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Abstract. This paper constructs metrics on the space of imdgésfined as orbits under group actigisThe

groups studied include the finite dimensional matrix groups and their products, as well as the infinite dimensional
diffeomorphisms examined in Troa1999,Quaterly of Applied Math.and Dupuis et al. (1998Quaterly of

Applied Math). Left-invariant metrics are defined on the proddck 7 thus allowing the generation of transfor-
mations of the background geometry as well as the image values. Examples of the application of such metrics are
presented for rigid object matching with and without signature variation, curves and volume matching, and structural
generation in which image values are changed supporting notions such as tissue creation in carrying one image to
another.
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1. Introduction family of objectsZ. As a consequence, by studying a
sufficiently generic groug, one is able to design a

In a seminal series of works (see, in particular, large variety of models of objects, sometimes in very
Grenander, 1993), UIf Grenander and his co-workers different contexts. In a statistical setting, this implies
have introduced the notion of group action within mod- two modeling phases: i) build a probability model on
els of objects. In addition to the essential issue of mod- a groupg; ii) for an arbitrary templatém,, deduce,
eling objects in a way which is tolerant to the action of by projection, the corresponding probability model on
some parasitic group (rotation, translation, etc.), which Z = G - liemp. In addition, a third phase is also needed
has been the subject of awide range of research in com-to model the object acquisition with an imaging device.
puter vision, the idea was to introduce the group actions Metrics onZ are also deduced from metrics Grafter

in the very nature of the objects themselves, through projection (or “procrustean analysis”).

the notion ofdeformable templateRoughly speaking, Beside the standard linear actions, more general
a deformable template simply is an “objedtemp 0N group actions have been introduced and studied specif-
which a groupg acts and generates, through the orbit ically for image analysis. For example, in Grenander
Z = G - lempa whole family of new objects. and Miller (1994), the action dQ(2)", thenth power

The interest of this approach is to concentrate most of the group of plane rotations, on closed polygons
of the modeling effort on the grou@, and not on the  with n vertices is defined, and a probability model
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describing the shapes of small organelles is devisedIA
from the deformation of a circle. In Grenander and
Keenan (1991), an infinite dimensional group action is
introduced to model deformations of plane curves, in
polar representation (distance to the origin vs. rotating
angle). In Younes (1998), a similar group action is in-
troduced, acting on the representaton> 7(s) of a
plane curves being the arc-length and(s) the unit
tangent vector, with Bakircioglu et al. (1998) contain-
ing transformations of curves in three dimensions. In
Trouvé (1999), a theoretical study of a large class of
infinite dimensional group actions is studied (including
in particular the groups of diffeomorphisms of a given
manifold).

In this paper, we introduce a slightly different ap-
proach, in which features from both the acting group
and the object space are used to build models of de- ;
formable objects. This can be seen as generalizing
the more conventional deformable template paradigm -
without loosing the essential features of this theory. In G
par.tICUIar It generah;es much of the previous work in Figure L Shown in a comparison of objedtsndJ by looking for
which only geometric transformations were modelled the smallest distance within the $e 7 between the s - (id, |)
in single orbits. We will work on the product space andg-(d, J).

A = G x T, whereG is a group acting of.* Such a

generalization will enable us to make object-dependent

computations of metrics (in the sense that the deforma- 2. Distances Between Registered Objects

tion effort will depend on the deformed object). The

power of the approach will be, for example, to allowus 2.1. Introduction

to model variations in the image values themselves, not

justin the geometry. Also, our point of view will allow ~ We consider the problem of object comparison in the
us to formalize a “template-independence” property for presence of a group action. The set of obje@t&ndg
probability models of deformable objects. is the acting group. In most applications, an objed in

Figure 1 depicts the overall approach taken. Each can be considered as an element of some (often infinite
curve depicts a particular object under geometric defor- dimensional) space, and can be readily equipped with
mation. The metric distance takes into account both the a distanceg.? For example, images can be seen, in a
distance between the geometric change as well as thecontinuous setting, as functions defined on a square [0,
image change, labelled paitis, h- J) and(g, g- I ). 1]?, and taking values ii®, and they can be compared

The paper is organized as follows. We start with an using any of the functional distances one may want to
abstract formulation of our object comparison problem, use,LP norms, Sobolev norms, . One of the typical
and show how this relies on the design of left-invariant features of this situation is that “small elements‘Gn
distances on the space of transformations and images.may alter in a very significantway the observable aspect
We then describe how such distances can be formally of elements of, that is, one may find € Gandl € 7
constructed in the case whehis provided with a dif- such thag is small anddy (I, g- I) is large. Of course,
ferential structure. one must be able to quantify what is meant by a small

The second part of the paper provides several ex- elementirG. This can be done by assuming a functional
amples of situations which can be plugged into our g — I'(g) such thatl"(id) = 0 and considering that
abstract setting. These examples either come from thesmall actions are group elememgtdor which I'(g) is
deformable template literature, and are revisited ac- small.
cording to our new point of view, or are original exam- If one is in a situation in which small elementsgn
ples which are illustrated by experiments. are not supposed to alter thesencef the objects, in

I
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the way we want to understand them, the above men-
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That this is the condition is stated in the next propo-

tioned distance in the measurement space is a poorsition.

candidate for object comparison. Our purpose here is

to design distances dhwhich will not have this draw-

Proposition 1. Let D be a distance ol which is

back in the sense that they are tolerant to small group invariant by the left action of;, then the function d

actions. We emphasize the fact that we are looking for
metrics (i.e. distancesl)in Z, which must, in particular
be symmetrical and satisfy the triangular inequality; in

defined orf x Z by

d(, 1) =inf{D((g. gD, (¢, d'1")) : 9.9 € G}

some applications, such a requirement can be unneces-

sary, but there are many cases in which this is essential
for example for the organisation of object databases.
This first section will essentially remain on an ab-

(4)

is symmetricglsatisfies the triangular inequality and

stract level, and assume minimal structures on the setsiS such thatdl, 1) = Oforall I.

which are introduced. We assume that we are given an

object setZ, on which agroupg is acting (i.e. we are
given an operatiorig, 1) +— g- I, fromg x Z to Z,
which satisfiesidl = | and(gh)- | =g-((h- 1)) (id
denoting the identity element ).

2.2. Least Action Distances
We want to devise comparison tools between objects
in Z which take the action of into account. More
precisely, we want to be able to decide that two objects
lo and 1y in Z are close when there exists an element
g € G suchthag ~ id andg - lg >~ I;.

For this purpose, introduce the setrefjistered ob-
jects A = G x Z. The groupg acts onA through the
operation

and we defin@l(l, |") as the set distance between the
orbits of (id, 1) and(id, |") under this action, that is,
we let
d(l, 1" =D(G-(id, 1),G - (id, 1))
=inf{d(a,a):a=(g,g9-1)

a=(.9-1)049¢eg} )
This measure obviously satisfidgl, 1) = 0 and is
symmetric inl, |’. However, since it is a set distance,

the triangular inequality cannot, in general, be inherited
from D, unless these sets are in some sense “parallel”.
This property is expressed by the condition tBats
left-invariant to the group action.

Definition 1. A distanceD on A is left-invariant if,
forallh,g,g € G, alll,l"eZ

D(h-(g. D, h-(g, 1)) =Dg, 1, (@.1). (3)

If, moreover the infimum is attained for all,ll’
such that dl, 1’) = 0, then D is a distance.

Note that if D is left invariant, Eq. (4) can also be
written

d(l, 1) =inf{D((d, 1), (g, g'1)). 9" € G}. (5)
Proof: To demonstrate the triangular inequality is
satisfied, we must show that, for @i, 97, 95,95 € G
andl, I’,1” € Z, there existh, h” € G such that

D((h,h- 1), (h",h" - 1"))
< D((91, 91+ D). (91, 9; - 1)

+ D, % - 1), (8. 9" - 12)). (6)

But, by left invariance

D((9: 9+ 11, (93, 95 - 12))
= D((g’l, 9/1 . |i)7 ", h - 1"))

with h” = g’lgé‘lg’z’, and inequality (6) witth = g; is
the consequence of the triangular inequality for D.
The last statement of Proposition 1 is obviousO

Remark 1. To relate the previous construction to the
classical deformable template point of view in terms of
defining distances between objects by minimal group
action (as in Grenander (1993), Ch. 12, or Treuv’
(1999)), the groupH is defined which acts transitively
onZ. Thatis for alll, |’ € Z, there existsh € H
suchthat .| = |’. The groupH can be interpreted in
terms of our setting as follows. Sinteis transitive, it
describes all possible variationsinThus, begin with
the starting distanc® on H. The objects irZ can be
compared in two different ways:
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e Template-based comparison: given a reference ob- by the product x Z, whereg is the stabilizer of some
ject lg € Z (the template), one computes, for two reference element in Z. We here prefer to directly

objectsl, |’ € Z, the closest elements g’ € Z (for consider the situation whe@ andZ are given, first
the distanceD) which registerl andl’ to the tem- because this is most of the time more natural in the ap-
plate, i.e. suchthay™t-1 =g~1.1’' = I,. plications, and leads to simpler computations, and also

e Homogeneous comparison: one computes, for two because this is slightly more general.
objectsl, 1" € 7, the closest elements g’ € Z (for
the distanceD) which registerl and|’ to the same

o 1 1, 2.3. Relation to Grenander Effort Functionals
object,i.e. suchthay -1 =g~ 1".

In Grenander (1993) the contruction of the distance
Clearly, the homogenous case corresponds to takingdhom described in the previous remark is made using
the infimum of the template-based case with respect offort functionals. Such a functional is a mappifg
to all possible choices of the template. The rigorous G — [0, +oc[, I'(g) measuring the cost associated to
definition of the corresponding distances are, in the e |eft action ofg € G on any element of. We adapt
template-based case: this construction to our setting, and show how it relates
to the above discussion. Given two objelcendl’, one

themp(1, 1) = inf{D(h, h) :h™*- I = h~. 1" = Ig) should havel (I, 1) small as soon as there exigts G
such thatl"(g) is small anddy(l, g~*1") is small. An

and in the homogeneous case obvious initial guess fod would be to set something
like

dhom(1, 1) = inf{D(h,h") :h™t- I =h~t.1
d(l, 1) =inf{l'(@) + do(1, g™ - 1), g € G}
The homogeneous case is the one which has been de-

scribed in Grenander (1993) and Tre(2999), among Although this provides a valid and robust measure
others. The template-based case has been described ifff discrepancy for object comparison, this is not a
Younes (1999). distance, it is not symmetrical, and would not satisfy

Sufficient conditions to obtain a distance are most the triangular inequality. We shall however look for
restrictive in the homogeneous case. A similar proof to distances! under the form
the one of proposition 1 shows thdat, is a distance as , ) ,
soon a<D is left invariant for the action of H on itself, d(, 1" =inf{U(g, 1,1, g € G} (7)
thatis, for allh, g, 9" € H, D(hg, hg) = D(g, g). A

sufficient condition fodiemp to be a distance is thdd fo_r a_g:ler.tgmh clafs Sf funcg_(()jris \(;Vh'Ch will k;ef ad-t_
is invariant for the action of the stabilizérof I in H, missibie, as to be condidered as a cost function

' associated to the fact that one compdrés | via the
defined by . ) - o
action ofG. We want to provide sufficient conditions on
U. One should of course expect thais non-negative,

G={heH.h-lo=lo} andU(id, I, 1) = O for all I . We have

This is less restrictive condition than the full invariance d(1’, 1y = inf{U(g, 1, 1), g € G}.
required in the homogeneous case. ' B
Itis well known that the if groufH acts transitively  |fthe infimumind(, 1) is attained at somg, it is nat-

on the setZ, andg is the stabilizer of somé, € Z, ural to assume that the minimum ¢/, 1) is attained
dence withZ. This correspondence can be pushed fur-

ther to identifyH to A = G x 7 (see Appendix), and U, I, 1) =U@ 1’ 1).
left-invariant distance o (for the action ofG) to
left-invariant distances ad. This correspondance per- If one tries to check the triangular inequality, the

mits us to place the template-based setting directly into following condition emerges naturally: for ail h, I,
the framework of Section 2.2. The correspondence be- |, |7,

tween the usual deformable template modeling and our

approach is thus done by replacing the “big” grddp Uthg I, 1"y <U(, 1,1 +Un, I, 17).
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Definition 2. A functionU : G x Z x Z — [0, +o0[ is defined for allt € [0, 1]. We assume that this time

is an effort functional if the following conditions are  derivative can be given a precise meaning, which is, for

satisfied forallg, h e Gand alll, I, 1” € Z: example, the case whéris a subset of a Banach space,

and will always be the case in the applications. If the

@ Udd, I, 1)y=0 derivative exists excepted possibly for a finite number
(i) U, 1,1 =U@*1,1) of t, the path is piecewise differentialfle.

@iii) Uchg, I, 1" <U(@, I, 1) +Uh, 1,17 ] If a € C, let Ta(C) be the set which contains all the

a

at t=t’ for allty € [0, 1] and all differentiable paths on
The above forementioned conditions are important C such thas(ty) = a. We want to define a cost function
because then such effort functionals define distancesassociated to a path (an energy) as an accumulation of
through Eq. (7). This result can be proved directly or infinitesimal efforts. These efforts will be associated to
simply deduced from Proposition 1 and the next propo- norms(||-||a, @ € C), such that, for alé, ||-||5 is a norm
sition which states that effort functionals and leftinvari- onT,(C). For a pattaonC, define
ant distances are equivalent.

da|?

| 8)

a(t)

1
Proposition 2. If D is a left-invariant distance o, E@ = /(;
then

) L ) The associated geodesic distancedis defined by

is an effort functional. D(@.a) =inftyE@. a0 =a.al =a} ()
which can be shown to be a distance.

The left-invariance constraint fdd can be ensured
by a similar constraint on the normis. ||5. For this,
we must make an additional simple assumption, which
is that,for any g € G and any differentiable pata
on C, the left-translated path ga : t — g - a(t)

Converselyif U is an effort functionalthen one gets
a left invariant distance by letting

D[(g, 1), (g,, |/)] = U(g/_l -0, g—l, I g/—l_ I/)

3. Geodesic Distances also is a differentiable pathThis implies that, for all
g € G and for alla € C we can define an invertible
3.1. Principles linear mappingdaLg: Ta(C) — Tga(C), by the condi-

tion that, for all differentiable path with a(0) = a,
In general, there is no obvious way for building invari- one has
ant distance® on G x Z. Although we shall review

some examples for which such a distance can be de- dga = . da (10)
fined in closed form, the construction requires most of dt |;_o 279 dt =0

the time using a variational approach in whigtwould

be a geodesic distance. The normq|| - |la, @ € C) are left-invariant if for all

In cases for which some differential structure ex- @ € C, and for all differentiable patreswith a(to) = a,
ists on A this generic approach consists in build- foranyto € [0, 1]
ing a left-invariant measure of infinitesimal variations

on A, define on this basis the energies of paths on Hd_a _ L. d_a (11)
A, and compute the distance by minimizing these dtf_ Il 9 dt | llga
energies.

In this section, we give the principle for this Itiseasily shown that, under this condition, the distance
construction, without entering into technical details. defined by (9) is left-invariant.

This discussion is valid for any smooth séton In the particular case wheh = A = G x Z, con-
which a smooth groug is acting, and we fix such  dition (11) implies that it suffices to defing||, for
a set. elementsa € A of the kinda = (id , |) for some

Let a differentiable path o@ be a continuous func- | € Z. We thus need to defineZxindexed family of

tiona: [0, 1] — C, for which the time derivativéjf norms(||-l;, | € I).
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3.2. Functional Objects and Homeomorphisms Now, by left-translation invariance, the norms for
any pathg are uniquely specified; d(tp) = g,

(e g

and the energy of the pathsimply is the integral of
the above expression with respect to time. For a gath
ong, letg~(t, -) = g(t, )"t implying

3.2.1. Context. In this section, we give a general
formulation for the comparison of objects which are H @(to)
defined as mappings (curves, images, etc.). Specific dt
examples will be provided in the next sections.

Fix a bounded domai2 c RX. Its closure,
will be referred to as theneasurement spaca&n ob-
ject is defined as a family of measurements made
over Q. Each measurement provides a value in some 1 9. 4 2
setM, the value spaceEach object therefore is rep- E@ = / Ng(ﬁ(ty g, °))> dt
resented as a mapping: 2 — M, and theobject
spaceis some functional spacg, containing theob- Setting
jects of interest. To simplify, we shall consider that ag
M = Re. v(t, ) = 25 g7, ), (12)

The groupG generatetiomeomorphic actionghe
elements ofG are homeomorphismg: Q —  (i.e. then
invertible continuous mappings, with continuous in- 1
verses), subject to some smoothness properties and E(g) =/ Ng(v(t, -))%dt (13)
boundary conditions. A rigorous definition will be 0
givenin Section 3.2.4. Define, ¢h the product-h =
h o g, and let the action on objectsge | =1 o g.

and the associated geodesic distance:

3.2.2. Geodesic Distance @i Follow the previous D(g.g) =InflyE©.90 = 9.9 = g}

discussion of Section 3.1 with = G, sinceg is ob-
viously acting on itself. Consider that a paipon G

is differentiable if the partial derivativéﬁ are defined 3.2.3. Distance obd.  We now proceed to the general

is left-invariant for the action of on itself.

everywhere, and set case for designing distances.diwhen the elements of
dg ag 7T are functions2 — RY. The principles are the same
gl = ﬁ(to, ). as above, simply the notation become somewhat more

t=tg

complex, since we are dealing with the larger space
If h € G, sinceh-gis the mappingt, x) — g(t, h(x)) A =G x I. Consider patha = (g, I) on A, and set

giving da [ag ol
. dt <§’ ﬁ)
dE—tg = <(t, X) ?(t, h(x))).
If h € G, this gives

This is the expression of the differential of the left- 4, 4
translation in (10). Equation (11) implies that the col- T
lection of normsg|-||4 for g € G can be deduced from

the knowledge of the norm fay = id. Let us assume  To define the collection of norm|y, I, for (g, 1) €

_ 99 ol
= [(t, X) > <8t (th0o), 5t h(x)))].

that|-|liq is given, for a pathy such thay(tp) = id , A, because of left invariance it suffices to define them
by only in the casg = id (but they still can depend ak).
q ; Assume thatthey are givenfor a patsuch that(ty) =
Hd—?(to) - =Ng <a—?(to, ')) (id, 1) by ,
da
where Ng is a functional norm on the space of func- ‘ E(t(’) "

tionsv : Q — RX, for example a Sobolev norm, or a 2 2
norm based on the expansion of the function on some = Ng<§(to, Y; |> + Nz<ﬂ(to, Y; |) .
orthonormal basis (Fourier, wavelets,). ot ot
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For eachfixed, Ng (resp.Nz) is afunctionalnormon  t + v(t,-) and t — J(t, -), wherev(t, x) € R¥ and

the space of functions: Q — R¥ (resp.l : Q@+ RY). J(t, x) € R¥, the energy
If Ng andNz do not depend oh, we shall say that we
are in a case ofiomogeneous deformatiorighis ex- E(v.J)
actly corresponds to the homogeneous case presented ! ] 2
in Remark 1. =, Ng(v(t, -); I(t, -))“dt
To compute the general expression on the norms, let 1 93 93 2
a be a path, and selty) = (g, ). Then, + / Nz<ﬁ(t, D+ a_x(t’ 9 - v(t, - J(, -)> dt.
0
da _|? (16)
a(to) _
gl Then the function
ag 2
_ -1 . -1 ,

9l . ) 2 =inf{,/E(v,J):v,J,J0,)=1,J1,)=1"}
+N1<5(to,g t, )1t g (t,'))) )
is a distance ofT.
and the associated energy becomes ) ] o
Remark 2. The introduction of this time-dependent
1 9. i 2 vector field in such a context (restricted to the case
E(@ = f Ng(ﬁ(t, g () It g, ~))> dt of homogeneous norms) has been independently pro-
0 1 ) posed in Dupuis et al. (1998), and in Tr&au{d999). In
/ NI<3_| t, g Lt, ): 1(t, g i, ,))) dt. this latter reference, it has been shown that this also pro-
ot vides a way to rigorously define a grodpvhich shares
many of the properties of finite dimensional Lie groups.
We give a brief account of these results in Section 3.2.4.
In these references, the following matching problem
has been considered: givéfnandl;, one minimizes

To compute the associated distance4nD ((do, lo),
(01, 11)), the square root of this energy must be min-
imized over alla starting at(go, lgp) and ending at
(g1, 11). This energy can be simplified; setting

1

V(t, X) — %(L g_l(t, X)), (14) /(; ||V(t, )”2 dt + /;2 ||1(X) - IO o 9\71(1, X)|2 dX
J(t, x) = 1(t, g(t, x)), (15) (47
(A greedy procedure also has been introduced in
Christensen et al. (1996), for efficient minimization in
3 dimensions). The energy in (13) may in fact be used
9l 9J 9J g for the same purpose (inexact matching). One of its in-
ﬁ(t’ X) = 5("’ 9(t, x)) + a_x(t’ 9(t, X)) - g(t’ X) terests, compared to (17) is to depend only@md on

J, and thus not to require to compudg for the mini-
so that mization. On the other hand, it requires the introduction
of an extra time-dependent unknowin,

and assuming thakis differentiable in the variablg
gives

al 1 8J aJ
ﬁ(t, g (t,x) = ﬁ(t, X) + 5('[, X) - V(t, X). '
Remark 3. In Eq. (13) there are two competing com-
This last expression is the Lie derivative dfin the ponents for the matching process. The first one acts
direction of the vector fields (sometimes called the  on the background spac¢e, and is represented by the
material derivativeof J). Introducing these expressions  variations in timey, of the homeomorphisrg,. The
in the energyE yields one of the main results of the second one acts onthe feature space, and can be consid-

paper. ered as a variation of the material properties. The path
J represents the evolution of the object, starting from
Theorem 1. Let(N(-|1),l e Z)yand(N(-|1),1 € lo and arriving atl;. Notice that the matching patf,

7) be two collections of norms. Associate to paths does not appear anymore in (13), or in the boundary
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conditions, which drastically simplifies the design of v +— N(v). Elements irf{ must satisfy regularity con-
numerical procedures. straints, which can be summarized as follows.

Thus, the first integral in (13) penalizes large varia- ~ We let W= (Q, R¥) be the set of mappings
tions of the homeomorphism, and the second one pe-Q — RX which have bounded generalized derivative
nalizes variations in the material which are not due overQ.
to the deformation, i.e. it penalizes violation of the (C1)The canonical inclusioni H — W (Q, R¥)
transport equation. Both penalizations are expressedis continuous i.e. there exists a constafl; such
as norms which depend only on the current object that
J(t, -). This a consequence of our left-invariance re-
qguirement (Eq. (11)). In (13), the energy does not track D)oo + Iv]lee < Collvll
the accumulated stress from time 0. For this reason,
we classify the matching procedurexascous match- ~ whereDv is the matrix formeds by the partial deriva-
ing (as first suggested by Rabbitt, Christensen et al., tives ofv.

1996), in opposition to the methods involving elastic ~ We let™, be the completion ifi of the subset ok
matching, Bajcsy et al. (1983), Dengler and Schmidt composed with all functions smoothwith compact
(1988), Dann et al. (1989), Bajcsy and Kovacic (1989), support included ir2. Because of (C1), elements of
Miller et al. (1993), Gee et al. (1994), Rabbitt et al. Ho are such that = 0 and32 = 0 ond<.

(1995), Davatzikos (1997), Christensen et al. (1999), We then define the séf, of functionsv : [0, 1] x
Christensen et al. (1999). From a point of view analo- £ — R¥ such that for alk, v(t) € Ho (wherev(t) is
gous to elasticity, it should be harder to make a small as above the mapping— v(t, X)), and such that
deformation of an objedi if it is considered to already L

be a deformation of another object, than to operate the VI = / Iv(t)|? dt

same deformation, but considering thhitself is at 0

rest. Technically, this means that the noriMg and
Nz in (13) would depend, both on the deformed ob-
ject, and on the current stress associategl, tavhich
implies that the left-invariance assumption has to be
relaxed. Whether the left-invariance point of view is y

relevant or not should depend on the application, but at v(t,y)

we insist on the fact that without this condition, the

measure of mismatch given by the minimum energy with initial condition g, (0, x) = X. The following
will not be a distance. Also, when comparing objects result is proved in Dupuis et al.(1998) and Treuv’
using elastic matching, one usually consider that one (1999).

object is at equilibrium and the other one is deformed,

and the result depends on the choice on which object is Theorem 2 (Dupuis et al., 1998; Troue;'1999) As-
at equilibrium. This may be relevant in some cases, for sume(C1) andletv € Ko. Then forall x € €, gy(t, X)
example when comparing a face with an expression to exists for all te [0, 1]. Moreover for all t € [0, 1],

a face without expression, but in applications dealing X — gy(t, X) is a homeomorphism &t.

with shapes, silhouettes, or grey-level images of ob-  Under condition(C1) Trouwe (1999, G = A(Ko)
jects which are not generated apriori as deformations is a group.

of a rest state, an invariant metric is more natural.

is finite.
For allx € 2, one can define the solutigR(t, x) of
the differential equation

In particular, the mappind\ : v — gy(1, -) asso-

ciates to eaclv € Ky a homeomorphism of2. One
3.2.4. Groups of Transformations. We shall be can defingg to be the image oK by this mapping:
studying the finite dimensional matrix groups as well ¢ = A(Ky). The following results follow by standard
as infinite dimensional groups of homeomorphisms manipulations on paths (concatenation and time rever-
and diffeomorphisms. The finite dimensional groups sal) Obviously, ifv € Ko, one hasy(t, -) € G for all
are standard. We now give a brief account of the t < [0, 1], so thatg,(t, -) is a path inG.
way groups of homeomorphisms have been defined in
Dupuis et al. (1998) and Troev(1999). Consider a Remark 4. The previous approach can be used to
Hilbert spaceH of mappings : @ — RK, with a norm address three different problems, listed below:
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e Tolerant object comparison; this was the problemwe If he G, we have, sincé-a= (g (t, h(-)), h=(py),

started with: design a distance between objec in ... h=(py))

which accounts for small variations due to the group 1 1

action. dh-a — (@(t h(-)) dh” % dh” dﬂ)
e Dense homeomorphic matching: this approach pro-  dt at Tdx dt’T7 dx dt

vides homeomorphisms which match the various The energy of a pata should now take the form
features of the objects. The matching is dense, mean-

ing that each poin® has an homologous point, and, E(a) = /1
since it is defined as the solution of an O.D.E, it is 0
also consistent, that s, it provides a homeomorphism
in Q.

e Morphing: the process defined in (15) provides a
smooth evolution between the initial object and the
target.

dg~ta
dt

gl

Separating, the nortfy -||; as anormNg(-; 1) for vari-
ationsing, and anornNz(-; Z) for variationsirZ, and
expanding the expression of the of the time derivative
yields

! 99 4 1 2

Estimating the flow, we get the morphing between E@ 2/0 Ng(ﬁ °9 =9 - l) dt
two objects, the value of the homeomorphism at time 1 1 90 d 9ad 2
providing the dense matching, and the square root of the + / NI<—gﬂ, _gﬁ; -1 I) dt
energy of the optimal path providing the distance. For 0 ox dt ox dt
each of these three problems, there is an unsolved “ex-Here again, set = % og~t,andl =g sothat
istence” issue: For the first one, Proposition 1 requires )
the existence of the optimal matching for object: |’ IO = @M. ....au 1)
which are at null distance; the second one needs the = (9(t, p2(1)), ..., 9(t, pn (1))
existence of an optimal matching between two given

; . i . ~ " We have
objects, and the third one is concerned with the exis-

tence of the optimal path. Clearly, this last one is the ﬂ = ﬁ(t, pi (1)) + 99 ) %
more general one, and implies the two others. This issue dt ot axd dt
will be addressed in some situations, in Appendix B =v(t, g ) + g_g . d_ptl

so that the energy can be written
3.3. Landmark Matching

1
E(a) = / Ng(v; J)? dt
In this section, we consider the action of groups of 0
diffeomorphisms on finite subsects ©f. Our setZ n /l NI(% vt qu(t) dan
is thus composed witiN-tuples ofdistinct points of o dt ’ T dt
Q, and we shall writdd = (pg,...,pn) € Z; G is 2
a group of diffeomorphisms of. Forg € G, and —Vv(t, gn(t)); J> dt
| = (p1,....pn) € Z, we letg-1 be given by
g-1 = (@ py,..., g~ X(pn)), that is, the inverse  We thus get
pfthe diffeomqrphisng applied to each qfthpi.This Theorem 3. Let (Ng(-|1), 1 €Z) and (Nz(-| 1),
is a group action, when the product gnis given, as | € Z = QM) be two collections of norms. Associate
before, byg-h=hog(onehadgh) -1 =g-(hD)). 4, paths t— v(t, -) and t— J(t), wherev(t, x) € R¥
We now follow the general approach developed in andJ(t) ¢ @V, the energy
Section 3.1, and study paths ghx Z. Such paths 1
take the formt — a(t) = (g(t, -)), 1(t) with, 1(t)), 2
I(t) = (p1(t), ..., pn(t)). We shall also denott) = E(v,Jd) :/0 Ng(v; J)” dt
(g, ), pr®), ..., pn()), relaxing in that way one 1 dgs dan
pair or parentheses. We let the time derivative be + /(; Nz(— = v, qi®), ..., ——

dt dt
da_ (i dp: _ don)

2
7= Gra o —v(t,qN(t));J) dt (18)
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Then the function From a general point of view, this situation corre-
sponds to having a new grouR acting onZ, and
dd, 1) =inf{vE,J):v,J,30,) =1, comparing the orbits of under this action. Denot-
JL ) =1") ing[I] = R-1(l € Z), we want to devise a distance
3([1o], [11]) between the orbits. A natural definition
is a distance of. IS
The particular case wheNg (v; J) = [, |L - v|dX 8([lo]. [11D) = inf{d(r - 1o, r"- 1) :r,1" € R}

(whereL is a differential operator) and
A similar discussion to the ones we have made so far

Nr(aa,...,an; d) = a4 +a? would give the fact thad is a distance as soon dds
invariant by the action oR, that is, for alll, |" € Z,
is of interest. It yields forallr € R,
! der-1,r-1) =dd, I’
E(v,J)://|L-v|2dxdt ( )=dd. 1)
As an illustration, we study this property in the par-

— _v(t, q (t)) ticular case of functional objects. Herg,is equal to
Sk, the group ofk-dimensional rotations and trans-
lations. In this framework, there is a problem related

i

The integrand can be explicitely minimized wnfor to the fact that if2 # RX andr e SE, the func-
each timet, since it is a quadratic form im(t, -). The o | & r will not be defined everywhere iR. We
optimal v(t, -) is a function ofqs, ..., qn and their iy therefore consider tha2 = R¥, and that all the
time derivatives. We eventually obtain an expression cqnsjdered integrals converge. We will also place our-
which does not containsanymore, of the kind selves in the case in which the energy in Eq. (16) is
00 - dJ d, @ 47 given by
dt dt

E(v,J) = / /|Lv(t X)|? dtdx—|— (t X)

where A;q) is a symmetric definite positive matrix
which depends on the values bt timet, and which
can be efficiently computed, by finite difference ap-
proximation ofv, or expansion in an orthonormal ba-
sis. The overall analysis should follow that constructed WhereL is a differential operator acting on tixevari-

—(t X) - V(t, X) dtdx

by Joshi (1997). ables.
We have
3.4. Rotation Invariance dai 1)y = ian{\/m,J(O, =130 =11
v,

We have discussed so far the problem of matching ob- )
jects which are functions : © + R, or groups of Let us computed(l or, 1’ or). Make the change of

labelled points ir2, whereS2 is an open subset &, variablesx = r -y in the second term of the energy
using diffeomorphic actions. We have obtained a dis- @nd set'(t, y) = J(t,r - y). This terms becomes
tanced on Z which is tolerant to these actions, in the 57 2

sense which has been discussed in the introduction.
In addition to this robustness, one generally wants to
incorporate a complete independence with respect to
another group action, in the sense ttét,r - 1) =0

for anyi € Z and any element of this new group. A
typical situation is rotation invariant matching, when
we want to identify a functiom with the functionl or,

for any rotatiorr in RX.

(t y)+ (t y)-r~lovt,r-y)| dtdy.

Letv'(t, y) =r~v(t, r - y), so that the second integral
simply writes

2

Y
dt dy.

aJ
(t y)+ (t y) -Vt y)
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If the firstintegral were also unchanged by the trans-
formationv — v/, we would get

dd, 1 = inj{\/ E(v,J),J(QO,")
=r-1,J1,)=r-Il}
i/an,{\/ Ew,J),J(0,")
=1,J(@1 ) =11
=d(, 1)

by definition ofJ’. We thus get the proposition

Proposition 3. Let

E(v, J)

1
=/ /|Lv(t,x)|2dtdx
0 Q
1
oy
0 Q
and

d(1,1) = inf(yE(v,9.30.) = 1. 3L ) = 1)

2
E(t, X) + E(t, X) - v(t, x)| dtdx
at aX

Let
8([lo], [11]) = inf{d(lgor, lyor’)y:r, 1" € SE]}

Thens is a distance between orbits as soon fas all
r € Sk, for all functionv : © — R,

/|Lv’|2dy=/|Lv|2dx
Q Q

wherev'(y) =r~1u(r - y)

One can take, for example,given by the Laplacian
(or powers of the Laplacian) applied to each coordinate
of v. The analysis in the case of landmark matching is
very similar.

4. Minimum Risk Estimators

We present here another context in which left-invariant
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of the problem; specific examples will be provided in
Section 5.

Here againg is a group acting on the s&t A =
G x T is the set of registered objects. In addition to
this, we consider a séf, the elements of which being
observableguantities. Using probability distributions
modeling the formation of the observation given a true
object and a possible element @facting on it, the
problem is to infer the unknown object from data.

We place ourselves in a Bayesian framework, start-
ing with building a probability modélon A. This as-
sumes that soma priori knowledge is available to in-
fer this model. Most of the time, it can be assumed
that the two components ofl (the group elements
and the objects) are independent for this prior prob-
ability, which will therefore be writterP(dg, dI) =
P1(dg) P>(d I); moreover, the group element often rep-
resents an unknown registration parameter (rotation,
translation, change of parametrization, etc) on which
no prior modeling can be made, so that the prior distri-
bution on this part will be taken to be uniform gnin
the sense that, for any measurable functfodefined
ong, and for anyh € G,

/g f(g)P(dg) = /g f(hgPudy  (19)

Note that this is not always possible for any graup
but can be easily provided for the groups which are
typically used in applications (one may need to relax
the fact thatP; is a probability and considerafinite
measure instead).

For the construction oP,, we use Grenander’s ap-
proach for designing a model by comparing the object
| to a reference object t@mplat@ which will be de-
notedlemp P2 generally models small variations of the
object around the deformable template, and we use the
notation Po(d 1 | liemp) to strengthen the fact that the
model is build on the basis of this template. However,
the template has to be chosen in a particular position
with respect to the action @, and in fact, any object
of the kindh - liemp for anyh € G would have made
an equally valid template. Given this point, it is then
natural to consider the model which should be used if
we had choseh - lemp as the template. It should be
linked to the original one through the equation, which

distances between registered objects come as a naturals valid for any functionf defined oriZ

requirement. This happens when performing minimal
risk estimation used in relation to a statistical model-
ing of object variations (probabilistic deformable tem-
plates). We give in this section a formal formulation

ff(I)szl |h|temp>=/f(h*1I)P2<dl|Itemp>
| |
(20)
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The third part of the model provides a conditional
probability for the observatioR € F given the output
of the (unknown) elemertg, |) € .A. This conditional
probability will be denoted(dF|g~* - 1).

Assume finally that a distande is provided onA.

A minimal risk estimator is defined as a functidn:
F — A, which associates to each observatiran
estimated paiA(F) = (§(F), [ (F)), whichis optimal

5. Low Dimensional Examples

5.1. 3D-Object Registration

Consider the situation where a family &f objects,
Ji, ..., In, is given. We assume that they are repre-
sented assubsetsof R 3. They generate, under the
action of SQ(3) (the group of 3-D rotations), an ob-

in the sense that it realizes the minimum, over all such ject spaceZ composed with the elements= g - J,

functions, of the Bayesian risk

Riump(0(). () = / D[(g, ), (4(F),
AxF

[(F)NIQF|g™ - 1)Py(dg)P2(d 1 |liemp)

By Bayes rule, this can be rewritten in terms of the pos-
terior probability ofg and| given F and lyemp which

is denotedPyos((dg, d1|F, liemp), and of the marginal
distribution of F (denotedQq(dF), as

Riem(0C), 1) = / Qo(dF) /A Dl(g, 1), (§(F),
]:
I'(F))] Poost(dg, d1[F, ltemp)

so that the estimator§ and I must be, for eacl, a
minimizer (if it exists) of the average posterior distance

Dposi(@: 1)
= /A D[(g, 1, (Q, |A)] Pposl(dgs dlF, Itemp)

In practice, this expression is often minimized by
Monte-Carlo sampling of the posterior distribution.
This risk, and the estimators, depends on the par-
ticular choice made for the templakgmn, Because of
the ambiguity on this choice, we must be sure that the
procedure behaves consistently whem, is replaced
by h - liemp for someh e G. This is addressed by the
proposition:

Proposition 4.
G, then

If D is invariant by the left-action of

Ritiem(0(), 1)) = Riguy(hG(), hi'(-))

so that the minimal risk estimators are modified con-
sistently with a left translation of the template.

The proof of this proposition is a straightforward
application of (19), (20) and the left invariance DOf
and is left to the reader.

g € SQ3) andk € {1,..., N}. The objects can be
observed on an imaging device, and denoting-the

set of possible images, the observation is an element
F € F. The problem is to infer front, the position
and the identity of an object present in the scene.

For the construction of a Bayesian model for image
formation, we refer to Grenander et al. (in which a
more general formulation is presented, the presence of
an unknown number of objects in the scene). We here
focus on the construction of a distanbeon A.

Let us make the following hypotheses: the Getl
andg - |, are disjoint as soon ds# |, and for anyk,
one can havg - Iy = I only if g = id (which implies
that there is enough structure in the object to make the
registration identifiable).

Because of our first hypotheses, the gt =
{J1, ..., In} can be identified to the coset spaGeG.

We therefore setl = SQ(3) x 7. As a consequence,
the distanceD on A can be set to be any distance of
the kind

D((g, 1), (h, 1) = do(g, h) + A(Ja). Jkar)

whered is a left invariant distance 08Q(3) (see next
section for a constructionfj( 1) is the index of the coset
to which| belongs and\ is any distance on the sgt.

5.2. Invariant Distances on SK).
We here review some standard facts on invariant dis-
tances orSQk). We use this setting to illustrate, in
a simple case, the construction of Section 3.1, which
here leads to closed form formulas.

The Hilbert-Schmidt norm of & x k matrix A is
defined by

| All? =traceA - Al.

It is easily shown that this norm is left (and right)-
invariant by the action a8Q(k), so that, the distance

di(g.9)=1llg—d|

is a possible left-invariant distance &Q(k).
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Another distance may be defined, as in Section 3.1,
by using the geodesic distance®@(k). We now com-
pute it, as an illustration. For this, we must start with
a norm on the tangent space3@ k) at the identity,
which will be denoted - ||,4, and extend it to the tangent
spaces at ang € SQKk) by left translation:

IXllg =1g™ - Xllig

(the tangent space 8Q(k) at the identity is composed
with k x k anti-symmetric matricesX, i.e. such that
X+ Xt =0).

If we let || X||\q be the Hilbert-Schmidt norm, then,
by left-invariance of this norm, one also hpX|ly =
+/traceX Xt. The geodesic distance betwegand g’
satisfies
2

1
da(g, 92 = inf/ dt
9 Jo )

—inf/ltrac 9 (t)3 ® | dt
9 Jo TRARETE

The infimum being taken over all patlyson SQ(k)
such thag(0) = gandg(1l) = ¢'. Because the Hilbert-
Schmidt norm is both left and right invariant, it can be
shown that the minimizing paths are the group expo-
nential, i.e. that they take the forgit) = e*!, for an
anti-symmetric matrixX with eX . g = g’. Admitting

this general result (see, for example, Do Carmo (1992),
Ch. 3, Exercise 3), we thus see that

d>(g, g') = VtraceX - Xt.

If we define the"‘%l’k entries of the skew symmetric
matrix to bexy, Xo, ..., then

2 gt
0

(k=Dk
2

(9. 9)? =2 %%

i=1

Let us study more precisely the expression, and
the fundamental differences betwedn and d,. As
described in Grenander et al., f8Qk) the Hilbert
Schmidt distance becomes

di(g, g) = 2k — 2 tracepqd"].

Sinced; andd, are both left and right invariant, one
has, for anyg, ¢, and fori = 1, 2,

di (g, g/) = di (lds gtg/)
and

di(ld, g) = di(Id, g'g'9).
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Any elementg € SOk) can be writteng = rthr
wherer, h € SQk) andh is a block-diagonal matrix
h = diag(ldk—2p, R(61), ..., R(Bp)) where ld_,, is
the identity(k — 2p) x (k — 2p) matrix, andR(6;) is
the 2x 2 block given by

cosy —sing
R@) = . .
sing; Cosf;

Thish is given bye* whereX is the block diagnoal
matrix equal to diag(Ox_zp, r (61), ..., r (0p)), Ok—2p
being the null matrix of siz& — 2p, and

f @) = [0 —ei}
Yo le oo ]
One has
p
di(Id, h)2 = 2p — ZZcosei
i=1
and

p
da(ld, h)? =2 " 6?
i=1

(assuming that the are taken in}-r, 7]).

The distances betweem and g’ can therefore be
computed after puttingd = g'g’ under a canonical
form. This can be done explicitly in 2 or 3 dimensions:
in SQ(2), arotation is always given under the fofR@)
for somed; for SQ(3), there is also only one angte
and 1+ 2 cos = tracgg).

5.3. Image Matching via the Orthogonal Group

Let us now provide a distance, defined along the lines
of Section 3.1, in a tolerant way under the action

of SQ(3). This situation assumes that the object are
roughly aligned with respect to the rotations, so that
comparison will implicitely assume that the rotation is

small.

Define the object space to be composed with map-
pings! : R® — R, and let the orthogonal group :=
SQ(3) act on it with group actioge G : | — gl, with
[g-11(x) = 1 (g~* - x). Using the notation of Section
3.2.3, we define the norms at identity, for paths such
thatg(t) = id, Ng(&g(t))? = trace (t)g(t)"] and

3l 2 3
NI(a(L‘)) =[Ra

2

—(t dt.
at Y
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Then, the associated distanBeon A = GxZ The actiorh- (g, 1) = (h-g, h- 1) must be transduced

becomes to an actiorh - (g, A) = (h- g, 1), with
d(g. 1), (@, 1) A = f (0 (1)
. 1 P 2 .
= mf( / Ng(ga)-lag(t))zdt — lemp(@ - h™%), ¢' (@ - h™'x)) dx.
0
1 3 2 But, sinceh has determinant 1, we see that= A;
+ /0 /Rs i el dx> for all i. Thus, the action of on A simply becomes
1 h-(g,A) = (hg, 2). This implies that registered ob-
— inf </ g g(t) I2dt jects can be compared by the very simple left-invariant
0 distance
1 2
+ / / o dtdy) D((9, 1), (¢, 1))* = do(g, @) + I = 1'I1®
0 JRS

_ , Soi2 whered, is a left-invariant distance d®dQ(n) computed
= (9.9)+ /Rz“ () = 1"C01" dx in the previous section.

Distance between images is then given by 6. High Dimensional Examples

ddlo, 1) 6.1. Plane Curves
= min{d((go, 1), (91, 1) Golo =1, 9111 = I}
= m|n{d((|d g51|) (go , 01, gol| M, 6.1.1. Matching Trajectories Curves are the simplest
cases of functional objects (Section 3.2.3), for which
% gl =g"l'} ) ) the setQ2 is an interval inR. Any differentiable curve
= min{d((id, lg), (@, I)§l, =1} can be represented by amapping [0, 1] — RX. Let
= min_ {d((d, lo), (g, gl))} us apply the construction of Section 3.1 to this particu-
{9eS0B3)} lar context. The pathsare functionw(t, x) defined on
= mi {d((id, o), (€%, 1))} [0, 1] x [0, 1], with null partial derivatives up to some
Xantisymmetric order atx = 0 andx = 1, for allt. Comparison can be
_ r‘r;(in||X||2 n /Rg Ho(X) — 11(€%)|2 dx. E;Id by defining norms for infinitesimal deformations
In Cooper et al. (1996), the following variant has 5
been proposed. The variations of what corresponds to Ng(v: m) = Ng(v) = /0 IL - vl” dx
the intensity have been expressed, for a template, as a
linear combination of given functions'(-), . . . , oK () and
defined on2 = RS, such that(¢l, ..., ¢¥) form an 5
orthonormal system of functions. The observed model Nz(zz m) = Nz = /0 |21 dx
is given by i ) )
whereL is some differential operator (these norms are
k _ homogeneous).
| (X) = It.amp(g*l -X) + Z ré' (@ l-x)  (21) Which leads to defining the energy of a deformation
i= path ¢, m) by
forx € Q andg € SQ(n). When the paitg, 1) is given, 1,1
this equation uniquely definés= (A1, ..., Ax) € RX. / / |Lv(t, x)|“dx dt

This implies that one can identify the set of registered
objectsA = G x 7 with the setG x R¥. To be more / /

o . . dt dx.
explicit, to (g, ), one associateg, A) with

_ | | 1 i1 q If mg andm;, are given and the above energy is min-
hi = /Q< ) = hemp(@™" - X), $(g" - X)) dx. imized subject to the contrainty(gy (1, X)) = My (X),
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this approach does provide a distance for matching curvem. We have, neglecting quantities of order larger
parametrized curves, and can be used in situations forthan 2 (quantities of order 1 ate— L, &, Tog— 1,

which the parametrizatiaxis significant (for example,
to perform on-line signature identification).

6.1.2. Matching signatures. The previous setting de-

pends on the curve parametrization, in the sense that,

if mp andm; are replaced byng o Yo andm; o v,
the optimal matching will not vary consistently, that is,
if 5o ands; were initially matchedyo(sp) andyr1(sy)
need not be matched when comparimg o ¢ and
m; o Y1. In other terms, the comparison is not valid
from a geometric point of view.

To obtain a geometric comparison, fix a well de-
fined parameterization, the simplest one being the
(Euclidean) arc-length, which corresponds to the con-
straint that the derivativ%% has a constant norm along
the curve (the value of this constant being the length of
the curve). We consider curves— m(x) defined for
x € [0, 1], such that

L(m) = ‘(;_m

is constant along the curvé;(m) is the length of the
curve. We devise our comparison norms by making a
small deformation analysis.

We consider a curve and a small perturbation along
m, X — A(x) € R2 The following analysis will be
made assuming thak and all its derivatives are in-
finitesimally small, and keeping only first order terms.
We obtain a new curve — m(x) + A(X), which can
be parametrized by arc-length. Denote rythe ob-
tained curve, and by the diffeomorphim providing
the arc-length parametrization of+ A, in the sense
that, for allx € [0, 1]

mo g(x) = m(x) + A(X)
Seté(x) = g(x) — 1. Denote byr, v andk the unit
tangent, normal, and curvaturerof We have

dm

ax = L(mz,

d?m dr )
—dX2 = L(m)& = L(m) KV

Similarly, denote byt, v, « the tangent, normal and
curvature ofm; let alsoL = L(m) andL = L(m).
The small deformation energy will be defined in terms
of the derivatives ofA and some characteristics of the

etc).

dA
dx

dm

<1+d§ ~dx

dx)dx
[%fog—l—l:fog—L'T

d§ ~ N
L&r+(L—L)r+L(rog—r)

12

A first definition of the energy of small deformations
can be

dv|?

L
e= [ |G
0

dx

1 dA |2

1 1

with V(x) = A(x/L). Noticing that, at first order,
T o g — 7 is perpendicular ta, we have

1
0

This expression leads to define a graupf diffeomor-
phisms of [0,1], and an object spate&omposed with
elements of the kind = (L, t), whereL is a positive
number andr : [0, 1] — R? is such thafz(x)| = 1
for all x. If L is the length and the unit tangent, this
characterizes a curve up to translations. Define norms
Ng andNz by

de |?

L (L—Ly
- dx

1
dx+L/ |Fog—1|2dx
L 0

1 %-2
Ng(£: L. 1) = Lf oldx

0

and
82 1
NrGu 805 L) = B0+ L/ 15,17 dx
0

Now, ifa = (g,L, T") isapathond = G x Z, we
must define, according to Section 3.1, the total energy

1dL2 1 r1
E(a.):/0 Eﬁdt—i_/ / L|—| dxdt
// —+—v dtdx. (22)

where we have made the usual change of variabtes
YoglandT =T og?

For this particular context, the distanBeon .4 can
be explicitely computed (c.f. Younes (1998)). Letting
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3 = (go, Lo, To) anda; =
registered objects, we have

(91, L1, Tp) be two

D (a0, a1)
=Llog+L;— \/EL()L]_

1
x /0 V80008100 (1 + (To(x), T1(X))) dx.

The associated optimal deformation paths being also

explicitely known.

6.1.3. The distance we have obtained compares tan-
gent angles, which are rotation dependent. To compare
curves modulo rotations, we pursue the small deforma-

tion analysis and compute the second derivative of
This yields

d?A ds d2
—— ~ %= L— L(L—-L
a2 ax<V T gt THE =Dy
. g . 5
+LL 1+— Kogvog— L%v
~ L d’ 2L2 dé
d_ T+ d—/cv +2L(C — L)kv

+L%(Rog—Kk)v+ L% [Hog—v)

At order 1,L (¥ o g — v) is perpendicular te, and is
obtained by a rotation of /2 from L (7 o g — 1), which
is the normal part of the first derivative of. Thus, we
havelL?(Pog—v) ~ —L( , vyt. We finally get

2 2
d—A +Lk dA v t’\*Ld—g +2L2—EKV
dx2 dx’

dx? dx
+2L(L — L)kv + L%(K 0o g — k)

We define the small deformation energy

! (:iZ_A+L d_A
dx2 Nax V"

2

E = dx,

L3 Jo

the factorL—2 stemming from a “real size analysis”
(letting as before/ (x) = A(x/L)). This energy can
be written as

d2 |2
dx2

1 1
E:—/
L Jo
d L—L 2
2—§K+2 Kk+Kkog—«| dXx

L
+fodx

We shall here work with objects of the kind= (L, «),
wherelL is the length and is the curvature, and deduce

dx

the length of a path, introducing again the variates
and letting [, K) be the evolving object at time by

el oo e

1 dL 9K K |?
2—K \
+ L dt ot X

dx dt

6.2. Image Matching
6. 2 1 Energy. Let an image be a mapping defined
= [0, 1]> c R?, with values inR, and letG be
a group of homeomorphisms acting on the images via
the action considered in Section 3.2.3.
In the homogeneous case, an image deformation
functional can be defined from the norms

9 2 92 3
Ng<a—?(to, ->;|(to>) - [ g

ax2 ot
and

al 2 119
NI(E(tO, ');|(t0)> =Ol/0 Pl

2
—(to, X)

| 2
(t, x)

Where « is a positive parameter. The associated
functional is

dtdx

9V
ﬁ(tvx)

2
+o (t X) +(VJ,v)| dtdx

Comparison between two imagésand |; can be
performed by minimizing this functional over all paths
which satisfyv(t, x) = ﬂ =O0forallt € [0, 1] and
all x € 922, andJ(0, x) lo(X), J(1, X) = I1(X).
Examples of such computations are provided in the
next section.

6.2.2. Experiments. The pictures in the following
figures provide the estimated morphing procé@s-)
between two imagek andl;.

The first experiments show how the interpolation
process deals with the need for creating pixel intensity:
atotally black image is matched to an image containing
awhite discinits center. Depending on the choice of the
parametet, the process will allow for the creation of
a large quantity of pixel intensity, yielding a morphing
which looks like fading, with almost no deformation at
all (« small), or will prefer introducing a small white

from this small deformation analysis the definition of zone in the center of the disc, and deform it into a
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disc, yielding a process which resembles an explosion the optimal morphing process. Depending on the value
(o large). of the parametex (which penalizes non-conservation
The second experiment presents the transformation of luminance) the results are quite different: for small
of a square into a disc. The remaining ones deal «, the disk is appearing without any deformation, sim-
with anatomical gray-level images (brain scans and ply the grey levels vary. For large, a white spot first

macaque brain slices). appears at the center of the disk and the deformation
generates the expansion. The first and last picture in
6.2.3. Explosion vs. Fading. The first set of experi-  each row are the data provided to the algorithm, and

ments illustrates how luminance can be created during the other ones are synthesized intermediate steps.

First row: small a: the white disc fades in the picture; second row: small o: a white spot appears
and expands.

Here is the inverse deformation applied to the last image: we first give the initial image for reference, and then
the final one after application of the inverse deformation. The differences show the places at which luminance has
been created. The third picture gives the reversed deformation itself applied to a regular grid.

..ﬁi‘mil

First row: reference image, registered target and deformation for small o; second row: the sames
for large

6.2.4. Squared Disc. The next experiment shows the matching starting with a square and ending with a smaller
disc. A largex is chosen to minimize variations of luminance. Some numerical instabilities can be noticed at the
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boundaries.

A square deformed into a disc.

Matching a square and a disc: Reference image, registered target and deformation

6.2.5. Tumor. Inthis next experiment, a brain without a tumor is matched to the same one with a tumor. The tumor
appears progressively during the morphing process. One notices large deformations around the tumor, and almost
no deformation in other places.

Tumor: Reference image, registered target and deformation

6.2.6. Macaque Brain Slices. Two slices of macaque brains are compared. The morphing, registered image and
deformation are provided.

Macaque brain slices comparison

Macaque brain slices: Reference image, reglstered target and deformation
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6.3. Numerical Facts

The minimization of

1
E(v,J)://
0 Ja

32v 2
ﬁ(t,x) dt dx

1 9J 2
—i—a/ / —(t,X) +(VJ,v)| dtdx
o Jal ot
(23 & siid
HH HHH
m » --l
is performed after time and space discretization, the Ei, .,:5-:. ‘:E
L. . . .. . pemmes VAR EAmutnsnn
derivatives being estimated by finite differenced\ ff mmamay 1] _
is the dimension of the space grid amdthe number > pagan
of time steps, there are, because of the boundary con- i=ssss o
ditions, a little less than I82T variables to estimate HHH HHTT
(v has two coordinates arihas one). Ranannn RRREn;
- . - . um ENEEEFER
For fixedv (resp. fixedl), the energy (23) is quadratic -1 -::::;::::::':::
in J (resp.v). For this reason, we used two step relax- H :%'.g%'.i' H
ation procedure, which alternates a conjugate gradient gas .QJ{Q"&:‘“ -+
descent fod with a gradient descent far. A compli- iﬁ"@ 'l; Ausmus
cation comes from the fact that the discretization ofthe s :{.“". P
intensity conservation term : EF f 3
8 T HE
LX)+ (VI V) i HHHHHHHH
T L1
has to be done with care. A direct linear discretization EEE ,"_,'53 X H
with finite difference leads to very unstable numerical  Saam .ﬁa’i“‘“:‘ﬂ..:
procedures, and one has to use a non-linear, but more Eﬂm“‘."unﬂcl
stable approximation for the last term, of the kind TN
HHEHE
<8J >(t ) =E-E HT
—. V)t X ARSEEARREREEEE
aX in li:
2 n mRaEEsy
= Y At s+ 80 - It 9V t,5)/h e e
= S Wsies:
-, 8) —Jt, s—e))v (kt,s)/h ==¥"t“;l;’:‘,=§'=iii
annar™W ‘! Yrfssann
h being the space stepg( &) the canonical basis of “‘?ﬁ;@ :
R? andv* (resp.v™) the positive (resp. negative) part i :::; EE 5'=

of v.
We also use a hierarchical, multigrid, procedure: the Figure2 Firstline: asmall disc and a large disc, the latter being the
deformations are first estimated on a coarse grid (small target; lines 2 to 5: left estimated deformation applied ona reg_ular
N) and then iteratively refined until the finer grid is grid, and applid to the small disc (to be compared with the large disc),
forT =2,3,4,6.
reached.
The choice of the number of time stefs, is quite
interesting. FoiT =2 (t =0 or 1), (23) reduces to the in which a small disc is mapped to a larger one with
regularized intensity-conservation cost function which identical center. We show, in Fig. 2, several match-
is of standard use for optical flow estimation. It is no- ings which has been obtained by the same algorithm,
ticeable that such an energy fails to identify large defor- with the same value ok, and various choices of.
mations, as illustrated by the next very simple example The increased power for generating large deformation
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obtained by introducing the extra time dimension into on A4, the least action distance can be defined as
the initially static problem is clearky exhibited by this

example. d(l, 1’y =inf{D(id,a),ac H,a- 1 =I'}. (24)

7. Conclusion It can be shown that, iD is left-invariant by the action

of A, thend is symmetric and satisfies the triangu-
In this paper we have developed a general framework |ar inequality (in Grenander (1993p,(id , a) is called
for examining object comparison problems in image an effort functional; similar concepts are introduced in
analysis which naturally leads to object registration in Hagedoorn and Veltkamp (1999); Pennec and Ayache
a low dimensional setting and object matching in high (1998)).
dimensions. The reasoning was essentially intwo parts: A more general definition has been introduced in
starting from the problem of designing metrics on the Younes (1999) in the framework of transitive action.
object sefZ which are tolerant to the action of a group  This definition relies on fixing aeference obje¢tl r,
g, the analysis led to the need of defining left-invariant which can be an arbitrary element kafand let
distances ory x Z. We then argued that, in the ab-
sence of any other hint for defining such distances, o , ,
we could ug a a generic construction of left-invariant ddl. 1 =inf{D(a a).a.a € H,
Riemannian distances ¢hx Z, and were able to gen- let=a-1 =a"-1". (25)
erate explicit and feasible comparison functionals in
several practical frameworks.

When performing registration with low dimensional
matrix groups, our formalism naturally led to standard
left invariant distances on these groups, which can be Gg={a,ae H,a: let= lrei,
computed, and used in close form. Dealing with groups
of homeomorphisms, the formalism directly led to the § gatisfies the triangular inequality as soorDais left
introduction of the velocity field, which was used in i ariant by the action af onH, i.e.D(g-a, g-a) =
Christensen et al. (1996) by analogy with mechanics, D(a, &) for all g € G. It can also easily be checked
and because it can generate smooth large deformationthaL if D is left-invariant by the action of on itself,
diffeomorphisms. However, working on the product 4 (25) boils down to (24).

spaceg x I provided a setting in which the optimal We finally show that this construction can be seen as
deformation path is able to cross orbits of the action of , particular case of the construction of Section 2.2.
g onZ, by generating simultaneous evolutiongiand A jndicated by the notationt will be identified

in Z. The introduction of the Lie derivative (material ;5 the set of referenced objeatmder the action of
derivative) of the image evolution introduces explic- G,A = Gx1Z,in away such that the group multi-
itly the notion of non-homogeneous evolutions with plication(g, a) > g- a. is identified to the left action
respect to the object part of the model. This has allowed ¢ G on G x T, as defined in (1). For this, we asso-
us, for example, to rigorously design curvature based (ate to each 'e 7 an elemenip(l) € H s'uch that
curve-matching procedures. In particular, it quantify p(1) - | = & (e know that such an element exists,

the balance of energy associated with the evolution in pacause the action ¢ on 7 is transitive). We then
image matching associated with geometric variation, yefine

and object image variation.

Letting G be the stabilizer of the reference object, i.e.

v:Gx7Z—>H
Appendix A. Transitive Group Action (g, )+ go(@*- ).

As announced in Remark 1, we show how placing One canshow thak is bijective:W (g, | ) = ais equiv-
oneself on the set of registered objects can be seenalenttog = a- p(atlep)~tandl = ga=?. I, More-
as a generalization of the usual deformable template over, we have, forath € G, W(h-g, h-1) =h-W(g, I)
approach. The latter considers that a grodp,acts so the left-action off onG x 7 is, as required, mapped
transitively on the object spa@e Given a distanc® to the left-action off on H.
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Appendix B. Appendix: Existence of Optimal
Matchings

B.1. Introduction

In this section, we study the existence of optimal match-
ings in the framework of Section 3.2.3. We thus assume

that we are given two normBl; (-; 1) andNz(-; 1), and
that the matching functional is

E@.D
! N a9 . 1 ) —1 ?
0

1 3| 2
+/ Nz <_(t,g—1(t,.));|(t,g—1(t,.))> dt
0 ot

As remarked in Section 3.2.4, diffeomorphisms are
more easily and more efficiently defined as the solu-
tions of an ordinary differential equation associated to
a time-dependen vector fieldt, -) by

|

In terms ofv, the functional can be written

9(0, x) = go(X)

§IX)—Vt t, X)
S (60 = V(t, g(t. %)

Uv,I)
1
= f Ng(v(t, ) I(t, g '(t, )% dt
0

1 8' 2
+/ Nz (—(t,gl(t, ) l(t,gl(t,~>)> dt
0 at
(26)

Forp > 0, we IetLZ(Ql RP) be the set of measurable
functionsf defined ort2 and taking values iRP such

that
||f||2=‘//_ 1002 dx < oo
Q

Assume that the norm$g(-; 1) and Nz(; |) are
such that, for some constapt> 0, and for all f €
L2(22, R¥) (resp.f € L3(Q2, RY)), one hag/| f |2 <
Ng(f, 1) (resp.y |l fll2 < Nz(f, 1)). Thus, for fixed
I, the set off such thatNg(f; 1) < oo can be seen
as a Hilbert subspace af(Q; R¥) which will be de-
noted byH, . To indicate that there is a relation of the
kind y||fl]l2 < Ng(f, 1), we will use the notation

H, — L2(Q, RX). Similarly, we denote by, the set

81

of all functions f such thatNz(f, 1) < oo, and we
have, — L2(Q2, RY).

We also denote b§? the Hilbert space generated
by functionsv € H,, with compact support included
in 2. The boundary conditions associated to the min-
imisation of (26) are the following:

o V(t, ) € HY, , forallt
e 10, ) =1lo(), 1L, ) =l1(gv (1, )

The existence result will be stated under conditions
of embeddings of the Hilbert spacgé§ and.7, into
some more restrictive spaces than tfespaces.

B.2. Existence Result

We will assume that the normi¥g(, ; 1) andNz (-5 1)
can be controlled by homogeneous norhs(-) and
Nz () which do not depend oh. We will in fact make

the assumptions: (H1) There exists a positive constant
« such that, forall € Z, forall f € H,,

_ 1.
kNg(f) < Ng(f; 1) < =Ng(f)
K
and for all f € J7,
_ 1.
kNz(f) < Nz(f; 1) < —Nz(f)
K
This implies in particular that the Hilbert spacks
and 7, do not depend on, so that we can drop the
subscriptl when refering to them.
We will also ask for some regularity of the norms
with respect td :
(H2) There exists a positive constansuch that, for
alll, ', forall f e H
INg(f3 1) = Ng(f51)] < keNg(F)I1 = lloo
and, forallf € 7,
INZ(F5 1) = Nz(F; 1) <k Nz(D)[I1 = 1l
We letKC be the Hilbert space consisting of time depen-
dentfunction : [0, 1]xQ — R¥andZ : [0, 1]xQ —

RY such that, for alt, v(t, ) € HoandZ(t, ) € J
and

1
V. 2)2: = /0 No(v(t, )2 dt

1
+/ NZ(Z(t, )2 dt < oo
0
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As in Trouv8 (1999), we reformulate the matching
problem in terms of these “time-dependent vector
fields”. For(v, Z) € K, we let the mappingg, : @ —

Q andl,z : @ — RY, be the solutions (when they
exist) of the differential system

d
W 1, %) = it gt %)
at
3| Vv,
ot
with initial conditionsg, (0, x) = x andZ(0, x) = 0.
When the initial point g and the targel; are given,
the matching problem can be expressed as minimizing

Z(t,x) = Z(t, gu(t, X))

1
U(V’ Z) = / NQ(V(ta )7 IO + IV,Z(ta ))zdt
0

1
+/ NZZ(, ; lo + lv.z(t, )2 dt
0

with the constraint that, 7 (1, -) = 11 — lo.

Let V(1) be the subset ok composed with those
(v, Z) suchthat, 7 (1, -) = I. One can prove that min-
imizers ofU exist by first showing thal is weakly
lower-semi-continuous of, and that the intersection
of V(1) with a closed ball irkC is weakly compact. Part
of these results have already be addressed in Eouv”

Moreover, it is proved in Dupuis et al. (1998) and
Trouvé (1999) that, still under condition (H3),

Lemmal. There exists aconstant K depending only
on  such that for all v such thatfol N(v(t, )2 dt <

00 :

forallt,s € [0, 1], for all x, y € ©2, one has

lov(t, X) — gv(s, ¥)| = K|IvllyIt — s

and

lov(t, X) — gv(t, V)| = KIIVIx =yl

The next lemma is essential for the results we aim
at. We skip its proof, since it is essentially in Dupuis
et al. (1998).

Lemma 2. If (vq, Z,) is a bounded sequence ié
which weakly converges tov, Z) € K theng,, and
l,,» Zn both converge uniformly ovg®, 1] x Q to gy
andly z.

Finally, we quote this last result from Troey1999),
which is an almost direct consequence of the previous

(1999), in which the homogeneous case has been han{, 1 1mas. FoR > 0, we letBx (R) be the closed ball in

dled. The essential condition, which is also required in
this more general case, is that the nofdgsandN; are
admissible, in the sense of the following condition:
(H3) there exists a constant > 0 such thatfor all
feH,

df

Ix <« Ng(f)

o0

I lloo +

and, for allz € 7,

dz

ol = Nz (2)

1Zlloo +

‘ o0

Note that, if (H3) is true, the results quoted in
Section 3.2.4 state thgt is well defined for allv, Z) €
K.

The functionl, 7z is defined by

t
I(t,x):/ Z(s, 0v(s, x))ds
0

which is finite since, by (H3), for all andx, Z(t, x)
is bounded byN (Z(t, -)) which is integrable in the
variable.

K with radiusR.

Theorem 4. If condition (H3) is true, then for all
| €Z and all R> 0, the setV(l) N B (R) is weakly
compact.

The next result deals with the lower semi-continuity
of the matching functional:

Theorem 5. Assume conditiongH1) to (H3). Then,
the functional U is weakly lower-semi-continuouston

We must prove that, if a sequen¢g,, Z,,) weakly
converges to(v,Z2) ek, thenU(v,Z) < Ilim inf
U (Vn, Zn).

Our first step in this proof is the following lemma.
We letU, z be the functional defined ofd by

1
Uvz(w,Y) = / Ng(W(t, ); To+ lv.z(t, -))?dt
0

1
+/ NZCY (L, ): To + 1y 2 (t, )2 dt
0
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Lemma 3. If (vy, Zp) is a bounded sequence which
weakly converges ift to (v, Z), then

lim |U(vn, Zn) —Uyz(Vn, Zp)| =0
n—oo

By assumption, there existsR>0 such that

(Vn, Zn) € B (R) for all n. We have, for alt,

ING (Vn(t, ): 10 + lypzn (t, )Z = NG (Va(t, )z 1o + ly.z(t, )|

=< \/i\/Ng(Vn(t- )5 |0 + |vn.zn (t, ))2 + Ng(Vn(t, s |0 + |v,z(tq ))2
x [Ng(Vn(t, ); To + lvp.zn (8, ) = Ng (Wn(t, ) 1o + lvz(t, )]

< 22Ng Wn(t, Nlllvnzn (£, ) = vzt oo

by conditions (H1) and (H2). This implies
1
V Ng(Va(t, ); lo + lv, z,(t, ) dt
0

1
- / Ng(Vn(t, ); lo + lvz(t, )2 dt
0

2
< 2“RJlly,,z, — vzl

which tends to 0 by Lemma 2. The same argument
holds for the second integral (.
We then have

Lemmad4. The functional 7 is weakly lower-semi-
continuous.

By a standard theorem of functional analysis a
strongly continuous convex functional is weakly lower-
semi-continuous. Sindd, 7 is obviously convex, we
must only show that it is strongly continous. However,
this property trivially derives from the fact that, for all
f1, fo and for alll,

|(Ng(fr; 1)% = Ng(fz; 1)?|
[(Ng(f1; 1) 4+ Ng(f2; 1))Ng(f1 — fz; 1)
Kk (Ng(f1) + Ng(f2))Ng(f1 — f2)

IA

A

and the similar inequality foNz.
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Notes

1. Infact, as will be seen later, the acting grogpis the case of
deformable templates, and the gra@ipn this formulation do
not have exactly the same meaning; the correct point of view
implies that the latter is subgroupof the former, see Remark 1.

2. IfEisaset,amapping: E x E — [0, +oc[is adistance (ora
metric) if and only if the three following properties are satisfied:

e dX,X)=0&x=X
o d(x,x") =d(x/, x) (Symmetry)
e d(x,x) +d(X, x”) < d(x, x") (triangular inequality).

3. To keep this paper essentially self-contained, we shall avoid
refering to too many concepts of differential geometry, although
our discussion is obviously based on this theory.

4. In the following, we use boldface letteasg to refer to paths
onC, G, or any other space, and leave roman letters for denoting
individual elements of these sets.

5. Notice that the functioy and depends on both time variable
t € [0, 1] and space variabbe € .

6. To be rigorous, we must assume that a structurmedsur-
able spaces placed onA and 7, that is, that these sets are
equipped withr -algebras, and that probability distributions are
defined with respect to thesealgebras. We do not formally in-
troduce these quantities, in order to limit the notational burden
of this section. The concerned reader will easily complete these
gaps.

7. In Cooper et al. (1996), the intensity is a temperature field mea-
sured over the surface of the template.
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