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ABSTRACT

An important area of research in Computational Anatomy

is to assign a metric space structure to 2D/3D images
of anatomical structures. The images are registered in
the non-rigid dense large deformation setting by com-

puting a diffeomorphic transformation between the given

images. The metric distance on the images follows
from the Lie Group structure of diffeomorphisms, which
allows measuremnent of lengths of curves on the mani-
fold of diffeomorphisms. We present here a gradient-
based method to compute the diffeomorphism match-
ing the given images and estimating the metric dis-
tance for the pair. We show results for matching 2D
sections of canine heart images. '

1. INTRODUCTION

‘Whole brain anatomical atlases at sub-miilimeter res-
olution are emerging from the Human Brain Mapping
and National Partnership in Advanced Computational
Infrastructure (NPACI) initiatives. Analysis and in-
ference based on these anatomical volumes present a

challenge in the emerging field of computational anatomy

{8]. Specifically, we wish to compute metric distances
between images of anatomical configurations, with the
aim that these will provide information on the differ-
ences in shape and size of the anatomical configura-
tions present in the images. Such information is de-
sired with the end-application of being useful in aiding
decisions on “close” and “far” for clinical applications.

In the deformable template model, the anatornical
configurations are an orbit under the group G of dif-
feomorphic transformations acting on the coordinate
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space of the configurations. With this model, given
two images Iy, I in the orbit of a template, there ex-
ists an element of the diffeomorphisms matching the
images Iy = ¢lp. In the small deformation dense
volume matching and sparse landmark matching pio-
neered by Bajcsy et. al, Bookstein et. al. [1, 3, 4],
the transformations are computed by perturbations of
the underlying coordinate space arising from elasticity
models. The mappings generated by this methed are
invertible in the small-deformation setting, but are not
so when registrations of images requires large defor-
mations, They are not diffeomorphims in general and
do not support a tetric space structure. Christensen et.
al [6] introduced the large deformations setting con-
straining the mappings for dense image data registra-
tion to be the solutions of an Eulerian ODE forcing the
transport to be a flow of diffeomorphisms. Dupuis et.
al. {7] proved the conditions for the existence of so-
lutions in the group of diffeomorphisms for the dense
image matching problem.

Simultaneously, the connection to metric distances
on the space of diffeomorphisms was established via
work of Trouvé [11, 12, 13] utilizing the property of
the Lie group structure of diffeomorphisms, which is a
Riemannian manifold. By a suitable choice of a Rie-
mannian metric in the tangent space of this manifold,
the space of diffeomorphisms is converted into a met-
ric space via measurement of geodesic length between
points on the manifold. In this short paper, we review
the framework for assignment of metrics on the space
of images in an orbit of the group of diffeomorphisms,
present the gradient of a cost functional to estimate the
diffeomorphism that matches the given images in an
orbit and provide an estimate of the metric distance



between the images. The derivation of the gradient,
its implementation and numerical issues with more de-
tailed results are presented in [2].

2. REVIEW OF FRAMEWORK FOR METRICS
ON ORBITS OF IMAGES

Let the background space {2 be a bounded domain with
piecewise C boundary on R” on which the image
functions 1 : 2 — R? are defined. Let G be a sub-
group of Hom({() (for instance the set Diff{©2)). The
set Hom(f2) is a group with the law of composition
¥ - ¢ = 1 o ¢ and for any image I, ¢I = I o ¢~ de-
fines an action of Hom(€2) on the set of images. Given
atemplate Iiemplage. an anatomical ensemble is the orbit

T={dlemplae | D EG }

of Iemplae under the action of G. Given two anatom-
ical images Ip and I; in the orbit, identify the first
image with the identity element in G and the second
image with an element ¢, € G, The unknown diffeo-
morphism ¢, € G registering the given images I; =
¢11g is the end-point of a flow associated to a smooth
compactly supported time-dependent vector field v €
C2((0,1) x Q,R"™). The flow ¢ : [0,1] — G satisfies
for any z €

(z) = vi($e(2)) (1

The notation ¢7 is used to make explicit the depen-
dance of ¢; with its associated velocity field v and
¢t + & = Qis used to denote the composition ¢, 4 =
¢t © (¢5) 1. The interpretation of ¢ (y) is that it is
the position at time £ of a particle that is at position y
at time s,

Consider a Hilbert space V', with dot product {, }v,
containing the space C2°(£2, K" ) of smooth compactly
supperted vector fields on £2. The length and the en-
ergy of the curves £ — ¢ in the space of smooth dif-
feomorphisms on {2 are given by:

1 1
Length = L(¢") = fo o lvde = [o ooy dt

%‘% with ¢plz) = .

@

1 1
]E'.nergy=E(q§"’)=f0 ||Utll%/dt=./0 (v, vedpdt (3)

The dot product ( , }yv is defined through a differential
operator L on C2°(2, R*) such that:

(u,v}v = {Lu, Lv)a,
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where { , )2 is the usual L2-product for square inte-
grable vector fields on €2 and that V' is the completion
of C°(Q2,R*) for the chosen dot-product. The flow
of v € L*([0,1], V) generates the diffeomorphisms in
G¢={9le=4, vel0l],V)} making G
a sub-group of C'-diffeomorphisms of Hom(f2) and
further,

1
P60, 1) = nf{ fo losllvat | o1 = $owo} @

defines a distance on G for which G is complete. More-
over, from the definition (4) of the distance pg, we get
immediately the right-invariance property pg(wo, ¥1) =
pg{wo o @, @1 o ). The metric distance on the space
of images is defined by:

pr(lo, 1) = inf{ pg{ld, 1) | L = w1, ;1 €G 1,

' 3)
and this metric is positive, symmetric and satisfies the
triangle-inequality [14, 9]. The distance presented only
deals with the deformation aspects, and is not invari-
ant by rigid transformations, which is not an issue for
many application, for which rigid registration is given,
or at least may be recovered by standard algorithms.
If necessary, the metric can be modified to incorporate
rigid deformation invariance [5],

3. GRADIENT-DESCENT BASED
ESTIMATION OF DIFFEOMORPHISMS FOR
IMAGE MATCHING

In the present framework, computation of the metric
distance between two given images requires the esti-
mation of the diffeomorphism that matches the given
images. This estimation involves finding the point ¢
that matches the given images and finding the infimum
length curve joining this point with the identity in the
manifold of diffeomorphisms. The infimum of the length
functional (2} over all possible such paths is computed
by the optimization of the energy functional of the flow
(3), as the critical points of the two coincide. An-
other term that measures the mismatch of the image
Iy composed with the estimate of the matching diffeo-
morphism ¢; from the image I; provides the term in
the cost, the optimization of which drives the matching



towards the desired solution ¢ . This gives

1 1
Eo) = [ ot 25 [ Moodto(u)-hiw)Pey
(6)

as the cost whose optimization in the space V pro-
vides the simultaneous estimation of the matching dif-
feomorphism and the estimation of the shortest length
path to that point, and falls in the category of “in-
exact” matching schemes. The variational gradient of
this cost function is calculated by perturbing velocity
v € L%([0,1],V) an ¢ amount along direction h €
L?([0,1], V) giving the Gateaux variation 8, E(v), re-
lated to its Fréchet derivative V, F by

_ 1
£ 0
M

The gradient of the cost, in this form, becomes
2
V,E=2y— K (;|D¢¥,1IVJ? [ - Jtl]) ®)

whete J? = Jo 0 ¢fo, J} = I o ¢y, [Dgt, |, VI
are the determinant of the Jacobian and the gradient
respectively of the functions ¢}, and J? respectively.
The operator K : L2(Q,R?) — L?(Q,RY) is a com-
pact self-adjoint operator such that when V is defined
from a differential operator L, one gets for any smooth
vector field a € C.(Q,R*), K{L1L)a = @ where Lt
is the adjoint of L. This variational gradient is used in
a standard gradient based scheme exploiting the vector
space structure of V yielding the update

vﬂ-i—l = ,Uﬂ _ €VUHE (9)

where n denotes the simulation number.

4. NUMERICAL RESULTS

The experiment presented involved computing the met-
ric distance between two corresponding 2D transverse
sections from two canine heart images. The images
were first registered using the software “Analyze” [10]
to remove rigid rotation and translation. The time in-
terval [0,1] of the flow is discretized into 20 steps,
with each step being of length ¢ = 0.1. The Cauchy-
Navier operator was chosen to be L = —0.01V2 + I.
The estimated diffeomorphism is shown in 1(g) which
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gives the image mismatch error to be 7.12% of the er-
ror without the mapping, and the metric distance esti-
mated for this image pair is 6.1277.

3. DISCUSSION AND CONCLUSION

The main contribution of this work is to present a gra-
dient descent based method for computing the diffeo-
morphism in non-rigid dense image registration and
estimation of metrics for images. We present an ap-
plication of this algorithm to compute the metric dis-
tance between (wo canine heart images. As this is a
short paper, we refer the reader to [2] for a detailed
discussion of the numerical issues, comparison to pre-
vious work and more examples of applications of this
technique. While the metric distance between two im-
ages in isolation does not provide much useful infor-
mation regarding the shape and size of anatomical con-
figurations present therein, however when considered
with many such metric distances for images mapped
to a common anatomical reference image, these met-
rics may provide useful information quantifying rela-
tive “close” and “far”, information that may be of po-
tential use in aiding clinical diagnosis and treatment.
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Fig. 1. “Heart Mapping Experiment”. Top Row: (a)lmage Iy, (b,c,d)Jp composed with estimated mappings for
along the discretized flow ¢; € [0,1],7 € [0, 19]. The estimated diffeomorphism ¢, is shown in (g), and ¢ I is
shown in (d), which is to be compared to the image I; in (h). The cost as a function of simulation number is shown
in () and a plot of the velocity field along time superposed on a single plot is.shown in (f).
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