—0

with finitely generated Us-module U’. From the corresponding long exact se-
quence of Ext, (V,—) we see that the connecting morphism Ext], (V,U) —
Ext&jl(v, U’) is an isomorphism for j > dim X + ; Card X'). Since the ho-
mological dimension of Uy is finite, by downward induction in j we see that
Ext], (V,U) = 0 for j > dim X + 1+ Card X. By ([Alg], Ch. X, §8, no. 3,
Cor. of Prop. 4) it follows that dh(Up) < dim X + % Card Xy. 0

Remark 5. We shall see later in 2.8 that, contrary to 4, if § contains singular
elements of h*, the homological dimension of Uy is infinite.

Also, for any W-orbit 6 of an regular integral weight A the preceding
estimate of homological dimension of Uy is sharp. To see this, assume that A €
P(X) is regular antidominant and let F' be the irreducible finite-dimensional
g-module with lowest weight A+ p. Then, by the Borel-Weil-Bott theorem and
1.2, we know that Ay(F) = O(A + p). Therefore, by ..., we have

Exth (O(A+p),Dy) =0
for p # dim X and
Extp? X (OA+ p), Dx) = O(=A+p)

as a left D_y-module. Therefore, applying again the Borel-Weil-Bott theorem,
we see that .
HP (X, ExtZ™ X (O(A +p), Dy)) =0

for p # dim X and
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HE X (X, ExtBF (O(A+ p), Dy)) # 0.

By the Grothendieck spectral sequence relating £xtp, to Extp,, this implies
that
Exti’le (F,Uyp) = Ext%A(O(A +p),Dy) =0

if p# 2dim X, and
Ext; 0™ X (F,Up) = ExtH™* (O(A+ p), Dy) # 0.
Hence, in this case dh(Uy) = 2dim X = Card X.

As a second application, we want to consider various derived categories
of Dy-modules on X. As before, let D(M(Dy)) be the derived category
of Dy-modules, D,.(M(Dy)) its full subcategory consisting of complexes
with quasi-coherent cohomology. Also, we can consider the derived category
D(Dy) = D(My(Dy)) of quasi-coherent Dy-modules. As we remarked be-
fore, for any p € P(X), the geometric translation functor V — V(u) is an
equivalence of M(D,) with M(Dy4,), which also induces an equivalence of
subcategories M.(Dy) and Mye(Drt,). Moreover, it induces equivalencies
of the corresponding derived categories D(M(Dy)), Dge(M(Dy)) and D(D)
with D(M(Dxtp)), Dge(M(Dayy)) and D(Dyy,,) respectively. In addition,
the canonical functor @y from D(Dy) into Dy.(M(Dy)) satisfies the natural
commutativity property with respect to these translation functors.

Theorem 6. The functor @y : D(Dy) — Dg.(M(Dy)) is an equivalence of
categories.

Proof. First, by the preceding discussion, by translation we can assume that
A is antidominant and regular. In this situation, the localization functor Ay is
exact. Therefore, it induces a functor Ay : V' — Dy ®y, V' from the derived
category D(Uy) of Up-modules into the category D(Dy). On the other hand,
by C.3.1. every object in My.(Dy) is [-acyclic, what in combination with
3. immediately implies that the functor I : D(Dy) — D(Up) is an equiv-
alence of categories and its inverse is the localization functor Ay. Moreover,
by the finiteness of right cohomological dimension of I" on M(D,), we have
the derived functor RI": Dy.(M(Dy)) — D(Up), and clearly RI'o @y = 1.
Also, we can replace any C' € Dy.(M(D,)) with a quasi-isomorphic complex
A’ consisting of I'-acyclic objects from M (D, ). Therefore, RI'(C’) = I'(A").
Let D" = Dy ®u, I'(A"). We have the natural homomorphism ¢ : D° — A".
We claim that it is a quasi-isomorphism. Clearly, by definition of ¢ and 1,
RI'(¢) is a quasi-isomorphism. Hence, by C.4.1. we see that ¢ is a quasi-
isomorphism. It follows that @) o (Ay o RI") is isomorphic to the identity
functor on Dy.(M(Dy)). On the other hand, (Ay o RI") o @y is isomorphic to
the identity functor on D(D,). Therefore, @, is an equivalence of categories.
O
Analogous statements hold for derived categories of complexes bounded
above and below.
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Let A € h* and 8 = W - A. Denote by D~ (Uy) the derived category of
Up-modules consisting of complexes bounded from above. We define the local-
ization functor LAy from D~ (Uy) into D(Dy) by

L
LAy(V') = Dr®u,V for Ve D™ (Up).

If A is regular, 4. implies that the left cohomological dimension of the local-
ization functor Ay is < 2dim X. Therefore, one can extend LAy to a functor
from D(Up) into D(Dy).

Lemma 7. Let P € M(Uy) be projective. Then, its localization Ax(P) is
I-acyclic, and the morphism ¢p : P — I'(X, Ax(P)) is an isomorphism.

Proof. By C.6.1. we know that this statement is valid for free Uy-modules, and
any projective Up-module is a direct summand of a free Uy-module. ad

Let V' € D~ (Uy), then there exists a complex P € D(Uy) of projective
Up-modules, a quasi-isomorphism ay- : P — V" and LAN(V") = Ax(P).
By 7. it follows that there is a natural isomorphism from P into I'(Ax(P)) =
RI'(Ax(P)). This implies that the following result holds.

Lemma 8. The functor RI' o LAy from D~ (Uy) into itself is isomorphic to
the identity functor on D~ (Up).

Let D : M(Uy) — D~ (Up) be the functor which maps any V' € M (Up)
into the complex D (V) € D~ (Up) which is zero in all degrees except 0, where
it is equal to V. If we denote, for any V. € M(Uy), by LIA(V) the 5
cohomology of the complex LAy (D(V)), we get the functor V. — LI A, (V)
form M(Up) into M 4.(Dy) which is just the (—5)*® left derived functor of Ay.
Therefore, 8. implies the following result.

Corollary 9. Let V. € M(Uy). Then there exists a cohomological spectral
sequence with Fy-term

EPY = HP(X,LIA\(V))

which converges to V.

Corollary 10. Let F € M(Uy) be a flat module. Then, its localization Ay (F')
is I'-acyclic, and the morphism pp : F — I'(X, Ax(F)) is an isomorphism.

Proof. By definition, LYA(F) = 0 for ¢ # 0. Therefore the spectral sequence
from 9. degenerates and we see that H*(X, Ay(F)) = 0 for i > 0 and pp :
F — I'(X, A\(F)) is an isomorphism. O

Assume now that A € h* is regular. Then the homological dimension of Uy
is finite, hence any V" € D(Up) is quasi-isomorphic with a complex P € D(Up)
consisting of projective Up-modules (...). Now, using 7. again, we can prove
the following version of 8.
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Lemma 11. Let A € h* be regular. Then the functor RI" o LAy from D(Up)
into itself is isomorphic to the identity functor on D(Up).

This finally leads to the following analogue of 3.

Theorem 12. Let A € h* be regular. Then the functor LAy from D(Uy) into
D(D,) is an equivalence of categories. Its inverse is RI .

Proof. Let V' € Dy.(M(Dy)). Then, there exists a complex C* € Dg.(M(Dy))
consisting of I'-acyclic Dy-modules, a quasi-isomorphism Gy : V' — C* and
RI'(V') = I'(C’). Moreover, there exists a complex P° € D(Uy) consisting
of projective Up-modules and a quasi-isomorphism apey : P~ — I'(C)
such that LAN(I'(C')) = Ax(P). Therefore, we get a natural morphism
of LAN(RI'(V'))) = Ax(P’) into C'. This gives a functorial morphism of
LAy o RI' into the identity functor on D,.(M(Dy)). By 6, the composition
with @) gives a morphism 9 of functor LAy o RI" into the identity functor on
D(D,). It follows that, for any complex V' € D(D,), there exists a morphism
Yy- of LAN(RI'(V')) into V', and by checking its definition and using 11, we
see that RI'(1y-) is an quasi-isomorphism. Now, C.4.1. implies that ¢ is an
isomorphism of functors. O

This implies, in particular, that LAy is an equivalence of category D®(Up)
with D?(Dy) and RI is its inverse.

Theorem 13. Let A € b* be reqular. Then the left cohomological dimension
of Ay is < n(A).

Proof. Let V' € D(Dy) and k € Z. Then the truncated complex o< (V"):
VP V2 PRl s kerd® — 00— ..
maps naturally into V" and this morphism of complexes induces isomorphisms

HP (o< (V")) — HP(V') for p < k. Let V€ M(Uy) and V' = LAx(D(V)).
Assume that —k > n(A). Then we have a cohomological spectral sequence

HP(X, HY o<k (V")) = H"(RL (o<1 (V)

([Téhoku], 11.2.4). By C.3.1, we conclude that H?(RI'(o0<x(V'))) = 0 for
p € Z. Hence, by 12,

HomD(DX)(USk(V)v V) = HomD(ue)(RF(USk(V)), RF(V))
= Homp ) (RT(0<x(V')), D(V)) = 0.

Therefore, LPA)(V) = HP(V') =0 for p < —k. O

Remark 14. On the contrary, we shall see in 2.7. that if A is singular the left
cohomological dimension of A is infinite.
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Let A be an abelian category and D?(A) its derived category of bounded
complexes. For s € Z, we have the truncation functors 7> and 7< from D?(A)
into itself. If A" is a complex in D°(A), 755(A’) is a complex which is zero
in degrees less than s, 7>5(A)* = cokerd®~! and 754(A4)7 = A7 for ¢ > s,
with the differentials induced by the differentials of A". On the other hand,
T<s(A") is a complex which is zero in degrees greather than s, 7<;(A4)° =
kerd® and 7<4(A)? = A? for ¢ < s, with the differentials induced by the
differentials of A'. The natural morphisms 7<s(4) — A" and A" — 7>4(4")
induce isomorphisms on cohomology in degrees < s and > s respectively.

Lemma 15. Let C* and D" be in D°(A). Assume that
(i) H1(C") =0 for q > 0,
(ii) H1(D') = 0 for q < 0.
Then H® : Homps(4)(C", D) — Homy(H®(C"), H*(D")) is an isomorphism.

Proof. By hypothesis, 7<o(C") — C* and D* — 7>¢(D") are quasiisomor-
phisms, and by composing them with ¢ we can assume that C? =0 for ¢ > 0
and DY = 0 for ¢ < 0. Therefore, each element of Hom4(H°(C"), H(D")) de-
fines a morphism of the complex C" into the complex D" and our mapping is
surjective.

To prove injectivity, consider a morphism ¢ € Homps(4)(C", D*) such that
H°(¢) = 0. By the definition of a morphism in derived categories, there exist a
complex B~ € D’(A) and morphisms of complexes ¢: B — C", f: B- — D",
where ¢ is a quasiisomorphism, which represent ¢. By composing them with
the truncation morphism 7<o(B") — B, we see that we can assume in addition
that B satisfies B? = 0 for ¢ > 0. But this implies that f? = 0 for g # 0,
im f% C ker d® and imd~! C ker f°. Hence H?(¢) = 0 implies f° = 0. O

The next result is a weak generalization of 1. to arbitrary regular A € h*.

Lemma 16. Let A € h* be reqular and 0 =W - X. Let V be a Up-module and
p = min{q € Z| L 1A\(V) # 0}. Assume that HY(X,L PAx\(V)) = 0 for
q < p. Then there exists a nontrivial morphism of V into HP (X, L~PAx\(V)).

Proof. Consider the truncation morphism
LAX(D(V)) = m>—p(LAA(D(V))) = D(L™ A\ (V))[p].

By equivalence of derived categories, it leads to a mnontrivial morphism
¢ of D(V) into RI'(D(L PA\(V)[p]) = RI'(D(L PAx(V))[p]- It induces
zero morphisms between the cohomology modules of both complexes, ex-
cept in degree zero where we get a morphism of V into HP(X, L™ PAx(V)).
Since cohomology modules of L=P A, (V') vanish below degree p, the complex
RI'(D(L~PAx(V))[p] satisfies the condition (ii). Hence, by 15, the morphism
HO%(¢) of V into RI'(D(L™PAx(V)))[p]® = HP(X,L7PAx(V)) is nonzero. [
Now we want to study some finiteness results.
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Let M¢4(Up) be the full subcategory of M (Uy) consisting of finitely gen-
erated Up-modules. Clearly, for any A € 6, the localization of V'€ Mg, (Up) is
a coherent Dy-module. Conversely, we have the following result.

Lemma 17. Let A € b* be antidominant and regular. Then for any V €
Meon (D)), the Ug-module I'(X,V) is finitely generated.

Proof. Let V. = I'(X,V) for a coherent Dy-module V. Assume that (V,;n €
N) is an increasing sequence of finitely generated Uy-submodules of V. By
localizing it, we get an increasing sequence (V,, = Ax(V,,); n € N) of coherent
Dy-submodules of V. Since D) is a notherian sheaf of rings, it follows that
the sequence (V,; n € N) stabilizes. By applying I" and 3. we get the same
conclusion for the original sequence (V;,; n € N). This implies that V' is finitely
generated. O

This implies the following ramification of 3.

Proposition 18. Let A € h* be antidominant and reqular. Then the functor
Ay from Myo(Up) into Mcon(Dy) is an equivalence of categories. Its inverse
s I,

Now we want to extend these results to regular A € 0. First, M¢,(Up) is
a thick subcategory of M (Uy), therefore we can consider the full subcategory
D? ,(Up) of D®(Up) consisting of all bounded complexes with finitely generated
cohomology modules.

Lemma 19. The natural functor i from D*(Mgq(Up)) into D%, (Us) is an
equivalence of categories.

Proof. First we claim that i : D*(Myy(Up)) — DY, (Up) is fully faithful.
Let A, B € D"(Myy4(Up)) and ¢ € Hompsyy,)(A', B'). Then there exists a
complex C" € DS’cg(ing), a quasi-isomorphism s : C° — A" and a morphism
of complexes f : C° — B’ which define ¢. By ... we can find a complex
D" € D*(My,(Up)) and a quasi-isomorphism s’ : D" — C". It follows that
D, sos’ and f o s’ define also ¢, what implies that ¢ is a morphism in
DP(M4(Up)). This proves that 4 is fully faithful. Also, by ... it is essentially
surjective. O

This result in particular implies that for any V' € D’}g(Z/[Q) its localiza-
tion LAN(V') € D~ (D) is a complex with coherent cohomology. To dis-
cuss this more precisely we first introduce several subcategories of D?(Dy).
Since the category M on(Dy) is a thick subcategory of M(D,), we can de-
fine the category DP , (Dy) which is the full subcategory of D?(D,) consisting
of all bounded complexes with coherent cohomology and the derived cate-
gory D®(Mon(Dy)) of coherent Dy-modules. There is a natural functor ¥y
from D®(M.on (D)) into Db, (D), and it satisfies the natural commutativity

coh
property with respect to the translation functors.
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Lemma 20. The natural functor Wy from D®(Mon(Dy)) into Db, (D) is
an equivalence of categories.

Proof. Using translation functors we can assume that A is antidominant and
regular. By 3. and 6, this result follows from 19. ad

Therefore, for regular A € h*, we can view the functor LA, as the functor
from DS’C 4(Up) into Db, (Dy). Moreover, we have the following result.

Theorem 21. Let A € h* be reqular. Then the functor LAy from DS’cg(Z/lg)
into ch’oh (Dy) is an equivalence of categories. Its inverse is RI.

To prove this statement we only need to show that RI'(V") € Dl} s (Up) for
any V' € Db (D,). This is a consequence of the following generalization of
17. First we need a simple lemma.

Lemma 22. Let V' be a finitely generated g-module and F' a finite-dimensional
g-module. Then V ®c F' is a finitely generated g-module.

Proof. Let U be a finite-dimensional subspace of V' which generates V' as an
g-module. We claim that U ®@¢ F' generates V ®c F' as a g-module. Let W be
the g-submodule of V ®¢ F generated by U ®¢ F. Define V' to be the subset
of V' consisting of all v such that v ® f € W for all f € F. Clearly, V' is a
linear subspace of V. Moreover, for any £ € g and v € V',

0@ f=EWaf)—vRLfEW,

for all f € F, what implies that £v € V’/, and V' is a g-submodule of V.
On the other hand, V' contains U, hence it is equals V. This in turn gives
W=V ®cF. O

Lemma 23. Let A € bh*. Then for any V € Mcon(Dy), Up-modules H (X, V),
1 € Ly, are finitely generated.

Proof. The proof is by induction in ¢, 0 < 7 < dim X. We can find a dominant
weight p such that A — p is antidominant and regular. Then the translation
V(—p) of V is a coherent Dy_,-module, and, by 17, I'(X, V(—p)) is a finitely
generated g-module. Let F' be the irreducible finite-dimensional g-module with
the highest weight p. Now

H'(X,V(—p) ®ox F) = H'(X,V(-p)) @& F

for all 72, 0 < ¢ < dim X ; therefore it vanishes for ¢ > 0. On the other hand,
the filtration of F studied in C.2. gives an injection of F; = O(u) into F. It
follows that, by tensoring with )V, we get the exact sequence of U/°-modules

00—V —V(p o, F— K—0.
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Applying I" to this exact sequence we see that I'(X,V) is a g-submodule of
the tensor product I'(X,V(—p)) ®c F, which is finitely generated by 20. This
proves our assertion for 7 = 0. Assume that the assertion holds for k — 1,
k > 1. Then the long exact sequence of cohomology implies that H*(X,))
is a quotient of H*~1(X,K). On the other hand, from the definition of the
filtration of F, it follows that /U has a natural /°-module filtration such that
the corresponding graded module Gr K is equal to @V(—u+v), where the sum
is taken over all weights v of F' different from p. By the induction assumption,
H¥=1(X,V(—p + v)) are finitely generated g-modules. An induction in the
length of the filtration of K implies that H*~1(X, K) is a finitely generated
g-module. O

Finally, the equivalence of derived categories (12.) and the Borel-Weil-Bott
theorem (C.5.1.) have the following imediate consequence.

Proposition 24. Let F' be the finite-dimensional irreducible g-module with
lowest weight X. Then, for any p=w(A —p), w € W, we have LPA,(F) =0
forp# —£(w) and L= A, (F) = O(u + p).

L.2 Localization and n-homology

Let M(U(g)) be the category of U(g)-modules. Fix a point z € X. For V €
M(U(g)), put
Va, = V/an =C Ru(n,) V,

where we view C as a module with the trivial action of n,. We say that V,,_
is the module of n,-coinvariants in V. It has a natural structure of an b,-
module. Therefore, we can view it as an h-module. It follows that V — V;
is a right exact covariant functor from the category M(U(g)) into the category
M(U(B)) of U(h)-modules. If we compose it with the forgetful functor from
M(U(h)) into the category of vector spaces, we get the functor Hy(ng, —)
of zeroth ngz-homology. By the Poincaré-Birkhoff-Witt theorem, free U(g)-
modules are also U(n,)-free, what implies the equality for the left derived
functors. Therefore, with some abuse of language, we shall call the (—p)*®
left derived functor of V' — V;_ the p*® n,-homology functor and denote it
by Hp(ng, —) = Tor;’f(“")((C, —). There is a simple relationship between these
functors and the localization functors which we shall explain in the following.
First we need a technical result.

Lemma 1. Uy is free as U(n,)-module.
Proof. Fix a specialization ¢ of h and a nilpotent subalgebra n opposite to n.

Then we have g = n, ® ¢ @ n, and by the Poincaré-Birkhoff-Witt theorem it
follows that U(g) = U(ng) @c U(c) @c U(n) as a left U(n,)-module for left
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multiplication. Let F, U(c), p € Z,, be the degree filtration of ¢(¢). Then we
define a filtration F, U(g), p € Z, of U(g) via

F,U(g) =Uny) @c FpU(c) @c U(n).
This is clearly a U (n;)-module filtration. The corresponding graded module is
GrU(g) =U(n,) @c S(c) @c U(n).

This filtration induces a filtration on the submodule Jplf(g) and the quo-
tient module Uy. The Harish-Chandra homomorphism v : Z(g) — U(h) is
compatible with the degree filtrations and the homomorphism Gr+« is an iso-
morphism of Gr Z(g) onto the subalgebra I(h) of all W-invariants in S(b)
([LG], Ch. VIII, §8, no. 5). Denote by I;(h) the homogeneous ideal spanned
by the elements of strictly positive degree in I(h). Then

Gr JoU(g) = U(n,) ®c I+(c)S(c) ®c U(n).
By ([CA], Ch. III, §2, no. 4, Prop. 2) it follows that

Grilp = (Gri(g))/(Gr JoUU(g))
= (U(ny) ®c S(c) ®c U[))/U(ng) ®c T4(¢)S(c) ®c UR))
=U(n;) @c S(¢)/(I+(c)S(c)) ®c U(n),

i. e. it is a free U(n;)-module. Moreover, by ([LG], Ch. V, §5, no. 2, Th. 1)
we know that the dimension of the complex vector space S(h)/(I+(h)S(h)) is
Card W. It follows that Uy has a finite filtration by U (n,)-submodules such
that Grly is a free U(n,)-module. By induction in length, this implies that
Up is a free U(n,)-module. 0
Let ¢ : U(h) — U(h) be the automorphism given by (&) = & + p(§) for
€ € b. Then, by ([LG], Ch. VIII, §8, no. 5, Th. 2), ¢(v(Z(g))) is the algebra
of W-invariants in ¢ (h). In addition, by ([LG], Ch. V, §5, no. 2, Th. 1), the
dimension of the vector space U(h)/p(v(Js))U(h) is equal to Card W. This
implies that Vi = U(h)/v(Je)U(H) is an U(h)-module of dimension Card W.

Lemma 2. Let A € h* and 0 = W - X\. Then:
(i) Vg is a U(h)-module of dimension Card W,
(ii) the characteristic polynomial of the action of £ € b on Vy is

PE) = [] €~ (wx+p)(©));

weW

(iii) Ho(ng,Up) is a direct sum of countably many copies of Vj.

Proof. We already proved (i). Clearly, I, D ¢(v(Jp))U(h) is equivalent to p =
w for some w € W. Hence the linear transformation of U(h)/p(v(Je))U(h)
induced by multiplication by ¢ has eigenvalues (w)(£), w € W, and by sym-
metry they all have the same multiplicity. This in turn implies that
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o(P(€)) = [T e(€— (wr+p)(€) = T] ¢~ (wr)(©))
weWw weEW

is the characteristic polynomial for the action of & on U(h)/(v(Jy)) U(H).
This proves (ii).

(iii) As in the proof of 1, we fix a specialization ¢ of h and choose a
nilpotent subalgebra n opposite to n,. By Poincaré-Birkhoff-Witt theorem, it
follows that as a vector space U(g) = U(n,) ®c U(c) @c U(1n). Moreover,

Ho(ng,Uy) = U(g)/(Jo U(g) + nz U(g))-

Denote by v, : Z(g) — U(c) the composition of the specialization map with
the Harish-Chandra homomorphism 7. Then

JoU(g) + 0, U(g) = JoU(c) U(n) + 1y U(g) = V2 (Jo) U(c) U(n) + ny U(g),
which implies that under the above isomorphism,
JoU(g) +n, U(g) = (C®c 72 (Jo) U(c) @cU([M)) & (nelh (ng) ®c U(c) ®c U(1)).
This yields
Ho(ng,Uy) = U(c)/(72(Jo) U(c)) @c U(R) = Vo ®c U(7)

and the action of § is given by multiplication in the first factor. O
Corollary 3. Let A€ b*, 0 =W - X and V € M(Uy). If we put

P(&) = [ (€~ (wA+p)(€)) for & €,

weW

P(&) annihilates Hy(ng, V') for any £ € h and p € Z.

Proof. By 1, we can calculate n,-homology of V' using a left resolution of V'
by free Uy-modules. The assertion follows from 2. O

In particular, if V' € M(Uy), Hp(n,,V) is a direct sum of generalized
U(h)-eigenspaces corresponding to wA + p, w € W. If U is a U(h)-module, we
denote by Uy the eigenspace corresponding to A € bh*.

Corollary 4. Let A € h* be regular. Then, for V€ M(Uy), the n,-homology
modules Hy(ng, V') are semisimple as U(h)-modules. More precisely,

Hp(nw, V) = Z Hp(nx, V)(wA—}—p)
weWw
foranypeZ,.
This implies, in particular, that for regular A € h*, we can view the func-

tor Hy, (g, —)(watp) a8 the pt? left derived functor of the right exact functor
Hoy(nz, =) (wr+p) from M(Up) into M(U(b)).
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In general situation, we can view Vjy as a semilocal ring and Hp(n,, V) as
Vo-modules. Also, for any A € 6, Cy4, is a Vg-module.
For any Ox-module F on X we denote by T, (F) its geometric fibre, i. e.

T.(F) = Fp/m,F,.

Then T, is a right exact covariant functor from M(Ox) into complex vector
spaces. If F is a Dy-module, we can view T, (F) as the inverse image of F for
the inclusion 4 of the one-point space {z} into X.

Theorem 5. Let A € h*, 0 =W -\ and x € X. Then the functors LT, o LAj
L L
and D(Cxy,)®v, (D(C)®y(n,)—) from D~ (Uy) into the derived category of

complexes of complex vector spaces are isomorphic.

Proof. By 1, we know that Uy is acyclic for the functor Ho(ng, —) = C®yn,)—
By 2, we also know that C®yy (s, )Up is acyclic for the functor Cx, @y, —. Let
F" be a complex isomorphic to V" consisting of free Uyp-modules. Then, since
the functors commute with infinite direct sums, we get

L L
D(Cx9)®v, (D(C)®um,) V') = Crtp ®v, (CQun,) F7).

On the other hand, the localization Ay(Uy) = D, is a locally free Ox-module,
and therefore acyclic for T,. This implies that

LT, (LAN(V")) = To(Ax(F)).
Hence, to complete the proof it is enough to establish the following identity
T (Ax(Up)) = Crtp ®v, (C Ou(ny) Up).

First, we have T, (Ax(Uy)) = T»(Dy). Moreover, from the construction of Dy
it follows that

T.(Dy) = U(g)/nald(g),
what yields, by using the properties of the Harish-Chandra homomorphism,

T, (Dx) = T:(Dy) @up) Crrp = (U(9) /1l (9))/ (Iny,(U(g)/12U(g)))
= Cxyp ®v, (U(g)/n:UU(8))/(v(Jo)(U(g)/n:UU(g)))
= Cryp ®v, (U(9)/(JeU(g) +1:U(g))) = Cryp ®v, Ho(ng,Up).O

Corollary 6. Let A € b* be reqular and 6 = W - X. Then for any V- € M(Uy)

we have the spectral sequence

Lme(LqA)\(V)) — H_(p+q) (n$, V)()\+p).

Proof. As we remarked before, in this case all Vy-modules are semisimple and
Cx ®vy, — is an exact functor. Therefore, the spectral sequence corresponding
to the second functor in 5. collapses, and we get
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HP(D(Ca 1) v, (D(C) 14,y D(V)))
= H?(C\y, ®v, (D(C)éu(nz)D(V)))
— H(D©Bunny DV)) ) = H (DS DV s
= Hp(nmv V)()H—P)

for p € Z . Therefore, the asserted spectral sequence is just the Grothendieck
spectral sequence attached to the composition of LT, and LA). O

The behavior at singular A is more obscure as we see from the following
result.

Proposition 7. Let A\ € h* be singular. Then there exists V€ M(Up) such
that LAX(D(V')) is not a bounded complex.
In particular, the left cohomological dimension of Ay is infinite.

Proof. Since the functor T, has finite left cohomological dimension, it is enough
to find a Up-module V such that LT, (LA (V)) is not a bounded complex for
some x € X. By 5, this is equivalent to the fact that

D(Crs) S, (D(Q)Syin,y D(V))

is not a bounded complex.

To finish the proof we use some elementary results about Verma modules
which are discussed later in V.1. Fix a Borel subalgebra by, put ng = [bg, bo]
and consider the Verma module

M (woA) = U(8) ®u(by) Cuwor—p-

Pick z so that n, is opposite to ng. Then, by Poincaré-Birkhoff-Witt theorem,
M (wo)) is, as U(ng)-module, isomorphic to U(ng) ®c Cyyr—p. This implies,
since n, is opposite to ng, that

Ho(ng, M(woA)) = Cyp,
and Hp(ng, M(woA)) = 0 for p € N. Therefore,

D(C)Su(n,) DM (o)) = D(Cas).
and
L L L
D(Cx1)®v, (D(O)®(n,) D(M (wo)))) = D(Crtp)@v, D(Crstp)-
Clearly, we have

L
H_p(D(CA+p)®VeD(C>\+p)) = TOI"XG (CA+pv CA+p)v pELy.

Let W(A) be the stabilizer of A in W. By 2, the maximal ideals in Vj are the
projections of the ideals I,x4,, w € W/W (). Since Vp is an artinian ring, it
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is the product of local rings Ry,x, w € W/W (), obtained by localizing Vy at
Iyx+p ([CA], Ch. IV, §2, no. 5, Cor. 1 of Prop. 9). This implies that

TOI“ZG (Crip,Cryp) = Torf*((C, C), peZ,.
Since R, are mutualy isomorphic,

CardW =dimg Vo= Y dimg Ryx = Card(W/W())) dimc Ry,
weW /W (X)

i. e. dim¢ Ry = Card W(A) # 1. Therefore, Ry is not a regular local ring, its

homological dimension is infinite ([EGA], 17.3.1) and TorfA (C,C) # 0 for

peZ, ([EGA], 17.2.11). 0
This immediately implies the following result.

Proposition 8. Let 0 be a Weyl group orbit in b* consisting of singular
elements. Then the homological dimension of Uy is infinite.

From 1.22. we can deduce the following consequence. As before, we put
W(p) = {w € W[l(w) = p}.

Proposition 9. Let F' be a finite-dimensional irreducible g-module with lowest
weight X\. Then

Hp(nﬂﬁvF) = Z (Cw()\—p)—f-p
weW (p)

foranyp e Z,.

Proof. Clearly, A — p is regular, hence we can apply 6. From 1.22. we know
that the localizations of F' are locally free Ox-modules. Therefore, all higher
geometric fibres vanish on them and the spectral sequence degenerates. The
formula follows immediately from 1.22. O

L.3 Intertwining Functors

Let 6 be a Weyl group orbit in h*. If 8 consists of regular elements, by 1.12, the
category D(Up) is equivalent to the category D(Dy). This implies in particular,
that for any two A, u € 0, the categories D(Dy) and D(D,) are equivalent.
This equivalence is given by the functor LA, o RI" from D(D)) into D(D,,).
In this section we want to construct, in geometric terms, a functor isomorphic
to this functor.

We start with some geometric preliminaries. Define the action of G' on
X x X by

g-(z,2")=(g-z,9-2")

for g € G and (z,2') € X x X. The G-orbits in X x X can be parametrized
in the following way.
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First we need to introduce a relation between Borel subalgebras in g. Let
b and b’ be two Borel subalgebras in g, n and n’ their nilpotent radicals and N
and N’ the corresponding subgroups of G. Let ¢ be a Cartan subalgebra of g
contained in bNb’. Denote by R the root system of (g, ¢) in ¢* and by R™ the
set of positive roots determined by b. This determines a specialization of the
Cartan triple (h*, X, X1) into (¢*, R, RT). On the other hand, b’ determines
another set of positive roots in R, which corresponds via this specialization to
w(XT) for some uniquely determined w € W. Since ¢ is a Levi subalgebra of
b N b, all Cartan subalgebras in b N b’ are conjugate by elements of N N N'.
This implies that the element w € W doesn’t depend on the choice of ¢, and
we say that b’ is in relative position w with respect to b. Let s : h* — ¢* be
the specialization determined by b. Then the specialization s’ determined by
b’ is equal to s’ = s o w. This implies that b is in relative position w—! with
respect to b'.

Let

Zyw = {(z,2") € X x X | by is in the relative position w with respect to by}

for w e W.

Lemma 1. (i) Sets Z,,, w € W, are smooth subvarieties of X x X.
(ii) The map w — Z,, is a bijection of W onto the set of G-orbits in
X x X.

Proof. Fix w € W. The set Z,, is G-invariant, hence it contains a G-orbit O.
Let x € X. Since G acts transitively on X, every G-orbit in X x X intersects
{z} x X, hence there exists ' € X such that (z,2') € O. Let (z,2") € Z,.
Fix a Cartan subalgebra ¢’ in b, N b, , and ¢’ in b, N by. Then, there exists
n € N, such that (Adn)(¢") = ¢”. Since both (z,z') and (x,z") are in Z,,, we
have (Adn)(by) = byr. Hence 2’ and 2’ are in the same By-orbit in X. This
in turn implies that O = Z,,. O

Denote by p; and ps the projections of Z,, onto the first and second factor
in X x X, respectively.

Lemma 2. The fibrations p; : Z,, — X, i = 1,2, are locally trivial with fibres
isomorphic to £(w)-dimensional affine spaces. The projections p;, i = 1,2, are
affine morphisms.

Proof. Tt is enough to discuss p;. Let (z,z") € Z,, and denote by B, resp. B’,
the stabilizers of z, resp. 2/, in G. Then, by 2, instead of p; : Z,, — X
we can consider the the projection p; : G/(BN B') — G/B. Let N be the
unipotent radical of a Borel subgroup of G opposite to B. Then, by the Bruhat
decomposition, the natural map of N x B into G is an isomorphism onto an
open neighborhood of the identity ([Bo], 14.13). This implies that the orbit
map g — ¢ - * induces an isomorphism of N onto an open neighborhood U
of x € X. Moreover, the orbit map ¢ — ¢ - (z, ') induces an isomorphism of
N x (B/(BN B')) onto p; *(U) such that the diagram
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N x (B/(BNB') —— p;'(U)

rr | )

N — U

commutes. The fibres of p; are isomorphic to B/(BNB’) = N/(NNN'), and
this is an affine space of dimension

Card(X71) — Card(Xt Nnw(X")) = Card(Xt N (—w(XT)) = £(w)

([LG], Ch. VI, §1, no. 6, Cor. 2. of Prop. 17). 0

Let §27,,x be the invertible Oz, -module of top degree relative differential
forms for the projection py : Z,, — X. Let T, be its inverse. Since the tangent
space at (z,z") € Z,, to the fibre of p; can be identified with n,/(n, Nng),
and p — wp is the sum of roots in X+ N (—w(XT)), we conclude that

Tw = p1(O(p — wp)).

Lemma 3. (i) Let v € P(X). Then

pi(O(wr)) = p3(O(v)).

(ii) Let A\ € b*. Then
(Dw)\)Pl — (D§2)Tw.

Proof. Let (x,2") € Z,. The stabilizer B, N B, of (z,2') in G contains a
Cartan subgroup T of G, which is therefore its Levi factor. It follows that
B, N By is a connected group. Evidently, we have canonical morphisms

by N by — (b N by )/(ng N by ) — by /0y

and
b, Nby — (bx N bml)/(bm N nm:) — bx:/nm:;

and b, /n, and b, /n, are naturally isomorphic to h. These two natural mor-
phisms of b, N b, onto h differ by the action of w~!. The homogeneous invert-
ible Oz, -modules pi(O(wv)) and p5(O(v)) correspond therefore to the same
character of the stabilizer of (z,z’). This proves (i).

By definition (Dy»)P* and (D§?)7« are G-homogeneous twisted sheaves
of differential operators on the G-homogeneous space Z,,. Then, as we know
from ..., the G-homogeneous twisted sheaves of differential operators on Z,, are
parametrized by (BzNB,)-invariant linear forms on b;Nb,. The twisted sheaf
of differential operators (D,,x)P* corresponds to the linear form on b, N b,
induced by wA + p € h* under the first morphism, and the twisted sheaf of
differential operators D§* corresponds to the linear form on b, N b, induced
by A+ p € b* under the second isomorphism. Hence to get (Dyx)?* from D?,
we have to twist it by a homogeneous invertible Oz -module corresponding
to the weight wA + p — w(A + p) = p — wp under the first isomorphism. O
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Let w € W and A € h*. The morphism py : 7Z,, — X is a surjective
submersion, hence pj is an exact functor from M.(Dy) into M ,.((Dx)P?)
([Hartshorne], 111.10.4.). By 3, twisting by 7, defines an exact functor
V — Tw®0,, py (V) from Mg(Dy) into Mge((Dyr)?P*). Therefore, we have
a functor V' — T, ®o,. p3 (V') from D?(Dy) into DP((Dyx)P*). By com-
posing it with the direct image functor Rp;y : DP((Dyr)P') — D?(Dy»), we
get the functor Jy, : D(Dy) — D?(D,,) by the formula

Juw(V) = Bp14(Tw ®0,,, 3 (V)

for any V° € D?(D,). Let V € My.(D,). Since p; is an affine morphism with
¢(w)-dimensional fibres by 2, we see that H*(.J,,(D(V))) vanish for i < —¢(w)
and 7 > 0 (...). Moreover, the functor

L,(V) = R°p11(Tw ®0,,, p3 (V)

from M4.(Dy) into Mge(Dya) is right exact. We call it the intertwining func-
tor attached to w € W between My.(Dy) and M gc(Dyx). The reason for this
will become apparent later.

Lemma 4. The category My.(Dy) has enough projective objects.

Proof. By twisting we can clearly assume that A is antidominant and regular.
But in this situation, M,.(Dy) is equivalent to M(Up), by 1.3. 0
Therefore, for any w € W, we can define the left derived functor

LI, : D™ (D)) — D™ (Dy3)

of I,,. We shall see later that this functor, restricted to D?(D,), agrees with
Jw-

Now we study some basic properties of these functors. We start with an
analysis of their behavior under geometric translation.

Lemma 5. Let w € W, A € h* and v € P(X). Then
()

for c;n)y V- € D(Dy);
LI,(V(v)) = LI,(V)(wv)
for any V- € D~ (D).

Proof. We start with the proof of the first relation. By 3.(i), for any V €
ch(D)\)v

ps V(v)) = p3 (V@0 O(v)) = p3 (V)®0,, p3(O(v)) = p3 (V)®0,, P (O(wr))

as (Dxyv)P>-module. Since the direct image functor is local with respect to
the target variety,
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Juw(V'(v)) = Bp11(Tw ®o,, p3 (V' (v)))
= Rp14(Tw ®0,, p3 (V') ®o,, Pi(O(wr)))
= Rp11(Tw ®0,, p3 (V) ©0x O(wrv) = Ju(V') (wv),

for any V° € Db(Dy). This, in particular, implies
Iy(V(v)) = Ly (V) (wr)

for any V € M,.(Dy). Since twists preserve projective objects, the lemma
follows. O

The next step is a “product formula” for functors .J,,, w € W. First,
we need some additional geometric information on G-orbits in X x X. Let
w,w’ € W. Denote by p; and ps the projections of Z,, into X, and by pj
and p, the corresponding projections of 7, into X. Let Z,, xx Z,, be the
fibre product of Z, and Z,, with respect to the morphisms p}, and p;. Denote
by ¢ : Zy Xx Zy — Zy and q : Zy Xx Zy — Zy, the corresponding
projections to the first, resp. second factor. Then, by 2, ¢ and ¢’ are affine
morphisms. Finally, the morphisms p} o¢' : Zy xx Zy — X and p2oq :
Lt X x Ly — X determine a morphism r : Z,,» X x Z,, — X x X. Therefore,
we have the following commutative diagram.

XxX 1 Zy XxZp — Z, — 23 X

q Pll

!

Tt LN ¢

Moreover, all morphisms in the diagram are G-equivariant. From the con-
struction it follows that the image of r is contained in Z,,,. Hence by the
G-equivariance of r, it is a surjection of Z,,; X x Z,, onto Zyy,.

Lemma 6. Let w,w’ € W be such that {(w'w) = ¢(w') + £(w). Then r :
Lyt XX Loy — Lty 18 an tsomorphism.

Proof. By 2. we know that
dim(Zy xx Zy) =dim X +4(w) + L(w') = dim X + £(w'w),
and
dim Zryy = dim X + £(w'w).

By the G-equivariance of r any G-orbit O in Z,,, X x Z,, projects onto Z,,,.
Hence, dimO = dim X + 4(w'w) = dim(Z, Xx Zy), and O is open in
L' Xx Zy. On the other hand, Z,,, xx Z,, is irreducible, and it follows
that O = Z,,» xx Z,,. This implies that Z,,, X x Z,, is a G-homogeneous space
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covering Z,,,,. Since the stabilizer of a base point in Z,,,, is connected, r is
an isomorphism. a

Therefore, if we assume that w, w’, w” € W satisfy w” = w'w and £(w") =
L(w') + £(w), we can identify Z,,» and Z, xx Z,. Under this identification
the projections pf and pf of Z, into X correspond to the maps p} o ¢’ and
p2 o q. Moreover, we have the following result.

Lemma 7. Let w,w' € W be such that £(w'w) = £(w") + £(w). Then

Jw’ o Jw — Jw’w-

Proof. Let w" = w'w. By 3.(i), we have

q/*(ﬁu’) ®Ozw, X x Zw q* (7:11)

= (P1od)(O(p—w'p)) @0, « 2, (P100)" (O(p —wp))
(Prod) (O(p—w'p)) ®oy, vy, (P20d) (O(p—wp))

=¢" (P, (O(p—w'p)) ®o,_, Py (O(p — wp)))

=¢"(0,"(O(p — w'p)) ®o, , Py (O(w'p — w'wp)))

= ¢ (07" (Op—w"p))) = (1 0 ¢')(O(p — w"p)) = Tur,

under the identification of Zw' x x Z,, with Z,,». Then, by the base change

(...),
Jw (Jw(V)) = Rph (Tor @0, 13 (Bp11(Twy @05, F(V'))))
= Rp\ 1 (Twr ®o,_, Rdy (@ (Tw ®0,, p3 (V'))))
= R(pro¢)+(0" (Twr) @0z, 2, (P20 @) (V) = Jurr (V')
for any V' € Db(D,). O
Corollary 8. Let w,w' € W be such that £(w'w) = £(w") + ¢(w). Then

le @) [w == lew.

Now we want to analyze in more details functors attached to simple re-
flections. Fix a simple root o € I1. To simplify the notation in the following,
we put Z = Z,_ and T = T,_. In this situation, by 2, the fibres of the pro-
jection p; : Z — X are affine lines. Hence one can view T as the invertible
Oz-module of local vector fields tangent to the fibres of p;.

Lemma 9. Let o € Il and X € h*. Then

H(J,,(D(Dy))) =0 fori # 0.
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The proof of 9. will be a consequence of the following discussion, which
will also lead to more detailed information about the action of the intertwining
functor I_. The basic idea is to reduce the analysis to the case of g = sl(2, C).
This reduction is based on a local trivialization result. Let X, be the general-
ized flag variety of all parabolic subalgebras of type a. Any Borel subalgebra
b, in g is contained in a unique parabolic subalgebra p, of type a, y € Xu;
hence we have the canonical projection p, : X — X,. For any =z € X, the fi-
bre p. 1 (pa(x)) consists of x and all 2’ € X such that b, is in relative position
S, wuth respect to by.

Lemma 10. The projection p, : X — X4 s locally trivial. Its fibers are
isomorphic to the projective line P,

Proof. Fix points y € X, and = € X such that p,(z) = y. Denote by B,
resp. P, the stabilizers of z, resp. y, in G. Let P’ be a parabolic subgroup
opposite to P and N’ its unipotent radical. Then the natural map N’ x P —
G is an isomorphism onto an open neighborhood of the identity in G ([BT],
4.2). Therefore, the natural morphism of N’ into X, induced by the orbit
map g — ¢ - y is an isomorphism of N’ onto an open neighborhood U of y.
Moreover, the orbit map g — ¢ -« induces an isomorphism of N’ x (P/B)
with p51(U) such that the diagram

N'x (P/B) — pa*(U)

| pe |

N’ — U

commutes. This implies that the fibres are isomorphic to P/B. Let R be the
radical of P. Then R C B, hence P/B = (P/R)/(B/R). Since P/R is a cover
of PSL(2,C) and B/R is its Borel subgroup, P/B is isomorphic to P!. 0

We remark that p,!(U) is a homogeneous space for P’ and, if we denote by
L the common Levi factor of P’ and P, we see that p_1(U) is identified with
N’ x (L/(LNB)). Let M be the quotient of L with respect to its center, m its
Lie algebra and X, the corresponding flag variety. Clearly, M is isomorphic
to PSL(2,C) and Xy, is isomorphic to P!. Choosing base points b and bm in
X resp. X, determines a canonical inclusion of the Cartan algebra b, into b
which identifies the root system X, in b}, with the restrictions of @ and —a;,
and the positive root 3 in X, corresponds to . We can identify the dual space
of by with C via the map p — 7(p). From the discussion of homogeneous
twisted sheaves (...), we see that, for any A € h*,

Dalpa ' (U) = D' B Dy ()

here we denoted by D,-(n) the homogeneous twisted sheaf on Pl = X,
determined by a”(A) € C under the above correspondence. By definition,

Da © P1 = Da © P2, hence
p (M U)) = py t(pat(U)),
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as an open subset of Z. Moreover, under the above identifications, it is iso-
morphic to N/ x (X X Xm) — An), where we denoted by Ay, the diag-
onal in X, X X,. Let ¢1, resp. ¢z, be the morphism of the variety Z,, =
(Xm X X)) — A into X, induced by the projection to the first, resp. second
factor. Then, using the above identifications, we have

R'p14(T ®o, p3 (DA))Ip; ' (U) = Dy B R'q14 (T ®0, 45 (Dar(n)))s

where we denoted by 7y, the invertible Oz, -module of local vector fields on
Zw tangent to the fibres of ¢;. Now we can prove 9. The preceding discussion
reduces the calculations to the case g = s[(2,C). Hence, we assume this in
the following discussion. Clearly, D, is a G-homogeneous O x-module, what
implies that 7 ®0, p3 (Dy) is a G-homogeneous O z-module. Its direct images
under p; are G-homogeneous Ox-modules. Hence they are completely deter-
mined, as Ox-modules, by their geometric fibres at the base point x € X,
and their higher geometric fibres vanish. Let F' = X — {z}. Then p; *(z) is a
smooth closed subvariety of Z equal to {x} X F. Let ip : {x} X F — Z and
iz : {x} — X be the natural inclusions and r the projection of {z} x F into
2. Then we have the following commutative diagram:

{2y x F 2 7

1l
f#} — X
By the base change ([BDM], 8.4),

To(R'p14+(T ®0, p3 (D)) = if (R'p14(T ®0, 3 (Dy)))
= R'ry (i5:(T ®0, p3 (Dx))) = R'ry (if:(T) ®op (p20ir)T(Dy))
= RiT'_F(TF Row D)\|F)

In addition, F' is the orbit of an one-dimensional unipotent subgroup of G,
hence the homogeneous invertible Op-module Tr is isomorphic to Or and
Dy |F is isomorphic to Dr as a homogeneous twisted sheaf of differential op-
erators. Finally, R'r, (Dp) = 0 for 4 < 0. This ends the proof of 9.

Now we return to the general situation. The next step is critical for our
analysis of the intertwining functor attached to a simple root o € II. Since
the morphism p; is an affine surjective submersion, we can use the de Rham
complex (...) to calculate I (V) as Ox- and U(g)-module. For V € M,.(Dy),
I, (V) is the 0*® cohomology of the complex p1,(Cz x(V)), where Cz x (V)
denotes the complex

i —0—=T o, p5 (V) —pf (V) —0— ...

In particular, I (V) is a quotient of p1.(p3(V)). Therefore, there is a natural
U(g)-module morphism of the global sections of p1.(p3(V)) into I'(X, I5_(V)).
Since
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this gives a natural Up-module morphism of I'(X, V) into I'(X, I5_(V)). It in-
duces a natural D;_y-module morphism of A;_»(I'(X,V)) into I, (V), i. e. we
have a morphism of the functor A;_» oI into I5_. Applying this discussion to
the special case V = Dy, we get, by C.6.1.(i), a natural Ds_x-module morphism
of D into I (Dy).

For a root « € II, we say that A € b* is a-antidominant if «”()\) is not a
strictly positive integer.

Lemma 11. Let o € II and A € b* be a-antidominant. Then the natural
morphism of Ds_x into Is (Dy) is an isomorphism of Ds_x-modules.

Proof. The assertion is local, so we can apply the previous discussion. It re-
duces the problem to the corresponding result in the case of s(2,C). In this
case there exists only one simple root o and s, = —1; hence we can put
I=1,,.

We claim first that the natural morphism from D_j into I(D,) is not zero.
To see this we consider the morphism of I'(X,D_)) into I'(X, I(D,)). It is
enough to show that the section 1 € Uy = I'(X,D_y) always maps into a
nonzero section of I'(X, I(Dy)). We recall that I(Dy) is the 0** cohomology
of the complex

. — 0 — p1(T ®0, p3 (Dr)) — p1(p3 (Dr)) — 0 — ...,

and all other cohomologies of it vanish by 9. Since Z is an affine variety, by
the Leray spectral sequence we conclude that this is a left resolution of 1(Dy)
by I'(X, —)-acyclic Ox-modules. Therefore, the morphism

d: I'(T ®o, p§ (Dx)) — I'(Z,p3 (Dx))

is injective and I'(X,I(Dy)) is the cokernel of d. The morphism of Uy =
I'(X,D_,) into I'(X, I(D,\)) is induced by the natural morphism of Uy =
(X DA) into I'(Z, pg (Dy)). Therefore, 1 € Up maps into the image of 1 €
rz, p2 5 (D)) under the quotient map, and it is enough to show that 1 €
I'(Z,pF(Dy)) is not in the image of d. To prove this we use the fact that
d is G-equivariant, and analyze the G-action on I'(Z, T ®o, ps (Dy)). If we
filter Dy by degree, we get a filtration by G-homogeneous Ox-modules F,, Dy,
p € Z4, and GrDy = S(Tx). Therefore, we have a filtration

FP(T ®Oz p;_(D)\)) - T®Oz p;(Fp DA): D € Z-H
of T ®p, p3 (D) by G-homogeneous Oz-modules and
Gr(T ®0, p3 (Dx)) =T ®o, 13(S(Tx)) = T @0, S(p5(Tx))-

By induction in degree we see that higher cohomologies of T ®0, p3 (D))
vanish, hence the filtration of T ®0, p3 (Dy) induces a filtration of its global
sections such that
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GrI'(Z, T ®o0, p3 (D) =I'(Z, T ®o, p5(5(Tx)))-

Because the group G is reductive, the algebraic G-modules I'(Z, T ®0,
p3(Dy)) and I'(Z, T ®0, S(p5(Tx))) are isomorphic. On the other hand,
Tx = O(—a), hence, by 3.(i), S(p3(Tx)) is the direct sum of p}(O(ka)) for
k € Z,. In addition, T = p;(O(«)) and finally

I(Z,T ®o, p3(Dx) = P I'(Z, 0 (O(ka))).

By Frobenius reciprocity, G doesn’t act trivially on any submodule of the
G-module I'(Z, T ®o, p5 (Dy)). This implies that 1 is not in the image of d.

Now we show that the natural morphism of D_j into I(D,) is an iso-
morphism for a-antidominant A. First, we remark that both D_y and I(D,)
are G-homogeneous Ox-modules and the natural morphism is G-equivariant.
Hence it is enough to show that the morphism induces an isomorphism of
the geometric fibres at a base point zy of X. Right multiplication by el-
ements of D_y induces on T,(D_y) a structure of a left U(g)-module iso-
morphic to U(g) ®u(v,,) Ca—p- Therefore, T;;(D_5) is a module which is the
direct sum of one-dimensional weight spaces corresponding to the weights
{A—p—ka|k € Z,}, and it is irreducible if the a-antidominance condition
is satisfied. Moreover, right multiplication by elements of I'(X, D)) induces
on T, (I(Dy)) a structure of a left U(g)-module, and the map of geometric
fibres is a morphism of U(g)-modules. Therefore, if A is a-antidominant, the
morphism of the geometric fibre T,,(D_,) into T, (I(Dy)) is injective.

The argument from the proof of 9. also implies that

Ty (I(Dy)) = R°r4(DF) = I'(F, OF)

as a vector space. On the other hand, it has the natural structure of U(by, )-
module, given by the linear form —\ + p. In addition, the stabilizer B, of
xzo € X acts on this module and induces the natural action on I'(F, Op).
Therefore, it is the direct sum of one-dimensional weight subspaces corre-
sponding to the weights {—ka |k € Z4}. The action by right multiplication
by elements of U(b,,) on Dy|F induces on T,(I(Dy)) a left U(b,,)-action
which is the difference of the second and the first action. Hence, T, (I(Dy))
is the direct sum of one-dimensional weight subspaces corresponding to the
weights {\—p—Fka |k € Z,}. It follows that the morphism of geometric fibres
is an isomorphism. a

For any S C X7, we say that A € b* is S-antidominant if it is a-
antidominant for all « € S. Put

Z]; ={a € yt | wa € —E+} =¥ytn (—w_1(2+))

for any w € W.

Lemma 12. (i) ¥ | = —w(X}).
(ii) Let w,w" € W be such that {(w'w) = £(w') + (w). Then



L.3 Intertwining Functors 63
+ -1yt +
Yy =W (Ew,) Uy,

(#ii) Let w,w' € W be such that £(w'w) = L(w') + L(w). If X\ € b* is

Zi,w—antidominant, then w\ 1s EI,—antidominant.

Proof. (i) follows directly from the definition of X.F.
(ii) follows from ([LG], Ch. VI, §1, no. 6, Cor. 2. of Prop. 17).
(iii) follows immediately from (ii). O

Lemma 13. Let A € h* be antidominant. Then, for any w € W,

Juw(D(Dy)) = D(Dyy)-

Proof. By 11, the statement holds for simple reflections. We prove the general
statement by induction in ¢(w). Let £(w) = k+ 1. Then there exist a € IT and
w' € W such that w = sqw’ and £(w’) = k. By 12.(iii), w' is a-antidominant,
hence

Ju(D(Dy)) = Js, (Juw (D(DA))) = Jso(D(Duwrr)) = D(Duwn),
by 7,9, 11. and the induction hypothesis. O

Theorem 14. Let w € W and A € h*. Then:
(i) For any V' € D°(D,), we have

LI,(V)=J,(V).
(i) The left cohomological dimension of I, is < £(w).

Proof. Clearly, (ii) follows from (i). To prove (i) we have to show that for
any projective P € My.(Dy), H'(J,(D(P))) = 0 for i # 0. First we observe
that, by 5, it is enough to consider the case of regular antidominant A. In this
situation, by 1.3, P is the localization of a projective Up-module, and therefore
a direct summand of (D)), It follows that it is enough to treat the case of
P = D,, and we can apply 13. 0

As an immediate consequence, the intertwining functors LI, w € W,
extend to functors from D(Dy) into D(D,y). We now prove a preliminary
version of the product formula for the intertwining functors.

Lemma 15. Let w,w’ € W be such that {(w'w) = £(w') + ¢(w). Then, for
any A € b*, the functors L1, o LI, and LIy, from D~ (Dy) into D~ (Dyrwr)
are isomorphic.

Proof. By 8, it is enough to show that, for any projective P € My.(D,), the
Dyr-module I, (P) is I-acyclic. By 5, we can also assume that A is regular
antidominant. In this situation, as in the proof of 14, we can assume that
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P = Dy. Therefore, by 13, I,,(Dyx) = Dy and the assertion follows by a
repeated application of 13. and 14. O

Finally, we have the following result which explains the role of intertwining
functors.

Theorem 16. Let w € W and let X\ € b* be X\ -antidominant. Then the
functors LI, o LAy and LAy from D~ (Uyp) into D~ (D) are isomorphic.

Proof. We prove this result by induction on £(w). Assume first that w is the
simple reflection corresponding to o € IT. Any V' € D~ (Uy) is isomorphic to
a complex F" of free Up-modules. Moreover, LAy (V') = Ay(F") and, by 9, 11,
14. and C.6.1.(i), the natural morphism we described before is an isomorphism
of

LA (V) = As A (F7) = A A (I'(X, AN(FY))),

into

I (AX(F")) = LI, (AX(F")) = LI, (LAX(V")).

Assume that the statement holds for w’ € W such that £(w’) < k. Take
w € W such that £(w) =k + 1. Then w = s,w’ for some o € IT and w' € W
with £(w’) = k. By 12.(iii), w'\ is a-antidominant. Moreover, by the induction
hypothesis and 15, we see that

LI,oLAy = (LI, oLl,)oLAy=LI, o(LIL,oLAy)

is isomorphic to LIs o LA,y. Hence the assertion follows by applying the
statement for simple reflections. a

Corollary 17. Let A € b* be X -antidominant and let F € M(Up) be a flat
Ug-module. Then the localization Ax(F) is an I,-acyclic Ax-module.

Proof. Since F' is a flat module, its higer localizations vanish. Therefore, the
assertion follows from the spectral sequence associated to 18. O

The next result is the final form of the product formula for intertwining
functors.

Theorem 18. Let w,w’ € W be such that {(w'w) = £(w') + £(w). Then, for
any A € b*, the functors LI, o LI, and LI, from D(Dy) into D(Dyrw)
are isomorphic.

Proof. By 5, we can assume that A is antidominant and regular. In this sit-
uation, by 1.4. and 1.12, we know that any complex V' € D(D,) is quasi-
isomorphic to the localization Ay (P") of a complex P € D(Uy) consisting of
projective Up-modules. Therefore, by 12, 16. and 17, we have

and A, (P") consists of I,,-acyclic Dy,x-modules. It follows that
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LIy (LI,(V)) = LIy (Aupr(P)) = Ly (Aur(P))

and the lemma follows. O
In addition, if we assume that A is regular, we have:

Theorem 19. Let w € W and X € h* be XF -antidominant and regular. Then
(i) LI, is an equivalence of the category D(Dy) with D(Dyy) isomorphic
to LAy, o RI:
(ii) the functors LI, o LAy and LAy from D(Uy) into D(Dyy) are iso-
morphic.

Proof. First we prove (ii). Any complex V' € D(Upy) is quasi-isomorphic to
a complex P’ consisting of projective Up-modules. Therefore, LAy (V") =
Ay (P?) and, by 16. and 17,

LL,(LAX(V")) = T (Ax(P7)) = Aur(P7) = LA (V7).
(1) follows from (ii) and 1.12. 0

Theorem 20. Let w € W and A € b*. Then:
(i) L1, is an equivalence of the category D(D)y) with D(Dy»);
(ii) LT, is an equivalence of the category D®(Dy) with D®(Dyy);

(iii) L1, is an equivalence of the category Db . (Dy) with D® , (Dy).

Proof. Assume first that A is regular antidominant.

In this situation, by 1.12 and 19.(i), we see that the functor LI, is equiv-
alent to the functor LA, o RI" and the inverse functor is equivalent to
LAy o RI'. This proves (i). Since the functor I" has finite right cohomolog-
ical dimension, and the localization functor A, has finite left cohomological
dimension for regular p by 1.13, (ii) follows. The last statement follows from
1.16.

The general statement follows from 5. using geometric translation. a

Now we can improve the estimate of left cohomological dimension of in-
tertwining functors.

Theorem 21. Let w € W and X € h*. Then the left cohomological dimension
of Ly : Mye(Dy) — Mye(Dyy) is < Card(X] N Xy).

Proof. By 5. we can assume that A is regular and antidominant. The proof is by
induction in /(w). Assume first that w is the reflection with respect to o € II.
Then the left cohomological dimension of I is < 1. Assume in addition that
a’(A) ¢ Z. Then s,(A) is also regular and antidominant. By 19.(i), LI,  is an
equivalence of category D(Dy) with D(D;_ ) isomorphic to LAs_yoRI . Since,
by 1.3, functors I" : Myo(Dy) — M(Up) and A, _x : M(Up) — Mye(Ds, )
are equivalencies of categories, the functor I5, : Mge(Dy) — Mge(Ds,2) is
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also an equivalence of categories. It follows that its left cohomological dimen-
sion is 0. This ends the proof for simple reflections.

Assume that the statement holds for all w’ € W such that £(w") < k. Let
w € W with £(w) = k + 1. Then there exist « € IT and w’ € W such that
L(w'") = k. By 12.(ii),

St NI\ = {w' o)} U )Ny,

hence
Card(X} N X)) = Card(X}F, N X)) + Card({a} N Xyry).

The lemma follows from 18, the case of simple reflections and the induction
hypothesis. a

Corollary 22. Let w € W and X\ € b* be such that X} N X\ = (0. Then
Iy, : Mye(Dy) — Mge(Dyy) is an equivalence of categories and I,,—1 is its
inverse.

Proof. By 12.(i) and 21, I,, and I,-1 are exact. Also, by 5, we can assume
that A is regular and antidominant. This implies that wA is regular and an-
tidominant. By 19.(i), LI, is an equivalence of category D(Dy) with D (D)
isomorphic to LA,x o RI'. Since, by 1.3, the functors I' : My.(Dy) —
M(Up) and A,y : M(Ug) — Mye(Dya) are equivalencies of categories,
Iy, : Mye(Dy) — Mge(Dyy) is also an equivalence of categories. The same
argument applies to I,,-1. This also implies that their compositions are iso-
morphic to the identity functor. O

Theorem 23. Let w € W and A € h* be X} -antidominant. Then the functors
RI'o LI, and RI" from D(Dy) into D(Uy) are isomorphic.

Proof. If X is regular this follows from 1.12. For singular A\, we can find w’ €
W and v € P(X) such that w'A and —w'v are antidominant, w’(\ — v) is
antidominant and regular, and A — v is X} -antidominant. Let V° € D(D,).
Since the left cohomological dimension of I, is finite, V" is quasi-isomorphic to
a complex C’ consisting of I,,-acyclic Dy-modules. Moreover, by 5, the complex
C (—v) consists of I,-acyclic Dy_,-modules and

LL,(V(=v)) = Lu(C(—v)) = Lu(C (—v)) = Lu(C")(—wv) = LI, (V) (—wv).
In addition,

RI(L1y(V))(—wv)) = RI'(L1y(V'(=v))) = RI'(V (=),
using the statement for regular A — v. On the other hand, by C.2.1, if we

denote by F' the irreducible finite-dimensional g-module with highest weight
w'v, we have



L.4 Global Sections of Irreducible Dy-modules 67

RI'(LI,(V')) = RI'((L1,(V')(~wv) ®ox F)iy)
= (RI(LLy(V')(—wv)) ®c F)ia = (RIC(V (=v)) @c F)[
= RI'(V'(—v) ®ox F)pn) = RI(V').0

We finally remark the following fact. It shows that, in general, the estimate
of left cohomological dimension of intertwining functors from 21. is the best
possible.

Proposition 24. Let w € W and A\ € P(X). Then
LI, (OX 4+ p)) = 0 fori # —£(w)

and

L=, (O(A + p)) = O(wA + p).

Proof. By 5. we can assume that A is antidominant and regular. In this situ-
ation the assertion follows immediately from 16. and 1.22. ad

L.4 Global Sections of Irreducible Dy-modules

Let A € h* be antidominant. Then for any quasi-coherent Dy-module V, higher
cohomology modules H*(X,V), i > 0, vanish. Therefore, we need to study
only the behavior of global sections I'(X, V) of V. We start with the following
simple result.

Proposition 1. Let A € bh* be antidominant and V € M y.(Dy) irreducible.
Then either

(i) I'(X,V)=0, or

(i) V is generated by its global sections I'(X,V) and they form an irre-
ducible Uy-module.

Proof. As we remarked before, there is a natural morphism of Ay (I'(X,V))
into V, and its image is a coherent Dy-module. Therefore, it is equal to 0
or V. In the first case we have I'(X,V) = 0, and (i) holds. In the second
case, V is generated by its global sections. It remains to prove that I'(X, V) is
irreducible. Let IC be the kernel of the epimorphism of Ay (I'(X,V)) onto V.
Then we have the exact sequence

0—K— AIX,V) —V—0
and therefore
0 — I'X,K)— I'X, A\(I'(X,V))) — I'(X,V) — 0.

By 1.1, this implies that I'(X, K) = 0.
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Let U be a nonzero submodule of I'(X,V). Then the inclusion i of U
into I'(X,V) induces a homomorphism Ay(i) of Ax(U) into Ax(I'(X,V)).
Assume that im Ay (i) is contained in K. By applying I" we would get that
I'(Ax(i)) = 0, contradicting 1.1. Therefore, im Ay (¢) is not contained in K.
This implies that the natural morphism of K & Ay (U) into Ax(I'(X,V)) is an
epimorphism. By the exactness of I" it follows that the natural morphism of
[(X,K® A\(U)) = I'(X, A\(U)) = U into I'(X, Ax(I'(X, V) = ['(X, V) is
surjective; hence, U = I'(X, V). O

The previous result allows the following converse.

Proposition 2. Let V' be an irreducible module from M(Uy). Let X € h* be
antidominant. Then there exists an irreducible Dy-module V such that I'(X, V)
is 1somorphic to V. Such Dy-module V is unique up to an isomorphism.

We start the proof with a lemma.

Lemma 3. Let A € bh* be antidominant and V € Myc(Dy). Then there exists
a largest quasi-coherent Dy -submodule V' of V with no nonzero global sections.

Proof. Let S be the family of all quasi-coherent Dy-modules U of V such that
I'(X,U) = 0. We assume that S is ordered by inclusion. Let C be a chain in
S. By ([EGA], Ch. I, 2.2.2) the union W of elements of C is a quasi-coherent,
Dy-submodule of V and I'(X, W) = 0. Hence, by Zorn lemma, there exists a
maximal element V' of §. Let U be any other element of S. Then U + V is a
quasi-coherent Dy-submodule of V and it is a quotient of Dy-module U & V'.
By the exactness of I" it follows that I'(X, U/ + V') =0, i.e. U +V is in S.
Therefore, U is a Dy-submodule of V'. O

Now we can prove 2. The localization Ay (V') of V' is a coherent Dy-module
generated by its global sections. Let W be a coherent Dy-submodule of Ay (V)
different from Ay (V'). Then we have an exact sequence

0—W—AV)—V—0
of coherent Dy-modules and, since A is antidominant, we have
0 —I'(X, W) —TIX,A\(V)) — I'(X,V) —0.

By 1.1, I'(X, Ax(V')) = V; hence our assumption implies that it is irreducible.
It follows that I'(X, W) is either 0 or equal to I'(X, Ax(V)). In the second
case, all global sections of Ay (V) would already be in W. By the definition of
Ax(V), it is generated by its global sections as a Dy-module. Therefore, this
would imply that W is equal to Ay (V'), contrary to our assumption. It follows
that I'(X,W) = 0 and I'(X,V) = V. Therefore, by 3, it follows that Ay (V)
has the largest coherent Dy-submodule W and corresponding V is irreducible.
It is generated by its global sections by 1.

It remains to show the uniqueness. Assume that I/ is an irreducible Dy-
module such that I'(X,U) = V. Then the image of the natural homomorphism
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of Ax(V) into U is either 0 or Y. In the first case, I'(X,U) = 0, contrary to
our assumption. It follows that this homomorphism is onto, and by the first
part of the proof its kernel is VW. This ends the proof of 2.

Now we want to study the necessary and sufficient conditions for vanishing
of global sections of irreducible Dy-modules for antidominant A € h*. We start
with a discussion of the action of intertwining functors, attached to reflections
with respect to the roots from IIy, on irreducible modules. Let o € II. Then

LNy =20 N (=5a(2Y) = 20 (=(ZY = {e}) U{a}) = {o},

hence, by 3.21, we know that the left cohomological dimension of I is < 1.
Assume, in addition, that A is antidominant. Then n(s,A) < 1 and, by C.3.1,
we see that the right cohomological dimension of I" on Mg.(Ds_ ») is < 1.
By 3.23, for any V € M,.(D,), we have a spectral sequence with Es-term
HP(X, L, (V)) converging to I'(X, V). It follows that this spectral sequence
converges at Fs-stage and

() P(X, L7, (V) = HY(X,I,, (V) =0,

(b) the Up-module I'(X,V) is an extension of modules I'(X, I;_(V')) and
HY(X,L ', (V).

Lemma 4. Let a € II\ and A € h* be antidominant and such that « is the
only root from IIy orthogonal to X. Assume that V € My.(Dy) is such that
I'(X,V)=0. Then

(Z) I, (V) =0,

(i) L=, (V) = V.

Proof. Let u € P(X) be a regular antidominant weight and F the irreducible
finite-dimensional g-module with lowest weight p. Denote by F = Ox ®c F.
Then, as we discussed in C.2, the U°-module G = (V®o F)(r+,) has a natural
filtration such that the corresponding graded module is the sum of V(v) for
all weights v of F' such that A + p = w(\ + v). This condition implies that
A—wh =wv—p € Q(X), hence w € Wy. In addition, since A is antidominant,
the left side of this equation is negative of a sum of roots from ITy. On the
other hand, since p is the lowest weight of F', the right side is a sum of roots
from II. This is possible only if both sides are equal to 0. Therefore, w =1 or
w = s,. Hence, we have an exact sequence

0 — V(sapn) — G — V() — 0.
Also,
HY(X,G) = H'(X,VY ®0y F)prrp = H' (X, V) &c F)pryp =0,

and the long exact sequence of cohomology implies that I'(X,V(squ)) = 0,
I'(X, V() = HY(X,V(sap)) and higher cohomology modules of V(sq ) van-
ish. This finally implies, by 3.23, that

RI(LIs, (D(V(w))) = RE(D(V(sap))[-1])-
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By the equivalence of derived categories (3.19), we conclude that

LI, (D(V(i))) = D(V(sap))[-1];

i. e. that I,,(V(n)) = 0 and L=*I;_(V(n)) = V(sap). The assertions (i) and
(ii) follow from 3.5.(ii). O

Lemma 5. Let « € II\ and X\ € b* such that —a”(A\) = p € Z,. Let V be
a quasi-coherent Dy-module such that I, (V) = 0 and L™, (V) = V(pa).
Then I'(X,V(pa)) = 0.

Proof. By 3.23, we have
HY(X,V) = HTYX, L7, (V) = H(X,V(pa))

for all 7 € Z. O

Lemma 6. Let A € b* and o € II\. Put —a"(A\) = p € Z. Let V be an
wrreducible Dy -module. Then either

(i) L='I, (V) =0, or

(ii) I, _(V) = 0 and L1, (V) = V(pa).

Proof. By C.3.5.(ii) we can assume that A is antidominant and regular. More-
over, because of irreducibility of V, I'(X,V) is irreducible Up-module, and
either I'(X, I, (V)) = 0 or HY(X,L7'I,_(V)) = 0. By C.4.3, we conclude
that I, (V) = 0 in the first case, and LI, (V) = 0 in the second case. As-
sume that I (V) = 0. In this case, L™1I;_(V) # 0. By 3.5.(ii) we can now
assume that A is antidominant and that « is the only root from I7y orthogonal
to it. In addition, from previous discussion and antidominance of s,A = X\ we

conclude that
I'Xx,v)=HYX,L ‘I, (V) =0.

The assertion follows from 3.5.(ii) and 4.4. O

Lemma 7. Let A € b* and o € II\. Put —a”(\) = p € Z. Let V be an
irreducible Dy-module such that L=1I, (V) = 0. Then I, (V) has a largest
quasi-coherent submodule U and we have an exact sequence

0 —U—I; (V) — V(pa) — 0.
Moreover, if p > 0, I'(X,U) = 0.

Proof. Again, to prove the first statement we can assume that X is antidomi-
nant and regular. As we remarked before, in this case all higher cohomology
modules of Iy (V) vanish. Let W be any quasi-coherent Dy-submodule of
I, (V) different from I (V). Then, by C.3.1. and the long exact sequence of
cohomology we conclude that higher cohomology modules of C = I,_(V)/W
also vanish. Therefore, by C.4.3, we conclude that I'( X, C) # 0. The long exact
sequence of cohomology gives
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0— "X, W) — I'(X,I,,(V)) — I'(X,C) — H'(X,W) — 0.

We can choose v € P(X) such that A + v is antidominant and « is the only
root from Iy orthogonal to A + v. Then, the sequence

0 — W(sqv) — I, (V)(saV) — C(sqVv) — 0
is exact and, since s, (A + v) is antidominant, we get the exact sequence
0 — (X, W(sqv)) — I['(X, I, (V)(sav)) — ['(X,C(5qv)) — 0.
Moreover, by 3.5.(ii) and 3.23, I (V)(sqav) = Is,(V(v)) and
(X, I, (V)(5a1)) = (X, I,,(V(1))) = (X, V(1),

hence it is either 0 or an irreducible Uy-module by 1. We claim now that
I'(X,C(sqr)) # 0. Assume the contrary, i. e. I'(X,C(sqv)) = 0. Then, by 4,
we have

I, (C(s4v)) = 0 and L™, (C(s54v)) = C(54V).
By 3.5.(ii) this leads to

I, (C(—pa)) =0 and LI, (C(—pa)) =C.

Therefore, by 5, C has no global sections, contradicting the preceding dis-
cussion. This in turn implies that I'(X, W(sqar)) = 0 and by 4. and 5, we
see that I'(X, W) = 0. We proved that any quasi-coherent Dy-submodule
W of I, (V) different from I, (V) satisfies I'(X, W(sqv)) = 0. Hence, by
3. we conclude that I (V) contains a largest quasi-coherent Dy-submodule
U and that I'(X,U) = 0. Moreover, (Is_ (V)/U)(sqv) is an irreducible Dy~
module such that I'(X, (Is,(V)/U)(sav)) = I'(X,V(v)). By 2. it follows that
(Is, (V)/U)(3qv) = V(v). This implies that I (V)/U = V(pa). It remains to
show the last statement. We concluded already that L=1I, (U(—pa)) = U
and all other derived intertwining functors vanish on U(—pa). By 5. we see
that I'(X,U) =0 if p > 0. 0

Corollary 8. Let A € b* and « € IT be such that —a"(A\) =p € Zy. Let V
be an irreducible Dy-module such that I'(X,V) # 0 and L='I,_ (V) = 0. Then
I'(X,V(pa)) # 0.

Proof. By 3.23,
I'X,I,,(vV)) = I'(X,V) # 0.

Hence, by the left exactness of I and 7, I'(X, V(pa)) # 0. O

Theorem 9. Let A € h* be antidominant and S subset of Il consisting of
roots orthogonal to A. Let V be an irreducible Dy-module. Then the following
conditions are equivalent:

(i) I'(X,V) =0,

(ii) there exists oo € S such that I (V) = 0.
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Proof. (ii)=(i) By 4, L™'I,_(V) = V. Hence, by 5, I'(X,V) = 0.

(i)=(ii) Let W(A) be the stabilizer of A in W. Then W () is generated
by reflections with respect to S. Let F' be a finite-dimensional representation
with regular lowest weight v, and put F = Ox ®c F. Then V ®p, F satisfies

I'X,YV®o, F)=1I'(X,V)®c F=0.

Moreover I'(X, (V ®oy F)ia+v)) = 0. On the other hand, if we consider the
filtration of F' discussed in C.2, it induces a filtration of (V ®o, F)ir4.] such
that the corresponding graded sheaf is a direct sum of V(u) for all weights
p of F such that w(A + v) = A+ p for some w € W. This implies that
wA — A = p — wvr, hence w € W,. Moreover, the left side of the equality
A —w A =w"ly — vis a negative of a sum of roots from ITy and the right
side is a sum of roots from II. This implies that wA = A, i. e. w € W(A).
Let wy € W(A) be such that V(w;v) is an Ox-submodule of (V ®oy F)r4u]s
then I'(X,V(w1v)) = 0. Assume now that L™1I, (V) = 0 for all a € S. We
claim that in this case I'(X, V(wv)) # 0 for any w € W()), contradicting our
assumption. We prove this by induction in the length of w in W () (which is
the same as the length in W) by ([LG], Ch IV, §1, no. 8, Cor. 4. of Prop. 7.)).
If w=1, A + v is antidominant and regular, and the statement follows from
C.4.4. Assume that £y (w) = k > 0. Let w = sqw’ with o € S and w’ € W(A)
such that £)(w’) = k—1. Then, by ([LG], Ch. VI, §1, no. 6, Cor. 1 of Prop. 17.),
it follows that w'™ ‘o € Ej. This implies, by the antidominance of v, that

aA+w'v)=a (w'v) = (w'_l

a)’(v) € —N,
and A + w'v is a-antidominant.
By the induction assumption we have I'(X, V(w'v)) # 0 and

L7, (V(w'v)) = LI, (V)(wr) =0

by 3.5.(ii). Therefore, the assertion follows from 8. 0

L.5 Intertwining Functors and Holonomic Complexes

The category of holonomic modules is a thick subcategory of the category
M ye(Dy). Therefore, we can consider the category D? (D)) which is the full
subcategory of D?(D,) consisting of complexes with holonomic cohomology.
Clearly, the geometric translation functor V — V(u), p € P(X), induces an
equivalence of the category D! ,(D,) with the category D% ;(Dxt,).

Every holonomic module is of finite length. This results in the following
consequence.

Lemma 1. Irreducible holonomic Dy-modules form a generating class in
DZOI(DA)'
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Proof. By a standard truncation argument ([BDM], 1.12.6), all holonomic
Dy-modules form a generating class in D? (Dy). On the other hand, for a
holonomic Dy-module V of length n, let ¢4 be one of its maximal coherent
submodules. Then we have the exact sequence

0 ULV VU0,

where V /U is irreducible and U of length n — 1. Let

pw) 22 D) — ¢; — DOV)[]

be the distinguished triangle attached to the morphism ¢. Then the cone C;
is isomorphic to D(V/U). Therefore, by induction in the length, we see that
the triangulated subcategory of D,bwl (D) generated by irreducible holonomic
Dy-modules contains all complexes of the form D(V) where V is a holonomic
Dy-module. By the first remark, it is equal to D} (D). 0

By its definition, for arbitrary w € W, the intertwining functor LI,, maps
D}l;,ol (D)\) nto D;)LOI (Dwk)'

Theorem 2. Let w € W and A € b*. Then LI, is an equivalence of the
category D% (Dy) with Db (D).

Proof . By the product formula (3.18), it is enough to show this statement
for simple reflections. Using geometric translation and 3.5 we can also assume
that A is antidominant and regular.

There are two possibilities in this case. Either

(a) a”(A) ¢ =N, or

(b) a7 (X) € —N.

In case (a), s4(A) is again regular antidominant. Therefore, by 3.22, I, is
an exact functor and I,,-1 is its inverse. This immediately implies our asser-
tion.

In case (b), p = —a’(A) € N. To prove the statement in this case it is
enough to show that the full subcategory A of D% _(Ds, ») consisting of objects
isomorphic to complexes LI, (C'), C* € D% (D,), is equal to D% _(Ds_»). To
show this, by 1, it is enough to show that A contains complexes D(V(pa)) for
all irreducible holonomic Dy-modules V.

By 4.6, for an irreducible holonomic Dy-module V, there are two possibil-
ities, either

(i) L', (V) = V(pa) and I,_ (V) =0, or

(ii) L, (V) = 0.

If (i) holds, we have LI (D(V)) = D(V(p«))[1]. Therefore

LI, (D(V)[-1]) = D(V(pw)),

and all complexes D(V(pa)), where V is an irreducible Dy-module of type
(i), are in A. This also implies that all complexes D(U(pa)), where U is a
holonomic Dy-module with all composition factors of type (i), are also in A.
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If (ii) holds, by 4.7. we have the short exact sequence
0—-U— I, (V) — V(pa) — 0.

We can choose v € P(X) such that A + v is antidominant and « is the only
root in IIy orthogonal to A + v. Then, by 3.5,

0= U(sqv) = I,,(V(r)) = V() =0

is exact. Moreover, 4.7 implies that I'(X,U(sqv)) = 0. Since A + v is an-
tidominant, I" is exact by C.3.2, and all composition factors of U(s,v) have
no global sections. By 4.9, this implies that all composition factors of U(s,v)
are of type (i). By 3.5, it follows that all composition factors of U are of type
(). From the first part of the proof we conclude that I is in 4. Consider now
the distinguished triangle associated to the morphism I (V) — V(pa),

LL,,(D(V)) = D(V(pa)) — € — LI, (DV))[1].

The cone C' is isomorphic to D(U)[—1] and, since LI (D(V)) and D(U)[—1]
are in A, we see that D(V(pa)) is in A either. By 1, we see that A
D;)LOl (Dsa)\)'

This result has the following consequences.

o

Theorem 3. Let A € h* and 8 = W - X. Let V be a holonomic Dy-module.
Then HP(X,V), p € Z, are Up-modules of finite length.

Proof. Let p € 0 be antidominant, and w € W such that A = wu. By 2, there
exists a complex C* with holonomic cohomology such that LI, (C) = D(V).
Since I' is exact functor from Mg.(D,) into M(Uy) we see that RI'(C") =
I'(C), and H?(RI'(C')) = I'(X, HP(C")) for arbitrary p € Z. By 4.1. we also
conclude that HP(RI'(C)), p € Z, are Up-modules of finite length. Therefore,
RI'(C') is a complex of Up-modules with cohomology modules of finite length.
Finally, by 3.23, we conclude that

HP(X,V) = HP(R['(D(V))) = HP(RI(LI,(C))) = H?(R['(C’)).0

Proposition 4. Let A € b* be reqular antidominant and § = W - X. Let V be
a finitely generated Ug-module. Then the following conditions are equivalent:
(i) Ax(V) is a holonomic Dy-module;
(i) LAuX(V') is a complex with holonomic cohomology for some w € W ;
(iii) Hy(ng, V), p € Zy, are finite-dimensional for all x € X ;
(iv) there exists w € W such that H,(ng, V)@ryp), P € Ly, are finite-
dimensional for all x € X.
Proof. First we remark that, by 1.19, LA, (V) € Db, (Dy») for any w € W.
The assertions (i) and (ii) are equivalent by 3.19. and 2. Also, (iii) implies

(iv).
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Assume that (ii) holds. For z € X, denote by i, the injection of x into X.
Then

is a complex with finite-dimensional cohomology. By 2.6, this implies (iv).
On the other hand, if (iv) holds, the same result implies that the complex
LT, (LA, (V)) has finite-dimensional cohomology for all x € X. Hence (ii)
follows from ([BDM], VII.10.7.(ii)). O

Corollary 5. Let 0 be a W-orbit in b* consisting of reqular elements. Let V
be a finitely generated Up-module. If Hy(n,, V), p € Z, are finite-dimensional
for all x € X, the module V' is of finite length.

Proof. Let A € 0 be antidominant. Then 4. implies that Ay (V') is holonomic,
and therefore of finite length. By equivalence of categories this implies that V'
is of finite length. O

L.6 Tensor Products with Finite-dimensional Modules

Let # be a Weyl group orbit in h* and A € 6. Let F be a finite-dimensional
representation of g and m = dim F. Let (u;;1 < i < m) be the family of
all weights of F' counted with their multiplicities. Since the weights of F' and
their multiplicities are invariant under the action of the Weyl group W, the
family S(0, F) = (v; = A+ pi;1 < i <m), A € 0, depends only on 0 and F.

Lemma 1. Let V € M(Uy), and F a finite-dimensional representation of g.

Then
[T €-x() ¢e2),

veS(6,F)

annihilates V ®@c F'.

Proof. Let A € 6 be antidominant. Put F = Ox ®¢ F and consider its filtra-
tion (F;;1 < i < m) from the beginning of C.2. Then, it induces a filtration
(Ax(V)®oy Fi; 1 <i<m)of Ax\(V)®p, F. The corresponding graded mod-
ule is the direct sum of Ay(V)(p;), 1 < i < m. It is evident that Ax(V')(u;)
is annihilated by ¢ — x,,(¢) for any ¢ € Z(g). This immediately implies that
A\(V) ®o, F is annihilated by [2,(¢ — xu,(€)) for any ¢ € Z(g). In par-
ticular, the module of its global sections is annihilated by these elements. On
the other hand,

I'X,A\(V)®o, F)=T'(X,A\(V)®c F) =V ®&c F

by 1.1. O
In particular, V ®c F' has a finite increasing filtration by U(g)-submodules
such that all composition factors are modules with infinitesimal character.
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Let My (U(g)) be the full subcategory of M(U(g)) consisting of U(g)-
modules of finite length. Let M..(U(g)) be the full subcategory of M, (U(g))
consisting of modules V'€ M ¢ (U(g)) such that V ®@c F € Mg (U(g)) for any
finite-dimensional g-module F'.

Remark 2. An example due to T. Stafford shows that there are irreducible
Up-modules V such that V ®¢ F is not artinian. Therefore, M..(U(g)) is
strictly smaller than M ¢ (U(g)).

Lemma 3. (i) The category M. .(U(g)) is a thick subcategory of the category
Mpu(U(g)).

(ii) If Ve M..(U(g)) and F is a finite-dimensional g-module, V ®@¢ F €
Mec(U(g))-

Proof. (i) follows immediately from the exactness of — ®¢ F.
(ii) is evident. 0

Lemma 4. Let A € h* be antidominant and @ =W - X. Let V€ M(Up). Then
the assertion:

(i) H? (X, Ax(V)(v)), p € Z4, are Ug-modules of finite length for any
weight v € P(X),
implies

(ii) V ®@c F is an g-module of finite length for any finite-dimensional g-
module F.

If, in addition X is regular, (i) and (ii) are equivalent.

Proof. We use the notation from the proof of 1. From the spectral sequence of
a filtered object ([EGA], IT1.13.6) we see that there exists a spectral sequence
with E¢-term equal to

HP™9(X, Grg(Ax(V) ®ox F)) = HP7U(X, Ax(V)(vg))
which abutts to
HP (X, A\(V)®o, F) = HP(X,A\(V)) &c F

and which is equal to V ®¢ F for p = 0 and 0 otherwise. Since the Ei-term
consists of g-modules of finite length and all differentials are morphisms of
g-modules, we conclude that V ®c¢ F' is of finite length.
Assume now that A is regular and that that (ii) holds for V'€ M(Uy).
Let p is a dominant weight and F' the irreducible finite-dimensional module
with lowest weight —u. Then, by C.2.2 and 1.1, we see that

F(X, A)\(V)(_/j’)) = F(X, A)\(V) Qox :F)[)\—u]
= (I'(X, Ax(V)) ®c F)pr—p) = (V &c F)a—p)-

By 2, V! = (V ®&c F)ja—p also has the property (i) and Ax_, (V') =
AX(V)(=n)-



L.6 Tensor Products with Finite-dimensional Modules 77

Since an arbitrary weight v can be written as a difference of two dominant
weights p/ and p, we have

A(V)(v) = AN(V) (' = 1) = Ax—p (V) ().

Therefore, it is enough to prove (i) for dominant weights v.
We complete the proof by induction in p. Assume first that p = 0. Let
F be the irreducible finite-dimensional g-module with the highest weight v.
Then
HP (X, AN(V) @0y F) = HP(X, A\(V)) @c F

for all p, 0 <14 < dim X; therefore it vanishes for p > 0. On the other hand,
we have an injection of F; = O(v) into F. It follows that, by tensoring with
Ax(V), we get the exact sequence of U°-modules

0 — A\(V)(v) — Ax(V) ®o,y F — K — 0.

Applying I' to this exact sequence we see that I'(X,Ax(V)(v)) is a g-
submodule of the tensor product I'(X, Ay(V)) ®c F = V ®c F, which is
of finite length by our assumption. This proves our assertion for p = 0.
Assume now that p > 1. Then the long exact sequence of cohomology
implies that H? (X, A\(V)(v)) is a quotient of H*~1(X, K). On the other hand,
from the definition of the filtration of F, it follows that K has a natural U°-
module filtration such that the corresponding graded module Gr K is equal to
DAN(V) (1), where the sum is taken over all weights p of F' different from v. By
the induction assumption, H*~1(X, A\(V)(p)) are g-modules of finite length.
An induction in the length of the filtration of K implies that H*~1(X,K) is a
g-module of finite length. O

Proposition 5. Let A\ € h* be antidominant and 0 =W - \. Let V€ M(Up)
and F a finite-dimensional representation of g. If Ax(V) is a holonomic Dy -
module, V ®c F 1s a module of finite length.

Proof. This follows from 5.3. and 4. O
Therefore, M..(U(g)) contains all Uy-modules with holonomic localiza-
tions.

Remark. Is there an irreducible Up-module V' in M..(U(g)) such that its lo-
calization is not holonomic? Let K (Mg (U(g))) be the Grothendieck group
of My (U(g)). Denote by ch the natural character map from M (U(g)) into
K(Mp((a)))

Denote by M..(Uy) the full subcategory of M(Uy) consisting of objects
which are also in M..(U(g)).

Theorem 6. Let A\ € b* be regqular antidominant and V an wrreducible
module in M..(Uyp). Then there exists a unique function @ from P(X) into
KMz (U(g))) such that

(1) (0) = ch(V);
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(ii) ®(v) is a difference of g-modules with the infinitesimal character x x4, ;
(ii) for any finite-dimensional g-module F

h(V ®c F) = qu

where the sum is taken over the set of all weights v of F' counted with their
multiplicities.
The function @ is given by the following formula

D(u) = Y (=1)? ch(HP (X, A\(V)(n)))

PEZLy

for p e P(X).
Proof. First show that the function

O(u) = Y (~1)" ch(HP (X, A\ (V) (1))

PEZ4

has the required properties. The first two properties are evident from the
definition. As in 4, from the spectral sequence of a filtered object, we get a
spectral sequence with Fi-term equal to

HP4(X, Grg(Ax(V) ®oy F)) = HPU(X, Ax(V)(vg))
which abutts to
HP(X, A\(V) ®ox F) = HP (X, Ax\(V)) ®c F

and which is equal to V ®¢ F' for p = 0 and 0 otherwise. The Euler charac-
teristic of the total complex attached to the E{-term is

> (1)PFch(HPTI(X, AN(V) (1))

= ) (1P ch(HP (X, AN (V) (vg)))

D,qEZ

= " (-1)" ch(H* (X, Ax(V) (v))

SEZ

where the sum is taken over all weights v of F' counted with their multiplicities.
By the Fuler principle, this is equal to the Euler characteristics of the total
complex of E, i. e. to ch(V ®¢ F). This proves the third property.

It remains to show the uniqueness. First, the map F —— ch(V ®¢ F)
extends to the Grothendieck group of the category of finite-dimensional g-
modules. Moreover, the notions of weights and their multiplicities transfer
directly to this setting. By ([LG], Ch. VI, §3, no. 4, Prop. 3), for any dominant
weight p there exists an object in the Grothendieck group of the category of
finite-dimensional g-modules with the set of weights equal to {wu|w € W}
and each weight has multiplicity one. Therefore, > ®(wp) is uniquely
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determined by the third property. On the other hand, x4+, = XA+wy implies
w' (A+wp) = A+ p for some w’ € W. This implies that w'A— A = p—w'wp €
P(X). Therefore, w’ € W). Since A is antidominant, w'A — A is a sum of roots
from E;\r. On the other hand p is a dominant weight and g —w’wp is negative
of a sum of roots from X *. This implies that w'A = X\ and w’ = 1 since X is
regular. But this immediately leads to w’y = p. Hence, by (ii), all summands
in ), cw @(wp) correspond to different infinitesimal characters. This implies
that they are uniquely determined. O
The map @ is usually called the coherent family attached to V.

L.7 Intertwining Functors for Simple Reflections

In this section we study more carefully the action of intertwining functors I_,
«a € II, on irreducible Dy-modules. If o”()\) is not integral, by 3.22, I,_ is
an equivalence of the category My.(Dy) with My.(Ds,_»). A more interesting
case which we want to analyze is when a”(A) is an integer. We start with a
simple geometric preliminary result.

Lemma 1. The varieties Z,,, w € W, are affinely imbedded in X x X.

Proof. The variety X x X is the flag variety of gx g. By 3.1.(ii), Z,,, w € W, are
the Int(g)-orbits in X x X under the diagonal action, hence they are affinely
imbedded by H.1.1. O

Let o € II. Denote by X, the variety of parabolic subalgebras of type
a, and by p, the natural projection of X onto X,. Let Y, = X xx_ X be
the fibered product of X with X relative to the morphism p,. Denote by ¢
and go the corresponding projections of Y, onto the first and second factor
respectively. Then the following diagram

Y, —2 ¢ X

qlJ{ paJ{
X P x,

is commutative. Moreover, there is a natural imbedding of Y, into X x X. It
identifies Y, with the closed subvariety of X x X which is the union of 73
and Z,_. Under this identification, Z; is a closed subvariety of Y, and Z;_ is
a dense open subvariety of Y,. In addition, Z;_ is affinely imbedded into Y,
by 1.

Fix a base point y € X,, and denote by P, , the stabilizer of y in G. As
we have discussed in (...) the G-homogeneous twisted sheaves of differential
operators on X, are parametrized by P, ,-invariant linear forms on the Lie
algebra q,,, of P, . Since P, , is connected, a linear form p € pg,y is Py y-
invariant if and only if it is p ,-invariant. Therefore y is P, ,-invariant if and
only if it vanishes on the commutator subalgebra [pq 4, Pa,y] Of Pa y. Let b be a
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Borel subalgebra of g contained in p, ,,. Then [pq y, Pa,y] contains the nilpotent
radical n of b and we have a canonical map from b into pa.y/[Pa,y, Payl-
This map is surjective and its kernel is spanned by the dual root o of a.
Therefore, G-homogeneous twisted sheaves of differential operators on X, are
parametrized by linear forms p € bh* satisfying o”(p) = 0. In addition, for
any p € h* satisfying (i) = 0, the twisted sheaf of differential operators
(Dx, u)P~ is a G-homogeneous twisted sheaf of differential operators on X
and

(Dx..u)’* =Dxp=Dy—p-

For any A € h*, (D)% and (D)% are twisted sheaves of differential operators
on Y,. Since p, © q1 = py © g2, We see that

(Du—p)ql = (Du—p)q2

for any p € b* such that a”(u) = 0. Let A € b* be such that p = —a”(\) is an
integer. Then we can put g = A+ pp. In this case, a” () = a”(A) +pa™(p) = 0,
and p satisfies our condition. Therefore, by (...), we get the following result:

(D))" = ((Du_p)o((—pﬂ)p))ql = ((DA_p)ql)qI(O((—pH)p))
and analogously, since g = so A + psap,
(Dy)® = ((Du_p)o((—erl)saera))ql — ((D/\_p)ql)QI(O((—erl)saera))
Let £ be the invertible Oy, -module on Y, given by

L =g (O((=p+ D)sap+a)) ®o,, a3(O((—p+1)p)) .

Then, by the preceding calculation, we have the following result.

Lemma 2. Let A € h* be such that p = —a”(A) is an integer. Then

(Dsa)® = ((Dr)™)~.

In particular, we have well-defined functors U’
YV — Riqii (¢ (V) ®o,, L)

from My.(Dy) into Mye(Ds, »). Since the fibers of ¢; are one-dimensional,
Ul =0 for j # —1,0,1. Now we want to analyze the connection between
the functors U7 and the intertwining functor I,_ . Denote by 4; the natural
inclusion of Z; into Y, and by i, the natural inclusion of Z;_ into Y,. Since
71 is a closed immersion and %, is an open affine immersion, we have the
distinguished triangle

Iz g W) =W =W |Zs,,) = L1z, (W)[1]

in D°((D,_»)") for any W' € D?((D,,»)%). This leads to the distinguished
triangle
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Rq1+ (T2, (V) = Rq1+WV') = Rq14 (iax(W'|Zs,,)) = Rai4 (T2, (W)[1])
in D®(D;_ ). Moreover, q; o i, = p1, hence
Rq14(taxW'|Zs,)) = Rp1:(W'|Z,,).

Assume now that W = D(g5 (V) ®o,. L) for some V € Mgy(Dy). Then, by
3.3.(1),

L|Zs, = pi(O((—p+1)sap+a)®0,. p5(O((—p+1)p))~*

pi(O(@) = T,
It follows that, in this case, W'|Z,, = D(p5 (V) ®0y,. Ts.). and we conclude
that

Ry (iax (W' Zs,)) = L5, (D(V)).

By ([BDM], 7.12) we know that RI7z,1(W’) = Riy4(Lif (W)[—1]), hence
Rq1+(RITz, )W) = R(av 0 i)+ (Lif (W)[-1)).

Here ¢y o ¢1 is the natural isomorphism of the diagonal Z; in X x X with
X induced by the projection onto the first factor. If we assume again that
W = D(g5 (V) ®o,., L), we see that

Lif (D(g5 (V) ®oy,, L)) = L(g2 1) " (D(V)) ®0,, i1(L)-

Here ¢2 o i1 is again the natural isomorphism of the diagonal Z; in X x X
with X induced by the projection onto the second factor. If we use this map
to identify Z; with X, we see that i} (£) = O(pa) and

Rq11(RIz,)(D(g5 (V) ®oy, L)) = D(V(par)[-1)).

By applying the long exact sequence of cohomology to the above distinguished
triangle this finally leads to the following result.

Theorem 3. Let A € h* be such that p = —a”(\) is an integer, and V €
Mye(Dy). Then

(i) U=H(V) = L7, (V);

(ii) we have an exact sequence of Dy, x-modules

0— U(V) — I, (V) — V(pa) — UH(V) — 0.

We can say more if V is irreducible.

Theorem 4. Let A € h* be such that p = —a”(\) is an integer, and V €
Mge(Dy) an irreducible Dy-module. Then either

(i) UX(V) = UY(V) = V(pa) and U°(V) = 0, and in this case I, (V) =0
and LI (V) = V(pa);
or

(ii) U=1(V) = U (V) =0,
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and in this case L™ I, (V) = 0 and the sequence

0— UV) — I, (V) — V(pa) — 0

is exact. The module U°(V) is the largest quasi-coherent Ds_ x-submodule of
I, (V) different from I (V).

From 4. and 4.7. we immediately see that U°(V) in (ii) can be characterized
as the largest quasi-coherent Dg_x-submodule of I, (V).

To prove the remaining assertions, we first we remark that if U=1(V) # 0,
L7, (V) # 0 by 3. Hence, by 4.6, I, (V) = 0 and L™, (V) = V(pa). By
applying 3. again, we conclude that U°(V) = 0 and U~1(V) = V(pa).

Assume that U~1(V) = 0. Then, by 3, L71I,_(V) = 0. Hence, by 4.6, we
see that I, (V) # 0. It remains to show that U(V) = 0.

Assume that U1 (V) # 0. Then, by 3, U'(V) = V(pa). We shall show that
this leads to I5_ (V) = 0, what is a contradiction. This argument will also give
us some insight in the structure of irreducible Dy-modules with U (V) # 0.

We start with a preliminary result. Let p € h* be a linear form such that
o (p) = 0. Let U be a Dx, ,-module on X,. Then pt(U) is a D,,_,-module
on X.

Lemma 5. Let V = pt (U) for some U € My.(Dx, ). Then I, (V) =0 and
L7, (V) = V().

Proof. As in the discussion preceding the proof of 3.9, the proof reduces to
the corresponding statement for g = s[(2,C). In this case, V is a direct sum
of copies of Ox and our claim follows from 3.24. O

This result implies that if W is a translate of a module of the form p} (i),
we have I;_ (W) = 0. On the other hand, by applying the base change (...) to
the diagram

Y, — 2+ X

qll paJ/
X P o x,

we see immediately that U'()) is a translate of such a module. Therefore, V
has also this property, and we conclude that I5_ () = 0. This ends the proof
of 5.4.

In addition, we proved the following result.

Proposition 6. Let A € b* be such that p = —a”()\) is an integer, and
YV € My.(Dy) an irreducible Dy-module. Then the following conditions are
equivalent:

(Z) I, (V) =0;

(ii) V is a translate of a module of the form pZ (U).
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This result, combined with 4.9. implies the following simple criterion for
vanishing of global sections of irreducible Dy-modules.

Theorem 7. Let A € h* be antidominant. Let S be the subset of IT consisting
of all roots orthogonal to \. Assume that S is contained in II. Let V be an
wrreducible Dy-module. Then the following conditions are equivalent:

(i) I'(X,V)=0;

(ii) there exists « € S such that V is a translate of a module of the form
ps (U).

L.8 Supports and n-homology

In this section we prove some results on n-homology which follow from analysis
of the action of intertwining functors.

We start with some geometric preliminaries. Let S be a subset of the flag
variety X. For w € W put

E,(S) ={x € X | b, is in relative position v
with respect to b, for some v <w,y € S}.

Lemma 1. (i) If S is a subset of X and w € W,
dim S < dim E,,(S) < dim S + £(w).
(i) If S is a subset of X and w € W,
Ew(S) = Ey(S).

(iii) If S is a closed subset of X and w € W, E(S) is the closure of the
set

{z € X | by is in the relative position w with respect to some b, y € S}.

(iv) If S is irreducible, F,(S) is also irreducible.
(v) Let w,v € W be such that £(wv) = £(w) + £(v). Then

Ewo(S) = Ey(E,(S)).

Proof. Let a € II. Denote by X, the variety of all parabolic subalgebras of
type a and by p, : X — X, the natural projection. Then we have
E, (S) ={x € X |b, is in relative position v
with respect to b, for some v < s,y € S}
= SU{z € X|b, is in relative position s,

with respect to b, for some y € S} = p, ' (pa(S))-
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Clearly, since p, : X — X, is a locally trivial fibration with fibre isomorphic
to P, F,_(S) is closed (resp. irreducible) if S is closed (resp. irreducible).
Moreover, we see that

dim S < dim E,_(S) < dim S + 1.

Therefore, E,_(S) is closed. Hence, E,_ (S) C E, (S). On the other hand,
since S C E,_(S) it follows that S C F,_(S). If z € E,_(S), the whole fiber
P51 (pa()) is contained in E,_(S). This implies E,_(S) C E;_(S). This proves
(ii) for simple reflections.

Now we prove (v) by induction in the length of w € W. First we claim
that the formula holds if w = s,, a € II. In this case, F,_(FE,(S)) consists
of all points z € X such that either = € E,(S) or there exists y € E,(S)
such that b, is in relative position s, with respect to b,. Hence, it consists of
all z € X such that there exists y € S and b, is in relative position u with
respect to b, for either u < v or u = sou’ with v/ < v. In the second case, we
have either £(u) = £(u') + 1 and u < sqv or £(u) = 4(uv') — 1 and u < u' < v.
Hence, E;_(E,(S)) C Es_,(S). Conversely, if u < s,v, we have either u < v
or squ < v, hence F,_(F,(S)) = Es_(5).

Assume now that w is arbitrary. Then we can find o € IT and w’ € W
such that £(w) = £(w') 4+ 1. Therefore, by the induction assumption,

Ew(Ev(S)) = Es w (EU(S)) = Es, (Ew’(Ev(S))) = E;, (Ew’v(s))’

which completes the proof of (v).

Now, for arbitrary w € W, « € I, and w’ € W such that £(w) = £(w’)+1,
we have F,(S) = Fs_ (FE,(S)). Using the first part of the proof and an
induction in ¢(w), (i), (ii) and (iv) follow immediately. In addition, we see
that Fy,(S) is closed, if S is closed.

(i) Let

V = {z € X | b, is in relative position w with respect to some b,, y € S}.

Then V C E,(S). Since E,(S) is closed, V C E,(S). Let y € S. Then the
closure of the set of all x € X such that b, is in relative position w with
respect to by, is equal to F,,({z}). This implies

Vo | Euw({z}) = Eu(S).D
€S
We say that w € W is transversal to S C X if
dim E,,(S) = dim S + £(w).

If w is transversal to S, (w) < codim S.

Lemma 2. (i) w € W is transversal to S if and only if it is transversal to S.
(ii) Let S be a subset of X and w,v € W be such that £(wv) = £(w)+L(v).
Then the following statements are equivalent:
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(a) wv is transversal to S;
(b) v is transversal to S and w is transversal to E,(S).

Proof. (i) By 1.(ii) we have

dim Ey,(S) = dim Ey,(S) = dim E,,(3),

and the assertion follows from the definition of transversality.
(ii) By 1.(i)

dim F,,(S) < dim S + £(wv) = dim S + £(w) + £(v),

and the equality holds if and only if wv is transversal to S. On the other hand,
by 1.(v),

dim E,,,(S) = dim E,,(E,(5)) < dim E,(S) + £(w) < dim S + £(v) + £(w).
Hence, if (a) holds, the last relation is an equality, i.e.,
dim E,(E,(S)) = dim E,(S) + £(w)

and
dim F, (S) = dim S + £(v).

Hence, (b) holds.
Conversely, if (b) holds, we see immediately that wwv is transversal to S.
O

Lemma 3. Let S be an irreducible closed subvariety of X and w € W. Then
there exists v < w such that v is transversal to S and E,(S) = E,(S).

Proof. First we consider the case of w = s,, a € II. In this case F_(S) =
5 (pa(S)) is irreducible and closed, and we have two possibilities:

a) Sq is transversal to S and dim E_(S) = dim S + 1, or

b) s, is not transversal to S, dim F_(S) = dim S and since S C E;_(5),
we have Fs_(S) = S.

Now we prove the general statement by induction in ¢(w). If £(w) = 0,
w =1 and E1(S) = S, hence the assertion is obvious. Assume that £(w) = k.
Then there exists w’ € W and « € IT such that w = sqw’ and £(w) = £(w')+1.
In this case, E,,(S) = Fs, (E,(S)) by 1.(v). By the induction assumption,
there exists v’ € W, v/ < w’ which is transversal to S and such that F,(S) =
Ey (S).

Now, by the first part of the proof, if s, is not transversal to E,(S) we
have

Ew(S) = Es, (Ew’(S)) = Ew'(S) = Ev’(S)'

Since v' < w’ < w the assertion follows. If s, is transversal to F,(S), we
have

dim F,,(S) = dim E;_ (E,(S)) = dim E,/(S) + 1 = dim S + £(v") + 1.
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Put v = s,v’. If we have £(v) = £(v') — 1,

Ey(S) = Es, (Ey(S)) = p;l(pa(Ev(S)))
by 1.(v) and

By, (B (S)) = pa’ (Pa(Pa ' (pa(Eu(9))))) = Eu(S),

contrary to transversality of s,. Therefore, Z(v) =/L(v")+1,v <wand E,(S) =
E; (E,(S)). We conclude that E,(S) = E,(S5),

dim E,(S) = dim E,(S) = dim S + £(v') + 1 = dim S + £(v)

and v is transversal to S. O

Fix A € b*. Let Mon(Dy) be the category of coherent Dy-modules. The
support supp V of a coherent Dy-module V is a closed subvariety of X (...).
We want to analyze how the action of intertwining functors changes supports
of coherent D-modules.

First we remark the following simple fact which is a direct consequence
of the definition of the intertwining functors and 1.(iii). If V" is a complex in
D®(Dy), we define the support of V' as

suppV = U supp H?(V").
PEZ

Clearly, by the above remark, the support of V' € Dcoh (Dy) is a closed sub-
variety of X.

Lemma 4. For any V € Db , (D)) and w € W, we have

supp L1, (V') C E,(supp V").

Proof. First we establish this result for simple reflections. If a € I1,
LI, (V) = Bp1+(Ts, ®0,, p3 (V)
and we have the spectral sequence
Rp11(Ts, ®o,, H'(ps (V)= H (LI, (V)),

hence the support of LI (V') is contained in the closure of the image of the
support of p3 (V). The support of pJ (V") is contained in the closed subset

{(z,2") € Zs |2 €suppV'} = {(z,2') € X x X |

b, is in relative position s, with respect to by, z’ € supp V'}
of Zs,_. The projection of this set under p; is equal to

{z € X | b, is in relative position s, with respect to by, 2’ € supp V'}
C FEs_ (supp V).
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Hence,
supp LI (V') C Es_(supp V).

Now we prove the general statement by induction in £(w). Assume that
w=w'sy, w €W, a€ Il and ¢(w) = ¢(w’') + 1. Then LI, = LI, o LI by
3.18. Hence, by the induction assumption and 1.(v),

supp LI,,(V") = supp LI, (LI, (V")) C Ey (supp LI, (V"))
C By (Fs, (supp V")) = Ey(supp V').0

The next result is more subtle.

Lemma 5. Let V € M o, (Dy) and o € II. Then
(i)

dimsupp L™ *I,_ (V) < dimsupp V;

(ii) if sq is transversal to supp V,

dimsupp I;,, (V) = dimsupp V + 1.

Proof. Let S = supp V. Then either
(a) sq is transversal to S, or

(b) sq is not transversal to S.
Consider first the case (b). Then, dim S = dim E;_(.S). Therefore, by 4,

dimsupp LPI,_(V) < dim S

for p € Z. In particular, (i) holds in this case.
It remains to study the case (a). We start with some geometric prelimi-
naries. Let S; , 1 < ¢ < n, be the irreducible components of S. Then

E, (S)=E,, (Lnj Si) =JE..(S)).

Since Fs_(S;) are closed and irreducible by 1.(iv), the maximal elements of
the family (Fs_(S;);1 < i < n) are the irreducible components of E;_(S).
Hence,
dim F,_(S) = max dim E,_(S;),
1<i<n

and there are irreducible components S; of S satisfying dim E;_(S;) =
dim F_(S). By relabeling the indices, we can assume that this holds for
1 < i < m. Since s, is transversal to S, we have dim F,_(S) = dim S + 1.
Therefore, dim F;_(S;) = dimS + 1 for 1 < ¢ < m. On the other hand,
dim F_ (S;) < dim S; + 1, implies that dim S; = dim S for 1 < i < m. Hence
S;y 1 < 4 < m, are irreducible components of S of dimension dim S. Since
Es (Si) = p3(pa(Si)) and py : X — X, is a locally trivial fibration with
fibers isomorphic to P!, we see that
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dim po (S;) = dim p; ' (pa(S;)) — 1 = dim S; = dim S

for 1 < ¢ < m. On the other hand, if m < i < n, dim F;_(S;) < dim S,
hence either dim S; < dim S or s, is not transversal to S;. In both cases,
dimp,(S;) < dim S. Hence, if we denote by Sy the union of the singular locus
of S and J,, i<, Si, we see that dimp,(So) < dimS and dim E,_(Sy) <
dim S. Let X’ = X — Sy. Then SN X’ is a smooth closed subvariety of X’
and its irreducible components are S; = S; N X', 1 < i < m. Therefore, S/,
1 <4 < 'm, are mutually disjoint smooth subvarieties of dimension dim S, and
Sq 18 transversal to all of them.

If we consider the restrictions po|S; : S; — pa(S]), 1 < i < m, there
exist open dense sets U; in p,(S;) such that the fibres p;'(u)N S are finite for
u € U =J~, U ([Mumford], Ch. I, §8, Theorem 3.). The set p;!(U) is open
in F_(S) of dimension dim S + 1. Since S and E;_(Sp) are closed subspaces
of E_(S) of codimension 1, the set

V=p,'(U) — (SUE;,(S0))

is open in E;_(S) of dimension dim S + 1 and its complement is a subvariety
of dimension dim S.

Let z € V. Consider the projections p; : Z;, — X, ¢ = 1,2, induced by
projections of X x X to the first and second factor. Then

pi (@) N3 (8) = {(w,2") € X x X |pa(2) = pa(a’), 2’ € S}
={(z,2") |2’ € p3*(2) N S}

is a nonempty finite set, and p» induces a bijection of this set onto p; ()N S.
Now we turn to the analysis of geometric fibres of LI . For any x € X
we denote by i, the natural injection {x} — X. Then we have

LT, (U) = Lif (U) = Ri,, (U )[dim X]
for any U° € D°(D,). Therefore, for any x € X, we have

LTy (LI, (D(V))) = Riy(LI,, (D(V)))[dim X]
= Riy(Rp1+(Ts, ®0,,, p3 (D(V))))ldim X].

Let Z, = p7 '(z) C Z,,_ be the fibre of p; over z. Denote by j, the immersion
of Z, into Z,_. Then, by base change ([BDM], VI.8.4), we have

LT,(LI,, (D(V))) = Riy(Rp14(Ts, ®o,, p3(D(V))))[dimX]
= R(p10ja)+ (Rjy(Ts, ®0,, pF(D(V))))[dim X]

= R(p1 0 j2)+ (5 (Ts.) ®05, Riz(pa(D(V))[-1)))[dim X]
= R(p1 0 jo)+(55(Ts.) ®0,, R(p20js) (D(V))[dim X — 1].

The projection ps o j, of Z, onto its image F = (po(z) — {z}) C X is an
ismorphism. Denote by ¢q; : FF — X and g5 : FF — X the compositions of p;
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and ps with the inverse of this isomorphism. Then ¢ is the natural inclusion
of F into X. Since T, = pi(O(a)) = p5(O(—a)) by 3.3.(i), we finally see that

LTy (LI, (D(V))) = Ra1+(a5(O(~a)) ®o, Rax(D(V)))[dim X — 1].

Assume now that z € V. Then F' C X’. On the other hand, S’ = SNX' is
a smooth closed subvariety of X'. Let j be the natural immersion of S’ into X.
Then, by Kashiwara’s equivalence of categories ([BDM], VI.7.11), we have
VIX' = j, (R%'(V))|X’. Hence,

Ray(D(V)) = Rgy(D(j+ (R%]'(V)))) = Ray(j+(R5 (D(V)))).

Let k and h be the natural immersions of F NS into F' and S’ respectively.
Then, applying again the base change, we have

Ray(D(V)) = Rgy(j+(Rj (D(V)))) = Rk+ (BRI (Rj'(D(V))))
= Rk1(R(j o h)'(D(V))) = Rk+(R(g2 0 k)'(D(V))).

Since the set F'N S is finite, if we denote by k, the natural immersion of {y}
into F', we have

Ray(D(V)) = Rk+(R(g2 0 k)'(D(V)))
= D k(R (DV) = @ kys(LT,(DV)))[- dim X].

yeFNS yeFNS
This implies that
LT, (L1, (D(V))) = D LT,(D(V))[-1]
ye(pa ' (¢)—{=z})NS

as a complex of vector spaces.
By ([BDM], VIL.9.3), by shrinking U even more, we can assume that j'())
is a locally free O-module on S N p;(U). This implies that LPT,(5'(V)) = 0,
for p#£0 and y € SNp, 1 (U); and
By =Ty,(5:(V)) # 0

for y € SN p,t(U). Therefore, if we denote by [, the inclusion of {y} into S,
we get

LT,(D(V)) = Ri,,(D(V))[dim X] = Rl (Rj'(D(V)))[dim X]
= LT,(D(j(V)))[dim X — dim S] = D(E,)[dim X — dim S|
for all y € SN p; (V). Hence,
LT, (LI, (D(V))) = b D(E,)[dim X — dim S — 1]
ye(pa ' (2)—{z})Ns

for z € V, and = € supp LI, (D(V)). Therefore, supp LI,,(D(V)) contains
the closure V' of V' and dimsupp LI,_(D(V)) > dim S + 1. By 4, we have
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dimsupp LI, (D(V)) = dim S + 1.
Since

dimsup LI (D(V)) = max dimsupp LPI;_(V)
pE

= max (dim supp I, (V), dimsupp L™ 1, (V)) ,

to complete the proof we have to show that dimsupp L™1I,_ (V) < dim S. Let
X" be the complement of the union of the singular locus of E;_(S) and its irre-
ducible components of dimension < dim S. Then T' = F,_(S)N X" is a closed
smooth subvariety of X’ and all its irreducible components are of dimension
dimS + 1. Let v : T — X be the natural inclusion. By Kashiwara’s theo-
rem, LPI, (V)|X" = v, (Cp)| X", for coherent D-modules C, = v'(LPI,, (V))
on T'. By shrinking X" if necessary, we can assume that C, are locally free
O-modules ([BDM], VII.9.3). If we denote by h, the inclusion of {z} into T,
using again base change, we see that

LT,(D(LI,,,(V))) = LTy (D(v4(Cp))) = Rig(v4(D(Cp)))[dim X]
= Rh.(D(C,))[dim X] = LT, (D(C,))[dim X — dim S — 1]
= D(T,(Cp))[dim X — dim S — 1]

for x € T and p € Z. Hence,
LT, (LPI,,(V)) =0
for ¢ #dim S —dim X + 1 and
LAmS=dmXHT (1P (V) = T4 (Cp).

By this calculation, the spectral sequence

LTy (LI, (V)) = H"T(LTo (L1, (D(V)))),
converges at Fsy-stage and

FAm SAm X (LT, (L, (D(V))) = Tx(Cp)
for x € T'. Hence,
LT,(LI, (D(V))) = D(T(C_1))[dim X —dim S]®D(T,(Cy))[dim X —dim S—1]

forz € T.

Since the set of all irreducible components of E;_(.S) is equal to the set
(Es, (Si);1 <i<m), we see that T NV is dense in T. Comparing the pre-
ceding calculations, we see that T,(C_1) = 0 for x € T N V. Since C, are
locally free, we conclude that C_; = 0. Hence, supp LI, (V) C X — X" and
dimsupp L™, (V) < dim S. This completes the proof of (i) in this case, and
implies that (ii) must hold. 0

Proposition 6. Let V € M o, (D)) and w € W. Then
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dim supp L* I, (V) < dimsupp V + £(w) + p,
forpeZ.

Proof. We prove this result by induction in ¢(w). If w is a simple reflection,
this follows from 1.(i), 4. and 5.(i). Let w = sqw’ with o € IT and w' € W
with £(w) = £(w') + 1. Then, by the induction assumption,
dimsupp LPI,, (L, _(V)) < dimsupp LI, (V) + L(w') +p
< dimsuppV +£(w') + 1+ p+ q = dimsupp V + £(w) + p + q,

for p,q € Z. From the spectral sequence attached to 3.18. we conclude that
dim supp L°I,, (V) < dimsupp V + £(w) + s,

for any s € Z. O

Lemma 7. Let V € Mo, (Dy) and w € W transversal to supp V. Assume
that the support S of V s irreducible. Then

supp I, (V) = Ew(S)

Proof. We prove this result by induction in 4(w). If £(w) = 1, w = s, for
some « € II. By 4, supp I, (V) C F,_(S). Also, by 1, both sets are closed
and F_(S) is irreducible. Since dim supp I,,(V) = dim S+ 1 = dim F;_(S) by
transversality and 5.(ii), the statement follows.

Let w € W with ¢(w) =k > 1. Then w = sqw’ with « € IT and 4(w") =
k — 1. Since w is transversal to S, w’ is transversal to S and s, is transversal
to Ey (S) by 2. By the induction assumption, supp I,/ (V) = E,(S). Hence,
by 3.8 and 1.(iv), we have

supp Iy (V) = supp I, (L (V) = Es,, (Ew (5)) = Ew(S).0
To any coherent Dy-module we attach two subsets of the Weyl group W':
S(V) = {w e W|supply(V) = X}
and

E(V) = the set of minimal elements in S(V).

Proposition 8. Suppose V € Mon(Dx) has irreducible support. Then
(i) the set S(V) is nonempty;
(ii)
E(V) ={w € W |w is transversal to supp V' and ¢(w) = codimsupp V},

i. e., E(V) consists of all w € W transversal to supp)V with the maximal
possible length.
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Proof. Assume that w € W is transversal to supp V and £(w) = codimsupp V.
Then, by 7, we conclude that w € S(V). If v < w, £(v) < codimsupp V, and
dimsupp I,(V) < dim X by 4. Hence, v ¢ S(V), i. e. w € E(V).

Conversely, assume that w € £(V). Then, by 4, we have F,,(suppV) = X.
Since the support of V is irreducible, by 3. we can find v < w such that v is
transversal to supp V and E,(supp V) = X. By 7. this implies v € S(V). Since
w is a minimal element in S()) we must have w = v, and w is transversal to
supp V. This proves (ii).

To show (i) it is enough to show that £()) is nonempty. Clearly, if wy is
the longest element in W, E,, (S) = X. By 3, there exists w transversal to S
such that F,,(S) = X, hence the assertion follows from (ii). 0

To formulate the main result of this section we need another notion. Let
V be a finitely generated Uy-module. We say that A € 0 is an exponent of V
if the set

{l' e X | Hﬂ(nw, V)(A—}-p) 7A 0}

contains an open dense subset of X.

We say that A € b* is strongly antidominant if Rea’(A) < 0 for any
a € X+, Clearly, a strongly antidominant A is antidominant.

We also define a partial ordering on b* by: A 5 p if 4 — A is a linear
combination of simple roots in IT with coefficients with non-negative real
parts. This order relation is related to the ordering on the Weyl group W by
the following observation.

Lemma 9. Let A € b* be strongly antidominant. Then for any v,w € W,
v < w implies vA <X wA.

Proof. Clearly, it is enough to show that for any w € W and « € II such that
L(sqw) = L(w) + 1, we have wA X sqwA. But sqwA = wA — a”(w\)a, hence

SaWA —wh = (w™la) (N)a,

and it is enough to prove that Re(w™ta)”(A) > 0. Since w™ e is in ¥ ([LG],
Ch. VI, §1, no. 6, Cor. 2 of Prop. 17), this follows immediately from strong
antidominance of . a

Theorem 10. Let A € h* be strongly antidominant. Let V € Mon(Dy) be
such that S = suppV is irreducible. Put V = ['(X,V).

(i) If w is an exponent of V, there exists w € W transversal to S with
l(w) = codim S such that w\ 5 w.

(ii) Assume that V is irreducible and V # 0. If w € W is transversal to S
and £(w) = codim S, then wA is an exponent of V.

Proof. (i) Let p be a regular dominant weight and F' the irreducible finite-
dimensional g-module with highest weight p. Let F = Ox ®c F. Then A —
is regular and strongly antidominant. Let U = I'(X,V(—u)). Then, by C.2.1,

V= (V(=) ®ox Fly-
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This implies

V=X, V)=TX,(V(-pn) @ox Fn)
=I'(X, V() ®ox F)pny = (L(X,V(=p) ®c F)n = (U ®c F)py-

Let w be an exponent of V', i.e., Hyo(nz, V)(y4,) # 0 for all 2 in some open
dense subset of X. Then

Ho(nz, V) = HO(n:m (U Rdc F)[)\])

is the direct sum of generalized U (h)-eigenspaces of Hy(n,, U® F') correspond-
ing to weights vA 4+ p, v € W. Hence,

Ho(nm, V)(w+p) = Ho(nm, U K¢ F)(w—l—p)-

Let (Fp;1 < p < n) be an increasing b-invariant maximal flag in F. It
induces a filtration (U ®c Fp;1 < p < n) of the by-module U ®¢ F. The
corresponding graded module is the sum of modules of the form U ®¢ C,,
where v goes over the set of weights of F'. Clearly, the semisimplification of
Hy(ng,U®c F) is a submodule of the direct sum of modules Hy(n,, U) ®cC, .
Since the infinitesimal character of U is regular, Hy(n;, U) is a semisimple b-
module by L.2.4. This implies that Ho(nz, V)4, is a submodule of the direct
sum of modules Ho(nz, U)w—1+p) ®c Cy . In particular, if Ho(ng, V) (,4p) 7 0,
Ho(nz, U)(w—1+4p) # 0 for some weight v of F'. Since the set of weights is finite,
we can assume that Ho(ng,U)w—_p4p) 7 0 for all z in an open dense subset of
X. On the other hand, w — v = v(A — p) for some uniquely determined v € W'.
This implies that v~ }(w — ) = A — p. Since w = u for some u € W, we see
that

vIUN = A = —(p— v ),

Since p is the highest weight of F', the right side is the negative of a sum of
positive roots. Hence v='u € Wy and since ) is antidominant, we see that
the left side is a sum of positive roots. It follows that both sides must be
zero, v~ u is in the stabilizer of A and w = uX = vA. Since A — p is regular,
V(—p) = Ax_,(U). Moreover, from 2.6. we conclude that supp A, (x_,)(U) =
X. Since I,(V(—p)) = I,(Ax—n(U)) = Ayx—p)(U) by 3.16, we see that v €
S(V(—u)) = S(V). Hence, by 6. there exists w < v such that w is transversal
to S and /(w) = codim S. But, by 7, this implies that wA < vA = w.

(ii) If V is irreducible, V(—pu) is also irreducible and their support S is
irreducible. Hence, U is irreducible by the equivalence of categories. Since w is
transversal to S and £(w) = codim S, by 7. we see that supp A, (x_,) (U) = X.
Put U = Aya—p)(U). Since U is irreducible, by applying 1.16. with p = 0, we
get U C I'(X,U).

Assume that s € U is a global section of ¢/ which vanishes on the open
dense subset in X. Then it generates a submodule of global sections supported
in the complement of this open set. This submodule must be either equal to U
or to zero. The first possibility would imply that the localization A, x_,)(U)
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is also supported in the complement of this open set, contradicting our as-
sumption. Therefore this submodule is equal to zero, i.e., s = 0. This implies
that the support of any nonzero global section in U is equal to X. Let F' be
the irreducible finite-dimensional representation of g with highest weight pu.
Then, as before, by C.2.1,

Ulwp) = (U ®ox F))-
Hence, we see

F(X,L{(w,u)) = F(X7 (u Rox f)[/\])
=I'(X,URox F)py = (I'(X,U) ®@c F)y D (U®c F)y = V.

Moreover, the support of any nonzero global section of Y ®p, F = U ®¢c F
which comes from U ®c F' is equal to X, and the support of any nonzero global
section of its subsheaf U (wp) which belongs to (U ®c F);x) = V is also equal
to X. Since U(wp) is coherent, there exists an open dense subset O in X such
that U(wp)|O is a locally free Op-module ([BDM], VIL.9.3). Therefore, on
this set, a section vanishes if and only if its values (i.e. its images in geometric
fibres) vanish everywhere. Hence, there exists an open dense subset O’ of
O, such that for x € O’, some sections from V' do not vanish at x. On the
other hand, for any = € O’, the global sections in n,V vanish at that point.
Therefore, for z € O’, the geometric fibre map U(wp) — T (U(wp)) induces
a nonzero map of V' into T, (U (wu)), which factors through Hy(n,, V'), and this
factor map is a morphism of b,-modules. It follows that Ho(ng, V) (watp) 7 0
for x € O', i.e., wA is an exponent of V. O
The next result is a direct consequence of 10.

Theorem 11. Let V # 0 be a finitely generated Up-module. Then the set of
exponents of V' is nonempty. In particular, there exists an open dense subset
U of X such that Hy(n,,V) #0 forxz € U.

Proof. Since V' is nonzero, it has an irreducible quotient U # 0. Let A € # be
strongly antidominant. Then U = I'(X,U) for some irreducible Dy-module U
by 4.2. By 8.(ii), there exists w € 6 which is an exponent of U. Since Hy(n,, U)
is a quotient of Hy(n,, V), it follows that w is an exponent of U. O
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H.1 Group Actions on Flag Varieties

Let g be a semisimple Lie algebra and G = Int(g). The following result will
play an important role later.

Proposition 1. Let K be a subgroup of G. Then K -orbits in the flag variety
X are affinely imbedded.

The proof is based on the following observations.

Lemma 2. Let S be a solvable algebraic group and S’ its closed subgroup.
Then S/S' is an affine variety.

Proof. Assume first that S is unipotent. Let s be the Lie algebra of S and s’ the
Lie algebra of S’. If S’ # S, there exists a Lie subalgebra t of s of codimension
one which contains s’. Since the exponential map is an isomorphism of s onto
S, the variety S is isomorphic to the product of an affine line with the closed
subgroup R determined by t. Moreover, S/S’ is isomorphic to the product of
the affine line with R/S’. By induction in codimension of S” in S, it follows
that S/S’ is an affine space.

Assume now that S is arbitrary and S’ is unipotent. Then S’ is a closed
subgroup of the unipotent radical N of S ([Bo], II1.10.6). By the Levi decom-
position, in this case S/S’ is isomorphic to the product of a maximal torus T
of S and N/S’. This reduces the proof to the first case.

Consider now arbitrary S’. Let N’ be its unipotent radical and 7" a max-
imal torus in S’. By Levi decomposition, S’ is the semidirect product of N’
with 7”. By the first part of the proof, S/N’ is an affine variety. The group T"
acts on the variety S/N’ and the quotient is S/S’. Since T is reductive this
quotient is an affine variety. O

Now, let Y be a homogeneous space for G. We define an action of G on
Y x X by

9(y,2) = (9y, 9)
forgeG,ze X, yeY.

Lemma 3. The G-orbits in Y x X are affinely imbedded.
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Proof. Fix a point v € X. Let B be the Borel subgroup corresponding to v.
Every G-orbit in Y x X intersects Y x {v}. Let u € Y. Then the intersection
of the G-orbit Q of (u,v) with Y x {v} is equal to Bu x {v}. Let N be the
unipotent radical of a Borel subgroup opposite to B. Then Nwv is an open
neighborhood of v in X, and the map 7 — fv is an isomorphism of N onto
this neighborhood. The intersection of @ with Y x Nv is equal to the image
of the variety Bu x N under the map (y,n) — 7i(y,v), which is obviously
an immersion. Since B is solvable, its orbit Bu is an affine variety by 2. Then
Bu and it is an affine variety. Clearly, this implies that Bu x N is an affine
variety. It follows that the intersection of Q with Y x Nwv is affine. Therefore
we can construct an open cover of Y x X such that the intersection of () with
any element of the cover is an affine variety. Since the affinity of a morphism
is a local property with respect to the target variety, this ends the proof. 0O

Now we can prove 1. Let Y = G/K and u € Y the identity coset. Then
the image of the immersion i, : X — Y x X given by iy(x) = (u,xz) is a
closed subvariety of Y x X isomorphic to X. Let v € X. Denote by Q' the
K-orbit of v. Then the intersection of the image of 4, with the G-orbit Q) of
(u,v) in Y x X is equal to

W(X)NQ = ({u} x X)NQ = {u} x Q".

Let U be an open affine subset in Y x X. Then U N () is open affine subset
of @ by 2. Moreover, since i,,(X) is closed in Y x X, U N (i, (X) N Q) is open
affine subset in 4, (X) N Q. This implies that U N ({u} x Q') is an open affine
subset of {u} x Q'. Furthermore, since i, is a closed immersion, V = i }(U) is
an open affine subset of X and V' N Q' is an open affine subset of Q)'. Clearly,
this implies that @’ is affinely imbedded into X and completes the proof of 1.

H.2 Harish-Chandra Pairs

Let K be an algebraic group and ¢ : K — Int(g) a morphism of algebraic
groups such that the differential of ¢ is injective. In this case we can identify
the Lie algebra of K with a subalgebra € of g. Clearly, the group K acts
naturally on X.

We say that the pair (g, K) is a Harish-Chandra pair if the K-action on
X has finitely many orbits.

If (g, K) is a Harish-Chandra pair, K has an open orbit in X. Actually,
these two properties are equivalent [Brion)].

Theorem 1. Let K be a closed subgroup of Int(g). Then the following condi-
tions are equivalent:

(i) K has an open orbit in X ;

(ii) K has finitely many orbits in X .
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An example of a Harish-Chandra pair is the pair (g, B) where B is a Borel
subgroup of Int(g). The finiteness of B-orbits in X is the Bruhat lemma ([Bo],
14.11).

Another important class of examples arises in the following way. Let o be
an involution of g and € the Lie subalgebra of all vectors in g fixed by . We
say that € is an involutive subalgebra of g.

Proposition 2. Let K be a closed subgroup of Int(g) such that its Lie algebra
t is an involutive subalgebra of g. Then K acts with finitely many orbits on

X.

We denote the involutive automorphism of G = Int(g) with differential o
by the same letter. The key step in the proof is the following lemma. First,
define an action of G on X x X by

9(x,y) = (9z,0(9)y)

forany g € G, z,y € X.
Lemma 3. The group G acts on X x X with finitely many orbits.

Proof. We fix a point v € X. Let B, be the Borel subgroup of G corresponding
to v, and put B = o(B,). Every G-orbit in X x X intersects X x {v}. Let
u € X. Then the intersection of the G-orbit @ through (u,v) with X x {v}
is equal to Bu x {v}. Because of the Bruhat decomposition ([Bo], IV.14.11),
this implies the finiteness of the number of G-orbits in X x X. O

Now we show that 2. is a consequence of 3. First we can assume that K
is connected. Let A be the diagonal in X x X. By 3, that the orbit strati-
fication of X x X induces a stratification of A by finitely many irreducible,
affinely imbedded subvarieties which are the irreducible components of the in-
tersections of the G-orbits with A. These strata are K-invariant, and therefore
unions of K-orbits. Let V' be one of these subvarieties, (z,z) € V and @ the
K-orbit of (z,x). If we let b, denote the Borel subalgebra of g corresponding
to x, the tangent space T, (X) of X at = can be identified with g/b,. Let p,
be the projection of g onto g/b,. The tangent space T(; z)(X x X) to X x X
at (z,z) can be identified with g/b, x g/b,. If the orbit map f: G — X x X
is defined by f(g9) = g(x,z), its differential at the identity in G is the linear
map £ — (pz(§),pz(c(§))) of g into g/b, x g/b,. Then the tangent space to V
at (r,x) is contained in the intersection of the image of this differential with
the diagonal in the tangent space T(, - (X x X), i.e.

Tw,2) (V) C{(p2(£),p=(£))I¢ € g such that p, (§) = pa(a(£))}
= {(P2(£), P=(£))I€ € &} = T(2.,0)(Q)-

Consequently the tangent space to V at (z,x) agrees with the tangent space
to @, and (Q is open in V. By the irreducibility of V', this implies that V is
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a K-orbit, and therefore our stratification of the diagonal A is the stratifica-
tion induced via the diagonal map by the K-orbit stratification of X. Hence,
2. follows.

The following result is just a reformulation of 2.

Theorem 4. Let K be an algebraic group and ¢ : K — Int(g) a morphism
of algebraic groups with injective differential. Assume that the Lie subalgebra
t of g is involutive. Then (g, K) is a Harish-Chandra pair.

Such Harish-Chandra pair is called an involutive Harish-Chandra pair.

3. Harish-Chandra Modules and Harish-Chandra
Sheaves

Let (g, K) be a Harish-Chandra pair. A Harish-Chandra module V' is a vector
space which is

(i) a finitely generated U(g)-module, which is locally finite as a Z(g)-
module;

(ii) an algebraic K-module;

(iii) the actions of g and K are compatible, i.e., the action of € given by
the differential of the K-action is the same as the action of £ as a subalgebra
of g and

(p(k)E)-v="k-&- k710

forke K,{cgandveV.

A morphism of Harish-Chandra modules is a linear map which is a mor-
phism of ¢(g)-modules and K-modules. We denote by M ;4(U(g), K) the cat-
egory of Harish-Chandra modules. For A € h*, 6 = W - A\, we denote by
Mq4(Up, K) the full subcategory of M ¢4 (U(g), K) consisting of modules with
infinitesimal character yy.

The objects of M on(Dx, K) are called Harish-Chandra sheaves.

Let A € h* and 6 = W - A. By ..., it is evident that for any object of
Mq(Ug, K), the localization Ay (V) is an object of Mo (D, K). Moreover,
by L.1.21, the cohomology modules H*(X,V), 0 < i < dim X, of a Harish-
Chandra sheaf V in M, (Dy, K) are finitely generated as Uy-modules. Since
they are algebraic K-modules by ..., it follows that they are in M ¢,(Uy, K).

Lemma 1. Any Harish-Chandra sheafV has a good filtration FV consisting
of K-homogeneous coherent Ox-modules.

Proof. By tensoring with O(u) for sufficiently negative p € P(X) we can as-
sume that A is antidominant and regular. In this case, by L.1.3, V = D\ ®y, V,
where V' = I'(X, V). Since V is an algebraic K-module and finitely generated
Uy-module, there is a finite-dimensional K-invariant subspace U which gener-
ates V as a Up-module. Then F,Dy®cU, p € Z, are K-homogeneous coherent
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Ox-modules. Since the natural map of F,,Dy®cU into V is K-equivariant, the
image F, V is a K-homogeneous coherent Ox-submodule of V for arbitrary
pE Z+.

We claim that F'V is a good filtration of the Dy-module V. Clearly, this is
a Dy-module filtration of ¥V by K-homogeneous coherent O x-modules. Since
V is generated by its global sections, to show that it is exhaustive it is enough
to show that any global section v of V lies in F), V for sufficiently large p. Since
V' is generated by U as an Uyp-module, there are T; € Up, u; € U, 1 <1 < m,
such that v = 221 T;u;. On the other hand, there exists p € Z, such that
T;, 1 < i < m, are global sections of F,Dy. This implies that v € F,V.
Finally, by the construction of FV, it is evident that F,, Dy F,V =F,,V for
all p,q € Z4, i.e., FV is a good filtration. O

The critical result on Harish-Chandra sheaves is the following remark.

Theorem 2. Harish-Chandra sheaves are holonomic Dy-modules. In partic-
ular, they are of finite length.

We shall actually prove a stronger result. First we need some notation. Let
Y be a smooth algebraic variety of pure dimension and Z a smooth subvariety
of Y. Then we define a smooth subvariety Nz (Y') of T*(Y") as the variety of all
points (z,w) € T*(Y') where z € Z and w € T,(Y)* is a linear form vanishing
onT,(Z) C T,(Y). We call Nz(Y) the conormal variety of Z in Y.

Lemma 3. The dimension of the conormal variety Nz(Y) of Z in'Y is equal
to dimY.

Proof. The dimension of the space of all linear forms in 7,(Y)* vanish-
ing on T,(Z) is equal to dimT,(Y) — dimT,(Z) = dimY — dim, Z. Hence,
dim, Nz(Y) =dimY. 0

Let A € h*. Then, by ..., Gr Dy = 7, (Or+(x)), where 7 : T*(X) — X is
the natural projection. Let £ € g. Then ¢ determines a global section of Dy of
order < 1, i.e. a global section of F1 Dy. Therefore, the symbol of this section
is a global section of m,(Or-(x)) independent of A. Let 2 € X. Then the
differential at 1 € G of the orbit map f, : G — X, given by f.(g9) = gz, maps
the Lie algebra g onto the tangent space T,,(X) at . The kernel of this map is
by, i.e. the differential Ty (f,) of f, at 1 identifies g/b, with T,,(X). The symbol
of the section determined by & is given by the function (x,w) — w(T1(fz)(€))
for x € X and w € T,(X)*.

Let K be a closed subgroup of Int(g) and ¢ its Lie algebra. Denote by Zx
the ideal in the Ox-module 7, (Or-(x)) generated by the symbols of sections
attached to elements of €. Let Nk the set of zeros of this ideal in 7*(X).

Lemma 4. The variety N is the union of the conormal varieties No(X) to
all K-orbits () in X.

Proof. Let x € X and denote by @ the K-orbit through x. Then,
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Nk NTy(X)* = {w € Tp(X)* |w vanishes on Ty (f,)(E) }
= {w € T(X)* |w vanishes on T (Q) } = Ngo(X) NT,(X)*,

i.e. Nk is the union of all Ng(X). O

Corollary 5. Assume that K acts on X with finitely many orbits. Then:

(i) dimNg = dim X .

(ii) If K is connected, the irreducible components of Nk are the closures
No(X) of the conormal varieties Ng(X) of K-orbits Q in X.

Proof. For any K-orbit () in X, its conormal variety Ng(X) has dimension
equal to dim X by 3. Since the number of K-orbits in X is finite, by 3. and 4,
Nk is a finite union of subvarieties of dimension dim X. This implies (i).

Moreover,
Nk = JNo(X).
Q

If K is connected, its orbits in X are also connected. Hence, their conormal
varieties Ng(X) are connected too. Since they are smooth this immediately
implies that they are irreducible. Hence their closures Ng(X) are irreducible
closed subvarieties of N of dimension dim X. Therefore, they are the irre-
ducible components of Ng. This proves (ii). O
Therefore, 2. is an immediate consequence of the following result.

Proposition 6. Let V be a Harish-Chandra sheaf. Then the characteristic
variety Char(V) of V is a closed subvariety of Nk .

Proof. By 1, V has a good filtration F V consisting of K-homogeneous coherent

Ox-modules. Therefore, the global sections of Dy corresponding to € map F,V

into itself for p € Z. Hence, their symbols annihilate GrV and Zg is contained

in the annihilator of GrV in m,(Or-+(x)). This implies that the characteristic

variety Char(V) is a closed subvariety of Ng. 0
The following result is an immediate consequence of 2.

Theorem 7. Every Harish-Chandra module is of finite length.
Proof. Let V' be a Harish-Chandra module. Since it is finitely generated as

a U(g)-module and locally finite as a Z(g)-module, there exists a finite-
dimensional Z(g)-submodule U of V' which generates V. Therefore, there exist

a finite set A1, Aa,... , A\ € h* and n € N such that
k

P(&) = [ J(€ —xx )™,
i=1

¢ € Z(g), annihilates U. Since U generates V as a U(g)-module, it follows
that P(§) annihilates V' for each £ € Z(g). Therefore, V' is a direct sum of
submodules
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Vi={v e V|[(€—xx(£)"v =0 for all £ € Z(g) and sufficiently large n € N}

for1 <<k,

Therefore, we can assume that V' is annihilated by (£ — xx(£))", & €
Z(g). We claim that such V has a finite filtration FV by Harish-Chandra
submodules such that the corresponding graded module is has infinitesimal
character x,. Te proof is by induction in dimU. If dimU = 1 the assertion
is evident. In general, U contains an one-dimensional eigenspace U; for Z(g).
Clearly, U; generates a Harish-Chandra submodule V; of V' with infinitesimal
character x. The quotient Vo = V/V] is generated by the image Us of U and
dimUs; < dimU — 1.

Therefore, we can assume that V' has an infinitesimal character, i.e., V is
in Mz,(Up, K). In this case we can choose A € § which is antidominant. The
localization Ay (V') is a Harish-Chandra sheaf, and therefore a of finite length
by 2. By L1.1, V. = I'(X, Ax(V)). Hence, the exactness of I" and L.4.1 imply
that V' has finite length. O

4. n-homology of Harish-Chandra modules

Let V be a Harish-Chandra module. For any = € X, the n,-homology of V
can be calculated from the standard complex C"(n,, V') given by

CP?(ng, V) =AN"Pn,@cV, p€Z;

with the differential

=

dE N N...NE B V) = Z DFY AL AEGN L ANE @

=

Y DG GIANG A AGEA L NGNL A @

1<J

for &,...¢, € ny and v € V. This immediately implies that the h-modules
H,(n;,V) for various points = in the same K-orbit () in X are canonically
isomorphic.

Theorem 1. Let V' be a Harish-Chandra module and x € X. Then all n,-
homology modules Hy,(ng, V), p € Z, are finite-dimensional.

Proof. In the proof of 3.7 we constructed a finite filtration of V' by Harish-
Chandra submodules, such that its composition factors are Harish-Chandra
modules with infinitesimal character. Therefore, using the spectral sequence of
a filtered object (...), we see immediately that it enough to prove the statement
for Ve Myq(Up, K).

If 6 is a regular orbit of W, this result follows from L.5.4 and 3.2. Assume
now that 6 is an arbitrary Weyl group orbit. Fix an antidominant A € . Let
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F be a finite-dimensional irreducible g-module F' with regular highest weight
p € P(X). Then A — p is regular antidominant, and

AN(V) = (Ax(V) (=) ®ox Fin)
by C.2.1. Therefore,
V =T(X,A\(V)) = (I'(X, A\(V) (=) ®c F) -

Clearly, U = I'(X, Ax(V)(—p)) is a Harish-Chandra module with regular
infinitesimal character xx_,, and Hy(ng,U), p € Z, are finite dimensional.
Let (F;;1 < i < m) be an increasing Jordan-Holder filtration of F' as an
nz-module. Then the corresponding graded module is a trivial n;-module.
Therefore, (U ®@c F;;1 < i < m) is a ng-module filtration of U ®¢ F such
that the corresponding graded module is a direct sum of m copies of U. From
the spectral sequence of the filtered object (...) it follows that Hy(n,, U ® F'),
p € Z, are finite-dimensional. The assertion follows from V' = (U ®c F)py. O

The next result is considerably deeper it follows from the main result of
L.8. Let @), be the unique K-open orbit in X.

Theorem 2. Let V be a Harish-Chandra module. If V' is a nonzero module,
Hy(ng, V) #0 for all x € Q,.

Proof. Since @, is open and dense in X and Hy(n,, V) are canonically iso-
morphic for all x € @Q),, we see that A € § is an exponent of a Harish-Chandra
module V' if and only if Ho(ng,V)ryp) # 0 for © € Q,. Hence, the result
follows from L.8.11. O

5. Irreducible Harish-Chandra Sheaves

Now we want to describe all irreducible Harish-Chandra sheaves for a Harish-
Chandra pair (g, K). For simplicity we assume that K is connected. We start
with the following remark.

Lemma 1. Let V ba an irreducible Harish-Chandra sheaf. Then its support
supp(V) is the closure of a K-orbit Q in X.

Proof. Since K is connected, the Harish-Chandra sheaf V is irreducible if and
only if it is irreducible as a Dy-module. To see this we may assume, by twisting
with O(p) for sufficiently negative p, that A is antidominant and regular. In
this case the statement follows from the equivalence of categories and the
analogous statement for Harish-Chandra modules (which is evident).
Therefore, by ..., we know that supp(V) is an irreducible closed subvariety
of X. Since it must also be K-invariant, it is a union of K-orbits. The finite-
ness of K-orbits implies that there exists an orbit @ in supp(V) such that
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dim @ = dimsupp(V). Therefore, Q is a closed irreducible subset of supp())
and dim @ = dimsupp(V). This implies that Q = supp(}). O

Let V be an irreducible Harish-Chandra sheaf and ) the K-orbit in X
such that supp(V) = Q. Let X' = X — 0Q. Then X’ is an open subvariety of
X and @ is a closed subvariety of X'. By ..., the restriction V|X’ of V to X'
is irreducible. Let 7 : Q@ — X, ¢ : Q — X' and j : X’ — X be the natural
immersions. Hence, i = j o i’. Therefore, Ri' = R(i')' o j', where j' = jT is
just the ordinary restriction to the open subvariety X’ of X. It follows that
RPi*(V) = RP(i")'(V|X') for p € Z. Since i’ : Q — X' is an immersion of a
closed smooth subvariety and supp(V|X’) = @, by Kashiwara’s equivalence of
categories, we see that RPi'(V) = 0 for p # 0 and 7 = i'(V) is an irreducible
(D%, K)-module on Q). Moreover, i’ (1) = V|X'. Since V is holonomic by 3.2,
7 is a holonomic module. This implies, by ..., that there exists an open dense
subset U in @ such that 7|U is a connection. Since K acts transitively on @,
7 must be a K-homogeneous connection.

Therefore, to each irreducible Harish-Chandra sheaf we attach a pair (Q, 7)
consisting of a K-orbit () and an irreducible K-homogeneous connection 7 on
(Q such that:

(i) supp(V) = @

(ii) #'(V) = 7.

We call the pair (Q, T) the standard data attached to V.

Let @ be a K-orbit in X and 7 € M (D%, K) an irreducible K-homogeneous
connection on Q. Then, by ..., Z(Q, 7) = iy (7) is a (Dy, K )-module. Moreover,
by ..., it is holonomic, i.e., Z(Q, 7) is a Harish-Chandra sheaf. We call it the
standard Harish-Chandra sheaf attached to (Q, ).

Lemma 2. Let (Q be a K-orbit in X and 7 an irreducible K-homogeneous
connection on Q. Then the standard Harish-Chandra sheaf T(Q,T) contains a
unique irreducible Harish-Chandra subsheaf.

Proof. Clearly,
I(Q, ) = it (1) = 4+ (i' 4 (1))
Therefore, Z((Q), 7) contains no sections supported in dQ. Hence, any nonzero
Dy-submodule U of Z(Q, 7) has a nonzero restriction to X’. By Kashiwara’s
equivalence of categories, i’ (7) is an irreducible (D)|X’)-module. Hence,
UX" = Z(Q, )| X’. Therefore, for any two nonzero Dy-submodules ¢ and
U of Z(Q, 1), U nU" # 0. Since Z(Q, 7) is of finite length, it has a minimal
Dy-submodule and by the preceding remark this module is unique. By its
uniqueness it must be K-equivariant, therefore it is a Harish-Chandra sheaf.
O
We denote by L£(Q,7) the unique irreducible Harish-Chandra sheaf of
Z(Q, 7). The following result gives a classification of irreducible Harish-
Chandra sheaves.

Theorem 3. (i) An irreducible Harish-Chandra sheaf ¥V with the standard
data (Q,T) is isomorphic to L(Q,T).
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(ii) Let Q and Q' be K-orbits in X, T and 7' irreducible K -homogeneous
connections on @ and Q' respectively. Then L(Q,T) = L(Q', ") if and only if
Q=0Q and =7

Proof. (i) Let V be an irreducible Harish-Chandra sheaf and (@), 7) the cor-
responding standard data. Then, as we remarked above, V|X' = (i") (7). By
the universal property of j., there exists a nontrivial morphism of V into
Z(Q,7) = j+((i")+ (7)) which extends this isomorphism. Since V is irreducible
its kernel must be zero and its image must be £(Q, ) by 2.

(ii) Since @ = supp L(Q, 7), it is evident that £(Q,7) = L(Q', ") implies
Q = Q'. The rest follows from the formula 7 = i'(£(Q, 7)). O



V. Verma Modules

V.1 Category of Highest Weight Modules

Fix a Borel subalgebra by in g and ng = [bg, bo]. Let by be a Cartan subalge-
bra of g contained in by. The root system X' specializes to the root system Ry
in h; and the root subspaces corresponding to positive roots from R(J{ span
ng. To simplify the notation in the following, when it doesn’t cause confusion,
we shall identify the Cartan triple (h, X, XF) with (ho, Ry, Ry) via this spe-
cialization. Denote by ny the nilpotent subalgebra spanned by root subspaces
corresponding to the negative roots in Ry. A g-module V is called a highest
weight module (with respect to bg) if

(i) V is finitely generated,

(ii) V is U(bp)-finite, i. e. for any v € V, U(bp)v is finite-dimensional.
We call the full subcategory of the category M,(U(g)) consisting of highest
weight modules the category of highest weight modules.

Let V be a highest weight module. For A € hj we put

VA ={ve V|- A¢)" =0, € b, for some k € N}.

Then V? is a ho-submodule of V and V is the direct sum of V*, X € hi. If
VA £ 0 we say that A is a weight of V.

Lemma 1. Let V' be a finitely generated g-module. Then the following condi-
tions are equivalent:

(i) V is a highest weight module,

(i) V satisfies:

(a) V=&V and VX, X € b}, are finite-dimensional.

(b) There exists a finite set of weights Sy of V' such that for any weight v
of V there exists p € Sy such that . — v is a sum of roots from Ry .

Proof. Assume that V' is a highest weight module. By definition, V' is generated
as a g-module by a finite-dimensional by-invariant subspace U. Hence, by the
Poincaré-Birkhoff-Witt theorem, the natural map of U(ng) ®c U into V is a
surjective morphism of hp-modules. This clearly implies (a) and (b).

Assume now that V satisfies (a) and (b). Let v € V*. Then U(bg)v is
contained in the direct sum of V¥ for weights v such that v — A is a sum
of positive roots. The number of such weights is finite by (b). Therefore, (a)
implies that U(bg)v is finite-dimensional. O
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Lemma 2. Let
0—V—V —V"—0

be an exact sequence of g-modules. Then V' is a highest weight module if and
only if V. and V" are highest weight modules.

Proof. Tt is clear that if V” is a highest weight module V' and V" are highest
weight modules either. Assume that ¥V and V" are highest weight modules.
Then V' is clearly finitely generated. Also, it satisfies the conditions in 1.(ii).
Hence, V' is a highest weight module. a

We say that v € V is Z(g)-finite if Z(g)v is finite-dimensional. Clearly,
VA are Z(g)-invariant, and consist of Z(g)-finite vectors by 1.(ii). This implies
that all vectors in V are Z(g)-finite, i. e. V' is a Z(g)-finite module. Finally,
since V is finitely generated, we have the following result.

Lemma 3. Let V' be a highest weight module. Then the annihilator of V in
Z(g) is of finite codimension.

Also, we have the following converse.

Proposition 4. Let V be a g-module satisfying the following conditions:
(i) V is finitely generated,
(ii) for any v € V., there exists k € N such that nk - v =0,
(iii) the annihilator of V in Z(g) is of finite codimension.

Then V' is a highest weight module.

Proof. Let U be a finite-dimensional ng-invariant subspace which generates V.
We shall prove that V is a highest weight module by induction in dimU. If
dimU = 1, U is annihilated by U(g)ng. On the other hand, from the properties
of the Harish-Chandra homomorphism we know that the projection of Z(g) C
U(ho) ® U(g)no into U(hp) is an algebra homomorphism and that U(hg) is
finitely generated over its image. This clearly implies that U(ho)U = U(bo)U is
a finite-dimensional subspace in V. One checks easily that the linear subspace
V' consisting of all vectors u € V such that U(bp)u is finite-dimensional is a
g-submodule of V. It contains U by the preceding discussion, what in turn
implies that it is equal to V', i. e. V' is a highest weight module. Assume now
that dimU > 1. Then by Engel’s theorem U has an one-dimensional subspace
Up such that ngUy = 0. Let Vj be the g-submodule of V' generated by Uy. Then
Vo is a highest weight module by the first part of the proof. Let Vi = V/V4,.
Then V; is generated by Uy = U/(UNVp) and dimU; < dimU — 1. Therefore,
V1 is a highest weight module by the induction assumption. By 2. we see that
V' is a highest weight module. O

Let Ny be the unipotent subgroup of Int(g) corresponding to ng. Then, by
4, one can exponentiate the action of ng to an algebraic action of Ny and view
highest weight modules as elements in M f4(g, Noy). Actually, in this way one
can identify the category of highest weight modules with the full subcategory
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of M¢4(g, No) consisting of modules annihilated by ideals in Z(g) of finite
codimension.

Now we want to describe irreducible objects in M ¢4(g, No), i. e. irreducible
highest weight modules. First we construct some closely related modules. Let
Cx be the one-dimensional bg-module defined by A € ;. Then, if we consider
U(g) as a right U(bg)-module via right multiplication, the tensor product
U(8) ®u(b,) Cx has a natural structure of a left U(g)-module given by left
multiplication at the first factor. It is clearly a highest weight module; and we
put

M(X) = U(8) Bu(o,) Cr—p-

The highest weight module M () is called the Verma module determined by
A

Lemma 5. Let A € hg. Then

(i) all weights of M (X) are of the form A\ — p — v where v is a sum of
positive roots,

(ii) dim M (V) =

(iii) M (X)) has a unique mazimal g-submodule N (),

(iv) N(AM)*—* = 0.

Proof. By the Poincaré-Birkhoff-Witt theorem, we see that M ()), consid-
ered as a ho-module, is isomorphic to U(ny) @c Cx—,. This immediately im-
plies (i) and (ii). Clearly, by definition of M (), the one-dimensional subspace
M(X)*~* generates M ()) as a g-module. Therefore, any g-submodule differ-
ent from M()) cannot contain M (A)*~P. Let M be a maximal g-submodule
of M(A\) and N any g-submodule different from M (\). Then, either N C M
or M + N = M ()). In the second case we would have

M(M*P = (M + N))* =M+ NP =0,

what is clearly impossible. Therefore, M is the unique maximal g-submodule.

O

This implies that M (\) has the unique irreducible quotient g-module L(\).

Also, L(A\)*~* is one-dimensional. We say that A — p is the highest weight of
L(N).

Proposition 6. (i) Any irreducible highest weight module is isomorphic to
some L(\).
(ii) L(\) is isomorphic to L(p) if and only if A = p.

Proof. (i) Let V' be an irreducible highest weight module. Let S be the set of
all weights of V. Then, by 1., we can find a weight A € S such that A+« is not
in S for any o € . This implies that V* is annihilated by ng. Therefore, if
we take any nonzero v € V*, the homomorphism & — ¢ - v from U(g) into V
is surjective and factors through M (X + p). This implies that V' is isomorphic
to L(A+ p).
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(ii) This follows from 5.(i) and (ii). O
Lemma 7. The center Z(g) acts on M(\) via xx.

Proof. This follows from the definition of the Harish-Chandra homomorphism.
O

Proposition 8. Highest weight modules have finite length.

Proof. Let V' be a highest weight module. If V' is not of finite length, we can
construct a decreasing g-module filtration (V;;4i € Z4) of V such that V;/V;_1,
i € N, are irreducible. Therefore, by 6.(i), L(\;) = V;/V;_1 for some A; € bj.
By 3. and 7, it follows that the set of possible \; is finite. Therefore, by 6.(ii),
the set of possible L()\;) is finite, what contradicts the finite-dimensionality of
weight subspaces of V. ad

By ([LG], Ch. VIII, §5, Prop. 2), there exists an involutive automorphism
1 of g with the property that ¢|hy = —1. Then, 1(gs) = g_o for any a € R
Let 7 be the antiautomorphism of U(g) which is the product of the principal
antiautomorphism of ¢(g) and the automorphism which extends ¢. Then 7 is
the identity on hg and it maps ng into ng.

Lemma 9. The antiautomorphism T acts as identity on Z(g).

Proof. Let v be the Harish-Chandra homomorphism, i. e. the projection of
Z(g) C U(bg) ® nold(g) into U(hg) along nold(g). By definition, the antiauto-
morphism 7 acts as identity on U(hg) and maps nold(g) into U(g)ng. On the
other hand, the intersections of nolf(g) and U(g)ny with the centralizer of by
in U(g) are equal, what implies immediately that v and 7 o 7 agree on Z(g).
The injectivity of v implies that 7| Z(g) is the identity. O

For any highest weight module V', let V* be its linear dual. We define the
action of U(g) on V* by

(&) () = f(r(&)v), E€U(g), fEVT, veEV.

In this way V* becomes a g-module. Let V™ be the subspace consisting of
f € V* such that U(ho)f is finite-dimensional. It can be easily checked that
V™ is a g-module.

Lemma 10. (i) V™ is a highest weight module.
(i) (V)" =V.
(iii) (V)X = (VX)* for any X\ € b}

Proof. Clearly V™ = @(V*)* as an hp-module and (V")* = (V*)*. Hence, the
set of weights of V™ is the same as the set of weights of V. The canonical map
of V into (V") is injective, a g-module morphism and

dim((V))* = dim(V")* = dim V?,
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for any A € hj, what implies that it is an isomorphism. Let U be an g-
submodule of V™ and U~ be the subspace of (V7)™ = V orthogonal to U.
Then U* is a g-submodule of V. Also, (U+)* = U. This implies that every g-
submodule of V™ is the orthogonal of some g-submodule of V. By 8, it follows
that V™ is of finite length. In particular, V" is finitely generated and a highest
weight module by 1. O

Therefore, V. — V7 is an exact contravariant functor from M ¢, (g, No)
into itself. We call V™ the dual of V. Also, for any orbit 6 of the Weyl group
W in b*, we conclude from 9. that V' € My,(Uy, Ny) implies that V™ €
Mq(Up, No), 1. e. V. — V7 is an antiequivalence of the category M ¢, (Uy, No)
with itself.

Lemma 11. For any A € b, L(A)” = L(A).

Proof. Tt follows from 10. that L(\)™ is an irreducible highest weight module

with the highest weight A. By 6, L(A)™ is isomorphic to L(A). O
We put I(\) = M(A)". Then, by 5. and 11, I(A) has a unique irreducible

g-submodule L(A). The modules I(A) have the following universal property.

Lemma 12. Let A€ h* and 0 =W - \.

(i) Let V be a highest weight module such that A\ — p is a weight of V and
A— p+a is not a weight of V for any positive root o € XT. Then there exists
a nonzero morphism of V' into I(X).

(ii) Let V' be a highest weight module satisfying following conditions:

(a) V' contains a unique irreducible submodule isomorphic to L(\);

(b) dim V# = dim I(A)* for any p € h*.

Then V is isomorphic to I(X).

Proof. (i) By 10. V" is a highest weight module such that A — p is a weight of
V™ and A — p+ « is not a weight of V™ for any positive root o € X*. Hence,
if v € (V)2=P, v # 0, v is annihilated by ng. Therefore, the homomorphism
& — & - v from U(g) into V factors through M(N), and we constructed a
nonzero morphism ¢ of M () into V". By duality, ¢~ is a nonzero morphism
of V into I(A).

(ii) By (i) there exists a nonzero morphism ¢ of V into I()\). Since the
image of ¢ is nontrivial, it must contain the unique irreducible submodule L(\)
of I()\). Denote by K the kernel of ¢. Since dim VA=# = dim I(A\)*~? = 1 by
(b), and dim L(A\)*~* = 1, we conclude that K*~? = 0. By (a), this implies
that K = 0, and ¢ is injective. From (b) we finally conclude that ¢ is an
isomorphism. a

Now we can relate our results to the general geometric scheme for clas-
sification of irreducible objects in M ,(Uy, Ny). First, by the Bruhat lemma
([Bo], 14.11), Ny has finitely many orbits in the flag variety X. Therefore, we
have the following remark which enables us to apply the results of ... .

Proposition 13 (g, Ny) is a Harish-Chandra pair.
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The Ny-orbits in X are the Bruhat cells C(w), w € W. They are affine
subvarieties of X ([Bo], 14.11) and

dim C(w) = £(w), w € W.

Therefore, if C(s) is in the boundary dC(w) = C(w) — C(w) of C(w), we have
U(s) < £(w).

Let A € h*. Let C'(w) be a Bruhat cell and 4,, : C(w) — X the canonical
immersion. Then, from ... we see that the only irreducible Ny-homogeneous
(D) -connection on C(w) is Og(y)- The standard Dy-module correspond-
ing to data (C(w), O¢(w)) we denote by Z(w, ), and its unique irreducible
Dy-submodule by L(w, A). The key connection between the geometric classi-
fication of irreducible objects and 6. is given by the following result.

Theorem 14. Let A € h* be antidominant. Then

(X, Z(w, \) = I(w)), we W.

To prove 14. we need some preparation. We start with a very special case
of 14.

Lemma 15. Let A € h* be antidominant. Then

(X, T(1,\) = M()\) = L(X) = I()).

Proof. Clearly, Z(1,\) is an irreducible Dy-module. Hence, by L.4.1, the Up-
module I'(X,Z(1, A)) is either an irreducible highest weight module or zero.
Since Z(1, \) is supported at the point C'(1) the second possibility is automat-
ically eliminated. Therefore, to prove the statement it is enough to establish
the first equality.

Now we need to describe the structure of the direct image module
Z(1,)) = i14(Cx4p). We can view it as a right D_x-module. Then it is equal
to i1 (D_x,c(1)-»x) as a right D_x-module in the natural way. On the other
hand, as in the proof of 1..2.4, we conclude that as a right #(g)-module

D_xc)»x = Tuo(D-)
= (U(g)/nolUh(9))/(L-x+,U(g)/nolh(8))) = C_x1p Bu(o,) U(8),

where we denoted by xp the point in C'(1). This implies that, as a left U(g)-
module, Z(1, \) is equal to M (A). 0

Now we need some results about the action of the intertwining functors
on the standard modules.

Lemma 16. Let w € W and X € b*. Then

LI, (D(Z(1,)))) = D(Z(w™ ' wl)).
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Proof. We use the notation from the L.3. Let Z,, C X x X be the variety of
ordered pairs of Borel subalgebras in relative position w € W. Denote by p;,

t = 1,2, the projections to the it factor in X x X. Then
py (C(1) = {(z,2") € X x X |

b, = by, b, in relative position w™! with respect to bo}

= C(w™Y) x C(1),

i. e. we have the following commutative diagram
Clw=Y) x O(1) —2— 2z,
prs | a
C(1) SN ¢

and by base change ([BDM], VI.8.4), since pry and p2 are submersions and
11 and 7 affine immersions, we have

p3 (Z(1, X)) = p3 (i14(Oc(1)) = j+ (03 (Oc))) = j+(Ocw-1)xc())-

The projection p; induces an immersion of p; ' (C(1)) into X and its image is
equal to C'(w™1), i. e. we have the following commutative diagram

Clw=Y) x C(1) —2— Z,
pri J{ P1 J{
Cw-l) 2y X
and we get, after checking the appropriate twists, that

LI,(D(Z(1,))) = Rp11(To ®0,,., v (Z(1,1)))
= Rp14(Tw ®0,, j+(Ocw-1)xc)))
= D(iy-14(Oc@w-1)))) = D(Z(w™ ", wA)).0

Corollary 17. Let w,w’ € W be such that {(ww') = £(w) + £(w"). Then

Proof. Clearly, by 16.
Ll (D(Z(1,w' " N))) = D(Z(w
On the other hand, by L.3.18 we have

L1 (D(Z(1,w' ™ "A)) = LI, (LI, (D(Z(1,w' " \)))
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In particular, if wy is the longest element in W, and w an arbitrary element
of W, the element w’' = wow satisfies ww'~" = wy' = wy and £(w') =
L(wg) — £(w) ([LG], Ch. VI, §1, no. 6, Cor. 3. of Prop. 17.). It follows that
LI, (D(Z(w,\))) = D(Z(wy,w'N)).

The next result is critical for the proof of 14.

Lemma 18. Let A € h*. Then
(i) H?(X, Z(wo, A)) = 0 for p > 0;
(i) I'(X,Z(wo, \)) = I(woA).

Proof. Since C(wy) is an affine open subvariety of X,
HP(X,I(QUO, A)) = HP(C(UJO), OC(wo)) =0

for p > 0. This proves (i).

Now we can prove (ii). Assume that A € h* is antidominant. Then, by 15,
we have I'(X,Z(1,\)) = M () and it is an irreducible g-module. If we take
a nonzero v € I'(X,Z(1,)\)), it generates a finite-dimensional by-invariant
subspace U. By Engel’s theorem, there exists a vector v’ € U which spans a
bo-invariant subspace. Therefore, v’ is a weight vector of M () for some weight
i € b* and it is annihilated by ng, hence there exists a natural morphism of
M(p+ p) into M (). Since M (A) is irreducible, we have L(u + p) = M(\) =
L(A). By 6. we finally conclude that A\ = pu + p. Hence, we have proved that
every bo-invariant subspace U of M (\) contains the highest weight subspace
M (X)*~=*. By 16, we also conclude that for antidominant X € b*,

I'(X,Z(wg, woA)) = M(X)

and every bg-invariant subspace U of it contains the highest weight subspace.
As we remarked before, for arbitrary p € h*,

I(X., Z(w, 1)) = T(Cw0), Ocun))-

Therefore, the constant function 1 on C'(wy) is a global section of Z(wq, ).
It is clearly Ny-invariant. Denote by z,, € C(wy) the point corresponding
to the Borel subalgebra which contains hy and is opposite to by. The sec-
tion n -z, —> Ad(n)&, & € ho, of U°|C'(wp) maps into the constant section
(wopr — p)(€) in Dyyyp|C(wo), hence it acts on the section 1 as multiplica-
tion by (wop — p)(€). This in turn implies that £ acts on this section as
multiplication by (wop — p)(€), i. e. 1 € I'(X, Z(wq, p))“°*~*. In particular,
for antidominant A € bh*, any bp-invariant subspace U of I'(X,Z(wg,woN))
contains the highest weight subspace I'(X, Z(wg, wo))*~* consisting of con-
stant functions on C(wp). Since the geometric translation of Z(wg, p) is
Z-(U)Ov :U’) ®ox O(V) = I(wo,u + V)7 and O(V)|C(w0) = OC’(wo) as an OC(wo)'
module, we have a natural isomorphism of the bo-module I'(X, Z(wq, 1 + v/))
with I'(X, Z(wo, 1)) ®c C,, . Hence, we see that for arbitrary p € h*:

(a) dim I'(X, Z(wg, p))* = dim M (wou)¥ = dim I (wop)® for any weight
w € b
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(b) any bg-invariant subspace U of I'(X,Z(wg,p)) contains the high-
est weight subspace I'(X, Z(wq, )"~ P consisting of constant functions on
C(’wo)

In particular, from (b) we conclude that any g-submodule of I'(X, Z(wq, 1))
contains the constants. This implies that I'(X,Z(wg, 1)) has a unique irre-
ducible g-submodule L.

Then (a) implies that wop — p is the highest weight of L, i. e. L = L(wop).
Finally, by 12.(ii), we conclude that I'(X,Z(wo, p)) = I(wop). 0

Now we can prove 14. If A € h* is antidominant, w an arbitrary element
of W and ww' ™" = wy, we have

RI(D(Z(w,)))) = RI(L1y (D(Z(w, X)) = RI'(D(Z(wo,w')))
by the preceding discussion and L.3.23. This implies that
I'(X,Z(w,\) = I'(X,Z(wo,w'N)) = Iwew'\) = I(wl).

and proves 14.
Now it is quite straightforward to determine the global sections of irre-
ducible modules.

Theorem 19. Let A € h* be regular antidominant. Then, for any w € W, we
have

(X, L(w,\)) = L(w)).

Proof. Since A is regular and antidominant, the functor I'(X, —) is an equiv-
alence of categories. Therefore, by 14, the global sections of the unique irre-
ducible submodule £(w, A) of Z(w, A) are isomorphic to the unique irreducible
submodule L(wA) of I(wl). 0

It remains to discuss the behavior of I'( X, £L(w, \)) for singular antidom-
inant A € b*. Let W(A) be the stabilizer of A. First, by L.4.1, we know
that I'(X, L(w, A)) is an irreducible g-module or zero. By exactness of I" and
14, if it is nonzero, it must be the unique irreducible submodule L(wA) of
I(wA) = IN' (X, Z(w, \)).

On the other hand, by L..4.2, there exists the unique irreducible D -module
L(s,A), s € W, such that I'(X, L(s,A)) = L(wA). Then L(wA) is isomorphic
to an irreducible g-submodule of I'(X,Z(s,\)). By 14, I'(X,Z(s,\)) = I(s))
and L(sA) is isomorphic to L(wA). By 6.(ii), it follows that s\ = wA, i. e. s €
wW (A). Let u € wW(A), such that I'(X, L(u, A)) = 0. Then,

(X, T(u, N)/L(u, N)) = I(w)),

hence it contains L(wA) as its composition factor. Moreover, it follows that
L(s,A) is a composition factor of Z(u,A)/L(u,A). Hence, C(s) C 0C(u) and
£(s) < £(u). Therefore, £ attains at s its minimum on the coset wW (\). More-
over, s is uniquely determined by this property.

The preceding discussion has the following consequence.
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Theorem 20. Let A € h* and 0 = W - \. Then the annihilator of M (X) in Uy
is {0}.

Proof. It is enough to show that the annihilator of I()) is trivial for any A € h*.
But, by 1.18.(ii), this is equivalent to showing that no nontrivial element of
I'(X,Dy) annihilates I'(X, Z(wo, A)) = I'(C(wo), O (w,)) Which is evident.
O
Finally, we want to discuss the necessary and sufficient conditions for
the irreducibility of standard modules Z(w, A) and Verma modules. First we
analyze a critical special situation.

Lemma 21. Let A € b* and o € II be such that p = —a’(A) € Z. Let
w = w'sy with £(w) = £(w") + 1. Then:
(i) we have an ezxact sequence

0 — UYZ(w', 54N)) — Z(w,\) — Z(w', \) — 0;
(ii) UY(Z(w', s4M)) # 0 and it is a translate of a module of form pt (V).
Proof. By 16. and L.3.18, we have
Z(w,\) = L, +(Z(1,wA)) = I;_ (I, (Z(1,w))) = I (Z(w', s4)))-
Hence, by L.5.3.(ii), we have an exact sequence

0 — UYNZ(w',54))) — Z(w,\) — Z(w', 54)\)(—pa) — UNZ(w',s4N)) — 0

T(w', \)

Let po : X — X, be the natural projection of the flag variety X onto the
variety of all parabolic subalgebras of type a. Then, using the notation from
L.5. we have the commutative diagram

Y, —2 5 X

qll paJ/
X P o x,

and by base change, using the fact that the composition of p, 0%, is an immer-
sion of the affine variety C(w') into X, we conclude that U (Z(w’, s4A)) = 0,
U°(Z(w',s4)\)) # 0 and it is a translate of a module of form pF (V). This
implies both assertions. a

Theorem 22. Let A € h* and w € W. Then the following conditions are
equivalent:

(i) XEnX\=0;

(i) Z(w, A) is irreducible Dy-module.
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Proof. (i)=(ii) If Xf N X\ = 0, by L.3.22, the intertwining functor I, :
Mye(Dy) —> Mye(Dyy) is an equivalence of categories and I,,-1 its inverse.
By 16, we have

I-1(Z(1,wA)) = T(w, A).

Since Z(1,w) is evidently irreducible, Z(w, A) is an irreducible Dy-module.
Now we shall prove, by induction in £(w), that X;; N Xy # 0 implies that
Z(w, A) is a reducible Dy-module. If £(w) = 0, w = 1 and the assertion is
obvious. Therefore, we can assume that the statement holds for w’ € W with
L(w') < k. Let £(w) = k. Then w = w's, for some « € IT and w' € W with
l(w') = k — 1. As in the preceding proof, from 16. and L.3.18 we deduce that

Z(w,\) = I (Z(w', sq\)).
Moreover, by L.3.12.(ii),
Z;; NnXy = Sa(Z{L—, N Esa)\) U ({a} N ZA).

If o ¢ Xy, Card(X} N X)) = Card(X}, N X, ), and by induction assumption
Z(w', sqA) is a reducible D, _x-module. Since, by L.3.22, in this case I, :
Mye(Ds,x) — Mye(Dy) is an equivalence of categories, Z(w, M) is a reducible
Dy-module.
If « € ¥y, Z(w, A) is reducible by 21. O
Now we deduce a necessary and sufficient condition for irreducibility of
Verma modules.

Theorem 23. Let A € h*. Then the following conditions are equivalent:
(i) A is antidominant;
(ii) M () is irreducible.

Proof. (i)=-(ii) If A is antidominant, I(\) = I'(X,Z(1,)) by 14. Moreover,
Z(1,A) is clearly irreducible. By L.4.1, I()) is an irreducible g-module, and
M(X) = I(\) is also irreducible.

(ii))=(i) Take A which is not antidominant. Assume that M(X) is irre-
ducible. Let w € W be a shortest element of W such that w~!X is antidomi-
nant. Then, by 14, we have

I(X, T(w,w™\) = I(\) = M(\)" = L(\)" = L(\) = M()).

Let o € II such that w = w's, with £(w) = £(w') + 1. Then w'~ "X is not
antidominant. We claim that p = —a”(w™!)) € N. Since w1\ is antidomi-
nant, 3" (w~tA\) ¢ N for any 3 € ¥'*. In addition, s, permutes the roots of
2+ — {a}, hence (sof) (w™'A) = 7 (w' " "A) ¢ N for any g € Z+ — {a}, and
since w'~ '\ is not antidominant, o (w’~'A) € N. From 21.(i) we get the exact
sequence

0— UNZT(w',w' ') — T(w,w *\) — T(w', w™A) — 0
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of D,,-1y-modules. Since w~'\ is antidominant, by C.3.2, we get the exact
sequence

0— I'(X,U%Z(w' v 'A)) = DX, I(w,w™'\) = I'(X,Z(w',w™'A)) = 0,
and I'(X,Z(w,w™ X)) = I(\) = M () is irreducible. By 14, we have
I'(X,Z(w',w™'\)) = I(54aA) # 0.

This implies that I'(X, U%(Z(w’,w'~* X)) = 0 and I(\) = I(swa)). By dual-
izing we conclude that M(\) = M (sya), what is possible only if A = syqA.
This in turn implies that s, stabilizes w='\, what contradicts a”(w='A) € N.
Therefore, M (\) must be reducible. O

Finally we want to discuss the action of the intertwining functors for simple
reflections on irreducible modules £(w, A).

Proposition 24. Let A € b* and o € II. Then:
(i) If a”(\) ¢ Z, Is, (L(w, X)) = L(wSq, SaN).
(ii) If a”(X\) € Z, there are two possibilities:
(a) if L(wsy) = L(w) + 1, I, (L(w,\)) # 0 and L~ I, (L(w,\)) = 0;
(b) if L(wsy) = L(w) — 1, I, (L(w,\)) =0 and L= T, (L(w,\)) = L(w, $4))-

Proof. (i) In this case, I, is an equivalence of categories by L.3.22, hence it is
an exact functor. By L.3.5. we can assume in addition that A is antidominant
and regular. This implies that s, A is also antidominant and regular. Therefore,
the statement follows from 1..1.16, 1..3.23. and 19.

(ii) Let P, be the parabolic subgroup of type a containing a Borel
subgroup B. Then P, = B U Bs,B. This implies that p_!(p.(C(w))) =
C(w) UC(wsy). Since p,, is a locally trivial projection with fibres isomorphic
to P!, it follows that p;l(pa(C( ) = C(w)UC(wsy). If L(wsy) = £(w) + 1
C(w) € Clwsa) and p (pa(Clw) = Clwsa) # Clw): if £ws,) = ) -
C(wsy) C Clw

) and p,l(pa(C(w))) = C(w). Since supp L(w,\) = C(w),
we see that L(w,\) can be a translate of a module of the form pl (V)
only if l(ws,) = ( ) — 1. Hence, by L.5.6, I_(L(w,A)) = 0 implies that
t(wsa) = L(w) —
It remains to prove the converse. Let £(ws,) = £(w) — 1. In this case, by
21, we have the exact sequence

0 — UZ(wsa, 5a))) — T(w,\) — T(wse, A) — 0

and U%(Z(wsq, 84A)) is a non-zero translate of a module of the form pt (V).
Hence, U%(Z(w$a, Sa\)) contains L£(w, ) as its unique irreducible submod-
ule and, in particular, supp U%(Z(wsa,s4\)) = C(w). Moreover by L.5.5,
L7, (U°(Z(wsy, 5aN))) = U°(Z(wsy, A)). Since, by 17, L™, (Z(wsq, \))
vanishes, from the long exact sequence of derived functors of I, applied to
the preceding short exact sequence, we conclude that

L7, (Z(w, \) = UY(Z(wsqa, A)) # 0.
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Also, since L™, is left exact, we conclude that LI, (L(wsqa,))) = 0.
Consider now the short exact sequence

0 — L(w,\) — ZT(w,\) — Q — 0,

where supp @ C dC(w) = C(w) — C(w). By the preceding discussion, the
conditions C'(v) C 9C(w) and p,l(pe(C(v))) = C(w) imply that v =
wSqo. Therefore, if L£(v,A) would be an irreducible constituent of Q with
supp L~'I,_(L(v,)\)) = C(w), we would have v = ws, what is impossible
by the preceding remark. Hence, by induction in the length of Q, we conclude
that supp L™1I,_ (Q) # C(w). Therefore, the part of the corresponding long
exact sequence of derived intertwining functors

0 —— L7, (L(w,\) —— L7 (Z(w,\)) —— L7, (Q)

U(Z(wsa, M)

implies that the second horizontal arrow is nonzero, hence L=I;_(L(w, \)) #
0. This implies by L.5.4. that I _(L(w,A)) = 0.
Therefore, (ii) is a consequence of L..5.4. 0

V.2 Kazhdan-Lusztig Algorithm

In this section we want to develop an algorithm for calculating the multi-
plicities in the composition series of Verma modules. We start with a critical
combinatorial result.

Let W be the Weyl group of a reduced root system X and S the set of
simple reflections attached to a set of simple roots I1. Denote by £ : W — Z
the length function on (W, S). Let Z[q, ¢~ '] be the localization of Z[q] at (q),
i. e. the ring of finite Laurent series in ¢. Denote by H the Z[q, ¢~ !]-module
with basis 0, w € W. Let € II. Then, for any w € W, either £(ws,) =
l(w) + 1 or £(ws,) = £(w) — 1. We define a Z[q, ¢~ !]-module endomorphism
T, of H by

Q0w + Ows,, if L(wsy) = b(w) + 1;

To(0w) =
(w) { G 0w + Ows,  if L(wsy) = L(w) — 1.

The mentioned combinatorial result is the following theorem.

Theorem 1. There exists a unique function ¢ : W — H, such that the
following properties are satisfied:
(i) for w € W we have

QO(UJ) — 5111 + Z Pwv5v7

v<<w
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where Py, € qZ[q].
(ii) for a € IT and w € W such that {(ws,) = £(w) —1, there exist ¢, € Z,
which depend on o and w, such that

To(p(wsy)) Z cop(v

v<w

The function ¢ : W — H determines an unique family {Py,,|w,v €
W,v < w} of polynomials in Z[g] such that ¢(w) =Y, ., Pwsdy for w e W.
These polynomials are called the Kazhdan-Lusztig polynomials for (W, S).

Remark 2. Our Kazhdan-Lusztig polynomials differ in normalization from
the ones defined originally [KL]. We shall discuss the connection of the two
normalizations later ... .

First we shall prove the uniqueness part of 1. To prove the existence, we
need it in a slightly stronger form. For k € Z_, denote by W<, the set of
elements w € W such that £(w) < k.

Lemma 3. Let k € N. Then there exists at most one function ¢ : W<, — H,
such that the following properties are satisfied:
(i) for w € W<y, we have

QO(UJ) — 5111 + Z Pwv5v7

v<<w

where Py, € qZ[q].
(it) for o € II and w € Wy, such that L(wsy) = L(w) — 1, there exist
Cy € 7, which depend on a and w, such that

To(p(wsy)) Z cop(v

Proof. The proof is by induction in k. Let k = 0. Then W<, = {1}. Clearly,
(i) implies that ¢(1) = d; and (ii) is void in this case.

Assume that £ > 1. By the induction assumption, ¢|W<_; is unique.
Then, for w € W<y, such that £(w) = k we can find a simple root « such that
l(wsy) =L(w) —1=Fk—1. By (ii) we know that

To(p(wsy)) Z cop(v
v<w
and, by evaluating at ¢ = 0 and using (i),

To(p(wsy)) ch

v<w
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By the induction assumption, the left side is uniquely determined. This implies
that ¢, are uniquely determined. On the other hand, if we put y = ws,, we
have

To(p(wsa)) = Ta(0y + Z Pyyby) = Ta(dy) + Z PyoTa(0y)

= ¢y + 6w+ Y _ PyTa(dy).
v<y

By the construction, ¢(v) < £(y) = k — 1. Hence, terms in the expansion of
T« (6,) can involve only 6,, with £(u) < k—1. In particular, they cannot involve
0. This implies that ¢,, = 1. But this yields to

p(w) = Ta(p(wsa)) — Y cop(v).0

The uniqueness part of 1. follows immediately from 3. The difficult part
of the proof of 1. is the existence. We shall prove the existence by relat-
ing the Kazhdan-Lusztig polynomials with the structure of the category
Mon(Dx, Np). As a byproduct of this analysis we shall get a connection be-
tween the Kazhdan-Lusztig polynomials and the multiplicities of irreducible
g-modules in Verma modules.

First we want to establish a “parity” property of solutions of 3. Define
additive involutions i on Z[q,q~!] and + on H by

i(¢™) = (-1)mq¢™ for meZ,
Lqg™0y) = (=)™ TWems, for meZ and weW.

Then (T, is Z[q, ¢~ *]-linear endomorphism of H, and we have

(Tat) (6u) = (1) (Ta(60)) = (=1 4(g00 + Sus,,)
= _(qaw + 51113(,) = _Ta(aw)v

if {(wsqy) = ¢(w) + 1, and

(tTat)(6w) = (_1)£(M)L(Ta(5w)) = (_1)£(w)b(q_15w + Ows, )
= _(q_léw + 5wsa) = _Ta(éw),
if /(wsy) = £(w) — 1. Therefore,

1Tt = —T,.

Lemma 4. Let k € N. Let ¢ : W<y, — H, be a function satisfying the
properties 3.(i) and 3.(ii). Then

Pwv - qﬁ(w)—ﬁ(v)Qwv

where Quy € Z[q?, q72].
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Proof. Define ¢(w) = (—1)")y(p(w)). Then ¢ : We, — H, and

Y(w) = (1) 0By + Y Puudy) =0+ Y _ (=1 i(P,,)4,,

v<w v<w

hence ¢ satisfies 3.(i). By the previous remark, for o € IT and w € W<y, such
that £(wsy) = £(w) — 1, we have

Ta(¥(wsa)) = —(=1)" " Ta(e(p(wsa))) = (=1)"u(Ta(p(wsa)))
= (=D (Y cvp(v)) = (=D Y euilp(v))

v<w v<w
= > (=) ey (v),
v<w
hence 1) satisfies also 3.(ii). Therefore, by 3, we conclude that ¢ = . O

Let F € Mcon(Dx,Ny). For w € W we denote by i, the canoni-
cal immersion of the Bruhat cell C'(w) into X. Clearly, for any k£ € Z,
L=%i+(F) is Np-equivariant connection on C(w), i. e. it is isomorphic to
a sum of copies of Og(y). On the other hand, dimC(w) = {(w), hence
Rr—tw)=kg! (F) = L=*it(F) for any k € Z. We put

v(F) =Y Y dimo(R™il,(F))q"dw.

weW mEZ

Therefore, v is a map from Mo, (Dx, Np) into H.
For any w € W, we put

Ty =I(w,—p) and L, = L(w,—p).
The existence part of 1. follows from the next result.
Proposition 5. Let p(w) = v(Ly,). Then ¢ satisfies 1.(i) and 1.(ii).
Checking that ¢ satisfies 1.(i) is quite straightforward.

Lemma 6. Let o(w) = v(Ly). Then

QD(IU) = 5111 + Z Pwvfsv

v<<w

where Py, € qZ[q].

Proof. Clearly, supp £,, = C(w). By definition of the Bruhat order, v < w
is equivalent with C(v) C C(w). Therefore, we see that R™i! (L,) = 0, for
all m € Z, if v is not less than or equal to w. By Kashiwara’s theorem, we

conclude that

R%,,(Ly) = R%.,(Ts) = R, (R%w+(Ocw))) = Oc(w)
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and, for m # 0,
R™i.,(Ly) = R™iy (L) = R™ily (R %+ (Oc(w))) = 0.

Finally, if v < w, denote by X’ the complement in X of the boundary
0C(v) = C(v) — C(v) of C(v). Let j, be the natural inclusion of C'(v) into
X'. Then j, is a closed immersion. Clearly, £,,|X’ is again irreducible, and
by Kashiwara’s theorem, R%j,, (R%i.(L,)) is the Dx/-submodule of L,|X’
consisting of sections supported on C(v). Since the restriction of an irre-
ducible Dx-module to a nonempty open set is again irreducible, L, |X’ is
an irreducible Dx/-module, which implies that R%j, (R%} (L)) = 0. Hence,
R™i! (L) # 0 is possible only if m > 0. 0

The main part of the proof is to establish that ¢(w) = v(L,,) satisfies
1.(ii). First we need an auxiliary result.

Let a € Il and X, the corresponding flag variety of parabolic subalgebras
of type a. Denote by p, : X — X, the natural projection map. Let C(v)
be a Bruhat cell in X for v € W. Since it is isomorphic to C/(*), the natural
imbedding i, : C'(v) — X is an affine morphism. The projection p,(C(v))
of C(v) to X, is also an affine space, and therefore affinely imbedded into
X,. Since the fibration p, : X — X, is locally trivial, we conclude that
5 (pa(C(v))) is a smooth affinely imbedded subvariety of X. If P, is the
standard parabolic subgroup of type a containing the Borel subgroup B, we
have P, = B U Bs,B. This implies that p_1(p,(C(v))) = C(v) U C(vsy).
One of these Bruhat cells is open and dense in p,!(p,(C(v))), the other one is
closed in p 1 (pa(C(v))). We have either £(vsy) = £(v)+1 or £(vsy) = £(v)—1.
In the first case, dim p, 1 (po (C'(v))) = £(v)+1, C(vsy) is open and C(v) closed
in p 1 (pa(C(v))). In the second case, dim p ! (po(C(v))) = £(v), C(v) is open
and C(vsy) closed in it. Moreover, in the first case py : C'(v) — po(C(v)) is
an isomorphism, while in the second case it is a fibration with fibres isomorphic
to an affine line. We define the functors

UL(F) = pt (Rpay (F)),

from M.(Dx) into itself, for any ¢ € Z. Since the fibres of the projection map
Do+ X — X4 are one-dimensional, U2 can be nonzero only for ¢ € {—1,0,1}.
These functors are closely related to the functors we discussed in L.5. In
particular, we have the following lemma.

Lemma 7. Let w € W and « € II be such that £(ws,) = £(w) — 1. Then:

(i) UL(Lys,) =0 for all ¢ # 0;
(ii) US(Lys,) is a direct sum of L, for v < w.

Proof. First, by the construction, U2(L,,s, ) are holonomic (Dx, Ny)-modules
supported inside the closure of p;!(p(C(w))), which is equal to the closure
of C(w) by the preceding discussion. This implies that U2(L,s,) are of finite
length and their composition factors could be only £, for v < w. Since p, is
a locally trivial fibration with fibres isomorphic to P! and Loys, is the direct
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image of O¢(ys,) and therefore of geometric origin (...), by the decomposition
theorem (...) R+ (Lys, ) are semisimple. This implies, using again the local
triviality of pq, that UZ(L,s, ) are semisimple, and completes the proof of (ii).
To prove (i) we establish the connection with the results in L.5. Let
Y, = X xx_, X denote again the fibered product of X with X relative to
the morphism p,. Denote by ¢; and g2 the corresponding projections of Y,
onto the first and second factor respectively. Then the following diagram

Y, —2 4 X

thJ{ Pal
X P . x,

is commutative. By base change,

Ul(Lws,) = p;t (Rpat(Luws,)) = qu1+(q;- (Luws,))-

Since Dx = D_,, we easily check that UL(Ls, )(a) = U?(Lys, ). Hence, (i)
follows immediately from L.5.4. if we show that Iy (L,s,) # 0. On the other
hand, this follows immediately from 1.21. O
Now we want to calculate v(U2(Lys,)) for w € W and o € II such that
l(wsy) = £(w) — 1. First, let v € W be such that v < w. Then C(v) is in
the closure of C'(w). Since, by our assumption, the closure of C'(w) is also the
closure of p,!(pa(C(w))), we conclude that p,1(ps(C(v))) = C(v) U C(vsa)
is also contained in the closure of C(w), i. e. vs, < w. Therefore, without any
loss of generality, we can assume that £(v) = (vs,) + 1, i. e. C(v) is open
in Zo = p; (pa(C(v))). Let j : Zo — X and 4, : pa(C(v)) — X, be the
natural inclusions. Then we have the following commutative diagram

z, —1 4 x

(Ial pal
Jv

Pa(C(v)) —— X,
and by base change and 7. we get

RF§ U(Luws,)) = H* (R (0t (Rpa+(D(Lws,)))))
= H*~' (Rj'(Rp,(Rpat (D (Lys,)))))
= H* ' (R(pa © j) (Rpa+(D(Lys,))))
= H* " (R(ju 0 a) (Rpa+(D(Lys,))))
= H*"'(Rq,,(Rj, (Rpa+(D(L wsa)))))
= q3 (H" (Rj\(Rpat(D(Luws,)))))
= ¢} (H" (Rga+ (R (D(Luws,)))) -

Now we analyze in more details the structure of the complex Rj'(D(Lys.)).
As we remarked before, Z, = C'(v) UC(vs,), C(v) is open in Z, and C(vsy)
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is closed in it. If we denote by i : C(v) — Z, and @' : C(vsy) — Z, the
canonical affine immersions, we have the following distinguished triangle

i' (Ri"(F)) — F — i (F|C(v))

in the category D?(Dz ), for any object F . Therefore, in particular we have
the following distinguished triangle

iy (Ri" (R (D(Lus,)))) — Ri'(D(Lws,)) — iy (R (D(Lus,))|C(0))
and
iy (Riys, (D(Lus,))) — Rj' (D(Lus,)) — i+ (Riy(D(Lus,)))-
By applying the functor Rg,+ we get the distinguished triangle

Rqo+ (2/+ (Rii;sa (D(Lws.,)))) — Rgay (Rj! (D(Lws,))) — Rgat(is (RZL (D(Lws, ))))I

in D*(D,_ (c(v)))- Since po(C(v)) is a Np-orbit in X,, and all D-modules
involved in the preceding arguments are Ny-equivariant, the cohomologies of
the complexes in this triangle are sums of copies of O, (c(v))- In addition,

Rqay (7’/—|— (Rii)sa (D(‘Cwsa)))) = R(Qa © il)—i—(Rii;sa (D('Cwsa)))

and g, 01" : C(vsa) — pa(C(v)) is an isomorphism. Therefore,

dimo H* (R(qa 01')+(Riy, (D(Lus,)))) = dime R¥i),, (Luys,)

VSqa

for any k € Z. On the other hand,
Ro+ (i4(Riy(D(Lus,)))) = R(ga © 0)+(Riy (D(Lus,)))

and ¢y 0 : C(v) — pa(C(v)) is a a locally trivial projection with fibres
isomorphic to an affine line. Therefore, since cohomologies of Ri. (D(Lys, ))
are sums of copies of O¢(y),

dime H* (R(qq 0 1)+ (Riy(D(Luys,)))) = dimo R¥ iy (Lys,)
for any k € Z. This also leads to the long exact sequence

o= HY (R(go 0 ') (Riby (D(Lys,)))) = H* (Rgas (Rj (D(Lys.)))) I
— H* (R(ga 0 1)1 (Riy,(D(Lus,)))) = H* (R(ga 0 1)1 (Riy,, (D(Luws,)))) — -+

consisting of D, (c(y))-modules which are are sums of copies of O, (c(v))-
Now we want to prove that ¢(w) = v(L,) satisfies 1.(ii) by induction
in the length of w € W. If /(w) = 0, w = 1 and 1.(ii) is void in this case.
Therefore, we can assume that ¢(w) = v(L,,) satisfies 1.(ii) on W<y, for some
k € N. By 4, it satisfies the parity condition on Wy, i. e. for any v € Wy,
we have R¥i\(L,) =0 for allv € W and k € Z, such that k = £(v) — £(u) — 1
(mod 2). Let w € W be such that £(w) = k + 1. Then there exists a € IT
such that {(ws,) = k, i. e. ws, € W<y, Then for any v € W in the preceding
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calculation, we either have k = £(v) —£(wsy) (mod 2) or k = £(v) —L(wsy) —1
(mod 2). In the first case, we have RF*1i} (L, ) =0 and R¥i., (Lys,) =0,
what in turn implies that H*¥(Rgay (Rj'(D(Lys,))) = 0. In the second case,
we see that

dimo H*(Rga+(Rj' (D(Luws,))) = dimo R¥i (Lys,) + dimo R¥i), (Lys, )
This implies that R¥j'(U%(Lys,)) = 0 if k = £(v) — £(ws,) (mod 2), and
dimo R*j (U(Luws,)) = dime RFT, (Lops, ) + dime RFiy, (Lus,)

for k = 4(v) — L(wsy) — 1 (mod 2).
By restricting further to C'(v) and C(vs,) we finally get, for all k € Z,
that

dimo R¥il,(Ud(Lys,)) = dime R¥* i} (Lys,) + dime R¥4),, (Lys,)
and
dimo Ry, (UY(Luws,)) = dimo R¥i, (Lys,) + dimo RF Vi, (Lws,),
what leads to

V(Uao('cwsa)) = Z Zdim@ Rkii;(UaO(Ewsa)) q" b,

veW keZ
= Y 3 dime R¥iL(U(Lus, ) 66,
V85o<V kEZ
+ Z Zdlmo Rk ;! UO([fwsa)) qkévsa
V8o <V KEZ
- Z Z (dim@ Rk+1ii) (Luws,) + dime Rkii)sa ([’wsa)) qk(S”
V8o <v kEZ
+ Z Z (dimo Rkii)(ﬁwsa) + dimep RF 14 ;sa (ﬁwsa)) qk5vsa
V5o <V kKEZ
- Z Z (dim@ Rk—Hii) (Lws,) + dimo Rkii)sa (‘Cwsa)) q* (60 + q0ys,)
V85o<V kEZ
Z Zdnno RF+1;! (Laws.,) k+1(q_15v + Oys,,)
V8o <V kEZ
+ 3 ) dime R¥il, (Lus,) 65 (60 + 0us,)
V8o <V KEZ

= To(V(Lws,)) = Ta(p(wsy)).

In combination with 7. we get

To(p(wsa)) = Lus.,) Z CylV = Z cop(v)

v<w v<w

i. e. 1.(ii) holds for ¢ on W<p41. By induction we see that ¢ satisfies 1.(ii),
and this ends the proof of 5. This also completes the proof of 1.
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Now we want to establish the connection between the Kazhdan-Lusztig
polynomials and the multiplicities of irreducible g-modules in Verma modules.
We start with the following observation.

Lemma 8. The evaluation of the map v at —1 factors through the Grothendieck
group K (Mcon(Dx, No)) of Mcon(Dx, No).

Proof. Evidently

=3 ) ()™ dimo(R™i, (F))) bu.

weEW meZ

On the other hand, if
0 —F — Fo —F3—0
is an exact sequence in M., (Dx, Np), we get a long exact sequence
— R™i, (F1) — R™i., (F2) — R™i,, (F3) — R™V ! (F1) —

of Ny-homogeneous connections on C'(w). By the Euler principle,

> (=)™ dimo (R™i,, (F2))

mEZ
= Z " dime (R™ i, (F1)) + Z ™ dime (R™i.,(F3)).0
me7Z meZ

Also we need the following simple fact.
Lemma 9. v(Z,,) = 0.

Proof. By definition, Z,, = Roiw+(0(;(w)). Therefore, by Kashiwara’s theorem
R,,(Z,y) = R, (Rt (Oc(w))) = Oc(w);
and, for m # 0,
R™i,(Zu) = R™iyy (R4 (Oc(w))) = 0.
Moreover, by the base change, for any y € W, y # w, we have
R™i (L) = R™iy (R4 (Oc(uw))) = 0.0

Let x : Mcon(Dx, No) —+ K(Mcon(Dx, No)) denote the natural map of
the category M on(Dx, Np) into its Grothendieck group.

Theorem 10. Let P,,, w,v € W, be the Kazhdan-Lusztig polynomials of
(W, S). Then

X(Lw) = X(Tw) + D Pun(=1)x(T).

v<<w
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Proof. Since Z,, contains L,, as the unique irreducible submodule, and all
other composition factors are L, for v < w, we see that x(Z,), w € W, form
a basis of K(M.on(Dx, No)). Hence

— Z )\wv X(I

v<w

with Ay, € Z. By 8, v(—1) factors through K (M on(Dx,Np)) and by 9,
v(Z,)(—1) =, for v € W, what leads to

= Z vaV(Iv)(_l) = Z Awody.

v<w v<w

Hence, from definition of P, it follows that Ay, = 1 and Py, (—1) = Ayy. O

This gives an effective algorithm to calculate the multiplicities of irre-
ducible modules in Verma modules for infinitesimal character x,. We can
order the elements of W by an order relation compatible with the Bruhat
order. Then the matrix (Ayy;w,v € W) is lower triangular with 1 on the
diagonal. If (fyy; w,v € W) are the coefficients of its inverse matrix, we see
from 10. that

=3 > Bwvdvu X(Zu Zﬂwv(ZAvuX )

veW veW veWw ueW
- E My X E Mo X
veW v<w

and fi, = 1 for any w € W. By 1.11, 1.14. and 1.19. we finally get the
following result.

Corollary 11. The multiplicity of irreducible module L(—vp) in the Verma
module M (—wp) is equal t0 [y .

Clearly, by twisting by a homogeneous invertible Ox-module we get the
results analogous to 10. for standard modules in Mo, (D), No) for arbitrary
weight p € P(X). This immediately leads to an analogue of 11. for Verma
modules with infinitesimal character x,, for regular weights p € P(X). In the
next section we shall discuss the analogous problem for Verma modules with
arbitrary regular infinitesimal character.

At the end, we list a few simple properties of P,,.

Corollary 12. The coefficients of the Kazhdan-Lusztig polynomials Py, are
non-negative integers.

Proof. This follows immediately from 5. and the definition of the map v. O

Lemma 13. Let w € W with {(ws,) = ¢(w) — 1. Then, for any v € W,
V8q < w is equivalent to v < w. If v < w with £(vsy,) = £(v) — 1, we have
quv = Lwuws, -
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Proof. Tn the proof of 1.21, we have shown that £(ws,) = £(w)—1 is equivalent
to C(w) = p5(pa(C(w))). Therefore, C(v) C C(w) implies that

C(v) UC(vsa) = p5' (Pa(C(v))) € C(w),

i. e. vs, < w. This proves the first assertion.
Moreover, by 1.24. and L.5.6, L,, is of the form pt (V). Therefore, using
the notation from the proof of 5, we have

dime Rpii)sa (ﬁw) = dimp Lp_n+£(v)_1ijsa (Ew) = dimp Lp—n—i—f(v)—ljj-(v)

= dime LP~"HE) =+ (L) = dime RP7Y (L),

for arbitrary v < w such that £(vs,) = £(v) — 1. 0
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G.1 Cosets in Weyl Groups

Let X be a reduced root system and X1 a set of positive roots. Denote by IT
the corresponding set of simple roots. As before, we put

yr=ytn{-w (XN} ={ac X" |waec -XT}.

Lemma 1. Let w € W and o € II. Then the following statements are equiv-
alent:

(i) lwsa) = L(w) + 1,
(i) a ¢ S

Proof. Let £(wsy) = £(w) + 1. Then by L.3.12.(ii) we have
Libsa = Sa(2) U {a},

i.e. v € XF, . This implies that
—wo = wsqa € =X,

lLe.ag¢gXt.
If L(wsy) = L(w) — 1, b(w'sy) = £(w') +1 for w' = ws, and o ¢ XF,. This
in turn implies that

/ /
wa =w'sqa = —w'a e -XT,

and w € XF. O

Let @ C II. Denote by Yo the root subsystem of X' generated by @, and
by We the subgroup of W generated by simple reflections Sg = {s, | € O}.
Clearly, the length function of (Wg, Se) is the restriction of £ to Wg. Also,
define the set

We={wewW|Zino=0={weW|Ocw (X))

Theorem 2. Every element w € W has a unique decomposition in the form
w=w't,w € WO, t € Wo. In addition, {(w) = L(w') + £(t).
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Proof. By 1, for any w € W, the following conditions are equivalent:

(i) we W9,

(ii) £(wsy) = £(w) + 1 for any o € 6.

First we claim that a shortest element in a left Wg-coset must be in W©.
Assume that w is a shortest element in a left Weg-coset and that w ¢ W€. Then
there would exist an o € © with £(ws,) = £(w) — 1. Therefore, there would
exist an element in the same left Wg-coset of shorter length, contradicting
our assumption.

Now we prove, by induction in length, that every element w in a left
We-coset has a decomposition of the form w = w't with w’ € W®, t € Wep
and £(w) = L(w") + £(t). We already proved this for elements of minimal
length. Take an arbitrary element w of a left Wg-coset. If it is in W€ we are
done. If it is not in W®, by the preceding remark we can find an o € © with
{(wsy) = £(w)—1. By the induction assumption ws, = w’t’ for some w’ € W
and t' € Wo with £(ws,) = £(w’) + £(t'). This implies that w = w't’s,. Put
t =tsq. Then w =w't, t € Wg and £(t) < £(t') + 1. Moreover, we have

Yw) <L(w') + L) <L(w') + L)+ 1=Ll(wse) +1=L(w),

which implies that we have the equality £(w) = £(w") + £(t). This completes
the proof of the existence of the decomposition.

To prove that this decomposition is unique it is enough to show that there
is at most one element of W® in each left Wg-coset. Assume that w,w’ € W€
and w = w't with t € Wg. Then

O Ccw {(Zt) =t TH(Z).

The set X5 = Yo N Xt is the set of positive roots in g determined by ©.
Then

oEct ' TH(E,

and
HEE) cw' TH(ET).

Analogously,
oHcwTHET).

Since Wy is isomorphic to the Weyl group of Yg, if £ £ 1, there would exist a
root 3 € X3 such that —3 € ¢(XJ). This would imply that 3, — € w’_1(2+),
which is impossible. Therefore, t = 1 and w = w'. O

Let weo be the longest element in Wg. This element is characterized by
the following property.

Lemma 3. The element we is the unique element in W with the following
properties:
(1) we(0) = —6;

(i) we permutes positive roots outside X7 .
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Proof. To prove that we satisfies (i) it is enough to remark that we maps
positive roots in Y into negative roots.

Let B € ©. Then the reflection sg permutes elements in X+ — {3} and also
roots in Yg. This implies that it also permutes positive roots outside Eg . By
induction in length we conclude that any element of Wg permutes positive
roots outside X3 . This shows that we satisfies (ii).

On the other hand, if w satisfies the conditions (i) and (ii),

w(XT) = (=Zg) U (ZF - %),

and, since W acts simply transitively on all sets of positive roots in Y, there
is only one element of W with this property. O

Theorem 4. (i) Each left Wo-coset in W has a unique shortest element. It
lies in W

(ii) If w is the shortest element in a left Wo-coset C, wwg is the unique
longest element in this coset.

(iii) Each right Weg-coset in W has a unique shortest element.

(iv) If w is the shortest element in a right We-coset C, wow is the unique
longest element in this coset.

Proof. The statements (i) and (ii) follow immediately from 2. Since the anti-
automorphism w — w~! of W preserves Wg, we and the length function
¢: W — Z4, and maps left We-cosets into right We-cosets, (i) and (ii) imply
also (iii) and (iv). 0

Therefore, the set W is a section of the left We-cosets in W consisting
of the shortest elements of each coset. Hence, the shortest elements of right
We-cosets in W are the elements of the set

{fweW|wleWy={weW|OcCwXh)}.

This implies the following result.

Lemma 5. The set
OW={weW|Oc-wX"}

is the section of the set of right Weo-cosets in W consisting of the longest
elements of each coset.

Proof. Let w be the shortest element of a right Wg-coset. Then, by the pre-
ceding discussion, © C w(XT). Therefore,

—0 = we(O) C wew(XT),

and the longest element of this right coset wow is in ®W.
On the other hand, if w € ®W, ©® C —w(X*) and

—0 =we(O) C —wew(X™T),
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what implies that wew is the shortest element in its right Wg-coset. Therefore,
w is the longest element in this coset. O

For a right We-coset C in W we denote by w® the corresponding element
in ®W. We define an order relation on the set We\W of all all right Weg-cosets
by transfering the order relation on ®W induced by the Bruhat order on W.

Proposition 6. Let C' be a right Wg-coset in W and a € II. Then we have
the following three possibilities:

(i) Cso = C;

(ii) C'sq > C, and in this case w°*> = w%s, and L(wsy) = L(w) + 1 for
any w € C;

(iii) Csq < C, and in this case w¥s = w%s, and £(wsy) = L(w) — 1 for
any w € C.

Proof. Assume that C's, # C. Let w be the shortest element in C. Then there
are two possibilities, either £(ws,) = £(w) + 1 or £(wsy) = £(w) — 1.

Assume first that £(ws,) = £(w)+1. Let t € Wg. Suppose that £(tws,) =
{(tw) — 1. Since £(ws,) = ¢(w) + 1, by the exchange condition we conclude
that there exists t’ € Wg such that ws, = t'w. This implies that Cs, = C,
contrary to our assumption. Therefore, £(tws,) = £(tw) + 1. This implies that
w% s, is the longest element in C's, and (ii) holds.

Assume now that £(ws,) = £(w) — 1. Let t € Wg. Then
L(twsy) < L(t) + l(wsy) = L(t) + L(w) — 1 = L(tw) — 1,
which implies £(twsy) = £(tw) — 1. Therefore, w® s, is the longest element in
Csq and (iii) holds. 0
Let C' be a right Wg-coset and w its shortest element. Then w€ = wew
and £(w®) = £(w) +£(we). This implies that we < wew = w® in the Bruhat
order, i. e. Wg < C in the ordering on Wg\W. Hence, Wy is the smallest

element in Weo\W. Later we shall need the following characterization of this
element.

Lemma 7. Let C € Wo\W. Assume that for any o € II we have either
Csq=0C orCsq >C. Then C = Wg.

Proof. Let w be the shortest element in C. Our assumption implies that

l(wsy) = l(w) + 1 for any a € II. But this is possible only if w = 1 and

C =Wep. O
Finally, we remark the following fact.

Lemma 8. If w € ®W and t € We, we have

U(tw) = £(w) — £(2).

Proof. Let w € ®W and t € Wg. Then weow is the shortest element in the
right Weg-coset of w. Moreover, by 2,
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L(tw) = L((twe) (wew)) = L(twe) + L(wew)
=Ll(we) — L(t) + L(wew) = L(w) — £(t).0

Let B be a Borel subgroup of G and Pg the standard parabolic subgroup
of G of type © containing B. Then the Pg-orbits in X are B-invariant, and
therefore unions of Bruhat cells in X. More precisely, we have the following
result.

Lemma 9. Let O be a Po-orbit in X and C(w) C O. Then

0= J Cltw).

teWeo

Proof. This follows from ([LG], Ch. IV, §2, no. 5, Prop. 2). 0
Therefore, we have a bijection between Wo\W and the set of Pg-orbits
in X.
Let C' be a right Wg-coset in W and O the corresponding Pg-orbit. Then
dim O = max dim C(tw®) = max £(tw®) = £(w®),
teWe teWe

by 8. Therefore, C(w®) is the open Bruhat cell in O. This implies the following
result.

Proposition 10. The map attaching to Pg-orbit O in the flag variety X
the unique Bruhat cell C(w) open in O is a bijection between the set of all
Po-orbits in X and the set of Bruhat cells C(w) with w € ®W.

Finally we want to give a geometric interpretation of the order relation on
Weo\W.

Proposition 11. Let C € Wg\W. Let O be the Pg-orbit in X corresponding
to C. Then the closure of O consists of all Pg-orbits in X corresponding to
D <C.

Proof. The Bruhat cell C'(w®) is open in O. Since O is irreducible, C(w®)
is dense in O and O = C(w®). Therefore, O = U,<,,cC(v). On the other
hand, O is a union of Pg-orbits. Let D correspond to a Pg-orbit in O. Then
C(wP) isin O and wP? <w®,i.e. D < C.If D < C, we have wP < w® and

C(wP) c C(w€) = O.If O is the orbit corresponding to D we get

O'c O =C(wP) c C(w®)=0.0
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G.2 Generalized Verma Modules

Let by be a fixed Borel subalgebra of g and denote by By the corresponding
Borel subgroup of the simply connected covering group G of Int(g). To each
subset © of Il we associate a standard parabolic subalgebra pg containing
bo and denote by Pg the corresponding parabolic subgroup of G. Let qo =
[bo,po] and Qe the commutant of Pg.

Lemma 1. (i) The unipotent radical No of Po is the unipotent radical of
Qo -

(ii) Let Lo be a Levi factor of Pg. Then the commutator subgroup Se of
Lo s a Levi factor of Qo.

(iii) The Pg-orbits in X are also Qe -orbits.

(iv) The stabilizer in Po of © € X is connected.

(v) The stabilizer in Qg of x € X is connected.

Proof. Let ¢ be a Cartan subalgebra of g contained in by and R the root
system in ¢*. We identify @ with a subset of the set of simple roots in R
which corresponds to IT under the specialization defined by by. Then pg is
spanned by ¢, and the root subspaces g, corresponding to positive roots in R
and rots of the form —f3 where [ is a sum of roots in @. This implies that the
Lie algebra ng of Ng is spanned by the root subspaces g, corresponding to
positive roots which are not sums of roots in @. Also, the Lie algebra lg of a
Levi factor Lg is spanned by ¢ and the root subspaces g, which are sums of
roots in @ or their negatives. Put sg = [lg, lg]. Then, since [¢,ng| = ng we
have

do = [pe,Pe] = [lo,lo] + [lo,ne] + [ne, ne] = se + ne.

By the conjugacy of Levi decompositions these results are independent of
the choice of ¢. Since Py is connected, the decompositions for groups follow
immediately from the results for their Lie algebras. This completes the proof
of (i) and (ii).

(iii) We see that Qe and By generate Po. Let O be a Pg-orbit in X and
x € O. Then B, N By contain a common Cartan subgroup C of GG, and Ny and
C generate By. This implies that Qg and C generate Pg, and the QQg-orbit
of z agrees with O.

The stabilizer Pg N B, is the semidirect product of the Cartan subgroup C'
with the unipotent radical PoN N, of the stabilizer. Analogously, the stabilizer
Qo N B, is the semidirect product of a Cartan subgroup in Sg with the
unipotent radical Qo N N, of the stabilizer. This immediately implies the
statements (iv) and (v). 0

Clearly, (g, Qo) is a Harish-Chandra pair for any @ C IT. We want to ana-
lyze the categories M con (D, Qo). First we consider standard Harish-Chandra
sheaves.

Let A € b*. Fix a Pg-orbit O in X. Let 7o : O — X be the natural immer-
sion of O into X. The homogeneous twisted sheaf of differential operators D)
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on X defines a Pg-homogeneous twisted sheaf of differential operators (D))
on O. Then the stabilizer of z in Qg is connected by 1.(v). Therefore, there
exists at most one irreducible Q@-homogeneous (Dy)*©-connection on O.
Put
P(Xo)={Xebh*|a’(N) € Z for a € O}.

Lemma 2. Let A € h*. Let O be a Pg-orbit and w € ®W such that the Bruhat
cell C(w) is open in O. Then the following conditions are equivalent:
(i) wA € P(Xg);
(ii) there exist an irreducible Qg-homogeneous (Dy )™ -connection on O.
If such connection exists, it is unique.

Proof. Let x € C(w). Then b,, is a Borel subalgebra in g in relative position w
with respect to by. Let ¢ be a Cartan subalgebra contained in b, N by. Then,
with respect to specialization s defined by by, n, is spanned by root subspaces
g corresponding to o € w(XT). By 1.(v), the stabilizer of z in Qg is the
connected subgroup with the Lie algebra qo N b,. Therefore, with respect to
our specialization, the Lie algebra of the stabilizer is spanned by qe N ¢ and
go With € ZT Nw(Xt) and a € Yo Nw(XT). Since w € W, we see that
the second set is equal to —Eg . Therefore, the stabilizer of x is the semidirect
product of a Borel subgroup of Sg opposite to By N So with the normal
subgroup Ny N N,. This implies that the differential of the representation
of the stabilizer which determines an irreducible Qo-homogeneous (D) )%-
connection on O must be given by the restriction of the specialization of an
element in P(Xg). The specialization s’ defined by b, is equal to sow. Hence,
the linear form which determines the connection is s'(A + p) = s(wA + wp)
and this implies that wA must be in P(Xg). 0

This implies that for any A € h* there exists at most one standard Harish-
Chandra sheaf in M,,(Dx, Qo) attached to the orbit O. We denote it by
Z(0O, \), and its unique irreducible Harish-Chandra subsheaf we denote by
L(0O, A). First, we observe that the irreducible Harish-Chandra sheaves £(O, A)
are actually isomorphic to the irreducible modules we encountered before.
More precisely, we have the following result.

Proposition 3. Let O be a Pg-orbit in X and C(w) the Bruhat cell open in
O. Let w\ € P(Xg). Then L(O,\) = L(w, A).

Proof. Let j : C(w) — O be the natural immersion. Denote by 7 the unique
irreducible Qg-homogeneous (D) )*-connection on O. Then its restriction to
C(w) is an irreducible No-connection and therefore isomorphic to O¢/(y). This
implies that 7 C R0j+((90(w)). Hence,

Z(0,A) = R%io4 (1) C R%04(R%j1+(Oc(w))) = Rt (Oc(w)) = Z(w, A).

Therefore, £(O,\) C Z(w, A). Since £(O, A) is irreducible, it must be equal to
L(w, \). 0
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It remains to analyze Z(O, \). We use the method from V.2.

Lemma 4. Let O be a Pg-orbit in X and C(w) the Bruhat cell open in O.
Then RPi.(Z(O,)\)) = 0 for all v € W such that C(v) € O and p € Z. If
C(v) C O, RPi\ (Z(0,))) =0 if p # L(w) — £(v), and

RH=EE (T(0, X)) = Op(w).

Proof. We use the notation from the preceding proof. Since O is affinely imbed-
ded in X and Zp = R%o, (1), the first assertion follows from the base change.

If we denote by j, the immersion of C'(v) into O, by the base change we
conclude that

RPi,(Z(0, X)) = RVi,(R%0+(7)) = R¥j,(7)
for any p € Z. On the other hand,
RPj, (1) = LP=Am O ik (7)),

what is nonzero only if p — dimO + £(v) = 0, i. e. if p = dimO — £(v) =

¢(w) — £(v), since T is a connection. Moreover, since 7 is locally isomorphic to

Oo, L% F(7) is an Ny-homogeneous connection on C(V') locally isomorphic

to OC(’U)) i. e. Lojj(T) = OC(v)- O
By 1.8, we have £(vw) = £(w) — £(v) for v € W, hence we get

V(Z(0,N) = Y Y dimo(R™i,(Z(0,X) ¢y = Y ¢ by

vEW meZ veEWe

As in the proof of V.2.10 this leads to the following result.

Proposition 5. Let O be a Pg-orbit in X and C(w) the Bruhat cell open in
O. Then

X(I(Ov)‘)) = Z (_1)£(U)X(Z(Uw7)‘))'

veEWo

In particular, if ©@ = II, Pg = G acts transitively on X and the big cell is
the Bruhat cell attached to the G-orbit X. Therefore, we have the following
consequence.

Corollary 6.

X(OA+p) = Y (1) x(Z(wwo, X))

Now we want to describe the highest weight modules which correspond to
standard Harish-Chandra sheaves Z(O, ) under the equivalence of categories



136 G. Generalized Verma Modules

for regular antidominant A. The first step is to construct some objects in the
category of highest weight modules. Let

Pyy(Xo) ={v e P(Yo)|a'(A) € Z4}.

For any v € Py (Xo), if we use the specialization defined by by, there exists a
unique irreducible finite-dimensional [g-module V¥ with highest weight v. The
action of sg on this module is clearly the differential of a unique algebraic Sg-
module action. Therefore, if we extend the actions to pg and Qg by assuming
that they are trivial on ng and Ng respectively, we can view V" as (pg, Se)-
module. For p € h* such that p — p € Py, (Xo), we define the generalized
Verma module

Mo (1) = U(8) Qupe) V™,

here the g-action is given by left multiplication in the first factor and Qg action
is given as the tensor product of the adjoint action on the first factor and the
natural action on the second factor. Clearly, Mg (p) is in M f4(U(g), Qo).

Lemma 7. Let p € h* such that p—p € Py (Xo). The module Mo(p) is the
largest quotient of the Verma module M (p) which is pe-finite.

In particular, Mg(p) is a highest weight module with infinitesimal char-
acter x,,-

Proof. The pg-module V#~* is a quotient of the pg-module U (po) Dri(6,) Cu—p-
Therefore, Mg (p) is a quotient of

U(9) Pupe) UMo) Bu(oy) Cu—p) = U(8) Bu(oy) Cu—p = M (p).

Let N be a quotient of M (x) which is pe-finite. Then it contains a vector v
which is the image of the generator 1 ® 1 € M (u). This vector is a weight
vector of weight y — p and it spans the one-dimensional weight subspace in
N. Let N’ be the finite-dimensional [g-submodule generated by v. Then N’ is
a direct sum of irreducible [g-submodules, and only one of these submodules
can contain the weight subspace corresponding to the weight pu — p. This
implies that N’ is actually irreducible and isomorphic to V#~°. Therefore, the
projection of M (u) onto N factors through Mg (). O

This implies that Mg () is in M4(Ug, Qo) for 0 = W - p.

We know that x(M (X)), A € 0, is a basis of the Grothendieck group
K (M(Up, Ny)). Therefore, we should be able to express x(Meg(p)) in terms of
X(M(X)), A € 0. By Poincaré-Birkhoff-Witt theorem, the enveloping algebra
U(g) is a free right U(pe)-module for right multiplication. This implies that
the induction functor V. — U(g) @y (pe) V from the category of U (pe)-modules
into the category U(g)-modules is exact. If we consider the category of highest
weight modules for sg with respect to its Borel subalgebra by N sg, we can
define the natural functor to the category of U (pe)-modules by extending the
action to the center of [g by a linear form and trivially to ng. The composi-
tion of this functor with the induction functor defines an exact functor from
the category of highest weight modules for sg into the category of highest



G.2 Generalized Verma Modules 137

weight modules for g. Therefore, it defines a morphism of the corresponding
Grothendieck groups.
Next we need the following simple observation.

Lemma 8. Let v € P(X) be a dominant weight and F" the irreducible finite-
dimensional g-module with highest weight v. Then, in the Grothendieck cate-
gory of highest weight modules for g we have

ch(F¥) = Y (=)™ ch(M(w(v + p))).
weWw

Proof. The lowest weight of F' is wov. By 6. we have

X(O(wr)) = Y (=) x(Z(wwo, wor — p)).

By the equivalence of categories and V.1.14 this implies that

ch(F") = Z (=1)5) ch(I(wy — wwop)) = Z (=1)“) ch(M (w(v + p))).0
weW weWw

Proposition 9. Let p € b* such that u— p € Py, (Xg). Then

ch(Mo(w) = 3 (~1)/®) ch(M(up).

Proof. The length function of (We, Se) is the restriction of the length function
¢ of (W,S) to We. Therefore, the statement follows from 6. applied to the
representation V¥~ of [g and the preceding observation about the morphism
of Grothendieck groups defined by the induction functor. O

Put To (1) = Me (1)

Theorem 10. Let A € h* be antidominant. Let O be a Pg-orbit in X and
w € W be such that C(w) is open in O. Assume that wA € P(Xg), so that
Z(O, \) exists. Then:

(i) o (wX) € Zy for o € O;

(i) if " (wA) = 0 for some a € ©, we have I'(X,Z(0O,\)) = 0;

(iii) if & (wA) # 0 fora € O, wA — p € Py (Xo) and we have

I(X,Z(0, ) = Io(w)).

All modules Io(p), with p € W-X and pp—p € P14 (Xo), are obtained in this
way.

Proof. Since w € ®W, (i) holds. Since the functor I is exact for antidominant
A, we have by 5. and V.1.14,
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ch(I'(X,Z(0,N) = Y (-1 x(I'(X,Z(vw,N)))
veWeo

= Z (—1)5(”) ch(I(vwl)).

veWeo

Hence, if a7 (wA) = 0 for some o € O, so(wA) = wA and ch(I'(X,Z(Q,N))) =
0. This clearly implies (ii).

If the assumption in (ii) doesn’t hold, a”(wA — p) = o (wA) — 1 € Z,
hence wA — p € P44 (Xo). The restriction of the irreducible Q@-homogeneous
(D) -connection 7 to C(w) is equal to Oy, s0 we can identify Z(O, X) with
a submodule of Z(w, \). Since I" is exact for antidominant A, this implies that
I'(X,Z(0,\)) is a Ug-submodule of I'( X, Z(w, A)). By V.1.14, it follows that
I'(X,Z(0,)\)) is a pe-finite submodule of I(wA). By dualizing the statement
of 7, we see that I'(X,Z(0,\)) is a submodule of Ig(wA). Finally, by the
preceding calculation and 9, we conclude that

ch(I'(X,Z(0,)\))) = ch(Ig(w)),

and therefore I'(X,Z(0, \)) = Ig(wA).

Let € W- X p—p€ Pyy(Xo). This implies that a”(u) € N for a € ©.
Let w € W be such that —3"(u) € Z, for all B € w(X,). Then A = w1ty is
antidominant, and @ C —w(Xt), i. e, w € OW. O

Now we want to discuss the irreducibility of standard Harish-Chandra
sheaves Z(O, A). First we need a result about the action of the intertwining
functors.

Lemma 11. Let O be a Po-orbit in X and C(w), w € ®W, the Bruhat cell
open in O. Let a € IT be such that ws, € W, L(wsy,) = £(w) +1, and O’ the
corresponding Pg-orbit. Let w\ € P(Xg). Then

I, (Z(O, X)) = Z(O', 54,)) and L™'1,_(Z(O,\)) = 0.

Proof. First we remark that (wsy)saA = wA € P(Xg), hence the standard
module Z(O’, s, A) exists by 2.

Let p, be the projection of X onto the generalized flag variety X, of
parabolic subalgebras of type a. Let () be a Pg-orbit in X corresponding to
C € Wo\W. Then p,(Q) is a Po-orbit in X, corresponding to the double
coset Wo\W/W,_ in W. Therefore, p ' (p(Q)) consists of either:

(a) one Pg-orbit if Cs, = C}

(b) two Pg-orbits if C's, # C.

By our assumption, p;!(p(0)) = OUO’ and dim O’ = dim O + 1. Hence,

dim p,(0) = dimp, ! (pa(0)) — 1 = dim O.

Let 2’ € O. Let P, (1) be the stabilizer of p, (z). Then the stabilizers PoN B,
and Po NP, ;) have the same dimension, and since they are both connected,
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they must be equal. This implies that p;!(pa(z’)) N O consists only of z’.
Therefore,

pa (pa(a’)) = {2} U (05" (pa(a")) N O'),

and Pg N P, (1) acts transitively on o (pa(z')) N O'. Therefore, we finally
conclude that Pg N By acts transitively on p;(pa(z')) N O’ i. e. on the set
of all Borel subalgebras in the relative position s, with respect to b,.

Now we use the notation from L.3. Let Z;, C X x X be the variety of
ordered pairs of Borel subalgebras in relative position s,. Since

p2 (0)
={(z,2") € X x X |z’ € O, b, in relative position s, with respect to b, },

by the preceding remark we see that p; ! (0) is a Pg-orbit of dimension dim O+
1. This implies that pi(p;*(0)) is also a Pg-orbit, hence p1(p;*(0)) = O'.
The stabilizer Po N B, of the point x € O’ in Pp contains the stabilizer
PoNB,N By of (x,2') € p; *(0). Since the dimensions of orbits are the same
and the stabilizers connected, we conclude that p; induces an isomorphism of
py 1(O) onto O,

By 1..3.2 and 2.3, we see that p; ' (O) is affinely imbedded. Therefore, if we
denote by j the affine immersion of p; *(O) into Z,_ and by ¢» the morphism
of py 1 (O) into O induced by ps, we get

p3 (Z(0, X)) = p3 (R%io4(1)) = R%j4 (a* (7))
by base change. This implies that

LI, (D(Z(0,N))) = Rp11(Ts, ®o,,, D(R"j+(¢*(7)))) = R(p1oj)+(7"),

where 7/ is an irreducible Qg-equivariant connection on py ' (O). The image of
p1oj is equal to O', and the map is an immersion. Therefore, LI (D(Z(O, X))
is equal to D(V), where V is a standard Ds_x-module attached to O'. By 2,
this standard module is Z(O', s4 ). O

Let w € ®W. Then X} C —w(X*) and therefore —w=1(Xd) C X+. If
w) € P(Xo), we have Yo C X,x and w™1(Xg) C X\. This implies that

zEn Xy o —w (X)),

Theorem 12. Let O be a Pg-orbit in X and C(w) the Bruhat cell open in
O. Let w\ € P(Xg). Then the following conditions are equivalent:

(i) the standard module Z(O, \) is irreducible;

(i) X N Xy = —w=1(X).

Proof. We prove this by induction in £(w). If £(w) is minimal, w = wy and O
is the closed Pg-orbit in X. In this case Z(O, A) is allways irreducible. On the
other hand, woA € P(Xg) is equivalent to A € P(Xg) and

TP NI\ =XinEy =28 = —wy '(Z3).
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Assume now that the statement holds for £(w) < k. Let £(w) = k. Then,
by 1.7, we can find o € II such that w' = ws, € ®W and £(w') = k — 1.
Let O’ be the Pg-orbit corresponding to w’. Since w'so,A = wA € P(Xy), the
standard module Z(O’, s, A) exists. Now, 11 implies that

I, (Z(0',54)) = Z(0, A),

and L=1I, (Z(O',s5,\)) = 0.
Assume that (ii) holds. Since X} = s,(ZF,) U {a}, we see that

SE N = so(ZF = {a}) N Zy) C —sqw™  (ZF) = —u' 1 (Z3).

By the discussion preceding the theorem, this implies that the above inclusion
is an equality. Therefore, Z(O', s4\) is irreducible by the induction assump-
tion, and o ¢ X\. This implies that I, : My(Ds,n) — Mge(Dy) is an
equivalence of categories and therefore Z(O, A) is also irreducible.

Assume that Z(O,A) is irreducible. If a”(A) is not an integer, I
Mye(Ds,x) = Mye(Dy) is an equivalence of categories and Z(O', s,A) must
also be irreducible. By the induction assumption, we have ZI, N X A =
—w’_l(Eg). Therefore,

TENDN = 5a(ZE)N D5 = 5055 N 5s.0) = —saw' ™ (5F) = —w ™ (Ze).
If ”(A) is an integer, by L.7.3 and 11 we have the exact sequence
0—=U°—=Z(0,\) =Z(0', )\ = U =0,

where the middle arrow is nontrivial. Since the support of Z(O, \) is larger

than the support of Z(O', \), we have a contradiction with the assumption

that Z(O, A) is irreducible. 0
This result has the following consequence.

Theorem 13. Let A € Py (Xo) be regular. Then the following conditions
are equivalent:

(i) Mo () is irreducible;

(i) X3 = {a € Xt |a’(A) € N}.

Proof. Clearly, instead of Mg(\) we can consider Ig()). Let w € ®W be such
that w™!\ is antidominant (such w exists by the proof of 10). Let O be the
Po-orbit attached to the left Wg-coset of w. Then I'( X, Z(0, w™1\)) = Ig(N),
and by the equivalence of categories and 12, this module is irreducible if and
only if Xt N X, 1, = —w~™}(XF). This is equivalent with

Trooniy=Xxg.

Let B € X, NX\. Then 8°(\) € Z and —f € w(X™T), hence —w™'3 € TF
and

B (N) = —(w B (wA) € N,
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Therefore, 37(\) € N. If 87(\) € N for some 8 € ¥, then —w™ !B (w™t\) €
—N, and since w—!\ is antidominant, —w~!8 € X*. This implies that 3 €
—w(X*) and finally 8 € X, N X. Therefore,

Tt onXy={pe Xt |p(N)eNLD

G.3 Kazhdan-Lusztig Algorithm for Generalized Verma
Modules

Let © C II. In this section we assume that A = —p and denote
IO = I(O, —p) and ,CO = E(O, —p).

Consider the Z[q, ¢~ 1]-modules H introduced in V.2. For each right We-
coset C'in W we denote by w® the longest element in this coset and by d¢ the

element of H given by
oo = Z qE(v)ava.

weWeo

Let Ho be the Z[q, ¢~ !]-submodule of H spanned by 6o, C € Weo\W.

Let C € Wo\W and « € II. Then, by 1.6, we have the following three
possibilities: C's, = C'; Cs, > C' and Cs, < C. We want now to calculate the
action of T,, on d¢ in these cases.

Lemma 1. Let C € Wo\W and « € II. Then:
(i) if Csq = C, we have

To(0c) = (g+q7") bc;
(ii) Csq > C, we have

To(0c) = q¢dc + dcs,.;
(iii) Csq < C, we have

To(6c) = q ¢ + dcs, -

Proof. Consider first the case (i). In this case the left multiplication by s,
permutes the elements of C. Let

Ci ={we C|lwsy) =L(w)+ 1}

and
C_ ={we C|l(wsy) =L(w) —1}.

Then C s, = C_ and C_s, = C,. Therefore, if we denote by w® the longest
element in C, we have
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Tu(c) = 3 ¢"OT0(by0c)

veWeo

= Z qe(v)Ta (Opwe) + Z qe(v)Ta (Gpwe)
vwCeCy vwCeC_

- Z qﬁ(v)(q 51}1110 + 6vwosa) + Z qﬁ(v) (q_l 51}1110 + 6vwosa)'
vwCeCy vwceC_

As we remarked before, if vw® € Cy, vw%s, € C_, and therefore vw®s, =

v'w® with
L") = L(w®) =L W) = L(w®) —L(vwsy) = W) —L(vw®) —1 = L(v) —1.
Analogously, if vw® € C_, vw%s, € Cy and vw®s, = v'w® with
(") =L(v) + 1.
Therefore,

Ta((SC) = Z qE(v)—i—l 51)1110 + Z qe(vl)—i_lév’wo

vwCeC v/'wCeC_

+ Z qE(v)—léva + Z qe(v’)_lév’wc
vw®eC_ v/'wCeCy

=Y (@+a " bpe = (a+q7") dc.
veWeo

C

In case (ii), by 1.6, we have w®s, = w®®«. Therefore,

Ta(éc’) - Z qe(v)Ta(éva) = Z qE(v)(q 51)1110 + 51)11103(,) = q50 + 5Csa-
veEWe veEWe

In case (iii), by 1.6, we have w®s, = w®®>. Therefore,

Ta(éc’) = Z qe(v)Ta(éva)
veWeo

= Z qE(v)(q—l 51)1110 + 5vwosa) = q_1 56’ + 5Csa-D
veWeo

Corollary 2. He is invariant under T, o € I1.
Lemma 3. Let C € Wo\W. Then p(w®) € Ho and

QO(U)C) =dc + Z P,c ,pip.
D<C

Proof. Let O be the Pg-orbit corresponding to w®. Then, by 2.3, we know that
L,c = Lo. Let O be a Pg-orbit in O. Denote by ipr the natural inclusion of
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O’ into X. Then RPi,, (Lo) is a Po-equivariant connection on O’, i. e. a sum
of copies of Op/. Assume that D € Wo\W corresponds to O’. Then

Moreover, for any v € Wg, C(vw?) is a smooth subvariety of O of codimension

{(v). Therefore, if we denote by j the immersion of C'(vw?) into O, we see
that RPj'(Op) = 0 for p # £(v), and R*")j'(Op) = Og(ywry- This implies
that, for any p € Z,

RP va(‘CO) RE(U) '(Rp E() (LO))

Therefore,
dime RPil,»(Lo) = dimep RPiy (Lo)

and
dime RPi\, n(Lo) = dimp RP*il, (L) = dime RP~™)i 1 (Lo),

for any p € Z and v € Wg. This implies that

o(w®) =v(LY) = Z Z dime (R™i.,(£0)) ¢™ 6.

weW mEZ

= Z Z Z dimep (R™™ b)) w0 (L£0)) @™ 6yyp

vEWo DEWo \W meEZ

= Z Z Zdlmo Rp’b ,Co)) pHe(v) (vaD

vEWe DEWo \W pEZ

= Y dimpRPil,n(Lo)qPOp= Y Pucy,pdp.0O

DeWe\W peZ DeWe\W

In the following, we put

for C € Wo\W.
Finally, we remark the following fact.

Lemma 4. Let C € Wo\W and o € IT such that Cs, < C. Then

Csa Z CDQO

D<C

for some ¢, € 7.

Proof. By 2. and 3. we know that T, (p(Css)) € He, i. e.

Ta((,O(CSa)) = Z QD5D — Z Z Qqu(v)éva

DEWo\W vEWe DEWo\W
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with Qp € Z[g,q~']. On the other hand,by 1.6 we know that w®** = ws,
and £(w®s,) = £(w®) — 1, hence, by V.2.1, we have

To(p(Csq)) = Ta(@(wcsa)) = Z cop(v).

v<w?

This implies that @Qp are in Z[g|. By evaluating these expressions at 0 we get

S Qp(0)5,0 = Ta(9(Csa)(0) = 3 b

DeWp\W v<w?

This shows that ¢, # 0 implies that v = wP for some D € Wg\W. Therefore,
¢(v) = p(D) and wP? <w® i.e. D<C. O
This leads to the following result generalization of V.2.1.

Theorem 5. There ezists a unique function ¢ : Wo\W — He, such that
the following properties are satisfied:
(i) for C € Wo\W we have

QO(C) =0c + Z Popop.
D<C

where Pop € qZ|q];
(ii) for a € II and C € Wo\W such that Cs, # C and £(w®sy) =
{(w®) — 1, there exist cp € Z, which depend on a and C, such that

Ta(p(Csa)) = Y cpp(D).

D<C

The polynomials Pop are given by the Kazhdan-Lusztig polynomials for
(W, S) by
Pep = Pyo o

for C,D € Wo\W, D < C.

Proof. We already established the existence. It remains to prove the unique-
ness. This part of the argument is analogous to the proof of uniqueness in
V.2.1. First we can assume that @ # II, since in the case ©® = II we have
We = W and the proof is trivial.

The proof is by induction in £(w®). The function C' — £(w®) attains
its minimal value on we and in this case C' = Wg. Clearly, (i) implies that
©(Wo) = 0w, and (ii) is void in this case.

Take C' € Wo\W such that £(w®) > £(we). By the induction assumption,
¢ is uniquely determined on D € Wo\W with £(wP) < ¢(w®). Then, by
1.7, we can find a simple root « such that Cs, < C. By 1.6, we have then
L(wCss) = L(w®) — 1.

By (ii) we know that
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T.(p(Csa) = 3 enp(D).

D<C

and, by evaluating at ¢ = 0 and using (i),

To(p(Csq))(0) = Z cpop.

D<C

By the induction assumption, the left side is uniquely determined. This implies
that c¢p are uniquely determined. On the other hand, if we put C' = Cs,, we
have

Ta((p(osa)) == Ta((SCI —+ Z PC/D(SD)
D<C'

=T.(6c') + Y PorpTa(dp) = qécr +dc+ Y PerpTa(dp).
D<C’ D<C'

By the construction, £(w?) < £(w®") = £(w®) — 1. Hence, terms in the expan-
sion of T,(6p) can involve only dp with £(w?") < £(w®) — 1. In particular,
they cannot involve dc. This implies that cc = 1. But this yields to

p(C) =Ta(p(Csa)) — Y _ cpp(D),

D<C

which proves the uniqueness of ¢(C). 0

Theorem 6. Let Pcp, C,D € Wo\W, be the polynomials of from 5. For
C € Wg /W, denote by Oc the corresponding Po-orbit. Then

X(Lo.) =xTo.)+ Y Pep(-1)x(Zo,)-
D<C

Proof. Since Zp,, contains Lo, as the unique irreducible submodule, and all
other composition factors are Lo, for D < C, we see that x(Zo.), C €
We\W, form a basis of K (M. on(Dx, Pe)). Hence

X(‘COC) = Z AcD X(IOD)
D<C

with Agp € Z. Since v(—1) factors through K (M .n(Dx,Np)) and by 2.6,
v(Ip)(—1) =d0p(—1) for D € Wg\W, what leads to

v(Loo)(=1) = Y Aepv(Zo,)(=1) = ) Aopdn(-
D<C D<C

Hence, from definition of Pep it follows that Ace = 1 and Pep(—1) = Acp.
O

This gives an effective algorithm to calculate the multiplicities of irre-
ducible modules in generalized Verma modules for infinitesimal character x,.
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We can order the elements of Wg\W by an order relation compatible with the
Bruhat order. Then the matrix (A\¢p; C, D € Wo\W) is lower triangular with
1 on the diagonal. If (ucp;C, D € Wo\W) are the coefficients of its inverse
matrix, we see from 6. that

XToo)= Y, > ueprpe x(Zoy)

EcWeo\W DEWe\W

= Y  uen| Y. Aoex(o,)

DeWo\W EcWo\W
= > pop x(Lop) =Y nep x(Lop)
DEWo\W D<C

and poc = 1 for any C' € Wo\W. Hence, from 2.12, 2.5 and V.1.19, we finally
get the following result.

Corollary 7. The multiplicity of irreducible module L(—vp), v € ®W, in
the generalized Verma module Mgo(—wp), w € ®W, is equal to pop where
C,D € Wo\W are the cosets of w and v respectively.



