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Chapter 1

Power Series

1.1 What is a power series?

Many functions can be represented quite efficiently by means of infinite series.
Examples we have seen in calculus include the exponential function

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + · · · =
∞∑

n=0

1
n!

xn, (1.1)

as well as the trigonometric functions

cos x = 1 − 1
2!

x2 +
1
4!

x4 − · · · =
∞∑

k=0

(−1)k 1
(2k)!

x2k

and

sinx = x − 1
3!

x3 +
1
5!

x5 − · · · =
∞∑

k=0

(−1)k 1
(2k + 1)!

x2k+1.

An infinite series of this type is called a power series. To be precise, a power
series centered at x0 is an infinite sum of the form

a0 + a1(x − x0) + a2(x − x0)2 + · · · =
∞∑

n=0

an(x − x0)n,

where the an’s are constants. In fact, these power series representations are
often used to define the exponential and trigonometric functions.

Power series can also be used to construct tables of values for these functions.
For example, using a calculator or PC with suitable software installed (such as
Mathematica), we could calculate

1 + 1 +
1
2!

12 =
2∑

n=0

1
n!

1n = 2.5,
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1 + 1 +
1
2!

12 +
1
3!

13 +
1
4!

14 =
4∑

n=0

1
n!

1n = 2.70833,

8∑
n=0

1
n!

1n = 2.71806,

12∑
n=0

1
n!

1n = 2.71828, . . .

As the number of terms increases, the sum approaches the familiar value of the
exponential function ex at x = 1.

For a power series to be useful, the infinite sum must actually add up to a
finite number, as in this example, for at least some values of the variable x. We
let sN denote the sum of the first (N + 1) terms in the power series,

sN = a0 + a1(x − x0) + a2(x − x0)2 + · · · + aN (x − x0)N =
N∑

n=0

an(x − x0)n,

and say that the power series

∞∑
n=0

an(x − x0)n

converges if the sum sN approaches a finite limit as N → ∞.
Let us consider, for example, the geometric series

1 + x + x2 + x3 + · · · =
∞∑

n=0

xn.

In this case we have

sN = 1 + x + x2 + x3 + · · · + xN , xsN = x + x2 + x3 + x4 · · · + xN+1,

sN − xsN = 1 − xN+1, sN =
1 − xN+1

1 − x
.

If |x| < 1, then xN+1 gets smaller and smaller as N approaches infinity, and
hence

lim
N→∞

xN+1 = 0.

Substituting into the expression for sN , we find that

lim
N→∞

sN =
1

1 − x
.

Thus if |x| < 1, we say that the geometric series converges, and write

∞∑
n=0

xn =
1

1 − x
.

On the other hand, if |x| > 1, then xN+1 gets larger and larger as N ap-
proaches infinity, so limN→∞ xN+1 does not exist as a finite number, and neither
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does limN→∞ sN . In this case, we say that the geometric series diverges. In
summary, the geometric series

∞∑
n=0

xn converges to
1

1 − x
when |x| < 1,

and diverges when |x| > 1.
This behaviour, convergence for |x| < some number, and divergences for

|x| > that number, is typical of power series:

Theorem. For any power series

a0 + a1(x − x0) + a2(x − x0)2 + · · · =
∞∑

n=0

an(x − x0)n,

there exists R, which is a nonnegative real number or ∞, such that

1. the power series converges when |x − x0| < R,

2. and the power series diverges when |x − x0| > R.

We call R the radius of convergence. A proof of this theorem is given in more
advanced courses on real analysis, such as Math 117 and Math 118 at UCSB.1

We have seen that the geometric series

1 + x + x2 + x3 + · · · =
∞∑

n=0

xn

has radius of convergence R = 1. More generally, if b is a positive constant, the
power series

1 +
x

b
+

(x

b

)2

+
(x

b

)3

+ · · · =
∞∑

n=0

(x

b

)n

(1.2)

has radius of convergence b. To see this, we make the substitution y = x/b,
and the power series becomes

∑∞
n=0 yn, which we already know converges for

|y| < 1 and diverges for |y| > 1. But

|y| < 1 ⇔
∣∣∣x
b

∣∣∣ < 1 ⇔ |x| < b,

|y| > 1 ⇔
∣∣∣x
b

∣∣∣ > 1 ⇔ |x| > b.

1Good references for the theory behind convergence of power series are Edward D.
Gaughan, Introduction to analysis, Brooks/Cole Publishing Company, Pacific Grove, 1998
and Walter Rudin, Principles of mathematical analysis, third edition, McGraw-Hill, New
York, 1976.
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Thus for |x| < b the power series (1.2) converges to

1
1 − y

=
1

1 − (x/b)
=

b

b − x
,

while for |x| > b, it diverges.
There is a simple criterion that often enables one to determine the radius of

convergence of a power series.

Ratio Test. The radius of convergence of the power series

a0 + a1(x − x0) + a2(x − x0)2 + · · · =
∞∑

n=0

an(x − x0)n

is given by the formula

R = lim
n→∞

|an|
|an+1|

,

so long as this limit exists.

Let us check that the ratio test gives the right answer for the radius of conver-
gence of the power series (1.2). In this case, we have

an =
1
bn

, so
|an|

|an+1|
=

1/bn

1/bn+1
=

bn+1

bn
= b,

and the formula from the ratio test tells us that the radius of convergence is
R = b, in agreement with our earlier determination.

In the case of the power series for ex,

∞∑
n=0

1
n!

xn,

in which an = 1/n!, we have

|an|
|an+1|

=
1/n!

1/(n + 1)!
=

(n + 1)!
n!

= n + 1,

and hence

R = lim
n→∞

|an|
|an+1|

= lim
n→∞

(n + 1) = ∞,

so the radius of convergence is infinity. In this case the power series converges
for all x. In fact, we could use the power series expansion for ex to calculate ex

for any choice of x.
On the other hand, in the case of the power series

∞∑
n=0

n!xn,

6



in which an = n!, we have

|an|
|an+1|

=
n!

(n + 1)!
=

1
n + 1

, R = lim
n→∞

|an|
|an+1|

= lim
n→∞

(
1

n + 1

)
= 0.

In this case, the radius of convergence is zero, and the power series does not
converge for any nonzero x.

The ratio test doesn’t always work because the limit may not exist, but
sometimes one can use it in conjunction with the

Comparison Test. Suppose that the power series
∞∑

n=0

an(x − x0)n,

∞∑
n=0

bn(x − x0)n

have radius of convergence R1 and R2 respectively. If |an| ≤ |bn| for all n, then
R1 ≥ R2. If |an| ≥ |bn| for all n, then R1 ≤ R2.

In short, power series with smaller coefficients have larger radius of convergence.
Consider for example the power series expansion for cosx,

1 + 0x − 1
2!

x2 + 0x3 +
1
4!

x4 − · · · =
∞∑

k=0

(−1)k 1
(2k)!

x2k.

In this case the coefficient an is zero when n is odd, while an = ±1/n! when
n is even. In either case, we have |an| ≤ 1/n!. Thus we can compare with the
power series

1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 + · · · =
∞∑

n=0

1
n!

xn

which represents ex and has infinite radius of convergence. It follows from the
comparison test that the radius of convergence of

∞∑
k=0

(−1)k 1
(2k)!

x2k

must be at least large as that of the power series for ex, and hence must also be
infinite.

Power series with positive radius of convergence are so important that there
is a special term for describing functions which can be represented by such power
series. A function f(x) is said to be real analytic at x0 if there is a power series

∞∑
n=0

an(x − x0)n

about x0 with positive radius of convergence R such that

f(x) =
∞∑

n=0

an(x − x0)n, for |x − x0| < R.
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For example, the functions ex is real analytic at any x0. To see this, we
utilize the law of exponents to write ex = ex0ex−x0 and apply (1.1) with x
replaced by x − x0:

ex = ex0

∞∑
n=0

1
n!

(x − x0)n =
∞∑

n=0

an(x − x0)n, where an =
ex0

n!
.

This is a power series expansion of ex about x0 with infinite radius of con-
vergence. Similarly, the monomial function f(x) = xn is real analytic at x0

because

xn = (x − x0 + x0)n =
n∑

i=0

n!
i!(n − i)!

xn−i
0 (x − x0)i

by the binomial theorem, a power series about x0 in which all but finitely many
of the coefficients are zero.

In more advanced courses, one studies criteria under which functions are
real analytic. For the purposes of the present course, it is sufficient to be aware
of the following facts: The sum and product of real analytic functions is real
analytic. It follows from this that any polynomial

P (x) = a0 + a1x + a2x
2 + · · · + anxn

is analytic at any x0. The quotient of two polynomials with no common factors,
P (x)/Q(x), is analytic at x0 if and only if x0 is not a zero of the denominator
Q(x). Thus for example, 1/(x − 1) is analytic whenever x0 
= 1, but fails to be
analytic at x0 = 1.

Exercises:

1.1.1. Use the ratio test to find the radius of convergence of the following power
series:

a.
∞∑

n=0

(−1)nxn, b.
∞∑

n=0

1
n

xn,

c.
∞∑

n=0

3
n

(x − 2)n d.
∞∑

n=0

1
2n

(x − π)n.

1.1.2. Use the comparison test to find an estimate for the radius of convergence
of each of the following power series:

a.
∞∑

k=0

1
(2k)!

x2k, b.
∞∑

k=0

(−1)kx2k,

c.
∞∑

k=0

1
2k

(x − 4)2k d.
∞∑

n=0

1
22k

(x − π)2k.
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1.1.3. Use the comparison test and the ratio test to find the radius of convergence
of the power series

∞∑
m=0

(−1)m 1
(m!)2

(x

2

)2m

.

1.1.4. Determine the values of x0 at which the following functions fail to be real
analytic:

a. f(x) =
1

x − 4
, b. g(x) =

x

x2 − 1
,

c. h(x) =
4

x4 − 3x2 + 2
.

1.2 Solving differential equations by power se-
ries

Our main goal in this chapter is to study how to determine solutions to differ-
ential equations by means of power series. As an example, we consider our old
friend, the equation of simple harmonic motion

d2y

dx2
+ y = 0, (1.3)

which we have already learned how to solve by other methods. Suppose for the
moment that we don’t know the general solution and want to find it by means
of power series. We could start by assuming that

y = a0 + a1x + a2x
2 + a3x

3 + · · · =
∞∑

n=0

anxn. (1.4)

It can be shown that the standard technique for differentiating polynomials term
by term also works for power series, so we expect that

dy

dx
= a1 + 2a2x + 3a3x

2 + · · · =
∞∑

n=1

nanxn−1.

(Note that the last summation only goes from 1 to ∞, since the term with n = 0
drops out of the sum.) Differentiating again yields

d2y

dx2
= 2a2 + 3 · 2a3x + 4 · 3a4x

2 + · · · =
∞∑

n=2

n(n − 1)anxn−2.

We can replace n by m + 2 in the last summation so that

d2y

dx2
=

∞∑
m+2=2

(m + 2)(m + 2 − 1)am+2x
m+2−2 =

∞∑
m=0

(m + 2)(m + 1)am+2x
m.
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The index m is a “dummy variable” in the summation and can be replaced by
any other letter. Thus we are free to replace m by n and obtain the formula

d2y

dx2
=

∞∑
n=0

(n + 2)(n + 1)an+2x
n.

Substitution into equation(1.3) yields

∞∑
n=0

(n + 2)(n + 1)an+2x
n +

∞∑
n=0

anxn = 0,

or ∞∑
n=0

[(n + 2)(n + 1)an+2 + an]xn = 0.

Recall that a polynomial is zero only if all its coefficients are zero. Similarly, a
power series can be zero only if all of its coefficients are zero. It follows that

(n + 2)(n + 1)an+2 + an = 0,

or

an+2 = − an

(n + 2)(n + 1)
. (1.5)

This is called a recursion formula for the coefficients an.
The first two coefficients a0 and a1 in the power series can be determined

from the initial conditions,

y(0) = a0,
dy

dx
(0) = a1.

Then the recursion formula can be used to determine the remaining coefficients
by the process of induction. Indeed it follows from (1.5) with n = 0 that

a2 = − a0

2 · 1 = −1
2
a0.

Similarly, it follows from (1.5) with n = 1 that

a3 = − a1

3 · 2 = − 1
3!

a1,

and with n = 2 that

a4 = − a2

4 · 3 =
1

4 · 3
1
2
a0 =

1
4!

a0.

Continuing in this manner, we find that

a2n =
(−1)n

(2n)!
a0, a2n+1 =

(−1)n

(2n + 1)!
a1.
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Substitution into (1.4) yields

y = a0 + a1x − 1
2!

a0x
2 − 1

3!
a1x

3 +
1
4!

a0x
4 + · · ·

= a0

(
1 − 1

2!
x2 +

1
4!

x4 − · · ·
)

+ a1

(
x − 1

3!
x3 +

1
5!

x5 − · · ·
)

.

We recognize that the expressions within parentheses are power series expan-
sions of the functions sinx and cos x, and hence we obtain the familiar expression
for the solution to the equation of simple harmonic motion,

y = a0 cos x + a1 sinx.

We want to extend the approach we have used here to more general second-
order homogeneous linear differential equations. Recall from Math 5A, that if
P (x) and Q(x) are well-behaved functions, then the solutions to the homoge-
neous linear differential equation

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0

can be organized into a two-parameter family

y = a0y0(x) + a1y1(x),

called the general solution. Here y0(x) and y1(x) are any two linearly indepen-
dent solutions and a0 and a1 can be arbitrary constants, and we say that y0(x)
and y1(x) form a basis for the space of solutions. In the special case where the
functions P (x) and Q(x) are real analytic, the solutions y0(x) and y1(x) will
also be real analytic. This is the content of the following theorem, which is
proven in more advanced books on differential equations:

Theorem. If the functions P (x) and Q(x) can be represented by power series

P (x) =
∞∑

n=0

pn(x − x0)n, Q(x) =
∞∑

n=0

qn(x − x0)n

with positive radii of convergence R1 and R2 respectively, then any solution
y(x) to the linear differential equation

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0

can be represented by a power series

y(x) =
∞∑

n=0

an(x − x0)n,

whose radius of convergence is ≥ the minimum of R1 and R2.
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This theorem is used to justify the solution of many well-known differential
equations by means of the power series method.

Example. Hermite’s differential equation is

d2y

dx2
− 2x

dy

dx
+ 2py = 0, (1.6)

where p is a parameter. It turns out that this equation is very useful for treating
the simple harmonic oscillator in quantum mechanics, but for the moment, we
can regard it as merely an example of an equation to which the previous theorem
applies. Indeed,

P (x) = −2x, Q(x) = 2p,

both functions being polynomials, hence power series about x0 = 0 with infinite
radius of convergence.

As in the case of the equation of simple harmonic motion, we write

y =
∞∑

n=0

anxn.

We differentiate term by term as before, and obtain

dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n − 1)anxn−2.

Once again, we can replace n by m + 2 in the last summation so that

d2y

dx2
=

∞∑
m+2=2

(m + 2)(m + 2 − 1)am+2x
m+2−2 =

∞∑
m=0

(m + 2)(m + 1)am+2x
m,

and then replace m by n once again, so that

d2y

dx2
=

∞∑
n=0

(n + 2)(n + 1)an+2x
n. (1.7)

Note that

−2x
dy

dx
=

∞∑
n=0

−2nanxn, (1.8)

while

2py =
∞∑

n=0

2panxn. (1.9)

Adding together (1.7), (1.8) and (1.9), we obtain

d2y

dx2
− 2x

dy

dx
+ 2py =

∞∑
n=0

(n + 2)(n + 1)an+2x
n +

∞∑
n=0

(−2n + 2p)anxn.
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If y satisfies Hermite’s equation, we must have

0 =
∞∑

n=0

[(n + 2)(n + 1)an+2(−2n + 2p)an]xn.

Since the right-hand side is zero for all choices of x, each coefficient must be
zero, so

(n + 2)(n + 1)an+2 + (−2n + 2p)an = 0,

and we obtain the recursion formula for the coefficients of the power series:

an+2 =
2n − 2p

(n + 2)(n + 1)
an. (1.10)

Just as in the case of the equation of simple harmonic motion, the first two
coefficients a0 and a1 in the power series can be determined from the initial
conditions,

y(0) = a0,
dy

dx
(0) = a1.

The recursion formula can be used to determine the remaining coefficients in
the power series. Indeed it follows from (1.10) with n = 0 that

a2 = − 2p

2 · 1a0.

Similarly, it follows from (1.10) with n = 1 that

a3 =
2 − 2p

3 · 2 a1 = −2(p − 1)
3!

a1,

and with n = 2 that

a4 = −4 − 2p

4 · 3 a2 =
2(2 − p)

4 · 3
−2p

2
a0 =

22p(p − 2)
4!

a0.

Continuing in this manner, we find that

a5 =
6 − 2p

5 · 4 a3 =
2(3 − p)

5 · 4
2(1 − p)

3!
a1 =

22(p − 1)(p − 3)
5!

a1,

a6 =
8 − 2p

6 · 5 · 2a4 =
2(3 − p)

6 · 5
22(p − 2)p

4!
a0 = −23p(p − 2)(p − 4)

6!
a0,

and so forth. Thus we find that

y = a0

[
1 − 2p

2!
x2 +

22p(p − 2)
4!

x4 − 23p(p − 2)(p − 4)
6!

x6 + · · ·
]

+a1

[
x − 2(p − 1)

3!
x3 +

22(p − 1)(p − 3)
5!

x5
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−23(p − 1)(p − 3)(p − 5)
7!

x7 + · · ·
]

.

We can now write the general solution to Hermite’s equation in the form

y = a0y0(x) + a1y1(x),

where

y0(x) = 1 − 2p

2!
x2 +

22p(p − 2)
4!

x4 − 23p(p − 2)(p − 4)
6!

x6 + · · ·

and

y1(x) = x− 2(p − 1)
3!

x3 +
22(p − 1)(p − 3)

5!
x5 − 23(p − 1)(p − 3)(p − 5)

7!
x7 + · · · .

For a given choice of the parameter p, we could use the power series to construct
tables of values for the functions y0(x) and y1(x). In the language of linear
algebra, we say that y0(x) and y1(x) form a basis for the space of solutions to
Hermite’s equation.

When p is a positive integer, one of the two power series will collapse, yielding
a polynomial solution to Hermite’s equation. These polynomial solutions are
known as Hermite polynomials.

Another Example. Legendre’s differential equation is

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ p(p + 1)y = 0, (1.11)

where p is a parameter. This equation is very useful for treating spherically
symmetric potentials, in the theories of Newtonian gravitation and in electricity
and magnetism.

To apply our theorem, we need to divide by 1 − x2 to obtain

d2y

dx2
− 2x

1 − x2

dy

dx
+

p(p + 1)
1 − x2

y = 0.

Thus we have

P (x) = − 2x

1 − x2
, Q(x) =

p(p + 1)
1 − x2

.

Now from the preceding section, we know that the power series

1 + u + u2 + u3 + · · · converges to
1

1 − u

for |u| < 1. If we substitute u = x2, we can conclude that

1
1 − x2

= 1 + x2 + x4 + x6 + · · · ,
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the power series converging when |x| < 1. It follows quickly that

P (x) = − 2x

1 − x2
= −2x − 2x3 − 2x5 − · · ·

and

Q(x) =
p(p + 1)
1 − x2

= p(p + 1) + p(p + 1)x2 + p(p + 1)x4 + · · · .

Both of these functions have power series expansions about x0 = 0 which con-
verge for |x| < 1. Hence our theorem implies that any solution to Legendre’s
equation will be expressible as a power series about x0 = 0 which converges for
|x| < 1. However, we might suspect that the solutions to Legendre’s equation
to exhibit some unpleasant behaviour near x = ±1. Experimentation with nu-
merical solutions to Legendre’s equation would show that these suspicions are
justified—solutions to Legendre’s equation will usually blow up as x → ±1.

Indeed, it can be shown that when p is an integer, Legendre’s differential
equation has a nonzero polynomial solution which is well-behaved for all x, but
solutions which are not constant multiples of these Legendre polynomials blow
up as x → ±1.

Exercises:

1.2.1. We would like to use the power series method to find the general solution
to the differential equation

d2y

dx2
− 4x

dy

dx
+ 12y = 0,

which is very similar to Hermite’s equation. So we assume the solution is of the
form

y =
∞∑

n=0

anxn,

a power series centered at 0, and determine the coefficients an.

a. As a first step, find the recursion formula for an+2 in terms of an.

b. The coefficients a0 and a1 will be determined by the initial conditions. Use
the recursion formula to determine an in terms of a0 and a1, for 2 ≤ n ≤ 9.

c. Find a nonzero polynomial solution to this differential equation.

d. Find a basis for the space of solutions to the equation.

e. Find the solution to the initial value problem

d2y

dx2
− 4x

dy

dx
+ 12y = 0, y(0) = 0,

dy

dx
(0) = 1.

f. To solve the differential equation

d2y

dx2
− 4(x − 3)

dy

dx
+ 12y = 0,

15



it would be most natural to assume that the solution has the form

y =
∞∑

n=0

an(x − 3)n.

Use this idea to find a polynomial solution to the differential equation

d2y

dx2
− 4(x − 3)

dy

dx
+ 12y = 0.

1.2.2. We want to use the power series method to find the general solution to
Legendre’s differential equation

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ p(p + 1)y = 0.

Once again our approach is to assume our solution is a power series centered at
0 and determine the coefficients in this power series.

a. As a first step, find the recursion formula for an+2 in terms of an.

b. Use the recursion formula to determine an in terms of a0 and a1, for 2 ≤ n ≤
9.

c. Find a nonzero polynomial solution to this differential equation, in the case
where p = 3.

d. Find a basis for the space of solutions to the differential equation

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ 12y = 0.

1.2.3. The differential equation

(1 − x2)
d2y

dx2
− x

dy

dx
+ p2y = 0,

where p is a constant, is known as Chebyshev’s equation. It can be rewritten in
the form

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0, where P (x) = − x

1 − x2
, Q(x) =

p2

1 − x2
.

a. If P (x) and Q(x) are represented as power series about x0 = 0, what is the
radius of convergence of these power series?

b. Assuming a power series centered at 0, find the recursion formula for an+2

in terms of an.

c. Use the recursion formula to determine an in terms of a0 and a1, for 2 ≤ n ≤
9.
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d. In the special case where p = 3, find a nonzero polynomial solution to this
differential equation.

e. Find a basis for the space of solutions to

(1 − x2)
d2y

dx2
− x

dy

dx
+ 9y = 0.

1.2.4. The differential equation(
− d2

dx2
+ x2

)
z = λz (1.12)

arises when treating the quantum mechanics of simple harmonic motion.

a. Show that making the substitution z = e−x2/2y transforms this equation into
Hermite’s differential equation

d2y

dx2
− 2x

dy

dx
+ (λ − 1)y = 0.

b. Show that if λ = 2n+1 where n is a nonnegative integer, (1.12) has a solution
of the form z = e−x2/2Pn(x), where Pn(x) is a polynomial.

1.3 Singular points

For understanding the limitations of the power series method, it is convenient to
have the following definitions: A point x0 is a singular point for the differential
equation

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0 (1.13)

if at least one of the coefficients P (x) or Q(x) fails to be real analytic at x = x0,
that is, if at least one of these coefficients fails to have a power series expansion
with a positive radius of convergence. A singular point is said to be regular if

(x − x0)P (x) and (x − x0)2Q(x)

are real analytic.
For example, x0 = 1 is a singular point for Legendre’s equation

d2y

dx2
− 2x

1 − x2

dy

dx
+

p(p + 1)
1 − x2

y = 0,

because 1 − x2 → 0 as x → 1 and hence the quotients

2x

1 − x2
and

p(p + 1)
1 − x2
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blow up as x → 1, but it is a regular singular point because

(x − 1)P (x) = (x − 1)
−2x

1 − x2
=

2x

x + 1

and

(x − 1)2Q(x) = (x − 1)2
p(p + 1)
1 − x2

=
p(p + 1)(1 − x)

1 + x

are both real analytic at x0 = 1.
The point of these definitions is that in the case where x = x0 is a regular

singular point, a modification of the power series method can still be used to
find solutions.

Theorem of Frobenius. If x0 is a regular singular point for the differential
equation

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0,

then this differential equation has at least one nonzero solution of the form

y(x) = (x − x0)r
∞∑

n=0

an(x − x0)n, (1.14)

where r is a constant, which may be complex. If (x−x0)P (x) and (x−x0)2Q(x)
have power series which converge for |x − x0| < R then the power series

∞∑
n=0

an(x − x0)n

will also converge for |x − x0| < R.

We will call a solution of the form (1.14) a generalized power series solution.
Unfortunately, the theorem guarantees only one generalized power series solu-
tion, not a basis. In fortuitous cases, one can find a basis of generalized power
series solutions, but not always. The method of finding generalized power series
solutions to (1.13) in the case of regular singular points is called the Frobenius
method .2

The simplest differential equation to which the Theorem of Frobenius applies
is the Cauchy-Euler equidimensional equation that we encountered briefly in
Math 5A. This is the special case of (1.13) for which

P (x) =
p

x
, Q(x) =

q

x2
,

where p and q are constants. Note that

xP (x) = p and x2Q(x) = q

2For more discussion of the Frobenius method as well as many of the other techniques
touched upon in this chapter we refer the reader to George F. Simmons, Differential equations
with applications and historical notes, second edition, McGraw-Hill, New York, 1991.
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are real analytic, so x = 0 is a regular singular point for the Cauchy-Euler
equation as long as either p or q is nonzero.

The Frobenius method is quite simple in the case of Cauchy-Euler equations.
Indeed, in this case, we can simply take y(x) = xr, substitute into the equation
and solve for r. Often there will be two linearly independent solutions y1(x) =
xr1 and y2(x) = xr2 of this special form. In this case, the general solution is
given by the superposition principle as

y = c1x
r1 + c2x

r2 .

For example, to solve the differential equation

x2 d2y

dx2
+ 4x

dy

dx
+ 2y = 0,

we set y = xr and differentiate to show that

dy/dx = rxr−1 ⇒ x(dy/dx) = rxr,
d2y/dx2 = r(r − 1)xr−2 ⇒ x2(d2y/dx2) = r(r − 1)xr.

Substitution into the differential equation yields

r(r − 1)xr + 4rxr + 2xr = 0,

and dividing by xr yields

r(r − 1) + 4r + 2 = 0 or r2 + 3r + 2 = 0.

The roots to this equation are r = −1 and r = −2, so the general solution to
the differential equation is

y = c1x
−1 + c2x

−2 =
c1

x
+

c2

x2
.

Note that the solutions y1(x) = x−1 and y2(x) = x−2 can be rewritten in the
form

y1(x) = x−1
∞∑

n=0

anxn, y2(x) = x−2
∞∑

n=0

bnxn,

where a0 = b0 = 1 and all the other an’s and bn’s are zero, so both of these
solutions are generalized power series solutions.

On the other hand, if this method is applied to the differential equation

x2 d2y

dx2
+ 3x

dy

dx
+ y = 0,

we obtain
r(r − 1) + 3r + 1 = r2 + 2r + 1,

which has a repeated root. In this case, we obtain only a one-parameter family
of solutions

y = cx−1.
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Fortunately, there is a trick that enables us to handle this situation, our old
friend, the method of variation of parameters. In this context, we replace the
parameter c by a variable v(x) and write

y = v(x)x−1.

Then

dy

dx
= v′(x)x−1 − v(x)x−2,

d2y

dx2
= v′′(x)x−1 − 2v′(x)x−2 + 2v(x)x−3.

Substitution into the differential equation yields

x2(v′′(x)x−1 − 2v′(x)x−2 + 2v(x)x−3) + 3x(v′(x)x−1 − v(x)x−2) + v(x)x−1 = 0,

which quickly simplifies to yield

xv′′(x) + v′(x) = 0,
v′′

v′
= − 1

x
, log |v′| = − log |x| + a, v′ =

c2

x
,

where a and c2 are constants of integration. A further integration yields

v = c2 log |x| + c1, so y = (c2 log |x| + c1)x−1,

and we obtain the general solution

y = c1
1
x

+ c2
log |x|

x
.

In this case, only one of the basis elements in the general solution is a generalized
power series.

For equations which are not of Cauchy-Euler form the Frobenius method is
more involved. Let us consider the example

2x
d2y

dx2
+

dy

dx
+ y = 0, (1.15)

which can be rewritten as

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0, where P (x) =

1
2x

, Q(x) =
1
2x

.

One easily checks that x = 0 is a regular singular point. We begin the Frobenius
method by assuming that the solution has the form

y = xr
∞∑

n=0

anxn =
∞∑

n=0

anxn+r.

Then

dy

dx
=

∞∑
n=0

(n + r)anxn+r−1,
d2y

dx2
=

∞∑
n=0

(n + r)(n + r − 1)anxn+r−2
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and

2x
d2y

dx2
=

∞∑
n=0

2(n + r)(n + r − 1)anxn+r−1.

Substitution into the differential equation yields

∞∑
n=0

2(n + r)(n + r − 1)anxn+r−1 +
∞∑

n=0

(n + r)anxn+r−1 +
∞∑

n=0

anxn+r = 0,

which simplifies to

xr

[ ∞∑
n=0

(2n + 2r − 1)(n + r)anxn−1 +
∞∑

n=0

anxn

]
= 0.

We can divide by xr, and separate out the first term from the first summation,
obtaining

(2r − 1)ra0x
−1 +

∞∑
n=1

(2n + 2r − 1)(n + r)anxn−1 +
∞∑

n=0

anxn = 0.

If we let n = m + 1 in the first infinite sum, this becomes

(2r − 1)ra0x
−1 +

∞∑
m=0

(2m + 2r + 1)(m + r + 1)am+1x
m +

∞∑
n=0

anxn = 0.

Finally, we replace m by n, obtaining

(2r − 1)ra0x
−1 +

∞∑
n=0

(2n + 2r + 1)(n + r + 1)an+1x
n +

∞∑
n=0

anxn = 0.

The coefficient of each power of x must be zero. In particular, we must have

(2r − 1)ra0 = 0, (2n + 2r + 1)(n + r + 1)an+1 + an = 0. (1.16)

If a0 = 0, then all the coefficients must be zero from the second of these equa-
tions, and we don’t get a nonzero solution. So we must have a0 
= 0 and hence

(2r − 1)r = 0.

This is called the indicial equation. In this case, it has two roots

r1 = 0, r2 =
1
2
.

The second half of (1.16) yields the recursion formula

an+1 = − 1
(2n + 2r + 1)(n + r + 1)

an, for n ≥ 0.
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We can try to find a generalized power series solution for either root of the
indicial equation. If r = 0, the recursion formula becomes

an+1 = − 1
(2n + 1)(n + 1)

an.

Given a0 = 1, we find that

a1 = −1, a2 = − 1
3 · 2a1 =

1
3 · 2 ,

a3 = − 1
5 · 3a2 = − 1

(5 · 3)(3 · 2)
, a4 = − 1

7 · 4a3 =
1

(7 · 5 · 3)4!
,

and so forth. In general, we would have

an = (−1)n 1
(2n − 1)(2n − 3) · · · 1 · n!

.

One of the generalized power series solution to (1.15) is

y1(x) = x0

[
1 − x +

1
3 · 2x2 − 1

(5 · 3)(3!)
x3 +

1
(7 · 5 · 3)4!

x4 − · · ·
]

= 1 − x +
1

3 · 2x2 − 1
(5 · 3)(3!)

x3 +
1

(7 · 5 · 3)4!
x4 − · · · .

If r = 1/2, the recursion formula becomes

an+1 = − 1
(2n + 2)(n + (1/2) + 1)

an = − 1
(n + 1)(2n + 3)

an.

Given a0 = 1, we find that

a1 = −1
3
, a2 = − 1

2 · 5a1 =
1

2 · 5 · 3 ,

a3 = − 1
3 · 7a2 = − 1

3! · (7 · 5 · 3)
,

and in general,

an = (−1)n 1
n!(2n + 1)(2n − 1) · · · 1 · n!

.

We thus obtain a second generalized power series solution to (1.15):

y2(x) = x1/2

[
1 − 1

3
x +

1
2 · 5 · 3x2 − 1

3! · (7 · 5 · 3)
x3 + · · ·

]
.

The general solution to (1.15) is a superposition of y1(x) and y2(x):

y = c1

[
1 − x +

1
3 · 2x2 − 1

(5 · 3)(3!)
x3 +

1
(7 · 5 · 3)4!

x4 − · · ·
]
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+c2

√
x

[
1 − 1

3
x +

1
2 · 5 · 3x2 − 1

3! · (7 · 5 · 3)
x3 + · · ·

]
.

We obtained two linearly independent generalized power series solutions in
this case, but this does not always happen. If the roots of the indicial equation
differ by an integer, we may obtain only one generalized power series solution.
In that case, a second independent solution can then be found by variation of
parameters, just as we saw in the case of the Cauchy-Euler equidimensional
equation.

Exercises:

1.3.1. For each of the following differential equations, determine whether x = 0
is singular or not. If it is singular, determine whether it is regular or not.

a. y′′ + xy′ + (1 − x2)y = 0.

b. y′′ + (1/x)y′ + (1 − (1/x2))y = 0.

c. x2y′′ + 2xy′ + (cos x)y = 0.

d. x3y′′ + 2xy′ + (cos x)y = 0.

1.3.2. Find the general solution to each of the following Cauchy-Euler equations:

a. x2d2y/dx2 − 2xdy/dx + 2y = 0.

b. x2d2y/dx2 − xdy/dx + y = 0.

c. x2d2y/dx2 − xdy/dx + 10y = 0.

(Hint: Use the formula

xa+bi = xaxbi = xa(elog x)bi = xaeib log x = xa[cos(b log x) + i sin(b log x)]

to simplify the answer.)

1.3.3. We want to find generalized power series solutions to the differential
equation

3x
d2y

dx2
+

dy

dx
+ y = 0

by the method of Frobenius. Our procedure is to find solutions of the form

y = xr
∞∑

n=0

anxn =
∞∑

n=0

anxn+r,

where r and the an’s are constants.

a. Determine the indicial equation and the recursion formula.

b. Find two linearly independent generalized power series solutions.
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1.3.4. To find generalized power series solutions to the differential equation

2x
d2y

dx2
+

dy

dx
+ xy = 0

by the method of Frobenius, we assume the solution has the form

y =
∞∑

n=0

anxn+r,

where r and the an’s are constants.

a. Determine the indicial equation and the recursion formula.

b. Find two linearly independent generalized power series solutions.

1.4 Bessel’s differential equation

Our next goal is to apply the Frobenius method to Bessel’s equation,

x
d

dx

(
x

dy

dx

)
+ (x2 − p2)y = 0, (1.17)

an equation which is needed to analyze the vibrations of a circular drum, as we
will see later in the course. Here p is a parameter, which will be a nonnegative
integer in the vibrating drum problem. Using the Leibniz rule for differentiating
a product, we can rewrite Bessel’s equation in the form

x2 d2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0

or equivalently as
d2y

dx2
+ P (x)

dy

dx
+ Q(x) = 0,

where

P (x) =
1
x

and Q(x) =
x2 − p2

x2
.

Since
xP (x) = 1 and x2Q(x) = x2 − p2,

we see that x = 0 is a regular singular point, so the Frobenius theorem implies
that there exists a nonzero generalized power series solution to (5.29).

To find such a solution, we start as in the previous section by assuming that

y =
∞∑

n=0

anxn+r.

Then
dy

dx
=

∞∑
n=0

(n + r)anxn+r−1, x
dy

dx
=

∞∑
n=0

(n + r)anxn+r,
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d

dx

(
x

dy

dx

)
=

∞∑
n=0

(n + r)2anxn+r−1,

and thus

x
d

dx

(
x

dy

dx

)
=

∞∑
n=0

(n + r)2anxn+r. (1.18)

On the other hand,

x2y =
∞∑

n=0

anxn+r+2 =
∞∑

m=2

am−2x
m+r,

where we have set m = n + 2. Replacing m by n then yields

x2y =
∞∑

n=2

an−2x
n+r. (1.19)

Finally, we have,

−p2y = −
∞∑

n=0

p2anxn+r. (1.20)

Adding up (1.18), (1.19), and (1.20), we find that if y is a solution to (5.29),

∞∑
n=0

(n + r)2anxn+r +
∞∑

n=2

an−2x
n+r −

∞∑
n=0

p2anxn+r = 0.

This simplifies to yield

∞∑
n=0

[(n + r)2 − p2]anxn+r +
∞∑

n=2

an−2x
n+r = 0,

or after division by xr,

∞∑
n=0

[(n + r)2 − p2]anxn +
∞∑

n=2

an−2x
n = 0.

Thus we find that

(r2 − p2)a0 + [(r + 1)2 − p2]a1x +
∞∑

n=2

{[(n + r)2 − p2]an + an−2}xn = 0.

The coefficient of each power of x must be zero, so

(r2−p2)a0 = 0, [(r+1)2−p2]a1 = 0, [(n+r)2−p2]an+an−2 = 0 for n ≥ 2.
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Since we want a0 to be nonzero, r must satisfy the indicial equation

(r2 − p2) = 0,

which implies that r = ±p. Let us assume without loss of generality that p ≥ 0
and take r = p. Then

[(p + 1)2 − p2]a1 = 0 ⇒ (2p + 1)a1 = 0 ⇒ a1 = 0.

Finally,

[(n + p)2 − p2]an + an−2 = 0 ⇒ [n2 + 2np]an + an−2 = 0,

which yields the recursion formula

an = − 1
2np + n2

an−2. (1.21)

The recursion formula implies that an = 0 if n is odd.
In the special case where p is a nonnegative integer, we will get a genuine

power series solution to Bessel’s equation (5.29). Let us focus now on this
important case. If we set

a0 =
1

2pp!
,

we obtain

a2 =
−a0

4p + 4
= − 1

4(p + 1)
1

2pp!
= (−1)

(
1
2

)p+2 1
1!(p + 1)!

,

a4 =
−a2

8p + 16
=

1
8(p + 2)

(
1
2

)p+2 1
1!(p + 1)!

=

=
1

2(p + 2)

(
1
2

)p+4 1
1!(p + 1)!

= (−1)2
(

1
2

)p+4 1
2!(p + 2)!

,

and so forth. The general term is

a2m = (−1)m

(
1
2

)p+2m 1
m!(p + m)!

.

Thus we finally obtain the power series solution

y =
(x

2

)p ∞∑
m=0

(−1)m 1
m!(p + m)!

(x

2

)2m

.

The function defined by the power series on the right-hand side is called the
p-th Bessel function of the first kind , and is denoted by the symbol Jp(x). For
example,

J0(x) =
∞∑

m=0

(−1)m 1
(m!)2

(x

2

)2m

.
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Figure 1.1: Graph of the Bessel function J0(x).

Using the comparison and ratio tests, we can show that the power series ex-
pansion for Jp(x) has infinite radius of convergence. Thus when p is an integer,
Bessel’s equation has a nonzero solution which is real analytic at x = 0.

Bessel functions are so important that Mathematica includes them in its
library of built-in functions.3 Mathematica represents the Bessel functions of
the first kind symbolically by BesselJ[n,x]. Thus to plot the Bessel function
Jn(x) on the interval [0, 15] one simply types in

n=0; Plot[ BesselJ[n,x], {x,0,15}]

and a plot similar to that of Figure 1.1 will be produced. Similarly, we can
plot Jn(x), for n = 1, 2, 3 . . . . Note that the graph of J0(x) suggests that it has
infinitely many positive zeros.

On the open interval 0 < x < ∞, Bessel’s equation has a two-dimensional
space of solutions. However, it turns out that when p is a nonnegative integer, a
second solution, linearly independent from the Bessel function of the first kind,
cannot be obtained directly by the generalized power series method that we have
presented. To obtain a basis for the space of solutions, we can, however, apply
the method of variation of parameters just as we did in the previous section for
the Cauchy-Euler equation; namely, we can set

y = v(x)Jp(x),

substitute into Bessel’s equation and solve for v(x). If we were to carry this out
in detail, we would obtain a second solution linearly independent from Jp(x).
Appropriately normalized, his solution is often denoted by Yp(x) and called the
p-th Bessel function of the second kind . Unlike the Bessel function of the first
kind, this solution is not well-behaved near x = 0.

3For a very brief introduction to Mathematica, the reader can refer to Appendix A.
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Figure 1.2: Graph of the Bessel function J1(x).

To see why, suppose that y1(x) and y2(x) is a basis for the solutions on the
interval 0 < x < ∞, and let W (y1, y2) be their Wronskian, defined by

W (y1, y2)(x) =
∣∣∣∣ y1(x) y′

1(x)
y2(x) y′

2(x)

∣∣∣∣ .

This Wronskian must satisfy the first order equation

d

dx
(xW (y1, y2)(x)) = 0,

as one verifies by a direct calculation:

x
d

dx
(xy1y

′
2 − xy2y

′
1) = y1x

d

dx
(xy′

2) − y2x
d

dx
(xy′

1)

= −(x2 − n2)(y1y2 − y2y1) = 0.

Thus
xW (y1, y2)(x) = c, or W (y1, y2)(x) =

c

x
,

where c is a nonzero constant, an expression which is unbounded as x → 0.
It follows that two linearly independent solutions y1(x) and y2(x) to Bessel’s
equation cannot both be well-behaved at x = 0.

Let us summarize what we know about the space of solutions to Bessel’s
equation in the case where p is an integer:

• There is a one-dimensional space of real analytic solutions to (5.29), which
are well-behaved as x → 0.
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• This one-dimensional space is generated by a function Jp(x) which is given
by the explicit power series formula

Jp(x) =
(x

2

)p ∞∑
m=0

(−1)m 1
m!(p + m)!

(x

2

)2m

.

Exercises:

1.4.1. Using the explicit power series formulae for J0(x) and J1(x) show that

d

dx
J0(x) = −J1(x) and

d

dx
(xJ1(x)) = xJ0(x).

1.4.2. The differential equation

x2 d2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0

is sometimes called a modified Bessel equation. Find a generalized power series
solution to this equation in the case where n is an integer. (Hint: The power
series you obtain should be very similar to the power series for Jn(x).)

1.4.3. Show that the functions

y1(x) =
1√
x

cos x and y2(x) =
1√
x

sinx

are solutions to Bessel’s equation

x
d

dx

(
x

dy

dx

)
+ (x2 − p2)y = 0,

in the case where p = 1/2. Hence the general solution to Bessel’s equation in
this case is

y = c1
1√
x

cos x + c2
1√
x

sinx.

1.4.4. To obtain a nice expression for the generalized power series solution to
Bessel’s equation in the case where p is not an integer, it is convenient to use
the gamma function defined by

Γ(x) =
∫ ∞

0

tx−1e−tdt.

a. Use integration by parts to show that Γ(x + 1) = xΓ(x).

b. Show that Γ(1) = 1.

c. Show that
Γ(n + 1) = n! = n(n − 1) · · · 2 · 1,
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when n is a positive integer.

d. Set
a0 =

1
2pΓ(p + 1)

,

and use the recursion formula (1.21) to obtain the following generalized power
series solution to Bessel’s equation (5.29) for general choice of p:

y = Jp(x) =
(x

2

)p ∞∑
m=0

(−1)m 1
m!Γ(p + m + 1)

(x

2

)2m

.
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Chapter 2

Symmetry and
Orthogonality

2.1 Eigenvalues of symmetric matrices

Before proceeding further, we need to review and extend some notions from vec-
tors and matrices (linear algebra), which we studied earlier in Mathematics 5A.
The amazing fact is that the eigenvalue-eigenvector problem for an n×n matrix
A simplifies considerably when the matrix is symmetric.

An n×n matrix A is said to be symmetric if it is equal to its transpose AT .
Examples of symmetric matrices include

(
1 3
3 1

)
,


3 − λ 6 5

6 1 − λ 0
5 0 8 − λ


 and


a b c

b d e
c e f


 .

Alternatively, we could say that an n × n matrix A is symmetric if and only if

x · (Ay) = (Ax) · y. (2.1)

for every choice of n-vectors x and y. Indeed, since x · y = xT y, equation (2.1)
can be rewritten in the form

xT Ay = (Ax)T y = xT AT y,

which holds for all x and y if and only if A = AT .
On the other hand, an n × n real matrix B is orthogonal if its transpose is

equal to its inverse, BT = B−1. Alternatively, an n × n matrix

B = (b1b2 · · ·bn)
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is orthogonal if its column vectors b1, b2, . . . , bn satisfy the relations

b1 · b1 = 1, b1 · b2 = 0, · · · , b1 · bn = 0,
b2 · b2 = 1, · · · , b2 · bn = 0,

·
bn · bn = 1.

Using this latter criterion, we can easily check that, for example, the matrices

(
cos θ − sin θ
sin θ cos θ

)
, and


 1/3 2/3 2/3
−2/3 −1/3 2/3
2/3 −2/3 1/3




are orthogonal. Note that since

BT B = I ⇒ (detB)2 = (detBT )(detB) = det(BT B) = 1,

the determinant of an orthogonal matrix is always ±1.
Recall that the eigenvalues of an n × n matrix A are the roots of the poly-

nomial equation
det(A − λI) = 0.

For each eigenvalue λi, the corresponding eigenvectors are the nonzero solutions
x to the linear system

(A − λI)x = 0.

For a general n× n matrix with real entries, the problem of finding eigenvalues
and eigenvectors can be complicated, because eigenvalues need not be real (but
can occur in complex conjugate pairs) and in the “repeated root” case, there
may not be enough eigenvectors to construct a basis for R

n. We will see that
these complications do not occur for symmetric matrices.

Spectral Theorem.1 Suppose that A is a symmetric n × n matrix with real
entries. Then its eigenvalues are real and eigenvectors corresponding to distinct
eigenvectors are orthogonal. Moreover, there is an n × n orthogonal matrix B
of determinant one such that B−1AB = BT AB is diagonal.

Sketch of proof: The reader may want to skip the proof at first, returning after
studying some of the examples presented later in this section. We will assume
the following two facts, which are proven in courses on mathematical analysis:

1. Any continuous function on a sphere (of arbitrary dimension assumes its
maximum and minimum values.

2. The points at which the maximum and minimum values are assumed can
be found by the method of Lagrange multipliers (which is usually treated
in Math 5B).

1This is called the “spectral theorem” because the spectrum is another name for the set of
eigenvalues of a matrix.
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The equation of the sphere Sn−1 in R
n is

x2
1 + x2

2 + · · · + x2
n = 1, or xT x = 1, where x =




x1

x2

·
xn


 .

We let
g(x) = g(x1, x2, . . . , xn) = xT x − 1,

so that the equation of the sphere is given by the constraint equation g(x) = 0.
Our approach consists of finding of finding the point on Sn−1 at which the
function

f(x) = f(x1, x2, . . . , xn) = xT Ax

assumes its maximum values.
To find this maximum using Lagrange multipliers, we look for “critical

points” for the function

H(x, λ) = H(x1, x2, . . . , xn, λ) = f(x) − λg(x).

These are points at which

∇f(x1, x2, . . . , xn) = λ∇g(x1, x2, . . . , xn), and g(x1, x2, . . . , xn) = 0.

In other words, these are the points on the sphere at which the gradient of f is
a multiple of the gradient of g, or the points on the sphere at which the gradient
of f is perpendicular to the sphere.

If we set

A =




a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann


 ,

a short calculation shows that at the point where f assumes its maximum,

∂H

∂xi
= 2ai1x1 + 2ai2x2 + · · · + 2ainxn − 2λxi = 0,

or equivalently,
Ax − λx = 0.

We also obtain the condition

∂H

∂λ
= −g(x) = 0,

which is just our constraint. Thus the point on the sphere at which f assumes
its maximum is a unit-length eigenvector b1, the eigenvalue being the value λ1

of the variable λ.
Let W be the “linear subspace” of R

n defined by the homogeneous linear
equation b1 · x = 0. The intersection Sn−1 ∩W is a sphere of dimension n− 2.
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We next use the method of Lagrange multipliers to find a point on Sn−1 ∩ W
at which f assumes its maximum. To do this, we let

g1(x) = xT x − 1, g2(x) = b1 · x.

The maximum value of f on Sn−1 ∩ W will be assumed at a critical point for
the function

H(x, λ, µ) = f(x) − λg1(x) − µg2(x).

This time, differentiation shows that

∂H

∂xi
= 2ai1x1 + 2ai2x2 + · · · + 2ainxn − 2λxi − µbi = 0,

or equivalently,

Ax − λx − µb1 = 0. (2.2)

It follows from the constraint equation b1 · x = 0 that

b1 · (Ax) = bT
1 (Ax) = (bT

1 A)x = (bT
1 AT )x

= (Ab1)T x = (λ1b1)T x = λ1b1 · x = 0.

Hence it follows from (2.2) that Ax−λx = 0. Thus if b2 is a point on Sn−1∩W
at which f assumes its maximum, b2 must be a unit-length eigenvector for A
which is perpendicular to b1.

Continuing in this way we finally obtain n mutually orthogonal unit-length
eigenvectors b1, b2, . . . , bn. These eigenvectors satisfy the equations

Ab1 = λ1b1, Ab2 = λ2b2, . . . Abn = λ2bn,

which can be put together in a single matrix equation(
Ab1 Ab2 · Abn

)
=

(
λ1b1 λ2b2 · λnbn

)
,

or equivalently,

A
(
b1 b2 · bn

)
=




λ1 0 · 0
0 λ2 · 0
· · · ·
0 0 · λn


 (

b1 b2 · bn

)
.

If we set
B =

(
b1 b2 · bn

)
,

this last equation becomes

AB =




λ1 0 · 0
0 λ2 · 0
· · · ·
0 0 · λn


 B.
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Of course, B is an orthogonal matrix, so it is invertible and we can solve for A,
obtaining

A = B−1




λ1 0 · 0
0 λ2 · 0
· · · ·
0 0 · λn


 B.

We can arrange that the determinant of B be one by changing the sign of one
of the columns if necessary.

A more complete proof of the theorem is presented in more advanced courses in
linear algebra, such as Math 108 at UCSB.2 In any case, the method for finding
the orthogonal matrix B such that BT AB is diagonal is relatively simple, at
least when the eigenvalues are distinct. Simply let B be the matrix whose
columns are unit-length eigenvectors for A. In the case of repeated roots, we
must be careful to choose a basis of unit-length eigenvectors of each eigenspace
which are perpendicular to each other.

Example. The matrix

A =


5 4 0

4 5 0
0 0 1




is symmetric, so its eigenvalues must be real. Its characteristic equation is

0 =

∣∣∣∣∣∣
5 − λ 4 0

4 5 − λ 0
0 0 1 − λ

∣∣∣∣∣∣ = [(λ − 5)2 − 16](λ − 1)

= (λ2 − 10λ + 9)(λ − 1) = (λ − 1)2(λ − 9),

which has the roots λ1 = 1 with multiplicity two and λ2 = 9 with multiplicity
one.

Thus we are in the notorious “repeated root” case, which might be expected
to cause problems if A were not symmetric. However, since A is symmetric,
the Spectral Theorem guarantees that we can find a basis for R

3 consisting of
eigenvectors for A even when the roots are repeated.

We first consider the eigenspace W1 corresponding to the eigenvalue λ1 = 1,
which consists of the solutions to the linear system

 5 − 1 4 0
4 5 − 1 0
0 0 1 − 1





 b1

b2

b3


 = 0,

or
4b1 +4b2 = 0,
4b1 +4b2 = 0,

0 = 0.

2There are many excellent linear algebra texts that treat this theorem in detail; one good
reference is Bill Jacob, Linear algebra, W. H. Freeman, New York, 1990; see Chapter 5.
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The coefficient matrix of this linear system is
 4 4 0

4 4 0
0 0 0


 .

Applying the elementary row operations to this matrix yields
 4 4 0

4 4 0
0 0 0


 →


 1 1 0

4 4 0
0 0 0


 →


 1 1 0

0 0 0
0 0 0


 .

Thus the linear system is equivalent to

b1 + b2 = 0,
0 = 0,
0 = 0.

Thus W1 is a plane with equation b1 + b2 = 0.
We need to extract two unit length eigenvectors from W1 which are perpen-

dicular to each other. Note that since the equation for W1 is b1 + b2 = 0, the
unit length vector

n =




1√
2

1√
2

0




is perpendicular to W1. Since

b1 =


 0

0
1


 ∈ W1, we find that b2 = n × b1 =




1√
2

−1√
2

0


 ∈ W1.

The vectors b1 and b2 are unit length elements of W1 which are perpendicular
to each other.

Next, we consider the eigenspace W9 corresponding to the eigenvalue λ2 = 9,
which consists of the solutions to the linear system

 5 − 9 4 0
4 5 − 9 0
0 0 1 − 9





 b1

b2

b3


 = 0,

or
−4b1 +4b2 = 0,
4b1 −4b2 = 0,

−8b3 = 0.

The coefficient matrix of this linear system is
 −4 4 0

4 −4 0
0 0 −8


 .
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Applying the elementary row operations to this matrix yields
 −4 4 0

4 −4 0
0 0 −8


 →


 1 −1 0

4 −4 0
0 0 −8


 →


 1 −1 0

0 0 0
0 0 −8




→


 1 −1 0

0 0 0
0 0 1


 →


 1 −1 0

0 0 1
0 0 0


 .

Thus the linear system is equivalent to

b1 − b2 = 0,
b3 = 0,
0 = 0,

and we see that

W9 = span


 1

1
0


 .

We set

b3 =




1√
2

1√
2

0


 .

Theory guarantees that the matrix

B =


 0 1√

2
1√
2

0 −1√
2

1√
2

1 0 0


 ,

whose columns are the eigenvectors b1, b1, and b3, will satisfy

B−1AB =


 1 0 0

0 1 0
0 0 9


 .

Moreover, since the eigenvectors we have chosen are of unit length and perpen-
dicular to each other, the matrix B will be orthogonal.

Exercises:

2.1.1. Find a 2 × 2-matrix orthogonal matrix B such that B−1AB is diagonal,
where

A =
(

5 4
4 5

)
.

2.1.2. Find a 2 × 2-matrix orthogonal matrix B such that B−1AB is diagonal,
where

A =
(

3 1
1 7

)
.
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2.1.3. Find a 3 × 3-matrix orthogonal matrix B such that B−1AB is diagonal,
where

A =


 5 4 0

4 5 0
0 0 1


 .

2.1.4. Find a 3 × 3-matrix orthogonal matrix B such that B−1AB is diagonal,
where

A =


 −1 2 0

2 0 2
0 2 1


 .

2.1.5. Show that if B1 and B2 are n × n orthogonal matrices, so is the product
matrix B1B2, as well as the inverse B−1

1 .

2.2 Conic sections and quadric surfaces

The theory presented in the previous section can be used to “rotate coordinates”
so that conic sections or quadric surfaces can be put into “canonical form.”

A conic section is a curve in R
2 which is described by a quadratic equation,

such as the equation

ax2
1 + 2bx1x2 + cx2

2 = 1, (2.3)

where a, b and c are constants, which can be written in matrix form as

(
x1 x2

) (
a b
b c

) (
x1

x2

)
= 1.

If we let

A =
(

a b
b c

)
and x =

(
x1

x2

)
,

we can rewrite (2.3) as

xT Ax = 1, (2.4)

where A is a symmetric matrix.
According to the Spectral Theorem from Section 2.1, there exists a 2 × 2

orthogonal matrix B of determinant one such that

B−1AB = BT AB =
(

λ1 0
0 λ2

)
.

If we make a linear change of variables,

x = By,
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then since xT = yT BT , equation (2.3) is transformed into

yT (BT AB)y = 1,
(

y1 y2

) (
λ1 0
0 λ2

) (
y1

y2

)
= 1,

or equivalently,

λ1y
2
1 + λ2y

2
2 = 1. (2.5)

In the new coordinate system (y1, y2), it is easy to recognize the conic section:

• If λ1 and λ2 are both positive, the conic is an ellipse.

• If λ1 and λ2 have opposite signs, the conic is an hyperbola.

• If λ1 and λ2 are both negative, the conic degenerates to the the empty set ,
because the equation has no real solutions.

In the case where λ1 and λ2 are both positive, we can rewrite (2.5) as

y2
1

(
√

1/λ1)2
+

y2
2

(
√

1/λ2)2
= 1,

from which we recognize that the semi-major and semi-minor axes of the ellipse
are

√
1/λ1 and

√
1/λ2.

The matrix B which relates x and y represents a rotation of the plane. To
see this, note that the first column b1 of B is a unit-length vector, and can
therefore be written in the form

b1 =
(

cos θ
sin θ

)
,

for some choice of θ. The second column b2 is a unit-vector perpendicular to
b1 and hence

b2 = ±
(
− sin θ
cos θ

)
.

We must take the plus sign in this last expression, because detB = 1. Thus

B

(
1
0

)
=

(
cos θ
sin θ

)
, B

(
0
1

)
=

(
− sin θ
cos θ

)
,

or equivalently, B takes the standard basis vectors for R2 to vectors which have
been rotated counterclockwise through an angle θ. By linearity,

B =
(

cos θ − sin θ
sin θ cos θ

)

must rotate every element of R
2 counterclockwise through an angle θ. Thus once

we have sketched the conic in (y1, y2)-coordinates, we can obtain the sketch in
(x1, x2)-coordinates by simply rotating counterclockwise through the angle θ.
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Example. Let’s consider the conic

5x2
1 − 6x1x2 + 5x2

2 = 1, (2.6)

or equivalently, (
x1 x2

) (
5 −3
−3 5

) (
x1

x2

)
= 1.

The characteristic equation of the matrix

A =
(

5 −3
−3 5

)

is
(5 − λ)2 − 9 = 0, λ2 − 10λ + 16 = 0, (λ − 2)(λ − 8) = 0,

and the eigenvalues are λ1 = 2 and λ2 = 8. Unit-length eigenvectors corre-
sponding to these eigenvalues are

b1 =
(

1/
√

2
1/
√

2

)
, b2 =

(
−1/

√
2

1/
√

2

)
.

The proof of the theorem of Section 2.1 shows that these vectors are orthogonal
to each other, and hence the matrix

B =
(

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)

is an orthogonal matrix such that

BT AB =
(

2 0
0 8

)
.

Note that B represents a counterclockwise rotation through 45 degrees. If
we define new coordinates (y1, y2) by(

x1

x2

)
= B

(
y1

y2

)
,

equation (2.6) will simplify to

(
y1 y2

) (
2 0
0 8

) (
y1

y2

)
= 1,

or

2y2
1 + 8y2

2 =
y2
1

(1/
√

2)2
+

y2
2

(1/
√

8)2
= 1.

We recognize that this is the equation of an ellipse. The lengths of the semimajor
and semiminor axes are 1/

√
2 and 1/(2

√
2).
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Figure 2.1: Sketch of the conic section 5x2
1 − 6x1x2 + 5x2

2 − 1 = 0.

The same techniques can be used to sketch quadric surfaces in R
3, surfaces

defined by an equation of the form

(
x1 x2 x3

) 
 a11 a12 a13

a21 a22 a23

a31 a32 a33





 x1

x2

x3


 = 1,

where the aij ’s are constants. If we let

A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33


 , x =


 x1

x2

x3


 ,

we can write this in matrix form

xT Ax = 1. (2.7)

According to the Spectral Theorem, there is a 3 × 3 orthogonal matrix B of
determinant one such that BT AB is diagonal. We introduce new coordinates

y =


y1

y2

y3


 by setting x = By,

and equation (2.7) becomes

yT (BT AB)y = 1.

Thus after a suitable linear change of coordinates, the equation (2.7) can be put
in the form (

y1 y2 y3

) 
 λ1 0 0

0 λ2 0
0 0 λ3





 y1

y2

y3


 = 1,
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Figure 2.2: An ellipsoid.

or
λ1y

2
1 + λ2y

2
2 + λ3y

2
3 = 1,

where λ1, λ2, and λ3 are the eigenvalues of A.
If the eigenvalues are all nonzero, we have four cases:

• If λ1, λ2, and λ3 are all positive, the quadric surface is an ellipsoid .

• If two of the λ’s are positive and one is negative, the quadric surface is an
hyperboloid of one sheet .

• If two of the λ’s are negative and one is positive, the quadric surface is an
hyperboloid of two sheets.

• If λ1, λ2, and λ3 are all negative, the equation represents the empty set .

Just as in the case of conic sections, the orthogonal matrix B of determinant
one which relates x and y represents a rotation. To see this, note first that since
B is orthogonal,

(Bx) · (By) = xT BT By = xT Iy = x · y. (2.8)

In other words, multiplication by B preserves dot products. It follows from this
that the only real eigenvalues of B can be ±1. Indeed, if x is an eigenvector for
B corresponding to the eigenvalue λ, then

λ2(x · x) = (λx) · (λx) = (Bx) · (Bx) = x · x,
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so division by x · x yields λ2 = 1.
Since detB = 1 and detB is the product of the eigenvalues, if all of the

eigenvalues are real, λ = 1 must occur as an eigenvalue. On the other hand,
non-real eigenvalues must occur in complex conjugate pairs, so if there is a non-
real eigenvalue µ + iν, then there must be another non-real eigenvalue µ − iν
together with a real eigenvalue λ. In this case,

1 = detB = λ(µ + iν)(µ − iν) = λ(µ2 + ν2).

Since λ = ±1, we conclude that λ = 1 must occur as an eigenvalue also in this
case.

In either case, λ = 1 is an eigenvalue and

W1 = {x ∈ R
3 : Bx = x}

is nonzero. It is easily verified that if dimW1 is larger than one, then B must
be the identity. Thus if B 
= I, there is a one-dimensional subspace W1 of R

3

which is left fixed under multiplication by B. This is the axis of rotation.
Let W⊥

1 denote the orthogonal complement to W1. If x is a nonzero element
of W1 and y ∈ W⊥

1 , it follows from (2.8) that

(By) · x = (By) · (Bx) = yT BT Bx = yT Ix = y · x = 0,

so By ∈ W⊥
1 . Let y, z be elements of W⊥

1 such that

y · y = 1, y · z = 0, z · z = 1;

we could say that {y,y} form an orthonormal basis for W⊥
1 . By (2.8),

(By) · (By) = 1, (By) · (Bz) = 0, (Bz) · (Bz) = 1.

Thus By must be a unit-length vector in W⊥
1 and there must exist a real number

θ such that
By = cos θy + sin θz.

Moreover, Bz must be a unit-length vector in W⊥
1 which is perpendicular to

By and hence
Bz = ±(− sin θy + cos θz).

The fact that detB = 1 implies that we cannot have

Bz = −(− sin θy + cos θz).

Indeed, this would imply (via a short calculation) that the vector

u = cos(θ/2)y + sin(θ/2)z

is fixed by B, in other words Bu = u, contradicting the fact that u ∈ W⊥
1 .

Thus we must have
Bz = − sin θy + cos θz,
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Figure 2.3: Hyperboloid of one sheet.

and multiplication by B must be a rotation in the plane W⊥
1 through an angle

θ. Moreover, it is easily checked that y + iz and y − iz are eigenvectors for B
with eigenvalues

e±iθ = cos θ ± i sin θ.

We can therefore conclude that a 3× 3 orthogonal matrix B of determinant
one represents a rotation about an axis (which is the eigenspace for eigenvalue
one) and through an angle θ (which can be determined from the eigenvalues of
B, which must be 1 and e±iθ).

Exercises:

2.2.1. Suppose that

A =
(

2 3
3 2

)
.

a. Find an orthogonal matrix B such that BT AB is diagonal.

b. Sketch the conic section 2x2
1 + 6x1x2 + 2x2

2 = 1.

c. Sketch the conic section 2(x1 − 1)2 + 6(x1 − 1)x2 + 2x2
2 = 1.

2.2.2. Suppose that

A =
(

2 −2
−2 5

)
.
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Figure 2.4: Hyperboloid of two sheets.

a. Find an orthogonal matrix B such that BT AB is diagonal.

b. Sketch the conic section 2x2
1 − 4x1x2 + 5x2

2 = 1.

c. Sketch the conic section 2x2
1 − 4x1x2 + 5x2

2 − 4x1 + 4x2 = −1.

2.2.3. Suppose that

A =
(

4 2
2 1

)
.

a. Find an orthogonal matrix B such that BT AB is diagonal.

b. Sketch the conic section 4x2
1 + 4x1x2 + x2

2 −
√

5x1 + 2
√

5x2 = 0.

2.2.4. Determine which of the following conic sections are ellipses, which are
hyperbolas, etc.:

a. x2
1 + 4x1x2 + 3x2

2 = 1.

b. x2
1 + 6x1x2 + 10x2

2 = 1.

c. −3x2
1 + 6x1x2 − 4x2

2 = 1.

d. −x2
1 + 4x1x2 − 3x2

2 = 1.

2.2.5. Find the semi-major and semi-minor axes of the ellipse

5x2
1 + 6x1x2 + 5x2

2 = 4.
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2.2.6. Suppose that

A =


 0 2 0

2 3 0
0 0 9


 .

a. Find an orthogonal matrix B such that BT AB is diagonal.

b. Sketch the quadric surface 4x1x2 + 3x2
2 + 9x2

3 = 1.

2.2.7. Determine which of the following quadric surfaces are ellipsoids, which
are hyperboloids of one sheet, which are hyperboloids of two sheets, etc.:

a. x2
1 − x2

2 − x2
3 − 6x2x3 = 1.

b. x2
1 + x2

2 − x2
3 − 6x1x2 = 1.

c. x2
1 + x2

2 + x2
3 + 4x1x2 + 2x3 = 1.

2.2.8. a. Show that the matrix

B =


 1/3 2/3 2/3
−2/3 −1/3 2/3
2/3 −2/3 1/3




is an orthogonal matrix of deteminant one. Thus multiplication by B is rotation
about some axis through some angle.

b. Find a nonzero vector which spans the axis of rotation.

c. Determine the angle of rotation.

2.3 Orthonormal bases

Recall that if v is an element of R
3, we can express it with respect to the

standard basis as

v = ai + bj + ck, where a = v · i, b = v · j, c = v · k.

We would like to extend this formula to the case where the standard basis
{i, j,k} for R

3 is replaced by a more general “orthonormal basis.”

Definition. A collection of n vectors b1, b2, . . . , bn in R
n is an orthonormal

basis for R
n if

b1 · b1 = 1, b1 · b2 = 0, · · · , b1 · bn = 0,
b2 · b2 = 1, · · · , b2 · bn = 0,

·
bn · bn = 1.

(2.9)
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From the discussion in Section 2.1, we recognize that the term orthonormal
basis is just another name for a collection of n vectors which form the columns
of an orthogonal n × n matrix.

It is relatively easy to express an arbitrary vector f ∈ R
n in terms of an

orthonormal basis b1, b2, . . . , bn: to find constants c1, c2, . . . , cn so that

f = c1b1 + c2b2 + · · · + cnbn, (2.10)

we simply dot both sides with the vector bi and use (2.9) to conclude that

ci = bi · f .

In other words, if b1, b2, . . . , bn is an orthonormal basis for R
n, then

f ∈ R
n ⇒ f = (f · b1)b1 + · · · + (f · bn)bn, (2.11)

a generalization of the formula we gave for expressing a vector in R
3 in terms

of the standard basis {i, j,k}.
This formula can be helpful in solving the initial value problem

dx
dt

= Ax, x(0) = f , (2.12)

in the case where A is a symmetric n × n matrix and f is a constant vector.
Since A is symmetric, the Spectral Theorem of Section 2.1 guarantees that the
eigenvalues of A are real and that we can find an n × n orthogonal matrix B
such that

B−1AB =




λ1 0 · · · 0
0 λ2 · · · 0
· · ·
0 0 · · · λn


 .

Recall from Math 5A that if we set x = By, then

B
dy
dt

=
dx
dt

= Ax = ABy ⇒ dy
dt

= B−1ABy.

Thus in terms of the new variable

y =




y1

y2

·
yn


 , we have




dy1/dt
dy2/dt

·
dyn/dt


 =




λ1 0 · · · 0
0 λ2 · · · 0
· · ·
0 0 · · · λn







y1

y2

·
yn


 ,

so that the matrix differential equation decouples into n noninteracting scalar
differential equations

dy1/dt = λ1y1,
dy2/dt = λ2y2,

·
dyn/dt = λnyn.
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We can solve these equations individually, obtaining the general solution

y =




y1

y2

·
yn


 =




c1e
λ1t

c2e
λ2t

·
cneλnt


 ,

where c1, c2, . . . , cn are constants of integration. Transferring back to our
original variable x yields

x = B




c1e
λ1t

c2e
λ2t

·
cneλnt


 = c1b1e

λ1t + c2b2e
λ2t + · · · + cnbneλnt,

where b1, b2, . . . , bn are the columns of B. Note that

x(0) = c1b1 + c2b2 + · · · + cnbn.

To finish solving the initial value problem (2.12), we need to determine the
constants c1, c2, . . . , cn so that

c1b1 + c2b2 + · · · + cnbn = f .

It is here that our formula (2.11) comes in handy; using it we obtain

x = (f · b1)b1e
λ1t + · · · + (f · bn)bneλnt.

Example. Suppose we want to solve the initial value problem

dx
dt

=


5 4 0

4 5 0
0 0 1


 , x(0) = f , where f =


3

1
4


 .

We saw in Section 2.1 that A has the eigenvalues λ1 = 1 with multiplicity two
and λ2 = 9 with multiplicity one. Moreover, the orthogonal matrix

B =


 0 1√

2
1√
2

0 −1√
2

1√
2

1 0 0




has the property that

B−1AB =


 1 0 0

0 1 0
0 0 9


 .

Thus the general solution to the matrix differential equation dx/dt = Ax is

x = B


 c1e

t

c2e
t

c3e
9t


 = c1b1e

t + c2b2e
t + c3b3e

9t,
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where

b1 =


0

0
1


 , b2 =




1√
2

−1√
2

0


 , b3 =




1√
2

1√
2

0


 .

Setting t = 0 in our expression for x yields

x(0) = c1b1 + c2b2 + c3b3.

To solve the initial value problem, we employ (2.11) to see that

c1 =


0

0
1


 ·


3

1
4


 = 4, c2 =




1√
2

−1√
2

0


 ·


3

1
4


 =

√
2,

c3 =




1√
2

1√
2

0


 ·


3

1
4


 = 2

√
2.

Hence the solution is

x = 4


0

0
1


 et +

√
2




1√
2

−1√
2

0


 et + 2

√
2




1√
2

1√
2

0


 e9t.

Exercise:

2.3.1.a. Find the eigenvalues of the symmetric matrix

A =




5 4 0 0
4 5 0 0
0 0 4 2
0 0 2 1


 .

b. Find an orthogonal matrix B such that B−1AB is diagonal.

c. Find an orthonormal basis for R
4 consisting of eigenvectors of A.

d. Find the general solution to the matrix differential equation

dx
dt

= Ax.

e. Find the solution to the initial value problem

dx
dt

= Ax, x(0) =




1
3
0
2


 .
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2.3.2.a. Find the eigenvalues of the symmetric matrix

A =


−3 2 0

2 −4 2
0 2 −5


 .

(Hint: To find roots of the cubic, try λ = 1 and λ = −1.)

b. Find an orthogonal matrix B such that B−1AB is diagonal.

c. Find an orthonormal basis for R
3 consisting of eigenvectors of A.

d. Find the general solution to the matrix differential equation

dx
dt

= Ax.

e. Find the solution to the initial value problem

dx
dt

= Ax, x(0) =


1

2
0


 .

2.3.3. (For students with access to Mathematica) a. Find the eigenvalues of the
matrix

A =


2 1 1

1 3 2
1 2 4




by running the Mathematica program

a = {{2,1,1},{1,3,2},{1,2,4}}; Eigenvalues[a]

The answer is so complicated because Mathematica uses exact but complicated
formulae for solving cubics discovered by Cardan and Tartaglia, two sixteenth
century Italian mathematicians.

b. Find numerical approximations to these eigenvalues by running the program

Eigenvalues[N[a]]

The numerical values of the eigenvalues are far easier to use.

c. Use Mathematica to find numerical values for the eigenvectors for A by
running the Mathematica program

Eigenvectors[N[a]]

and write down the general solution to the matrix differential equation

dx
dt

= Ax.
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Figure 2.5: Two carts connected by springs and moving along a friction-free
track.

2.4 Mechanical systems

Mechanical systems consisting of weights and springs connected together in an
array often lead to initial value problems of the type

d2x
dt2

= Ax, x(0) = f ,
dx
dt

= 0, (2.13)

where A is a symmetric matrix and f is a constant vector. These can be solved
by a technique similar to that used in the previous section.

For example, let us consider the mechanical system illustrated in Figure 2.5.
Here we have two carts moving along a friction-free track, each containing con-
taining mass m and attached together by three springs, with spring constants
k1, k2 and k3. Let

x1(t) = the position of the first cart to the right of equilibrium,
x2(t) = the position of the second cart to the right of equilibrium,
F1 = force acting on the first cart,
F2 = force acting on the second cart,

with positive values for F1 or F2 indicating that the forces are pulling to the
right.

Suppose that when the carts are in equilibrium, the springs are also in equi-
librium and exert no forces on the carts. In this simple case, it is possible to
reason directly that the forces F1 and F2 must be given by the formulae

F1 = −k1x1 + k2(x2 − x1), F2 = k2(x1 − x2) − k3x2,
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but it becomes difficult to determine the forces for more complicated mechanical
systems consisting of many weights and springs. Fortunately, there are some
simple principles from physics which simply the procedure for finding the forces
acting in such mechanical systems.

The easiest calculation of the forces is based upon the notion of work . On
the one hand, the work required to pull a weight to a new position is equal to
the increase in potential energy imparted to the weight. On the other hand, we
have the equation

Work = Force × Displacement,

which implies that

Force =
Work

Displacement
= −Change in potential energy

Displacement
.

Thus if V (x1, x2) is the potential energy of the configuration when the first cart
is located at the point x1 and the second cart is located at the point x2, then
the forces are given by the formulae

F1 = − ∂V

∂x1
, F2 = − ∂V

∂x2
.

In our case, the potential energy V is the sum of the potential energies stored
in each of the three springs,

V (x1, x2) =
1
2
k1x

2
1 +

1
2
k2(x1 − x2)2 +

1
2
k3x

2
2,

and hence we obtain the formulae claimed before:

F1 = − ∂V

∂x1
= −k1x1 + k2(x2 − x1),

F2 = − ∂V

∂x2
= k2(x1 − x2) − k3x2.

It now follows from Newton’s second law of motion that

Force = Mass × Acceleration,

and hence

F1 = m
d2x1

dt2
, F2 = m

d2x2

dt2
.

Thus we obtain a second-order system of differential equations,

m
d2x1

dt2
= −k1x1 + k2(x2 − x1) = −(k1 + k2)x1 + k2x2,

m
d2x2

dt2
= k2(x1 − x2) − k3x2 = k2x1 − (k2 + k3)x2.
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We can write this system in matrix form as

m
d2x
dt2

= Ax, where A =
(

−(k1 + k2) k2

k2 −(k2 + k3)

)
. (2.14)

Note that A is indeed a symmetric matrix. The potential energy is given by the
expression

V (x1, x2) = −1
2

(
x1x2

)
A

(
x1

x2

)
.

Example. Let us consider the special case of the mass-spring system in which

m = k1 = k2 = k3 = 1,

so that the system (2.14) becomes

d2x
dt2

=
(
−2 1
1 −2

)
x. (2.15)

To find the eigenvalues, we must solve the characteristic equation

det
(
−2 − λ 1

1 −2 − λ

)
= (λ + 2)2 − 1 = 0,

which yields
λ = −2 ± 1.

The eigenvalues in this case are

λ1 = −1, and λ2 = −3.

The eigenspace corresponding to the eigenvalue −1 is

W−1 = {b ∈ R2 : (A + I)b = 0} = . . . = span
(

1
1

)
.

It follows from the argument in Section 2.1 that the eigenspace corresponding
to the other eigenvalue is just the orthogonal complement

W−3 = span
(

−1
1

)
.

Unit length eigenvectors lying in the two eigenspaces are

b1 =
(

1/
√

2
1/
√

2

)
, b2 =

(
−1/

√
2

1/
√

2

)
.

The theorem of Section 2.1 guarantees that the matrix

B =
(

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)
,
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whose columns are b1 and b2, will diagonalize our system of differential equa-
tions.

Indeed, if we define new coordinates (y1, y2) by setting(
x1

x2

)
=

(
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

) (
y1

y2

)
,

our system of differential equations transforms to

d2y1/dt2 = −y1,
d2y2/dt2 = −3y2.

We set ω1 = 1 and ω2 =
√

3, so that this system assumes the familiar form

d2y1/dt2 + ω2
1y1 = 0,

d2y2/dt2 + ω2
2y2 = 0,

a system of two noninteracting harmonic oscillators.
The general solution to the transformed system is

y1 = a1 cos ω1t + b1 sinω1t, y2 = a2 cos ω2t + b2 sinω2t.

In the original coordinates, the general solution to (2.15) is

x =
(

x1

x2

)
=

(
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

) (
a1 cos ω1t + b1 sinω1t
a2 cos ω2t + b2 sinω2t

)
,

or equivalently,

x = b1(a1 cos ω1t + b1 sinω1t) + b2(a2 cos ω2t + b2 sinω2t).

The motion of the carts can be described as a general superposition of two
modes of oscillation, of frequencies

ω1

2π
and

ω2

2π
.

Exercises:

2.4.1.a. Consider the mass-spring system with two carts illustrated in Figure 2.5
in the case where k1 = 4 and m = k2 = k3 = 1. Write down a system of second-
order differential equations which describes the motion of this system.

b. Find the general solution to this system.

c. What are the frequencies of vibration of this mass-spring system?

2.4.2.a. Consider the mass-spring system with three carts illustrated in Fig-
ure 2.5 in the case where m = k1 = k2 = k3 = k4 = 1. Show that the motion of
this system is described by the matrix differential equation

d2x
dt2

= Ax, where A =


−2 1 0

1 −2 1
0 1 −2


 .
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Figure 2.6: Three carts connected by springs and moving along a friction-free
track.

b. Find the eigenvalues of the symmetric matrix A.

c. Find an orthonormal basis for R
3 consisting of eigenvectors of A.

d. Find an orthogonal matrix B such that B−1AB is diagonal.

e. Find the general solution to the matrix differential equation

d2x
dt2

= Ax.

f. Find the solution to the initial value problem

d2x
dt2

= Ax, x(0) =


1

2
0


 ,

dx
dt

(0) = 0.

2.4.3.a. Find the eigenvalues of the symmetric matrix

A =



−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2


 .

b. What are the frequencies of oscillation of a mechanical system which is
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Figure 2.7: A circular array of carts and springs.

governed by the matrix differential equation

d2x
dt2

= Ax?

2.5 Mechanical systems with many degrees of
freedom*

Using an approach similar to the one used in the preceding section, we can
consider more complicated systems consisting of many masses and springs. For
example, we could consider the box spring underlying the mattress in a bed.
Although such a box spring contains hundreds of individual springs, and hence
the matrix A in the corresponding dynamical system constains hundreds of rows
and columns, it is still possible to use symmetries in the box spring to simplify
the calculations, and make the problem of determining the “natural frequencies
of vibration” of the mattress into a manageable problem.

To illustrate how the symmetries of a problem can make it much easier to
solve, let us consider a somewhat simpler problem, a system of n carts containing
identical weights of mass m and connected by identical springs of spring constant
k, moving along a circular friction-free track as sketched in Figure 2.6.

We choose a positive direction along the track and let xi denote the dis-
placement of the i-th cart out of equilibrium position in the positive direction,
for 1 ≤ i ≤ n. The potential energy stored in the springs is

V (x1, . . . , xn) =
1
2
k(xn−x1)2+

1
2
k(x2−x1)2+

1
2
k(x3−x2)2+. . .+

1
2
k(xn−xn−1)2
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= −1
2
k

(
x1 x2 x3 · xn

)



−2 1 0 · · · 1
1 −2 1 · · · 0
0 1 −2 · · · 0
· · · · · · ·
1 0 0 · · · −2







x1

x2

x3

·
xn


 .

We can write this as
V (x1, . . . , xn) = −1

2
kxT Ax,

where

x =




x1

x2

x3

·
xn


 , A =




−2 1 0 · · · 1
1 −2 1 · · · 0
0 1 −2 · · · 0
· · · · · · ·
1 0 0 · · · −2


 ,

or equivalently as

V (x1, . . . , xn) = −1
2
k

n∑
i=1

n∑
j=1

aijxixj ,

where aij denotes the (i, j)-component of the matrix A.
Just as in the preceding section, the force acting on the i-th cart can be

calculated as minus the derivative of the potential energy with respect to the
position of the i-th cart, the other carts being held fixed. Thus for example,

F1 = − ∂V

∂x1
=

1
2
k

n∑
j=1

a1jxj +
1
2
k

n∑
i=1

ai1xi = k

n∑
j=1

a1jxj ,

the last step obtained by using the symmetry of A. In general, we obtain the
result:

Fi = − ∂V

∂xi
= k

n∑
j=1

aijxj ,

which could be rewritten in matrix form as

F = kAx. (2.16)

On the other hand, by Newton’s second law of motion,

m
d2x
dt2

= F.

Substitution into (2.16) yields

m
d2x
dt2

= kAx or
d2x
dt2

=
k

m
Ax, (2.17)
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where A is the symmetric matrix given above. To find the frequencies of vi-
bration of our mechanical system, we need to find the eigenvalues of the n × n
matrix A.

To simplify the calculation of the eigenvalues of this matrix, we make use of
the fact that the carts are identically situated—if we relabel the carts, shifting
them to the right by one, the dynamical system remains unchanged. Indeed,
lew us define new coordinates (y1, . . . , yn) by setting

x1 = y2, x2 = y3, . . . , xn−1 = yn, xn = y1,

or in matrix terms,

x = Ty, where T =




0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
· · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0




.

Then y satisfies exactly the same system of differential equations as x:

d2y
dt2

=
k

m
Ay. (2.18)

On the other hand,

d2x
dt2

=
k

m
Ax ⇒ T

d2y
dt2

=
k

m
ATy or

d2y
dt2

=
k

m
T−1ATy.

Comparison with (2.18) yields

A = T−1AT, or TA = AT.

In other words the matrices A and T commute.
Now it is quite easy to solve the eigenvector-eigenvalue problem for T . In-

deed, if x is an eigenvector for T corresponding to the eigenvalue λ, the compo-
nents of x must satisfy the vector equation Tx = λx. In terms of components,
the vector equation becomes

x2 = λx1, x3 = λx2, . . . , xn = λxn−1, x1 = λxn. (2.19)

Thus x3 = λ2x1, x4 = λ3x1, and so forth, yielding finally the equation

x1 = λnx1.

Similarly,
x2 = λnx2, . . . , xn = λnxn.

Since at least one of the xi’s is nonzero, we must have

λn = 1. (2.20)
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This equation is easily solved via Euler’s formula:

1 = e2πi ⇒ (e2πi/n)n = 1, and similarly [(e2πi/n)j ]n = 1,

for 0 ≤ j ≤ n − 1. Thus the solutions to (2.20) are

λ = ηj , for 0 ≤ j ≤ n − 1, where η = e2πi/n. (2.21)

For each choice of j, we can try to find eigenvectors corresponding to ηj . If
we set x1 = 1, we can conclude from (2.19) that

x2 = ηj , x3 = η2j , . . . , xn = η(n−1)j ,

thereby obtaining a nonzero solution to the eigenvector equation. Thus for each
j, 0 ≤ j ≤ n − 1, we do indeed have an eigenvector

ej =




1
ηj

η2j

·
η(n−1)j


 ,

for the eigenvalue ηj . Moreover, each eigenspace is one-dimensional.
In the dynamical system that we are considering, of course, we need to solve

the eigenvalue-eigenvector problem for A, not for T . Fortunately, however, since
A and T commute, the eigenvectors for T are also eigenvectors for A. Indeed,
since AT = TA,

T (Aej) = A(Tej) = A(ηjej) = ηj(Aej),

and this equation states that Aej is an eigenvector for T with the same eigen-
value as ej . Since the eigenspaces of T are all one-dimensional, Aej must be a
multiple of ej ; in other words,

Aej = λjej , for some number λj .

To find the eigenvalues λj for A, we simply act on ej by A: we find that the
first component of the vector Aej = λjej is

−2 + ηj + η(n−1)j = −2 + (e2πij/n + e−2πij/n) = −2 + 2 cos(2πj/n),

where we have used Euler’s formula once again. On the other hand, the first
component of ej is 1, so we immediately conclude that

λj = −2 + 2 cos(2πj/n).

It follows from the familiar formula

cos(2α) = cos2 α − sin2 α
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that
λj = −2 + 2[cos(πj/n)]2 − 2[sin(πj/n)]2 = −4[sin(πj/n)]2.

Note that λj = λn−j , and hence the eigenspaces for A are two-dimensional,
except for the eigenspace corresponding to j = 0, and if n is even, to the
eigenspace corresponding to j = n/2. Thus in the special case where n is odd,
all the eigenspaces are two-dimensional except for the eigenspace with eigenvalue
λ0 = 0, which is one-dimensional.

If j 
= 0 and j 
= n/2, ej and en−j form a basis for the eigenspace corre-
sponding to eigenvalue λj . It is not difficult to verify that

1
2
(ej + en−j) =




1
cos(πj/n)
cos(2πj/n)

·
cos((n − 1)πj/n)




and

i

2
(ej − en−j) =




0
sin(πj/n)
sin(2πj/n)

·
sin((n − 1)πj/n)




form a real basis for this eigenspace. Let

ωj =
√
−λj = 2 sin(πj/n).

In the case where n is odd, we can write the general solution to our dynamical
system (2.17) as

x = e0(a0 + b0t) +
(n−1)/2∑

j=1

1
2
(ej + en−j)(aj cos ωjt + bj sinωjt)

+
(n−1)/2∑

j=1

i

2
(ej − en−j)(cj cos ωjt + dj sinωjt).

The motion of the system can be described as a superposition of several modes
of oscillation, the frequencies of oscillation being

ωj

2π
=

√
k

m

sin(πj/n)
π

.

Note that the component

e0(a0 + b0t) =




1
1
1
·
1


 (a0 + b0t)
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corresponds to a constant speed motion of the carts around the track. If n is
large,

sin(π/n)
π

.=
π/n

π
=

1
n

⇒ ω1

2π

.=

√
k

m

1
n

,

so if we were to set k/m = n2, the lowest nonzero frequency of oscillation would
approach one as n → ∞.

Exercise:

2.5.1. Find the eigenvalues of the matrix

T =




0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
· · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0




by expanding the determinant∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 · · · 0
0 −λ 1 · · · 0
0 0 −λ · · · 0
· · · · · · ·
0 0 0 · · · 1
1 0 0 · · · −λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

2.6 A linear array of weights and springs*

Suppose more generally that a system of n−1 carts containing identical weights
of mass m, and connected by identical springs of spring constant k, are moving
along a friction-free track, as shown in Figure 2.7. Just as in the preceding
section, we can show that the carts will move in accordance with the linear
system of differential equations

d2x
dt2

= Ax =
k

m
Px,

where

P =




−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · ·
· · · · · · ·
0 0 · · · · −2


 .

We take k = n and m = (1/n), so that k/m = n2.
We can use the following Mathematica program to find the eigenvalues of

the n × n matrix A, when n = 6:
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Figure 2.8: A linear array of carts and springs.

n = 6;
m = Table[Max[2-Abs[i-j],0], {i,n-1} ,{j,n-1} ];
p = m - 4 IdentityMatrix[n-1];
a = n∧2 p
eval = Eigenvalues[N[a]]

Since

2 − |i − j|




= 2 if j = i,

= 1 if j = i ± 1
≤0 otherwise,

the first line of the program generates the (n − 1) × (n − 1)-matrix

M =




2 1 0 · · · 0
1 2 1 · · · 0
0 1 2 · · · ·
· · · · · · ·
0 0 · · · · 2


 .

The next two lines generate the matrices P and A = n2P . Finally, the last
line finds the eigenvalues of A. If you run this program, you will note that all
the eigenvalues are negative and that Mathematica provides the eigenvalues in
increasing order.

We can also modify the program to find the eigenvalues of the matrix when
n = 12, n = 26, or n = 60 by simply replacing 6 in the top line with the new
value of n. We can further modify the program by asking for only the smallest
eigenvalue lambda[[n]] and a plot of the corresponding eigenvector:
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Figure 2.9: Shape of the fundamental mode.

n = 14;
m = Table[Max[2-Abs[i-j],0], {i,n-1} ,{j,n-1} ];
p = m - 4 IdentityMatrix[n-1]; a = n∧2 p;
eval = Eigenvalues[N[a]]; evec = Eigenvectors[N[a]]
Print[eval[[n-1]]];
ListPlot[evec[[n-1]]];

If we experiment with this program using different values for n, we will see
that as n gets larger, the smallest eigenvalue seems to approach −π2 and the
plot of the smallest eigenvector looks more and more like a sine curve. Thus the
fundamental frequency of the mechanical system seems to approach π/2π = 1/2
and the oscillation in the fundamental mode appears more and more sinusoidal
in shape.

When n is large, we can consider this array of springs and weights as a model
for a string situated along the x-axis and free to stretch to the right and the left
along the x-axis. The track on which the cart runs restricts the motion of the
weights to be only in the x-direction. A more realistic model would allow the
carts to move in all three directions. This would require new variables yi and
zi such that

yi(t) = the y-component of displacement of the i-th weight,

zi(t) = the z-component of displacement of the i-th weight.

If we were to set

x =




x1

x2

·
xn


 , y =




x1

x2

·
xn


 , z =




z1

z2

·
zn


 ,

then an argument similar to the one given above would show that the vectors
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x, y and z would satisfy the matrix differential equations

dx
dt

=
k

m
Ax,

dy
dt

=
k

m
Ay,

dz
dt

=
k

m
Az.

and each of these could be solved just as before.
Using a similar approach, we could consider even more complicated systems

consisting of many masses and springs connected in a two- or three-dimensional
array.
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Chapter 3

Fourier Series

3.1 Fourier series

The theory of Fourier series and the Fourier transform is concerned with dividing
a function into a superposition of sines and cosines, its components of various
frequencies. It is a crucial tool for understanding waves, including water waves,
sound waves and light waves. Suppose, for example, that the function f(t)
represents the amplitude of a light wave arriving from a distant galaxy. The
light is a superposition of many frequencies which encode information regarding
the material which makes up the stars of the galaxy, the speed with which the
galaxy is receding from the earth, its speed of rotation, and so forth. Much of
our knowledge of the universe is derived from analyzing the spectra of stars and
galaxies. Just as a prism or a spectrograph is an experimental apparatus for
dividing light into its components of various frequencies, so Fourier analysis is
a mathematical technique which enables us to decompose an arbitrary function
into a superposition of oscillations.

In the following chapter, we will describe how the theory of Fourier series can
be used to analyze the flow of heat in a bar and the motion of a vibrating string.
Indeed, Joseph Fourier’s original investigations which led to the theory of Fourier
series were motivated by an attempt to understand heat flow.1 Nowadays, the
notion of dividing a function into its components with respect to an appropriate
“orthonormal basis of functions” is one of the key ideas of applied mathematics,
useful not only as a tool for solving partial differential equations, as we will see
in the next two chapters, but for many other purposes as well. For example, a
black and white photograph could be represented by a function f(x, y) of two
variables, f(x, y) representing the darkness at the point (x, y). The photograph
can be stored efficiently by determining the components of f(x, y) with respect
to a well-chosen “wavelet basis.” This idea is the key to image compression,
which can be used to send pictures quickly over the internet.2

1Fourier’s research was published in his Théorie analytique de la chaleur in 1822.
2See Stéphane Mallat, A wavelet tour of signal processing, Academic Press, Boston, 1998.
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We turn now to the basics of Fourier analysis in its simplest context. A
function f : R → R is said to be periodic of period T if it satisfies the relation

f(t + T ) = f(t), for all t ∈ R.

Thus f(t) = sin t is periodic of period 2π.
Given an arbitrary period T , it is easy to construct examples of functions

which are periodic of period T—indeed, the function f(t) = sin( 2πt
T ) is periodic

of period T because

sin(
2π(t + T )

T
) = sin(

2πt

T
+ 2π) = sin(

2πt

T
).

More generally, if k is any positive integer, the functions

cos(
2πkt

T
) and sin(

2πkt

T
)

are also periodic functions of period T .
The main theorem from the theory of Fourier series states that any “well-

behaved” periodic function of period T can be expressed as superpositions of
sines and cosines:

f(t) =
a0

2
+ a1 cos(

2πt

T
) + a2 cos(

4πt

T
) + . . . + b1 sin(

2πt

T
) + b2 sin(

4πt

T
) + . . . .

In this formula, the ak’s and bk’s are called the Fourier coefficients of f .
Our first goal is to determine how to calculate these Fourier coefficients. For

simplicity, we will restrict our attention to the case where the period T = 2π,
so that

f(t) =
a0

2
+ a1 cos t + a2 cos 2t + . . . + b1 sin t + b2 sin 2t + . . . . (3.1)

The formulae for a general period T are only a little more complicated, and are
based upon exactly the same ideas.

The coefficient a0 is particularly easy to evaluate. We simply integrate both
sides of (3.1) from −π to π:∫ π

−π

f(t)dt =
∫ π

−π

a0

2
dt +

∫ π

−π

a1 cos tdt +
∫ π

−π

a2 cos 2tdt + . . .

+
∫ π

−π

b1 sin tdt +
∫ π

−π

b2 sin 2tdt + . . . .

Since the integral of cos kt or sin kt over the interval from −π to π vanishes, we
conclude that ∫ π

−π

f(t)dt = πa0,

and we can solve for a0, obtaining

a0 =
1
π

∫ π

−π

f(t)dt. (3.2)
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To find the other Fourier coefficients, we will need some integral formulae.
We claim that if m and n are positive integers,

∫ π

−π

cos nt cos mtdt =

{
π, for m = n,

0, for m 
= n,
(3.3)

∫ π

−π

sinnt sinmtdt =

{
π, for m = n,

0, for m 
= n,
(3.4)

∫ π

−π

sinnt cos mtdt = 0. (3.5)

Let us verify the first of these equations. We will use the trigonometric
identities

cos((n + m)t) = cos nt cos mt − sinnt sinmt,

cos((n − m)t) = cos nt cos mt + sinnt sinmt.

Adding these together, we obtain

cos((n + m)t) + cos((n − m)t) = 2 cos nt cos mt,

or
cos nt cos mt =

1
2
(cos((n + m)t) + cos((n − m)t)).

Hence ∫ π

−π

cos nt cos mtdt =
1
2

∫ π

−π

(cos((n + m)t) + cos((n − m)t))dt,

and since ∫ π

−π

cos(kt)dt =
1
k

sin(kt)
∣∣∣∣
π

−π

= 0,

if k 
= 0, we conclude that

∫ π

−π

cos nt cos mtdt =

{
π, for m = n,

0, for m 
= n.

The reader is asked to verify the other two integral formulae (3.4) and (3.5)
in the exercises at the end of this section.

To find the formula for the Fourier coefficients ak for k > 0, we multiply
both sides of (3.1) by sin kt and integrate from −π to π:∫ π

−π

f(t) cos ktdt =
∫ π

−π

a0

2
cos ktdt +

∫ π

−π

a1 cos t cos ktdt + . . .
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+ . . . +
∫ π

−π

ak cos kt cos ktdt + . . .

+ . . . +
∫ π

−π

bj sin jt cos ktdt + . . . .

According to our formulae (3.3) and (3.5), there is only one term which survives:∫ π

−π

f(t) cos ktdt =
∫ π

−π

ak cos kt cos ktdt = πak.

We can easily solve for ak:

ak =
1
π

∫ π

−π

f(t) cos ktdt. (3.6)

A very similar argument yields the formula

bk =
1
π

∫ π

−π

f(t) sin ktdt. (3.7)

Example. Let us use formulae (3.2), (3.6), and (3.7) to find the Fourier coeffi-
cients of the function

f(t) =



−π, for −π < t < 0,
π, for 0 < t < π,
0, for t = 0, π,

extended to be periodic of period 2π. Then

a0

2
= average value of f = 0,

and

am =
1
π

[∫ π

−π

f(t) cos mtdt

]
=

1
π

[∫ 0

−π

−π cos mtdt

]
+

1
π

[∫ π

0

π cos mtdt

]

=
1
π

−π

m
[sinmt]0−π +

1
π

π

m
[sinmt]π0 = · · · = 0,

while

bm =
1
π

[∫ π

−π

f(t) sinmtdt

]
=

1
π

[∫ 0

−π

−π sinmtdt

]
+

1
π

[∫ π

0

π sinmtdt

]

=
1
π

π

m
[cos mt]0−π +

1
π

−π

m
[cos mt]π0 =

2
m

− 2
m

cos mπ

=
2
m

(1 − (−1)m) =

{
4
m , if m is odd,

0, if m is even.
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Figure 3.1: A graph of the Fourier approximation φ5(t) = 4 sin t+(4/3) sin 3t+
(4/5) sin 5t.

Thus we find the Fourier series for f :

f(t) = 4 sin t +
4
3

sin 3t +
4
5

sin 5t + · · · .

The trigonometric polynomials

φ1(t) = 4 sin t, φ3(t) = 4 sin t +
4
3

sin 3t

φ5(t) = 4 sin t +
4
3

sin 3t +
4
5

sin 5t

are approximations to f(t) which improve as the number of terms increases.
By the way, this Fourier series yields a curious formula for π. If we set

x = π/2, f(x) = π, and we obtain

π = 4 sin(π/2) +
4
3

sin(3π/2) +
4
5

sin(5π/2) + · · ·

from which we conclude that

π = 4(1 − 1
3

+
1
5
− 1

7
+

1
9
− · · · ).

It is interesting to investigate how “well-behaved” a periodic function f(t)
must be in order to ensure that it can be expressed as a superposition of sines and
cosines. A sufficient condition is that f be continuous and possess a continuous
derivative f ′, but weaker conditions are also sufficient.

A commonly cited condition sufficient to guarantee the existence of a Fourier
series is piecewise smoothness. The technical definition goes like this: A func-
tion f(t) which is periodic of period T is said to be piecewise smooth if it is
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Figure 3.2: A graph of the Fourier approximation φ13(t). The overshooting near
the points of discontinuity is known as the “Gibbs phenomenon.”

continuous and has a continuous derivative f ′(t) except at finitely many points
of discontinuity within the interval [0, T ], and at each point t0 of discontinuity,
the right- and left-handed limits of f and f ′,

lim
t→t0+

(f(t)), lim
t→t0−

(f(t)), lim
t→t0+

(f ′(t)), lim
t→t0−

(f ′(t)),

all exist. The following theorem, proven in more advanced books,3 ensures
that a Fourier decomposition can be found for any function which is piecewise
smooth:

Theorem. If f is any piecewise smooth periodic function of period T , f
can be written as a superposition of sines and cosines,

f(t) =
a0

2
+ a1 cos(

2π

T
t) + a2 cos(2

2π

T
t) + . . . (3.8)

+b1 sin(
2π

T
t) + b2 sin(2

2π

T
t) + . . . , (3.9)

where the ak’s and bk’s are constants. Here equality means that the infinite
sum on the right converges to f(t) for each t at which f is continuous. If f is
discontinuous at t0, its Fourier series at t0 will converge to the average of the
right and left hand limits of f as t → t0.

Exercises:

3.1.1. The function f(t) = cos2 t is periodic of period 2π. Find its Fourier series.
3See, for example, Ruel Churchill and James Brown, Fourier series and boundary value

problems, 4th edition, McGraw-Hill, New York, 1987 or Robert Seeley, An introduction to
Fourier series and integrals, Benjamin, New York, 1966.
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(Hint: This problem is very easy if you use trigonometric identities instead of
trying to integrate directly.)

3.1.2. The function f(t) = sin3 t is periodic of period 2π. Find its Fourier series.

3.1.3. The function

f(t) =

{
t, for −π < t < π,
0, for t = π,

can be extended to be periodic of period 2π. Find the Fourier series of this
extension.

3.1.4. The function
f(t) = |t|, for t ∈ [−π, π],

can be extended to be periodic of period 2π. Find the Fourier series of this
extension.

3.1.5. Find the Fourier series of the following function:

f(t) =

{
t2, for −π ≤ t < π,
f(t − 2kπ), for −π + 2kπ ≤ t < π + 2kπ.

3.1.6. Establish the formulae (3.4) and (3.5), which were given in the text.

3.2 Inner products

There is a convenient way of remembering the formulae for the Fourier coeffi-
cients that we derived in the preceding section. Let V be the set of piecewise
smooth functions which are periodic of period 2π. We say that V is a vec-
tor space because elements of V can be added and multiplied by scalars, these
operations satisfying the same rules as those for addition of ordinary vectors
and multiplication of ordinary vectors by scalars. We define an “inner product”
between elements of V by means of the formula

〈f, g〉 =
1
π

∫ π

−π

f(t)g(t)dt.

Thus for example, if f(t) = sin t and g(t) = 2 cos t, then

〈f, g〉 =
1
π

∫ π

−π

2 sin t cos tdt =
∫ π

−π

sin(2t)dt = − cos(2t)|π−π = 0.

The remarkable fact is that this inner product has properties quite similar
to those of the standard dot product on R

n:

• 〈f, g〉 = 〈g, f〉, whenever f and g are elements of V .

• 〈f + g, h〉 = 〈f, h〉 + 〈g, h〉.
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• 〈cf, g〉 = c〈f, g〉, when c is a constant.

• 〈f, f〉 ≥ 0, with equality holding only if f = 0.

This suggests that we might use geometric terminology for elements of V
just as we did for vectors in R

n. Thus, for example, we will say that an element
f of V is of unit length if 〈f, f〉 = 1 and that two elements f and g of V are
perpendicular if 〈f, g〉 = 0.

In this terminology, the formulae (3.3), (3.4), and (3.5) can be expressed by
stating that the functions

1/
√

2, cos t, cos 2t, cos 3t, . . . , sin t, sin 2t, sin 3t, . . .

are of unit length and perpendicular to each other. Moreover, by the theorem in
the preceding section, any element of of V can be written as a (possibly infinite)
superposition of these functions. We will say that the functions

e0(t) =
1√
2
, e1(t) = cos t, e2(t) = cos 2t, . . . ,

ê1(t) = sin t, ê2(t) = sin 2t, . . .

make up an orthonormal basis for V .
We saw in Section 2.3 that if b1, b2, . . . , bn is an orthonormal basis for Rn,

then
f ∈ Rn ⇒ f = (f · b1)b1 + · · · + (f · bn)bn.

The same formula holds when Rn is replaced by V and the dot product is
replaced by the inner product 〈·, ·〉: If f is any element of V , we can write

f(t) = 〈f(t), e0(t)〉e0(t) + 〈f(t), e1(t)〉e1(t) + 〈f(t), e2(t)〉e2(t) + · · ·

+〈f(t), ê1(t)〉ê1(t) + 〈f(t), ê2(t)〉ê2(t) + · · · .

In other words,

f(t) = 〈f,
1√
2
〉 1√

2
+ 〈f, cos t〉 cos t + 〈f, cos 2t〉 cos 2t + . . .

+〈f, sin t〉 sin t + 〈f, sin 2t〉 sin 2t + . . . ,

=
a0

2
+ a1 cos t + a2 cos 2t + . . . + b1 sin t + b2 sin 2t + . . . ,

where

a0 = 〈f, 1〉, a1 = 〈f, cos t〉, a2 = 〈f, cos 2t〉, . . . ,

b1 = 〈f, sin t〉, b2 = 〈f, sin 2t〉, . . . .

Use of the inner product makes the formulae for Fourier coefficients almost
impossible to forget.
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We say that a function f(t) is odd if f(−t) = −f(t), even if f(−t) = f(t).
Thus

sin t, sin 2t, sin 3t, . . .

are odd functions, while

1, cos t, cos 2t, cos 3t, . . .

are even functions. Let

Wodd = {f ∈ V : f is odd}, Weven = {f ∈ V : f is odd}.

Then

f, g ∈ Wodd ⇒ f + g ∈ Wodd and cf ∈ Wodd,

for every choice of real number c. Thus we can say that Wodd is a linear
subspace of V . Similarly, Weven is a linear subspace of V .

It is not difficult to show that

f ∈ Wodd, g ∈ Weven ⇒ 〈f, g〉 = 0;

in other words, Wodd and Weven are orthogonal to each other. Indeed, under
these conditions, fg is odd and hence

〈f, g〉 =
1
π

∫ π

−π

f(t)g(t)dt =
1
π

∫ 0

−π

f(t)g(t)dt +
1
π

∫ π

0

f(t)g(t)dt

=
1
π

∫ 0

π

f(−t)g(−t)(−dt) +
1
π

∫ π

0

f(t)g(t)dt

= − 1
π

∫ π

0

−(f(t)g(t))(−dt) +
1
π

∫ π

0

f(t)g(t)dt = 0.

The variable of integration has been changed from t to −t in the first integral
of the second line.

It follows that if f ∈ Wodd,

a0 = 〈f, 1〉 = 0, an = 〈f, cos nx〉 = 0, for n > 0.

Similarly, if f ∈ Weven,
bn = 〈f, sinnx〉 = 0.

Thus for an even or odd function, half of the Fourier coefficients are auto-
matically zero. This simple fact can often simplify the calculation of Fourier
coefficients.

Exercises:

3.2.1. Evaluate the inner product

〈f, g〉 =
1
π

∫ π

−π

f(t)g(t)dt,
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in the case where f(t) = cos t and g(t) = | sin t|.

3.2.2. Determine which of the following functions are even, which are odd, and
which are neither even nor odd:

a. f(t) = t3 + 3t.

b. f(t) = t2 + |t|.

c. f(t) = et.

d. f(t) = J0(t), the Bessel function of the first kind.

3.3 Fourier sine and cosine series

Let f : [0, L] → R be a piecewise smooth function which vanishes at 0 and L.
We claim that we can express f(t) as the superposition of sine functions,

f(t) = b1 sin(πt/L) + b2 sin(2πt/L) + . . . + bn sin(nπt/L) + . . . . (3.10)

We could prove this using the theory of even and odd functions. Indeed, we can
extend f to an odd function f̃ : [−L, L] → R by setting

f̃(t) =

{
f(t), for t ∈ [0, L],
−f(−t), for t ∈ [−L, 0],

then to a function f̂ : R → R, which is periodic of period 2L by requiring that

f̂(t + 2L) = f̂(t), for all t ∈ R.

The extended function lies in the linear subspace Wodd. It follows from the
theorem in Section 3.1 that f̂ possesses a Fourier series expansion, and from the
fact that f̂ is odd that all of the an’s are zero. On the interval [0, L], f̂ restricts
to f and the Fourier expansion of f̂ restricts to an expansion of f of the form
(3.10) which involves only sine functions. We call (3.10) the Fourier sine series
of f .

A similar argument can be used to express a piecewise smooth function
f : [0, L] → R into a superposition of cosine functions,

f(t) =
a0

2
+ a1 cos(πt/L) + a2 cos(2πt/L) + . . . + an cos(nπt/L) + . . . . (3.11)

To obtain this expression, we first extend f to an even function f̃ : [−L, L] → R
by setting

f̃(t) =

{
f(t), for t ∈ [0, L],
f(−t), for t ∈ [−L, 0],

then to a function f̂ : R → R which is periodic of period 2L, by requiring that

f̂(t + 2L) = f̂(t), for all t ∈ RR.
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This time the extended function lies in the linear subspace Weven. It follows
from the theorem in Section 3.1 that f̂ possesses a Fourier series expansion, and
from the fact that f̂ is even that all of the bn’s are zero. On the interval [0, L],
f̂ restricts to f and the Fourier expansion of f̂ restricts to an expansion of f of
the form (3.11) which involves only cosine functions. We call (3.11) the Fourier
cosine series of f .

To generate formulae for the coefficients in the Fourier sine and cosine series
of f , we begin by defining a slightly different inner product space than the one
considered in the preceding section. This time, we let V be the set of piecewise
smooth functions f : [0, L] → R and let

V0 = {f ∈ V : f(0) = 0 = f(L)},

a linear subspace of V . We define an inner product 〈·, ·〉 on V by means of the
formula

〈f, g〉 =
2
L

∫ L

0

f(t)g(t)dt.

This restricts to an inner product on V0.
Let’s consider now the Fourier sine series. We have seen that any element

of V0 can be represented as a superpostion of the sine functions

sin(πt/L), sin(2πt/L), . . . , sin(nπt/L), . . . .

We claim that these sine functions form an orthonormal basis for V0 with re-
spect to the inner product we have defined. Indeed, it follows from familiar
trigonometric formulae that

cos((n + m)πt/L) = cos(nπt/L) cos(mπt/L) − sin(nπt/L) sin(mπt/L),

cos((n − m)πt/L) = cos(nπt/L) cos(mπt/L) + sin(nπt/L) sin(mπt/L).

Subtracting the first of these from the second and dividing by two yields

sin(nπt/L) sin(mπt/L) =
1
2
(cos((n − m)πt/L) − cos((n + m)πt/L),

and hence ∫ L

0

sin(nπt/L) sin(mπt/L)dt =

1
2

∫ L

0

(cos((n − m)πt/L) − cos((n + m)πt/L)dt.

If n and m are positive integers, the integral on the right vanishes unless n = m,
in which case the right-hand side becomes

1
2

∫ L

0

dt =
L

2
.
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Hence

2
L

∫ π

0

sin(nπt/L) sin(mπt/L)dt =

{
1, for m = n,
0, for m 
= n.

(3.12)

Therefore, just as in the previous section, we can evaluate the coefficients of
the Fourier sine series of a function f ∈ V0 by simply projecting f onto each
element of the orthonormal basis. When we do this, we find that

f(t) = b1 sin(πt/L) + b2 sin(2πt/L) + . . . + sin(nπt/L) + . . . ,

where

bn = 〈f, sin(nπt/L)〉 =
2
L

∫ L

0

f(t) sin(nπt/L)dt. (3.13)

We can treat the Fourier cosine series in a similar fashion. In this case, we
can show that the functions

1√
2L

, cos(πt/L), cos(2πt/L), . . . , cos(nπt/L), . . .

form an orthonormal basis for V . Thus we can evaluate the coefficients of the
Fourier cosine series of a function f ∈ V by projecting f onto each element of
this orthonormal basis. We will leave it to the reader to carry this out in detail,
and simply remark that when the dust settles, one obtains the following formula
for the coefficient an in the Fourier cosine series:

an =
2
L

∫ L

0

f(t) cos(nπt/L)dt. (3.14)

Example. First let us use (3.13) to find the Fourier sine series of

f(t) =

{
t, for 0 ≤ t ≤ π/2,
π − t, for π/2 ≤ t ≤ π.

(3.15)

In this case, L = π, and according to our formula,

bn =
2
π

[∫ π/2

0

t sinntdt +
∫ π

π/2

(π − t) sinntdt

]
.

We use integration by parts to obtain

∫ π/2

0

t sinntdt =
[−t

n
cos nt

]∣∣∣∣
π/2

0

+
∫ π/2

0

1
n

cos ntdt

=
−π cos(nπ/2)

2n
+

1
n2

[sinnt]|π/2
0 =

−π cos(nπ/2)
2n

+
sin(nπ/2)

n2
,
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Figure 3.3: A graph of the Fourier sine approximations φ1, φ3, φ5 and φ7.

while ∫ π

π/2

(π − t) sinntdt =
[−(π − t)

n
cos(nt)

]∣∣∣∣
π

π/2

−
∫ π

π/2

1
n

cos ntdt

=
π cos(nπ/2)

2n
− 1

n2
[sinnt]|ππ/2 =

π cos(nπ/2)
2n

+
sin(nπ/2)

n2
.

Thus

bn =
4 sin(nπ/2)

πn2
,

and the Fourier sine series of f(t) is

f(t) =
4
π

sin t − 4
9π

sin 3t +
4

25π
sin 5t − 4

49π
sin 7t + . . . . (3.16)

The trigonometric polynomials

φ1(t) =
4
π

sin t, φ3(t) =
4
π

sin t − 4
9π

sin 3t, . . .

are better and better approximations to the function f(t).
To find the Fourier cosine series of

f(t) =

{
t, for 0 ≤ t ≤ π/2,
π − t, for π/2 ≤ t ≤ π,

we first note that

a0 =
2
π

[∫ π/2

0

tdt +
∫ π

π/2

(π − t)dt

]
=

2
π

[
1
2

(π

2

)2

+
1
2

(π

2

)2
]

=
π

2
.
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To find the other an’s, we use (3.14):

an =
2
π

[∫ π/2

0

t cos ntdt +
∫ π

π/2

(π − t) cos ntdt

]
.

This time, integration by parts yields∫ π/2

0

t cos ntdt =
[

t

n
sinnt

]∣∣∣∣
π/2

0

−
∫ π/2

0

1
n

sinntdt

=
π sin(nπ/2)

2n
+

1
n2

[cos nt]|π/2
0

=
π sin(nπ/2)

2n
+

cos(nπ/2)
n2

− 1
n2

while∫ π

π/2

(π − t) cos ntdt =
[
(π − t)

n
sin(nt)

]∣∣∣∣
π

π/2

+
∫ π

π/2

1
n

sinntdt

=
−π sin(nπ/2)

2n
− 1

n2
[cos nt]|ππ/2

=
−π sin(nπ/2)

2n
+

cos(nπ/2)
n2

− 1
n2

cos(nπ).

Thus when n ≥ 1,

an =
2

πn2
[2 cos(nπ/2) − 1 − 1(−1)n],

and the Fourier sine series of f(t) is

f(t) =
π

4
− 2

π
cos 2t − 2

9π
cos 6t − 2

25π
cos 10t − . . . . (3.17)

Note that we have expanded exactly the same function f(t) on the interval [0, π]
as either a superposition of sines in (3.16) or as a superposition of cosines in
(3.17).

Exercises:

3.3.1.a. Find the Fourier sine series of the following function defined on the
interval [0, π]:

f(t) =

{
4t, for 0 ≤ t < π/2,
4π − 4t, for π/2 ≤ t ≤ π.

b. Find the Fourier cosine series of the same function.

3.3.2.a. Find the Fourier sine series of the following function defined on the
interval [0, π]:

f(t) = t(π − t).
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b. Find the Fourier cosine series of the same function.

3.3.3. Find the Fourier sine series of the following function defined on the
interval [0, 10]:

f(t) =

{
t, for 0 ≤ t < 5,
10 − t, for 5 ≤ t ≤ 10.

3.3.4. Find the Fourier sine series of the following function defined on the
interval [0, 1]:

f(t) = 5t(1 − t).

3.3.5.(For students with access to Mathematica) Find numerical approximations
to the first ten coefficients of the Fourier sine series for the function

f(t) = t + t2 − 2t3,

defined for t in the interval [0, 1], by running the following Mathematica program

f[n ] := 2 NIntegrate[(t + t∧2 - 2 t∧3) Sin[n Pi t], {t,0,1}];
b = Table[f[n], {n,1,10}]

3.4 Complex version of Fourier series*

We have seen that if f : R → R is a well-behaved function which is periodic of
period 2π, f can be expanded in a Fourier series

f(t) =
a0

2
+ a1 cos t + a2 cos(2t) + . . .

+b1 sin t + b2 sin(2t) + . . . .

We say that this is the real form of the Fourier series. It is often convenient to
recast this Fourier series in complex form by means of the Euler formula, which
states that

eiθ = cos θ + i sin θ.

It follows from this formula that

eiθ + e−iθ = 2 cos θ, e−iθ + e−iθ = 2i sin θ,

or

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ + e−iθ

2
.

Hence the Fourier expansion of f can be rewritten as

f(t) =
a0

2
+

a1

2
(eit + e−it) +

a2

2
(e2it + e−2it) + . . .

+
b1

2i
(eit − e−it) +

b2

2i
(e2it − e−2it) + . . . ,
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or

f(t) = . . . + c−2e
−2it + c−1e

−it + c0 + c1e
it + c2e

2it + . . . , (3.18)

where the ck’s are the complex numbers defined by the formulae

c0 =
a0

2
, c1 =

a1 − ib1

2
, c2 =

a2 − ib2

2
, . . . ,

c−1 =
a1 + ib1

2
, c−2 =

a2 + ib2

2
, . . . .

Note that if k 
= 0,

ak = ck + c−k, bk = i(ck − c−k). (3.19)

It is not difficult to check the following integral formula via direct integration:

∫ π

−π

eimte−intdt =

{
2π, for m = n,
0 for m 
= n.

(3.20)

If we multiply both sides of (3.18) by e−ikt, integrate from −π to π and apply
(3.20), we obtain ∫ π

−π

f(t)e−iktdt = 2πck,

which yields the formula for coefficients of the complex form of the Fourier
series:

ck =
1
2π

∫ π

−π

f(t)e−iktdt. (3.21)

Example. Let us use formula (3.21) to find the complex Fourier coefficients of
the function

f(t) = t for −π < t ≤ π,

extended to be periodic of period 2π. Then

ck =
1
2π

∫ π

−π

te−iktdt.

We apply integration by parts with u = t, dv = e−iktdt, du = dt and v =
(i/k)e−ikt:

ck =
1
2π

[
(it/k)e−ikt|π−π −

∫ π

−π

(i/k)e−iktdt

]

=
[
πi

k
e−iπk − −πi

k
eiπk

]
= 2πi

(−1)k

k
.
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It follows from (3.19) that

ak = (ck + c−k) = 0, bk = i(ck − c−k) = −4π
(−1)k

k
.

It is often the case that the complex form of the Fourier series is far simpler
to calculate than the real form. One can then use (3.19) to find the real form
of the Fourier series.

Exercise:

3.4.1. Prove the integral formula (3.20), presented in the text.

3.4.2. a. Find the complex Fourier coefficients of the function

f(t) = t2 for −π < t ≤ π,

extended to be periodic of period 2π.

b. Use (3.19) to find the real form of the Fourier series.

3.4.3. Find the complex Fourier coefficients of the function

f(t) = t(π − t) for −π < t ≤ π,

extended to be periodic of period 2π.

b. Use (3.19) to find the real form of the Fourier series.

3.4.4. Show that if a function f : R → R is smooth and periodic of period 2πL,
we can write the Fourier expansion of f as

f(t) = . . . + c−2e
−2it/L + c−1e

−it/L + c0 + c1e
it/L + c2e

2it/L + . . . ,

where

ck =
1

2πL

∫ πL

−πL

f(t)e−ikt/Ldt.

3.5 Fourier transforms*

One of the problems with the theory of Fourier series presented in the previous
sections is that it applies only to periodic functions. There are many times when
one would like to divide a function which is not periodic into a superposition of
sines and cosines. The Fourier transform is the tool needed for this purpose.

The idea behind the Fourier transform is to think of f(t) as vanishing outside
a very long interval [−πL, πL]. The function can be extended to a periodic
function f(t) such that f(t + 2πL) = f(t). According to the theory of Fourier
series in complex form (see Exercise 3.4.4),

f(t) = . . . + c−2e
−2it/L + c−1e

−it/L + c0 + c1e
it/L + c2e

2it/L + . . . ,
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where the ck’s are the complex numbers.

Definition. If f : R → R is a piecewise continuous function which vanishes
outside some finite interval, its Fourier transform is

f̂(ξ) =
∫ ∞

−∞
f(t)e−iξtdt. (3.22)

The integral in this formula is said to be improper because it is taken from −∞
to ∞; it is best to regard it as a limit,∫ ∞

−∞
f(t)e−iξtdt = lim

L→∞

∫ πL

−πL

f(t)e−iξtdt.

Suppose that f vanishes outside the interval [−πL, πL]. We can extend the
restriction of f to this interval to a function which is periodic of period 2πL.
Then

f̂(k/L) =
∫ ∞

−∞
f(t)e−ikt/Ldt =

∫ πL

−πL

f̃(t)e−ikt/Ldt

represents 2πL times the Fourier coefficient of this extension of frequency k/L;
indeed, it follows from (3.21) that we can write

f(t) = . . . + c−2e
−2it/L + c−1e

−it/L + c0 + c1e
it/L + c2e

2it/L + . . . ,

where
ck =

1
2πL

f̂(k/L),

or alternatively,

f(t) = . . . +
1

2πL
f̂(−2/L)e−2it/L +

1
2πL

f̂(−1/L)e−it/L+

+
1

2πL
f̂(0) +

1
2πL

f̂(1/T )eit/L +
1

2πL
f̂(2/L)e2it/L + . . . .

In the limit as L → ∞, it can be shown that this last sum approaches an
improper integral, and our formula becomes

f(t) =
1
2π

∫ ∞

−∞
f̂(ξ)eiξtdξ. (3.23)

Equation (3.23) is called the Fourier inversion formula. If we make use of
Euler’s formula, we can write the Fourier inversion formula in terms of sines
and cosines,

f(t) =
1
2π

∫ ∞

−∞
f̂(ξ) cos ξtdξ +

i

2π

∫ ∞

−∞
f̂(ξ) sin ξtdξ,

a superposition of sines and cosines of various frequencies.
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Equations (3.22) and (3.22) allow one to pass back and forth between a given
function and its representation as a superposition of oscillations of various fre-
quencies. Like the Laplace transform, the Fourier transform is often an effective
tool in finding explicit solutions to differential equations.

Exercise:

3.5.1. Find the Fourier transform of the function f(t) defined by

f(t) =

{
1, if −1 ≤ t ≤ 1,
0, otherwise.
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Chapter 4

Partial Differential
Equations

4.1 Overview

A partial differential equation is an equation which contains partial derivatives,
such as the equation

∂u

∂t
=

∂2u

∂x2
,

in which u is regarded as a function of x and t. Unlike the theory of ordinary
differential equations which centers upon one key theorem—the fundamental
existence and uniqueness theorem—there is no real unified theory of partial dif-
ferential equations. Instead, each type of partial differential equations exhibits
its own special idiosyncracies, which usually mirror the physical phenomena
which it was first used to model.

Many of the foundational theories of physics and engineering are expressed
by means of systems of partial differential equations. The reader may have
heard some of these equations mentioned in previous courses in physics. Fluid
mechanics is often formulated by the Euler equations of motion or the so-called
Navier-Stokes equations, electricity and magnetism by Maxwell’s equations, gen-
eral relativity by Einstein’s field equations. It is therefore important to develop
techniques that can be used to solve a wide variety of partial differential equa-
tions.

In this chapter, we will give two important simple examples of partial dif-
ferential equations, the heat equation and the wave equation, and we will show
how to solve them by the techniques of “separation of variables” and Fourier
analysis. Higher dimensional examples will be given in the following chapter.
We will see that just as in the case of ordinary differential equations, there is an
important dichotomy between linear and nonlinear equations. The techniques
of separation of variables and Fourier analysis are effective only for linear par-
tial differential equations. Nonlinear partial differential equations are far more
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difficult to solve, and form a key topic of contemporary mathematical research.
A more detailed treatment of partial differential equations is provided in the
upper division course Math 124 at UCSB.1

Our first example is the equation governing propagation of heat in a bar of
length L. We imagine that the bar is located along the x-axis and we let

u(x, t) = temperature at x at time t.

Heat in a small segment of the bar is proportional to temperature, the con-
stant of proportionality being determined by the density and specific heat of
the material making up the bar. If σ(x) denotes the specific heat at the point x
and ρ(x) is the density of the bar at x, then the heat within the region Dx1,x2

between x1 and x2 is given by the formula

Heat within Dx1,x2 =
∫ x2

x1

ρ(x)σ(x)u(x, t)dx.

Assuming that no heat is being created or destroyed in Dx1,x2 , the rate at which
heat leaves Dx1,x2 is

− d

dt

[∫ x2

x1

ρ(x)σ(x)u(x, t)dx

]
= −

∫ x2

x1

ρ(x)σ(x)
∂u

∂t
(x, t)dx. (4.1)

(More generally, if heat is being created within Dx1,x2 , say by a chemical reac-
tion, at the rate µ(x)u(x, t)+ ν(x) per unit volume, then the rate at which heat
leaves Dx1,x2 is

−
∫ x2

x1

ρ(x)σ(x)
∂u

∂t
(x, t)dx +

∫ x2

x1

(µ(x)u(x, t) + ν(x))dx.)

On the other hand, the rate of heat flow F (x, t) is proportional to the partial
derivative of temperature,

F (x, t) = −κ(x)
∂u

∂x
(x, t), (4.2)

where κ(x) is the thermal conductivity of the bar at x. Thus we find that the
rate at which heat leaves the region Dx1,x2 is also given by the formula

F (x2, t) − F (x1, t) =
∫ x2

x1

∂F

∂x
(x, t)dx. (4.3)

Comparing the two formulae (4.1) and (4.3), we find that∫ x2

x1

∂F

∂x
(x, t)dx = −

∫ x2

x1

ρ(x)σ(x)
∂u

∂t
(x, t)dx.

1From the many excellent upper division texts on partial differential equations, we can
recommend Mark Pinsky, Partial differential equations and boundary-value problems with
applications, 2nd edition, McGraw-Hill, 1991. An excellent but much more advanced book is
Michael Taylor, Partial differential equations: basic theory, Springer, New York, 1996.
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This equation is true for all choices of x1 and x2, so the integrands on the two
sides must be equal:

∂F

∂x
= −ρ(x)σ(x)

∂u

∂t
.

It follows from (4.2) that

∂

∂x

(
−κ(x)

∂u

∂x

)
= −ρ(x)σ(x)

∂u

∂t
.

In this way, we obtain the heat equation

ρ(x)σ(x)
∂u

∂t
=

∂

∂x

(
κ(x)

∂u

∂x

)
. (4.4)

In the more general case in which heat is being created at the rate µ(x)u(x, t)+
ν(x) per unit volume, the heat equation would be

ρ(x)σ(x)
∂u

∂t
=

∂

∂x

(
κ(x)

∂u

∂x

)
+ µ(x)u + ν(x). (4.5)

In the special case where the bar is homogeneous, i.e. its properties are the
same at every point, ρ(x), σ(x) and κ(x) are constants, say σ and κ respectively,
and (4.4) becomes

∂u

∂t
=

κ

ρσ

∂2u

∂x2
. (4.6)

This is our simplest example of a linear partial differential equation. Although
its most basic application concerns diffusion of heat, it arises in many other
contexts as well. For example, a slight modification of the heat equation was
used by Black and Scholes to price derivatives in financial markets.2

Exercises:

4.1.1. Study of heat flow often leads to “boundary-value problems” for ordi-
nary differential equations. Indeed, in the “steady-state” case, in which u is
independent of time, equation (4.5) becomes

d

dx

(
κ(x)

du

dx
(x)

)
+ µ(x)u(x) + ν(x) = 0,

a linear ordinary differential equation with variable coefficients. Suppose now
that the temperature is specified at the two endpoints of the bar, say

u(0) = α, u(L) = β.

2A description of the Black-Scholes technique for pricing puts and calls is given in Paul
Wilmott, Sam Howison and Jeff Dewynne, The mathematics of financial derivatives, Cam-
bridge Univ. Press, 1995.
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Our physical intuition suggests that the steady-state heat equation should have
a unique solution with these boundary conditions.

a. Solve the following special case of this boundary-value problem: Find u(x),
defined for 0 ≤ x ≤ 1 such that

d2u

dx2
= 0, u(0) = 70, u(1) = 50.

b. Solve the following special case of this boundary-value problem: Find u(x),
defined for 0 ≤ x ≤ 1 such that

d2u

dx2
− u = 0, u(0) = 70, u(1) = 50.

c. Solve the following special case of this boundary-value problem: Find u(x),
defined for 0 ≤ x ≤ 1 such that

d2u

dx2
+ x(1 − x) = 0, u(0) = 0, u(1) = 0.

d. (For students with access to Mathematica) Use Mathematica to graph the
solution to the following boundary-value problem: Find u(x), defined for 0 ≤
x ≤ 1 such that

d2u

dx2
+ (1 + x2)u = 0, u(0) = 50, u(1) = 100.

You can do this by running the Mathematica program:

a = 0; b = 1; alpha = 50; beta = 100;
sol = NDSolve[ {u’’[x] + (1 + x∧2) u[x] == 0,
u[a] == alpha, u[b] == beta.}, u, {x,a,b}];
Plot[ Evaluate[ u[x] /. sol], {x,a,b}]

4.1.2.a. Show that the function

u0(x, t) =
1√
4πt

e−x2/4t

is a solution to the heat equation (4.6) for t > 0 in the case where κ/(ρσ) = 1.

b. Use the chain rule with intermediate variables x̄ = x − a, t̄ = t to show that

ua(x, t) =
1√
4πt

e−(x−a)2/4t

is also a solution to the heat equation.
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c. By differentiating under the integral sign show that if h : R → R is any
smooth function which vanishes outside a finite interval [−L, L], then

u(x, t) =
∫ ∞

−∞
ua(x, t)h(a)da (4.7)

is a solution to the heat equation.

REMARK: In more advanced courses it is shown that (4.7) approaches h(x) as
t → 0. In fact, (4.7) gives a formula (for values of t which are greater than zero)
for the unique solution to the heat equation on the infinite line which satisfies
the initial condition u(x, 0) = h(x). In the next section, we will see how to solve
the initial value problem for a rod of finite length.

4.2 The initial value problem for the heat equa-
tion

We will now describe how to use the Fourier sine series to find the solution to
an initial value problem for the heat equation in a rod of length L which is
insulated along the sides, whose ends are kept at zero temperature. We expect
that there should exist a unique function u(x, t), defined for 0 ≤ x ≤ L and
t ≥ 0 such that

1. u(x, t) satisfies the heat equation

∂u

∂t
= c2 ∂2u

∂x2
, (4.8)

where c is a constant.

2. u(x, t) satisfies the boundary condition u(0, t) = u(L, t) = 0, in other
words, the temperature is zero at the endpoints. (This is sometimes called
the Dirichlet boundary condition.)

3. u(x, t) satisfies the initial condition u(x, 0) = h(x), where h(x) is a given
function, the initial temperature of the rod.

In more advanced courses, it is proven that this initial value problem does in
fact have a unique solution. We will shortly see how to find that solution.

Note that the heat equation itself and the boundary condition are homoge-
neous and linear—this means that if u1 and u2 satisfy these conditions, so does
c1u1 + c2u2, for any choice of constants c1 and c2. Thus homogeneous linear
conditions satisfy the principal of superposition.

Our method makes use of the dichotomy into homogeneous and nonhomo-
geneous conditions:

Step I. We find all of the solutions to the homogeneous linear conditions of the
special form

u(x, t) = f(x)g(t).
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By the superposition principle, an arbitrary linear superposition of these solu-
tions will still be a solution.

Step II. We find the particular solution which satisfies the nonhomogeneous
condition by Fourier analysis.

Let us first carry out Step I. We substitute u(x, t) = f(x)g(t) into the heat
equation (4.8) and obtain

f(x)g′(t) = c2f ′′(x)g(t).

Now we separate variables, putting all the functions involving t on the left, all
the functions involving x on the right:

g′(t)
g(t)

= c2 f ′′(x)
f(x)

.

The left-hand side of this equation does not depend on x, while the right-hand
side does not depend on t. Hence neither side can depend upon either x or t.
In other words, the two sides must equal a constant, which we denote by λ and
call the separating constant . Our equation now becomes

g′(t)
c2g(t)

=
f ′′(x)
f(x)

= λ,

which separates into two ordinary differential equations,

g′(t)
c2g(t)

= λ, or g′(t) = λc2g(t), (4.9)

and

f ′′(x)
f(x)

= λ, or f ′′(x) = λf(x). (4.10)

The homogeneous boundary condition u(0, t) = u(L, t) = 0 becomes

f(0)g(t) = f(L)g(t) = 0.

If g(t) is not identically zero,

f(0) = f(L) = 0.

(If g(t) is identically zero, then so is u(x, t), and we obtain only the trivial
solution u ≡ 0.)

Thus to find the nontrivial solutions to the homogeneous linear part of the
problem requires us to find the nontrivial solutions to a boundary value problem
for an ordinary differential equation:

f ′′(x) =
d2

dx2
(f(x)) = λf(x), f(0) = 0 = f(L). (4.11)
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We will call (4.11) the eigenvalue problem for the differential operator

L =
d2

dx2

acting on the space V0 of well-behaved functions f : [0, L] → R which vanish at
the endpoints 0 and L.

We need to consider three cases. (As it turns out, only one of these will
actually yield nontrivial solutions to our eigenvalue problem.)

Case 1: λ = 0. In this case, the eigenvalue problem (4.11) becomes

f ′′(x) = 0, f(0) = 0 = f(L).

The general solution to the differential equation is f(x) = ax + b, and the only
particular solution which satisfies the boundary condition is f = 0, the trivial
solution.

Case 2: λ > 0. In this case, the differential equation

f ′′(x) = λf(x), or f ′′(x) − λf(x) = 0

has the general solution

f(x) = c1e
√

λx + c2e
−
√

λx.

It is convenient for us to change basis in the linear space of solutions, using

cosh(
√

λx) =
1
2
(e

√
λx + e−

√
λx), sinh(

√
λx) =

1
2
(e

√
λx − e−

√
λx)

instead of the exponentials. Then we can write

f(x) = a cosh(
√

λx) + b sinh(
√

λx),

with new constants of integration a and b. We impose the boundary conditions:
first

f(0) = 0 ⇒ a = 0 ⇒ f(x) = b sinh(
√

λx),

and then

f(L) = 0 ⇒ b sinh(
√

λL) = 0 ⇒ b = 0 ⇒ f(x) = 0,

so we obtain no nontrivial solutions in this case.

Case 3: λ < 0. In this case, we set ω =
√
−λ, and rewrite the eigenvalue

problem as
f ′′(x) + ω2f(x) = 0, f(0) = 0 = f(L).

We recognize here our old friend, the differential equation of simple harmonic
motion. We remember that the differential equation has the general solution

f(x) = a cos(ωx) + b sin(ωx).
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Once again
f(0) = 0 ⇒ a = 0 ⇒ f(x) = b sin(ωx).

Now, however,

f(L) = 0 ⇒ b sin(ωL) ⇒ b = 0 or sin(ωL) = 0,

and hence either b = 0 and we obtain only the trivial solution or sin(ωL) = 0.
The latter possibility will occur if ωL = nπ, or ω = (nπ/L), where n is an
integer. In this case, we obtain

f(x) = b sin(nπx/L).

Therefore, we conclude that the only nontrivial solutions to (4.11) are constant
multiples of

f(x) = sin(nπx/L), with λ = −(nπ/L)2, n = 1, 2, 3, . . . .

For each of these solutions, we need to find a corresponding g(t) solving equation
(4.9),

g′(t) = λc2g(t),

where λ = −(nπ/L)2. This is just the equation of exponential decay, and has
the general solution

g(t) = be−(ncπ/L)2t,

where a is a constant of integration. Thus we find that the nontrivial prod-
uct solutions to the heat equation together with the homogeneous boundary
condition u(0, t) = 0 = u(L, t) are constant multiples of

un(x, t) = sin(nπx/L)e−(ncπ/L)2t.

It follows from the principal of superposition that

u(x, t) = b1 sin(πx/L)e−(cπ/L)2t + b2 sin(2πx/L)e−(2cπ/L)2t + . . . (4.12)

is a solution to the heat equation together with its homogeneous boundary
conditions, for arbitrary choice of the constants b1, b2, . . . .

Step II consists of determining the constants bn in (4.12) so that the initial
condition u(x, 0) = h(x) is satisfied. Setting t = 0 in (4.12) yields

h(x) = u(x, 0) = b1 sin(πx/L) + b2 sin(2πx/L) + . . . .

It follows from the theory of the Fourier sine series that h can indeed be rep-
resented as a superposition of sine functions, and we can determine the bn’s as
the coefficients in the Fourier sine series of h. Using the techniques described in
Section 3.3, we find that

bn =
2
L

∫ L

0

h(x) sin(nπx/L)dx.
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Example 1. Suppose that we want to find the function u(x, t), defined for
0 ≤ x ≤ π and t ≥ 0, which satisfies the initial-value problem:

∂u

∂t
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = h(x) = 4 sinx+2 sin 2x+7 sin 3x.

In this case, the nonvanishing coefficients for the Fourier sine series of h are

b1 = 4, b2 = 2, b3 = 7,

so the solution must be

u(x, t) = 4 sinxe−t + 2 sin 2xe−4t + 7 sin 3xe−9t.

Example 2. Suppose that we want to find the function u(x, t), defined for
0 ≤ x ≤ π and t ≥ 0, which satisfies the initial-value problem:

∂u

∂t
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = h(x),

where

h(x) =

{
x, for 0 ≤ x ≤ π/2,
π − x, for π/2 ≤ x ≤ π.

We saw in Section 3.3 that the Fourier sine series of h is

h(x) =
4
π

sinx − 4
9π

sin 3x +
4

25π
sin 5x − 4

49π
sin 7t + . . . ,

and hence

u(x, t) =
4
π

sinxe−t − 4
9π

sin 3xe−9t +
4

25π
sin 5xe−25t − . . . .

Exercises:

4.2.1. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂u

∂t
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = sin 2x.

You may assume that the nontrivial solutions to the eigenvalue problem

f ′′(x) = λf(x), f(0) = 0 = f(π)

are
λ = −n2, f(x) = bn sinnx, for n = 1, 2, 3, . . . ,

where the bn’s are constants.
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4.2.2. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂u

∂t
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = sinx + 3 sin 2x − 5 sin 3x.

4.2.3. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂u

∂t
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = x(π − x).

(In this problem you need to find the Fourier sine series of h(x) = x(π − x).)

4.2.4. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

1
2t + 1

∂u

∂t
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = sinx + 3 sin 2x.

4.2.5. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

(t + 1)
∂u

∂t
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = sinx + 3 sin 2x.

4.2.6.a. Find the function w(x), defined for 0 ≤ x ≤ π, such that

d2w

dx2
= 0, w(0) = 10, w(π) = 50.

b. Find the general solution to the following boundary value problem for the
heat equation: Find the functions u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, such
that

∂u

∂t
=

∂2u

∂x2
, u(0, t) = 10, u(π, t) = 50. (4.13)

(Hint: Let v = u − w, where w is the solution to part a. Determine what
conditions v must satisfy.)

c. Find the particular solution to (4.13) which in addition satisfies the initial
condition

u(x, 0) = 10 +
40
π

x + 2 sinx − 5 sin 2x.

4.2.7.a. Find the eigenvalues and corresponding eigenfunctions for the differen-
tial operator

L =
d2

dt2
+ 3,
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which acts on the space V0 of well-behaved functions f : [0, π] → R which vanish
at the endpoints 0 and π by

L(f) =
d2f

dt2
+ 3f.

b. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂u

∂t
=

∂2u

∂x2
+ 3u, u(0, t) = u(π, t) = 0, u(x, 0) = sinx + 3 sin 2x.

4.2.8. The method described in this section can also be used to solve an initial
value problem for the heat equation in which the Dirichlet boundary condition
u(0, t) = u(L, t) = 0 is replaced by the Neumann boundary condition

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0. (4.14)

(Physically, this corresponds to insulated endpoints, from which no heat can
enter or escape.) In this case separation of variables leads to a slightly different
eigenvalue problem, which consists of finding the nontrivial solutions to

f ′′(x) =
d2

dx2
(f(x)) = λf(x), f ′(0) = 0 = f ′(L).

a. Solve this eigenvalue problem. (Hint: The solution should involve cosines
instead of sines.)

b. Find the general solution to the heat equation

∂u

∂t
=

∂2u

∂x2

subject to the Neumann boundary condition (4.14).

c. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, such that:

∂u

∂t
=

∂2u

∂x2
,

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0, u(x, 0) = 3 cos x + 7 cos 2x.

4.2.9. We can also treat a mixture of Dirichlet and Neumann conditions, say

u(0, t) =
∂u

∂x
(L, t) = 0. (4.15)

In this case separation of variables leads to the eigenvalue problem which consists
of finding the nontrivial solutions to

f ′′(x) =
d2

dx2
(f(x)) = λf(x), f(0) = 0 = f ′(L).
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a. Solve this eigenvalue problem.

b. Find the general solution to the heat equation

∂u

∂t
=

∂2u

∂x2

subject to the mixed boundary condition (4.15).

c. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, such that:

∂u

∂t
=

∂2u

∂x2
, u(0, t) =

∂u

∂x
(π, t) = 0, u(x, 0) = 4 sin(x/2) + 12 cos(3x/2).

4.3 Numerical solutions to the heat equation

There is another method which is sometimes used to treat the initial value
problem described in the preceding section, a numerical method based upon
“finite differences.” Although it yields only approximate solutions, it can be
applied in some cases with variable coefficients when it would be impossible to
apply Fourier analysis in terms of sines and cosines. However, for simplicity,
we will describe only the case where ρ and k are constant, and in fact we will
assume that c2 = L = 1.

Thus we seek the function u(x, t), defined for 0 ≤ x ≤ 1 and t ≥ 0, which
solves the heat equation

∂u

∂t
=

∂2u

∂x2

subject to the boundary conditions u(0, t) = u(1, t) = 0 and the initial con-
dition u(x, 0) = h(x), where h(x) is a given function, representing the initial
temperature.

For any fixed choice of t0 the function u(x, t0) is an element of V0, the space of
piecewise smooth functions defined for 0 ≤ x ≤ 1 which vanish at the endpoints.
Our idea is to replace the “infinite-dimensional” space V0 by a finite-dimensional
Euclidean space R

n−1 and reduce the partial differential equation to a system
of ordinary differential equations. This corresponds to utilizing a discrete model
for heat flow rather than a continuous one.

For 0 ≤ i ≤ n, let xi = i/n and

ui(t) = u(xi, t) = the temperature at xi at time t.

Since u0(t) = 0 = un(t) by the boundary conditions, the temperature at time t
is specified by

u(t) =




u1(t)
u2(t)
·

un−1(t)


 ,
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a vector-valued function of one variable. The initial condition becomes

u(0) = h, where h =




h(x1)
h(x2)

·
h(xn−1)


 .

We can approximate the first-order partial derivative by a difference quo-
tient:

∂u

∂x

(
xi + xi+1

2
, t

)
.=

ui+1(t) − ui(t)
xi+1 − xi

=
[ui+1(t) − ui(t)]

1/n
= n[ui+1(t) − ui(t)].

Similarly, we can approximate the second-order partial derivative:

∂2u

∂x2
(xi, t)

.=
∂u
∂x

(
xi+xi+1

2 , t
)
− ∂u

∂x

(
xi−1+xi

2 , t
)

1/n

.= n

[
∂u

∂x

(
xi + xi+1

2
, t

)
− ∂u

∂x

(
xi−1 + xi

2
, t

)]
.= n2[ui−1(t) − 2ui(t) + ui+1(t)].

Thus the partial differential equation

∂u

∂t
=

∂2u

∂x2

can be approximated by a system of ordinary differential equations

dui

dt
= n2(ui−1 − 2ui + ui+1).

This is a first order linear system which can be presented in vector form as

du
dt

= n2Pu, where P =




−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · ·
· · · · · · ·
0 0 · · · · −2


 ,

the last matrix having n − 1 rows and n − 1 columns. Finally, we can rewrite
this as

du
dt

= Au, where A = n2P, (4.16)

a system exactly like the ones studied in Section 2.5. In the limit as n → ∞
one can use the Mathematica program of §2.6 to check that the eigenvalues of A
approach the eigenvalues of d2/dx2 as determined in the preceding section, and
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the eigenvectors approximate more and more closely the standard orthonormal
basis of sine functions.

One could continue constructing a numerical method for solution of our ini-
tial value problem by means of another discretization, this time in the time
direction. We could do this via the familiar Cauchy-Euler method for find-
ing numerical solutions to the linear system (4.16). This method for finding
approximate solutions to the heat equation is called the method of finite differ-
ences. With sufficient effort, one could construct a computer program, using
Mathematica or some other software package, to implement it.

More advanced courses on numerical analysis such as Math 104 at UCSB
treat the finite difference method in detail.3 For us, however, the main point of
the method of finite differences is that it provides considerable insight into the
theory behind the heat equation. It shows that the heat equation can be thought
of as arising from a system of ordinary differential equations when the number
of dependent variables goes to infinity. It is sometimes the case that either a
partial differential equation or a system of ordinary differential equations with
a large or even infinite number of unknowns can give an effective model for the
same physical phenomenon. This partially explains, for example, why quantum
mechanics possesses two superficially different formulations, via Schrödinger’s
partial differential equation or via “infinite matrices” in Heisenberg’s “matrix
mechanics.”

4.4 The vibrating string

Our next goal is to derive the equation which governs the motion of a vibrating
string. We consider a string of length L stretched out along the x-axis, one end
of the string being at x = 0 and the other being at x = L. We assume that the
string is free to move only in the vertical direction. Let

u(x, t) = vertical displacement of the string at the point x at time t.

We will derive a partial differential equation for u(x, t). Note that since the
ends of the string are fixed, we must have u(0, t) = 0 = u(L, t) for all t.

It will be convenient to use the “configuration space” V0 described in Sec-
tion 3.3. An element u(x) ∈ V0 represents a configuration of the string at some
instant of time. We will assume that the potential energy in the string when it
is in the configuration u(x) is

V (u(x)) =
∫ L

0

T

2

(
du

dx

)2

dx, (4.17)

where T is a constant, called the tension of the string.
3For further discussion of this method one can refer to numerical analysis books, such as

Burden and Faires, Numerical analysis, Fifth edition, PWS-Kent Publishing Company, 1993,
§12.2.
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One could imagine that one has devised an experiment that measures the
potential energy in the string in various configurations, and has determined
that (4.17) does indeed represent the total potential energy in the string. On
the other hand, this expression for potential energy is quite plausible for the
following reason: We could imagine first that the amount of energy in the string
should be proportional to the amount of stretching of the string, or in other
words, proportional to the length of the string. From Math 5B, we know that
the length of the curve u = u(x) is given by the formula

Length =
∫ L

0

√
1 + (du/dx)2dx.

But when du/dx is small,

[
1 +

1
2

(
du

dx

)2
]2

= 1 +
(

du

dx

)2

+ a small error,

and hence
√

1 + (du/dx)2 is closely approximated by 1 +
1
2
(du/dx)2.

Thus to a first order of approximation, the amount of energy in the string should
be proportional to

∫ L

0

[
1 +

1
2

(
du

dx

)2
]

dx =
∫ L

0

1
2

(
du

dx

)2

dx + constant.

Letting T denote the constant of proportionality yields

energy in string =
∫ L

0

T

2

(
du

dx

)2

dx + constant.

Potential energy is only defined up to addition of a constant, so we can drop
the constant term to obtain(4.17).

The force acting on a portion of the string when it is in the configuration
u(x) is determined by an element F (x) of V0. We imagine that the force acting
on the portion of the string from x to x + dx is F (x)dx. When the force
pushes the string through an infinitesimal displacement ξ(x) ∈ V0, the total
work performed by F (x) is then the “sum” of the forces acting on the tiny
pieces of the string, in other words, the work is the “inner product” of F and ξ,

〈F (x), ξ(x)〉 =
∫ L

0

F (x)ξ(x)dx.

(Note that the inner product we use here differs from the one used in Section 3.3
by a constant factor.)
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On the other hand this work is the amount of potential energy lost when the
string undergoes the displacement:

〈F (x), ξ(x)〉 =
∫ L

0

T

2

(
∂u

∂x

)2

dx −
∫ L

0

T

2

(
∂(u + ξ)

∂x

)2

dx

= −T

∫ L

0

∂u

∂x

∂ξ

∂x
dx +

∫ L

0

T

2

(
∂ξ

∂x

)2

dx.

We are imagining that the displacement ξ is infinitesimally small, so terms
containing the square of ξ or the square of a derivative of ξ can be ignored, and
hence

〈F (x), ξ(x)〉 = −T

∫ L

0

∂u

∂x

∂ξ

∂x
dx.

Integration by parts yields

〈F (x), ξ(x)〉 = T

∫ L

0

∂2u

∂x2
ξ(x)dx − T

(
∂u

∂x
ξ

)
(L) − T

(
∂u

∂x
ξ

)
(0).

Since ξ(0) = ξ(L) = 0, we conclude that

∫ L

0

F (x)ξ(x)dx = 〈F (x), ξ(x)〉 = T

∫ L

0

∂2u

∂x2
ξ(x)dx.

Since this formula holds for all infinitesimal displacements ξ(x), we must have

F (x) = T
∂2u

∂x2
,

for the force density per unit length.
Now we apply Newton’s second law, force = mass × acceleration, to the

function u(x, t). The force acting on a tiny piece of the string of length dx is
F (x)dx, while the mass of this piece of string is just ρdx, where ρ is the density
of the string. Thus Newton’s law becomes

T
∂2u

∂x2
dx = ρdx

∂2u

∂t2
.

If we divide by ρdx, we obtain the wave equation,

∂2u

∂t2
=

T

ρ

∂2u

∂x2
, or

∂2u

∂t2
= c2 ∂2u

∂x2
,

where c2 = T/ρ.
Just as in the preceding section, we could approximate this partial differential

equation by a system of ordinary differential equations. Assume that the string
has length L = 1 and set xi = i/n and

ui(t) = u(xi, t) = the displacement of the string at xi at time t.
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Then the function u(x, t) can be approximated by the vector-valued function

u(t) =




u1(t)
u2(t)
·

un−1(t)




of one variable, just as before. The wave equation is then approximated by the
system of ordinary differential equations

d2u
dt2

= c2n2Pu,

where P is the (n−1)× (n−1) matrix described in the preceding section. Thus
the differential operator

L =
d2

dx2
is approximated by the symmetric matrix n2P,

and we expect solutions to the wave equation to behave like solutions to a
mechanical system of weights and springs with a large number of degrees of
freedom.

Exercises:

4.4.1.a. Show that if f : R → R is any well-behaved function of one variable,

u(x, t) = f(x + ct)

is a solution to the partial differential equation

∂u

∂t
− c

∂u

∂x
= 0.

(Hint: Use the “chain rule.”)

b. Show that if g : R → R is any well-behaved function of one variable,

u(x, t) = g(x − ct)

is a solution to the partial differential equation

∂u

∂t
+ c

∂u

∂x
= 0.

c. Show that for any choice of well-behaved functions f and g, the function

u(x, t) = f(x + ct) + g(x − ct)

is a solution to the differential equation

∂2u

∂t2
− c2 ∂2u

∂x2
=

[
∂

∂t
+ c

∂

∂x

] (
∂u

∂t
− c

∂u

∂x

)
= 0.
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Remark: This gives a very explicit general solution to the equation for the
vibrations of an infinitely long string.

d. Show that

u(x, t) =
f(x + ct) + f(x − ct)

2
is a solution to the initial value problem

∂2u

∂t2
− c2 ∂2u

∂x2
= 0, u(x, 0) = f(x),

∂u

∂t
(x, 0) = 0.

4.4.2. Show that if the tension and density of a string are given by variable
functions T (x) and ρ(x) respectively, then the motion of the string is governed
by the equation

∂2u

∂t2
=

1
ρ(x)

∂

∂x

(
T (x)

∂u

∂x

)
.

4.5 The initial value problem for the vibrating
string

The Fourier sine series can also be used to find the solution to an initial value
problem for the vibrating string with fixed endpoints at x = 0 and x = L.
We formulate this problem as follows: we seek a function u(x, t), defined for
0 ≤ x ≤ L and t ≥ 0 such that

1. u(x, t) satisfies the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, (4.18)

where c is a constant.

2. u(x, t) satisfies the boundary condition u(0, t) = u(L, t) = 0, i.e. the
displacement of the string is zero at the endpoints.

3. u(x, t) satisfies the initial conditions

u(x, 0) = h1(x) and
∂u

∂t
(x, 0) = h2(x),

where h1(x) and h2(x) are given functions, the initial position and velocity
of the string.

Note that the wave equation itself and the boundary condition are homogeneous
and linear , and therefore satisfy the principal of superposition.

Once again, we find the solution to our problem in two steps:

Step I. We find all of the solutions to the homogeneous linear conditions of the
special form

u(x, t) = f(x)g(t).
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Step II. We find the superposition of these solution which satisfies the nonho-
mogeneous initial conditions by means of Fourier analysis.

To carry out Step I, we substitute u(x, t) = f(x)g(t) into the wave equation
(4.18) and obtain

f(x)g′′(t) = c2f ′′(x)g(t).

We separate variables, putting all the functions involving t on the left, all the
functions involving x on the right:

g′′(t)
g(t)

= c2 f ′′(x)
f(x)

.

Once again, the left-hand side of this equation does not depend on x, while the
right-hand side does not depend on t, so neither side can depend upon either x
or t. Therefore the two sides must equal a constant λ, and our equation becomes

g′′(t)
c2g(t)

=
f ′′(x)
f(x)

= λ,

which separates into two ordinary differential equations,

g′′(t)
c2g(t)

= λ, or g′′(t) = λc2g(t), (4.19)

and

f ′′(x)
f(x)

= λ, or f ′′(x) = λf(x). (4.20)

Just as in the case of the heat equation, the homogeneous boundary condition
u(0, t) = u(L, t) = 0 becomes

f(0)g(t) = f(L)g(t) = 0,

and assuming that g(t) is not identically zero, we obtain

f(0) = f(L) = 0.

Thus once again we need to find the nontrivial solutions to the boundary value
problem,

f ′′(x) =
d2

dx2
(f(x)) = λf(x), f(0) = 0 = f(L),

and just as before, we find that the the only nontrivial solutions are constant
multiples of

f(x) = sin(nπx/L), with λ = −(nπ/L)2, n = 1, 2, 3, . . . .

For each of these solutions, we need to find a corresponding g(t) solving
equation (4.19),

g′′(t) = −(nπ/L)2c2g(t), or g′′(t) + (nπ/L)2c2g(t) = 0.
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This is just the equation of simple harmonic motion, and has the general solution

g(t) = a cos(ncπt/L) + b sin(ncπt/L),

where a and b are constants of integration. Thus we find that the nontrivial
product solutions to the wave equation together with the homogeneous bound-
ary condition u(0, t) = 0 = u(L, t) are constant multiples of

un(x, t) = [an cos(ncπt/L) + bn sin(ncπt/L)] sin(nπx/L).

The general solution to the wave equation together with this boundary condition
is an arbitrary superposition of these product solutions:

u(x, t) = [a1 cos(cπt/L) + b1 sin(cπt/L)] sin(πx/L) (4.21)

+[a2 cos(2cπt/L) + b2 sin(2cπt/L)] sin(2πx/L) + . . . . (4.22)

The vibration of the string is a superposition of a fundamental mode which has
frequency

cπ

L

1
2π

=
c

2L
=

√
T/ρ

2L
,

and higher modes which have frequencies which are exact integer multiples of
this frequency.

Step II consists of determining the constants an and bn in (4.22) so that the
initial conditions

u(x, 0) = h1(x) and
∂u

∂t
(x, 0) = h2(x)

are satisfied. Setting t = 0 in (4.22) yields

h1(x) = u(x, 0) = a1 sin(πx/L) + a2 sin(2πx/L) + . . . ,

so we see that the an’s are the coefficients in the Fourier sine series of h1.
If we differentiate equation(4.22) with respect to t, we find that

∂u

∂t
(x, t) = [

−cπ

L
a1 sin(cπt/L) +

cπ

L
b1 cos(cπt/L)] sin(πx/L)

+
−2cπ

L
[a2 sin(2cπt/L) +

cπ

L
b2 sin(2cπt/L)] cos(2πx/L) + . . . ,

and setting t = 0 yields

h2(x) =
∂u

∂t
(x, 0) =

cπ

L
b1 sin(πx/L) +

2cπ

L
b2 sin(2πx/L) + . . . .

We conclude that
ncπ

L
bn = the n-th coefficient in the Fourier sine series of h2(x).
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Example. Suppose that we want to find the function u(x, t), defined for 0 ≤
x ≤ π and t ≥ 0, which satisfies the initial-value problem:

∂2u

∂t2
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0,

u(x, 0) = 5 sinx + 12 sin 2x + 6 sin 3x,
∂u

∂t
(x, 0) = 0.

In this case, the first three coefficients for the Fourier sine series of h are

b1 = 5, b2 = 12, b3 = 6,

and all the others are zero, so the solution must be

u(x, t) = 5 sinx cos t + 12 sin 2x cos 2t + 6 sin 3x cos 3t.

Exercises:

4.5.1 What happens to the frequency of the fundamental mode of oscillation of
a vibrating string when the length of the string is doubled? When the tension
on the string is doubled? When the density of the string is doubled?

4.5.2. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂2u

∂t2
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0,

u(x, 0) = sin 2x,
∂u

∂t
(x, 0) = 0.

You may assume that the nontrivial solutions to the eigenvalue problem

f ′′(x) = λf(x), f(0) = 0 = f(π)

are
λ = −n2, f(x) = bn sinnx, for n = 1, 2, 3, . . . ,

where the bn’s are constants.

4.5.3. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂2u

∂t2
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0,

u(x, 0) = sinx + 3 sin 2x − 5 sin 3x,
∂u

∂t
(x, 0) = 0.

4.5.4. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂2u

∂t2
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0,
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u(x, 0) = x(π − x),
∂u

∂t
(x, 0) = 0.

4.5.5. Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies
the following conditions:

∂2u

∂t2
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0,

u(x, 0) = 0,
∂u

∂t
(x, 0) = sinx + sin 2x.

4.5.6. (For students with access to Mathematica) a. Find the first ten coeffi-
cients of the Fourier sine series for

h(x) = x − x4

by running the following Mathematica program

f[n ] := 2 NIntegrate[(x - x∧4) Sin[n Pi x], {x,0,1}];
b = Table[f[n], {n,1,10}]

b. Find the first ten terms of the solution to the initial value problem for a
vibrating string,

∂2u

∂t2
=

∂2u

∂x2
, u(0, t) = u(π, t) = 0,

u(x, 0) = x − x4,
∂u

∂t
(x, 0) = 0.

c. Construct a sequence of sketches of the positions of the vibrating string at
the times ti = ih, where h = .1 by running the Mathematica program:

vibstring = Table[
Plot[

Sum[ b[n] Sin[n Pi x] Cos[n Pi t], {n,1,10}],
{x,0,1}, PlotRange -> {-1,1}

], {t,0,1.,.1}
]

d. Select the cell containing vibstring and animate the sequence of graphics
by running “Animate selected graphics,” from the Cell menu.

4.6 Heat flow in a circular wire

The theory of Fourier series can also be used to solve the initial value problem
for the heat equation in a circular wire of radius 1 which is insulated along the
sides. In this case, we seek a function u(θ, t), defined for θ ∈ R and t ≥ 0 such
that
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1. u(θ, t) satisfies the heat equation

∂u

∂t
= c2 ∂2u

∂θ2
, (4.23)

where c is a constant.

2. u(θ, t) is periodic of period 2π in the variable θ; in other words,

u(θ + 2π, t) = u(θ, t), for all θ and t.

3. u(θ, t) satisfies the initial condition u(θ, 0) = h(θ), where h(θ) is a given
function, periodic of period 2π, the initial temperature of the wire.

Once again the heat equation itself and the periodicity condition are homoge-
neous and linear, so they must be dealt with first. Once we have found the
general solution to the homogeneous conditions

∂u

∂t
= c2 ∂2u

∂θ2
, u(θ + 2π, t) = u(θ, t),

we will be able to find the particular solution which satisfies the initial condition

u(θ, 0) = h(θ)

by the theory of Fourier series.
Thus we substitute u(θ, t) = f(θ)g(t) into the heat equation (4.23) to obtain

f(θ)g′(t) = c2f ′′(θ)g(t)

and separate variables:
g′(t)
g(t)

= c2 f ′′(θ)
f(θ)

.

The left-hand side of this equation does not depend on θ, while the right-hand
side does not depend on t, so neither side can depend upon either θ or t, and
we can write

g′(t)
c2g(t)

=
f ′′(θ)
f(θ)

= λ,

where λ is a constant. We thus obtain two ordinary differential equations,

g′(t)
c2g(t)

= λ, or g′(t) = λc2g(t), (4.24)

and

f ′′(θ)
f(θ)

= λ, or f ′′(θ) = λf(θ). (4.25)

The periodicity condition u(θ + π, t) = u(θ, t) becomes

f(θ + 2π)g(t) = f(θ)g(t),
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and if g(t) is not identically zero, we must have

f(θ + 2π) = f(θ).

Thus to find the nontrivial solutions to the homogeneous linear part of the
problem requires us to find the nontrivial solutions to the problem:

f ′′(θ) =
d2

dθ2
(f(θ)) = λf(θ), f(θ + 2π) = f(θ). (4.26)

We will call (4.11) the eigenvalue problem for the differential operator

L =
d2

dθ2

acting on the space V of functions which are periodic of period 2π.
As before, we need to consider three cases.

Case 1: λ = 0. In this case, the eigenvalue problem (4.26) becomes

f ′′(θ) = 0, f(θ + 2π) = f(θ).

The general solution to the differential equation is f(θ) = a + bθ, and

a + b(θ + 2π) = a + b(θ) ⇒ b = 0.

Thus the only solution in this case is that where f is constant, and to be
consistent with our Fourier series conventions, we write f(θ) = a0/2, where a0

is a constant.

Case 2: λ > 0. In this case, the differential equation

f ′′(θ) = λf(θ), or f ′′(θ) − λf(θ) = 0

has the general solution

f(θ) = ae(
√

λθ) + be−(
√

λθ).

Note that
a 
= 0 ⇒ f(θ) → ±∞ as θ → ∞,

while
b 
= 0 ⇒ f(θ) → ±∞ as θ → −∞.

Neither of these is consistent with the periodicity conditions f(θ + 2π) = f(θ),
so we conclude that a = b = 0, and we obtain no nontrivial solutions in this
case.

Case 3: λ < 0. In this case, we set ω =
√
−λ, and rewrite the eigenvalue

problem as
f ′′(θ) + ω2f(θ) = 0, f(θ + 2π) = f(θ).
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We recognize once again our old friend, the differential equation of simple har-
monic motion, which has the general solution

f(θ) = a cos(ωθ) + b sin(ωθ) = A sin(ω(θ − θ0)).

The periodicity condition f(θ + 2π) = f(θ) implies that ω = n, where n is an
integer, which we can assume is positive, and

f(θ) = an cos(nθ) + bn sin(nθ).

Thus we see that the general solution to the eigenvalue problem (4.26) is

λ = 0 and f(θ) =
a0

2
,

or

λ = −n2 where n is a positive integer and f(θ) = an cos(nθ) + bn sin(nθ).

Now we need to find the corresponding solutions to (4.24)

g′(t) = λc2g(t),

for λ = 0,−1,−4,−9, . . . ,−n2, . . . . As before, we find that the solution is

g(t) = (constant)e−n2c2t,

where c is a constant. Thus the product solutions to the homogeneous part of
the problem are

u0(θ, t) =
a0

2
, un(θ, t) = [an cos(nθ) + bn sin(nθ)]e−n2c2t,

where n = 1, 2, 3, . . . .
Now we apply the superposition principle—an arbitrary superposition of

these product solutions must again be a solution. Thus

u(θ, t) =
a0

2
+ Σ∞

n=1[an cos(nθ) + bn sin(nθ)]e−n2c2t (4.27)

is a periodic solution of period 2π to the heat equation (4.23).
To finish the solution to our problem, we must impose the initial condition

u(θ, 0) = h(θ).

But setting t = 0 in (4.27) yields
a0

2
+ Σ∞

n=1[an cos(nθ) + bn sin(nθ)] = h(θ),

so the constants a0, a1, . . . , b1, . . . are just the Fourier coefficients of h(θ). Thus
the solution to our initial value problem is just (4.27) in which the constants ak

and bk can be determined via the familiar formulae

ak =
1
π

∫ π

−π

h(θ) cos kθdθ, bk =
1
π

∫ π

−π

h(θ) sin kθdθ.
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Note that as t → ∞ the temperature in the circular wire approaches the constant
value a0/2.

Exercises:

4.6.1. Find the function u(θ, t), defined for 0 ≤ θ ≤ 2π and t ≥ 0, which satisfies
the following conditions:

∂u

∂t
=

∂2u

∂θ2
, u(θ + 2π, t) = u(θ, t), u(θ, 0) = 2 + sin θ − cos 3θ.

You may assume that the nontrivial solutions to the eigenvalue problem

f ′′(θ) = λf(θ), f(θ + 2π) = f(θ)

are
λ = 0 and f(θ) =

a0

2
,

and

λ = −n2 and f(θ) = an cos nθ + bn sinnθ, for n = 1, 2, 3, . . . ,

where the an’s and bn’s are constants.

4.6.2. Find the function u(θ, t), defined for 0 ≤ θ ≤ 2π and t ≥ 0, which satisfies
the following conditions:

∂u

∂t
=

∂2u

∂θ2
, u(θ + 2π, t) = u(θ, t),

u(θ, 0) = |θ|, for θ ∈ [−π, π].

4.6.3. Find the function u(θ, t), defined for 0 ≤ θ ≤ 2π and t ≥ 0, which satisfies
the following conditions:

∂2u

∂t2
=

∂2u

∂θ2
, u(θ + 2π, t) = u(θ, t),

u(θ, 0) = 2 + sin θ − cos 3θ,
∂u

∂t
(θ, 0) = 0.

4.7 Sturm-Liouville Theory*

We would like to be able to analyze heat flow in a bar even if the specific
heat σ(x), the density ρ(x) and the thermal conductivity κ(x) vary from point
to point. As we saw in Section 4.1, this leads to consideration of the partial
differential equation

∂u

∂t
=

1
ρ(x)σ(x)

∂

∂x

(
κ(x)

∂u

∂x

)
, (4.28)
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where we make the standing assumption that ρ(x), σ(x) and κ(x) are positive.
We imagine that the bar is situated along the x-axis with its endpoints

situated at x = a and x = b. As in the constant coefficient case, we expect that
there should exist a unique function u(x, t), defined for a ≤ x ≤ b and t ≥ 0
such that

1. u(x, t) satisfies the heat equation (4.28).

2. u(x, t) satisfies the boundary condition u(a, t) = u(b, t) = 0.

3. u(x, t) satisfies the initial condition u(x, 0) = h(x), where h(x) is a given
function, defined for x ∈ [a, b], the initial temperature of the bar.

Just as before, we substitute u(x, t) = f(x)g(t) into (4.28) and obtain

f(x)g′(t) =
1

ρ(x)σ(x)
d

dx

(
κ(x)

df

dx
(x)

)
g(t).

Once again, we separate variable, putting all the functions involving t on the
left, all the functions involving x on the right:

g′(t)
g(t)

=
1

ρ(x)σ(x)
d

dx

(
κ(x)

df

dx
(x)

)
1

f(x)
.

As usual, the two sides must equal a constant, which we denote by λ, and our
equation separates into two ordinary differential equations,

g′(t) = λg(t), (4.29)

and

1
ρ(x)σ(x)

d

dx

(
κ(x)

df

dx
(x)

)
= λf(x). (4.30)

Under the assumption that u is not identically zero, the boundary condition
u(a, t) = u(b, t) = 0 yields

f(a) = f(b) = 0.

Thus to find the nontrivial solutions to the homogeneous linear part of the
problem, we need to find the nontrivial solutions to the boundary value problem:

1
ρ(x)σ(x)

d

dx

(
κ(x)

df

dx
(x)

)
= λf(x), f(a) = 0 = f(b). (4.31)

We call this the eigenvalue problem or Sturm-Liouville problem for the differen-
tial operator

L =
1

ρ(x)σ(x)
d

dx

(
κ(x)

d

dx

)
,

which acts on the space V0 of well-behaved functions f : [a, b] → R which
vanish at the endpoints a and b. The eigenvalues of L are the constants λ for
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which (4.31) has nontrivial solutions. Given an eigenvalue λ, the corresponding
eigenspace is

Wλ = {f ∈ V0 : f satisfies (4.31)}.
Nonzero elements of the eigenspaces are called eigenfunctions.

If the functions ρ(x), σ(x) and κ(x) are complicated, it may be impossible to
solve this eigenvalue problem explicitly, and one may need to employ numerical
methods to obtain approximate solutions. Nevertheless, it is reassuring to know
that the theory is quite parallel to the constant coefficient case that we treated
in previous sections. The following theorem, due to the nineteenth century
mathematicians Sturm and Liouville, is proven in more advanced texts:4

Theorem. Suppose that ρ(x), σ(x) and κ(x) are smooth functions which are
positive on the interval [a, b]. Then all of the eigenvalues of L are negative real
numbers, and each eigenspace is one-dimensional. Moreover, the eigenvalues
can be arranged in a sequence

0 > λ1 > λ2 > · · · > λn > · · · ,

with λn → −∞. Finally, every well-behaved function can be represented on
[a, b] as a convergent sum of eigenfunctions.

Suppose that f1(x), f2(x), . . . , fn(x), . . . are eigenfunctions corresponding to
the eigenvalues λ1, λ2, . . . , λn, . . . . Then the general solution to the heat
equation (4.28) together with the boundary conditions u(a, t) = u(b, t) = 0 is

u(x, t) =
∞∑

n=0

cnfn(x)e−λnt,

where the cn’s are arbitrary constants.
To determine the cn’s in terms of the initial temperature h(x), we need a

generalization of the theory of Fourier series. The key idea here is that the
eigenspaces should be orthogonal with respect to an appropriate inner product.
The inner product should be one which makes L like a symmetric matrix. To
arrange this, the inner product that we need to use on V0 is the one defined by
the formula

〈f, g〉 =
∫ b

a

ρ(x)σ(x)f(x)g(x)dx.

Lemma. With respect to this inner product, eigenfunctions corresponding to
distinct eigenvalues are perpendicular.

The proof hinges on the fact that

〈L(f), g〉 = 〈f,L(g)〉, for f, g ∈ V0,

4For further discussion, see Boyce and DiPrima, Elementary differential equations and
boundary value problems, third edition, 1977, Wiley, New York.

111



which can be verified by integration by parts; indeed,

〈L(f), g〉 =
∫ b

a

ρ(x)σ(x)L(f)(x)g(x)dx =
∫ b

a

d

dx

(
K(x)

df

dx
(x)

)
g(x)

= −
∫ b

a

K(x)
df

dx
(x)

dg

dx
(x)dx = · · · = 〈f,L(g)〉,

where the steps represented by dots are just like the first steps, but in reverse
order.

It follows that if fi(x) and fj(x) are eigenfunctions corresponding to distinct
eigenvalues λi and λj , then

λi〈fi, fj〉 = 〈L(f), g〉 = 〈f,L(g)〉 = λj〈fi, fj〉,

and hence
(λi − λj)〈fi, fj〉 = 0.

Since λi −λj 
= 0, we conclude that fi and fj are perpendicular with respect to
the inner product 〈·, ·〉, as claimed.

Thus to determine the cn’s, we can use exactly the same orthogonality tech-
niques that we have used before. Namely, if we normalize the eigenfunctions to
have unit length with respect to 〈, ·, ·〉, then

cn = 〈h, fn〉.

Example. We consider the operator

L = x
d

dx

(
x

d

dx

)
,

which acts on the space V0 of functions f : [1, eπ] → R which vanish at the
endpoints of the interval [1, eπ]. To solve the eigenvalue problem, we need to
find the nontrivial solutions to

x
d

dx

(
x

df

dx
(x)

)
= λf(x), f(1) = 0 = f(eπ). (4.32)

We could find these nontrivial solutions by using the techniques we have learned
for treating Cauchy-Euler equations.

However, there is a simpler approach, based upon the technique of substitu-
tion. Namely, we make a change of variables x = ez and note that since

dx = ezdz,
d

dx
=

1
ez

d

dz
and hence x

d

dx
= ez 1

ez

d

dz
=

d

dz
.

Thus if we set
f̃(z) = f(x) = f(ez),
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the eigenvalue problem (4.32) becomes

d2f̃

dz2
(z) = λf̃(z), f̃(0) = 0 = f̃(π),

a problem which we have already solved. The nontrivial solutions are

λn = −n2, f̃n(z) = sinnz, where n = 1, 2, . . . .

Thus the eigenvalues for our original problem are

λn = −n2, for n = 1, 2, . . . ,

and as corresponding eigenfunctions we can take

fn(x) = sin(n log x).

The lemma implies that these eigenfunctions will be perpendicular with respect
to the inner product 〈·, ·〉, defined by

〈f, g〉 =
∫ eπ

1

1
x

f(x)g(x)dx. (4.33)

Exercises:

4.7.1. Show by direct integration that if m 
= n, the functions

fm(x) = sin(m log x) and fn(x) = sin(n log x)

are perpendicular with respect to the inner product defined by (4.33).

4.7.2. Find the function u(x, t), defined for 1 ≤ x ≤ eπ and t ≥ 0, which satisfies
the following initial-value problem for a heat equation with variable coefficients:

∂u

∂t
= x

∂

∂x

(
x

∂u

∂x

)
, u(1, t) = u(eπ, t) = 0,

u(x, 0) = 3 sin(log x) + 7 sin(2 log x) − 2 sin(3 log x).

4.7.3.a. Find the solution to the eigenvalue problem for the operator

L = x
d

dx

(
x

d

dx

)
− 3,

which acts on the space V0 of functions f : [1, eπ] → R which vanish at the
endpoints of the interval [1, eπ].

b. Find the function u(x, t), defined for 1 ≤ x ≤ eπ and t ≥ 0, which satisfies
the following initial-value problem for a heat equation with variable coefficients:

∂u

∂t
= x

∂

∂x

(
x

∂u

∂x

)
− 3u, u(1, t) = u(eπ, t) = 0,

u(x, 0) = 3 sin(log x) + 7 sin(2 log x) − 2 sin(3 log x).
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4.8 Numerical solutions to the eigenvalue prob-
lem*

We can also apply Sturm-Liouville theory to study the motion of a string of
variable mass density. We can imagine a violin string stretched out along the
x-axis with endpoints at x = 0 and x = 1 covered with a layer of varnish which
causes its mass density to vary from point to point. We could let

ρ(x) = the mass density of the string at x for 0 ≤ x ≤ 1.

If the string is under constant tension T , its motion might be governed by the
partial differential equation

∂2u

∂t2
=

T

ρ(x)
∂2u

∂x2
, (4.34)

which would be subject to the Dirichlet boundary conditions

u(0, t) = 0 = u(1, t), for all t ≥ 0. (4.35)

It is natural to try to find the general solution to (4.34) and (4.35) by sepa-
ration of variables, letting u(x, t) = f(x)g(t) as usual. Substituting into (4.34)
yields

f(x)g′′(t) =
T

ρ(x)
f ′′(x)g(t), or

g′′(t)
g(t)

=
T

ρ(x)
f ′′(x)
f(x)

.

The two sides must equal a constant, denoted by λ, and the partial differential
equation separates into two ordinary differential equations,

T

ρ(x)
f ′′(x) = λf(x), g′′(t) = λg(t).

The Dirichlet boundary conditions (4.35) yield f(0) = 0 = f(1). Thus f must
satisfy the eigenvalue problem

L(f) = λf, f(0) = 0 = f(1), where L =
T

ρ(x)
d2

dx2
.

Although the names of the functions appearing in L are a little different than
those used in the previous section, the same Theorem applies. Thus the eigen-
values of L are negative real numbers and each eigenspace is one-dimensional.
Moreover, the eigenvalues can be arranged in a sequence

0 > λ1 > λ2 > · · · > λn > · · · ,

with λn → −∞. Finally, every well-behaved function can be represented on
[a, b] as a convergent sum of eigenfunctions. If f1(x), f2(x), . . . , fn(x), . . . are
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eigenfunctions corresponding to the eigenvalues λ1, λ2, . . . , λn, . . . . Then the
general solution to (4.34) and (4.35) is

u(x, t) =
∞∑

n=0

fn(x)
[
an cos(

√
−λnt) + bn sin(

√
−λnt)

]
,

where the an’s and bn’s are arbitrary constants. Each term in this sum represents
one of the modes of oscillation of the vibrating string.

In constrast to the case of constant density, it is usually not possible to find
simple explicit eigenfunctions when the density varies. It is therefore usually
necessary to use numerical methods.

The simplest numerical method is the one outlined in §4.3. For 0 ≤ i ≤ n,
we let xi = i/n and

ui(t) = u(xi, t) = the displacement at xi at time t.

Since u0(t) = 0 = un(t) by the boundary conditions, the displacement at time
t is approximated by

u(t) =




u1(t)
u2(t)
·

un−1(t)


 ,

a vector-valued function of one variable. The partial derivative

∂2u

∂t2
is approximated by

d2u
dt2

,

and as we saw in §4.3, the partial derivative

∂2u

∂x2
is approximated by n2Pu,

where

P =




−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · ·
· · · · · · ·
0 0 · · · · −2


 .

Finally, the coefficient (T/ρ(x)) can be represented by the diagonal matrix

Q =




T/ρ(x1) 0 0 · · · 0
0 T/ρ(x2) 0 · · · 0
0 0 T/ρ(x3) · · · ·
· · · · · · ·
0 0 · · · · T/ρ(xn−1)


 .
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Figure 4.1: Shape of the lowest mode when ρ = 1/(x + .1).

Putting all this together, we find that our wave equation with variable mass den-
sity is approximated by a second order homogeneous linear system of ordinary
differential equations

d2u
dt2

= Au, where A = n2QP.

The eigenvalues of low absolute value are approximated by the eigenvalues of A,
while the eigenfunctions representing the lowest frequency modes of oscillation
are approximated eigenvectors corresponding to the lowest eigenvalues of A.

For example, we could ask the question: What is the shape of the lowest
mode of oscillation in the case where ρ(x) = 1/(x+.1)? To answer this question,
we could utilize the following Mathematica program (which is quite similar to
the one presented in Exercise 2.5.2):

n := 60; rho[x ] := 1/(x + .1);
m := Table[Max[2-Abs[i-j],0], { i,n-1 } ,{ j,n-1 } ];
p := m - 4 IdentityMatrix[n-1];
q := DiagonalMatrix[Table[(1/rho[i/n]), { i,1,n-1 } ]];
a := n∧2 q.p; eigenvec = Eigenvectors[N[a]];
ListPlot[eigenvec[[n-1]]]

If we run this program we obtain a graph of the shape of the lowest mode,
as shown in Figure 4.1. Note that instead of approximating a sine curve, our
numerical approximation to the lowest mode tilts somewhat to the left.
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Chapter 5

PDE’s in Higher
Dimensions

5.1 The three most important linear partial dif-
ferential equations

In higher dimensions, the three most important linear partial differential equa-
tions are Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0,

the heat equation
∂u

∂t
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
,

and the wave equation,

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
,

where c is a nonzero constant. Techniques developed for studying these equa-
tions can often be applied to closely related equations.

Each of these three equations is homogeneous linear , that is each term con-
tains u or one of its derivatives to the first power. This ensures that the principle
of superposition will hold,

u1 and u2 solutions ⇒ c1u1 + c2u2 is a solution,

for any choice of constants c1 and c2. The principle of superposition is essential
if we want to apply separation of variables and Fourier analysis techniques.

In the first few sections of this chapter, we will derive these partial differen-
tial equations in several physical contexts. We will begin by using the divergence
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theorem to derive the heat equation, which in turn reduces in the steady-state
case to Laplace’s equation. We then present two derivations of the wave equa-
tion, one for vibrating membranes and one for sound waves. Exactly the same
wave equation also describes electromagnetic waves, gravitational waves, or wa-
ter waves in a linear approximation. It is remarkable that the principles devel-
oped to solve the three basic linear partial differential equations can be applied
in so many contexts.

In a few cases, it is possible to find explicit solutions to these partial dif-
ferential equations under the simplest boundary conditions. For example, the
general solution to the one-dimensional wave equation

∂2u

∂t2
= c2 ∂2u

∂x2

for the vibrations of an infinitely long string, is

u(x, t) = f(x + ct) + g(x − ct),

where f and g are arbitrary well-behaved functions of a single variable.
Slightly more complicated cases require the technique of “separation of vari-

ables” together with Fourier analysis, as we studied before. Separation of vari-
ables reduces these partial differential equations to linear ordinary differential
equations, often with variable coefficients. For example, to find the explicit so-
lution to the heat equation in a circular room, we will see that it is necessary
to solve Bessel’s equation.

The most complicated cases cannot be solved by separation of variables,
and one must resort to numerical methods, together with sufficient theory to
understand the qualitative behaviour of the solutions.

In the rest of this section, we consider our first example, the equation gov-
erning heat flow through a region of (x, y, z)-space, under the assumption that
no heat is being created or destroyed within the region. Let

u(x, y, z, t) = temperature at (x, y, z) at time t.

If σ(x, y, z) is the specific heat at the point (x, y, z) and ρ(x, y, z) is the
density of the medium at (x, y, z), then the heat within a given region D in
(x, y, z)-space is given by the formula

Heat within D =
∫ ∫ ∫

D

ρ(x, y, z)σ(x, y, z)u(x, y, z, t)dxdydz.

Assuming that no heat is being created or destroyed, the rate at which heat is
leaving D is

− d

dt

[∫ ∫ ∫
D

ρσudxdydz

]
= −

∫ ∫ ∫
D

ρσ
∂u

∂t
dxdydz. (5.1)

On the other hand, heat flow can be represented by a vector field F(x, y, z, t)
which points in the direction of greatest decrease of temperature,

F(x, y, z, t) = −κ(x, y, z)(∇u)(x, y, z, t),
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where κ(x, y, z) is the so-called thermal conductivity of the medium at (x, y, z).
Thus the rate at which heat leaves the region D through a small region in its
boundary of area dA is

−(κ∇u) · NdA,

where N is the unit normal which points out of D. The total rate at which heat
leaves D is given by the flux integral

−
∫ ∫

∂D

(κ∇u) · NdA,

where ∂D is the surface bounding D. It follows from the divergence theorem
that

Rate at which heat leaves D = −
∫ ∫ ∫

D

∇ · (κ∇u)dxdydz. (5.2)

From formulae (5.1) and (5.2), we conclude that∫ ∫ ∫
D

ρσ
∂u

∂t
dxdydz =

∫ ∫ ∫
D

∇ · (κ∇u)dxdydz.

This equation is true for all choices of the region D, so the integrands on the
two sides must be equal:

ρ(x, y, z)σ(x, y, z)
∂u

∂t
(x, y, z, t) = ∇ · (κ∇u)(x, y, z, t).

Thus we finally obtain the heat equation

∂u

∂t
=

1
ρ(x, y, z)σ(x, y, z)

∇ · (κ(x, y, z)(∇u)) .

In the special case where the region D is homogeneous, i.e. its properties are
the same at every point, ρ(x, y, z), σ(x, y, z) and κ(x, y, z) are constants, and
the heat equation becomes

∂u

∂t
=

κ

ρσ

[
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

]
.

If we wait long enough, so that the temperature is no longer changing, the
“steady-state” temperature u(x, y, z) must satisfy Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0.

If the temperature is independent of z, the function u(x, y) = u(x, y, z) must
satisfy the two-dimensional Laplace equation

∂2u

∂x2
+

∂2u

∂y2
= 0.
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Exercises:

5.1.1. For which of the following differential equations is it true that the super-
position principle holds?

a.
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0.

b.
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ u = 0.

c.
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ u2 = 0.

d.
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= ex.

e.
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= exu.

Explain your answers.

5.1.2. Suppose that a chemical reaction creates heat at the rate

λ(x, y, z)u(x, y, z, t) + ν(x, y, z),

per unit volume. Show that in this case the equation governing heat flow is

ρ(x, y, z)σ(x, y, z)
∂u

∂t
= λ(x, y, z)u(x, y, z, t) + ν(x, y, z) + ∇ · (κ(x, y, z)(∇u)) .

5.2 The Dirichlet problem

The reader will recall that the space of solutions to a homogeneous linear second
order ordinary differential equation, such as

d2u

dt2
+ p

du

dt
+ qu = 0

is two-dimensional, a particular solution being determined by two constants. By
contrast, the space of solutions to Laplace’s partial differential equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (5.3)

is infinite-dimensional. For example, the function u(x, y) = x3 − 3xy2 is a
solution to Laplace’s equation, because

∂u

∂x
= 3x2 − 3y2,

∂2u

∂x2
= 6x,

120



∂u

∂y
= −6xy,

∂2u

∂y2
= −6x,

and hence
∂2u

∂x2
+

∂2u

∂y2
= 6x − 6x = 0.

Similarly,

u(x, y) = 7, u(x, y) = x4 − 6x2y2 + y4, and u(x, y) = ex sin y

are solutions to Laplace’s equation. A solution to Laplace’s equation is called
a harmonic function. It is not difficult to construct infinitely many linearly
independent harmonic functions of two variables.

Thus to pick out a particular solution to Laplace’s equation, we need bound-
ary conditions which will impose infinitely many constraints. To see what
boundary conditions are natural to impose, we need to think of a physical
problem which leads to Laplace’s equation. Suppose that u(x, y) represents
the steady-state distribution of temperature throughout a uniform slab in the
shape of a region D in the (x, y)-plane. If we specify the temperature on the
boundary of the region, say by setting up heaters and refrigerators controlled by
thermostats along the boundary, we might expect that the temperature inside
the room would be uniquely determined. We need infinitely many heaters and
refrigerators because there are infinitely many points on the boundary. Spec-
ifying the temperature at each point of the boundary imposes infinitely many
constraints on the harmonic function which realizes the steady-state tempera-
ture within D.

The Dirichlet Problem for Laplace’s Equation. Let D be a bounded
region in the (x, y)-plane which is bounded by a piecewise smooth curve ∂D, and
let φ : ∂D → R be a continuous function. Find a harmonic function u : D → R

such that
u(x, y) = φ(x, y), for (x, y) ∈ ∂D.

Our physical intuition suggests that the Dirichlet problem will always have a
unique solution. This fact is proven in more advanced texts on complex variables
and partial differential equations.

Our goal here is to find the explicit solutions in the case where the region
D is sufficiently simple. Suppose, for example, that D = {(x, y) ∈ R

2 : 0 ≤ x ≤
a, 0 ≤ y ≤ b}. Suppose, moreover that the function φ : ∂D → R vanishes on
three sides of ∂D, so that

φ(0, y) = φ(a, y) = φ(x, 0) = 0,

while
φ(x, b) = f(x),

where f(x) is a given continuous function which vanishes when x = 0 and x = a.
In this case, we seek a function u(x, y), defined for 0 ≤ x ≤ a and 0 ≤ y ≤ b,

such that
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1. u(x, y) satisfies Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0. (5.4)

2. u(x, y) satisfies the homogeneous boundary conditions u(0, y) = u(a, y) =
u(x, 0) = 0.

3. u(x, y) satisfies the nonhomogeneous boundary condition u(x, b) = f(x),
where f(x) is a given function.

Note that the Laplace equation itself and the homogeneous boundary con-
ditions satisfy the superposition principle—this means that if u1 and u2 satisfy
these conditions, so does c1u1 + c2u2, for any choice of constants c1 and c2.

Our method for solving the Dirichlet problem consists of two steps:

Step I. We find all of the solutions to Laplace’s equation together with the
homogeneous boundary conditions which are of the special form

u(x, y) = f(x)g(y).

By the superposition principle, an arbitrary linear superposition of these solu-
tions will still be a solution.

Step II. We find the particular solution which satisfies the nonhomogeneous
boundary condition by Fourier analysis.

To carry out Step I, we substitute u(x, y) = X(x)Y (y) into Laplace’s equation
(5.3) and obtain

X ′′(x)Y (y) + X(x)Y ′′(y) = 0.

Next we separate variables, putting all the functions involving x on the left, all
the functions involving y on the right:

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

.

The left-hand side of this equation does not depend on y, while the right-hand
side does not depend on x. Hence neither side can depend upon either x or y.
In other words, the two sides must equal a constant, which we denote by λ, and
call the separating constant, as before. Our equation now becomes

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= λ,

which separates into two ordinary differential equations,

X ′′(x) = λX(x), (5.5)

and

Y ′′(y) = −λY (y). (5.6)
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The homogeneous boundary condition u(0, y) = u(a, y) = 0 imply that

X(0)Y (y) = X(a)Y (y) = 0.

If Y (y) is not identically zero,

X(0) = X(a) = 0.

Thus we need to find the nontrivial solutions to a boundary value problem for
an ordinary differential equation:

X ′′(x) =
d2

dx2
(X(x)) = λX(x), X(0) = 0 = X(a),

which we recognize as the eigenvalue problem for the differential operator

L =
d2

dx2

acting on the space V0 of functions which vanish at 0 and a. We have seen before
that the only nontrivial solutions to equation (5.5) are constant multiples of

X(x) = sin(nπx/a), with λ = −(nπ/a)2, n = 1, 2, 3, . . . .

For each of these solutions, we need to find a corresponding Y (y) solving
equation (5.6),

Y ′′(y) = −λY (y),

where λ = −(nπ/a)2, together with the boundary condition Y (0) = 0. The
differential equation has the general solution

Y (y) = A cosh(nπy/a) + B sinh(nπy/a),

where A and B are constants of integration, and the boundary condition Y (0) =
0 implies that A = 0. Thus we find that the nontrivial product solutions to
Laplace’s equation together with the homogeneous boundary conditions are con-
stant multiples of

un(x, y) = sin(nπx/a) sinh(nπy/a).

The general solution to Laplace’s equation with these boundary conditions is a
general superposition of these product solutions:

u(x, y) = B1 sin(πx/a) sinh(πy/a) + B2 sin(2πx/a) sinh(2πy/a) + . . . . (5.7)

To carry out Step II, we need to determine the constants B1, B2, . . . which
occur in (5.7) so that

u(x, b) = f(x).

Substitution of y = b into (5.7) yields

f(x) = B1 sin(πx/a) sinh(πb/a) + B2 sin(2πx/a) sinh(2πb/a)+
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Figure 5.1: Graph of u(x, y) = 3
sinh(π) sinx sinh y + 7

sinh(2π) sin 2x sinh 2y.

. . . + Bk sin(2πk/a) sinh(kπb/a) + . . . .

We see that Bk sinh(kπb/a) is the k-th coefficient in the Fourier sine series for
f(x).

For example, if a = b = π, and f(x) = 3 sinx + 7 sin 2x, then we must have

f(x) = B1 sin(x) sinh(π) + B2 sin(2x) sinh(2π),

and hence

B1 =
3

sinh(π)
, B2 =

7
sinh(2π)

, Bk = 0 for k = 3, . . . .

Thus the solution to Dirichlet’s problem in this case is

u(x, y) =
3

sinh(π)
sinx sinh y +

7
sinh(2π)

sin 2x sinh 2y.

Exercises:

5.2.1. Which of the following functions are harmonic?

a. f(x, y) = x2 + y2.

b. f(x, y) = x2 − y2.
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c. f(x, y) = ex cos y.

d. f(x, y) = x3 − 3xy2.

5.2.2. a. Solve the following Dirichlet problem for Laplace’s equation in a square
region: Find u(x, y), 0 ≤ x ≤ π, 0 ≤ y ≤ π, such that

∂2u

∂x2
+

∂2u

∂y2
= 0, u(0, y) = u(π, y) = 0,

u(x, 0) = 0, u(x, π) = sinx − 2 sin 2x + 3 sin 3x.

b. Solve the following Dirichlet problem for Laplace’s equation in the same
square region: Find u(x, y), 0 ≤ x ≤ π, 0 ≤ y ≤ π, such that

∂2u

∂x2
+

∂2u

∂y2
= 0, u(0, y) = 0,

u(π, y) = sin 2y + 3 sin 4y, u(x, 0) = 0 = u(x, π).

c. By adding the solutions to parts a and c together, find the solution to the
Dirichlet problem: Find u(x, y), 0 ≤ x ≤ π, 0 ≤ y ≤ π, such that

∂2u

∂x2
+

∂2u

∂y2
= 0, u(0, y) = 0,

u(π, y) = sin 2y+3 sin 4y, u(x, 0) = 0, u(x, π) = sinx−2 sin 2x+3 sin 3x.

5.3 Initial value problems for heat equations

The physical interpretation behind the heat equation suggests that the following
initial value problem should have a unique solution:

Let D be a bounded region in the (x, y)-plane which is bounded by a piece-
wise smooth curve ∂D, and let h : D → R be a continuous function which
vanishes on ∂D. Find a function u(x, y, t) such that

1. u satisfies the heat equation

∂u

∂t
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
. (5.8)

2. u satisfies the “Dirichlet boundary condition” u(x, y, t) = 0, for (x, y) ∈
∂D.

3. u satisfies the initial condition u(x, y, 0) = h(x, y).
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The first two of these conditions are homogeneous and linear, so our strategy is
to treat them first by separation of variables, and then use Fourier analysis to
satisfy the last condition.

In this section, we consider the special case where D = {(x, y) ∈ R
2 : 0 ≤

x ≤ a, 0 ≤ y ≤ b}, so that the Dirichlet boundary condition becomes

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0.

In this case, separation of variables is done in two stages. First, we write

u(x, y, t) = f(x, y)g(t),

and substitute into (5.8) to obtain

f(x, y)g′(t) = c2

(
∂2f

∂x2
+

∂2f

∂y2

)
g(t).

Then we divide by c2f(x, y)g(t),

1
c2g(t)

g′(t) =
1

f(x, y)

(
∂2f

∂x2
+

∂2f

∂y2

)
.

The left-hand side of this equation does not depend on x or y while the right
hand side does not depend on t. Hence neither side can depend on x, y, or t, so
both sides must be constant. If we let λ denote the constant, we obtain

1
c2g(t)

g′(t) = λ =
1

f(x, y)

(
∂2f

∂x2
+

∂2f

∂y2

)
.

This separates into an ordinary differential equation

g′(t) = c2λg(t), (5.9)

and a partial differential equation(
∂2f

∂x2
+

∂2f

∂y2

)
= λf, (5.10)

called the Helmholtz equation. The Dirichlet boundary condition yields

f(0, y) = f(a, y) = f(x, 0) = f(x, b) = 0.

In the second stage of separation of variables, we set f(x, y) = X(x)Y (y)
and substitute into (5.10) to obtain

X ′′(x)Y (y) + X(x)Y ′′(y) = λX(x)Y (y),

which yields
X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

= λ,
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or
X ′′(x)
X(x)

= λ − Y ′′(y)
Y (y)

.

The left-hand side depends only on x, while the right-hand side depends only
on y, so both sides must be constant,

X ′′(x)
X(x)

= µ = λ − Y ′′(y)
Y (y)

.

Hence the Helmholtz equation divides into two ordinary differential equations

X ′′(x) = µX(x), Y ′′(y) = νY (y), where µ + ν = λ.

The “Dirichlet boundary conditions” now become conditions on X(x) and Y (y):

X(0) = X(a) = 0, Y (0) = Y (b) = 0.

The only nontrivial solutions are

X(x) = sin(mπx/a), with µ = −(mπ/a)2, m = 1, 2, 3, . . . ,

and
Y (y) = sin(nπy/b), with ν = −(nπ/b)2, n = 1, 2, 3, . . . .

The corresponding solutions of the Helmholtz equation are

fmn(x, y) = sin(mπx/a) sin(nπy/b), with λmn = −(mπ/a)2 − (nπ/b)2.

For any given choice of m and n, the corresponding solution to (5.9) is

g(t) = e−c2λmnt = e−c2((mπ/a)2+(nπ/b)2)t.

Hence for each choice of m and n, we obtain a product solution to the heat
equation with Dirichlet boundary condition:

um,n(x, y, t) = sin(mπx/a) sin(nπy/b)e−c2((mπ/a)2+(nπ/b)2)t.

The general solution to the heat equation with Dirichlet boundary conditions is
an arbitrary superposition of these product solutions,

u(x, y, t) =
∞∑

m,n=1

bmn sin(mπx/a) sin(nπy/b)e−c2((mπ/a)2+(nπ/b)2)t. (5.11)

To find the constants bmn appearing in (5.11), we need to apply the initial
condition u(x, y, 0) = h(x, y). The result is

h(x, y) =
∞∑

m,n=1

bmn sin(mπx/a) sin(nπy/b), (5.12)
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expressing the fact that the bmn’s are the coefficients of what is called the double
Fourier series of h. As in the case of ordinary Fourier sine series, the bmn’s can
be determined by an explicit formula. To determine it, we multiply both sides
of (5.12) by (2/a) sin(pπx/a), where p is a positive integer, and integrate with
respect to x to obtain

2
a

∫ a

0

h(x, y) sin(pπx/a)dx

=
∞∑

m,n=1

bmn

[
2
a

∫ a

0

sin(pπx/a) sin(mπx/a)dx

]
sin(nπy/b).

The expression within brackets is one if p = m and otherwise zero, so

2
a

∫ a

0

h(x, y) sin(pπx/a)dx =
∞∑

n=1

bpn sin(nπy/b).

Next we multiply by (2/b) sin(qπy/b), where q is a positive integer, and integrate
with respect to y to obtain

2
a

2
b

∫ a

0

∫ b

0

h(x, y) sin(pπx/a) sin(qπy/b)dxdy

=
∞∑

n=1

bpn

[
2
b

∫ b

0

sin(nπy/b) sin(qπy/b)dy

]
.

The expression within brackets is one if q = n and otherwise zero, so we finally
obtain

bpq =
2
a

2
b

∫ a

0

∫ b

0

h(x, y) sin(pπx/a) sin(qπy/b)dxdy. (5.13)

Suppose, for example, that c = 1, a = b = π and

h(x, y) = sinx sin y + 3 sin 2x sin y + 7 sin 3x sin 2y.

In this case, we do not need to carry out the integration indicated in (5.13)
because comparison with (5.12) shows that

b11 = 1, b21 = 3, b32 = 7,

and all the other bmn’s must be zero. Thus the solution to the initial value
problem in this case is

u(x, y, t) = sinx sin ye−2t + 3 sin 2x sin ye−5t + 7 sin 3x sin 2ye−13t.

Here is another example. Suppose that a = b = π and

h(x, y) = p(x)q(y),
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where

p(x) =

{
x, for 0 ≤ x ≤ π/2,

π − x, for π/2 ≤ x ≤ π,
q(y) =

{
y, for 0 ≤ y ≤ π/2,

π − y, for π/2 ≤ y ≤ π.

In this case,

bmn =
(

2
π

)2 ∫ π

0

[∫ π

0

p(x)q(y) sinmxdx

]
sinnydy

=
(

2
π

)2 [∫ π

0

p(x) sinmxdx

] [∫ π

0

q(y) sinnydy

]

=
(

2
π

)2
[∫ π/2

0

x sinmxdx +
∫ π

π/2

(π − x) sinmxdx

]
[∫ π/2

0

y sinnydy +
∫ π

π/2

(π − y) sinnydy

]
.

The integration can be carried out just like we did in Section 3.3 to yield

bmn =
(

2
π

)2 [
2

m2
sin(mπ/2)

] [
2
n2

sin(nπ/2)
]

=
16
π2

[
1

m2

1
n2

sin(mπ/2) sin(nπ/2)
]

.

Thus in this case, we see that

h(x, y) =
16
π2

∞∑
m,n=1

[
1

m2

1
n2

sin(mπ/2) sin(nπ/2)
]

sinmx sinmy,

and hence

u(x, y, t) =
16
π2

∞∑
m,n=1

[
1

m2

1
n2

sin(mπ/2) sin(nπ/2)
]

sinmx sinmye−(m2+n2)t.

Exercises:

5.3.1. Solve the following initial value problem for the heat equation in a square
region: Find u(x, y, t), where 0 ≤ x ≤ π, 0 ≤ y ≤ π and t ≥ 0, such that

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0,

u(x, y, 0) = 2 sinx sin y + 5 sin 2x sin y.
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You may assume that the nontrivial solutions to the eigenvalue problem

∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) = λf(x, y), f(x, 0) = f(x, π) = f(0, y) = f(π, y) = 0,

are of the form

λ = −m2 − n2, f(x, y) = bmn sinmx sinny,

for m = 1, 2, 3, . . . and n = 1, 2, 3, . . . , where bmn is a constant.

5.3.2. Solve the following initial value problem for the heat equation in a square
region: Find u(x, y, t), where 0 ≤ x ≤ π, 0 ≤ y ≤ π and t ≥ 0, such that

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0,

u(x, y, 0) = 2(sinx)y(π − y).

5.3.3. Solve the following initial value problem in a square region: Find u(x, y, t),
where 0 ≤ x ≤ π, 0 ≤ y ≤ π and t ≥ 0, such that

1
2t + 1

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0,

u(x, y, 0) = 2 sinx sin y + 3 sin 2x sin y.

5.3.4. Find the general solution to the heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2

subject to the boundary conditions

u(x, 0, t) = u(0, y, t) = u(π, y, t) = 0,

u(x, π, t) = sinx − 2 sin 2x + 3 sin 3x.

5.4 Two derivations of the wave equation

We have already seen how the one-dimensional wave equation describes the
motion of a vibrating string. In this section we will show that the motion of a
vibrating membrane is described by the two-dimensional wave equation, while
sound waves are described by a three-dimensional wave equation. In fact, we
will see that sound waves arise from “linearization” of the nonlinear equations
of fluid mechanics.
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The vibrating membrane. Suppose that a homogeneous membrane is fas-
tened down along the boundary of a region D in the (x, y)-plane. Suppose,
moreover, that a point on the membrane can move only in the vertical direc-
tion, and let u(x, y, t) denote the height of the point with coordinates (x, y) at
time t.

If ρ denotes the density of the membrane (assumed to be constant), then
by Newton’s second law, the force F acting on a small rectangular piece of
the membrane located at (x, y) with sides of length dx and dy is given by the
expression

F = ρ
∂2u

∂t2
(x, y)dxdyk.

Suppose the force displaces the membrane from a given position u(x, y) to a
new position

u(x, y) + η(x, y),

where η(x, y) and its derivatives are very small. Then the total work performed
by the force F will be

F · η(x, y)k = η(x, y)ρ
∂2u

∂t2
(x, y)dxdy.

Integrating over the membrane yields an expression for the total work performed
when the membrane moves through the displacement η:

Work =
∫ ∫

D

η(x, y)ρ
∂2u

∂t2
(x, y)dxdy. (5.14)

On the other hand, the potential energy stored in the membrane is propor-
tional to the extent to which the membrane is stretched. Just as in the case of
the vibrating string, this stretching is approximated by the integral

Potential energy =
T

2

∫ ∫
D

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
]

dxdy,

where T is a constant, called the tension in the membrane. Replacing u by u+η
in this integral yields

New potential energy =
T

2

∫ ∫
D

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
]

dxdy

+T

∫ ∫
D

[(
∂u

∂x

) (
∂η

∂x

)
+

(
∂u

∂y

) (
∂η

∂y

)]
dxdy

+
T

2

∫ ∫
D

[(
∂η

∂x

)2

+
(

∂η

∂y

)2
]

dxdy.
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If we neglect the last term in this expression (which is justified if η and its
derivatives are assumed to be small), we find that

New potential energy − Old potential energy =
∫ ∫

D

T∇u · ∇ηdxdy.

It follows from the divergence theorem in the plane and the fact that η vanishes
on the boundary ∂D that∫ ∫

D

T∇u · ∇ηdxdy +
∫ ∫

D

Tη∇ · ∇udxdy =
∫

∂D

Tη∇u · Nds = 0,

and hence

Change in potential = −
∫ ∫

D

η(x, y)T (∇ · ∇u)(x, y)dxdy. (5.15)

The work performed must be minus the change in potential energy, so it
follows from (5.14) and (5.15) that∫ ∫

D

η(x, y)ρ
∂2u

∂t2
(x, y)dxdy =

∫ ∫
D

η(x, y)T (∇ · ∇u)(x, y)dxdy.

Since this equation holds for all choices of η, it follows that

ρ
∂2u

∂t2
= T∇ · ∇u,

which simplifies to

∂2u

∂t2
= c2∇ · ∇u, where c2 =

T

ρ
,

or equivalently
∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
.

This is just the wave equation.

The equations of a perfect gas and sound waves. Next, we will describe
Euler’s equations for a perfect gas in (x, y, z)-space.1 Euler’s equations are
expressed in terms of the quantities,

v(x, y, z, t) = (velocity of the gas at (x, y, z) at time t),

ρ(x, y, z, t) = (density at (x, y, z) at time t),

p(x, y, z, t) = (pressure at (x, y, z) at time t).

1For a complete derivation of these equations, see Chapter 9 of Alexander L. Fetter and
John D. Walecka, Theoretical mechanics of particles and continua, McGraw-Hill, New York,
1980.
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The first of the Euler equations is the equation of continuity,

∂ρ

∂t
+ ∇ · (ρv) = 0. (5.16)

To derive this equation, we represent the fluid flow by the vector field

F = ρv,

so that the surface integral ∫ ∫
S

F · NdA

represents the rate at which the fluid is flowing across S in the direction of N.
We assume that no fluid is being created or destroyed. Then the rate of change
of the mass of fluid within D is given by two expressions,∫ ∫ ∫

D

∂ρ

∂t
(x, y, z, t)dxdydz and −

∫ ∫
S

F · NdA,

which must be equal. It follows from the divergence theorem that the second of
these expressions is

−
∫ ∫ ∫

D

∇ · F(x, y, z, t)dxdydz,

and hence ∫ ∫ ∫
D

∂ρ

∂t
dxdydz = −

∫ ∫ ∫
D

∇ · Fdxdydz.

Since this equation must hold for every region D in (x, y, z)-space, we conclude
that the integrands must be equal,

∂ρ

∂t
= −∇ · F = −∇ · (ρv),

which is just the equation of continuity.
The second of the Euler equations is simply Newton’s second law of motion,

(mass density)(acceleration) = (force density).

We make an assumption that the only force acting on a fluid element is due to
the pressure, an assumption which is not unreasonable in the case of a perfect
gas. In this case, it turns out that the pressure is defined in such a way that
the force acting on a fluid element is minus the gradient of pressure:

Force = −∇p(x(t), y(t), z(t), t). (5.17)

The familiar formula Force = Mass × Acceleration then yields

ρ
d

dt
(v(x(t), y(t), z(t), t)) = −∇p(x(t), y(t), z(t), t).
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Using the chain rule,

dv
dt

=
∂v
∂x

dx

dt
+

∂v
∂y

dy

dt
+

∂v
∂z

dz

dt
+

∂v
∂t

dt

dt
,

we can rewrite this equation as

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p. (5.18)

Note that this equation is nonlinear because of the term (v · ∇)v.
To finish the Euler equations, we need an equation of state, which relates

pressure and density. The equation of state could be determined by experiment,
the simplest equation of state being

p = a2ργ , (5.19)

where a2 and γ are constants. (An ideal monatomic gas has this equation of
state with γ = 5/3.)

The Euler equations (5.16), (5.18), and (5.19) are nonlinear, and hence quite
difficult to solve. However, one explicit solution is the case where the fluid is
motionless,

ρ = ρ0, p = p0, v = 0,

where ρ0 and p0 satisfy
p0 = a2ργ

0 .

Linearizing Euler’s equations near this explicit solution gives rise to the linear
differential equation which governs propagation of sound waves.

Let us write
ρ = ρ0 + ρ′, p = p0 + p′,v = v′,

where ρ′, p′ and v′ are so small that their squares can be ignored.
Substitution into Euler’s equations yields

∂ρ′

∂t
+ ρ0∇ · (v′) = 0,

∂v′

∂t
= − 1

ρ0
∇p′,

and
p′ = [a2γ(ρ0)(γ−1)]ρ′ = c2ρ′,

where c2 is a new constant. It follows from these three equations that

∂2ρ′

∂t2
= −ρ0

(
∇ · ∂v′

∂t

)
= ∇ · ∇p′ = c2∇ · ∇ρ′.

Thus ρ′ must satisfy the three-dimensional wave equation

∂2ρ′

∂t2
= c2∇ · ∇ρ′ = c2

(
∂2ρ′

∂x2
+

∂2ρ′

∂y2
+

∂2ρ′

∂z2

)
. (5.20)
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If the sound wave ρ′ is independent of z, (5.20) reduces to

∂2ρ′

∂t2
= c2

(
∂2ρ′

∂x2
+

∂2ρ′

∂y2

)
,

exactly the same equation that we obtained for the vibrating membrane.

Remark: The notion of linearization is extremely powerful because it enables
us to derive information on the behavior of solutions to the nonlinear Euler
equations, which are extremely difficult to solve except for under very special
circumstances.

The Euler equations for a perfect gas and the closely related Navier-Stokes
equations for an incompressible fluid such as water form basic models for fluid
mechanics. In the case of incompressible fluids, the density is constant, so no
equation of state is assumed. To allow for viscosity, one adds an additional term
to the expression (5.17) for the force acting on a fluid element:

Force = ν(∆v)(x, y, z, t) −∇p(x(t), y(t), z(t), t).

Here the Laplace operator is applied componentwise and ν is a constant, called
the viscosity of the fluid. The equations used by Navier and Stokes to model an
incompressible viscous fluid are then

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂v
∂t

+ (v · ∇)v = ν∆v − 1
ρ
∇p.

It is remarkable that these equations, so easily expressed, are so difficult to
solve. Indeed, the Navier-Stokes equations form the basis for one of the seven
Millenium Prize Problems, singled out by the Clay Mathematics Institute as
central problems for mathematics at the turn of the century. If you can show
that under reasonable initial conditions, the Navier-Stokes equations possess a
unique well-behaved solution, you may be able to win one million dollars. To
find more details on the prize offered for a solution, you can consult the web
address: http://www.claymath.org/prizeproblems/index.htm

Exercise:

5.4.1. Show that if the tension and density of a membrane are given by vari-
able functions T (x, y) and ρ(x, y) respectively, then the motion of the string is
governed by the equation

∂2u

∂t2
=

1
ρ(x, y)

∇ · (T (x, y)∇u) .

5.5 Initial value problems for wave equations

The most natural initial value problem for the wave equation is the following:
Let D be a bounded region in the (x, y)-plane which is bounded by a piece-

wise smooth curve ∂D, and let h1, h2 : D → R be continuous functions. Find a
function u(x, y, t) such that
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1. u satisfies the wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
. (5.21)

2. u satisfies the “Dirichlet boundary condition” u(x, y, t) = 0, for (x, y) ∈
∂D.

3. u satisfies the initial condition

u(x, y, 0) = h1(x, y),
∂u

∂t
(x, y, 0) = h2(x, y).

Solution of this initial value problem via separation of variables is very similar
to the solution of the initial value problem for the heat equation which was
presented in Section 5.3.

As before, let us suppose that D = {(x, y) ∈ R
2 : 0 ≤ x ≤ a, 0 ≤ y ≤ b}, so

that the Dirichlet boundary condition becomes

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0.

We write
u(x, y, t) = f(x, y)g(t),

and substitute into (5.21) to obtain

f(x, y)g′′(t) = c2

(
∂2f

∂x2
+

∂2f

∂y2

)
g(t).

Then we divide by c2f(x, y)g(t),

1
c2g(t)

g′′(t) =
1

f(x, y)

(
∂2f

∂x2
+

∂2f

∂y2

)
.

Once again, we conclude that both sides must be constant. If we let λ denote
the constant, we obtain

1
c2g(t)

g′′(t) = λ =
1

f(x, y)

(
∂2f

∂x2
+

∂2f

∂y2

)
.

This separates into an ordinary differential equation

g′′(t) = c2λg(t), (5.22)

and the Helmholtz equation (
∂2f

∂x2
+

∂2f

∂y2

)
= λf. (5.23)
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The Dirichlet boundary condition becomes

f(0, y) = f(a, y) = f(x, 0) = f(x, b) = 0.

The Helmholtz equation is solved in exactly the same way as before, the
only nontrivial solutions being

fmn(x, y) = sin(mπx/a) sin(nπy/b), with λmn = −(mπ/a)2 − (nπ/b)2.

The corresponding solution to (5.22) is

g(t) = A cos(ωmnt) + B sin(ωmnt), where ωmn = c
√
−λmn.

Thus we obtain a product solution to the wave equation with Dirichlet boundary
conditions:

u(x, y, t) = sin(mπx/a) sin(nπy/b)[A cos(ωmnt) + B sin(ωmnt)].

The general solution to to the wave equation with Dirichlet boundary conditions
is a superposition of these product solutions,

u(x, y, t) =
∞∑

m,n=1

sin(mπx/a) sin(nπy/b)[Amn cos(ωmnt) + Bmn sin(ωmnt)].

The constants Amn and Bmn are determined from the initial conditions.
The initial value problem considered in this section could represent the mo-

tion of a vibrating membrane. Just like in the case of the vibrating string, the
motion of the membrane is a superposition of infinitely many modes, the mode
corresponding to the pair (m, n) oscillating with frequency ωmn/2π. The lowest
frequency of vibration or fundamental frequency is

ω11

2π
=

c

2π

√(π

a

)2

+
(π

b

)2

=
1
2

√√√√T

ρ

[(
1
a

)2

+
(

1
b

)2
]
.

Exercises:

5.5.1. Solve the following initial value problem for a vibrating square membrane:
Find u(x, y, t), 0 ≤ x ≤ π, 0 ≤ y ≤ π, such that

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0,

u(x, y, 0) = 3 sinx sin y + 7 sin 2x sin y,
∂u

∂t
(x, y, 0) = 0.
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5.5.2. Solve the following initial value problem for a vibrating square membrane:
Find u(x, y, t), 0 ≤ x ≤ π, 0 ≤ y ≤ π, such that

∂2u

∂t2
= 4

(
∂2u

∂x2
+

∂2u

∂y2

)
,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0,

u(x, y, 0) = 0,
∂u

∂t
(x, y, 0) = 2 sinx sin y + 13 sin 2x sin y.

5.5.3. Solve the following initial value problem for a vibrating square membrane:
Find u(x, y, t), 0 ≤ x ≤ π, 0 ≤ y ≤ π, such that

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0,

u(x, y, 0) = p(x)q(y),
∂u

∂t
(x, y, 0) = 0,

where

p(x) =

{
x, for 0 ≤ x ≤ π/2,
π − x, for π/2 ≤ x ≤ π,

q(y) =

{
y, for 0 ≤ y ≤ π/2,
π − y, for π/2 ≤ y ≤ π.

5.6 The Laplace operator in polar coordinates

In order to solve the heat equation over a circular plate, or to solve the wave
equation for a vibrating circular drum, we need to express the Laplace opera-
tor in polar coordinates (r, θ). These coordinates are related to the standard
Euclidean coordinates by the formulae

x = r cos θ, y = r sin θ.

The tool we need to express the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2

in terms of polar coordinates is just the chain rule, which we studied earlier in
the course. Although straigtforward, the calculation is somewhat lengthy. Since

∂x

∂r
=

∂

∂r
(r cos θ) = cos θ,

∂y

∂r
=

∂

∂r
(r sin θ) = sin θ,

it follows immediately from the chain rule that

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
= (cos θ)

∂u

∂x
+ (sin θ)

∂u

∂y
.
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Similarly, since

∂x

∂θ
=

∂

∂θ
(r cos θ) = −r sin θ,

∂y

∂θ
=

∂

∂θ
(r sin θ) = r cos θ,

it follows that
∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ
= (−r sin θ)

∂u

∂x
+ (r cos θ)

∂u

∂y
.

We can write the results as operator equations,

∂

∂r
= (cos θ)

∂

∂x
+ (sin θ)

∂

∂y
,

∂

∂θ
= (−r sin θ)

∂

∂x
+ (r cos θ)

∂

∂y
.

For the second derivatives, we find that

∂2u

∂r2
=

∂

∂r
(
∂u

∂r
) =

∂

∂r

[
cos θ

∂u

∂x
+ sin θ

∂u

∂y

]
= cos θ

∂

∂r

(
∂u

∂x

)
+ sin θ

∂

∂r

(
∂u

∂y

)

= cos2 θ
∂2u

∂x2
+ 2 cos θ sin θ

∂2u

∂x∂y
+ sin2 θ

∂2u

∂y2
.

Similarly,

∂2u

∂θ2
=

∂

∂θ
(
∂u

∂θ
) =

∂

∂θ

[
−r sin θ

∂u

∂x
+ r cos θ

∂u

∂y

]

= −r sin θ
∂

∂θ

(
∂u

∂x

)
+ r cos θ

∂

∂θ

(
∂u

∂y

)
− r cos θ

∂u

∂x
− r sin θ

∂u

∂y

= r2 sin2 θ
∂2u

∂x2
− 2r2 cos θ sin θ

∂2u

∂x∂y
+ r2 cos2 θ

∂2u

∂y2
− r

∂u

∂r
,

which yields

1
r2

∂2u

∂θ2
= sin2 θ

∂2u

∂x2
− 2 cos θ sin θ

∂2u

∂x∂y
+ cos2 θ

∂2u

∂y2
− 1

r

∂u

∂r
.

Adding these results together, we obtain

∂2u

∂r2
+

1
r2

∂2u

∂θ2
=

∂2u

∂x2
+

∂2u

∂y2
− 1

r

∂u

∂r
,

or equivalently,

∆u =
∂2u

∂r2
+

1
r2

∂2u

∂θ2
+

1
r

∂u

∂r
.

Finally, we can write this result in the form

∆u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
. (5.24)

This formula for the Laplace operator, together with the theory of Fourier
series, allows us to solve the Dirichlet problem for Laplace’s equation in a disk.
Indeed, we can now formulate the Dirichlet problem as follows: Find u(r, θ), for
0 < r ≤ 1 such that
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1. u satisfies Laplace’s equation,

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0. (5.25)

2. u satisfies the periodicity condition u(r, θ + 2π) = u(r, θ),

3. u is well-behaved near r = 0,

4. u satisfies the boundary condition u(1, θ) = h(θ), where h(θ) is a given
well-behaved function satisfying the periodicity condition h(θ+2π) = h(θ).

The first three of these conditions are homogeneous linear. To treat these
conditions via the method of separation of variables, we set

u(r, θ) = R(r)Θ(θ), where Θ(θ + 2π) = Θ(θ).

Substitution into (5.25) yields

1
r

∂

∂r

(
r
∂R

∂r

)
Θ +

R

r2

∂2Θ
∂θ2

= 0.

We multiply through by r2,

r
∂

∂r

(
r
∂R

∂r

)
Θ + R

∂2Θ
∂θ2

= 0,

and divide by −RΘ to obtain

− r

R

∂

∂r

(
r
∂R

∂r

)
=

1
Θ

∂2Θ
∂θ2

.

The left-hand side of this equation does not depend on θ while the right-hand
side does not depend on r. Thus neither side can depend on either θ or r, and
hence both sides must be constant:

− r

R

∂

∂r

(
r
∂R

∂r

)
=

1
Θ

∂2Θ
∂θ2

= λ.

Thus the partial differential equation divides into two ordinary differential
equations

d2Θ
dθ2

= λΘ, Θ(θ + 2π) = Θ(θ),

r
d

dr

(
r
dR

dr

)
= −λR.

We have seen the first of these equations before when we studied heat flow in a
circular wire, and we recognize that with the periodic boundary conditions, the
only nontrivial solutions are

λ = 0, Θ =
a0

2
,

140



where a0 is a constant, and

λ = −n2, Θ = an cos nθ + bn sinnθ,

where an and bn are constants, for n a positive integer. Substitution into the
second equation yields

r
d

dr

(
r
dR

dr

)
− n2R = 0.

If n = 0, the equation for R becomes

d

dr

(
r
dR

dr

)
= 0,

which is easily solved to yield

R(r) = A + B log r,

where A and B are constants of integration. In order for this equation to be well-
behaved as r → 0 we must have B = 0, and the solution u0(r, θ) to Laplace’s
equation in this case is constant.

When n 
= 0, the equation for R is a Cauchy-Euler equidimensional equation
and we can find a nontrivial solution by setting

R(r) = rm.

Since

r
d

dr

(
r

d

dr
(rm)

)
= m2rm,

we find that the characteristic equation is

m2 − n2 = 0,

which has the solutions m = ±n. In this case the solution is

R(r) = Arn + Br−n.

Once again, in order for this equation to be well-behaved as r → 0 we must
have B = 0, so R(r) is a constant multiple of rn, and

un(r, θ) = anrn cos nθ + bnrn sinnθ.

The general solution to (5.25) which is well-behaved at r = 0 and satisfies
the periodicity condition u(r, θ + 2π) = u(r, θ) is therefore

u(r, θ) =
a0

2
+

∞∑
n=1

(anrn cos nθ + bnrn sinnθ),
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where a0, a1, . . . , b1, . . . are constants. To determine these constants we must
apply the boundary condition:

h(θ) = u(1, θ) =
a0

2
+

∞∑
n=1

(an cos nθ + bn sinnθ).

We conclude that the constants a0, a1, . . . , b1, . . . are simply the Fourier coeffi-
cients of h.

Exercises:

5.6.1. Solve the following boundary value problem for Laplace’s equation in a
disk: Find u(r, θ), 0 < r ≤ 1, such that

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

u(r, θ + 2π) = u(r, θ), u well-behaved near r = 0

and
u(1, θ) = h(θ), where h(θ) = 1 + cos θ − 2 sin θ + 4 cos 2θ.

5.6.2. Solve the following boundary value problem for Laplace’s equation in a
disk: Find u(r, θ), 0 < r ≤ 1, such that

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

u(r, θ + 2π) = u(r, θ), u well-behaved near r = 0

and
u(1, θ) = h(θ),

where h(θ) is the periodic function such that

h(θ) = |θ|, for −π ≤ θ ≤ π.

5.6.3. Solve the following boundary value problem for Laplace’s equation in an
annular region: Find u(r, θ), 1 ≤ r ≤ 2, such that

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

u(r, θ + 2π) = u(r, θ), u(1, θ) = 1 + 3 cos θ − sin θ + cos 2θ

and
u(2, θ) = 2 cos θ + 4 cos 2θ.
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5.7 Eigenvalues of the Laplace operator

We would now like to consider the heat equation for a room whose shape is given
by a well-behaved but otherwise arbitrary bounded region D in the (x, y)-plane,
the boundary ∂D being a well-behaved curve. We would also like to consider
the wave equation for a vibrating drum in the shape of such a region D. Both
cases quickly lead to the eigenvalue problem for the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
.

Let’s start with the heat equation

∂u

∂t
= c2∆u, (5.26)

with the Dirichlet boundary condition,

u(x, y, t) = 0 for (x, y) ∈ ∂D.

To solve this equation, we apply separation of variables as before, setting

u(x, y, t) = f(x, y)g(t),

and substitute into (5.26) to obtain

f(x, y)g′(t) = c2(∆f)(x, y)g(t).

Then we divide by c2f(x, y)g(t),

1
c2g(t)

g′(t) =
1

f(x, y)
(∆f)(x, y).

The left-hand side of this equation does not depend on x or y while the right-
hand side does not depend on t. Hence both sides equal a constant λ, and we
obtain

1
c2g(t)

g′(t) = λ =
1

f(x, y)
(∆f)(x, y).

This separates into

g′(t) = c2λg(t) and (∆f)(x, y) = λf(x, y)

in which f is subject to the boundary condition,

f(x, y) = 0 for (x, y) ∈ ∂D.

The same method can be used to treat the wave equation

∂2u

∂t2
= c2∆u, (5.27)
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with the Dirichlet boundary condition,

u(x, y, t) = 0 for (x, y) ∈ ∂D.

This time, substitution of u(x, y, t) = f(x, y)g(t) into (5.27) yields

f(x, y)g′′(t) = c2(∆f)(x, y)g(t), or
1

c2g(t)
g′′(t) =

1
f(x, y)

(∆f)(x, y).

Once again, both sides must equal a constant λ, and we obtain

1
c2g(t)

g′′(t) = λ =
1

f(x, y)
(∆f)(x, y).

This separates into

g′′(t) = λg(t) and (∆f)(x, y) = λf(x, y),

in which f is once again subject to the boundary condition,

f(x, y) = 0 for (x, y) ∈ ∂D.

In both cases, we must solve the “eigenvalue problem” for the Laplace op-
erator with Dirichlet boundary conditions. If λ is a real number, let

Wλ = {smooth functions f(x, y) : ∆f = λf, f |∂D = 0}.

We say that λ is an eigenvalue of the Laplace operator ∆ on D if Wλ 
= 0.
Nonzero elements of Wλ are called eigenfunctions and Wλ itself is called the
eigenspace for eigenvalue λ. The dimension of Wλ is called the multiplicity of
the eigenvalue λ. The eigenvalue problem consist of finding the eigenvalues λ,
and a basis for each nonzero eigenspace.

Once we have solved the eigenvalue problem for a given region D in the
(x, y)-plane, it is easy to solve the initial value problem for the heat equation
or the wave equation on this region. To do so requires only that we substitute
the values of λ into the equations for g. In the case of the heat equation,

g′(t) = c2λg(t) ⇒ g(t) = (constant)ec2λt,

while in the case of the wave equation,

g′′(t) = c2λg(t) ⇒ g(t) = (constant) sin(c
√
−λ(t − t0)).

In the second case, the eigenvalues determine the frequencies of a vibrating
drum which has the shape of D.

Theorem. All of the eigenvalues of ∆ are negative, and each eigenvalue has
finite multiplicity. The eigenvalues can be arranged in a sequence

0 > λ1 > λ2 > · · · > λn > · · · ,
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with λn → −∞. Every well-behaved function can be represented as a convergent
sum of eigenfunctions.2

Although the theorem is reassuring, it is usually quite difficult to determine the
eigenvalues λ1, λ2, · · · , λn, · · · explicitly for a given region in the plane.

There are two important cases in which the eigenvalues can be explicitly
determined. The first is the case where D is the rectangle,

D = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}.

We saw how to solve the eigenvalue problem

∂2f

∂x2
+

∂2f

∂y2
= λf, f(x, y) = 0 for (x, y) ∈ ∂D,

when we discussed the heat and wave equations for a rectangular region. The
nontrivial solutions are

λmn = −
(πm

a

)2

−
(πn

b

)2

, fmn(x, y) = sin
(πmx

a

)
sin

(πny

b

)
,

where m and n are positive integers.
A second case in which the eigenvalue problem can be solved explicitly is

that of the disk,
D = {(x, y) : x2 + y2 ≤ a2},

where a is a positive number, as we will see in the next section.3

Exercises:

5.7.1. Show that among all rectangular vibrating membranes of area one, the
square has the lowest fundamental frequency of vibration by minimizing the
function

f(a, b) =
(π

a

)2

+
(π

b

)2

subject to the constraints ab = 1, a, b > 0. Hint: One can eliminate b by setting
a = 1/b and then find the minimum of the function

g(a) =
(π

a

)2

+ (πa)2 ,

when a > 0.

5.7.2. Let D be a finite region in the (x, y)-plane bounded by a smooth curve
∂D. Suppose that the eigenvalues for the Laplace operator ∆ with Dirichlet
boundary conditions on D are λ1, λ2, . . . , where

0 > λ1 > λ2 > · · · ,

2Note the similarity between the statement of this theorem and the statement of the
theorem presented in Section 4.7. In fact, the techniques used to prove the two theorems are
also quite similar.

3A few more cases are presented in advanced texts, such as Courant and Hilbert, Methods
of mathematical physics I , New York, Interscience, 1953. See Chapter V, §16.3.
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each eigenvalue having multiplicity one. Suppose that φn(x, y) is a nonzero
eigenfunction for eigenvalue λn. Show that the general solution to the heat
equation

∂u

∂t
= ∆u

with Dirichlet boundary conditions (u vanishes on ∂D) is

u(x, t) =
∞∑

n=1

bnφn(x, y)eλnt,

where the bn’s are arbitrary constants.

5.7.3. Let D be a finite region in the (x, y)-plane as in the preceding problem.
Suppose that the eigenvalues for the Laplace operator ∆ on D are λ1, λ2, . . . ,
once again. Show that the general solution to the wave equation

∂2u

∂t2
= ∆u,

together with Dirichlet boundary conditions (u vanishes on ∂D) and the initial
condition

∂u

∂t
(x, y, 0) = 0,

is

u(x, t) =
∞∑

n=1

bnφn(x, y) cos(
√
−λnt),

where the bn’s are arbitrary constants.

5.8 Eigenvalues of the disk

To calculate the eigenvalues of the disk, it is convenient to utilize polar coordi-
nates r, θ in terms of which the Laplace operator is

1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2

∂2f

∂θ2
= λf, f |∂D = 0. (5.28)

Once again, we use separation of variables and look for product solutions of the
form

f(r, θ) = R(r)Θ(θ), where R(a) = 0, Θ(θ + 2π) = Θ(θ).

Substitution into (5.28) yields

1
r

d

dr

(
r
dR

dr

)
Θ +

R

r2

d2Θ
dθ2

= λRΘ.
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We multiply through by r2,

r
d

dr

(
r
dR

dr

)
Θ + R

d2Θ
dθ2

= λr2RΘ,

and divide by RΘ to obtain

r

R

d

dr

(
r
dR

dr

)
− λr2 = − 1

Θ
d2Θ
dθ2

.

Note that in this last equation, the left-hand side does not depend on θ while
the right-hand side does not depend on r. Thus neither side can depend on
either θ or r, and hence both sides must be constant:

− r

R

d

dr

(
r
dR

dr

)
+ λr2 =

1
Θ

d2Θ
dθ2

= µ.

Thus in the manner now familiar, the partial differential equation divides
into two ordinary differential equations

d2Θ
dθ2

= µΘ, Θ(θ + 2π) = Θ(θ),

r
d

dr

(
r
dR

dr

)
− λr2R = −µR, R(a) = 0.

Once again, the only nontrivial solutions are

µ = 0, Θ =
a0

2

and
µ = −n2, Θ = an cos nθ + bn sinnθ,

for n a positive integer. Substitution into the second equation yields

r
d

dr

(
r
dR

dr

)
+ (−λr2 − n2)R = 0.

Let x =
√
−λr so that x2 = −λr2. Then since

r
d

dr
= x

d

dx
,

our differential equation becomes

x
d

dx

(
x

dR

dx

)
+ (x2 − n2)R = 0, (5.29)

where R vanishes when x =
√
−λa. If we replace R by y, this becomes

x
d

dx

(
x

dy

dx

)
+ (x2 − n2)y = 0, y(

√
−λa) = 0. (5.30)
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The differential equation appearing in (5.30) is Bessel’s equation, which we
studied in Section 1.4.

Recall that in Section 1.4, we found that for each choice of n, Bessel’s equa-
tion has a one-dimensional space of well-behaved solutions, which are constant
multiples of the Bessel function of the first kind Jn(x). Here is an important
fact regarding these Bessel functions:

Theorem. For each nonnegative integer n, Jn(x) has infinitely many positive
zeros.

Graphs of the functions J0(x) and J1(x) suggest that this theorem might well be
true, but it takes some effort to prove rigorously. For completeness, we sketch
the proof for the case of J0(x) at the end of the section.

The zeros of the Bessel functions are used to determine the eigenvalues of
the Laplace operator on the disk. To see how, note first that the boundary
condition,

y(
√
−λa) = 0,

requires that
√
−λa be one of the zeros of Jn(x). Let αn,k denote the k-th

positive root of the equation Jn(x) = 0. Then

√
−λa = αn,k ⇒ λ = −

α2
n,k

a2
,

and
R(r) = Jn(αn,kr/a)

will be a solution to (5.29) vanishing at r = a. Hence, in the case where n = 0,

λ0,k = −
α2

0,k

a2
,

and
f0,k(r, θ) = J0(α0,kr/a)

will be a solution to the eigenvalue problem

1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2

∂2f

∂θ2
= λf, f |∂D = 0.

Similarly, in the case of general n,

λn,k = −
α2

n,k

a2
,

and

fn,k(r, θ) = Jn(αn,kr/a) cos(nθ) or gn,k = Jn(αn,kr/a) sin(nθ),

for n = 1, 2, . . . , will be solutions to this eigenvalue problem.
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Figure 5.2: Graph of the function f0,1(r, θ).

Each of these eigenfunctions corresponds to a mode of oscillation for the
circular vibrating membrane. Suppose, for example, that a = 1. Then

α0,1 = 2.40483 ⇒ λ0,1 = −5.7832,

α0,2 = 5.52008 ⇒ λ0,2 = −30.471,

α0,3 = 8.65373 ⇒ λ0,3 = −74.887,

α0,4 = 11.7195 ⇒ λ0,3 = −139.039,

and so forth. The mode of oscillation corresponding to the function f0,1 will
vibrate with frequency √

−λ0,1

2π
=

α0,1

2π
= .38274,

while the mode of oscillation corresponding to the function f0,2 will vibrate with
frequency √

−λ0,2

2π
=

α0,2

2π
= .87855.

Similarly,
α1,1 = 3.83171 ⇒ λ1,1 = −14.682,

α2,1 = 5.13562 ⇒ λ2,1 = −26.3746,

and hence the mode of oscillation corresponding to the functions f1,1 and g1,1

will vibrate with frequency√
−λ1,1

2π
=

α1,1

2π
= .60984,
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Figure 5.3: Graph of the function f0,2(r, θ).

while the mode of oscillation corresponding to the functions f2,1 and g2,1 will
vibrate with frequency √

−λ2,1

2π
=

α2,1

2π
= .81736.

A general vibration of the vibrating membrane will be a superposition of
these modes of oscillation. The fact that the frequencies of oscillation of a
circular drum are not integral multiples of a single fundamental frequency (as
in the case of the violin string) limits the extent to which a circular drum can
be tuned to a specific tone.

Proof that J0(x) has infinitely many positive zeros: First, we make a change
of variables x = ez and note that as z ranges over the real numbers, the corre-
sponding variable x ranges over all the positive real numbers. Since

dx = ezdz,
d

dx
=

1
ez

d

dz
and hence x

d

dx
= ez 1

ez

d

dz
=

d

dz
.

Thus Bessel’s equation (5.30) in the case where n = 0 becomes

d2y

dz2
+ e2zy = 0. (5.31)

Suppose that z0 > 1 and y(z) is a solution to (5.31) with y(z0) 
= 0. We
claim that y(z) must change sign at some point between z0 and z0 + π.
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Figure 5.4: Graph of the function f1,1(r, θ).

Assume first that y(z0) > 0. Let f(z) = sin(z − z0). Since f ′′(z) = −f(z)
and y(z) satisfies (5.31),

d

dz
[y(z)f ′(z) − y′(z)f(z)] = y(z)f ′′(z) − y′′(z)f(z)

= −y(z)f(z) + e2zy(z)f(z) = (e2z − 1)y(z)f(z).

Note that f(z) > 0 for z between z0 and z0 + π. If also y(z) > 0 for z between
z0 and z0 + π, then y(z)f(z) > 0 and

0 <

∫ z0+π

z0

(e2z − 1)y(z)f(z)dz = [y(z)f ′(z) − y′(z)f(z)]z0+π
z0

= y(z0 + π)f ′(z0 + π) − y(z0)f(z0) = −y(z0 + π) − y(z0) < 0,

a contradiction. Hence our assumption that y(z) be postive for z between z0

and z0 + π must be incorrect, y(z) must change sign at some z between z0 and
z0 + π, and hence y(z) must be zero at some point in this interval.

If y(z0) < 0, just apply the same argument to −y. In either case, we conclude
that y(z) must be zero at some point in any interval to the right of z = 1 of
length at least π. It follows that the solution to (5.31) must have infinitely many
zeros in the region z > 1, and J0(x) must have infinitely many positive zeros,
as claimed.

The fact that Jn(x) has infinitely many positive zeros could be proven in a
similar fashion.
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Exercises:

5.8.1. Solve the following initial value problem for the heat equation in a disk:
Find u(r, θ, t), 0 < r ≤ 1, such that

∂u

∂t
=

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
,

u(r, θ + 2π, t) = u(r, θ, t), u well-behaved near r = 0,

u(1, θ, t) = 0,
∂u

∂t
(r, θ, 0) = 0,

u(r, θ, 0) = J0(α0,1r) + 3J0(α0,2r) − 2J1(α1,1r) sin θ + 4J2(α2,1r) cos 2θ.

5.8.2. Solve the following initial value problem for the vibrating circular mem-
brane: Find u(r, θ, t), 0 < r ≤ 1, such that

∂2u

∂t2
=

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
,

u(r, θ + 2π, t) = u(r, θ, t), u well-behaved near r = 0,

u(1, θ, t) = 0,

u(r, θ, 0) = J0(α0,1r) + 3J0(α0,2r) − 2J1(α1,1r) sin θ + 4J2(α2,1r) cos 2θ.

5.8.3. (For students with access to Mathematica) a. Run the following Mathe-
matica program to sketch the Bessel function J0(x):

n=0; Plot[ BesselJ[n,x], {x,0,15}]

b. From the graph it is clear that the first root of the equation J0(x) = 0 is
near 2. Run the following Mathematica program to find the first root α0,1 of
the Bessel function J0(x):

n=0; FindRoot[ BesselJ[n,x] == 0 ,{x,2}]

Find the next two nonzero roots of the Bessel function J0(x).

c. Modify the programs to sketch the Bessel functions J1(x), . . . , J5(x), and
determine the first three nonzero roots of each of these Bessel functions.

5.8.4. Which has a lower fundamental frequency of vibration, a square drum or
a circular drum of the same area?

5.9 Fourier analysis for the circular vibrating
membrane*

To finish up the solution to the initial value problem for arbitrary initial displace-
ments of the vibrating membrane, we need to develop a theory of generalized
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Fourier series which gives a decomposition into eigenfunctions which solve the
eigenvalue problem.

Such a theory can be developed for an arbitrary bounded region D in the
(x, y)-plane bounded by a smooth closed curve ∂D. Let V denote the space of
smooth functions f : D → R whose restrictions to ∂D vanish. It is important
to observe that V is a “vector space”: the sum of two elements of V again lies
in V and the product of an element of V with a constant again lies in V .

We define an inner product 〈, 〉 on V by

〈f, g〉 =
∫ ∫

D

f(x, y)g(x, y)dxdy.

Lemma. With respect to this inner product, eigenfunctions corresponding to
distinct eigenvalues are perpendicular; if f and g are smooth functions vanishing
on ∂D such that

∆f = λf, ∆g = µg, (5.32)

then either λ = µ or 〈f, g〉 = 0.

The proof of this lemma is a nice application of Green’s theorem. Indeed, it
follows from Green’s theorem that∫

∂D

−f
∂g

∂y
dx + f

∂g

∂x
dy =

∫ ∫
D

(
∂

∂x
[f(∂g/∂x)] − ∂

∂y
[−f(∂g/∂y)]

)
dxdy

=
∫ ∫

D

[
∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y

]
dxdy +

∫ ∫
D

f

(
∂2g

∂x2
+

∂2g

∂y2

)
dxdy.

Hence if the restriction of f to ∂D vanishes,∫ ∫
D

f∆gdxdy = −
∫ ∫

D

∇f · ∇gdxdy.

Similarly, if the restriction of g to ∂D vanishes,∫ ∫
D

g∆fdxdy = −
∫ ∫

D

∇f · ∇gdxdy.

Thus if f and g lie in V ,

〈f,∆g〉 = −
∫ ∫

D

∇f · ∇gdxdy = 〈g,∆f〉.

In particular, if (5.32) holds, then

µ〈f, g〉 = 〈f,∆g〉 = 〈∆f, g〉 = λ〈f, g〉,

and hence
(λ − µ)〈f, g〉 = 0.
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It follows immediately that either λ − µ = 0 or 〈f, g〉 = 0, and the lemma is
proven.

Now let us focus on the special case in which D is a circular disk. Recall the
problem that we want to solve, in terms of polar coordinates: Find

u(r, θ, t), 0 < r ≤ 1,

so that
∂2u

∂t2
=

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
,

u(r, θ + 2π, t) = u(r, θ, t), u well-behaved near r = 0,

u(1, θ, t) = 0,

u(r, θ, 0) = h(r, θ),
∂u

∂t
(r, θ, 0) = 0.

It follows from the argument in the preceding section that the general solu-
tion to the homogeneous linear part of the problem can be expressed in terms
of the eigenfunctions

fn,k(r, θ) = Jn(αn,kr/a) cos(nθ), gn,k = Jn(αn,kr/a) sin(nθ).

Indeed, the general solution must be a superposition of the products of these
eigenfunctions with periodic functions of t of frequencies

√
−λn,k/2π. Thus this

general solution is of the form

u(r, θ, t) =
∞∑

k=1

a0,kg0,k(r, θ) cos(α0,kt)

+
∞∑

n=1

∞∑
k=1

[an,kfn,k(r, θ) + bn,kgn,k(r, θ)] cos(αn,kt). (5.33)

We need to determine the an,k’s and the bn,k’s so that the inhomogeneous initial
condition u(r, θ, 0) = h(r, θ) is also satisfied. If we set t = 0 in (5.33), this
condition becomes

∞∑
k=1

a0,kf0,k +
∞∑

n=1

∞∑
k=1

[an,kfn,k + bn,kgn,k] = h. (5.34)

Thus we need to express an arbitrary initial displacement h(r, θ) as a superpo-
sition of these eigenfunctions.

It is here that the inner product 〈, 〉 on V comes to the rescue. The lemma
implies that eigenfunctions corresponding to distinct eigenvalues are perpendic-
ular. This implies, for example, that

〈f0,j , f0,k〉 = 0, unless j = k.
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Similarly, for arbitrary n ≥ 1,

〈fn,j , fn,k〉 = 〈fn,j , gn,k〉 = 〈gn,j , gn,k〉 = 0, unless j = k.

The lemma does not immediately imply that

〈fn,j , gn,j〉 = 0.

To obtain this relation, recall that in terms of polar coordinates, the inner
product 〈, 〉 on V takes the form

〈f, g〉 =
∫ 1

0

[∫ 2π

0

f(r, θ)g(r, θ)rdθ

]
dr.

If we perform integration with respect to θ first, we can conclude from the
familiar integral formula ∫ 2π

0

sinnθ cos nθdθ = 0

that
〈fn,j , gn,j〉 = 0,

as desired.
Moreover, using the integral formulae

∫ 2π

0

cos nθ cos mθdθ =

{
π, for m = n,
0, for m 
= n,

∫ 2π

0

sinnθ sinmθdθ =

{
π, for m = n,
0, for m 
= n,∫ 2π

0

sinnθ cos mθdθ = 0,

we can check that

〈fn,j , fm,k〉 = 〈gn,j , gm,k〉 = 〈fn,j , gm,k〉 = 0,

unless m = n. It then follows from the lemma that

〈fn,j , fm,k〉 = 〈gn,j , gm,k〉 = 〈fn,j , gm,k〉 = 0,

unless j = k and m = n.
From these relations, it is not difficult to construct formulae for the coeffi-

cients of the generalized Fourier series of a given function h(r, θ). Indeed, if we
take the inner product of equation (5.34) with un,k, we obtain

an,k〈fn,k, fn,k〉 = 〈h, fn,k〉,
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or equivalently

an,k =
〈h, fn,k〉

〈fn,k, fn,k〉
. (5.35)

Similarly,

bn,k =
〈h, gn,k〉

〈gn,k, gn,k〉
. (5.36)

Thus we finally see that the solution to our initial value problem is

u(r, θ, t) =
∞∑

k=1

a0,kf0,k(r, θ) cos(α0,kt)

+
∞∑

n=1

∞∑
k=1

[an,kfn,k(r, θ) + bn,kgn,k(r, θ)] cos(αn,kt),

where the coefficients are determined by the integral formulae (5.35) and (5.36).

Exercises:

5.9.1. (For students with access to Mathematica) Suppose that a circular vi-
brating drum is given the initial displacement from equilibrium described by
the function

h(r, θ) = .1(1 − r),

for 0 ≤ r ≤ 1. In order to find the solution to the wave equation with this initial
condition, we need to expand h(r, θ) in terms of eigenfunctions of ∆. Because
of axial symmetry, we can write

h(r, θ) = a0,1J0(α0,1r) + a0,2J0(α0,2r) + . . . .

a. Use the following Mathematica program to determine the coefficient a0,1 in
this expansion:

d = NIntegrate[r (BesselJ[0,2.40483 r])∧2,{r,0,1}];
n = NIntegrate[r (BesselJ[0,2.40483 r]) .1 (1-r),{r,0,1}];
a01 = n/d

b. Use a modification of the program to determine the coefficients a0,2, a0,3,
and a0,4.

c. Determine the first four terms in the solution to the initial value problem:
Find

u(r, θ, t), 0 < r ≤ 1,

so that
∂2u

∂t2
=

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
,
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u(r, θ + 2π, t) = u(r, θ, t), u well-behaved near r = 0,

u(1, θ, t) = 0,

u(r, θ, 0) = .1(1 − r),
∂u

∂t
(r, θ, 0) = 0.

5.9.2. (For students with access to Mathematica) The following program will
sketch graphs of the successive positions of a membrane, vibrating with a su-
perposition of several of the lowest modes of vibration:

<< Graphics‘ParametricPlot3D‘
a01 = .2; a02 = .1; a03 = .2; a04 = .1; a11 = .3; b11 = .2;
vibmem = Table[

CylindricalPlot3D[
a01 BesselJ[0,2.4 r] Cos[2.4 t]
+ a02 BesselJ[0,5.52 r] Cos[5.52 t]
+ a03 BesselJ[0,8.65 r] Cos[8.65 t]
+ a04 BesselJ[0,11.8 r] Cos[11.8 t]
+ a11 BesselJ[1,3.83 r] Cos[u] Cos[3.83 t]
+ b11 BesselJ[1,3.83 r] Sin[u] Cos[3.83 t],
{r,0,1}, {u,0,2 Pi}, PlotRange -> {-.5,.5}

], {t,0,1.,.1}
]

a. Execute this program and then animate the sequence of graphics by running
“Animate selected graphics,” from the Graphics menu. (Warning! Generating
the sequence of graphics takes lots of memory. If you have insufficient memory
for the animation, try inserting PlotPoints -> 8 within the CylindricalPlot
statement.)

b. Replace the values of a01, . . . with the Fourier coefficients obtained in the
preceding problem, execute the resulting program to generate a sequence of
graphics, and animate the sequence as before.
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Appendix A

Using Mathematica to solve
differential equations

In solving differential equations, it is sometimes necessary to do calculations
which would be prohibitively difficult to do by hand. Fortunately, computers
can do the calculations for us, if they are equiped with suitable software, such
as Maple, Matlab, or Mathematica. This appendix is intended to give a brief
introduction to the use of Mathematica for doing such calculations.

Most computers which are set up to use Mathematica contain an on-line
tutorial, “Tour of Mathematica,” which can be used to give a brief hands-on
introduction to Mathematica. Using this tour, it may be possible for many
students to learn Mathematica without referring to lengthy technical manuals.
However, there is a standard reference on the use of Mathematica, which can
be used to answer questions if necessary. It is The Mathematica Book , by
Stephen Wolfram, Fourth edition, Wolfram Media and Cambridge University
Press, 1999.

We give here a very brief introduction to the use of Mathematica. After
launching Mathematica, you can use it as a “more powerful than usual graphing
calculator.” For example, if you type in

(11 - 5)/3

the computer will perform the subtraction and division, and respond with

Out[1] = 2

The notation for multiplication is ∗, so if you type in

2 * (7 + 4)

the computer will respond with

Out[2] = 22
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You can also use a space instead of ∗ to denote multiplication, so if you input

2 8

the computer will respond with

Out[3] = 16

The computer can do exact arithmetic with integers or rational numbers.
For example, since ∧ is the symbol used for raising to a power, if you type in

2∧150

the computer will calculate the 150th power of two and give the exact result:

Out[4] = 1427247692705959881058285969449495136382746624

On the other hand, the symbol N tells the computer to use an approximation
with a fixed number of digits of precision, so entering

N[2∧150]

will give an approximation to the exact answer, expressed in scientific notation:

Out[5] = 1.42725 1045

Real numbers which are not rational, such as π, have infinite decimal expan-
sions which cannot be stored within a computer. However, we can approximate
a real number by a finite decimal expansion with a given number of digits of pre-
cision. For example, since Mathematica uses the name E to denote the number
e, typing in

N[E]

will tell Mathematica to give a rational approximation to e to a standard number
of digits of precision:

Out[6] = 2.71828

In principle, the computer can calculate rational approximations to an arbitrary
number of digits of precision. Since the number π is represented by Mathematica
as Pi, typing in

N[Pi,40]

will tell Mathematica to give a rational approximation to π to 40 digits of
precision:

Out[7] = 3.1415926535897932384626433832795028841972

The computer can represent not only numbers but functions. Within Math-
ematica, built-in functions are described by names which begin with capital
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Figure A.1: Graph of the logarithm function.

letters. For example, Log denotes the natural base e logarithm function. Thus
entering

N[Log[2],40]

will give the logarithm of 2 with 40 digits of precision:

Out[8] = 0.693147180559945309417232121458176568076

One can also plot functions with Mathematica. For example, to plot the
logarithm function from the values 1 to 3, one simply inputs

Plot[Log[t],{t,1,3}]

and Mathematica will automatically produce the plot shown in Figure A.1.
We can also define functions ourselves, being careful not to capitalize them,

because capitals are reserved by Mathematica for built-in functions. Thus we
can define the function

y(t) = cekt

by typing

y[t ] := c * E∧(k * t);

Mathematica will remember the function we have defined until we quit Mathe-
matica. We must remember the exact syntax of this example (use of the under-
line character and the colon followed by the equal sign) when defining functions.
In this example c and k are parameters which can be defined later. Just as in
the case of functions, we must be careful to represent parameters by lower case
letters, so they will not be confused with built-in constants. Further entry of

c = 1; k = 1; N[y[1]]
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yields the response

Out[11] = 2.71828

while entering

Plot[y[t],{t,0,2}]

will give a plot of the function we have defined, for t in the interval [0, 2].
We can use Mathematica to solve matrix differential equations of the form

dx
dt

= Ax, (A.1)

where A is a square matrix with constant entries.
The first step consists of using Mathematica to find the eigenvalues and

eigenvectors of A. To see how this works, we must first become familiar with
the way in which Mathematica represents matrices. Since Mathematica reserves
upper case letters for descriptions of built-in functions, it is prudent to denote
the matrix A by lower case a when writing statements in Mathematica. The
matrix

A =
(
−2 5
1 −3

)
can be entered into Mathematica as a collection of row vectors,

a = {{-2,5},{1,-3}}

with the computer responding by

Out[1] = {{-2,5},{1,-3}}

Thus a matrix is thought of as a “vector of vectors.” Entering

MatrixForm[a]

will cause the computer to give the matrix in the familiar form

Out[2] = −2 5
1 −3

To find the eigenvalues of the matrix A, we simply type

Eigenvalues[a]

and the computer will give us the exact eigenvalues

−5 −
√

21
2

,
−5 +

√
21

2
,

which have been obtained by using the quadratic formula. Quite often numerical
approximations are sufficient, and these can be obtained by typing

eval = Eigenvalues[N[a]]
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the response this time being

Out[4] = {-4.79129, -0.208712}

Defining eval to be the eigenvalues of A in this fashion, allows us to refer to
the eigenvalues of A later by means of the expression eval.

We can also find the corresponding eigenvectors for the matrix A by typing

evec = Eigenvectors[N[a]]

and the computer responds with

Out[5] = {{-0.873154, 0.487445}, {0.941409, 0.337267}}

Putting this together with the eigenvalues gives the general solution to the
original linear system (A.1) for our choice of the matrix A:

x(t) = c1

(
−0.873154
0.487445

)
e−4.79129t + c2

(
0.941409
0.337267

)
e−0.208712t.

Mathematica can also be used to find numerical solutions to nonlinear differ-
ential equations. The following Mathematica programs will use Mathematica’s
differential equation solver (which is called up by the command NDSolve), to
find a numerical solution to the initial value problem

dy/dx = y(1 − y), y(0) = .1,

give a table of values for the solution, and graph the solution curve on the
interval 0 ≤ x ≤ 6. The first step

sol := NDSolve[{ y’[x] == y[x] (1 - y[x]), y[0] == .1 },
y, {x,0,6}]

generates an “interpolation function” which approximates the solution and calls
it sol, an abbreviation for solution. We can construct a table of values for the
interpolation function by typing

Table[Evaluate[y[x] /. sol], {x,0,6,.1}];

or graph the interpolation function by typing

Plot[Evaluate[y[x] /. sol], {x,0,6}]

This leads to a plot like that shown in Figure A.2.
Readers can modify these simple programs to graph solutions to initial value

problems for quite general differential equations of the canonical form

dy

dx
= f(x, y).

All that is needed is to replace the first argument of NDSolve with the differential
equation one wants to solve, remembering to replace the equal signs with double
equal signs, as in the example.
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Figure A.2: Solution to y′ = y(1 − y), y(0) = .1.

In fact, it is no more difficult to treat initial value problems for higher order
equations or systems of differential equations. For example, to solve the initial
value problem

dx

dt
= −xy,

dy

dt
= xy − y, x(0) = 2, y(0) = .1. (A.2)

one simply types in

sol := NDSolve[{ x’[t] == - x[t] y[t], y’[t] == x[t] y[t] - y[t],
x[0] == 2, y[0] == .1 },
{x,y}, {t,0,10}]

Once we have this solution, we can print out a table of values for y by entering

Table[Evaluate[y[t] /. sol], {t,0,2,.1}]

We can also plot y(t) as a function of t by entering

Plot[Evaluate[y[t] /. sol], {t,0,10}]

Figure A.3 shows a parametric plot of (x(t), y(t)) which is generated by entering

ParametricPlot[Evaluate[{ x[t], y[t]} /. sol], {t,0,10}]
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Figure A.3: A parametric plot of a solution to dx/dt = −xy, dy/dt = xy − y.
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