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CHAPTER 1

Basic differential geometry

1. Differentiable manifolds

1.1. Differentiable manifolds and differentiable maps. LetM be a topo-
logical space. A chart on M is a triple c = (U,ϕ, p) consisting of an open subset
U ⊂ M , an integer p ∈ Z+ and a homeomorphism ϕ of U onto an open set in
Rp. The open set U is called the domain of the chart c, and the integer p is the
dimension of the chart c.

The charts c = (U,ϕ, p) and c′ = (U ′, ϕ′, p′) on M are compatible if either
U ∩ U ′ = ∅ or U ∩ U ′ 6= ∅ and ϕ′ ◦ ϕ−1‘ : ϕ(U ∩ U ′) −→ ϕ′(U ∩ U ′) is a C∞-
diffeomorphism.

A family A of charts on M is an atlas of M if the domains of charts form a
covering of M and all any two charts in A are compatible.

Atlases A and B of M are compatible if their union is an atlas on M . This is
obviously an equivalence relation on the set of all atlases on M . Each equivalence
class of atlases contains the largest element which is equal to the union of all atlases
in this class. Such atlas is called saturated.

A differentiable manifold M is a hausdorff topological space with a saturated
atlas.

Clearly, a differentiable manifold is a locally compact space. It is also locally
connected. Therefore, its connected components are open and closed subsets.

Let M be a differentiable manifold. A chart c = (U,ϕ, p) is a chart around
m ∈M if m ∈ U . We say that it is centered at m if ϕ(m) = 0.

If c = (U,ϕ, p) and c′ = (U ′, ϕ′, p′) are two charts aroundm, then p = p′. There-
fore, all charts around m have the same dimension. Therefore, we call p the dimen-
sion of M at the point m and denote it by dimmM . The function m 7−→ dimmM
is locally constant on M . Therefore, it is constant on connected components of M .

If dimmM = p for all m ∈M , we say that M is an p-dimensional manifold.
Let M and N be two differentiable manifolds. A continuous map F : M −→ N

is a differentiable map if for any two pairs of charts c = (U,ϕ, p) on M and d =
(V, ψ, q) on N such that F (U) ⊂ V , the mapping

ψ ◦ F ◦ ϕ−1 : ϕ(U) −→ ϕ(V )

is a C∞-differentiable map. We denote by Mor(M,N) the set of all differentiable
maps from M into N .

If N is the real line R with obvious manifold structure, we call a differentiable
map f : M −→ R a differentiable function on M . The set of all differentiable func-
tions on M forms an algebra C∞(M) over R with respect to pointwise operations.

Clearly, differentiable manifolds as objects and differentiable maps as mor-
phisms form a category. Isomorphisms in this category are called diffeomorphisms.
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2 1. DIFFERENTIAL GEOMETRY

1.2. Tangent spaces. Let M be a differentiable manifold and m a point in
M . A linear form ξ on C∞(M) is called a tangent vector at m if it satisfies

ξ(fg) = ξ(f)g(m) + f(m)ξ(g)

for any f, g ∈ C∞(M). Clearly, all tangent vectors at m form a linear space which
we denote by Tm(M) and call the tangent space to M at m.

Let m ∈ M and c = (U,ϕ, p) a chart centered at m. Then, for any 1 ≤ i ≤ p,
we can define the linear form

∂i(f) =
∂(f ◦ ϕ−1)

∂xi
(0).

Clearly, ∂i are tangent vectors in Tm(M).

1.2.1. Lemma. The vectors ∂1, ∂2, . . . , ∂p for a basis of the linear space Tm(M).
In particular, dimTm(M) = dimmM .

Let F : M −→ N be a morphism of differentiable manifolds. Let m ∈ M .
Then, for any ξ ∈ Tm(M), the linear form Tm(F )ξ : g 7−→ ξ(g ◦F ) for g ∈ C∞(N),
is a tangent vector in TF (m)(N). Clearly, Tm(F ) : Tm(M) −→ TF (m)(N) is a linear
map. It is called the differential of F at m.

The rank rankm F of a morphism F : M −→ N at m is the rank of the linear
map Tm(F ).

1.2.2. Lemma. The function m 7−→ rankm F is lower semicontinuous on M .

1.3. Local diffeomorphisms, immersions, submersions and subimmer-

sions. Let F : M −→ N be a morphism of differentiable manifolds. The map F
is a local diffeomorphism at m if there is an open neighborhood U of m such that
F (U) is an open set in N and F : U −→ F (U) is a diffeomorphism.

1.3.1. Theorem. Let F : M −→ N be a morphism of differentiable manifolds.
Let m ∈M . Then the following conditions are equivalent:

(i) F is a local diffeomorphism at m;
(ii) Tm(F ) : Tm(M) −→ TF (m)(N) is an isomorphism.

A morphism F : M −→ N is an immersion at m if Tm(F ) : Tm(M) −→
TF (m)(N) is injective. A morphism F : M −→ N is an submersion at m if Tm(F ) :
Tm(M) −→ TF (m)(N) is surjective.

If F is an immersion at m, rankm F = dimmM , and by 1.2.2, this condition
holds in an open neighborhood of m. Therefore, F is an immersion in a neighbor-
hood of m.

Analogously, if F is an submersion at m, rankm F = dimF (m)N , and by 1.2.2,
this condition holds in an open neighborhood of m. Therefore, F is an submersion
in a neighborhood of m.

A morphism F : M −→ N is an subimmerson at m if there exists a neighbor-
hood U of m such that the rank of F is constant on U . By the above discussion,
immersions and submersions at m are subimmersions at p.

A differentiable map F : M −→ N is an local diffeomorphism if it is a local
diffeomorphism at each point of M . A differentiable map F : M −→ N is an
immersion if it is an immersion at each point of M . A differentiable map F : M −→
N is an submersion if it is an submersion ant each point of M . A differentiable
map F : M −→ N is an subimmersion if it is an subimmersion at each point of M .
The rank of a subimmersion is constant on connected components of M .
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1.3.2. Theorem. Let F : M −→ N be a subimmersion at p ∈M . Assume that
rankm F = r. Then there exists charts c = (U,ϕ,m) and d = (V, ψ, n) centered at
p and F (p) respectively, such that F (U) ⊂ V and

(ψ ◦ F ◦ ϕ−1)(x1, . . . , xn) = (x1, . . . , xr, 0, . . . , 0)

for any (x1, . . . , xn) ∈ ϕ(U).

1.3.3. Corollary. Let i : M −→ N be an immersion. Let F : P −→ M be a
continuous map. Then the following conditions are equivalent:

(i) F is differentiable;
(ii) i ◦ F is differentiable.

1.3.4. Corollary. Let p : M −→ N be a surjective summersion. Let F :
N −→ P be a map. Then the following conditions are equivalent:

(i) F is differentiable;
(ii) F ◦ p is differentiable.

1.3.5. Corollary. A submersion F : M −→ N is an open map.

1.4. Submanifolds. Let N be a subset of a differentiable manifold M . As-
sume that any point n ∈ N has an open neighborhood U in M and a chart (U,ϕ, p)
centered at n such that ϕ(N ∩ U) = ϕ(U) ∩ Rq × {0}. If we equip N with the
induced topology and define its atlas consisting of charts on open sets N ∩U given
by the maps ϕ : N ∩ U −→ Rq, N becomes a differentiable manifold. With this
differentiable structure, the natural inclusion i : N −→ M is an immersion. The
manifold N is called a submanifold of M .

1.4.1. Lemma. A submanifold N of a manifold M is locally closed.

1.4.2. Lemma. Let f : M −→ N be an injective immersion. If f is a homeo-
morphism of M onto f(M) ⊂ N , f(M) is a submanifold in N and f : M −→ N is
a diffeomorphism.

Let f : M −→ N is a differentiable map. Denote by Γf the graph of f , i.e., the
subset {(m, f(m)) ∈M ×N | m ∈M}. Then, α : m 7−→ (m, f(m)) is a continuous
bijection ofM onto Γf . The inverse of α is the restriction of the canonical projection
p : M ×N −→M to the graph Γf . Therefore, α : M −→ Γf is a homeomorphism.
On the other hand, the differential of α is given by Tm(α)(ξ) = (ξ, Tm(f)(ξ)) for
any ξ ∈ Tm(M), hence α is an immersion. By 1.4.2, we get the following result.

1.4.3. Lemma. Let f : M −→ N be a differentiable map. Then the graph Γf
of f is a closed submanifold of M ×N .

1.4.4. Lemma. Let M and N be differentiable manifolds and F : M −→ N
a differentiable map. Assume that F is a subimmersion. Then, for any n ∈ N ,
F−1(n) is a closed submanifold of M and

Tm(F−1(n)) = kerTm(F ).

for any m ∈ F−1(n).

In the case of submersions we have a stronger result.

1.4.5. Lemma. Let F : M −→ N be a submersion and P a submanifold of N .
Then F−1(P ) is a submanifold of M and the restriction f |F−1(P ) : F−1(P ) −→ P

is a submersion. For any m ∈ F−1(P ) we also have

Tm(F−1(P )) = Tm(F )−1(TF (m)(P )).
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1.5. Products and fibered products. Let M and N be two topological
spaces and c = (U,ϕ, p) and d = (V, ψ, q) two charts on M , resp. N . Then
(U × V, ϕ×ψ, p+ q) is a chart on the product space M ×N . We denote this chart
by c× d.

Let M and N be two differentiable manifolds with atlases A and B. Then
{c × d | c ∈ A, d ∈ B} is an atlas on M × N . The corresponding saturated atlas
defines a structure of differentiable manifold on M ×N . This manifold is called the
product manifold M ×N of M and N .

Clearly dim(m;n)(M ×N) = dimmM + dimnN for any m ∈M and n ∈ N ..
The canonical projections to pr1 : M ×N −→ M and pr2 : M ×N −→ N are

submersions. Moreover,

(T(m;n)(pr1), T(m;n)(pr2)) : T(m;n)(M ×N) −→ Tm(M) × Tn(N)

is an isomorphism of linear spaces for any m ∈M and n ∈ N .
Let M , N and P be differentiable manifolds and F : M −→ P and G : N −→ P

differentiable maps. Then we put

M ×P N = {(m,n) ∈M ×N | f(m) = g(n)}.

This set is called the fibered product of M and N with respect to maps F and G.

1.5.1. Lemma. If F : M −→ P and G : N −→ P are submersions, the fibered
product M ×P N is a closed submanifold of M ×N .

The projections p : M ×P N −→M and q : M ×P N −→ N are submersions.
For any (m,n) ∈M ×P N ,

T(m;n)(M ×P N) = {(X,Y ) ∈ T(m;n)(M ×N) | Tm(f)(X) = Tn(G)(Y )}.

Proof. Since F and G are submersions, the product map F ×G : M ×N −→
P ×P is also a submersion. Since the diagonal ∆ is a closed submanifold in P ×P ,
from 1.4.5 we conclude that the fiber product M ×P N = (F ×G)−1(∆) is a closed
submanifold of M ×N . Moreover, we have

T(m;n)(M ×P N) = {(X,Y ) ∈ T(m;n)(M ×N) | Tm(F )(X) = Tn(G)(Y )}.

Assume that (m,n) ∈ M ×P N . Then p = f(m) = g(n). Let X ∈ Tm(M). Then,
since G is a submersion, there exists Y ∈ Tn(N) such that Tn(G)(Y ) = Tm(F )(X).
Therefore, (X,Y ) ∈ T(m;n)(M ×P N). It follows that p : M ×P N −→ M is a
submersion. Analogously, q : M ×P N −→ N is also a submersion. �

2. Quotients

2.1. Quotient manifolds. Let M be a differentiable manifold and R ⊂M ×
M an equivalence relation on M . Let M/R be the set of equivalence classes of M
with respect to R and p : M −→M/R the corresponding natural projection which
attaches to any m ∈M its equivalence class p(m) in M/R.

We define on M/R the quotient topology, i.e., we declare U ⊂M/R open if and
only if p−1(U) is open in M . Then p : M −→ M/R is a continuous map, and for
any continuous map F : M −→ N , constant on the equivalence classes of R, there
exists a unique continuous map F̄ : M/R −→ N such that F = F̄ ◦ p. Therefore,
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we have the commutative diagram

M
F //

p

��

N

M/R

F̄

<<zzzzzzzz

.

In general, M/R is not a manifold. For example, assume that M = (0, 1) ⊂ R, and
R the union of the diagonal in (0, 1) × (0, 1) and {(x, y), (y, x)} for x, y ∈ (0, 1),
x 6= y. Then M/R is obtained from M by identifying x and y. Clearly this
topological space doesn’t allow a manifold structure.

x

y

M

M/R

p

p(x)=p(y)

Assume that M/R has a differentiable structure such that p : M −→M/R is a
submersion. Since p is continuous, for any open set U in M/R, p−1(U) is open in
M . Moreover, p is an open map by 1.3.5. Hence, for any subset U ∈M/R such that
p−1(U) is open in M , the set U = p(p−1(U)) is open in M/R. Therefore, a subset U
in M/R is open if and only if p−1(U) is open in M , i.e., the topology on M/R is the
quotient topology. Moreover, by 1.3.4, if the map F from M into a differentiable
manifold N is differentiable, the map F̄ : M/R −→ N is also differentiable.

We claim that such differentiable structure is unique. Assume the contrary and
denote (M/R)1 and (M/R)2 two manifolds with these properties. Then, by the
above remark, the identity maps (M/R)1 −→ (M/R)2 and (M/R)2 −→ (M/R)1
are differentiable. Therefore, the identity map is a diffeomorphism of (M/R)1 and
(M/R)2, i.e., the differentiable structures on M/R are identical.

Therefore, we say that M/R is the quotient manifold of M with respect to R
if it allows a differentiable structure such that p : M −→M/R is a submersion. In
this case, the equivalence relation is called regular.

If the quotient manifold M/R exists, since p : M −→ M/R is a submersion, it
is also an open map.

2.1.1. Theorem. Let M be a differentiable manifold and R an equivalence
relation on M . Then the following conditions are equivalent:

(i) the relation R is regular;
(ii) R is closed submanifold of M ×M and the restrictions p1, p2 : R −→ M

of the natural projections pr1, pr2 : M ×M −→M are submersions.

The proof of this theorem follows from a long sequence of reductions. First
we remark that it is enough to check the submersion condition in (ii) on only one
map pi, i = 1, 2. Let s : M ×M −→ M ×M be given by s(m,n) = (n,m) for
m,n ∈M . Then, s(R) = R since R is symmetric. Since R is a closed submanifold
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and s : M×M −→M ×M a diffeomorphism, s : R −→ R is also a diffeomorphism.
Moreover, pr1 = pr2◦s and pr2 = pr1◦s, immediately implies that p1 is a submersion
if and only if p2 is a submersion.

We first establish that (i) implies (ii). It is enough to remark that R = M×M=R

M with respect to the projections p : M −→ M/R. Then, by 1.5.1 we see that
R is regular, i.e., it is a closed submanifold of M ×M and p1, p2 : R −→ M are
submersions.

Now we want to prove the converse implication, i.e., that (ii) implies (i). This
part is considerably harder. Assume that (ii) holds, i.e., R is a closed submanifold
in M ×M and p1, p2 : R −→ M are submersions. We first observe the following
fact.

2.1.2. Lemma. The map p : M −→M/R is open.

Proof. Let U ⊂M be open. Then

p−1(p(U)) = {m ∈M | p(m) ∈ p(U)}

= {m ∈M | (m,n) ∈ R, n ∈ U} = pr1(R ∩ (M × U)) = p1(R ∩ (M × U)).

Clearly, M × U is open in M × M , hence R ∩ (M × U) is open in R. Since
p1 : R −→ M is a submersion, it is an open map. Hence p1(R ∩ (M × U)) is an
open set in M . By the above formula it follows that p−1(p(U)) is an open set in
M . Therefore, p(U) is open in M/R. �

Moreover, we have the following fact.

2.1.3. Lemma. The quotient topology on M/R is hausdorff.

Proof. Let x = p(m) and y = p(n), x 6= y. Then, (m,n) /∈ R. Since R
is closed in M ×M , there exist open neighborhoods U and V of m and n in M
respectively, such that U × V is disjoint from R. Clearly, by 2.1.2, p(U) and p(V )
are open neighborhoods of x and y respectively. Assume that p(U) ∩ p(V ) 6= ∅.
Then there exists r ∈M such that p(r) ∈ p(U) ∩ p(V ). It follows that we can find
u ∈ U and v ∈ V such that p(u) = p(r) = p(v). Therefore, (u, v) ∈ R, contrary
to our assumption. Hence, p(U) and p(V ) must be disjoint. Therefore, M/R is
hausdorff. �

Now we are going to reduce the proof to a “local situation”.
Let U be an open set in M . Since p is an open map, p(U) is open in M/R.

Then we put RU = R ∩ (U × U). Clearly, RU is an equivalence relation on U .
Let pU : U −→ U/RU be the corresponding quotient map. Clearly, (u, v) ∈ RU
implies (u, v) ∈ R and p(u) = p(v). Hence, the restriction p|U : U −→ M/R is
constant on equivalence classes. This implies that we have a natural continuous
map iU : U/RU −→ M/R such that p|U = iU ◦ pU . Moreover, iU (U/RU ) = p(U).
We claim that iU is an injection. Assume that iU (x) = iU (y) for some x, y ∈ U/RU .
Then x = pU (u) and y = pU (v) for some u, v ∈ U . Therefore,

p(u) = iU (pU (u)) = iU (x) = iU (y) = iU (pU (v)) = p(v)

and (u, v) ∈ R. Hence, (u, v) ∈ RU and x = pU (x) = pU (y) = y. This implies our
assertion. Therefore, iU : U/RU −→ p(U) is a continuous bijection. We claim that
it is a homeomorphism. To prove this we have to show that it is open. Let V be
an open subset of U/RU . Then p−1

U (V ) is open in U . On the other hand,

p−1
U (V ) = p−1

U (i−1
U (iU (V ))) = (p|U )−1(iU (V )) = p−1(iU (V )) ∩ U
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is open in M . Since p is open, p(p−1(iU (V )) ∩ U) is open in M/R. Clearly,
p(p−1(iU (V )) ∩ U) ⊂ iU (V ). On the other hand, if y ∈ iU (V ), it is an equivalence
class of an element u ∈ U . So, u ∈ p−1(iU (V )) ∩U . Therefore, y ∈ p(p−1(iU (V ))∩
U). It follows that p(p−1(iU (V )) ∩ U) = iU (V ). Therefore, iU (V ) is open in M/R
and iU is an open map. Therefore, iU : U/RU −→ M/R is a homeomorphism of
U/RU onto the open set p(U). To summarize, we have the following commutative
diagram

U −−−−→ M

pU





y





y

p

U/RU −−−−→
iU

M/R

where iU is a homeomorphism onto the open set p(U) ⊂M/R.
If R is regular, M/R has a structure of a differentiable manifold and p : M −→

M/R is a submersion. Since U/RU is an open in M/R, it inherits a natural dif-
ferentiable structure, and from the above diagram we see that pU is a submersion.
Therefore, RU is also regular.

Assume now that only (ii) holds for M . Then RU is a closed submanifold of
U × U and open submanifold of R. Therefore, the restrictions pi|RU

: RU −→ U
are submersions. It follows that RU satisfies the conditions of (ii).

We say that the subset U in M is saturated if it is a union of equivalence classes,
i.e., if p−1(p(U)) = U .

First we reduce the proof of the implication to the case local with respect to
M/R.

2.1.4. Lemma. Let (Ui | i ∈ I) be an open cover of M consisting of saturated
sets. Assume that all RUi

, i ∈ I, are regular. Then R is regular.

Proof. We proved that M/R is hausdorff. By the above discussion, for any
j ∈ I, the maps iUj

: Uj/RUj
−→ M/R are homeomorphisms of manifolds Uj/RUj

onto open sets p(Uj) in M/R. Clearly, (p(Uj) | j ∈ I) is an open cover of M/R.
Therefore, to construct a differentiable structure on M/R, it is enough to show that
for any pair (j, k) ∈ J×J , the differentiable structures on the open set p(Uj)∩p(Uk)
induced by differentiable structures on p(Uj) and p(Uk) respectively, agree. Since
Uj and Uk are saturated, Uj ∩Uk is also saturated, and p(Uj ∩Uk) = p(Uj)∩p(Uk).
From the above discussion we see that differentiable structures on p(Uj) and p(Uk)
induce the quotient differentiable structure on p(Uj∩Uk) for the quotient of Uj∩Uk
with respect to RUj∩Uk

. By the uniqueness of the quotient manifold structure, it
follows that these induced structures agree. Therefore, by gluing these structures we
get a differentiable structure on M/R. Since pUj

: Uj −→ Uj/RUj
are submersions

for all j ∈ I, we conclude that p : M −→ M/R is a submersion. Therefore, R is
regular. �

The next result will be used to reduce the proof to the saturated case.

2.1.5. Lemma. Let U be an open subset of M such that p−1(p(U)) = M . If RU
is regular, then R is also regular.

Proof. As we already remarked, iU : U/RU −→ M/R is a homeomorphism
onto the open set p(U). By our assumption, p(U) = M/R, so iU : U/RU −→M/R
is a homeomorphism. Therefore, we can transfer the differentiable structure from
U/RU to M/R.
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It remains to show that p is a submersion. Consider the following diagram

(U ×M) ∩R
p2

−−−−→ M

p1





y





y

p

U −−−−→
pU

U/RU = M/R

.

It is clearly commutative. Since pi : R −→ M , i = 1, 2, are submersions, their
restrictions to the open submanifold (U ×M) ∩ R are also submersions. By our
assumption, pU : U −→ U/RU is also a submersion. Therefore, p ◦ p2|(U×M)∩R =
pU ◦ p1|(U×M)∩R : (U × M) ∩ R −→ M is a submersion. By our assumption,
p2|(U×M)∩R : (U ×M) ∩R −→M is also surjective. Therefore, p : M −→ M/R is
differentiable. Moreover, since p ◦ p2|(U×M)∩R is a submersion, it also follows that
p is a submersion for the differentiable structure on M/R. �

Now we can reduce the proof to a situation local in M .

2.1.6. Lemma. Let (Ui | i ∈ I) be an open cover of M such that RUi
are regular

for all i ∈ I. Then R is regular.

Proof. Since p is open by 2.1.2, we see that p(Ui) are all open. Therefore,
Vi = p−1(p(Ui)), i ∈ I, are open sets in M . They are clearly saturated. Moreover,
since Ui ⊂ Vi for i ∈ I, (Vi | i ∈ I) is an open cover of M . Since RVi

satisfy the
conditions of (ii) and RUi

are regular, by 2.1.5, we see that RVi
are regular for i ∈ I.

Therefore, by 2.1.4, we conclude that R is regular. �

It remains to treat the local case. Assume, for a moment, that R is regular. Let
m0 ∈ M . Then N = p−1(p(m0)) is the equivalence class of m0, and it is a closed
submanifold of M by 1.4.5. Also, the tangent space Tm0(N) to N at m0 is equal to
kerTm0(p) : Tm0(M) −→ Tp(m0)(M/R). On the other hand, since R = M×M=RM ,
by 1.5.1, we see that

Tm0;m0(R) = {(X,Y ) ∈ Tm0(M) × Tm0(M) | Tm0(p)(X) = Tm0(p)(Y )}.

Therefore, we have

Tm0(N) = {X ∈ Tm0(M) | (X, 0) ∈ T(m0;m0)(R)}.

This explains the construction in the next lemma.

2.1.7. Lemma. Let m0 ∈M . Then there exists an open neighborhood U of m0

in M , a submanifold W of U containing m0, and a differentiable map r : U −→W
such that for any m ∈ U the point r(m) is the unique point in W equivalent to m.

Proof. Let

E = {X ∈ Tm0(M) | (X, 0) ∈ T(m0;m0)(R)}.

Let F be a direct complement of the linear subspace E in Tm0(M). Denote by W ′ a
submanifold of M such that m0 ∈W ′ and F = Tm0(W

′). Put Σ = (W ′ ×M) ∩R.
Since p1 : R −→ M is a submersion, by 1.4.5 we see that Σ = p−1

1 (W ′) is a
submanifold of R. Moreover, we have

T(m0;m0)(Σ) = {(X,Y ) ∈ T(m0;m0)(R) | X ∈ Tm0(W
′)}

= {(X,Y ) ∈ T(m0;m0)(R) | X ∈ F}.
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Let φ = p2|Σ, then φ : Σ −→M is a differentiable map. In addition, we have

kerT(m0;m0)(φ) = {(X, 0) ∈ T(m0;m0)(Σ)} = {(X, 0) ∈ T(m0;m0)(R) | X ∈ F}.

On the other hand, (X, 0) ∈ T(m0;m0)(R) implies that X ∈ E, hence for any X in
the above formula we have X ∈ E ∩ F = {0}. Therefore, kerT(m0;m0)(φ) = 0 and
φ is an immersion at m0.

Let Y ∈ Tm0(M). Then, since p2 : R −→ M is a submersion, there exists
X ∈ Tm0(M) such that (X,Y ) ∈ T(m0;m0)(R). Put X = X1 + X2, X1 ∈ E,
X2 ∈ F . Then, since (X1, 0) ∈ T(m0;m0)(R), we have

(X2, Y ) = (X,Y ) − (X1, 0) ∈ T(m0;m0)(R).

Therefore, (X2, Y ) ∈ T(m0;m0)(Σ) and φ is also a submersion at (m0,m0). It follows
that φ is a local diffeomorphism at (m0,m0). Hence, there exist open neighborhoods
U1 and U2 of m0 in M such that φ : Σ ∩ (U1 × U1) −→ U2 is a diffeomorphism.
Let f : U2 −→ Σ ∩ (U1 × U1) be the inverse map. Then f(m) = (r(m),m) for any
m ∈ U2, where r : U2 −→ U1 is a differentiable map. Since φ : Σ∩ (U1×U1) −→ U2

is surjective, we have U2 ⊂ U1. Let m ∈ U2 ∩ W ′. Then we have (m,m) ∈
(W ′ ×M) ∩ R = Σ. Hence, it follows that (m,m) ∈ Σ ∩ (U1 × U1). Also, since
m ∈ U2, (r(m),m) = f(m) ∈ Σ ∩ (U1 × U1). Clearly,

φ(m,m) = p2(m,m) = m = p2(r(m),m) = φ(r(m),m)

and since φ : Σ ∩ (U1 × U1) −→ U2 is an injection, we conclude that r(m) = m.
Therefore, r(m) = m for any m ∈ U2 ∩W ′.

Finally, since r is a differentiable map from U2 into W ′, we can define open sets

U = {m ∈ U2 | r(m) ∈ U2 ∩W
′} and W = U ∩W ′.

We have to check that U , W and r satisfy the assertions of the lemma. First
we show that r(U) ⊂ W . By definition of U , for m ∈ U we have r(m) ∈ U2 ∩W ′.
Hence r(r(m)) = r(m) ∈ U2 ∩W ′. This implies that r(m) ∈ U . Hence, r(m) ∈W .
Since W is an open submanifold of W ′, r : U −→W is differentiable.

Let m ∈ U . Then (r(m),m) = f(m) ∈ R, i.e., r(m) is in the same equivalence
class as m. Assume that n ∈ W is in the same class as m. Then

(n,m) ∈ (W × U) ∩R ⊂ Σ ∩ (U × U)

and φ(n,m) = p2(n,m) = m = φ(r(m),m). Since φ : Σ ∩ (U1 × U1) −→ U2 is an
injection, we see that n = r(m). Therefore, r(m) is the only point in W equivalent
to m. �

Now we can complete the proof of the theorem. Let m0 ∈M and (U,W, r) the
triple satisfying 2.1.7. Let i : W −→ U be the natural inclusion. Then r ◦ i = id.
Therefore, Tm0(r) ◦ Tm0(i) = 1Tm0(W ) and r is a submersion at m0. Therefore,
there exists an open neighborhood V of m0 contained in U such that r : V −→W
is a submersion. Let W1 = r(V ). Then W1 is open in W . We have the following
commutative diagram

V
r //

pV

��

W1

v/RV

β

<<xxxxxxxx

.

Clearly, β is a continuous bijection. We claim that β is a homeomorphism. Let O
be an open set in V/RV . Then p−1

V (O) is open in V . Since r is a submersion, it is
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an open map. Hence, r(p−1
V (O)) = β(pV (p−1

V (O))) = β(O) is open. It follows that
β is also an open map, i.e, a homeomorphism. Hence, we can pull the differentiable
structure from W1 to V/RV . Under this identification, pV corresponds to r, i.e.,
it is a submersion. Therefore, RV is regular. This shows that any point in M has
an open neighborhood V such that RV is regular. By 2.1.6, it follows that R is
regular. This completes the proof of the theorem.

2.1.8. Proposition. Let M be a differentiable manifold and R a regular equiv-
alence relation on M . Denote by p : M −→ M/R the natural projection of M
onto M/R. Let m ∈ M and N the equivalence class of m. Then N is a closed
submanifold of M and

dimmN = dimmM − dimp(m)M/R.

Proof. Clearly, N = p−1(p(m)) and the assertion follows from 1.4.5 and the
fact that p : M −→M/R is a submersion. �

In particular, if M is connected, M/R is also connected and all equivalence
classes have the same dimension equal to dimM − dimM/R.

Let M and N be differentiable manifolds and RM and RN regular equivalence
relations relation on M and N , respectively. Then we can define an equivalence
relation R on M ×N by putting (m,n) ∼ (m′, n′) if and only if (m,m′) ∈ RM and
(n, n′) ∈ RN . Consider the diffeomorphism q : M×M×N×N −→M×N×M×N
given by q(m,m′, n, n′) = (m,n,m′, n′) for m,m′ ∈ M and n, n′ ∈ N . It clearly
maps the closed submanifold RM×RN onto R. Therefore, R is a closed submanifold
of M × N ×M × N . If we denote by pM;i : RM −→ M , pN;i : RN −→ N and
pi : R −→M×N the corresponding projections, we have the following commutative
diagram

M ×N
q //

pM;i×pN;i

��

R

pi{{ww
www

ww
ww

M ×N

.

This implies that R is regular and (M × N)/R exists. Moreover, if we denote by
pM : M −→ M/RM , pN : N −→ N/RN and p : M ×N −→ (M ×N)/R, it clear
that the following diagram is commutative

M ×N
p //

pM×pN

��

(M ×N)/R

zzvvvvvvvvvvvvvvvvvv

M/RM ×N/RN

where all maps are differentiable and the horizontal maps are also submersions.
Since (M ×N)/R −→ M/RM ×N/RN is a bijection, it is also a diffeomorphism.
Therefore, we established the following result.

2.1.9. Lemma. Let M and N be differentiable manifolds and RM and RN reg-
ular equivalence relations on M and N respectively. Then the equivalence relation

R = {((m,n), (m′, n′)) | (m,m′) ∈ RM , (n, n′) ∈ RN}
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is regular. Moreover, the natural map (M ×N)/R −→M/RM ×N/RN is a diffeo-
morphism.

3. Foliations

3.1. Foliations. Let M be a differentiable manifold. Let i : L −→ M be an
immersion of a differentiable manifold L such that

(i) i is a bijection;
(ii) for any m ∈ M there exist a chart (U,ϕ, n) at m; the integers p, q ∈ Z+

such that p+ q = n; and connected open sets V ⊂ Rp, W ⊂ Rq such that
(a) ϕ(U) = V ×W ;
(b) (ϕ ◦ i)−1({v} ×W ) is open in L for any v ∈ V ;
(c) ϕ ◦ i : (ϕ ◦ i)−1({v} ×W ) −→ {v} ×W is a diffeomorphism for any

v ∈ V .

The pair (L, i) is called a foliation of M .

U
ϕ

V

W

M

L

Let m ∈ M . Then the connected component of L containing i−1(m) is called
the leaf of L through m. We denote it by Lm. The map i|Lm

: Lm −→ M is an
immersion since Lm is open in L. In general, Lm is not a submanifold of M .

Clearly, the function m −→ dimLm is locally constant. Therefore, all leaves of
L lying in the same connected component of M have the same dimension.

Let T (M) be the tangent bundle of M . Let E be a vector subbundle of T (M).
We say that E is involutive if the submodule of the C∞(M)-module of all vector
fields on M consisting of sections of E is closed under the Lie bracket [X,Y ] =
X ◦ Y − Y ◦X , i.e., if for any two differentiable vector fields X and Y on M such
that Xm, Ym ∈ Em for all m ∈M , we have [X,Y ]m ∈ Em for all m ∈M .

3.1.1. Lemma. Let (L, i) be a foliation of M . Then T (i)T (L) is an involutive
subbundle of T (M).

Proof. Let m ∈ M . Assume that s ∈ L such that m = i(s). There exists a
chart c = (U,ϕ, n) centered at m such that ϕ(U) = V ×W for connected open sets
V ∈ Rp, W ∈ Rq such that (ϕ ◦ i)−1({v} ×W ) is an open set in L. Denote by ∂j ,
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1 ≤ j ≤ n, the vector fields on U which correspond to the partial derivatives
with respect to the j-th coordinate in Rn under the diffeomorphism ϕ. Then
Tr(i)Tr(L) ⊂ Ti(r)(M) is spanned by vectors (∂j)r, p + 1 ≤ j ≤ n, for any r ∈
i−1(U). Therefore, T (i)T (L) is a vector subbundle of T (M). Moreover, if X and
Y are two vector fields on M such that their values are in T (i)T (L), we have
X =

∑n
j=p+1 fj∂j and Y =

∑n
j=p+1 gj∂j on U . Therefore, we have

[X,Y ] =

n
∑

j;k=p+1

[fj∂j , gk∂k] =

n
∑

j;k=p+1

(

fj∂j(gk)∂k − gk∂k(fj)∂j
)

=
n
∑

j;k=p+1

(

fj∂j(gk) − gj∂j(fk)
)

∂k

and the value of the vector field [X,Y ] is in Lr(i)Tr(L) for any r ∈ i−1(U). �

In the next section we are going to prove the converse of this result.

3.2. Frobenius theorem. Let E be an involutive vector subbundle of T (M).
An integral manifold of E is a pair (N, j) where

(i) N is a differentiable manifold;
(ii) j : N −→M is an injective immersion;
(iii) Ts(j)Ts(N) = Ej(s) for all s ∈ N .

If m = j(s) we say that (N, j) is an integral manifold through m ∈M .
The observation 3.1.1 has the following converse.

3.2.1. Theorem (Frobenius). Let M be a differentiable manifold and E an
involutive vector subbundle of T (M). Then there exists a foliation (L, i) of M with
the following properties:

(i) (L, i) is an integral manifold for E;
(ii) for any integral manifold (N, j) of E there exists a unique differentiable

map J : N −→ L such that the diagram

N
j //

J   B
BB

BB
BB

B M

L

i

OO

commutes and J(N) is an open submanifold of L.

3.2.2. Remark. The map J : N −→ J(N) is a diffeomorphism. First, J
is an injective immersion. In addition, for any s ∈ N , we have dimTJ(s)(L) =
dimEj(s) = dimTs(N) since L and N are integral manifolds. Hence J is also a
submersion.

This also implies that the pair (L, i) is unique up to a diffeomorphism. If we
have two foliations (L, i) and (L′, i′) which are integral manifolds for E, then we
have a commutative diagram

L′ i′ //

J

��

M

L

i

>>}}}}}}}}
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where the mapping I : L′ −→ L is a diffeomorphism.

The pair (L, i) is the integral foliation of M with respect to E.
The proof of Frobenius theorem is based on the following local version of the

result.

3.2.3. Lemma. Let m ∈ M , n = dimmM and q = dimEm. Then there exists
a chart c = (U,ϕ, n) centered at m and connected open sets V ⊂ Rp and W ⊂ Rq

such that ϕ(U) = V ×W and ({v} ×W,ϕ−1|{v}×W ) is an integral manifold of E
for any v ∈ V .

Since {v} ×W are submanifolds of ϕ(U), ϕ−1({v} ×W ) are submanifolds of
M .

We postpone the proof of 3.2.3, and show first how it implies the global result.

3.2.4. Lemma. Let (N, j) be a connected integral manifold of E such that
j(N) ⊂ U . Then there exists v ∈ V such that j(N) ⊂ ϕ−1({v} ×W ) and j(N) is
an open submanifold of ϕ−1({v} ×W ).

Proof. Let p1 : V × W −→ V be the projection to the first factor. Then
p1 ◦ ϕ ◦N −→ V is a differentiable map and for any r ∈ N we have

(T(ϕ◦j)(r)(p1) ◦ Tj(r)(ϕ) ◦ Tr(j))(Tr(N)) = (T(ϕ◦j)(r)(p1) ◦ Tj(r)(ϕ))(Ej(r))

= T(ϕ◦j)(r)(p1)({0} × Rq) = {0},

i.e., the differential of p1 ◦ϕ ◦ j is equal to 0 and, since N is connected, this map is
constant. It follows that there exists v ∈ V such that (ϕ ◦ j)(N) ⊂ {v} ×W . �

Let
B = {j(N) | (N, j) is an integral manifold of E}.

3.2.5. Lemma. The family B is a basis of a topology on M finer than the natural
topology of M .

Proof. Let O1 and O2 be two elements of B such that O1 ∩ O2 6= ∅. Let
r ∈ O1∩O2. We have to show that there exists O3 ∈ B such that r ∈ O3 ⊂ O1∩O2.

Let (U,ϕ, n) be a chart around r satisfying 3.2.3. Let O1 = j1(N1) and O2 =
j2(N2) for two integral manifolds (Ni, ii), i = 1, 2, of E. Let C1 and C2 be the
connected components of j−1

1 (U), resp. j−1
2 (U), containing j−1

1 (r), resp. j−1
2 (r).

Then C1, resp. C2, are open submanifolds of N1, resp. N2, and (C1, j|C1), resp.
(C2, j|C2), are integral manifolds through r. By 3.2.4, there exists v ∈ V such that
r ∈ ϕ−1({v} × W ) and j1(C1) and j2(C2) are open submanifolds of ϕ−1({v} ×
W ) which contain r. Therefore, O3 = j1(C1) ∩ j2(C2) is an open submanifold of
ϕ−1({v} ×W ). Hence O3 is an integral manifold through r and O3 ∈ B.

Since we can take U to be arbitrarily small open set, the topology defined by
B is finer than the naturally topology of M . �

Let L be the topological space obtained by endowing the set M with the topol-
ogy with basis B. Let i : L −→ M be the natural bijection. By 3.2.5, the map i is
continuous. In particular, the topology of L is hausdorff.

Let l ∈ L. By 3.2.3, there exists a chart (U,ϕ, n) around l, and v ∈ V such
that (ϕ−1({v} ×W ), i) is an integral manifold through l. By the definition of the
topology on L, ϕ−1({v} ×W ) is an open neighborhood of l in L. Any open subset
of ϕ−1({v}×W ) in topology of L is an open set of ϕ−1({v}×W ) as a submanifold
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of M . Therefore, i : ϕ−1({v} × W ) −→ M is a homeomorphism on its image.
Clearly, ϕ−1({v} ×W ) has the natural structure of differentiable submanifold of
M . We can transfer this structure to ϕ−1({v} ×W ) considered as an open subset
of L. In this way, L is covered by open subsets with structure of a differentiable
manifold. On the intersection of any two of these open sets these differentiable
structures agree (since they are induced as differentiable structures of submanifolds
of M). Therefore, we can glue them together to a differentiable manifold structure
on L. clearly, for that structure, i : L −→ M is an injective immersion. Moreover,
it is clear that (L, i) is an integral manifold for E. This completes the proof of (i).

Let (N, j) be an integral manifold of E. We define J = i−1 ◦ j. Clearly, J is an
injection. Let r ∈ N and l ∈ L such that j(r) = i(l). Then, by 3.2.3, there exists
a chart (U,ϕ, n) around l, and v ∈ V such that (ϕ−1({v} ×W ), i) is an integral
manifold through l. Moreover, there exists a connected neighborhood O of r ∈ N
such that j(O) ⊂ U . By 3.2.4, it follows that J(O) is an open submanifold in
ϕ−1({v} ×W ). Therefore, J |O : O −→ ϕ−1({v} ×W ) is differentiable. It follows
that J : N −→ L is differentiable. This completes the proof of (ii).

Now we have to establish 3.2.3. We start with the special case where the fibers
of E are one-dimensional. In this case, the involutivity is automatic.

3.2.6. Lemma. Let m ∈ M . Let X be a vector field on M such that Xm 6= 0.
Then there exists a chart (U,ϕ, n) around m such that XU corresponds to ∂1 under
the diffeomorphism ϕ.

Proof. Since the assertion is local, we can assume that U = ϕ(U) ⊂ Rn and
m = 0 ∈ Rn. Also, since Xm 6= 0, we can assume that X(x1)(0) 6= 0. We put

Fj(x1, x2, . . . , xn) = X(xj)

for 1 ≤ j ≤ n. Then we can consider the system of first order differential equations

dϕj
dt

= Fj(ϕ1, ϕ2, . . . , ϕn)

for 1 ≤ j ≤ n, with the initial conditions

ϕ1(0, c2, c3, . . . , cn) = 0

ϕ2(0, c2, c3, . . . , cn) = c2

. . .

ϕn(0, c2, c3, . . . , cn) = cn

for “small” ci, 2 ≤ i ≤ n. By the existence and uniqueness theorem for systems of
first order differential equations, this system has a unique differentiable solutions
ϕj , 1 ≤ j ≤ n, which depend differentiably on t, c1, c2, . . . , cn for |t| < ε and |cj | < ε
for 2 ≤ j ≤ n.

Consider the differentiable map Φ : (−ε, ε)n −→ Rn given by

Φ(y1, y2, . . . , yn) = (ϕ1(y1, y2, . . . , yn), ϕ2(y1, y2, . . . , yn), . . . , ϕn(y1, y2, . . . , yn)).
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Then Φ(0) = 0. Moreover, The Jacobian determinant of this map at 0 is equal to

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂1ϕ1(0) ∂2ϕ1(0) . . . ∂nϕ1(0)
∂1ϕ2(0) ∂2ϕ2(0) . . . ∂nϕ2(0)

...
...

. . .
...

∂1ϕn(0) ∂2ϕn(0) . . . ∂nϕn(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1(0, 0, . . . , 0) 0 . . . 0
F2(0, 0, . . . , 0) 1 . . . 0

...
...

. . .
...

Fn(0, 0, . . . , 0) 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= F1(0, 0, . . . , 0) = X(x1)(0) 6= 0.

Therefore, Φ is a local diffeomorphism at 0. By reducing ε if necessary we can
assume that Φ : (−ε, ε)n −→ Rn is a diffeomorphism onto its image which is
contained in U .

Let y = (y1, y2, . . . , yn) ∈ (−ε, ε)n. Then

Ty(Φ)((∂1)y)(xi) = ∂1(xi ◦ Φ)(Φ(y)) = ∂1ϕi(Φ(y))

=
dϕi
dt

(ϕ1(y1, y2, . . . , yn), ϕ2(y1, y2, . . . , yn), . . . , ϕn(y1, y2, . . . , yn))

= Fi(ϕ1(y1, y2, . . . , yn), ϕ2(y1, y2, . . . , yn), . . . , ϕn(y1, y2, . . . , yn)) = XΦ(y)(xi).

Hence, X and T (Φ)∂1 agree on coordinate functions xi, 1 ≤ i ≤ n. Since vector
fields are uniquely determined by their action on these functions, X = T (Φ)∂1. �

This proves 3.2.3 for vector subbundles such that dimEm = 1 for all m ∈ M .
In this case, the involutivity condition is automatic. To see this, let m ∈M . Then
there exists a vector field X on an open set U around m such that Xs span Es for
any s ∈ U . Therefore, any vector field Y on U such that Ys ∈ Es for all s ∈ U is
of the form Y = fX for some f ∈ C∞(U). Therefore, if Y, Z are two such vector
fields, we have Y = fX , Y = gX for f, g ∈ C∞(U), and

[Y, Z] = [fX, gX ] = fX(g)X − gX(f)X = (fX(g) − gX(f))X.

It follows that E is involutive.
By 3.2.6, by shrinking U if necessary, we can assume that there exists a chart

(U,ϕ, n) around m such that ϕ(U) = (−ε, ε)×V where V is an open connected set
in Rn−1, and X corresponds to ∂1. In this case ϕ−1((−ε, ε) × {v}) are the integral
manifolds for E.

It remains to prove the induction the proof of 3.2.3. We assume that the
assertion holds for all involutive vector subbundles with fibers of dimension ≤ q−1.
Assume that dimEm = q for all m ∈ M . Since the statement is local, we can
assume, without any loss of generality, that M is an connected open set in Rn

and X1, X2, . . . , Xq are vector fields on M such that Es is spanned by their values
X1;s, X2;s, . . . , Xq;s in s ∈M . Since E is involutive,

[Xi, Xj ] =

q
∑

k=1

cijkXk



16 1. DIFFERENTIAL GEOMETRY

with cijk ∈ C∞(M). By 3.2.6, after shrinking M if necessary, we can also assume
that X1 = ∂1. If we write

Xi =

n
∑

j=1

Aij∂j

we see that the values of Y1 = X1 and

Yi = Xi −Ai1∂1

for i = 2, . . . , q, also span Es at any s ∈ M . Therefore, we can assume, after
relabeling, that

X1 = ∂1 and Xi =
n
∑

j=2

Aij∂j for i = 2, . . . , q.

Now, for i, j ≥ 2, we have

[Xi, Xj ] =

n
∑

k;l=2

[Aik∂k, Ajl∂l] =

n
∑

k;l=2

(Aik∂k(Ajl)∂l −Ajl∂l(Aik)∂k)

=

n
∑

k;l=2

(Aik∂k(Ajl) −Ajk∂k(Ail)) ∂l =

n
∑

k=2

Bijk∂k.

On the other hand, we have

[Xi, Xj ] =

n
∑

k=1

cijkXk = cij1∂1 +

n
∑

k;l=2

cijkAkl∂l,

for all i, j ≥ 2. Hence, we conclude that cij1 = 0 for i, j ≥ 2, i.e.,

[Xi, Xj ] =

n
∑

k=2

cijkXk

for i, j ≥ 2. By shrinking M even more, we can assume that M = (−ε, ε)×N where
N is an open subset in Rn−1. Clearly,

Xi;(0;t) =

n
∑

j=2

Aij(0, t)∂j

can be considered as a vector field Zi on N . Moreover, Z2;t, . . . , Zq;t span a (q−1)-
dimensional subspace Ft of T (N) for any t ∈ N . Therefore, they define a vector
subbundle F of T (N). By the above calculation, this subbundle is involutive.
Therefore, by the induction assumption, by shrinking N we can assume that there
exists a coordinate system (y2, . . . , yn) on N such that the submanifolds given by
yq+1 = cq+1, . . . , yn = cn for |ci| < δ for n− q+1 ≤ i ≤ n are integral submanifolds
for F . Relabeling yi, 2 ≤ i ≤ n, as xi, 2 ≤ i ≤ n, defines a new coordinate system
on M such that

Xi =

n
∑

j=2

Aij∂j

with

Aij(0, t) = 0 for q + 1 ≤ j ≤ n,



3. FOLIATIONS 17

for 2 ≤ i ≤ n. Now, for 2 ≤ i, j ≤ n, we have

∂

∂x1
Aij = X1(Xi(xj)) = [X1, Xj ](xj) =

n
∑

k=1

c1jkXk(xj) =

n
∑

k=2

c1jkAkj .

It follows that, for any q + 1 ≤ j ≤ n, the functions Aj = (A2j , . . . , Anj), satisfy
the linear system of first order differential equations

∂

∂x1
Aij =

n
∑

k=2

c1jkAkj

on (−ε, ε) × (−δ, δ)n−1 with the initial conditions

Aij(0, t) = 0,

for 2 ≤ i ≤ n. Therefore, by the uniqueness theorem for such systems, it follows
that Aij = 0 for 2 ≤ i ≤ n and q + 1 ≤ j ≤ n.

Therefore, we finally conclude that X1 = ∂1 and Xi =
∑q
j=2 Aij∂j for 2 ≤

i ≤ q. This implies that Es is spanned by ∂1;s, ∂2;s, . . . , ∂q;s for all s ∈ M . Hence,
the submanifolds given by the equations xq+1 = cq+1, . . . , xn = cn, are integral
manifolds for E. This completes the proof of 3.2.3.

3.3. Separable leaves. In general, a connected manifold M can have a fo-
liation with one leave L such that dim(L) < dim(M). In this section, we discuss
some topological conditions under which this doesn’t happen.

A topological space is called separable if it has a countable basis of open sets.
We start with some topological preparation.

3.3.1. Lemma. Let M be a separable topological space and U = {Ui | i ∈ I} be
an open cover of M . Then there exists a countable subcover of U .

Proof. Let V = {Vn | n ∈ N} be a countable basis of the topology on M .
Every Ui in U is a union of elements in V . Therefore, there exists a subfamily A of
V such that V ∈ A implies V ⊂ Ui for some i ∈ I. Since V is a basis of the topology
of M , A is a cover of M . For each V ∈ A, we can pick Ui such that V ⊂ Ui. In
this way we get a subcover of U which is countable. �

3.3.2. Lemma. Let M be a connected topological space. Let U = {Ui | i ∈ I} be
an open cover of M with the following properties:

(i) Ui are separable for all i ∈ I;
(ii) {j ∈ I | Ui ∩ Uj 6= ∅} is countable for each i ∈ I.

Then M is separable.

Proof. Let i0 ∈ I be such that Ui0 6= ∅. We say that i ∈ I is accessible in n
steps from i0 if there exists a sequence (i1, i2, . . . , in), i = in, such that Uik−1

∩Uik 6=
∅ for k = 1, 2, . . . n.

Let An be the set of all indices accessible in n steps from i0. We claim that An
are countable. First, the condition (ii) implies that A1 is countable. Assume that
An is countable. If j ∈ An+1, there exists i ∈ An such that Uj ∩ Ui 6= ∅. Since An
is countable and (ii) holds we conclude that An+1 must be countable. Therefore
A =

⋃∞
n=1An is countable.

Let U =
⋃

i∈A Ui. Then U is an open subset of M . Since it contains Ui0 it

must be nonempty. Let m ∈ Ū . Then there exists i ∈ I such that m ∈ Ui. Hence,
we have Ui ∩ U 6= ∅. It follows that Ui ∩ Uj 6= ∅ for some j ∈ A. If j ∈ An, we
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see that i ∈ An+1 ⊂ A. Therefore, we have m ∈ Ui ⊂ U . Hence, U is also closed.
Since M is connected, U must be equal to M .

Therefore, M is a union of a countable family of separable open subsets Ui,
i ∈ A. The union of countable bases of topology on all Ui, i ∈ A, is a countable
basis of topology of M . Therefore, M is also separable. �

3.3.3. Lemma. Let M be a locally connected, connected topological space. Let
U = {Un | n ∈ N} be an open cover of M such that each connected component of
Un is separable. Then M is separable.

Proof. Since M is locally connected, the connected components of Un, n ∈ N,
are open in M . Let Un;α, α ∈ An, be the connected components of Un. Therefore,
V = {Un;α | α ∈ An, n ∈ N} is an open cover of M .

Let An;α;m = {β ∈ Am | Un;α ∩ Um;β 6= ∅} for α ∈ An, n,m ∈ N. We claim
that An;α;m is countable for any α ∈ An, n,m ∈ N. First we remark that the
set Um ∩ Un;α is open in Un;α, and since Un;α is separable, Um ∩ Un;α can have
only countably many components. We denote them by Sp, p ∈ N. Since Sp is
connected, it must be contained in a unique connected component Um;β(p) of Um.
Let β ∈ An;α;m. Then we have Um;β ∩ Un;α 6= ∅. If we take s ∈ Um;β ∩ Un;α, then
s is in one of Sp. It follows that β = β(p). It follows that An;α;m is countable.
Hence, the cover V satisfies the conditions of 3.3.2, and M is separable. �

The main result which we want to establish is the following theorem.

3.3.4. Theorem. Let M be a differentiable manifold such that all of its con-
nected components are separable. Let (L, i) be a foliation of M . Then all leaves of
L are separable manifolds.

Proof. Let m ∈M and Lm be the leaf passing through m. We want to prove
that Lm is separable. Since Lm is connected, it lies in a connected component of
M . Therefore, we can replace M with this component, i.e., we can assume that M
is connected and separable.

By 3.3.1, there exists a countable family of charts cn = (Un, ϕn), n ∈ N,
such that Un, n ∈ N, cover M ; ϕn(Un) = Vn ×Wn, Vn and Wn are connected and
(ϕn ◦ i)−1({v}×Wn) are open in L and (ϕn ◦ i) : (ϕn ◦ i)−1({v}×Wn) −→ {v}×Wn

are diffeomorphisms for all v ∈ Vn and n ∈ N. Therefore, {i−1(Un);n ∈ N} is a
countable cover of L. In addition, the connected components of i−1(Un) are of the
form (ϕn ◦ i)−1({v} ×Wn) for v ∈ Vn, hence they are separable. By 3.3.3, the leaf
Lm is separable. �

3.3.5. Remark. A differentiable manifold has separable connected components
if and only if it is paracompact. Therefore, 3.3.4 is equivalent to the statement that
any foliation of a paracompact differentiable manifold is paracompact.

This result allows us to use the following observation.

3.3.6. Lemma. Let M be a differentiable manifold and (L, i) a foliation with
separable leaves. Let N be a differentiable manifold and f : N −→ M a differen-
tiable map such that f(N) is contained in countably many leaves. Then there exists
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a differentiable map F : N −→ L such that the diagram

N
f //

F

��

M

L

i

>>}}}}}}}}

commutes.

Proof. Let p ∈ N and (U,ϕ, n) a chart centered at f(p) such that ϕ(U) =
V ×W where V and W are connected and such that (ϕ ◦ i)−1({v} ×W ) are open
in L and ϕ ◦ i : (ϕ ◦ i)−1({v}×W ) −→ {v}×W are diffeomorphisms for all v ∈ V .
Since the leaves are separable, for a fixed leaf Lm passing through m ∈M , we have
(ϕ ◦ i)−1({v} ×W ) ⊂ Lm for countably many v ∈ V . By our assumption, f(N)
intersect only countably many leaves, ((ϕ ◦ f)−1({v} ×W ) is nonempty for only
countably many v ∈ V .

Let U ′ be a connected neighborhood of p such that f(U ′) ⊂ U . Denote by
pr1 : V ×W −→ V the projection to the first factor. Then (pr1 ◦ϕ ◦ f)|U ′ maps U ′

onto a countable subset of V . Therefore, it is a constant map, i.e., (ϕ ◦ f)(U ′) ⊂
{v0} ×W for some v0 ∈ V . This implies that F is differentiable at p. �

3.3.7. Corollary. Let M be a separable, connected differentiable manifold.
Let (L, i) be a foliation of M . Then either L = M or L consists of uncountably
many leaves.

Proof. Assume that L consists of countably many leaves. Then the identity
map id : M −→ M factors through L by 3.3.6. Therefore, i : L −→ M is a
diffeomorphism and L = M . �

4. Integration on manifolds

4.1. Change of variables formula. Let U and V be an open subset in
Rn and ϕ : U −→ V a diffeomorphism of U on V . Then ϕ(x1, x2, . . . , xn) =
(ϕ1(x1, x2, . . . , xn), ϕ2(x1, x2, . . . , xn)) with ϕi : U −→ R, 1 ≤ i ≤ n, for all
(x1, x2, . . . , xn) ∈ U . Let

J(ϕ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ1

∂x1

∂ϕ1

∂x2
. . . ∂ϕ1

∂xn
∂ϕ2

∂x1

∂ϕ2

∂x2
. . . ∂ϕ2

∂xn

...
...

. . .
...

∂ϕn

∂x1

∂ϕn

∂x2
. . . ∂ϕn

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

be the Jacobian determinant of the mapping ϕ. Then, since ϕ is a diffeomorphism,
J(ϕ)(x1, x2, . . . , xn) 6= 0 for all (x1, x2, . . . , xn) ∈ U .

Let f be a continuous function with compact support on V . Then we have the
change of variables formula

∫

V

f(y1, y2, . . . , yn) dy1 dy2 . . . dyn

=

∫

U

f(ϕ(x1, x2, . . . , xn))|J(ϕ)(x1, x2, . . . , xn)| dx1 dx2 . . . dxn.
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Let ω be the differential n-form with compact support in V . Then ω is given
by a formula

ω = f(y1, y2, . . . , yn) dy1 ∧ dy2 ∧ · · · ∧ dyn

for (y1, y2, ,̇yn) ∈ V . On the other hand,

ϕ∗(ω) = f(ϕ(x1, x2, . . . , xn))J(ϕ)(x1, x2, . . . , xn)dx1 ∧ dx2 ∧ · · · ∧ dxn

for (x1, x2, . . . , xn) ∈ U .

4.2. Positive measure associated to a differential form of top degree.

Let M be a manifold of pure dimension n. Let ω be a differential n-form on M
with compact support. Let c = (U,ϕ, n) be a chart on M such that suppω ⊂ U .
Let d = (V, ψ, n) be another chart such that suppω ⊂ V . Clearly, suppω ⊂ U ∩ V .
We can consider the differential n-forms (ϕ−1)∗(ω) on ϕ(U) ⊂ Rn and (ψ−1)∗(ω)
on ψ(V ) ⊂ Rn. These forms are represented by

(ϕ−1)∗(ω) = fU (x1, x2, . . . , xn) dx1 ∧ dx2 ∧ · · · ∧ dxn,

for all (x1, x2, . . . , xn) ∈ ϕ(U), and

(ψ−1)∗(ω) = fV (y1, y2, . . . , yn) dy1 ∧ dy2 ∧ · · · ∧ dyn,

for all (y1, y2, . . . , yn) ∈ ψ(V ), respectively. Moreover, α = ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→
ψ(U ∩ V ) is a diffeomorphism, and α∗((ϕ−1)∗(ω)) = (ψ−1)∗(ω). By the discussion
in 4.1, we have

(ϕ−1)∗(ω) = α∗((ψ−1)∗(ω))

= fV (α(x1, x2, . . . , xn))J(α)(x1, x2, . . . , xn) dx1 ∧ dx2 ∧ · · · ∧ dxn

for all (x1, x2, . . . , xn) ∈ ϕ(U). Hence,

fU (x1, x2, . . . , xn) = fV (α(x1, x2, . . . , xn))J(α)(x1 , x2, . . . , xn)

for all (x1, x2, . . . , xn) ∈ ϕ(U).
For any continuous function g on M , by the change of variables formula in 4.1,

we also see that
∫

ϕ(U)

g(ϕ−1(x1, x2, . . . , xn)) |fU (x1, x2, . . . , xn))| dx1 dx2 . . . dxn

=

∫

ϕ(U)

g(ϕ−1(x1, . . . , xn)) |fV (α(x1, . . . , xn))| |J(α)(x1, . . . , xn)| dx1 . . . dxn

=

∫

ϕ(U∩V )

g(ϕ−1(x1, . . . , xn)) |fV (α(x1, . . . , xn))| |J(α)(x1, . . . , xn)| dx1 . . . dxn

=

∫

ψ(U∩V )

g(ψ−1(y1, y2, . . . , yn)) |fV (y1, y2, . . . , yn)| dy1 dy2 . . . dyn

=

∫

ψ(V )

g(ψ−1(y1, y2, . . . , yn)) |fV (y1, y2, . . . , yn)| dy1 dy2 . . . dyn.

Therefore, the expression
∫

ϕ(U)

g(ϕ−1(x1, x2, . . . , xn)) |fU (x1, x2, . . . , xn))| dx1 dx2 . . . dxn
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is independent of the choice of the chart c such that suppω ∈ U . Hence we can
define

∫

g|ω| =

∫

ϕ(U)

g(ϕ−1(x1, x2, . . . , xn)) |fU (x1, x2, . . . , xn))| dx1 dx2 . . . dxn,

for any chart c = (U,ϕ, n) such that suppω ⊂ U . The linear map g 7−→
∫

g|ω|
defines a positive measure on M with compact support.

Now we want to extend this definition to differential n-forms on M with arbi-
trary compact support. Let ω be a differentiable N -form with support in a compact
set K in M . Let ci = (Ui, ϕi, n), 1 ≤ i ≤ p, be a finite cover of K by charts. Let
αi, 1 ≤ i ≤ p, be a partition of unity such that

(i) αi, 1 ≤ i ≤ p, are positive smooth functions with compact support on M ;
(ii) suppαi ⊂ Ui for all 1 ≤ i ≤ p;
(iii)

∑p
i=1 αi(m) = 1 for all m ∈ K.

Then ω =
∑p

i=1 αiω. Moreover, the differential n-forms αiω are supported in Ui,
hence the measures |αiω| are well-defined.

We claim that the sum
∑p
i=1 |αiω| is independent of the choice of the cover Ui

and the partition αi. Let dj = (Vj , ψj , n), 1 ≤ j ≤ q, be another open cover of K
by charts on M . Let βj , 1 ≤ j ≤ q, be the corresponding partition of unity. Then,
we have

p
∑

i=1

|αiω| =

p
∑

i=1





q
∑

j=1

βj |αiω|



 =

q
∑

j=1

(

p
∑

i=1

|αiβjω|

)

=

q
∑

j=1

(

p
∑

i=1

αi|βjω|

)

=

q
∑

j=1

|βjω|,

and this establishes our claim. Therefore, we can define

∫

g|ω| =

p
∑

i=1

∫

g|αiω|

for any continuous function g on M .
Finally we want to extend the definition to arbitrary differentiable n-forms on

M . Let K be a compact set in M and α a positive smooth function with compact
support on M such that α(m) = 1 for all m ∈ K. Then αω is a differentiable
n-form with compact support on M . For any continuous function with support in
K, the expression

∫

g|αω| doesn’t depend on the choice of α. In fact, if β is another
positive smooth function on M which is equal to 1 on K, we have

∫

g|αω| =

∫

gβ|αω| =

∫

g|αβω| =

∫

gα|βω| =

∫

g|βω|.

Therefore, we can define
∫

g|ω| =

∫

g|αω|

for any continuous function g with compact support in M . Therefore, ω defines a
positive measure |ω| on M .

From the construction of the positive measure associated to a differentiable
n-form we deduce the following result.
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4.2.1. Proposition. Let M and N be differentiable manifolds and ϕ : M −→
N a diffeomorphism of M onto N . Let ω be a differentiable n-form on N . Then

∫

M

(f ◦ ϕ) |ϕ∗(ω)| =

∫

N

f |ω|

for any compactly supported continuous function f on N .



CHAPTER 2

Lie groups

1. Lie groups

1.1. Lie groups. A set G is a Lie group if

(i) G is a differentiable manifold;
(ii) G is a group;
(iii) the map αG : (g, h) 7−→ gh−1 from the manifold G×G into G is differen-

tiable.

Let G be a Lie group. Denote by m : G × G −→ G the multiplication map
m(g, h) = gh, ι : G −→ G the inversion map ι(g) = g−1 and by i : G 7−→ G × G
the inclusion i(g) = (1, g). Then we have αG ◦ i = ι, hence the inversion map is
differentiable. On the other hand, m = αG ◦ (1G× ι), hence the multiplication map
is also differentiable.

For g ∈ G, we define the left translation γ(g) : G −→ G by γ(g)(h) = gh for
h ∈ G, and the right translation δ(g) : G −→ G by δ(g)(h) = hg−1 for h ∈ G.
Clearly, left and right translations are diffeomorphisms. Therefore, the function
g 7−→ dimg G is constant on G, i.e., the manifold G is of pure dimension.

Let V be a finite-dimensional linear space over R. Then the group GL(V ) of
all linear automorphisms of V has a natural Lie group structure. It is called the
general linear group of V .

A morphism φ : G −→ H of a Lie group G into a Lie group H is a group
homomorphism which is also a morphism of differentiable manifolds.

Let G be a Lie group. Define the multiplication (g, h) 7−→ g ◦ h = hg. The
set G with this operation is a group. Moreover, it is a Lie group. We call this Lie
group Gopp the opposite Lie group of G. The map g 7−→ g−1 is an isomorphism of
G onto Gopp. Evidently, we have (Gopp)opp = G.

Let H be a subgroup of G. If H is a submanifold of G we call it a Lie subgroup
of G.

Let H be a Lie subgroup of G. Then we have the following commutative
diagram:

H ×H −−−−→ G×G

αH





y





y

αG

H −−−−→ G

.

Clearly, the map αH : H × H −→ G is differentiable. This in turn implies that
αH : H ×H −→ H is differentiable and H is a Lie group.

Clearly, the map i : H −→ G is a morphism of Lie groups.
By its definition a Lie subgroup is locally closed.

1.1.1. Lemma. Let G be a topological group and H its locally closed subgroup.
Then H is closed in G.

23
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Proof. Let x be a point in the closure of H . Let V be a symmetric open
neighborhood of 1 in G such that V ∩H is closed in V . Then xV is a neighborhood
of x and since x is in the closure of H , xV ∩H is nonempty. Let y ∈ xV ∩H . Then,
x ∈ yV . Moreover, y(V ∩H) = yV ∩H is closed in yV . Assume that x is not in
H . Then there exists an open neighborhood U of x in yV such that U ∩H = ∅.
But this clearly contradicts our choice of x. Hence, x ∈ H . �

Therefore, we have the following obvious consequence.

1.1.2. Corollary. Any Lie subgroup H of a Lie group G is closed in G.

A(left) differentiable action of G on a manifold M is a differentiable map µ :
G×M −→M satisfying

(i) µ(1G,m) = m for all m ∈M ;
(ii) µ(g, µ(h,m)) = µ(m(g, h),m) for all g, h ∈ G and m ∈ M , i.e., the dia-

gram

G×G×M
idG×µ
−−−−→ G×M

m×idM





y





y

µ

G×M −−−−→
µ

G

is commutative.

Clearly, φ : G × G −→ G defined by φ(g, h) = γ(g)h and ψ(g, h) = δ(g)h,
g, h ∈ G, respectively, define differentiable actions of G on G by left and right
translations respectively.

Let µ : G × M −→ M be a differentiable action of G on M . We denote
µ(g,m) = g · m for g ∈ G and m ∈ M . For any g ∈ G we define the map
τ(g) : M −→ M by τ(g)(m) = g · m for any m ∈ M . It is easy to check that
τ(gh) = τ(g)τ(h). Moreover, τ(g) is differentiable. Hence, for any g ∈ G, τ(g) is a
diffeomorphism of M with inverse τ(g−1).

The set Ω = {g ·m | g ∈ G} is called the G-orbit of m ∈M . The differentiable
map ρ(m) : G −→M given by ρ(m)(g) = g ·m is the orbit map of m. Its image is
the orbit Ω.

The action of G on M is transitive if M is a G-orbit.
The set Gm = {g ∈ G | gm = m} = ρ(m)−1(m) is a subgroup of G which is

called the stabilizer of m in G.

1.1.3. Lemma. For any m ∈ M , the orbit map ρ(m) : G −→ M has constant
rank. In particular, ρ(m) is a subimmersion.

Proof. For any a, b ∈ G we have

(τ(a) ◦ ρ(m))(b) = τ(a)(b ·m) = (ab) ·m = ρ(m)(ab) = (ρ(m) ◦ γ(a))(b),

i.e., we have

τ(a) ◦ ρ(m) = ρ(m) ◦ γ(a)

for any a ∈ G. If we calculate the differential of this map at the identity in G we
get

Tm(τ(a)) ◦ T1(ρ(m)) = Ta(ρ(m)) ◦ T1(γ(a))

for any a ∈ G. Since τ(a) and γ(a) are diffeomorphisms, their differentials Tm(τ(a))
and T1(γ(a)) are isomorphisms of tangent spaces. This implies that rankT1(ρ(m)) =
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rankTa(ρ(m)) for any a ∈ G. Hence the function a 7−→ ranka ρ(m) is constant on
G. �

By 1.1.4.4, we have the following consequence.

1.1.4. Proposition. For any m ∈ M , the stabilizer Gm is a Lie subgroup of
G. In addition, T1(Gm) = kerT1(ρ(m)).

Let G and H be Lie groups and φ : G −→ H a morphism of Lie groups. Then
we can define a differentiable action of G on H by (g, h) 7−→ φ(g)h for g ∈ G and
h ∈ H . The stabilizer in G of 1 ∈ H is the Lie subgroup kerφ = {g ∈ G | φ(g) = 1}.
Therefore, we have the following result.

1.1.5. Proposition. Let φ : G −→ H be a morphism of Lie groups. Then:

(i) The kernel kerφ of a morphism φ : G −→ H of Lie groups is a normal
Lie subgroup of G.

(ii) T1(kerφ) = kerT1(φ).
(iii) The map φ : G −→ H is a subimmersion.

On the contrary the image of a morphism of Lie groups doesn’t have to be a
Lie subgroup.

1.2. Orbit manifolds. Let G be a Lie group acting on a manifold M . We
define an equivalence relation RG on M by

RG = {(g ·m,m) ∈M ×M | g ∈ G, m ∈M}.

The equivalence classes for this relation are the G-orbits in M . The quotient M/RG
is called the orbit space of M and denoted by M/G.

The next result is a variant of 2.1.1 for Lie group actions.

1.2.1. Theorem. Let G be a Lie group acting differentiably on a manifold M .
Then the following conditions are equivalent:

(i) the relation RG is regular;
(ii) RG is a closed submanifold in M ×M .

Proof. First, from 2.1.1, it is evident that (i) implies (ii).
To prove that (ii) implies (i), by 2.1.1, we just have to show that p2 : RG −→M

is a submersion.
Define the map θ : G ×M −→ M × M by θ(g,m) = (g · m,m) for g ∈ G

and m ∈ M . Clearly, θ is differentiable and its image in M ×M is equal to RG.
Therefore, we can view θ as a differentiable map from G ×M onto RG. Then we
have p2 ◦ θ = pr2 : G ×M −→ M . Therefore, this composition is a submersion.
Since θ is surjective, p2 must also be a submersion. �

Therefore, if RG is a closed submanifold, the orbit space M/G has a natural
structure of a differentiable manifold and the projection p : M −→ M/G is a
submersion. In this situation, we say that the group action is regular and we call
M/G the orbit manifold of M .

For a regular action, all G-orbits in M are closed submanifolds of M by 2.1.8.
Let Ω be an orbit in M in this case. By 1.3.3, the induced map G × Ω −→ Ω is
a differentiable action of G on Ω. Moreover, the action of G on Ω is transitive.
For any g ∈ G, the map τ(g) : Ω −→ Ω is a diffeomorphism. This implies that
dimg·m Ω = dimm Ω, for any g ∈ G, i.e., m 7−→ dimmΩ is constant on Ω, and Ω
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is of pure dimension. Moreover, for m ∈ Ω, the orbit map ρ(m) : G −→ Ω is a
surjective subimmersion by 1.1.3.

In addition, the map θ : G×M −→ RG is a differentiable surjection. Fixm ∈M
and let Ω denote its orbit. We denote by jm : G −→ G × M the differentiable
map jm(g) = (g,m) for g ∈ G. Clearly, jm is a diffeomorphism of G onto the
closed submanifold G × {m} of G ×M . Analogously, we denote by km : Ω −→
M ×M the differentiable map given by km(n) = (n,m) for n ∈ Ω. Clearly, km
is a diffeomorphism of Ω onto the closed submanifold Ω × {m}. Since Ω × {m} =
RG ∩ (M ×{m}), we can view it as a closed submanifold of RG. It follows that we
have the following commutative diagram:

G
ρ(m)

−−−−→ Ω

jm





y





y
km

G×M −−−−→
θ

M ×M

.

We say that a regular differentiable action of a Lie group G on M is free if the
map θ : G×M −→ RG is a diffeomorphism.

The above diagram immediately implies that if the action of G is free, all orbit
maps are diffeomorphisms of G onto the orbits. In addition, the stabilizers Gm for
m ∈M are trivial. In §1.4 we are going to study free actions in more detail.

1.3. Coset spaces and quotient Lie groups. Let G be a Lie group and H
be a Lie subgroup ofG. Then µ` : H×G −→ G given by µ`(h, g) = γ(h)(g) = hg for
h ∈ H and g ∈ G, defines a differentiable left action of H on G. The corresponding
map θ` : H×G −→ G×G is given by θ`(h, g) = (hg, g). This map is the restriction
to H×G of the map α` : G×G −→ G×G defined by α`(h, g) = (hg, g) for g, h ∈ G.
This map is clearly differentiable, and its inverse is the map β : G×G −→ G ×G
given by β`(h, g) = (hg−1, g) for g, h ∈ G. Therefore, α` is a diffeomorphism.
This implies that its restriction θ` to H ×G is a diffeomorphism on the image RG.
Therefore, RG is a closed submanifold of G × G, and this action of H on G is
regular and free. The quotient manifold is denoted by H\G and called the right
coset manifold of G with respect to H .

Analogously, µr : H ×G −→ G given by µr(h, g) = δ(h)(g) = gh−1 for h ∈ H
and g ∈ G, defines a differentiable left action of H on G. The corresponding map
θ : H×G −→ G×G is given by θr(h, g) = (gh−1, g). This map is the restriction to
H×G of the map αr : G×G −→ G×G defined by αr(h, g) = (gh−1, g) for g, h ∈ G.
This map is clearly differentiable, and its inverse is the map βr : G×G −→ G×G
given by βr(h, g) = (gh, g) for g, h ∈ G. Therefore, αr is a diffeomorphism. This
implies that its restriction θr to H × G is a diffeomorphism on the image RG.
Therefore, RG is a closed submanifold of G × G, and this action of H on G is
regular and free. The quotient manifold is denoted by G/H and called the left
coset manifold of G with respect to H .

Since G acts differentiably on G by right translations, we have a differentiable

map G×G
m
−→ G

p
−→ H\G. This map is constant on right cosets in the first factor.

By the above discussion it induces a differentiable map µH;r : G×H\G −→ H\G.
It is easy to check that this map is a differentiable action of G on H\G.

Analogously, we see that G acts differentiably on the left coset manifold G/H .
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IfN is a normal Lie subgroup ofG, from the uniqueness of the quotient it follows
that G/N = N\G as differentiable manifolds. Moreover, the map G×G −→ G/N
given by (g, h) −→ p(gh−1) = p(g)p(h)−1 factors through G/N×G/N . This proves
that G/N is a Lie group. We call it the quotient Lie group G/N of G with respect
to the normal Lie subgroup N .

Let G be a Lie group acting differentiably on a manifold M . Let m ∈ M and
Gm the stabilizer of m in G. Then the orbit map ρ(m) : G −→ M is constant on
left Gm-cosets. Therefore, it factors through the left coset manifold G/Gm, i.e., we
have a commutative diagram

G
ρ(m) //

p

��

M

G/Gm

o(m)

;;xxxxxxxx

.

Since ρ(m) is a has constant rank by 1.1.3, we have

rankg ρ(m) = rank1 ρ(m) = dim imT1(ρ(m)) = dimT1(G) − dim kerT1(ρ(m))

= dimT1(G) − dimT1(Gm) = dimG− dimGm = dimG/Gm.

On the other hand, since p is a submersion we have rankp(g) o(m) = rankg ρ(m) =
dimG/Gm. Since p is surjective, this in turn implies that o(m) is also a subimmer-
sion. On the other hand, o(m) is injective, therefore it has to be an immersion.

1.3.1. Lemma. The map o(m) : G/Gm −→M is an injective immersion.

In particular, if φ : G −→ H a morphism of Lie groups, we have the commuta-
tive diagram

G
φ //

p

��

H

G/ kerφ

Φ

;;wwwwwwwww

of Lie groups and their morphisms. The morphism Φ is an immersion. There-
fore, any Lie group morphism can be factored into a composition of two Lie group
morphisms, one of which is a surjective submersion and the other is an injective
immersion.

1.4. Free actions. Let G be a Lie group acting differentiably on a manifold
M . Assume that the action is regular. Therefore the quotient manifold M/G exists,
and the natural projection p : M −→ M/G is a submersion. Let U be an open set
in M/G. A differentiable map s : U −→ M is called a local section if p ◦ s = idU .
Since p is a submersion, each point u ∈ M/G has an open neighborhood U and a
local section s on U .

Let U ⊂ M/G be an open set and s : U −→ M a local section. We define
a differentiable map ψ = µ ◦ (idG × s) : G × U −→ M . Clearly, if we denote by
p2 : G× U −→ U the projection to the second coordinate, we have

p(ψ(g, u)) = p(µ(g, s(u))) = p(g · s(u)) = p(s(u)) = u = p2(g, u)
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for any g ∈ G and U , i.e., the diagram

G× U
ψ

−−−−→ M

p2





y





y

p

U −−−−→ M/G

is commutative.
Clearly, the open subset p−1(U) of M is saturated and s(U) ⊂ p−1(U). Let

m ∈ p−1(U). Then p(m) corresponds to the orbit Ω of m. Moreover, p(s(p(m))) =
p(m) and s(p(m)) is also in Ω. This implies that m = g · s(p(m)) = ψ(g, p(m)) for
some g ∈ G, and the map ψ is a differentiable surjection of G× U onto p−1(U).

Let m = s(u) for u ∈ U and g ∈ G. Denote by Ω the G-orbit through
m. Then Tm(p) ◦ Tu(s) = 1Tu(M=G). Therefore, Tu(s) : Tu(M/G) −→ Tm(M)
is a linear injection, Tm(p) is a linear surjection, kerTm(p) ∩ imTu(s) = {0} and
Tm(M) = kerTm(p) ⊕ imTu(s). By 1.1.4.4, we have kerTm(p) = Tm(Ω). Hence,
we have Tm(M) = Tm(Ω) ⊕ imTu(s).

Now we want to calculate the differential T(g;u)(ψ) : T(g;u)(G×U) −→ Tg·m(M).
Let iu : G −→ G× {u} and ig : U −→ {g} × U . First, we have

(ψ◦iu)(h) = h·m = τ(g)(g−1·h·m) = (τ(g)◦ρ(m))(g−1h) = (τ(g)◦ρ(m)◦γ(g−1))(h),

for any h ∈ G. So, by taking the differentials

Tg(ψ ◦ iu) = Tm(τ(g)) ◦ T1(ρ(m)) ◦ Tg(γ(g−1)).

Second, we have

(ψ ◦ ig)(v) = g · s(v) = (τ(g) ◦ s)(v)

so, by taking differentials we have

Tu(ψ ◦ ig) = Tm(τ(g)) ◦ Tu(s).

Since T(g;u)(G× U) = Tg(G) ⊕ Tu(M/G), we have the formula

T(g;u)(ψ)(X,Y ) = Tm(τ(g))(T1(ρ(m))(Tg(γ(g−1))(X))) + Tm(τ(g))(Tu(s)(Y ))

= Tm(τ(g))

(

T1(ρ(m))(Tg(γ(g−1))(X)) + Tu(s)(Y )

)

for X ∈ Tg(G) and Y ∈ Tu(M/G). Since τ(g) is a diffeomorphism, Tm(τ(g)) :
Tm(M) −→ Tg·m(M) is a linear isomorphism. Moreover, since γ(g) is a diffeomor-
phism, Tg(γ(g−1)) : Tg(G) −→ T1(G) is a linear isomorphism. Hence, T(g;u)(ψ) is
surjective if and only if

imT1(ρ(m)) + imTu(s) = Tm(M).

Clearly, imT1(ρ(m)) ⊂ Tm(Ω) and as we already remarked Tm(Ω) ⊕ imTu(s) =
Tm(M). Hence, T(g;u)(ψ) is surjective if and only if T1(ρ(m)) : T1(G) −→ Tm(Ω) is
surjective.

Therefore, ψ is a surjective submersion of G×U onto p−1(U) if and only if all
orbit maps ρ(m) are submersions of G onto the orbits of m ∈ s(U). Since

ρ(h ·m) = ρ(m) ◦ δ(h−1)

and δ(h−1) is a diffeomorphism, we see that ρ(h · m), h ∈ G, are subimmersions
of the same rank. Therefore, the above condition is equivalent to all maps ρ(m)
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being submersions of G onto orbits of m ∈ p−1(U). By 1.3.1, this is equivalent to
all maps o(m) being diffeomorphisms of G/Gm onto orbits of m ∈ p−1(U).

LetM be a manifold. Consider the action ofG onG×M given by µM (g, (h,m)) =
(gh,m) for any g, h ∈ G and m ∈ M . This is clearly a differentiable action
and RG = {(g,m, h,m) ∈ G × M × G × M}. Therefore, RG is a closed sub-
manifold of G × M × G × M and this action is regular. Moreover, the corre-
sponding map θM : G × G × M −→ G × M × G × M is given by the formula
θM (g, h,m) = (gh,m, h,m) for g, h ∈ G and m ∈ M , hence it is a diffeomorphism
of G×G×M onto RG and the action of G on G×M is free.

No we we want to give a natural characterization of free actions and show that
they locally look like the free action from the above example.

1.4.1. Theorem. Let G be a Lie group acting differentiably on a manifold M .
Assume that the action is regular. Then the following conditions are equivalent:

(i) the action of G is free;
(ii) all orbit maps ρ(m) : G −→ Ω, m ∈M , are diffeomorphisms;
(iii) for any point u ∈M/G there exists an open neighborhood U of u in M/G

and a local section s : U −→M such that the map ψ : G× U −→ M is a
diffeomorphism of G× U onto the open submanifold p−1(U) of M .

Proof. We already established that if the action of G is free, all orbit maps
are diffeomorphisms. Hence, (i) implies (ii). If (ii) holds, by the above discussion,
we see that ψ is a surjective submersion. On the other hand,

dim(g;u)(G× U) = dimG+ dimu(M/G) = dim Ω + dimu(M/G) = dimg·mM,

so T(g;u)(ψ) is also injective. Therefore, ψ is a local diffeomorphism. On the other
hand, if ψ(g, u) = ψ(h, v), we have u = p(ψ(g, u)) = p(ψ(h, v)) = v. Moreover,
g ·u = h ·u implies that g = h, since the orbit maps are diffeomorphisms. It follows
that ψ is a bijection. Since it is a local diffeomorphism, it must be a diffeomorphism.
Therefore, (iii) holds.

It remains to show that (iii) implies (i). First assume that we have an open
set U in M/G and a local section s on U such that ψ : G × U −→ p−1(U) is a
diffeomorphism. Then, p−1(U) is G-invariant and we can consider the G-action
induced on p−1(U). Clearly, this action of G is differentiable. If we consider the
action of G onto G× U from the previous example, the diagram

G×G× U
µU

−−−−→ G× U

idG×ψ





y





y
ψ

G× p−1(U)
µ

−−−−→ p−1(U)

is commutative, since

ψ(µU (g, (h, u))) = ψ(gh, u) = gh · s(u) = µ(g, ψ(h, s(u)))

for all g, h ∈ G and u ∈ U . This implies that the diagram

G×G× U
θU−−−−→ G× U ×G× U

idG×ψ





y





y

ψ×ψ

G× p−1(U)
θ

−−−−→ p−1(U) × p−1(U)
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is commutative and the vertical arrows are diffeomorphisms. The diffeomorphism
ψ × ψ maps the graph of the equivalence relation on G× U onto the graph of the
equivalence relation on p−1(U). Since the action on G × U is free, the action on
p−1(U) is also free. Therefore, the restriction of θ to G×p−1(U) is a diffeomorphism
onto RG ∩ (p−1(U) × p−1(U)).

Therefore (iii) implies that θ is a local diffeomorphism of G×M onto RG. In
addition, the orbit maps are diffeomorphisms.

It remains to show that θ : G ×M −→ M ×M is an injection. Assume that
θ(g,m) = θ(h, n) for g, h ∈ G and m,n ∈M . Then we have (g ·m,m) = (h · n, n),
i.e., m = n and g ·m = h ·m. Since the orbit maps are bijections, this implies that
g = h. �

1.5. Lie groups with countably many components. Let G be a Lie
group. The connected component G0 of G containing the identity is called the
identity component of G. Clearly, G0 is an open and closed subset of G. For any
g ∈ G0 the right translation δ(g) permutes connected components of G. Moreover,
it maps the g into 1, hence it maps G0 onto itself. It follows that G0 is a Lie
subgroup of G.

Moreover, the map Int(g) : G −→ G is a Lie group automorphism of G. There-
fore, it also permutes the connected components of G. In particular it maps G0

onto itself. This implies that G0 is a normal Lie subgroup of G. The quotient
Lie group G/G0 is discrete and its cardinality is equal to the number of connected
components of G.

1.5.1. Lemma. Let G be a connected Lie group. For any neighborhood U of the
identity 1 in G, we have

G =

∞
⋃

n=1

Un.

Proof. Let V be a symmetric neighborhood of identity contained in U . Let
H =

⋃∞
n=1 V

n. If g ∈ V n and h ∈ V m, it follows that gh ∈ V n+m ⊂ H . Therefore,
H is closed under multiplication. In addition, if g ∈ V n, we see that g−1 ∈ V n since
V is symmetric, i.e., H is a subgroup of G. Since V ⊂ H , H is a neighborhood of
the identity in G. Since H is a subgroup, it follows that H is a neighborhood of
any of its points, i.e., H is open in G. This implies that the complement of H in G
is a union of H-cosets, which are also open in G. Therefore, H is also closed in G.
Since G is connected, H = G. �

This result has the following consequence.

1.5.2. Corollary. Let G be a connected Lie group. Then G is separable.

Proof. Let U be a neighborhood of 1 which is domain of a chart. Then, U
contains a countable dense set C. By continuity of multiplication, it follows that
Cn is dense in Un for any n ∈ Z+. Therefore, by 1.5.1, D =

⋃∞
n=1 C

n is dense in
G. In addition, D is a countable set. Therefore, there exists a countable dense set
D in G.

Let (Un;n ∈ Z+), be a fundamental system of neighborhoods of 1 in G. With-
out any loss of generality we can assume that Un are symmetric. We claim that
U = {Und | m ∈ Z+, d ∈ D} is a basis of the topology on G. Let V be an open set
in G and g ∈ V . Then there exists n ∈ Z+ such that U2

ng ⊂ V . Since D is dense in
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G, there exists d ∈ D such that d ∈ Ung. Since Un is symmetric, this implies that
g ∈ Und. Moreover, we have

Und ⊂ U2
ng ⊂ V.

Therefore, V is a union of open sets from U . �

A locally compact space is countable at infinity if it is a union of countably
many compact subsets.

1.5.3. Lemma. Let G be a Lie group. Then the following conditions are equiv-
alent:

(i) G is countable at infinity;
(ii) G has countably many connected components.

Proof. (i) ⇒ (ii) Let K be a compact set in G. Since it is covered by the
disjoint union of connected components of G, it can intersect only finitely many
connected components of G. Therefore, if G is countable at infinity, it can must
have countably many components.

(ii) ⇒ (i) Let gi, i ∈ I, be a set of representatives of connected components
in G. Then G =

⋃

i∈I giG0. Let K be a connected compact neighborhood of the

identity in G. Then K ⊂ G0 and by 1.5.1, we have G0 =
⋃∞
n=1K

n. Moreover, Kn,
n ∈ N, are all compact. It follows that

G =
⋃

i∈I

∞
⋃

n=1

giK
n.

Therefore, if I is countable, G is countable at infinity. �

A topological space X is a Baire space if the intersection of any countable
family of open, dense subsets of X is dense in X.

1.5.4. Lemma (Category theorem). Any locally compact space X is a Baire
space.

Proof. Let Un, n ∈ N, be a countable family of open, dense subsets of X .
Let V = V1 be a nonempty open set in X with compact closure. Then V1 ∩ U1

is a nonempty open set in X . Therefore, we can pick a nonempty open set with
compact closure V2 ⊂ V̄2 ⊂ V1 ∩ U1. Then V2 ∩ U2 is a nonempty open subset of
X . Continuing this procedure, we can construct a sequence Vn of nonempty open
subsets of X with compact closure such that Vn+1 ⊂ V̄n+1 ⊂ Vn ∩ Un. Therefore,
V̄n+1 ⊂ V̄n for n ∈ N, i.e., V̄n, n ∈ N, is a decreasing family of compact sets.
Therefore, W =

⋂∞
n=1 V̄n 6= ∅. On the other hand, W ⊂ V̄n+1 ⊂ Un for all n ∈ N.

Hence the intersection of all Un, n ∈ N, with V is not empty. �

1.5.5. Proposition. Let G be a locally compact group countable at infinity
acting continuously on a Baire space M . Assume that the action of G on M is
transitive. Then the orbit map ρ(m) : G −→M is open for any m ∈M .

Proof. Let U be a neighborhood of 1 in G. We claim that ρ(m)(U) is a
neighborhood of m in M .

Let V be a symmetric compact neighborhood of 1 in G such that V 2 ⊂ U .
Clearly, (gV ; g ∈ G), is a cover of G. Since G is countable at infinity, this cover has
a countable subcover (gnV ;n ∈ N), i.e., G =

⋃∞
n=1 gnV . Therefore, M is equal to



32 2. LIE GROUPS

the union of compact sets (gnV ) ·m, n ∈ N. Let Un = M − (gnV ) ·m for n ∈ N.
Then Un, n ∈ N , are open in M . Moreover, we have

∞
⋂

n=1

Un =

∞
⋂

n=1

(M − (gnV ) ·m) = M −
∞
⋃

n=1

(gnV ) ·m = ∅.

Therefore, by 1.5.4, at least one Un cannot be dense in M . Hence M − V ·m =
τ(g−1

n )(M − (gnV ) ·m) is not dense in M . It follows that V ·m has a nonempty
interior. Assume that g ·m, g ∈ V , is an interior point of V . Then (g−1V ) ·m is a
neighborhood of m. Therefore,

(g−1V ) ·m ⊂ V 2 ·m ⊂ U ·m = ρ(m)(U)

is a neighborhood of m ∈M . This establishes our claim.
Assume now that U is an arbitrary open set in G. Let g ∈ U . Then g−1U is

a neighborhood of 1 ∈ G. Hence, by the claim, g−1 · ρ(m)(U) = ρ(m)(g−1U) is a
neighborhood of m ∈ M . This implies that ρ(m)(U) is a neighborhood of g · m.
Therefore, ρ(m)(U) is a neighborhood of any of its points, i.e., it is an open set. �

Let G be a Lie group acting differentiably on a manifold M . If the action
is transitive, the orbit map ρ(m) : G −→ M is a surjective subimmersion. If G
has countably many connected components, it is countable at infinity by 1.5.3.
Therefore, by 1.5.5, ρ(m) is an open map. By 1.1.3.2, it has to be a submersion. As
we remarked before, it factors through a differentiable map o(m) : G/Gm −→ M .
Clearly, in our situation, the map o(m) is an bijective submersion. By 1.3.1, it is
also an immersion. Therefore, we have the following result.

1.5.6. Theorem. Let G be a Lie group with countably many connected compo-
nents acting differentiably on a manifold M . Assume that the action of G on M is
transitive. Then the orbit map induces a diffeomorphism o(m) : G/Gm −→M .

This has the following direct consequences.

1.5.7. Corollary. Let φ : G −→ H be a surjective Lie group morphism.
If G has countably many connected components the induced homomorphism Φ :
G/ kerφ −→ H is an isomorphism.

1.5.8. Theorem. Let G be a Lie group with countably many connected com-
ponents acting differentiably on a manifold M . Assume that the action is regular.
Then the following conditions are equivalent:

(i) all stabilizers Gm, m ∈M , are trivial;
(ii) the action of G on M is free.

Another consequence of the argument in the proof of 1.5.5 is the following
observation.

1.5.9. Lemma. Let G be a locally compact group countable at infinity acting
continuously on a Baire space M . Assume that G has countably many orbits in M .
Then there exists an open orbit in M .

Proof. Let mi, i ∈ I, be a family of representatives of all G-orbits in M . Let
V be a compact neighborhood of 1 ∈ G. Then, as in the proof of 1.5.5, there exists
a sequence (gn;n ∈ N) such that G =

⋃∞
n=1 gnV . Therefore, we have

M =
⋃

i∈I

∞
⋃

n=1

(gnV ) ·mi.
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If we define Ui;n = M − (gnV ) ·mi, i ∈ I, n ∈ N, the sets Ui;n are open sets in M .
In addition,

⋂

i∈I

∞
⋂

n=1

Ui;n = M −
⋃

i∈I

∞
⋃

n=1

(gnV ) ·mi = ∅.

Since I is countable, by 1.5.4, at least one Ui;n cannot be dense in M . Therefore,
that gnV · mi has a nonempty interior. This implies that the orbit G · mi has
nonempty interior. Let m be an interior point of G ·mi. Then, for any g ∈ G, g ·m
is another interior point of G ·mi. Therefore, all points in G ·mi are interior, i.e.,
the orbit G ·mi is open in M . �

This has the following consequence.

1.5.10. Proposition. Let G be a Lie group with countably many components
acting differentiably on a manifold M . If G acts on M with countably many orbits,
all orbits are submanifolds in M .

Proof. Let Ω be an orbit in M . Since Ω is G-invariant, its closure Ω̄ is G-
invariant. Therefore Ω̄ is a union of countably many orbits. Moreover, it is a locally
compact space. Hence, by 1.5.4, it is a Baire space. If we apply 1.5.9 to the action
of G on Ω̄, we conclude that Ω̄ contains an orbit Ω′ which is open in Ω̄. Since Ω
is dense in Ω̄, we must have Ω′ = Ω. Therefore, Ω is open in Ω̄. Therefore, there
exists an open set U in M such that Ω̄ ∩ U = Ω, i.e., Ω is closed in U . Therefore,
the orbit Ω is locally closed in M . In particular, Ω is a locally compact space with
the induced topology. Let m ∈ Ω. Using again 1.5.4 and 1.5.5 we see that the map
o(m) : G/Gm −→ Ω is a homeomorphism. By 1.3.1, Ω is the image of an immersion
o(m) : G/Gm −→ M . Therefore, by 1.1.4.2, Ω is a submanifold of M . �

1.6. Universal covering Lie group. Let X be a connected manifold with
base point x0. A covering of (X,x0) is a triple consisting of a connected manifold
Y with a base point y0 and a projection q : Y −→ X such that

(i) q is a surjective local diffeomorphism;
(ii) q(y0) = x0;
(iii) for any x ∈ X there exists a connected neighborhood U of X such that q

induces a diffeomorphism of every connected component of q−1(U) onto
U .

The map q is called the covering projection of Y onto X .
A cover (X̃, p, x̃0) of (X,x0) is called a universal covering if for any other

covering (Y, q, y0) of (X,x0) there exists a unique differentiable map r : X̃ −→ Y

such that (X̃, r, x̃0) is a covering of (Y, y0) and the diagram

X̃
r //

p

��

Y

q
����

��
��

��

X

is commutative.
Clearly, the universal covering is unique up to an isomorphism.
Any connected manifold X with base point x0 has a universal cover X̃ and

π1(X̃, x̃0) is trivial, i.e., X̃ is simply connected.
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1.6.1. Lemma. Let (X,x0) be a connected manifold and (Y, p, y0) its covering.
Let (Z, zo) be a connected and simply connected manifold, and F : Z −→ X a
differentiable map such that F (z0) = x0. Then there exists a unique differentiable
map F ′ : Z −→ Y such that

(i) F ′(z0) = y0;
(ii) the diagram

Z
F ′

//

F   @
@@

@@
@@

Y

p

��
X

is commutative.

Let (Y, q, y0) be a covering space of (X,x0). A diffeomorphism φ : Y −→ Y is
called a deck transformation if q ◦ φ = q.

Let (X̃, x̃0) be the universal covering space of (X,x0). Then any loop γ :
[0, 1] −→ X such that γ(0) = γ(1) = x0 can be lifted to the unique curve γ̃ :

[0, 1] −→ X̃ such that

(i) γ̃(0) = x̃0;
(ii) p ◦ γ̃ = γ.

The end point γ̃(1) of γ̃ is in p−1(x0). This map induces a bijection of π1(X,x0)
onto p−1(x0). On the other hand, for any x ∈ p−1(x0) there exists a unique deck

transformation of X̃ which maps x̃0 into x. In this way, we construct a map from
the fundamental group π1(X,x0) onto the group of deck transformations of X̃. This

map is a group isomorphism. Therefore, π1(X,x0) acts on X̃ and X is the quotient

of X̃ with respect to this action.
Let G be a connected Lie group. Denote by (G̃, p, 1̃) the universal covering

space of (G, 1). Then G̃ × G̃ is connected and simply connected. Therefore, the

mapping m ◦ (p × p) : G̃ × G̃ −→ G has a lifting m̃ : G̃ × G̃ −→ G̃ such that
m̃(1̃, 1̃) = 1̃.

We claim that G̃ with the multiplication defined by m̃ is a group. First, we
have

p ◦ (m̃ ◦ (idG̃ × m̃)) = m ◦ (p× p) ◦ (idG̃ × m̃)

= m ◦ (p× p ◦ m̃) = m ◦ (p×m ◦ (p× p)) = m ◦ (idG ×m) ◦ (p× p× p)

and

p ◦ (m̃ ◦ (m̃× idG̃)) = m ◦ (p× p) ◦ (m̃× idG̃)

= m ◦ (p ◦ m̃× p) = m ◦ ((m ◦ (p× p)) × p) = m ◦ (m× idG) ◦ (p× p× p).

Since the multiplication on G is associative, it follows that m̃ ◦ (idG̃ × m̃) and

m̃ ◦ (m̃ × idG̃) are the lifts of the same map from G̃ × G̃ × G̃ into G. Since both

maps map (1̃, 1̃, 1̃) into 1̃, it follows that they are identical, i.e., the operation m̃ is
associative.

Also, we have

p(m̃(g̃, 1̃)) = m(p(g̃), 1) = p(g̃)
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for any g ∈ G, hence g̃ 7−→ m̃(g̃, 1̃) is the lifting of p : G̃ −→ G. Since m̃(1̃, 1̃) = 1̃,

this map is the identity on G̃, i.e., m̃(g̃, 1̃) = g̃ for all g̃ ∈ G̃.
Analogously, we have

p(m̃(1̃, g̃)) = m(1, p(g̃)) = p(g̃)

for any g ∈ G, hence g̃ 7−→ m̃(1̃, g̃) is the lifting of p : G̃ −→ G. Since m̃(1̃, 1̃) = 1̃,

this map is the identity on G̃, i.e., m̃(1̃, g̃) = g̃ for all g̃ ∈ G̃.

It follows that 1̃ is the identity in G̃.
Let ι̃ : G̃ −→ G̃ be the lifting of the map ι ◦ p : G̃ −→ G such that ι̃(1̃) = 1̃.
Then we have

p(m̃(g̃, ι̃(g̃))) = m(p(g̃), p(ι̃(g̃))) = m(p(g̃), p(g̃)−1) = 1.

Therefore, g̃ 7−→ m̃(g̃, ι̃(g̃)) is the lifting of the constant map of G̃ into 1. Since
(m̃(1̃, ι̃(1̃)) = 1̃, we conclude that this map is constant and its value is equal to 1̃.
Therefore, we have

m̃(g̃, ι̃(g̃)) = 1̃

for all g̃ ∈ G̃.
Analogously, we have

p(m̃(ι̃(g̃), g̃)) = m(p(ι̃(g̃)), p(g̃)) = m(p(g̃)−1, p(g̃)) = 1.

Therefore, g̃ 7−→ m̃(ι̃(g̃), g̃) is the lifting of the constant map of G̃ into 1 ∈ G. Since
(m̃(ι̃(1̃), 1̃) = 1̃, we conclude that this map is constant and its value is equal to 1̃.
Therefore, we have

m̃(ι̃(g̃), g̃) = 1̃

for all g̃ ∈ G̃.
This implies that any element g̃ ∈ G̃ has an inverse g̃−1 = ι̃(g̃). Therefore, G̃

is a group. Moreover, since m̃ and ι̃ are differentiable maps, G̃ is a Lie group. It is
called the universal covering Lie group of G.

By the construction we have m◦ (p×p) = p◦ m̃, i.e., p : G̃ −→ G is a Lie group

homomorphism. Let D = ker p. Then D is a normal Lie subgroup of G̃. Since p is
a covering projection, D is also discrete.

For any d ∈ D, γ(d) : G̃ −→ G̃ is a deck transformation which moves 1̃ into
d. Therefore d 7−→ γ(d) defines an isomorphism of D with the group of all deck

transformations of G̃. Composing this with the isomorphism of the fundamental
group π1(G, 1) with the group of all deck transformations we see that

π1(G, 1) ∼= ker p.

1.6.2. Lemma. Let D be a discrete subgroup of a Lie group G. Then D is a
closed subgroup.

Proof. Clearly, D is locally closed. Hence, by 1.1.1, D is closed in G. �

1.6.3. Lemma. Let G be a connected Lie group and D its discrete normal sub-
group. Then D is a central subgroup.

Proof. Let d ∈ D. Then α : g 7−→ gdg−1 is a continuous map from G
into G and the image of α is contained in D. Therefore, the map α : G −→ D
is continuous. Since G is connected, and D discrete it must be a constant map.
Therefore, gdg−1 = α(g) = α(1) = g for any g ∈ G. It follows that gd = dg for any
g ∈ G, and d is in the center of G. �
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In particular, the kernel ker p of the covering projection p : G̃ −→ G is a discrete
central subgroup of G̃. From the above discussion, we conclude that the following
result holds.

1.6.4. Proposition. The fundamental group π1(G, 1) is abelian.

Let (Y, q, y0) be another covering of (G, 1). Then there exists a covering map

r : G̃ −→ Y such that p = q ◦ r and r(1̃) = y0. All deck transformations of

G̃ corresponding to the covering r : G̃ −→ Y are also deck transformations for
p : G̃ −→ G. Therefore they correspond to a subgroup C of D. Since D is a
central subgroup of G̃, C is also a central subgroup of G̃. It follows that r is
constant on C-cosets in G̃ and induces a quotient map G̃/C −→ Y . This map is a
diffeomorphism, hence Y has a Lie group structure for which y0 is the identity. This
proves the following statement which describes all covering spaces of a connected
Lie group.

1.6.5. Theorem. Any covering of (G, 1) has a unique Lie group structure such
that the base point is the identity element and the covering projection is a morphism
of Lie groups.

On the other hand, we have the following characterization of covering projec-
tions.

1.6.6. Proposition. Let ϕ : G −→ H be a Lie group homomorphism of con-
nected Lie groups. Then ϕ is a covering projection if and only if T1(ϕ) : T1(G) −→
T1(H) is a linear isomorphism.

Proof. If ϕ is a covering projection, it is a local diffeomorphism and the
assertion is obvious.

If T1(ϕ) : T1(G) −→ T1(H) is a linear isomorphism, ϕ is a local diffeomorphism
at 1. By 1.1.5, ϕ has constant rank, i.e., it is a local diffeomorphism. In particular,
it is open and the image contains a neighborhood of identity in H . Since the
image is a subgroup, by 1.5.1 it is equal to H . Therefore, ϕ is surjective. Moreover,
T1(kerϕ) = {0} by 1.1.5, i.e., D = kerϕ is discrete. By 1.6.3, D is a discrete central
subgroup. It follows that ϕ induces an isomorphism of G/D onto H . Therefore, H
is evenly covered by G because of 1.4.1. �

Let G and H be connected Lie groups and ϕ : G −→ H be a Lie group
homomorphism. Assume that G is simply connected. Then there exists a unique
lifting ϕ̃ : G −→ H̃ such that ϕ̃(1) = 1̃. Since, we have

p◦m̃◦(ϕ̃×ϕ̃) = m◦(p×p)◦(ϕ̃×ϕ̃) = m◦((p◦ϕ̃)×(p◦ϕ̃)) = m◦(ϕ×ϕ) = ϕ◦m = p◦ϕ̃◦m

the maps m̃ ◦ (ϕ̃× ϕ̃) and ϕ̃ ◦m are the lifts of the same map. They agree on (1, 1)

in G × G, hence they are identical. This implies that ϕ̃ : G −→ H̃ is a Lie group
homomorphism.

Therefore, we have the following result.

1.6.7. Lemma. Let ϕ : G −→ H be a Lie group homomorphism of a simply
connected, connected Lie group G into a connected Lie group H. Let H̃ be the
universal covering Lie group of H and p : H̃ −→ H the covering projection. Then
there exists a unique Lie group homomorphism ϕ̃ : G −→ H̃ such that p ◦ ϕ̃ = ϕ.
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In addition, if ϕ : G −→ H is a Lie group morphism of connected Lie groups,
there exists a unique Lie group homomorphism ϕ̃ : G̃ −→ H̃ such that the diagram

G̃
ϕ̃

−−−−→ H̃

pG





y





y

pH

G
ϕ

−−−−→ H

,

where the vertical arrows are covering projections, is commutative.

1.7. A categorical interpretation. Let Lie be the category of Lie groups.
Denote by ConnLie its full subcategory of connected Lie groups. If G is a Lie group,
its identity component G0 is a connected Lie group. Moreover, if ϕ : G −→ H is
a Lie group morphism, ϕ(G0) ⊂ H0. Therefore, the restriction ϕ0 of ϕ to G0 is a
morphism ϕ0 : G0 −→ H0. It is easy to check that this defines a functor from the
category Lie into the category ConnLie. In addition, we have

Hom(G,H) = Hom(G,H0)

for any connected Lie group G and arbitrary Lie group H . Therefore, taking the
identity component is the right adjoint to the forgetful functor For : ConnLie −→
Lie.

Let SimplyConnLie be the full subcategory of Lie consisting of simply con-
nected connected Lie groups. It follows from the above discussion that ˜ is a functor
from ConnLie into SimplyConnLie. By 1.6.7, the universal covering functor ˜ is
the right adjoint to the forgetful functor For : SimplyConnLie −→ ConnLie.

It follows that the composition of the identity component functor and the uni-
versal covering functor is the right adjoint to the forgetful functor from the category
SimplyConnLie into Lie.

In the next section we are going to show that SimplyConnLie is equivalent to
a category with purely algebraic objects.

1.8. Some examples. Let M be a manifold with an differentiable map m :
M×M −→M which defines an associative multiplication operation on M . Assume
that this operation has the identity 1.

Let G be the set of all invertible elements in M . Then, G is a group.

1.8.1. Lemma. The group G is an open submanifold of M . With this manifold
structure, G is a Lie group.

Proof. Consider the map φ : M × M −→ M × M defined by φ(a, b) =
(a,m(a, b)) for m,n ∈M . Then T1;1(φ)(X,Y ) = (X,X+Y ) for any X,Y ∈ T1(M).
Therefore, φ is a local diffeomorphism at 1. Therefore, there exists neighborhoods
U and V of (1, 1) ∈ M × M such that φ : U −→ V is a diffeomorphism. Let
ψ : V −→ U be the inverse map. Then ψ(a,m(a, b)) = (a, b) for all (a, b) ∈ U .
Hence, if we shrink V to be of the formW×W for some open neighborhoodW of 1 in
M , we have ψ(a, b) = (a, α(a, b)) for some differentiable function α : W ×W −→M
and a, b ∈W . In particular, if we put ι(a) = α(a, 1), we have

(a,m(a, ι(a))) = φ(a, ι(a)) = φ(a, α(a, 1)) = (a, 1)

for a ∈W . Therefore, all elements in W have a left inverse.
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Analogously, by considering the opposite multiplication m◦(a, b) = m(b, a) for
a, b ∈ M , we conclude that there exists an open neighborhoods W ′ where all ele-
ments have a right inverse. Therefore, elements of O = W ∩W ′ have left and right
inverses. Let a ∈ O, b a left inverse and c a right inverse. Then

b = b(ac) = (ba)c = c,

i.e., any left inverse is equal to the right inverse c. This implies that the left and
right inverses are equal and unique. In particular the elements of W are invertible.

It follows thatW ⊂ G. Let g ∈ G. Then the left multiplication γ(g) : M −→M
by g is a diffeomorphism. Therefore, g ·W ⊂ G is an open neighborhood of g. It
follows that G is an open submanifold of M .

Since the map g −→ g−1 is given by ι on W , it is differentiable on W . If
h ∈ g · W , we have h−1 = (g(g−1h))−1 = (g−1h)−1g−1 = ι(g−1h)g−1, and this
implies that the inversion is differentiable at g. It follows that G is a Lie group. �

In particular, this implies that checking the differentiability of the inversion map
in a Lie group is redundant. If G is a manifold and a group and the multiplication
map m : G×G −→ G is differentiable, then G is automatically a Lie group.

Let A be a finite dimensional associative algebra over R with identity. Then the
group G of invertible elements in A is an open submanifold of A and with induced
structure it is a Lie group. The tangent space T1(G) can be identified with A.

In particular, if A is the algebra L(V ) of all linear endomorphisms of a linear
space V , this group is the group GL(V ). If V = Rn, the algebra L(V ) is the algebra
Mn(R) of n×n real matrices and the corresponding group is the real general linear
group GL(n,R). Its dimension is equal to n2.

Let det : GL(n,R) −→ R∗ be the determinant map. Then it defines a Lie
group homomorphism of GL(n,R) into R∗. Its kernel is the real special linear
group SL(n,R).

The tangent space at I ∈ Mn(R) can be identified with Mn(R). To calculate
the differential of det at I, consider the function

t 7−→ det(I + tT ) = 1 + t tr(T ) + t2(. . . )

for arbitrary T ∈ Mn(R). Since T is the tangent vector to the curve t 7−→ I + tT
at t = 0, we see that the differential of det is the linear form tr : Mn(R) −→ R.

It follows that the tangent space to SL(n,R) at I is equal to the subspace of
all traceless matrices in Mn(R).

Therefore, the dimension of SL(n,R) is equal to n2 − 1.
Let A be a finite dimensional associative algebra over R with identity. An

involution τ on A is a linear map a 7−→ aτ such that

(i) (aτ )τ = a for any a ∈ A;
(ii) (ab)τ = bτaτ for all a, b ∈ A.

Clearly, τ is a linear isomorphism of A and

1τ = 1τ (1τ )τ = (1τ1)τ = (1τ )τ = 1.

Let G be the Lie group of all regular elements in A. Let

H = {g ∈ G | ggτ = gτg = 1}.

Then H is a subgroup of G.
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1.8.2. Lemma. The group H is a Lie subgroup of G.
The tangent space T1(H) can be identified with the linear subspace {a ∈ A |

a = −aτ}.

Proof. The tangent space to G at 1 can be identified with A, by attaching to
a ∈ A the tangent vector at 1 to the line R 3 t 7−→ 1 + ta. Let Ψ : A −→ A be the
map Ψ(a) = aaτ . Then

Ψ(1 + ta) = (1 + ta)(1 + ta)τ = (1 + ta)(1 + taτ ) = 1 + t(a+ aτ ) + t2aaτ

for all t ∈ R. Therefore, T1(Ψ)(a) = a+ aτ .
Let S = {a ∈ A | a = aτ}. then S is a linear subspace of A and therefore

a submanifold. The image of Ψ is in S. Therefore, Ψ : A −→ S is differentiable.
Moreover, by the above calculation, Ψ is a submersion at 1. Hence, there exists
an open neighborhood U of 1 in G such that the restriction Ψ : U −→ S is a
submersion. By 1.1.4.4, H ∩ U = U ∩ Ψ−1(1) is a submanifold of G. This implies
that γ(h)(H ∩ U) = H ∩ h · U is a submanifold of G for any h ∈ H . Therefore, H
is a submanifold of G and a Lie subgroup of G. In addition, T1(H) = kerT1(Ψ) =
{a ∈ A | a = −aτ}. �

Let V be a finite dimensional real linear space and ϕ : V ×V −→ R a symmetric
(resp. skewsymmetric) nondegenerate bilinear form. Then for any T ∈ L(V ) there
exists a unique T ∗ ∈ L(V ) such that

ϕ(Tv,w) = ϕ(v, T ∗w) for all v, w ∈ V.

The mapping T 7−→ T ∗ is an involution on L(V ). The Lie group

G = {T ∈ GL(V ) | TT ∗ = T ∗T = 1}

is called the orthogonal (resp. symplectic) group of ϕ.
For example, if V = Rp+q and

ϕ(v, w) =

p
∑

i=1

viwi −

p+q
∑

i=p+1

viwi,

then the corresponding orthogonal group is denoted by O(p, q). It is a Lie subgroup
of GL(p+ q,R).

Then det : O(p, q) −→ R∗ is a Lie group homomorphism. Its kernel is the
special orthogonal group SO(p, q) which is also a Lie subgroup of the special linear
group SL(p+ q,R).

If V = R2n and

ϕ(v, w) =
n
∑

i=1

(viwn+i − vn+iwi),

then the corresponding symplectic group is denoted by Sp(n,R). It is a Lie subgroup
of GL(2n,R).

Consider now the Lie subgroup O(n) = O(n, 0) of GL(n,R). For any T ∈ O(n),
its matrix entries are in [−1, 1]. Therefore, O(n) is a bounded closed submanifold
of Mn(R). It follows that O(n) is a compact Lie group.

Clearly, for a matrix T ∈ O(n), T ∗ is its transpose. Therefore, det(T ) =
det(T ∗) and

1 = det(I) = det(TT ∗) = det(T ) det(T ∗) = (det(T ))2
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i.e., det(T ) = ±1. It follows that the homomorphism det maps O(n) onto the
subgroup {±1} of R∗. Therefore, SO(n) is a normal Lie subgroup of O(n) of index
2. In particular, SO(n) is open in O(n).

The group O(n) preserves the euclidean distance in Rn. Moreover, it acts
transitively on the unit sphere Sn−1 = {x ∈ Rn | x2

1 + x2
2 + · · · + x2

n = 1}. Let
e = (1, 0, . . . , 0) ∈ Sn−1. Consider the orbit map ρ(e) : GL(n,R) −→ Rn given by
T −→ T · e. Since we have

(I + tT )e = e+ tT e

we see that the differential TI(ρ(e)) : GL(n,R) −→ Rn is given by TI(ρ(e))(S) = Se
for any matrix S. The restriction ρ1(e) : O(n) −→ Sn−1 of ρ(e) to O(n) is the orbit
map of e for the action of O(n). Its differential at I is the restriction of TI(ρ(e)) to
TI(O(n)) which is equal to the space of all n×n skewsymmetric matrices. Therefore,
we have imTI(ρ1(e)) = {(0, x2, . . . , xn) | xi ∈ R} ⊂ Rn. This is clearly the tangent
space to the sphere Sn−1 at e, hence ρ1(e) is a submersion. Therefore, its restriction
to SO(n) is also a submersion. It follows that the orbit of e under SO(n) is open in
Sn−1. Since SO(n) is compact, that orbit is also compact and closed. Since Sn−1 is
connected, this must be the only orbit, i.e., SO(n) acts transitively on Sn−1. The
stabilizer of e in SO(n) is the group

{

(

1 0
0 T

)

∣

∣

∣

∣

∣

T ∈ SO(n− 1)

}

.

which is isomorphic to SO(n − 1). Therefore, by 1.3.1, the orbit map induces a
diffeomorphism of SO(n)/ SO(n− 1) with Sn−1.

The dimension of SO(n) is equal to the dimension of its tangent space at I.
Therefore, by 1.8.2, it is equal to the dimension of the space of all real skewsym-
metric n× n matrices, i.e., we have

dim SO(n) =
n(n− 1)

2
.

1.8.3. Lemma. The group SO(n) is a connected compact Lie group.
The group O(n) has two connected components.

We need to prove the first statement only. It is a consequence of the following
lemma.

1.8.4. Lemma. Let G be a Lie group and H its Lie subgroup. Assume that H
and G/H are connected. Then G is a connected Lie group.

Proof. Let e be the identity coset in G/H . Then the orbit map ρ(e) : G −→
G/H is a submersion. Let G0 be the identity component of G. Then, the restriction
of ρ(e) to G0 is also a submersion. It follows that the orbit of e under G0 is open.
Therefore, all orbits of G0 in G/H are open. Since G/H is connected, it follows
that G0 acts transitively on G/H . Let T ∈ G. Then there exists S ∈ G0 such
that Te = Se. It follows that S−1Te = e and S−1T is in the stabilizer of e, i.e.,
in H . Since H is connected, it follows that S−1T ∈ G0 and T ∈ G0. Therefore,
G = G0. �

Now we prove 1.8.3 by induction in n ∈ N. If n = 1, SO(1) = {1} and the
statement is obvious. Hence we can assume that SO(n − 1) is connected. As we
remarked above, SO(n)/ SO(n− 1) is diffeomorphic to Sn−1. Hence, the assertion
follows from 1.8.4.
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Consider now V = Cn. The algebra of complex linear transformations on V can
be identified with the algebra Mn(C) of n× n complex matrices. It can be viewed
as a real algebra with identity. The corresponding group of regular elements is
the group GL(n,C) of regular matrices in Mn(C). It is called the complex general
linear group. Clearly, it is an open submanifold of Mn(C) and also a Lie group.
Its tangent space at I can be identified with Mn(C). Therefore the dimension of
GL(n,C) is equal to 2n2.

The determinant det : GL(n,C) −→ C∗ is again a Lie group homomorphism.
Its kernel is the complex special linear group SL(n,C). As before, we can calculate
its differential which is the complex linear form tr : Mn(C) −→ C. Therefore, the
tangent space to SL(n,C) at I can be identified with the space of traceless matrices
in Mn(C). It follows that the dimension of SL(n,C) is equal to 2n2 − 2.

Let V = Cp+q and

ϕ(v, w) =

p
∑

i=1

viw̄i −

p+q
∑

i=p+1

viw̄i

for v, w ∈ V . This form is linear in the first variable and antilinear in the second,
but if we forget the complex structure, it is bilinear. Therefore, the above discussion
applies again. If T 7−→ T ∗ is the corresponding involution on Mn(C), the group
H = {T ∈ GL(n,C) | TT ∗ = T ∗T = 1}, is called the unitary group with respect to
ϕ and denoted by U(p, q).

If V = Cn, we put U(n) = U(n, 0). In this case T ∗ is the hermitian adjoint
of the matrix T . The absolute values of all matrix entries of T ∈ U(n) are ≤ 1.
Therefore, U(n) is a bounded closed submanifold of Mn(C). It follows that U(n) is
a compact Lie group. In addition, we have

1 = det(TT ∗) = det(T ) det(T )∗ = | det(T )|2

for T ∈ U(n), i.e. det is a Lie group homomorphism of U(n) into the multiplicative
group of complex numbers of absolute value 1. The kernel of this homomorphism
is the special unitary group SU(n).

By 1.8.2, the tangent space to U(n) at I is equal to the space of all skewadjoint
matrices in Mn(C). Therefore, we have

dim U(n) = n2.

The tangent space to SU(n) at I is the kernel of the linear map induced by tr,
i.e., the space of all traceless skewadjoint matrices in Mn(C). Therefore, we have

dim SU(n) = n2 − 1.

The group U(n) preserves the euclidean distance in Cn. Moreover, it acts
transitively on the unit sphere S2n−1 = {z ∈ Rn | |z1|2 + |z2|2 + · · · + |zn|2 = 1}.
Let e = (1, 0, . . . , 0) ∈ S2n−1. Consider the orbit map ρ(e) : GL(n,C) −→ Cn given
by T −→ T · e. Since we have

(I + tT )e = e+ tT e

we see that the differential TI(ρ(e)) : GL(n,C) −→ Cn is given by TI(ρ(e))(S) = Se
for any matrix S. The restriction ρ1(e) : SU(n) −→ S2n−1 of ρ(e) to SU(n) is the
orbit map of e for the action of SU(n). Its differential at I is the restriction of
TI(ρ(e)) to TI(SU(n)) which is equal to the space of all n×n traceless skewadjoint
matrices. Therefore, we have imTI(ρ1(e)) = {(iy1, z2, . . . , zn) | y1 ∈ R, zi ∈ C} ⊂
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Cn. This is clearly the tangent space to the sphere S2n−1 at e, hence ρ1(e) is a
submersion. It follows that the orbit of e under SU(n) is open in S2n−1. Since
SU(n) is compact, that orbit is also compact and therefore closed. Since S2n−1

is connected, that is the only orbit, i.e., SU(n) acts transitively on S2n−1. The
stabilizer of e in SU(n) is the group

{

(

1 0
0 T

)

∣

∣

∣

∣

∣

T ∈ SU(n− 1)

}

.

which is isomorphic to SU(n − 1). Therefore, by 1.3.1, the orbit map induces a
diffeomorphism of SU(n)/ SU(n− 1) with S2n−1.

1.8.5. Lemma. The group SU(n) is a connected compact Lie group.

Proof. This follows immediately from the above discussion and 1.8.4 as in the
proof of 1.8.3. �

On the other hand, U(n)/ SU(n) is isomorphic to the multiplicative group of
complex numbers of absolute value 1. Hence, applying 1.8.4 again, we conclude
that the following result holds.

1.8.6. Corollary. The group U(n) is a connected compact Lie group.

Now we want to discuss some low dimensional examples. Let T ∈ SL(2,C) be
given by the matrix

T =

(

α β
γ δ

)

,

with α, β, γ, δ ∈ C satisfying αδ − βγ = 1, then its inverse is

T−1 =

(

δ −β
−γ α

)

.

If T ∈ SU(2), then we must also have

T−1 = T ∗ =

(

ᾱ γ̄
β̄ δ̄

)

.

Therefore, δ = ᾱ and γ = −β̄. It follows that

T =

(

α β
−β̄ ᾱ

)

,

with |α|2 + |β|2 = 1. Therefore, SU(2) is diffeomorphic to a three dimensional unit
sphere S3 in C2. In particular, SU(2) is simply connected.

We identify R3 with the space H of traceless selfadjoint 2 × 2 matrices via the
map:

H : (x, y, z) 7−→

(

x y + iz
y − iz −x

)

.

Then

detH(x, y, z) = −(x2 + y2 + z2),

i.e., it is the negative of the square of the distance from the origin to the point
(x, y, z). Clearly, for any T ∈ SU(2) and S ∈ H, the matrix TST ∗ = TST−1

satisfies

(TST ∗)∗ = TS∗T ∗ = TST ∗ and tr(TST ∗) = tr(ST ∗T ) = tr(S) = 0,
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i.e., is again selfadjoint and traceless. Therefore, the map ψ(T ) : S 7−→ TST ∗ is a
representation of SU(2) on the real linear space H. Clearly, det(TST ∗) = det(S),
Hence, if we identify H with R3 using H , we see that the action of SU(2) on R3 is
by orthogonal matrices. Therefore, we constructed a continuous homomorphism ψ
of SU(2) in the group of O(3). Since SU(2) is connected, this is a homomorphism
of SU(2) into SO(3).

Since we have

TH(x, y, z)T ∗ =

(

α β
−β̄ ᾱ

)(

x y + iz
y − iz −x

)(

ᾱ β
β̄ α

)

=

(

(|α|2 − |β|2)x+ 2 Re(αβ̄)y − 2 Im(αβ̄)z −2αβx+ (α2 − β2)y + i(α2 + β2)z
−2ᾱβ̄x+ (ᾱ2 − β̄2)y − i(ᾱ2 + β̄2)z −(|α|2 − |β|2)x− 2 Re(ᾱβ)y + 2 Im(αβ̄)z

)

,

we see that

ψ(T ) =





|α|2 − |β|2 2 Re(αβ̄) −2 Im(αβ̄)
−2 Re(αβ) Re(α2 − β2) − Im(α2 + β2)
−2 Im(αβ) Im(α2 − β2) Re(α2 + β2)



 .

Let T be in the kernel of ψ. Then (1, 1) coefficient of ψ(T ) has to be equal to 1,
i.e., |α|2 − |β|2 = 1. Since |α|2 + |β|2 = 1, we see that |α| = 1 and β = 0. Now,
from the (2, 3) coefficient we see that Im(α2) = 0 and from the (2, 2) coefficient we
see that Re(α2) = 1. It follows that α2 = 1 and α = ±1. Hence, the kernel of ψ
consists of matrices

(

1 0
0 1

)

and
(

−1 0
0 −1

)

. Therefore, the differential of ψ is injective.
Since SU(2) and SO(3) are three-dimensional, it follows that the differential of ψ is
an isomorphism of tangent spaces at the identity. Since both groups are connected,
it must be a covering projection by 1.6.6.

1.8.7. Lemma. The fundamental group of SO(3) is Z2. Its universal covering
group is SU(2).

2. Lie algebra of a Lie group

2.1. Lie algebras. A Lie algebra a over a field k of characteristic 0 is a linear
space over k with a bilinear operation (x, y) 7−→ [x, y] such that

(i) [x, x] = 0 for all x ∈ a;
(ii) (Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ a.

The operation (x, y) 7−→ [x, y] is called the commutator. The condition (i)
implies that

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]

i.e.

[x, y] = −[y, x]

for all x, y ∈ a.
A k-linear map ϕ between Lie algebra a and b is a morphism of Lie algebras if

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ a.

Lie algebras over k and morphisms of Lie algebras for the category of Lie
algebras.

If A is an associative algebra, we can define [S, T ] = ST − TS for all S, T ∈ A.
By direct calculation one can check that A with this commutator becomes a Lie
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algebra. This defines a functor from the category of associative algebras into the
category of Lie algebras.

In particular, if V is a linear space over k and L(V ) the algebra of all linear
transformations on V , the commutator defines on L(V ) a structure of a Lie algebra.
This Lie algebra is denoted by gl(V ).

A Lie algebra homomorphism ψ : a −→ gl(V ) is called a representation of a on
V .

Let a be a Lie algebra. For x ∈ a we denote by ad(x) the linear transformation
on a defined by ad(x)(y) = [x, y] for all y ∈ a.

2.1.1. Lemma. ad is a representation of a on a.

Proof. Let x, y ∈ a. Then, by the Jacobi identity, we have

ad([x, y])(z) = [[x, y], z] = −[z, [x, y]] = [x, [y, z]] + [y, [z, x]]

= ad(x)(ad(y)(z)) − ad(y)(ad(x)(z)) = [ad(x), ad(y)](z)

for any z ∈ a. �

This representation is called the adjoint representation of a.
Let b be a linear subspace of a. If x, y ∈ b imply that [x, y] ∈ b, the restriction

of the commutator to b defines a structure of Lie algebra on b. The Lie algebra b

is called the Lie subalgebra of a. Let b be such that x ∈ a and y ∈ b imply that
[x, y] ∈ b. Then the Lie subalgebra b is an ideal in a.

Let a be a Lie algebra and b an ideal in a. Let x, x′ ∈ a be two representatives
of the same coset modulo b. Also, let y, y′ ∈ a be two representatives of the same
coset modulo b. Then

[x, y] − [x′, y′] = [x− x′, y] + [x′, y − y′] ∈ b,

i.e., [x, y] and [x′, y′] are in the same coset modulo b. Therefore,

(x+ b, y + b) 7−→ [x, y] + b

is a well defined bilinear operation on a/b. Clearly, a/b is a Lie algebra with that
operation. It is called the quotient Lie algebra a/b of a modulo the ideal b.

2.1.2. Lemma. Let ϕ : a −→ b be a morphism of Lie algebras. Then:

(i) The kernel kerϕ of ϕ is an ideal in a.
(ii) The image imϕ of ϕ is a Lie subalgebra in b.

Let a and b be two Lie algebras. Then the linear space a× b with the commu-
tator

[(x, y), (x′, y′)] = ([x, x′], [y, y′])

for x, x′ ∈ a and y, y′ ∈ b is a Lie algebra – the product a × b of Lie algebras a and
b.

Let a be a Lie algebra. The center c of a is

c = {x ∈ a | [x, y] = 0 for all y ∈ a}.

Clearly, c is an ideal in a.
A Lie algebra a is abelian if [x, y] = 0 for all x, y ∈ a.
Let a be a Lie algebra. We denote by aopp the opposite Lie algebra of a. It is the

same linear space with the commutator (x, y) 7−→ [x, y]◦ = −[x, y]. Clearly, aopp is
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a Lie algebra. Moreover, x 7−→ −x is an isomorphism of a with aopp. Evidently, we
have (aopp)opp = a.

If dim a = 1, a has to be abelian.
If dim a = 2, we can pick a basis (v1, v2) of a and see that [x, y] is proportional

to [v1, v2] for any x, y ∈ a. Therefore, we can assume that [x, y] is proportional to e1
for any x, y ∈ a. If a is not abelian, there exists e2 such that [e1, e2] = e1. Therefore,
we conclude that up to a linear isomorphism there exists a unique nonabelian two
dimensional Lie algebra over k.

Finally, we quote the following fundamental theorem of Ado (which will be
proven later) which says that every finite-dimensional Lie algebra has a faithful
finite-dimensional representation.

2.1.3. Theorem (Ado). Let g be a finite-dimensional Lie algebra over k. Then
g is isomorphic to a Lie subalgebra of gl(V ) for some finite-dimensional linear space
V over k.

2.2. Lie algebra of a Lie group. Let G be a Lie group. Let T1(G) be
the tangent space to G at the identity 1. If ϕ : G −→ H is a morphism of Lie
groups, T1(ϕ) is a linear map from T1(G) into T1(H). Therefore, in this way we get
a functor from the category of Lie groups into the category of finite-dimensional
linear spaces over R.

We want to show that these objects have additional structure which carries
additional information about Lie groups.

For any g ∈ G, Int(g) : G −→ G given by Int(g)(h) = ghg−1 is an automor-
phism of G. Therefore, Ad(g) = T1(Int(g)) is a linear automorphism of T1(G).

2.2.1. Lemma. The map Ad : G −→ GL(T1(G)) is a Lie group homomorphism.

Proof. We have

Ad(gg′) = T1(Int(gg′)) = T1(Int(g) ◦ Int(g′))

= T1(Int(g)) ◦ T1(Int(g′)) = Ad(g) ◦ Ad(g′)

for all g, g′ ∈ G. Therefore, Ad is a group homomorphism. Clearly, it is also
differentiable. �

Let ϕ : G −→ H be a Lie group morphism. Then we have

ϕ(Int(g)(g′)) = ϕ(gg′g−1) = ϕ(g)ϕ(g′)ϕ(g)−1 = Int(ϕ(g))(ϕ(g′))

for g, g′ ∈ G. By differentiation at 1 ∈ G we get

T1(ϕ) ◦ T1(Int(g)) = T1(Int(ϕ(g)) ◦ T1(ϕ)

i.e.,

T1(ϕ) ◦ AdG(g) = AdH(ϕ(g)) ◦ T1(ϕ)

for any g ∈ G. Hence T1(ϕ) intertwines the group actions.
By differentiating the Lie group homomorphism Ad : G −→ GL(T1(G)) we get

a linear map T1(Ad)) : T1(G) −→ L(T1(G)). This map defines a bilinear map

(ξ, η) 7−→ [ξ, η] = (T1(Ad)(ξ))(η)

from T1(G) × T1(G) −→ T1(G). We can view it as a bilinear operation on T1(G).
We shall prove that T1(G) with this operation is a Lie algebra.
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We start first with a special case. Let G = GL(n,R). Then, we can identify
T1(G) with the space Mn(R). For small t, the line t 7−→ I + tT lies in GL(n,R).
Moreover,

Int(S)(I + tT ) = S(I + tT )S−1 = I + tSTS−1

and we have
Ad(S)(T ) = STS−1

for any T ∈Mn(R) and S ∈ GL(n,R). Moreover, for small t we have

(I + tS)−1 = I − tS + t2(. . . ),

for any S ∈Mn(R), what yields to

Ad(I + tS)(T ) = (I + tS)T (I + tS)−1 = T + t(ST − TS) + t2(. . . ),

for small t. It follows that

T1(Ad(S))(T ) = ST − TS = [S, T ]

and the above bilinear operation is the natural commutator on Mn(R). Therefore,
T1(GL(n,R)) is a Lie algebra.

Now we want to prove this for an arbitrary Lie group. This requires some
preparation.

Consider first the multiplication map m : G × G −→ G. Its differential
T(1;1)(m) : T1(G) × T1(G) −→ T1(G) at (1, 1) is equal to

T(1;1)(m)(ξ, η) = ξ + η

for all ξ, η ∈ T1(G).
Since we have m(g, ι(g)) = 1, it follows that

0 = T(1;1)(m) ◦ (IT1(G) × T1(ι)) ◦ T1(∆) = IT1(G) + T1(ι),

where ∆ : G −→ G×G is the diagonal map. Hence, we have

T1(ι) = −IT1(G).

Let M and N be two differentiable manifolds, p ∈ M and q ∈ N . Let X ∈
Tp(M) and Y ∈ Tq(N). For f ∈ C∞(M ×N) we denote by

fX : n 7−→ X(f(·, n)) and fY : m 7−→ Y (f(m, ·))

are smooth functions on C∞(N) and C∞(M) respectively. In addition, Y (fX) =
X(fY ).

Let G be a Lie group and ξ, η ∈ T1(G). Put

(ξ ∗ η)(f) = ξ((f ◦m)η) = η((f ◦m)ξ)

for any f ∈ C∞(G). Then ξ ∗ η is a linear form on the real linear space C∞(G). It
is called the convolution of ξ and η.

2.2.2. Lemma. For ξ, η ∈ T1(G) we have

[ξ, η] = ξ ∗ η − η ∗ ξ.

Proof. Fix ξ, η ∈ T1(G). Let f ∈ C∞(G). Then can consider the function
ω : g 7−→ (Ad(g)η)(f). The differential of ω at 1 satisfies

dω1(ξ) = (T1(Ad)(ξ)η)(f) = [ξ, η](f).

On the other hand,

ω(g) = (Ad(g)η)(f) = (T1(Int(g))η)(f) = η(f ◦ Int(g))
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for all g ∈ G. Therefore, if we put

F (g, h) = (f ◦ Int(g))(h) = f(ghg−1)

for all g, h ∈ G, it follows that

ω(g) = η(f ◦ Int(g)) = η(F (g, ·)) = F η(g)

and

dω1(ξ) = ξ(F η) = η(Fξ).

On the other hand, if we define µ : G × G × G −→ G as µ(g, g′, h) = ghg′ for
g, g′, h ∈ G, we have

F (g, h) = (f ◦ µ)(g, g−1, h) = (f ◦ µ)(g, ι(g), h)

for g, h ∈ G. Therefore,

Fξ(h) = ξ((f ◦ µ)(·, 1, h)) + ξ((f ◦ µ)(1, ι(·), h))

= ξ((f ◦m)(·, h)) − ξ((f ◦m)(h, ·)) = (f ◦m)ξ(h) − (f ◦m)ξ(h),

what finally leads to

dω1(ξ) = η((f ◦m)ξ) − η((f ◦m)ξ) = (ξ ∗ η)(f) − (η ∗ ξ)(f).

�

In particular, the bilinear operation (ξ, η) 7−→ [ξ, η] on T1(G) is anticommuta-
tive.

The algebra End(C∞(G)) is an associative algebra with identity. Therefore,
with the commutator [A,B] = A ◦B −B ◦A it is a real Lie algebra.

A vector field X on G is an element of End(C∞(G)) which is also a derivation
of C∞(G), i.e., it satisfies

X(ϕψ) = ϕX(ψ) +X(ϕ)ψ

for all ϕ, ψ ∈ C∞(G).
We claim that the linear space T (G) of all vector fields on G is a Lie sublagebra

of End(C∞(G)). Let X,Y ∈ T (G). Then we have

[X,Y ](ϕψ) = X(Y (ϕψ)) − Y (X(ϕψ))

= X(ϕY (ψ)) +X(Y (ϕ)ψ) − Y (ϕX(ψ)) − Y (X(ϕ)ψ) = X(ϕ)Y (ψ) + ϕX(Y (ψ))

+X(Y (ϕ))ψ + Y (ϕ)X(ψ) − Y (ϕ)X(ψ) − ϕY (X(ψ)) −X(ϕ)Y (ψ)

= ϕX(Y (ψ))−ϕY (X(ψ))+X(Y (ϕ))ψ−Y (X(ϕ))ψ = ϕ[X,Y ](ψ)− [X,Y ](ϕ)ψ

for all ϕ, ψ ∈ C∞(G). Therefore, [X,Y ] is a vector field on G. It follows that T (G)
is a Lie subalgebra of End(C∞(G)).

Let X be a vector field on G. Let g ∈ G. Then f 7−→ X(f)(g) is a tangent
vector Xg in Tg(G) which we call the value of X at g.

The vector field X is left-invariant if Xgh = Th(γ(g))Xh for any g, h ∈ G. This
implies that for any f ∈ C∞(G), we have

X(f)(gh) = X(f ◦ γ(g))(h)

for all g, h ∈ G, i.e.,

X(f) ◦ γ(g) = X(f ◦ γ(g))
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for all g ∈ G. It is clear that the last property of X is equivalent to the left-
invariance.

Let X and Y be two left-invariant vector fields on G. Then

[X,Y ](f ◦ γ(g)) = X(Y (f ◦ γ(g))) − Y (X(f ◦ γ(g)))

= X(Y (f) ◦ γ(g)) − Y (X(f) ◦ γ(g)) = X(Y (f)) ◦ γ(g) − Y (X(f)) ◦ γ(g)

= [X,Y ](f) ◦ γ(g)

for all g ∈ G, i.e., the vector field [X,Y ] is also left-invariant.
Therefore, left-invariant vector fields form a Lie subalgebra L(G) of T (G).

2.2.3. Lemma. The map X 7−→ X1 is a linear isomorphism of L(G) onto
T1(G).

Proof. If X is left-invariant, Xg = T1(γ(g))X1 for any g ∈ G, i.e., the map
X 7−→ X1 is injective.

On the other hand, for any ξ ∈ T1(G), the map f 7−→ ξ(f ◦ γ(·)) is a left-
invariant vector field on G. �

Let ξ, η ∈ T1(G). Then, by 2.2.3, there exist left invariant vector fields X and
Y on G such that X1 = ξ and Y1 = η.

2.2.4. Lemma. We have
[X,Y ]1 = [ξ, η].

Proof. To prove this, it is enough to establish that

(ξ ∗ η)(f) = ξ(Y (f))

for any f ∈ C∞(G). Since Y is left-invariant, we have

Y (f)(g) = Yg(f) = η(f ◦ γ(g)) = η((f ◦m)(g, ·)) = (f ◦m)η(g)

for any g ∈ G. Therefore, we have

ξ(Y (f)) = ξ((f ◦m)η) = (ξ ∗ η)(f)

for any f ∈ C∞(G). �

Therefore, we see that the linear isomorphism L(G) onto T1(G) also preserves
the commutators, i.e., T1(G) is a Lie algebra. Moreover, X 7−→ X1 is an isomor-
phism of the Lie algebra L(G) onto T1(G).

The Lie algebra T1(G) with the commutator (ξ, η) 7−→ [ξ, η] is called the Lie
algebra of the Lie group G and denoted by L(G).

Moreover, from the definition of the commutator we see that the following
relation holds

T1(Ad) = ad .

Let ϕ : G −→ H be a Lie group morphism. As we already remarked, we have

T1(ϕ) ◦ AdG(g) = AdH(ϕ(g)) ◦ T1(ϕ)

for any g ∈ G. This implies that for any η ∈ T1(G) we have

T1(ϕ)(AdG(g)η) = AdH(ϕ(g))(T1(ϕ)(η))

by taking the differential of this map at 1 ∈ G and evaluating it on ξ ∈ T1(G), we
get

T1(ϕ)([ξ, η]) = [T1(ϕ)(ξ), T1(ϕ)(η)].
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Therefore, T1(ϕ) : L(G) −→ L(H) is a morphism of Lie algebras. We denote it by
L(ϕ).

It is easy to check that in this way we define a functor L from the category of
Lie groups into the category of Lie algebras.

Let G be a Lie group and Gopp the opposite Lie group. Then the map ι : g 7−→
g−1 is an isomorphism from G onto Gopp. As we remarked already, L(ι) = −1L(G)

and it defines an isomorphism of L(G) onto L(Gopp). Therefore, we have L(Gopp) =
L(G)opp.

We say that a vector field X on G is right-invariant if

X(f ◦ δ(g)) = X(f) ◦ δ(g)

for all f ∈ C∞(G) and g ∈ G.
Let γo(g) be the left translation by g ∈ Gopp. Then

γo(g)(h) = g ◦ h = hg = δ(g−1)(h).

for any h ∈ G. Therefore, a right-invariant vector field onG is a left-invariant vector
field on Gopp. This in turn implies that all right-invariant vector fields on G form
a Lie algebra which we denote by R(G). Moreover, X 7−→ X1 is an isomorphism
of R(G) onto L(G)opp. Therefore, for two right-invariant vector fields X and Y on
G such that ξ = X1 and η = Y1, we have

[ξ, η] = −[X,Y ]1.

This gives an interpretation of the commutator in L(G) in terms of right-invariant
vector fields.

The above formula implies the following result.

2.2.5. Lemma.

L(Ad) = ad .

Let G be a Lie group and g ∈ G. Then Int(g) is an automorphism of G.
Therefore, Ad(g) = L(Int(g)) is an automorphism of L(G). Therefore, the adjoint
representation Ad : G −→ GL(L(G)) is a homomorphism of G into the group
Aut(L(G)) of automorphisms of L(G).

Let H be a Lie subgroup of a Lie group G. Then the natural inclusion i : H −→
G is a Lie group morphism. Therefore, the natural inclusion L(i) : L(H) −→ L(G)
is a Lie algebra morphism, i.e., we can view L(H) as a Lie subalgebra of L(G).

2.2.6. Lemma. Let H be a normal Lie subgroup of a Lie group G. Then L(H)
is an ideal in L(G).

Proof. For any g ∈ G we have Int(g)(H) = H . Therefore, Ad(g)(L(H)) =
L(H) for any g ∈ G. By differentiation, from 2.2.5 we conclude that ad(ξ)(L(H)) ⊂
L(H) for any ξ ∈ L(G). �

2.2.7. Lemma. Let ϕ : G −→ H be a morphism of Lie groups. Then L(kerϕ) =
kerL(ϕ).

Proof. This is just a reformulation of 1.1.5.(ii). �

2.2.8. Lemma. Let G be a Lie group and H its normal Lie subgroup. Denote
by p : G −→ G/H the canonical projection. Then L(p) : L(G) −→ L(G/H) induces
an isomorphism of L(G)/L(H) with L(G/H).
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Proof. By 2.2.6, L(H) is an ideal in L(G). Since the canonical projection p is
a submersion, L(p) is surjective. Moreover, by 2.2.7, we have kerL(p) = L(H). �

2.2.9. Lemma. Let ϕ : G −→ H be a morphism of connected Lie groups. Then
the following statements are equivalent:

(i) ϕ is a covering projection;
(ii) L(ϕ) : L(G) −→ L(H) is an isomorphism of Lie algebras.

Proof. This follows immediately from 1.6.6. �

2.2.10. Proposition. Let ϕ : G −→ H be a morphism of Lie groups. Let K
be a Lie subgroup of H. Then, ϕ−1(K) is a Lie subgroup of G and

L(ϕ−1(K)) = L(ϕ)−1(L(K)).

Proof. Let H/K be the left coset space of H . Let p : H −→ H/K be the
quotient projection. Then, K is equal to the fiber over the identity coset in H/K.
Hence, since p is a submersion, by 1.1.4.4, L(K) = kerT1(p).

The group H acts differentiably on H/K. Therefore, the composition of this
action with ϕ defines a differentiable action of G on H/K. The stabilizer at the
K-coset of 1 is equal to ϕ−1(K). Therefore, by 1.1.4, ϕ−1(K) is a Lie subgroup of
G and

L(ϕ−1(K)) = {ξ ∈ L(G) | T1(p ◦ ϕ)(ξ) = 0} = {ξ ∈ L(G) | T1(ϕ)(ξ) ∈ L(K)}.

�

Let G and H be two Lie groups. Then G×H is a Lie group.

2.2.11. Lemma. L(G×H) = L(G) × L(H).

Let ∆ be the diagonal in G×G. Then ∆ is a Lie subgroup of G×G. Clearly,
the map α : g 7−→ (g, g) is an isomorphism of G onto ∆. Let H and H ′ be
two Lie subgroups of G. Then H × H ′ is a Lie subgroup of G × G. Moreover,
α−1(H ×H ′) = H ∩H ′. Therefore, by 2.2.10, we have the following result.

2.2.12. Lemma. Let H and H ′ be two Lie subgroups of G. Then H ∩H ′ is a
Lie subgroup of G.

2.2.13. Lemma. Let ϕ : G −→ H and ψ : G −→ H be two Lie group morphisms.
Then

K = {g ∈ G | ϕ(g) = ψ(g)}

is a Lie subgroup of G and

L(K) = {ξ ∈ L(G) | L(ϕ)(ξ) = L(ψ)(ξ)}.

Proof. We consider the Lie group morphism Φ : G −→ H × H given by
Φ(g) = (ϕ(g), ψ(g)) for all g ∈ G. Clearly, L(Φ) : L(G) −→ L(H) × L(H) is given
by L(Φ)(ξ) = (L(ϕ)(ξ), L(ψ)(ξ)) for ξ ∈ L(G). The Lie algebra of the diagonal ∆
in H ×H is the diagonal in L(H) × L(H). Therefore, by 2.2.10,

K = Φ−1(∆)

is a Lie subgroup of G and its Lie algebra is equal to

L(Φ)−1(L(∆)) = {ξ ∈ L(G) | L(ϕ)(ξ) = L(ψ)(ξ)}.

�
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Let G and H be two Lie groups. In general, we cannot say anything about the
map ϕ 7−→ L(ϕ) from Hom(G,H) into Hom(L(G), L(H)).

2.2.14. Proposition. Let G and H be Lie groups. Assume that G is connected.
Then the map ϕ 7−→ L(ϕ) from Hom(G,H) into Hom(L(G), L(H)) is injective.

Proof. Let ϕ : G −→ H and ψ : G −→ H be two Lie group morphisms such
that L(ϕ) = L(ψ). Then, by 2.2.13, K = {g ∈ G | ϕ(g) = ψ(g)} is a Lie subgroup
of G. Moreover, the Lie algebra L(K) of K is equal to L(G). It follows that K
contains a neighborhood of 1 in G. Since it is a subgroup of G, and G is connected,
it must be equal to G by 1.5.1. Therefore, ϕ = ψ. �

Of course, even if G is connected, the map ϕ 7−→ L(ϕ) from Hom(G,H) into
Hom(L(G), L(H)) is not bijective in general. For example, if G = R/Z and H = R,
the set Hom(G,H) consists of the trivial morphism only, while Hom(L(G), L(H))
is the space of all linear endomorphisms of R.

We are going to prove later that if G is in addition simply connected, the map
ϕ 7−→ L(ϕ) from Hom(G,H) into Hom(L(G), L(H)) is bijective.

2.2.15. Lemma. Let G be a connected Lie group. Then

(i) the center Z of G is a Lie subgroup;
(ii) Z = kerAd;
(iii) L(Z) is the center of L(G).

Proof. Clearly (ii) implies (i).
Let z ∈ Z. Then Int(z) = idG and Ad(z) = L(Int(z)) = 1. Assume that

Ad(g) = 1 for g ∈ G. Then L(Int(g)) = L(idG), and by 2.2.14, we see that
Int(g) = idG, i.e., g ∈ Z. This proves (ii).

By 2.2.7, we have L(Z) = L(kerAd) = kerL(Ad) = ker ad. Clearly, ker ad is
the center of L(G). �

2.2.16. Lemma. Let G be a connected Lie group. Then the following statements
are equivalent:

(i) G is abelian;
(ii) L(G) is abelian.

Proof. (i)⇒(ii) If G is abelian, it is equal to its center. Therefore, by 2.2.15,
L(G) is equal to its center, i.e., it is abelian.

(ii)⇒(i) If L(G) is abelian, by 2.2.15, the Lie algebra of the center Z of G is
equal to L(G). Therefore, Z contains a neighborhood of 1 in G. Hence Z is an
open subgroup of G and, since G is connected, it is equal to G. �

2.3. From Lie algebras to Lie groups.

2.3.1. Lemma. Let G be a Lie group. Let h be a Lie subalgebra of the Lie
algebra L(G) of G.

(i) There exists a connected Lie group H and an injective Lie group morphism
i : H −→ G such that L(i) : L(H) −→ L(G) is an isomorphism of L(H)
onto h.

(ii) The pair (H, i) is unique up to an isomorphism, i.e., if (H ′, i′) is another
such pair, there exists a Lie group isomorphism α : H −→ H ′ such that
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the diagram

H
α //

i

��

H ′

i′~~||
||

||
||

G

commutes.

The proof of this lemma consists of several steps.
Let T (G) be the tangent bundle of G. Let E vector subbundle of T (G) such

that the fiber Eg at g ∈ G is equal to T1(γ(g))h. Let (ξ1, ξ2, . . . , ξm) be a basis of h.
Denote by X1, X2, . . . , Xm the left-invariant vector fields on G such that the value
of Xi at 1 is equal to ξi for 1 ≤ i ≤ m. Then the values of Xi, 1 ≤ i ≤ m, at g ∈ G
span the fiber Eg. In particular, E is a trivial vector bundle on G.

Since, h is a subalgebra, there exist cijk ∈ R, 1 ≤ i, j, k ≤ m, such that

[ξi, ξj ] =

m
∑

k=1

cijkξk

for all 1 ≤ i, j ≤ m. Therefore, we also have

[Xi, Xj ] =

m
∑

k=1

cijkXk

for all 1 ≤ i, j ≤ m.
A smooth vector field Y on G is a section of E if and only if Xg ∈ Eg for all

g ∈ G, i.e., if X =
∑m
i=1 eiXi for some ei ∈ C∞(G). Let Z be another such vector

field. Then we have Z =
∑m

i=1 fiXi for some fi ∈ C∞(G).
Hence, we have

[Y, Z] =
m
∑

i;j=1

[eiXi, fjXj ] =
m
∑

i;j=1

(eiXi(fj)Xj − fjXj(ei)Xi + eifj[Xi, Xj])

=

m
∑

i;j=1

(eiXi(fj) − fiXi(ej))Xj +

m
∑

i;j;k=1

cijkeifjXk,

i.e., [X,Y ]g ∈ Eg for any g ∈ G. Therefore it follows that E is involutive.
By 1.3.2.1, E determines an integral foliation (L, i) of G which we call the left

foliation attached to h.
Let H be the leaf of this foliation through 1 ∈ G. We claim that H is a Lie

group.
Let g ∈ G. Then ig = γ(g) ◦ i : L −→ G is again an integral manifold.

Therefore, by 1.3.2.1, ig induces a diffeomorphism jg : L −→ L. Hence, jg(H) is
a leaf through g ∈ G. In particular, if g ∈ H , we see that jg(H) = H . Therefore,
the left multiplication by g ∈ H induces a diffeomorphism of H onto H . Moreover,
its inverse is jg−1 : H −→ H . Hence, jg−1 (1) = g−1 ∈ H . It follows that H is a
subgroup of G.

In addition, the map µ : H ×H −→ G given by µ(g, h) = gh for g, h ∈ H , is
differentiable and its image is equal to the leaf H . Since H is connected, it lies in
the identity component of G. Hence, without any loss of generality we can assume
that G is connected. Therefore, by 1.5.2, G is a separable manifold. By 1.3.3.4,
it follows that H is a separable manifold. Hence, by 1.3.3.6, we conclude that the
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map µ : H × H −→ H is differentiable. It follows that H is a Lie group. This
completes the proof of (i).

If (H ′, i′) is another such pair, it is an integral manifold for the left foliation
attached to h. It follows that there exists α : H ′ −→ L which is a diffeomorphism
onto an open submanifold of L. Since H ′ is connected and i′(1) = 1, α(H ′) must
be an open subgroup of H . This in turn implies that α(H ′) = H . Therefore, (ii)
follows.

2.4. Additional properties of the Lie algebra functor. Let G and H be
Lie groups. Assume in addition that G is connected. We already established in
2.2.14 that the map the functor L induces from Hom(G,H) into Hom(L(G), L(H))
is injective.

First, let ϕ : G −→ H be a Lie group morphism. Then we can consider its
graph Γϕ = {(g, ϕ(g)) ∈ G×H | g ∈ G} in G×H . By 1.1.4.3, it is a Lie subgroup
of G×H . The natural morphism λ : g 7−→ (g, ϕ(g)) is a Lie group isomorphism of
G with Γϕ. Its inverse is the restriction of the projection to the first factor.

Moreover, its Lie algebra L(Γϕ) is the image of L(λ) : L(G) −→ L(G)×L(H).
Since L(λ) : ξ 7−→ (ξ, L(ϕ)(ξ)), ξ ∈ L(G), we see that L(Γϕ) = {(ξ, L(ϕ)(ξ)) ∈
L(G)×L(H) | ξ ∈ L(G)}, i.e., it is equal to the graph of the Lie algebra morphism
L(ϕ) in L(G) × L(H).

2.4.1. Proposition. Let G be a simply connected, connected Lie group. Let H
be another Lie group and Φ : L(G) −→ L(H) a Lie algebra morphism. Then there
exists a Lie group morphism ϕ : G −→ H such that L(ϕ) = Φ.

Proof. Let L(G)×L(H) be the product Lie algebra of L(G) and L(H). Then
the graph ΓΦ = {(ξ,Φ(ξ)) ∈ L(G) × L(H) | ξ ∈ L(G)} of Φ is a Lie subalgebra of
L(G) × L(H). The map α : L(G) −→ L(G) × L(H) given by α(ξ) = (ξ,Φ(ξ)) is
a Lie algebra isomorphism from L(G) into ΓΦ. Its inverse is given by the canon-
ical projection to the first factor in L(G) × L(H). On the other hand, Φ is the
composition of α with the canonical projection to the second factor.

By 2.3.1, there exists a connected Lie group K and an injective Lie group mor-
phism i : K −→ G×H such that L(i) : L(K) −→ L(G) ×L(H) is an isomorphism
of L(K) onto ΓΦ. Let p : G × H −→ G be the canonical projection to the first
factor. Then it is a Lie group morphism, and L(p) : L(G)×L(H) −→ L(G) is also
the canonical projection to the first factor. The composition p◦ i : K −→ G is a Lie
group morphism of connected Lie groups. Moreover, since the canonical projection
to the first factor is an isomorphism of ΓΨ onto L(G), L(p ◦ i) = L(p) ◦ L(i) is
an isomorphism of the Lie algebra L(K) onto L(G). By 2.2.9, p ◦ i is a covering
projection. Since G is simply connected, p ◦ i is an isomorphism of Lie groups.
Therefore, its inverse β : G −→ K is a Lie group morphism. Clearly, L(β) is the
composition of α with the isomorphism L(i)−1.

Let q : G ×H −→ H be the canonical projection to the second factor. Then,
q ◦ i ◦ β : G −→ H is a Lie group morphism. Its differential is equal to

L(q ◦ i ◦ β) = L(q) ◦ L(i) ◦ L(β) = L(q) ◦ α = Φ. �

This has the following obvious consequence.

2.4.2. Corollary. Let G be a simply connected, connected Lie group. Let H be
another Lie group. Then, Then the map induced by the functor L from Hom(G,H)
into Hom(L(G), L(H)) is bijective.
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In other words, the functor L from the category SimplyConnLie of simply
connected, connected Lie groups into the category of finite-dimensional real Lie
algebras LieAlg is fully faithful.

On the other hand, Ado’s theorem has the following consequence.

2.4.3. Theorem. Let g be a finite-dimensional real Lie algebra. Then there
exists a simply connected, connected Lie group G such that L(G) is isomorphic to
g.

Proof. By 2.1.3, there exists a finite-dimensional real linear space V such
that g is isomorphic to a Lie subalgebra of gl(V ). Since gl(V ) is the Lie algebra of
GL(V ), by 2.3.1 we conclude that there exists a connected Lie group with the Lie
algebra isomorphic to g. Therefore, taking its universal covering Lie group for G
completes the proof. �

This implies that the Lie algebra functor L from the category SimplyConnLie
into LieAlg is also essentially onto. Therefore, we have the following result.

2.4.4. Theorem. The Lie algebra functor L is an equivalence of the category
SimplyConnLie of simply connected, connected Lie groups with the category LieAlg
of finite-dimensional real Lie algebras.

2.5. Discrete subgroups of Rn. Let V be an n-dimensional linear space
considered as an additive Lie group. We want to describe all discrete subgroups in
V .

Let D be a discrete subgroup in V . The elements of D span a linear subspace
W of V . We say that dimW is the rank of D.

2.5.1. Theorem. Let D be a discrete subgroup of V of rank r. Then there
exists a linearly independent set of vectors a1, a2, . . . , ar in V such that Zr 3
(n1, n2, . . . , nr) 7−→ n1a1 + n2a2 + · · · + nrar is an isomorphism of Zr onto D.

We first observe that without any loss of generality we can assume that r = n.
We start the proof with the following weaker result. Since D has rank n, there

exists a linearly independent set b1, b2, . . . , bn contained in D.

2.5.2. Lemma. There exists a positive integer d such that D is contained in the
discrete subgroup D′ of V generated by 1

db1,
1
db2, . . . ,

1
dbn.

Proof. Let

Ω = {v ∈ V | v =

n
∑

i=1

ωibi with 0 ≤ ωi ≤ 1 for 1 ≤ i ≤ n}.

Then Ω is a compact subset of V and D ∩Ω is a finite set. Clearly, D ∩Ω contains
b1, b2, . . . , bn.

Let v ∈ D. Then v =
∑n

i=1 αibi. Let u =
∑n
i=1[αi]bi ∈ D. It follows that

v − u =
∑n

i=1(αi − [αi])bi ∈ D ∩ Ω. Therefore, D is generated by the elements of
D ∩ Ω.

Let v ∈ D ∩ Ω. Applying the above argument to mv, m ∈ N, we see that

n
∑

i=1

(mαi − [mαi])bi ∈ D ∩ Ω.
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Since the set D ∩ Ω is finite, there exist m,m′ ∈ N, such that m 6= m′ and

mαi − [mαi] = m′αi − [m′αi]

for all 1 ≤ i ≤ n. Therefore,

(m−m′)αi = [mαi] − [m′αi] ∈ Z,

for all 1 ≤ i ≤ n, i.e., αi are rational numbers.
It follows that the coordinates of all vectors inD∩Ω with respect to b1, b2, . . . , bn

are rational. Since D ∩ Ω is finite, the coordinates of these points all lie in 1
dZ for

sufficiently large d ∈ N.
This implies thatD is contained in the subgroup generated by 1

db1,
1
db2, . . . ,

1
dbn.

�

Fix a linearly independent set b1, b2, . . . , bn of vectors in D. Let d ∈ N be an
integer which satisfies the conditions of the preceding lemma. Let ci = 1

dbi, 1 ≤ i ≤
n. Then, an element v ∈ D can be represented uniquely as v =

∑n
i=1mici where

mi ∈ Z. It follows that for any linearly independent set v1, v2, . . . , vn contained in
D we have vi =

∑n
j=1mijcj where mij ∈ Z for all 1 ≤ i, j ≤ n. Define the function

∆(v1, v2, . . . , vn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

m11 m12 . . . m1n

m21 m22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . mnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

for any such linearly independent n-tuple v1, v2, . . . , vn. Clearly ∆(v1, v2, . . . , vn) ∈
Z. Moreover, since the n-tuple is linearly independent, ∆(v1, v2, . . . , vn) 6= 0.
Therefore, there exists an n-tuple d1, d2, . . . , dn such that the absolute value of
∆(d1, d2, . . . , dn) is minimal.

2.5.3. Lemma. The map (m1,m2, . . . ,mn) 7−→ m1d1 + m2d2 + · · · +mndn is
an isomorphism of Zn onto D.

Proof. Denote byD′′ the discrete subgroup generated by d1, d2, . . . , dn. Clearly,
D′′ ⊂ D.

Let v ∈ D. Then v =
∑n

i=1 αidi where αi ∈ R, 1 ≤ i ≤ n. In addition, we
have u =

∑n
i=1[αi]di ∈ D′′. Therefore, w = v−u =

∑n
i=1(αi− [αi])di ∈ D. By the

construction w =
∑n
i=1 eidi with 0 ≤ ei < 1 for all 1 ≤ i ≤ n.

Assume that w 6= 0. Then the set w, d1, d2, . . . , dn is linearly dependent. After
relabeling, we can assume that e1 > 0. This implies that w, d2, . . . , dn is a linearly
independent set of vectors in D. Clearly,

w =

n
∑

i=1

eidi =

n
∑

i;j=1

eimijbj .
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Therefore,

∆(w, d2, . . . , dn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑n
i=1 eimi1

∑n
i=1 eimi2 . . .

∑n
i=1 eimin

m21 m22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . mnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

e1m11 e1mi2 . . . e1min

m21 m22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . mnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

= e1∆(d1, d2, . . . , dn).

Since 0 < e1 < 1, we have a contradiction with the minimality of ∆(d1, d2, . . . , dn).
Hence, we must have w = 0, and v = u ∈ D′′. This implies that D = D′′. �

This completes the proof of 2.5.1.

2.6. Classification of connected abelian Lie groups. Let G be a con-
nected abelian Lie group. Then, by 2.2.16, the Lie algebra L(G) of G is abelian.
Therefore, it is isomorphic to Rn with the trivial commutator for n = dimG.

This Lie algebra is the Lie algebra of the additive Lie group Rn. Since Rn is
simply connected, by 2.4.1, there exists a Lie group morphism ϕ : Rn −→ G such
that L(ϕ) is a Lie algebra isomorphism of Rn onto L(G). By 2.2.9, ϕ : Rn −→ G
is a covering projection. This immediately implies the following result.

2.6.1. Proposition. Let G be a simply connected, connected abelian Lie group.
Then G is isomorphic to Rn for n = dimG.

If G is not simply connected, the kernel of ϕ is a discrete subgroup D of Rn

and G = Rn/D.
Let T = R/Z. Then T is a one-dimensional connected compact abelian Lie

group. The product Tr of r copies of T is an r-dimensional connected compact
abelian Lie group which we call the r-dimensional torus.

2.6.2. Theorem. Let G be an n-dimensional connected abelian Lie group. Then
there exists 0 ≤ r ≤ n such that G is isomorphic to Tr × Rn−r.

Proof. This follows from 2.5.1 and the above discussion. �

2.6.3. Corollary. Let G be a one-dimensional connected Lie group. Then G
is isomorphic to either R or T.

Proof. Let L(G) be the Lie algebra of G. Then L(G) is a one-dimensional Lie
algebra. Therefore, it must be abelian. By 2.2.16, G is an abelian Lie group. �

2.7. Induced structure on subgroups. Let G be a Lie group and H a
subgroup of G. Let h be the set of all ξ ∈ L(G) such that there exist

(i) an open interval I ⊂ R containing 0;
(ii) a smooth curve Γ : I −→ G such that Γ(0) = 1 and Γ(I) ⊂ H ;
(iii) T0(Γ)(1) = ξ.

2.7.1. Lemma. Let H be a subgroup of a Lie group G. Then

(i) The subset h of L(G) is a Lie subalgebra.
(ii) Ad(h)(h) = h for each h ∈ H.
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Proof. Let Γ1 : I1 −→ G and Γ2 : I2 −→ G be two curves in G such that
Γ1(0) = Γ2(0) = 1, Γ1(I1) ⊂ H , Γ2(I2) ⊂ H and ξ1 = T0(Γ1)(1), ξ2 = T0(Γ2)(1).
Put I = I1 ∩ I2. Then Γ : I −→ G given by Γ(t) = Γ1(t) · Γ2(t) for t ∈ I, is a
smooth curve in G. Moreover, Γ(I) ⊂ H and Γ(0) = 1. Finally,

T0(Γ)(1) = T0(m ◦ (Γ1 × Γ2))(1) = T(1;1)(m)(T0(Γ1)(1), T0(Γ2)(1))

= T(1;1)(m)(ξ1, ξ2) = ξ1 + ξ2.

Hence, h is closed under addition.
Let λ ∈ R∗. Then Γλ(t) = Γ1(λt) for t ∈ Iλ = 1

λI1 is a smooth curve in G.
Clearly, Γλ(0) = Γ1(0) = 1 and Γλ(Iλ) = Γ1(I1) ⊂ H . Also, we have

T0(Γλ)(1) = T0(Γ1(λ) = λT0(Γ1)(1) = λξ1.

Therefore, λξ1 ∈ h. It follows that h is a linear subspace of L(G).
If h ∈ H , Γh : I −→ G defined by Γh(t) = Int(h)(Γ1(t)) is a smooth curve in

G. Clearly, Γh(0) = 1 and Γh(I1) = Int(h)(Γ1(I1)) ⊂ Int(h)(H) = H . Moreover,
we have

T0(Γh)(1) = T1(Int(h))(T0(Γ1)(1)) = L(Int(h))(ξ1) = Ad(h)(ξ1).

Therefore, Ad(h)(h) ⊂ h. This proves (ii).
Finally, by (ii), for any t ∈ I, we have Ad(Γ1(t))(ξ2) ∈ h. Therefore, t 7−→

Ad(Γ1(t))(ξ2) is a smooth curve in h, and its tangent vector at 0 is also in h. This
tangent vector is equal to

(T0(Ad ◦Γ1)(1))(ξ2) = ((T1(Ad) ◦ T0(Γ1))(1))(ξ2) = (L(Ad)(ξ1))(ξ2)

= ad(ξ1)(ξ2) = [ξ1, ξ2].

Therefore, h is a Lie subalgebra of L(G). �

We say that h is the Lie subalgebra tangent to the subgroup H .

2.7.2. Theorem. Let G be a Lie group and H its subgroup. Then:

(i) On the set H there exists a unique structure of a differentiable manifold
such that for any differentiable manifold M and map f : M −→ H, f is a
differentiable map from M into H if and only if it is a differentiable map
from M into G.

(ii) With this differentiable structure on H:
(a) H is a Lie group;
(b) the canonical injection i : H −→ G is a morphism of Lie groups;
(c) L(i) is an isomorphism of L(H) onto the Lie subalgebra h tangent to

H.

We say that this Lie group structure on H is induced by the Lie group structure
of G.

Proof. Let (L, i) be the left foliation attached to h and E the corresponding
involutive vector subbundle of the tangent bundle T (G).

Let M be a differentiable manifold and f : M −→ G a differentiable map
such that f(M) ⊂ H . Let m ∈ M and ξ ∈ Tm(M). Then there exists and open
interval I ⊂ R, 0 ∈ I, and a smooth curve Γ : I −→ M such that Γ(0) = m and
T0(Γ)(1) = ξ. Then f ◦ Γ : I −→ G is a smooth curve in G, (f ◦ Γ)(0) = f(m)
and T0(f ◦ Γ)(1) = Tm(f)ξ. It follows that Γm = γ(f(m)−1) ◦ f ◦ Γ : I −→ G is
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a smooth curve in G such that Γm(0) = γ(f(m)−1)(f(m)) = 1 and T0(Γm)(1) =
Tf(m)(γ(f(m)−1)Tm(f)ξ. Since f(m) ⊂ H and H is a subgroup of G, it follows that
Γm(I) ⊂ H . Hence, T0(Γm)(1) ∈ h, i.e., we have Tm(f)ξ ∈ T1(γ(f(m)))h = Ef(m).
Therefore, we see that

Tm(f)(Tm(M)) ⊂ Ef(m), for any m ∈M.

Assume that m0 ∈ M is such that f(m0) = 1. Let c = (U,ϕ, n) be a chart
centered at 1 such that ϕ(U) = V ×W where V and W are connected open subsets
in Rn−l and Rl respectively, such that ϕ−1({v} ×W ) are integral manifolds for E.
Let O be an open connected neighborhood of m0 such that f(O) ⊂ U . Denote by p
the projection to the first factor in Rn−l ×Rl. Then, by the first part of the proof,
we have

Tm(p ◦ ϕ ◦ f) = Tϕ(f(m))(p) ◦ Tf(m)(ϕ) ◦ Tm(f)

⊂ (Tϕ(f(m))(p) ◦ Tf(m)(ϕ))(Ef(m)) = (Tϕ(f(m))(p)({0} × Rl) = {0}

for any m ∈ O. Since O is connected, p ◦ ϕ ◦ f is constant on O. This in turn
implies that f(O) ⊂ ϕ−1({0} ×W ). Therefore, f(O) is contained in the leaf H0 of
L through 1 ∈ G. Moreover, f : O −→ H0 is a differentiable map.

As we proved in the proof of 2.3.1, H0 is a Lie group, the canonical inclu-
sion j : H0 −→ G is a morphism of Lie groups and L(j) : L(H0) −→ L(G) is
an isomorphism of L(H0) onto h. Let (ξ1, ξ2, . . . , ξl) be a basis of h. Denote by
Γ1,Γ2, . . . ,Γl : I −→ G the corresponding smooth curves such that Γi(I) ⊂ H ,
Γi(0) = 1 and T0(Γi)(1) = ξi for 1 ≤ i ≤ l. We define

F (t1, t2, . . . , tl) = Γ1(t1) · Γ2(t2) . . .Γl(tl)

for (t1, t2, . . . , tl) ∈ I l. Then F : I l −→ G is differentiable and F (I l) ⊂ H . Since
F (0) = 1, by the preceding part of the proof, there exists a neighborhood O of 0
in I l such that F |O : O −→ H0 is a differentiable map. Clearly, if we denote by
e1, e2, . . . , el the canonical basis of Rl, we have T0(F )(ei) = ξi for all 1 ≤ i ≤ l.
Therefore, F is a local diffeomorphism at 0. In particular, it is an open map. It
follows that H ∩H0 contains a neighborhood of 1 in H0. Since H0 is a connected
Lie group, by 1.5.1, H0 is contained in H .

Let g ∈ G. Then, as we proved in the proof of 2.3.1, γ(g) : L −→ L is a
differentiable map which permutes the leaves of L. If h ∈ H , we see that γ(h)(H0)
is a leaf of L through h. Since H0 ⊂ H , it follows that γ(h)(H0) ⊂ H . Therefore,
H is a union of leaves of L. We consider H to be equipped with the corresponding
differentiable structure (as an open submanifold of L).

Let f : M −→ H a map. If f : M −→ H is differentiable, f : M −→ G is also
differentiable.

Conversely, if f : M −→ G is differentiable, γ(h)◦ f : M −→ G is differentiable
for any h ∈ H . Fix m ∈M . Then fm = γ(f(m)−1)◦f : M −→ G is a differentiable
map and fm(m) = γ(f(m)−1)(f(m)) = 1. Therefore, by the above argument, there
exists a neighborhood O of m such that fm is a differentiable map from O into H0.
This implies that f = γ(f(m)) ◦ fm : M −→ H is differentiable at m. Therefore
f : M −→ H is differentiable. Hence, the differentiable structure on H satisfies (i).

It remains to prove the uniqueness. Assume that there exists another dif-
ferentiable structure on H with the same universal property. Denote by H the
corresponding manifold. Then H −→ G is differentiable, hence the identity map
H −→ H is differentiable. Reversing the roles, we see that the identity map
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H −→ H is also differentiable. Hence, the differentiable structures on H and
H are identical. This completes the proof of (i).

The multiplication map m : H×H −→ G is differentiable. Moreover, its image
is in H . Therefore, by (i), m : H ×H −→ H is differentiable and H is a Lie group.
Clearly, H0 is the identity component of H . Therefore, we have L(H) = L(H0).
From 2.3.1 we conclude that L(i) : L(H) −→ L(G) is injective and its image is
equal to h. Therefore, the Lie group structure on H satisfies (ii). �

The induced structure is the obvious one in the case of Lie subgroups.

2.7.3. Lemma. Let H be a Lie subgroup of G. Then the induced structure on
H is equal to its natural differentiable structure.

Proof. It is clear that the differentiable structure of a submanifold has the
universal property of the induced structure. By the uniqueness, they have to be
equal. �

2.7.4. Proposition. Let G be a Lie group and H a subgroup of G. On the
subgroup H there exists at most one structure of a Lie group with countably many
components such that the canonical injection is a morphism of Lie groups.

If such structure of Lie group with countably many components exists on H, it
is equal to the induced structure.

Proof. Assume that H has a structure of a Lie group with countably many
components such that the canonical inclusion i : H −→ G is a Lie group morphism.
Denote H the Lie group H with induced structure on it. Then, by 2.7.2.(i), the
identity map from H −→ H is a morphism of Lie groups. Since H has countably
many components, by 1.5.7, this morphism must be an isomorphism. �

The next result is just a special case of the above result.

2.7.5. Corollary. Let G be a Lie group and H a subgroup of G. There
exists at most one structure of connected Lie group on H such that the canonical
injection is a morphism of Lie groups. If such structure exists, it is equal to the
induced structure on H.

Let G be a Lie group. An integral subgroup of G is a subgroup H with a
structure of connected Lie group such that the canonical inclusion is a Lie group
morphism. This structure must be equal to the induced structure.

Let G be a Lie group and H an integral subgroup of G. We identify L(i)L(H)
with its image in L(G) under L(i). Then L(H) is the Lie algebra tangent to H .

2.7.6. Theorem. Let G be a Lie group. The map H 7−→ L(H) is a bijection
from the set of all integral subgroups of G onto the set of all Lie subalgebras of
L(G).

This bijection is order preserving, i.e., H1 ⊂ H2 if and only if L(H1) ⊂ L(H2).

Proof. Let H and H ′ be two integral subgroups such that L(H) = L(H ′).
Then, by 2.3.1.(ii), we see thatH = H ′. Therefore, the map from integral subgroups
of G into Lie subalgebras of L(G) is injective.

On the other hand, 2.3.1.(i), implies that the this map is also surjective.
It remains to prove that this bijection preserves the inclusions. Clearly, if H1

and H2 are two integral subgroups such that H1 ⊂ H2, their tangent Lie algebras
satisfy L(H1) ⊂ L(H2).
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On the other hand, assume that H1 and H2 are two integral subgroups of G
such that L(H1) ⊂ L(H2). Then L(H1) is a Lie subalgebra of L(H2). Therefore,
by the first part of the proof, there exists an integral subgroup H ′ of H2 such that
L(H ′) = L(H1). Clearly, H ′ is an integral subgroup of G, and by the first part of
the proof H ′ = H1. �

2.7.7. Lemma. Let G be a Lie group and H1 and H2 two integral subgroups of
G. For any g ∈ G the following assertions are equivalent:

(i) gH1g
−1 = H2;

(ii) Ad(g)(L(H1)) = L(H2).

Proof. Clearly, Int(g) is a Lie group automorphism ofG. Therefore, it induces
a bijection on the set of all integral subgroups of G. Since L(Int(g)) = Ad(g),
this bijection corresponds to the bijection induced by Ad(g) on the set of all Lie
subalgebras of L(G). �

2.7.8. Lemma. Let G be a Lie group and H an integral subgroup of G. Then
the following conditions are equivalent:

(i) H is a normal subgroup of G;
(ii) L(H) is an ideal in L(G) invariant under Ad(G).

Proof. From 2.7.7 we immediately see that H is normal if and only if L(H) is
invariant under Ad(G). By differentiation, this implies that ad(ξ)(L(H)) ⊂ L(H)
for any ξ ∈ L(G). Hence L(H) is an ideal in L(G). �

2.8. Lie subgroups of Rn. Let V be an n-dimensional linear space considered
as an additive Lie group. We want to describe all Lie subgroups in V .

We start with a technical lemma.

2.8.1. Lemma. Let G be a Lie group, H a Lie subgroup and N a normal Lie
subgroup of G contained in H. Then H/N is a Lie subgroup of G/N .

Proof. Clearly, the natural map j : H/N −→ G/N is injective. Therefore, by
1.1.5, it must be an immersion. By definition of the quotient topology, it is also a
homeomorphism onto its image. Hence, by 1.1.4.2, the image of j is a Lie subgroup
and j is a diffeomorphism of H/N onto j(H/N). �

2.8.2. Theorem. Let H be a Lie subgroup of V . Then there exists a linearly
independent set a1, a2, . . . , ar in V such that

Rk×Zr−k 3 (α1, . . . , αk,mk+1, . . . ,mr) 7−→ α1a1+· · ·+αkak+mk+1ak+· · ·+mrar

is an isomorphism of Rk × Zr−k onto H.

Proof. Let L(H) be the Lie subalgebra of L(V ) = V corresponding to H .
Then L(H) is a subspace of V , and therefore a connected Lie subgroup of V . Since
its Lie algebra is identified with L(H), by 2.7.6, we conclude that the identity
component H0 of H is equal to this subspace. Let k = dimH0. We can pick a basis
a1, a2, . . . , ak of H0 as a linear subspace of V .

Then V/H0 is a Lie group isomorphic to Rn−k. By 2.8.1, H/H0 is a Lie
subgroup of V/H0. Moreover, it is a discrete subgroup. Hence, by 2.5.1, it is
isomorphic to Zr−k for some r − k ≤ dim(V/H0) = n − k. More precisely, there
exist ak+1, . . . , ar in H such that their images in V/H0 are linearly independent
and generate H/H0.
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The image H ′ of the map Rk × Zr−k 3 (α1, . . . , αk,mk+1, . . . ,mr) 7−→ α1a1 +
· · ·+αkak+mk+1ak+ · · ·+mrar is a Lie subgroup contained in H . It also contains
H0. On the other hand, H ′/H0 is the discrete subgroup in V/H0 generated by the
images of ak+1, . . . , ar, i.e., it is equal to H/H0. Therefore, H ′ = H . �

2.9. Exponential map. In this section we construct a differentiable map
from the Lie algebra L(G) of a Lie groupG intoG, which generalizes the exponential
function exp : R −→ R∗

+.

2.9.1. Theorem. Let G be a Lie group and L(G) its Lie algebra. Then there
exists a unique differentiable map ϕ : L(G) −→ G with the following properties:

(i) ϕ(0) = 1;
(ii) T0(ϕ) = 1L(G);
(iii) ϕ((t+ s)ξ) = ϕ(tξ)ϕ(sξ) for every t, s ∈ R and ξ ∈ L(G).

Proof. We first prove the uniqueness part. Let ϕ1 and ϕ2 be two maps having
the properties (i), (ii) and (iii). Take ξ ∈ L(G). Then, because of (ii), φi(t) = ϕi(tξ),
t ∈ R, are Lie group morphisms of R into G for i = 1, 2. Because of (ii), T0(ψi) = ξ,
for i = 1, 2; hence, L(ψ1) = L(ψ2). Since R is connected, by 2.2.14, it follows that
ψ1 = ψ2. This implies that ϕ1(ξ) = ϕ2(ξ). since ξ was arbitrary, it follows that
ϕ1 = ϕ2.

It remains to show the existence. Let ξ ∈ L(G). By 2.4.2, since R is a sim-
ply connected, connected Lie group, the morphism t 7−→ tξ from R into L(G)
determines a unique Lie group morphism fξ : R −→ G such that L(fξ)(1) = ξ.

Let s ∈ R. Then cs : t 7−→ st, t ∈ R, is a Lie group homomorphism of R into
itself. Clearly, L(cs) : t 7−→ st, t ∈ R. Therefore, the composition fξ ◦ cs is a Lie
group morphism of R into G with the differential

L(fξ ◦ cs)(1) = L(fξ)(L(cs)(1)) = T0(fξ)(s) = sT0(fξ)(1).

Therefore, L(fξ ◦ cs) = L(fsξ), and by 2.2.14, we have

fξ(st) = (fξ ◦ cs)(t) = fsξ(t)

for all t ∈ R.
Consider the map ϕ(ξ) = fξ(1) for ξ ∈ L(G). Clearly, ϕ(0) = f0(1) = 1. Hence,

ϕ satisfies (i).
In addition, by the above calculation, for t, s ∈ R and ξ ∈ L(G), we have

ϕ((t+ s)ξ) = f(t+s)ξ(1) = fξ(t+ s) = fξ(t)fξ(s) = ftξ(1)fsξ(1) = ϕ(tξ)ϕ(sξ).

Therefore, (iii) also holds.
It remains to prove the differentiablity of ϕ and (ii).
First we prove that the function ϕ is differentiable in a neighborhood of 0 ∈

L(G). Clearly,

(γG(fξ(t)) ◦ fξ)(s) = fξ(t)fξ(s) = fξ(t+ s) = (fξ ◦ γR(t))(s)

for any t, s ∈ R. Therefore,

Tt(fξ)(1) = Tt(fξ)(T0(γR(t))(1)) = T0(fξ ◦ γR(t))(1)

= T0(γG(fξ(t)) ◦ fξ)(1) = T1(γG(fξ(t)))(T0(fξ)(1)) = T1(γG(fξ(t)))ξ

for any t ∈ R.
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Let (U,ψ, n) be a chart onG centered at 1. Denote byD1, D2, . . . , Dn the vector
fields on U which correspond to ∂1, ∂2, . . . , ∂n on ψ(U) under the diffeomorphism
ψ. Then ξ1 = D1;1, ξ2 = D2;1, . . . , ξn = Dn;1 form a basis of T1(G). Moreover,

T1(γG(g))ξi =

n
∑

j=1

(Fij ◦ ψ)(g)Dj;g

for any g ∈ U ; where Fij : ψ(U) −→ R are smooth functions. For ξ =
∑n
i=1 xiξi ∈

L(G) there exists ε(x1, x2, . . . , xn) > 0 such that

|t| < ε(x1, x2, . . . , xn) implies ϕ(tξ) ∈ U.

We denote by ψi(u), 1 ≤ i ≤ n, the coordinates of ψ(u) for u ∈ U , and put

fi(t;x1, x2, . . . , xn) = ψi(ϕ(tξ))

for |t| < ε(x1, x2, . . . , xn). Then, by the above calculation, we have

dfj
dt

= Tt(fj)(1) = Tt(ψj ◦ fξ)(1) = Tϕ(tξ)(ψj)Tt(fξ)(1)

= Tϕ(tξ)(ψj)T0(γG(fξ(t)))ξ =

n
∑

i=1

xiFij(f1(t;x1, . . . , xn), . . . , fn(t;x1, . . . , xn))

for every |t| < ε(x1, x2, . . . , xn) and x1, x2, . . . , xn ∈ R. In addition, we have

fi(0;x1, x2, . . . , xn) = 0

for 1 ≤ i ≤ n. If we consider the first order system of differential equations

dfj
dt

=
n
∑

i=1

xiFij(f1(t;x1, . . . , xn), . . . , fn(t;x1, . . . , xn))

with the initial conditions

fi(0;x1, x2, . . . , xn) = 0

for 1 ≤ i ≤ n, it follows that this Cauchy problem has unique solution on (−δ, δ)
with parameters |xi| < ε, 1 ≤ i ≤ n, for some ε, δ > 0. Moreover, the solutions fi,
1 ≤ i ≤ n, are smooth functions in |t| < δ and |xi| < ε, 1 ≤ i ≤ n. Therefore, if we
put V = {ξ ∈ L(G) | ξ =

∑n
i=1 xiξi, |xi| < δε}, V is an open neighborhood of 0 in

L(G) and the function ϕ is differentiable on V .
On the other hand, by (iii) we have

ϕ(ξ) = ϕ

(

1

n
ξ

)n

for any n ∈ N. Therefore, the differentiability of ϕ on V implies the differentiability
on nV for any n ∈ N. Hence ϕ is differentiable on L(G). �

The map ϕ : L(G) −→ G is called the exponential map and denoted by expG
(or just exp).

Let G be the multiplicative group of positive real numbers R∗
+. Then its Lie

algebra is equal to R. Clearly, the function t 7−→ et satisfies the properties (i), (ii)
and (iii) of 2.9.1. Therefore, in this example we have ϕ(t) = et for t ∈ R.

2.9.2. Corollary. (i) Exponential map expG : L(G) −→ G is a local
diffeomorphism at 0 ∈ L(G).
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(ii) For every ξ ∈ L(G), ψ : t 7−→ exp(tξ) is the unique Lie group morphism
of R into G such that L(ψ)(1) = ξ.

For every ξ ∈ L(G), {exp(tξ) | t ∈ R} is an integral subgroup of G which we
call one-parameter subgroup attached to ξ. From 2.6.3, we see that one-parameter
subgroups are isomorphic to either R or T.

2.9.3. Proposition. Let G and H be two Lie groups and ϕ : G −→ H a
morphism of Lie groups. Then

(i) ϕ ◦ expG = expH ◦L(ϕ);
(ii) if G is an integral subgroup of H, we have expG = expH |L(G).

Proof. Clearly, (ii) is a special case of (i).
To prove (i) we remark that ψ1 : t 7−→ ϕ(expG(tξ)) and ψ2 : t 7−→ expH(tL(ϕ)ξ)

are two Lie group morphisms of R into H . Also, we have

L(ψ1)(1) = L(ϕ)ξ = L(ψ2)(1),

i.e., L(ψ1) = L(ψ2). By 2.2.14, it follows that ψ1 = ψ2. In particular, we have

ϕ(expG(ξ)) = ψ1(1) = ψ2(1) = expH(L(ϕ)ξ). �

LetG = GL(V ). Then L(G) is the Lie algebra L(V ) of all linear endomorphisms
on V . For any linear transformation T on V , the series

∑∞
n=0

1
n!T

n converges to
a regular linear transformation on V . Therefore, this defines a real analytic map
T 7−→ eT from L(V ) into GL(V ). Clearly, this map satisfies the properties (i), (ii)
and (iii) from 2.9.1. Hence exp(T ) = eT for T ∈ L(G).

2.9.4. Corollary. (i) Let ξ ∈ L(G). Then

Ad(exp(ξ)) = ead ξ.

(ii) Let g ∈ G. Then

g(exp ξ)g−1 = exp(Ad(g)(ξ))

for all ξ ∈ L(G).

Proof. (i) The adjoint representation Ad is a Lie group morphism of G into
GL(L(G)). Therefore, by 2.9.3 and the above discussion, we have

Ad(exp(ξ)) = eL(Ad)ξ.

The final statement follows from 2.2.5.
(ii) Int(g) is an automorphism of G, hence, by 2.9.3, we have

g(exp ξ)g−1 = Int(g)(exp(ξ)) = exp(L(Int(g))ξ) = exp(Ad(g)ξ)

for all ξ ∈ L(G). �

2.9.5. Corollary. Let G be a Lie group and H an integral subgroup of G.
Then, the following statements are equivalent for ξ ∈ L(G):

(i) ξ ∈ L(H);
(ii) expG(tξ) ∈ H for all t ∈ R.

Proof. By 2.9.3.(ii), we see that ξ ∈ L(H) implies that expG(tξ) ∈ H for all
t ∈ R.

If expG(tξ) ∈ H for all t ∈ R, then ξ is in the Lie algebra tangent to H . Hence,
by 2.7.6, we see that ξ ∈ L(H). �
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Clearly, the image of exp : L(G) −→ G is in the identity component of G. On
the other hand, exp in general is neither injective nor surjective. The answer is
simple only in the case of connected abelian Lie groups.

2.9.6. Proposition. Let G be a connected Lie group. Then the following as-
sertions are equivalent:

(i) the group G is abelian;
(ii) exp : L(G) −→ G is a Lie group morphism of the additive group L(G)

into G.

If these conditions are satisfied, exp : L(G) −→ G is a covering projection.

Proof. Assume that G is a simply connected abelian Lie group. Then L(G)
is an abelian Lie algebra by 2.2.16. In addition, by 2.6.1, G is isomorphic to Rn

for n = dimG. Moreover, L(G) is also isomorphic to Rn as an abelian Lie algebra.
Clearly, the identity map on Rn satisfies the conditions of 2.9.1. Therefore, exp is
the identity map in this case, so it is clearly a Lie group morphism.

If G is an arbitrary connected abelian Lie group, its universal cover is isomor-
phic to Rn for n = dimG. Let p : Rn −→ G be the covering projection. Then, by
2.9.3 and the first part of the proof, we have p = expG. It follows that expG is a
Lie group morphism and the covering projection.

If exp : L(G) −→ G is a Lie group morphism, its image is a subgroup of G.
By 2.9.2.(i), it contains an open neighborhood of 1 in G. Since G is connected, by
1.5.1, we see that exp is surjective. Therefore, G has to be abelian. �

2.9.7. Lemma. Let G be a connected Lie group and H an integral subgroup of
G. Then the following conditions are equivalent:

(i) H is a normal subgroup of G;
(ii) L(H) is an ideal in L(G).

Proof. Assume that H is a normal subgroup in G. Then by 2.7.8, L(H) is
an ideal in L(G).

If L(H) is an ideal in L(G), by 2.9.4, we have

Ad(exp(ξ))(L(H)) = ead(ξ)(L(H)) = L(H)

for any ξ ∈ L(G). By 2.9.1, there exists a neighborhood U of 1 in G such that
Ad(g)(L(H)) = L(H) for all g ∈ U . Since G is connected, by 1.5.1, it follows that
Ad(g)(L(H)) = L(H) for all g ∈ G. Hence, by 2.7.8, H is a normal subgroup. �

2.10. Some examples. First we consider the group of affine transformations
of the space Rn, n ∈ N. For A ∈ GL(n,R), a ∈ Rn, we define the affine transfor-
mation

αA;a(x) = Ax + a, x ∈ Rn.

Clearly, for A,B ∈ GL(n,R) and a, b ∈ Rn, we have

αA;a ◦ αB;b(x) = αA;a(Bx + b) = ABx +Ab+ a = αAb+a;AB(x)

for all x ∈ Rn. Therefore, the group of all affine transformations of the real line
can be identified with the the manifold Rn × GL(n,R) with the operation

(a,A) · (b, B) = (Ab+ a,AB).

This is clearly a Lie group G, which we call the group of affine transformations of
Rn.
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We define a map π : (a,A) 7−→

(

A a
0 1

)

of G into GL(n + 1,R). Clearly, we

have

π(a,A) ◦ π(b, B) =

(

A a
0 1

)(

B b
0 1

)

=

(

AB Ab+ a
0 1

)

= π((A, a) · (B, b)),

i.e., π is a representation of G. The image of π is the subgroup H of GL(n+ 1,R)
which is the intersection of the open submanifold GL(n+1,R) of the spaceMn+1(R)
of all (n+1)×(n+1) real matrices with the closed submanifold of all matrices having
the second row equal to (0 . . . 0 1). Therefore, H is a Lie subgroup of GL(n+1,R).
Since π is injective, by 1.5.7, π is an isomorphism of G onto H .

Therefore, the Lie algebra L(G) of G is isomorphic to the Lie algebra L(H) of
H . On the other hand, the Lie algebra L(H) is the subalgebra of the Lie algebra
Mn+1(R) consisting of all matrices with with last row equal to zero.

Consider now the case n = 1. Then G is diffeomorphic to R × R∗. Therefore,
it has two components, and the identity component G0 is simply connected. The
Lie lgebra of G is spanned by the vectors

e1 =

(

0 −1
0 0

)

and e2 =

(

1 0
0 0

)

.

By direct calculation we check that [e1, e2] = e1. Therefore, the Lie algebra L(G)
is isomorphic to the unique two-dimensional nonabelian Lie algebra which we dis-
cussed in 2.1.

Let (a, b) be in the center of G0. Then

(a, b) · (c, d) = (a+ bc, bd)

is equal to

(c, d) · (a, b) = (c+ da, bd)

for all c ∈ R and d ∈ R∗
+. This implies that a + bc = c + da for all c ∈ R and

d ∈ R∗
+. This is possible only if a = 0 and b = 1. Therefore, the center of G0 (and

of G) is trivial. This implies that, up to a Lie group isomorphism, G0 is the unique
connected Lie group with Lie algebra isomorphic to L(G).

Combining this with the above discussion, we get the following result.

2.10.1. Lemma. The connected component of the group of affine transforma-
tions of the real line is (up to an isomorphism) the unique connected 2-dimensional
nonabelian Lie group.

Combined with 2.6.2, this completes the classification of all connected Lie
groups of dimension ≤ 2.

2.10.2. Proposition. Any connected Lie group G of dimension 2 is isomorphic
to one of the following Lie groups:

(i) real plane R2;
(ii) two-dimensional torus T2;
(iii) the product R × T;
(iv) the connected component G0 of the group of affine motions of the real line.
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By direct calculation we see that

Ad(a, b)e1 =

(

b a
0 1

)(

0 −1
0 0

)(

b a
0 1

)−1

=

(

b a
0 1

)(

0 −1
0 0

)(

b−1 −ab−1

0 1

)

=

(

0 −b
0 0

)

= be1;

and

Ad(a, b)e2 =

(

b a
0 1

)(

1 0
0 0

)(

b a
0 1

)−1

=

(

b a
0 1

)(

1 0
0 0

)(

b−1 −ab−1

0 1

)

=

(

1 −a
0 0

)

= ae1 + e2.

Therefore, in the basis (e1, e2) the adjoint representation of G is equal to the rep-
resentation π.

Now we return to the general case. We want to calculate the exponential map
for G. The Lie algebra L(G) can be viewed as the Lie subalgebra of Mn+1(R)
consisting of all matrices with last row equal to 0. Therefore, an element of L(G)

can be written as

(

T v
0 0

)

where T ∈Mn(R) and v ∈ Rn. Since G is a Lie subgroup

of GL(n + 1,R) its exponential map is given by the usual exponential function on
Mn+1(R). Therefore, me have

exp

(

T v
0 0

)

=

∞
∑

p=0

1

p!

(

T v
0 0

)p

.

By induction in p we see that
(

T v
0 0

)p

=

(

T p T p−1v
0 0

)

for any p ∈ N. Let

f(t) =
∑

p=0

tp

(p+ 1)!

for any t ∈ C. Then, f is an entire function, and for t 6= 0 we have f(t) = et−1
t .

With this notation we have

exp

(

T v
0 0

)

=

(

eT f(T )v
0 1

)

.

In particular, returning to the case n = 1, we see that

exp

(

t v
0 0

)

=

(

et f(t)v
0 1

)

,

for any t, v ∈ R. On the other hand, the identity component G0 of G consists of

matrices

(

a b
0 1

)

where a > 0. If t = 0, f(0) = 1, and we have

exp

(

0 v
0 0

)

=

(

1 v
0 1

)

.
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If t 6= 0, we have

exp

(

t v
0 0

)

=

(

et (et−1)v
t

0 1

)

.

From these formulae it is easy to see that the exponential map is a diffeomorphism
of L(G) onto G0.

From the above discussion we conclude that the exponential map is a diffeo-
morphism for all simply connected, connected Lie groups of dimension 1 and 2.

Consider now the group G for n = 2. This is the group of affine transformations
of the plane R2. Let H be the subgroup of G consisting of all affine transformations
which preserve the euclidean distance in R2. This is the group of euclidean motions

of R2. From the above discussion, we see that H consists of all matrices

(

A a
0 1

)

where A ∈ O(2) and a ∈ R2. Therefore, H is diffeomorphic to R2 ×O(2). By 1.8.3,
H has two connected components. Its identity component H0 is the group of orien-

tation preserving euclidean motions consisting of all matrices of the form

(

A a
0 1

)

where A ∈ SO(2) and a ∈ R2. Therefore, its fundamental group is isomorphic to
Z.

Consider the manifold H̃ = R3 with multiplication

(x, y, ϕ) · (x′, y′, ϕ′) = (x + x′ cosϕ+ y′ sinϕ, y − x′ sinϕ+ y′ cosϕ,ϕ+ ϕ′).

By direct calculation, one can check that this is a Lie group. Moroever, the mapping
Φ : H̃ −→ H0 given by

Φ(x, y, ϕ) =





cosϕ sinϕ x
− sinϕ cosϕ y

0 0 1





is a Lie group morphism. The kernel of Φ is (0, 0, 2πk), k ∈ Z, and Φ is surjective.

Therefore, Φ is a covering projection. It follows that H̃ is the universal cover of
H0.

The Lie algebra of H is spanned by matrices

e1 =





0 0 1
0 0 0
0 0 0



 , e2 =





0 0 0
0 0 1
0 0 0



 , e3 =





0 1 0
−1 0 0
0 0 0



 .

Then, we have

[e1, e2] = 0, [e3, e1] = −e2, [e3, e2] = e1

and these relations determine L(H) completely.
Now we consider the exponential map exp : L(H) −→ H . By induction we see

that

(

0 1
−1 0

)p

=























(−1)
p

2

(

1 0

0 1

)

if p is even;

(−1)
(p−1)

2

(

0 1

−1 0

)

if p is odd.
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Therefore, we have

e

(

0 ϕ
−ϕ 0

)

=

(

∞
∑

p=0

(−1)p

(2p)!
ϕ2p

)

(

1 0
0 1

)

+

(

∞
∑

p=0

(−1)p

(2p+ 1)!
ϕ2p+1

)

(

0 1
−1 0

)

=

(

cosϕ sinϕ
− sinϕ cosϕ

)

.

Analogously, if ϕ 6= 0, we have

f

(

0 ϕ
−ϕ 0

)

=

(

∞
∑

p=0

(−1)p

(2p+ 1)!
ϕ2p

)

(

1 0
0 1

)

+

(

∞
∑

p=0

(−1)p

(2p+ 2)!
ϕ2p+1

)

(

0 1
−1 0

)

=
sinϕ

ϕ

(

1 0
0 1

)

+
1 − cosϕ

ϕ

(

0 1
−1 0

)

=
1

ϕ

(

sinϕ 1 − cosϕ
cosϕ− 1 sinϕ

)

.

Hence, by above calculation, we have

expH





0 0 x
0 0 y
0 0 0



 =





1 0 x
0 1 y
0 0 1





and, if ϕ 6= 0,

expH





0 ϕ x
−ϕ 0 y
0 0 0



 =





cosϕ sinϕ 1
ϕ(x sinϕ+ y(1 − cosϕ))

− sinϕ cosϕ 1
ϕ(x(cosϕ− 1) + y sinϕ)

0 0 1



 .

From this one easily sees that

expH̃





0 0 x
0 0 y
0 0 0



 = (x, y, 0)

and

expH̃





0 ϕ x
−ϕ 0 y
0 0 0



 =

(

1

ϕ
(x sinϕ+ y(1 − cosϕ)),

1

ϕ
(x(cosϕ− 1) + y sinϕ), ϕ

)

for ϕ 6= 0.
From this we immediately deduce that for k ∈ Z∗, we have

expH̃





0 2πk x
−2πk 0 y

0 0 0



 = (0, 0, 2πk).

Hence, the exponential map is neither injective nor surjective for H̃.

2.11. Cartan’s theorem. In this section we prove the following fundamental
result in the theory of Lie groups.

2.11.1. Theorem (E. Cartan). A closed subgroup of a Lie group is a Lie sub-
group.
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Proof. Let G be a Lie group and H its closed subgroup. Let h be the Lie
subalgebra of L(G) which is tangent to H . Denote by H0 the integral subgroup of
G attached to h. Then, by 2.7.2, H0 ⊂ H .

Let k be a complementary linear subspace to h in L(G). Then the map h× k 3
(ξ1, ξ2) 7−→ exp(ξ1) · exp(ξ2) is a differentiable map from h× k into G. By 2.9.1, the
differential of this map at (0, 0) is equal to (ξ1, ξ2) 7−→ ξ1 + ξ2. Hence the map is a
local diffeomorphism at (0, 0). There exist open symmetric convex neighborhoods
U1 and U2 of 0 in h and k respectively, such that (ξ1, ξ2) 7−→ exp(ξ1) · exp(ξ2) is a
diffeomorphism of U1 × U2 onto an open neighborhood U of 1 in G.

Clearly, exp(U1) ⊂ H0. We claim that there is a neighborhood U ′
2 ⊂ U2 of

0 ∈ k such that

H ∩ exp(U1) · exp(U ′
2) = exp(U1).

Assume the opposite. Then there exist sequences (ξn) in U1 and (ηn) in U2 −
{0} such that ηn −→ 0 and exp(ξn) · exp(ηn) ∈ H . Since we have exp(ηn) =
exp(−ξn) exp(ξn) exp(ηn), we see that exp(ηn) ∈ H for all n ∈ N. Taking possibly
a subsequence, we can find λn ∈ R − {0}, n ∈ N, such that λ−1

n ηn −→ η ∈ k − {0}
as n → ∞. For example, if we take a norm ‖ · ‖ on k, we can put λn = ‖ηn‖.
Clearly, we must have λn −→ 0 as n→ ∞. Let λ ∈ R. Let kn be the largest integer
less than or equal to λλ−1

n . Then |λ − λnkn| −→ 0 as n → ∞. Therefore, by the
continuity of the exponential map, we have

exp(λη) = exp
(

λ lim
n→∞

λ−1
n ηn

)

= lim
n→∞

exp(λλ−1
n ηn)

= lim
n→∞

(

exp((λ − knλn)λ−1
n ηn) · exp(knηn)

)

.

On the other hand, by the same reasoning, we have

lim
n→∞

exp((λ− knλn)λ−1
n ηn) = exp

(

lim
n→∞

((λ− knλn)λ−1
n ηn)

)

= exp(0) = 1.

Therefore, we have

exp(λη) = lim
n→∞

(

exp((λ − knλn)λ−1
n ηn) · exp(knηn)

)

= lim
n→∞

exp(−(λ− knλn)λ−1
n ηn) · lim

n→∞

(

exp((λ− knλn)λ−1
n ηn) · exp(knηn)

)

= lim
n→∞

exp(knηn) = lim
n→∞

exp(ηn)
kn ∈ H,

since kn ∈ Z, exp(ηn) ∈ H and H is closed in G.
It follows that exp(λη) ∈ H for all λ ∈ R. Hence, η ∈ h, which is impossible.

Therefore, we have a contradiction.
Therefore, we established that there exists a neighborhood U ′

2 of 0 in k such
that H ∩ exp(U1) exp(U ′

2) = exp(U1). Hence, there exists an open neighborhood O
of the identity such that H ∩O is a submanifold. Since H is a subgroup of G, any
h ∈ H has such neighborhood γ(h)(O). Therefore, H is a submanifold of G and a
Lie subgroup of G. �

Cartan’s theorem has the following consequence.

2.11.2. Theorem. Let G and H be two Lie groups and ϕ : G −→ H a continu-
ous group homomorphism. Then ϕ is differentiable, i.e., it is a Lie group morphism.
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Proof. Since ϕ is continuous, the graph Γϕ of ϕ in G×H is a closed subgroup.
Therefore, Γf is a Lie subgroup in G×H . Hence, the restriction p of the projection
G×H −→ G to Γϕ is a morphism of Lie groups. Clearly, it is a homeomorphism.
Since it is injective, by 1.1.5 and 2.2.7, it must be an immersion. On the other
hand, since it is open, it must be a local diffeomorphism. It follows that p is a
diffeomorphism, and an isomorphism of Lie groups. On the other hand, ϕ is the
composition of the inverse of p with the projection to the second factor in G×H .
This implies that ϕ is a Lie group morphism. �

2.11.3. Corollary. Let G be a locally compact group. Then on G there exists
at most one structure of a Lie group (compatible with the topology of G).

2.12. A categorical interpretation. Let Lie be the category of Lie groups
and T opGrp the category of topological groups. Then we have the natural forgetful
functor For : Lie −→ T opGrp. By 2.11.2 this functor is fully faithful. Moreover, by
2.11.3, this functor is an isomorphism of the category Lie with the full subcategory
of T opGrp consisting of topological groups which admit a compatible Lie group
structure.

The following property distinguishes Lie groups among topological groups.

2.12.1. Proposition. Let G be a Lie group. Then there exists a neighborhood
U of 1 in G with the following property: If H is a subgroup of G contained in U ,
H is trivial, i.e., H = {1}.

We say that Lie groups do not admit small subgroups.

Proof. Let U be an open neighborhood of 1 in G and V a bounded open
convex neighborhood of 0 in L(G) such that exp : V −→ U is a diffeomorphism.
Let V ′ ⊂ 1

2V ⊂ V be another neighborhood of 0 in L(G). Then U ′ = exp(V ′)
is an open neighborhood of 1 in G. Let H be a subgroup of G contained in U ′.
Let h ∈ H . Then h = exp(ξ) for some ξ ∈ V ′. Hence, we have h2 = exp(ξ)2 =
exp(2ξ) ∈ H . Moreover, h2 ∈ H and h2 = exp(η) for some η ∈ V ′. It follows
that exp(η) = exp(2ξ) for 2ξ, η ∈ V . Since exp is injective on V , we must have
2ξ = η. Hence, ξ ∈ 1

2V
′. It follows that H ⊂ exp

(

1
2V

′
)

. By induction we get that

H ⊂ exp
(

1
2nV

′
)

for any n ∈ N. Since V ′ is bounded, this implies that H = {1}. �

2.12.2. Example. In contrast to 2.12.1, there exist compact groups with small
subgroups. For example, let C = Z/2Z be the cyclic group of order two, and G
the infinite product of countably many copies of C. Then G is a compact group.
On the other hand, by the definition of topology on G, there exists a fundamental
system of open neighborhoods of 1 in G consisting of subgroups of finite index in
G.

This proves that the full subcategory of T opGrp consisting of all locally compact
groups is strictly larger than Lie.

On the other hand, a connected locally compact group without small subgroups
is a Lie group. In particular, a topological group which is a topological manifold
has no small subgroups and therefore is a Lie group. This gives the positive answer
to Hilbert’s fifth problem.



2. LIE ALGEBRA OF A LIE GROUP 71

2.13. Closures of one-parameter subgroups. Let G be a Lie group. Let
H be a subgroup of G. By continuity of multiplication and inversion in G, the
closure H̄ of H is a closed subgroup of G. By Cartan’s theorem 2.11.1, H̄ is a Lie
subgroup of G.

Let ξ ∈ L(G) and H the corresponding one-parameter subgroup {exp(tξ) | t ∈
R}. Then, by 2.6.3, H is isomorphic to R or T. In the second case, H is compact,
and therefore closed in G.

We want to study the closure H̄ of H in the first case. Since H is connected
and abelian, H̄ must be a connected abelian Lie group. Hence, by 2.6.2, H̄ is
isomorphic to a product Tp × Rq for some p, q ∈ Z+.

The universal cover of H̄ is isomorphic to Rp+q. The Lie algebra L(H̄) can also
be identified with Rp+q and the exponential map exp : Rp+q −→ H̄ is the covering
projection by 2.9.6. We can assume that the kernel of this covering projection is
Zp×{0}. Since ξ ∈ L(H) ⊂ L(H̄), ξ determines a line in L(H̄). Let e1, e2, . . . , ep+q
denote the canonical basis of Rp+q. Then e1, e2, . . . , ep and the line {tξ | t ∈ R}
generate a subgroup K of Rp+q. Let U be a nonempty open subset of Rp+q. Since
the projection of Rp+q onto H̄ is open, the image V of U is a nonempty open set
in H̄ . Since H is dense in H̄ , V must intersect H . It follows that K intersects U .
Hence, K is dense in Rp+q. This first implies that e1, e2, . . . , ep and ξ must span
Rp+q. Hence, q ≤ 1. On the other hand, if q = 1, ξ is linearly independent from
e1, e2, . . . , ep. In this case, K is closed in Rp+1. Since it is also dense in Rp+1, it
must be equal to Rp+1. This is possible only if p = 0 and H̄ is one-dimensional.
Since H is one-dimensional too, by 2.7.6, we see that H = H̄ . Therefore, we
established the following result.

2.13.1. Proposition. Let H be a one-parameter subgroup in a Lie group G.
Then, either H is a Lie subgroup isomorphic to R or H̄ is a Lie group isomorphic
to Tn for some n ∈ N.

Now we want to show that any torus Tn can be obtained in this way.

2.13.2. Proposition. Let n ∈ N. There exists a one-parameter subgroup dense
in Tn.

Proof. As we remarked above, it is enough to show that for any n ∈ N there
exists a line L in Rn such that it and e1, e2, . . . , en generate a dense subgroup H in
Rn.

Let L be an arbitrary line in Rn and H the subgroup generated by L and
e1, e2, . . . , en. Then H̄ is a closed subgroup of Rn. By Cartan’s theorem, H̄ is a Lie
subgroup of Rn. Therefore, by 2.8.2, there exists a basis a1, a2, . . . , an such that
(α1, . . . , αr,mr+1, . . . ,mn) 7−→ α1a1 + · · · + αrar + mr+1ar+1 + · · · + mnan is an
isomorphism of Rr × Zn−r onto H̄ . If H̄ is different from Rn, we have r < n. Let
f be the linear form on Rn defined by f(ai) = 0 for 1 ≤ i ≤ n− 1 and f(an) = 1.
Then f is a nonzero linear form on Rn satisfying f(H̄) ⊂ Z.

Therefore, if H is not dense in Rn, there exists a nontrivial linear form f on
Rn such that f(H) ⊂ Z.

Let ci = f(ei) for 1 ≤ i ≤ n. Since e1, e2, . . . , en ∈ H , we must have ci ∈ Z

for 1 ≤ i ≤ n. Let ξ = (θ1, θ2, . . . , θn) be a nonzero element of L. Since f takes
integral values on L, it must be equal to 0 on L. Therefore, we must have

c1θ1 + c2θ2 + · · · + cnθn = 0.
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Therefore, if a nontrivial f exists, θ1, θ2, . . . , θn must be linearly dependent over Q.
Since R is infinite dimensional linear space over Q, we see that we can always find
ξ such that θ1, θ2, . . . , θn are linearly independent over Q. In this case H must be
dense in Rn. Hence, the corresponding one-parameter subgroup is dense in Tn. �

3. Haar measures on Lie groups

3.1. Existence of Haar measure. In this section we prove the existence
of left invariant positive measures on Lie groups. They generalize the counting
measure on a finite group G. The main result is the following theorem.

3.1.1. Theorem. Let G be a Lie group.

(i) There exists a nonzero left invariant positive measure µ on G.
(ii) Let ν be another left invariant measure on G. Then there exists c ∈ C

such that ν = cµ.

Therefore, any nonzero positive left invariant measure on G is of the form c ·µ,
c > 0. Such measure is called a left Haar measure on G.

Proof. Let n = dimG. Then
∧n T1(G)∗ is one-dimensional linear space. A

nonzero n-form Ω in
∧n

T1(G)∗ determines a differentiable n-form ω on G by

ωg(T1(γ(g))ξ1 ∧ (T1(γ(g))ξ2 ∧ · · · ∧ (T1(γ(g))ξn) = Ω(ξ1 ∧ ξ2 ∧ · · · ∧ ξn)

for all ξ1, ξ2, . . . , ξn ∈ T1(G). Clearly, ω satisfies γ(g)∗ω = ω for any g ∈ G, i.e.,
this form is left invariant. The corresponding positive measure |ω| is a nonzero left
invariant measure on G. This proves (i).

Now we prove the uniqueness of left invariant measures. Let µ be a nonzero
positive left invariant measure on G. Let ν be another left invariant measure on G.
Let ϕ ∈ C0(G) such that µ(ϕ) 6= 0. Then we can define the function

Fϕ(g) =
1

µ(ϕ)

∫

ϕ(hg) dν(h).

This is a continuous function on G.
For any ψ ∈ C0(G), we have

µ(ϕ)

∫

ψ(h−1) dν(h) =

∫ (∫

ϕ(g)ψ(h−1) dν(h)

)

dµ(g)

=

∫ (∫

ϕ(g)ψ((g−1h)−1) dν(h)

)

dµ(g) =

∫ (∫

ϕ(g)ψ(h−1g) dν(h)

)

dµ(g)

=

∫ (∫

ϕ(hg)ψ(g) dν(h)

)

dµ(g) = µ(ϕ)

∫

ψ(g)Fϕ(g) dµ(g).

It follows that
∫

ψ(h−1) dν(h) =

∫

ψ(g)Fϕ(g) dµ(g)

for any ψ ∈ C0(G). Since left side is independent of ϕ, we conclude that for
ϕ,ϕ′ ∈ C0(G) such that µ(ϕ) 6= 0 and µ(ϕ′) 6= 0, we have

∫

ψ(g)Fϕ(g) dµ(g) =

∫

ψ(g)Fϕ′(g) dµ(g).

Therefore, we have
∫

ψ(g)(Fϕ(g) − Fϕ′(g)) dµ(g) = 0
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for any ψ ∈ C0(G). Hence, the measure (Fϕ − Fϕ′)µ is equal to zero. This is
possible only if the set S = {g ∈ G | (Fϕ − Fϕ′)(g) 6= 0} is a set of measure zero
with respect to µ. On the other hand, since Fϕ − Fϕ′ is continuous, the set S is
open. It follows that this set must be empty, i.e., Fϕ′ = Fϕ.

Hence, the function Fϕ is independent of ϕ, and we can denote it by F . From
its definition we get

F (1)

∫

ϕ(g) dµ(g) =

∫

ϕ(g) dν(g)

for any ϕ ∈ C0(G) such that µ(ϕ) 6= 0. The complement of {ϕ ∈ C0(G) | µ(ϕ) = 0}
spans the space C0(G). Therefore, the above identity holds on C0(G), i.e., ν =
F (1)µ. This proves the part (ii) of the theorem. �

Since a left Haar measure µ on G is left invariant, its support supp(µ) must be
a left invariant subset of G. Therefore, since µ is nonzero, supp(µ) has to be equal
to G. In particular, the measure µ(U) of a a nonempty open set U in G must be
positive.

3.2. Modular function. Let G be a Lie group and µ a left Haar measure on
G. Let τ be an automorphism of the Lie group G. Then ντ : ϕ 7−→

∫

ϕ(τ(g)) dµ(g)
is a positive measure on G. In addition, for any ϕ ∈ Co(G), we have

∫

ϕ(τ(hg)) dµ(g) =

∫

ϕ(τ(h)τ(g)) dµ(g) =

∫

ϕ(τ(g)) dµ(g),

i.e., the measure ντ is left invariant. Therefore, there exists a positive number
mod(τ) such that mod(τ)ντ = µ, i.e.,

mod(τ)

∫

ϕ(τ(g)) dµ(g) =

∫

ϕ(g) dµ(g).

for all ϕ ∈ C0(G). Equivalently, we have

µ(τ(S)) = mod(τ)µ(S)

for any measurable set S in G.

3.2.1. Lemma. The function mod is a homomorphism of the group Aut(G) of
automorphisms of G into the multiplicative group R∗

+ of positive real numbers.

Proof. Let σ, τ ∈ Aut(G). Then, for any measurable set S in G, we have

mod(σ ◦ τ)µ(S) = µ((σ ◦ τ)(S)) = µ(σ(τ(S)))

= mod(σ)µ(τ(S)) = mod(σ)mod(τ)µ(S),

i.e.,
mod(σ ◦ τ) = mod(σ)mod(τ). �

Clearly Int : G −→ Aut(G) is a group homomorphism. Therefore, by composi-
tion with mod we get the group homomorphism mod ◦ Int of G into R∗

+. Clearly,
the function

∆(g) = ∆G(g) = mod(Int(g))−1

from G into R∗
+ is a group homomorphism. It is called the modular function of G.

By the above formulas, we have
∫

ϕ(hg−1) dµ(h) =

∫

ϕ(ghg−1) dµ(h) = ∆(g)

∫

ϕ(h) dµ(g)
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for any ϕ ∈ C0(G). Equivalently,

µ(Sg) = ∆(g)µ(S)

for any g ∈ G and measurable set S in G. Therefore, a left Haar measure is right
invariant if and only if ∆G = 1.

3.2.2. Proposition. Let G be a Lie group. Then:

(i) The modular function ∆ : G −→ R∗
+ is a Lie group homomorphism.

(ii) For any g ∈ G, we have

∆G(g) = | detAd(g)|−1.

Proof. Let n = dimG. Let ω be a nonzero left invariant differential n-form
on G. Then ω is completely determined by its value at 1. Let Clearly,

(Int(g) ◦ γ(h))(k) = ghkg−1 = (γ(ghg−1) ◦ Int(g))(k)

for any k ∈ G. Hence, for any h ∈ G, we have

γ(g)∗(Int(h)∗ω) = (Int(h) ◦ γ(g))∗ω = (γ(hgh−1) ◦ Int(h))∗ω

= Int(h)∗(γ(hgh−1)∗ω) = Int(h)∗ω

for all g ∈ G, i.e., Int(h)ω is a left invariant differential n-form on G. Therefore, it
must be proportional to ω.

On the other hand,

(Int(g)∗ω)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = ω(T1(Int(g))ξ1 ∧ T1(Int(g))ξ2 ∧ · · · ∧T1(Int(g))ξn)

= det(T1(Int(g)))ω(ξ1 ∧ ξ2 ∧ · · · ∧ ξn)

for any ξ1, ξ2, . . . , ξn ∈ T1(G). It follows that

Int(g)∗ω = det(T1(Int(g))ω = det(Ad(g))ω

for any g ∈ G. Therefore, we have

| Int(g)∗ω| = | detAd(g)| · |ω|

for any g ∈ G.
Let µ be the left Haar measure attached to ω. Then, by 1.4.2.1, for any ϕ ∈

C0(G), we have
∫

ϕ(h) dµ(h) =

∫

ϕ |ω| =

∫

(ϕ◦Int(g)) | Int(g)∗ω| = | detAd(g)|

∫

(ϕ◦Int(g)) |ω|

= | detAd(g)|

∫

ϕ(ghg−1) dµ(h) = | detAd(g)|∆(g)

∫

ϕ(h) dµ(h).

Hence, (ii) follows.
From (ii) it follows that ∆ is differentiable. This establishes (i). �

A Lie group G is called unimodular if ∆G = 1. As we remarked above, a left
Haar measure on a unimodular Lie group is also right invariant.

Clearly, abelian Lie groups are unimodular. In addition, we have the following
result.

3.2.3. Proposition. Let G be a compact Lie group. Then G is unimodular.

Proof. If G is compact, the image ∆(G) of G is a compact subgroup of R∗
+.

Therefore, it must be equal to {1}. �
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3.2.4. Example. Let G be the Lie group of affine transformations of the line
studied in 2.10. We established there that

Ad(a, b) =

(

b a
0 1

)

for any (a, b) ∈ G. Therefore, we have

∆(a, b) = | detAd(a, b)|−1 = |b|.

It follows that G is not unimodular.

3.3. Volume of compact Lie groups. In this section we prove the following
characterization of compact Lie groups.

3.3.1. Theorem. Let G be a Lie group and µ(G) a left Haar measure on G.
Then, the following conditions are equivalent:

(i) The group G is compact.
(ii) µ(G) is finite.

Proof. If G is compact, µ(G) <∞.
Assume that µ(G) < ∞. Let V be a compact neighborhood of 1 in G. Then

µ(V ) > 0.
Let S be the family of finite sets {g1, g2, . . . , gn} such that giV ∩ gjV = ∅ for

all i 6= j, 1 ≤ i, j ≤ n. Then we have

µ(G) ≥ µ

(

n
⋃

i=1

giV

)

=

n
∑

i=1

µ(giV ) = nµ(V ),

and n ≤ µ(G)
µ(V ) . It follows that the elements of S have bounded cardinality. In

particular, there exist elements in S of maximal cardinality n0. Let {g1, g2, . . . , gn0}
be such element in S. Let g ∈ G. Then {g, g1, . . . , gn0} is not in S. Therefore,
there exists 1 ≤ i ≤ n0 such that gV ∩ giV 6= ∅. Therefore, g ∈ giV V

−1. Since g
was completely arbitrary, it follows that G =

⋃n0

i=1 giV V
−1. Hence G is a union of

compact sets, i.e., G is compact. �





CHAPTER 3

Compact Lie groups

1. Compact Lie groups

1.1. Lie algebra of a compact Lie group. Let G be a compact Lie group
and L(G) its Lie algebra. By 2.3.1.1, there exists a left Haar measure on G. By
2.3.2.3, this measure is biinvariant. Moreover, by 2.3.3.1, the volume of G is finite.
therefore, we can select the biinvariant Haar measure µ on G such that µ(G) = 1.

1.1.1. Lemma. Let G be a compact group.

(i) The Lie algebra L(G) admits an inner product such that the image of
Ad : G −→ GL(L(G)) is a closed subgroup of O(L(G)).

(ii) With respect to this inner product, ad(ξ), ξ ∈ L(G), are skew symmetric
linear transformations.

Proof. Since G is compact, the image Ad(G) ⊂ GL(L(G)) is compact and
therefore closed.

Let (ξ, η) 7−→ (ξ|η) be an arbitrary inner product on L(G). Then we define
another inner product on L(G) by

[ξ|η] =

∫

G

(Ad(g)ξ|Ad(g)η) dµ(g),

for ξ, η ∈ L(G) Clearly, we have

[Ad(g)ξ|Ad(g)η] =

∫

G

(Ad(h)Ad(g)ξ|Ad(h)Ad(g)η) dµ(g)

=

∫

G

(Ad(hg)ξ|Ad(hg)η) dµ(g) =

∫

G

(Ad(g)ξ|Ad(g)η) dµ(g) = [ξ|η]

for all ξ, η ∈ L(G) and g ∈ G. Therefore, Ad(g) ∈ O(L(G)) for all g ∈ G. This
proves (i).

(ii) follows immediately the description of Lie algebra of the orthogonal group
in 2.1.8. �

1.2. Tori in compact Lie groups. By 2.2.6.2 a compact connected abelian
n-dimensional Lie group is isomorphic to a torus Tn. Therefore, we are going to
call it a torus.

Let G be a compact Lie group and T a torus in G. Then the Lie algebra L(T )
of T is an abelian Lie subalgebra of L(G).

We consider the set of all subgroups of G and the set of all Lie subalgebras of
L(G) equipped with the partial ordering given by inclusion.

1.2.1. Lemma. Let G be a compact Lie group.

(i) Any abelian Lie subalgebra of L(G) is contained in a maximal abelian Lie
subalgebra.

77
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(ii) Any torus in G is contained in a maximal torus.
(iii) An integral subgroup T is a maximal torus in G if and only if L(T ) is a

maximal abelian Lie subalgebra of L(G).
(iv) the map T 7−→ L(T ) is a bijection between maximal tori in G and maximal

abelian Lie subalgebras in L(G).

Proof. (i) is obvious, since L(G) is finite-dimensional.
Let h be an abelian Lie subalgebra of L(G). Denote by H the integral subgroup

of G corresponding to h. Then the closure H̄ of H is a compact connected abelian
subgroup of G. By Cartan’s theorem 2.2.11.1, it is a torus in G. Hence, its Lie
algebra L(H̄) is an abelian Lie subalgebra of L(G) containing L(H).

If h is a maximal abelian Lie subalgebra of L(G), L(H̄) = h, i.e., H = H̄ by
2.2.7.6. It follows that H is a torus. Assume that H ′ is a torus containing H . Then
its Lie algebra L(H ′) is an abelian Lie subalgebra of L(G) and L(H ′) ⊃ h. By the
maximality of h, it follows that L(H ′) = h, and H ′ = H by 2.2.7.6. Therefore, H
is a maximal torus in G.

It follows that the bijection from Lie subalgebras into integral subgroups maps
maximal abelian Lie subalgebras into maximal tori.

If T is a maximal torus in G, its Lie algebra L(T ) is contained in a maximal
abelian Lie subalgebra h. The maximal torus H corresponding to h must contain
T by 2.2.7.6, hence T = H and L(T ) = h is a maximal abelian Lie algebra. This
completes the proof of (iii) and (iv).

Let T be a torus in G. By (i), its Lie algebra L(T ) is contained in a maximal
abelian Lie subalgebra h of L(G). The corresponding integral subgroup H is a
maximal torus in G, and by 2.2.7.6, T ⊂ H . This proves (ii). �

Let G be a compact Lie group and T a torus in G. For any g ∈ G, Int(g)(T ) =
gTg−1 is a torus in G, i.e., Int(g) permutes tori in G. Clearly, this action preserves
the inclusion relations, therefore Int(g) permutes maximal tori in G. Hence, G acts
by inner automorphisms on the set of all maximal tori in G.

Analogously, for any abelian Lie subalgebra h of L(G), the Lie algebra Ad(g)(h)
is also an abelian Lie subalgebra. Therefore, Ad(g) permutes all abelian Lie subal-
gebras in L(G). Since this action also preserves the inclusion relations, Ad(g) also
permutes all maximal abelian Lie subalgebras of L(G).

1.2.2. Theorem. Let G be a compact Lie group. Then

(i) The group G acts transitively on the set of all maximal tori in G, i.e., all
maximal tori are conjugate.

(ii) The group G acts transitively on the set of all maximal abelian Lie subal-
gebras in L(G), i.e., all maximal abelian Lie subalgebras are conjugate.

By 1.2.1, the statements (i) and (ii) are equivalent.
This implies that all maximal tori in G have same dimension. Also, all maximal

abelian Lie subalgebras in G have same dimension. Finally, by 1.2.1, these two
numbers are equal. This number is called the rank of G.

The proof of the theorem is based on the following lemma.

1.2.3. Lemma. Let G be a compact Lie group. Let ξ, η ∈ L(G). Then there
exists g ∈ G such that [Ad(g)ξ, η] = 0.
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Proof. By 1.1.1, L(G) admits an Ad(G)-invariant inner product. Consider
the function

G 3 g 7−→ F (g) = (Ad(g)ξ|η).

Clearly, this is a smooth function on G. Since G is compact, F must have a sta-
tionary point in G. If g0 is a stationary point of F , the function t 7−→ F (exp(tζ)g0)
has a stationary point at t = 0 for any ζ ∈ L(G). On the other hand, we have

F (exp(tζ)g0) = (Ad(exp(tζ)g0)ξ|η)

= (Ad(exp(tζ))Ad(g0)ξ|η) =
(

et ad(ζ) Ad(g0)ξ
∣

∣

∣η
)

by 2.2.9.4. Therefore, since ad(ζ) and ad(η) are skew symmetric by 1.1.1, we have

0 =
dF (exp(tζ)g0)

dt

∣

∣

∣

∣

∣

t=0

= (ad(ζ)Ad(g0)ξ|η) = −(Ad(g0)ξ| ad(ζ)η)

= (Ad(g0)ξ| ad(η)ζ) = −(ad(η)Ad(g0)ξ|ζ) = ([Ad(g0)ξ, η]|ζ)

for all ζ ∈ L(G). It follows that [Ad(g0)ξ, η] = 0. �

Now we can prove 1.2.2. Let T and T ′ be two maximal tori in G. Let L(T ) and
L(T ′) be their Lie algebras. Then, by 2.2.13.2, there exist ξ ∈ L(T ) and η ∈ L(T ′)
such that the corresponding one-parameter subgroups are dense in T , resp. T ′. By
1.2.3, There exists g ∈ G such that [Ad(g)ξ, η] = 0. Therefore, Ad(g)ξ and η span
an abelian Lie subalgebra. Moreover, by 2.2.9.3, exp(tAd(g)ξ) and exp(sη) are in
the corresponding integral subgroup H for all t, s ∈ R. By 2.2.2.16, H is an abelian
Lie group.

It follows that

exp(tAd(g)ξ) exp(sη) = exp(sη) exp(tAd(g)ξ)

for all t, s ∈ R. Therefore, by 2.2.9.4, we have

g exp(tξ)g−1 exp(sη) = exp(sη)g exp(tξ)g−1

for all t, s ∈ R. Since one-parameter subgroups corresponding to ξ and η are dense
in T , resp. T ′, by continuity we have

gtg−1t′ = t′gtg−1

for all t ∈ T and t′ ∈ T ′. Clearly, Tg = gTg−1 is a maximal torus in G, and its
elements commute with elements of T ′. Therefore, for t ∈ Tg, Int(t)(T ′) = T ′ and
Ad(t)(L(T ′)) = L(T ′). By differentiation this implies that ad(ζ)(L(T ′)) ⊂ L(T ′)
for any ζ ∈ L(Tg). Therefore, the subspace spanned by ζ and L(T ′) is an abelian
Lie subalgebra of L(G). Since L(T ′) is a maximal abelian Lie subalgebra by 1.2.1,
it follows that ζ ∈ L(T ′). Therefore, L(Tg) ⊂ L(T ′). Since L(Tg) is a maximal
abelian Lie subalgebra of L(G) by 1.2.1, we conclude that L(Tg) = L(T ′). Hence,
by 1.2.1, Tg = T ′, i.e. gTg−1 = T ′. This proves (i) in 1.2.2.

1.3. Surjectivity of the exponential map. In this section we prove the
following basic result.

1.3.1. Theorem. Let G be a connected compact Lie group. The exponential
map exp : L(G) −→ G is surjective.

Let G be a connected compact Lie group and T a maximal torus in G. We
claim first that the following two statements are equivalent
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(i) the exponential map exp : L(G) −→ G is surjective.
(ii) every element of G lies in a conjugate of T , i.e., the map ϕ : G×T −→ G

given by ϕ(g, t) = gtg−1 is surjective.

If (i) holds, for any g ∈ G we have g = exp(ξ) for some ξ ∈ L(G). Therefore,
g lies in the one-parameter subgroup {exp(tξ) | t ∈ R}. The closure of this one-
parameter subgroup is a torus in G. Therefore, by 1.2.1, it is contained in a maximal
torus T ′ in G. By 1.2.2, T ′ = hTh−1 for some h ∈ G. Therefore, g ∈ T ′ = hTh−1

and g = ϕ(h, t) for some t ∈ T .
On the other hand, if (ii) holds, any g ∈ G is of the form g = hth−1 for some

h ∈ G and t ∈ T . Therefore, g is in the maximal torus hTh−1 in G. By 2.2.9.6, g
is in the image of the exponential map.

It follows that to prove 1.3.1 it is enough to establish (ii).
Let X = ϕ(G × T ). Then X is a nonempty compact subset of G. Since G is

connected to prove that X is equal to G it is enough to prove that X is open. Since
X is invariant under conjugation by elements of G, it is enough to show that X is
a neighborhood of any t ∈ T .

We prove the statement by induction in dimG−dimT ≥ 0. If dimG−dim T =
0, we have dimG = dim T andG = T sinceG is connected. In this case the assertion
is evident by 2.2.9.6.

Therefore, we can assume that dimG− dimT > 0.
Let t ∈ T . Let H be the centralizer of T in G, i.e., H = {g ∈ G | gt = tg}.

Clearly, H is a closed subgroup in G, and by Cartan’s theorem 2.2.11.1, H is a Lie
subgroup of G. By 2.9.5, ξ ∈ L(H) if and only if exp(sξ)t = t exp(sξ) for all s ∈ R,
i.e., if

exp(sξ) = t exp(sξ)t−1 = exp(sAd(t)ξ)

for all s ∈ R. By 2.2.9.2, this is equivalent to Ad(t)(ξ) = ξ. Therefore, we have

L(H) = {ξ ∈ L(G) | Ad(t)ξ = ξ}.

Let H0 be the identity component of H . Then T ⊂ H0, and H0 is a compact
connected Lie group. Evidently, T is a maximal torus in H0.

Clearly, there are two possibilities: either t is in the center Z of G or t is not
in the center of G.

Assume first that t ∈ Z. Let T ′ be a maximal torus in G. Then, by 1.2.2, we
have T ′ = hTh−1 for some h ∈ G. Therefore, t = hth−1 ∈ T ′. It follows that t
is contained in all maximal tori in G. Let ξ ∈ L(G). Then, ξ is in some maximal
abelian Lie subalgebra of L(G), and by 1.2.1, exp(ξ) is in the corresponding maximal
torus T ′′. Since t ∈ T ′′, we conclude that t · exp(ξ) ∈ T ′′. By 1.2.2, there exists
k ∈ G such that T ′′ = kTk−1, hence it follows that t exp(ξ) ∈ kTk−1 ⊂ X . Since
the exponential map is a local diffeomorphism at 0 by 2.2.9.1, we conclude that
{t exp(ξ) | ξ ∈ L(G)} is a neighborhood of t in G.

It remains to treat the case t /∈ Z. In this case, by 2.2.2.15, we have Ad(t) 6=
1L(G). It follows that L(H) 6= L(G). In particular, we have dimH0 = dimH <
dimG. Hence, we have dimH0 − dimT < dimG − dimT . By the induction
assumption, we have

H0 = {ht′h−1 | h ∈ H0, t
′ ∈ T }.

Therefore, we have

X = {ghg−1 | g ∈ G, h ∈ H0}.
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Hence, to prove that X is a neighborhood of t it is enough to show that the map
ψ : G ×H0 −→ G defined by ψ(g, h) = ghg−1 is a submersion at (1, t). Since the
exponential map is a local diffeomorphism at 0 by 2.2.9.1, it is enough to show that
the map

L(G) × L(H) 3 (ξ, η) 7−→ ψ(exp ξ, t exp η)

is a submersion at (0, 0). This in turn is equivalent to

L(G) × L(H) 3 (ξ, η) 7−→ t−1ψ(exp ξ, t exp η)

being a submersion at (0, 0). On the other hand, by 2.2.9.4, we have

t−1ψ(exp ξ, t exp η) = t−1 exp(ξ)t exp(η) exp(−ξ) = exp(Ad(t−1)ξ) exp(η) exp(−ξ).

Therefore, the differential of this map at (0, 0) is

α : (ξ, η) 7−→ Ad(t−1)ξ + η − ξ = (Ad(t−1) − I)ξ + η.

As we remarked in 1.1.1, there exists an inner product on G such that Ad(t−1)
is an orthogonal transformation. Therefore, L(H)⊥ is invariant for Ad(t−1). Hence,
it is invariant for Ad(t−1)− I too. Let ξ ∈ L(H)⊥ be in the kernel of Ad(t−1)− I.
Then, as we remarked before, ξ is in L(H) too. It follows that ξ ∈ L(H)∩L(H)⊥ =
{0}. Therefore, Ad(t−1) − I induces an isomorphism of L(H)⊥. It follows that
α(L(G) × L(H)) ⊃ L(H)⊥ ⊕ L(H) = L(G). Hence, ψ is a submersion at (1, t).
This completes the proof of the induction step.

1.3.2. Corollary. Let G be a connected compact Lie group. Then any g ∈ G
lies in a maximal torus.

Proof. As we remarked in the proof of 1.3.1, the map ϕ : G × T −→ G is
surjective. Hence, if g ∈ G, there exists h ∈ G and t ∈ T such that g = hth−1. It
follows that g is in the maximal torus hTh−1. �

1.4. Centralizers of tori.

1.4.1. Theorem. Let G be a connected compact Lie group and T a torus in G.
Then the centralizer

C = {g ∈ G | gt = tg for all t ∈ T }

of T in G is connected Lie subgroup of G.

Proof. Let t ∈ C. It is enough to show that t and T lie in a torus in G. Let
H be the centralizer of t in G. By 1.3.2, t is in a maximal torus T ′ in G. Clearly,
T ′ ⊂ H . Therefore, T ′ is in the connected component H0 of H . In particular, this
implies that t ∈ H0. Hence, t and T are in H0. Since H0 is a compact Lie group,
by 1.2.1, T is contained in a maximal torus S in H0. By 1.3.2, t is in a maximal
torus in H0. By 1.2.2, there exists h ∈ H0 such that t ∈ hSh−1. It follows that
t = h−1th ∈ S. �

1.4.2. Corollary. Let G be a connected compact Lie group and T a maximal
torus in G. Then the centralizer of T is equal to T .

Proof. Let C be the centralizer of T . Then, for any c ∈ C and ξ ∈ L(T ) we
have

exp(sAd(c)ξ) = c exp(sξ)c−1 = exp(sξ)
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for all s ∈ R. Therefore, by 2.2.9.2, Ad(c)ξ = ξ for all ξ ∈ L(T ). If η ∈ L(C), we
get

ξ = es ad(η)ξ

for all s ∈ R and ξ ∈ L(T ). By differentiation, this implies that [η, ξ] = 0 for all
ξ ∈ L(T ). Therefore, L(T ) and η span an abelian Lie subalgebra of L(G). By
1.2.1, L(T ) is a maximal abelian Lie subalgebra of G. Therefore, we get η ∈ L(T ).
It follows that L(C) = L(T ). Since C is connected by 1.4.1, we conclude that
C = T . �

1.5. Normalizers of maximal tori. Let T be an n-dimensional torus and let
T̃ be its universal covering group. Then, by 2.2.9.6, T̃ can be identified with Rn and
T with Rn/Zn. The projection map T̃ −→ T corresponds to the natural projection
Rn −→ Rn/Zn = Tn. Since the exponential map on Rn is the identity, we can
also identify L(T ) with Rn and the covering map Rn −→ Tn corresponds to the
exponential map. Let α be an automorphism of T , Then L(α) is an automorphism
of L(T ), i.e., L(α) ∈ GL(L(T )). By 2.2.9.3, α ◦ exp = exp ◦L(α). Hence, the
action of α on T is induced by the action of L(α) on L(T ). This implies that L(α)
must map the lattice ker exp into itself. Since the same argument applies to α−1,
it follows that L(α) is a bijection of ker exp.

With our identification, α corresponds to an element of GL(n,Z), the subgroup
of GL(n,R) consisting of all matrices which map Zn onto itself. A matrix A is in
GL(n,Z) if and only if A and A−1 are in Mn(Z), i.e., their matrix entries are
integers. This is equivalent to A ∈ Mn(Z) and detA = ±1. Clearly, GL(n,Z) is a
discrete subgroup of GL(n,R).

Let T be a torus in a compact group G. Let g be an element of G which
normalizes T , i.e., such that gTg−1 = T . Then, t 7−→ gtg−1 is an automorphism of
T .

1.5.1. Lemma. Let T be a torus in a connected compact Lie group G. Let
N = {g ∈ G | gTg−1 = T } be the normalizer of T . Then N is a Lie subgroup of G
and its identity component is the centralizer of T .

Proof. Clearly, N is a closed subgroup of G. Therefore, G is a Lie subgroup
by 2.2.11.1. Let N0 be the identity component of N . Let C be the centralizer of
T . Then C ⊂ N . Moreover, by 1.4.1, we see that C ⊂ N0.

Let ξ ∈ L(N). Then exp(sξ) ∈ N0 for any s ∈ R. Hence, conjugation by
exp(sξ) induces an automorphism of T . Therefore, Ad(exp(sξ))|L(T ) is in a discrete
subgroup of GL(L(T )). On the other hand, by 2.2.9.4, we have

Ad(exp(sξ))
∣

∣

L(T )
= es ad(ξ)

∣

∣

L(T )
= es ad(ξ)|L(T)

for all s ∈ R. Therefore, we must have ad(ξ)|L(T ) = 0, i.e., ξ ∈ L(C). This implies
that L(C) = L(N), and C = N0. �

1.5.2. Theorem. Let T be a maximal torus in a connected compact Lie group
G. Let N be the normalizer of T . Then the identity component N0 of N is equal
to T .

Moreover N/T is a finite group.

Proof. By 1.5.1, N0 is equal to the centralizer of T . By 1.4.2, the centralizer
of T is equal to T . This proves the first statement.
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Since N is a compact group, the discrete groupN/T is also compact. Therefore,
N/T must be finite. �

The group W = N/T is called the Weyl group of the pair (G, T ).

1.5.3. Example. Let G = SU(2). Then G is a simply connected, connected
compact Lie group. Let T be the subgroup consisting of diagonal matrices in G,
i.e.,

T =

{(

α 0
0 ᾱ

) ∣

∣

∣

∣

|α| = 1

}

.

Clearly, T is a one-dimensional torus in G. An element g ∈ G can be written as
(

a b
−b̄ ā

)

with |a|2 + |b|2 = 1.

Therefore, we have

(

a b
−b̄ ā

)(

α 0
0 ᾱ

)(

a b
−b̄ ā

)−1

=

(

a b
−b̄ ā

)(

α 0
0 ᾱ

)(

ā −b
b̄ a

)

=

(

α|a|2 + ᾱ|b|2 (ᾱ− α)ab
(ᾱ− α)āb̄ ᾱ|a|2 + α|b|2

)

for any α, |α| = 1. If g is in the normalizer of T , we must have ab = 0. Therefore,
either a = 0 or b = 0. Clearly, b = 0 implies that g ∈ T . On the other hand, if
a = 0, we have

g =

(

0 −b
b̄ 0

)

=

(

0 −1
1 0

)(

b̄ 0
0 b

)

with |b| = 1. Therefore, we have

N = T ∪

(

0 −1
1 0

)

T.

It follows that the connected component of N is equal to T . Hence, T is a maximal
torus in G, and the rank of G is equal to 1. On the other hand, the Weyl group
of (G, T ) is isomorphic to the two-element group. The nontrivial element of W is
represented by

(

0 −1
1 0

)

.

1.6. Universal covering groups of connected compact Lie groups. Let
G be a connected compact Lie group. We want to describe the structure of the
universal covering group G̃ of G.

We start with some technical preparation.

1.6.1. Lemma. Let G be a connected Lie group and C a discrete central subgroup
of G such that G/C is compact. Then there exists a compact neighborhood D of 1
in G such that

int(D) · C = G.

Proof. Let U be an open neighborhood of 1 in G such that its closure Ū is
compact. Since the natural projection p : G −→ G/C is open, p(U) is an open
neighborhood of 1 in G/C. Therefore, the translates γ(k)(p(U)), k ∈ G/C, form
an open cover of G/C. Since G/C is compact, there exist k1 = 1, k2, . . . , kp ∈ G/C
such that

G/C =

p
⋃

i=1

γ(ki)(p(U)).
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Let g1 = 1, g2, . . . , gp ∈ G be such that p(gi) = ki for 1 ≤ i ≤ p. Then

D =

p
⋃

i=1

giŪ

is a compact set in G. In addition,

p(int(D)) ⊃ p

(

p
⋃

i=1

giU

)

= G/C,

hence we have int(D) · C = G. �

1.6.2. Corollary. Let G be a connected Lie group and C a discrete central
subgroup of G such that G/C is compact. The group G is compact if and only if C
is finite.

Proof. Since C is a discrete subgroup, if G is compact, C must be finite.
Conversely, if C is finite, by 1.6.1, G is a union of finitely many compact sets.

Therefore, G is compact. �

1.6.3. Lemma. Let G be a connected Lie group and C a discrete central subgroup
of G such that G/C is compact. Then C is finitely generated.

Proof. By 1.6.1, there exists a compact neighborhood D of 1 in G such that
the translates γ(c) int(D) cover G. Since D2 is a compact set in G, it is covered by
finitely many such translates, i.e.,

D2 ⊂ Dc1 ∪Dc2 ∪ · · · ∪Dcm

for some c1, c2, . . . , cm ∈ C. Let Γ be the subgroup of C generated by c1, c2, . . . , cm.
Then, as we remarked, D2 ⊂ D · Γ. We claim that Dn ⊂ D · Γ. We prove this
statement by induction in n. Assume that the statement holds for n. Then

Dn+1 = D ·Dn ⊂ D2 · Γ ⊂ D · Γ.

Since G is connected, by 2.1.5.1 we have

G =

∞
⋃

n=1

Dn ⊂ D · Γ.

Therefore, every element of c ∈ C is of the form c = db with d ∈ D and b ∈ Γ. This
implies that d ∈ D ∩ C. Hence, C is generated by D ∩ C and c1, c2, . . . , cm. Since
D is compact and C discrete, D ∩ C is finite. �

Let G be a connected compact Lie group and G̃ its universal covering group.
Let p : G̃ −→ G be the canonical projection and C = ker p. By the results from
2.1.6 we know that C is isomorphic to the fundamental group of G. Hence we have
the following consequence.

1.6.4. Corollary. The fundamental group of a connected compact Lie group
is finitely generated.

1.6.5. Lemma. Let G be a connected Lie group and C a discrete central subgroup
of G such that G/C is compact. Let ϕ : C −→ R be a group homomorphism. Then
ϕ extends to a Lie group homomorphism of G into R.
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Proof. Let D be a compact set satisfying the conditions of 1.6.1. Let r1 be a
positive continuous function on G with compact support such that r1|D = 1. We
put

r2(g) =
∑

c∈C

r1(cg)

for any g ∈ G. Let U be a compact symmetric neighborhood of 1 in G. Then gU is a
neighborhood of g ∈ G. Moreover, h 7−→ r1(ch) is zero on gU if supp(r1)∩cgU = ∅.
This is equivalent to c /∈ supp(r1)Ug

−1. Since the set supp(r1)Ug
−1 is compact,

the function h 7−→ r1(ch) is nonzero on gU for finitely many c ∈ C only. Hence, r2
is a continuous function on gU .

It follows that r2 is a continuous function on G constant on C-cosets. Any
g ∈ G can be represented as g = dc with d ∈ D and c ∈ C. Hence, we have

r2(g) = r2(cd) =
∑

c′∈C

r1(c
′cd) =

∑

c′∈C

r1(c
′d) ≥ r1(d) = 1.

Therefore, r2(g) > 0 for any g ∈ G. Hence, we can define

r(g) =
r1(g)

r2(g)
for any g ∈ G.

This is a positive continuous function on G with compact support. Moreover,
∑

c∈C

r(cg) =
1

r2(g)

∑

c∈C

r1(cg) = 1

for any g ∈ G.
Therefore, we constructed a continuous function r : G −→ R satisfying

(1) supp r is compact;
(2) r(g) ≥ 0 for all g ∈ G;
(3)

∑

c∈C r(cg) = 1 for any g ∈ G.

Now, define ψ : G −→ R by

ψ(g) =
∑

c∈C

ϕ(c)r(c−1g)

for any g ∈ G. As before, we conclude that ψ is a continuous function on G and

ψ(cg) =
∑

b∈C

ϕ(b)r(b−1cg) =
∑

b∈C

ϕ(cb)r(b−1g) =
∑

b∈C

(ϕ(c) + ϕ(b))r(b−1g)

= ϕ(c)
∑

b∈C

r(b−1g) +
∑

b∈C

ϕ(b)r(b−1g) = ϕ(c) + ψ(g)

for all c ∈ C and g ∈ G.
Define

Φ(g) = ψ(g) − ψ(1) for g ∈ G.

If g = c, from the above relations we get

Φ(c) = ψ(c) − ψ(1) = ϕ(c) + ψ(1) − ψ(1) = ϕ(c)

for all c ∈ C. Therefore, the function Φ extends ϕ to G.
Moreover, we have

Φ(cg) = ψ(cg) − ψ(1) = ϕ(c) + ψ(g) − ψ(1) = Φ(c) + Φ(g)

for all c ∈ C and g ∈ G.
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Now define

F (x; g) = Φ(xg) − Φ(x) for x, g ∈ G.

Then, we have

F (x; c) = Φ(xc) − Φ(x) = Φ(c) = ϕ(c)

for any x ∈ G and c ∈ C; and

F (x; gg′) = Φ(xgg′)−Φ(x) = Φ(xgg′)−Φ(xg)+Φ(xg)−Φ(x) = F (xg; g′)+F (x; g)

for all x, g, g′ ∈ G. Also, we have

F (cx; g) = Φ(cxg)−Φ(cx) = Φ(c)+Φ(xg)−Φ(c)−Φ(x) = Φ(xg)−Φ(x) = F (x; g),

i.e., F : G×G −→ R factors through G/C ×G. Let F̃ be the continuous function
from G/C ×G into R induced by F .

Since G/C is a compact Lie group, it admits a biinvariant Haar measure µ such
that µ(G/C) = 1.

Therefore, we can define

Ψ(g) =

∫

G=C

F̃ (y; g) dµ(y)

for any g ∈ G.
Then we have

Ψ(c) =

∫

G=C

F̃ (y; c) dµ(y) = ϕ(c)

for all c ∈ C, i.e., Ψ also extends ϕ to G.
On the other hand, we have

Ψ(gg′) =

∫

G=C

F̃ (y; gg′) dµ(y) =

∫

G=C

(F̃ (yp(g); g′) + F̃ (y, g)) dµ(y)

=

∫

G=C

F̃ (y; g′) dµ(y) +

∫

G=C

F̃ (y; g) dµ(y) = Ψ(g) + Ψ(g′);

i.e., Ψ : G −→ R is a homomorphism. By 2.2.11.2, Ψ is a Lie group homomorphism.
�

Let G be a connected compact Lie group. Then, by 1.1.1, there exists an
invariant inner product on L(G), i.e., Ad is a Lie group homomorphism of G into
O(L(G)). This implies that ad is a Lie algebra morphism of L(G) into the Lie
algebra of O(L(G)), i.e., all linear transformations ad(ξ), ξ ∈ L(G), are skewadjoint.

Let h be an ideal in L(G). Then it is invariant under all ad(ξ), ξ ∈ L(G). This
implies that the orthogonal complement h⊥ of h is invariant for all ad(ξ), ξ ∈ g,
i.e., h⊥ is an ideal in g. It follows that L(G) = h ⊕ h⊥ as a linear space. On the
other hand, for ξ ∈ h and η ∈ h⊥, we have [ξ, η] ∈ h ∩ h⊥ = {0}, i.e., L(G) is the
product of h and h⊥ as a Lie algebra.

Therefore we established the following result.

1.6.6. Lemma. Let G be a connected compact Lie group. Let h be an ideal in
L(G). Then L(G) is the product of h with the complementary ideal h⊥.

Let Z be the center of G. By 2.2.2.15, Z is a Lie subgroup of G and its Lie
algebra L(Z) is the center of L(G). By 1.6.6, if we put k = L(Z)⊥, k is an ideal in
L(G) and L(G) = k ⊕ L(Z).
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Let g be a Lie algebra and a and b two ideals in g. Let [a, b] be the span of all
commutators [ξ, η], ξ ∈ a, η ∈ b. Then [a, b] is an ideal in g.

1.6.7. Lemma. k = [L(G), L(G)].

Proof. Let ξ, η ∈ L(G) and ζ ∈ L(Z). Then we have

([ξ, η]|ζ) = (ad(ξ)(η)|ζ) = −(η| ad(ξ)(ζ)) = 0.

Therefore, we have [L(G), L(G)] ⊂ L(Z)⊥. This implies that L(Z) ⊂ [L(G), L(G)]⊥.
Conversely, let ξ, η ∈ L(G) and ζ ∈ [L(G), L(G)]⊥. Then we have

0 = ([ξ, η]|ζ) = (ad(ξ)(η)|ζ) = −(η| ad(ξ)(ζ)) = −(η|[ξ, ζ]).

Since η is arbitrary, it follows that [ξ, ζ] = 0 for any ξ ∈ L(G). Therefore, ζ is in
the center of g. It follows that [L(G), L(G)]⊥ ⊂ L(Z). �

In particular, the decomposition L(G) = k ⊕ L(Z) does not depend on the
choice of the invariant inner product on L(G).

1.6.8. Theorem. Let G be a connected compact Lie group. Then the following
statements are equivalent:

(i) The center Z of G is finite;

(ii) The universal covering group G̃ of G is compact.

Proof. Let C ⊂ G̃ be the kernel of the covering projection p : G̃ −→ G. By
1.6.3, C is a finitely generated abelian subgroup of G̃. Assume that C is not finite.
Then, by 1.7.7, we have C = C1 × Z, for some finitely generated abelian group
C1. The projection to the second factor defines a homomorphism ϕ of C into Z.
By 1.6.5, this homomorphism extends to a Lie group homomorphism ϕ : G̃ −→ R.
The kernel of L(ϕ) : L(G) −→ R is an ideal a of codimension 1 in L(G). Moreover,
if ξ, η ∈ L(G), we have

L(ϕ)([ξ, η]) = [L(ϕ)(ξ), L(ϕ)(η)] = 0.

Hence, [L(G), L(G)] ⊂ a. It follows that [L(G), L(G)] is a nontrivial ideal in L(G).
By 1.6.7, this implies that L(Z) is nonzero. Therefore, Z is not finite.

Therefore, we proved that if Z is finite, C must be finite too. Hence G̃ is a
finite cover of G. By 1.6.2, this implies that G̃ is compact.

Conversely, assume that the center Z of G is infinite. Since Z is compact, it
has finitely many components. Therefore, the identity component of Z has to be
infinite. It follows that L(Z) is nonzero and q = dimL(Z) > 0. Let K be the

integral subgroup of G corresponding to [L(G), L(G)] and K̃ the universal covering

group of K. Then K̃ × Rq is a simply connected, connected Lie group with Lie
algebra isomorphic to [L(G), L(G)] × L(Z) ∼= L(G). By 2.2.4.2, we conclude that

G̃ is isomorphic to K̃ × Rq. In particular, G̃ is not compact. �

1.7. Appendix: Finitely generated abelian groups. Let A be an abelian
group. The group A is finitely generated if there exists elements a1, a2, . . . , an such
that the homomorphism

Z ⊕ Z ⊕ · · · ⊕ Z 3 (m1,m2, . . . ,mn) 7−→ m1a1 +m2a2 + · · · +mnan ∈ A

is surjective. The elements a1, a2, . . . , an are generators of A.
A finitely generated abelian group A is free, if there is a family a1, a2, . . . , an of

generators of A such that the homomorphism Z⊕Z⊕· · ·⊕Z 3 (m1,m2, . . . ,mn) 7−→
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m1a1 +m2a2 + · · ·+mnan is an isomorphism. In this case, the family a1, a2, . . . , an
of generators is called a basis of A.

1.7.1. Lemma. All bases of a free finitely generated abelian group have same
cardinality.

Proof. Let a1, a2, . . . , an be a basis of A. Then A/2A is a product of n copies
of two-element group. Therefore, the number of elements of A/2A is equal to
2n. �

The cardinality of a basis of a free finitely generated abelian group is called the
rank of A.

1.7.2. Lemma. Let A be a finitely generated abelian group and B a free finitely
generated abelian group. Let ϕ : A −→ B be a surjective group homomorphism. Let
C = kerϕ. Then there exists a subgroup B′ of A such that A = C ⊕ B′ and the
restriction of ϕ to B′ is an isomorphism of B′ onto B.

Proof. Let b1, b2, . . . , bn be a basis of B. We can pick a1, a2, . . . , an such that
ϕ(ai) = bi for 1 ≤ i ≤ n. Let B′ be the subgroup generated by a1, a2, . . . , an. Then
the homomorphism ψ : Z⊕Z⊕· · ·⊕Z 3 (m1,m2, . . . ,mn) 7−→ m1a1 +m2a2 + · · ·+
mnan is a surjection on B′. Moreover, since b1, b2, . . . , bn is a basis of B, ϕ◦ψ is an
isomorphism. Therefore, ψ has to be injective. It follows that B′ is a free finitely
generated abelian group. Moreover, B ∩C = {0}.

Let a ∈ A. Then ϕ(a) = m1b1 + · · ·+mnbn for some integers m1, . . . ,mn. This
in turn implies that a− (m1a1 + · · · +mnan) is in the kernel of ϕ, i.e., it is in C.
It follows that a ∈ C ⊕B′. �

1.7.3. Lemma. Let A be a free finitely generated abelian group. Let B be a
subgroup of A. Then B is a free finitely generated abelian group and rankB ≤
rankA.

Proof. We prove the statement by induction in the rank of A. If the rank is
1, A is isomorphic to Z and its subgroups are either isomorphic to Z or {0}.

Assume that the statement is true for free abelian groups of rank ≤ n− 1.
Assume that the rank of A is n. Let a1, a2, . . . , an be a basis of A.
We can consider the homomorphism ϕ : m1a1 + m2a2 + · · · + mnan 7−→ mn

of A into Z. Let A′ be the kernel of ϕ. Then, A′ is free abelian group with basis
a1, a2, . . . , an−1. Moreover, B′ = B ∩A′ is a free abelian group of rank ≤ n− 1 by
the induction assumption.

Now, either B is a subset of A′ or not. In the first case, B = B′ and B is a free
abelian group of rank ≤ n − 1. In the second case, ϕ(B) is a nontrivial subgroup
of Z. As we remarked above, this implies that ϕ(B) is isomorphic to Z. Therefore,
by 1.7.2, B = B′ ⊕C, where C is a subgroup isomorphic to Z. It follows that B is
a free abelian group of rank ≤ n. �

1.7.4. Lemma. Let A be a finitely generated abelian group and B its subgroup.
Then B is also finitely generated.

Proof. Since A is finitely generated, there exist a free finitely generated
abelian group F and surjective group homomorphism ϕ : F −→ A. Let B′ =
ϕ−1(B). Then B′ is a subgroup of F , and by 1.7.3, it is finitely generated. Let
b1, b2, . . . , bp be a family of generators of B′. Then ϕ(b1), ϕ(b2), . . . , ϕ(bp) generate
B. �
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Let A be an abelian group. Let a, b ∈ A be two cyclic elements in A, i.e.,
pa = qb = 0 for sufficiently large p, q ∈ N. Then pq(a + b) = 0 and a + b is also
cyclic. This implies that all cyclic elements in A form a subgroup. This subgroup
is called the torsion subgroup of A. We say that A is torsion-free if the torsion
subgroup of A is trivial.

1.7.5. Lemma. Let A be a finitely generated abelian group. Then its torsion
subgroup T is finite.

Proof. By 1.7.4, T is finitely generated. Let t1, t2, . . . , tn be a family of gen-
erators of T . Since t1, t2, . . . , tn are cyclic, there exists p ∈ N such that pti = 0
for all 1 ≤ i ≤ n. This implies that any element t ∈ T is of the form t =
m1t1 + m2t2 + · · · + mntn with mi ∈ Z+ and 0 ≤ mi < p. Therefore, T is fi-
nite. �

1.7.6. Lemma. Let A be a torsion-free finitely generated abelian group. Then
A is free.

Proof. Assume that A 6= {0}. Let S be a finite set of generators of A. Then,
it contains an element nonzero element a. Hence, since A is torsion-free, ma = 0
implies m = 0.

Let a1, a2, . . . , an be a maximal subset of S such that

m1a1 +m2a2 + · · · +mnan = 0

implies that m1 = m2 = · · · = mn = 0. Let B be the subgroup generated by
a1, a2, . . . , an. Then B is a free finitely generated subgroup of A.

Let a ∈ S different from a1, a2, . . . , an. By the maximality, there exist integers
m,m1,m2, . . . ,mn, not all equal to zero, such that

ma+m1a1 +m2a2 + · · · +mnan = 0.

Again, by maximality, it follows that m 6= 0. Therefore, a multiple ma of a is in B.
Since S is finite, there exists m such that ma ∈ B for any a ∈ S. This implies that
mA ⊂ B. Since A is torsion free the endomorphism a 7−→ ma of A is injective.
Therefore, A is isomorphic to a subgroup mA of B. On the other hand, mA is a
free finitely generated abelian group by 1.7.3. This implies that A is free. �

1.7.7. Theorem. Let A be a finitely generated abelian group and T its torsion
subgroup. Then there exists a subgroup B of A such that

(i) B is a free finitely generated abelian group;
(ii) A = T ⊕B.

Proof. Let ā be an element of A/T represented by a ∈ A. Assume that
mā = 0 for some m ∈ N. Then ma ∈ T , and ma is cyclic. This in turn implies that
a is cyclic, i.e., a ∈ T . It follows that ā = 0. Therefore, A/T is torsion-free. By
1.7.6, A/T is a free finitely generated abelian group. The statement follows from
1.7.2. �

1.8. Compact semisimple Lie groups. A Lie algebra g is called simple, if
it is not abelian and it doesn’t contain any nontrivial ideals.

Clearly, all one-dimensional Lie algebras are abelian. The only nonabelian
two-dimensional Lie algebra has an one-dimensional ideal. Therefore, there are no
simple Lie algebras of dimension ≤ 2.
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On the other hand, assume that G = SU(2). Then G is a connected, compact
three-dimensional Lie group. Its Lie algebra L(G) is the Lie algebra of all 2 × 2-
skewadjoint matrices, i.e., the Lie algebra of all matrices of the form

(

ia b+ ic
−b+ ic −ia

)

with a, b, c ∈ R.

Therefore, L(G) is spanned by matrices

X =

(

0 1
−1 0

)

, Y =

(

0 i
i 0

)

and Z =

(

i 0
0 −i

)

.

By a short computation we find that

[X,Y ] = 2Z, [Y, Z] = 2X, [Z,X ] = 2Y.

Assume that a is a nonzero ideal in L(G). Let aX + bY + cZ ∈ a. Since the above
commutation relations are invariant under cyclic permutation of X,Y, Z, we can
assume that a 6= 0. Then

ad(Y )(aX + bY + cZ) = −2aZ + 2cX ∈ a,

and finally

ad(X)(aZ − cX) = −2aY ∈ a.

Therefore, Y ∈ a. From the commutation relations, we see that this immediately
implies that X and Z are in a, and a = L(G). Therefore, L(G) is a simple Lie
algebra.

A Lie algebra is called semisimple if it doesn’t contain any nonzero abelian
ideals. Clearly, a simple Lie algebra is semisimple.

Also, the center of a semisimple Lie algebra is always trivial.
A Lie group is called semisimple (resp. simple) if its Lie algebra is semisimple

(resp. simple).
Consider now an arbitrary connected compact Lie group G. Let Z be the center

of G. Since Z is compact and abelian, its identity component Z0 is a torus in G.
By 1.6.7, we have

L(G) = [L(G), L(G)] ⊕ L(Z).

1.8.1. Lemma. The ideal [L(G), L(G)] in L(G) is a semisimple Lie algebra.

Proof. Let a be an abelian ideal in [L(G), L(G)]. Then, by 1.6.6, a⊥ is an
ideal in L(G) and L(G) is the product of a and a⊥. This implies that a is in the
center L(Z) of L(G). By 1.6.7, it follows that that a = {0}. Therefore, [L(G), L(G)]
is semisimple. �

Let H = G/Z0. Then H is a connected compact Lie group. Let p : G −→ H be
the natural projection. Then, kerL(p) = L(Z), by 2.2.2.7. Therefore, L(p) induces
a Lie algebra isomorphism of [L(G), L(G)] onto L(H). By 1.8.1, this implies that
the center of L(H) is trivial. Hence, by 2.2.2.15, it follows that the center of H is
discrete. Since H is compact, the center of H is finite.

Let K be the integral subgroup of G corresponding to [L(G), L(G)]. Then we
have the natural Lie group morphism p : K −→ H . As we remarked above, the
differential of this morphism L(p) is an isomorphism of L(K) = [L(G), L(G)] onto
L(H). Hence, by 2.2.2.9, this map is a covering projection.

1.8.2. Lemma. The integral subgroup K is a semisimple Lie subgroup of G.
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Proof. We remarked that K is a covering group of H . Moreover, H is a
connected compact Lie group with finite center. Therefore, by 1.6.8, the universal
covering group H̃ must be compact. This implies that K is a compact Lie group.
Therefore, it must be closed in G. �

Consider the connected compact Lie group K × Z0 and the differentiable map
ϕ : K × Z0 −→ G given by ϕ(k, z) = kz for k ∈ K and z ∈ Z0. Clearly, ϕ is a Lie
group homomorphism and L(ϕ) is an isomorphism of Lie algebras. Therefore, by
2.2.2.9, ϕ is a covering projection. The kernel of ϕ is a finite central subgroup of
K × Z0. More precisely, we have

kerϕ = {(k, z) ∈ K0 × Z0 | kz = 1} = {(c, c−1) ∈ K × Z0 | c ∈ K ∩ Z0}.

Therefore we established the following result.

1.8.3. Proposition. Let G be connected compact Lie group. Let C = K ∩ Z0

and D = {(c, c−1) ∈ K × Z0 | c ∈ C}. Then ϕ induces an isomorphism of the Lie
group (K × Z0)/D with G.

Therefore, any connected compact Lie group is a quotient by a finite central
subgroup of a product of a connected compact semisimple Lie group with a torus.

This reduces the classification of connected compact Lie groups to the classifi-
cation of connected compact semisimple Lie groups.

1.8.4. Example. Let G = U(2). Then L(G) is the Lie algebra of all 2 × 2
skewadjoint matrices. The center of L(G) consists of pure imaginary multiples of
the identity matrix. Moreover, [L(G), L(G)] is contained in the Lie subalgebra k

of 2 × 2 skewadjoint matrices of trace zero. Since the latter is the Lie algebra of
the connected simple Lie subgroup SU(2), we conclude that k = [L(G), L(G)]. The
center Z of G consists of matrices which are multiples of the identity matrix by a
complex number α, |α| = 1. Therefore, the center of G is connected. In addition,
we have SU(2) ∩ Z = {±I}. Hence, G = (SU(2) × Z)/{±I}.

Moreover, we have the following result.

1.8.5. Corollary. Let G be a connected compact Lie group. Then its universal
covering group is a product of a simply connected, connected compact semisimple
Lie group with Rp for some p ∈ Z+.

Proof. As we have seen it the proof of 1.8.2 the universal covering group K̃
of K is a simply connected, connected compact semisimple Lie group. On the other
hand, the universal cover of Z0 is Rp for p = dimZ0. Therefore, by 1.8.3, K̃ × Rp

is isomorphic to the universal covering group of G. �

Another byproduct of the above discussion is the following variation of 1.6.8.

1.8.6. Theorem. Let G be a connected compact semisimple Lie group. Then
its universal covering group G̃ is compact.

This reduces the classification of connected compact semisimple Lie groups to
the classification of simply connected, connected compact semisimple Lie groups.

In addition, we see that, for a connected semisimple Lie group G, its com-
pactness depends only on the Lie algebra L(G). To find an algebraic criterion for
compactness, we need some preparation.
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1.8.7. Proposition. Let G be a compact Lie group. Let h be a semisimple Lie
subalgebra of L(G). Then the integral subgroup H attached to h is a compact Lie
subgroup.

Proof. Let H̄ be the closure of H . Then H̄ is a connected compact subgroup
of G. By Cartan’s theorem, 2.2.11.1, it is a Lie subgroup of G. Since H ⊂ H̄ , we
see that h ⊂ L(H̄). Clearly, Ad(h)(h) = h for any h ∈ H . Therefore, by continuity,
Ad(h)(h) = h for any h ∈ H̄. By differentiation, we see that ad(ξ)(h) ⊂ h for all
ξ ∈ L(H̄), i.e., h is an ideal in L(H̄).

By 1.6.6, we have L(H̄) = h⊕ h⊥. Let ζ be an element of the center z of L(H̄).
Then ζ = ζ′ + ζ′′ where ζ′ ∈ h and ζ′′ ∈ h⊥. Let ξ ∈ h. Then we have

[ξ, ζ′] = [ξ, ζ − ζ′′] = [ξ, ζ] − [ξ, ζ′′] = 0.

It follows that ζ′ is in the center of h. Since h is semisimple, ζ′ = 0. It follows
that ζ ∈ h⊥. Therefore, we have z ⊂ h⊥. By 1.6.7, this implies that h ⊂ z⊥ =
[L(H̄), L(H̄)]. Let K be the integral subgroup of H̄ corresponding to [L(H̄), L(H̄)].
By 1.8.2, K is a compact Lie subgroup of H̄ . Since K contains H by 2.2.7.6, we
conclude that K = H̄ . Therefore, H̄ is a compact semisimple Lie subgroup of G.
By 1.8.6, the universal covering group L of H̄ is compact. Let H̃ be the universal
covering group of H . Moreover, let M be the integral subgroup in H̄ corresponding
to h⊥, and M̃ its universal covering group. Then the Lie algebra of H̃× M̃ is equal
to h × h⊥, i.e., it is isomorphic to L(H̄). By 2.2.4.2, H̃ × M̃ is isomorphic to L.

This implies that H̃ is compact. Hence, H must be compact, i.e., H̄ = H . �

Let g be a finite-dimensional Lie algebra over a filed k of characteristic 0. Define
the bilinear form B : g × g −→ k by

B(ξ, η) = tr(ad(ξ) ad(η))

for all ξ, η ∈ g. This form is called the Killing form of g.
Let A be an automorphism of g. Then for ξ, η ∈ g we have

ad(Aξ)(η) = [Aξ, η] = A[ξ, A−1η] = (A ad(ξ)A−1)(η),

i.e.,
ad(Aξ) = A ad(ξ)A−1

for all ξ ∈ g. Therefore,

B(Aξ,Aη) = tr(ad(Aξ) ad(Aη)) = tr(A ad(ξ)A−1A ad(η)A−1)

= tr(A ad(ξ) ad(η)A−1) = tr(ad(ξ) ad(η)) = B(ξ, η),

for any ξ, η ∈ g.
Let Aut(g) denote the automorphism group of g.

1.8.8. Lemma. The Killing form on g is Aut(g)-invariant.

Let G be a Lie group. Then Ad : G −→ GL(L(G)) is a homomorphism of G
into Aut(L(G)). Therefore, the Killing form on L(G) is Ad(G)-invariant.

The following result gives a criterion for compactness of a connected semisimple
Lie group in terms of its Lie algebra.

1.8.9. Theorem. Let G be a connected semisimple Lie group. Then the fol-
lowing conditions are equivalent:

(i) G is compact;



1. COMPACT LIE GROUPS 93

(ii) the Killing form on L(G) is negative definite.

Proof. (i)⇒(ii) Assume that G is compact. Then, by 1.1.1, there exists an
Ad(G)-invariant inner product on L(G). With respect to this inner product, Ad is
a homomorphism of G into O(L(G)). Therefore ad is a Lie algebra homomorphism
of L(G) into the Lie algebra of antisymmetric linear transformations on L(G).
Let ξ ∈ L(G). Then B(ξ, ξ) = tr(ad(ξ)2) is the sum of squares of all (complex)
eigenvalues of ad(ξ). Since ad(ξ) is antisymmetric, all its eigenvalues are pure
imaginary. Hence their squares are negative. This implies that B(ξ, ξ) ≤ 0 and
B(ξ, ξ) = 0 implies that all eigenvalues of ad(ξ) are equal to 0. Since ad(ξ) is
antisymmetric, it follows that ad(ξ) = 0. Therefore, ξ is in the center of L(G).
Since L(G) is semisimple, its center is equal to {0}, i.e., ξ = 0. Therefore, B is
negative definite.

(ii)⇒(i) Assume that B is negative definite. Then, (ξ|η) = −B(ξ, η) is an
Ad(G)-invariant inner product on L(G). Therefore, Ad is a Lie group morphism
of G into the compact Lie group O(L(G)). Since L(G) is semisimple, the center of
L(G) is trivial. By 2.2.2.15, the center Z of G is equal kerAd and its Lie algebra
is equal to {0}. Hence Z is a discrete subgroup of G. Therefore, Ad induces an
injective immersion ofG/Z into O(L(G)). Therefore, the image Ad(G) is an integral
subgroup of O(L(G)) isomorphic to G/Z. Its Lie algebra is isomorphic to L(G),
hence it is semisimple. By 1.8.7, Ad(G) is a compact Lie subgroup of O(L(G)).
Hence, G is a covering group of a connected compact semisimple Lie group. By
1.8.6, G is a compact Lie group. �

Let G be a connected compact semisimple Lie group. Then, by 1.8.9, (ξ, η) 7−→
−B(ξ, η) is an Ad(G)-invariant inner product on L(G). Let a be an ideal in L(G).
Then, by 1.6.6, a⊥ is a complementary ideal in L(G), i.e., L(G) = a ⊕ a⊥.

Assume that b is another ideal in L(G) such that a ∩ b = {0}. Let ξ ∈ a and
η ∈ b. Then, ad(η)(L(G)) ⊂ b and

(ad(ξ) ad(η))(L(G)) = ad(ξ)(ad(η)(L(G)) ⊂ ad(ξ)(b) ⊂ a ∩ b = {0}.

Therefore, ad(ξ) ad(η) = 0 and B(ξ, η) = tr(ad(ξ) ad(η)) = 0. It follows that
b ⊂ a⊥.

In particular, if b is a direct complement of a, we must have b = a⊥. Therefore,
the complementary ideal is unique.

The set of all ideals in L(G) is ordered by inclusion. Let m be a minimal ideal
in L(G). Since L(G) is semisimple, this ideal is not abelian.

Clearly, L(G) = m ⊕ m⊥. Let a ⊂ m be an ideal in m. Then [a,m⊥] = {0} and
a is an ideal in L(G). By the minimality of m, a is either m or {0}. It follows that
m is a simple Lie algebra.

Let a be another ideal in L(G). Then a ∩ m is an ideal in L(G). By the
minimality of m, we have either m ⊂ a or a ∩ m = {0}. By the above discussion,
the latter implies that a ⊂ m⊥, i.e., a is perpendicular to m.

Let m1,m2, . . . ,mp be a family of mutually different minimal ideals in L(G).
By the above discussion mi is perpendicular to mj for i 6= j, 1 ≤ i, j ≤ p. Hence,
p has to be smaller than dimL(G). Assume that p is maximal possible. Then
a = m1 ⊕ m2 ⊕ · · · ⊕ mp is an ideal in L(G). Assume that a 6= L(G). Then
L(G) = a ⊕ a⊥. Let mp+1 be a minimal ideal in a⊥. Then mp+1 is a minimal ideal
in L(G) different from mi, 1 ≤ i ≤ p, contradicting the maximality of p. It follows
that L(G) = m1 ⊕ m2 ⊕ · · · ⊕ mp, i.e., we have the following result.
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1.8.10. Lemma. The semisimple Lie algebra L(G) is the direct product of its
minimal ideals. These ideals are simple Lie algebras.

In particular, L(G) is a product of simple Lie algebras.
LetK1,K2, . . . ,Kp be the integral subgroups ofG corresponding to Lie algebras

m1,m2, . . . ,mp. Let K̃1, K̃2, . . . , K̃p be their universal covering groups. Then K̃1 ×

K̃2 × · · · × K̃p is a simply connected Lie group with Lie algebra isomorphic to

L(G) = m1 ⊕ m2 ⊕ · · · ⊕ mp. Hence, K̃1 × K̃2 × · · · × K̃p is isomorphic to G̃ by

2.4.2. Since G̃ is compact by 1.8.6, the subgroups K̃1, K̃2, . . . , K̃p are also compact.
This in turn implies that K1,K2, . . . ,Kn are compact Lie subgroups of G. The
map ϕ : K1 × K2 × · · · × Kp −→ G given by ϕ(k1, k2, . . . , kp) = k1k2 . . . kp for
any k1 ∈ K1, k2 ∈ K2, . . . , kp ∈ Kp is a Lie group homomorphism. Clearly, it is a
covering projection.

Therefore, we established the following result.

1.8.11. Theorem. Connected compact semisimple Lie group G is a quotient
by a finite central subgroup of a product K1 ×K2 × · · · ×Kp of connected compact
simple Lie groups.

This reduces the study of connected compact Lie groups to the study connected
compact simple Lie groups.

1.9. Fundamental group of a connected compact semisimple Lie group.

Let G be a connected compact semisimple Lie group with Lie algebra L(G). Let G̃

be the universal covering group of G and p : G̃ −→ G be the covering projection.
By 1.8.6, G̃ is also compact. Hence, ker p is a finite central subgroup of G̃.

Then, as we remarked in 2.1.6, we have π1(G, 1) ∼= kerp. In particular, π(G, 1)
is a finite abelian group.

Let T be a maximal torus in G and L(T ) its Lie algebra. By 1.2.1, its Lie

algebra is a maximal abelian Lie subalgebra in L(G). Let T̃ be the corresponding

integral subgroup in G̃. Then, by 1.2.1, T̃ is a maximal torus in G̃. The map p
induces a Lie group homomorphism q of T̃ onto T which is a covering map. Clearly,
ker q ⊂ ker p.

Let Z be the center of G̃. As we remarked in the proof of 1.3.1, an element
z ∈ Z is contained in a maximal torus H in G̃. Since H is conjugate to T̃ by 1.2.2,
there exists g ∈ G̃ such that gHg−1 = T̃ . This in turn implies that z = gzg−1 ∈ T̃ .
Hence, Z ⊂ T̃ . In particular, ker p ⊂ Z ⊂ T̃ . This implies that ker q = ker p.

By 2.2.9.6, we have the commutative diagram

L(T )
expT̃

}}{{
{{

{{
{{ expT

!!C
CC

CC
CC

C

T̃ q
// T

of Lie groups. Put L = ker expT and L̃ = ker expT̃ . Then L and L̃ are discrete
subgroups of L(T ) of rank dimL(T ).

Clearly, L̃ ⊂ L and

ker p = ker q = L/L̃.

Therefore, any connected compact semisimple Lie group G with Lie algebra
L(G) determines a discrete subgroup L of L(T ) which contains L̃.
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In the proof of 1.8.9 we proved that G0 = Ad(G̃) is a connected compact Lie

group with Lie algebra L(G). Moreover, by 2.2.2.15, the center Z of G̃ is equal to

the kernel of Ad : G̃ −→ G0. Let T0 be the maximal torus in G0 corresponding to
L(T ). Then the above construction attaches to G0 a discrete subgroup L0 of L(T )

containing L̃.
In addition, we see that the following result holds.

1.9.1. Lemma. The center Z of G̃ is isomorphic to L0/L̃.

From the above discussion we see the following result.

1.9.2. Theorem. The map G 7−→ L defines a surjection from all connected
compact semisimple Lie groups with Lie algebra L(G) onto all discrete subgroups L

in L(T ) such that L0 ⊂ L ⊂ L̃.
The center of G is isomorphic to L0/L. The fundamental group π1(G, 1) is

isomorphic to L̃/L.

1.9.3. Example. Let G = SU(2). Then G is a connected compact simple Lie
group. The subgroup

T =

{(

eiϕ 0
0 e−iϕ

) ∣

∣

∣

∣

ϕ ∈ R

}

.

is a maximal torus in G. As we remarked in 2.1.8, the group G is simply connected
and it is a two-fold covering of the group SO(3). The covering projection induces
a Lie group morphism

(

eiϕ 0
0 e−iϕ

)

7−→





1 0 0
0 cos(2ϕ) − sin(2ϕ)
0 sin(2ϕ) cos(2ϕ)





of the torus T onto a torus T0 in SO(3). Since the center of SO(3) is trivial, SO(3)
is isomorphic to the adjoint group Ad(G). If we identify L(T ) with R and the
exponential map with

expT : ϕ 7−→

(

eiϕ 0
0 e−iϕ

)

the discrete subgroup L corresponds to 2πZ and L0 to πZ.





CHAPTER 4

Basic Lie algebra theory

All Lie algebras in this chapter are finite dimensional Lie algebras over a field
k of characteristic 0. All representations of Lie algebras are finite dimensional.

1. Solvable, nilpotent and semisimple Lie algebras

1.1. Derivations and characteristic ideals. Let g be a Lie algebra over a
field k. A derivation D of g is a linear map on g such that

D[x, y] = [Dx, y] + [x,Dy]

for all x, y ∈ g.

1.1.1. Lemma. All derivations of g for a Lie subalgebra Der(g) of L(g).

Proof. Clearly, the set of all derivations of g is a linear subspace of L(V ). Let
D,D′ be two derivations of g. Then we have

(DD′)[x, y] = D([D′x, y]+[x,D′y]) = [DD′x, y]+[D′x,Dy]+[Dx,D′y]+[x,DD′y]

and

[D,D′]([x, y]) = (DD′−D′D)[x, y] = [DD′x, y]+[D′x,Dy]+[Dx,D′y]+[x,DD′y]

− [D′Dx, y] − [Dx,D′y] − [D′x,Dy] − [x,D′Dy] = [[D,D′]x, y] + [x, [D,D′]y]

for all x, y ∈ g. Therefore, [D,D′] is a derivation of g. It follows that Der(g) is a
Lie subalgebra of L(g). �

If x ∈ g, we have

adx([y, z]) = [x, [y, z]] = −[y, [z, x]]− [z, [x, y]] = [adx(y), z] + [y, adx(z)]

for all y, z ∈ g. Therefore, adx is a derivation of g. The derivations adx, x ∈ g,
are called the inner derivations of g.

Therefore, ad : g −→ L(g) is a Lie algebra homomorphism into Der(g).
Let D be a derivation of g and x ∈ g. Then

ad(Dx)(y) = [Dx, y] = D[x, y] − [x,Dy] = [D, adx](y)

for any y ∈ g.

1.1.2. Lemma. Let D be a derivation of g and x ∈ g. Then

ad(Dx) = [D, adx].

The image of ad is the space of all inner derivations in Der(g).

1.1.3. Lemma. The linear space im ad of all inner derivations is an ideal in
Der(g).

Proof. This follows immediately from 1.1.2. �

97
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If h is an ideal in g, h is an invariant subspace for adx for any x ∈ g.
A linear subspace h in g is a characteristic ideal if D(h) ⊂ h for all D ∈ Der(g).
Clearly, a characteristic ideal in g is an ideal in g.
Let a and b be two characteristic ideals in g. Then [a, b] is a characteristic ideal

in g.
Let B be the Killing form on g, i.e.,

B(x, y) = tr(ad(x) ad(y)) for x, y ∈ g.

1.1.4. Lemma. Let D ∈ Der(g). Then

B(Dx, y) +B(x,Dy) = 0

for any x, y ∈ g.

Proof. By 1.1.2, we have

B(Dx, y) +B(x,Dy) = tr(ad(Dx) ad(y)) + tr(ad(x) ad(Dy))

= tr([D, ad(x)] ad(y)) + tr(ad(x)[D, ad(y)])

= tr(D ad(x) ad(y))−tr(ad(x)D ad(y))+tr(ad(x)D ad(y))−tr(ad(x) ad(y)D) = 0.

�

Let h be a linear subspace in g. We denote by h⊥ the linear space

h⊥ = {x ∈ g | B(x, y) = 0 for all y ∈ h}.

1.1.5. Lemma. (i) Let h be an ideal in g. Then h⊥ is an ideal in g.
(ii) Let h be a characteristic ideal in g. Then h⊥ is a characteristic ideal in g.

Proof. (i) Let x ∈ h⊥. Then

B(ad(y)x, z) = −B(x, ad(y)z) = 0

for any y ∈ g and z ∈ h.
(ii) Let x ∈ h⊥. Then

B(Dx, y) = −B(x,Dy) = 0

for any y ∈ h and D ∈ Der(g). �

1.2. Solvable Lie algebras. Let g be a Lie algebra. We put

Dg = [g, g].

This is the derived ideal of g. We put

D0g = g, D1g = Dg, Dpg = [Dp−1g,Dp−1g] for p ≥ 2.

These are characteristic ideals in g. The decreasing sequence

g ⊇ Dg ⊇ D2g ⊇ · · · ⊇ Dpg ⊇ . . .

is called the derived series of ideals in g.
Since g is finite dimensional, the derived series has to stabilize, i.e., Dpg =

Dp+1g = . . . for sufficiently large p.
We say that the Lie algebra g is solvable if Dpg = {0} for some p ∈ N.
Clearly, an abelian Lie algebra is solvable.

1.2.1. Lemma. (i) Let g be a solvable Lie algebra and h ⊂ g a Lie subal-
gebra. Then h is solvable.
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(ii) Let g be a solvable Lie algebra and h ⊂ g an ideal in g. Then g/h is
solvable.

(iii) Let g be a Lie algebra and h an ideal in g. If h and g/h are solvable, g is
a solvable Lie algebra.

Proof. (i) We have

Dh = [h, h] ⊆ [g, g] = Dg.

Moreover, by induction in p, we get

Dph = [Dp−1h,Dp−1h] ⊆ [Dp−1g,Dp−1g] = Dpg

for all p ∈ N. Therefore, if g is solvable, Dpg = {0} for some p ∈ N. This in turn
implies that Dph = {0}, i.e., h is a solvable Lie algebra.

(ii) Let π : g −→ g/h be the natural projection. Then D(g/h) = π(Dg). By
induction in p, we see that

Dp(g/h) = [Dp−1(g/h),Dp−1(g/h)] = π([Dp−1g,Dp−1g]) = π(Dpg)

for any p ∈ N. If g is solvable, Dpg = {0} for some p ∈ N. This in turn implies that
Dp(g/h) = {0}, i.e., g/h is a solvable Lie algebra.

(iii) Since g/h is solvable, Dp(g/h) = {0} for some p ∈ N. Therefore, Dpg ⊂ h.
Since h is solvable, Dqh = {0} for some q ∈ N. Therefore,

Dp+qg = Dq(Dpg) ⊆ Dqh = {0},

and g is solvable. �

1.2.2. Example. Let g be the two-dimensional nonabelian Lie algebra dis-
cussed in 2.2.1. Then g is spanned by e1 and e2 and Dg is spanned by e1. This
implies that D2g = {0}, i.e., g is a solvable Lie algebra.

Let a and b be two solvable ideals in the Lie algebra g. Then a + b is an ideal
in g. Moreover, by 1.2.1, a∩b is solvable. On the other hand, (a+b)/b = a/(a∩b).
Therefore, by 1.2.1, a + b is a solvable ideal.

Let S be the family of all solvable ideals in g. Since g is finite dimensional,
there exist maximal elements in S. Let a and b be two maximal solvable ideals
in g. Then a + b is a solvable ideal containing a and b. Therefore, we must have
a = a + b = b. It follows that S contains the unique maximal element. This is the
largest solvable ideal in g.

The largest solvable ideal of g is called the radical of g.

1.3. Semisimple Lie algebras. A Lie algebra g is semisimple if its radical
is equal to {0}.

The next result shows that this definition is equivalent to the definition in 3.1.8.

1.3.1. Lemma. A Lie algebra is semisimple if and only if it has no nonzero
abelian ideals.

Proof. If g contains a nonzero abelian ideal a, the radical r of g contains a.
Therefore, g is not semisimple.

Let x ∈ g. Then adx induces a derivation of r. Since Dpr, p ∈ N, are char-
acteristic ideals in r, we see that adx(Dpr) ⊂ Dpr for any p ∈ N. Therefore, all
Dpr are ideals in g. Let q ∈ Z+ be such that Dqr 6= {0} and Dq+1r = {0}. Then,
a = Dqr is a nonzero abelian ideal in g. �
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In particular, the center of a semisimple Lie algebra is {0}. Since the center of
g is the kernel of ad we see that the following result holds.

1.3.2. Lemma. Let g be a semisimple Lie algebra. Then ker ad = {0}.

1.3.3. Proposition. Let g be a Lie algebra and r its radical. Then g/r is
semisimple.

Proof. Let π : g −→ g/r be the natural projection. Assume that s is a
solvable ideal in g/r, and put π−1(s) = s′. Then, s′ is an ideal in g containing r. In
addition, s′/r = s, and by 1.2.1, s′ is solvable. This in turn implies that s′ = r and
s = {0}, i.e., the only solvable ideal in g/r is {0}. Therefore, g/r is semisimple. �

1.4. Nilpotent Lie algebras. Let g be a Lie algebra. Define Cg = Dg, and

C0g = g, C1g = Cg, Cpg = [g, Cp−1g] for p ≥ 2.

Moreover,
g ⊇ Cg ⊇ C2g ⊇ · · · ⊇ Cpg ⊇ . . .

is a decreasing sequence of characteristic ideals which is called the descending central
series.

Since g is finite dimensional, the descending central series has to stabilize, i.e.,
Cpg = Cp+1g = . . . for sufficiently large p.

Clearly, since Cg = Dg, by induction we have

Cpg = [g, Cp−1g] ⊇ [Dp−1g,Dp−1g] = Dpg

for all p ∈ N.
A Lie algebra g is nilpotent if Cpg = {0} for some p ∈ N.
Clearly, abelian Lie algebras are nilpotent. Also, nilpotent Lie algebras are

solvable.
On the other hand, the two-dimensional solvable Lie algebra we considered in

1.2.2 is not nilpotent. As we remarked, Cg = Dg is spanned by the vector e1. This
in turn implies that C2g = [g, Cg] = Cg and inductively Cpg = Cg for all p ∈ N.

1.4.1. Lemma. (i) Let g be a nilpotent Lie algebra and h ⊂ g a Lie sub-
algebra. Then h is nilpotent.

(ii) Let g be a nilpotent Lie algebra and h ⊂ g an ideal in g. Then g/h is
nilpotent.

Proof. (i) We have Ch ⊆ Cg. Moreover, by induction in p, we get

Cph = [h, Cp−1h] ⊆ [g, Cp−1g] = Cpg

for all p ∈ N. Therefore, if g is nilpotent, Cpg = {0} for some p ∈ N. This in turn
implies that Cph = {0}, i.e., h is a nilpotent Lie algebra.

(ii) Let π : g −→ g/h be the natural projection. Then C(g/h) = π(Cg). By
induction in p, we see that

Cp(g/h) = [g/h, Cp−1(g/h)] = π([g, Cp−1g]) = π(Cpg)

for any p ∈ N. If g is nilpotent, Cpg = {0} for some p ∈ N. This in turn implies
that Cp(g/h) = {0}, i.e., g/h is a nilpotent Lie algebra. �

On the other hand, the extensions of nilpotent Lie algebras do not have to be
nilpotent. For example, the nonabelian two-dimensional solvable Lie algebra g has
a one-dimensional abelian ideal Dg and the quotient g/Dg is a one-dimensional
abelian Lie algebra.
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1.5. Engel’s theorem. Let V be a finite-dimensional linear space and L(V )
the Lie algebra of all linear transformations on V .

1.5.1. Lemma. Let T ∈ L(V ). Then

(adT )pS =

p
∑

i=0

(−1)i
(

p

i

)

T p−iST i

for any p ∈ Z+.

Proof. We prove this statement by induction in p. It is obvious for p = 0.
Therefore, we have

(adT )p+1S = T (adT )pS−(adT )pST =

p
∑

i=0

(−1)i
(

p

i

)

(

T p−i+1ST i − T p−iST i+1
)

=

p
∑

i=0

(−1)i
(

p

i

)

T p−i+1ST i +

p+1
∑

i=1

(−1)i
(

p

i− 1

)

T p−i+1ST i

=

p+1
∑

i=0

(−1)i
((

p

i

)

+

(

p

i− 1

))

T p−i+1ST i =

p+1
∑

i=0

(

p+ 1

i

)

T p+1−iST i.

�

1.5.2. Corollary. Let T is a nilpotent linear transformation on V . Then
adT is a nilpotent linear transformation on L(V ).

Proof. We have T p = 0 for some p ∈ Z+. By 1.5.1, it follows that (adT )2p =
0, and adT is nilpotent. �

1.5.3. Theorem (Engel). Let V be a finite dimensional linear space and g a
Lie subalgebra of L(V ) consisting of nilpotent linear transformations. Then there
exists a vector v ∈ V , v 6= 0, such that Tv = 0 for all T ∈ g.

Proof. We prove the theorem by induction in dimension of g. The statement
is obvious if dim g = 1.

Now we want to show that g contains an ideal a of codimension 1. Let h be
an arbitrary Lie subalgebra of g such that dim h < dim g. Let T ∈ h. Then T is
a nilpotent linear transformation, and by 1.5.2, adT is a nilpotent linear transfor-
mation on L(V ). Since g and h invariant subspaces for adT , it induces a nilpotent
linear transformation σ(T ) on g/h. Clearly, σ : h −→ L(g/h) is a representation of
h. By the induction assumption, there exists a linear transformation R ∈ g, R /∈ h,
such that σ(T )(R + h) = 0, i.e., [T,R] = adT (R) ∈ h for all T ∈ h. Let h′ be the
linear span of R and h. Then h′ is a Lie subalgebra of g, dim h′ = dim h + 1, and
h is an ideal in h′ of codimension 1. By induction in dimension of h, starting with
h = {0}, we show that g contains an ideal a of codimension 1.

Let T ∈ g, T /∈ a. By the induction assumption, there exists w ∈ V , w 6= 0,
such that Sw = 0 for any S ∈ a. Consider the linear subspace U = {u ∈ V | Su =
0 for all S ∈ a}. Clearly, U is nonzero. If u ∈ U , we have

S(Tu) = STu− TSu = [S, T ]u = 0,

for all S ∈ a, since [S, T ] ∈ a. Therefore, Tu ∈ U . It follows that U is invariant for
T . Since T is nilpotent, there exists v ∈ U , v 6= 0, such that Tv = 0. Hence, v is
annihilated by all elements of g. �
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The following result characterizes nilpotent Lie algebras in terms of their adjoint
representations.

1.5.4. Proposition. Let g be a Lie algebra. Then the following conditions are
equivalent:

(i) g is nilpotent;
(ii) all adx, x ∈ g, are nilpotent.

Proof. (i)⇒(ii) Assume that g is nilpotent. Let Cpg = {0}. By induction, we
can find a basis of g by completing the basis of Csg to a basis of Cs−1g for all s ≤ p.
In this basis, all adx, x ∈ g, are upper triangular matrices with zeros on diagonal.

(ii)⇒(i) If all adx are nilpotent, by 1.5.3, there exists y ∈ g, y 6= 0, such that
[x, y] = ad(x)y = 0 for all x ∈ g. Therefore, the center z of g is different from {0}.

We proceed by induction in dimension of g. If g is abelian, the statement is
obvious. Assume that g is not abelian, and consider g/z. Clearly, dim(g/z) <
dim g. Moreover, for any x ∈ g/z, adx is nilpotent. Therefore, by the induction
assumption, g/z is nilpotent. This implies that Cp(g/z) = {0} for some p ∈ N. It
follows that Cpg ⊂ z. Hence, Cp+1g = {0}, and g is nilpotent. �

The next result implies that all Lie algebras which satisfy the conditions of
1.5.3 are nilpotent.

1.5.5. Corollary. Let V be a finite-dimensional linear space. Let g be a
Lie subalgebra of L(V ) consisting of nilpotent linear transformations. Then g is
nilpotent.

Proof. Let T ∈ g. Then, by 1.5.2, adT is nilpotent linear transformation
on L(V ). Therefore, it is a nilpotent linear transformation on g. By 1.5.4, g is
nilpotent. �

1.5.6. Example. Let Mn(k) be the Lie algebra of n× n matrices with entries
in k. Let n(n, k) be the Lie subalgebra of all upper triangular matrices in Mn(k)
with zeros on the diagonal. Then n(n, k) is a nilpotent Lie algebra.

Let g be a nilpotent Lie algebra. In the proof of 1.5.4, we proved that there
exists a basis of g such that the matrices of adx, x ∈ g, in this basis are upper
triangular and nilpotent. Therefore, for any x, y ∈ g, the matrix of ad(x) ad(y) is
upper triangular and nilpotent. In particular B(x, y) = tr(ad(x) ad(y)) = 0. This
proves the following result.

1.5.7. Lemma. Let g be a nilpotent Lie algebra. Then its Killing form B is
trivial.

1.6. Lie’s theorem. In this section we prove some basic properties of solvable
Lie algebras over an algebraically closed field k.

1.6.1. Lemma. Let g be a Lie algebra over an algebraically closed field k and r

its radical. Let π be an irreducible representation of g on a linear space V over k.
Then there exists a linear form λ on r such that π(x) = λ(x)1V for all x ∈ r.

Proof. Let a = π(g) and p = π(r). Then a is a Lie subalgebra of L(V ) and p

is a solvable ideal in a.
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Fix p ∈ Z+ such that b = Dpp 6= 0, Dp+1p = {0}. Clearly, b is an abelian char-
acteristic ideal in p. Therefore, it is an ideal in a. Since the field k is algebraically
closed, T ∈ b have a common eigenvector v ∈ V , v 6= 0. Therefore,

Tv = λ(T )v for all T ∈ b.

Clearly, λ is a linear form on b.
Let S ∈ a. Since b is an ideal in a, we have [S, T ] ∈ b for all T ∈ b. We claim

that λ([S, T ]) = 0.
Let Vn be the subspace of V spanned by v, Sv, . . . , Snv. Clearly, we have

V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ . . .

and this increasing sequence stabilizes since V is finite dimensional. Assume that
Vm−1 6= Vm = Vm+1 = . . . . Then Vm is invariant for S. Moreover, v, Sv, . . . , Smv
form a basis of of Vm, and dimVm = m+ 1.

We claim that

TSnv − λ(T )Snv ∈ Vn−1

for all T ∈ b and n ∈ Z+. This is obvious for n = 0. We prove the statement by
induction in n. Since

TSn+1v − λ(T )Sn+1v = [T, S]Snv + STSnv − λ(T )Sn+1v

= [T, S]Snv + S(TSnv − λ(T )Snv),

and [T, S] ∈ b, by the induction assumption we have

[T, S]Snv − λ([T, S])Snv ∈ Vn−1 and TSnv − λ(T )Snv ∈ Vn−1.

Therefore,

TSn+1v − λ(T )Sn+1v ∈ λ([T, S])Snv + Vn−1 + S(Vn−1) ⊂ Vn.

This proves the above statement.
It follows that Vm is invariant for T ∈ b. Moreover, in the basis v, Sv, . . . , Smv

of Vm, T ∈ b act by upper triangular matrices with λ(T ) on the diagonal. Therefore,
we have

tr (T |Vm
) = (m+ 1)λ(T )

for any T ∈ b. In particular, this holds for [T, S]. Therefore,

(m+ 1)λ([T, S]) = tr ([T, S]|Vm
) = tr ([T |Vm

, S|Vm
]) = 0.

Hence, we have λ([T, S]) = 0 as we claimed above.
Consider now the linear subspace

W = {v ∈ V | Tv = λ(T )v, T ∈ b}.

Then v ∈W and W 6= {0}. For any w ∈W and S ∈ a, we have

TSw = [T, S]w + STw = λ([T, S])w + λ(T )Sw = λ(T )Sw

for all T ∈ b. Hence, Sw ∈ W . Therefore, W is a-invariant. Since π is irreducible,
we must have W = V . It follows that T = λ(T )1V for any T ∈ b. If p > 0, b

is spanned by commutators and the trace of any element of b must be zero. This
implies that λ = 0 and b = {0}, contradicting the choice of p. Therefore, p = 0,
and b = p. �

The following result is an immediate consequence of 1.6.1.
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1.6.2. Corollary. Let g be a solvable Lie algebra over an algebraically closed
field k. Then any irreducible representation of g on a linear space V over k is
one-dimensional.

1.6.3. Theorem (Lie). Let g be a solvable Lie algebra over an algebraically
closed field k. Let π be a representation of g on a linear space V over k. Then
there exist a basis of V such that all matrices of π(x), x ∈ g, are upper triangular.

Proof. We prove this statement by induction in dimV . If dimV = 1, the
statement is obvious.

Assume that dimV = n > 1. Let W be a minimal invariant subspace in V for
π. Then the representation of g on W is irreducible. By 1.6.2, dimW = 1. Let e1
be a nonzero vector in W . Clearly, π defines a representation σ of g on V/W and
dimV/W = dimV −1. Therefore, by the induction assumption, there exist vectors
e2, . . . , en in V such that e2 +W, . . . , en +W , form a basis of V/W such that σ(x)
are upper triangular in that basis, i.e, the subspaces spanned by e2+W, . . . , ek+W ,
2 ≤ k ≤ n, are σ-invariant. This in turn implies that the subspaces spanned by
e1, . . . , ek, 2 ≤ k ≤ n, are π-invariant, i.e., the matrices of π(x), x ∈ g, are upper
triangular. �

2. Lie algebras and field extensions

2.1. k-structures on linear spaces. Let k be a field of characteristic 0. Let
K be an algebraically closed field containing k.

Let U be a linear space over k. Then K⊗kU has a natural structure of a linear
space over K.

A k-structure on a linear space V over K is a k-linear subspace Vk ⊂ V such
that the natural map

K ⊗k Vk −→ V

is an isomorphism. This means that Vk spans V over K and the elements of Vk
linearly independent over k are also linearly independent over K.

We say that the elements of Vk are rational over k.
Let V be a linear space over K and Vk its k-structure. Let U be a linear

subspace of V . We put Uk = U ∩ Vk. We say that U is defined (or rational) over k
if Uk is a k-structure on U . This is equivalent to Uk spanning U .

If W = V/U , we write Wk for the projection of Vk into W . We say that W is
defined over k if Wk is a k-structure on W .

2.1.1. Lemma. Let U be a linear subspace of V and W = V/U . Then the
following conditions are equivalent:

(i) U is defined over k;
(ii) W is defined over k.

Proof. Consider the k-linear map Vk −→W induced by the natural projection
V −→ W . Then, its kernel is Vk ∩ U = Uk. Therefore, we have the short exact
sequence

0 −→ Uk −→ Vk −→Wk −→ 0.

By tensoring it with K, we get the short exact sequence

0 −→ K ⊗k Uk −→ K ⊗k Vk −→ K ⊗k Wk −→ 0.



2. LIE ALGEBRAS AND FIELD EXTENSIONS 105

This leads to the commutative diagram

0 −−−−→ K ⊗k Uk
a

−−−−→ K ⊗k Vk
b

−−−−→ K ⊗k Wk −−−−→ 0

α





y

β





y

γ





y

0 −−−−→ U
A

−−−−→ V
B

−−−−→ W −−−−→ 0

of linear spaces over K. The rows in this diagram are exact and the middle vertical
arrow is an isomorphism. From the diagram it is evident that the first vertical
arrow must be an injection and the last vertical arrow must be a surjection.

We claim that the first arrow is surjective if and only if the last one is injective.
Assume first that α is an isomorphism. Let w ∈ ker γ. Then, w = b(v) for

some v ∈ K ⊗k Vk and

B(β(v)) = γ(b(v)) = γ(w) = 0.

Therefore, β(v) ∈ kerB. It follows that β(v) = A(u) for some u ∈ U . Since α is an
isomorphism, u = α(u′) for some u′ ∈ K ⊗k U . Hence, we have

β(v) = A(u) = A(α(u′)) = β(a(u′)).

Since β is an isomorphism, this implies that v = a(u′). Hence, w = b(v) =
b(a(u′)) = 0. It follows that γ is injective.

Consider now that γ is an isomorphism. Let u ∈ U . Then A(u) = β(v) for
some v ∈ K ⊗k Vk. It follows that

γ(b(v)) = B(β(v)) = B(A(u)) = 0.

By our assumption, this implies that b(v) = 0, and v = a(u′) for some u′ ∈ K⊗kUk.
Hence, we have

A(u) = β(v) = β(a(u′)) = A(α(u′)).

Since A is injective, it follows that u = α(u′), i.e., α is surjective. �

Let Autk(K) be the group of all k-linear automorphisms of K. Let σ ∈
Autk(K). Then the k-linear map σ : K −→ K defines a k-bilinear map K×Vk −→
V by (λ, v) 7−→ σ(λ)v. This map defines a k-linear map of K ⊗k Vk into V by

σV (λ⊗ v) = σ(λ)v.

Since Vk is a k-structure of V , we can view σV as a k-linear automorphism of
V . Therefore, we get a homomorphism of Autk(K) into the group of all k-linear
automorphisms of V . We say that this action of Autk(K) corresponds to the k-
structure Vk.

2.1.2. Lemma. The k-structure Vk of V is the fixed point set of the action of
Autk(K) on V .

Proof. Let v ∈ V . Then v =
∑

i λivi for some finite independent set of
vectors v1, v2, . . . , vn in Vk and λi ∈ K. Therefore, σV (v) =

∑

i σ(λi)vi for any
σ ∈ Autk(K). It follows that v is fixed by σV if and only if λi are fixed by σ. By
Galois theory, λ ∈ K is fixed by all σ ∈ Autk(K) if and only if λ ∈ k. Therefore, v
is fixed by Autk(K) if and only if v ∈ Vk. �

Let v, w ∈ V and λ, µ ∈ K. We can represent v and w as

v =
∑

i

αivi and w =
∑

j

βjwj
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where αi, βj ∈ K and vi, wj ∈ Vk. Therefore, we have

σV (λv + µw) = σV



λ
∑

i

αivi + µ
∑

j

βjwj



 = σV





∑

i

λαivi +
∑

j

µβjwj





=
∑

i

σ(λαi)vi +
∑

j

σ(µβj)wj = σ(λ)
∑

i

σ(αi)vi + σ(µ)
∑

j

σ(βj)wj

= σ(λ)σV (v) + σ(µ)σV (w).

It follows that for any K-linear subspace U of V , σV (U) is also a K-linear
subspace of V . Therefore, Autk(K) permutes K-linear subspaces of V .

Assume that the K-linear subspace U is defined over k. Then, any u ∈ U can be
written as u =

∑

i λiui for λi ∈ K and ui ∈ Uk. Hence, σV (u) =
∑

i σ(λi)ui ∈ U .
Therefore, σV (U) = U and U is invariant for the action of Autk(K).

2.1.3. Lemma. If U is a K-linear subspace of V defined over k, U is stable for
the action of Autk(K).

Moreover, Autk(K) induces the action on U which corresponds to the k-
structure Uk.

Let W = V/U . Then the action of Autk(K) induces an action on W . if
p : V −→W is the canonical projection,

σW (p(v)) = σW

(

∑

i

λip(vi)

)

=
∑

i

σ(λi)p(vi)

for λi ∈ K and vi ∈ Vk. Therefore, the action of Autk(K) on W is corresponds to
the k-structure Wk.

Now we want to prove the converse of the above lemma.

2.1.4. Proposition. Let U be a K-linear subspace of V stable for the action
of Autk(K). Then U is defined over k.

Proof. Let Uk = U ∩ Vk. Also, put U ′ = K ⊗k Uk ⊂ V . Then U ′ is defined
over k, and U ′ ⊂ U .

Let V̄ = V/U ′ with the induced k-structure. The image Ū of U in V̄ is Autk(K)-
invariant. Let ū ∈ Ū ∩ V̄k. Then ū = p(u) = p(v) for some u ∈ U and v ∈ Vk.
Hence, p(u − v) = 0, and u − v ∈ U ′. In particular, u − v ∈ U . Hence, v ∈ U ,
and v ∈ Uk. It follows that v ∈ U ′ and p(v) = 0. Therefore, ū = 0. It follows
that Ūk = Ū ∩ V̄k = {0}. To prove the claim, we have to show that Ū = {0}. This
immediately implies that U = U ′, i.e., U is defined over k.

Therefore, we can assume from the beginning that Uk = {0}.
Assume that U 6= {0}. Let u ∈ U , u 6= 0, be such that u =

∑n
i=1 λivi where

λi ∈ K and vi ∈ Vk and n is smallest possible. Then, v1, v2, . . . , vn must be linearly
independent over K and all λi different from 0.

Then, multiplying by 1
λ1

we can assume that u ∈ U has the form u = v1 if
n = 1 or

u = v1 +

n
∑

i=2

λivi.
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In the first case, u ∈ Vk and u ∈ U ∩ Vk = Uk contradicting the assumption that
Uk = {0}. Hence, we must have n > 1. For any σ ∈ Autk(K), we have

σV (u) = v1 +

n
∑

i=2

σ(λi)vi

and

σV (u) − u =

n
∑

i=2

(σ(λi) − λi)vi.

Since σV (u) − u ∈ U , and the sum on the right has n − 1 terms, we must have
σV (u) − u = 0 and σ(λi) = λi for 2 ≤ i ≤ n.

Let λ ∈ K. By Galois theory, if σ(λ) = λ for all σ ∈ Autk(K), λ is in subfield
k. Therefore, we conclude that all λi ∈ k. This implies that u ∈ Vk and again
u ∈ U ∩ Vk = {0}, contradicting our assumption. Therefore, U = {0}. �

2.2. k-structures on Lie algebras. Let k be a field of characteristic 0 and
K its algebraically closed extension. Let g be a Lie algebra over k. Then we can
define the commutator on gK = K ⊗k g by

[λ⊗ x, µ⊗ y] = λµ⊗ [x, y]

for any x, y ∈ g and λ, µ ∈ K. One can check that gK is a Lie algebra over K.
If ϕ : g −→ h is a morphism of Lie algebras over k, by linearity it extends to

the morphism ϕK : gK −→ hK .
In this way we construct an exact functor from the category of Lie algebras

over k in to the category of Lie algebras over K. This functor is called the functor
of extension of scalars.

If V is a linear space over k and VK = K ⊗k V . One checks that L(V )K =
L(VK).

Conversely, if g is a Lie algebra over K, a k-linear subspace gk of g is a k-
structure on Lie algebra g if

(i) gk is a k-structure on the linear space g;
(ii) gk is a Lie subalgebra of g considered as a Lie algebra over k.

Let gk be a k-structure on the Lie algebra g over K. Let x, y ∈ g. Then
x =

∑

i λixi, y =
∑

j µjyj for some xi, yj ∈ gk and λi, µj ∈ K. Therefore,

σg([x, y]) = σg





∑

i;j

λiµj [xi, yj]



 =
∑

i;j

σ(λi)σ(µj)[xi, yj] = [σg(x), σg(y)]

for any σ ∈ Autk(K), i.e., Autk(K) acts on g by k-linear automorphisms. This
implies that the action of Autk(K) on g permutes Lie subalgebras, resp. ideals, in
the Lie algebra g.

A Lie subalgebra h of g is defined over k, if hk = h∩ gk is a k-structure on h as
a linear space.

Since h and gk are Lie subalgebras of g considered as a Lie algebra over k, hk
is a Lie algebra over k. Therefore, hk is k-structure on the Lie algebra h.

Let h be an ideal in g. Then hk = h ∩ gk is an ideal in gk.

2.2.1. Lemma. Let g be a Lie algebra over K with k-structure gk. If a and b

are two ideals of g defined over k, the ideal [a, b] is defined over k.
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Proof. Since a and b are defined over k, they are invariant under the action
of Autk(K). By 2.1.4, this in turn implies that [a, b] is defined over k. �

This immediately implies the following result.

2.2.2. Corollary. Let g be a Lie algebra over k, and gK the Lie algebra
obtained by extension of scalars.

(i) DpgK = (Dpg)K for all p ∈ Z+;
(ii) CpgK = (Cpg)K for all p ∈ Z+.

Therefore, we have the following result.

2.2.3. Theorem. Let g be a Lie algebra over k, and gK the Lie algebra obtained
by extension of scalars.

(i) g is solvable if and only if gK is solvable.
(ii) g is nilpotent if and only if gK is nilpotent.

Let g be a Lie algebra over K and gk its k-structure. As we remarked Autk(K)
permutes ideals in g. Clearly, if a is a solvable ideal, σg(a) is also a solvable ideal.
Therefore, Autk(K) permutes solvable ideals. Since this action clearly preserves
the partial ordering given by inclusion, we conclude that the radical r of g is fixed
by the action of Autk(K). Hence, by 2.1.4, r is defined over k. This implies the
following result.

2.2.4. Lemma. Let g be a Lie algebra over k, and gK the Lie algebra obtained
by extension of scalars. Let r be the radical of g. Then rK is the radical of gK .

This has the following immediate consequence.

2.2.5. Theorem. Let g be a Lie algebra over k, and gK the Lie algebra obtained
by extension of scalars. Then g is semisimple if and only if gK is semisimple.

The following observation follows immediately from the definitions.

2.2.6. Lemma. Let g be a Lie algebra over k and gK the Lie algebra obtained
by extension of scalars. Then the Killing form BgK

of gK is the linear extension of
the Killing form Bg on g.

Also, we can prove the following characterization of solvable Lie algebras.

2.2.7. Proposition. Let g be a Lie algebra. Then the following conditions are
equivalent:

(i) g is solvable;
(ii) Dg is nilpotent.

Proof. (ii)⇒(i) The Lie algebra g is an extension of g/Dg by the ideal Dg.
Clearly, g/Dg is abelian. Hence, if Dg is nilpotent, g has to be solvable by 1.2.1.

(i)⇒(ii) Let K be the algebraic closure of k. Then gK is solvable by 2.2.3. By
1.6.3, there exists a basis of gK such that the matrices of adx, x ∈ gK , are upper
triangular. Hence, the matrices of ad[x, y] = [adx, ad y] are upper triangular with
zeros on the diagonal. It follows that adx, x ∈ Dgk, are nilpotent. By 1.5.4, it
follows that DgK is nilpotent. By 2.2.2 and 2.2.3, Dg is nilpotent. �

2.2.8. Example. Let Mn(k) be the Lie algebra of all n × n matrices with
entries in k. Denote by s(n, k) the Lie subalgebra of all upper triangular matrices
in Mn(k). Then, as we remarked in 1.5.6, Ds(n, k) = n(n, k) is a nilpotent Lie
algebra. Therefore, s(n, k) is a solvable Lie algebra.
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3. Cartan’s criterion

3.1. Jordan decomposition. Let k be a field of characteristic 0 and K its
algebraic closure.

3.1.1. Lemma. Let P ∈ k[X ] be a polynomial with simple zeros in K. Then P
and P ′ are relatively prime, i.e, there exist S, T ∈ k[X ] such that SP + TP ′ = 1.

Proof. By our assumption, P (X) =
∏p
i=1(X−λi) for λi ∈ K, and λi, 1 ≤ i ≤

n, are mutually different. Therefore, for any 1 ≤ i ≤ n, P (X) = (X−λi)Q(X) and
Q(λi) 6= 0. It follows that P ′(X) = Q(X)+(X−λi)Q′(X) and P ′(λi) = Q(λi) 6= 0.

Let I be the ideal generated by P and P ′ in k[X ]. Assume that I 6= k[X ].
Since k[X ] is a principal ideal domain, in this case I = (R) for some polynomial
R ∈ k[X ]. Therefore, a zero of R in K must be a common zero of P and P ′ which
is impossible. It follows that I = k[X ]. �

3.1.2. Lemma. Let P ∈ k[X ] be a polynomial with simple zeros in K. Let
n ∈ N. Assume that Q ∈ k[X ] is a polynomial such that P ◦ Q is in the ideal
in k[X ] generated by Pn. Then there exists a polynomial An ∈ k[X ] such that
P ◦ (Q−AnP

n) is in the ideal generated by Pn+1.

Proof. By Taylor’s formula

P (X + Y ) = P (X) + P ′(X)Y + Y 2R(X,Y )

for some R ∈ k[X,Y ]. Therefore, for any polynomial An we have

P ◦ (Q−AnP
n) = P ◦Q− (P ′ ◦Q)AnP

n + SPn+1

where S ∈ k[X ]. By our assumption, P ◦Q = TPn for some polynomial T ∈ k[X ].
By 3.1.1, there exists A,B ∈ k[X ] such that 1 = CP ′ +DP . Therefore,

1 = (A ◦Q)(P ′ ◦Q) + (B ◦Q)(P ◦Q).

If we put An = T (A ◦Q), we get

P ◦ (Q−AnP
n) = An(P

′ ◦Q)Pn + T 2(B ◦Q)P 2n − (P ′ ◦Q)AnP
n + SPn+1

= T 2(D ◦Q)P 2n + SPn+1.

�

By induction, from this lemma we deduce the following result.

3.1.3. Lemma. Let P ∈ k[X ] be a polynomial with simple zeros in K. Let
n ∈ Z+. Then there exist polynomials A0 = 0, A1, . . . , An such that the polynomial

P

(

X −
n
∑

i=0

Ai(X)P (X)i

)

is in the ideal generated by Pn+1.

Proof. If n = 0, the statement is evident for A0 = 0.
Assume that the statement holds for n− 1. then there exist polynomials A0 =

0, A1, . . . , An−1 such that

P

(

X −
n−1
∑

i=0

Ai(X)P (X)i

)
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is in the ideal generated by Pn. Put

Q = X −
n−1
∑

i=0

Ai(X)P (X)i.

Then the existence of An follows from 3.1.2. �

Let V be a linear space over a field k. Let K be the algebraic closure of k. A
linear transformation S on V is semisimple if its minimal polynomial has simple
zeros in K.

3.1.4. Theorem. Let T be a linear transformation on a linear space V over k.
Then there exist unique linear transformations S and N on V such that

(i) S is semisimple and N is nilpotent;
(ii) S and N commute;
(iii) T = S +N .

Also, S = P (T ) and N = Q(T ) where P,Q ∈ k[X ] without constant term.

Proof. Let K be the algebraic closure of k. Let λi, 1 ≤ i ≤ n, be the
mutually different eigenvalues of T in K. Let P (X) =

∏n
i=1(X − λi). Then, for

some p ∈ N, the characteristic polynomial of T divides P p and P (T )p = 0. By
3.1.3, for n = p − 1, we know that there exist polynomials A0 = 0, A1, . . . , Ap−1

such that

P

(

T −

p−1
∑

i=0

Ai(T )P (T )i

)

= 0.

If we put

N =

p−1
∑

i=0

Ai(T )P (T )i

and

S = T −

p−1
∑

i=0

Ai(T )P (T )i,

we immediately see that S is semisimple. On the other hand, since A0 = 0, we see
that N = P (T )Q(T ) for some Q ∈ k[X ]. Therefore, Np = P (T )pQ(T )p = 0 and N
is nilpotent. This proves the existence of S and N .

It remains to establish the uniqueness. Assume that S′, N ′ is another pair of
linear transformations satisfying the above conditions. Since S′ and N ′ commute,
they commute with T = S′+N ′. On the other hand, S and N are polynomials in T ,
and we conclude that S′ and N ′ commute with S and N . This implies that S−S′ is
a semisimple linear transformation and N−N ′ is a nilpotent linear transformation.
On the other hand, S + N = T = S′ + N ′ implies S − S′ = N ′ − N . Therefore,
S − S′ = N ′ −N = 0. This proves the uniqueness of S and N . �

The linear transformation S is called the semisimple part of T and the linear
transformation N is called the nilpotent part of T . The decomposition T = S +N
is called the Jordan decomposition of T .

Let e1, e2, . . . , en be a basis of V . Denote by Eij the linear transformations on
V such that Eijek = 0 if j 6= k, and Eijej = ei, for all 1 ≤ i, j, k ≤ n. Then Eij ,
1 ≤ i, j ≤ n, form a basis of L(V ).
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3.1.5. Lemma. Let V be a linear space over an algebraically closed field k. Let
T be a linear transformation on V and T = S+N its Jordan decomposition. Then
adT = adS + adN is the Jordan decomposition of adT .

Proof. Clearly, T = S+N implies adT = adS+adN . Moreover, [adS, adN ] =
ad[S,N ] = 0. By 1.5.2, adN is a nilpotent linear transformation. Hence, it remains
to show that adS is semisimple. Let e1, e2, . . . , en be a basis of V such that

Sei = λiei for all 1 ≤ i ≤ n.

Then
adS(Eij) = SEij − EijS = (λi − λj)Eij for all 1 ≤ i, j ≤ n.

Hence, adS is semisimple. �

Finally, we prove a result which will play the critical role in the next section.

3.1.6. Lemma. Let V be a linear space over an algebraically closed field k. Let
U ⊂W be two linear subspaces of L(V ) and

S = {T ∈ L(V ) | ad(T )(W ) ⊂ U}.

If A ∈ S and tr(AB) = 0 for every B ∈ S, then A is nilpotent.

Proof. Let A ∈ S such that ad(A)(W ) ⊂ U and tr(AB) = 0 for all B ∈ S.
Let A = S +N be the Jordan decomposition of A. Fix a basis e1, e2, . . . , en of V
such that Sei = λiei for 1 ≤ i ≤ n.

Let L be the linear subspace of k over the rational numbers Q spanned by
λ1, λ2, . . . , λn. Let f : L −→ Q be a Q-linear form on L. Let T be a linear
transformation on V given by

Tei = f(λi)ei for 1 ≤ i ≤ n.

Then
ad(T )(Eij) = (f(λi) − f(λj))Eij for all 1 ≤ i, j ≤ n.

The numbers λi − λj , 1 ≤ i, j ≤ n, are in L. Moreover, λi − λj = λp − λq for
some 1 ≤ i, j, p, q ≤ n, implies that

f(λi) − f(λj) = f(λi − λj) = f(λp − λq) = f(λp) − f(λq).

In addition, if λi − λj = 0 for some 1 ≤ i, j ≤ n, we have

f(λi) − f(λj) = f(λi − λj) = 0.

Therefore, there exists a polynomial P ∈ k[X ] such that P (λi−λj) = f(λi)−f(λj)
for all 1 ≤ i, j ≤ n, and P has no constant term. It follows that P (adS) = adT .
On the other hand, adS = Q(adA) for some polynomial Q with no constant term.
Hence, adT = (P ◦ Q)(adA). Since P ◦Q has no constant term, ad(T )(W ) ⊂ U ,
i.e, T ∈ S. This implies that tr(AT ) = 0. On the other hand

tr(AT ) =

n
∑

i=1

λif(λi) = 0.

Hence, we have

0 = f

(

n
∑

i=1

f(λi)λi

)

=

n
∑

i=1

f(λi)
2.

Since f(λi) ∈ Q, f(λi)
2 ≥ 0 for all 1 ≤ i ≤ n. Therefore, we conclude that f(λi) = 0

for all 1 ≤ i ≤ n. It follows that f = 0. Since f is an arbitrary linear form on L,
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it follows that L = {0}. Therefore, λi = 0 for all 1 ≤ i ≤ n. It follows that S = 0
and A = N , i.e., A is nilpotent. �

3.2. Cartan’s criterion. In this section we prove the following solvability
criterion.

3.2.1. Theorem (Cartan). Let V be a linear space over k. Let g be a Lie
subalgebra of L(V ). Define

β(T, S) = tr(TS), for T, S ∈ g.

Then the following conditions are equivalent:

(i) g is solvable;
(ii) Dg is orthogonal to g with respect to β.

Proof. Let K be the algebraic closure of k. By 2.2.3, the Lie algebra gK
obtained by extension of scalars is solvable if and only if g is solvable. On the other
hand, gK is a Lie subalgebra of L(V )K = L(VK). The bilinear form βK : (T, S) 7−→
tr(TS) for T, S ∈ L(VK) is obtained from β by linear extension. Therefore, it is
enough to prove the statements for Lie algebras over K.

(i)⇒(ii) By 1.6.3 we can find a basis of V such that the matrices of all T ∈ g

are upper triangular. Then the matrices of Dg are upper triangular with zeros on
the diagonal. Therefore, it follows immediately that β(T, S) = 0 for T ∈ g and
S ∈ Dg.

(ii)⇒(i) To prove this implication, by 2.2.7, it is enough to show that Dg is
nilpotent. By 1.5.5, Dg is nilpotent if all R ∈ Dg are nilpotent. To prove this we
consider 3.1.6 for U = Dg and W = g. In this case we have

S = {T ∈ L(V ) | ad(T )(g) ⊂ Dg}.

Clearly, g ⊂ S.
Let T ∈ S and A,B ∈ g. Then [T,A] ∈ Dg and

tr(T [A,B]) = tr(T [A,B]) = tr(TAB − TBA) = tr(TAB) − tr(TBA)

= tr(TAB) − tr(ATB) = tr([T,A]B) = β([T,A], B) = 0

by the assumption. Hence, tr(TR) = 0 for all R ∈ Dg.
It follows that tr(RT ) = 0 for all R ∈ Dg and T ∈ S. On the other hand, as

we remarked above, R ∈ S. By 3.1.6, we see that R is nilpotent. �

3.3. Radical is a characteristic ideal. The main goal of this section is to
prove the following result.

3.3.1. Theorem. Let g be a Lie algebra and r its radical. Then r is the orthog-
onal complement to Dg with respect to the Killing form of g.

3.3.2. Corollary. The radical r of a Lie algebra g is a characteristic ideal.

Proof. Clearly, Dg is a characteristic ideal. Therefore, by 1.1.5, Dg⊥ is a
characteristic ideal. By 3.3.1, r = (Dg)⊥. �

We first want to prove that the radical r is contained in the characteristic ideal
r′ = (Dg)⊥.

We first need a technical result.
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3.3.3. Lemma. Let g be a Lie algebra and r the radical of g. Let π be a rep-
resentation of g on linear space V . Then tr(π(x)π(y)) = 0 for all x ∈ Dg and
y ∈ r.

Proof. Let K be the algebraic closure of k. Let VK = K ⊗k V . Let πK
be the representation obtained by extension of scalars from π. Then πK is the
representation of gK on VK . By 2.2.4, rK is the radical of gK . The bilinear form
β(x, y) = tr(π(x)π(y)), x, y ∈ g, extends by linearity to βK(x, y) = tr(πK(x)πK (y))
for x, y ∈ gK . Therefore, it is enough to prove that βK(x, y) = 0 for x ∈ (Dg)K
and y ∈ rK .

Hence, we can assume from the beginning that k is algebraically closed. Assume
first that π is irreducible. By 1.6.1, there exists a linear form λ on r such that
π(y) = λ(y)1V for all y ∈ r. Therefore, β(x, y) = tr(π(x)π(y)) = λ(y) tr(π(x)) for
all x ∈ Dg and y ∈ r. On the other hand, Dg is spanned by commutators, hence
the linear form x 7−→ tr π(x) vanishes on Dg. It follows that β(x, y) = 0 for x ∈ Dg

and y ∈ r.
Assume that π is reducible. Then we prove the statement by induction in

length of π. Let W be a minimal invariant subspace of V . then the representation
π′ of g induced on W is irreducible. Let π′′ be the representation of g induced on
V/W . Then

β(x, y) = tr(π(x)π(y)) = tr(π′(x)π′(y)) + tr(π′′(x)π′′(y)) = tr(π′′(x)π′′(y))

for any x ∈ Dg and y ∈ r. Clearly the length of π′′ is less than the length of π.
Hence, by the induction assumption, β(x, y) = 0 for x ∈ Dg and y ∈ r. �

Applying the lemma to the adjoint representation of g we see that r ⊂ r′.
It remains to show that r′ is a solvable ideal in g. We first need a result about

the Killing form.

3.3.4. Lemma. Let g be a Lie algebra and h an ideal in g. Then the Killing
form Bh of h is the restriction of the Killing form Bg of g to h × h.

Proof. Since h is an ideal in g, for any x ∈ h we have adx(g) ⊂ h. Moreover,
ad(x) ad(y)(g) ⊂ h for x, y ∈ h. Therefore,

Bg(x, y) = tr(ad(x) ad(y)) = tr(adh(x) adh(y)) = Bh(x, y)

for all x, y ∈ h. �

By 3.3.4, we have Br′ = Bg|r′×r′ . Therefore, since r′ is orthogonal to Dg with
respect to Bg, we see that r′ is orthogonal to Dr′ for Br′ . By 3.2.1, this implies
that ad r′ is a solvable Lie subalgebra of L(r′). On the other hand, if z is the center
of r′, we have the exact sequence

0 −→ z −→ r′ −→ ad r′ −→ 0,

where z is abelian. Therefore, by 1.2.1, r′ is a solvable Lie algebra. Therefore, r′

is a solvable ideal in g. It follows that r′ ⊂ r. Hence, it follows that r = r′ which
completes the proof of 3.3.1.

4. Semisimple Lie algebras

In this section we generalize some results about Lie algebras of compact semisim-
ple Lie groups from 3.1.8.
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4.1. Killing form and semisimple Lie algebras. The following result gives
a new characterization of semisimple Lie algebras.

4.1.1. Theorem. Let g be a Lie algebra. Then the following conditions are
equivalent:

(i) g is semisimple;
(ii) the Killing form B of g is nondegenerate.

If these conditions hold, g = Dg.

Proof. (i)⇒(ii) Assume that g is semisimple. Then the radical r of g is equal
to {0}. By 3.3.1, (Dg)⊥ = {0}. Moreover, Dg ⊆ g implies g⊥ ⊆ (Dg)⊥ = {0}. It
follows that g⊥ = {0}, i.e., the Killing form B is nondegenerate.

In addition, in this situation g⊥ = {0} = (Dg)⊥ implies g = Dg.
(ii)⇒(i) Let a be an abelian ideal in g. Let x ∈ g and y ∈ a. Then ad(y)(g) ⊂ a,

and ad(x) ad(y)(g) ⊂ a. Therefore, (ad(x) ad(y))2(g) ⊂ ad(x) ad(y)(a) = {0}, and
ad(x) ad(y) is a nilpotent linear transformation on g. This implies that B(x, y) =
tr(ad(x) ad(y)) = 0. Hence, a ⊂ g⊥. Since B is nondegenerate, we see that a = {0}.
By 1.3.1, g is a semisimple Lie algebra. �

Let g be a semisimple Lie algebra. Let a be an ideal in g. Let a⊥ be the
orthogonal complement to a with respect to the Killing form B of g. Then, by
1.1.5, a⊥ is an ideal in g. This implies that b = a ∩ a⊥ is an ideal in g. If x, y ∈ b,
we have B(x, y) = 0. By 3.2.1, we see that ad b is a solvable Lie algebra. Since
ad is injective by 1.3.2, we conclude that b is solvable. Therefore, b = {0} and
a ∩ a⊥ = {0}. Since B is nondegenerate, dim a⊥ = dim g − dim a, i.e., g = a ⊕ a⊥

as a linear space. This in turn implies the following result.

4.1.2. Lemma. Let g be a semisimple Lie algebra and a an ideal in g. Then
g = a ⊕ a⊥.

Moreover, a and a⊥ are semisimple ideals in g.

Proof. It is enough to prove that a is semisimple. Let x ∈ a be such that
Ba(x, y) = 0 for all y ∈ a. Then, by 3.3.4, Bg(x, y) = 0 for all y ∈ a. This in turn
implies that Bg(x, y) = 0 for all y ∈ g. Since Bg is nondegenerate, x = 0. This
implies that Ba is nondegenerate, and a is semisimple by 4.1.1. �

A Lie algebra is simple if it is not abelian and it has no nontrivial ideals. By
1.3.1, a simple Lie algebra is semisimple.

A minimal ideal a in a semisimple Lie algebra cannot be abelian by 1.3.1. On
the other hand, by 4.1.2, any ideal in a is an ideal in g. Hence, by minimality, a

has to be simple. Therefore any semisimple Lie algebra contains a simple ideal.

4.1.3. Lemma. Let g be a semisimple Lie algebra and π a representation of g

on a linear space V . Then π(g) is contained in the Lie algebra sl(V ) of all traceless
linear transformations on V .

Proof. Let x, y ∈ g. Then

tr(π([x, y])) = tr([π(x), π(y)]) = tr(π(x)π(y)) − tr(π(y)π(x)) = 0.

Therefore, the linear form x 7−→ tr π(x) vanishes on Dg. By 4.1.1, it vanishes on
g. �
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4.2. Derivations are inner. The next result is a generalization of the result
about the nondegeneracy of the Killing form.

4.2.1. Lemma. Let g be a semisimple Lie algebra and π a faithful representation
of g. Then the bilinear form (x, y) 7−→ β(x, y) = tr(π(x)π(y)) is nondegenerate on
g.

Proof. Let

s = {x ∈ g | β(x, y) = 0 for all y ∈ g}.

Let x ∈ s and y ∈ g. Then

β([y, x], z) = tr(π([y, x])π(z)) = tr(π(y)π(x)π(z)) − tr(π(x)π(y)π(z))

= tr(π(x)π([y, z])) = 0,

for all z ∈ g. Therefore, [y, x] ∈ s for all y ∈ g. Hence, s is an ideal in g. Moreover,
s is orthogonal onto itself with respect to β. By 3.2.1, this implies that π(s) is
solvable. Since the π is faithful, this implies that s is solvable. Hence, s = {0}.
This implies that β is nondegenerate. �

This has the following consequence which generalizes 4.1.2.

4.2.2. Lemma. Let g be a Lie algebra and B its Killing form. Let a be a
semisimple Lie subalgebra of g. Then the orthogonal h = a⊥ of a is a direct com-
plement to a in g and ad(x)(h) ⊂ h for all x ∈ a.

If a is an ideal in g, h is an ideal in g and

h = {x ∈ g | ad(x)(a) = {0}}.

In particular, g = a × h.

Proof. Since a is semisimple, its center is equal to {0} and adg : a −→ L(g)
is faithful. Hence, by 4.2.1, Bg|a×a is nondegenerate. Therefore, a ∩ h = {0}.
Moreover, we have dim h = dim g − dim a, and g = a ⊕ h as a linear space. In
addition, for x ∈ a and y ∈ h, we have B([x, y], z) = −B(y, [x, z]) = 0 for all z ∈ a.
Hence [x, y] ∈ h. It follows that h is invariant for all adx, x ∈ a.

If a is an ideal, h is an ideal by 1.1.5. Hence, g = a × h, and since a has trivial
center, the rest of the statement follows. �

The next result says that all derivations of a semisimple Lie algebra are inner.

4.2.3. Proposition. Let g be a semisimple Lie algebra. Then ad : g −→ Der(g)
is an isomorphism of Lie algebras.

Proof. Since the center of g is {0}, ad is injective and g is isomorphic to the
ideal ad g of inner derivations in Der(g) by 1.1.3.

By 4.2.2, Der(g) = ad g × h, where

h = {D ∈ Der(g) | [D, adx] = 0 for all x ∈ g}.

Let D ∈ h. Then, by 1.1.2, we have ad(Dx) = [D, adx] = 0 for all x ∈ g. Since ad
is injective, Dx = 0 for all x ∈ g, and D = 0. Hence, h = {0}. �
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4.3. Decomposition into product of simple ideals. Let g be a semisimple
Lie algebra and a an ideal in g. Then a is semisimple by 4.1.2. Assume that b is
another ideal in g such that a ∩ b = {0}. Let x ∈ a and y ∈ b. Then, ad(y)(g) ⊂ b

and

(ad(x) ad(y))(g) = ad(x)(ad(y)(g)) ⊂ ad(x)(b) ⊂ a ∩ b = {0}.

Therefore, ad(x) ad(y) = 0 and B(x, y) = tr(ad(x) ad(y)) = 0. It follows that
b ⊂ a⊥.

In particular, if b is a direct complement of a, we must have b = a⊥. Therefore,
the complementary ideal is unique.

The set of all ideals in g is ordered by inclusion. Let m be a minimal ideal in
g. As we remarked in the preceding section m is a simple ideal.

Let a be another ideal in g. Then a ∩ m is an ideal in g. By the minimality of
m, we have either m ⊂ a or a∩m = {0}. By the above discussion, the latter implies
that a ⊂ m⊥, i.e., a is perpendicular to m.

Let m1,m2, . . . ,mp be a family of mutually different minimal ideals in g. By the
above discussion mi is perpendicular to mj for i 6= j, 1 ≤ i, j ≤ p. Hence, p has to be
smaller than dim g. Assume that p is maximal possible. Then a = m1⊕m2⊕· · ·⊕mp

is an ideal in g. Assume that a 6= g. Then g = a ⊕ a⊥. Let mp+1 be a minimal
ideal in a⊥. Then mp+1 is a minimal ideal in g different from mi, 1 ≤ i ≤ p,
contradicting the maximality of p. It follows that g = m1 ⊕ m2 ⊕ · · · ⊕ mp, i.e., we
have the following result.

4.3.1. Theorem. The Lie algebra g is the direct product of its minimal ideals.
These ideals are simple Lie algebras.

In particular, a semisimple Lie algebra is a product of simple Lie algebras.

4.4. Jordan decomposition in semisimple Lie algebras. In this section
we prove a version of Jordan decomposition for semisimple Lie algebras.

Let g be a Lie algebra and a a Lie subalgebra of g. Let

n = {x ∈ g | ad(x)(a) ⊂ a}.

Clearly, n is a Lie subalgebra of g and a is an ideal in n. This Lie algebra is called
the normalizer of a in g. Clearly, the normalizer is the largest Lie subalgebra of g

which contains a as an ideal.

4.4.1. Theorem. Let g be a semisimple Lie algebra. Let x ∈ g. Then there
exist unique elements s, n ∈ g such that

(i) ad s is semisimple and adn is nilpotent;
(ii) [s, n] = 0;
(iii) x = s+ n.

The element s is the semisimple part of x and n is the nilpotent part of x. The
decomposition x = s+ n is called the Jordan decomposition of x in g.

Proof. Assume first that k is algebraically closed. Since the center of g is
equal to zero, the adjoint representation ad : g −→ L(g) is injective. Therefore, we
can view g as the ideal ad g in L(g).

Let n be the normalizer of g in L(g), i.e.,

n = {T ∈ L(g) | ad(T )(ad g) ⊂ ad g}.
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Clearly, n is a Lie subalgebra of L(g), and ad g is an ideal in n. Let T ∈ n. Let
T = S +N be the Jordan decomposition of the linear transformation T . Then, by
3.1.5, adT = adS + adN . Moreover, by 3.1.4, adS and adN are polynomials in
adT . Hence, S,N ∈ n.

By 4.2.2, we have n = a × g, where

a = {T ∈ n | ad(T )(ad g) = {0}}.

Let

n′ = {T ∈ n | T (h) ⊂ h for any ideal h of g}.

Since ad g ⊂ n′, we have

n′ = (a ∩ n′) × g,

i.e., n′ = a′ × g where a′ = a ∩ n′.
Let T ∈ n′ and let T = S + N be its Jordan decomposition. As we already

remarked, S,N ∈ n. Moreover, by 3.1.4, S and N are polynomials in T , so S(h) ⊂ h

and N(h) ⊂ h for all ideals h ⊂ g. It follows that S,N ∈ n′.
Let g = m1 ×m2 × · · · ×mp be the decomposition of g into a product of simple

ideals. Then for T ∈ a′ we have T (mi) ⊂ mi for 1 ≤ i ≤ p. On the other hand, T
commutes with adx for any x ∈ g. Let 1 ≤ i ≤ p and λi be an eigenvalue of the
restriction of T to mi. Let y ∈ ker(T − λiI) ∩ mi. Then

(T − λiI)([x, y]) = (T − λiI) ad(x)y = ad(x)(T − λiI)y = 0

for any x ∈ g. Hence, [x, y] ∈ ker(T −λiI)∩mi for any x ∈ g, i.e., ker(T −λiI)∩mi

is an ideal in mi. Since mi is minimal, ker(T −λiI) ⊃ mi, i.e., T |mi
is multiplication

by λi. This implies that T is semisimple.
Let N be a nilpotent linear transformation in n′. Then N = P +Q for P ∈ a′

and Q ∈ ad g. By the above argument, P is semisimple. Since mi are invariant for
N,P,Q for all 1 ≤ i ≤ p, we have

N |mi
= P |mi

+Q|mi

for all 1 ≤ i ≤ p. Since N is nilpotent, N |mi
is nilpotent and

0 = tr(N |mi
) = tr(P |mi

) + tr(Q|mi
).

The ideal mi is invariant for the adjoint representation of g. Hence, by 4.1.3, we
have tr(Q|mi

) = 0. This in turn implies that tr(P |mi
) = 0. On the other hand, the

above argument shows that P |mi
is a multiple of the identity. Hence, P |mi

= 0 for
all 1 ≤ i ≤ p. It follows that P = 0, and N ∈ ad g.

Let x ∈ g and let adx = S +N be the Jordan decomposition of adx in L(g).
By the above remarks, S and N are in n′. By the above argument, N = adn for
some n ∈ g. This implies that s = x− n ∈ g and

ad s = adx− adn = adx−N = S

is semisimple. Finally,

ad[s, n] = [ad s, adn] = [S,N ] = 0

and [s, n] = 0. This proves the existence of the decomposition.
Assume that s′, n′ ∈ g satisfy x = s′ + n′, [s′, n′] = 0 and ad s′ is semisimple

and adn′ is nilpotent. Then adx = ad s′ + adn′ is the Jordan decomposition of
adx in L(g). Therefore, by the uniqueness of that decomposition, ad s′ = S = ad s
and adn′ = N = adn. This in turn implies that s′ = s and n′ = n.
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Finally, assume that k is not algebraically closed. LetK be the algebraic closure
of k. Let gK be the algebra obtained from g by the extension of the field of scalars.
Then gK is semisimple by 2.2.5. Let x ∈ g ⊂ gK . Let x = s + n be the Jordan
decomposition of x in gK . Since x is stable under the action of Autk(K), for any
σ ∈ Autk(K), we have x = σgK

(s) + σgK
(n), [σgK

(s), σgK
(n)] = σgK

([s, n]) = 0,
adσgK

(s) is semisimple and adσgK
(n) is nilpotent. Therefore, by the uniqueness

of the Jordan decomposition, we have σgK
(s) = s and σgK

(n) = n for any σ ∈
Autk(K). Therefore, s and n are in g. �

4.5. Lie algebra sl(n, k). Let V be a linear space over the field k and V ∗ its
linear dual. We can define a bilinear map ϕ : V × V ∗ −→ L(V ) by ϕ(v, f)(w) =
f(w)v for any v, w ∈ V and f ∈ V ∗. This map defines the linear map Φ : V ⊗k
V ∗ −→ L(V ) such that Φ(v ⊗ f)(w) = f(w)v for any v, w ∈ V and f ∈ V ∗.

4.5.1. Lemma. The linear map Φ : V ⊗k V
∗ −→ L(V ) is a linear isomorphism.

Proof. Clearly, we have

dim(V ⊗ V ∗) = dimV dimV ∗ = (dim V )2 = dimL(V ).

Therefore, it is enough to show that Φ is injective. Let v1, v2, . . . , vn be a basis of
V and f1, f2, . . . , vn the dual basis of V ∗. Then vi ⊗ fj , 1 ≤ i, j ≤ n, is a basis of
V ⊗k V

∗. Let Φ(z) = 0 for some z =
∑n

i;j=1 αijvi ⊗ fj ∈ V ⊗k V
∗. Then

0 = Φ(z)(vk) = Φ





n
∑

i;j=1

αijvi ⊗ fj



 (vk) =

n
∑

i;j=1

αijfj(vk)vi =

n
∑

i=1

αikvi

for any 1 ≤ k ≤ n. Therefore, αij = 0 for all 1 ≤ i, j ≤ n. �

Let V and W be two linear spaces over k. Let S ∈ L(V ) and T ∈ L(W ). Then
they define a bilinear map (v, w) 7−→ Sv ⊗ Tw from V ×W into V ⊗k W . This
bilinear map induces a linear endomorphism S ⊗ T of V ⊗k W given by

(S ⊗ T )(v ⊗ w) = Sv ⊗ Tw

for any v ∈ V and w ∈W .
Let T be a linear transformation on V . Then T acts on L(V ) by left (resp. right)

multiplication. Then we have the following commutative diagram

V ⊗ V ∗ T⊗I
−−−−→ V ⊗ V ∗

Φ





y





y
Φ

L(V ) −−−−→
T◦−

L(V )

since

TΦ(v ⊗ f)(w) = T (f(w)v) = f(w)Tv = Φ(Tv ⊗ f)(w) = Φ((T ⊗ I)(v ⊗ f))(w)

for all v, w ∈ V and f ∈ V ∗. Also, we have the following commutative diagram

V ⊗ V ∗ I⊗T∗

−−−−→ V ⊗ V ∗

Φ





y





y
Φ

L(V ) −−−−→
−◦T

L(V )
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since

Φ(v ⊗ f)T (w) = f(Tw)v = (T ∗f)(w)v = Φ(v ⊗ T ∗f)(w) = Φ((I ⊗ T ∗)(v ⊗ f))(w)

for all v, w ∈ V and f ∈ V ∗.
Therefore, we finally conclude that the we have the commutative diagram

V ⊗ V ∗ T⊗I−I⊗T∗

−−−−−−−−→ V ⊗ V ∗

Φ





y





y
Φ

L(V ) −−−−→
adT

L(V )

.

Therefore, the adjoint representation of L(V ) is equivalent to the representation
T 7−→ T ⊗ I − I ⊗ T ∗ on V ⊗k V ∗.

4.5.2. Lemma. Let V and W be two linear spaces over k. Let S ∈ L(V ) and
T ∈ L(W ). Then

tr(T ⊗ S) = tr(T ) tr(S).

Proof. Let v1, v2, . . . vn be a basis of V and w1, w2, . . . , wm a basis of W .
Then vi ⊗ wj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, is a basis of V ⊗k W . If αij and βpq are the
matrix entries of these transformations in these bases, we have

(S ⊗ T )(vi ⊗ wj) = Svi ⊗ Twj =

n
∑

p=1

m
∑

q=1

αpiβqjvp ⊗ wq .

Therefore,

tr(S ⊗ T ) =

n
∑

i=1

q
∑

j=1

αiiβjj = tr(S) tr(T ).

�

If n = dimV , this implies that the Killing form on L(V ) is given by

B(S, T ) = tr(ad(T ) ad(S)) = tr((S ⊗ I − I ⊗ S∗)(T ⊗ I − I ⊗ T ∗))

= tr(ST ⊗ I) − tr(S ⊗ T ∗) − tr(T ⊗ S∗) + tr(I ⊗ S∗T ∗)

= n tr(ST )− tr(S) tr(T ∗)− tr(T ) tr(S∗)+n tr(S∗T ∗) = 2n tr(ST )−2 tr(S) tr(T )

for S, T ∈ L(V ).
On the other hand, let sl(V ) be the ideal of L(V ) consisting of all traceless

linear transformations on V . Then, by 3.3.4, we have the following result.

4.5.3. Lemma. Let V be a n-dimensional linear space over k. The Killing form
on the algebra sl(V ) is given by B(S, T ) = 2n tr(ST ) for S, T ∈ sl(V ).

This has the following direct consequence.

4.5.4. Proposition. Let n ≥ 2. The Lie algebra sl(n, k) of all n× n traceless
matrices is semisimple.

Proof. By 4.1.1, it is enough to show that the Killing form is nondegenerate
on sl(n, k).

Let T ∈ sl(n, k) be such that B(T, S) = 0 for all S ∈ sl(n, k). Let Eij be the
matrix with all entries equal to zero except the entry in ith row and jth column.
Then Eij , i 6= j, are in sl(n, k). Moreover, if we denote by tij the matrix entries of
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T , we have 0 = B(T,Eij) = 2ntji. Hence, Tji = 0. Hence, T must be diagonal. On
the other hand Eii − Ejj ∈ sl(n, k) for 1 ≤ i, j ≤ n. Also, 0 = B(T,Eii − Ejj) =
2n(tii− tjj) for all 1 ≤ i, j ≤ n. Hence T is a multiple of the identity matrix. Since
tr(T ) = 0, we must have T = 0. It follows that B is nondegenerate. �

4.6. Three-dimensional Lie algebras. In this section we want to classify
all three dimensional Lie algebras over an algebraically closed field k. We start with
the following observation.

4.6.1. Lemma. Let g be a three-dimensional Lie algebra. Then g is either
solvable or simple Lie algebra.

Proof. Assume that g is not solvable. Let r be the radical of g. Then r 6= g.
Therefore, g/r is a Lie algebra of dimension 1, 2 or 3. By 1.3.3, g/r is semisim-
ple. Since all Lie algebras of dimension 1 and 2 are solvable, g/r must be three-
dimensional,i.e., r = {0}. Let h be a nonzero ideal in g. Then its dimension is either
1, 2 or 3. Since the ideals of dimension 1 or 2 have to be solvable, this contradicts
the fact that g is semisimple. Therefore, h = g, i.e., g is simple. �

We are going to classify the three-dimensional Lie algebras by discussing the
possible cases of dimDg.

First, if Dg = {0}, g is abelian.
Consider now the case dimDg = 1. Let z be the center of g. Then there are

two subcases.
First, assume that Dg ⊂ z. Then, we can pick e ∈ Dg, e 6= 0, which spans Dg.

Since e ∈ z, there are f, g ∈ g such that (e, f, g) is a basis of g and [e, f ] = [e, g] = 0.
Finally, [f, g] = λe with λ ∈ k. The number λ must be different from 0 since g

is not abelian. By replacing f with 1
λf , we get that [f, g] = e. Therefore, there

exists at most one three-dimensional Lie algebra with the above properties. On the
other hand, Let g = n(3, k) be the Lie algebra upper triangular nilpotent matrices
in M3(k). Then g is three-dimensional, and its basis

e =





0 0 1
0 0 0
0 0 0



 , f =





0 1 0
0 0 0
0 0 0



 , g =





0 0 0
0 0 1
0 0 0



 ,

satisfies the above commutation relations. This shows the existence of the above
Lie algebra. By 1.5.6, this is a nilpotent Lie algebra.

In the second subcase, we assume that Dg ∩ z = {0}. Let e ∈ Dg, e 6= 0. Since
e is not in the center, there exists f ∈ g such that [e, f ] = λe with λ 6= 0. By
replacing f with 1

λf , we can assume that [e, f ] = e. Therefore, the Lie algebra h

spanned by e, f is the two-dimensional nonabelian Lie algebra from 1.2.2. Since
Dg ⊂ h, h is an ideal in g.

Let g ∈ g be a vector outside h. Then [g, e] = ae and [g, f ] = be. This in turn
implies that

[g + λe+ µf, e] = ae− µe = (a− µ)e and [g + λe+ µf, f ] = be+ λe = (b+ λ)e.

Hence, if we put λ = −b and µ = a, and replace g with g + λe + µf , we see
that [e, g] = [f, g] = 0. Therefore, g spans an abelian ideal complementary to
h. Therefore, g is the product of h and a one-dimensional abelian Lie algebra.
Therefore, this is a solvable Lie algebra, which is not nilpotent.
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Now we want to study the case of dimDg = 2. There are two subcases, the
two-dimensional Lie subalgebra h = Dg can be isomorphic to the two-dimensional
nonabelian Lie algebra from 1.2.2, or it can be abelian.

Assume first that Dg is not abelian. We need a simple observation.

4.6.2. Lemma. All derivations of the two-dimensional nonabelian solvable Lie
algebra are inner.

Proof. Let (e, f) be a basis of h such that [e, f ] = e. Since Dg is a character-
istic ideal spanned by e, De = λe with λ ∈ k for any derivation D ∈ Der(h). By
replacing D with D + λ ad f we can assume that De = 0. Let Df = ae + bf for
some a, b ∈ k. Then we have

0 = De = D([e, f ]) = [De, f ] + [e,Df ] = b[e, f ] = be

and b = 0. It follows that Df = ae. Now, (a ad e)(f) = ae and (a ad e)(e) = 0.
Hence, D = a ad e. �

Now we return to the study of the Lie algebra g. Let g ∈ g, g /∈ h. Then
ad g|h is a derivation of g. By 4.6.2, there exists x ∈ h such that ad g|h = adx|h.
Hence, by replacing g by g − x, we can assume that [e, g] = [f, g] = 0. This is
impossible, since this would imply that Dg = Dg is one-dimensional contrary to
our assumption.

Therefore, in this case h has to be abelian. Let (e, f) be a basis of h, and g a
vector outside h. Then h is spanned by ad g(e) and ad g(f), i.e., A = ad g|h is a
linear automorphism of h. If we replace g with ag+be+cf , the linear transformation
A is replaced by aA. Therefore, the quotient of the eigenvalues of A is unchanged
and independent of the choice of g. There are two options:

(1) the matrix A is semisimple;
(2) the matrix A is not semisimple.

In the first case, we can pick e and f to be the eigenvectors of A. Also, we can
assume that the eigenvalue of A corresponding to e is equal to 1. We denote by α
the other eigenvalue of A. Clearly α ∈ k∗. In this case, we have

[e, f ] = 0, [g, e] = e, [g, f ] = αf.

Let

e =





0 0 1
0 0 0
0 0 0



 , f =





0 0 0
0 0 1
0 0 0



 , g =





1 0 0
0 α 0
0 0 0



 .

Then these three matrices span the Lie algebra isomorphic to g. This proves the
existence of g.

If we switch the order of eigenvalues the quotient 1
α is replaced by α. In this

case, switching e and f and replacing g by αg establishes the isomorphism of the
corresponding Lie algebras. Therefore, the Lie algebras parametrized by α, α′ ∈ k∗

are isomorphic if and only if α = α′ or α = 1
α′

. This gives an infinite family of
solvable Lie algebras. They are not nilpotent, since Cpg = h for p ≥ 1.

If A is not semisimple, its eigenvalues are equal, by changing g we can assume
that they are equal to 1. Therefore, we can assume that A is given by the matrix

A =

(

1 1
0 1

)
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in the basis (e, f). Hence, we have

[e, f ] = 0, [g, e] = e, [g, f ] = e+ f.

Let

e =





0 0 1
0 0 0
0 0 0



 , f =





0 0 0
0 0 1
0 0 0



 , g =





1 1 0
0 1 0
0 0 0



 .

Then these three matrices span the Lie algebra isomorphic to g. This proves the
existence of g. This Lie algebra is solvable, but not nilpotent.

Finally, consider the case of dimDg = 3. In this case, g = Dg, and g cannot
be solvable. By 4.6.1, g is simple.

By 1.5.4, there exists x ∈ g which is not nilpotent. Hence, it has a nonzero
eigenvalue λ ∈ k. By multiplying it with 2

λ , we get an element h ∈ g such that
adh has eigenvalue 2. Since adh(h) = 0, 0 is also an eigenvalue of adh. Since
g is three-dimensional, adh has at most three eigenvalues. Moreover, by 4.1.3,
tr adh = 0. Therefore, −2 is also an eigenvalue of adh. This in turn implies that
the corresponding eigenspaces must be one-dimensional. Therefore, we can find
e, f ∈ g such that (e, f, h) is a basis of g and

[h, e] = 2e, [h, f ] = −2f.

In addition, we have

adh([e, f ]) = [adh(e), f ] + [e, adh(f)] = 2[e, f ]− 2[e, f ] = 0

and [e, f ] is proportional to h. Clearly, Dg is spanned by [h, e], [h, f ] and [e, f ].
Hence, [e, f ] 6= 0. It follows that [e, f ] = λh with λ 6= 0. By replacing e by 1

λe we
see that there exists a basis (e, f, h) such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Therefore, there exists at most one three-dimensional simple Lie algebra over k. If
g = sl(2, k), and we put

e =

(

0 1
0 0

)

, f =

(

0 0
1 0

)

, h =

(

1 0
0 −1

)

,

we easily check that the above relations hold. Therefore, in the only three-dimensional
simple Lie algebra is sl(2, k).

4.6.3. Remark. Let g be the Lie algebra sl(2,C) with the basis (e, f, h) we
described above. It has the obvious R-structure sl(2,R) which is spanned over R

by (e, f, h). This real Lie algebra is the Lie algebra of the Lie group SL(2,R). On
the other hand, in 1.8, we considered the Lie algebra of the group SU(2) which is
spanned by another three linearly independent traceless 2× 2 matrices. Therefore,
the complexification of this Lie algebra is again g. In other words, the Lie algebra
of SU(2) is another R-structure of g. This shows that a complex Lie algebra can
have several different R-structures which correspond to quite different Lie groups.

4.7. Irreducible finite-dimensional representations of sl(2, k). Let k be
an algebraically closed field and g = sl(2, k). As before, we chose the basis of g

given by the matrices

e =

(

0 1
0 0

)

, f =

(

0 0
1 0

)

, h =

(

1 0
0 −1

)

.
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Then we have, as we already remarked,

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let V be a finite-dimensional linear space over k and π : g −→ L(V ) a repre-
sentation of g. Let v ∈ V , v 6= 0, be an eigenvector of π(h) for an eigenvalue λ ∈ k,
i.e. π(h)v = λv. Then

π(h)π(e)v = π([h, e])v + π(e)π(h)v = (λ+ 2)π(e)v.

Hence, either π(e)v = 0 or π(e)v is an eigenvector of π(h) with the eigenvalue
λ+ 2. By induction, either π(e)kv, k ∈ Z+, are nonzero eigenvectors of π(h) with
eigenvalues λ + k, or π(e)kv 6= 0 and π(e)k+1v = 0 for some k ∈ Z+. In the first
case, since π(e)kv correspond to different eigenvalues of π(h), these vectors must be
linearly independent. This leads to a contradiction with dim V <∞. Hence, there
exists k ∈ Z+ such that u = π(e)kv 6= 0 is an eigenvector of π(h) for the eigenvalue
λ+ k and π(e)u = π(e)k+1v = 0. Therefore, we proved the following result.

4.7.1. Lemma. Let (π, V ) be a finite-dimensional representation of g. Then
there exists a vector v ∈ V , v 6= 0, such that π(e)v = 0 and π(h)v = λv for some
λ ∈ k.

The vector v is called the primitive vector of weight λ.
Let v0 ∈ V be a primitive vector of the representation π of weight λ. We put

vn = π(f)nv0 for n ∈ Z+. We claim that

π(h)vn = (λ− 2n)vn, n ∈ Z+.

This is true for n = 0. Assume that it holds for m ∈ Z+. Then, by the induction
assumption, we have

π(h)vm+1 = π(h)π(f)vm = π([h, f ])vm + π(f)π(h)vm

= −2π(f)vm + (λ− 2m)π(f)vm = (λ− 2m− 2)π(f)vm = (λ− 2(m+ 1))vm+1.

Therefore, the assertion holds by induction in m.
We also claim that

π(e)vn = n(λ− n+ 1)vn−1

for all n ∈ Z+. This is true for n = 0. Assume that it holds for n = m. Then we
have

π(e)vm+1 = π(e)π(f)vm = π([e, f ])vm + π(f)π(e)vm

= π(h)vn+m(λ−m+1)π(f)vm−1 = (λ−2m+m(λ−m+1))vm = (m+1)(λ−m)vm,

and the above statement follows by induction in m.
Now vn 6= 0 for all n ∈ Z+ would contradict the finitedimensionality of V ,

hence there exists m ∈ Z+ such that vm 6= 0 and vm+1 = 0. This in turn implies
that π(e)vm+1 = (m+ 1)(λ−m)vm = 0. Therefore, we must have λ = m, i.e., the
weight λ must be a nonnegative integer.

Therefore, we established the following addition to 4.7.1.

4.7.2. Lemma. Let (π, V ) be a finite-dimensional representation of g and v a
primitive vector in V . Then then the weight of v is a nonnegative integer.
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Let λ = m be the weight of v0. Then

π(h)vn = (m− 2n)vn, π(e)vn = n(m− n+ 1)vn−1, π(f)vn = vn+1

for all n = 0, 1, . . . ,m. Also, π(f)vm = 0. Therefore, the linear span of v0, v1, . . . , vm
is a (m+ 1)-dimensional linear subspace invariant for π.

If π is irreducible, this invariant subspace must be equal to V . This proves the
exhaustion part of the following result.

4.7.3. Theorem. Let n ∈ Z+, and Vn be the (n + 1)-dimensional linear space
with the basis e0, e1, . . . , en. Define

πn(h)ek = (n− 2k)ek,

πn(e)ek = (n− k + 1)ek−1

πn(f)ek = (k + 1)ek+1

for 0 ≤ k ≤ n. Then (πn, Vn) is an irreducible representation of g.
All irreducible finite-dimensional representations of g are isomorphic to one of

these representations.

Proof. It remains to check that πn are representations. We have

[πn(h), πn(e)]ek = πn(h)πn(e)ek − πn(e)πn(h)ek

= (n− k + 1)πn(h)ek−1 − (n− 2k)πn(e)ek

= ((n− k + 1)(n− 2k + 2) − (n− 2k)(n− k + 1))ek−1

= 2(n− k + 1)ek−1 = 2πn(e)ek

for all 0 ≤ k ≤ n, i.e., [πn(h), πn(e)] = 2πn(e). Also, we have

[πn(h), πn(f)]ek = πn(h)πn(f)ek − πn(f)πn(h)ek

= (k + 1)πn(h)ek+1 − (n− 2k)πn(f)ek

= ((k + 1)(n− 2k − 2) − (n− 2k)(k + 1))ek+1

= −2(k + 1)ek+1 = −2πn(f)ek

for all 0 ≤ k ≤ n, i.e., [πn(h), πn(f)] = −2πn(f). Finally, we have

[πn(e), πn(f)]ek = πn(e)πn(f)ek − πn(f)πn(e)ek

= (k + 1)πn(e)ek+1 − (n− k + 1)πn(f)ek−1

= ((k + 1)(n− k) − (n− k + 1)k)ek

= (n− 2k)ek = πn(h)ek

for all 0 ≤ k ≤ n, i.e., [πn(e), πn(f)] = πn(h). Therefore, πn is a representation. �

5. Cartan subalgebras

5.1. Regular elements. Let g be a Lie algebra over an algebraically closed
field k. For h ∈ g and λ ∈ k we put

g(h, λ) = {x ∈ g | (adh− λI)px = 0 for some p ∈ N}.
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Then g(h, λ) 6= {0} if and only if λ is an eigenvalue of adh. Also, since adh(h) = 0,
we see that g(h, 0) 6= {0}. Moreover, by the Jordan decomposition of adh we know
that

g =

p
⊕

i=0

g(h, λi)

where λ0 = 0, λ1, . . . , λp are distinct eigenvalues of adh.
For two linear subspaces a and b in g, we denote by [a, b] the linear span of

[x, y], x ∈ a, y ∈ b.

5.1.1. Lemma. Let h ∈ g. Then

[g(h, λ), (h, µ)] ⊂ g(h, λ+ µ)

for any λ, µ ∈ k.

Proof. Let x ∈ g(h, λ), y ∈ g(h, µ). Then we have

(adh− (λ+ µ)I)[x, y] = [adh(x), y] + [x, adh(y)] − (λ + µ)[x, y]

= [(adh− λI)x, y] + [x, (adh− µI)y],

and by induction in m, we get

(adh− (λ+ µ)I)m[x, y] =
m
∑

j=0

(

m

j

)

[(adh− λI)jx, (ad−µI)m−jy]

for any m ∈ N. Therefore, if (adh − λI)px = 0 and (adh − µI)qy = 0, we have
(adh− (λ+ µ)I)p+q[x, y] = 0. �

In particular, we have the following result.

5.1.2. Corollary. The linear subspace g(h, 0) is a nonzero Lie subalgebra of
g.

Let

Ph(λ) = det(λI − adh)

be the characteristic polynomial of adh. Then, if n = dim g, we have

Ph(λ) =

n
∑

i=0

ai(h)λi

where a1, a2, . . . , an are polynomial functions on g. Since 0 is an eigenvalue of adh,
0 is a zero of Ph and a0(h) = 0. In addition, an = 1. Let

` = min{i ∈ Z+ | ai 6= 0}.

The number ` is called the rank of g. Clearly, 0 < ` ≤ n, i.e.,

0 < rank g ≤ dim g.

Moreover, rank g = dim g if and only if all adx, x ∈ g, are nilpotent. Therefore, by
1.5.4, we have the following result.

5.1.3. Lemma. A Lie algebra g is nilpotent if and only if rankg = dim g.
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An element h ∈ g is called regular if a`(h) 6= 0. Regular elements form a
nonempty Zariski open set in g.

Let ϕ be an automorphism of g. Then we have

ad(ϕ(h)) = ϕ ad(h)ϕ−1.

Therefore, it follows that

Pϕ(h)(λ) = det(λI − ad(ϕ(h))) = det(λI − ϕ adhϕ−1)

= det(ϕ (λI − adh)ϕ−1) = Ph(λ).

Hence, a`(ϕ(h)) = a`(h) for all h ∈ g. It follows that the set of all regular elements
is invariant under the action of Aut(g).

5.1.4. Lemma. The set of regular elements in g is a dense Zariski open set in
g, stable under the action of the group Aut(g) of automorphisms of g.

Since the multiplicity of 0 as a zero of Ph is equal to dim g(h, 0), we see that

dim g(h, 0) ≥ rank g

and the equality is attained for regular h ∈ g.

5.1.5. Example. Let g = sl(2, k). Fix the standard basis e, f, h with commu-
tation relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Then

ad e =





0 0 −2
0 0 0
0 1 0



 , ad f =





0 0 0
0 0 2
−1 0 0



 , adh =





2 0 0
0 −2 0
0 0 0



 .

Therefore, for

x =

(

a b
c −a

)

the characteristic polynomial of adx is equal to

Px(λ) =

∣

∣

∣

∣

∣

∣

λ− 2a 0 2b
0 λ+ 2a −2c
c −b λ

∣

∣

∣

∣

∣

∣

= λ(λ2 − 4a2) − 4cbλ = λ(λ2 + 4 detx).

Therefore, a1(x) = 4 det(x) for all x ∈ g. It follows that rank g = 1. Moreover, x is
regular if and only if det(x) 6= 0. Since tr(x) = 0, this implies that x is regular if
and only if it is not nilpotent. A regular x has two different nonzero eigenvalues µ
and −µ, and therefore is a semisimple matrix.

Let h0 be a regular element in g. Put

h = g(h0, 0).

5.1.6. Lemma. The Lie algebra h is nilpotent.

Proof. Let λ0 = 0, λ1, . . . , λp be the distinct eigenvalues of ad(h0). Put

g1 =

p
⊕

i=1

g(h0, λi).

Then, by 5.1.1, we have [h, g1] ⊂ g1. Hence the restriction of the adjoint repre-
sentation of g to h induces a representation ρ of h on g1. Consider the function
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h 7−→ d(h) = det ρ(h) on h. This is clearly a polynomial function on h. Also, if
qi = dim g(h0, λi), we have d(h0) = λq11 λ

q2
2 . . . λ

qp
p 6= 0. Hence, d 6= 0. It follows

that there exist a dense Zariski open set in h on which d is nonzero.
Let h ∈ h be such that d(h) 6= 0. The the eigenvalues of ρ(h) are all nonzero.

Hence g(h, 0) ⊂ h. Since h0 is regular, the dimension of dim h = rank g, and
dim g(h, 0) ≥ rank g. Hence, we see that g(h, 0) = h. This implies that adh h is
nilpotent. Therefore, (adh h)q = 0 for q ≥ rank g. Clearly, the matrix entries of
(adh h)q are polynomial functions on h. Therefore, by Zariski continuity, we must
have (adh h)q = 0 for all h ∈ h. This implies that all adh h, h ∈ h, are nilpotent.
By 1.5.4, h is a nilpotent Lie algebra. �

5.1.7. Lemma. The Lie algebra h is equal to its normalizer.

Proof. Let n be the normalizer of h and x ∈ n. Then [h0, x] ∈ h. Since h =
g(h0, 0), we see that there exists p ∈ Z+ such that ad(h0)

p([h0, x]) = ad(h0)
p+1x =

0. This in turn implies that x ∈ h. Therefore, n = h. �

5.2. Cartan subalgebras. Let g be a Lie algebra. A Lie subalgebra h of g is
a Cartan subalgebra of g if

(i) h is a nilpotent Lie algebra;
(ii) h is equal to its own normalizer.

5.2.1. Proposition. Let h be a Cartan subalgebra in g. Then h is a maximal
nilpotent Lie subalgebra of g.

Proof. Let n be a nilpotent Lie algebra containing h. Assume that n 6= h.
Then the adjoint representation of n restricted to h defines a representation σ of h

on n/h. By 1.5.4, this is a representation of h by nilpotent linear transformations.
By 1.5.3, there exists a nonzero vector v ∈ n/h such that σ(x)v = 0 for all x ∈ h.
Let y ∈ n be a representative of the coset v. Then [x, y] = ad(x)y ∈ h for all x ∈ h.
Therefore, y is in the normalizer of h. Since h is a Cartan subalgebra, this implies
that y ∈ h, i.e., v = 0 and we have a contradiction. Therefore, n = h, i.e., h is a
maximal nilpotent Lie subalgebra of g. �

5.2.2. Example. There exist maximal nilpotent Lie subalgebras which are
not Cartan subalgebras. For example, let g = sl(2, k). Then the the abelian Lie
subalgebra spanned by e is maximal nilpotent. To show this, assume that n is a
nilpotent Lie subalgebra containing e. Then dim n must be ≤ 2. Hence, it must be
abelian. Let g = αe+ βf + γh be an element of n. Then

0 = [e, g] = βh− 2γe.

Therefore β = γ = 0, and g is proportional to e. It follows that n is spanned by
e. On the other hand, the Lie subalgebra of all upper triangular matrices in g

normalizes n, so n is not a Cartan subalgebra.

5.2.3. Theorem. Let g be a Lie algebra over k. Then g contains a Cartan
subalgebra.

Assume first that k is algebraically closed. Let h ∈ g be a regular element.
Then, by 5.1.6 and 5.1.7, g(h, 0) is a Cartan subalgebra in g.

Assume now that k is not algebraically closed. Let K the algebraic closure of
k.
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5.2.4. Lemma. Let g be a Lie algebra and gK the Lie algebra obtained from g

by extension of the field of scalars.
Let h be a Lie subalgebra of g and hK the Lie subalgebra of gK spanned by h

over K. Then the following conditions are equivalent:

(i) h is a Cartan subalgebra of g;
(ii) hK is a Cartan subalgebra of gK .

Proof. By 2.2.3, h is nilpotent if and only if hK is nilpotent.
Let n be the normalizer of hK . If x ∈ n then (adx)(h) ⊂ h. Since h is defined

over k, it is invariant under the action of the Galois group Autk(K) on gK . This
implies that (adσgK

(x))(h) ⊂ h for any σ ∈ Autk(K). Therefore, n is stable for the
action of Autk(K). By 2.1.4, n is defined over k.

Assume that h is a Cartan subalgebra of g. Then h is nilpotent. By the above
remark, hK is also nilpotent. Let n be the normalizer of hK . Then it is defined over
k. Hence, it is spanned by elements in g which normalize h. Since h is equal to its
normalizer in g, it follows that n = hK . Therefore, hK is a Cartan subalgebra in
gK .

Assume that hK is a Cartan subalgebra in gK . Then h is nilpotent. Moreover,
for any x ∈ g such that (adx)(h) ⊂ h, by linearity we have (adx)(hK ) ⊂ hK . Since
hK is equal to its normalizer, this implies that x ∈ hK and finally x ∈ h. Therefore,
the normalizer of h is equal to h and h is a Cartan subalgebra in g. �

Therefore, to prove the existence of a Cartan subalgebra in g it is enough to
show that there exists a Cartan subalgebra of gK defined over k. Assume that there
exists a regular element h of gK which is rational over k. Then h is fixed by the
action of the Galois group Autk(K). This in turn implies that h = g(h, 0) is stable
under the action Autk(K). By 2.1.4, h is defined over k.

Therefore, it is enough to show that there exists a regular element of gK rational
over k. This is a consequence of the following lemma.

5.2.5. Lemma. Let P ∈ K[X1, X2, . . . , Xn] be a polynomial such that

P (λ1, λ2, . . . , λn) = 0 for all λ1, λ2, . . . , λn ∈ k.

Then P = 0.

Proof. We prove the statement by induction in n. If n = 1, the statement is
obvious since k is infinite. Assume that n > 1. Then we have

P (X1, X2, . . . , Xn) =

q
∑

s=0

Ps(X1, X2, . . . Xn−1)X
s
n

for some Pj ∈ K[X1, X2, . . . , Xn−1]. Fix λ1, λ2, . . . , λn−1 ∈ k. Then

0 = P (λ1, λ2, . . . , λn) =

q
∑

s=0

Ps(λ1, λ2, . . . λn−1)λ
s
n

for all λn ∈ k. By the first part of the proof, it follows that Pj(λ1, λ2, . . . λn−1) =
0 for all 0 ≤ j ≤ q. Since λ1, λ2, . . . λn−1 ∈ k are arbitrary, by the induction
assumption Pj = 0 for 0 ≤ j ≤ q, and P = 0. �

By the preceding lemma, a` cannot vanish identically on g. Therefore, a regular
element rational over k must exist in gK . This completes the proof of 5.2.3.
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We now prove a weak converse of the above results. Let g be a Lie algebra
over an algebraically closed field k. Let h be a Cartan subalgebra of g. Since h is
nilpotent, for any h ∈ h, adh|h = adh h is a nilpotent linear transformation by 1.5.4.
Therefore, h ⊆ g(h, 0). Clearly, the adjoint action of h defines a representation ρ of
h on g/h. Moreover, h = g(h, 0) if and only if ρ(h) is a linear automorphism of g/h.

5.2.6. Lemma. Let g be a Lie algebra over an algebraically closed field k. Let
h be a Cartan subalgebra of g. Then there exists h ∈ g such that h = g(h, 0).

Later, in 5.5.1, we are going to see that h has to be regular.

Proof. As we remarked above, we have to show that there exists h ∈ h such
that ρ(h) is a linear automorphism of g/h.

Since h is nilpotent, by 1.6.3, there is a flag

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm = g/h

of invariant subspaces for ρ such that dimVi = i for 0 ≤ i ≤ m. Moreover, there
exist linear forms α1, α2, . . . , αm on h such that

ρ(x)v − αi(x)v ∈ Vi−1 for any v ∈ Vi

for 1 ≤ i ≤ m. Hence, α1(x), α2(x), . . . , αm(x) are the eigenvalues of ρ(x).
We claim that none of linear forms α1, α2, . . . , αm is equal to zero. Assume the

opposite. Let 1 ≤ k ≤ m be such that α1 6= 0, α2 6= 0, . . . , αk−1 6= 0, αk = 0. Since
k is infinite, there exists x ∈ h such that α1(x) 6= 0, α2(x) 6= 0, . . . , αk−1(x) 6= 0.
Then ρ(x)|Vk−1

is a linear automorphism of Vk−1, and ρ(x)|Vk
is not. It follows that

Vk = Vk−1 ⊕ V ′ where V ′ is the one-dimensional kernel of ρ(x)|Vk
.

Let v′ ∈ V ′, v′ 6= 0. We claim that ρ(y)v′ = 0 for all y ∈ h.
To show this we first claim that

ρ(x)pρ(y)v′ = ρ((adx)py)v′ for all y ∈ h,

for any p ∈ Z+. The relation is obvious for p = 0. For p = 1, we have

ρ(x)ρ(y)v′ = ρ(x)ρ(y)v′ − ρ(y)ρ(x)v′ = ρ([x, y])v′.

Therefore, by the induction assumption, we have

ρ(x)pρ(y)v′ = ρ(x)p−1ρ([x, y])v′ = ρ((adx)p−1[x, y])v′ = ρ((adx)py)v′,

and the above assertion follows.
Since h is nilpotent, we have (adx)qy = 0 for all y ∈ h for sufficiently large q.

Therefore,

ρ(x)qρ(y)v′ = 0 for all y ∈ h

for sufficiently large q. Therefore, ρ(y)v′ is in the nilspace of ρ(x). Since ρ(x)|Vk−1

is regular, we see that ρ(y)v′ ∈ V ′. On the other hand, since αk = 0, we have
ρ(y)Vk ⊆ Vk−1. This finally implies that ρ(y)v′ = 0 for all y ∈ h.

Let z ∈ g be a representative of the coset v′ ∈ g/h. Then the above result
implies that [y, z] ∈ h for all y ∈ h. Therefore, z is in the normalizer of h. Since h

is a Cartan subalgebra, z ∈ h and v′ = 0. Therefore, we have a contradiction.
It follows that all α1, α2, . . . , αm are nonzero. Therefore, there exists an element

h ∈ h such that α1(h) 6= 0, α2(h) 6= 0, . . . , αm(h) 6= 0, i.e., ρ(h) is regular. �

5.2.7. Corollary. Let g be a Lie algebra. Let h be a Cartan subalgebra of g.
Then dim h ≥ rank g.
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Proof. Assume first that g is a Lie algebra over an algebraically closed field.
Then by 5.2.6, g(h, 0) for some h ∈ h. Therefore, dim h ≥ rankg.

The general case follows from 5.2.4. �

Later, in 5.5.3, we are going to see that the inequality in the above result is
actually an equality.

5.3. Cartan subalgebras in semisimple Lie algebras. In this section we
specialize the discussion to semisimple Lie algebras.

5.3.1. Lemma. Let g be a semisimple Lie algebra and h a Cartan subalgebra of
g. Then h is abelian.

Proof. Assume first that k is algebraically closed. By 5.2.6, h0 ∈ h be such
that h = g(h0, 0). Let λ 6= 0 and x ∈ g(h0, λ). Then, for h ∈ h, we have

ad(x) ad(h)(g(h0, µ)) ⊂ ad(x)(g(h0, µ)) ⊂ g(h0, µ+ λ).

If we choose a basis of g corresponding to the decomposition g =
⊕p

i=0 g(h0, λi),
where λ0 = 0, λ1, . . . , λp are distinct eigenvalues of ad(h0), we see that the corre-
sponding block matrix of ad(x) ad(h) has zero blocks on the diagonal. Therefore,
B(x, h) = tr(ad(x) ad(h)) = 0. Hence, it follows that h is orthogonal to g(h0, λi)
for any 1 ≤ i ≤ p.

Since h is nilpotent, it is also solvable. By 3.2.1, it follows that h is orthogonal to
Dh. This implies that Dh is orthogonal to g. Since the Killing form is nondegenerate
on g by 4.1.1, it follows that Dh = {0}, i.e., h is abelian.

The general case follows from 5.2.4. �

Since Cartan subalgebras are maximal nilpotent by 5.2.1, this implies the fol-
lowing result.

5.3.2. Corollary. Cartan subalgebras in a semisimple Lie algebra are maxi-
mal abelian Lie subalgebras.

5.3.3. Lemma. Let g be a semisimple Lie algebra over an algebraically closed
field k. Let h be a Cartan subalgebra of g. Then all h ∈ h are semisimple.

Proof. By 5.3.2, h is an abelian Lie subalgebra. Let h ∈ h. Let h = s + n
be its Jordan decomposition. Clearly, adh|h = 0. Since ad s and adn are the
semisimple and nilpotent part of adh, they are polynomials without constant term
in adh by 3.1.4. Therefore (ad s)(h) = (adn)(h) = {0}. Since h is maximal abelian,
we conclude that s, n ∈ h.

By 5.2.6, h = g(h0, 0) for some element h0 ∈ h. As in the proof of 5.3.1, we see
that h is orthogonal to g(h0, λ) for eigenvalues λ 6= 0.

Let y ∈ h. Then y and n commute. Hence ad y and adn commute and
ad(y) ad(n) is a nilpotent linear transformation. This in turn implies that B(y, n) =
0. Therefore, n is orthogonal to h. This implies that n is orthogonal to g. Since
the Killing form is nondegenerate, n = 0. Therefore h = s is semisimple. �

By 5.2.6, this has the following immediate consequence.

5.3.4. Corollary. Let g be a semisimple Lie algebra over an algebraically
closed field k. Then all regular elements in g are semisimple.

Proof. Let h be a regular element in g. By 5.1.6 and 5.1.7, g(h, 0) is a Cartan
subalgebra of g. By 5.3.3, h must be semisimple. �
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5.4. Elementary automorphisms. Let V be a linear space over the field k.
Let T ∈ L(V ) be a nilpotent linear transformation. Then

eT =

∞
∑

p=0

1

p!
T p

is a well defined linear transformation on V .

5.4.1. Lemma. Let T be a nilpotent linear transformation on V . Then the map
λ 7−→ eλT is a homomorphism of the additive group k into GL(V ).

Proof. First, if λ, µ ∈ k, we have

e(λ+µ)T =

∞
∑

p=0

1

p!
(λ + µ)pT p =

∞
∑

p=0

p
∑

j=0

1

p!

(

p

j

)

λp−jµjT p

=

∞
∑

j=0

p
∑

p=j

(p− j)!

j!
λp−jµjT p =

∞
∑

j=0

p
∑

p=j

1

(p− j)!j!
λp−jµjT p

=

∞
∑

j=0

∞
∑

p=0

1

p!j!
λpµjT p+j =

(

∞
∑

p=0

1

p!
λpT p

)(

∞
∑

p=0

1

p!
µpT p

)

= eλT eµT .

Therefore, the inverse of eT is e−T and eT ∈ GL(V ). Moreover, λ 7−→ eT is a group
homomorphism of the additive group k into GL(V ). �

5.4.2. Lemma. Let g be a Lie algebra. Let D be a nilpotent derivation of g.
Then eD is an automorphism of g.

Proof. Clearly, by 5.4.1, eD is an automorphism of the linear space g. On the
other hand, by induction one can easily establish that

Dp([x, y]) =

p
∑

j=0

(

p

j

)

[Dp−jx,Djy].

Hence, we have

eD([x, y]) =
∞
∑

p=0

1

p!
Dp[x, y] =

∞
∑

p=0

p
∑

j=0

1

(p− j)!j!
[Dp−jx,Djy]

=

∞
∑

j=0

∞
∑

p=j

1

(p− j)!j!
[Dp−jx,Djy] =

∞
∑

j=0

∞
∑

p=0

1

p!j!
[Dpx,Djy] = [eDx, eDy]

for any x, y ∈ g. Therefore eD is an automorphism of g.
�

Let Aut(g) be the group of all automorphisms of g. Let x ∈ g be such that adx
is nilpotent. Then ead x is an automorphism of g. Denote by Aute(g) the subgroup
of Aut(g) generated by the automorphisms of this form. The elements of Aute(G)
are called elementary automorphisms.

5.4.3. Lemma. The subgroup Aute(g) is normal in Aut(g).
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Proof. Let ϕ be an automorphism of g. Let x ∈ g be such that adx is
nilpotent. Then ad(ϕ(x)) = ϕ adxϕ−1 is also nilpotent. Therefore,

ead(ϕ(x)) =

∞
∑

p=0

1

p!
ad(ϕ(x))p =

∞
∑

p=0

1

p!
ϕ (adx)p ϕ−1 = ϕead xϕ−1

is an elementary automorphism of g. Hence ϕAute(g)ϕ−1 ⊂ Aute(g), i.e., Aute(g)
is a normal subgroup of Aut(g). �

5.5. Conjugacy theorem. Let g be a Lie algebra over an algebraically closed
field k. Let h be a Cartan subalgebra in g. Then by 5.2.6, there exists an element
h0 ∈ h such that h = g(h0, 0). First we want to prove a stronger form of this result.

5.5.1. Lemma. Let g be a Lie algebra over an algebraically closed field k. Let
h be a Cartan subalgebra of g. Then there exists a regular element h ∈ g such that
h = g(h, 0).

To prove this, it is enough to show that h0 is regular. Consider the decompo-
sition

g =

p
⊕

i=0

g(h0, λi)

where λ0 = 0, λ1, . . . , λp are mutually different eigenvalues of adh0. By 5.1.1, adxi
is nilpotent for any xi ∈ g(h0, λi), 1 ≤ i ≤ p. Therefore, eadxi are elementary
automorphisms of g. It follows that we can define a map

F : h × g(h0, λ1) × g(h0, λ2) × · · · × g(h0, λp) −→ g

by

F (h, x1, x2, . . . , xp) = eadx1eadx2 . . . eadxph

for xi ∈ g(h0, λi), 1 ≤ i ≤ p, h ∈ h.
This is clearly a polynomial map from h× g(h0, λ1)× g(h0, λ2)× · · ·× g(h0, λp)

into g.
Let T(h0;0;0;...;0)(F ) be the differential of this map at (h0, 0, 0, . . . , 0).

5.5.2. Lemma. The linear map T(h0;0;0;...;0)(F ) : h×g(h0, λ1)×g(h0, λ2)×· · ·×
g(h0, λp) −→ g is surjective.

Proof. We have

F (h, 0, . . . , 0) = h and F (h0, 0, . . . , 0, xi, 0, . . . , 0) = ead xih0

for any 1 ≤ i ≤ p. Hence, we have

T(h0;0;0;...;0)(F )(h, 0, . . . , 0) = h

for any h ∈ h. Therefore, the differential of T(h0;0;0;...;0)(F ) is an isomorphism of
h × {0} × · · · × {0} onto h ⊂ g. Moreover, for 1 ≤ i ≤ p, we have

F (h0, 0, . . . , 0, xi, 0, . . . , 0) = ead xi(h0)

for any xi ∈ g(h0, λi). Therefore, we have

T(h0;0;0;...;0)(F )(0, . . . , 0, xi, 0, . . . , 0) = adxi(h0) = − ad(h0)xi

for any 1 ≤ i ≤ p. It follows that the differential of T(h0;0;0;...;0)(F ) is an isomor-
phism of {0} × · · · × {0} × g(h0, λi) × {0} × · · · × {0} onto g(h0, λi) ⊂ g for any
1 ≤ i ≤ p. This clearly implies that the differential T(h0;0;0;...;0)(F ) is surjective. �
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At this point we need a polynomial analogue of 1.1.3.5 which is proved in 5.6.2
in the next section. By this result, F is a dominant morphism. Hence, the image of
F is dense in g. In particular, the set Aute(g)·h is dense in g. By 5.1.4, the set of all
regular elements is also a dense Zariski open set in g. Therefore, these two sets have
nonempty intersection. This implies that there is a h ∈ h and ϕ ∈ Aute(g) such
that ϕ(h) is regular. Since the set of all regular elements is invariant under Aut(g),
it follows that h is also regular. Therefore, g(h, 0) is a Cartan subalgebra of g by
5.1.6 and 5.1.7. On the other hand, since h is nilpotent, adh h is a nilpotent linear
transformation. Hence, h ⊂ g(h, 0). Since h is a maximal nilpotent Lie subalgebra
by 5.2.1, it follows that h = g(h, 0). Therefore, dim h = rank g. This in turn implies
that h0 is regular. This completes the proof of 5.5.1.

In addition we see that the following result holds.

5.5.3. Proposition. The dimension of all Cartan subalgebras in g is equal to
rankg.

Proof. This statement follows from 5.5.1 for Lie algebras over algebraically
closed fields.

In general case, it follows from 5.2.4. �

Finally, we have the following conjugacy result.

5.5.4. Theorem. Let g be a Lie algebra over an algebraically closed field k.
The the group Aute(g) acts transitively on the set of all Cartan subalgebras of g.

Proof. Let h be a Cartan subalgebra in g. Then, by 5.5.1, h = g(h0, 0) for
some regular element h0 ∈ h. Let

F : h × g(h0, λ1) × g(h0, λ2) × · · · × g(h0, λp) −→ g

be the map given by

F (h, x1, x2, . . . , xp) = ead x1ead x2 . . . eadxph.

Then, as we remarked in the proof of 5.5.1, the polynomial map F is dominant.
By ??, the image of F contains a dense Zariski open set in g. Therefore, the set
Aute(g) · h contains a dense Zariski open set in g.

Let h and h′ be two Cartan subalgebras of g. Then, the sets Aute(g) · h and
Aute(g) ·h′ contain dense Zariski open sets in g. Therefore, they contain a common
regular element h. This implies that there exists a regular element h ∈ h, a regular
element h′ ∈ h′ and an elementary automorphism ϕ such that ϕ(h) = h′. As we
remarked in the proof of 5.5.1, h = g(h, 0) and h′ = g(h′, 0). This in turn implies
that

ϕ(h) = ϕ(g(h, 0)) = g(ϕ(h), 0) = g(h′, 0) = h′.

�

5.6. Dominant polynomial maps. Let V and W be two linear spaces over
an algebraically closed field k. we denote by R(V ) and R(W ) the rings of polyno-
mials with coefficients in k on V , resp. W .

A map F : V −→ W is a polynomial map if P ◦ F ∈ R(V ) for any P ∈ R(W ).
If F : V −→ W is a polynomial map, it induces a k-algebra homomorphism F ∗ :
R(W ) −→ R(V ) given by F ∗(P ) = P ◦ F for any P ∈ R(W ).

We say that a polynomial map F : V −→ W is dominant if F ∗ : R(W ) −→
R(V ) is injective.
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5.6.1. Lemma. A polynomial map F : V −→W is dominant if and only if the
image of F is Zariski dense in W .

Proof. Let U be a nonempty open set in W . Then there exists a polynomial
P on W such that WP = {w ∈ W | P (w) 6= 0} ⊂ U . If F is dominant, P ◦ F 6= 0.
Therefore, WP ∩ imF 6= ∅. Therefore, U ∩ imF is nonempty, i.e., imF is dense in
W .

If imF is dense inW , for any nonzero polynomial P onW we haveWP ∩imF 6=
∅. Therefore, there exists v ∈ V such that P (F (v)) 6= 0, i.e., F ∗(P ) 6= 0. It follows
that F ∗ is injective. �

Let v ∈ V . We can consider the polynomial map G : h 7−→ F (v + h) − F (v).
Clearly, G(0) = 0, so the constant term of G is equal to 0. Let m be the maximal
ideal in R(V ) consisting of all polynomials vanishing at 0. Then, there exists a
unique linear map Tv(F ) : V −→W such that

F (v + h) − F (v) − Tv(F )(h) ∈ m2 ⊗W.

This linear map is the differential of the polynomial map F .
We need the following version of 1.1.3.5.

5.6.2. Proposition. Let F : V −→ W be a polynomial map and v ∈ V .
Assume that Tv(F ) : V −→W is a surjective linear map for some v ∈ V . Then F
is dominant.

Proof. By an affine change of coordinates, we can assume that v = 0 and
F (v) = 0. Therefore, we have F (h) − T0(F )(h) ∈ m2 ⊗W .

Let P be a nonzero polynomial on W . Then we can write P =
∑∞
q=0 Pq, where

Pq are homogeneous polynomials of degree q. Assume that Pq = 0 for q < q0
and Pq0 6= 0. Then F ∗(P ) is a polynomial on V and F ∗(P ) =

∑∞
q=0Qq, where

Qq are homogeneous polynomials of degree q. Clearly, Qq = 0 for q < q0 and
Qq0 = Pq0 ◦ T0(F ). Since T0(F ) is a surjective linear map and Pq0 6= 0, we have
Qq0 6= 0. This in turn implies that F ∗(P ) 6= 0, and F ∗ is injective. �

Finally, we need the following basic result about dominant polynomial maps.

5.6.3. Theorem. Let F : V −→ W be a dominant polynomial map. Then the
image of F contains a nonempty Zariski open set in W .

The proof of this result is based on some basic results from commutative alge-
bra.

Since k is algebraically closed, by the Hilbert Nullstellensatz, the points in V
and W are in bijection with the maximal ideals in rings of regular functions R(V )
and R(W ), respectively. Let w ∈W , and Nw the maximal ideal of all polynomials
on W vanishing in w. Then F ∗(Nw) ⊂ R(V ). If the ideal generated by F ∗(Nw)
is different from R(V ), there exists a maximal ideal Mv in R(V ) corresponding to
v ∈ V , such that F ∗(Nw) ⊂Mv. Hence, for any Q ∈ Nw, we have F ∗(Q) = Q◦F ∈
Mv, i.e., Q(F (v)) = 0. This in turn implies that F (v) = w. Conversely, if F (v) = w
for some v ∈ V and w ∈ W , we have F ∗(Nw) ⊂ Mv, and the ideal generated by
F ∗(Nw) is different from R(V ). Therefore, the image of F is characterized as the
set of all w ∈W such that the ideal generated by F ∗(Nw) is different from R(V ).

Therefore, it is enough to find a nonzero polynomial Q ∈ R(W ) such that
Q(w) 6= 0 implies that F ∗(Nw) doesn’t generate R(V ). In other words, for any
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maximal ideal N in R(W ) such that Q /∈ N , the ideal generated by F ∗(N) doesn’t
contain 1.

We are going to prove a slightly stronger statement: Let A = R(V ) and B
a subalgebra of R(V ). Then, for any nonzero polynomial P ∈ A, there exists a
nonzero polynomial R ∈ B such that for any maximal ideal N in B not contianing
R, the ideal generated by N in A doesn’t contain P . The above statement follows
immediately if we put B = F ∗(R(W )), R = Q ◦ F and P = 1.

Clearly, A is a finitely generated algebra over B. Assume that x1, x2, . . . , xp are
generators of A over B. Let Bk be the algebra generated over B by xi, 1 ≤ i ≤ k.
Then B0 = B and Bp = A. We are going to show that there exists a family
of nonzero polynomials Rp = P,Rp−1, . . . , R1, R0 such that any maximal ideal in
Bi−1 not containing Ri−1 generates an ideal in Bi which doesn’t contain Ri for any
1 ≤ i ≤ p. Then R = R0 satisfies the above statement.

To prove this statement, put C = Bi−1 and y = xi. Then D = Bi is the algebra
generated by y over C. Consider the natural algebra homomorphism of C[Y ] into
D which maps Y into y.

From the above discussion, to prove 5.6.3 it is enough to prove the following
result.

5.6.4. Lemma. Let S be a nonzero polynomial in D. Then there exist a nonzero
polynomial T ∈ C such that for any maximal ideal M in C which doesn’t contain
T , the ideal in D generated by M doesn’t contain S.

Proof. There are two possibilities: either the homomorphism of C[Y ] into D
is an isomorphism, or it has a nontrivial kernel.

Assume first that this homomorphism is an isomorphism. Then S ∈ D is a
nonzero polynomial in y. Then S =

∑

j ajy
j where aj ∈ C. Let j0 be such that

T = aj0 6= 0. If N is a maximal ideal in C, it generates an ideal in D which consists
of all polynomials in y with coefficients in N . Therefore, if N doesn’t contain T , S
is not in this ideal.

Assume now that the homomorphism from C[Y ] into D has nonzero kernel.
Let U be a nonzero polynomial in C[Y ] which is in the kernel of the natural homo-
morphism of C[Y ] into D. We can assume that the degree of U is minimal possible.
Let U =

∑n
i=0 bjY and bn 6= 0. �





CHAPTER 5

Structure of semisimple Lie algebras

1. Root systems

1.1. Reflections. Let V be a finite dimensional linear space over a field k of
characteristic 0. Let α ∈ V . A linear automorphism s ∈ L(V ) is a reflection with
respect to α if:

(i) s(α) = −α;
(ii) H = {h ∈ V | s(h) = h} satisfies dimH = dimV − 1.

Clearly, s2 = I and s is completely determined by α andH . The linear subspace
H is called the reflection hyperplane of s.

Let V ∗ be the linear dual of V . As we remarked in 4.4.5, we have a linear
isomorphism ϕ : V ∗ ⊗ V −→ L(V ) defined by

ϕ(f ⊗ w)(v) = f(v)w for f ∈ V ∗, v, w ∈ V.

Consider α, β ∈ V and f, g ∈ V ∗. Then we have

(I + ϕ(f ⊗ α))(I + ϕ(g ⊗ β))(v) = (I + ϕ(f ⊗ α))(v + g(v)β)

= v+ f(v)α+ g(v)β+ f(β)g(v)α = (I +ϕ(f ⊗α)+ϕ(g⊗ β)+ f(β)ϕ(g⊗α))(v)

for any v ∈ V , i.e.,

(I + ϕ(f ⊗ α))(I + ϕ(g ⊗ β)) = I + ϕ(f ⊗ α) + ϕ(g ⊗ β) + f(β)ϕ(g ⊗ α).

1.1.1. Lemma. Let s ∈ L(V ). Then the following assertions are equivalent:

(i) s is a reflection with respect to α;
(ii) s = I − ϕ(α∗ ⊗ α) for some α∗ ∈ V ∗ with α∗(α) = 2;
(iii) s2 = I and im(I − s) = Rα.

If these conditions are satisfied, α∗ is uniquely determined by s.

Proof. (i)⇒(ii) Let s be a reflection with respect to α, and H its reflection
hyperplane. Then there exists a unique α∗ ∈ V ∗ such that H = kerα∗ and α∗(α) =
2. In addition, we have

(I − ϕ(α∗ ⊗ α))(α) = α− α∗(α)α = α− 2α = −α.

and

(I − ϕ(α∗ ⊗ α))(h) = h− α∗(h)α = h

for any h ∈ H . Therefore, we have s = I − ϕ(α∗ ⊗ α).
(ii)⇒(iii) We have I − s = ϕ(α∗ ⊗α). Therefore, im(I − s) = Rα since α∗ 6= 0.

In addition,

s2 = I − 2ϕ(α∗ ⊗ α) + α∗(α)ϕ(α∗ ⊗ α) = I.

137
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(iii)⇒(i) For any v ∈ V , we have (I − s)(v) = f(v)α for some nonzero f ∈ V ∗.
Therefore, we have s(v) = (I − ϕ(f ⊗ α))(v). It follows that

I = s2 = (I −ϕ(f ⊗α))2 = I−2ϕ(f ⊗α)+ f(α)ϕ(f ⊗α) = I +(f(α)−2)ϕ(f ⊗α).

Since f is nonzero, ϕ(f ⊗ α) 6= 0, and it follows that f(α) = 2. Let H = ker f .
Then dimH = dim V − 1 and s(h) = h for any h ∈ H . On the other hand, we have

s(α) = (I − ϕ(f ⊗ α))(α) = α− f(α)α = −α

and s is a reflection with respect to α. �

1.1.2. Lemma. Let α be a nonzero vector in V . Let R be a finite set of vectors
in V which spans V . Then there exists at most one reflection s with respect to α
such that s(R) ⊆ R.

Proof. Let s and s′ be two reflections satisfying the conditions of the lemma.
Let t = ss′. Then t is a linear automorphism of V which maps R into itself. Since
R is finite, t : R −→ R is a bijection. Hence, t induces a permutation of R. Again,
since R is finite, tn : R −→ R is the identity map for sufficiently large n ∈ Z+.
Since R spans V , this implies that tn = I.

Assume that

s = I − ϕ(f ⊗ α) and s′ = I − ϕ(f ′ ⊗ α)

with f(α) = f ′(α) = 2. Then we have

t = ss′ = I − ϕ(f ⊗ α) − ϕ(f ′ ⊗ α) + f(α)ϕ(f ′ ⊗ α) = I − ϕ((f − f ′) ⊗ α).

If we put g = f ′ − f , we see that t = I + ϕ(g ⊗ α). Moreover, we have g(α) =
f ′(α) − f(α) = 0.

We claim that T p = I+pϕ(g⊗α) for any p ∈ N. Clearly, this is true for p = 1.
Assume that it holds for p = m. Then, by the induction assumption, we have

Tm+1 = (I +mϕ(g ⊗ α))(I + ϕ(g ⊗ α))

= I +mϕ(g ⊗ α) + ϕ(g ⊗ α) +mg(α)ϕ(g ⊗ α) = I + (m+ 1)ϕ(g ⊗ α).

This proves the claim.
It follows that

I = T n = I + nϕ(g ⊗ α)

for sufficiently large n. This in turn implies that ϕ(g⊗α) = 0 and g = 0. Therefore,
T = I, and s = s′. �

1.2. Root systems. Let V be a finite dimensional linear space over a filed k
of characteristic 0. A finite subset R of V is a root system in V if:

(i) 0 is not in R;
(ii) R spans V ;
(iii) for any α ∈ R there exists a reflection sα with respect to α such that

sα(R) = R;
(iv) for arbitrary α, β ∈ R we have

sα(β) = β + nα

where n ∈ Z.
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The elements of R are called roots of V with respect to R.
Clearly, by 1.1.2, the reflection sα is unique. We call it the reflection with

respect to root α.
The dimension of V is called the rank of R and denoted by rankR.
For any α ∈ R we have

sα = I − ϕ(α∗ ⊗ α)

for a unique α∗ ∈ V ∗. The vector α∗ is called the dual root of α.
The property (iv) is equivalent with

(iv)’ for any α, β ∈ R we have α∗(β) ∈ Z.

We define n(β, α) = α∗(β).
Clearly, α ∈ R implies that −α = sα(α) ∈ R.

1.2.1. Lemma. Let R be a root system in V and α and β two proportional roots.
Then β = tα where t ∈ {± 1

2 ,±1,±2}.

Proof. Let β be a root proportional to α. Then β = tα for some t ∈ k∗.
Moreover, α∗(β) = tα∗(α) = 2t ∈ Z. Therefore, t ∈ 1

2Z. By replacing β with −β
we can assume that t > 0.

Let γ = sα, s ∈ Q, be a root such that s is maximal possible. Then, γ∗(α) =
1
sγ

∗(γ) = 2
s is an integer. Therefore, s ∈ {1, 2}. It follows that γ = α or γ = 2α.

In the first case, t ≤ 1 and t = { 1
2 , 1}. In the second, we can replace α with γ

and conclude that β = 1
2γ = α or β = γ = 2α. �

Hence, for any root α, the set of all roots proportional to α is either {α,−α},
{α, 1

2α,−
1
2α,−α} or {2α, α,−α,−2α}.

A root α is indivisible if 1
2α /∈ R. A root system R is reduced if all its roots are

indivisible.
Let α be an indivisible root such that 2α ∈ R. Then sα is a reflection which

maps 2α into −2α. By 1.1.2, we see that sα = s2α. Therefore,

sα = s2α = I − ϕ((2α)∗ ⊗ 2α) = I − ϕ(2(2α)∗ ⊗ α)

and (2α)∗ = 1
2α

∗.
An automorphism of R is a linear automorphism t of V such that t(R) = R.

All automorphisms of R form a subgroup of GL(V ) which we denote by Aut(R).
For α ∈ R, sα is an automorphism of R. The subgroup of Aut(R) generated by sα,
α ∈ R, is called the Weyl group of R and denoted by W (R).

Let t ∈ Aut(R). Then t sα t
−1 is in Aut(R), i.e., (t sα t

−1)(R) = R. Moreover,

(t sαt
−1)(tα) = −tα

and (t sα t
−1)(th) = th for any h ∈ H . Hence, t sα t

−1 fixes the hyperplane tH . It
follows that t sα t

−1 is a reflection with respect to root tα. By 1.1.2, we have

t sα t
−1 = stα.

1.2.2. Lemma. Let α be a root in R and t ∈ Aut(R). Then

(i) t sα t
−1 = stα;

(ii) the dual root (tα)∗ of tα is equal to (t−1)∗α∗.
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Proof. By (i), we have

stα(v) = (t sα t
−1)(v) = t(t−1v − α∗(t−1v)α)

= v − α∗(t−1v)tα = (I − ϕ((t−1)∗α⊗ tα))(v)

for any v ∈ V . �

1.2.3. Proposition. (i) Aut(R) and W (R) are finite groups.
(ii) W (R) is a normal subgroup of Aut(R).

Proof. Any element of Aut(R) induces a permutation of R. Moreover, since
R spans V , this map is an injective homomorphism of Aut(R) into the group of
permutations of R. Therefore, Aut(R) is finite.

By 1.2.2, for any α ∈ R and t ∈ Aut(R) we have t sα t
−1 = stα. Therefore, the

conjugation by t maps the generators of W (R) into generators of W (R). Hence,
tW (R) t−1 ⊂W (R) for any t ∈ Aut(R) and W (R) is a normal subgroup of Aut(R).

�

We define on V an bilinear form

(v|v′) =
∑

α∈R

α∗(v)α∗(v′).

This bilinear form is Aut(R)-invariant. In fact, if t ∈ Aut(R), by 1.2.2, we have

(tv|tv′) =
∑

α∈R

α∗(tv)α∗(tv′) =
∑

α∈R

(t∗α∗)(v)(t∗α∗)(v′)

=
∑

α∈R

(t−1α)∗(v)(t−1α)∗(v′) =
∑

α∈R

α∗(v)α∗(v′) = (v|v′).

1.2.4. Lemma. The invariant bilinear form (v, v′) 7−→ (v|v′) on V is nonde-
generate.

Proof. Let U be the orthogonal to V with respect to this bilinear form. Then
U is invariant under the action of Aut(R). Since Aut(R) is a finite group by 1.2.3,
b y Maschke’s theorem there exist an Aut(R)-invariant direct complement U ′ of U .

Let α ∈ R. Then U and U ′ are invariant subspaces for sα. Therefore, the
one-dimensional eigenspace of sα for eigenvalue −1 must be either in U or in U ′.
This implies that either α ∈ U or α ∈ U ′. On the other hand, we have

(α|α) =
∑

β∈R

β∗(α)2 = 4 +
∑

β∈R−{α}

β∗(α)2 > 0

since the terms in the last sum are nonnegative integers. Hnce, α /∈ U . It follows
that α ∈ U ′.

Since R spans V , U ′ = V and U = {0}. Therefore, the bilinear form is
nondegenerate. �

For any u ∈ V we
Let α ∈ R. Let H = kerα∗. Then for u ∈ H we have

(α|u) = (α|sαu) = (sαα|u) = −(α|u),

i.e., H is orthogonal to the line spanned by root α. Since the form is nondegenerate,
H is the orthogonal complement to α. In particular, as we already remarked we
ahve (α|α) 6= 0.
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Since Aut(R) is a finite group, by 3.1.1.1, there exists an Aut(R)-invariant inner
product on V . With respect to this inner product, Aut(R) ⊂ O(V ). In particular,
sα are orthogonal reflections. Hence, for any α ∈ R, the reflection hyperplane H is
orthogonal to α, i.e., H = {v ∈ V | (α|v) = 0}. This implies that

sα(v) = v −
2(α|v)

(α|α)
α

for any v ∈ V . The inner product on V defines a natural isomorphism of V with
V ∗. Under this isomorphism, the dual root α∗ corresponds to 2α

(α|α) for any root

α ∈ R.

1.2.5. Proposition. (i) The set R∗ of all dual roots of R is a root system
in V ∗.

(ii) For any root α ∈ R, we have sα∗ = s∗α.
(iii) The map t 7−→ (t−1)∗ is a group isomorphism of Aut(R) onto Aut(R∗).

This isomorphism maps W (R) onto W (R∗).
(iv) For any α ∈ R, the dual root of α∗ is equal to α.

Proof. Since under the above natural isomorphism of V and V ∗ the dual root
α∗ corresponds to 2α

(α|α) , we see that R∗ spans V ∗.

Let α ∈ R. Then

(s∗αf)(v) = f(sαv) = f(v − α∗(v)α) = f(v) − α∗(v)f(α) = (f − f(α)α∗)(v)

for any v ∈ V and f ∈ V ∗. Let ψ : V ⊗ V ∗ −→ L(V ∗) be the natural linear
isomorphism given by ψ(v ⊗ f)(g) = g(v)f for nay v ∈ V and f, g ∈ V ∗. Then
s∗α = I − ψ(α⊗ α∗). By 1.1.1, it follows that s∗α is a reflection with respect to α∗.

On the other hand, for any t ∈ Aut(R) and root α ∈ R, by 1.2.2, we have
t∗α∗ = (t−1α)∗. Therefore, t∗(R∗) = R∗. In particular, s∗α(R∗) = R∗ for any
α ∈ R. By 1.1.2, sα∗ = s∗α is the unique reflection with respect to α∗ which
permutes the elements of R∗.

Finally,
sα∗(β∗) = (I − ψ(α⊗ α∗))(β∗) = β∗ − β∗(α)α∗.

Since β∗(α) ∈ Z for any α∗, β∗ ∈ R∗, it follows that R∗ is a root system in V ∗.
This in turn implies that the dual root of α∗ is equal to α for any α∗ ∈ R∗.
Moreover, we see that for any t ∈ Aut(R), t∗ ∈ Aut(R∗). Therefore, t 7−→

(t−1)∗ is a group homomorphism. Since R∗∗ = R, it must be an isomorphism. In
addition, this isomorphism maps sα into sα∗ for any root α ∈ R, hence it must map
W (R) onto W (R∗). �

We say that R∗ is the dual root system of R.

1.2.6. Lemma. Let R be a root system and R∗ the dual root system. The
following conditions are equivalent:

(i) The root system R is reduced.
(ii) The root system R∗ is reduced.

Proof. As we remarked before, if α, 2α ∈ R, we have α∗, 1
2α

∗ ∈ R∗. Therefore,
R∗ is not reduced. �

1.2.7. Lemma. Let R be a root system in V . Then

(v|w) =
∑

α∈R

α∗(v)α∗(w)
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is an Aut(R)-invariant inner product on V .

Proof. The form (v, w) 7−→ (v|w) is bilinear and symmetric. Moreover, we
have

(v|v) =
∑

α∈R

α∗(v)2 ≥ 0.

In addition, (v|v) = 0 implies that α∗(v) = 0 for all α∗ ∈ R∗. Since roots in R∗

span V ∗, this in turn implies that v = 0. �

2. Root system of a semisimple Lie algebra

2.1. Roots. Let g be a semisimple Lie algebra over an algebraically closed
field k. Let h be a Cartan subalgebra of g. By ??, h is a maximal abelian Lie
subalgebra consisting of semisimple elements.

For any linear form α ∈ h∗, we put

gα = {x ∈ g | [h, x] = α(h)x, h ∈ h}.

Clearly, gα is a linear subspace of g.

2.1.1. Lemma. g0 = h.

Proof. �

If α 6= 0 and gα 6= {0}, α is a root of g with respect to h. We denote by R the
set of all roots of g with respect to h.

2.1.2. Lemma.

g = h ⊕
⊕

α∈R

gα.

Proof. �

In particular, the set R is finite.

2.1.3. Lemma. (i) Let α, β ∈ R such that α+ β 6= 0. Then gα is orthog-
onal to gβ with respect to the Killing form.

The restriction of the Killing form to gα × g−α is nonodegenerate.
The restriction of the Killing form to h × h is nondegenerate.

(ii) Let x ∈ gα, y ∈ g−α and h ∈ h. Then [x, y] ∈ h and

B(h, [x, y]) = α(h)B(x, y).


