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Separable systems of coordinates for the Helmholtz equation Ll d '/I = E'/I in pseudo-Riemannian 
spaces of dimension d have previously been characterized algebraically in terms of sets of 
commuting second order symmetry operators for the operator Ll d' They have also been 
characterized geometrically by the form that the metric ds2 = gik (x)dxidxk can take. We 
complement these characterizations by a group theoretical one in which the second order 
operators are related to continuous and discrete subgroups of G. the symmetry group of Ll d' For 
d = 3 we stud y all separable coordinates that can be characterized in terms of the Lie algebra L of 
G and show that they are of eight types. seven of which are related to the subgroup structure of G. 
Our method clearly generalizes to the case d > 3. Although each separable system corresponds to 
a pair of commuting symmetry operators. there do exist pairs of commuting symmetries S "S2 that 
are not associated with separable coordinates. For subgroup related operators we show in detail 
just which symmetries S"S2 fail to define separation and why this failure occurs. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

The purpose of this article is to investigate the relation­
ship between separation of variables in the Helmholtz equa­
tion for a pseudo-Riemannian space and the subgroup struc­
ture of the invariance Lie group of the equation. The article 
thus brings together the results of three different research 
programs that have been actively pursued during the past 
few years. These are (i) a systematic algebraic approach to 
the separation of variables in p.d.e. I

-
18; (ii) the classification 

of Lie subgroups of Lie groups 1,19-28; (iii) applications of dis­
crete subgroups of Lie groupS.29-33 

Historically. the approach to separation of variables has 
been in terms of Riemannian and differential geometry.34-38 
In the algebraic approach l

-
18 for a d-dimensional manifold 

the Helmholtz equation 

Lld '/I = E'/I (x) (1.1) 

is considered. where x = (xI>X2, ... ,Xd ) is a local coordinate 
system and..:1 d is the Laplace-Beltrami operator on the 
manifold. It is assumed that Eq. (1.1) has the Lie symmetry 
group G. Its Lie algebra L consists of first orderlinear opera­
tors X satisfying [Ll d.x] = O. and we choose a basis 
IXI.···Xn 1 for L. Separable coordinates for Eq. (1.1) are as­
sociated with (d -1 )-tuplets of commuting second-order 
symmetry operators IS a 1 for Ll d' A classification of the sets 
of operators! Sal into orbits under the action of G provides a 
classification of separable systems of coordinates. The sep­
arable functions 

d 

'/I(x) = IlUsJ (1.2) 
i= I 

"'Supported in part by the National Research Council of Canada, the Min­
istere de l'Education du Gouvernement du Quebec and the National Sci­
ence Foundation. 

are the common eigenfunctions of the operators Lld and Sa 
(1 <;a<;d -1). 

There are some puzzling aspects to the algebraic ap­
proach. First of all. while there is a mechanical procedure for 
computing the symmetries! Sa 1 from a separable system of 
coordinates. the precise relationship between the! Sa J and 
the subgroup structure of G has remained unclear. Further­
more, there exist commuting symmetries! Sa 1 that do not 
correspond to any separable coordinates at all! The discov­
ery of practical criteria to determine precisely which com­
muting symmetries lead to variable separation remains one 
ofthe most important problems in this theory. Here we show 
for d = 3 the relation between the subgroup structure of G 
and the coordinate systems yielding separation of variables 
for the Helmholtz equation on the manifold. (This analysis 
clearly generalizes to the case d> 3.) Furthermore, for sub­
group related operators! Sa 1 we show in detail which sym­
metries fail to define variable separation and why this failure 
occurs. 

Section 2 is devoted to the general theory. We show that 
separable coordinates fall into different classes, depending 
on how many of the operators in the set ! Sal are squares of 
the linear operators X (these correspond to Abelian sub­
groups of G), how many are invariant operators of nonAbe­
lian Lie subgroups, and how many are invariants of discrete 
subgroups. In Sec. 3 we treat three-dimensional manifolds of 
constant curvature in some detail. 

2. GENERAL THEORY 

LetLl d be the Laplace-Beltrami operator on ad-dimen­
sional pseudo-Riemannian manifold with metric 
ds2 = 2,1J~ Igijdxidxj

, i.e., 

Lld '/I = I g -1/2a;(g1/2gijajt/!) , 
iJ 

(2.1) 
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where g = det(gij), ai = al axi, and "i.jg'jgjk = 6~. The Helm­
holtz equation for this manifold is 

L1d If/ = EIf/ , (2.2) 

where E is a nonzero constant. In Refs. 17 and 18 the possi­
ble coordinate systems that permit separation of variables 
for the Helmholtz equation have been classified in the cases 
d = 2,3,4. The classification of separable types is closely re­
lated to the symmetry algebra ofEq. (2.2). A first order sym­
metry operator X for Eq. (2.2) is an operator 

d 

X = I 5i(xf)ai , (2.3) 
i= I 

such that [X,Ad ] = 0, where [0,.] is the usual commutator of 
differential operators. (This is equivalent to the assertion 
that! 5i ] is a Killing vector.) The set of all first order symme­
tries of Eq. (2.2) forms a Lie algebra L with 
dimL<,d (d + 1)/2. If(xl, ... ,xd

] is a separable system forEq. 
(2.2), we say the variable Xl is ignorable provided X = aiEL, 
i.e., provided the tensor gij in these coordinates is indepen­
dent of Xl. 

In this paper we restrict ourselves to the case d = 3. For 
d = 3 each separable system ! x I ,x2 ,x3] is characterized by a 
pair of second order differential operators ! S I ,S2] such that 

[SI,S2] = 0, [Sj,L1d = 0, j = 1,2. (2.4) 

Here the corresponding separable solutions 
I/J = A (xl)B (X2)C (x3) ofEq. (2.3) have the characterization 

SjI/J = AjI/J, j = 1,2, (2.5) 

where the eigenvalues Aj are separation constants. 
As shown in Ref. 17 the separable systems are of eight 

distinct types: (I) Three ignorable variables: 

ds2 = (dXI)2 + (dX2)2 + E(dx 3)Z,E = ± 1, 
SI = a~ ,Sz = a~ . (2.6) 

Here, L contains a three-dimensional Abelian subalgebra 
generated by L j = aj,j = 1,2,3, and the manifold is flat. 
Note that the operator S3 = a~ is automatically diagonalized 
in this case. (II) Two ignorable variables: 

(2.7) 

Here, L contains a two-dimensional Abelian subalgebra A 
generated by L j = aj,j = 1,2. The coordinates may be non­
orthogonal. The subalgebra A must be maximal Abelian 
since otherwise the system would be type I. (III) One ignora­
ble variable: This case splits into four subtypes, for each of 
whichL contains the operator LI = ai' and wehaveSI = ai: 
(III I) Centralizer coordinates (orthogonal): 

(1IIZ) Centralizer coordinates (nonorthogonal): 

ds2 = 0"2 [0"3(dxz)z + 2dx ldx2 + (dX3)Z] , 
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(2.8) 

(2.9) 

(1113) Subgroup coordinates: 

ds2 = 0"3(dx3)2 + O"P2[(dx l)2 + E(dx2?] , 
(2.10) 

S2 = J... (a~ + Ea~). 
O"z 

(1114) Generic type III coordinates: 

dsz 
= (0"2 + 0"3)[dx2)2 + EI(dx3?] + EPP3(dx l )2 , 

S ( 
1 1 )a2 1 2 2=E2 -- - 1+ (0"3a2 -EIO"zaD (2.11) 

0", 0", 0"2 + 0", 

112 (O"P; a EIO"z0"3 a) + -- z- --- 3' Ej = + 1. 
(O"z + 0"3) O"z 0"3 -

(IV) No ignorable variables: }fere there are two sUbtypes: 
(IV I ) We have 

ds2 = ~(dXI)Z + O"I(O"Z + 0"3)[(dx2)2 + E(dx3f] , 

(IVZ) Generic coordinates: 

dsz = (0"1 - O"Z)(O"I - 0"3)(dxl)Z + (O"z - O"d(O"z - 0"3)(dxZ)2 

+ (0"3 - O"d(0"3 - 0"2)(dx3)Z, (2.13) 

S 0"2 + 0"3 a2 0"3 + 0"1 a2 
I = ----='--~-- I + 2 

(0"1 - 0"2)(0"3 - 0"1) (0"2 - 0"3)(0"1 - 0"2) 

+ E(O"I + O"z) aj , 
(0"3 - 0"1)(0"2 - 0"3) 

O"P3 a~ + 0"30"1 a~ 
(0"1 - O"Z)(0"3 - 0"1) (0"2 - 0"3)(0"1 - O"z) 

+ E(O"IO"Z) a~ . 
(0"3 - O"I)(O"Z - 0"3) -

In all of the above expressions O"i = O"i (Xl). We refer to 
systems 1114 and IV 2 as "generic" since all other systems of 
types III and IV are degenerate cases of these two. It is only 
for Minkowski space E 2•1 that all eight separable types actu­
ally occur. As shown in Ref. 17, types I, III I, and 1112 do not 
appear for space of nonzero constant curvature. 

In this paper we are concerned with a purely group 
theoretic characterization of the various separation types. 
To successfully characterize a separable system! xi] for Eq. 
(2.2) in terms of the symmetry algebra L it is necessary that 
the defining operators SI'SZ for the system belong to the en­
veloping algebra of L. If this is so, we say that the coordinates 
! xi] are of class I; otherwise they are of class II. Reference 17 
contains a derivation of all class I coordinates for all types 
except IV2 • 

We now describe a general group theoretic procedure 
for characterizing all class I coordinates associated with the 
Helmholtz equation on a three-dimensional Riemannian 
manifold with symmetry algebraL. The validity of this pro­
cedure will be demonstrated using the results of Ref. 17 but 
will also be illustrated by examples in 3. The procedure is as 
follows: 

First we determine if L contains a maximal Abelian 
subalgebra of dimension 3. This will be the case if and only if 
the manifold is flat and corresponds to type I (Cartesian) 
coordinates. Then we find the (conjugacy classes of) maxi-
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mal Abelian subalgebras of dimension 2. Each such subalge­
bra determines a type II system. 

Next we determine the conjugacy classes of one dimen­
sional subalgebras of L. LetXbe a representative from such a 
class and let cent(X) be the centralizer of X in L. There are 
four possibilities: 

Type IIII: cent(X) = [X J al (cent(X)/[X J), cent (X) non­
Abelian: (2.14) 
LetLx = (cent(X)/(X J ) and decompose the space of second 
order elements in the enveloping algebra of Lx into orbits 
under the action of the normalizer Nor(X) of X in G. Every 
type 1111 system with SI = X 2 has the property that S2 is a 
representative from one of these orbits. Two representatives 
from the same orbit correspond to equivalent coordinates. 

Type 1112: cent(X) # !X) al (cent(X)/!X j), cent(X) non­
Abelian: (2.15) 
Decompose the space of second order elements in the envel­
oping algebra of cent(X) into orbits under the action of 
Nor(X). Every type 1II2 system withSI = X 2has the proper­
ty that 52 is a representative from one of these orbits. Class I 
coordinates of this type arise only for flat space. 

Type 1113: Subgroup type coordinates: (2.16) 
Given the one-dimensional subalgebra X, find all subalge­
bras A of L such that (1) A:JX (properly), (2) A is non­
Abelian, and (3) A has a second order Casimir operator S2' 
not equal to..:1 3 or to a linear combination of..:1 3 and the 
square of an element of L. Every type 1113 system is of the 
formSI =X 2,S2· 

Type 1114: Generic type III coordinates: (2.17) 
Let X be as above and determine the space S of all second 
order elements Y in the enveloping algebra of L such that 
[X, Y] = O. Decompose S into orbits under the adjoint action 
of Nor(X) and let S2 be a representative from such an orbit. 
Every type 11I4 system is of the form SI = X 2,S2 such that 
this commuting pair has not already been included under 
types 1-1113 listed above. 

The remaining two types characterize all pairs SI,S2 for 
which neither operator is a perfect square: 

Type IV I: Semisubgroup coordinates: (2.18) 
Consider the three-dimensional subalgebras A of L with 
properties (2) and (3) discussed above in 1113• Take SI to be 
the Casimir operator of such an A and S2 to be a second order 
elemen t in the en voloping algebra of A . (Operators S2 and S ; 
are considered equivalent if they lie on the same orbit under 
the adjoint action of the maximal group of symmetries 
whose Lie algebra isA.) Every type IV I system is of the form 
SI,S2· 

Type IV 2: Generic coordinates: (2.19) 
This is the generic case. Here SI,S2 are simply a pair of com­
muting second order symmetries in the enveloping algebra 
of L, classified into orbits under the action of the symmetry 
group G, and such that this pair has not already been includ­
ed under types I-IVI above. 

For types I, II, and 1113 both operators SI and S2 are 
invariants of Lie subgroups ofG. For 1111,1112,1114, and IVI 
only SI has this property; for IV 2 neither of the operators is 
directly related to a Lie subgroup. The group G also contains 

253 J. Math. Phys., Vol. 22, No.2, February 1981 

discrete subgroups and is itself not necessarily connected. 
We shall see below that those operators SI that are not invar­
iants of Lie groups can be characterized by the fact that they 
occur as invariants of discrete subgroups of G. 

Now we demonstrate the validity of our group theoretic 
classification of defining operators for class I separable co­
ordinates on a three-dimensional Riemannian manifold. 
First we note that every orbit of two-dimensional vector 
spaces, each space composed of mutually commuting second 
order elements in the enveloping algebra of L, belongs to 
exactly one of the eight classes listed above. Thus, it will be 
sufficient for us to show that the defining operators 5 1,S2 
corresponding to a class I separable system of a given type 
(2.6)-(2.18) themselves have the group theoretic character­
ization for the corresponding type listed above. For this we 
draw on the results of Ref. 17. 

The group theoretic characterization of types I and JI is 
obvious. 

(111 1) Centralizer coordinates (orthogonal): It follows 
from the results of Sec. 5 in Ref. 17 that the separable system 
(2.8) is class I precisely when 

ds2 = (dXli + d(li(X2,X3
) , 

where du/ is the metric for a two dimensional Riemannian 
space of constant curvature [with Lie algebra L ' isomorphic 
to one of e(3), e(2,1), 0(4), 0(3,1), 0(2,2)] and S2 a second 
order element in the enveloping algebra of L ' which is not a 
square. HereL:2[X J alL', whereX = ai' so thepairSltS2 is 
of the form (2.14). 

(JIlz) Centralizer coordinates (nonorthogonal): Ac­
cording to Ref. 17, coordinates (2.9) are class I only for flat 
space and the possibilities are listed in Sec. 4 of that paper. 
One can directly verify that in each case the operators SI,S2 
are of the form (2.15). 

(1113) Subgroup coordinates: In Ref. 17 it is shown that 
coordinates (2.10) are class I precisely when 

ds2 = u3(dx3? + u3d(i)2(XI,X2) , 

where d(i)2 is the metric for a two dimensional space of con­
stant curvature, X = al is a Lie symmetry of d(i)2, and S2 is 
the Laplace-Beltrami operator for this two-dimensional 
space. With X = al,SI = X 2 it follows that SI,S2 is of the 
form (2.16). 

(III4) Generic type III coordinates: According to Ref. 
17 coordinates (2.11) are class I if and only if the manifold is 
a space of constant curvature. These coordinates cannot be 
type III3 because, as is straightforward to verify for spaces of 
constant curvature, the subalgebras A in the definition of 
type 1113 must have Casimir operators that are Laplace-Bel­
trami operators on two-dimensional manifolds. The opera­
tor SI [Eq. (2.11)] is clearly not a Laplace-Beltrami opera­
tor. The coordinates cannot be type III2 because among the 
symmetry algebras for spaces of constant curvature only 
e(2, 1) contains an element X such that cent(X) # [X J al Lx 
and cent(X) is non-Abelian. For this case all corresponding 
orbits of operators S2 in the enveloping algebra of cent(X) 
were computed in Ref. 17 and the coordinates were shown to 
be of the form (2.9). If the coordinates (2.11) were type 1111, 

then the manifold would be flat, because among the symme-
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try algebras for constant curvature spaces, only e(3) and 
e(2, 1) contain elements X such that cent(X) = [X 1 G'J Lx 
with cent(X) non-Abelian. These cases are classified in the 
following section and shown to correspond to coordinates 
(2.8). Thus, class I coordinates (2.11) correspond to opera­
tors of the form (2.17). 

(IV I) Semisubgroup coordinates: It is shown in Ref. 17 
that coordinates (2.12) are class I provided 

ds2 = £Ti(dxlf + CT ldUl2(X2,X3) , 

where dUl2 is the metric for a two-dimensional subspace of 
constant curvature. It is clear from Eq. (2.12) that SI is the 
Laplace-Beltrami operator on this subspace; hence, the Ca­
simir operator for the symmetry algebra L ' of the subspace, 
where L 'c;;,.L. Since S2 is defined on the subspace and com­
mutes with S I, it must be expressable in terms of second 
order elements in the enveloping algebra of L '. Thus, opera­
tors S J ,S2 are of the form (2.18). 

(IV z) Generic coordinates: Class· I coordinates (2.13) 
cannot be of operator types I-III since we can see by inspec­
tion that one cannot construct from a linear combination of 
SI and S2 an operator which is a perfect square of a Lie 
symmetry. The operators cannot be of type IV I because the 
only possible choices for the algebra A are e(2), e( 1, I), 0(3), 
0(2,1) acting as transitive symmetry algebras on a two-di­
mensional submanifold. It follows in these cases that the 
Casimir operator of A is the Laplace-Beltrami operator on 
the submanifold, and hence that SI,S2 can be written in the 
form (2.12) for appropriate coordinates. Since a set of or­
thogonal separable coordinates is uniquely determined by its 
defining operatorsSI,S2 (see Ref. 34), these coordinates must 
be of the form (2.12), a contradiction. Hence, class I coordi­
nates (2.13) correspond to operators (2.19). 

The above results hold for all Riemannian manifolds 
admitting class I separable coordinates, and there are an infi­
nite number of such manifolds. However, of special interest 
are the manifolds of constant curvature, since they have the 
property that all separable coordinates are class I. In the 
following section we shall study the symmetry algebra L of 
each of the three-dimensional constant curvature spaces to 
see in detail how the subalgebra structure of L corresponds 
to the separable coordinates I-IV I' We provide a complete 
orbit analysis for all pairs of commuting operators that cor­
respond to proper subalgebras of L, i.e., for all operator types 
except IV 2' In a number of cases we will uncover orbits of 
type III4 operators that do not correspond to variable 
separation. 

3. THREE-DIMENSIONAL SPACES OF CONSTANT 
CURVATURE 

In this section we illustrate the general theory by con­
sidering all spaces of constant curvature. 

A. Group E(3) 

The algebra e(3) of the group E(3) is generated by the 
infinitesimal rotations Li and translations Pi' satisfying the 
commutation relations 
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It has two Casimir operators, namely, 

Ll = p 2 = Pi + Pi + P ~ and 
Ll ' = L-P = L ,PI + L 2P2 + L 3P3 • (3.2) 

For the representations considered here we have Ll' = 0 (a 
space of scalar functions in Euclidean space). 

The subalgebras of e(3) have been classified into orbits 
under the action ofE(3), e.g., in Ref. 19, where the results are 
presented in a diagram. Let us use this classification to inves­
tigate different types of separable coordinates for the equa­
tion LlI/I = EI/I, following Sec. 2. 

I. Three ignorable variables 

The algebra e( 3) has precisely one class of maximal Abe­
lian subalgebras (MASA) of dimension 3 represented by 
I Pp Pz,P3 1· This provides Cartesian coordinates for which 

Sj =P7, i= 1,2,3; Ll =SI +Sz +S3' (3.3) 

II. Two ignorable variables 

The algebra e(3) has precisely one class of MAS A of 
dimension 2, represented by {L3'P 31. This provides cylindri­
cal coordinates, for which 

(3.4) 

III. One ignorable variable 

To find coordinates of type III, and 1112 we must con­
sider separately a representative X of each class of one-di­
mensional (Abelian nonmaximaI) subalgebras and find its 
centralizer centX in e(3). We are only interested in non-Abe­
lian centralizers. The only type of element of e(3) having a 
non-Abelian centralizer can be represented by P3 , where 

cent( P3) = ( P3 1 ffi ( L 3,P
"

P2 1 ' (3.5) 

i.e., centP3 splits into a direct sum of P3 and 
(cent( P3) III P3 1. Hence, no IIIz type coordinates exist in 
this case. Type III I coordinates (orthogonal centralizer type 
coordinates) are obtained by putting 

SI = P~ , (3.6) 

S2 = aq + b (L3 PI + PtL 3) + C(L3 Pz + PZL 3) 

+d(P~ -':'P~)+2e(P1P2)+f(P~ +P~), (3.7) 

i.e., S2 is the most general symmetric second order operator 
in the enveloping algebra of e(2) = {L3,P

"
P2 1. We must now 

classify the operators (3.7) into orbits under Nor( P3 ), i.e., the 
normalizer of P3 in E(3). This is a well-known problem. I. IS 

These orbits can be represented by 

pLL L L ~ + a( P~ - P~),(a>O), and L 3P2 + PZL 3 • (3.8) 

The first two operators should be omitted, since they are 
squares of generators and lead back to the case I or II. The 
last two operators provide type 1111 coordinates, namely, 
elliptic cylindrical and parabolic cylindrical coordinates, 
respectively. 

Type 1113 coordinates (subgroup type) are obtained by 
taking a representative X of each orbit of generators of e(3) 
and finding all proper subalgebras of e(3) that properly con­
tain X, are non-Abelian, and have a second order Casimir 
operator, not equal to Ll = p 2 or to a linear combination of Ll 
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and the square of a generator. The only such chain of subal­
gebras is 

e(3):Jo(3):Jo(2) , 

and we have 

S, = L L S2 = L2, (3.9) 

i.e., S2 is the Casimir operator of 0(3), providing spherical 
coordinates. 

Type 1114 coordinates are obtained by running through 
all representative generators X, and for each X finding the 
most general second order operator S2 in the enveloping al­
gebra of e(3) satisfying [X,S2] = O. We find a representative 
of each orbit and eliminate representatives already encoun­
tered, i.e., corresponding to squares of generators, members 
of the enveloping algebra of cent(X), or Casimir operators of 
subalgebras. Let us examine each case separately. 

(i) X = L, nor L3 = !L3,P3J, and 

S2 = aL2 + b (L,P2 + P2L, - L 2P, - P,L2) 

+ c(Pi + PD + dL 3P3 (3.10) 

[we have dropped the Casimir operator of e(3) from Eq. 
(3.10)]. Separable coordinates (u,v,<P) of this type satisfy 

a a a 
L3=-=X--y -

a<p ay ax 

= ax ~ + ay i. + az a 
a<p ax a<p ay a<p az 

Hence, we have 

ax 
-= -y, 
at:/> 

ay -=x, 
at:/> 

The relations (3.12) imply 

(3.11) 

(3.12) 

x = f(u,v) cos<P, y = f(u,v) sin<P, z = h (u,v) . (3.13) 

The operators 

S, = L j and S2 

in Eq. (2.11) are invariant under the reflection t:/>-+ - t:/> (i.e., 
y-+ - y). Since L 3P3 does not have this invariance, property, 
we must put d = 0 in Eq. (3.10), i.e., operator (3.10) with 
d #0 does not correspond to variable separation. We can 
now use the translation expaP3, belonging to the normalizer 
of L3 in E(3), to simplify S2' For a#O we can reduce Eq. 
(3.10) to 

(3.14) 

For c > 0 and c < 0 this corresponds to oblate and prolate 
spheriodal coordinates, respectively. If a = 0, b #0, we can 
reduceS2 to 

S2 = L,Pl + P2L, - L 2P, - P,Ll , (3.15) 

corresponding to parabolic coordinates. 
If a = b = 0 we return to type II coordinates. 
(ii) X = P3; nor P3 = ! L J,P"P2,P3 J: We have 

S2 = aL ~ + b (L3 P, + P IL 3) + C(L3 P2 + P2L 3) 

+ dL3 P3 + CikPiPk • (3.16) 

The coordinates (U,V,x3) satisfy 

P3== ~ = ax ~ + ay i. + ~i.. 
aX3 aX3 ax aX3 iJy aX3 az 
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Hence, 

x = x(u,v), y = y(u,v), z = X3 , 

and L 3P3 changes sign under the reflection z-+ - z. Hence, 
d = 0 in Eq. (3.16) in order to yield variable separation. Simi­
larly, Ci3 = C3i = O. 

If a #0, we use the normalizer of P3 to reduce S2 to 
S2 = L j + c( Pi - P ~ ), corresponding to II or III, .type co­
ordinates.lfa = O,b 2 + c2 #0, weobtainSz = L 3P, + P IL 3, 

corresponding to the type III I' If a = b = c = 0, we obtain 
type I coordinates. 

(iii) X =L3 + aP3; nor (L3 + aP3) = [L 3,P3J: A 
straightforward computation shows that in this caseS2 satis­
fying [X,S2] = 0 can be reduced to 

(3.17) 

Since L3 and P3 commute, a diagonalization of P3 and L3 
separately is equivalent to a diagonalization of any polyno­
mials in L3 and Py We thus.reobtain case II. 

(IV) No ignorable variables: Neither of the operatorsS\ 
or S2 is the square of a generator of e(3). 

Type (IV,): We return to the non-Abelian subalgebras 
of e(3) discussed above in 1113 , We take SI to be the Casimir 
operator of such a subalgebra and S2 some second order ele­
ment of the enveloping algebra of the corresponding subalge­
bra. These operators S2 must be classified into orbits under 
the group A whose Lie algebra is A. Only one such case oc­
curs for e(3), namely 

S, =L2, S2=Li +rLL O<r<l, (3.18) 

corresponding to spheroconical coordinates (S2 is not al­
lowed to be the square of a generator). 

Type (IV2): Here S, and S2 are simply commuting sec­
ond order operators in the enveloping algebra of e(3). Nei­
ther of them is the square of a generator nor a Casimir opera­
tor of any Lie algebra. This is the generic case with the lowest 
symmetry. The remaining coordinates ellipSOidal and para­
boloidal are of this type. 

This completes the list of all 11 types of separable co­
ordinates in Euclidean 3-space. 

Finally, let us discuss the question of discrete symme­
tries that further characterize some of the coordinate sys­
tems. Indeed, for coordinates of the type III" 1114 , and IV, 
only one of the diagonal operators is characterized by the 
fact that it is an invariant operator of a one or higher dimen­
sional Lie algebra. For coordinates of the type IV 2 neither S, 
nor S2 has this property. These operators will, in general, be 
invariants of certain discrete subgroups ofE(3). No operator 
of the type 

S = a,kLiLk + bikPiPk + Cik(LiPk + PkLJ (3.19) 

is left invariant by discrete translations (unless aik = Cik = 0 
and we have continuous translational invariance). We can 
hence restrict ourselves to point groups and indeed to groups 
of reflections in planes through the origin. Let us use X, Y, 
and Z to denote a reflection of the coordinate x,y, and z, 
respectively, and 12n (A " ... ,An) to denote the Abelian group 
of order 2n generated by A " ... ,An. By inspection we see that 
the operators Si not related to Lie subgroups have the fol­
lowing invariance groups: 
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L~ +a(P~ -PD 

L 3P2 + P2L 3 

L lP2 + P2L l - L 2P l - P lL 2 

L2 ± a(P~ + PD 
L ~ + aL i + bP ~ } 

LZ + bPi + aP~ + (a + b )P~ 

L ~ - C2p~ + c(L2P I + P IL 2 + L l P2 + P2L I )} 

L 2P I + P IL 2 - LIPz - P2L I + c( P~ - Pi) 

Thus, the operators SI,S2 for each of the 11 separable 
coordinate systems can be viewed as corresponding to a cer­
tain subgroup reduction ofE(3) and both Lie subgroups and 
discrete subgroups figure in the reductions. The subgroups 
will determine the symmetry properties of the separated so­
lutions of the Helmholtz equations. In particular, the dis­
crete subgroups are often important in physical applications, 
especially in the context of "symmetry adapted basis func­
tions" in molecular physics and general many body 
theories.5.z9-JJ 

The results of this section are summarized in Table I. 
We do not spell out the explicit form of the coordinates. The 
ones used are listed, for example, in Ref. 38. 

B. The group 0(4) 

Separable systems of coordinates in SJ' the unit sphere, 
were first obtained by Eisenhart34 and studied from the alge­
braic point of view in Ref. 13. Let us now classify them from 
the subgroup point of view. The continuous subgroups of 
0(4) are listed, for example, in Ref. 20 (they were first ob­
tained by Goursae9). 

Using the isomorphism 0(4)~0(3) 6) 0(3) we write the 
algebra 0(4) as IA;,B;,i = 1,2,3, j, satisfying 

[A;,Ak] = €;k/A /, [B;.Bk] = €;k/B/, [A;,Bk] = O. 
(3.21) 

The algebra 0(4) has precisely one MASA [up to conjugacy 
under 0(4)], namely, IA3,B3J. Hence, no class I systems ex­
ist and just one class II system. The one-dimensional subal-

TABLE 1. Separable coordinate systems for E(3). 

: IiX,y) , 

: Ii Y), 

: IiX,y) , 

: liZ, X y), 

: I8(X,Y,Z) , 

(3.20) 

gebras areA 3,AJ + xBiO <x < 1), andA 3 + B3 • No type IIII 
or IIIz coordinates exist on S3; III2 is excluded because 
cent(A J) is a direct sum and IIII is not realized because the 
operators (A ~ ,B i + k 2 B ~) would correspond to separation 
on S2 ®S2 rather than sJ (the 1111 and IIIz type coordinates 
only exist on flat three-dimensional manifolds). The only 
non-Abelian subalgebra of 0(4) with a second order Casimir 
operator that is not a Casimir operator of 0(4) is IA I + B I , 

Az + B2,AJ + B3J. This provides 1113 coordinates for 

SI = (A 1+ BI)Z + (A z + B2)2 + (A3 + B3)Z, 
S3 = (A3 + BJ)Z , (3.22) 

and type IV I coordinates for 

SI = (AI + BI)Z + (A z + B2)Z + (AJ + B3)Z, 

SJ = (A I + B 1)2 + k 2(A2 + Bz)Z (0 < k Z < 1) . (3.23) 

Type 1114 coordinates are obtained from A3 + B3 only. The 
operator Sz commuting with A3 + B3 can be reduced to 

Sz = AIBI + A2B2 + aA3B3' a>O,a# 1 

and we distinguish between 0 < a < 1 and 1 < a 00 • 

Type IV I coordinates were discussed above and type 
IV 2 also occurs. 13 

Notice that only pairs of operators SI,sZ that are invar­
iant under parity IT, i.e., 

IT:(X I ,X2,X3,X4)-( - Xl' - XZ, - X 3,X4), (3.24) 

lead to separable coordinates on S3' as was shown in Ref. 13. 
Here, 

x~ + xi + x~ + x~ = 1 . 

Type Coordinates Diagonal operators Subgroup chain 

I Cartesian P"Pz,P, T(3) 
II Cylindrical L"P, 0(2) ® T(l) 
III, Elliptic cylindrical P"L; +a(P; -P~) a>O E(2) ® T(l):Jl4(X,y) ® T(l) 

Parabolic cylindrical P"L,P, + P,L, E(2) ® T(l):JI,( y) ® T(l) 
III, Spherical L"L; +L~ +Lj 0(3)::)0(2) 

III, Parabolic L"L,P, + P,L, - L,P, - P,L, 0(2) ® IiX, y) 
Oblate spheroidal L"L; +L~ +Li +a(P; +Pi) a>O 0(2) ® I.(Z,xy) 

Prolate spheroidal L"L; +L~ +L;-a(P; +Pi) a>O 0(2) ® I.(Z,XY) 

IV, Spheroconical L; + L ~ + L i,L; + rL ~ O<r<1 0(3)::) I.(X, Y,Z) 

IV, Ellipsoidal L~ +aL; + bPi, a>b>O 
L; +L; +Li +bP; +aP; +(b+a)Pi I.(X,Y,Z) 

Paraboloidal L i - eZPl + c(L,P, + P,Lz + L,P, + PzL,), 
L,P, + P,L, - L,P, - PzL, + e( P; - Pi) c>O 14(X,y) 
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TABLE II. Separable coordinate systems on 5" 

Type Coordinates Operators Subgroup reduction 

II Cylindrical L ;,J~ 0(2) X 0(2) 
III, Spherical L; + L; + L ;,L ~ 0(3):)0(2) 
III. Elliptic cylindrical I and II L; + L; + L i + a(L i - J D,L i (a 7"" 0) 0(2) X I.(X"X,,x,,x.) 
IV, Spheroelliptic L; +Li +Li,L; +rL; (O<r<l) 0(3):::lD, 

IV, Ellipsoidal L;-J;+ l-a+b(L;_J;)+ l+a-b(L~_J;), D, 
a+b-l - a+b-I· 

L 2 + J' + b - a-I (L 2 _ J ') + a - b (L 2 + J' ) 
, , a + b _ I 2 2 b (a _ I) , , 

+ a(b-I)(a-b-I) (L; -J;) (1 <b<a) 
b(a -1)(a + b -I) 

The results of this paragraph are summarized in Table 
II, together with the discrete subgroup properties of each 
system. Again I zn (A ", .. ,An) will be a group of reflections in 
hyperplanes through the origin with, for example, X reflect­
ing the Cartesian coordinate x only. We write the invariant 
operators SI and Sz in terms of Li = Ai + Bi and 
Ji = Ai - Bi, rather than Ai and Bi directly (the J j do not 
constitute a subalgebra). 

C. The group 0(3,1) 

The subalgebras of 0(3, 1) have been classified 1 under 
the action of 0(3, 1) and the results are reproduced in, for 
example, Ref. 20. 

The algebra 0(3,1) is generated by the rotations Li and 
boosts K" satisfying 

[Li,Lj] = EijkLk,[Li,Kj ] = EijkKk,[Ki.Kj ] = -EijkLk' 
(3.25) 

The Casimir operators are.1 = L 2 - K2 and.1 ' = L·K (we 
have.1 ' = 0). All separable coordinates for 0(3,1) hyperbo­
loids were obtained by 0levskir6

; the pairs of commuting 
operators SI and S2 corresponding to these 34 coordinate 
systems are also known. 14 

The algebra 0(3,1) has two MASA. Both are two-di­
mensional, namely, 

IL3,K31 and ILl + KI,L I - K21 . 

We hence have no type I coordinates and two type II coordi­
nate systems. 

The one-dimensional subalgebras are [L3 I, [K 31, 
[Lz + KI j, and {L3 + aK3;a >01. None of these have non­
Abelian centralizers, so we obtain no III I or IIl2 type coordi­
nate systems. Subgroup type coordinates 1113 are obtained 
from the subgroups 0(3), 0(2,1), and E(2). The correspond­
ing pairs of operators are 

(L2,L ~),(K~ + K~ - L LL ~),(K~ + K~ - L j,K~), 
(3.26) 

(K~ + K~ - L ~,(KI + L 3?) and 
«KI + L2? + (LI - K2)2,L ~) . 

Now let us consider III4 type coordinates: 
(i) SI = L ~, nor(L3) = [L3,K31: The most general sec­

ond order operator S2 commuting with L3 can, after linear 
combinations with.1,.1 " andL ~ have been accounted for, be 
written as 
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S2=a(K~ +K~ +L~ +L~)+b(K2LI+LIK2 

- KIL2 - L2K I) + cK~ + dL3K3' (3.27) 

The transformation expaK3 induces a hyperbolic rotation 
between the first two terms. Hence, ifJal < Ib I, we can trans­
form a into zero; if lal > Ib I, we can transform b into zero; 
and if lal = Ib I, the first two terms reduce to 
(LI + K2? + (L2 - KI)2. In these coordinates we have 
L} = a/a¢J and the termL3K3 will be odd under the transfor­
mation ¢J--.. - ¢J which should leave S2 invariant. Hence, 
d = O. Iflal = Ib I,KJcan be used to scale the valueofa (and 
b) with respect to c. Using expaKJ , parity, and linear combi­
nations with A we can finally reduce S2 to one of the forms: 

Ki +K~ +aKLL IK2 +K2L, -L2KI -KILz +aK~ 
(a,> 0) (3.28) 

(L[+K2)2+(L2-KI?+EK~ (E= ±1). 

In the first case we distinguish between the regions 
O<a< 1,1 <a< 00, and - 00 <a<O. 

(ii) SI = K j, nor(K3) = [L3.K31: Imposing 
[K ~ ,S2] = 0 and using linear combinations with .1 ,.1 " and 
K~ we have 

S2 = a(L i - K ~ - L ~ + K i) + b (L IL2 + L2L 1 + K IK 2 

+K2K I)+c(Li -K~ +L~ -KD+dL3K3' 
(3.29) 

In these coordinates we have K3 = a/ap and L3K3 
changes sign for p- - p. Hence, d = O. The operator 
expaL 3 will rotate between the first two terms. Hence, we 
can always rotate b in zero (the case a2 + b 2 = 0 would lead 
back to type II coordinates). We thus obtain 

S2=Ki -L~ +a(Li -KD, O<lal<1 (3.30) 

and we distinguish between 0 < a < 1 and -1 < a < O. 
(iii) SI = (KI + L2)2, 
nor(K I + L2) = [K3.K1 + L2.K2 - L d : 

(3.31) 

The operator S2 satisfying [K[ + L 2,S21 = 0 can be written 
as 

S2 =a(Ki +K~ - LD + b [(K, +L2)L3 +L}(K, +L2) 
+ K3(K2 - L I) + (K2 - L[)K3] 
+ c[(K2 - L[)2 + (K[ + L2)2] 
+ d (KI + L 2)(K2 - L I) . 

(3.32) 
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The separable coordinates (U,v,t) will be such that 
KI + L2 = alat • The term (KI + L 2)(K2 - L I) will be odd 
under the reflection t-+ - t; hence, d = O. If a =I- 0, we put 
a = 1 and use expa(K2 - L I) to transform b-+O. Further 
exp(3K) will scale c with respect to a. We obtain 

S2=K; +K~ -L~ +E[(K2 -LI)2+(KI +L2)2] , 
E = ± 1 . (3.33) 

(c = 0 is excluded, since it would lead to type III).) If a = 0, 
b =1-0, we put b = 1 and use expa(K2 - L I) to transform 
c-+O. Finally a = b = 0 is excluded, since it would lead to 
type II. 

(iv) SI = (L3 + aK3)2, nor(L3 + aK3) = I L 3,K3 J: 
(3.34) 

The most general second-order operator commuting with 
L3 + aK3 (a =1-0) can be reduced to, for example, 
K}(bL3 + cK3) and hence leads back to type II coordinates. 

Type IV I coordinates are obtained similarly as type 1113 
ones. Indeed, we consider the subgroups 0(3),0(2,1), and 
E(2) of 0(3, 1) and take SI as the corresponding Casimir op­
erator. The operator S2 will then be a second-order operator 

in the enveloping algebra of 0(3),0(2,1), or e(2), respectively. 
These operators must be classified into orbits under 0(3), 
0(2,1), or E(2), as the case may be, and orbits corresponding 
to squares of generators must be excluded. For 0(3),0(2,1), 
and E(2) we obtain one, six, and two orbits, respectively. IS 

Finally, we are left with the generic case IV 2' The opera­
tors SI and S2 are such that neither of them is the square of a 
generator or a Casimir operator ofa subgroup of 0(3, 1) [nor 
is it conjugate under 0(3,1) to such operators]. 

A further subclassification is obtained by considering 
discrete subgroups of 0(3, 1) leaving the individual pairs of 
operators invariant we omit all details here but summarize 
the results in Table III, where we give the invariant opera­
tors, the subgroup reductions, and identify the coordinate 
system by the number it carries in Refs. 14 and 36. 

D. The group 0(2,2) 

We shall consider this case in somewhat less detail than 
the previous ones. Separable systems of coordinates on the 
hyperboloid x~ + x~ - x~ - x~ = 1 were discussed in Ref. 
16. The subalgebras of 0(2,2) were classified in Ref. 20 and a 

TABLE III. Diagonal operators and corresponding subgroup chains for separable coordinate systems on the 0(3,1) hyperboloid. 

Type Diagonal operators 

II L;X; 
(L, + K2)2,(L2 - K,)2 

III, L; + L i + L ;,L ; 
K; + K; - L i,L ; 
K; +K~ -L;X; 
K; + K; - L i,(K, + L3)2 
(L, - K2)2 + (L2 + K,)2,L i 

III. L;,K; + K i + aK i 

L ;,L,K2 + K2L, - L2K, - K,L2 + aK; 
L i,(L, + K2)2 + (L2 - K,)2 + EK; 
K;,K; -L~ +a(L; -Ki) 
(K, + L2f,K; + K; - L; + E[(K2 - L,)2 + (Kl + L2)2] 
(K, + L2)2,(K, + L2)L, + L,(K, + L2) + K,(K2 - L,) + (K2 - L,)K, 

IV, L; + L; + L i,L; + aL i 
K; +K; -L;'L; -aK; 
K; +K; -Ll,K; +a(K2L,+L,K2) 
K; + K; - L ;,L l + (L,K2 + K2L,) 
K; + Ki - L lx; + (L,K2 + K2L,) 
K; + K; - L ;X,K2 + K2K, + K2L3 + L,K2 
(K, + L2f(K2 - L,)2,L i + (K, + L2)2 
(K, + L2)2 + (K2 - Ll,L3(K, + L2) + (L2 + K,)L3 

IV2 M; + bMi + aMi - (a + b)K; - (a + I)Ki - (b + I)K;,abK; + aKi + bK;, 
M; -aK; -bK;-(a+b)K; +(a+ I)M; +(b+ I)M;, 
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abK; -aMi -bM;, 
2aM; - (a + I)(Ki - Mi) - a(Ki - Mi) - b(K2M, + M3K2 - M2K3 - K,M2), 
(a l + b 2)M; - a(Ki - Mi) + b(K3M2 + M2K3), 
(K2 + M3)2 + (K, + M2)2 + (a + I)K; + K;- Mi + aIM; - Ki), 
(K, + M212 - a(K2 + M,l2 + aK;, 
(K2 + M3)2 + (K3 + M212 - (a + 11K; - Mi + K; - arK; - Mi), 
(K, + M2f - a(K2 + M3)2 - aK; 
(K2 + M3f - (K3 + M2f - (a -11K; - Mi +K; - aIM; - Kil, 
(K2 + M,l2 - arK, + M2)2 - aK; 
M; - Ki - M; - (M2 - K,l2 - M,(M2 - K3) - (M2 - K3)M" 
(M2 - K,f - K,(K2 - M,) - (K2 - M,)K, 
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O<a< 1,1 <a< ao 
or - ao <a<O 
a;;.O 
E= ± I 
o < a < I or - I < a < 0 
E= ± I 

O<a<1 
a< - lorO<a 
O<a 

Subgroup chain 

0(2)®0(I,I) 
T(2) 
0(3PO(2) 
0(2,IPO(l,I) 
0(2,IPO(I,I) 
0(2,IPT(I) 
E(2PO(21 

0(2)XI.(Z,T) 
0(2)XI4(X,Y) 

0(2)XI.(X,Y) 
O( 1,1) X I ,.(X, Y,Z,T) 
T(I)XI 4(X,Y) 

T(I)XI2(X) 
0(3)::JI,.(X,Y,Z,T) 
0(2,1)::lI,.(X,Y,Z,T) 
0(2,1)::H4(Y,Z) 
0(2,1) ::1I.( Y,Z) 
0(2,1):::) 1.( Y,Z I 
0(2,lPI2(Z) 

E(2PI4(X,Y) 
E(2PI2(X) 
1'6(X,Y,Z,T) 
1'6(X,Y,Z,T) 

1.(Y,ZI 

I.(Y,Z) 

1.(Y,ZI 

14(Y,Z) 

I.(Y,Z) 
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FIG. I. The 0(2,2) conjugacy classes of subalgebras of 0(2,2). The param­
eters take the following real values: 
E = ± 1,0< ici<I,d)O,e> 0./#0,0< igi <I,O<h < I. A line connects 
each algebra with its maximal subalgebras. A solid (broken) line indicates 
an inclusion for all (some) values of the parameters involved. 

diagram of them is given in Fig. 1. We use the isomorphism 
0(2,2) - 0(2,1) Ii) 0(2,1) and write the algebra 0(2,2) in the 
form IA;,B; l: 

[AI.Az] = -A3, [A3.A.l =A2, [A Z.A3] =A I , 

[BI,Bz] = - B3, [B3,BI] = Bz, [Bz,B3] = B I , (3.35) 

[A;,Bk] = 0, i,k = 1,2,3 

(A3 and B3 are the compact elements). 
Let us discuss the individual classes of coordinates. 
Type I: The algebra 0(2,2) has no MASA of dimension 

3, and hence this class does not occur. 
Type II: There exist six different MASA of dimension 2, 

each corresponding to a different system of coordinates. Sys­
tems 11, 12, and 13 of Ref. 16 are orthogonal and correspond 
to the subalgebras IA z,B3l, IA l ,Bl j, and 
1 A I - A 3,B I - B3 j, respectively. Systems 14, 15, and 16 are 
nonorthogonal and correspond to the subalgebras 
IA J,BI - BJj, IA l ,BI - B3l, and IA 3,B2j, respectively. 

Type IIII and 1II2 : These do not occur since the centra­
lizers of all one-dimensional subalgebras are either Abelian, 
or reductive of the type 

IA3l Ii) IBpBl,B3l, IAzl Ii) IB I,B2,B3l , 
or (AI -A3l Ii) IBI,Bl,B3)· 

These do not lead to separable coordinate systems on the 
considered hyperboloid [they would on the direct product of 
two 0(2,1) hypt:rboloids]. 

Type IIIJ : The algebra 0(2,2) has three non-Abelian su­
balgebras with second order Casimir operators distinct from 
the Casimir operators of 0(2,2). These are 

(i)e(1,I):(A z -Bz.A 1 -AJ,BI -B3l 

[here SI = (Al - Bzf,Sl = (A I - A3)(B I - B3) leads to one 
coordinate system], 

(ii) 0(2,1): (A I + BI.A z + BZ.A3 + B3l ' 

(iii)o(2,I):(AI-BI.Al+Bz.A3-B3l· 

Each of the 0(2,1) subalgebras leads to three different sub­
group type coordinate systems. 

Type 1II4 : The one-dimensional subalgebras providing 
1114 type coordinates are IA3 +B3l, (A3 -B3l, (A z +Bzl, 

259 J. Math. Phys., Vol. 22, No.2, February 1981 

{AI - A3 + BI - B3j, and (AI -A J - BI + B3j, leading to 
two, two, nine, three, and three systems, respectively. 

Type IVI : The same subalgebras e(1,I) and 0(2,1) as in 
case 1113 lead to these "semi subgroup" type coordinates, of 
which there exist 8 +6 +6 = 20. 

Type IVl : The remaining generic case leads to 22 more 
coordinate systems. 16 

Thus, altogether 74 separable coordinate systems exist. 
Of these exactly six are nonorthogonal. We shall not discuss 
their discrete symmetries here. 

E. The group E(2,1) 

Separation of variables in three-dimensional Min­
kowski space has not been investigated with the same 
amount of detail as in the other three-dimensional spaces of 
constant curvature. The coordinate systems can however be 
extracted from Refs. 17 and 14. The subgroup structure of 
E(2,I) on the other hand is known. 21 We write the algebra 
e(2, 1) in the form 1 KI .K2,L3,PO,PIPzl : 

[KI,Kl] = - L3,[L3.K1] = Kz,[L3.K2] = - KI , 

[K;,Po] = P;,[K;.Pk ] = D;kPO,[L3,PoJ = 0, (3.36) 

[L3,P.l = P2, [L J ,P2 J = - PI' [ P" ,Pv ] = 0 , 

(i,k= I,2;/l,v=0,I,2). 

Type I: There is one three-dimensional MASA: 
1 Po,PI,P2 l corresponding to Cartesian coordinates. 

Type II: There are four different MASA of dimension 2. 
Two of them IK I ,Pl l and (L 3,Po l correspond to orthogonal 
coordinates, and two others correspond to nonorthogonal 
ones. These are 

SI = (Po - Pzf, Sz = (L3 + KI?: 
x =X2X3, y =XI - ~X~X3' t = -XI +x3 + ~X~X3' 

and 

SI = (Po - PZ)2, Sz = (L3 + KI + Po + Pz)z: 

X = X2(X2 + X3)' Y = x I + Xz - x~ ( ~z + X3 ) 
2 ' 

t = - X I + Xz + X3 + x~ ( ~z + i1
). 

Type IIII: Among the nine types of one-dimensional 
subalgebras of e(2, 1) precisely three algebras have non-Abe­
lian centralizers, two of which are direct sums. These are as 
follows: (i) ( Pll with cent( PI) = PI Ii) (Kz,Po,Pzl: Hence, 
SI = Pi and Sz is an element of the enveloping algebra of 
e( 1,1), not equal to the Casimir operator, nor to the square of 
a generator. This leads to eight orthogonal coordinate sys­
tems. (ii) ( Pol with cent( Po) = Po Ii) (LJ,PI,Pzl: Hence, 
SI =P6 andSz iseitherL3P I +PIL30rL~ +a(Pi -PD 
with a > 0 (two orthogonal systems). 

Type IIIz: The only element of e(2, 1) that has a nonse­
parable centralizer is (Po - Pz) with 
cent( Po - P2) = (L3 - KI,Po + PZ,PI,PO - Pzl (this is a 
nilpotent algebra). In this case we have nor 
(Po - Pz) = (Kz,L J - KI,Po + P2,PI,PO - Pzl. The choice 
SI = (Po - Pz)2 and Sz a member of the enveloping algebra 
of cent( Po - Pz) (not equal to a square of a generator, nor to 
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a Casimir operator) leads to three nonorthogonal coordinate 
systems. These are as follows: 

0) S2 = P.(L3 - K.) + (L3 - K.)PI , 

X = X3V X 2 , Y - t = XI - !x~ , 
y + t = 2x2 ; 

Oi) S2 = (L3 - K.)2 + 4P~ , 

x=x3Vl +xL y-t=XI-~~X2' 
y + t = 2x2 ; 

(iii) S2 = (L3 - KI)2 + 8aPI (PI - P2), a> 0 , 

y + t = 2x2 • 

Type III3: Subgroup type coordinates in this case only 
originate from the 0(2,1) subgroup. We obtain three coordi­
nate systems, corresponding to Sf = L ~,K Lor (L3 - Kl)2 
and S2 = K ~ + K ~ - L ~ . 

TypeIII4:TakingS. = L LKLor(L3 - K2f we obtain 
10 orthogonal coordinate systems. 

Type IV.: Semisubgroup type coordinates again origi­
nate from 0(2,1) only and six types of them exist. 

Type IV2: The generic class here consists of 22 types of 
coordinates. 

The total is 54 orthogonal coordinate systems, and five 
nonorthogonal ones. We shall not go into the problem of 
discrete symmetries here. 
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