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Abstract

This article uses Cartan-Kähler theory to show that a small neighbor-
hood of a point in any surface with a Riemannian metric possesses an
isometric Lagrangian immersion into the complex plane (or by the same
argument, into any Kähler surface). In fact, such immersions depend on
two functions of a single variable. On the other hand, explicit examples
are given of Riemannian three-manifolds which admit no local isomet-
ric Lagrangian immersions into complex three-space. It is expected that
isometric Lagrangian immersions of higher-dimensional Riemannian man-
ifolds will almost always be unique. However, there is a plentiful supply
of flat Lagrangian submanifolds of any complex n-space; we show that
locally these depend on 1

2
n(n + 1) functions of a single variable.

1 Introduction

This note is concerned with the question of which n-dimensional Riemannian
manifolds can be immersed isometrically as Lagrangian submanifolds of C

n.
Recall that an immersed submanifold Mn ⊂ C

n is Lagrangian if the complex
structure J maps the tangent space TpM at an arbitrary point p ∈ M isomet-
rically onto the corresponding normal space NpM .

In the special case n = 2, we use Cartan-Kähler theory to prove:

Theorem 1. Let M2 be a real-analytic Riemannian manifold of dimension
two. If p ∈ M2, then there is an open neighborhood U of p which possesses an
isometric Lagrangian immersion into C

2. Indeed, the local isometric Lagrangian
immersions depend upon three functions of a single variable.

This local theorem should be contrasted with the fact that there are obstruc-
tions to the existence of global isometric Lagrangian immersions of Riemannian
surfaces into C

2. For example, although the two-sphere S2 possesses a La-
grangian immersion into C

2 as the Whitney sphere (see [3] for instance), there
is no isometric Lagrangian immersion of S2 with any metric of strictly positive
curvature into C

2, by an argument that we recall in §2.
It is to be expected that (even locally) most Riemannian manifolds of di-

mension n ≥ 3 possess no isometric Lagrangian immersions into C
n, because the

system of partial differential equations that would need to be solved is overde-
termined. Indeed when n ≥ 4, the curvature tensor at any given point must
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satisfy some quite explicit conditions: the Pontrjagin forms of a Lagrangian sub-
manifold Mn of C

n must vanish, because the Lagrangian immersion provides
a geometric trivialization of the complexification of the tangent bundle TM ;
the Chern forms of the complexification must vanish identically and these are
just the Pontrjagin forms of TM . In the case n = 3, explicit counterexamples
to existence of isometric Lagrangian immersions are provided by the “Berger
spheres” defined at the beginning of §5:

Theorem 2. The Berger spheres are three-dimensional Riemannian manifolds
which admit no local isometric Lagrangian immersions in C

3.

In addition, when n ≥ 3 one expects that for most Riemannian metrics the iso-
metric Lagrangian immersion, when it exists, will be unique up to rigid motion.
However, manifolds with special curvature properties can exhibit more flexibil-
ity. In the special case of flat Riemannian manifolds, we will apply Cartan-
Kähler theory to show that there does exist a plentiful supply of local isometric
Lagrangian immersions:

Theorem 3. Let p be a point in E
n. The isometric Lagrangian immersions

from an open neighborhood U of p into C
n depend upon 1

2n(n + 1) functions of
a single variable.

The simplest explicit example of a flat Lagrangian submanifold in C
n is the

Clifford torus

S1 × S1 × · · · × S1 ⊂ C × C × · · · × C = C
n.

More general flat Lagrangian submanifolds have been studied by several authors.
Indeed, Pinkall [18] has shown that every conformal structure on the two-torus
can be realized by a flat Lagrangian immersion into S3 ⊂ C

2 (see also [19]).
More recently, Chen, Dillen, Verstraelen and Vranken [10] have given explicit
constructions of flat Lagrangian immersions in higher dimensions in terms of
twistor forms.

It follows from the proof that a flat Lagrangian submanifold of C
n is de-

termined by Cauchy data on a curve by a succession of applications of the
Cauchy-Kowalewski theorem. This is quite similar to what happens in the
theory of flat n-manifolds in the constant curvature (2n − 1)-sphere S2n−1, or
n-manifolds of constant curvature −1 in E

2n−1 (see [15]). Cartan proved that
such submanifolds depend upon n(n−1) functions of a single variable in [4] and
Berger, Bryant and Griffiths extended this result to certain “quasi-hyperbolic”
submanifolds of E

2n−1 in [1].
Theorems 1 and 3 extend an earlier theorem due to Chen and Houh [11]. We

will prove these theorems in §§4 and 6 after a brief exposition of Cartan-Kähler
theory in §3. These theorems are complemented by nonexistence theorems. We
will describe some global obstructions to the existence of isometric Lagrangian
immersions in §2 and prove Theorem 2 in §5.

This collaboration began with a visit that the first author made to Lyon in
the fall of 1996, but the bulk of the work was done while the second author
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visited UCSB during the summer of 1999, and it was finished during his visit
to the University of Sao Paolo, Brazil (supported by FAPESP). The second
author would like to thank his collegues at USP (in particular F. Brito) for
their hospitality, and would also like to thank M. Geck for a helpful discussion
concerning the use of Maple and Groebner bases. This research was partially
supported by Région Rhône-Alpes (France).

2 Preliminaries and global restrictions

We consider the space FC(Cn) of unitary frames on C
n. An element of FC(Cn)

is a pair (p, (e1, . . . , e2n)), where p ∈ C
n and (e1, . . . , e2n) is a real orthonormal

frame such that Jei = en+i for 1 ≤ i ≤ n, J being the complex structure on
C

n. Note that after choice of a base frame, FC(Cn) can be identified with the
trivial bundle C

n × U(n) → C
n, where U(n) is the unitary group. On FC(Cn),

we define differential forms ω̃IJ and θ̃I , for 1 ≤ I, J ≤ 2n, so that

deJ =
2n∑

I=1

eI ω̃IJ , dp =
2n∑

I=1

eI θ̃I ; (1)

these forms must satisfy the Cartan structure equations

dθ̃I = −
∑

ω̃IJ ∧ θ̃J , dω̃IJ = −
∑

ω̃IK ∧ ω̃KJ .

We write i∗ = n + i for 1 ≤ i ≤ n, so that ei∗ = Jei = en+i. Since the matrix-
valued one-form ω = (ω̃IJ) takes its values in the Lie algebra of the unitary
group, we must have

ω̃ij = ω̃i∗j∗ = −ω̃ji, ω̃i∗j = −ω̃ji∗ = ω̃j∗i. (2)

Suppose that f : Mn → C
n is an isometric Lagrangian immersion. An

adapted moving frame over an open subset U of Mn is a lifting f̃ : U → FC(Cn)
of f |U such that (e1 ◦ f̃ , . . . , en ◦ f̃) are tangent to f(Mn). Let

ωIJ = f̃∗ω̃IJ , θI = f̃∗θ̃I .

Then (θ1, . . . , θn) is an orthonormal coframe on U , θi∗ = 0 and the ωIJ deter-
mine the Levi-Civita connection

∇Xej =
n∑

i=1

eiωij(X)

and the second fundamental fundamental form

α(·, ·) =
n∑

i,j=1

ej∗ωj∗i ⊗ θi =
n∑

i,j,k=1

ej∗hjikθi ⊗ θk.
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It follows from (2) that hjik = hijk and from (1) that

n∑
j=1

ωi∗j ∧ θj = 0, and hence hijk = hikj ,

so hijk is symmetric in all three indices. The structure equations (1) imply that
the curvature

Ωij =
∑
k,l

1
2
Rijklθk ∧ θl = dwij +

∑
k

ωik ∧ ωkj

must satisfy the Gauss equation

Ωij =
∑

k

ωk∗i ∧ ωk∗j =
1
2

∑
k,r,s

(hkirhkjs − hkishkjr)θr ∧ θs. (3)

The structure equations also imply that

d

[
n∑

i=1

ωi∗i

]
= −

n∑
i,j=1

ωi∗j ∧ ωji −
n∑

i,j=1

ωi∗j∗ ∧ ωj∗i = −2
n∑

i,j=1

ωi∗j ∧ ωji = 0,

since ωji is skew-symmetric in i and j while ωi∗j is symmetric in these indices.
The closed form

µ =
n∑

i=1

ωi∗i

is called the Maslov form, and as described in [17], it is related to the mean
curvature

H =
n∑

i,j=1

ej∗hiij by the formula µ = 〈JH, ·〉.

These facts can be used to prove that if Mn is an n-dimensional compact
Riemannian manifold with with finite fundamental group or nonzero Euler char-
acteristic which possesses a Lagrangian isometric immersion into C

n, then Mn

must have a point of nonpositive scalar curvature. We recall the argument for
this fact (which was presented in the proof of Theorem 4.6 of [8]). If Mn is
a compact Lagrangian submanifold of C

n with finite fundamental group, then
H1(Mn; R) = 0. Hence the Maslov form µ is exact, µ = df for some smooth
function f : Mn → R. If p is a maximum for f , df and hence H must vanish
at p. On the other hand, if the Euler characteristic of Mn is nonzero, then one
can reason directly that the vector field JH has a zero, and hence again there is
a point p ∈ Mn at which H vanishes. In either case, it follows from the Gauss
equations (3) that∑

i,j

Rijji(p) =
∑
i,j,k

[
hiik(p)hjjk(p) − hijk(p)2

]
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= H(p)2 −
∑
i,j,k

hijk(p)2 = −
∑
i,j,k

hijk(p)2 ≤ 0,

and hence the scalar curvature at p is nonpositive.
The Chern-Simons invariant provides another obstruction to the existence

of isometric or conformal Lagrangian immersions. This obstruction is a conse-
quence of the Corollary on page 139 of [16], but we give a simple direct argument.
The key fact is that the closed differential form

Φ =
−1

48π2

2n∑
I,J,K=1

ω̃IJ ∧ ω̃JK ∧ ω̃KI

on the unitary group U(n) lies in the image of the coefficient homomorphism
H3(U(n); Z) → H3(U(n); R), and hence its integral over any cycle is an integer.
To check that the coefficient is correct, one can restrict to SU(2) = S3, and
check that the restricted form integrates to ±1.

It is well-known that a compact oriented three-manifold possesses a trivial
tangent bundle, hence if M3 is a compact oriented three-manifold which is
immersed as a Lagrangian submanifold of C

3, we can construct a global moving
frame f̃ : M3 → U(3). But then

f̃∗(Φ) =
−1

48π2

 n∑
i,j,k=1

ωij ∧ ωjk ∧ ωki + 3
n∑

i,j,k=1

ωij∗ ∧ ωj∗k ∧ ωki

+3
n∑

i,j,k=1

ωij∗ ∧ ωj∗k∗ ∧ ωk∗i + 3
n∑

i,j,k=1

ωi∗j∗ ∧ ωj∗k∗ ∧ ωk∗i∗


=

−1
24π2

 n∑
i,j,k=1

ωij ∧ ωjk ∧ ωki − 3
n∑

i,j=1

Ωij ∧ ωij

 = TP1(ω),

TP1(ω) being the transgressed Pontrjagin form considered by Chern and Simons
[12], pulled back via the trivialization of TM . We conclude that the reduction
mod Z of TP1(ω) is zero (but not the somewhat finer mod Z reduction of
(1/2)TP1(ω) also considered by Chern and Simons).

The Chern-Simons invariant depends only on the conformal structure. Since
lens spaces with constant positive curvature have a nontrivial Chern-Simons in-
variant, they do not have conformal Lagrangian immersions into C

3, even though
a small neighborhood of any point is conformally equivalent to an open subset
of Euclidean space and hence possesses a conformal Lagrangian immersion as
part of a flat Lagrangian torus. Thus none of the Riemannian metrics within
the conformal equivalence class of the constant curvature lens space admits an
isometric Lagrangian immersion into C

3.
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3 Cartan-Kähler theory

Let W be an N -dimensional smooth manifold, Ωk(W ) the vector space of smooth
differential k-forms on W ,

Ω∗(W ) =
N∑

k=0

Ωk(W )

the algebra of differential forms on W . We say that an ideal A ⊂ Ω∗(W ) is
homogeneous if each homogeneous component of an element in A lies within A,
or equivalently,

A =
N∑

k=0

Ak, where Ak = A ∩ Ωk(W ).

A differential ideal is a homogeneous ideal A ⊂ Ω∗(W ) which satisfies the
condition dA ⊂ A.

An n-dimensional submanifold M ⊂ W is called an integral submanifold for
the differential ideal A if i∗A = 0, where i : M → W is the inclusion.

If p ∈ W , let Gn
p denote the set of n-dimensional linear subspaces of TpW .

An element En
p ∈ Gn

p is an integral element for A if

ω ∈ An ⇒ ω(v1, . . . , vn) = 0,

when (v1, . . . , vn) is a basis for En
p . Thus an integral submanifold is just a

submanifold whose tangent spaces are integral elements.
Suppose now that En

p is an integral element for A and that (v1, . . . vn) is a
basis for En

p . The polar space for En
p is the linear space

H(En
p ) = {v ∈ TpW : ω(v, v1, . . . , vn) = 0 for all ω ∈ An+1},

or equivalently,

H(En
p ) = {v ∈ TpW : the restriction of ιvω to En

p is zero, for all ω ∈ A },

where ιv denotes the interior product. Note that En+1
p ∈ Gn+1

p is an integral
element containing En

p if and only if En+1
p ⊂ H(En

p ). Following the notation of
Kähler [14], we let

rn+1(En
p ) = dimH(En

p ) − (n + 1).

A zero-dimensional integral element E0
p is said to be regular if r1 assumes

its minimum value at E0
p and r1(E0

p) ≥ 0. Inductively, we say that an n-
dimensional integral element En

p is ordinary if it contains a regular integral
element of dimension n−1, and regular if in addition, rn+1 assumes its minimum
value at En

p and rn+1(En
p ) ≥ 0. Finally, an integral submanifold is regular if all

of its tangent spaces are regular integral elements.
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Cartan-Kähler Theorem. Let M be a connected regular integral submanifold
for the differential ideal A on W , F an (n − rn+1)-dimensional submanifold of
W containing M such that

dim(TpF ∩ H(TpM)) = n + 1, for p ∈ N .

Then there is an (n + 1)-dimensional integral submanifold M̃ for A, unique up

to extension, such that M ⊂ M̃ ⊂ F .

The proof of this theorem can be found in [2], Chapter III, §2 or in the classical
references [6] and [14].

By a system of n independent variables, we simply mean a decomposable
n-form Θ = θ1 ∧ θ2 ∧ . . . ∧ θn. If A is a differential ideal and Θ is a system of
n independent variables, we say that the pair (A,Θ) is in involution if there
is an n-dimensional ordinary integral element En

p with basis (v1, . . . , vn) such
that Θ(v1, . . . , vn) �= 0. The Cartan-Kähler theorem implies that if (A,Θ) is in
involution, there exist integral submanifolds of A on which the restriction of Θ
is nonzero.

4 Lagrangian surfaces

To study Lagrangian surfaces in C
2, we use a differential ideal quite similar

to that used in Cartan’s proof of the Janet-Cartan Theorem (see [5]). We let
W = M2 ×FC(C2), where M2 is a given two-dimensional Riemannian manifold
and FC(C2) is the bundle of complex unitary frames over C

2. Our strategy is
to construct a submanifold N of W which can serve as the graph of a mapping
f̃ : M2 → FC(C2), which defines not only an isometric Lagrangian immersion
into C

2, but also a corresponding adapted moving frame along the immersion.
Since the problem is local, we can assume that M2 is parallelizable and

choose a fixed moving frame (e1, e2) for TM with corresponding coframe (θ1, θ2).
There is a unique connection one-form ω12 = −ω21 on M2 which satisfies the
equations

dθ1 = −ω12 ∧ θ2, dθ2 = −ω21 ∧ θ1.

Let Ω12 = dω12 denote the curvature two-form on M2.
We pull the differential forms θ̃I , ω̃IJ , θi, ω12 back to the product manifold

W . On W , we will take the ideal A which is generated by the differential
one-forms

θ̃i − θi, θ̃i∗, ω̃12 − ω12,

and the differential two-forms

dθi∗, d̃ω12 − dω12,

or equivalently, the two-forms∑
j

ω̃i∗j ∧ θ̃j ,
∑
i∗

ω̃i∗1 ∧ ω̃i∗2 − Ω12.
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It is quickly checked that A is closed under the exterior derivative, and is there-
fore a differential ideal.

We claim that (A, θ1 ∧ θ2) is in involution. Since there are no zero-forms in
A, an arbitrary point q = E0

q of W can be taken as a zero-dimensional integral
element. Its polar space H(E0

q ) is the collection of vectors v1 ∈ TqW which are
anihilated by the one-form generators in A. Once θi(v1) are chosen, ω12(v1) is
determined, and the one-form generators for A determine

θ̃I(v1), ω̃12(v1),

while ω̃i∗j(v1) can be chosen at will, subject to the requirement that ω̃41(v1) =
ω̃32(v1). We have two degrees of freedom in choosing θi(v1) and an additional
three in choosing ω̃31(v1), ω̃41(v1) and ω̃42(v1). so the polar space H(E0

p) has
constant dimension 5 and all zero-dimensional integral elements are regular.

Suppose now that we choose a one-dimensional integral element E1
q contain-

ing E0
q and generated by a nonzero vector v1 ∈ TqW . The polar space H(E1

q )
is the set of vectors v2 ∈ TpW which satisfy the linear equations

L1 : θ̃i(v2) = θi(v2), θ̃i∗(v2) = 0, ω̃12(v2) = ω12(v2),

together with the three equations

L2 :
∑

j

(ω̃i∗j ∧ θ̃j)(v1, v2) = 0,
∑
i∗

(ω̃i∗1 ∧ ω̃i∗2)(v1, v2) = Ω12(v1, v2).

Once θi(v2) are chosen, the linear system L1 determines

θ̃I(v2), ω12(v2),

and all that remain to be determined are the three elements ω̃31(v2), ω̃41(v2) and
ω̃42(v2). We can regard L2 as a linear system in these unknowns, and since L2

contains three equations, its maximal possible rank is three. If we can show that
the three equations are independent, then E1

q will be a regular integral element
with dimH(E1

q ) = 2, r2(E1
q ) = 0 and E1

q will lie in a unique two-dimensional
ordinary integral element E2

q .
But we can choose v1 so that θ1(v1) = 1 and θ2(v1) = 0, and set hi∗j1 =

ω̃i∗j(v1). If hi∗j2 = ω̃i∗j(v2), the system L2 can be rewritten as

h312 = h321, h412 = h421,

∣∣∣∣h311 h312

h321 h322

∣∣∣∣ +
∣∣∣∣h321 h322

h421 h422

∣∣∣∣ = K,

where K is the Gaussian curvature of M2. If h311 is nonzero, this linear system
for the unknowns h312, h412 = h322 and h422 does indeed have rank three, so
the conclusions at the end of the preceding paragraph do indeed hold. If we
choose v2 so that θ1(v2) = 0 and θ2(v2) = 1, then θ1 ∧ θ2 will be nonzero on
the ordinary integral element E2

q , and we conclude that our differential system
is indeed in involution.
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Proof of Theorem 1: Suppose that C is a real analytic curve in M2 which
contains an arbitrary point p ∈ M2 and suppose that (e1, e2) is chosen so that
along C, e1 is tangent to C. Given arbitrary functions h311, h321 = h411 and
h421 along C, we can construct a real analytic moving frame

f : C → FC(C2) such that f∗(ω̃12) = ω12, f∗(ω̃i∗j) = hi∗j1θ1.

We can lift this to a real analytic map

f̃ : C → C
2 × FC(C2) such that f̃∗θ̃1 = θ1, f̃∗θ̃2 = 0.

The graph of f̃ is an integral submanifold Ĉ ⊂ W for A which projects to C
via the obvious projection π : W → M and satisfies the condition

ω̃31(ê1) = h311, ω̃32(ê1) = h321 ω̃42(ê1) = h421,

where ê1 projects to e1. If h321 is never zero, the tangent spaces to Ĉ will be
regular integral elements and since r2 = 0, the Cartan-Kähler theorem will guar-
antee the existence of a two-dimensional integral submanifold N of W , unique
up to extension, which contains Ĉ. Since θ1∧θ2 is nonzero along N , the inverse
function theorem implies that the projection π|N : N → M possesses a local
inverse map σ : U → N from an open neighborhood U of p in M2. the com-
position of σ with the obvious projection W → C

2 yields the desired isometric
Lagrangian immersion from U into C

2. The immersions so constructed depend
upon the functions h311, h321 = h411 and h421 which can be completely arbitrary,
except for the requirement that the one-dimensional integral elements they de-
termine be regular. Thus we see that the isometric Lagrangian immersions do
indeed depend upon three functions of a single variable, as claimed.

Remark. From the proof, it is clear that we could replace the ambient space
C2 by any Kähler manifold of complex dimension two, or more generally any
Riemannian four-manifold with compatible almost complex structure J satisfy-
ing ∇J = 0 (in which case a Lagrangian submanifold would be regarded as a
submanifold for which J interchanges tangent and normal spaces).

5 Berger spheres

In higher dimensions, the system of equations for isometric Lagrangian immer-
sions is overdetermined, so we expect that most Riemannian manifolds would
not admit such immersions. When n ≥ 3, the analog of the differential system
with independent variables considered in the previous section is no longer in
involution. For any given Riemannian metric, we might try to solve the local
problem by means of Cartan’s method of prolongation ([6], Chapitre VI), and
this would typically lead to algebraic problems that might be difficult to solve.
An interesting example is provided by left-invariant metrics on the Lie group
S3 of unit quaternions. In this section, we will show that many of these metrics
admit no isometric Lagrangian immersion into C

3.
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We regard S3 as the double cover of SO(3), which possesses the standard left-
invariant one-forms φij , for 1 ≤ i, j ≤ 3, which satisfy the structure equations

dφij = −φik ∧ φkj ,

where (i, j, k) is a permutation of (1, 2, 3). if we set

αi = φjk, for (i, j, k) a positive permutation of (1, 2, 3),

we can rewrite the structure equations as

dαi = αj ∧ αk, for (i, j, k) a positive permutation of (1, 2, 3).

If we set
θ1 = εα1, θ2 = α2, θ3 = α3,

where ε > 0, then
ds2 = θ2

1 + θ2
2 + θ2

3

is a left-invariant metric on SO(3) which lifts to a left-invariant metric on S3.
We call the resulting manifold a Berger sphere in the case where 0 < ε < 1 (see
[7], Example 3.35).

According to the fundamental theorem of Riemannian geometry, the con-
nection forms ωij on SO(3) are determined by the structure equations

dθi = −
∑

j

ωij ∧ θj , ωij + ωji.

A straightforward calculation shows that

ω23 = [1 − (ε2/2)]α1, ω31 = (ε/2)θ2, ω12 = (ε/2)θ3,

and from this we can determine the curvature:

R1212 = R1313 = (1/2)ε2, R2323 = 1 − (3/4)ε2,

Rijik = 0 when i, j, k are distinct.

Proof of Theorem 2: We first seek the solutions hijk to the Gauss equations.
Using the symmetry in three variables, we can write these as

h1jk =

x a f
a d u
f u c

 , h2jk =

a d u
d y b
u b e

 , h3jk =

f u c
u b e
c e z

 .

We have the freedom of rotating the part of the coframe (θ2, θ3), and using this
freedom, we can arrange that u = 0 at a given point.

The Gauss equations divide into two groups, those of the form Rijij =
something and those of the form Rijik = something where i, j, k are distinct.
The first group of these is

dx + ay = (1/4)ε2 + a2 + d2 − bf, cx + fz = (1/4)ε2 + c2 + f2 − ae,
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ey + bz = 1 − (3/4)ε2 + b2 + e2 − cd,

while the second group is

−af + ab + fe = 0, −df + db − bc = 0, ac + de − ce = 0.

We can analyze this system of six quadratic equations by means of Maple or
Mathematica; in particular the calculations can be guided by finding a Groebner
basis as described in [13]. This procedure leads to the conclusion that if ε �= 1,
then automatically a = f = 0.

In more detail, an explicit calculation could proceed as follows. We can
look at the first group of Gauss equations as a linear system for the unknowns
(y, z, ε2). This system will possess a unique solution in terms of the other vari-
ables so long as the determinant of the coefficient matrix is nonzero. Using a
computer to do the calculations (if necessary), we can check that the determi-
nant of coefficients is af , and that if this determinant is nonzero, one piece of
the unique solution is ε2 = 1. Therefore if ε2 �= 1, we see that af = 0. Since a
and f are interchanged under interchange of θ2 and θ3, we can assume without
loss of generality that a = 0. It then follows from the second group of Gauss
equations that ef = 0. If f �= 0, the e = 0 and we can analyze the first group
of Gauss equations as a linear system for the unknowns (x, z, ε2). This time we
find that either ε2 = 1 or the determinant of coefficients d f = 0. Thus if f �= 0,
we must have d = e = 0, which implies that b c = 0. We leave it to the reader to
check that either case, b = 0 or c = 0, leads to a contradiction with the Gauss
equations. By this procedure, we are finally forced to conclude that a = f = 0.

The upshot is that the second fundamental form simplifies to

h1jk =

x 0 0
0 d 0
0 0 c

 , h2jk =

0 d 0
d y b
0 b e

 , h3jk =

0 0 c
0 b e
c e z

 .

The Codazzi equations are equivalent to the assertion that the functions
hijkl are symmetric in all indices, where∑

l

hijklθl = dhijk − hmjkωmi − himkωmj − hijmωmk.

Since h11i = 0 unless i = 1, the Codazzi equations in the case where (i, j, k) =
(1, 1, 1) imply that

h111i = ei(h111) = e1(x).

In the case where (i, j, k) = (1, 1, 2), the Codazzi equations yield

h1121θ1 + h1122θ2 + h1123θ3 = (2h122 − h111)ω12. (4)

Since ω12 is a multiple of θ3, we conclude that h1121 = h1122 = 0. Similarly,
we can show that h1131 = h1133 = 0 and by polarization h1123 = 0 as well.
Applying (4) once again now yields

2h122 − h111 = 0, or 2d = x.
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It then follows from the first of the Gauss equations that d2 = ε2/4. In par-
ticular, h111 and h122 are constant and hence h1111 = 0. We now know that
h11ij = 0, for all i and j. Similarly, we show that 2c = x and hence

h1jk = ±

ε 0 0
0 (1/2)ε 0
0 0 (1/2)ε

 .

In the cases where (i, j, k) = (1, 2, 2), (1, 3, 3) or 1, 2, 3) the Codazzi equations
become

h1222θ2 + h1223θ3 = (ε/2)(h222θ3 − h322θ2),

h1332θ2 + h1333θ3 = (ε/2)(h233θ3 − h333θ2),

h1232θ2 + h1233θ3 = (ε/2)(h223θ3 − h323θ2) + (· · · )θ1,

where we have used the facts that ω12 = (ε/2)θ3, ω31 = (ε/2)θ2 and ω23 =
(· · · )θ1. These equations imply that

h222 = −h323, h333 = −h223,

or equivalently y = −e and b = −z. It therefore follows from the third of the
Gauss equations that

−y2 − z2 = 1 − (3/4)ε2 + y2 + z2 − cd ⇒ 1 − ε2 ≤ 0.

In particular, we see there are no local solutions for 0 < ε < 1, or in other words,
the Berger spheres do not possess isometric Lagrangian immersion in C

3, even
locally. On the other hand, in the constant curvature case (ε = 1), it is known
that there do exist local isometric Lagrangian immersions (see [9]).

6 Flat Lagrangian submanifolds

Since hijk is symmetric in its three indices, the trilinear form

(x, y, z) �→ 〈α(x, y), Jz〉

is symmetric in its three arguments. For x ∈ TpM , define a linear transformation

A(x) : TpM → TpM by A(x)(y) = Jα(x, y).

Then
〈A(x)y, z〉 = 〈Jα(x, y)z〉 = −〈α(x, y), Jz〉

= −〈α(x, z), Jy〉 = 〈y, Jα(x)z〉 = 〈y, A(x)z〉,
so A(x) is symmetric with respect to the inner product 〈·, ·〉. Moreover, if R
denotes the Riemann-Christoffel curvature tensor of Mn, it follows from the
Gauss equation

〈R(x, y)z, w〉 = 〈α(y, z), α(x, w)〉 − 〈α(x, z), α(y, w)〉
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that

〈A(x)A(y)z, w〉 = 〈A(y)z, A(x)w〉 = 〈Jα(y, z), Jα(x, w)〉 = 〈α(y, z), α(x, w)〉

= 〈α(x, z), α(y, w)〉 + 〈R(x, y)z, w〉 = · · · = 〈A(y)A(x)z, w〉 + 〈R(x, y)z, w〉,
and hence we can reformulate the Gauss equations as

[A(x), A(y)] = R(x, y), for x, y ∈ TpM .

Thus in the special case in which Mn is flat, the linear transformations A(x)
will all commute with each other and we can prove:

Lemma. If Mn is a flat Lagrangian submanifold of C
n and p ∈ Mn, there is

an orthonormal basis (e1, . . . , en) for TpM such that if ei∗ = Jei, for 1 ≤ i ≤ n,
then

〈α(ei, ej), ek∗〉 = 0, unless i = j = k.

Proof: Since the A(x)’s commmute, we can find an orthonormal basis (e1, . . . , en)
for TpM which simultaneously diagonalizes them, so that

A(x)ei = λi(x)ei,

where each λi : TpM → R is a linear functional. In particular, we find that

〈Jα(x, ei), ej〉 = 〈A(x)ei, ej〉 = 0, unless i = j.

It follows by trisymmetry that

〈α(ei, ej), ek∗〉 = −〈Jα(ei, ej), ek〉 = 0, unless i = j = k,

which is exactly what we needed to prove.

In terms of the differential forms described in §2, the Lemma implies that

ωi∗j =

{
uiθi, if i = j,
0, if i �= j.

To prove existence of flat Lagrangian submanifolds of C
n, we will need to

use a differential ideal which takes into account this special nature of the sec-
ond fundamental form. We will choose an appropriate differential ideal on the
manifold

W = F (Mn) × FC(Cn) × R
n,

where F (Mn) is the bundle of orthonormal frames on Mn and FC(Cn) is the
space of unitary frames on C

n, whose integral submanifolds can represent the
graphs of maps which represent isometric Lagrangian immmersions together
with adapted moving frames.
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On the frame bundle F (Mn), we have the familiar tautological one-forms
(θ1, . . . , θn) and connection one-forms ωij = −ωji which satisfy the equations

dθi = −ωij ∧ θj , dωij = −ωik ∧ ωkj , (5)

the last of these holding because Mn is assumed to have curvature zero.
We pull these differential forms and the differential forms defined in §2 back

to the product manifold W . Our ideal A on W will be generated by the differ-
ential one-forms

θ̃i − θi, θ̃i∗, ω̃ij − ωij , ω̃i∗i − uiθi, ω̃i∗j if i �= j,

where (u1, . . . un) are the coordinates on the R
n factor in W , together with

certain differential two-forms which will make A closed under d. It follows from
the structure equations (1) and (5) that we can take the two-form generators to
be

d(uiθi), ω̃i∗i ∧ ω̃ij + ω̃ij ∧ ω̃j∗j .

Modulo the one-form generators, we can replace these by

ωij ∧ (uiθi − ujθj), dui ∧ θi − ui

∑
j

ωij ∧ θj . (6)

As a final simplification, we substitute from the first of these into the second,
so that the two-form generators become

ωij ∧ (uiθi − ujθj),

dui −
∑

j

u2
i

uj
ωij

 ∧ θi. (7)

Once again, we claim that (A, θ1 ∧ . . . ∧ θn) is in involution. As before, an
arbitrary point q = E0

q of W can be taken as a zero-dimensional integral element
for A. The polar space H(E0

q ) of this integral element is the collection of vectors
v1 ∈ TqW which are anihilated by the one-form generators in A. Once θi(v1),
ωij(v1) and dui(v1) are chosen, the one-form generators for A determine

θ̃I(v1), ω̃ij(v1), and ω̃i∗j(v1).

We have n degrees of freedom in choosing θi(v1), an additional (1/2)n(n − 1)
in choosing ω̃ij(v1), and yet another n degrees of freedom in choosing dui(v1),
so the polar space H(E0

q ) has constant dimension 2n + (1/2)n(n − 1) and, as
before, all zero-dimensional integral elements are regular.

Suppose now that E1
q is a one-dimensional integral element containing E0

q

and generated by a nonzero vector v1 ∈ TqW . The polar space H(E1
q ) is the set

of vectors v2 ∈ TqW which satisfy two sets of linear equations which come from
the one-form generators of A,

L1 : θ̃i(v2) = θi(v2), θ̃i∗(v2) = 0, ω̃i∗j(v2) =

{
uiθi(v2), if i = j,
0, if i �= j,
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L2 : ω̃ij(v2) = ωij(v2),

together with two sets of equations which come from the two-form generators
(6),

L3 : (uiθi(v1) − ujθj(v1))ωij(v2) = (uiθi(v2) − ujθj(v2))ωij(v1),

L4 : θi(v1)dui(v2) = θi(v2)dui(v1) − ui

∑
j

ωij ∧ θj(v1, v2).

Once θi(v2) are chosen, the linear system L1 determines θ̃I(v2) and ωi∗j(v2). If

uiθi(v1) − ujθj(v1) �= 0,

then L3 determines ωij(v2), and L2 determines ω̃ij(v2). Finally, if θi(v1) �= 0,
the equations L4 determine dui(v2). In other words, once θi(v2) is chosen, the
entire basis

θi(v2), ωij(v2), θ̃I(v2), ω̃IJ(v2), dui(v2)

is completely determined, so long as the condition

uiθi(v1) − ujθj(v1) �= 0, θi(v1) �= 0 (8)

is satisfied. Thus we see that E1
q is a regular element exactly when (8) holds,

and in this case dimH(E1
q ) = n.

We claim that the polar space H(E1
q ) is itself an integral element of di-

mension n on which, moreover, θ1 ∧ . . . ∧ θn is nonzero. Since the one-form
generators of A automatically vanish on H(E1

q ), we need only check that the
two-form generators given by (7) vanish when evaluated on arbitrary elements
v2, v3 ∈ H(E1

q ). Alternatively, it suffices to show that there exist linear func-
tionals, which we denote by ωij , dui : H(E1

q ) → R, which satisfy the equations

ωij ∧ (uiθi − ujθj) = 0,

dui −
∑

j

u2
i

uj
ωij

 ∧ θi = 0,

and take the appropriate values on v1. But such solutions do exist and are given
by the explicit formulae

ωij = aij(uiθi − ujθj), dui =
∑

j

u2
i

uj
ωij + biθi,

where the aij ’s and bi’s are determined so as to yield the correct values for
ωij(v1) and dui(v1).

It follows immediately that a regular integral element E1
q lies in a flag of

integral elements

E1
q ⊂ E2

q ⊂ · · · ⊂ En−1
q ⊂ En

q = H(E1
q ),
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all of which have the same polar space H(E1
q ). Moreover,

rk+1(Ek
q ) = dimH(Ek

q ) − (k + 1) = dimH(E1
q ) − (k + 1) = n − k − 1,

and each of the integral elements is regular except for the last one which is
ordinary. Since θ1 ∧ . . . ∧ θn is nonzero on H(E1

q ), we see that the differential
system A is indeed in involution.

Proof of Theorem 3: Suppose that C is a real analytic curve in Mn which
contains an arbitrary point p ∈ Mn and choose submanifolds

C = F 1 ⊂ F 2 ⊂ · · · ⊂ Fn−1 ⊂ Mn

so that F i has dimension i. Let F̃ i = π−1(F i), where π : W → Mn is the
obvious projection. Given arbitrary functions fij = −fji and gi along C, we
can construct an integral submanifold Ĉ ⊂ W for A which projects to C via
the projection π : W → M and satisfies the condition

ωij(ê1) = fij , dui(ê1) = gi,

where ê1 projects to e1, just as we did in the case of Lagrangian surfaces.
Moreover, we can choose Ĉ so that

uiθi(ê1) − ujθj(ê1) �= 0, θi(ê1) �= 0

along Ĉ, where ê1 projects to the unit speed tangent e1 to C, which will ensure
that Ĉ is a regular integral submanifold. Then the Cartan-Kähler theorem guar-
antees the existence of a two-dimensional integral submanifold N2 ∩ F̃ 2 of W ,
unique up to extension, which contains Ĉ. If 2 < n, this integral submanifold
will be regular, so a second application of the Cartan-Kähler theorem yields a
three-dimensional integral submanifold N3 ∩ F̃ 3 of W , unique up to extension,
which contains N2 ∩ F̃ 2. Continuing in this manner, we finally obtain an n-
dimensional integral submanifold Nn of W . Since θ1 ∧ · · · ∧ θn is nonzero along
Nn, the inverse function theorem implies that the projection π|N : N → M
possesses an inverse map σ : U → N from an open neighborhood U of p in Mn.
the composition of σ with the obvious projection W → C

n yields the desired iso-
metric Lagrangian immersion from U into C

n. The immersions so constructed
depend upon the functions fij = −fji and gi which can be completely arbitrary,
except for the requirement that the one-dimensional integral elements they de-
termine be regular. Thus the local isometric Lagrangian immersions depend
upon (1/2)n(n + 1) functions of a single variable, as claimed.
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