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Abstract. This paper constructs metrics on the space of imagesI defined as orbits under group actionsG. The
groups studied include the finite dimensional matrix groups and their products, as well as the infinite dimensional
diffeomorphisms examined in Trouv´e (1999,Quaterly of Applied Math.) and Dupuis et al. (1998).Quaterly of
Applied Math.). Left-invariant metrics are defined on the productG × I thus allowing the generation of transfor-
mations of the background geometry as well as the image values. Examples of the application of such metrics are
presented for rigid object matching with and without signature variation, curves and volume matching, and structural
generation in which image values are changed supporting notions such as tissue creation in carrying one image to
another.
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1. Introduction

In a seminal series of works (see, in particular,
Grenander, 1993), Ulf Grenander and his co-workers
have introduced the notion of group action within mod-
els of objects. In addition to the essential issue of mod-
eling objects in a way which is tolerant to the action of
some parasitic group (rotation, translation, etc.), which
has been the subject of a wide range of research in com-
puter vision, the idea was to introduce the group actions
in the very nature of the objects themselves, through
the notion ofdeformable templates. Roughly speaking,
a deformable template simply is an “object”I temp on
which a groupG acts and generates, through the orbit
I = G · I temp a whole family of new objects.

The interest of this approach is to concentrate most
of the modeling effort on the groupG, and not on the

family of objectsI. As a consequence, by studying a
sufficiently generic groupG, one is able to design a
large variety of models of objects, sometimes in very
different contexts. In a statistical setting, this implies
two modeling phases: i) build a probability model on
a groupG; ii) for an arbitrary templateI temp, deduce,
by projection, the corresponding probability model on
I = G · I temp. In addition, a third phase is also needed
to model the object acquisition with an imaging device.
Metrics onI are also deduced from metrics onG after
projection (or “procrustean analysis”).

Beside the standard linear actions, more general
group actions have been introduced and studied specif-
ically for image analysis. For example, in Grenander
and Miller (1994), the action ofSO(2)n, thenth power
of the group of plane rotations, on closed polygons
with n vertices is defined, and a probability model
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describing the shapes of small organelles is devised
from the deformation of a circle. In Grenander and
Keenan (1991), an infinite dimensional group action is
introduced to model deformations of plane curves, in
polar representation (distance to the origin vs. rotating
angle). In Younes (1998), a similar group action is in-
troduced, acting on the representations 7→ τ(s) of a
plane curve,s being the arc-length andτ(s) the unit
tangent vector, with Bakircioglu et al. (1998) contain-
ing transformations of curves in three dimensions. In
Trouvé (1999), a theoretical study of a large class of
infinite dimensional group actions is studied (including
in particular the groups of diffeomorphisms of a given
manifold).

In this paper, we introduce a slightly different ap-
proach, in which features from both the acting group
and the object space are used to build models of de-
formable objects. This can be seen as generalizing
the more conventional deformable template paradigm
without loosing the essential features of this theory. In
particular it generalizes much of the previous work in
which only geometric transformations were modelled
in single orbits. We will work on the product space
A = G × I, whereG is a group acting onI.1 Such a
generalization will enable us to make object-dependent
computations of metrics (in the sense that the deforma-
tion effort will depend on the deformed object). The
power of the approach will be, for example, to allow us
to model variations in the image values themselves, not
just in the geometry. Also, our point of view will allow
us to formalize a “template-independence” property for
probability models of deformable objects.

Figure 1 depicts the overall approach taken. Each
curve depicts a particular object under geometric defor-
mation. The metric distance takes into account both the
distance between the geometric change as well as the
image change, labelled pairs(h, h · J) and(g, g · I ).

The paper is organized as follows. We start with an
abstract formulation of our object comparison problem,
and show how this relies on the design of left-invariant
distances on the space of transformations and images.
We then describe how such distances can be formally
constructed in the case whenA is provided with a dif-
ferential structure.

The second part of the paper provides several ex-
amples of situations which can be plugged into our
abstract setting. These examples either come from the
deformable template literature, and are revisited ac-
cording to our new point of view, or are original exam-
ples which are illustrated by experiments.

Figure 1. Shown in a comparison of objectsI andJ by looking for
the smallest distance within the setG× I between the setG · (id, I )
andG · (id, J).

2. Distances Between Registered Objects

2.1. Introduction

We consider the problem of object comparison in the
presence of a group action. The set of object isI andG
is the acting group. In most applications, an object inI
can be considered as an element of some (often infinite
dimensional) space, and can be readily equipped with
a distance,d0.2 For example, images can be seen, in a
continuous setting, as functions defined on a square [0,
1]2, and taking values inR, and they can be compared
using any of the functional distances one may want to
use,L p norms, Sobolev norms,. . . One of the typical
features of this situation is that “small elements“ inG
may alter in a very significant way the observable aspect
of elements ofI, that is, one may findg ∈ G andI ∈ I
such thatg is small andd0(I , g · I ) is large. Of course,
one must be able to quantify what is meant by a small
element inG. This can be done by assuming a functional
g 7→ 0(g) such that0(id) = 0 and considering that
small actions are group elementsg for which0(g) is
small.

If one is in a situation in which small elements inG
are not supposed to alter theessenceof the objects, in
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the way we want to understand them, the above men-
tioned distance in the measurement space is a poor
candidate for object comparison. Our purpose here is
to design distances onI which will not have this draw-
back in the sense that they are tolerant to small group
actions. We emphasize the fact that we are looking for
metrics (i.e. distances)d in I, which must, in particular
be symmetrical and satisfy the triangular inequality; in
some applications, such a requirement can be unneces-
sary, but there are many cases in which this is essential,
for example for the organisation of object databases.

This first section will essentially remain on an ab-
stract level, and assume minimal structures on the sets
which are introduced. We assume that we are given an
object setI, on which agroupG is acting (i.e. we are
given an operation(g, I ) 7→ g · I , from G × I to I,
which satisfies id· I = I and(gh) · I = g · ((h · I )) (id
denoting the identity element inG).

2.2. Least Action Distances

We want to devise comparison tools between objects
in I which take the action ofG into account. More
precisely, we want to be able to decide that two objects
I0 and I1 in I are close when there exists an element
g ∈ G such thatg ' id andg · I0 ' I1.

For this purpose, introduce the set ofregistered ob-
jects,A = G × I. The groupG acts onA through the
operation

h · (g, I ) = (hg, h · I ). (1)

and we defined(I , I ′) as the set distance between the
orbits of (id, I ) and(id, I ′) under this action, that is,
we let

d(I , I ′) = D(G · (id, I ),G · (id, I ′))

= inf{d(a,a′) : a = (g, g · I )
a′ = (g′, g′ · I ′), g, g′ ∈ G}. (2)

This measure obviously satisfiesd(I , I ) = 0 and is
symmetric inI , I ′. However, since it is a set distance,
the triangular inequality cannot, in general, be inherited
from D, unless these sets are in some sense “parallel”.
This property is expressed by the condition thatD is
left-invariant to the group action.

Definition 1. A distanceD onA is left-invariant if,
for all h, g, g′ ∈ G, all I , I ′ ∈ I

D(h · (g, I ), h · (g′, I ′)) = D((g, I ), (g′, I ′)). (3)

That this is the condition is stated in the next propo-
sition.

Proposition 1. Let D be a distance onA which is
invariant by the left action ofG, then the function d,
defined onI × I by

d(I , I ′) = inf{D((g, gI ), (g′, g′ I ′)) : g, g′ ∈ G}
(4)

is symmetrical, satisfies the triangular inequality and
is such that d(I , I ) = 0 for all I .

If, moreover, the infimum is attained for all I, I ′

such that d(I , I ′) = 0, then D is a distance.

Note that if D is left invariant, Eq. (4) can also be
written

d(I , I ′) = inf{D((id, I ), (g′, g′ I ′)), g′ ∈ G}. (5)

Proof: To demonstrate the triangular inequality is
satisfied, we must show that, for allg1, g′1, g

′
2, g
′′
2 ∈ G

and I , I ′, I ′′ ∈ I, there existsh, h′′ ∈ G such that

D((h, h · I ), (h′′, h′′ · I ′′))
≤ D((g1, g1 · I ), (g′1, g′1 · I ′))
+ D((g′2, g

′
2 · I ′), (g′′2, g′′ · I2)). (6)

But, by left invariance

D((g′2, g
′
2 · I ′), (g′′2, g′′2 · I2))

= D((g′1, g
′
1 · I ′1), (h′′, h′′ · I ′′))

with h′′ = g′1g′−1
2 g′′2, and inequality (6) withh = g1 is

the consequence of the triangular inequality for D.
The last statement of Proposition 1 is obvious.2

Remark 1. To relate the previous construction to the
classical deformable template point of view in terms of
defining distances between objects by minimal group
action (as in Grenander (1993), Ch. 12, or Trouv´e
(1999)), the groupH is defined which acts transitively
on I. That is for all I , I ′ ∈ I, there existsh ∈ H
such thath · I = I ′. The groupH can be interpreted in
terms of our setting as follows. SinceH is transitive, it
describes all possible variations inI. Thus, begin with
the starting distanceD on H . The objects inI can be
compared in two different ways:
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• Template-based comparison: given a reference ob-
ject I0 ∈ I (the template), one computes, for two
objectsI , I ′ ∈ I, the closest elementsg, g′ ∈ I (for
the distanceD) which registerI and I ′ to the tem-
plate, i.e. such thatg−1 · I = g′−1 · I ′ = I0.
• Homogeneous comparison: one computes, for two

objectsI , I ′ ∈ I, the closest elementsg, g′ ∈ I (for
the distanceD) which registerI and I ′ to the same
object, i.e. such thatg−1 · I = g′−1 · I ′.

Clearly, the homogenous case corresponds to taking
the infimum of the template-based case with respect
to all possible choices of the template. The rigorous
definition of the corresponding distances are, in the
template-based case:

dtemp(I , I ′) = inf{D(h, h′) : h−1 · I = h′−1 · I ′ = I0}

and in the homogeneous case

dhom(I , I ′) = inf{D(h, h′) : h−1 · I = h′−1 · I ′}

The homogeneous case is the one which has been de-
scribed in Grenander (1993) and Trouv´e (1999), among
others. The template-based case has been described in
Younes (1999).

Sufficient conditions to obtain a distance are most
restrictive in the homogeneous case. A similar proof to
the one of proposition 1 shows thatdhom is a distance as
soon asD is left invariant for the action of H on itself,
that is, for allh, g, g′ ∈ H, D(hg, hg′) = D(g, g′). A
sufficient condition fordtemp to be a distance is thatD
is invariant for the action of the stabilizerG of I0 in H ,
defined by

G = {h ∈ H, h · I0 = I0}.

This is less restrictive condition than the full invariance
required in the homogeneous case.

It is well known that the if groupH acts transitively
on the setI, andG is the stabilizer of someI0 ∈ I,
then the coset spaceH/G is in one-to-one correspon-
dence withI. This correspondence can be pushed fur-
ther to identifyH toA = G × I (see Appendix), and
left-invariant distance onH (for the action ofG) to
left-invariant distances onA. This correspondance per-
mits us to place the template-based setting directly into
the framework of Section 2.2. The correspondence be-
tween the usual deformable template modeling and our
approach is thus done by replacing the “big” groupH

by the productG×I, whereG is the stabilizer of some
reference elementI0 in I. We here prefer to directly
consider the situation whenG andI are given, first
because this is most of the time more natural in the ap-
plications, and leads to simpler computations, and also
because this is slightly more general.

2.3. Relation to Grenander Effort Functionals

In Grenander (1993) the contruction of the distance
dhom described in the previous remark is made using
effort functionals. Such a functional is a mapping0 :
G → [0,+∞[, 0(g) measuring the cost associated to
the left action ofg ∈ G on any element ofI. We adapt
this construction to our setting, and show how it relates
to the above discussion. Given two objectsI andI ′, one
should haved(I , I ′) small as soon as there existsg ∈ G
such that0(g) is small andd0(I , g−1I ′) is small. An
obvious initial guess ford would be to set something
like

d(I , I ′) = inf{0(g)+ d0(I , g
−1 · I ′), g ∈ G}

Although this provides a valid and robust measure
of discrepancy for object comparison, this is not a
distance; it is not symmetrical, and would not satisfy
the triangular inequality. We shall however look for
distancesd under the form

d(I , I ′) = inf{U (g, I , I ′), g ∈ G} (7)

for a certain class of functionsU which will be ad-
missible;U has to be condidered as a cost function
associated to the fact that one comparesI to I ′ via the
action ofG. We want to provide sufficient conditions on
U . One should of course expect thatU is non-negative,
andU (id, I , I ) = 0 for all I . We have

d(I ′, I ) = inf{U (g, I ′, I ), g ∈ G}.

If the infimum ind(I , I ′) is attained at someg, it is nat-
ural to assume that the minimum ford(I ′, I ) is attained
at g−1, which yields the symmetry condition:

U (g, I , I ′) = U (g−1, I ′, I ).

If one tries to check the triangular inequality, the
following condition emerges naturally: for allg, h, I ,
I ′, I ′′,

U (hg, I , I ′′) ≤ U (g, I , I ′)+U (h, I ′, I ′′).
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Definition 2. A functionU : G × I × I → [0,+∞[
is an effort functional if the following conditions are
satisfied for allg, h ∈ G and all I , I ′, I ′′ ∈ I:

(i) U (id, I , I ) = 0
(ii) U (g, I , I ′) = U (g−1, I ′, I )

(iii) U (hg, I , I ′′) ≤ U (g, I , I ′)+U (h, I ′, I ′′)

The above forementioned conditions are important
because then such effort functionals define distances
through Eq. (7). This result can be proved directly or
simply deduced from Proposition 1 and the next propo-
sition which states that effort functionals and left invari-
ant distances are equivalent.

Proposition 2. If D is a left-invariant distance onA,
then

U (g, I , I ′) := D[(e, I ), (g−1, g · I ′)]

is an effort functional.

Conversely, if U is an effort functional, then one gets
a left invariant distance by letting

D[(g, I ), (g′, I ′)] := U (g′−1 · g, g−1 · I , g′−1 · I ′)

3. Geodesic Distances

3.1. Principles

In general, there is no obvious way for building invari-
ant distancesD on G × I. Although we shall review
some examples for which such a distance can be de-
fined in closed form, the construction requires most of
the time using a variational approach in whichD would
be a geodesic distance.

In cases for which some differential structure ex-
ists onA this generic approach consists in build-
ing a left-invariant measure of infinitesimal variations
on A, define on this basis the energies of paths on
A, and compute the distance by minimizing these
energies.3

In this section, we give the principle for this
construction, without entering into technical details.
This discussion is valid for any smooth setC on
which a smooth groupG is acting, and we fix such
a set.

Let a differentiable path onC be a continuous func-
tion a : [0, 1] → C, for which the time derivativeda

dt

is defined for allt ∈ [0, 1]. We assume that this time
derivative can be given a precise meaning, which is, for
example, the case whenC is a subset of a Banach space,
and will always be the case in the applications. If the
derivative exists excepted possibly for a finite number
of t , the path is piecewise differentiable.4

If a ∈ C, let Ta(C) be the set which contains all the
da
dt |t=t0

, for all t0 ∈ [0, 1] and all differentiable paths on
C such thata(t0) = a. We want to define a cost function
associated to a path (an energy) as an accumulation of
infinitesimal efforts. These efforts will be associated to
norms(‖·‖a,a ∈ C), such that, for alla, ‖·‖a is a norm
on Ta(C). For a patha onC, define

E(a) =
∫ 1

0

∥∥∥∥da
dt

∥∥∥∥2

a(t)
dt. (8)

The associated geodesic distance onA is defined by

D(a,a′) = inf{
√

E(a), a(0) = a, a(1) = a′} (9)

which can be shown to be a distance.
The left-invariance constraint forD can be ensured

by a similar constraint on the norms‖ · ‖a. For this,
we must make an additional simple assumption, which
is that, for any g ∈ G and any differentiable patha
on C, the left-translated path g· a : t 7→ g · a(t)
also is a differentiable path.This implies that, for all
g ∈ G and for alla ∈ C we can define an invertible
linear mapping,daLg : Ta(C)→ Tga(C), by the condi-
tion that, for all differentiable patha with a(0) = a,
one has

dga
dt

∣∣∣∣
t=0

= daLg · da
dt

∣∣∣∣
t=0

. (10)

The norms(‖ · ‖a, a ∈ C) are left-invariant if for all
a ∈ C, and for all differentiable pathsa with a(t0) = a,
for anyt0 ∈ [0, 1]∥∥∥∥da

dt

∣∣∣∣
t=t0

∥∥∥∥
a

=
∥∥∥∥daLg · da

dt

∣∣∣∣
t=t0

∥∥∥∥
ga

. (11)

It is easily shown that, under this condition, the distance
defined by (9) is left-invariant.

In the particular case whenC = A = G × I, con-
dition (11) implies that it suffices to define‖·‖a for
elementsa ∈ A of the kind a = (id , I ) for some
I ∈ I. We thus need to define aI-indexed family of
norms(‖·‖I , I ∈ I).
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3.2. Functional Objects and Homeomorphisms

3.2.1. Context. In this section, we give a general
formulation for the comparison of objects which are
defined as mappings (curves, images, etc.). Specific
examples will be provided in the next sections.

Fix a bounded domainÄ ⊂ Rk. Its closure,Ǟ
will be referred to as themeasurement space.An ob-
ject is defined as a family of measurements made
overÄ. Each measurement provides a value in some
set M , the value space.Each object therefore is rep-
resented as a mappingI :Ä→M , and theobject
spaceis some functional spaceI, containing theob-
jects of interest. To simplify, we shall consider that
M = Rd.

The groupG generateshomeomorphic actions: the
elements ofG are homeomorphismsg : Ǟ → Ǟ (i.e.
invertible continuous mappings, with continuous in-
verses), subject to some smoothness properties and
boundary conditions. A rigorous definition will be
given in Section 3.2.4. Define, onG, the productg·h =
h ◦ g, and let the action on objects beg · I = I ◦ g.

3.2.2. Geodesic Distance onG. Follow the previous
discussion of Section 3.1 withC = G, sinceG is ob-
viously acting on itself. Consider that a path5 g on G
is differentiable if the partial derivatives∂g

∂t are defined
everywhere, and set

dg
dt

∣∣∣
t=t0

= ∂g
∂t
(t0, ·).

If h ∈ G, sinceh·g is the mapping(t, x) 7→ g(t, h(x))
giving

dh · g
dt
=
(
(t, x) 7→ ∂g

∂t
(t, h(x))

)
.

This is the expression of the differential of the left-
translation in (10). Equation (11) implies that the col-
lection of norms‖·‖g for g ∈ G can be deduced from
the knowledge of the norm forg = id. Let us assume
that‖·‖id is given, for a pathg such thatg(t0) = id ,
by ∥∥∥∥dg

dt
(t0)

∥∥∥∥
id

= NG

(
∂g
∂t
(t0, ·)

)
whereNG is a functional norm on the space of func-
tionsv :Ä 7→ Rk, for example a Sobolev norm, or a
norm based on the expansion of the function on some
orthonormal basis (Fourier, wavelets,. . .).

Now, by left-translation invariance, the norms for
any pathg are uniquely specified; ifg(t0) = g,∥∥∥∥dg

dt
(t0)

∥∥∥∥
g

= NG

(
∂g
∂t
(t0, g−1(t, ·))

)
and the energy of the pathg simply is the integral of

the above expression with respect to time. For a pathg
onG, let g−1(t, ·) = g(t, ·)−1 implying

E(g) =
∫ 1

0
NG

(
∂g
∂t
(t, g−1(t, ·))

)2

dt

Setting

v(t, x) = ∂g
∂t
(t, g−1(t, x)), (12)

then

E(g) =
∫ 1

0
NG(v(t, ·))2dt (13)

and the associated geodesic distance:

D(g, g′) = inf{
√

E(g), g(0) = g, g(1) = g′}

is left-invariant for the action ofG on itself.

3.2.3. Distance onA. We now proceed to the general
case for designing distances onAwhen the elements of
I are functionsÄ→ Rd. The principles are the same
as above, simply the notation become somewhat more
complex, since we are dealing with the larger space
A = G × I. Consider pathsa= (g, I) onA, and set

da
dt
=
(
∂g
∂t
,
∂I
∂t

)
.

If h ∈ G, this gives

dh · a
dt
=
[
(t, x) 7→

(
∂g
∂t
(t, h(x)),

∂I
∂t
(t, h(x))

)]
.

To define the collection of norms‖·‖g, I , for (g, I ) ∈
A, because of left invariance it suffices to define them
only in the caseg = id (but they still can depend onI ).
Assume that they are given for a pathasuch thata(t0) =
(id , I ) by∥∥∥∥da

dt
(t0)

∥∥∥∥2

id, I

= NG

(
∂g
∂t
(t0, ·); I

)2

+ NI

(
∂I
∂t
(t0, ·); I

)2

.
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For each fixedI , NG (resp.NI ) is a functional norm on
the space of functionsv :Ä 7→ Rk (resp.I : Ä 7→Rd).
If NG andNI do not depend onI , we shall say that we
are in a case ofhomogeneous deformations.This ex-
actly corresponds to the homogeneous case presented
in Remark 1.

To compute the general expression on the norms, let
a be a path, and seta(t0) = (g, I ). Then,∥∥∥∥da

dt
(t0)

∥∥∥∥2

g,I

= NG

(
∂g
∂t
(t0, g−1(t, ·)); I(t, g−1(t, ·))

)2

+ NI

(
∂I
∂t
(t0, g−1(t, ·)); I(t, g−1(t, ·))

)2

,

and the associated energy becomes

E(a) =
∫ 1

0
NG

(
∂g
∂t
(t, g−1(t, ·)); I(t, g−1(t, ·))

)2

dt

+
∫ 1

0
NI

(
∂I
∂t
(t, g−1(t, ·)); I(t, g−1(t, ·))

)2

dt.

To compute the associated distance onA, D((g0, I0),
(g1, I1)), the square root of this energy must be min-
imized over alla starting at(g0, I0) and ending at
(g1, I1). This energy can be simplified; setting

v(t, x) = ∂g
∂t
(t, g−1(t, x)), (14)

J(t, x) = I(t, g−1(t, x)), (15)

and assuming thatJ is differentiable in the variablex
gives

∂I
∂t
(t, x) = ∂J

∂t
(t, g(t, x))+ ∂J

∂x
(t, g(t, x)) · ∂g

∂t
(t, x)

so that

∂I
∂t
(t, g−1(t, x)) = ∂J

∂t
(t, x)+ ∂J

∂x
(t, x) · v(t, x).

This last expression is the Lie derivative ofJ in the
direction of the vector fieldv (sometimes called the
material derivativeof J). Introducing these expressions
in the energyE yields one of the main results of the
paper.

Theorem 1. Let (N(· | I ), I ∈ I) and(N(· | I ), I ∈
I) be two collections of norms. Associate to paths

t 7→ v(t, ·) and t 7→ J(t, ·), wherev(t, x) ∈ Rk and
J(t, x) ∈ Rk, the energy

E(v, J)

=
∫ 1

0
NG(v(t, ·); J(t, ·))2dt

+
∫ 1

0
NI

(
∂J
∂t
(t, ·)+ ∂J

∂x
(t, ·) · v(t, ·); J(t, ·)

)2

dt.

(16)

Then, the function

d(I , I ′)

= inf{
√

E(v, J) : v, J, J(0, ·) = I , J(1, ·) = I ′}

is a distance onI.

Remark 2. The introduction of this time-dependent
vector field in such a context (restricted to the case
of homogeneous norms) has been independently pro-
posed in Dupuis et al. (1998), and in Trouv´e (1999). In
this latter reference, it has been shown that this also pro-
vides a way to rigorously define a groupG which shares
many of the properties of finite dimensional Lie groups.
We give a brief account of these results in Section 3.2.4.

In these references, the following matching problem
has been considered: givenI0 and I1, one minimizes∫ 1

0
‖v(t, ·)‖2 dt +

∫
Ä

|I1(x)− I0 ◦ g−1
v (1, x)|2 dx

(17)

(A greedy procedure also has been introduced in
Christensen et al. (1996), for efficient minimization in
3 dimensions). The energy in (13) may in fact be used
for the same purpose (inexact matching). One of its in-
terests, compared to (17) is to depend only onv and on
J, and thus not to require to computegv for the mini-
mization. On the other hand, it requires the introduction
of an extra time-dependent unknown,J.

Remark 3. In Eq. (13) there are two competing com-
ponents for the matching process. The first one acts
on the background spaceÄ, and is represented by the
variations in time,v, of the homeomorphismgv. The
second one acts on the feature space, and can be consid-
ered as a variation of the material properties. The path
J represents the evolution of the object, starting from
I0 and arriving atI1. Notice that the matching path,gv

does not appear anymore in (13), or in the boundary
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conditions, which drastically simplifies the design of
numerical procedures.

Thus, the first integral in (13) penalizes large varia-
tions of the homeomorphism, and the second one pe-
nalizes variations in the material which are not due
to the deformation, i.e. it penalizes violation of the
transport equation. Both penalizations are expressed
as norms which depend only on the current object
J(t, ·). This a consequence of our left-invariance re-
quirement (Eq. (11)). In (13), the energy does not track
the accumulated stress from time 0. For this reason,
we classify the matching procedure asviscous match-
ing (as first suggested by Rabbitt, Christensen et al.,
1996), in opposition to the methods involving elastic
matching, Bajcsy et al. (1983), Dengler and Schmidt
(1988), Dann et al. (1989), Bajcsy and Kovacic (1989),
Miller et al. (1993), Gee et al. (1994), Rabbitt et al.
(1995), Davatzikos (1997), Christensen et al. (1999),
Christensen et al. (1999). From a point of view analo-
gous to elasticity, it should be harder to make a small
deformation of an objectJ if it is considered to already
be a deformation of another object, than to operate the
same deformation, but considering thatJ itself is at
rest. Technically, this means that the normsNG and
NI in (13) would depend, both on the deformed ob-
ject, and on the current stress associated togv, which
implies that the left-invariance assumption has to be
relaxed. Whether the left-invariance point of view is
relevant or not should depend on the application, but
we insist on the fact that without this condition, the
measure of mismatch given by the minimum energy
will not be a distance. Also, when comparing objects
using elastic matching, one usually consider that one
object is at equilibrium and the other one is deformed,
and the result depends on the choice on which object is
at equilibrium. This may be relevant in some cases, for
example when comparing a face with an expression to
a face without expression, but in applications dealing
with shapes, silhouettes, or grey-level images of ob-
jects which are not generated apriori as deformations
of a rest state, an invariant metric is more natural.

3.2.4. Groups of Transformations. We shall be
studying the finite dimensional matrix groups as well
as infinite dimensional groups of homeomorphisms
and diffeomorphisms. The finite dimensional groups
are standard. We now give a brief account of the
way groups of homeomorphisms have been defined in
Dupuis et al. (1998) and Trouv´e (1999). Consider a
Hilbert spaceH of mappingsv : Ǟ→ Rk, with a norm

v 7→ N(v). Elements inHmust satisfy regularity con-
straints, which can be summarized as follows.

We let W1,∞(Ä,Rk) be the set of mappingsv :
Ǟ → Rk which have bounded generalized derivative
overǞ.

(C1)The canonical inclusion i:H 7→ W1∞(Ä,Rk)

is continuous, i.e. there exists a constantC0 such
that

‖Dv‖∞ + ‖v‖∞ ≤ C0‖v‖

whereDv is the matrix formeds by the partial deriva-
tives ofv.

We letH0 be the completion inH of the subset ofH
composed with all functions smoothv with compact
support included inÄ. Because of (C1), elements of
H0 are such thatv = 0 anddv

dx = 0 on∂Ä.
We then define the setK0 of functionsv : [0, 1] ×

Ä → Rk such that for allt , v(t) ∈ H0 (wherev(t) is
as above the mappingx 7→ v(t, x)), and such that

‖v‖2 :=
∫ 1

0
‖v(t)‖2 dt

is finite.
For all x ∈Ä, one can define the solutiongv(t, x) of

the differential equation

dy

dt
= v(t, y)

with initial condition gv(0, x) = x. The following
result is proved in Dupuis et al.(1998) and Trouv´e
(1999).

Theorem 2(Dupuis et al., 1998; Trouv´e, 1999). As-
sume(C1) and letv ∈ K0. Then, for all x ∈ Ä, gv(t, x)
exists for all t ∈ [0, 1]. Moreover, for all t ∈ [0, 1],
x 7→ gv(t, x) is a homeomorphism ofÄ.

Under condition(C1) Trouv́e (1999), G = A(K0)

is a group.

In particular, the mappingA : v 7→ gv(1, ·) asso-
ciates to eachv ∈ K0 a homeomorphism ofÄ. One
can defineG to be the image ofK0 by this mapping:
G = A(K0). The following results follow by standard
manipulations on paths (concatenation and time rever-
sal) Obviously, ifv ∈ K0, one hasgv(t, ·) ∈ G for all
t ∈ [0, 1], so thatgv(t, ·) is a path inG.

Remark 4. The previous approach can be used to
address three different problems, listed below:
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• Tolerant object comparison; this was the problem we
started with: design a distance between objects inI
which accounts for small variations due to the group
action.
• Dense homeomorphic matching: this approach pro-

vides homeomorphisms which match the various
features of the objects. The matching is dense, mean-
ing that each pointÄ has an homologous point, and,
since it is defined as the solution of an O.D.E, it is
also consistent, that is, it provides a homeomorphism
in Ä.
• Morphing: the processJ defined in (15) provides a

smooth evolution between the initial object and the
target.

Estimating the flow, we get the morphing between
two objects, the value of the homeomorphism at time 1
providing the dense matching, and the square root of the
energy of the optimal path providing the distance. For
each of these three problems, there is an unsolved “ex-
istence” issue: For the first one, Proposition 1 requires
the existence of the optimal matching for objectI = I ′

which are at null distance; the second one needs the
existence of an optimal matching between two given
objects, and the third one is concerned with the exis-
tence of the optimal path. Clearly, this last one is the
more general one, and implies the two others. This issue
will be addressed in some situations, in Appendix B

3.3. Landmark Matching

In this section, we consider the action of groups of
diffeomorphisms on finite subsects ofÄ. Our setI
is thus composed withN-tuples ofdistinct points of
Ä, and we shall writeI = (p1, . . . , pN) ∈ I; G is
a group of diffeomorphisms onÄ. For g ∈ G, and
I = (p1, . . . , pN) ∈ I, we let g · I be given by
g · I = (g−1(p1), . . . , g−1(pN)), that is, the inverse
of the diffeomorphismg applied to each of thepi . This
is a group action, when the product onG is given, as
before, byg · h = h ◦ g (one has(gh) · I = g · (hI )).

We now follow the general approach developed in
Section 3.1, and study paths onG× I. Such paths
take the formt 7→ a(t) = (g(t, ·)), I(t) with, I(t)),
I(t) = (p1(t), . . . ,pN(t)). We shall also denotea(t) =
(g(t, ·), p1(t), . . . ,pN(t)), relaxing in that way one
pair or parentheses. We let the time derivative be

da
dt
=
(
∂g
∂t
,

dp1

dt
, . . . ,

dpN

dt

)

If h∈G, we have, sinceh · a= (g (t, h(·)), h−1(p1),

. . . , h−1(pN))

dh · a
dt
=
(
∂g
∂t
(t, h(·)), dh−1

dx

dp1

dt
, . . . ,

dh−1

dx

dpN

dt

)
The energy of a patha should now take the form

E(a) =
∫ 1

0

∥∥∥∥dg−1a
dt

∥∥∥∥
g−1·I

Separating, the norm‖, ·‖I as a normNG(·; I ) for vari-
ations inG, and a normNI(·; I) for variations inI, and
expanding the expression of the of the time derivative
yields

E(a)=
∫ 1

0
NG

(
∂g
∂t
◦ g−1; g−1 · I

)2

dt

+
∫ 1

0
NI

(
∂g
∂x

dp1

dt
, . . . ,

∂g
∂x

dpN

dt
; g−1 · I

)2

dt

Here again, setv = ∂g
∂t ◦ g−1, andJ = g−1 · I so that

J(t) : = (q1(t), . . . ,qN(t))

= (g(t, p1(t)), . . . ,g(t, pN(t)))

We have
dqi

dt
= ∂g
∂t
(t, pi (t))+ ∂g

∂x
· dpi

dt

= v(t, qi (t))+ ∂g
∂x
· dpi

dt
so that the energy can be written

E(a) =
∫ 1

0
NG(v; J)2 dt

+
∫ 1

0
NI

(
dq1

dt
− v(t, q1(t)), . . . ,

dqN

dt

− v(t, qN(t)); J
)2

dt

We thus get

Theorem 3. Let (NG(· | I ), I ∈ I) and (NI(· | I ),
I ∈ I = ÄN) be two collections of norms. Associate
to paths t 7→ v(t, ·) and t 7→ J(t), wherev(t, x) ∈ Rk

andJ(t) ∈ ÄN, the energy

E(v, J) =
∫ 1

0
NG(v; J)2 dt

+
∫ 1

0
NI

(
dq1

dt
− v(t, q1(t)), . . . ,

dqN

dt

− v(t, qN(t)); J
)2

dt (18)
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Then, the function

d(I , I ′) = inf{
√

E(v, J) : v, J, J(0, ·) = I ,

J(1, ·) = I ′}

is a distance onI.

The particular case whenNG(v; J) =
∫
Ä
|L · v|dx

(whereL is a differential operator) and

NI(α1, . . . , αN; J) = α2
1 + · · · + α2

N

is of interest. It yields

E(v, J) =
∫ 1

0

∫
Ä

|L · v|2 dx dt

+
∫ 1

0

N∑
i=1

∣∣∣∣dqi

dt
− v(t, qi (t))

∣∣∣∣2 dt

The integrand can be explicitely minimized inv for
each timet , since it is a quadratic form inv(t, ·). The
optimal v(t, ·) is a function ofq1, . . . ,qN and their
time derivatives. We eventually obtain an expression
which does not containsv anymore, of the kind

Q(J) =
∫ 1

0
t
dJ
dt

AJ(t)
dJ
dt

where AJ(t) is a symmetric definite positive matrix
which depends on the values ofJ at timet , and which
can be efficiently computed, by finite difference ap-
proximation ofv, or expansion in an orthonormal ba-
sis. The overall analysis should follow that constructed
by Joshi (1997).

3.4. Rotation Invariance

We have discussed so far the problem of matching ob-
jects which are functionsI : Ä 7→ R2, or groups of
labelled points inÄ, whereÄ is an open subset ofRk,
using diffeomorphic actions. We have obtained a dis-
tanced on I which is tolerant to these actions, in the
sense which has been discussed in the introduction.
In addition to this robustness, one generally wants to
incorporate a complete independence with respect to
another group action, in the sense thatd(I , r · I ) = 0
for any i ∈ I and any elementr of this new group. A
typical situation is rotation invariant matching, when
we want to identify a functionI with the functionI ◦r ,
for any rotationr in Rk.

From a general point of view, this situation corre-
sponds to having a new groupR acting onI, and
comparing the orbits ofI under this action. Denot-
ing [I ] = R · I (I ∈ I), we want to devise a distance
δ([ I0], [ I1]) between the orbits. A natural definition
is

δ([ I0], [ I1]) = inf {d(r · I0, r
′ · I1) : r, r ′ ∈ R}

A similar discussion to the ones we have made so far
would give the fact thatδ is a distance as soon asd is
invariant by the action ofR, that is, for all I , I ′ ∈ I,
for all r ∈ R,

d(r · I , r · I ′) = d(I , I ′)

As an illustration, we study this property in the par-
ticular case of functional objects. Here,R is equal to
SEk, the group ofk-dimensional rotations and trans-
lations. In this framework, there is a problem related
to the fact that ifÄ 6= Rk and r ∈SEk, the func-
tion I ◦ r will not be defined everywhere inÄ. We
will therefore consider thatÄ = Rk, and that all the
considered integrals converge. We will also place our-
selves in the case in which the energy in Eq. (16) is
given by

E(v, J) =
∫ 1

0

∫
Ä

|Lv(t, x)|2 dt dx+
∫ 1

0

∫
Ä

∣∣∣∣∂J
∂t
(t, x)

+ ∂J
∂x
(t, x) · v(t, x)

∣∣∣∣2 dt dx

whereL is a differential operator acting on thex vari-
ables.

We have

d(I , I ′) = inf
v,J
{
√

E(v, J), J(0, ·) = I , J(1, ·) = I ′}

Let us computed(I ◦ r, I ′ ◦ r ). Make the change of
variablesx = r · y in the second term of the energy
and setJ′(t, y) = J(t, r · y). This terms becomes∫ 1

0

∫
Ä

∣∣∣∣∂J′

∂t
(t, y)+ ∂J′

∂x
(t, y) · r−1 · v(t, r · y)

∣∣∣∣2 dt dy.

Let v′(t, y) = r−1v(t, r · y), so that the second integral
simply writes∫ 1

0

∫
Ä

∣∣∣∣∂J′

∂t
(t, y)+ ∂J′

∂x
(t, y) · v′(t, y)

∣∣∣∣2 dt dy.
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If the first integral were also unchanged by the trans-
formationv→ v′, we would get

d(I , I ′) = inf
v,J
{
√

E(v, J), J(0, ·)
= r · I , J(1, ·) = r · I ′}
= inf

v′,J′
{
√

E(v′, J′), J′(0, ·)
= I , J′(1, ·) = I ′}
= d(I , I ′)

by definition ofJ′. We thus get the proposition

Proposition 3. Let

E(v, J)

=
∫ 1

0

∫
Ä

|Lv(t, x)|2 dt dx

+
∫ 1

0

∫
Ä

∣∣∣∣∂J
∂t
(t, x)+ ∂J

∂x
(t, x) · v(t, x)

∣∣∣∣2 dt dx

and

d(I , I ′) = inf
v,J
{
√

E(v, J), J(0, ·) = I , J(1, ·) = I ′}

Let

δ([ I0], [ I1]) = inf {d(I0 ◦ r, I1 ◦ r ′) : r, r ′ ∈ SEk}

Thenδ is a distance between orbits as soon as, for all
r ∈ SEk, for all functionv : Ä→ Rk,∫

Ä

|Lv′|2 dy=
∫
Ä

|Lv|2 dx

wherev′(y) = r−1v(r · y)

One can take, for example,L given by the Laplacian
(or powers of the Laplacian) applied to each coordinate
of v. The analysis in the case of landmark matching is
very similar.

4. Minimum Risk Estimators

We present here another context in which left-invariant
distances between registered objects come as a natural
requirement. This happens when performing minimal
risk estimation used in relation to a statistical model-
ing of object variations (probabilistic deformable tem-
plates). We give in this section a formal formulation

of the problem; specific examples will be provided in
Section 5.

Here again,G is a group acting on the setI, A =
G × I is the set of registered objects. In addition to
this, we consider a setF , the elements of which being
observablequantities. Using probability distributions
modeling the formation of the observation given a true
object and a possible element ofG acting on it, the
problem is to infer the unknown object from data.

We place ourselves in a Bayesian framework, start-
ing with building a probability model6 onA. This as-
sumes that somea priori knowledge is available to in-
fer this model. Most of the time, it can be assumed
that the two components ofA (the group elements
and the objects) are independent for this prior prob-
ability, which will therefore be writtenP(dg, d I ) =
P1(dg)P2(d I ); moreover, the group element often rep-
resents an unknown registration parameter (rotation,
translation, change of parametrization, etc) on which
no prior modeling can be made, so that the prior distri-
bution on this part will be taken to be uniform onG, in
the sense that, for any measurable functionf defined
onG, and for anyh ∈ G,∫

G
f (g)P1(dg)=

∫
G

f (hg)P1(dg) (19)

Note that this is not always possible for any groupG,
but can be easily provided for the groups which are
typically used in applications (one may need to relax
the fact thatP1 is a probability and consider aσ -finite
measure instead).

For the construction ofP2, we use Grenander’s ap-
proach for designing a model by comparing the object
I to a reference object (atemplate) which will be de-
notedI temp; P2 generally models small variations of the
object around the deformable template, and we use the
notation P2(d I | I temp) to strengthen the fact that the
model is build on the basis of this template. However,
the template has to be chosen in a particular position
with respect to the action ofG, and in fact, any object
of the kindh · I temp, for anyh ∈ G would have made
an equally valid template. Given this point, it is then
natural to consider the model which should be used if
we had chosenh · I temp as the template. It should be
linked to the original one through the equation, which
is valid for any functionf defined onI∫

I
f (I )P2(d I | hItemp) =

∫
I

f (h−1I )P2(d I | I temp)

(20)
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The third part of the model provides a conditional
probability for the observationF ∈ F given the output
of the (unknown) element(g, I ) ∈ A. This conditional
probability will be denotedQ(d F|g−1 · I ).

Assume finally that a distanceD is provided onA.
A minimal risk estimator is defined as a function̂A :
F → A, which associates to each observationF an
estimated pair̂A(F) = (ĝ(F), Î (F)), which is optimal
in the sense that it realizes the minimum, over all such
functions, of the Bayesian risk

RI temp(ĝ(·), Î (·)) =
∫
A×F

D[(g, I ), (ĝ(F),

Î (F))]Q(d F|g−1 · I )P1(dg)P2(d I |I temp)

By Bayes rule, this can be rewritten in terms of the pos-
terior probability ofg and I given F and I temp, which
is denotedPpost(dg, d I |F, I temp), and of the marginal
distribution ofF (denotedQ0(d F), as

RI temp(ĝ(·), Î (·)) =
∫
F

Q0(d F)
∫
A

D[(g, I ), (ĝ(F),

Î (F))] Ppost(dg, d I |F, I temp)

so that the estimatorŝg and Î must be, for eachF , a
minimizer (if it exists) of the average posterior distance

Dpost(ĝ, Î )

=
∫
A

D[(g, I ), (ĝ, Î )] Ppost(dg, d I |F, I temp)

In practice, this expression is often minimized by
Monte-Carlo sampling of the posterior distribution.

This risk, and the estimators, depends on the par-
ticular choice made for the templateI temp. Because of
the ambiguity on this choice, we must be sure that the
procedure behaves consistently whenI temp is replaced
by h · I temp for someh ∈ G. This is addressed by the
proposition:

Proposition 4. If D is invariant by the left-action of
G, then

Rh·I temp(ĝ(·), Î (·)) = RI temp(hĝ(·), hÎ (·))

so that the minimal risk estimators are modified con-
sistently with a left translation of the template.

The proof of this proposition is a straightforward
application of (19), (20) and the left invariance ofD,
and is left to the reader.

5. Low Dimensional Examples

5.1. 3D-Object Registration

Consider the situation where a family ofN objects,
J1, . . . , JN , is given. We assume that they are repre-
sented assubsetsof R 3. They generate, under the
action of SO(3) (the group of 3-D rotations), an ob-
ject spaceI composed with the elementsI = g · Jk,
g ∈ SO(3) andk ∈ {1, . . . , N}. The objects can be
observed on an imaging device, and denoting byF the
set of possible images, the observation is an element
F ∈ F . The problem is to infer fromF , the position
and the identity of an object present in the scene.

For the construction of a Bayesian model for image
formation, we refer to Grenander et al. (in which a
more general formulation is presented, the presence of
an unknown number of objects in the scene). We here
focus on the construction of a distanceD onA.

Let us make the following hypotheses: the setG · Ik

andG · Il are disjoint as soon ask 6= l , and for anyk,
one can haveg · Ik = Ik only if g = id (which implies
that there is enough structure in the object to make the
registration identifiable).

Because of our first hypotheses, the setJ =
{J1, . . . , JN} can be identified to the coset spaceI/G.
We therefore setA = SO(3) × J . As a consequence,
the distanceD onA can be set to be any distance of
the kind

D((g, I ), (h, I ′)) = d0(g, h)+1
(
Jk(I ), Jk(I ′)

)
whered0 is a left invariant distance onSO(3) (see next
section for a construction),k(I ) is the index of the coset
to which I belongs and1 is any distance on the setJ .

5.2. Invariant Distances on SO(k).

We here review some standard facts on invariant dis-
tances onSO(k). We use this setting to illustrate, in
a simple case, the construction of Section 3.1, which
here leads to closed form formulas.

The Hilbert-Schmidt norm of ak × k matrix A is
defined by

‖A‖2= traceA · At .

It is easily shown that this norm is left (and right)-
invariant by the action ofSO(k), so that, the distance

d1(g, g
′) = ‖g− g′‖

is a possible left-invariant distance onSO(k).
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Another distance may be defined, as in Section 3.1,
by using the geodesic distance onSO(k). We now com-
pute it, as an illustration. For this, we must start with
a norm on the tangent space toSO(k) at the identity,
which will be denoted‖·‖Id, and extend it to the tangent
spaces at anyg ∈ SO(k) by left translation:

‖X‖g = ‖g−1 · X‖Id
(the tangent space toSO(k) at the identity is composed
with k × k anti-symmetric matrices,X, i.e. such that
X + Xt = 0).

If we let ‖X‖Id be the Hilbert-Schmidt norm, then,
by left-invariance of this norm, one also has‖X‖g =√

traceX Xt . The geodesic distance betweeng andg′

satisfies

d2(g, g
′)2 = inf

g

∫ 1

0

∥∥∥∥ ∂∂t
g(t)

∥∥∥∥2

g(t)
dt

= inf
g

∫ 1

0
trace

[
∂

∂t
g(t)

∂

∂t
g(t)t

]
dt

The infimum being taken over all pathsg on SO(k)
such thatg(0) = g andg(1) = g′. Because the Hilbert-
Schmidt norm is both left and right invariant, it can be
shown that the minimizing paths are the group expo-
nential, i.e. that they take the formg(t) = eXt, for an
anti-symmetric matrixX with eX · g = g′. Admitting
this general result (see, for example, Do Carmo (1992),
Ch. 3, Exercise 3), we thus see that

d2(g, g
′) =
√

traceX · Xt .

If we define the(k−1)
2 k entries of the skew symmetric

matrix to bex1, x2, . . . , then

d2(g, g
′)2 = 2

(k−1)k
2∑

i=1

x2
i .

Let us study more precisely the expression, and
the fundamental differences betweend1 and d2. As
described in Grenander et al., forSO(k) the Hilbert
Schmidt distance becomes

d1(g, g
′) = 2k− 2 trace[gg′t ].

Sinced1 andd2 are both left and right invariant, one
has, for anyg, g′, and fori = 1, 2,

di (g, g
′)= di (Id, g

t g′)

and

di (Id, g
′) = di (Id, g

t g′g).

Any elementg∈SO(k) can be writteng = r thr
wherer, h ∈ SO(k) andh is a block-diagonal matrix
h = diag(Idk−2p, R(θ1), . . . , R(θp)) where Idk−2p is
the identity(k − 2p)× (k − 2p) matrix, andR(θi ) is
the 2× 2 block given by

R(θi ) =
[

cosθi − sinθi

sinθi cosθi

]
.

Thish is given byeX whereX is the block diagnoal
matrix equal to diag(0k−2p, r (θ1), . . . , r (θp)), 0k−2p

being the null matrix of sizek− 2p, and

r (θi ) =
[

0 −θi

θi 0

]
.

One has

d1(Id, h)
2 = 2p− 2

p∑
i=1

cosθi

and

d2(Id, h)
2 = 2

p∑
i=1

θ2
i

(assuming that theθi are taken in]−π, π ]).
The distances betweeng and g′ can therefore be

computed after puttingO = gt g′ under a canonical
form. This can be done explicitly in 2 or 3 dimensions:
in SO(2), a rotation is always given under the formR(θ)
for someθ ; for SO(3), there is also only one angleθ
and 1+ 2 cosθ = trace(g).

5.3. Image Matching via the Orthogonal Group

Let us now provide a distance, defined along the lines
of Section 3.1, in a tolerant way under the action
of SO(3). This situation assumes that the object are
roughly aligned with respect to the rotations, so that
comparison will implicitely assume that the rotation is
small.

Define the object space to be composed with map-
pings I :R3 → R, and let the orthogonal groupG :=
SO(3) act on it with group actiong∈G : I 7→ gI , with
[g · I ](x) = I (g−1 · x). Using the notation of Section
3.2.3, we define the norms at identity, for paths such
thatg(t) = id, NG(

∂
∂t g(t))

2 = trace [̇g(t)ġ(t)t ] and

NI

(
∂I
∂t
(t, ·)

)2

=
∫
R3

∣∣∣∣∂I
∂t
(t, x)

∣∣∣∣2 dt.
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Then, the associated distanceD on A = G× I
becomes

d((g, I ), (g′, I ′))

= inf

(∫ 1

0
NG(g(t)−1 ∂

∂t
g(t))2 dt

+
∫ 1

0

∫
R3

∥∥∥∥ ∂∂t
I(t, gx)

∥∥∥∥2

dt dx

)
= inf

(∫ 1

0
‖ġ(t)g(t)t‖2dt

+
∫ 1

0

∫
R3

∥∥∥∥∂I
∂t
(t, y)

∥∥∥∥2

dt dy

)
= d2(g, g

′)+
∫
R3
|I (x)− I ′(x)|2 dx.

Distance between images is then given by

d(I0, I1)

= min{d((g0, I ), (g1, I ′)) g0I0 = I , g1I1 = I ′}
= min

{
d((id, g−1

0 I ), (g−1
0 , g1, g

−1
0 I ′)),

g−1
0 g1I1 = g−1

0 I ′
}

= min{d((id, I0), (g̃, Ĩ ))g̃ I1 = Ĩ }
= min
{g∈SO(3)}

{d((id, I0), (g, gI1))}

= min
Xantisymmetric

{d((id, I0), (e
X, eX I1))}

= min
X
‖X‖2+

∫
R3
|I0(x)− I1(e

Xx)|2 dx.

In Cooper et al. (1996), the following variant has
been proposed. The variations of what corresponds to
the intensity7 have been expressed, for a template, as a
linear combination of given functionsφ1(·), . . . , φK (·)
defined onÄ = R3, such that(φ1, . . . , φK ) form an
orthonormal system of functions. The observed model
is given by

I (x) = I temp(g
−1 · x)+

k∑
i=1

λiφ
i (g−1 · x) (21)

for x ∈Ä andg ∈ SO(n). When the pair(g, I ) is given,
this equation uniquely definesλ= (λ1, . . . , λk) ∈ Rk.
This implies that one can identify the set of registered
objectsA = G × I with the setG × RK . To be more
explicit, to (g, I ), one associates(g, λ) with

λi =
∫
Ä

〈I (x)− I temp(g
−1 · x), φi (g−1 · x)〉 dx.

The actionh · (g, I ) = (h ·g, h · I )must be transduced
to an actionh · (g, λ) = (h · g, λ′), with

λ′i =
∫
Ä

〈I (h−1x)

− I temp(g
−1 · h−1x), φi (g−1 · h−1x)〉 dx.

But, sinceh has determinant 1, we see thatλ′i = λi

for all i . Thus, the action ofG onA simply becomes
h · (g, λ) = (hg, λ). This implies that registered ob-
jects can be compared by the very simple left-invariant
distance

D((g, λ), (g′, λ′))2 = d0(g, g
′)+ ‖λ− λ′‖2

whered0 is a left-invariant distance onSO(n) computed
in the previous section.

6. High Dimensional Examples

6.1. Plane Curves

6.1.1. Matching Trajectories Curves are the simplest
cases of functional objects (Section 3.2.3), for which
the setÄ is an interval inR. Any differentiable curve
can be represented by a mappingm : [0, 1] 7→ Rk. Let
us apply the construction of Section 3.1 to this particu-
lar context. The pathsv are functionsv(t, x) defined on
[0, 1]× [0, 1], with null partial derivatives up to some
order atx = 0 andx = 1, for all t . Comparison can be
held by defining norms for infinitesimal deformations
by

NG(v;m) = NG(v) =
∫ 1

0
|L · v|2 dx

and

NI(z;m) = NI =
∫ 1

0
|z|2 dx

whereL is some differential operator (these norms are
homogeneous).

Which leads to defining the energy of a deformation
path (v, m) by∫ 1

0

∫ 1

0
|Lv(t, x)|2 dx dt

+
∫ 1

0

∫ 1

0

∣∣∣∣∂m
∂t
(t, x)+ ∂m

∂x
(t, x)v(t, x)

∣∣∣∣2dt dx.

If m0 andm1 are given and the above energy is min-
imized subject to the contraintm0(gv(1, x)) = m1(x),
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this approach does provide a distance for matching
parametrized curves, and can be used in situations for
which the parametrizationx is significant (for example,
to perform on-line signature identification).

6.1.2. Matching signatures. The previous setting de-
pends on the curve parametrization, in the sense that,
if m0 andm1 are replaced bym0 ◦ ψ0 andm1 ◦ ψ1,
the optimal matching will not vary consistently, that is,
if s0 ands1 were initially matched,ψ0(s0) andψ1(s1)

need not be matched when comparingm0 ◦ ψ0 and
m1 ◦ ψ1. In other terms, the comparison is not valid
from a geometric point of view.

To obtain a geometric comparison, fix a well de-
fined parameterization, the simplest one being the
(Euclidean) arc-length, which corresponds to the con-
straint that the derivativedm

dx has a constant norm along
the curve (the value of this constant being the length of
the curve). We consider curvesx 7→ m(x) defined for
x ∈ [0, 1], such that

L(m) :=
∣∣∣∣dm

dx

∣∣∣∣
is constant along the curve;L(m) is the length of the
curve. We devise our comparison norms by making a
small deformation analysis.

We consider a curvemand a small perturbation along
m, x 7→ 1(x) ∈ R2. The following analysis will be
made assuming that1 and all its derivatives are in-
finitesimally small, and keeping only first order terms.
We obtain a new curvex 7→ m(x)+1(x), which can
be parametrized by arc-length. Denote bym̃ the ob-
tained curve, and byg the diffeomorphim providing
the arc-length parametrization ofm+1, in the sense
that, for allx ∈ [0, 1]

m̃ ◦ g(x) = m(x)+1(x)

Setξ(x) = g(x) − 1. Denote byτ, ν andk the unit
tangent, normal, and curvature ofm. We have

dm

dx
= L(m)τ,

d2m

dx2
= L(m)

dτ

dx
= L(m)2κν

Similarly, denote bỹτ , ν̃, κ̃ the tangent, normal and
curvature ofm̃; let alsoL = L(m) and L̃ = L(m̃).
The small deformation energy will be defined in terms
of the derivatives of1 and some characteristics of the

curvem. We have, neglecting quantities of order larger
than 2 (quantities of order 1 arẽL − L, ξ, τ̃ ◦ g− τ ,
etc).

d1

dx
=
(

1+ dξ

dx

)
dm̃

dx
◦ g− dm

dx

= L̃
dξ

dx
τ̃ ◦ g+ L̃ τ̃ ◦ g− L · τ

' L
dξ

dx
τ + (L̃ − L)τ + L(τ̃ ◦ g− τ)

A first definition of the energy of small deformations
can be

E =
∫ L

0

∣∣∣∣dV

dx

∣∣∣∣2 = 1

L

∫ 1

0

∣∣∣∣d1dx

∣∣∣∣2 dx

with V(x)=1(x/L). Noticing that, at first order,
τ̃ ◦ g− τ is perpendicular toτ , we have

E ' (L̃ − L)2

L
+L

∫ 1

0

∣∣∣∣dξdx

∣∣∣∣2 dx+L
∫ 1

0
|τ̃◦g−τ |2 dx

This expression leads to define a groupG of diffeomor-
phisms of [0,1], and an object spaceI composed with
elements of the kindI = (L , τ ), whereL is a positive
number andτ : [0, 1] 7→ R2 is such that|τ(x)| = 1
for all x. If L is the length andτ the unit tangent, this
characterizes a curve up to translations. Define norms
NG andNI by

NG(ξ ; L , τ ) = L
∫ 1

0

∣∣∣∣dξdx

∣∣∣∣2 dx,

and

NI(δL , δτ ; L , τ ) = δ2
L

L
+ L

∫ 1

0
|δτ |2 dx

Now, if a = (g, L ,T′) is a path onA = G × I, we
must define, according to Section 3.1, the total energy

E(a) =
∫ 1

0

1

L
dL2

dt
dt +

∫ 1

0

∫ 1

0
L

∣∣∣∣dv
dx

∣∣∣∣2 dx dt

+
∫ 1

0

∫ 1

0
L

∣∣∣∣∂T
∂t
+ ∂T
∂x

v

∣∣∣∣2 dt dx. (22)

where we have made the usual change of variablesv =
dg
dt ◦ g−1 andT = T′ ◦ g−1.

For this particular context, the distanceD onA can
be explicitely computed (c.f. Younes (1998)). Letting
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a0 = (g0, L0, T0) and a1 = (g1, L1, T1) be two
registered objects, we have

D(a0,a1)

= L0+ L1−
√

2L0L1

×
∫ 1

0

√
ġ0(x)ġ1(x)(1+ 〈T0(x), T1(x)〉) dx.

The associated optimal deformation paths being also
explicitely known.

6.1.3. The distance we have obtained compares tan-
gent angles, which are rotation dependent. To compare
curves modulo rotations, we pursue the small deforma-
tion analysis and compute the second derivative of1.
This yields

d21

dx2
' L2 dξ

dx
κν + L

d2ξ

dx2
τ + L(L̃ − L)κν

+ L L̃

(
1+ dξ

x

)
κ̃ ◦ gν̃ ◦ g− L2κν

' L
d2ξ

dx2
τ + 2L2 dξ

dx
κν + 2L(L̃ − L)κν

+ L2(κ̃ ◦ g− κ)ν + L2κ(ν̃ ◦ g− ν)
At order 1,L(ν̃ ◦ g− ν) is perpendicular toν, and is
obtained by a rotation ofπ/2 from L(τ̃ ◦g−τ), which
is the normal part of the first derivative of1. Thus, we
haveL2(ν̃ ◦ g− ν) ' −L〈 d1dx , ν〉τ . We finally get

d21

dx2
+Lκ

〈
d1

dx
, ν

〉
τ ' L

d2ξ

dx2
τ + 2L2 dξ

dx
κν

+2L(L̃ − L)κν + L2(κ̃ ◦ g− κ)ν

We define the small deformation energy

E = 1

L3

∫ 1

0

∣∣∣∣d21

dx2
+ Lκ

〈
d1

dx
, ν

〉
τ

∣∣∣∣2 dx,

the factorL−3 stemming from a “real size analysis”
(letting as beforeV(x) = 1(x/L)). This energy can
be written as

E = 1

L

∫ 1

0

∣∣∣∣d2ξ

dx2

∣∣∣∣2 dx

+ L
∫ 1

0

∣∣∣∣2dξ

dx
κ + 2

L̃ − L

L
κ + κ̃ ◦ g− κ

∣∣∣∣2 dx

We shall here work with objects of the kindI = (L , κ),
whereL is the length andκ is the curvature, and deduce
from this small deformation analysis the definition of

the length of a path, introducing again the variablesv,
and letting (L ,K ) be the evolving object at timet , by∫ 1

0

∫ 1

0

1

L

∣∣∣∣d2v
dx2

∣∣∣∣2 dx dt+
∫ 1

0

∫ 1

0
L

∣∣∣∣2dv
dx

K

+ 2
1

L
K

dL
dt
+ ∂K
∂t
+ v

∂K
∂x

∣∣∣∣2 dx dt

6.2. Image Matching

6.2.1. Energy. Let an image be a mapping defined
on Ǟ = [0, 1]2 ⊂ R2, with values inR, and letG be
a group of homeomorphisms acting on the images via
the action considered in Section 3.2.3.

In the homogeneous case, an image deformation
functional can be defined from the norms

NG

(
∂g
∂t
(t0, ·); I(t0)

)2

=
∫ 1

0

∣∣∣∣ ∂2

∂x2

∂g
∂t
(t0, x)

∣∣∣∣2 dx

and

NI

(
∂I
∂t
(t0, ·); I(t0)

)2

= α
∫ 1

0

∣∣∣∣ ∂I
∂x2

(t, x)

∣∣∣∣2 dx

Where α is a positive parameter. The associated
functional is∫ 1

0

∫
Ä

∥∥∥∥ ∂2v
∂x2

(t, x)

∥∥∥∥2

dt dx

+α
∫ 1

0

∫
Ä

∥∥∥∥∂J
∂t
(t, x)+ 〈∇J, v〉

∥∥∥∥2

dt dx.

Comparison between two imagesI0 and I1 can be
performed by minimizing this functional over all paths
which satisfyv(t, x) = ∂v

∂x = 0 for all t ∈ [0, 1] and
all x ∈ ∂Ä, andJ(0, x) = I0(x), J(1, x) = I1(x).
Examples of such computations are provided in the
next section.

6.2.2. Experiments. The pictures in the following
figures provide the estimated morphing processJ(t, ·)
between two imagesI0 and I1.

The first experiments show how the interpolation
process deals with the need for creating pixel intensity:
a totally black image is matched to an image containing
a white disc in its center. Depending on the choice of the
parameterα, the process will allow for the creation of
a large quantity of pixel intensity, yielding a morphing
which looks like fading, with almost no deformation at
all (α small), or will prefer introducing a small white
zone in the center of the disc, and deform it into a
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disc, yielding a process which resembles an explosion
(α large).

The second experiment presents the transformation
of a square into a disc. The remaining ones deal
with anatomical gray-level images (brain scans and
macaque brain slices).

6.2.3. Explosion vs. Fading. The first set of experi-
ments illustrates how luminance can be created during

the optimal morphing process. Depending on the value
of the parameterα (which penalizes non-conservation
of luminance) the results are quite different: for small
α, the disk is appearing without any deformation, sim-
ply the grey levels vary. For largeα, a white spot first
appears at the center of the disk and the deformation
generates the expansion. The first and last picture in
each row are the data provided to the algorithm, and
the other ones are synthesized intermediate steps.

Here is the inverse deformation applied to the last image: we first give the initial image for reference, and then
the final one after application of the inverse deformation. The differences show the places at which luminance has
been created. The third picture gives the reversed deformation itself applied to a regular grid.

6.2.4. Squared Disc. The next experiment shows the matching starting with a square and ending with a smaller
disc. A largeα is chosen to minimize variations of luminance. Some numerical instabilities can be noticed at the
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boundaries.

6.2.5. Tumor. In this next experiment, a brain without a tumor is matched to the same one with a tumor. The tumor
appears progressively during the morphing process. One notices large deformations around the tumor, and almost
no deformation in other places.

6.2.6. Macaque Brain Slices. Two slices of macaque brains are compared. The morphing, registered image and
deformation are provided.
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6.3. Numerical Facts

The minimization of

E(v, J) =
∫ 1

0

∫
Ä

∥∥∥∥ ∂2v
∂x2

(t, x)

∥∥∥∥2

dt dx

+α
∫ 1

0

∫
Ä

∥∥∥∥∂J
∂t
(t, x)+ 〈∇J, v〉

∥∥∥∥2

dt dx

(23)

is performed after time and space discretization, the
derivatives being estimated by finite differences. IfN2

is the dimension of the space grid andT the number
of time steps, there are, because of the boundary con-
ditions, a little less than 3N2T variables to estimate
(v has two coordinates andJ has one).

For fixedv (resp. fixedJ), the energy (23) is quadratic
in J (resp.v). For this reason, we used two step relax-
ation procedure, which alternates a conjugate gradient
descent forJ with a gradient descent forv. A compli-
cation comes from the fact that the discretization of the
intensity conservation term

∂J
∂t
(t, x)+ 〈∇J, v〉

has to be done with care. A direct linear discretization
with finite difference leads to very unstable numerical
procedures, and one has to use a non-linear, but more
stable approximation for the last term, of the kind〈

∂J
∂x
, v
〉
(t, x)

=
2∑

k=1

(J(t, s+ ek)− J(t, s))v+(k, t, s)/h

− (J(t, s)− J(t, s− ek))v−(k, t, s)/h

h being the space step, (e1, e2) the canonical basis of
R2 andv+ (resp.v−) the positive (resp. negative) part
of v.

We also use a hierarchical, multigrid, procedure: the
deformations are first estimated on a coarse grid (small
N) and then iteratively refined until the finer grid is
reached.

The choice of the number of time steps,T , is quite
interesting. ForT = 2 (t = 0 or 1), (23) reduces to the
regularized intensity-conservation cost function which
is of standard use for optical flow estimation. It is no-
ticeable that such an energy fails to identify large defor-
mations, as illustrated by the next very simple example

Figure 2. First line: a small disc and a large disc, the latter being the
target; lines 2 to 5: left estimated deformation applied on a regular
grid, and applid to the small disc (to be compared with the large disc),
for T = 2, 3, 4, 6.

in which a small disc is mapped to a larger one with
identical center. We show, in Fig. 2, several match-
ings which has been obtained by the same algorithm,
with the same value ofα, and various choices ofT .
The increased power for generating large deformation
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obtained by introducing the extra time dimension into
the initially static problem is clearky exhibited by this
example.

7. Conclusion

In this paper we have developed a general framework
for examining object comparison problems in image
analysis which naturally leads to object registration in
a low dimensional setting and object matching in high
dimensions. The reasoning was essentially in two parts:
starting from the problem of designing metrics on the
object setI which are tolerant to the action of a group
G, the analysis led to the need of defining left-invariant
distances onG × I. We then argued that, in the ab-
sence of any other hint for defining such distances,
we could use a a generic construction of left-invariant
Riemannian distances onG × I, and were able to gen-
erate explicit and feasible comparison functionals in
several practical frameworks.

When performing registration with low dimensional
matrix groups, our formalism naturally led to standard
left invariant distances on these groups, which can be
computed, and used in close form. Dealing with groups
of homeomorphisms, the formalism directly led to the
introduction of the velocity field, which was used in
Christensen et al. (1996) by analogy with mechanics,
and because it can generate smooth large deformation
diffeomorphisms. However, working on the product
spaceG × I provided a setting in which the optimal
deformation path is able to cross orbits of the action of
G onI, by generating simultaneous evolutions inG and
in I. The introduction of the Lie derivative (material
derivative) of the image evolution introduces explic-
itly the notion of non-homogeneous evolutions with
respect to the object part of the model. This has allowed
us, for example, to rigorously design curvature based
curve-matching procedures. In particular, it quantify
the balance of energy associated with the evolution in
image matching associated with geometric variation,
and object image variation.

Appendix A. Transitive Group Action

As announced in Remark 1, we show how placing
oneself on the set of registered objects can be seen
as a generalization of the usual deformable template
approach. The latter considers that a group,H , acts
transitively on the object spaceI. Given a distanceD

onA, the least action distance can be defined as

d(I , I ′) = inf {D(id,a),a ∈ H,a · I = I ′}. (24)

It can be shown that, ifD is left-invariant by the action
of A, then d is symmetric and satisfies the triangu-
lar inequality (in Grenander (1993),D(id ,a) is called
an effort functional; similar concepts are introduced in
Hagedoorn and Veltkamp (1999); Pennec and Ayache
(1998)).

A more general definition has been introduced in
Younes (1999) in the framework of transitive action.
This definition relies on fixing areference object, Iref,
which can be an arbitrary element ofI , and let

d(I , I ′) = inf {D(a,a′),a,a′ ∈ H,

Iref = a · I = a′ · I ′}. (25)

LettingG be the stabilizer of the reference object, i.e.

G = {a,a ∈ H,a · Iref = Iref},

d satisfies the triangular inequality as soon asD is left
invariant by the action ofG on H , i.e. D(g ·a, g ·a′) ≡
D(a,a′) for all g ∈ G. It can also easily be checked
that, if D is left-invariant by the action ofH on itself,
then (25) boils down to (24).

We finally show that this construction can be seen as
a particular case of the construction of Section 2.2.
As indicated by the notation,H will be identified
to the set of referenced objectsunder the action of
G,A = G× I, in a way such that the group multi-
plication(g, a) 7→ g · a. is identified to the left action
of G on G × I, as defined in (1). For this, we asso-
ciate to eachI ∈ I an elementρ(I ) ∈ H such that
ρ(I ) · I = Iref (we know that such an element exists,
because the action ofH on I is transitive). We then
define

9 : G × I → H
(g, I ) 7→ gρ(g−1 · I ).

One can show that9 is bijective:9(g, I ) = a is equiv-
alent tog = a ·ρ(a−1Iref)

−1 andI = ga−1 · Iref. More-
over, we have, for allh ∈ G, 9(h·g, h· I ) = h·9(g, I )
so the left-action ofG onG×I is, as required, mapped
to the left-action ofG on H .



Group Actions, Homeomorphisms, and Matching 81

Appendix B. Appendix: Existence of Optimal
Matchings

B.1. Introduction

In this section, we study the existence of optimal match-
ings in the framework of Section 3.2.3. We thus assume
that we are given two norms,NG(·; I )andNI(·; I ), and
that the matching functional is

E(g, I)

=
∫ 1

0
NG

(
∂g
∂t
(t, g−1(t, ·)); I((t, g−1(t, ·))

)2

dt

+
∫ 1

0
NI

(
∂I
∂t
(t, g−1(t, ·)); I(t, g−1(t, ·))

)2

dt

As remarked in Section 3.2.4, diffeomorphisms are
more easily and more efficiently defined as the solu-
tions of an ordinary differential equation associated to
a time-dependen vector fieldv(t, ·) by

g(0, x) = g0(x)

∂g
∂t
(t, x) = v(t, g(t, x))

In terms ofv, the functional can be written

U (v, I)

=
∫ 1

0
NG(v(t, ·); I(t, g−1(t, ·)))2 dt

+
∫ 1

0
NI

(
∂I
∂t
(t, g−1(t, ·)); I(t, g−1(t, ·))

)2

dt

(26)

For p > 0, we letL2(Ä, Rp) be the set of measurable
functions f defined onǞ and taking values inRp such
that

‖ f ‖2 =
√∫

Ǟ

| f (x)|2 dx <∞

Assume that the normsNG(·; I ) and NI(·; I ) are
such that, for some constantγ >0, and for all f ∈
L2(Ä, Rk) (resp. f ∈ L2(Ä, Rd)), one hasγ ‖ f ‖2 ≤
NG( f, I ) (resp.γ ‖ f ‖2 ≤ NI( f, I )). Thus, for fixed
I , the set of f such thatNG( f ; I ) < ∞ can be seen
as a Hilbert subspace ofL2(Ä; Rk) which will be de-
noted byHI . To indicate that there is a relation of the
kind γ ‖ f ‖2 ≤ NG( f, I ), we will use the notation
HI ↪→ L2(Ä, Rk). Similarly, we denote byJI the set

of all functions f such thatNI( f, I ) < ∞, and we
haveJI ↪→ L2(Ä, Rd).

We also denote byH0
I the Hilbert space generated

by functionsv ∈ HI , with compact support included
in Ä. The boundary conditions associated to the min-
imisation of (26) are the following:

• v(t, ·) ∈ H0
1(t,·) for all t

• I(0, ·) = I0(·), I(1, ·) = I1(gv (1, ·))

The existence result will be stated under conditions
of embeddings of the Hilbert spacesHI andJI into
some more restrictive spaces than theL2 spaces.

B.2. Existence Result

We will assume that the normsNG(, ; I ) andNI(·; I )
can be controlled by homogeneous normsN̄G(·) and
N̄I(·) which do not depend onI . We will in fact make
the assumptions: (H1) There exists a positive constant
κ such that, for allI ∈ I, for all f ∈ HI ,

κ N̄G( f ) ≤ NG( f ; I ) ≤ 1

κ
N̄G( f )

and for all f ∈ JI ,

κ N̄I( f ) ≤ NI( f ; I ) ≤ 1

κ
N̄I( f )

This implies in particular that the Hilbert spacesHI

andJI do not depend onI , so that we can drop the
subscriptI when refering to them.

We will also ask for some regularity of the norms
with respect toI :
(H2) There exists a positive constantκ such that, for
all I , I ′, for all f ∈H

|NG( f ; I )− NG( f ; I ′)| ≤ κ N̄G( f )‖I − I ′‖∞

and, for all f ∈ J ,

|NI( f ; I )− NI( f ; I ′)| ≤ κ N̄I( f )‖I − I ′‖∞

We letK be the Hilbert space consisting of time depen-
dent functionsv : [0, 1]×Ǟ→Rk andZ : [0, 1]×Ǟ→
Rd such that, for allt , v(t, ·) ∈ H0 andZ(t, ·) ∈ J
and

‖(v,Z)‖2κ : =
∫ 1

0
N̄G(v(t, ·))2 dt

+
∫ 1

0
N̄I(Z(t, ·))2 dt ≤ ∞
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As in Trouvé (1999), we reformulate the matching
problem in terms of these “time-dependent vector
fields”. For(v,Z)∈K, we let the mappingsgv : Ǟ →
Ǟ and I v,Z : Ǟ → Rd, be the solutions (when they
exist) of the differential system

∂gv

∂t
(t, x) = v(t, gv(t, x))

∂I v,Z

∂t
(t, x) = Z(t, gv(t, x))

with initial conditionsgv(0, x) = x andZ(0, x) = 0.
When the initial pointI0 and the targetI1 are given,

the matching problem can be expressed as minimizing

U (v,Z) =
∫ 1

0
NG(v(t, ·); I0+ I v,Z(t, ·))2 dt

+
∫ 1

0
NI(Z(t, ·); I0+ I v,Z(t, ·))2 dt

with the constraint thatI v,Z(1, ·) = I1− I0.
Let V(I ) be the subset ofK composed with those

(v,Z) such thatI v,Z(1, ·) = I . One can prove that min-
imizers ofU exist by first showing thatU is weakly
lower-semi-continuous onK, and that the intersection
of V(I )with a closed ball inK is weakly compact. Part
of these results have already be addressed in Trouv´e
(1999), in which the homogeneous case has been han-
dled. The essential condition, which is also required in
this more general case, is that the normsN̄G andN̄I are
admissible, in the sense of the following condition:
(H3) there exists a constantκ > 0 such that, for all
f ∈ H,

‖ f ‖∞ +
∥∥∥∥d f

dx

∥∥∥∥
∞
≤ κ N̄G( f )

and, for allz ∈ J ,

‖z‖∞ +
∥∥∥∥ dz

dx

∥∥∥∥
∞
≤ κ N̄I(z)

Note that, if (H3) is true, the results quoted in
Section 3.2.4 state thatgv is well defined for all(v,Z) ∈
K.

The functionI v,Z is defined by

I(t, x)=
∫ t

0
Z(s, gv(s, x)) ds

which is finite since, by (H3), for allt andx,Z(t, x)
is bounded byN̄(Z(t, ·)) which is integrable in thet
variable.

Moreover, it is proved in Dupuis et al. (1998) and
Trouvé (1999) that, still under condition (H3),

Lemma 1. There exists a constant K depending only
onÄ such that, for all v such that

∫ 1
0 N̄(v(t, ·))2 dt <

∞ :
for all t , s ∈ [0, 1], for all x, y ∈ Ä, one has

|gv(t, x)− gv(s, x)| ≤ K‖v‖
√
|t − s|

and

|gv(t, x)− gv(t, y)| ≤ K‖v‖x − y‖

The next lemma is essential for the results we aim
at. We skip its proof, since it is essentially in Dupuis
et al. (1998).

Lemma 2. If (vn,Zn) is a bounded sequence inK
which weakly converges to(v,Z)∈K then gvn and
Ivn,Zn both converge uniformly over[0, 1] × Ǟ to gv

andI v,Z .

Finally, we quote this last result from Trouv´e (1999),
which is an almost direct consequence of the previous
lemmas. ForR> 0, we letBK(R) be the closed ball in
K with radiusR.

Theorem 4. If condition (H3) is true, then, for all
I ∈ I and all R> 0, the setV(I ) ∩ BK(R) is weakly
compact.

The next result deals with the lower semi-continuity
of the matching functional:

Theorem 5. Assume conditions(H1) to (H3). Then,
the functional U is weakly lower-semi-continuous onK

We must prove that, if a sequence(vn,Zn) weakly
converges to(v,Z)∈K, then U (v,Z) ≤ lim inf
U (vn,Zn).

Our first step in this proof is the following lemma.
We letUv,Z be the functional defined onK by

Uv,Z(w,Y) =
∫ 1

0
NG(w(t, ·); I0+ I v,Z(t, ·))2 dt

+
∫ 1

0
NI(Y(t, ·); I0+ I v,Z(t, ·))2 dt
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Lemma 3. If (vn,Zn) is a bounded sequence which
weakly converges inK to (v,Z), then

lim
n→∞ |U (vn,Zn)−Uv,Z(vn,Zn)| = 0

By assumption, there existsR> 0 such that
(vn,Zn)∈BK(R) for all n. We have, for allt ,

|NG (vn(t, ·); I0 + I vn,zn (t, ·))2 − NG (vn(t, ·); I0 + I v,z(t, ·))2|

≤
√

2
√

NG (vn(t, ·); I0 + I vn ,zn (t, ·))2 + NG (vn(t, ·); I0 + I v,z(t, ·))2

× |NG (vn(t, ·); I0 + I vn ,zn (t, ·))− NG (vn(t, ·); I0 + I v,z(t, ·))|

≤ 2κ2N̄G (vn(t, ·))‖I vn ,zn (t, ·)− I v,z(t, ·)‖∞

by conditions (H1) and (H2). This implies∣∣∣∣∫ 1

0
NG(vn(t, ·); I0+ I vn,Zn(t, ·))2 dt

−
∫ 1

0
NG(vn(t, ·); I0+ I v,Z(t, ·))2 dt

∣∣∣∣
≤ 2κ2R‖I vn,Zn − I v,Z‖∞

which tends to 0 by Lemma 2. The same argument
holds for the second integral inU .

We then have

Lemma 4. The functional Uv,Z is weakly lower-semi-
continuous.

By a standard theorem of functional analysis a
strongly continuous convex functional is weakly lower-
semi-continuous. SinceUv,Z is obviously convex, we
must only show that it is strongly continous. However,
this property trivially derives from the fact that, for all
f1, f2 and for all I ,

|(NG( f1; I )2− NG( f2; I )2|
≤ |(NG( f1; I )+ NG( f2; I ))NG( f1− f2; I )
≤ κ(N̄G( f1)+ N̄G( f2))N̄G( f1− f2)

and the similar inequality forNI .
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Notes

1. In fact, as will be seen later, the acting groupsG in the case of
deformable templates, and the groupG in this formulation do
not have exactly the same meaning; the correct point of view
implies that the latter is asubgroupof the former, see Remark 1.

2. If E is a set, a mappingd : E×E→ [0,+∞[ is a distance (or a
metric) if and only if the three following properties are satisfied:

• d(x, x′) = 0⇔ x = x′
• d(x, x′) = d(x′, x) (symmetry)
• d(x, x′)+ d(x′, x′′) ≤ d(x, x′′) (triangular inequality).
.

3. To keep this paper essentially self-contained, we shall avoid
refering to too many concepts of differential geometry, although
our discussion is obviously based on this theory.

4. In the following, we use boldface lettersa, g to refer to paths
onC, G, or any other space, and leave roman letters for denoting
individual elements of these sets.

5. Notice that the functiong and depends on both time variable
t ∈ [0, 1] and space variablex ∈ Ä.

6. To be rigorous, we must assume that a structure ofmeasur-
able spaceis placed onA andF, that is, that these sets are
equipped withσ -algebras, and that probability distributions are
defined with respect to theseσ -algebras. We do not formally in-
troduce these quantities, in order to limit the notational burden
of this section. The concerned reader will easily complete these
gaps.

7. In Cooper et al. (1996), the intensity is a temperature field mea-
sured over the surface of the template.
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