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Abstract

These notes are an introduction to the theory of algebraic varieties over fields. In
contrast to most such accounts they study abstract algebraic varieties, and not just
subvarieties of affine and projective space. This approach leads more naturally into
scheme theory.
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Introduction

Just as the starting point of linear algebra is the study of the solutions of systems of linear
equations,

Zainj:di, i:17...,m7 (*)

j=1
the starting point for algebraic geometry is the study of the solutions of systems of polyno-
mial equations,

fi(Xla'--aXn):Oa izl,...,m, flek’[Xl,,Xn]

Note immediately one difference between linear equations and polynomial equations: the-
orems for linear equations don't depend on which fielgbu are working ovef,but those

for polynomial equations depend on whether oriis algebraically closed and (to a lesser
extent) whethek has characteristic zero.

A better description of algebraic geometry is that it is the study of polynomial functions
and the spaces on which they are defined (algebraic varieties), just as topology is the study
of continuous functions and the spaces on which they are defined (topological spaces),
differential topology (= advanced calculus) the study of differentiable functions and the
spaces on which they are defined (differentiable manifolds), and complex analysis the study
of analytic functions and the spaces on which they are defined (Riemann surfaces and
complex manifolds):

algebraic geometry| regular (polynomial) functions | algebraic varieties

topology continuous functions topological spaces

differential topology| differentiable functions differentiable manifolds

complex analysis | analytic (power series) functionscomplex manifolds.

The approach adopted in this course makes plain the similarities between these different
areas of mathematics. Of course, the polynomial functions form a much less rich class than
the others, but by restricting our study to polynomials we are able to do calculus over any

field: we simply define
d , .
d_X ZGiXZ = ZZ-CLZ‘Xlil.

Moreover, calculations (on a computer) with polynomials are easier than with more general
functions.
Consider a differentiable functiof{x, y, z). In calculus, we learn that the equation

fla,y,2) =C **)

1For example, suppose that the system (*) has coefficiepts k and thatk is a field containing:. Then
(*) has a solution ink™ if and only if it has a solution iK™, and the dimension of the space of solutions is
the same for both fields. (Exercise!)
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defines a surfacé in R?, and that the tangent plane fat a pointP = (a,b,c) has

equatiof

The inverse function theorem says that a differentiable map — S’ of surfaces is a
local isomorphism at a poir® € S if it maps the tangent plane & isomorphically onto
the tangent plane &’ = a(P).
Consider a polynomiaf (z, y, z) with coefficients in a field:. In this course, we shall
learn that the equation (**) defines a surfacekih and we shall use the equation (***)
to define the tangent space at a paihbn the surface. However, and this is one of the
essential differences between algebraic geometry and the other fields, the inverse function
theorem doesn’t hold in algebraic geometry. One other essential difference 19 #ad
not the derivative of any rational function &f, and neither is{"?~! in characteristip # 0
— these functions can not be integrated in the ring of polynomial functions.

Sections 1-8 of the notes are a basic course on algebraic geometry. In these sections
we assume that the ground field is algebraically closed in order to be able to concentrate
on the geometry. The remaining sections treat more advanced topics. Except for Section 9,
which should be read first, they are largely independent of each other.

2Think of S as a level surface for the functiofy and note that the equation is that of a plane through
(a, b, ¢) perpendicular to the gradient veciorf)p at P.)



CONTENTS 7

Notations

We use the standard (Bourbaki) notatiofs:= {0,1,2,...}, Z = ring of integersR =
field of real numbers = field of complex numbers, = Z/pZ = field of p elementsp a
prime number. Given an equivalence relatig denotes the equivalence class containing
x. Let I and A be sets; damily of elements ofA indexed byI, denoted(a;);c;, IS @
functioni — a;: I — A.

All rings will be commutative withl, and homomorphisms of rings are required to map

1to 1. ForaringA, A* is the group of units im:
A* ={a € A|there exists & € A such thaub = 1}.
We use Gothic (fraktur) letters for ideals:
abcmmungpgqgAB MNP Q
a becmmnpqABCMN P @

X is defined to b&”, or equalsy” by definition;
X is a subset ot (not necessarily proper, i.eX; may equaly);

X andY are isomorphic;
X andY are canonically isomorphic (or there is a given or unique isomorphism).

SECECR®
R X N s
~
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O Preliminaries on commutative algebra

In this section, we review some definitions and basic results in commutative algebra, and
we derive some algorithms for working in polynomial rings.

Algebras

Let A be aring. AnA-algebra is a ring3 together with a homomorphisig: A — B. A
homomorphism ofA-algebrasB — C'is a homomorphism of ringg: B — C such that
v(ip(a)) =ic(a)foralla € A.

Elementsy, . . ., z, of an A-algebraB are said t@eneratét if every element ofB can
be expressed as a polynomial in thevith coefficients inz(A), i.e., if the homomorphism
of A-algebrasA[Xy,...,X,] — B sendingX; to z; is surjective. We then writd3 =
Alxy,...,z,]. An A-algebraB is said to befinitely generatedor of finite-typeover A) if
it is generated by a finite set of elements.

A ring homomorphismA — B is finite, and B is afinite A-algebra, ifB is finitely
generated as aA-modulé}

Let k£ be a field, and letA be ak-algebra. If1 # 0in A, then the mage — A is
injective, and we can identify with its image, i.e., we can regaftdas a subring ofd. If
1 =0inaringA, thenA is the zeroring, i.e.4 = {0}.

Let A[X] be the polynomial ring in the variabl& with coefficients inA. If A is an
integral domain, themleg(fg) = deg(f) + deg(g), and it follows thatA[X] is also an
integral domain; moreover [ X|* = A*.

Ideals

Let A be a ring. Asubring of A is a subset containingy that is closed under addition,
multiplication, and the formation of negatives. Ateala in A is a subset such that

(a) ais a subgroup ofl regarded as a group under addition;

(b) a€a,re A=rac A

Theideal generated by a subsétof A is the intersection of all ideals containingA
— it is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the
form > r;s; with r; € A, s; € S. WhenS = {sy, so,...}, we shall write(sy, so, .. .) for
the ideal it generates.

Leta andb be ideals inA. The se{a +b | a € a, b € b} is an ideal, denoted hy+ b.
The ideal generated bjub | a € a, b € b} is denoted byib. Clearlyab consists of all
finite sums) _ a;b; with a; € a andb; € b, and ifa = (a4, ..., a,) andb = (by,...,b,),
thenab = (a;by,...,a:b;,...,anb,). Note thatab C anb.

Let a be an ideal ofA. The set of cosets af in A forms a ringA/a, anda — a + a
is a homomorphisnp: A — A/a. The mapb — ¢~'(b) is a one-to-one correspondence
between the ideals of /a and the ideals ofl containinga.

3The term “module-finite” is also used (by the English-insensitive).



0 PRELIMINARIES ON COMMUTATIVE ALGEBRA 9

An idealp is primeif p # Aandab € p = a € p orb € p. Thusp is prime if and only
if A/p is nonzero and has the property that

ab=0, b#0=a=0,

i.e., A/pis an integral domain.

An idealm is maximal if m # A and there does not exist an id@eatontained strictly
betweenm and A. Thusm is maximal if and only ifA/m has no proper nonzero ideals,
and so is a field. Note that

m maximal = m prime.

The ideals ofA x B are all of the forma x b with a andb ideals inA andB. To see
this, note that ifc is an ideal inA x B and(a,b) € ¢, then(a,0) = (1,0)(a,b) € ¢ and
(0,b) = (0,1)(a,b) € ¢c. Thereforeg = a x b with

a={a|(a,0)ec}, b={b](0,b)ec}

PROPOSITIONO.1. The following conditions on a ringl are equivalent:
(a) every ideal inA is finitely generated:;
(b) every ascending chain of ideals C a; C --- becomes constant, i.e., for some
am:um+1:... .
(c) every nonempty set of ideals ihhas a maximal element (i.e., an element not prop-
erly contained in any other ideal in the set).

PROOF. (&)= (b): If a; C ay C --- is an ascending chain, then=g4 (Ja; is again an
ideal, and hence has a finite 4et, ..., a,} of generators. For some, all thea; belong
a,, and then

O, = Qg1 =+ - = @

(b) = (c): If (c) is false, then there exists a nonempty Seif ideals with no maximal
element. Letn; € S; becausey, is not maximal inS, there exists an ideal, in S that
properly contains;. Similarly, there exists an idea} in S properly containings,, etc.. In
this way, we can construct an ascending chain of ideats a, C a3 C --- in S that never
becomes constant.

(c) = (a): Leta be an ideal, and let' be the set of idealé C a that are finitely
generated. Let = (a4, ...,a,) be a maximal element &f. If ¢ # a, then there exists an
elementa € a,a ¢ ¢, and(ay,...,a,,a) will be a finitely generated ideal ia properly
containinge. This contradicts the definition ef ]

A ring A is Noetherianif it satisfies the conditions of the proposition. Note that, in
a Noetherian ring, every ideal is contained in a maximal ideal (apply (c) to the set of all
proper ideals ofA containing the given ideal). In fact, this is true in any ring, but the proof
for non-Noetherian rings requires the axiom of choice (FT 6.4).

Unique factorization

Let A be an integral domain. An elemeatof A is irreducible if it admits only trivial
factorizations, i.e., it = bc = b or cis a unit. If every nonzero nonunit id can be
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written as a finite product of irreducible elements in exactly one way (up to units and the
order of the factors), thedA is called aunique factorization domain In such a ring, an
irreducible element can divide a produdic only if it is an irreducible factor ob or ¢ (let

bc = aq and consider the factorizations iofc, ¢ into irreducible elements).

PROPOSITIONO.2. Let A be a unique factorization domain. A nonzero proper principal
ideal (a) is prime if and only ifu is irreducible.

PROOF. Assume(a) is a prime ideal. Then can’t be a unit, because otherwigg would
be the whole ring. If: = bc thenbe € (a), which, becauséu) is prime, implies thab or ¢
isin (a), sayb = aq. Now a = be = aqc, which implies thayc = 1, and that is a unit.
For the converse, assumaés irreducible. Ifbc € (a), thena|be, which implies that|b
or a|c (here is where we use thdthas unique factorization), i.e., thaor ¢ € (a). O

PROPOSITIONO.3 (GAUSS SLEMMA). Let A be a unique factorization domain with field
of fractionsF. If f(X) € A[X] factors into the product of two nonconstant polynomials
in F'[X], then it factors into the product of two nonconstant polynomiald[i].

PROOF. Let f = ghin F[X]. For suitablec,d € A, g1 =4 cg andh; =4 dh have
coefficients in4, and so we have a factorization

cdf = g1 - hy in A[X].
If an irreducible element of A dividescd, then, looking moduldp), we see that

0=g1-hiin (4/(p))[X].

According to Propositiof 0/2(p) is prime, and sqA/(p)) [X] is an integral domain.
Therefore,p divides all the coefficients of at least one of the polynomialsi,, sayg,
so thatg; = pg» for someg, € A[X]. Thus, we have a factorization

(cd/p)f = g2 - ha in A[X].

Continuing in this fashion, we can remove all the irreducible factorsipnd so obtain a
factorization off in A[X]. O

Let A be a unique factorization domain. Thententc(f) of a polynomialf = ag +
a1 X +---+a, X™in A[X]is the greatest common divisor @f, a1, . . . , a,,. A polynomial
f is said to beprimitive if ¢(f) = 1. Every polynomialf in A[X]| can be writtenf =
c(f) - f1 with f; primitive, and this decomposition gfis unique up to units im.

LEMMA 0.4. The product of two primitive polynomials is primitive.

PROOF. Let

f=a+uX+- - +a, X"
g=bo+0uX+ - +b, X",

be primitive polynomials, and lei be an irreducible element of. Let a;, be the first
coefficient of f not divisible byp andb;, the first coefficienty not divisible byp. Then
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all the terms iny_,, ,_, . a;b; are divisible byp, excepta;,b;,, which is not divisible
by p. Thereforep doesn't divide the(iy + jo)™-coefficient of fg. We have shown that
no irreducible element ofi divides all the coefficients of g, which must therefore be
primitive. O

LEMMA 0.5. For polynomialsf, g € A[X], c(fg) = c(f) - c(g).

PROOF. Let f = ¢(f)f1 andg = c(g)g; with f; andg, primitive. Thenfg = ¢(f)c(g) fr91
with f,g; primitive, and sa:(fg) = ¢(f)c(g). O

PROPOSITIONO.6. If A is a unique factorization domain, then so alsodis].

PROOF. Let F' be the field of fractions ofl. The irreducible elements of[X] are
(a) the constant polynomials= c with ¢ an irreducible element of, and
(b) the primitive polynomialsf that are irreducible iM[X] (hence inF[X]; Gauss’s
Lemma).

Note that Lemmf 0]5 implies that any factorAnX| of a primitive polynomial is prim-
itive. Let f be primitive. If it is not irreducible inF'[X], then it factorsf = gh with g, h
primitive polynomials inA[X ] of lower degree. Continuing in this fashion, we see that
can be written as a finite product of irreducible elementsipX|. As everyf € A[X]
can be writtenf = ¢(f) - fi with f; primitive, we see that factorizations into irreducible
elements exist it [ X].

Let

fzcl"'cmfl"'fn:dl"'d’/‘gl"'gs

be two factorizations off into irreducible elements with;,d; € A and f;, g; primitive
polynomials. Then

o(f)=rci - cm=dy---d, (Up to units inA),

and, on using thatl is a unique factorization domain, we see that r and thec;’s differ
from d;’s only by units and ordering. Moreover,

f=fi- fao=91gs(upto unitsinA),
and, on using thaf'[ X | is a unique factorization domain, we see that s and thef;’s
differ from theg,’s only by units inF' and their ordering. But iff; = ug; with v € F*,
thenu € A* because; andg; are primitive. ]
Polynomial rings
Let k be a field. Amonomialin X7, ..., X,, is an expression of the form

X@ ... X% g €N

The total degreeof the monomial isy _ a,. We sometimes denote the monomial Ky,
a=(ay,...,a,) € N,
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The elements of the polynomial riidX 1, . . ., X,,] are finite sums
> Capan X X2, Copa, €K, a; €N

with the obvious notions of equality, addition, and multiplication. Thus the monomials
from a basis fok[ X, ..., X,| as ak-vector space.

Theringk[ Xy, ..., X,]isanintegral domain, and X, ..., X,]* = k*. Apolynomial
f(Xy,...,X,) isirreducibleif it is nonconstant ang = gh = g or h is constant.

THEOREMO.7. The ringk[ X1, ..., X,,] is a unique factorization domain.

PROOF. Sincek|[Xy,...,X,| = k[Xy,... X, _1][X.], this follows by induction from Propo-
sition[0.6. ]

COROLLARY 0.8. A nonzero proper principal idedlf) in k[ X1, ..., X,] is prime if and
only f is irreducible.

ProOF. Special case of (0.2). O

Integrality

Let A be an integral domain, and |étbe a field containingl. An elemenix of L is said
to beintegral over A if it is a root of amonic polynomial with coefficients ir4, i.e., if it
satisfies an equation

Q"+ a4+ .. 4+a,=0, a €A
THEOREMO.9. The set of elements aéfintegral overA forms a ring.

PROOF. Let« andf integral overA. Then there exists a polynomial
A(X)=X" 4+ X™ ' 4+, ¢ €A,

havinga ands among its roots (e.g., taketo be the product of the polynomials exhibiting
the integrality ofo and3). Write

WX) =TT (X =)

with the ~; in an algebraic closure of. Up to sign, thec; are elementary symmetric
polynomials in they; (cf. FT p63). | claim that every symmetric polynomial in the
with coefficients inA lies in A: let py, ps, ... be the elementary symmetric polynomi-
als in Xy,..., X,,; if P € A[Xy,...,X,,] is symmetric, then the symmetric polyno-
mials theorem (ibid. 5.30) shows th&(X;,..., X,,) = Q(p1,...,pn) for someQ €
AlXq,...,Xn,], and so

P(")/l,...,’)/m> = Q(-Cl,CQ,...) € A.

The coefficients of the polynomiald;™)",_ (X — 7i7;) and[ [;21",_ (X — (i £ 75))
are symmetric polynomials in the with coefficients inA, and therefore lie im. As the
polynomials are monic and have’? anda + 3 among their roots, this shows that these

elements are integral. O
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DeFINITION 0.10. The ring of elements df integral overA is called theintegral closure
of Ain L.

PROPOSITIONO.11. Let A be an integral domain with field of fractiorfs, and letL be a
field containingF'. If « € L is algebraic overF’, then there exists & € A such thatda is
integral overA.

PROOF. By assumptiong satisfies an equation
a"+a ™+ 4+a,=0acF

Let d be a common denominator for thg so thatda; € A, all , and multiply through the
equation byl
d™a™ + ad™a™ 1 4+ -+ 4, d™ = 0.

We can rewrite this as
(da)™ + ard(da)™ ™ + - + @, d™ = 0.
Asad,...,a,d™ € A, this shows thatla is integral overA. O

COROLLARY 0.12. Let A be an integral domain and lgt be an algebraic extension of the
field of fractions ofd. ThenL is the field of fractions of the integral closure 4fin L.

PROOF. The proposition shows that evetye L can be writterv = (3/d with 3 integral
overA andd € A. O

DEFINITION 0.13. AringA is integrally closedif it is its own integral closure in its field
of fractionsF, i.e., if
a € F,  aintegral overd = a € A.

PROPOSITIONO.14. A unique factorization domain (e.g. a principal ideal domain) is inte-
grally closed.

PROOF. Leta/b, a,b € A, be integral overd. If a/b ¢ A, then there is an irreducible
elementy of A dividing b but nota. Asa/b is integral overA, it satisfies an equation

(a/b)™ +ar(a/b)" '+ +a, =0,q; € A
On multiplying through by", we obtain the equation
a® + a1a" b+ ... + a,b" = 0.

The elemenp then divides every term on the left except, and hence must divide”.
Since it doesn't divide, this is a contradiction. O

PROPOSITIONO.15. Let A be an integrally closed integral domain, and letbe a finite
extension of the field of fractiorfs of A. An elementy of L is integral overA if and only
if its minimum polynomial oveF' has coefficients inl.
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PROOF. Assumex is integral overA, so that
™ +a ™+ . +a,=0 someg € A.

Let o’ be a conjugate af, i.e., a root of the minimum polynomigl( X') of o over F'. Then
there is anF-isomorphistfi

o: Fla] — Fld/], o(a)=d
On applyingo to the above equation we obtain the equation
"+ ™+ +a, =0,

which shows that! is integral overA. Hence all the conjugates of are integral over
A, and it follows from [(0.D) that the coefficients ¢fX) are integral overd. They lie in
F, and A is integrally closed, and so they lie ih. This proves the “only if” part of the
statement, and the “if” part is obvious. O

Rings of fractions

A multiplicative subsebdf a ring A is a subset with the property:
1€S8, a,beS=abes.
Define an equivalence relation aghx S by
(a,s) ~ (b,t) <= u(at —bs) = 0 for someu € S.

Write ¢ for the equivalence class containifig s), and define addition and multiplication
in the obvious way:
b at+bs ab ab

I Tw o st s
We then obtain aring~'4 = {¢ | « € A, s € S}, and a canonical homomorphism
a— %: A — S71A, not necessarily injective. For example Siftontains0, thenS—'A is
the zero ring.

Write i for the homomorphism — ¢: A — S~'A. Then(S~'A, i) has the following
universal property: every element S maps to a unitirs—! A, and any other homomor-

phisma: A — B with this property factors uniquely through

»w |

A—'e 514
y‘ 3
B.

4Recall (FT§1) that the homomorphistX — «: F[X] — F[a] defines an isomorphisd[X]/(f) —
F[a], wheref is the minimum polynomial of (and ofc). ...
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The uniqueness is obvious — the méip' A — B must be? — a(a) - a(s)~' —and itis
easy to check that this formula does define a homomorphisid — B. For example, to
see that it is well-defined, note that

% = g = s(ad — bc) = 0 somes € S = a(a)a(d) — a(b)alc) =0

because(s) is a unitin B3, and so
a(a)a(c)™ = a(b)al(d)™".

As usual, this universal property determines the p&ir' A, ) uniquely up to a unique
isomorphism.

In the case thatl is an integral domain we can form the field of fractidfis= S~ A,
S = A — {0}, and then for any other multiplicative subsgbf A not containing), S~ A
can be identified wit{? € F'|a € A, s € S}.

We shall be especially interested in the following examples.

(i) Let h € A. Thens), a {1,h,h?, ...} is a multiplicative subset ofl, and we write
A, = S,le. Thus every element of;, can be written in the form/h™, a € A, and

him = % <= h"(ah™ — bh™) = 0, someN.
If his nilpotent, themd,, = 0, and if A is an integral domain with field of fractions, then
Ay, is the subring ofF" of elements of the form /L™, a € A, m € N.

(i) Let p be a prime ideal il. ThensS, CVIN p is a multiplicative subset aofl, and
we write A, = S, ' A. Thus each element of, can be written in the form4, c ¢ p, and

b
%: 7 = s(ad — be) = 0, somes ¢ p.
The subsetn = {¢ | a € p, s ¢ p} is @ maximal ideal iM4,, and it is the only maximal
ideaIE| ThereforeA, is a local ring. WherA is an integral domain with field of fractions
F, A, is the subring off" consisting of elements expressible in the fofnu € A, s ¢ p.

LEMMA 0.16. (a) For any ringA andh € A, the mapy_ a; X" — >~ % defines an isomor-
phism
A[X]/(1 — hX) = A,.
(b) For any multiplicative subsef of A, S™1A =~ lim Ay, whereh runs over the ele-
ments ofS.

PrROOF. (a) If h = 0, both rings are zero, and so we may assumg 0. In the ring
Alx] = A[X]/(1 — hX), 1 = hzx, and soh is a unit. Consider a homomorphism of rings
a: A — B such thaty(h) is a unitin B. Thena extends to a homomorphism

ZaiXi — Za(ai)a(h)_i: A[X] — B.

°First checkm is an ideal. Next, ifn = A,, thenl € m;butl = 2, a € p, s ¢ p meansu(s —a) = 0
someu ¢ p, and sou = us ¢ p. Finally, m is maximal, because any element4f not inm is a unit.
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Under this homomorphisth— A X +— 1—a(h)a(h)~! = 0, and so the map factors through
Alz]. The resulting homomorphism: A[x] — B has the property that its composite
with A — A[z] is «, and (becauséx = 1 in Alzx]) it is the unique homomorphism with
this property. Thereforel|x| has the same universal property 4s and so the two are
(uniguely) isomorphic by an isomorphism that makes correspond ta:.

(b) Whenh|l', say,h’ = hg, there is a canonical homomorphigm— 3%: A, — A,
and so the rings4;, form a direct system indexed by (partially ordered by division).
Whenh € S, the homomorphisml — S~'A extends uniquely to a homomorphigm—

& Ay — S™'A. These homomorphisms define a homomorpHism4, — S~'A, and it
follows directly from the definitions that this is an isomorphism. ]

When the initial ring is an integral domain (the most important case), the theory is very
easy because all the rings of fractions are subrings of the field of fractions. For more on
rings of fractions, see Atiyah and MacDonald 1969, Chapt 3.

Algorithms for polynomials

As an introduction to algorithmic algebraic geometry, in the remainder of this section we derive
some algorithms for working with polynomial rings. This subsection is little more than a summary
of Cox et al.1992, pp 1-111, to which | refer the reader for more details. Those not interested
in algorithms can skip the remainder of this section. Throughhkus a field (not necessarily
algebraically closed).
The two main results will be:
(@) An algorithmic proof of the Hilbert basis theorem: every ideat[i¥, ..., X,,] has a finite
set of generators (in fact, of a special kind).
(b) There exists an algorithm for deciding whether a polynomial belongs to an ideal.

Division in k[X]

The division algorithm allows us to divide a nonzero polynomial into anotherf &idg be poly-
nomials ink[X] with g # 0; then there exist unique polynomialsr € k[X] such thatf = qg + r
with eitherr = 0 or degr < deg g. Moreover, there is an algorithm for deciding whetlfee (g),
namely, findr and check whether it is zero.
In Maple,
quo(f, g, X); computes;
ren(f, g, X); computes
Moreover, the Euclidean algorithm allows you to pass from a finite set of generators for an ideal

in k[X] to a single generator by successively replacing each pair of generators with their greatest
common divisor.

Orderings on monomials

Before we can describe an algorithm for dividingkiiX1, . . ., X,,], we shall need to choose a way
of ordering monomials. Essentially this amounts to defining an orderilNj*off here are two main
systems, the first of which is preferred by humans, and the second by machines.
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(Pure) lexicographic ordering (lex)Here monomials are ordered by lexicographic (dictionary)
order. More precisely, let = (a1, ...,a,) andg = (by, ..., b,) be two elements df"; then

a > fandX® > X¥ (lexicographic ordering)
if, in the vector differencex — 6 € Z"™, the left-most nonzero entry is positive. For example,
Xy?>vy3zy x3v?z% > x3y?z.

Note that this isn’t quite how the dictionary would order them: it would put XXXYYZza#er
XXXYYZ.

Graded reverse lexicographic order (grevlexidere monomials are ordered by total degree,
with ties broken by reverse lexicographic ordering. Thus; Gif > a; > > b, 0r> a; = > b;
and ina — g the right-most nonzero entry is negative. For example:

X4y477 > X5y®7z*  (total degree greater)
XY®27% > Xvz3, X°YZ > X'yZ%

Orderings on k[ X1, ..., X,)]

Fix an ordering on the monomialsi.X;, ..., X,,|. Thenwe can write an elemefiof k[ X, ..., X,]
in a canonical fashion by re-ordering its elements in decreasing order. For example, we would write

f=4XY?Z +42% —5X3 +7X27?
as
f=-bX3+7X222 +4XY?Z +42%  (lex)

or
[f=4XY?Z +7X%7? —5X% +47Z%  (grevlex)

Let f = > an X* € k[X1,...,X,]. Write it in decreasing order:
f=0a00 X + a0, X"+, apg>a1>--, ag, #0.

Then we define:
(a) themultidegreeof f to be multdegf) = ap;
(b) theleading coefficientof f to be LO(f) = aqy;
(c) theleading monomialof f to be LM(f) = X “;
(d) theleading termof f to be LT(f) = aq, X *°.
For example, for the polynomigl = 4XY?2Z + - -, the multidegree i$1, 2, 1), the leading
coefficient is4, the leading monomial iXY2Z, and the leading term isXY?2Z.

The division algorithm in k[ X7, ..., X,]

Fix a monomial ordering ilN". Suppose given a polynomidland an ordered séy, ..., gs) of
polynomials; the division algorithm then constructs polynomials . . , a; andr such that

f=aig1+ - +asgs+r

where either = 0 or no monomial in- is divisible by any of LTg1), ...,LT(gs)-
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STEPL1: If LT (¢1)|LT(f), divide g; into f to get

LT (/)

= h =
f=aig1+h, a1 T (1)

€ k[Xl,.. . ,Xn}

If LT (91)|LT (h), repeat the process until
f=agi+ N
(differenta,) with LT (f1) not divisible by LT(g; ). Now divideg- into f;, and so on, until
f=aig1++asgs+m

with LT (1) not divisible by any of LTg1),...,LT(gs).
STEP2: Rewriter; = LT(r1) + r2, and repeat Step 1 witk, for f:

f = aig1 +"'+asgs+LT(Tl)+T3

(differenta;’s).
STEP 3: Rewriters = LT(r3) + 74, and repeat Step 1 with, for f:

f=a1g1+ -+ asgs + LT(r1) + LT(r3) + 173

(differenta;’s).

Continue until you achieve a remainder with the required property. In more aﬁér di-
viding through once by, ..., g5, you repeat the process until no leading term of one ofgthe
divides the leading term of the remainder. Then you discard the leading term of the remainder, and
repeat . ..

ExAaMPLE 0.17. (a) Consider

F=X2Y +XY?24Y?% g =XY -1, ¢gp=Y>-1.
First, on dividingg; into f, we obtain

XY+ XY+ YV = (X +Y)(XY - 1)+ X +Y? 4V,

This completes the first step, because the leading ter?of 1 does not divide the leading term
of the remaindeX + Y2 + Y. We discardX, and write

Y24y =1-(Y2-1)+Y +1.
Altogether
XY 4+ XY+ Y2 =(X4+Y)- (XY D) +1- Y2 - 1)+ X+YV + 1.
(b) Consider the same polynomials, but with a different order for the divisors
F=XY +XY?4+Y?% g =Y? -1, ¢gp=XY —1.
In the first step,
XY+ XY24Y2=(X4+1)-Y?* -1+ X - (XY —1)+2X +1.

Thus, in this case, the remaindeRi¥ + 1.

6This differs from the algorithm in Cox et al. 1992, p63, which says to go bagkafter every successful
division.
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REMARK 0.18. (a) Ifr = 0, thenf € (g1, ..., gs).
(b) Unfortunately, the remainder one obtains depends on the ordering gfsh€or example,
(lex ordering)
XY?-X=Y - (XY +1)+0-Y? -1)+-X-Y

but
XY?-X=X-(Y?-1)+0-(XY —1)+0.

Thus, the division algorithm (as stated) wilbt provide a test forf lying in the ideal generated by
gi,---,9s-

Monomial ideals

In general, an ideal can contain a polynomial without containing the individual monomials of the
polynomial; for example, the ideal= (Y2 — X3) containsY? — X3 but notY? or X3,

DEFINITION 0.19. Anideak is monomial if
anXo‘ caandc, #0 = X% e€a.

PROPOSITIONO.20. Leta be a monomial ideal, and let = {a | X € a}. ThenA satisfies the
condition
acA peN'=a+peA *)

anda is thek-subspace of[ X, ..., X,,] generated by th&*, o € A. Conversely, iA is a subset
of N™ satisfying (*), then thek-subspacen of k[ X1, ..., X,,] generated by{X* | « € A} is a
monomial ideal.

PROOF. It is clear from its definition that a monomial ideais the k-subspace ok[ X7, ..., X,
generated by the set of monomials it contains\ff € a andX” € k[X1,..., X,], thenX®XF =
X8 ¢ q, and soA satisfies the condition (*). Conversely,

(Z caXa> ( > dBXﬁ) = cadgX*tP (finite sums)

a€A BEN" a,8
and so ifA satisfies (*), then the subspace generated by the monoXifgla € A, is an ideal. [J

The proposition gives a classification of the monomial ideald iy, . . ., X,,]: they are in one-
to-one correspondence with the subsétsf N” satisfying (*). For example, the monomial ideals
in k[X] are exactly the ideal&X™), n > 0, and the zero ideal (corresponding to the empty4Aet
We write

(XY ae A

for the ideal corresponding td (subspace generated by the!, o € A).

LEMMA 0.21. Let S be a subset oN". Then the ideak generated by X | o € S} is the
monomial ideal corresponding to

Ag{ﬁeNnm—aeNn, somex € S}.

Thus, a monomial is in if and only if it is divisible by one of th&®, o € S.
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PROOF. Clearly A satisfies (*), andi C (X? | 3 € A). Conversely, if3 € A, thenj —a € N for
somea € S, andX” = X*XP~ ¢ q. The last statement follows from the fact that | X’ <
8- acN, N

Let A ¢ N2 satisfy (*). From the geometry of, it is clear that there is a finite set of elements
S ={ai,...,as} of Asuch that

A={BecN*|B—a; € N? someq; € S}.
(The oy’s are the “corners” ofd.) Moreover,a a (X% | o € A) is generated by the monomials
X% «; € S. This suggests the following result.

THEOREMO0.22 (DCKSON's LEMMA). Leta be the monomial ideal corresponding to the subset
A C N". Thena is generated by a finite subset{oX* | a € A}.

PrROOF. This is proved by induction on the number of variables — Cox et al. 1992, p70. O

Hilbert Basis Theorem

DEFINITION 0.23. For a nonzero idealin k[X7, ..., X,], we let(LT(a)) be the ideal generated
by

{LT(f) | f € a}.
LEMMA 0.24. Leta be a nonzero ideal ik[ X1, ..., X, ]; then(LT(a)) is a monomial ideal, and it
equals(LT(g1),...,LT(g,)) for somey, ..., g, € a.

PROOF. Since(LT(a)) can also be described as the ideal generated by the leading monomials
(rather than the leading terms) of elementsipit follows from Lemmg 0.2]1 that it is monomial.
Now Dickson’s Lemma shows that it equals (¢;), ..., LT (gs)) for someg; € a. O

THEOREM 0.25 (HLBERT BASIS THEOREM). Every ideala in k[ X1, ..., X,] is finitely gener-
ated; more preciselyy = (¢1,. .., 9s) Wheregy, . . ., gs are any elements af whose leading terms
generate LTa).

PROOF. Let f € a. On applying the division algorithm, we find
f=ag+ - +asgs+r, ai,r €KXy, ..., Xn],

where eitherr = 0 or no monomial occurring in it is divisible by any (§;). Butr = f —
>~ a;g; € a, and therefore L) € LT(a) = (LT(¢1),...,LT(gs)), which, according to Lemma
0.21, implies thaeverymonomial occurring in- is divisible by one in LTg;). Thusr = 0, and

ge(gl,...,gs). O

Standard (Grobner) bases
Fix a monomial ordering of[ X, ..., X,].

DEFINITION 0.26. Afinite subset = {¢1,..., gs} of anideak is astandard (Grobner, Groebner,
Grobner) basidfor a if

(LT(g91),.--,LT(gs)) = LT(a).
In other words S is a standard basis if the leading term of every elementigfivisible by at least
one of the leading terms of thg.

’Standard bases were first introduced (under that name) by Hironaka in the mid-1960s, and independently,
but slightly later, by Buchberger in his Ph.D. thesis. Buchberger named them after his thesis adiserGr
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THEOREM 0.27. Every ideal has a standard basis, and it generates the idedl;if..., g5} is a
standard basis for an ideal, thenf € a <= the remainder on division by thg is 0.

ProoF. Our proof of the Hilbert basis theorem shows that every ideal has a standard basis, and
that it generates the ideal. Lgte a. The argument in the same proof, that the remaindef o
division byg, ..., gs is0, used only tha{gi, . . ., g5} is a standard basis far O

REMARK 0.28. The proposition shows that, forc a, the remainder of on division by{g, ..., gs}
is independent of the order of the (in fact, it's always zero). This is not true ff ¢ a — see the
example using Maple at the end of this section.

Leta = (f1,..., fs). Typically, {f1,..., fs} will fail to be a standard basis because in some
expression
cXf, —dXPf;, ¢, dek, (**)

the leading terms will cancel, and we will get a new leading term not in the ideal generated by the
leading terms of the;. For example,

X2=X (XY + X -2Y?) - Y - (X3 - 2XY)

is in the ideal generated by?Y + X — 2Y2 andX? — 2XY but it is not in the ideal generated by
their leading terms.

There is an algorithm for transforming a set of generators for an ideal into a standard basis,
which, roughly speaking, makes adroit use of equations of the form (**) to construct enough new
elements to make a standard basis — see Cox et al. 1992, pp80-87.

We now have an algorithm for deciding whethfee (f1,..., f.). Firsttransform{ f,..., f,}
into a standard basigy, . .., gs}, and then dividef by g1, ..., g; to see whether the remainder is
0 (in which casef lies in the ideal) or nonzero (and it doesn't). This algorithm is implemented in
Maple — see below.

A standard basi$g, ..., gs} is minimal if eachg; has leading coefficierit and, for alli, the
leading term ofy; does not belong to the ideal generated by the leading terms of the remgising
A standard basigg, ..., gs} is reducedif each g; has leading coefficient and if, for all i, no

monomial ofg; lies in the ideal generated by the leading terms of the remaijfingne can prove
(Cox etal. 1992, p91) that every nonzero ideal hasigue reduced standard basis.

REMARK 0.29. Consider polynomialg, g1, ..., gs € k[X1,..., X,]. The algorithm that replaces

g1, - -, 9gs With a standard basis works entirely withifiX, . . ., X,,], i.e., it doesn’t require a field
extension. Likewise, the division algorithm doesn’t require a field extension. Because these opera-
tions give well-defined answers, whether we carry them okthy, ..., X, Jorin K[X1,..., X,],

K D k, we get the same answer. Maple appears to work in the subfiéldyeherated ove® by
all the constants occurring in the polynomials.

We conclude this section with the annotated transcript of a session in Maple applying the above
algorithm to show that
q=32%y22 — 222+ 3 +yz

doesn't lie in the ideal
(2% — 222 + 5, xy* + y23, 3y* — 82°).

A Maple Session
> with(grobner);
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[This loads the grobner package, and lists the available commands:

finduni, finite, gbasis, gsolve, leadmon, normalf, solvable, spoly

To discover the syntax of a command, a brief description of the command, and an example, type
“?command;”]

>G:=gbasis([x"2-2*x*z+5,x*y"2+y*z"3,3*y"2-8*2"3],[X,Y,Z]);

[This asks Maple to find the reduced Grobner basis for the ideal generated by the three poly-
nomials listed, with respect to the indeterminates listed (in that order). It will automatically use
grevlex order unless you add ,plex to the command.]

G = [2? — 2z2 + 5, —3y? + 823, 8xy? + 393, 9y* + 48zy> + 320y?]

> Q=332 - X*Z°2 + Y3 + y*z;

q:=3x3y2? —x? + 3+ 2y

[This defines the polynomia.]

> normalf(q,G,[X,y,z]);

922y3 — 15y2%x — 4741:1/3 +60y%z — 222 4 2y

[Asks for the remainder wheqis divided by the polynomials listed i using the indetermi-
nates listed. This particular example is amusing—the program gives different orderingsefod
different answers for the remainder, depending on which computer | use. This is O.K., because,
sinceq isn’t in the ideal, the remainder may depend on the ordering.pf

Notes:

(a) To start Maple on a Unix computer type “maple”; to quit type “quit”.
(b) Maple won't do anything until you type “;” or “:" at the end of a line.
(c) The student version of Maple is quite cheap, but unfortunately, it doesn’t have the Grobner
package.
(d) For more information on Maple:
i) There is a brief discussion of the Grobner package in Cox et al. 1992, especially pp
487-489.
i) The Maple V Library Reference Manual pp469-478 briefly describes what the Grobner
package does (exactly the same information is available on line, by typing 2command).
iif) There are many books containing general introductions to Maple syntax.
(e) Gmbner bases are also implemented in Macsyma, Mathematica, and Axiom, but for serious
work it is better to use one of the programs especially designed fabr&r basis computa-
tion, namely,
CoCoA (Computations in Commutative Algebiiaftp://cocoa.dima.unige.it/
Macaulay (Bayer and Stillman)
http://www.math.columbia.edu/ bayer/Macaulay/index.html
Macaulay 2 (Grayson and Stillmarhttp://www.math.uiuc.edu/Macaulay?2/

Exercises 1-2

1. Let £ be an infinite field (not necessarily algebraically closed). Show thatfarmy
k[X1,...,X,] that is identically zero o™ is the zero polynomial (i.e., has all its coeffi-
cients zero).

2. Find a minimal set of generators for the ideal

(X +2Y,3X +6Y +3Z,2X +4Y +3%)


http://cocoa.dima.unige.it/
http://www.math.columbia.edu/~bayer/Macaulay/index.html
http://www.math.uiuc.edu/Macaulay2/
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in k[X,Y, Z]. What standard algorithm in linear algebra will allow you to answer this
guestion for any ideal generated by homogeneous linear polynomials? Find a minimal set
of generators for the ideal

(X +2Y +1,3X + 6Y +3X +2,2X +4Y + 37 + 3).
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1 Algebraic Sets

In this sectionf is an algebraically closed field.

Definition of an algebraic set

An algebraic subset’(S) of k™ is the set of common zeros of some Sedf polynomials
ink[Xy, ..., X,

V(S) = {(a1,....an) € K" | flar,...,an) =0 all f(X1,...,X,) €S}

Note that
ScS=V(S) o>V(S;

— more equations mean fewer solutions.
Recall that the ideal generated by a sét consists of all finite sums

Zfigu fieklX1,....X,], g €S

Such a sund_ f;g; is zero at any point at which thg are zero, and s¥'(S) C V(a),

but the reverse conclusion is also true becatise a. ThusV (S) = V(a) — the zero set

of S is the same as that of the ideal generatedbbydence the algebraic sets can also be
described as the sets of the fointa), a an ideal ink[X,,. .., X,].

ExamPLE 1.1. (a) If S is a system of homogeneous linear equations, ihe¥) is a sub-
space ofk™. If S is a system of nonhomogeneous linear equatibiis)) is either empty or
is the translate of a subspacekét

(b) If S consists of the single equation

Y2=X*4aX+b, 4a®+27b* £0,

thenV' (S) is anelliptic curve For more on elliptic curves, and their relation to Fermat's
last theorem, see my notes on Elliptic Curves. The reader should sketch the curve for
particular values ofi andb. We generally visualize algebraic sets as though the field
wereR, although this can be misleading.

(c) If S'is the empty set, theW (S) = k™.

(d) The algebraic subsets bfare the finite subsets (includifig and¥ itself.

(e) Some generating sets for an ideal will be more useful than others for determining
what the algebraic set is. For example, @ksrer basis for the ideal

a=(X2+Y?24+ 221, X2+Y?-Y, X - 2)
is (according to Maple)
X—-Z, Y*-2Y +1, Z>—1+Y.

The middle polynomial has (double) robtand it follows easily that’(a) consists of the
single point(0, 1, 0).
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The Hilbert basis theorem

In our definition of an algebraic set, we didn't require the Seif polynomials to be fi-
nite, but the Hilbert basis theorem shows that every algebraic set will also be the zero
set of a finite set of polynomials. More precisely, the theorem shows that every ideal in
k[Xi,...,X,] can be generated by a finite set of elements, and we have already observed
that any set of generators of an ideal has the same zero set as the ideal.

We sketched an algorithmic proof of the Hilbert basis theorem in the last section. Here
we give the slick proof.

THEOREM 1.2 (HILBERT BASIS THEOREM). The ringk[X}, ..., X, ] is Noetherian, i.e.,
every ideal is finitely generated.

PROOF. Forn = 1, this is proved in advanced undergraduate algebra couk$&s:is a
principal ideal domain, which means that every ideal is generated by a single element. We
shall prove the theorem by induction anNote that the obvious map

l{,'[Xl, R 7Xn71HXn] — k’[Xl, e 7Xn]

is an isomorphism — this simply says that every polynonfiat »n variablesX;, ..., X,
can be expressed uniquely as a polynomiaXjnwith coefficients ink[ X, ..., X, 4] :

f(Xl, e ,Xn) = CL()(Xl, ce 7Xn—1)X:L 4+ 4 CL,«(Xl, Ce ,Xn_1>.
Thus the next lemma will complete the proof. ]
LEMMA 1.3. If A is Noetherian, then so also ¥[X].

PrRoOOF. For a polynomial
f(X)=a X"+ X" "+ 4a., a €A ag#0,

r is called thedegreeof f, anday is itsleading coefficient We call0 the leading coefficient
of the polynomiabD.

Let a be an ideal inA[X]. The leading coefficients of the polynomialsdrform an
ideala’ in A, and sinceA is Noetheriang’ will be finitely generated. Ley,..., g, be
elements ofi whose leading coefficients generateand letr be the maximum degree of
thegz

Now let f € a, and suppos¢ has degree > r,say, f = aX*+---. Thena € «, and
SO we can write

a=> ba;, b €A a =leading coefficient of;.

Now
f= bigiX*, ri = deg(gy),
has degree: deg(f). By continuing in this way, we find that

fEft mod (917”-7gm)
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with f; a polynomial of degree < r.

For each! < r, leta, be the subset ofl consisting of) and the leading coefficients of
all polynomials ina of degree; it is again an ideal imd. Letg, 1, . . ., gam, b€ polynomials
of degreed whose leading coefficients generate Then the same argument as above
shows that any polynomid; in a of degreei can be written

fi= faior mod (gaa,- -, Yamy)

with f;_; of degree< d — 1. On applying this remark repeatedly we find that

ft € (grfl,b cee 7gr‘fl,mr_17 s 790,17 cee 7go,m0>-

Hence
f € (gl7 s Jgﬂ”wgrfl,b CIE 7gr717m'r—17 s 790,17 ce 7gO,m0)7
and so the polynomialg,., . . ., go.m, generateu. O]

AsIDE1.4. One may ask how many elements are needed to generate aniidefa\,, . . ., X,,],

or, what is not quite the same thing, how many equations are needed to define an algebraic
setV. Whenn = 1, we know that every ideal is generated by a single element. Al$0, if

is a linear subspace @&f’, then linear algebra shows that it is the zero set ef dim(1)
polynomials. All one can say in general, is thateastn —dim (V') polynomials are needed

to definel” (see§ 6), but often more are required. Determining exactly how many is an area
of active research. Chapter V of Kunz 1985 contains a good discussion of this problem.

The Zariski topology

PrROPOSITIONL.5. There are the following relations:
@ acb=V(a) DV(b);
(b) V(0) =k™ V(k[Xy,...,X,])=0;
() V(ab) =V(anb) =V(a) UV (b);
d) V(> a) =NV(a).

PROOF. The first two statements are obvious. For (c), note that
abCanbCab= V(ab) DV(anb) D V(a)UV(b).

For the reverse inclusions, observe that i V' (a) U V(b), then there exisf € a, g € b
such thatf(a) # 0, g(a) # 0; but then(fg)(a) # 0, and soa ¢ V(ab). For (d) recall
that, by definition,)  a; consists of all finite sums of the fortn’ f;, f; € a;. Thus (d) is
obvious. H

Statements (b), (c), and (d) show that the algebraic subsktssatisfy the axioms to be
the closed subsets for a topology idh both the whole space and the empty set are closed;
a finite union of closed sets is closed; an arbitrary intersection of closed sets is closed.
This topology is called th&ariski topology It has many strange properties (for example,
already ort one sees that it not Hausdorff), but it is nevertheless of great importance.
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For the Zariski topology ork, the closed subsets are just the finite sets landVe
shall see in[(1.25) below that, apart frarhitself, the closed sets ik? are finite unions of
(isolated) points and curves (zero sets of irreducjble k[X,Y]). Note that the Zariski
topologies onC andC? are much coarser (have many fewer open sets) than the complex
topologies.

The Hilbert Nullstellensatz

We wish to examine the relation between the algebraic subsetd ahd the ideals of
k[X1,...,X,], butfirst we consider the question of when a set of polynomials has a com-
mon zero, i.e., when the equations

g(X17"'7Xn):0, geEa,
are “consistent”. Obviously, the equations
gi(X1,...,X,) =0, i=1,....,m

are inconsistent if there exigt € k[ X, ..., X,,] such that

Zfigz' =1,

i.e.,if1 € (g1,...,9m) or, equivalently (g, ..., gn) = k[X1, ..., X,]. The next theorem
provides a converse to this.

THEOREM 1.6 (HILBERT NULLSTELLENSATZ). Every proper ideak in k[X;,..., X,)]
has a zero ink".

PROOF. A pointa € k™ defines a homomorphism “evaluateadt
k{Xl,...,Xn]Hk, f(Xl,...,Xn)»—>f(a1,...,an),

and clearly
a€ V(a) < a C kernel of this map.

Conversely, ifp: k[ X, ..., X,] — kisahomomorphism of-algebras such th&ter(yp) D
a, then

(s an) T ((X0), -, (X))

lies in V(a). Thus, to prove the theorem, we have to show that there existalgebra
homomorphisnk[ Xy, ..., X,]/a — k.

Since every proper ideal is contained in a maximal ideal, it suffices to prove this for a
maximal ideaim. Thenk £ k[Xi,...,X,|/mis afield, and it is finitely generated as an
algebra ovet: (with generatorsX; + m,..., X,, + m). To complete the proof, we must
showK = k. The next lemma accomplishes this.

Although we shall apply the lemma only in the case thas algebraically closed,
in order to make the induction in its proof work, we need to allow arbitrdsyin the
statement.
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LEMMA 1.7 (ZARISKI’S LEMMA). Letk C K be fields(k not necessarily algebraically
closed). IfK is finitely generated as an algebra overthenK is algebraic ovelk. (Hence
K =k if k is algebraically closed.)

PrRoOF. We shall prove this by induction af the minimum number of elements required
to generate’ as ak-algebra. Suppose first that= 1, so thatK = k[z| for somez €
K. Write k[ X] for the polynomial ring ovek in the single variableX, and consider the
homomorphism of:-algebrag:[X| — K, X — z. If x is not algebraic ovet, then this is
an isomorphisnk[X| — K, which contradicts the condition thaf be a field. Therefore
x is algebraic ovek, and this implies that every element 8 = k[z] is algebraic ovek
(because it is finite over).

Now suppose thaf can be generated (askaalgebra) byr elements, sayKk =
klxy,...,z,]. If the conclusion of the lemma is false féf/k, then at least one;, say
x1, Is not algebraic ovek. Thus, as beforé;[x;] is a polynomial ring in one variable over
k (~ k[X]), and its field of fractiong:(x;) is a subfield ofi{. Clearly K is generated as
ak(xy)-algebra byz,, ..., x,., and so the induction hypothesis implies that. . . , x, are
algebraic overk(z;). From [0.11) we find there exigt € k[z1] such thatd;z; is integral
overklz], i =2,...,r. Writed =[] d,.

Let f € K; by assumptionf is a polynomial in ther; with coefficients ink. For a
sufficiently largeN, d" f will be a polynomial in thed;z;. Then ) implies thad™ f
is integral overk[z;]. When we apply this to an elemeyfitof k(z,), (0.14) shows that
dN f € k[z]. Thereforek(z1) = Uy d NV k[z1], but this is absurd, becausgr;] (~ k[X])
has infinitely many distinct irreducible polynomi@lighat can occur as denominators of
elements of:(z,). O

The correspondence between algebraic sets and ideals
For a subsell” of £, we write [ (V) for the set of polynomials that are zero @i
I(W)={f€klX1,....,X,] | fla)=0allaec W}

Itis an ideal ink[ X4, ..., X,]. There are the following relations:
@Vcw=IV)DIW);
(b) 1(0) = k[Xy,...,X,]; I(k") = 0;
© 1(UW:) =N IW;).
Only the statement(k") = 0, i.e., that every nonzero polynomial is nonzero at some point
of k™, is not obvious. It is not difficult to prove this directly by induction on the number of
variables — in fact it’s true for any infinite fieldl (see Exercise 1) — but it also follows
easily from the Nullstellensatz (se¢e (1.11a) below).

EXAMPLE 1.8. LetP be the poin{a,...,a,). Clearlyl(P) D (X; — a1,..., X, — ay),
but(X;—ay,..., X, —a,)isamaximal ideal, because “evaluation&t, . . ., a,,)” defines
an isomorphism

k?[Xl,,Xn]/(Xl —al,...,Xn - CLn) — k.

8If k is infinite, then consider the polynomials— a, and ifk is finite, consider the minimum polynomials
of generators of the extension fieldsiofAlternatively, and better, adapt Euclid’s proof that there are infinitely
many prime numbers.
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As I(P) is a proper ideal, it must equék; — aq, ..., X, — a,).
Theradical rad(a) of an ideala is defined to be
{f|f €asomereN, r>0}

It is again an ideal, and radhda)) = rada).

An ideal is said to beadical if it equals its radical, i.e.f” € a = f € a. Equivalently,

a is radical if and only ifA/a is areducedring, i.e., a ring without nonzero nilpotent
elements (elements some power of which is zero). Since an integral domain is reduced, a
prime ideal & fortiori a maximal ideal) is radical.

If a« andb are radical, therm N b is radical, buta + b need not be — consider, for
example,a = (X2 —Y) andb = (X? +Y); they are both prime ideals it[.X, Y], but
X?ca+b,X¢a+h.

As f"(a) = f(a)", f" is zero wherevey is zero, and sd (W) is radical. In particular,

IV (a) D rad(a). The next theorem states that these two ideals are equal.

THEOREM1.9 (STRONGHILBERT NULLSTELLENSATZ). (a) Foranyideak C k[X7, ..., X,],
IV (a) is the radical ofa; in particular, IV (a) = a if a is a radical ideal.

(b) For any subsetV C k", VI(W) is the smallest algebraic subset/df containing
W; in particular, VI(W) = W if W is an algebraic set.

PROOF. (a) We have already noted th&Y'(a) D rad(a). For the reverse inclusion, we
have to show that if. is identically zero ori/(a), thenh” € a for someN > 0. We may
assumer # 0. Letgy, ..., g, be a generating set far and consider the system of + 1
equations im + 1 variables X, ..., X,,,Y,

gi<X17"‘»XTL) — 0, i=1,...,m
1—Yh(Xy,...,X,) = 0.

If (a1,...,an,b) satisfies the firstn equations, thefa,, ...,a,) € V(a); consequently,
h(ai,...,a,) = 0, and(ay,...,a,,b) doesn’t satisfy the last equation. Therefore, the
equations are inconsistent, and so, according to the original Nullstellensatz, there exist
fi € k[X, ..., X,,Y] such that

1= figi + fsr - (L= YR iINk[Xy,..., X, V).
=1

On regarding this as an identity in the figddX,, ..., X,,, Y) and substitutind /A for Y,
we obtain the identity

- 1
1: iXa--'7Xn7_ . Z'X,...,Xn
;f( 1 -) - gi( X )
ink(Xy,...,X,). Clearly

1 olynomial inXy,..., X,
fi(Xlw"?XTwE): p y h]\[Z -
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for someN;. Let N be the largest of thé/;. On multiplying the identity by:" we obtain
an equation

RN =" (polynomial inX;, ..., X,) - g:(X1,..., X,),

which shows thab” € a.
(b) LetV be an algebraic set containifig, and writel = V' (a). Thena C I(1V), and
soV(a) D VI(W). O

COROLLARY 1.10. The mapm — V/(a) defines a one-to-one correspondence between the
set of radical ideals irk[ X7, ..., X,] and the set of algebraic subsets/df, its inverse is
1.

PROOF. We know that/V'(a) = a if a is a radical ideal, and that/(1V) = W if W is an
algebraic set. ]

REMARK 1.11. (a) Note that'(0) = k™, and so
I(k™) =1V (0) =rad0) = 0,

as claimed above.

(b) The one-to-one correspondence in the corollary is order inverting. Therefore the
maximal proper radical ideals correspond to the minimal nonempty algebraic sets. But
the maximal proper radical ideals are simply the maximal ideal$ i, . .., X,,], and the
minimal nonempty algebraic sets are the one-point sets. As

I((ay,...,a,)) = (X1 —a1,..., X, —ay),

this shows that the maximal ideals bfX7, ..., X, ] are precisely the ideals of the form
(Xl —day, ... ,Xn — CLn).
(c) The algebraic sét (a) is empty if and only ifa = k[ X7, ..., X,,], because

V(a)=0=rada) =k[X1,...,X,] = 1ecrada) = 1€ a.

(d) LetW andW’ be algebraic sets. Théi N W' is the largest algebraic subset con-
tained in bothiV andW’, and sol (W N W') must be the smallest radical ideal containing
both 7(W) andI(W’). Hencel (W N W') = rad (W) + I(W")).

For example, lefV = V(X? —Y) andW' = V(X? +Y); thenI(W N W') =
rad X?,Y) = (X,Y) (assuming characteristi¢ 2). Note thati’ n W’ = {(0,0)}, but
when realized as the intersection¥of= X? andY = —X?2, it has “multiplicity 2". [The
reader should draw a picture.]

Finding the radical of an ideal

Typically, an algebraic sét will be defined by a finite set of polynomiafg;, . . ., g}, and
then we shall need to find V') = rad(g1, ..., gs))-

PROPOSITION1.12. The polynomiah € rad(a) if and only if1 € (a,1 — Y'h) (the ideal
in k[X,...,X,, Y] generated by the elementscoind1 — Y'h).
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PROOF. We saw thatl € (a,1 — Y'h) impliesh € rad(a) in the course of provind (1].9).
Conversely, ifh" € a, then

1=Y AN + (1 - YNRN)
=YYWV 4+ (1-Yh)-(1+Yh+- + YN IpNh
ca+(1-Yh). O

Thus we have an algorithm for deciding whetthee rad(a), but not yet an algorithm
for finding a set of generators for rad. There do exist such algorithms (see Cox et al.
1992, p177 for references), and one has been implemented in the computer algebra system
Macaulay. To start Macaulay on most computers, tyyacaulay ; type <radical to
find out the syntax for finding radicals.

The Zariski topology on an algebraic set

We now examine more closely the Zariski topology/ghand on an algebraic subset of
k™. Part (b) of (1.p) says that, for each subBétf k", VI(WW) is the closure ofV, and
(1.10) says that there is a one-to-one correspondence between the closed sulisatsl of
the radical ideals of[ X7, ..., X,].

Let V' be an algebraic subset bf, and let/ (') = a. Then the algebraic subsetsiof
correspond to the radical ideals/dfX;, . . ., X,,] containinga.

PROPOSITION1.13. LetV be an algebraic subset &f'.
(a) The points o/ are closed for the Zariski topology (thuiSis a7;-space).
(b) Every descending chain of closed subseis becomes constant, i.e., given

VioVvo,oVao .- (closed subsets &f),

eventuallyVy = Vi1 = .... Alternatively, every ascending chain of open sets becomes
constant.
(c) Every open covering of has a finite subcovering.

PROOF. (a) We have already observed tHat, ..., a,)} is the algebraic set defined by
the ideal( Xy — aq, ..., X, — a,).

(b) A sequencéd’; O V, D --- gives rise to a sequence of radical ide&l¥;) C
I(V3) C ..., which eventually becomes constant becaysg, . .., X, ] is Noetherian.

(c) LetV = J,.; U; with eachU; open. Choose aij < I, if U;, # V, then there exists
ani; € I suchthat;, & U, UU;,. If Uy, UU;, # V, then there exists aiy € I etc..
Because of (b), this process must eventually stop. O

A topological space having the property (b) is said toNmetherian The condition
is equivalent to the following: every nonempty set of closed subsets lods a minimal
element. A space having property (c) is said togoesi-compaciby Bourbaki at least;
others call it compact, but Bourbaki requires a compact space to be Hausdorff).
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The coordinate ring of an algebraic set

Let V' be an algebraic subset &f, and let/ (V') = a. Thecoordinate ring of V' is
k[V] =a k[ X3, ..., X,]/a.

This is a finitely generated reducéehlgebra (becauseis radical), but it need not be an
integral domain.

A function V' — £ is said to beregular if it is of the forma — f(a) for somef <
k[X1,...,X,]. Two polynomialsf, g € k[ X1, ..., X, ] define the same regular function on
V' if only if they define the same element bffi’], and sok[V] equals theing of regular
functionson V.

Let z; denote the coordinate functi@an— a;: V' — k. Thenk[V] = k[xy, ..., z,].

For an ideab in k[V], we set

V(b)={aecV | f(a)=0,all f €b}.
LetW = V(b). The maps

E[Xy,. .., X,
MAL - Al _
a b

should be regarded as restricting a function frighto V', and then restricting that function
toW.

Write 7 for the mapk[X,, ..., X,] — k[V]. Thenb — 7~!(b) is a bijection from the
set of ideals of:[V] to the set of ideals of[ X, ..., X,,] containinga, under which radical,
prime, and maximal ideals correspond to radical, prime, and maximal ideals (each of these
conditions can be checked on the quotient ring, a&pH,, ..., X, ]/7m'(b) =~ k[V]/b).
Clearly

V(r='(b)) =V (b),

and sob — V/(b) gives a bijection between the set of radical ideals]¥] and the set of
algebraic sets contained in
Forh € k[V], we write

D(h) ={a €V | h(a) # 0}.
It is an open subset df, because it is the complementidf(h)).

PROPOSITION1.14. (a) The points of/ are in one-to-one correspondence with the maxi-
mal ideals oft[V].

(b) The closed subsets Bfare in one-to-one correspondence with the radical ideals of
k[V].

(c) The setd(h), h € k[V], form a basis for the topology &f, i.e., eachD(h) is open,
and every open set is a union (in fact, a finite unionpgh)’s.

PROOF. (a) and (b) are obvious from the above discussion. For (c), we have already ob-
served thaD(h) is open. Any other open sét C V' is the complement of a set of the form
V(b), with b an ideal ink[V], and if f1, ..., f., generate, thenU = | D(f;). O
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The D(h) are called thévasic(or principal) open subsetsf V. We sometimes write
V. for D(h). Note that

D(h) € D(h') < V(h) D V(R)
<= rad((h)) C rad((h))
< h" € (h') somer
<= h" = h'g, somey.

Some of this should look familiar: iV is a topological space, then the zero set of a
family of continuous functiong: V' — R is closed, and the set where such a function is
nonzero is open.

Irreducible algebraic sets

A topological spacdV is said to beirreducible if it satisfies the following equivalent
conditions:

(&) W is not the union of two proper closed subsets;

(b) any two nonempty open subsetsifhave a nonempty intersection;

(c) any nonempty open subsetldf is dense.
The equivalences (&= (b) and (b)<= (c) are obvious. It follows from (a) that if an
irreducible spacéV is a finite union of closed subsei$;, = W, U...UW,, thenWW = W;
for somei.

The notion of irreducibility is not useful for Hausdorff topological spaces, because the

only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods, contradicting (b).

PrRoOPOSITION1.15. An algebraic setV is irreducible and only iff (W) is prime.

PROOF. =: Supposefg € I(W). At each point ofiV/, either f is zero org is zero, and so
W cV(f)uV(g). Hence

W= (WAV() U(WNV(g)).

As W is irreducible, one of these sets, d&yn V' (f), must equalV. But thenf € I(W).
ThusI(W) is prime.

<=: SupposéV = V(a) UV (b) with a andb radical ideals — we have to show tHat
equalsV (a) or V(b). Recall that(a) U V(b) = V(a N b) and thata N b is radical; hence
I(W)=anb. If W # V(a),thenthereisatf € a, f ¢ I(W). Butfg € anb = I[(IV)
for all ¢ € b, and, becaus¢ ¢ I(W) and (V) is prime, this implies thab C I(W);
thereforelV C V(b). O

Thus, there are one-to-one correspondences

radical ideals«— algebraic subsets
prime ideals« irreducible algebraic subsets
maximal ideals+ one-point sets
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These correspondences are valid whether we mean idedlXin. . ., X,,] and algebraic
subsets of:”, or ideals ink[V] and algebraic subsets bf. Note that the last correspon-
dence implies that the maximal idealstifV'] are those of the forrtwy —ay, ..., 2, — a,),
(ay,...,a,) € V.

EXAMPLE 1.16. Letf € k[Xy,..., X,,]. As we showed i (O]7);[X, ..., X,] isa unique
factorization domain, and §¢) is a prime ideal<=> f is irreducible [(0.B). Thus

V(f) isirreducible <= f isirreducible.

On the other hand, suppogdactors,f = [ f/™, with the f; distinct irreducible polyno-
mials. Then(f) = N(f), rad(f)) = (I1f;) = N(£), andV'(f) = UV () with V()

irreducible.

PROPOSITION1.17. LetV be a Noetherian topological space. Thens a finite union of
irreducible closed subset®, = V,U. . .UV,,. Moreover, if the decomposition is irredundant
in the sense that there are no inclusions amonglthéhen thel; are uniquely determined
up to order.

PROOF. Suppose the first assertion is false. Then, beciuseNoetherian, there will be a
closed subsédt’ of V' that is minimal among those that cannot be written as a finite union of
irreducible closed subsets. But suclVacannot itself be irreducible, and 86 = W, UW,,

with eachlV; a proper closed subset @f. From the minimality ofi?/, it follows that each

W, is a finite union of irreducible closed subsets, and so therefdié i¢/e have arrived at

a contradiction.

Suppose that = V;U...UV,, = W U...UW, are two irredundant decompositions.
ThenV, = Uj(V; N W;), and so, becausg is irreducible,V; C V; n W, for somej.
Consequently, there is a functigh {1,...,m} — {1,...,n} such thatl; C W for
eachi. Similarly, there is a functiog: {1,...,n} — {1,...,m} such thatiV; C Vi
for eachj. SinceV; C Wyu) C Vipu), we must have f(i) = ¢ andV; = Wy,; similarly
fg =id. Thusf andg are bijections, and the decompositions differ only in the numbering
of the sets. O

TheV; given uniquely by the proposition are called iheducible component®f V.
They are the maximal closed irreducible subset8 ofn Exampld 1.16, thé&’(f;) are the
irreducible components of (f).

COROLLARY 1.18. A radical ideala in k[X1,...,X,] is a finite intersection of prime
ideals,a = p; N ... N p,; if there are no inclusions among tipe, then thep,; are uniquely
determined up to order.

PROOF. Write V(a) as a union of its irreducible componenis(a) = |JV;, and take

REMARK 1.19. (a) In a Noetherian ring, every ideahas a decomposition into primary
ideals: a = () q; (see Atiyah and MacDonald 1969, 1V, VII). For radical ideals, this be-
comes a much simpler decomposition into prime ideals, as in the corollary.
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(b) Ink[X], (f(X)) is radical if and only iff is square-free, in which cagés a product
of distinct irreducible polynomials; = f; ... f,, and(f) = (fi1)N...N(f.) (a polynomial
is divisible by f if and only if it is divisible by eacly;).

(c) A Hausdorff space is Noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

Dimension

We briefly introduce the notion of the dimension of an algebraic set. In Section 7 we shall
discuss this in more detail.

Let V' be an irreducible algebraic subset. THéW) is a prime ideal, and sb[V/] is an
integral domain. Let(V) be its field of fractions — (1) is called thefield of rational
functicl%lns on V. Thedimensionof V' is defined to be the transcendence degrek(bf)
overk

EXAMPLE 1.20. (a) LetV = £"; thenk(V) = k(X,..., X, ), and sadim(V') = n. Later
(6.13) we shall see that the Noether normalization theorem implie$’'thas dimension
if and only if there is a surjective finite-to-one mép— £".

(b) If V' is a linear subspace &f' (or a translate of such a subspace), then itis an easy
exercise to show that the dimensionloin the above sense is the same as its dimension in
the sense of linear algebra (in fakf)/] is canonically isomorphic to[ X, , . .., X;,] where
the X, are the “free” variables in the system of linear equations defiiing

In linear algebra, we justify saying has dimensiom by pointing out that its elements
are parametrized by-tuples; unfortunately, it is not true in general that the points of an
algebraic set of dimension are parametrized by-tuples; the most one can say is that
there is a finite-to-one map fd'.

(c) An irreducible algebraic set has dimensioif and only if it consists of a single
point. Certainly, for any poinf € k", k[P] = k, and sok(P) = k. Conversely, suppose
V = V(p), p prime, has dimensiof. Thenk(V) is an algebraic extension &f and so
equalsk. From the inclusions

kCklV]Ck(V)=k

we see that[V] = k. Hencep is maximal, and we saw iff (1.l1b) that this implies that
V(p) is a point.

The zero set of a single nonconstant nonzero polynorfial;, ..., X,) is called a
hypersurfacen k".

PrRoPOSITION1.21. An irreducible hypersurface ih™ has dimensiom — 1.

PROOF. An irreducible hypersurface is the zero set of an irreducible polynofniaét

k[xl,...,xn]:k[Xl,...,Xn]/(f), .CIZ’,L:X,L—F]J,

9According to the last theorem in Atiyah and MacDonald 1969 (Theorem 11.25), the transcendence degree
of k(V') is equal to the Krull dimension df{V']; we shall prove this latef (7.6).
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and letk(zy,...,x,) be the field of fractions ok[z1,...,z,]. Sincexy,...,z, generate
k(x1,...,z,) and they are algebraically dependent, the transcendence degree must be
(becausqzy, ..., x,} is not a transcendence basis, but it contains one — see FT 8.9). To

see thatitis nok n — 1, note that ifX,, occurs inf, then it occurs in all nonzero multiples
of f, and so no nonzero polynomial ik, ..., X, _; belongs to(f). This means that
x1,...,T,_1 are algebraically independent. O

For a reducible algebraic set, we define thelimensionof V' to be the maximum of
the dimensions of its irreducible components. When the irreducible components all have
the same dimensiaf, we say that” haspure dimensiond.

PrRoPOSITION1.22. If V is irreducible andZ is a proper algebraic subset df, then
dim(Z) < dim(V).

PROOF. We may assume thdf is irreducible. ThernZ corresponds to a nonzero prime
idealp in k[V], andk[Z] = k[V]/p.

Supposel’ C k", so thatk[V] = k[Xy,...,X,]/I(V) = klz1,...,x,). If X is
regarded as a function dit, then its imager; in k[V] is the restriction of this function to
V.

Let f € k[V]. The imagef of f in k[V]/p = k[Z] can be regarded as the restriction
of f to Z. With this notationk[Z] = k[z,,...,Z,]. Suppose thaiim Z = d and that
T1,..., T4 are algebraically independent. | will show that, for any nonzéeoyp, thed + 1
elementsey, ..., z4, f are algebraically independent, which implies thiah V' > d + 1.

Suppose otherwise. Then there is a nontrivial algebraic relation among tre f,
which we can write

ao(:vl,...,md)fm—i—al(xl,...,xd)f”_l+---—|—am(x1,...,xd) =0,

with a;(x1,...,x4) € k[zy,...,z4. Because the relation is nontrivial, at least one of the
a; is nonzero (in the polynomial ring[xy, ..., z4]). After cancelling by a power of if
necessary, we can assumeg(zi, ..., xq) # 0 (here we are using thaf is irreducible, so
that £[V] is an integral domain). On restricting the functions in the above equalif to
i.e., applying the homomorphisiV] — k[Z], we find that

(T, ..., Tq) =0,
which contradicts the algebraic independenceof . . , 7. O

ExAMPLE 1.23. LetF(X,Y) andG(X,Y) be nonconstant polynomials with no common
factor. ThenV/(F(X,Y)) has dimensiori by (1.21), and s&/(F(X,Y)) N V(G(X,Y))
must have dimension zero; it is therefore a finite set.

REMARK 1.24. Later[(7.]4) we shall show that if, in the situation[of (1.22)s amaximal
proper irreducible subset &f, thendim Z = dim V' — 1. This implies that the dimension
of an algebraic sét’ is the maximum length of a chain

Ve2Vi2--2Vu
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with eachV; closed and irreducible ant, an irreducible component df. Note that
this description of dimension is purely topological—it makes sense for any Noetherian
topological space.

On translating the description in terms of ideals, we see immediately that the dimension
of V is equal to theKrull dimension of k[V]—the maximal length of a chain of prime

ideals,
pdgpd_l 2 2 Po-

EXAMPLE 1.25. We classify the irreducible closed subgétef k2. If ¥ has dimension

2, then (by[ 1.2P) it can’t be a proper subsetidf so it isk2. If V has dimensiori, then

V # k?, and sol(V) contains a nonzero polynomial, and hence a nonzero irreducible
polynomial f (being a prime ideal). TheWi O V(f), and so equal®’( f). Finally, if V' has
dimension zero, it is a point. Correspondingly, we can make a list of all the prime ideals in
k[X,Y]: they have the fornt0), (f) (with f irreducible), or(X —a,Y —b).

Exercises 3—7
3. Find I(W), whereV = (X2, XY?). Check that it is the radical ¢fX?, XY?),

4. |dentify ™ with the set ofm x m matrices. Show that, for all, the set of matrices
with rank < r is an algebraic subset b,

5. LetV = {(¢,...,t") | t € k}. Show thatV is an algebraic subset &f’, and that
k[V] ~ k[X] (polynomial ring in one variable). (Assuniehas characteristic zero.)

6. Using only thatt[X, Y] is a unique factorization domain and the result§§ff,1, show
that the following is a complete list of prime idealsknX, Y:

@ (0);

(b) (f(X,Y)) for f an irreducible polynomial;

() (X —a,Y —0b)fora,bc k.

7. Let A and B be (not necessarily commutativ@)algebras of finite dimension ovéy,
and letQ? be the algebraic closure @fin C. Show that ifHomc.aigebra{ AR C, B®gC) #
0, thenHomgar aigebra A ®g Q, B ®g Q) # 0. (Hint: The proof takes three lines.)
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2 Affine Algebraic Varieties

In this section we define the structure of a ringed space on an algebraic set, and then we
define the notion of affine algebraic variety — roughly speaking, this is an algebraic set with
no preferred embedding int¢. This is in preparation fo§3, where we define an algebraic
variety to be a ringed space that is a finite union of affine algebraic varieties satisfying a
natural separation axiom (in the same way that a topological manifold is a union of subsets
homeomorphic to open subsetsRif satisfying the Hausdorff axiom).

Ringed spaces
Let V' be a topological space aida field.

DEFINITION 2.1. Suppose that for every open subS8ebf IV we have a seOy (U) of
functionsU — k. ThenQy is called asheaf of k-algebrasif it satisfies the following
conditions:

(@) Oy (U) is ank-subalgebra of the algebra of all functidiis— &, i.e., for each € k,
the constant functionis in Oy (U), and if f, g € Oy (U), then so also d¢ + g and
fg.

(b) If U’ is an open subset &f andf € Oy (U), thenf|U’" € Oy (U").

(c) LetU = |JU, be an open covering of an open subgebf V/; then a function
f:U—=kisinOy(U)if flU, € Oy (U,) for all « (i.e., the condition forf to be in
Oy (U) is local).

EXAMPLE 2.2. (a) LetV be any topological space, and for each open sulbjseft | let
Ov (U) be the set of all continuous real-valued functionston Then Oy is a sheaf of
R-algebras.

(b) Recall that a functiorf: U — R, whereU is an open subset &", is said to be”>
(or infinitely differentiable) if its partial derivatives of all orders exist and are continuous.
Let V' be an open subset &", and for each open subgétof V' let Oy (U) be the set of
all infinitely differentiable functions oW/. ThenOy, is a sheaf oiR-algebras.

(c) Recall that a functiorf: U — C, whereU is an open subset @i, is said to bean-
alytic (or holomorphig) if it is described by a convergent power series in a neighbourhood
of each point ofU. LetV be an open subset @f*, and for each open subgétof V' let
Oy (U) be the set of all analytic functions éh ThenOy, is a sheaf ofC-algebras.

(d) Nonexample: leV be a topological space, and for each open subset V' let
Ov (U) be the set of all real-valued constant functiondgrihenOy, is not a sheaf, unless
Vis irreducibldﬂ If “constant” is replaced with “locally constant”, thefi,, becomes a
sheaf ofR-algebras (in fact, the smallest such sheaf).

A pair (V, Oy ) consisting of a topological spadé and a sheaf of-algebras will be
called aringed spaceFor historical reasons, we often writ¢U, Oy) for Oy (U) and calll
its elementsectionsof Oy overU.

101f v/ is reducible, then it contains disjoint open subsets, EagndU,. Let f be the function on the
union of U; and U, taking the constant valuke on U; and the constant valugon U,. Then f is not in
Oy (U1 UUs), and so condition 2.1c fails.
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Let (V,Oy) be a ringed space. For any open suliseif V', the restrictionOy |U of
Oy to U, defined by

LU, Oy|U) =T(U', Oy), allopenU’ C U,

is a sheaf again.

Let(V, Oy ) beringed space, and Ietc V. Consider pairgf, U) consisting of an open
neighbourhood’ of P and anf € Oy (U). We write(f,U) ~ (f',U")if flU" = f'|U" for
some open neighbourhodd’ of P contained i/ andU’. This is an equivalence relation,
and an equivalence class of pairs is callegeemof a function atP. The set of equivalence
classes of such pairs formsg:ealgebra denotedy » or Op. In all the interesting cases, it
is a local ring with maximal ideal the set of germs that are zer®.at

In a fancier terminology,

Op = li_I)n(’)V(U), (direct limit over open neighbourhoodsof P).

ExXAMPLE 2.3. LetV = C, and letOy be the sheaf of holomorphic functions @n For

c € C, call a power seriel ., a,(z —c)", a, € C, convergentf it converges on some
neighbourhood of. The set of such power series isCaalgebra, and | claim that it is
canonically isomorphic to the ring of germs of functiafs From basic complex analysis,
we know that iff is a holomorphic function on a neighbourhddaf ¢, thenf has a power
series expansiofi = > a,(z — ¢)" in some (possibly smaller) neighbourhood. Moreover
another pair(g, U’) will define the same power series if and onlygifagrees withf on
some neighbourhood @fcontained inU N U’. Thus we have an injective map from the
ring of germs of holomorphic functions ato the ring of convergent power series, and it is
obvious that it is an isomorphism.

The ringed space structure on an algebraic set

We now takek to be an algebraically closed field.et V' be an algebraic subset bf. An
elementh of k£[V] defines functions

a— h(a): V — k,anda — 1/h(a): D(h) — k.
Thus a pair of elementg h € k[V] with i # 0 defines a function

g(a)
a— ha) D(h) — k.

We say that a functiorf: U — k on an open subsét of V' is regular if it is of this form
in a neighbourhood of each of its points, i.e., if foralE U, there exisy, h € k[V] with
h(a) # 0 such that the functiong and{ agree in a neighbourhood af Write Oy (U) for
the set of regular functions din.

For example, if = k™, then a functionf: U — k is regular at a poinh € U if there
are polynomialg/( X7, ..., X,) andh(Xy,...,X,) with h(a) # 0andf(b) = % for all
b in a neighbourhood ad.
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PROPOSITION2.4. The mapy — Oy (U) defines a sheaf df-algebras on/.

PROOF. We have to check the conditioris (R.1).

(a) Clearly, a constant function is regular. Suppgsend f’ are regular o/, and let
a € U. By assumption, there exigt g, h, h" € E[V], with h(a) # 0 # h’( ) such that
f and f" agree with] and 7; - respectively neas. Thenf + f’ agrees Wlt% neara,
and sof + f’is regular onU Similarly —f and f f’ are regular ort/. ThusOy (U) is a
k-algebra.

(b) It is clear from the definition that the restriction of a regular function to an open
subset is again regular.

(c) The condition forf to be regular is obviously local. O

LEMMA 2.5. The elemeny/h™ of k[V], defines the zero function dn(h) if and only if
gh =0 (in k[V]) (and hencg;/h™ = 0 in k[V];,).

PROOF. If g/h™is zero onD(h), thengh is zero on/ becausé is zero on the complement
of D(h). Thereforegh is zero ink[V]. Conversely, ifgh = 0, theng(a)h(a) = 0 for all
acV,andsog(a) =0foralla e D(h). O

The lemma shows that the canonical miap’], — Oy (D(h)) is injective. The next
proposition shows that it is also surjective. In particutay;| = Oy (V') and so the regular
functions onV” are exactly the functions defined by elementg[df] — the definitions of
“regular function” in this and the preceding section are consistent.

PROPOSITION2.6. (&) The canonical map[V], — Oy (D(h)) is an isomorphism.
(b) For anya € V/, there is a canonical isomorphis@®, — k[V],., wherem, is the
maximal idealz; — aq, ..., 2, — a,).

PROOF. (a) We have already observed thai’], — Oy (D(h)) is injective, and so it
remains to show that every regular functipion D(h) arises from an element &fV/].

By definition, we know that there is an open coveribg:) = |JV; and elementsg;,
h; € k[V] with h; nowhere zero oi; such thatf|V; = #. Since the sets of the fori(a)
form a basis for the topology ovi, we can assume that D(az) someq; € k[V]. By
assumptlonD(al) C D(h;), and soa = h;g, for someg, € k[V] (see p3B). OM(a;),

== Zz = gzgl Note thatD(al¥) = D(a;). Therefore, after replacing with g;g/
andh; with a?, we can suppose thét = D(h;).

We now havethaD( ) = U D(h;) and thatf| D(h;) = #. BecauseD(h) is quasicom-
pacﬁ, we can assume that the covering is finite. J/As= 9; on D(h;)ND(h;) = D(h;h;),

we have (by Lemmi 2.6) that
hih;(gihj — g;h:) = 0. *)

Because(h) = JD(h;) = D(h?),V((h)) =V ((h3,...,h?)),and sch € rad(h?, ... h2):
there exist; € k[V] such that

= Yaihi. (*)
i=1

HRecall ) thal” is Noetherian, i.e., has the ascending chain condition on open subsets. This implies
that any open subset &f is also Noetherian, and hence is quasi-compact.
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| claim thatf is the function onD(h) defined byz‘;l—ﬁh
Let a be a point ofD(h). Thena will be in one of theD(h;), sayD(h;). We have the
following equalities ink[V]:

h?Z:laigihz‘ = Z:laz‘gjh?hj by (*)
= gjhth by (**).

But f|D(h;) = i—; i.e., fh; andg; agree as functions of(h;). Therefore we have the
following equality of functions orD(h;):

2 = _ 21 N

Sinceh? is never zero otD(h;), we can cancel it, to find that, as claimed, the funcférf
on D(h;) equals that defined by a;g;h;.

(b) First a general observation: in the definition of the germs of a sheaitauffices to
consider pairgf, U) with U lying in a some basis for the neighbourhooda dor example,
the basis provided by the basic open subsets. Thus each elentntofepresented by a
pair (f, D(h)) whereh(a) # 0 andf € k[V],, and two pairg f1, D(h;)) and(f2, D(hs))
represent the same element®@f if and only if f; and f; restrict to the same function on
D(h)witha € D(h) C D(hyhs).

For each ¢ p, there is a canonical homomorphism: k[V], — k[V],, and we map
the element 0®, represented byf, D(h)) to a,(f). Now, Lemma 0.16(b) (witl$ = S;)
shows that these homomorphisms define an isomorphisi[V];, = k[V],,. O

The proposition gives us an explicit description of the valu€®gfon any basic open
set and of the ring of germs at any poibf V. WhenV is irreducible, this becomes a
little simpler because all the rings are subring&@f). In this case, we have:

D(D(h), Oy) = {hiN ck(V)|geklV]l, Ne N};

Ou= {5 € k(V) | h(a) £ 0}
LU, 0y) = ﬂanOa
= L(D(hi), Oy) if U =D(h;).

Note that every element &f(V') defines a function on some nonempty open subsét.of
Following tradition, we call the elements &f1”) rational functions on V' (even though
they are not functions olr). The equalities show that the regular functions on an open
U c V are the rational functions o that are defined at each point@f

EXAMPLE 2.7. (a) LetV = k™. Then the ring of regular functions dn, I'(V, Oy ), is
k[X1,...,X,]. Forany nonzero polynomid(X;, ..., X,), the ring of regular functions
onD(h)is

g
{h—Nek(Xl,...,Xn)\gek[xl,...,xn], NeN}.
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For any pointa = (ay, . .., a,), the ring of germs of functions atis
O:{Qek(x X)|h,(a)7é0}:k[X X,]
a h 1y« An 1.+ Anl(X1—a1,...Xn—an)>

and its maximal ideal consists of thogéh with g(a) = 0.

(b) LetU = {(a,b) € k* | (a,b) # (0,0)}. Itis an open subset df, but it is not a
basic open subset, because its complefigh0) } has dimensiof, and therefore can’'t be
of the formV ((f)) (sed 1.211). Sinc& = D(X) U D(Y), the ring of regular functions on
Uis

I'(D(X),0)NnT(D(Y),0) =k[X,Y]x Nk[X,Y]y.

Thus (as an element é{ X, Y')), a regular function o/ can be written

p_ oY) BXY)

XN yM
Sincek[X,Y] is a unique factorization domain, we can assume that the fractions are in
their lowest terms. On multiplying through by Y™, we find that

g( X, Y)YM = h(X, V)XV,

BecauseX doesn't divide the left hand side, it can’t divide the right either, and/se 0.
Similarly, M = 0, and sof € k[X, Y]: every regular function o/ extends to a regular
function onk?.

Morphisms of ringed spaces

A morphism of ringed space§V, Oy ) — (W, Oy ) is a continuous map: V' — W such
that
feOwU) = fopeOy(p'U)

for all open subset§ of 1. Sometimes we write*(f) for f o p. If U is an open subset of
V, then the inclusionU, Oy |V') — (V, Oy ) is a morphism of ringed spaces. A morphism
of ringed spaces is asomorphismif it is bijective and its inverse is also a morphism of
ringed spaces (in particular, it is a homeomorphism).

ExAmMPLE 2.8. (a) LetV andV’ be topological spaces endowed with their she&¥esnd
Oy of continuous real valued functions. Any continuous map/” — V' is a morphism
of ringed structuresV, Oy ) — (V/, Oy).

(b) Let U andU’ be open subsets &" andR™ respectively. Recall from advanced
calculus that a mapping

gp:(gol,,@m)U_)U/CRm

is said to be infinitely differentiable (ar) if eachy; is infinitely differentiable, in which
casef o p is infinitely differentiable for every infinitely differentiable functigh U’ — R.
Note thatp; = x; o ¢, wherex; is the coordinate functiofu, . .., a,) — a;.
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Let V andV’ be open subsets &" andR™ respectively, endowed with their sheaves
of infinitely differentiable function®),, andOy. The above statements show that a con-
tinuous mapy: V' — V' is infinitely differentiable if and only if it is a morphism of ringed
spaces.

(c) Same as (b), but replagewith C and “infinitely differentiable” with “analytic”.

REMARK 2.9. A morphism of ringed spaces maps germs of functions to germs of functions.
More precisely, a morphism: (V, Oy ) — (V', Oy/) induces a map

OV,P — OV/,Lp(P)y

namely,[(f,U)] — [(f o p, o 1 (T))].

Affine algebraic varieties

We have just seen that every algebraic set gives rise to a ringed @pa2e). We define

an affine algebraic variety ovelk to be a ringed space that is isomorphic to a ringed
space of this form. Amorphism of affine algebraic varietiess a morphism of ringed
spaces; we often call it egular mapV — W or amorphismV — W, and we write
Mor(V, W) for the set of such morphisms. With these definitions, the affine algebraic
varieties become a category. Since we consider no nonalgebraic affine varieties, we shall
often drop “algebraic”.

In particular, every algebraic set has a natural structure of an affine variety. We usually
write A" for k" regarded as an affine algebraic variety. Note that the affine varieties we
have constructed so far have all been embeddéd'inVe shall now see how to construct
“unembedded” affine varieties.

A reduced finitely generatektalgebra is called aaffine k-algebra For such an al-
gebraA, there existr; € A (not necessarily algebraically independent), such that
k(xi,...,x,], and the kernel of the homomorphism

Xi’_)xi: ]C[Xl,,Xn] — A

is a radical ideal. Zariski's Lemma 1.7 implies that, for any maximal igeal A, the map
k — A — A/mis an isomorphism. Thus we can identifyym with k. For f € A, we
write f(m) for the image off in A/m =k, i.e., f(m) = f (modm).

We can associate with any affikealgebraAd a ringed spacéV, Oy ). First,V is the set
of maximal ideals inA. Forh € A, h # 0, let

D(h) = {m | h(m) # 0}
={m|h¢m}

and endowl” with the topology for which theD(h) form a basis. A pair of elements
g,h € A, h # 0, defines a function

h(m).D(h) k,
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and we call a functiorf: U — k on an open subsét of V' regular if it is of this form on
a neighbourhood of each point &f Write Oy (U) for the set of regular functions di.

We write specm(A) for the topological spac®, andSpecm(A) for the ringed space
(V,Ov).

REMARK 2.10. | claim that a radical idealin k[X7, ..., X, ] is equal to the intersection
of the maximal ideals containing it. Indeed, the maximal idealgi,, ..., X,,| are all of
the formm, = (X; — a4,..., X,, — a,), and

fem, < f(a)=0.

Thus
m, Da < ac V(a).

If f €m,forallae V(a),thenf iszeroonV(a), and sof € IV (a) = a.

This remark implies that, for any affinfealgebraA, the intersection of the maximal
ideals ofA is zero, becausd is isomorphic to &-algebrak[ X1, . .., X,,]/a with a radical.
Hence the map that associates witkk A the map

m— f(m): specmA — k,

is injective: A can be identified with a ring of functions epecm A.
PRoOPOSITION2.11. The pair(V, Oy ) is an affine variety with'(V, Oy ) = A.

PROOF. Represent! as a quotienk[ X, ..., X,]/a = k[zy,...,z,]. Then the map
(a1,...,a,) — (1 — a1, ..., T, — ay) (ideal in A)
is a bijectiony: V(a) — V with inverse
m— (z1(m),...,z,(m)): V — V(a) C k"

It is easy to check that this is a homeomorphism, and that a fung¢tmman open subset
of V is regular (according to the above definition) if and only if ¢ is regular. O

If we start with an affine variety” and letA = I'(V, Oy ), thenSpecm(A) = (V, Oy)
(canonically). (In this case, we also writ/] for I'(V, Oy ), the ring of functions regular
on the whole of/".)

Review of categories and functors

A categoryC consists of
(a) aclass of objects 96);
(b) for each pair( A, B) of objects, a seMor(A, B), whose elements are called mor-
phisms fromA to B, and are writtenv: A — B,
(c) for each triple of object§A, B, C') a map (calledcompositior)

(a, B) — Boa: Mor(A, B) x Mor(B,C) — Mor(A, C).
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Composition is required to be associative, i(e5 ) oa = yo (fo«), and for each object
A there is required to be an elemeédht, € Mor(A, A) such thaid, ca = o, Boidy = 3,
for all (appropriatelx and 5. The setsMor(A, B) are required to be disjoint (so that a
morphisma determines its source and target).

EXAMPLE 2.12. (a) There is a category of séists, whose objects are the sets and whose
morphisms are the usual maps of sets.

(b) There is a categorff,, of affine k-algebras, whose objects are the affinglgebras
and whose morphisms are the homomorphismis-aligebras.

(c) In Section 3 below, we define a categMyr, of algebraic varieties over, whose
objects are the algebraic varieties o¥eand whose morphisms are the regular maps.

The objects in a category need not be sets with structure, and the morphisms need not
be maps.
Let C andD be categories. A&ovariant functor F' from C to D consists of
(a) amapA — F(A), sending each object &f to an object oD, and,
(b) for each pair of objectd, B of C, a map

a— F(a): Mor(A, B) — Mor(F(A), F(B))

such thatF'(id4) = idpa) @ndF (5 o a) = F(B) o F(a).
A contravariant functoris defined similarly, except that the map on morphisms is

a— F(a): Mor(A, B) — Mor(F(B), F(A))
A functor F': C — D isfully faithful if, for all objectsA and B of C, the map
Mor (A, B) — Mor(F(A), F(B))

is a bijection.

A covariant functorF’: A — B of categories is said to be @&guivalence of categories
if it is fully faithful and every object ofB is isomorphic to an object of the forii(A),
A € ob(A) (F is essentially surjective One can show that such a funct®rhas aquasi-
inverse i.e., that there is a funct@r: B — A, which is also an equivalence, and for which
there exist natural isomorphisni&?’'(A)) ~ A andF(G(B)) ~ B. Hence the relation of
equivalence is an equivalence relation. (In fact one can do better — see Bucur and Deleanu
19687 16, or Mac Lane 1998, IV 4.)

Similarly one defines the notion of a contravariant functor being an equivalence of
categories.

Any fully faithful functor F': C — D defines an equivalence Gfwith the full subcate-
gory of D whose objects are isomorphic 1 A) for some object of C.

12Bycur, lon; Deleanu, Aristide. Introduction to the theory of categories and functors. Pure and Applied
Mathematics, Vol. XIX Interscience Publication John Wiley & Sons, Ltd., London-New York-Sydney 1968.

BMac Lane, Saunders. Categories for the working mathematician. Second edition. Graduate Texts in
Mathematics, 5. Springer-Verlag, New York, 1998.
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The category of affine algebraic varieties

For each affine:-algebra4, we have an affine varietgpecm(A), and conversely, for
each affine varietyV, Oy ), we have an affiné-algebral’(V, Oy). We now make this
correspondence into an equivalence of categories.

Leta: A — B be a homomorphism of affine-algebras. For any € A, a(h) is in-
vertible in B, ), and so the homomorphisth— B — B, ;) extends to a homomorphism

g . o9

= c A Bamy-

For any maximal ideat of B, m =4 o~ !(n) is maximal in A, becausd/m — B/n =k
is an injective map of-algebras and this implied/m = k. Thusa defines a map
@: specm B — specm A,  (n) = a '(n) =m.
Form = a~'(n) = ¢(n), we have a commutative diagram:
A —— B
l l
A/m —— A/n.

Recall that the image of an elemefiof A in A/m = k is denotedf(m). Therefore, the
commutativity of the diagram means that, foe A,

flem) = a(f)(n),ie,fop=a. (*)
Sincep ' D(f) = D(f o ¢) (obviously), it follows from (*) that

o~ (D(f)) = D(a(f)).

and sop is continuous.

Let f be a regular function o®(h), and writef = g/h™, g € A. Then, from (*)
we see thaff o ¢ is the function onD(«(h)) defined bya(g)/a(h)™. In particular, it is
regular, and s¢ — f o maps regular functions ab () to regular functions o («(h)).

It follows that f — f o ¢ sends regular functions on any open subsetpeftm(A) to
regular functions on the inverse image of the open subset. &hiefines a morphism
Specm(B) — Specm(A).

Conversely, by definition, a morphism of (V,Oy) — (W, Oy ) of affine algebraic
varieties defines a homomorphism of the associated dffeigebras:[IW] — k[V]. Since
these maps are inverse, we have shown:

PROPOSITION2.13. For any affine algebras! and B,
Homy.aq(A, B) = Mor(Specm(B), Specm(A)):
for any affine varietiey” and W,

Mor(V, W) = Homy.aig(k[W], k[V]).
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In terms of categories, Propositipn 2.13 can now be restated as:

PrROPOSITION2.14. The functorA — Specm A is a (contravariant) equivalence from
the category of affiné-algebras to that of affine varieties with quasi-inve($¢ Oy ) —
L(V, Oy).

Explicit description of morphisms of affine varieties

PROPOSITION2.15. LetV = V(a) C k™, W = V(b) C k™. The following conditions on
a continuous map: V. — W are equivalent:

(@) pisregular;

(b) the componentsg, ..., p,, of p are all regular;

() fekW]|= foypek|V].

PROOF. (a)=- (b). By definitiony; = y; o ¢ wherey; is the coordinate function
(b1, ..., bp) — bi: W — L.

Hence this implication follows directly from the definition of a regular map.

(b) = (c). The mapf — f o ¢ is ak-algebra homomorphism from the ring of all
functionsWW — k to the ring of all functions/ — k, and (b) says that the map sends the
coordinate functiong; on W into k[V]. Since they;’s generate:[IV] as ak-algebra, this
implies that this map sendslV| into k[V].

(c) = (a). The mapf — f o ¢ is a homomorphisma: k[W] — k[V]. It therefore
defines a mappecm k[V] — specm k[IV], and it remains to show that this coincides with
© when we identifyspecm £[V] with V andspecm k[IV] with W. Leta € V, letb = ¢(a),
and letm, andm;, be the ideals of elements &f\’] andk[1V] that are zero a& andb
respectively. Then, fof € k[W],

a(f)em, <= f(p(a)) =0 <= f(b) =0 <= fcmy.
Thereforea™!(m,) = my,, which is what we needed to show. O

REMARK 2.16. Foralla € V, f — fop maps germs of regular functionsata) to germs
of regular functions aa; in fact, it induces a local homomorphi@r@vw&n — Oya.

Now consider equations

}q:Pl(Xl>-"7Xm)

Y, = Pu(X1,..., Xm).
On the one hand, they define a mappingk™ — k™, namely,

(a1, .. am) — (Pr(ag, ... am), .., Polag, ..., amn)).

14Recall that docal homomorphismf: A — B of local rings is a homomorphism such thfdtn 4) C mp
(equivalently, such that~!(mp) = ma).
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On the other, they define a homomorphisntaflgebrasy: k[Y3, ..., Y, ] — k[ X1, ..., X,],
namely, that sending
Y = Pi(Xi,.... Xa).

This map coincides witlf — f o ¢, because

Now consider closed subsétga) C k™ andV (b) C k™ with a andb radical ideals. | claim
that mapsV(a) into V(b) if and only if «(b) C a. Indeed, supposg(V(a)) C V(b),
and letf € b; forb € V (b),

and sop(a) € V(a). When these conditions holg, is the morphism of affine varieties
V(a) — V(b) corresponding to the homomorphigrt, ..., Y,,]/b — k[X;,..., X,]/a
defined bya.

Thus, we see that the morphisms

V(a) — V(b)
are all of the form
a— (P(a),...,Py(a)), P e€klXy,..., X,

EXAMPLE 2.17. (a) Consider k-algebraR. From ak-algebra homomorphism: k[X] —
R, we obtain an element(X) € R, anda(X) determinesy completely. Moreovery(X)
can be any element @t. Thus

~

a— a(X): Homy_a4(k[X], R) — R.

According to [2.1B)
Mor(V, A') = Homy.ag(k[X], k[V]).

Thus the regular mags — A! are simply the regular functions dn (as we would hope).
(b) DefineA’ to be the ringed spadé/,, Oy, ) with 1, consisting of a single point, and
I'(Vo, Oy,) = k. Equivalently,A° = Specm k. Then, for any affine variety’,

Mor(A°, V') = Homy,a4(k[V], k) =V

where the last map sendgo the point corresponding to the maximal idéailr(«).
(c) Consider — (t2,t3): A* — A2, This is bijective onto its image,

V. Y2:X3,
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but it is not an isomorphism onto its image — the inverse map is not a morphism. Because
of (2.14), it suffices to show that— (¢2,¢*) doesn't induce an isomorphism on the rings
of regular functions. We have[A'] = k[T] andk[V] = k[X,Y]/(Y? — X3) = k[z,y].
The map onrings is
v Ty T8, Klayy] — k[T,

which is injective, but the image i§T?, T3] # k[T]. Infact,k[z, y] is not integrally closed:
(y/x)* —x =0, and so(y/x) is integral overk [z, y], buty /= ¢ k[x,y] (it maps tol" under
the inclusionk(z, y) — k(T)).

(d) Let £ have characteristip # 0, and considerr — aP: A* — A", Thisis a
bijection, but it is not an isomorphism because the corresponding map on rings,

F(Xy, )= fXY ) k[X, . X — kX, X,

IS not surjective.

This map is the famouBrobenius map. Take k to be the algebraic closure @f,,
and write F' for the map. Then the fixed points @™ are precisely the points of"
with coordinates irff,~, the field withp™-elements (recall from Galois theory thEj-
is the subfield ofc consisting of those elements satisfying the equalién = X). Let
P(Xy,...,X,) be a polynomial with coefficients ift,m, P = > c, X%, ¢o € Fpm. If
P(a)=0,a € k", i.e.,analf ---a'» = 0, then

pm
, . m "
O = ( E Coéa/zll e a%”) = E Caallj o, a’lr)l Z”L’

and soP(F™a) = 0. ThusF™ mapsV (P) into V(P), and its fixed points are the solutions
of
P(Xy,...,X,)=0

inFym.

In one of the most beautiful pieces of mathematics of the last fifty years, Grothendieck
defined a cohomology theorgtale cohomology) that allowed him to obtain an expression
for the number of solutions of a system of polynomial equations with coordinatgs. in
in terms of a Lefschetz fixed point formula, and Deligne used the theory to obtain very
precise estimates for the number of solutions. See my course notes: Lectures on Etale
Cohomology.

Subvarieties
Let A be an affine:-algebra. For any idealin A, we define

V(a) ={P €specm A | f(P)=0all f € a}
= {m maximal ideal inA | a C m}.

This is a closed subset giecm A, and every closed subset is of this form.
Now assumaer is radical, so thatd/a is again reduced. Corresponding to the homo-
morphismA — A/a, we get a regular map

Specm A/a — Specm A
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The image isV(a), andspecm A/a — V(a) is a homeomorphism. Thus every closed
subset okpecm A has a natural ringed structure making it into an affine algebraic variety.
We callV'(a) with this structure &losed subvarietpf V.

ASIDE 2.18. If (V, Oy) is a ringed space, amd is a closed subset df, we can define a
ringed space structure dhas follows: letU be an open subset af, and letf be a function

U — k;thenf € I'(U,Oy) if for each P € U there is a gernU’, f’) of a function at

P (regarded as a point df ) such thatf'|Z N U’ = f. One can check that when this
construction is applied t& = V' (a), the ringed space structure obtained is that described
above.

PROPOSITION2.19. Let (V, Oy ) be an affine variety and let € k[V], h # 0. Then
(D(h), Oy|D(h)) is an affine variety; in fact it/ = specm(A), thenD(h) = specm(Ay,).
More explicitly, ifVV = V(a) C k", then

(ay,...,a,) > (ai,...,an, h(as,...,a,)""): D(h) — k™t
defines an isomorphism &f(h) ontoV'(a, 1 — hX,41).

PROOF. The mapA — A, defines a morphismpecm A;, — specm A. The image is
D(h), and it is routine (usingd (0.16)) to verify the rest of the statement. O

For example, there is an isomorphism of affine varieties
s (z,1/2): A' — {0} - V C A%
whereV is the subvarietyXY” = 1 of A? — the reader should draw a picture.

REMARK 2.20. We have seen that all closed subsets, and all basic open subsets, of an
affine varietyl” are again affine varieties, but it need not be true tha©,/|U) is an affine
variety whenUU open inV'. Note that if(U, Oy |U) is an affine variety, then we must have
(U,Oy) = Specm(A), A =T'(U, Oy). In particular, the map

Pimp S {f€A|f(P)=0}

will be a bijection fromU ontospecm(A).

ConsiderU = A? \ (0,0) = D(X) U D(Y). We saw in[(2.J7b) thab (U, O 2) =
k[X,Y]. NowU — specm k[X, Y] is not a bijection, because the idéal, Y) is not in the
image.

However,U is clearly a union of affine algebraic varieties — we shall see in the next
section that it is a (nonaffine) algebraic variety.

Affine space without coordinates

Let £ be a vector space ovkrof dimensiom. The setA(F) of lines through zero it has
a natural structure of an algebraic variety: the choice of a basig fdefines an bijection
A(F) < A", and the inherited structure of an algebraic variety\@#®’) is independent of
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the choice of the basis (because the bijections defined by two different bases differ by an
automorphism of\").

More intrinsically, the tensor algebra &f, TE = @,.,E®", is an affine algebra over
k, and we can defin&(E) = SpecmT E. The choice of abasis, . . ., e, for E determines
an isomorphisn'E = kley, ..., e,] (polynomial algebra), which gives rise to a bijection
specmT' E « specmkley, . .., e,] that can be identified with the bijection(E£) <« A™.

Properties of the regular map defined by specmy)

PROPOSITION2.21. Leta: A — B be a homomorphism of affinealgebras, and let
: Specm(B) — Specm(A) be the corresponding morphism of affine varieties (so that
o(f) = po f).
(a) The image ob is dense for the Zariski topology if and onlyifis injective.
(b) ¢ defines an isomorphism Sfecm(B) onto a closed subvariety 8pecm(A) if and
only if o is surjective.

PROOF. (a) Letf € A. If the image ofy is dense, then
fop=0= f=0.

Conversely, if the image ab is not dense, there will be a nonzero functipre A that is
zero on its image, i.e., such thab ¢ = 0.

(b) If v is surjective, then it defines an isomorphigifa — B wherea is the kernel of
«. This induces an isomorphism 8pecm(B) with its image inSpecm(A). O

A regular mapp: V' — W of affine algebraic varieties is said to belaminating (or
dominany if its image is dense ifl’. The proposition then says that:

@ isdominating <= f— fop: ['(W,0y) — I'(V,Oy) is injective.

A little history

We have associated with any affikealgebraA an affine variety whose underlying topo-
logical space is the set of maximal idealsAn It may seem strange to be describing a
topological space in terms of maximal ideals in a ring, but the analysts have been doing
this for more than 50 years. Gel'fand and Kolmogorov in @@oved that ifS andT

are compact topological spaces, and the rings of real-valued continuous functis@sdn

T are isomorphic (just as rings), theéhand7 are homeomorphic. The proof begins by
showing that, for such a spa®gthe map

PompL{f:S—R|f(P)=0}

is one-to-one correspondence between the points in the space and maximal ideals in the
ring.

150n rings of continuous functions on topological spaces, Doklady 22, 11-15. See also Allen Shields,
Banach Algebras, 1939-1989, Math. Intelligencer, Vol 11, no. 3, p15.
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Exercises 8-12

8. Show that a map between affine varieties can be continuous for the Zariski topology
without being regular.

9. Let ¢ be a power of a prime, and letF, be the field withqg elements. LetS be a
subset off,[ X1, ..., X,], and letV be its zero set ik", wherek is the algebraic closure

of F,. Show that the maga,,...,a,) — (af,...,al) is aregular mag: V — V (i.e.,

o(V) C V). Verify that the set of fixed points af is the set of zeros of the elementsof

with coordinates irF,. (This statement enables one to study the cardinality of the last set
using a Lefschetz fixed point formula — see my lecture notestale cohomology.)

10. Find the image of the regular map
(z,y) — (z,2y): A* — A®

and verify that it is neither open nor closed.

11. Show that the circleX? + Y2 = 1 is isomorphic (as an affine variety) to the hyperbola
XY =1, but that neither is isomorphic th'.

12.Let C be the curv&’? = X? + X3, and lety be the regular map
t (2 —1,tt* —1)): A - C.

Is ¢ an isomorphism?
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3 Algebraic Varieties

An algebraic variety is a ringed space that is locally isomorphic to an affine algebraic
variety, just as a topological manifold is a ringed space that is locally isomorphic to an open
subset ofR™; both are required to satisfy a separation axiom. Throughout this sektisn,
algebraically closed.

Algebraic prevarieties

As motivation, recall the following definitions.

DEFINITION 3.1. (a) Atopological manifold is a ringed spacéV, Oy/) such thatV is
Hausdorff and every point of° has an open neighbourhodd for which (U, Oy |U) is
isomorphic to the ringed space of continuous functions on an open suli®etaf (2.2a)).

(b) A differentiable manifoldis a ringed space such thatis Hausdorff and every point
of V' has an open neighbourhoédfor which (U, Oy |U) is isomorphic to a ringed space
asin [2.2b).

(c) A complex manifoldis a ringed space such thitis Hausdorff and every point of
V" has an open neighbourhoédfor which (U, Oy |U) is isomorphic to a ringed space as

in (2.4c).

The above definitions are easily seen to be equivalent to the more classical definitions
in terms of charts and atlases. Often one imposes additional conditidrisfonexample,
that it is second countable or connected.

DEFINITION 3.2. Analgebraic prevariety ovek is a ringed spacéV, Oy ) such that’ is
quasi-compact and every point Bfhas an open neighbourhoédsuch that'V, Oy |U) is
an affine algebraic variety ovér

Equivalently, a ringed spad&’, Oy ) is an algebraic prevariety ovérif there is a finite
open covering” = |JV; such that'V;, Oy |V;) is an affine algebraic variety ovérfor all .

An algebraic variety will be defined to be an algebraic prevariety satisfying a certain
separation condition.

An open subsel/ of an algebraic prevariety such thatU, Oy |U) is an affine alge-
braic variety is called anpen affine (subvarietyin V.

Let (V, Oy) be an algebraic prevariety, and {ébe an open subset df. The functions
f: U — klyinginT'(U, Oy) are calledegular. Note that if(U;) is an open covering df
by affine varieties, theri: U — k is regular if and only iff|U; N U is regular for all (by
[2.3(c)). Thus understanding the regular functions on open subsktawfounts to under-
standing the regular functions on the open affine subvarieties and how these subvarieties fit
together to form/.

ExaMPLE 3.3. Every open subset of an affine variety endowed with its induced ringed
structure is an algebraic prevariety (in fact variety). For examfife;. {(0,0)} is an
algebraic variety.
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ExAMPLE 3.4. (Projective space). Let

P = k"t {(0,...,0)}~

where(ag, . .., a,) ~ (bo, ..., b,) ifthereisac € k™ suchthatay, ..., a,) = (cby,. .., cb,).

Thus the equivalence classes are the lines through the origin in Write (ag: ... : a,)

for the equivalence class containig, . . . , a,,). For each, let
U={(ag:...:a;:...:a,) € P"|a; #0}.

ThenP" = |J U;, and the map;
(a1,...,an) — (ay:...ia; 1@, ... ay) K" — U

is a bijection. We use this map to transfer the Zariski topology’oto U;, and we endow
P™ with the topology such thdf C P" is open if and only if N U; is open inU; for all i.
Define a functionf: U — k on an open subsét of P" to be regular iff o u; is a regular
function onk™ for all i. These definitions endo®" with the structure of a ringed space,
and each map; is an isomorphism of ringed spaces”, Oxn) — (U;, Oy|U;). ThusP”

is an algebraic prevariety. In Section 5 below, we stiztiyn detail.

Regular maps

In each of the example§ (3.1a,b,c), a morphism of manifolds (continuous map, differen-
tiable map, analytic map respectively) is just a morphism of ringed spaces. This motivates
the following definition.

Let (V, Oy) and (W, Oy ) be algebraic prevarieties. Amap V' — W is said to be
regular if it is a morphism of ringed spaces. A composite of regular maps is again regular
(this is a general fact about morphisms of ringed spaces).

Note that we have three categories:

(affine varieties)C (algebraic prevarieties) (ringed spaces).

Each subcategory is full (i.e., the morphisisr(V, 1) are the same in the three cate-
gories).

PRoOPOSITION3.5. Let (V, Oy) and (W, Oy ) be prevarieties, and lep: V' — W be a
continuous map (of topological spaces). L&t = (JWW; be a covering ofi/’ by open
affines, and letp~!(W;) = |JV}; be a covering ofp~!(W;) by open affines. Thep is
regular if and only if its restrictions

ol Vii: Vi = W;
are regular for alli, 5.
PROOF. We assume thap satisfies this condition, and prove that it is regular. fdte a
regular function on an open subgébf V. Thenf|U NW; is regular for eachi’; (because
the regular functions form a sheaf), andfsep|¢ ' (U) NV}; is regular for each, i (this is

our assumption). It follows that o ¢ is regular onp=1(U) (sheaf condition 2]1(c)). Thus
p is regular. The converse is equally easy. O
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AsSIDE 3.6. A differentiable manifold of dimensioti is locally isomorphic to an open
subset ofR?. In particular, all manifolds of the same dimension are locally isomorphic.
This is not true for algebraic varieties, for two reasons:

(a) We are not assuming our varieties are nonsingular (see the Section 4 below).

(b) The inverse function theorem fails in our context.Hfis a nonsingular point on
variety of dimensionl, we shall see (in the next section) that there is a neighbourbticafd
P and aregular map: U — A such that magdy)p: Tr — T,y On the tangent spaces
is an isomorphism. If the inverse function theorem were true in our context, it would tell
us that an open neighbourhood®fis isomorphic to an open neighbourhoodfP).

Algebraic varieties

In the study of topological manifolds, the Hausdorff condition eliminates such bizarre pos-
sibilities as the line with the origin doubled (dee 3.10 below) where a sequence tending to
the origin has two limits.

It is not immediately obvious how to impose a separation axiom on our algebraic va-
rieties, because even affine algebraic varieties are not Hausdorff. The key is to restate the
Hausdorff condition. Intuitively, the significance of this condition is that it implies that a
sequence in the space can have at most one limit. Thus a continuous map into the space
should be determined by its values on a dense subset, iearitly) are continuous maps
Z — U that agree on a dense subsetthen they should agree on the whole of
Equivalently, the set where two continuous maps': Z = U agree should be closed.
Surprisingly, affine varieties have this property, provigegind:) are required to be regular
maps.

LEMMA 3.7. Letyp and be regular maps of affine algebraic varietigs= V. The subset
of Z on whichy and agree is closed.

PROOF. There are regular functions on V' such thatP? — (z,(P), ..., z,(P)) identifies
V with a closed subset of” (take thez; to be any set of generators f&fV'| as ak-
algebra). Nowr; o o andz; o ¢ are regular functions od, and the set where and« agree
is(, V(z; 0o —x; 01), which is closed. O

DEFINITION 3.8. An algebraic prevariety is said to beseparatedor to be aralgebraic
variety, if it satisfies the following additional condition:

Separation axiom:for every pair of regular mapg, v : Z = V with Z an
algebraic prevariety, the sét € Z | ¢(z) = ¢(z)} is closed inZ.

The terminology is not completely standardized: often one requires a variety to be
irreducible, and sometimes one calls a prevariety a variety.

REMARK 3.9. In order to check that a prevariétyis separated, it suffices to show that
for every pair of regular mapg, ¢»: Z — V with Z anaffinealgebraic varietyz € 7 |
¢(z) = 9(2)} is closed inZ. To prove this remark, covef with open affines. Thu$ (3.7)
shows that affine varieties are separated.
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ExAMPLE 3.10. (The affine line with the origin doubled.) L&t andV; be copies of\!.
Let V* = V4 I1 V4 (disjoint union), and give it the obvious topology. Define an equivalence
relation onV* by

z(nV)) ~y(inl;y) < x=yandz #0.

Let V' be the quotient spadé = V* /~ with the quotient topology (a set is open if and only
if its inverse image i/* is open). TherV; andV; are open subspacesdf V' = V; U 15,
andV; NV, = A' — {0}. Define a function on an open subset to be regular if its restriction
to eachV; is regular. This makek into a prevariety, but not a variety: it fails the separation
axiom because the two maps

AIZ‘/}‘—W/*, AI:‘/Q%V*

agree exactly o' — {0}, which is not closed im\.'.

Subvarieties

Let (V,Oy) be a prevariety. TheW is a finite union of open affines, and in each open
affine the open affines (in fact the basic open subsets) form a basis for the topology. From
this it follows the open affines form a basis for the topologylgrni.e., every open subset

U of V is a union of open affines (df). It follows that, for any open subsét of V/,

(U, Oy|U) is a prevariety, and the inclusidh — V' is regular. A regular map: W — V

is anopen immersionf ¢(1V) is open inV andy defines an isomorphisi — ¢(W)

(of prevarieties).

Any closed subseX in VV has a canonical structure of an algebraic prevariety: endow
it with the induced topology, and say that a functibon an open subset df is regular if
each pointP in the open subset has an open neighbourlioad V' such thatf extends to
a regular function ort/. To show thatZ, with this ringed space structure is a prevariety,
check that for every open affiié C V, the ringed spac@/ N Z, O,|U N Z) is isomorphic
to U N Z with its ringed space structure acquired as a closed subdét(sée p5D). A
regular mapp: W — V is aclosed immersiorif o(17) is closed inV” andy defines an
isomorphismiV — (W) (of prevarieties).

A subsetlV of a topological spac¥ is said to bdocally closedif every pointP in W
has an open neighbourho6din V' such that? N U is closed inU; equivalently, )V is the
intersection of an open and a closed subsét.of locally closed subsél” of a prevariety
V' acquires a natural structure as a prevariety: write it as the interséétienU N Z of
an open and a closed subsgtis a prevariety, anéll” (being open irn?) therefore acquires
the structure of a prevariety. This structureldhhas the following characterization: the
inclusion mapiV’ — V is regular, and a map: V' — W with V' a prevariety is regular
if and only if it is regular when regarded as a map iltoWith this structure}V is called
asub(pre)varietyof V. A morphismy: V' — V is called anmmersionif it induces an
isomorphism ofi”’ onto a subvariety of/. Every immersion is the composite of an open
immersion with a closed immersion (in both orders).

A subprevariety of a variety is automatically separated.
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PROPOSITION3.11. A prevarietyV is separated if and only if it has the following property:
if two regular mapsp,v: Z = V agree on a dense subset.6f then they agree on the
whole ofZ.

PROOF. If V' is separated, then the set wherand agree is closed, and so must be the
whole of 7.

Conversely, consider a pair of mapsy: Z = V, and letS be the subset of on
which they agree. We assuriiehas the property in the statement of the lemma, and show
that S is closed. LetS be the closure of in Z. According to the above discussia$ihas
the structure of a closed prevariety Bf and the maps|S andv|S are regular. Because
they agree on a dense subsefdhey agree on the whole 6f and saS = S'is closed. [

Prevarieties obtained by patching

Let V' = [JV; (finite union), and suppose that eahhas the structure of an algebraic
prevariety. Assume the following condition holds:

forall 7, , V; N V; is open in both/; andV; and the structures of an algebraic
prevariety induced on it by; andV; are coincide.

Then we can define the structure of a ringed spac¥ as follows:U C V is open if and
only if U N'V; is open for alli, andf: U — k is regular if and only iff|U NV} is regular
for all 7. It is straightforward to check that this does makénto a ringed spacgV, Oy).

PROPOSITION3.12. The ringed spac€V, Oy ) is a prevariety, and the inclusionig — V'
are regular maps.

PrROOF. One only has to check that the ringed space structure onléacbuced by that
of V' is the original one. O

Products of varieties
Let V andV be objects in a categoiy. A triple

(VxW, p VW=V, ¢ VxW-—=W)

is said to be theroductof V andW if it has the following universal property: for every
pair of morphismsZ — V', Z — W in C, there is a unique morphism — V x W making

/N

V" VW2 W
commute. In other words, if — (p o p, g o ) is a bijection

Hom(Z,V x W) — Hom(Z, V) x Hom(Z, W),
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As for any object defined by a universal property, the product, if it exists, is uniquely
determined up to a unique isomorphism.

For example, the product of two sets (in the category of sets) is the usual cartesion
product of the sets, and the product of two topological spaces (in the category of topological
spaces) is the cartesian product of the spaces (as sets) endowed with the product topology.

We shall show that products exist in the category of algebraic varieties. Suppose, for
the moment, thal’ x W exists. For any prevariety, Mor(A°, Z) is the underlying set of
Z; more precisely, for any € Z, the mapA® — Z with imagez is regular, and these are
all the regular maps (cf. 2.1L7b). Thus, from the definition of products we have

(underlying set of x W) = Mor(A%, V x W)
= Mor(A°, V) x Mor(A°, W)
= (underlying set of) x (underlying set of1").

Hence, our problem can be restated as follows: given two prevariétasll/, define on
the setl” x W the structure of a prevariety such that the projection mapsV x W =
V, W are regular, and such that a map 7" — V x W of sets (with7 an algebraic
prevariety) is regular if and only if its components ¢, g o © are regular. Clearly, there
can be at most one such structure on thé/setll (because the identity map will identify
any two structures having these properties).
Before we can define products of algebraic varieties, we need to review tensor products.

Review of tensor products

Let A and B bek-algebras. Ak-algebraC' together with homomorphisms A — C and
j: B — C'is called theensor producbf A andB if it has the following universal mapping
property: for every pair of homomorphisms (bfalgebrash: A — Randj: B — R,
there is a unique homomorphism C' — R such thaty oi = aandy o j = :

A C~——B
R

If it exists, the tensor product, is uniquely determined up to a unique isomorphism. We
write it A ®;, B.

Construction Let C* be thek-vector space with basid x B. Thus the elements @f*
are finite sumsy_ ¢;(a;, b;) with ¢; € k, a; € A, b; € B. Let D be the subspace @f*
generated by the following elements,

(a+d,b)— (a,b) — (d,b), a,a' € A, be B,

(a,b+1") — (a, ) (a,0), a€A bl eB,
(ca,b) — c(a,b), acA be B, cek,
(acb)—c(a,b), ac A, be B, cek,
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and defineC' = C*/D. Write a ® b for the class ofa, b) in C' — we have imposed the
fewest conditions forcingu, b) — a®0b to bek-bilinear. Every element af’ can be written
as a finite sumy " a; ® b;, a; € A, b; € B, and the map

AxB—C, (a,b)—a®b

is k-bilinear. By definition,C' is a k-vector space, and there is a product structuré’on
such thate ® b)(a’ ® V') = aa’ ® bb' — for this one has to check that the map

C*xC*"—=C, ((a,b),(d,b))— ad @bl

factors throughC' x C'. It becomes &:-algebra by means of the homomorphism—
c(1®1)=c®1=1®c. The maps

a—a®l:A—=Candb— 1®b: B—C

are homomorphisms, and it is routine to check that they ndiakeo the tensor product of
A andB in the above sense.

ExAmMPLE 3.13. The algebr#®, together with the given majp — B and the identity map
B — B, has the universal property characterizing, B. In terms of the constructive
definition of tensor products, the mam b — cb: k ®;, B — B is an isomorphism.

EXAMPLE 3.14. (a) The ring:[ X1, ..., X, Ximt1, - - -, Ximtn, tOgether with the obvious
inclusions

KX1, .. X = K[X1, o Xonsn] <= K[ Xmits s Xonin]

is the tensor product 0f[ X1, ..., X,,] andk[X,,41, ..., X;min]. TO verify this we only
have to check that, for everkyalgebraR, the map

Homy.ag(k[X1, - .., Xin], R) — Homy.ag(k[ X7, . . .], R) x Homyaig(k[Xmt1,-..], R)
induced by the inclusions is a bijection. But this map can be identified with the bijection
R™™ — R™ x R™
In terms of the constructive definition of tensor products, the map
fRgr— fg: k[X1,. .., X @k k[ Xoat, -y Xonan) — K[ X1, oo, X

is an isomorphism.

(b) Leta andb be ideals ink[ X1, ..., X,,] andk[X,,11, ..., X;nin] respectively, and
let (a, b) be the ideal irk[ X}, ..., X,,+»] generated by the elementswofndb. Then there
is an isomorphism

KXy Xl K[ Xots o Xoen] KXo Xonem
f@gr fg: X ]®k Kmis KX in],
a b (a,b)
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Again this comes down to checking that the natural map fifemy,aq(k[ X7, . . ., Xinin]/(a,6), R)
to
Homy.ag(k[X1, ..., Xm]/a, R) X Homp-ag(K[Xmi1, - - - s Xingn) /0, R)

is a bijection. But the three sets are respectively
V(a,b) = zero-set ofa, b) in R™*™,
V(a) = zero-set ofr in R™,
V(b) = zero-set ob in R",

and so this is obvious.

ReEmMARK 3.15. (a) If(b,) is a family of generators (resp. basis) f@ras ak-vector space,
then(1 ® b,) is a family of generators (resp. basis) fbrz, B as anA-module.
(b) Letk — €2 be fields. Then

QR k[X1,..., X, 2R X;,..., 10 X, 2 Q[Xy,..., X,
If A= k;[Xl,...,Xn]/(gl,...,gm),then
Q@kA%Q[Xl,,Xn]/(gl,,gm)

For more details on tensor products, see Atiyah and MacDonald 1969, Chapter 2 (but
note that the description there (p31) of the homomorphism> D making the tensor
product into and-algebra is incorrect — the mapds— f(a) ® 1 = 1 ® g(a).

Products of affine varieties

The tensor product of twé-algebrasA and B has the universal property to be a product,
but with the arrows reversed. Because of the category anti-equivalencg (2.14), this will
show thatSpecm(A ®; B) is the product ofSpecm A and Specm B in the category of
affine algebraic varieties once we have shown that, B is an affinek-algebra.

PROPOSITION3.16. Let A and B be finitely generatefl-algebras; ifA and B are reduced,
then so also isA ®, B; if A and B are integral domains, then so alsois®,. B.

PROOF. AssumeA and B to be reduced, and let € A ®; B. Thena = > a; ® b;,
somea; € A, b; € B. If one of theb;’s is a linear combination of the remainin, say,
b, = Z”_l ¢ibs, ¢; € k, then, using the bilinearity ab, we find that

=1

n—1 n—1 n—1

O{:ZCLZ(X)Z)Z—FZCZG”@Z)Z :Z(al—i—czan)g)bz

=1 =1 =1

Thus we can suppose that in the original expressiam, tfieb;’s are linearly independent
overk.

Now suppose that is nilpotent, and lein be a maximal ideal ill. Froma — a: A —
A/m = k we obtain homomorphisms

a®@b—a®br—ab: A2, B —k®, B> B
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The image) | a;b; of a under this homomorphism is a nilpotent elemenByfand hence
is zero (becauss® is reduced). As the;’s are linearly independent ovér this means that
thea; are all zero. Thus, for all, a; lies in every maximal ideah of A, and so is zero (by
[2.10). Hencey = 0. This shows thatl ®; B is reduced.

AssumeA and B to be integral domains, and let o’ € A ® B be such thatvo/ = 0.
As before, we can writee = > a; ® b; anda’ = ) a; ® b, with the sets[by, bo, ...} and
{v,b,,...} each linearly independent ovkr For each maximal ideah of A, we know
(> ab;) (> abl) = 0in B, and so eithe(d a;b;) = 0 or (> @;b;) = 0. Thus either all
thea; € m or all thea € m. This shows that

specm(A) = V(ay,...,a,)UV(d,..., a,).
Sincespecm(A) is irreducible (seg 1.15), we must haygcm(A) = V(ay, ..., a,) Or
V(a),...,al). Inthe first casex = 0, and in the second’ = 0. O

EXAMPLE 3.17. We give some examples to illustrate thamust be taken to be alge-
braically closed in the proposition.

(a) Supposé: is nonperfect of characteristjg so that there exists an elementn an
algebraic closure of such thatr ¢ k£ buta? € k. Letk’ = k[a], and leta? = a. Then
(a®1—-1®a)#0ink @ k' (in fact, the elements’ ® o/, 0 < 4,5 < p — 1, form a
basis fork’ @, k' as ak-vector space), but

(a@l—l@a)p:(a®1—1®a)a§k(1®a—1®a):0.

Thusk’ ®; k' is not reduced, even thoughis a field.

(b) Let K be afinite separable extensioniadind let() be a “big” field containing: (for
example an algebraic closure bf. Write K = klo] = k[X]/(f(X)), and assumég(X)
splits inQ[X], say,f(X) = [[, X — «,;. Because{/k is separable, the; are distinct, and
So

Ko Q= Q[X]/(f(X))  (@.15(b)
>~ [[QIX]/(X —a;)  (Chinese remainder theorém16.6)

and so it is not an integral domain.

Having [3.16), we can make the following definition: létand W be affine varieties,
and letl’'(V,Oy) = A andT'(W,Ow) = B; thenV x W = Specm(A ®, B) with the
projection mapg: V xW — Vandg: VxW — W defined by the maps+— a®1: A —

PROPOSITION3.18. LetV and W be affine varieties; the projection mapsV x W — V/,
q: V. xW — W areregular,and a magp: U — V x W is regular if and only ifp o ¢
andq o ¢ are regular. ThereforéV x W, p, q) is the product of” and W in the category
of algebraic prevarieties. IV and W are irreducible, then so also i8 x W.

PROOF. The projection maps are regular because they correspond iealyzbra homo-
morphismsc[V] — k[V] @, k[W] andk[W] — k[V] @ k[W]. Letp: U — V x W be a
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map (of sets) such thato o andq o  are regular. U is affine, thenpy corresponds to the
mapk[V] ® k[W] — k[U] induced by

frfo(poy): k[V] — k[Ulandf — fo(qop): kW] — k[U],

and so is regular. This shows that, for a genéraihe restriction ofp to every open affine
of U is regular, which implies thag is regular (sep 3]5).
The final statement follows from the second statemehtin 3.16. O

ExampPLE 3.19. (a) It follows from|(3.14a) that
A™ E pmin LA
where
plat, ..., Gman) = (1, .., ap),
qlat, ... aman) = (Qmity -5 Qmin)s

is the product oA™ andA™.
(b) It follows from (3.14b) that

V(a) & V(a,b) L V(b)
is the product of/(a) andV (b).
Warning! The topology onV x W is not the product topology; for example, the
topology onA? = A! x Al is not the product topology (see 1]25).
Products in general

Now let V and W be two algebraic prevarietids and V. We define their product as
follows: As a set, we tak& x . Now writeV andiV as unions of open affineg, = | J V;,
W ={JW,. ThenV x W = (JV; x W;, and we givel’ x ¥ the topology for which
U cV xWisopenifandonly iU N (V; x W,) is open for all; and;. We define a ringed
space structure by saying that a functibnU — k on an open subséf is regular if its
restriction toU N (U; x V;) is regular for ali and.

PrROPOSITION3.20. With the above structuré, x W is a prevariety, the projection maps
p: VW=V, g VXW-—->W

are regular,and amap: U — V x W is regular if and only ifp o ¢ andq o o are regular.
Therefore(V x W, p, q) is the product of” and W in the category of prevarieties.

PROOF. Straightforward. [
PROPOSITION3.21. If V andW are separated, then so alsolisx .

PrRoOOF. Straightforward. m
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EXAMPLE 3.22. Analgebraic groupis a varietyG together with regular maps
mult: G x G — G, inverse G — G, A° = @

that makeG into a group in the usual sense. For example, and GL,, are algebraic
groups, and any finite group can be regarded as an algebraic group of dimension zero.
Connected affine algebraic groups are called linear algebraic groups because they can all
be realized as closed subgroupsdt,, for somen, and connected algebraic groups that
can be realized aslosed algebraic subvarieties of a projective space are callszlian
because they are related to the integrals studied by Abel.

Coarse Classification: every algebraic group contains a sequence of normal subgroups

GDG* DG D{e}

with G/G° a finite groupG°/G, an abelian variety, an@; a linear algebraic group.

The separation axiom

Now that we have the notion of the product of varieties, we can restate the separation axiom
in terms of the diagonal.
By way of motivation, consider a topological spaéeand the diagonah C V' x V,

AL {(z,2)|ze V]

If A 'is closed (for the product topology), then every pair of poiatg)) ¢ A has a neigh-
bourhoodU x U’ such that/ x U' N A = @. In other words, ifr andy are distinct points
in V then there are neighbourhoaddsandU’ of x andy respectively such thdtNU’ = @.
ThusV is Hausdorff. Conversely, i is Hausdorff, the reverse argument shows thas
closed.

For a varietyV/, we letA = Ay (the diagonal) be the subsgt, v) | v € V}of V x V.

PROPOSITION3.23. An algebraic prevariety is separated if and only i\ is closed™

PROOF. AssumeA to be closed, and let andt be regular mapg — V. The map

(0 0): Z =V XV, 2= (0(2),9(2))

is regular, because its composites with the projections &wey and+. In particular, it is
continuous, and s@p, 1)1 (A) is closed. But this is precisely the subset on whicand
1 agree.

Conversely, supposeé is separated. By definition, this means that for any prevadety
and regular mapg, v : Z — V, the set on whiclkp and agree is closed ir. Apply this
with ¢ and the two projection map® x V' — V, and note that the set on which they
agree isA. O

16Recall that the topology ol x V' is not the product topology, and so the proposition doesimply
thatV is Hausdorff.
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COROLLARY 3.24. For any prevarietyy/, the diagonal is a locally closed subsetlofx 1.

PROOF. Let P € V, and letU be an open affine neighbourhood ®Bf ThenU x U is a
neighbourhood of P, P) in V x V, andAy N (U x U) = Ay, which is closed iV x U
becausé’ is separated. H

ThusAy is always a subvariety df x V, and itis closed if and only iV is separated.
ThegraphI',, of aregular mag: V' — W is defined to be

{(v,p(v)) eV XW |veV}.
At this point, the reader should draw the picture suggested by calculus.

COROLLARY 3.25. For any morphismp: V' — W of prevarieties, the grapl, of ¢ is
locally closed inV x W, and it is closed ifV is separated. The map+— (v, ¢(v)) is an
isomorphism of” ontol,,.

PrROOF. The first statement follows from the preceding corollary because the graph is the
inverse image of the diagonal @f x W under the regular map

(v,w) = (pv),w): VW —-W x W.

The second statement follows from the fact that the regulariap- V' x W L Visan
inverse tov — (v, p(v)): V —T'y. O

THEOREM 3.26. The following three conditions on a prevariety are equivalent:
(a) V is separated;
(b) for every pair of open affine§ andU’ in V, U N U’ is an open affine, and(U N
U’, Oy) is generated by the functions

P — f(P)g(P)wheref € T(U,Oy), g € T(U', Oy),

i.e., the mag[U] ®y k[U'] — k[U NU'] is surjective;
(c) the condition in (b) holds for the sets in some open affine coveriig of

PrROOF. LetU; andU; be open affines ifY’. We shall prove:
(i) A closed= U; N U; affine.
(i) If U; nU; is affine, then

(U; x U;) N Alis closed < the mapk[U;| ®y k[U;] — k[U; N U] is surjective

If {U; x Uj}qjerxs is an open covering of x V, A is closed inV x V <=
AN (U; x Uy) is closed inU; x U; for each pair(s, j). Thus these statements show that
(a)=(b) and (c¥(a). Since the implication (B}(c) is trivial, this shows that (i) and (i)
imply the theorem.

Proof of (i): The graph of the inclusion U; NU; — VisT, = (U; x U;) N A C
(U;NnU;) x V. If Alis closed(U; x U;) N A is a closed subvariety of an affine variety, and
hence is affine (se¢ pb0). Sinben U; ~ I',, it also is affine.

Proof of (ii): Now assume thal/; N U; is affine. Then(U; x U;) N Ay is closed in
Ui xU; <= v (v,v): U;NU; = U; x U, is aclosed immersior=- the morphism
k[U; x U;] — k[U; N U] is surjective (sep 2.21). Siné¢U; x U;| = k[U;] @y k[U;], this
completes the proof of (ii). O
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EXAMPLE 3.27. (a) LetV = P!, and letlU;, and U, be the standard open subsets (see
). ThenUy, N U; = A' < {0}, and the maps on rings corresponding to the inclusions
U, — UyNU; are

X = X: k[X] — k[X, X
X = X1 k[X] — E[X, X,
Thus the set§/, andU; satisfy the condition in (b).
(b) LetV be A' with the origin doubled (sde 3.10), and létandU’ be the upper and

lower copies ofA! in V. ThenU N U’ is affine, but the maps on rings corresponding to the
inclusionsU; — U, N U, are

X — X: k[X] — k[X, X
X X k[X] — k[X, X,

Thus the set§/, andU; fail the condition in (b).
(c) LetV be A? with the origin doubled, and Iéf andU’ be the upper and lower copies
of A%in V. ThenU N U’ is not affine (seg 2.20).

Let Var, denote the category of algebraic varieties dvand regular maps. The functor
A — Specm A is fully faithful contravariant functoAff, — Var,, and defines an equiva-
lence of the first category with the subcategory of the second whose objects are the affine
algebraic varieties.

Dimension

Let V' be an irreducible algebraic variety. Then every open subsgt isfdense, and is
irreducible. IfU D U’ are open affines i, then we have

kU] C kU] C k(U).

Thereforek(U) is also the field of fractions of[U’]. This remark shows that we can attach
to V' a field k(V), calledthe field of rational functions onV/, such that for every open
affineU in V, k(V) is the field of fractions ok[U]. Thedimensionof V' is defined to be
the transcendence degreei¢i’) overk. Note thedim (V') = dim(U) for any open subset
U of V. In particular,dim(V) = dim(U) for U an open affine ir//. It follows that some
of the results ir1 carry over — for example, i is a proper closed subvariety &f, then
dim(Z) < dim(V).

PrRoPOSITION3.28. LetV and W be irreducible varieties. Then
dim(V x W) = dim(V') + dim(W).

PROOF. We can assumg andV to be affine, and writé[V'| = k[z, ..., z,,]) andk[W] =
klyi,...,yn] Where{zy, ..., xs} and{yi,...,y.} are maximal algebraically independent
sets of elements df{V] andk[W]. Thusd = dim(V') ande = dim(W). Theft]

k[v X W] = k[v] Ok k[W] ) k[l‘l,...,l’d] Ok k[ylv“'aye] = k[xlw"?xduylv”'aye]'

n general, it is not true that il/’ and N’ are R-submodules of\/ and N, thenM’ @ N’ is an R-
submodule of\f ® g N. However, this is true iR is a field, because therd’ and N’ will be direct summands
of M and N, and tensor products preserve direct summands.
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Therefore{z; ® 1,..., 2, ® 1,1 ® y1,...,1 ® y.} will be algebraically independent in
k[V] @, k[W]. Obviouslyk[V x W] is generated as kralgebra by the elements ® 1,
l®y;,1<i<m,1<j<n,and all of them are algebraic over

K, 2d @ Ky, - - ).
Thus the transcendence degreé&@f x W) isd + e. O

We extend the definition to an arbitrary variéty as follows. A variety is a finite
union of Noetherian topological spaces, and so is Noetherian. Consequentily (See 1.17),
V' is a finite unionV' = (JV; of its irreducible components, and we defidien(1) =
max dim(V;). When all the irreducible componentsidthave dimensiom, V' is said to be
pure of dimensionn (or to be ofpure dimensionn).

Algebraic varieties as a functors

Let A be an affing:-algebra, and let” be an algebraic variety. We defin@aint of V' with
coordinates inA to be a regular mafpecm(A) — V. For example, if = V(a) C k",
then

V(A) ={(a,...,a,) € A" | f(a1,...,a,) =0all f € a},

which is what you expect. In particuldf(k) = V (as a set), i.e.} (as a set) can be
identified with the set of points of" with coordinates irk. Note that(V' x W)(A) =
V(A) x W(A).

REMARK 3.29. LetV be the union of two subvarietie®, = 1V, U V5. If V; andV; are both
open, then/(A) = Vi(A) U V5(A), but not necessarily otherwise. For example, for any
polynomial f (X3, . .., X,),

A" =Dy UV(f)

whereD; = Specm(k[Xy,..., X, T]/(1 —Tf)) andV (f) is the zero set of, but
R"#{a€A"| f(a) e A“}U{a€ A" | f(a) =0}
in general.

THEOREM 3.30. A regular mapy: V. — W of algebraic varieties defines a family of
maps of setsp(A): V(A) — W(A), one for each affiné-algebra A, such that for every
homomorphisma.: A — B of k-algebras,

A V) 2 wa

(
\a JV(OL) \W(a) (*)
B v(B) 22 v(B)

commutes. Every family of maps with this property arises from a unique morphism of
algebraic varieties.
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The proof is trivial, once we have reviewed some elementary definitions and results
from category theory.

Let F" andG be two functordC — D. A morphisma: F' — G is a collection of mor-
phismsa(A): F(A) — G(A), one for each object of C, such that, for every morphism
u: A — B in C, the following diagram commutes:

A FA) 2 g4
\ u \ Flu) J G(u) **)
B p(p) o)

(B) 2L Gq(B) .

With this notion of morphism, the functofs — D form a categoryun(C, D) (we ignore
the problem thaMor(F, G) may not be a set — only a class).
For any objecl” of a categoryC, we have a contravariant functor

hy : C — Sets,
which sends an object to the setMor(A, V') and sends a morphism: A — B to
p = poa:hy(B) — hy(A),

i.e., hy(x) = Mor(x,V) andhy(a) = *x o . Leta: V — W be a morphism irC. The
collection of maps
ho(A): hy(A) = hyw(A), pr—aop

is a morphism of functors.

PROPOSITION3.31 (YONEDA LEMMA). The functor
V +— hy: C— Fun(C, Sets)
is fully faithful.
PROOF. Let A, B be objects ofZ. We construct an inverse to
a+— hy: Mor(A, B) — Mor(ha, hp).
For a morphism of functors: h, — hg, defines(y) = ~(id4)—it is morphismA — B.
Then

Blha) L ho(idy) Laoidy = o,

and df df
hae (@) = B(y) o a =~(ida) 0 a = 7(a)
because of the commutativity of (**):

A ha(A) = hp(A)
B hs(B) — hp(B)

Thusa — h, andy — [(v) are inverse maps. O]
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The Yoneda lemma shows that the functor— h, embeds the category of affine
algebraic varieties as a full subcategory of the category of covariant furfff@rs- Sets,
and it is not difficult to deduce that it embeds the category of all algebraic varieties in to
the category of such functors (yse 3.12 for example). This prpveg (3.30).

It is not unusual for a variety to be most naturally defined in terms of its points functor.
For example, for any affink-algebra, leSL,,(A) be the group of: x n matrices with co-
efficients inA having determinant. A homomorphismA — B induces a homomorphism
SL,(A) — SL,(B), and s&5L,,(A) is a functor. In fact, it is the points functor of the affine
variety:

Specm k[ X1, ..., X/ (det(X;;) — 1).

Matrix multiplication defines a morphism of functors
SL, x SL,, — SL,

which, because of (3.80), arises from a morphism of algebraic varieties. Ii$facts an
algebraic group.

Instead of defining varieties to be ringed spaces, it is possible to define them to be
functorsAff,, — Sets satisfying certain conditions.

Dominating maps

A regular mapa: V' — W is said to bedominating if the image of« is dense inlV.
Supposéd/ andW are irreducible. 1/ andWW’ are open affine subsets Bfand!¥ such
thate (V) € W, then [2.21L) implies that the map— f o ¢: k[W'] — k[V'] is injective.
Therefore it extends to a map on the fields of fractign$)’) — £(V'), and this map is
independent of the choice of andil”.

Exercises 14-16

14. Show that the only regular functions @ are the constant functions. [Thi®$ is not

affine. Whenk = C, P! is the Riemann sphere (as a set), and one knows from complex
analysis that the only holomorphic functions on the Riemann sphere are constant. Since
regular functions are holomorphic, this proves the statement in this case. The general case
is easier.]

15. Let V' be the disjoint union of algebraic varieti&s, . . ., V,,. This set has an obvious
topology and ringed space structure, and it is obviously again an algebraic variety. Show
that if eachV; is an affine variety, then so alsolis

16. Omitted.
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4 Local Study: Tangent Planes, Tangent Cones, Singular-
ities

In this section, we examine the structure of a variety near a point. | begin with the case of
a curve, since the ideas in the general case are the same, except that the formulas are more
complicated. Throughoutk; is an algebraically closed field.

Tangent spaces to plane curves

Consider the curve
V:F(X,)Y)=0

in the planeA? defined by a nonconstant polynomid( X, Y). We assume thaf(X,Y)

has no multiple factors, so that'(X,Y)) is a radical ideal and(V') = (F(X,Y)). We

can factorF' into a product of irreducible polynomial$;(X,Y) = [[ Fi(X,Y), and then

V = |JV(F;) expressed’ as a union of its irreducible components. Each component
V(F;) has dimension (sed 1.2[1) and sg has pure dimensioh More explicitly, suppose

for simplicity that (X, Y') itself is irreducible, so that

KV] = KX Y/ (F(X,Y)) = kla, y]

is an integral domain. If"' # X — ¢, thenz is transcendental ovérandy is algebraic over
k(x), and sar is a transcendence basis fail') overk. Similarly, if ' # Y — ¢, theny is
a transcendence basis fofl") overk.

Let (a,b) be a point onl/. In calculus, the equation of the tangentfat= (a,b) is

defined to be oF OF
This is the equation of a line unless bé{(a, b) and % (a, b) are zero, in which case it is

the equation of a plane.

DEFINITION 4.1. Thetangent spacel’»V to V at P = (a,b) is the space defined by
equation (*).

When 9% (a,b) and 4 (a, b) are not both zerd[»(V) is a line, and we say that is a
nonsingular or smoothpoint of . Otherwise,T»(1") has dimension 2, and we say that
P is singular or multiple. The curveV is said to benonsingular or smoothwhen all its
points are nonsingular.

We regardl’»(V') as a subspace of the two-dimensional vector sfia¢é?), which is
the two-dimensional space of vectors with origin

EXAMPLE 4.2. In each case, the reader is invited to sketch the curve. The characteristic of
k is assumed to b€ 2, 3.
(@ X™ 4+ Y™ = 1. All points are nonsingular unless the characteristic divige§n
which caseX™ + Y™ — 1 has multiple factors).
(b) Y2 = X3. Here only(0, 0) is singular.
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(c) Y2 = X2(X + 1). Here again only0, 0) is singular.
(d) Y2 = X3+ aX +b. In this case,

Vis singular <= Y? — X3 — ¢ X — b, 2Y, and3X? + a have a common zero
<= X®+aX +band3X? + a have a common zero.

Since3X? + a is the derivative ofX® + a X + b, we see thal’ is singular if and only
if X3+ aX + b has a multiple root.

(e) (X?+Y?)?+3X2%Y — Y3 = 0. The origin is (very) singular.

(f) (X2 +Y?)? —4X2Y? = 0. The origin is (even more) singular.

(9) V = V(FG) where FG has no multiple factors andl andG are relatively prime.
ThenV = V(F) U V(G), and a poin{a, b) is singular if and only if it is a singular
point of V(F), a singular point ol (G), or a point ofV(F') N V(G). This follows
immediately from the equations given by the product rule:

J(FQG) oG  OF J(FQG) oG OF
ox Taxtax '@ v Havtay @

PROPOSITION4.3. Let V' be the curve defined by a nonconstant polynomiakithout

multiple factors. The set of nonsingular po'es an open dense subdét

PROOF. We can assume thdt is irreducible. We have to show that the set of singular
points is a proper closed subset. Since it is defined by the equations
oF oF

F_O’a_X_O'a_Y_O’
it is obviously closed. It will be proper unlegd’/0X and0F'/dY are identically zero on
V', and are therefore both multiples bf but, since they have lower degree, this is impos-
sible unless they are both zero. Cleadly/0X = 0 if and only if ' is a polynomial inY”
(k of characteristic zero) or is a polynomial k¥ andY (k of characteristip). A similar
remark applies t&@F/0Y . Thus if0F/0X and0F/0Y are both zero, theR' is constant
(characteristic zero) or a polynomial i, Y?, and hence a" power (characteristip).
These are contrary to our assumptions. O

The set of singular points of a variety is often called shrgular locusof the variety.

Tangent cones to plane curves

Suppose thaP = (0, 0) is on the curvé/. Then the equation defining the tangent space at
P is the linear term of: since(0,0) isonV/,

F =aX + bY + terms of higher degree,

and the equation of the tangent space is

F(X,Y)=0, F(X,Y)Lax+bY.

18In common usage, “singular” means uncommon or extraordinary as in “he spoke with singular shrewd-
ness”. Thus the proposition says that singular points (mathematical sense) are singular (usual sense).
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In general a polynomial’ (X, Y) can be written (uniquely) as a finite sum
F=Fy+F+FK+---+F,+---

whereF,, is a homogeneous polynomial of degree The first nonzero term on the right
(the homogeneous summandiobf least degree) will be writteA, and called théeading
form of F.

DEFINITION 4.4, LetF(X,Y) be a polynomial without square factors, andllebe the
curve defined by'. If (0,0) € V, then thegeometric tangent conéo V' at (0, 0) is the
zero set off.. Thetangent cones the pair(V (F.), F.). To obtain the tangent cone at any
other point, translate to the origin, and then translate back.

EXAMPLE 4.5. (a)Y? = X?3: the tangent cone &0, 0) is given byY? = 0 — it is the
X-axis (doubled).

(b) Y2 = X?(X + 1): the tangent cone at (0,0) is given By = X? — it is the pair of
linesY = +£X.

(€) (X%2+Y?)24+3X2%Y —Y? = 0: the tangent cone &b, 0) is given by3 X?Y —Y3 = 0
— it is the union of the line§” = 0, Y = +/3X.

(d) (X2 +7Y?)3 —4X?%Y? = 0: the tangent cone &6, 0) is given by4 X?Y? = 0 — it
is the union of theX andY axes (each doubled).

In general we can factar, as
F(XY) =[x —aX)".

Thendeg F, = > r; is called themultiplicity of the singularity, mult(V"). A multiple
point isordinary if its tangents are nonmultiple, i.e, = 1 all . An ordinary double point
is called anode and a nonordinary double point is calledw@sp (There are many names
for special types of singularities — see any book, especially an old book, on curves.)

The local ring at a point on a curve

PROPOSITION4.6. Let P be a point on a curvé&’, and letm be the corresponding maximal
ideal ink[V]. If P is nonsingular, themlim;, m/m? = 1, and otherwiselim; m/m? = 2.

PROOF. Assume first thaf’ = (0,0). Thenm = (z,y) in k[V] = k[ X, Y]/(F(X,Y)) =
k[z,y]. Note thatm? = (2%, xy, y?), and

m/m? = (X,Y)/(m*+ F(X,Y)) = (X,Y)/(X? XY, Y2 F(X,Y)).

In this quotient, every element is represented by a linear polynamialdy, and the only
relation isFy(z,y) = 0. Clearlydimm/m? = 1 if F, # 0, anddim m/m? = 2 otherwise.
SinceF; = 0 is the equation of the tangent space, this proves the proposition in this case.
The same argument works for an arbitrary pdinth) except that one uses the variables
X'=X —aandY’ =Y — b—in essence, one translates the point to the origin. [
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We explain what the conditiodim; (m/m?) = 1 means for the local rin@p = k[V],,
— see later for more details. Letbe the maximal ideahk[V],, of this local ring. The
mapm — n induces an isomorphism/m? — n/n?, and so we have

P nonsingular <= dim, m/m? =1 <= dimyn/n*=1.

Nakayama'’s lemma shows that the last condition is equivalembteing a principal ideal.
SinceOp is of dimensior, n being principal mean®p is a regular local ring of dimension

1, and hence a discrete valuation ring, i.e., a principal ideal domain with exactly one prime
element (up to associates). Thus, for a curve,

P nonsingular < Op regular < Op is a discrete valuation ring.

Tangent spaces of subvarieties i

Before defining tangent spaces at points of closed subvariet&% @fe review some ter-
minology from linear algebra.

Linear algebra

For a vector space™, let X; be thei™ coordinate functiom — a;. ThusXy,...,X,, is
the dual basis to the standard basis#or A linear form>_ a; X; can be regarded as an
element of the dual vector spage™)" = Hom(k™, k).

Let A = (a;;) be ann x m matrix. It defines a linear map: £ — k™, by

a1 a1
— A

Aoy, Aoy,
Thus, ifa(a) = b, then

m
bi: E aijaj.

j=1

Write X, ..., X,, for the coordinate functions ok™ andYi,...,Y,, for the coordinate
functions onk™. Then the last equation can be rewritten as:

m
}/;-OOé: E aZjXJ
i=1

Tth says that, when we apphto a, then the™" coordinate of the result ETZl a;;(X;a) =
D jm Wiy
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Tangent spaces
Consider an affine variety’ C £™, and leta = I(V'). Thetangent spacé,(V)toV
ata = (a4,...,an,) is the subspace of the vector space with origicut out by the linear
equations
i oF
0X;

=1

(Xi —a;)=0, Feca *)

a

ThusT,(A™) is the vector space of dimensienwith origin a, and7, (V) is the subspace
of T, (A™) defined by the equations (*).

Write (dX;)a. for (X; — a;); then the(dX;), form a basis for the dual vector space
Ta(A™)Y to To(A™) — in fact, they are the coordinate functions B(A™). As in ad-
vanced calculus, for a functiofi € k[ X7, ..., X,,], we define thalifferential of F' ata by

the equation:
oF
(dF)a=) a%.|.

It is again a linear form off,(A™). In terms of differentials7, (V') is the subspace of
T.(A™) defined by the equations:

(dX;)a.

(dF)a =0, F €a, (**)

| claim that, in (*) and (**), it suffices to take thé' in a generating subset far. The
product rule for differentiation shows thatdf = » . H;F};, then

(dG)a = Z Hj(a) - (dFj)a + Fj(a) - (dGj)a.

If F1,...,F, generatex anda € V(a), so thatF;(a) = 0 for all j, then this equation
becomes
(dG)a = Hj(a) - (dF))a.
j

Thus(dG)a(t) = 0if (dF})a(t) = 0 for all 5.

WhenV is irreducible, a point on V' is said to benonsingular (or smooth)if the
dimension of the tangent spaceads equal to the dimension &f; otherwise it issingular
(or multiple). WhenV is reducible, we saw is nonsingular if dim 7;,(V') is equal to the
maximum dimension of an irreducible componentopassing through. It turns out then
thata is singular precisely when it lies on more than one irreducible component, or when
it lies on only one but is a singular point of that component.

Leta = (Fy,..., F,), and let

8F1 aFl

aE 8X1’ ) 8X7n
J:Jac(Fl,...,FT):<8X' - : :

J OF; OF)

8_X17 ey _8Xm

Then the equations definifg, (1) as a subspace @t,(A™) have matrixJ(a). Therefore,
from linear algebra,
dimy, T,(V)) = m — rank/(a),
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and saa is nonsingular if and only if the rank of J@€, , . . ., F.)(a) is equal ton—dim(V').
For example, if” is a hypersurface, salfV') = (F'(X1,..., X)), then

JaF)(a) = (5@ gy @),

m

anda is nonsingular if and only if not all of the patrtial derivativ§;§ vanish ata.
We can regard as a matrix of regular functions dn. For eachr,

{a€ B|rank/(a) <r}

is closed inV/, because it the set where certain determinants vanish. Therefore, there is an
open subsel/ of IV on which rank/(a) attains its maximum value, and the rank jumps on
closed subsets. Later we shall show that the maximum value of/ fapks m — dim V/,

and so the nonsingular points Bfform a nonempty open subset 6t

The differential of a map
Consider a regular map
a: A" — A" a— (Pi(ay,...,an), ..., Puag, ... an)).
We think of« as being given by the equations
Yi=P(Xy,...,Xn),i=1,...n.

It corresponds to the map of rings: k[Y1,...,Y,] — k[Xi,...,X,,] sendingY; to
P(Xy,...,Xn),i=1,...n
Leta € A™, and letb = «(a). Define(da),: Ta(A™) — TL(A™) to be the map such

that
P,

(dYi)p o (da)a = ox,

i.e., relative to the standard basésy), is the map with matrix

(de)a’

f(a), ..., H(a)
JagPpy,...,P,)(a) = : :
@), ..., F=(a)

For example, suppose = (0,...,0) andb = (0,...,0), so that7,(A™) = k™ and
Ty(A™) = k", and

P;=> c;X;+ (higherterms)j = 1,...,n.

Jj=1

ThenY; o (da)a = >_; ¢;;X;, and the map on tangent spaces is given by the matsix
i.e., itis simplyt — (c;;)t.
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Let F € k[Xy, ..., X,,]. We can regard" as a regular map™ — A, whose differen-
tial will be a linear map

(dF)a: Ta(A™) — Ty(A)), b= F(a).

When we identifyT;,(A') with k, we obtain an identification of the differential &f (F
regarded as a regular map) with the differentiaFofF' regarded as a regular function).

LEMMA 4.7. Leta: A™ — A” be as at the start of this subsectionalmapsl’ = V(a) C
E™intoW = V(b) C k", then(da), mapsT,(V) into T, (W), b = a(a).

PROOF. We are given that
feEb= foacn,

and have to prove that
feb= (df)p o (da), is zero onl, (V).
The chain rule holds in our situation:

Of _ N~ 0F 0Y;
0X; 4 0Y;0X,

Y, =Pi(Xy, ... X)), f=fM.....Y).

If « is the map given by the equations
Y}:]Dj(Xla"'aXm)? j:17"'am7
then the chain rule implies

d(foa)a=(df)po(da)a, b=a(a).

Lett € T,(V); then
(df )b o (da)a(t) = d(f o a)a(t),
which is zero iff € b because thelfio « € a. Thus(da)a(t) € Ty, (W). O

We therefore get a magla),: T.(V) — Tn(W). The usual rules from advanced
calculus hold. For example,

(dB)p o (da)a =d(foa)a, b=aa).

The definition we have given &f, (V') appears to depend on the embeddihg- A".
Later we shall given intrinsic of the tangent space, which is independent of any embedding.
Thus, an isomorphism: V' — W must induce an isomorphistda),: T,V — Th@W
foreacha € V.

EXAMPLE 4.8. LetV be the union of the coordinate axesAr, and letiV be the zero set
of XY (X —Y)in A%, Each ofi/ andV is a union of three lines meeting at the origin. Are
they isomorphic as algebraic varieties? Obviously, the origathe only singular point on

V or W. Anisomorphisml” — W would have to send the singular point to the singular
point, i.e.,o — o, and magd, (V') isomorphically ontd,(1V). ButV = V(XY,Y Z, X Z),
and soT,(V) has dimensiors, whereasl,W has dimensior2. Therefore, they are not
isomorphic.
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Etale maps

LetV andW be smooth varieties. Aregularmap V' — W isétaleata if (da),: Ta(V) —
Ty, (W) is an isomorphismy is étaleif it is étale at all points of/.

EXAMPLE 4.9. (a) A regular map
a: A" - A", a— (P(ay,...,an),..., Pyay,...,a,)).

is étale ata if and only if rank Jad Py, ..., P,)(a) = n, because the map on the tangent
spaces has matrix J@e, . . ., P,)(a)). Equivalent conditiondet (g;; (a)) # 0

(b) LetV = Specm(A) be an affine variety, and lgt = >_ ¢; X" € A[X] be such that
A[X]/(f(X)) is reduced. LetV = Specm(A[X]/(f(X)), and consider the map” — V/
corresponding to the inclusiat — A[X]/(f). The points ofil” lying over a pointa € V'
correspond to the roots OF c¢;(a) X*. | claim that the mapl’ — V is étale at a pointa, b)
if and only if b is a simple root of5" ¢;(a) X*.

To see this, writed = Specm k[X1, ..., X, ]/a,a = (f1,..., f.), so thatA[X]/(f) =
k[Xy,...,Xn]/(f1,..., fr, f). The tangent spaces & andV at (a, b) anda respectively
are the null spaces of the matrices

Oh (a) ... 24 (a 0

(@) o, Y .. ()
afn'<a) of. (a) 0 : :
X1 90X %(a) o Ofn (a)
I(a) ... 2(a) Z(ab) 0% 0Xm

and the mafi (., (W) — T, (V) is induced by the projection mag*' — £ omitting the
last coordinate. This map is an isomorphism if and onlgﬁf(a, b)# 0, because then any
solution to the smaller set of equations extends uniquely to a solution of the larger set. But
g—)f;(a, b) = W(b), which is zero if and only ib is a multiple root of) ", ¢;(a) X".
[The intuitive picture is thal’’ — V is a finite covering withdeg(f) sheets, which is
ramified exactly at the points where two sheets coincide.]

(c) Consider a dominating map: W — V' of smooth affine varieties, corresponding
to a mapA — B of rings. Suppose3 can be writtenB = A[Y3,...,Y,|/(P,..., P,)
(same number of polynomials as variables). A similar argument to the above shows that

is étale if and only ifdet (g)’z (a)) IS never zero.

(d) The example in (b) is typical; in fact evegyale map is locally of this form, provided
V' is normal (in the sense defined below p84). More preciselyy idi” — V be étale at
P € W, and assumé& to normal; then there exist a map: W' — V' with k[W'] =

k[V'[X]/(f(X)), and a commutative diagram

w o> U ~ U < W

! ! ! l
Vo U ~ U, ¢ V

with the U’s all open subvarieties anfd € Uj.
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Warning! In advanced calculus (or differential topology, or the theory of complex
manifolds), the inverse function theorem says that a malbpat isétale at a poinh is a
local isomorphism there, i.e., there exist open neighbourhébdsd U’ of a and «(a)
such thatv induces an isomorphistii — U’. This is not true in algebraic geometry;
at least not for the Zariski topology: a map candiele at a point without being a local
isomorphism. Consider for example the map

a: A {0} — AT {0}, ar~ a®

This is étale if the characteristic ig 2, because the Jacobian matrix(¥X), which has
rank one for allX # 0 (alternatively, it is of the form] (4]9b) witti(X) = X? — T, where
T is the coordinate function oA!, andX? — ¢ has distinct roots for: # 0). Nevertheless,
| claim that there do not exist nonempty open subgétsnd U’ of A! — {0} such that
a defines an isomorphisti — U’. If there did, thenn would define an isomorphism
k|U'] — k[U] and hence an isomorphism on the fields of fractibfs!) — k(A!). But
on the fields of fractionsy defines the map(X) — k(X), X — X2, which is not an
isomorphism.

AsSIDE 4.10. There is a conjecture that aetgle mapy: A" — A" is an isomorphism. If
we writea = (P, ..., P,), then this becomes the statement

det oF (a) ] #0alla= «ahasainverse.
0X;

The conditiondet (%(a)) # 0 all a, implies thatdet (g?,) is a nonzero constant. This
conjecture, which is known as the Jacobian problem, has not been solved in general as far
as | know. It has caused many mathematicians a good deal of grief. It is probably harder

than it is interesting. See Bass et al. 1882

Intrinsic definition of the tangent space

The definition we have given of the tangent space at a point requires the variety to be
embedded in affine space. In this subsection, we give a more intrinsic definition.

By alinear form in X,..., X,, we mean an expression ¢; X;, ¢; € k. The linear
forms form a vector space of dimensionwhich is naturally dual ta™.

LEMMA 4.11. Let ¢ be an ideal ink[ X4, ..., X,] generated by linear formg,, ..., ¢,
which we may assume to be linearly independentX;get. .., X; _ be such that

{ﬁl, s agrinn s ’Xinfr}
is a basis for the linear forms iX4, ..., X,,. Then

k[Xla cee ,Xn]/t = k[Xilv s ’Xinfr}'

19Bass, Hyman; Connell, Edwin H.; Wright, David. The Jacobian conjecture: reduction of degree and
formal expansion of the inverse. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287-330.
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PROOF. This is obvious if the linear formég,, ..., ¢, areXy,..., X,. In the general case,
becausd X, ..., X, } and{/y,.... 4., X;,,..., X,,_, } are both bases for the linear forms,

each element of one set can be expressed as a linear combination of the elements of the
second set. Therefore

kf[Xl, e 7Xn] - k[£17' .. 7€raXi17- . ’Xinfr]
and so

k[Xl,...,Xn]/C: [617-"7£T7Xi17---:Xin_r]/(gla"'agr)

(X, X ] U

LetV = V(a) C k", and assume the origii € V. Leta, be the ideal generated by the
linear termsf, of the f € a. By definition,Tp(V) = V(a,). Let A, = k[ X, ..., X,]/ay,
and letm be the maximal ideal ik[V'] corresponding to the origin; thus = (1, ..., x,).

PROPOSITION4.12. There are canonical isomorphisms
Homjinear(m/m?, k) — Homy.ag(Ar, k) — Tp(V).

PROOF. First isomorphism. Let = (X3,...,X,,) be the maximal ideal at the origin in
k[X1,...,X,]. Thenm/m? = n/(n® + a), and asf — f, € n? for every f € a, we
havem/m? = n/(n* + a;). Let fiy, ..., f., be a basis for the vector spagg there are
n—r variablesX;, ..., X;  forming with thef;, a basis for the linear forms drt. Then
X, +m?,..., X;  +m?form abasis fom/m? as ak-vector space, and the lemma shows
that A, = k[X;, ..., X, .]. Any homomorphismx: A, — k of k-algebras is determined
by its valuesa(X;,),...,a(X;, ), and they can be arbitrarily given. Since thdinear
mapsm/m? — k have a similar description, the firstisomorphism is now obvious.
Second isomorphism. To givekaalgebra homomorphism, — k is the same as to
give an elementay, ..., a,) € k™ such thatf(ay,...,a,) = 0 forall f € A, which is the
same as to give an elementBf(1). O

LEMMA 4.13. Letm be a maximal ideal of a ringl, and letn = mA,,. For all n, the map
a+m"—a+n": A/m" — A, /0"
is an isomorphism. Moreover, it induces isomorphisms
m’/m" — n"/n"
forall r < n.
PROOF. The second statement follows from the first, because of the exact commutative

diagram:
0 — m"/m" — A/m" —— A/m" —— 0

Ik

0 — n"/n" —— A,/n" —— A,/n" —— 0.
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To simplify the exposition, in proving that the first map is an isomorphism, I'll reghes

a subset o5~ A. In order to show that the map/m™ — A,/n"™ is injective, we have to
show thath™ N A = m™. Butn™ = S~'m™, S = A —m, and so we have to show that
m™ = (S7'm™) N A. An element of(S~'m™) N A can be writteru = b/s with b € m™,

s € S,anda € A. Thensa € m™, and sosa = 0 in A/m™. The only maximal ideal
containingm™ is m (becausen’ O m”™ = m’ D m), and so the only maximal ideal in
A/m™ ism/m™; in particular,A/m™ is a local ring. Ass is not inm/m™, itis a unitin
A/m™, and sosa = 0in A/m™ impliesa = 0in A/m™, i.e.,a € m™.

We now prove that the map is surjective. Letc A,. Becauses ¢ m andm is
maximal, we have thdts) + m = A, i.e.,(s) andm are relatively prime. Thereforg) and
m™ are relatively prime (no maximal ideal contains both of them), and so therehexisit
andg € m™ such thabs+¢ = 1. Thenb maps tos™' in A, /n™ and scha maps to%. More
precisely: becauseis invertible in A, /n™, £ is theuniqueelement of this ring such that
5% = a; sinces(ba) = a(1 — ¢), the image oba in Ay, also has this property and therefore
equals?. H

Therefore, we also have a canonical isomorphism
Tp(V) — Homyuin(np/n, k),
wherenp is now the maximal ideal iDp (= Ay).

DEFINITION 4.14. Thetangent spacép(1/) at a pointP of a varietyV is Homyjin (np /0%, k),
wherenp the maximal ideal IrOp.

WhenV is embedded in affine space, the above remarks show that this definition agrees
with the more explicit definition on[p73. The advantage of the present definition is that it
depends only on a (small) neighbourhood®fin particular, it doesn’t depend on an affine
embedding ol

A regular mapy: V' — W sendingP to () defines a local homomorphist, — Op,
which induces mapsi, — mp, mg/mg, — mp/mp, andTp(V) — To(W). The last
map is written(da)) p. When some open neighbourhoodgbénd( are realized as closed
subvarieties of affine space, théfiv) » becomes identified with the map defined earlier.

In particular, if f € mp, thenf is represented by a regular mép— A! sendingP to 0
and hence defines a linear magff): 7»(V') — k. This is just the map sending a tangent
vector (element oHomy, i, (mp/m%, k)) to its value atf mod m%. Again, in the concrete
situationV’ C A™ this agrees with the previous definition. In general, fat Op, i.e., for
f agerm of a function aP, we define

(df)p = f — f(P) mod m”.

The tangent space &t and the space of differentials &tare dual vector spaces—in con-
trast to the situation in advanced calculus, for us it is easier to define first the space of
differentials, and then define the tangent space to be its dual.

Consider for examplea € V(a) C A", with a a radical ideal. Forf € k[A"] =
k[X1,...,X,], we have (trivial Taylor expansion)

f=Ff(P)+> a(X;— a;) +terms of degree> 2in the X; — a;,
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that is,
f—f(P)= Zci(Xi —a;) mod m3.
Therefore(df) p can be identified with

0
Zci(XZ- —a;) = Z a){,i

which is how we originally defined the differentf). The tangent spacg, (V(a)) is the
zero set of the equations

(Xi - Gi),

a

(df)P = O, f € a,
and the se{(df)p|r.ovy | f € k[X4,..., X,]} is the dual space t6,(V).

REMARK 4.15. LetFE be a finite dimensional vector space o¥eilhen

To(A(E)) 2 E.

The dimension of the tangent space

In this subsection we show that the dimension of the tangent space is at least that of the
variety. First we review some commutative algebra.

Some commutative algebra

Let S be a multiplicative subset of a rind, and letS—' A be the corresponding ring of
fractions. Any ideak in A, generates an idedl 'a in S~ A. If a contains an element of

S, thenS~!a contains a unit, and so is the whole ring. Thus some of the ideal structure of
Ais lost in the passage 18! A, but, as the next lemma shows, some is retained.

PROPOSITION4.16. Let S be a multiplicative subset of the ring. The magp — S~ 'p =
p(S—1A) is a bijection from the set of prime ideals 4fdisjoint from.S to the set of prime
ideals ofS—! A (with inverseq +—(inverse image ofy in A)).

PROOF. For anideab of S~ A, letb¢ be the inverse image 6fin A, and for an idead of
A, leta® =a(S7tA).

For an ideab of S~'A, certainly,b O 6. Conversely, ifu/s € b, thena/1 € b, and
soa € b°. Thusa/s € b*, and scb = b,

For an ideah of A, certainlya C a®. If z € a*¢, thenz/1 € a¢, and sar/1 = a/s for
somea € a, s € S. Thus,t(zs —a) = 0 for somet € S, and sarst € a. If ais a prime
ideal disjoint fromS, this implies thatr € a: for such an idealg = a.

If b is prime, then certainly® is prime. For any ideat of 4, S"'A/a° = § ' (A/q)
whereS is the image ofS in A/a. If ais a prime ideal disjoint frons, thenS ™ (A/a) is
a subring of the field of fractions of/a, and is therefore an integral domain. ThaSjs
prime.

?The same discussion applies to ghy Op. Such anf is of the form# with h(a) # 0, and has a (not
quite so trivial) Taylor expansion of the same form, but with an infinite number of terms, i.e., it lies in the
power series ring[[ X, — ay,..., X, — ay]].
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We have shown that — p¢ andq — g are inverse bijections between the prime ideals
of A disjoint from.S and the prime ideals & ' A. O]

For example, lel” be an affine variety ané a point onV. The proposition shows
that there is a one-to-one correspondence between the prime idédlg|afontained in
mp and the prime ideals aDp. In geometric terms, this says that there is a one-to-one
correspondence between the prime ideal®jnand the irreducible closed subvarieties of
V' passing througl®.

Now let A be a local Noetherian ring with maximal ideal Thenm is an A-module,

and the action oftf onm/m? factors througtk 4 A/m.

PROPOSITION4.17. The elements, . . ., a, of m generatean as an ideal if and only if their
residues modulm? generatem/m? as a vector space ovéf. In particular, the minimum
number of generators for the maximal ideal is equal to the dimension of the vector space
m/m?.

PROOF. If ay,...,a, generatem, it is obvious that their residues generat¢m?. Con-
versely, suppose that their residues generate?, so thatn = (a4, ..., a,)+m? SinceA
is Noetherian and (hencayis finitely generated, Nakayama’s lemma, applied with= m
andN = (ay,...,a,), shows thatn = (ay,...,a,). O

LEMMA 4.18 (NAKAYAMA 'S LEMMA). Let A be a local Noetherian ring, and let/ be
a finitely generatedd-module. If N is a submodule o#/ such thatM = N + mM, then
M = N.

PROOF. After replacingM with the quotient modulé//N, we can assume thaf = 0.
Thus we have to show that ¥ = mAM/, thenM = 0. Letx,,...,z, generatelM, and

write
T; = Z Q;;T;
J
for somea;; € m. We see that, ..., z, can be considered to be solutions to the system
of n equations im variables

2(5@ —a;;)r; =0, ¢;; = Kronecker delta,

J

and so Cramer’s rule tells us théit(d;; — a;;) - z; = 0 for all i. But on expanding it out,
we find thatdet(d;; — a;;) = 1 + m with m € m. In particular,det(d;; — a;;) ¢ m, and so
it is a unit. We deduce that all the are zero, and that/ = 0. [

A Noetherian local ringA of Krull dimensiond is said to beregular if its maximal
ideal can be generated byelements. Thusl is regular if and only if its Krull dimension
is equal to the dimension af /m?.
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Two results from Section 7.

We shall need to use two results that won'’t be proved gitil

4.19. For any irreducible varietyy” and regular functions, . . ., f. on 'V, the irreducible
components of (f1, ..., f.) have dimensiotr dim V' — r.

Note that for polynomials of degrekeon k", this is familiar from linear algebra: a
system of- linear equations im variables either has no solutions (the equations are incon-
sistent) or has a family of solutions of dimension at leastr.

Recall that the Krull dimensiod of a Noetherian local ring! is the maximum length
of a chain of prime ideals:

In §7, we shall prove:

4.20. If V is an irreducible variety of dimensiaofy then the local ring at each poinf® of
V has dimension.

Theheightof a prime ideap in a Noetherian ringd, is the maximum length of a chain
of prime ideals:

p=po2pi 2 2ba
Because of (4.16), the heightpfs the Krull dimension of4,. Thus [4.2D) can be restated
as: if VV is an irreducible affine variety of dimensiai then every maximal ideal ih[V/]
has heighti.
Sketch of proof of[(4.20): IV = A%, thenA = k[X,..., X,], and all maximal ideals
in this ring have height, for example,

(Xl—al,...,Xd—ad)D(Xl—al,...,Xd_l—ad_l)D...D(Xl—al)DO

is a chain of prime ideals of lengththat can’t be refined. In the general case, the Noether
normalization theorem says thidl/| is integral over a polynomial ring[z1, .. ., z4), z; €
k[V]; then clearlyz, . .., z4 is a transcendence basis fgi/), and the going up and down
theorems (see Atiyah and MacDonald 1969, Chapt 5) show that the local rikgs|aind
k[x1,...,zq4] have the same dimension.

The dimension of the tangent space

Note that|(4.17) implies that the dimensionZgf(1") is the minimum number of elements
needed to generate C Op.

THEOREM4.21. Let V' be irreducible; thendim 7(V') > dim(V'), and equality holds if
and only ifOp is regular.

PROOF. Supposefi, ..., f, generate the maximal idea}) in Op. Thenfy,..., f,. are all
defined on some open affine neighbourh@ddf P, and I claim thatP is an irreducible
component of the zero-sét(fi,..., f.) of fi,..., f. in U. If not, there will be some
irreducible component # P of V(fi,..., f,) passing throug®. Write Z = V (p) with
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p a prime ideal ink[U]. Becausé/(p) C V(fi,..., f.) and becaus& containsP and is
not equal to it, we have

(fi,-.s /) CpGmp  (idealsink[U]).
On passing to the local rin@p = k[U].,., we find (using 4.1)6) that
(fis- oo fr) CpOp Sup  (ideals inOp).

This contradicts the assumption that th@eneraten . HenceP is an irreducible compo-
nent of V(fi,..., f.), and [4.1D) implies that

r > codimP = dim V.

Since the dimension dfp (V') is the minimum value of, this implies thadim 7»(V') >
dim V. If equality holds, themp can be generated biim V' elements, which (because of
[4.20) implies tha®p is regular. Conversely, iDp is regular, then the minimum value of
is dim V/, and so equality holds. O

As in the affine case, we define a poiftto benonsingular if dim7p(V) = dim V.

Thus a pointP is nonsingular if and only i©p is a regular local ring. In more geometric
terms, we can say that a poifRton a varietyl” of dimensiond is nonsingular if and only

if it can be defined byl equations in some neighbourhood of the point; more precisely,
P is nonsingular if there exists an open neighbourhbodf P andd regular functions
fi,..., faonU that generate the idealp.

According to (Atiyah and MacDonald 1969, 11.23), a regular local ring is an integral
domain. This provides another explanation of why a point on the intersection of two irre-
ducible components of a variety can’t be nonsingular: the local ring at such a point in not
an integral domain. (Supposec 7, N Z,, with Z; N Zy, # Z1, Z,. SinceZ, N Zy # Z;,
there is a nonzero regular functigndefined on an open neighbourho@f P in Z; that
is zero onJ N Z1 N Z,. Extendf; to a neighbourhood aP in Z; U Z, by settingf;(Q) = 0
for all @ € Z,. Then f, defines a germ of regular function & Similarly construct a
function f, that is zero or;. Thenf; and f, define nonzero germs of functions/at but
their product is zero.)

An integral domain that is integrally closed in its field of fractions is callegbemal
ring.

LEMMA 4.22. An integral domainA is normal if and only ifA,, is normal for all maximal
idealsm of A.

PrROOF. =: If Ais integrally closed, then so 5! A for any multiplicative subse$ (not
containing0), because if

W'+ 40, =0, ¢ €SA,
then there is an € S such thatsc; € A for all 7, and then

(Sb)n + (Scl>(8b)n_1 + o+ sncn - 07
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demonstrates that € A, whenceb € S~ A.

«<: If cis integral overA, it is integral over eachl,,, hence in eachl,,,, andA = () A,,
(if ¢ € (N An, then the set of € A such thatzc € A is an ideal inA, not contained in any
maximal ideal, and therefore equal Aatself). O

Thus the following conditions on an irreducible variétyare equivalent:

(a) forallP € V, Op is integrally closed;

(b) for all irreducible open affine® of V, k[U] is integrally closed,;

(c) thereis a coverinyy = |J V; of V' by open affines such th&{V;] is integrally closed

for all .

An irreducible varietyl satisfying these conditions is said to h@mal. More generally,
an algebraic variety” is said to benormal if Op is normal for allP € V. Since, as
we just noted, the local ring at a point lying on two irreducible components can’t be an
integral domain, a normal variety is a disjoint union of irreducible varieties (each of which
is normal).

A regular local Noetherian ring is always normal (cf. Atiyah and MacDonald 1969,
p123); conversely, a normal local integral domafrdimension onés regular (ibid.). Thus
nonsingular varieties are normal, and normal curves are nonsingular. However, a normal
surface need not be nonsingular: the cone

X2 +Y?2-22=0

is normal, but is singular at the origin — the tangent space at the origih idowever, it

is true that the singular locus of a normal varigétynust have dimensiod dim V' — 2. For
example, a normal surface can only have isolated singularities — the singular locus can’t
contain a curve.

Singular points are singular

The set of singular points on a variety is called siregular locusof the variety.
THEOREM4.23. The nonsingular points of a variety form a dense open subset.

PROOF. We have to show that the singular points form a proper closed subset of every
irreducible component df".

Closed: We can assume that is affine, sayy’ = V'(a) C A™. Let P, ..., P. generate
a. Then the set of singular points is the zero set of the ideal generated by-thlgx (n—d)
minors of the matrix

@ ... F(a)
Jagp,...,P)(a) = : :
(@) ... 2(a)

Proper: Suppose first that” is an irreducible hypersurface ih?*!, i.e., that it is
the zero set of a single nonconstant irreducible polynotiiat;, ..., X4.1). By (1.21),
dim V' = d. In this case, the proof is the same as tha@ (4.3%5 is identically zero on
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V(F), thené‘?—j?1 must be divisible by, and hence be zero. Thé#tsmust be a polynomial
in X5, ... X4, (characteristic zero) or iX? X5, ..., X1 (characteristip). Therefore,
if all the points of V' are singular, therF is constant (characteristi®) or a p™" power
(characteristip) which contradict the hypothesis.

We shall complete the proof by showing (Lemma 4#.23) that there is a nonempty open
subset ofi” that is isomorphic to a nonempty open subset of an irreducible hypersurface in
AT+ O

Two irreducible varietied” and W are said to béirationally equivalentif (V) ~
k(W).

LEMMA 4.24. Two irreducible varietied” and W are birationally equivalent if and only
if there are open subsets andU’ of V and W respectively such thdf ~ U’.

PROOF. Assume that” and!V are birationally equivalent. We may suppose thandi
are affine, corresponding to the ringsand B say, and thatl and B have a common field
of fractionsK. Write B = k[zy,...,x,]. Thenz; = a;/b;, a;,b; € A, andB C Ay, s,
SinceSpecm(A,,. ;. ) is a basic open subvariety &f, we may replacel with A, ,,, and
suppose tha3 C A. The same argument shows that there exisis@ B C A such
A C B;. Now

BCACBdinCAdC(Bd)d:Bd,

and soA; = B,. This shows that the open subvarietiégh) C V andD(b) C W are
isomorphic. This proves the “only if” part, and the “if” part is obvious. O

LEMMA 4.25. Let V' be an irreducible algebraic variety of dimensidnthen there is a
hypersurfaced in A4*! birationally equivalent td/.

PrROOF. Let K = k(xy,...,x,), and assume > d + 1. After renumbering, we may
suppose that, ..., z, are algebraically independent. Thétx,,...,z4.1) = 0 for some
nonzero irreducible polynomigi(Xy, ..., X41) with coefficients ink. Not all f/0X;
are zero, for otherwisé will have characteristip # 0 and f will be a p" power. Af-
ter renumbering, we may suppose thgt/0X,,1 # 0. Thenk(xy,..., 2411, Tas0) IS
algebraic overk(zy,...,z4) and x4, is separable ovek(zy,...,z4), and so, by the
primitive element theorem (FT, 5.1), there is an elemestch thatk(xy, ..., x402) =
k(xi,...,zq4,y). ThusK is generated by, — 1 elements (as a field containirig. Af-

ter repeating the process, possibly several times, we will kave k(z1, ..., z411) With
zq4+1 Separable ovel(zy, .. ., z4). Now takef to be an irreducible polynomial satisfied by
21, ..., 2411 @and H to be the hypersurfacg = 0. O

COROLLARY 4.26. Any algebraic group= is nonsingular.

PROOF. From the theorem we know that there is an open dense sUbsit: of nonsin-
gular points. For any € G, a — ga is an isomorphisnt — G, and sogU consists of
nonsingular points. Clearlg = | gU. [

In fact, any variety on which a group acts transitively by regular maps will be nonsin-
gular.
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ASIDE 4.27. IfV has pure dimensioiin A4, thenl (V') = (f) for some polynomiaf.

PROOF. We know I(V) = (I(V;) where theV; are the irreducible components bf,

and so if we can prové(V;) = (f;) thenI(V) = (f,--- f.). Thus we may suppose that
V is irreducible. Letp = I(V); it is a prime ideal, and it is nonzero because otherwise
dim(V') = d + 1. Therefore it contains an irreducible polynomjalFrom [0.8) we know
(f)is prime. If(f) # p , then we have

V=V(p) S V() G AT

anddim(V) < dim(V(f)) < d + 1 (seg[1.2R), which contradicts the fact tHathas
dimensiond. n

AsIDE4.28. Lemm@4.24 can be improved as followd iindV” are irreducible varieties,
then every inclusiok (W) C k(V) is defined by a regular surjective map U — U’ from
an open subséf of I/ onto an open subsét of V.

ASIDE4.29. Anirreducible variety” of dimensiond is said torational if it is birationally
equivalent toA?. It is said to beunirational if (V') can be embedded ih(A¢) — ac-
cording to the last aside, this means that there is a regular surjective map from an open
subset ofAY™V onto an open subset &f. Luroth’s theorem (which sometimes used to

be included in basic graduate algebra courses) says that a unirational curve is rational,
that is, a subfield of(.X) not equal tok is a pure transcendental extensionkoflt was
proved by Castelnuovo that whénhas characteristic zero every unirational surface is
rational. Only in the seventies was it shown that this is not true for three dimensional vari-
eties (Artin, Mumford, Clemens, Griffiths, Manin,...). Whérhas characteristip £ 0,

Zariski showed that there exist nonrational unirational surfaces, and P. Blas§}1977
showed that there exist infinitely many surfadésno two birationally equivalent, such
thatk(X?,Y?) C k(V) C k(X,Y).

ASIDE 4.30. Note that, iV is irreducible, then
dimV = m}in dim Tp(V)

This formula can be useful in computing the dimension of a variety.

Etale neighbourhoods

Recall that a regular map: W — V is said to bectale at a nonsingular poirt of IV if
the map(da)p: Tp(W) — T,p)(V) is an isomorphism.

Let P be a nonsingular point on a variétyof dimensiond. A local system of parame-
tersat P is afamily{ f, ..., f4} of germs of regular functions @t generating the maximal
idealnp C Op. Equivalent conditions: the images ff, . .., f; in np/n% generate it as a
k-vector space (s¢e 4[17); @if1)p, . ..., (dfs) p is a basis for dual space 1 (V).

217ariski surfaces, Thesis, 1977; published in Dissertationes Math. (Rozprawy Mat.) 200 (1983), 81 pp.
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PrRoPOSITION4.31. Let {fi,..., f4} be a local system of parameters at a nonsingu-
lar point P of V. Then there is a nonsingular open neighbourhddédf P such that
fi, f2, ..., fa are represented by paits;, U), ..., (fs,U) and the mag fi, ..., fa): U —
Adis étale.

PROOF. Obviously, thef; are represented by regular functiofislefined on a single open
neighbourhood/’ of P, which, because of (4.23), we can choose to be nonsingular. The
mapa = (fi,..., fs): U — A’is étale atP, because the dual map téa), is (dX;) —
(df;)a. The next lemma then shows thats étale on an open neighbourhobicof P. [

LEMMA 4.32. LetWW andV be nonsingular varieties. l: W — V is étale atP, then it
is étale at all points in an open neighbourhood/ef

PROOF. The hypotheses imply that” and V" have the same dimensiaeh) and that their
tangent spaces all have dimensibniNVe may assum@” andV’ to be affine, sayV C A™
andV C A", and thatw is given by polynomials? (X, ..., X)), ..., Po(X1, ..., Xin).

Then (da)a: Ta(A™) — Th@(A") is a linear map with matri>< i (a)), anda is not

0X;
etale ata if and only if the kernel of this map contains a nonzero vector in the subspace
T.(V) of T,(A™). Let f1,..., f. generatd (WW). Thena is notétale ata if and only if the

matrix )
e
ox; (a)

has rank less tham. This is a polynomial condition oa, and so it fails on a closed subset
of W, which doesn’t contair. O

Let V' be a nonsingular variety, and 1€t € V. An étale neighbourhoodf a point P
of Vis pair(Q,m: U — V) with = anétale map from a nonsingular varidtyto V and@
a point ofU such thatr(Q) = P.

COROLLARY 4.33. Let V' be a nonsingular variety of dimensiahand letP € V. There
is an open Zariski neighbourhodd of P and a mapr: U — A? realizing (P, U) as an
étale neighbourhood df), ...,0) € A

PROOF. This is a restatement of the Proposition. O

ASIDE 4.34. Note the analogy with the definition of a differentiable manifold: every point
P on nonsingular variety of dimensiehhas an open neighbourhood that is also a “neigh-
bourhood” of the origin ilA?. There is a “topology” on algebraic varieties for which the
“open neighbourhoods” of a point are te&le neighbourhoods. Relative to this “topol-
ogy”, any two nonsingular varieties are locally isomorphic (thisastrue for the Zariski
topology). The “topology” is called thétale topology— see my notes Lectures on Etale
Cohomology.
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Dual numbers and derivations

In general, ifA is ak-algebra and/ is anA-module, then &-derivationisamapD: A —
M such that

(@) D(c) =0forall c € k;

(b) D(a+0b) = D(a) + D(b);

(¢) D(a-b) =a-Db+b- Da (Leibniz's rule).
Note that the conditions imply thd? is k-linear (but notA-linear). We write Deg( A, M)
for the space of alk-derivationsA — M.

For example, the map — (df)p < f — f(P) modn? is ak-derivationOp — np/n.
PrROPOSITION4.35. There are canonical isomorphisms
Dery(Op, k) = Homyin(np/n%, k) = Tp(V).
PrROOF. Note that, as &-vector space,

Op:k?@nPa fH(f(P)vf_f(P))

A derivationD: Op — k is zero onk and onn% (Leibniz’s rule). It therefore defines a
linear mapnp/n?% — k, and all such linear maps arise in this way, by composition

f=(df)p
-

Op np/nh — k. O

Thering of dual numbersis k[e] = k[X]/(X?) wheree = X + (X?). As ak-vector
space it has a bas{g, ¢}, and(a + be)(a’ + b'e) = aa’ + (ab’ + a'b)e.

PROPOSITION4.36. The tangent space
Tp(V) = Hom(Op, k[¢]) (local homomorphisms of locatalgebras).

PROOF. Leta: Op — kle] be a local homomorphism df-algebras, and writer(a) =
ap + Dy (a)e. Becausey is a homomorphism of-algebrasa — ay is the quotient map
Op — Op/m = k. We have

a(ab) = (ab)y + D,(ab)e, and
a(a)a(b) = (ag + Du(a)e)(by + Du(b)e) = agby + (agDa(b) + by Dy (a))e.

On comparing these expressions, we seeffthasatisfies Leibniz’s rule, and therefore is a
k-derivationOp — k. All such derivations arise in this way. O

For an affine varietyy and ak-algebraA (not necessarily an affine-algebra), we
defineV'(A), the set of points oft” with coordinates inA, to beHomy.a4(k[V], A). For
example, ift” = V(a) C A", then

V(A) ={(ay,...,a,) € A" | f(a1,...,a,) =0all f € a}.
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Consider anv € V(k[¢]), i.e., ak-algebra homomorphisi: k[V] — k[e]. The composite
k[V] — kle] — kis a pointP of V, and

mp = Ker(k[V] — k[e] — k) = a7 ((¢)).

Therefore elements @ffV'] not inmp map to units irk[e], and sax extends to a homomor-
phisma’: Op — k[e]. By construction, this is a local homomorphism of lotedlgebras,

and every such homomorphism arises in this way. In this way we get a one-to-one corre-
spondence between the local homomorphismisaligebras)» — k[¢] and the set

{P" € V(kle]) | P' — P under the map/ (k[¢]) — V(k)}.

This gives us a new interpretation of the tangent spacée at
Consider, for examplely = V(a) C A", a a radical ideal ink[X1,...,X,], and let
a € V. Inthis case, it is possible to show directly that

Ta(V) ={a’ € V(k[e]) | a’ maps toa underV (k[e]) — V(k)}

Note that when we write a polynomial( X1, ..., X,) in terms of the variableX; — a;,
we obtain a formula (trivial Taylor formula)

OF
F(X1yo Xa) = Flan, a0 + Y 5

with R a finite sum of products of at least two teri@@s; — a;). Now leta € k" be a point
onV, and consider the condition fart+cb € k[¢]" to be a point ori”. When we substitute
a; + €b; for X; in the above formula and také € a, we obtain:

OF

F(a1+5b1,...,an+€bn):5(zW

bi).

a

Consequently(a; + €b,...,a, + €b,) lies onV if and only if (by,...,b,) € Ta(V)
(original definition p68).

Geometrically, we can think of a point &f with coordinates irk[s] as being a point
of V' with coordinates irk (the image of the point undéf(k[¢]) — V' (k)) together with a
“direction”

REMARK 4.37. The description of the tangent space in terms of dual numbers is particu-
larly convenient when our variety is given to us in terms of its points functor. For example,
let M,, be the set of x n matrices, and lef be the identity matrix. Write for I when it

is to be regarded as the identity elemenGadf,. Then we have

T.(GL,) ={[+cA|Aec M,}
= My,
and
T.(SL,) ={I +cA|det({ +cA) =1}
={I +cA | trace(A) = 0}
~ {A e M, |trace(A) = 0}.
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Assume the characterist€ 2, and letO,, be orthogonal group:
O, ={A€GL, | AA" = I}.

(tr=transpose). This is the group of matrices preserving the quadraticXgrm: - - + X 2.
Thendet: O, — {£1} is a homomorphism, and the special orthogonal grsap, is
defined to be the kernel of this map. We have

Te(0p) = Te(SOy)
={I+cAe M,(kle]) | I +ecA)I+ecA)" =1}
= {I +¢cA € M,(k[e]) | Ais skew-symmetrig
= {A € M,(k) | Ais skew-symmetrig.

Note that, because an algebraic group is nonsinglitar?, (G) = dim G — this gives
a very convenient way of computing the dimension of an algebraic group.
On the tangent spade (GL,,) = M, of GL,, there is a bracket operation

M, N L MN - NM

which makesT,(GL,) into a Lie algebra. For any closed algebraic subgréupf GL,,,
T.(G) is stable under the bracket operationBiGL,,) and is a sub-Lie-algebra af/,,,
which we denote Lig=). The Lie algebra structure on Li€) is independent of the em-
bedding ofG into GL,, (in fact, it has an intrinsic definition), an@ — Lie(G) is a functor
from the category of linear algebraic groups to that of Lie algebras.

This functor is not fully faithful, for example, argtale homomorphisrey — G’ will
define an isomorphism L{€&') — Lie(G"), but it is nevertheless very useful.

Assumek has characteristic zero. A connected algebraic g@igsaid to besemisim-
pleif it has no closed connected solvable normal subgroup (eXegpt Such a grougx
may have a finite nontrivial centr&(G), and we call two semisimple grous and G’
locally isomorphicif G/Z(G) ~ G'/Z(G"). For exampleSL,, is semisimple, with cen-
tre i, the set of diagonal matrices digg. . .,¢), ¢(" = 1, andSL,, /u, = PSL,. A Lie
algebra issemisimpléf it has no commutative ideal (exceft}). One can prove that

G is semisimple <= Lie(G) is semisimple

and the mag> — Lie(G) defines a one-to-one correspondence between the set of local
isomorphism classes of semisimple algebraic groups and the set of isomorphism classes
of Lie algebras. The classification of semisimple algebraic groups can be deduced from
that of semisimple Lie algebras and a study of the finite coverings of semisimple algebraic
groups — this is quite similar to the relation between Lie groups and Lie algebras.

Tangent cones

In this subsection, | assume familiarity with parts of Atiyah and MacDonald 1969, Chapters
11, 12.

LetV = V(a) C k™, a = rad(a), and letP = (0,...,0) € V. Definea, to be the
ideal generated by the polynomidis for F' € a, whereF, is the leading form of (see
d71). Thegeometric tangent conat P, Cp(V) is V (a,), and thetangent cones the pair
(V(ay), k[ X1, ..., X,]/as). Obviously,Cp(V) C Tp(V).
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Computing the tangent cone

If ais principal, saya = (F'), thena, = (F.), butif a = (F,..., F,), then it need not

be true that, = (Fi.,..., F,.). Consider for example = (XY, X7 + Z(Y? — Z?)).

One can show that this is a radical ideal either by asking Macaulay (assuming you believe
Macaulay), or by following the method suggested in Cox et al. 1992, p474, problem 3 to
show that it is an intersection of prime ideals. Since

YZY? -2 =Y - (XZ+Z(Y*-Z?)—Z-(XY)€a

and is homogeneous, it is i, but it is not in the ideal generated B§Y", X 7. In fact, a,
is the ideal generated by
XY, XZ, YZ(Y*-2Z?.

This raises the following question: given a set of generators for an igéalw do you
find a set of generators far,? There is an algorithm for this in Cox et al. 1992, p467.
Let a be an ideal (not necessarily radical) such that V' (a), and assume the origin is
in V. Introduce an extra variablE such thatl™ >" the remaining variables. Make each
generator ofi homogeneous by multiplying its monomials by appropriate (small) powers
of T', and find a Gabner basis for the ideal generated by these homogeneous polynomials.
RemoveT from the elements of the basis, and then the polynomials you get gengrate
Intrinsic definition of the tangent cone

Let A be a local ring with maximal ideal. The associated graded ring is
gr(A) = @n’/nt,
Note that ifA = B,, andn = m4, then gfA) = &m’/m*** (because of (4.13)).

PROPOSITION4.38. The mapk[X;, ..., X,,|/a. — gr(Op) sending the class aX; in
k[X1,...,Xm]/a.tothe class ofX; in gr(Op) is an isomorphism.

PROOF. Letm be the maximal ideal ik[X1,..., X,,]/a corresponding t@. Then
_ Zmi/mz'-i-l
_le,... Y/ (Xe, o X)) T an (X, LX)
_ZXI"”’ (Xh...,Xm)iJrl‘i‘ai

wheregq; is the homogeneous piece @fof degree (that is, the subspace of consisting
of homogeneous polynomials of degrigeBut

(X1, X))/ (X1, .., X)) + a; = i™ homogeneous piece 6fX, ..., X,]/a..

]
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For a general variety” and P € V, we define thgeometric tangent coné€'p (V') of V
at P to beSpecm(gr(Op)req), Where gtOp)req is the quotient of giOp) by its nilradical.

Recall (Atiyah and MacDonald 1969, 11.21) thkin(A) = dim(gr(A)). Therefore
the dimension of the geometric tangent cond’as the same as the dimension 16f(in
contrast to the dimension of the tangent space).

Recall (ibid., 11.22) that §©p) is a polynomial ring ind variables(d = dim V) if and
only if Op is regular. ThereforeP is nonsingular if and only if dlOp) is a polynomial
ring in d variables, in which cas€p (V') = Tr(V).

Using tangent cones, we can extend the notion oétahe morphism to singular va-
rieties. Obviously, a regular map: V' — W induces a homomorphism @) —
gr(Op). We say thatv is étaleat P if this is an isomorphism. Note that then there is an
isomorphism of the geometric tangent colggV') — C,p) (W), but this map may be an
isomorphism withouty beingétale atP. Roughly speaking, to betale atP, we need the
map on geometric tangent cones to be an isomorphism and to preserve the “multiplicities”
of the components.

It is a fairly elementary result that a local homomorphism of local ringsA — B
induces an isomorphism on the graded rings if and only if it induces an isomorphism on
the completions. Thua: V' — W is étale atP if and only if the map |§9a<P — Op an
isomorphism. Hencé (4.B1) shows that the choice of a local system of paraifieters f;
at a nonsingular poinP determines an isomorphis@®y — k[[ X1, ..., XJ]].

We can rewrite this as follows: léf, ..., t; be a local system of parameters at a non-
singular pointP; then there is a canonical isomorphi§s — k[[t1, . . ., t4]]. Forf € Op,
the image off € k[[t1,...,t4)] can be regarded as the Taylor serieg of

For example, let’ = A!, and letP be the point.. Thent = X — a is a local parameter
ata, Op consists of quotient$(X ) = g(X)/h(X) with h(a) # 0, and the coefficients of
the Taylor expansiod ., a,(X —a)™ of f(X) can be computed as in elementary calculus

coursesu, = f™(a)/n!.

Exercises 17-24

17. Find the singular points, and the tangent cones at the singular points, for each of
(@ Y3 —VY?+ X3 — X?+3V2X + 3X?%Y + 2XY;
(b) X*+Y*— X?2Y? (assume the characteristic is 20t

18.LetV C A" be an irreducible affine variety, and [Btbe a nonsingular point ovi. Let
H be a hyperplane iA" (i.e., the subvariety defined by a linear equafjon, X; = d with
not all a; zero) passing through but not containind’»(V"). Show thatP is a nonsingular
point on each irreducible componentiéfn H on which it lies. (Each irreducible compo-
nent has codimensiohin V' — you may assume this.) Give an example witho 7p(1)
and P singular onV/ N H. Must P be singular o/ N H if H D Tp(V)?

19. Let P and@ be points on varietieg” and!V. Show that
Tipo)(V x W) =Tp(V) & To(W).

20. For eachn, show that there is a cur¥e and a pointP on C such that the tangent space
to C' at P has dimensiom (henceC can't be embedded A" !).



4 LOCAL STUDY: TANGENT PLANES, TANGENT CONES, SINGULARITIES 93

21. Let I be then x n identity matrix, and let/ be the matrix _O] é . Thesymplectic

group Sp,, is the group oRn x 2n matricesA with determinant. such thatA"™ - J- A = J.
(Itis the group of matrices fixing a nondegenerate skew-symmetric form.) Find the tangent
space tdp,, at its identity element, and also the dimensiorspf.

22. Find a regular mapv: V' — W which induces an isomorphism on the geometric
tangent cone€’p (V') — Cop) (W) but is notétale atP.

23. Show that the con&?+Y? = Z?is a normal variety, even though the origin is singular
(characteristic 2). See p8j.

24. LetV = V(a) C A". Suppose that # I(V'), and fora € V, let T, be the subspace
of T,(A") defined by the equatiorigf), = 0, f € a. Clearly, 7, D T,(V'), but need they
always be different?
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5 Projective Varieties and Complete Varieties
Throughout this sectiort; will be an algebraically closed field. Recall (B.4) that we defined

P" = k"t {origin} /~,

(ag,...,an) ~ (bo,...,b,) < (ag,...,an) = c(by,...,b,)for somec € k*.
Write (ao : ... : a,) for the equivalence class 6o, . . ., a, ), andr for the map
k"t {origin} /~ — P

Let U; be the set ofay : ... : a,) € P" such thata; # 0. Then(ay : ... : a,) —
(g2, ...,“; L “;“,...,Zn) is a bijectionv;: U; — k™, and we used these bijections to
define the structure of a ringed spacel®n specifically, we said that/ ¢ P™ is open if
and only ifv;(U N U;) is open for alki, and that a functiorf : U — k is regular if and only

if fowv;!isregular orw;(U N U;) for all 4.

In this chapter, we shall first derive another description of the topolody'oand then

we shall show that the ringed space structure m@keisito a separated algebraic variety.

A closed subvariety aP™ or any variety isomorphic to such a variety is callegrajective

variety, and a locally closed subvariety Bf or any variety isomorphic to such a variety

is called aquasi-projective variety Note that every affine variety is quasi-projective, but
there are many varieties that are not quasi-projective. We study morphisms between quasi-
projective varieties. Finally, we show that a projective variety is “complete”, that is, it has
the analogue of a property that distinguishes compact topological spaces among locally
compact spaces.

Projective varieties are important for the same reason compact manifolds are important:
results are often simpler when stated for projective varieties, and the “part at infinity” often
plays a role, even when we would like to ignore it. For example, a famous theorem of
Bezout (se¢ 5.44 below) says that a curve of degtée the projective plane intersects a
curve of degree in exactlymn points (counting multiplicities). For affine curves, one has
only an inequality.

Algebraic subsets ofP”

A polynomial F'( Xy, ..., X,) is said to benomogeneous of degreéif itis a sum of terms
g, in X - - Xim With ig 4 - - - +4,, = d; equivalently,

F(tXo, ..., tX,) =t'F(X,,..., X,)

forall t € k. Write k[ X, ..., X,]; for the subspace of[ Xy, ..., X,] of polynomials of
degreel. Then

E[Xo...., Xa] = P kX, ., Xula;
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that is, each polynomial’ can be written uniquely as a sum= > F,; with £, homoge-
neous of degreé.

LetP = (ag : ... : a,) € P". ThenP also equalgcay : ... : ca,) foranyc € k*,
and so we can'’t speak of the value of a polynon#iaX,, ..., X,,) at P. However, if ' is
homogeneous, theR(cay, . . ., ca,) = ¢F(ay,...,a,), and so it does make sense to say
that F' is zero or not zero aP. An algebraic set inP™ (or projective algebraic s¢ts the
set of common zeros A" of some set of homogeneous polynomials.

ExXAMPLE 5.1. Consider the projective algebraic subBenf P? defined by the homoge-
neous equation
Y?Z = X34+ aXZ*+b23 *)
whereX?+aX +bis assumed not to have multiple roots. It consists of the péints; : 1)
on the affine curve’y
Y? = X% 4 aX +0,

together with the point “at infinity{0 : 1 : 0).

Curves defined by equations of the form (*) are caldlgbtic curves They can also
be described as the curves of genus one, or as the abelian varieties of dimension one. Such
a curve becomes an algebraic group, with the group law suctPthat) + R = 0 if and
only if P, @, andR lie on a straight line. The zero for the group is the point at infinity.

In the case that,b € Q, we can speak of the zeros of (*) with coordinatesiin
They also form a groug(Q), which Mordell showed to be finitely generated. It is easy
to compute the torsion subgroup B{Q), but there is at present no known algorithm for
computing the rank of/(Q). More precisely, there is an “algorithm” which always works,
but which has not been proved to terminate after a finite amount of time, at least not in
general. There is a very beautiful theory surrounding elliptic curves Qvand other
number fields, whose origins can be traced back 1,800 years to Diophantus. (See my notes
on Elliptic Curves for all of this.)

Anideala C k[Xy, ..., X,] is said to behomogeneoudf it contains with any polyno-
mial F' all the homogeneous componentdfi.e., if FF € a = F,; € a, alld. Such anideal
is generated by homogeneous polynomials (obviously), and conversely, an ideal generated
by a set of homogeneous polynomials is homogeneous. The radical of a homogeneous
ideal is homogeneous, the intersection of two homogeneous ideals is homogeneous, and a
sum of homogeneous ideals is homogeneous.

For a homogeneous idea| we write V' (a) for the set of common zeros of the homo-
geneous polynomials im — clearly every polynomial i will then be zero o/ (a). If
Fi,..., F, are homogeneous generatorsdpthenV (a) is the set of common zeros of the
F;. The setd/(a) have similar properties to their namesakes fn:

aCb=V(a) DV(b);

V() =P" V(a) =0 <= rada) D (Xo,...,Xn);

V(ab) =V(anb)=V(a) UV(b);

V(o ai) =NV (a).

The first statement is obvious. For the second/®a) be the zero set af in k" +1. It
is a cone — it contains together with any poithe line through? and the origin — and

V(a) = (V& (a) < (0,...,0))/~.
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We havel/(a) = } <= V& (a) c {(0,...,0)} <= rada) D (Xo,...,X,), by the
strong Hilbert Nullstellensatz (1.9). The remaining statements can be proved directly, or
by using the relation betwedn(a) andV3(a).

If C'isaconeirk™"!, then/(C')is ahomogeneous ideal X, ..., X, ]: if F(caq,...,ca,) =
0 for all c € k*, then

ZdFd(ao, - ,an) ot = F(cao, o ,can) =0,

for infinitely manyc, and so)_ Fj(ao, . . .) X is the zero polynomial. For subsgtof P,
we define thaffine cone overS (in k"*!) to be

C = 7(S) u {origin}

and we set

I(S) = I(C).
Note thatC' is the closure ofr~!(S) unlessS = (), and that/ (S) is spanned by the homo-
geneous polynomials ik Xy, . .., X,] that are zero ory.

PROPOSITIONS.2. The maps/ and I define inverse bijections between the set of alge-
braic subsets oP™ and the set of proper homogeneous radical ideal&[of, . .., X,.].

An algebraic set” in P is irreducible if and only if/ (V') is prime; in particular,P" is
irreducible.

PrRoOOF. Note that we have bijections

{algebraic subsets @} {nonempty closed cones it *'}

‘X ;
{proper homogeneous radical ideals{X,, ..., X,|}
Here the top map sends to the affine cone oveY, and the left hand map i§ in the
sense of projective geometry. The composite of any three of these maps is the identity
map, which proves the first statement because the composite of the top mapisvitim

the sense of projective geometry. Obviouslyis irreducible if and only if the closure of
7~ 1(V) is irreducible, which is true if and only (V) is a prime ideal. O

Note that( Xy, ..., X,) andk[Xo, ..., X, ] are both radical homogeneous ideals, but
V(Xo,...,. Xp) =0 =V(k[Xo,...,X,])

and so the correspondence between irreducible subséts and radical homogeneous
ideals is not quite one-to-one.
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The Zariski topology on P"

The statements above show that projective algebraic sets are the closed sets for a topology
onP". In this subsection, we verify that it agrees with that defined in the first paragraph of
this section. For a homogeneous polynonialet

D(F) = {P e P" | F(P) % 0}.

Then, just as in the affine case(F') is open and the sets of this type form a basis for the
topology ofP".

With each polynomialf (X, ..., X,,), we associate the homogeneous polynomial of
the same degree

FH(Xoye oy X)) = X8 (X— . X—) ,

X0 " ’ Xo

and with each homogeneous polynomiglXy, . .., X,,) we associate the polynomial
F(X1,..., X)) =F(1,Xy,...,X,).

PROPOSITIONS.3. For the topology onP” just defined, eacly; is open, and when we
endow it with the induced topology, the bijection

Ui A" (ag:...:1:...1a,) < (ag, ..., 01,041, -..,0)
becomes a homeomorphism.

PROOF. It suffices to prove this withh = 0. The set/, = D(X,), and so it is a basic open
subset inP". Clearly, for any homogeneous polynomiale k[Xo, ..., X,],

D(F(Xy,...,X,))NUy = D(F(1,Xy,...,X,)) = D(F.)
and, for any polynomiaf € k[X1, ..., X,],

D(f) = D(f*) N Us.

Thus, undet/, «— A™, the basic open subsets&f correspond to the intersections with
of the basic open subsets®f, which proves that the bijection is a homeomorphism.]

REMARK 5.4. Itis possible to use this to give a different proof thats irreducible. We
apply the criterion that a space is irreducible if and only if every nonempty open subset is
dense (seq p83). Note that edchs irreducible, and thal;; N U; is open and dense in each

of U; andU;, (as a subset df, it is the set of point$ag : ... :1:...:qa;:...: a,) with

a; # 0). LetU be a nonempty open subsetlsf; thenU N U; is open inU;. For some

i, U N U, is nonempty, and so must meétn U;. Therefore meets every/;, and so is
dense in every/;. It follows that its closure is all oP".
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Closed subsets oA and P

We identify A™ with Uy, and examine the closuresliti of closed subsets &f". Note that
P" = A" U Hy, Hs =V(Xo).

With eachideah in k[ X7, ..., X,], we associate the homogeneous idédah k[ X, . .., X,]
generated by f* | f € a}. For a closed subsét of A", setV* = V (a*) with a = I(V).

With each homogeneous idealin k[X,, X;,...,X,], we associate the ideal, in
k[Xi,...,X,] generated by{F, | F' € a}. WhenV is a closed subset @, we set
V. =V(a,) witha =I(V).

PROPOSITIONS.5. (a) LetV be a closed subset é&f*. ThenV* is the closure of” in P,
and(V*), = V. If V = |JV; is the decomposition df into its irreducible components,
thenV* = | J V;* is the decomposition df* into its irreducible components.

(b) LetV be a closed subset Bf'. ThenV, = VN A", and if no irreducible component
of V' lies in H,, or containsH,,, thenV, is a proper subset of”, and(V,)* = V.

PROOF. Straightforward. O
For example, for
ViY?=X3+aX +0,
we have
V*Y?Z =X+ aXZ?+ 027,

and(V*), = V.
ForV = Hy = V(Xo), V. =0 = V(1) and(V,)* =0 # V.

The hyperplane at infinity

It is often convenient to think df" as beingA™ = U, with a hyperplane added “at infinity”.
More precisely, identify thé/, with A”. The complement of/, in P"is H, = {(0 : a; :
... 1 a,) C P"}, which can be identified witk" .

For exampleP! = A' LI H,, (disjoint union), with/, consisting of a single point, and
P? = A2 U H,, with H,, a projective line. Consider the line

aX +bY +1=0
in A2. Its closure inP? is the line
aX +bY +7=0.

It intersects the hyperplaré,, = V(Z) at the point{(—b : a : 0), which equalg1 : —a/b :

0) whenb # 0. Note that—a/b is the slope of the lineX + bY + 1 = 0, and so the point

at which a line intersectf/., depends only on the slope of the line: parallel lines meetin
one point at infinity. We can think of the projective plai&as being the affine plank?
with one point added at infinity for each directionAs.
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Similarly, we can think ofP™ as beingA™ with one point added at infinity for each
direction inA™ — being parallel is an equivalence relation on the lined'inand there is
one point at infinity for each equivalence class of lines.

Note that the point at infinity on the elliptic cur¥& = X3 +aX + b is the intersection
of the closure of any vertical line witH ..

P" is an algebraic variety
For eachi, write O; for the sheaf ort/; defined by the bijectiodA™ «— U; C P".

LEMMA 5.6. Write U;; = U; N U;; thenO;|U;; = O;|U;;. When endowed with this sheaf
U,; is an affine variety; moreovel;(U;;, O;) is generated as &-algebra by the functions
(f1Uij)(g|Us) with f € T'(U;, O;), g € T'(U;, 0;).

PROOF. It suffices to prove this fof:, j) = (0,1). All rings occurring in the proof will be
identified with subrings of the field(X,, X1, ..., X,).

Recall that

Up={(ao:ar:...1a,) | ap # 0} (ag 1 a1t ... 0 an) & (31, 2,...,2) € A"
Let k[ﬁ;, §2, ..+, 5] be the subring of(X,, X;,..., X,) generated by the quotients

X, X X
—it is the polynomial ring in the: varlablesX—O, 5 AN eIementf(X—(l), cee X—O) €
k[%, ..., 5] defines the map
(aprar:...tan) = f(2,...,2): Uy — k,

and in this wayk[$!, 32, . .., 2] becomes identified with the ring of regular functions on
Uy, andU, with Specm &[22 L. ))g—g]

Next consider the open subsetlqf,

Um:{(ao:...:an)|a07£0,a1750}.

It is D(%), and is therefore an affine subvariety @fy, Oy). The inclusionlU; —

Uy corresponds to the inclusion of ring$<?, ..., 3] — k[$,..., 52, 52]. An el-
ementf(5t, ..., 3=, 32) of k[52, ..., 3=, 2] defines the functiorag : ... : a,) —
f(z_év"-az_ga Z?) onU[)l
Similarly,
Uy ={(ap:ay:...:a,) | a1 #0}; (ap : ay : ...:an)<—>(g—(1’, ’a1) e A",
and we identifyl/; with Specm k[32, 32, ..., 2. Anelementf (32, ..., §2) € k[52, ..., §2]
definesthe mafu : ... : a,) — f(ao . ,Z—';). U, — k.

When regarded as an open subseltfgf

U()l:{(aol...Zan)|(107£0,CL17£O},
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is D(%), and is therefore an affine subvariety (éf;, O,), and the inclusiot/y; — U,

H i H X Xn X Xn X
corresponds to the inclusion of rlng:*?—xg, ce —Xl] — k;[—Xf, X _Xﬂ- An element
X Xn X X, X 1 1 . . n
%2 x) of k2, ..., 52, 5] defines the functiofu : ... s a,) — f(22,.... 0= &)
onUp;.
H X n X X n X
The two subringgi[$t, ..., 52, 3] andk[52, ..., £, 4] of k(Xo, Xy, ..., X,,) are

equal, and an element of this ring defines the same functidinpregardless of which of
the two rings it is considered an element. Therefore, whether we régaes a subvariety
of U, or of U, it inherits the same structure as an affine algebraic variety. This proves the

first two assertions, and the third is obvio@%, ce f(—g, i%] is generated by its subrings
X Xn Xo X Xn
k;[X—;,...,X—O] andk[X—f,X—f,...,X—l]. ]

Write u; for the mapA™ — U; C P". For any open subsétof P, we definef: U — k
to be regular if and only iff o v, is a regular function om; ' (U) for all 4. This obviously
defines a shea® of k-algebras oriP”.

PROPOSITIONS.7. For eachi, the bijectionA™ — U; is an isomorphism of ringed spaces,
A" — (U;, O|U,); therefore(P™, O) is a prevariety. Itis in fact a variety.

PROOF. LetU be an open subset 6. Thenf: U — k is regular if and only if
(a) itis regular o/ N U;, and
(b) itis regular onV N U; for all j # .
But the last lemma shows that (a) implies (b) becauiseU; C U;;. To prove thafP”
is separated, apply the criteridn (3.26¢) to the covefitig of P". O

EXAMPLE 5.8. Assumeé: does not have characteristic 2, anddebe the plane projective
curve:Y2Z = X3, For eachu € k*, there is an automorphism

0o C—C,(x:y:2) (ar:y:a’2).

Patch two copies of’ x A! together along” x (A' — {0}) by identifying (P, u) with
(pu(P),u™h), P € C,u € A' — {0}. One obtains in this way a singular 2-dimensional
variety that is not quasi-projective (see Hartshorne 1977, p171). It is even complete — see
below — and so if it were quasi-projective, it would be projective. It is known that every
irreducible separated curve is quasi-projective, and every nonsingular complete surface is
projective, and so this is an example of minimum dimension. In Shafarevich 1994, VI 2.3,
there is an example of a nonsingular complete variety of dimension 3 that is not projective.

The field of rational functions of a projective variety

Recall (page 35) that we attached to each irreducible vavieyfield k(1) with the prop-
erty thatk (V') is the field of fractions of[U] for any open affiné/ C V. We now describe

this field in the case that = P". Recall that[U;] = & [%, s f(—g} We regard this as a

subring ofk (X, ..., X, ), and wish to identify the field of fractions &fU,| as a subfield
of k(Xo, ..., X,). Any nonzeroF' € k[Uy] can be written

_ F*(Xo,..., X,)

X[()ieg(F)

P, %)

Y
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and it follows that the field of fractions &flU] is

[(G(Xo, ..., X,)
k(Uy) = {H(Xo,. X, | G, H homogeneous of the same deg}ee{o}.

Write k(Xo, ..., X,)o for this field (the subscripd is short for “subfield of elements of
degree)”), so thatk(P") = k(X, ..., X,)o. Note that forF = £ in k(X,, ..., X,)o,

G(CLO, . ,an)

H(ao,...,an):D(H>—>k’

(ap:...:ap) —
is a well-defined function, which is obviously regular (look at its restrictiof o
We now extend this discussion to any irreducible projective vatiet$uch a” can be
written V' = V/(p), wherep is a homogeneous ideal kX, ..., X,]. Let

khom[v] = k[X()a s 7X7L]/p

—it is called thehomogeneous coordinate ringf V. (Note thatky,,[V] is the ring
of regular functions on the affine cone oviér therefore its dimension idim(V') + 1. It
depends, not only olr, but on the embedding df into P"—it is not intrinsic toV (see
below).) We say that a nonzefoe ky..[V] is homogeneous of degregif it can
be represented by a homogeneous polynotiiaf degreed in k[ Xy, ..., X,]. We give0
degred.

LEMMA 5.9. Each element dfy,,.,[V] can be written uniquely in the form

f=fot+ -+
with f; homogeneous of degree

PROOF. Let F' represeny; thenF can be writtenf” = F,+- - - + F,; with F; homogeneous
of degrees, and when reduced modufg this gives a decomposition gf of the required
type. Suppos¢ also has a decompositigh= > _ g;, with g; represented by the homoge-
neous polynomials; of degreei. ThenF — G € p, and the homogeneity @fimplies that
F, — G; = (F — G); € p. Thereforef; = g;. O

It therefore makes sense to speak of homogeneous elemekjig]ofFor such an ele-

menth, we defineD(h) = {P € V | h(P) # 0}.
Sincekyom[V] is an integral domain, we can form its field of fractidis,, (V). Define

knom(V)o = {% € knom (V') | ¢ andh homogeneous of the same degree{0}.

PROPOSITIONS.10. The field of rational functions oW is kyom (V)o-

ProOOF. Considerl} a UpoN'V. As in the case oP", we can identifyk[V] with a subring
of knom[V], @and then the field of fractions @fV;] becomes identified withy,o, (V). O



5 PROJECTIVE VARIETIES AND COMPLETE VARIETIES 102

Regular functions on a projective variety

Again, letV be an irreducible projective variety. Léte £(1)y, and letP € V. If we can
write f = 7 with g andh homogeneous of the same degree a(#) # 0, then we define
f(P) = %. By ¢g(P) we mean the following: leP = (ao : ... : a,); represeny by a
homogeneou§&’ € k[ X, ..., X,], and writeg(P) = G(ay, . . ., a,,); this is independent of
the choice ofG, and if (ao, . .., a,) is replaced bycay, . . ., ca,), theng(P) is multiplied
by cde8(9) = cdes(h) Thus the quotieni% is well-defined.

Note that we may be able to writeas ¢ with g andh homogeneous polynomials of
the same degree in many essentially different ways (bedauysé/] need not be a unique
factorization domain), and we define the valuefddt P if there is one such representation
with h(P) # 0. The valuef(P) is independent of the representatin= ¢ (write P =
(ao:...1an) =a;if § = Z— iN kpom (V )0, thengh' = ¢’k in kyom[V], which is the ring of
regular functions on the affine cone oviér henceg(a)h’(a) = ¢’(a)h(a), which proves
the claim).

PROPOSITIONS.11. For eachf € k(V) =4t knom(V )0, there is an open subsét of V/
wheref(P) is defined, and® — f(P) is a regular function orU. Every regular function
© on an open subset &f is defined by somg € £(V).

PROOF. Straightforward from the above discussion. Note that if the functions defined by
f1 and f, agree on an open subsetiofthenf; = fs in k(V). O

REMARK 5.12. (a) The elements @f(V') = knom(V)o Should be thought of as the ana-
logues of meromorphic functions on a complex manifold; the regular functions on an open
subset’ of V' are the “meromorphic functions without poles” on [In fact, whenk = C,
this is more than an analogy: a nonsingular projective algebraic variety(bdefines a
complex manifold, and the meromorphic functions on the manifold are precisely the ra-
tional functions on the variety. For example, the meromorphic functions on the Riemann
sphere are the rational functions:r}

(b) We shall see presently (5]19) that, for any nonzero homogereatisty,om|V],
D(h) is an open affine subset bf. The ring of regular functions on it is

kE[D(h)] = {g/h™ | g homogeneous of degreedeg(h)} U {0}.

We shall also see that the ring of regular functionsloitself is justk, i.e., any regular
function on an irreducible (connected will do) projective variety is constant. Howeweér, if
is an open nonaffine subsetdf then the rind" (U, Oy ) of regular functions can be almost
anything—it needn’t even be a finitely generatedlgebra!

Morphisms from projective varieties
We describe the morphisms from a projective variety to another variety.

PROPOSITION5S.13. The map

7 A" {origin} — P", (ag, ..., an) = (ag: ... : ay,)
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is an open morphism of algebraic varieties. A mapP” — V with V' a prevariety is
regular if and only ifa o 7 is regular.

PROOF. The restriction ofr to D(Xj;) is the projection
(ag,...,an) > (%22 :... %) PN V(XG) — U
which is the regular map of affine varieties corresponding to the mapatdebras

k [%ﬁ—} s K[Xo, . XY
(In the first algebra% is to be thought of as a single variable.) It now follows fr3.5)
thatr is regular.

Let U be an open subset &' < {origin}, and letU’ be the union of all the lines
through the origin that meéf, that is,U’ = =~z (U). ThenU’ is again open k™! \
{origin}, becausé/’ = | JcU, ¢ € k*, andz — cz is an automorphism df*** \ {origin}.
The complemen of U’ in k™! \ {origin} is a closed cone, and the proof pf (5.2) shows
that its image is closed i&"; but7(U) is the complement of (7). Thust sends open sets
to open sets.

The rest of the proof is straightforward. O

Thus, the regular mapB® — V are just the regular maps™*! \ {origin} — V
factoring throughP” (as maps of sets).

REMARK 5.14. Consider polynomialgy(Xo, ..., Xn), ..., F.(Xo, ..., X,,) of the same
degree. The map

(ag: ... am)— (Folag,...,am) ... Fylag, ..., am))

obviously defines a regular map B3 on the open subset @™ where not allF; vanish,

that is, on the sdt) D(F;) = P" \ V(F},..., F,). Its restriction to any subvariety of

P™ will also be regular. It may be possible to extend the map to a larger set by representing
it by different polynomials. Conversely, every such map arises in this way, at least locally.
More precisely, there is the following result.

PROPOSITIONS.15. LetV =V (a) C P™, W =V (b) C P". Amapyp: V — W isregular
if and only if, for everyP € V, there exist polynomials

Fo(Xo, oo, Xon)s ooy Fu(Xo, - o, Xon),
homogeneous of the same degree, such that
Q= (bo:...:b,)— (Fo(bo,...,bm):...: Fu(bg,...,0m))
for all points@ = (by : ... : b,,) in some neighbourhood @t in V' (a).

PROOF. Straightforward. O
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EXAMPLE 5.16. We prove that the circl&? + Y2 = Z? is isomorphic taP!. After an
obvious change of variables, the equation of the circle becéme’ Z = Y2, Define
w: Pt — O, (a:b) — (a®:ab:b?).
For the inverse, define
_ 1 (@:b:c)—(a:b) ifa#0
p: 0P by{ (a:b:c)—(b:c) fFb#0

Note that,

(17ré()7éb,ac:l)2:>fzé
b a

and so the two maps agree on the set where they are both defined. Clearly, dudhy
are regular, and one checks directly that they are inverse.

Examples of regular maps of projective varieties

We list some of the classic maps.
ExAMPLE 5.17. LetL = > ¢;X; be a nonzero linear form in + 1 variables. Then the

map
Qo Qp,

(CLO : ...:an) = (m,,m)
is a bijection of D(L) c P™ onto the hyperplané(X7,..., X,,) = 1 of A»™, with inverse
(ag,...,a,) — (ag:...:ap).

Both maps are regular — for example, the components of the first map are the regular

functionsz)(fjxi. As V(L — 1) is affine, so also i$(L), and its ring of regular functions
is k[szxi e Z)ijxi]' (This is really a polynomial ring im variables — any one variable

X;/ > ¢ X; for which¢; # 0 can be omitted—see Lemrha 4.11.)

EXAMPLE 5.18. (The Veronese map.) Let

I={(io,...,in) €N"T Y "i; = m}.

Note that/ indexes the monomials of degreein n -+ 1 variables. It hag™" ) element&
Write v,,,,, = (™}"™) — 1, and consider the projective spake-~ whose coordinates are

22This can be proved by induction an + n. If m = 0 = n, then() = 1, which is correct. A general
homogeneous polynomial of degreecan be written uniquely as

F(Xo,X1,...,Xy) = FA(X1,...,Xpn) + XoFa(Xo, X1,...,X»)

with £, homogeneous of degree and F, homogeneous of degree — 1. But

n m m—1

(m+n) — (m+n71 ) + (m+n—1)
because they are the coefficients)of in
(X + 1)m+n — (X + 1)(X + 1)m+n—17

and this proves what we want.
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indexed by/; thus a point of®»~ can be writter{. .. : b;, ;, : ...). The Veronese mapping
is defined to be

v P P (ag s an) = (i ), bigi, = AL al

For example, when = 1 andm = 2, the Veronese map is
P! — P2, (ag : a1) — (ag : agay : a?).
Its image is the curve(P!) : XX, = X2, and the map

boo :b11)if bog # 1
b biy: b (820 + b) I b2o
( 2,0 1,1 0,2) (g { (bl,l : b072) If b072 7é 0.

is an inverse/(P') — P'. (Cf. Exampld 5.17 [

Whenn = 1 andm is general, the Veronese map is
P! — P™ (ag:a)) — (a" :ap tay ... :al).

| claim that, in the general case, the image @ a closed subset @™ and that defines
an isomorphism of projective varieties P" — v(P").

First note that the map has the following interpretation: if we regard the coordinates
of a pointP of P™ as being the coefficients of a linear forln= ) a,X; (well-defined up
to multiplication by nonzero scalar), then the coordinates#f) are the coefficients of the
homogeneous polynomial™ with the binomial coefficients omitted.

As L # 0= L™ # 0, the mapv is defined on the whole d&", that is,

(CL(],,an)#(o,,O):><,bz0@7ﬂ)#(0,,0)

Moreover, L, # cL, = L7* # cLY', because[Xy,...,X,] is a unique factorization
domain, and se is injective. It is clear from its definition thatis regular.

We shall see later in this section that the image of any projective variety under a regular
map is closed, but in this case we can prove directly #(@f) is defined by the system of
equations:

big...inbjo...in = ko .k bto...00 5 in+Jn=kn+ 4, alh (*).
ObviouslyP™ maps into the algebraic set defined by these equations. Conversely, let

Vi={(.- tbigin o) | boomo.o # 0}

Thenv(U;) C V; andv=(V;) = U;. Itis possible to write down a regular map — U;
inverse tov|U;: for example, defing, — P" to be

(~ -t big...in . ) — (bm,o ..... 0 - bmfl,l,o,.“,o : bmfl,O,l,O,...,O : bmfl,o,.“,m)-

Finally, one checks that(P") c | V.
For any closed varietiy” C P, v|W is an isomorphism ofl” onto a closed subvariety
v(W) of v(P™) C P,

ZNote that, althougf®! andv(P') are isomorphic, their homogeneous coordinate rings are not. In fact
knom[P!] = k[Xo, X1], which is the affine coordinate ring of the smooth vari&ty whereasy, o, [v(P*)] =
k[Xo, X1, X2]/(Xo X2 — X?) which is the affine coordinate ring of the singular varigfyX, — X?2.
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REMARK 5.19. The Veronese mapping has a very important property. if a nonzero
homogeneous form of degree > 1, thenV (F') C P" is called ahypersurface of degree
m andV (F) N W is called ahypersurface sectiorof the projective varietyl’. When
m = 1, “surface” is replaced by “plane”.

Now let H be the hypersurface i&* of degreen

aiO---inXOO o Xn" = O’

and letL be the hyperplane i defined by

Zaio...inXio...in~
Thenv(H) =v(P*)N L, i.e,
H(a) =0 < L(v(a)) =0.

Thus for any closed subvariety” of P", v defines an isomorphism of the hypersurface
section’ N H of V onto the hyperplane sectiofiV') N L of v(W). This observation often
allows one to reduce questions about hypersurface sections to questions about hyperplane
sections.

As one example of this, note thatmaps the complement of a hypersurface section of
W isomorphically onto the complement of a hyperplane sectian @f ), which we know
to be affine. Thus the complement of any hypersurface section of a projective variety is an
affine variety—we have proved the statemenfin (5.12b).

ExXAMPLE 5.20. An element! = (a;;) of GL,,+, defines an automorphism Bf':

(ot imn) = (con Doaymyt..);

clearly itis a regular map, and the inverse matrix gives the inverse map. Scalar matrices act
as the identity map.

Let PGL,,1 = GL,41 /k*I, where | is the identity matrix, that iGL, ., is the
quotient of GL,,.; by its centre. The®GL,,; is the complement ifP("*1)*~1 of the
hypersurfacelet(.X;;) = 0, and so it is an affine variety with ring of regular functions

It is an affine algebraic group.
The homomorphist?GL,,.; — Aut(P") is obviously injective. It is also surjective —
see Mumford, Geometric Invariant Theory, Springer, 1965, p20.

ExXAMPLE 5.21. (The Segre map.) This is the mapping
((ap i v iam)y(bo:oooibp)) = ((coniabjc. ) P x PP — Prntmdn,

The index set fol™"*™*" is {(i,5) | 0 < i < m, 0 < j < n}. Note that if we
interpret the tuples on the left as being the coefficients of two linear fdrms > a; X;
andL, = ) b;Y;, then the image of the pair is the set of coefficients of the homogeneous
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form of degree2, L, L,. From this observation, it is obvious that the map is defined on the
whole of P™ x P (L; # 0 # Ly = L1L, # 0) and is injective. On any subset of the
form U; x U; itis defined by polynomials, and so it is regular. Again one can show that it
is an isomorphism onto its image, which is the closed subsBt'éf™ " defined by the
equations

WijWg — WiWgj = 0.

(See Shafarevich 1994, 1 5.1) For example, the map
((ag : ay), (bo : b1)) — (agby : agby : arby : a1by): P* x Pt — P?

has image the hypersurface
H: WZ=XY.

The map
(w:z:y:z)— (w:y),(w:x))

is an inverse on the set where it is defined. [Incidentdtlyx P! is not isomorphic to
P2, because in the first variety there are closed curves, e.g., two vertical lines, that don’t
intersect.]

If V andWW are closed subvarieties &#f* andP", then the Segre map sendsx W
isomorphically onto a closed subvariety®f"*t™*+"  Thus products of projective varieties
are projective.

There is an explicit description of the topology Bft x P : the closed sets are the sets
of common solutions of families of equations

F(Xo, .., Xm: Yo, ..., Y,) =0

with F' separately homogeneous in theés and in theY'’s.

EXAMPLE 5.22. LetL4, ..., L,_4 be linearly independent linear forms:#n+ 1 variables;
their zero sef in k"1 has dimensiow + 1, and so their zero set iP* is ad-dimensional
linear space. Defing: P — E — P %' byn(a) = (Li(a) : ...: L, 4(a)); such a map
is called aprojection with centreE. If V is a closed subvariety disjoint from, thenr
defines a regular mag — P"~¢~'. More generally, ifFy, ..., F. are homogeneous forms
of the same degree, attl= V' (Fi,..., F,), thena — (Fi(a) : ... : F.(a)) is a morphism
P — 7 — P L

By carefully choosing the centrE, it is possible to project any smooth curvelifi
isomorphically onto a curve i#*, and nonisomorphically (but bijectively on an open sub-
set) onto a curve i?? with only nodes as singulariti.For example, suppose we have a
nonsingular curve&’ in P3. To project taP? we need three linear forms,, L,, L, and the
centre of the projection is the point where all forms are zero. We can think of the map as
projecting from the centré,, onto some (projective) plane by sending the pdimio the
point whereP, P intersects the plane. To projectto a curve with only ordinary nodes as

24A nonsingular curve of degregin P? has genuéw. Thus, if g is not of this form, a curve of
genusg can't be realized as a nonsingular curvé®i
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singularities, one needs to choaBgso that it doesn't lie on any tangent €g any trise-

cant (line crossing the curve ihpoints), or any chord at whose extremities the tangents
are coplanar. See for example Samuel, P., Lectures on Old and New Results on Algebraic
Curves, Tata Notes, 1966.

PROPOSITIONS.23. Let V' be a projective variety, and |&t be a finite set of points df.
ThensS is contained in an open affine subsetaf

PROOF. Find a hyperplane passing through at least one pointladit missing the elements
of S, and apply 5.17. (See Exercise 28.) O

REMARK 5.24. There is a converse: lgt be a nonsingular complete (see below) irre-
ducible variety; if every finite set of points ¥ is contained in an open affine subsefof
thenV is projective. (Conjecture of Chevalley; proved by Kleiman about 1966.)

Complete varieties

Complete varieties are the analogues in the category of varieties of compact topological
spaces in the category of Hausdorff topological spaces. Recall that the image of a com-
pact space under a continuous map is compact, and hence is closed if the image space is
Hausdorff. Moreover, a Hausdorff spateis compact if and only if, for all topological
spacedV, the projectiony: V x W — W is closed, i.e., maps closed sets to closed sets
(see Bourbaki, N., General Topology, I, 10.2, Corollary 1 to Theorem 1).

DEFINITION 5.25. An algebraic variety is said to becompletdf for all algebraic varieties
W, the projectiony: V x W — W is closed.

Note that a complete variety is required to be separated — we really mean it to be a
variety and not a prevariety.

ExAMPLE 5.26. Consider the projection
(z,y) —y: AP x At — A!

This is not closed; for example, the variéty: XY = 1 is closed inA? but its image inA!
omits the origin. However, if we repladé with its closure inP! x Al, then its projection
is the whole ofA!.

PROPOSITIONS.27. LetV be complete.
(a) A closed subvariety df is complete.
(b) If V"is complete, so also i x V.
(c) For any morphism: V- — W, a(V) is closed and complete; in particular, if is a
subvariety ofiV, then it is closed V.
(d) If V is connected, then any regular map V' — P! is either constant or onto.
(e) If V' is connected, then any regular function Bris constant.
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PROOF. (a) LetZ be a closed subvariety of a complete varigtyThen for any varietyV/,
Z x W is closed inV x W, and so the restriction of the closed mapl’ x W — W to
Z x W is also closed.

(b) The projectior/ x V' x W — W is the composite of the projections

VXV xW =V xW —=W,

both of which are closed.

(c) LetI'y, = {(v,(v))} C V x W be the graph of. It is a closed subset 6f x W
(becauséV is a variety, sef 3.25), and'V) is the projection of’, ontoW. SinceV is
complete, the projection is closed, andg@) is closed, and hence is a subvariety/f
Consider

Lo xW —a(V)x W — W.

We have that’,, is complete (because it is isomorphiclto seg 3.2p), and so the mapping
I, x W — Wisclosed. A", — a(V) is surjective, it follows thaty(V) x W — W is
also closed.

(d) Recall that the only proper closed subset®bfire the finite sets, and such a set
is connected if and only if it consists of a single point. Becau@€) is connected and
closed, it must either be a single point (amis constant) o' (and« is onto).

(e) A regular function oV is a regular magf: V — A! c P!. Regard it as a map into
PL. If it isn’t constant, it must be onto, which contradicts the fact that it mapsAnto [

COROLLARY 5.28. Consider a regular map:: V' — W; if V' is complete and connected
and W is affine, then the image afis a point.

PrROOF. EmbediV as a closed subvariety éf*, and writea = (a4, . .., «,) Where each
«; is a regular magV — Al. Then eachy; is a regular function o/, and hence is
constant. [

REMARK 5.29. (a) The statement that a complete varlétg closed in any larger variety
W perhaps explains the name:Vifis complete JV is irreducible, andlim V' = dim W,
thenV = W. (ContrastA™ C P.)

(b) Here is another criterion: a variety is complete if and only if every regular map
C ~ {P} — V extends to a regular map — V; hereP is a nonsingular point on a curve
C'. Intuitively, this says that Cauchy sequences have limits.in

THEOREM5.30. A projective variety is complete.

LEMMA 5.31. A varietyV is complete ifand only if: V x W — W is a closed mapping
for all irreducible affine varietie3V'.

PROOF. Straightforward. O

After (5.27a), it suffices to prove the Theorem for projective sggicéself; thus we
have to prove that the projectioff x P* — W is a closed mapping in the case thetis
an affine variety. Note thdl’ x P" is covered by the open affinég x U;, 0 < i < n,
and that a subséf of 1V x P" is closed if and only if its intersection with eaghi x U; is
closed. We shall need another more explicit description of the topology onP”.
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Let A = k[W], and letB = A[X,, ..., X,]. Note thatB = A @, k[X,,...,X,], and
so we can view it as the ring of regular functionsidnx A"*!: f ® g takes the valug(w)-
g(a) at the point(w,a) € W x A", The ringB has an obvious grading—a monomial
aXy...Xi» a € A, has degred_ i,—and so we have the notion of a homogeneous ideal
b C B. It makes sense to speak of the zerolsgi) C W x P™ of such an ideal. For any

ideala C A, aB is homogeneous, arid(aB) = V(a) x P".

LEmMA 5.32. (i) For each homogeneous ideglC B, the setl/(b) is closed, and every
closed subset di x P is of this form.

(i) The setV(b) is empty if and only ifad(b) D (Xo,. .., X,).

(iii) If W is irreducible, theriV = V/(b) for some homogeneous prime idéal

PROOF. In the case thatl = k, we proved all this earlier in this section, and the same
arguments apply in the present more general situation. For example, to ségihas
closed, apply the criterion stated above.

The setV(b) is empty if and only if the con&@(b) c W x A™*! defined byb is
contained inW x {origin}. But > a;,. i, X ... X", a;,.., € k[W], is zero onlW x

{origin} if an only if its constant term is zero, and so
1AW x {origin}) = (Xo, X1, ..., X,).

Thus, the Nullstellensatz shows tHatb) = () = rad(b) = (X, ..., X, ). Conversely, if
XN € b for all i, then obviously/ (b) is empty.

For the final statement, note thatlif(b) is irreducible, then the closure of its inverse
image inW x A"*! is also irreducible, and so the ideal of functions zero on it primel

ProoF 0A5.30 Write p for the projectioni’” x P* — . We have to show that closed
in W x P impliesp(Z) closed inWW. If Z is empty, this is true, and so we can assume it
to be nonempty. Thef is a finite union of irreducible closed subsetsof W x P, and it
suffices to show that eagh{Z;) is closed. Thus we may assume thais irreducible, and
hence thatZ = V(b) with b a prime homogeneous ideal (= A[X,, ..., X,].

Note that ifp(Z) € W', W’ a closed subvariety df’, thenZ C W’ x P"—we can
then replacélV” with 1W’. This allows us to assume that?) is dense i/, and we now
have to show thagt(Z) = W.

Becausen(7) is dense iV, the image of the con&?(b) under the projectiofl’ x
A" — W is also dense i, and so (sefe 2.21a) the mdp— B/b is injective.

Letw € W: we shall show that ifv ¢ p(Z), i.e., if there does not exist& € P" such
that(w, P) € Z, thenp(Z) is empty, which is a contradiction.

Letm C A be the maximal ideal correspondingito ThenmB + b is a homogeneous
ideal, and/ (mB+b) = V(mB)NV(b) = (w x P*)NV(b), and saw will be in the image
of Z unlessV (mB + b) # 0. Butif V(mB + b) = 0, thenmB + b D (X, ..., X,,)" for
someN (by[5.33b), and smB + b contains the seBy of homogeneous polynomials of
degreeN. BecausenB andb are homogeneous ideals,

By CmB+b= By=mBy+Bynb.

In detail: the first inclusion says that g@he By can be writtenf = g + h with g € mB
andh € b. On equating homogeneous components, we findfthat gy + hy. Moreover:
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fv = fiif g => mb;, m; € m, b; € B, thengy = > m;b;n; andhy € b because is
homogeneous. Together these show mBy + By N b.

Let M = By/ByNb, regarded as an-module. The displayed equation says that=
mM. The argument in the proof of Nakayama’s lemfna (4.18) shows that:) M/ = 0 for
somem € m. Becaused — B/b is injective, the image of + m in B/b is nonzero. But
M = By/ByxNb C B/b, which is an integral domain, and so the equatios m)AM = 0
implies thatM = 0. HenceBy C b, and soX}¥ € b for all 7, which contradicts the
assumption tha = V' (b) is nonempty. O

Elimination theory

We have shown that, for any closed sub8eatf P x W, the projectiony(Z) of Z in W

is closed. Elimination theof§f]is concerned with providing an algorithm for passing from

the equations defining to the equations defining(Z). We illustrate this in one case.
LetP = soX™ 45 X™ 4. +5,, andQ = to X"+, X" '+ - -+, be polynomials.

Theresultant of P and( is defined to be the determinant

So S1 ... Sm n-TOWS
So ... Sm
to t1 ... tn
to ... t
0 " M-rows

There aren rows of s's andm rows oft’s, so that the matrix i$m + n) x (m + n); all
blank spaces are to be filled with zeros. The resultant is a polynomial in the coefficients of
P and@.

PROPOSITIONS.33. The resultant Ré®, ()) = 0 if and only if
(a) bothsy andt, are zero; or
(b) the two polynomials have a common root.

PROOF If (a) holds, then certainly Ré®, )) = 0. Suppose that is a common root of
and(), so that there exist polynomial3 and@); of degreesn — 1 andn — 1 respectively
such that

PX) =X -a)h(X), QX)=(X—-a)@:i(X).

From these equations we find that
PX)1(X) = QX)P(X)=0. (9

On equating the coefficients &af”*"~1 ..., X, 1in (*) to zero, we find that the coefficients
of P, and( are the solutions of a systemf+ n linear equations im: + n unknowns.

25Elimination theory became unfashionable several decades ago—one prominent algebraic geometer went
so far as to announce that Theorpm 5.30 eliminated elimination theory from mathematics, provoking Ab-
hyankar, who prefers equations to abstractions, to start the chant “eliminate the eliminators of elimination
theory”. With the rise of computers, it has become fashionable again.
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The matrix of coefficients of the system is the transpose of the matrix

So S1 --- Sm

S0 Sm
to ti ... t,

tO tn

The existence of the solution shows that this matrix has determinant zero, which implies
thatRes(P, Q) = 0.

Conversely, suppose th&ies(P, ()) = 0 but neithersy nor ¢, is zero. Because the
above matrix has determinant zero, we can solve the linear equations to find polynomials
P, and(@); satisfying (*). If o is a root of P, then it must also be a root @} or Q). If the
former, cancelX — « from the left hand side of (*) and continue. Asg P, < deg P, we
eventually find a root of° that is not a root of?;, and so must be a root ¢f. O

The proposition can be restated in projective terms. We define the resultant of two
homogeneous polynomials

P(X,Y)=50X" + 5 X" Y + - +5, Y™ QX,Y) =t X"+ - +1,Y",
exactly as in the nonhomogeneous case.

PROPOSITION5.34. The resultanRes(P, Q) = 0 if and only if P and () have a common
zero inP!.

PROOF. The zeros of?(X,Y) in P! are of the form:
(@) (a:1)with a arootof P(X, 1), or
(b) (1:0)inthe case that, = 0.
Thus [5.34) is a restatement pf (5.33). O

Now regard the coefficients d? and () as indeterminates. The pairs of polynomials
(P, Q) are parametrized by the spat& ™! x A"t = A™*t"+2 Consider the closed subset
V(P,Q) in A2 » P1. The proposition shows that its projection Aff ™" +2 is the set
defined byRes(P, Q) = 0. Thus, not only have we shown that the projectior/¢, )
is closed, but we have given an algorithm for passing from the polynomials defining the
closed set to those defining its projection.

Elimination theory does this in general. Given a family of polynomials

‘P’Z(T17“'7TW;XO7"‘?X71)7

homogeneous in th&;, elimination theory gives an algorithm for finding polynomials
R;(Th,...,T,) such that the’(ay, . .., am; Xo, . .., X,,) have a common zero if and only
if Rj(as,...,a,)=0forall j. (Our theorem only shows that tli& exist.) See Cox et al.
1992, Chapter 8, Section 5..

Maple can find the resultant of two polynomials in one variable: for example, entering
“resultant(z+a)°, (z+b)°, )" gives the answef—a+b)?. Explanation: the polynomials
have a common root if and onlydf = b, and this can happen &% ways. Macaulay doesn’t
seem to know how to do more.
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The rigidity theorem

The paucity of maps between projective varieties has some interesting consequences. First
an observation: for any point € 1V, the projection map” x W — V defines an isomor-
phismV x {w} — V with inversev — (v, w): V' — V x W (this map is regular because

its components are).

THEOREMS5.35. Leta: V x W — U be a regular map, and assume tHatis complete,
thatV andWW are irreducible, and that/ is separated. If there are pointg € U, vy € V,
andw, € W such that

a(V x {wo}) = {uo} = a({ve} x W)
thena(V x W) = {ug}.

PROOF. Let U, be an open affine neighbourhoodi@gf Because the projection map V' x

W — Wis closed,z £ q(a (U — Uy)) is closed ini¥. Note that a pointv of TV lies
outsideZ if and only«(V x {w}) C Uy. In particularw, € W — Z, and soV — 7 is dense
in . AsV x {w} is complete and; is affine,a(V x {w}) must be a point whenever
we W — Z:infact,a(V x {w}) = a(vy,w) = {ug}. Thusa is constant on the dense
subset” x (W — Z) of V. x W, and so is constant. O

An abelian varietyis a complete connected group variety.

COROLLARY 5.36. Every regular mapy: A — B of abelian varieties is the composite
of a homomorphism with a translation; in particular, a regular map A — B such that
a(0) = 0 is a homomorphism.

PROOF. After composingy with a translation, we may assume thdb) = 0. Consider
the map
p: Ax A— B, o(a,d') = ala+d) —ala) — a(d).

Thenp(A x0) =0 = (0 x A) and sop = 0. This means that is a homomorphism. [
COROLLARY 5.37. The group law on an abelian variety is commutative.

PrROOF. Commutative groups are distinguished among all groups by the fact that the map
taking an element to its inverse is a homomorphisniyif)~! = ¢g~'h~!, then, on taking
inverses, we find thagh = hg. Since the negative map, — —a: A — A, takes the
identity element to itself, the preceding corollary shows that it is a homomorphisni.]

Projective space without coordinates

Let E be a vector space overof dimensiom. The sefP(E) of lines through zero it has

a natural structure of an algebraic variety: the choice of a basig fdefines an bijection

P(E) — P", and the inherited structure of an algebraic varietyP9#') is independent

of the choice of the basis (because the bijections defined by two different bases differ
by an automorphism dP™). Note that in contrast t&", which hasn + 1 distinguished
hyperplanes, namely, = 0,..., X,, = 0, no hyperplane if?(E) is distinguished.



5 PROJECTIVE VARIETIES AND COMPLETE VARIETIES 114

Grassmann varieties

Let £ be a vector space ovérof dimension, and letG,(E) be the set ofl-dimensional
subspaces af/, some0 < d < n. Fix a basis forE, and letS € G4(E). The choice of

a basis forS then determines & x n matrix A(S) whose rows are the coordinates of the
basis elements. Changing the basis§anultiplies A(S) on the left by an invertible x d
matrix. Thus, the family ofl x d minors of A(S) is determined up to multiplication by a

nonzero constant, and so defines a psifi) in pld)—2,

PROPOSITIONS.38. The mapS — P(5): G4(F) — pli) s injective, with image a
closed subset @#(d) ",

The mapsP defined by different bases @ differ by an automorphism dP<3)‘1,
and so the statement is independent of the choice of the basis —f latgr (5.42) we shall give a
“coordinate-free description” of the map. The map realizg&E') as a projective algebraic
variety. Itis called th&rassmann varietyof d-dimensional subspaces bj).

ExaMPLE 5.39. The affine cone over a line # is a two-dimensional subspace /of.
Thus, G»(k*) can be identified with the set of lines i¥. Let L be a line inP3, and let
x = (zg:x1: 2o :x3)andy = (yo : y1 : y2 : y3) be distinct points ori.. Then

df | ;s
P(L) = (po1 : po2 : Po3 : P12 P13 : P23) € PS, Dij = L

Yi Y

)

depends only of.. The mapL — P(L) is a bijection fromG,(k*) onto the quadric
IT: Xo1 Xo3 — XpoX13 + Xo3X12 =0
in P°. For a direct elementary proof of this, see (8[14, 8.15) below.

REMARK 5.40. LetS’ be a subspace df' of complementary dimension — d, and let
G4(FE)s be the set o € G4(V) such thats N .S” = {0}. FixanS, € G4(E)s/, so that
E =S,® 5. ForanyS € G4(V)g, the projections — S, given by this decomposition is
an isomorphism, and s®is the graph of a homomorphisfy — S’

s s <= (s,5) €S,
Conversely, the graph of any homomorphisg— S’ lies inG4(V)s/. Thus,
Gd(V)S/ ~ HOHI(SO, S/) ~ HOHI(E/S/, S/) (1)

The isomorphisnG;(V)s ~ Hom(E/S’,S’) depends on the choice ¢f — it is the
element of7,(V) s corresponding td0 € Hom(E/S’, S"). The decompositioly = Sy® S’

gives a decompositioRnd(E) = <Hf§1‘?éf0;) e ) and the bijectionsBl) show that

the group( om(s,.s) 1) acts simply transitively 07y(E) .
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PROOF OFPROPOSITIONS.38 Fix a basisy, ..., e, of E, and letS, = (e, ..., eq) and
n

S" = (e4t1,- - -, €n). Order the coordinates in(d)! so that
P(S)=(ap: ... aj: ...t ...)

whereq, is the left-mostd x d minor of A(S), anda,;, 1 < i < d,d < j < n, is the

minor obtained from the left-most x d minor by replacing the'® column with the;*"

column. LetlU, be the (“typical”) standard open subsetRsfi) ! consisting of the points

with nonzero zer$ coordinate. Clearly? P(S) € Uy ifand only if S € G4(E)s. We shall

prove the proposition by showing thet G,(E)s — U, is injective with closed image.
ForS € G4(F)s/, the projectionS — S is bijective. For each, 1 <i < d, let

€; = €+ ) ycjcnij 2)

denote the unique element Sfprojecting toe;. Thenel,..., ¢, is a basis forS. Con-
versely, for any(a;;) € k=9, thee/'s defined by|(R) span afi € G4(E)s and project to
thee,’s. ThereforeS < (a;;) gives a one-to-one correspondedgg E) s — k4= (this
is a restatement df (1) in terms of matrices).

Now, if S < (a;;), then

P(S)=(1:...:aj: ...t ...t filay): ..0)

where f,(a;;) is a polynomial in the:;; whose coefficients are independentf Thus,
P(S) determinesa;;) and hence als§. Moreover, the image af: G,(E)s — Uy is the
graph of the regular map

(' ey Qg - ) — ( <oy fk(CLw‘), .. ) Ad(”_d) N A(Z)—d(n—d)—l’
which is closed[(3.25). -

REMARK 5.41. The bijectior| (1) identifieS ,(£) s with the affine varietyd (Hom(Sy, S’))
defined by the vector spa¢®m(Sy, S’) (cf. §50). Therefore, the tangent spacexg E)
at S(),

TSO (Gd(E)> = HOH](S(), S/) = HOHI(S(), E/So) (3)

REMARK 5.42. Recall that the exterior algebhg is the quotient of the tensor algebra by
the ideal generated by all vectars? ¢, ¢ € E. Itis a finite dimensional graded algebra
overk with A\’E = k, \'E = E, and, ifey, ..., e, is a basis fol/, then the(?}) wedge
productse;, A...Ae;, (i1 < --- < i4)is abasis for/\dE. In particular,\" E has dimension
1. For a subspac# of E of dimensiond, \"S is the one-dimensional subspace/gtE
spanned by; A ... A ¢, for any basis, ..., e, of S. Thus, there is a well-defined map

S N'S: Ga(E) — P(\"E) (4)
which the choice of a basis fdf identifies withS — P(S).

26lf ¢ € S’ N S is nonzero, we may choose it to be part of the basisSfoand then the left-most x d
submatrix ofA(S) has a row of zeros. Conversely, if the left-mdst d submatrix is singular, we can change
the basis forS so that it has a row of zeros; then the basis element corresponding to the zero row lies in
S'nS.
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Flag varieties

The discussion in the last subsection extends easily to chains of subspaced. =Let
(dy,...,d,) be a sequence of integers with< d; < --- < d, < n, and letG4(F) be
the set of flags

F: EDE'D>---DE D0 (5)

with E* a subspace aF of dimensiond;. The map

Ga(B) 2 11,6, (B) € TLP(A"E)

realizesG4(E) as a closed subsgf G4, (E), and so it is a projective variety, calledlag
variety. The tangent space 1G4(F) at the flagF' consists of the families of homomor-
phisms

' E'—V/E', 1<i<nr, (6)

that are compatible in the sense that
O'|ET = "™ mod BT,
(Harris 1992, 16.3).

ASIDES.43. Abasisy, ..., e, for E isadapted tahe flagF if it contains a basis, , . . . , e;;,
for eachE®. Clearly, every flag admits such a basis, and the basis then determines the flag.
BecauseGL(E) acts transitively on the set of bases oy it acts transitively orGq4(E).
For a flagF’, the subgrougP(F') stabilizing F' is an algebraic subgroup 6fL.(£), and the
map
g— gFy: GL(E)/P(Fy) — G4(F)

is an isomorphism of algebraic varieties. BecaG&gF) is projective, this shows that
P(Fy) is a parabolic subgroup G¥L(V).

Bezout’s theorem

Let V' be a hypersurface iB" (that is, a closed subvariety of dimension- 1). For such
a variety,[(V) = (F(Xo,...,X,)) with F a homogenous polynomial without repeated
factors. We define thdegreeof V' to be the degree df'.

The next theorem is one of the oldest, and most famous, in algebraic geometry.

THEOREM5.44. Let C and D be curves iriP? of degreesn andn respectively. 1" and
D have no irreducible component in common, then they intersect in exactlpoints,
counted with appropriate multiplicities.

PROOF. Decompose”' and D into their irreducible components. Clearly it suffices to
prove the theorem for each irreducible component'@nd each irreducible component of
D. We can therefore assume tliaand D are themselves irreducible.

We know from [1.2R) tha€’ N D is of dimension zero, and so is finite. After a change
of variables, we can assume thag 0 for all points(a : b:¢) € C'N D.
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Let F(X,Y, Z) andG(X,Y, Z) be the polynomials defining’ and D, and write
F:SOZm+812m_1+"'+8m, G:tOZ”+tlZ’L_1+---+tn

with s; andt; polynomials inX andY of degrees andj respectively. Clearly,, # 0 # t,,,
for otherwiseF’ andG would haveZ as a common factor. L&t be the resultant of” and
G, regarded as polynomials in. It is a homogeneous polynomial of degree in X and
Y, or else it is identically zero. If the latter occurs, then for every) € k2, F(a,b, Z)
andG(a, b, Z) have a common zero, which contradicts the finiteness of D. ThusR
is a nonzero polynomial of degreen. Write R(X,Y) = X™" R, (%) whereR,(T) is a
polynomial of degree< mn in T = <

Suppose first thateg R, = mn, and letay, . . &mn be the roots ofz, (some of them
may be multiple). Each such root can be ertt&n_ b% “andR(as;, b;) = 0. According
to (5.34 -) this means that the polynomi&léa;, b;, 7) andG(aZ, b;, Z) have a common root
¢;.. Thus(a; : b; : ¢;) is a point onC' N D, and conversely, ifa : b : ¢) is a point onC' N D
(soa # 0), then? is a root of R, (T'). Thus we see in this case, th@tn D has precisely
mn points, provided we take the multiplicity ¢ : b : c) to be the multiplicity of2 as a
root of R,.

Now suppose thak, has degree < mn. ThenR(X,Y) = X" "P(X,Y) where
P(X,Y)is ahomogeneous polynomial of degre®t divisible by X . ObviouslyR(0,1) =
0, and so there is a poii : 1 : ¢) in C'N D, in contradiction with our assumption. [

REMARK 5.45. The above proof has the defect that the notion of multiplicity has been
too obviously chosen to make the theorem come out right. It is possible to show that
the theorem holds with the following more natural definition of multiplicity. Lretbe
an isolated point of” N D. There will be an affine neighbourhodd of P and regular
functionsf andg onU suchthal' nU = V(f)andD NU = V(g). We can regarg and
g as elements of the local rin@p, and clearlyrad(f, g) = m, the maximal ideal irOp.
It follows thatOp/(f, g) is finite-dimensional ovek, and we define the multiplicity oP
in C'N D to bedim(Op/(f,g)). For example, ilC' and D cross transversely &, then f
andg will form a system of local parameters Bt— ( f, g) = m — and so the multiplicity
is one.

The attempt to find good notions of multiplicities in very general situations has moti-
vated much of the most interesting work in commutative algebra over the last 20 years.

Hilbert polynomials (sketch)

Recall that for a projective variety C P",
krom[V] = k[ Xo, ..., X,]/b = klzo, ..., z,],

whereb = I(V'). We observed that is homogeneous, and therefdrg,,[V] is a graded
ring:
khom[v} = @mzﬂkhom[v]ma

whereky,om [V ], is the subspace generated by the monomials intbédegreen. Clearly
knom|[V]m 1S @ finite-dimensionat-vector space.
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THEOREM5.46. There is a unique polynomidt(V, T') such thatP(V, m) = dimy k[V],,
for all m sufficiently large.

PrROOE Omitted. O

EXAMPLE 5.47. ForV = P, kpow[V] = k[Xo, ..., X,], and (see the footnote on page
)’dlm khom[v}m - (mr—l—n) = M, and so

(T+n)---(T+1)
n!

P(P.T) = (}") =

The polynomialP(V, T') in the theorem is called thdilbert polynomial of . Despite
the notation, it depends not just dhbut also on its embedding in projective space.

THEOREMb5.48. Let V' be a projective variety of dimensiahand degre&; then

)
P(V,T) = aTd + terms of lower degree.

PrROOE Omitted. O

The degreeof a projective variety is the number of points in the intersection of the
variety and of a general linear variety of complementary dimension (see later).

EXAMPLE 5.49. LetV be the image of the Veronese map
(ap : a1) = (ad:altay:...:af): P! — P

Thenk,.m[V],, can be identified with the set of homogeneous polynomials of degret
in two variables (look at the map? — A?+! given by the same equations), which is a
space of dimensiodm + 1, and so

P(V,T) =dT + 1.
ThusV has dimension (which we certainly knew) and degrde

Macaulay knows how to compute Hilbert polynomials.
References:Hartshorne 1977, 1.7; Atiyah and Macdonald 1969, Chapter 11; Harris
1992, Lecture 13.

Exercises 25-32

25. Show that a point? on a projective curve”(X,Y, Z) = 0 is singular if and only if
0F/0X,0F/0Y,and0F/0Z are all zero af. If P is nonsingular, show that the tangent
line at P has the (homogeneous) equation

(OF/0X)pX + (OF/0Y)pY + (OF/0Z)pZ = 0.

Verify thatY?Z = X3 +aX Z? + 023 is nonsingular ifX® + a X + b has no repeated root,
and find the tangent line at the point at infinity on the curve.

26. Let L be a line inP? and letC be a nonsingular conic i&? (i.e., a curve irfP? defined
by a homogeneous polynomial of degeShow that either
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(a) L intersects” in exactly2 points, or
(b) L intersects” in exactly1 point, and it is the tangent at that point.

27.LetV =V (Y — X2, Z — X3) C A3. Prove
(@) I(V)= (Y — X2, Z — X?),
(b) ZW — XY € [(V)* C k[W,X,Y, Z],butZW — XY ¢ (Y — X?)* (Z — X3)*).
(Thus, if 1, ..., F, generates, it does not follow that7, ..., F* generatar*, even
if a*is radical.)

28.Let Py, ..., P, be points inP". Show that there is a hyperplaikin P" passing through
P, butnotpassing through any d@?,, . . ., P.. Deduce that every finite subset of a projective
variety V' is contained in an open affine subvarietylof

29. Is the subset
{la:b:¢c)|a#0, b#0}U{(1:0:0)}
of P? locally closed?

30. Identify the set of polynomialé’(X,Y) = > a;; XY7, 0 < 4,5 < m, with an affine
space. Show that the subset of reducible polynomials is closed.

31. Let V andW be complete irreducible varieties, and letoe an abelian variety. Let
P and(@ be points ofl” andW. Show that any regular map: V' x W — A such that
h(P,Q) = 0 can be writterh = fop+ gogwheref: V — Aandg: W — A are regular
maps carrying” and@ to 0 andp andq are the projection¥ x W — V, W.

32. Show that the image of the Segre nipx P* — Pm+m+n (sed 5.211) is not contained
in any hyperplane gp™"+m+n,
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6 Finite Maps

Throughout this sectiort; is an algebraically closed field.

Definition and basic properties

Recall that anA-algebraB is said to be finite if it is finitely generated as @amodule.
This is equivalent ta3 being finitely generated as atralgebra and integral ovet.

DEFINITION 6.1. Aregularmap: W — V is said to bdinite if for all open affine subsets
U of V, =1 (U) is an affine variety, anél[o»~'(U)] is a finitek[U]-algebra.

ProPOSITIONG.2. It suffices to check the condition in the definition for all subsets in one
open affine coveringl;) of V.

PROOF. Omitted. (See Mumford 1999, IIl.1, proposition 5, p145). O

Hence a mag: Specm(B) — Specm(A) of affine varieties is finite if and only if3
is a finite A-algebra.

PROPOSITIONG6.3. (&) For any closed subvarietyf of V, the inclusionZ — Vs finite.
(b) The composite of two finite morphisms is finite.
(c) The product of two finite morphisms is finite.

PROOF. (a) LetU be an open affine subvariety Bf ThenZ N U is a closed subvariety of
U. ltis therefore affine, and the m&pn U — U corresponds to a map — A/a of rings,
which is obviously finite.

(b) If B is a finite A-algebra and” is a finite B-algebra, therC' is a finite A-algebra:
indeed, if{b;} is a set of generators fd# as anA-module, and{c;,} is a set of generators
for C'as aB-module, ther{b;c;} is a set of generators far as anA-module.

(c) If BandB’ are respectively finitel and A’-algebras, theB®, B’ is afinite A, A’-
algebra: indeed, if);} is a set of generators fds as anA-module, and(t’} is a set of
generators fo3’ as anA-module, the{b; ® b;} is a set of generators fd8 ® 4 B’ as an
A-module. O

By way of contrast, an open immersion is rarely finite. For example, the inclusion
A — {0} — Al is not finite because the ringT’, T~'] is not finitely generated asidT]-
module (any finitely generateld T'|-submodule ofs[T", T~!] is contained inl"~"k[T] for
somen).

Thefibresof a regular mag: W — V are the subvarieties™' (P) of W for P € V..
When the fibres are all finite; is said to bequasi-finite

PROPOSITIONG.4. A finite mapp: W — V' is quasi-finite.

PROOF. Let P € V; we wish to showp~!(P) is finite. After replacing/ with an affine
neighbourhood of?, we can suppose that it is affine, and th&nwill be affine also. The
map ¢ then corresponds to a map A — B of affine k-algebras, and a poird@ of W
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maps toP if and onlya ! (mg) = mp. But this holds if and only[f|mg D a(mp), and so

the points ofi’” mapping toP are in one-to-one correspondence with the maximal ideals
of B/a(m)B. Clearly B/a(m)B is generated as k-vector space by the image of any
generating set foB as anA-module, and the next lemma shows that it has only finitely
many maximal ideals. ]

LEMMA 6.5. A finite k-algebra A has only finitely many maximal ideals.

PROOF. Letm,,..., m, be maximal ideals iM. They are obviously coprime in pairs, and
so the Chinese Remainder Theorem (see below) shows that the map

A—A/my x -+ x A/m,, a—(...,a; modm,,...),

is surjective. It follows thatlim,; A > )" dimg(A/m;) > n (dimensions ag-vector
spaces). ]

LEMMA 6.6 (CHINESE REMAINDER THEOREM). Letay, ..., a, be ideals in a ringA. If
a; is coprime toa; (i.e.,a; + a; = A) whenevet # j, then the map

A— Alag x -+ x Ala,
is surjective, with kerndl[ a;, = Na;.
PROOF. The proof is elementary (see Atiyah and MacDonald 1969, 1.10). O
THEOREMG.7. A finite mapp: W — V is closed.

PROOF. Again we can assumg andlV to be affine. LetZ be a closed subset &f". The
restriction ofy to Z is finite (by[6.3a and b), and so we can repléicevith Z; we then we
have to show thalm(y) is closed. The map corresponds to a finite map of rings: B.

This will factor, A — A/a — B, from which we obtain maps

Specm(B) — Specm(A/a) — Specm(A).

The second map identifiépecm(A/a) with the closed subvariety’(a) of Specm(A),
and so it remains to show that the first map is surjective. This is a consequence of the next
lemma. O]

LEMMA 6.8 (GOING-UP THEOREM). Let A C B be rings withB integral overA.
(a) For every prime ideap of A, there is a prime idead of B such thaiy N A = p.
(b) Letp = g N A; thenp is maximal if and only ifj is maximal.

PrROOF. (a) If S is a multiplicative subset of a ringl, then the prime ideals of —*A
are in one-to-one correspondence with the prime ideal$ bt meetingS (seg 4.16). It
therefore suffices to prove (a) aftérand B have been replaced Iy ' A andS—! B, where
S = A —p. Thus we may assume thatis local, and thap is its unique maximal ideal. In
this case, for all proper idealsof B, b N A C p (otherwiseb D A > 1). To complete the
proof of (a), | shall show that for all maximal idealof B,nN A = p.

ZIClearly them—!(mg) D mp, and we know it is a maximal ideal.
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ConsiderB/n > A/(nnN A). Here B/n is a field, which is integral over its subring
A/(nN A), andn N A will be equal top if and only if A/(n N A) is a field. This follows
from Lemmé& 6.D below.

(b) The ringB/q containsA /p, and itis integral oveA /p. If q is maximal, then Lemma
[6.9 shows thap is also. For the converse, note that any integral domain algebraic over a
field is a field — it is a union of integral domains finite ovgrand multiplication by any
nonzero element of an integral domain finite over a field is an isomorphism (it is injective
by definition, and an injective endomorphism of a finite-dimensional vector space is also
surjective). O

LEMMA 6.9. Let A be a subring of a field(. If K is integral overA, thenA also is a field.
PROOF. Leta € A,a # 0. Thena™! € K, and it is integral over:
(aY"+a(a)y" P+ +a,=0,0a € A

On multiplying through by:"~!, we find that

atda+-+aad Tt =0,

from which it follows thata—! € A. O
COROLLARY 6.10. Letyp: W — V be finite; ifV is complete, then so alsoi§.
PrRoOOF. Consider

WxT—-VxT—T, (wt)— (p(w),t)—t.

BecausdV x T" — V x T is finite (seq 6.3c), it is closed, and becalisés complete,
V x T — T is closed. A composite of closed maps is closed, and therefore the projection
W x T — Tis closed. ]

EXAMPLE 6.11. (a) ProjectXY = 1 onto theX axis. This map is quasi-finite but not
finite, becausé[X, X '] is not finite overk[X].
(b) The mapA? — {origin} — A? is quasi-finite but not finite, because the inverse

image ofA? is not affine |(2.2)).
(c)LetV =V(X"+T1 X" 1 +...+T,) c A", and consider the projection map

(a1, .. an,x) — (a1,...,a,): V — A"
The fibre over any poinfay, . .., a,) € A™ is the set of solutions of
X"+ X" 14+ 4a,=0,

and so it has exactly points, counted with multiplicities. The map is certainly quasi-finite;
it is also finite because it corresponds to the finite majp-alfgebras,

KTy, ..., T, — k[Ty,...., T, X] /(X" + L X"  + -+ T,,).
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(d) LetV = V(T, X" + T X" ' + ... +T,) C A", The projectionp: V — A"t
has finite fibres except for the fibre abaie. . ., 0), which isA'. The restrictionp|V ~
©~!(origin) is quasi-finite, but not finite. Above points of the forf, ..., 0,x, ..., *)
some of the roots “vanish off teo”. (Example (a) is a special case of this.)

(e) Let P(X,)Y) = ToX" + Th X" 'Y + ... +T,,Y", and letV be its zero set in
P! x (A"t — {origin}). In this case, the projection map — A" — {origin} is finite.
(Prove this directly, or apply 6.25 below.)

(f) The morphismA! — A% ¢ — (¢, %) is finite because the image bfX, Y] in k[T
is k[T?%, T3], and{1, T} is a set of generators f@fT| over this subring.

(9) The morphismA! — Al, a — o™ is finite (special case of (c)).

(h) The obvious map

(A' with the origin doubled — A*
is quasi-finite but not finite (the inverse image&fis not affine).

EXERCISE6.12. Prove that a finite map is an isomorphism if and only if it is bijective and
etale. (Cf. Harris 1992, 14.9.)

The Frobenius map — t*: A’ — A! in characteristipp # 0 and the map —
(t%,3): Al — V(Y? — X3) C A? from the line to the cuspidal cubic (spe 3.17c) are
examples of finite bijective regular maps that are not isomorphisms.

Noether Normalization Theorem

This theorem sometimes allows us to reduce the proofs of statements about affine varieties
to the case oA".

THEOREM 6.13. For any irreducible affine algebraic variety of a variety of dimension
d, there is a finite surjective map: vV — A<,

PROOF. This is a geometric re-statement of the original theorem. m

THEOREM6.14 (NOETHERNORMALIZATION THEOREM). Let A be a finitely generated
k-algebra, and assume thatis an integral domain. Then there exist elements. ., y, €
A that are algebraically independent overand such thatd is integral overk[yy, . . . , y4].

PROOF. Letzq,...,z, generated as ak-algebra. We can renumber theso thate,, . . ., 24
are algebraically independent ang, ,, . . ., z,, are algebraically dependent en, . .., x4
(FT, 8.12).

Becauser,, is algebraically dependent an, . . ., x4, there exists a nonzero polynomial

f(Xq,..., X4, T)such thatf (xq, ..., 24, z,) = 0. Write
f(Xa o Xa T) = aT™ +a 7™ 4+ an,

with a; € k[X1,..., X4 (= klz1,...,24]). If ao is @ nonzero constant, we can divide
through by it, and them,, will satisfy a monic polynomial with coefficients iz, . . ., x4,
that is, z,, will be integral (not merely algebraic) ovéfzy,...,z,4. The next lemma
suggest how we might achieve this happy state by making a linear change of variables.
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LEMMA 6.15.1f F(X3,..., X, T) is a homogeneous polynomial of degre¢hen
FXy+MT,.... Xg+ NT,T)=F(\,..., A, 1)T" + terms of degreec r in T

PROOF. The polynomialF'(X; + MT, ..., X4+ N\, T) is still homogeneous of degree
r (in Xq,...,XyT), and the coefficient of the monomidl” in it can be obtained by
substituting) for eachX; and1 for T'. ]

PROOF OF THENOETHERNORMALIZATION THEOREM (CONTINUED). Note thatunless
F(X,...,X4,T)is the zero polynomial, it will always be possible to cho@sg ..., \y)
so thatF'(Aq, ..., Aq, 1) # 0 —substitutingl’ = 1 merely dehomogenizes the polynomial
(no cancellation of terms occurs), and a nonzero polynomial can’t be zero onkél(ibfis
can be proved by induction on the number of variables; it uses only: tisanfinite).

Let F' be the homogeneous part of highest degreg aihd choosé), . . ., \;) so that
F(A\1, ..., g, 1) # 0. The lemma then shows that

f(X1 +)\1T7---,Xd+)\dT,T) =cT" _|_b1TT_1 + ... _|_bO’

with ¢ = F(\y,..., g, 1) € k%, b; € k[Xq,..., Xy, degb; < r. On substitutinge,,
for T"andz; — \;z, for X; we obtain an equation demonstrating thiatis integral over

klxy — Mzp, ..., xq — A\gzy). Pute;, = z; — Nz, 1 < i < d. Thenz, is integral over the
ring k[z}, ..., z}], and it follows that4 is integral ovetd’ = k[z}, ..., 2}, 2411, ..., Tn_1].
Repeat the process fa¥', and continue until the theorem is proved. O

REMARK 6.16. The above proof uses only thais infinite, not that it is algebraically
closed (that's all one needs for a nonzero polynomial not to be zero on/dl).of here are
other proofs that work also for finite fields (see Mumford 1999, p2), but the above proof
gives us the additional information that th¢s can be chosen to be linear combinations of
thex;. This has the following geometric interpretation:

let V' be a closed subvariety @éf" of dimensiond; then there exists a linear
mapA” — A? whose restriction td is a finite mapl” — A<

Zariski's main theorem

An obvious way to construct a nonfinite quasi-finite mi&p— V' is to take a finite map
W' — V and remove a closed subsetl&f. Zariski’'s Main Theorem show that, whé#
andV are separated, every quasi-finite map arises in this way.

THEOREMG6.17 (ZARISKI’ SMAIN THEOREM). Any quasi-finite map of varieties: W —
V factors intolV <= W’ £ V with ' finite and. an open immersion.

PrROOF. Omitted — see the references beldw (6.23). O

REMARK 6.18. Assume (for simplicity) that andi¥” are irreducible and affine. The proof
of the theorem provides the following description of the factorization: it corresponds to the
maps

k[V] — k[W'] — kW]

with k&[] the integral closure of[V] in k[IV].
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A regular mapp: W — V of irreducible varieties is said to bmrational if it induces
anisomorphisnk (V') — k(W) on the fields of rational functions (that is, if it demonstrates
thatW andV” are birationally equivalent).

REMARK 6.19. One may ask how a birational regular mapl/’ — V' can fail to be an
isomorphism. Here are three examples.

(a) The inclusion of an open subset into a variety is birational.

(b) The mapA! — C, t — (12, 3), is birational. Here' is the cubicY? = X3, and the
mapk[C] — k[A'] = k[T] identifiesk[C] with the subringt[T?, 73] of k[T]. Both
rings havek(T) as their fields of fractions.

(c) Forany smooth variety and pointP € V, there is aregular birational map V' —
V such that the restriction @f to V' — ¢~ (P) is an isomorphism ont® — P, but
o~ 1(P) is the projective space attached to the vector sfac®).

The next result says that, if we require the target variety to be normal (thereby excluding
example (b)), and we require the map to be quasi-finite (thereby excluding example (c)),
then we are left with (a).

COROLLARY 6.20. Letyp: W — V be a birational regular map of irreducible varieties.
Assume

(a) V is normal, and

(b) ¢ is quasi-finite.
Theny is an isomorphism dfl” onto an open subset of.

PROOF. Factory as in the theorem. For each open affine subset V, k[’ ~1(U)] is the
integral closure of[U] in k(W). But k(W) = k(V) (becausep is birational), and:[U]
is integrally closed irk(V) (becausé’ is normal), and s&/ = ' ~'(U) (as varieties). It
follows thatWW’' = V. O

COROLLARY 6.21. Any quasi-finite regular map: W — V with W complete is finite.
PROOF. In this casey: W — W’ must be an isomorphisr (5]27). O

REMARK 6.22. LetlW andV be irreducible varieties, and let W — V' be a dominating
map. It induces a map(V) — k(W), and ifdimW = dimV, thenk(W) is a finite
extension of(V'). We shall see later that, if is the separable degreelofl’) overk(W),
then there is an open subgéof W such thatpisn: 1 onU, i.e., forP € p(U), o~ (P)
has exactly: points.

Now suppose thap is a bijective regular mapl’ — V. We shall see later that this
implies thatl’ andV have the same dimension. Assume:

(@) k(W) is separable ovet(V);
(b) V is normal.

From (i) and the preceding remark, we find thais birational, and from (ii) and the
corollary, we find thatp is an isomorphism of/’ onto an open subset &f; as it is sur-
jective, it must be an isomorphism &F onto V. We conclude: a bijective regular map
o: W — V satisfying the conditions (i) and (ii) is an isomorphism.
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REMARK 6.23. The full name of Theorem 6]17 is “the main theorem of Zariski’s paper
Transactions AMS, 53 (1943), 490-532". Zariski's original statement is thdt in|(6.20).
Grothendieck proved it in the stronger form (6.17) for all schemes. There is a good dis-
cussion of the theorem in Mumford 1999, IIl.9. For a proof see Musili, C., Algebraic
geometry for beginners. Texts and Readings in Mathematics, 20. Hindustan Book Agency,
New Delhi, 2001 §65.

Fibred products

Consider a varietys and two regular mapg: V' — S andy: W — S. Then the set
Vxs W {(v,w) €V X W | p(v) = (w)}

is a closed subvariety df x W, called thefibred productof V andWW over S. Note that
if S consists of a single point, thén xs W =V x .

Write ¢’ for the map(v,w) — w: V xg W — W andv’ for the map(v,w) —
v: V xg W — V. We then have a commutative diagram:

VxeW -2 v

T
wo s

The fibred product has the following universal property: consider a pair of regular maps
a:T—V,08:T— W;then

(@,8) =t (a(t), BE): T —V x W

factors through” x s W (as a map of sets) if and onlygfa: = 3, in which cas€a, 3) is
regular (because it is regular as a map it 17).

Supposé’/, W, andS are affine, and letl, B, andR be their rings of regular functions.
ThenA ® g B has the same universal propertylas s W, except with the directions of the
arrows reversed. Since both objects are uniquely determined by their universal properties,
this shows thak[V xs W] = A®g B/ N, where N is the nilradical ofA @ B (that is,
the set of nilpotent elements df @z B).

The mapy’ in the above diagram is called the base change wofith respect toy.

For any pointP € S, the base change qf: V' — S with respect toP — S is the map
¢~ 1(P) — Pinduced byyp.

PROPOSITIONG.24. The base change of a finite map is finite.

PrROOF. We may assume that all the varieties concerned are affine. Then the statement
becomes: ifd is a finite R-algebra, theml @z B/ N is a finite B-algebra, which is obvious.
O
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Proper maps

Aregularmapp: V' — S of varieties is said to be proper if it is “universally closed”, that is,
if for all mapsT — S, the base changeg: V x¢T — T of pis closed. Note that a variety
V is complete if and only if the map — {point} is proper. From its very definition, it is
clear that the base change of a proper map is proper. In particufar)if — S is proper,
theny~!(P) is a complete variety for alP € S.

PROPOSITIONG.25. A finite map of varieties is proper.
PROOF. The base change of a finite map is finite, and hence closed. O

The next result (whose proof requires Zariski’'s Main Theorem) gives a purely geometric
criterion for a regular map to be finite.

PROPOSITIONG.26. A proper quasi-finite map: W — V of varieties is finite.

[0}

PROOF. Factory into W < W’ % W with « finite and. an open immersion. Factor
into

/ /
) )
w—(w,tw) (w,w")—w

W ————= W xy W W',
The image of the first map B,, which is closed becaus&” is a variety (sef 3.25)" is
separated because it is finite over a variety — exercise). Becaissproper, the second
map is closed. Hencds an open immersion with closed image. It follows that its image is
a connected componentBf’, and thatl” is isomorphic to that connected componeni]

If W andV are curves, then any surjective mdp — V' is closed. Thus it is easy to
give examples of closed surjective quasi-finite nonfinite maps. For example, the map

a—a": A {0} — Al
which corresponds to the map on rings
E[T) — k[T, T, T~ T",

is such a map. This doesn't violate the theorem, because the map is only closed, not
universally closed.

Exercises 33-35
33. Give an example of a surjective quasi-finite regular map that is not finite (different from
any in the notes).

34.Lety: V — W be aregular map with the property that! (U) is an open affine subset
of W whenevelU is an open affine subset bf. Show that

V separated—- W separated.

35. For everyn > 1, find a finite mapy: W — V with the following property: for all
1 <1 <n,
V., L (P eV |y (P)has < i points

is a closed subvariety of dimension
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7 Dimension Theory

Throughout this sectiori; is algebraically closed. Recall that to an irreducible variéty
we attach a field:(V') — it is the field of fractions ok [U] for any open affine subvariety
of V, and also the field of fractions @@, for any pointP in V. We defined the dimension
of V' to be the transcendence degreé@f ) overk. Note that, directly from this definition,
dim V' = dim U for any open subvariety of V. Also, that ifi¥" — V' is a finite surjective
map, thendim W = dim V' (becausé: (1) is a finite field extension of(V)).

WhenV is not irreducible, we defined the dimensionloto be the maximum dimen-
sion of an irreducible component &f, and we said that” is pure of dimensionl if the
dimensions of the irreducible components are all equadl to

Let W be a subvariety of a variety. Thecodimensionof W in V' is

codimy W =dimV — dim W.
In §1 and§3 we proved the following results:

7.1. (@) The dimension of a linear subvariety Af* (that is, a subvariety defined by
linear equations) has the value predicted by linear algebra 1[20b, 4.11). In
particular, dim A™ = n. As a consequencéjm P" = n.

(b) Let Z be a proper closed subset af'; then Z has pure codimension one i if
and only if/(Z) is generated by a single nonconstant polynomial. Such a variety is

called an affine hypersurface (gee .21 and f27)

(c) If Vis irreducible andZ is a proper closed subset &f, thendim Z < dim V' (see

£.22).

Affine varieties

The fundamental additional result that we need is that, when we impose additional poly-
nomial conditions on an algebraic set, the dimension doesn’t go down by more than linear
algebra would suggest.

THEOREM7.2. LetV be an irreducible affine variety, and I¢te k[V]. If f is not zero or
a unitink[V], thenV (f) is pure of dimensiodim(V") — 1.

Alternatively we can state this as follows: [Etbe a closed subvariety @f" and let
F e k[Xy,...,X,]; then

1% if F'is identically zero ot/
VnV(f)=<¢ 0 if 7" has no zeros ol
hypersurface otherwise.

where by hypersurface we mean a closed subvariety of codimehsion
We can also state it in terms of the algebras:Adie an affing:-algebra; letf € A
be neither zero nor a unit, and jebe a prime ideal that is minimal among those containing
(f); then
tr deg, A/p = trdeg, A — 1.

28The careful reader will check that we didn't .19 or 4.20 in the prdof of 4.27.
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LEMMA 7.3. Let A be an integral domain, and let be a finite extension of the field of
fractions K of A. If a € L is integral overA, then so also is Nmyxa. Hence, ifA is
integrally closed (e.qg., il is a unique factorization domain), then Npa € A. In this
last caseq dividesNm; x « in the ring Afa].

PROOF. Let g(X) be the minimum polynomial of over K,
g X)=X"+a, X'+ +ag.
In some extension field of L, g(X') will split

g(X> = H::l(X - ai)7 o] = @, H::lai = *ay.

Becausex is integral overA, eachq; is integral overA (see the proof of 0.15), and it
follows thatNm,/x o FT:5'38(H;":10@)? is integral overA ).
Now suppos#é is integrally closed, so th&fm o € A. From the equation

0=ala " +a_1a" 2+ - +a)+a

we see thatv dividesag in A[a], and therefore it also divid@$m o = iaf. O

PrROOF OFTHEOREMI[7.2 We first show that it suffices to prove the theorem in the case
that V(f) is irreducible. Supposé€y, ..., Z, are the irreducible components bf( f).
There exists a poinP € 7, that does not lie on any othet (otherwise the decomposition
V(f) = U Z; would be redundant). A%, ..., Z, are closed, there is an open neighbour-
hoodU of P, which we can take to be affine, that does not meetangxceptZ,. Now
V(fIU) = Zy,n U, which is irreducible.

As V(f) is irreducible,rad(f) is a prime ideap C k[V]. According to the Noether
normalization theorenj (6.14), there is a finite surjective map” — A<, which realizes
k(V) is a finite extension of the field(A?). The idea of the proof is to show thatV) is
the zero set of a single elemefit € k[A?], and to use that we already know the theorem
for A? (7.1b).

By assumptiork[V] is finite (hence integral) over its subrigA<]. With the above
notations, letfo = Nmyy) /a4 f- According to the lemmay, lies in k[A4], and | claim
thatp N k[A?] = rad(fy). The lemma shows thgtdivides f, in k[V], and sof; € (f) C p.
Hence(fo) C p N k[A?], which implies

rad(fy) C p N E[A%]

because is radical. For the reverse inclusion, le€ p N k[A?]. Theng € rad(f), and so
g™ = fhfor someh € k[V], m € N. Taking norms, we find that

9™ = Nm(fh) = fo - Nm(h) € (fo),

wheree = [k(V) : k(A™)], which proves the claim.
The inclusionk[A?] — k[V] therefore induces an inclusion

KA/ rad(fo) = KA /p N E[A] = E[V]/p,
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which makes:[V]/p into a finite algebra ovet[A?]/ rad(f,). Hence
dim V(p) = dim V (o).

Clearly f # 0 = fo # 0, and fy, € p = f, is not a nonzero constant. Therefore

dim V(f,) = d — 1 by (7-1b). 0

COROLLARY 7.4. LetV be an irreducible variety, and |t be a maximal proper closed
irreducible subset of’. Thendim(Z) = dim(V') — 1.

PROOF. For any open affine subs&tof VV meetingZ, dim U = dim V anddimU N Z =
dim Z. We may therefore assume thaitself is affine. Letf be a nonzero regular function
on V vanishing onZ, and letV ( f) be the set of zeros of (in V). ThenZ C V(f) C V,
andZ must be an irreducible componentdf f) for otherwise it wouldn’t be maximal in
V. Thus Theorer 7]2 implies thdim Z = dim V' — 1. O

COROLLARY 7.5 (TOPOLOGICAL CHARACTERIZATION OF DIMENSION). Supposé/ is
irreducible and that
V2Vi2-2Va#0

is @ maximal chain of closed irreducible subsetd’ofThendim (V') = d. (Maximal means
that the chain can't be refined.)

PROOF. From (7.4) we find that
dimV =dimV; +1=dimVo+2=---=dimV; +d =d. O

REMARK 7.6. (a) Recall that the Krull dimension of a ringis the sup of the lengths of
chains of prime ideals id. It may be infinite, even wheH is Noetherian (for an example

of this, see Nagata, Local Rings, 1962, Appendix A.1). However a local Noetherian ring
has finite Krull dimension, and so

Krull dim A= sup Krull dim A,,.

m maximal

In Nagata’s nasty example, there is a sequence of maximal isleais,, ms, ... in A such
that the Krull dimension ofl,,, tends to infinity.

The corollary shows that, whe¥i is affine,dim V' = Krull dim k[V], but it shows
much more. Note that eadh in a maximal chain (as above) has dimension i, and that
any closed irreducible subset Bf of dimensiond — ¢ occurs as &} in a maximal chain.
These facts translate into statements about ideals in @&falgebras that do not hold for
all Noetherian rings. For example, if is an affinek-algebra that is an integral domain,
then Krulldim A,, is the same for all maximal ideals df — all maximal ideals inA have
the same height (we have proJed 4.20). Moreovey,ii an ideal ink[V] with height,
then there is a maximal (i.e., nonrefinable) chain of prime ideals

(0)2131;]32;"';%;/{?[‘/]

with p; = p.
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(b) Now that we know that the two notions of dimension coincide, we can reftate (7.2)
as follows: letA be an affing:-algebra; letf € A be neither zero nor a unit, and lebe a
prime ideal that is minimal among those containirfg; then

Krull dim A/p =Krull dim A — 1.

This statement does hold for all Noetherian local rings (see Atiyah and MacDonald 1969,
11.18), and is called Krull's principal ideal theorem.

COROLLARY 7.7. LetV be an irreducible variety, and lef be an irreducible component
of V(fi,... f-), where thef; are regular functions of¥'. Then

codim(Z) <r,i.e.,dim(Z) > dimV —r.

PROOF. As in the proof of [7.4), we can assumeto be affine. We use induction on
r. BecauseZ is a closed irreducible subset ®f(f1,... f,_1), it is contained in some
irreducible component’ of V'(fi,... f,_1). By induction, codintZ’) < r — 1. Also Z is
an irreducible component ¢’ N V' (f,.) because

Z C Z/ﬂv<fr> C V(fb"‘?f?’)

andZ is a maximal closed irreducible subsefioffy, .. ., f.). If f, vanishes identically on
Z',thenZ = Z" and codiniZ) = codim(Z’) < r — 1; otherwise, the theorem shows that
Z has codimension 1 i#’, and codiniZ) = codim(Z’) + 1 < r. O

PROPOSITION7.8. Let V' and W be closed subvarieties @f"; for any (honempty) irre-
ducible component of V N W,

dim(Z) > dim(V') + dim(W) — n;

that is,
codim(Z) < codim(V') + codim(W).

PROOF. In the course of the proof of (3.26), we showed than IV is isomorphic to
AN(V x W), and this is defined by theequationsX; = Y; in V x WW. Thus the statement
follows from (7.7). O

REMARK 7.9. (a) The example (iA?)

X +v? =277
Z =0

shows that Propositign 7.8 becomes false if one only looks at real points. Also, that the
pictures we draw can mislead.

(b) The statement of (7.8) is falseAf" is replaced by an arbitrary affine variety. Con-
sider for example the affine coné

X1X4 - X2X3 == 0



7 DIMENSION THEORY 132

It contains the planes,
Z:X2:0:X4; Z:{<*707*70)}

Z' X1 =0=Xj; Z'={(0,%,0,%)}
andZ N Z' = {(0,0,0,0)}. Becausé/ is a hypersurface if\*, it has dimensiors, and
each ofZ andZ’ has dimensioR. Thus
codmZNZ =3 i 1+ 1= codim Z + codim Z'.

The proof of (7.8) fails because the diagonalinx V' cannot be defined by equations
(it takes the sama that define the diagonal iA*) — the diagonal is not a set-theoretic
complete intersection.

REMARK 7.10. In [7.7), the components ®f(f1, ..., f.) need not all have the same di-
mension, and it is possible for all of them to have codimensionwithout any of thef;
being redundant.

For example, let” be the same affine cone as in the above remark. Noté&'that) NV
is a union of the planes:

V(X)) NV ={(0,0,*,%)} U{(0,%,0,x)}.

Both of these have codimension 1lih(as required by (7]2)). Similarly/ (X;) NV is the
union of two planes,

V(Xo) NV ={(0,0,%,%)} U{(*,0,%0)},

but V (X, Xo) NV consists of a single plang0, 0, *, %) }: it is still of codimension 1 in
V, but if we drop one of two equations from its defining set, we get a larger set.

PROPOSITION7.11. Let Z be a closed irreducible subvariety of codimensian an affine
variety V. Then there exist regular functiorfs, . . ., f, onV such that” is an irreducible
component oV (f,..., f,) and all irreducible components of(fi, ..., f.) have codi-
mensior.

ProoF We know that there exists a chain of closed irreducible subsets
VoZio---DZ. =7
with codim Z; = i. We shall show that there exigt, ..., f. € k[V] such that, for all

s <, Z is an irreducible component &f(f1, ..., f;) and all irreducible components of
V(fi,-..,fs) have codimension.

We prove this by induction os. Fors = 1, take anyf, € I(Z;), fi # 0, and apply
Theoren 7p. Supposg, ..., fs—1 have been chosen, and it = Z,_,,...,Y,,, be the
irreducible components of (fi, ..., fs_1). We seek an elemerft that is identically zero
on Z, but is not identically zero on any,—for such anf,, all irreducible components of
Y; NV (fs) will have codimensior, andZ; will be an irreducible component &f NV ( f;).
ButY; ¢ Z, for any: (Z, has smaller dimension than), and sol(Z;) ¢ 1(Y;). Now the
prime avoidance lemma (see below) tells us that there is an elefnent (Z;) such that
fs ¢ 1(Y;) for anyi, and this is the function we want. O
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LEMMA 7.12 (RRIME AVOIDANCE LEMMA). If an ideala of a ring A is not contained in
any of the prime idealp,, . . ., p,, then it is not contained in their union.

PROOF. We may assume that none of the prime ideals is contained in a second, because
then we could omit it. Fix ar, and, for each # iy, choose ary; € p;, f; ¢ p,,, and

choosef;, € a, fi, & pi,- Thenh;, 4 ] f: lies in eachy; with i # iy anda, but not inp;,
(here we use that;, is prime). The element_;_, h; is therefore im but notin anyp;. O

REMARK 7.13. The proposition shows that for a prime idgah an affinek-algebra, ifp
has height-, then there exist elemenfs, ..., f. € A such thatp is minimal among the
prime ideals containingfi, . . ., f.). This statement is true for all Noetherian local rings.

REMARK 7.14. The last proposition shows that a cutvén A3 is an irreducible com-
ponent ofV(f1, fo) for somefi, fo € k[X,Y, Z]. InfactC = V(f, f2, f3) for suitable
polynomialsfi, f», and f; — this is an exercise in Shafarevich 1994 (1.6, Exercise 8); see
also Hartshorne 1977, I, Exercise 2.17. Apparently, it is not known whether two polynomi-
als always suffice to define a curveArt — see Kunz 1985, p136. The union of two skew
lines inP? can’t be defined by two polynomials (ibid. p140), but it is unknown whether
all connected curves i&* can be defined by two polynomials. Macaulay (the man, not the
program) showed that for every> 1, there is a curv&’ in A3 such that/(C) requires
at leastr generators (see the same exercise in Hartshorne for a curve whose ideal can'’t be
generated bg elements).

In general, a closed variety of codimension- in A" (resp. P") is said to be aset-

theoretic complete intersectioif there existr polynomials f; € k[X;,...,X,] (resp.
homogeneous polynomiafs € k[ Xy, ..., X,]) such that
V=V(fi,..., fr)

Such a variety is said to be #@teal-theoretic complete intersectiaghthe f; can be chosen
so that/(V') = (f1,..., f.). Chapter V of Kunz’s book is concerned with the question of
when a variety is a complete intersection. Obviously there are many ideal-theoretic com-
plete intersections, but most of the varieties one happens to be interested in turn out not
to be. For example, no abelian variety of dimensienl is an ideal-theoretic complete
intersection (being an ideal-theoretic complete intersection imposes constraints on the co-
homology of the variety, which are not fulfilled in the case of abelian varieties).

Let P be a point on an irreducible variety ¢ A™. Then [7.1]l) shows that there is a
neighbourhood’ of P in A™ and functionsfy, ..., f, onU suchthalinV =V (f1,..., f.)
(zero setiny). ThusU NV is a set-theoretic complete intersectioinOne says thal’
is alocal complete intersectioat P € V if there is an open affine neighbourhobdof P
in A™ such that/ (V' N U) can be generated byregular functions oi/. Note that

ideal-theoretic complete intersectien local complete intersection at all

It is not difficult to show that a variety is a local complete intersection at every nonsingular
point.
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PROPOSITION7.15. Let Z be a closed subvariety of codimensioim variety V', and letP
be a point of7Z that is nonsingular when regarded both as a pointand as a point on
V. Then there is an open affine neighbourh@bdf P and regular functions, ..., f. on
UsuchthatZ nU =V (fi,..., f).

PROOF. By assumption
dim; Tp(Z) =dim Z = dimV — r = dimy Tp(V') — 7.

There exist functiong, . . ., f, contained in the ideal aDp corresponding t& such that
Tp(Z) is the subspace dfp(V') defined by the equations

(df)p =0,....(df,)p = 0.

All the f; will be defined on some open affine neighbourh@ddf P (in V'), and clearly

Z is the only component of’ 4 V(fi,...,fr) (zero set inU) passing through?. Af-
ter replacingU by a smaller neighbourhood, we can assume #ais irreducible. As
fi,-. fr € I(Z'), we must havd'p(Z') C Tp(Z), and thereforelim Z' < dim Z. But
I(Z") cI(ZnU),and saZ’ O Z N U. These two facts imply that’ = Z N U. O

PROPOSITION7.16. Let V' be an affine variety such tha{l’] is a unique factorization
domain. Then every pure closed subvarigtypf VV of codimension one is principal, i.e.,
I(Z) = (f) for somef € k[V].

ProOF. In (4.27) we proved this in the case that= A", but the argument only used that
k[A™] is a unique factorization domain. O

ExAMPLE 7.17. The condition thak[V'] is a unique factorization domain is definitely
needed. Again leV” be the cone

X1X4 - X2X3 = 0
in A* and letZ andZ’ be the planes
Z ={(*,0,%,0)} Z"={(0,%,0,%)}.

ThenZ N Z" = {(0,0,0,0)}, which has codimensiog in Z’. If Z = V(f) for some
regular functionf onV, thenV (f|Z") = {(0,...,0)}, which is impossible (because it has
codimensiore, which violate$ 7.2). Thug is not principal, and so

k[Xla X27 X37 X4}/(X1X4 - X2X3)

is not a unique factorization domain.
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Projective varieties

The results for affine varieties extend to projective varieties with one important simplifica-
tion: if VV andWV are projective varieties of dimensiongnds in P" andr + s > n, then
VW #0.

THEOREM 7.18. LetV = V(a) C P™ be a projective variety of dimension 1, and let
f € k[Xo,...,X,] be homogeneous, nonconstant, ghd; thenV N V(f) is nonempty
and of pure codimensioh

PROOF. Since the dimension of a variety is equal to the dimension of any dense open affine
subset, the only part that doesn’t follow immediately frgm|(7.2) is the factithatV/( f)

is nonempty. Let/*¥(a) be the zero set of in A"*! (that is, the affine cone ovér).
ThenVa(a) N V2 ( f) is nonempty (it containd), . .., 0)), and so it has codimensidrin

Vel (). ClearlyVaf(a) has dimensio 2, and soV*(a) N V() has dimension 1.

This implies that the polynomials inhave a zero in common witf other than the origin,

and soV (a) NV (f) # 0. O

COROLLARY 7.19.Let f1,-- -, f, be homogeneous nonconstant element$Xy, . . ., X,,|;
and letZ be an irreducible component & NV (f1,... f.). Then codiniZ) < r, and if
dim(V) > r,thenV NV (fi,... f.) is nonempty.

PrRoOFE Induction onr, as before. O]

COROLLARY 7.20. Leta: P* — P™ be regular; ifm < n, thena is constant.

PROOF. Let7: A"l — {origin} — P" be the mafao,...,a,) — (ag: ... : a,). Then
« o 7 is regular, and there exist polynomidls, . . ., F,,, € k[Xo, ..., X,] such thatx o 7
is the map
(ag,...,an) — (Fo(a) :...: Fy(a)).
As « o 7 factors throughP™, the F; must be homogeneous of the same degree. Note that
alag: ... a,) = (Fola):...: Fpla)).
If m < n and theF; are nonconstant, thejn (7]18) shows they have a common zero and so
is not defined on all oP”. Hence thel;’s must be constant. O

PROPOSITION7.21. Let Z be a closed irreducible subvariety &f; if codim(Z) = r,
then there exist homogeneous polynomjals . ., f. in k[X,, ..., X,] such thatZ is an
irreducible componentdf NV (f1,..., f;).

PROOF. Use the same argument as in the proof (7.11). O
PROPOSITION7.22. Every pure closed subvarietyof P of codimension one is principal,
i.e.,I(Z) = (f) for somef homogeneous element/dfXy, ..., X,].

PrRoOOF. Follows from the affine case. O

COROLLARY 7.23. LetV andW be closed subvarieties 8f'; if dim(V') + dim(W') > n,
thenVNW # (), and every irreducible component of it has cogifi <codim(V")+codim(1¥).
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PROOF. Write V = V(a) andW = V/(b), and consider the affine con&$ = V'(a) and
W' =W (b) over them. Then

dim(V’) + dim(W') = dim(V) + 1 + dim(W) + 1 > n + 2.

AsV'NnW’' # 0, V' n W’ has dimensior> 1, and so it contains a point other than the
origin. Thereford/ N W ## (). The rest of the statement follows from the affine casé.l

PROPOSITION7.24. LetV be a closed subvariety &f* of dimension- < n; then there is a
linear projective variety of dimensiom —r — 1 (that is, F' is defined by + 1 independent
linear forms) such thalE NV = ().

PrRoOOFE Induction onr. If » = 0, thenV is a finite set, and the next lemma shows that
there is a hyperplane k**! not meeting/. ]

LEMMA 7.25. Let W be a vector space of dimensidnover an infinite field:, and let
Ey, ..., E,. be afinite set of nonzero subspace$lof Then there is a hyperplang in W
containing none of thé’;.

PROOF. Pass to the dual spaééof 1. The problem becomes that of showikhgis not
a finite union of proper subspacé®’. Replace eacli; by a hyperplandi; containing
it. Then H, is defined by a nonzero linear forfy. We have to show th&f[ L; is not
identically zero ori/. But this follows from the statement that a polynomiahimariables,
with coefficients not all zero, can not be identically zeroidn (See the first homework
exercise.)

Suppose > 0, and letV;, . .., V; be the irreducible components Bt By assumption,
they all have dimensior< r. The intersection®; of all the linear projective varieties
containingV; is the smallest such variety. The lemma shows that there is a hyperplane
H containing none of the nonzet@;; consequentlyd contains none of the irreducible
component$; of V', and so each;N H is a pure variety of dimensiofd »—1 (or is empty).
By induction, there is an linear subvariefy not meeting’ N H. TakeE = E'N H. O

LetV andFE be as in the theorem. K is defined by the linear forma,, . .., L, then
the projectior: — (Lg(a) : --- : L,(a)) defines a map” — P". We shall see later that this
map is finite, and so it can be regarded as a projective version of the Noether normalization
theorem.
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8 Regular Maps and Their Fibres

Throughout this sectiort; is an algebraically closed field.
Consider again the regular map A? — A2, (z,y) — (x,zy) (Exercise 10). The
image ofy is

C={(a,b) € A’ |a#00ra=0=b}
= (A* \ {y-axis}) U {(0,0)},

which is neither open nor closed, and, in fact, is not even locally closed. The fibre

{(a,b/a)} fa#0
¢ Ya,b) ={ Y-axis if (a,0) = (0,0)
0 if a=0,b+#0.

From this unpromising example, it would appear that it is not possible to say anything about
the image of a regular map, nor about the dimension or number of elements in its fibres.
However, it turns out that almost everything that can go wrong already goes wrong for this
map. We shall show:

(a) the image of a regular map is a finite union of locally closed sets;

(b) the dimensions of the fibres can jump only over closed subsets;

(c) the number of elements (if finite) in the fibres can drop only on closed subsets, pro-

vided the map is finite, the target variety is normal, &rtths characteristic zero.

Constructible sets

Let W be a topological space. A subggétof W is said toconstructibleif it is a finite
union of sets of the for/ N Z with U open andZ closed. Obviously, it”" is constructible
andV C W, thenC NV is constructible. A constructible set ii* is definable by a finite
number of polynomials; more precisely, it is defined by a finite number of statements of the
form

FX o X)) =0, g(Xy X)) £0

combined using only “and” and “or” (or, better, statements of the fgrea 0 combined
using “and”, “or”, and “not”). The next proposition shows that a constructible’s#tat
is dense in an irreducible variely must contain a nonempty open subset/of Contrast
Q, which is dense iR (real topology), but does not contain an open subs&,afr any
infinite subset ofA! that omits an infinite set.

PrROPOSITIONS8.1. LetC be a conitructible set whose closureis irreducible. Then”
contains a nonempty open subsetof

PROOF. We are given that’ = | J(U; N Z;) with eachU; open and eacELclosed. We may
assume that each g6t Z; in this decomposition is nonempty. Cleadyc |J Z;, and as
C'is irreducible, it must be contained in one of the For thisi

ThusU; N Z; = U; N C is a nonempty open subset@fcontained inC'. O
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THEOREM 8.2. A regular mapy: W — V sends constructible sets to constructible sets.
In particular, if U is a nonempty open subsetidf, theny(U) contains a nonempty open
subset of its closure .

The key result we shall need from commutative algebra is the following. (In the next
two results,A and B are arbitrary commutative rings—they need notbkalgebras.)

PROPOSITION8.3. Let A C B be integral domains witl® finitely generated as an algebra
over A, and letb be a nonzero element &f. Then there exists an elemeni~ 0 in A with
the following property: every homomorphism A —  from A into an algebraically
closed field2 such thatw(a) # 0 can be extended to a homomorphiSmB — € such

that 3(b) # 0.

Consider, for example, the ring$X] C k[X, X ']. A homomorphismv: k[X] — k
extends to a homomorphisbdX, X ~!| — kifand only if o(X) # 0. Therefore, fob = 1,
we can take: = X. In the application we make of Proposition|8.3, we only really need the
caseb = 1, but the more general statement is needed so that we can prove it by induction.

LEMMA 8.4. Let B D A be integral domains, and assunie = Aft] ~ A[T]/a. Let

¢ C A be the set of leading coefficients of the polynomials iihen every homomorphism
a: A — Q from A into an algebraically closed fiel@ such thatx(c) # 0 can be extended
to a homomorphism @B into €.

PROOF. Note thatc is an ideal inA. If a = 0, thenc = 0, and there is nothing to prove (in
fact, everya extends). Thus we may assume- 0. Let f = a,,7™ + - - - +ao be a nonzero
polynomial of minimum degree in such thaiv(a,,) # 0. BecauseB # 0, we have that
m > 1.

Extenda to a homomorphismy: A[T| — Q[T by sendingl’ to T'. TheQ2-submodule
of Q[T’] generated byk(a) is an ideal (becaust - > ¢;a(g;) = > c;a(g;T)). Therefore,
unlessa(a) contains a nonzero constant, it generates a proper idelZih which will
have a zere in €2. The homomorphism

A[T]gQ[T]HQ, T—Tw—c

then factors throughl[7"]/a = B and extends:.
In the contrary case, contains a polynomial

g(T)=b,T"+---+by, ab;)=0 (i>0), alby) #0.
On dividing f(7T') into ¢(T") we find that
alg(T) = q(T)f(T)+r(T), deN, gqreAlT], degr<m.
On applyinga to this equation, we obtain
alam)a(bo) = a(q)a(f) + a(r).

Because:( f) has degree: > 0, we must haveé(q) = 0, and sax(r) is a nonzero constant.
After replacingg(7") with »(7"), we may assume < m. If m = 1, such a(7") can't exist,
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and so we may suppose > 1 and (by induction) that the lemma holds for smaller values
of m.

Forh(T) =c,T"+c, \T" '+ -+co, leth(T) = ¢, +- - -+coT". Then theA-module
generated by the polynomials°’h/(T'), s > 0, h € a, is an ideala’ in A[T]. Moreover,

a’ contains a nonzero constant if and onlyi€ontains a nonzero polynomial™”, which
impliest = 0 and A = B (sinceB is an integral domain).

If o’ does not contain nonzero constants, then®et= A[T]/a’ = A[t']. Thend
contains the polynomia)’ = b, + --- + byT™, anda(by)# 0. Becauseleg ¢ < m, the
induction hypothesis implies thatextends to a homomorphisB — . Therefore, there
isac € Qsuchthat, foralh(T) = ¢, 7" +c, ,\T" ' +---+ ¢y € q,

h'(c) = ale) + alc_1)c+ - + coc” = 0.

On takingh = ¢, we see that = 0, and on takingh = f, we obtain the contradiction
alam) = 0. O

PrRooF 0A8.3 Suppose that we know the proposition in the case tha generated by
a single element, and writB8 = A[zq,...,z,]. Then there exists an elemént ; such
that any homomorphism: Afzy,...,z,-1] — Q such thatx(b,_1) # 0 extends to a
homomorphisms: B — 2 such that3(b) # 0. Continuing in this fashion, we obtain an
elementu € A with the required property.

Thus we may assumB = Alz|. Let a be the kernel of the homomorphisi — =z,
A[X] — Alx].

Case (i). The ideal = (0). Write

b= f(z) = apx" +a 2" '+ - +a, a €A,

and takex = ag. If a: A — Qis such thatv(ag) # 0, then there exists ac (2 such that
f(c) # 0, and we can takg to be the homomorphist_ d;z' — > a(d;)c'.

Case (ii). The ideakh # (0). Let f(T) = a,, 7™ + -+, a,, # 0, be an element of
a of minimum degree. Lek(T) € A[T] represent. Sinceb # 0, h ¢ a. Becausef is
irreducible over the field of fractions of, it andh are coprime over that field. Hence there
existu,v € A[T] andc € A — {0} such that

uh +vf =c.

It follows now thatca,, satisfies our requirements, for df(ca,,) # 0, thena can be
extended to3: B — (2 by the previous lemma, and(u(x) - b) = ( ) # 0, and so

B(b) # 0. O

AsSIDE8.5. In case (i) of the above proof, bdtlandb~! are algebraic oved, and so there
exist equations

apgh™+---+a, =0, a €A, ayF#0;

agb™ 4+ +an =0, a €A a;#0.
One can show that = aya(, has the property required by the Proposition—see Atiyah and
MacDonald, 5.23.
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PrRoOF 0AB.2 We first prove the “in particular” statement of the Theorem. By consider-
ing suitable open affine coverings 3f andV/, one sees that it suffices to prove this in the
case that both” and V" are affine. IfiVy,..., W, are the irreducible components Bf,
then the closure ap(W) in V', (W)~ = (W)~ U... U p(W,)~, and so it suffices to
prove the statement in the case thats irreducible. We may also replagéwith o (1V)~,
and so assume that boitli andV are irreducible. The corresponds to an injective ho-
momorphismA — B of affine k-algebras. For some# 0, D(b) C U. Chooseu as in
the lemma. Then for any poift € D(a), the homomorphisnf — f(P): A — k extends
to a homomorphisn: B — k such that3(b) # 0. The kernel of3 is a maximal ideal
corresponding to a poird € D(b) lying over P.

We now prove the theorem. L&t; be the irreducible componentsdf. ThenC N W;
is constructible ifV;, andp (W) is the union of theo(C'NTV,); it is therefore constructible
if the (C' N ;) are. Hence we may assume th&tis irreducible. Moreover(' is a
finite union of its irreducible components, and these are clos€d; ithey are therefore
constructible. We may therefore assume thatlso is irreducibleC is then an irreducible
closed subvariety ofl’.

We shall prove the theorem by induction on the dimensioWoflf dim(W) = 0, then
the statement is obvious becauseis a point. IfC # W, thendim(C) < dim(W), and
because is constructible inC, we see thap(C) is constructible (by induction). We may
therefore assume that = 7. But thenC contains a nonempty open subsetBf and so
the case just proved shows that”') contains an nonempty open subgebf its closure.
Replacel be the closure op(C'), and write

e(C)=UUp(Cne (V-U)).

Theny=1(V — U) is a proper closed subset &f (the complement of” — U is dense
in V andy is dominating). AsC' N ¢~ '(V — U) is constructible inp=' (V' — U), the set
o(C N Y(V —U))is constructible in/ by induction, which completes the proof. [

The fibres of morphisms

We wish to examine the fibres of a regular mapl/’ — V. Clearly, we can replacg by
the closure ofp(1V) in V' and so assume to be dominating.

THEOREMS8.6. Letyp: W — V be a dominating regular map of irreducible varieties. Then
(@) dim(W) > dim(V');
(b) if P € (W), then
dim(p ' (P)) > dim(W) — dim(V)

for everyP € V, with equality holding exactly on a nonempty open subset V.
(c) The sets
Vi={P eV |dim(y"}(P)) > i}

are closedp (V).
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EXAMPLE 8.7. Consider the subvariety ¢ V' x A™ defined byr linear equations

Zainj =0, aj;€kV], i=1...,r

J=1

and lety be the projectiolV — V. For P € V, ¢~ !(P) is the set of solutions of
Zaij(P)Xj =0, ajP)ek, i=1,...,m
=1

and so its dimension isw — rank(a;;(P)). Since the rank of the matrij;; ()) drops on
closed subsets, the dimension of the fibre jumps on closed subsets.

PROOF. (a) Because the map is dominating, there is a homomorph{gm — k(W),
and obviously tr degi:(V') < trdeg. k(W) (an algebraically independent subset:¢V)
remains algebraically independentifi’’)).

(b) In proving the first part of (b), we may replateby any open neighbourhood &%
In particular, we can assuméto be affine. Letn be the dimension of’. From [7.11) we
know that there exist regular functiorfs, . . ., f,, such thatP is an irreducible component
of V(fi,..., fm). Afterreplacingl” by a smaller neighbourhood éf, we can suppose that
P=V(f1,...,fm). Thenp=!(P) is the zero set of the regular functiofis ¢, . . ., f o,
and so (if nonempty) has codimensignmn in W (seq 7.J7). Hence

dim ¢~ (P) > dim W — m = dim(W) — dim(V).

In proving the second part of (b), we can replace bdotlandV with open affine subsets.
Sincey is dominating,k[V] — k[WW] is injective, and we may regard it as an inclusion
(we identify a functionz on V' with = o o on ). Thenk(V) C k(W). Write k[V] =
klzy,...,zy] @andk[W] = k[yy, ..., yn], and suppos&” andW have dimensions: andn
respectively. The (1) has transcendence degree m overk(1'), and we may suppose
thaty, ..., vy, are algebraically independent ovér, . .., z,,], and that the remaining
y; are algebraic ovek[xq, ..., T, 1, - -, Yn_m]. There are therefore relations

Fi(x1, o Ty Y1y Ynems ¥i) =0, i=m—m+1,... N. *)

with F;( Xy, ..., X, Y1, ..., Y, Y;) a nonzero polynomial. We writg, for the restric-
tion of y; to o~ !(P). Then

k[so_l(P)] = k[gla ce >yN]'

The equations (*) give an algebraic relation among the functigns. ., y; on W. When
we restrict them tg>—' (P), they become equations:

Fi(x1(P)y. ., 2m(P)sUys - s UpomsU;) =0, i=n—m-+1,...,N. (**).
If these are nontrivial algebraic relations, i.e., if none of the polynomials

E(xl(P)J cee 7xm(P>>}/17 cee 7Yn—mayi)
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is identically zero, then the transcendence degré€mf, . . ., 7, ) overk willbe < n —m.
Thus, regard;(zy, ..., Tm, Y1,. .., Ye_m, Y;) @s a polynomial in thé@”’s with coeffi-
cients polynomials in the’s. Let V; be the closed subvariety &f defined by the simul-
taneous vanishing of the coefficients of this polynomial—it is a proper closed subset of
LetU =V — |JV;—itis a nonempty open subset &t If P € U, then none of the poly-
nomialsF;(x,(P),...,xn(P),Y1,..., Y., Y;) is identically zero, and so faP € U, the
dimension ofp~!(P) is < n — m, and hence= n — m by (a).
Finally, if for a particular pointP, dim ¢~!'(P) = n — m, then one can modify the
above argument to show that the same is true for all points in an open neighbourh®od of
(c) We prove this by induction on the dimensionlofit is obviously true ifdim V' =
0. We know from (b) that there is an open subSetf I such that

dime ' (P)=n—-m <= PcU.

Let Z be the complement df in V; thusZ =V,_,,.1. Let 7y, ..., Z,. be the irreducible
components of. On applying the induction to the restriction pfto the mapy—'(Z;) —
Z; for eachj, we obtain the result. O

PROPOSITION8.8. Let o: W — V be a regular surjective closed mapping of varieties
(e.g.,W complete orp finite). If V is irreducible and all the fibres—!( P) are irreducible
of dimensiom, thenW is irreducible of dimensiodim(V") + n.

PROOF. Let Z be a closed irreducible subsetidf, and consider the mapZ: Z — Vit
has fibregy|Z)~'(P) = ¢~ '(P) N Z. There are three possibilities.
(@) ¢p(Z) # V. Theny(Z) is a proper closed subset Bt
(b) ¢(Z) =V,dim(Z) < n+dim(V). Then (b) of[(8.p) shows that there is a nonempty
open subsel/ of V' such that forP € U,

dim(p~'(P)N Z) = dim(Z) — dim(V) < n;

thusforP e U, o 1(P) € Z.
(€) ¢(Z) =V,dim(Z) > n + dim(V). Then (b) of[(8.5) shows that

dim(p ' (P)N Z) > dim(Z) — dim(V) > n

for all P; thuso~!(P) C Z forall P € V, and soZ = W; moreoverdim Z = n,
Now let 71, ..., Z,. be the irreducible components Bf. | claim that (iii) holds for at
least one of theZ;. Otherwise, there will be an open subgebf V' such that forP in U,
o H(P) ¢ Z; for anyi, bute~*(P) is irreducible andr—'(P) = [J(¢ ' (P) U Z;), and so
this is impossible. O

The fibres of finite maps

Lety: W — V be a finite dominating morphism of irreducible varieties. THan(1V) =
dim(V'), and sok(W) is a finite field extension of (V). Its degree is called theéegreeof
the mapy.
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THEOREMB8.9. Letyp: W — V be a finite surjective regular map of irreducible varieties,
and assume thdt is normal.
(@) Forall P € V, #p~1(P) < deg(yp).
(b) The set of point® of V' such that# 1 (P) = deg(y) is an open subset &f, and it
is nonempty it:(17) is separable ovek (V).

Before proving the theorem, we give examples to show that we Ré&albe separated
andV to be normal in (a), and that we nek@!) to be separable ové(1") for the second
part of (b).

ExAamMPLE 8.10. (a) Consider the map
{A'! with origin doubled} — A'.

The degree is one and that map is one-to-one except at the origin where it is two-to-one.
(b) Let C be the curver? = X3 + X2, and letp: A’ — C be the map — (t* —
1,t(t* — 1)). The map corresponds to the inclusion

klz,y] = k[T], 2 — T? — 1,y — t(t* — 1),

and is of degree one. The map is one-to-one except that the poits1 both map to
0. The ringk|x, y] is not integrally closed; in fact[T'] is its integral closure in its field of
fractions.
(c) Consider the Frobenius map A" — A", (a1,...,a,) — (di,...,af), where
p = chatk. This map has degreé but it is one-to-one. The field extension corresponding
to the map is
E(Xy,...,X,) DE(XY, ..., XP)

which is purely inseparable.

LEMMA 8.11. Let @4, ..., Q, be distinct points on an affine variety. Then there is a
regular functionf on V' taking distinct values at th@,.

PrROOF. We can embed’ as closed subvariety of”, and then it suffices to prove the
statement with” = A™ — almost any linear form will do. O

PrRoOOF OFTHEOREM[8.9. In proving (a) of the theorem, we may assume fiiaand W/
are affine, and so the map corresponds to a finite mapalfebrask[V] — k[W]. Let
o1 (P)={Q,...,Q.}. According to the lemma, there exists Are k[IV] taking distinct
values at the),. Let

FT)=T"+a,T™ '+ +a,

be the minimum polynomial of overk (V). It has degreen < [k(WW) : k(V)] = deg ¢,
and it has coefficients ik[V] becausé/ is normal (se¢ 0.15). Now'(f) = 0 implies
F(f(Q)=0,ie.,

FQ)™ + ax(P) - F(Q)™ " + -+ am(P) = 0.

Therefore thef(Q;) are all roots of a single polynomial of degree and sor < m <
deg(¢p).
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In order to prove the first part of (b), we show that, if there is a p&irg V' such that
o~ 1(P) hasdeg(y) elements, then the same is true for all points in an open neighbourhood
of P. Choosef as in the last paragraph corresponding to suéh @hen the polynomial

Tm+a1(P)-Tm_1+...+am(p> -0 *)

hasr = deg distinct roots, and sen = r. Consider the discriminantisc F' of F.
Because (*) has distinct rootdjsc(F")(P) # 0, and so dis¢Z’) is nonzero on an open
neighbourhood’ of P. The factorization

k] — kIVIIT)/(F) = kW]

gives a factorization
W — Speem(k[V][T]/(F)) — V.

Each pointP’ € U has exactlyn inverse images under the second map, and the first map
is finite and dominating, and therefore surjective (recall that a finite map is closed). This
proves thatpo~!(P’) has at leasfleg() points for P’ € U, and part (a) of the theorem then
implies that it has exactlyteg(y) points.

We now show that if the field extension is separable, then there exists a point such
that#¢~!(P) hasdeg  elements. BecausgV) is separable ove (1), there exists a
[ € k[W] such that:(V')[f] = k(W). Its minimum polynomialF' has degreédeg(y) and
its discriminant is a nonzero elementidt’|. The diagram

W — Specm(A[T]/(F)) =V
shows that#¢ ! (P) > deg(y) for P a point such that digg)(P) # 0. O
Whenk (W) is separable ovet(1), theny is said to beseparable

REMARK 8.12. Lety: W — V be as in the theorem, and [t= {P € V' | #p }(P) <

i}. Letd = deg . Part (b) of the theorem states that ; is closed, and is a proper subset
when is separable. | don’t know under what hypotheses all thelgetsll closed (and

V; will be a proper subset df;_;). The obvious induction argument fails becalisg may
not be normal.

Lines on surfaces

As an application of some of the above results, we consider the problem of describing the
set of lines on a surface of degreein P3. To avoid possible problems, we assume for the
rest of this chapter that has characteristic zero.

We first need a way of describing lineslii. Recall that we can associate with each
projective varietyy’ C P" an affine cone ove¥ in k™. This allows us to think of points
in P as being one-dimensional subspaces‘inand lines inP? as being two-dimensional
subspaces ik*. To such a subspad® C k*, we can attach a one-dimensional subspace
N> W in A’ k* ~ kS, that is, to each lind. in P?, we can attach poini(L) in P*. Not
every point inP° should be of the fornp(L)—heuristically, the lines if®* should form a
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four-dimensional set. (Fix two planesIi; giving a line inP* corresponds to choosing a
point on each of the planes.) We shall show that there is natural one-to-one correspondence
between the set of lines P and the set of points on a certain hyperspdace P°. Rather
than using exterior algebras, | shall usually give the old-fashioned proofs.
Let L be a line inP? and letx = (zg : 21 : @ : x3) andy = (yo : 1 : y2 : y3) be
distinct points onl.. Then

daf | Ty I;
p(L) = (po1 : Poz : Po3 : P12 : P13 : P23) € P’ py; = j

Yi Y

)

depends only orL. Thep;; are called the Ricker coordinates of, after Plicker (1801-
1868).

In terms of exterior algebras, writg, e;, e», e3 for the canonical basis fdr!, so thatx,
regarded as a point &f' is Y z;e;, andy = > yies; then/\2 k* is a 6-dimensional vector
space with basig;ne;, 0 < i < j < 3, andzry = Y p;jeine; With p;; given by the above
formula.

We definep;; for all 7, j, 0 < 4,5 < 3 by the same formula — thys, = —p;;.

LEMMA 8.13. The lineL can be recovered from( L) as follows:
L={0_apo;: > asprj: > apa;: Y _a;ps;) | (a : ar : ay : ag) € PP,
j j j j
PROOF. Let L be the cone ovek in k*—it is a two-dimensional subspace Ici‘f—~and let
x = (g, 1, T2, 3) @andy = (vo, y1, Y2, y3) be two linearly independent vectorsin Then
L={f(y)x— f(x)y]| f: k* — klinear}.

fy)x—f(x)y = (Z a;5Poj Z a;Pij, Z a;pP2;, Z a;ps;)-

0
LEMMA 8.14. The pointp(L) lies on the quadridl C P° defined by the equation
Xo1X23 — X2 X13 + Xo3X12 = 0.

PrROOF. This can be verified by direct calculation, or by using that

Tog XT1 To I3

0= i(()) zi zz zz = 2(po1p23 — Po2P13 + PosPi2)

Yo Y1 Y2 Y3

(expansion in terms ¢f x 2 minors). O

LEMMA 8.15. Every point ofl] is of the formp(L) for a unique lineL.
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PROOF. Assumepy; # 0; then the line through the poin{® : po; : po2 : po3) and
(pos : P13 : pes = 0) has Plicker coordinates

(—p01p03 - —Po2pPo3 - —p(Q)g - Po1P23 — Po2P13 - —Po3P13 - —p03p23)
N’
—P0o3P12

= (Pol “Po2 : Po3 P12 : P13 ¢p23)-

A similar construction works when one of the other coordinates is nonzero, and this way
we get inverse maps. O

Thus we have a canonical one-to-one correspondence
{lines inP?} « {points onll};

that is, we have identified the set of lineshf with the points of an algebraic variety. We
may now use the methods of algebraic geometry to study the set. (This is a special case of
the Grassmannians discussedn)

We next consider the set of homogeneous polynomials of degtieel variables,

% 7
F(Xo, X1, Xo, X3) = E QigiyigizXg - - X3 -
i0+1i1+i2+iz=m

LEMMA 8.16. The set of homogeneous polynomials of degtar 4 variables is a vector
space of dimensiof®}™ )

PROOF. See the footnotdg pIp4. O

Lety = (3;m) = 23 and regard®” as the projective space attached
to the vector space of homogeneous polynomials of degrée4 variables (p113). Then

we have a surjective map

P — {surfaces of degree in P*},
L Qigiyigis V(F F= oirinis X0 X1 X5 X3
(‘ o Qigiyigiy - ) = ( )7 Zalollwls 0 ~“*1 %2 <*3 -

The map is not quite injective—for exampl&,?Y and XY? define the same surface—
but nevertheless, we can (somewhat loosely) think of the point¥ afs being (possibly
degenerate) surfaces of degreen P3.

LetT',, C IT x P¥ C P° x P¥ be the set of pair§L, F') consisting of a lind in P? lying
on the surfacé’( Xy, X1, X3, X3) = 0.

THEOREM 8.17. The setl’,, is a closed irreducible subset of x P”; it is therefore a
projective variety. The dimension Bf, is “"Um+5) 4 3

EXAMPLE 8.18. Form = 1, I',,, is the set of pairs consisting of a plandfihand a line on
the plane. The theorem says that the dimensidn @ 5. Since there arec® planes inP3,
and each haso? lines on it, this seems to be correct.
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ProoOF. We first show that’,,, is closed. Let
p(L) = (p01 *Po2 .. ) F = Z aioimiSXéO .. X§3

From [8.18) we see thdt lies on the surfacé’(X,, X1, X5, X3) = 0 if and only if

F(Z bijj . Z bjplj . Z bjpgj . Z bjpgj) = 0, all (bo, - ,b3) S ]{?4‘

Expand this out as a polynomial in thgs with coefficients polynomials in the,;, ;,;, and
pi;'s. ThenF(...) = 0 for all b € k* if and only if the coefficients of the polynomial are alll
zero. But each coefficient is of the form

P(- oy Qigiyinizy -+ - > P01, P02 - )

with P homogeneous separately in thie andp’s, and so the set is closed ih x P¥ (cf.
the discussion ip 5.32).
It remains to compute the dimension Bf,. We shall apply Proposition 8.8 to the

projection map
(L, F) r,C Il xP¥

[k

L IT

For L € II, ¢~ '(L) consists of the homogeneous polynomials of deguemich thatl,
V(F) (taken up to nonzero scalars). After a change of coordinates, we can assuthe that

is the line
XO — O
Xl == Oa

i.e., L = {(0,0,%,%)}. ThenL lies on F(Xy, X1, X5, X3) = 0 if and only if X, or X,
occurs in each nonzero monomial terméini.e.,

Fe (p_l(L> = Qigiqigis = 0 Wheneverio =0=1.

Thusp~1(L) is a linear subspace & ; in particular, it is irreducible. We now compute its
dimension. Recall that’ hasv + 1 coefficients altogether; the number with= 0 = i, is
m + 1, and sop~! (L) has dimension

(m+1)(m+2)(m+ 3)
6

We can now deduce from (8.8) thia, is irreducible and that

_1_(m+1):m(m+16)(m+5) .

dim(T",,) = dim(IT) + dim(p1 (L)) = " 16)<m ) 3

as claimed. ]
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Now consider the other projection

(L,F)  TnCIxP

[k

F P
By definition
Y HF)={L| LliesonV(F)}.
EXAMPLE 8.19. Letm = 1. Thenr = 3 anddimI'; = 5. The projection): 'y — P3 is
surjective (every plane contains at least one line), (8.6) tells udithat~!(F) > 2.

In fact of course, the lines on any plane form a 2-dimensional family, and $@F') = 2
for all F.

THEOREM8.20. Whenm > 3, the surfaces of degree containing no line correspond to
an open subset d@f".

PrROOE We have

m(m + 1)(m + 5) (m—+1)(m+2)(m+ 3)

dimI,,, —dimP¥ = 5 +3— 5 +1=4—(m+1).
Therefore, ifm > 3, thendimI',, < dimP¥, and soy(I',,,) is a proper closed subvariety
of P”. This proves the claim. O]

We now look at the caser = 2. HeredimI',,, = 10, andv = 9, which suggests that
1 should be surjective and that its fibres should all have dimensiénWe shall see that
this is correct.

A quadric is said to b@ondegeneratéf it is defined by an irreducible polynomial of
degree 2. After a change of variables, any nondegenerate quadric will be defined by an
equation

XW=YZ.

This is just the image of the Segre mapping (see|5.21)
(ao . al), (bo . bl) = (Clobo . Clobl . a1b0 . albl) . ]P)l X ]P)l — PS.

There are two obvious families of lines @ x P!, namely, the horizontal family and the
vertical family; each is parametrized By, and so is called pencil of lines They map to
two families of lines on the quadric:

tOX - th d toX - tly
toY - t1W toZ - t1W

Since a degenerate quadric is a surface or a union of two surfaces, we see that every quadric
surface contains a line, that is, that ', — P° is surjective. Thus (8]6) tells us that all

the fibres have dimension 1, and the set where the dimensiorsisl is a proper closed
subset. In fact the dimension of the fibresisl exactly on the set of reducible’s, which

we know to be closed (this was a homework problem in the original course).
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It follows from the above discussion that #f is nondegenerate, thefr!(F) is iso-
morphic to the disjoint union of two lines; ' (F) ~ P! U P!. Classically, one defines a
regulusto be a nondegenerate quadric surface together with a choice of a pencil of lines.
One can show that the set of reguli is, in a natural way, an algebraic védijeind that,
over the set of nondegenerate quadric&ctors into the composite of two regular maps:

Iy —¢~1(S) = pairs,(F,L)with L onF;

!
R = set of reguli;
|
P’ -9 = set of nondegenerate quadrics.

The fibres of the top map are connected, and of dimenkifthey are all isomorphic to
P'), and the second map is finite and two-to-one. Factorizations of this type occur quite
generally (see the Stein factorization theorem (8.24) below).

We now look at the case = 3. Heredim I'; = 19; v = 19 : we have a map

¢: FB — Plg.

THEOREM 8.21. The set of cubic surfaces containing exa&lylines corresponds to an
open subset dP'?; the remaining surfaces either contain an infinite number of lines or a
nonzero finite numbex 27.

ExXAMPLE 8.22. (a) Consider the Fermat surface
X0+ XP+ X3+ X5 =0.

Let ¢ be a primitive cube root of one. There are the following lines on the surfage,
i,j <2

Xo+ (X1 =0 Xo+(Xo=0 Xo+(¢'X3=0
Xo+ ¢’ X3=0 X1 +¢X3=0 X1+ ¢Xe=0

There are three sets, each with nine lines, for a total of 27 lines.
(b) Consider the surface
X1 X0 X5 = X

In this case, there are exactly three lines. To see this, look first in the affine space where
X, # 0—here we can take the equation toXeX, X5 = 1. A line in A® can be written in
parametric formX; = a;t + b;, but a direct inspection shows that no such line lies on the
surface. Now look wher&, = 0, that is, in the plane at infinity. The intersection of the
surface with this plane is given by; X> X3 = 0 (homogeneous coordinates), which is the
union of three lines, namely,

X1:O,X2:O,X3:O

Therefore, the surface contains exactly three lines.
(c) Consider the surface
X+ X5 =0.
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Here there is a pencil of lines:

to X1 = 11 Xo
toXo = —11.X,.

(In the affine space wher&, +# 0, the equation is\® + Y3 = 0, which contains the line
X=tY=—tallt.)

We now discuss the proof of Theorém 8.21)¢If I'; — P'° were not surjective, then
¥(T'3) would be a proper closed subvariety®f, and the nonempty fibres wouddl have
dimension> 1 (by[8.6), which contradicts two of the above examples. Therefore the map
is surjectiv, and there is an open subgétof P where the fibres have dimension O;
outsideU, the fibres have dimensian 0.

Given that every cubic surface has at least one line, it is not hard to show that there is
an open subsét’ where the cubics have exactly 27 lines (see Reid, 1988, pp106-110); in
fact, U’ can be taken to be the set of nonsingular cubics. Accordirig tg|(6.25), the restriction
of ¢ to ¢~ 1(U) is finite, and so we can appl.9) to see that all cubicE ir U’ have
fewer than 27 lines.

REMARK 8.23. The twenty-seven lines on a cubic surface were discovered in 1849 by
Salmon and Cayley, and have been much studied—see A. Henderson, The Twenty-Seven
Lines Upon the Cubic Surface, Cambridge University Press, 1911. For example, it is known
that the group of permutations of the set of 27 lines preserving intersections (that is, such
that LN L # 0 < o(L)No(L') # () is isomorphic to the Weyl group of the root
system of a simple Lie algebra of typg, and hence ha&920 elements.

It is known that there is a set 6fskew lines on a nonsingular cubic surfdce Let L
andZ’ be two skew lines. Then “in general” a line joining a pointto a point onZ’ will
meet the surface in exactly one further point. In this way one obtains an invertible regular
map from an open subset Bf x P! to an open subset df, and hencé/ is birationally
equivalent tdP2.

Stein factorization

The following important theorem shows that the fibres of a proper map are disconnected
only because the fibres of finite maps are disconnected.

THEOREMS8.24. Letp: W — V be a proper morphism of varieties. It is possible to factor
@ into W 3 W £V with o, proper with connected fibres ang finite.

PrROOF. This is usually proved at the same time as Zariski’s main theorewi @hd}” are
irreducible, and/ is affine, theri?”’ is the affine variety with[17’] the integral closure of
E[V]ink(W)). O

29According to Miles Reid (1988, p126) every adult algebraic geometer knows the proof that every cubic
contains a line.
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Exercises 36—38

36. Let GG be a connected algebraic group, and consider an actiéhoof a varietyl’, i.e.,
aregular magr x V' — V such thatg¢')v = g(¢'v) for all g, ¢’ € G andv € V. Show
that each orbi) = Gv of G is nonsingular and open in its closute and thatO ~ O is a
union of orbits of strictly lower dimension. Deduce that there is at least one closed orbit.

37. Let G = GLy, = V, and letG act onV by conjugation. According to the theory of
Jordan canonical forms, the orbits are of three types:
(a) Characteristic polynomiaf? + aX + b; distinct roots.
(b) Characteristic polynomiak? + aX + b; minimal polynomial the same; repeated
roots.
(c) Characteristic polynomiat? + aX + b = (X — «)?; minimal polynomialX — a.
For each type, find the dimension of the orbit, the equations defining it (as a subvariety of
V), the closure of the orbit, and which other orbits are contained in the closure.
(You may assume, if you wish, that the characteristic is zero. Also, you may assume the
following (fairly difficult) result: for any closed subgroui of an algebraic grougy, G/ H
has a natural structure of an algebraic variety with the following properties:> G/H
is regular, and a ma@’/H — V is regular if the composité — G/H — V is regular;
dimG/H = dim G — dim H.)
[The enthusiasts may wish to carry out the analysi<Fby,.]
38. Find 342 lines on the Fermat projective surface

X§+ Xt 4+ X3+ X§=0, d>3, (p,d)=1, pthe characteristic.
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9 Algebraic Geometry over an Arbitrary Field

We now explain how to extend the theory in the preceding sections to a nonalgebraically
closed base field. Fix a field and letk*! be an algebraic closure 6f

Sheaves.

We shall need a more abstract notion of a ringed space and of a sheaf.
A presheafF on a topological spac¥ is a map assigning to each open suliseif
a setF(U) and to each inclusiofti” C U a “restriction” map

a— alU": F(U)— FU;
the restriction mapF(U) — F(U) is required to be the identity map, and if
U'cuv cU,
then the composite of the restriction maps
F(U) = F(U') — FU")

is required to be the restriction map(U) — F(U”). In other words, a presheaf is a
contravariant functor to the category of sets from the category whose objects are the open
subsets of” and whose morphisms are the inclusionsh@&momorphism of presheaves

a: F — F'is a family of maps

a(U): F(U) — F(U)

commuting with the restriction maps.

A presheafF is asheafif for every open coverindU;} of an open subsdt of V/
and family of elements; € F(U;) agreeing on overlaps (that is, such thgt/; N U; =
a;|U; N U, for all 4, 7), there is a unique elemeate F(U) such that; = a|U; for all i. A
homomorphism of sheavesn V' is a homomorphism of presheaves.

If the setsF(U) are abelian groups and the restriction maps are homomorphisms, then
the sheaf is @heaf of abelian groups Similarly one defines aheaf of rings a sheaf of
k-algebras and asheaf of module®ver a sheaf of rings.

Forv € V, thestalk of a sheafF (or presheaf) at is

Fy=lim F(U) (limit over open neighbourhoods af).

In other words, it is the set of equivalence classes of &irs) with U an open neighbour-
hood ofv ands € F(U); two pairs(U, s) and (U’, s') are equivalent it|U"” = s|U” for
some open neighbourhodd’ of v contained iU N U".

A ringed spacas a pair(V, O) consisting of topological spadeé together with a sheaf
of rings. If the stalkO, of O atv is alocal ring for allv € V, then(V, O) is called docally
ringed space
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A morphism(V,0) — (V' O') of ringed spacess a pair(y, 1) with ¢ a continuous
mapV — V' andy a family of maps

D(U): O'(U') — O~ (U")), U openinV’,

commuting with the restriction maps. Such a pair defines homomorphism oﬁ/rmgg;(v) —
O, forallv € V. A morphism of locally ringed spaces a morphism of ringed space such

that), is a local homomorphism for ail.

Extending scalars

Recall that a ringd is reduced if it has no nonzero nilpotentsAlfs reduced, ther @, k!
need not be reduced. Consider for example the algébrak[ X, Y]/(X? +Y? +a) where
p = char(k) anda ¢ kP. ThenA is reduced (even an integral domain) becakige-Y? +a
is irreducible ink[ X, Y], but

AR k' 2 VX, Y]/(XP +YP 4+ a) = kU [X,Y]/(X +Y +a)?), o? = a,

which is not reduced becauset y + a # 0 but (z + y + «)? = 0.

The next proposition shows that problems of this kind arise only because of insepara-
bility. In particular, they don’t occur ik is perfect.

Recall that thecharacteristic exponenof a field isp if £ has characteristig # 0, and
itis 1 is k£ has characteristic zero. Fpequal to the characteristic exponentiptet

kv = {a € k| oP € k}.
It is a subfield oft?, andk» = k if and only if k is perfect.

PROPOSITION9.1. Let A be a reduced finitely generatédalgebra. The following state-
ments are equivalent:

(@) A®y kv is reduced,;

(b) A ®; k' is reduced;

(c) A®y K isreduced for all fieldd< D .

PrROOF. Clearly c=-b=—-a. The implication a=-c follows from Zariski and Samuel
1958, 111.15, Theorem 39 (localizé at a minimal prime to get a field). O

Even whenA is an integral domain and ®,, £ is reduced, the latter need not be an
integral domain. Suppose, for example, thiats a finite separable field extension fof
ThenA ~ k[X]/(f(X)) for some irreducible separable polynomjfdlX ), and so

Ak = KX/ (F(X)) = &/ (TT(X = a:) = TR/ (X - a)

(by the Chinese remainder theorem). This shows thatdbntains a finite separable field
extension ofk, then A ®,, k%! can't be an integral domain. The next proposition gives a
converse.
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PROPOSITION9.2. Let A be a finitely generatefl-algebra, and assume that is an inte-
gral domain, and thatl @, k%' is reduced. Thenl @, £*' is an integral domain if and only
if & is algebraically closed i (i.e., ifa € A is algebraic overt, thena € k).

ProokE Ibid. 111.15. O]

After these preliminaries, it is possible rewrite all of the preceding sectionshwitht
necessarily algebraically closed. | indicate briefly how this is done.

Affine algebraic varieties.

An affine k-algebra A is a finitely generated-algebraA such thatd ®; k* is reduced.
SinceA C A ®y, k¥, A itself is then reduced. Propositipn B.1 has the following conse-
guence.

COROLLARY 9.3. Let A be a reduced finitely generatédalgebra.
(a) If k is perfect, them is an affinek-algebra.
(b) If Ais an affinek-algebra, thend ®;, K is reduced for all field9< containingk.

Let A be a finitely generatedl-algebra. The choice of a sgty, ..., z,,} of generators
for A, determines isomorphisms

A K1, o 2] 22 KX o Xl (Fry ooos fon)s

and
A kM 2 kX0, X0l (fLy s fn)-

Thus A is an affine algebra if the elemenfs, ..., f,, of k[ X1, ..., X,,] generate aadical
ideal when regarded as elementsi®f X, ..., X,,]. From the above remarks, we see that
this condition implies that they generate a radical idedl[iN,, ..., X,,], and the converse
implication holds wher# is perfect.

Let A be an affinek-algebra. Defingpecm(A) to be the set of maximal ideals i#
endowed with the topology having as basis the &tg), D(f) = {m | f ¢ m}. There
is a unique sheaf of-algebras? onspecm(A) such thatO(D(f)) = Ay for all f (recall
that A, is the ring obtained fromt by inverting f). HereQO is a sheaf in the above abstract
sense — the elements 6f(U) are not functions o/ with values ink. If f € A and
m, € specm(A), then we can defing(v) to be the image of in the x(v) l A/m,,
and it does make sense to speak of the zero sgtiofi”. Whenk is algebraically closed,
k = k(v) and we recover the definition §2.

The ringed space

Specm(A) = (specm(A), O)

is called araffine (algebraic) varietyoverk. The stalk atn € V is the local ringA4,,, and
soSpecm(A) is a locally ringed space.

A morphism of affine (algebraic) varietiesverk is defined to be a morphis(¥, Oy ) —
(W, Ow ) of ringed spaces df-algebras — it is automatically a morphism of locally ringed
spaces.
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A homomorphism of-algebrasA — B defines a morphism of affinevarieties,
Specm B — Specm A
in a natural way, and this gives a bijection:
Homy.-ag(A, B) = Homy (W, V), V =Specm A, W = Specm B.

ThereforeA — Specm(A) is an equivalence of from the category of affin@lgebras to

that of affine algebraic varieties overits quasi-inverse i¥ — k[V] 4 L'(V,Oy).
Let

A= k[Xl, ...,Xm]/a,
B =k[Yi,...,Y,]/b.

A homomorphismA — B is determined by a family of polynomial®} (Y1, ..., Y,), ¢ =
1,...,m; the homomorphism sendsto P,(y, ..., y,); in order to define a homomorphism,
the P, must be such that

Fea= F(P,..,P,) €b;

two families Py, ..., P,, and @, ..., Q,, determine the same map if and onlyff = Q;
mod b for all 7.
Let A be an affing:-algebra, and let” = Specm A. For any fieldK D k, A®, K is an

affine algebra ovef, and hence we get a variet a Specm(A ®;, K) over K. We say
that Vi has been obtained from by extension of scalar®r extension of the base field
Note that if A = k[Xq,..., X,.|/(f1, ..., fm) thenA @, K = K[Xq,..., X,.]/(f1, -, fm)-
The mapV — Vi is a functor from affine varieties ovérto affine varieties ovek'.

Let Vo = Specm(A4,) be an affine variety ovek, and letlW = V(b) be a closed

subvariety ofl/ a Vort. ThenWW arises by extension of scalars from a closed subvariety
W, of V; if and only if the idealb of A, ®, k? is generated by elements. Except when
k is perfect, this is stronger than sayilig is the zero set of a family of elements 4f

Algebraic varieties.

A ringed spacqV, O) is aprevarietyover k if there exists a finite coveringU;) of V
by open subsets such th@df;, O|U;) is an affine variety ovek for all i. A morphism of
prevarietiesoverk is a morphism of ringed spaces/oflgebras.

A prevarietyl overk is separatedf for all pairs of morphisms ok-varieties, 3: Z —
V, the subset o on whicha and5 agree is closed. Aarietyis a separated prevariety.

Products.

Let A andB be finitely generateg-algebras. The tensor product of two redugeslgebras
may fail to be reduced — consider for example,

A=k[X,Y]/(XP+Y?+q), B=k[Z]/(Z"—aq), adk"
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However, if A and B are affinek-algebras, thenl @, B is again an affiné-algebra. To see
this, note that (by definition)d ®, k* and B ®,, k*' are affinek-algebras, and therefore so
also is their tensor product ovét' (3.16); but

(A k™) @ (k" @ B) =2 (A @y k™) @4t k) @3 B = (A @y, B) @y, k™.

Thus we can define the product of two affine algebraic varieties:= Specm A and
W = Specm B, overk by

\% Xk W = Specm(A (S B)

It has the universal property expected of products, and the definition extends in a natural
way to (pre)varieties.

Just as in[(3.18), the diagonalis locally closed in x V, and it is closed if and only
if V' is separated.

Extension of scalars (extension of the base field).

Let V be a variety ovek, and letK be a field containing:.. There is a natural way of
defining a variety/y, said to be obtained from by extension of scalargor extension of
the base fielt if V' is a union of open affines] = | U;, thenV = |J U; x and theU,
are patched together the same way asltheThe dimension of a variety doesn’t change
under extension of scalars.

WhenV is a variety ovek?® obtained from a variety overk by extension of scalars,
we sometimes call; a model forV over k. More precisely, anodelof V' overk is a
variety V, overk together with an isomorphisg: Vj ja — V.

Of course,V need not have a model over— for example, an elliptic curve

E:Y*Z=X*+aXZ?+0b7°
over k2! will have a model ovet: C k? if and only if its j-invariant;j(E) a %
lies in k. Moreover, wherl/ has a model ovek, it will usually have a large number of
them, no two of which are isomorphic over Consider, for example, the quadric surface
in P2overQ?,

VioXPH YR+ 22+ WP =0,

The models ovel” overQ are defined by equations
aX?+bY +cZ2+dW?=0,a,b,¢,d € Q.

Classifying the models of over(Q is equivalent to classifying quadratic forms o¥giin
4 variables. This has been done, but it requires serious number theory. In particular, there
are infinitely many (see Chapter VIl of my notes on Class Field Theory).

EXERCISE9.4. Show directly that, up to isomorphism, the cuk/&+ Y2 = 1 overC has
exactly two models oveR.
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The points on a variety.

Let V be a variety ovelk. A point of V' with coordinates ink, or apoint of V' ra-
tional over k, is a morphismSpecmk — V. For example, ifl is affine, sayl’ =
Specm(A), then a point ofl” with coordinates irk is a k-homomorphism4A — k. If
A = k[Xy, ..., X,]/(f1, -, fm), then to give &-homomorphismA — £ is the same as to
give ann-tuple (ay, ..., a,,) such that

filar, ..,a,) =0, i=1,..,m.
In other words, ifl” is the affine variety ovet defined by the equations
filXe,...,X,) =0, i=1,....m

then a point of” with coordinates irk is a solution to this system of equationskinWe
write V (k) for the points ofl” with coordinates irk.

We extend this notion to obtain the set of poilt§R) of a varietyl” with coordinates
in any k-algebraR. For example, whely = Specm(A), we set

V(R) = Homk_mg(A, R)

Again, if
A= /{;[Xl, ,Xn]/(fl, ey fm)a

then
V(R) ={(a1,....,an) € R" | fila1,...,a,) =0,i=1,2,....m}.

What is the relation between the elementd/oénd the elements df (k)? Suppose
V is affine, sayl’ = Specm(A). Letv € V. Thenwv corresponds to a maximal ideal
m, in A (actually, itis a maximal ideal), and we write(v) for the residue field?, /m,,.
Thenk(v) is a finite extension ok, and we call the degree af(v) over k the degreeof
v. Let K be a field algebraic over. To give a point oflV” with coordinates ink is to
give a homomorphism of-algebrasA — K. The kernel of such a homomorphism is a
maximal ideaim, in A, and the homomorphism$ — £ with kernelm, are in one-to-one
correspondence with thehomomorphisms:(v) — K. In particular, we see that there is
a natural one-to-one correspondence between the poiftswth coordinates irk and the
pointsv of V with x(v) = k, i.e., with the points of V' of degreel. This statement holds
also for nonaffine algebraic varieties.

Assume now that is perfect. Thek®-rational points ofi” with imagev € V are in
one-to-one correspondence with théomomorphisms;(v) — k¥ — therefore, there are
exactlydeg(v) of them, and they form a single orbit under the actioaf(k?'/k). Thus
there is a natural bijection froi to the set of orbits fo6al(k2/k) acting onV/ (k).

Local Study

LetV = V(a) C A", and leta = (fy, ..., f). Thesingular locusVj,, of V' is defined by
the vanishing of thén — d) x (n — d) minors of the matrix
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9h Oh .. 9N

o1 Oxo oxr

Ofs

0
JCLC(fl,fz...,fr) = 9:01

ot of

ox1 oz,

We say thav is nonsingularif some(n — d) x (n —d) minor doesn’t vanish at. We sayl’
is nonsingular if its singular locus is empty (i.&,, iS the empty variety or, equivalently,
Vaing (k) is empty) . Obviously is nonsingulak=> V. is nonsingular. Note that the
formation ofV,;,, commutes with extension of scalars. Therefore (Thegrenj 4.23) it is a
proper subvariety oV

If P € V is nonsingular, thei®p is regular, but the converse fails. For example, let
k be a field of characteristip # 0,2, and leta be a nonzero element éfthat is not a
p'" power. Thenf(X,Y) = Y2 + X? — ais irreducible, and remains irreducible ovet.
Therefore,

A= KX, Y]/(F(X.Y)) = k[z.y]

is an affinek-algebra, and we let” be the curvéspecmA. One checks that” is normal,
and hence is regular by Atiyah and MacDonald 1969, 9.2. However,

af _ of _

ax % gy T

and so(a%, 0) € Ving(k™): the pointP in V corresponding to the maximal ide@l) of A
is singular even thoug®p is regular.

The relation between “nonsingular” and “regular” is examined in detail in: Zariski,
0., The Concept of a Simple Point of an Abstract Algebraic Variety, Transactions of the
American Mathematical Society, Vol. 62, No. 1. (Jul., 1947), pp. 1-52.

Let V' be an irreducible variety of dimensiahover k. The proof of Lemma 4.25 can
be modified to show that’ is birationally equivalent to a hyperplaré in A?** defined
by a polynomialf (X, ..., X4.1) that is separable when regarded as a polynomial,in
with coefficients ik (X, ..., X;). Now, a similar proof to that of Theorgm 4]23 shows that
the singular locus of is a nonempty open subset Bf Note also that, for a sufficiently
generall-tuple(ay, ..., aq), f(a1,...,aq, Xq.1) Will be a separable polynomial. It follows
thatV has a point with coordinates in the separable closure of

Projective varieties; complete varieties.

In most of this sectiork can be allowed to be an arbitrary field. For example, the definitions

of the projective space and Grassmannians attached to a vector space are unchanged. An
algebraic varietyy over k is completeif for all varieties W over k, the projection map

V x W — W is closed. IfV is complete, then so also 1§ for any field K D k. A
projective variety is complete.
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Finite maps.

As noted in[(6.1p), the Noether normalization theorem requires a different proof when the
field is finite. Otherwisek can be allowed to be arbitrary.

Dimension theory

The dimension of a variety over an arbitrary field: can be defined as in the case that
is algebraically closed. The dimensionfis unchanged by extension of the base field.
Most of the results of this section hold for arbitrary base fields.

Regular maps and their fibres

Again, the results of this section hold for arbitrary fields.
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10 Divisors and Intersection Theory

In this sectionk is an arbitrary field.

Divisors

Recall that a normal ring is an integral domain that is integrally closed in its field of frac-
tions, and that a variety” is normal if O, is a normal ring for alv € V. Equivalent
condition: for every open connected affine sulisetf V', I'(U, Oy ) is a normal ring.

REMARK 10.1. LetV be a projective variety, say, defined by a homogeneous Ring
WhenR is normal,V is said to beprojectively normal If V' is projectively normal, then it
is normal, but the converse statement is false.

Assume now that” is normal and irreducible.

A prime divisoron V' is an irreducible subvariety df of codimensiori. A divisoron
V is an element of the free abelian grobps (V') generated by the prime divisors. Thus a
divisor D can be written uniquely as a finite (formal) sum

D= Z”ZZZ” n; € Z, Z; aprime divisor orV.

The support|D| of D is the union of theZ; corresponding to nonzerg’s. A divisor is
said to beeffective(or positive if n; > 0 for all i. We get a partial ordering on the divisors
by definingD > D’ to meanD — D’ > 0.

Becausé/ is normal, there is associated with every prime divigoon V' a discrete
valuation ringOQ_. This can be defined, for example, by choosing an open affine subvariety
U of V such that/ N Z # (); thenU N Z is a maximal proper closed subset(d6f and so
the idealp corresponding to it is minimal among the nonzero ideal&of I'(U, O); so
R, is a normal ring with exactly one nonzero prime idgal — it is therefore a discrete
valuation ring (Atiyah and MacDonald 9.2), which is defined talhe More intrinsically
we can defing; to be the set of rational functions dnthat are defined an open sub&et
of V withU N Z # 0.

Let ord; be the valuation ok(V)* — Z with valuation ringQz. The divisor of a
nonzero element of k(1) is defined to be

div(f) = Zordz(f) - Z.

The sum is over all the prime divisors of, but in factord,(f) = 0 for all but finitely
many Z’s. In proving this, we can assume tHatis affine (because it is a finite union of
affines), sayy’ = Specm(R). Thenk(V) is the field of fractions of?, and so we can write
f =g/hwith g,h € R, anddiv(f) = div(g) — div(h). Therefore, we can assunfez R.
The zero set off, V(f) either is empty or is a finite union of prime divisoig, = | J Z;
(sed 7.p) andrd(f) = 0 unlessZ is one of theZ,;.

The map

frdiv(f): k(V)* — Div(V)
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is a homomorphism. A divisor of the forriv(f) is said to beprincipal, and two divisors
are said to béinearly equivalent denotedD ~ D', if they differ by a principal divisor.

WhenV is nonsingular, thé&icard groupPic(V') of V is defined to be the group of
divisors onVV modulo principal divisors. (Later, we shall defiRé:(1') for an arbitrary va-
riety; whenV is singular it will differ from the group of divisors modulo principal divisors,
even wherl/ is normal.)

ExAMPLE 10.2. LetC be a nonsingular affine curve corresponding to the affiadgebra
R. Becaus&” is nonsingular,R is a Dedekind domain. A prime divisor aii can be
identified with a nonzero prime divisor iR, a divisor onC' with a fractional ideal, and
Pic(C) with the ideal class group at.

Let U be an open subset &f, and letZ be a prime divisor oi/. ThenZ N U is either
empty or is a prime divisor of/. We define theestriction of a divisorD = > "n;Z onV
to U to be

Dly= Y nz-ZNU.
ZNU#D

WhenV is nonsingular, every divisab is locally principal, i.e., every point? has an
open neighbourhood such that the restriction dd to U is principal. It suffices to prove
this for a prime divisorZ. If P is not in the support oD, we can takef = 1. The prime
divisors passing throug are in one-to-one correspondence with the prime idgaié
height1 in Op, i.e., the minimal nonzero prime ideals. Our assumption implies(thais
aregular local ring. Itis a (fairly hard) theorem in commutative algebra that a regular local
ring is a unique factorization domain. Itis a (fairly easy) theorem that a Noetherian integral
domain is a unique factorization domain if every prime ideal of heigdprincipal (Nagata
1962, 13.1). Thus is principal inO,, and this implies that it is principal ifi(U, Oy) for
some open affine sét containingP (see alsp 7.13).

If D|y = div(f), then we callf alocal equationfor D onU.

Intersection theory.

Fix a nonsingular variety” of dimensionn over a fieldk, assumed to be perfectLet
Wy and W, be irreducible closed subsets 6f and letZ be an irreducible component of
W1 N Ws,. Then intersection theory attaches a multiplicityZoWe shall only do this in an
easy case.

Divisors.

Let V be a nonsingular variety of dimensianand letDy, .. ., D,, be effective divisors on
V. We say thatDy, ..., D, intersect properlyat P € |D;| N ... N |D,| if Pis an isolated
point of the intersection. In this case, we define

(Dy ... Dy)p =dimp Op/(f1,-- -, fa)

wheref; is a local equation foD; nearP. The hypothesis o implies that this is finite.
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ExamMPLE 10.3. In all the examples, the ambient variety is a surface.
(a) Let Z; be the affine plane curvi? — X3, let Z, be the curvel’ = X2, and let
P =(0,0). Then

(Zy - Zo)p = dimk[X, Y] xy)/(Y — X*,Y? = X?) = dim k[X]/(X* — X?) = 3.

(b) If Z; and Z, are prime divisors, thef\Z; - Z,)p = 1 if and only if f;, f, are local
uniformizing parameters a. Equivalently,(Z, - Z;)p = 1 if and only if Z; and Z, are
transversakat P, that is, 7z, (P) N Tz, (P) = {0}.

(c) Let D, be thez-axis, and letD, be the cuspidal cubit™? — X?3. For P = (0,0),
(D1 - Dy)p = 3.

(d) In general(Z; - Z5)p is the “order of contact” of the curves, andZs.

We say thatD+, . .., D,, intersect properlyif they do so at every point of intersection of
their supports; equivalently, D, |N...N|D,| is afinite set. We then define the intersection

number
(Dy-...-Dy)= > (Di-...-Dy)p.

Pe|D|N...N|Dy|

ExAMPLE 10.4. LetC be a curve. IfD = > n; P;, then the intersection number

(D) = an[k(Pz> : kJ.
By definition, this is the degree d@?.

Consider a regular map: W — V' of connected nonsingular varieties, and lebe
a divisor onV whose support does not contain the imagéiof There is then a unique
divisor a*D on W with the following property: if D has local equatiorf on the open
subsetU of V, thena*D has local equatiorf o o ona~U. (Us€ 7.2 to see that this does
define a divisor oV; if the image of is disjoint from|D|, thena*D = 0.)

ExampPLE 10.5. LetC be a curve on a surfadé, and leto.: C' — C' be the normalization
of C'. For any divisorD onV/,

(C- D) =dega™D.

LEMMA 10.6 (ADDITIVITY ). Let Dy, ..., D,, D be divisors orV/. If (D; -...- D,)p and

(D; -...- D)p are both defined, then so also(iB; - ...- D, + D)p, and
(Dy+...-Dy+D)p=(Dy-...-Dy)p+ (Dy-...-D)p.
PROOF. One writes some exact sequences. See Shafarevich 1994, IV.1.2. O

Note that in intersection theory, unlike every other branch of mathematics, we add first,
and then multiply.

Since every divisor is the difference of two effective divisors, Leimal10.1 allows us to
extend the definition of D, - .. .- D,,) to all divisors intersecting properly (not just effective
divisors).
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LEMMA 10.7 (INVARIANCE UNDER LINEAR EQUIVALENCE). Assumé/ is complete. If
D,, ~ D!, then
(Dy-...-D,)=(Dy-...-D.).

PROOF. By additivity, it suffices to show thatD; -. . .- D,,) = 0if D, is a principal divisor.

Forn = 1, this is just the statement that a function has as many poles as zeros (counted
with multiplicities). Suppose = 2. By additivity, we may assume that, is a curve, and

then the assertion follows from Example 70.5 because

D principal = oD principal.

The general case may be reduced to this last case (with some difficulty). See Shafare-

vich 1994, IV.1.3. O

LEMMA 10.8. For anyn divisors Dy, ..., D, on ann-dimensional variety, there exists

divisors D}, ..., D) intersect properly.

PROOF. See Shafarevich 1994, IV.1.4. O
We can use the last two lemmas to defijiig - ... - D,,) for any divisors on a complete

nonsingular variety: chooseD’, ..., D, as in the lemma, and set

(Dy-...-D) = (D, -...- D).

EXAMPLE 10.9. LetC be a smooth complete curve o@rand leto: C' — C' be aregular
map. Then the Lefschetz trace formula states that

(A-Ty) = Tr(a|H(C,Q)—Tr(a|H'(C,Q)+Tr(a| H*(C, Q).

In particular, we see thdtA - A) = 2 — 2g, which may be negative, even thoughis an
effective divisor.

Leta: W — V be a finite map of irreducible varieties. The(il) is a finite extension
of £(V'), and the degree of this extension is called diegreeof «. If k(W) is separable
over k(V) andk is algebraically closed, then there is an open subsef V' such that
a~1(u) consists exactlyl = deg o points for allu € U. In fact, a~!(u) always consists
of exactlydeg « points if one counts multiplicities. Number theorists will recognize this as
the formula) e, f; = d. Here thef; arel (if we takek to be algebraically closed), argd
is the multiplicity of thei™" point lying over the given point.

A finite mapa: W — V isflat if every point P of VV has an open neighbourhoéd
such thaf"(a~'U, Oy ) is a freel’ (U, Oy )-module — it is then free of rantteg «.

THEOREM10.10.Leta: W — V be a finite map between nonsingular varieties. For any
divisors Dy, ..., D,, onV intersecting properly at a poin®P of V,

> (@Dy-...-a’D,) =dega- (D ...  Dy)p.
a(Q)=P
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PROOF. After replacingl’ by a sufficiently small open affine neighbourhood®yfwe may
assume that: corresponds to a map of rings— B and thatB is free of rankd = deg a
as anA-module. Moreover, we may assume that ..., D,, are principal with equations
fi, ..., fanonV, andthatP is the only pointinD,|N...N|D,|. Thenmp is the only ideal
of A containinga = (f1,..., f.). SetS = A~ mp; then

S™tA/Sta=S"1(AJa) = AJa
becausel/a is already local. Hence

Similarly,
(@*Dy-...-a"Dy)p=dimB/(fioa,..., fpoaq).

But B is a freeA-module of rankd, and

A/(flv~--afn)®AB:B/(floaa"'>fnoa)'

Therefore, asi-modules, and hence &svector spaces,

B/(froa,..., faoa) = (A/(fi, - fa))
which proves the formula. ]

ExampPLE 10.11. Assumé is algebraically closed of characteristicZ 0. Leta: A! —
A' be the Frobenius map— c*. It corresponds to the magX| — k[X], X — X?,
on rings. LetD be the divisore. It has equationX — c on A!, anda* D has the equation
X? —c= (X —~)?. Thusa*D = p(~), and so

deg(a"D) = p = p - deg(D).

The general case.

Let V be a nonsingular connected varietycycle of codimension onV' is an element of
the free abelian group” (V') generated by the prime cycles of codimension

Let Z; andZ, be prime cycles on any nonsingular varigétyand leti’” be an irreducible
component ofZ; N Z,. Then

dim Z; +dim Zs < dim V 4 dim W,

and we say’; andZ; intersect properlyat I/ if equality holds.

Define Oy, to be the set of rational functions dn that are defined on some open
subsetl/ of V with U N W # () — it is a local ring. Assume thaf; and Z, intersect
properly atlV, and letp; andp, be the ideals irOyy, corresponding taZ; and Z; (so
p; = (fi1, fa, ..., f,) if the f; defineZ; in some open subset df meetingliV’). The example
of divisors on a surface suggests that we should set

(Z1 - Zo)w = dimy, Oy /(p1, p2),
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but examples show this is not a good definition. Note that

Ovw/(p1,p2) = Ovw /p1 @0y Ovw /P2
It turns out that we also need to consider the higher Tor terms. Set

dim V'

X2(O/p1,0/ps) = Z (=1)" dimy (Tory (O/p1, O/ps)

1=0

whereO = Oy . Itis aninteger> 0, and= 0 if Z; andZ, do not intersect properly at
W. When they do intersect properly, we define

(Zy - Za)w =mW, m=x°(0/p1,0/ps).

When Z; and Z, are divisors on a surface, the higher Tor’s vanish, and so this definition
agrees with the previous one.

Now assume that is projective. It is possible to define a notion of rational equivalence
for cycles of codimension: let W be an irreducible subvariety of codimensionl, and let
f € k(W)*; thendiv(f) is a cycle of codimensionon V' (sincel’ may not be normal, the
definition ofdiv(f) requires care), and we lét'(V')’ be the subgroup af” (V') generated
by such cycles a8/’ ranges over all irreducible subvarieties of codimensien1 and f
ranges over all elements bf11)*. Two cycles are said to brationally equivalentif they
differ by an element o (V')’, and the quotient of” (V') by C" (V)" is called theChow
group CH" (V). A discussion similar to that in the case of a surface leads to well-defined
pairings

CH"(V)x CH*(V) — CH" (V).

In general, we know very little about the Chow groups of varieties — for example,
there has been little success at finding algebraic cycles on varieties other than the obvious
ones (divisors, intersections of divisors,...). However, there are many deep conjectures
concerning them, due to Beilinson, Bloch, Murre, and others.

We can restate our definition of the degree of a variety'inas follows: a closed
subvarietyl” of P™ of dimensiond has degre¢V - H) for any linear subspace @ of
codimensiond. (All linear subspaces df"of codimension are rationally equivalent, and
so(V - H) is independent of the choice &f.)

REMARK 10.12. (Bezout's theorem). A divisdp on P" is linearly equivalent ob H,
whered is the degree oD and H is any hyperplane. Therefore

(Dy - D,) =68,

whered; is the degree ob;. For example, ifC; andC; are curves irP? defined by irre-
ducible polynomialg; and F, of degree®; andd, respectively, theiw; andC; intersect
in 910 points (counting multiplicities).
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Exercises 39—-42

In the remaining problems, you may assume the characteristic is zero if you wish.

39. LetV = V(F) C P, whereF is a homogeneous polynomial of degresvithout
multiple factors. Show that” has degreé according to the definition in the notes.

40. Let C be a curve inA? defined by an irreducible polynomi@l(X,Y"), and assumé’
passes through the origin. Théh= F,, + F,,+1 +---, m > 1, with F},, the homogeneous
part of F' of degreem. Leto: W — A? be the blow-up ofA? at (0, 0), and letC’ be the
closure ofe~*(C' \ (0,0)). LetZ = ¢7%(0,0). Write F,,, = [];_,(a; X + b;Y)", with
the (a;: b;) being distinct points o', and show tha€”’ N Z consists of exactly distinct
points.

41. Find the intersection number @¥,: Y? = X" andD,: Y? = X, r > s > 2, at the
origin.
42. Find Pic(V') whenV is the curvey? = X3,
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11 Coherent Sheaves: Invertible Sheaves

In this sectionk is an arbitrary field.

Coherent sheaves

LetV = Specm A be an affine variety over, and let) be a finitely generated-module.
There is a unique sheaf ¢t,-modulesM onV such that, for allf € A,

L(D(f),M)=M; (=A;®4M).

Such anDy-module M is said to becoherent A homomorphismV/ — N of A-modules
defines a homomorphism — N of Oy -modules, and/ — M is a fully faithful functor
from the category of finitely generatedmodules to the category of coheré&ht-modules,
with quasi-inverseM — I'(V, M).

Now consider a variety’. An Oy-moduleM is said to becoherentif, for every open
affine subset/ of V', M|U is coherent. It suffices to check this condition for the sets in an
open affine covering of .

For example Oy, is a coherentDy-module. AnOy-module M is said to beocally
free of rank n if it is locally isomorphic toO}, i.e., if every pointP € V' has an open
neighbourhood such that!|U ~ Of.. A locally free Oy -module of rank: is coherent.

Letv € V, and letM be a coheren®,-module. We define a(v)-module M (v) as
follows: after replacing” with an open neighbourhood of we can assume that it is affine;
hence we may suppose thHat= Specm(A), thatv corresponds to a maximal idealin A
(so thatx(v) = A/m), and M corresponds to thd-module)M ; we then define

M) =M Q4 k(v) = M/mM.
It is a finitely generated vector space ow¢r). Don’t confuseM (v) with the stalkM,, of
M which, with the above notations, id,, = M ®4 A,. Thus
M) = M,/mM, = k(v) ®a, Man.
Nakayama’s lemma (4.1.8) shows that
M(v)=0= M, =0.
Thesupportof a coherent shea¥1 is
Supp(M) = {v € V | M(v) # 0} = {v € V | M, # 0}.

Supposé/ is affine, and that\ corresponds to thd-module)M. Leta be the annihilator
of M:
a={feAl| fM =0}
ThenM/mM # 0 <= m D a (for otherwiseA/mA contains a nonzero element annihi-
lating M /mAf), and so
Supp(M) = V(a).

Thus the support of a coherent module is a closed subsét of

Note that if M is locally free of rankn, then M (v) is a vector space of dimension
for all v. There is a converse of this.
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ProPoOsITION11.1. If M is a coherentDy-module such that1(v) has constant dimen-
sionn for all v € V, thenM is a locally free of ranka.

PROOF. We may assume thét is affine, and that\1 corresponds to the finitely generated
A-module M. Fix a maximal ideain of A, and letz4, ..., z, be elements of\/ whose
images inM /mM form a basis for it over(v). Consider the map

v: A" —= M, (ay,...,a,)— Z@i%‘-

Its cokernel is a finitely generatettmodule whose support does not contairTherefore
there is an element € A, f ¢ m, such thaty defines a surjectionl} — M;. After
replacingA with A, we may assume thatitself is surjective. For every maximal ideal

n of A, the map(A/n)" — M /nM is surjective, and hence (because of the condition on
the dimension ofM (v)) bijective. Therefore, the kernel efis contained im™ (meaning

n x --- x n) for all maximal ideals in A, and the next lemma shows that this implies that
the kernel is zero. O

LEMMA 11.2. Let A be an affing:-algebra. Then
[ m = 0 (intersection of all maximal ideals i).

PROOF. Whenk is algebraically closed, we showéd (3.12) that this follows from the strong
Nullstellensatz. In the general case, consider a maximal idedlA @, k. Then

AJ(mNA) = (Ao k) /m =k,

and soA/m N A is an integral domain. Since it is finite-dimensional okeit is a field,
and som N A is a maximal ideal irA. Thus if f € A is in all maximal ideals of4, then its
image inA ® k¥ is in all maximal ideals of4, and so is zero. ]

For two coheren®y,-modulesM and\/, there is a unique cohere®,-moduleM®o,,
N such that
F(UvM Xoy N) = F(U>M) Qrw,ov) F(U’ N)

for all open affined/ C V. The reader should be careful not to assume that this formula
holds for nonaffine open subséfs(see example 11.4 below). For a suct aone writes
U = U U; with theU, open affines, and defin€gU, M ®o,, N) to be the kernel of

[[rU, Mo, N) = T[T, M @0, N).
% 1,7
DefineHom (M, N) to be the sheaf ol such that
(U, Hom(M,N)) = Homo, (M, N)

(homomorphisms o®;,-modules) for all oped/ in V. It is easy to see that this is a sheaf.
If the restrictions ofM and N to some open affing correspond tod-modulesM and N,
then

(U, Hom(M,N)) = Homyu (M, N),

and soHom (M, N) is again a coherert, -module.
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Invertible sheaves.

An invertible sheafon V' is a locally free©,-module£ of rank1. The tensor product of
two invertible sheaves is again an invertible sheaf. In this way, we get a product structure
on the set of isomorphism classes of invertible sheaves:

2] L2 Lo L.

The product structure is associative and commutative (because tensor products are associa-
tive and commutative, up to isomorphism), d4¥,] is an identity element. Define

LY = Hom(L,Oy).

Clearly,£" is free of rankl over any open set whei&is free of rankl, and sol" is again
an invertible sheaf. Moreover, the canonical map

L'®L— Oy, (fz)— f(z)

is an isomorphism (because it is an isomorphism over any open subset A/iefeee).
Thus
[£¥][£] = [Ov].

For this reason, we often writé~! for £V.

From these remarks, we see that the set of isomorphism classes of invertible sheaves on
V is a group — it is called theicard group Pic(V), of V.

We say that an invertible shedfis trivial if it is isomorphic toOy,, — thenL represents
the zero element iRic(V).

PROPOSITION11.3. An invertible sheaf’ on a complete variety’ is trivial if and only if
both it and its dual have nonzero global sections, i.e.,
T(V,L) #0#T(V,LY).
PROOF. We may assume thaf is irreducible. Note first that, for an§,,-module M on
any varietyl’, the map
Hom(Oy, M) - T'(V,M), aw— a(l)

is an isomorphism.
Next recall that the only regular functions on a complete variety are the constant func-
tions (se¢ 5.8 in the case thats algebraically closed), i.e[;(V,Oy) = k&’ wherek’ is
the algebraic closure df in £(V'). HenceHom(Oy, Oy ) = k', and so a homomorphism
Oy — Oy is either0 or an isomorphism.
We now prove the proposition. The sections define nonzero homomorphisms

s51: Oy — L, s9: 0y — LY.

We can take the dual of the second homomorphism, and so obtain nonzero homomorphisms

v
s So
Oy = L > Oy.

The composite is nonzero, and hence an isomorphism, which shows)tleasurjective,
and this implies that it is an isomorphism (for any ridga surjective homomorphism of
A-modulesA — A is bijective becausé must map to a unit). O
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Invertible sheaves and divisors.

Now assume that” is nonsingular and irreducible. For a divisbron V/, the vector space
L(D) is defined to be

L(D)={f € k(V)* |div(f)+ D > 0}.

We make this definition local: definé&(D) to be the sheaf ol such that, for any open set
U,

LU, L(D)) ={f € k(V)* | div(f)+ D >00onU} U{0}.
The condition div(f)+ D > 0 onU” means that, itD = > n;Z, thenord;(f)+nz >0
forall Z with ZNU # 0. Thus,I'(U, £(D)) is aT’'(U, Oy)-module, and i C U’, then
LU, L(D)) Cc I'(U, L(D)). We define the restriction map to be this inclusion. In this way,

L(D) becomes a sheaf @#,-modules.
SupposeD is principal on an open subsét sayD|U = div(g), g € k(V)*. Then

LU, L(D)) = {f € (V)" | div(fg) = 0onU} U {0}.

Therefore,
F(U7‘C(D)) _)P(U7OV>a f'_> fga

is an isomorphism. These isomorphisms clearly commute with the restriction maps for
U’ C U, and so we obtain an isomorphis6i{D)|U — Op. Since everyD is locally
principal, this shows thaf (D) is locally isomorphic toOy, i.e., that it is an invertible
sheaf. IfD itself is principal, thenC(D) is trivial.

Next we note that the canonical map

L(D)®L(ID") — LD+D), fog—fg

is an isomorphism on any open set whé&rand D’are principal, and hence it is an isomor-
phism globally. Therefore, we have a homomorphism

Div(V) — Pic(V), D w— [L(D)],
which is zero on the principal divisors.

ExXAMPLE 11.4. LetV be an elliptic curve, and lgf be the point at infinity. LeD be the
divisor D = P. ThenI'(V,L(D)) = k, the ring of constant functions, bli{V, £(2D))
contains a nonconstant functien Therefore,

DV, L(2D)) # I'(V, £(D)) @ [(V, L(D)),
— in other words['(V, £L(D) @ L(D)) # I'(V, L(D)) @ I'(V, L(D)).

PrRoOPOSITION11.5. For an irreducible nonsingular variety, the mdp — [£(D)] defines
an isomorphism
Div(V)/PrinDiv(V) — Pic(V).
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PROOF. (Injectivity). If sis an isomorphisn®, — L(D), theng = s(1) is an element of
k(V')* such that
(@) div(g) + D > 0 (on the whole ofl);
(b) if div(f) + D > 0onU, thatis, if f € T'(U, L(D)), thenf = h(g|U) for some
h € I'(U, Oy).

Statement (a) says that > div(—g) (on the whole o). Supposé’ is such thatD|U
admits a local equatioi = 0. When we apply (b) to-f , then we see thativ(—f) <
div(g) on U, so thatD|U + div(g) > 0. Since theU’s coverV/, together with (a) this
implies thatD = div(—g).

(Surjectivity). Define
[ k(V)*if Uis open an nonempty
LK) = { 0if U is empty.

Becausé/ is irreducible,C becomes a sheaf with the obvious restriction maps. On any
open subset whereL|U ~ Oy, we havel|U @ K ~ K. Since these open sets form

a covering ofV, V is irreducible, and the restriction maps are all the identity map, this
implies thatl ® K ~ K on the whole ofl”. Choose such an isomorphism, and identify
with a subsheaf of. On anyU wherel ~ Oy, L|U = gOy as a subsheaf df, whereg

is the image ofl € T'(U, Oy). Define D to be the divisor such that, onla ¢! is a local
equation forD. O

EXAMPLE 11.6. Supposé’ is affine, sayl’ = Specm A. We know that coherer®, -
modules correspond to finitely generatéanodules, but what do the locally free sheaves of
rankn correspond to? They correspond to finitely generategective A-modules (Bour-

baki, Algebre Commutative, 1961-83, 11.5.2). The invertible sheaves correspond to finitely
generated projectivd-modules of rank. Suppose for example thatis a curve, so that

A'is a Dedekind domain. This gives a new interpretation of the ideal class group: it is the
group of isomorphism classes of finitely generated projectiraodules of rank one (i.e.,
such that\/ @ 4 K is a vector space of dimension one).

This can be proved directly. First show that every (fractional) ideal is a projedtive
module — it is obviously finitely generated of rank one; then show that two ideals are
isomorphic asA-modules if and only if they differ by a principal divisor; finally, show that
every finitely generated projectivé-module of rankl is isomorphic to a fractional ideal
(by assumptionV/ ® 4 K ~ K; when we choose an identification ® , K = K, then
M C M ® 4 K becomes identified with a fractional ideal). [Exercise: Prove the statements
in this last paragraph.]

REMARK 11.7. Quite a lot is known abodic(V'), the group of divisors modulo linear
equivalence, or of invertible sheaves up to isomorphism. For example, for any complete
nonsingular variety, there is an abelian variet canonically attached t&’, called the
Picard varietyof V/, and an exact sequence

0 — P(k) — Pic(V) = NS(V) — 0

whereNS(V) is a finitely generated group called théidn-Severi group.

Much less is known about algebraic cycles of codimensioh and about locally free
sheaves of rank 1 (and the two don’t correspond exactly, although the Chern classes of
locally free sheaves are algebraic cycles).
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Direct images and inverse images of coherent sheaves.

Consider a homomorphisth — B of rings. From anA-module M, we get anB-module

B ®4 M, which is finitely generated i/ is finitely generated. Conversely, @&module

M can also be considered aikmodule, but it usually won'’t be finitely generated (unless
B is finitely generated as afi-module). Both these operations extend to maps of varieties.

Consider a regular map: W — V, and letF be a coherent sheaf @?,-modules.
There is a unique coherent sheat®j,-modulesy* F with the following property: for any
open affine subsets’ andU of W andV respectively such that(U’) C U, o* F|U’ is the
sheaf corresponding to th&U’, Oy )-modulel’ (U’, Ow) ®@rw,0,) I'(U, F).

Let F be a sheaf oD, -modules. For any open subgébf V', we definel’(U, a..F) =
['(a~'U, F), regarded as & (U, Oy)-module via the mag' (U, Oy) — T'(a™'U, Ow).
ThenU — I'(U, . F) is a sheaf ofOy-modules. In generak..F will not be coherent,
even wher is.

LEMMA 11.8. (a)For any regular mapg/ = V 2w and coheren®y,-moduleF on
W, there is a canonical isomorphism

(Ba)'F = o (8" F).

(b) For any regular mapa: V- — W, o* maps locally free sheaves of rankto lo-
cally free sheaves of rank (hence also invertible sheaves to invertible sheaves). It
preserves tensor products, and, for an invertible shgaf*(£~!) = (o* L)~

PrROOF. (@) This follows from the fact that, given homomorphisms of ridgs- B — T,
TRp(B®aM)=T®4s M.
(b) This again follows from well-known facts about tensor products of rings. [
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12 Differentials

In this subsection, we sketch the theory of differentials. We akidebe an arbitrary field.
Let A be ak-algebra, and led/ be anA-module. Recall (front4) that ak-derivation
is ak-linear mapD: A — M satisfying Leibniz’s rule:

D(fg)=foDg+goDf, allfgecA.

A pair (€2, ., d) comprising anA-moduleQ}, , and ak-derivationd: A — €, , is called
the module of differential one-formdor A over k! if it has the following universal prop-
erty: for anyk-derivationD: A — M, there is a uniqué-linear mapa: Q}, , — M such
thatD = aod,

d Ql

: 31 k-linear
D :
\d
M

EXAMPLE 12.1. LetA = k[X,.., X,]; thenQ), , is the freeA-module with basis the
symbolsd X3, ...,dX,, and

A

0
df =3 ag'dXi.

EXAMPLE 12.2. LetA = k[X}, ..., X,)]/a; thenQ}é,/k is the freeA-module with basis the
symbolsd X, ..., dX,, modulo the relations:

df =0forall f € a.

PROPOSITION12.3. Let V' be a variety. For eacln > 0, there is a unique sheaf @y -
modules2,, on'V such that, , (U) = A"Q} , whenever/ = Specm A is an open
affine ofV/.

PROOF. Omitted. O
The sheafly, , is called thesheaf of differentialn-forms onV'.
EXAMPLE 12.4. LetL be the affine curve
Y?=X°+aX + 0,

and assumé&’® + a X + b has no repeated roots (so thais nonsingular). Writer andy
for regular functions orf defined byX andY. On the open seb(y) wherey # 0, let
w1 = dx/y, and on the open s&(3z%+a), letw, = 2dy/(3x%+a). Sincey? = x3+ax+0b,

2udy = (32* + a)dx.

and sow; andw, agree onD(y) N D(3z* + a). SinceE = D(y) U D(3z? + a), we see
that there is a differentiab on £ whose restrictions t@®(y) and D(3z* + a) arew; and
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wq respectively. It is an easy exercise in working with projective coordinates to show that
w extends to a differential one-form on the whole projective curve

Y27 = X3+ aXZ?+b73.

In fact, ¢, (C) is a one-dimensional vector space owerwith w as basis. Note that

w = dz/y = dz/(z*+az+b)z, which can't be integrated in terms of elementary functions.
Its integral is called an elliptic integral (integrals of this form arise when one tries to find
the arc length of an ellipse). The study of elliptic integrals was one of the starting points
for the study of algebraic curves.

In general, ifC' is a complete nonsingular absolutely irreducible curve of gentisen
Qg/k(C) is a vector space of dimensigroverk.

PROPOSITION12.5. If V' is nonsingular, therl, , is a locally free sheaf of rankim(V')
(that is, every poinf> of V has a neighbourhoodf” such that, , [U ~ (O |U)dm(V)),

PROOFE Omitted. O]

Let C' be a complete nonsingular absolutely irreducible curve, and ke a nonzero
element of; ., .. We define the divisofw) of w as follows: letP € C\ if ¢ is a uni-
formizing parameter ab, thendt is a basis fofY; ., ;. as ak(C)-vector space, and so we
can writew = fdt, f € k(V)*; defineordp(w) = ordp(f), and(w) = > ordp(w)P.
Becausé:(C') has transcendence degieeverk, Q}g(c)/k is ak(C)-vector space of dimen-
sion one, and so the divis@p) is independent of the choice ofup to linear equivalence.
By an abuse of language, one cglls) for any nonzero element (S’E}C(C)/k a canonical
classK onC'. For a divisorD onC, let{(D) = dimy(L(D)).

THEOREM 12.6 (REMANN-ROCH). Let C' be a complete nonsingular absolutely irre-
ducible curve ovek.

(a) The degree of a canonical divisorlg — 2.

(b) For any divisorD onC,

(D) — (K — D) =14 g —deg(D).

More generally, ifVV is a smooth complete variety of dimensidnit is possible to
associate with the sheaf of differenti&forms onl” a canonical linear equivalence class
of divisors K. This divisor class determines a rational map to projective space, called the
canonical map.
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13 Algebraic Varieties over the Complex Numbers

It is not hard to show that there is a unique way to endow all algebraic varietie€ avign
a topology such that:

(a) onA™ = C™ itis just the usual complex topology;

(b) on closed subsets &f" it is the induced topology;

(c) all morphisms of algebraic varieties are continuous;

(d) itis finer than the Zariski topology.

We call this new topology theomplex topologyn V. Note that (a), (b), and (c) deter-
mine the topology uniquely for affine algebraic varieties ((c) implies that an isomorphism
of algebraic varieties will be a homeomorphism for the complex topology), and (d) then
determines it for all varieties.

Of course, the complex topology msuchfiner than the Zariski topology — this can be
seen even oA . In view of this, the next two propositions are a little surprising.

ProPOSITION13.1. If a nonsingular variety is connected for the Zariski topology, then it
is connected for the complex topology.

Consider, for example\!. Then, certainly, it is connected for both the Zariski topology
(that for which the nonempty open subsets are those that omit only finitely many points)
and the complex topology (that for which is homeomorphic t&®?). When we remove a
circle from X, it becomes disconnected for the complex topology, but remains connected
for the Zariski topology. This doesn’t contradict the theorem, becaudswith a circle
removed is not an algebraic variety.

Let X be a connected nonsingular (hence irreducible) curve. We prove that it is con-
nected for the complex topology. Removing or adding a finite number of pointswall
not change whether it is connected for the complex topology, and so we can assume that
X is projective. Suppos« is the disjoint union of two nonempty open (hence closed)
setsX; and X,. According to the Riemann-Roch theoregm (12.6), there exists a noncon-
stant rational functiory on X having poles only inX;. Therefore, its restriction t&,
is holomorphic. Becausg&, is compact,f is constant on each connected component of
X, (Cartan 1963, V1.4.5) say,f(z) = a on some infinite connected component. Then
f(2) — a has infinitely many zeros, which contradicts the fact that it is a rational function.

The general case can be proved by induction on the dimension (Shafarevich 1994,
VII.2).

PROPOSITION13.2. Let V' be an algebraic variety ovet, and letC be a constructible
subset ol (in the Zariski topology); then the closure 6fin the Zariski topology equals
its closure in the complex topology.

PrRoOOF. Mumford 1999, | 10, Corollary 1, p60. ]

For example, ifU is an open dense subset of a closed sulgset V' (for the Zariski
topology), therJ is also dense i for the complex topology.

30Cartan, H., Elementary Theory of Analytic Functions of One or Several Variables, Addison-Wesley,
1963.
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The next result helps explain why completeness is the analogue of compactness for
topological spaces.

PROPOSITION13.3. Let V be an algebraic variety ove€; then V' is complete (as an
algebraic variety) if and only if it is compact for the complex topology.

PROOF. Mumford 1999, | 10, Theorem 2, p60. O

In general, there are many more holomorphic (complex analytic) functions than there
are polynomial functions on a variety ov€r For example, by using the exponential func-
tion it is possible to construct many holomorphic functionsthat are not polynomials
in z, but all these functions have nasty singularities at the point at infinity on the Riemann
sphere. In fact, the only meromorphic functions on the Riemann sphere are the rational
functions. This generalizes.

THEOREM13.4. Let V' be a complete nonsingular variety ovér ThenV is, in a natural
way, a complex manifold, and the field of meromorphic functiond/ofas a complex
manifold) is equal to the field of rational functions &n

ProoFE Shafarevich 1994, VIIl 3.1, Theorem 1. O]

This provides one way of constructing compact complex manifolds that are not alge-
braic varieties: find such a manifold of dimension: such that the transcendence degree
of the field of meromorphic functions ai¥ is < n. For a torusC?/A of dimensiong > 1,
this is typically the case. However, when the transcendence degree of the field of meromor-
phic functions is equal to the dimension of manifold, thehcan be given the structure,
not necessarily of an algebraic variety, but of something more general, namely, that of an
algebraic spaceRoughly speaking, an algebraic space is an object that is locally an affine
algebraic variety, where locally means for #itale “topology” rather than the Zariski topol-
ogy?]

One way to show that a complex manifold is algebraic is to embed it into projective
space.

THEOREM 13.5. Any closed analytic submanifold Bf is algebraic.
PROOF. See Shafarevich 1994, VIII 3.1, in the nonsingular case. ]

COROLLARY 13.6. Any holomorphic map from one projective algebraic variety to a second
projective algebraic variety is algebraic.

PROOF. Letp: V. — W be the map. Then the graph, of ¢ is a closed subset df x
W, and hence is algebraic according to the theorem. Singethe composite of the
isomorphisml” — T, with the projection’, — W, and both are algebraig; itself is
algebraic. O

3IArtin, Michael. Algebraic spaces. Whittemore Lectures given at Yale University, 1969. Yale Mathemat-
ical Monographs, 3. Yale University Press, New Haven, Conn.-London, 1971. vii+39 pp.

Knutson, Donald. Algebraic spaces. Lecture Notes in Mathematics, Vol. 203. Springer-Verlag, Berlin-
New York, 1971. vi+261 pp.
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Since, in general, it is hopeless to write down a set of equations for a variety (it is a
fairly hopeless task even for an abelian variety of dimen8jpthe most powerful way we
have for constructing varieties is to first construct a complex manifold and then prove that
it has a natural structure as a algebraic variety. Sometimes one can then show that it has
a canonical model over some number field, and then it is possible to reduce the equations
defining it modulo a prime of the number field, and obtain a variety in characteristic

For example, it is known th&t? /A (A a lattice inC?) has the structure of an algebraic
variety if and only if there is a skew-symmetric formon C¢ having certain simple prop-
erties relative to\. The variety is then an abelian variety, and all abelian varieties@ver
are of this form.

References

Mumford 1999, 1.10.

Shafarevich 1994, Book 3.
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14 Descent Theory

Consider fields: C 2. A variety V' overk defines a variety,, over(2 by extension of the
base field §9). Descent theory attempts to answer the following question: what additional
structure do you need to place on a variety dieor regular map of varieties ovél, to
ensure that it comes froaf

In this section, we shall make free use of Zorn’s lemma.

Models

LetQ D k be fields, and let be a variety ovef). Recall that a model of overk (or a
k-structureon V) is a varietyl;, overk together with an isomorphism: Vo — V.

Consider an affine variety. An embeddivig— Af, defines a model df overk if 1(V)
is generated by polynomials i X1, ..., X,], because thef, =4 I(V) N k[X1, ..., X,]
is aradical idealk[ X, ..., X,|/1 is an affinek-algebra, and’(1,) C A} is a model ofV/.
Moreover, every modglly, ¢) arises in this way, because every model of an affine variety
is affine. However, different embeddings in affine space will usually give rise to different
models.

Note that the condition that(1") be generated by polynomials kX, ..., X,] is
stronger than asking that it be the zero set of some polynomial$Xn, ..., X,]. For
example, letv be an element d? such thaty ¢ k buta? € k,and letV = V(X +Y +«).
ThenV = V(X? 4+ Y? + oP) with X? + Y? 4+ of € k[X,Y], but/(V) is not generated by
polynomials ink[ X, Y.

Fixed fields
Let) D k be fields, and leF = Aut(2/k). Define thefixed fieldQ" of T to be

{a €eQ|oa=aforallo eI}.

PROPOSITION14.1. The fixed field of* equalsk in each of the following two cases:
(a) Q is a Galois extension df (possibly infinite);
(b) Q is a separably algebraically closed field akds perfect.

PROOF. (a) Standard (see RB, §7).

(b) If ¢ € Q is transcendental ovdr, then it is part of a transcendence bais. . .}
for Q2 overk (FT 8.12), and any permutation of the transcendence basis defines an auto-
morphism ofk(c, ...) which extends to an automorphism @f(cf. FT 6.5). Ifc € Q is
algebraic ovek, then it is moved by an automorphism of the algebraically closufeiof
2, which extends to an automorphism¢of O

REMARK 14.2. Supposé has characteristig # 0 and that2 contains an element such
thata ¢ k buta? = a € k. Thena is the only root ofX? — a, and so every automorphism
of Q) fixing k also fixesa. Thus, in general! # k whenk is not perfect.
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Descending subspaces of vector spaces

In this subsectiorf) O k are fields such that the fixed field Bf=4; Aut(2/k) is k.
For a vector spac¥ overk, I acts onV () =4 Q2 ®; V through its action off:

odla@u)=>o0Rv, ocel, e, v eV *

This is the unique action df on V(Q2) fixing the elements of” and such that acts
o-linearly:
o(ev) =o(c)o(v)allo €T, c e Q,v e V(C). (**)

LEMMA 14.3. LetV be ak-vector space. The following conditions on a subspacef
V() are equivalent:

(a W NV spansiv,

(b) W NV contains arf2-basis forlV;

(c) themal @, (W NV)— W, c® v+ co,is anisomorphism.

PROOF. Any k-linearly independent subset in will be Q-linearly independent ifv'(£2).
Therefore, ifil NV spandV/, then anyk-basis ofiV N V' will be anQ2-basis forlV/. Thus
(8 = (b), and (b= (a) and (b)<=> (c) are obvious. ]

LEMMA 14.4. For any k-vector spacé/, V = V(Q)L.

PROOF. Let (¢;);c; be ak-basis forV’. Then(1l ® e;);c; is anQ-basis forQ2 @, V', and
o € I"acts onv = > ¢; ® e; according to (*). Thusy is fixed byT" if and only if eache; is
fixed byI" and so lies irk. O

LEMMA 14.5. LetV be ak-vector space, and |8l be a subspace df (2) stable under
the action ofl".

(@) If Wt =0, thenW = 0.

(b) The subspac®” NV of V spansiV.

PROOF. (a) SupposélV # 0, and letw be a nonzero element 7. As an element of
Q®, V =V(Q), w can be expressed in the form

w=rcier+ -+ cpen, ¢ € QANA{0}, e €V.

Choosew so thatn is as small as possible. After scaling, we may suppose-thatl. For
oel,
ow —w = (0cy — ca)ea + -+ - + (0¢, — ey

lies in W and has at most — 1 nonzero coefficients, and so is zero. Thuss W', which
is therefore nonzero.
(b) LetWW’ be a complement td’ NV in V, so that

V=WnV)eWw.

Then
Waw' @)\ ' =wrnw' @' =wnv)nw =0,
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and so
Wnw'(Q)=0 (by (a)).

AsW o (W nNnV)(Q) and
V(Q)=WnNV)(Q) e W (Q),

this implies thatlV’ = (W N V)(Q). O]

Descending subvarieties and morphisms

In this subsectiorf) O k are fields such that the fixed field Bf= Aut(2/k) is .

For any varietyl” over k, I' acts on the underlying set &f,. For example, ift’ =
SpecmA, thenVy, = Specm(Q®,A), andI” acts on() ®, A andspecm(§2 ®; A) through
its action or.

When() is algebraically closed, the underlying setlofcan be identified with the set
V(§2) of points of IV with coordinates irf2, and the action becomes the natural action of
I'onV(Q2). For example, ift” is embedded i\"™ or P" over k, thenI" simply acts on the
coordinates of a point.

PROPOSITION14.6. Let V' be a variety ovetk, and letI/ be a closed subvariety of;
stable (as a set) under the actionofon V. Then there is a closed subvaridty, of V/
such thatiV = Wq.

PROOF. Suppose first thalt” is affine, and let (W) C Q[V4] be the ideal of regular func-
tions zero onV. Recall that2[V,] = Q ®; k[V]. BecausdV is stable undef’, so also
is I(W), and sol (W) is spanned by, =4 (W) N k[V] (Lemmg 14.5b). Therefore, the
zero set ofl is a closed subvarietyl’, of IV with the property thatV’ = Wq,.

To deduce the general case, colVewith open affines. O

PrROPOSITION14.7. LetV and W be varieties ovek, and letf: Vi, — W, be a regular
map. If f commutes with the actions 6fon V' and IV, then f arises from a (unique)
regular mapV’ — W overk.

PROOF. Apply Propositio} 14J6 to the graph ¢f 'y C (V x W)q. O

COROLLARY 14.8. A variety V over k is uniquely determined (up to a unigue isomor-
phism) byl;, together with the action df onV'.

PROOF. LetV andV”’ be varieties ovek such that, = V{, and the actions of defined
by V andV’ agree. Then the identity mdg, — V{, arises from a unique isomorphism
V-V, O

REMARK 14.9. Let() be algebraically closed. For any variétyoverk, I" acts onV/ (1),

and we have shown that the functdr— (Vg,action ofT" on V(Q2)) is fully faithful. The
remainder of this section is devoted to obtaining information about the essential image of
this functor.
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Galois descent of vector spaces

LetI" be a group acting on a field. By anaction of I' on an{2-vector spacé” we mean a
homomorphisni® — Aut, (V') satisfying (**), i.e., such that € I" actso-linearly.

LEMMA 14.10. Let S be the standard/, (k)-module (i.e.,S = k™ with M,,(k) acting by
left multiplication). The functoV’ — S ®, V' from k-vector spaces to left/,,(k)-modules
is an equivalence of categories.

PrROOF. LetV andWW bek-vector spaces. The choice of bage$;c; and(f;);e, for V and

W identifiesHom, (V, W) with the set of matrice§a;;)(; ) ey such that, for a fixed, all

but finitely manya;; are zero. Becausgis a simpleM,, (k)-module andind y, (1) (S) = &,
Homy (S ®; V, S @, W) has the same description, and so the funéfor~ S @, V is
fully faithful. To show that it is essentially surjective, it suffices to show that every left
M, (k)-module is a direct sum of copies 8f because iVl ~ @;c;S; with S; ~ S, then

M =~ S ®; V with V the k-vector space with basis

Forl <i < n, let L(i) be the set of matrices i, (k) whose columns are zero except
for thei™™ column. ThenL(7) is a left ideal inM,,(k), L(i) = S as anM,,(k)-module, and
M, (k) = &;L(i). Thus,M, (k) ~ S™ as a left)M,,(k)-module.

Let M be a left)M,, (k)-module, which we may suppose to be nonzero. Théis a
quotient of a sum of copies df/,,(k), and so is a sum of copies 6f Let I be the set of
submodules of\/ isomorphic toS, and let= be the set of subsetsof I such that the sum
N(J) =ar Y neyN is direct, i.e., such that for any, € J and finite subset|, of J not
containingNy, Ny N ZNEJON = 0. Zorn’s lemma implies thaE has maximal elements,
and for any maximal it is obvious that\/ = N (J). O

ASIDE 14.11. LetA and B be rings (not necessarily commutative), anddebe A-B-
bimodule (this means that acts on the leftB acts on the right, and the actions commute).
When the functotM/ — S ®p M : Modg — Mod, is an equivalence of categorie$,and

B are said to béMorita equivalent throughS. In this terminology, the lemma says that
M, (k) andk are Morita equivalent throughi[*

PROPOSITION14.12. Let 2 be a finite Galois extension &f with Galois groupl’. The
functorV — Q ®, V from k-vector spaces t&-vector spaces endowed with an action of
I is an equivalence of categories.

PROOF. Let Q[I'] be theQ2-vector space with basisc € I'}, and makeQ[I'] into a k-
algebra by defining

(deraoa) (ZTerTT> = ZU’T% -ob, -oT.
ThenQ)[I'] actsk-linearly on{2 by the rule

(Xertor)e =3 crao(a0),

32For more on Morita equivalence, see Chapter 4 of Berrick, A. J., Keating, M. E., Categories and modules
with K-theory in view. Cambridge Studies in Advanced Mathematics, 67. Cambridge University Press,
Cambridge, 2000.
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and Dedekind’s theorem on the independence of characters (FT 5.14) implies that the ho-
momorphism

Q] — Endg ()
defined by the action is injective. By counting dimensions @éve&me sees that it is an iso-
morphism. Therefore, Lemnja 14|10 shows gt] andk are Morita equivalent through
2, i.e., the functol” — Q®,V from k-vector spaces to left[I']-modules is an equivalence
of categories. This is precisely the statement of the lemma. m

When(2 is an infinite Galois extension &f we endowi” with the Krull topology , and
we say that an action df on an{2-vector spacé’ is continuousif every element of/ is
fixed by an open subgroup of i.e., if

V= U VA (union over open subgrougs of T").
A

For example, the action df on €2 is obviously continuous, and it follows that, for any
k-vector spacé’, the action ofl’ on {2 ®;, V' is continuous.

PROPOSITION14.13.Let(2 be a Galois extension éf(possibly infinite) with Galois group
I'. For anyQ2-vector spacé’ equipped with a continuous action Bf the map

ZCZ‘(X)”UZ' — ZCZ'UZ'Z Q@k VF —V
is an isomorphism.

PROOF. Suppose first thdt is finite. Propositiof 14.12 allows us to assue= Q @, W
for somek-subspacé? of V. ThenV!' = (Q @, W)' = W, and so the statement is true.
WhenT is infinite, the finite case shows th@t®, (V4)/4 = V2 for every open
normal subgroup\ of I'. Now pass to the direct limit ovek, recalling that tensor products
commute with direct limits (Atiyah and MacDonald 1969, Chapter 2, Exercise 20)]

Descent data

For a homomorphism of fields: F' — L, we sometimes write'V” for 1/, (the variety over
L obtained by base change, i.e., by applyintp the coefficients of the equations defining
V).
LetQ D k be fields, and lel' = Aut(Q2/k). A descent systeron a varietyl” over(2 is
a family (¢, ),er of isomorphismsp, : oV — V satisfying the cocycle condition:

0o 0 (0p,) = @, forallo, 7 €T.

A model(Vj, ) of V over a subfields of 2 containingk splits (¢, )ser if p, = poop™
for all o fixing K. A descent system isontinuousif it is split by some model over a
field finitely generated ovet. A descent datunis a continuous descent system. A descent
datum iseffectiveif it is split by some model ovek. In a given situation, we say that
descent is effectiver thatit is possible to descend the base fidi@very descent datum is
effective.

For a descent syste(w, ),cr onV and a subvarietyl” of V/, define

W = ps(cW).
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LEMMA 14.14. The following hold:
(@) forallo,r e "andW C V,7("W) = "W/
(b) if amodel(V1, ¢) of V overk; splits(¢,)ser andW = p(W;q) for some subvariety
Wi of Vi, thenW = W for all o fixing k.

PROOF. (a) By definition
(W) = 0o(0(@r(TW)) = (95 0 097 ) (0TW) = @or(0TW) = T"W.

In the second equality, we used thiatp)(cZ) = o(pZ).
(b) If o fixesk,, then (by hypothesis), = ¢ o o1, and so

W =(poop ) (oW) = p(o(e”'W)) = p(cWiq) = o(Wia) = W. O

For a descent syste(m, ), onV and a regular functiorfi on an open subsét of V/,
define’ f to be the functionio f) o v, ! on°U, so that’ f(“ P) = a(¢(P)) forall P € U.
Then?(" f) = °7 f, and so this defines an actionlobn the regular functions.

We endowl” with theKrull topology, that for which the subgroups bffixing a subfield
of Q finitely generated ovek form a basis of neighbourhoods bfsee FT§7 in the case
that(2 is algebraic ovek). An action of[" on an{2-vector spacé’ is continuousif

V= U VA (union over open subgrougs of T").
A

PROPOSITION14.15. Assumé is separably algebraically closed. A descent system,<r
on an affine variety” is continuous if and only if the action d6fon 2[V] is continuous.

PrRoOOF. If the action ofl" onQ[V] is continuous, then for some open subgraupf I, the
ring [V]2 will contain a set of generators f6{V'] as arf)-algebra. Becausa is open, it
is the subgroup of fixing some fieldk; finitely generated ovek. According to [(14.]L(b)),
04 is a purely inseparable algebraic extensiof,gfand so there is a finite extensibhof
k1 contained i2* and ak{-algebrad c Q[V]* such thaf)® @, A = Q[V]*. The model
Vi = Specm(A) of V overk] splits(¢,)er, Which is therefore continuous.

Conversely, if(o, ),cr IS continuous, it will be split by a model &f over some subfield
k; of Q finitely generated ovek. The subgroup\ of T fixing k; is open, and2[V]*
contains a set of generators fafl’| as an(2-algebra. It follows that the action df on
Q[V] is continuous. O

PROPOSITION14.16. A descent systelfp, ),cr ON a varietyl” over (2 is continuous if
there is a finite set of points inV/(€2) such that
(a) any automorphism df” fixing all P € S is the identity map, and
(b) there exists a subfiel& of €2 finitely generated ovek such that”P = P for all
o eI fixing K.

PROOF. Let (14, ») be a model o over a subfields of Q2 finitely generated ovek. After
possibly replacing< by a larger finitely generated field, we may supposedlrat= P for
all o0 € T fixing K (because of (b)) and that for eaéhe S there exists &, € V; such
that(Pyq) = P. Then, foro fixing K, (op)(Pyq) = oP, and sop, andy o o' are
both isomorphismsV" — V sendings P to P, which implies that they are equal (because
of (a)). HenceVy, ) splits (¢, )ser- O
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COROLLARY 14.17.LetV be a variety ovef) whose only automorphism is the identity
map. A descent datum dnis effective ifi” has a model ovet.

PROOF. This is the special case of the proposition in whitls the empty set. O]

Galois descent of varieties

In this subsections? is a Galois extension of with Galois groupl’, and(2 is separably
closed.

THEOREM 14.18. A descent daturfiy, ),cr On a varietyV is effective ifl is a finite union
of open affine¢/; such that U; = U; for all i.

PROOF. Assume first that/ is affine, and letA = k[V]. A descent datuniy,) defines a
continuous action of on A (seq 14.15). Fronj (14.1L3), we know that

cRar ca: QR AV — A

is an isomorphism. Let, = SpecmA", and lety be the isomorphisniy,, — V' defined
by ¢ ® a — ca. Then(Vy, ¢) splits the descent datum.

In the general case, writé as a finite union of open affing; such that U; = U;. Then
V' is the variety ovef) obtained by patching th€; by means of the maps

Ul<—)UlﬂUjC—>U] (*)

Each intersectio/; N U; is again affine[(3.26), and so the system (*) descends {the
variety overk obtained by patching is a model Bfoverk splitting the descent datum.]

COROLLARY 14.19. If every finite set of points df is contained in an open affine df,
then every descent datum bhis effective.

PROOF. Let (¢, ).cr be a descent datum dn, and leti be a subvariety of/. By def-
inition, (¢, ) is split by a model(V5, ¢) of V' over some finite extensioky of k. After
possibly replacing:; with a larger finite extension, there will exist a subvariéty of 1;
such thatp(Wiq) = Wi. Now (14.14b) shows thaftiV depends only on the cosen\
whereA = Gal(Q2/ky). In particular,{°W | o € I'} is finite. The subvariet§) .. W is
stable undef’, and so (se 14.6, T4|14), . W) = (N, W) forall 7 € T.

Let P € V. Becausg’P | o € I'} is finite, it is contained in an open affirié of V.
Now U" = N, “U is an open affine i’ containing” and such thatt’ = U’ for all
oel. [

COROLLARY 14.20. Descent is effective in each of the following two cases:
(a) V is quasi-projective, or
(b) an affine algebraic groug: acts transitively orl/.

PrRoOOF. (a) Apply (5.23) to the closure df in P".

(b) Let S be a finite set of points o¥, and letU be an open affine if¥. For each
s € S, there is a nonempty open subvariéty of G such thatG, - s C U. Becausd) is
separably closed, there existg a ([),.cGs - 5)(Q2) (see ). Nowy~'U is an open
affine containingsS. O
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REMARK 14.21. In the above, the conditiof‘is separably closed” is not necessary. To
see this, either rewrite the subsection making the obvious changes, or else use the following
observation: lef) be a Galois extension @f, and letQ be the separable algebraic closure

of 2; a descent daturty,,) for a varietyl” over() extends in an obvious way to a descent
datum(, ) for Vg, and if (V4, ) splits(,,) theny is defined2 and splits(¢, ).

Generic fibres

In this subsection is an algebraically closed field.

Lety: V — U be a dominating map with" irreducible, and lek’ = k(U). Then there
is a regular ma : Vx — SpecmK, called thegeneric fibreof . For example, ifl”
andU are affine, so thap corresponds to an injective homomorphism of rirffgsA — B,
thenyy corresponds tol @, K — B ®; K. In the general case, we can repldcavith
any open affine, and then covérwith open affines.

Let K be a field finitely generated ovét and letlV be a variety overs. For anyk-
varietyU with k(U) = V/, there will exist a dominating map: V' — U with generic fibre
V. Let P be a point in the image a@f. Then the fibre o} over P is a varietyV' (P) over
k, called thespecializationof V' at P.

Similar statements are true for morphisms of varieties.

Rigid descent

LEMMA 14.22.LetV andW be varieties over an algebraically closed fiéidIf V and W/
become isomorphic over some field containinghen they are already isomorphic ovier

PROOF. The hypothesis implies that, for some field finitely generated ovek, there
exists an isomorphismp: Vi — Wy. Let U be an affinek-variety such thak(U) =
K. After possibly replacind/ with an open subset, we canextend to an isomorphism
wuy: UxV — U xW. The fibre ofy; at any point ofU/, is an isomorphisnfy — W. [

Consider field$2 D K;, K, D k. ThenK; and K, are said to béinearly disjoint over
k if the homomorphism

>a; @b — > aibi: Ki®, Ky — Ky - Ky
is an isomorphism.

LEMMA 14.23.Let) D k be algebraically closed fields, and let be a variety ovelr.
If there exist model¥;, V5 of V' over subfieldd(;, K, of € finitely generated ovek and
linearly disjoint overk, then there exists a model Gfoverk.

PROOF. Let Uy, U, be affinek-varieties such that(U;) = K, k(Uz) = K,, andV; and
V, extend to varietied/;;, and Vyy, over U; andU,. BecauseKk; and K, are linearly
disjoint, K; ®; K, equalsk(U; x Us,). For some finite extensioh of K; @ K», Vi will
be isomorphic td/5;. Let U be the normalization of/;, x U; in L, and letU be an open
dense subset @f such that some isomorphism Bf;, with V5, extends to an isomorphism
v: Vigy, x Uy)y — (U X Vau,)y overU. Let P lie in the image ofU — Uy, and let
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U(P) be the fibre of this map ove?. Theny restricts to an isomorphisiv, (P) — (U; x
Vou, )u|U (P) overU(P), whereV is the specialization of; at P. Now k(U (P)) = L, and
the generic fibre of the isomorphisi(P) — Va,|U(P) is an isomorphisnV;(P), —
Var. Thus,V;i(P) is a model oft” overk. O

LEMMA 14.24. Let() be algebraically closed of infinite transcendence degree byand
assume that is algebraically closed ifi). For any K C 2 finitely generated ovek, there
exists ao € Aut(Q2/k) such thatk” ando K are linearly disjoint overk.

PROOF. Letay,...,a, be atranscendence basis f6fk, and extend it to a transcendence
basisay, ..., an, b1, ..., b,,...0fQ/k. Leto be any permutation of the transcendence basis
suchthat(a;) = b; for all i. Theno defines &-automorphism ok (ay, ... an, b1,...,b,,...),

which we extend to an automorphism¢of

Let K1 = k(aq,...,a,). ThenoK; = k(by,...,b,), and certainlyk; ando K; are
linearly disjoint. In particulark; ®, oK, is a field. Becausg is algebraically closed in
K, K ®; oK is an integral domain (cf. 9.2), and, being finite over a field, is itself a field.
This implies that ando K are linearly disjoint. O

LEMMA 14.25. Let() D k be algebraically closed fields such thais of infinite transcen-
dence degree ovér, and letl” be a variety ovef) such that the only automorphism 6f
is the identity map. I¥ is isomorphic tarV' for everyo € Aut(§2/k), thenV has a model
overk.

PrROOF. There will exist a model;, of V' over a subfields< of 2 finitely generated ovet.
According to Lemma 14.24, there exists & Aut({2/k) such thatk ando K are linearly
disjoint. Becausd’ =~ oV, oV} is a model ofV over oK, and we can apply Lemma
[14.23. O

In the next two theorems) O k are fields such that the fixed field Bf= Aut(Q2/k) is
k and(2 is algebraically closed

THEOREM 14.26. Let V' be a quasiprojective variety ovél, and let(y,),cr a descent
system fol//. If the only automorphism df is the identity map, thelr has a model over

k splitting (¢, ).

PROOF. According to Lemma,/ has a mode(V;, ¢) over the algebraic closure!
of k in ©, which (see the proof ¢f 14.1.7) split®, ) e At (c/x) -

Now ¢! =4t ¢! 0 ¢, o o is stable undeAut(2/k*), and hence is defined ovét'
). Moreovery! depends only on the restriction ofto £, and (), ) ccai(ka k) IS @
descent system fdr;. It is continuous by{(14.16), and 3¢ has a mode{Vy, ') overk

splitting (¢}, ) secal(kat /i) - NOW (Voo, 0 0 ) SPIItS (05 ) seaut(y/k)- O

We now consider pairéV, S) whereV is a variety ovef) and.S is a family of points
S = (P;)1<i<n Of V indexed by{1, n]. A morphism(V, (P;)1<i<n) — (W, (Q:)1<i<n) iS @
regular mapp: V' — W such thatp(P;) = Q; for all i.

THEOREM 14.27. Let V' be a quasiprojective variety ové?, and let(y,)scau(o/k) a
descent system faf. LetS = (P,),<;<, be a finite set of points df such that



14 DESCENT THEORY 187

(a) the only automorphism df fixing eachp; is the identity map, and
(b) there exists a subfield of €2 finitely generated ovek such that”P = P for all
o eI fixing K.
ThenV has a model ovet splitting (¢, ).

PROOF. Lemmas 14.22-14.25 all hold for paif®, S) (with the same proofs), and so the
proof of Theorenm 14.26 applies. O

Weil's theorem
Let 2 D k be fields such that the fixed field Bf=4; Aut(Q2/k) is k.

THEOREM14.28. Descent is effective for quasiprojective varieties whieg algebraically
closed and has infinite transcendence degree bver

PROOF. See Weil, Ande, The field of definition of a variety. Amer. J. Math. 78 (1956),
509-524. O

Restatement in terms of group actions

In this subsectiont) O & are fields such thdt = QF and(2 is algebraically closed. Recall
that for any varietyy” overk, there is a natural action @fon V' (£2). In this subsection, we
describe the essential image of the functor

{quasi-projective varieties ovér, — {quasi-projective varieties ovér -+ action ofl'}.

In other words, we determine which paifig, ), with V' a quasi-projective variety ovél
andx an action ofl’ on V' (Q2),

(0,P)—oxP:T'xV(Q) —V(Q),

arise from a variety ovet. There are two obvious necessary conditions for this.

Regularity condition

Obviously, the action should recognize tHatQ?) is not just a set, but rather the set of
points of an algebraic variety. Forec I', letoV be the variety obtained by applyingto
the coefficients of the equations definihgand forP € V(Q2) let o P be the point orwV/
obtained by applying to the coordinates aP.

DEFINITION 14.29. We say that the actienis regular if the map
oP—oxP:(cV)(Q) — V(Q)
is regular isomorphism for ait.

A priori, this is only a map of sets. The condition requires that it be induced by a regular
mapy,: oV — V. If V = Vi, for some variety, defined ovetk, thenoV =V, andyp,,
is the identity map, and so the condition is clearly necessary.
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REMARK 14.30. The mapg, satisfy the cocycle conditiop, o o, = .. In particular,
vy 0 0p,—1 = id, and so ifx is regular, then each, is an isomorphism, and the family
(ps)ser is @ descent system. Converselyf, ),<r is a descent system, then

ox P =y, (cP)

defines a regular action 6fon /(Q2). Note that ifx < (¢, ), theno « P =7 P.

Continuity condition

DEFINITION 14.31. We say that the actiens continuousif there exists a subfield of €2
finitely generated ovelr and a model}, of V' over L such that the action df(2/L) is that
defined bylj.

For an affine variety/, an action ofl' on V' gives an action of’ on Q[V], and one
action is continuous if and only if the other is.

Continuity is obviously necessary. It is easy to write down regular actions that fail it,
and hence don't arise from varieties over

EXAMPLE 14.32. The following are examples of actions that fail the continuity condition
((b) and (c) are regular).
(a) LetV = A! and let+ be the trivial action.
(b) LetQ/k = Q¥/Q, and letN be a normal subgroup of finite index @al(Q?/Q)
that is not ope i.e., that fixes no extension @ of finite degree. Lel be the
zero-dimensional variety ove@? with V(Q¥) = Gal(Q¥/Q)/N with its natural
action.
(c) Letk be a finite extension of),, and letV = A'. The homomorphisnt* —
Gal(k?/k) can be used to twist the natural actionfodn V (12).

Restatement of the main theorems

Let 2 D k be fields such that is the fixed field ofl' = Aut(§2/k) and2 is algebraically
closed.

THEOREM 14.33. LetV be a quasiprojective variety ovél, and letx be a regular action
of 'onV (Q). LetS = (P;)1<i<, be afinite set of points 6f such that
(a) the only automorphism of fixing eachp; is the identity map, and
(b) there exists a subfiel# of 2 finitely generated ovek such thats x P = P for all
o eI fixing K.
Thenx arises from a model of overk.

PROOF. This a restatement of Theorém 14.27. O

THEOREM 14.34. Let V' be a quasiprojective variety ovér with an action« of I'. If x is
regular and continuous, then arises from a model of” over k in each of the following
cases:

33For a proof that such subgroups exist, see the corrections to my class field notes on my web page.
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(a) Q is algebraic overk, or
(b) Q is has infinite transcendence degree oker

PROOF. Restatements of (14.118, 14]20) and[of (14.28). O

The condition “guasiprojective” is necessary, because otherwise the action may not
stabilize enough open affine subsets to caver

Notes

The paper of Weil cited in the proof of Theordm 14.28 is the first important paper on
descent theory. Its results haven't been superseded by the many results of Grothendieck on
descent. In Milne 1998, Theorenj 14.37 was deduced from Weil's theorem. The present
elementary proof was suggested by Wolfart’'s elementary proof of the ‘obvious’ part of
Belyi's theorem (Wolfart 199 see also Derome 20%3.

34Milne, J. S., Descent for Shimura varieties. Michigan Math. J. 46 (1999), no. 1, 203—208.

3SWolfart, Jirgen. The “obvious” part of Belyi's theorem and Riemann surfaces with many automor-
phisms. Geometric Galois actions, 1, 97-112, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ.
Press, Cambridge, 1997.

%6Derome, G., Descente @griqguement close, J. Algebra, 266 (2003), 418-426.
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15 Lefschetz Pencils

In this section, we see how to fibre a variety oféiin such a way that the fibres have only
very simple singularities. This result sometimes allows one to prove theorems by induction
on the dimension of the variety. For example, Lefschetz initiated this approach in order to
study the cohomology of varieties ov€r

Throughout this sectior; is an algebraically closed field.

Definition

Alinear formH = )"  a,T; defines a hyperplane i#”, and two linear forms define the
same hyperplane if and only if one is a nonzero multiple of the other. Thus the hyperplanes
in P form a projective space, called theal projective spacé@™.

A line D in P™ is called apencil of hyperplanes i®™. If H, and H,, are any two
distinct hyperplanes i, then the pencil consists of all hyperplanes of the farfh, +
BH,, with (a: 3) € P(k). If P € HyN H,, then it lies on every hyperplane in the pencil
— theaxis A of the pencil is defined to be the set of suehThus

A = HO N HOO = mteDHt.

The axis of the pencil is a linear subvariety of codimengamP™, and the hyperplanes of
the pencil are exactly those containing the axis. Through any poift'inot on A, there
passes exactly one hyperplane in the pencil. Thus, one should imagine the hyperplanes in
the pencil as sweeping oBt"* as they rotate about the axis.

Let V be a nonsingular projective variety of dimensidr> 2, and embed’ in some
projective spac®™. By the square of an embedding, we mean the composite-ef P
with the Veronese mappinp (5]18)

(zo: oot @) = (23 ooy o 2) P — ]
DEFINITION 15.1. AlineD in P is said to be a efschetz pencifor V ¢ P™ if
(a) the axisA of the pencil(H;);cp cutsV transversally;

(b) the hyperplane sections Tvn H,; of V' are nonsingular for alt in some open
dense subséf of D;

(c) fort ¢ U, V, has only a single singularity, and the singularity is an ordinary double
point.

Condition (a) means that, for every poiRte ANV, Tgtp(A) N Tgtp(V) has codi-
mensior2 in Tgtp (V).

Condition (b) means that, except for a finite numbet,df/, cutsV transversally, i.e.,
for every pointP € H, NV, Tgtp(H;) N Tgtp(V') has codimensiom in Tgt (V).

A point P on a varietyV of dimensiond is anordinary double pointif the tangent
cone atP is isomorphic to the subvariety df?*! defined by a nondegenerate quadratic
form Q(T1,. .., Tyy1), OF, equivalently, if

Ovp ~ k[T, ..., Tun]](Q(Ty, ..., Turr)).
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THEOREM 15.2. There exists a Lefschetz pencil #6r(after possibly replacing the projec-
tive embedding of” by its square).

PROOF. (Sketch). Lei¥ ¢ V x P be the closed variety whose points are the pairg?)
such thatH contains the tangent spaceltoat z. For example, ifi” has codimensiof in
P™, then(z, H) € Y if and only if H is the tangent space at In general,

(x,H) e W <= z € H andH does not cul’ transversally at:.

The image of/ in P under the projectiofy’ x P — P™ is called thedual varietyV of

V. The fibre oftl — V overz consists of the hyperplanes containing the tangent space at
z, and these hyperplanes form an irreducible subvarieBr'odf dimensionn — (dim V +

1); it follows that W is irreducible, complete, and of dimension— 1 (se€ 8.8) and that

V is irreducible, complete, and of codimensienl in P™ (unlessV” = P™, in which case

it is empty). The mag: W — V is unramified a{x, H) if and only if z is an ordinary
double point o/ N H (see SGA 7, XVII 3.f). Eithery is generically unramified, or it
becomes so when the embedding is replaced by its square (so, instead of hyperplanes, we
are working with quadric hypersurfaces) (ibid. 3.7). We may assume this, and then (ibid.
3.5), one can show that fdf € V f/smg, V' N H has only a single singularity and the
singularity is an ordinary double point. Hevg,, is the singular locus of .

By Bertini’'s theorem (Hartshorne 1977, Il 8.18) there exists a hyperpglar®ich that
HyNV isirreducible and nonsingular. Since there ig@an- 1)-dimensional space of lines
throughH,, and at most a(rn — 2)-dimensional family will meeving, we can choosél,,
so that the lineD joining Hy, and H,, does not mee&@ing. ThenD is a Lefschetz pencil for
V. O

THEOREM15.3. Let D = (H;) be a Lefschetz pencil for with axisA = NH,. Then there
exists a varietyy* and maps
V—VvV*5SD.
such that:
(a) the mapV* — V is the blowing up oi” alongA N V;
(b) the fibre of’* — D overtisV;, =V N H,.
Moreover,r is proper, flat, and has a section.

PROOF. (Sketch) Through each pointof IV ~. A NV, there will be exactly onéf, in D.
The map
o:VNANV — D,z — H,,

is regular. Take the closure of its graph in V' x D; this will be the graph ofr. O

REMARK 15.4. The singulal; may be reducible. For example,lif is a quadric surface
in P2, thenV/; is curve of degreé in IP? for all ¢, and such a curve is singular if and only if
it is reducible (look at the formula for the genus). However, if the embedding P is
replaced by its cube, this problem will never occur.

3'Groupes de monodromie e@grétrie algbrique. £minaire de Gonétrie Algébrique du Bois-Marie
1967-1969 (SGA 7). Dirig par A. Grothendieck. Lecture Notes in Mathematics, Vol. 288, 340. Springer-
Verlag, Berlin-New York, 1972, 1973.
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A Solutions to the exercises

1. Use induction om. Forn = 1, the statement is obvious, because a nonzero polynomial
in one variable has only finitely many roots. Now suppase 1 and writef = Y ¢, X?

with eachg; € k[Xi,...,X,,_1]. If f is not the zero polynomial, then somegis not

the zero polynomial. Therefore, by induction, there efdst . .., a, ;) € k"' such that
f(ay,...,a,—1,X,) is not the zero polynomial. Now, by the degree-one case, there exists
absuch thatf(ay,...,a,_1,b) # 0.

2. (X + 2Y, Z); Gaussian elimination (to reduce the matrix of coefficients to row echelon
form); (1), unless the characteristic bfis 2, in which case the ideal isX + 1, Z + 1).

3. W =Y-axis, and sd(W) = (X). Clearly,
(X%, XY?) C (X) Crad(X? XY?)

andrad((X)) = (X). On taking radicals, we find thaf') = rad(X?, XY?).

4. Thed x d minors of a matrix are polynomials in the entries of the matrix, and the set of
matrices with rank< r is the set where all- + 1) x (r 4+ 1) minors are zero.

5.LetV =V (X, - X},..., Xy — X?). The map
Xi—= T kX, .., X, — k[T

induces an isomorphisiV] — A'l. [Hencet — (¢,...,t") is an isomorphism of affine
varietiesA! — V]

6. We use that the prime ideals are in one-to-one correspondence with the closed irreducible
subsetsZ of A% For such a sef) < dim Z < 2.

Casedim Z = 2. ThenZ = A?, and the corresponding ideal(i).

Casedim Z = 1. ThenZ # A?, and sol(Z) contains a nonzero polynomia(X,Y").

If 1(Z) # (f), thendim Z = 0 by (1.21]1.2R). Hencé(Z) = (f).
Casedim Z = 0. ThenZ is a point(a, b) (seq 1.20c), and s Z) = (X — a,Y —b).

7. The statemeriflomy,_,jgenras (AR k, B®gk) # () can be interpreted as saying that a cer-
tain set of polynomials has a zerokn The Nullstellensatz implies that if the polynomials
have a zero i, then they have a zero i@*.

8. Amapa: A — Alis continuous for the Zariski topology if the inverse images of finite
sets are finite, whereas it is regular only if it is given by a polynomiat k[T, so it is
easy to give examples, e.g., any mapuch thaty—! (point) is finite but arbitrarily large.

9. Let f = >_¢; X' be a polynomial with coefficients ifi, (i € N¢), and suppos@ c;a' =
0. On raising this equation to thg"-power, we obtain the equation ¢;(a?)! = 0, i.e.,
fla,...,a,) = 0 = f(af,...,a%) = 0. Thus,p does map/ into itself, and it is
obviously regular.

10. The image omits the points on theaxis except for the origin. The complement of the
image is not dense, and so it is not open, but any polynomial zero on it is also zero)at
and so it not closed.
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11. Omitted.

12.No. The map onrings is
klz,y] = k[T), z—T°—1, y—T(T*-1),

which is not surjective is not in the image). Also, both1 and—1 map to(0, 0).

13. Omitted.

14. Let f be regular orP!. Thenf|U, = P(X) € k[X], whereX is the regular function
(ag: ar) — ay/ap: Uy — k, andf|U; = Q(Y) € k[Y], whereY is (ap: a1) — ap/a;.
OnU, N Uy, X andY are reciprocal functions. Thu3(X) andQ(1/X) define the same

function onUy N U; = A' \ {0}. This implies that they are equal if.X'), and must both
be constant.

15. Note thatl'(V, Oy ) = [[['(V;, Oy, ) — to give a regular function op|V; is the same as
to give a regular function on eadh (this is the “obvious” ringed space structure). Thus, if
V' is affine, it must equalpecm (] [A;), whereA; = I'(V;, Oy,), and so = | |Specm(A;)
(use the description of the idealsinx B on 9). Etc..

16. Omitted.
17.(b) The singular points are the common solutions to

4X3 —2XY? =0 — X =00rY?=2X?

4X3 —2XY? =0 — Y =00rX?=2Y?

X4 4+Y4 - X272 =0.
Thus, only(0, 0) is singular, and the variety is its own tangent cone.
18. Directly from the definition of the tangent space, we have that

To(VNH)CT.(V)NTa(H).
As
dmT,(VNH)>dmVNH=dmV —1=dimT,(V)NTa(H),

we must have equalities everywhere, which proves shigtnonsingular o/ N H. (In
particular, it can’t lie on more than one irreducible component.)
The surfac&’? = X2+ Z is smooth, but its intersection with tBé-Y plane is singular.
No, P needn'’t be singular o N H if H > Tp(V') — for example, we could have
H D V or H could be the tangent line to a curve.

19. We can assum¥& andlV to affine, say

aC k[Xl,,Xm]
T(W) = b C E[Xmst, - Xoman].

Ifa=(f,....f)andb = (g1,...,gs), thenl(V x W) = (f1,..., fr.91,--.,9s). Thus,
Tap) (V x W) is defined by the equations

(df1)a=0,...,(df-)a=0,(dg1)pb =0,...,(dgs)p =0,
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which can obviously be identified with, (V') x Ty, (WW).

20. TakeC to be the union of the coordinate axesdif. (Of course, if you want' to be
irreducible, then this is more difficult. . .)

21. A matrix A satisfies the equations
(I+cA)" - J-(I+ecA)=1

if and only if
AT J+J-A=0.

Such anA is of the form (]\]f g) with M, N, P,Q n x n-matrices satisfying
N =N, Pr=p M"=_Q.
The dimension of the space dfs is therefore

n(n+1)
2

n(n+1)

(for N) + (for P) + n? (for M, Q) = 2n* + n.

22. Let C be the curveY? = X3, and consider the maA' — C, ¢t — (t%,¢3). The
corresponding map on ringsX, Y]/(Y?) — k[T] is not an isomorphism, but the map on
the geometric tangent cones is an isomorphism.

23. The singular locud/;,, has codimensioir 2 in V, and this implies that” is normal.
[Idea of the proof: leff € k(1) be integral ovek[V], f ¢ k[V], f = g/h, g,h € k[V]; for
anyP € V(h) \V(g), Op is not integrally closed, and 8 is singular.]

24.No! Leta = (X?Y). ThenV (a) is the union of theX andY axes, andV (a) = (XY).
Fora = (a,b),

(dX?Y)a = 2ab(X — a) + a*(Y —b)
(dXY)a =b(X —a) +a(Y —b).
If a # 0 andb = 0, then the equations
(dX?Y)a =a’Y =0
(dXY)a=aY =0

have the same solutions.
25.LetP = (a:b:c),and assume # 0. Then the tangent line @& = (2: 2: 1) is

c’ c

(5), % (), (), O+ (), () 7=»

Now use that, becaudeé is homogeneous,

OF OF OF
F - o o ) c=o.
(a,b,c) =0 = <8X)Pa+(8Y)P+(aZ>PC 0
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(This just says that the tangent plangatb, ¢) to the affine cond’(X,Y, Z) = 0 passes
through the origin.) The point ab is (0 : 1 : 0), and the tangent line i8 = 0, the line at
oo. [The line atco meets the cubic curve at only one point instead of the expe&gtadd

so the line abo “touches” the curve, and the pointat is a point of inflexion.]

26. The equation defining the conic must be irreducible (otherwise the conic is singular).
After a linear change of variables, the equation will be of the foffh+ Y2 = Z2 (this
is proved in calculus courses). The equation of the lineXn+ bY = ¢Z, and the rest is
easy. [Note that this is a special case of Bezout's thedrem|(5.44) because the multiplicity is
2 in case (b).]

7.3 (a) Thering

kXY, Z2))(Y — X, Z — X?) = k[z,y, 2] = k[z] = k[X],

which is an integral domain. Therefor@, — X%, Z — X3) is a radical ideal.
(b) The polynomiall’ = Z — XY = (Z — X?®) — X(Y — X?) € I(V) and F* =
ZW — XY If
IW — XY = (YW — XA f + (ZW? — X¥)g,

then, on equating terms of degrgewe would find
IW — XY =a(YW — X?),

which is false.

28. Let P = (ap: ...:a,) and@ = (bg: ...: b,) be two points ofP”, n > 2. The
condition that) _¢; X; pass throughP and not throught) is that

Zaici = O, szcl 7& 0.

The(n + 1)-tuples(co, . . ., ¢,,) satisfying these conditions form an open subset of a hyper-
plane inA"*1. On applying this remark to the paif%,, ), we find that there is an open
dense set of hyperplane "™ of possible coefficients for the hyperplane. For the rest of

the proof, seg 5.23.

29. The subset
C={(a:b:¢c)|a#0, b#0}U{(1:0:0)}

of P2 is not locally closed. Le> = (1 : 0 : 0). If the setC were locally closed, the®
would have an open neighbourhobtidin P? such that/ N C is closed. When we look in
Uy, P becomes the origin, and

C NUy = (A% < {X-axis}) U {origin}.

The open neighbourhoods$ of P are obtained by removing from? a finite number of
curves not passing through. It is not possible to do this in such a way thath C' is

closed inU (U N C has dimensior2, and so it can’t be a proper closed subset/ofwe

can’t haveU N C = U because any curve containing all nonzero pointsXeaxis also
contains the origin).
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30. Omitted.

31. Define f(v) = h(v,Q) andg(w) = h(P,w), and letp = h — (f op+ g o q). Then
¢(v,Q) = 0 = ¢(P,w), and so the rigidity theoren (5]35) implies thais identically
zero.

32. Let ) ¢;;X;; = 0 be a hyperplane containing the image of the Segre map. We then
have

Zcijaibj =0
foralla = (ag,...,a,) € k™™ andb = (b, ...,b,) € k"*1. In other words,
aCb' =0

for all a € k™' andb € k"*!, whereC is the matrix(c;;). This equation shows that
aC = 0 for all a, and this implies that' = 0.

33. For example, consider
(A~ {1}) — AY "2 Al

for n > 1 an integer prime to the characteristic. The map is obviously quasi-finite, but it is
not finite because it corresponds to the map-algebras

X = X" k[X] — E[X, (X —1)7Y]

which is not finite (the elements/(X — 1)%, i > 1, are linearly independent ovéfX],
and so also ovel[X™]).

34. Assume thal/ is separated, and consider two regular mAps Z = WW. We have to
show that the set on whichandg agree is closed i@. The set whereo f andpo g agree
is closed inZ, and it contains the set whefeandg agree. Replac& with the set where
o fandy o g agree. LeU be an open affine subset &f and letZ’ = (¢ o f)~1(U) =
(pog)"Y(U). Thenf(Z') andg(Z’) are contained ino—!(U), which is an open affine
subset ofiV, and is therefore separated. Hence, the subsgt oh which f andg agree is
closed. This proves the result.

[Note that the problem implies the following statementyif iV — V' is a finite regular
map andV is separated, thel is separated.]

35.LetV = A", and letiV be the subvariety ofi™ x A! defined by the polynomial
H?:I(X - Ti) = 0.

The fibre over(ty, ..., t,) € A" is the set of roots of [(X — ¢;). Thus,V,, = A", V,,_; is
the union of the linear subspaces defined by the equations

T=T;, 1<ij<n, i#];
V,._o is the union of the linear subspaces defined by the equations

T,=T,=T, 1<4,j,k<n, 1,7 kdistinct,
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and so on.

36. Consider an orbi© = Gv. The mapg — gv: G — O is regular, and s® contains

an open subséf of O ). Ifu € U, thengu € gU, andgU is also a subset @ which

is open inO (becauseP — ¢gP: V — V is an isomorphism). Thu®, regarded as a
topological subspace @, contains an open neighbourhood of each of its points, and so
must be open iD.

We have shown thab is locally closed inV/, and so has the structure of a subvariety.
From {4.23), we know that it contains at least one nonsingular g@inBut thengP is
nonsingular, and every point 6f is of this form.

From set theory, it is clear th& ~. O is a union of orbits. Sincé® . O is a proper
closed subset ab, all of its subvarieties must have dimensianlim O = dim O.

Let O be an orbit of lowest dimension. The last statement implies@hatO.

37. An orbit of type (a) is closed, because it is defined by the equations

Tr(A) = —a, det(A) =0,
(as a subvariety of). It is of dimensior2, because the centralizer éfg g) a # (B, 1s
* 0 . . .
{ . } which has dimensiof.

0
An orbit of type (b) is of dimensioA, but is not closed: it is defined by the equations

a 0

Tr(A) = —a, det(A)=0b, A# (O N

) . a=rootof X?+ aX +b.
An orbit of type (c) is closed of dimensidn it is defined by the equatioA = ((5 2) .
An orbit of type (b) contains an orbit of type (c) in its closure.

38. Let ¢ be a primitived™ root of 1. Then, for each, j, 1 < i,j < d, the following
equations define lines on the surface

Xo+¢X, = 0 Xo+(¢Xy = 0 Xo+¢X3 = 0
Xo+¢X; =0 Xi+¢X; = 0 Xi+¢X, = 0.

There are three sets of lines, each witHines, for a total of3d? lines.

39. Let H be a hyperplane if#" intersecting/ transversally. Thel/ ~ P*~! andV N H
is again defined by a polynomial of degreeContinuing in this fashion, we find that

VNH N...NHy

is isomorphic to a subset & defined by a polynomial of degrée

40. We may suppose thaf is not a factor off;,,, and then look only at the affine piece of
the blow-up,o: A? — A?, (z,y) — (z,zy). Theno=(C ~ (0,0))is given by equations

X 40, F(X,XY)=0.
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But
F(X,XY) = X™I1(a; = biY)") + X" F i (X, Y) + -+

and sas—!(C \ (0,0)) is also given by equations

X%O, H(az—bZY)r’—i-XFm_,_l(X,Y)—i-:0
To find its closure, drop the conditia # 0. It is now clear that the closure intersects
o~1(0,0) (theY-axis) at thes pointsY = «a; /b;.

41. We have to find the dimension &fX,Y]xy)/(Y? — X", Y? — X*). In this ring,
X" = X* and soX*(X"* — 1) = 0. As X"~* — 1 is a unit in the ring, this implies that
X* =0, and it follows that? = 0. Thus(Y? — X", Y? — X*) D (Y% X*®), and in fact the
two ideals are equal i[X, Y] x y). It is now clear that the dimensionis.

42. Note that
kV] =k[T*T°) = {>aT" | a;=0}.

For eachu € k, define an effective divisab, on V' as follows:

D, has local equatioih — a*7? on the set wheré + aT # 0;

D, has local equation — a7 on the set wheré + a1 + aT? # 0.
The equations

(1—aT)(1+aT)=1-a*T? (1—-aT)(1+aT +d*T?) =1-d’T?
show that the two divisors agree on the overlap where
(14 aT)(1+ aT + aT?) # 0.
Fora # 0, D, is not principal, essentially because
ged(1 — a®T? 1 — a®T?) = (1 — aT) ¢ k[T?,T7]

— if D, were principal, it would be a divisor of a regular function Bnand that regular
function would have to bé — T, but this is not allowed.

In fact, one can show thatic(V') ~ k. LetV’ =V ~ {(0,0)}, and writeP(x) for the
principal divisors orx. ThenDiv(V’) + P(V) = Div(V'), and so

Div(V)/P(V) = Div(V')/Div(V)n P(V) = P(V)/P(V')N P(V) 2 k.
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B Annotated Bibliography

In this course, we have associated an affine algebraic variety to any affine algebra over a
field k. For many reasons, for example, in order to be able to study the reduction of varieties
to characteristip. # 0, Grothendieck realized that it is important to attach a geometric
object toeverycommutative ring. Unfortunatelyd — specm A is not functorial in this
generality: ifp: A — B is a homomorphism of rings, them ! (m) for m maximal need

not be maximal — consider for example the inclusibn— Q. Thus he was forced to
replacespecm(A) with spec(A), the set of all prime ideals iA. He then attaches an affine
schemeSpec(A) to each ringA, and defines a scheme to be a locally ringed space that
admits an open covering by affine schemes.

There is a natural functdr — V* from the category of varieties ovéro the category
of geometrically reduced schemes of finite-type ovewhich is an equivalence of cate-
gories. To construct’™* from 1/, one only has to add one point for each irreducible closed
subvariety ofl”. ThenU — U* is a bijection from the set of open subsets/ofo the set
of open subsets df*. Moreover,I'(U*, Oy+) = I'(U, Oy ) for each open subsét of V.
Therefore the topologies and sheaved/oand!* are the same — only the underlying sets
differ

Every aspiring algebraic and (especially) arithmetic geometer needs to learn the basic
theory of schemes, and for this | recommend reading Chapters Il and Il of Hartshorne
1997.

Apart from Hartshorne 1997, among the books listed below, | especially recommend
Shafarevich 1994 — it is very easy to read, and is generally more elementary than these
notes, but covers more ground (being much longer).

Commutative Algebra

Atiyah, M.F and MacDonald, I.G., Introduction to Commutative Algebra, Addison-Wesley
1969. This is the most useful short text. It extracts the essence of a good part of Bourbaki
1961-83.

Bourbaki, N., Alggbre Commutative, Chap. 1-7, Hermann, 1961-65; Chap 8-9, Masson,
1983. Very clearly written, but it is a reference book, not a text book.

Eisenbud, D., Commutative Algebra, Springer, 1995. The emphasis is on motivation.

Matsumura, H., Commutative Ring Theory, Cambridge 1986. This is the most useful medium-
length text (but read Atiyah and MacDonald or Reid first).

Nagata, M., Local Rings, Wiley, 1962. Contains much important material, but it is concise to
the point of being almost unreadable.

Reid, M., Undergraduate Commutative Algebra, Cambridge 1995. According to the author,
it covers roughly the same material as Chapters 1-8 of Atiyah and MacDonald 1969, but is
cheaper, has more pictures, and is considerably more opinionated. (However, Chapters 10

38Some authors call a geometrically reduced scheme of finite-type over a field a variety. Despite their
similarity, it is important to distinguish such schemes from varieties (in the sense of these notes). For
example, ifIW and W' are subvarieties of a variety, their intersection in the sense of schemes need
not be reduced, and so may differ from their intersection in the sense of varieties. For example, if
W = V(a) ¢ A" andW’ = V(a’) C A" with a andd’ radical, then the intersectio” and W’ in
the sense of schemesSgec k[ X7, ..., X, 1.]/(a,a’) while their intersection in the sense of varieties is
Speck[X1, ..., Xntn]/rad(a,a’).
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and 11 of Atiyah and MacDonald 1969 contain crucial material.)

Serre: Algbre Locale, Multiplicies, Lecture Notes in Math. 11, Springer, 1957/58 (third
edition 1975).

Zariski, O., and Samuel, P., Commutative Algebra, Vol. 11958, Vol Il 1960, van Nostrand.
Very detailed and well organized.

Elementary Algebraic Geometry

Abhyankar, S., Algebraic Geometry for Scientists and Engineers, AMS, 1990. Mainly curves,
from a very explicit and down-to-earth point of view.

Reid, M., Undergraduate Algebraic Geometry. A brief, elementary introduction. The fi-
nal section contains an interesting, but idiosyncratic, account of algebraic geometry in the
twentieth century.

Smith, Karen E.; Kaharga, Lauri; Kelalainen, Pekka; Traves, William. An invitation to
algebraic geometry. Universitext. Springer-Verlag, New York, 2000. An introductory
overview with few proofs but many pictures.

Computational Algebraic Geometry

Cox, D., Little, J., O’'Shea, D., Ideals, Varieties, and Algorithms, Springer, 1992. This gives
an algorithmic approach to algebraic geometry, which makes everything very down-to-
earth and computational, but the cost is that the book doesn’t get very far in 500pp.

Subvarieties of Projective Space

Harris, Joe: Algebraic Geometry: A first course, Springer, 1992. The emphasis is on exam-
ples.

Musili, C. Algebraic geometry for beginners. Texts and Readings in Mathematics, 20. Hin-
dustan Book Agency, New Delhi, 2001.

Shafarevich, I., Basic Algebraic Geometry, Book 1, Springer, 1994. Very easy to read.

Algebraic Geometry over the Complex Numbers

Griffiths, P., and Harris, J., Principles of Algebraic Geometry, Wiley, 1978. A comprehensive
study of subvarieties of complex projective space using heavily analytic methods.

Mumford, D., Algebraic Geometry |I: Complex Projective Varieties. The approach is mainly
algebraic, but the complex topology is exploited at crucial points.

Shafarevich, 1., Basic Algebraic Geometry, Book 3, Springer, 1994.

Abstract Algebraic Varieties

Dieudontg, J., Cours de &metrie Algbrique, 2, PUF, 1974. A brief introduction to abstract
algebraic varieties over algebraically closed fields.

Kempf, G., Algebraic Varieties, Cambridge, 1993. Similar approach to these notes, but is
more concisely written, and includes two sections on the cohomology of coherent sheaves.

Kunz, E., Introduction to Commutative Algebra and Algebraic Geometry, Birkbag 1985.
Similar approach to these notes, but includes more commutative algebra and has a long
chapter discussing how many equations it takes to describe an algebraic variety.

Mumford, D. Introduction to Algebraic Geometry, Harvard notes, 1966. Notes of a course.
Apart from the original treatise (Grothendieck and Dieudwt@60-67), this was the first
place one could learn the new approach to algebraic geometry. The first chapter is on
varieties, and last two on schemes.

Mumford, David: The Red Book of Varieties and Schemes, Lecture Notes in Math. 1358,
Springer, 1999. Reprint of Mumford 1966.

Schemes
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Eisenbud, D., and Harris, J., Schemes: the language of modern algebraic geometry, Wadsworth,
1992. A brief elementary introduction to scheme theory.

Grothendieck, A., and Dieudogénd., Eéments de €ontetrie Algébrique. Publ. Math. IHES
1960-1967. This was intended to cover everything in algebraic geometry in 13 massive
books, that is, it was supposed to do for algebraic geometry what Euclid’s “Elements”
did for geometry. Unlike the earlier Elements, it was abandoned after 4 books. It is an
extremely useful reference.

Hartshorne, R., Algebraic Geometry, Springer 1977. Chapters Il and Il give an excellent
account of scheme theory and cohomology, so good in fact, that no one seems willing to
write a competitor. The first chapter on varieties is very sketchy.

litaka, S. Algebraic Geometry: an introduction to birational geometry of algebraic varieties,
Springer, 1982. Not as well-written as Hartshorne 1977, but it is more elementary, and it
covers some topics that Hartshorne doesn't.

Shafarevich, I., Basic Algebraic Geometry, Book 2, Springer, 1994. A brief introduction to
schemes and abstract varieties.

History

Dieudontg, J., History of Algebraic Geometry, Wadsworth, 1985.

Of Historical Interest

Hodge, W., and Pedoe, D., Methods of Algebraic Geometry, Cambridge, 1947-54.

Lang, S., Introduction to Algebraic Geometry, Interscience, 1958. An introduction to Weil
1946.

Weil, A., Foundations of Algebraic Geometry, AMS, 1946; Revised edition 1962. This is
where Weil laid the foundations for his work on abelian varieties and jacobian varieties
over arbitrary fields, and his proof of the analogue of the Riemann hypothesis for curves
and abelian varieties. Unfortunately, not only does its language differ from the current
language of algebraic geometry, but it is incompatible with it.
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