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Preface

Thepurposeof this book is to give aquick introduction to the theoryof foliations,
as well as to Lie groupoids and their infinitesimal version – Lie algebroids.
The book is written for students who are familiar with the basic concepts of
differential geometry, and all the results presented in this book are proved in
detail.
The topics in this book have been chosen so as to emphasize the relations

between foliations, Lie groupoids and Lie algebroids. Lie groupoids form the
main tool for the study of the ‘transversal structure’ (the space of leaves) of
a foliation, by means of its holonomy groupoid. Foliations are also a special
kind of Lie algebroids. At the same time, the elementary theory of foliations is
a very useful tool in studying Lie groupoids and Lie algebroids.
In Chapter 1 we present the basic definitions, examples and constructions of

foliations. Chapter 2 introduces the notion of holonomy, which plays a central
role in this book. The Reeb stability theorems are discussed, as well as Rieman-
nian foliations and their holonomy. This chapter also contains an introduction
to the theory of orbifolds (or V-manifolds). Orbifolds provide a language to
describe the richer structure of the space of leaves of certain foliations; e.g. the
space of leaves of a Riemannian foliation is often an orbifold.
In Chapter 3 we present two classical milestones of the theory of foliations

in codimension 1, namely the theorems of Haefliger and Novikov, with detailed
proofs. Although the proofs make essential use of the notion of holonomy,
this chapter is somewhat independent of the rest of the book (see the figure).
However, it should be pointed out that there are proofs of Haefliger’s theorem
which use the transverse structure and Lie groupoids, see e.g. Jekel (1976) or
Van Est (1984).
In Chapter 4, we discuss homogeneous and transversely parallelizable fo-

liations, as well as Lie foliations, culminating in Molino’s structure theorem

vii
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Interdependence of the chapters

for Riemannian foliations. This chapter also provides an essential link to the
integrability theory of Lie groupoids and Lie algebroids.
InChapter 5,we introduce the notion ofLie groupoid. Thefine structure of the

space of leaves of a foliation can be modelled by its holonomy and monodromy
groupoids, and these provide some of the main examples of Lie groupoids.
These Lie groupoids play an important role in the study of foliations from
the point of view of non-commutative geometry as well; see Connes (1994).
Orbifolds can also be viewed as Lie groupoids; in fact, they are shown to be
essentially equivalent to a special class of Lie groupoids.
The infinitesimal part of a Lie groupoid gives rise to the structure of a Lie

algebroid, similarly to the case of Lie groups and Lie algebras. In Chapter 6,
we introduce these structures, and examine to what extent the correspondence
between Lie groups and Lie algebras (‘Lie theory’) extends to Lie groupoids
and Lie algebroids. Here we make essential use of elementary foliation theory,
e.g. to construct the simply connected cover of a Lie groupoid, and to establish
the correspondence of maps between Lie groupoids and maps between their
Lie algebroids. Transversely parallelizable foliations from Chapter 4 provide
natural examples of Lie algebroids which are not ‘integrable’, i.e. are not the
infinitesimal parts of Lie groupoids.
This small book came into existence over a relatively long period of time.

Chapters 1–3 are based on the notes of part of a course on foliations given at
Utrecht University in 1995 and several subsequent years, and at the University
of Ljubljana in 1997 and 1998. Chapter 4 was added later, in 1999. The last two
chapters, on Lie groupoids and Lie algebroids, have been written more recently
(in 2000) in this form, although much of this material had been presented by
both of us in many earlier lectures and research papers.
Over the years, we have been influenced and helped by discussions with

many friends and colleagues, and it would be impossible to thank them all here.
However, we do wish to acknowledge our gratitude to A. Haefliger, who has
been very encouraging, while it is obvious from the text that we owe a lot to



Preface ix

his work. We are also much indebted to the late W.T. van Est who first got us
interested in foliations, and to K.C.H. Mackenzie for many helpful discussions
about Lie algebroids.
At a different level, we would like to thank the Dutch Science Foundation

(NWO) and the Slovenian Ministry of Science (MŠZŠ grant J1-3148) for their
support, as well as our home institutions for their support and hospitality, which
made mutual visits possible and pleasant. Finally, we would like to thank the
staff of Cambridge University Press for their help during the final stages of the
preparation of this book.





Prerequisites

In this book we presuppose some familiarity with the basic notions of
differential topology and geometry. Good references are e.g. Guillemin–
Pollack (1974) and Bott–Tu (1982). We shall list some of these notions,
partly to fix the notations.

Recall that a smooth manifold (or a C∞-manifold) of dimension n

(where n = 0, 1, . . .) is a second-countable Hausdorff space M , together
with a maximal atlas of open embeddings (charts)

(ϕi: Ui −→ R
n)i∈I

of open subsets Ui ⊂ M into R
n, such that M =

⋃
i∈I Ui and the

change-of-charts homeomorphisms

ϕij = ϕi ◦(ϕj |Ui∩Uj
)−1: ϕj(Ui ∩ Uj) −→ ϕi(Ui ∩ Uj)

are smooth, for any i, j ∈ I. Note that these satisfy the cocycle condition
ϕij(ϕjk(x)) = ϕik(x), x ∈ ϕk(Ui∩Uj∩Uk). There is an associated notion
of a smooth map between smooth manifolds. Any smooth manifold
(Hausdorff and second-countable) is paracompact, which is sufficient for
the existence of partitions of unity.

The notions of (maximal) atlas and of smooth map also make sense
if M is any topological space, not necessarily second countable or Haus-
dorff. We refer to such a space with a maximal atlas as a non-Hausdorff
manifold or a non-second-countable manifold. There are many more non-
Hausdorff manifolds than the usual Hausdorff ones, even in dimension
1 (see Haefliger–Reeb (1957)). We shall have occasion to consider such
non-Hausdorff manifolds later in this book.

The reader should be familiar with the notion of the tangent bundle
T (M) of M , which is a vector bundle over M of rank n, where n is
the dimension of the manifold M . The tangent space Tx(M) of M at

1



2 Prerequisites

x ∈ M is the fibre of T (M) over x. The (smooth) sections of the tangent
bundle T (M) are the vector fields on M . The C∞(M)-module X(M)
of all vector fields on M is a Lie algebra, and the Lie bracket on X(M)
satisfies the Leibniz identity

[X, fY ] = f [X,Y ] + X(f)Y

for all X,Y ∈ X(M) and f ∈ C∞(M).
Also, we have the space Ωk(M) of differential k-forms on M , for any

k = 0, 1, . . . , n, with exterior differentiation d : Ωk(M) → Ωk+1(M)
and exterior product ∧ : Ωk(M) ⊗ Ωl(M) → Ωk+l(M). With this,
Ω(M) =

⊕n
k=0 Ωk(M) becomes a differential graded algebra, which is

commutative (in the graded sense). The cohomology of (Ω(M), d) is
called the de Rham cohomology of M , and denoted by

HdR(M) =
n⊕

k=0

Hk
dR(M) .

A smooth map f: M → N between smooth manifolds has a derivative
df: T (M) → T (N), which is a bundle map over f . The derivative of f at
x ∈ M is the restriction of df to the corresponding tangent spaces over
x and f(x), and denoted by (df)x: Tx(M) → Tf(x)(N). The map f is
an immersion if each (df)x is injective, and a submersion if each (df)x is
surjective. These have canonical local forms on a small neighbourhood
of x ∈ M :

(i) If f is an immersion, there exist open neighbourhoods U ⊂ M

of x and V ⊂ N of f(x) with f(U) ⊂ V and diffeomorphisms
ϕ: U → R

n and ψ: V → R
p such that

(ψ ◦ f ◦ϕ−1)(y) = (y, 0)

with respect to the decomposition R
p = R

n × R
p−n.

(ii) If f is a submersion, there exist open neighbourhoods U ⊂ M

of x and V ⊂ N of f(x) with f(U) = V and diffeomorphisms
ϕ: U → R

n and ψ: V → R
p such that

(ψ ◦ f ◦ϕ−1)(y, z) = y

with respect to the decomposition R
n = R

p × R
n−p.

A smooth map f: M → N is a diffeomorphism if it is a bijection and
has a smooth inverse. The map f is a local diffeomorphism (or étale
map) if (df)x is an isomorphism for any x ∈ M . Any bijective local
diffeomorphism is a diffeomorphism.
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A smooth map g : K → N is said to be an embedding if it is an
immersion and a topological embedding. This makes K a submanifold
of N , and T (K) a subbundle of T (N).

If K is a submanifold of N and f : M → N a smooth map, one says
that f is transversal to K if (df)x(Tx(M)) + Tf(x)(K) = Tf(x)(N) for
every x ∈ f−1(K).

For every submanifold K of N there exists an open neighbourhood
U ⊂ N of K which has the structure of a vector bundle over K, with
the inclusion K ↪→ U corresponding to the zero section. In particular,
the projection U → K of this bundle is a retraction. Such a U is called
a tubular neighbourhood of K.

Recall that, on a vector bundle E of rank n over a manifold M , one
can always choose a Riemannian structure (by using partitions of unity).
A Riemannian metric on M is a Riemannian structure on T (M). The
structure group of E can be reduced to O(n). The bundle E is called
orientable if its structure group can be reduced to SO(n). An orienta-
tion of an orientable vector bundle E is an equivalence class of oriented
trivializations of E.



1

Foliations

Intuitively speaking, a foliation of a manifold M is a decomposition of
M into immersed submanifolds, the leaves of the foliation. These leaves
are required to be of the same dimension, and to fit together nicely.

Such foliations of manifolds occur naturally in various geometric con-
texts, for example as solutions of differential equations and integrable
systems, and in symplectic geometry. In fact, the concept of a foliation
first appeared explicitly in the work of Ehresmann and Reeb, motivated
by the question of existence of completely integrable vector fields on
three-dimensional manifolds. The theory of foliations has now become
a rich and exciting geometric subject by itself, as illustrated be the fa-
mous results of Reeb (1952), Haefliger (1956), Novikov (1964), Thurston
(1974), Molino (1988), Connes (1994) and many others.

We start this book by describing various equivalent ways of defining
foliations. A foliation on a manifold M can be given by a suitable
foliation atlas on M , by an integrable subbundle of the tangent bundle
of M , or by a locally trivial differential ideal. The equivalence of all these
descriptions is a consequence of the Frobenius integrability theorem. We
will give several elementary examples of foliations. The simplest example
of a foliation on a manifold M is probably the one given by the level sets
of a submersion M → N . In general, a foliation on M is a decomposition
of M into leaves which is locally given by the fibres of a submersion.

In this chapter we also discuss some first properties of foliations, for
instance the property of being orientable or transversely orientable. We
show that a transversely orientable foliation of codimension 1 on a mani-
fold M is given by the kernel of a differential 1-form on M , and that this
form gives rise to the so-called Godbillon–Vey class. This is a class of
degree 3 in the de Rham cohomology of M , which depends only on the
foliation and not on the choice of the specific 1-form. Furthermore, we

4



1.1 Definition and first examples 5

discuss here several basic methods for constructing foliations. These in-
clude the product and pull-back of foliations, the formation of foliations
on quotient manifolds, the construction of foliations by ‘suspending’ a
diffeomorphism or a group of diffeomorphisms, and foliations associated
to actions of Lie groups.

1.1 Definition and first examples

Let M be a smooth manifold of dimension n. A foliation atlas of codi-
mension q of M (where 0 ≤ q ≤ n) is an atlas

(ϕi: Ui −→ R
n = R

n−q × R
q)i∈I

of M for which the change-of-charts diffeomorphisms ϕij are locally of
the form

ϕij(x, y) = (gij(x, y), hij(y))

with respect to the decomposition R
n = R

n−q × R
q. The charts of a

foliation atlas are called the foliation charts. Thus each Ui is divided
into plaques, which are the connected components of the submanifolds
ϕ−1
i (Rn−q × {y}), y ∈ R

q, and the change-of-charts diffeomorphisms
preserve this division (Figure 1.1). The plaques globally amalgamate

Fig. 1.1. Two foliation charts

into leaves, which are smooth manifolds of dimension n − q injectively
immersed into M . In other words, two points x, y ∈ M lie on the same
leaf if there exist a sequence of foliation charts U1, . . . , Uk and a sequence
of points x = p0, p1, . . . , pk = y such that pj−1 and pj lie on the same
plaque in Uj , for any 1 ≤ j ≤ k.

A foliation of codimension q of M is a maximal foliation atlas of M
of codimension q. Each foliation atlas determines a foliation, since it is
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included in a unique maximal foliation atlas. Two foliation atlases define
the same foliation of M precisely if they induce the same partition of
M into leaves. A (smooth) foliated manifold is a pair (M,F), where
M is a smooth manifold and F a foliation of M . The space of leaves
M/F of a foliated manifold (M,F) is the quotient space of M , obtained
by identifying two points of M if they lie on the same leaf of F . The
dimension of F is n − q. A (smooth) map between foliated manifolds
f : (M,F) → (M ′,F ′) is a (smooth) map f : M → N which preserves
the foliation structure, i.e. which maps leaves of F into the leaves of F ′.

This is the first definition of a foliation. Instead of smooth foliations
one can of course consider C r-foliations, for any r ∈ {0, 1, . . . ,∞}, or
(real) analytic foliations. Standard references are Bott (1972), Hector–
Hirsch (1981, 1983), Camacho–Neto (1985), Molino (1988) and Tondeur
(1988). In the next section we will give several equivalent definitions:
in terms of a Haefliger cocycle, in terms of an integrable subbundle of
T (M), and in terms of a differential ideal in Ω(M). But first we give
some examples.

Examples 1.1 (1) The space R
n admits the trivial foliation of codimen-

sion q, for which the atlas consists of only one chart id: R
n → R

n−q×R
q.

Of course, any linear bijection A: R
n → R

n−q × R
q determines another

one whose leaves are the affine subspaces A−1(Rn−q × {y}).
(2) Any submersion f : M → N defines a foliation F(f) of M whose

leaves are the connected components of the fibres of f . The codimension
of F(f) is equal to the dimension of N . An atlas representing F(f) is
derived from the canonical local form for the submersion f . Foliations
associated to the submersions are also called simple foliations. The foli-
ations associated to submersions with connected fibres are called strictly
simple. A simple foliation is strictly simple precisely when its space of
leaves is Hausdorff.

(3) (Kronecker foliation of the torus) Let a be an irrational real num-
ber, and consider the submersion s: R

2 → R given by s(x, y) = x − ay.
By (2) we have the foliation F(s) of R

n. Let f: R
2 → T 2 = S1 × S1 be

the standard covering projection of the torus, i.e. f(x, y) = (e2πix, e2πiy).
The foliation F(s) induces a foliation F of T 2: if ϕ is a foliation chart
for F(s) such that f |domϕ is injective, then ϕ ◦(f |domϕ)−1 is a foliation
chart for F . Any leaf of F is diffeomorphic to R, and is dense in T 2

(Figure 1.2).
(4) (Foliation of the Möbius band) Let f : R

2 → M be the stan-
dard covering projection of the (open) Möbius band: f(x, y) = f(x′, y′)
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Fig. 1.2. Kronecker foliation of the torus

precisely if x′ − x ∈ Z and y′ = (−1)x
′−xy. The trivial foliation of

codimension 1 of R
2 induces a foliation F of M , in the same way as in

(3). All the leaves of F are diffeomorphic to S1, and they are wrapping
around M twice, except for the ‘middle’ one: this one goes around only
once (Figure 1.3).

Fig. 1.3. Foliation of the Möbius band

(5) (The Reeb foliation of the solid torus and of S3) One can also define
the notion of a foliation of a manifold with boundary in the obvious way;
however, one usually assumes that the leaves of such a foliation behave
well near the boundary, by requiring either that they are transversal to
the boundary, or that the connected components of the boundary are
leaves. An example of the last sort is the Reeb foliation of the solid
torus, which is given as follows.

Consider the unit disk D = {z | z ∈ C, |z| ≤ 1 }, and define a submer-
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sion f: Int(D) × R → R by

f(z, x) = e
1

1−|z|2 − x .

So we have the foliation F(f) of Int(D) × R, which can be extended to
a foliation of the cylinder D × R by adding one new leaf: the boundary
S1 × R. Now D × R is a covering space of the solid torus X = D × S1

in the canonical way, and the foliation of D × R induces a foliation of
the solid torus. We will denote this foliation by R. The boundary torus
of this solid torus is a leaf of R. Any other leaf of R is diffeomorphic to
R
2, and has the boundary leaf as its set of adherence points in X. The

Reeb foliation of X is any foliation F of X of codimension 1 for which
there exists a homeomorphism of X which maps the leaves of F onto
the leaves of R (Figure 1.4).

Fig. 1.4. The Reeb foliation of the solid torus

The three-dimensional sphere S3 can be decomposed into two solid
tori glued together along their boundaries, i.e.

S3 ∼= X ∪∂X X .

Since ∂X is a leaf of the Reeb foliation of X, we can glue the Reeb
foliations of both copies of X along ∂X as well. This can be done so
that the obtained foliation of S3 is smooth. This foliation has a unique
compact leaf and is called the Reeb foliation of S3.

Exercise 1.2 Describe in each of these examples explicitly the space
of leaves of the foliation. (You will see that this space often has a very
poor structure. Much of foliation theory is concerned with the study of
‘better models’ for the leaf space.)



1.2 Alternative definitions of foliations 9

1.2 Alternative definitions of foliations

A foliation F of a manifold M can be equivalently described in the
following ways (here n is the dimension of M and q the codimension of
F).

(i) By a foliation atlas (ϕi : Ui → R
n−q × R

q) of M for which
the change-of-charts diffeomorphisms ϕij are globally of the form
ϕij(x, y) = (gij(x, y), hij(y)) with respect to the decomposition
R
n = R

n−q × R
q.

(ii) By an open cover (Ui) of M with submersions si: Ui → R
q such

that there are diffeomorphisms (necessarily unique)

γij: sj(Ui ∩ Uj) −→ si(Ui ∩ Uj)

with γij ◦ sj |Ui∩Uj
= si|Ui∩Uj

. (The diffeomorphisms γij satisfy
the cocycle condition γij ◦ γjk = γik. This cocycle is called the
Haefliger cocycle representing F .)

(iii) By an integrable subbundle E of T (M) of rank n − q. (Here
integrable (or involutive) means that E is closed under the Lie
bracket, i.e. if X,Y ∈ X(M) are sections of E, then the vector
field [X,Y ] is also a section of E.)

(iv) By a locally trivial differential (graded) ideal J =
⊕n

k=1 J k of
rank q in the differential graded algebra Ω(M). (An ideal J is
locally trivial of rank q if any point of M has an open neigh-
bourhood U such that J |U is the ideal in Ω(M)|U generated
by q linearly independent 1-forms. An ideal J is differential if
dJ ⊂ J .)

Before we go into details of why these descriptions of the concept of
foliation are equivalent, we should point out that the bundle E of (iii)
consists of tangent vectors to M which are tangent to the leaves, while
a differential k-form is in the ideal J of (iv) if it vanishes on any k-tuple
of vectors which are all tangent to the leaves.

Ad (i): Any foliation atlas (ϕi: Ui → R
n−q×R

q) of F has a refinement
which satisfies the condition in (i). To see this, we may first assume that
(Ui) is a locally finite cover of M . Next, we may find a locally finite
refinement (Vk) of (Ui) such that Vk ∪ Vl is contained in some Ui for
any non-disjoint Vk and Vl. As any Vk is contained in a Uik , we may
take ψk = ϕik |Vk

. Further we may choose each Vk so small that for any
Uj ⊃ Vk, the change-of-charts diffeomorphism ϕj ◦ψ−1

k is globally of the
form (gjk(x, y), hjk(y)), and that hjk is an embedding. This refinement
(ψk) of (ϕi) is a foliation atlas of M which satisfies the condition in (i).
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Ad (ii): If (Ui, si, γij) is a Haefliger cocycle on M , choose an atlas
(ϕk: Vk → R

n) so that each Vk is a subset of an Uik and ϕk renders sik
in the normal form for a submersion: it is surjective, and there exists a
diffeomorphism ψk: sik(Vk) → R

q such that ψk ◦ sik = pr2 ◦ϕk. This is
a foliation atlas of the form in (i): if (x, y) ∈ ϕk(Vk ∩ Vl) ⊂ R

n−q × R
q,

we have

(pr2 ◦ϕl ◦ϕ−1
k )(x, y) = (ψl ◦ sil ◦ϕ−1

k )(x, y)

= (ψl ◦ γilik ◦ sik ◦ϕ−1
k )(x, y)

= (ψl ◦ γilik ◦ψk)(y) .
Conversely, if (ϕi: Ui → R

n−q × R
q) is a foliation atlas of the form in

(i), take si = pr2 ◦ϕi and γij = hij . This gives a Haefliger cocycle on
M which represents the same foliation.

Ad (iii): Let us assume that the foliation is given by a foliation atlas
(ϕi: Ui → R

n−q × R
q). Define a subbundle E of T (M) locally over Ui

by

E|Ui
= Ker(d(pr2 ◦ϕi)) ,

i.e. by the kernel of the R
q-valued 1-form α = d(pr2 ◦ϕi). For any

such a 1-form and any vector fields X, Y on Ui we have 2dα(X,Y ) =
X(α(Y )) − Y (α(X)) − α([X,Y ]). Since our α is closed, it follows that

α([X,Y ]) = X(α(Y )) − Y (α(X)) .

Using this it is clear that E is an integrable subbundle of T (M) of
codimension q.

The bundle E is uniquely determined by the foliation F : a tangent
vector ξ ∈ Tx(M) is in E precisely if ξ is tangent to the leaf of L through
x. The bundle E is called the tangent bundle of F , and is often denoted
by T (F). A section of T (F) is called a vector field tangent to F . The
Lie algebra Γ(T (F)) of sections of T (F) will also be denoted by X(F).

Conversely, an integrable subbundle E of codimension q of T (M) can
be locally integrated (Frobenius theorem, see Appendix of Camacho–
Neto (1985)): for any point x ∈ M there exist an open neighbourhood
U ⊂ M and a diffeomorphism ϕ : U → R

n−q × R
q such that E|U =

Ker(d(pr2 ◦ϕ)). By using these kinds of diffeomorphisms as foliation
charts, one obtains a foliation atlas of the foliation.

Ad (iv): For any subbundle E of T (M), define the (graded) ideal
J =

⊕n
k=1 J k in Ω(M) as follows: for ω ∈ Ωk(M),

ω ∈ J k if and only if
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ω(X1, . . . , Xk) = 0 for any sections X1, . . . , Xk of E.

Note that J is locally trivial of rank q, i.e. it is locally generated
by q linearly independent 1-forms: Choose a local frame X1, . . . , Xn of
T (M)|U such that X1, . . . , Xn−q form a frame of E|U . There is the dual
frame of differential 1-forms ω1, . . . , ωn of T (M)∗|U , and the linearly
independent 1-forms ωn−q+1, . . . , ωn clearly generate the ideal J . Con-
versely, any locally trivial ideal J of rank q determines a subbundle E

of T (M) of rank n− q, by the formula above (for k = 1).
We claim that under this correspondence,

J is differential if and only if E is integrable.

In fact, this is immediate from the definition of the exterior derivative:

dω(X0, . . . , Xk) =
1

k + 1

∑
0≤i≤k

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))

+
1

k + 1

∑
0≤j<l≤k

(−1)j+lω([Xj ,Xl],X0, . . . , X̂j , . . . , X̂l, . . . , Xk) .

Remarks. (1) Let J be a locally trivial ideal of rank q in Ω(M). If J
is differential and locally (over U) generated by ω1, . . . , ωq, then

dωi =
q∑

j=1

αij ∧ ωj

for some αij ∈ Ω1(M)|U . In particular,

dωi ∧ ω1 ∧ · · · ∧ ωq = 0 .

Conversely, if we have an open cover (Ul) of M such that for any l the
restriction J |Ul

is generated by linearly independent 1-forms ωl1, . . . , ω
l
q

satisfying

dωli ∧ ωl1 ∧ · · · ∧ ωlq = 0

for any i, then J is differentiable. Indeed, this implies that

dωli =
q∑

j=1

αlij ∧ ωlj

for some αlij ∈ Ω1(M)|Ul
; to see this, one should locally complete

ωl1, . . . , ω
l
q to a frame and compute αlij locally, and finally obtain αlij

on Ul using partition of unity (exercise: fill in the details).
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(2) A one-dimensional subbundle E of T (M) (i.e. a line field) is clearly
integrable, hence any line field on M defines a foliation of M of codi-
mension n− 1.

(3) If ω is a nowhere vanishing 1-form on M , it defines a foliation of
codimension 1 of M precisely if it is integrable, i.e. if

dω ∧ ω = 0 .

Note that if dimM = 2 then any 1-form ω on M is integrable.
In particular, any closed 1-form on M is integrable. For example, if

ω = df for a smooth map f : M → R without critical points, this gives
exactly the foliation given by the submersion f .

Note that if H1
dR(M) = 0 (e.g. if π1(M) is finite) then any closed 1-

form ω on M is exact: ω = df . If ω is nowhere vanishing, the function f

has no critical points. Hence the foliation given by ω is the foliation given
by the submersion f . For example, the Reeb foliation on S3, which is
clearly not given by a submersion, is hence not given by a closed 1-form.

In general, the integrability condition dω ∧ ω = 0 for a nowhere van-
ishing 1-form ω implies that locally ω = gdf for a submersion f which
locally defines the foliation.

(4) Let (M,F) and (M ′,F ′) be foliated manifolds. Then a (smooth)
map f: M → M ′ preserves the foliation structure (hence it is a map of
foliated manifolds) if and only if df(T (F)) ⊂ T (F ′).

Let (M,F) be a foliated manifold and T (F) the corresponding tangent
bundle of F . We say that F is orientable if the tangent bundle T (F)
is orientable, and that F is transversely orientable if its normal bundle
N(F) = T (M)/T (F) is orientable. An orientation of F is an orientation
of T (F), and a transverse orientation of F is an orientation of N(F).

Exercises 1.3 (1) Show that a foliation F is transversely orientable if
and only if it can be represented by a Haefliger cocycle (Ui, si, γij) with
the property that

det(dγij)y > 0

for any y ∈ sj(Ui ∩ Uj).
(2) Show that a foliation of codimension 1 is given by a nowhere

vanishing integrable 1-form (or a nowhere vanishing vector field) if and
only if it is transversely orientable.

(3) Determine which of the foliations in Examples 1.1 are orientable
and which are transversely orientable.
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(4) Find an example of a foliation of dimension 1 of the Klein bottle,
which is neither orientable nor transversely orientable.

Let F be a transversely orientable foliation of codimension 1 on M .
Hence F is given by an integrable nowhere vanishing differential 1-form
ω on M . The form ω is determined uniquely up to the multiplication
by a nowhere vanishing smooth function on M .

We have mentioned above that the condition dω ∧ ω = 0 implies that
dω = α ∧ ω. The form α is not uniquely determined, but we shall see
that

(i) dα ∧ ω = 0 and d(α ∧ dα) = 0,
(ii) the class gv(ω) = [α∧dα] ∈ H3

dR(M) is independent of the choice
of α, and

(iii) gv(ω) = gv(hω) for any nowhere vanishing smooth function h on
M .

It follows the class gv(ω) depends only on the foliation F and not on
the particular choice of ω or α. This class is called the Godbillon–Vey
class of the foliation F , and is denoted by

gv(F) ∈ H3
dR(M) .

Let us now prove the properties (i), (ii) and (iii).
(i) Since dω = α ∧ ω, we have

0 = ddω

= d(α ∧ ω)

= dα ∧ ω − α ∧ dω

= dα ∧ ω − α ∧ α ∧ ω

= dα ∧ ω .

As before, this implies dα = γ ∧ ω for some 1-form γ. In particular,

d(α ∧ dα) = dα ∧ dα = γ ∧ ω ∧ γ ∧ ω = 0 .

(ii) Let α′ ∈ Ω1(M) be another form satisfying dω = α′∧ω. It follows
that (α′ − α) ∧ ω = 0, so α′ − α = fω for a smooth function f on M .
Hence

α′ ∧ dα′ = (α + fω) ∧ dα′ = α ∧ dα′ + fω ∧ dα′ .

Note that ω ∧ dα′ = 0 by (i). Thus

α′ ∧ dα′ = α ∧ dα′
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= α ∧ d(α + fω)

= α ∧ dα + α ∧ d(fω)

= α ∧ dα− d(α ∧ fω) .

The last equation follows from d(α ∧ fω) = dα ∧ fω − α ∧ d(fω) and
part (i).

(iii) First we compute

d(hω) = dh ∧ ω + hdω

=
1
h
dh ∧ hω + α ∧ hω

= (d(log |h|) + α) ∧ hω .

So with α′′ = d(log |h|) + α we have gv(hω) = [α′′ ∧ dα′′]. But

α′′ ∧ dα′′ = (d(log |h|) + α) ∧ dα = α ∧ dα + d(log |h| + dα) .

1.3 Constructions of foliations

In this section we list some standard constructions of foliations.

Product of foliations. Let (M,F) and (N,G) be two foliated man-
ifolds. Then there is the product foliation F × G on M × N , which
can be constructed as follows. If F is represented by a Haefliger cocycle
(Ui, si, γij) on M and G is represented by a Haefliger cocycle (Vk, s′k, γ

′
kl)

on N , then F × G is represented by the Haefliger cocycle

(Ui × Vk, si × s′k, γij × γ′
kl)

on M×N . We have codim(F×G) = codimF+codimG and T (F×G) =
T (F) ⊕ T (G) ⊂ T (M) ⊕ T (N) = T (M ×N).

Pull-back of a foliation. Let f : N → M be a smooth map and F a
foliation of M of codimension q. Assume that f is transversal to F : this
means that f is transversal to all the leaves of F , i.e. for any x ∈ N we
have

(df)x(Tx(N)) + Tf(x)(F) = Tf(x)(M) .

Then we get a foliation f∗(F) of N as follows.
Suppose that F is given by the Haefliger cocycle (Ui, si, γij) on M .

Put Vi = f−1(Ui) and s′i = si ◦ f |Vi
. The maps s′i are submersions. To

see this, take any x ∈ Vi. We have to show that

(ds′i)x = (dsi)f(x) ◦(df)x
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is surjective. But (dsi)f(x) is surjective and trivial on Tf(x)(F), hence
it factors through the quotient w: Tf(x)(M) → Tf(x)(M)/Tf(x)(F) as a
surjective map. Also w ◦(df)x is surjective since f is transversal to the
leaves, and hence (ds′i)x is surjective as well. The foliation f∗(F) is now
given by the Haefliger cocycle (Vi, s′i, γij) on N . We have codim f∗(F) =
codimF and T (f∗(F)) = df−1(T (F)).

Transverse orientation cover of a foliation. For a foliated manifold
(M,F) put

toc(M,F) = {(x,O) |x ∈ M, O orientation of Nx(F)} .

There is an obvious smooth structure on toc(M,F) such that the pro-
jection p: toc(M,F) → M is a twofold covering projection, called the
transverse orientation cover of the foliated manifold (M,F). The lift
toc(F) = p∗(F) of F to the transverse orientation cover is a transversely
orientable foliation.

Orientation cover of a foliation. For any foliated manifold (M,F)
there is also a smooth structure on

oc(M,F) = {(x,O) |x ∈ M, O orientation of Tx(F)}

such that the projection p: toc(M,F) → M is a twofold covering projec-
tion. This covering space is called the orientation cover of the foliated
manifold (M,F). The lift oc(F) = p∗(F) of F to the orientation cover
is an orientable foliation.

Exercises 1.4 (1) Show that if F is a foliation of an orientable manifold
M then F is orientable if and only if F is transversely orientable.

(2) Find an example of non-orientable foliation of dimension 1 on the
torus. What is the orientation cover of that foliation?

(3) By using the (transverse) orientation cover, show that if a compact
manifold M carries a foliation of dimension 1 (or of codimension 1) then
the Euler characteristic of M is 0. In particular, the only closed surfaces
which admit a foliation of dimension 1 are the torus and the Klein bottle.

Quotient foliation. Let (M,F) be a foliated manifold, and let G be a
group acting freely and properly discontinuously by diffeomorphisms on
M , so that the quotient manifold M/G is Hausdorff. We assume that
the foliation F is invariant under this action of G, which means that any
diffeomorphism g: M → M in G maps leaves to leaves, or equivalently,
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that dg(T (F)) = T (F) for any g ∈ G. Then F induces a foliation F/G

of M/G in the following way.
First denote by p: M → M/G the quotient map, which is a covering

projection. Let (ϕi: Ui → R
n−q ×R

q) be a foliation atlas of F . We may
assume that p|Ui

is injective for any i, by replacing (ϕi) by a refinement
if necessary. Then

(ϕi ◦(p|Ui
)−1: p(Ui) −→ R

n−q × R
q)

is a foliation atlas representing F/G. If L is a leaf of F , then the isotropy
group GL = {g ∈ G | g(L) = L} of L acts smoothly on L, and the orbit
manifold L/GL can be identified with a leaf of F/G via the natural
immersion of L/GL into M/G. We have codim(F/G) = codim(F) and
T (F/G) = dp(T (F)). Observe that we already used this construction
in Example 1.1 (3).

Suspension of a diffeomorphism. This is another example of a quo-
tient foliation. Let f : F → F be a diffeomorphism of a manifold F .
The space R×F has the obvious foliation of dimension 1, by the leaves
R × {x}, x ∈ F . The smooth action of Z, defined on R × F by

(k, (t, x)) �→ (t + k, fk(x)) ,

k ∈ Z, t ∈ R, x ∈ F , is properly discontinuous and it maps leaves to
leaves. Thus we obtain the quotient foliation Sf on the (Hausdorff)
manifold (R × F )/Z = R ×Z F . The foliated manifold (R ×Z F,Sf ) is
called the suspension of the diffeomorphism f .

Foliation associated to a Lie group action. We first recall some
terminology. For a smooth action G × M → M , (g, x) �→ gx, of a Lie
group G on a smooth manifold M , the isotropy (or stabilizer) subgroup
at x ∈ M is the subgroup Gx = {g ∈ G | gx = x}. It is a closed subgroup
of G, hence itself a Lie group. The orbit of x is Gx = {gx | g ∈ G}. It can
be viewed as a manifold injectively immersed into M , via the immersion
G/Gx → M with the image Gx.

We say that the action of G on M is foliated if dim(Gx) is a constant
function of x. In this case the connected components of the orbits of
the action are leaves of a foliation of M . As an integrable subbundle of
T (M), this foliation can simply be described in terms of the Lie algebra
g of G, namely as the image of the derivative of the action, which is a
map of vector bundles g ×M → T (M) of constant rank.

In the case G = R, a smooth R-action on M is called a flow on M .
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To such an action µ: R×M → M one can associate a vector field X on
M by

X(x) =
∂µ(t, x)

∂t

∣∣∣∣
t=0

.

A non-trivial flow µ is foliated precisely if its associated vector field X

vanishes nowhere; in this case the foliation with the orbits of µ is the
foliation given by the line field corresponding to X.

Exercise 1.5 Let R ⊂ M × M be an equivalence relation on a mani-
fold M . By Godement’s theorem (see Serre (1965)), M/R is a smooth
manifold whenever R is a submanifold of M × M and pr2 : R → M

is a submersion. Formulate and prove a result which gives sufficient
conditions for a foliation F on M to induce a foliation on M/R.

Flat bundles. The following method of constructing foliations is re-
lated to the previous one of quotient foliations, and prepares the reader
for the treatment of Reeb stability in Section 2.3.

Let p: E → M be a (smooth) fibre bundle over a connected manifold
M . Then p is in particular a submersion, and thus defines the foliation
F(p) of E whose leaves are the connected components of the fibres of p,
i.e. the leaves are ‘vertical’.

Sometimes it is also possible to construct a foliation of E with ‘hori-
zontal’ leaves, so that p maps each leaf to M as a covering projection.
The following construction captures these examples.

Let G = π1(M,x) be the fundamental group of M at a base-point
x ∈ M , and let M̃ be the universal cover of M ; or, more generally,
suppose that G is any group acting freely and properly discontinuously
on a connected manifold M̃ such that M̃/G = M . We will write the
action of G on M̃ as a right action. Suppose also that there is a left
action by G on a manifold F . Now form the quotient space

E = M̃ ×G F ,

obtained from the product space M̃×F by identifying (yg, z) with (y, gz)
for any y ∈ M̃ , g ∈ G and z ∈ F . Thus E is the orbit space of M̃×F with
respect to a properly discontinuous action of G. It is also Hausdorff, so
it is a manifold. The projection pr1: M̃ ×F → M̃ induces a submersion
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π: E → M , so we have the following commutative diagram:

M̃ × F

pr1

E = M̃ ×G F

π

M̃ M

The map π : E → M has the structure of a fibre bundle over M with
fibre F .

Exercise 1.6 Show that the fibre bundles which can be obtained in this
way are exactly the fibre bundles with discrete structure group.

The foliation F(pr2) of M̃ × F , which is given by the submersion
pr2: M̃ ×F → F , is invariant under the action of G and hence we obtain
the quotient foliation F = F(pr2)/G on E. If z ∈ F and Gz ⊂ G is
the isotropy group at z of the action by G on F , then the leaf of E

obtained from the leaf M̃ × {z} is naturally diffeomorphic to M̃/Gz,
and π restricted to this leaf is the covering M̃/Gz → M of M .

The suspension of a diffeomorphism discussed above is a special case
of this construction.



2

Holonomy and stability

In this chapter, we will present the stability theorems for foliations,
which were proved by Ehresmann and Reeb when the theory of foliated
manifolds was first developed in the 1950s. These theorems express that,
under certain conditions, all the leaves near a given leaf look identical.
Central to these theorems is the notion of holonomy. The basic idea of
holonomy goes back to Poincaré, in his study of the ‘first return’ map
of vector fields. For a given point x on a manifold equipped with a
foliation of codimension q, one may consider how the leaves near that
point intersect a small q-dimensional disk which is transversal to the
leaves and contains the given point. The ways in which these leaves
depart from this disk and return to it are encoded in a group, called the
holonomy group at x. It is a quotient group of the fundamental group of
the leaf through x. This group contains a lot of information about the
structure of the foliation around the leaf through x, especially if that leaf
is compact. For example, if this group is finite then all the nearby leaves
must also be compact, and the foliation locally looks like one which is
obtained by the flat bundle construction from the previous chapter. This
is the ‘local’ Reeb stability theorem, discussed in Section 2.3 below. In
Section 2.5, we will present a ‘global’ stability theorem, which applies
to foliations of codimension 1, and states that under certain conditions,
the holonomy group has to be trivial and the foliation has to be simple
(in the technical sense of being given by the fibres of a submersion). In
Section 2.6 we also give Thurston’s more refined version of these stability
theorems.

The notion of holonomy is closely related to that of a ‘transverse’ Rie-
mannian structure on the foliation. Any manifold can be equipped with
a Riemannian metric, but it is a special property for a foliated mani-
fold to be equipped with a Riemannian metric for which the length of

19
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tangent vectors or curves which are transversal to the leaves is invariant
under the holonomy group. In this case, the holonomy group can be
interpreted as a group of isometries of a transversal q-dimensional disk
as above. Riemannian metrics with this extra property were isolated
and studied by Reinhart (1959), who called them ‘bundle-like metrics’.

Foliated manifolds equipped with such a bundle-like metric are called
‘Riemannian foliations’. Such foliations will be studied in more detail in
Chapter 4, but we already introduce them here, because their properties
are intimately related to those of the holonomy group. For example, any
Riemannian foliation with compact leaves necessarily has finite holon-
omy groups and satisfies the conditions of the local Reeb stability theo-
rem. Conversely, any foliation with finite holonomy groups and compact
leaves can be equipped with the structure of a Riemannian foliation.

For such a foliation with finite holonomy and compact leaves, the lo-
cal Reeb stability theorem implies that the space of leaves locally has
the same structure as that of the space of orbits of a finite group act-
ing on a Euclidean open ball. Spaces with such a local structure occur
in many other contexts as well, and were studied by Satake under the
name ‘V-manifolds’, and later by Thurston who called them ‘orbifolds’.
In Section 2.4 we make explicit the relation between orbifolds and foli-
ations, and show among other things that, conversely, any orbifold can
be obtained as the space of leaves of a foliation with compact leaves and
finite holonomy.

2.1 Holonomy

The notion of holonomy uses that of a germ of a locally defined diffeo-
morphism. Let M and N be manifolds, and x ∈ M and y ∈ N any
points. A germ of a map from x to y is an equivalence class of maps
f: U → V from an open neighbourhood U of x to an open neighbourhood
V of y with y = f(x). Two such maps f: U → V and f ′: U ′ → V ′ deter-
mine the same germ from x to y if there exists an open neighbourhood
W ⊂ U ∩U ′ of x such that f |W = f ′|W . We denote the germ of f from
x to y (or the germ of f at x) by fx or germx(f): (M,x) → (N, y). Note
that germs fx: (M,x) → (N, y) and gy: (N, y) → (O, z) can be composed
into gy ◦ fx = (g ◦ f |domg)x : (M,x) → (O, z), that there is an identity
germ idx: (M,x) → (M,x). A germ of a (locally defined) diffeomorphism
from x to y is a germ at x of a map f: U → V with f(x) = y as above
which is a diffeomorphism. Note that each germ of a diffeomorphism
fx: (M,x) → (N, y) has an inverse f−1

x = (f−1)x: (N, y) → (M,x). In
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particular, the germs of diffeomorphisms (M,x) → (M,x) form a group,
denoted by

Diffx(M) .

We denote by Diff+
x (M) the subgroup of Diffx(M) of germs of diffeo-

morphisms which preserve orientation at x.
Now let (M,F) be a foliated manifold, with q = codim(F), and let L

be a leaf of F . Let x, y ∈ L be two points on this leaf, and let T and S

be transversal sections at x and y (i.e. submanifolds of M transversal to
the leaves of F , with x ∈ T and y ∈ S). To any path α from x to y in
L we will associate a germ of a diffeomorphism

hol(α) = holS,T (α): (T, x) −→ (S, y) ,

called the holonomy of the path α in L with respect to the transversal
sections T and S, as follows.

First assume that there exists a (domain of a) foliation chart U of F
such that α([0, 1]) ⊂ U . In particular, the points x and y lie on the same
plaque in U . Then we can find a small open neighbourhood A of x in
T with A ⊂ U on which we can define a smooth map f : A → S which
satisfies the following: f(x) = y, and for any x′ ∈ A the point f(x′) lies
on the same plaque in U as x′. Clearly we can choose A so small that f
is a diffeomorphism onto its image. Then we define

holS,T (α) = germx(f) .

Clearly this definition does not depend on the choice of U and f . Observe
that if β is another path in L∩U from x to y then holS,T (α) = holS,T (β).

Now we shall consider the general case. Choose a sequence of foliation
charts U1, . . . , Uk so that α([ i−1

k , ik ]) ⊂ Ui. Let αi be a path in L ∩ Ui
from α( i−1

k ) to α( ik ), and choose transversal sections Ti of F at α( ik ),
with T0 = T and Tk = S (Figure 2.1). Now define

holS,T (α) = holTk,Tk−1(αk) ◦ · · · ◦holT1,T0(α1) .

Again it is easy to see that this definition is independent of the choice of
the sequence U1, . . . , Uk of foliation charts, so it really depends only on
α and the transversal sections T and S. The germ holS,T (α) may again
be represented by a diffeomorphism f : A ⊂ T → S with the property
that f(x′) lies on the same leaf as an x′ ∈ A. Sometimes we will denote
such a diffeomorphism f by holS,T (α) as well.

Let us list some basic properties of holonomy:
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Fig. 2.1. Holonomy (k = 4)

(i) If α is a path in L from x to y and β is another path in L from y

to z, and if T , S and R are transversal sections of F at x, y and
z respectively, then

holR,T (βα) = holR,S(β) ◦ holS,T (α) .

Here βα denotes the concatenation of α and β.
(ii) If α and β are homotopic paths in L (with fixed end-points) from

x to y and if T and S are transversal sections at x respectively
y, then

holS,T (α) = holS,T (β) .

Hence we can regard holS,T as being defined on the homotopy
classes of paths in L from x to y. (To see this, first observe that
if β is very close to α one can use the same sequence of foliation
charts U1, . . . , Uk to define both holS,T (α) and holS,T (β), which
clearly implies that these two germs are equal. The general case
follows by decomposing the homotopy between α and β into a
sequence of ‘small’ ones.)

(iii) Let α be a path in L from x to y, let T and T ′ be two transversal
sections at x and let S and S′ be two transversal sections at y.
Then

holS
′,T ′

(α) = holS
′,S(ȳ) ◦ holS,T (α) ◦ holT,T

′
(x̄) .

Here x̄ denotes the constant path with image x. In this sense, the
holonomy is independent of the choice of the transversal sections.

From these basic properties, we see in particular that for a transversal
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section T at x ∈ L one obtains the map

holT = holT,T : π1(L, x) −→ Diffx(T )

which is a group homomorphism. Since Diffx(T ) ∼= Diff0(Rq) and be-
cause of (iii) above, we obtain a homomorphism of groups

hol: π1(L, x) −→ Diff0(Rq)

which is called the holonomy homomorphism of L, and is determined
uniquely up to a conjugation in Diff0(Rq). In particular, the image
Hol(L, x) of hol, which is called the holonomy group of L, is determined
up to an inner automorphism of Diff0(Rq). Thus we have the exact
sequence

1 K π1(L, x) hol Hol(L, x) 1 ,

where K is the kernel of hol.
One says that two paths α and β from x to y in L have the same

holonomy if hol(αβ−1) = 1. This is an equivalence relation, which is
well-defined also on the homotopy classes of paths in L from x to y.
The equivalence class of α with respect to this relation is also referred
to as the holonomy class of α.

By taking the differential at 0 of a (germ of a) diffeomorphism, one
obtains a homomorphism of groups d0 : Diff0(Rq) → GL(q,R). The
composition

dhol = d0 ◦hol: π1(L, x) −→ GL(q,R)

is called the linear holonomy homomorphism of L, while its image is
called the linear holonomy group of L and is denoted by dHol(L, x).

Exercises 2.1 (1) Check that Hol(L, x) (and hence also dHol(L, x)) is
independent of the choice of the base-point x up to a conjugation in
Diff0(Rq). (For this reason, one often omits the base-point from the
notation.)

(2) Show that if F is transversely orientable then the holonomy group
Hol(L, x) of a leaf of F is a subgroup of Diff+

0 (Rq).

Examples 2.2 You should try to see yourself what the group Hol(L, x)
looks like in any example you meet.

(1) If the leaf L is simply connected, the holonomy group of L is
trivial.
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(2) For a leaf L of the foliation F(f) given by a submersion f: M → N

the holonomy group of L is trivial.
(3) For the foliation of the Möbius band (Example 1.1 (4)), whose

leaves are circles, each leaf has trivial holonomy, except the central one
whose holonomy group is Z2 = Z/2Z.

(4) Consider the Reeb foliation on the solid torus. All the leaves are
simply connected except for the boundary leaf T 2. It is easy to see that
the definition of holonomy still makes sense for a boundary leaf, except
that a transversal section at a point of the leaf has the boundary as well.
For example, in our case we can choose that the transversal section is
diffeomorphic to (and identified with) the interval [0,∞). Now if α and β

are the generators of the fundamental group of the boundary torus, one
has hol(α) = 1, while hol(β) is a germ from 0 to 0 of a diffeomorphism
f: [0,∞) → [0,∞) with f(t) < t for any t > 0.

The Reeb foliation on S3 has one compact leaf T 2, and the holonomy
group of this leaf is Z⊕Z. For α and β as above hol(α)(t) and hol(β)(t)
are germs from 0 to 0 of diffeomorphisms g, h: R → R such that

g(t) < t for t < 0 ,

g(t) = t for t ≥ 0 ,

and
h(t) = t for t ≤ 0 ,

h(t) < t for t > 0 .

Exercises 2.3 (1) If π1(M) acts on F we get a foliation on M̃×π1(M)F =
E; see Section 1.3. The space E is a fibre bundle over M with fibre F

which is a transversal section of the foliation:

M̃ × F
p

E = M̃ ×π1(M) F

M̃ M

If L is a leaf through p(y, z) then L ∼= M̃/π1(M)z where π1(M)z is the
isotropy at z of the action of π1(M) on F . Show that Hol(L, p(y, z)) is
the image of the restriction of the action of π1(M) to π1(M)z, as a map
π1(M)z → Diffz(F ).

(2) Let G act on M and let F be a foliation of M invariant under the
action. Let L be a leaf of F and let L′ be the corresponding leaf of the
quotient foliation F/G (see Section 1.3). Express the holonomy of L′ in
terms of the holonomy of L and of the action of G.
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(3) Let (M,F) be a foliated manifold of codimension q, L a leaf of
F , α : [0, 1] → L a path, and let T and S be transversal sections at
α(0) and α(1) respectively, and fix an embedding Z0: R

q → T for which
Z0(0) = α(0).

Now consider the mappings

Z: [0, 1] ×B −→ M

with the following properties:

(i) B is an open disk in R
q centred at 0,

(ii) Z(0, - ) = Z0|B and Z(1, B) ⊂ S,
(iii) Z(t, - ) is a smooth embedding transversal to F , for any t ∈ [0, 1],
(iv) αy = Z( - , y) is a path in a leaf Ly, for any y ∈ B, and α0 = α.

Show that such a map Z exists. Observe that holS,T (α)(Z(0, y)) =
Z(1, y). Show that if Z ′ : [0, 1] × B′ → M is another such map, then
Z( - , y) and Z ′( - , y) are in the same homotopy class in Ly with fixed
end-points, for any y close to 0.

2.2 Riemannian foliations

The aim of this section is to present a very brief introduction to Rie-
mannian foliations.

First let us introduce some notations. Let M be a manifold of dimen-
sion n. A symmetric C∞(M)-bilinear form

g: X(M) × X(M) −→ C∞(M)

is said to be positive if it satisfies g(X,X) ≥ 0 for any X ∈ X(M).
Such a form induces a positive bilinear form gx on the tangent space
Tx(M), at any point x ∈ M . The kernel Ker(gx) is the linear subspace
{ξ ∈ Tx(M) | gx(ξ, Tx(M)) = 0} of Tx(M). The Lie derivative LXg of g
in the direction of a vector field X ∈ X(M) is the symmetric C∞(M)-
bilinear form on X(M) given by

LXg(Y,Z) = X(g(Y,Z)) − g([X,Y ], Z) − g(Y, [X,Z]) .

Let F be a foliation of codimension q of the manifold M . A transverse
metric on (M,F) is a positive C∞(M)-bilinear form g on X(M) such
that

(i) Ker(gx) = Tx(F) for any x ∈ M , and
(ii) LXg = 0 for any vector field X on M tangent to F .



26 Holonomy and stability

A foliation F of M together with a transverse metric g on (M,F) is
called a Riemannian foliation of M .

Remark 2.4 Note that the condition (i) means exactly that g is the
pull-back of a Riemannian structure on the normal bundle N(F) along
the standard projection T (M) → N(F). Furthermore we note that (i)
alone implies that Tx(F) ⊂ Ker((LXg)x) for any vector field X tangent
to F (i.e. any section of T (F)) and any x ∈ M .

To understand the condition (ii), which is clearly local, consider a
surjective foliation chart ϕ = (x1, . . . , xn−q, y1, . . . , yq): U → R

n−q × R
q

of F . In this chart, the form g is determined by the functions

gij = g

(
∂

∂yi
,

∂

∂yj

)
.

Now if X is a vector field on M tangent to F , then [X, ∂
∂yi

] is again a
section of T (F)|U and therefore

LXg

(
∂

∂yi
,

∂

∂yj

)
= X(gij) .

Hence LXg|U = 0 for any such X if and only if

∂gij
∂xk

= 0

for i, j = 1, . . . , q and k = 1, . . . , n− q. In other words, the functions gij
are constant along the plaques in U , i.e. they are functions of the co-
ordinates y1, . . . , yq. Equivalently, g|U is the pull-back of a Riemannian
metric on R

q along the submersion pr2 ◦ϕ: U → R
q.

Let (F , g) be a Riemannian foliation of M . If T is a transversal section
of (M,F), the restriction g|T is a Riemannian metric on T . So any
transversal section of a Riemannian foliation has a natural Riemannian
structure.

For a given foliation F on M , a Riemannian structure on the normal
bundle of F determines a transverse metric if and only if this struc-
ture is holonomy invariant. One half of this is stated in the following
proposition, the other half in Remark 2.7 (2).

Proposition 2.5 Let (F , g) be a Riemannian foliation of M . Let L be
a leaf of F , α a path in L, and let T and S be transversal sections of F
with α(0) ∈ T and α(1) ∈ S. Then

holS,T (α): (T, α(0)) −→ (S, α(1))
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is the germ of an isometry.

Proof We have to prove that h = holS,T (α) preserves the metric. By
the definition of holonomy, we can assume that α is inside a surjective
foliation chart ϕ = (x1, . . . , xn−q, y1, . . . , yq): U → R

n−q × R
q of F and

that T, S ⊂ U . We can also assume without loss of generality that
ϕ(T ) ⊂ {0} × R

q, so that the vector fields ∂
∂yi

|T form a frame for the
tangent bundle of T . Furthermore let us assume that the holonomy
diffeomorphism h: T → S is defined on all of T . By the definition of h
we have

yi ◦h = yi|T
for i = 1, . . . , q. Therefore ∂(yi ◦h)

∂yj
(p) = δij for i, j = 1, . . . , q, so

dhp

(
∂

∂yi
(p)

)
∈ ∂

∂yi
(h(p)) + Th(p)(F)

for any p ∈ T . Here we view Th(p)(S) as a subspace of Th(p)(M). In
particular,

g|S
(
dhp

(
∂

∂yi
(p)

)
, dhp

(
∂

∂yj
(p)

))
= g

(
∂

∂yi
(h(p)),

∂

∂yj
(h(p))

)

= gij(h(p))

= gij(p)

= g|T
(

∂

∂yi
(p),

∂

∂yj
(p)

)
.

Theorem 2.6 Let (F , g) be a Riemannian foliation of M and assume
that all the leaves of F are compact. Then each leaf has a finite holonomy
group.

Proof Let L be a leaf of F and x ∈ L, and let S be a transversal section
of (M,F) with x ∈ S. Since S has its natural Riemannian structure, we
have the exponential map

expx: B(0, ε) −→ S ,

which is an open embedding defined on the open ε-ball centred at 0 with
respect to the inner product (g|S)x on Tx(S), and satisfies expx(0) = x.
Denote the image of expx by U . We may assume that U is relatively com-
pact in S. Represent any element of the holonomy group H = Hol(L, x)
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by a holonomy embedding h: (Vh, x) → (U, x), for an open neighbour-
hood Vh ⊂ U of x. By Proposition 2.5 we know that h is an isometry.
This implies that we may choose Vh so that h(Vh) = Vh = expx(B(0, δh))
for some small positive δh ≤ ε, and furthermore it implies that dxh is
an orthogonal transformation of Tx(S) satisfying expx ◦ dxh = h ◦ expx.
Since L is compact, the group H is finitely generated, and therefore
we may assume that all the neighbourhoods Vh are equal to say V =
expx(B(0, δ)). Thus we have represented H as a group of isometries of
(V, x).

Consider an orbit of H in V . Since H acts on V by holonomy dif-
feomorphisms, the orbit lies in a leaf L of F . The intersection L ∩ S

is discrete, by compactness of L. Since U , and hence V , is relatively
compact in S, it follows that L∩ V is finite. This implies that the orbit
is finite as well.

By taking the differential at x, or equivalently, by conjugating with
expx, we faithfully represent the group H as a group of orthogonal trans-
formations of Tx(S), with the property that any orbit of the action of
H in Tx(S) is finite. It is now an easy exercise in linear algebra to see
that such a group has to be finite.

Remarks 2.7 (1) Let F be a simple foliation of M given by a surjective
submersion M → N with connected fibres. By taking the pull-back
along this submersion one obtains a bijective correspondence between
the Riemannian metrics on N and the transverse metrics on (M,F).

(2) Let F be a foliation of M given by a Haefliger cocycle (Ui, si, γij).
If each submersion si: Ui → si(Ui) has connected fibres, then any trans-
verse metric on (M,F) induces a Riemannian metric on si(Ui), for any
i, such that the diffeomorphisms γij are isometries. Conversely, if each
si(Ui) is a Riemannian manifold and if each γij is an isometry, then the
pull-back of the Riemannian structure on si(Ui) along si gives a trans-
verse metric on (Ui,F|Ui

), and these transverse metrics amalgamate to
a transverse metric on (M,F).

(3) If (F , g) is a Riemannian foliation of M and (F ′, g′) a Riemannian
foliation of N , then the product of g and g′ gives a transverse metric on
(M ×M ′,F × F ′). Thus the product of Riemannian foliations is again
a Riemannian foliation.

(4) The pull-back of a Riemannian foliation is again a Riemannian
foliation in the natural way. This is obvious if one uses the description
of a Riemannian foliation by a Haefliger cocycle of isometries, as in (2).

(5) Let F/G be the quotient foliation of the manifold M/G obtained
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as the orbit space of a free and properly discontinuous action of a group
G on M by diffeomorphisms which preserve the foliation. If g is a
transverse metric on (M,F) such that the diffeomorphisms of the action
preserve g, then g induces a transverse metric on (M/G,F/G).

(6) Let M be a manifold, and let G be a group acting freely and
properly discontinuously on a manifold M̃ such that M̃/G = M . Let
F be a Riemannian manifold equipped with a (left) action of G by
isometries. We obtain the flat bundle E = M̃ ×G F with its natural
foliation F , as in Section 1.3. The pull-back of the Riemannian metric
on F along the projection pr2: M̃ ×F → F gives a transverse metric on
(M̃×F,F(pr2)), by (1). This metric is clearly preserved by the action of
G on M̃ × F , so it induces a transverse metric on the quotient foliation
(E,F) by (5). Thus the flat bundle foliation is in this case Riemannian.
In particular, the suspension of an isometry f: F → F is a Riemannian
foliation.

(7) Let F be a foliation of M , and let 〈 - , - 〉 be a Riemannian metric
on M . Consider the canonical decomposition of the tangent bundle of
M ,

T (M) = T (F) ⊕ T (F)⊥ ,

and note that T (F)⊥ is isomorphic to N(F). According to this decom-
position let us write a vector field X on M as the sum of its tangent
and normal components, X = X(t) + X(n). We say that the vector
field X is normal to F if X = X(n). By decomposing the metric in
the same way we obtain a positive C∞(M)-bilinear form g on M with
Ker(gx) = Tx(F), that is

g(X,Y ) = 〈X(n), Y (n)〉 .
The metric 〈 - , - 〉 is called bundle-like with respect to F if the associated
form g is a transverse metric on (M,F).

One can express this in terms of projectable vector fields. A vector
field Y on M is called projectable with respect to F if [X,Y ] is tangent to
F , for any vector field X tangent to F . Intuitively, this means that the
normal component of Y is constant along each leaf. In the literature, the
projectable vector fields are also referred to as foliated, or basic vector
fields. Global projectable vector fields which are not tangent to F may
be rare, but locally there are plenty of them (e.g. the fields ∂

∂yi
in Remark

2.4 are projectable). Note that the normal component of a projectable
vector field is projectable. It is straightforward to see that a Riemannian
metric 〈 - , - 〉 on M is bundle-like with respect to F if and only if for any
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vector field X tangent to F and any two normal projectable vector fields
Y and Z defined on an open subset U of M we have X(〈Y,Z〉) = 0.

(8) Let M be a manifold equipped with a foliated action of a Lie group
G, and let F be the associated foliation of M . Now assume 〈 - , - 〉 is a
Riemannian metric on M such that G acts on M by isometries. Then
〈 - , - 〉 is bundle-like with respect to F , i.e. the associated form g is a
transverse metric on (M,F), so (F , g) is a Riemannian foliation of M .

In fact, one can prove that LXg = 0 for any vector field X tangent to
F (this is clearly sufficient). If G = R and if the action is non-trivial,
then G acts as the one parameter group of isometries of the associated
non-singular vector field X tangent to F . Thus g is preserved by this
group of isometries, or equivalently, LXg = 0. In general, one can find
k one-dimensional subgroups of G (by using the exponential map in G)
such that the associated vector fields X1, . . . , Xk on M locally, over some
open subset U of M , form a frame of T (F)|U . Then LX1g|U = · · · =
LXk

g|U = 0 as above.

Proposition 2.8 Let F be the foliation of a manifold M given by a
foliated action of a compact Lie group G. Then there exists a bundle-
like Riemannian metric on M with respect to F , and any leaf of F is
compact with finite holonomy group.

Proof Take any Riemannian metric 〈 - , - 〉 on M , and define a new one
by taking the average over G with respect to the Haar measure µ on G,

ρ(X,Y ) =
∫
G

〈g∗X, g∗Y 〉 dµ(g) , X, Y ∈ X(M) .

Here g∗X stands for the composition of X with the derivative of the
action of g ∈ G on M . Now G acts on M by isometries with respect
to ρ. By Remark 2.7 (8) it follows that ρ is bundle-like with respect
to F . Any leaf of F is compact since G is, and has finite holonomy by
Theorem 2.6.

2.3 Local Reeb stability

In this section, F is a fixed foliation of codimension q on a manifold
M of dimension n, and L denotes a fixed leaf of F . Write H for the
holonomy group H = Hol(L, x0), where x0 ∈ L, so that there is an exact
sequence

1 K π1(L, x0)
hol

H 1 .
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Let L̃ → L be the covering space of L corresponding to the subgroup K

(the holonomy cover of L). So H acts freely on L̃ and L̃/H ∼= L.
Assume now that L is compact and H is finite. Observe that L̃ is

compact also in this case. Let T be a transversal section of F at x0,
so small that each element of H can be represented by a holonomy
diffeomorphism of T (which maps a point y of T to a point which lies on
the same leaf as y, see definition in Section 2.1). This can be done since
H is finite: Represent each element h ∈ H by a holonomy embedding
fh: Uh → T ′, where Uh is an open neighbourhood of x0 in an arbitrary
transversal section T ′ at x0. Then choose an open neighbourhood W of
x0 in T ′ so small that W ⊂ Uh and fh ◦ fk|W = fhk|W , for all h, k ∈ H.
Finally, take T =

⋂
h∈H fh(W ). Note that T can be chosen arbitrarily

small.

Theorem 2.9 (Local Reeb stability) For a compact leaf L with
finite holonomy as above, there exist a saturated open neighbourhood V

of L in M and a diffeomorphism

L̃×H T −→ V

under which the foliation F restricted to V corresponds to the flat bundle
foliation on L̃×H T .

Remark. A subset of M is called saturated if it is a union of leaves
of F . The flat bundle foliation is discussed in Section 1.3. Observe
that L̃ ×H T ∼= L′ ×π1(L,x0) T where L′ is the universal cover of L and
π1(L, x0) acts on T via the holonomy homomorphism π1(L, x0) → H.

By the differentiable slice theorem, actions by finite groups can be
linearized locally (in the smooth context). So we can indeed assume
that T ∼= R

q and that H acts linearly on T ; we will not use this here.

Notation. Points of L̃ can be denoted as holonomy equivalence classes
[α] of paths α from x0 to x in L: two paths α and β from x0 to x in L

are in the same holonomy class if the homotopy class of β−1α is in K.
Then the action by H on L̃ can be denoted as a right action, by

[α][η] = [αη] ,

where η is a loop at x0 in L representing an element [η] = hol(η) ∈ H.

Proof (of Theorem 2.9) Let us first fix a retraction r, a finite cover U , a
number c and a transversal section T in the following convenient way.

(i) Take a tubular neighbourhood N of L in M , with corresponding
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retraction r: N → L, so small that r−1(x) is transversal to the leaves of
F , for any x ∈ L (this can always be achieved by shrinking an arbitrary
tubular neighbourhood of L). Then Tx = r−1(x) defines a transversal
section at x, so we have chosen transversal sections Tx ‘smoothly in x’.

(ii) Choose a finite cover U of L by domains of foliation charts of F .
We assume that for any U ∈ U we have U ⊂ N , while the corresponding
foliation chart (ϕ : U → R

n−q × R
q) has image of the form B × R

q

for a simply connected open subset B of R
n−q and satisfies ϕ(r(x)) =

(pr1(ϕ(x)), 0) for any x ∈ U . In particular, each U ∈ U intersects L

in only one simply connected plaque. We can further assume that the
intersection U ∩ U ′ ∩ L for any two elements U and U ′ of U is either
connected or empty. Also pick a specific element U0 ∈ U with x0 ∈ U0.
Now the homotopy (and hence the holonomy) classes of paths in L from
x0 to x can be represented by chains in U from x0 to x, i.e. by sequences
(U0, U1, . . . , Uk) of elements of U satisfying x ∈ Uk and Ui−1 ∩ Ui �= ∅
for any i = 1, 2, . . . , k. Fix a number c so that

(a) every x ∈ L can be reached by a chain (U0, U1, . . . , Uk) in U from
x0 to x of length k+1 ≤ c (such a c exists by compactness of L),
and

(b) every [β] ∈ H can be represented by a chain (U0, U1, . . . , Uk = U0)
in U of length k + 1 ≤ c (such a c exists by finiteness of H).

Observe now that the following property is a consequence:

(∗) every point p ∈ L̃ can be represented by a chain (U0, U1, . . . , Uk)
in U and a point x ∈ Uk ∩ L, where k + 1 ≤ 2c.

Indeed, to see this, let p ∈ L̃ and write p = [α] for a path α from x0 to x

in L. By property (a) there exists a chain (U0, U1, . . . , Uk) in U of length
k + 1 ≤ c with x ∈ Uk. This chain represents the homotopy class of a
path β in L from x0 to x. Then β−1α is a loop at x0, and the holonomy
class of β−1α can be represented by a chain of length ≤ c (by property
(b)). Therefore [α] = [β(β−1α)] can be represented by a chain of length
≤ 2c.

(iii) Now take a transversal section T ⊂ Tx0 at x0 so small that H

acts as a group of holonomy diffeomorphisms on T (as explained above),
and so small that for every chain ζ in U from x0 to x of length ≤ 6c, the
‘holonomy transport’

holTx,T (ζ): T −→ Tx

is defined as an embedding of all of T into Tx. This holonomy map was
defined explicitly in Section 2.1 using the foliation charts corresponding
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to the sets in the chain ζ, and the properties of these foliation charts
listed in (ii) guarantee that such a section T exists. Moreover, we can
take T to be so small that for any two chains ζ and ζ ′ from x0 to
x of length ≤ 6c which represent the same holonomy class we have
holTx,T (ζ) = holTx,T (ζ ′). In addition, we take T to be so small that for
any chain ζ ′ from x0 to x0 of length ≤ 4c the map holTx0 ,T (ζ) is exactly
the chosen action on T of the holonomy class represented by the chain
ζ ′. And finally, we take T so small that for any chain ζ from x0 to x

of length ≤ 2c and any chain ζ ′ from x0 to x0 of length ≤ 4c we have
holTx,T (ζζ ′) = holTx,T (ζ)holTx0 ,T (ζ ′).

With all this fixed, we can now define a ‘transport’

σ̃: L̃× T −→ M

by

σ̃([α], y) = holTx,T (ζ)(y) ∈ Tx ,

where ζ is any chain in U of length ≤ 2c representing [α] and x = α(1).
Such a ζ exists by (∗), and the definition is independent of the choice of
ζ by property (iii). Let us now observe the following.

(1) From the local form of F , it is obvious that σ̃ is a local diffeomor-
phism (it is a diffeomorphism on plaques in a given chain). In particular,
σ̃( - , y): L̃ → Ly is an open map to the leaf Ly through y. It is also closed
since L̃ is compact, hence onto. In fact it is a covering projection (ex-
ercise: any proper local diffeomorphism is a covering projection). Thus
the image of σ̃ is a saturated open subset V of M ,

V =
⋃
y∈T

Ly .

(2) The map σ̃ factors through the quotient as σ: L̃×H T → V ⊂ M :

L̃× T

σ̃

L̃×H T
σ

V

Indeed, if [α] is represented by a chain ζ from x0 to x and h ∈ H is
represented by a chain ζ ′ from x0 to x0, both of length ≤ 2c, then (iii)
implies

σ̃([α]h, y) = holTx,T (ζζ ′)(y)
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= holTx,T (ζ)(holTx0 ,T (ζ ′)(y))

= holTx,T (ζ)(hy)

= σ̃([α], hy) .

The map σ is a local diffeomorphism, since the map L̃×T → L̃×H T is
a covering projection.

(3) The map σ is injective. To this end, suppose y, y′ ∈ T and α

and α′ are two paths representing points of L̃ with end-points x and x′

respectively, so that

σ̃([α], y) = σ̃([α′], y′) .

Then for the retraction r: N → L of the tubular neighbourhood we have

x = r(σ̃([α], y)) = r(σ̃([α′], y′)) = x′ ,

so α and α′ have the same end-point x = x′. Next, represent [α] and [α′]
by chains ζ and ζ ′ respectively, both of length ≤ 2c, and let γ = α−1α′.
Note that [γ] is represented by the chain ζopζ ′, i.e. the concatenation of
ζ ′ and of the order-reversed ζ. Property (iii) implies

holTx,T (ζ)([γ]y′) = holTx,T (ζ)(holTx0 ,T (ζopζ ′)(y′))

= holTx,T (ζζopζ ′)(y′)

= holTx,T (ζ ′)(y′)

= σ̃([α′], y′)

= σ̃([α], y)

= holTx,T (ζ)(y) .

Thus [γ]y′ = y, so ([α′], y′) = ([α][γ], y′) and ([α], y) = ([α], [γ]y′) are in
the same equivalence class in L̃×H T .

2.4 Orbifolds

In this section we will see that as a consequence of the local Reeb stability
theorem, the space of leaves of a foliation with compact leaves with finite
holonomy has a natural orbifold structure (Theorem 2.15). In particular
this is true for the space of orbits of a foliated compact Lie group action.
And conversely, any orbifold is isomorphic to the orbifold given by such
an action (Propositions 2.22 and 2.23).

The space of leaves M/F of a foliated manifold often contains little
or no information about the foliation itself. For example, the space of
leaves of the Kronecker foliation of the torus has the trivial topology.
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What we know in general is that the quotient projection M → M/F
is open. On the other hand, for a simple foliation given by a surjective
submersion M → N with connected fibres the space of leaves is just the
manifold N and reflects the ‘transverse’ structure of the foliation entirely.
Further, for the standard foliation of the flat bundle M̃ ×G F described
in Section 1.3 the space of leaves is the orbit space F/G. According to
the local Reeb stability theorem we can conclude that locally around a
compact leaf with finite holonomy the space of leaves is the orbit space
of a smooth action of a finite group.

Let (M,F) be a foliated manifold for which all the leaves are compact
with finite holonomy. Then the preceding observation holds for any leaf,
so there is a (countable) cover (Vi) of M by saturated open sets such
that Vi is diffeomorphic to the flat bundle L̃i×Hi

Ti by a diffeomorphism
which maps F|Vi

to the standard foliation of the flat bundle. Here L̃i
is the holonomy cover of the (compact) leaf Li with (finite) holonomy
group Hi and Ti a suitable transversal section; we may assume that Ti
is diffeomorphic to an open subset Ui of R

q. Now for any i we have the
open map φi: Ti → M/F , which is the restriction of the quotient map
M → M/F and induces an open embedding Ti/Hi → M/F . The sets
φi(Ti) ∼= Ti/Hi form an open cover of M/F . So M/F is locally the orbit
space of a smooth action of a finite group. It is easy to see that M/F is
locally compact, Hausdorff and second-countable. Let i and j be such
that Vi ∩ Vj �= ∅, and choose x ∈ Ti and y ∈ Tj with φi(x) = φj(y). In
particular x and y lie on the same leaf L, so there is a path in L from
x to y. This path induces the holonomy diffeomorphism h: W → W ′

from an open neighbourhood W of x in Ti to an open neighbourhood
W ′ of y in Tj . We have φj ◦h = φi|W since h preserves the leaves. As
we shall see, this property gives us a compatibility between the local
representations of φi(Ti) as the orbit spaces Ti/Hi.

Notation. Denote by Diff(M) the group of diffeomorphisms of a man-
ifold M . Let G be a subgroup of Diff(M). Recall that the isotropy
group of x ∈ M is Gx = {g ∈ G | gx = x}. For any g ∈ G put
Σg = {x ∈ M | gx = x}, and write

ΣG = {x ∈ M |Gx �= 1} =
⋃

id 
=g∈G
Σg .

A subset S of M is called G-stable if it is connected and if for any g ∈ G

we have either gS = S or gS ∩ S = ∅. The isotropy group of S is
GS = {g ∈ G | gS = S}. Observe that G-stable subsets of M are exactly
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the components of G-invariant subsets of M . If G is finite, the open G-
stable subsets of M form a base for the topology of M . In fact, for any
x ∈ M we can find an arbitrarily small open G-stable neighbourhood S

of x such that Gx = GS .

First we shall recall some facts about the finite subgroups of Diff(M),
for a manifold M . Take a finite subgroup G of Diff(M), and let x ∈ M .
We can choose a G-invariant Riemannian metric on M , by Proposition
2.8. The exponential map associated to the metric gives us a diffeomor-
phism from an open ε-ball centred at 0 in the tangent space Tx(M) to
an open neighbourhood W of x, expx : B(0, ε) → W ⊂ M . Since the
metric is G-invariant, (dg)x is an orthogonal transformation of Tx(M)
and expx ◦(dg)x = g ◦ expx, for any g ∈ Gx. In particular, if (dg)x = id
then g|W = id.

Lemma 2.10 Let M be a connected manifold and G a finite subgroup
of Diff(M). Then ΣG is closed with empty interior and the differential
dx: Gx → Aut(TxM) is injective for each x ∈ M .

Remark. Here dx is given by dxg = (dg)x for any g ∈ Gx. Note that the
lemma implies that any diffeomorphism of finite order on a connected
manifold which fixes an open set is the identity.

Proof (of Lemma 2.10) Take g ∈ Gx with (dg)x = id. Observe that
Z = {y ∈ U | gy = y, (dg)y = id} is a non-empty closed subset of M

which is also open by the argument above the lemma. This proves the
last statement of the lemma, which in particular implies that Σg has an
empty interior, for any g ∈ G− {id}. Then the same is true for the set
ΣG.

Lemma 2.11 Let M be a manifold and G a finite subgroup of Diff(M).
For any smooth map f: V → M defined on a non-empty open connected
subset V of M , satisfying f(x) ∈ Gx for each x ∈ V , there exists a
unique g ∈ G such that f = g|V .

Proof Observe that A = M − ΣG is an open dense G-invariant subset
of M (by Lemma 2.10) and that the quotient projection π: A → A/G

is a principal G-bundle. Hence A ∩ V is open and dense in V . Let
C be a component of A ∩ V . By assumption f |C : C → A satisfies
π ◦ f |C = π|C , thus there is a unique gC ∈ G such that f |C = gC |C . In
particular, (df)x = (dgC)x for any x ∈ C̄.
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Note that the argument above the lemma shows that in a suitable
chart around a point y ∈ ΣG ∩ V the action of Gy is linear, and hence
in this chart ΣG is just a finite union of linear subspaces. In particular,
there are finitely many components of A∩V intersecting this chart, and
y lies in the boundary of all of them. But if C and C ′ are any two
components of A ∩ V for which y ∈ C̄ ∩ C̄ ′, we have (dgC)y = (df)y =
(dgC′)y, and hence gC = gC′ by Lemma 2.10. Therefore f coincides with
a single g ∈ G on a neighbourhood of y. Since V is connected, it follows
that f equals g on all of V .

Let Q be a topological space. An orbifold chart of dimension n ≥ 0 on
Q is a triple (U,G, φ), where U is a connected open subset of R

n, G is a
finite subgroup of Diff(U) and φ: U → Q is an open map which induces
a homeomorphism U/G → φ(U).

If (U,G, φ) is an orbifold chart on Q and S an open G-stable subset of
U , the triple (S,GS , φ|S) is again an orbifold chart called the restriction
of (U,G, φ) on S. More generally, let (V,H,ψ) be another orbifold chart
on Q. An embedding λ: (V,H,ψ) → (U,G, φ) between orbifold charts is
an embedding λ: V → U such that φ ◦λ = ψ. Let us list some basic
properties of embeddings between orbifold charts:

Proposition 2.12 (i) For any embedding λ: (V,H,ψ) → (U,G, φ) be-
tween orbifold charts on Q, the image λ(V ) is a G-stable open subset
of U , and there is a unique isomorphism λ̄ : H → Gλ(V ) for which
λ(hx) = λ̄(h)λ(x).

(ii) The composition of two embeddings between orbifold charts is an
embedding between orbifold charts.

(iii) For any orbifold chart (U,G, φ), any diffeomorphism g ∈ G is an
embedding of (U,G, φ) into itself, and ḡ(g′) = gg′g−1.

(iv) If λ, µ : (V,H,ψ) → (U,G, φ) are two embeddings between the
same orbifold charts, there exists a unique g ∈ G with λ = g ◦µ.

Proof To prove (i), observe that for any h ∈ H the diffeomorphism
λ ◦h ◦λ−1 of λ(V ) preserves the fibres of φ. By Lemma 2.11 there exists
a unique λ̄(h) ∈ G which extends this diffeomorphism to U . The map
λ̄: H → G is a homomorphism by Lemma 2.10, and clearly injective.

Now take any g ∈ G. If g ∈ λ̄(H) we have gV = V . On the other
hand, assume that gV ∩V is non-empty. Then A∩ gV ∩V is non-empty
as well, where A = U −ΣG, so there exists an x ∈ A∩V with g−1x ∈ V .
Since λ−1(x) and λ−1(g−1x) are on the same fibre of ψ, there exists



38 Holonomy and stability

an h ∈ H with hλ−1(g−1x) = λ−1(x) and hence λ̄(h)g−1x = x. Since
x ∈ A, this yields λ̄(h) = g, so g ∈ λ̄(H).

Now (ii) and (iii) are obvious, while (iv) follows from Lemma 2.11.

We say that two orbifold charts (U,G, φ) and (V,H,ψ) of dimension
n on Q are compatible if for any z ∈ φ(U)∩ψ(V ) there exist an orbifold
chart (W,K, θ) on Q with z ∈ θ(W ) and embeddings between orbifold
charts λ: (W,K, θ) → (U,G, φ) and µ: (W,K, θ) → (V,H,ψ). There is
an equivalent description of compatibility:

Proposition 2.13 If two orbifold charts (U,G, φ) and (V,H,ψ) on Q

are compatible, then any smooth map f : Z → V defined on an open
subset Z ⊂ U which satisfies ψ ◦ f = φ|Z is a local diffeomorphism.
If in addition Z = U then f is a covering projection onto its image,
and its covering transformations form a subgroup of G. Conversely,
if (U,G, φ) and (V,H,ψ) are two orbifold charts on Q and if for any
z ∈ φ(U) ∩ ψ(V ) there exists an open subset Z ⊂ U with z ∈ φ(U) and
a smooth embedding f : Z → V with ψ ◦ f = φ|Z , then (U,G, φ) and
(V,H,ψ) are compatible.

Proof Take any x ∈ Z. Since the charts are compatible, there exist
a chart (W,K, θ) on Q with φ(x) ∈ θ(W ) and embeddings between
orbifold charts λ: (W,K, θ) → (U,G, φ) and µ: (W,K, θ) → (V,H,ψ).
By Proposition 2.12 (i) we can assume that W is in fact a G-stable subset
of U and λ the inclusion, and we can also assume that x ∈ W ⊂ Z. Now
f ◦µ−1 is an embedding by Lemma 2.11. This proves that f is a local
diffeomorphism. If Z = U , the facts that φ is proper onto its image
and V Hausdorff imply that f is a proper local diffeomorphism onto its
image, and hence a covering projection. Any covering transformation of
f is in G by Lemma 2.11.

For the second part of the statement observe that the restriction of f
to a G-stable open set is an embedding between orbifold charts.

An orbifold atlas of dimension n of a topological space Q is a collection
of pairwise compatible orbifold charts

U = {(Ui, Gi, φi)}i∈I
of dimension n on Q such that

⋃
i∈I φi(Ui) = Q. Two orbifold atlases of

Q are equivalent if their union is an orbifold atlas.
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An orbifold of dimension n is a pair (Q,U), where Q is a second-
countable Hausdorff topological space and U is a maximal orbifold atlas
of dimension n of Q.

Remark. Thus an orbifold is a space which is locally the orbit space
of a smooth action of a finite group, but these actions are part of the
structure. Observe that any orbifold atlas of a second-countable Haus-
dorff space Q is contained in a unique maximal orbifold atlas of Q, and
hence defines an orbifold structure on Q. An orbifold (Q,U) will of-
ten be denoted simply by Q, while the orbifold charts in this maximal
atlas U will be referred to as orbifold charts of the orbifold Q. Also,
any orbifold subatlas of U will be referred to as an orbifold atlas of the
orbifold Q. It is clear that any orbifold is locally compact. Since it is
also second-countable and Hausdorff, it follows that it is paracompact.

Note that any manifold chart on a manifold M may be viewed as an
orbifold chart, with trivial group. Therefore a manifold is an example
of an orbifold.

Exercise 2.14 Let Q be an orbifold of dimension n. Show that there
exists an orbifold atlas U of Q such that U = R

n and G is a finite
subgroup of O(n), for any orbifold chart (U,G, φ) ∈ U .

Let Q and Q′ be two orbifolds. A continuous map f : Q → Q′ is an
orbifold map if for any z ∈ Q there exist orbifold charts (U,G, φ) of Q
with z ∈ φ(U) and (V,H,ψ) of Q′ and a smooth map f̃ : U → V such
that ψ ◦ f̃ = f ◦φ (such a map f̃ is called a local lift of f). Orbifold
maps are closed under composition and form a category. Two orbifolds
are isomorphic if they are isomorphic in this category. (There are other,
more subtle notions of map between orbifolds, but they give rise to the
same isomorphisms.) The orbifold maps Q → R are called the smooth
functions on the orbifold Q. Equivalently, a function f : Q → R is
smooth if f ◦φ is smooth for any chart (U,G, φ) in an orbifold atlas of
Q.

Let Q be an orbifold, (U,G, φ) an orbifold chart of Q and x ∈ U ,
and write z = φ(x). By Lemma 2.10 the differential at x gives a faithful
representation of Gx in GL(n,R), and we denote the corresponding finite
subgroup of GL(n,R) by dGx. Since Ggx = gGxg

−1 for any g ∈ G, the
points in the same orbit of G have isotropy groups in the same conjugacy
class. In particular dGx and dGgx are in the same conjugacy class of
GL(n,R). Now let λ: (V,H,ψ) → (U,G, φ) be an embedding between
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orbifold charts and y ∈ V with λ(y) = x. Observe that λ̄(Hy) = Gx and
that

dGx = (dλ)ydHy(dλ)−1
y .

Thus the conjugacy class of dGx depends only on the point z and not
on the choice of the orbifold chart (U,G, φ) on Q or on the choice of x.
Therefore we can define the isotropy group of z, denoted by

Isoz(Q) ,

as a subgroup of GL(n,R) determined up to a conjugation.
Define the singular locus of Q by

ΣQ = {z ∈ Q | Isoz(Q) �= 1} .

We have ΣQ ∩φ(U) = φ(ΣG), and in particular ΣQ is a closed subset of
Q with empty interior.

From our discussion at the start of this section we can conclude:

Theorem 2.15 Let F be a foliation of codimension q of a manifold M

such that any leaf of F is compact with finite holonomy group. Then the
space of leaves M/F has a canonical orbifold structure of dimension q.
The isotropy group of a leaf in M/F is its holonomy group.

Corollary 2.16 Let M be a manifold equipped with a foliated action
of a compact connected Lie group G. Then the orbit space M/G has a
canonical orbifold structure.

Proof By Proposition 2.8 all the leaves of the associated foliation F
of M are compact with finite holonomy. Now Theorem 2.15 gives us
the canonical orbifold structure on M/F , which is M/G since G is con-
nected.

Exercise 2.17 Let G be a discrete group acting properly on a manifold
M . Show that M/G has a canonical orbifold structure.

Exercise 2.18 Let G be a finite group acting on an orbifold Q by orb-
ifold automorphisms. Show that Q/G has a natural orbifold structure.
Extend this to the case where G is any discrete group acting properly
on Q. Conclude that Corollary 2.16 also holds if G is not connected.
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In the rest of this section we shall prove the following converse of
Corollary 2.16.

Theorem 2.19 Any orbifold is isomorphic to the orbifold associated to
an action of a compact connected Lie group G with finite isotropy groups.

In fact, we will show that we can choose G to be either SO(n) in the
orientable case (Proposition 2.22) or U(n) in general (Proposition 2.23).

Let Q be an orbifold and let U = {(Ui, Gi, φi)}i∈I be the maximal
orbifold atlas of Q. A Riemannian metric on the orbifold Q is a col-
lection ρ = (ρi), where ρi is a Riemannian metric on Ui, such that any
embedding between orbifold charts λ: (Ui, Gi, φi) → (Uj , Gj , φj) is an
isometry as a map (Ui, ρi) → (Uj , ρj).

Remark. Equivalently one can define a Riemannian metric ρ to be
given with respect to an arbitrary orbifold atlas of Q, but then the
isometry condition should state that any embedding between orbifold
charts λ: (S, (Gi)S , φi|S) → (Uj , Gj , φj) is an isometry, where S is any
open Gi-stable subset of Ui. Then ρ can be uniquely extended to any
other orbifold chart of Q such that the isometry condition still holds.

Proposition 2.20 Any orbifold admits a Riemannian metric.

Proof Let {(Ui, Gi, φi)}i∈I be an orbifold atlas of Q. Since Q is para-
compact, we may assume that the cover (φi(Ui)) of Q is locally finite,
and we may choose a partition of unity (αi : φi(Ui) → R) subordinate
to this cover. Following the standard proof of the existence of such a
partition of unity, we can choose this partition to be smooth; explicitly,
the map αi ◦φi is smooth for any i. Choose an arbitrary Riemannian
metric 〈 - , - 〉(i) on Ui, for any i. Now for any i define a new Riemannian
metric ρi on Ui as follows: for any x ∈ Ui and any ξ, ζ ∈ Tx(Ui) put

(ρi)x(ξ, ζ) =
∑
j∈I

αj(φi(x))
∑
g∈Gj

〈d(g ◦λj)x(ξ), d(g ◦λj)x(ζ)〉(j)gλj(x)
.

Here λj: (S, (Gi)S , φi|S) → (Uj , Gj , φj) is any embedding between orb-
ifold charts defined on an open Gi-stable neighbourhood S ⊂ Ui of x (the
definition does not depend on the choice of this embedding because of
the average by Gj and Proposition 2.12 (iv)). It is then straightforward
to check that the collection (ρi) is a Riemannian metric on Q.
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Let Q be an orbifold with the maximal orbifold atlas

U = {(Ui, Gi, φi)}i∈I ,
and choose a Riemannian metric ρ = (ρi) on Q. First we shall construct
the frame bundle of Q as follows.

Recall that for a manifold M of dimension n, the frame bundle F (M)
is a smooth fibre bundle over M for which the fibre Fx(M) is the man-
ifold of all ordered bases of the tangent space Tx(M). Any such basis
may be viewed as the image of the standard basis under a unique iso-
morphism e: R

n → Tx(M), so we may identify points of Fx(M) with
such isomorphisms. The frame bundle admits a canonical right action of
the Lie group GL(n,R) which makes it into a principal GL(n,R)-bundle
over M . Explicitly the action is given by the composition, i.e. eA = e ◦A
for e ∈ Fx(M) and A ∈ GL(n,R).

First take an orbifold chart (Ui, Gi, φi) of Q, and consider the frame
bundle F (Ui). Note that this bundle is in fact trivial. Next note that the
action of Gi lifts to a left action on F (Ui), which is given by composition
with the derivative dg, i.e. ge = (dg)x ◦ e for any e ∈ Fx(Ui). This action
commutes with the right action of GL(n,R) and is free; this follows
immediately from Lemma 2.11. In particular it follows that F (Ui)/Gi

is a manifold equipped with a right action of GL(n,R). Note that the
map φi induces a map pi: F (Ui)/Gi → Q in the obvious way and that
the action of GL(n,R) is along the fibres of this map.

Now take any embedding λ: (Ui, Gi, φi) → (Uj , Gj , φj) between orb-
ifold charts. The composition with the derivative dλ induces an embed-
ding λ̃: F (Ui) → F (Uj). This embedding factors as

λ∗: F (Ui)/Gi −→ F (Uj)/Gj .

Indeed, for any g ∈ Gi and e ∈ Tx(Ui) we have

λ̃(ge) = (dλ)gx ◦(dg)x ◦ e
= d(λ ◦ g ◦λ−1)λ(x) ◦(dλ)x ◦ e
= d(λ̄(g))λ(x) ◦ λ̃(e)

= λ̄(g)λ̃(e) .

Since λ(Ui) is Gj-stable, the map λ∗ is a smooth open embedding. In
addition this embedding commutes with the action of GL(n,R) and
pj ◦λ∗ = pi. Note that in particular g∗ = id, which implies that for any
two embeddings λ, µ: (Ui, Gi, φi) → (Uj , Gj , φj) we have λ∗ = µ∗.

We may conclude that the manifolds F (Ui)/Gi (for all i ∈ I) together
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with the smooth open embeddings λ∗ (for all embeddings between orb-
ifold charts λ) form a filtered direct system. We define the frame bundle
F (Q) of the orbifold Q as the colimit of this system,

F (Q) = lim→ {F (Ui)/Gi, λ∗} .

Note that F (Q) is a manifold, that each F (Ui)/Gi is canonically em-
bedded into F (Q) as an open submanifold and that the maps pi induce
an open map p: F (Q) → Q. Furthermore the Lie group GL(n,R) acts
smoothly on F (Q) and this action is transitive along the fibres of p.
In particular we have F (Q)/GL(n,R) ∼= Q. One can check that the
isotropy groups of this action are all finite. In fact, for any η ∈ F (Q)
there is an isomorphism between GL(n,R)η and Isop(η)(Q). In particu-
lar the action is foliated, and the leaves of the associated foliation are of
course the components of the fibres of p.

We may consider only the orthonormal frames on Ui with respect to
the metric ρi, which give the orthogonal frame bundle OF (Ui) on Ui. It
is a principal O(n)-bundle over Ui. Since all the embeddings between
orbifold charts are isometries, the same construction as before gives us
the orthogonal frame bundle OF (Q) of the orbifold Q. It comes with the
right action of the Lie group O(n) which is transitive along the fibres of
p and has finite isotropy groups.

An orientation of Q is a decomposition of F (Q) into two disjoint
open submanifolds F (Q) = F+(Q) ∪ F−(Q) such that p(F+(Q)) =
p(F−(Q)) = Q. We say that Q is orientable if such a decomposition
exists. If Q is oriented, the fibres of p: F+(Q) → Q are connected and
F+(Q) is invariant under the action of GL+(n,R), while any matrix
A ∈ GL−(n,R) maps F+(Q) onto F−(Q). The bundle F+(Q) is called
the positive frame bundle of the orbifold Q.

Exercise 2.21 Equivalently, an orientation of an orbifold Q is given by
an atlas {(Vk,Hk, ψk)} of Q such that any embedding between orbifold
charts λ : (S, (Hk)S , ψk|S) → (Vl,Hl, ψl) is orientation preserving, for
each Hk-stable subset S of Vk.

Assume that Q is oriented. With respect to ρ we may also consider
the positive orthogonal frame bundle OF+(Q) = OF (Q)∩F+(Q), which
comes with the action of the connected compact Lie group SO(n) tran-
sitive along the fibres of p and with finite isotropy groups.

We observe:
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Proposition 2.22 Let Q be an oriented orbifold of dimension n equipped
with a Riemannian metric. Then Q is isomorphic to the orbifold associ-
ated to the foliated action of the group SO(n) on the positive orthogonal
frame bundle OF+(Q).

Here the only non-trivial point is that the holonomy of a leaf is equal
to the corresponding isotropy group, which is true because the Lie group
is connected. This is why we need the orientability. For a non-orientable
orbifold Q we may achieve the same thing by using the compact con-
nected unitary group U(n) instead. This is done by replacing the tangent
bundle T (Ui) by its complexification T (Ui)⊗ C. This is now a complex
vector bundle of rank n over Ui, and we may again consider the ordered
(complex) bases in the fibres Tx(Ui)⊗C. Such a basis is now represented
by a complex linear isomorphism e: C

n → Tx(Ui) ⊗ C. The collection
of such bases yield the complex frame bundle CF (Ui) which is now a
principal GL(n,C)-bundle. Again there is a free Gi-action on CF (Ui),
now given by the composition with dg ⊗ idC, for g ∈ Gi. Similarly an
embedding λ between orbifold charts induces an equivariant embedding
λ̃ by the composition with dλ⊗ idC. We can then repeat the same con-
struction as before to obtain the complex frame bundle CF (Q) of the
orbifold Q. This bundle is now equipped with a smooth action of the
connected Lie group GL(n,C).

Next, the metric ρi also extends naturally to a complex Riemannian
structure on the bundle T (Ui) ⊗ C. So we may again consider the or-
thonormal frames only, and we get the unitary frame bundle UF (Q)
of the orbifold Q. It comes with the action of the compact connected
group U(n) which is transitive along the fibres of p and has finite isotropy
groups. Now we have

Proposition 2.23 Let Q be an orbifold of dimension n equipped with
a Riemannian metric. Then Q is isomorphic to the orbifold associated
to the foliated action of the group U(n) on the unitary frame bundle
UF (Q).

These two propositions in particular provide a proof of Theorem 2.19.

2.5 Global Reeb stability in codimension 1

In this section M is a compact connected manifold, equipped with a
transversely orientable foliation F of codimension 1. We will prove
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Theorem 2.24 (Global Reeb stability) If F is a codimension 1
transversely orientable foliation of a compact connected manifold M and
admits a compact leaf L0 with finite fundamental group, then F is the
foliation given by the fibres of a fibre bundle projection φ: M → S1. In
particular, all the leaves of F are diffeomorphic to L0.

The proof will be divided into various small steps. First, we show that
the assumptions imply that the holonomy of L0 is trivial.

Lemma 2.25 If L is a leaf of a codimension 1 transversely orientable
foliation F and if the fundamental group of L is finite, then the holonomy
group of L is trivial.

Proof Take a transversal section T at a point x ∈ L, and represent an
arbitrary element g of the holonomy group of L by a smooth embedding
f: U → T of an open neighbourhood U ⊂ T of x, with f(x) = x. Since
g has a finite order k, we can find an open neighbourhood W ⊂ U of x
such that f(W ) = W and (f |W )k = id. Then (df)x is of finite order and
preserves orientation, hence equals id. By Lemma 2.10 it follows that
f |W = id.

Now fix a finite atlas of (M,F), consisting of surjective foliation charts
(ψi : Wi → R

n−1 × R)ki=1 for which the sets Ui = ψ−1
i ((−1, 1)n) cover

M . Therefore the restrictions

(ϕi = ψi|Ui
: Ui −→ R

n−1 × R)ki=1

form a finite foliation atlas of (M,F).
The atlas (ϕi) has the following useful property: a leaf L of F is

compact if and only if it meets each of the charts Ui in finitely many
plaques. Indeed, if L hits Ui in infinitely many plaques, then the plaques
of L in Wi together with L − ψ−1

i ([−2, 2]n) would form an open cover
of L without a finite subcover, thus L is not compact. Conversely, if
L does meet each Ui in finitely many plaques, then L is clearly a finite
union of compact sets and hence compact.

Lemma 2.26 Let R be an open connected saturated subset of M such
that each leaf of F intersecting R is compact with trivial holonomy. Let
a′ < a < b < b′ be real numbers, and T : (a′, b′) → M a map transversal
to F such that T ((a, b)) ⊂ R and T ({a, b}) ∩ R = ∅. Then each leaf
L ⊂ R intersects T ((a, b)).
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Proof Let W be the union of leaves of F which intersect T ((a, b)). We
have to show that W = R. Since R is connected and W is clearly open
and non-empty, it is sufficient to show that W is closed in R.

Let a leaf L ⊂ R be in the closure of W . By assumption, L is compact
with trivial holonomy, so the local Reeb stability theorem implies that
the foliation on a small open neighbourhood V of L looks like the product
L×(−ε, ε). Now T ((a, b)) intersects V , but the end-points T (a) and T (b)
are not in V . By transversality it now follows that T ((a, b)) hits any leaf
in V , and in particular L.

Lemma 2.27 Let γ: R → M be a curve transverse to F with the property
that γ(R) ∩ L0 �= ∅. If L is a leaf of F with L ∩ γ(R) �= ∅ then L is
diffeomorphic to L0.

Proof For any t ∈ R denote by Lt the leaf of F with γ(t) ∈ Lt, and put

A = {t ∈ R |Lt is diffeomorphic to L0} .

We will show that A is open and closed, hence all of R. If t ∈ A then note
that Lt is compact with trivial holonomy (Lemma 2.25). Thus we can
apply the local Reeb stability theorem (Theorem 2.9), so the foliation F
in a neighbourhood of Lt looks like a product Lt× (−ε, ε). In particular,
all the leaves in this neighbourhood are diffeomorphic to Lt. This proves
that A is open in R.

Now assume that [0, s) ⊂ A for some s > 0. We will prove that s ∈ A.
(i) First we will show that Ls is compact. Let Ui be a chart from our

finite atlas of M . It is enough to show that Ls intersects Ui in a finite
number of plaques. Consider the region

R =
⋃

0<t<s

Lt .

If Ls ⊂ R there is nothing more to prove. Otherwise, each plaque of Ls
in Ui lies in the boundary of a different component of R∩Ui (Figure 2.2).
Using the standard transversal section T in the chart Ui, Lemma 2.26
implies that all but possibly two of the components of R ∩ Ui intersect
any leaf Lt of R. Take any 0 < t < s. Since Lt is compact, it intersects
Ui in finitely many plaques, say m. By the previous observations, Ls
can intersect Ui in at most m + 1 plaques. Therefore, Ls is compact.

(ii) Observe that since Lt is compact for any 0 ≤ t < s, the leaf
Ls must have trivial holonomy ‘on the negative side’, i.e. on the part
γ((s − ε, s]) of the transversal section γ((s − ε, s + ε)). Indeed, if the
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Fig. 2.2. R ∩ Ui

holonomy of Ls on the negative side were not trivial, then each leaf Lt
with t < s close enough to s would hit the chart Ui with γ(s) ∈ Ui
in infinitely many plaques; this would contradict the assumption that
Lt is compact. Now exactly as for the local Reeb stability theorem,
compactness of Ls and finite holonomy on the negative side imply that
the foliation F on

⋃
s−δ<t≤s Lt for some small δ looks like the product

Ls × (−ε, 0]. In particular, Ls is diffeomorphic to Lt for s − δ < t < s.
Thus s ∈ A.

Similarly one proves that (−s, 0] ⊂ A implies −s ∈ A, and hence we
may conclude that A is closed.

Lemma 2.28 There exists a smooth embedding σ: S1 → M transverse
to the leaves of F which hits each leaf of F exactly once.

Proof Choose a Riemannian metric on M and let X be a normalized
normal field of F (this exists since F is transversely orientable). Let γ

be an integral curve of X with γ(0) ∈ L0. By Lemma 2.27 all the leaves
hit by γ are diffeomorphic to L0. If γ is periodic with period p, then
we take σ′ to be γ|[0,p] with the natural reparametrization. Otherwise
γ is an injective immersion which is not closed. Take a point p in the
boundary of γ(R), and choose a foliation chart ϕ: U → R

n−1 × R with
p ∈ U . We may also assume that X is tangent to the fibres of pr1 ◦ϕ.
Now γ intersects U in infinitely many segments close to p, and one can
easily modify a part of γ inside U to obtain a closed embedded curve σ′

transverse to F (Figure 2.3). Since σ′ partially coincides with γ, Lemma
2.27 implies that all the leaves of F hit by σ′ are diffeomorphic to L0.

Now observe that, by compactness, σ′ hits each leaf finitely often.
Choose a leaf L which is hit by σ′, and let z0 and z1 be two consecutive
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Fig. 2.3. Modification of γ

points on S1 with σ′(z0), σ′(z1) ∈ L. Choose a simple smooth path β in
L from y = σ′(z1) to x = σ′(z0). We can now modify the concatenation
of β with the restriction of σ′ to the interval between z0 and z1 in S1 to
obtain an embedded closed curve σ transversal to F : this modification
can be done in a small tubular neighbourhood of β([0, 1]) so that σ hits
L exactly once (Figure 2.4). Note that by the same argument as before,
all the leaves of F hit by σ are diffeomorphic to L0.

Fig. 2.4. Modification of σ′

For any z ∈ S1 let Lz be the leaf with σ(z) ∈ Lz. The leaf Lz
is compact with trivial holonomy, so the foliation of a small saturated
open neighbourhood V of Lz looks like the product Lz × (−ε, ε). The
transversality of σ implies that σ intersects V in a finite number of seg-
ments, each of them intersecting each leaf in V exactly once. Therefore
#(Lz ∩σ(S1)) is a locally constant function of z. Since σ hits L exactly
once, we should have #(Lz ∩ σ(S1)) = 1 for any z ∈ S1.

Finally, let B ⊂ M be the union of leaves of F which are hit by σ. By
transversality of σ it follows that B is open. On the other hand, B is also
closed. Indeed, by the local Reeb stability theorem, the union of leaves
hit by σ restricted to a small closed interval in S1 is diffeomorphic to the
product of the interval with L0 and hence compact. By compactness of
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S1 we can thus write B as a finite union of compact sets. This implies
that B is compact and hence closed, and connectedness of M gives
B = M .

Proof (of Theorem 2.24) Choose σ: S1 → M as in Lemma 2.28. For each
z ∈ S1 denote by Lz the leaf of F with σ(z) ∈ Lz. Define φ: M → S1

with the condition x ∈ Lφ(x).

Remark. In fact, to prove the theorem it is not necessary to choose
σ so that it hits any leaf exactly once. If it hits any leaf exactly p

times, p > 0, then one can define a p-valued function φ̃ on M by φ̃(x) =
{z ∈ S1 |x ∈ Lz}. One can then easily see that this p-valued function
factors through a p-fold cover of S1 as a submersion φ: M → S1 with
the required properties. (Recall from complex analysis that a p-valued
function on M is a function on a p-fold covering space of M .)

Exercises 2.29 (1) Show that the assumption in the global Reeb sta-
bility theorem that the manifold is compact is necessary: construct a
foliation of codimension 1 on R

3 − {0} with compact and non-compact
leaves and with all the holonomy groups trivial.

(2) Let F be a foliation of codimension 1 with only compact leaves.
Then the holonomy group of any leaf of F is either trivial or isomorphic
to Z2. If F is also transversely orientable, then any leaf of F has trivial
holonomy.

(3) Suppose that F is a transversely orientable codimension 1 foliation
of a connected manifold M with only compact leaves. Show that:

(i) If M is compact, then the leaves of F are the fibres of a fibre
bundle over S1.

(ii) If M is non-compact, then the leaves of F are the fibres of a fibre
bundle over R.

In particular, conclude from (ii) that there is no foliation of codimension
1 of the plane R

2 with only compact leaves.

2.6 Thurston’s stability theorem

From the proof of the global Reeb stability theorem it is clear that the
assumption that the foliation has a compact leaf L0 with finite funda-
mental group can be replaced by a weaker one. What we need is a
condition that guarantees that any leaf diffeomorphic to L0 has itself
trivial holonomy. This is true, for example, if the fundamental group



50 Holonomy and stability

of L0 is generated by elements of finite order, by the argument given
in the proof of Lemma 2.25. Thurston (1974) showed that in fact it is
enough to assume that there are no non-trivial homomorphisms from
the fundamental group of the leaf to R, or in other words, that the de
Rham cohomology of the leaf is trivial in degree 1. In this section we
shall prove his strengthened version of the global stability:

Theorem 2.30 (Global Reeb–Thurston stability) If F is a trans-
versely orientable foliation of codimension 1 of a connected compact
manifold M which admits a compact leaf L0 with trivial de Rham coho-
mology in degree 1, then F is the foliation given by the fibres of a fibre
bundle projection φ : M → S1. In particular, all the leaves of F are
diffeomorphic to L0.

The proof reduces to the arguments already given in the proof of
Theorem 2.24, together the following local version of Reeb–Thurston
stability.

Theorem 2.31 (Local Reeb–Thurston stability) Let F be a foli-
ation of codimension q of a manifold M with a compact leaf L. Then
either

(i) the linear holonomy group of L is non-trivial, or
(ii) the de Rham cohomology of L is non-trivial in degree 1, or
(iii) the holonomy group of L is trivial, and there exist an open satu-

rated neighbourhood V of L in M and a diffeomorphism

V ∼= L× R
q

under which the leaves of F in V correspond to the fibres of the projection
L× R

q → R
q.

Before we give the proofs of these two theorems, we need to prove two
lemmas related to approximate homomorphisms of groups, and to the
topology of the space of germs of maps (Rq, 0) → (Rq, 0), respectively.

Let G be a group, K a subset of G and ε ≥ 0. A map c: K → R is a
(K, ε)-cocycle on G if for any g, h ∈ K with gh ∈ K we have

|c(g) + c(h) − c(gh)| ≤ ε .

Such a (K, ε)-cocycle c is normalized on a subset B ⊂ K if

max
g∈B

|c(g)| = 1 .

Note that (G, 0)-cocycles on G are homomorphisms from G to R.
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For a subset B ⊂ G and any l = 1, 2, . . . we write

Bl = {g1g2 . . . gl | g1, g2, . . . , gl ∈ B} .

Furthermore, we write B−1 = {g−1 | g ∈ B}. Note that if B is a set of
generators of G such that 1 ∈ B and B−1 = B, then B = B1 ⊂ B2 ⊂ · · ·
and

⋃∞
l=1B

l = G.

Lemma 2.32 Let G be a group and B ⊂ G a finite set of generators of
G such that 1 ∈ B and B−1 = B. If for any ε > 0 and any l ≥ 1 there
exists a (Bl, ε)-cocycle on G which is normalized on B, then there exists
a non-trivial homomorphism of groups G → R.

Proof For any l ≥ 1 and ε > 0, let C(l, ε) ⊂ R
Bl

be the set of all
(Bl, ε)-cocycles on G which are normalized on B. This set is closed and
bounded in R

Bl

, hence compact. Furthermore, it is non-empty for ε > 0
by hypothesis, and we have C(l, ε) ⊂ C(l, ε′) for any ε′ > ε > 0. It
follows that

C(l, 0) =
⋂
ε>0

C(l, ε)

is also a non-empty compact subset of R
Bl

.
Let r = rl: C(l+1, 0) → C(l, 0) be given by the restriction of (Bl+1, 0)-

cocycles to Bl ⊂ Bl+1. Since this map is continuous, it follows that the
set rl−1(C(l, 0)) is a compact non-empty subset of C(1, 0). We also have
rl(C(l + 1, 0)) ⊂ rl−1(C(l, 0)), so

C =
⋂
l≥1

rl−1(C(l, 0))

is a non-empty subset of C(1, 0).
Take any c ∈ C. The (B, 0)-cocycle c ∈ C is normalized on B and

has an extension to a (Bl, 0)-cocyle, which is in fact unique. All these
extensions, for l = 1, 2, . . . , now define a homomorphism G → R, which
is non-trivial because c is normalized on B.

For any q ≥ 1, let us denote by Maps0(Rq) the vector space of germs
at 0 of smooth maps f: R

q → R
q satisfying f(0) = 0. The operation of

composition in Maps0(Rq) satisfies

(v + w) ◦u = v ◦u + w ◦u
for any u, v, w ∈ Maps0(Rq). The differential at 0 gives us a linear map

d0: Maps0(R
q) −→ Matq×q(R)
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to the algebra of real q× q matrices, d0(germ0f) = (df)0, which satisfies
d0(u ◦ v) = d0(u)d0(v).

Lemma 2.33 For any q ≥ 1 there exists a sequence (‖ - ‖n)∞n=1 of norms
on the vector space Maps0(Rq) such that

lim sup
n→∞

‖u ◦ v − u ◦w‖n
‖v − w‖n ≤ ‖d0(u)‖

for any u, v, w ∈ Maps0(Rq) with v �= w.

Proof Let Maps(Rq) be the vector space of all smooth maps f: R
q → R

q

satisfying f(0) = 0. There is also a composition operation in Maps(Rq),
which is preserved by the quotient map

germ0: Maps(Rq) −→ Maps0(R
q) .

This linear map is surjective, hence we can choose a linear section α of
germ0, i.e. germ0 ◦α = id.

Now for any n ≥ 1 define a seminorm ‖ - ‖n on Maps(Rq) by

‖f‖n = max
‖x‖≤ 1

n

‖f(x)‖ .

By pull-back along the section α, we obtain a norm ‖ - ‖n on the vector
space Maps0(Rq), i.e.

‖u‖n = ‖α(u)‖n
for any u ∈ Maps0(Rq). We will show that these norms have the property
stated in the lemma.

First of all, for any f, g, h ∈ Maps(Rq) and any x ∈ R
q, the mean

value theorem implies that

‖f(g(x)) − f(h(x))‖ ≤ ‖g(x) − h(x)‖max
y∈S

‖(df)y‖ ,

where S is the segment between g(x) and h(x). Therefore for any n ≥ 1
we have

‖f ◦ g − f ◦h‖n ≤ ‖g − h‖n max
y∈K

‖(df)y‖ ,

where K = {y ∈ R
q | ‖y‖ ≤ max{‖g‖n, ‖h‖n}}. If germ0g �= germ0h

then ‖g − h‖n > 0 for any n ≥ 1, and continuity of the differential df
implies

lim sup
n→∞

‖f ◦ g − f ◦h‖n
‖g − h‖n ≤ ‖d0(f)‖ .
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Now take any u, v, w ∈ Maps0(Rq) with v �= w. Since we have
germ0(α(u ◦ z)) = germ0(α(u) ◦α(z)) for z = v, w, it follows that

lim sup
n→∞

‖u ◦ v − u ◦w‖n
‖v − w‖n = lim sup

n→∞
‖α(u ◦ v) − α(u ◦w)‖n

‖α(v) − α(w)‖n
= lim sup

n→∞
‖α(u) ◦α(v) − α(u) ◦α(w)‖n

‖α(v) − α(w)‖n
≤ ‖d0(α(u))‖
= ‖d0(u)‖ .

Proof (of Theorem 2.31) Note that if Hol(L) is trivial then the rest of
(iii) follows by the local Reeb stability theorem (Theorem 2.9). Assume
that the holonomy homomorphism

hol: π1(L) −→ Diff0(Rq) ⊂ Maps0(R
q)

is non-trivial, and that its composition with the differential d0 is trivial.
We have to show that this implies H1

dR(L,R) = Hom(π1(L),R) �= 1.
Since L is compact, the fundamental group of L is finitely generated,

so we can choose a finite set of generators B ⊂ π1(L) with 1 ∈ B and
B−1 = B. By Lemma 2.32 it is sufficient to show that there exists a
(Bl, ε)-cocycle on π1(L) which is normalized on B, for any l ≥ 1 and
ε > 0.

Let l ≥ 1 and ε > 0, and choose δ > 0 to be small enough that
((l− 1)δ+ l)δ ≤ ε. Choose a sequence of norms (‖ - ‖n)∞n=1 as in Lemma
2.33. For any g ∈ π1(L) we have ‖d0(hol(g) − id)‖ = 0, and hence for
any other h ∈ π1(L) with hol(h) �= id it follows that

lim sup
n→∞

‖(hol(g) − id) ◦ hol(h) − (hol(g) − id)‖n
‖(hol(h) − id)‖n = 0 .

Since Bl is finite, we can therefore choose n ≥ 1 so large that

‖(hol(g) − id) ◦ hol(h) − (hol(g) − id)‖n ≤ ‖(hol(h) − id)‖nδ (2.1)

for any g, h ∈ Bl.
Now write M = maxg∈B ‖(hol(g)− id)‖n. Then M > 0, and we define

η: Bl → Maps0(Rq) by

η(h) =
1
M

(hol(h) − id) .
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First we will show that for any 1 ≤ k ≤ l and any h ∈ Bk we have

‖η(h)‖n ≤ (k − 1)δ + k . (2.2)

This is clearly true for k = 1, because by definition of η we have
‖η(h)‖n ≤ 1 for any h ∈ B. We shall now proceed by induction on
k, so assume that the relation (2.2) holds for some 1 ≤ k < l. Take any
h ∈ Bk+1, and write h = h′h′′ for some h′ ∈ Bk and h′′ ∈ B. Now we
have

‖η(h)‖n =
1
M

‖hol(h) − id‖n

=
1
M

‖hol(h′h′′) − hol(h′′) − hol(h′) + id

+ hol(h′) − id + hol(h′′) − id‖n
≤ 1

M
‖(hol(h′) − id) ◦ hol(h′′) − (hol(h′) − id)‖n

+
1
M

‖hol(h′) − id‖n +
1
M

‖hol(h′′) − id‖n

≤ 1
M

‖hol(h′′) − id‖nδ

+
1
M

‖hol(h′) − id‖n +
1
M

‖hol(h′′) − id‖n
= ‖η(h′′)‖nδ + ‖η(h′)‖n + ‖η(h′′)‖n
≤ δ + (k − 1)δ + k + 1

= kδ + (k + 1) .

The second inequality here follows from the relation (2.1), while the last
is a consequence of the induction hypothesis together with the fact that
‖η(h)‖n ≤ 1 for any h ∈ B.

The relation (2.2) (for k = l) now implies that for any g, h ∈ Bl

satisfying gh ∈ Bl we have

‖η(gh) − η(g) − η(h)‖n
=

1
M

‖hol(gh) − id − hol(g) + id − hol(h) + id‖n

=
1
M

‖(hol(g) − id) ◦ hol(h) − (hol(g) − id)‖n

≤ 1
M

‖hol(h) − id‖nδ
= ‖η(h)‖nδ
≤ ((l − 1)δ + l)δ ≤ ε .

Choose g ∈ B with ‖η(g)‖n = 1, and let f be any bounded linear
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functional on (Maps0(Rq), ‖ - ‖n) of norm 1 which equals 1 on η(g). Then
f ◦ η is a (Bl, ε)-cocycle on π1(L) which is normalized on B.

Proof (of Theorem 2.30) Let L be a leaf of F with H1
dR(L,R) = 0, and

consider the sequence of homomorphisms of groups

π1(L) hol Diff0(R)
d0

R
+

log
R .

Since H1
dR(L,R) = Hom(π1(L),R) = 0, we have d0 ◦hol = 1, thus the

linear holonomy of L is trivial. Theorem 2.31 now implies that the
holonomy of L is trivial and that the foliation looks like the product
on a neighbourhood of L. With this, we can proceed as in the proof of
Theorem 2.24.



3

Two classical theorems

In this chapter we present two milestones of the early theory of folia-
tions, namely the theorems of Haefliger and of Novikov. Both theorems
concern foliations of codimension 1 on three-dimensional manifolds.

Haefliger’s theorem dates from the late 1950s, and concerns the prob-
lem of constructing codimension 1 foliations on 3-manifolds. One version
asserts that if a compact three-dimensional manifold carries an analytic
foliation of codimension 1, then this manifold must have infinite funda-
mental group. Thus, such a foliation cannot exist on the 3-sphere, for
example. We will present a detailed proof, which is close to Haefliger’s
original argument, and which involves various notions of independent
interest. The first of these is that of a Morse function into a manifold
carrying a codimension 1 foliation, which we discuss in Subsection 3.1.2,
after having reviewed the classical theory of Morse functions into the
line. The other is that of foliations with isolated singularities on a two-
dimensional disk, to be discussed in Subsection 3.1.3. These singular
foliations arise by pull-back along a Morse function from the disk into a
given 3-manifold equipped with a codimension 1 foliation.

Novikov’s theorem dates from the 1960s, and concerns the existence
of compact leaves. Explicitly, it states that any (smooth) transversely
orientable codimension 1 foliation of a compact manifold with finite
fundamental group must have a compact leaf. Moreover, a closer analysis
reveals that this compact leaf must be a torus, and that inside this
torus, the given foliation looks exactly like the Reeb foliation discussed
in Example 1.1 (5). We will also present a detailed proof of this result of
Novikov’s. As the reader will see, the proof is in part based on some of
the techniques developed by Haefliger for the proof of his theorem. An
additional important notion involved in the proof of Novikov’s theorem is
that of a ‘vanishing cycle’. Such a cycle is a non-contractible loop inside

56
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a leaf, which becomes contractible as soon as you slide it into nearby
leaves; in other words, it represents an element of the fundamental group
of a leaf, which vanishes in the fundamental groups of nearby leaves.
Such vanishing cycles will be discussed in Subsection 3.2.1. They play
an important role in many parts of foliation theory.

3.1 Haefliger’s theorem

The aim of this section is to prove the following theorem of Haefliger.

Theorem 3.1 (Haefliger) There are no analytic codimension 1 foli-
ations on S3.

For a foliation of codimension 1, the holonomy of a loop is (represented
by) a germ of a diffeomorphism g : (R, 0) → (R, 0). Call such a germ
one-sided if g restricts to the identity germ either on ((−∞, 0], 0) or
on ([0,∞), 0). We say that the foliation is without (non-trivial) one-
sided holonomy if any one-sided holonomy germ of the foliation is trivial.
Clearly, any analytic foliation of codimension 1 is without one-sided
holonomy. The proof of the theorem above will in fact show the following
stronger statement.

Theorem 3.2 Let (M,F) be a codimension 1 foliated manifold without
one-sided holonomy. Then every loop in M transverse to F represents
an element of π1(M) of infinite order.

Recall from Section 2.5 that on a compact manifold M there are
always plenty of such transverse loops. The proof there used that
(M,F) is transversely orientable. For general (M,F), construct first
the transverse orientation cover t: M̃ → M on which F pulls back to
a transversely orientable foliation t∗(F). Then any transverse loop α̃ in
(M̃, t∗(F)) projects to the transverse loop t ◦ α̃ in (M,F).

In particular, it follows that a compact manifold with finite funda-
mental group cannot have an analytic codimension 1 foliation.

One possible proof of Haefliger’s theorem 3.2 proceeds as follows. Sup-
pose to the contrary that α is a transverse loop in (M,F) with finite
order in π1(M), say k. By replacing α by αk, we may assume that [α] = 1
in π1(M). Thus there exists an extension of α to a map H : D → M ,
where D is the unit disk in R

2. Now F pulls back to a ‘foliation with
singularities’ H∗(F) of D. Note that since H|S1 = α, this ‘foliation’
is transverse to the boundary S1 = ∂D and all the singularities are in
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the interior of D. Then we use Morse functions to deform H a little,
so that these singularities have a ‘normal form’. From this, we will con-
clude that there exists a loop β : S1 → D whose composition with H

represents a loop with non-trivial one-sided holonomy in (M,F). In the
following subsections we will work out the details of this plan.

3.1.1 Review of Morse functions

We will first recall some basic facts from Morse theory. For proofs,
see Milnor (1963), Golubitsky–Guillemin (1973) and Guillemin–Pollack
(1974). Consider a smooth function f: R

n → R. Its derivative at p ∈ R
n

is a linear map (df)p: R
n → R. A critical point or singularity of f is a

point p ∈ R
n with (df)p = 0, or equivalently ∂f

∂xi
(p) = 0 for i = 1, . . . , n.

The value of f at a critical point is called a critical value of f .
At a critical point p, the second partial derivatives form a symmetric

n× n matrix

H(f)p =
(

∂2f

∂xi∂xj
(p)

)
i,j

,

which is called the Hessian matrix of f at p. One says that p is a non-
degenerate singularity of f if detH(f)p �= 0. This is equivalent to the
associated Hessian quadratic form on R

n

H̄(f)p(u) = 〈H(f)pu, u〉
being non-degenerate. Observe that non-degenerate singularities are
automatically isolated.

For a function f: M → R on a manifold M of dimension n, one can use
the local coordinates to give the same definition of singularity and non-
degenerate singularity (called also Morse singularity). The definition is
independent of the coordinates (exercise). A Morse function on M is a
smooth function f: M → R all of whose singularities are non-degenerate.

Lemma 3.3 (Morse lemma) Let f : M → R be a smooth function
on a manifold M of dimension n. For any non-degenerate singularity
p of f there are local coordinates (x1, . . . , xn): U → R

n, defined on a
neighbourhood U of p and with xi(p) = 0, on which f has the form

f = f(p) − x21 − · · · − x2i + x2i+1 + · · · + x2n .

Remark. Note that H(f)p = diag(−2, . . . ,−2, 2, . . . , 2) in these coor-
dinates, where −2 appears on the diagonal i times. The number i, called
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the (Morse) index of f at p and denoted by Index(f, p), is independent
of the choice of coordinates.

For a smooth function f : M → R, a metric on M enables one to
write the derivative (df)p: Tp(M) → R as the dual of a tangent vector
grad(f)p ∈ Tp(M), i.e.

(df)p(v) = 〈v, grad(f)p〉 .

This defines a vector field grad(f) on M .

Exercise 3.4 Prove that the Morse index of f : M → R and the index
of the vector field grad(f) at a non-degenerate singularity p ∈ M of f
are related by

(−1)Index(f,p) = Indexp(grad(f)) .

Recall now that the vector space C∞(M,R) of smooth real-valued
functions on a manifold M is equipped with the C∞-topology: it is the
topology of uniform convergence on compact sets of functions and all
their higher derivatives. The subbasic neighbourhoods of f ∈ C∞(M,R)
are

Bε,K,α(f) = {g ∈ C∞(M,R) | ‖Dβ(f − g)|K‖ < ε for all β ≤ α} ,

where ε > 0, K is a compact subset contained in some chart of M ,
α = (α1, . . . , αn) is a multi-index, and β ≤ α means that β is a multi-
index with βi ≤ αi for all i. Finally, Dβ is the partial derivative
( ∂
∂x1

)β1 · · · ( ∂
∂xn

)βn , in the local coordinates, and ‖ - ‖ denotes the maxi-
mum norm.

Note that there is a similar topology on the space C∞(M,N) of
smooth functions between smooth manifolds M and N , defined e.g. by
an embedding of N into some R

k and defining C∞(M,N) as a subspace
of C∞(M,R)k.

Exercise 3.5 Think a bit about this topology. Show e.g. that C∞(M,R)
is a topological algebra, i.e. addition and multiplication are continu-
ous; show that for a smooth function f : R ×M → R, the ‘transposed’
map F : R → C∞(M,R) is continuous; also show that the composition
C∞(N,R) × C∞(M,N) → C∞(M,R) is continuous.

We will use the following application of Sard’s theorem; for a proof,
see e.g. Guillemin–Pollack (1974).
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Theorem 3.6 The Morse functions on a manifold M form a dense open
subset of C∞(M,R).

This result has the following easy variations.

(a) The set of Morse functions with distinct critical values is dense
and open in C∞(M,R).

(b) Suppose that U ⊂ Ū ⊂ V ⊂ M and f ∈ C∞(M,R). Then any
neighbourhood of f contains g ∈ C∞(M,R) with g|U Morse and
g|M−V = f |M−V .

To see that Theorem 3.6 implies (b), fix a smooth function φ: M → R

with φ|U = 1 and φ|M−V = 0. For any h ∈ C∞(M,R) define

G(h) = φh + (1 − φ)f .

Note that G(h)|U = h|U , G(h)|M−V = f |M−V and G(f) = f . By
continuity, G(h) is arbitrarily close to f if h is sufficiently close to f .
So if we use Theorem 3.6 to choose h Morse and close to f , we find
g = G(h) as required. We leave the proof of (a) as an exercise.

3.1.2 Morse functions into codimension 1 foliations

Let (N,F) be a codimension 1 foliated manifold, and M any manifold.
A Morse function from M to (N,F) is a smooth function f : M → N

for which there exists a Haefliger cocycle (Wi, si, γij) on N defining F
so that

si ◦ f |f−1(Wi): f
−1(Wi) −→ R

is Morse, for any i. A point p ∈ M is a singularity of such a Morse
function f if it is a singularity of si ◦ f |f−1(Wi), f(p) ∈ Wi.

Proposition 3.7 For a compact manifold M , the Morse functions from
M to (N,F) form a dense open subset of C∞(M,N).

Proof Let f ∈ C∞(M,N) and let (Wi, si, γij) be a Haefliger cocycle
on N representing F ; we assume also that each Wi is the domain of a
surjective foliation chart ϕi with si = pr2 ◦ϕi, and put ti = pr1 ◦ϕi.
Choose a finite cover of M by charts (Vk)mk=1 such that f(Vk) ⊂ Wik .
Choose a refinement (Uk) with Ūk ⊂ Vk. We will gradually modify f by
considering one Uk at a time.

For U1, choose h: f−1(Wi1) → R close to si1 ◦ f with h|U1 Morse, and
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such that h|f−1(Wi1 )−V1 = si1 ◦ f |f−1(Wi1 )−V1 . Then let g1: M → N be
given by

g1(x) =
{

f(x) , x �∈ V1 ,

ϕ−1
i1

(ti1(f(x)), h(x)) , x ∈ V1 .

For U2, find a similar g2 close to g1 so that g2 = g1 outside V2, si2 ◦ g2
is Morse on U2, and g2 is so close to g1 that si1 ◦ g2 is still Morse on U1.
Continue in this way, and finish after m steps.

There are variations of this proposition, exactly like the variations (a)
and (b) of Theorem 3.6 in Subsection 3.1.1. In particular:

(a) The set of Morse functions from M to (N,F) whose critical values
lie on distinct leaves is dense in C∞(M,N).

(Exercise: Formulate and prove the analogue of (b).)

Assume now that F is a transversely oriented foliation on N and that
f : M → (N,F) is a Morse function. Let p ∈ M be a singularity of
f . Then we can associate to p the Morse index Index(f, p) of f at p

as follows. Choose any si : Wi → R with f(p) ∈ Wi (from a Haefliger
cocycle defining F) compatible with the transverse orientation of F .
Then define

Index(f, p) = Index(si ◦ f |f−1(Wi), p) .

Note that this definition is independent of the choice of si.

Proposition 3.8 (Poincaré–Hopf) Let M be a compact manifold,
(N,F) a transversely oriented foliated manifold of codimension 1 and
f: M → (N,F) a Morse function. Then∑

p

(−1)Index(f,p) = χ(M) ,

where the sum is over all the singularities p of f .

Proof Choose a finite number of submersions si: Wi → R, i = 1, 2, . . . , k,
from a Haefliger cocycle on N representing F compatible with the trans-
verse orientation, such that (Vi = f−1(Wi))ki=1 covers M . We can as-
sume that each Vi contains at most one singularity of f . On each Vi we
have the vector field grad(si ◦ f), computed with respect to any fixed
Riemannian metric on M . By using a partition of unity, we can glue
these vector fields together to obtain a global vector field X. We can
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make sure that around any singularity p ∈ Vi, the field X coincides with
grad(si ◦ f). Now the lemma follows from Exercise 3.4 and the classical
Poincaré–Hopf theorem.

Remark. The proposition holds true also if M is a manifold with
boundary, provided that the ‘gradient’ of the Morse function f , i.e. the
field X from the proof above, can be chosen so that it points outwards
at every boundary point of M .

3.1.3 Proof of Haefliger’s theorem

We will now prove Theorem 3.2, and proceed as in the outline given at
the beginning of Section 3.1. Thus F is a codimension 1 foliation on a
manifold M and α: S1 → M a closed transversal curve. We will show
that the assumption that [α] = 1 in π1(M) leads to the existence of a
loop in a leaf of F with non-trivial one-sided holonomy.

Since α is homotopic to zero, it can be extended to a map on the disk

H: D −→ M .

We may assume that H is smooth (see Bott–Tu (1982)). Notice that
since α is transverse to F , H is transverse to F near the boundary of D.
By Proposition 3.7 and its two variants we can thus modify H slightly,
to obtain a map

K: D −→ M

which agrees with H near the boundary, is Morse as a map into (M,F)
and has critical values on distinct leaves.

Let p1, . . . , pk be the critical points of K. Outside p1, . . . , pk, the
map K is transverse to the leaves of F , so F pulls back to a foliation
F ′ = K∗(F) of D−{p1, . . . , pk}, with leaves transverse to the boundary.
On D itself, we can interpret F ′ as a foliation with singularities. If
(Wi, si, γij) is a Haefliger cocycle representing F , then the connected
components of the fibres of si ◦K|K−1(Wi) locally define F ′.

Now by the Morse lemma, these singularities pm are of three possible
forms, according to whether their index is 0, 1 or 2. For index 0 or 2,
si ◦K has a local minimum or maximum in pm (where i is such that
pm ∈ K−1(Wi)), and the foliation F ′ near pm looks like a family of
concentric circles (a centre, or an elliptic singularity at pm), i.e. like the
level-sets of the function x2 + y2 on R

2. For index 1, the point pm is
a saddle point of si ◦K (a saddle singularity at pm), and the foliation
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near pm looks like the level-sets of the function x2 − y2 on R
2 (Figure

3.1).

Fig. 3.1. Centre and saddle

Lemma 3.9 The number of elliptic singularities is 1 bigger than the
number of saddle singularities.

Proof If F is transversely orientable, Proposition 3.8 yields

1 = χ(D) = #centres − #saddles .

Otherwise, we replace (M,F) with the double transverse orientation
cover (M̃, F̃) which is transversely orientable. Since D is simply con-
nected, the map K lifts to a Morse map K̃: D → (M̃, F̃), and we apply
Proposition 3.8 to K̃. Finally, note that the centres, respectively saddles,
of K are exactly the centres, respectively saddles, of K̃.

Now consider a centre pm. The union of the family of all concentric
circles around pm has a boundary curve Γ. This curve Γ is disjoint from
∂D, since F ′ is transverse to ∂D. (Indeed, if Γ hits the boundary, there
is the ‘first’ concentric circle which ‘touches’ the boundary, contradicting
transversality.) This curve Γ bounds a disk, and is again a simple closed
curve, and a leaf of F ′. If Γ does not have a singularity, then Γ is the
‘last’ concentric circle around pm, and the leaves of F ′ outside Γ must
spiral around Γ (Figure 3.2). Thus, Γ evidently has trivial holonomy on
the inside and non-trivial holonomy on the outside. The same is true
for K(Γ).

This proves the theorem in case there exists a centre pm with a ‘bound-
ary concentric circle’ Γ without singularities.

If, on the other hand, the boundary curve Γ has a singularity (say ps),
it can have only one (since the singularities lie on distinct leaves) and
this one must be a saddle (Figure 3.3). Suppose then that this is true
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Fig. 3.2. F ′ spiraling around Γ

Fig. 3.3. A saddle on Γ

for each centre. By Lemma 3.9, we find that there will be two centres,
say p1 and p2 with boundary curves Γ1 and Γ2, which share the same
saddle. There are two typical situations which can occur (Figure 3.4):

Case 1. Γ1 ∩ Γ2 = {ps} (then put Γ = Γ1 ∪ Γ2).
Case 2. Γ1 ⊂ Γ2 (then let Γ = (Γ2 − Γ1) ∪ {ps}).
We will prove the theorem in each of these two cases, and then argue

that these are the only possibilities.
Case 1. Clearly Γ1 and Γ2 have trivial holonomy on the inside. Since

M has no non-trivial one-sided holonomy, Γ1 and Γ2 have trivial holon-
omy when mapped to M . Then the composite curve Γ has trivial holon-
omy in M as well. But this means that for the singular foliation F ′

on D, there are concentric circles outside Γ. Then we could replace the
inside of Γ by concentric circles and finish the proof by induction on the
number of singularities (Figure 3.5).

Case 2. Completely analogous: Γ1 and Γ2 have trivial one-sided holon-
omy, hence so does Γ. Thus Γ has trivial holonomy, and there are circles
again on the outside of Γ2.

Finally, it remains to be shown that these are the only two cases.
This can be seen by study of the leaves near the saddle, where the two
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Fig. 3.4. The two typical situations

Fig. 3.5. Concentric circles around Γ

families of concentric circles meet at the saddle in only two possible
different ways (Figure 3.6).

3.2 Novikov’s theorem

In this section M is a compact manifold equipped with a transversely
oriented foliation F of codimension 1. Although some of the tools being
developed work in arbitrary dimensions, the main results concern the
case where the dimension of M is 3.
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Fig. 3.6. The leaves near the saddle

Theorem 3.10 (Novikov) Let F be a codimension 1 transversely
oriented foliation of a compact manifold M of dimension 3 with finite
fundamental group. Then F has a compact leaf.

In addition, it will be shown that if M is also orientable then the
compact leaf constructed for Theorem 3.10 is a torus, inside of which
the foliation is the Reeb foliation. One says that (M,F) has a Reeb
component.

The main tool is the method of ‘vanishing cycles’, a refinement of the
method used to prove Haefliger’s theorem.

3.2.1 Vanishing cycles

Recall that M is assumed to be a compact manifold and F a transversely
oriented foliation of M of codimension 1.

Let L0 be a leaf of (M,F). A closed curve α0: [0, 1] → L0 is said to
be a vanishing cycle if α0 is not contractible in L0, and, for some ε > 0,
α0 can be extended to a smooth family

α: [0, 1] × [0, ε) −→ M

of closed curves αt = α( - , t) such that for each 0 < t < ε the curve αt is
a closed curve in a leaf Lt of F and is contractible in Lt, and such that
for each fixed s ∈ [0, 1] the segment α(s, - ): [0, ε) → M is transverse
to F . One says that α0 is a positive (negative) vanishing cycle if these
segments α(s, - ) are positive (negative) with respect to the transverse
orientation of F . Observe that such an α0 has trivial positive (negative)
holonomy.

Example 3.11 Consider the Reeb foliation on the solid torus, and let
α0 represent the standard generator of the boundary torus with trivial
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holonomy. Then α0 represents a trivial element of the fundamental
group of the solid torus, and a suitable beginning of a contraction of α0
defines a vanishing cycle (Figure 3.7).

Fig. 3.7. A vanishing cycle of the Reeb foliation

Remarks 3.12 (1) Let α0 : [0, 1] → L0 be a positive vanishing cycle,
and put α0(0) = α0(1) = x0. Write αt, 0 ≤ t < ε, for its extension as
above. Now let K ⊂ L0 be a compact set containing the image of α0
(e.g. K = α0([0, 1])). Choose a smooth function

T : K × (−δ, δ) −→ M

such that T (x, 0) = x and Tx = T (x, (−δ, δ)) is a transversal section of
(M,F). We can view this as the choice of a transversal section Tx at x

for each x ∈ K, smoothly varying in x. This can be done, for example,
by taking the flow of a normal vector field locally on the compact K.
We can take δ > 0 small enough so that T is injective. As in the proof
of the local Reeb stability in Section 2.3, for ε > 0 sufficiently small the
holonomy transformations along initial segments of α0 define a map

B: [0, 1] × [0, ε) −→ M

by

B(s, t) = hol(α0|[0,s])(τx0(t)) ,

where τx0 : [0, ε) → Tx0 is a fixed positive parametrization of a part of
the transversal section Tx0 , with τx0(0) = x0. Thus B(s, 0) = α0(s).
Since α0 has trivial positive holonomy, for ε > 0 sufficiently small it will
be the case that each B( - , t) is a closed curve in its leaf.

Suppose that we choose Tx0 to be in the image of α, with the evident
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parametrization τx0(t) = αt(0). Then B( - , t) and αt lie in the same
leaf Lt. For t sufficiently small, B( - , t) and αt are homotopic in Lt, by
Exercise 2.3 (3).

This shows that the family of curves Bt = B( - , t), 0 ≤ t < ε, is
also a ‘witness’ of the fact that α0 is a vanishing cycle. Notice that
this extension (Bt) of the vanishing cycle has the property that when-
ever transversal sections B(s, [0, ε)) and B(s′, [0, ε)) intersect each other,
α0(s) = α0(s′). We will use this property in the proof of Theorem 3.19
below.

In other words, being a vanishing cycle is a property of α0 (rather than
an extra structure), and a ‘witness’ can always be found by holonomy:
it only depends on the choice of transversal sections.

(2) The property of being a positive (or negative) vanishing cycle
only depends on the (free) homotopy class of α0 (in L0). This is an easy
consequence of the remark (1). Explicitly, suppose H: [0, 1]× [0, 1] → L0

is a homotopy between loops α0 and β0 in L0. Thus H(u, - ) is a closed
curve in L0, and H(0, - ) = α0 while H(1, - ) = β0. Choose a transversal
section Tx at x for each x in the image K of H, smoothly varying in x

as in the remark (1). We can then lift H by holonomy to a family

B: [0, 1] × [0, 1] × [0, ε) −→ M

by

B(u, s, t) = hol(H(u, - )|[0,s])(τH(u,0)(t)) .

Thus B(u, - , - ) is a family of curves (Bu,t = B(u, - , t))0≤t<ε extend-
ing the curve Bu,0 = H(u, - ), for any u. For a fixed t, Bu,t defines a
homotopy from B0,t to B1,t inside a single leaf if we choose the paramet-
rization τH(u,0)(t) suitably, e.g. τH(u,0)(t) = hol(H( - , 0)|[0,u])(τx0(t)).
This shows that B0,0 = α0 is a vanishing cycle if and only if B1,0 = β0
is.

We now prove the existence of vanishing cycles, by exactly the same
methods as used in Section 3.1.

Theorem 3.13 If π1(M) is finite, there exists a vanishing cycle.

Proof As in Section 3.1, there exists a closed curve α transversal to F .
We may assume that α represents the unit element of π1(M), and we
can extend α to a Morse map K : D → M , defining a foliation with
(Morse) singularities of D. Recall that the singularities are centres or
saddles, and that there are (one) more centres than saddles.
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Consider a centre p. The concentric circles around p define closed
curves in the leaves of F , and close to p these curves are contractible
in their leaves (they map into a chart around K(p)). The family of all
these ‘contractible’ curves defines an open disk around p. Suppose there
is a first concentric circle which is not contractible in its leaf. Then this
is evidently a vanishing cycle.

If no such exists before we reach the boundary of all the contractible
circles around p, consider their boundary Γ. As in Section 3.1, if Γ has
no singularities, it is a concentric circle with trivial holonomy on one
side and non-trivial holonomy on the other. Thus Γ defines a vanishing
cycle.

Suppose we have not found a vanishing cycle in this way. Then
each centre pi is surrounded by ‘contractible’ concentric circles, and
the boundary curve Γi contains a saddle singularity. Now at least one
saddle ps must be associated to two centres p1 and p2 in this way, so we
have one of the following two cases (Subsection 3.1.3, Figure 3.4), as in
the proof of Haefliger’s theorem (Subsection 3.1.3).

Case 1. Γ1 ∩ Γ2 = {ps}.
Case 2. Γ1 ⊂ Γ2.
In Case 1, if both Γ1 and Γ2 are contractible when mapped to their

common leaf in M , they have trivial holonomy, hence so has their com-
posite Γ = Γ1 ∪ Γ2. Thus Γ has ‘concentric circles’ on its outside, and
these are contractible in their leaves when close to Γ. Now proceed as
before, to find the first non-contractible closed curve outside Γ, etc. For
Case 2, the argument is similar.

Recall that the global Reeb stability theorem (Section 2.5) gives foli-
ations defined by proper submersions, and these cannot have vanishing
cycles. Thus, the preceding theorem contradicts the conclusion of the
global Reeb stability theorem. Hence:

Corollary 3.14 If π1(M) is finite, then any compact leaf of F must
have infinite fundamental group.

If the dimension of M is 3, it follows that the compact leaves are
surfaces which have the plane R

2 as their universal cover.

Consider a vanishing cycle α0. Of course, α0 can have self-intersections,
but by perturbing α0 slightly inside the leaf we can assume that these
are just double points, and that there are finitely many such. Let αt,
0 ≤ t < ε, be an extension which witnesses that α0 is a (say, positive)
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vanishing cycle, defined by holonomy as in the remark above. Then any
self-intersection of αt maps down (along the transversal section) to a
self-intersection of α0.

The vanishing cycle α0 is called simple if, for ε small enough, it holds
for all 0 < t < ε that αt lifts to a simple closed curve α̃t in the universal
cover L̃t of Lt.

This definition does not depend on the choice of the extension (αt).
To understand this definition, suppose that α0 has a self-intersection so
that it can be written as the composition of two closed curves β0 and
γ0. It could be that one of β0, γ0 is also a vanishing cycle (in fact, one
of them is if and only if the other is: look at the one-sided holonomy
of α0). This means in particular that β0 and γ0 have trivial one-sided
holonomy, so that αt decomposes as βt ∪ γt for all small t, and that
βt and γt are both contractible in their leaves (so that α̃t still has the
‘same’ intersection).

Suppose, on the other hand, that β0, γ0 are not vanishing cycles.
Then, if the self-intersection ‘persists’ for t > 0, so that we can write
αt = βt ∪ γt, then for any t > 0 there exists t′ with 0 < t′ < t so that
βt′ , γt′ are not contractible in their leaf. Now α0 is simple if, in this
situation, there exists t > 0 so small that for any t′ with 0 < t′ < t the
curves βt′ and γt′ are not contractible in their leaf.

Thus, to say that α0 is simple is a bit sharper than saying that α0
cannot be written as the composition of two vanishing cycles.

Proposition 3.15 Suppose α0 is a positive vanishing cycle, with an
extension (αt) as above. Then there exist arbitrarily small t > 0 such
that Lt contains a simple vanishing cycle.

Proof We will prove this by induction on the number of self-intersections
of α0. Assume that α0 is not simple. Then α0 has a self-intersection, so
write α0 = β0 ∪ γ0. By the assumption that α0 is not simple it follows
that there are arbitrarily small t′ so that αt′ = βt′ ∪ γt′ and βt′ and γt′

are contractible in their leaf Lt′ . Thus, for the open set

C = {t′ ∈ (0, ε) |αt′ = βt′ ∪ γt′ , βt′ and γt′ contractible in Lt′}

we have 0 ∈ C̄. If either β0 or γ0 is a vanishing cycle, we are done by
induction. If not, it follows that 0 ∈ ((0, ε) − C). Then take δ �∈ C so
that (δ, δ + ε) ⊂ C for some ε > 0. Now βδ is a vanishing cycle with
fewer self-intersections.
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3.2.2 Existence of a compact leaf

Recall that M is a compact manifold and F a transversely oriented
foliation of M of codimension 1. From now on we shall in addition
assume that M is of dimension 3. Moreover, we shall assume, without
loss of generality for the proof of Theorem 3.10, that M is connected
and orientable. The existence of a compact leaf will now be proved by
contradiction, using the following lemma.

Lemma 3.16 Let L be a non-compact leaf of F , and let p ∈ L. Then
there exists a transversal closed curve α passing through p.

Proof We first show that there exists a transversal closed curve which
meets L, and then modify it to pass through p.

Since L is not compact, one can choose a surjective foliation chart
ϕ: U → R

3 such that L intersects U in infinitely many plaques. Let σ be
a transversal segment from x to y in U connecting two of these plaques,
say in the positive direction. Now choose a path β in L from y to x,
and modify β ∪ σ slightly inside a tubular neighbourhood around the
image of β so that it becomes transversal to F (Figure 3.8). This gives
a transversal closed curve α which intersects L, say in a point q.

Finally, choose a path τ in L from p to q, and modify α ∪ τ ∪ τ−1

slightly inside a tubular neighbourhood around the image of τ so that
it is transversal to F (Figure 3.8).

To simplify the notations, we shall from now on parametrize a van-
ishing cycle by S1 rather than by the interval [0, 1]; an extension of a
vanishing cycle α0 : S1 → L0 is parametrized as (αt : S1 → Lt)0≤t<ε.
Recall that D denotes the unit disk in C, so S1 is the boundary of D.

The existence of the compact leaf will now follow by the next two
lemmas.

Lemma 3.17 Let α0 be a positive simple vanishing cycle. Then there
exist a positive extension (αt)0≤t<ε of α0 and an immersion

A: D × (0, ε) −→ M

such that At = A( - , t): D → Lt extends αt : S1 → Lt and lifts to an
embedding Ãt: D → L̃t into the universal covering space L̃t of the leaf
Lt, for any 0 < t < ε.

Remark. We will write Dt = At(D) and D̃t = Ãt(D). As before we
shall write α̃t for the lift of αt to the universal cover L̃t of Lt. Note
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Fig. 3.8. Modifications of β ∪ σ and of α ∪ τ ∪ τ−1

that each L̃t is a non-compact connected orientable surface, and hence
a copy of R

2 (see Hirsch (1976), Exercise 3, page 207). Indeed, if Lt is
compact, non-compactness of L̃t follows from Corollary 3.14.

Proof (of Lemma 3.17) For any (positive) extension (αt) for which α̃t is
simple (t > 0) we can extend α̃t to an embedding Ãt : D → L̃t. Then
we project Ãt down to Lt to obtain At. We should now do this in such
a way that (At) will be a smooth family.

First choose a normal vector field X to F and let Tx be the integral
curve of X with x ∈ Tx, for any x ∈ M . In particular, Tx is a transversal
section of F , which we shall refer to as the normal transversal section
through x. Let (αt)0≤t<ε′ be a positive extension of α0 obtained by
holonomy with respect to the normal transversal sections.

Since α0 is simple, there exists 0 < ε < ε′ such that each α̃t is simple,
0 < t ≤ ε. Now extend α̃ε to an embedding Ãε: D → L̃ε and let Aε be
the composition of Ãε with the projection L̃ε → Lε.

Using holonomy with respect to the normal transversal sections, we
can extend Aε to a smooth immersion A : D × (δ, ε] → M , for some
0 ≤ δ < ε, such that At = A( - , t): D → Lt extends αt and lifts to L̃t as
an embedding, for δ < t ≤ ε. Take the smallest δ ≥ 0 such that such an
A can be defined. We claim that δ = 0.
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Assume that δ > 0. Then α̃δ is a simple curve, so we can define an
embedding B̃δ: D → L̃δ extending α̃δ and Bδ: D → Lδ as its projection
down to Lδ, as before. Again, we can use holonomy with respect to
normal transversal sections to obtain a smooth immersion

B: D × (δ − µ, δ + µ) −→ M ,

for some small µ > 0, such that Bt = B( - , t): D → Lt extends αt and
lifts to L̃t as an embedding, for δ − µ < t < δ + µ.

Take an r ∈ (δ, δ+µ). Since Ãr and B̃r are two embeddings of D into
L̃r ∼= R

2 which coincide on the boundary (they are both extending α̃r),
there exists a diffeomorphism f: D → D with f |S1 = id such that Ãr =
B̃r ◦ f . In particular, Ar = Br ◦ f . But both A and B were obtained
by holonomy with respect to the same normal transversal sections, and
hence it follows that At = Bt ◦ f for any t ∈ (δ, δ + µ). Now we can
smoothly extend A to D × (δ − µ, ε] by At = Bt ◦ f , t ∈ (δ − µ, δ + µ).
Note that the extended A satisfies all the required properties. This
shows that the smallest δ as above is in fact 0.

Lemma 3.18 Under the same conditions and with the same notations
as in Lemma 3.17, there exist a leaf L �= L0 and a decreasing sequence
(tm), converging to 0, such that Ltm = L and Dtm ⊂ Int(Dtm+1) for any
m = 1, 2, . . . . Moreover, D̃tm ⊂ D̃tm+1 and

⋃
m D̃tm = L̃.

Proof Since α0 is not contractible in L0, the map A cannot be extended
continuously with one more disk A0 : D → L0 (to get an extension
D × [0, ε) → M). Thus, there is an x ∈ Int(D) such that the segment
T = {A(x, t) | 0 < t < ε} does not have a unique limit point as t → 0. On
the other hand, by compactness of M , there is some limit point r ∈ M

of T as t → 0, which lies on a leaf L. Choose a foliation chart U around
r. There are points rm = A(x, sm) ∈ U , m = 1, 2, . . . , on the segment T
which converge to r. Since T is transversal, we can clearly choose these
points to be on L, and also we can assume that L �= L0 (Figure 3.9).

Write Dm = Dsm
. (This notation is unambiguous if we take ε < 1.)

First note that r ∈ Int(Dm) for large m. For if not, then since (rm)
converges to r and rm ∈ Int(Dm), there must be points qm ∈ ∂Dm =
αsm

(S1) which converge to r. But the ∂Dm converge to α0(S1) ⊂ L0,
so that r ∈ L0, a contradiction.

Next, we claim that we can assume that the curves ∂Dm are disjoint.
Indeed, start with ∂D1. If each ∂Dm meets ∂D1, then the sequence
(∂Dm) has a limit point on ∂D1, contradicting the fact that ∂D1 ⊂ L
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Fig. 3.9. Choice of the points rm

while (∂Dm) converges to L0. Thus there exists m2 > 0 such that
∂Dm2∩∂D1 = ∅. Proceeding in this way, we find the desired subsequence
(mk) so that ∂Dmk

are disjoint. Thus, we will assume that ∂Dm are
disjoint.

Consider the universal cover L̃ of L, and choose a base-point r̃ ∈ L̃

above r. Since r ∈ Int(Dm), we can lift the disks Dm to disks D̃m in L̃

such that r̃ ∈ Int(D̃m). Then ∂D̃m is a lift of ∂Dm. Since α0 is a simple
vanishing cycle, ∂D̃m has no self-intersections, i.e. it is a simple curve
in L̃ ∼= R

2. Since the ∂D̃m are disjoint, they bound regions which are
either disjoint or strictly contained in each other. The latter must be
the case since they have a common point r̃. Since (∂Dm) has no limit
points in L, a similar argument as before shows that we can assume that
D̃m ⊂ Int(D̃m+1), after replacing (Dm) with a subsequence if necessary,
and that

⋃
m D̃m = L̃. Since the quotient map L̃ → L is open, we have

Dm ⊂ Int(Dm+1) as well.

Theorem 3.19 If α0 is a positive simple vanishing cycle in L0, then
the leaf L0 is compact.

Proof Suppose that L0 is not compact. Again we shall use the notations
from Lemma 3.17 and Lemma 3.18. In particular, (αt)0≤t<ε denotes the
positive extension of α0. We may assume that this extension has the
property that if αt(z) = αt′(z′) for some 0 ≤ t, t′ < ε then α0(z) = α0(z′)
(see Remark 3.12 (1)). Furthermore, we have the immersion A as in
Lemma 3.17. Write p = α0(1), where we choose α0 to be parametrized
in such a way that p is not a point of self-intersection of α0. By Lemma
3.16, there is a closed transversal curve γ through p. By modifying γ

and by shrinking ε, we can assume that

(a) γ is positively oriented, γ: [0, 1] → M , γ(0) = γ(1) = p,
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(b) γ(t) = αt(1) for 0 ≤ t < ε, and
(c) if γ(t) = αt′(z) then z = 1 and t = t′, for any t ∈ [0, 1], z ∈ S1

and 0 ≤ t′ < ε.

(Modify γ to coincide with α(1, - ) on [0, ε) and make it transversal to
α(S1, [0, ε)) outside [0, ε). Then γ|[ε,1) hits α(S1, [0, ε)) in finitely many
points, which we can get rid of by shrinking ε. Furthermore, γ|[0,ε) hits
α(S1, [0, ε)) only in {αt(1) | 0 ≤ t < ε}, by the property of Remark 3.12
(1) just mentioned and the fact that p is a simple point of α0.)

Choose m > 0 and consider the restriction of A

Am: D × [tm+1, tm] −→ M .

The map Am is a proper immersion. By Lemma 3.18, Am factors as a
proper immersion f: Y → M through the space Y , obtained as a quotient
of D× [tm+1, tm] after identifying D×{tm} with a suitable subspace of
D × {tm+1} (Figure 3.10). In particular, f has finite fibres. The curve

Fig. 3.10. The space Y

γ|[tm+1,tm] can be lifted to a (non-closed) curve γ̃ in Y . This lift can be
extended to a lift γ̃: [tm+1, tm + δ] → Y of the curve γ|[tm+1,tm+δ] such
that γ̃((tm, tm + δ)) ⊂ Int(Y ). In fact, since f is a proper immersion,
this lift is unique and can be prolonged if γ̃(tm + δ) ∈ Int(Y ).

Now the boundary of Y consists of two parts: one corresponds to
S1 × [tm+1, tm] which we denote by P , and the rest will be denoted
by Q. Observe now that γ̃(tm + δ) cannot lie in part Q because of the
orientation of γ, but also it cannot lie in P , by assumption (c) on γ. This
shows that γ̃ will never hit the boundary of Y , so it can be extended to
a curve γ̃: [tm+1,∞) → Y such that f(γ̃(t + k)) = γ(t) for any t ∈ [0, 1]
and k ∈ N with k + t ≥ tm+1. Since γ̃ is clearly not periodic, this
contradicts the fact that f has finite fibres.
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Proposition 3.20 If H1
dR(M) = 0 then any compact leaf of F is a

torus.

Proof Let L be a compact leaf of F . It follows that L is the compact
oriented surface Tg of some genus g ≥ 0: we have to prove that g = 1,
or equivalently, that the Euler characteristic χ(L) = 2 − 2g is zero.

To begin with, consider a small tubular neighbourhood N of L. This is
a line bundle over L, which is oriented since the foliation is transversely
oriented. Thus N − L has two components, a positive one N+, and a
negative one N−. Now the Mayer–Vietoris sequence for the open cover
M = (M − L) ∪N starts like

0 −→ H0
dR(M) −→ H0

dR(M − L) ⊕H0
dR(N) −→ H0

dR(N − L) −→ 0 .

Since N is connected and N−L has two components, we see that M−L

has two components, say V = V + and V −, such that N+ ⊂ V + and
N− ⊂ V −. In particular, V̄ is a foliated manifold with boundary equal
to the leaf L; since the foliation is transversely orientable, there exists
a nowhere vanishing normal field X on V̄ which is transversal to the
boundary L of V̄ .

Now consider L ∼= Tg embedded in S3 = R
3 ∪ {∞}, so that ∞ �∈ Tg,

and let C be the component of S3−Tg with ∞ ∈ C. Consider the space

G = C̄ ∪Tg
V .

Now we can extend the field X to a vector field X̄ on G such that X̄

has exactly g + 1 singularities: we add one at ∞ with index 1, which
looks like the gradient of the function x2 + y2 + z2 (at zero), and g

singularities, one in each ‘hole’ of Tg, with index −1, which look like the
gradient of the function x2 + y2 − z2 (Figure 3.11). The sum of indices
is thus 1 − g, so the Euler characteristic of G is 1 − g by the Poincaré–
Hopf theorem. On the other hand, the Euler characteristic of an odd
dimensional (orientable) compact manifold is zero, by Poincaré duality.
This yields g = 1.

Corollary 3.21 If π1(M) is finite, then there exists a compact leaf of
F which is a torus.

Remark. This torus is the boundary of a submanifold V ⊂ M of
dimension 3 which is a union of leaves of F .
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Fig. 3.11. The vector field X̄ on G

3.2.3 Existence of a Reeb component

In this subsection M is a compact connected oriented manifold of dimen-
sion 3 with finite fundamental group, and F is a transversely oriented
foliation of M of codimension 1.

Theorem 3.22 The foliated manifold (M,F) has a Reeb component.

Remark. The theorem asserts that there exists a topological embedding
D×S1 → M which maps the leaves of a Reeb foliation on the solid torus
D × S1 onto the leaves of F .

Proof (of Theorem 3.22) By Theorem 3.13 and Proposition 3.15 there
exists a simple (positive) vanishing cycle α0 in a leaf L0, and by Theorem
3.19 the leaf L0 is compact. Further, Proposition 3.20 implies that L0

is a torus.
First we will show that we can take α0 to be a simple curve. Let v and

w be the standard loops in L0
∼= T 2 which generate the fundamental

group of L0. Thus there exist uniquely determined p, q ∈ Z such that
α0 is in the same homotopy class as vpwq.

Observe that if δ0 is a loop in L0 such that δk0 is a positive vanishing
cycle, then δ0 is a positive vanishing cycle as well. Indeed, first note
that δ0 has trivial positive holonomy. Let (δt) be a positive extension
of δ0 obtained using holonomy. Since δk0 is a vanishing cycle, the loop
δkt is contractible in its leaf. But we know that all the leaves of F have
R
2 for their universal covering space; in particular, their fundamental

groups are torsion free, as no finite group can act freely on R
2. (Here

is one way to see this. If a finite group G acts freely on R
2, then so

does any of its cyclic subgroups, thus we may assume that G is cyclic.
Since R

2 is contractible, the two-dimensional manifold X = R
2/G is a
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K(G, 1) space. In particular, H0(X,Z) = Z, H1(X,Z) = G, Hi(X,Z) =
Hi(G,Z). But Hi(X,Z) = 0 if i > 2, for dimensional reasons, while
Hi(G,Z) is periodic with period 2 (Mac Lane (1963)). This gives a
contradiction.) Thus δt is itself contractible in its leaf, hence δ0 is a
vanishing cycle.

This shows that we can assume without loss of generality that p and
q are relatively prime. But then α0 is a generator of π1(L0) (there exist
a, b ∈ Z with ap− bq = 1, hence the matrix(

p b

q a

)

is invertible over Z), and we can choose the diffeomorphism g: T 2 → L0

in such a way that α0 = v, i.e. α0(z) = g(z, 1) for z ∈ S1. In particular,
it is a simple curve and hence a simple vanishing cycle. Put β0 = g(1, - ).

In Lemma 3.17 we associated to the vanishing cycle α0 the immersion
A : D × (0, ε) → M . This was done using holonomy with respect to
the normal transversal sections, which are the integral curves of a fixed
normal vector field X on M .

Note that α0 has of course trivial positive holonomy. On the other
hand, β0 must have non-trivial positive holonomy, otherwise the leaves
Lt would be tori for small t by the local Reeb stability theorem. Hence
the positive holonomy group of L0 is Z, and we can assume that hol(β0)
shrinks the positive part of a transversal section.

Now write βz = g(z, - ) for z ∈ S1 (thus β1 = β0). Each βz is a closed
curve with the ‘same’ holonomy as β0. By holonomy of those curves,
using the chosen normal transversal sections, we obtain a smooth map

Z: W = S1 × [0, 1] × [0, δ] −→ M

for some small 0 < δ < ε. More precisely, Z(z, h, t) is the transport
along βz during time h starting at αt(z). Thus Z satisfies the following
conditions:

(i) Z(z, h, 0) = βz(e2πih),
(ii) Z(z, 0, t) = αt(z),
(iii) Z(z, h, t) ∈ Lt, and
(iv) Z(z, h, [0, δ]) is a normal section of F .

Of course we choose δ so small that the transversal sections of (iv)
are disjoint for different (z, h) ∈ S1 × [0, 1). Further, for any z ∈ S1

and t ∈ [0, δ] we have Z(z, 1, t) = Z(z, 0, ζz(t)) for some ζz(t) ∈ [0, δ];
in other words, ζz is a reparametrization of the holonomy of βz. But
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ζz(t) is clearly a locally constant function of z, therefore constant, and
we shall write ζ = ζz. In other words, there is a unique smooth map
ζ : [0, δ] → [0, δ] with Z(z, 1, t) = Z(z, 0, ζ(t)) for any z ∈ S1 and
t ∈ [0, δ].

Let W ′ be the quotient of W obtained after identifying (z, 1, t) with
(z, 0, ζ(t)) for any z ∈ S1 and t ∈ [0, δ]. Then it is easy to see that Z

factors as an embedding Z ′: W ′ → M . Note also that we have ζ(0) = 0
and ζ(t) < t for any t > 0: for if ζ(t) = t for some t then Lt is a
torus and αt is not contractible, a contradiction (Figure 3.12). For any

Fig. 3.12. The image of Z

0 < t ≤ δ, αt is a simple closed curve in Lt and clearly divides Lt into
two components, one of them being diffeomorphic to R

2 −D. From the
fact that αt is contractible in Lt and that Lt has R

2 for its universal
covering space it follows that Lt ∼= R

2. In particular, Dt is an embedded
disk in Lt. Furthermore, Lt = Lt′ for 0 < t′ < t < δ if and only if
t′ = ζk(t) for some k ∈ N.

In Lemma 3.17 we have shown that for δ small enough (αt) can be
extended to an immersion A: D × (0, δ] → M , again by using holonomy
with respect to the normal transversal sections. Adopting the notations
of Subsection 3.2.2, we have Dt ⊂ Int(Dζ(t)) and

Dt ∪
∞⋃
k=0

Z(S1, [0, 1], ζk(t)) = Lt

for any 0 < t ≤ δ. As in the proof of Theorem 3.19, the restriction of A

A′: D × [ζ(δ), δ] → M

factors as a map f through the space Y obtained as a quotient of the



80 Two classical theorems

product D × [ζ(δ), δ] (see Figure 3.10, replacing tm with δ and tm+1

with ζ(δ)). We know from the proof of Theorem 3.19 that f is a proper
immersion, but by our observations above it is clear that f is in fact an
embedding. Now there is an obvious way to glue Y and W ′ together,
obtaining a solid torus with a Reeb foliation, and combine Z ′ and f to
an embedding of this torus into M which preserves the leaves.



4

Molino’s theory

In Chapter 2 we introduced the notion of a Riemannian foliation: this is
a foliation whose normal bundle is equipped with a metric which is, in
an appropriate sense, invariant under transport along the leaves of the
foliation. In this chapter we study some special classes of Riemannian
foliations, and some ways of constructing them, with the ultimate goal
of proving Molino’s ‘structure theorem’.

The most important class of Riemannian foliations in this chapter is
that of transversely parallelizable ones. While an ordinary manifold is
called parallelizable if its tangent bundle is trivial, a foliated manifold
is called transversely parallelizable if its normal bundle is trivial, and if
moreover a trivialization exists which is invariant under transport along
the leaves. Intuitively speaking, these are the foliated manifolds whose
‘space of leaves’ is parallelizable.

A special class of transversely parallelizable foliations (to be discussed
in Subsection 4.3.1 below) are the so-called Lie foliations. These are
foliations defined as the kernel of a ‘Maurer–Cartan’ differential 1-form
with values in a Lie algebra.

Another way of obtaining transversely parallelizable foliations, to be
discussed in Subsection 4.2.2, is by pulling back a given Riemannian
foliation on a manifold M to a suitable transverse frame bundle over
M . This construction will form an important ingredient for Molino’s
structure theorem.

Any transversely parallelizable foliation on a compact connected man-
ifold is homogeneous, in the sense that the group of global diffeomor-
phisms preserving the foliation acts transitively on the manifold (see
Theorem 4.8. We begin this chapter with the discussion of such homo-
geneous foliations, and prove in particular that for any homogeneous
foliation F of a manifold M one can construct another foliation Fbas

81
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on M by thickening the leaves of F in a particular way. This thicker
foliation is always strictly simple, and is uniquely characterized by the
property that a smooth function on M is constant along the leaves of
Fbas if and only if it is constant along the leaves F (see Theorem 4.3).

Our study of homogeneity and transverse parallelizability for folia-
tions will naturally lead to Molino’s theorem, already alluded to above.
This theorem states that every Riemannian foliation on a compact con-
nected manifold can be covered in a canonical way by a transversely
parallelizable foliation. Moreover, on each of the associated thick leaves,
this latter foliation restricts to a Lie foliation, whose Maurer–Cartan
form takes values in a Lie algebra naturally associated to the original
foliation.

4.1 Transverse parallelizability

In this section, we discuss the notions of homogeneity and transverse
parallelizability for foliations, related by the fact that any transversely
parallelizable foliation is homogeneous. Any transversely parallelizable
foliation is Riemannian. We also discuss how the leaves of a homoge-
neous foliation can be thickened so as to give us an associated ‘basic’
foliation, again homogeneous, which is strictly simple.

4.1.1 Homogeneous foliations

Recall that a manifold M is said to be homogeneous if for any two points
x, y ∈ M there exists a diffeomorphism M → M which maps x to y.
It is a standard fact that any second-countable Hausdorff manifold is
homogeneous. However, for non-Hausdorff manifolds the situation is
more subtle; see Exercise 4.2 (3) below.

An automorphism of a foliated manifold (M,F) is a diffeomorphism
φ : M → M which preserves the foliation, i.e. for which the image
of any leaf is a leaf (Section 1.1), or equivalently, dφ(T (F)) = T (F).
The automorphisms of (M,F) form a group which we shall denote by
Aut(M,F). A foliation F of a manifold M is called homogeneous if
the group Aut(M,F) acts transitively on M , or in other words, if for
any two points x, y ∈ M there exists a diffeomorphism φ : M → M

which preserves the foliation and maps x to y. It is easy to see that
this is always true if x and y lie on the same leaf (Exercise 4.2 (2)
below), but if this is true for any two points there are several quite
exclusive properties of the foliation that one can deduce. In particular,
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all the leaves of a homogeneous foliation are diffeomorphic. Among the
examples of foliations we have mentioned so far in this book, the Kro-
necker foliation of the torus is one of the few non-trivial examples which
is homogeneous. One of the special features of a homogeneous foliation
is that it gives rise to another foliation, which is given by the fibres of a
fibre bundle if the manifold is compact. Its description uses the concept
of a basic function, which we discuss first.

Let (M,F) be a foliated manifold. The vector fields on M which are
tangent to the leaves of F form a Lie subalgebra of X(M), which we de-
note by X(F) (see Section 1.2). In other words, X(F) consists of the sec-
tions of the tangent bundle T (F) of the foliation F . A smooth function
f on M is called basic if it is constant along the leaves. Equivalently, a
function f is basic if X(f) = 0 whenever X ∈ X(F), briefly X(F)(f) = 0.
The basic functions on (M,F) form a subalgebra Ω0

bas(M,F) of C∞(M).
If a function f is defined locally on an open subset U of M , then f is
called basic if it is basic with respect to the foliation F|U . Locally on a
foliation chart we have a lot of basic functions; however, it may be im-
possible to extend them to M . Note that if X is a vector field on M such
that X(f) = 0 for any locally defined basic function, then X ∈ X(F).

Examples 4.1 (1) Let f : M → Q be a surjective submersion with
connected fibres, and let F be the strictly simple foliation of M given
by the fibres of f . Then we have Ω0

bas(M,F) = C∞(Q).
(2) Let (M,F) be a foliated manifold. We may choose a Haefliger

cocycle (si: Ui → R
q) which defines F , and we may also assume that the

submersions si have connected fibres. Then a function f on M is basic
if and only if f |Ui

is a pull-back along si of a function on si(Ui), for any
i.

(3) Let F be the Kronecker foliation of the torus T 2. Since any leaf
of F is dense in T 2, any basic function is constant, so Ω0

bas(T
2,F) = R.

Exercises 4.2 (1) Let M be a (second-countable Hausdorff) manifold
and let x, y ∈ M . Show that there exists a diffeomorphism M → M

which is the identity outside a compact subset of M and maps x to y.
(2) Let (M,F) be a foliated manifold and let x and y be two points of

M lying on the same leaf of F . Show that there exists an automorphism
of (M,F) which maps x to y. The automorphism may be chosen such
that it is the identity outside a compact set.

(3) Observe that a non-Hausdorff manifold need not be homogeneous.
Show that in fact no second-countable non-Hausdorff manifold is ho-
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mogeneous. (Hint: Suppose that M is a non-Hausdorff homogeneous
manifold of dimension n ≥ 1. By non-Hausdorffness and homogeneity
of M any point x of M has the property that there exists another point
of M which cannot be separated from x. If M is second-countable, there
exists a countable cover (Ui)∞i=1 of M open non-empty Hausdorff subsets
of M . For any point x ∈ U1 choose i(x) ∈ N such that a point which can-
not be separated from x lies in Ui(x). This implies that Vi(x) = U1∩Ui(x)
is a non-empty open subset of U1 which has x in its boundary. Now if
we take J = {i(x) | x ∈ U1} ⊂ N, and if Wj is the boundary of Vj inside
U1, the family (Wj)j∈J is a countable cover of U1 made up of closed
subsets with empty interior, which is impossible.)

Let F be a homogeneous foliation of a manifold M . Let Xbas(F) be
the vector space of those vector fields on M which vanish on the global
basic functions,

Xbas(F) = {X ∈ X(M) |X(Ω0
bas(M,F)) = 0} .

Clearly we have X(F) ⊂ Xbas(F), while Xbas(F) is a Lie subalgebra of
X(M) and a module over C∞(M). For any x ∈ M put

Ex = {Xx | X ∈ Xbas(F)} ⊂ Tx(M) .

Since F is homogeneous, the dimension of Ex is constant with respect
to x ∈ M . Indeed, for any φ ∈ Aut(M,F) we have Eφ(x) = (dφ)x(Ex).
To see this, observe first that the composition of φ with a basic function
is again basic. Hence if X ∈ Xbas(F) we have dφ(X)(f) = X(f ◦φ) = 0
and therefore (dφ)x(Xx) ∈ Eφ(x). It follows that E =

⋃
x∈M Ex is an

involutive subbundle of T (M), so it defines a foliation Fbas on M with
T (Fbas) = E, for which it holds that

X(Fbas) = Xbas(F) .

The foliation Fbas will also be referred to as the basic foliation associated
to F . Since X(F) ⊂ X(Fbas), it follows that any leaf of F is contained
in a leaf of Fbas. Write q = codimF and q′ = codimFbas ≤ q. So if L
is a leaf of Fbas, the foliation F can be restricted to L, and (L,F|L) is
a foliated manifold of codimension q′ − q.

Theorem 4.3 Let F be a homogeneous foliation of M , and let Fbas be
the associated basic foliation. Then

(i) Ω0
bas(M,F) = Ω0

bas(M,Fbas), i.e. F and Fbas have the same basic
functions,
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(ii) Aut(M,F) ⊂ Aut(M,Fbas), and Fbas is again homogeneous,
(iii) Fbas is strictly simple, i.e. the space of basic leaves M/Fbas has

the structure of a (Hausdorff) manifold such that the quotient projection
πbas: M → M/Fbas is a submersion,

(iv) the projection πbas induces an isomorphism between Ω0
bas(M,F)

and C∞(M/Fbas),
(v) if the leaves of Fbas are compact (e.g. if M is compact), then

πbas: M → M/Fbas is a fibre bundle, and
(vi) if F is simple, then it is strictly simple and equal to Fbas.

Proof (i) Since X(F) ⊂ X(Fbas) we have Ω0
bas(M,Fbas) ⊂ Ω0

bas(M,F).
On the other hand, if f ∈ Ω0

bas(M,F) then X(Fbas)(f) = 0 by definition
of Fbas, therefore f ∈ Ω0

bas(M,Fbas).
(ii) We showed already that Eφ(x) = (dφ)x(Ex) for any φ ∈ Aut(M,F)

and x ∈ M , so dφ(T (Fbas)) = T (Fbas).
(iii) We first remark that for any point x ∈ M ,

Ex = {ξ ∈ TxM | df(ξ) = 0 for any basic function f} .

To see this, observe that the right hand side itself defines a subbundle
of T (M) because F is homogeneous, and hence any tangent vector ξ

from the right hand side can be extended to a section of this subbundle,
i.e. to a vector field in X(Fbas). Next, note that we can choose basic
functions f1, . . . , fq′ such that (df1)x, . . . , (dfq′)x are linearly indepen-
dent and Ex =

⋂q′

i=1 Ker(dfi)x. The same is then true at any point in
a small neighbourhood U of x, and hence Fbas|U is given by the fibres
of the map s = (f1, . . . , fq′): M → R

q′ restricted to U . We may shrink
U if necessary so that the fibres of s|U are connected. Now since the
functions f1, . . . , fq′ are globally defined and constant along the leaves,
any leaf of Fbas intersects U in at most one plaque. Note that this im-
plies that any leaf is closed and has trivial holonomy. Furthermore, the
map s induces a homeomorphism of πbas(U) with s(U) ⊂ R

q′ , which
gives a local chart for a smooth structure on M/Fbas. The change-of-
charts homeomorphisms obtained in this way are given by the holonomy
transport, hence we obtain a smooth structure on M/Fbas.

Finally, we need to prove that M/Fbas is Hausdorff. It is a homoge-
neous manifold precisely because (M,Fbas) is a homogeneous foliation.
Since M/Fbas is second-countable as well, it is Hausdorff (see Exercise
4.2 (3)).

(iv) This is a consequence of (i) and (iii).
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(v) This follows from (iii) by the local Reeb stability theorem (Theo-
rem 2.9).

(vi) Suppose that F is given by the connected components of a sub-
mersion φ : M → Q. Put q = codimF = dimQ, take any point
x ∈ M and choose a smooth function f = (f1, . . . , fq): Q → R

q which
is a diffeomorphism on an open neighbourhood V of φ(x) in Q. Now
f1 ◦φ, . . . , fq ◦φ are basic functions on (M,F) which separate leaves in
φ−1(V ). This implies that dimF = dimFbas, hence F = Fbas and F is
strictly simple by (iii).

4.1.2 Transversely parallelizable foliations

Let F be a foliation of codimension q on a manifold M of dimension n.
In general, the Lie subalgebra X(F) is not a Lie ideal in X(M), but it is
clearly a Lie ideal in the Lie subalgebra

L(M,F) = {Y ∈ X(M) | [X(F), Y ] ⊂ X(F)} .

This is exactly the algebra of projectable vector fields (Remark 2.7 (7)).
Note that L(M,F) is a module over the algebra of basic functions. In-
deed, if Y ∈ L(M,F) and if f is basic, then for any X ∈ X(F) we have
[X, fY ] = X(f)Y +f [X,Y ] ∈ X(F) since X(f) = 0 and Y is projectable.
Next, the definition of the Lie bracket implies that the derivative of a
basic function in the direction of a projectable vector field is again basic.
In fact, the converse is also true: if Y is a vector field on M such that
Y (f) is a (locally defined) basic function for any locally defined basic
function f , then Y is projectable.

We shall denote the quotient Lie algebra L(M,F)/X(F) by l(M,F),

0 −→ X(F) −→ L(M,F) −→ l(M,F) −→ 0 .

This Lie algebra is also a module over Ω0
bas(M,F). For any Y ∈ L(M,F)

we shall write Ȳ for the projection of Y in l(M,F). Elements of l(M,F)
are called transverse vector fields on (M,F), and act as derivations on
Ω0
bas(M,F) by Ȳ (f) = Y (f) + X(F)(f) = Y (f). Note that they can be

viewed as certain sections of the normal bundle N(F) of the foliation.
Such a section σ: M → N(F) is a transverse vector field if and only if
it can be locally projected along a submersion which locally defines the
foliation, as the following example illustrates.

Examples 4.4 (1) Let (x1, . . . , xp, y1, . . . , yq): U → R
p×R

q be a surjec-
tive foliation chart for F . Then the vector fields ∂

∂x1
, . . . , ∂

∂xp
generate
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the module X(F)|U over C∞(M)|U . Take any vector field Y on M and
write Y |U =

∑
i ai

∂
∂xi

+
∑

j bj
∂
∂yj

. Then we have
[

∂

∂xk
, Y

]
=

∑
i

∂ai
∂xk

∂

∂xi
+

∑
j

∂bj
∂xk

∂

∂yj
.

Thus Y is projectable if for any such local chart one has

∂bj
∂xk

= 0 , j = 1, . . . , q k = 1, . . . , p ,

or in other words, if the functions bi are basic for F|U . Equivalently,
this means that Y can be projected to the quotient U/F ∼= R

q. In this
case we have

Ȳ |U =
∑
j

bj
∂

∂yj
+ X(F) .

This is a section of the normal bundle of F|U which can be projected
to R

q since the functions bj are constant along the leaves. We see that
locally we have a lot of projectable vector fields, but globally this may
not be the case.

(2) Let f : M → Q be a surjective submersion with connected fibres,
and let F be the strictly simple foliation of M given by the fibres of f .
Then l(M,F) = X(Q).

(3) Let (M,F) be a foliated manifold, and choose a Haefliger cocycle
(si: Ui → R

q) which defines F such that the submersions si have con-
nected fibres. Then dsi induces an isomorphism Nx(F) → R

q in any
point x ∈ Ui. A section σ of N(F) is a transverse vector field if and
only if σ|Ui

is a pull-back of a vector field on si(Ui) along si, for any i.
(4) For the Kronecker foliation F of the torus T 2 one has l(T 2,F) = R.

Lemma 4.5 Let F be a homogeneous foliation of a manifold M . Then
L(M,F) ⊂ L(M,Fbas), where Fbas is the basic foliation of M associated
to F .

Proof Let Y ∈ L(M,F) and take any X ∈ X(Fbas). For any basic
function f we have

[X,Y ](f) = X(Y (f)) − Y (X(f)) = 0

since Y (f) is also basic and X annihilates basic functions by definition.
This implies that [X,Y ] ∈ X(Fbas), and hence Y ∈ L(M,Fbas).
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Projectable vector fields can also be characterized by the property
that their flows preserve the foliation (note that the flow may be defined
only locally if M is not compact). In order to see that this property is
necessary (a similar computation shows that it is sufficient as well), let
Y be a projectable vector field and let µ be the (locally defined) flow of
Y . To see that each µ(t, - ) = etY (locally) preserves the foliation it is
enough to prove that the composition of a locally defined basic function
f with etY is again basic. To this end, take any X ∈ X(F). We have to
show that X(f ◦ etY ) = 0 for any t. This is clearly true for t = 0, so it
is sufficient to show that ∂

∂tX(f ◦ etY ) = 0. But the derivations X and
∂
∂t commute, so the definition of the flow etY and the fact that Y (f) is
also basic give us

∂

∂t
X(f ◦ etY ) = X

(
∂

∂t
(f ◦ etY )

)

= X

(
∂etY

∂t
(f)

)

= X(Y (f))

= 0 .

A foliated manifold (M,F) is called transversely parallelizable if there
exist transverse vector fields Ȳ1, . . . , Ȳq ∈ l(M,F) which form a global
frame for the normal bundle of the foliation F . In that case the fields
Ȳ1, . . . , Ȳq, also referred to as a transverse parallelism for (M,F), form a
basis of the module l(M,F) over Ω0

bas(M,F). Indeed, we can write any
section σ of the normal bundle as σ = a1Ȳ1+ · · ·+aqȲq for some smooth
functions a1, . . . , aq ∈ C∞(M), and this section σ is a transverse vector
field if and only if all the functions a1, . . . , aq are basic (exercise).

Examples 4.6 (1) Let ω1, . . . , ωq be closed, (pointwise) linearly inde-
pendent 1-forms on a manifold M . They define a foliation F on M of
codimension q by

T (F) =
q⋂
i=1

Ker(ωi) .

Let Y1, . . . , Yq be vector fields on M such that ωi(Yj) = δij . These vector
fields are projectable, since we have for any X ∈ X(F)

ωi([X,Yj ]) = X(ωi(Yj)) − Yj(ωi(X)) − 2dωi(X,Yj) = X(δij) = 0 .

Therefore Ȳ1, . . . , Ȳq form a transverse parallelism for (M,F).
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(2) The trivial foliation of dimension 0 on a manifold M is transversely
parallelizable if and only if the manifold M is parallelizable (i.e. the
tangent bundle T (M) is trivial).

Proposition 4.7 If (M,F) is transversely parallelizable, then all the
leaves of F have trivial holonomy, and there exists a transverse metric on
(M,F), i.e. (M,F) can be given the structure of a Riemannian foliation.

Proof Recall that the image of a projectable vector field Z on (M,F)
under the quotient map L(M,F) → l(M,F) is denoted by Z̄. Let
Ȳ1, . . . , Ȳq be a transverse parallelism on (M,F). Then define a Rie-
mannian structure 〈 - , - 〉 on N(F) by 〈Ȳi, Ȳj〉 = δij . Now the transverse
metric g on T (M) (see Section 2.2) is given by

g(Y,Z) = 〈Ȳ , Z̄〉 .
The kernel of gx is indeed Tx(F), and by definition of LXg we have for
any X ∈ X(F)

LXg(Yi, Yj) = X(〈Ȳi, Ȳj〉) − 〈[X,Yi], Ȳj〉 − 〈Ȳi, [X,Yj ]〉
= X(δij)

= 0 ,

so LXg = 0.
Let L be a leaf of F . For any x ∈ L there is an open neighbourhood

Vx of 0 in R
q on which the map given by

Tx(t) = (et1Y1 ◦ · · · ◦ etqYq )(x) , t = (t1, . . . , tq) ,

is defined. In fact we have

∂Tx(t)
∂ti

∣∣∣∣
t=0

= (Yi)x ,

hence (dTx)0 is injective. Therefore we may choose Vx so small that
Tx is an embedding and that Tx(Vx) is a transversal section of (M,F)
at x. Now let γ : [0, 1] → L be a curve in L, and put Γ = γ([0, 1]).
By compactness of Γ we can find an open neighbourhood V of 0 in R

q

such that for any x ∈ Γ, the map Tx embeds V as a transversal section
Sx = Tx(V ) in M . Since the vector fields Y1, . . . , Yq are projectable, their
flows preserve the foliation, therefore for any t ∈ V the set {Tx(t) |x ∈ Γ}
is contained in a leaf of F . Thus holSγ(1)Sγ(0)(γ)(Tγ(0)(t)) = Tγ(1)(t), and
in particular hol(γ) = id when γ is a loop.
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Theorem 4.8 Let F be a transversely parallelizable foliation of a con-
nected manifold M , for which we can choose complete projectable vector
fields Y1, . . . , Yq such that Ȳ1, . . . , Ȳq form a transverse parallelism for
(M,F). Then (M,F) is homogeneous. In particular, any transversely
parallelizable foliation on a compact connected manifold is homogeneous.

Proof Since Y1, . . . , Yq are complete, the function given in the proof of
Proposition 4.7

Tx(t) = T (x, t) = (et1Y1 ◦ · · · ◦ etqYq )(x) , t = (t1, . . . , tq) ,

is well-defined on M × V for an open neighbourhood V of 0 in R
q. The

map T ( - , t) is an automorphism of the foliated manifold (M,F), for any
t ∈ V . Let L be a leaf of F and x ∈ L, and denote by A the set of those
points y of M for which there exists an automorphism of (M,F) which
maps x to y. The set A is saturated by Exercise 4.2 (2). The existence of
the automorphisms T ( - , t) and the fact that Tx is (locally around 0) an
embedding transversal to the leaves imply that A is an open (saturated)
neighbourhood of L. The connectedness of M now yields that (M,F) is
homogeneous.

Since we know now that a transversely parallelizable foliation F of a
compact manifold M is homogeneous, we may consider the basic folia-
tion Fbas of M associated to F (Subsection 4.1.1).

Theorem 4.9 Let F be a transversely parallelizable foliation of a com-
pact manifold M , and let Fbas be the basic foliation of M associated to
F . Then for any leaf L of Fbas we have

(i) any basic function on (L,F|L) is constant,
(ii) (L,F|L) is transversely parallelizable, and
(iii) l(L,F|L) is a finite dimensional Lie algebra over R, with

dim l(L,F|L) = codimF − codimFbas .

Proof (i) Take any x ∈ L and let Ȳ1, . . . , Ȳq be a transverse parallelism
for (M,F). Put q′ = codimFbas. We can choose this parallelism so that
(Y1)x, . . . , (Yq′)x span a subspace of Tx(M) complementary to Tx(Fbas).
Define T : L× R

q′ → M by

T (x, t) = (et1Y1 ◦ · · · ◦ etq′Yq′ )(x) , t = (t1, . . . , tq′) ,

as before. Since Y1, . . . , Yq′ ∈ L(M,F) and L(M,F) ⊂ L(M,Fbas)
(Lemma 4.5), the diffeomorphism T ( - , t) preserves both foliations, F
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and Fbas. Now recall that Q = M/Fbas is a manifold and that the
projection π : M → Q is a fibre bundle (Theorem 4.3 (v)). Thus T

induces a map T̄ : R
q′ → Q such that the diagram

L× R
q′ T

pr2

M

π

R
q′ T̄

Q

commutes. By our choice of Y1, . . . , Yq′ it follows that T (x, - ) is an
embedding on an open neighbourhood V of 0 in R

q′ transversal to the
leaves of Fbas, and hence T̄ |V is an embedding. In turn this implies that
T |L×V is an embedding as well. Write U = T (L× V ).

Now take any basic function f on (L,F|L). Our plan is to extend f

to a basic function h on (M,F). Since any such function is constant on
the leaves of the basic foliation, this would imply that f is constant. To
this end, let g be a function on Q with compact support in π(U) such
that g(π(x)) = 1. For any y ∈ U write T−1(y) = (a(y), b(y)) ∈ L × V .
Now define a function h on U , obviously basic, by

h(y) = f(a(y))g(π(y)) ,

and extend it by 0 to all of M .
(ii) Let x ∈ L. We can choose the transverse parallelism Ȳ1, . . . , Ȳq in

such a way that (Yq′+1)x, . . . , (Yq)x span a subspace of Tx(Fbas) comple-
mentary to Tx(F). By Lemma 4.5 each vector field Yi is also projectable
with respect to Fbas. Since (Yi)x is tangent to L for i = q′ + 1, . . . , q,
the projectability of Yi with respect to Fbas implies that the same is
true at any point along the leaf L. Therefore Yq′+1|L, . . . , Yq|L are in
L(L,Fbas|L) and their projections to l(L,Fbas|L) form a transverse par-
allelism.

(iii) This follows directly from (i) and (ii).

Example 4.10 The basic foliation of Theorem 4.9 is homogeneous by
Theorem 4.3 (ii), but need not be transversely parallelizable, as the
following example shows.

The Kronecker foliation F of the torus T 2 is transversely paralleliz-
able. In fact, if we write (ϕ, θ) for the coordinates of a point of T 2 =
S1 × S1, the field ∂

∂θ (and also ∂
∂ϕ ) is a transverse parallelism for the

foliation. The basic foliation associated to (T 2,F) is the trivial foliation
of codimension 0.
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Take now M = T 2 × S2, and let G be the foliation of M of dimension
1 given by the product of the Kronecker foliation of T 2 with the trivial
foliation of S2 of dimension 0. We will show that (M,G) is also trans-
versely parallelizable. For this purpose, identify S2 with the space of
vectors in R

3 of norm 1, and identify the tangent space of S2 at a point
r ∈ S2 with a subspace of R

3 in the natural way. At a point r ∈ S2, we
can uniquely decompose each of the standard basic vectors e1, e2, e3 of
R
3 into a vector parallel to r and one tangent to S2, thus giving

e1 = a1(r)r + (v1)r ,

e2 = a2(r)r + (v2)r ,

e3 = a3(r)r + (v3)r

for some functions a1, a2, a3 on S2 and vector fields v1, v2, v3 on S2. Now
define the vector fields Y1, Y2, Y3 on M by

(Y1)(p,r) = (a1(r)
(

∂

∂θ

)
p

, (v1)r) ,

(Y2)(p,r) = (a2(r)
(

∂

∂θ

)
p

, (v2)r) ,

(Y3)(p,r) = (a3(r)
(

∂

∂θ

)
p

, (v3)r)

for any (p, r) ∈ M = T 2 × S2. It is easy to check that Y1, Y2, Y3 form a
transverse parallelism for (M,G). The associated basic foliation is given
by the fibres of the second projection pr2 : T 2 × S2 → S2, and this
foliation is not transversely parallelizable, since S2 is not parallelizable
(Example 4.4 (2)).

4.2 Principal bundles

This section consists of two parts. In the first part, 4.2.1, we will briefly
summarize some standard material concerning connections on principal
G-bundles on smooth manifolds. There are many extensive treatments
of this subject in the literature, for example Kobayashi–Nomizu (1963)
or Dupont (1978). In the second part, we will give a parallel treatment
of principal G-bundles and connections on the ‘space’ of leaves of a
foliation.
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4.2.1 Connections on principal bundles

Let G be a Lie group and M a manifold. A principal G-bundle on M (the
base space) is a manifold E (the total space) together with a surjective
submersion π: E → M and a right G-action µ: E ×G → E on the fibres
(i.e. π ◦µ = π ◦pr1) for which the map (µ,pr1): E × G → E ×M E is
a diffeomorphism. As usual we shall write µ(e, g) = eg = Rg(e), and
denote the principal G-bundle by (E, π, µ) or simply by E.

An example is the trivial G-bundle pr1 : M × G → M on M , where
the action is given by (e, g)g′ = (e, gg′). Note that the G-action on a
principal G-bundle E is free and transitive along the fibres of π (hence
M = E/G) and that π : E → M is locally isomorphic to the trivial
G-bundle, i.e. every point of M has an open neighbourhood U and an
equivariant diffeomorphism φ: π−1(U) → U × G over U . In fact, one
may use this as an alternative definition of a principal G-bundle.

Let E be a principal G-bundle on M and E′ a principal G-bundle on
M ′. A bundle map from E′ to E is an equivariant map f : E′ → E.
Such a bundle map induces a map f̄: M ′ → M with π ◦ f = f̄ ◦π′. We
say that f is a bundle map over f̄ . A bundle map f : E′ → E is an
isomorphism of principal G-bundles if and only if the induced map f̄

is a diffeomorphism (exercise). Let h: M ′ → M be any smooth map.
Then the pull-back h∗E = M ′ ×M E is also a principal G-bundle on M ′

with respect to the natural action. Note that a bundle map f: E′ → E

induces and isomorphism of principal G-bundles E′ → f̄∗E over the
identity, by the exercise above.

Exercise 4.11 A principal G-bundle on M is called trivial if it is iso-
morphic to the (trivial) principal G-bundle M ×G on M . Show that a
principal G-bundle E on M is trivial if and only if it admits a global
section, i.e. a map σ: M → E satisfying π ◦σ = id.

Example 4.12 Let M be a manifold of dimension n and let F (M) be the
frame bundle of M (see also Section 2.4). Recall that F (M) is a smooth
fibre bundle on M for which the fibre Fx(M) = π−1(x) is the manifold
of all ordered bases of the tangent space Tx(M), i.e. of all isomorphisms
e: R

n → Tx(M). The frame bundle admits a canonical right action of the
Lie group GL(n,R) given by composition, i.e. eA = e ◦A for e ∈ Fx(M)
and A ∈ GL(n,R). This action makes the frame bundle F (M) into a
principal GL(n,R)-bundle on M . Any local diffeomorphism f: M → M ′

induces a bundle map F (f): F (M) → F (M ′) by F (f)(e) = (df)π(e) ◦ e.
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Note that there is a natural 1-form θ ∈ Ω1(F (M),Rn), called the
canonical form, given by

θe = e−1 ◦(dπ)e .

This form has the following properties:

(i) Ker(θe) = Ker(dπ)e, and
(ii) θ is equivariant, in the sense that R∗

Aθ = A−1 ◦ θ for any matrix
A ∈ GL(n,R).

Indeed, for any ξ ∈ Te(F (M)) we have

(R∗
Aθ)e(ξ) = θeA((dRA)e(ξ))

= (eA)−1((dπ)eA((dRA)e(ξ)))

= A−1(e−1(d(π ◦RA)e(ξ)))

= A−1(e−1(d(π)e(ξ)))

= A−1(θe(ξ)) .

Moreover, the canonical form is invariant under diffeomorphisms. In
other words, if f: M → M ′ is a diffeomorphism, then

F (f)∗θ′ = θ ,

where θ′ is the canonical form on F (M ′) (exercise).
Now if M is a Riemannian manifold, one considers the orthogonal

frame bundle OF (M), which is the subbundle of F (M) made up out of
the orthogonal isomorphisms e: R

n → Tx(M). The orthogonal group
O(n) leaves OF (M) invariant, furthermore OF (M) is a principal O(n)-
bundle on M . If f: M ′ → M is an isometry, the map F (f) restricts to a
bundle map of principal O(n)-bundles OF (f): OF (M ′) → OF (M). The
restriction of the canonical form to OF (M), called the canonical form
on OF (M), is equivariant with respect to the actions of O(n) on OF (M)
and on R

n. The canonical form on OF (M) is preserved by isometries.

Let E be a principal G-bundle on M , and let g be the Lie algebra of
the Lie group G. A connection on E is a 1-form ω on E with values in
g satisfying

(i) ωe ◦ νe = id, where νe: g → Te(E) is the differential at 1 of the
map G → E which sends g to eg, and

(ii) R∗
gω = Ad(g−1) ◦ω, where Rg: E → E is given by Rge = eg.
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A connection ω on E gives us a subspace He = Ker(ωe) of Te(E) at
any point e ∈ E, which is called the subspace of horizontal vectors.
It is complementary (by (i)) to the subspace of vertical vectors, given
by Ve = Ker(dπ)e = νe(g) (and hence independent of the connection).
Condition (ii) is equivalent to (dRg)e(He) = Heg.

The curvature form associated to the connection ω on E is a 2-form
Ω ∈ Ω2(E, g) on E with values in the Lie algebra g of the Lie group G,
given by

Ω = dω +
1
2
[ω, ω] .

The connection ω is called flat if Ω = 0.
If f : E′ → E is a bundle map of principal G-bundles and ω is a

connection on E with curvature Ω, then f∗ω is a connection on E′ with
curvature f∗Ω (exercise).

Example 4.13 The trivial principal G-bundle G → 1 over the one
point space has a unique connection ωg = (dLg−1)g, where Lg: G → G

is the left translation Lg(g′) = gg′. More generally, the trivial principal
G-bundle M × G on M has a canonical connection ω obtained as the
pull-back of the unique connection on G → 1 along the projection map
pr2: M ×G → G,

ω(x,g) = (dLg−1)g ◦(dπ2)(x,g) .
This connection is flat.

Exercise 4.14 Let α: G → H be a homomorphism of Lie groups and
let E be a principal G-bundle on M .

(i) Define a right G-action on E ×H by (e, h)g = (eg, α(g−1)h), and
let E ×G H be the space of orbits (E ×H)/G of this action. Show that
E ×G H is a principal H-bundle on M with respect to the projection
π′((e, h)G) = π(e) and the action ((e, h)G)h′ = (e, hh′)G.

(ii) Note that the map f : E → E ×G H, given by f(e) = (e, 1)G, is
equivariant in the sense that f(eg) = f(e)α(h).

(iii) Show that for any connection ω on E, there exists a unique con-
nection ω′ on E ×G H satisfying f∗ω′ = (dα)1 ◦ω.

(iv) If Ω and Ω′ are the curvature forms of ω and ω′ respectively, then
we have f∗Ω′ = (dα)1 ◦Ω.

(v) Let E′ be a principal H-bundle on M with an equivariant map
f ′ : E → E′ over M . In this case the principal H-bundle E′ is called
an extension of E (or we say that E′ is induced by E) with respect to
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α. Show that for any such extension E′ there exists an isomorphism of
principal H-bundles φ: E ×G H → E′ satisfying f ′ = φ ◦ f .

Remark. From this exercise, one sees that if a principal H-bundle E′

is an extension of a principal bundle for a discrete group, the bundle E′

has a flat connection. In fact, the converse is also true, by the following
proposition:

Proposition 4.15 Let E be a principal G-bundle on M and let ω be
a connection on E. Then Ker(ω) is an integrable subbundle of T (E) if
and only if ω is flat. If M is connected and ω is flat, then the restriction
of the projection E → M to any leaf M̃ of the foliation on E given by
Ker(ω) is a principal Gδ

M̃
-bundle on M , where Gδ

M̃
is the isotropy group

GM̃ ⊂ G of M̃ equipped with the discrete topology. Furthermore, the
bundle E is the extension of M̃ with respect to Gδ

M̃
→ G.

Remark. Note that if Ker(ω) is integrable, then the foliation given by
Ker(ω) on E is invariant under the action of G. The group GM̃ is, up
to conjugation in G, independent of the choice of the leaf M̃ , and it is
referred to as the holonomy group of the (flat) connection ω. The reader
should be careful in distinguishing between this notion and the one in
Section 2.1. Note also that in this case the extension E = M̃ ×Gδ

M̃
G is

a flat bundle (Section 1.3).

Proof (of Proposition 4.15) First assume that ω is flat. The kernel of ω
is a subbundle of T (E) because ωe is surjective for any e ∈ E. If X and
Y are sections of Ker(ω), we have

ω([X,Y ]) = X(ω(Y )) − Y (ω(X)) − 2dω(X,Y )

= X(ω(Y )) − Y (ω(X)) + [ω(X), ω(Y )]

= 0 ,

so [X,Y ] is also a section of Ker(ω). Therefore Ker(ω) is involutive,
and defines a foliation of E. Assume that M is connected, and let M̃

be a leaf of the foliation given by Ker(ω). The restriction of π to M̃ is
clearly a local diffeomorphism because (dπ)e restricted to the subspace
of horizontal vectors He is an isomorphism. Let GM̃ be the isotropy
group of M̃ , i.e. GM̃ = {g ∈ G | M̃g = M̃}. Let Gδ

M̃
be the group

GM̃ equipped with the discrete topology. Then M̃ → M is a principal
Gδ
M̃

-bundle over M , hence a covering projection. The fact that E is
isomorphic to M̃ ×Gδ

M̃
G follows from Exercise 4.14 (v).
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To prove the converse, assume that Ker(ω) is an involutive subbundle
of T (E). From

2Ω(X,Y ) = X(ω(Y )) − Y (ω(X)) − ω([X,Y ]) + [ω(X), ω(Y )]

it is clear that Ω(X,Y ) = 0 if X and Y are horizontal, i.e. if they are
sections of Ker(ω). But since Ωe(ξ, ζ) = 0 if either of the tangent vectors
ξ, ζ ∈ Te(E) is vertical (this is not very difficult to see in this special
case where Ker(ω) is involutive; but in fact, it is a general property of
curvature, see Kobayashi–Nomizu (1963) or Dupont (1978)), we see that
ω is flat.

Proposition 4.16 Any principal G-bundle admits a connection.

Proof Let E be a principal G-bundle on M , and let (Ui) be a cover
of M such that E|Ui

= π−1(Ui) is isomorphic to the trivial principal
G-bundle. In particular, each E|Ui

has a connection ωi by Example
4.13. Now let (αi) be a partition of unity subordinate to (Ui). Define a
connection on E by ω =

∑
i αiωi.

Now let M be a manifold and consider the principal GL(n,R)-bundle
of frames F (M) on M . Recall that we have the canonical form θ on
F (M) with values in R

n satisfying Ker(θe) = Ker(dπ)e. For a connection
ω on F (M) we define the torsion form Θ ∈ Ω2(F (M),Rn) by

Θ = dθ + ω ∧ θ .

Here ω ∧ θ is given by (ω ∧ θ)e(ξ, ζ) = 1
2 (ωe(ξ)θe(ζ) − ωe(ζ)θe(ξ)). The

connection ω is torsion free if Θ = 0. The same observations and defini-
tions apply to the orthogonal frame bundle OF (M) if M is a Riemannian
manifold.

Theorem 4.17 For a Riemannian manifold M , there is a unique torsion
free connection on OF (M).

Remark. For the proof, see Kobayashi–Nomizu (1963). The unique
torsion free connection on OF (M) is called the Levi-Cività connection.
It can be uniquely extended to a connection on F (M), which is called
the Levi-Cività connection (see Exercise 4.14) as well. Note that if
f : M ′ → M is an isometry between Riemannian manifolds and if ω

is the Levi-Cività connection on F (M), then F (f)∗ω is the Levi-Cività
connection on F (M ′), and OF (f)∗ω is the Levi-Cività connection on
OF (M ′).
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Corollary 4.18 For any manifold M , the manifold F (M) is paralleliz-
able. For a Riemannian manifold M , the manifolds F (M) and OF (M)
admit canonical parallelisms invariant under isometries.

Proof Let ω be any connection on F (M), and put

τe = (θe, ωe): Te(F (M)) −→ R
n × gl(n,R) .

Note that τe is an isomorphism because Ker(θe)⊕Ker(ωe) = Ve⊕He =
Te(F (M)). Let e1, . . . , en be the standard basis of R

n and let

E11, E12, . . . , Enn

be the standard basis of gl(n,R). Then define vector fields

Y1, . . . , Yn, Z11, Z12, . . . , Znn

on F (M) by (Yi)e = τ−1
e (ei, 0) and (Zij)e = τ−1

e (0, Eij). This is a
parallelism on F (M). If M is Riemannian, we can choose ω to be the
Levi-Cività connection on F (M). To prove that OF (M) is parallelizable
one uses the same argument, with gl(n,R) replaced by o(n). The paral-
lelisms obtained by using the Levi-Cività connection are invariant under
isometries because the canonical form and the Levi-Cività connection
are both invariant under isometries.

4.2.2 Transverse principal bundles

Let (M,F) be a foliated manifold and let G be a Lie group. A transverse
principal G-bundle on (M,F) is a principal G-bundle E on M , equipped
with a foliation F̃ such that

(i) F̃ is preserved by the action of G, and
(ii) the projection π: E → M maps each leaf L̃ of F̃ onto a leaf L =

π(L̃) of F , and the restriction of π to L̃ is a covering projection
L̃ → L which is a quotient of the holonomy cover of the leaf L of
F .

Remark. Note that condition (ii) implies that dim F̃ = dimF . A
foliated principal G-bundle on (M,F) (see Kamber–Tondeur (1975) and
Molino (1988)) is a principal G-bundle E on M , equipped with a foliation
F̃ of the same dimension as F such that F̃ is preserved by the action
of G, while π : (E, F̃) → (M,F) is a map of foliated manifolds and
Te(F̃) ∩ Ker(dπ)e = 0 for any e ∈ E. It is easy to see that for such a
foliated principal G-bundle (E, F̃), the projection π: E → M maps any
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leaf L̃ of F̃ onto a leaf L = π(L̃) of F , and that the restriction of π to L̃

is a covering projection L̃ → L. However, this covering projection need
not be a quotient of the holonomy cover of L. Any transverse principal
G-bundle is therefore a foliated principal G-bundle, but not conversely.
(See also Example 5.36.)

Let (E, F̃) be a transverse principal G-bundle on (M,F), and let g be
the Lie algebra of G. A projectable connection on (E, F̃) is a connection
ω ∈ Ω1(E, g) on E which satisfies

(i) Te(F̃) ⊂ Ker(ωe) for any e ∈ E, and
(ii) LXω = 0 for any X ∈ X(F̃).

Here LXω(Y ) = X(ω(Y )) − ω([X,Y ]) is the Lie derivative of ω.

We shall now describe the most important example of a transverse
principal G-bundle, the transverse frame bundle of a foliation.

Example 4.19 (The transverse frame bundle) Let F be a foliation
of a manifold M . The frame bundle of the normal bundle N(F) of F
is referred to as the transverse frame bundle on (M,F), and is denoted
by F (M,F). Recall that a point of Fx(M,F) is a linear isomorphism
e: R

q → Nx(F), where q is the codimension of F . The transverse frame
bundle is a principal GL(q,R)-bundle on M , where the action is given
by the composition eA = e ◦A, for any A ∈ GL(q,R).

Let (si : Ui → R
q) be a Haefliger cocycle for F . Each si induces a

bundle map over si between principal GL(q,R)-bundles

s̃i: F (M,F)|Ui
−→ F (si(Ui)) ⊂ F (Rq) = R

q ×GL(q,R) ,

given for any x ∈ Ui and any e ∈ Fx(M,F) by

s̃i(e) = (dsi)x ◦ e .
Moreover, if we write sij : sj(Ui ∩ Uj) → si(Ui ∩ Uj) for the diffeomor-
phism satisfying sij ◦ sj = si, the diffeomorphism of principal G-bundles
F (sij): F (sj(Ui ∩ Uj)) → F (si(Ui ∩ Ui)) satisfies F (sij) ◦ s̃j = s̃i. This
means that if we write Ũi = F (M,F)|Ui

, then

(s̃i: Ũi −→ R
q ×GL(q,R))

is a Haefliger cocycle on F (M,F). The foliation on F (M,F) given by
this cocycle is called the lifted foliation and will be denoted by F̃ . This
foliation is preserved by the action of GL(q,R). Moreover the projec-
tion π: (F (M,F), F̃) → (M,F) is a map of foliated manifolds and the



100 Molino’s theory

restriction of π to a leaf L̃ of F̃ is a covering projection onto the cor-
responding leaf L = π(L̃) of F . Furthermore, the group of covering
transformations of the covering projection L̃ → L is exactly the lin-
ear holonomy group of L. In particular, (F (M,F), F̃) is a transverse
principal GL(q,R)-bundle on (M,F).

There is a natural 1-form θ ∈ Ω1(F (M,F),Rq), called the transverse
canonical form, given by

θe(ξ) = e−1((dπ)e(ξ))

for any point e: R
q → Nx(F) of F (M,F) and any ξ ∈ Te(F (M,F)),

where (dπ)e(ξ) denotes the natural projection of (dπ)e(ξ) onto Nx(F).
With respect to the Haefliger cocycle (si) for F as above, it is easy to
check that

θ|Ũi
= s̃∗i θi ,

where θi is the canonical form on the frame bundle F (si(Ui)). Further-
more, the transverse canonical form in equivariant, i.e. R∗

Aθ = A−1 ◦ θ
for any A ∈ GL(q,R), and satisfies Ker(θe) = Ker(dπ)e ⊕ Te(F̃).

Now assume that (F , g) is Riemannian foliation of the manifold M .
Then we may consider the transverse orthogonal frame bundle which
is the subbundle of F (M,F) made up out of the orthogonal isomor-
phisms e : R

q → Nx(F). It is a principal O(q)-bundle on M . We
may choose the Haefliger cocycle (si : Ui → R

q) so that g|Ui
is the

pull-back of a Riemannian metric on si(Ui) along si (Remark 2.7 (2)).
In particular, any diffeomorphism sij is an isometry. Then the in-
duced map F (sij) restricts to an isomorphism of principal O(q)-bundles
OF (sj(Ui ∩ Uj)) → OF (si(Ui ∩ Ui)). In particular, the restrictions of
(s̃i) to (OF (M,F)|Ui

) form a Haefliger cocycle on OF (M,F). The asso-
ciated foliation of OF (M,F) is the restriction of F̃ and will be denoted
again by F̃ . With this, (OF (M,F), F̃) is a transverse principal O(q)-
bundle on (M,F). The restriction of the canonical form to OF (M,F),
called the transverse canonical form on OF (M,F), is equivariant with
respect to the actions of O(n) on OF (M,F) and on R

n.
Let ωi be the Levi-Cività connection on the frame bundle F (si(Ui)).

Since the Levi-Cività connection is preserved by isometries, we have
ωj |F (sj(Ui∩Uj)) = F (sji)∗ωi. As a consequence, we can define a connec-
tion ω on F (M,F) as the amalgamation of the forms

ω|Ũi
= s̃∗iωi .

It is easy to check that ω is a projectable connection on the transverse
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principal GL(q,R)-bundle of transverse frames (F (M,F), F̃), called the
transverse Levi-Cività connection. This connection restricts to a pro-
jectable connection on (OF (M,F), F̃). Note that we have

Ker(θe)/Te(F̃) ⊕ Ker(ωe)/Te(F̃) = Te(F (M,F))/Te(F̃) = Ne(F̃) .

Theorem 4.20 Let (F , g) be a Riemannian foliation on M . Then the
lifted foliation F̃ of the transverse frame bundle F (M,F), and its restric-
tion to the transverse orthogonal frame bundle OF (M,F), are trans-
versely parallelizable.

Proof We shall use the same notation as in Example 4.19. Corollary
4.18 implies that the manifolds F (si(Ui)) admit canonical parallelisms
Y i
1 , . . . , Y

i
q , Z

i
11, . . . , Z

i
qq invariant under isometries sij . Since s̃i induces

an isomorphism

ŝi: Ne(F̃) −→ Ts̃i(e)(F (si(Ui))) ,

we may define sections Ȳ1, . . . , Ȳq, Z̄11, . . . , Z̄qq of the normal bundle
N(F̃) by

(Ȳk)e = ŝ−1
i ((Y i

k )s̃i(e))

and

(Z̄kl)e = ŝ−1
i ((Zi

kl)s̃i(e))

for any e ∈ F (M,F). Here i is any index such that π(e) ∈ Ui. This def-
inition is independent of the chosen i by the invariance under isometries
just mentioned. It is obvious that the sections Ȳ1, . . . , Ȳq, Z̄11, . . . , Z̄qq
are transverse vector fields on (F (M,F), F̃), because they can be pro-
jected along the submersions s̃i which define the foliation F̃ . It fol-
lows that these sections Ȳ1, . . . , Ȳq, Z̄11, . . . , Z̄qq form a transverse par-
allelism on (F (M,F), F̃). To prove that (OF (M,F), F̃) is transversely
parallelizable one uses the same argument, with F (si(Ui)) replaced by
OF (si(Ui)).

4.3 Lie foliations and Molino’s theorem

In this section, we consider so-called ‘Lie’ foliations, defined by suitable
forms with values in a Lie algebra. Such foliations are transversely par-
allelizable. For each such foliation, one can construct a flat (transverse)
principal bundle, whose leaves are known as Darboux covers of M . This
construction will show that for a transversely parallelizable foliation,
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the associated basic foliation is obtained simply by taking closures of
leaves. In the last part we show how the results of Sections 4.1, 4.2 and
4.3 can be summarized into a statement known as Molino’s theorem for
Riemannian foliations.

4.3.1 Lie foliations

Let g be a Lie algebra and M a manifold. A Maurer–Cartan form with
values in g is a differential 1-form ω ∈ Ω1(M, g) with trivial formal
curvature, i.e.

dω +
1
2
[ω, ω] = 0 .

Here [ω, ω] is the differential 2-form on M with values in g given by
[ω, ω](X,Y ) = [ω(X), ω(Y )]. If ω is non-singular, i.e. if ωx: Tx(M) → g

is surjective at any point x ∈ M , then the dimension of g is finite and
Ker(ω) is a subbundle of T (M) of codimension dim g. In the proof of
Proposition 4.15 we have shown that vanishing of the formal curvature
implies that the subbundle Ker(ω) is involutive and hence defines a
foliation F on M , with codimF = dim g and

T (F) = Ker(ω) .

A Lie foliation is a foliation defined in this way by a non-singular
Maurer–Cartan form.

Proposition 4.21 Any Lie foliation is transversely parallelizable.

Proof Let F be a foliation given by a non-singular Maurer–Cartan form
ω ∈ Ω1(M, g). Since Ker(ω) = T (F), the form ω induces a map

ω̄: N(F) −→ g ,

which is a linear isomorphism ω̄x: Nx(F) → g at any point x ∈ M . Now
choose a basis e1, . . . , eq for g, and define the sections σ1, . . . , σq of N(F)
by

σi(x) = ω̄−1
x (ei) .

It is clear that these sections form a frame for the normal bundle. More-
over, they are also transverse vector fields on (M,F). To see this, choose
any vector fields Y1, . . . , Yq on M with σi = Yi + X(F), and take any
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X ∈ X(F). Then we have

ω([X,Yi]) = X(ω(Yi)) − Yi(ω(X)) − 2dω(X,Yi)

= X(ω(Yi)) − Yi(ω(X)) + [ω(X), ω(Yi)]

= 0 ,

because ω(X) = 0 and ω(Yi) = ei is constant and hence X(ω(Yi)) = 0
as well. Therefore [X,Yi] ∈ X(F).

4.3.2 The Darboux cover

Let ω be a non-singular Maurer–Cartan form on a connected manifold
M with values in a Lie algebra g, and let F be the corresponding Lie
foliation of M . Let G be the unique connected and simply connected Lie
group such that g is the Lie algebra associated to G (see Serre (1965)
or Warner (1983)). We can extend ω to a connection η on the trivial
principal G-bundle pr1: M ×G → M , by setting

η(x,g)(ξ, ζ) = Ad(g−1)ωx(ξ) + (dLg−1)g(ζ) ,

for any (ξ, ζ) ∈ T(x,g)(M×G) = Tx(M)⊕Tg(G). It is easy to check that
Ker(η) is an involutive subbundle of T (M ×G), or equivalently, that η

is flat (Proposition 4.15). Therefore we have a foliation G on M × G,
which is invariant under the G-action, with T (G) = Ker(η).

For any (x, g) ∈ M ×G, the tangent space T(x,g)(G) consists of those
tangent vectors (ξ, ζ) for which η(x,g)(ξ, ζ) = 0, i.e.

ωx(ξ) + (dRg−1)g(ζ) = 0 .

Therefore (dpr2)(x,g) restricts to an epimorphism T(x,g)(G) → Tg(G),
because ωx is surjective. Thus if M̃ is a leaf of G, then the restriction
of pr2 to M̃ is a submersion. We shall write fω : M̃ → G for this
restriction. Denote by Hω the holonomy group GM̃ of η, in other words
Hω = {g ∈ G | M̃g = M̃}, and let Hδ

ω be the group Hω equipped with
the discrete topology. The group Hω is also called the holonomy group
of the Lie foliation given by ω. Note that there is no danger of confusing
this group with the holonomy group of a leaf of F because any leaf of
F has trivial holonomy (Proposition 4.7 and Proposition 4.21).

The restriction of pr1 to M̃ , which we shall denote by π: M̃ → M , is
a principal Hδ

ω-bundle, hence a covering projection (Proposition 4.15).
Let H̄ω be the Lie subgroup of G obtained as the closure of Hω in G.
Then there is a manifold structure on the set of left cosets G/H̄ω of H̄ω
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such that the projection G → G/H̄ω is a submersion (see Serre (1965)
or Warner (1983)). Since fω is an equivariant submersion, it induces a
submersion M → G/H̄ω.

Next note that (ξ, 0) ∈ T(x,g)(M̃) if and only if ξ ∈ Ker(ωx) = Tx(F).
This implies that π∗F is the foliation given by the submersion fω. In
particular, the map π maps the leaves of π∗F diffeomorphically to the
leaves of F .

To summarize, for a leaf M̃ of G we have a diagram, known as the
Darboux cover of ω,

(M̃, π∗F)
fω

π

G

(M,F) G/H̄ω

where π is both a principal Hδ
ω-bundle on M and a map of foliated

manifolds which restricts to a diffeomorphism on each leaf, and fω is an
Hω-equivariant submersion for which the connected components of the
fibres are precisely the leaves of π∗F .

The fact that G is invariant under the G-action implies that the Dar-
boux cover is determined, up to an isomorphism, by the Lie foliation
and does not depend on the choice of the leaf M̃ of G. We may choose a
base-point x0 ∈ M and take M̃ to be the leaf with (x0, 1) ∈ M̃ . Now the
action of the fundamental group of M on M̃ by covering transformations
gives us a homomorphism of groups

hω: π1(M,x0) −→ G ,

which is also called the holonomy homomorphism of ω. By its definition,
it satisfies the identity x̃γ = x̃hω(γ) for any x̃ ∈ M̃ and γ ∈ π1(M,x0).
The image of hω is exactly Hω. The map fω is hω-equivariant in the
sense that

fω(x̃γ) = fω(x̃)hω(γ) ,

as follows from the previous identity.

Remark. The foliations π∗F , for each leaf M̃ of G, in fact together
form a foliation F̃ on M ×G; more precisely,

T (F̃) = Ker(dpr2) ∩ (dpr1)
−1(T (F)) .

Then (M × G, F̃) is a transverse principal G-bundle on (M,F), and η

is a projectable connection on (M ×G, F̃).
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Example 4.22 Let ω1, . . . , ωq be closed, (pointwise) linearly indepen-
dent 1-forms on a manifold M . Then ω = (ω1, . . . , ωq) is a (closed)
Maurer–Cartan form with values in the abelian Lie algebra g = R

q

(where the Lie bracket is zero). The Lie foliation given by ω is the one
described in Example 4.6 (1). Let us consider the Darboux cover of ω.
The associated Lie group is again R

q, and we shall identify Tg(Rq) with
R
q in the canonical way, for any g ∈ R

q. The connection on M × R
q is

now given by

η(x,g)(ξ, v) = ωx(ξ) + v ,

for any ξ ∈ Tx(M) and g, v ∈ R
q. Choose x0 ∈ M and let M̃ be the

leaf of the foliation given by Ker(η) with (x0, 0) ∈ M̃ . Take a (smooth)
path γ : [0, 1] → M with γ(1) = x0, and let γ̃ be the unique lift of γ

in M̃ with γ̃(1) = (x0, 0). Put x̃ = γ̃(0). With respect to the product
M × R

q we can write γ̃ = (γ, τ) for a path τ in R
q. We have τ(1) = 0

and τ(0) = fω(x̃). Since the lift γ̃ is horizontal, it follows that

0 = η

(
dγ

dt
,
dτ

dt

)
= ω

(
dγ

dt

)
+

dτ

dt
,

and therefore

fω(x̃) = τ(0) =
∫ 1

0

ω

(
dγ

dt

)
dt =

∫
[0,1]

γ∗ω .

Thus, if γ is a loop representing an element of π1(M,x0) we have

hω(γ) =
∫
[0,1]

γ∗ω .

The map hω : π1(M,x0) → R
q factors through H1(M,Z) and the last

identity above shows that the factorization is exactly the map corre-
sponding to ω as an element of H1

dR(M,Rq).
Now assume that M is compact and that q = 1, i.e. that we have a

foliation on a compact manifold given by a closed form ω. Then the
holonomy group of ω is either discrete or dense in R. In the first case
the foliation is given by a submersion M → S1, since the quotient of R

by a discrete subgroup is the circle. If the holonomy group of ω is dense
in R, then all the leaves are dense in M . In fact, this is true in general:

Lemma 4.23 Let ω be a non-singular Maurer–Cartan form on a com-
pact connected manifold M and let F be the foliation of M given by
Ker(ω). Then the map fω : M̃ → G, defined on the Darboux cover
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of ω, is a fibre bundle with connected fibres. Moreover, the following
conditions are equivalent.

(i) The leaves of F are dense in M .
(ii) The holonomy group of ω is dense in G.
(iii) Any basic function on (M,F) is constant.

Proof The foliation F is transversely parallelizable by Proposition 4.21,
so we can choose a transverse parallelism Ȳ1, . . . , Ȳq for (M,F) such that
ω(Yi) are constant functions, say ωx((Yi)x) = ei. The projectable vector
fields Y1, . . . , Yq are complete because M is compact. Let Ỹ1, . . . , Ỹq be
the unique lifts of Y1, . . . , Yq in M̃ . Explicitly we can describe them by

(Ỹi)(x,g) = ((Yi)x,−(dRg)1(ei)) ∈ T(x,g)(M̃) ⊂ Tx(M) ⊕ Tg(G) .

The vector fields are complete and projectable with respect to the folia-
tion π∗F . In fact, they are projectable along fω, their projections to G

are right invariant, complete and form a global parallelism of G. Take
any g ∈ G and put F = f−1

ω (g). We can now use the flows of the vector
fields Ỹ1, . . . , Ỹq to define a map T : F × V → M̃ by

Tx(t) = T (x, t) = (et1Ỹ1 ◦ · · · ◦ etqỸq )(x) , t = (t1, . . . , tq) ,

for an open neighbourhood V of 0 in R
q. Since the vector fields Ỹ1, . . . , Ỹq

are projectable along fω, the map T induces a map τ : V → G with
fω ◦T = τ ◦pr2. This map τ is in fact defined by the flows of the
global parallelism of G mentioned above. We can therefore choose V

small enough that τ is an embedding, and hence T gives us a local
trivialization of fω : M̃ → G around g. This proves that fω is a fibre
bundle over the connected manifold G. In particular, the space of leaves
M̃/π∗F is a connected Hausdorff manifold and the map fω factors as
a covering projection M̃/π∗F → G. Since G is simply connected, this
covering projection must be a diffeomorphism. Therefore the fibres of
fω are connected.

Let us now prove that the statements (i), (ii) and (iii) are equivalent.
The statement (i) clearly implies the statement (iii). Next, the statement
(iii) implies (ii) because if the holonomy group Hω is not dense in G

then fω factors as a non-trivial submersion M → G/H̄ω, and the pull-
back of any non-constant function on G/H̄ω gives us a non-constant
basic function on (M,F). Finally, we shall prove that (ii) implies (i).
Assume therefore that Hω is dense in G, and take any point x ∈ M .
Take any open neighbourhood U of x. We have to show that any leaf
of F intersects U . The open subset π−1(U) of M̃ is invariant under
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the action of Hω, so fω(π−1(U)) is an Hω-invariant open subset of G.
Since Hω is dense in G, it follows that fω(π−1(U)) = G, i.e. any fibre
of fω intersects π−1(U). Since the fibres of fω are connected, they are
precisely the leaves of π∗F . It follows that any leaf of F intersects U .

Theorem 4.24 Any transversely parallelizable foliation on a compact
connected manifold, all of whose basic functions are constant, is a Lie
foliation with dense leaves. In fact, it is given by a canonical Maurer–
Cartan form with values in the Lie algebra of transverse vector fields.

Proof Let (M,F) be a transversely parallelizable foliated manifold of
codimension q all of whose basic functions are constant. The Lie alge-
bra l(M,F) is a free module of rank q over Ω0

bas(M,F) because F is
transversely parallelizable. Hence by the assumption on basic functions,
l(M,F) is of dimension q over R. Thus for any point x ∈ M , the evident
evaluation map

evx: l(M,F) −→ Nx(F) ,

sending Ȳ to Ȳx, is an isomorphism. We can therefore define a 1-form
ω on M with values in l(M,F) by

ωx(ξ) = ev−1
x (ξ̄) ,

where ξ ∈ Tx(M) and ξ̄ ∈ Nx(F) is its projection to the normal bundle.
Note that, in particular, ωx(Yx) = Ȳ for any vector field Y ∈ L(M,F).
Since clearly we have Ker(ω) = T (F), we only need to show that ω is a
Maurer–Cartan form, i.e. that the formal curvature of ω vanishes. Ob-
serve that any tangent vector on M occurs as the value of a projectable
vector field in L(M,F). (This is always true locally, but in our case it is
even globally true.) Thus it is sufficient to prove that the curvature van-
ishes on the projectable vector fields. Take any two projectable vector
fields Y,Z ∈ L(M,F). Since the functions ω(Y ) and ω(Z) are constant
with values Ȳ and Z̄ respectively, their derivatives vanish and

2
(
dω +

1
2
[ω, ω]

)
(Y,Z)

= Y (ω(Z)) − Z(ω(Y )) − ω([Y,Z]) + [ω(Y ), ω(Z)]

= −[Y,Z] + [Ȳ , Z̄]

= 0 .

Finally, the foliation F has dense leaves by Lemma 4.23.
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Corollary 4.25 Let F be a transversely parallelizable foliation on a
compact manifold M , and let Fbas be the associated basic foliation. Then
the leaves of Fbas are the closures of the leaves of F .

Proof This follows by applying Theorem 4.24 to the restriction of F to
a leaf of Fbas, as described in Theorem 4.9.

4.3.3 Molino’s structure theorem

The results proved in Sections 4.1, 4.2 and 4.3 can now be summarized
in the following theorem of Molino.

Theorem 4.26 (Molino’s structure theorem) Let (F , g) be a Rie-
mannian foliation of a compact connected manifold M , and let F̃ be
the associated lifted foliation of the transverse orthogonal frame bundle
OF (M,F).

(i) The foliated manifold (OF (M,F), F̃) is transversely parallelizable.
(ii) There exists a manifold N with an O(q)-action and an O(q)-equi-

variant fibre bundle s : OF (M,F) → N such that the fibres of s are
exactly the closures of the leaves of F̃ .

(iii) The Lie algebra g of transverse vector fields of F̃ |s−1(y) is in-
dependent, up to an isomorphism, of y ∈ N . The foliation F̃ |s−1(y) is
a Lie foliation given by a canonical g-valued Maurer–Cartan form with
dense holonomy group.

Proof Part (i) is Theorem 4.20. Part (ii) is an O(q)-equivariant appli-
cation of Corollary 4.25 and Theorem 4.3 (v). The second sentence of
part (iii) is a special case of Theorem 4.24. The structure is indepen-
dent of the choice of the point y, as asserted in the first sentence of (iii),
by homogeneity of the O(q)-equivariant foliation F̃ of OF (M,F) and
its associated basic foliation (see Theorem 4.3 and Theorem 4.8, and
observe that O(q) acts transitively on the components of OF (M,F)).

Remark. Since s: OF (M,F) → N is a fibre bundle, any point y of
N has an open neighbourhood U for which there is a diffeomorphism
s−1(U) ∼= s−1(y)×U over U . In fact, this diffeomorphism can be chosen
so that it maps the foliation F̃ |s−1(U) to the product of the foliation
F̃ |s−1(y) with the trivial foliation of dimension 0 of U . In other words,
the map s is locally trivial even when its fibres are viewed as foliated
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manifolds. In fact, the local trivialization by the maps T and T̄ con-
structed in the proof of Theorem 4.9 shows that this is the case.



5

Lie groupoids

In Chapter 2, we have discussed the construction of the holonomy group
of a given point on a foliated manifold (M,F). This group carries in-
formation about the local structure of the foliation near the leaf passing
through the given point. Easy examples show that nearby points can
have quite different holonomy groups, a phenomenon which typically
occurs in the presence of non-compact leaves. In this chapter we shall
see that, nevertheless, the holonomy covering spaces of all the leaves of
the foliation (M,F) can be fitted together nicely into a smooth (not
necessarily Hausdorff) manifold, denoted by Hol(M,F). Moreover, this
manifold carries a partial multiplication operation, which incorporates
all the group structures of the various holonomy groups. The resulting
structure is that of a Lie groupoid, and the manifold Hol(M,F) is re-
ferred to as the holonomy groupoid of the foliation. This Lie groupoid
plays a central role in foliation theory, because it lies at the basis of
many constructions of invariants of a foliation, such as the characteris-
tic classes of its normal bundle, the C ∗-algebra of the foliation and its
K-theory, and the cyclic cohomology of the foliation.

The purpose of this chapter is to provide an introduction to the basic
concepts of the theory of Lie groupoids, with special emphasis on the
holonomy groupoid of a foliation. In Section 5.1 we introduce Lie group-
oids, while in Section 5.2 we give a precise definition of the holonomy
groupoid of a foliation and prove some of its first properties. In the next
couple of sections, we study various constructions and properties of Lie
groupoids, and we discuss the important notion of ‘weak equivalence’
between Lie groupoids.

Next, in Section 5.5, we introduce the special class of étale groupoids.
These étale groupoids are particularly relevant in the context of folia-
tions. On the one hand, they are much easier to handle and much better

110
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understood than general Lie groupoids. In fact, they behave in many
respects like ordinary manifolds. On the other hand, we shall see that
one can obtain an étale groupoid by restricting the holonomy groupoid
of a foliation to a ‘complete transversal’. Different choices of transver-
sals give weakly equivalent étale groupoids, so that the foliation gives
rise to a uniquely determined equivalence class of étale groupoids. This
equivalence class is the best model known for the singular ‘leaf space’ of
the foliation.

In Section 5.6, we study proper Lie groupoids, and prove that orbifolds
can be seen as Lie groupoids which are both proper and étale. This
becomes important when one studies invariants of orbifolds and maps
between orbifolds. Finally, with a view to applications in Chapter 6, we
close the chapter with a brief discussion of principal bundles, where both
the structure group and the base space are replaced by Lie groupoids.

5.1 Definition and first examples

A groupoid is a category in which every arrow is invertible. Explicitly, a
groupoid G consists of two sets, a set of objects G0 and a set of arrows
G1. Each arrow g of G has two objects assigned to it, its source s(g)
and its target t(g). We write

g: x → y

to indicate that x = s(g) and y = t(g). Furthermore, there is an asso-
ciative multiplication of such arrows for which source and target match,
giving an arrow hg: x → z for any two arrows g: x → y and h: y → z.
Each arrow g : x → y has an inverse arrow g−1 : y → x, and for any
object x there is a unit 1x: x → x.

A well-known example of a groupoid is the fundamental groupoid of
a manifold M . The set of objects of this groupoid is M , the arrows
from x ∈ M to y ∈ M are the homotopy classes of paths (relative to
end-points) in M from x to y, and the partial multiplication is induced
by the concatenation of paths.

More formally, the structure of a groupoid is given by five structure
maps relating G0 and G1, namely a source map s: G1 → G0 and a target
map t: G1 → G0, a multiplication map G1 ×G0 G1 → G1, (h, g) �→ hg,
which is defined for those arrows h, g of G with s(h) = t(g), a unit map
G0 → G1, x �→ 1x, and an inverse map G1 → G1, g �→ g−1. These maps
should satisfy the following identities:
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(i) s(hg) = s(g), t(hg) = t(h),
(ii) k(hg) = (kh)g,
(iii) 1t(g)g = g = g1s(g), and
(iv) s(g−1) = t(g), t(g−1) = s(g), g−1g = 1s(g), gg−1 = 1t(g)

for any k, h, g ∈ G1 with s(k) = t(h) and s(h) = t(g). The structure
maps of a groupoid G together fit into a diagram

G1 ×G0 G1 G1 G1

s

t
G0 G1 . (5.1)

The conditions (i)–(iv) above can of course be expressed by commu-
tative diagrams involving the structure maps. The units of G are the
arrows in the image of the unit map of G. Sometimes we say that G is
a groupoid over the set G0, and that G0 is the base of the groupoid G.
For any x, y ∈ G0 we write

G(x, y) = {g ∈ G1 | s(g) = x, t(g) = y} .

For any arrow g: x → y (i.e. g ∈ G(x, y)) one says that g is an arrow from
x to y. Furthermore we denote the fibres of s and t by G(x, - ) = s−1(x)
and G( - , y) = t−1(y). The set of arrows from x to x is a group, called
the isotropy group of G at x, and denoted by

Gx = G(x, x) .

A homomorphism between groupoids H and G is a functor φ: H → G;
it is given by a map H0 → G0 on objects and a map H1 → G1 on
arrows, both denoted again by φ, which together preserve the groupoid
structure, i.e. φ(s(h)) = s(φ(h)), φ(t(h)) = t(φ(h)), φ(1y) = 1φ(y) and
φ(hk) = φ(h)φ(k) (this implies that also φ(h−1) = φ(h)−1), for any
h, k ∈ H with s(h) = t(k) and any y ∈ H0.

A Lie groupoid is a groupoid G together with the structure of a smooth
(Hausdorff) manifold on the base G0 and the structure of a (perhaps non-
Hausdorff, non-second-countable) smooth manifold on G1, such that the
source map of G is a smooth submersion with Hausdorff fibres and all
the other structure maps of G are smooth. Note that the domain of the
multiplication map, G2 = G1 ×G0 G1, has a natural smooth manifold
structure because the source map is a submersion. Also note that it
follows that the target map of G is a submersion.

Here, we allowed explicitly that G1 may be non-Hausdorff and non-
second-countable, as this situation arises in our main examples. A Lie
groupoid G is called Hausdorff if the manifold of arrows G1 is Hausdorff.

A homomorphism between Lie groupoids H and G is by definition a
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functor φ : H → G which is smooth, both on objects and on arrows.
We say that φ is a submersion if φ : H1 → G1 is a submersion; this
implies that φ : H0 → G0 is also a submersion. Lie groupoids and
homomorphisms between them form a category.

Examples 5.1 (1) Any manifold M can be viewed as a Lie groupoid
over M in which all the arrows are units, i.e. the manifold of arrows is
also M . We denote this Lie groupoid again by M , and refer to it as the
unit groupoid associated to M .

(2) Any manifold M gives rise to another Lie groupoid Pair(M) over
M , called the pair groupoid of M , with arrows Pair(M)1 = M×M . The
source and the target map are the first and the second projection. The
multiplication is unique, because for any x, x′ ∈ M there is exactly one
arrow from x to x′. Note that any smooth map p: N → M induces a ho-
momorphism of pair groupoids p×p: Pair(N) → Pair(M) in the obvious
way. Furthermore, if p is a submersion we may define the kernel group-
oid Ker(p) over N , which is a Lie subgroupoid of Pair(N), consisting of
all pairs (y, y′) ∈ N ×N with p(y) = p(y′), i.e. Ker(p)1 = N ×M N .

(3) Any Lie group G can be viewed as a Lie groupoid over a one point
space, and with G as the manifold of arrows. We shall denote this Lie
groupoid again by G. More generally, any bundle of Lie groups can be
viewed as a Lie groupoid for which s and t coincide.

(4) Let M be a manifold. Any immersed submanifold R of M × M

defining an equivalence relation on M such that pr1,pr2 : R → M are
submersions gives a Lie groupoid G over M with G1 = R, which is an
immersed Lie subgroupoid of the pair groupoid of M . In fact, any Lie
groupoid G with the property that (s, t): G1 → G0 ×G0 is an injective
immersion is defined by an equivalence relation in this way.

(5) If G is a Lie group acting smoothly from the left on a manifold
M , we define the associated translation (or action) groupoid G�M over
M in which (G�M)1 = G×M . The source map is the first projection,
the target is given by the action map, and the multiplication is defined
by

(g′, x′)(g, x) = (g′g, x) .

The semi-direct product symbol is used because this construction is a
special case of the semi-direct product construction described in Section
5.3.

(6) Let M be a manifold. The fundamental groupoid Π(M) of M is
a Lie groupoid over M in which the arrows from x ∈ M to y ∈ M are
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the homotopy classes of paths (relative to end-points) in M from x to y,
while the multiplication is induced by the concatenation of paths. It is
not difficult to show that Π(M)1 has indeed a natural smooth structure
such that Π(M) is a Lie groupoid; we shall not do this here, however,
because Π(M) is a special case of the monodromy groupoid of a foliation
discussed in detail in Section 5.2.

(7) Let E be a vector bundle over a manifold M . One can define a
Lie groupoid GL(E) over M such that the arrows from x ∈ M to y ∈ M

are the linear isomorphisms Ex → Ey between the fibres of E.
(8) Let G be a Lie group and π : P → M a (right) principal G-

bundle. Define the gauge groupoid Gauge(P ) associated to P to be the
Lie groupoid over M for which the manifold of arrows is the orbit space
of the diagonal action of G on P ×P , and the source and the target map
are induced by the composition of the first and the second projection
with π. Multiplication of arrows in the gauge groupoid is defined in such
a way as to make the quotient map P×P → Gauge(P ) a homomorphism
from the pair groupoid.

A global bisection of a Lie groupoid G is a section σ: G0 → G1 of s such
that t ◦σ: G0 → G0 is a diffeomorphism. The global bisections of G form
a group, which we shall call the gauge group of G. The multiplication is
given by

(σ′σ)(x) = σ′(t(σ(x)))σ(x) .

The unit in this group is the unit map of G.

Example 5.2 Let Gauge(P ) be the gauge groupoid associated to a
principal G-bundle P over M as in Example 5.1 (8). Since the diagram

P × P

pr1

P × P/G = Gauge(P )1

s

P M

is a pull-back, any section σ of s induces a section σ̃ = (id, σ̄): P → P×P

of pr1. Here σ̄: P → P is a G-equivariant diffeomorphism. Conversely,
any such a G-equivariant diffeomorphism induces a section of s. The
gauge group of Gauge(P ) may be therefore identified with the group of
G-equivariant diffeomorphisms P → P .

A local bisection of a Lie groupoid G is a local section σ: U → G of s,
defined on an open subset U of G0, such that t ◦σ is an open embedding.
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The germs of bisections of G form a groupoid, which we shall denote
by Bis(G). The multiplication in Bis(G) is locally given by the same
formula as the multiplication in the gauge group of G above. With the
standard sheaf topology Bis(G) becomes a Lie groupoid over G0, with
dim Bis(G)1 = dimG0 (a Lie groupoid with this property is called étale;
see Section 5.5). The obvious functor Bis(G) → G is smooth; it is also
surjective, as the following proposition shows.

Proposition 5.3 Let G be a Lie groupoid. For any g ∈ G there exists
a local bisection σ: U → G of G with g ∈ σ(U).

Proof Choose a subspace V of Tg(G1) which is complementary to both
Ker(ds)g and Ker(dt)g. Choose a local section σ: U → G (e.g. in local
coordinates) of s such that (dσ)s(g)(Ts(g)(G0)) = V . It follows that
d(t ◦σ)s(g) is an isomorphism, so we can shrink U if necessary so that
t ◦σ becomes an open embedding.

Let G be a Lie groupoid, and x ∈ G0. The source and the target
map of G are submersions, therefore the fibres G(x, - ) = s−1(x) and
G( - , x) = t−1(x) are closed submanifolds of G1. Note that the right
action of the isotropy group Gx on G(x, - ) is free and transitive along
the fibres of tx = t|G(x, - ). The orbit of G passing through x is by
definition

Gx = t(G(x, - )) ⊂ G0 .

The following theorem will in particular show that the isotropy groups
are in fact Lie groups, and that the orbits are immersed submanifolds
of G0.

Theorem 5.4 Let G be a Lie groupoid, and let x, y ∈ G0.
(i) G(x, y) is a closed submanifold of G.
(ii) Gx is a Lie group.
(iii) Gx is an immersed submanifold of G0.
(iv) tx: G(x, - ) → Gx is a principal Gx-bundle.

Remark. Since Gx is a Lie group, we may consider the connected com-
ponent G◦

x of the unit in Gx. Theorem 5.4 (iv) implies that G(x, - )/G◦
x

is a Hausdorff manifold, and that tx : G(x, - ) → Gx factors through
the quotient projection G(x, - ) → G(x, - )/G◦

x as a covering projection
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G(x, - )/G◦
x → Gx. The group of covering transformations of this cov-

ering projection is the discrete group of components π0(Gx) = Gx/G
◦
x

of Gx.

In the proof this theorem we shall use the following result, which
describes when the quotient of a free (not necessarily compact) Lie group
action has a smooth (perhaps non-Hausdorff) structure.

Lemma 5.5 Let µ: M ×G → M be a free action of a Lie group G on a
manifold M . The following conditions are equivalent.

(i) For any x ∈ M there exists an embedded submanifold U with x ∈ U

such that U ×G → M given by the action of G is an open embedding.
(ii) There is a smooth (perhaps non-Hausdorff) structure on M/G

such that the quotient projection M → M/G is a principal G-bundle.
(iii) There exist a (perhaps non-Hausdorff) manifold N and a smooth

map f: M → N which is constant on the G-orbits and satisfies

Ker(df)x = (dµ)(x,1)({0} × T1(G)) .

Remark. Recall that the connected components of orbits of a free
Lie group action give us a foliation of the manifold. If the Lie group
is compact, the slice theorem (or the Reeb stability theorem, Theorem
2.9) shows that (i) above is fulfilled.

Proof (of Lemma 5.5) If (i) holds, then U → M/G is a topological open
embedding, and we may define a smooth structure on M/G such that
this map is a smooth open embedding, for any such U . Therefore (i)
implies (ii). Note that (iii) follows directly from (ii). So we only need to
prove that (iii) implies (i).

Take any x ∈ M , and choose a submersion h: V → R
k defined on an

open neighbourhood V of f(x) in N such that Ker(dh)f(x) is comple-
mentary to (df)x(Tx(M)). Next, choose a small transversal section U of
the foliation of M given by the connected components of the G-orbits,
with x ∈ U and f(U) ⊂ V . Now, by construction, (d(h ◦ f |U ))x is an
isomorphism, so we may shrink U if necessary so that

h ◦ f |U
is an open embedding. In particular, f is injective on U . Since f is also
constant along the G-orbits, it follows that each G-orbit intersects U in
at most one point. Since U is transversal to the G-orbits, this proves
(i).
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We shall now give a proof of Theorem 5.4.

Proof (of Theorem 5.4) Put Eg = Ker(ds)g ∩ Ker(dt)g, for any g ∈ G.
We will show that E|G(x, - ) is an involutive subbundle of the tangent
bundle of G(x, - ) and hence defines a foliation Fx of G(x, - ).

For any g ∈ G(x, - ), the left translation by g gives us a diffeomorphism

Lg: G( - , x) −→ G( - , t(g))

by Lg(h) = gh. For any h ∈ G( - , x) note that Eh is a subspace of
Th(G( - , x)) ⊂ Th(G). Since s ◦Lg = s|G( - ,x), it follows that

(dLg)1x
(E1x

) = Eg .

Furthermore, any basis v1, . . . , vk of E1x
can be extended to a global

frame X1, . . . , Xk of E|G(x, - ) by (Xi)g = (dLg)1x
(vi).

This shows that E|G(x, - ) is indeed a subbundle of the tangent bundle
of G(x, - ). It is involutive because it is exactly the kernel of the deriva-
tive of the map tx. Hence it defines a foliation Fx of G(x, - ) (which is
parallelizable by the frame X1, . . . , Xk). The leaves of Fx are exactly
the connected components of the fibres of tx. So these fibres are closed
manifolds, proving (i). In particular, the fibre t−1

x (x) = Gx is a Lie
group.

The Lie group Gx acts smoothly and freely on G(x, - ) from the right,
and transitively along the fibres of tx. Note that the condition (iii)
of Lemma 5.5 is fulfilled by the map tx, so the proposition implies that
there is a natural structure of a smooth manifold on the orbit Gx making
tx : G(x, - ) → Gx into a principal Gx-bundle. The fact that G0 is
Hausdorff implies that Gx is also Hausdorff.

5.2 The monodromy and holonomy groupoids

In this section we will discuss the important construction of the holon-
omy groupoid of a foliation, as well as that of the related monodromy
groupoid. These Lie groupoids play a central role in many of the con-
structions of invariants of foliations.

Throughout this section, (M,F) denotes a fixed foliated manifold.
Recall that each leaf L of F has a natural smooth structure for which
the inclusion L → M is an immersion (Section 1.1). We now describe
the two groupoids, and prove that they are indeed Lie groupoids.

First, the monodromy groupoid Mon(M,F) of (M,F) is a groupoid
over M with the following arrows:
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(a) if x, y ∈ M lie on the same leaf L of F , then the arrows in
Mon(M,F) from x to y are the homotopy classes (relative to
end-points) of paths in L from x to y, while

(b) if x, y ∈ M lie on different leaves of F , there are no arrows be-
tween them.

The multiplication is induced by the concatenation of paths. In particu-
lar, the isotropy groups of the monodromy groupoid are the fundamental
groups of the leaves, i.e.

Mon(M,F)x = π1(L, x)

for any point x on a leaf L.
Now the holonomy groupoid Hol(M,F) is defined analogously, except

that one takes the holonomy classes of paths for arrows instead of the
homotopy classes. Here we have

Hol(M,F)x = Hol(L, x)

for any point x on a leaf L (Section 2.1). Note that, by property (ii)
of holonomy from Section 2.1 (page 22), there is a natural quotient
homomorphism Mon(M,F) → Hol(M,F).

Proposition 5.6 The monodromy groupoid of a foliation has a natural
Lie groupoid structure. The same is true for the holonomy groupoid.

Proof We shall prove this for the monodromy groupoid; for the holonomy
groupoid the proof is analogous. We shall define a base for topology on
Mon(M,F)1 which consists of pairwise compatible local charts. Take
any path σ from x to y in a leaf L of F , and denote by ς the associated
arrow in Mon(M,F). Choose a foliation chart ϕ: U → R

p × R
q with

x ∈ U , and a foliation chart ψ: V → R
p×R

q with y ∈ V . We can assume
that the image of ϕ is of the form A× C and that the image of ψ is of
the form B × D, where A and B are connected and simply connected
open subsets of R

p, while C and D are connected and simply connected
open subsets R

q. Write ϕ(x) = (a, c) and ψ(y) = (b, d). We have the
transversal section S = ϕ−1({a} × C) at x and the transversal section
T = ψ−1({b}×D) at y. We may also assume that these two sections are
so small that the holonomy homomorphism holT,S(σ): (S, x) → (T, y)
is a diffeomorphism from S onto T . This means that there is a smooth
map H : [0, 1] × S → M such that H( - , z) is a path in a leaf of F ,
H(0, z) = z and H(1, z) = holT,S(σ)(z) for any z ∈ S. Now define an
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injective map

f: A×B × C −→ Mon(M,F)1

as follows: for any (a′, b′, c′) ∈ A×B×C, let f(a′, b′, c′) be the concate-
nation of paths

τH( - , z)γ ,

where γ is any path from ϕ−1(a′, c′) to z = ϕ−1(a, c′) in the plaque
ϕ−1(A× {c′}), and τ is any path from z′ = holT,S(σ)(z) (write ψ(z′) =
(b, d′)) to ψ−1(b′, d′) in the plaque ψ−1(B × {d′}) Now the image of f
is parametrized by f , and we take it for a basic open set around ς. One
can check that all such basic open sets form a basis for a topology, and
furthermore that they form a smooth atlas of Mon(M,F)1 which makes
it into a Lie groupoid of dimension 2p + q = n− q.

We conclude this section with the following observations, which are
all immediate from the construction.

Proposition 5.7 Let F be a foliation of a manifold M .
(i) The orbits of the monodromy and the holonomy groupoids of (M,F)

(with the smooth structure as in Theorem 5.4) are exactly the leaves of
F (with the smooth structure as in Section 1.1).

(ii) The isotropy groups of the monodromy and the holonomy groupoid
of (M,F) are discrete.

(iii) For a point x on a leaf L, the target map of the monodromy
groupoid restricts to the universal covering map

Mon(M,F)(x, - ) −→ L ,

while the restriction of the target map of the holonomy groupoid

Hol(M,F)(x, - ) −→ L

is the covering projection corresponding to the kernel of the holonomy
homomorphism π1(L, x) → Hol(L, x).

(iv) The natural quotient map

Mon(M,F) −→ Hol(M,F)

is a homomorphism of Lie groupoids, and restricts to a covering projec-
tion

Mon(M,F)(x, - ) −→ Hol(M,F)(x, - )

for any x ∈ M .
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The holonomy groupoid of a foliation can be difficult to describe in
concrete examples. In fact, there are many cases of foliations with non-
Hausdorff holonomy groupoid.

Examples 5.8 (1) Let f : M → N be a surjective submersion with
connected fibres, and F the associated foliation of M . Then all the
leaves have trivial holonomy, and the holonomy groupoid of (M,F) is
Ker(f) = M ×N M . If the fibres of f are simply connected, then this
Lie groupoid is also the monodromy groupoid of (M,F).

(2) Let F be a foliation of M , invariant under a free properly dis-
continuous action of a discrete group G such that M/G is a Hausdorff
manifold. In particular, we have the foliation F/G on M/F . Now let
Mon(M,F) be the monodromy groupoid of (M,F). Note that the ac-
tion of G induces an action on the paths in M and also on Mon(M,F)
because the action respects the foliation. Furthermore this action is
again free and properly discontinuous, and we get a Lie groupoid

Mon(M,F)/G

over M/G with (Mon(M,F)/G)1 = Mon(M,F)1/G. Since we can iden-
tify paths in the leaves of F/G with the equivalence classes of paths in
the leaves of F , and because this identification also respects the homo-
topy, we get

Mon(M,F)/G ∼= Mon(M/G,F/G) .

A similar construction gives us a Lie groupoid Hol(M,F)/G and a sur-
jective homomorphism

Hol(M,F)/G −→ Hol(M/G,F/G) ,

which however is not an isomorphism in general.
(3) Let G be a discrete group acting freely and properly discontinu-

ously (from the right) on a connected manifold M̃ such that M̃/G = M

is a Hausdorff manifold. Suppose that we also have a left action of G
on a manifold F . Now consider the associated foliation F on the flat
bundle M̃ ×G F (suspension) over M . By definition F = G/G, where
G is the foliation on M̃ × F given by the second projection. By (2) we
have

Mon(M,G)/G ∼= Mon(M̃ ×G F,F) ,

which equals (M̃ × M̃ × F )/G if M̃ is simply connected (by (1)). Also
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we have a surjective homomorphism

Hol(M,G)/G −→ Hol(M̃ ×G F,F) .

(4) Let F be the standard foliation of the Möbius band M (see Ex-
ample 1.1 (4)). This is a special case of a suspension, so the monodromy
groupoid can be computed by (3) as

Mon(M,F) = (R × R × (−1, 1))/Z .

All the source-fibres of the holonomy groupoid, however, are diffeomor-
phic to S1.

(5) The Kronecker foliation F of torus T 2 (see Example 1.1 (3)) is
also a suspension, but here the holonomy and the monodromy groupoids
coincide,

Hol(T 2,F) = Mon(T 2,F) = (R × R × S1)/Z .

(6) Let F be the Reeb foliation of S3. The compact leaf of F has R
2

for the holonomy cover, while any other leaf is itself diffeomorphic to R
2

and has trivial holonomy group. Since the fibre of the source map is the
holonomy cover of the corresponding leaf, the holonomy groupoid is the
same as the monodromy groupoid and as a set it is the product S3×R

2.
However, the topology of this space is not the product topology. In fact,
one can see that this Lie groupoid is not Hausdorff.

(7) Let F be a Riemannian foliation on M . Then the derivative
Hol(M,F) → GL(N(F)) is an injective homomorphism. In particular,
the holonomy groupoid of a Riemannian foliation is Hausdorff.

(8) The monodromy groupoid of a transversely orientable foliation of
codimension 1 is Hausdorff if and only if the foliation has no vanishing
cycles (as defined in Subsection 3.2.1). The same observation holds true
also for any foliation, if one extends the notion of a vanishing cycle to
arbitrary foliations in the obvious way.

5.3 Some general constructions

In this section we will define transformations between homomorphisms of
Lie groupoids, and discuss some ways of constructing new Lie groupoids
out of given ones.

Induced groupoids. Let G be a Lie groupoid and φ : M → G0 a
smooth map. Then one can define the induced groupoid φ∗(G) over M
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in which the arrows from x to y are the arrows in G from φ(x) to φ(y),
i.e.

φ∗(G)1 = M ×G0 G1 ×G0 M ,

and the multiplication is given by the multiplication in G. The space
φ∗(G)1 can be constructed by two pull-backs as in the diagram

φ∗(G)1 M

φ

G1 ×G0 M
pr1

G1

s

t
G0

M
φ

G0

The lower pull-back has a natural smooth structure because s is a sub-
mersion. If the composition t ◦ pr1 is also a submersion, the upper pull-
back has a natural smooth structure as well. It follows that the diagram

φ∗(G)1

(s,t)

G1

(s,t)

M ×M
φ×φ

G0 ×G0

is a pull-back. Therefore φ∗(G) is a Lie groupoid whenever the map

t ◦ pr1: G1 ×G0 M −→ G0

is a submersion. The map φ induces a homomorphism of Lie groupoids
φ: φ∗(G) → G.

Transformations. For two homomorphisms φ, ψ: G → H of Lie group-
oids, a (smooth) natural transformation (briefly transformation) from φ

to ψ is a smooth map

T : G0 −→ H1

such that for each x ∈ G0, T (x) is an arrow from φ(x) to ψ(x) in H,
and for each arrow g: x → y in G the square

φ(x)
T (x)

φ(g)

ψ(x)

ψ(g)

φ(y)
T (y)

ψ(y)
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commutes. We write T : φ → ψ to indicate that T is such a transforma-
tion from φ to ψ.

If T : φ → ψ and R : ψ → ρ are two transformations, so is their
product RT : φ → ρ given by RT (x) = R(x)T (x). In particular, the
homomorphisms from G to H are themselves the objects of a groupoid
with transformations as arrows. In fact, Lie groupoids, homomorphisms
and transformations form a 2-category.

Sums and products. For two Lie groupoids G and H one can construct
the product

G×H

in the obvious way, by taking the product manifolds G0×H0 and G1×H1.
In a similar way one constructs the sum (disjoint union)

G + H .

The sums and products have familiar universal properties in the category
(in fact, also in the 2-category) of Lie groupoids and homomorphisms.

Strong fibred products. For two homomorphisms φ : G → K and
ψ: H → K one can construct the fibred products of the sets of objects
and arrows:

(G×K H)0 = G0 ×K0 H0 = {(x, y) |x ∈ G0, y ∈ H0, φ(x) = ψ(y)} ,

(G×K H)1 = G1 ×K1 H1 = {(g, h) | g ∈ G1, h ∈ H1, φ(g) = ψ(h)} .

With multiplication defined component-wise, this defines a groupoid

G×K H .

However, in general this is not a Lie groupoid. It is, if the fibred products
G0×K0 H0 and G1×K1 H1 are transversal. For example, for G0×K0 H0

this means that the map φ × ψ: G0 ×H0 → K0 ×K0 is transversal to
the diagonal ∆: K0 → K0 ×K0, so that G0 ×K0 H0 = (φ× ψ)−1(∆K0)
is indeed a manifold.

If the transversality condition is satisfied, this construction gives a
(strong) fibred product (pull-back) with the familiar universal property.
Below we will consider an alternative, larger fibred product. To empha-
size the distinction, we often refer to the present fibred product as the
strong one.

Weak fibred products. Let φ: G → K and ψ: H → K be homomor-
phisms of Lie groupoids. We define a new groupoid P as follows. Objects
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of P are triples (x, k, y), where x ∈ G0, y ∈ H0 and k ∈ K(φ(x), ψ(y)).
Arrows in P from (x, k, y) to (x′, k′, y′) are pairs (g, h) of arrows g ∈ G1

and h ∈ H1 such that

k′φ(g) = ψ(h)k .

The multiplication is given component-wise. Often (but not always) P

has the structure of a Lie groupoid. Indeed, the set of objects may be
considered as the fibred product

P0 = G0 ×K0 K1 ×K0 H0 ,

and if the fibred product is transversal then P0 inherits a natural struc-
ture of a submanifold of G0 ×K1 ×H0. This is the case, for example,
when either φ: G0 → K0 or ψ: H0 → K0 is a submersion. If P0 has a
manifold structure as above, then

P1 = G1 ×K0 K1 ×K0 H1 = {(g, k, h) |φ(s(g)) = s(k), ψ(s(h)) = t(k)}

is also a manifold. Indeed, in this case P1 can be obtained from the two
fibred products

G1 ×K0 K1 ×K0 H1 H1

s

G1 ×K0 K1 ×K0 H0 G0 ×K0 K1 ×K0 H0

pr1

pr3
H0

G1
s

G0

In this case P is a Lie groupoid, referred as the weak pull-back or the
weak fibred product, and denoted by

G×(w)
K H .

Remark. We will use weak fibred products more often than strong
ones, and if not stated explicitly otherwise, ‘fibred product’ from now
on will refer to the weak one, and will be simply denoted by G×K H.

For completeness, we now discuss the universal property of weak fi-
bred products, but we shall not make explicit use of it. Let P be the
weak fibred product as above, and consider the following square of ho-
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momorphisms of Lie groupoids.

P
pr3

pr1

H

ψ

G
φ

K

This square does not commute, but there is an obvious transformation
T : φ ◦pr1 → ψ ◦pr3, defined by

T (x, k, y) = k .

For any Lie groupoid Q, let Hom(Q,φ, ψ) be the groupoid with objects
the triples (ρ1, ρ2, R), where ρ1 : Q → G and ρ2 : Q → H are homo-
morphisms and R : φ ◦ ρ1 → ψ ◦ ρ2 is a transformation. The arrows
(ρ1, ρ2, R) → (σ1, σ2, S) in Hom(Q,φ, ψ) are pairs of transformations
Ui : ρi → σi (i = 1, 2) such that ψ(U2)R = Sφ(U1). Then there is a
functor

Hom(Q,P ) −→ Hom(Q,φ, ψ)

defined by composition with the square above. On objects, this functor
sends α: Q → P to

(pr1 ◦α,pr3 ◦α, Tα) .

The universal property of the weak fibred product can be expressed by
stating that this functor is an equivalence of groupoids (for each groupoid
Q, and natural in Q).

Semi-direct products. Let G be a Lie groupoid.
(i) A left action of G on a manifold N along a smooth map ε: N → G0

is given by a smooth map µ: G1 ×G0 N → N (we write µ(g, y) = gy),
defined on the pull-back G1×G0N = {(g, y) | s(g) = ε(y)}, which satisfies
the following identities: ε(gy) = t(g), 1ε(y)y = y and g′(gy) = (g′g)y, for
any g′, g ∈ G1 and y ∈ N with s(g′) = t(g) and s(g) = ε(y). For such an
action one can form the translation groupoid

G � N

over N with (G � N)1 = G1 ×G0 N , exactly as for Lie group actions
(Example 5.1 (5)). This groupoid is a Lie groupoid, also referred to as
the semi-direct product groupoid of the G-action.

We define the quotient G\N as the space of orbits of the Lie groupoid
G � N . This space is in general not a manifold.
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A right action of G on N is defined analogously, and such an action
gives a semi-direct product N � G and a space of orbits N/G.

(ii) There is also a notion of a (right) action of a Lie groupoid G on
another Lie groupoid H. It is given by two (right) actions of G on H1

and on H0, such that the groupoid structure maps of H are equivariant,
i.e. compatible with the actions by G. If we denote the action maps on
Hi by εi : Hi → G0 and µi : Hi ×G0 G1 → Hi, i = 0, 1, this implies
in particular that ε0 ◦ s = ε1 = ε0 ◦ t, and that the diagonal action of
G on the domain H1 ×H0 H1 of the multiplication map is well-defined.
Note that for each x ∈ G0 the fibre Hx = ε−1

1 (x) is a full subgroupoid
of H over ε−1

0 (x), so that one has a family of groupoids indexed by the
points x ∈ G0. The groupoid G ‘acts’ on this family by a groupoid
isomorphism Hx′ → Hx, for any arrow g: x → x′. Note that these Hx

are Lie groupoids if ε0 is a submersion, and the action isomorphisms
Hx′ → Hx are isomorphisms of Lie groupoids.

For such an action of G on H, one can form the semi-direct product
groupoid

H � G ,

which is a Lie groupoid over H0. The manifold of arrows of this Lie
groupoid is the pull-back

(H0 ×G0 G1) ×H0 H1 = {(y, g, h) | ε0(y) = t(g), yg = t(h)} .

A triple (y, g, h) ∈ (H0×G0G1)×H0H1 is an arrow from s(h) to y. These
arrows multiply by the usual formula

(y, g, h)(y′, g′, h′) = (y, gg′, (hg′)h′) .

If H is the unit groupoid of a manifold N , this definition agrees with
the one given in (i) up to the obvious isomorphism.

Lemma 5.9 Consider a right action of a Lie groupoid G on a Lie
groupoid H. If H0 is a principal G-bundle over B, then H1/G is a Lie
groupoid over B ∼= H0/G.

Proof The only thing that has to be shown is that H1/G is a manifold.
We can specify the manifold structure locally in B, so it suffices to
consider the case where π : H0 → B has a section σ. But then H1/G

is isomorphic to the pull-back of s: H1 → H0 along σ: B → H0, hence
is a manifold. Moreover, this manifold structure is independent of the
choice of σ, since by principality of the action on H0, any two sections
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σ and σ′ are related by a map θ: B → G1, as σ(b)θ(b) = σ′(b) for all
b ∈ B. Then the same multiplication by θ establishes a diffeomorphism
between the pull-back of s along σ and the one along σ′.

Remark. We denote the Lie groupoid H1/G over B by H/G. The
quotient morphism H → H/G induces for each x ∈ H0 an isomorphism
of s-fibres s−1(x) → s−1(π(x)). More precisely, the square

H1

s

H1/G

s

H0
π

B = H0/G

is a pull-back of smooth manifolds.

5.4 Equivalence of Lie groupoids

In this section we discuss some notions of isomorphism and equivalence
of Lie groupoids.

Isomorphisms. Two Lie groupoids G and H are said to be isomor-
phic if there are homomorphisms φ: G → H and ψ: H → G such that
φ ◦ψ and ψ ◦φ are the identity homomorphisms of H and G respec-
tively. In this case φ and ψ are called isomorphisms. This terminology
agrees with the usual one referring to the category of Lie groupoids and
homomorphisms.

Equivalences of categories. Recall that two categories C and D (no
topology or smooth structure involved) are said to be equivalent if there
are functors F : C → D and G : D → C, and natural isomorphisms
τ : F ◦G → idD and σ : G ◦F → idC . Using the axiom of choice, this
notion of equivalence can alternatively be described as follows. Two
categories C and D are equivalent if there is a functor F : C → D with
the following two properties:

(i) F is essentially surjective; that is, for any object y of D there are
an object x of C and an isomorphism F (x) → y in D; and

(ii) F is full and faithful; that is, for any two objects x and x′ in C
the functor F induces a bijection

F: C(x, x′) −→ D(F (x), F (x′))

between the set of all arrows from x to x′ in C and the set of all
arrows from F (x) to F (x′) in D.
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These two ways of describing equivalence of course apply also to group-
oids. However, when some additional structure is involved the two ways
are no longer equivalent, and for Lie groupoids we distinguish the two
notions described below.

Strong equivalence of Lie groupoids. Let G and H be Lie group-
oids. A homomorphism φ: G → H is called a strong equivalence if there
are a homomorphism ψ : H → G and transformations T : φ ◦ψ → idH
and S: ψ ◦φ → idG.

Weak equivalences of Lie groupoids. Let G and H be Lie groupoids.
A homomorphism φ: G → H is called a weak equivalence if it satisfies
the following two modified conditions for being essentially surjective,
and full and faithful:

(ES) the map t ◦ pr1 : H1 ×H0 G0 → H0, sending a pair (h, x) with
s(h) = φ(x) to t(h), is a surjective submersion, and

(FF) the square

G1

(s,t)

φ
H1

(s,t)

G0 ×G0
φ×φ

H0 ×H0

is a fibred product of manifolds.

Strong equivalences are rare, but there are many examples of weak
equivalences.

Examples 5.10 (1) Let M be a manifold and Pair(M) its pair group-
oid. The homomorphism Pair(M) → 1, to the trivial one point groupoid
consisting of one object and one arrow, is a strong and a weak equiva-
lence.

(2) Let p: N → M be a surjective submersion between manifolds. We
view M as the unit groupoid (Example 5.1 (1)), and consider the kernel
groupoid Ker(p) (Example 5.1 (2)),

N ×M N ⇒ N .

The map p induces a weak equivalence Ker(p) → M . A particular case
of this is where N =

∐
i Ui is the disjoint union of an open cover {Ui}
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of M , and p is the evident map. Then Ker(p) takes the form∐
i,j

Ui ∩ Uj ⇒
∐
i

Ui .

(3) A Lie groupoid G is said to be transitive if the map

(s, t): G1 −→ G0 ×G0

is a surjective submersion. For any object x of a transitive Lie groupoid
G, the inclusion

Gx −→ G

of the isotropy group at x into G is a weak equivalence. As a special
case, this yields a weak equivalence between the gauge groupoid of a
principal G-bundle (Example 5.1 (8)) and the Lie group G.

(4) Suppose that φ : M → G0 is a smooth map with the property
that t ◦ pr1 : G1 ×G0 M → G0 is a submersion. Then the homomor-
phism φ: φ∗(G) → G from the induced groupoid (Section 5.3) is a weak
equivalence if and only if the submersion t ◦ pr1 is surjective.

Proposition 5.11 Every strong equivalence of Lie groupoids is a weak
equivalence.

Proof Let φ: G → H be a strong equivalence, with ψ: H → G and S

and T as in the definition of strong equivalence above. We prove first
that the map

t ◦ pr1: H1 ×H0 G0 −→ H0

of the definition of weak equivalence above is a surjective submersion.
Clearly it is surjective because any y ∈ H0 is the image of (T (y), ψ(y)).
To see that it is a submersion, we prove that it has a local section through
any point (h0: φ(x0) → y0, x0) of H1 ×H0 G0. To this end, consider the
arrow

T (y0)−1h0: φ(x0) −→ φ(ψ(y0))

in H. Since φ is an equivalence of categories, there is a unique arrow
g0 : x0 → ψ(y0) in G with φ(g0) = T (y0)−1h0. Let λ : U → G1 be
a local bisection through g0 in G, and let λ̃ = t ◦λ : U → G0 be the
associated diffeomorphism onto an open neighbourhood V of ψ(y0). Let
κ: ψ−1(V ) → H1 ×H0 G0 be the map

κ(y) = (T (y)φ(λ(λ̃−1(ψ(y)))), λ̃−1(ψ(y))) .
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Then κ is a section of t ◦ pr1 through the given point (h0, x0).
This proves that t ◦ pr1 is a surjective submersion. In particular, the

fibred product G0 ×H0 H1 ×H0 G0 of t ◦ pr1 along φ : G0 → H0 is a
manifold, which fits into a pull-back diagram

G0 ×H0 H1 ×H0 G0
pr2

(pr3,pr1)

H1

(s,t)

G0 ×G0
φ×φ

H0 ×H0

Since φ is an equivalence of categories, the map G1 → G0×H0H1×H0G0,
sending g to (s(g), φ(g), t(g)), is a bijection. We leave it to the reader to
prove that it is in fact a diffeomorphism.

We now list some basic properties of weak equivalences. We leave the
elementary proofs to the reader.

Proposition 5.12 Let G, H and K be Lie groupoids.
(i) For two homomorphisms φ, ψ: G → H, if there is a transformation

T : φ → ψ then φ is a weak equivalence if and only if ψ is.
(ii) If for a weak equivalence ψ: G → H the map t ◦ pr1 of the condition

(ES) has a section, then φ is a strong equivalence.
(iii) The composition of two weak equivalences is a weak equivalence.
(iv) For any weak equivalence φ : G → H and any homomorphism

ψ: K → H, the weak pull-back

P
pr2

pr1

K

ψ

G
φ

H

exists and pr2 is a weak equivalence for which P0 → K0 is a surjective
submersion.

Remark. One says that two Lie groupoids G and G′ are weakly equiv-
alent (or Morita equivalent) if there exist weak equivalences φ: H → G

and φ′: H → G′ for a third Lie groupoid H. It follows from Proposition
5.12 that this defines an equivalence relation between Lie groupoids.
Indeed, to check transitivity, suppose that we are given further weak
equivalences ψ : K → G′ and ψ′ : K → G′′. Now form the weak pull-
back P of φ′ and ψ, and observe that G and G′′ are weakly equivalent
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via φ ◦pr1 and ψ′ ◦pr2:

P
pr2

pr1

K
ψ′

ψ

G′′

H

φ

φ′

G′

G

If G and G′ are weakly equivalent Lie groupoids, we may in fact find
a Lie groupoid H and weak equivalences H → G and H → G′ which
are surjective submersions on objects. To see this, assume that we have
weak equivalences H ′ → G and H ′ → G′. We now obtain H by the
following diagram of weak pull-backs:

H K ′ G′

K H ′ G′

G G

Many properties of Lie groupoids are stable under weak equivalence.
One of them is Hausdorffness, as we will show in the next proposition.
At this point we should remark that for this to be true, it is essential that
we assumed in our definition of Lie groupoids that their base manifolds
(of objects) are Hausdorff. In fact, one could consider more general
Lie groupoids which may have non-Hausdorff base manifolds, but it is
not difficult to see that any such Lie groupoid with non-Hausdorff base
manifold is weakly equivalent to a Lie groupoid with Hausdorff base
manifold: just take the induced groupoid on a Hausdorff open cover of
the base manifold.

Proposition 5.13 Let G and H be weakly equivalent Lie groupoids.
Then G is Hausdorff if and only if H is.

Proof By the preceding remark, we may assume that there is a weak
equivalence φ: H → G which is a surjective submersion on base man-
ifolds, so we have the following pull-back diagram, with a surjective
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submersion φ× φ on the bottom:

H1 G1

(s,t)

H0 ×H0
φ×φ

G0 ×G0

It is clear that if G1 is Hausdorff then so is H1. Conversely, assume that
H1 is Hausdorff. It is enough to show that for any (x, y) ∈ G0 × G0

there exists an open neighbourhood U ⊂ G0 ×G0 such that (s, t)−1(U)
is Hausdorff. But φ×φ: H0×H0 → G0×G0 is a surjective submersion,
so we can choose U so small that φ × φ has a local section defined on
U . Therefore H1 → G1 has a local section defined on (s, t)−1(U) by the
pull-back property of the diagram above, and because this section maps
to a Hausdorff space, it follows that (s, t)−1(U) is Hausdorff.

The next property stable under weak equivalence is transitivity. Recall
from Example 5.10 (3) that a Lie groupoid is called transitive if the map
(s, t): G1 → G0 ×G0 is a surjective submersion.

Proposition 5.14 Let G be a Lie groupoid. The following conditions
are equivalent.

(i) G is transitive.
(ii) G is weakly equivalent to a Lie group.

(iii) t: G(x0, - ) → G0 is a surjective submersion for any (or some)
x0 ∈ G0.

(iv) The inclusion Gx0 → G is a weak equivalence for any (or some)
x0 ∈ G0.

(v) G is isomorphic to the gauge groupoid associated to a principal
Lie group bundle (see Example 5.1 (8)).

Proof (i)⇒(iii) The map t : G(x0, - ) → G0 is the pull-back of the
surjective submersion (s, t) along the map G0 → G0 × G0 which sends
x to (x0, x), hence it is itself a surjective submersion.

(iii)⇒(iv) The group Gx0 is the restriction of G to {x0}, so we only
need to show that t ◦ pr1: G1×G0 {x0} → G0 is a surjective submersion.
But this is exactly the map of (iii).

(iv)⇒(ii) This is trivial.
(ii)⇒(i) Since any Lie group is clearly transitive, we only need to

show that transitivity is stable under weak equivalence. This is true
because a pull-back of a surjective submersion is a surjective submersion,
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and because a map which pulls back along a surjective submersion to a
surjective submersion is itself a surjective submersion.

(v)⇒(i) If π: P → M is a principal K-bundle, where K is a Lie group,
then (s, t): Gauge(P ) → M ×M is induced by the surjective submersion
(π, π): P × P → M ×M , and hence it is itself a surjective submersion.
Therefore Gauge(P ) is transitive.

(iii)⇒(v) By Theorem 5.4 we know that the map of (iii) is a principal
Gx0-bundle over G0, so we only need to prove that the gauge groupoid
of this bundle is isomorphic to G. For this, check that the map

G(x0, - ) ×G(x0, - ) −→ G ,

which sends (g, g′) to g′g−1, induces an isomorphism

Gauge(G(x0, - )) −→ G

of Lie groupoids.

In an analogous way one can easily characterize the Lie groupoids
which are weakly equivalent to discrete groups:

Proposition 5.15 Let G be a Lie groupoid. The following conditions
are equivalent.

(i) (s, t): G1 → G0 ×G0 is a covering projection.
(ii) G is weakly equivalent to a discrete group.

(iii) t : G(x0, - ) → G0 is a covering projection for any (or some)
x0 ∈ G0.

(iv) The isotropy group Gx0 is discrete and the inclusion Gx0 → G is
a weak equivalence, for any (or some) x0 ∈ G0.

(v) G is isomorphic to the gauge groupoid associated to a principal
bundle with discrete structure group (i.e. a regular covering).

Proof (i)⇒(iii) The map t : G(x0, - ) → G0 is the pull-back of the
covering projection (s, t) along G0 → G0 ×G0 which sends x to (x0, x),
so it is itself a covering projection.

(iii)⇒(iv) First, Theorem 5.4 implies that the isotropy group Gx0 is
discrete. Now the result follows from Proposition 5.14.

(iv)⇒(ii) Trivial.
(ii)⇒(i) The condition (i) is stable under weak equivalence. This is

because a pull-back of a covering projection is a covering projection,
and because a map which pulls back along a surjective submersion to a
covering projection is itself a covering projection.
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The proofs of (v)⇒(i) and (iii)⇒(v) are also analogous to that of
Proposition 5.14.

5.5 Etale groupoids

An étale groupoid is a Lie groupoid G with dimG1 = dimG0.
Recall that a smooth map f : N → M is a local diffeomorphism if

(df)y is invertible for any y ∈ N (thus in particular dimM = dimN).
Equivalently, any y ∈ N has an open neighbourhood V ⊂ N such that
f |V is an open embedding. A local diffeomorphism is also referred to as
an étale map.

Exercises 5.16 (1) Show that a pull-back of a local diffeomorphism is
a local diffeomorphism. Conversely, if the pull-back of a smooth map f

along a surjective submersion is a local diffeomorphism, then f is itself
a local diffeomorphism.

(2) Prove that a Lie groupoid G is étale if and only if the source map
of G is a local diffeomorphism. In fact, all the structure maps of an étale
groupoid are local diffeomorphisms.

(3) Show that for an étale groupoid the fibres of the source map, the
fibres of the target map, the isotropy groups and the orbits are discrete.

(4) Prove that any weak equivalence between étale groupoids G → H

is an étale map on objects and on arrows. (Hint: show that it is a
submersion and that dimH = dimG.)

Examples 5.17 (1) The unit groupoid of a smooth manifold is étale.
(2) A discrete group is an étale groupoid over a one point space.
(3) If G is a discrete group acting on a manifold M , the associated

action groupoid G � M is étale.
(4) Let G be a Lie groupoid. The Lie groupoid of local bisections

Bis(G) (Section 5.1) is an étale groupoid. It is isomorphic to G if and
only if G is itself étale.

(5) Let M be a manifold. The germs of locally defined diffeomorphisms
f : U → V between open subsets of M form a groupoid Γ(M) over M ;
the germ of f at x is an arrow from x to f(x), and the multiplication
in Γ(M) is induced by the composition of diffeomorphisms. There are
a natural sheaf topology and a smooth structure on Γ(M)1 such that
the structure maps of Γ(M) are étale. Thus Γ(M) is an étale groupoid.
In particular, the étale groupoid Γ(Rq) is referred to as the Haefliger
groupoid, and denoted by Γq.
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Exercise 5.18 Show that for any manifold M of dimension q, the étale
groupoid Γ(M) is weakly equivalent to the Haefliger groupoid Γq.

Example 5.19 (Etale holonomy and monodromy groupoids) Let
F be a foliation of a manifold M . We can choose a complete transver-
sal section S of (M,F), i.e. an immersed (not necessarily connected)
submanifold of M of dimension equal to the codimension of F , which
is transversal to the leaves of F and intersects any leaf in at least one
point. For instance, one can take S to be the union of a countable dis-
joint family of (local) transversal sections. Denote by ι : S → M the
inclusion.

We can now define a Lie groupoid MonS(M,F) over S as the induced
groupoid

MonS(M,F) = ι∗(Mon(M,F)) .

This groupoid can be seen as the restriction of the (full) monodromy
groupoid Mon(M,F) to S: the arrows of MonS(M,F) are those arrows
of Mon(M,F) which start and end in the submanifold S. The induced
groupoid ι∗(Mon(M,F)) is indeed a Lie groupoid because the composi-
tion t ◦ pr1: Mon(M,F)1×M S → M is a surjective local diffeomorphism
(Section 5.3).

In particular, note that dim MonS(M,F)1 = dimS, so the Lie group-
oid MonS(M,F) is étale. It is referred to as the étale monodromy group-
oid over S associated to (M,F). The inclusion of MonS(M,F) into
Mon(M,F) is a weak equivalence. For any point x ∈ S on a leaf L of F
we have

MonS(M,F)x = Mon(M,F)x = π1(L, x) .

In a completely analogous way we now define the étale holonomy
groupoid HolS(M,F) over S, weakly equivalent to Hol(M,F), by

HolS(M,F) = ι∗(Hol(M,F)) .

Note that for any x ∈ S we have

HolS(M,F)x = Hol(M,F)x = Hol(L, x) ,

where L is the leaf of F through x.

The same idea of restricting a Lie groupoid to a complete transversal
leads to the following characterization of étale groupoids up to weak
equivalence.
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Proposition 5.20 A Lie groupoid is weakly equivalent to an étale one
if and only if it has discrete isotropy groups.

Proof Any étale groupoid has discrete isotropy groups, and this property
is preserved under weak equivalence. Conversely, assume that G is a Lie
groupoid of dimension m with discrete isotropy groups. Let n be the
dimension of G0. Theorem 5.4 shows that all the orbits of G are of the
same dimension m−n; furthermore, they form a foliation of G0. Indeed,
the vectors tangent to the orbits in G0 are exactly the images along dt
of vectors in Ker(ds) ⊂ T (G1). Since any section of Ker(ds) defined on
G0 can be extended to all of G1 by right translations, and the obtained
vector field is projectable along dt, this implies that (dt)(Ker(ds)) is an
involutive subbundle of T (G0).

Now take a complete transversal S of the foliation of G0 by orbits of
G. First we will prove that the map

t: s−1(S) ∼= G1 ×G0 S −→ G0

is a surjective local diffeomorphism. To see this, first note that the
dimension of s−1(S) is n, so it is enough to show that this map is a
surjective immersion. Let g: x → y be an arrow on G. Note first that
G(x, y) is also discrete, because it is diffeomorphic to the isotropy group
Gx via translation by g. Now take any ξ ∈ Tg(s−1(S)) with dt(ξ) = 0.
It follows that ds(ξ) is tangent to the foliation of G0 by orbits, and since
it is also tangent to S, we must have ds(ξ) = 0. Thus ξ is tangent to the
discrete space G(x, y), hence ξ = 0. Finally, the map t: s−1(S) → G0 is
surjective since S is a complete transversal.

With this, it follows that the restriction G|S of G to S is a Lie group-
oid weakly equivalent to G. It also follows that this groupoid is étale,
because it can be obtained as the inverse image of S along the étale map
t: s−1(S) → G0.

Let G be an étale groupoid. There is a canonical homomorphism of
Lie groupoids

Eff: G −→ Γ(G0) ,

which is the identity on objects and is given on arrows by

Eff(g) = germs(g)(t ◦(s|U )−1) ,

where g ∈ G1 and U is any open neighbourhood of g in G1 such that
both s|U and t|U are injective. The map Eff : G1 → Γ(G0)1 is a local
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diffeomorphism. An effective groupoid is an étale groupoid for which the
homomorphism Eff is injective (on arrows). The image Eff(G) of Eff is
an open subgroupoid of Γ(G0) and hence effective; it is referred to as
the effect of G.

Examples 5.21 (1) Let F be a foliation of M , and let S be a complete
transversal of F . Recall that for any two points x, y ∈ S on the same
leaf L of F , the arrows in MonS(M,F) from x to y are the homotopy
classes of paths from x to y inside L. But the holonomy class of such
a path α may be faithfully represented by the germ of a locally defined
diffeomorphism on S, namely by holS,S(α). It follows that the effect
homomorphism of the étale holonomy groupoid MonS(M,F) is given by
the holonomy Eff = holS,S: MonS(M,F) → Γ(S), and

Eff(MonS(M,F)) = HolS(M,F) .

In particular, the groupoid HolS(M,F) is effective.
(2) The class of effective groupoids is stable under weak equivalence

among étale groupoids. In other words, if two étale groupoids are weakly
equivalent, then one is effective if and only if the other is too.

(3) Let f : M → N be a surjective submersion with connected fibres,
and F the associated foliation of M . Then the étale holonomy groupoid
of (M,F) is weakly equivalent to the manifold N regarded as a unit
groupoid.

(4) Let G be a discrete group acting freely and properly discontinu-
ously (from the right) on a connected manifold M̃ such that M̃/G = M

is a Hausdorff manifold. Suppose that we also have a left action of G
on a manifold F . Consider the associated foliation F on the flat bundle
M̃ ×G F over M . Take x0 ∈ M̃ . Let S be the complete transversal
section of F given by the image of {(x0, z) | z ∈ F} under the quotient
map M̃ × F → M̃ ×G F . Then we have

HolS(M̃ ×G F,F) ∼= Eff(G � F ) .

(5) Let F be the standard foliation of the Möbius band M . By (4)
just above, the étale holonomy groupoid of (M,F) is isomorphic to the
translation groupoid Z2 � (−1, 1).

(6) The Kronecker foliation F of torus T 2 is also a suspension, so the
étale holonomy groupoid is Z � S1.

(7) Let F be the Reeb foliation of S3. We may choose a transver-
sal section S of F so that the associated étale holonomy groupoid is
isomorphic to (Z ⊕ Z) � R.
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Exercises 5.22 (1) Let

P K

H G

be a weak pull-back of Lie groupoids. Show that if K and H are étale,
then P is also étale.

(2) Let G and G′ be weakly equivalent Lie groupoids. We know that
there exist a Lie groupoid H and weak equivalences φ : H → G and
φ′: H → G′ which are surjective submersions on objects; show that H

can be chosen étale if G and G′ are.

Examples 5.23 (1) Let M be a smooth manifold. A (local) transition
on M is a diffeomorphism f : U → U ′ between two open subsets of M .
We shall denote the set of all transitions on M by C∞

M . A pseudogroup
on M is a subset P of transitions on M such that

(i) idU ∈ P for any open U ⊂ M ,
(ii) if f, f ′ ∈ P , then f ′ ◦ f |f−1(dom(f ′)) ∈ P and f−1 ∈ P , and
(iii) if f is a transition on M and (Ui) is an open cover of dom(f)

such that f |Ui
∈ P for any i, then f ∈ P .

In particular, the collection C∞
M of all transitions on M is a pseudogroup

on M .
To any pseudogroup P on M we can associate an effective groupoid

Γ(P ) over M as follows: for any x, y ∈ M let

Γ(P )(x, y) = {germxf | f ∈ P, x ∈ dom(f), f(x) = y} .

The multiplication in Γ(P ) is given by the composition of transitions.
With the classical sheaf topology Γ(P )1 becomes a smooth manifold
(which may be neither Hausdorff nor second-countable), and Γ(P ) be-
comes an effective groupoid. The effective groupoid Γ(M) (Example
5.17 (5)) is a special case of this construction, since Γ(M) = Γ(C∞

M ).
There is also a natural way to construct a pseudogroup out of an étale

groupoid. For any étale groupoid G, put

Ψ(G) = {t ◦σ |σ is a local bisection of G} .

This is clearly a pseudogroup on G0. We have

Γ(Ψ(G)) = Eff(G) , Ψ(Γ(P )) = P
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for any étale groupoid G and any pseudogroup P . In particular, we may
identify effective groupoids over M with pseudogroups on M .

(2) A pseudogroup P on M is called finitely (countably) generated if
there exists a finite (countable) subset A ⊂ P such that P is the small-
est pseudogroup on M which contains A (i.e. P is generated by A). An
example of a countably generated pseudogroup is the holonomy pseu-
dogroup of a foliated manifold (M,F) on a complete transversal section
S, i.e. the pseudogroup associated to the étale holonomy groupoid of
(M,F). In fact, this pseudogroup is finitely generated if M is compact.

Conversely, any countably generated pseudogroup is the holonomy
pseudogroup of a foliation. Indeed, let P be a pseudogroup on a manifold
N of dimension q, generated by a countable subset (fi)∞i=1. Let V be
the open subset of N × R × R given by

V = (N × R × (0, 1)) ∪
∞⋃
i=1

(dom(fi) × (i, i + 1) × (0, 3)) .

There is a natural foliation on V of codimension q given by the first
projection. Let M be the manifold of dimension q + 2, obtained as
the quotient of V by identifying (y, t, t′) with (fi(y), t, t′ − 2) for any
i = 1, 2, . . . , y ∈ dom(fi), t ∈ (i, i + 1) and t′ ∈ (2, 3). Observe that
the foliation on V induces a foliation F on M of codimension q. For
any y ∈ N denote by T (y) ∈ M the equivalence class of the point
(y, 0, 1/2) ∈ V . The image of T : N → M , which is isomorphic to
N , is a complete transversal section of F . It is easy to check that the
pseudogroup of (M,F) on this complete transversal section is isomorphic
to P . (The idea for this construction was communicated to us by J.
Pradines, who attributed it to G. Hector.)

It is an open problem to characterize finitely generated pseudogroups
which come from the foliations of compact manifolds.

Exercise 5.24 Let P be a pseudogroup on M and P ′ a pseudogroup on
M ′. A (local) transition from M to M ′ is a diffeomorphism h: V → V ′

from an open subset V of M to an open subset V ′ of M ′. An equivalence
from P to P ′ is a subset R of transitions from M to M ′ such that

(i)
⋃
h∈R dom(h) = M and

⋃
h∈R cod(h) = M ′,

(ii) for any h, k ∈ R, f ∈ P and f ′ ∈ P ′ it holds that h ◦ f ◦ k−1 ∈ P ′,
h−1 ◦ f ′ ◦ k ∈ P and f ′ ◦h ◦ f ∈ R, and

(iii) R is a maximal family of transitions from M to M ′ satisfying (i)
and (ii).
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Two pseudogroups P on M and P ′ on M ′ are equivalent if there exists
an equivalence between them. Show that pseudogroups P and P ′ are
equivalent if and only if Γ(P ) and Γ(P ′) are weakly equivalent.

5.6 Proper groupoids and orbifolds

In this section we shall consider another class of Lie groupoids which is
stable under weak equivalence: proper groupoids.

First, recall that a map between (Hausdorff) manifolds f : N → M

is proper if f−1(K) is compact for any compact subset K of M . In
particular, any proper map between (Hausdorff) manifolds is closed.
Before we present the definition of proper groupoids, we begin with a
basic lemma concerning the behaviour of proper maps between manifolds
under pull-backs. We omit the proof, which is elementary.

Lemma 5.25 Let g : N ′ → M ′ be the pull-back of a map f : N → M

along a smooth map h: M ′ → M , where M and M ′ are Hausdorff:

N ′

g

N

f

M ′ h
M

If N is Hausdorff and f is proper, then N ′ is also Hausdorff and g

is proper. If, conversely, N ′ is Hausdorff, g proper and h a surjective
submersion, then N is Hausdorff and f is proper.

A Lie groupoid G is said to be proper if it is Hausdorff and the map
(s, t): G1 → G0 × G0 is proper. The stability of propriety under weak
equivalence is an immediate consequence of the preceding lemma.

Proposition 5.26 If G and H are weakly equivalent Lie groupoids, and
if one of them is proper, then so is the other.

Proposition 5.27 Let

P H

K G

be a weak pull-back of Lie groupoids. If K and H are proper and G is
Hausdorff, then P is also proper.
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Proof The map P1 → P0 × P0 is of the form

H1 ×G0 G1 ×G0 K1 −→ (H0 ×G0 G1 ×G0 K0) × (H0 ×G0 G1 ×G0 K0) .

After reshuffling the factors, we can write this map as a composition
of pull-backs of H1 → H0 × H0, K1 → K0 × K0 and the diagonal
G1 → G1 ×G1. All these maps are proper by assumption. Since proper
maps are obviously closed under composition, the proposition is proved.

Examples 5.28 (1) Let G be a Lie group acting on a manifold N .
Then the translation groupoid G�N is proper if and only if the action
of G is proper in the classical sense (by definition). For example, if G is
compact then G � N is always proper.

(2) Let F be a foliation of a manifold M , and assume that any leaf
of F is compact with finite holonomy (for instance, this is true if F
is given by a foliated action of a compact Lie group, see Proposition
2.8). Then the holonomy groupoid Hol(M,F) is proper. In fact, more
is true: the source map of the holonomy groupoid is proper, and the
same is therefore true for the target map. To see this, we first use the
local Reeb stability theorem to conclude that locally the foliation has
the structure of a flat bundle (suspension), and then use Example 5.8
(3).

We shall now show that proper effective groupoids may be identified
with orbifolds.

Let Q be an orbifold and U = {(Ui, Gi, φi)}i∈I an orbifold atlas of
Q. Put U =

∐
i∈I Ui and φ = {φi} : U → Q. Now let Ψ(U) be the

pseudogroup on U of all transitions f on U for which φ ◦ f = φ|dom(f).
Define the effective groupoid Γ(U) associated to the orbifold atlas U to
be the effective groupoid associated to the pseudogroup Ψ(U),

Γ(U) = Γ(Ψ(U)) .

Proposition 5.29 Let U be an orbifold atlas of an orbifold Q.
(i) Γ(U) is a proper effective groupoid.
(ii) If U is an orbifold atlas of an orbifold Q and U ′ is an orbifold

atlas of an orbifold Q′, then Γ(U) and Γ(U ′) are weakly equivalent if and
only if Q and Q′ are isomorphic.

Proof (i) Take any (x, y) ∈ Ui × Uj ⊂ U × U . It is enough to find a
compact neighbourhood K of (x, y) such that (s, t)−1(K) is compact.
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If φi(x) �= φj(y) this is easy since Q is locally compact and Hausdorff.
So assume that φi(x) = φj(y) = q. As the charts of the atlas are
compatible, it follows by Proposition 2.13 that there is an embedding
f : Z → Uj of an open neighbourhood Z ⊂ Ui of x with f(x) = y and
φj ◦ f = φi|Z . We may assume that Z is Gi-stable and (Gi)Z = (Gi)x.
This implies that f(Z) is Gj-stable and (Gj)f(Z) = (Gj)y. By Lemma
2.11 we see that

(s, t)−1(Z × f(Z)) = {germz(g ◦ f) | g ∈ (Gj)y, z ∈ Z} ∼= (Gj)y × Z .

The rest follows from the fact that (Gj)y is finite.
(ii) We mentioned that Γ(U) and Γ(U ′) are weakly equivalent if and

only if Ψ(U) and Ψ(U ′) are equivalent, i.e. if there exists an equivalence
between them. Such an equivalence clearly induces an isomorphism
between the orbifolds, while conversely, for any isomorphism between
orbifolds the local lifts (which must exists by definition, see Section 2.4)
form an equivalence between the pseudogroups (see Exercise 5.24).

This proposition implies, in particular, that for an orbifold Q the weak
equivalence class of Γ(U) is independent of the choice of the orbifold atlas
U of Q. So we can associate to Q a proper effective groupoid

Γ(Q) ,

which is determined uniquely up to weak equivalence.
In fact, any proper effective groupoid G comes from an orbifold in

this way. To see this, note first that any isotropy group of a proper étale
groupoid is finite. Furthermore, a proper étale groupoid locally looks
like the translation groupoid with respect to an action of an isotropy
group, as expressed in the following proposition.

Proposition 5.30 Let G be a proper étale groupoid. Then any x ∈ G0

has an open neighbourhood U in G0 with an action of the isotropy group
Gx such that there is an isomorphism of étale groupoids

G|U ∼= Gx � U .

Proof Since θ = (s, t) : G1 → G0 × G0 is proper and G is étale, the
groups Gx = θ−1(x, x) are finite. By the argument given just before
Theorem 2.9, we can find a connected open neighbourhood W ⊂ G0

of x and sections σg : W → G1 (for g ∈ Gx) of the source map with
σg(x) = g such that fg = t ◦σg is a diffeomorphism from W onto W

and fg ◦ fh = fgh for any g, h ∈ Gx. Thus H = {fg | g ∈ Gx} is a
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subgroup of Diff(W,x), and the map g → fg gives us an action of Gx

on W . Furthermore observe that σg(W ) ∩ σg′(W ) = ∅ for any g �= g′

because G is Hausdorff and connected. Since θ is proper and hence
closed, θ(G1 −

⋃
g∈Gx

σg(W )) is closed in G0 × G0. Thus we can find
an open neighbourhood U ⊂ W of x such that U × U is disjoint from
θ(G1−

⋃
g∈Gx

σg(W )). We can also choose U so small that U is H-stable.
It is then clear that G|U is isomorphic to the translation groupoid Gx�U .

This proposition implies that any proper étale groupoid defines an
orbifold structure on its space of orbits. The space of orbits G0/G of a
Lie groupoid G is defined as the space of orbits of the canonical right G-
action on G0. Equivalently, G0/G is the quotient space of G0 in which
two points of G0 are identified precisely if there exists an arrow in G

between them.

Corollary 5.31 Let G be a proper étale groupoid. Then there is a canon-
ical orbifold structure on G0/G such that Γ(G0/G) is weakly equivalent
to Eff(G).

Proof For any x ∈ G0 we take an open neighbourhood Ux of x as in
Proposition 5.30. We may also take Ux so small that it is diffeomorphic
to an open subset Vx of R

n, with diffeomorphism φx: Ux → Vx. Let Hx

be the image of the action of Gx in Diff(Ux, x). Now

(Ux, φx ◦H ◦φ−1
x , π ◦φ−1

x )

is an orbifold chart on G0/G with π(x) ∈ π(V ), where π: G0 → G0/G

is the quotient projection. These charts form an orbifold atlas of G0/G.

Theorem 5.32 The following conditions are equivalent for any Lie
groupoid G.

(i) G is weakly equivalent to a proper effective groupoid.
(ii) G is weakly equivalent to the holonomy groupoid of a foliation

with compact leaves and finite holonomy groups.
(iii) G is weakly equivalent to the translation groupoid of a compact

Lie group action, for which any isotropy group is finite and acts
effectively on a slice.

(iv) G is weakly equivalent to the effective groupoid associated to an
orbifold.
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Proof First, the equivalence (i)⇔(iv) follows from our discussion above
(Proposition 5.29 and Corollary 5.31). By Proposition 2.23, any orbifold
Q is isomorphic to the orbifold associated to the foliated action of the
compact Lie group U(n) on the unitary frame bundle UF (Q), after we
choose a Riemannian metric on Q. This action has finite isotropy groups
and is effective on slices, as in (iii). In particular, this action is foliated
and the associated foliation has compact leaves with finite holonomy
groups, as in (ii). Furthermore, we saw that the space of leaves of the
foliation and the space of orbits of the action are both orbifolds isomor-
phic to Q. So we only need to show that the associated Lie groupoids –
the holonomy groupoid, the translation groupoid and the groupoid as-
sociated to Q – are weakly equivalent. To see this, choose for any point
x ∈ UF (Q) a slice, i.e. a transversal section Sx of the foliation, on which
there is an action by the isotropy U(n)x such that the saturation of Sx
is isomorphic to Sx ×U(n)x U(n) (this is in fact the local Reeb stability
theorem for the associated foliation). These local slices form an orbifold
atlas of Q. Furthermore, by restricting the translation groupoid to the
union of local slices we obtain a weakly equivalent groupoid which is
exactly the proper effective groupoid associated to the orbifold atlas of
local slices. This proves (iv)⇒(iii), while a similar argument shows also
(iii)⇒(ii) and (ii)⇒(iv).

Example 5.33 An orbifold is a manifold if and only if all the isotropy
groups are trivial. Therefore a Lie groupoid G is weakly equivalent to
(the unit groupoid of) a manifold if and only if it is a proper groupoid
with trivial isotropy groups (such a groupoid is weakly equivalent to a
proper étale one by Proposition 5.20).

5.7 Principal bundles over Lie groupoids

To conclude this chapter, we introduce actions of Lie groupoids, and
associated connections. These notions will be used in Section 6.3 below.

Let G be a Lie groupoid. A G-bundle over a manifold M is a manifold
P equipped with a map π: P → M and a smooth right G-action µ on
P along ε: P → G0 (see Section 5.3) which is fibrewise with respect to
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π, i.e. π(pg) = π(g) for any p ∈ P and any g ∈ G1 with ε(p) = t(g).

P

π

ε
G0

M

Such a bundle P is said to be principal if

(i) π is a surjective submersion, and
(ii) the map (pr1, µ): P ×G0 G1 → P ×M P , sending (p, g) to (p, pg),

is a diffeomorphism.

Note that in case G is a Lie group we recover the usual notion of a
principal G-bundle.

For a principal G-bundle π: P → M , we refer to the manifold P as the
total space of the bundle, and we shall denote by δ: P ×M P → G1 the
map pr2 ◦(pr1, µ)−1. This map is uniquely determined by the identity
pδ(p, p′) = p′ and satisfies the equation δ(p, p′)g = δ(p, p′g).

An equivariant map between principal G-bundles π : P → M and
π′: P ′ → M over M is a smooth map f: P → P ′ which commutes with
all the structure maps, i.e. the identities π′(f(p)) = π(p), ε′(f(p)) = ε(p)
and f(pg) = f(p)g hold, for any p ∈ P and g ∈ G1 with ε(p) = t(g).

Remarks 5.34 (1) The space G1 of arrows of a Lie groupoid G carries
the structure of a principal G-bundle over G0: for π one takes the target
map and for ε the source map, while the right action is given by the
multiplication in G. We call this bundle the unit bundle of G, and
denote it by U(G).

(2) If P is a principal G-bundle over M and f : N → M is a smooth
map, the pull-back N ×M P has the structure of a principal G-bundle
over N . We denote this bundle by f∗(P ).

(3) Combining the previous two remarks, we see that for any map
α: M → G0 there is a principal G-bundle α∗(U(G)) over M . Its total
space is the space of pairs (m, g) where g is an arrow with target α(m).
Bundles of this form are called trivial.

(4) Let P be a principal G-bundle over M . Take any point m ∈ M ,
and choose a local section σ: U → P of π defined on an open neighbour-
hood U of m. Let α = ε ◦σ: U → G0. Then the map α∗(U(G)) → P ,
which sends (m, g) to σ(m)g, is an isomorphism from the trivial bun-
dle α∗(U(G)) to the restriction PU = π−1(U). Its inverse sends p to
δ(σ(π(p)), p). Thus, any principal bundle is locally trivial.
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(5) Every equivariant map P → P ′ between principal G-bundles over
M is an isomorphism. In fact by (4) it is sufficient to check this for
trivial bundles. But for any α, β : M → G0, a map between trivial
bundles f: α∗(U(G)) → β∗(U(G)) is completely determined by the map
φ: M → G1 sending m to pr2(f(m, 1α(m))), since

f(m, g) = f(m, 1α(m))g = (m,φ(m)g) .

Thus clearly f is an isomorphism, with the inverse given by f−1(m, g) =
(m,φ(m)−1g).

Lemma 5.35 Let π: P → M be a principal G-bundle, let Q be a manifold
with a right G-action, and let f: Q → P be a submersion preserving the
G-action. Then Q/G is a manifold and the quotient map Q → Q/G is
a principal G-bundle.

Proof Let q ∈ Q, and choose a neighbourhood U of m = π(f(q)) so small
that U ⊂ π(f(Q)) and that π has a section σ: U → P with σ(m) = f(q).
Then the restriction PU is trivial and f maps QU = f−1(PU ) onto PU .
Since the conclusion of the lemma is local in M , this shows that we may
assume that P is the trivial bundle given by a map α: M → G0 and
that f is a surjective submersion,

f: Q −→ P = α∗(U(G)) = M ×G0 G1 .

Denote by uni: G0 → G1 the unit map of G. Let R → M be the pull-
back of f along the embedding (id,uni ◦α): M → M ×G0 G1, mapping
m into (m, 1α(m)). Thus R may be identified with the submanifold
f−1(M ×G0 G0) of Q. Consider the map ρ: Q → R defined by

ρ(q) = q(pr2(f(q)))−1 .

This map is a submersion because it is also isomorphic to the pull-back
of the target map of G along the map α ◦pr1: R → G0,

Q

ρ

f
P

π

pr2
G1

t

R pr1
M α G0

and Q becomes a (trivial) principal G-bundle over R. Indeed, for any
two points q1, q2 ∈ Q with ρ(q1) = ρ(q2) we have

q2 = q1(pr2(f(q1)))−1(pr2(f(q2))) ,
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so the map Q×G0 G1 → Q×R Q has the inverse which maps (q1, q2) to
(q1,pr2(f(q1))−1pr2(f(q2))).

Let G and H be Lie groupoids. A principal G-bundle over H is a
principal G-bundle π: P → H0 over the manifold H0,

P

π

ε
G0

H0

which is equipped with a left H-action on P along π, which commutes
with the right G-action, i.e. ε(hp) = ε(p) and

(hp)g = h(pg)

for any h ∈ H1, p ∈ P and g ∈ G1 with s(h) = π(p) and ε(p) = t(g).
A map P → P ′ between principal G-bundles over H is a map of

principal G-bundles over H0 which also respects the H-action. As we
have seen, any such map is an isomorphism.

Example 5.36 Let G be a Lie group. Then for any foliated manifold
(M,F) the principal G-bundles over Mon(M,F) are the foliated princi-
pal G-bundles over M (Subsection 4.2.2), while the principal G-bundles
over Hol(M,F) are the transverse principal G-bundles over M . If H is
another Lie group, the principal G-bundles over H are conjugacy classes
of homomorphisms H → G.

Exercise 5.37 Let H be a Lie groupoid. A vector bundle E over H is
defined to be a (real) vector bundle π : E → H0 over the space H0 of
objects, equipped with a left action of H along π, which is linear as map
between the fibres of π. A metric on such a vector bundle is a metric in
the usual sense, which is preserved by the action of H.

(1) Show that if H is an étale groupoid, then the tangent bundle of
H0 has the natural structure of a vector bundle over H.

Consider now the case where H is the holonomy groupoid Hol(M,F)
of a foliated manifold (M,F). Let T be a complete transversal of (M,F),
with the associated étale holonomy groupoid HolT (M,F).

(2) Show that the normal bundle N(F) of the foliation F has the
natural structure of a vector bundle over Hol(M,F). Show that this
bundle carries a metric if and only if the foliation is Riemannian. Show
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that the bundle is trivial (as a bundle with H-action) if and only if the
foliation is transversely parallelizable.

(3) Show that the pull-back of the normal bundle N(F) along the in-
clusion HolT (M,F) → Hol(M,F) is isomorphic to the tangent bundle of
HolT (M,F). Prove that (M,F) is Riemannian if and only if the tangent
bundle of HolT (M,F) carries a metric, and that (M,F) is transversely
parallelizable if and only if this tangent bundle is trivial.

Let G be a Lie groupoid, and let π: P → B be a principal G-bundle
over a manifold B along ε: P → G0. For any p ∈ P , denote by Vp the
space Ker((dπ)p) of vertical tangent vectors at p. Thus V is an integrable
subbundle of T (P ). The diffeomorphism Lp: G(ε(p), - ) → Pπ(p), given
by Lp(g) = pg−1, induces an isomorphism dLp: gε(p) → Vp, where gε(p)
denotes the tangent space of G(ε(p), - ) at the unit 1ε(p).

Let F be a foliation of B. Then π∗(F) is a foliation of P . An F-partial
connection on P is a subbundle H of π∗(F) ⊂ T (P ) which satisfies the
following conditions:

(i) π∗(F) = V ⊕H,
(ii) (dε)(H) = 0, and
(iii) Hpg = Hpg for any p ∈ P and g ∈ G with ε(p) = t(g).

Note that Hpg is well-defined precisely because of the condition (ii)
above. The connection H is called flat if it is integrable. With a given
connection H, any tangent vector ξ ∈ π∗(F)p has a unique decomposi-
tion as a sum ξ = ξv + ξh of its vertical and horizontal parts.

Proposition 5.38 Let P be a principal G-bundle over B, F a foliation
of B and H a flat F-partial connection on P . Then each leaf of H
projects by a covering projection to a leaf of F .

Proof Each leaf L̃ of H clearly projects by a local diffeomorphism to
a leaf L of F . Moreover, L̃ lies in a fibre ε−1(x). Let Iso(L̃) be the
isotropy group of L̃, i.e.

Iso(L̃) = {g ∈ G(x, x) | L̃g = L̃} .

The group Iso(L̃), equipped with the discrete topology, acts freely and
properly discontinuously on L̃, which shows that π in fact restricts to a
covering projection L̃ → L.
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Lie algebroids

In this final chapter we will provide a brief introduction to the theory
of Lie algebroids.

Lie algebroids arise naturally as the infinitesimal parts of Lie group-
oids, in complete analogy to the way that Lie algebras arise as the in-
finitesimal part of Lie groups. Once isolated, the concept of a Lie alge-
broid turns out to be a very natural one, which unifies various different
types of infinitesimal structure. For example, foliated manifolds, Poisson
manifolds, infinitesimal actions of Lie algebras on manifolds, and many
other structures can be naturally viewed as Lie algebroids. In this way,
Lie algebroids connect various themes of this book: Lie groupoids and
foliations provide examples of Lie algebroids, while conversely, we will
see that the basic theory of foliations which has been developed in earlier
chapters can be applied to prove some of the basic structure theorems
about Lie algebroids.

The plan of this chapter is as follows. In the first section, we will
isolate the infinitesimal part of a given Lie groupoid, as an important
way of constructing Lie algebroids. In the next section, we will introduce
the abstract notion of a Lie algebroid, and present some basic examples.

The rest of this chapter is devoted to the Lie theory for Lie groupoids
and Lie algebroids. The classical correspondence between (finite dimen-
sional) Lie groups and Lie algebras is described by three ‘Lie theorems’.
These theorems assert that any connected Lie group can be covered by
a simply connected Lie group, that maps from a simply connected Lie
group into an arbitrary Lie group correspond exactly to maps between
their Lie algebras, and, finally, that any Lie algebra is the Lie algebra
of a Lie group. (This last, third, Lie theorem is due to E. Cartan.)
Using the theory of foliations, we will show in Section 6.3 that the first
part of Lie’s theory can be extended to Lie algebroids. Lie’s third the-
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orem, however, fails for Lie algebroids: we will show in Section 6.4 that
there are examples of Lie algebroids which are not integrable to a Lie
groupoid. These examples arise naturally in the theory of transversely
parallelizable foliations, discussed in Chapter 4. In fact, we will prove
that any transversely parallelizable foliation on a compact manifold gives
rise to a Lie algebroid, which is integrable if and only if the foliation is
developable.

6.1 The Lie algebroid of a Lie groupoid

The construction of the Lie algebra g of a given Lie group G extends to
Lie groupoids. The infinitesimal approximation of a Lie groupoid is at
the same time a natural generalization of a foliation viewed as an inte-
grable subbundle of the tangent bundle. In this section, we shall present
the construction of this infinitesimal approximation of a Lie groupoid.

Let G be a Lie groupoid. By analogy with Lie groups, we need to con-
sider the action of G on the tangent bundle of G1. However, this action
is not everywhere defined. If h: x → y is an arrow in G, the composi-
tion with h gives a diffeomorphism Rh: s−1(y) → s−1(x), Rh(g) = gh.
Therefore the natural right action of G on G1 lifts to a right action of
G on the vector bundle

T s(G1) = Ker(ds) ⊂ T (G1)

over G1 as follows: for any ξ ∈ (T s(G1))g = T s
g(G1) and any h ∈ G1

with t(h) = s(g) we define

ξh = dRh(ξ) ∈ T s
gh(G1) .

The sections Xs(G1) = Γ(T s(G1)) of this vector bundle are the vector
fields on G1 tangent to the source-fibres. In particular, T s(G1) is invo-
lutive and Xs(G1) is a Lie subalgebra of X(G1). A (right) G-invariant
vector field on G1 is a vector field X ∈ Xs(G1) which satisfies

Xgh = Xgh

for any g, h ∈ G1 with s(g) = t(h). We denote by Xs
inv(G) the vector

space of all right G-invariant vector fields on G1.

Proposition 6.1 Let G be a Lie groupoid. Then

(i) Xs
inv(G) is a Lie subalgebra of X(G1),

(ii) any G-invariant vector field on G1 is projectable along the target
map t to G0, and
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(iii) the derivative of the target map induces a Lie algebra homomor-
phism dt: Xs

inv(G) → X(G0).

Proof (i) Take X,Y ∈ Xs
inv(G). We have [X,Y ] ∈ Xs(G1), while for any

g, h ∈ G1 with s(g) = t(h)

[X,Y ]gh = dRh([X,Y ]g) = [dRh(X), dRh(Y )]gh = [X,Y ]gh .

(ii) For any arrow g: x → y ∈ G1 we have

dt(Xg) = dt(X1y
g) = dt(dRg(X1x

)) = d(t ◦Rg)(X1x
) = dt(X1x

) .

(iii) This is clear from (i) and (ii).

Any G-invariant vector field X ∈ Xs
inv(G) is uniquely determined by

its restriction (again denoted by X) to the set of units {1x |x ∈ G0} of
G, because

Xg = X1t(g)g

for any g ∈ G. Therefore we have an isomorphism of vector spaces

Xs
inv(G) −→ Γ(g) ,

where g is the pull-back of the vector bundle T s(G1) along the unit map
uni: G0 → G1 of G:

g

π

T s(G1)

π

G0
uni

G1

Thus there is a unique Lie algebra structure on Γ(g) for which the iso-
morphism of vector spaces Xs

inv(G) ∼= Γ(g) is an isomorphism of Lie al-
gebras. If X is a section of Γ(g), we shall denote the unique G-invariant
extension of X to G1 again by X, and sometimes also by XG to avoid
possible ambiguities. With this notation, we have [X,Y ]G = [XG,Y G]
and (fX)G = (f ◦ t)XG for any f ∈ C∞(G0).

The derivative of the target map restricts to an ‘anchor’ homomor-
phism an: g → T (G0) of vector bundles over G0 by

an(ξ) = dt(ξ) .

This map induces a homomorphism of Lie algebras

Γ(an): Γ(g) −→ X(G0) ,
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which corresponds to the map dt: Xs
inv(G) → X(G0) of Proposition 6.1

(iii) under the isomorphism Xs
inv(G) ∼= Γ(g). Thus

Γ(an)(X) = dt(XG)

for any X ∈ Γ(g).
Now take any X,Y ∈ Γ(g) and f ∈ C∞(G0). The Leibniz identity for

vector fields implies

[X, fY ]G = [XG, (fY )G]

= [XG, (f ◦ t)Y G]

= (f ◦ t)[XG,Y G] + (XG)(f ◦ t)Y G

= (f ◦ t)[X,Y ]G + (dt(XG)(f) ◦ t)Y G

= (f ◦ t)[X,Y ]G + (dt(XG)(f)Y )G

= (f [X,Y ])G + (Γ(an)(X)(f)Y )G .

Therefore the relation between the Lie algebra and the C∞(G0)-module
structures on Γ(g) is

[X, fY ] = f [X,Y ] + Γ(an)(X)(f)Y .

The vector bundle g over G0 with the structure described above is
called the associated Lie algebroid of the Lie groupoid G. In the next
section we shall give an abstract definition of a Lie algebroid, but first let
us compute this Lie algebroid for some special Lie groupoids we already
know.

Examples 6.2 (1) If G is a Lie group, viewed as a Lie groupoid over a
one point space, the associated bundle g is a bundle over this one point
space with a Lie algebra structure on its sections. This Lie algebra is
precisely the Lie algebra of right invariant vector fields on G, isomorphic
to the tangent space of G at the unit of the group.

(2) Let G be the holonomy groupoid Hol(M,F) of a foliation F of a
manifold M , and let g be its Lie algebroid. For any x ∈ M , the source-
fibre Hol(M,F)(x, - ) is the holonomy cover of the leaf L through x via
the target map, therefore the anchor map of g maps gx bijectively onto
the subspace T (F)x of vectors in Tx(M) tangent to the leaf L. Thus we
may identify g with the foliation F itself viewed as a subbundle T (F)
of T (M).

Note that by the same argument, the Lie algebroid of the monodromy
groupoid Mon(M,F) can also be identified with T (F).
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6.2 Definition and examples of Lie algebroids

In this section we give the abstract definition of a Lie algebroid as well
as some of the main examples.

Let M be a manifold. A Lie algebroid over M is a vector bundle
π: g → M over M , together with a map an: g → T (M) of vector bundles
over M and a (real) Lie algebra structure [ - , - ] on the vector space Γg

of sections of g, such that

(i) the induced map Γ(an): Γg → X(M) is a Lie algebra homomor-
phism, and

(ii) the Leibniz identity

[X, fY ] = f [X,Y ] + Γ(an)(X)(f)Y

holds for any X,Y ∈ Γg and any f ∈ C∞(M).

The map an is called the anchor of the Lie algebroid g. The map Γ(an)
is often simply denoted by ‘an’ as well, and also called the anchor. The
manifold M is called the base manifold of the Lie algebroid g.

Let g and h be two Lie algebroids over the same base manifold M .
A morphism of vector bundles g → h over M is a morphism of Lie
algebroids if it commutes with the anchors and preserves the Lie algebra
structure on sections.

It is a bit more complicated to define a morphism of Lie algebroids
over different base manifolds. Let g be a Lie algebroid over M and h a Lie
groupoid over N . A bundle map Φ: h → g over φ: N → M is a morphism
of Lie algebroids if an ◦Φ = dφ ◦ an (i.e. it preserves the anchor) and if it
preserves the Lie bracket in the following sense. First, note that Φ can
be equivalently viewed as a bundle map (π,Φ): h → φ∗g = N ×M g over
N , and recall that the map C∞(N) ⊗C∞(M) Γg → Γ(φ∗g), which sends
f ⊗X to fφ∗(X) = f(id,X ◦φ), is an isomorphism of C∞(N)-modules
(Greub–Halperin–Vanstone (1978), page 83):

h
(π,Φ)

π

φ∗g g

N N

φ∗(X)

φ
M

X

Now the bundle map Φ preserves the bracket if for any Y, Y ′ ∈ Γ(h),
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with (π,Φ) ◦Y =
∑

i fiφ
∗(Xi) and (π,Φ) ◦Y ′ =

∑
j f

′
jφ

∗(X ′
j), one has

(π,Φ) ◦[Y, Y ′] =
∑
i,j

fif
′
jφ

∗([Xi,X
′
j ]) +

∑
j

an(Y )(f ′
j)φ

∗(X ′
j)

−
∑
i

an(Y ′)(fi)φ∗(Xi) .

Equivalently, the map Φ preserves the bracket if

(an,Φ): Γ(h) −→ K ⊂ X(N) ⊕ Γ(φ∗g)

is a homomorphism of Lie algebras, where K is the kernel of the linear
map κ: X(N) ⊕ Γ(φ∗g) → Γ(φ∗T (M)) = Γ(N ×M T (M)),

κ
(
Z ⊕

∑
i

fiφ
∗(Xi)

)
= (id, dφ ◦Z) −

∑
i

fiφ
∗(an(Xi)) .

Here K has the structure of a Lie algebra, in which the Lie bracket of
Z⊕∑

i fiφ
∗(Xi) and Z ′⊕∑

j f
′
jφ

∗(X ′
j) has [Z,Z ′] as its first component

and ∑
i,j

fif
′
jφ

∗([Xi,X
′
j ]) +

∑
j

Z(f ′
j)φ

∗(X ′
j) −

∑
i

Z ′(fi)φ∗(Xi)

as its second.
A generic example of a Lie algebroid over M is of course the Lie

algebroid of a Lie groupoid with M as the space of objects, as described
in Section 6.1. One easily checks that the differential of a homomorphism
H → G of Lie groupoids induces a morphism of the associated Lie
algebroids in a functorial way.

A Lie algebroid g is called integrable if it is isomorphic to the Lie
algebroid associated to a Lie groupoid G. If this is the case, then G is
called an integral of g.

Every finite dimensional Lie algebra is a Lie algebroid over a one point
space, and by Lie’s third theorem it is integrable. However, there exist
Lie algebroids which are not integrable. The first example of such a Lie
algebroid was given by Almeida and Molino (1985), and we shall present
their construction in Section 6.4.

Examples 6.3 (1) Any manifold M can be viewed as a Lie algebroid
in two ways, by taking the zero bundle over M (which we shall denote
simply by M), or by taking the tangent bundle over M with the identity
map for the anchor (we shall denote this Lie algebroid by T (M)). Both
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these Lie algebroids are integrable, the first by the unit groupoid on M ,
and the second by the pair groupoid over M .

(2) Any vector bundle E over M can be viewed as a Lie algebroid over
M , with zero bracket and anchor. More generally, a vector bundle E

over M with a smoothly varying Lie algebra structure on its fibres (i.e.
a bundle of Lie algebras) can be viewed as a Lie algebroid over M with
zero anchor. Any bundle of Lie algebras is integrable by a bundle of Lie
groups (which may not be locally trivial nor Hausdorff), by a result of
Douady and Lazard (1966).

(3) A foliation F of M is given by an involutive subbundle T (F) of
T (M). Thus a foliation of M is (up to an isomorphism of Lie algebroids
over M) the same thing as a Lie algebroid over M with injective an-
chor map. Any foliation F on M is integrable as a Lie algebroid by
Mon(M,F) and also by Hol(M,F) (Example 6.2 (2)).

(4) Let M be a manifold equipped with an infinitesimal action of a Lie
algebra g, i.e. a Lie algebra homomorphism γ: g → X(M). The trivial
bundle g ×M over M has the structure of a Lie algebroid, with anchor
given by an(ξ, x) = γ(ξ)x, and Lie bracket

[u, v](x) = [u(x), v(x)] + (γ(u(x))(v))(x) − (γ(v(x))(u))(x) ,

for u, v ∈ C∞(M, g) ∼= Γ(M, g×M) and x ∈ M . (This is the unique way
to define a bracket which satisfies the Leibniz rule and agrees with the
bracket of g for constant functions u and v.) This Lie algebroid is called
the transformation Lie algebroid associated to the infinitesimal action,
and denoted by g � M .

The derivative of an action of a Lie group G on M gives an infinites-
imal action of the Lie algebra g of G on M , and the associated Lie
algebroid is integrable by the associated action groupoid G � M . How-
ever, it is easy to construct infinitesimal actions of g on M which do
not come from an action of G on M . Nevertheless, the associated Lie
algebroid of any such action is integrable. The following construction of
the integral groupoid is due to Dazord (1997).

Let G be a Lie group with the given Lie algebra g and let γ: g → X(M)
be an infinitesimal action of g on a manifold M . Now consider the
foliation F on M ×G given at any (x, g) ∈ M ×G by

T (F)(x,g) = {(γ(ξ)x, ξg)|ξ ∈ g} .

Here ξg ∈ Tg(G) denotes the right translation of ξ ∈ Te(G). The action
of G on itself by right translations gives an action on M × G which
leaves the foliation F invariant. The group G therefore acts also on the
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homotopy classes of paths Mon(M × G,F)1. Now Lemma 5.9 implies
that

H = Mon(M ×G,F)/G

is a Lie groupoid over (H ×G)/G = M , and the reader can easily verify
that H integrates the Lie algebroid g�M associated to the infinitesimal
action γ.

(5) Let (M,Π) be a Poisson manifold. There is a natural Lie algebra
structure on Ω1(M) which makes T ∗(M) into a Lie algebroid over M .
The anchor of this Lie algebroid is −Π̃, where Π̃: T ∗(M) → T (M) is
induced by the bivector field Π. For details, see e.g. Cannas da Silva–
Weinstein (1999).

(6) A Lie algebroid g over M is said to be regular if its anchor map
an : g → T (M) has constant rank. In this case, the image and the
kernel of the anchor are subbundles of T (M) and of g respectively, and
furthermore, the image of the anchor map is the tangent bundle T (F) of
a foliation F of M , while the kernel Ker(an) is a bundle of Lie algebras.
We thus have a short exact sequence of Lie algebroids over M

0 Ker(an) g an
T (F) 0

and the associated short exact sequence of Lie algebras of sections,

0 Γ(Ker(an)) Γ(g) an
X(F) 0 .

The Lie algebroid g is called transitive if it has surjective anchor. In this
case we have T (F) = T (M), and the associated short exact sequence of
Lie algebras (and C∞(M)-modules)

0 Γ(Ker(an)) Γ(g) an
X(M) 0

is also called an (abstract) Atiyah sequence.

Note that the Lie algebroid g of a Lie groupoid G over a connected
base G0 is transitive if and only if the Lie groupoid G is transitive,
by Proposition 5.14 (iii). Since any transitive Lie groupoid is in fact a
gauge groupoid of a principle G-bundle π : P → M for a Lie group G

by Proposition 5.14 (v), we can construct the associated Lie algebroid g

directly from P (and this is in fact the construction given by Atiyah). To
do this, observe that G acts on T (P ), and that Lemma 5.35 implies that
T (P )/G is a manifold making the induced map T (P )/G → P/G = M
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into a vector bundle:

T (P )

π

T (P )/G

P P/G = M

The space of sections of T (P )/G can now be identified with the Lie
algebra XG(P ) of G-invariant vector fields on P , while the anchor map
an: T (P )/G → T (M) of T (P )/G is induced by dπ: T (P ) → T (M). This
makes T (P )/G into a transitive Lie algebroid over M isomorphic to the
Lie algebroid of the gauge groupoid Gauge(P ) of P . We may conclude:

Corollary 6.4 A transitive Lie algebroid over a connected manifold M

is integrable if and only if it is isomorphic to the Lie algebroid T (P )/G
of a principal G-bundle P over M , for a Lie group G.

6.3 Lie theory for Lie groupoids

With the exception of Lie’s third theorem, the classical Lie theory for
Lie groups and Lie algebras extends to Lie groupoids and Lie algebroids.
In this section, we shall give a short presentation of the main results.

The Lie theory for groups states that every finite dimensional Lie
algebra is the Lie algebra of a unique connected and simply connected
Lie group. Something similar holds for integrable Lie algebroids.

A Lie groupoid G is source-connected if all the fibres of the source map
s: G1 → G0 are connected. Furthermore, the Lie algebroid G is source-
simply-connected if each such fibre is connected and simply connected.

Example 6.5 The monodromy groupoid Mon(M,F) of a foliated man-
ifold is source-simply-connected.

Proposition 6.6 For any Lie groupoid G there exist a source-simply-
connected Lie groupoid G̃ over G0 and a morphism of Lie groupoids
G̃ → G over G0 which induces an isomorphism of the associated Lie
algebroids.

Remark. The covering Lie groupoid G̃ of G is unique up to an isomor-
phism, by Proposition 6.8 below.
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Proof (of Proposition 6.6) Let F be the foliation of G1 given by the fibres
of the source map, and let Mon(G1,F) be its monodromy groupoid over
G1. The multiplication of the Lie groupoid G turns the space G1 into
a principal right G-bundle over G0, and this principal action preserves
the foliation F . Thus G also acts on the monodromy groupoid of F . By
Lemma 5.9 we obtain the quotient Lie groupoid

G̃ = Mon(G1,F)/G ,

which is a groupoid over G0. Since any monodromy groupoid is source-
simply-connected and Mon(G1,F) has the same source-fibres as its quo-
tient by G (by the Remark after the proof of Lemma 5.9), the Lie group-
oid G̃ is again source-simply-connected. The morphism of Lie groupoids

φ: Mon(G1,F) −→ G

given by t: G1 → G0 on objects and by φ(σ) = σ(1)σ(0)−1 on arrows
(here σ denotes the homotopy class of a path inside a leaf of F) factors
to give the required map G̃ → G.

Let g be a Lie algebroid over M , and let N be an immersed sub-
manifold of M . A Lie subalgebroid of g over N is a subbundle h of the
restriction g|N , equipped with a Lie algebroid structure such that the
inclusion h → g is a morphism of Lie algebroids.

The same methods involved in the construction of the source-simply-
connected Lie groupoid G̃ can be used to prove that a Lie subalgebroid
of an integrable Lie algebroid is again integrable.

Proposition 6.7 Any Lie subalgebroid of an integrable Lie algebroid is
integrable.

Proof Let g be the Lie algebroid of a Lie groupoid G, and let h be a Lie
subalgebroid of h over H0 ⊂ G0 of g. Denote by I: h → g the inclusion
of Lie algebroids over the injective immersion ι: H0 → G0, and let

M = H0 ×G0 G1

denote the pull-back of t: G1 → G0 along ι. Consider the foliation F of
M given by

T (F)(y,g) = {(an(ζ), I(ζ)g) | ζ ∈ hy} .

The composition of the Lie groupoid G gives M the structure of a right
principal G-bundle over H0, and the foliation F is invariant under the
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G-action. Thus the monodromy groupoid Mon(M,F) also carries a right
G-action, and by Lemma 5.9 we obtain a quotient Lie groupoid

H = Mon(M,F)/G

over H0. This Lie groupoid H integrates h.

Remark. By the integrability of morphisms between integrable Lie
algebroids (Proposition 6.8 below), there is a map H → G which is in
fact an immersion.

Finally we shall give a quick proof of the fact that any morphism
of integrable Lie algebroids can be integrated to a unique morphism of
the integral Lie groupoids, provided that the domain Lie groupoid is
source-simply-connected.

Proposition 6.8 Let G and H be Lie groupoids, with H source-simply-
connected, and let Φ: h → g be a morphism of their Lie algebroids over
φ : H0 → G0. Then φ can be extended to a unique morphism of Lie
groupoids H → G which integrates Φ.

Proof Let P = H1 ×G0 G1 be the pull-back of t: G1 → G0 along the
map φ ◦ t: H1 → G0. Thus P is a (trivial) principal G-bundle over H1,
with the obvious right action with respect to the map ε = s ◦pr2. Let F
be the foliation of H1 by the source-fibres. Define a partial connection
H on P by

H(h,g) = {(ζh,Φ(ζ)g) | ζ ∈ ht(h)} .

This is a flat connection on P because Φ preserves the bracket. Now
take any y ∈ H0, and denote by L̃y the leaf of H through the point
(1y, 1φ(y)). By Proposition 5.38, L̃y is a connected covering space over
the corresponding leaf of F , i.e. the source-fibre s−1(y). Since the source-
fibres of H are simply connected, the projection L̃y → s−1(y) must be
a diffeomorphism. Denote by νy the inverse of this diffeomorphism.

The union of the maps νy gives us a map ν: H1 → P . Observe that this
map is smooth. Indeed, it is the extension by holonomy of its restriction
H0 → P , which is the smooth map sending y ∈ H0 to (1y, 1φ(y)). Then
we define φ: H1 → G1 to be the composition

φ = pr2 ◦ ν: H1 −→ G1 .

In particular, φ maps s−1(y) to s−1(φ(y)). It is easy to see that φ
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is a morphism of Lie groupoids H → G. For any ζ ∈ hy we have
d(φ)(ζ) = d(pr2)(ζ,Φ(ζ)) = Φ(ζ), so φ integrates Φ.

6.4 Integrability and developable foliations

In this section we shall describe the Lie algebroid of a transversely paral-
lelizable foliation, and prove the theorem of Almeida and Molino which
states that this Lie algebroid is integrable if and only if the foliation is de-
velopable. In particular, this gives concrete examples of non-integrable
Lie algebroids.

Let F be a transversely parallelizable foliation of codimension q of a
compact connected manifold M . Recall from Section 4.1 that F is homo-
geneous and hence contained in the associated basic foliation Fbas, the
leaves of which are the fibres of a submersion πbas: M → W into a Haus-
dorff manifold W = M/Fbas. This submersion induces isomorphisms
Ω0
bas(M,F) ∼= C∞(W ) and l(M,Fbas) ∼= X(W ), while the inclusion

F ⊂ Fbas gives a diagram of C∞(W )-linear Lie algebra homomorphisms
(Lemma 4.5) with exact rows:

X(F) L(M,F) l(M,F)
an

X(Fbas) L(M,Fbas) l(M,Fbas)
∼=

X(W )

The Lie algebra l(M,F) is a free C∞(W )-module of rank q, hence can be
viewed as the space of sections of the trivial vector bundle E = R

q ×W

over W (the explicit isomorphism between l(M,F) and Γ(E) depends
on the choice of a transverse parallelism on (M,F)). Since the map
l(M,F) → X(W ) on the right of the diagram is C∞(W )-linear, it defines
a map of vector bundles an: E → T (W ) over W . The Lie bracket of
l(M,F) defines a Lie bracket on Γ(E).

Lemma 6.9 The Lie bracket on Γ(E), together with the anchor map
an: E → T (W ) described above, gives E the structure of a transitive Lie
algebroid over W .

Proof For any Y ∈ L(M,F) and its class Ȳ ∈ l(M,F), the C∞(W )-
module structure on l(M,F) is given by fȲ = (f ◦πbas)Y . Now the
Leibniz identity for E follows from the Leibniz identity for vector fields
on W and the fact that l(M,F) → X(W ) is a C∞(W )-linear Lie algebra
homomorphism. This proves that we indeed have a Lie algebroid. To see
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that it is transitive, we need to show that an: E → T (W ) is surjective.
Take any tangent vector ξ ∈ Tw(W ) at a point w ∈ W . Choose a
point x ∈ M with πbas(x) = w and a tangent vector ζ ∈ Tx(M) with
dπbas(ζ) = ξ. For a transverse parallelism Ȳ1, . . . , Ȳq on (M,F), the
vectors (Y1)x, . . . , (Yq)x span a subspace of Tx(M) complementary to
Tx(F), hence we can choose a1, . . . , aq ∈ R such that

a1(Y1)x + · · · + aq(Yq)x − ζ ∈ Tx(F) .

This yields that Y = a1Y1 + · · ·+aqYq ∈ L(M,F) with an(Ȳx) = ξ.

We shall call the Lie algebroid E over W constructed above the basic
Lie algebroid of the foliation (M,F), and denote it by

b(M,F) .

Note that this Lie algebroid, which is defined for any transversely par-
allelizable foliation of a compact connected manifold, is independent,
up to isomorphism, of the choice of a transverse parallelism on (M,F)
(which we used to identify l(M,F) with Γ(E)).

Recall that a foliation (M,F) is developable if its lifted foliation F̃ to
a covering space M̃ of M is strictly simple (Example 1.1 (2)).

Theorem 6.10 (Almeida–Molino) A transversely parallelizable foli-
ation of a compact connected manifold is developable if and only if its
basic Lie algebroid is integrable.

Proof Let F be a transversely parallelizable foliation of a compact man-
ifold M , let Fbas be the basic foliation of F , and let πbas: M → W =
M/Fbas be the associated basic fibre bundle, all as above.

(⇐) Suppose that the basic Lie algebroid b(M,F) of F is integrable.
Since this Lie algebroid is transitive, Corollary 6.4 provides a Lie group
G, a principal G-bundle π: P → W over the basic manifold W of F and
an isomorphism of Lie algebroids

Φ: b(M,F) −→ T (P )/G ,

which induces an isomorphism of Lie algebras Φ: l(M,F) → XG(P ).
Now let S = M ×W P be the principal G-bundle over M obtained as
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the pull-back of P along πbas:

S

pr1

pr2
P

M
πbas

W

For any Y ∈ L(M,F) we have Ỹ = (Y,Φ(Ȳ )) ∈ XG(S). We define a
foliation G of S by

T (G)(x,p) = {Ỹ(x,p) |Y ∈ L(M,F)} .

This is indeed a subbundle of T (S) of rank n = dimM , which is invo-
lutive because Φ preserves the bracket. The foliation G is also invariant
under the action of G, hence it is a flat connection on the principal G-
bundle S over M . Let M̃ be any leaf of the foliation G. The projection
pr1 restricts to a covering projection M̃ → M . Let F̃ be the lift of the
foliation F to M̃ :

(M̃, F̃)

pr1

pr2
P

(M,F)

Note that pr2: M̃ → P is a submersion, because

{Φ(Ȳ )p |Y ∈ L(M,F)} = Tp(P )

for any p ∈ P . Clearly T (F̃) is a subbundle of Ker(d(pr2): M̃ → P );
comparing the dimensions

codim F̃ = codimF = rank(T (P )/G) = dimP

we conclude that T (F̃) = Ker(d(pr2): M̃ → P ). Thus F̃ is simple, given
by the submersion M̃ → P .

The foliation F is homogeneous by Theorem 4.8, so the lift F̃ is ho-
mogeneous as well. Thus F̃ is strictly simple by Theorem 4.3 (vi).

(⇒) Now suppose that F is developable. Thus, there is a covering
space u: M̃ → M such that the pull-back F̃ = u∗(F) is a strictly simple
foliation of M̃ . Let ψ: M̃ → P be a surjective submersion with connected
fibres defining F̃ . Note that, by replacing P with its universal cover and
ψ by the pull-back along the universal cover of P , we may assume that
P is simply connected.
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The covering projection u: M̃ → M induces a surjective submersion
π: P → W making the square

(M̃, F̃)

u

ψ
P

π

(M,F)
πbas

W

commute. Consider the following diagram of C∞(W )-linear Lie algebra
homomorphisms with exact rows, the upper half of which is given by the
pull-back along u, while the lower half is identical to the diagram just
above Lemma 6.9:

X(F̃) L(M̃, F̃) l(M̃, F̃)
∼=

X(P )

X(F)

u∗

L(M,F)

u∗

l(M,F)

u∗
Φ

an

X(Fbas) L(M,Fbas) l(M,Fbas)
∼=

X(W )

Write Φ for the indicated composition. Note that the map Φ is a
monomorphism because the upper left square is a pull-back. We shall
write l = Φ(l(M,F)) ⊂ X(P ) for the image of Φ. Note that the vector
fields in l are projectable along π to W (the projection being given by
an ◦Φ−1). It is now sufficient to prove that the map π: P → W can be
equipped with the structure of a principal G-bundle for a Lie group G, in
such a way that l ⊂ X(P ) becomes the subalgebra XG(P ) of G-invariant
vector fields on P .

To this end, consider the fibred product R = P ×W P , and define a
‘diagonal’ foliation R of R by

T (R)(p,p′) = {(Φ(Ȳ )p,Φ(Ȳ )p′) | Y ∈ L(M,F)} ⊂ T(p,p′)(R) .

Notice that, since M is compact, any vector field Y ∈ L(M,F) is
complete, and hence so are its pull-back u∗(Y ) to M̃ and the image
Φ(Ȳ ) ∈ X(P ) of its class Ȳ ∈ l(M,F), as is its image an(Ȳ ) ∈ X(W )
(because W is also compact).

Now let w be a point of W , and choose x ∈ M with πbas(x) =
w. Choose projectable vector fields Y1, . . . , Yq′ ∈ L(M,F) such that
(Y1)x, . . . , (Yq′)x form a basis of a subspace of Tx(M) complementary
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to Tx(Fbas) (thus q′ = codimF = dimW ). Then an(Ȳ1), . . . , an(Ȳq′)
form a frame of T (W ) near w. The map S: R

q′ → W given by

S(t) = (et1an(Ȳ1) ◦ · · · ◦ etq′an(Ȳq′ ))(w) , t = (t1, . . . , tq′) ,

is a diffeomorphism on a neighbourhood U of 0 ∈ R
q′ and hence defines

a local chart on W around w, while the map T : π−1(w) × U → P given
by

T (p, t) = (et1Φ(Ȳ1) ◦ · · · ◦ etq′Φ(Ȳq′ ))(p) , t = (t1, . . . , tq′) ,

defines a local trivialization of P as a fibre bundle over the chart S(U):

π−1(w) × U

pr2

T
P

π

U
S

W

Consider the leaf Lp,p′ of R through a point (p, p′) ∈ R. Let Ȳ1, . . . , Ȳq be
a transverse parallelism of (M,F). Using the flows of the complete vector
fields Φ(ȳ1), . . .Φ(Ȳq) on P , and the associated flows of the ‘diagonal’
vector fields (Φ(Ȳi),Φ(Ȳi)) on R, we can show in a similar way that
the two projections pr1 : Lp,p′ → P and pr2 : Lp,p′ → P are coverings,
hence diffeomorphisms because P is simply connected. Therefore for any
(p, p′) ∈ R we obtain a diffeomorphism τp,p′: P → P as the combination
of these two projections, as in the following diagram:

Lp,p′

∼=
pr2

∼=
pr1

P τp,p′ P

Let G be the group of all diffeomorphisms of P of this form,

G = {τp,p′ | (p, p′) ∈ R} .

This group clearly acts freely and transitively along the fibres of the map
π: P → W . By fixing a point p ∈ P we can identify G with the fibre
Pπ(p), which gives a smooth structure on G. With this, G becomes a Lie
group and P a principal G-bundle.

Exercise 6.11 To construct a transversely parallelizable foliation of
a compact manifold which is not developable, take a compact simply
connected Lie group G with a non-closed subgroup H. Show that the
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right cosets of H form a transversely parallelizable foliation of G. This
foliation is not developable because G is simply connected and the leaves
of this foliation are not closed. Hence, the associated basic Lie algebroid
of this foliation is not integrable.



References and further reading

Given the introductory nature of this book, we have tried to keep the
bibliography short. There are many introductions to the theory of folia-
tions, for example Lawson (1977), Hector–Hirsch (1981, 1983), Reinhart
(1983), Camacho–Neto (1985), Molino (1988), Tondeur (1988, 1997),
Godbillon (1991), Candel–Conlon (2000). Some of these contain de-
tailed historical remarks, or an extensive bibliography. The same is true
(although to a smaller extent) for Lie groupoids. There are now vari-
ous books on Lie groupoids emphasizing different aspects, e.g. Macken-
zie (1987), Connes (1994), Cannas da Silva–Weinstein (1999), Paterson
(1999); also, a new book by K.C.H. Mackenzie is expected in the near
future from Cambridge University Press. The last contains an elaborate
history of the subject and an extensive bibliography.

The material in Chapters 1 and 2 is standard, and can be found in
some form in many sources, including the books on foliations mentioned
above. Let us just mention that the Reeb stability theorems go back to
the work of Ehresmann and Reeb in the 1940s; an early reference is Reeb
(1952). Our proof of the Reeb–Thurston stability theorems (Section 2.6)
follows in part the original proof given by Thurston (1974) and the one
given in Mrčun (1996). For more on foliations with compact leaves, see
also Epstein (1976). Orbifolds were first introduced under the name V-
manifolds in Satake (1956). The notion of holonomy goes back to the
work of Ehresmann, Reeb and Haefliger in the 1950s. The notions of Rie-
mannian foliation and bundle-like metric originate with Reinhart (1959).

The classical theorems on codimension 1 foliations presented in Chap-
ter 3 can be found in Haefliger (1956, 1958) and Novikov (1964); see also
Rosenberg–Roussarie (1970). There are now simpler proofs of Haefliger’s
theorem which use the transverse structure and Lie groupoids, see e.g.
Jekel (1976) or Van Est (1984).
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Much of the material on Riemannian foliations presented in Chapter
4 is due to Molino (1988).

Groupoids have a long history, going back to work of Brandt at the
beginning of the twentieth century. The first explicit construction of the
holonomy groupoid of a foliation is usually attributed to Winkelnkemper
(1983). However, in the study of foliations the use of pseudogroups
(which we have seen to be equivalent to effective étale groupoids) is
much older; see e.g. Haefliger (1958). Haefliger was also one of the first
to use étale groupoids in the study of orbifolds (see Haefliger (1984)); the
exact correspondence between orbifolds and proper effective groupoids
seems to originate with Moerdijk–Pronk (1997). For more on proper
groupoids, see Weinstein (2002).
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fect ‘Lie theory’ for Lie groupoids and Lie algebroids (Pradines (1967)),
parallel to the usual theory for Lie groups and Lie algebras, but without
giving any proofs. It was only much later when the theory of Almeida
and Molino (1985) showed that the analogue of Lie’s third theorem fails
for Lie algebroids (cf. Theorem 6.10). Mackenzie’s book (1987) con-
tains a cohomological obstruction to the integrability of transitive Lie
algebroids. For recent advances on the problem of integrability of Lie
algebroids, see Crainic–Fernandes (2003) and references cited there. The
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foliation, 5

associated to a Lie group action, 16
associated to a submersion, 6
basic, 84
developable, 161
homogeneous, 82
invariant, 15
Kronecker, 6
Lie, 102
lifted, 99
of the Möbius band, 6
orientable, 12
quotient —, 15
Reeb, 7

of S3, 8
Riemannian, 26
simple, 6
strictly simple, 6
transversely orientable, 12
transversely parallelizable, 88
trivial, 6

full and faithful functor, 127

Gx, 112
G(x, y), 112
Γ(M), 134
Γq, 134
gauge group, 114

germ, 20
one-sided, 57

Godbillon–Vey class, 13
groupoid, 111

action —, 113
effective, 137
étale, 134
étale holonomy —, 135
étale monodromy —, 135
fundamental, 113
gauge —, 114
Haefliger, 134
Hausdorff Lie, 112
holonomy —, 118
induced, 121
kernel —, 113
Lie, 112

weakly equivalent to a discrete
group, 133

monodromy —, 117
of an orbifold, 142
over G0, 112
pair —, 113
proper effective, 141
source-connected Lie, 157
source-simply-connected Lie, 157
transitive Lie, 129, 132
translation —, 113, 125
unit —, 113

Haefliger cocycle, 9
Haefliger’s theorem, 57
Hessian matrix, 58
hol(α), 21
Hol(L, x), 23
Hol(M,F), 118
holonomy, 21

one-sided, 57
holonomy class, 23
holonomy cover, 31
holonomy group, 23

linear, 23
of a flat connection, 96
of a Lie foliation, 103

holonomy groupoid, 118
étale, 135

holonomy homomorphism, 23
linear, 23
of a Lie foliation, 104

holonomy pseudogroup, 139
homomorphism

of groupoids, 112
of Lie groupoids, 112

horizontal vectors, 95

immersion, 2
infinitesimal action, 155
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integrable subbundle, 9
integral of a Lie algebroid, 154
inverse map, 111
Isoz(Q), 40
isomorphism of Lie groupoids, 127
isotropy

in a groupoid, 112
of a leaf, 16
of a point, 16
of a point of an orbifold, 40
of a subset, 35

isotropy groups, discrete, 136

(K, ε)-cocycle, 50
normalized, 50

L(M,F), 86
l(M,F), 86
leaf, 5
Leibniz identity, 153
Lie algebroid, 153

basic, of a transversely parallelizable
foliation, 161

integrable, 154
of a Lie groupoid, 152
regular, 156
transformation —, 155
transitive, 156

Lie subalgebroid, 158
line field, 12

manifold, 1
foliated, 6
homogeneous, 82
non-Hausdorff, 1
non-second-countable, 1

metric
bundle-like, 29
Riemannian, 3

on an orbifold, 41
transverse, 25

Molino’s structure theorem, 108
Mon(M,F), 117
morphism of Lie algebroids, 153
Morse function, 58, 60
Morse index, 59
Morse lemma, 58
Morse theory, 58
multiplication map, 111

natural transformation, 122
Novikov’s theorem, 66

objects of a groupoid, 111
Ω0

bas(M,F), 83
orbifold, 39, 141

orientable, 43

orbifold map, 39
orbit

in a Lie groupoid, 115
of a Lie group action, 16

orientation
of a bundle, 3
of a foliation, 12
of an orbifold, 43
transverse, of a foliation, 12

orientation cover of a foliation, 15
transverse, 15

φ∗(G), 121
plaque, 5
Poincaré — Hopf theorem, 61
Poisson manifold, 156
product of foliations, 14
product of Lie groupoids, 123
proper groupoid, 140

effective, 141
proper map, 140
pseudogroup, 138

holonomy —, 139
pull-back

of a foliation, 14
of a principal bundle, 145

Reeb component, 66
Reeb stability theorem

global, 45
local, 31

Reeb — Thurston stability theorem
global, 50
local, 50

de Rham cohomology, 2

saturated subset, 31
semi-direct product of Lie groupoids,

125, 126
singular locus, 40
singularity, 58

Morse, 58
non-degenerate, 58

source of an arrow, 111
space of leaves, 6
space of orbits of a Lie groupoid, 143
stabilizer subgroup, 16
stable subset, 35
structure maps of a groupoid, 111
submanifold, 3
submersion, 2
sum of Lie groupoids, 123
suspension, 16

tangent space, 1
target of an arrow, 111
torsion form, 97
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transition, 138, 139
transversal section, 21

complete, 135
transversality, 3
transverse parallelism, 88
tubular neighbourhood, 3

unit map, 111
units of a groupoid, 112

vanishing cycle, 66
negative, 66
positive, 66

simple, 70
vector field, 2

basic, 29
foliated, 29
G-invariant, 150
normal, 29
projectable, 29, 86
tangent —, 10
transverse, 86

vertical vectors, 95

X(F), 10, 83
Xbas(F), 84
Xs

inv(G), 150




