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Preface

The term ‘functional analysis’ now refers to a fruitful and diversified branch of
mathematics which includes the study of set-theoretic, topological, algebraic,
geometric, order, and analytic properties of mappings in finite and infinite
dimensional spaces. It is characterized by a generality and elegance which is
lacking in classical analysis. Computational mathematics and numerical analysis
now rely heavily on results from this theory.

In these lecture notes, the main emphasis is on numerical methods for
operator equations — in particular, on the analysis of approximation error in
various methods for obtaining approximate solutions to equations and systems
of equations. These might be algebraic, linear, non-linear, differential, integral,
or other types of equations.

An important part of functional analysis is the extension of techniques for
dealing with finite dimensional problems to the infinite dimensional case. This
allows us to obtain results which apply at the same time to finite systems of
algebraic equations or equally to differential and integral equations.

In mathematics, there is often a trade-off between generality and precision.
As a result, in any specific application of functional analysis to a particular
numerical problem, there is always the possibility of sharpening results by
making use of special properties of the particular problem. In spite of this, the
methods of functional analysis are, at the very least, an excellent starting point
for any practical problem.

This text is designed for a one-semester introduction at the first year graduate
level; however, the material can easily be expanded to fill a two-semester course.
It has been taught both ways by the author at the University of Wisconsin-
Madison and as a one-semester course at the University of Texas at Arlington. By
adding a little additional detail and proceeding at a leisurely pace, Chapters
1-9 and 11-13 can serve as the first semester’s material concentrating on linear
operator equations. The remaining material, concentrating on nonlinear operator
equations, can serve as the second semester’s material, again with a little
additional detail and proceeding at a comfortable pace. The material as written
can be covered in one semester as a concentrated introduction for students who
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are willing to work hard to acquire, in a short period, the rudiments of a
powerful discipline.

An easy way to expand the material to fit a two-semester course is for the
instructor to discuss in detail every one of the more than 100 exercises in the
text after the students have had a try at them.

It is no more possible to acquire mathematical strength and skills by simply
sitting in a lecture room and listening to someone talk about mathematics than
it is to acquire physical strength and skills by sitting in a living room and
watching football on television. Therefore, it is essential for the education of the
students that they try all the exercises, which are designed to help them learn
how to discover mathematics for themselves.

The usual practise of numbering equations along with frequent cross-
references to equations on distant pages has been dropped in this text as an
unnecessary encumbrance.

I am grateful for the helpful suggestions of an anonymous referee, who care-
fully read the first draft.



CHAPTER 1

Introduction

The outcome of any numerical computation will be a finite set of numbers. The
numbers themselves will be finite decimal (or binary) expansions of rational
numbers. Nevertheless, such a set of numbers can represent a function in many
ways: as coefficients of a polynomial; as coefficients of a piecewise polynomial
function (for example a spline function); as Fourier coefficients; as left and right
hand endpoints of interval coefficients of an interval valued function; as
coefficients of each of the components of a vector valued function; as values of a
function at a finite set of argument points; etc.

The concepts and techniques of functional analysis we will study will enable
us to design and apply methods for the approximate solution of operator
equations (differential equations, integral equations, and others). We will be able
to compute numerical representations of approximate solutions and numerical
estimates of error. Armed with convergence theorems, we will know that, by
doing enough computing, we will be able to obtain approximate solutions of any
desired accuracy, and know when we have done so.

Since no previous knowledge of functional analysis is assumed here, a number
of introductory topics will be discussed at the beginning in order to prepare for
discussion of the computational methods.

The literature in functional analysis is now quite extensive, and only a small
part of it is presented here — that which seems most immediately relevant to
computational problems. This is an introductory study. It is hoped that the
reader will be brought along far enough to be able to begin reading the more
advanced literature and to apply the techniques to practical problems.

Some knowledge of linear algebra and differential equations will be assumed.
Previous study of numerical methods and some experience in computing will
help in understanding the applications to be discussed. No background in
measure theory is assumed; in fact, we will make scant use of those concepts.

In the first part of the study, we will introduce a number of kinds of topo-
logical spaces suitable for investigations of computational methods for solving
linear operator equations. These will include Hilbert spaces, Banach spaces, and
metric spaces. Linear functionals will play an important role, especially in
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Hilbert spaces. In fact, these mappings are the source of the name ‘functional
analysis’. We will see that the Riesz representation theorem plays an important
role in computing when we operate in reproducing kernel Hilbert spaces.

The study of order relations in function spaces leads to important com-
puting methods based on interval valued mappings. We will see how interval
analysis fits into the general framework of functional analysis.

In the second part of the study, we will turn our attention to methods for
the approximate solution of linear operator equations.

In the third part of the study, we will investigate methods for the approxi-
mate solution of nonlinear operator equations.



CHAPTER 2

Linear spaces

We begin with an introduction to some basic concepts and definitions in linear
algebra. These are of fundamental importance for linear problems in functional
analysis, and are also of importance for many of the methods for nonlinear
problems, since these often involve solving a sequence of linear problems related
to the nonlinear problem.

The main ideas are these: We can regard real valued functions, defined on a
continum of arguments, as points (or vectors) in the same way as we regard
n-tuples of real numbers as points; that is, we can define addition and scalar
multiplication. We can take linear combinations. We can form larger or smaller
linear spaces containing or contained in them; and we can identify equivalent
linear spaces, differing essentially only in notation.

Many numerical methods involve finding approximate solutions to operator
equations (for example differential equations or integral equations) in the form
of polynomial approximations (or other types of approximations) which can be
computed in reasonably simple ways. Often the exact solution cannot be com-
puted at all in finite real time, but can only be approximated as the limit of an
infinite sequence of computations.

Thus, for numerical approximation of solutions as well as for theoretical
analysis of properties of solutions, linear spaces are indispensable.

The basic properties of relations are introduced in this chapter, since they will
be met in many different contexts throughout the subsequent chapters.

An understanding of the material in the exercises will be assumed as the text
proceeds.

Definition

A linear space, or vector space, over the field R of real numbers is a set X, of

elements called points, or vectors, endowed with the operations of addition and

scalar multiplication having the following properties:

(1) Vx,yEXand ¥a,b € R: [V = forall; € = in the set]
x+y € X,
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ax € X,
I1x = x,
a(bx) = (ab)x,
(@+b)x =ax+bx,
a(x+y) =ax+ay;
) (X, +) is a commutative group; that is, ¥ x, y, z € X:
] 0 € X such that 0 + x = x,
] (—x) € X such that x + (—x) =0, [] = there exists]
x+y=y+x
x+(+z)=(x+y)+z

Examples

(1) X = R with addition and scalar multiplication defined in the usual way for
real numbers;

(2) X = E", n-dimensional Euclidean vector space, with componentwise
addition and scalar multiplication;

(3) X = polynomials, with real coefficients, of degree not exceeding n, with
addition defined by adding coefficients of monomials of the same degree
and scalar multiplication defined by multiplication of each coefficient;

(4) all polynomials, with real coefficients, with addition and scalar multipli-
cation as in (3);

(5) continuous real valued functions on R with pointwise addition and scalar
multiplication: (x + y) (¢) = x(¢) + y(¢) and (a x) (t) = a x(¢);

(6) all real valued functions on R with addition and scalar multiplication as

in (5).

Exercise 1 Can we define addition and scalar multiplication for n-by-n matrices
with real coefficients so that they form a linear space? Check all the required
properties.

Definition

A linear manifold, or subspace,'-r of a linear space X, is a subset Y of X which is
algebraically closed¥ under the operations of addition and scalar multiplication
for elements of X. Thus, Y is itself a linear space.

Exercise 2 Show that the zero element of a linear space X is also an element of
every subspace of X.

+ x +yandaxarein Y forall x and y in Y and all real a.
1 In a topological linear space, a subspace is defined as closed linear manifold;see Chapter 5.
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Exercise 3 Show that examples (3), (4), and (5) are, respectively, subspaces of
examples (4), (5), and (6). Can you find any other subspaces of example (6)?

Definition
Two linear spaces X and Y are isomorphic if there is a one-one, linear mapping
of X onto Y: m(x +y)=m(x) + m(y), m(a x) = a m(x).

Exercise 4 Show that such a mapping has an inverse which is also linear.

Exercise S Let T be an arbitrary set with n distinct elements. Show that the
linear space of real valued functions on T with pointwise addition and scalar
multiplication is isomorphic to E”.

NOTE: Unless otherwise stated, all linear spaces considered in this text will be
over the real scalar field.

Definition

The Cartesian product (or direct sum) of two linear spaces X and Y, denoted by
X X Y (or X ® Y), is the set of ordered pairs (x, y) withx EXandy €Y,
endowed with componentwise addition and scalar multiplication:

x, )+ @v) = (x+uy+v)
a(x,y) = (@ax,ay) .

Exercise 6 Show that E™ is isomorphic to £”™! X R.

Definitions
A relation, r, in a set X, is a subset of X X X. If (x, y) belongs to the relation r,
we write x r y.

A relation is called transitive if
Vx,y,z:xryandyrzimpliesxrz .
A relation is called reflexive if
Vx:xrx .
A relation is called symmetric if
¥x,y: xryimpliesyrx .

An equivalence relation is a relation that is transitive, reflexive, and symmetric,
An equivalence relation in a set X factors X into equivalence classes. Denote by
C, the equivalence class to which x belongs. Thus y € Cy means that y r x.
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Exercise 7 Show that two equivalence classes in a set X are either disjoint or
they coincide.

Exercise 8 Suppose r is an equivalence relation in a linear space )f . Suppose
further that x’ € Cx and y' € C), imply that x" +y' € Gy, anda x’ € C, for
all real a. Show that the set of equivalence classes is again a linear space with

Cx +Cy = Cx+y

and aCy = Cuyx .

Examples
(1) Suppose that Y is a subspace of a linear space X. We can define an equiva-
lence relation in X by

¥x,y€X , xryifandonlyifx —yisin Y.

The linear space of equivalence classes defined in this way is called the factor
space, X modulo Y, written X/Y. The elements of X/Y can be regarded as
parallel translations of the subspace Y, since each element of X/Y except for the
equivalence class of 0 is disjoint from Y (does not intersect Y). Each element of
X/Y is a set in X of the form x + Y, that is, the set of all elements of X which
are the sum of x and an element of Y.

(2) Let X be the set of all real valued continuous functions on an interval
[a, b] in the real line. Let Y be the subspace of functions which vanish at the
endpoints a and b. Then X/Y consists of the sets of functions which have given
values at @ and b.

Exercise 9 Let X =E? and let Y be a one-dimensional subspace of X. Sketch the
elements of X/Y.



CHAPTER 3

Topological spaces

In this chapter, we introduce some basic concepts concerning limits of infinite
sequences of points and continuity of functions. The most general setting for
these concepts is a topological space. In subsequent chapters, we will consider
special kinds of topological spaces which arise most often in computational
problems, such as normed linear spaces, inner product spaces, metric spaces,
and reproducing kernel Hilbert spaces. Among the metric spaces we will consider
are spaces of interval valued functions. All these are topological spaces, so that
whatever we can learn about topological spaces will apply to them all.

The concept of compactness plays an important role in the development of
methods for finding approximate solutions by numerical methods. We begin, in
this chapter, with the most general definition of compactness. While it is
equivalent, for most of the spaces used in numerical approximation, to
sequential compactness (which will be defined in the next chapter), it is some-
times easier to use the more general definition in theoretical arguments.

Definitions
A topological space is a set endowed with a ropology, which is a family of sub-
sets called open sets with the properties:

1) the intersection of any two open sets is an open set,

2) the union of any collection of open sets is an open set, and

3) the empty set and the whole space are open sets.

If Y is a subset of a set X, then the complement of Y in X is the set of elements
of X which are not in Y. We denote the complement of Y in X by X \ Y.

A subset of a topological space is called closed if its complement is open.
An element of a topological space is called a poinz.

A neighborhood of a point is a set which contains an open set to which the point
belongs.
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A point x is a limit point of a subset Y of a topological space X if every neigh-
borhood of x contains points of Y other than x.

Let S and T be arbitrary non-empty sets. A function, or mapping, f, from S into
T, denoted by f: S = T, is a set of ordered pairs (s, t) with s € S and t € T with
the property that if (s, £,) and (s, 7;) belong to f, then ¢; =t,. If (s, £) belongs
to the function f, then ¢ is called the value, or image, of f at s, denoted by f(s),

orfs.

Let N = {1, 2,3,... } be the set of counting numbers (non-negative integers).
A sequence of points in X, { x; }, is a mapping of N into X.

Example
If X is a set of functions, then a sequence of ‘points’ in X is a sequence of
functions.

Definition

A sequence of points {xi} in a topological space X converges to a point x in X
if and only if the sequence eventually lies in any neighborhood of x; that is,
given a neighborhood of x, say Ny, there is an integer n such that x; € N, for all
i>n.

The closure, Y, of a subset Y is the union of Y with all its limit points.

The types of topological spaces we will be mainly concerned with in this text
are: metric spaces, normed linear spaces, and inner product spaces. They will be
defined and discussed in subsequent chapters. We conclude this chapter with a
few more important concepts which apply to all topological spaces.

Definitions

A subset S of a topological space X is compact if and only if every open covering
of S has a finite subcovering; that is, let F be a family of open sets in X whose
union contains S, then S is compact in X if and only if there is a finite collection
of elements of F whose union contains S.

A subset S of a topological space X is relatively compact if and only if its closure
is compact.

A subset S of a topological space X is sequentially compact if and only if every
sequence of points in S has a convergent subsequence with limit point in S.

Let X and Y be topological spaces. A function f : X = Y is continuous if and
only if the inverse image of each open set in Y is an open set in X. (The inverse
image of a set S in Y is the set of points in X which map into S.)
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Exercise 10 Show that a continuous function maps compact sets onto compact
sets; that is, the image of a compact set under a continuous mapping is compact.

Exercise 11 Show that a continuous function maps convergent sequences onto
convergent sequences.

Definitions

Let X and Y be topological spaces and let f: X = Y be a mapping of X into Y.
The mapping f is said to be onto Y if, for every element y of Y, there is an
element x of X such that f(x) = y.

The mapping f is said to be a one-one mapping if f(x) = f(z) implies x = z. Thus
a one-one mapping has different images for different points of X. A mapping
which is one-one and onto has an inverse which is also one-one and onto,
denoted by f. Thus, f/(f ! (»))=y and f ! (f(x)) = x for all x in X and all y in
Y.

We denote the composition of two mappings f and g by f o g; and define it by
(o 8) (x) = flglx)).

The identity mapping on a space X is the mapping /y : X = X such that
Iy(x) =x, ¥x € X.If f: X > Y is one-one and onto, and if we denote its
inverse by f™: ¥ > X, then we have f o f=Iy and fo ! =1Jy.

A homeomorphism is a mapping f : X = Y which is continuous, one-one, and
onto and has an inverse mapping which is also continuous, one-one, and onto. If
X and Y are topological spaces for which there exists a homeomorphism
f: X =Y, then X and Y are said to be homeomorphic and called topologically
equivalent spaces.

Exercise 12 Show that the unit sphere {(x, y, z) : x*> + y* + z*> = 1} in E3
with the point (0, 0, 1) at the ‘North pole’ removed is topologically equivalent
toE?.



CHAPTER 4

Metric spaces

A metric space is a particular kind of topological space in which the topology is
defined by a distance function. An open set containing a certain point is, for
example, the set of all points closer to that point than a given positive number.
Actually, an open set in a metric space may be the union of many such sets. In
any case, in a metric space, we have the notion of distance between points. In
the next two chapters, we will look at two important special cases of metric
spaces, namely normed linear spaces and inner product spaces. In these, the
distance function is defined by a norm. In the first, any norm: in the second, by
a special kind of norm that is derived from an inner product, which is a
generalization of inner product (or dot product) of vectors in finite dimensional
spaces. The spaces involved in functional analysis are, in general, infinite
dimensional.

In a metric space, we can introduce the very important concept of a Cauchy
sequence. It is any sequence of points that has the property that eventually all
its members become close together; that is, the distances between them get small
as we go far out in the sequence. When this implies that the limit is in the space,
then the space is called complete.

The most important kind of metric space for computational purposes is a
complete and separable metric space. Precise definitions are given in this chapter.
Important consequences of these definitions are developed in subsequent
chapters.

Definition

A metric space X is a topological space in which the topology is given by a
metric, or distance function, d, which is a non-negative, real valued mapping of
X X X with the properties:

¥x,y,zEX:

1) d(x,y) = 0 iff x=y (iff = if and only if}
2) d(x,y) = d(y,x) , and
3) d(x,z) < d(x,y)+d(, 2).
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Aset S in X is open iff, ¥ x €5, {rx > Osuch that {y : d(y, x) <r,} CS.

The properties required for a metric are those of the ordinary intuitive notion of
distance: the distance between two points cannot be negative; the distance
between two points is zero if and only if the two points coincide; the distance
from a point x to a point y is the same as the distance from y to x; the length of
one side of a triangle cannot exceed the sum of lengths of the other two sides. A
subset S of X is open if every point in S is in an open sphere contained in S. This
means that along with every point it contains, S must also contain the set of all
points in X whose distance from x is less than some positive r, (which may
depend on x).

Exercise 13 Show that the definition of a continuous function given in the
previous chapter is equivalent, for metric spaces, to the following: if X and Y are
metric spaces with metrics dy and dy, respectively, then f: X = Y is continuous
if and only if

Ve>0, ¥Vx€X,]8, >0 such that
dy(y, x) <8y implies dy(f(»),f(x)) <e .

Exercise 14 Show that a sequence {x,—} in a metric space X converges to x in X
iff Il_i’m d(x;, x)=0.

Exercise 15 Show that a subset of a metric space is compact iff it is sequentially
compact.

Definition
If X, dx and Y, dy are metric spaces, then a mappingf: X = Y of X onto Y is
called an isometry iff dx(x, z) = dy(f(x), f(z)) for all x and z in X.

Exercise 16 Show that an isometry is a homeomorphism.

Definition
A sequence of points {x;} in a metric space with metric d is called a Cauchy
sequence if it has the following property:

¥€>0, | aninteger N, such that d(x;, x;) <e whenever i >N, and
j>Ne.

The members of a Cauchy sequence are eventually all close together.
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Definition
A metric space is called complete iff every Cauchy sequence of points in it

converges to a point in the space.

Definition

A subset of a metric space is said to be dense if its closure is the whole space.
Thus, for example, the real line is the closure of the set of rational numbers, and
so the rational numbers are dense in the real line. Every ‘real’ number is the limit
of a sequence of rational numbers.

Definition
A set S is countable iff there is a one-one mapping of N onto S.

Definition

If a metric space contains a countable dense subset, then it is called a separable
metric space. The real line is a separable metric space with d(x, y) = |x — y|,
since the rational numbers are countable.

Exercise 17 Show that the rational numbers are countable.
Exercise 18 Show that every compact metric space is separable.

Exercise 19 Show that a convergent sequence is necessarily a Cauchy sequence.

A Cauchy sequence need not always be a convergent sequence in a metric
space which is not complete. For example, the rational numbers form a metric
space with d(r, s) = |r — s| for rational numbers r and s; however, there are
Cauchy sequences of rational numbers which do not converge to a rational
number.

Exercise 20 Show that the sequence of rational numbers defined recursively by
Xy =2,x5 = Qi+ 2/x;)/2,i=1,2,... , does not converge to a rational
number even though it is a Cauchy sequence. First show that it is a Cauchy
sequence, and then show what it converges to on the real line.

If a metric space X is not complete, we can complete it by adjoining the
limits of all its Cauchy sequences. More precisely, we can find a complete metric
space X * such that X is isometric to a dense subset of X *.

The relation {x;} r {y;} iff lim d(x;, y;) = 0 is an equivalence relation which

11—

pgrtitions the set of all Cauchy sequences in X into equivalence classes. Ifx" and
y are two such classes, we define the distance function



4] Metric spaces 23

* * .
dy*x",y7) = limdx;, ;)
]
where {x;} and {y;} are representative sequences from the classes x* and y*

respectively.

Exercise 21 Show }‘hat X" is a complete metric space and that X is isometric to
a dense subset of X .

We can, thus, regard a ‘real’ number as an equivalence class of Cauchy
sequences of rational numbers.



CHAPTER 5

Normed linear spaces and Banach spaces

We come now to a special kind of metric space in which the topology defined by
a distance function makes the space not only a metric space, but something
more. We combine, at this point, the algebraic structure of a linear space with
the topological structure of a metric space by means of the concept of a norm.
The ordinary idea of distance between points on the real line is an example,
namely |x —yi|.

While all norms in finite dimensional spaces are topologically equivalent
(Exercise 24), this is not the case in infinite dimensional spaces of functions.
Consequently, some attention must be paid, in infinite dimensional spaces, to
the norm in question. Our interpretation of a close approximation will depend
on our measure of closeness.

The Weierstrass approximation theorem (referred to in Exercise 25) states
that a continuous real valued function on an interval [a, b] can be uniformly
approximated to arbitrary accuracy by a polynomial. The possibility of poly-
nomial approximation is extremely important in numerical functional analysis.
Thus, the standard norm in the linear space C[a, b] of continuous real valued
functions on an interval [q, b] is the ‘uniform norm’ ||f]] = gaéb f(x)l, and

asx

distance in C[a, b] is defined by d(f, y) = ||f —g|l. Convergence in C[a, b] means
uniform convergence of a sequence of continuous functions. This, of course,
implies, but is stronger than, pointwise convergence.

A Banach space is a normed linear space which is complete. It contains the
limits of all its Cauchy sequences. A normed linear space combines the algebraic
structure of a linear space with the topological structure of a metric space.

Definition
A normed linear space X is a linear space which is also a metric space with a
metric defined by a norm, d(x, y) = |lx — y|l, where the norm, ||.|l, is a non-

negative real valued mapping of X with the properties:
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1) llxll =0 iff x=0,
2) llax|l = lallix|l, forall x in X and all real a,
3) lIx +ylI<lixii + Iyll, for all x and y in X.

Note that the property (2) gives a norm topology more ‘structure’ than a general
metric topology. This property ties together, to some extent, the algebraic and
topological structures of a normed linear space. Property (3) is called the triangle
inequality.

Examples of normed linear spaces
1) The real line with [Ix|l = |x| .
2) E" withllxll, = (1%, 17 + ...+ (x4 1P)P p>1;
special cases: for p = 2, we have the ‘Euclidean’ norm,
for p = 1, we have the norm |xy |+ ...+ |x,|,
as p = %, we obtain the ‘max’ norm, ||x|| _ = max |x;{.
In all these norms, we have denoted an element of E” as x = (x'1 e Xp).
3) Cla, b], the linear space of continuous real valued functions on an interval
[a, b] with pointwise addition and scalar multiplication and with
Ix)l = max [|x(¢)i.
t€(a,b]}

Exercise 22 Show that the only possible norms in E' are of the form
Ixil = cix| with ¢ > 0.

Exercise 23 Show that a norm is necessarily a continuous mapping.

Exercise 24 Show that for any two norms in E”, say ||x|| and Ixl’", there are
positive real numbers k and K such that for all x in E” | we have

klixlh <llx|lI" <K lix]l.

Thus, all norms in E” are topologically equivalent; and convergence in any
norm in E” implies convergence in any other norm for sequences in E”. Find
k and K when ||x|l = x|l and Ix|l" = lIx]l ..

Exercise 25 Show that the space Cla, b] is separable. (Hint: consider poly-
nomials with rational coefficients and use the Weierstrass approximation
theorem.)

Definition
A subset S of a normed linear space is bounded iff there is a positive real number
K such that, ¥ x €S, ||x|| <K.

Exercise 26 Show that a subset of E” is compact iff it is closed and bounded.
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In an infinite dimensional normed linear space, a subset might be closed and
bounded without being compact. For example, let X be the set of bounded

sequences of real numbers with |[x|| = sup |x;|, where x = (x3, X, . . .). The
1l

subset § = {x Dixll = l} is closed and bounded, but it is not compact, since

{@1,0,0,...),(,1,0,...,(,0,1,0,...),...} has no convergent subse-

quence.

Exercise 27 Let f: X - Y be a mapping of a normed linear space X with norm
Il .1l x onto a normed linear space Y with norm || . || y such that there exist kK and
K, positive real numbers, with

kllx —ylix <IWfx) —fO)lly <Kllx —ylix, ¥x,y €X.

Show that fis a homeomorphism.

Definition
A normed linear space which is complete is called a Banach space.

Exercise 28 Show that £” and Cla, b] are Banach spaces.

Note that the distance function (metric) d(x, y) = llx — y|l in a normed linear
space is translation invariant:

dx+z,y+2)=lix+z—y —z| =d(x, y) forall x and y.
Such a metric also satisfies

d(ax, ay) = |ajd(x, y) for all real @ and all x and y in X.

Definition
In a normed linear space, a subspace is a linear manifold which is closed in the
norm topology.

Examples

1) Any linear manifold in E” is a subspace of £” in any norm on E”.

2) Let S be any subset of [a, b]. The set of continuous functions which vanish
on S is a subspace of C|a, b].

Note that the linear manifold of polynomials is not a subspace of Cla, b],
since there are sequences of polynomials whose limits in the topology of C|a, b]
are not polynomials. In fact, any element of C[a, b] is the limit of a sequence of
polynomials. Furthermore, there are sequences of polynomials which converge
pointwise (for each ¢ in [a, b]), but not uniformly (that is, not in the topology
of Cla, b]). Consider, for example, the polynomials p,(¢) = t" in C[0, 1]. Asn
increases, we have convergence of p,(t) to O for any ¢ except ¢ = 1. Fort =1,
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we have convergence to 1. Thus, we have pointwise convergence, but to a
discontinuous function.



CHAPTER 6

Inner product spaces and Hilbert spaces

Just as metric spaces are special kinds of topological spaces and normed linear
spaces are special kinds of metric spaces, so inner product spaces are special
kinds of normed linear spaces. The distance function, or metric, in an inner
product space is a generalization of the ordinary distance in a Euclidean space
of finite dimension. In an infinite dimensional inner product space of functions,
this is usually an integral, which is an infinite dimensional generalization of a
finite sum.

Inner product spaces are particularly important for linear operator equations.
Many methods for solving such equations involve orthogonal projections into
finite dimensional subspaces. Two vectors, whether finite or infinite
dimensional, are orthogonal if their inner product is zero. This is an abstraction
of the idea of perpendicular vectors in the plane, for instance.

A complete inner product space is called a Hilbert space. The theory of
measurable functions and the concept of the Lebesgue integral, while of great
importance in many mathematical contexts, is of minor importance in numerical
computations and will be almost entirely ignored in this book. The integrals
required for computing approximations using methods of orthogonal projection
are, in practice, almost always integrals of continuous functions, so that the
ordinary Riemann integral will suffice. Nevertheless, it is important to under-
stand the concept of a Hilbert space, since it is required for completeness of an
inner product space, that is, for the convergence of Cauchy sequences.

In this chapter we will study orthonormal sequences and their use in
representations of infinite sequences of approximations to a given element in a
Hilbert space.

Definition

An inner product space X is a linear space in which there is defined a real valued
function, called an inner product, on pairs of elements of X. (For linear spaces
over the complex field, the inner product is complex valued; however, we will
not discuss this more general type of inner product space in these notes.) If x
and y are elements of X, we will denote the inner product of x and y by (x, y).
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The defining properties of an inner product are as follows:

1) (x,x)=0, ¥xE€X,with(x,x)=0 iff x=0,

2) (x)=0.%,¥xy€EX,
3) (ax+by,z)=a(x,z)+b(y,2),¥x,y,zE Xandall real a and b.

An inner product is bi-linear. It is linear in the first argument because of
property (3) and in the second argument as well because of the symmetry
imposed by property (2).

An inner product space is made into a normed linear space by defining the
inner product norm: ||x|| = (x, x)l/z.

Exercise 29 Show that the inner product norm satisfies properties (1) and (2) of
the definition of a norm in the previous chapter.

To verify the triangle inequality, one needs the Cauchy-Schwarz-Buniakowski
(C.S.B.) inequality:

e, <, )2 oy 2, ¥ x, y EX,

with equality iff x and y are linearly dependent.

We can prove the C.S.B. inequality as follows. If (x, y) = 0, then the result
follows from property (1) of an inner product. Now suppose that (x, y) is not
zero. Put 2 = (x, y)/|(x, y)| and let b be any real number. Then, forallx, y € X,
we have

0<(ax + by, ax + by) = b*(y, ¥) + 2b I(x, )| + (x, x).

This quadratic polynomial is non-negative for all real b, so it cannot have two
distinct real roots. Thus, the discriminant must be negative or zero. The C.S.B.
inequality follows. The case of equality holds iff ax + by = 0 for some b. To
show the triangle inequality for the inner product norm, we must show that
(+y,x + )<, )+ (0, )2

Squaring both sides and expanding, we find that we need (x, x) + (x, y) +
O, x) + O, ») < (x, x) + 2(x, x)'/? (», )/ + (3, ). Using the symmetry of
the inner product, property (2), and the C.S.B. inequality, it can be seen that the
above inequality does, indeed, hold for all x and y in X. The triangle inequality
follows from the monotonicity of the square root function for positive argu-
ments.

Definition
We say that x is orthogonal to y iff (x, y) = 0.

A linear manifold in an inner product space which is closed (in the topology
defined by the inner product norm) is called a subspace, by virtue of the
definition of a subspace for a normed linear space.
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Exercise 30 Show that, in an inner product space, the subset of points which are
orthogonal to a given point is a subspace.

Examples of inner product spaces
(1) E"™ isan inner product space with the inner product
Cy)y=xiytx+ .t xpy,.
Thus, the Euclidean norm arises from
i, = (3 +x2 + ... +x2)Y2 = (x, x)!/2,
(2) L, the linear space of sequences of real numbers which are square sum-
mable:
{xi} suchthat 2 x} <o with {x;} +{y;} = {x; + ;)
i=1

and with the inner product
({xi} ,{yi}) = 2 xiyi
1=1

and with a{x;} = {ax;} is an inner product space.
(3) We can make the space of continuous real valued functions on [a, 5] into an
inner product space with the inner product

b
(fe= fa f(Hg(dr .

Exercise 31 Show that the sequence {f;} with

201" for 0<r<1)2
fi@) = .
1—01 =) for 1)2<1 <1
is a Cauchy sequence for the inner product norm defined in example (3) above.
Show that the sequence is pointwise convergent, but not to a continuous limit.

Thus, the inner product space of example (3) is not a complete inner product
space.

Definition
An inner product space which is complete is called a Hilbert space.

Exercise 32 Show that the inner product spaces E” and I, defined in examples
(1) and (2) above, are Hilbert spaces.
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The inner product space in example (3) above is not complete (see Exercise
31); however, it can be completed by the process discussed in Chapter 4. The
completion is denoted by £,[a, b]. In order to make L, [a, b] an inner product
space (with a metric defined by an inner product norm), the ordinary Riemann
integral of example (3) must be extended to the more general Lebesgue integral.
The elements of £,[a, b] can be regarded as equivalence classes of Lebesgue
measurable functions. Two functions belong to the same equivalence class if
their values differ only on a subset of [a, b] of Lebesgue measure zero. By con-
struction, a representative function in such an equivalence class can be regarded
as the limit (in the topology of £;[a, b]) of a Cauchy sequence of continuous
functions. For continuous functions, the Lebesgue integral is the same as the
Riemann integral — that is, it gives the same value. While the concepts of
Lebesgue measure and Lebesgue integration are important theoretical concepts
in functional analysis, they are of little use in computational applications. The
reader is referred to other works on functional analysis for further discussion of
these concepts.

The Hilbert space I/, of example (2) above is separable. It contains the
countable dense subset consisting of sequences with only finitely many non-zero
components and with these components being rational numbers.

Definitions
A unit vector in a Hilbert space is an element whose norm is 1.

An orthonormal sequence in a Hilbert space is a sequence {e,'} of unit vectors
which are mutually orthogonal; thus (e; e;) = 0 if i differs from j and
(e, ej) =1 foralli.

Example
In I, , we have the orthonormal sequence

e, =(1,0,0,0,...)
€, = (0,1,0,0,...)
es = (0,0,1,0,...)

These vectors are linearly independent. We can view I, as the infinite
dimensional analog of £”.

Definition

An orthonormal (O.N.) sequence in a Hilbert space is called complete iff there is
no nonzero vector in the space which is orthogonal to every vector in the
sequence. Thus, if {e;} is a complete O. N. sequence and if (x, e;) = 0 for all i,
then x = 0.
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It can be shown that a Hilbert space contains a complete O. N. sequence iff
the space is separable. It can also be shown that any separable Hilbert space is

isomorphic and isometric to /,.
The orthonormal sequence {e;} in [, given in the example above is complete.
Every element of /, has a unique representation of the form:

x = E xje;
=1
forx =(x1,x3,...)-
Recall that the elements of /, are ‘square-summable’ sequences, so that

. i
i=1

llxll = (x, x)/? = ( > x?>1/2 exists for all x in /,.

The set of all polynomials with rational coefficients forms a countable dense
subset of L£,[a, b]; thus, this Hilbert space is separable and is, therefore,
isomorphic and isometric to /,. This is a remarkable fact and is the basis for
representations of functions by infinite series expansions such as Fourier series
and expansions using sequences of orthogonal polynomials. We can obtain an
isomorphism between £, and /, by mapping such a series expansion onto the
sequence of coefficients. We will discuss this in more detail later.

Exercise 33 Show that an orthonormal sequence can be formed from the
functions

(/6 —a)', {(2/(b — a))"'* cos (2knt/(b —a))},
{Q2/(b — a))!/? sin (2knt/(b ~a)))

fork =1,2,...,in L,[a, b]. Verify that these are mutually orthogonal unit
vectors.

Exercise 34 Find polynomials of degrees 0, 1, and 2 which are mutually ortho-
gonal unit vectors in £,[—1,1].

Exercise 35 Show that a finite dimensional linear manifold in a Hilbert space is
automatically closed (i.e. a subspace). A linear manifold is of dimension » iff
there are n linearly independent elements in the manifold such that every point
in the manifold is a linear combination of those elements.

Definition

Let H be a Hilbert space and let x;, x;,...,x, be n linearly independent
elements of H. (This means that if x = ¢;x;+ ... +cpx, =0, thenc; =¢, =
...=cp = 0.) Let M be the subspace of all linear combinations of x;, x5, . ..,
xp. We say that M is spanned by x,,x,,...,X,,0r M =span{x;, x5, ...,xp }
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If x is a point in a Hilbert space and M is a subspace of H, there is a unique
point in M which is closest to x in the metric given by the inner product norm in
H. Call this closest point x*. It can be shown that x* is the orthogonal
projection of x on M. It is characterized by the orthogonality of x —x* to every
vector in M. In computational applications of functional analysis, the most
important projections are onto finite dimensional subspaces. Therefore, we will
prove this result in the case of a finite dimensional subspace.

Theorem Let M be a finite dimensional subspace, of a Hilbert space H, spanned
by x1,x,,...,%p,and let x be an element of H. Then there is a unique element
of M which is closest to x (that is, which minimizes llx — y|| for y in M). The
closest point, x*, can be found by solving a finite system of linear algebraic
equations, and the vector x —x" is orthogonal to every vector in M.

Proof An arbitrary point in M can be written as
y=c1X; +cxy +. . tepxy

for some set of coefficients ¢y, c,, ..., cp. If we have
x—x",x)=0fori=1,2,...,n,

for some point x*, then x —x* is orthogonal to every point in M because of the
linearity of the inner product with respect to the second argument. To see
whether there is such a point x* in M, put x* = cix, + c3x, +...+cpx,.
Again, using the linearity of the inner product (this time with respect to the first
argument), the above system of equations can be put into the matrix form

Grx) zx) . Genx)\ fer (x, x1)
(x1,x2) (x2,%3) ... (xn, x2) C; 3 (x, x3)
(x1,xn) (x2,xp) ... (xp,xp) C; (x, Xp)

The matrix above is non-singular because of the linear independence of
X1, X2,...,xp. Thus, there is a unique solution for c7, c3, . . . ,Cn. Now let y
be an arbitrary point in M and put z = y —x*. We have |lx —y || = ||x —x* —
zI? = lIx —x*I? — 2(x — x*, z) + ||z|]*. Since z is in M, it is orthogonal to
x — x". Thus the norm [Ix — y|| is minimized for z = O and the theorem is
proved.

Exercise 36 Show that the matrix occurring in the above proof is symmetric and
positive definite.

Definitions
The set T of ali vectors in a Hilbert space H which are orthogonal to a subspace



34 Inner product spaces and Hilbert spaces [Ch.

S is called the orthogonal complement of S. The space H is the direct sum of S
and 7, H = S © T. This means that every element of A can be written uniquely as
the sum of an element of S and an element of T.

Exercise 37 Prove the assertion of the previous sentence.

An orthonormal sequence, if it is complete, is also called an orthonormal basis.
For an orthonormal basis and an arbitrary vector x, we have the Parseval identity

I =0 x)= 3 (x ey

i=1

where the basis elements are e;, e,,... . In fact, x has the unique represen-
tation

x= 2 (xeie
=1
in terms of the given basis. If we view the sequence of coefficients in this
representation as an element of /,, then we can see an isometric isomorphism
between a Hilbert space with a complete orthonormal sequence and the space ;.
For any x and y in a separable Hilbert space, we also have the Parseval
relation, for basis elements ey, e, . . .,

)= 2 (el ,

i=1

which follows from the orthonormality of the basis elements. The Parseval
identity is the special case when y = x.

An important special case of the theorem proved in this chapter occurs when
Xy, X3, . .., Xy are mutually orthogonal unit vectors. In this case, the matrix, in
the linear system to be solved for the coefficients cj, ..., cy, is the identity
matrix, and the system has the immediate solution ¢; = (x, x;) for every i, in
fact for every n as well. For the orthonormal sequence of Exercise 33, the
resulting coefficients are called the Fourier coefficients of x, when x is an
element of £,(a, b]. In general, if x;, x,,... is an orthonormal basis in a
Hilbert space, the inner products (x, x;) are called the generalized Fourier
coefficients of x (with respect to the given basis).

The theorem of this chapter has immediate application to ‘least squares’
approximation, either discrete or continuous, of a given function by linear
combinations of a finite set of basis functions.

In approximation theory, it is shown that, for a continuous function on
[—1, 1], a good approximation to the best uniform approximation by poly-
nomials of a given degree (or less) can be found by orthogonal projection of x
onto the subspace spanned by Tchebysheff polynomials of degrees up to the
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given degree. The resulting approximation is, at worst, one decimal place less
accurate than the best uniform approximation for degrees up to 400.

For details of these and other applications to approximation theory, the
reader is referred to a text such as: E. W. Cheney, Introduction to approxi-
mation theory, McGraw-Hill, 1966, second edition: Chelsea, 1982.

Suppose we have a sequence of vectors {¥i} in a Hilbert space H such that
the first n members are linearly independent for every n. (For example, the
monomials y;(t) = ¢! in L, [a, b].) We can construct an orthonormal sequence
in H by the Gram--Schmidt process: Denote the orthogonal projection of a
vector y onto the span of a nonzero vector x by p(y, x) = [(», x)/(x, x)}x. Note
that x is orthogonal to y —p(y, x), since

0 —pO, x),x) =, x) — [, 0)/(x, )] (x, x) = 0.
Furthermore, y — p(y, x) is again a non-zero vector if x and y are linearly
independent. By induction, the vectors
Z =N
z; = Y2 —p(V2, 21)
3 —p(¥3,21) —P(ys. 22)

Z3

........................................

are mutually orthogonal and nonzero. The sequence of vectors x;, x,,...
defined by x; = z;/(z, z;)!!? is orthonormal.

Exercise 38 Carry out the Gram—Schmidt process for y,(t) = 1, y2(¢) = ¢,
y3(t) = t* in £, [0, 1]; that is, find z,, z,, z3 and X}, x5, X3 as defined above,
using the appropriate inner product.

In summary, if {x;} is a complete orthonormal sequence in a Hilbert space H,
then any x in H has a unique representation of the form

oo
x= 2 cix.
i=1

The (generalized) Fourier coefficients are given by ¢; = (x, x;). The sequence of
partial sums converges in the inner product topology to x. (This does not
necessarily imply pointwise convergence in case the elements of H are functions;
but there are Hilbert spaces for which the implication does hold, as we shall see
later.) For every x in H, we have
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N
Ix — > (x,x;)xill>0 as N>oo .

i=1

Furthermore, for all N and all real a,, a5, . . . ,ay, we have

N N
Ix— 3 @ x)xill<lx— 2 a;x;ll ;
i=1 i=1

thus, the partial sums with coefficients (x,x;) are the ‘least squares’
approximations to x for every V.

Exercise 39 Find the least squares approximation to e’ on [0, 1] among poly-
nomials in ¢ of degree two or less; that is, find numerical values of a,, @, , and a;

such that
1
[ € =@ +at+ar®)? ar
0

is minimum. Graph the resulting polynomial and e’ together, for comparison.



CHAPTER 7

Linear functionals

Linear functionals are real valued functions defined on normed linear spaces (we
do not consider the more general complex normed linear spaces in this
introductory text). These include evaluation of functions at a given point, finite
sums of values, integrals, and inner products. All these are of fundamental
importance in computational methods for solving operator equations.

In fact, the set of bounded linear functionals forms a linear space itself, called
the conjugate space (or the dual space) of a given normed linear space,

The Riesz representation theorem for bounded linear functionals in Hilbert
spaces is the basis for the projection methods discussed in Chapter 9.

Many of the types of convergence discussed in Chapter 8 depend on measures
of approximation computed in the dual space.

The term ‘functional analysis® itself owes its origins to the study of
functionals.

Definitions

A real valued mapping defined on a normed linear space is called a functional. If
the mapping is linear, it is called a linear functional. Thus, f : X - R is a linear
functional on the normed linear space X iff f(ax + by) = af(x) + bf(y) for all x
and y in X and all real @ and b.

A linear functional f: X = R is bounded iff there is a real number B such that
1f(x)| <B lix}} for all x in X.

Exercise 40 Show that a linear functional is bounded if and only if it is
continuous. (Hint: First show that a linear functional is continuous at all x in X
iff it is continuous at x = 0.)

Examples of linear functionals

(1) Evaluation functionals: If the elements of X are themselves functions
x : D —> R on some set D, then we can choose an element of D, say ¢, and
evaluate x at ¢ to obtain x(r), where x is any element of X. We denote this
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functional by 8,: X > R. Thus, for any x in X, we have §;(x) = x(?). If X
is a linear space of functions with pointwise addition and scalar multipli-
cation then &, is a linear functional, since 8;(ax + by) = (ax + by) (1) =
ax([) + by([) =a 5,(x) + b 6[(}’).

(2) Finite sums: Let wy, w,, ..., w, be any real numbers and let X be a linear
space of functions: then the finite sum

n
s@) = D wgx(rg)
k=1
is a linear functional on X for any choice of the arguments ¢y, ¢2,...,7,.
We can view this linear functional as a linear combination of evaluation

functionals.
(3) If X is a linear space of real valued integrable functions on [a, b], then the
definite integral

b
Ix)= x(t)de
=[x
is a linear functional on X. We have /(ax + by) = al(x) + bl(y).
(4) Inner products: If X is an inner product space and 4 is any element of X,

then py(x) = (x, h) is a linear functional on X.

For X = Cl[a, b], the first three examples above are bounded linear
functionals. In fact,

18,00 < lIxll ,
n

Is@)l < < > |Wk|> lixll , and
k=1

Hx)< |b—alllx]l .
Exercise 41 Show that py, in example (4) above, is a bounded linear functional.

We have the following important result for bounded linear functionals on
Hilbert spaces:

The Riesz Representation theorem If f is a bounded linear functional on a
Hilbert space H, then there is a unique element k¢ in H, called the representer of
f,such that f(x) = (x, hf) forall x in X.

Proof The set N(f) of vectors x in H for which f(x) = 0 is called the null space
of f; it is a subspace of H. If N(f) = H, we can take hy = 0. If N(f) is a proper
subset of H, there exists a nonzero vector in the orthogonal complement of
N(f), in fact a unit vector. Let & be such an element of H. We will now show
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that hy = f(h)h satisfies the conclusion of the theorem. To see this, note that
f(x)h — f(h)x is in N(f) for all x in H, because

fUFER —f(h)x) =f(x)f(h) —f(h) f(x)=0.
Thus, (h, f(x)h — f(h)x) =0,
s0 f(x) = (h, f(h)x).

It follows that f(x) = (x, f(h)h) for all x in AH.
For uniqueness, if (x, k) = (x, ¢) for all x in H, then in particular, for
x =h—q,we have (h —q, h —q) = 0; so h = q. This completes the proof.

Definition
If fis a bounded linear functional on a normed linear space, then

sup {'f (")'} = swp )
X#0 x|l iIx1=1

is called the norm of f and is denoted by || f|l.

Exercise 42 Show that, in a Hilbert space, the norm of a bounded linear
functional is the norm of its representer.

The following important theorem can be proved for normed linear spaces. We
will give the proof in the special case of a Hilbert space only.

The Hahn—Banach theorem A bounded linear functional f, defined on a sub-
space S of a normed linear space X can be extended to X with preservation of
norm; that is, if

fo:S—’R

has norm [l foll in S, then there is a bounded linear functional f : X = R such that
f(x) =fo(x) for x in S and || fll in X is the same as {| foll in S.

Proof For a Hilbert space H, we have, because of the Riesz representation
theorem, fo(x) = (x, h) for some A in S. We can define f(x) = (x, k) for all x in
H;and the theorem is proved (when X is a Hilbert space).

Because of the Hahn—Banach theorem, we can regard any bounded linear
functional as defined on the whole of a normed linear space. There are linear
functionals which are unbounded on a normed linear space. Usually these are
defined only on a dense subset of the space. For example,

fx)=dx/dtlt=;,, to € [a, b],

is an unbounded linear functional defined on the subset of differentiable
functions in Cl[a, b]. By the Weierstrass theorem on polynomial approximation
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in C[a, b], the polynomials are dense in C[a, b]; and, therefore, so are the
differentiable functions.

Definition
Let X be a normed linear space. The conjugate space (or dual space) of X,

denoted by X*, is the normed linear space of all bounded linear functionals on
X. If f; and f, are bounded linear functionals on X (that is, elements of X *) we

define f; + f; and af; by
(i +2) (%) = f1(x) + f2(x), and (af;) (x) = afy(x) forall x in X.

Exercise 43 Show that the definition of a norm for a bounded linear functional
given previously satisfies the properties for a norm in X *.

It can be shown that the conjugate space X * is always complete, whether X
is or not.

Exercise 44 Show that, for a Hilbert space H, the conjugate space H" is iso-
metrically isomorphic to H.

Exercise 45 Show that every linear functional on £” is bounded.



CHAPTER 8

Types of convergence in function spaces

For any particular kind of norm, we may consider convergence in that norm of a
sequence of elements (usually functions obtained as approximate solutions to
some operator equation) to a function of interest (say a solution of an operator
equation). Each type of norm constitutes a type of measure of the size of an
element. Thus, if, with a certain norm, the norm of the difference between the
kth element of a sequence of approximations and the limit of the sequence goes
to zero, we have convergence of the sequence to the limiting element. In this
chapter, we consider a number of different types of convergence, depending on
the measure of approximation or the type of norm used to measure it. The
notion of ‘weak’ convergence involves the dual space. We can identify at least six
different types of convergence. There are numerous relations among these types
of convergence, and we discuss a few of them in the exercises, which are of
particular interest in numerical applications of functional analysis.

Let D be an arbitrary non-empty set; let X be a normed linear space, with
norm | .|l x; and let F be a normed linear space of functions mapping D into X,
with norm || .|| 7. Let f € F and let {f)} be a sequence of functions in F.

We define (along with the usual practise in functional analysis) the following
types of convergence of the sequence {fi} to f,ask = oe:

1. Strong convergence (convergence in the norm || .|| g):
Il fx —fllF=>0;
2. Weak convergence (convergence in the dual space):
|&(/x) —&(HI >0 foreverygin F* ;
3. Pointwise convergence:
W@ —f(Ollx >0 foralltinD;
4. Uniform (pointwise) convergence:
1/ () — f()l x converges uniformly to O for all ¢t in D;

In addition, the following types of convergence of sequences in F* are defined:
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o *
5. * —convergence (“star” convergence) of {gy} togin F:

llgx —&!lp* = 0; and, finally,

. *
6. weak * —convergence (weak convergence in £ ):

lex () —g(f)1 >0 for every fin F, with
llgxll <M for all k and some M.

There are various relations among these types of convergence. Some of them
are as follows.

Exercise 46 Show that { fk} converges weakly to f, if { fk} is uniformly
bounded (||fx |F < M for all k) and if {fx} converges weakly to fin some dense
subset of F*.

Exercise 47 Show that the set of all finite sums
n

sx)= 2 wrx(tg)
k=1
is dense in C[0, 1] * and that weak convergence of a sequence in C[0, 1] means
that the sequence is uniformly bounded and pointwise convergent.

Exercise 48 Show that strong convergence in C[0, 1] implies uniform
convergence, and that weak convergence does not imply strong convergence in
clo, 1].

Exercise 49 Show that a sequence {xk‘, of functions in £, [0, 1] which con-
verges weakly to x in £, {0, 1] and is such that Jlx |l = ||x|l, converges strongly
in -Eg [0, 1] s that is,

1
f Ix k(t) —x(0)i? dr 0.
°
Exercise 50 Show that convergence always implies weak convergence and
* — convergence always implies weak * —convergence.

Other relations among the various types of convergence depend on details of
the norms in X and F.

Exercise 51 Show that, in a Hilbert space, convergence always implies weak
convergence, but not necessarily conversely.
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Exercise 52 Show that if a sequence converges weakly in a Hilbert space, then
the sequence is uniformly bounded.

In the next chapter, we study an interesting and useful type of Hilbert space
in which convergence implies pointwise convergence.



CHAPTER 9

Reproducing kernel Hilbert spaces

In this chapter we meet, for the first time in this text, a numerical application
of the theory we have been developing. Here we introduce an even more special
type of topological space than any we have considered before. It is not only a
metric space, but also a normed linear space, an inner product space, even a
Hilbert space. Even more than that, it is a special type of Hilbert space in which
convergence in the Hilbert space norm implies pointwise convergence. Examples
of such spaces are given.

We consider the problem of approximating an integral by finite sums with the
error measured in the norm in such a space. We can make use of a number of
theoretical tools developed in previous chapters, in particular the Riesz
representation theorem and orthogonal projection.

In the exercises in this chapter, the reader has his first opportunity in this
text to taste the flavor of numerical functional analysis.

The ambitious student may try to do Exercise 57 for arbitrary .

Definition _

A Hilbert space H of real valued functions on a set D is called a reproducing
kernel Hilbert (RXK.H.) space iff all the evaluation functionals on H are
continuous (bounded).

Theorem In a Hilbert space of real valued functions on a set D, convergence
implies pointwise convergence iff all the evaluation functionals are continuous
(that is, iff the space is an RK.H.S.).

Proof If §; is bounded, then (by the Riesz representation theorem) there is an
element R; in H such that

8¢(x)=x(t)=(x, Ry) forallxin Hand all ¢ in D.

Now let {xk) be a sequence in A and let x be an element of H. Then, for all ¢ in
D, we have

Ixg(6) = x(O) = I(x (1) =x(), Re)I < IR Nl llxe —xII .
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Thus, convergence in H implies pointwise convergence. Conversely, if ||xz — x|
- 0 implies |x(¢) —x(#)| = 0 for all ¢ in D, then

18¢(x —xg)l = |x() —xx (1)) >0

whenever ||x —xll = 0;s0 8, is continuous. This completes the proof.

In a reproducing kernel Hilbert space, we denote the representer of evaluation at
t by R, as in the proof above. As we will show in this chapter, we can find such
spaces with known functions R;. In this case, if f is any bounded linear
functional on H (an RK.H.S.) then

fx) = (x,hp) = (hp x) ;

s0 FRe) = (hp, Ry) = 84(hy) = hp().

In other words, given the reproducing kernel R,, we can construct the
representer of any bounded linear functional as a function of ¢, by evaluating the
linear functional on the kernel R,.

This elegant theory has important practical applications. It has advantages
over the ‘Dirac delta function’ commonly used in mathematical physics, and also
over the theory of distributions (test functions).

Next, we will discuss in detail one example of a reproducing kernel Hilbert
space with applications to interpolation and approximation of integrals. At the
end of the chapter we will give other examples of such spaces. Additional
applications will occur in later chapters.

We consider now the RK.H.S. of real valued functions on [0, 1] which are
absolutely continuous (indefinite integrals of their derivatives) and whose
derivatives are in £, [0, 1], with the inner product

1
(8) = [0z + [ '®e’ ()as .
We denote this Hilbert space by H(1). It includes, of course, all real valued

functions on [0, 1] which are continuously differentiable, as well as those
which are only piecewise differentiable. The reproducting kernel is given by

R(s) = 1+min(s, 1), (note that R,(0)=1 forz€ [0, 1]),

since we have

GRO= -1+ [ )R} (5)ds

= f(0) + j;tf'(s)ds

= f@t) , forall#in [0,1] .
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It is interesting that we can find, by orthogonal projection, a piecewise linear
function fin H() which interpolates the values of a given function in H!) at
given arguments 0 <t, <tr, ...<t, < 1. to do this, we put

<
n

Since R, (s) is piecewise linear in s for each t,, it follows that f(s) is also piece-

wise lmear in 5. The orthogonal projection f* of an element f of H () on the
linear manifold spanned by the representers of evaluation at the given arguments
ty, ..., ty is characterized by the system of equations

(F"=fR) =0,i=12,...,n

Substituting the above expression for f and expanding the inner product, we
obtain the following system of equations for the coefficients c1,¢3, ..., c, of
7

n

> (R,}.,R,i)c,—(fR,) f(t),i=1,2,...,n

j=1

Since we also have
n

Fre = T ciRyRy) = 1)

j=t

it follows that finterpolatesfat the given arguments. Note that f* minimizes
- ( - 1 - 1/2
If=Fllya) = {(f(O) —f(o)* + fo (' = ') ds}

Exercise 53 Find f* explicitly forn = 2,1, = 5,1, = +,f(t;) = 2,f(z)=1.
Graph the result.

Suppose next that we wish to approximate the definite integral

L) = j;lf(s)ds, for fin HO) |

by a finite sum of the form
n
Sp(N = 2 wifltx)
k=1
where p = (wy, Wy, ..., wp, Iy, t3,...,t,) is a 2n-dimensional vector of real
parameters with 0 <, <, <...<t, <1.BothL and S, are bounded linear
functionals on H(),
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Exercise 54 Prove the assertion of the previous sentence. (Hint: show that L is
continuous at f = 0.)

We define the error functional E,, by Ep(f) = L(f) — Sp().
Wehwe Ep() = (fhE) = (Lh) — (fihs,),
and so hEp = hy —hsp .

Wehave  |Ep(DI<IEpIIIfIl forall fin H);

thus, to minimize || Ep |l we minimize ||Ag_|[| since these are the same.
] P

We find that

hip(t) = L(R;) = J;l(l + min(s, t))ds =1+ t(1 —¢/2)

is the representer of the definite integral and
n n

hsy(t) = Sp(R)) = 3 wiRi(tk) = 2 wiRy, (1)
R=1 R=1
is the representer of the finite sum.
There are two problems to consider:

(1) For a given choice of t1, t,, ..., t, to minimize || Ep || among all choices of
Wi,...,Wp. This is a linear approximation problem.

(2) For fixed n, minimize [|E, || among all choices of 1, , . . . , , (using the best
wy,...,wy, for each n-tuple (¢,,...,t,)). This is a nonlinear approxi-
mation problem. We do not have min(t, tx) + min(z, ¢j) = min(z, 1 + t;).

We can solve the linear problem as follows. We minimize
IEpN = kgl = llhy —hs, I

by finding the orthogonal projection of 4; on the finite dimensional linear sub-
space spanned by the representers of evaluation at ¢,, ..., t,.To do this, we put
n
(hy — 3 WkRp Ry) = 0,/=1,2,...,n.
k=1

Thus, the best w;, ..., w, are found by solving the linear system
n
2 R (pwk = he(tp),j=1,2,...,n.
k=1
More explicitly, the system has the form

n
kf-_‘,l (1 +min(tg, tp) wi =1+ ;1 —1;/2), j=1,2,...,n.
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Thus, the solution of problem (1) is given by those values of wy, wp, ..., wy,
for which hsp(t) interpolates Ay (¢) at the given values of ¢. For any particular
set of distinct values 0 < ¢, < t, <...<t, < 1, we can find the values of
Wy,...,Wp, using a numerical method for solving the linear algebraic system
(see Exercise 53, for example).

The solution of problem (2) is more difficult. To begin with, it will be helpful
to find a general solution of problem (1) giving the w;’s as functions of the #’s.
To accomplish this, it is convenient to first orthonormalize the basis functions
R, . We can do this using the Gram—Schmidt process. For n = 2, we find that

t2/2+ ¢, /[2(1 +¢,)] and
1 —(t, +1,)/2

wy

Wy

by direct computation without the Gram—Schmidt process. For n greater than
2, we proceed as follows. We put

ex(t) =Ry, /IRy, || = (1 +min(s, ,))/(1 + ;).
Using the Gram—Schmidt process, we find that, fork =2,...,n,
0, fort <ty ,
ex(t)=(tx —tk_y) M2 - 5t—tk_1,fortk_, <r<ty,

tgk —tg-y,fortg <t.

Conversely, we can express the representers of evaluation in terms of these e’s as
follows

R, (1) = 1+ 1) e,(2)

Re,(t) = (t2 — 1) e2() + (1 +1,)1 e, (1)

Rip(t) = (tn =ty ) 2 eq()F ...+ (12 — 1)/ €3(0)
+ (1 +t1)l/2 el(t).

With the help of thos orthonormal basis for the linear manifold of approxi-
mations, we obtain an upper triangular linear algebraic system to solve for the
w’s of the form

A+2)M2 Wy +wy 4. wy) = (g, e)
(=t )M wat . Hwy) = (B, )

(tn —tny )2 ( wn) = (h, en) .
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We find that
(hpoe) = (1401 =0 /DA + 1)
(hy,e2) = (t; — 1) [1 —(t2 + 11)]
(e, en) = (tn = t-) 1 {1 = (tn + tnet)] -
Thus, we find that, forn = 3,
wp = 1= (g +1py)2

Wnoy = (tn —tn-2)/2

wy = (13 —1)2
[12/(1 + 1)+ 12]/2.

Recall that, for the case n = 2, the first and last of the above expressions give the
correct result.

With these formulas, we can express IIEPII = ||h5p|| = |lh; — hsp || as a
functionof ¢y, ..., ty,.
We find, that after some elementary algebra, that

||hEp||2 =(1/3) (1 —1n)® + Q23) {((tn — tn-))2P + ...+ ((t2 —11)12)°}
+(1/3)83 (1 —3¢t, /(4 + 41,)), forn>3.

Wy

We will minimize IIhEpll among all admissible choices of
0<t, <t,...<t, <1

if we minimize |lhg_|I? .

We will not solve this minimization problem here. However, it is clear that for
any admissible choices of the 7y ’s we can evaluate the upper bound on the
minimum possible value of thpll using the formula above. For example, with

t, =0,ty=1,and =Gk —1)/(n—1), k=1,2,...,n,
we find that IIhEpll =1/23)/(n—1).
Exercise 55 Conclude that we have proved from the above analysis that, for all

fin H“), Sp(f) converges to L(f) when the w’s and ¢’s are chosen as described
(either equally spaced ¢’s or optimally spaced #’s).

Exercise 56 Show that, for equally spaced ¢’s, with#, =0 and t,, = 1, piecewise
linear interpolation of a given function fin H (1) py orthogonal projection on the
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subspace spanned by the representers of evaluation at the t’s converges, as
n oo, in the #) norm and, hence, pointwise to the given function.

Exercise 57 For n = 2, solve both minimization problems (1) and (2) explicitly.
As a second example of a reproducing kernel Hilbert space, consider the space

of real valued functions on [0, 1] whose gth derivatives are in £, [0, 1] with
inner product

a1l ) 0)gW (0) 1
o= X ——5—+ _f FD(0)g@(e)dr .
j=0 G °
It can be shown that this is an R.K.H.S. with reproducing kernel
a1 g min(s, 1) (s —w)d7' (¢ —w)97" du
Ri)=2 —=+ | =
j=0 U1 0 (g—DY

where (x), =x if x>0 and (x), =0if x <0.

The space H') we have been discussing is the special case of this space when
q = 1. For higher values of g, we can obtain more rapidly convergent sequences
of approximations to definite integrals by finite sums with weights determined
by orthogonal projection in a way similar to the previous method in #<1), Inter-
polation of a given function by piecewise polynomial functions of degree ¢ can
also be obtained by orthogonal projection in this space using the given inner
product, with higher rates of convergence than in HW

Additional examples of R.K.H. spaces with important applications can be
found, for example in:
S. Haber, ‘The tanh rule for numerical integration’, S./ 4.M. J. Numer. Anal.
14, no. 4, Sept. 1977, 668—685.
P. J. Davis, Interpolation and approximation, Blaisdell, N.Y., 1963, (see
pp. 316—320)
R. P. Gilbert, ‘Reproducing kernels for elliptic systems’, J. Approximation
Theory 15 1975, 243255,
There are many others as well.
In a later chapter, we will turn to applications of projections in R.K.H. spaces
to approximate solutions of operator equations.



CHAPTER 10

Order relations in function spaces

In the previous introductory chapters, we have considered linear algebraic
structure in function spaces as well as topological structure and relations
between these two types of properties. In this chapter, we introduce a third type
of structure, independent from the other two, namely order.

We can define another type of convergence based on order relations alone,
without any linear or topological properties of the sets of functions involved.

We can define, in partially ordered sets of functions, many computationally
useful things, such as intervals, monotone mappings, interval-valued mappings,
lattices, and order convergence.

In linear spaces with partial ordering, we can define convex sets and convex
functions.

Set inclusion is an important partial order relation in the set of all subsets of
an arbitrary set.

At the beginning of the next chapter we will meet a metric which can be
defined in spaces of interval valued functions.

In Chapter 14, we will discuss interval methods for operator equations which
use order relations in an essential way for the design of practical computational
algorithms of great generality.

The exercises in this chapter are designed to aid the reader’s understanding of
material in Chapter 14 particularly, and in one or two other places in subsequent
chapters as well.

In addition to algebraic and topological structure, there is another important
type of structure we can introduce in function spaces, namely order.

Definition
A relation 7 in a set X is called a partial order relation, or a partial ordering of X,
if r is transitive.

Examples
(1) “<”,“<”,and “=" are partial order relations on the real line.
(2) InE", we can define the order relations
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x<y iff x;<y;, i=1,2,...,n,and
x<y iff x;<y;, i=1,2,...,n,

where x = (x1, X2,...,xp)andy = (¥1, Y2, --,Vn)-
This example shows why such an order relation is called a partial ordering.
There are pairs of points {x, y} such that we have neither x <y nory <x.
For instance in £2, {(1, 2), (2, 1)} is such a pair. In E? we will have x <y
if the point y is to the right and above the point x.

(3) In the set of all real valued functions on an arbitrary set D, we can introduce
the partial orderings:

f<g iff f(t)<g(t) foralltin D; and
f<g iff f(£)<g() forall tin D.

(4) Any subset of a partially ordered set is partially ordered by the same
relation.

(5) If X is any set and S(X) is the set of all subsets of X, then C and C are
partial orderings in S(X). Note that, for U and V in S(X), we have

UCV iff x€U implies x €V and U # V, and
UCV iff x€U implies xEV .

Note that the partial orderings < and C are reflexive, whereas < and C are not.
The relation “=" is, of course, an equivalence relation.

Definition
Let M be a set with a reflexive partial ordering r. A subset of M of the form
A={xEM:Arx,xrA,withArAand4, A€M}

is called an interval in M. We denote such a set by A = [4, A]. A4 is called the
left endpoint of A, and A is called the right endpoint of A.

We denote the set of all intervals in M by 11(M).

If A = A, we call the interval 4 = [4, A] degenerate. If we identify
degenerate intervals with elements of M, we can view M as a subset of 1I(M).
Furthermore, we have II(M) C S(M); that is, the set of all intervals in M is con-

tained in the set of all subsets of M.

Examples

(1) For the reflexive ordering < on the real line, an interval [4, A] is an
ordinary closed bounded interval of real numbers.

(2) In E", with the reflexive ordering < defined at the beginning of this
chapter, an interval is an n-dimensional rectangle of the form

A= [4,/?] =([41,A—1],..., [émjn])-

We also call an interval in E” an n-dimensional interval vector.
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(3) In the set of all real valued functions on an arbitrary set D, the reflexive
ordering < defined earlier gives an interval of the form

F=[EF} = {f: Ft)<f(t)<F(:)forall tinD} .

We can view F as a mapping F : D > II(R) via F(¢) = [F(2), F(t)] . This is an
example of an interval valued mapping.

(4) Let X be an arbitrary non-empty set. Then C is a reflexive partial ordering
in S(X) and we have intervals of the form

v=[r V1= {resx:vcvcry.

If X = E2, for instance, and if ¥ and ¥ are concentric discs then [V, V] is
the ‘interval’ of subsets of £ 2 which contain the disc ¥ and are contained in
the disc V, (with proper inclusion not required).

Exercise 58 If X is a set which is partially ordered by the relation r, show that,
for A and B in 1I(X), we have

ACB iff BrAand A4rB.

If Z, Y € S(X), we define Z = Y to mean that Z and Y are the same subset of X.
Thus Z = Y iff every element of Z is an element of Y and vice versa. For two
intervals, we have

Z=Yiff Z=Yand Z=7Y.

Definition

A lattice is a set X with a reflexive partial ordering r such that for any two
elements x and y in X there are elements w and z in X (which may depend on x
and y) for which:

1.xrw and y r w,and

wru for any u such that x 7 v and y r u; and
2.zrx andzry,and

urz foranyusuch thaturxandury.

We write w = sup(x, y) orw =x v y,and z =inf(x,y)orz =x a y. Thus,in a
lattice, every two elements have a greatest lower bound and a least upper bound.
If an arbitrary collection of elements has a least upper bound and a greatest
lower bound, then the lattice is called complete.

Examples

(1) Let X be an arbitrary set and consider the set S(X) of subsets of X. We
always consider the empty set ¢ to be an element of S(X). Then S(X) is a
complete lattice with respect to set inclusion C since, for any 4 and B in
S(X), we have
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Av B AUB
AArn B=ANBEB.

Furthermore, the union and intersection of an arbitrary collection of
subsets of X are also in S(X); thus the lattice is completc.

(2) If (X, r) is any lattice, then the set of intervals in X with the empty set
adjoined is again a lattice with respect to C. If (X, r) is a complete lattice,
then so is II(x) U ¢, C).

and

1l

Exercise 59 Suppose that (X, r) is a complete lattice. Let 4 be a given interval
in X. Denote the set of sub-intervals of A by 11(4). Show that (II(4A) U ¢, C) is
a complete lattice.

Definition
Let (X, r) be a complete lattice. Suppose x € X and {x,,} is a sequence of

elements of X. We say that the sequence {x,,} is order convergent to x, denoted
by

0)

Xp —— X,
iff there exist two sequences {y,} and {z,} in X such that
Yn rxn, and x, r z, forallu=1,2,...,
and x=sup{yn} = inf{z,} .

Exercise 60 Show that in a complete lattice, a nested sequence of intervals with
non-empty intersection is order convergent.

Definition
Iff: X=>Yis an arbitrary mapping from an arbitrary set X into an arbitrary set
Y, we denote by f the united extension of f to S(X), defined by

8051
f) ={f(x): x€EA} for4€SX).

Thus, the value of f at an element of S(X) is an element of S(Y). We identify the
subset {x} with its single element x in order to view f as a set valued extension
of f. We have

7(6)) = 7 = {1} = fx). and
) = U ).
XEA

The following important property of the united extension of an arbitrary
mapping is called the subset property:
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¥A,BE S(X),f: X~ Y, we have
A C B implies f(4) Cf(B).
Definitions

A mapping g from one partially ordered set (X, rx) into another (Y, ry) is
called isotone if

x ry y implies g(x) ry g(v);
or antitone if

x ry y implies g(y) ry g(x).
A mapping is called monotone if it is either isotone or antitone.

Theorem (Knaster—Tarski, 1927). An isotone mapping of a complete lattice
into itself has at least one fixed point.

Example

A closed, bounded interval [z, b] on the real line is a complete lattice with
respect to <. If a real valued function f: [a, b] = [a, b] is isotone ( x <y
implies f(x) < f(»)), then f has a fixed point; that is, there is at least one x ™ in
[a, b] such that f(x*) =x".

Note that we do not even need continuity of f.

Exercise 61 Show by a counter-example, that an antitone real valued mapping
of [a, b] into [a, b] need not have a fixed point.

Now let f: X = X be an arbitrary mapping of an arbitrary set X into itself.
Recall that (S(X), C) is a complete lattice. Consider the united extension of f,

f:8)~>5X).
From the subset property, it follows that f is isotone with respect to the order
relation C. From the Knaster—Tarski theorem, it follows that f has at least one
fixed point in S(X). Of course, this may only be the empty set. We can, however,
get a very general result with important applications to numerical methods as
follows.

Consider the sequence {X,} in S(X) defined by

Xo =X

Xn+l =f(X'l)’ n=0’1925"" .
Since f maps X into itself, we have

Xy =fXo)=FX)CX =X, .
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By induction, we have
Xpa1 CXp foralln=0,1,2,...
since, by the subset property, we have
Xn € Xp-y implies Xpyy =f(Xn)§f(Xn-1) =Xn .

Consider Y= N X,, which may be empty or not. We have the following.
n=o0

Theorem If x = f(x) is any fixed point of fin X, thenx € X, foralln=0,1,2,
... and also x € Y and x € f(Y) C Y. Thus, X,,, Y, and f(Y) contain all the

fixed points of f (if any) in X. If Y is empty or if f(Y) is empty, then there are
no fixed points of fin X.

Proof If x = f(x) € X = X, then, by induction, x € X,,; = f(X,) for all
n=0,1,2,...,and sox €Y as well. Furthermore, Y C X, for all n, so f(¥) C
f(X,) = Xpey C X, for all n. Thus, f(¥) C Y and x = f(x) € f(Y). By the
contrapositive argument, if Y is empty or if f(¥) is empty, then there can be no
x in X such that x = f(x).

We will return to the application of order relations to numerical methods in a
later chapter on ‘interval analysis’ after we have discussed some more classical
approaches to the solution of operator equations. We conclude this chapter with
an additional concept dealing with order relations in function spaces.

Definitions
If B is a subset of a linear space (over the real scalar field) such that the line seg-

ment ab = {ta +(1—Db:0<t< 1} is contained in B whenever @ and b are
in B, then B is said to be convex.

If f: X = Y is a mapping from a linear space X (over reals) into a linear space
Y with a reflexive partial ordering <, such that, for alla and b in X, we have

fta+ (1 —0)b)<tf(@)+ (1 —1)f(b)

forall 0 <t <1, then fis said to be a convex function.

Exercise 62 Show that the open and closed balls:
{x:lIxI<b} and {x:lxN<b},

in any normed linear space, are convex sets.

Exercise 63 Show that a twice differentiable real valued function on [a, b] is
convex if f"(x) >0 for all x in [q, b].



CHAPTER 11

Operators in function spaces

In this chapter, we consider mappings (operators) from one set of functions into
the same or another set of functions. In addition to normed linear spaces of
functions such as Banach spaces and Hilbert spaces, we may also consider metric
spaces of functions (we will presently define a metric in the set of interval valued
functions), and even sets of functions which are partially ordered but without a
topology. In all these, we have some notion of convergence of sequences of
functions; often we will have several possible types of convergence. All these
kinds of ‘function spaces’ will prove useful in numerical computation of
approximate solutions to operator equations, as we will see in the subsequent
chapters. Indeed, in this chapter we will already meet two fundamentally
important methods for solving operator equations: the Neumann series, and its
iterative version, Picard iteration.

In this chapter, the emphasis will be on linear operators. We will further
develop the ideas and introduce additional methods for linear operator equations
in the following two chapters. The six chapters following that will deal primarily
with nonlinear operator equations and methods for solving them.

We begin now to put to use the tools we have studied in previous chapters to
build methods for analysing and solving operator equations.

The exercises in this chapter are of particular importance. The diligent reader
who works them all will be rewarded by an understanding of how to solve linear
operator equations of certain kinds using the Neumann series and its iterative
version. Many problems of practical importance are amenable to this approach.
We will illustrate one such type of problem at the end of this chapter.

By a ‘function space’ we mean a set of functions together with a topology or
a reflexive partial ordering (or both). Thus, we will have one or more types of
convergence in a function space. We have already seen examples of linear
topological spaces of functions such as Banach spaces and Hilbert spaces.

We can introduce a metric

d([4, 4], [B, B]) = max(l4 —Bi, |4 — B))

in the set II(R) of intervals on the real line. (This is an example of a ‘Hausdorff’
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metric.) The set of sub-intervals of a given interval [4, A] is compact in this
topology. Thus, we can make the set X of interval valued functions mapping
11([4, A]) into II(R) into a metric space with the metric

dx(F, G) = sup d(F(4"),G4")) .
A'€l([4, 4])

On the other hand, we might consider such function spaces as real valued
functions on a set D with the reflexive partial ordering f < g iff f(x) <g(x) for
all x in D or set valued functions mapping S(D,) into S(D,) with F C G iff
F(A) C G(A) forall 4 € S(D,).

Definition

An operator is a mapping from one function space into another (or the same)
function space. If X and Y are linear spaces (over the reals), then a mapping
L : X = Y is called a linear operator if

L(f+g) = L(N+L(g)
and L(af) = aL(f)

for all f, g in X and all real a. Notice that we will always have L(0) = O for a
linear operator.

An operator which is not linear is called nonlinear.

Examples

(1) For X = Y = E™ (which can be viewed as the linear space of real valued
functions on the first n positive integers), a linear transformation, repre-
sented by an n-by-n matrix, is a linear operator.

(2) For X = C[0, 1] and Y = R, a linear functional is a linear operator, from
Xinto Y,

(3) ForX =Y = ([0, 1] and K continuous on [0, 1] X [0, 1],

1 1}
L(f)(r)=fo K@, t') ") de'

defines a linear integral operator, mapping X into itself.
(4) For X = C?*[0, 1], twice continuously differentiable real valued functions
on [0,1],and Y =C[0, 1],
L) () =a@)f"(t) + b()f' (1) + c(1) f(2)

defines a linear differential operator L from X into Y, if a, b and ¢ are
continuous.
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(5) The Laplace operator
82 a2 az
A=—+ — + —
ax?  ay* 922
is a linear differential operator on the space of real valued functions with
continuous second partial derivatives on a region in £ % into continuous
functions on that region.
(6) The Fourier transform

F() = L €2t f(1)dr, —e0 <5< oo,

is a linear integral operator on a certain space of complex valued functions.
(7) If X is the linear space of continuously differentiable n-dimensional real
vector valued functions on the real line, then L(x) (¢) = x'(r) — A(t)x(?),
with 4(f) an n-by-n matrix with continuous elements, defines a linear
differential operator from X into continuous vector valued functions.
(8) P:CJ[0,1] = CJ0, 1] is a nonlinear operator, for example, if P(f) =g #0
for all fin C[0, 1] or if P(f) (r) = e/ ).

Numerous other examples will occur in the chapters to follow.

Definitions

If L:X = Y is a linear operator (X and Y are linear spaces), then N(L) =
{x:x€X Lx)= 0} is called the null space of L. It is the set of points mapped
into the zero vector, or ‘annihilated’, by L. If y € Y, then L(x) = y is called a
linear operator equation. We often write this as Lx = y.

Exercise 64 Show that the null space of a linear operator is a linear manifold.

The linear operator L is called non-singular iff N(L) consists only of the zero
vector in X otherwise, it is called singular.

Exercise 65 Show that if a linear operator equation Lx = y has a solution x,
then the solution is unique if L is non-singular.

Exercise 66 Show that, if a linear operator L : X - Y is non-ingular and maps
X onto Y, then the equation Lx = y has a unique solution for every y in Y.

Exercise 67 Let C!(R) be the linear space of continuously differentiable real
valued functions on the real line. Consider the linear space of functions

Y ={y=Lx:xE€C'(R),(Lx) () =x"(t) —a() x(2)}
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where a is a given element of C(R). Thus L : C!(R)—~Y.Find tPe null space of
L. Suppose the linear operator equation Lx = b has a solution x for a certain b
in Y. Find the set of all solutions to Lx = b.

Definition
Let X and Y be normed linear spaces. A linear operator L : X =Y is continuous

at x € X iff, ¥ { X ,} C X,
lim llx, —x|lxy =0 implies lim }iLx, —Lx|ly =0.

n-—»oo n—oo

Exercise 68 Show that if a linear operator L : X = Y is continuous at x = 0,
then it is continuous at every x € X.

Definitions
A linear operator L : X = Y is called bounded (X and Y are normed linear
spaces) iff ] b >0 such that ||Lx|ly <blix|l, forall x in X.

The norm ||L|| of a bounded linear operator L : X - Y is defined as

L= sup I|ILxly.
Xl xy =1

Exercise 69 Show that a linear operator is continuous iff it is bounded.

Exercise 70 Let A : X = X be a bounded linear operator on a Banach space X,
such that J]4|l < 1. Let /: X = X be the identity operator Ix = x for all x in X.
Consider the linear operator

L=1—A definedby Lx =x —Ax, VxEX.

Show that L is one-one, that L ™ exists and can be represented by the Neumann
series

LY=14+A4+A42+4%+..... [A"=A0@A" ).

Show, further, that Lx = y has a unique solution for every y in X, and that the
sequence {x,} defined by

Xps1 =y +Ax,, n=0,1,2,...,
converges to x = L'y from any starting point xo in X. Derive an error bound
on |lx —xy,ll.
Exercise 71 Using the results of the previous exercise, show that the two-point

boundary value problem
x"(t) + a(t) x(t) = b(¢)
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x(0)=x(1)=0
has a unique solution for every continuous b, provided a is continuous and

max la@®)i<c
te(0,1}

for a certain positive real number ¢. Find a numerical value we can use for c in
this result. (Hint: rewrite the boundary value problem as an integral equation

1
x(t) = y(@t)= J; K(t, s)a(s)x(s)ds

where K(t, s) = )/f(l"s) , 0<r<s5<1
Us(1—1) , 0<s<t<1
1
and y© == [ K@ $)bs)ds )
0

Exercise 72 For the problem in the previous exercise, put a(¢) = 1 for all t and
put b(t) = t. Set xo(t) = O for all ¢t and find x,(¢) defined in Exercise 70
explicitly. Also find a numerical bound on
lx—x: = max |x(t)—x()l
te0,1)

where x is the unknown solution.

ADJOINT OPERATORS

Let L : X = Y be a bounded linear operator, X and Y Banach spaces, and let
X" and Y* be the conjugate spaces of bounded linear functlonals on X and Y.
The adjoint operator L™ (of the operator L)is deﬁned byL*: Y™ > X" where
L) (x)= gllx) forxeXx and g€ Y" Thus, L*¢ € X" is a bounded linear
functional on X. The adjoint L* is also a bounded linear operator and ||IL *|| =
L.

Exercise 73 Lct H be a Hilbert space and L : H = H a bounded linear operator.
Show that L* is the adjoint of L if
(x,Ly)=(L"x, y) forallx, y in H.
IfL* =L, then L is called self-adjoint.
It can be shown that if L and L™ are linear operators in a Hilbert space for
which (x, Ly) = (L*x, y) for all x, y in H, then L is bounded and L* is the

adjoint of L. A special case (Hellinger and Toeplitz, 1910) is the following: if
L: H — H admits a matrix representation with respect to some orthogonal basis
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in a separable Hilbert space H, then L is bounded. For the converse, we have the
following.

Theorem A bounded linear operator L on a separable Hilbert space 4, L : H ~>
H, can be represented by a matrix.

Proof Let {ek} be an orthonormal basis for A. Then any x € H can be written
as

x= 2, xper with xx =(x, ex).
k=1

Furthermore, we have
Lx= 2 xp(lex) = 2 x (E Likei>
k=1 k=1 i=1
where Ly = (Leg, e;). Thus
Lx= 3 (E Likxk> e
i=1 k=1

can be represented in the usual way (as for linear operators in £”) with matrix
notation:

Lll le ng ........ X1 (Lx)l
L21 Lzz L23 ........ X2 (LX);
L31 ............... X3 = (Lx)3

..................

where Lx = E (Lx);e;.

i=1
The convergence of the various series involved follows from the continuity of
the bounded linear operator L. In particular, for all k¥ we have

> L |? <o

i=1

Definition
We can make the set of all bounded linear operators mapping a Hilbert space H
into itself into a linear space L(H, H) with

(aL, + bLy)x = a(Lx) + b(L,x).
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Exercise 74 Let A, be a sequence of bounded linear operators in L(H, H).
Suppose that 4 € L(H, H). Show that the following hierarchy of types of con-
vergence holds:

uniform convergence, A, = A iff (|4, —All—>0,
implies
strong convergence, An—>A iff Ayx—>Ax, Vx€H,
implies
weak convergence, A, ¥ A iff (Apx, h)—>(Ax, h), Vx, hE€H.

Important unbounded operators are usually densely defined, that is they are
defined on dense subsets of a given space. For example the differential operator
d/dt is densely defined in C[0, 1] by

x(t+h)—x()

(d/dt)x(t) = ;}1_.“}, P

for differentiable functions in C[0, 1]. This operator is an unbounded linear
operator. Since polynomials are dense in C[0, 1] by the Weierstrass approxi-
mation theorem, so are differentiable functions (which include the polynomials).

Note that the recursive generation of a sequence {x,,} which converges to the
unique solution of a linear operator equation (/ — 4)x =y given in Exercise 70,
with ||[4}i < 1, provides an iterative method for such problems. In the special case
that X = E” and 4 is an n-by-n matrix, it is called the Jacobi iteration method.
When applied to an integral equation such as in Exercise 71, it is usually called
Picard iteration.

We will now illustrate an application of the Neumann series and Picard
iteration to a class of initial value problems of a type which occurs frequently in
practical applied mathematics.

We consider a system of linear first order ordinary differential equations,
which can be written in vector form as

x'(t) = h(t) + M(t)x(z)

with given initial conditions x(z¢) = a.

We will suppose that h is a vector of real valued functions which are
continuous on the real line and that M is a matrix of real valued functions which
are continuous on the real line. Thus, for each ¢, suppose that h(t) is an
n-dimensional vector and M(¢) is an n-by-n matrix. The initial point x(¢o) = a is
also an n-dimensional vector. Such a problem includes, as a special case, when
h(t) is identically zero and M(¢) is a matrix of constants, a linear differential
system with constant coefficients such as occurs frequently in linear stability
analysis for vibrating structures and oscillating electrical networks. The following
method can be used for a detailed analysis of transient behaviour.
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We can rewrite such a problem as an integral equation

t
() = y(t) + f, M(s)x(s)ds

o
t
where y@t) =a + f h(s)ds .
Lo

This form, which is more suitable for application of the Neumann series method,
is obtained from the differential equation and initial conditions by integrating
both sides of the differential equation and applying the initial conditions.

If we can obtain a solution for ¢ in [z, ¢;], then we can continue the
solution beyond #; conveniently by making use of the so-alled ‘semi-group
property’ for initial value problems, that is,

t
x(t) = y(t:1,) + ft M(s)x(s)ds ,

t
where  y(;1,) = x(t;) + [ h(s)ds.

tl
In component form, the integral equation can be written

X0 = i) + [ C T My 6)ds,

1 j=1

4
where  y;(t;t1) = x;(ty) + ft hi(s)ds
1

andi=1,2,...,n.

Next, we can consider the first integral equation we wrote down above as
having the form x = y + Ax or (/ — A)x = y, where A is the linear operator
defined by

t
(4x)() = [ M(s)x(s)ds .
tb
We can regard A as a bounded linear operator on vector valued functions with

components in Cltg, t;], with t; > to to be determined. Using the usual
uniform norm in C|[to, t, ], we find that

tl
A< [ 7 IM@lids < 2y — 1) I,

Lo

with |Ix}} = max llx;]l and IM|| = max |IM(s)l| for s in [to, #,], where ||lx;|l =
1

max |x;(s)| for s in [to, t,] and IM(s)|| = max > |M;i(s)|. Note that we could
Lo
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also write |Ix|| = max (max [x;(s)[). Thus, we will have
to&s<t, i

<1 if (1, —20)IMI <1.

Let [a, b] be an arbitrary interval on the real line, then ||M]|, with the norm
taken over [to, t;] for to and ¢, in [a, b] is no greater than [Mlljg5) =
max |\M(s)|l for s in [a, b]. It follows that we can continue the solution, using
the Neumann series method, up to an arbitrary value b, from a given ¢y, since we
can go in steps of size 1/liMll[4,5 |, using the semi-group property, while keeping
4 <1.

A simple numerical example will help to illustrate the application of the
method. Consider the following scalar initial value problem:

x'(t) = 1+ x(r) withx(0)=1.
In this example, we have y(z) =1 + ¢, M(¢) = ¢, and

[Ax]) () = ftsx(s)ds.
0

It follows that, in C[0, t,], we have [IM|| = ¢, for t; > 0, and ||4|l < ¢}/2 =
j:' [{M(s)|ds = j:’sd& Thus, [l41l < 1if t; <+/2. Thus, for ¢ in |0, ¢, ] with
t; <+/2, we can put xo(#) = 0, and the iterations defined by

Xna () = y() + f'sx,,(s)ds, n=0,1,2,...,

)

will converge uniformly to the solution in [0, ¢,]. For the first few iterations,
we find

x1(t) = 1+1¢,

x3(0) = 1+t +22+413/3,

x3() = 1+t +22+3/3+14/8+15/15.
Since the solution satisfies

x=00-A)'y=(@+4+4*+.. )y,
and Xp = ([+A+4%+.. . +4M)y,
wehave x~x, = A™ (I+A4+4%+...)y.
It follows that

lx = x, I <HAN™E Qip N/ — ALl -

In particular, for t; = 1, we have ||4]| < 1/2 and so we obtain
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lx — x, 1l <(0.5)107%, forn>22, on [0, 1].

If we choose a smaller ¢, ,say #; = 0.1, then we will have faster convergence to a
given accuracy; in fact, for this ¢, , we will have

lx —x, I <(0.14)107%, forn=>2, on [0,0.1].

Thus, the iterative method can produce an approximation of arbitrary accuracy
at any point on the real line in this example. Of course, in order to go beyond
some f; <+/2, we would have to make use of the semi-group property and start
a new initial value problem with a solution value found in a previous interval.

To use such a method in practice, one would want to first decide on efficient
choices of steps in the continuation process, so that not too many iterations
would be needed in order to obtain the desired accuracy in each interval. We will
not pursue this interesting question here since it would lead to far afield from
our main subject.

In the simple numerical example just discussed, we can, of course, represent
the exact solution in the form

x(t) = exp(2/2) {1 + fo ' exp(—s2/2)ds}.

The same method, however, can be applied to much more complicated
examples, involving large systems of linear differential equations, for which no
such easy closed form solution exists. For a more formidable example, we
would, of course, program a computer to carry out the necessary computations.



CHAPTER 12

Completely continuous (compact)
operators

In this chapter, we introduce a large class of linear operators called completely
continuous (or compact) operators. They frequently occur in linear operator
equations. It is often the case that the Neumann series method cannot be applied
to such operator equations. Fortunately, there are other methods available for
such equations. We discuss two such methods in this chapter: eigenfunction
expansions and the Galerkin method. Further discussion of these and other
methods for linear operator equations can be found in the next chapter.

Two important types of completely continuous operators are Hilbert—
Schmidt integral operators and projections into finite dimensional subspaces. We
will concentrate on these in this chapter.

Completely continuous linear operators constitute a generalization of linear
operators in finite dimensional vector spaces. Both can be represented by
matrices, in the case of inner product spaces. In addition, we have the so-alled
‘Fredholm alternative’ for such operators, which is analogous to the following
situation for finite dimensional linear algebraic systems:

for (U—A)x=b,

only one of the following two alternatives is possible

1) there is a unique solution vector x for every b and (/ — A) has an inverse;
or

2) (I — A)x = 0 has a non-trivial solution and (/ — A ) is singular and +1 is an
eigenvalue of the matrix 4.

Let L be a bounded linear operator L :H - H with H a separable Hilbert
space. Recall that if {[L|| <1, then the linear operator equation (/ —L)x = y has
a unique solution for every y in H.

Another important class of bounded linear operators, with ||L|| not
necessarily less than 1, for which (/ — L)x =y has a unique solution, is the class
of completely continuous operators (also called compact operators). We proceed
to outline the theory of these operators and discuss computational methods
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based on the theory, including the method of eigenfunction expansions and
Galerkin’s method.

Definition

Let H be a separable Hilbert space. A linear operator L :H - H is completely
continuous (compact) if L maps weakly convergent sequences into strongly
convergent sequences (equivalently, if L maps bounded sets into relatively com-
pact sets — in the sense of strong convergence).

Exercise 75 Show that a completely continuous (c.c.) operator is necessarily
bounded. Show that the identity mapping on an infinite dimensional separable
Hilbert space is not c.c.

Examples

(1) It can be shown that if L : H -~ H, H a separable Hilbert space, has a matrix
representation (L ;) such that

2 Ly <eo,
ij

then L is c.c.
(2) Consider L : £,{a, b] = £, [a, b] defined by

b
L= [ K, )x()ds , 1€ [a, b].
a
The function X is called the kernel of the linear integral operator L.
b pb
If IK(2, s)1? dsdt < oo,
I e

then K is called a Hilbert--Schmidt kernel and L is called a Hilbert —Schmidt
operator. Such an operator L is bounded; in fact

b b 11/2
Ll < f |K(z, s)|? dsdr
U, S, e ssary
It follows that a Hilbert—Schmidt (H.—S.) operator has a matrix repre-

sentation with respect to any given orthonormal basis in L, (a, b] . It can be
shown that

b pb
2 Ll = f f iK(z,5)1? dsdr ,
i,j a Ya

1/2
s0 (Eu,-,-a’) <o,
i

It follows that an H.—S. operator is completely continuous.
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(3) Let G be a non-trivial subspace of a separable Hilbert space H. Thus g #0
for some g € G. Write H = G @ F; that is, h € H implies that h =g+ fwith
g €G and f € F and (g, f) = 0. Consider the particular projection operator

g :w-6¢cH

defined by Il ; h =g, where h = ¢ +fg€G, fEF,and (g f)=0.The
following are properties of Ilg:

1) g is a bounded linear operator and [[TIg |l = 1.

2) g isidempotent: g (Ilg h)=Hg h,¥VhEH.

3) g is self-adjoint, 15 = M.

4) If Gy and G, are subspaces of H, then

G2 C G, iff Mg, Al <|Mg, hll,¥hEH.

5) If G is finite dimensional, then Il; is completely continuous.

Exercise 76 Prove (1) — (5) above.

Exercise 77 We can define the product of two operators as the composition of
the operators; thus 4B is the operator defined by (4B)x = A(Bx). Show that if
A is c. c. and B is bounded, then AB and BA are c. c. Thus c. c. operators form
an ideal in the ring of bounded linear operators.

Exercise 78 If A is c. c. on an infinite dimensional separable Hilbert space, then
it does not have an inverse defined on the whole space. Why? It may have an
inverse on a dense subset of the space.

Next, we come to the spectral theory of c. c. operators.

Definition
Let A : H = H be a completely continuous linear operator on a separable Hilbert
space H. If

Ax = Ax forsome x #0in H, then

A is called an eigenvalue of A and x an eigenvector.

It can be shown' that:ac.c. operator A : H = H has only a finite number of
eigenvalues whose moduli exceed any given positive real number; if A4 is self-
adjoint, the eigenvalues of A are all real; the only possible limit point of the
eigenvalues of A4 is 0; corresponding to each nonzero eigenvalue of A4, there are
at most a finite number of linearly independent eigenvectors; any nonzero, c. c.,

¥ See N. I. Akhieser and 1. M. Glazman, Theory of linear operators in Hilbert spaces, Vol. 1,
Ungar, N.Y., 1966.
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self-adjoint linear operator A has at least one nonzero eigenvalue and a finite or
infinite orthonormal sequence of eigenvectors e, e,, . . . . belonging to the set
of its nonzero eigenvalues, [A;| = I\y| = [As12..... , such that, for each
vector y in the range of A (Ax =y for some x in H), y can be represented as

y= 2 (exek
k=1

AI
with lim lly— X (» ex)exll=0.
N—e k=1

If A isc.c., then /] — A4 has an inverse (/ — A)™' which is a bounded linear
operator on H iff + 1 is not an eigenvalue of 4 (iff (/ — A)x = 0 implies x = 0).

If 4 is c. c. and self-adjoint and if + | is not an eigenvalue of 4, then there is
a sequence of nonzero eigenvalues {Xk} and a sequence of orthonormal eigen-
vectors (also called eigenfunctions of A, if elements of H are functions), (e k} R
with Aeg = Ay ek and the linear operator equation (/ — A)x = y has a unique
solution x for every y in the range of A. The solution x can be represented by

x= ) crek,
k=1

and the coefficients ¢4 can be found as follows.
Weput (I—Ax=(—A) X ckex= 2 (. ex)ek;
k=1 k=1

thus, i ck(l —Ag)ex = i . ek ek .
k=1 k=1

Equating coefficients of e; on both sides, we obtain
k(1 =)=, ex) s

or k= ex)/(1 —Ng).

Thus, (/ — A)x = y has the solution
X = kE [, ex (1~ Ap)] e .
=1

Exercise 79 Show that a Hilbert—Schmidt operator is self-adjoint if its kernel is
symmetric (K (¢, s) = K(s, t)). Write the boundary value problem,

x"()+x()=e", x(0)=x(1)=0,

as an integral equationwith a H.—S. operator 4 in the form (/ — 4)x = y.
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Find the eigenvalues and eigenfunctions of A. Solve the equation for x in an
eigenfunction expansion.

If we can find the first N nonzero eigenvalues of 4, [\, | =X, = .. .2 Ay,

and corresponding linearly independent eigenvectors e;, ez, ...,ey, then we
can approximate the solution of (/ — A)x = y by projecting the eigenfunction
expansion into the subspace G spanned by {el, €y, ... ,eN}

N -
x= 3 [ el —Ap)lex = HGN ( 2 el —J\k)]ek>
k=1 k=1

Thus, the projection I1g,, produces just the first N terms of the series.
Exercise 80 Show that [|x —Ilg, x|l > Oas N—>oo,

There is another, more general, approach to obtaining approximate solutions
using orthonormal basis functions, known as Galerkin’s method, which we
describe now.

Let A:H = H be c. c., H a separable Hilbert space, and consider the linear
operator equation (/ —A4)x =y,y €H.

Let G, be an n-dimensional subspace of 4 and consider the related operator
equation

U —Tig, A)xn =Tig, y

where Ilg, is the projection of an element of H into G, and (Ilg,, A)x denotes
the composition I, (Ax).

Suppose that {e,, e,, .. .} is an orthonormal basis for H. Let G, be the sub-
space spanned by {e;, €,...,e,} . Then

n
chh= kz (h,ex)e, forallh€H.
=1

n

Put x, = 2, c,((") e, - We seek the coefficients cg"), e cfl") such that
k=1

n n
(I—HGnA) k§:1 c,(f")ek = kgl 0, ep)ey -

n

n
Now n(;nA > c,((")ek = Y c,((") H(;n (dey)
k=1 R=1

k§1 (c,((") > (Aey, el.)el.>.

J=1
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If we now form the inner products of e; with both sides of the operator

equation (/ — HG" A)x, = H(;n y and use the expression derived above, we
obtain the following n-dimensional linear algebraic system of equations to solve

(n) (n).
fore)™,. .. e
n
ci(") - kgl c,(c") e, e)=(.e), i =1,2,...,n
If we can solve this system for cﬁ") yeen ,cfl”), then we obtain an approximation

n
= (n)
x, 1§ cMe;

to the solution of  —A)x = y.

Variations of this method are variously known as the Rayleigh—Ritz method,
the method of moments, or simply variational methods. (See, for example,
L. M. Delves and J. Walsh, Numerical solution of integral equations, Oxford
University Press, 1974; 1. Babuska, M. Prager, and E. Vitasek, Numerical
processes in differential equations, Wiley, 1966. These references contain
discussions of error estimates for various Galerkin-type methods in Hilbert

spaces.)
If we call d, = x — xj,, and if ] — A is positive definite and bounded below,

(u,( —A)u) = b(u, u) foralluin H, for some b >0,

1/b) (dn, (I — A)dp)

then ldpli? = (dn, dy) <
< (1/b) lldp I — A)dy )l ;

(
(
thus ldnll =llx =x, Il (/b)) I —A)xp — ¥l .

If we can find an appropriate number b > 0, then we can evaluate an upper
bound on ||x — x, || after having found x,. In this way we can sometimes find
an a posteriori bound on ||[x — x, |l. For the number b, we can take 1| —||4]| in
the case that ||A}| <1, since we will then have

A—=14) , u) = (u, u)— Al (4, u)
S (4, u) = |(u, Au)|
< (U, u) — (u, Au)
< (#,u—Au) foralluin H.

Some of the results just discussed in Hilbert spaces can be extended to
Banach spaces.
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Definition
A linear operator 4 which maps a Banach space into itself is called completely
continuous iff it maps an arbitrary bounded set into a relatively compact set.

Example
In the Banach space C[a, b], an integral operator L of the form

L@ = [ K@ )x6)ds

is completely continuous if K(¢, s) is bounded for s, ¢t € [a, ] and K is
continuous on [a, b] X [a, b] except possibly on a finite number of continuous
curves. (See A. N. Kolmogorov and S. V. Fomin, Elements of the theory of
functions and functional analysis, Vol. 1, Graylock Press, 1957, pp 112—113).

If {4,} is a sequence of c. c. operators on a Banach space B and 4 is a
bounded linear operator on B, 4, : B = B and A : B = B, such that {|4,, — A||
- (,then 4 isalsoc.c.

IfA:B—>Bisc.c.and C: B~ B isabounded linear operator, then AC and
CA arec.c.

A spectral theory analogous to that for Hilbert spaces exists for c. c.
operators in Banach spaces.

The following is known as the Fredholm alternative.

Theorem Let 4 : B > B be a completely continuous linear operator, B a Banach
space, and consider the linear operator equation

(U—A)x=y, yEB.
Only one of the two following alternatives is possible:

1)  the equation has a unique solution for every y in B;and (I — 4) has
an inverse; or

2) (I — A)x = 0 has a nonzero solution; and (/ — A) is singular and 1 is
an eigenvalue of 4.

For a discussion of Galerkin’s method in Banach spaces with application to
the solution of Fredholm integral equations of the second kind, see: Y. Ikebe,
S.ILA.M. Review 14 no. 3, 1972, pp. 465—491.



CHAPTER 13

Approximation methods for linear
operator equations

In this chapter, we will discuss a number of methods for the approximate
solution of linear operator equations. In doing so, we will illustrate applications
of the concepts and techniques of functional analysis which have been discussed
in the preceding chapters. We will not attempt the most general treatment of
each method; but rather, we will illustrate each method on a specific type of
operator equation.

The methods will, for the most part, fall into two categories: (1) finite basis
methods, and (2) finite difference methods.

In later chapters, we will consider methods for nonlinear operator equations.

Suppose we wish to solve a linear operator equation Lx =y where L : C(0, 1]
- C[0, 1] is a linear operator for which L™ exists. Then a unique solution,
x = L'y exists for any y in C[0, 1]. It may be, however, that a representation
of L™ involves an infinite series. If we wish to obtain numerical values of the
solution, we will be limited to a finite number of arithmetic operations in
practical applications. Therefore, we are interested in methods which
approximate the exact solution, together with methods for estimating or
bounding the error in such approximations.

In a finite basis method, we choose a finite set of basis elements of C[0, 1],
say f1, f2,...,fn, and give a procedure for finding coefficients ¢;, ¢2,...,¢p
to obtain an approximate solution of the form

n

Xn = E ckfr -

k=1

Note that such an approximation provides a continuous approximation to the
solution, since x, € C[0, 1].

In contrast to this type of method, a finite difference method provides only
a ‘discrete’ approximation consisting of approximations to x(¢) on a finite set of
values of ¢, say t;, t,,...,t, in [0, 1]. Of course, with finite difference
methods, we can interpolate the discrete approximate solution to obtain a
continuous approximation. In fact, as we will see, this is one way to obtain
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bounds on the error in the discrete approximation using the methods of

functional analysis.
In the previous two chapters, we have already discussed three methods for

the solution of linear operator equations Lx = y, when L is of the form
L =1 — A, under certain conditions on 4. The first of these was an iterative

method based on the Neumann series when ||A |} < 1. The second and third were
the method of eigenfunction expansions and Galerkin's method. These latter
two can be viewed as finite basis methods (when we seek only the first N terms
of the eigenfunction expansion); for the second and third methods, 4 is assumed
to be a c. c. operator which does not have 1 as an eigenvalue.

The classical method of combining Fourier series expansions with the method
of separation of variables for certain types of boundary value problems for
parabolic type partial differential equations illustrates an application of the
method of eigenfunction expansions. Consider the equation (heat conduction,
diffusion, etc.)

u _ d*u ~ -
I =k P 0<t,0<x<L,
with boundary conditions, for constants uo and uy ,
u(0,t) = uy , t >0,
u(ll,ty=u; ,t>0,
and initial conditions
u(x,0)= g(x), 0<x<L.
We can make an easy change of variables so that the problem takes the form
U = Uxx , 0<t, 0<x<1,
with u(0,t) = u(1,t) = 0, t>0
and u(x,0)= f(x) = g(I.x)—uo —(ug, —tg)x, 0<x<1.
If we can find u(x, ), or an approximation to it, then we can construct
u(x, 1) = uo + (ug —up)x +u(x, t)
with t = L%*/k and x=Lx.
In the method of separation of variables, we put
u(x, t) = a(x)b(t).
Substituting this into the differential equation, we have
a(x)b'(t) = a"(x)b(r), or
a"(x)/a(x) = b'(t)/b(t), fora(x)#0 and b(r)#O0.
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Since x and ¢ are independent variables, we must have
a"(x)/a(x) = b'()/b(tr) = X (some constant).
This is possible if a(x) and b(¢) satisfy
a"(x) — Na(x) = 0 and
b'(t) — Ab(t) =0;
with boundary conditions
a(0)b(t) = 0, ¢t>0, and
a(l)b(t) = 0, t>0,

we will also have u(0,¢) = u(l,t) = 0, t>0.

Of course, a(x) = 0, 0 <x < 1, satisfies the differential equation for a(x);
however, unless f(x) = O for all x, this does not help us solve the original
problem.

For certain values of A, the problem

a"(x) — \a(x) = 0
a(0) =a(l) =0

has non-trivial (not identically zero) solutions, namely when
A= —(Gkn)?,k=1,2,3,.....

In this case, a(x) = sin (knx) satisfies the differential equation and the boundary
conditions.
A corresponding solution for b(¢) satisfying

b'(t) + (km)?*b(t) = 0

is b(t) = e k™’ p0).
We find, thus, that

u(x, £) = b(0)e *™* sin (knx), k=1,2,3,...,
satisfies Uy = Uy, u(0,2) = u(l,1) = 0

for arbitrary b(0).

Note that we can look upon the functions sin (kmx) as eigenfunctions of the
linear operator D*x = x " acting on twice differentiable functions which vanish
at 0 and at 1, corresponding to the eigenvalues A = —(k7)? ,k =1,2,... .

Any linear combination of functions of the form above, say

u(x, 1) = br e ®™* sin (knx)
k=1
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is also a formal solution of
Uy = Uy , u(0,t) = u(1,t) = 0.

There is one further condition to be satisfied for a solution to the original
problem, namely the initial condition u(x, 0) = f(x), 0 <x < 1. This is possible
for the formal solution given above, if there exist constants b, b,, . . . such that

E by sin(knx) = f(x), 0<x<1.
k=1

Suppose now that g(0) = up and g(L) = uy, then f(0) = f(1) = 0. In this case,
we can find an extension of f to the interval [—1, 1] such that f(—x) = —f(x)
forxe [0,1].

We know that the functions 1, sin (k7x), cos (knx), k =1,2,..., forman
orthonormal basis for £,{—1, 1]. Furthermore, we have (f, 1) = 0 and (f,
cos (kmx)) = 0 for this odd extension of f. Therefore,

fx) = i (f, sin (knx)) sin (kmx)
k=1
forevery f€ L,[—1, 1] with f(0) =f(1) = 0 and with
1
(u,v) = -[1 u(t)v(r)dr.

It is not hard to show that the functions +/2 sin (kmx), k = 1,2, ..., form
an orthonormal basis for £, [0, 1] N{f:£(0) = f(1) = 0}. Thus, if g(x) in the
original formulation of the problem is continuous with g(0) = u, and g(L) = JL,
then

u(x, 1) = uo + (uy —uo) (x/L) + u(x, 1)

is the unique solution to the problem with
- — 1
x =x/L and t = kt/L* and with by =2 f f(x)sin (kmx)dx .
()

At t = 0, the series converges pointwise to a continuous function f(x) for every
x in [0, 1]. If we truncate the series for u(x, r) at kK = V, we obtain the approxi-
mation

uy(x, 1) =uo + (U —uo) (x/L)
N
+ X by exp(—(km)? kt/L?)sin (knx/L) .
k=1

Forany t >0, un(x, 1) converges to the solution u(x, r)forall 0<x<L.
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Exercise 81 For a fixed 7, we can view uy and u as elements of £, [0, L] . Find
an upper bound on || - - u, |l as a function of 7.

Exercise 82 Show that the two-point boundary value problem
a"(x) — Aa(x) =
a(0) = a(1)=0

can be written as an integral equation of the form
1
ax) = N [ K(x, na(r)de
0

with a Hilbert—Schmidt kernel K(x, ). Show that the integral operator has
eigenvalues —1/(km)?, k = 1,2, . .. and corresponding eigenfunctions sin(kmx);
that is, we can write the integral equation as [4 — (1/A)/] a =0

1
where Aa)(x) = f K(x, t)a(t)dr .
0

Thus, 4 : £, [0, 1] = £, [0, 1] is self-adjoint and c. c. and does not have +1 as
an eigenvalue. Show that 4 has an inverse defined on a dense subset of £, [0, 1].

For an application of separation of variables and eigenfunction expansions to
a partial differential equation of elliptic type with a moving, nonlinear boundary
condition, see: R. E. Moore and L. M. Perko, ‘Inviscid fluid flow in an
accelerating cylindrical container’, J. Fluid Mechanics 22, part 2, 1965, pp.
305-—320. See also Chapter 20.

Concerning rates of convergence of series expansions for orthonormal bases in
separable Hilbert spaces, we have the following.

Let {e,,} be an orthonormal basis in £;[a, b]. For any f € £,[a, b], we have

o0 b
f=3 anen with ay=(fren) = [ f(Den(0)dt,
n=1 a

meaning that

=0, (Ixll = (x, x)!/2) .

lim
N—ooo

‘f" 2 an en

First of all, for any fin L;[a, b], we have

Iz = Z: a: and

N N
“f_ E ap ép <f - Z an en, f— Z an en>
n=1 n=1
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N N

= IfI* — 2 E an(f, en) + E ay
n=1 n=1
N
=fI? = 3 4}
n=1

> ap.

n=N+1

o 1/2
= > a4} =0.
n=N+1

The rate at which a, tends toward zero will determine the rate at which the
partial sums converge toward f in the Hilbert space norm. We can get an
indication of the dependence of these rates on the smoothness of the function f
as follows.

For the orthonormal basis {e,} with

N
Thus, l‘f — D aney
n=1

1

en(t) = e2mt i=v—1, (en, ) = f en(t) ex(r) dt,
()
in £, [0, 1] over the complex scalar field, we have

hnd . 1 .
1) = E a, 2™ g = f f(r) e 2™t qr |
()}

n=-oo

and, if f has k continuous derivatives, then f(k) is in £, [0, 1] and, by k-fold
formal differentiation of the series for f(¢), we obtain

e = 3 (i2nn)* a, e?™

n=-oo
From (i2mn)X a, =0, we have a, = o(n'k).
If the function f satisfies the periodicity properties

90y = rP), j=1,2,3,..., k-1,

then, by k-fold integration by parts, we obtain

1 . 1 .
(@2nnfan = [ fO@ e g = Gannyt [ foe i s,
o °

In this case, the formal differentiation process produces the correct coefficients
for f8)(z).

For other (non-periodic) functions and other orthonormal bases, we may
have different rates of convergence.
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Exercise 83 Show that the two-point boundary value problem
x"()+ a(t)x(t) = b(t)
x(0)=x(1) =0

has a unique solution in £, [0, 1] for any b in £; [0, 1] if a is continuous in
[0,1] and max [a()| <m?. See Exercise 82.
t€(0,1)

Next we will discuss and compare some methods for solving linear operator
equations of the form (/ — A)x = y where 4:X = X is a bounded linear
operator on an appropriate normed linear space X. Although it is not the most
general condition under which the methods can be applied, we will make the
additional assumption ||4]| < 1 in order to simplify this introductory discussion
of a number of comparable methods.

We have already seen (Exercises 71, 82, 83) that we can put the two-point
boundary value problem

x"(t) + a(t)x(t) = b(r)
x(0)=x(1) =0

into the form (/ — A)x = y, with an integral operator 4 such that [|4}] <1
provided that |a(r)| is not too large. We can also put the initial value problem

x'(t) = M(t)x(t) + b(t), 0<t<T,
x(0) € E",
with M(¢) an n-by-n matrix and b(z), x(r) € £, for T not too large, into the
form (/ —A)x =y for |4l < 1;in fact,
t t
x(0) = x0) + [ b@)ds + [ M(s)x(s)ds
0 0

by integrating both sides of the differential equation and incorporating the
initial condition. We can put this into the form (/ —A4)x = y by defining

y(@t) = x(0) + fo " b(s)ds

t
(4x) (1) = [ ME)x(s)ds .
0
If T is small enough so that
T su M1
tG{OI,)T] M@l

then |l4]| < 1, if we operate in the linear space of continuous mappings of
[0, T] into E” with a suitable norm.
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The operators 4, with 41| < 1, arising in the above ways are completely
continuous.

We will discuss, in the remainder of this chapter, two types of finite basis
methods, Galerkin-type methods and collocation methods, as well as finite
difference methods for the approximate solution of problems of the two classes
mentioned above (two-point boundary value problems and initial value problems
for ordinary differential equations). Viewed in their integral equation forms, the
problems are called Fredholm integral equations of the second kind or Volterra
integral equations (for the integral equation formulation of the initial value
problem).

I) Galerkin’s method in Hilbert spaces

Consider 4 : H > H with A as an operator of one of the types described above,
where H is a separable Hilbert space of suitable functions. Choose {e ,~} to be an
orthonormal basis for H. Put

n
x = > cf.") e
i=1
and find clgn) fori=1,2,...,n by solving the finite linear algebraic system
) _ 3 ) .
e — ,21 clgn e e) = () k=1,2,...,n.

Further details of the method depend on the choice of the {ei}.

Exercise 84 Let H be the RK.H.S., H") described in Chapter 9. Assume that
T = 1 satisfies the required condition for the initial value problem. Let 0 <¢;, <
t; <...<t, < 1. Discuss the Galerkin method for ¢; = R,i, i=1,2, ...,n
and also fore; = ARy, i = 1,2, ..., n for each of the two classes of problems
(initial and boundary value problems).

II) Collocation methods

Consider 4 : X - X with A as before and where X is a suitable normed linear
space. Choose the finite elements e,, e,,...,e, to be linearly independent
elements of X. Put

n
xM = > c}")ei
i=1

with c}"),i= 1,2,...,n,to be determined from
[ —)x D] (tx) = p(tx), k=1,2,...,n
forsome 0<¢, <1, <...<t,<I.



82 Approximation methods for linear operator equations [Ch.

Thus, the coefficients are to be found by solving the finite linear algebraic
system

> e,(t,)— (e) (1) = y(t), k=1,2,....n.
i=1

Exercise 85 Show that if X = H() as in Exercise 84, then with ¢; = Ry, the
Galerkin method is also a collocation method.

For a discussion of such methods in the R.K.H.S. described at the end of
Chapter 9, with high rates of convergence, see: G. Wahba, ‘A class of approxi-
mate solutions to linear operator equations’ J. Approx. Theory 9,61-77,1973.

Exercise 86 Let X = C[0, 1]; suppose that y" € C[0, 1] and let e;, i =
1,2,...,n be the so-called ‘hat functions’t
0 fort <tj, or t=tp .
eit) = <t —t; )ty —tiy) for t;y <t<t;,
(tisg —/(tiny —ty) for ; <t<tyy ,
Withto =0<t; <ty <...<tn <1=tps .

Let {c,(")} be determined by the finite linear algebraic system for the
collocation method. Find an error bound (upper bound) on

flx —x My = sup  {x(t) —x(")(t)l .
1€[0,1]

III) Finite difference methods

We can find approximate solution values {x(f;)} on a finite set of arguments
{t,, t2,...,ty} for problems in differential or integral equations by replacing
derivatives by difference quotients and integrals by finite sums. For example, we
can approximate x '(¢;) by

[x(¢; + h) —x(t))] /h , ‘forward difference scheme’,
or by [x(t; + h) —x(t; —h)] [2h), ‘centred difference scheme’.
We can approximate x "(¢;) by

[x(t; + k) — 2x(t;) + x(t; — h)] [h* ;and we can approximate

b n
[ fdr by 3 wif)
a j=l

t This is an example of a so-alled finite element method’, in which the basis functions
vanish outside some finite (bounded) domain.
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for some set of ‘weights’ wy, w,,...,w, and arguments t;,...,t,. We can
also approximate partial derivatives by difference quotients; thus, for example,
we can approximate the Laplacian, uyy + uy) , at (x;, y;) by

[uCx; + b, yj) = 2u(x; yj) +u(x; —h, y;)] [h*
+ [uCes, yj + k) — 2u(x;, yj) +u(x;, yj — k)] [k*

For an excellent treatment of finite difference methods in differential
equations which combines techniques of classical analysis and techniques of
functional analysis, see: [. Babuska, M. Prager, and E. Vitasek, Numerical
processes in differential equations, Interscience, N.Y., 1966. Finite difference
methods for integral equations are usually called ‘quadrature methods’, see:
P. M. Anselone, Collectively compact operator approximation theory and
applications to integral equations, Prentice-Hall, N.J., 1971.

For a linear initial value problem or a linear boundary value problem in
differential equations or for a linear integral equation, by replacing derivatives or
integrals by difference quotients or by finite sums, we will obtain a finite
dimensional system of linear algebraic equations for the approximate solution
values at a finite set of argument values. If the matrix of coefficients of the
resulting system is non-singular, we can find (or approximate) the unique
solution for the approximate solution values by Gaussian elimination or other
means.

We can find error bounds on the discrete solutions obtained from finite
difference methods in a variety of ways. One approach is to analyze the effect of
the approximation of the derivatives by finite difference quotients (and integrals
by finite sums) upon errors in the solution by using comparisons of finite Taylor
series expansions with remainder terms in mean value form or in integral form.
Another approach is to interpolate the discrete solution with a piecewise linear
continuous function (or a smoother interpolating function such as a cubic spline
function, etc.). We can then take the interpolating function to be the xo in an
iterative method for solving the problem in integral equation form and obtain
error bounds by the method for analyzing the convergence of the partial sums in
a Neumann series.

To illustrate, suppose that 4 :C[0, 1] — C[0, 1] with ||4|l < 1. Let x0(¢t)
interpolate the values of a discrete solution of a finite difference equation.
Suppose that we can put the original problem in the form (/ — A)x =y for y
in C[0, 1]. Then we can consider the iterative scheme Xps1 =Y +Axp,p=0,
1,2,...and we can obtain bounds on the errors in xo(¢;) as follows.

Suppose that the finite difference method produces numerical values x;,
i=1,2,...,n, approximating the exact values of the solution x(¢;). The exact
solution satisfies x = y + Ax. We suppose that xo(¢;) = x; for all i, and that
X0 € C[O, 1 ] .

The norm in C(0, 1] leads to the result
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Ix; —x(t)|<llxo —x|l foralli=1,2,...,n.

In order to bound the right hand side of the above inequality, we can proceed
as follows. From

x = y+Ax, and
x; =y +Ax,,
we obtain |lx —x; I <A llx —xoll .
Now X—Xg = X—X; +tx; —Xo,
s0 llx —xoll <llx —xy Il + lIx; —xoll .
Combining the two inequalities above, we obtain
lx —xo I <(llxy —xol)/ (1 —NAI).

Furthermore, if we can compute x; and bound |lx; — xoll, we will have the
sharper bound (since ||4 || < 1) on the error in x; :

Ix —xy I< [N HIxy —xoll] /(1 — 1Al .

For a specific example of the above procedure, consider the following initial
value problem:

x'(t) = tx(t)+2
x(0) = 1.

We can apply a finite difference method to obtain an approximate value of the
solution at ¢ = 0.1. Suppose that we obtain x = 1.2057 by some finite
difference method as our approximation to the exact solution at ¢ = 0.1. We
now wish to bound the error in x.

From the given differential equation, we find that the exact solution must
have an initial slope of x '(0) = 2. Thus, we can look at quadratic polynomials of
the form p(t) = 1 + 2¢ + at?, all of which satisfy the given initial condition
x(0) = 1 and agree with the initial slope of the solution. We can solve for the
value of a for which p(r) agrees with x when ¢t = 0.1. We find the value a =
0.57. Thus, if we put xo(r) =1 + 2¢ + 0.57¢2, then x,(¢) interpolates the finite
difference solution at + = 0.1 and is an element of C[0, 1]. Actually, in this
illustration, since we are only interested in what happens for ¢t up to 0.1, it is
better to regard xq and x as elements of C[0, 0.1] with the norm

Ixll= max |x()l.
te[0,0.1]
In this way, we can find sharper bounds on the error in an approximation to the
solution at t+ = 0.1. We do not have to bound anything that goes beyond the
point t =0.1.
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We can rewrite the initial value problem in the form U —Ax = y py
integrating both sides of the differential equation and applying the initial
condition; thus, we have
t
x@) = 1+2t+ [ sx(s)ds.
0
Now, we put y(t) = 1 + 2¢ and define the linear operator A by

(Ax) (1) = ft sx(s)ds .
()

Thus, wehave x=y+Ax or (/—A)x=y asdesired.
For the operator 4 : C[0,0.1] = C[0, 0.1] defined above, we find that

t
[lIAll= sup max ’
Ixii=1 <ze[0,0.1] fo sx(s)ds

> < 0.005 .

Fromxo(t)=1+2¢t + 0.57t2, using x, =y + Ax,, we find

x ()=1+2t+1*/2+2t3/3+0.57t* /4.
It is not difficult to show that
Ixy —xoll= max  |x,(¢) —x0(#)] <0.00012.
t€[0,0.1]

It follows that
llx —x0 1 <0.0001206

and llx —x; |l <0.00000061 .

In particular, we have found that, for x = 1.2057, we have the error bound
|x —x(0.1)| < 0.0001206 ;

and for x,(0.1) =1.2056809, we have
{x;(0.1) —x(0.1)| < 0.00000061 .

Thus, the exact value of the solution at ¢ = 0.1 satisfies

1.205680 < x(0.1) <1.205682 .

The best existing mathematical software for initial value problems in ordinary
differential equations is discussed in: G. Corliss and Y.F. Chang, Solving
ordinary differential equations using Taylor series, ACM Transactions on
Mathematical Software, Vol. 8, No. 2, 1982, 114—144.
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Exercise 87 Consider a linear Fredholm integral equation of the second kind
b .
) = [ K IOy = g).
a

Discuss methods of Nystrom type (also known as quadrature methods) for this
equation:

1) choose a quadrature formula for approximating integrals, of the form

b n
[ hdy = T wik()) + En()
a /':l
with E,(h) =0 as n—>oo;
2) obtain an approximate solution to the integral equation of the form

n
fa(x) = 8x) + X wiK(x, 7 fa()
J=1
by solving the linear system

n

LD =ew) + X wiKOi )M, i=1,2,...,n,

j=1

forf,(y;),i=1,2,...,n.
Obtain an upper bound on || f — f,, || in an appropriate function space. Discuss
conditions under which the method converges.

It should be pointed out that finite difference methods are not restricted to
linear operator equations by any means. There is, in fact, an enormous literature
on finite difference methods for both linear and nonlinear problems in ordinary
and partial differential equations. Much of the analysis of such methods,
however, is based on classical real analysis and not on functional analysis
(although some of it is). In any case, we will leave this subject, important as it is
to numerical solution of various problems in operator equations, to other works.
It is, in the opinion of the author, outside the scope of this introductory volume
on numerical functional analysis.



CHAPTER 14

Interval methods for operator equations

Recall, from Chapter 10, the definitions of interval valued mappings in partially
ordered spaces of functions, set valued extensions, united extensions, etc.

We will illustrate, in this chapter, the application of the theorem in Chapter
10 to the construction of nested sequences of intervals of functions containing
exact solutions to operator equations. The methods will apply to nonlinear
operator equations as well as to linear operator equations.

In later chapters we will discuss other methods for nonlinear operator
equations.

For an introduction to the methods and results of interval analysis, see:
R. E. Moore, Methods and applications of interval analysis, SIAM Studies in
Applied Mathematics, SIAM, Philadelphia, 1979.

For the methods to be discussed in this chapter, some additional background
material is needed. Specifically, we will use interval arithmetic and interval
integration.

Interval arithmetic operations are defined as the united extensions of real
arithmetic operations to pairs of intervals. Thus,

[a, 6]+ [c, d] = {x+y:x€[a,b],y€[c,d]}

= [a+c, b+d],
[a, b1 —[c, d] = {x—y:xE[a,b],yG[c,d]}
= [a—d,b—c],

[a, b] [c, d] {xy:x€[a,b],yElc,d])
[min(ac, ad, bc, bd), max(ac, ad, be, bd)) ,
{x/y :x €[a,b],yE[c,d])

= [a, b] [1/d,1/c] for O & [c,d].

Il

and [a, ] /¢, d]

With these definitions, we can carry out sequences of arithmetic operations on
closed, bounded intervals on the real line as long as division by an interval con-
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taining zero does not occur. A more general definition of division by an interval
exists and has important applications to root finding and to optimization
(mathematical programming), but it will not be needed here. By identifying a
real number with a degenerate interval [g, a], we can see that these definitions
of interval arithmetic operations are, indeed, extensions of ordinary real
arithmetic operations. For a study of properties of this arithmetic system, see
the reference given above in this chapter. It is important to remember that, for
an interval [a, b], we always have a <b.

If f and g are two real valued functions on a domain D, we write f < g iff
f(1) <g(¢) for all ¢t in D. We denote by [f, g] the interval of functions 4 such
that f(¢+) < h(t) <g(t) for all t in D.

Now let f and g be real valued functions, defined on an interval [a, b] of real
numbers, and such that f < g. Let F be the interval valued function defined by
F(t) = [f(¢), g(t)]. The definition of interval integration we will give can be
extended to functions with values on the extended real line, but we will not use
this here. See: O. Caprani, K. Madsen, and L. B. Rall, ‘Integration of interval
functions’, SIAM J. Math. Anal. 12, 321-341 (1981). We define the interval
integral (integral of an interval valued function, in general interval valued itself)
of F over [a, b] by:

_f;b F()dt = [_j;b f(t)de, j‘;bg(t)dtjl ,

where the integrals on the right hand side of the definition are the lower
Darboux integral of f and the upper Darboux integral of g. These integrals exist
for any real valued functions fand g.

It can be shown (see reference in the above paragraph) that if F itself is real
valued (degenerate interval valued), then the interval integral of F is a real
number if F is Riemann integrable; otherwise the integral may be interval valued.

It is important to mention some properties of the interval integral. First, if
h € F (that is, h(t) € F(t) for all ¢ in [a, b]), then, for the real valued function A,
we have

b b
[“hware [ Fayar
a a
where the integral on the left can be regarded as either a Riemann integral or a
Lebesgue integral (if these exist), or even as an interval integral for A(z) = [h(?),
h(t)]. Second, if F and G are two interval valued functions with F C G (that is,
F(t) CG(r)forall tin [a, b]), then
b b
[ Fndrc [ Goar.
a a

Thus, interval integration preserves inclusion.



14] Interval methods for operator equations 89

Let s be a positive real number. Since we identify s with the degenerate
interval [s, 5], it follows from the definition of an interval product that s[a, b]
= [sa, sb] for any interval [a, b]. Now let Ao, 4;,...,A4p be intervals of real
numbers. Consider the polynomial P(t) = Ag + At + ...+ 4, t", where tisa
real variable. We can integrate such a polynomial with the definition of an
interval integral given above and obtain the explicit representation

X
[T P()ar = Aox + A x? 2+ .+ Apx™ fn + 1), x>0,
0
Let us now reconsider the initial value problem discussed at the end of the
previous chapter
x'(t) = tx(t) + 2
x(0) = 1.

We rewrite this, as before, as the integral equation
t
x(t) =1+ 2t + f sx(s)ds .
0

It is clear from the initial value formulation of the problem that there is a unique
solution for all real ¢ (from the elementary theory of differential equations). In
fact, the solution is

t
x(¢) = exp(t?/2) (l+ 2 f exp(—s2/2) ds).
)
In any case, we can expect a power series for the solution (expanded about
t = 0) to begin with the terms
x(t) = 1+2t+ct?+...

for some c.
With this much inspection of the problem, we choose an interval polynomial
of the form

Xo(t) = 1+ 2t+[a, b]t?,

for some interval [a, b] to be determined; we define the interval operator P by

t
PX)y(t) = 1+2t+ f sX(s)ds ; and we compute
()

P(Xo)(t) = 1+ 21+ fo's(1+2s+[a,b]s2)ds

= 142t +122+(2/3)t> + [a/4, b/4] 1* .
We will have P(X,) (£) C Xo(2) if
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1420+ 122+ (2/3)t® + [a/4,b/4]t* C 1 + 2t + [a, b] 12.
The inclusion above will hold if

1/2 + (2/3)t + [a/4,b/4]t? C[a, b].
It follows that we will have

P(X,) (t) C Xo(t) forallzin [0,0.1]
provided that

a<3 and 0.56808688... <b .

We can takea = —;— and b = 0.56808689; then we find that P(X,) (t) C X, () for
all ¢ in [0,0.1] . It follows from the theorem in Chapter 10 that if the solution is
in Xo(¢) it is also in P(X,) (¢) for ¢ in [0, 0.1]. In fact, it is not hard to show
that, for this example, the solution is in X (z) for the chosen values of 2 and b
for all r in [0, 0.1]; see section 8.1 of the first reference in this chapter. It
follows that the solution satisfies

x(t) EP(Xo) (1) C 1 + 2t +£2/2 + (2/3)® + [0.125,0.142022] £*

foralltin [0,0.1].
In particular, we find from this method that

1.205679 <x(0.1) < 1.205681 .

Compare this result with the one obtained at the end of the previous chapter on
this same example. The two results, obtained by quite different methods, are
comparable.

We could, in fact, intersect the two intervals and conclude that 1.205680 <
x(0.1) < 1.205681. Such an operation is quite typical of the approach of
interval analysis.

We can continue the interval valued function we have found, containing the
solution, beyond ¢t = 0.1. From x () = tx(t) + 2, we have

x() = x(0.1)+2(t —0.1)+ j;)tl sx(s)ds .

Now let Ay = [1.205679, 1.205681] , the interval we have already found which
contains x(0.1). Let X (¢) be the interval polynomial

Xo(t)=Ao +2(t—0.1)+ [a, b] (t —0.1)*,
with [a, b] to be determined, if possible, so that

P(Xy) (1) C Xo(2) foralltin,say, [0.1,0.2],

where we put
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P(X) () = Ao +2(t —0.1) + f' sX(s)ds .

0.1
Evaluating the interval operator P for X = X, , we obtain
P(Xo)(t)=Ao + 2(t —0.1)+ (A0/2) (t — 0.1)? +(2/3)(r —0.1)
+ [a/4,b/4] (t —0.1)* .

We find that P(X,) () C Xo(z) for all ¢ in [0.1, 0.2] provided that a <
0.6028395 and 0.67118513 < b. It follows that the solution satisfies

x(t) € [1.205679, 1.205681] + 2(t —0.1)
+ [0.6028395, 0.6028405] (¢ —0.1)?
+(2/3) (t —0.1)* + [0.15070987, 0.16779629] (¢ —0.1)*
for all ¢ in [0.1,0.2]. In particular, we have
1.412389 < x(0.2) < 1.412393 .

Exercise 88 Verify the above calculations and then use the same procedure to
extend the interval bounds on the solution to the interval [0.2,0.3].

It is easy to show that interval arithmetic is inclusion isotone. From this and
from the fact that interval integration preserves inclusion, it follows that the
sequence of interval valued functions defined by X4, (£) =P(Xy) (¢),k=0,1,
2,...is a nested sequence provided that P(X,) (£) C Xo(¢) for all ¢ in some
interval [t;, 5], where P is either of the interval operators defined for the
example above for the intervals [0, 0.1] or [0.1, 0.2]. In fact, it can be shown
that, for the two sequences of real valued functions {Xx} and {Xr} where
Xi(®)=[Xr(@), Xx(t)], we have the following:

1) the solution of the initial value problem satisfies
X () <x(t) < Xi(r)forall tin [z, 1] and all k;

2) the sequence {/_\’ k(t)} converges pointwise to x(#) and is monotonic
increasing;

3) the sequence {X(f)} converges pointwise to x(¢) and is monotonic
decreasing.

Similar results can be obtained for a very large class of initial and boundary value
problems, both linear and nonlinear, as shown in the first reference in this
chapter. We will illustrate the method further by giving additional examples.

In the preceding example, we made use of a property of interval arithmetic
which was not explicitly stated, namely the cancellation property of interval
addition: if A + X = 4 + Y for intervals A, X, and Y, then X = Y. This
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property, which follows directly from the definition of interval addition, also
implies that if A + X CA + Y, then X C Y. The latter implication has been used
several times in the previous example.

Another comment which might be in order is this. To say that interval
arithmetic is inclusion isotone means that, if X C X' and Y C Y', then

X+ycx'+vy',

X-ycx'-v',
XYcx'y', and
xycx'y'.

Note that if 0 € Y' and Y C Y', then O & Y. These properties also follow
directly from the definitions of the interval arithmetic operations.
Consider next the following two-point boundary value problem.

x"(t) + exp(—-t2)x(t) =1
x(0)=x(1)=0.
By integrating twice and imposing the boundary conditions, we can rewrite this

problem as the following integral equation

x(t) = t(t—1)/2+ fts(] 1) exp(~-s?) x(s)ds
]

1
+ [ (1 —s)exp(~s?) x(s)ds .
t

Using the Taylor series with remainder, we can write down interval poly-
nomials which contain the exponential function as follows. For all s in [0, 1]
and for any integer k >0,

exp(—s*) EAk(s) = 1—5* + ...+ (—s))¥/k!

+ {(=sH) Nk + 1)1} e, 1].
Note that the last term has an interval coefficient. The result just given follows
from
k .
e =3 (—u)i! + {(—w)¥*' j(k +1)!} e~V for some v € [0, u]
i=o
by putting u = s> withs € [0, 1], and replacing v by [0, 1].
We now define the interval operator P by

P ©) = 1~ 12+ [ (1~ )Ak(s) X (s)ds
0
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+ ftl t(1 — 5)Ax(s) X (s)ds .

We seek an interval valued function X such that
Pr(Xo) (£) € Xo(?) forallzin [0, 1].

From a result in a previous chapter, we know that a solution does exist since

max Ie“'2 | < 8. (See Exercise 71.)
te[0,1)

In the computations for this problem we will need the following additional
properties of interval arithmetic; see the first reference in this chapter. For
intervals 4, B, and C, we have the sub-distributive property A(B + C) C AB +
AC. Furthermore, for a > 0, we have a4 + aB = a(A + B);and, fort € [0, 1],
we have tC+ (1 —)C=C.

Exercise 89 Show that we can take, for Xo(z), the constant interval valued
function Xo(f) = [—4/27, 0] and satisfy the requirement that Pr(X,) (f) C
Xo(¢) forall zin [0, 1] when k =0.

For k = 0 we find that Po(X,) (£) C [71/81, 96/81]t(t — 1)/2; and, there-
fore, Po(Xo) (2) is contained in X () if we take X (2) to be the constant interval
valued function [—4/27, 0] for all # in [0, 1]. Even with this very crude
approximation to the exponential function, we obtain the result that the exact
solution value at ¢t = 0.5 satisfies 0.109 < x(0.5) < 0.1482. By iterating X;,;(?)
= Pi(X;) (¢) and by using higher values of k for the series approximation A (¢)
to the exponential, we can obtain arbitrarily sharp upper and lower bounds to
the exact solution for all #in [0, 1].

We next consider a nonlinear initial value problem. We add the further
complications of data perturbations and a right hand side that does not satisfy
the usual Lipschitz condition required for a unique solution. Nevertheless, the
same method we have been discussing applies and will find an interval valued
function containing all the solutions in a single interval computation.

We consider the initial value problem
y' =t +yb y0)=a,
where all we know about g, 5 and ¢ is that

0<a<0.1,02<b<038,and 3.3<c<36.

Note that the right hand side of the differential equation does not satisfy a
Lipschitz condition in y when a = 0.
We can write the initial value problem as an integral equation

yo =a+ f " (es? +y(5)P)ds .
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Thus, we define the interval operator
t
P (D) = [0,01] + [ {[33,36]s> +Y(©)!*2°%%) ) ds.
0

We let Yo(¢) = [0, B] for all ¢t in [0, £;] with B > 0 and #; > O to be
determined, if possible, such that P(Y,) (1) C Yo(¢) forall tin [0,¢,].
Now we define

[0,B][02:0:38] = {yb.}€0,B],b€E [02,0.38])
[0,B°?], 0<B<]1
[0,B°3%%], 1<B.

Il

Similarly, for the interval valued function Y(s)[92°38] which occurs in the
integral above, we put, for Y(s) = [Y(s), Y(s5)],

Y(s) = {»*:y€Y(),b€[02,038]}

[Y(5)°%8, Y(5)°2] if O<SY(s)< Y(5)<1,
= ¢ [Y(s)°3%, ¥(5)°%%] if 0<Y(s)<1< ¥(s), and
[Y()°?, Y(5)°28] if 1< Y(s)< ¥(s).
We find that
P(Yy) (1) = [0,0.1] + [1.1,1.2]¢% + [0, B] [0:2:0-38]

for Yo(t) = [0, B].

If we take B = 1, we find that P(Y,) (£) C Yo(2) for all ¢ in [0, ¢,] if ¢, is
any positive number such that t; + 1.2¢} <0.9.

The above inequality is satisfied, for instance, when t; = 0.6. We can
conclude every solution of the initial value problem with g, b, and ¢ in the given
ranges of values satisfies

1.113 <y(t)<0.1 + ¢+ 1.2¢3 for all ¢ in [0, 0.6] .

The bounds can be sharpened by iterating Y ,,(t) = P(Yx)(t),k=0,1,2,....
Furthermore, we can continue the bounding interval function beyond ¢t = 0.6 by
restarting the initial value problem at ¢t = 0.6 with whatever interval value we
find for Y%(0.6).

As another application of the interval method we have been discussing, con-
sider the hyperbolic partial differential equation uyy =1 + u(uy + u,). Suppose
we seek a solution which satisfies the conditions u(x, 0) = u(0, y) = 0. We can
rewrite the problem in the form of three integral equations as:

we= [ " (A ue, ) @07+ ua(x, D))y
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X
) = [ (+u@y) @)+ y))dz, and
0

u(x, y) = J;x j;y (1 +u(z, r) (uy(z,r) + ua(x,r))drdz ,

where u; (x, ¥) = ux(x, y) and u,(x, y) = uy(x, y). Using interval methods, we
can find upper and lower bounds on the solution in the positive quadrant
x,y 20, or in some part of it.

We can interpret the three integrals on the right hand sides of the integral
equations above as interval integrals defining operators Py, P,, and P, mapping
interval valued functions into interval valued functions. Motivated by the forms
of these three operators, we put U,(x, ¥) = [a, b]y, U,(x, y) = [a, b] x, and
U(x, y) = [a, b] xy, with the interval [a, b] to be determined so that

PU, U, 0)CU,,
P,(U,,U,, ) CU,, and
P(Ul, U2r U)QU

in some part of the positive quadrant.
Substituting the chosen forms for U,, U,, and U into the integrals and
carrying out the interval integrations, we obtain
Pl(Ul, U21 U)(x:y) =) + [ar b]2(xy3/3 +x2y2/2) ’
Py(Uy, Uy, U)(x, y)=x + [a, b]? (x*y*/2 + xy/3), and
P(Ul, U2r U)(x1 y) =xy + [av b]2 (x2y3/6 +x3y2/6) .
It is not hard to show that we can satisfy the required set inclusions in the
square: x in [0, 1/2] and y in [0, 1/2], if we choose @ = 1 and b = 1.134. It
follows that the solution satisfies u(x, y) € xy + [0.1666, 0.2144] (x?y® +
x3y?) for all such x and y. In particular, u(1/2, 1/2) € [0.2604, 0.2634].
We can obtain arbitrarily sharp bounds by iterating the procedure. By
replacing U,, U,, and U with the functions P, (U,, U,, U), P,(U,, U,, U), and

P(U,, U,, U) just obtained, and with the values of 2 and b chosen above, we
obtain, in one more iteration, the sharper bounds on the solution:

u(x, y) € xy +x*y* (x + »)/6 + x3y3 ([1, 1.286] (»%/45 + xy/16 + x? [45)
+ [0.1666,0.2144] (»%/15 + [1, 1.286] (xy* /84 + x2 3 /60)
+ xy/8
+ [1, 1.286] (x*»3/36 + x3y?/36) + x?/15
+ [1, 1.286](x*»? /60 + x*y/84))) .
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At x = y = 1/2, the above expression, evaluated in interval arithmetic, produces
the result

u(1/2,1/2) € [0.2610,0.2612] , thatis,
0.2610<u(1/2,1/2)<0.2612.

We could obtain arbitrarily sharp upper and lower bounds by iterating further
and carrying enough digits.

Extensive software packages are available for carrying out interval
computations on a wide variety of computers, for example, Pascal—SC (available
from FBSoftware, 135 N. Prospect Ave., Madison, WI 53705, USA), and
ACRITH (available from IBM as a set of FORTRAN subroutines). With these
mathematical software packages, a user can write computer programs in Pascal
or FORTRAN, treating intervals as a new data type. The details of interval
arithmetic are carried out automatically by the software. Furthermore, the soft-
ware includes problem-solving routines with guaranteed accuracy for a variety of
problems such as: finding zeros of polynomials, solving linear algebraic systems,
inverting matrices, linear optimization, eigenvalues and eigenvectors of matrices,
and others. The ACRITH subroutine library, for instance, has been designed to
operate under VM/SP in all IBM System/370 models 135 and above and the
303X, 308X, and 43XX processors. On the new 4361 processors, microcode
support is provided in a high-accuracy arithmetic facility designed to make the
interval arithmetic operations more efficient. Pascal-SC can be used on micro-
computers such as Zilog, Apple, and IBM PC.



CHAPTER 15

Contraction mappings and iterative
methods for operator equations in fixed
point form

An operator equation is said to be in fixed point form (or it is called a fixed
point problem) if it is written as x = P(x), where P: X - X for some function
space X. We have already seen operator equations of this type in Fredholm and
Volterra integral equations, and we have converted initial and two-point
boundary value problems in differential equations to integral equations of this
type.

A solution x is called a fixed point of the operator P, since P maps the point
x into itself.

Given an operator equation of the form

ox)=y, x€X, y€eY,

where Q : X = Y is an operator mapping elements of X into elements of Y, it is
often possible to find a mapping P such that a fixed point of P is a solution of
the given operator equation. Thus, for example, for the linear operator equation
(I —A)x =y, we can write x =y + Ax, so that, for P(x) = y + Ax, we have the
equivalent formulation x = Px.

As another example, we can often convert an operator equation of the form
Q(x) = y into one of fixed point form, even when Q is a nonlinear operator.
Suppose we can find a nonsingular linear operator 4 : Y - X, where X and Y are
linear spaces; thus, Az = O implies that z = 0. Then a fixed point of P, with P
defined by P(x) =x + A (Q(x)—»),Q: X> Y,y €Y, P: X > X,is a solution of
ox)=y.

Most methods for the approximate solution of nonlinear operator equations
(and some methods for linear operator equations) are of iterative type; and most
methods of iterative type have the form xz,; =P(xx),k=0,1,2,...forsome
operator P.

Note that even if a problem is already given in fixed point form x = T(x),
there are many ways we could choose another operator P for an interative
method. For instance, we can put Q(x) = x — T(x) and P(x) = x + A(x)Q(x). So
long as A(x) remains nonsingular, we can consider the iterative method of the
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type given above for the approximate solution of the fixed point problem
x = T(x).

There are several things to consider in the study of any iterative method. One
is how to choose the initial guess xo. Another is: under what conditions will the
method converge in some sense or other (strong convergence, weak convergence,
pointwise convergence, uniform convergence, order convergence, etc.). Still
another is: when to stop iterating and how to estimate the error in the approxi-
mate solution xj if we stop at the kth iteration.

We will discuss these questions concerning iterative methods in this chapter
and in some of the remaining chapters.

For linear fixed point problems, sufficient conditions for convergence will
usually be independent of the initial guess. For nonlinear fixed point problems,
on the other hand, convergence will usually depend heavily on x, being close to
a solution.

Definition

Let S be a closed subset of a complete metric space X. An operator P: S = S is
called a (strong) contraction mapping of S if there is a constant ¢ < 1 such that
d(P(x), P(y)) < cd(x, y) for all x, y in S. Note that a contraction mapping is
necessarily continuous.

The following theorem is one of many possible versions of the contraction
mapping theorem.

Theorem Let X be a complete metric space and let S, be a closed subset of X of
finite diameter

dO = Sup d(x»y)<°°.
x,yES,

Let P:So = So be a contraction mapping. Then the sequence of iterates {xk,
produced by successive substitution xx4; = P(xx), k=0, 1,2, ... converges to
x = P(x), the unique fixed point of P in Sy, for any x, in So Furthermore
d(x, x; ) <ck dy, if d(P(x), P(y)) <cd(x,y)forallx, y in S,.

Proof Define the sets S recursively by Sg,, = P(Sx) = {P(x): x € Sk} ; thus
xo € So implies x; € Sy for all k. By the subset property for an arbitrary
mapping (See Chapter 10), it follows that {Sk} is a nested sequence of subsets
of So. Now define di to be the diameter of Sy,

dy = sup d(x,y).
X, YE Sk

Since P is a contraction mapping, we have dy,; <cdg, k=0,1,2,... . Thus,
dy <ck do,k=0,1,2,...;and,since ¢ <1, we have di ->0ask->°°.
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It is easy to show that, for any x, in S, the sequence of points {xk} isa
Cauchy sequence and so converges to a point x in the complete metric space X.
Since dix = 0, the limit point is unique and independent of the starting point Xo.
Since S, is closed and S C S for all &, the limit point x is in So. Since P is
continuous, x is a fixed point of P. Since x, xx € Sk for all k, we have finally,
d(x, xx)<dy < ckdo for all k; and the theorem is proved.

Exercise 90 Complete the above proof by showing that {x;} is a Cauchy
sequence.

Exercise 91 Show that an alternative bound on the error in the kth iterate xx
which does not depend on dy is d(x, xx) < ckd(xo, x, )(1 —e¢).

Exercise 92 Recall the sequence {x,,} defined iteratively by x,,; =y —Ax, in
Exercise 70 in Chapter 11. Show that, for ||4 || <1, the operator P(x) =y — Ax
is a contraction on the whole Banach space X. Apply the theorem just proved to
Exercise 70.

We now illustrate the application of the contraction mapping theorem to
some examples of operator equations.

Example 1

The real line R is a complete metric space with d(x, y) = |x —y|. The mapping
P:R - R defined by P(x) = 1 + x/3 is a contraction on R, since d(P(x), P(¥)) =
[x — /3. Therefore, P has a fixed point in R. Now S = [0, 1] is a closed subset
of R and d(P(x), P(¥)) = |x —y|/3 for all x and y in S; however, P does not map
S into itself. In fact, P(S) = [1, 4/3] . Indeed, P does not have a fixed point in S.

Exercise 93 For what intervals [a, b] does P([a, b]) C [a, b] hold? What is the
fixed point of P in Example 1 above?

Example 2
We can rewrite the initial value problem x'(t) = f(t, x(t)), x(to) = X, in the
fixed point form

x(f) = P(x)(t) = xo + ft ! £(s, x(s))ds .

We will suppose that f is continuous in a suitable region. We can regard P as a
mapping of the Banach space C[to, #,] into itself, with ¢, to be determined.
Note that P is continuous if f is. Suppose now that we can find a positive real
valued function M such that
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max | f{r, )| <M(r).
tE(t,,t, ]
UE[xy—T,Xo+7]

forall 0 <r<r,, withr, to be determined. We define the set
Sy(xo) = {x:x EC[to, 1,],Ix —xo | <7},

where xo within the norm expression denotes the constant function x(r) = xq
for all ¢ in [z, f;]. Note that S,(x,) is a closed subset of C[to, #;] with finite
diameter 2r. It is easy to see that P will map S,(x,) into itself provided that
(ty —to)M()<r.

We next seek conditions under which P will be a contraction on S,(x,). First,
we find that, for x and y in C|[te, #;], we have

IP(x) = PO <(ty —to) max |[f(t, x(2)) —f(t, y(t)I.

t€(t,,t,]

Next, we require that f satisfies a Lipschitz condition in S,(x¢): we suppose we
can find b(r) > 0 such that, for all ju —xo | <7 and |v — xo | <r, we have |f(¢, u)
~ f@t, v)i < b() lu — vi, ¥t € [ty, t,]. With this condition, we then have
[1P(x) — POl < (t; — to) b(r) lx — y|l; and P will then be a contraction on
S,(xo) provided that ¢ = (1, —t0)b(r) < 1.

From this analysis, we can see that P will be a contraction mapping of S,(x,)
into itself for a given positive value of » if (t; — to) is sufficiently small so that
the two conditions

(tl —to)M(r)gr and ([1 _to)b(r)<l

are satisfied. In that case, we can apply the contraction mapping theorem to the
initial value problem expressed in the fixed point form above.

To illustrate the details of such an application, we now consider a specific
example of the form discussed.

For the initial value problem x(f) = [x(¢)]* with x(0) = 1, we have f{r, u) =
u?, in the notation of the general analysis for initial value problems given above.
Thus, we seek M(r) such that [u?| <M(r) whenever u € [1 ~r, 1 + r]. Thus, we
can take M(r) = (1 + r)%. For b(r) such that |f(z, u) — f(z, v)| = |u?® —v? (<
b(r) lu —v|, we can take b(r) = 2(1 + r)forallu, vE€ [1 —r, 1 +r]. Thus, P will
be a contraction on S,(1) provided that t; >0,¢,(1 +7)> <r,andc=2t,(1 +
rn<l.

For any r > 0, these inequalities are satisfied for #; such that 0 < ¢; <
min {r/(1 + r)*, 1/(2(1 + r))}. It is not hard to show that 4 is the least upper
bound on admissible values of ¢, .

Thus, forr = 0.5 and t; = 0.2, the mapping

Px)(1)=1+ ft [x(s)1*ds
0
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is a contraction of So_s(1) into itself.
We can take, as a starting point, the constant function xo(f) = 1, which is in

So.s(1), and the iterative method
t
s = P (0 =1+ [ xi(9Pds,k=0,1,2,...
0o

will converge in the C[0,0.2] norm to the solution for ¢ € [0, 0.2].
We find that

t
xi(0) = 1+ fo lds=1+1;

thus, [Ix; —xoll= max |x;(2) —xo(t)|=02.
te(0 ]

W

Since ¢ = 2t,(1 + r) = 0.6, we have, applying the general error bound given in
Exercise 91, for all t in [0, 0.2],

xe(0) —x(0) < llxx —x < (0.6)* (0.2/0.4) = (1/2) (0.6) .
Exercise 94 Define the interval mapping P by
t
PX) ()=1+ [ X(s*dsand put Xo(r) = [a, b].
V]

Show that, fora =1 and b = 1.5, we have P(X,) (t) C Xo(¢) forall t in [0,0.2].
It follows from the results of Chapters 10 and 14 that the interval functions
defined iteratively by Xy ., (t) = P(Xx) (¢) contain the solution for all ¥ and all ¢
in [0, 0.2]. Find X,(¢r) and X,(¢) explicitly and compare these results with
those obtained from the contraction mapping theorem.

Example 3
Consider the nonlinear two-point boundary value problem x'"(t) = e X,
x(0) = x(1) = 0. We can put this problem in fixed point form as

1
x)=Px) )= [ K@, s5)e*O ds
0

(t—1s, 0<s

<t
(s—Dt, 0<r<s

1,

with K(t,s) = {
1.

<
<

We can view P as a mapping P: C[0, 1] = C[0, 1]. We define
S, ={x:x€C[0,1],-r<x(1)<0,¥r€[0,1]}.

For any positive r, S, is a closed subset of C[0, 1] with finite diameter r.
It is not hard to show that P maps S, into itself if —r < —e’/8.
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The above inequality is true, for instance, if 7 = 0.15. Furthermore, for all x,
y in S,, we have [|[P(x) — P(»)Il < (¢"/8) llx — y||. Thus, P is a contraction on S,
if r>e"/8 and e”/8 < ¢ < 1;this is true for »r = 0.15, and then we can take, for
the value of ¢ in the contraction mapping theorem, ¢ = 0.14523.

There is one solution in Sg s, and the iterative method xx,; = P(xx) con-
verges to it from any x, in Sy ;s ; for instance for xo(f) = 0 forall ¢ in [0, 1].

It can be shown that there is a second solution to this nonlinear boundary
value problem, which is not in Sg ;5.

Exercise 95 In Example 3, find x, (¢) explicitly from x; = P(x,) with xo(t) =0
for all ¢ in [0, 1]. Find an upper bound on ||x; — x|| where x is the solution in
SO.lS . Show that ”X4 _XH < 0.0000651.

Exercise 96 Show that the problem in Example 3 has exactly two solutions.
[Hint: show that any solution to the problem x “(f) = e *(, x(0) = 0 satisfies
e W+ x'(?/2=1+x"(0)*/2 ]



CHAPTER 16

Fréchet derivatives

For nonlinear operator equations, the most efficient approach to the design of a
successful computational method is often local linearization. This is the idea of
‘Newton’s method’. To apply the idea, we first need a concept of derivative for
nonlinear operators. This is the subject of this chapter. The Fréchet derivative of
a nonlinear operator is a generalization of the derivative of a real-valued
function. It enables us to find a linear approximation to a nonlinear operator in
a neighborhood of some given point (a local linearization). If we then replace
the given nonlinear operator equation by its local linearization, we can use the
methods for linear operator equations to find an approximate solution to the
nonlinear operator equation. Regarding this as a point in the appropriate
function space, we can again find a local linearization of the original nonlinear
operator equation in a neighborhood of this new point. We can iterate this
process, and it is a generalization of Newton’s method for solving an equation in
a single real variable.

In the next chapter, we will discuss Newton’s method itself for nonlinear
operator equations. In the present chapter, we first build the necessary tools we
will need to construct the required local linearizations, namely Fréchet
derivatives, which are bounded linear operators.

The main advantage of Newton-type methods over many other iterative
methods is quadratic convergence. This means that, once we get close to a
solution, the error (measured in an appropriate norm or metric) is squared at
each iteration. Thus, Newton’s method is rapidly convergent in practice, if we
can find a good first guess at the solution. In a later chapter, we will discuss an
approach to finding a good first approximation for Newton’s method, based on
the mathematical concept of a ‘homotopy’.

Let P:§ C B, — B, be an operator mapping a subset S of a Banach space B,
into a Banach space B,. Let x, be an element of B, such that S contains a
neighborhood of x,. Then P is said to be Fréchet differentiable at x, if there is a
continuous linear operator. L : By = B, such that: for every € > O there is a
6(e) > 0 for which |IP(x) — {P(xo) + L(x —xo)}IIB <€ lix —xollg whenever
x € Np(ey(x0) = {x : llx — xolip, <8(e)). ! '
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We can express this in the alternative form P(x) = P(xo) + L(x — xo) +
G(x, xo) where G :B; = B, defined by G(x, xo) = P(x) — P(xo) — L(x, xo)

satisfies
HG(x, xo)ll
lim ErRT0Th L =0,
[]x—xou-»o ”x—xollB’

Put still another way, this expresses the fact that P(x) — P(x, ) is locally linear
at x,. In a sufficiently small neighborhood of xq, P(x) — P(x,) can be approxi-
mated arbitrarily closely (in the Banach space norms) by image L(x —x,) of the
linear operator L.

If such a continuous (bound) linear operator L exists for a particular x4 in B,
we denote it by P'(x,), the Fréchet derivative of P at xo. Thus, if P is Fréchet
differentiable at x, we can write P(x) = P(xo) + P'(x0)(x — xo) + G(x, Xo)
where G(x, x, ) satisfies the condition given above.

A few examples of Fréchet derivatives may be helpful.

Example 1
Denote the real line by R and let {a, b] be an interval in R. Now R is a Banach
space with norm ||x|| = |x| for x in R.

Let f:[a, b] € R = R be a differentiable real valued function with f(x)
defined f for x in [a, b], and let x, be in [a, b] ; then the Fréchet derivative of
fat xq is the ordinary derivative of fat x,, f'(xo). Since

fe) = lim J(x) — f(xo) ’
Ix—x o[-0 X —Xo
it follows that f(x) = f(xo) + f' (xo) (x —x0) + G(x, xo),
with lim M-' =0

x—x,i—0 X —Xol

Note that, as a real number, f'(xo) does represent a continuous linear mapping
f'(x0) : R = R.In fact, f'(xo) (») is defined by scalar multiplication: f'(xo) ()

=f'(xo)y.

Example 2
The n-dimensional Euclidean space, £, with norm

n 1/2
llxll = <§; x,?)
i=1

is also a Banach space. Let P:S C E” - E" be a mapping defined on a subset S
of E” which contains a neighborhood

Ni(xo) = {x:lix —xo I <5}
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of a point xq in S.
It is not hard to show that P'(x,), if it exists, is the Jacobian matrix with
elements

P;
- ,l',].=l,2,...,n.
ax/

Xo

(P'xo))ij =

A sufficient condition for the existence of P'(x,) is the continuity at x, of
the partial derivatives. In this case, we have

n opP;
Pix) = Pixo) + 2 —
j=1 0Xj

(x —x0)j +Gi(x,x0),i=1,2,...,n.

Xo

P(xo +ay) — P(xo)

The limit DP(xo) (¥) = lim ,
a—o
if it exists, is called the Gdteaux derivative of P at x in the direction y. (See:
R. A. Tapia, ‘The differentiation and integration of nonlinear operators,’ in
Nonlinear functional analysis and applications (L. B.Rall, ed.), pp. 45-101.)
For P:S C E™ - E™ with S containing a neighborhood Ngs(xo) of xo,

oP;
suppose the partial derivatives Jjj(xo) = a—' exist in Ng(xo) and are
J 1%o
continuous at X, fori,j=1,2,...,n. Let J(xo) be the Jacobian matrix with

elements J;; (xo). We have the following.

Theorem The Fréchet derivative of P at xo, P'(x) exists, and P'(xo) = J(xo)
if and only if DP(x,) () exists and DP(xo) () = J(xo)y for every y in E™.

Proof The condition DP(x) (¥) = J(xo)y for all y in E” can be interpreted
geometrically as saying that for each of the surfaces P;(x;, x3,...,Xp), in
E™' (i=1,2,...,n), the tangent lines to the surface P; through the point x,
exist for all directions y in E™, and that all these tangent lines lie in an
n-dimensional tangent plane spanned by the tangent lines for the n directions
corresponding to the coordinate axes in £7: (1,0,0,...,0),(0,1,0,0,...),
...(0, 0,...,1). More precisely, the condition requires DP(x,) (y) to be
linear in y; exactly what is needed for the existence of P'(x,).
An analytic proof is as follows. If P'(xo) = J(x,), then
. lPGxo +ay) —P(xo) —J(xo)ayll
lim =0,
llayy—o llayl

and it follows that, for each y in E™ with ||y]| #0,
P(xo +ay) — P(xo) _ @ (xo0)y

la| lal

lim

a=0

|-o.
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—a —a )
Fora <0, |a| = —¢ and ﬁ = 1;fora>0, Ial=aand|—‘=—l.lne1thercase,
a a

we have

P(xo +ay) — P(xo)
a

lim

a—0

Therefore, DP(xq) (¥) = J(x0)y.
Conversely, if

- J(xo)y “ =0.

P + —P
DP(xo) ()= lim to “: )P0 jixg)y

Xo+0y

1P(xq +y) = P(xo) —J(xo)y | < 6O Iyl
) [
8yj |xo+05y ox;j | x,

oP;
Now from the continuity of a—' at x it follows that given € > O there is a
Vi
8(€) > 0 such that b(y) < € whenever ||y|| < 5(e).
The Jacobian matrix J(x,) is a bounded linear transformation on E”, so
P'(xo) exists and P'(xo) = J(xo). This completes the proof.

forevery y in E™, then

n /3P
Pi(xo +y)—Pi(x0) = X (5_'
j=1 \%j
forsome0<6;<1,i=1,2,...,n.
Using the norm {[y || = max {y;|in E", we have
1

n

where b(y) = max X,

1 ,‘=1

As a special application of the theorem just proved, consider a mapping
f:E?* > E? viewed as a complex valued function of a complex variable,
identifying a point (x, y) in £? with the complex number x + iy. Denote the
components of f by u and v. Then f(x, y) = u(x, y) + iv(x, y) corresponds to

1o, 9) = (( ”)
v(x,»)

in column vector notation for an image of the mapping f. Applying the theorem
just proved, the Fréchet derivative f'(zo) exists at zo = xo + iyo and is
expressible as the Jacobian matrix f'(zo) = J(z, ) given by
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I@o) = (“" “’)
vx Yy

ou ou ov
where Uy = —| , Uy = —| » Vx = 1 >
¥ ax 2, Y z, o z,
ov . . 2 s o
and vy = a— provided that for every w in E* the limit
Y iz,

f(zo +aw) —f(20)

a

Df(zo)(w) = ‘}I_IR)

exists and Df(zo)w = J(zo)W.
Now suppose the limit does exist for every w in E? and that Df(zo)w =
J(zo)w. Then, regarding w and f'(zo)w as complex numbers, we have

+
f'Eo)w = J@oyw = (1 T
VWi +vyw,
= (uxwy Huywy) +i(yew, +vyw;)

_ (uxwy tuywy) Hi(vewy +vyw,) "

’

w

so that f'(z,) acting on w can be represented, via complex multiplication with
w =w; +iw,, by the complex number

uwl +v,wi + @y, o wywy +Hifvewd —u,wi + ), —ux)w,w,
X b4 Y X g4 b4

f(z0) =
(20) w? + wil
Since f'(zo) is independent of w, we must have (the Cauchy—Riemann
equations) uy = v, and u, = —vy, then f'(2o) = ux + ivx = v, — iuy,. Thus,
fleo) = (T = uxl+vd
Vx Ux

1 0 0 -1
where I= and J = .
0 1 1 0

This matrix representation of f'(zo) can be seen to be algebraically equivalent
to the complex number representation f '(zo) = uy + vy by means of an
isomorphism between the complex number field and 2 X 2 matrices of the form
al + bJ. In fact, we have /2 = 1 and J> =—1 so that, putting / ~ 1 and J ~ i we
have al + bJ ~ a + bi for any real numbers @ and b. For instance, the product of
any two such matrices yields (a;/ + b,J)(@2] + by J) = (@ya3 — by by)] + (a, b,
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+ ayb,)J corresponding to the complex number (a; + b1i}a; + b2 )= (a1a; —
blbg) + (albg + azbl)i.

Example 3
Let B, = B, = C[0, 1] with norm [|x|| = Tg); | |x(¢)|and let P: S C C[0,1] =
te |0,

C[0, 1] be defined by an integral operator of the form
1
PR (=80 + [ 05 x6)ds

where g isin C[0, 1] and S = {x : l|x|| <b} for some b > 0.
For x( in S we can write

1
P(x) (1) — P(xo)(t) = fo (£t 5, X(5)) — f(t, 5, Xo(s)) } ds

is continuous for ¢ and s in [0, 1] we have
1,5,X0(8)

9
and so, if —
ox

(x(s) —xo(s))} dx + G(x, xo) ,

1 (of
Pe) () —P(xo) ()= | {—
0 ox t,5,x, (S)
and the Fréchet derivative of P at x, is the continuous linear differential

operator P'(xo) on C[0, 1] defined by

, 19
P (xo)u) (1) = f0 a{ t, s, xo(s))u(s)dx .

Example 4
If L : B, = B, is a continuous linear operator, then the Fréchet derivative of L at
xo is the operator L itself. L'(xo) = L for all xq in B, . To see this, we write
Lx — Lxg = L'(xo) (x — x0) + G(x, xo) and, since L is linear, we have Lx —
Lxo =L'(x¢) (x —xo) if we choose L '(xo)=L;and G=0.

The definition and examples of Fréchet derivatives may raise the question of
uniqueness.

Suppose L, and L, are linear operators both satisfying

P(x)=P(xo) + L1 (x —xo) + G1(x, Xo)
P(x) =P(xo) + L(x —xo) + Ga(x, xo)

where G; and G, both satisfy the property making L, and L, Fréchet
derivatives of P at xg.

Now L; — L, is a linear operator on B, defined by (L; —L;)u =L,u—L,u
and (L; —L3) (x —x¢) = G5(x, xo) — Gy (x, xo) for all x in B, . Thus
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WLy —L,ll=0; hence L, =L, .

Thus, when the Fréchet derivative exists, it is unique.
Exercise 97 Show that if P'(x,) exists, then P is continuous at xq.

Let B, and B, be Banach spaces. Suppose that P'(x,) : B = B is one-one,
onto; then the linear operator equation P’(xo )x = y has a unique solution in By,
and [P (xo)] 1 exists as a bounded one-one linear operator from B, onto B,
and x = [P (xo)] -1y, for every y in B, (Kolmogoroff and Fomin, Functional
analysis, Vol. 1, pp. 98—101).

By a & neighborhood of x, in B, we will mean a set Ng(xo) = {x:x €B,,
llx — xo | <8} for some § >0.

Exercise 98

a) Find the Fréchet denvatlveP "(xo) for the operator P: C(z)[O 1] »Cjo, 1]
defined by P(u) =u" — e*“. It can be shown (P. Hennc1 Discrete variable
methods . . ., 1962, p. 347.) that a boundary value problem of the form y"=
1@, y),y(a) = A. y(b) = B with

0
a—f(t,y)>0 for a<t<bh, —o<y<>
Y

has a umque solution. Show that this implies that P’(x,) has an inverse for every
xo in C{¥[0,1].
b) For P C(z)[O 1] - C[0, 1] (no boundary conditions) given by P(u) =

u" —e ", show that P'(x,) does not have an inverse at xo(f) = — In 7* where

Nullc o, 1= max (Iu(t)l+ lu"()i) .

Theorem Let P be an operator P:S C B, - B, with S containing a neighbor-

hood N5(xo). If [P'(¥)] ™! exists and is uniformly bounded in Nj(xo) then P is
one-one in some neighborhood of x,.

Proof 1f P(x) = P(y) for some x, y in Ng(xo) then P'(y)(x — y) = —G(x, »),
where G is such that given € > 0 there is a §(¢) > 0 for which |lx — y|| <&(¢)
implies [|G(x, y)l <e€llx —y|l. From x —y = —[P'(»)] ! G(x, y) it follows that
lx =y I <U[P' )] i € lx —yll whenever llx — y || < §(e).

Thus, one of the following is true:

1) lx—yll>8(), or
2) x=y , or
3) x#ybutllx —ylI<8(e)and I[P’ O] > 1/e
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Now since [I[P'(»)] 'l < M for y in Ns(xo) we can rule out the third
possibility for € < 1/M, that is for {lx — y || <8(1/M). Thus, for x, y in Ng*, (xo)
with §' < 3 8(1/M) we have [lx — | <llx —xoll + Iy —yoll <28' <8 (1/M)
and it follows from P(x) = P(y) that x = y. P is therefore one-one on Ng*(x,).

Corollary If x, is a zero of P and the inverse of the Fréchet derivative of P exists
and is uniformly bounded on a neighborhood Ny (x,) included in the domain of
P, then x, is a simple zero of P;, that is P is one-one on Ng(xo).

Exercise 99 For an operator P: C[0, 1] = C[0,1] of the form
1
P () =u)=5@) = [ fit.s, u@)as,

with g in C[0, 1], derive sufficient conditions on f to insure that [P'(x,)] ™"
exists and is uniformly bounded on a § > 0 neighborhood of 0 in C[0, 1]. Show
that P can have at most one zero in N5(0) under those conditions for some
0<56.

Let L(B,, B;) be the Banach space of bounded linear operators from B, to
B, with norm

fILx|lp
ILIl = sup ———*.
xes, lxlp,

X#0

If P:S C By = B, has a Fréchet derivative P'(x) at each x in Ng(x) con-
tained in S then we may consider whether P’ as a mapping

P':Ns(xo) CBy »> L(By, B)
itself has a Fréchet derivative at x, . If it does, we will denote it by
P"(xo) By > L(By, B,),

the second Fréchet derivative of P at xo. Then P"(xy) is a bounded linear
operator on B; whose image at u in B, is a bounded linear operator P "(x,)u
from B, into B;, and P'(x) = P'(xo) + P"(x0) (x — xo) + G(x, xo) where
G(x, x¢) satisfies

NG(x, xo)llL (8, ,8,)

lim
X=X, I—0 llx "xo”B,

If P: B, - B, is a continuous linear operator then P'(xo) =P for all x, in B,
(see Example 4). In this case, P "(x) =0, the operator which maps every u in B,
into the linear operator 0 in L(B,, B;). To see this, we note that, in this case,
P'(x)=P'(xo) = P, 50 that P"(xo) =0 and G(x, xo) =0.
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For an operator P:E"™ - E" P"(xo), if it exists, is the tensor w1th
components (8 (Xo))uk such that P'(x) = P'(x,) +P"(x0) (x —x0) +.
that

P'x)ij = P'(x0))ij + kZ (P"(x0))ijk (x —Xo)k + - - .
=1

2Pi

0x; Oxy

so that for the first few terms of the Taylor series, for instance, we have

In fact P"xo)ijx =

X9

P

a— (x —x0);

Pi(x) = Pi(xo) + Z

j=1

1 n
2 12

azP,'
1 0x; Oxg

(x —Xo)k (x —Xo); +

Xo

Note that P "(x)u is a linear operator on E” with

" no %P -
P"xo)u);= 2 (x—xo)k, i,i=1,2,...,n.
k=1 ax, oxy X,

Exercise 100
a) If [P'(xo)ul(®) = u"(t) + f(xo(t))u(t), then show that P"(x,) is repre-
sented formally by [[P"(xo)u] v1(£) = f'(xo(£))u(t) v(2).
1
b) If Pu)(t) = u(t) —g(t) — j; f(, s, u(s))ds, find formal representations

of P'(xo) and P"(xo).

¢) If P(u) (r) = u"(t) — e ¥, find upper bounds on [IP'(xo)ll and |IP"(xo)ll
where  P'(x0): C[0,1] ~C[0,1]

and P"(xo): C[0,1] »L(CP[0,1],C[0, 1]).

(Hint: for u in c},’)[o, 1] we have u(0) = u(1) = 0 so that

u(t)=u'(0) + %u "(g)t?
for some &, in [0, 1]. Thus
1
u(1)=0 =u'(0)+‘2‘u"(‘<’1);

andso  llullgpg yy <lullcepo) 2
o
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d) If P(u) =u; — K(u)uxy, where
_d%u(, x)

ou(t, x) d
= and U,y =
ax xx ox?

us

’

find P'(uo) and P "(uo ) formally.
e) If Pu)(r) = u"(t) — 6u(r) — St, express P'(uo) and P"(uo) formally.

Higher Fréchet derivatives are defined recursively, for n = 2, 3,...,by
P™(xo): By »L(B"™, B, ) such that

1P D) = P D(xg) = PM(xg) (x —xo)ll

lim 0

X —X 4 l—0 flx —xoll
where  L(B}, B,) = L(B,, B,) and L(BY, B,) = L(B,, L(B™, B,)), (see
L. B. Rall, Computational solution of nonlinear operator equations, Wiley, 1969;
reprinted by Krieger, Huntington, N.Y., 1979).
We can also view P(")(xo) as a mapping from B'l’ (the Cartesian product of B,

with itself n times; that is, n-tuples (x,, x,,....,Xx,) of elements x; in B,) to
B,. We can write the image of P"(x,) at such a point as P (xo)x1 X5 . . . Xp.
This will be linear in each of the variables x;, x5, . . . , X, and symmetric; that is,
PM(xg)xixs ... x; .. Xj.Xp = PM(xo)x; .. .Xj...Xj...X, for any
1<i<j<nIfx; =x3=...=x, = x, we write P (xo)xx...x =
P (xo)x".

We denote by Xy the line segment xy = {6x + (1 —0)y : 0<0 <1} CB,
when x and y are elements of B, . If P: B, - B, maps the Banach space B, into
B, then P maps the line segment xy in B, into the arc P(xy) = {P@x + (1 —
8)y :0<0<1}inB,.

We define the integral

fl POx+(1—0)y)d6 = lim 3 P (—ix+ (1 ——i)y>—l
0

n—re j—y n n n

when the limit exists. (When P is not continuous, then arbitrary partitions of
0 < 6 < 1 should be considered in the definition of the integral. For continuous
P, the uniform partition will suffice.)

If P is continuously differentiable (P'(xo) continuous in x, ), then

1
P(x)=P(y) + fo P'Ox + (1 —8)y) (x —y)d8

In case P is only defined and continuous on a subset S of B, we can still
perform the integration provided that S has a convex subset containing x and y
(for instance a neighborhood Ng(xo)). (Recall that a convex set in a Banach
space is one which contains the line segment joining any two of its elements.)
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It follows that, whenever P’ is continuous on xy, we have

I1Px) — PO < sup IIP' @) flx —yli -
XEXy
If P:S C By = B, is n times continuously differentiable on Ng(xo) C S, then
Taylor’s theorem holds. (See: Rall, loc. cit., p. 124) For any x in Ng(xo) we
have
n—1 P(i)(xo)
P(x)=P(xo) + 2
i=1

S (6 %0) + Ra(x, xo)

1 PM@x + (1 —0)x,)

n!

where Ru(x, x0) = j; (x —x0)" n(1 —6)""1 db.

For n = 2, we have

1PG) = PGxo) = P'(x0) (x —xo)ll < _sup_

XEX, X

PO (x

lix _xo||2

whenever x is in Ng(x,).

Exercise 101 Show that if P®) is continuous and uniformly ,bounded by
IIP@(x)ll < K for x in Nj(xo), and if [P'(x0)] ™' exists, then [P'(x)] -1 exists
and is uniformly bounded on Ng ¢(x,) for any

1
KIP )TN
(Hint: Use the Taylor expansion with P’ in place of P.)

’



CHAPTER 17

Newton’s method in Banach spaces

In this chapter, we consider Newton’s method in Banach spaces, and discuss the
now classical theorem of L. V. Kantorovich concerning sufficient conditions for
the convergence of the method. The method can be applied to a finite system of
nonlinear equations, to integral equations, and to initial value and boundary
value problems in differential equations.

The methods of interval analysis, see for example Chapter 14, can be helpful
in bounding the norms of operators which occur in connection with Newton’s
method in Banach spaces. Alternatively, there are interval versions of Newton’s
method which proceed entirely with interval valued functions, or combine
interval methods with the use of semi-norms. More detailed reference to such
methods is given at the end of this chapter.

Let X,, X, be Banach spaces and let P: S C X; = X, be an operator whose
domain S contains a neighborhood Ngs(xo) in which the second Fréchet
derivative exists, is continuous, and is uniformly bounded IIP(z)(y)II <K foryin
N5 (xo). Suppose further that [P'(xo)]™ exists and |I[P'(x0)]™ Il < Bo, then we
have

K
lP(y) = P(x0) —P'(x0) (¥ —xo)Il < 3 ly —xoll?

for y in Ng(xo). If P has a zero in Ng(x,), say P(x) = 0, then putting y = x, we
obtain

, K .
= P(xo) —P'(xo) (x —xo)ll <5!Ix—xollz;so
o , BoK \
I[P (x0)T" (P(x0) + P (xo) (x —xo))l < 2—|Ix —Xoll*, and

K
llx — {xo — [P'(xo)]" P(xo)}II < B—:— llx —xoll? .
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This inequality exhibits the error squaring property of Newton’s iterative
method for an approximate solution of the nonlinear equation P(x) = 0. The
successive iterates xq, Xy, X3, . . . are defined recursively by

Xk =Xg-y — [P’ k-0 PXk-1)

so long as [P'(xx - )" and P(x-,) exist; and xx can be found from xx_; by
solving the linear operator equation (see Chapters 11—13 on methods for linear
operator equations)

P'(Xg 1) Bg = —P(xg-1)
Xp = Xg-y + .
So long as xi_,, and x; remain in Ng(xo) for k = 1, 2,... we will have,

provided that, for all k, [P'(xx_;)]™! exists and ||[P'(xx-;)]™* | < B, the result
BK 2
lx —xgll < - x —xg -y I1° .

The Kantorovich theorem (Rall, see ref. in Chapter 16, pp. 133—-144)
provides sufficient conditions for the convergence of the Newton iterates to a
solution of the operator equation P(x) = 0. In our notation these conditions are

6 =2 ———
Z ho Mo

1
ho = BonoK<E

where no = llx; —xoll.

For any particular numbers By and K it will be possible to satisfy the above
conditions if |lx; — x¢ll is sufficiently small; this will be the case if Bg[|P(xo)Il is
small enough, since [|x; —xoll < Bg IP(xo)Il.

Under the conditions given, the Newton sequence is defined (that is,
[P'(x-)T", P(xk-y) do exist for k =0,1,2,...)and converges to a solution
of the equation P(x) = 0.

The existence of [P'(xx)]™* follows from that of [P'(xx-;)]™, provided that
(for instance) [P (xx-1 )] W K lxg —xxy I < 1.

If we write P'(xg) = P'(xg-y) {7 + [P' (k-1 )] (P'(xk) — P'(xk-y) ) then
[P'(xk)]™* can be seen to exist if [[P'(xk-y )] (P'(xk) — P'(xx-1 )l < 1 and
would be representable by the Neumann series as a special case of [/ + E]™! =
I—E+E* —E®+ ... with ||[E|l < 1. The inequality above will be true if the
previous one is true, making use of [|P'(xx) — P'(xx-1 Ml <K llxg — xp-, Il.

A proof of the Kantorovich theorem which proceeds by an inductive
argument is given by Rall (see especially Rall: loc.cit., pp. 135—138).
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The error-squaring property is computationally especially significant since it
leads to very rapid convergence once the solution is approach fairly closely.

From the uniform boundedness of the second Fréchet derivative assumed in
the conditions for the Kantorovich theorem, it follows that

B,
' -1 < —
NP ()] I —BuKb for y in Ns(xo),

provided that BoK& < 1. Under these conditions, it follows from the theorem
and corollary in Chapter 16 that P has at most one zero in Na (xo) and if there is
one it is snmple The mequahty above follows from [P'(»)]™ = [/ + [P'(xo)]"
P'D)—P'xo )™ [P'(x0)]™

Suppose now that P has a zero x* and that [P'(x* )]' exists and IIP(z)(y)II <
K for y in N (x*). Then [P'()]™" exists for y in N5 (x*) and

*

P’ N ——
PO < s

provided that KB *§ <1 where B* = ||[P'(x*)]"!|.
Then x* is a simple zero of P, and the Newton iteration function for P,

NP(y)=y — [P OO IPY), is deﬁned for all y in Ng(x*).
We have P(x*) = 0 and NP(x*) = x* and

NP(y)—x" = y—x"+ [P’ P(x*) — P(»))
=y—x"+[P'ON®'») (x* —»)+ Gx", )
= [P'O)I" G(x", y)

* K * 2
where IG(x ,y)ll<;“x =yI*.
B*Kllx* —y|
Thus  [[NP() —x" | < —————— Iy —x*}|.
) i—5%s X
If B7K? <6<
20—B*Ks)

then NP maps N;(x*) into (not necessarily onto) Nea (x*), and the successive
iterates xg4; = Xk — [P (xx)]™! P(xx) converged to x* from any xo in Ng(x*);
in fact, ||xg —x *I| <6%s, k = 0,1,2,... Thus the Newton iterates converge to
the solutlon x* from any xo in Ng(x* ) whenever 8§ < 1. For this, we need
8(B*K + 26KB*)< 26 or

26

<———— withf < 1.
B*K(1+28)
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From this we can conclude that the Newton iterates converge to x* from any
Xo such that

o 3B*K
where B* = |I[P'(x*)]" Il and IP®)(»)Il <K for y in Ns(x") where
2
T 3Bk

This is a slightly sharper result than given by Rall (foc. cxt Th.26.1, p. 188),
who finds by a different argument that convergence to x* follows from any xg
such that

4B*K

where 1P (x)| <K for x in N (x*

To illustrate the difference between the two results, consider the simple case
of the solution x* = 0 of P(x) = 0 for the polynomial P(x) = x — x*. From
llxo — x*1l < 2/(3B*K) we conclude that the Newton iterates converge from
any Xo such that

1
[xol <—3
0 3

whereas, from |lxo — x*l| < 1/(4 B*K) we conclude: only that convergence
follows for

[x0 | <——=

8\/—

Actually, the Newton iterates converge to x* = 0 in this example if and only if

Ixo | < !
X0 \/g .

It is not a simple matter by any means (even for polynomials, let alone
operators) to find the exact regions of starting points from which the Newton
iterates will converge to a particular solution of a nonlinear equation. (See Rall’s
interesting discussion of this on pp.185-188, loc.cit.).

A question of practical interest for computational applications of Newton'’s
method in Banach spaces is how to find some safe starting point xo from which
the Newton iterates will converge to a solution of a nonlinear operator equation.
See Chapter 19.
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To apply the Kantorovich theorem we need an xo in Cf)z)[O, 1] for which it
is possible to satisfy the following inequalities:
Bo = I[P (xo)I 7',

Mo = llx; —xoll .
=

K= IPOG) forall |ly —xoll <6,
1 -1 =2k
where ) = '——_"'2‘ No »
ho
1
and ho = BoT]oK<E .

It may not always be easy to tell whether [P'(xo)]™" exists or, if it does, to
find a bound on its norm. We give now three examples of operators for which we
can find a By satisfying the first of the inequalities above. The other inequalities
will be discussed as well in Example 3 below.

Example 1
The Fréchet derivative at xo of P: E" - E" is the Jacobian matrix

, op; o
[P'x)lij=—| ,Gi=1,2,...,n)
ox; lx,

provided that these partial derivatives exist and are continuous at xo. Thus, if
this Jacobian matrix is non-singular then we can take any upper bound on the
norm of its inverse for By .

Example 2
The Fréchet derivative at x, of an integral operator P: C[0,1] = C[0, 1] of the
form

1
[P)] (1) = u(t) —g(t) — f0 K(t, ) (s, u(s))ds
is expressible as

, 1 of
[P'(xo)y] (1) = y(t) — f0 K(t5) — (6 xo@)y(s)ds

of
provided that X is continuous on the unit square and a— (s, xo(s)) is continuous
u

on [0, 1]. If we define the linear operator Q on C[0, 1] by



17] Newton'’s method in Banach spaces 119

1 0
@MO=£K@»£@MmMMs

then we have P'(xo)y = (I — Q)y or P'(xo) =1 — Q. Thus, if |Qll = sup
Iyli=1
1@y 1l < 1, we know that [P’(x)]™" exists and that

! -1
P o)l I < T o

We will have || Q|| <1 if, for instance,

ds<1;

0
—f (s, x0(s))
ou

1
i< max f 1K@ 9
te[o,1] ©

1
1—lgl’

and we can take By =

Example 3
The Fréchet derivative at xo of a differential operator P: C(z)[O 1] = C[o0, 1]
of the form [P(u)] (t) = u "(t) — f(¢, u(t)) can be written as

3
[P'Gxo)y)(0) =y "(r) — a—i (t, xo(1))¥(2)

0
provided that a—f(t, Xo(?)) is continuous in ¢ for ¢ in [0, 1].
u

It can be shown that if the initial value problem w, "(t) — a(t)w; () = O with
' of
wi(0)=0,w, (0)=1, a(t) = u (1, xo(2))

has the solution w,(z) for 0 <t < 1, and if w;(1) # O, then the equation
[P’ (xo)y](t) = 2(¢) has a umque SO]UthI‘l for every z in C[0, 1]. In this case
[P'(xo)]™: C[O, 1] » C(z)[O 1] can be expressed as

[P'(xo)]™ 2() = fo G(t, $)z2(s)ds ,

where G(¢, s) is the Green’s function for the linear differential operator P'(x,)
on C((f)[O, 1] (boundary conditions: y(0) = y(1) = 0 for all y in C((,z)[O, 1])
given by

s ! wi(wa(s), 0<t<s<1
G(t,s)= 1(1)

—— wi(s)wa(t), 0<s<t<1

wi(1)
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where w,(¢t) is the solution to the initial value problem w, "(¢) —a(t)w,(£) =0
, of
with wa(1)=0,w, (1)=1,a(t) = o (7, xo(2)).
u

In this case we will have, since
[P'(x0)]™: €[0,1] > C{?[0, 1], the upper bound

NP (o) = sup IIP'Geod] ™ 2l e ) -
Izll=1 o

d? 1
Thus, we can take By = max — f |G, s)| ds
reo,1] L def ~o

For a specific case of an example of this type consider P(u) =u" —e . To
1
find a zero of P in ng)[O, 1] using Newton’s method we might try xo(¢) = 5

t(t — 1). In any case we want an x, which will make X, —xoll = |I[P'(xo)] -1
P(xo)Il small. With this xo we have P(xo)(r) = 1 — e 1/D1(=1) ang |pxo )| =
e(1/8) _ 1 <0.134; and we have

P’ o)l < max —d—i— L 16G, 51 ds
te[0,1] dt 0

where G is given above with w, (¢) satisfying, for a(t) = —exp(—xo(2)),
wy (@) +e1 /D00y (=0
w1(0)=0,w,'(0)=1

and w, (¢) satisfying
wy "(t) + (/210D (5 = o
wa(1)=0, wy'(1) =1.

Now, assuming for the moment that w, (1) # 0, we have
1

1 _ t
j; IG(t,s)Idszw—l(l—) {Iwz(t)l j; Iwi(s)|ds

+ (wy (2)] j;l |W2(S)|ds}’

and
dz

1 1 w (!
A lG(t,s)Ids=w1(l) {IWz(I)I j;lwl(S)lds

dr?
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1
+lwi (1" j: wa (s)lds

+ |W2(f)|' fwy (1) — |Wl(t)|' |W2(t)|}

We can bound the expression above and hence IP'(x0)™"|l using interval
methods as discussed in Chapter 14. To do this we can first rewrite the
differential equations for w; and w, as integral equations. Integrating them, we
obtain

w'@ =1+ fO' {—e(/2s0-9y, (5)}) ds

wi(t) =1t— j;t jo‘t—e(l/z)s(l's)w,(s)dsdf-

=r— fot fs' e/2s(-9y, (5)drds,

50 wi() =1t— j;t(t—s)e(‘/z)s("s)wl(s)ds.

1
Similarly, wy(r) = t—1— [ (s—1)et/D50= (6)qs.
t

Now, using the techniques of interval analysis (Chapter 14) we find that
e(1/2)5(1-9) €[] ¢0125) ¢ [1,1.134] forall sin [0,1];

and so we consider the interval operator related to the integral equation for w,
given by

0:(Xo) (6) = t — f;t(t—s)[l, 1.134] X, (s)ds.

For X () of the form Xo(¢) = [a, 1]¢,0 <a <1 we have

I

t
0:(Xo) (1) = 1 —[a,1.134] j;(t—s)sds

a
t— l:—,0.189:|t3
6 ,

and we will have @, (Xo)(t) C Xo(¢) forall z in [0, 1] provided that

a
t— [2»0.139]’3 Cla,1]¢, forall in [0, 1].
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The relation above will be satisfied for a > 0 such that 1 —0.189¢% >a,
(t € [0, 1]). Hence, we may take a = 0.811. Then we have w,(f) C ¢ — [0.135,

0.189]¢3 C [0.811, 1] ¢.
Note that the above inclusions give us a choice of two interval polynomials

containing w, (¢). In particular w, (1) C [0.811, 0.865].
Next, for an interval operator related to the integral equation for w,,

consider
QX)) () =t—1— _];l (s—0[1,1.134] Xo(s)ds .

For X, (2) of the form Xo(?) = [a,1](t — 1),0 <a <1 we have

1
0:(Xo) (1) = (t—1)—[a, 1.134] ft(s—t)(s—l)ds

a
=(@¢-1)- [2,0.189] t—1)3,

and we will have Q, (X, ) (#) C Xo(?) for all zin [0, 1] provided that
(t—l){l - [%,0.189] (t—1)2} Cla,1](t —1)foralltin [0,1].

The relation above will be satisfied for @ > 0 such that 1 —0.189(t — 1)* >aq,
tin [0, 1]. Hence, we may take 2 = 0.811. Then we will have

wy (1) C(t—1) {1 —[0.135,0.189] (¢ — 1)*} C [0.811,1](z —1).

Note that w,(¢) is negative while w, (¢) is positive for 0 <7< 1.
Using the interval polynomial containing w, and the differential equation for
w, we find that

wy "(£)C —[1,1.134][0.811,1]¢
wy "(H) € —[0.811,1.134]¢

t
and w () =1+ f w, "(s)ds
0

$0 w,'(£)C1—1[04,0.567] ¢2.
Similarly, we find that
wy () S —[0.811,1.134)(r — 1)
and wy (1) C1—[0.4,0.567](r —1)2.
We find, furthermore, that
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t t
J wi@ids € [ [0811,1]5ds € [0.4,05]¢2
(1] (1]

1 1
and ft Iwa(s)lds € ft [0.811,1](1 —s)ds C [0.4,0.5](1 —r)*.
We find that
2 1
d_’ |G(t, s)1ds is contained in the interval
t

B(r) {[0.811,1.134](1 —¢) [0.4,0.5] 2

~ [0811,0.865]
+ [0.811,1.134]¢ [0.4,0.5](1 —1)?
+ (1—[0.4,0.567](1 —)*) [0.811,1]¢
— (1 —[0.4,0.567]¢%) [0.811,1](1 — D)} .
At a given value of ¢ in [0, 1] the largest number contained in B(t) is the right
hand end point of the interval B(¢), which is given explicitly by the expression
1
YTl {05671 —t)r+1—04(1 —1)* ¢
—(1—0.567¢%)0.811 (1 — 1)}

r(?)

1
YT {1+ —1)(—0.811+0.167¢ + 0.85963712)}

Evaluating the last expression above using interval arithmetic, replacing ¢ by
the interval [0, 1], we find that

1.215637
max r(H)) < —— <15
(0,1} 0.811

From this result we conclude that ||[[2'(xo)] ! Il < 1.5. Thus, we can take
Bo =1.5.

In this example, then, we have |lx; — xoll < BollP(xo)ll < (1.5) (0.134) =
0.201, and we can take o = 0.201, By = 1.5 in the Kantorovich conditions for

1
the operator Pu)=u"—e™“ on ng) [0, 1] with xo () = Et(t —1).
To find, K, we observe that

PG = »"(O+e*Dp)
and so [P"G)t]u(t) = —e *Dp(t)u(r).
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Thus, we have [P"(x)y]lu(t) = —e*DyDu).

and IP"GON = sup IIP" (¥,
hyh=1
where Iyll= max |y"(O!,
1{0,1]
and IP"yll = sup N[P"Gx)y]ull,
lu =1
where lull = max lu"@)l,
t€[0,1]
and IP"e)y]ull= max le *Oy(u()l.
te[0,1]

Recal] from Exercise 100, C) ‘Hint’ that HullC[O 1] < l\u "ng) [0,1 ] .
Thus, in this example,

llP"(x)ll =  max le'x(’)l<e'5e°‘125
t€(0,1]
for IIX"Xo“C[O,l) <|Ix —xO”ng)lo'l] <$.

Putting K = 1.134e® >e°12%¢% | we can satisfy the Kantorovich conditions with
no =0.201,B,=15,K= 1.134¢% provided that there is a § > 0 such that
1 —+/1—2h
5 >—T——° (0.201)
0

and ho = (1.5)(0.201) (1.134)¢®

I

s 1
0347 ...e" <—
2

1
With Ay = 0.375 < —, for instance, we can shoose § = 0.268, and we will have
(0.347 ...)e%%%® = (0347 ...)(1.31...)=045...<0.5.

Therefore, the Kantorovich theorem guarantees the convergence of Newton’s
method to a solution x of x " —e™* = 0, x(0) = x(1) = O from the starting point
xo(t) = —;-t(t — 1). Furthermore, the solution x will be in Ng(xo) with § =
0.268, thus for every ¢ in [0, 1] we will have

1x(8) = xo (DI <Nx —Xollc(o,1) <lx —xollcg=)[0,1) <0.268,
and it follows that
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BoK ,
Ix() —x1 () <lx —x I < BN flx —xoll

1.485...(1.5
<——2-—(——) (0.268)

< 0.082, for all zin [0, 1].

For x, , we will have |lx —x, | <1.2(0 .082)% < 0.0081, and for x5, |Ix — x3||
< 1.2(0.0081)*> < 0.000079, and for x4, lIx — x4l < 1.2(0 .000079)? <
0.0000000075.  The Newton sequence is rapidly convergent here. Of course,
each iteration requires the solution (or at least approximate solution) of a linear
equation.

Exercise 102 Study the application of Newton’s method to the solution of the
nonlinear two-point boundary value problem

x"(t)—6(x(r)+ 1+22521)> —5t=0
x(0) = x(0.5)=0 .

Consider the operator P: C(2)[0 0.5] = C[0,0.5] defined by P(u) (1) =u"(t) —
6(u() + 1 + 2.252t)* — St where C 2)[0 0.5] is the Banach space of twice
continuously differentiable functions on [0, 0.5] which vanish at O and at 0.5
with norm

lull=  max |u"(1)].
1€[0,0.5]

Find P'(y) and P"(») and seek an element x, and a neighborhood N (x,)
for which the Kantorovich conditions are satisfied.

Newton’s method for nonlinear operator equations in Banach spaces requires
the solution (or approximate solution) of a linear operator equation at each
iteration. Methods for the approximate solution of linear operator equations
have been discussed in Chapters 11—13. Additional methods can be found in
Chapters 14 and 15. There exist other methods as well which are not discussed
in this work such as factorization (or ‘splitting’) methods for second order
differential equations, shooting methods for two-point boundary value
problems, transform methods, and others. Methods based on complex analysis
and eigenvalue problems for operators have also been omitted from this work
(except for the spectral theory of completely continuous self-adjoint operators
in a separable Hilbert space, which does not require complex analysis).

An interval version of Newton’s method for the class of two point boundary
value problems of the form y"(t) = f(¢t, ¥(¢)), »(0) = y(1) = O has been
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developed by T. Talbot: ‘Guaranteed error bounds for computer solutions of
nonlinear two-point boundary value problems’, Mathematics Research Center
Technical Summary Report 875, 1968, Mathematics Research Center, University
of Wisconsin—Madison.

A much more general and precise method which combines interval analysis
with the theory of bounded semi-norms has been developed by Y.-D. Lee in his
PhD thesis at the University of Wissonsin—Madison: ‘Guaranteed component-
wise, point-wise error bounds for approximate solutions of nonlinear two-point
boundary value problems using an improved Kantorovich-like theorem’, 1980.

A method which can be even more rapidly convergent than Newton’s method
and which uses second Fréchet derivatives is ‘Chebyshev’s method’. See: R. E.
Moore and Shen Zuhe, ‘An interval version of Chebyshev’s method for nonlinear
operator equations’, J. Nonlinear Analysis 7, no. 1, 1983, pp. 21-34. This
‘method as well as others in this work, can be applied to certain operator
equations involving nonlinear partial differential equations.



CHAPTER 18

Variants of Newton’s method

In this chapter, a general theorem is proved, which includes as special cases: a
theorem of Ostrowski, Newton’s method, the simplified Newton method, and
the successive over-relaxation Newton method. Numerical examples illustrate

these variants of Newton’s method.
A number of references to further works on such methods can be found at

the end of the chapter.
Suppose that B; and B, are Banach spaces and that P: Ng(x) C B; = B, is an
operator for which P(x) = 0 and P'(x) exists. Consider iterative methods for

approximating x, xx,; = F(xx), (k =0, 1, 2,...) where F can be expressed as
F(y) =y — A(y) P(y); where, for every y in Ns(x), A(y) is a bounded linear
operator from B, into B, and |A(»)ll is uniformly bounded, say ||4(»)ll < a for
all y in Ng(x).

We have the following.

Theorem If |[A(Y)P'(x) — IIl <8 < 1 for every y in Ngs(x), then there is a
8' > 0 such that the iterative method above converges to x from every xg in
Na'(X).

Proof Since P'(x) exists and P(x) = 0 we can write
P(y) = P(x)+P'(x)(y —x) + G(x, y)
= P'(x) (y —x) + G(x, »)

where, for every € > 0, there is a §(¢) > O such that [[G(x, y)Il < ellx — yll when-
ever y is in Ng)(x). Then F(») — x =y — x — AW)P'(x) (v — x)
—A(y) G(x, ), and

IFO) —xlIl < M —AQ@)P ' Iy —xIl + e lly — x|l
< (8 +ae)lly —xIl.

1—6
Choose € < ——, then ||IF(y) — x|l < clly — x|| for every y in Sy =
a
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Ng(ey(x) and ¢ = 8 + ae <1. Thus, F maps the set So with radius oo = 6(€) into

the set S| = F(So) = {Z =F{y):ye€ So} C S, with radius g; = sup llz — x|l <
zeS§,

¢ 0o. Similarly, the sets Sy = F(S¢-y) € Sk-1,k=1,2,..., have radi\i o <
ck 0o. Therefore the iterative method produces a sequence of points {xk, in So
converging to x from every x, in So, and the theorem is proved.

Corollary Under the conditions of the theorem, we also have
k

lxg — x|l < llxo —xill

wherec =60 +ae<1.
The theorem covers several cases of special interest.

Example 1 (cf: Ostrowski theorem; Ortega and Rheinboldt, p. 300)T

For A(y) =1 the iterative method has the form xx,, = F(xx) = xx —P(xx). In
this case, F'(x) exists whenever P'(x) exists, and the theorem states that if
F(x) = x and ||F'(x)ll < 1, then the iteration converges to x from every X, in
some neighborhood of x.

Example 2
For 4(») = [P'(¥)]"!, assuming that [P'(¥)]™! exists and that (i[P'(»)] ' <«
for y in Ng(x), we have Newton’s method

Xk+1 = F(xg) = xg — [P'(xx)] " Plxg).

In this case, the theorem asserts that if ||[P'(¥)] ! P'(x)— 11| <8 <1 when y is
in Ng(x), then there is a 8’ > 0 such that Newton’s method converges from any
Xo in Ng!(x).

Example 3
For A(») = [P'(x0)]!, assuming that [P'(xo)]™" exists, we have the simplified
Newton’s method :

Xka1 =F(xk) =xg — [P'(x0)] ! Plx).

If (I[P'(%0)]7" P'(x) — 111 < 6 < 1 then for some §' > 0 the iteration converges
to x from any x4 in Ng*(x). For an analysis and illustration of this method see
Rall (pp. 198-203) (see refs at end of this chapter).

Example 4
A practical method for B, = B, = E", referred to by Ortega and Rheinboldt as

t Sec references at the end of this chapter.
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the SOR (successive over-relaxation) — Newton Method and by Greenspan as the
generalized Newton Method, is the following.

oP;
Suppose that the n X n matrix P'(y) has nonzero diagonal elements gf(y)
i
for y in Ngs(x). Then take A(y) to be the diagonal matrix whose nonzero
elements are
-1

oP;
[AW))ii = w [a—‘ (.}’)jl
Vi

The iterative method that results in component form, is

-1
xl(k”) = xl(k) - w l:? (x(k))] Pi(x®)),(=1,2,...,n)
1

A Gauss—Seidel modification of the method is employed most commonly
(see Greenspan) in which x(k”) is used instead of x %) on the right hand side of
the iteration formula forj =1, 2,...,i— 1. This has the effect of not requiring
se&arate computer storage for the vectors x®) and x**1)_ The components

are stored on top of x K ; ) as soon as they are computed.

The SOR—Newton method is simpler notationally for analysis than its
Gauss—Seidel modification and has similar convergence properties. See Ortega
and Rheinboldt for a thorough analysis of the Gauss--Seidel modification.

Let M(y) be the matrix whose elements are

dP; 1 ap;
MO = [—0)| — &)1

oy; oy;

op; |7 ap o
MO = | —O)] — &), i#j

0y ay;

i,j=1,2,...,n. Then AW)P'(x) — I =wM(y) + W — 1)] and |A(»)P'(x) —
A< WM+ w =11,

From the above inequality and the theorem of this chapter, it follows that
the SOR—-Newton method converges

1) forany 0 <w<1if|[IM(»lll <1 forall yinNg(x)
2
2) forany 1 <w <2 if MU < — — 1 for all y in Ng(x) from every xq in

some neighborhood of x.

-1
aP;
[a '(y)j' is continuous in y for y in some neighborhood of x, then
Vi
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[M(»)];i is near zero and, for the maximum row sum norm; we have, in fact, for

any e >0
n oP; |t op;
MO < max 5—(x) -a—(x) +e€
i=1,2,...,n j=1 Vi Yj
J*i

whenever y is in some §(€) neighborhood of x. Thus if

5 P

2 |—®
ji

i=1,2,...,n)
oyj

‘——(x)

then IM(»)ll < 1 for all y in some nelghborhood of x. The condition above is
that of diagonal dommance of the matrix P'(x). For example, if we discretize
the operator P(u) = u" — e*¥ as Pi(y) = pisy — i + yi, — At*e* Y  where
At = 1/N, with y = (yl, Y2,...,YN-1) and apply the boundary conditions
¥o =y(0) =yn =y(1) =0, then P'(x) is a tridiagonal matrix with

oP;

—(x) =0 forij—il>1,

y;
and the condition becomes 2 <2 + At? exp(x;))(i=1,2,...,N).

Thus the SOR—Newton iterative method will converge for P(y) given as
above for any 0 < w < 1. For the operator P(u) =u" —e™“, however, the same
argument does not work, and we cannot conclude from the analysis given here
that the SOR-Newton method will converge to a zero of the discretized version
of the boundary value problem u” —e™ =0, u(0) = u(1) = 0.

Numerical examples

The two-point boundary value problem y " = 6y* + 5¢ with y(0) = 1.0, »(0.5) =
2.126 was discretized with At = 1/2N and the differential equation replaced by
P()=yin — Wi+ yiq — A2 (63 +51) =0,i=1,2,... ,N—1,fory=
O'1, Y2, -- -, YN-1) With t; = iAt and y; approximating y(;) fori =1,2,...,
N — 1. The boundary conditions were imposed as yo = 1.0 and yy = 2.126. The
Gauss—Seidel modification of the SOR-Newton method was used to solve the
discretized equations. For this example we have

oP;(»)
i

so that the iterations take the form

= —2—12At%y;

jﬁfl) —2y1k) +y(k+l) Atr? {6(,Vi(k))2 +5’i}\l,
—2—-1241 y{®)

yi(kﬂ) ___y}k) _
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i=1,2,...,N— 1. Using w = | and the initial approximation yl§°) =1+
2252t, i = 1, 2,...,N — 1 (a straight line passing through the boundary
values), the iterations were carried out until

P -
max & —y® = ey ——— <10
i=1,2,...,N-1 i=1,2,...,N+1 | 0P; |

— 0

oy; !
was satisfied. The following table shows the number of iterations that were
required to satisfy the stopping criterion as a function of V:

N 10 20 30 40 50
#iterations 47 143 265 403 547

The program was written in FORTRAN IV for the UNIVAC 1110 computer
at the University of Wisconsin. The entire computation summarized by the table
required 3.6 seconds of machine time. For comparison, the equations were then
solved using Newton’s method and taking advantage of the tridiagonal form of
the resulting linear systems. For the same initial approximation and the
comparable stopping criterion

i=1,2,...,N-1

the Newton method stopped in only a few iterations in all cases NV = 10, 20, 30
40, 50. The total computing time for Newtons method was 1.9 seconds.

While no one is going to get very excited about saving 1.7 seconds of
computing time it is, at least, interesting to note that Newton’s method was
faster than the SOR-Newton method in this example in spite of having to solve a
linear system at each iteration. Of course, since only one value of w was tried, it
may be that the comparison was not completely fair. Perhaps another value of
w would yield faster convergence for the SOR-Newton method in this example.

Exercise 103 Using the information given by the stopping criterion used and the
table following that relation, estimate the accuracy obtained with w = 1 for
N =10. Try the SOR-Newton method with other values of w.

For extensive discussions on the determination of an optimal value for the
relaxation factor w for linear systems of equations see Young (1971) and
Forsythe and Wasow (1960). For computational results on partial differential
equations using the SOR-Newton method or its Gauss—Seidel modification see
Greenspan (1968, 1974).
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Note that in the SOR-Newton method each component xlgk”) is found

- . op; KN ;e . . L
explicitly. The coefficient _v (x**’) is a number, and only an ordinary division
o]

need be performed. No linear system need be solved at each iteration as in the
Newton method. For very large systems of nonlinear equations such as arise in
finite differece methods for nonlinear partial differential equations, for example
Greenspan (1968), there may sometimes be a computational advantage in using
the SOR-Newton method or its Gauss—Seidel modification instead of Newton’s
method. On the other hand, the matrices occurring in the successive linear
systems to be solved in such an application will be sparse (mostly zero elements)
so that Gaussian elimination - just as in the tridiagonal case — can be arranged
in such a way as to take advantage of the large number of zero coefficients to
vastly reduce the amount of computation required.
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CHAPTER 19

Homotopy and continuation methods

For iterative methods for solving nonlinear operator problems, the difficult and
important problem remains of finding an initial guess that is close enough to a
solution so that the iterative method converges to the solution. Sometimes this
can be done by using additional information about the operator equation
derived from close examination of the particular operator equation involved, or
from a crude approximation to a solution found by other means.

An elegant approach to the problem of finding a sufficiently close initial
approximation for a given iterative method to converge is afforded by
‘continuation’ methods based on the concept of a homotopy. In this chapter, we
give an introductory treatment of this approach. The basic idea is this: we write
an operator equation that we can solve which somehow resembles the one we
want to solve. We then find a continuous transformation (a homotopy)
depending on a parameter A such that, for A = 0, we have the problem we can
solve, and for A = 1 we have the problem we want to solve. Thus, we have a
continuous transformation of a solvable problem into the problem of interest.
We then subdivide the interval [0, 1] into a finite number of sub-intervals, and
take the solution (or an approximate solution) at A; as an initial guess for the
solution of the problem at A;,; in some iterative method. We hope, in this way,
to find a suitable initial guess for the original problem, which corresponds to
A = 1. In practice, the approach is most successful if we take a problem
corresponding to A = 0 which closely resembles the problem we want to solve,
but has a known solution.

References to research papers on the continuation approach are given.

An alternative approach, in the case of finite dimensional nonlinear operator
equations, is given in Chapter 6 of Methods and applications of interval analysis
(R. E. Moore, SIAM, Philadelphia, 1979).

A family of continuous mappings A, : X = Y, A € [0, 1] is called a homotopy
if the function

H:XX|[0,1] = Y defined by
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H(x, \) = h\(x),x € X, \E [0, 1]

is continuous (with the product space topology on X X [0, 1]). (See S. T. Hu,
Homotopy theory, Academic Press, 1959). Here X and Y can be any two
topological spaces (for instance Banach spaces). The maps ko and A, are called,
respectively, the initial map and the terminal map of the homotopy h,. Two
maps, f: X = Y and g: X = Y, are said to be homotopic if there exists a
homotopy h, such that hy = fand h; =g. Then f can be changed continuously
into g.

In this chapter we consider the use of homotopies in successive perturbation
methods, often called continuation methods.

By an open set S in a Banach space B we mean a subset S of B such that
every point y in S has a §(y) > 0 neighborhood contained in S. Thus S is open if
y in S implies that, for some §(») >0, N5 (,)(») = {y:zin B, llz—ylI <8(»)}
C S. Note that B is open (in itself).

Suppose we are interested in finding a zero of a continuous mapping P: S C
B, = B, where S is an open set in B; . Let x be any element of S and consider
the homotopy h,(¥) = H(y, A\) = P(y) + (A — 1)P(x,) with initial map hq(y) =
P(y) — P(xo) and terminal map h, (y) = P(»). Clearly, ho has a zero at y = x,.

Under various conditions, H(y, A) will have a zero for each A in [0, 1], and
the zero xo, of H(y, 0) may lead to an approximation to a zero of H(y, 1) =
P(y) if we can approximately follow a curve of zeros x(\) satisfying H(x(A), \)
=0, Ain [0, 1], with x(0) = x,.

We can write H(y, ) = Q(¥) + A\P(xo ), where Q(y) = P(y) — P(xo).

Suppose that, for every y in S, P'(y) exists and 4(») is a bounded linear
operator from B, into By, and that [|A(y)ll < « for all y in S. If there is a
continuous curve of zeros x(A) in the open set S, then we have the following
discrete continuation method.

Theorem If, for each X in [0, 1], there is a §(A) > O such that [|[4(y)P'(x(N))
— Il <8 <1 for every y in Ng(xy(x(N)) (with 6 independent of A and y), then
for any € > O there are integers M, Ny, N,, ..., Ny and numbers 0 < 7; <A,
<...<My = I such that [Ix(1) —xp, N, < € where

X1,0 = Xo
Xjke1 = Fij(xjx), k=0,1,...,N;,
Xjs1,0 = XjNjs j=1,2,... M—1
with F; defined by Fj(y) =y —AH, Nj)), (G =1,2,....M).

Proof From the theorem of Chapter 18, for any X; in [0, 1] there isa 8'(X;) >
0 such that xj g4y = Fj(xj ), k =0, 1,.. converges to x(};) from any x; 4 in
{y:lly = x(\)Il <8'(A;)}. From the assumed continuity of x(\) on the com-
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pact set [0, 1] it follows that there is a positive lower bound 0 <48 < 8'(\)) for
Aj in [0, 1]. From the uniform continuity of x(\) on [0, 1] we can choose AX
small enough so that [Ix(js;) — X))l <8 for 0 <Ajy; — A <AX. Then for
some integer M there are 0 <A; <Ay <...<Apy =1 with A;y; —A; SAA
such that

x() €Sy, = {yilly —xQa)I <8} .

Thus Xjsy, ke1 = Fjs1 (Xje1,x) converges to x(Aj4 ) from any xj. o that is close
enough to x(A;) to be in S,\j” . This implies the existence of the integers

Ny, Na, ..., Ny in the conclusion of the theorem, and the theorem is proved.

With further assumptions for specific algorithms we can obtain more precise
information. Let us consider, for example, in more detail such an argument as
applied to Newton’s method.

Suppose that [P ()| <K and I[P'(¥)]"' Il < B for all y in S. This time,
without assuming the existence of zeros of H(y, A) in advance, let us seek
sufficient conditions to guarantee that a zero exists and that x, is a safe starting
point for the convergence of the Newton iterates to a zero x(A;) of H(y, A\, ) for
some A; > 0. In fact, let us seek conditions such that x(Q) is a safe starting point
for convergence to a zero x(A + AX) of H(y, A + AN) if H(x(A),A) = 0.

In order to apply the Kantorovich conditions (see Chapter 17) here, with
H(y, A\ + AN) = H(y, \) + ANP(x,), and H(y, \) = P(y) + (A — 1)P(x,), we
can take n = B|AX| IP(xo)Il = lix; — x(N)Il, where x; = x(\) — [H'(x(N),
A+ AN] Hx(N), X + AN), since H'(y, A) = P'(¥), and H(x(\), A + AN) =
A)\P(Xo ).

Now, forh =BnK < -i-, we can require that by = B2 |AMN||| P(xo)ll K < -;—

Finally, we require that Ns(x(A)) C S where

1—1=2h
BK '

s =

For small enough AX > 0 we can satisfy the above inequality with

—(1 —2R2 1/2
5> 5, = LU 2B IANIPEIKY
BK

Thus, if Ns(xo) € S for & satisfying the above inequality, and if hy =
B? |AN| IP(x0)ll K < 1/2 holds, then the Kantorovich theorem applies and
H(y, AM) has a zero in Nj(x,) to which the Newton iterates converge. Call A, =
AX and denote by x(A;) the zero of H(y, \,) in Ng(xo). We have H(x(\;), \)
=0.

If again Ng(x(A;) € S for some & as above, then again the Kantorovich
theorem applies, and Newton’s method will converge to a zero x(A; ) of H(y, A;)

= 0 in Ns(x(A;)) where A, = A; + AX. Furthermore, since § > 0, the Newton
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iterates will also converge to x(A;) from an approximation to x(\;) (in fact,
from any point in Ngs(x(A; )). Finally, we have the following result.

Theorem If there is a AN > 0 such that ho < 1/2 and N5 (x(Aj)) € S for some §;
satisfying 6; = 8o, Ajsy = Aj + AN, then the conciusions of the previous
theorem hold, putting A(y) = [P'(»)]™*; given an € > 0, a finite series of
Newton iterations will produce an approximation XM Ny, to a zero x(1) of Pin
S such that ||1x(1) —XM,NM" <e.

Example

Let B, and B, be the real line and consider the mapping P(y) =In(1 + y)
defined and continuous on the open set § = (—b, ) for any 0 < b <1,a> 0.
We have

P'ON™ = 1+y
i
(1+y)?’

Il

PO(y)

1
so we can take K= ——— > |P?)(y)| yeS
(1 =5y 1P O,y

B=1+a>|[P'O)]|, y€S.

The exact region of safe starting points for Newton’s method to converge to
the zero of P at y = 0 is easily found to be the open interval (—1,e — 1). The
Kantorovich conditions will be satisfied in some subinterval,

Using the theorem above with H(y, X) = In (1 + y)+ (A — 1) In(1 + x,) for
any § = (—b, a) with 0 < b»<1,a>0and any x, in S, we can satisfy ho < 1/2
and § =6, with

(1-b)

2{In(1 + x0) | (1 + a)?

and —b<x(N)—8<x(N)+6<a
1 20+ Aln(1 + v
- - A x
(l _ b)2 n( 0)
l1+a
(1 -b)*

where 5= >0.

For any —1 < —b < xo <a <o we can take A\ sufficiently small to satisfy
the above inequalities as long as x(\) remains in the interval (—b, a).

We can check directly in this simple example that H(x(A), A\) = 0 for
In(1 +x() + A = 1) In(1 + xo) = 0, thus x(A) = (1 + x0)'"» — 1. We can
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check that x(0) = xo, x(1) = 0, and x(A) lies between xo and 0 in this example.

Thus, the discrete continuation method, using Newton’s method AQ) =
[P'(»)] ") at each step, in this example, can be made to converge from any
Xo > —1 to the zero of P. Whereas the ordinary sequence of Newton iterates
converges from xq to a zero of Ponly if —1 <xo <e— 1.

DAVIDENKO’S METHOD:

Another approach to the determination of a curve of zeros leading from some xo
to a desired x(1) is as follows.

Differentiating H(x(A), A) = 0 with respect to A, using H(y, A) = P(y) +

(A — 1)P(xo), we obtain P'(x(\)x'(\) + P(xo) = O (assuming that a
differentiable curve of zeros exists, for the moment). We can rewrite this as the
differential equation x'(A) = —[P'(x(A))] ' P(x,) which, together with x(0)
= Xy, can be viewed as an initial value problem. If we can find an approximate
- solution at A = 1 then this can be taken as an approximation to a zero of P,
since

1
P(x(1)) = P(x(0)) + fo P'x))x (V) dX.

Davidenko’s method (see L. B. Rall, ‘Davidenko’s method for the solution of
nonlinear operator equations,” MRC Technical Summary Report #968
Mathematics Research Center, University of Wisconsin—Madison, October 1968)
consists of finding an approximate solution to the initial value problem at A = 1
by using numerical integration techniques (Runge—Kutta, etc.). For instance, if
we apply Euler’s method we obtain the algorithm

XA+ AN) = x(A) — AN[P'(x(V)]™ Pxo)
x(0) = xo .

If we put AX = 1/N and denote x; = x(kAM), then xx,, =x; — AN[P'(xx)] !
P(x0),k=0,1,2,...,N—1.

For N = 1, the algorithm above is just Newton’s Method! In any case, we can
take the result x after V steps as an approximate solution to P(y) = 0 obtained
starting from x,.

The above cited report by L. B. Rall contains existence and convergence
theorems, computational results, illustrations, translations of Russian papers by
Davidenko, and numerous references. Ortega and Rheinboldt (Iterative solution
of nonlinear equations in several variables, Academic Press, New York, 1970)
(especially §7.5 and §10.4 on continuation methods) give extensive discussion
and references to methods and results of the type discussed in this chapter. Two
papers on discrete continuation giving theoretical results similar to the theorems
of this chapter are:
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Ficken, F.A. ‘The continuation method for functional equations.” Comm.
Pure Appl. Math. 4 (1951), 435—456, Math. Reviews 13 (1952) 562—563.
Lahaye, E. ‘Sur la résolution des systdmes d’équations transcendantes.’ Acad.
Roy. Belgique. Bull. Cl. Sci. (5) 34 (1948), Math Reviews 10 (1949), 626.

Further development of this approach is contained (for operators on £7) in
the paper:

Mayer, G. Il., ‘On solving nonlinear equations with a one-parameter operator
imbedding’ SIAM J. Numer. Anal. 5,No. 4, Dec. 1968, pp. 739-752.

COMPUTATIONAL ASPECTS
For efficient computational procedures based on continuation methods using
the discrete approach one should probably do something like the following.

To find (approximately) a zero x(1) of P using the homotopy H(y, ) = P(y)
+A—1)P(xp):

1) Find the largest (AN), for which x, is a good initial approximation for
some iterative method to a zero of H(y, (AN),);

2) compute one or a few iterations, obtaining a point x; ;

3) find the largest (AM), for which x; is a good initial approximation to a
zero of H(y, \;) with A, = (AN); + (AN),;

4) iterate once or twice, obtaining x ;

5) etc. until A = 1 is reached (if possible).

In the general step, then, we would take the result x; of iteratively approxi-
mating a zero of H(y, \;) using only one or at most a few jterations and use x;
as a starting point to find, in the same way, an approximate zero of
H(p, \; + (AN);) for as large as possible (AX); until we reach A = 1. (See: Rall,
MRC #968, loc. cit.) Of course, if x, is already a safe starting point (even more
so if it is a good starting point) for an iterative method for finding a zero of P,
then probably nothing will be gained by taking (A\); less than 1.

When using the differential equation approach (Davidenko’s method) in a
step-by-step numerical integration one should probably take as large a step A\ as
possible to stay somewhere near the curve of zeros until A = 1 is reached with an
approximation to x(1) which can then be improved if needed by some iterative
method such as Newton’s method.

In this connection, G. H. Meyer (loc. cit.) shows that if P: E” > E™ is twice
differentiable and satisfies (I[P'(x)]™ < a (x|l + 8 for all x in E”, then for
arbitrary xo in E” we have the following.

—[P' (D] P(xo)
x(0) = xq

Suppose  x'(¢)

is integrated from ¢ = 0 to ¢ = 1 with a numerical method of order h”, say



19] Homotopy and continuation methods 139

xx =~ x(kh) and xgy; = ®(xk, h), and [[x(1) — xpyll < Ch? where C does not
depend on k& = 1/N. Then the iteration

X k41 d(xg,h), k=1,...,.N—1

Xkao = Xk —[P')]™ Plxx), k=N, N+1,...

converges to the unique solution of P(x) = 0 provided that

1 VvV2—1 e
h=—< [—— and Chf <5
N g'LC

where 8’ and L are constants such that [|[P'(x)] <p’ and |[P®(x)| <L for all
x in N,,5(xo) and r is given by

,:leoll + g:l exp (& [lP(xo)ll) — llxo |l —% , if a#0
r =
BlIP(xo)ll if a=0.



CHAPTER 20

A hybrid method for a free boundary
problem

Real-world problems are often of such complexity that no single mathematical
method will suffice. Instead, a variety of methods may be required with ad hoc
techniques for putting them together. In the end we have what might be called a
‘hybrid’ method for the problem. We discuss such a problem in this chapter, and
design a hybrid method combining: inner products and the Gram--Schmidt
process (Chapter 6); separation of variables and eigenfunction expansions
(Chapters 12 and 13); and finite difference methods (Chapter 13). A
mathematical proof of convergence of the resulting hybrid method is not known
to the author, but remains an interesting open research problem.

In this final chapter, we will discuss a problem which arose during the early
days of space flight in connection with the ‘sloshing’ of liquid fuel in cylindrical
tanks during the process of restarting the rocket engines while in zero-gravity.
It is a problem which is still of some concern.

The method discussed and the results given are taken from the paper ‘Inviscid
fluid flow in an accelerating cylindrical container’, R. E. Moore and L. M. Perko,
J. Fluid Mech. 22, part 2, 1965, pp. 305-320, from which Figs. 2—9 are
reproduced by kind permission of the editor.

Some background history on the problem might be of interest. The
mathematical formulation of the problem involves a partial differential equation
(Laplace’s equation in cylindrical coordinates) and a free surface condition
involving Bernoulli’s equation at the interface between liquid and gas. Surface
tension must also be taken into account, and the free boundary condition
involves a nonlinear partial differential equation to be imposed on a surface
whose location is unknown and varying with time. In fact, it is the location and
motion of the free surface which we want to find as the solution of the problem.

Previous attempts, by others, to find numerical solutions using only finite
difference methods failed; after a year and a half, such attempts were abandoned
and a new approach was sought. We will now describe an approach that was
successful. It combines separation of variables, eigenfunction expansions, Gram—
Schmidt orthonormalization in an inner product space, and a few special tricks
that were needed to put together a method that would work, including the
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introduction of special weight functions in the inner products and finite
difference methods used in a special way in a hybrid combination with the eigen-
function expansions.

A complete mathematical theory for the convergence of the method seems
out of reach. This is very often the case in real-world problems needing some
mathematical analysis. Nevertheless, numerical results showed reasonable
behavior and agreement with such experimental measurements as were available.

The problem considered is that of the axially symmetric irrotational flow of
an inviscid incompressible fluid with a free surface in a circular cylinder
accelerating parallel to its axis.

We will describe a numerical procedure for simulating on a computer the
motions of the free surface. Some interesting motions are obtained including the
development of breakers near the wall as well as near the axis, splashing, and
sustained large amplitude oscillations of the surface.

We may assume that the unit of distance is defined so that the radius of the
cylindrical container is 1.0. Let v(r, z, ¢) be the axially symmetric velocity of a
point (r, 8, z) in the fluid at time ¢. Since the flow is assumed irrotational, there
exists a velocity potential ¢(r, z, t). Further, since the flow is assumed
incompressible, the velocity potential satisfies Laplace’s equation in the interior
of the fluid ¢,, + (1/r) ¢, + ¢,, = 0, in cylindrical coordinates, for ¢t = 0,
0<r<1,0<6 <27 0<z<f(r,t) where z = f(r, t) is the (unknown)
equation of the free surface.

Since the fluid does not move through the walls of the container, we assume
that the normal derivatives are zero on the fixed boundaries; that is, for all
t=0,

6,(0,z,¢t) = 0 for 0<z<f(0,1),by axial symmetry,
¢, (1,2, 1) = 0 for 0<z<[f(1,1),
¢;(r,0,t) = 0 for 0<r<1.

On the free surface, the motion is related to the velocity potential by dr/dt = ¢,
and dz/dt = ¢,. In addition (see refercnce in paragraph 3 of this chapter) we
impose Bernoulli’s equation with surface tension taken into account on the free
surface, thus

¢r = (@/(1+B7')) @z~ H)— (¢} +¢2)/2

f f,
+(+B)*! " + rr
e (r(1+f3>”’ (1+f,’)3/’>

on the free surface z = f(r, t), for 0 <r < 1, t =0, where B! is a surface
tension coefficient and a(f) represents the acceleration of the cylinder along its
axis. The constant H is the average height of the fluid, which is assumed to have
a constant volume.
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We impose the following initial conditions:
z = f(r, 0) = fo(r), the initial shape of the free surface for0<r<1,
&, 2,00=0for0<r<1,0<z<fo(r),and a(0) =0.

The terms involving f, and f,, in the nonlinear partial differential equation
(Bernoulli’s equation) above are the principal radii of curvature of the free
surface, which determine the surface tension forces.

The method to be described involves developing a series solution for the
velocity potential and determining the time-dependent coefficients by imposing
the free surface conditions.

We begin with the separation of variables method for the velocity potential
equation. If we put ¢(r, z, t) = C(t)R(r)Z(z), then Laplace’s equation in
cylindrical coordinates leads to the ordinary differential equations R"” + (1/r)R’
+ kR =0, and Z" — kZ = 0, with boundary conditions R'(0) = R'(1) = 0 and
Z'(0) = 0. This set of equations and boundary conditions has a countable
number of solutions which are linearly independent. The velocity potential can
be represented by

cosh(A, 2)
coshA\p H)’

where Jg is the zero-th order Bessel function and A,, (n =0, 1, . . ) are the roots
of the first order Bessel function. Thus,J;(A,) = 0; that is, A\ =0, A, = 3.8317

., etc.

It remains to determine the :time-dependent coefficients C,(t) and, at the
same time, determine the motion of the free surface. It is not an entirely easy
matter to do so.

From the expression for ¢(, z, 1), we find that

¢(r’ z, t) = Z CII(I)JO()\H")
n=0

s cosh(A, 2)
vz, t) = — A Ch(D) (A yr) ————— d
¢,(r, 2, 1) ngo n Cn(t)1(Ap7) cosh(\, H) an
d sinh(A,, 2)
rzt) = NaCn(DJo(N —_—.
¢2( ) ngo nCn() Jo(Anr) cosh(h, H)
We also find that
l cosh(A, z)
rz,t) = C!()Jo(Apr) ——————.
¢:(r, 2, 1) nZ=:o (D Jo(An )cosh(7\,,H)

Suppose we now define

cosh(A, fr, t
Fn(r,t)=J0(Knr)——(i—)2,n=0,l,2,...,
cosh(A, H)
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and B(r, t) to be the right hand side of Bernoulli’s equation given above as
o =@@)...... ), withz = f(r, 1). '
For ¢, and ¢, in the expression for B(r, 1), we use the two infinite series

given above.
With these definitions, Bernoulli’s equation can be written in the form

oo

S Cn()Fn (r, 1) = B(r, D).
n=o0
We next wish to orthonormalize the set of functions Fg, Fy, F,, ... with
respect to a suitable inner product, in order to find a system of differential
equations for the Cp,’s. A first attempt, using

1
(FoF)) = [ Fi(r 0)F; (r, 0)dr
0

led to numerical difficulties later on in the method. It was then noted that a
more reasonable inner product would be

FF) = [ CE £ F; (r, 1)dr ,
0

since, for a fixed increment in radius, the increment in volume of fluid in a
cylinder increases linearly with the radius. With this inner product, we used the
Gram-Schmidt process to orthonormalize the functions Fy, F;, F;,... to
obtain G,(r, 1), forn =0, 1,2,..., with (G;, G;) = 0if i and j are different
and (G4, G;) = 1, see Chapter 6.

We can write

Fu(r,t) = z bym(®)Gm(r, 1),

m=Q

where b, (t) can be expressed in terms of the time-dependent inner products
(F';, F}); see Chapter 6.

We now truncate the series for Bernoulli’s equation, as written in terms of the
functions Fj, at n = N, substitute the expressions for F, in terms of the G,
and take the inner product of both sides with each of the functions G, Gy, . ..,
Gy . In this way, we obtain the equations

N
2 bno()Ca()) = (B, Go)

n=o0

N
2 bni(1)Cy(t) = (B, Gy)
n=1

bynN(DCN(1) = (B, Gy) .
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We can solve the system explicitly for C N, CN-1 (D), . . ., Co(t) by back-
substitution proceeding from the last equation backwards to the first. The
(N + 1) (N + 2)/2 definite integrals which arise as inner products occurring in
this system of equations are functions of C,(t),n =0, 1, A

We next truncate the series for the velocity potential at n = N, along with the
series for ¢, and ¢,. We obtain, in this way, a system of first-order ordinary
differential equations to solve for the C,(r). These equations, together with the
equations dr/dt = ¢, and df/dt = ¢, for a finite number of points (s (?),
fm(t)) on the free surface, can be written as a first-order autonomous system.
The initial conditions are determined by the assumption that the fluid is initially
at rest and by a knowledge of the initial shape of the free surface.

We set C,(0)=0,n=0,1,2,...,N,and choose some distribution of points
on the given initial free surface (r,,(0), fn(0)), m = 1, 2, ..., M. The definite
integrals are evaluated by the trapezoidal rule, and the system of M + N + 1
differential equations is solved by the modified Euler method to move ahead an
increment in time, At. In this way, we can determine the time-dependent
coefficients C,(f) and the motion of individual particles on the free surface. The
numerical solution at the end of each time step is taken as a new starting
condition, and we can continue the solution for another time step.

The method outlined as the advantage of not requiring the surface to be such
that f(r, ¢) is a single valued function of r for a given value of ¢. As we will see
from the results, the method can follow quite complicated motions of the
surface.

Numerical experiments with various values of M and » indicated that good
results could be obtained in the types of problems of interest with M = 45 and
N = 10, with the initial distribution of points on the free surface chosen so that
the points were closer together near the wall of the cylinder.

A difficulty arose in connection with the computation of the radii of
curvature in the terms in B(r, t) describing surface tension. At first, the
derivatives f, and f,, were computed using a definite difference scheme. This
turned out not to be accurate enough to give meaningful results. As an
alternative, the surface tension term, which can be written

yo 2
f= r or (1+f3)12 ,

was considered as defining an operator 7, and the first variation of T
corresponding to a small variation in f resulting from a small time increment was
found. That is, the Fréchet derivative of T was found, resulting in the expression

B ,
T(f+80)=1F+ ~ [—(I—'ff—?)sﬂ + 06NY),

where (8f), = ¢,, At + O(Aﬁ), since 6 f = ¢, At + O(At?). Using this method
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for computing the surface tension term, we can obtain sufficiently accurate
results by taking At small enough. Values of At actually used were in the range
0.01 to 0.03 seconds. For hemispherical initial surface shapes, we can rewrite
Bernoulli’s equation so that Tf is initially zero; see the reference at the start of
this chapter.

The complete set of equations needed to apply the method to specific
numerical examples was programmed in FORTRAN for the IBM 7094 computer
in 1964 by L. M. Perko. Some results obtained using the program will now be
described.

Since the results will be shown in graphical form, we begin with a sketch of
the geometry of the problem as shown in Fig. 1.

-
P

r

0 1.0

Fig. 1 Coordinate system and hemispherical initial shape

In Fig.s 2—6, with a(¢) = 1.0 for t > 0, the cylinder is being accelerated away
from the free surface. This is similar to the case of an upside-down cylindrical
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container at the earth’s surface, gravity acting to pull the liquid out of the
container.

In Figs. 7-9, with a(t) = —1.0, the cylinder is being accelerated towards the
free surface, as with gravity acting to keep the liquid in the container, when
right-side up.

Most of the cases reported in the figures begin with a hemispherical shape of
radius R = sec 84, for various values of 8¢, which is the angle which the surface
makes initially with the wall.

The average initial height H, given in feet, and the actual radius rg (m feet)
have been normalized by dividing by ro ; time has been divided by (ro/go)!/2 and
the velocity potential by (r3go)'/2. Laplace’s equation and the boundary
conditions remain invariant under this normalization. Since the fluid is assumed
incompressible, the volume should not change. During the computations, we
monitored the volume of the fluid as a measure of the accuracy of the computed
motion of the free surface. With the choices of M and N used, M = 45 and

%

20

15

4
[ :
-10 0 10

Fig. 2 Hemispherical initial shape with # = 2.0,a(t) = +1,8= 0,68, =45°,and
=0.0177r,"/? sec
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N = 10, the volume varied by less than 0.01% per time step for the largest time
step used, and still less for smaller time steps.

Varying degrees of surface tension were tried from g = B! = 0 (no surface
tension) to 8 = 0.05 (an example of which would be water in a 0.8 inch diameter
cylinder).

The method was even able to handle a case with a nearly flat initial shape
with a meniscus at the wall, so that the free surface has initial contact angle zero
at the wall; see Fig. 6.

-4

28

[

275 _ >

LA

6
0-90 092 0-94 0-96 0-98 10

Fig. 3 The breakers at the wall for the case in Fig. 2
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Figs. 2 and 5-9 are reproductions of piecewise linear plots made by the
SC 4020 plotter directly from computer results. As an indication of computer
time required, the total time for the computation of the fluid motion shown in
Fig. 2 was 6 minutes on the IBM 7094. Only every fifth computed shape is
shown in the figure, for clarity.

Note that, in Fig. 2, breakers developed at the wall of the container. These
are shown in more detail in Fig. 3. In further studies, not shown, it was observed

E (@)

- /
10-!

=Gy (1)
-G,
n / -G
1072

-G ()

T

S

+Cy (0)
-C,(®
10-3 ™\ +Gs O} \
+ G5 (0)
0 ; — ¢ (sec)
01 ro’ 02 r(;

Fig. 4 The time variation of the
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that varying the time step for the case shown in Fig. 2 had little or no effect on
the overall behavior of the computed motion of the fluid. The breakers appeared
at almost exactly the same time ¢ when different time steps were used. The time
at which the breakers occurred was, however, found to be very sensitive to small
changes in the initial shape. A deviation in the initial hemispherical shape of
Fig. 2 by 2% at two or three points on the surface caused a 20% decrease in the
time at which breakers appeared. Also the time at which breakers appeared was
smaller for smaller contact angles 6.

3x10°*
V)
2x10~4
104
Ce (¢
C, (0 6 (2)
C4 (t) C (l)
5 G (0
/ Cs (1)
0 = : ¢ (sec)
—10-*
—-2x10~*
0 017V 021}

coefficients for the case in Fig. 2
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The qualitative behavior was much the same as in Fig. 2 for different volumes
of fluid, although a bottom effect was observed in the case of smaller volumes.
The time at which breakers appeared did not vary much for different volumes.

The results shown in Fig. 2 are for the case of no surface tension, § = 0.
Surface tension had a smoothing effect which eliminated the breakers for
sufficiently large B, see Fig. 5, which differ from the case studied in Fig. 2 only
by the introduction of a small surface tension coefficient, § = 0.005.

To avoid undamped oscillations in the surface tension term arising from over-
corrections occurring at places where there was large curvature developing, it was
necessary to use variable time steps to maintain a small growth of the surface
tension term.

]

30

y
N

15

-10 0 10

Fig. 5 Hemispherical initial shape with H = 2.0,a(t) = +1,8 = 0.005,6, = 45°, and
Ar =0.0177r,1/ sec

In Fig. 4, we can see the time-dependent coefficients C, () plotted for the
case studied in Fig. 2. In further studies (not shown) it was observed that
increasing the number of terms N beyond 10 did not affect the values of the first
ten terms significantly. In particular, Cg(¢), the last term plotted, is quite small.
The series does seem to be converging.
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The time steps indicated in the captions to the figures are the initial time
steps. As mentioned, variable time steps were used to maintain small changes in
the volume (as an indication of accuracy) and to maintain small changes in the
surface tension terms,

In Fig. 6, we consider the case of an initial shape which is flat except for a
meniscus near the wall. With surface tension present, the program was able to
follow the motion of the surface until the time step became prohibitively small.
Without surface tension, the breakers appeared near the wall almost
immediately.

A case with acceleration growing linearly with time was considered (but is not
shown), with a(z) = k¢, and with a hemispherical initial shape and no surface
tension. The results were qualitatively the same as in Fig. 2; the time at which
breakers occurred increased with decreasing k.

75

20

1-5 r
-10 0 10

Fig. 6 Flat initial shape with meniscus at the wall with H = 2.0,4/t = +1, 8 = 0.05,
8, = 45°,and At = 0.0350r, ' /* sec

In Figs. 7-9, we consider some cases when a(f) = —1, and obtain some
interesting kinds of oscillations of the free surface.

The relative magnitudes of surface tension, acceleration, and the initial
contact angle determined whether or not a splash developed on the surface.

In Fig. 7, with no surface tension and an initial contact angle of 45°, a crown-
shaped splash developed at the center of the fluid.

It was found that with the initial angle equal to 45° and a small surface
tension effect, 8 = 0.005, similar to water in a 2.5 inch cylinder, the surface goes
through one and a half oscillations before a splash starts to develop. With the
same initial contact angle, but a larger surface tension, 8 = 0.05, no splash
occurs, and several complete oscillations of the surface were computed. Half of
the first oscillation is shown in Fig. 8. 1t is interesting to note that the average
period of oscillation in this case, T = 0.485r,'/2, was slightly larger than that
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15 4
-10 0 1-0

Fig. 7 Hemispherical initial shape with H =2.0,a(t)=—1,=0, 6, =45°,and
At =0.0266r,'* sec

Z
22
20
18
:L r
-10 0 10

Fig. 8 Hemispherical initial shape with # = 2.0,a(t) = —1,8=0.05,6, =45°,and
ar=0.0266r,'/? sec

given by the linear theory for small oscillations, namely T = 0.434ro‘/2. Some
crude experiments were performed by the author, timing the period of
oscillations of water in cylinders of small diameter. The results were in rough
agreement with computed periods in cases such as that of Fig. 8, which
corresponds to water in a cylinder of diameter 0.8 inches.

In the case shown in Fig. 9, with a smaller initial angle, a splash develops
owing to the larger amount of potential energy in the initial surface shape, even
with the same surface tension as in Fig. 8. The motion is shown in two parts. In
Fig. 9(a), the center of the fluid rises up as the fluid goes down at the wall. In
Fig. 9(b), the fluid at the wall goes back down, while a crown-shaped splash
develops in the center.
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20

-10 0 1-0

15 r
-1-0 0 10
(®)
Fig.9 (a) Hemispherical initial shape with # = 2.0,a(t) = —1,8=0.05,6, = 15°,and
At =0.0266r,' /7 sec
(b) A continuation of Fig. 9(a)
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