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0 Introduction

0.1 Literature
The book by Allen Hatcher is available for download online!

0.2 Exercises

www.math.ethz.ch/"mislin (click on “Algebraic Topology™)

0.3 Preliminary Remarks

We will use the language of categories (not the theory, however, so don’t
WOrry).

The category Top consists of topological spaces X, Y, etc. (objects) and
continuous maps X — Y (morphisms) between them.

Some “algebraic” categories:

e Ab, the category of abelian groups A, B,... with group homomor-
phisms between them.

e Gr, the category of groups.

We will now relate these categories to each other by means of functors:

F.  Top——Gr

f[ lF(f)

Y|—>F(Y)

Define Top, as the category of pointed topological spaces (X with a fixed
base-point zy € X, with base-point preserving continuous maps).
Then the fundamental group m; is an example of a functor:

(f X—=Y)— (mf:mX —->mY)
Typical problems:
° é(Rnngén:m”

This is interesting because it is actually possible to continuously map
the unit interval onto the unit square using peano curves!

4



e “Vector fields on S? are singular” where a vector field on S? is a con-
tinuous map

v:S8? - R3

x — v(x)

such that v(z) - = 0 and a singular point is a zero of v. (See chapter
on Lefschetz numbers.)

1 Some basic notions concerning topological
spaces

Definition 1.1 Let Top be the category of toplogical spaces. For X,Y €
Top we have the “morphism set”

C(X,Y)={f: X =Y | f continuous}

J X — Y in Top is a homeomorphism if there is a g : Y — X in Top such
that go f =idx, f o g = idy.
We write X 2Y 1f X, Y € Top are homeomorphic.

Definition 1.2 X € Top is called discrete if all subsets of X are open.
Note that f : X —? continuous for all f <= X discrete. (Proof: If f -
X —7 is always continuous, choose A C X, and consider x4 : X — {0, 1},
{0, 1} with the discrete topology. Since x 4 is continuous, x ' (1) is open, and
this is true for all A € X.)

Definition 1.3 X € Top s indiscrete, if only @ C X and X C X are open.
(“coarsest topology”) Note: X indiscrete <= every ? — X is continuous.

Definition 1.4 X € Top is called compact if X is Hausdorff and every open
cover of X admits a finite subcover.

Definition 1.5 X € Top is called locally compact if every x € X has a
compact neighbourhood. (Here we do not assume X to be Hausdorff.)

Definition 1.6 X € Top is called compactly generated if AN C closed in
C' for every compact C C X implies A C X closed (in X ).

Example X compact = compactly generated (Take A C X with AN C
closed in C for all compact C' C X: sofor X =C: ANX =A C C closed :
A closed in X).

Also: R™ compactly generated.



Remark Let X be compactly generated. To prove that C C X Lyis
continuous, we only need to check that f|C is continuous for all C' C X
compact.

1.1 Quotient spaces

Definition 1.7 Let X € Top, then Y € Top is a quotient space of X with
respect to m: X — Y, a surjective map, if A CY closed <= w'(A)C X
closed. We then say “Y has the quotient topology”.
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Typical situation: X € Top and “~” an equivalence relation on X. Then
X/~ € Top is the space of equivalence classes, with the topology “A C X [~
closed <= 7'(A) C X closed” where 7 : X — X/~ is the projection onto
equivalence classes. X/~ is a quotient space of X.

Note If Y € Top is a quotient space of X with respect to f : X — Y

(a surjective map) then Y = X/~ where “~” is defined by =1 ~ zo <=
f(z1) = f(2), 11,20 € X

| A

X/~

[ is constant on equivalence classes, f is continuous (A CY closed = 14
closed because 7' f1(A) = f~'(A) is closed.) and f is a bijection of closed
subsets = f a homeomorphism.

Definition 1.8 Let A C X € Top, A # @, then:
X/A:= X/~
where T1 ~ Ty <= T1 =Xy 0T T1,T9 € A
Example [0,1]/{0,1} = 5!
Theorem 1.9 @ # A C X in Top: X/A has the following universal prop-

erty:

Xty

P 7
C‘ml REI
X/A

for every f constant on A.



Example A C B in Gr (i.e. a subgroup):

!l -¢
| .~
“B/A”

with f constant on A (f|A = 0). Take “B/A” to be B/N(A), where N(A)

is the smallest normal subgroup containing A.

Definition 1.10 Let X € Top. The subsets A C X, such that AN C closed
in C for all compact C C X, form the closed subsets of a topology on X,
called the compactly generated topology of X. We write X for X with this
topology.

Note id : Xx — X is continuous. X itself is called compactly generated, if
id : X — X is continuous as well.

1.2 Products and Coproducts in Top

Definition 1.11 Let C be a category, and A,B € C. Then AuB € C
together with py : AnB — A, pgp: AnB — B is called a product of A and
B, if it has the following universal property:
f A
Pa

C--=->=AnuB

{f,
B

From the topology course of last semester, we know that “Top has products”:
X xX 'Y with the product topology and px, py the canonical projections.

Definition 1.12 Let C be a category, and A,B € C. Then AuB € C
together with iy : A — Au B, ig : B— AuB is called a coproduct of A and
B, if it has the following universal property:

A— f
ia
m

AuB-~--=C

/ (f.9)
iB

B g



Theorem 1.13 Top has coproducts: X, Y € Top. We write X1uY € Top
for the disjoint union of X and Y with the topology coming from the open
subsets in X and Y, and ix,iy the canonical inclusions.

Definition 1.14 X € Top is called connected, if for any two open, disjoint
A, B C X such that AU B = X, it follows that A = @ or B = @. (Equiv-
alently: every map X — {0,1}, where {0,1} has the discrete topology, is
constant.)

Fact X,Y € Top connected <= X X Y connected.

Corollary 1.15 R 2 R?.

Proof If ¢ : R = R2, then

SR\ {0}) : R\ {0} = R*\ {9(0)}

not conn. connected

which is a contradiction to the above fact. O

1.3 Pullback and Pushout in Top
Definition 1.16 Consider the diagram

Y

I

X — Z
in Top. Then the pullback of f and g is X1z Y € Top given by
Xz ={(z,y) e X xY | f(x)=9g(y)} C X xY
(with subspace topology).

Lemma 1.17 X1z Y has the following universal property:

(0% X f
- PX \
—-=>XnugY Z
N
p Y



Proof h is given by {a, 8} : W — X x Y which maps into X 17 Y, because
we assumed foa = go . O

Note
Y

X—{
yields X173 Y = X xY ({.}: terminal object in Top).

Definition 1.18 Consider the diagram

72>y

|

X

in Top. Then the pushout X uzY € Top of f and g is given by XuY/~
where ix f(z) ~iyg(z) for all z € Z.

Lemma 1.19 X 1zY has the following universal property:

Vym

XH2Y*—*>W

Zf\{X%/#

Sometimes we write X Uz Y instead of X1z Y.

Note @ 5 X € Top: @ is an initial object in Top.

%] Y
X—>XHQY

so X1ugY =XnvY.



= “op” : X x{l}Cc X x 1[I

= “bottom” : X x {0} C X x I

Figure 1: Cylinder on X

\
/

CX

Figure 2: Suspension of X

1.4 Cone and Suspension

Definition 1.20 Let I := [0,1] € Top be the unit interval, X € Top. Then
X X I is called the cylinder on X (figure 1) and

OX = (X x I)/(X x {1})

the cone on X.

Definition 1.21 ¥ X := CX 1y C'X s the suspension of X:

X —>0CXx

i

CX —%¥X

where i : X — CX, x — (x,0) is the canonical inclusion (mapping points to
equivalence classes).
From figure 2, it follows that ¥X = CX/(X x {0}).

Example L S5" =~ §ntl

1.5 Homotopy
Definition 1.22 f, g : X — Y in Top are called homotopic, and we write

f~g, if IF : X x I =Y with F(z,0) = f(z) and F(x,1) = g(x). We call
F' a homotopy from f to g, and write F' : f ~ g.
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13 7

~” is an equivalence relation on C(X,Y); write
X, Y] = O(X,Y) )~
Homotopy is compatible with composition: If

f « u

X Y A w

g 8 v

and f ~ g, a >~ (3, u>~wv, then:

aof~fog
uoa~vo/f

uoaof~wvofog
so we can define the homotopy category of topological spaces:

Definition 1.23 XY € Top, f: X — Y a continuous map. If there exists
a continuous map g : Y — X such that f o g~idy and go f ~idy, then f
1s a homotopy equivalence.

X and Y are called homotopy equivalent if there is a homotopy equivalence
between them.

Definition 1.24 HTop s the category consisting of topological spaces as ob-

jects and mor(X,Y) := [X,Y] as morphisms. “Isomorphisms” in this cate-
gory are homotopy equivalences (i.e. X,Y € Top are “isomorphic” if they
are homotopy equivalent).

Example R" ~ R™ because R" ~ {.} ~ R™. Let:
F:R"xI—R"

(x,t) — tz

then F(z,1) = idg«(2), F(-,0) = (0: R" S R") ie. F:0~ idgn.
R" ~ {.}:
fR"—={.}, g:{} —>R",.—0

fog=idyyand go f = (2 +— 0) ~ idg»

Definition 1.25 X € Top is called contractible, if X ~ {.}.

11



Example @ # X € Top = CX ~ {.}. Proof:
(CX E {.} eone RO oy ) =~ idex, where the equivalence is induced by:

F:(XxI)xI—XxI
((z,8),t) — (z,(1 —t)s+ 1)

Definition 1.26 A <~ X € Top is called a retract if- dr X — A, s.t.
roi=1ids where i is the inclusion of A in X.

A retract is called a deformation retract if it satisfies the additional condition:
ior =~ idx with a homotopy F : X x I — X satisfying Ya € ANt € I :
F(a,t) = a.

Example {cone point} C C'X is a deformation retract.

Definition 1.27 Let f: X — Y be in Top.
My = (X x DY) /((2,0) ~ (@)
15 called the mapping cylinder of f.
Definition 1.28 Let f: X — Y be in Top.
Oy = My/(X x {1})
is called the mapping cone of f.

Obviously, Y C M ¢ is a deformation retract (= My ~Y).

can : X X—f>Y

I j Aaction r
My

(z,1)
The canonical inclusion is a so called “cofibration” (see later).
Note C;/Y = XX
Definition 1.29 Given f: X — Y, a sequence:
XLy oo -2xEny - 0gp — 22X — -

is called a mapping cone sequence (Puppe sequence).

12



Definition 1.30 Let X,Y € Top, and C(X,Y) := {X 'Y}, then
M(K,U):={feC(X,Y)| f(K)CU}

where K C X compact and U C'Y open, defines a subbasis of the compact-
open topology (co-topology) on C(X,Y).
Notation: CO(X,Y) € Top denotes C'(X,Y") with this topology.

Definition 1.31 zy € X, the map defined by:

evy, t C(X,)Y) =Y
[ J(o) =2 evay (f)

1s called the evaluation map.

Note ev,, is continuous. Proof: U C Y open = ev  (U) = {f € C(U,Y) |
flzo) €U} = M( {zo} ,U) open in CO(X,Y).
——

compact
Problem: in sets

bij

{XXYLZ}H{JEZX — maps(Y, Z) }

z = f(z) = (y— f(z,y))
Theorem 1.32 XY, 7 € Top, Y locally compact, then there is a canonical
isomorphism: C(X x Y, Z) = C(X,CO(Y, Z)).

Example Y =1 = [0, 1]

{XX[—>Z

: by couz
homotopy —_

ZI “path space on Z”

1.6 Pairs of topological spaces

Definition 1.33 Let X € Top, the category whose objects are pairs (X, A)
with A C X a subspace, and morphisms f : (X, A) — (Y,B) with f : X —
Y € Top, f(A) C B is called the category of pairs (@2).

Note We have a functor Top — @2, given by X — (X, ).

13



Definition 1.34 X € Top® with A = {x¢} (the base-point) is called a
pointed topological space, and the category containig these spaces is the cat-
egory of pointed topological spaces (Top,). Morphisms in this category are
base-point preserving maps, and homotopies are always assumed to be based
(i.e. base-point preserving).

Note Top, C @2

Definition 1.35 If X,Y € Top., then X ~, Y denotes a based homotopy
equivalence, HTop, is the associated homotopy category.

We usually think of 0 € [0, 1] to be the base-point of [0, 1] € Top..

Definition 1.36 (wedge product) The coproduct (see 1.12) in Top, is de-
fined as:
XVY .= (XHY)/<.130 ~ y0>

where xg,yo are the base-points of XY, and ©y = 1o is the base-point of
XVY.

1.7 Mapping spaces

Let X,Y € Top, with base points xg, 1y, then X x Y € Top, with base
point (z¢,1). Consider the “forget” functor X x Y — Z, with Z € Top.
As above, CO(X,Y) denotes C(X,Y) with the compact-open topology. We
want a correspondence:

(J1X XY = 2) o (f: X = COY, 2)
Definition 1.37

CO(X,Y) :={f € COX,Y) | f(z0) = yo}
with the constant map c : x — Yo as base-point.

CO.(X,Y) € CO(X,Y) with subspace topology. f should be based (z(
c), i.e.

f(@o)(y) = f(x0,y) = 20

= f must map {zo} x Y to {z}. Similiarly, f(z)(y0) = f(z,%0) = 2. This
motivates the following definition.
Definition 1.38 (smash product)

XAY =(X xY)/(XVY)

14



Theorem 1.39 Let X,Y,Z € Top,, Y locally compact, and define C.(X,Y")
to be the set of pointed maps X — Y. Then

bij

C(XANY,Z)—= C(X,CO.Y,Z))
Example S'A X &YX (SX := S' A X is called the reduced suspension of
X). We can set e.g. Y = St then
C(XASh,2) 2 o(x,02)
where Q7 denotes the loop space CO (S, Z) (which consists of the loops in

Z at the base-point z).
So we have

Top,

Top,

where

S(X)=SX=5"AX
Q(X) =QX =C0.(S", X)

(S left-adjoint to Q, 2 right-adjoint to S) and we get a natural bijection
C(SX,Y) 2 C.(X,QY)

Furthermore we can pass to the homotopy categories

HTop, HTop,

and get
bij

[SX,Y], = [X,QY],

ie. 5,0 is still a pair of adjoint functors. (see Hatcher, p.530, discussion
after Prop.A.14)

1.8 Homotopy groups

Definition 1.40 (fundamental group) Let X € Top,, then the funda-
mental group of X is defined as:

7TlX = [Sl,X]

15



Definition 1.41 Forn > 2,
X = (Q"1X)
where VX = Q(Q1X) (1 >1) and Q°X = X.

Note
bij

157, x, 2 et ax], A st oy, = X
Claim 7, X is abelian for n > 2. This follows from
Theorem 1.42 Let Y € Top,. Then mQY is abelian.
Proof Let p : QY x QY — QY be the obvious multiplication of loops
(usually written p(w,o) = w* o). (QY,pu) is a “group up to homotopy”.

This means:

i) associative: The diagram

idxp

QY x QY x QY QY x QY
/J,Xidl lﬂ
QY x QY m QY
commutes up to homotopy.
ii) inverses: Ji: QY — QY such that
v — 2 gy xay U gy
const
const l“
QY

commutes up to homotopy.
iii) identity element:

{id,const} {const,id}

QY ——— QY x QY =——QY

16



So [W,QY], is a group, induced by p.
(W, QY], x [W,QY], —== [W, QY x QY], -~ [W,QY].
[l ——— 1o ¢]

Now look at m QY = [S!,QY].. This group has two group structures: The
“m-product” (being a fundamental group 7(+)) and the “u-product” (being
a loop space).

Now we have to show that m-product = p-product, and that the group is
commutative.

e QY x QY — QY induces a m-homomorphism

WlQY X WlQY = WlQY
Therefore:

pal(a; B) +(7,0)) = pul, B) + pa(7,9)

s

& pulaty, B+0) = pa(a, B) + pu(v,0)
& (at+7)+(B+0)=(a+ ) +(r+9)
e.g. taking v = 3 = e shows that the group structure is the same:
a+d=a+0
I ™
and taking a = = e shows that the group is abelian:

YHO=0+y=0F+n
M ™ Iz

More generally we could use the same proof to show the

Theorem 1.43 X an H-space (“Hopf”) = mX abelian, d : X x X — X
with 2-sided unit up to homotopy (note: no associativity or inverses re-
quired!).

Corollary 1.44 G Lie group, e € G base-point = m G abelian.

17



1.9 Adjoint Functors
F
C — D
G
Suppose one has a natural bijection:

morc(GX,Y) L morp (X, FY)

Then G is called a left-adjoint to £’ and F' is called a right-adjoint to G.
= “G commutes with colim” (e.g. coproducts, pushout); “F' commutes with
lim” (e.g. products, pullback).

2 CW-Complexes

Definition 2.1 A CW-structure on X € Top is a filtration X_1 = & C
XoC...CX,C...CX with:

1. X =X, = colim,>0 X,,, i.e. AC X open < ANX™ open Vn

2. X™ 1s a push-out of:

I Sn—l X 1

| f

u D" X" =X""'UpuD"

2.1 Facts and definitions

1. X™is called a n-skeleton, f the attaching map for the n-cells.
2. CW-complexes are Hausdorff.

3. f(D™) =:e" is called a “closed n—cell”.

4. f(D") =: e is called an “open n—cell”.
Remark e” is in general not open in X.

5. A € X € CW, is called a subcompler of X if A is closed and an
union of cells of X. (A has to be closed to ensure that it has a proper
CW-structure.)

6. By construction: as a set X =[], [, e}

18



7. X € CW is called finite if it is a “union” (see Hatcher, example 0.6) of
finitely many cells. A finite CW-complex is compact.

8. X € CW, C' C X compact = JA finite subcomplex of X, with C' C A.

9. Each X € CW is compactly generated as a space. (Proof: B ¢ X
closed & B C f7'(B) closed in [[, D? < BN DY closed Va,n <
Bnel closed).

10. XY C X is discrete, i.e. composed of single points.
11. If X = X! then X is called graph.
12. A CW-complex X is connected if and only if it is path-connected.

13. X € CW is called n-dimensional if X = X"

Example S™, RP"(CP"),T? = S' x S*.
S™:

S"[1 —{}

D" ——§" = DU, D"
Alternatively: S™ = D°uD°UD'uD'u...uD"uD", St = D°u D°UD u D*
RP" = S™/(x ~ —x):

Sn—l HSn_l - o Sn—l lT

o]

Dt uD” gn 3 T
where T : S — S", x +— —ux.
One can extend the antipode T' to the whole push-out diagram by letting it
exchange DY with D™.
quot(T",)) =T, /{x ~ Tz)

ST L Rpf_l
Dr RP"

= RP"=D°UD'U...U; D"
CP": see above, CP" = D°U D?U D*...uU D>,

19



Torus: T = S! x St =St v St Us D?

5[1 i TSI
p:——=StvStu, D*=T

Definition 2.2 f: X — Y, XY € CW s called cellular if:

f(X")CY™ VYn>0

Theorem 2.3 (Cellular Approximation Theorem) Let f : X — Y,
X, Y € CW, f continuous, then f is homotopic to a cellular map g : X — Y.

Proof (later, simplicial approx.) O

Remark There is a relative version of the cellular approximation theorem:
let f € CW?, f: (X, A) — (Y, B) ((X,A) € Top?, where X and A C X have
a CW-structure) with f|A : A — B cellular, then there is a cellular map
g:(X,A) — (Y,B) with f ~ g and f|A = g|A.

Corollary 2.4 For 0 <k < n, m;(S™) = 0.

Proof m,(S") = [S*,S"].. Let [f] € m(S™), f: S* — S™, replace f by g,
g~ f, and g cellular.
S"=D°uD’U...uUD"uD"

g: Sk ——(Sn)k

~
~

5"\ {pt.}

= g ~ const. = m(S™) = 0. O

iN
—%

12
-
—

Corollary 2.5 X connected, X € CW,, X ={J,5, X"

e k>n+1=mX" S X.

e k=n=m,X"—»m1,X

20



Proof [f:S" — X] € [S", X]., CW-app. = Jg: S™ — X, f ~ g, g cellular.
=

E>n=m1,X" > m1,X
ffegelS"X]3H:S"x I — X, H(-,0)=f, H(-,1) = g, H(zo,t) = yo.
Serie 3, ex.1: S™ x I is n + 1-dim. CW-complex. CWpPr 477

Snx s x

N

X* (k>n+1)

f g €[S" X", =1, (X")
[ ~g= m(X*) — 7,(X) is injective for k > n + 1. O

Corollary 2.6 X connected CW-complex (xg € X):
7'('1X2 i 7T1X

Definition 2.7 A C X, is a neighbourhood deformation retract (NDR) if
there is an (open) neighbourhood B C X of A and A C B a deformation
retract.

Lemma 2.8 Let
f

—_—

A Y
]
X—Z7
with f an arbitrary map, be a push-out (in Top). ThenY C Z is a NDR.

Example

Snfl X

o] |

DnHX USn—l DTL :XUf Dn

Corollary 2.9 X € CW, A C X subcompler = A C X NDR.

21



Definition 2.10 (Summarized from Topology SS 05, which see. Ed.)
The amalgamated product G = G *g,, G2 is defined by the following push-
out in Gr:

G — Gy

Gy——@G
If Gio =1, then G = G % Gy s called the free product.

Theorem 2.11 (Classical van Kampen) X =U UV, X € Top,, U,V C
X open. If U, V.U NV path-connected:

UTV<—>V m(UNV) L (V)
Uc X m(U) m(X)

ie. T (X) 2 (m (V) *m(U)) [ {ax(Bz)™t, z € m(UNV)).

There is a more general version of the classical van Kampen theorem, which
does not require the involved sets to be open.

Theorem 2.12 (van Kampen for push-outs)
j’ ——V
W—X

a push-out in Top,, with U C W and U C V NDRs, and U,V,W path-
connected, then:

mX is push-out of: mU ——=mV

l

7T1W
Proof Look at:
ﬁ( ‘/1(
‘r/j//l [{ V UU W1

22



Example X € CW, connected, X = AU B, A, B connected subcomplexes.
C := AN B is then also a subcomplex; assume it is connected. = C' C A
and C' C B are NDR. Then:

mX = push-out: mC——mA

|

7TlB

Corollary 2.13 XY € CW, = m(X VY) = mX xmY (free product =
coproduct in Gr)

Proof
{.} — X {1} 7T1X
R
Y —=XVY mY —mX xmY (free product)

O

Example Free group in 2 generators: m1(S'V S!) 2 m St x« mS' X Z x Z
(m (ST x SY 2 Z x Z)

If you choose a base-point of X € CW , it should be a 0-cell. Now some CW-
Complexes have more than one 0-cell, so you want to find a space which has
exactly one 0-cell, e.g. S™ = D% Uy D", instead of S" = D°nu DU D*uD'U
..UuDruD™

2.2 HEP: Homotopy Extension Property

Definition 2.14 (X, A) € @2. A C X has the homotopy extension prop-
erty (HEP) if for every f: X — Y and homotopy F': flJA~g: A —Y we
can extend F to F': X x I —'Y such that

FI(AxI)=F
This is often expressed as a diagram:

AA——X

RS

AxI——=XxI1" >y

F
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772

S”‘/ _opn

Figure 3: S»~! c D"

»
/l\

Dn X I - D" Ugn—1x{0} (Snfl X I)
deformation retract

Figure 4: Definition of F

Example S"~! C D" has HEP.
Proof Look at figure 3. From

f:D" =Y
flsm st -y

F:8"lxI—>Y

F:f|S" 1t~y

we get a map

D" Ugn-1x{0} (Snil X I)

Dvx T

so we define F as in figure 4, namely F := ® o p.
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Lemma 2.15
f

E—

A
has HEPJ

X —

push-out in Top = B CY has HEP.

<~

Definition 2.16

Remark

Proof

3

X v from p.o. ZI
v

G from HEP

= get F from push-out property (F induced by {G, F}). O
Corollary 2.17 S ! C D" has HEP in
gty

N N

Dr——=Y Uy D"
therefore so does Y C (Y Uy D™).
Note HEP is transitive: U C V HEP, V. Cc W HEP = U C W HEP.
Theorem 2.18 (X, A) € CW? = A C X has the HEP.
Theorem 2.19 (X, A) € CW? A ~. (contractible) =
pr: X — X/A

is a homotopy equivalence (note that X/A is a CW-complex, see homework
set 3).
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Proof

$’XI
P
/EIG evo

corresponds to idy ~g ¢y (G: Ax T — A), s0 3G : X x [ — X with

G(x,0) =z
G(a,1) = ag
Gla,t) e A

and therefore G defines a map H by

(X/A) x T2~ X/A

Tm Tm

X xI— X
G

X X
_ 7
pTX/Al e lpTX/A
- -9
X/A T X/A
= g and prx,4 are homotopy inverses. O

Definition 2.20 FEvery group G can be described by generators g; and rela-
tors r;. If there are only finitely many of them, as in

G={g1, s gn |71,y Tm)

then the group is called finitely presented and G is countable. In this case
we can also describe it as

G = (free group on (g1, ...,3gn))/(normal subgroup generated by words 7;)
Example (i) G = (g]) =7

(i) G={g|g") =Z/nZ

(iii) G = {(a,b| aba™' b ) X Z & Z
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Theorem 2.21 Let X € CW, A C X subcomplex, A ~ .. Then X —
X/A, and therefore m X = m(X/A).

Example X € CW, = XX ~ S' A X =: SX (“reduced suspension”)

(S' x X)/(S' v X)

~

UX

S'AX

o

YX/(I x {xo})

X € CW, connected (= path-connected) = X; C X connected, i.e. X is
a connected graph which contains a maximal subtree T C X;. Note that a
tree is a contractible subcomplex since it may not contain any loops! T also
contains all vertices in X; (if one is missing, attach it through an edge of
choice).

Now suppose we contract T

X = X/T
mX — m(X/T)

X/T has just one 0-cell, so it forms a natural base-point!
If we take Y € CW_ with Yy = {base-point} (= Y connected), then

YoCY;: ;5 —Y, = {.}
n
;D' —Y; Z\/IS1

and
Y, CYiCYy: s =2y,

l

[ID? —=Y;

where ® is homotopic to a cellular map ® (S' = DU D' as CW-complex).
Replacing ® by & yields the push-out

VS Ty

L

VD> —=Y, ~Y,
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(}72 ~ Y, by Hatcher, prop. 0.18, Y5 a CW-complex by exercice 3.5) i.e.
Yo = (V5" Ug (VD7)

Recall: X € CW, connected = m; X5 =, mX.
Xo D X1 D T maximal subtree:

10X 22 1y Xy 2 my(Xy/T)
(note Xo/T ~ (\/; SY) U (V, D?)).
Lemma 2.22
m (V28" Ug (VD7) = (ganar €1 [ 15,0 € J)

Note ® yields maps
D25 8, 25\, 8!
with )
[@s] € m(V,S") = F(I)

where F(I) is the free group on I.

Proof Use van Kampen Theorem for CW-complexes:

V, 5 —2 v,fl

V., D?——= (V5" Uz (V, D?)

(note that \/; D* is contractible). Applying 71 we can map this into a push-
out on Gr:

m(V, 8~ (V, 81

| |

{1} G

m1(\V;S') is the free group on J, and similiarly for I, so we can write

75 1= Du(fs)

and get
G (gyael|rsBed)

where r3 corresponds to 7. O
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a
. b
:
o :
e '
>

Figure 5: Example 2

Corollary 2.23 Let G = (9o, € I | r3, 3 € J), then there is a “canoni-
cal” 2-dimensional CW-complex X (G) with m X (G) = G, namely X(G) :=
(V;SY) Uy (V; D?) where ¢ has components ¢z : S* — \/; ST corresponding
to the rg’s. (X(G) is called the presentation complex of G with its presen-
tation).

Example 1. G=Z=(g])= X(G)=S5'(mS'=Z)

2. G=ZxZ={ab]|abab"") = X(G) = (S' VS U, D?, ¢: S* —
STV S [¢] € m(S'V S =Z xZ = (a)x (b), [§] = aba—b".

Obviously: (S'V S') Uy, D* = St x St

st 2 gy

| |

D2—— (Stv SY)u, D* = St x St
a push-out, see also figure 5. (m;(S? x S1) = m St x T S1 2 Z x Z).
Definition 2.24 X € CW, is called a K(G,1), if:
1. X connected
1. mX =G
jii. mX =0,i> 1
Remark (without proof) Such an X depends up to homotopy only on G.
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Actually:

ar X0 gow,

GI—>K(G,1)

[ e

H+——K(H,1)

where HCW , is the homotopy category of pointed CW-complexes.
K(-,1) a functor.
K(-,1): “fully faithful”, i.e.

1. K(G)~K(H1)=G~H
2. hom(G, H) 2% [K (G, 1), K (H,1)],

Example 1. K(Z,1)=S! (ie. ;S' 2 Z, and 7,S' =0Vi > 1)
;S = {0} for i > 1:

R
7
% .
Y lumversal cover
7 ¢
§i —> g
= ¢ ~.since R ~ {.}.

2. K(Z)2Z,1) = RP>* = |JRP", where RP™ is the n-skeleton of RP>

mRP> = mRP? = m(S* Uy D?) = (g | ¢°) £ Z/2Z, ¢ : S* — S* of
degree 2.

i>1: mRP>® = m(RPH) 2,5 = {0} asi <i+ 1.
Sl RPHL 2-fold cover
7 i=2

0 else

3. Similarly (but harder): K(Z,2) = CP*> ie. mCP>® = {
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3

Homology Theories

Axioms: (S. Eilenberg + N. Steenrod, early 50’s)

Definition 3.1 A homology theory {h,}nez is a family of functors:

By Top? — Ab (X, A) 1> hy(X, A))n € Z

and natural transformations

On thn — hp1 0T (hp(X,A) B hy (A, @) =t hy_1(A))

such that the following axioms hold:

1.

f~g(fig: (X,A) = (Y,B)) = h,f = hng (“homotopy invariance”).

2. “Long evact sequence”: (X,A) € Top?. Then there is a natural long

3.

4.

exact sequence:

o haA > hy X — ha (X, A) B by A

i.e. (A,0) — (X,9) — (X,A). We often write just 0 for 0,
“Additivity”:
Vn : hy (][ Xa) = @, hnXa

“Brcision”> X D B D A such that A C B.

= ho(X \ 4, B\ A) — h,(X, B)

If in addition h, satisfies the

5.

“Dimension Aziom”: h,({.}) =0 if n # 0.

then hy is called an ordinary homology theory.
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We write H, for a homology theory with

n=20

else.

() = {f

Example X = X; U X, with X; C X,i = 1,2 open. Consider X D X5 D
X2 \ (Xl N XQ)Z X2 \ X1 N X2 =X \ X1 is closed. So

XQZXQDXQ\(leXQ):XQ\(leXQ)

We note

X\\(XQ\XlﬂXQ)/:Xl, XQ\(XQ\XlﬂXQ):XlﬂXQ
A

and by the excision axiom
ha (X1, X1 N Xs) — h(X, X5)

Theorem 3.2 (Mayer-Vietoris sequence) Let X = X; U X5, X; C X
open. Then there is a natural long exact sequence

= B (XN X)) S i (X1) @ hn(Xa) 2 b X 2 b (XN X)) — ..

where
a(x) = (hn(j1)(2), hn(j2)(2)),
with 7+ X1 N X — Xg, and
By, z) = (ha(i1)(y) — ha(i2)(2))
with i, + X — X.
Proof Look at (X3, X7 N X5) and (X, Xy):

e B (X N X)) 2 ha(X0) = b (X, X N X)) % hyy (X N X)) >

[e%) \1/ \l/ = \l/ excision \L

a commutative diagram = exactness of MV sequence follows by “diagram
chasing”.
E.g. exactness of “@”: We have to prove that ker § = im a.
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(i) ima C ker B: o € h, (X7 N X5)

= Bla(x)) = B(hn(j1) (@), hn(72)(2))
1)(2) = hn(i2) hn (j2) ()

(i) ker 8 Cima: @ € h,(X3) ® hn(Xs) 2, hn(X). Assume Gz = 0, i.e.
hn(i1>l’1 = hn(Zg) XTo =: 2 € hn<X)
~—— ——
<%} a9

Now z +— 0 in h,(X, X3) and therefore (by excision) z; +— 0, so 3Z; in
hn,(X1 N X3) such that Z; — z7. Suppose T; +— To in h,(X3). We cannot
conclude T = x5, but we know that Z, +— 2, so 5 — x5 +— 0. Then take
A € h,1(X, X3) such that A — Ty — 29, and take A e hint1(X1, X1 N Xy)
with A — A (by excision). Now define &} = (Z; —im A), which finally maps
to x; and 5 in the respective groups. [You're Not Expected To Understand
This. Use a colour pen on the above diagram. Ed.] a

X =X,UXy, X; C X open. = X is push-out of
X1 ﬂX2<—> X1

X
Universal Property:

XiNXy—> X, Loy

;

Theorem 3.3 (Mayer-Vietoris sequence for push-outs)
T—) |
B——D

a push-out with A C B a NDR, and A closed in B. Then there is a natural
long exact sequence (MV-Sequence)

e h A h BahCLohD - h A—
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Figure 6: Braid

Proof As before, working with A replaced by a suitable neighbourhood. O
Example X € CW, X = X; U X5, X; C X subcomplex =

Xl N XQ(—>X1

o |

Xs X

is a push-out with MV-Sequence:
D ha (X1 N X2) — b X1 @ hp Xy — hy X -5 hy (X1 N X)) — ...

Theorem 3.4 X D B D A, (B,A) — (X,A) — (X, B). Then there is a
natural long exact sequence (triple sequence ):

. — hp(B, A) — hy(X, A) — hy(X, B) =2 hy1(B, A) — ...

Proof Uses “Braid Lemma”:

Lemma 3.5 (Braid Lemma) Given a “braid diagram” with four braids,
as in figure 6. Assume 3 of them are exact, and the fourth one satisfies

(—e—)= (g) Then the fourth one is exact too.

<, (B, A) hn 1A hn1X hn-1(X, B)
N A N\ I 7 \
hn(X, A) hn-1B hn-1(X, A)
is a triple sequence O

Theorem 3.6 (relative version of MV) Let

A——C

|

B——=D
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be a push-out in Top with A C B a NDR and A C B closed. Take any
W C A, then there is a natural long exact sequence:

== h, (A, W) = h,(B,W) ® h,(C,W) > hp,(D,W) > h, 1 (A, W) -
Proof As before, starting with “Triple sequence”. O

Theorem 3.7 (Suspension Theorem) Let xo € X € Top. Then there is
a natural isomorphism:

hn(X, {ZE()}) i hn-l—l(ZXv {.I’()})
Proof Look at:

To € X——(CX > Zo
NDR, X C CX closed

CX YX

apply MV, with W = {x¢}. Note CX ~ {.} so:
ho{zo} — hpCX —5 ho(CX, {zo}) =2 hp_1{z0} — hno1CX
= h,(CX,{x0}) =0V¥n = MV:

oo = hp1 (X {xo}) = ho1 (CX {x0}) ® b1 (CX, {x0}) —
= B (5X, {20 }) 2 ho(X, {z0}) — ...

where h,,1(XX, {z0}) has to be = h, (X, {z0}). O
MV for CW-complexes:
C—D

A, B,C € CW, f cellular, A C C subcomplex = D € CW.
oo By A = BB ® hyC — hyD 2 hy A —
Definition 3.8 Let h, be a homology theory. Then we define
ho(X) = ker(hpy X — hp{.})

Jor X € Top. We call h,X the reduced homology of X.
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Example Let X € Top and zp € X (note that h,& = 0 for all n by

additivity).
{xo} C X yields, X &5 {z}

= hy{z0} T hp(X) —— ha(X, {20}) 2 P {wo} —---
= 1 a split short exact sequence
0 —=hn{zo} == hp(X) — hn(X {z0}) —>0

and therefore
h(X) = 7 (X, {20}) © ho{zo}

= ha(X) 2 h,(X, {20})
If X € Top, with base-point z,
h(X) 2 (X, {base-point})

Corollary 3.9 (to MV) There is a natural “suspension isomorphism”

}Nanrl (EX)

i

as before. MV-sequence “relative to {ap}” (in CW,):

1w

Gn(X) 1 hn(X)

ag €  ——

Q<—"n

_

- ha(A, {a0}) = ha(B, {a0}) @ hn(C. {a0}) — hn(D, {ac}) >

h,B & h,C h,D—2

A
“MV sequence for reduced homology”.
Note h,{.} =0 Vn = if X is contractible, then 7, X = 0 ¥n.

Corollary 3.10 iLnX =~ ﬁnHZX
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Proof Look at
To € e 00.¢
T o, |
CX —%¥X
MV-sequence yields

= X = b, CX ®h,CX — b YX Db, X —
—— = ~~

0 0
so 0 must be an isomorphism.
Example h,S* 2 h, SF1 >~ . ~h, SO
Sk = 35k1
But S° = {.} n{.}:
hnS® = h,{} @ ho{}
A A

and )
IS 2 ker(A® A S A; (a,b) = a+b) = A

via
ASker(Aa AL A)
r— (z,—x)
We conclude that 7;S° 2 h;{.} for all 7, and therefore
B S* 22 By S0 22 By}

So, if h, satisfies the dimension axiom:

. Skg{ho{.}, if n =k

0 else.

If H, is an “ordinary homology theory with coefficients Z”, i.e.

Z, ifn=0
H{.} = ’
i) {0 else.
then
787 idn=k=0
H,S* =7 ifn=0orn=k k>0
0 else
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Proof (1) k=0:

7287, n=0

0 else.

H,S"~ H{}® H,{.} = {

(2) k> 0: )
H,S* =~ H,S* ® H,{.}

Hn—k{'} = E’n—kso

Z, n=20
= H,S"={7, n=k
0 else.

Note In the reduced case this boils down to

"m0 else.

because

H,S* =~ H, 5"~ H,_,({.})
Corollary 3.11 H,S' = 7Z

Definition 3.12 Let 0 be a generator of H S*. f:S' — S* has deg(f) € Z
the degree of f defined by:

(H1f)(0) = deg(f) -0 € H,S'
Lemma 3.13 Let f;, : S' — S! be the k-power map:
2 2F zeSt={ceC||c=1}
then deg(fx) = k.
Proof k=2: fy(z) = 2? corresponds to:
StS sty st st

where V is a folding map (id, id).
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¢ induces:
C’,(S1 vV Sl,X) *>C,(51,X)

n

QX x QX 95¢
thus:
Hi(f2) : HiS' oy Hy(S'v Sh Y g5
——
~H,S1pHS?!
yields:

7 7oL 3Z
L (s,t) — s+t

where s is obtained from:

H,S' — Hi(S'V SY)

Uk

H,S?

where id maps 6 to s - 6, therefore s = 1, and similarly ¢t = 1.

= H1(f2)(0) = 20 : deg f = 2.
O

Remark f, : S! — S! yields ¥"°!f, : S® — S™ using the suspension
isomorphism:

H,(2""'f): H,S™ — H,S"
which is a multiplication by k (i.e. ¥"71f; : S® — S™ has degree k)
Lemma 3.14 X,Y € Top, then Bn(X VYY) hoX @ h,Y if “base-point is

good” (i.e. {xo} C X and {yo} CY NDR), and H,(X VY)= H,X ® H,Y
if n # 0.

Proof
{——X

]

Y —XVY
a push-out. MV:

I} = X © hY — ho(XVY) 2 b1}
0 0
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Remark CW-complexes are locally contractible, therefore every xy € X €
CW is a “good” base-point.

Definition 3.15 k>0, k € Z: f;. : S* — S!, then the Moore-space of type
(Z/KZ,1) is defined as:

M(Z/kZ,1) = S' Uy, D?

Lemma 3.16
=1
else

H;M(Z/kZ,1) = {OZ/kZ

or more generally: H,X = H,X if n # 0 and:

N

n =
H,M(Z/kZ,1) 2 Z/kZ n =1

else

e}

Proof We have a push-out diagram:

s L 51
{} ~D*— M(Z/kZ,1) =M
and the MV-sequence yields:
——
0
where H;S! — H;S' has degree k. so:
O@ﬁQSl —>[~{2Mﬁ>f{151 >—>O@[~{151 —»F[lMgO
—— —— ——
=0 =z mult. by k =z
= M =Z/kZ, HM =0, i # 1. O
Corollary 3.17
. Z/k7 =2
H(EM(Z/KL.1)) - { .

0 else

ZJkZ i=n

H(2""Y(M(Z/kZ,1) = {o e

and M(Z/2Z,1) = S Uy, D* = RP?.
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3.1 Application of MV-sequence
Theorem 3.18 Let h, be a homology theory, then:

ho(S% % X) 2 hy(X) ® hy_g(X)
Proof Consider the following push-out:

Sl x X—— (D! x X))~ X

] g

Dl x X NS4 x X

Now form the MV-sequence “mod X” (i.e. X C S¢ x X, by choosing a
base-point for S%), remember that 59 & Sd+1

= oy (D X X, X) @ By (DT 5 X, X) — byt (S x X, X) 2
2 hn (ST x X, X) — by (DY x X, X) @ hyy(DH1 x X, X) — ...

= hop1 (S X X, X) S by (S x X, X), and
B (S % X, X) = hy 1 (ST % X, X) S 05 haa(S° x X, X)
with $ x X = X 1 X
D (X — iy (S° x X) — hy_q(S° x X, X)

= hn_d(SO x X, X) = hn_d(X)
X C 89 x X yields:

D (X)) = ha(S? % X)) = ha(S % X, X) D by (X)) — .

= N, (5% X X) 2 h,(X) @ ha(S? x X, X) O
e e
ghnfd(X)

Corollary 3.19 H;(S' x ... x S')
~———

k copies

{Z@ 0<i<k

0 else

Z =0

Remark Recall: H;(x) =
0 else
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ol 1 1y o 77 ((Qlyk—1 , k-1 ’%’Z(i)
Proof H;(S' xS x...xS8) =2 H;,((S")" )& H;—1((S") 2

J (.

k — 1 copies Z(k;_l) Z(If:ll)
7 1=10
7D 7 =1
Example H;(S' x S') = S
7 =
0 else

4 Singular and cellular homology

4.1 Singular homology

We want to construct an ordinary homology theory on Top?.

Definition 4.1 Standard n-simplex:
An = {(l‘l, c ,$n+1) € RnJrl ‘ Zx] = 1,33'1' > OVZ}

A, hasn+1 “faces” i} : A1 — A, given by:

(0,21, ...,2,) =1
ip(x,. o ) = (21,0, 0,28, .. 1) 1<k<n+41
(1, ..., 2p,0) k=n+1
(sol1<k<n+1)
Example
4
/Al
A
x1 0 1/
< L
YA Ny CR

Definition 4.2 X € @:

cive(X) = Pz,

o:Ap—X
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with Zs = 7 (free abelian group, with basis {o : A, — X})
o: A, — X is called a singular n-simplex of X, and:

By : Csins (X)) — % (X))
(0: A, = X) = X, (-1)MA, 5 A, 5 X)

for which we write: 0,0 =Y, (=1)¥1g o}
One checks that
CR(X) 2 G (X) 5 O ()
is 0, i.e. 0p,_10, = 0:
B (X)) :=im(d,) C kerd,_; =: Z3"(X)

((n — 1)-cycles) and B3™(X) ((n — 1)-boundaries)

H"(X) = Z,"8(X) /B8 (X)
“n-th singular homology group of X”

Hy™8(X) = C5"(X) /By "™ (X)
We use the following convention: C5"8(X) =0 if i < 0, and

Oims(X) B ogmE(x) B CTE(X) = 0

{C5m8(X), D, }nez is the singular chain complex of X. We usually just write
Csm8(X') and we often just write 0 for 9, (= 90 = 0).
H:"¢ is a functor: Given f: X — Y, we define

CRMe(f) : CRP8(X) — CRre(Y)
by looking at a generator o : A, — X of C5"8(X):

(c: 0, —X) — (AngXLY)
so C58(f)(0) = f oo, and therefore C5"8(id) = id and

Cr(fog)o)=(fog)oa=folgoa)=(Cr™(f) o Cr™(g)) (0)
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Compatibility with “0”: Given f: X — Y, we consider

Csing () L csing ()

Csing

CRU(X) === CRH(Y)
This diagram is commutative: Take a generator o € C*"8(X) and compute

d((C"8f)(0)) =0(foo) =D (—1)!*(foo)oiy

k

(C37% £)(90) = C%(f) (Z<—1>’““0“'Z> =D (=) fo (o)

k k
so the two turn out to be the same, therefore

CRM(f) (Z3" (X)) € ZM8(Y)

CRM(f) B (X) € BYME(Y)

Therefore, f induces

Bve(X)—— Z3"#(X) —= H"8(X)

L

Bre(Y) = Z3"8(Y) —= H"4(Y)
Definition for H5" on Top®: Take (X, A) € Top?, A C X, then
CRe(A) € CR™(X)
(c: 0, —A)—(0:0,—-ACX)

CRre(X, A) = CIM8(X) /CR™E(A)

and we can define 0, as the induced map 0 from

ComE(X) =——CmE(A)

Pk

OR(X) =——CR(4)
which means C518(X, A) 2% €5 (X, A). Now we can finally write down the
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Definition 4.3 Let (X, A) € Top?®; then
H (X, A) i=ker (C%(X, 4) % C4(X, 4))
Jim (CI(X, 4) 5 € x, 4)
This defines functors H,, : @2 — Ab.

We need a natural transformation H5"¢(X, A) % H*™(A). This “9” is
defined as follows: Take [2] € HE"8(X, A), z € C5m8(X | A). Look at a cycle
e s

Czing(A)C_> C’ZingX e Czing(X’ A) 5 z=uqwaz

l | | |
Cins(A)— M X —=CS™8(X,4) > 0
97 € CM A C C™(X) is a cycle in C2"(A), namely 9(9z) = (99)z = 0.
So define:
H.(X,A) 2 H, 1 (A)
2] — [02]

If we choose another counter image 2z’ € C*"8(X) of z: 2 — Z € C5"8(A),
so for some a € C5™8(A) we have 9z’ — 9z = da € C."$(A) and therefore

[07'] = [02] € HZ"8(A)

Theorem 4.4 (H58 0)is a homology theory, satifying the dimension azx-
om.

Proof (Sketch)

1. Homotopy Axiom:
F5f’¥93fiX—>Y,g:X—>Y:?>an:Hng;Hzingx_)HrsLingy_
F:XxI—=Y,F(z,0)= f(x), F(z,1) = g(z)

Xz:;?X x>y Fig=fFii=g

= it suffices to check that H*"8j, = H"&;; because then:

Hims f = Hi™8(F oig) = HS™F o Hi™i
= H3"SF o H3"siy = H5™e(F oiy) = HE(g)
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. iO
So we have to consider: X —/—=Z X x [ :
11

Crreig, Cyneiy - Oy X ——Z Cse(X x 1)
Csinggy CS8j; are chain homotopic (see chapter 6)= H,ig = H,i;
. Long exact sequence axiom:
(X, A) € Top*:

0 — CEA s CSEX s C8(X, A) —

short exact sequence of chain complexes. This gives rise to a long exact
“homology sequence” (see chapter 6)

oo HEex s peine(x A D e e

. Additivity: C5"8([ [, c; Xo) = P,y C8(Xa). A, EN [,er Xa, com-
patible with 0 = f(A,) C X, for some « (because A, is connected)

= induces: ' .
(] %) = @ Hi(x.)
acl acl
. Excision: Given X D B> Awith AC BC X
= H"(X \ A, B\ A) = H"(X,B)

Let &4 = {Uy}aer be a covering of X with U, C X, a € [ with
User U, = X. Define C¥(X) as subgroup of C5"8X generated by
the singular n-simplices f : A,, — X such that f(A,) C U, for some
a (“U-small simplices”). = CH(X) C C5"8(X) is a subcomplex and it
induces an isomorphism in homology:

ker(Cy A C’ff_l)/im(C’ffJrl — ) = H'X = Hee X

(See Liick p. 29). Idea: for A,, “barycentric subdivision”: new vertices
are barycentres of faces (figure 7). Now take for { the cover: X =
X\AUB

(X\A)=(X\A4) c(X\A)=X=(X\A)UB, AcBcCB
the function:

CHms(X \ A)/C34(B\ A) — O3 X /G
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Figure 7: Barycentric subdivision

should induce an isomorphism in homology. Look at:
CH(X) = OF"(X \ A) + C3(B) € C5ex

= CIM(X\A)/CRE(B\A) = |
= (C3mE(X \ A) + C5™B) / CU5(B )\ A) + C3"%(B)

-~ ~"~

R (X) CRME(B)

¢ : CH(X)/Csme(B) — Csing(X) /C5Me( B) use the following lemma:

Lemma 4.5 Given a diagram of chain complezes:

0 A, B, C, 0

L

0 D, E, F. 0

if two of Hya, Ho 3, Hyy are an isomorphism, then the third one is too.

Proof

..—>H,A, — H,B, — H,C, -~ H, 1A, —> H, 1B, — - --

E

-+—H,D,—H,F,— H,F,—H, \D,—H, B, —---

00— CsnsR CUX CUX/CsEB — ()

o e

00— CineB —— (Csime X —— (Csine X /Csine B —— ()
= H,¢ is an isomorphism.

= H®"8 is a homology theory.

47



5. H3J™¢ satisfies the dimension axiom:

Claim:
. 0 n#0
S8 (f 4 ~
5 ({s}) {Z "
Indeed:

sin, 0 sin, sin
o Cre({x}) = CA({x}) — .. = G ({#}) — 0
———
generated by oy, 1 Ay ER {*}

so CSm&({x}) looks as follows:

..—>Z:<0n)%Z:(an,1>6:1...—>Z—>O

with
0,0, = Z (=1)¥* (1) = 0 n+ 1 even
1<k<n-+1 Op—1 n+1odd
Cme({<}):
0 0 0
7 7 7 o 7 o 0

(o1) (00)

and H3"({x}) =0 for n > 0. H"8({*}) = ker(8y) / im(9;) = Z

z {0}

Some Applications:

787 n=0
0 else

1. Hene(50) = {

Z n=0orn=%

2. if k> 0: Hing(Sk) =
0 else

Corollary 4.6 (Brouwer fixed point theorem) Fvery map f : D" —
D™ has a fized point (i.e. an x € D™ with f(x) = x).
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Figure 8: Definition of ¢

Proof Suppose f has no fixed point. Consider the ray from f(x) to x (z €
D"), and its intersection ¢(x) with 9D™ = S™~! (figure 8).

¢: Dn_>Sn—1

J %j—lzid

Sn—l

Apply H?" (assuming n > 0)

sin, sin, _
H™ D" —— H;"85n1

|

sing on—1
Hi" S

7Z®7 ifn>1: —7

[ < 1

YASY/

in either case, this is a contradiction.

Corollary 4.7 (Invariance of dimension) R" = R™ = n=m

Proof Let:

o

¢:R" S R™

Ty — ¢(€E0)

= induces R\ {zo} — R™\ {¢(z0)}. But: R"\ {zo} ~ 5" ! and R™ \
{d(z0)} = S™ imply: S"~! ~ S™~! and therefore H5"eSn—1 = fsinggm=1 —
n=m. O
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Theorem 4.8 (Borsuk-Ulam Theorem) There is no injective map S* —
R? .

Note $2\ {2} = R? — R?\ {0} via R? 2 D? C R?

Proof Suppose ¢ : S? — R? injective = ¢(z) # ¢(—z) Vo € S?. Let

_ ) —o(-2) !
V(@) = fo@=s=o € °

52 g1 (D)
xw—xi iy’“—y
RP? -~ -RP! 2 g1

¥ induced by 9 because 1(Ayr) = Ayp(z) with Ay : S? — S%. 2 — —z,
A8t — Sty — —y.
Claim: From the diagram (D) we have

Hi™ () : H"*RP? 2% H;™R P!
which is a contradiction because
H}"*RP* = Z/2Z. (RP? = S'U, €?)
H™RP! =7 (RP' = §h)

Proof of the claim: We use the following fact on covering spaces: Let X = Y
be a covering. For every loop w with base-point x, there is a unique lift @
for a given initial point & over zg (i.e. (%) = x¢). (See Topologie SS 05.)
If w ~ const. (i.e. [w] =0 € m(X,x0)) then @ has to be a loop too (this
follows from the homotopy lifting property for 7 : X — Y'). So we can look
at (D) as

RP! S

If we take a path o : I — S? from y to —y, then 7o is a loop in RP? =
[ro] € m (RP?) is not trivial. The loop [r¢o] € mRP! is # 0 = degree of
the corresponding map S* = S =RPis # 0

H™ ()

727 = H;"8(RP?) H"(RPY) > 7
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= H"™() #0. 0
Remark General Borsuk-Ulam: S™ < R"

Proof As before

Sn—m gnet
Pk
RP" —>Rpr-!
However for n > 2
HY"RP" = HY"RP"! = 7,/27.
so we need to show that any map
Oy RP™ — Hy™RP™!

is 0 (see later). O

Remark Application: For every point x on the earth, let ¢(z) be the temper-
ature and p(z) the pressure. Then 3z, # x5 on the earth with t(x;) = t(x2)
and p(x1) = p(z3), because otherwise we could embed

SZ N RQ
z = (t(z), p(x))

which of course is a contradiction.

4.2 Cellular homology

Let X € CW. We want to define an easily computable H¢!X such that
HElX o [sine X

Theorem 4.9 (MV for CW-complexes: a variation)

A Y

If (X, A) € CW?, Y € CW, and f cellular = Y Uy X € CW.
Then . N .
H™8(X, A) = H™(Y Uy X,Y) Vi
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Proof Look at the MV-sequence “mod A”.

A==y

where Z(f) is the mapping cylinder = we can assume f is injective, mapping
homeomorphically onto its image: “A C Y. So:

LHPE(ALA) — B A)RHE(Y, A) YR (Y UpX A) S HEE (AL A)
T ﬁ,—/
and ACY C (Y Uy X) yields

2 MR (Y, A) S HIM(Y Uy X, A) — HI™(Y U X, Y) 2

with ¢ injective from (x), therefore H;™8(Y U; X,Y) 2 coker(¢) 0
Definition 4.10 (Cellular homology) Let X € CW, X, C X; C ... C
X. By definition we have a push-out

HSn_l ! > n—1

L

[[D"——X,
and by the above theorem
HE™S(X,, X,m0) = HPS (L[ DV, 1157) = @, H(D",57)
but if we look at the long exact sequence of D™ O S™ 1,

. 7 =
Hismg(Dn“Smfl) o { , 1 n

0, else.

so we define
Co(X) 1= H (X, X, )2 (D) Z
# n-cells
We need to define 8, : C<N(X) — C (X): X, o C X,,.1 C X,, yields the
triple sequence

HySLing(X'm Xn—?) - Hysbing(Xnu Xn—l) —8> HZH:% (Xn_l? Xn_2) o

I I
Cel X Crly X
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. Bn 8'n,fl .
Claim: CENX = Cell X ™57 Ol X s zero. Indeed

. On sin On—1 rrsin
Hrszlng(Xn; Xn—l) - Hn—% (anh Xn*2> - Hn—% (X”*27 X"*?’)

NSNS

sing sing
Hn—lXN—l Hn—2XN—2

= 0,.10, = 0 = define
HMX = ker(0,)/im(0p41)
Theorem 4.11 X € CW = HUX > [5neX Vn,

Proof First, we claim: H™8 X, = H™ X if i < n; and Hi"e X, % Hsne X
Indeed, (X411, X5):

sin, 0 sin, sin, sin, 9
cee 2 g{i+fg<Xn+laXn) — H7™(Xn) — H™(Xog) — Hy 8 (Xnga, Xa) = -

', J

TV TV
0ifi#n Oifi£n+1

so if 1 < m:
sing & sing = sing
HEREx, 2 e, S e,

= for X finite dimensional: H{™(X,) = Hi™X if i < n.

If i =n: H™X, — HMX, = ... so Hsme X, — Hsme X if X is finite
dimensional.

Now consider the diagram

HimeX,, S Hine X

=",

. 1) E) .
sing cell n+l 11 n cell smg
HE8 (X0, X)) = Ol X 05 geell -  eell X — F08(X, ) X, )

P

HZiE%anl
Kernel of ¢: Look at the long exact sequence of (X1, X,):
) o . P . )
Coti X = Hyt5 (X1, X)) = Hy™ X, — HY"8 X, 00 = HY™ X
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= ker(¢) = im(«).

Define
v HS™(X) — HEMX = ker(0,)/im(0py1)
z— [B(z)]
Then v bijective follows from the diagram above. a

X € CW: Hi"e(X) = HeN(X)
relative groups:

1. X € CW: .
HZQH(X) — ker(H;eH(X) — HZHI({*}))

2. (X,A) € CW2 A+ o
HEN(X,A) = AE(X/A) (HEY(X, ) = HE(X))

= HeU (X, A) = 5" X | A) because:

A( NDR X
H¥"e (X A) = Hs"e(X Uy CA,CA)
[ l > H35(X /A, {*}) =2 H3S(X/A)
CA——=XUy,CA

= (X, A) € CW? yields a long exact sequence:
o HEMA — HMX — HEN(X,A) S HEMA -

Final Remarks:

1. X € Top = Hy™(X) =2 @D x) Z, where moX = [{x}, X]

7o (
Note f,g: {*} — X are homotopic if and only if f(x) and g(x) are in
the same path component of X: my X bl {path components of X}

Proof _ .
Lo Csmex Oy osins y 2

C3™8 has basis 0 : {0} = Ag — X
= Hy™(X) = Cg"(X)/ im(d1)
= Ci"(X) 2 c= Y, .x nea finite sum n, € Z

- () B GPTE(X) 3
(0: A1 — X)—0(0,1) —0(1,0)
= C3"(X)/im(d) = D, x) Z =
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Figure 9: proof

2. X € Top,, X path connected (= H"(X) = Z) =
Hy™(X) = m(X)/[m X, m X]
with [m X, m X] the commutator subgroup of m(X)
Proof (Sketch)

Consider the “Hurewicz Homomorphism”:
Hu:m(X) — H™(X)
(5" LX) = H5(f)(c1)  where (c) = H}"5S!
claim: Hu induces m X /[m X, m X] = Hi™8(X)
e onto:
Y™ (X) o Z3"(X) = ker(CY™8(X) 2 G (X)

d1o =0, with (0 : A, — X) € C™8(X).
010 =0 = o aloop. “o ~ loop at base point”. See figure 9.
(Al +[\7'] € CF™8(X) is a boundary.

e ker(Hu) = [m X, m X]: without proof

More in general:

Theorem 4.12 (Hurewicz) Let X € Top path connected. Then:
1. mX/[mX, mX] = H™(X)
2. if ;X =0 for 1 <i<n then: Hu: m, X — H"8(X)
Example 1. mS' 5 H{"(s51)
2. n> 1 m,S" = HSmeSn 2 7, [f: 5" — S, deg(f)- ¢, HIS(S™) =
{n)-
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5 Lefschetz Numbers

5.1 Facts from Linear Algebra

Let V, W be finite dimensional Q-vector spaces, and f : V — W a linear
map.

Definition 5.1 If V = W, then f : V — V, thus the trace tr(f) € Q is
well-defined: Choose a basis {e1,...,e,} of V', then f can be expressed by an
(n x n)-matriz ( fi;) with coefficients f;; € Q. Put

tr(f) := Z Jii

Properties of tr:
(1) “Trace property”: If
viwLvLw
then
tr(go f) = tr(fog)
(Use that for A an (nx k)-matrix, B a (kxn)-matrix, tr(AB) = tr(BA).)
(2) tr(idy) = dimg(V)
(3) tr: Endg(V) — Q is linear:
tr(f +g) = tr(f) + tr(g)
t(A) = Atr(f) (A€ Q)
) d

(4) Consider the following (commutative) diagram of short exact sequences
of Q-vector spaces:

Then
tr(g) = tr(f) + tr(h)

Since we can choose any basis of W, choose one by “extending” a basis
of V' = matrix of g has the form

Af S
0 Ay
where Ay and A, are the matrices of f and h, respectively.
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(5) Let A be a finitely generated abelian group, and f: A — A a homomor-
phism, then

tr(f®Q) e Z
(feQ: A9Q—A®Q)

Indeed:

AS>ARQ

\
A/TA

where TA C A is the torsion subgroup = A/T A is torsion-free = has
basis.

Note that if a is a torsion element, i.e. n-a = 0, then
a®l=n-a® % =0
so tensoring with Q also “divides out torsion”.
AITAZ7Z", A Q=Q™
tr(f®Q) =tr(f: A/TA — A/TA)

f is expressed by a matrix with coefficients in Z with respect to a basis
of A/TA.

Definition 5.2 Let X € Top with HP™&(X) finitely generated for all i, and
0 fori>0. Let f: X — X. Then

L(f)=> (-1)'tr(Hi(f)) ®Q) €Z

%

15 called the Lefschetz number of f.
(H:(f) @ Q: H"(X) 2 Q — H"™(X) 2 Q)

Example X ~ {.} contractible = L(f) =1Vf: X — X since

sin, ~ Za 1=0
H g(X):{o i #0

X —{.}

| s
X —{.}

is homotopy commutative.
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Note X afinite CW-complex = HUX are finitely generated abelian groups,
and HUX =0 for i > dim X = L(f) € Z is defined for any f: X — X.

Definition 5.3 f=id: X — X. Then
X(X) = L(f)

is called the Euler characteristic of X.

Note . .
X(X) = Y2 (=1) dimg (H™(X) ® Q)

where dimg(H? ™8 (X) ® Q) =: 8;(X) is called the i-th Betti number.
Theorem 5.4 Let X be a finite CW-complex. Then

VX) = Y-

where C; is the number of i-cells of X.

Proof H'X = H'™¢ X Vi. We need to show that
> (1) dimg(HM(X) @ Q) = ) (-1)'C;

Let: c Cedll ‘
i = ice = @# i-cells 7 =17

Z; = ker(9; : CsNX — Ol X)
Bi = im(@iﬂ . C,f_?_I{X — CfeHX)

with Hl = H,feuX = ZI/B,L
= Have short exact sequences:

Bi—Z;»H =B38Q—=2c0Q0—»HQ

and
Z;— Cy — By C Ciy

resp.
ZioQ—=Ci®Q—» B 1®Q
—_—————

Cq

=
>_i(—1)'Cy = 32(—1)"(dimg Z; ® Q + dimg B;—1 ® Q)
> (=1 (dimg B; ® Q + dimg H; ® Q + dimg B ® Q)
>i(—1) dimg H; ® Q
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Example S™ = D°U D", therefore

2. n even
S™) = ’
X(5) {O, n odd

Application “Euler’s Formula”

Take a polyhedral decomposition of S?, e.g. a cube, a tetrahedron, ...

write
v = (# vertices = 0-cells)
e = (# edges = 1-cells)
f = (# faces = 2-cells)
Then

v—e+ f=2=x(5)
Definition 5.5 X is an ENR (Euclidean neighbourhood retract) if:

J¢: X S ¢(X) CR”

, and

such that ¢(X) is a retract of some neighbourhood in R™. e.g. finite CW-

complezes are compact ENR’s (see Hatcher)

Note Definition of (finite) simplicial complex should be clear (if not, it’s

time to go to the library!)

Lemma 5.6 A compact ENR is a retract of a finite simplicial complez.

Proof X C R™, X compact, retract of neighbourhood X ¢ N c R*, N -

X; we may assume that NV is open in R".

Triangulate R™, such that all simplices are “very small” and we can assume

that if a simplex o of R” has 0 N X # &, then ¢ C N.

= choose finite simplicial complex Y = {0 C R" | e N X # &}. Then

XcYychN, v™Zx

O

Theorem 5.7 (Simplicial Approximation Theorem) o Simplicial map

between simplicial complexes

J:X Y

J

o (simplex)»m f(o) (simplex)
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o X simplicial complex, B(X): “barycentric subdivision”, B*X: k-fold
barycentric subdivision (B°X = X ).

Theorem 5.8 Let X, Y be finite simplicial complezes and f : X — Y any
(continuous) map. Then there is a k > 0 such that: f : B*X — Y s
homotopic to a simplicial map g : BEX — Y. (see Hatcher)

Theorem 5.9 Let X be a finite ssimplicial complex, f : X — X and € > 0.
Then there is a k > 0 and a simplicial map g : B¥X — B*X with g ~ f and
lg(x) — f(z)|| < eVa. (see Hatcher)

Theorem 5.10 (Lefschetz Fixed Point Theorem) Let f : X — X, X
a compact ENR. If L(f) # 0 then f has a fized point.

Proof Choose X < Y,Y 5 X, Y finite simplicial complex.
Put f =ido for:Y —Y. Claim: L(f) = L(f).
H,f : H™Y — H™&Y has:

tr(HMe f) = tr(His?ng(i for))
tr(H; "5 (i) o (H;"8(f) o H;"5(r))
—tT(Hsmg(f)( ;8 (r) o HIE(i))) = te(H;™H(f))

v~

id

= L(f) = L(f). Moreover:

Fix(f)={r € X | f(z) =a} =Fix(f) = {y € Y | fy = ¢}

Indeed:

1. z e Fix(f) = f(z) =if(uz ) = f(z)=2x

2.yeFix(f)= fly)=y=yeX=ry=y=fly) =y X.

—~~

if(ry)
= we may assume that X is a finite simplicial complex. Assume that L(f) #
0 and Fix(f) = @. We will show that this yields a contradiction:
f: X — X, X with metric ||-|| = Im > 0 such that || f(z) —z|| > m Va
because of compactness.
Choose k > 0sothat f ~ g : B*X — B*X | gsimplicial and ||g(z) — f(2)|| <
5 = Fixg=0

60



= we can choose k even larger, so that g(c) No = @ for every o simplex of
B*X; g is cellular and induces:

Cicellg : Cicell(BkX) N CicellBkX

with matrix:

= tr(Cfell(g)) =0 .
= 2(=1)"tx(C(g)) = 0 = 3o(=1)" tr(H!(g)) = L(g).
So L(f) #0 = f has a FP. O

An application of this theorem is this generalization of Brouwer’s Fixed Point
Theorem:

Theorem 5.11 Let f: X — X, X compact, contractible ENR. Then f has
a fized point.

Proof

. Z ] s
e
0 else
since X =~ {.}.

Hy™ f + Hg"(X) — Hg"™(X)

%g 4%
Hy™s({.}) —— H3"({.})
= L(f) =1#0: f has a fixed point. O

Theorem 5.12 Let f : X — X be a simplicial automorphism of a finite
simplicial complex. Then

L(f) = x(Fix(f))
where Fix(f) ={z € X | f(z) =2} C X.
Proof Replace X by its second baricentric subdivision B*(X) = Fix(f)

subcomplex of B*(X) = if 0 € B*(X) is a k-simplex then either f|o = id,,
or f(6) N6 = @. Then look at C¢!B2X =: C,:

Cn(f)

C C

Cffn(FiX(X)) @ B 5 C,(Fix(X))® B
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where ¢ has a matrix of the form
id |
0

thus
tr C,,(f) = (# n-simplices in Fix(B2X))

Then on the one hand
dim X

= Z "t Oy ( Z(—l)"(# n-simplices of Fix(B*X)) = x(Fix(X))
and on the other hand

(U Co(f) = Y (1) e (H ) = L(f)

Example Let ¢ : S — S™, n > 0, the reflection on the equator.

L(¢) = tr(H5"¢) +(—1)" tr Hy(¢) = x(Fix(¢)) = x(5" ™)

1

=1+ (-1)""-1
Hzell(as) . HZEHSH H;:lellsn — <Cn>
Z Z

deg ¢ defined by H(¢)(c,) = deg ¢ - c,
= deg(¢p) = —1Vn

6 Universal Coefhicient Theorem

6.1 Remarks concerning the tensor product

A, B abelian groups. Then
A@B:= @B Zwuy/R

(a,b)eAxB
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where Z, ) = 7Z with generator 1,3 and R the subgroup generated by the
elements of the forms

Largarpy — L) — Lrp), and
Lay+bry = Lapy = Lap)
There is a canonical map (not a homomorphism!)
AxB—A®B
(a,b) — L(gp) =:a®D

Universal property of A ® B:

can

Note that A x B — A® B, (a,b) — a ® b is biadditive:
can(a’ + a”,b) = can(d’, b) + can(a”, b)
can(a,b’ +b") = can(a,b’) + can(a,b”)

It follows that
AxB-1-¢

7
can T
L af

A®B

(f is defined by f(a ®b) := f(a,b), which is well defined as f(a’ + a”,b) =
f(a',b) + f(a”,b) etc.)

Example Z ® 7Z = 7Z. Check the universal property:

(m,n) ZxZ—f>(]

1 cﬂ

m-n 7,

The map (m,n) — m - n is biadditive because of the distributive law. Since
f(m,n) =m- f(1,n) = mnf(1,1), f is determined uniquely by f(1,1) and
we can define f as f(k) = k- f(1) = k- f(1,1).
Similiarly,

Z/mZ R ZL/nZ =7/ ged(m,n)Z

Functoriality: Let f: A—C,g: B — D.

Ax B2 oo p
7

l L él!}@g
A®B
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where (f ® g)(a ®b) == f(a) ® g(b).

AR —: Ab——Ab

B——A®B
gl lA®giidA®9

D——AQD

similiarly for — ® B. Note A® B 5 B A.
Generalization: M € Mod-A (right A-modules), N € A-Mod (left A-modules).
M ®x N an abelian group:

M@N\N=MN/mA@n—-—m®aAn|\ecl)

Case where A is commutative: M, N € A-Mod thinking of M as a right-
module by mA := Am, A € A, m € M. Then M ®, N (note (Am) @, n =
m &, (An)) has a A-module structure by:

Mz @ay) = (M) ®ry
Example A @, A=A

Let ¢ : A — T" be a ring homomorphism, in particular ¢(1,) = 1r.

A-Mod -2 I-Mod
M+—T @&y M (yp(A) @y m=~® Am)

I' a A right module via
Y A=7-9(A), AeEA, y€ET

Example M = A:
A—=T @\ A———=T

Y @A A—>=70(N)

as I' left module.

Tensor products commute with @: Let A, a family of abelian groups, a € I.

Then
(Pa.) @ B= 4.0 B)
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Proof i, : A, — @, Aa

=1, 9B:A,®B — (@A(X)@B
I

which defines

DA, © B) ™ (@AQ ® B

I
Define “inverse” by using the biadditive map

(P 4) x B2 Plaae B)
I
by ®|(Ay X B) : (aq,b) — a, ® b.
So ® induces .
& - (@Aa> ® B — P4, @ B)
which is inverse to “can”. O
Definition 6.1 M € A-Mod is called free, if

M =P A, Aoi=A

a€el

or equivalently, M has a basis {mq}tacr i.e. every m € M can be expressed
as a finite sum m =Y A\oMg N a unique way.

Note A = K a field = all K-modules are free (every K-vector space has a
basis).

AN =7Z: Z-Mod = Ab, free Z-module = free abelian groups.

Definition 6.2 P € A-Mod is projective < 3Q) € A-Mod with P ® Q a
free A-module.

Note A = K a field = all A-modules are projective.
A = Z: projective Z-modules = free abelian groups.

Example Z/27Z is a non-free, projective Z/6Z-module.

Definition 6.3 A chain complex (C.,d) consists of modules C; € A-Mod
connected by morphisms 0; € A-Mod (i > 0):

0; 0 0
L. i+1—>ci—l>ci,1—>...—>01—l>00—0>0

such that 9;_10; = 0(= 0* = 0) (& im 9; C ker 9;_1)
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Definition 6.4 Homology of (C,,,0,):
H,(C)) :==ker0,/im0,.; (n>0)

Definition 6.5 A morphism of chain complezes, f. : C, — D, is a family
of A-linear maps f; : C; — D; (i > 0), such that: 0;f; = fi—10;, i > 1.

Cipn 2>, —2%-0 4

fi+1l lfi lfil

D1 D; Diqg——---

d P}
Remark f, induces a map of homology groups, i.e. H,(f): H.C., — H.D,
Definition 6.6 f,, g.: C, — D, are called chain homotopic if I{h,, : C,, —
Dn+1 | n 2 0} such that f — 9= Oh + ho (fn —On = n+1hn + hn—lan)
Notation: f~g

Lemma 6.7 f,,9.:C. — D,, f ~g = H.(f) = H.(g9)

Proof [z] € H,C,, x € ker0,,, (H,f)([z]) = [f(x)], Hug([z]) = [gx] € H,D.

(Hnf — Hng)lz] = [f(z) — g(x)] = [On-1hn + hn10n7]
= [Ohz] + [hox] =0
—— =

=0 =0
= H,f=H,g,Vn >0 O

Definition 6.8 Let M € A-Mod. A projective resolution is a chain complex
P, such that:

.—>P— ... P >FP—>»M-—0 M = P,/im 0,
is exact, and each P;, i > 0 is a projective A-module.

Lemma 6.9 Fvery A-module M admits a projective resolution

(canonical free resolution)
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Proof

o
Fo(M) = @pers Mo > M

1, — «

Fy(M) —2= Fy(M) —2 0

o

ker ¢g
Fi (M) = Fy(ker ¢y), then the claim follows inductively O

We need an equivalent definition of projective modules:

Lemma 6.10 P € A-Mod proj. < Vg: N — M,YP L M 3f: P - N
such that go f = f i.e.
N
3f ’/i
g

P—M

Proof “=" This is obvious for free A-modules, thus choose () € A-Mod such
that P& @Q = F (= free module)

_N S\in:f

~ —~
A~
—~

—
—

p

“e” Let Fy(P) =@, _p A

aEP “

Fy(P)
3 7 iw
/id

P

Ve

P

O

Theorem 6.11 e Let P, — M be a projective chain complex (i.e. P; is
projective A-mod. and 8* =0)

o Let 0 — R, — N be a resolution (i.e. kerd =ima).
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Assume a map M % N. Then there is a map of chain complezes:

P*—»M

ol

R,— N
This map ¢, is unique up to homotopy.

Proof First we prove existence of ¢, : P, — R, (use definition of projective
module):
P P M

/1

[
!/ 1¢1 | $o l¢>
/Y oR Y oR

I R1 . Ro 2 N

g

ker 8{]?'

Check: im(¢y07) C ker 9t = 3¢;. The rest follows by induction.
Next we want to show that ¢, is unique up to homotopy. Let o, be another
“lifting” of ¢, i.e.

P**>>M

¢*lla* \L‘b
R* — N
want to show that 3{h, : P, — R,4+1,n > 0} such that ¢ — o = Oh + ho:

Oi+1

Py P; Py
hy 7
27 ¢illai P }/L
+ bt
Oit1 O
— Ry R; R4

(Proof by induction)
so by induction we have: 9;h;_1 + h;_20;_1 = ¢;—1 — 01
We want to “solve” the equation for h;:

Div1hi + hi10; = ¢ — 04
& Oiprhi = i — 0 — hiflaz

Vv
this maps to ker(9; : R; — R;—1) (%)
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Proof of (*): x € R;
0i(pi — 05 — hi—10;)(x) = 0i¢s(x) — Djos(x) — Oihi—q 0;(z)

Pi—1—0i—1—h;—20;_1

= 0;¢i(x) — 0i04(x) — $i—10;(x) + 0;-10;(x) + hi—2 0;—10; x

=0 since ¢., o, are chain maps
The lifting property of projective modules shows that:

0;
-Pi-i-l—)Pi—)'”

s
th /// 7
-7 O’i//h

Riyn ——R; —— -+~

i/
4
ker 0j;

= Oip1hi = ¢i — 0y — hi—10; & Oipahi + hio10; = ¢ — 0; o

Corollary 6.12 Let P9 M, i =1,2 be two projective resolutions of M.
Then P and P*(2) are chain homotopy equivalent, i.e.

35, : PY — p®
3y P® — pY

such that ji o jo ~1id, jp 0 j; ~1id.

Proof (Use theorem above)

but

2N

A M
lid lid
P*(l) — M

is also a lifting. By uniqueness we get js o j; ~ id. Analog for j; o jo ~id O
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For simplicity assume A is a commutative ring.

Definition 6.13 Let M, N € A-Mod (in general M € Mod-A, N € A-Mod).
Fori >0,

Tor (M, N) := Hy(F,(M) @, N)

Note 5 i
Lo F(M) @y N "2 F (M) @y N — ...
= F.(M) ®j N is a chain complex.

It is important to see that Toré\ does not depend on the choice of the projec-
tive resolution (F.(M)).

Lemma 6.14 Let P, — M be any projective resolution, then

Tor (M, N) = H;(P, @4 N)

M
lid
M

Ju

Proof

;
|

= “F,(M) ~ P,”. —®y N preserves the homotopy since —®, N is additive
(ie. (f+9) @A N=fRxN+gxxN).
f~g 3h:9g—f=0h+ho

GgON—-—fON=(9—f)®N = (0h+ho)® N
=0h@N+hO@N=(0QN)h®@N)+(h®N)(O®N)

F. (M)~ P, = F,(M)®@y N~ P, @y N =
Tor®(M,N) = H,(F,(M) ®s N) = H,(P, ® N)
O

Lemma 6.15 The functor — ®, N : Mod-A — Ab is right exact, i.e. if
USv 2w =o0is exact, then

URQNN =VRAN—-WRrN—=0

18 exact.
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Proof W @, N is generated by elements w®@n = o @m = (8 ®id)(0 @ n)
= [ ®id is surjective.

Obviously im a®id C ker(f®id). Want to prove that ker(f®id) = im(a®id).
For that we construct an inverse map to

V @x N/im(a ®id) = V @5 N/ ker(8®id) = W @5 N
Construct v as

v: W XxN—=V®yN/im(a®id)

(w,n) —o@n
v is well-defined: Let v, 50 = n.
1@n—0@n=0—-0)@n=au®n=(a®id)(u®n)
The following is easily checked:
e v is bilinear =

v W@y N —V &y N im(a®id)

e yor=id
e Tovy=id
= ker(f ®id) = im(a ® id) O

Corollary 6.16 There is a natural isomorphism
Tory (M, N) = M @, N

Proof — ®, N is right exact.

Fi=F>M—=0 __ v Foa N2 R, N 222\ ey N——=0
V ~ ’
0 0
thus
TOI'()(M,N) = F0®N/1m(81 ®N> = M@AN
because im(9; ® N) = ker(9y ® N) from right exactness. O

71



Example (Group Homology)
For some group G, define

7.G = {ang‘g € G}

Let M € ZG-Mod and Z € Mod-ZG with trivial G-action (i.e. m - g = m,
m € Z, g € G linearly extended).

Z@G is a ring:
(Z ngg> : (Z mkk> = Z ngmygk

As an abelian group:
726G =Pz
G

If P, — Z a projective resolution of Z over ZG:
H(G; M) := Tor?@(Z, M)

(H*<S7 M) = H:mg(K(S7 1)?M))
Hy(GiM) =Z ®zc M =M/ {m —gm| g€ G)

[FIXME: Konfusion zum Jahreswechsel]
Then H,((P.M) ®5 N) = Tor™(M,N) := Hy,(F.(M) ®s N), F.M — M
(FoM = @,, A etc. ) “canonical free resolution”

special case: “Homology groups of G with coefficients in M”
H;(G; M) := Tor?®(Z, M), where G is a group, M left ZG-module.

H;(G;—) : ZG-Mod — Ab 1EZL

— ®a N is right-exact. (0 = M' — M — M"” — 0 exact, then M' ®, N —
M@\ N — M" @5 N — 0 is exact)

= Tor) (M, N) = M@xN (e.g. Hy(G; M) X Z@zaM = Mg := M/{m—gm),
with m € M,g € G)

Case A = Z: A-Mod = Ab = Mod-A

Lemma 6.17 A, B € Ab = Tor’?(A,B) =0, i > 1.
(We write Tor(A, B) for Tor?(A, B), and Tor5(A, B) = A®yz B)

Proof 1. A free abelian group, A MO Ais a proj. resolution
= H;(P,(A)®z B)=0,1>0
= Tor”(A, B) =0 for i > 0
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2. A arbitrary abelian group:

Pi(A) := K — FyA S A proj. res of A

P;(A) =0,i > 1, K := kere free abelian group (subgroup of free abelian
group).

g

~TorZ(A,B)

Remark Also true for modules over a PID.

Exercise Tor(A, B) is a torsion group (A4, B € Ab)

6.2

Computation of Tor-groups

We would like to show:

Torﬁ(dir}im M, dirlim Nj) == dirlim Tor (M, Nj)
X

Direct limit (of groups, modules, sets, etc.):

basic example: M = {J,c; Mo, Mo, M € A-Mod s.t. I partially ordered
“index” set: PO-set, with:

a<fB&e M, CMgCM

“directed” i.e. if o, 3 € I then 3y € I with o <, <~ (so M, C M,
Mg C M satisfy M, C M., Mg C M,)

Example: M € A-Mod with {M,} the family of finitely generated
submodules of M, then M = dirlim M,

Definition 6.18 [ PO-set, directed = defines a category 1, with ob-
jects the elements a € I, and morphisms:

%} ifaLp

one morphism if a < 3

mor(a, ) = {

(a« < B and f < o then a = 3)
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e A functor F': I — C defines a “directed family” {F(a)}qer in C. (e.g.
C = Sets, Gr, A-Mod, Ab).

so if v < 3: F(Oé)fa—éF(ﬁ)

F(U)%F
F(T)/ (w)

foro,trel, o <w,7<w

F:1-C
colim F' € Cis an object of C, together with morphisms ¢,, : F/(a) — colim F,
a € I, with the universal property expressed by the diagram

so colim F' (together with ¢,’s) is unique up to a canonical isomorphism, if
1t exists.

Case of C = A-Mod (or Sets, or Gr):

F :1— A-Mod a directed family of A-moduls. Put

dir}im Fla) =[] F(a)/~
(disjoint union!) with x, ~ yg for z, € F(a), ys € F(f5) if 3y such that
a <y, B <yand foy(2a) = fo(ys)-

To € Flo)

F(7) 3 fay(Ta) = fap(yp)

y€FB)—

= dirlim F'(«) has a natural A-modul structure. We have canonical maps
F(a) %2 dirlim F(a) = {dirlim; F(«), ¢o} is “colim F”.

Note The universal property of colim then means:

Homy (dirlim F(), N) = invlim Homy (F(a), N)
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Lemma 6.19 dirlim is an ezact functor on A-Mod (or Gr), meaning the
following: Let
0—A,—B,—C,—0

be a family of short exact sequences in A-Mod, o € I (directed PO-set).
Assume that if a < (3, we have

O_>Aa_>Ba_>Ca_>0

sl sl o

O%AB%B,B%C,B%O

commutative.
Then
0— dirllim A, — dirllim B, — dirjlim Co,—0

18 exact.
Use this to check

Torg\(dir}im M, dirlim Nj) == dirlim Tor? (M, Nj)
X

6.3 Long exact Tor-sequences

Theorem 6.20 Let0 - A —- B —-C —-0and0 - U -V - W — 0
be short exact sequences in Mod-A, resp. A-Mod, and take X € Mod-A,
Y € A-Mod. Then there are natural exact sequences

- — TorMA,Y) — Tor™(B,Y) — Tor(C,Y) 3 Tor} [(A4,Y) — -

o> ARLNY - BRpaY - C®,Y —0

and
- — TorM(X,U) — TorM(X, V) — Tor™X, W) 2 Tor} | (X,U) — -
o XNU =2 X)WV o> X W -0

Note Tor(X,U) = H;(X ®x P,U), where P,U is a projective resolution of
U.

Proof (1) Given 0 — C, — D, — E, — 0 a short exact sequence of chain
complexes. Then one gets a long ezact sequence

- = Hy(C.) = Hy(D.) = Hi(E.) 2 H;1(C.) — -
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where 0 is defined as follows:

0 C; D; E; 0
€ €
Y

o]
0 P.A P.B P.C 0
Take P,B := P,A® P,C (see next time).

(next time, with different notation...)

We want to “replace” 0 — U — V — W — 0 by a short exact sequence

of projective resolutions:
0—PU—PV —-PW—=0
this is how:

0 U V w 0

T

0—> PU—>PV PW 0

choose P.U and P,W, put P,V := P,U & P,W (which is projective).

induction:

0 Uc¢ 1% l W 0
T S
cU EEV Ew

0 PU (2,y) € PV ——>y € PyW — 0

d¢ s.t. mp = ey, since PyW is proj.
ev(z,y) =eu(z) +o(y) €V
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continue:

0 U 14 W 0
T
0 PU RV W ——=0
0 — ker ey kerA ey —= ker e w—=0 (serpeer)l(tagmma)
PUC P1§V nw
= get:

0—PU—PV —PW—0
short exact sequence of resolutions; from X ®, —
0= X\ PU—-XR) PV —>X) PW —0
is exact (P,U — BV has splitting P,V — P,U)

Take long exact sequence: “Tor-sequence”

Example Tor € Ab.
Take Z < Q — Q/Z here Tor” = 0, i > 2; Tor? = Tor, Tor) = “®;”
VA € Ab:

0 — Tor(Z, A) — Tor(Q, A) — Tor(Q/Z, A)

Claim: Q = dirlimyen Zg, Zo = Z where {Zy}aen is the following directed
system:
N PO set: divisibility: a < < «|f = directed PO set

Note A C Q finitely generated subgroup, is either = Z or 0.
Proof

i

1
€
Z

Y.

@~m O mel=



= check now that Q has universal property of dirlimy Z,,. O

= Tor(Q,A) = dirl\llim Tor(Ze, A) =0
(= Tor(Q/Z,A) Zker(A - A®zQ, a— a®1))
(= Tor(Q/Z,A) =TAC A)

Note F € A-Mod free = Tor}(—, F) =0, >0
Tor?(Q,—) =0, i > 0 but Q € Ab not free.

Definition 6.21 M € A-Mod is called flat, if

— ®@a M : Mod-A — Ab
Nl—)N@AM

is exact, i.e. if 0 - Ny — Ny — N3 — 0 short exact in Mod-A, then
00— N @AM — No®@y M — N3 @y M — 0 short exact.

Theorem 6.22 M € A-Mod is flat < Tor(—, M) = 0 Vi > 0.
Proof Torf(—, M) =0 = M flat follows from long exact Tor sequence.

Claim: M flat = Tor(—, M) =0 Vi > 0.
Look at 0 — QN — FgN — N — 0:

-+ — Tor}(FyN, M) — Tor(N, M) — QN @y M — FyN @y M — N @ M
_/_/ . ~- J

0 short exact

since M flat.
Thus M flat = Tor}(—, M) = 0 = (need to show) Tor’(—, M) =0Vi > 1.
N € Mod-A: 0 - QN — FyN - N — 0. Long exact Tor sequence (for
j=2):

0 — Tor(N, M) 2 Tor’ (AN, M) — 0

(“dimension shifting”: VN € Mod-A, VM € A-Mod:
Tor;\(N, M) = Tor;\fl(QN, M)

for j > 2.) O
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What abelian groups are flat?
Lemma 6.23 A € Ab flat & A torsion-free.

Proof If x € B has order n > 0,
0—ZSZ—Z/nZ—0 |B®g—

0—-B%B—B®Z/nZ— 0

not exact since = € ker(B - B).
A € Ab torsion-free = A = dirlim A,,, A, C A free abelian, finitely generated
= Tor?(A,—) =0,i >0 = A flat. O

Application: Homology with coefficients
C, a chain complex in Mod-A, M € A-Mod:
H;(Cy; M) := H;(C, @5 M)
e.g. X € Top: C, = Cs™(X),
H™ (X5 A) 1= Hy(CI"(X); A) = Hi(CT"(X) @z A)

A € Ab: “singular homology groups of X with coefficients in A.”
A = K a field: C5™8(X) ®z K K-vector space = H:"8(X; K) K-vector
spaces.

H™ (X3 Z) = H™(C8(X) @2 Z) = Hi(C"¥(X)) = H;™(X)

Theorem 6.24 (Universal Coefficient Theorem) Let C, be a flat chain
complex in Mod-A, and let M € A-Mod such that Tor(—, M) =0 fori > 1
(i.e. QM is flat). Then there is a natural short exact sequence:

0— Hi(C,)@a M — H;(Cy, @) M) — Torjl\(Hi,l(C*), M) —0

Proof 1. M flat.

Look at 5
Coivie >0 B C — -

C; D Z; = ker 9;: cycles; C;_1 D B;_1 = im 0;: boundaries. Thus

0—>ZZ‘—>CZ—»BZ_1—>O
0—B —Z —»H —0
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Tensoring with M:

0—- 2,00 M —-C; M — B;i_1 @y M — 0 exact
00— B2 M—2Z,M — H, @\ M — 0 exact

= Hi(C.@aM)=2Z;®x M/B; @y M = (H;C,) @y M

. General case:

Look at:
0—- QM — FebM — M —0
——

free = flat

Tor?(—, M)= Tor® ,(—, QM), i > 2 = QM flat since Tor}(—, QM) =
)

0.

Look at:

0_>C*®AQM_>C*®AFOM_)O*®AM_>O

is a short exact sequence (because C, is flat) and yields a long exact
sequence in homology:

> Hy(C, @4 QM) —> H;(C, @ FyM) — H;(C, ®x M) 2~

= i =
(Hi(C.)) @a QM =~ (Hy(C.)) @ FoM

2 H, 1 (C, @4 QM) ’

= : '
H;_1(C.) ®r QM 2 H; 1(C,) @n FoM

1R

(isos by case 1) = get short exact sequence:
0 — coker(a) — H;(C, @y M) — ker  — 0
where coker(a) = coker & = H;(C,) @5 M (right-exactness of —®, M)

and ker 3 2 ker 8 = Tor (H,;_,C.,, M).
O

Example A a PID (principal ideal domain)
= Tory(+,-) =0
= Get UCT for any M
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Example X € Top, A € Ab; then one defines:
H;"8(X; A) = Hy(CJ"(X) @z A)  (H"(X;Z) = H;™X)

= 0— H™(X)®, A — H™(X;A) — Tor(H™8(X),A) -0  UCT

Example “Homology of groups”
For M a ZG-module we defined

H;(G; M) := H{(P.(G) ®zc M)
where P,G is a projective resolution of Z considered as trivial ZG-module.
P —>P_ 41— - =P >7

M: in general so that Tor”C(—, M) # 0, i > 2. Example of flat QM: Take
M = (Z/nZ)|G] = have short exact sequence

0 — Z[G] & Z[G] — Z/nZ|G]

= H.(P. ® M) fits into short exact sequence
0 — Hy(P,) @26 M — H;(P, @z M) — Tor?¢(H,;_1(P,), M) — 0
where H;(P,) =0 for i > 0, so H;(G; M) =0 for i > 1 and
Hy(G; M) = Tor™ (HyP,, M) = H,(G; M)
~——
Z
Ho(G; M) = Ho(P,) @zgM = Mg (“coinvariants” )
~——

Z

7 Kunneth Formula

What is H5"8(X x Y) in terms of H5"¢(X) and H5"8(Y)?
~» study H,(C, @, D,) (where C,, D, complexes in Mod-A, A-Mod, respec-
tively).

Definition 7.1 (Tensor Product of Chain Complexes) Let (C,,0c), (D«,p)
two chain complezes.
Then (Cy ®@p Dy, 0) denotes the chain complex with

(C.®r D)= €D (Ck @4 D)

k4-0=i

For x @5y € Cp, ®x Dy put
Oz ®ry) = (02) @ay + (—1)"z @a Oy
= 00 =0; H;(C, ®x D,) = ‘ker /im”.
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= Jdnatural map Hy(C,)®@rHe(D.) — Hi1(Ci®aD,) defined in the obvious
way':
Hiy(Cy) ex Hy(D.) —= Hyoy(Cy @4 D,

€

€
Cf b
a € Cy 6 e D,
a®yb) = [a® 0]
Claim: a ®x beC, ®a Dy a cycle. Look at
8(& @A B) = 0ca @, B + (—1)"1‘& (N 8D5 =0

For «, 8 boundaries, o = dod, 8 = dp3:

(@+a)@r(b+B)=a@rb+a®@yb+a®sf+acnf

=a®xb+0(a @)+ (—1)79(@ @, B) + 06 ®4 B)

where all but the first term are boundaries. = get map

JT @ (Hp(Cy) @a Hy(Dy)) — Hp(Cy @4 D)

Now the optimist would assume p,, is an isomorphism. This would be too
simple, but is not too far off, as the Kiinneth formula shows:

Theorem 7.2 (Kiinneth Formula) Let C,, D, be flat complexes and as-
sume Tory(—,—) = 0 (e.g. A a PID). Then there is a natural short exact
sequence:

0— P (Hi(C.)®x Hy(D,)) ™ H,(C, @4 D,)
1+j=n
- @ Tor}(HC. H;D,) — 0

i+j=n—1

Proof Look at B; C Z; C D;, boundaries and cycles for D,. B, C Z, C D,
where B, and Z, are subcomplexes (with 0 =0). Z,/B., = H.(D,) and:

9
D; - B;_1 C Diy, By =: (XB,);
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(so H;(XC,) = Hj_1(C,)) yielding a map:
D, — YXB,

of chain complexes.
= have a short exact sequence of chain complexes:

0—Z,—D,—YXB,—0 JCy ®p —

is exact:
0—=Ci@nZ; — Ci @ Dj — C; @5 Bj_1 — 0 (C; is flat)

(with 0 — Z; — D; — Bj_; — 0 short exact.)
apply H, to get a long exact sequence:

Lo i+1(O* & EB*) ga H?,(O* ®A Z*) - Hz(C* ®A D*) -
— Hy(C. @A EB.) 25 Hi 1(C, @r Z.) — ...

=
0 — cokera — H;(C, ®p D,) — ker § — 0

is exact.
coker a:
Hi1(C. @4 EB,) = Hi(C, @p Z,. )

— ——

0=0 0=0
— look at C, ®p (X Bg). Idea: Because 6 = 0 for the complex B, we have
some “additivity” and we can look at C, ®, (XBy). We want to apply the
UCT.
Claim: By, Z, are flat.
By assumption: B; C Z; C D; flat Vi = Z;, B; flat as Tor12X =0.
Namely: Tord = 0 = Tor} (X, —), Tor}(—,Y) are left exact (from long Tor
sequence). = submodules of flat modules are flat in this case.
(A flat, B ¢ A = VC: Tor’(B,C) — Tor}(A,C) = Tord(B,-) = 0: B

T

flat.)
back to coker o (use the UCT):

H;, 1(C, ®5 XBy) a Hi(C. ®p Z,)

TN T~

@k"rl:i-i-l Hk(c*) ®A ZBZ —— @S—i—t:i Hs(c*) ®A Zt

@k+m:i Hk(c*) ®@p B,
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0— By — Zyn — Hp(Dy) — 0 JHi(C\) @p —

short exact.

=coker a2y, ,,—; Hr(Ci)®Hm (D)

exact.
Look at
0 — Torl (Hi(C,), Hp(D.)) — Hi(C,) ®p By — ...
and compute ker § by a similar argument as above. a

Applied to singular homology, one gets:

Theorem 7.3 (Kiinneth Formula) X,Y € Top. Then there is a natural
short exact sequence:

0— @B (H™X @ H;™Y) — H"¢(X x Y)
i+j=n
— P Tor(H™*X, H;™Y) — 0
s+t=n—1
(without proof: the sequence is split!)

Proof Apply KF for A = Z and C5"¢ X @7 C5"8Y to compute H;(C5M8X ®
C"2Y’). Then we get (C58X, C5"8Y are Z-flat, and Tors = 0):

i

0— P Hi(C™X) @ Hy(C3"8Y) — H,(CS5X @5 CI™8Y)

l+]=TL sing sing ? i o
H™EX HEmey ZHEE (X XY)

— Tor(H,(C"X), H/(C3"Y))
d map of chain complexes

CoEX @ CF8Y — C5"8(X x Y)
a®b— ANa®b)

= chain homotopy equivalence (Eilenberg-Zilber theorem). Namely:

Zf ﬁ”:)é }axb:AnxAm_wa
"subdivide” prism A, x A, into (n 4+ m)-simplices. a
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Theorem 7.4 (KF for group homology) G group: H;G := H;,(G;Z) =
Tor”%(Z,7,)
G, H groups = 3 natural short exact sequence:
0— P HGeHH— H,(Gx H)— P Tor(H,G,HH)—0
i+j=n s+t=n—1

(without proof: the sequence is split!)
Proof Take X = K(G, 1), a CW-complex with

WiX:{G 1=1

0 else
= X is contractible (X CW-complex with ;X = 0Vi = (Whitehead) X
contractible)

= C'ii“gf( is a free ZG-resolution of Z: C’fingf( free/7Z, basis A\; ¢ b D o

= —
Hi<CiingX Rza Z) >~ TOI'Z-ZG(Z, Z) _ HZG o His.ingX

so take X = K(G,1),Y = K(H,1) = X x Y has

GxH, i=1

07 else

7Ti<XXY)g{

= K(G,1) x K(H,1) ~ K(G x H,1)
= HH =~ H"Y

Hi(G x H) = H™(X xY)

KF for X x Y yields KF for G x H

8 Geometric Realization Functor

3 functor
Top—~CW < Top

X——TX
together with a natural onto map ex : I'X — X

X ==X

Y

'y —Y

2%

where I'f is cellular (always a commutative diagram) such that
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(1) XeCW = ex: TX S X
(2) ex induces HS"eTX = Hsne X

(3) ex induces m(I'X,w) = m(X, exw) Vi, Vw
Definition 8.1 f: X — Y in Top is called a weak homotopy equivalence,
if [ induces m;(X, xq) = mi(Y, f(xo)) Vzo € X, Vi.
(Also for i = 0: [S°, X], & [{zo}, X] = f induces bijection of path compo-
nents of X andY')
Example

x 1oy

axT e’;‘yT
Ly

rx —1rvY

with f weak homotopy equivalence: €x and ey are weak homotopy equiva-
lences (WHE) by (3) = I'f a WHE too = (by Whitehead) I' f a homotopy
equivalence.

Consider K, = {K,},>0 simplicial set consisting of:
1. Sets K, n > 0 (n-simplices)
2. Face operations, degeneracy operators
di » K,, = K, 1,0 <i<n, (faces)
s;: Ky — Ky, 0 <i < n, (degeneracies)
satisfying certain relations, motivated as follows:

Example K, = A, “simplicial complex of X € Top” with S;X :=

{A; L X | f continuous} where R+ 5 A; = (4, ... ), >t =11s
the standard i-simplex.

SX %os X
9
(f:A = X)— (Aifl%Aii’X)
(to,...,tifl) = (to,...,tjfl,o,tj,...,tifl)
fr—djf = fod;. And:
SiX 28X
(tos .- tip) = (o, - -5 tjon, by + i, - tig)
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All the relations between the d’s and s’s in S, X are taken to be relations in
the general K,.
K, has a “geometric realization” given by:

K. =[] Knx A/~ €CW

n>0

where K, is a discrete topological space, and A,, has the usual topology. ~
is generated by:
(a, ) ~  (dia,y)
a€ K,,xrelA, dacK,_
r =0y yEe AN,

(f,052) ~ (s;f 2)

Definition 8.2 X ¢ Top: I'X := |5, X| € CW.

one checks: C(T"X) b Csine X D Dsme X with DS"8 X (= ker ¢) generated
by degerate singular simplices. D58 X C CS"8 X D8 X heing a subcomplex

(contractible chain complex).
= ¢ induces an isomorphism:

H:ingX _§> H:ell(r)()

3 natural iso ’y*T =
HE"E(0X)
v TX —-X

[(a, )] = a(z)

continuous surjection, with a : A, - X :a € 5, X,x € A,,.
I': Top — CW is a functor

X——=TX [1(S.X) x A,/ ~ 3 [(a,z)] a:N, — X,z €A,

A TA I
‘ v

YTV = TI(SY) X Au/~ > [(Aa,2)

Theorem 8.3 (Basic Theorem) For all X € Top, v:T'X — X, w — qyw
induces 7y, : m(T'X,w) 5 (X, yw),Yw € TX.
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Example X = {.}:
ey 257257 ... 57

s} = {80 > {1}
come{,} O DI} =20, =

C’Zing/Df;ng _ 0 n>0
Z n=0
) . 0 72>0

Hi C:lng Dimg —
( / ) {Z 1=0

Eilenberg Mac Lane spaces

7 a discrete group.
B, simplicial set with B, := (m)" % B,,_17 with

(gQa"'7gn) 1=
di(917"'7gn): (91;---;gigi+17~--7gn) 0<Z<n
(g1, 9n) i>n

s
B,m = By

(gla"'vgn)'_)(917"'71a'-'7gn)

where 1 is at position ¢ + 1.

Definition 8.4 K(m, 1) := |B.7w| (connected and has only one 0-cell which
serves as base-point.)

Theorem 8.5
T =1

mi(K (7, 1)) = {

0 else

Remark If X,Y € CW with m;X = 7;Y =0, j # n, and 7, X = 7,Y, then
X ~Y (we write K(m,n) for such an X, 7 = m,(K(m,n))).
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= we get a functor

with m (K (7, 1)) = 7.

K(m, 1) ——m (K (7, 1))
Jocc. [
K(G,1)——m (K(G,1))
and m(K(f,1)) is f (up to natural equivalence). Every ¢ : K(m, 1) —
K(G,1) is, up to homotopy, of the form K(f,1):
™ [K(m, 1), K(G,1)]. 2 Hom(r, G)

(without proof).
If 7 is an abelian group = B,7 is a simplicial group:

Bymi=(m)", p:mXm—omw

(p is a homomorphism = 7 abelian). = K(m, 1) a topological group.
Now take GG € Top a topological group. B.G becomes a simplicial, topologi-
cal group, i.e.
B,G = (G)" € Top
d;, s;: continuous group homomorphisms. Define
1B.G|:= [] vx &n/~=:BG
yE€Bn

n>0

This is called the classifying space of G. If G is an abelian topological group,
then so is BG.

Note G = 7 discrete = BG = K(m, 1) (not a group unless G abelian).
G € Top a topological group and abelian = BG € Top an abelian topological
group and m;BG = m;_1G (G not necessarily connected: moG = m BG).
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G topological abelian = BG topological abelian = B(BG) =: B*G, ..., B"G
all topological abelian groups.
G = 7 discrete abelian group:

BG = K(m,1) — B(BG) = K(r,2),...,B"G = K(r,n)

G topological group ~ |B,G| := BG € Top (€ CW if G discrete) such that
WzBG = 7TZ‘_1G for i Z 1.

If G discrete, then
WZBG: {WoG:G Zzl
0 1> 1
and we write K(G,1) := BG.

Remark G topological group: Define E,G with E,G := (G)"*! and “suit-
able” d and s. E,G has G-action by

(917"'7gn+1) g = (917"'7gn+17.g)
E,G — (E,G)/G = B,G

EG = |E,G| with (EG)/G = BG free G-space, and even EG 2 BG
fibration with fiber G (principal G-bimodule) and FG ~ {.}: “G — EG —
BG” ~» long exact homotopy sequence

;G — mEG — 7;BG 8, 7j1G — T EG — ...
~——

~—
0 0
G = A abelian, discrete: BA = K(A, 1) topological abelian group =
B(K(A,1)) = BBA =: B*A = K(A,2) topological abelian group, etc. =
K(A,n):=B"A
T:Top — CW
X—=TX
and v(X) : TX — X.
Take W € CW :
V(W)T Twm
rf 2
I'w —TI'X



v(X) is an isomorphism in 7., and it turns out (W) is a homotopy equiva-
lence.

W, TX] 5 W, X] = [i(W), X]
m(CX), W) S m(X,v(W)) YW

r

= HTop —=HCW are adjoints on the homotopy categories HTop, HCW.
— = aleaied 4

[' turns weak homotopy equivalences into homotopy equivalences.

Remarks concerning cohomology

h* cohomology theory with A’ contravariant (on Top?). Most axioms directly
correspond to homology, except additivity where we have

hi (HaEI(XOM Aa)) i) HI hi(XOw AOé)

lmz

hi(Xa, Aa)
where pr? is induced by inclusions (X, Aa) — [[(Xa, Aa).
Example Singular cohomology with coefficients in A € Ab: Put
Ci (X:A):=Homz(C™ X, A) € Ab

sing
the “singular cochains”. The boundary 0 of C"¢X induces “coboundary” o
in Cing(X; A) yielding a cochain complex (C%,,(X; A),6), 6 : CL , — CiH

sing sing sing’
00 = 0.

H. (X;A):=kerd"/im§ !

sing

i.e. cocycles modulo coboundaries. The dimension axiom becomes

A i=0
0 else

Hsllng({'}7A) = {

since Homgy(Z, A) = A.
Special case: A = k a field:

H™(x;k) = Hy(CS™ X ®z k) :  k-vector space
—— —

k-vector space

and Hélng(XJ k) - HZ(O:mg(X7 k))
Cli (X3 k) = Homgz (CF8 X k) %% Homy (CP"8 X @y k, k) : dual k-VS of (C3"8X @ k)

fCMX Sk Of - Co™X @z k — k, (a® \) — M (a)(k-field)
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Homy, (C5" X ®zk, k) : cochain complex of k-VS. = HY (X k) = Homy, (H™ (X, k), k)
dual VS.

Theorem 8.6 X € Top: Hy, ,(X) := Hf,.(X;Z) is in a natural way a gra-

sing sing

dient ring (commutative in the graded sense). Moreover k field = H, . (X; k)
15 a graded k-algebra.

e graded ring:
Hi(X) x Hi(X) "8 giti(X)
(x,y) + xUy “cup product”

(x,y) have degree: |x| =i, |[y|=j and 1 € HS X

sing<* *
e graded commutative:
rUy = (-1 (yua)
rUl=1Uz=2z,Vz

e the definition of “U”:
— external product:

Hi

sing

XxH._Y - HI(XxY) withi+j=n

sing sing

(a,b) —axb

a represented by @ : CS"¢X — 7,

b represented by b: C7"*Y — Z

i ©b: @,y (CiX @ CIMY) D " @ CF"Y — 7,

B (CIEX © C5Y) 7
l yielding a chain (=) equiv.
Csing(X x Y)
a ® b yields a cocycle, hence:
[a®b) € H'(X xY)
— take X =Y
D, jon(Hisng X x H} W Hip X

sing sing

this defines graded ring structure

where AX — X x X ¢+ (t,t) is the diagonal embedding.
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S™ has:

i S”:{Z 1=0,n

Example 1. n>0: H}

sing

sing

0 else
1€ H S™
sing * n oy 2
<x>HgngSn } HsmgS Z[Q?]/<QJ >

Fact:
Z 0<1<2n,1even

0 else
7Z 0<1<2n,ieven

0 else

H™8(CPm) = {

sing

= H. (CP") {

Fact: H"8(X) free abelian Vi = H’ (X) = Homg(H"(X),Z)

S,

Fact: H3,,(CP™:Z) = Zla]/ (a")

sing
(x) = H3,e(CP",2), (") = H*"(CP")
n>1: CP' = 5% and H ,(CP*) = Z|x]

sing
A

|z|=2

8.1 Hopf-Invariant

In previous sections we have discussed the homotopy groups for Spheres in

the cases:
T S" 27 n>1

WkS”:O k<n

What happens when k£ > n?
First it is almost always finite (Serre).

Theorem 8.7 7,S", k > n s infinite < n even and k = 2n — 1.

Hopf:
SQn—l i) Sn N Sn U¢ €2n
——
C(4)
St={.}ue"

= HIE(S" U ) =

(2

sing

. /
éH%mewgb



HE (SPUe™) = (x) =27, HF (S"Ue*) = (y) =2 Z.

sing
Fix x and y as follows: S™ — C(¢) canonical inclusion, induces:

H,o(C(6)) —> Hi,y(S™) = ([S*)
T [S™]

where [-] is the “orientation class”.
S" = O(p) = C(g)/5" = 5™
HZ (57") = HE(C(9))

sing
[S?n] — y (choose y this way)
Y =Y Cle) 2 YV (EX)
So: 21 4 5§k = O(p) ~ S™V S
Sl % g arbitrary: @ € H2 (C(¢)) = 22 € H2 (C(8)) = (y) =

sing sing

JH(¢) € Z s.t. x*> = H(¢) - y. H(¢): Hopf-Invariant of ¢.
For instance: ¢ ~ % = there is a 0:

S"v S~ C(g) L sm

inducing:
w =T
n n = n
HsingS - Hsing0<¢)
w2 — l’z

where w? = 0 = 2? = 0 = H(const) = 0.
H(¢) is a homotopy invariant of ¢, and:

H

(9] € m2n1(S™) = Z

is a group homomorphism.
nodd = H : Ty, 1S™ — Z is the 0 map. Why? 2* = H(¢)y, v € H},, for
nodd: 22 = -2 = 22 =0 = H(¢) = 0V ¢.

Exercise n even = H : my, 15" — Z is # 0. Therefore: my, 1S™ = Z&?

(See problem set 12: S™ x S™ = (S™V S™) Uy, 2"

P g2l —— gny g

~

~
~ v:folding map
=Voy™> l
P=Vou™ <

STL
n even = H(¢) = 2.
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Hopf-Invariant-One-Problem:
For which n does there exist a map ¢ : S?"~! — S™ of Hopf-Invariant 1?7

Theorem 8.8 (Adams) H(¢) =1=n=2,4 or8.

9 Theorems of Hurewicz and Whitehead
Definition 9.1 X € Top, is n-connected, if m; X =0 for 1 < n.
X = [S% X].: set of path components of X.

Example 1. X O-connected < X path connected.
2. X l-connected < X path connected, m; X =0
Reminder:

Definition 9.2 (Hurewicz homomorphism) X & Top,

m X s HEhEX

[l f.[5"]
f:S" = X, f.: H™S" — H™¢X.
Theorem 9.3 (Hurewicz) X € Top,, X 0-connected, then:
1.

7T1X HfingX

e

mX/[mX, mX]

2. X I-connected = H{™X =0 (by 1)

and if X 1s n-connected, n > 0 then:

T X~ HUEX
Corollary 9.4 Suppose m; X =0 for1 <i<mn,n >0, X 0-connected, then:
Conversely, if X is 1-connected and H;"*X =0 for j < m then ;X =0 for
7 <m.
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Example X = S* is (k — 1)-connected:
7T7;Sk =0,1 < k
H;S* =0,i <k
There is also a relative version of Hurewicz:

(X,A) € @.2: zg € A C X. m,(X,A): set of pointed homotopy classes of
“diagrams”:

} St S Himegk o~ 7

D X
U U
oD" = Sn —— A

e has a natural group structure for n > 2.

e we have a long exact homotopy sequence (if zo € A is a global base-
point, i.e. {zo} C A, {xo} C X has HEP):
.. iwnA—> TnX — (X, A) gﬂ'n_lA—>
n i
(f:9" = X)— D —>X
Sn 1 _>A

Note

nL>

( lan )u() 9 t A
— — Eﬂ-n—l—l
S 1—>¢ A

Theorem 9.5 (Relative version of Hurewicz) (X, A) € Top,, A, X 1-
connected (with good xo € A C X ). Then the first non-vanishing homotopy

group of (X, A) is isomorphic to the first non-vanishing homology group of
(X, A)

Corollary 9.6 Given f : X — Y with m; X = mY, i < n (both 0-connected),
then H; X = HY, e< n—1. Conversely, if X, Y are I-connected and
H;X > H; X, j<nthenmX >mY,j<n-1

Proof Idea: Replace f by an inclusion:

Y*f>Y

<

Z(f)
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Corollary 9.7 XY € Top,, both 1-connected. f: X — Y, then the follow-
ing are equivalent:

1. mX SmY, Vi
2. H,X = HY, Vi

Definition 9.8 f: X — Y in Top is called a weak homotopy equivalence,
if:
mi(X, 20) = mi(Y, f(20))

Vo € X, Vi.
Theorem 9.9 (Whitehead) f: X — Y in CW. Then [ is a weak homo-

topy equivalence if and only if it is a homotopy equivalence.

Corollary 9.10 f: X — Y in CW, both I-connected. Then f is a homotopy
equivalence if and only if:

He'X = HElY, Vi

(X € Top: H™TX = H™X, Vi)

10 Spectra

CW., CW.,”
[2,C0.(X,Y)]. = [Z AX,Y]]ZD(CO.(X,Y)).
—_———

F(X)Y)

F(X,—) is right adjoint to X A —.
Qew X = F(SY, X)

Lemma 10.1 (X, A4) € CW?, Z € CW.. One has an ezact sequence of sets
[X/A, 2] 2 X, 2] & [A, Z]
i.e. B(f) = const. & f € im(«)

Proof i) fe€imaw:
X/A

N

X —f> Z
commutes up to homology = f|A ~ const.

97



ii) f: X — Z such that f|A ~ const.. 3f" = f with f'|A = const. =
f: X/A — Z such that off] = [f].
(Il

We want [—, Z] to be groups, so choose Z = QcwY (abelian groups: Z =
QEwY).
Want “long exact sequences”: Use Puppe sequence for A C X € CW,

A" X\X/A Z‘A 306 SX/A
C%@') —a C(1)/ X - 5

This yields a long exact sequence

[ AN

o= [BAZ] - [BX/A Z)— (XA Z] — [X/A Z) — [X, Z] — [A, Z]
grggps abeliar:rgroups

VaXa, Z) = [ [[Xa, Z]

Upshot [—, Z] could look like a cohomology theory.
Definition 10.2
T ={T;i€N,
o X1 — Tz‘+1}

is called a pre-spectrum. If the adjoints T; — QT; 1 are weak equivalences,

T s called an d-spectrum. If T; = QT;y1 are homeomorphisms, T is called
a spectrum.

Homology groups of T: There are maps
Tirkli — Mg Tin
given by:
[Z”k,Ti] > [Si+k+1’ ST LY [Si+k+1yﬂ+1]

T := colim ;T
i>|k|

(note that this makes sense for k£ < 0!)
There is a functor (“spectrification”) which turns any pre-spectrum into a
spectrum, without changing the homology groups.
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Example 1. S sphere spectrum: T; = S%, 05" = S (0 = id). This
is a pre-spectrum. (Take spectrification for a spectrum.) .S = it SO,
so TS = 0 for k < 0 = § is called a connective spectrum.

2. Bott spectrum:

Ty = BU x Z = B(colim U (n))

n>1

Toi1 = U = colimU(n)

n>1

Theorem 10.3 (Bott periodicity)
(a) BU X Z = QU
(b) U= Q(BU x Z)

= (structure maps) X7, — T; comes from (a), ¥ — Tj from (b).
This defines a spectrum (modulo spectrification) and is denoted BU =

T. Specifically: -
0 kodd
mﬂ:{ ’

7 k even

If T is a (pre-)spectrum, X AT (i.e. (X AL); = X AT;) is a (pre-)spectrum
in the obvious way.

Definition 10.4 (Homology theory)
Hi(X, 2) = m(Xy /\2)

where X = X u{.} is X with an added artificial base point.

(X € CW)

On pairs X, A:
A+ o H(X,A,T) =ker (H(X/A,T)— H({.},1))
A=o H(X,A,T) = H(X,T)

Note H;({.},T) = mi(L)

Example 1. H;(X,9) 2 (X,)

’:
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2. Hy(X,BU) = m(X, AN BU) =: K;(X), the K-homology:

7, 1 even

Kil{:}) = {O o

One can define cohomology: Z € CW,, “function spectrum” F(X,T) (i.e.
F(X,T); = F(X,T;)).

Definition 10.5 (Cohomology theory)
H(X,T) = 7, (F(X,.T)
Example 1. H(X,BU) = (F(X, BU))
[Si—’—k? F(X+> ﬂk)] = [S_H_k N X+> ﬂk] = [X-i-a Q_i+kﬂk]

~ J[X4,BU x Z] ieven
XL U] i odd

= (Bott periodicity)

[X,BU x Z] i even
X, U] i odd

where [X, BU x Z] = K°X = Ky(C(X)) (later).

H(X,BU) = {

2. Eilenberg-McLane-spectrum HG, G an abelian group:
HG =K (G, k)
T (X) 2 1, (QX)

o:YK(G,k) — K(G,k+ 1) come from weak equivalences K (G, k) —
QK (G, k +1). If necessary take spectrification.

H,({.}, HG) = m(HC)

compute 7;(HG): (sketch)
7Ti+k(K(G, k’)) E) 7Ti+k:+l(ZK(G> k)) 5 Titk+1(K(G,k+1))
where o, is iso for k > i = X is iso =
G i=0
Hi({.}, HG) = .
0 i#0

Using “uniqueness result” for ordinary homology it then follows that
one has a natural isomorphism (X € CW):

H™ (X G) = Hi*\(X; G) = Hi(X, HG)
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The advantage of working with spectra T is that cohomology takes a simple
form '
H'(X,T) =n_(F(X,,T)) = co}gim 7r,i+k(F(X+,£k))

[S=k F(X,, Ty)] —> [S~HH+L A X, ST

~ o
-~ =
=~ =~ o Tx
-~
oA

(ST A X, T (ST X T

(a3

so for k =1
HY(X,T) =1 ix(F(X1, Ti)) = mo(F(X1, Ty)) = [S°, F(X4, T,
> [SOA XL, T, = [X, Ty,
= [X,Ti.
Thus for T = H:G:
Theorem 10.6 For X € CW one has a natural isomorphism

Hi

sing

(X;G) = [X, K(G,0)]

Corollary 10.7

Hsling(Xa Z) = [X7 Sl]
Hszing(X, Z) = [X,CP™|

f
Morphisms in the category of spectra: T = S with f = f; : T; — S; such
that -
or
YT ——Ti

Efil lfiJrl

XS o5 Sit1

commutes.
Spectra: generalized topological spaces

Top Top, —=% Spectra

I

XH——=X>X
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> X is the suspension spectrum.

Prespectrum T with T; = ‘X becomes a spectrum by “spectrification”:
ST — Tigr, T — QT 2(20X) — X

T a spectrum: defines a homology (and cohomology) theory on CW (or on

Top via the geometric realization functor Top RN CW).

One puts:
hi(X;T) = m(X, AT) = dir}lim Tirk( X4 A Ty)
hi({-};T) := dir’lim Tirk(Tk) = (L)
which can be # 0 for i € Z (even ¢ < 0).

(X L) = mi(F(X4, D)) = dinlim 7 (F(X, Ty)) = dirlim[S™F, F(X, Th)],
~ dirlim[S ™ A X, T, = diglim[X,,, Q7473

k>
Example 1. KA (A abelian group) the “Eilenberg-MacLane spectrum”.
(KA), = K(A k) ~ QK (A k+1)
has property that
W(X;KA) = [X, K(A,i)] =2 H'(X; A)
for X € CW. h'(X; KA) = = H' “representable”. Furthermore

hi(X; KA) = dirlim i (X4 A K (A, R)) = Hi(X;A)

For example, K (Z,1) ~ S*, K(Z,2) = BS! ~ CP>* =

H'(X:Z) = [X, 5]
H*(X;7) = [X,K(Z,2)] = [X,CP>]

K-Theory: “Bott spectrum” BU

(BU)x =

BU x 7 k even
U k odd

where

BU := dirlim BU (u)
U = dirlim U (u)
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so QBU ~ U, QU ~ BU x Z
mUu)=Z n>1
Ul)=8"= m(QU) ~m), U= Z. So

h'(X; B

) = [X,BU x Z] 1 even
| X,U] i odd

Define K*(X) := h*(X; BU), similiarly K;(X). Here:

1 even

KD = {OZ i odd

since U connected.

Vector bundles

X € Top. A vector bundle over X is an onto map
B —-X
such that
1. 7~ !(z) 2 C" (homeomorphic) Vz € X
2. “local triviality”: Vx € X dnbhd U C X such that

7N (U) == U x C"

l pru

U

commutes and ¢ is a linear isomorphism on fibers

¢ 1 (uo) = priy (uo)

E F
¢} VBandn: | too:
X X
E 3 hom and linear iso on fibres F
X



E
we write iso(&) for the iso-class of . & : | 1is called trivial (of dim n) if

X
XxCn E
£=260,,0,: | = X connceted, X # @ then VB £ : | has well-definied
X X

dimension.
Definition 10.8 Vect,, X : set of iso-classes of C"-Bundles / X.

E ={(u,v) € By X Ey | mu = mov}

Ey Ey
Nl W%z S8 lﬁ
X

X > xo: 7 Ywo) 2 ayH(20) © 1yt (20)
@ yields: Vect,, X x Vect,, X — Vect,, X, and:

Vect,, X — Vect,, 11 X

iso(€) — iso(¢ & 6y) } Vect X := dirlim Vect,, X

= [E®0,) =[] € Vect X is a commutative semi-gp with identity, [¢] is
represented by:
iso(§) € Vect, X

¥ |
iso(§ @ 0,,) Vectppm X

with: [€] + [n] := [§ @ 0], [0n] = “07: [¢] + [0n] = [¢].

Theorem 10.9 X compact = Vect(X) is a group.

E F
Proof uses: £ : | a C" bundle = d some m and n : | C™-bundle s.t.
X X
EBN =0, ete. O

10.1 Universal C"-Bundle

e Grassmannian G, ; of n-dim linear subspaces in Crtk,

E, R G 1, canonical C"-bundle.

Case n = 1: Gy : 1-dim subspaces of C*** 5 G2k+2
29 € CP* & E 5 m(X,) & CS2H! = CPF = g%+ /g1

canonical line bundle
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Guk C Guit1 C ... C Uiso Gnp =@ Gy, infinite Grassmannian of
=
~BU(n)

C"-planes (i.e. QG, ~U(n)).

= CP™ has QCP> ~ S'. S' — (x) — CP*.

= 3 canonical C"-bundle F(n) — BU(n) the “universal” C"-bundle.

x4 BU(n) produces C"-bundle f*E(n) - X via pull-back:

frE(n) E(n)
@ an: universal C™-bundle
2o € X f BU(n) “classifying space

for C™bundles”

fTEm) ={(z,y) | f(z) =7(y)} C X x E(n)
= ¢ H(wo) = 7 f(xg) “C”

iso class of f*FE(n) depends only on homotopy class of f, therefore:
Theorem 10.10 Let X be a CW-complex, then:

[X, BU(n)] — Vect,, X
1s a bijection.

Example ”Chern-Classes”

Let £ : E — X, C"-bundle over CW-complex X. Thus 3! f; : X —
BU(n) such that: £ = f3(X,).

H*fe: H'BU(n) — H*X
—_———

with Z[cy, . . ., ¢,] the polynomial ring in ¢; . . . ¢, where ¢, € H?** BU (n)
(¢; universal chen classes)

¢i(€) == H*(f)(c;) € H*X

easy: ¢ trivial bundle = ¢;(§) = 0V .
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Vect X= dirlim,, Vect,, X

lcan (bij. for X finite CW)
X, BU|

Recall:
KX =~ [X,BU x Z] = [X, BU| x [X,Z]

idim

(X, Z]

with o € X, X connected

(roh = X P (oo} < KO} = KOX = K0{ao)
\_/

id id
: ~
KX =~ K° XL
~—~—~
keri* or coker pr*
. ~ X finite connected
with K°X 2 [X, BU] ~ Vect X

Remark X finite CW. K°X = “Grothendieck group of complex VB / X”

Definition 10.11 Grothendieck group: ano Vect, X =: S commutative
S$emi-group.

a,b € S: a € Vect, X, b € Vect,, X, a + b: iso-class of {(a) ® (b) where
E(a)] =a, [€(D)] =b. a+ b€ Vect,im X.

Gr(S): Grothendieck group of S, e.g. S(N) =Z =NxN/ ~

with ~: (u,v) ~ (z,y) S u—v=x—y, u+y=a+v.

~» general definition:

Gr(S) =S x S/ ~

S1,82) ~ (t1,t3) < 1+ ty +w = t1 + s + w for some w.
= Gr is a group, with component-wise addition and 0: = € S : (z,z) a
representative of 0. Inverse: (si,s2) : (S2, 51).

One checks: X finite CW = K°X = Gr(]] Vect,, X).

Theorem 10.12 S*"+1 4 §2m > 1 H(f)=1= m=1,2,4.
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The proof relies on “Adams-Operations” ¢* : KX — KX (X finite CW).
Y* k€ 7 additive, ¥!' = id, YFt = YPF Yk, 0. K°X is a ring with
multiplication defined as the tensor product — ® — of vector bundles: p
prime =

YPr =2P mod px € K°X

S2m = (), KO(S?™) 2 Z = () = k™.
Proof Sim~1 1, §2m vields X (f) = S2m U, et = KO(S?™ U, ') = 7,6 7.

S2m Uy etm Fss gm

T ind

S2m
KO(X(f)) — KO(S*™) = (22m)

O

KO(8°™) = (wm)

and 3 Z,, Tom € KO(X(f)): KUX(f)) = (Zm) ® (Zom), s “natural” =
¢k(j2m) - k2mi'2m
wk(:im) = aim + ﬁjZm

where aw = k™, f = (k) € Z.
Now:

V(W(B(Zm)) = V> (3™ Em + B(3)T2m = 3™Y*(Tm) + B(3)1* (T2m)
= 3" 2%, + 3" B(2)Tam + B(3)27 T,

¢3(¢2(im)) = ¢3(2mj,m + ﬁ(Q)i%%)
= 3" 2%, + 2™ B(3)T2mB(2)3* T om

3"B(2)(3™ — 1)Zam = 2"B(3)(2™ — 1)Tom

where Ts,, can be canceled.

V2 E,, = 2™ %, + B(2)Tem = 72, mod 2
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72 = B(2)Tgy, mod 2
= H(f)i?m

= ((2) odd since H(f) odd = 2™ | 3™ — 1 to which the only solutions are
m =1,2,4 (exercise!). O

Application: A finite dimensional division algebra over R ((non)-commutative

field). Then dim,, A =1,2,4 or 8.
Proof A =R"™

R\ {0} x B\ {0) 5 R\ {0
Sn—l % Sn—l i Sn—l
(using R™\ {0} ~ S™~! has bidegree (1,1)) where u has no 0-divisors.
Hopf: S* x S* 2, Sk of bidegree (p,q), k odd ~ “Hopf-construction” (;3 :

S2HL SR of H(¢) = pg. Thus R™ = A division algebra over R =
362n-1 & §n of Hopf invariant 1 (= n even) = (Adams) n = 2,4 or 8, e.g.

n=2: C
n=4: H
n =8 : Cayley numbers
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Zur Prifung e Die Sprache wird Deutsch sein (ev. auch Englisch, falls
der Student das méochte)

e Zusammenhénge sind wesentlich wichtiger als viele Details.
e Ubungen: wichtig

e Spectra sind nicht unwichtig, aber sie wurden eher als Ausblick behan-
delt, dementsprechend werden sie sicherlich nicht das Schwergewicht
der Priifung bilden.
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