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0 Introduction

0.1 Literature

The book by Allen Hatcher is available for download online!

0.2 Exercises

www.math.ethz.ch/~mislin (click on “Algebraic Topology”)

0.3 Preliminary Remarks

We will use the language of categories (not the theory, however, so don’t
worry).
The category Top consists of topological spaces X, Y , etc. (objects) and
continuous maps X → Y (morphisms) between them.
Some “algebraic” categories:

• Ab, the category of abelian groups A,B, . . . with group homomor-
phisms between them.

• Gr, the category of groups.

We will now relate these categories to each other by means of functors:

F : Top // Gr

X

f

²²

Â // F (X)

F (f)

²²
Y

Â // F (Y )

Define Top¦ as the category of pointed topological spaces (X with a fixed
base-point x0 ∈ X, with base-point preserving continuous maps).
Then the fundamental group π1 is an example of a functor:

(f : X → Y ) 7→ (π1f : π1X → π1Y )

Typical problems:

• “Rn ∼= Rm
?
⇒ n = m”

This is interesting because it is actually possible to continuously map
the unit interval onto the unit square using peano curves!
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• “Vector fields on S2 are singular” where a vector field on S2 is a con-
tinuous map

v : S2 → R3

x 7→ v(x)

such that v(x) · x = 0 and a singular point is a zero of v. (See chapter
on Lefschetz numbers.)

1 Some basic notions concerning topological

spaces

Definition 1.1 Let Top be the category of toplogical spaces. For X,Y ∈
Top we have the “morphism set”

C(X,Y ) = {f : X → Y | f continuous}

f : X → Y in Top is a homeomorphism if there is a g : Y → X in Top such
that g ◦ f = idX , f ◦ g = idY .
We write X ∼= Y if X,Y ∈ Top are homeomorphic.

Definition 1.2 X ∈ Top is called discrete if all subsets of X are open.
Note that f : X →? continuous for all f ⇐⇒ X discrete. (Proof: If f :
X →? is always continuous, choose A ⊂ X, and consider χA : X → {0, 1},
{0, 1} with the discrete topology. Since χA is continuous, χ−1

A (1) is open, and
this is true for all A ∈ X.)

Definition 1.3 X ∈ Top is indiscrete, if only ∅ ⊂ X and X ⊂ X are open.
(“coarsest topology”) Note: X indiscrete ⇐⇒ every ?→ X is continuous.

Definition 1.4 X ∈ Top is called compact if X is Hausdorff and every open
cover of X admits a finite subcover.

Definition 1.5 X ∈ Top is called locally compact if every x ∈ X has a
compact neighbourhood. (Here we do not assume X to be Hausdorff.)

Definition 1.6 X ∈ Top is called compactly generated if A ∩ C closed in
C for every compact C ⊂ X implies A ⊂ X closed (in X).

Example X compact ⇒ compactly generated (Take A ⊂ X with A ∩ C
closed in C for all compact C ⊂ X: so for X = C: A ∩X = A ⊂ C closed :
A closed in X).
Also: Rn compactly generated.
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Remark Let X be compactly generated. To prove that C ⊂ X
f
→ Y is

continuous, we only need to check that f |C is continuous for all C ⊂ X
compact.

1.1 Quotient spaces

Definition 1.7 Let X ∈ Top, then Y ∈ Top is a quotient space of X with
respect to π : X → Y , a surjective map, if A ⊂ Y closed ⇐⇒ π−1(A) ⊂ X
closed. We then say “Y has the quotient topology”.

Typical situation: X ∈ Top and “∼” an equivalence relation on X. Then
X/∼∈ Top is the space of equivalence classes, with the topology “A ⊂ X/∼
closed ⇐⇒ π−1(A) ⊂ X closed” where π : X → X/∼ is the projection onto
equivalence classes. X/∼ is a quotient space of X.

Note If Y ∈ Top is a quotient space of X with respect to f : X → Y
(a surjective map) then Y ∼= X/∼ where “∼” is defined by x1 ∼ x2 ⇐⇒
f(x1) = f(x2), x1, x2 ∈ X

X
f //

π
²²

Y

X/∼
f̄

==zzzzzzzz

f is constant on equivalence classes, f̄ is continuous (A ⊂ Y closed⇒ f̄−1(A)
closed because π−1f̄−1(A) = f−1(A) is closed.) and f̄ is a bijection of closed
subsets ⇒ f̄ a homeomorphism.

Definition 1.8 Let A ⊂ X ∈ Top, A 6= ∅, then:

X/A := X/∼

where x1 ∼ x2 ⇐⇒ x1 = x2 or x1, x2 ∈ A

Example [0, 1]/{0, 1} ∼= S1

Theorem 1.9 ∅ 6= A ⊂ X in Top: X/A has the following universal prop-
erty:

X
f //

can

²²

Y

X/A
∃!(f/A)

=={
{

{
{

for every f constant on A.
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Example A ⊂ B in Gr (i.e. a subgroup):

B
f //

²²

C

“B/A”

;;x
x

x
x

x

with f constant on A (f |A = 0). Take “B/A” to be B/N(A), where N(A)
is the smallest normal subgroup containing A.

Definition 1.10 Let X ∈ Top. The subsets A ⊂ X, such that A ∩ C closed
in C for all compact C ⊂ X, form the closed subsets of a topology on X,
called the compactly generated topology of X. We write XK for X with this
topology.

Note id : XK → X is continuous. X itself is called compactly generated, if
id : X → XK is continuous as well.

1.2 Products and Coproducts in Top

Definition 1.11 Let C be a category, and A,B ∈ C. Then A ΠB ∈ C
together with pA : A ΠB → A, pB : A ΠB → B is called a product of A and
B, if it has the following universal property:

C
∃!

{f,g}
//____

f
11

g --

A ΠB

pA
??ÄÄÄÄÄ

pB ÂÂ?
??

??

A

B

From the topology course of last semester, we know that “Top has products”:
X × Y with the product topology and pX , pY the canonical projections.

Definition 1.12 Let C be a category, and A,B ∈ C. Then A qB ∈ C
together with iA : A→ A qB, iB : B → A qB is called a coproduct of A and
B, if it has the following universal property:

A f

&&

iA

ÂÂ?
??

??

B
g

88

iB

??ÄÄÄÄÄ

A qB
∃!

〈f,g〉
//____ C

7



Theorem 1.13 Top has coproducts: X,Y ∈ Top. We write X qY ∈ Top
for the disjoint union of X and Y with the topology coming from the open
subsets in X and Y , and iX , iY the canonical inclusions.

Definition 1.14 X ∈ Top is called connected, if for any two open, disjoint
A,B ⊂ X such that A ∪ B = X, it follows that A = ∅ or B = ∅. (Equiv-
alently: every map X → {0, 1}, where {0, 1} has the discrete topology, is
constant.)

Fact X,Y ∈ Top connected ⇐⇒ X × Y connected.

Corollary 1.15 R 6∼= R2.

Proof If φ : R
∼=
→ R2, then

φ|(R \ {0}) : R \ {0}
︸ ︷︷ ︸

not conn.

∼=
→ R2 \ {φ(0)}
︸ ︷︷ ︸

connected

which is a contradiction to the above fact. 2

1.3 Pullback and Pushout in Top

Definition 1.16 Consider the diagram

Y

g

²²
X

f
// Z

in Top. Then the pullback of f and g is X ΠZ Y ∈ Top given by

X ΠZ Y := {(x, y) ∈ X × Y | f(x) = g(y)} ⊂ X × Y

(with subspace topology).

Lemma 1.17 X ΠZ Y has the following universal property:

W

α
11

β --

∃!

h
//____ X ΠZ Y

pX
??ÄÄÄÄÄÄ

pY ÂÂ?
??

??

X
f

ÂÂ?
??

??
?

Y
g

??ÄÄÄÄÄÄ

Z
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Proof h is given by {α, β} : W → X × Y which maps into X ΠZ Y , because
we assumed f ◦ α = g ◦ β. 2

Note

Y

²²
X // {¦}

yields X Π{¦} Y = X × Y ({¦}: terminal object in Top).

Definition 1.18 Consider the diagram

Z
g //

f
²²

Y

X

in Top. Then the pushout X qZ Y ∈ Top of f and g is given by X qY/∼
where iXf(z) ∼ iY g(z) for all z ∈ Z.

Lemma 1.19 X qZ Y has the following universal property:

Z

g
??ÄÄÄÄÄÄ

f ÂÂ?
??

??
?

Y
iY

ÂÂ?
??

??

&&

X
iX

??ÄÄÄÄÄÄ

88X qZ Y
∃! //____ W

Sometimes we write X ∪Z Y instead of X qZ Y .

Note ∅
∃!
→ X ∈ Top: ∅ is an initial object in Top.

∅ //

²²

Y

²²
X // X q∅ Y

so X q∅ Y = X qY .
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“top” : X × {1} ⊂ X × I

“bottom” : X × {0} ⊂ X × I

Figure 1: Cylinder on X

CX

Figure 2: Suspension of X

1.4 Cone and Suspension

Definition 1.20 Let I := [0, 1] ∈ Top be the unit interval, X ∈ Top. Then
X × I is called the cylinder on X (figure 1) and

CX := (X × I)/(X × {1})

the cone on X.

Definition 1.21 ΣX := CX qX CX is the suspension of X:

X
i //

i
²²

CX

²²
CX // ΣX

where i : X ↪→ CX, x 7→ (x, 0) is the canonical inclusion (mapping points to
equivalence classes).
From figure 2, it follows that ΣX ∼= CX/(X × {0}).

Example ΣSn ∼= Sn+1

1.5 Homotopy

Definition 1.22 f, g : X → Y in Top are called homotopic, and we write
f ' g, if ∃F : X × I → Y with F (x, 0) = f(x) and F (x, 1) = g(x). We call
F a homotopy from f to g, and write F : f ' g.
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“'” is an equivalence relation on C(X,Y ); write

[X,Y ] := C(X,Y )/'

Homotopy is compatible with composition: If

X
f //
g

// Y
α //

β
// Z

u //
v

// W

and f ' g, α ' β, u ' v, then:

α ◦ f ' β ◦ g

u ◦ α ' v ◦ β

u ◦ α ◦ f ' v ◦ β ◦ g

so we can define the homotopy category of topological spaces:

Definition 1.23 X,Y ∈ Top, f : X → Y a continuous map. If there exists
a continuous map g : Y → X such that f ◦ g ' idY and g ◦ f ' idX , then f
is a homotopy equivalence.
X and Y are called homotopy equivalent if there is a homotopy equivalence
between them.

Definition 1.24 HTop is the category consisting of topological spaces as ob-
jects and mor(X,Y ) := [X,Y ] as morphisms. “Isomorphisms” in this cate-
gory are homotopy equivalences (i.e. X,Y ∈ Top are “isomorphic” if they
are homotopy equivalent).

Example Rn ' Rm, because Rn ' {¦} ' Rm. Let:

F : Rn × I → Rn

(x, t) 7→ tx

then F (x, 1) = idRn(x), F (·, 0) = (0 : Rn
0
→ Rn) i.e. F : 0 ' idRn .

Rn ' {¦}:
f : Rn → {¦}, g : {¦} → Rn, ¦ 7→ 0

f ◦ g = id{¦} and g ◦ f = (x 7→ 0) ' idRn

Definition 1.25 X ∈ Top is called contractible, if X ' {¦}.

11



Example ∅ 6= X ∈ Top⇒ CX ' {¦}. Proof:

(CX
∃!
→ {¦}

“cone point”
→ CX) ' idCX , where the equivalence is induced by:

F̃ : (X × I)× I → X × I

((x, s), t) 7→ (x, (1− t)s+ t)

Definition 1.26 A
i
↪→ X ∈ Top is called a retract if: ∃ r : X → A, s.t.

r ◦ i = idA where i is the inclusion of A in X.
A retract is called a deformation retract if it satisfies the additional condition:
i ◦ r ' idX with a homotopy F : X × I → X satisfying ∀a ∈ A,∀t ∈ I :
F (a, t) = a.

Example {cone point} ⊂ CX is a deformation retract.

Definition 1.27 Let f : X → Y be in Top.

Mf :=
(
(X × I) qY

)
/
〈
(x, 0) ∼ f(x)

〉

is called the mapping cylinder of f .

Definition 1.28 Let f : X → Y be in Top.

Cf := Mf/(X × {1})

is called the mapping cone of f .

Obviously, Y
can
⊂ Mf is a deformation retract (⇒Mf ' Y ).

can : x_

²²

X
f //

Ä _

²²

Y

(x, 1) Mf

'

retraction r

>>}}}}}}}}

The canonical inclusion is a so called “cofibration” (see later).

Note Cf/Y ∼= ΣX

Definition 1.29 Given f : X → Y , a sequence:

X
f
→ Y → Cf → ΣX

Σf
→ ΣY → CΣf → Σ2X → · · ·

is called a mapping cone sequence (Puppe sequence).
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Definition 1.30 Let X,Y ∈ Top, and C(X,Y ) := {X
cont
→ Y }, then

M(K,U) := {f ∈ C(X,Y ) | f(K) ⊂ U}

where K ⊂ X compact and U ⊂ Y open, defines a subbasis of the compact-
open topology (co-topology) on C(X,Y ).
Notation: CO(X,Y ) ∈ Top denotes C(X,Y ) with this topology.

Definition 1.31 x0 ∈ X, the map defined by:

evx0
: C(X,Y )→ Y

f 7→ f(x0) =: evx0
(f)

is called the evaluation map.

Note evx0
is continuous. Proof: U ⊂ Y open ⇒ ev−1

x0
(U) = {f ∈ C(U, Y ) |

f(x0) ∈ U} = M( {x0}
︸︷︷︸

compact

, U) open in CO(X,Y ).

Problem: in sets

{X × Y
f
→ Z}

bij
↔

{
f̌ : X → maps(Y, Z)

x 7→ f̌(x) = (y 7→ f(x, y))

}

Theorem 1.32 X,Y, Z ∈ Top, Y locally compact, then there is a canonical

isomorphism: C(X × Y, Z)
∼=
→ C(X,CO(Y, Z)).

Example Y = I = [0, 1]

{
X × I → Z
“homotopy”

}
bij
↔







X → CO(I, Z)
︸ ︷︷ ︸

ZI , “path space on Z”







1.6 Pairs of topological spaces

Definition 1.33 Let X ∈ Top, the category whose objects are pairs (X,A)
with A ⊂ X a subspace, and morphisms f : (X,A) → (Y,B) with f : X →
Y ∈ Top, f(A) ⊂ B is called the category of pairs (Top2).

Note We have a functor Top→ Top2, given by X 7→ (X,∅).
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Definition 1.34 X ∈ Top2 with A = {x0} (the base-point) is called a
pointed topological space, and the category containig these spaces is the cat-
egory of pointed topological spaces (Top¦). Morphisms in this category are
base-point preserving maps, and homotopies are always assumed to be based
(i.e. base-point preserving).

Note Top¦ ⊂ Top2

Definition 1.35 If X,Y ∈ Top¦, then X '¦ Y denotes a based homotopy
equivalence, HTop¦ is the associated homotopy category.

We usually think of 0 ∈ [0, 1] to be the base-point of [0, 1] ∈ Top¦.

Definition 1.36 (wedge product) The coproduct (see 1.12) in Top¦ is de-
fined as:

X ∨ Y := (X qY )/〈x0 ∼ y0〉

where x0, y0 are the base-points of X,Y , and x̄0 = ȳ0 is the base-point of
X ∨ Y .

1.7 Mapping spaces

Let X,Y ∈ Top¦ with base points x0, y0, then X × Y ∈ Top¦ with base
point (x0, y0). Consider the “forget” functor X × Y → Z, with Z ∈ Top.
As above, CO(X,Y ) denotes C(X,Y ) with the compact-open topology. We
want a correspondence:

(f : X × Y → Z)↔ (f̌ : X → CO¦(Y, Z))

Definition 1.37

CO¦(X,Y ) := {f ∈ CO(X,Y ) | f(x0) = y0}

with the constant map c : x 7→ y0 as base-point.

CO¦(X,Y ) ⊂ CO(X,Y ) with subspace topology. f̌ should be based (x0 7→
c), i.e.

f̌(x0)(y) = f(x0, y) = z0

⇒ f must map {x0} × Y to {z0}. Similiarly, f̌(x)(y0) = f(x, y0) = z0. This
motivates the following definition.

Definition 1.38 (smash product)

X ∧ Y := (X × Y )/(X ∨ Y )

14



Theorem 1.39 Let X,Y, Z ∈ Top¦, Y locally compact, and define C¦(X,Y )
to be the set of pointed maps X → Y . Then

C¦(X ∧ Y, Z)
bij
→ C¦(X,CO¦(Y, Z))

Example S1 ∧X
can
← ΣX (SX := S1 ∧X is called the reduced suspension of

X). We can set e.g. Y = S1, then

C¦(X ∧ S
1, Z)

bij
→ C¦(X,ΩZ)

where ΩZ denotes the loop space CO¦(S
1, Z) (which consists of the loops in

Z at the base-point z0).
So we have

Top¦

S // Top¦

Ω
oo

where

S(X) = SX = S1 ∧X

Ω(X) = ΩX = CO¦(S
1, X)

(S left-adjoint to Ω, Ω right-adjoint to S) and we get a natural bijection

C¦(SX, Y )
'
→ C¦(X,ΩY )

Furthermore we can pass to the homotopy categories

HTop¦

S // HTop¦

Ω
oo

and get

[SX, Y ]¦
bij
→ [X,ΩY ]¦

i.e. S,Ω is still a pair of adjoint functors. (see Hatcher, p.530, discussion
after Prop.A.14)

1.8 Homotopy groups

Definition 1.40 (fundamental group) Let X ∈ Top¦, then the funda-
mental group of X is defined as:

π1X := [S1, X]¦

15



Definition 1.41 For n ≥ 2,

πnX := π1(Ω
n−1X)

where ΩiX = Ω(Ωi−1X) (i ≥ 1) and Ω0X = X.

Note
[Sn, X]¦

bij
→ [Sn−1,ΩX]¦

bij
→ [S1,Ωn−1X]¦ = πnX

Claim πnX is abelian for n ≥ 2. This follows from

Theorem 1.42 Let Y ∈ Top¦. Then π1ΩY is abelian.

Proof Let µ : ΩY × ΩY → ΩY be the obvious multiplication of loops
(usually written µ(ω, σ) = ω ? σ). (ΩY, µ) is a “group up to homotopy”.
This means:

i) associative: The diagram

ΩY × ΩY × ΩY
id×µ //

µ×id

²²

ΩY × ΩY

µ

²²
ΩY × ΩY µ

// ΩY

commutes up to homotopy.

ii) inverses : ∃i : ΩY → ΩY such that

ΩY
{id,i} //

const
((RR

RRR
RRR

RRR
RRR

R ΩY × ΩY

µ

²²

ΩY
{i,id}oo

const

vvlll
lll

lll
lll

lll

ΩY

commutes up to homotopy.

iii) identity element :

ΩY
{id,const} //

RRR
RRR

RRR
RRR

RRR

RRR
RRR

RRR
RRR

RRR
ΩY × ΩY

µ

²²

ΩY
{const,id}oo

lll
lll

lll
lll

lll

lll
lll

lll
lll

lll

ΩY

16



So [W,ΩY ]¦ is a group, induced by µ.

[W,ΩY ]¦ × [W,ΩY ]¦
'

can
// [W,ΩY × ΩY ]¦

µ? // [W,ΩY ]¦

[φ] Â // [µ ◦ φ]

Now look at π1ΩY = [S1,ΩY ]¦. This group has two group structures: The
“π-product” (being a fundamental group π1(·)) and the “µ-product” (being
a loop space).
Now we have to show that π-product = µ-product, and that the group is
commutative.
µ : ΩY × ΩY → ΩY induces a π-homomorphism

π1ΩY × π1ΩY
µ?
→ π1ΩY

Therefore:

µ?((α, β) +
π
(γ, δ)) = µ?(α, β) +

π
µ?(γ, δ)

⇔ µ?(α+
π
γ, β+

π
δ) = µ?(α, β) +

π
µ?(γ, δ)

⇔ (α+
π
γ) +

µ
(β+

π
δ) = (α+

µ
β) +

π
(γ+

µ
δ)

e.g. taking γ = β = e shows that the group structure is the same:

α+
µ
δ = α+

π
δ

and taking α = δ = e shows that the group is abelian:

γ+
µ
β = β+

π
γ = β+

µ
γ

2

More generally we could use the same proof to show the

Theorem 1.43 X an H-space (“Hopf”) ⇒ π1X abelian, d : X × X → X
with 2-sided unit up to homotopy (note: no associativity or inverses re-
quired!).

Corollary 1.44 G Lie group, e ∈ G base-point ⇒ π1G abelian.
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1.9 Adjoint Functors

C
F // D
G

oo

Suppose one has a natural bijection:

morC(GX, Y )
bij
→ morD(X,FY )

Then G is called a left-adjoint to F and F is called a right-adjoint to G.
⇒ “G commutes with colim” (e.g. coproducts, pushout); “F commutes with
lim” (e.g. products, pullback).

2 CW-Complexes

Definition 2.1 A CW-structure on X ∈ Top is a filtration X−1 = ∅ ⊆
X0 ⊆ . . . ⊆ Xn ⊆ . . . ⊆ X with:

1. X =
⋃
Xn = colimn≥0Xn, i.e. A ⊂ X open ⇔ A ∩Xn open ∀n

2. Xn is a push-out of:

qSn−1
Ä _

²²

f // Xn−1
Ä _

²²

qDn
f̃ // Xn = Xn−1 ∪f qDn

2.1 Facts and definitions

1. Xn is called a n-skeleton, f the attaching map for the n-cells.

2. CW-complexes are Hausdorff.

3. f̃(Dn) =: ēn is called a “closed n−cell”.

4. f̃(D̊n) =: en is called an “open n−cell”.

Remark en is in general not open in X.

5. A ⊂ X ∈ CW, is called a subcomplex of X if A is closed and an
union of cells of X. (A has to be closed to ensure that it has a proper
CW-structure.)

6. By construction: as a set X =
∐

n

∐

k e
n
k
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7. X ∈ CW is called finite if it is a “union” (see Hatcher, example 0.6) of
finitely many cells. A finite CW-complex is compact.

8. X ∈ CW, C ⊂ X compact⇒ ∃A finite subcomplex of X, with C ⊂ A.

9. Each X ∈ CW is compactly generated as a space. (Proof: B ⊂ X
closed ⇔ B̃ ⊂ f̃−1(B) closed in

∐

xD
n
x ⇔ B̃ ∩ Dn

x closed ∀x, n ⇔
B ∩ ēnx closed).

10. X0 ⊆ X is discrete, i.e. composed of single points.

11. If X = X1 then X is called graph.

12. A CW-complex X is connected if and only if it is path-connected.

13. X ∈ CW is called n-dimensional if X = Xn

Example Sn,RP n(CP n), T 2 = S1 × S1.
Sn:

Sn−1 c //
Ä _

²²

{¦}

²²
Dn // Sn = D0 ∪c D

n

Alternatively: Sn = D0
qD0∪D1

qD1∪. . .∪Dn
qDn, S1 = D0

qD0∪D1
qD1

RP n = Sn/〈x ∼ −x〉:

Sn−1
qSn−1 //

Ä _

²²

Sn−1 TvvÄ _

²²
Dn

+ qDn
−

//

Γ¦

Sn Tjj

where T : Sn → Sn, x 7→ −x.
One can extend the antipode T to the whole push-out diagram by letting it
exchange Dn

+ with Dn
−.

quot(Γ¦) = Γ¦/〈x ∼ Tx〉

Sn−1
f //

Ä _

²²

RP n−1
Ä _

²²
Dn // RP n

⇒ RP n = D0 ∪D1 ∪ . . . ∪f D
n.

CP n: see above, CP n = D0 ∪D2 ∪D4 . . . ∪D2n.
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Torus: T = S1 × S1 = S1 ∨ S1 ∪f D
2

S1
f //

Ä _

²²

S1 ∨ S1
Ä _

²²

D2 // S1 ∨ S1 ∪f D
2 =: T

Definition 2.2 f : X → Y , X,Y ∈ CW is called cellular if:

f(Xn) ⊆ Y n, ∀n ≥ 0

Theorem 2.3 (Cellular Approximation Theorem) Let f : X → Y ,
X,Y ∈ CW, f continuous, then f is homotopic to a cellular map g : X → Y .

Proof (later, simplicial approx.) 2

Remark There is a relative version of the cellular approximation theorem:
let f ∈ CW2, f : (X,A)→ (Y,B) ((X,A) ∈ Top2, where X and A ⊂ X have
a CW-structure) with f |A : A → B cellular, then there is a cellular map
g : (X,A)→ (Y,B) with f ' g and f |A = g|A.

Corollary 2.4 For 0 < k < n, πk(S
n) = 0.

Proof πk(S
n) = [Sk, Sn]¦. Let [f ] ∈ πk(S

n), f : Sk → Sn, replace f by g,
g ' f , and g cellular.
Sn = D0

qD0 ∪ . . . ∪Dn
qDn

g : Sk //

%%L
L

L
L

L
(Sn)k ( Sn

Sn \ {pt.} ' {¦}
?Â

⊆

OO

⇒ g ' const. ⇒ πk(S
n) = 0. 2

Corollary 2.5 X connected, X ∈ CW¦, X =
⋃

n≥0X
n

• k ≥ n+ 1 ⇒ πnX
k

∼=
→ πnX.

• k = n ⇒ πnX
n
³ πnX
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Proof [f : Sn → X] ∈ [Sn, X]¦, CW-app. ⇒ ∃g : Sn → X, f ' g, g cellular.
⇒

Sn
f //

g !!C
CC

CC
CC

C X

Xk
?Â

OO

k ≥ n⇒ πnX
k
³ πnX

If f ' g ∈ [Sn, X] ∃H : Sn× I → X, H(·, 0) = f , H(·, 1) = g, H(x0, t) = y0.

Serie 3, ex.1: Sn × I is n+ 1-dim. CW-complex.
CW-appr.
⇒ ∃H̃ :

Sn × I
H //

H̃ ##G
GG

GG
GG

GG
X

Xk
?Â

OO

(k ≥ n+ 1)

f, g ∈ [Sn, Xk]¦ = Πn(X
k)

f ' g ⇒ πn(X
k)→ πn(X) is injective for k ≥ n+ 1. 2

Corollary 2.6 X connected CW-complex (x0 ∈ X):

π1X
2 ∼=
→ π1X

Definition 2.7 A ⊂ X, is a neighbourhood deformation retract (NDR) if
there is an (open) neighbourhood B ⊂ X of A and A ⊂ B a deformation
retract.

Lemma 2.8 Let

A
f //

_Ä

NDR

²²

Y
_Ä

²²
X // Z

with f an arbitrary map, be a push-out (in Top). Then Y ⊂ Z is a NDR.

Example

Sn−1
f //

Ä _

NDR

²²

XÄ _

²²
Dn // X ∪Sn−1 Dn = X ∪f D

n

Corollary 2.9 X ∈ CW, A ⊂ X subcomplex ⇒ A ⊂ X NDR.
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Definition 2.10 (Summarized from Topology SS 05, which see. Ed.)
The amalgamated product G = G1 ∗G12

G2 is defined by the following push-
out in Gr:

G12
//

²²

G1

²²
G2

// G

If G12 = 1, then G = G1 ∗G2 is called the free product.

Theorem 2.11 (Classical van Kampen) X = U ∪ V , X ∈ Top¦, U, V ⊂
X open. If U, V, U ∩ V path-connected:

U ∩ V
Â Ä //

_Ä

²²

V Ä _

²²
U ÄÂ // X

π1
;

π1(U ∩ V )
β //

α

²²
Γ¦

π1(V )

²²
π1(U) // π1(X)

i.e. π1(X) ∼= (π1(V ) ∗ π1(U)) / 〈αx(βx)−1, x ∈ π1(U ∩ V )〉.

There is a more general version of the classical van Kampen theorem, which
does not require the involved sets to be open.

Theorem 2.12 (van Kampen for push-outs)

U
Â Ä //

_Ä

²²

V

²²
W // X

a push-out in Top¦, with U ⊂ W and U ⊂ V NDRs, and U, V,W path-
connected, then:

π1X is push-out of: π1U //

²²

π1V

π1W

Proof Look at:

U
Â Ä //

_Ä

²²

V1
Â Ä //

Ä _

²²

V Ä _

²²
W1

//
_Ä

²²

V ∪U W1Ä _

²²
W // W ∪U V1

Â Ä // X
2
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Example X ∈ CW¦ connected, X = A ∪B, A, B connected subcomplexes.
C := A ∩ B is then also a subcomplex; assume it is connected. ⇒ C ⊂ A
and C ⊂ B are NDR. Then:

π1X ∼= push-out: π1C //

²²

π1A

π1B

Corollary 2.13 X,Y ∈ CW¦ ⇒ π1(X ∨ Y ) ∼= π1X ∗ π1Y (free product ≡
coproduct in Gr)

Proof

{¦} //

²²

X

²²
Y // X ∨ Y

;

{1} //

²²

π1X

²²
π1Y // π1X ∗ π1Y (free product)

2

Example Free group in 2 generators: π1(S
1 ∨ S1) ∼= π1S

1 ∗ π1S
1 ∼= Z ∗ Z

(π1(S
1 × S1) ∼= Z× Z)

If you choose a base-point of X ∈ CW¦, it should be a 0-cell. Now some CW-
Complexes have more than one 0-cell, so you want to find a space which has
exactly one 0-cell, e.g. Sn = D0 ∪φ D

n, instead of Sn = D0
qD0 ∪D1

qD1 ∪
. . . ∪Dn

qDn.

2.2 HEP: Homotopy Extension Property

Definition 2.14 (X,A) ∈ Top2. A ⊂ X has the homotopy extension prop-
erty (HEP) if for every f : X → Y and homotopy F : f |A ' g : A → Y we
can extend F to F̃ : X × I → Y such that

F̃ |(A× I) = F

This is often expressed as a diagram:

A
Â Ä //
Ä _

²²

XÄ _

²²

f

##F
FF

FF
FF

FF

A× I
Â Ä //

F

77X × I
∃F̃ // Y
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Dn

Sn−1 = ∂Dn

f
Y

Figure 3: Sn−1 ⊂ Dn

� � � � � �
� � � � � �
� � � � � �
� � � � � �

Y
F̃

Dn × I Dn ∪Sn−1×{0} (Sn−1 × I)
deformation retract

Figure 4: Definition of F̃

Example Sn−1 ⊂ Dn has HEP.

Proof Look at figure 3. From

f :Dn → Y

f |Sn−1 :Sn−1 → Y

F :Sn−1 × I → Y

F :f |Sn−1 ' g

we get a map

Dn ∪Sn−1×{0} (Sn−1 × I)
Φ=〈f,F 〉 // Y

Dn × I

ρ

OO
?

F̃

66

so we define F̃ as in figure 4, namely F̃ := Φ ◦ ρ.
2
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Lemma 2.15

A
f //

Ä _

has HEP
²²

BÄ _

²²
X // Y

push-out in Top ⇒ B ⊂ Y has HEP.

Definition 2.16
XY := C(Y,X)

Remark
(X × I → Y )

bij
→ (X → Y I)

Proof

AÄ _

²²

f
//

F◦f=G|A

¹¹

BÄ _

²²

F

##G
GG

GG
GG

GG
GG

GG
G

X //

G from HEP

55Y
F̃ from p.o. // ZI

⇒ get F̃ from push-out property (F̃ induced by {G̃, F}). 2

Corollary 2.17 Sn−1 ⊂ Dn has HEP in

Sn−1
f //

∩

Y

∩

Dn // Y ∪f D
n

therefore so does Y ⊂ (Y ∪f D
n).

Note HEP is transitive: U ⊂ V HEP, V ⊂ W HEP ⇒ U ⊂ W HEP.

Theorem 2.18 (X,A) ∈ CW2 ⇒ A ⊂ X has the HEP.

Theorem 2.19 (X,A) ∈ CW2, A ' ¦ (contractible) ⇒

pr : X → X/A

is a homotopy equivalence (note that X/A is a CW-complex, see homework
set 3).
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Proof

A
G //

_Ä

²²

XI

ev0

²²
X

∃G̃||

==||

id
// X

corresponds to idA 'G ca0
(G : A× I → A), so ∃G̃ : X × I → X with

G̃(x, 0) = x

G̃(a, 1) = a0

G̃(a, t) ∈ A

and therefore G̃ defines a map H by

(X/A)× I H // X/A

X × I

pr

OO

G̃

// X

pr

OO

X
G̃(·,1) //

prX/A

²²

X

prX/A

²²
X/A

g̃

88rrrrrr

'idX/A

// X/A

⇒ g̃ and prX/A are homotopy inverses. 2

Definition 2.20 Every group G can be described by generators gi and rela-
tors ri. If there are only finitely many of them, as in

G = 〈g1, . . . , gn | r1, . . . , rm〉

then the group is called finitely presented and G is countable. In this case
we can also describe it as

G = (free group on (g̃1, . . . , g̃n))/(normal subgroup generated by words r̃i)

Example (i) G = 〈g |〉 ∼= Z

(ii) G = 〈g | gn〉 ∼= Z/nZ

(iii) G = 〈a, b | aba−1b−1〉 ∼= Z⊕ Z
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Theorem 2.21 Let X ∈ CW, A ⊂ X subcomplex, A ' ¦. Then X
'
−→

X/A, and therefore π1X ∼= π1(X/A).

Example X ∈ CW¦ ⇒ ΣX ' S1 ∧X =: SX (“reduced suspension”)

(S1 ×X)/(S1 ∨X)

=

ΣX
' // S1 ∧X

∼=

ΣX/(I × {x0})

X ∈ CW¦ connected (⇒ path-connected) ⇒ X1 ⊂ X connected, i.e. X1 is
a connected graph which contains a maximal subtree T ⊂ X1. Note that a
tree is a contractible subcomplex since it may not contain any loops! T also
contains all vertices in X1 (if one is missing, attach it through an edge of
choice).
Now suppose we contract T :

X
'
−→ X/T

π1X
∼=
−→ π1(X/T )

X/T has just one 0-cell, so it forms a natural base-point!
If we take Y ∈ CW¦ with Y0 = {base-point} (⇒ Y connected), then

Y0 ⊂ Y1 : qIS
0 //

_Ä

²²

Y0 = {¦}

∩

qID
1 // Y1 =

∨

I S
1

and
Y0 ⊂ Y1 ⊂ Y2 : qS1 Φ //

_Ä

²²

Y1

²²
qD2 // Y2

where Φ is homotopic to a cellular map Φ̃ (S1 = D0 ∪D1 as CW-complex).
Replacing Φ by Φ̃ yields the push-out

∨
S1 Φ̃ //
_Ä

²²

Y1

²²∨
D2 // Ỹ2 ' Y2
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(Ỹ2 ' Y2 by Hatcher, prop. 0.18, Ỹ2 a CW-complex by exercice 3.5) i.e.

Ỹ2 = (
∨

IS
1) ∪Φ̃ (

∨

JD
2)

Recall: X ∈ CW¦ connected ⇒ π1X2

∼=
−→ π1X.

X2 ⊃ X1 ⊃ T maximal subtree:

π2X ∼= π2X2
∼= π2(X2/T )

(note X2/T ' (
∨

I S
1) ∪ (

∨

J D
2)).

Lemma 2.22

π1

(
(
∨

IS
1) ∪Φ̃ (

∨

JD
2)
)
∼= 〈gα, α ∈ I | rβ, β ∈ J〉

Note Φ̃ yields maps

D2
β ⊃ S1

β

Φ̃β
−→

∨

IS
1

with
[Φ̃β] ∈ π1(

∨

IS
1) ∼= F (I)

where F (I) is the free group on I.

Proof Use van Kampen Theorem for CW-complexes:

∨

J S
1 Φ̃ //

_Ä

²²

∨

I S
1

_Ä

²²∨

J D
2 // (

∨

I S
1) ∪Φ̃ (

∨

J D
2)

(note that
∨

J D
2 is contractible). Applying π1 we can map this into a push-

out on Gr:

π1(
∨

J S
1)

Φ̃# //

²²

π1(
∨

I S
1)

²²
{1} // G

π1(
∨

J S
1) is the free group on J , and similiarly for I, so we can write

r̃β := Φ̃#(fβ)

and get
G ∼= 〈gα, α ∈ I | rβ, β ∈ J〉

where rβ corresponds to r̃β. 2
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Figure 5: Example 2

Corollary 2.23 Let G = 〈gα, α ∈ I | rβ, β ∈ J〉, then there is a “canoni-
cal” 2-dimensional CW-complex X(G) with π1X(G) ∼= G, namely X(G) :=
(
∨

I S
1) ∪φ (

∨

J D
2) where φ has components φβ : S1 →

∨

I S
1 corresponding

to the rβ’s. (X(G) is called the presentation complex of G with its presen-
tation).

Example 1. G = Z = 〈g |〉 ⇒ X(G) = S1 (π1S
1 ∼= Z)

2. G = Z × Z = 〈a, b | aba−1b−1〉 ⇒ X(G) = (S1 ∨ S1) ∪φ D
2, φ : S1 →

S1 ∨ S1 : [φ] ∈ π1(S
1 ∨ S1) ∼= Z× Z = 〈ã〉 × 〈b̃〉, [φ̃] = ãb̃ã−1b̃−1.

Obviously: (S1 ∨ S1) ∪φ D
2 ∼= S1 × S1.

S1
φ //

²²

S1 ∨ S1
Ä _

²²

D2 // (S1 ∨ S1) ∪φ D
2 ∼= S1 × S1

a push-out, see also figure 5. (π1(S
1 × S1) ∼= π1S

1 × π1S
1 ∼= Z× Z).

Definition 2.24 X ∈ CW¦ is called a K(G, 1), if:

i. X connected

ii. π1X ∼= G

iii. πiX = 0, i > 1

Remark (without proof) Such an X depends up to homotopy only on G.
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Actually:

Gr
K(·,1) // HCW¦

G
Â //

f

²²

K(G, 1)

K(f,1)

²²
H

Â // K(H, 1)

where HCW¦ is the homotopy category of pointed CW-complexes.
K(·, 1) a functor.
K(·, 1): “fully faithful”, i.e.

1. K(G, 1) ' K(H, 1)⇒ G ∼= H

2. hom(G,H)
bij.
→ [K(G, 1), K(H, 1)]¦

Example 1. K(Z, 1) = S1 (i.e. π1S
1 ∼= Z, and πiS

1 = 0 ∀i > 1)

πiS
1 = {0} for i > 1:

R

universal cover
²²

Si

>>}
}

}
} φ // S1

⇒ φ ' ¦ since R ' {¦}.

2. K(Z/2Z, 1) = RP∞ =
⋃
RP n, where RP n is the n-skeleton of RP∞

π1RP∞ = π1RP 2 = π1(S
1 ∪φ D

2) = 〈g | g2〉 ∼= Z/2Z, φ : S1 → S1 of
degree 2.

i > 1: πiRP∞ ∼= πi(RP i+1) ∼= πiS
i+1 = {0} as i < i+ 1.

Si+1 → RP i+1: 2-fold cover

3. Similarly (but harder): K(Z, 2) = CP∞ i.e. πiCP∞ =

{
Z i = 2
0 else
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3 Homology Theories

Axioms: (S. Eilenberg + N. Steenrod, early 50’s)

Top2
3

I
²²

(X,A)
_

²²
Top2

3 (A,∅)

Top

OO

3 A
_

OO

Definition 3.1 A homology theory {hn}n∈Z is a family of functors:

hn : Top2 → Ab ((X,A) 7→ hn(X,A));n ∈ Z

and natural transformations

∂n : hn → hn−1 ◦ I (hn(X,A)
∂n→ hn−1(A,∅) =: hn−1(A))

such that the following axioms hold:

1. f ' g (f, g : (X,A)→ (Y,B))⇒ hnf = hng (“homotopy invariance”).

2. “Long exact sequence”: (X,A) ∈ Top2. Then there is a natural long
exact sequence:

. . .→ hnA→ hnX → hn(X,A)
∂n→ hn−1A→ . . .

i.e. (A,∅) ↪→ (X,∅) ↪→ (X,A). We often write just ∂ for ∂n.

3. “Additivity”:
∀n : hn(

∐
Xα) ∼=

⊕

αhnXα

4. “Excision”: X ⊃ B ⊃ A such that Ā ⊂ B̊.

⇒ hn(X \ A,B \ A)
∼=
−→ hn(X,B)

If in addition h? satisfies the

5. “Dimension Axiom”: hn({¦}) = 0 if n 6= 0.

then h? is called an ordinary homology theory.
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We write H? for a homology theory with

hn({¦}) ∼=

{

Z, n = 0

0 else.

Example X = X1 ∪ X2 with Xi ⊂ X, i = 1, 2 open. Consider X ⊃ X2 ⊃
X2 \ (X1 ∩X2): X2 \X1 ∩X2 = X \X1 is closed. So

X2 = X̊2 ⊃ X2 \ (X1 ∩X2) = X2 \ (X1 ∩X2)

We note

X \ (X2 \X1 ∩X2)
︸ ︷︷ ︸

A

= X1; X2 \ (X2 \X1 ∩X2) = X1 ∩X2

and by the excision axiom

hn(X1, X1 ∩X2)
∼=
−→ hn(X,X2)

Theorem 3.2 (Mayer-Vietoris sequence) Let X = X1 ∪ X2, Xi ⊂ X
open. Then there is a natural long exact sequence

. . .→ hn(X1 ∩X2)
α
→ hn(X1)⊕ hn(X2)

β
→ hnX

∂
→ hn−1(X1 ∩X2)→ . . .

where
α(x) = (hn(j1)(x), hn(j2)(x)),

with jk : X1 ∩X2 ↪→ Xk, and

β(y, z) = (hn(i1)(y)− hn(i2)(z))

with ik : Xk ↪→ X.

Proof Look at (X1, X1 ∩X2) and (X,X2):

. . . // hn(X1 ∩X2) α1

//

α2 ²²

hn(X1) //

²²

hn(X1, X1 ∩X2)
∂ //

∼= excision²²

hn−1(X1 ∩X2) //

²²

. . .

. . . // hn(X2) // hn(X) // hn(X,X2) ∂
// hn−1(X2) // . . .

a commutative diagram ⇒ exactness of MV sequence follows by “diagram
chasing”.
E.g. exactness of “⊕”: We have to prove that ker β = imα.
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(i) imα ⊂ ker β: x ∈ hn(X1 ∩X2)

⇒ β(α(x)) = β(hn(j1)(x), hn(j2)(x))

= hn(i1)h(j1)(x)− hn(i2)hn(j2)(x)

= hn(i1 ◦ j1)(x)− hn(i2 ◦ j2)(x)

= 0

(ii) ker β ⊂ imα: x ∈ hn(X1)⊕ hn(X2)
β
→ hn(X). Assume βx = 0, i.e.

hn(i1)
︸ ︷︷ ︸

α1

x1 = hn(i2)
︸ ︷︷ ︸

α2

x2 =: z ∈ hn(X)

Now z 7→ 0 in hn(X,X2) and therefore (by excision) x1 7→ 0, so ∃x̃1 in
hn(X1 ∩ X2) such that x̃1 7→ x1. Suppose x̃1 7→ x̃2 in hn(X2). We cannot
conclude x̃2 = x2, but we know that x̃2 7→ z, so x̃2 − x2 7→ 0. Then take
∆ ∈ hn+1(X,X2) such that ∆ 7→ x̃2 − x2, and take ∆̃ ∈ hn+1(X1, X1 ∩X2)
with ∆̃ 7→ ∆ (by excision). Now define x̃′1 = (x̃1− im ∆̃), which finally maps
to x1 and x2 in the respective groups. [You’re Not Expected To Understand
This. Use a colour pen on the above diagram. Ed.] 2

X = X1 ∪X2, Xi ⊂ X open. ⇒ X is push-out of

X1 ∩X2
Â Ä //

Ä _

²²

X1

X2

Universal Property:

X1 ∩X2Ä _

²²

// X1Ä _

²²

f // Y

X2
//

g

JJ

X

∃!
>>~

~
~

~

Theorem 3.3 (Mayer-Vietoris sequence for push-outs)

A //
Ä _

²²

C

²²
B // D

a push-out with A ⊂ B a NDR, and A closed in B. Then there is a natural
long exact sequence (MV-Sequence)

. . . −→ hnA
α
−→ hnB ⊕ hnC

β
−→ hnD

∂
−→ hn−1A −→ . . .
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Figure 6: Braid

Proof As before, working with A replaced by a suitable neighbourhood. 2

Example X ∈ CW, X = X1 ∪X2, Xi ⊂ X subcomplex ⇒

X1 ∩X2
Â Ä //

Ä _

NDR
²²

X1Ä _

²²
X2

// X

is a push-out with MV-Sequence:

. . . −→ hn(X1 ∩X2) −→ hnX1 ⊕ hnX2 −→ hnX
∂
−→ hn−1(X1 ∩X2) −→ . . .

Theorem 3.4 X ⊃ B ⊃ A, (B,A) ↪→ (X,A) ↪→ (X,B). Then there is a
natural long exact sequence (triple sequence):

. . . −→ hn(B,A) −→ hn(X,A) −→ hn(X,B)
∂
−→ hn−1(B,A) −→ . . .

Proof Uses “Braid Lemma”:

Lemma 3.5 (Braid Lemma) Given a “braid diagram” with four braids,
as in figure 6. Assume 3 of them are exact, and the fourth one satisfies

(→ ¦→) = (
0
→) Then the fourth one is exact too.

oo hn(B,A)
--

&&MM
M

hn−1A
""E

EE

--
hn−1X

&&MM
MM

..
hn−1(X,B)

ÃÃB
BB

B

hn(X,A)

::ttt

''OO
OO

hn−1B
&&LL

LL
hn−1(X,A)

66mmmm

**TTT
TTT

is a triple sequence 2

Theorem 3.6 (relative version of MV) Let

A
Â Ä //
Ä _

²²

C

²²
B // D
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be a push-out in Top with A ⊂ B a NDR and A ⊂ B closed. Take any
W ⊂ A, then there is a natural long exact sequence:

. . . // hn(A,W ) // hn(B,W )⊕ hn(C,W ) // hn(D,W ) // hn−1(A,W ) // . . .

Proof As before, starting with “Triple sequence”. 2

Theorem 3.7 (Suspension Theorem) Let x0 ∈ X ∈ Top. Then there is
a natural isomorphism:

hn(X, {x0})
∼=
−→ hn+1(ΣX, {x0})

Proof Look at:

x0 ∈ X
Â Ä //

Ä _

NDR, X ⊂ CX closed

²²

CX 3 x0Ä _

²²
CX // ΣX

apply MV, with W = {x0}. Note CX ' {¦} so:

hn{x0}
∼=
−→ hnCX

0
−→ hn(CX, {x0})

∂
−→ hn−1{x0}

∼=
−→ hn−1CX

⇒ hn(CX, {x0}) = 0 ∀n ⇒ MV:

. . .→ hn+1(X, {x0})→ hn+1(CX, {x0})⊕ hn+1(CX, {x0})→

→ hn+1(ΣX, {x0})
∂
→ hn(X, {x0})→ . . .

where hn+1(ΣX, {x0}) has to be ∼= hn(X, {x0}). 2

MV for CW-complexes:

A
f //

Ä _

²²

B

²²
C // D

A,B,C ∈ CW, f cellular, A ⊂ C subcomplex ⇒ D ∈ CW.

. . .→ hnA→ hnB ⊕ hnC → hnD
∂
→ hn−1A→ . . .

Definition 3.8 Let h? be a homology theory. Then we define

h̃n(X) = ker(hnX → hn{¦})

for X ∈ Top. We call h̃?X the reduced homology of X.
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Example Let X ∈ Top and x0 ∈ X (note that hn∅ = 0 for all n by
additivity).
{x0} ⊂ X yields, X

can
→ {x0}

. . . // hn{x0}
// hn(X) //oo hn(X, {x0})

∂ // hn−1{x0}
// . . .oo

⇒ ∃ a split short exact sequence

0 // hn{x0}
// hn(X) //oo hn(X, {x0}) // 0

and therefore
hn(X) ∼= hn(X, {x0})⊕ hn{x0}

⇒ h̃n(X) ∼= hn(X, {x0})

If X ∈ Top¦ with base-point x0,

h̃n(X) ∼=
can
hn(X, {base-point})

Corollary 3.9 (to MV) There is a natural “suspension isomorphism”

σ̃n(X) : h̃n(X)
∼=
→ h̃n+1(ΣX)

a0 ∈ A //
_Ä

²²

B
_Ä

²²
C // D

as before. MV-sequence “relative to {a0}” (in CW¦):

. . . // hn(A, {a0}) // hn(B, {a0})⊕ hn(C, {a0}) // hn(D, {a0})
∂ // . . .

. . . // h̃nA
// h̃nB ⊕ h̃nC

// h̃nD
∂ // . . .

“MV sequence for reduced homology”.

Note h̃n{¦} = 0 ∀n ⇒ if X is contractible, then h̃nX = 0 ∀n.

Corollary 3.10 h̃nX ∼= h̃n+1ΣX
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Proof Look at
x0 ∈ X

Â Ä //
_Ä

²²

CX

²²
CX //

push
out

ΣX

MV-sequence yields

. . .→ h̃nX → h̃nCX
︸ ︷︷ ︸

0

⊕ h̃nCX
︸ ︷︷ ︸

0

→ h̃nΣX
∂
→ h̃n−1X → . . .

︸︷︷︸

0

so ∂ must be an isomorphism. 2

Example h̃nS
k ∼= h̃n−1S

k−1 ∼= . . . ∼= h̃n−kS
0

Sk ∼= ΣSk−1

But S0 ∼= {¦} q{¦}:
hnS

0 ∼= hn{¦}
︸ ︷︷ ︸

A

⊕hn{¦}
︸ ︷︷ ︸

A

and
h̃nS

0 ∼= ker(A⊕ A
φ
→ A; (a, b) 7→ a+ b) ∼= A

via

A
∼=
→ ker(A⊕ A

φ
→ A)

x 7→ (x,−x)

We conclude that h̃iS
0 ∼= hi{¦} for all i, and therefore

h̃nS
k ∼= h̃n−kS

0 ∼= hn−k{¦}

So, if h? satisfies the dimension axiom:

h̃nS
k ∼=

{

h0{¦}, if n = k

0 else.

If H? is an “ordinary homology theory with coefficients Z”, i.e.

Hn{¦} ∼=

{

Z, if n = 0

0 else.

then

HnS
k ∼=







Z⊕ Z if n = k = 0

Z if n = 0 or n = k, k > 0

0 else
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Proof (1) k = 0:

HnS
0 ∼= Hn{¦} ⊕Hn{¦} ∼=

{

Z⊕ Z, n = 0

0 else.

(2) k > 0:
HnS

k ∼= H̃nS
k ⊕Hn{¦}

Hn−k{¦} ∼= H̃n−kS
0

⇒ HnS
k =







Z, n = 0

Z, n = k

0 else.

2

Note In the reduced case this boils down to

H̃nS
k ∼=

{

Z, n = k

0 else.

because
H̃nS

k ∼= H̃n−kS
0 ∼= Hn−k({¦})

Corollary 3.11 H1S
1 ∼= Z

Definition 3.12 Let θ be a generator of H1S
1. f : S1 → S1 has deg(f) ∈ Z

the degree of f defined by:

(H1f)(θ) = deg(f) · θ ∈ H1S
1

Lemma 3.13 Let fk : S1 → S1 be the k-power map:

z 7→ zk, z ∈ S1 = {c ∈ C | |c| = 1}

then deg(fk) = k.

Proof k=2: f2(z) = z2 corresponds to:

S1 c
→ S1 ∨ S1 O

→ S1

where O is a folding map 〈id, id〉.
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c induces:
C¦(S

1 ∨ S1, X) //

∼=

C¦(S
1, X)

ΩX × ΩX
µ // ΩX

thus:
H1(f2) : H1S

1 H1c→ H1(S
1 ∨ S1)

︸ ︷︷ ︸
∼=H1S1⊕H1S1

H1O

→ H1S
1

yields:

Z → Z⊕ Z
O∗→ Z

1 7→ (s, t) 7→ s+ t

where s is obtained from:

H1S
1 //

id

&&MM
MMM

MMM
MMM

H1(S
1 ∨ S1)

pr

²²
H1S

1

where id maps θ to s · θ, therefore s = 1, and similarly t = 1.

⇒ H1(f2)(θ) = 2θ : deg f2 = 2.
2

Remark fk : S1 → S1 yields Σn−1fk : Sn → Sn using the suspension
isomorphism:

Hn(Σ
n−1fk) : HnS

n → HnS
n

which is a multiplication by k (i.e. Σn−1fk : Sn → Sn has degree k)

Lemma 3.14 X,Y ∈ Top¦ then h̃n(X ∨ Y ) ∼= h̃nX ⊕ h̃nY if “base-point is
good” (i.e. {x0} ⊂ X and {y0} ⊂ Y NDR), and Hn(X ∨ Y ) ∼= HnX ⊕HnY
if n 6= 0.

Proof
{¦} //

²²

X

²²
Y // X ∨ Y

a push-out. MV:

h̃n{¦}
︸ ︷︷ ︸

0

→ h̃nX ⊕ h̃nY → h̃n(X ∨ Y )
∂
→ h̃n−1{¦}
︸ ︷︷ ︸

0

2
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Remark CW-complexes are locally contractible, therefore every x0 ∈ X ∈
CW is a “good” base-point.

Definition 3.15 k > 0, k ∈ Z: fk : S1 → S1, then the Moore-space of type
(Z/kZ, 1) is defined as:

M(Z/kZ, 1) := S1 ∪fk
D2

Lemma 3.16

H̃iM(Z/kZ, 1) ∼=

{

Z/kZ i = 1

0 else

or more generally: HnX ∼= H̃nX if n 6= 0 and:

HnM(Z/kZ, 1) ∼=







Z n = 0

Z/kZ n = 1

0 else

Proof We have a push-out diagram:

S1
Ä _

²²

fk // S1

²²
{¦} ' D2 // M(Z/kZ, 1) =: M

and the MV-sequence yields:

. . .→ H̃iS
1 → H̃iD

2

︸ ︷︷ ︸

0

⊕H̃iS
1 → H̃iM

∂
→ . . .

where H̃iS
1 → H̃iS

1 has degree k. so:

0⊕ H̃2S
1

︸ ︷︷ ︸

=0

→ H̃2M
∂
→ H̃1S

1

︸ ︷︷ ︸
∼=Z

½ 0⊕ H̃1S
1

︸ ︷︷ ︸
∼=Z

³ H̃1M
∂
→ 0

mult. by k
//

⇒ H̃1M = Z/kZ, H̃iM = 0, i 6= 1. 2

Corollary 3.17

H̃i(ΣM(Z/kZ, 1)) =

{

Z/kZ i = 2

0 else

H̃i(Σ
n−1(M(Z/kZ, 1) =

{

Z/kZ i = n

0 else

and M(Z/2Z, 1) = S1 ∪f2 D
2 = RP 2.
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3.1 Application of MV-sequence

Theorem 3.18 Let h∗ be a homology theory, then:

hn(S
d ×X) ∼= hn(X)⊕ hn−d(X)

Proof Consider the following push-out:

Sd ×XÄ _

NDR
²²

Â Ä // (Dd+1 ×X) ' X
Ä _

²²
Dd+1 ×X // ΣSd ×X

Now form the MV-sequence “mod X” (i.e. X ⊂ Sd × X, by choosing a
base-point for Sd), remember that ΣSd ∼= Sd+1

. . . → hn+1(D
d+1 ×X,X)⊕ hn+1(D

d+1 ×X,X)→ hn+1(S
d+1 ×X,X)

∂
→

∂
→ hn(S

d ×X,X)→ hn(D
d+1 ×X,X)⊕ hn(D

d+1 ×X,X)→ . . .

⇒ hn+1(S
d+1 ×X,X)

∼=
→ hn(S

d ×X,X), and

hn(S
d ×X,X)

∼=
→ hn−1(S

d−1 ×X,X)
∼=
→ . . .

∼=
→ hn−d(S

0 ×X,X)

with S0 ×X ∼= X qX

hn−d(X) // // hn−d(S
0 ×X) // // hn−d(S

0 ×X,X)

⇒ hn−d(S
0 ×X,X) ∼= hn−d(X)

X ⊂ Sd ×X yields:

. . .
0
→ hn(X)→ hn(S

d ×X)→ hn(S
d ×X,X)

0
→ hn−1(X)→ . . .

⇒ hn(S
d ×X) ∼= hn(X)⊕ hn(S

d ×X,X)
︸ ︷︷ ︸

∼=hn−d(X)

2

Corollary 3.19 Hi(S
1 × . . .× S1

︸ ︷︷ ︸

k copies

) ∼=

{

Z(k
i) 0 ≤ i ≤ k

0 else

Remark Recall: Hi(∗) ∼=

{

Z i = 0

0 else
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Proof Hi(S
1 × S1 × . . .× S1

︸ ︷︷ ︸

k − 1 copies

) ∼= Hi((S
1)k−1)

︸ ︷︷ ︸

Z(
k−1

i )

⊕Hi−1((S
1)k−1)

︸ ︷︷ ︸

Z(
k−1
i−1)

∼= Z(k
i) 2

Example Hi(S
1 × S1) ∼=







Z i = 0

Z⊕ Z i = 1

Z i = 2

0 else

4 Singular and cellular homology

4.1 Singular homology

We want to construct an ordinary homology theory on Top2.

Definition 4.1 Standard n-simplex:

∆n :=
{

(x1, . . . , xn+1) ∈ R
n+1 |

∑

xj = 1, xi ≥ 0∀i
}

∆n has n+ 1 “faces” ink : ∆n−1 → ∆n given by:

ink(x1, . . . , xn) =







(0, x1, . . . , xn) k = 1

(x1, . . . , 0, xk, . . . , xn) 1 < k < n+ 1

(x1, . . . , xn, 0) k = n+ 1

(so 1 ≤ k ≤ n+ 1)

Example

40 ⊂ R41

x1

x2

10

41

40

Definition 4.2 X ∈ Top:

Csing
n (X) :=

⊕

σ:∆n→X

Zσ
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with Zσ ∼= Z (free abelian group, with basis {σ : ∆n → X})

σ : ∆n → X is called a singular n-simplex of X, and:

∂n : Csing
n (X) → Csing

n−1(X)

(σ : ∆n → X) 7→
∑

k(−1)k+1(∆n−1

ink→ ∆n
σ
→ X)

for which we write: ∂nσ =
∑

k(−1)k+1σ ◦ ink

One checks that

Csing
n (X)

∂n→ Csing
n−1(X)

∂n−1
→ Csing

n−2(X)

is 0, i.e. ∂n−1∂n = 0:

Bsing
n−1(X) := im(∂n) ⊂ ker ∂n−1 =: Zsing

n−1(X)

((n− 1)-cycles) and Bsing
n−1(X) ((n− 1)-boundaries)

Hsing
n (X) := Zsing

n (X)/Bsing
n (X)

“n-th singular homology group of X”

Hsing
0 (X) := Csing

0 (X)/Bsing
0 (X)

We use the following convention: C sing
i (X) = 0 if i < 0, and

Csing
1 (X)

∂1→ Csing
0 (X)

∂0→ Csing
−1 (X) = 0

{Csing
n (X), ∂n}n∈Z is the singular chain complex of X. We usually just write

Csing
? (X) and we often just write ∂ for ∂n (⇒ ∂∂ = 0).

Hsing
n is a functor: Given f : X → Y , we define

Csing
n (f) : Csing

n (X)→ Csing
n (Y )

by looking at a generator σ : 4n → X of Csing
n (X):

(σ : 4n → X) 7→ (4n
σ
→ X

f
→ Y )

so Csing
n (f)(σ) = f ◦ σ, and therefore C sing

n (id) = id and

Csing
n (f ◦ g)(σ) = (f ◦ g) ◦ σ = f ◦ (g ◦ σ) =

(
Csing
n (f) ◦ Csing

n (g)
)
(σ)
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Compatibility with “∂”: Given f : X → Y , we consider

Csing
n (X)

Csing
n f //

∂
²²

Csing
n (Y )

∂
²²

Csing
n−1(X)

Csing
n−1f // Csing

n−1(Y )

This diagram is commutative: Take a generator σ ∈ C sing
n (X) and compute

∂
(
(Csing

n f)(σ)
)

= ∂(f ◦ σ) =
∑

k

(−1)k+1(f ◦ σ) ◦ ink

(Csing
n−1f)(∂σ) = Csing

n−1(f)

(
∑

k

(−1)k+1σ ◦ ink

)

=
∑

k

(−1)k+1f ◦ (σ ◦ ink)

so the two turn out to be the same, therefore

Csing
n (f)

(
Zsing
n (X)

)
⊂ Zsing

n (Y )

Csing
n (f)Bsing

n (X) ⊂ Bsing
n (Y )

Therefore, f induces

Bsing
n (X) Â Ä //

²²

Zsing
n (X) // //

²²

Hsing
n (X)

Hnf
²²

Bsing
n (Y ) Â Ä // Zsing

n (Y ) // // Hsing
n (Y )

Definition for H sing
n on Top2: Take (X,A) ∈ Top2, A ⊂ X, then

Csing
n (A) ⊂ Csing

n (X)

(σ : 4n → A) 7→ (σ : 4n → A ⊂ X)

Csing
n (X,A) := Csing

n (X)/Csing
n (A)

and we can define ∂n as the induced map ∂ from

Csing
n (X)

∂
²²

Csing
n (A)_?

oo

∂
²²

Csing
n−1(X) Csing

n−1(A)_?
oo

which means Csing
n (X,A)

∂n→ Csing
n−1(X,A). Now we can finally write down the
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Definition 4.3 Let (X,A) ∈ Top2; then

Hsing
n (X,A) := ker

(

Csing
n (X,A)

∂n→ Csing
n−1(X,A)

)

/ im
(

Csing
n+1(X,A)

∂n+1
→ Csing

n (X,A)
)

This defines functors Hn : Top2 → Ab.

We need a natural transformation H sing
n (X,A)

∂
→ Hsing

n−1(A). This “∂” is
defined as follows: Take [z] ∈ H sing

n (X,A), z ∈ Csing
n (X,A). Look at a cycle

z̃ ∈ Csing
n X:

Csing
n (A) Â Ä //

²²

Csing
n X

α // //

∂
²²

Csing
n (X,A) 3

∂
²²

z = αz̃_

²²
Csing
n−1(A)

Â Ä // Csing
n−1X

// // Csing
n−1(X,A) 3 0

∂z̃ ∈ Csing
n−1A ⊂ Csing

n−1(X) is a cycle in Csing
n−1(A), namely ∂(∂z̃) = (∂∂)z = 0.

So define:
Hn(X,A)

∂
→ Hn−1(A)

[z] 7→ [∂z̃]

If we choose another counter image z̃′ ∈ Csing(X) of z: z̃′ − z̃ ∈ Csing
n (A),

so for some a ∈ Csing
n (A) we have ∂z̃′ − ∂z̃ = ∂a ∈ Csing

n−1(A) and therefore

[∂z̃′] = [∂z̃] ∈ Hsing
n−1(A)

Theorem 4.4 (Hsing
∗ , ∂)is a homology theory, satifying the dimension ax-

iom.

Proof (Sketch)

1. Homotopy Axiom:

F : f ' g; f : X → Y , g : X → Y
?
⇒ Hnf = Hng : Hsing

n X → Hsing
n Y .

F : X × I → Y , F (x, 0) = f(x), F (x, 1) = g(x)

X
i0 //

i1
// X × I

F // Y Fi0 = f, F i1 = g

⇒ it suffices to check that H sing
n i0 = Hsing

n i1, because then:

Hsing
n f = Hsing

n (F ◦ i0) = Hsing
n F ◦Hsing

n i0
= Hsing

n F ◦Hsing
n i1 = Hsing

n (F ◦ i1) = Hsing
n (g)
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So we have to consider: X
i0 //

i1
// X × I :

Csing
n i0, C

sing
n i1 : Csing

n X
//
// Csing

n (X × I)

Csing
∗ i0, C

sing
∗ i1 are chain homotopic (see chapter 6)⇒ H∗i0 = H∗i1

2. Long exact sequence axiom:

(X,A) ∈ Top2:

0→ Csing
∗ A→ Csing

∗ X ³ Csing
∗ (X,A)→ 0

short exact sequence of chain complexes. This gives rise to a long exact
“homology sequence” (see chapter 6)

. . .→ Hsing
n X → Hsing

n (X,A)
∂
→ Hsing

n−1A→ Hsing
n−1X → . . .

3. Additivity: Csing
n (

∐

α∈I Xα) ∼=
⊕

α∈I C
sing(Xα). ∆n

f
→
∐

α∈I Xα, com-
patible with ∂ ⇒ f(∆n) ⊂ Xα for some α (because ∆n is connected)
⇒ induces:

Hsing
n

(∐

α∈I

Xα

)
∼=
⊕

α∈I

Hsing
n (Xα)

4. Excision: Given X ⊃ B ⊃ A with Ā ⊂ B̊ ⊂ X
?
⇒ Hsing

n (X \ A,B \ A)
∼=
→ Hsing

n (X,B)

Let U = {Uα}α∈I be a covering of X with Uα ⊂ X, α ∈ I with
⋃

α∈I Ůα = X. Define CU

n (X) as subgroup of Csing
n X generated by

the singular n-simplices f : ∆n → X such that f(∆n) ⊂ Uα for some
α (“U-small simplices”). ⇒ CU

∗ (X) ⊂ Csing
∗ (X) is a subcomplex and it

induces an isomorphism in homology:

ker(CU

n
∂
→ CU

n−1)/ im(CU

n+1 → CU

n ) =: HU

nX
∼=
→ Hsing

n X

(See Lück p. 29). Idea: for ∆n “barycentric subdivision”: new vertices
are barycentres of faces (figure 7). Now take for U the cover: X =
X \ A ∪B

(X \ Ā) = ˚(X \ A) ⊂ (X \ A)⇒ X = ˚(X \ A) ∪ B̊, Ā ⊂ B̊ ⊂ B

the function:

Csing
n (X \ A)/Csing

n (B \ A)→ Csing
n X/Csing

n B
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4n

Figure 7: Barycentric subdivision

should induce an isomorphism in homology. Look at:

CU

n (X) = Csing
n (X \ A) + Csing

n (B) ⊂ Csing
n X

⇒ Csing
n (X \ A)/Csing

n (B \ A) ∼=
∼=
(
Csing
n (X \ A) + Csing

n B
)

︸ ︷︷ ︸

CU
n (X)

/Csing
n (B \ A) + Csing

n (B)
︸ ︷︷ ︸

Csing
n (B)

φ : CU

n (X)/Csing
n (B)→ Csing

n (X)/Csing
n (B) use the following lemma:

Lemma 4.5 Given a diagram of chain complexes:

0 // A∗
//

α

²²

B∗
//

β
²²

C∗
//

γ

²²

0

0 // D∗
// E∗

// F∗
// 0

if two of H∗α, H∗β, H∗γ are an isomorphism, then the third one is too.

Proof

. . . // HnA∗
//

∼=
²²

HnB∗

∼=
²²

// HnC∗
∂ //

²²

Hn−1A∗
// Hn−1B∗

// . . .

. . . // HnD∗
// HnE∗

// HnF∗
∂ // Hn−1D∗

// Hn−1E∗
// . . .

2

0 // Csing
∗ B //

id
²²

CU

∗X
//

lemma
²²

CU

∗X/C
sing
∗ B //

²²

0

0 // Csing
∗ B // Csing

∗ X // Csing
∗ X/Csing

∗ B // 0

⇒ H∗φ is an isomorphism.

⇒ Hsing
∗ is a homology theory.
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5. Hsing
∗ satisfies the dimension axiom:

Claim:

Hsing
n ({∗}) ∼=

{

0 n 6= 0

Z n = 0

Indeed:

. . .→ Csing
n ({∗})
︸ ︷︷ ︸

generated by σn : ∆n
∃!
→ {∗}

∂
→ Csing

n−1({∗})→ . . .→ Csing
0 ({∗})→ 0

so Csing
∗ ({∗}) looks as follows:

. . .→ Z = 〈σn〉
∂n→ Z = 〈σn−1〉

∂n−1
→ . . .→ Z→ 0

with

∂nσn =
∑

1≤k≤n+1

(−1)k+1(σn−1) =

{

0 n+ 1 even

σn−1 n+ 1 odd

Csing
∗ ({∗}):

. . . // Z // Z // . . . 0 // Z

=

0

∂1
// Z

=

0

∂0
// 0

〈σ1〉 〈σ0〉

and Hsing
n ({∗}) = 0 for n > 0. H sing

0 ({∗}) = ker(∂0)
︸ ︷︷ ︸

Z

/ im(∂1)
︸ ︷︷ ︸

{0}

∼= Z

2

Some Applications:

1. Hsing
n (S0) =

{

Z⊕ Z n = 0

0 else

2. if k > 0: H sing
n (Sk) ∼=

{

Z n = 0 or n = k

0 else

Corollary 4.6 (Brouwer fixed point theorem) Every map f : Dn →
Dn has a fixed point (i.e. an x ∈ Dn with f(x) = x).
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y = φ(y)

f(y)

=: φ(x)x

f(x)

Figure 8: Definition of φ

Proof Suppose f has no fixed point. Consider the ray from f(x) to x (x ∈
Dn), and its intersection φ(x) with ∂Dn = Sn−1 (figure 8).

φ : Dn // Sn−1

Sn−1
?Â

OO

φ|Sn−1=id

;;vvvvvvvvv

Apply Hsing
n−1 (assuming n > 0)

Hsing
n−1D

n // Hsing
n−1S

n−1

Hsing
n−1S

n−1
?Â

OO

id

88qqqqqqqqqq

if n = 1: Z // Z⊕ Z

Z⊕ Z
id

99ttttttttt

OO if n > 1: 0 // Z

Z

OO

id

??ÄÄÄÄÄÄÄ

in either case, this is a contradiction.
2

Corollary 4.7 (Invariance of dimension) Rn ∼= Rm ⇒ n = m

Proof Let:

φ : Rn
∼=
→ Rm

x0 7→ φ(x0)

⇒ induces Rn \ {x0}
∼=
→ Rm \ {φ(x0)}. But: Rn \ {x0} ' Sn−1 and Rm \

{φ(x0)} ' Sm−1 imply: Sn−1 ' Sm−1 and thereforeH sing
∗ Sn−1 ∼= Hsing

∗ Sm−1 ⇒
n = m. 2
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Theorem 4.8 (Borsuk-Ulam Theorem) There is no injective map S2 →
R2 .

Note S2 \ {x} ∼= R2 ↪→ R2 \ {0} via R2 ∼= D̊2 ⊂ R2

Proof Suppose φ : S2 → R2 injective ⇒ φ(x) 6= φ(−x) ∀x ∈ S2. Let

ψ(x) = φ(x)−φ(−x)
‖φ(x)−φ(−x)‖

∈ S1

S2
ψ //

x∼−x
²²²²

S1

y∼−y
²²²²

RP 2
∃ψ̄ //___ RP 1 ∼= S1

(D)

ψ̄ induced by ψ because ψ(A2x) = A1ψ(x) with A2 : S2 → S2, x 7→ −x,
A1 : S1 → S1, y 7→ −y.
Claim: From the diagram (D) we have

Hsing
1 (ψ̄) : Hsing

1 RP 2 6=0
→ Hsing

1 RP 1

which is a contradiction because

Hsing
1 RP 2 = Z/2Z (RP 2 = S1 ∪2 e

2)

Hsing
1 RP 1 = Z (RP 1 ∼= S1)

Proof of the claim: We use the following fact on covering spaces: Let X
π
→ Y

be a covering. For every loop ω with base-point x0, there is a unique lift ω̃
for a given initial point x̃0 over x0 (i.e. π(x̃0) = x0). (See Topologie SS 05.)
If w ' const. (i.e. [ω] = 0 ∈ π1(X, x0)) then ω̃ has to be a loop too (this
follows from the homotopy lifting property for π : X → Y ). So we can look
at (D) as

−y

y

ψ //

π

²²

ψ(y)

−ψ(y) = ψ(−y)

π

²²

Ioo

²²
RP 2

ψ̄ // RP 1 S1αoo

If we take a path σ : I → S2 from y to −y, then πσ is a loop in RP 2 ⇒
[πσ] ∈ π1(RP 2) is not trivial. The loop [πψσ] ∈ π1RP 1 is 6= 0 ⇒ degree of
the corresponding map S1 α

→ S1 = RP 1 is 6= 0

Z/2Z ∼= Hsing
1 (RP 2)

Hsing
1 (ψ̄)

// Hsing
1 (RP 1) ∼= Z
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⇒ Hsing
1 (ψ̄) 6= 0. 2

Remark General Borsuk-Ulam: Sn 6↪→ Rn

Proof As before

Sn
ψ //

π

²²

Sn−1

π

²²
RP n

ψ̄ // RP n−1

However for n > 2

Hsing
1 RP n = Hsing

1 RP n−1 = Z/2Z

so we need to show that any map

Hsing
1 RP n → Hsing

1 RP n−1

is 0 (see later). 2

Remark Application: For every point x on the earth, let t(x) be the temper-
ature and p(x) the pressure. Then ∃x1 6= x2 on the earth with t(x1) = t(x2)
and p(x1) = p(x2), because otherwise we could embed

S2 ↪→ R2

x 7→ (t(x), p(x))

which of course is a contradiction.

4.2 Cellular homology

Let X ∈ CW. We want to define an easily computable H cell
n X such that

Hcell
n X ∼= Hsing

n X.

Theorem 4.9 (MV for CW-complexes: a variation)

A
f //

Ä _

²²

Y

²²
X //// Y ∪f X

If (X,A) ∈ CW2, Y ∈ CW, and f cellular ⇒ Y ∪f X ∈ CW.
Then

Hsing
i (X,A)

∼=
→ Hsing

i (Y ∪f X,Y ) ∀i
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Proof Look at the MV-sequence “modA”.

Z(f)

'

²²
A

.
±

==zzzzzzzz

f
// Y

where Z(f) is the mapping cylinder⇒ we can assume f is injective, mapping
homeomorphically onto its image: “A ⊂ Y ”. So:

. . . Hsing
i (A,A)

︸ ︷︷ ︸

0

→ Hsing
i (X,A)⊕Hsing

i (Y,A)
(∗)
→ Hsing

i (Y ∪fX,A)
∂
→ Hsing

i−1 (A,A)
︸ ︷︷ ︸

0

and A ⊂ Y ⊂ (Y ∪f X) yields

∂
→ Hsing

i (Y,A)
φ
→ Hsing

i (Y ∪f X,A)→ Hsing
i (Y ∪f X,Y )

∂
→

with φ injective from (∗), therefore H sing
i (Y ∪f X,Y ) ∼= coker(φ) 2

Definition 4.10 (Cellular homology) Let X ∈ CW, X0 ⊂ X1 ⊂ . . . ⊂
X. By definition we have a push-out

∐
Sn−1 f //

Ä _

²²

Xn−1

²²∐
Dn // Xn

and by the above theorem

Hsing
i (Xn, Xn−1) ∼= Hsing

i (
∐
Dn,

∐
Sn−1) ∼=

⊕

I H
sing
i (Dn, Sn−1)

but if we look at the long exact sequence of Dn ⊃ Sn−1,

Hsing
i (Dn, Sn−1) ∼=

{

Z, i = n

0, else.

so we define

Ccell
n (X) := Hsing

n (Xn, Xn−1) ∼=
⊕

# n-cells

Z

We need to define ∂n : Ccell
n (X) → Ccell

n−1(X): Xn−2 ⊂ Xn−1 ⊂ Xn yields the
triple sequence

Hsing
n (Xn, Xn−2) // Hsing

n (Xn, Xn−1)
∂ // Hsing

n−1(Xn−1, Xn−2) // . . .

Ccell
n X // Ccell

n−1X
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Claim: Ccell
n X

∂n→ Ccell
n−1X

∂n−1
→ Ccell

n−2X is zero. Indeed

Hsing
n (Xn, Xn−1)

∂n //_____

∂
ÂÂ?

??
??

??
??

??

Hsing
n−1Xn−1

??ÄÄÄÄÄÄÄÄÄÄÄ
0 //

Hsing
n−1(Xn−1, Xn−2)

∂n−1//

∂
ÂÂ?

??
??

??
??

??

Hsing
n−2Xn−2

??ÄÄÄÄÄÄÄÄÄÄÄ

Hsing
n−2(Xn−2, Xn−3)

⇒ ∂n−1∂n = 0 ⇒ define

Hcell
n X := ker(∂n)/ im(∂n+1)

Theorem 4.11 X ∈ CW ⇒ Hcell
n X ∼= Hsing

n X ∀n.

Proof First, we claim: H sing
i Xn

∼=
→ Hsing

i X if i < n; andHsing
n Xn

onto
→ Hsing

n X.
Indeed, (Xn+1, Xn):

. . .→ Hsing
i+1 (Xn+1, Xn)

︸ ︷︷ ︸

0 if i 6= n

∂
→ Hsing

i (Xn)→ Hsing
i (Xn+1)→ Hsing

i (Xn+1, Xn)
︸ ︷︷ ︸

0 if i 6= n+ 1

∂
→ . . .

so if i < n:
Hsing
i Xn

∼=
→ Hsing

i Xn+1

∼=
→ Hsing

i Xn+2 → . . .

⇒ for X finite dimensional: H sing
i (Xn)

∼=
→ Hsing

i X if i < n.

If i = n: Hsing
n Xn ³ Hsing

n Xn+1

∼=
→ . . ., so Hsing

n Xn ³ Hsing
n X if X is finite

dimensional.
Now consider the diagram

Hsing
n Xn

β

²²

φ // // Hsing
n X

Hsing
n+1(Xn+1, Xn) Ccell

n+1X
∂n+1 //

∂=:α
::uuuuuuuuu
Ccell
n X

∂n //

∂
²²

Ccell
n−1X Hsing

n−1(Xn−1, Xn−2)

Hsing
n−1Xn−1

::vvvvvvvvv

Kernel of φ: Look at the long exact sequence of (Xn+1, Xn):

Ccell
n+1X = Hsing

n+1(Xn+1, Xn)
α
→ Hsing

n Xn

φ
³ Hsing

n Xn+1
∼= Hsing

n X
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⇒ ker(φ) = im(α).
Define

γ : Hsing
n (X) −→ Hcell

n X = ker(∂n)/ im(∂n+1)

x 7−→ [β(x)]

Then γ bijective follows from the diagram above. 2

X ∈ CW: Hsing
n (X)

∼=
→ Hcell

n (X)
relative groups:

1. X ∈ CW:
H̃cell
n (X) = ker(Hcell

n (X)→ Hcell
n ({∗}))

2. (X,A) ∈ CW2, A 6= ∅:

Hcell
n (X,A) := H̃cell

n (X/A) (Hcell
n (X,∅) := Hcell

n (X))

⇒ Hcell
n (X,A) ∼= Hsing

n (X,A) because:

A
Â Ä NDR //
Ä _

NDR
²²

X

²²
CA // X ∪A CA







Hsing
n (X,A) ∼= Hsing

n (X ∪A CA,CA)
∼= Hsing

n (X/A, {∗}) ∼= H̃sing
n (X/A)

⇒ (X,A) ∈ CW2 yields a long exact sequence:

. . .→ Hcell
n A→ Hcell

n X → Hcell
n (X,A)

∂
→ Hcell

n−1A→ . . .

Final Remarks:

1. X ∈ Top ⇒ Hsing
0 (X) ∼=

⊕

π0(X) Z, where π0X := [{∗}, X]

Note f, g : {∗} → X are homotopic if and only if f(∗) and g(∗) are in

the same path component of X: π0X
bij.
↔ {path components of X}

Proof
. . .→ Csing

1 X
∂1→ Csing

0 X
∂0→ 0

Csing
0 has basis σ : {0} = ∆0 → X

⇒ Hsing
0 (X) = Csing

0 (X)/ im(∂1)

⇒ Csing
0 (X) 3 c =

∑

x∈X nxx finite sum nx ∈ Z

→ Csing
1 (X)

∂1→ Csing
0 (X)

∂0→
(σ : ∆1 → X) 7→ σ(0, 1)− σ(1, 0)

⇒ Csing
0 (X)/ im(∂1) ∼=

⊕

π0(X) Z 2
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λ−1
λ σ

x0

Figure 9: proof

2. X ∈ Top¦, X path connected (⇒ H sing
0 (X) ∼= Z) ⇒

Hsing
1 (X) ∼= π1(X)/[π1X, π1X]

with [π1X, π1X] the commutator subgroup of π1(X)

Proof (Sketch)

Consider the “Hurewicz Homomorphism”:

Hu : π1(X) → Hsing
1 (X)

[S1 f
→ X]

¦
7→ Hsing

1 (f)(c1) where 〈c1〉 = Hsing
1 S1

claim: Hu induces π1X/[π1X, π1X]
∼=
→ Hsing

1 (X)

• onto:

Hsing
1 (X)´ Zsing

1 (X) = ker(Csing
1 (X)

∂1→ Csing
0 (X)

∂1σ = 0, with (σ : ∆1 → X) ∈ Csing
1 (X).

∂1σ = 0 ⇒ σ a loop. “σ ∼ loop at base point”. See figure 9.

[λ] + [λ−1] ∈ Csing
1 (X) is a boundary.

• ker(Hu) = [π1X, π1X]: without proof

2

More in general:

Theorem 4.12 (Hurewicz) Let X ∈ Top path connected. Then:

1. π1X/[π1X, π1X]
∼=
→ Hsing

1 (X)

2. if πiX = 0 for 1 ≤ i < n then: Hu : πnX
∼=
→ Hsing

n (X)

Example 1. π1S
1

∼=
→ Hsing

1 (S1)

2. n > 1: πnS
n

∼=
→ Hsing

n Sn ∼= Z, [f : Sn → Sn]¦ 7→ deg(f) ·cn, H
sing
n (Sn) =

〈cn〉.
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5 Lefschetz Numbers

5.1 Facts from Linear Algebra

Let V , W be finite dimensional Q-vector spaces, and f : V → W a linear
map.

Definition 5.1 If V = W , then f : V → V , thus the trace tr(f) ∈ Q is
well-defined: Choose a basis {e1, . . . , en} of V , then f can be expressed by an
(n× n)-matrix (fij) with coefficients fij ∈ Q. Put

tr(f) :=
n∑

i=1

fii

Properties of tr:

(1) “Trace property”: If

V
f
→ W

g
→ V

f
→ W

then
tr(g ◦ f) = tr(f ◦ g)

(Use that for A an (n×k)-matrix, B a (k×n)-matrix, tr(AB) = tr(BA).)

(2) tr(idV ) = dimQ(V )

(3) tr : EndQ(V )→ Q is linear:

tr(f + g) = tr(f) + tr(g)

tr(λf) = λ tr(f) (λ ∈ Q)

(4) Consider the following (commutative) diagram of short exact sequences
of Q-vector spaces:

0 // V //

f
²²

W //

g

²²

Z //

h
²²

0

0 // V // W // Z // 0

Then
tr(g) = tr(f) + tr(h)

Since we can choose any basis of W , choose one by “extending” a basis
of V ⇒ matrix of g has the form

(
Af ∗
0 Ah

)

where Af and Ah are the matrices of f and h, respectively.
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(5) Let A be a finitely generated abelian group, and f : A→ A a homomor-
phism, then

tr(f ⊗Q) ∈ Z

(f ⊗Q : A⊗Q→ A⊗Q)

Indeed:

A
can //

""E
EE

EE
EE

EE
A⊗Q

A/TA

where TA ⊂ A is the torsion subgroup ⇒ A/TA is torsion-free ⇒ has
basis.

Note that if a is a torsion element, i.e. n · a = 0, then

a⊗ 1 = n · a⊗ 1
n

= 0

so tensoring with Q also “divides out torsion”.

A/TA ∼= Zn, A⊗Q ∼= Qn:

tr(f ⊗Q) = tr(f̄ : A/TA→ A/TA)

f̄ is expressed by a matrix with coefficients in Z with respect to a basis
of A/TA.

Definition 5.2 Let X ∈ Top with H sing
i (X) finitely generated for all i, and

0 for iÀ 0. Let f : X → X. Then

L(f) :=
∑

i

(−1)i tr(Hi(f)⊗Q) ∈ Z

is called the Lefschetz number of f .
(

Hi(f)⊗Q : Hsing
i (X)⊗Q→ Hsing

i (X)⊗Q
)

Example X ' {¦} contractible ⇒ L(f) = 1 ∀f : X → X since

Hsing
i (X) ∼=

{

Z, i = 0

0, i 6= 0

X
' //

f

²²

{¦}

id
²²

X
' // {¦}

is homotopy commutative.
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Note X a finite CW-complex⇒Hcell
i X are finitely generated abelian groups,

and Hcell
i X = 0 for i > dimX ⇒ L(f) ∈ Z is defined for any f : X → X.

Definition 5.3 f = id : X → X. Then

χ(X) = L(f)

is called the Euler characteristic of X.

Note
χ(X) =

∑

(−1)i dimQ

(

Hsing
i (X)⊗Q

)

where dimQ(Hsing
i (X)⊗Q) =: βi(X) is called the i-th Betti number.

Theorem 5.4 Let X be a finite CW-complex. Then

χ(X) :=
∑

i

(−1)iCi

where Ci is the number of i-cells of X.

Proof Hcell
i X ∼= Hsing

i X, ∀i. We need to show that
∑

(−1)i dimQ(Hcell
i (X)⊗Q) =

∑

i

(−1)iCi

Let:
Ci := Ccell

i X ∼=
⊕

# i-cells Z
∼= Zci

Zi := ker(∂i : Ccell
i X → Ccell

i−1X)
Bi := im(∂i+1 : Ccell

i+1X → Ccell
i X)

with Hi := Hcell
i X = Zi/Bi

⇒ Have short exact sequences:

Bi ↪→ Zi ³ Hi ⇒ Bi ⊗Q ↪→ Zi ⊗Q³ Hi ⊗Q

and
Zi ↪→ Ci ³ Bi−1 ⊂ Ci−1

resp.
Zi ⊗Q ↪→ Ci ⊗Q³ Bi−1 ⊗Q

⇒ dimQ Zi ⊗Q = dimQBi ⊗Q+ dimQHi ⊗Q
dimQCi ⊗Q
︸ ︷︷ ︸

ci

= dimQ Zi ⊗Q+ dimQBi−1 ⊗Q

⇒ ∑

i(−1)iCi =
∑

(−1)i(dimQ Zi ⊗Q+ dimQBi−1 ⊗Q)
=
∑

i(−1)i(dimQBi ⊗Q+ dimQHi ⊗Q+ dimQBi−1 ⊗Q)
=
∑

i(−1)i dimQHi ⊗Q
2
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Example Sn = D0 ∪Dn, therefore

χ(Sn) =

{

2, n even

0, n odd

Application “Euler’s Formula”
Take a polyhedral decomposition of S2, e.g. a cube, a tetrahedron, . . . , and
write

v = (# vertices = 0-cells)

e = (# edges = 1-cells)

f = (# faces = 2-cells)

Then
v − e+ f = 2 = χ(S2)

Definition 5.5 X is an ENR (Euclidean neighbourhood retract) if:

∃φ : X
∼=
→ φ(X) ⊂ Rn

such that φ(X) is a retract of some neighbourhood in Rn. e.g. finite CW-
complexes are compact ENR’s (see Hatcher)

Note Definition of (finite) simplicial complex should be clear (if not, it’s
time to go to the library!)

Lemma 5.6 A compact ENR is a retract of a finite simplicial complex.

Proof X ⊂ Rn, X compact, retract of neighbourhood X ⊂ N ⊂ Rn, N
r
→

X; we may assume that N is open in Rn.
Triangulate Rn, such that all simplices are “very small” and we can assume
that if a simplex σ of Rn has σ ∩X 6= ∅, then σ ⊂ N .
⇒ choose finite simplicial complex Y ≡ {σ ⊂ Rn | σ ∩ X 6= ∅}. Then

X ⊂ Y ⊂ N , Y
r/Y
→ X. 2

Theorem 5.7 (Simplicial Approximation Theorem) • Simplicial map
between simplicial complexes

f : X // Y

σ (simplex)
?Â

OO

Â affine map // f(σ) (simplex)
?Â

OO
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• X simplicial complex, B(X): “barycentric subdivision”, BkX: k-fold
barycentric subdivision (B0X = X).

Theorem 5.8 Let X, Y be finite simplicial complexes and f : X → Y any
(continuous) map. Then there is a k ≥ 0 such that: f : BkX → Y is
homotopic to a simplicial map g : BkX → Y . (see Hatcher)

Theorem 5.9 Let X be a finite simplicial complex, f : X → X and ε > 0.
Then there is a k ≥ 0 and a simplicial map g : BkX → BkX with g ' f and
‖g(x)− f(x)‖ < ε ∀x. (see Hatcher)

Theorem 5.10 (Lefschetz Fixed Point Theorem) Let f : X → X, X
a compact ENR. If L(f) 6= 0 then f has a fixed point.

Proof Choose X
i
↪→ Y , Y

r
→ X, Y finite simplicial complex.

Put f̃ := i ◦ f ◦ r : Y → Y . Claim: L(f̃) = L(f).
Hif̃ : Hsing

i Y → Hsing
i Y has:

tr(Hsing
i f̃) = tr(Hsing

i (i ◦ f ◦ r))

= tr(Hsing
i (i) ◦ (Hsing

i (f) ◦Hsing
i (r)))

= tr(Hsing
i (f)(Hsing

i (r) ◦Hsing
i (i)

︸ ︷︷ ︸

id

)) = tr(Hsing
i (f))

⇒ L(f̃) = L(f). Moreover:

Fix(f) = {x ∈ X | f(x) = x} = Fix(f̃) = {y ∈ Y | f̃y = y}

Indeed:

1. x ∈ Fix(f)⇒ f̃(x) = if( rx
︸︷︷︸

x

) = f(x) = x

2. y ∈ Fix(f̃)⇒ f̃(y)
︸︷︷︸

if(ry)

= y ⇒ y ∈ X ⇒ ry = y ⇒ f(y) = y ∈ X.

⇒ we may assume that X is a finite simplicial complex. Assume that L(f) 6=
0 and Fix(f) = ∅. We will show that this yields a contradiction:
f : X → X, X with metric ‖·‖ ⇒ ∃m > 0 such that ‖f(x)− x‖ ≥ m ∀x
because of compactness.
Choose k À 0 so that f ' g : BkX → BkX, g simplicial and ‖g(x)− f(x)‖ <
m
2
⇒ Fix g = ∅.
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⇒ we can choose k even larger, so that g(σ) ∩ σ = ∅ for every σ simplex of
BkX; g is cellular and induces:

Ccell
i g : Ccell

i (BkX)→ Ccell
i BkX

with matrix: 




0 ∗
. . .

∗ 0






⇒ tr(Ccell
i (g)) = 0

⇒
∑

(−1)i tr(Ccell
i (g)) = 0 =

∑
(−1)i tr(Hcell

i (g)) = L(g).
So L(f) 6= 0 ⇒ f has a FP. 2

An application of this theorem is this generalization of Brouwer’s Fixed Point
Theorem:

Theorem 5.11 Let f : X → X, X compact, contractible ENR. Then f has
a fixed point.

Proof

Hsing
i (X) ∼=

{

Z i = 0

0 else

since X 'φ {¦}.

Hsing
0 f : Hsing

0 (X) //

φ∗ ∼=
²²

Hsing
0 (X)

φ∗ ∼=
²²

Hsing
0 ({¦})

id // Hsing
0 ({¦})

⇒ L(f) = 1 6= 0: f has a fixed point. 2

Theorem 5.12 Let f : X → X be a simplicial automorphism of a finite
simplicial complex. Then

L(f) = χ(Fix(f))

where Fix(f) = {x ∈ X | f(x) = x} ⊂ X.

Proof Replace X by its second baricentric subdivision B2(X) ⇒ Fix(f)
subcomplex of B2(X) ⇒ if σ ∈ B2(X) is a k-simplex then either f |σ = idσ,
or f (̊σ) ∩ σ̊ = ∅. Then look at Ccell

∗ B2X =: C∗:

Cn
Cn(f) // Cn

Ccell
n (Fix(X))⊕B

φ
// Cn(Fix(X))⊕B
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where φ has a matrix of the form







id
0

. . .

0








thus
trCn(f) = (# n-simplices in Fix(B2X))

Then on the one hand

⇒
dimX∑

n=0

(−1)n trCn(f) =
∑

(−1)n(# n-simplices of Fix(B2X)) = χ(Fix(X))

and on the other hand

dimX∑

n=0

(−1)n trCn(f) =
∑

(−1)n tr(Hcell
n f) = L(f)

2

Example Let φ : Sn → Sn, n > 0, the reflection on the equator.

L(φ) = tr(Hcell
0 φ)

︸ ︷︷ ︸

1

+(−1)n trHcell
n (φ) = χ(Fix(φ)) = χ(Sn−1)

= 1 + (−1)n−1 · 1

Hcell
n (φ) : Hcell

n Sn //

∼=

²²

Hcell
n Sn = 〈cn〉

∼=

²²
Z // Z

deg φ defined by Hcell
n (φ)(cn) = deg φ · cn

⇒ deg(φ) = −1 ∀n

6 Universal Coefficient Theorem

6.1 Remarks concerning the tensor product

A, B abelian groups. Then

A⊗B :=
⊕

(a,b)∈A×B

Z(a,b)/R
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where Z(a,b) = Z with generator 1(a,b) and R the subgroup generated by the
elements of the forms

1(a′+a′′,b) − 1(a′,b) − 1(a′′,b), and

1(a,b′+b′′) − 1(a,b′) − 1(a,b′′)

There is a canonical map (not a homomorphism!)

A×B −→ A⊗B

(a, b) 7−→ 1(a,b) =: a⊗ b

Universal property of A⊗B:
Note that A×B

can
→ A⊗B, (a, b) 7→ a⊗ b is biadditive:

can(a′ + a′′, b) = can(a′, b) + can(a′′, b)

can(a, b′ + b′′) = can(a, b′) + can(a, b′′)

It follows that

A×B
f //

can

²²

C

A⊗B
∃! f̃

;;

(f̃ is defined by f̃(a ⊗ b) := f(a, b), which is well defined as f(a′ + a′′, b) =
f(a′, b) + f(a′′, b) etc.)

Example Z⊗ Z ∼= Z. Check the universal property:

(m,n)
_

²²

Z× Z
f //

can

²²

C

m · n Z

The map (m,n) 7→ m · n is biadditive because of the distributive law. Since
f(m,n) = m · f(1, n) = mnf(1, 1), f is determined uniquely by f(1, 1) and
we can define f̃ as f̃(k) = k · f̃(1) = k · f(1, 1).
Similiarly,

Z/mZ⊗ Z/nZ ∼= Z/ gcd(m,n)Z

Functoriality: Let f : A→ C, g : B → D.

A×B

²²

biadd. // C ⊗D

A⊗B
∃! f⊗g

99
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where (f ⊗ g)(a⊗ b) := f(a)⊗ g(b).

A⊗− : Ab // Ab

B

g

²²

Â // A⊗B

A⊗g:=idA⊗g

²²
D

Â // A⊗D

similiarly for −⊗B. Note A⊗B
∼=
→ B ⊗ A.

Generalization: M ∈ Mod-Λ (right Λ-modules), N ∈ Λ-Mod (left Λ-modules).
M ⊗Λ N an abelian group:

M ⊗Λ N = M ⊗N/〈mλ⊗ n−m⊗ λn | λ ∈ Λ〉

Case where Λ is commutative: M,N ∈ Λ-Mod thinking of M as a right-
module by mλ := λm, λ ∈ Λ, m ∈ M . Then M ⊗Λ N (note (λm) ⊗Λ n =
m⊗Λ (λn)) has a Λ-module structure by:

λ(x⊗Λ y) := (λx)⊗Λ y

Example Λ⊗Λ Λ ∼= Λ

Let φ : Λ→ Γ be a ring homomorphism, in particular φ(1Λ) = 1Γ.

Λ-Mod
φ∗
−→ Γ-Mod

M 7−→ Γ⊗Λ M (γφ(λ)⊗Λ m = γ ⊗ λm)

Γ a Λ right module via

γ · λ := γ · φ(λ), λ ∈ Λ, γ ∈ Γ

Example M = Λ:

Λ // Γ⊗Λ Λ
∼= // Γ

γ ⊗Λ λ
Â // γφ(λ)

as Γ left module.

Tensor products commute with ⊕: Let Aα a family of abelian groups, α ∈ I.
Then (⊕

I

Aα

)

⊗B ∼=
⊕

I

(Aα ⊗B)
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Proof iα : Aα →
⊕

I Aα

⇒ iα ⊗B : Aα ⊗B →
(⊕

I

Aα

)

⊗B

which defines ⊕

I

(Aα ⊗B)
can
→
(⊕

I

Aα

)

⊗B

Define “inverse” by using the biadditive map
(⊕

Aα

)

×B
Φ
→
⊕

I

(Aα ⊗B)

by Φ|(Aα ×B) : (aα, b) 7→ aα ⊗ b.
So Φ induces

Φ̃ :
(⊕

Aα

)

⊗B →
⊕

(Aα ⊗B)

which is inverse to “can”. 2

Definition 6.1 M ∈ Λ-Mod is called free, if

M ∼=
⊕

α∈I

Λα, Λα := Λ

or equivalently, M has a basis {mα}α∈I i.e. every m ∈ M can be expressed
as a finite sum m =

∑
λαmα in a unique way.

Note Λ = K a field ⇒ all K-modules are free (every K-vector space has a
basis).
Λ = Z: Z-Mod = Ab, free Z-module ≡ free abelian groups.

Definition 6.2 P ∈ Λ-Mod is projective :⇔ ∃Q ∈ Λ-Mod with P ⊕ Q a
free Λ-module.

Note Λ = K a field ⇒ all Λ-modules are projective.
Λ = Z: projective Z-modules ≡ free abelian groups.

Example Z/2Z is a non-free, projective Z/6Z-module.

Definition 6.3 A chain complex (C∗, ∂) consists of modules Ci ∈ Λ-Mod
connected by morphisms ∂i ∈ Λ-Mod (i ≥ 0):

. . .→ Ci+1 → Ci
∂i→ Ci−1 → . . .→ C1

∂1→ C0
∂0→ 0

such that ∂i−1∂i = 0(≡ ∂2 = 0) (⇔ im ∂i ⊆ ker ∂i−1)
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Definition 6.4 Homology of (Cn, ∂n):

Hn(C∗) := ker ∂n/ im ∂n+1 (n ≥ 0)

Definition 6.5 A morphism of chain complexes, f∗ : C∗ → D∗ is a family
of Λ-linear maps fi : Ci → Di (i ≥ 0), such that: ∂ifi = fi−1∂i, i ≥ 1.

. . . // Ci+1
∂ //

fi+1

²²

Ci
∂ //

fi

²²

Ci−1
//

fi−1

²²

. . .

. . . // Di+1 ∂
// Di ∂

// Di−1
// . . .

Remark f∗ induces a map of homology groups, i.e. H∗(f) : H∗C∗ → H∗D∗

Definition 6.6 f∗, g∗: C∗ → D∗ are called chain homotopic if ∃{hn : Cn →
Dn+1 | n ≥ 0} such that f − g = ∂h+ h∂ (fn − gn = ∂n+1hn + hn−1∂n)
Notation: f ' g

Lemma 6.7 f∗, g∗ : C∗ → D∗, f ' g ⇒ H∗(f) = H∗(g)

Proof [x] ∈ HnC∗, x ∈ ker ∂n, (Hnf)([x]) = [f(x)], Hng([x]) = [gx] ∈ HnD∗

(Hnf −Hng)[x] = [f(x)− g(x)] = [∂n−1hn + hn−1∂nx]
= [∂hx]
︸ ︷︷ ︸

=0

+ [h∂x]
︸ ︷︷ ︸

=0

= 0

⇒ Hnf = Hng, ∀n ≥ 0 2

Definition 6.8 Let M ∈ Λ-Mod. A projective resolution is a chain complex
P∗ such that:

. . .→ Pi → . . .→ P1
∂1→ P0

∂0
³M → 0 M = P0/ im ∂1

is exact, and each Pi, i ≥ 0 is a projective Λ-module.

Lemma 6.9 Every Λ-module M admits a projective resolution

F∗(M)³M

(canonical free resolution)
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Proof

F0(M) =
⊕

α∈M Λα

φ0

³M
1α 7→ α

F1(M)

²²²²

φ1 // F0(M)
φ0 // // M

kerφ0

,
¯

99ttttttttt

F1(M) = F0(kerφ0), then the claim follows inductively 2

We need an equivalent definition of projective modules:

Lemma 6.10 P ∈ Λ-Mod proj. ⇔ ∀g : N ³ M , ∀P
f
→ M ∃f̃ : P → N

such that g ◦ f̃ = f i.e.

N

g
²²²²

P

∃f̃
>>

f // M

Proof “⇒” This is obvious for free Λ-modules, thus choose Q ∈ Λ-Mod such
that P ⊕Q = F (≡ free module)

N

²²²²
F = P ⊕Q // //

λ̃

55kkkkkkkk
P

ip
oo // M

λ̃ ◦ ip = f̃

“⇐” Let F0(P ) =
⊕

α∈P Λα

F0(P )

π
²²²²

P

∃j
<<y

y
y

y
y id // P

2

Theorem 6.11 • Let P∗ ³M be a projective chain complex (i.e. Pi is
projective Λ-mod. and ∂2 = 0)

• Let 0← R∗ ³ N be a resolution (i.e. ker ∂ = im ∂).
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Assume a map M
φ
→ N . Then there is a map of chain complexes:

P∗
// //

φ∗
²²

M

φ

²²
R∗

// // N

This map φ∗ is unique up to homotopy.

Proof First we prove existence of φ∗ : P∗ → R∗ (use definition of projective
module):

P1

∂P
1 //

φ1

²²Â
Â
Â

»»

±
·
¼
Â
%
*
0

P0

∂P
0 // //

φ0

²²Â
Â
Â M

φ

²²
R1

∂R
1 //

²²²²

R0

∂R
0 // // N

ker ∂R0

-
°

<<xxxxxxxx

Check: im(φ0∂
P
1 ) ⊂ ker ∂R0 ⇒ ∃φ1. The rest follows by induction.

Next we want to show that φ∗ is unique up to homotopy. Let σ∗ be another
“lifting” of φ, i.e.

P∗
// //

φ∗
²²
σ∗

²²

M

φ

²²
R∗

// // N

want to show that ∃{hn : Pn → Rn+1, n ≥ 0} such that φ− σ = ∂h+ h∂:

. . . // Pi+1
∂i+1 // Pi
hi

}}z
z
z
z
φi

²²
σi

²²

∂i // Pi−1
//

hi−1}}z
z
z
z

. . .

. . . // Ri+1
∂i+1 // Ri

∂i // Ri−1
// . . .

(Proof by induction)
so by induction we have: ∂ihi−1 + hi−2∂i−1 = φi−1 − σi−1

We want to “solve” the equation for hi:

∂i+1hi + hi−1∂i = φi − σi
⇔ ∂i+1hi = φi − σi − hi−1∂i

︸ ︷︷ ︸

this maps to ker(∂i : Ri → Ri−1) (∗)
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Proof of (*): x ∈ Ri

∂i(φi − σi − hi−1∂i)(x) = ∂iφi(x)− ∂iσi(x)− ∂ihi−1
︸ ︷︷ ︸

φi−1−σi−1−hi−2∂i−1

∂i(x)

= ∂iφi(x)− ∂iσi(x)− φi−1∂i(x) + σi−1∂i(x) + hi−2 ∂i−1∂i
︸ ︷︷ ︸

=0

x

︸ ︷︷ ︸

=0

= 0 since φ∗, σ∗ are chain maps

The lifting property of projective modules shows that:

Pi+1
// Pi

ªª

£
¦

ª
®

±
´
¶

∃hi

||y
y
y
y
y
φi

²²
σi

²²

∂i // . . .

hi−1~~}
}
}
}
}

Ri+1
//

²²²²

Ri
∂i // . . .

ker ∂i
°
-

<<yyyyyyyy

⇒ ∂i+1hi = φi − σi − hi−1∂i ⇔ ∂i+1hi + hi−1∂i = φi − σi 2

Corollary 6.12 Let P
(i)
∗ ³ M , i = 1, 2 be two projective resolutions of M .

Then P
(1)
∗ and P

(2)
∗ are chain homotopy equivalent, i.e.

∃j1 : P
(1)
∗ → P

(2)
∗

∃j2 : P
(2)
∗ → P

(1)
∗

such that j1 ◦ j2 ' id, j2 ◦ j1 ' id.

Proof (Use theorem above)

P
(1)
∗

// //

j1
²²

M

id

²²
P

(2)
∗

// //

j2
²²

M

id

²²
P

(1)
∗

// M

but

P
(1)
∗

id
²²

// M

id

²²
P

(1)
∗

// M

is also a lifting. By uniqueness we get j2 ◦ j1 ' id. Analog for j1 ◦ j2 ' id 2
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For simplicity assume Λ is a commutative ring.

Definition 6.13 Let M,N ∈ Λ-Mod (in general M ∈ Mod-Λ, N ∈ Λ-Mod).
For i ≥ 0,

TorΛ
i (M,N) := Hi(F∗(M)⊗Λ N)

Note
. . .→ Fi(M)⊗Λ N

∂i⊗idN−→ Fi−1(M)⊗Λ N → . . .

⇒ F∗(M)⊗Λ N is a chain complex.

It is important to see that TorΛ
i does not depend on the choice of the projec-

tive resolution (F∗(M)).

Lemma 6.14 Let P∗ ³M be any projective resolution, then

TorΛ
i (M,N) ∼= Hi(P∗ ⊗Λ N)

Proof
F∗(M) // //

²²

M

id

²²
P∗

// //

²²

M

id

²²
F∗(M) // // M

⇒ “F∗(M) ' P∗”. −⊗ΛN preserves the homotopy since −⊗ΛN is additive
(i.e. (f + g)⊗Λ N = f ⊗Λ N + g ⊗Λ N).
f ' g, ∃h : g − f = ∂h+ h∂

g ⊗N − f ⊗N = (g − f)⊗N = (∂h+ h∂)⊗N

= ∂h⊗N + h∂ ⊗N = (∂ ⊗N)(h⊗N) + (h⊗N)(∂ ⊗N)

F∗(M) ' P∗ ⇒ F∗(M)⊗Λ N ' P∗ ⊗Λ N ⇒

TorΛ
∗ (M,N) = H∗(F∗(M)⊗Λ N) ∼= H∗(P∗ ⊗Λ N)

2

Lemma 6.15 The functor − ⊗Λ N : Mod-Λ → Ab is right exact, i.e. if

U
α
→ V

β
→ W → 0 is exact, then

U ⊗Λ N → V ⊗Λ N → W ⊗Λ N → 0

is exact.
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Proof W ⊗Λ N is generated by elements w⊗ n = βṽ⊗m = (β ⊗ id)(ṽ⊗ n)
⇒ β ⊗ id is surjective.
Obviously imα⊗id ⊆ ker(β⊗id). Want to prove that ker(β⊗id) = im(α⊗id).
For that we construct an inverse map to

V ⊗Λ N/ im(α⊗ id)
π
³ V ⊗Λ N/ ker(β ⊗ id) ∼= W ⊗Λ N

Construct γ as

γ : W ×N → V ⊗Λ N/ im(α⊗ id)

(w, n) 7→ ṽ ⊗ n

γ is well-defined: Let v̂, βv̂ = n.

ṽ ⊗ n− v̂ ⊗ n = (ṽ − v̂)⊗ n = αu⊗ n = (α⊗ id)(u⊗ n)

The following is easily checked:

• γ is bilinear ⇒

γ : W ⊗Λ N → V ⊗Λ N/ im(α⊗ id)

• γ ◦ π = id

• π ◦ γ = id

⇒ ker(β ⊗ id) = im(α⊗ id) 2

Corollary 6.16 There is a natural isomorphism

TorΛ
0 (M,N) ∼= M ⊗Λ N

Proof −⊗Λ N is right exact.

F1
// F0

// //

²²

M // 0

0

−⊗ΛN
Ã

F1 ⊗Λ N
∂1⊗N // F0 ⊗Λ N

∂0⊗N //

²²

M ⊗Λ N // 0

0

thus
Tor0(M,N) = F0 ⊗N/ im(∂1 ⊗N) ∼= M ⊗Λ N

because im(∂1 ⊗N) = ker(∂0 ⊗N) from right exactness. 2
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Example (Group Homology)
For some group G, define

ZG =
{∑

ngg
∣
∣
∣g ∈ G

}

Let M ∈ ZG-Mod and Z ∈ Mod-ZG with trivial G-action (i.e. m · g = m,
m ∈ Z, g ∈ G linearly extended).
ZG is a ring: (∑

ngg
)

·
(∑

mkk
)

=
∑

ngmkgk

As an abelian group:

ZG =
⊕

G

Z

If P∗ → Z a projective resolution of Z over ZG:

Hi(G;M) := TorZG
i (Z,M)

(
H∗(S,M) ∼= Hsing

∗ (K(S, 1),M)
)

H0(G;M) = Z⊗ZGM = M/ 〈m− gm | g ∈ G〉

[FIXME: Konfusion zum Jahreswechsel]
Then Hi((P∗M) ⊗Λ N) ∼= TorΛ

i (M,N) := Hi(F∗(M) ⊗Λ N), F∗M ³ M
(F0M =

⊕

M Λ etc. ) “canonical free resolution”
special case: “Homology groups of G with coefficients in M”
Hi(G;M) := TorZG

i (Z,M), where G is a group, M left ZG-module.

Hi(G;−) : ZG-Mod→ Ab i ∈ Z

−⊗Λ N is right-exact. (0 → M ′ → M → M ′′ → 0 exact, then M ′ ⊗Λ N →
M ⊗Λ N →M ′′ ⊗Λ N → 0 is exact)
⇒ TorΛ

0 (M,N) ∼= M⊗ΛN (e.g. H0(G;M) ∼= Z⊗ZGM ∼= MG := M/〈m−gm〉,
with m ∈M ,g ∈ G)
Case Λ = Z: Λ-Mod = Ab = Mod-Λ

Lemma 6.17 A, B ∈ Ab ⇒ TorZ
i (A,B) = 0, i > 1.

(We write Tor(A,B) for TorZ
1 (A,B), and TorZ

0 (A,B) ∼= A⊗Z B)

Proof 1. A free abelian group, A
id (∼=)
→ A is a proj. resolution

⇒ Hi(P∗(A)⊗Z B) = 0, i > 0

⇒ TorZ
i (A,B) = 0 for i > 0
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2. A arbitrary abelian group:

P1(A) := K ↪→ F0A
ε
³ A proj. res of A

Pi(A) = 0,i > 1, K := ker ε free abelian group (subgroup of free abelian
group).

⇒ Hi(P∗(A)⊗Z B)
︸ ︷︷ ︸

∼=TorZ
i (A,B)

= 0 for i > 1.

2

Remark Also true for modules over a PID.

Exercise Tor(A,B) is a torsion group (A,B ∈ Ab)

6.2 Computation of Tor-groups

We would like to show:

TorΛ
i (dirlim

I
Mα, dirlim

J
Nβ) ∼= dirlim

I×J
TorΛ

i (Mα, Nβ)

Direct limit (of groups, modules, sets, etc.):

• basic example: M =
⋃

α∈IMα, Mα,M ∈ Λ-Mod s.t. I partially ordered
“index” set: PO-set, with:

α ≤ β ⇔Mα ⊂Mβ ⊂M

“directed” i.e. if α, β ∈ I then ∃γ ∈ I with α ≤ γ, β ≤ γ (so Mα ⊂M ,
Mβ ⊂M satisfy Mα ⊂Mγ ,Mβ ⊂Mγ)

• Example: M ∈ Λ-Mod with {Mα} the family of finitely generated
submodules of M , then M ∼= dirlimMα

• Definition 6.18 I PO-set, directed ⇒ defines a category I, with ob-
jects the elements α ∈ I, and morphisms:

mor(α, β) =

{

∅ if α £ β

one morphism if α ≤ β

(α ≤ β and β ≤ α then α = β)
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• A functor F : I→ C defines a “directed family” {F (α)}α∈I in C. (e.g.
C = Sets,Gr,Λ-Mod,Ab).

so if α ≤ β: F (α)
fαβ
→ F (β)

F (σ) fσω

,,ZZZZZZZ
ZZZZ

F (ω)
F (τ) fτω

22ddddddddddd
for σ, τ ∈ I, σ ≤ ω, τ ≤ ω

F : I→ C
colimF ∈ C is an object of C, together with morphisms φα : F (α)→ colimF ,
α ∈ I, with the universal property expressed by the diagram

F (α)
fαβ ²²

φα //

ψα

))
colimF

∃! // X ∈ C

F (β)

φβ 66mmmmmmm
ψβ

55

F (γ)

φγ

==|||||||||||| ψγ

::

...

so colimF (together with φα’s) is unique up to a canonical isomorphism, if
it exists.
Case of C = Λ-Mod (or Sets, or Gr):
F : I→ Λ-Mod a directed family of Λ-moduls. Put

dirlim
I

F (α) :=
∐
F (α)/∼

(disjoint union!) with xα ∼ yβ for xα ∈ F (α), yβ ∈ F (β) if ∃γ such that
α ≤ γ, β ≤ γ and fαγ(xα) = fβγ(yβ).

xα ∈ F (α) ..\\\\\\\\\\\

F (γ) 3 fαγ(xα) = fαβ(yβ)
yβ ∈ F (β)

00bbbbbbbbbbb

⇒ dirlimF (α) has a natural Λ-modul structure. We have canonical maps

F (α)
φα
→ dirlimF (α) ⇒ {dirlimI F (α), φα} is “colimF”.

Note The universal property of colim then means:

HomΛ(dirlimF (α), N)
∼=
→ invlim HomΛ(F (α), N)
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Lemma 6.19 dirlim is an exact functor on Λ-Mod (or Gr), meaning the
following: Let

0→ Aα → Bα → Cα → 0

be a family of short exact sequences in Λ-Mod, α ∈ I (directed PO-set).
Assume that if α ≤ β, we have

0 // Aα //

aαβ
²²

Bα
//

bαβ ²²

Cα //

cαβ
²²

0

0 // Aβ // Bβ
// Cβ // 0

commutative.
Then

0→ dirlim
I

Aα → dirlim
I

Bα → dirlim
I

Cα → 0

is exact.

Use this to check

TorΛ
i (dirlim

I
Mα, dirlim

J
Nβ) ∼= dirlim

I×J
TorΛ

i (Mα, Nβ)

6.3 Long exact Tor-sequences

Theorem 6.20 Let 0 → A → B → C → 0 and 0 → U → V → W → 0
be short exact sequences in Mod-Λ, resp. Λ-Mod, and take X ∈ Mod-Λ,
Y ∈ Λ-Mod. Then there are natural exact sequences

· · · → TorΛ
i (A, Y )→ TorΛ

i (B, Y )→ TorΛ
i (C, Y )

∂
→ TorΛ

i−1(A, Y )→ · · ·

· · · → A⊗Λ Y → B ⊗Λ Y → C ⊗Λ Y → 0

and

· · · → TorΛ
i (X,U)→ TorΛ

i (X,V )→ TorΛ
i (X,W )

∂
→ TorΛ

i−1(X,U)→ · · ·

· · · → X ⊗Λ U → X ⊗Λ V → X ⊗Λ W → 0

Note TorΛ
i (X,U) ∼= Hi(X ⊗Λ P∗U), where P∗U is a projective resolution of

U .

Proof (1) Given 0 → C∗ → D∗ → E∗ → 0 a short exact sequence of chain
complexes. Then one gets a long exact sequence

· · · → Hi(C∗)→ Hi(D∗)→ Hi(E∗)
∂
→ Hi−1(C∗)→ · · ·
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where ∂ is defined as follows:

0 // Ci // Di
//

∈

Ei //

∈

0

x̂i
Â //

_
²²

x̃i

∂x̂i
Â // 0 ∈ Ei−1

⇒ ∂x̂i ∈ Ci−1 a cycle: ∂(∂x̂i) = 0.

(2)

0 // A // B // C // 0

0 // P∗A //

OOOO

P∗B //

OOOO

P∗C //

OOOO

0

Take PiB := PiA⊕ PiC (see next time).

(next time, with different notation...)

We want to “replace” 0→ U → V → W → 0 by a short exact sequence
of projective resolutions:

0→ P∗U → P∗V → P∗W → 0

this is how:

0 // U // V // W // 0

0 // P∗U

OOOO

Â Ä // P∗V

OOOO

// // P∗W

OOOO

// 0

choose P∗U and P∗W , put PiV := PiU ⊕ PiW (which is projective).

induction:

0 // U
Â Ä // V

π // // W // 0

0 // P0U

εU

OOOO

// (x, y) ∈ P0V //

εV

OOOO

y ∈ P0W

εW

OOOO

//

∃φ

ggPPPPPPPPPPPPPP

0

∃φ s.t. πφ = εW , since P0W is proj.

εV (x, y) := εU(x) + φ(y) ∈ V
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continue:

0 // U // V // W // 0

0 // P0U //

OOOO

P0V //

OOOO

P0W //

OOOO

0

0 // ker εU
?Â

OO

// ker εV
?Â

OO

// ker εW
?Â

OO

// 0
exact

(serpent lemma)

P1U
Â Ä //

OOOO

P1V

==

// //

OOOO

P1W

OOOO

⇒ get:
0→ P∗U → P∗V → P∗W → 0

short exact sequence of resolutions; from X ⊗Λ −

0→ X ⊗Λ P∗U → X ⊗Λ P∗V → X ⊗Λ P∗W → 0

is exact (PiU → PiV has splitting PiV → PiU)

Take long exact sequence: “Tor-sequence”
2

Example Tor ∈ Ab.
Take Z ↪→ Q ³ Q/Z here TorZ

i ≡ 0, i ≥ 2; TorZ
1 = Tor, TorZ

0 = “⊗Z”
∀A ∈ Ab:

0→ Tor(Z, A)→ Tor(Q, A)→ Tor(Q/Z, A)

∂
→ Z ⊗Z A→ Q ⊗Z A→ (Q/Z) ⊗Z A→ 0

Claim: Q ∼= dirlimα∈N Zα, Zα = Z where {Zα}α∈N is the following directed
system:
N PO set: divisibility: α ≤ β ⇔ α|β ⇒ directed PO set

Note A ⊂ Q finitely generated subgroup, is either ∼= Z or 0.

Proof

1
∈
®

%%KK
KK

KK
KF

®®

Zα µ r

$$J
JJ

JJ
J

²²

1
α
∈

Q

β
α

∈ Zβ
,
¯

::uuuuuu
1
β

∈

1
4

::ttttttt
∈
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⇒ check now that Q has universal property of dirlimN Zα. 2

⇒ Tor(Q, A) ∼= dirlim
N

Tor(Zα, A) = 0

(⇒ Tor(Q/Z, A) ∼= ker(A→ A⊗Z Q, a 7→ a⊗ 1))

(⇒ Tor(Q/Z, A) ∼= TA ⊂ A)

Note F ∈ Λ-Mod free ⇒ TorΛ
i (−, F ) ≡ 0, i > 0

TorZ
i (Q,−) ≡ 0, i > 0 but Q ∈ Ab not free.

Definition 6.21 M ∈ Λ-Mod is called flat, if

−⊗Λ M : Mod-Λ→ Ab

N 7→ N ⊗Λ M

is exact, i.e. if 0 → N1 → N2 → N3 → 0 short exact in Mod-Λ, then
0→ N1 ⊗Λ M → N2 ⊗Λ M → N3 ⊗Λ M → 0 short exact.

Theorem 6.22 M ∈ Λ-Mod is flat ⇔ TorΛ
i (−,M) = 0 ∀i > 0.

Proof TorΛ
1 (−,M) = 0 ⇒ M flat follows from long exact Tor sequence.

Claim: M flat ⇒ TorΛ
i (−,M) = 0 ∀i > 0.

Look at 0→ ΩN → F0N ³ N → 0:

· · · → TorΛ
1 (F0N,M)

︸ ︷︷ ︸

0

→ TorΛ
1 (N,M)→ ΩN ⊗Λ M → F0N ⊗Λ M ³ N ⊗M

︸ ︷︷ ︸

short exact

since M flat.
Thus M flat ⇒ TorΛ

1 (−,M) ≡ 0 ⇒ (need to show) TorΛ
i (−,M) ≡ 0 ∀i > 1.

N ∈ Mod-Λ: 0 → ΩN → F0N ³ N → 0. Long exact Tor sequence (for
j ≥ 2):

0→ TorΛ
j (N,M)

∂
→ TorΛ

j−1(ΩN,M)→ 0

(“dimension shifting”: ∀N ∈ Mod-Λ, ∀M ∈ Λ-Mod:

TorΛ
j (N,M) ∼= TorΛ

j−1(ΩN,M)

for j ≥ 2.) 2
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What abelian groups are flat?

Lemma 6.23 A ∈ Ab flat ⇔ A torsion-free.

Proof If x ∈ B has order n > 0,

0→ Z
n
↪→ Z→ Z/nZ→ 0 /B ⊗Z −

0→ B
n
→ B → B ⊗ Z/nZ→ 0

not exact since x ∈ ker(B
n
→ B).

A ∈ Ab torsion-free⇒ A = dirlimAα, Aα ⊂ A free abelian, finitely generated
⇒ TorZ

i (A,−) ≡ 0, i > 0 ⇒ A flat. 2

Application: Homology with coefficients

C∗ a chain complex in Mod-Λ, M ∈ Λ-Mod:

Hi(C∗;M) := Hi(C∗ ⊗Λ M)

e.g. X ∈ Top: C∗ = Csing
∗ (X),

Hsing
i (X;A) := Hi(C

sing
∗ (X);A) = Hi(C

sing
∗ (X)⊗Z A)

A ∈ Ab: “singular homology groups of X with coefficients in A.”
A = K a field: Csing

∗ (X) ⊗Z K K-vector space ⇒ H sing
∗ (X;K) K-vector

spaces.

Hsing
i (X;Z) := Hsing

i (Csing
∗ (X)⊗Z Z) ∼= Hi(C

sing
∗ (X)) = Hsing

i (X)

Theorem 6.24 (Universal Coefficient Theorem) Let C∗ be a flat chain
complex in Mod-Λ, and let M ∈ Λ-Mod such that TorΛ

i (−,M) ≡ 0 for i > 1
(i.e. ΩM is flat). Then there is a natural short exact sequence:

0→ Hi(C∗)⊗Λ M → Hi(C∗ ⊗Λ M)→ TorΛ
1 (Hi−1(C∗),M)→ 0

Proof 1. M flat.

Look at
C∗ : · · · → Ci

∂i→ Ci−1 → · · ·

Ci ⊃ Zi = ker ∂i: cycles; Ci−1 ⊃ Bi−1 = im ∂i: boundaries. Thus

0→ Zi ↪→ Ci ³ Bi−1 → 0

0→ Bi ↪→ Zi ³ Hi → 0
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Tensoring with M :

0→ Zi ⊗Λ M → Ci ⊗M → Bi−1 ⊗Λ M → 0 exact

0→ Bi ⊗Λ M → Zi ⊗M → Hi ⊗Λ M → 0 exact

⇒ Hi(C∗ ⊗Λ M) = Zi ⊗Λ M/Bi ⊗Λ M ∼= (HiC∗)⊗Λ M

2. General case:

Look at:
0→ ΩM → F0M

︸ ︷︷ ︸

free ⇒ flat

→M → 0

TorΛ
i (−,M)

∼=
→
∂

TorΛ
i−1(−,ΩM), i ≥ 2 ⇒ ΩM flat since TorΛ

1 (−,ΩM) =

0.

Look at:

0→ C∗ ⊗Λ ΩM → C∗ ⊗Λ F0M → C∗ ⊗Λ M → 0

is a short exact sequence (because C∗ is flat) and yields a long exact
sequence in homology:

. . . // Hi(C∗ ⊗Λ ΩM) α //

∼=²²

Hi(C∗ ⊗Λ F0M) //

∼=²²

Hi(C∗ ⊗Λ M) ∂ //

(Hi(C∗))⊗Λ ΩM α̃ // (Hi(C∗))⊗Λ F0M

∂ // Hi−1(C∗ ⊗Λ ΩM)
β ////

∼=²²

. . .
∼=²²

Hi−1(C∗)⊗Λ ΩM
β̃ // Hi−1(C∗)⊗Λ F0M

(isos by case 1) ⇒ get short exact sequence:

0→ coker(α)→ Hi(C∗ ⊗Λ M)→ ker β → 0

where coker(α) ∼= coker α̃ ∼= Hi(C∗)⊗ΛM (right-exactness of −⊗ΛM)
and ker β ∼= ker β̃ ∼= TorΛ

1 (Hi−1C∗,M).
2

Example Λ a PID (principal ideal domain)
⇒ Tor2(·, ·) ≡ 0
⇒ Get UCT for any M
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Example X ∈ Top, A ∈ Ab; then one defines:

Hsing
i (X;A) = Hi(C

sing
∗ (X)⊗Z A) (Hsing

i (X;Z) =: Hsing
i X)

⇒ 0→ Hsing
i (X)⊗Z A→ Hsing

i (X;A)→ Tor(H sing
i−1 (X), A)→ 0 UCT

Example “Homology of groups”
For M a ZG-module we defined

Hi(G;M) := Hi(P∗(G)⊗ZGM)

where P∗G is a projective resolution of Z considered as trivial ZG-module.

· · · → Pi → Pi−1 → · · · → P0 ³ Z

M : in general so that TorZG
i (−,M) 6≡ 0, i ≥ 2. Example of flat ΩM : Take

M = (Z/nZ)[G] ⇒ have short exact sequence

0→ Z[G]
n
→ Z[G]³ Z/nZ[G]

⇒ H∗(P∗ ⊗M) fits into short exact sequence

0→ Hi(P∗)⊗ZGM → Hi(P∗ ⊗ZGM)→ TorZG
1 (Hi−1(P∗),M)→ 0

where Hi(P∗) = 0 for i > 0, so Hi(G;M) = 0 for i > 1 and

H1(G;M) ∼= TorZG
1 (H0P∗
︸ ︷︷ ︸

Z

,M) = H1(G;M)

H0(G;M) ∼= H0(P∗)
︸ ︷︷ ︸

Z

⊗ZGM ∼= MG (“coinvariants”)

7 Künneth Formula

What is Hsing
∗ (X × Y ) in terms of H sing

∗ (X) and Hsing
∗ (Y )?

; study H∗(C∗ ⊗Λ D∗) (where C∗, D∗ complexes in Mod-Λ,Λ-Mod, respec-
tively).

Definition 7.1 (Tensor Product of Chain Complexes) Let (C∗, ∂C), (D∗, ∂D)
two chain complexes.
Then (C∗ ⊗Λ D∗, ∂) denotes the chain complex with

(C∗ ⊗Λ D∗)i :=
⊕

k+`=i

(Ck ⊗Λ D`)

For x⊗Λ y ∈ Ck ⊗Λ D` put

∂(x⊗Λ y) = (∂x)⊗Λ y + (−1)kx⊗Λ ∂y

⇒ ∂∂ = 0; Hi(C∗ ⊗Λ D∗) = “ker / im”.
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⇒ ∃ natural mapHk(C∗)⊗ΛH`(D∗)→ Hk+`(C∗⊗ΛD∗) defined in the obvious
way:

Hk(C∗) ⊗Λ H`(D∗)
µ// Hk+`(C∗ ⊗Λ D∗)

a

∈

b

∈

ã ∈ Ck
_

OO

b̃ ∈ D`

_

OO

µ(a⊗Λ b) := [ã⊗Λ b̃]

Claim: ã⊗Λ b̃ ∈ C∗ ⊗Λ D∗ a cycle. Look at

∂(ã⊗Λ b̃) = ∂C ã⊗Λ b̃+ (−1)|a|ã⊗Λ ∂Db̃ = 0

For α, β boundaries, α = ∂Cα̃, β = ∂Dβ̃:

(ã+ α)⊗Λ (b̃+ β) = ã⊗Λ b̃+ α⊗Λ b̃+ ã⊗Λ β + α⊗Λ β

= ã⊗Λ b̃+ ∂(α̃⊗Λ b̃) + (−1)|β|∂(ã⊗Λ β̃) + ∂(α̃⊗Λ β̃)

where all but the first term are boundaries. ⇒ get map

µn :
⊕

k+`=n

(Hk(C∗)⊗Λ H`(D∗))→ Hn(C∗ ⊗Λ D∗)

Now the optimist would assume µn is an isomorphism. This would be too
simple, but is not too far off, as the Künneth formula shows:

Theorem 7.2 (Künneth Formula) Let C∗, D∗ be flat complexes and as-
sume TorΛ

2 (−,−) ≡ 0 (e.g. Λ a PID). Then there is a natural short exact
sequence:

0→
⊕

i+j=n

(Hi(C∗)⊗Λ Hj(D∗))
µn
→ Hn(C∗ ⊗Λ D∗)

→
⊕

i+j=n−1

TorΛ
1 (HiC∗, HjD∗)→ 0

Proof Look at Bi ⊂ Zi ⊂ Di, boundaries and cycles for D∗. B∗ ⊂ Z∗ ⊂ D∗

where B∗ and Z∗ are subcomplexes (with ∂ ≡ 0). Z∗/B∗ = H∗(D∗) and:

Di

∂
³ Bi−1 ⊂ Di−1, Bi−1 =: (ΣB∗)i
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(so Hj(ΣC∗) = Hj−1(C∗)) yielding a map:

D∗ ³ ΣB∗

of chain complexes.
⇒ have a short exact sequence of chain complexes:

0→ Z∗ → D∗ → ΣB∗ → 0 /C∗ ⊗Λ −
0→ C∗ ⊗Λ Z∗ → C∗ ⊗Λ D∗ → C∗ ⊗Λ ΣB∗ → 0

is exact:

0→ Ci ⊗Λ Zj → Ci ⊗Λ Dj → Ci ⊗Λ Bj−1 → 0 (Ci is flat)

(with 0→ Zj → Di → Bj−1 → 0 short exact.)
apply H∗ to get a long exact sequence:

. . .→ Hi+1(C∗ ⊗ ΣB∗)
∂
→α Hi(C∗ ⊗Λ Z∗)→ Hi(C∗ ⊗Λ D∗)→

→ Hi(C∗ ⊗Λ ΣB∗)
∂
→β Hi−1(C∗ ⊗Λ Z∗)→ . . .

⇒
0→ cokerα→ Hi(C∗ ⊗Λ D∗)→ ker β → 0

is exact.
cokerα:

Hi+1(C∗ ⊗Λ ΣB∗
︸︷︷︸

∂=0

)
α
→ Hi(C∗ ⊗Λ Z∗

︸︷︷︸

∂=0

)

→ look at C∗ ⊗Λ (ΣBk). Idea: Because δ ≡ 0 for the complex ΣB∗ we have
some “additivity” and we can look at C∗ ⊗Λ (ΣBk). We want to apply the
UCT.
Claim: Bk, Zk are flat.
By assumption: Bi ⊂ Zi ⊂ Di flat ∀ i ⇒ Zi, Bi flat as TorΛ

2 = 0.
Namely: TorΛ

2 = 0 ⇒ TorΛ
1 (X,−), TorΛ

1 (−, Y ) are left exact (from long Tor
sequence). ⇒ submodules of flat modules are flat in this case.
(A flat, B ⊂ A ⇒ ∀C: TorΛ

1 (B,C) ↪→ TorΛ
1 (A,C)

︸ ︷︷ ︸

=0

⇒ TorΛ
1 (B,−) = 0: B

flat.)
back to cokerα (use the UCT):

Hi−1(C∗ ⊗Λ ΣB∗)
α // Hi(C∗ ⊗Λ Z∗)

⊕

k+l=i+1Hk(C∗)⊗Λ ΣBl
//

∼=

OO

⊕

s+t=iHs(C∗)⊗Λ Zt

∼=

OO

⊕

k+m=iHk(C∗)⊗Λ Bm

q
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0→ Bm ↪→ Zm → Hm(D∗)→ 0 /Hk(C∗)⊗Λ −

short exact.

. . . Hk(C∗)⊗Λ Bm → Hk(C∗)⊗Λ Zm ³ Hk(C∗)⊗Λ Hm(D∗)
︸ ︷︷ ︸

⇒cokerα∼=
L

k+m=i Hk(C∗)⊗Hm(D∗)

→ 0

exact.
Look at

0→ TorΛ
1 (Hk(C∗), Hm(D∗))→ Hk(C∗)⊗Λ Bm → . . .

and compute ker β by a similar argument as above. 2

Applied to singular homology, one gets:

Theorem 7.3 (Künneth Formula) X,Y ∈ Top. Then there is a natural
short exact sequence:

0→
⊕

i+j=n

(Hsing
i X ⊗Hsing

j Y )→ Hsing
n (X × Y )

→
⊕

s+t=n−1

Tor(Hsing
s X,Hsing

t Y )→ 0

(without proof: the sequence is split!)

Proof Apply KF for Λ = Z and Csing
∗ X⊗ZC

sing
∗ Y to compute Hi(C

sing
∗ X⊗Z

Csing
∗ Y ). Then we get (Csing

∗ X,Csing
∗ Y are Z-flat, and TorZ

2 = 0):

0→
⊕

i+j=n

Hi(C
sing
∗ X)

︸ ︷︷ ︸

Hsing
i X

⊗ZHj(C
sing
∗ Y )

︸ ︷︷ ︸

Hsing
j Y

→ Hn(C
sing
∗ X ⊗Z C

sing
∗ Y )

︸ ︷︷ ︸

?
=Hsing

n (X×Y )

→ Tor(Hs(C
sing
∗ X), Ht(C

sing
∗ Y ))

∃ map of chain complexes

Csing
∗ X ⊗ Csing

∗ Y → Csing
∗ (X × Y )

a⊗ b 7→ λ(a⊗ b)

⇒ chain homotopy equivalence (Eilenberg-Zilber theorem). Namely:

a : 4n → X
b : 4m → Y

}

a× b : 4n ×4m → X × Y

”subdivide” prism 4n ×4m into (n+m)-simplices. 2
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Theorem 7.4 (KF for group homology) G group: HiG := Hi(G;Z) =
TorZG

i (Z,Z)
G,H groups ⇒ ∃ natural short exact sequence:

0→
⊕

i+j=n

HiG⊗HjH → Hn(G×H)→
⊕

s+t=n−1

Tor(HsG,HtH)→ 0

(without proof: the sequence is split!)

Proof Take X = K(G, 1), a CW-complex with

πiX =

{

G i = 1

0 else

⇒ X̃ is contractible (X̃ CW-complex with πiX̃ = 0 ∀i ⇒ (Whitehead) X̃
contractible)

⇒ Csing
∗ X̃ is a free ZG-resolution of Z: C sing

i X̃ free/Z, basis 4i
φ // X̃ Ghh .

⇒
Hi(C

sing
∗ X̃ ⊗ZG Z) ∼= TorZG

i (Z,Z) = HiG ∼= Hsing
i X

so take X = K(G, 1), Y = K(H, 1) ⇒ X × Y has

πi(X × Y ) ∼=

{

G×H, i = 1

0, else

⇒ K(G, 1)×K(H, 1) ' K(G×H, 1)
⇒ HiH ∼= Hsing

i Y
Hi(G×H) ∼= Hsing

i (X × Y )
KF for X × Y yields KF for G×H

2

8 Geometric Realization Functor

∃ functor
Top Γ // CW ⊂ Top

X
Â // ΓX

together with a natural onto map εX : ΓX → X

ΓX
εX //

Γf

²²

X

f

²²
ΓY εY

// Y

where Γf is cellular (always a commutative diagram) such that
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(1) X ∈ CW ⇒ εX : ΓX
'
→ X

(2) εX induces Hsing
∗ ΓX

∼=
→ Hsing

∗ X

(3) εX induces πi(ΓX,w)
∼=
→ πi(X, εXw) ∀i,∀w

Definition 8.1 f : X → Y in Top is called a weak homotopy equivalence,

if f induces πi(X, x0)
∼=
→ πi(Y, f(x0)) ∀x0 ∈ X,∀i.

(Also for i = 0: [S0, X]¦ ∼= [{x0}, X] ⇒ f induces bijection of path compo-
nents of X and Y )

Example

X
f // Y

ΓX

εX

OO

Γf // ΓY

εY

OO

with f weak homotopy equivalence: εX and εY are weak homotopy equiva-
lences (WHE) by (3) ⇒ Γf a WHE too ⇒ (by Whitehead) Γf a homotopy
equivalence.

Consider K∗ = {Kn}n≥0 simplicial set consisting of:

1. Sets Kn, n ≥ 0 (n-simplices)

2. Face operations, degeneracy operators

di : Kn → Kn−1, 0 ≤ i ≤ n, (faces)

si : Kn → Kn+1, 0 ≤ i ≤ n, (degeneracies)

satisfying certain relations, motivated as follows:

Example K∗ = ∆∗ “simplicial complex of X ∈ Top” with SiX :=

{∆i
f
→ X | f continuous} where Ri+1 ⊃ ∆i = (t0, . . . , ti),

∑
tj = 1 is

the standard i-simplex.

SiX
dj
→ Si−1X

(f : ∆i → X) 7→ (∆i−1

δj
↪→ ∆i

f
→ X)

(t0, . . . , ti−1) 7→ (t0, . . . , tj−1, 0, tj , . . . , ti−1)

f 7→ djf := f ◦ δj. And:

SiX
sj
→ Si+1X

(∆i
f
→ X) 7→ (∆i+1

σj
→ ∆i

f
→ X)

(t0, . . . , ti+1) 7→ (t0, . . . , tj−1, tj + tj+1, . . . , ti+1)
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All the relations between the d’s and s’s in S∗X are taken to be relations in
the general K∗.
K∗ has a “geometric realization” given by:

|K∗| :=
∐

n≥0

Kn ×∆n/ ∼ ∈ CW

where Kn is a discrete topological space, and ∆n has the usual topology. ∼
is generated by:

(a, x) ∼ (dia, y)
a ∈ Kn, x ∈ ∆n dia ∈ Kn−1

x = δiy y ∈ ∆n−1

(f, σjz) ∼ (sjf, z)

Definition 8.2 X ∈ Top: ΓX := |S∗X| ∈ CW.

one checks: Ccell
x (ΓX)

φ
´ Csing

n X ⊃ Dsing
n X, with Dsing

n X (= kerφ) generated
by degerate singular simplices. Dsing

x X ⊂ Csing
∗ X, Dsing

x X being a subcomplex
(contractible chain complex).
⇒ φ induces an isomorphism:

Hsing
∗ X

∼= // Hcell
∗ (ΓX)

Hsing
∗ (ΓX)

∃ natural iso γ∗

OO
∼=

γ : ΓX → X
[(a, x)] 7→ a(x)

continuous surjection, with a : ∆n → X : a ∈ SnX, x ∈ ∆n.
Γ : Top→ CW is a functor

X
Â //

λ

²²

ΓX =

Γλ

²²

∐
(SnX)×∆n/ ∼ 3

²²

[(a, x)]
_

²²

a : ∆n → X, x ∈ ∆n

Y
Â // ΓY =

∐
(SnY )×∆n/ ∼ 3 [(λa, x)]

Theorem 8.3 (Basic Theorem) For all X ∈ Top, γ : ΓX → X,ω 7→ γω

induces γ∗ : πi(ΓX,ω)
∼=
→ πi(X, γω),∀ω ∈ ΓX.
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Example X = {¦}:

Csing
∗ {¦} : Z

∂
→ Z

∂
→ Z→ · · · → Z

sn{¦} = {4n
∃!
→ {¦}}

Csing
∗ {¦} ⊃ Dsing

∗ {¦}
∼= 0∗ ⇒

Csing
n /Dsing

n =

{

0 n > 0

Z n = 0

Hi(C
sing
∗ /Dsing

∗ ) =

{

0 i > 0

Z i = 0

Eilenberg Mac Lane spaces

π a discrete group.

B∗π simplicial set with Bnπ := (π)n
di→ Bn−1π with

di(g1, . . . , gn) =







(g2, . . . , gn) i = 0

(g1, . . . , gigi+1, . . . , gn) 0 < i < n

(g1, . . . , gn) i ≥ n

Bnπ
si→ Bn+1π

(g1, . . . , gn) 7→ (g1, . . . , 1, . . . , gn)

where 1 is at position i+ 1.

Definition 8.4 K(π, 1) := |B∗π| (connected and has only one 0-cell which
serves as base-point.)

Theorem 8.5

πi(K(π, 1)) ∼=

{

π i = 1

0 else

Remark If X,Y ∈ CW with πjX ∼= πjY = 0, j 6= n, and πnX ∼= πnY , then
X ' Y (we write K(π, n) for such an X, π ∼= πn(K(π, n))).
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⇒ we get a functor

K(·, 1) : Gr // CW¦

π Â //

f

²²

K(π, 1)

K(f,1)

²²
G

Â // K(G, 1)

with π1(K(π, 1)) ∼= π.

K(π, 1) Â //

φ∈CW¦

²²

π1(K(π, 1))

φ∗=π1(φ)

²²
K(G, 1) Â // π1(K(G, 1))

and π1(K(f, 1)) is f (up to natural equivalence). Every φ : K(π, 1) →
K(G, 1) is, up to homotopy, of the form K(f, 1):

π1 : [K(π, 1), K(G, 1)]¦
bij
→ Hom(π,G)

(without proof).
If π is an abelian group ⇒ B∗π is a simplicial group:

Bnπ := (π)n, µ : π × π → π

(µ is a homomorphism ⇒ π abelian). ⇒ K(π, 1) a topological group.
Now take G ∈ Top a topological group. B∗G becomes a simplicial, topologi-
cal group, i.e.

BnG := (G)n ∈ Top

di, si: continuous group homomorphisms. Define

|B∗G| :=
∐

y∈Bn
n≥0

y ×4n/∼ =: BG

This is called the classifying space of G. If G is an abelian topological group,
then so is BG.

Note G = π discrete ⇒ BG = K(π, 1) (not a group unless G abelian).
G ∈ Top a topological group and abelian⇒ BG ∈ Top an abelian topological
group and πiBG ∼= πi−1G (G not necessarily connected: π0G ∼= π1BG).
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G topological abelian⇒ BG topological abelian⇒ B(BG) =: B2G, . . . , BnG
all topological abelian groups.
G = π discrete abelian group:

BG = K(π, 1) 7→ B(BG) = K(π, 2), . . . , BnG = K(π, n)

G topological group ; |B∗G| := BG ∈ Top (∈ CW if G discrete) such that
πiBG ∼= πi−1G for i ≥ 1.
If G discrete, then

πiBG =

{

π0G = G i = 1

0 i > 1

and we write K(G, 1) := BG.

Remark G topological group: Define E∗G with EnG := (G)n+1 and “suit-
able” d and s. EnG has G-action by

(g1, . . . , gn+1) · g = (g1, . . . , gn+1, g)

EnG³ (EnG)/G =: BnG

EG := |E∗G| with (EG)/G
∼=
→ BG free G-space, and even EG

proj
→ BG

fibration with fiber G (principal G-bimodule) and EG ' {¦}: “G → EG →
BG” ; long exact homotopy sequence

πjG→ πjEG
︸ ︷︷ ︸

0

→ πjBG
∂
→ πj−1G→ πjEG

︸ ︷︷ ︸

0

→ . . .

G = A abelian, discrete: BA = K(A, 1) topological abelian group ⇒
B(K(A, 1)) = BBA =: B2A = K(A, 2) topological abelian group, etc. ⇒
K(A, n) := BnA

T : Top→ CW

X 7→ TX

and γ(X) : ΓX → X.
Take W ∈ CW :

W
f //

##

X

ΓW
Γf //

γ(W )

OO

ΓX

γ(X)

OO
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γ(X) is an isomorphism in π∗, and it turns out γ(W ) is a homotopy equiva-
lence.

[W,ΓX]
γ∗
→ [W,X] = [i(W ), X]

πi(ΓX),W )
∼=
→ πi(X, γ(W )) ∀W

⇒ HTop
Γ // HCW
i

oo are adjoints on the homotopy categories HTop, HCW.

Γ turns weak homotopy equivalences into homotopy equivalences.

Remarks concerning cohomology

h∗ cohomology theory with hi contravariant (on Top2). Most axioms directly
correspond to homology, except additivity where we have

hi
(∐

α∈I(Xα, Aα)
) ∼= //

pr∗α
²²

∏

I h
i(Xα, Aα)

hi(Xα, Aα)

where pr∗α is induced by inclusions (Xα, Aα) ↪→
∐

(Xα, Aα).

Example Singular cohomology with coefficients in A ∈ Ab: Put

C i
sing(X;A) := HomZ(Csing

i X,A) ∈ Ab

the “singular cochains”. The boundary ∂ of C sing
∗ X induces “coboundary” δ

in Csing(X;A) yielding a cochain complex (C∗
sing(X;A), δ), δi : C i

sing → C i+1
sing,

δδ = 0.
H i

sing(X;A) := ker δi/ im δi−1

i.e. cocycles modulo coboundaries. The dimension axiom becomes

H i
sing({¦};A) =

{

A i = 0

0 else

since HomZ(Z, A) ∼= A.
Special case: A = k a field:

Hsing
i (x; k) = Hi(C

sing
i X ⊗Z k
︸ ︷︷ ︸

k-vector space

) : k-vector space

and H i
sing(X; k) = H i(C∗

sing(X; k))

C i
sing(X; k) = HomZ(Csing

i X, k)
θ,∼=
→ Homk(C

sing
i X ⊗Z k, k) : dual k-VS of (Csing

i X ⊗Z k)

f : Csing
i X → k θf : Csing

i X ⊗Z k → k, (a⊗ λ) 7→ λf(a)(k-field)
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Homk(C
sing
x X⊗Zk, k) : cochain complex of k-VS.⇒H i

sing(X; k) ∼= Homk(H
sing
i (X, k), k)

dual VS.

Theorem 8.6 X ∈ Top: H∗
sing(X) := H∗

sing(X;Z) is in a natural way a gra-
dient ring (commutative in the graded sense). Moreover k field⇒ H∗

sing(X; k)
is a graded k-algebra.

• graded ring:

H i(X)×Hj(X)
biadditive
→ H i+j(X)

(x, y) 7→ x ∪ y “cup product”

(x, y) have degree: |x| = i, |y| = j and 1 ∈ H0
singX.

• graded commutative:

x ∪ y = (−1)|x||y|(y ∪ x)

x ∪ 1 = 1 ∪ x = x, ∀x

• the definition of “∪”:

– external product:

H i
singX ×H

i
singY → H i+j

sing(X × Y ) with i+ j = n
(a, b) 7→ a× b

a represented by ã : Csing
i X → Z

b represented by b̃ : Csing
j Y → Z

ã⊗ b̃ :
⊕

s+t=n(C
sing
s X ⊗ Csing

t Y ) ⊃ Csing
i ⊗ Csing

j Y → Z

⊕

s+t=n(C
sing
s X ⊗ Csing

t Y ) //

²²

Z

Csing
n (X × Y )

yielding a chain (') equiv.

ã⊗ b̃ yields a cocycle, hence:

[ã⊗ b̃] ∈ Hn(X × Y )

– take X = Y :

⊕

i+j=n(H
i
singX ×H

j
singX) //

this defines graded ring structure

22Hn
sing(X × Y ) ∆∗

// Hn
singX

where ∆X → X ×X, t 7→ (t, t) is the diagonal embedding.
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Example 1. n > 0: H∗
singS

n has:

H i
singS

n =

{

Z i = 0, n

0 else

1 ∈ H0
singS

n

〈x〉Hn
singS

n

}

H∗
singS

n ∼= Z[x]/〈x2〉

Fact:

Hsing
i (CP n) ∼=

{

Z 0 ≤ i ≤ 2n, i even

0 else

⇒ H i
sing(CP

n) ∼=

{

Z 0 ≤ i ≤ 2n, i even

0 else

Fact: Hsing
i (X) free abelian ∀i ⇒ H i

sing(X) ∼= HomZ(Hsing
i (X),Z)

Fact: H∗
sing(CP

n;Z) = Z[x]/〈xn+1〉
〈x〉 = H2

sing(CP
n, 2), 〈xn〉 = H2n(CP n)

n ≥ 1: CP 1 = S2 and H∗
sing(CP

∞) = Z[x]
︸ ︷︷ ︸

|x|=2

8.1 Hopf-Invariant

In previous sections we have discussed the homotopy groups for Spheres in
the cases:

πnS
n ∼= Z n ≥ 1

πkS
n = 0 k < n

What happens when k > n?
First it is almost always finite (Serre).

Theorem 8.7 πkS
n, k > n is infinite ⇔ n even and k = 2n− 1.

Hopf:

S2n−1 φ
→ Sn → Sn ∪φ e

2n

︸ ︷︷ ︸

C(φ)

Sn = {¦} ∪ en

⇒ Hsing
i (Sn ∪ e2n) ∼=

{

Z i = n, i = 2n, i = 0

0 else

⇒ H i
sing(S

n ∪ e2n) ∼=

{

Z i = n, i = 2n, i = 0

0 else
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Hn
sing(S

n ∪ e2n) = 〈x〉 ∼= Z, H2n
sing(S

n ∪ e2n) = 〈y〉 ∼= Z.
Fix x and y as follows: Sn → C(φ) canonical inclusion, induces:

Hn
sing(C(φ))

∼= // Hn
sing(S

n) = 〈[Sk]〉

x Â // [Sn]

where [·] is the “orientation class”.

Sn ↪→ C(φ)→ C(φ)/Sn
can,∼=
→ S2n

H2n
sing(S

2n)
∼=
→ H2n

sing(C(φ))
[S2n] 7→ y (choose y this way)

Y
const,φ
→ Y : C(φ) ∼= Y ∨ (ΣX)

So: S2n−1 φ
→ Sn, φ ' ∗ ⇒ C(φ) ' Sn ∨ S2n.

S2n−1 φ
→ Sn arbitrary: x ∈ Hn

sing(C(φ)) ⇒ x2 ∈ H2n
sing(C(φ)) = 〈y〉 ⇒

∃H(φ) ∈ Z s.t. x2 = H(φ) · y. H(φ): Hopf-Invariant of φ.
For instance: φ ' ∗ ⇒ there is a θ:

Sn ∨ S2n ' C(φ)
θ
→ Sn

inducing:
w 7→ x

Hn
singS

n
∼=
→ Hn

singC(φ)
w2 7→ x2

where w2 = 0⇒ x2 = 0 ⇒ H(const) = 0.
H(φ) is a homotopy invariant of φ, and:

[φ] ∈ π2n−1(S
n)

H
→ Z

is a group homomorphism.
n odd ⇒ H : π2n−1S

n → Z is the 0 map. Why? x2 = H(φ)y, x ∈ Hn
sing for

n odd: x2 = −x2 ⇒ x2 = 0 ⇒ H(φ) = 0∀φ.

Exercise n even ⇒ H : π2n−1S
n → Z is 6= 0. Therefore: π2n−1S

n ∼= Z⊕?
(See problem set 12: Sn × Sn = (Sn ∨ Sn) ∪ψ e

2n

ψ : s2n−1 //

φ=O◦ψ
&&M

MMMMM Sn ∨ Sn

O:folding map

²²
Sn

n even ⇒ H(φ) = 2.
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Hopf-Invariant-One-Problem:
For which n does there exist a map φ : S2n−1 → Sn of Hopf-Invariant 1?

Theorem 8.8 (Adams) H(φ) = 1⇒ n = 2, 4 or 8.

9 Theorems of Hurewicz and Whitehead

Definition 9.1 X ∈ Top¦ is n-connected, if πiX = 0 for i ≤ n.

π0X = [S0, X]¦: set of path components of X.

Example 1. X 0-connected ⇔ X path connected.

2. X 1-connected ⇔ X path connected, π1X = 0

Reminder:

Definition 9.2 (Hurewicz homomorphism) X ∈ Top,

πiX
Hu // Hsing

i X

[f ] Â // f∗[S
n]

f : S1 → X, f∗ : Hsing
1 Si → Hsing

i X.

Theorem 9.3 (Hurewicz) X ∈ Top¦, X 0-connected, then:

1.
π1X // //

'' ''NN
NNN

NNN
NNN

N Hsing
1 X

π1X/[π1X, π1X]

∼=

OO

2. X 1-connected ⇒ H sing
1 X = 0 (by 1)

and if X is n-connected, n > 0 then:

πn+1X
Hu
∼=

// Hsing
n+1X

Corollary 9.4 Suppose πiX = 0 for 1 ≤ i < n, n > 0, X 0-connected, then:
HiX = 0, i < n.
Conversely, if X is 1-connected and H sing

j X = 0 for j < m then πjX = 0 for
j < m.
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Example X = Sk is (k − 1)-connected:

πiS
k = 0, i < k

HiS
k = 0, i < k

}

πkS
k ∼=
→ Hsing

k Sk ∼= Z

There is also a relative version of Hurewicz:
(X,A) ∈ Top2

¦
: x0 ∈ A ⊂ X. πn(X,A): set of pointed homotopy classes of

“diagrams”:

Dn //
∪

X
∪

∂Dn = Sn−1 // A

• has a natural group structure for n ≥ 2.

• we have a long exact homotopy sequence (if x0 ∈ A is a global base-
point, i.e. {x0} ⊂ A, {x0} ⊂ X has HEP):

. . .
∂
→ πnA→ πnX → πn(X,A)

∂
→ πn−1A→ . . .

(f : Sn → X) 7→



 Dn
f̃ // X

Sn−1 //
∪

A
∪





Note

(f : Sn → X)↔ Dn
f̃ // X

Sn−1 //
∪

{x0}
∪

(
Dn // X

Sn−1
φ

//
∪

A
∪

)

∂
7→ [φ] ∈ πn+1A

Theorem 9.5 (Relative version of Hurewicz) (X,A) ∈ Top¦, A, X 1-
connected (with good x0 ∈ A ⊂ X). Then the first non-vanishing homotopy
group of (X,A) is isomorphic to the first non-vanishing homology group of
(X,A)

Corollary 9.6 Given f : X → Y with πiX
∼=
→ πiY , i ≤ n (both 0-connected),

then HiX
∼=
→ HiY , ∈≤ n − 1. Conversely, if X, Y are 1-connected and

HjX
∼=
→ HjX, j ≤ n then πjX

∼=
→ πjY , j ≤ n− 1

Proof Idea: Replace f by an inclusion:

Y
f //

³ p

!!D
DD

DD
DD

D Y

Z(f)

∼=

OO

2
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Corollary 9.7 X,Y ∈ Top¦, both 1-connected. f : X → Y , then the follow-
ing are equivalent:

1. πiX
∼=
→ πiY, ∀i

2. HiX
∼=
→ HiY, ∀i

Definition 9.8 f : X → Y in Top is called a weak homotopy equivalence,
if:

πi(X, x0)
∼=
→ πi(Y, f(x0))

∀x0 ∈ X,∀i.

Theorem 9.9 (Whitehead) f : X → Y in CW. Then f is a weak homo-
topy equivalence if and only if it is a homotopy equivalence.

Corollary 9.10 f : X → Y in CW¦ both 1-connected. Then f is a homotopy
equivalence if and only if:

Hcell
i X

∼=
→ Hcell

i Y,∀i

(X ∈ Top: Hsing
i ΓX

∼=
→ Hsing

i X, ∀i)

10 Spectra

CW¦, CW¦

2

[Z,CO¦(X,Y )]¦ ∼= [Z ∧X,Y ]¦[Z,Γ(CO¦(X,Y ))
︸ ︷︷ ︸

F (X,Y )

]¦

F (X,−) is right adjoint to X ∧ −.
ΩCWX := F (S1, X)

Lemma 10.1 (X,A) ∈ CW¦

2, Z ∈ CW¦. One has an exact sequence of sets

[X/A,Z]
α
→ [X,Z]

β
→ [A,Z]

i.e. β(f) = const. ⇔ f ∈ im(α)

Proof i) f ∈ imα:

X/A
∃g

!!C
CC

CC
CC

C

X
f

//

OO

Z

commutes up to homology ⇒ f |A ' const.
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ii) f : X → Z such that f |A ' const.. ∃f ′ ∼= f with f ′|A = const. ⇒
f̄ : X/A→ Z such that α[f̄ ] = [f ].

2

We want [−, Z] to be groups, so choose Z = ΩCWY (abelian groups: Z =
Ω2

CWY ).
Want “long exact sequences”: Use Puppe sequence for A ⊂ X ∈ CW¦

A
i // X //

³ p

!!C
CC

CC
CC

C X/A //

∼=
²²

ΣA // ΣX // ΣX/A

C(i) can
// C(i)/X // . . . // Σi

This yields a long exact sequence

. . .→ [ΣA,Z]→ [ΣX/A,Z]
︸ ︷︷ ︸

groups

→ [ΣA,Z]→ [X/A,Z]→ [X,Z]→ [A,Z]
︸ ︷︷ ︸

abelian groups

[VαXα, Z] ∼=
∏

α

[Xα, Z]

Upshot [−, Z] could look like a cohomology theory.

Definition 10.2

T = {Ti, i ∈ N,

σi : ΣTi → Ti+1}

is called a pre-spectrum. If the adjoints Ti → ΩTi+1 are weak equivalences,

T is called an Ω-spectrum. If Ti
∼=
→ ΩTi+1 are homeomorphisms, T is called

a spectrum.

Homology groups of T : There are maps

πi+kTi → πi+k+1Ti+1

given by:

[Σi+k, Ti]
Σ
→ [Si+k+1,ΣTi]

σ∗→ [Si+k+1, Ti+1]

πkT := colim
i≥|k|

πi+kTi

(note that this makes sense for k < 0!)
There is a functor (“spectrification”) which turns any pre-spectrum into a
spectrum, without changing the homology groups.
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Example 1. S sphere spectrum: Ti = Si, σSi+1 =
→ Si+1 (σ = id). This

is a pre-spectrum. (Take spectrification for a spectrum.) πkS = πstk S
0,

so πkS = 0 for k < 0 ⇒ S is called a connective spectrum.

2. Bott spectrum:

T2i = BU × Z = B(colim
n≥1

U(n))

T2i+1 = U = colim
n≥1

U(n)

Theorem 10.3 (Bott periodicity)

(a) BU × Z
∼=
→ ΩU

(b) U
∼=
→ Ω(BU × Z)

⇒ (structure maps) ΣT0 → T1 comes from (a), ΣT1 → T0 from (b).
This defines a spectrum (modulo spectrification) and is denoted BU =
T . Specifically:

πkBU =

{

0 k odd

Z k even

If T is a (pre-)spectrum, X ∧ T (i.e. (X ∧ T )i = X ∧ Ti) is a (pre-)spectrum
in the obvious way.

Definition 10.4 (Homology theory)

Hi(X,T ) = πi(X+ ∧ T )

where X+ = X q{¦} is X with an added artificial base point.

(X ∈ CW)
On pairs X,A:

A 6= ∅ : H(X,A, T ) = ker
(
H(X/A, T )→ H({¦}, T )

)

A = ∅ : H(X,A, T ) = H(X,T )

Note Hi({¦}, T ) = πi(T )

Example 1. Hi(X,S) ∼= πsti (X+)
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2. Hi(X,BU) = πi(X+ ∧BU) =: Ki(X), the K-homology :

Ki({¦}) =

{

0 i odd

Z i even

One can define cohomology: Z ∈ CW¦, “function spectrum” F (X,T ) (i.e.
F (X,T )i = F (X,Ti)).

Definition 10.5 (Cohomology theory)

H i(X,T ) := π−1

(
F (X+, T )

)

Example 1. H i(X,BU) = πi
(
F (X+, BU)

)

[Si+k, F (X+, BUk
)] ∼= [S−i+k ∧X+, BUk

] ∼= [X+,Ω
−i+kBU

k
]

=

{

[X+, BU × Z] i even

[X+, U ] i odd

⇒ (Bott periodicity)

H i(X,BU) =

{

[X,BU × Z] i even

[X,U ] i odd

where [X,BU × Z] = K0X = K0(C(X)) (later).

2. Eilenberg-McLane-spectrum HG, G an abelian group:

HG
k

:= K(G, k)

πn+1(X) ∼= πn(ΩX)

σ : ΣK(G, k)→ K(G, k + 1) come from weak equivalences K(G, k)
'
→

ΩK(G, k + 1). If necessary take spectrification.

Hi({¦}, HG) = πi(HG)

compute πi(HG): (sketch)

πi+k(K(G, k))
Σ
→ πi+k+1(ΣK(G, k))

σ∗→ πi+k+1(K(G,k+1))

where σ∗ is iso for k À i ⇒ Σ is iso ⇒

Hi({¦}, HG) =

{

G i = 0

0 i 6= 0

Using “uniqueness result” for ordinary homology it then follows that
one has a natural isomorphism (X ∈ CW):

Hsing
i (X;G) ∼= Hcell

i (X;G) ∼= Hi(X,HG)
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The advantage of working with spectra T is that cohomology takes a simple
form

H i(X,T ) = π−i(F (X+, T )) ∼= colim
k

π−i+k(F (X+, T k))

[S−i+k, F (X+, Tk)]
Σ //

∼=
²²

∼=

**TTTTTTTT
[S−i+k+1 ∧X+,ΣTk]

σ∗
²²

[S−i+k ∧X+, Tk] ∼=
// [S−i+k+1 ∧X+, Tk]

so for k = i

H i(X,T ) = π−i+k(F (X+, Tk)) = π0(F (X+, Tk)) = [S0, F (X+, Tk)]¦
∼= [S0 ∧X+, Tk]¦ = [X,Tk]¦

= [X,Ti]¦

Thus for T = HG:

Theorem 10.6 For X ∈ CW one has a natural isomorphism

H i
sing(X;G) ∼= [X,K(G, i)]

Corollary 10.7

H1
sing(X,Z) = [X,S1]

H2
sing(X,Z) = [X,CP∞]

Morphisms in the category of spectra: T
f

→ S with f ≡ fi : Ti → Si such

that

ΣTi
σT

//

Σfi

²²

Ti+1

fi+1

²²
ΣSi σS

// Si+1

commutes.
Spectra: generalized topological spaces

Top // Top¦

Σ∞

// Spectra

Y
Â // Y+

X
Â // Σ∞X
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Σ∞X is the suspension spectrum.
Prespectrum T with Ti = ΣiX becomes a spectrum by “spectrification”:
ΣTi → Ti+1, Ti → ΩTi+1, Σ(ΣiX)→ Σi+1X.
T a spectrum: defines a homology (and cohomology) theory on CW (or on

Top via the geometric realization functor Top
Λ
→ CW).

One puts:
hi(X;T ) := πi(X+ ∧ T ) ∼= dirlim

k
πi+k(X+ ∧ Tk)

hi({¦};T ) := dirlim
k

πi+k(Tk) = πi(T )

which can be 6= 0 for i ∈ Z (even i < 0).

hi(X;T ) = π−i(F (X+, T )) = dirlim
k≥i

π−i+k(F (X+, Tk)) = dirlim
k≥i

[S−i+k, F (X+, Tk)]¦

∼= dirlim
k≥i

[S−i+k ∧X+, T ]¦ ∼= dirlim
k≥i

[Xk,Ω
−i+kTk]

Example 1. KA (A abelian group) the “Eilenberg-MacLane spectrum”.

(KA)k = K(A, k) ' ΩK(A, k + 1)

has property that

hi(X;KA) = [X,K(A, i)] ∼= H i(X;A)

for X ∈ CW. hi(X;KA) = ⇒ H i “representable”. Furthermore

hi(X;KA) = dirlim
k

πi+k(X+ ∧K(A, k)) ∼= Hi(X;A)

For example, K(Z, 1) ' Si, K(Z, 2) = BS1 ' CP∞ ⇒

H1(X;Z) ∼= [X,S1]

H2(X;Z) ∼= [X,K(Z, 2)] = [X,CP∞]

K-Theory: “Bott spectrum” BU

(BU)k =

{

BU × Z k even

U k odd

where

BU := dirlimBU(u)

U := dirlimU(u)
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so ΩBU ' U , ΩU ' BU × Z

π1(U(u)) ∼= Z n ≥ 1

U(1) = S1 ⇒ π0(ΩU) ' π), U ∼= Z. So

hi(X;BU) ∼=

{

[X,BU × Z] i even

[X,U ] i odd

Define K i(X) := hi(X;BU), similiarly Ki(X). Here:

Ki({¦}) ∼=

{

Z i even

0 i odd

since U connected.

Vector bundles

X ∈ Top. A vector bundle over X is an onto map

π : E → X

such that

1. π−1(x) ∼= Cn (homeomorphic) ∀x ∈ X

2. “local triviality”: ∀x ∈ X ∃nbhd U ⊂ X such that

π−1(U)
∃φ

∼=
//

²²

U × Cn

prU
yyrrr

rr
rr
rr
rr

U

commutes and φ is a linear isomorphism on fibers

φ : π−1(u0)
∼=
→ pr−1

U (u0)

ξ
E

X
²² VB and η :

F

X
²² too:

ξ ∼= η ⇔

E
∃ hom and linear iso on fibres//

**UUU
UUUU

UUUU
UUUU

UUUU
UUUU F

²²
X
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we write iso(ξ) for the iso-class of ξ. ξ :
E

X
²² is called trivial (of dim n) if

ξ ∼= θn, θn :
X×Cn

X
²² ⇒ X connceted, X 6= ∅ then VB ξ :

E

X
²² has well-definied

dimension.

Definition 10.8 VectnX: set of iso-classes of Cn-Bundles / X.

E1

π1

ξ1 ½½6
66

66
6 E2

π2

ξ2¥¥©©
©©
©©

X

ξ1 ⊕ ξ2 :

E := {(u, v) ∈ E1 × E2 | π1u = π2v}

π

²²
X 3 x0 : π−1(x0) ∼= π−1

1 (x0)⊕ π
−1
2 (x0)

⊕ yields: VectnX × V ectmX → V ectn+mX, and:

VectnX → Vectn+1X
iso(ξ) 7→ iso(ξ ⊕ θ1)

}

VectX := dirlim
n≥0

VectnX

⇒ [ξ ⊕ θn] = [ξ] ∈ VectX is a commutative semi-gp with identity, [ξ] is
represented by:

iso(ξ) ∈
_
²²

VectnX

²²
iso(ξ ⊕ θm) Vectn+mX

with: [ξ] + [η] := [ξ ⊕ η], [θn] = “0”: [ξ] + [θn] = [ξ].

Theorem 10.9 X compact ⇒ Vect(X) is a group.

Proof uses: ξ :
E

X
²² a Cn- bundle ⇒ ∃ some m and η :

F

X
²² C

m-bundle s.t.

ξ ⊕ η ∼= θn+m etc. 2

10.1 Universal Cn-Bundle

• Grassmannian Gn,k of n-dim linear subspaces in Cn+k.

En
π
³ Gn,k canonical Cn-bundle.

Case n = 1: G1,k : 1-dim subspaces of C1+k ⊃ S2k+2

x0 ∈ CP
k π
← E ⊃ π1(X0) ∼= CS

2k+1
³ CP k = S2k+1/S1

canonical line bundle
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Gn,k ⊂ Gn,k+1 ⊂ . . . ⊂
⋃

k≥0
︸ ︷︷ ︸

'BU(n)

Gn,k =: Gn infinite Grassmannian of

Cn-planes (i.e. ΩGn ' U(n)).

⇒ CP∞ has ΩCP∞ ' S1. S1 → (∗)→ CP∞.

⇒ ∃ canonical Cn-bundle E(n)→ BU(n) the “universal” Cn-bundle.

• X
f
→ BU(n) produces Cn-bundle f ∗E(n)³ X via pull-back:

f ∗E(n) //

φ

²²

E(n)

Xn: universal Cn-bundle
²²

x0 ∈ X
f // BU(n) “classifying space

for Cn-bundles”

f ∗E(n) = {(x, y) | f(x) = π(y)} ⊂ X × E(n)

⇒ φ−1(x0) ∼= π−1f(x0) “C”

iso class of f ∗E(n) depends only on homotopy class of f , therefore:

Theorem 10.10 Let X be a CW-complex, then:

[X,BU(n)]→ VectnX

is a bijection.

Example ”Chern-Classes”

Let ξ : E → X, Cn-bundle over CW-complex X. Thus ∃! fξ : X →
BU(n) such that: ξ ∼= f ∗

ξ (Xn).

H∗fξ : H∗BU(n)
︸ ︷︷ ︸

Z[c1,...,cn]

→ H∗X

with Z[c1, . . . , cn] the polynomial ring in c1 . . . cn, where ck ∈ H
2kBU(n)

(ci universal chen classes)

ci(ξ) := H2i(f)(ci) ∈ H
2iX

easy: ξ trivial bundle ⇒ ci(ξ) = 0∀ i.
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VectX

can (bij. for X finite CW)

²²

= dirlimn VectnX

[X,BU ]

Recall:
K0X ∼= [X,BU × Z] ∼= [X,BU ]× [X,Z]

dim
²²²²

[X,Z]

with x0 ∈ X, X connected

{x0}
Â Ä i //

id

66X
pr // {x0} : K0{x0}

pr //

id

44K0X
i∗ // K0{x0}

⇒
K0X ∼= K̃0

︸︷︷︸

ker i∗ or coker pr∗

X ⊕ Z

with K̃0X ∼= [X,BU ]
X finite connected

∼= VectX

Remark X finite CW. K0X = “Grothendieck group of complex VB / X”

Definition 10.11 Grothendieck group:
∐

n≥0 VectnX =: S commutative
semi-group.

a, b ∈ S: a ∈ VectnX, b ∈ VectmX, a + b: iso-class of ξ(a) ⊕ ξ(b) where
[ξ(a)] = a, [ξ(b)] = b. a+ b ∈ Vectn+mX.
Gr(S): Grothendieck group of S, e.g. S(N) ∼= Z = N× N/ ∼
with ∼: (u, v) ∼ (x, y) ⇔ u− v = x− y, u+ y = x+ v.
; general definition:

Gr(S) = S × S/ ∼

s1, s2) ∼ (t1, t2) ⇔ s1 + t2 + w = t1 + s2 + w for some w.
⇒ Gr is a group, with component-wise addition and 0: x ∈ S : (x, x) a
representative of 0. Inverse: (s1, s2) : (s2, s1).
One checks: X finite CW ⇒ K0X ∼= Gr(

∐
VectnX).

Theorem 10.12 S4m+1 f
→ S2m, m ≥ 1, H(f) = 1 ⇒ m = 1, 2, 4.
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The proof relies on “Adams-Operations” ψk : K0X → K0X (X finite CW).
ψk, k ∈ Z additive, ψ1 = id, ψkψ` = ψ`ψk ∀k, `. K0X is a ring with
multiplication defined as the tensor product − ⊗ − of vector bundles: p
prime ⇒

ψpx ≡ xp mod p x ∈ K0X

S2m = 〈xm〉, K̃
0(S2m) ∼= Z ⇒ ψk(xm) = kmxm.

Proof S4m−1 f
→ S2m yields X(f) = S2m ∪f e

4m ⇒ K̃0(S2m ∪f e
4m) ∼= Z⊕Z.

S2m ∪f e
4m

pr // S4m

S2m

ind

OO

K̃0(X(f))

²²

K̃0(S4m) = 〈x2m〉pr∗
oo

K̃0(S2m) = 〈xm〉

and ∃ x̃m, x̃2m ∈ K̃
0(X(f)): K̃0(X(f)) = 〈x̃m〉 ⊕ 〈x̃2m〉, ψ

k’s “natural” ⇒

ψk(x̃2m) = k2mx̃2m

ψk(x̃m) = αx̃m + βx̃2m

where α = km, β = β(k) ∈ Z.
Now:

ψ2(ψ(3(x̃m)) = ψ2(3mx̃m + β(3)x̃2m = 3mψ2(x̃m) + β(3)ψ2(x̃2m)

= 3m · 2mx̃m + 3mβ(2)x̃2m + β(3)22mx̃2m

ψ3(ψ2(x̃m)) = ψ3(2mx̃m + β(2)x̃2m)

= 3m · 2mx̃m + 2mβ(3)x̃2mβ(2)32mx̃2m

so
3mβ(2)(3m − 1)x̃2m = 2mβ(3)(2m − 1)x̃2m

where x̃2m can be canceled.

ψ2x̃m = 2mx̃m + β(2)x̃2m ≡ x̃2
m mod 2
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H(f) = 1 ⇒ x̃2
m = H(f)x̃2m

x̃2
m ≡ β(2)x̃2m mod 2

≡ H(f)x̃2m

⇒ β(2) odd since H(f) odd ⇒ 2m | 3m − 1 to which the only solutions are
m = 1, 2, 4 (exercise!). 2

Application: A finite dimensional division algebra over R ((non)-commutative
field). Then dimnA = 1, 2, 4 or 8.

Proof A = Rn:

Rn \ {0} × Rn \ {0}
µ
→ Rn \ {0}

Sn−1 × Sn−1 µ̄
→ Sn−1

(using Rn \ {0} ' Sn−1 has bidegree (1, 1)) where µ has no 0-divisors.

Hopf: Sk × Sk
φ
→ Sk of bidegree (p, q), k odd ; “Hopf-construction” φ̃ :

S2k+1 → Sk+1 of H(φ̃) = pq. Thus Rn ∼= A division algebra over R ⇒

∃S2n−1 λ
→ Sn of Hopf invariant 1 (⇒ n even) ⇒ (Adams) n = 2, 4 or 8, e.g.

n = 2 : C
n = 4 : H
n = 8 : Cayley numbers

2
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Zur Prüfung • Die Sprache wird Deutsch sein (ev. auch Englisch, falls
der Student das möchte)

• Zusammenhänge sind wesentlich wichtiger als viele Details.

• Übungen: wichtig

• Spectra sind nicht unwichtig, aber sie wurden eher als Ausblick behan-
delt, dementsprechend werden sie sicherlich nicht das Schwergewicht
der Prüfung bilden.
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