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To Margaret, as always



Preface

Namely, because the shape of the whole universe is most perfect and, in fact,
designed by the wisest creator, nothing in all of the world will occur in which
no maximum or minimum rule is somehow shining forth.

Leonhard Euler (1744)

We can treat this firm stand by Euler [411] (“. . . nihil omnino in mundo con-
tingint, in quo non maximi minimive ratio quapiam eluceat”) as the most
fundamental principle of Variational Analysis. This principle justifies a va-
riety of striking implementations of optimization/variational approaches to
solving numerous problems in mathematics and applied sciences that may
not be of a variational nature. Remember that optimization has been a major
motivation and driving force for developing differential and integral calculus.
Indeed, the very concept of derivative introduced by Fermat via the tangent
slope to the graph of a function was motivated by solving an optimization
problem; it led to what is now called the Fermat stationary principle. Besides
applications to optimization, the latter principle plays a crucial role in prov-
ing the most important calculus results including the mean value theorem,
the implicit and inverse function theorems, etc. The same line of development
can be seen in the infinite-dimensional setting, where the Brachistochrone
was the first problem not only of the calculus of variations but of all func-
tional analysis inspiring, in particular, a variety of concepts and techniques in
infinite-dimensional differentiation and related areas.

Modern variational analysis can be viewed as an outgrowth of the calculus
of variations and mathematical programming, where the focus is on optimiza-
tion of functions relative to various constraints and on sensitivity/stability of
optimization-related problems with respect to perturbations. Classical notions
of variations such as moving away from a given point or curve no longer play
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a critical role, while concepts of problem approximations and/or perturbations
become crucial.

One of the most characteristic features of modern variational analysis
is the intrinsic presence of nonsmoothness, i.e., the necessity to deal with
nondifferentiable functions, sets with nonsmooth boundaries, and set-valued
mappings. Nonsmoothness naturally enters not only through initial data of
optimization-related problems (particularly those with inequality and geomet-
ric constraints) but largely via variational principles and other optimization,
approximation, and perturbation techniques applied to problems with even
smooth data. In fact, many fundamental objects frequently appearing in the
framework of variational analysis (e.g., the distance function, value functions
in optimization and control problems, maximum and minimum functions, so-
lution maps to perturbed constraint and variational systems, etc.) are in-
evitably of nonsmooth and/or set-valued structures requiring the development
of new forms of analysis that involve generalized differentiation.

It is important to emphasize that even the simplest and historically earliest
problems of optimal control are intrinsically nonsmooth, in contrast to the
classical calculus of variations. This is mainly due to pointwise constraints on
control functions that often take only discrete values as in typical problems of
automatic control, a primary motivation for developing optimal control theory.
Optimal control has always been a major source of inspiration as well as a
fruitful territory for applications of advanced methods of variational analysis
and generalized differentiation.

Key issues of variational analysis in finite-dimensional spaces have been
addressed in the book “Variational Analysis” by Rockafellar and Wets [1165].
The development and applications of variational analysis in infinite dimen-
sions require certain concepts and tools that cannot be found in the finite-
dimensional theory. The primary goals of this book are to present basic con-
cepts and principles of variational analysis unified in finite-dimensional and
infinite-dimensional space settings, to develop a comprehensive generalized
differential theory at the same level of perfection in both finite and infinite di-
mensions, and to provide valuable applications of variational theory to broad
classes of problems in constrained optimization and equilibrium, sensitivity
and stability analysis, control theory for ordinary, functional-differential and
partial differential equations, and also to selected problems in mechanics and
economic modeling.

Generalized differentiation lies at the heart of variational analysis and
its applications. We systematically develop a geometric dual-space approach
to generalized differentiation theory revolving around the extremal principle,
which can be viewed as a local variational counterpart of the classical convex
separation in nonconvex settings. This principle allows us to deal with noncon-
vex derivative-like constructions for sets (normal cones), set-valued mappings
(coderivatives), and extended-real-valued functions (subdifferentials). These
constructions are defined directly in dual spaces and, being nonconvex-valued,
cannot be generated by any derivative-like constructions in primal spaces (like
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tangent cones and directional derivatives). Nevertheless, our basic nonconvex
constructions enjoy comprehensive calculi, which happen to be significantly
better than those available for their primal and/or convex-valued counter-
parts. Thus passing to dual spaces, we are able to achieve more beauty and
harmony in comparison with primal world objects. In some sense, the dual
viewpoint does indeed allow us to meet the perfection requirement in the
fundamental statement by Euler quoted above.

Observe to this end that dual objects (multipliers, adjoint arcs, shadow
prices, etc.) have always been at the center of variational theory and applica-
tions used, in particular, for formulating principal optimality conditions in the
calculus of variations, mathematical programming, optimal control, and eco-
nomic modeling. The usage of variations of optimal solutions in primal spaces
can be considered just as a convenient tool for deriving necessary optimality
conditions. There are no essential restrictions in such a “primal” approach
in smooth and convex frameworks, since primal and dual derivative-like con-
structions are equivalent for these classical settings. It is not the case any
more in the framework of modern variational analysis, where even nonconvex
primal space local approximations (e.g., tangent cones) inevitably yield, un-
der duality, convex sets of normals and subgradients. This convexity of dual
objects leads to significant restrictions for the theory and applications. More-
over, there are many situations particularly identified in this book, where
primal space approximations simply cannot be used for variational analysis,
while the employment of dual space constructions provides comprehensive
results. Nevertheless, tangentially generated/primal space constructions play
an important role in some other aspects of variational analysis, especially in
finite-dimensional spaces, where they recover in duality the nonconvex sets
of our basic normals and subgradients at the point in question by passing to
the limit from points nearby; see, for instance, the afore-mentioned book by
Rockafellar and Wets [1165]

Among the abundant bibliography of this book, we refer the reader to the
monographs by Aubin and Frankowska [54], Bardi and Capuzzo Dolcetta [85],
Beer [92], Bonnans and Shapiro [133], Clarke [255], Clarke, Ledyaev, Stern and
Wolenski [265], Facchinei and Pang [424], Klatte and Kummer [686], Vinter
[1289], and to the comments given after each chapter for significant aspects of
variational analysis and impressive applications of this rapidly growing area
that are not considered in the book. We especially emphasize the concur-
rent and complementing monograph “Techniques of Variational Analysis” by
Borwein and Zhu [164], which provides a nice introduction to some fundamen-
tal techniques of modern variational analysis covering important theoretical
aspects and applications not included in this book.

The book presented to the reader’s attention is self-contained and mostly
collects results that have not been published in the monographical literature.
It is split into two volumes and consists of eight chapters divided into sections
and subsections. Extensive comments (that play a special role in this book
discussing basic ideas, history, motivations, various interrelations, choice of
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terminology and notation, open problems, etc.) are given for each chapter.
We present and discuss numerous references to the vast literature on many
aspects of variational analysis (considered and not considered in the book)
including early contributions and very recent developments. Although there
are no formal exercises, the extensive remarks and examples provide grist for
further thought and development. Proofs of the major results are complete,
while there is plenty of room for furnishing details, considering special cases,
and deriving generalizations for which guidelines are often given.

Volume I “Basic Theory” consists of four chapters mostly devoted to basic
constructions of generalized differentiation, fundamental extremal and varia-
tional principles, comprehensive generalized differential calculus, and complete
dual characterizations of fundamental properties in nonlinear study related to
Lipschitzian stability and metric regularity with their applications to sensi-
tivity analysis of constraint and variational systems.

Chapter 1 concerns the generalized differential theory in arbitrary Banach
spaces. Our basic normals, subgradients, and coderivatives are directly defined
in dual spaces via sequential weak∗ limits involving more primitive ε-normals
and ε-subgradients of the Fréchet type. We show that these constructions have
a variety of nice properties in the general Banach spaces setting, where the
usage of ε-enlargements is crucial. Most such properties (including first-order
and second-order calculus rules, efficient representations, variational descrip-
tions, subgradient calculations for distance functions, necessary coderivative
conditions for Lipschitzian stability and metric regularity, etc.) are collected
in this chapter. Here we also define and start studying the so-called sequen-
tial normal compactness (SNC) properties of sets, set-valued mappings, and
extended-real-valued functions that automatically hold in finite dimensions
while being one of the most essential ingredients of variational analysis and
its applications in infinite-dimensional spaces.

Chapter 2 contains a detailed study of the extremal principle in variational
analysis, which is the main single tool of this book. First we give a direct vari-
ational proof of the extremal principle in finite-dimensional spaces based on a
smoothing penalization procedure via the method of metric approximations.
Then we proceed by infinite-dimensional variational techniques in Banach
spaces with a Fréchet smooth norm and finally, by separable reduction, in
the larger class of Asplund spaces. The latter class is well-investigated in the
geometric theory of Banach spaces and contains, in particular, every reflexive
space and every space with a separable dual. Asplund spaces play a prominent
role in the theory and applications of variational analysis developed in this
book. In Chap. 2 we also establish relationships between the (geometric) ex-
tremal principle and (analytic) variational principles in both conventional and
enhanced forms. The results obtained are applied to the derivation of novel
variational characterizations of Asplund spaces and useful representations of
the basic generalized differential constructions in the Asplund space setting
similar to those in finite dimensions. Finally, in this chapter we discuss ab-
stract versions of the extremal principle formulated in terms of axiomatically
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defined normal and subdifferential structures on appropriate Banach spaces
and also overview in more detail some specific constructions.

Chapter 3 is a cornerstone of the generalized differential theory developed
in this book. It contains comprehensive calculus rules for basic normals, sub-
gradients, and coderivatives in the framework of Asplund spaces. We pay most
of our attention to pointbased rules via the limiting constructions at the points
in question, for both assumptions and conclusions, having in mind that point-
based results indeed happen to be of crucial importance for applications. A
number of the results presented in this chapter seem to be new even in the
finite-dimensional setting, while overall we achieve the same level of perfec-
tion and generality in Asplund spaces as in finite dimensions. The main issue
that distinguishes the finite-dimensional and infinite-dimensional settings is
the necessity to invoke sufficient amounts of compactness in infinite dimen-
sions that are not needed at all in finite-dimensional spaces. The required
compactness is provided by the afore-mentioned SNC properties, which are
included in the assumptions of calculus rules and call for their own calcu-
lus ensuring the preservation of SNC properties under various operations on
sets and mappings. The absence of such a SNC calculus was a crucial obsta-
cle for many successful applications of generalized differentiation in infinite-
dimensional spaces to a range of infinite-dimensions problems including those
in optimization, stability, and optimal control given in this book. Chapter 3
contains a broad spectrum of the SNC calculus results that are decisive for
subsequent applications.

Chapter 4 is devoted to a thorough study of Lipschitzian, metric regularity,
and linear openness/covering properties of set-valued mappings, and to their
applications to sensitivity analysis of parametric constraint and variational
systems. First we show, based on variational principles and the generalized
differentiation theory developed above, that the necessary coderivative condi-
tions for these fundamental properties derived in Chap. 1 in arbitrary Banach
spaces happen to be complete characterizations of these properties in the As-
plund space setting. Moreover, the employed variational approach allows us to
obtain verifiable formulas for computing the exact bounds of the correspond-
ing moduli. Then we present detailed applications of these results, supported
by generalized differential and SNC calculi, to sensitivity and stability analy-
sis of parametric constraint and variational systems governed by perturbed
sets of feasible and optimal solutions in problems of optimization and equi-
libria, implicit multifunctions, complementarity conditions, variational and
hemivariational inequalities as well as to some mechanical systems.

Volume II “Applications” also consists of four chapters mostly devoted
to applications of basic principles in variational analysis and the developed
generalized differential calculus to various topics in constrained optimization
and equilibria, optimal control of ordinary and distributed-parameter systems,
and models of welfare economics.

Chapter 5 concerns constrained optimization and equilibrium problems
with possibly nonsmooth data. Advanced methods of variational analysis
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based on extremal/variational principles and generalized differentiation hap-
pen to be very useful for the study of constrained problems even with smooth
initial data, since nonsmoothness naturally appears while applying penaliza-
tion, approximation, and perturbation techniques. Our primary goal is to de-
rive necessary optimality and suboptimality conditions for various constrained
problems in both finite-dimensional and infinite-dimensional settings. Note
that conditions of the latter – suboptimality – type, somehow underestimated
in optimization theory, don’t assume the existence of optimal solutions (which
is especially significant in infinite dimensions) ensuring that “almost” optimal
solutions “almost” satisfy necessary conditions for optimality. Besides con-
sidering problems with constraints of conventional types, we pay serious at-
tention to rather new classes of problems, labeled as mathematical problems
with equilibrium constraints (MPECs) and equilibrium problems with equilib-
rium constraints (EPECs), which are intrinsically nonsmooth while admitting
a thorough analysis by using generalized differentiation. Finally, certain con-
cepts of linear subextremality and linear suboptimality are formulated in such
a way that the necessary optimality conditions derived above for conventional
notions are seen to be necessary and sufficient in the new setting.

In Chapter 6 we start studying problems of dynamic optimization and op-
timal control that, as mentioned, have been among the primary motivations
for developing new forms of variational analysis. This chapter deals mostly
with optimal control problems governed by ordinary dynamic systems whose
state space may be infinite-dimensional. The main attention in the first part of
the chapter is paid to the Bolza-type problem for evolution systems governed
by constrained differential inclusions. Such models cover more conventional
control systems governed by parameterized evolution equations with control
regions generally dependent on state variables. The latter don’t allow us to
use control variations for deriving necessary optimality conditions. We de-
velop the method of discrete approximations, which is certainly of numerical
interest, while it is mainly used in this book as a direct vehicle to derive op-
timality conditions for continuous-time systems by passing to the limit from
their discrete-time counterparts. In this way we obtain, strongly based on the
generalized differential and SNC calculi, necessary optimality conditions in the
extended Euler-Lagrange form for nonconvex differential inclusions in infinite
dimensions expressed via our basic generalized differential constructions.

The second part of Chap. 6 deals with constrained optimal control systems
governed by ordinary evolution equations of smooth dynamics in arbitrary Ba-
nach spaces. Such problems have essential specific features in comparison with
the differential inclusion model considered above, and the results obtained (as
well as the methods employed) in the two parts of this chapter are generally in-
dependent. Another major theme explored here concerns stability of the max-
imum principle under discrete approximations of nonconvex control systems.
We establish rather surprising results on the approximate maximum principle
for discrete approximations that shed new light upon both qualitative and
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quantitative relationships between continuous-time and discrete-time systems
of optimal control.

In Chapter 7 we continue the study of optimal control problems by appli-
cations of advanced methods of variational analysis, now considering systems
with distributed parameters. First we examine a general class of hereditary
systems whose dynamic constraints are described by both delay-differential
inclusions and linear algebraic equations. On one hand, this is an interesting
and not well-investigated class of control systems, which can be treated as a
special type of variational problems for neutral functional-differential inclu-
sions containing time delays not only in state but also in velocity variables.
On the other hand, this class is related to differential-algebraic systems with
a linear link between “slow” and “fast” variables. Employing the method of
discrete approximations and the basic tools of generalized differentiation, we
establish a strong variational convergence/stability of discrete approximations
and derive extended optimality conditions for continuous-time systems in both
Euler-Lagrange and Hamiltonian forms.

The rest of Chap. 7 is devoted to optimal control problems governed by
partial differential equations with pointwise control and state constraints. We
pay our primary attention to evolution systems described by parabolic and
hyperbolic equations with controls functions acting in the Dirichlet and Neu-
mann boundary conditions. It happens that such boundary control problems
are the most challenging and the least investigated in PDE optimal control
theory, especially in the presence of pointwise state constraints. Employing
approximation and perturbation methods of modern variational analysis, we
justify variational convergence and derive necessary optimality conditions for
various control problems for such PDE systems including minimax control
under uncertain disturbances.

The concluding Chapter 8 is on applications of variational analysis to eco-
nomic modeling. The major topic here is welfare economics, in the general
nonconvex setting with infinite-dimensional commodity spaces. This impor-
tant class of competitive equilibrium models has drawn much attention of
economists and mathematicians, especially in recent years when nonconvex-
ity has become a crucial issue for practical applications. We show that the
methods of variational analysis developed in this book, particularly the ex-
tremal principle, provide adequate tools to study Pareto optimal allocations
and associated price equilibria in such models. The tools of variational analysis
and generalized differentiation allow us to obtain extended nonconvex versions
of the so-called “second fundamental theorem of welfare economics” describ-
ing marginal equilibrium prices in terms of minimal collections of generalized
normals to nonconvex sets. In particular, our approach and variational de-
scriptions of generalized normals offer new economic interpretations of market
equilibria via “nonlinear marginal prices” whose role in nonconvex models is
similar to the one played by conventional linear prices in convex models of
the Arrow-Debreu type.
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The book includes a Glossary of Notation, common for both volumes,
and an extensive Subject Index compiled separately for each volume. Using
the Subject Index, the reader can easily find not only the page, where some
notion and/or notation is introduced, but also various places providing more
discussions and significant applications for the object in question.

Furthermore, it seems to be reasonable to title all the statements of the
book (definitions, theorems, lemmas, propositions, corollaries, examples, and
remarks) that are numbered in sequence within a chapter; thus, in Chap. 5 for
instance, Example 5.3.3 precedes Theorem 5.3.4, which is followed by Corol-
lary 5.3.5. For the reader’s convenience, all these statements and numerated
comments are indicated in the List of Statements presented at the end of each
volume. It is worth mentioning that the list of acronyms is included (in al-
phabetic order) in the Subject Index and that the common principle adopted
for the book notation is to use lower case Greek characters for numbers and
(extended) real-valued functions, to use lower case Latin characters for vectors
and single-valued mappings, and to use Greek and Latin upper case characters
for sets and set-valued mappings.

Our notation and terminology are generally consistent with those in Rock-
afellar and Wets [1165]. Note that we try to distinguish everywhere the notions
defined at the point and around the point in question. The latter indicates
robustness/stability with respect to perturbations, which is critical for most
of the major results developed in the book.

The book is accompanied by the abundant bibliography (with English
sources if available), common for both volumes, which reflects a variety of
topics and contributions of many researchers. The references included in the
bibliography are discussed, at various degrees, mostly in the extensive com-
mentaries to each chapter. The reader can find further information in the
given references, directed by the author’s comments.

We address this book mainly to researchers and graduate students in math-
ematical sciences; first of all to those interested in nonlinear analysis, opti-
mization, equilibria, control theory, functional analysis, ordinary and partial
differential equations, functional-differential equations, continuum mechanics,
and mathematical economics. We also envision that the book will be useful
to a broad range of researchers, practitioners, and graduate students involved
in the study and applications of variational methods in operations research,
statistics, mechanics, engineering, economics, and other applied sciences.

Parts of the book have been used by the author in teaching graduate
classes on variational analysis, optimization, and optimal control at Wayne
State University. Basic material has also been incorporated into many lectures
and tutorials given by the author at various schools and scientific meetings
during the recent years.
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Basic Theory



1

Generalized Differentiation in Banach Spaces

In this chapter we define and study basic concepts of generalized differentiation
that lies at the heart of variational analysis and its applications considered in
the book. Most properties presented in this chapter hold in arbitrary Banach
spaces (some of them don’t require completeness or even a normed structure,
as one can see from the proofs). Developing a geometric dual-space approach
to generalized differentiation, we start with normals to sets (Sect. 1.1), then
proceed to coderivatives of set-valued mappings (Sect. 1.2), and then to sub-
differentials of extended-real-valued functions (Sect. 1.3).

Unless otherwise stated, all the spaces in question are Banach whose norms
are always denoted by ‖ · ‖. Given a space X , we denote by IBX its closed unit
ball and by X∗ its dual space equipped with the weak∗ topology w∗, where
〈·, ·〉 means the canonical pairing. If there is no confusion, IB and IB∗ stand
for the closed unit balls of the space and dual space in question, while S and
S∗ are usually stand for the corresponding unit spheres ; also Br (x) := x +r IB
with r > 0. The symbol ∗ is used everywhere to indicate relations to dual
spaces (dual elements, adjoint operators, etc.)

In what follows we often deal with set-valued mappings (multifunctions)
F : X →→ X∗ between a Banach space and its dual, for which the notation

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗ ∣∣ ∃ sequences xk → x̄ and x∗
k
w∗
→ x∗

with x∗
k ∈ F(xk) for all k ∈ IN

}
(1.1)

signifies the sequential Painlevé-Kuratowski upper/outer limit with respect to
the norm topology of X and the weak∗ topology of X∗. Note that the symbol
:= means “equal by definition” and that IN := {1, 2, . . .} denotes the set of
all natural numbers.

The linear combination of the two subsets Ω1 and Ω2 of X is defined by

α1Ω1 + α2Ω2 :=
{
α1x1 + α2x2

∣
∣ x1 ∈ Ω1, x2 ∈ Ω2

}
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with real numbers α1, α2 ∈ IR := (−∞,∞), where we use the convention that
Ω + ∅ = ∅, α∅ = ∅ if α ∈ IR \ {0}, and α∅ = {0} if α = 0. Dealing with empty
sets, we let inf ∅ := ∞, sup ∅ := −∞, and ‖∅‖ := ∞.

1.1 Generalized Normals to Nonconvex Sets

Throughout this section, Ω is a nonempty subset of a real Banach space X .
Such a set is called proper if Ω 	= X . In what follows the expressions

clΩ, coΩ, clcoΩ, bdΩ, intΩ

stand for the standard notions of closure, convex hull , closed convex hull,
boundary, and interior of Ω, respectively. The conic hull of Ω is

cone Ω :=
{
αx ∈ X | α ≥ 0, x ∈ Ω

}
.

The symbol cl ∗ signifies the weak∗ topological closure of a set in a dual space.

1.1.1 Basic Definitions and Some Properties

We begin the generalized differentiation theory with constructing generalized
normals to arbitrary sets. To describe basic normals to a set Ω at a given
point x̄ , we use a two-stage procedure: first define more primitive ε-normals
(prenormals) to Ω at points x close to x̄ and then pass to the sequential limit
(1.1) as x → x̄ and ε ↓ 0. Throughout the book we use the notation

x
Ω→ x̄ ⇐⇒ x → x̄ with x ∈ Ω .

Definition 1.1 (generalized normals). Let Ω be a nonempty subset of X .
(i) Given x ∈ Ω and ε ≥ 0, define the set of ε-normals to Ω at x by

N̂ε(x ;Ω) :=
{

x∗ ∈ X∗
∣
∣
∣ lim sup

u
Ω→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

}
. (1.2)

When ε = 0, elements of (1.2) are called Fréchet normals and their col-
lection, denoted by N̂(x ;Ω), is the prenormal cone to Ω at x. If x /∈ Ω,
we put N̂ε(x ;Ω) := ∅ for all ε ≥ 0.

(ii) Let x̄ ∈ Ω. Then x∗ ∈ X∗ is a basic/limiting normal to Ω at x̄ if

there are sequences εk ↓ 0, xk
Ω→ x̄, and x∗

k
w∗
→ x∗ such that x∗

k ∈ N̂εk (xk ;Ω) for
all k ∈ IN . The collection of such normals

N(x̄ ;Ω) := Lim sup
x→x̄
ε↓0

N̂ε(x ;Ω) (1.3)

is the (basic, limiting) normal cone to Ω at x̄. Put N(x̄ ;Ω) := ∅ for x̄ /∈ Ω.
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It easily follows from the definitions that

N̂ε(x̄ ;Ω) = N̂ε(x̄ ; clΩ) and N(x̄ ;Ω) ⊂ N(x̄ ; clΩ)

for every Ω ⊂ X , x̄ ∈ Ω, and ε ≥ 0. Observe that both the prenormal cone
N̂(·;Ω) and the normal cone N(·;Ω) are invariant with respect to equivalent
norms on X while the ε-normal sets N̂ε(·;Ω) depend on a given norm ‖ · ‖ if
ε > 0. Note also that for each ε ≥ 0 the sets (1.2) are obviously convex and
closed in the norm topology of X∗; hence they are weak∗ closed in X∗ when
X is reflexive.

In contrast to (1.2), the basic normal cone (1.3) may be nonconvex in very
simple situations as for Ω :=

{
(x1, x2) ∈ IR2| x2 ≥ −|x1|

}
, where

N((0, 0);Ω) =
{
(v, v)

∣
∣ v ≤ 0

}
∪
{
(v,−v)

∣
∣ v ≥ 0

}
(1.4)

while N̂((0, 0);Ω) = {0}. This shows that N(x̄ ;Ω) cannot be dual/polar to
any (even nonconvex) tangential approximation of Ω at x̄ in the primal space
X , since polarity always implies convexity; cf. Subsect. 1.1.2.

One can easily observe the following monotonicity properties of the ε-
normal sets (1.2) with respect to ε as well as with respect to the set order:

N̂ε(x̄ ;Ω) ⊂ N̂ε̃(x̄ ;Ω) if 0 ≤ ε ≤ ε̃ ,

N̂ε(x̄ ;Ω) ⊂ N̂ε(x̄ ; Ω̃) if x̄ ∈ Ω̃ ⊂ Ω and ε ≥ 0 . (1.5)

In particular, the decreasing property (1.5) holds for the prenormal cone
N̂(x̄ ; ·). Note however that neither (1.5) nor the opposite inclusion is valid
for the basic normal cone (1.3). To illustrate this, we consider the two sets

Ω :=
{
(x1, x2) ∈ IR2

∣
∣ x2 ≥ −|x1|

}
and Ω̃ :=

{
(x1, x2) ∈ IR2

∣
∣ x1 ≤ x2

}

with x̄ = (0, 0) ∈ Ω̃ ⊂ Ω. Then

N(x̄ ; Ω̃) =
{
(v,−v)

∣
∣ v ≥ 0

}
⊂ N(x̄ ;Ω) ,

where the latter cone is computed in (1.4). Furthermore, taking Ω as above
and Ω̃ :=

{
(x1, x2) ∈ IR2| x2 ≥ 0

}
⊂ Ω, we have

N(x̄ ;Ω) ∩ N(x̄ ; Ω̃) = {(0, 0)} ,

which excludes any monotonicity relations.

The next property for representing normals to set products is common for
both prenormal and normal cones.
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Proposition 1.2 (normals to Cartesian products). Consider an arbi-
trary point x̄ = (x̄1, x̄2) ∈ Ω1 ×Ω2 ⊂ X1 × X2. Then

N̂(x̄ ;Ω1 ×Ω2) = N̂(x̄1;Ω1) × N̂(x̄2;Ω2) ,

N(x̄ ;Ω1 ×Ω2) = N(x̄1;Ω1) × N(x̄2;Ω2) .

Proof. Since both prenormal and normal cones do not depend on equivalent
norms on X1 and X2, we can fix any norms on these spaces and define a norm
on the product X1 × X2 by

‖(x1, x2)‖ := ‖x1‖ + ‖x2‖ .

Given arbitrary ε ≥ 0 and x = (x1, x2) ∈ Ω := Ω1 ×Ω2, we easily check that

N̂ε(x1;Ω1) × N̂ε(x2;Ω2) ⊂ N̂2ε(x ;Ω) ⊂ N̂2ε(x1;Ω1) × N̂2ε(x2;Ω2) ,

which implies both product formulas in the proposition. �

The prenormal cone N̂(·;Ω) is obviously the smallest set among all the
sets N̂ε(·;Ω). It follows from (1.2) that

N̂ε(x̄ ;Ω) ⊃ N̂(x̄ ;Ω) + ε IB∗

for every ε ≥ 0 and an arbitrary set Ω. If Ω is convex, then this inclusion
holds as equality due to the following representation of ε-normals.

Proposition 1.3 (ε-normals to convex sets). Let Ω be convex. Then

N̂ε(x̄ ;Ω) =
{

x∗ ∈ X∗ ∣∣ 〈x∗, x − x̄〉 ≤ ε‖x − x̄‖ whenever x ∈ Ω
}

for any ε ≥ 0 and x̄ ∈ Ω. In particular, N̂(x̄ ;Ω) agrees with the normal cone
of convex analysis.

Proof. Note that the inclusion “⊃” in the above formula obviously holds for
an arbitrary set Ω. Let us justify the opposite inclusion when Ω is convex.
Consider any x∗ ∈ N̂ε(x̄ ;Ω) and fix x ∈ Ω. Then we have

xα := x̄ + α(x − x̄) ∈ Ω for all 0 ≤ α ≤ 1

due to the convexity of Ω. Moreover, xα → x̄ as α ↓ 0. Taking an arbitrary
γ > 0, we easily conclude from (1.2) that

〈x∗, xα − x̄〉 ≤ (ε + γ )‖xα − x̄‖ for small α > 0 ,

which completes the proof. �
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It follows from Definition 1.1 that

N̂(x̄ ;Ω) ⊂ N(x̄ ;Ω) for any Ω ⊂ X and x̄ ∈ Ω . (1.6)

This inclusion may be strict even for simple sets as the one in (1.4), where
N̂(x̄ ;Ω) = {0} for x̄ = 0 ∈ IR2. The equality in (1.6) singles out a class of
sets that have certain “regular” behavior around x̄ and unify good properties
of both prenormal and normal cones at x̄ .

Definition 1.4 (normal regularity of sets). A set Ω ⊂ X is (normally)
regular at x̄ ∈ Ω if

N(x̄ ;Ω) = N̂(x̄ ;Ω) .

An important example of set regularity is given by sets Ω locally convex
around x̄ , i.e., for which there is a neighborhood U ⊂ X of x̄ such that Ω ∩U
is convex.

Proposition 1.5 (regularity of locally convex sets). Let U be a neigh-
borhood of x̄ ∈ Ω ⊂ X such that the set Ω ∩ U is convex. Then Ω is regular
at x̄ with

N(x̄ ;Ω) =
{

x∗ ∈ X∗ ∣∣ 〈x∗, x − x̄〉 ≤ 0 for all x ∈ Ω ∩ U
}
.

Proof. The inclusion “⊃” follows from (1.6) and Proposition 1.3. To prove
the opposite inclusion, we take any x∗ ∈ N(x̄ ;Ω) and find the corresponding
sequences of (εk, xk, x∗

k ) from Definition 1.1(ii). Thus xk ∈ U for all k ∈ IN
sufficiently large. Then Proposition 1.3 ensures that, for such k,

〈x∗
k , x − xk〉 ≤ εk‖x − xk‖ for all x ∈ Ω ∩ U .

Passing there to the limit as k → ∞, we finish the proof. �

Further results and discussions on normal regularity of sets and related
notions of regularity for functions and set-valued mappings will be presented
later in this chapter and mainly in Chap. 3, where they are incorporated
into calculus rules. We’ll show that regularity is preserved under major cal-
culus operations and ensure equalities in calculus rules for basic normal and
subdifferential constructions. On the other hand, such regularity may fail in
many situations important for the theory and applications. In particular, it
never holds for sets in finite-dimensional spaces related to graphs of non-
smooth locally Lipschitzian mappings; see Theorem 1.46 below. However, the
basic normal cone and associated subdifferentials and coderivatives enjoy de-
sired properties in general “irregular” settings, in contrast to the prenormal
cone N̂(x̄ ;Ω) and its counterparts for functions and mappings.

Next we establish two special representations of the basic normal cone to
closed subsets of the finite-dimensional space X = IRn. Since all the norms in
finite dimensions are equivalent, we always select the Euclidean norm
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‖x‖ :=
√

x2
1 + . . .+ x2

n

on IRn, unless otherwise stated. In this case X∗ = X = IRn.
Given a nonempty set Ω ⊂ IRn, consider the associated distance function

dist(x ;Ω) := inf
u∈Ω

‖x − u‖ (1.7)

and define the Euclidean projector of x to Ω by

Π(x ;Ω) :=
{
w ∈ Ω

∣
∣ ‖x − w‖ = dist(x ;Ω)

}
.

If Ω is closed, the set Π(x ;Ω) is nonempty for every x ∈ IRn. The following
theorem describes the basic normal cone to subsets Ω ⊂ IRn that are locally
closed around x̄ . The latter means that there is a neighborhood U of x̄ for
which Ω ∩ U is closed.

Theorem 1.6 (basic normals in finite dimensions). Let Ω ⊂ IRn be
locally closed around x̄ ∈ Ω. Then the following representations hold:

N(x̄ ;Ω) = Lim sup
x→x̄

N̂(x ;Ω) , (1.8)

N(x̄ ;Ω) = Lim sup
x→x̄

[
cone(x −Π(x ;Ω))

]
. (1.9)

Proof. First we prove (1.8), which means that one can equivalently put ε = 0
in definition (1.3) of basic normals to locally closed sets in finite-dimensions.
The inclusion “⊃” in (1.8) is obvious; let us justify the opposite inclusion.

Fix x∗ ∈ N(x̄ ;Ω) and find, by Definition 1.1(ii), sequences εk ↓ 0, xk → x̄ ,
and x∗

k → x∗ such that xk ∈ Ω and x∗
k ∈ N̂εk (xk ;Ω) for all k ∈ IN . Taking

into account that X = X∗ = IRn and that Ω is locally closed around x̄ , for
each k = 1, 2, . . . we form xk + αx∗

k with some parameter α > 0 and select
wk ∈ Π(xk + αx∗

k ;Ω) from the Euclidean projector. Due to the choice of wk

one has the inequality

‖xk + αx∗
k − wk‖2 ≤ α2‖x∗

k ‖2

and, since the norm is Euclidean,

‖xk + αx∗
k − wk‖2 = ‖xk − wk‖2 + 2α〈x∗

k , xk − wk〉 + α2‖x∗
k ‖2 .

This implies the estimate

‖xk − wk‖2 ≤ 2α〈x∗
k , wk − xk〉 for any α > 0 . (1.10)

Using the convergence wk → xk as α ↓ 0 and the definition of the εk-normals
x∗

k ∈ N̂εk (xk ;Ω), we find a sequence of positive numbers α = αk along which

〈x∗
k , wk − xk〉 ≤ 2εk‖wk − xk‖ for every k ∈ IN .
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This gives ‖xk−wk‖ ≤ 4αkεk due to (1.10); hence wk → x̄ as k → ∞. Moreover,
letting

w∗
k := x∗

k + 1
αk

(xk − wk) ,

we get ‖w∗
k − x∗

k ‖ ≤ 4εk and w∗
k → x∗ as k → ∞.

To justify (1.8), it remains to show that w∗
k ∈ N̂(wk ;Ω) for all k. Indeed,

for every fixed x ∈ Ω we get

0 ≤ ‖xk + αk x∗
k − x‖2 − ‖xk + αk x∗

k − wk‖2

= 〈αk x∗
k + xk − x, αk x∗

k + xk − wk〉 + 〈αk x∗
k + xk − x, wk − x〉

− 〈αk x∗
k + xk − wk, x − wk〉 − 〈αk x∗

k + xk − wk, αk x∗
k + xk − x〉

= −2αk〈w∗
k , x − wk〉 + ‖x − wk‖2 ,

since the norm is Euclidean. The latter implies the estimate

〈w∗
k , x − wk〉 ≤ 1

2αk
‖x − wk‖2 for all x ∈ Ω ,

which obviously ensures that w∗
k ∈ N̂(wk ;Ω) by Definition 1.1(i). Thus we

arrive at the first representation (1.8) of the basic normal cone.
To justify the second representation (1.9), it is sufficient to show that

Lim sup
x→x̄

N̂(x ;Ω) = Lim sup
x→x̄

[
cone(x −Π(x ;Ω))

]
.

Let us first prove the inclusion

N̂(x ;Ω) ⊂ Lim sup
u→x

[
cone(u −Π(u;Ω))

]
for any x ∈ Ω . (1.11)

Given x ∈ Ω and x∗ ∈ N̂(x ;Ω), we put xk := x + 1
k x∗ and pick some wk ∈

Π(xk ;Ω) for each k ∈ IN . The latter is clearly equivalent to

0 ≤ ‖xk − v‖2 − ‖xk − wk‖2 = 〈xk − v, xk − wk〉

+ 〈xk − v,wk − v〉 − 〈xk − wk, v − wk〉 − 〈xk − wk, xk − v〉

= −2〈xk − wk, v − wk〉 + ‖v − wk‖2 for all v ∈ Ω ,

which characterizes the Euclidean projector: wk ∈ Π(xk ;Ω) if and only if

〈xk − wk, v − wk〉 ≤ 1
2‖v − wk‖2 for all v ∈ Ω .

Letting v = x and using the definition of xk , we get
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‖x − wk‖2 + 1
k 〈x

∗, x − wk〉 ≤ 1
2‖x − wk‖2 .

Since x∗ ∈ N̂(x ;Ω), the latter inequality gives

k‖x − wk‖ ≤ 2〈x∗, wk − x〉
‖x − wk‖

→ 0 as k → ∞

and therefore

k(xk − wk) = x∗ + k(x − wk) → x∗ as k → ∞ .

Thus we have (1.11) that implies the inclusion “⊂” in (1.9) by taking the
Painlevé-Kuratowski upper limit as x → x̄ and using (1.8).

It remains to prove the opposite inclusion in (1.9). To furnish this, let us
consider the inverse Euclidean projector

Π−1(x ;Ω) :=
{

z ∈ X
∣
∣ x ∈ Π(z;Ω)

}

to Ω at x ∈ Ω. It follows from the above characterization of the Euclidean
projector and the definition of N̂(x ;Ω) that

cone
[
Π−1(x ;Ω) − x

]
⊂ N̂(x ;Ω) for any x ∈ Ω ,

which implies the inclusion “⊃” in (1.9) by taking the Painlevé-Kuratowski
upper limit as x

Ω→ x̄ and using (1.8). �

Note that, although the proof of representation (1.8) essentially employs
properties of the Euclidean norm , the representation itself doesn’t depend on
a specific norm on IRn all of which are equivalent. In Chap. 2 we show, using
variational arguments, that this representation of the basic normal cone holds
in any Asplund space, i.e., in a Banach space where every convex continuous
function is generically Fréchet differentiable (in particular, in any reflexive
space). In fact, (1.8) is a characterization of Asplund spaces. Note however
that ε > 0 cannot be removed from the definition of basic normals and the
corresponding subdifferential and coderivative constructions without loss of
important properties in the general Banach space setting; see below, in par-
ticular, the next subsection. Moreover, we’ll see that stability with respect to
ε-enlargements plays an essential role in the proof of some principal results in
Asplund spaces and even in finite-dimensions.

On the contrary, representation (1.9) heavily depends on the Euclidean
norm on IRn and is not valid even for convex sets if a norm in non-Euclidean.
For example, we have

N((0, 0);Ω) =
{
(0, v)

∣
∣ v ≤ 0

}
for Ω =

{
x = (x1, x2) ∈ IR2| x2 ≥ 0

}
,

while the cone on the right-hand side of (1.9) equals to
{
(v1, v2)| v2+|v1| ≤ 0

}

when the norm is given by ‖x‖ := max
{
|x1|, |x2|

}
.
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We are not going to consider here special properties of the basic normal
cone in finite-dimensional spaces referring the reader to the books by Mor-
dukhovich [901] and Rockafellar and Wets [1165]. Let us just mention that
this cone enjoys the following robustness property

N(x̄ ;Ω) = Lim sup
x→x̄

N(x ;Ω) for all x̄ ∈ Ω ,

which can be easily obtained via the standard diagonal process in finite di-
mensions. For closed sets Ω ⊂ IRn this means that the graph of the set-valued
mapping N(·;Ω) is closed, which obviously implies that the values N(x ;Ω)
are closed for all x ∈ Ω.

It happens that these properties don’t hold in infinite dimensions, even in
the case of the simplest Hilbert space of sequences X = X∗ = �2. The reason
is that the basic normal cone is defined in terms of sequential limits but the
weak∗ topology of X∗ is not sequential, so the weak∗ sequential closure of a
set may not be weak∗ sequentially closed. The following example, which is
due to Fitzpatrick (1994, personal communication; see also [144]), shows that
values of the basic normal cone may not be even norm closed in X∗, hence
neither weak∗ closed nor weak∗ sequentially closed in the dual space.

Example 1.7 (nonclosedness of the basic normal cone in �2). There
are a closed subset Ω of the Hilbert space �2 and a boundary point x̄ ∈ Ω such
that N(x̄ ;Ω) is not norm closed in �2.

Proof. Consider a complete orthonormal basis {e1, e2, . . .} in the Hilbert
space �2 and form a nonconvex subset of �2 by

Ω :=
{

s(e1 − je j ) + t( je1 − em)
∣
∣ m > j > 1, s, t ≥ 0} ∪ {te1

∣
∣ t ≥ 0

}
,

which is obviously a cone. We can check that Ω is closed in �2. Let us show
that the basic normal cone N(0;Ω) is not closed in the norm topology of �2.
This follows from:

(i) e∗1 + 1
j e∗j ∈ N(0;Ω) for all j = 2, 3, . . . ,

(ii) e∗1 + 1
j e∗j → e∗1 as j → ∞,

(iii) e∗1 /∈ N(0;Ω),

where e∗j are linear functionals generated by e j . To justify (i), we define e∗jm :=
e∗1 + 1

j e∗j + je∗m for 1 < j < m and observe that e∗jm ∈ N̂( 1
m ( je1 − em);Ω). For

each j we have 1
m ( je1 − em) → 0 and e∗jm

w→ e∗1 + 1
j e∗j as m → ∞, which gives

(i). It is easy to check (ii), and so it remains to verify (iii).
Suppose that (iii) doesn’t hold, i.e., e∗1 ∈ N(0;Ω). Then, by the definition

of basic normals with w∗ = w (the weak convergence in X∗ = �2), there are
sequences xk

Ω→ 0, εk ↓ 0, and x∗
k

w→ e∗1 such that x∗
k ∈ N̂εk (xk ;Ω) for all

k ∈ IN . Assume that some of xk are of the form xk = tke1 with tk ≥ 0. Putting
u := xk + re1 with r > 0, we get
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εk ≥ lim sup
u
Ω→xk

〈
x∗

k ,
u − xk

‖u − xk‖

〉
≥ lim sup

r↓0

〈
x∗

k ,
re1

‖re1‖

〉
= 〈x∗

k , e1〉 ,

and so the convergence x∗
k

w→ e∗1 implies that all but finitely many of xk are
not of the form xk = tke1 for tk ≥ 0. Consequently, all but finitely many of xk

are of the form s(e1 − je j ) + t( je1 − em), where m > j > 1 and s, t ≥ 0.
Now consider a sequence of xk in the form s(e1− je j ) + t( je1−em) belonging

to Ω for any choice of sequences s = s(k) ≥ 0, t = t(k) ≥ 0, j = j(k) > 1,
and m = m(k) > j(k). Taking u := xk + r( je1 − em) ∈ Ω, we get

εk ≥ lim sup
u
Ω→xk

〈
x∗

k ,
u − xk

‖u − xk‖

〉
≥ lim sup

r↓0

〈
x∗

k ,
r( je1 − em)
‖r( je1 − em)‖

〉

=
〈

x∗
k ,

je1 − em

‖ je1 − em‖

〉
,

which gives the estimate

〈x∗
k , e1 − j−1em〉 ≤ εk

√
1 + j−2 (1.12)

On the other hand, considering u := xk + r(e1 − je j ) ∈ Ω, we have

εk ≥ lim sup
u
Ω→xk

〈
x∗

k ,
u − xk

‖u − xk‖

〉
≥ lim sup

r↓0

〈
x∗

k ,
r(e1 − je j )
‖r(e1 − je j )‖

〉

=
〈

x∗
k ,

e1 − je j

‖e1 − je j‖

〉
,

which implies
〈x∗

k , e1〉 ≤ 〈x∗
k , je j 〉 + εk

√
1 + j2 . (1.13)

Letting k → ∞ in (1.12), we get

1 ≤ lim inf
k→∞

〈x∗
k ,

1
j(k)em(k)〉 .

This shows that if the sequence of natural numbers j(k) is unbounded, then
the sequence of x∗

k is unbounded too. The later contradicts the weak conver-
gence of x∗

k due to the classical Banach-Steinhaus theorem (uniform bound-
edness principle). Thus we have only finitely many j(k), and then (1.13) con-
tradicts the weak convergence x∗

k
w→ e∗1 as k → ∞. This justifies (iii). �

1.1.2 Tangential Approximations

A conventional approach to the study of infinitesimal properties of sets at
boundary points and related differential properties of functions and map-
pings involves tangential local approximations. As well known, the concept of
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tangents to the graph of a “smooth” function was in the very beginning of
the classical differential calculus. Then tangential approximations/directional
derivatives have been used as convenient tools of variational analysis, partic-
ularly for deriving necessary optimality conditions in constrained problems of
the calculus of variations, mathematical programming, and optimal control
with smooth and nonsmooth data.

In this subsection we present concepts of tangents most useful in vari-
ational analysis and its applications, discuss some of their properties, and
establish relationships between them and generalized normals introduced in
Subsect. 1.1.1. To define tangent vectors to a set, first recall two standard
notions of limits for set-valued mappings. Unless otherwise stated, we al-
ways understand limits in the sequential sense, in contrast to topological/net
limits for general non-metrizable topologies. Given a set-valued mapping
F : X →→ Y between topological spaces, the Painlevé-Kuratowski upper/outer
and lower/inner limits of F as x → x̄ is defined, respectively, by

Lim sup
x→x̄

F(x) :=
{

y ∈ Y
∣
∣ ∃ sequences xk → x̄ and yk → y

with yk ∈ F(xk) for all k ∈ IN
}
,

Lim inf
x→x̄

F(x) :=
{

y ∈ Y
∣
∣ ∀ sequence xk → x̄ ∃ yk ∈ F(xk) with k ∈ IN

such that yk → y as k → ∞
}
.

Note that the above “Lim sup” has been defined in (1.1) for the case of map-
pings F : X →→ X∗ acting into the dual space Y = X∗ equipped with the
(sequential) weak∗ topology; this is the main setting considered in the book.
The following constructions involve however “Lim sup” and “Lim inf” for set-
valued mappings from a real line into a normed space X .

Definition 1.8 (tangents cones). Let Ω ⊂ X with x̄ ∈ Ω. Then:
(i) The set T (x̄ ;Ω) ⊂ X defined by

T (x̄ ;Ω) := Lim sup
t↓0

Ω − x̄
t

,

where the “Lim sup” is taken with respect to the norm topology of X , is called
the contingent cone to Ω at x̄.

(ii) If the “Lim sup” in (i) is taken with respect to the weak topology of
X , then the resulting construction, denoted by TW (x̄ ;Ω), is called the weak
contingent cone to Ω at x̄.

(iii) The set TC(x̄ ;Ω) ⊂ X defined by

TC(x̄ ;Ω) := Lim inf
x
Ω→x̄

t↓0

Ω − x
t

,
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where the “Lim inf” is taken with respect to the norm topology of X , is called
the Clarke tangent cone to Ω at x̄.

The contingent cone T (x̄ ;Ω) is often called the Bouligand tangent/
contingent cone, since it was introduced by Bouligand and independently by
Severi; see Commentary to this chapter. This is a closed (but generally non-
convex) subcone of X that can be equivalently described as the collections of
v ∈ X such that there are sequences {xk} ⊂ Ω and {αk} ⊂ IR+ satisfying

xk → x̄ and αk(xk − x̄) → v as k → ∞ .

Similarly, the weak contingent cone TW (x̄ ;Ω) can be equivalently described
as the collection of v ∈ X such that there exist sequences {xk} ⊂ Ω and
{αk} ⊂ IR+ satisfying the relations

xk → x̄ and αk(xk − x̄) w→ v as k → ∞ .

The Clarke tangent cone (known also as the regular tangent cone) can be
described in this way as the collection of v ∈ X such that for every sequence
xk

Ω→ x̄ and every sequence tk ↓ 0 there is a sequence vk → v satisfying

xk + tkvk ∈ Ω for all k ∈ IN .

It follows immediately from the definitions that

TC(x̄ ;Ω) ⊂ T (x̄ ;Ω) ⊂ TW (x̄ ;Ω) ,

where the second inclusion holds as equality when X is finite-dimensional. In
contrast to T (x̄ ;Ω) and TW (x̄ ;Ω), the Clarke tangent cone is always convex
(see [255, 1165]), although it may be essentially smaller than T (x̄ ;Ω) and
TW (x̄ ;Ω) even in finite dimensions.

The next theorem gives more precise relationships between the tangent
cones from Definition 1.8. In its formulation we use the notion of a Kadec
norm on a Banach space that is one for which the weak and norm topologies
agree on the boundary of the unit sphere. It is well known in the geometric
theory of Banach spaces that every reflexive space admits an equivalent Kadec
norm that is also Fréchet differentiable off the origin.

Theorem 1.9 (relationships between tangent cones). Let X be a Ba-
nach space, and let Ω ⊂ X be locally closed around x̄. Then

Lim inf
x
Ω→x̄

T (x ;Ω) ⊂ TC(x̄ ;Ω) ⊂ Lim inf
x
Ω→x̄

TW (x ;Ω) ,

where the second inclusion holds if X is reflexive. Moreover,

TC(x̄ ;Ω) = Lim inf
x
Ω→x̄

TW (x ;Ω)

provided that the norm on X is Kadec and Fréchet differentiable off the origin.
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Proof. To justify the first inclusion of the theorem, take arbitrary v from the
set on the left-hand side. Then for any ε > 0 there is η > 0 such that

(v + ε IB) ∩ T (x ;Ω) 	= ∅ whenever x ∈ Ω ∩ (x̄ + ηIB) .

Let ν := (η/2)(‖v‖ + 2ε)−1 and show that
(
x + t(v + 2εηIB)

)
∩Ω 	= ∅ for all x ∈ Ω ∩ (x̄ + η

2 IB) and t ∈ (0, ν) ,

which easily implies that v ∈ TC(x̄ ;Ω). To proceed, consider the set

Tδ :=
{

t ∈ (0, ν)
∣
∣ (x + t(v + δ IB)

)
∩Ω 	= ∅

}

that happens to be dense in (0, ν) whenever δ ∈ (ε, 2ε). Indeed, by the above
choice of ν we find a sequence tk ↓ 0 such that

(
x + tk(v + δ IB)

)
∩Ω 	= ∅ as k ∈ IN , and so Tδ 	= ∅ .

Pick arbitrarily τ ∈ (0, ν) \ Tδ and put t∗ := sup
[
Tδ ∩ (0, τ )

]
, which obviously

gives
(
x + t∗(v + δ IB)

)
∩Ω 	= ∅. Taking into account the choice of ν and that

x + t∗(v + δ IB) ⊂ x̄ + η
2 IB + ν(‖v‖ + δ)IB ⊂ x̄ + ηIB ,

we find a sequence tk ↓ 0 such that
(
x + (t∗ + tk)(v + δ IB)

)
∩Ω 	= ∅ for all k ∈ IN .

The latter means that t∗ = τ , and thus τ is a cluster point of the set Tδ. Due
to δ ∈ (ε, 2ε) and an arbitrary choice of τ ∈ (0, ν) \ Tδ, we get

(
x + t(v + 2εηIB)

)
∩Ω 	= ∅ for all t ∈ (0, ν) ,

which implies that v ∈ TC(x̄ ;Ω) and therefore justifies the first inclusion of
the theorem in the general Banach space setting.

Suppose now that X is reflexive and justify the fulfillment of the second
inclusion claimed in the theorem. Taking v ∈ TC(x̄ ;Ω) and ε > 0, select η > 0
so that for every x ∈ (x̄ + ηIB) ∩Ω there is a sequence tk ↓ 0 and a sequence
{vk} ⊂ v + ε IB with x + tkvk ∈ Ω whenever k ∈ IN . By the reflexivity of X we
find v̄ ∈ X satisfying

v̄ ∈ v + ε IB and vk
w→ v̄ as k → ∞ .

It follows from the definition of the weak contingent cone that v̄ ∈ TW (x ;Ω).
Since ε > 0 was chosen arbitrarily, we conclude that v ∈ Lim inf TW (x ;Ω) as
x → x̄ with x ∈ Ω. This proves the second inclusion of the theorem.

As shown by Borwein and Strójwas [156, Theorem 3.2], the reflexivity of
X is necessary for the validity of the second inclusion in the theorem. We refer
the reader to Aubin and Frankowska [54, Theorem 4.1.13] and to Borwein and
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Strójwas [156, Theorem 3.1] for the proofs of the equality formulated in the
theorem under the additional assumptions made. �

Next we study connections between the above tangential approximations
of sets and the generalized normals defined in Subsect. 1.1.1. The following
theorem describes dual relations of Fréchet-type normals and ε-normals with
elements of the contingent and weak contingent cones.

Theorem 1.10 (normal-tangent relations). Let Ω ⊂ X be a subset of a
Banach space, and let x̄ ∈ Ω. Then

N̂ε(x̄ ;Ω) ⊂
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ ε‖v‖ for all v ∈ T (x̄ ;Ω)
}

whenever ε ≥ 0. Moreover,

N̂(x̄ ;Ω) ⊂
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ 0 for all v ∈ TW (x̄ ;Ω)
}
,

where equality holds if X is reflexive. The first inclusion holds as equality if
X is finite-dimensional.

Proof. To prove the first inclusion, fix x∗ ∈ N̂ε(x̄ ;Ω) with some ε ≥ 0 and
take an arbitrary tangent vector v ∈ T (x̄ ;Ω). It follows from Definition 1.8(i)
that there are sequences tk ↓ 0 and vk → v with x̄ + tkvk ∈ Ω for all k ∈ IN .
Substituting the latter combination into definition (1.2) of ε-normals, we get

tk〈x∗, vk〉 ≤ ε tk‖vk‖ for large k ∈ IN ,

which yields by passing to the limit as k → ∞ that 〈x∗, v〉 ≤ ε‖v‖. This
justifies the first inclusion of the theorem for an arbitrary number ε ≥ 0.

If ε = 0, the above proof ensures the fulfillment of the second inclusion
of the theorem, where the weak contingent cone replaces the contingent cone.
Indeed, it is sufficient to apply the weak convergence of vk

w→ v for passing to
the limit in 〈x∗, vk〉 with zero on the right-hand side.

Assume now that X is reflexive and show that the second inclusion holds
in this case as equality. To proceed, we fix x∗ /∈ N̂(x̄ ;Ω) and find by (1.2) a
number ε̃ > 0 and a sequence xk

Ω→ x̄ such that

〈x∗, xk − x̄〉 > ε̃‖xk − x̄‖ for large k ∈ IN .

Put αk := ‖xk − x̄‖−1 for k ∈ IN and suppose without loss of generality that

xk − x̄
‖xk − x̄‖

w→ v for some v ∈ X

due to the weak sequential compactness of bounded sets in reflexive spaces.
Thus v ∈ TW (x̄ ;Ω) by Definition 1.8(ii). On the other hand, 〈x∗, v〉 ≥ ε̃ by
passing to the limit in the assumption above. This justifies the desired equality
and completes the proof of the theorem. �
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Corollary 1.11 (normal-tangent duality). Let X be a reflexive space, and
let Ω ⊂ X with x̄ ∈ Ω. Then the prenormal/Fréchet normal cone to Ω at x̄
is dual to the weak contingent cone to Ω at this point, i.e.,

N̂(x̄ ;Ω) = T ∗
W (x̄ ;Ω) :=

{
x∗ ∈ X∗∣∣ 〈x∗, z〉 ≤ 0 whenever v ∈ TW (x̄ ;Ω)

}
.

Thus one has the duality relationship

N̂(x̄ ;Ω) = T ∗(x̄ ;Ω)

when X is finite-dimensional.

Proof. The first equality follows directly from Theorem 1.10. It obviously
reduces to the second one if dim X < ∞. �

Note that we don’t have the converse duality relation N̂∗(x̄ ;Ω) = T (x̄ ;Ω)
between the Fréchet normal cone and the contingent cone, since the latter
is typically nonconvex even for simple sets in finite dimensions, while duality
always generates convexity. On the contrary, the Clarke normal cone to Ω at
x̄ defined by

NC(x̄ ;Ω) := T ∗
C (x̄ ;Ω)

enjoys the full duality

N∗
C(x̄ ;Ω) = TC(x̄ ;Ω)

with the Clarke tangent cone from Definition 1.8(iii), being however substan-
tially larger than the Fréchet normal cone and the basic normal cone. In par-
ticular, for the set Ω := {(x1, x2) ∈ IR2| x2 ≥ −|x1|}, the basic normal cone is
computed in (1.4), while N̂((0, 0);Ω) = {0} and NC((0, 0);Ω) = {(v1, v2) ∈
IR2| v2 ≤ −|v1|}. A more striking example is provided by the graphical set
Ω := gph |x | ⊂ IR2, where

N((0, 0);Ω) =
{
(v1, v2)

∣
∣ v2 ≤ −|v1|

}
∪
{
(v1, v2)

∣
∣ v2 = |v1|

}

while NC((0, 0);Ω) = R2. The latter situation is typical for graphical sets gen-
erated by Lipschitzian single-valued mappings and the like: see Theorems 1.46
and 3.62 for the exact statements and also Subsect. 2.5.2 for equivalent rep-
resentations of the Clarke normal cone.

As mentioned, the basic normal cone (1.3), which is generally nonconvex,
cannot be dual to any tangential approximations. One has

cl∗co N(x̄ ;Ω) ⊂ NC(x̄ ;Ω) and TC(x̄ ;Ω) ⊂ N∗(x̄ ;Ω)

in the general Banach space setting, where equalities hold in both inclusions
above for closed subsets Ω of Asplund spaces; see Theorem 3.57.
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Remark 1.12 (normal versus tangential approximations). The princi-
pal difference between tangential and normal approximations is that the for-
mer constructions provide local approximations of sets in primal spaces, while
the latter ones are defined in dual spaces carrying “dual” information for the
study of local behavior. Being applied to epigraphs of extended-real-valued
functions and graphs of set-valued mappings, tangential approximations gen-
erate corresponding directional derivatives/subderivatives of functions and
graphical derivatives of mappings, while normal approximations relate to sub-
differentials and coderivatives, respectively; see below.

Conventional approaches to generalized differentiation start with tangen-
tial approximations and then proceed with dual-space constructions by po-
larity/duality correspondences. However, this way doesn’t allow us to gener-
ate either the (nonconvex) basic normal cone or even the prenormal cone at
reference points outside the settings discussed in Corollary 1.11. Neverthe-
less, as we’ll see below, the basic normal cone and associated subdifferential
and coderivative constructions for functions and mappings enjoy many useful
properties in arbitrary Banach spaces and admit a comprehensive theory in
the general Asplund space setting at the same level of perfection as in finite
dimensions. It happens that the basic normal cone and associated subdif-
ferential/coderivatives constructions enjoy much richer calculi in comparison
with those available for tangential approximations and dual convex objects
generated by them in finite and infinite dimensions.

It is worth mentioning that in our approach to calculus and related prop-
erties of basic normals, subgradients, and coderivatives one cannot see any
role of tangential approximations in primal spaces. What becomes crucial, in
both finite and – especially – infinite dimensions, is the focus on perturbations
and their stability in dual spaces, which will be demonstrated throughout the
book in various settings of calculus and applications. We can treat such a dual-
space perturbation/approximation theory as a proper counterpart of classical
variations and tangential approximations in general nonconvex frameworks of
advanced variational analysis.

1.1.3 Calculus of Generalized Normals

This subsection contains some calculus results for generalized normals in Ba-
nach spaces that are important in what follows.

Let f : X → Y be a mapping between Banach spaces, and let Θ be a subset
of Y . The inverse image of Θ under f is defined by

f −1(Θ) :=
{

x ∈ X
∣
∣ f (x) ∈ Θ

}
.

The main goal of this subsection is to establish calculus results for generalized
normals from Definition 1.1 that provide relationships between normal vectors
to nonempty sets Θ and their inverse images under differentiable mappings
between arbitrary Banach spaces. These results play a significant role in many
applications, in particular, those considered later in this chapter.
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Recall that f : X → Y is Fréchet differentiable at x̄ if there is a linear
continuous operator ∇ f (x̄): X → Y , called the Fréchet derivative of f at x̄ ,
such that

lim
x→x̄

f (x) − f (x̄) −∇ f (x̄)(x − x̄)
‖x − x̄‖ = 0 . (1.14)

The most interesting applications require, however, the following stronger dif-
ferentiability property.

Definition 1.13 (strict differentiability). A mapping f : X → Y is
strictly differentiable at x̄ if

lim
x→x̄
u→x̄

f (x) − f (u) −∇ f (x̄)(x − u)
‖x − u‖ = 0 .

The rate of strict differentiability of f at x̄ is a function r f (x̄ ; ·) from
(0,∞) into [0,∞] defined by

r f (x̄ ; η) := sup
x,u∈x̄+ηIB

x �=u

‖ f (x) − f (u) −∇ f (x̄)(x − u)‖
‖x − u‖ .

It follows from Definition 1.13 that r f (x̄ ; η) ↓ 0 as η ↓ 0 for strictly differ-
entiable mappings. Observe that, in contrast to (1.14), strict differentiability
involves some uniformity of the limit in the derivative definition with respect
to variable pairs of points around x̄ . A simple example of a function f : IR → IR
Fréchet differentiable but not strictly differentiable at x̄ = 0 is given by

f (x) :=






x2 if x is rational ,

0 otherwise .

If f ∈ C1 around x̄ , i.e., continuously Fréchet differentiable in a neighborhood
of x̄ , then it is obviously strictly differentiable at this point but not vice versa.
In fact it may not be even differentiable at points near x̄ as in the following
example of a continuous function f : [−1, 1] → IR, x̄ = 0, defined by

f (x) :=






x2 if x = 1/k, k ∈ IN ,

0 if x = 0 ,

linear otherwise .

Note that every mapping f strictly differentiable at x̄ is Lipschitz con-
tinuous around x̄ , or locally Lipschitzian around this point, i.e., there is a
neighborhood U of x̄ and a constant � ≥ 0 such that

‖ f (x) − f (u)‖ ≤ �‖x − u‖ for all x, u ∈ U . (1.15)
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Let us establish relationships between ε-normals to sets and their inverse
images under differentiable mappings at reference points. Recall that a linear
operator A: X → Y is surjective, or onto, if AX = Y , i.e., the image of X under
the operator A is the whole space Y .

Theorem 1.14 (ε-normals to inverse images under differentiable
mappings). Let f : X → Y , Θ ⊂ Y , and ȳ := f (x̄) ∈ Θ. The following
assertions hold:

(i) If f is Fréchet differentiable at x̄, then there is c1 > 0 such that

N̂ε(x̄ ; f −1(Θ)) ⊃ ∇ f (x̄)∗ N̂c1ε(ȳ;Θ) for all ε ≥ 0 .

(ii) If f is strictly differentiable at x̄ and ∇ f (x̄) is surjective, then there
is c2 > 0 such that

N̂ε(x̄ ; f −1(Θ)) ⊂ ∇ f (x̄)∗ N̂c2ε(ȳ;Θ) + ε IB∗ for all ε ≥ 0 .

(iii) If dim Y < ∞, then the inclusion in (ii) holds provided that f is
continuous around x̄ and merely Fréchet differentiable at this point with the
surjective derivative ∇ f (x̄).

Proof. To prove the inclusion in (i), we observe that (1.14) implies the exis-
tence of a number � > 0 and a neighborhood U of x̄ such that

‖ f (x) − f (x̄)‖ ≤ �‖x − x̄‖ for all x ∈ U .

Fix y∗ ∈ N̂ε(ȳ;Θ) and take an arbitrary sequence xk → x̄ with xk ∈ f −1(Θ)
for all k ∈ IN . Then we have f (xk) → f (x̄) = ȳ and

lim sup
xk→x̄

〈∇ f (x̄)∗y∗, xk − x̄〉
‖xk − x̄‖ = lim sup

xk→x̄

〈y∗,∇ f (x̄)(xk − x̄)〉
‖xk − x̄‖

= lim sup
xk→x̄

〈y∗, f (xk) − f (x̄)〉
‖xk − x̄‖

≤ lim sup
y
Θ→ȳ

max
{

0,
〈y∗, y − ȳ〉
�−1‖y − ȳ‖

}
≤ �ε

due to the definitions of ε-normals, Fréchet differentiability, and adjoint linear
operators. This ensures that ∇ f (x̄)∗y∗ ∈ N̂�ε(x̄ ; f −1(Θ)) for any ε ≥ 0. Thus
we have (i) with c1 := �−1.

Next let us prove (ii). In the proof below we’ll use the following property
of metric regularity for f around x̄ that holds under the assumptions in (ii):
there are a constant µ > 0 and neighborhoods U of x̄ and V of ȳ such that

dist(x ; f −1(y)) ≤ µ‖y − f (x)‖ for any x ∈ U, y ∈ V . (1.16)
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This actually goes back to the classical results of Lyusternik [824] and Graves
[522] and is known now as the Lyusternik-Graves theorem; cf. Theorem 1.57
in Subsect. 1.2.3 and the discussion therein.

Let us fix x∗ ∈ N̂ε(x̄ ; f −1(Θ)) and show that

|〈x∗, x〉| ≤ ε‖x‖ for all x ∈ ker∇ f (x̄) . (1.17)

Taking any x ∈ ker∇ f (x̄), one obviously has

‖ f (x̄ + t x) − ȳ‖ = o(t) for small t > 0 .

Then (1.16) implies that for any small t > 0 there is xt ∈ f −1(ȳ) with ‖x̄ +
t x − xt‖ = o(t). Excluding the trivial case of x = 0, we get

ε ≥ lim sup
t↓0

〈x∗, xt − x̄〉
‖xt − x̄‖ = lim sup

t↓0

〈x∗, t x〉
‖t x‖ =

〈x∗, x〉
‖x‖

for each x ∈ ker∇ f (x̄). Since it is also true for −x ∈ ker∇ f (x̄), we arrive at
the desired estimate (1.17).

Note that (1.17) gives ‖x∗‖L ≤ ε for the norm of the linear continuous
functional x∗ considered on the subspace L := ker∇ f (x̄). Using the Hahn-
Banach theorem, we extend x∗|L to some x̃∗ ∈ X∗ with ‖x̃∗‖ ≤ ε. Now putting
x̂∗ := x∗ − x̃∗, we get x̂∗ ∈ X∗ such that

‖x̂∗ − x∗‖ ≤ ε, 〈x̂∗, x〉 = 0 for all x ∈ ker∇ f (x̄) .

Taking into account that ∇ f (x̄)X = Y , this allows us to (uniquely) define a
linear functional ŷ∗ on Y by

〈ŷ∗, y〉 := 〈x̂∗, x〉 with any x ∈ ∇ f (x̄)−1(y) .

Applying the metric regularity property (1.16) to the linear surjective operator
∇ f (x̄): X → Y (which follows in this case from the classical open mapping
theorem), we find a constant µ > 0 such that for any y ∈ Y there is x ∈
∇ f (x̄)−1(y) satisfying ‖x‖ ≤ µ‖y‖. This implies the boundedness of the linear
functional ŷ∗ defined above, i.e., we have ŷ∗ ∈ Y ∗. Since ∇ f (x̄)∗ ŷ∗ = x̂∗, it
remains to prove that ŷ∗ ∈ N̂c2ε(ȳ;Θ) with some constant c2 > 0.

To furnish this, we use again the metric regularity property for the map-
ping f and its strict derivative. Picking any y ∈ Θ close to ȳ and using (1.16)
for f with some µ > 0, we find xy ∈ f −1(y) such that

‖xy − x̄‖ ≤ µ‖y − ȳ‖ .

Further, taking into account that

‖y − ȳ −∇ f (x̄)(xy − x̄)‖ = ‖ f (xy) − f (x̄) −∇ f (x̄)(xy − x̄)‖ = o(‖xy − x̄‖)

and using (1.16) for the operator ∇ f (x̄), we get x̂y ∈ ∇ f (x̄)−1(y − ȳ) with
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‖xy − x̄ − x̂y‖ = o(‖xy − x̄‖) .

Now putting all the above together, one has

lim sup
y
Θ→ȳ

〈ŷ∗, y − ȳ〉
‖y − ȳ‖ = lim sup

y
Θ→ȳ

〈x̂∗, x̂y〉
‖y − ȳ‖ ≤ lim sup

y
Θ→ȳ

max
{

0,
〈x̂∗, x̂y〉

µ−1‖xy − x̄‖

}

= lim sup
y
Θ→ȳ

max
{

0,
〈x̂∗, xy − x̄〉
µ−1‖xy − x̄‖

}

≤ µ lim sup
x

f −1(Θ)
→ x̄

max
{

0,
(
ε +

〈x∗, x − x̄〉
‖x − x̄‖

)}
≤ 2µε .

This ensures that ŷ∗ ∈ N̂c2ε(ȳ;Θ) with c2 := 2µ and justifies (ii).
Observe that in the above proof we used the property of metric regularity

only for y = ȳ in (1.16). Such a weaker property also holds under the assump-
tions in (iii); this follows from the proofs of Theorem F in Halkin [543] and of
Proposition 7 in Ioffe [594] based on the Brouwer fixed-point theorem; cf. also
the proof of Theorem 6.37 in Subsect. 6.3.4. Thus we get (iii) and complete
the proof of the theorem. �

Corollary 1.15 (Fréchet normals to inverse images under differen-
tiable mappings). Let f : X → Y be Fréchet differentiable at x̄. Then

N̂(x̄ ; f −1(Θ)) ⊃ ∇ f (x̄)∗ N̂(ȳ;Θ) ,

where the equality holds when ∇ f (x̄) is surjective and either dim Y < ∞ or
f is strictly differentiable at x̄.

Proof. Follows from Theorem 1.14 for ε = 0. �

Our next goal is to obtain relationships between basic normals to sets
and their inverse images at reference points. If f is continuously differentiable
in a neighborhood of x̄ , we can employ the results of Theorem 1.14 for ε-
normals at points x close to x̄ and then pass to the limit as x → x̄ and ε ↓ 0.
The situation is more complicated when f is merely strictly differentiable
at x̄ . Then one cannot use Theorem 1.14, since f may not be differentiable
around x̄ . To proceed in the case of strict differentiability, we need to get
more delicate uniform estimates of ε-normals to the sets under consideration
at points nearby x̄ and f (x̄) that involve the (strict) derivative of f at x̄ only.
The following lemma provides the required estimates using the rate of strict
differentiability of f at x̄ .

Lemma 1.16 (uniform estimates for ε-normals). Let f : X → Y and
Θ ⊂ Y with ȳ = f (x̄) ∈ Θ. Assume that f is strictly differentiable at x̄. Then
there are constants c1 > 0 and η̄ > 0 such that for any y∗ ∈ N̂ε( f (x);Θ) with
ε ≥ 0, x ∈ (x̄ + ηIB) ∩ f −1(Θ), and η ∈ (0, η̄) one has
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∇ f (x̄)∗y∗ ∈ N̂ε̂(x ; f −1(Θ)) with ε̂ := c1ε + ‖y∗‖ r f (x̄ ; η) .

If in addition ∇ f (x̄) is surjective, then there are constants c2 > 0 and η̄ > 0
such that for any x∗ ∈ N̂ε(x ; f −1(Θ)) with ε ≥ 0, x ∈ (x̄ + ηIB) ∩ f −1(Θ),
and η ∈ (0, η̄) one has

x∗ ∈ ∇ f (x̄)∗ N̂ε̃( f (x);Θ) +
(
ε + c2(ε + ‖x∗‖) r f (x̄ ; η)

)
IB∗ ,

where ε̃ := c2ε + c2‖x∗‖ r f (x̄ ; η).

Proof. Since f is strictly differentiable at x̄ , there is η̄ > 0 such that f is
Lipschitz continuous on x̄ +η̄IB with some constant � > 0. Hence r f (x̄ ; η) < ∞
for every η ∈ (0, η̄). Now taking y∗ ∈ N̂ε( f (x);Θ) with ε ≥ 0 and x ∈
(x̄ + ηIB) ∩ f −1(Θ) for such η, we have

lim sup
u

f −1(Θ)
→ x

〈∇ f (x̄)∗y∗, u − x〉
‖u − x‖ = lim sup

u
f −1(Θ)
→ x

〈y∗,∇ f (x̄)(u − x)〉
‖u − x‖

≤ lim sup
u

f −1(Θ)
→ x

〈y∗, f (u) − f (x)〉
‖u − x‖ + ‖y∗‖ r f (x̄ ; η)

≤ lim sup
v
Θ→y

max
{

0,
〈y∗, v − y〉
�−1‖v − y‖

}
+ ‖y∗‖ r f (x̄ ; η)

≤ �ε + ‖y∗‖ r f (x̄ ; η) = ε̂ ,

which implies the first inclusion in the lemma with c1 := �.
Let us justify the second inclusion assuming that ∇ f (x̄) is surjective. The

proof below is a modification of the proof of assertion (ii) in Theorem 1.14
with the full usage of the metric regularity property (1.16) not only for y = ȳ
but for all y from a neighborhood of ȳ.

Choose η̄ > 0 so that r f (x̄ ; η̄) < ∞ and for any η ∈ (0, η̄) one has x̄ +ηIB ⊂
U with f (x̄ + ηIB) ⊂ V for the neighborhoods U and V in (1.16). Fix ε ≥ 0,
η ∈ (0, η̄), x̂ ∈ (x̄ + ηIB) ∩ f −1(Θ), ŷ := f (x̂), and x∗ ∈ N̂ε(x̂ ; f −1(Θ)). Let
us show that (1.17) holds with ε replaced by

ε0 := ε + µ(ε + ‖x∗‖) r f (x̄ ; η) ,

where µ > 0 is a constant of metric regularity (1.16). This will obviously
follow from

〈x∗, x〉 ≤ ε0‖x‖ for any 0 	= x ∈ ker∇ f (x̄) .

To prove the latter inequality, we pick an arbitrary 0 	= x ∈ ker∇ f (x̄) and
observe that

‖ f (x̂ + t x) − ŷ‖ ≤ r f (x̄ ; η) ‖x‖t whenever t > 0 .
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Then the metric regularity of f around x̄ implies the existence of xt ∈ f −1(ŷ)
satisfying the estimate

‖x̂ + t x − xt‖ ≤ µ r f (x̄ ; η) ‖x‖t for small t > 0 .

If 〈x∗, xt − x̂〉 ≤ 0 for some t > 0, then

〈x∗, t x〉 − µ‖x∗‖ r f (x̄ ; η) ‖x‖t ≤ 0, x ∈ ker∇ f (x̄) ,

and we get the required estimate. It remains to consider the case of

〈x∗, xtk − x̂〉 > 0 for some tk ↓ 0, k ∈ IN .

In this case one has

ε ≥ lim sup
k→∞

〈x∗, xtk − x̂〉
‖xtk − x̂‖ ≥ lim sup

k→∞

〈x∗, tk x〉 − µ‖x∗‖ r f (x̄ ; η) ‖x‖tk
‖tk x‖ + µ r f (x̄ ; η) ‖x‖tk

=
〈x∗, x〉 − µ‖x∗‖ r f (x̄ ; η) ‖x‖

‖x‖ + µ r f (x̄ ; η) ‖x‖ , x ∈ ker∇ f (x̄) ,

which implies estimate (1.17) with ε = ε0. Then similarly to the proof of
Theorem 1.14(ii), we find x̂∗ ∈ X∗ such that

‖x̂∗ − x∗‖ ≤ ε0, 〈x̂∗, x〉 = 0 for x ∈ ker∇ f (x̄)

and define ŷ∗ ∈ Y ∗ by

〈ŷ∗, y〉 := 〈x̂∗, x〉, x ∈ ∇ f (x̄)−1(y) .

Now let us show that there is a constant c2 > 0 for which

ŷ∗ ∈ N̂ε̃(ŷ;Θ) with ε̃ = c2ε + c2‖x∗‖ r f (x̄ ; η) .

Applying (1.16) first to f with x = x̂ and y ∈ Θ ∩ V close to ŷ and then to
∇ f (x̄), we find xy ∈ f −1(y) and x̂y ∈ ∇ f (x̄)−1(y− ŷ) satisfying the estimates

‖xy − x̂‖ ≤ µ‖y − ŷ‖, ‖xy − x̂ − x̂y‖ ≤ µ r f (x̄ ; η) ‖xy − x̂‖ .

Putting the above constructions and estimates together, we get

lim sup
y
Θ→ŷ

〈ŷ∗, y − ŷ〉
‖y − ŷ‖ ≤ lim sup

y
Θ→ŷ

max
{

0,
〈x̂∗, x̂y〉

µ−1‖xy − x̂‖

}

≤ lim sup
y
Θ→ŷ

max
{

0,
〈x̂∗, xy − x̂〉
µ−1‖xy − x̂‖ + µ2r f (x̄ ; η) ‖x̂∗‖

}

≤ lim sup
y
Θ→ŷ

max
{

0, µε0 +
〈x∗, xy − x̂〉
µ−1‖xy − x̂‖ + µ2r f (x̄ ; η)(‖x∗‖ + ε0)

}

≤ µε0 + µε + µ2r f (x̄ ; η)(‖x∗‖ + ε0) ≤ c2ε + c2‖x∗‖ r f (x̄ ; η) ,
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where c2 := max{µ, 2µ+2µ2r f (x̄ ; η̄)+µ3r2
f (x̄ ; η̄), 2µ2 +µ3r f (x̄ ; η̄)}. To com-

plete the proof, we observe that µ may be replaced with c2 in the definition
of ε0; so we arrive at the second inclusion in the lemma. �

Theorem 1.17 (basic normals to inverse images under strictly dif-
ferentiable mappings). Let f : X → Y and Θ ⊂ Y with ȳ = f (x̄) ∈ Θ.
Assume that f is strictly differentiable at x̄ with the surjective derivative.
Then one has

N(x̄ ; f −1(Θ)) = ∇ f (x̄)∗N(ȳ;Θ) . (1.18)

Proof. Pick any y∗ ∈ N(ȳ;Θ). Then using the definition of basic normals,
the continuity of f around x̄ , and the metric regularity property (1.16) held
due to the Lyusternik-Graves theorem, we find sequences εk ↓ 0, xk → x̄ , and
y∗k

w∗
→ y∗ satisfying

xk ∈ f −1(Θ) and y∗k ∈ N̂εk ( f (xk);Θ) for all k ∈ IN .

The above Lemma 1.16 implies that

∇ f (x̄)∗y∗k ∈ N̂ε̂k (xk ; f −1(Θ)) with ε̂k := c1εk + ‖y∗k ‖ r f
(
x̄ ; ‖xk − x̄‖

)

for k sufficiently large. Since y∗k are uniformly bounded and f is strictly dif-
ferentiable at x̄ , we have ε̂k ↓ 0 as k → ∞. Thus ∇ f (x̄)∗y∗ ∈ N(x̄ ; f −1(Θ)),
which proves the inclusion stated in the theorem.

To prove the opposite inclusion in (1.18) when the operator ∇ f (x̄) is
surjective, we take an arbitrary x∗ ∈ N(x̄ ; f −1(Θ)) and find sequences εk ↓ 0,

xk → x̄ , and x∗
k

w∗
→ x∗ with f (xk) ∈ Θ and x∗

k ∈ N̂εk (xk ; f −1(Θ)) for k ∈ IN .
Then Lemma 1.16 implies the existence of c2 > 0 such that

x∗
k ∈ ∇ f (x̄)∗ N̂ε̃k ( f (xk);Θ) +

(
εk + c2(εk + ‖x∗

k ‖) r f
(
x̄ ; ‖xk − x̄‖

))
IB∗ ,

where ε̃k := c2εk + c2‖x∗
k ‖ r f

(
x̄ ; ‖xk − x̄‖

)
↓ 0 as k → ∞. Now passing to the

limit in the latter inclusion, we arrive at x∗ ∈ ∇ f (x̄)∗N( f (x̄);Θ) and ends
the proof of the theorem. �

Note that Theorem 1.17 ensures equality (1.18) for arbitrary sets Θ, which
may not be normally regular at ȳ. Moreover, (1.18) and the equality in Corol-
lary 1.15 allow us to show that the normal regularity of f −1(Θ) at x̄ is equiva-
lent to the normal regularity of Θ at x̄ provided that f is strictly differentiable
at x̄ with the surjective derivative. To proceed, we need the following fact from
functional analysis that is useful also in the sequel.

Lemma 1.18 (properties of adjoint linear operators). Let A∗: Y ∗ → X∗

be the adjoint operator to a linear continuous operator A: X → Y . Assume that
A is surjective. Then for any y∗ ∈ Y ∗ one has
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‖A∗y∗‖ ≥ κ‖y∗‖ with κ = inf
{
‖A∗y∗‖

∣
∣
∣ ‖y∗‖ = 1

}
∈ (0,∞) .

In particular, A∗ is injective, i.e., A∗y∗1 	= A∗y∗2 if y∗1 	= y∗2 .

Proof. Consider the canonical map π : X → X/ker A between X and the
quotient Banach space generated by ker A, where the norm on X/ker A is
defined by

‖x + ker A‖ := inf
u∈x+ker A

‖u‖ .

This clearly induces a linear isomorphism Ã: X/ker A → AX such that A =
Ã ◦π . Applying the classical open mapping theorem, we find a constant κ > 0
such that κBY ⊂ ABX . Then

‖A∗y∗‖ = sup
x∈BX

|〈A∗y∗, x〉| = sup
x∈BX

|〈y∗, Ax〉| = sup
y∈ABX

|〈y∗, y〉|

≥ sup
y∈κBY

|〈y∗, y〉| = κ‖y∗‖ for all y∗ ∈ Y ∗ .

To complete the proof of the lemma, it remains to justify the above formula
for κ. This follows from the relations

‖( Ã∗)−1‖ =
(

inf
‖y∗‖=1

‖ Ã∗y∗‖
)−1

=
(

inf
‖y∗‖=1

‖A∗y∗‖
)−1

by taking into account that A∗ = π∗ ◦ Ã∗ and ‖π∗z∗‖ = ‖z∗‖. �

Theorem 1.19 (normal regularity of inverse images under strictly
differentiable mappings). Let f : X → Y be strictly differentiable at x̄ with
the surjective derivative ∇ f (x̄). Then f −1(Θ) is normally regular at x̄ if and
only if Θ is normally regular at ȳ = f (x̄).

Proof. Due to Theorem 1.17 and Corollary 1.15 we have (1.18) and

N̂(x̄ ; f −1(Θ)) = ∇ f (x̄)∗ N̂(ȳ;Θ) .

Thus the normal regularity of Θ at ȳ immediately implies the normal regular-
ity of f −1(Θ) at x̄ . To prove the opposite implication, we need to show that
N(ȳ;Θ) ⊂ N̂(ȳ;Θ) provided that f −1(Θ) is normally regular at x̄ . Picking
any y∗1 ∈ N(ȳ;Θ) and using the latter regularity, find y∗2 ∈ N̂(ȳ;Θ) such that
∇ f (x̄)∗(y∗1 − y∗2 ) = 0. By Lemma 1.18 this implies that y∗1 = y∗2 , i.e., we have
y∗1 ∈ N̂ (ȳ;Θ) and complete the proof. �

More calculus and regularity results will be obtained in Chap. 3 in the As-
plund space setting. In particular, we’ll prove there far-going developments of
Theorem 1.17 for nonsmooth and set-valued mappings, where the equality in
(1.18) is replaced with the “right” inclusion “⊂”. In general, nonsmooth cal-
culus requires additional qualification conditions (which are automatic in the
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framework of Theorem 1.17) as well as some “sequential normal compactness”
properties that always hold in finite-dimensional spaces. The latter properties
are certainly of independent interest for general Banach spaces and occur to
be an essential ingredient of the infinite-dimensional variational theory. We
consider them next.

1.1.4 Sequential Normal Compactness of Sets

In this subsection we study some local properties of sets in Banach spaces that
ensure the equivalence between the weak∗ and norm convergences to zero of
ε-normals (1.2) in dual spaces. As mentioned above, such properties are very
important for subsequent applications.

Definition 1.20 (sequential normal compactness). A set Ω ⊂ X is
sequentially normally compact (SNC) at x̄ ∈ Ω if for any sequence
(εk, xk, x∗

k ) ∈ [0,∞) ×Ω × X∗ satisfying

εk ↓ 0, xk → x̄, x∗
k ∈ N̂εk (xk ;Ω), and x∗

k
w∗
→ 0

one has ‖x∗
k ‖ → 0 as k → ∞.

It is easy to observe from the definition that Ω is SNC at x̄ ∈ Ω if its
closure is SNC at this point. Note also that every nonempty set in a finite-
dimensional space is SNC at each of its points. Our first result shows that
the SNC property in infinite-dimensional spaces may hold only for sufficiently
“large” sets.

Recall that the affine hull of Ω is defined as

affΩ :=

{
l∑

i=1

αi xi

∣
∣
∣ xi ∈ Ω, αi ∈ IR,

l∑

i=1

αi = 1, l ∈ IN

}

,

which is the smallest affine set containing Ω. It is clear that affΩ is a trans-
lation of a linear subspace of X . The closure of affΩ in X is called the closed
affine hull of Ω and is denoted by affΩ. For any point x ∈ affΩ, the set
affΩ− x is a closed linear subspace of X that doesn’t depend on the choice of
x . The codimension of affΩ is defined as the dimension of the quotient space
X/(affΩ − x). The relative interior riΩ of Ω ⊂ X is the interior of Ω with
respect to affΩ.

Let us prove that any SNC set must be finite-codimensional, and this con-
dition is a characterization of the SNC property for convex sets with nonempty
relative interiors.

Theorem 1.21 (finite codimension of SNC sets). A set Ω ⊂ X is se-
quentially normally compact at x̄ ∈ Ω only if

codim aff (Ω ∩ U) < ∞
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for any neighborhood U of x̄. In particular, a singleton in X is sequentially
normally compact if and only if X is finite-dimensional. Moreover, when Ω is
convex and riΩ 	= ∅, the sequential normal compactness of Ω at every x̄ ∈ Ω
is equivalent to the finite codimension condition codim affΩ < ∞.

Proof. First we prove the necessity part for an arbitrary set Ω ⊂ X . Since
SNC is a local property, one may always assume that x̄ = 0 ∈ Ω and U = X .
Then L := affΩ is a closed linear subspace of X and its annihilator

L⊥ :=
{

x∗ ∈ X∗ ∣∣ 〈x∗, x〉 = 0 for all x ∈ L
}

is obviously a subset of the prenormal cone N̂(0;Ω).
It is well known that L⊥ is isometric to the dual quotient space (X/L)∗. As-

suming that codimΩ = dim (X/L) = ∞ and using the fundamental Josefson-
Nissenzweig theorem (see, e.g., the book by Diestel [333, Chap. 12]), we find
a sequence of vectors x∗

k ∈ (X/L)∗ such that

‖x∗
k ‖ = 1 for all k ∈ IN and x∗

k
w∗
→ 0 as k → ∞ in (X/L)∗ .

Invoking the mentioned isomorphism, we can treat {x∗
k } as a sequence of

norm-one vectors in L⊥ ⊂ X∗ converging to zero in the weak∗ topology of X∗.
By the inclusions

L⊥ ⊂ N̂(0;Ω) ⊂ N̂ε(0;Ω) for any ε ≥ 0 ,

we get a contradiction with the sequential normal compactness of Ω.
Let us prove the sufficiency part of theorem for convex sets with nonempty

interiors. Without loss of generality, we assume that 0 ∈ Ω, hence affΩ is a
closed subspace of X . Since codim affΩ < ∞, there is a finite-dimensional
subspace Z ⊂ X such that

X = affΩ
⊕

Z , i.e., X = affΩ + Z and (affΩ) ∩ Z = {0} .

One clearly has

N̂ε(x̄ ;Ω|X ) = N̂ε(x̄ ;Ω|
affΩ

) × Z∗ for all x̄ ∈ Ω, ε ≥ 0 .

Taking into account that Z is finite-dimensional, it suffices to consider the
case of affΩ = X when riΩ = intΩ 	= ∅.

Fix x̄ ∈ Ω and x0 ∈ intΩ; then x0 + r IB ⊂ Ω for some r > 0. Take
arbitrary sequences of xk ∈ Ω and x∗

k ∈ N̂εk (xk ;Ω) with xk → x̄ , εk ↓ 0, and

x∗
k
w∗
→ 0 as k → ∞. We have ‖x∗

k ‖ ≤ c for some constant c > 0 and all k ∈ IN .
It follows from Proposition 1.3 that

〈x∗
k , x − xk〉 ≤ εk‖x − xk‖ for all x ∈ Ω, k ∈ IN .

Since x := x0 + ru ∈ Ω for any u ∈ IB, we get
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〈x∗
k , u〉 ≤ 1

r εk‖x0 + ru − xk‖ − 1
r 〈x

∗
k , x0 − xk〉 for all u ∈ IB ,

which gives
‖x∗

k ‖ ≤ α(εk + |〈x∗
k , x0 − xk〉|), k ∈ IN ,

with some α > 0. Because of

|〈x∗
k , x0 − xk〉| ≤ |〈x∗

k , x0 − x̄〉| + c‖x̄ − xk‖ ,

the latter clearly implies that ‖x∗
k ‖ → 0 as k → ∞. �

Next we show that the SNC property of sets is invariant with respect to
the inverse image operation defined by a strictly differentiable mapping whose
derivative is surjective at the point of interest. This result is based on calculus
rules established in the previous subsection.

Theorem 1.22 (SNC property for inverse images under strictly dif-
ferentiable mappings). Let f : X → Y be strictly differentiable at x̄ with the
surjective derivative ∇ f (x̄), and let Θ be a subset of Y containing ȳ := f (x̄).
Then f −1(Θ) is SNC at x̄ if and only if Θ is SNC at ȳ.

Proof. First assume that Θ is SNC at ȳ and prove that f −1(Θ) is SNC at
x̄ . Take sequences (εk, xk, x∗

k ) such that f (xk) ∈ Θ, x∗
k ∈ N̂εk (xk ; f −1(Θ)) and

εk ↓ 0, xk → x̄ , x∗
k

w∗
→ 0 as k → ∞. Then x∗

k are uniformly bounded in X∗. By
Lemma 1.16 we find sequences ε̃k ↓ 0, ε̂k ↓ 0, and y∗k ∈ N̂ε̃k ( f (xk);Θ) with

‖x∗
k −∇ f (x̄)∗y∗k ‖ ≤ ε̂k, k ∈ IN .

Now employing Lemma 1.18, we conclude that y∗k
w∗
→ 0. This implies ‖y∗k ‖ → 0

due to the SNC property ofΘ at ȳ and the continuity of f at x̄ . Thus ‖x∗
k ‖ → 0

as well, which justifies the SNC property of f −1(Θ) at x̄ .
To prove the opposite implication, we assume that f −1(Θ) is SNC at x̄

and pick arbitrary sequences (εk, yk, y∗k ) with y∗k ∈ N̂εk (yk ;Θ) and εk ↓ 0,

yk
Θ→ ȳ, y∗k

w∗
→ 0 as k → ∞. The metric regularity property of f around x̄

allows us to find µ > 0 and xk ∈ f −1(yk) such that ‖xk − x̄‖ ≤ µ‖yk − ȳ‖, i.e.,
xk → x̄ with yk = f (xk), k ∈ IN . Using again Lemma 1.16, we get a sequence
ε̂k ↓ 0 for which

x∗
k := ∇ f (x̄)∗y∗k ∈ N̂ε̂k (xk ; f −1(Θ)), k ∈ IN .

Clearly x∗
k
w∗
→ 0 and, since f −1(Θ) is SNC at x̄ , we have ‖x∗

k ‖ → 0 as k → ∞.
Employing Lemma 1.18, we conclude that ‖y∗k ‖ → 0, which completes the
proof of the theorem. �

If f (x) = Ax is a linear continuous operator between Banach spaces X and
Y , then Theorem 1.22 ensures the equivalence between the SNC properties of
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Θ ⊂ Y and the inverse image A−1(Θ) at the corresponding points provided
that A is surjective. Furthermore, in the linear case the surjectivity assumption
can be relaxed as follows.

Proposition 1.23 (SNC property for inverse images under linear op-
erators). Let A: X → Y be a linear continuous operator whose range

AX :=
{

y ∈ Y
∣
∣ ∃x ∈ X with y = Ax

}

is closed in Y . Take a set Θ ⊂ AX and assume that Θ is SNC at some point
ȳ := Ax̄ ∈ Θ. Then its inverse image A−1(Θ) is SNC at x̄.

Proof. It is sufficient to show that any set Θ ⊂ AX sequentially normally
compact at ȳ (with respect to the whole space Y ) is also SNC at ȳ with
respect to the smaller Banach space AX . Then we can use Theorem 1.22 for
the surjective operator A: X → AX .

To justify the mentioned claim, we use the necessity part of Theorem 1.21
ensuring that codim AX < ∞ due to affΘ ⊂ AX . Hence the space AX is
complemented, i.e., there is a closed subspace Z ⊂ Y with AX

⊕
Z = Y . Now

denote by N̂ε(·;Θ|AX ) the set of ε-normals to Θ with respect to AX and take
arbitrary sequences yk

Θ→ ȳ, εk ↓ 0, and y∗k ∈ N̂εk (yk ;Θ|AX ) converging to
zero in the weak∗ topology of (AX)∗. Since AX is complemented, we have
(y∗k , 0) ∈ N̂εk (yk ;Θ), where 0 ∈ Z∗ and N̂εk (·;Θ) is the set of εk-normals to
Θ with respect to Y . Then the SNC property of Θ with respect to Y implies
that ‖(y∗k , 0)‖Y∗ → 0 and hence ‖y∗k ‖(AX)∗ → 0 as k → ∞, i.e., Θ is SNC at ȳ
with respect to AX . �

Next let us present some sufficient conditions for the SNC property of a
set Ω ⊂ X that do not involve any normals to Ω, whereas they are expressed
intrinsically in terms of the set Ω itself. Such conditions are related to a kind
of Lipschitzian behavior of Ω around the point in question.

Definition 1.24 (epi-Lipschitzian and compactly epi-Lipschitzian
sets). Let Ω ⊂ X with x̄ ∈ clΩ. Then:

(i) Ω is compactly epi-Lipschitzian (CEL) around x̄ if there are a
compact set C ⊂ X , a neighborhood U of x̄, a neighborhood O of the origin in
X , and a number γ > 0 such that

Ω ∩ U + t O ⊂ Ω + tC for all t ∈ (0, γ ) . (1.19)

(ii) Ω is epi-Lipschitzian around x̄ if the compact set C in (1.19) can
be selected as a singleton.

It is easy to see from the definition that if Ω is epi-Lipschitzian (compactly
epi-Lipschitzian) around x̄ , then its closure has the same property around this
point. When Ω is closed and C is a nonzero singleton in X , the epi-Lipschitzian
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property of Ω means that Ω is locally homeomorphic to the epigraph of a
Lipschitz continuous function; hence the terminology.

If X is finite-dimensional, all subsets of X have the CEL property around
all their points (with C = IB, the closed unit ball) . This is different from
the epi-Lipschitzian property that may fail even for convex sets in IRn. In
fact, the epi-Lipschitzian property of convex sets admits the following simple
characterization.

Proposition 1.25 (epi-Lipschitzian convex sets). A convex set Ω ⊂ X
is epi-Lipschitzian around any x̄ ∈ Ω if and only if intΩ 	= ∅.

Proof. Let us show that a convex set Ω ⊂ X is epi-Lipschitzian around x̄ ∈ Ω
if and only if there is v ∈ X such that

x̄ + γ v ∈ intΩ for some γ > 0 ,

which clearly implies the result.
The necessity of the above condition is trivial. To prove the sufficiency, we

take γ > 0 and a neighborhood V of the origin in X for which x̄+γ (v+V ) ⊂ Ω.
Choose another neighborhood Ṽ of 0 ∈ X such that 1

γ
Ṽ + Ṽ ⊂ V . Then we

have the inclusions

x + γ (v + Ṽ ) ⊂ x̄ + γ (v + 1
γ

Ṽ + Ṽ ) ⊂ x̄ + γ (v + V ) ⊂ Ω

for all x ∈ x̄ + Ṽ . Since Ω is convex, it implies that

x + t(v + Ṽ ) ⊂ Ω for all x ∈ Ω ∩ (x̄ + Ṽ ) and t ∈ (0, γ ) .

Thus we get (1.19) with U := x̄ + Ṽ , O := Ṽ , and C := {−v}. �

Let us show that the CEL (and hence epi-Lipschitzian) property of Ω
around x̄ ∈ Ω implies its SNC property at this point in any Banach space.

Theorem 1.26 (SNC property of CEL sets). Let Ω ⊂ X be compactly
epi-Lipschitzian around x̄ ∈ Ω. Then it is sequentially normally compact at
this point.

Proof. Assuming that Ω is CEL around x̄ , we find a compact set C ⊂ X and
positive numbers γ and η such that

Ω ∩ (x̄ + ηIB) + tηIB ⊂ Ω + tC for all t ∈ (0, γ ) .

Let us show that this implies the existence of a constant α > 0 for which

N̂ε(x ;Ω) ⊂
{

x∗ ∈ X∗
∣
∣
∣ η‖x∗‖ ≤ ε(α + η) + max

c∈C
〈x∗, c〉

}
(1.20)

whenever x ∈ Ω ∩ (x̄ + ηIB). Indeed, fixing x ∈ Ω ∩ (x̄ + ηIB) and employing
the CEL property of Ω, for any e ∈ IB and t ∈ (0, γ ) we pick a point ct ∈ C
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such that x + t(ηe − ct) ∈ Ω. Due to the compactness of C , a subsequence of
ct converges to some point c̄ ∈ C as t ↓ 0. This easily implies, by definition
(1.2), that

〈x∗, ηe − c̄〉 − ε‖ηe − c̄‖ ≤ 0 for all x∗ ∈ N̂ε(x ;Ω) .

Since e ∈ IB was chosen arbitrarily, the latter gives inclusion (1.20) with
α := maxc∈C ‖c‖.

Now take any sequences εk ↓ 0, xk
Ω→ x̄ , and x∗

k
w∗
→ 0 with x∗

k ∈ N̂εk (xk ;Ω),
Lucet k ∈ IN . The compactness of C implies that 〈x∗

k , c〉 → 0 uniformly in
c ∈ C . Thus (1.20) ensures that ‖x∗

k ‖ → 0 as k → ∞, i.e., Ω is SNC at x̄ . �

Remark 1.27 (characterizations of CEL sets).
(i) The CEL property of closed convex sets Ω ⊂ X admits several explicit

characterizations in the general framework of normed spaces X ; we refer the
reader to Borwein, Lucet and Mordukhovich [150] for more details. In par-
ticular, such a set Ω is CEL around every x̄ ∈ Ω if and only if its affine
hull is a closed finite-codimensional subspace of X with riΩ 	= ∅. Combining
this characterization with the last part of Theorem 1.21, we conclude that the
SNC and CEL properties agree in Banach spaces for any closed convex sets
having closed affine hulls and nonempty relative interiors.

(ii) Characterizations of the CEL property for general closed sets are es-
tablished by Ioffe [607] in terms of normal cones satisfying certain require-
ments in corresponding Banach spaces. When X is Asplund, the CEL property
of Ω around x̄ ∈ Ω ⊂ X admits a topological limiting description in the form
of Definition 1.20 with εk = 0, where sequences are replaced by bounded nets.
We’ll see in Chap. 2 that εk can be equivalently removed from the definition
of the SNC property in the Asplund space setting. It is well known that for
separable spaces X the weak∗ topology on IB∗ ⊂ X∗ is metrizable, and there is
no need to use nets in this case. Putting these facts together, we can conclude
that the SNC property of Ω at x̄ ∈ Ω and CEL property of this set around
x̄ agree for closed subsets of separable Asplund spaces. Moreover, as proved
in Fabian and Mordukhovich [422], these properties agree for a larger class
of spaces including weakly compactly generated (WCG) Asplund spaces. This
implies, in particular, that the SNC property of sets in such spaces is actually
around x̄ ∈ Ω. However, the SNC and CEL properties may not agree even for
closed convex cones in nonseparable Asplund spaces admitting a C∞-smooth
renorm; see Example 3.6. Moreover, these properties never agree in Banach
spaces whose dual unit ball is not weak∗ sequentially compact, in particular,
in the standard spaces �∞ and L∞[0, 1]. We refer the reader to the afore-
mentioned paper [422] for more results in this direction, where relationships
between sequential and topological normal compactness properties are studied
in detail in the framework of general Banach spaces. Let us emphasize that
for most applications, in both Asplund and general Banach space settings, it
suffices to use the SNC property without any separability assumptions; see
the subsequent material of this book.
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1.1.5 Variational Descriptions and Minimality

The very definition of basic normals to arbitrary sets allows us to study their
properties by taking sequential limits of ε-normals (1.2) at neighboring points.
The latter normals admit a useful variational description that follows directly
from the definition of “lim sup” in (1.2).

Proposition 1.28 (variational description of ε-normals). Given ε ≥ 0
and x̄ ∈ Ω, we have x∗ ∈ N̂ε(x̄ ;Ω) if and only if for any γ > 0 the function

ψ(x) := 〈x∗, x − x̄〉 − (ε + γ )‖x − x̄‖

attains a local maximum relative to Ω at x̄.

This description characterizes ε-normals via local maximization of a non-
smooth function relative to the given set Ω. In particular, it holds for Fréchet
normals (ε = 0) in arbitrary Banach spaces. In what follows we show that
in the latter case one has more delicate variational descriptions that charac-
terize Fréchet normals via global maximization over the set Ω ⊂ X of some
“supporting” functions s: X → IR smooth in a certain sense. Theorem 1.30
bellow contains several results in this direction. If s(·) is required to be only
Fréchet differentiable at x̄ , then such a variational description can be eas-
ily derived from Definition 1.1(i) in any Banach space. Using more involved
arguments, we obtain significantly stronger results in Theorem 1.30 under ad-
ditional geometric assumptions on the space in question. To proceed, let us
first present the following lemma on smoothing real functions important in
the proof of the theorem.

Lemma 1.29 (smoothing functions in IR). Let ρ: [0,∞) → [0,∞) be a
function having the right-hand derivative ρ′

+(0) and satisfying the conditions:

ρ(0) = ρ′
+(0) = 0 and ρ(t) ≤ α + βt for all t ≥ 0

with positive constants α and β. Then there is a nondecreasing, convex, con-
tinuously differentiable function τ : [0,∞) → [0,∞) such that

τ (0) = τ ′+(0) = 0 and τ (t) > ρ(t) for all t > 0 .

Proof. First let us prove that there exist γ > 0 and a nondecreasing, convex,
continuously differentiable function σ : [0, 2γ ) → [0,∞) such that

σ (0) = σ ′
+(0) = 0 and σ (t) > ρ(t) for t ∈ (0, 2γ ) .

To construct such a function, we choose a sequence of positive numbers ak

such that ak+1 <
1
2ak and
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ρ(t) + t2 < 2−(k+3)t if t ∈ [0, ak ]

for all k ∈ IN . Put γ := 1
2a1 and define a continuous function r : [0, 2γ ] →

[0,∞) by r(0) := 0, r(ak) := 2−k , and r is linear on [ak+1, ak ] for all k ∈ IN .
Then define a function σ : [0, 2γ ) → [0,∞) by

σ (t) :=
∫ t

0

r(ξ)dξ for t ∈ [0, 2γ)

and show that it possesses the required properties. Its smoothness, monotonic-
ity, convexity, and the equalities σ (0) = σ ′

+(0) = 0 follow directly from the
definition and standard facts of real analysis. To check the remaining proper-
ties, we fix t ∈ (0, 2γ ) and observe that t ∈ [ak+1, ak) for some k ∈ IN . Then,
by the construction of the functions σ and r , we get

σ (t) ≥
∫ t

ak+1

r(ξ)dξ +
∫ ak+1

1
2 ak+1

r(ξ)dξ ≥
∫ t

ak+1

2−(k+1)dξ +
∫ ak+1

1
2 ak+1

2−(k+2)dξ

=
t − ak+1

2k+1
+

ak+1

2k+3
≥ t

2k+3
> ρ(t) ,

which justifies the required properties of σ .
Next let us build a function τ : [0,∞) → (0,∞) with the properties listed

in the lemma. Given α, β > 0, we choose λ > 1 such that λσ (γ ) > α + βγ
and consider the following two cases.

First assume that λσ ′(γ ) ≤ β. In this case we find µ ≥ λ such that
µσ ′(γ ) = β and define

τ (t) :=






µσ (t) if 0 ≤ t ≤ γ ,

µσ (γ ) + β(t − γ ) if t > γ .

One can easily see that the function τ is nondecreasing, convex, and contin-
uous everywhere on [0,∞) including t = γ . Moreover, τ ′−(γ ) = µσ ′(γ ) and
τ ′+(γ ) = β = µσ ′(γ ) due to the choice of µ, which implies the continuous
differentiability o τ on [0,∞). It follows from the definition that

τ (0) = τ ′+(0) = 0 and τ (t) ≥ σ (t) > ρ(t) if 0 < t ≤ γ .

For t > γ one has

τ (t) = µσ (γ ) + β(t − γ ) > α + βt ≥ ρ(t)

due to the assumption on ρ. Thus we get the required properties of the above
function τ in the case of λσ ′(γ ) ≤ β.

It remains to consider the other case when λσ ′(γ ) > β. In this case we
define a nondecreasing and convex function τ : [0,∞) → [0,∞) by
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τ (t) :=






λσ (t) if 0 ≤ t ≤ γ ,

λσ (γ ) − λγ σ ′(γ ) + λσ ′(γ )t if t > γ .

Again, a straightforward verification yields that τ is a continuously differen-
tiable function [0,∞) and satisfies all the requirements on [0, γ ]. By the choice
of λ we get

τ (t) ≥ α + βγ + λσ ′(γ )(t − γ ) > α + βγ + β(t − γ ) = α + βt ≥ ρ(t)

for t > γ , which completes the proof of the lemma. �

Recall that a Banach space X admits a Fréchet smooth renorm if there is
an equivalent norm on X that is Fréchet differentiable at any nonzero point.
In particular, every reflexive space admits a Fréchet smooth renorm. We’ll also
consider Banach spaces admitting an S-smooth bump function with respect
to a given class S, i.e., a function b: X → IR such that b(·) ∈ S, b(x0) 	= 0 for
some x0 ∈ X , and b(x) = 0 whenever x lies outside a ball in X . In what follows
we deal with the three classes of S-smooth functions on X : Fréchet smooth
(S = F), Lipschitzian and Fréchet smooth (S = LF), and Lipschitzian and
continuously differentiable (S = LC1). It is well known that the class of spaces
admitting a LC1-smooth bump function strictly includes the class of spaces
with a Fréchet smooth renorm. Observe that all the spaces listed above belong
to the class of Asplund spaces, where Fréchet normals play a role similar to
ε-normals in the general Banach space setting; see Chap. 2.

Theorem 1.30 (smooth variational descriptions of Fréchet normals).
Let Ω be a nonempty subset of a Banach space X , and let x̄ ∈ Ω. The following
assertions hold:

(i) Given x∗ ∈ X∗, we assume that there is a function s: U → IR defined
on a neighborhood of x̄ and Fréchet differentiable at x̄ such that ∇s(x̄) = x∗

and s(x) achieves a local maximum relative to Ω at x̄. Then x∗ ∈ N̂(x̄ ;Ω).
Conversely, for every x∗ ∈ N̂(x̄ ;Ω) there is a function s: X → IR such that
s(x) ≤ s(x̄) = 0 whenever x ∈ Ω and that s(·) is Fréchet differentiable at x̄
with ∇s(x̄) = x∗.

(ii) Assume that X admits a Fréchet smooth renorm. Then for every x∗ ∈
N̂(x̄ ;Ω) there is a concave Fréchet smooth function s: X → IR that achieves
its global maximum relative to Ω uniquely at x̄ and such that ∇s(x̄) = x∗.

(iii) Assume that X admits an S-smooth bump function, where S stands
for one of the classes F , LF , or LC1. Then for every x∗ ∈ N̂(x̄ ;Ω) there is
an S-smooth function s: X → IR satisfying the conclusions in (ii).

Proof. Under the assumptions in (i) we have

s(x) = s(x̄) + 〈x∗, x − x̄〉 + o(‖x − x̄‖) ≤ s(x̄)
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for all x ∈ Ω near x̄ . Hence 〈x∗, x − x̄〉 + o(‖x − x̄‖) ≤ 0 for such x , which
implies that x∗ ∈ N̂(x̄ ;Ω) due to Definition 1.1(i) with ε = 0. To justify the
converse statement in (i), it is sufficient to check that the function

s(x) :=






min
{
0, 〈x∗, x − x̄〉

}
if x ∈ Ω ,

〈x∗, x − x̄〉 otherwise

is Fréchet differentiable at x̄ , which directly follows from the definitions.
Let us prove (ii). Fix an equivalent Fréchet smooth norm ‖ · ‖ on X and

pick an arbitrary vector x∗ ∈ N̂(x̄ ;Ω). Define the function

ρ(t) := sup
{
〈x∗, x − x̄〉

∣
∣ x ∈ Ω, ‖x − x̄‖ ≤ t

}
for t ≥ 0 , (1.21)

which clearly satisfies all the assumptions of Lemma 1.29 due to the definition
of Fréchet normals. Using this lemma, we get the corresponding function
τ : [0,∞) → [0,∞) and construct a function s: X → IR by

s(x) := −τ (‖x − x̄‖) − ‖x − x̄‖2 + 〈x∗, x − x̄〉, x ∈ X .

Note that this function is concave on X with s(x̄) = 0, since τ is convex and
nondecreasing on [0,∞) with τ (0) = 0. We also have

s(x) + ‖x − x̄‖2 ≤ −ρ(‖x − x̄‖) + 〈x∗, x − x̄〉 ≤ 0 = s(x̄) for all x ∈ Ω ,

which implies that s(x) achieves its global maximum over Ω uniquely at x̄ .
Observe that s(x) is Fréchet differentiable at any x 	= x̄ due the smoothness
of the function τ and the norm ‖ · ‖ at nonzero point of X . To justify (ii), it
remains to prove that s(x) is Fréchet differentiable at x = x̄ with ∇s(x̄) = x∗.
The latter follows directly from the smoothness of τ with τ ′+(0) = 0 by the
classical chain rule.

Next let us prove (iii) simultaneously for all the three classes S listed in
the theorem. Taking an S-smooth bump function b: X → IR, we can always
assume that 0 ≤ b(x) ≤ 1 for all x ∈ X , b(0) = 1, and b(x) = 0 if ‖x‖ ≥ 1.
Then consider a function d: X → [0,∞) constructed in Lemma VIII.1.3 of the
book by Deville, Godefroy and Zizler [331] as follows: d(0) = 0 and

d(x) :=
2

h(x)
with h(x) :=

∞∑

n=0

b(nx) for x 	= 0 .

It is proved in the mentioned lemma that

‖x‖ ≤ d(x) ≤ µ‖x‖ if ‖x‖ ≤ 1 and d(x) = 2 if ‖x‖ > 1

with some fixed µ > 1, that d is Fréchet differentiable on X \ {0}, and it
is Lipschitz continuous on X provided that the bump function b is Lipschitz
continuous. Moreover, d is continuously differentiable on X \ {0} if b has this
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property. We can easily check that the function d2 as well as the composition
τ ◦ d of d with the function τ built above are Fréchet differentiable at 0 with

∇(d2)(0) = ∇(τ ◦ d)(0) = 0 .

Further, if d is Lipschitz continuous on X with modulus l > 0 and 0 	= x ∈ X
with ‖x‖ → 0, then

‖∇(d2)(x)‖ = ‖2d(x)∇d(x)‖ ≤ l2‖x‖ → 0 and

‖∇(τ ◦ d)(x)‖ = ‖τ ′(d(x))∇d(x)‖ ≤ l|τ ′(d(x))| → 0 .

Putting these facts together, we conclude that the functions d2 and τ ◦ d are
S-smooth on X if the bump function b has this property, for each class S
considered in the theorem.

Now we fix x∗ ∈ N̂(x̄ ;Ω) and take the function τ constructed in
Lemma 1.29 for ρ: [0,∞) → [0,∞) defined in (1.21). Let ψ : IR → IR be
an arbitrary LC1-function such that

ψ(t) = t for t ≥ 0 and ψ(t) = −1 for t ≤ −1 .

Choosing λ > max{1, (τ (1
2 ))−1(1 + ‖x∗‖)}, we form a function θ : X → IR by

θ(x) :=






ψ
(
− λτ (d(x − v)) + 〈x∗, x − x̄〉

)
if ‖x − x̄‖ ≤ 1 ,

−1 otherwise

and show that the combination

s(x) := θ(x) − d2(x − x̄), x ∈ X ,

has all the properties formulated in the theorem. It clearly follows from the
facts that θ is S-smooth on X and that θ(x) ≤ θ(x̄) = 0 for all x ∈ Ω.

We justify the required smoothness of θ by observing that

t(x) := −λτ (d(x − x̄)) + 〈x∗, x − x̄〉 ≤ λτ (1
2 ) + ‖x∗‖ < −1

if 1
2 ≤ ‖x − x̄‖ < 1, and so θ(x) = ψ(t(x)) = −1 for such x due to the choice of

λ. To complete the proof of the theorem, it is sufficient to show that θ(x) ≤ 0
if x ∈ Ω and ‖x − x̄‖ < 1

2 , since θ(x) = −1 < 0 for all other x ∈ Ω.
Let us first consider the case when

−λτ (d(x − x̄)) + 〈x∗, x − x̄〉 ≥ 0 .

Then, by properties of the functions involved in the construction of θ , we get

θ(x) = −λτ (d(x − x̄)) + 〈x∗, x − x̄〉 ≤ −ρ(‖x − x̄‖) + 〈x∗, x − x̄〉 ≤ 0 .

In the other case of



38 1 Generalized Differentiation in Banach Spaces

−λτ (d(x − x̄)) + 〈x∗, x − x̄〉 < 0

we obviously have θ(x) ≤ ψ(0) = 0, which ends the proof. �

In the conclusion of this section we present a minimality property of the
basic normal cone (1.3) among any normal structures satisfying natural re-
quirements in Banach spaces. This property directly relates to Definition 1.1
and the variational description of ε-normals in Proposition 1.28.

Given a Banach space X , let us consider an abstract prenormal structure
N̂ on X that associates, with every nonempty subset Ω ⊂ X , a set-valued
mapping N̂ (·;Ω): X →→ X∗. We always assume that N̂ (x ;Ω) = ∅ for x /∈ Ω

and that N̂ (x ;Ω) = N̂ (x ; Ω̃) if the sets Ω and Ω̃ coincide near x ∈ Ω.
Of course, these assumptions are too broad and don’t have any valuable

consequences without additional requirements. To be useful, generalized nor-
mals should have some properties important for applications, particularly to
optimization problems. From this viewpoint, a crucial requirement to gener-
alized normals is their ability to describe necessary optimality conditions in
problems of constrained optimization. The next result shows that the basic
normal cone (1.3) is smaller than the sequential limit (1.1) of any prenormal
structure supporting natural first-order optimality conditions.

Proposition 1.31 (minimality of the basic normal cone). Given Ω ⊂ X
and x̄ ∈ Ω, we assume the following property of the prenormal structure N̂
on X :

(M) For every x∗ ∈ X∗, small ε > 0, and u ∈ Ω ∩ (x̄ + ε IB) providing a
local minimum to the function

ψ(x) := 〈x∗, x − u〉 + ε‖x − u‖

over Ω, there is v ∈ Ω ∩ (x̄ + εB) such that

−x∗ ∈ ηIB∗ + N̂ (v;Ω) for all η > ε .

Then one has the relationship

N(x̄ ;Ω) ⊂ N (x̄ ;Ω) := Lim sup
x→x̄

N̂ (x ;Ω)

between the basic normal cone (1.3) and the sequential normal structure N
generated by N̂ .

Proof. Taking an arbitrary x∗ ∈ N(x̄ ;Ω) in (1.3), we find sequences εk ↓ 0,

xk → x̄ , and x∗
k

w∗
→ x∗ such that x∗

k ∈ N̂εk (xk ;Ω) for all k ∈ IN . Due to
Proposition 1.28 this implies that for any k ∈ IN and any γ > 0 one has

〈x∗
k , x − xk〉 − (εk + γ )‖x − xk‖ ≤ 0 for all x ∈ Ω near xk ,

and so xk gives a local minimum to the function
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ψ(x) := 〈−x∗
k , x − xk〉 + (εk + γ )‖x − xk‖

belonging to the class specified in (M). Using this property with η = 2εk +γ >
εk + γ , we get

x∗
k ∈ (2εk + γ )IB∗ + N̂ (vk ;Ω) with some vk ∈ Ω near xk .

Since γ > 0 was chosen arbitrary, the latter ensures that x∗ ∈ N (x̄ ;Ω) by
passing to the limit as k → ∞. �

The requirement on the prenormal structure N̂ imposed in (M) means
that N̂ is adequate to describe “fuzzy” necessary optimality conditions in
constrained optimization. It obviously holds when v = u and η = ε in (M),
which corresponds to the “exact” necessary optimality condition (at the given
minimum point) and is valid, in particular, for the sequential normal struc-
ture N generated by N̂ . Note that latter “exact” requirement on (pre)normal
structure is more restrictive than the “fuzzy” one, but it is more convenient
for applications. This requirement is fulfilled, in the case of closed subsets of
arbitrary Banach spaces, for the normal cone of Clarke and for the “approx-
imate” G-normal cone of Ioffe, which give constructive examples of broader
topological normal structures and always contain the basic normal cone (1.3)
due to Proposition 1.31; see Sect. 2.5.2 for more discussions. We’ll show in
Chap. 2 that the prenormal and normal cones from Definition 1.1 satisfy,
respectively, the fuzzy and exact optimality conditions in property (M) for
closed subsets of arbitrary Asplund spaces.

1.2 Coderivatives of Set-Valued Mappings

In this section we consider set-valued mappings (multifunctions) F : X →→ Y
between Banach spaces, i.e., mappings from X into subsets of Y . When F
happens to be single-valued, we usually use the notation F = f : X → Y . We
say that F is closed-valued, convex-valued, . . . if all the values F(x) are closed,
convex, . . . , respectively. Denote by

dom F :=
{

x ∈ X
∣
∣ F(x) 	= ∅

}
, rge F :=

{
y ∈ Y

∣
∣ ∃x with y ∈ F(x)

}

the domain and the range of F . The kernel of F is

ker F :=
{

x ∈ X
∣
∣ 0 ∈ F(x)

}
.

Each set-valued mapping F : X →→ Y is uniquely associated with its graph

gph F :=
{
(x, y) ∈ X × Y

∣
∣ y ∈ F(x)

}

in the product space X × Y . The space X × Y is Banach with respect to the
sum norm
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‖(x, y)‖ := ‖x‖ + ‖y‖

imposed on X × Y unless otherwise stated.
Given sets Ω ⊂ X and Θ ⊂ Y , we define the image of Θ under F by

F(Ω) :=
{

y ∈ Y
∣
∣ ∃x ∈ Ω with y ∈ F(x)

}

and the inverse image of Θ under F by

F−1(Θ) :=
{

x ∈ X
∣
∣ F(x) ∩Θ 	= ∅

}
.

The inverse mapping to F : X →→ Y is

F−1: Y →→ X with F−1(y) :=
{

x ∈ X
∣
∣ y ∈ F(x)

}
.

It is clear that dom F−1 = rge F , rge F−1 = dom F , and

gph F−1 =
{
(y, x) ∈ Y × X

∣
∣ (x, y) ∈ gph F

}
.

A set-valued mapping F : X →→ Y is positively homogeneous if 0 ∈ F(0) and
F(αx) ⊃ αF(x) for all x ∈ X and α > 0, or equivalently, when the graph of
F is a cone in X × Y . The norm of a positively homogeneous mapping F is
defined by

‖F‖ := sup
{
‖y‖

∣
∣ y ∈ F(x) and ‖x‖ ≤ 1

}
. (1.22)

1.2.1 Basic Definitions and Representations

Now let us describe the main derivative-like constructions for multifunctions
we are going to study in this book. These objects are called coderivatives,
since they provide a pointwise approximation of set-valued (in particular,
single-valued) mappings between given spaces using elements of dual spaces.
In the case of smooth single-valued mappings the coderivatives reduce to the
classical adjoint derivative operator at the point in question. For general non-
smooth and set-valued mappings they are constructed through normal vectors
to graphs and are not dual to any derivative objects related to tangential ap-
proximations in initial spaces.

Following the pattern in constructing generalized normals, we first define
preliminary coderivative objects at points nearby and then pass to the limit
to construct coderivatives at the reference point. In this way we define two
limiting coderivatives (different in infinite dimensions) depending on the con-
vergence used on in the dual product space X∗ × Y ∗.

Definition 1.32 (coderivatives). Let F : X →→ Y with dom F 	= ∅.
(i) Given (x, y) ∈ X × Y and ε ≥ 0, we define the ε-coderivative of F

at (x, y) as a multifunction D̂∗
ε F(x, y): Y ∗ →→ X∗ with the values

D̂∗
ε F(x, y)(y∗) :=

{
x∗ ∈ X∗ ∣∣ (x∗,−y∗) ∈ N̂ε((x, y); gph F)

}
. (1.23)



1.2 Coderivatives of Set-Valued Mappings 41

When ε = 0 in (1.23), this construction is called the precoderivative or
Fréchet coderivative of F at (x, y) and is denoted by D̂∗F(x, y). It follows
from the definition that D̂∗

ε F(x, y)(y∗) = ∅ for all ε ≥ 0 and y∗ ∈ Y ∗ if
(x, y) /∈ gph F.

(ii) The normal coderivative of F at (x̄, ȳ) ∈ gph F is a multifunction
D∗

N F(x̄, ȳ): Y ∗ →→ X∗ defined by

D∗
N F(x̄, ȳ)(ȳ∗) := Lim sup

(x,y)→(x̄,ȳ)

y∗
w∗→ȳ∗

ε↓0

D̂∗
ε F(x, y)(y∗) . (1.24)

That is, the normal coderivative (1.24) is the collection of such x̄∗ ∈ X∗ for

which there are sequences εk ↓ 0, (xk, yk) → (x̄, ȳ), and (x∗
k , y∗k ) w∗

→ (x̄∗, ȳ∗)
with (xk, yk) ∈ gph F and x∗

k ∈ D̂∗
εk

F(xk, yk)(y∗k ). We put D∗
N F(x̄, ȳ)(y∗) := ∅

for all y∗ ∈ Y ∗ if (x̄, ȳ) /∈ gph F.
(iii) The mixed coderivative of F at (x̄, ȳ) ∈ gph F is a multifunction

D∗
M F(x̄, ȳ): Y ∗ →→ X∗ defined by

D∗
M F(x̄, ȳ)(ȳ∗) := Lim sup

(x,y)→(x̄,ȳ)
y∗→ȳ∗

ε↓0

D̂∗
ε F(x, y)(y∗) . (1.25)

That is, the mixed coderivative (1.25) is the collection of such x̄∗ ∈ X∗ for

which there are sequences εk ↓ 0, (xk, yk, y∗k ) → (x̄, ȳ, ȳ∗), and x∗
k

w∗
→ x̄∗ with

(xk, yk) ∈ gph F and x∗
k ∈ D̂∗

εk
F(xk, yk)(y∗k ). We put D∗

M F(x̄, ȳ)(y∗) := ∅ for
all y∗ ∈ Y ∗ if (x̄, ȳ) /∈ gph F.

We always omit ȳ in the coderivative notation if F(x̄) = {ȳ}. Note that

D∗
N F(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗ ∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gph F)

}
, (1.26)

i.e., the normal coderivative (1.24) is uniquely determined by the basic normal
cone (1.3) to the graph of F ; hence the name. The only difference in the
construction of the mixed coderivative (1.25) in comparison with (1.24) is
that the weak∗ convergence is used in (1.24) for both sequences x∗

k and y∗k ,
while the convergence in (1.25) is mixed: the norm convergence of y∗k → ȳ∗

and the weak∗ convergence of x∗
k
w∗
→ x̄∗.

Observe that generalized normals to arbitrary sets in Definition 1.1 can
be expressed in terms of the corresponding coderivatives for set indicator
mappings useful in the sequel.

Proposition 1.33 (coderivatives of indicator mappings). Given spaces
X and Y , we consider a nonempty subset Ω ⊂ X and define the indicator
mapping ∆: X → Y of Ω relative to Y by
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∆(x ;Ω) :=






0 ∈ Y i f x ∈ Ω ,

∅ i f x /∈ Ω .

Then for any x̄ ∈ Ω and y∗ ∈ Y ∗ one has

D̂∗
ε ∆(x̄ ;Ω)(y∗) = N̂ε(x̄ ;Ω), ε ≥ 0 ;

D∗
N∆(x̄ ;Ω)(y∗) = D∗

M∆(x̄ ;Ω)(y∗) = N(x̄ ;Ω) .

Proof. Immediately follows from the definitions due to gph∆ = Ω × {0}. �

Clearly D∗
N F(x̄, ȳ) = D∗

M F(x̄, ȳ) := D∗F(x̄, ȳ) if dim Y < ∞. Observe
that these coderivatives often have nonconvex values; so they cannot be dual
to a tangentially generated derivative. For example, consider the simplest
nonsmooth convex function ϕ(x) = |x |, x ∈ IR. By Theorem 1.6 we can easily
compute the basic normal cone to gph |x | ⊂ IR2 at (0,0). Then (1.26) gives

D∗ϕ(0, 0)(λ) =






[−λ, λ] if λ ≥ 0 ,

{−λ, λ} if λ < 0 .

Note also that coderivative values may be empty at points of the mapping
graph for simple continuous functions. It happens, e.g., for ϕ(x) = |x |α with
x ∈ IR and 0 < α < 1, where

D∗ϕ(0, 0)(λ) =






IR if λ ≥ 0 ,

∅ if λ < 0 .

Moreover, for the class of convex-valued and inner/lower semicontinuous multi-
functions, points of the coderivative domain induce a certain extremal property
important for various applications, especially in optimal control.

Recall that F : X →→ Y is inner semicontinuous at x̄ ∈ dom F if for every
y ∈ F(x̄) and every sequence xk → x̄ with xk ∈ dom F there are yk ∈ F(xk)
such that yk → y as k → ∞.

Theorem 1.34 (extremal property of convex-valued multifunctions).
Let F : X →→ Y be inner semicontinuous at x̄ ∈ dom F and convex-valued
around this point. Assume that y∗ ∈ dom D∗

N F(x̄, ȳ) for some ȳ ∈ F(x̄).
Then one has

〈y∗, ȳ〉 = min
y∈F(x̄)

〈y∗, y〉 .

Proof. Due to D∗
N F(x̄, ȳ)(y∗) 	= ∅ and (1.26) there is x∗ ∈ X∗ with

(x∗,−y∗) ∈ N((x̄, ȳ); gph F). Using Definition 1.1, we find sequences εk ↓ 0,

(xk, yk) → (x̄, ȳ) with yk ∈ F(xk), and (x∗
k , y∗k ) w∗

→ (x∗, y∗) such that
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lim sup
(x,y)→(xk ,yk), y∈F(x)

〈x∗
k , x − xk〉 − 〈y∗k , y − yk〉
‖(x, y) − (xk, yk)‖

≤ εk for each k ∈ IN .

When x = xk , this implies that −y∗k ∈ N̂εk (yk ; F(xk)). Since all the sets F(xk)
are convex, we get from Proposition 1.3 that

〈y∗k , y − yk〉 ≥ −εk‖y − yk‖ for all y ∈ F(xk), k ∈ IN .

Now assume that there is ỹ ∈ F(x̄) such that

〈y∗, ỹ〉 < 〈y∗, ȳ〉 .

Using the inner semicontinuity property of F at x̄ , we find a sequence of
ỹk → ỹ with ỹk ∈ F(xk) for all k ∈ IN . Then we easily deduce from the
convergences involved that

〈y∗k , ỹk − yk〉 < −εk‖ỹk − yk‖ for large k ∈ IN .

This contradiction completes the proof. �

It follows from the definitions for general mappings F : X →→ Y that

D̂∗F(x̄, ȳ)(y∗) ⊂ D∗
M F(x̄, ȳ)(y∗) ⊂ D∗

N F(x̄, ȳ)(y∗) (1.27)

for any y∗ ∈ Y ∗, and that all the three multifunctions are positively homoge-
neous in y∗ containing x∗ = 0 when y∗ = 0 and (x̄, ȳ) ∈ gph F . We can easily
see that the first inclusion in (1.27) is often strict. It happens, in particular,
for the above function ϕ(x) = |x |, where

D̂∗ϕ(0, 0)(λ) =






[−λ, λ] if λ ≥ 0 ,

∅ if λ < 0 .

The second inclusion in (1.27) obviously holds as equality if dim Y < ∞. Let
us show that this inclusion may be strict even for single-valued and Lipschitz
continuous mappings from the real line into Hilbert spaces.

Example 1.35 (difference between mixed and normal coderivatives).
Let H be an arbitrary Hilbert space. Then there is a mapping f : IR → H , which
is Lipschitz continuous on [−1, 1] and such that D̂∗ f (0) = D∗

M f (0) while

D∗
M f (0)(y∗) 	= D∗

N f (0)(y∗) whenever y∗ ∈ H .

Proof. Take a sequence of orthonormal vectors {e1, e2, . . .} in a Hilbert space
and define a mapping f : [−1, 1] → H by

f (x) :=






2−kek if |x | = 2−k ,

0 if x = 0 ,

linear otherwise.
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It is easy to check that f is Lipschitz continuous on [−1, 1]. Taking into
account that 〈y∗, ek〉 → 0 as k → ∞, we compute

D̂∗ f (x)(y∗) = 〈y∗, 2ek − ek+1〉 · sign x if 2−(k+1) < |x | < 2−k ;

D̂∗ f (0)(y∗) = D∗
M f (0)(y∗) = {0} for all y∗ ∈ H .

It remains to show that D∗
N f (0)(y∗) contains nonzero elements whenever

y∗ ∈ H . Picking y∗ ∈ H , we choose a sequence of positive numbers xk such
that xk → 0 and xk 	= 2− j for all k, j ∈ IN . Then put

y∗k := −y∗ − vk and λk := 〈y∗k , 2e jk − e jk+1〉 ,

where vk := (2e jk −e jk+1)/‖2e jk −e jk+1‖ and the index jk is such that 2−( jk+1) <

xk < 2− jk . We can check that vk
w→ 0 with ‖vk‖ = 1 and that

(λk, y∗k ) ∈ N̂((xk, f (xk)); gph f ), y∗k
w→ −y∗, and λk → −1 as k → ∞ .

Thus (−1,−y∗) ∈ N((0, 0); gph f ) and −1 ∈ D∗
N f (0)(y∗). �

Observe that f in Example 1.35 is not Fréchet differentiable at x̄ = 0,
since the latter would easily yield ∇ f (0) = 0, which doesn’t hold due to

‖ f (xk)‖
|xk |

= 1 	→ 0 for xk = 2−k → 0 as k → ∞ .

On the other hand, this mapping is weakly Fréchet differentiable at x̄ (even
strictly-weakly F-differentiable at this point) in the sense of Definition 3.63;
see Subsect. 3.2.4 for more discussions.

Similarly to the case of set regularity in Definition 1.4, we can consider
a “regular” behavior of set-valued mappings at points of their graphs, which
corresponds to equalities in (1.27). In this way we introduce two notions of
graphical regularity for set-valued mappings based on properties of their nor-
mal and mixed coderivatives, respectively.

Definition 1.36 (graphical regularity of multifunctions). Let F : X →→ Y
and (x̄, ȳ) ∈ gph F. Then:

(i) F is N -regular at (x̄, ȳ) if D∗
N F(x̄, ȳ) = D̂∗F(x̄, ȳ).

(ii) F is M-regular at (x̄, ȳ) if D∗
M F(x̄, ȳ) = D̂∗F(x̄, ȳ).

It follows from (1.23) and (1.26) with ε = 0 that F is N -regular at (x̄, ȳ)
if and only if the graph of F is normally regular at this point. Obviously
N -regularity always implies M-regularity of F at (x̄, ȳ) but not vice versa,
as Example 1.35 shows. Let us present some sufficient conditions that ensure
both regularities in Definition 1.36.
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First we consider convex-graph multifunctions, i.e., such F : X →→ Y whose
graphs are convex subsets of X×Y . In this case we have a special representation
of the coderivatives that follows from the form of the normal cone to convex
sets.

Proposition 1.37 (coderivatives of convex-graph multifunctions). Let
F : X →→ Y be convex-graph. Then F is N -regular at every point (x̄, ȳ) ∈ gph F
and one has the coderivative representations

D∗
N F(x̄, ȳ)(y∗)= D∗

M F(x̄, ȳ)(y∗)

=
{

x∗ ∈ X∗ ∣∣ 〈x∗, x̄〉 − 〈y∗, ȳ〉= max
(x,y)∈gph F

[
〈x∗, x〉 − 〈y∗, y〉

]}
.

Proof. Due to (1.23) and (1.26) it follows from Proposition 1.3 and Proposi-
tion 1.5 as ε = 0. �

Next we establish relationships between coderivatives and derivatives of
single-valued differentiable mappings that imply the graphical regularity of
f : X → Y if f is strictly differentiable at x̄ .

Theorem 1.38 (coderivatives of differentiable mappings). Let f : X →
Y be Fréchet differentiable at x̄. Then

D̂∗ f (x̄)(y∗) =
{
∇ f (x̄)∗y∗

}
for all y∗ ∈ Y ∗ .

If, moreover, f is strictly differentiable at x̄, then

D∗
N f (x̄)(y∗) = D∗

M f (x̄)(y∗) =
{
∇ f (x̄)∗y∗

}
for all y∗ ∈ Y ∗ ,

and thus f is N -regular at this point.

Proof. Observe that for any f : X → Y the inclusion x∗ ∈ D̂∗ f (x̄)(y∗) means
that, taking an arbitrary γ > 0, one has

〈x∗, x − x̄〉 − 〈y∗, f (x) − f (x̄)〉 ≤ γ
(
‖x − x̄‖ + ‖ f (x) − f (x̄)‖

)

when x sufficiently close to x̄ . If f is Fréchet differentiable at x̄ , we easily get
from (1.14) and the definition of adjoint linear operators that ∇ f (x̄)∗y∗ ∈
D̂∗ f (x̄)(y∗) for every y∗ ∈ Y ∗. Conversely, picking any x∗ ∈ D̂∗ f (x̄)(y∗) and
using the Fréchet differentiability of f at x̄ , we have

〈x∗ −∇ f (x̄)∗y∗, x − x̄〉 ≤ γ ‖x − x̄‖ for all x ∈ U ,

where the neighborhood U of x̄ depends on γ , (x∗, y∗), and ‖∇ f (x̄)‖. Since
γ > 0 was chosen arbitrarily, the latter implies that x∗ = ∇ f (x̄)∗y∗, which
justifies the first equality in the theorem.
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Now assume that f is strictly differentiable at x̄ and prove the second
part of the theorem. It is sufficient to show that x∗ = ∇ f (x̄)∗y∗ for any
x∗ ∈ D∗

N f (x̄)(y∗) and y∗ ∈ Y ∗. Due to (1.24) and (1.3) we have sequences

εk ↓ 0, xk → x̄ , and (x∗
k , y∗k ) w∗

→ (x∗, y∗) such that

〈x∗
k , x − xk〉 − 〈y∗k , f (x) − f (xk)〉 ≤ εk

(
‖x − xk‖ + ‖ f (x) − f (xk)‖

)

for all x close enough to xk and all k ∈ IN . It follows from Definition 1.13
of strict differentiability that for any sequence γ j ↓ 0 as j → ∞ there is a
sequence of neighborhoods U j of x̄ with

‖ f (u) − f (x) −∇ f (x̄)(u − x)‖ ≤ γ j‖u − x‖ for all x, u ∈ U j , j ∈ IN .

This allows us to select a subsequence {k j} of natural numbers such that

〈x∗
k j
−∇ f (x̄)∗y∗k j

, x − xk j 〉 ≤ ε̃ j‖x − xk j‖ for all x ∈ Uk j , j ∈ IN ,

where Uk j is a neighborhood of xk j and where ε̃ j := (�+1)(εk j +γ j‖y∗k j
‖) with

a Lipschitz constant � > 0 of f around x̄ . The latter implies that

‖x∗
k j
−∇ f (x̄)∗y∗k j

‖ ≤ ε̃ j for large j ∈ IN ,

which gives x∗ = ∇ f (x̄)∗y∗ due to

ε̃ j ↓ 0, x∗
k j
−∇ f (x̄)∗y∗k j

w∗
→ x∗ −∇ f (x̄)∗y∗ as j → ∞

and the weak∗ lower semicontinuity of the norm on X∗. �

Theorem 1.38 shows that the coderivatives under consideration can be
viewed as proper set-valued generalizations of the adjoint linear operator to
the classical derivative at the point in question. Note that, in the case of
nonsmooth mappings and multifunctions, coderivative values do not depend
linearly on the variable y∗ but exhibit a positively homogeneous dependence.
If f itself is a linear continuous operator, then its coderivatives reduce to the
classical adjoint linear operator.

Corollary 1.39 (coderivatives of linear operators). Let A: X → Y be
linear and continuous. Then it is N -regular at every point x̄ ∈ X with

D∗
N A(x̄)(y∗) = D∗

M A(x̄)(y∗) =
{

A∗y∗
}

for all x̄ ∈ X, y∗ ∈ Y ∗ .

Proof. Follows immediately from Theorem 1.38 with f (x) = Ax . �

We’ll see in Subsect. 1.2.4 and then in Chap. 3 that both properties of N -
regularity and M-regularity enjoy rich calculi, i.e., they are preserved under
various compositions of single-valued and set-valued mappings, being incor-
porated into coderivative calculus.
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Note that the strict differentiability assumption in Theorem 1.38 is suffi-
cient but not necessary for graphical regularity of single-valued mappings. A
simple example is provided by the function ϕ(x) = |x |α with 0 < α < 1 con-
sidered above, which is clearly N -regular at x̄ = 0. Observe that this function
is not locally Lipschitzian around the point in question, and it is crucial for
the regularity property; cf. Theorem 1.46 in the next subsection.

1.2.2 Lipschitzian Properties

Lipschitzian properties of single-valued and set-valued mappings play a prin-
cipal role in many aspects of variational analysis and its applications. They
are often decisive from both viewpoints of reasonable assumptions ensuring
the validity of important results and favorable conclusions, especially related
to stability of solutions with respect to perturbations, rates of convergence in
approximating and numerical procedures, etc. A crucial feature of the clas-
sical Lipschitz continuity (1.15) in comparison with the general continuity
concept for single-valued mappings is a linear rate of continuity quantified
by some modulus (Lipschitz constant) �. In what follows we study natural
extensions of Lipschitz continuity to set-valued mappings and show that the
coderivative constructions defined above are helpful in both single-valued and
set-valued cases. The necessary coderivative conditions for Lipschitzian prop-
erties obtained in this subsection are widely used in subsequent applications
considered in this book, particularly to generalized differential calculus, opti-
mization, and optimal control.

Definition 1.40 (Lipschitzian properties of set-valued mappings).
Let F : X →→ Y with dom F 	= ∅.

(i) Given nonempty subsets U ⊂ X and V ⊂ Y , we say that F is
Lipschitz-like on U relative to V if there is � ≥ 0 such that

F(x) ∩ V ⊂ F(u) + �‖x − u‖IB for all x, u ∈ U . (1.28)

(ii) Given (x̄, ȳ) ∈ gph F, we say that F is locally Lipschitz-like
around (x̄, ȳ) with modulus � ≥ 0 if there are neighborhoods U of x̄ and V
of ȳ such that (1.28) holds. The infimum of all such moduli {�} is called the
exact Lipschitzian bound of F around (x̄, ȳ) and is denoted by lip F(x̄, ȳ).

(iii) F is Lipschitz continuous on U if (1.28) holds as V = Y . Further-
more, F is locally Lipschitzian around x̄ with the exact bound lip F(x̄) if
V = Y in (ii).

The local Lipschitz-like property is also known as the pseudo-Lipschitzian
property or the Aubin property of multifunctions. Note that the local properties
in the above definition are stable/robust with respect to small perturbations
of the reference points and hold for F if and only if they hold for the mapping
F : X →→ Y with F(x) := cl (F(x)).



48 1 Generalized Differentiation in Banach Spaces

It follows from the definition that the Lipschitz continuity of F on U is
equivalent to

haus(F(x), F(u)) ≤ �‖x − u‖ for all x, u ∈ U ,

where haus(Ω1,Ω2) is the Pompieu-Hausdorff distance (often referred to as
simply the Hausdorff distance) between two subsets of Y that is defined by

haus(Ω1,Ω2) := inf
{
η ≥ 0

∣
∣ Ω1 ⊂ Ω2 + ηIB, Ω2 ⊂ Ω1 + ηIB

}
.

Note that the Pompieu-Hausdorff distance furnishes a metric on the space of
all nonempty and compact subsets of Y . Thus, if a multifunction F : X →→ Y
is compact-valued, its Lipschitz continuity in Definition 1.40(iii) is equivalent
to the classical Lipschitz continuity of a single-valued mapping x → F(x)
from X to the space of all nonempty, compact subsets of Y equipped with the
Pompieu-Hausdorff metric.

Of course, for single-valued mappings f : X → Y all the properties in Defi-
nition 1.40 reduce to the classical Lipschitz continuity. For general set-valued
mappings F : X →→ Y the local Lipschitz-like property can be viewed as a lo-
calization of Lipschitzian behavior not only relative to a point of the domain
but also relative to a particular point of the image ȳ ∈ F(x̄). It admits the
following useful characterization in terms of the local Lipschitz continuity of
the (scalar) distance function (1.7) to the moving set F(x) with respect to
both variables (x, y).

Theorem 1.41 (scalarization of the Lipschitz-like property). For any
multifunction F : X →→ Y with (x̄, ȳ) ∈ gph F the following properties are equiv-
alent:

(a) F is locally Lipschitz-like around (x̄, ȳ).
(b) A scalar function ρ: X × Y → IR defined by

ρ(x, y) := dist(y; F(x)) = inf
v∈F(x)

‖y − v‖

is locally Lipschitzian around (x̄, ȳ).

Proof. Due to the nature of the distance function we can easily observe that
the local Lipschitz continuity of ρ around (x̄, ȳ) is equivalent to the existence
of neighborhoods U of x̄ , V of ȳ, and a constant � ≥ 0 such that ρ is finite on
U × V and

ρ(u, y) ≤ ρ(x, y) + �‖x − u‖ for all x, u ∈ U, y ∈ V . (1.29)

To have (a)⇒(b), it suffices to show that (1.28) with some neighborhoods
U, V implies (1.29) with generally different neighborhoods Ũ , Ṽ . It follows
from (1.28) that

dist(y; F(u) + �‖x − u‖IB) ≤ dist(y; F(x) ∩ V ) for all x, u ∈ U, y ∈ Y .
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Since dist(y; F(u)) − η ≤ dist(y; F(u) + ηIB) for any η ≥ 0, this gives

dist(y; F(u)) − �‖x − u‖ ≤ dist(y; F(x) ∩ V ) for all x, u ∈ U, y ∈ Y .

The latter obviously implies (1.29) with some neighborhoods Ũ of x̄ and Ṽ of
ȳ for which

dist(y; F(x) ∩ V ) = dist(y; F(x)) if x ∈ Ũ , y ∈ Ṽ . (1.30)

We need to prove the existence of such neighborhoods Ũ and Ṽ . To furnish
this, we choose γ > 0 with ȳ + γ IB ⊂ V and put Ṽ := ȳ + 1

3γ IB. Then for
any y ∈ Ṽ one has y + 2

3γ IB ⊂ V , and so

dist(y; F(x) ∩ V ) = dist(y; F(x)) if dist(y; F(x)) ≤ 2
3γ .

Furthermore, since dist(y; F(x)) ≤ dist(ȳ; F(x)) + ‖y − ȳ‖, we get

dist(y; F(x)) ≤ 2
3γ when dist(ȳ; F(x)) ≤ 1

3γ, y ∈ Ṽ .

To ensure (1.30) with the specified Ṽ , we need to find a neighborhood Ũ of x̄
satisfying the property

dist(ȳ; F(x)) ≤ 1
3γ for all x ∈ Ũ .

The existence of such Ũ follows from (1.28) that obviously implies

dist(ȳ; F(x)) ≤ �‖x − x̄‖ for all x ∈ U .

Hence we can take Ũ := x̄ +ηIB, where η > 0 satisfies �η ≤ 1
3γ and x̄ +ηIB ⊂

U . This gives (a)⇒(b).
Conversely, let F be closed-valued and (1.29) hold. Picking x, u ∈ U and

y ∈ F(x) ∩ V in (1.29), we have dist(y; F(x)) = 0 and

dist(y; F(u)) ≤ dist(y; F(x)) + �‖x − u‖ = �‖u − x‖ ,

which gives (1.28) with � replaced by � + ε for some ε > 0. Since the local
Lipschitz-like property of F is invariant with respect to taking the closure of
its values, we get (b)⇒(a) in the general case. �

Let us discuss more about relationships between the local Lipschitzian
and Lipschitz-like properties of multifunctions. It follows directly from the
definitions that if F is locally Lipschitzian around x̄ ∈ dom F , then it is
locally Lipschitz-like around (x̄, ȳ) for every ȳ ∈ F(x̄) with

lip F(x̄) ≥ sup
{
lip F(x̄, ȳ)

∣
∣ ȳ ∈ F(x̄)

}
. (1.31)

The next result shows that the converse holds with the equality in (1.31) when
F satisfies some additional assumptions.
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Recall that F : X →→ Y is locally compact around x̄ ∈ dom F if there exist
a neighborhood O of x̄ and a compact set C ⊂ Y such that F(O) ⊂ C .
Furthermore, F is said to be closed at x̄ if for every y /∈ F(x̄) there are
neighborhoods U of x̄ and V of y such that F(x) ∩ V = ∅ for all x ∈ U . The
latter obviously implies that F is closed-valued at x̄ . It is easy to see that F
is closed at x̄ if, for every ȳ ∈ F(x̄), the graph of F is a closed subset of X ×Y
for all (x, y) ∈ gph F near (x̄, ȳ).

Theorem 1.42 (Lipschitz continuity of locally compact multifunc-
tions). Let F : X →→ Y be closed at some point x̄ ∈ dom F and locally compact
around this point. Then F is locally Lipschitzian around x̄ if and only if it is
locally Lipschitz-like around (x̄, ȳ) for every ȳ ∈ F(x̄). In this case

lip F(x̄) = max
{
lip F(x̄, ȳ)

∣
∣ ȳ ∈ F(x̄)

}
< ∞ .

Proof. Taking a compact set C ⊂ Y and a neighborhood O of x̄ from the
local compactness assumption, we have

F(x) ∩ C = F(x) for all x ∈ O .

Suppose without loss of generality that all the neighborhoods of x̄ consid-
ered below are subsets of O. We need to show that the local Lipschitz-like
property of F around (x̄, ȳ), for all ȳ ∈ F(x̄), implies that F is locally Lip-
schitzian around x̄ with the equality in (1.31). On the contrary, assume that
the inequality is strict in (1.31), i.e.,

lip F(x̄) > lip F(x̄, ȳ) for all ȳ ∈ F(x̄) .

Then for each ȳ ∈ F(x̄) we find a number 0 ≤ �ȳ < lip F(x̄) and neighborhoods
Uȳ of x̄ and Vȳ of ȳ such that

F(x) ∩ Vȳ ⊂ F(u) + �ȳ‖x − u‖IB for all x, u ∈ Uȳ, ȳ ∈ F(x̄) .

Since F(x̄) is a compact subset of Y , we can select from {Vȳ} a finite covering
{Vi}, i = 1, . . . , n, of the set F(x̄). Taking the corresponding numbers �i and
neighborhoods Ui , i = 1, . . . , n, let us denote

V̂ :=
n⋃

i=1

Vi , Û :=
n⋂

i=1

Ui , �̂ := max
i=1,...,n

�i .

Thus we have

F(x) ∩ V̂ ⊂ F(u) + �̂‖x − u‖IB for all x, u ∈ Û .

Consider now the relative complement C \ V̂ , which is a compact set with
F(x̄) ∩ (C \ V̂ ) = ∅. Because F is closed at x̄ , for any y ∈ C \ V̂ there are
neighborhoods Ũy of x̄ and Ṽy of y such that
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F(x) ∩ Ṽy = ∅ when x ∈ Ũy, y ∈ C \ V̂ .

Again, using the compactness of C \ V̂ , we extract from {Ṽy} a finite covering
{Ṽ j}, j = 1, . . . ,m, of the set C \ V̂ . Letting

Ṽ :=
m⋃

j=1

Ṽ j and Ũ :=
m⋂

j=1

Ũ j ,

one clearly has
F(x) ∩ Ṽ = ∅ for all x ∈ Ũ .

Putting all the above together, we arrive at

F(x) ⊂ F(u) + �̂‖x − u‖IB for all x, u ∈ Û ∩ Ũ ,

which means that �̂ < lip F(x̄), a contradiction. This proves that F is locally
Lipschitzian around x̄ with the equality in (1.31). Moreover, the maximum is
realized due to the upper semicontinuity of lip F(·, ·) on the graph of F . �

Next let us derive important necessary coderivative conditions for the lo-
cal properties in Definition 1.40 in the case of arbitrary Banach spaces. We
start with neighborhood conditions expressed in terms of ε-coderivatives (1.23)
at points near the reference one. Let us emphasize that for the validity of
these necessary conditions, as well as the point conditions in the following
Theorem 1.44, it is very essential that the Lipschitzian properties under con-
sideration are around the reference points, i.e., both x and u vary in (1.28).
We’ll see in Chap. 4 that such conditions, even with ε = 0, turn out to be also
sufficient for these and related properties of multifunctions with equalities in
the exact bound formulas in the case of Asplund spaces.

Theorem 1.43 (ε-coderivatives of Lipschitzian mappings). Let F : X →→
Y , x̄ ∈ dom F, and ε ≥ 0. The following hold:

(i) If F is locally Lipschitz-like around some (x̄, ȳ) ∈ gph F with modulus
� ≥ 0, then there is η > 0 such that

sup
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̂∗

ε F(x, y)(y∗)
}
≤ �‖y∗‖ + ε(1 + �) (1.32)

whenever x ∈ x̄ + ηIB, y ∈ F(x) ∩ (ȳ + ηIB), and y∗ ∈ Y ∗. Therefore

lip F(x̄, ȳ) ≥ inf
η>0

sup
{
‖D̂∗F(x, y)‖

∣
∣
∣ x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)

}
.

(ii) If F is locally Lipschitzian around x̄, then there is η > 0 such that
(1.32) holds whenever x ∈ x̄ + ηIB, y ∈ F(x), and y∗ ∈ Y ∗. Therefore

lip F(x̄) ≥ inf
η>0

sup
{
‖D̂∗F(x, y)‖

∣
∣
∣ x ∈ Bη(x̄), y ∈ F(x)

}
.
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Proof. Let us prove (i) assuming that � > 0 (the case of � = 0 is trivial). The
local Lipschitz-like property ensures the existence of η > 0 for which

F(x) ∩ (ȳ + ηIB) ⊂ F(u) + �‖x − u‖IB if x, u ∈ x̄ + 2ηIB .

We are going to show that (1.32) holds with the numbers η and � selected
above. Pick arbitrary elements (x, y) ∈ (gph F) ∩ [(x̄ + ηIB) × (ȳ + ηIB)],
x∗ ∈ D̂∗

ε F(x, y)(y∗), and γ > 0. Employing definitions (1.23) and (1.2), we
find a positive number α ≤ {η, �η} such that

〈x∗, u − x〉 − 〈y∗, v − y〉 ≤ (ε + γ )
(
‖u − x‖ + ‖v − y‖

)
(1.33)

for all (u, v) ∈ gph F with ‖u − x‖ ≤ α and ‖v − y‖ ≤ α. Now choose
u ∈ x + α�−1 IB and observe that

‖u − x̄‖ ≤ ‖u − x‖ + ‖x − x̄‖ ≤ 2η .

Thus one can apply the local Lipschitz-like property with y ∈ F(x)∩(ȳ +ηIB)
and the chosen u. In this way we find v ∈ F(u) such that

‖v − y‖ ≤ �‖x − u‖ ≤ � · �−1α = α .

Substituting these u and v into (1.33), we get

〈x∗, u − x〉 ≤ α‖y∗‖ + (ε + γ )(α�−1 + α)

holding for every u ∈ x + α�−1 IB. Therefore

α�−1‖x∗‖ ≤ α‖y∗‖ + α(ε + γ )(�−1 + 1) ,

which yields (1.32), since γ > 0 was chosen arbitrarily. In turn, (1.32) implies

lip F(x̄, ȳ) ≥ inf
η>0

sup
{

(‖x∗‖ − ε)/(ε + 1)
∣
∣
∣ x∗ ∈ D̂∗

ε F(x, y)(y∗), x ∈ Bη(x̄) ,

y ∈ F(x) ∩ Bη(ȳ), ‖y∗‖ ≤ 1, ε ≥ 0
}
,

which surely gives the exact bound estimate in (i) as ε = 0. Assertion (ii)
easily follows from (i) and Definition 1.40. �

Passing to the limit in the neighborhood conditions of Theorem 1.43, we
can derive point conditions valid for local Lipschitzian mappings in terms of
the mixed coderivative (1.25) computed only at reference points. The next
theorem shows that the local properties in Definition 1.40 imply the norm-
boundedness of the mixed coderivative and provides relationships between the
coderivative norm (1.22) and the corresponding exact Lipschitzian bounds.
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Theorem 1.44 (mixed coderivatives of Lipschitzian mappings). Let
F : X →→ Y with x̄ ∈ dom F. The following hold:

(i) If F is locally Lipschitz-like around some (x̄, ȳ) ∈ gph F, then

‖D∗
M F(x̄, ȳ)‖ ≤ lip F(x̄, ȳ) < ∞ (1.34)

and therefore
D∗

M F(x̄, ȳ)(0) = {0} . (1.35)

(ii) If F is locally Lipschitzian around x̄, then

sup
ȳ∈F(x̄)

‖D∗
M F(x̄, ȳ)‖ ≤ lip F(x̄)

and therefore
D∗

M F(x̄, ȳ)(0) = {0} for all ȳ ∈ F(x̄) .

Proof. Clearly (ii) follows from (i) due to (1.31). Furthermore, (1.34) implies
(1.35), since

‖x∗‖ ≤ ‖D∗
M F(x̄, ȳ)‖ · ‖y∗‖ for all x∗ ∈ D∗

M F(x̄, ȳ)(y∗), y∗ ∈ Y ∗ .

To establish (1.34), we need to show that if F is locally Lipschitz-like around
(x̄, ȳ) with modulus � ≥ 0, then

‖D∗
M F(x̄, ȳ)‖ ≤ � .

Take any (x∗, y∗) ∈ X∗ × Y ∗ with x∗ ∈ D∗
M F(x̄, ȳ)(y∗). Using Defini-

tion 1.32(iii) of the mixed coderivative, we find sequences εk ↓ 0, (xk, yk, y∗k ) →
(x̄, ȳ, y∗), and x∗

k
w∗
→ x∗ such that

yk ∈ F(xk) and x∗
k ∈ D̂∗

εk
F(xk, yk)(y∗k )

for all k ∈ IN . Due to (1.32) we have

‖x∗
k ‖ ≤ �‖y∗k ‖ + εk(1 + �)

for all k sufficiently large. Remember that ‖y∗k − y∗‖ → 0 as k → ∞ (which
is crucial in the construction of the mixed coderivative) and that the norm
function is weak∗ lower semicontinuous on X∗. Then passing to the limit in
the latter inequality, we get

‖x∗‖ ≤ �‖y∗‖ for any x∗ ∈ D∗
M F(x̄, ȳ)(y∗) .

This implies ‖D∗
M F(x̄, ȳ)‖ ≤ � due to the norm definition (1.22) for positively

homogeneous multifunctions. �

Let us emphasize that in Theorem 1.44 one cannot replace the mixed
coderivative D∗

M with the normal coderivative D∗
N if dim Y = ∞. Indeed, the
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function f from Example 1.35 is single-valued and locally Lipschitzian around
x̄ = 0 with D∗

N f (0)(0) 	= {0} and ‖D∗
N f (0)‖ = ∞.

Theorem 1.44 is useful in many applications, in particular, to coderivative
calculus and related questions fully considered in Chap. 3. Moreover, we’ll
prove in Chap. 4 that each of the conditions (1.34) and (1.35) is not only
necessary but also sufficient for the local Lipschitz-like property of set-valued
mappings between Asplund spaces, together with some “partial normal com-
pactness” assumptions that are automatic in finite-dimensions when the first
inequality in (1.34) holds as equality.

Next let us consider another type of Lipschitzian behavior of multifunc-
tions that is also a generalization of the classical local Lipschitz continuity
to the case of set-valued mappings. We’ll see that Theorem 1.44 and calculus
rules in Subsect. 1.1.2 are useful for the study of this kind of behavior.

Recall that a linear continuous operator A: X → Y is invertible if it is
surjective and injective (one-to-one) simultaneously, i.e., A is a linear isomor-
phism between X and Y .

Definition 1.45 (graphically hemi-Lipschitzian and hemismooth
mappings). Let F : X →→ Y with (x̄, ȳ) ∈ gph F.

(i) F is graphically hemi-Lipschitzian around (x̄, ȳ) if there is a map-
ping g: X × Y → Z from X × Y into another Banach space Z such that g is
strictly differentiable at (x̄, ȳ) with the surjective derivative ∇g(x̄, ȳ), and

(gph F) ∩ O = g−1
(
(gph f ) ∩ O1

)

for some neighborhoods O of (x̄, ȳ), O1 of z̄ := g(x̄, ȳ) and a locally Lip-
schitzian mapping f : X1 → Y1 with X1 × Y1 = Z . If in addition ∇g(x̄, ȳ) is
invertible, then F is said to be graphically Lipschitzian around (x̄, ȳ).

(ii) F is graphically hemismooth at (x̄, ȳ) if it is graphically hemi-
Lipschitzian around this point and the mapping f in (i) can be chosen as
strictly differentiable at ū ∈ X1 with (ū, f (ū)) = z̄. If, moreover, ∇g(x̄, ȳ) is
invertible, then F is said to be graphically smooth at (x̄, ȳ).

Roughly speaking, the graphical hemi-Lipschitzian (resp. hemismooth)
property of multifunctions means that the graph of F : X →→ Y is locally rep-
resented, up to a smooth local transformation of X × Y with the surjective
derivative, as the graph of a single-valued Lipschitz continuous (resp. strictly
differentiable) mapping. If ∇g(x̄, ȳ) happens to be invertible in Definition 1.45,
then the inverse mapping g−1 is locally single-valued and strictly differentiable
at z̄. This follows from Leach’s inverse mapping theorem; see Theorem 1.60
below. In finite dimensions such a one-to-one transformation g: X×Y → X×Y
is actually a change of coordinates around (x̄, ȳ) under which a graphically
Lipschitzian (resp. graphically smooth) multifunction can be locally identi-
fied with the graph of some single-valued Lipschitz continuous (resp. strictly
differentiable) mapping.
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Of course, every single-valued locally Lipschitzian mapping f : X → Y is
graphically Lipschitzian, and f is graphically smooth if and only if it is strictly
differentiable at the point in question. The inverse multifunction f −1: Y →→ X
is also graphically Lipschitzian around ( f (x̄), x̄) if f is Lipschitz continuous
around x̄ . A less obvious and highly important for applications class of graph-
ically Lipschitzian multifunctions is formed by maximal monotone mappings
F : X →→ X in Hilbert spaces, i.e., those for which

〈x1 − x2, y1 − y2〉 ≥ 0 for all xi ∈ X, yi ∈ F(xi ), i = 1, 2 ,

and no enlargement of the graph of F is possible in X × X without destroy-
ing monotonicity. This class includes, in particular, subdifferential mappings
for convex and saddle functions. Moreover, the graphical Lipschitzian prop-
erty holds for subdifferential mappings associated with a vast class of so-called
“prox-regular” functions typically encountered in finite-dimensional optimiza-
tion. We refer the reader to Rockafellar [1153] and to the book by Rockafellar
and Wets [1165] for more details and discussions.

It occurs that graphically hemi-Lipschitzian (graphically Lipschitzian)
mappings between finite-dimensional spaces are graphically regular if and
only if they are graphically hemismooth (resp. graphically smooth) at points
in question. We’ll prove this in the next theorem, where D∗F stands for the
common coderivative of F in finite dimensions defined by (1.26). Analogs of
these results in infinite dimensions will be presented in Subsect. 3.2.4.

Theorem 1.46 (graphical regularity for graphically hemi-Lipschit-
zian multifunctions). Let F be a multifunction between finite-dimensional
spaces, and let (x̄, ȳ) ∈ gph F. The following hold:

(i) Assume that F is graphically hemi-Lipschitzian around (x̄, ȳ). Then F
is graphically regular at (x̄, ȳ) if and only if it is graphically hemismooth at
this point.

(ii) Assume that F is graphically Lipschitzian around (x̄, ȳ). Then F is
graphically regular at (x̄, ȳ) if and only if it is graphically smooth at this point.

Proof. Assertion (ii) clearly follows from (i) and the definitions. To justify
(i), let us first establish its counterpart for single-valued mappings.

Claim. If f : IRn → IRm is locally Lipschitzian around x̄, then its graphical
regularity at x̄ is equivalent to its strict differentiability at this point.

The graphical regularity of strictly differentiable mappings is proved in Theo-
rem 1.38. It remains to prove the converse implication for locally Lipschitzian
mappings between finite-dimensional spaces. Applying Theorem 1.44, we im-
mediately conclude that

D∗ f (x̄)(0) :=
{

x∗ ∈ IRn
∣
∣ (x∗, 0) ∈ N((x̄, f (x̄)); gph f )

}
=
{
0
}

when f is Lipschitz continuous around x̄ . Further, it follows from Theorem 3.5
in Rockafellar [1153] that, for every locally Lipschitzian function f : IRn → IRm ,
the convexified (Clarke) normal cone
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NC((x̄, f (x̄)); gph f ) := clco N((x̄, f (x̄)); gph f )

is actually a linear subspace of dimension q ≥ m, where q = m if and
only if f is strictly differentiable at x̄ ; cf. Theorem 3.62 and Corollary 3.67
in Subsect. 3.2.4. Assuming the graphically regularity of f at x̄ and tak-
ing into account that the basic normal cone is convex-valued in this case
and always closed-valued in finite dimensions, we have N((x̄, f (x̄)); gph f ) =
NC((x̄, f (x̄)); gph f ). Hence there is a matrix A ∈ IR(n+m−q)×n such that

D∗ f (x̄)(0) =
{

x∗ ∈ IRn
∣
∣ Ax∗ = 0

}
=
{
0
}
.

This implies that n + m − q = n. Thus f is strictly differentiable at x̄ , which
proves the claim.

Now let us consider the general case of a mapping F : IRn →→ IRm that is
graphically hemi-Lipschitzian around (x̄, ȳ). Without loss of generality we can
assume that

gph F = g−1(gph f ) ,

where g is strictly differentiable at (x̄, ȳ) with the surjective derivative and
where f is locally Lipschitzian around ū with (ū, f (ū)) = g(x̄, ȳ). It follows
from Theorem 1.19 that the normal regularity of gph F at (x̄, ȳ) is equivalent
to the normal regularity of g−1(gph f ) at (ū, f (ū)). The above claim implies
that f is strictly differentiable at ū. Thus F is graphically hemismooth at
(x̄, ȳ), which completes the proof of the theorem. �

1.2.3 Metric Regularity and Covering

In this subsection we consider important properties of multifunctions, known
as metric regularity and covering/linear openness, that occur to be closely
related to Lipschitzian properties of inverse mappings. In the classical cases
of linear and smooth operators these properties go back to basic principles
of functional analysis given by the Banach-Schauder open mapping theorem
and its nonlinear Lyusternik-Graves generalization that we have already used
in Subsect. 1.1.2. Appropriate extensions of metric regularity and covering
properties to nonsmooth and set-valued mappings play a fundamental role in
variational analysis and optimization. In what follows we study these proper-
ties and their relationships (actually equivalence) to the Lipschitzian proper-
ties of inverse mappings considered in the previous subsection. In this way we
get necessary conditions for covering and metric regularity of multifunctions
in terms of coderivatives. The results obtained are significant for subsequent
applications in this book and imply, in particular, that the classical surjectiv-
ity assumption on strict derivatives is not only sufficient but also necessary
for openness and metric regularity in the Lyusternik-Graves theorem proved
below; see Theorem 1.57.

Let us start with the definition of metric regularity for arbitrary multi-
functions. Remember that dist(x ; ∅) = ∞ due to (1.7) and inf ∅ := ∞.
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Definition 1.47 (metric regularity). Let F : X →→ Y with dom F 	= ∅.
(i) Given nonempty subsets U ⊂ X and V ⊂ Y , we say that F is metri-

cally regular on U relative to V if there are numbers µ > 0 and γ > 0
such that

dist(x ; F−1(y)) ≤ µdist(y; F(x)) (1.36)

for all x ∈ U and y ∈ V satisfying dist(y; F(x)) ≤ γ .
(ii) Given (x̄, ȳ) ∈ gph F, we say that F is locally metrically regu-

lar around (x̄, ȳ) with modulus µ > 0 if (i) holds with some neighborhoods U
of x̄ and V of ȳ. The infimum of all such moduli {µ}, denoted by reg F(x̄, ȳ),
is called the exact regularity bound of F around (x̄, ȳ).

(iii) F is semi-locally metrically regular around x̄ ∈ dom F (resp.
around ȳ ∈ rge F) with modulus µ > 0 if (i) holds with a neighborhood U of
x̄ and V = Y (resp. with a neighborhood V of ȳ and U = X). The infimum of
all such moduli is denoted by reg F(x̄) (resp. by reg F(ȳ)).

Metric regularity (1.36) provides, for given points (x, y), a linear estimate
of the distance between x and the solution map to the (generalized) equation
y ∈ F(u) through the distance between y and F(x), which is easier to compute.
Modifications (i)–(iii) in Definition 1.47 describe different conditions imposed
on (x, y) that are typical for applications. The next proposition shows that
in the case of local metric regularity the condition dist(y; F(x)) ≤ γ can be
equivalently dismissed.

Proposition 1.48 (equivalent descriptions of local metric regular-
ity). For any multifunction F : X →→ Y with dom F 	= ∅, any (x̄, ȳ) ∈ gph F,
and any µ > 0 the following properties are equivalent:

(a) F is locally metrically regular around (x̄, ȳ) with modulus µ;
(b) there are neighborhoods U of x̄ and V of ȳ such that (1.36) holds for

all x ∈ U and y ∈ V ;
(c) there are neighborhoods U of x̄ and V of ȳ such that (1.36) holds for

all x ∈ U and y ∈ V with F(x) ∩ V 	= ∅.

Proof. Obviously (b)⇒(a) and (b)⇒(c). Let us prove that (a)⇒(b). To per-
form this, it suffices to show that for any numbers η > 0 and γ > 0 there is
ν > 0 such that (1.36) holds for all x ∈ x̄ + ν IB and y ∈ ȳ + ν IB provided that
it holds for every x ∈ x̄ + ηIB and y ∈ ȳ + ηIB with dist(y; F(x)) ≤ γ . Given
(µ, η, γ ), we put

ν := min
{
η, γµ/(µ+ 1)

}
.

Taking x ∈ x̄ + ν IB and y ∈ ȳ + ν IB, we only need to consider the case when
dist(y; F(x)) > γ . Note that dist(x̄ ; F−1(y)) ≤ µdist(y; F(x̄)) due to (a) and

dist(y; F(x̄)) ≤ ‖y − ȳ‖ ≤ ν ≤ γ .

Thus we have
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dist(x ; F−1(y)) ≤ dist(x̄ ; F−1(y)) + ‖x − x̄‖ ≤ µdist(y; F(x̄)) + ‖x − x̄‖

≤ µ ‖y − ȳ‖ + ‖x − x̄‖ ≤ ν(µ+ 1) ≤ γµ

< µdist(y; F(x))

due to the choice of ν. This proves that properties (a) and (b) are equivalent
with the same modulus µ.

It remains to show that (c)⇒(a). Fix U and η > 0 such that (1.36) holds
for all x ∈ U and y ∈ V := int (ȳ + ηIB) satisfying F(x) ∩ V 	= ∅. Then take
γ := η

3 , Ṽ := int (ȳ + η
3 IB) and consider y ∈ Ṽ with dist(y; F(x)) ≤ γ . For

every such y we select v ∈ F(x) satisfying ‖y − v‖ ≤ dist(y; F(x))+ η
3 and get

‖v − ȳ‖ ≤ ‖v − y‖ + ‖y − ȳ‖ < dist(y; F(x)) + η
3 + η

3 ≤ γ + 2η
3 = η ,

i.e., v ∈ int (ȳ + ηIB). Thus F(x) ∩ int (ȳ + ηIB) 	= ∅, which implies (a). �

We see that each of the properties (b) and (c) in Proposition 1.48 can
be chosen as an equivalent definition of local metric regularity with the same
exact regularity bound reg F(x̄, ȳ). Note that an analog of the equivalence
(a)⇔(c) holds also for semi-local metric regularity from Definition 1.47(iii).
We’ll justify and use this fact in the proof of the next theorem that establishes
the equivalence between the corresponding Lipschitzian and metric regularity
properties of arbitrary multifunctions.

Theorem 1.49 (relationships between Lipschitzian and metric reg-
ularity properties). Let F : X →→ Y with dom F 	= ∅, and let � > 0. Then the
following hold:

(i) F is locally Lipschitz-like around (x̄, ȳ) ∈ gph F if and only if its
inverse F−1: Y →→ X is locally metrically regular around (ȳ, x̄) ∈ gph F−1

with the same modulus. Moreover, the latter is equivalent to the existence of
neighborhoods U of x̄, V of ȳ and a number � ≥ 0 such that

F(x) ∩ V ⊂ F(u) + �‖x − u‖IB for all u ∈ U, x ∈ X . (1.37)

In this case one has the equality lip F(x̄, ȳ) = reg F−1(ȳ, x̄).
(ii) F is locally Lipschitzian around x̄ ∈ dom F if and only if F−1 is semi-

locally metrically regular around x̄ ∈ rge F−1. In this case one has the equality
lip F(x̄) = reg F−1(x̄).

Proof. We just prove assertion (ii). The proof of (i) is similar with taking into
account the equivalence between properties (a) and (b) in Proposition 1.48.
Note that (1.37) doesn’t contain any restriction on x , in contrast to (1.28),
which is due to the localization in both domain and range spaces.

To prove (ii), we first assume that F is locally Lipschitzian around x̄ and
denote � := lip F(x̄) < ∞. Then for any ε > 0 one has
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F(x) ⊂ F(u) + (�+ ε)‖x − u‖IB whenever x, u ∈ U ,

which immediately implies that

dist(y; F(u)) ≤ (�+ ε)‖x − u‖ if y ∈ F(x) and x, u ∈ U .

Choosing r > 0 with x̄ + r IB ⊂ U , it is easy to see from the above that

dist(y; F(u)) ≤ (�+ ε) dist(u; F−1(y)) (1.38)

whenever u ∈ x̄ +r IB and F−1(y)∩(x̄ +r IB) 	= ∅. Denote now Ũ := x̄ +(r/3)IB
and show that (1.38) holds for any u ∈ Ũ and y ∈ Y with dist(u, F−1) ≤ γ :=
r . Indeed, for such u and y one gets ‖x̃ ∈ F−1(y) with x̃ − u‖ ≤ r/3 which
yields ‖x̃ − x̄‖ ≤ r and hence F−1(y) ∩ (x̄ + r IB) 	= ∅. The latter means that
F−1 is semi-locally metrically regular around x̄ with modulus � + ε. Since
ε > 0 was chosen arbitrarily, we have reg F−1(x̄) ≤ � = lip F(x̄).

Conversely, let F−1 be semi-locally metrically regular around x̄ ∈ rge F−1

with reg F−1(x̄) := µ. Then for any ε > 0 we find positive numbers r and
γ < 3r such that

dist(y; F(u)) ≤ (µ+ ε)dist(u, F−1(y))

whenever u ∈ x̄ + r IB and y ∈ Y satisfy dist(u; F−1(y)) ≤ γ . Since

dist(u; F−1(y)) ≤ ‖u − x̃‖ ≤ ‖u − x̄‖ + ‖x̃ − x̄‖ < γ

if x̃ ∈ F−1(y) ∩ (x̄ + (γ /3)IB), one has

dist(y; F(u)) ≤ (µ+ ε)dist(u; F−1(y))

whenever u ∈ x̄ + (γ /3)IB and y ∈ Y with F−1(y) ∩ (x̄ + (γ /3)IB) 	= ∅.
Shrinking the latter ball if necessary, we find a neighborhood U of x̄ such that

F(x) ⊂ F(u) + (µ+ 2ε)‖u − x‖IB for x, u ∈ U, y ∈ Y ,

which implies the local Lipschitzian property of F around x̄ with modulus
µ+ 2ε. Since ε > 0 was chosen arbitrarily, we get lip F(x̄) ≤ µ = reg F−1(x̄)
and complete the proof of the theorem. �

Now let us consider relationships between the notions of local and semi-
local metric regularity in Definition 1.47. Obviously that semi-local metric reg-
ularity of F around x̄ ∈ dom F (resp. around ȳ ∈ rge F) implies its local metric
regularity around (x̄, ȳ) for every ȳ ∈ F(x̄) (resp. for every x̄ ∈ F−1(ȳ)), and
one has

reg F(x̄) ≥ sup
ȳ∈F(x̄)

{
reg F(x̄, ȳ)

}
, reg F(ȳ) ≥ sup

x̄∈F−1(ȳ)

{
reg F(x̄, ȳ)

}
.

Let us present conditions under which the converse implications take place and
the latter inequalities become equalities. Note that the properties of multi-
functions used in the next proposition are discussed right before Theorem 1.42.
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Proposition 1.50 (relationships between local and semi-local metric
regularity). For any multifunction F : X →→ Y with dom F 	= ∅ the following
assertions hold:

(i) Given x̄ ∈ dom F, assume that F is closed at x̄ and locally compact
around this point. Then F is semi-locally metrically regular around x̄ if and
only if it is locally metrically regular around (x̄, ȳ) for every ȳ ∈ F(x̄). In this
case one has

reg F(x̄) = max
{
reg F(x̄, ȳ)

∣
∣ ȳ ∈ F(x̄)

}
< ∞ .

(ii) Given ȳ ∈ rge F, assume that F−1 is closed at ȳ and locally compact
around this point. Then F is semi-locally metrically regular around ȳ if and
only if it is locally metrically regular around (x̄, ȳ) for every x̄ ∈ F−1(ȳ). In
this case one has

reg F(ȳ) = max
{
reg F(x̄, ȳ)

∣
∣ x̄ ∈ F−1(ȳ)

}
< ∞ .

Proof. Assertion (ii) follows from Theorems 1.42 and 1.49. Assertion (i) is
independent but can be justified similarly to the proof of Theorem 1.42; see
the proof of Theorem 4.2(c) in Mordukhovich [909] for more details. �

As shown above, the properties of local and semi-local (global relative to
domain spaces) metric regularity of arbitrary multifunctions are equivalent,
correspondingly, to the local Lipschitz-like and local Lipschitzian properties
of their inverses. It also happens that metric regularity of a multifunction F
is closely related to the so-called covering properties of F we consider next.
In this respect, the other notion of semi-local metric regularity of F in Defi-
nition 1.47 (global relative to image spaces) plays a major role.

Definition 1.51 (covering properties). Let F : X →→ Y with dom F 	= ∅.
(i) Given nonempty subsets U ⊂ X and V ⊂ Y , we say that F has the

covering property on U relative to V if there is κ > 0 such that

F(x) ∩ V + κr IB ⊂ F(x + r IB) whenever x + r IB ⊂ U as r > 0 . (1.39)

(ii) Given (x̄, ȳ) ∈ gph F, we say that F has the local covering prop-
erty around (x̄, ȳ) with modulus κ > 0 if there are neighborhoods U of x̄ and
V of ȳ such that (1.39) holds. The supremum of all such moduli {κ}, denoted
by cov F(x̄, ȳ), is called the exact covering bound of F around (x̄, ȳ).

(iii) F has the semi-local covering property around x̄ ∈ dom F with
modulus κ > 0 if there is a neighborhood U of x̄ such that (1.39) holds as
V = Y . The supremum of all such moduli is denoted by cov F(x̄).

The local covering property in Definition 1.51(ii) is also known as open-
ness at a linear rate or linear openness of F around (x̄, ȳ). For single-valued
mappings f : X → Y it relates to a conventional openness property of f at x̄
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meaning that the image of every neighborhood of x̄ under f contains (covers)
a neighborhood of f (x̄) or, equivalently,

f (x̄) ∈ int f (U) for any neighborhood U of x̄ .

Property (1.39) gives more, even for single-valued mappings: it ensures the
uniformity of covering around x̄ with linear rate κ. It has been well recog-
nized that covering properties of single-valued and set-valued mappings play
a principal role in many aspects of variational analysis, in particular, for de-
riving necessary optimality conditions in constrained variational problems,
calculus rules for generalized derivatives, etc. There are the following precise
relationships between the covering and metric regularity properties under con-
sideration, for both local and semi-local versions.

Theorem 1.52 (relationships between covering and metric regular-
ity). For any F : X →→ Y with dom F 	= ∅ the following hold:

(i) F has the semi-local covering property around x̄ ∈ dom F if and only
if it is semi-locally metrically regular around this point. In this case one has
cov F(x) = 1/reg F(x̄).

(ii) F has the local covering property around (x̄, ȳ) ∈ gph F if and only
if it is locally metrically regular around this point. In this case one has
cov F(x̄, ȳ) = 1/reg F(x̄, ȳ).

Proof. Let us prove (i) assuming first that F is semi-locally metrically regular
around x̄ with some modulus µ > 0. We have η, γ > 0 such that (1.36) holds
for all x ∈ U := int (x̄ + ηIB) and y ∈ Y with dist(y; F(x)) ≤ γ . Consider the
number ν := min{η,µγ }, the neighborhood Ũ := int (x̄ + ν IB) of x̄ and pick

v ∈ int (F(x) + (r/µ)IB) with x + r IB ⊂ Ũ , r > 0 .

Then x ∈ int (x̄ + ηIB) and dist(v; F(x)) < r/µ ≤ γ . Thus

dist(x ; F−1(v)) ≤ µdist(v; F(x)) < r

due to the assumed metric regularity, and so we can choose u ∈ F−1(v) such
that u ∈ int (x + r IB) and v ∈ F(u) ⊂ F(int (x + r IB)). The latter gives

int (F(x) + κ−1r IB) ⊂ F(int (x + r IB)) whenever x + r IB ⊂ Ũ .

Now taking an arbitrary small ε > 0, we get

F(x) + (µ+ ε)−1r IB ⊂ int (F(x) + µ−1r IB) ⊂ F(int (x + r IB)) ⊂ F(x + r IB)

when x + r IB ⊂ Ũ . This implies the semi-local covering property of F around
x̄ with cov F(x̄) ≥ 1/reg F(x̄).

To prove the opposite implication in (i), we take κ > 0 and η > 0 for which

F(x) + κr IB ⊂ F(x + r IB) whenever x + r IB ⊂ U := int (x̄ + ηIB), r > 0 .
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Let us put ν := η/2, Ũ := int (x̄ + ν IB), γ := κη/2 and show that (1.36) holds
for all x ∈ Ũ and y ∈ Y with dist(y; F(x)) ≤ γ /2. Indeed, fix such a pair
(x, y) and consider any number α satisfying dist(y; F(x)) < α < γ . Then for
r := α/κ we have

y ∈ F(x) + κr IB and x + r IB ⊂ U .

The covering property ensures the existence of u ∈ x +r IB such that y ∈ F(u),
i.e., u ∈ F−1(y). Thus

dist(x ; F−1(y)) ≤ ‖x − u‖ ≤ r = α/κ .

Now letting α ↓ dist(y; F(x)), we get

dist(x ; F−1(y)) ≤ κ−1dist(y; F(x)) for any x ∈ Ũ , y ∈ Y

satisfying dist(y; F(x)) ≤ γ with the chosen Ũ and γ . This completes the
proof of (i).

The proof of (ii) is parallel to the one presented for (i). Following this route
in both parts of the proof, we additionally need to select a neighborhood Ṽ
of ȳ when V is given in the local properties of metric regularity and covering,
respectively. It can be done similarly to constructing the neighborhood Ũ for
U in the proof of assertion (i). �

Corollary 1.53 (relationships between local and semi-local covering
properties). Let F : X →→ Y be closed at x̄ ∈ dom F and locally compact
around this point. Then the semi-local covering property of F around x̄ is
equivalent to the local covering property of F around (x̄, ȳ) for every ȳ ∈ F(x̄).
In this case

0 < cov F(x̄) = min
{
cov F(x̄, ȳ)

∣
∣ ȳ ∈ F(x̄)

}
.

Proof. This follows directly from Proposition 1.50(i) and Theorem 1.52. �

The equivalence relationships established above allow us to employ coderiv-
atives to derive efficient necessary conditions and modulus estimates for metric
regularity and covering properties of multifunctions between arbitrary Banach
spaces. Such conditions can be obtained from the corresponding results for
Lipschitzian properties in Subsect. 1.2.2 by passing to inverse multifunctions.
Let us present counterparts of Theorems 1.43 and 1.44 for metric regularity
and covering properties considering for simplicity only the case of ε = 0 in
(1.32), which is the most important for applications. The sufficiency of these
conditions with the exact modulus formulas will be studied in Sects. 4.1 and
4.2 in the framework of Asplund spaces.

To formulate the results below, we use the following construction

D̃∗
M F(x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗| y∗ ∈ −D∗

M F−1(ȳ, x̄)(−x∗)
}

(1.40)



1.2 Coderivatives of Set-Valued Mappings 63

generated by the mixed coderivative of inverse mappings. Observe that (1.40)
corresponds to taking the reversed convergence (strong in X∗ and weak∗ in
Y ∗) in definition (1.25) of the mixed coderivative. Of course, D̃∗

M F(x̄, ȳ) =
D∗

N F(x̄, ȳ) if dim X < ∞, and D̃∗
M F(x̄, ȳ) = D∗

M F(x̄, ȳ) if both X and Y are
finite-dimensional. Note also that there is no difference between these three
coderivatives if F is N -regular at (x̄, ȳ). However, in the general setting the
reversed coderivative (1.40) doesn’t enjoy a satisfactory calculus developed for
the normal and mixed coderivatives in Subsects. 1.2.4 and 3.1.2. This restricts
the range of its applications in comparison with D∗

N and D∗
M .

Theorem 1.54 (coderivative conditions from local metric regularity
and covering). Let F : X →→ Y with (x̄, ȳ) ∈ gph F. Assume that F is locally
metrically regular around (x̄, ȳ) with modulus µ > 0 or, equivalently, F has
the local covering property around (x̄, ȳ) with modulus µ−1. Then the following
assertions hold:

(i) There is η > 0 such that

inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̂∗F(x, y)(y∗)

}
≥ µ−1‖y∗‖ (1.41)

whenever x ∈ x̄ + ηIB, y ∈ F(x) ∩ (ȳ + ηIB), and y∗ ∈ Y ∗. In this case

reg F(x̄, ȳ) ≥ inf
η>0

sup
{
‖D̂∗F(x, y)−1‖

∣
∣
∣ x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)

}
,

cov F(x̄, ȳ) ≤ sup
η>0

inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̂∗F(x, y)(y∗), x ∈ Bη(x̄) ,

y ∈ F(x) ∩ Bη(ȳ), ‖y∗‖ = 1
}
.

(ii) One has the equivalent conditions

D∗
M F−1(ȳ, x̄)(0) = {0} ⇐⇒ ker D̃∗

M F(x̄, ȳ) = {0} (1.42)

and the exact bounds estimates

reg F(x̄, ȳ) ≥ ‖D∗
M F−1(ȳ, x̄)‖ = ‖D̃∗

M F(x̄, ȳ)−1‖ ,

cov F(x̄, ȳ) ≤ inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̃∗

M F(x̄, ȳ)(y∗), ‖y∗‖ = 1
}
.

Proof. To prove (i), we observe that one always has

y∗ ∈ D̂∗F−1(y, x)(x∗) ⇐⇒ −x∗ ∈ D̂∗F(x, y)(−y∗) .

From here we get ‖D̂∗F−1(x, y)‖ = ‖D̂∗F(x, y)−1‖ and then derive all the
conclusions in (i) from Theorem 1.43(i) due to the equivalence results of Theo-
rems 1.49(i) and 1.52(ii). These equivalences also imply both conditions (1.42)



64 1 Generalized Differentiation in Banach Spaces

and the estimate for the regularity bound in (ii) due to condition (1.35) in
Theorem 1.44 and definition (1.40).

It remains to justify the estimate for the covering bound in (ii). This follows
from the above and the observation that

1
/
‖H−1‖ = inf

{
‖y‖

∣
∣
∣ y ∈ H(x), ‖x‖ = 1

}

for any positively homogeneous multifunction H : X →→ Y . �

The results obtained easily imply the corresponding necessary coderivative
conditions with the exact bounds estimates for semi-local covering and metric
regularity properties. For brevity we present only the necessary conditions.

Corollary 1.55 (coderivative conditions from semi-local metric reg-
ularity and covering). Let F : X →→ Y with dom F 	= ∅. The following asser-
tions hold:

(i) Assume that F is semi-locally metrically regular around x̄ ∈ dom F
with modulus µ > 0 or, equivalently, F has the semi-local covering property
around x̄ with modulus µ−1. Then there is η > 0 such that (1.41) is fulfilled
for any x ∈ x̄ +ηIB, y ∈ F(x), and y∗ ∈ Y ∗, and also the equivalent conditions
(1.42) hold for every ȳ ∈ F(x̄).

(ii) Assume that F is semi-locally metrically regular around ȳ ∈ rge F
with modulus µ > 0. Then there is η > 0 such that (1.41) is fulfilled for
any y ∈ F(x) ∩ (ȳ + ηIB) with x ∈ X and any y∗ ∈ Y ∗. Also the equivalent
conditions (1.42) hold for every x̄ ∈ F−1(ȳ) in this case.

Proof. Follows directly from the definitions and Theorem 1.54. �

If F = f : X → Y is single-valued, there is no difference between the
local and semi-local metric regularity and covering properties of f around the
reference point x̄ with ȳ = f (x̄). Let us consider the case when f is strictly
differentiable at x̄ and present a complete characterization of metric regularity
and covering with precise formulas for computing the corresponding exact
bounds. The necessity part of this characterization with a lower (resp. upper)
estimate for the exact bound of metric regularity (resp. covering) is a special
case of the general coderivative results from Theorem 1.54 and the following
Lemma 1.56 on the automatic closedness of the derivative image for metrically
regular mappings. The sufficiency part of Theorem 1.57 with the opposite side
estimates is the essence of the celebrated Lyusternik-Graves theorem – in fact
of its proof – that is reproduced in the arguments below.

Let us start with the afore-mentioned lemma that holds, as well as Theo-
rem 1.57, in arbitrary Banach spaces.

Lemma 1.56 (closed derivative images of metrically regular map-
pings). Let f : X → Y be metrically regular around x̄ and Fréchet differen-
tiable at this point. Then the linear image space ∇ f (x̄)X is closed in Y .
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Proof. Choose η > 0 such that for some µ > 0 we have

dist
(
x ; f −1(x̄)

)
≤ µ‖ f (x) − f (x̄)‖ whenever x ∈ x̄ + ηIB ;

this is a consequence of metric regularity. Denote A := ∇ f (x̄) and fix an
arbitrary point y0 ∈ cl(AX). Then there is a sequence of yk → y0 with yk ∈ AX
and ‖yk+1−yk‖ ≤ 2−k as k ∈ IN . To proceed, we construct a sequence of xk ∈ X
satisfying the estimates

‖xk+1 − xk‖ ≤ 3µ
2k

and ‖yk − Axk‖ ≤ 1
2k

for all k ∈ IN .

Define xk iteratively. First let x1 be any point with Ax1 = y1. Then having
x1, . . . , xk satisfying the above estimates, construct xk+1 as follows. Fix u ∈
f −1(yk+1) − xk and choose t > 0 satisfying t‖u‖ ≤ η and

∥
∥
∥

f (x̄ + t z) − f (x̄)
t

− Az
∥
∥
∥ ≤ 1

2k+2
whenever z ∈

{
‖u‖, 3µ

2k

}
IB ,

which implies the relationships

‖ f (x̄ + tu) − f (x̄)‖ ≤ t
(
‖Au‖ +

1
2k+2

)
= t
(
‖yk+1 − Axk‖ +

1
2k+2

)

≤ t
(
‖yk+1 − yk‖ + ‖yk − Axk‖ +

1
2k+2

)

≤ t
( 1

2k
+

1
2k

+
1

2k+2

)
≤ 3t

2k
.

Now using the metric regularity of f around x̄ , find x̃ with f (x̃) = f (x̄ + tu)
and ‖x̃ − x̄‖ ≤ 3µt/2k . Putting v := (x̃ − x̄)/t and xk+1 := xk + v, we get
‖x j+1 − x j‖ ≤ 3µt/2 j for j = k, k + 1. It remains to show that

‖yk+1 − Axk+1‖ ≤ 1
2k+1

.

To justify this, observe from the above constructions that

∥
∥
∥

f (x̄ + tv) − f (x̄)
t

− Av
∥
∥
∥ ≤ 1

2k+2
,
∥
∥
∥

f (x̄ + tu) − f (x̄)
t

− Av
∥
∥
∥ ≤ 1

2k+2
,

and hence ‖Au − Av‖ = ‖yk+1 − axk+1‖ ≤ 1/2k+1. Thus {xk} is a Cauchy
sequence in X that converges to some point x0. Furthermore, Axk = yk → y0,
which gives Ax0 = y0 and completes the proof of the lemma. �

Now we are ready to prove the mentioned fundamental characterization
of metric regularity and covering for strictly differentiable mappings between
general Banach spaces.
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Theorem 1.57 (metric regularity and covering for strictly differen-
tiable mappings). Let f : X → Y be strictly differentiable at x̄. Then f is
metrically regular around x̄ (equivalently, f has the covering property around
this point) if and only if the derivative operator ∇ f (x̄): X → Y is surjective.
In this case one has the exact formulas

reg f (x̄) =
∥
∥(∇ f (x̄)∗

)−1∥∥, cov f (x̄) = inf
{
‖∇ f (x̄)∗y∗‖

∣
∣
∣ ‖y∗‖ = 1

}
.

Proof. First we justify the necessity of the surjectivity of the derivative op-
erator ∇ f (x̄) for the metric regularity of f around x̄ . It follows from Theo-
rem 1.38 and the definitions that

D̃∗
M f (x̄)(y∗) =

{
∇ f (x̄)∗y∗

}
for all y∗ ∈ Y ∗

when f is strictly differentiable at x̄ . Hence the metric regularity of f around
x̄ gives by (1.42) that

ker∇ f (x̄)∗ = {0}, i.e., ∇ f (x̄)∗y∗ = 0 =⇒ y∗ = 0 .

The latter easily implies, since the image space ∇ f (x̄)X is closed in Y by
Lemma 1.56, that the operator ∇ f (x̄) is surjective. Indeed, the opposite
assumption immediately contradicts the separation (or, equivalently, Hahn-
Banach) theorem. Observe furthermore that the surjectivity of ∇ f (x̄) implies
by Lemma 1.18 that the inverse operator to ∇ f (x̄)∗ is single-valued. Thus we
get the relationships

reg f (x̄) ≥ ‖(∇ f (x̄)∗)−1‖, cov f (x̄) ≤ inf
{
‖∇ f (x̄)∗y∗‖

∣
∣
∣ ‖y∗‖ = 1

}

from the general coderivative estimates of Theorem 1.54(ii).
Next let us prove that the surjectivity of ∇ f (x̄) is also sufficient for the

metric regularity (covering) of f around x̄ , in which case the above estimates
hold as equalities. For definiteness we’ll proceed with the covering property.

Put A := ∇ f (x̄). It follows from the surjectivity of A (see the proof of
Lemma 1.18) that for any y ∈ Y there is x ∈ A−1(y) satisfying

‖x‖ ≤ µ‖y‖ with µ−1 = inf
{
‖A∗y∗‖

∣
∣
∣ ‖y∗‖ = 1

}
. (1.43)

Using the strict differentiability of f at x̄ , for every γ ∈ (0, µ−1) we find a
neighborhood U of x̄ such that

‖ f (x1) − f (x2) − A(x1 − x2)‖ ≤ γ ‖x1 − x2‖ for all x1, x2 ∈ U .

Let us show

f (x̂) + (µ−1 − γ )r IB ⊂ f (x̂ + r IB) whenever x̂ + r IB ⊂ U, r > 0 .

By definition this means that f has the covering property around x̄ with
modulus κ = µ−1 − γ . Since γ > 0 can be taken arbitrarily small, we get
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cov f (x̄) ≥ µ−1 = inf
{
‖∇ f (x̄)∗y∗‖

∣
∣
∣ ‖y∗‖ = 1

}
,

which will end the proof of the theorem.
It remains to prove the above inclusion for f , where one can obviously

take x̂ = 0 and f (x̂) = 0 without loss of generality. The latter means that for
every y ∈ (µ−1 − γ )r IB the equation y = f (x) has a solution x ∈ r IB ⊂ U .
This is actually the main result (Theorem 1) in Graves [522].

Fix y ∈ Y with ‖y‖ ≤ (µ−1 − γ )r and construct the desired solution x as
the limit of a sequence {xk}, k = 1, 2, . . ., recurrently defined in the following
way. Starting with x0 := 0, we use (1.43) to construct xk by the iterative
procedure of Newton’s type:

Axk = y − f (xk−1) + Axk−1 with ‖xk − xk−1‖ ≤ µ ‖y − f (xk−1)‖

for all k ∈ IN . It follows from the above construction that

‖xk+1 − xk‖ ≤ µ(µγ )k ‖y‖ and

‖xk‖ ≤
k∑

j=1

‖x j − x j−1‖ ≤ µ ‖y‖
k∑

j=1

(µγ ) j−1

≤ µ ‖y‖
/
(1 − µγ ) = ‖y‖

/
(µ−1 − γ ) ≤ r

for every k ∈ IN . Thus {xk} is a Cauchy sequence that converges to some
x ∈ X with ‖x‖ ≤ r . Passing to the limit in the iterations as k → ∞, we
obtain y = f (x) and complete the proof of the theorem. �

The following corollary of Theorem 1.57 for linear operators gives a refine-
ment of the classical Banach-Schauder open mapping theorem.

Corollary 1.58 (metric regularity and covering for linear operators).
A linear and continuous operator A: X → Y is metrically regular around every
point x̄ ∈ X (equivalently, it has the covering property around x̄) if and only
if A is surjective. In this case one has

reg A(x̄) = ‖(A∗)−1‖, cov A(x̄) = inf
{
‖A∗y∗‖

∣
∣
∣ ‖y∗‖ = 1

}
for all x̄ ∈ X .

Proof. Follows immediately from Theorem 1.57 with f (x) = Ax . �

Throughout this subsection we have considered relationships between
properties of mappings and their inverses that may be set-valued even for
simple smooth functions. Another direct corollary of Theorem 1.57 provides
the following characterization of the local Lipschitz-like property of inverses
to strictly differentiable mappings.
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Corollary 1.59 (Lipschitz-like inverses to strictly differentiable map-
pings). Let f : X → Y be strictly differentiable at x̄, and let ȳ = f (x̄). Then
the inverse mapping f −1: Y →→ X is locally Lipschitz-like around (ȳ, x̄) if and
only if ∇ f (x̄) is surjective. In this case one has

lip f −1(ȳ, x̄) =
∥
∥(∇ f (x̄)∗

)−1∥∥ .

Proof. Follows from Theorem 1.57 and the equivalence in Theorem 1.49(i). �

The result in Corollary 1.59 can be interpreted as a kind of “set-valued
inverse mapping theorem”, since it infers good (Lipschitz-like) behavior of
inverse multifunctions. However, the main objective of conventional inverse
mapping theorems, as well as implicit mapping theorems implied by them,
is to find efficient conditions ensuring that f −1 is locally single-valued and
inherits the same analytic/differential properties as the given mapping f .

The classical inverse mapping theorem concerns the case of f ∈ C1 around
x̄ and proves that f −1 ∈ C1 around ȳ = f (x̄) if ∇ f (x̄) is invertible. Leach
[748] extended this result to the case of mappings f strictly differentiable at
x̄ . He formally introduced the notion of strict differentiability for this purpose
although the corresponding construction actually appeared in Graves’ proof
of his seminal result; cf. the proof of Theorem 1.57. Let us show, based on
Theorem 1.57, that the invertibility of the strict derivative ∇ f (x̄) is neces-
sary and sufficient for f −1 to be strictly differentiable at ȳ. Moreover, we
give precise formulas for computing the exact metric regularity, covering, and
Lipschitzian bounds of f −1 in this case.

Theorem 1.60 (strictly differentiable inverses). Let f : X → Y be strictly
differentiable at x̄, and let ȳ = f (x̄). Then f −1 is locally single-valued around
ȳ and strictly differentiable at this point if and only if ∇ f (x̄) is invertible. In
this case one has

∇ f −1(ȳ) = ∇ f (x̄)−1, lip f −1(ȳ) =
∥
∥(∇ f (x̄)∗

)−1∥∥ ,

reg f −1(ȳ) = ‖∇ f (x̄)∗‖ ,

cov f −1(ȳ) = inf
{∥
∥∇
(

f (x̄)−1
)∗

x∗∥∥
∣
∣
∣
∥
∥x∗∥∥ = 1

}
.

Proof. Assume that ∇ f (x̄) is invertible and show first that f −1 is locally
single-valued around ȳ. If it is not the case, for any neighborhood U of x̄ we
find x1, x2 ∈ U such that f (x1) = f (x2). Then

‖∇ f (x̄)(x1 − x2)‖
‖x1 − x2‖

=
‖ f (x1) − f (x2) −∇ f (x̄)(x1 − x2)‖

‖x1 − x2‖
.

This clearly contradicts the strict differentiability of f at x̄ and the existence
of α > 0 with ‖∇ f (x̄)x‖ ≥ α‖x‖ for all x ∈ X , which follows from the
invertibility of ∇ f (x̄).



1.2 Coderivatives of Set-Valued Mappings 69

Next let us prove that f −1 is strictly differentiable at ȳ with ∇ f −1(ȳ) =
∇ f (x̄)−1. Taking arbitrary yi = f (xi ), i = 1, 2, near ȳ and denoting
γ (x1, x2) := f (x1) − f (x2) −∇ f (x̄)(x1 − x2), we have

‖ f −1(y1) − f −1(y2) −∇ f (x̄)−1(y1 − y2)‖

= ‖x1 − x2 −∇ f (x̄)−1( f (x1) − f (x2))‖

= ‖x1 − x2 −∇ f (x̄)−1(∇ f (x̄)(x1 − x2) + γ (x1, x2))‖

= ‖∇ f (x̄)−1(γ (x1, x2))‖ ≤ ‖∇ f (x̄)−1‖ · ‖γ (x1, x2)‖ .

By Theorem 1.57 the function f is metrically regular around x̄ , which gives
µ > 0 such that ‖x1 − x2‖ ≤ µ‖y1 − y2‖. This implies

‖γ (x1, x2)‖
/
‖y1 − y2‖ ≤ ‖γ (x1, x2)‖

/
µ−1‖x1 − x2‖ → 0 as y1, y2 → ȳ ,

which proves the claim and the sufficiency part of the theorem.
In this case f −1 is locally Lipschitzian around ȳ, and thus lip f −1(ȳ) =

‖∇ f (x̄)−1‖ due to Corollary 1.59. The formulas for reg f −1(ȳ) and cov f −1(ȳ)
follow directly from Theorem 1.57.

Conversely, if f −1 is locally single-valued and strictly differentiable at ȳ,
then both f and f −1 are metrically regular around x̄ and ȳ, respectively.
Hence both ∇ f (x̄) and ∇ f −1(ȳ) are surjective due to the necessity in Theo-
rem 1.57, which implies the invertibility of ∇ f (x̄). �

Remark 1.61 (restrictive metric regularity). Observe that Definition 1.47
of metric regularity doesn’t depend on the linear structure of the spaces in
question and applies to arbitrary metric spaces. In this way, given a mapping
f : X → Y between Banach spaces, we can consider the metric regularity of
the restricted mapping f : X → f (X), where the image space Y is replaced by
the metric space f (X). This notion is naturally to call the restrictive metric
regularity (RMR) of f around x̄ .

If f is strictly differentiable at x̄ with the surjective derivative ∇ f (x̄),
then the classical Lyusternik-Graves theorem ensures the metric regularity of
f : X → Y around x̄ , and the surjectivity of ∇ f (x̄) is also necessary for the
latter property; see Theorem 1.57. What could we say about the restrictive
metric regularity of f when ∇ f (x̄) is not surjective? This issue is addressed
in the paper by Mordukhovich and B. Wang [967, 968], where the notion of
restrictive metric regularity is studied in depth with applications to the first-
order and second-order generalized differential calculus and to the sequential
normal compactness of set and mappings. In particular, the following gen-
eralization of the Lyusternik-Graves theorem involving the paratingent cone
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T̃ (x̄ ;Ω) :=
{
v ∈ X

∣
∣ ∃ vk → v, tk ↓ 0, xk

Ω→ x̄ with xk + tkvk ∈ Ω
}

to Ω at x̄ is obtained (note that the image space ∇ f (x̄)X is closed in Y under
the RMR property of f around x̄ ; this follows from the proof of Lemma 1.56):

Let f : X → Y be a mapping between Banach spaces that is strictly dif-
ferentiable at x̄. Then the restrictive metric regularity of f around x̄ im-
plies that T̃ ( f (x̄); f (X)) = ∇ f (x̄)X , and the converse implication holds when
codim∇ f (x̄)X < ∞.

Applications of the restrictive metric regularity to the generalized differ-
ential calculus and SNC properties of sets and mappings are similar to those
presented in this book, but without surjectivity assumption on ∇ f (x̄). In par-
ticular, a counterpart of Theorem 1.17 is formulated as follows:

Let f : X → Y be strictly differentiable at x̄, and let the space ∇ f (x̄)X be
complemented in Y . Then one has the two generally independent equalities:

N
(
x̄ ; f −1(Θ)

)
= ∇ f (x̄)∗N

(
f (x̄);Θ ∩ f (X)

)
,

(
∇ f (x̄)∗

)−1
N
(
x̄ ;Θ ∩ f (X)

)
= N

(
f (x̄);Θ ∩ f (X)

)

provided that f has the RMR property around x̄ .

Note that the complementarity requirement on ∇ f (x̄)X above may be
replaced by the more general w∗-extensibility property of ∇ f (x̄)X in the sense
of Definition 1.122, which always holds if IB∗ is weak∗ sequentially compact;
see Proposition 1.123. We refer the reader to the afore-mentioned papers [967,
968] for more results, applications, and discussions in this direction.

1.2.4 Calculus of Coderivatives in Banach Spaces

This subsection contains calculus results for coderivatives of set-valued map-
pings between arbitrary Banach spaces. We pay the main attention to normal
and mixed coderivatives from Definition 1.32 that are the most important for
applications. The results obtained concern sum and chain rules for coderiv-
atives and incorporate the corresponding calculus for graphical regularity of
multifunctions. We’ll come back to this subject in Chap. 3, where much more
calculus rules (full calculus) will be developed for set-valued mappings between
Asplund spaces.

Let us start with sum rules for coderivatives of two mappings, one of which
is single-valued and differentiable. The following theorem ensures sum rules
with equalities.

Theorem 1.62 (coderivative sum rules with equalities). Let f : X → Y
be Fréchet differentiable at x̄, and let F : X →→ Y be an arbitrary set-valued
mapping such that ȳ − f (x̄) ∈ F(x̄) for some ȳ ∈ Y . The following hold:

(i) For all y∗ ∈ Y ∗ one has
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D̂∗( f + F)(x̄, ȳ)(y∗) = ∇ f (x̄)∗y∗ + D̂∗F(x̄, ȳ − f (x̄))(y∗) .

(ii) If f is strictly differentiable at x̄, then

D∗( f + F)(x̄, ȳ)(y∗) = ∇ f (x̄)∗y∗ + D∗F(x̄, ȳ − f (x̄))(y∗)

for all y∗ ∈ Y ∗, where D∗ stands either for the normal coderivative (1.24) or
for the mixed coderivative (1.25). Moreover, the mapping f + F is N -regular
(resp. M-regular) at (x̄, ȳ) if and only if F is N -regular (resp. M-regular) at
the point (x̄, ȳ − f (x̄)).

Proof. The inclusions “⊂” in both formulas can be proved similarly to The-
orem 1.38. Applying them to the sum ( f + F) + (− f ), we get the opposite
inclusions and thus establish the equalities. The regularity statements follow
from the combination of (i), (ii), and the definitions. �

Next let us derive formulas for computing coderivatives of compositions

(F ◦ G)(x) := F(G(x)) =
⋃{

F(y)
∣
∣
∣ y ∈ G(x)

}

for mappings between Banach spaces. To proceed, we need to define some
notions used in what follows.

Definition 1.63 (inner semicontinuous and inner semicompact mul-
tifunctions). Let S: X →→ Y with x̄ ∈ dom S.

(i) Given ȳ ∈ S(x̄), we say that the mapping S is inner semicontinuous
at (x̄, ȳ) if for every sequence xk → x̄ there is a sequence yk ∈ S(xk) converging
to ȳ as k → ∞.

(ii) S is inner semicompact at x̄ if for every sequence xk → x̄ there is
a sequence yk ∈ S(xk) that contains a convergent subsequence as k → ∞.

The inner semicontinuity of S at (x̄, ȳ) for every ȳ ∈ S(x̄) goes back to
the standard notion of inner/lower semicontinuity of S at x̄ recalled and used
in Subsect. 1.2.1; see Theorem 1.34. The latter notion clearly implies the in-
ner semicompactness of S at x̄ , which may be substantially weaker than the
inner semicontinuity. In particular, any nonempty-valued mapping that is lo-
cally compact around x̄ (locally bounded when dim Y < ∞) is obviously inner
semicompact around x̄ , i.e., at each x from some neighborhood of x̄ . Under
additional assumptions imposed in the results below, the inner semicompact-
ness of mappings S at x̄ implies that S is closed-graph at x̄ (but not around
this point), i.e., ȳ ∈ S(x̄) whenever xk → x̄ and yk → ȳ with yk ∈ S(xk). Note
that, in contrast to the inner semicontinuity property (i), the inner semicom-
pactness property (ii) in Definition 1.63 cannot be equivalently formulated via
the convergence of the whole sequence {yk}, k ∈ IN , and requires passing to
a subsequence.

To formulate the first theorem on coderivatives of compositions, let us
consider the multifunction
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Φ(x, y) := F(y) +∆((x, y); gph G)

involving the indicator mapping ∆ defined in Proposition 1.33. This multi-
function plays a significant role in the proof of various chain rules considered
below; see also Chap. 3.

Theorem 1.64 (coderivatives of compositions). Let G: X →→ Y ,
F : Y →→ Z , z̄ ∈ (F ◦ G)(x̄), and

S(x, z) := G(x) ∩ F−1(z) =
{

y ∈ G(x)
∣
∣ z ∈ F(y)

}
.

The following hold for both coderivatives D∗ = D∗
N and D∗ = D∗

M for all
z∗ ∈ Z∗:

(i) Given ȳ ∈ S(x̄, z̄), assume that S is inner semicontinuous at (x̄, z̄, ȳ).
Then one has

D∗(F ◦ G)(x̄, z̄)(z∗) ⊂
{

x∗ ∈ X∗ ∣∣ (x∗, 0) ∈ D∗Φ(x̄, ȳ, z̄)(z∗)
}
.

(ii) Assume that S is inner semicompact at (x̄, z̄), where G is closed-graph
at x̄ and F−1 is closed-graph at z̄. Then one has

D∗(F ◦ G)(x̄, z̄)(z∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ (x∗, 0) ∈

⋃

ȳ∈S(x̄,z̄)

D∗Φ(x̄, ȳ, z̄)(z∗)
}
.

(iii) Let G = g be single-valued around x̄. Then one has

D∗(F ◦ g)(x̄, z̄)(z∗) =
{

x∗ ∈ X∗ ∣∣ (x∗, 0) ∈ D∗Φ(x̄, g(x̄), z̄)(z∗)
}

if either g is Lipschitz continuous around x̄ and dim Y < ∞, or g is strictly
differentiable at x̄. In each of these cases F ◦ g is N -regular (M-regular) at
(x̄, z̄) if Φ has the corresponding property at (x̄, g(x̄), z̄).

Proof. We prove the theorem for the case of D∗ = D∗
N ; for D∗ = D∗

M
the proof is similar. Let us start with (i). Take arbitrary (x∗, z∗) with
x∗ ∈ D∗(F ◦ G)(x̄, z̄)(z∗) and find sequences εk ↓ 0, (xk, zk) → (x̄, z̄), and

(x∗
k , z∗k ) w∗

→ (x∗, z∗) such that

zk ∈ (F ◦ G)(xk) and (x∗
k ,−z∗k ) ∈ N̂εk ((xk, zk); gph F ◦ G), k ∈ IN .

Using the inner semicontinuity of S at (x̄, z̄, ȳ), one gets yk ∈ S(xk, zk) with
yk → ȳ as k → ∞. For each k ∈ IN we have

lim sup
(x,y,z)→(xk ,yk ,zk)

z∈Φ(x,y)

〈(x∗
k , 0,−z∗k ), (x, y, z) − (xk, yk, zk)〉

‖(x, y, z) − (xk, yk, zk)‖

= lim sup
(x,y,z)→(xk ,yk ,zk)
y∈G(x), z∈F(y)

〈x∗
k , x − xk〉 − 〈z∗k , z − zk〉
‖(x, y, z) − (xk, yk, zk)‖

≤ max
{

0, lim sup
(x,z)→(xk ,zk)
z∈(F◦G)(x)

〈x∗
k , x − xk〉 − 〈z∗k , z − zk〉
‖(x, z) − (xk, zk)‖

}
≤ εk .
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This gives (x∗
k , 0,−z∗k ) ∈ N̂εk ((xk, yk, zk); gphΦ) and justifies (i) by passing to

the limit as k → ∞.
To justify (ii), we proceed similarly to (i) and find, by the inner semicom-

pactness of S at (x̄, z̄), a subsequence of yk ∈ S(xk, zk) that converges to some
point ȳ. Since yk ∈ G(xk)∩F−1(zk) and the graphs of G and F−1 are closed at
the corresponding points, we obtain that ȳ ∈ G(x̄) ∩ F−1(z̄) = S(x̄, z̄). Then
the proof of (i) leads to the conclusion in (ii).

Let us finally prove (iii). In both cases there g is Lipschitz continuous
around x̄ with some modulus � ≥ 0. Taking any (x∗, z∗) with (x∗, 0) ∈
D∗Φ(x̄, g(x̄), z̄)(z∗), we find sequences εk ↓ 0, (xk, zk) → (x̄, z̄), and

(x∗
k , y∗k , z∗k ) w∗

→ (x∗, 0, z∗) such that zk ∈ F(g(xk)) and

lim sup
x→xk , z→zk
z∈F(g(x))

〈(x∗
k , y∗k ,−z∗k ), (x, g(x), z) − (xk, g(xk), zk)〉

‖(x, g(x), z) − (xk, g(xk), zk)‖
≤ εk

for all k ∈ IN . The latter implies

lim sup
x→xk , z→zk
z∈F(g(x))

〈x∗
k , x − xk〉 − 〈z∗k , z − zk〉
‖(x, z) − (xk, zk)‖

≤ ε̃k := (�+ 1)(εk + ‖y∗k ‖) .

If dim Y < ∞, then ε̃k ↓ 0 as k → ∞, which proves (iii) in this case.
Assume now that g is strictly differentiable at x̄ . Following the proof of

Theorem 1.38, we take an arbitrary sequence γ j ↓ 0 as j → ∞ and derive
from above that

lim sup
x→xk , z→zk
z∈F(g(x))

〈x∗
k j

+ ∇g(x̄)∗y∗k j
, x − xk j 〉 − 〈z∗k j

, z − zk j 〉
‖(x, z) − (xk j , zk j )‖

≤ ε̃ j ,

where ε̃ j := (�+ 1)(εk j + γ j‖y∗k j
‖) ↓ 0 as j → ∞. This implies

x∗
k j

+ ∇g(x̄)∗y∗k j
∈ D̂∗

ε̃ j
(F ◦ g)(xk j , zk j )(z∗k j

)

and then x∗ ∈ D∗(F ◦ g)(x̄, z̄)(z∗), since x∗
k j

+ ∇g(x̄)∗y∗k j

w∗
→ x∗ as j → ∞.

It remains to justify the regularity statement in (iii). This easily follows
from the equality proved in (iii) and the observation that

D̂∗(F ◦ g)(x̄, z̄)(z∗) =
{

x∗ ∈ X∗ ∣∣ (x∗, 0) ∈ D̂∗Φ(x̄, g(x̄), z̄)(z∗)
}

if g is locally Lipschitzian around x̄ . �

Note that the results of Theorem 1.64 provide the “right” inclusions and
equalities for representing the coderivatives of compositions but not in a chain
rule form, since they involve the coderivatives of the auxiliary multifunction
Φ instead of the ones for F and G. To derive coderivative chain rules in this
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way, it suffices to employ a sum rule for representing the coderivatives of Φ.
For now let us use the sum rule of Theorem 1.62(ii) available in arbitrary
Banach spaces. Further results in this direction will be obtained in Chap. 3,
where coderivative sum rules (and hence chain rules) will be established for
general multifunctions in the Asplund space setting.

The following theorem gives parallel chain rules for the normal and mixed
coderivatives of compositions. Observe, however, that just the normal coderiv-
ative of the inner mapping G is used in both cases. To simplify the notation,
we omit the coderivative argument z∗ ∈ Z∗ in chain rules.

Theorem 1.65 (coderivative chain rules with strictly differentiable
outer mappings). Let G: X →→ Y , f : Y → Z , and z̄ ∈ ( f ◦ G)(x̄). The
following hold for both coderivatives D∗ = D∗

N and D∗ = D∗
M :

(i) Assume that G ∩ f −1 is inner semicontinuous at (x̄, z̄, ȳ) for some
given ȳ ∈ G(x̄) with f (ȳ) = z̄ and that f is strictly differentiable at ȳ. Then

D∗( f ◦ G)(x̄, z̄) ⊂ D∗
N G(x̄, ȳ) ◦ ∇ f (ȳ)∗ .

(ii) Assume that G∩ f −1 is inner semicompact at (x̄, z̄), where G and f −1

are closed-graph at the corresponding points. Assume also that f is strictly
differentiable at every ȳ ∈ G(x̄) ∩ f −1(z̄). Then

D∗( f ◦ G)(x̄, z̄) ⊂
⋃

ȳ∈G(x̄)∩ f −1(z̄)

D∗
N G(x̄, ȳ) ◦ ∇ f (ȳ)∗ .

(iii) Let G = g be single-valued and either Lipschitz continuous around x̄
with dim Y < ∞ or strictly differentiable at this point. Then

D∗
M( f ◦ g)(x̄) = D∗

N ( f ◦ g)(x̄) = D∗g(x̄) ◦ ∇ f (g(x̄))∗ .

Moreover, f ◦ g is N -regular at x̄ if g is N -regular at this point.

Proof. Follows from Theorem 1.64 by computing the coderivatives of Φ via
the sum rule of Theorem 1.62(ii) and Proposition 1.33. �

Note that assertion (iii) of Theorem 1.65 ensures an equality chain rule
for both normal and mixed coderivatives (which agree in this case) with no
regularity assumptions on g unless g is strictly differentiable at x̄ . In the latter
case this result reduces to the classical chain rule for compositions of strictly
differentiable mappings between Banach spaces.

Next let us consider the case when the inner mapping g in the compo-
sition F ◦ g is strictly differentiable at the reference point. In this case we
derive coderivative chain rules with equalities from the calculus results for
normal cones in Subsect. 1.1.2. Similarly to Theorem 1.65, we don’t impose
any regularity assumptions on F but relate its graphical (normal and mixed)
regularity with the corresponding regularity of the composition F ◦ g.
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Theorem 1.66 (coderivative chain rules with surjective derivatives
of inner mappings). Let g: X → Y , F : Y →→ Z , and z̄ ∈ (F ◦ g)(x̄). Assume
that g is strictly differentiable at x̄ with the surjective derivative ∇g(x̄). Then
the following hold:

D̂∗(F ◦ g)(x̄, z̄) = ∇g(x̄)∗ D̂∗F(g(x̄), z̄) ,

D∗(F ◦ g)(x̄, z̄) = ∇g(x̄)∗D∗F(g(x̄), z̄) ,

where D∗ stands either for D∗
N or for D∗

M . Moreover, F ◦ g is N -regular (resp.
M-regular) at (x̄, z̄) if and only if F has the corresponding regularity property
at (g(x̄), z̄).

Proof. Let I be the identity operator on Z . Then (g, I ): X × Z → Y × Z
is strictly differentiable at (x̄, z̄) with the surjective derivative ∇(g, I )(x̄, z̄).
One can easily observe that (g, I )−1(gph F) = gph(F ◦ g). Thus the chain
rules in the theorem for D̂∗ and D∗ = D∗

N follow from Corollary 1.15 and
Theorem 1.17, respectively. To prove the chain rule for the case of D∗ =
D∗

M , we apply Lemma 1.16 to the set (g, I )−1(gph F) and then pass to the
limit similarly to the proof of Theorem 1.17 using the strong convergence of
z∗k → z∗ in the construction of mixed coderivatives for F and F ◦ g. The
regularity statements of the theorem follow from the chain rules obtained and
the injectivity of ∇g(x̄)∗; see Lemma 1.18. �

1.2.5 Sequential Normal Compactness of Mappings

In this subsection we consider sequential normal compactness properties of
general multifunctions between Banach spaces. These properties, which are
automatic in finite dimensions, play a crucial role in many aspects of infinite-
dimensional variational analysis particularly related to furnishing limiting pro-
cedures and deriving efficient pointbased conditions for Lipschitzian behavior,
metric regularity, generalized differential calculus, optimization, etc.; see the
subsequent chapters of this book. In Subsect. 1.1.3 we have introduced and
studied the sequential normal compactness property of arbitrary sets in Ba-
nach spaces. This naturally induces the corresponding property of set-valued
mappings when applied to their graphs. However, the case of mappings allows
us to consider also a weaker (less restrictive) property that exploits different
convergences in domain and range spaces. The latter property, called “partial
sequential normal compactness”, is especially important for various results in-
volving coderivatives. Here we study both properties of multifunctions in the
framework of arbitrary Banach spaces and obtain efficient conditions for their
fulfillment and preservation under some operations. A much richer calculus of
sequential normal compactness is developed in Chap. 3 for mappings between
Asplund spaces.

Definition 1.67 (sequential normal compactness of multifunctions).
Let F : X →→ Y with (x̄, ȳ) ∈ gph F. Then:
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(i) F is sequentially normally compact (SNC) at (x̄, ȳ) if for any
sequence (εk, xk, yk, x∗

k , y∗k ) ∈ [0,∞) × (gph F) × X∗ × Y ∗ satisfying

εk ↓ 0, (xk, yk) → (x̄, ȳ), x∗
k ∈ D̂∗

εk
F(xk, yk)(y∗k ), and (x∗

k , y∗k ) w∗
→ (0, 0)

one has ‖(x∗
k , y∗k )‖ → 0 as k → ∞.

(ii) F is partially sequentially normally compact (PSNC) at
(x̄, ȳ) if for any sequence (εk, xk, yk, x∗

k , y∗k ) ∈ [0,∞) × (gph F) × X∗ × Y ∗

satisfying

εk ↓ 0, (xk, yk) → (x̄, ȳ), x∗
k ∈ D̂∗

εk
F(xk, yk)(y∗k ), x∗

k
w∗
→ 0, and ‖y∗k ‖ → 0

one has ‖x∗
k ‖ → 0 as k → ∞.

We may omit ȳ in the above definition if F is single-valued. Observe that
the SNC property of a set-valued mapping agrees with the SNC property of
its graph in the sense of Definition 1.20. Note also that the PSNC property
always holds when dim X < ∞. There is no difference between the two prop-
erties in Definition 1.67 if dim Y < ∞, but otherwise the PSNC property
is implied by the SNC one and may be strictly weaker even for linear con-
tinuous operators. The following proposition shows that the PSNC (but not
SNC) property always holds for the important class of Lipschitz-like multi-
functions, thanks to the necessary condition for such mappings in terms of
ε-coderivatives obtained in Theorem 1.43. Moreover, in this case the PSNC
property holds around (x̄, ȳ), i.e., at any point (x, y) sufficiently close to (x̄, ȳ).

Proposition 1.68 (PSNC property of Lipschitz-like multifunctions).
Let F : X →→ Y be locally Lipschitz-like around (x̄, ȳ) ∈ gph F. Then it is
partially sequentially normally compact at this point.

Proof. If follows from Theorem 1.43(i) and Definition 1.67(ii). �

Corollary 1.69 (SNC properties of single-valued mappings and their
inverses). Let f : X → Y be Lipschitz continuous around x̄. Then:

(i) f is PSNC at (x̄, f (x̄)). Moreover, it is SNC at this point if dim Y < ∞.
(ii) If f is strictly differentiable at x̄ with the surjective derivative ∇ f (x̄),

then f −1 has the PSNC property around ( f (x̄), x̄).

Proof. Assertion (i) follows directly from Proposition 1.68. To prove (ii), we
conclude from Corollary 1.59 that f −1 is Lipschitz-like around ( f (x̄), x̄), and
again apply the proposition. �

It will be proved in Subsect. 3.1.3 that the finite dimensionality condition
dim Y < ∞ is not only sufficient but also necessary for the SNC property
of the so-called w∗-strictly Lipschitzian (in particular, strictly differentiable)
mappings f : X → Y defined in Asplund spaces.
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Another essential fact related to sequential normal compactness that will
be established in Subsect. 3.1.3 is the PSNC property of inversions to gener-
alized Fredholm operators important in applications to optimization problems
with operator constraints and particularly to optimal control. Such general-
ized Fredholm operators are built upon some compactly strictly Lipschitzian
mappings, which form a remarkable subclass of strictly Lipschitzian ones.

Next we establish some results on “calculus of sequential normal com-
pactness” for mappings between Banach spaces. In what follows we obtain
conditions ensuring that these properties are preserved under certain addi-
tions and compositions. Such results are naturally related to calculus rules for
normal cones and coderivatives.

Theorem 1.70 (SNC properties under additions with strictly dif-
ferentiable mappings). Let f : X → Y be strictly differentiable at x̄, and let
F : X →→ Y be an arbitrary multifunction such that ȳ − f (x̄) ∈ F(x̄) for some
ȳ ∈ Y . Then f + F is SNC (resp. PSNC) at (x̄, ȳ) if and only if F has the
corresponding property at (x̄, ȳ − f (x̄)).

Proof. Let us prove the “if” part of the theorem in a parallel way for both SNC
and PSNC properties. Taking x∗

k ∈ D̂∗
εk

( f + F)(xk, yk)(y∗k ) for each k ∈ IN ,
one has from the definitions that

〈x∗
k , x − xk〉 − 〈y∗k , y − yk〉 ≤ 2εk(‖x − xk‖ + ‖y − yk‖)

for all (x, y) ∈ gph ( f + F) sufficiently close to (xk, yk). Denote ỹk := yk −
f (xk). Now using the strict differentiability of f at x̄ similarly to the proof of
Theorem 1.38, we pick an arbitrary sequence γ j ↓ 0 as j → ∞ and get

〈x∗
k j
−∇ f (x̄)∗y∗k j

, x − xk j 〉 − 〈y∗k j
, y − ỹk j 〉 ≤ ε̃ j (‖x − xk j‖ + ‖y − ỹk j‖)

with ε̃ j := (�+ 1)(2εk j + γ j‖y∗k j
‖)

for all (x, y) ∈ gph F sufficiently close to (xk j , ỹk j ) and j ∈ IN sufficiently
large, where � is a Lipschitz constant of f around x̄ . This gives

x∗
k j
−∇ f (x̄)∗y∗k j

∈ D̂∗
ε̃ j

F(xk j , ỹk j )(y∗k j
) .

One can see that ε̃ j ↓ 0, ỹk j → ȳ − f (x̄), and x∗
k j
−∇ f (x̄)∗y∗k j

w∗
→ 0 as j → ∞

provided that εk ↓ 0, (xk, yk) → (x̄, ȳ), and (x∗
k , y∗k ) w∗

→ (0, 0) as k → ∞.
From here we easily conclude that the SNC (resp. PSNC) property of F at
(x̄, ȳ − f (x̄)) implies the corresponding property of f + F at (x̄, ȳ). The
opposite implication follows from the “if” part applied to ( f + F) + (− f ). �

Next let us consider the composition F ◦ G of set-valued mappings be-
tween Banach spaces. First we relate the sequential normal compactness
properties of F ◦ G with the ones for the auxiliary multifunction Φ(x, y) =
F(y) +∆((x, y); gph G) with the indicator mapping ∆: X × Y → Z defined in
Proposition 1.33.
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Proposition 1.71 (SNC properties under compositions). Let G: X →→ Y ,
F : Y →→ Z , and z̄ ∈ (F ◦ G)(x̄). Assume that the multifunction G(x) ∩ F−1(z)
is inner semicontinuous at (x̄, z̄, ȳ) for some ȳ ∈ G(x̄) ∩ F−1(z̄). Then F ◦ G
is SNC (resp. PSNC) at (x̄, z̄) if Φ has the corresponding property at (x̄, ȳ, z̄).

Proof. Take sequences (εk, xk, zk, x∗
k , z∗k ) ∈ [0,∞)× X × Z × X∗× Z∗ with

εk ↓ 0, (xk, zk) → (x̄, z̄), (x∗
k , z∗k ) w∗

→ (0, 0),

zk ∈ (F ◦ G)(xk), and x∗
k ∈ D̂∗

εk
(F ◦ G)(xk, zk)(z∗k ), k ∈ IN .

Using the inner semicontinuity of G ∩ F−1 at (x̄, z̄, ȳ) for the given ȳ, we find
yk ∈ G(xk) ∩ F−1(zk) converging to ȳ. It was actually shown in the proof of
Theorem 1.64(i) that

(x∗
k , 0) ∈ D̂∗

εk
Φ(xk, yk, zk)(z∗k ) for all k ∈ IN . (1.44)

From here we can easily conclude that the SNC (resp. PSNC) property of Φ
at (x̄, ȳ, z̄) implies the corresponding property of F ◦ G at (x̄, z̄). �

To obtain the SNC properties of F ◦ G in terms of the ones for F and G,
one can proceed similarly to the proof of Theorem 1.65 employing a sum rule
for Φ. However, this way is limited for the SNC calculus. The reason is that,
due to Proposition 1.33, the indicator mapping ∆(·;Ω) is PSNC at x̄ ∈ Ω
at x̄ if and only if Ω is SNC at this point, and ∆ is never SNC at x̄ unless
the image space is finite-dimensional. Combining therefore Proposition 1.71
and Theorem 1.70, we can only conclude that f ◦ G is PSNC if G is SNC
and f is strictly differentiable at the corresponding points but cannot get any
conclusions on the SNC property of f ◦ G when dim Z = ∞. Better results
are given in the next theorem based on a chain rule for ε-coderivatives.

Theorem 1.72 (SNC properties under compositions with strictly
differentiable outer mappings). Consider G: X →→ Y , f : Y → Z , and
z̄ ∈ ( f ◦ G)(x̄). Assume that G ∩ f −1 is inner semicontinuous at (x̄, z̄, ȳ)
for some ȳ ∈ G(x̄) ∩ f −1(z̄), and that f is strictly differentiable at ȳ. The
following assertions hold:

(i) If G is PSNC at (x̄, ȳ), then the composition f ◦G is PSNC at (x̄, z̄).
(ii) If G is SNC at (x̄, ȳ) and ∇ f (ȳ) is surjective, then the composition

f ◦ G is SNC at (x̄, z̄).

Proof. Taking sequences (εk, xk, zk, x∗
k , z∗k ) as in the proof of Proposition 1.71,

we find yk → ȳ such that yk ∈ G(xk)∩ f −1(zk) and (1.44) holds with Φ(x, y) =
f (y)+∆((x, y); gph G). Then we use the strict differentiability of f at ȳ and,
following the proof of Theorem 1.70, derive from (1.44) that

x∗
k j
∈ D̂∗

ε̃ j
G(xk j , yk j )(∇ f (ȳ)∗z∗k j

) for all j ∈ IN ,

where ε̃ j := (� + 1)(2εk j + γ j‖∇ f (ȳ)∗z∗k j
‖), � is a Lipschitz constant of f

around ȳ, and γ j ↓ 0 as j → ∞. The latter clearly implies that ‖x∗
k j
‖ → 0 if
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G is assumed to be PSNC at (x̄, ȳ). If G is SNC at this point, then we have
in addition that ‖∇ f (ȳ)∗z∗k j

‖ → 0. By Lemma 1.18 this yields ‖z∗k j
‖ → 0 as

j → ∞ provided that ∇ f (ȳ) is surjective.
We have proved both assertions (i) and (ii) of the theorem along a subse-

quence {k j} of the original sequence. This doesn’t restrict the generality, since
the original sequence was chosen arbitrarily. �

Note that the surjectivity assumption on ∇ f (ȳ) is essential for the validity
of assertion (ii) in the theorem. Indeed, consider G(x) ≡ X and f (x) ≡ 0. Then
( f ◦G)(x) ≡ 0 is never SNC unless dim X < ∞, although G is obviously SNC
at every point.

Let us present an efficient corollary of Theorem 1.72 that ensures the SNC
properties of compositions with Lipschitz-like inner mappings G.

Corollary 1.73 (SNC compositions with Lipschitz-like inner map-
pings). Let z̄ ∈ ( f ◦ G)(x̄). Fix ȳ ∈ G(x̄)∩ f −1(z̄) and assume the following:
G is locally Lipschitz-like around (x̄, ȳ), f is strictly differentiable at ȳ, and
G ∩ f −1 is inner semicontinuous at (x̄, z̄, ȳ). Then f ◦ G is PSNC at (x̄, z̄).
Moreover, f ◦ G is SNC at this point if dim Y < ∞ and ∇ f (ȳ) is surjective.

Proof. Follows from the theorem due to Proposition 1.68. �

The next result concerns the SNC properties of compositions in which
outer mappings are arbitrary but inner mappings are strictly differentiable
with surjective derivatives. It turns out that both properties in Definition 1.67
are invariant under such compositions.

Theorem 1.74 (SNC properties under compositions with strictly
differentiable inner mappings). Let g: X → Y , F : Y →→ Z , and z̄ ∈
(F ◦ g)(x̄). Assume that g is strictly differentiable at x̄ with the surjective
derivative ∇g(x̄). Then F ◦ g is SNC (resp. PSNC) at (x̄, z̄) if and only if F
has the corresponding property at (g(x̄), x̄).

Proof. We have observed in the proof of Theorem 1.66 that

gph(F ◦ g) = (g, I )−1(gph F) ,

where I is the identity operator on Z . Since ∇(g, I )(x̄, z̄) is surjective, the
equivalence between the SNC property of F ◦ g and the one for F follows
directly from Theorem 1.22. The proof of the equivalence in the case of PSNC
is similar based on Lemma 1.16. �

The calculus results obtained above allow us to establish the sequential
normal compactness properties of set-valued mappings built upon “basic”
SNC and PSNC mappings via various compositions. We know from Theo-
rem 1.26 and Proposition 1.68 that the SNC and PSNC properties are inher-
ent in sets and mappings possessing a kind of local Lipschitzian behavior. Let
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us present a PSNC analog of Theorem 1.26 for the case of mappings that are
just “partial” CEL.

A set-mapping F : X →→ Y is said to be partially compactly epi-Lipschitzian
around (x̄, ȳ) ∈ gph F (relative to X) if there are neighborhoods U of (x̄, ȳ)
and O of the origin in X , as well as a number γ > 0 and a compact set
C ⊂ X × Y such that

(gph F) ∩ U + t(O × {0}) ⊂ gph F + tC (1.45)

for all t ∈ (0, γ ). Note that this property is intrinsically defined in terms of
the given mapping F with no use of generalized differential constructions.

One can see that (1.45), which is a partial counterpart of the CEL property
in Definition 1.24, always holds when dim X < ∞. Observe also that the
partial CEL property is different from the Lipschitz-like property of set-valued
mappings in Definition 1.40. Let us show, similarly to Theorem 1.26, that the
partial CEL property always implies the PSNC property (even a stronger
version of it; see Definition 3.3 and the subsequent discussion) for general
multifunctions between Banach spaces.

Theorem 1.75 (PSNC property of partial CEL mappings). Let F :
X →→ Y be partially compactly epi-Lipschitzian around (x̄, ȳ) ∈ gph F. Then
for any sequence (εk, xk, yk, x∗

k , y∗k ) ∈ [0,∞) × (gph F) × X∗ × Y ∗ satisfying

εk ↓ 0, (xk, yk) → (x̄, ȳ), x∗
k ∈ D̂∗

εk
F(xk, yk)(y∗k ), and (x∗

k , y∗k ) w∗
→ (0, 0)

one has ‖x∗
k ‖ → 0 as k → ∞. In particular, F has the PSNC property at the

reference point (x̄, ȳ).

Proof. Fix η > 0 such that Bη(x̄, ȳ) ⊂ U and ηIB ⊂ O for the neighborhoods
in (1.45). Taking any sequence (εk, xk, yk, x∗

k , y∗k ) in the theorem, we have

(x∗
k ,−y∗k ) ∈ N̂εk ((xk, yk); gph F) with (xk, yk) ∈ (gph F) ∩ Bη(x̄, ȳ)

for big k ∈ IN . Now using (1.45) for each fixed k, we find sequences t j ↓ 0 and
c j ∈ C such that

(xk, yk) + t jη(e, 0) − t j c j ∈ gph F for all e ∈ IB, j ∈ IN .

Since C is compact, we may assume that c j converges to some c̄ ∈ C as
j → ∞. It is easy to conclude from the construction of εk-normals that

〈
(x∗

k , y∗k ), (ηe, 0) − c̄
〉
≤ εk

(
‖(ηe, 0) − c̄‖

)
.
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This gives
η‖x∗

k ‖ ≤ max
c∈C

〈
(x∗

k , y∗k ), c
〉

+ εk(α + η) ,

where α := maxc∈C ‖c‖. The latter implies that ‖x∗
k ‖ → 0 as k → ∞, since

εk ↓ 0 and
〈
(x∗

k , y∗k ), c
〉
→ 0 uniformly in c ∈ C due to (x∗

k , y∗k ) w∗
→ (0, 0) and

the compactness of C . �

1.3 Subdifferentials of Nonsmooth Functions

This section is devoted to generalized differential properties of extended-real-
valued functions ϕ: X → IR := [−∞,∞] defined on arbitrary Banach spaces.
Given a point x̄ ∈ X at which the function ϕ is finite but may not admit a clas-
sical derivative/gradient ϕ′(x̄) = ∇ϕ(x̄) ∈ X∗, we consider subgradient sets,
called usually “subdifferentials”, for ϕ at x̄ that provide set-valued extensions
of derivative operators for nondifferentiable functions.

Extended-real-valued functions are particularly convenient for applications
to constrained optimization problems and allow one to incorporate constraints
into cost functionals. Dealing with minimization problems, we mostly concern
lower generalized differential properties of nonsmooth functions described by
sets of lower subgradients called (lower) subdifferentials. For some significant
applications (including those to minimization problems) we also need to con-
sider upper generalized differential properties of nonsmooth functions in the
framework of unilateral/one-sided variational analysis. Such upper proper-
ties for ϕ, related to lower ones for −ϕ, can be conveniently described via
collections of upper subgradients for ϕ at x̄ that are sometimes called “su-
perdifferentials.” In what follows we employ the terminology of subgradients
and subdifferentials (omitting, as a rule, the adjective “lower”) in the case of
lower generalized differential constructions, while upper subgradients and up-
per subdifferentials are used for their upper counterparts. We’ll pay the main
attention to the study of lower subdifferential constructions whose properties
symmetrically induce the ones for upper subgradients. As already mentioned,
there are important issues in variational analysis and optimization that require
both lower and upper subgradients; see, e.g., mean value results in Chap. 3
and applications to nonsmooth minimization problems in Chap. 5.

Having in mind lower properties of ϕ: X → IR, we say that ϕ is proper if
ϕ(x) > −∞ for all x ∈ X and its domain

dom ϕ :=
{

x ∈ X
∣
∣ ϕ(x) < ∞

}

is nonempty. With any ϕ we associate its epigraph and hypergraph

epi ϕ :=
{
(x, α) ∈ X×IR

∣
∣ α ≥ ϕ(x)

}
, hypoϕ :=

{
(x, α) ∈ X×IR

∣
∣ α ≤ ϕ(x)

}
.

Obviously gphϕ = epi ϕ ∩ hypoϕ. One can easily see that local closedness
of the epigraph, hypergraph, and graph around (x̄, ϕ(x̄)) corresponds to the
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local lower semicontinuity, upper semicontinuity, and continuity of ϕ around
x̄ , respectively. Recall that ϕ is lower semicontinuous (l.s.c.) at a point x̄ with
|ϕ(x̄)| < ∞ if

ϕ(x̄) ≤ lim inf
x→x̄

ϕ(x) .

We say that ϕ is l.s.c. around x̄ when it is l.s.c. at any point of some neigh-
borhood of x̄ . The upper semicontinuity (u.s.c.) of ϕ is defined symmetrically
from the lower semicontinuity of −ϕ. The continuity of ϕ at x̄ means that ϕ
is l.s.c. and u.s.c. at this point simultaneously. Throughout the book we use
the notation

x
ϕ→ x̄ ⇐⇒ x → x̄ with ϕ(x) → ϕ(x̄) ,

where ϕ(x) → ϕ(x̄) is superfluous if ϕ is continuous at x̄ .

1.3.1 Basic Definitions and Relationships

Developing a geometric approach to the generalized differentiation of extended-
real-valued functions, we define our main subdifferential constructions through
basic normals to epigraphs. Then we study their relationships with coderiva-
tives and discuss some important properties obtained in this way. First let us
describe basic normals to epigraphical sets.

Proposition 1.76 (basic normals to epigraphs). Let ϕ: X → IR with
(x̄, ᾱ) ∈ epiϕ. Then λ ≥ 0 for every (x∗,−λ) ∈ N((x̄, ᾱ); epi ϕ), and so there
are uniquely defined subsets D and D∞ of X∗ such that

N((x̄, ϕ(x̄)); epi ϕ) =
{
(λ(x∗,−1)

∣
∣ x∗ ∈ D, λ > 0

}
∪
{
(x∗, 0)

∣
∣ x∗ ∈ D∞} .

Proof. Taking any (x∗,−λ) ∈ N((x̄, ᾱ); epi ϕ) and using Definition 1.1, we

find sequences εk ↓ 0, (xk, αk)
epi ϕ→ (x̄, ᾱ), x∗

k
w∗
→ x∗, and λk → λ such that

lim sup
(x,α)

epi ϕ→ (xk ,αk)

〈x∗
k , x − xk〉 − λk(α − αk)
‖(x, α) − (xk, αk)‖

≤ εk

for all k ∈ IN . Letting x = xk and then k → ∞, we get λ ≥ 0, which implies
the above representation. �

The set D in Proposition 1.76 characterizes “sloping” normals to the epi-
graph, while D∞ is the collection of “horizontal” normals. We take these sets
as the definitions of the (lower) basic and singular subdifferentials of ϕ at x̄ ,
respectively.

Definition 1.77 (basic and singular subdifferentials). Consider a func-
tion ϕ: X → IR and a point x̄ ∈ X with |ϕ(x̄)| < ∞.

(i) The set

∂ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epi ϕ)
}
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is the (basic, limiting) subdifferential of ϕ at x̄, and its elements are basic
subgradients of ϕ at this point. We put ∂ϕ(x̄) := ∅ if |ϕ(x̄)| = ∞.

(ii) The set

∂∞ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ N((x̄, ϕ(x̄)); epi ϕ)
}

is the singular subdifferential of ϕ at x̄, and its elements are singular
subgradients of ϕ at this point. We put ∂∞ϕ(x̄) := ∅ if |ϕ(x̄)| = ∞.

Thus we define the basic and singular subdifferentials of an extended-
real-valued function through basic normals to its epigraph. Below we show
that the basic subdifferential agrees with the classical gradient for strictly
differentiable functions as well as with the subdifferential of convex analysis
when ϕ is convex. The singular subdifferential occurs to be useful for the
study of non-Lipschitzian functions. As we’ll see below, both subdifferential
constructions in Definition 1.77 enjoy rich calculi and valuable applications
for general classes of nonsmooth functions reflecting their lower generalized
differentiability properties. Following the tradition in convex analysis, we skip
here the minus sign in the lower subdifferential notation ∂ = ∂− (in contrast
to some previous work, e.g., Mordukhovich [901, 909]) but keep the plus sign
for the corresponding upper subdifferentials, which are defined through basic
normals to hypergraphs and reflect upper generalized differential properties
of nonsmooth functions.

Definition 1.78 (upper subgradients). Given ϕ: X → IR and x̄ ∈ X with
|ϕ(x̄)| < ∞, we define the (basic, limiting) upper subdifferential of ϕ at
x̄ and the singular upper subdifferential of ϕ at x̄ by

∂+ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (−x∗, 1) ∈ N((x̄, ϕ(x̄)); hypo ϕ)
}
,

∂∞,+ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (−x∗, 0) ∈ N((x̄, ϕ(x̄)); hypo ϕ)
}
,

respectively. We put ∂+ϕ(x̄) = ∂∞,+ϕ(x̄) = ∅ if |ϕ(x̄)| = ∞.

If ϕ is concave, ∂+ϕ(x̄) reduces to the classical upper subdifferential of
convex analysis. Note that ∂ϕ and ∂+ϕ may be considerably different even in
the case of convex and concave functions. The simplest example is given by
ϕ(x) = −|x | at x̄ = 0 ∈ IR, where

∂ϕ(0) =
{
− 1, 1

}
while ∂+ϕ(0) = [−1, 1] .

Note that the first set in nonconvex, which is typical for both lower and upper
subdifferential constructions introduced.

One can easily observe that

∂+ϕ(x̄) = −∂(−ϕ)(x̄) and ∂∞,+ϕ(x̄) = −∂∞(−ϕ)(x̄) .

In some cases (in particular, for mean value results involving nonsmooth func-
tions) one needs to consider the union of the corresponding lower and upper
subdifferentials
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∂0ϕ(x̄) := ∂ϕ(x̄) ∪ ∂+ϕ(x̄), ∂∞,0ϕ(x̄) := ∂∞ϕ(x̄) ∪ ∂∞,+ϕ(x̄) (1.46)

called the symmetric subdifferential and the singular symmetric subdifferential
of ϕ at x̄ , respectively. Note that

∂0(−ϕ)(x̄) = −∂0ϕ(x̄) and ∂∞,0(−ϕ)(x̄) = −∂∞,0ϕ(x̄) ,

which means that, in contrast to the one-sided lower and upper subdifferential
constructions from Definitions 1.77 and 1.78, the symmetric subdifferential
and singular symmetric subdifferential in (1.46) possess the classical two-sided
symmetry. In what follows we mostly confine ourselves to the study of (lower)
subdifferential properties that obviously induce the corresponding results for
the upper and symmetric subdifferentials.

Let us start with computing subgradients for indicator functions of arbi-
trary sets. For this class of extended-real-valued functions both subdifferen-
tials in Definition 1.77 reduce to the basic normal cone.

Proposition 1.79 (subdifferentials of indicator functions). Consider a
nonempty set Ω ⊂ X and its indicator function δ(·;Ω): X → IR defined by

δ(x ;Ω) := 0 if x ∈ Ω and δ(x ;Ω) := ∞ if x /∈ Ω .

Than for any x̄ ∈ Ω one has

∂δ(x̄ ;Ω) = ∂∞δ(x̄ ;Ω) = N(x̄ ;Ω) .

Proof. This follows from the definitions and Proposition 1.2 applied to
epi δ(·;Ω) = Ω × [0,∞). �

Next let us consider relationships between subgradients and coderivatives.
Given ϕ: X → IR, we associate with it the epigraphical multifunction Eϕ from
X into IR defined by

Eϕ(x) :=
{
α ∈ IR

∣
∣ α ≥ ϕ(x)

}
.

Since Eϕ takes values in IR, there is no difference between its normal and
mixed coderivatives in Definition 1.32; as usual, we denote this common (ba-
sic) coderivative by D∗. Note that gph Eϕ = epi ϕ. Thus, for every x̄ where ϕ
is finite, we can equivalently define the basic and singular subdifferentials of
ϕ at x̄ through the coderivative of Eϕ :

∂ϕ(x̄) = D∗Eϕ(x̄, ϕ(x̄))(1) and ∂∞ϕ(x̄) = D∗Eϕ(x̄, ϕ(x̄))(0) . (1.47)

This allows us to derive some results for subdifferentials of extended-real-
valued functions from those obtained for coderivatives of set-valued mappings.
On the other hand, we can consider the coderivative D∗ϕ(x̄) of a single-
valued mapping ϕ: X → IR provided that ϕ is finite around x̄ . The following
theorem establishes links between this coderivative and (basic and singular)
subgradients of continuous functions.
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Theorem 1.80 (subdifferentials from coderivatives of continuous
functions). Let ϕ: X → IR be continuous around x̄. Then

∂ϕ(x̄) = D∗ϕ(x̄)(1) and ∂∞ϕ(x̄) ⊂ D∗ϕ(x̄)(0) .

Proof. Observe that the continuity of ϕ around x̄ implies that the set epi ϕ
is closed and gphϕ = bd(epiϕ) near (x̄, ϕ(x̄)). Thus the inclusions

∂ϕ(x̄) ⊂ D∗ϕ(x̄)(1) and ∂∞ϕ(x̄) ⊂ D∗ϕ(x̄)(0)

follow from the fact that for any closed set Ω ⊂ X in a Banach space one has

N(x̄ ;Ω) ⊂ N(x̄ ; bdΩ) at every x̄ ∈ bdΩ .

To prove this, we take 0 	= x∗ ∈ N(x̄ ;Ω) and find sequences εk ↓ 0, xk
Ω→ x̄ ,

and x∗
k
w∗
→ x∗ such that x∗

k ∈ N̂εk (xk ;Ω) for all k ∈ IN . Since the norm ‖ · ‖ on
X∗ is weak∗ lower semicontinuous, we have

lim inf
k→∞

‖x∗
k ‖ ≥ ‖x∗‖ > 0 ,

which implies that xk /∈ intΩ for large k due to the construction (1.2).
Thus xk ∈ bdΩ for such k ∈ IN . Now using (1.5), we conclude that
x∗

k ∈ N̂εk (xk ; bdΩ), and hence x∗ ∈ N(x̄ ; bdΩ).
To complete the proof of the theorem, it remains to show that

(x∗,−1) ∈ N((x̄, ϕ(x̄)); gph ϕ) =⇒ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epi ϕ) .

Take (x∗,−1) ∈ N((x̄, ϕ(x̄)); gph ϕ) and find by definition sequences εk ↓ 0,

xk → x̄ , x∗
k

w∗
→ x∗, and λk → −1 such that (x∗, λk) ∈ N̂εk ((xk, ϕ(xk)); gph ϕ)

for all k ∈ IN . Without loss of generality we let λk = −1. Our goal is to show
that (x∗

k ,−1) ∈ N̂εk ((xk, ϕ(xk)); epi ϕ).
Suppose that the latter doesn’t hold for some k ∈ IN fixed in what follows.

Then there is 0 < γ < 1− εk and sequences (u j , α j )
epiϕ→ (xk, ϕ(xk)) as j → ∞

satisfying the relation

〈x∗
k , u j − xk〉 + (ϕ(xk) − α j ) > (εk + γ )‖(u j , α j ) − (xk, ϕ(xk))‖, j ∈ IN .

Since α j ≥ ϕ(u j ) and ϕ(u j ) → ϕ(xk) as j → ∞, we have

‖(u j − xk, ϕ(u j ) − ϕ(xk))‖ ≤ ‖(u j − xk, α j − ϕ(xk))‖ + α j − ϕ(u j )

and therefore

〈x∗
k , u j − xk〉 + ϕ(xk) − ϕ(u j ) > (εk + γ )‖(u j , ϕ(u j )) − (xk, ϕ(xk))‖

for all j ∈ IN , which means that (x∗
k ,−1) /∈ N̂εk ((xk, ϕ(xk)); gph ϕ). Thus we

arrive at a contradiction and complete the proof of the theorem. �



86 1 Generalized Differentiation in Banach Spaces

Note that the inclusion ∂∞ϕ(x̄) ⊂ D∗ϕ(x̄)(0) may be strict for continuous
functions. An example is provided by the function

ϕ(x) :=






−x1/3 if x ≥ 0 ,

0 otherwise .
(1.48)

Employing representation (1.9) from Theorem 1.6, we compute

N((0, 0); epi ϕ) =
{
(v, 0)

∣
∣ v ≤ 0

}
∪
{
(0, v)

∣
∣ v ≤ 0

}

and N((0, 0); gph ϕ) = N((0, 0); epi ϕ) ∪ IR2
+. Thus ∂∞ϕ(0) = (−∞, 0] and

D∗ϕ(0)(0) = (−∞,∞).

Corollary 1.81 (subdifferentials of Lipschitzian functions). Let ϕ be
Lipschitz continuous around x̄ with modulus � ≥ 0. Then

∂∞ϕ(x̄) = {0} and ‖x∗‖ ≤ � for all x∗ ∈ ∂ϕ(x̄) .

Proof. Using Theorem 1.44 for the locally Lipschitzian mapping F = ϕ: X →
IR, we have D∗ϕ(x̄)(0) = {0} and ‖D∗ϕ(x̄)‖ ≤ �. This directly implies the
results of the corollary due to Theorem 1.80. �

Note that ∂ϕ(0) = {0} in the case of function (1.48), which is continuous
but not locally Lipschitzian around x̄ = 0. This shows that the local Lipschitz
continuity is not necessary for the boundedness of the basic subdifferential.

It is easy to check that locally Lipschitzian functions on finite-dimensional
spaces have at least one basic subgradient at the point in question. Indeed,
it follows from Theorem 1.6 that N(x̄ ;Ω) 	= {0} if x̄ ∈ bdΩ for closed sets
Ω ⊂ IRn, in particular, for Ω = epiϕ at graphical points of continuous func-
tions. This implies by Proposition 1.76 that in finite dimensions the nontriv-
iality condition ∂∞ϕ(x̄) = {0} yields ∂ϕ(x̄) 	= ∅, which is always the case
for locally Lipschitzian functions due to Corollary 1.81. The Lipschitz con-
dition is essential here; cf. the continuous function ϕ(x) = x1/3 on IR with
∂ϕ(0) = ∂+ϕ(0) = ∅. In arbitrary Banach spaces one may have ∂ϕ(x̄) = ∅
for locally Lipschitzian functions, but it never happens in the case of Asplund
spaces; see Corollary 2.25 in Subsect. 2.2.3. We’ll also see that in Asplund
spaces the condition ∂∞ϕ(x̄) = {0} is not only necessary but also sufficient for
the local Lipschitzian property of l.s.c. functions satisfying a certain sequential
normal compactness assumption, which is automatics in finite dimensions.

It follows from (1.46) and Corollary 1.81 that

∂∞,0ϕ(x̄) = {0} and ‖x∗‖ ≤ � for all x∗ ∈ ∂0ϕ(x̄)

if ϕ is Lipschitz continuous around x̄ . Another useful corollary of Theorem 1.80
concerns strictly differentiable functions.
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Corollary 1.82 (subdifferentials of strictly differentiable functions).
Let ϕ be strictly differentiable at x̄. Then

∂ϕ(x̄) = ∂+ϕ(x̄) = ∂0ϕ(x̄) = {∇ϕ(x̄)} .

Proof. Follows from Theorem 1.80 and Theorem 1.38 applied to the mapping
f = ϕ: X → IR, and the constructions of ∂+ϕ(x̄) and ∂0ϕ(x̄). �

Note that ∂ϕ(x̄) may be a singleton for continuous functions that are not
strictly differentiable at x̄ as, e.g., in (1.48). The latter is not possible for
locally Lipschitzian functions on Asplund spaces; see Chap. 3. On the other
hand, ϕ: IR → IR may be Lipschitz continuous and differentiable at x̄ , but
not strictly differentiable at this point, while both ∂ϕ(x̄) and ∂+ϕ(x̄) are not
singletons. Such an example is given by the function

ϕ(x) :=






x2 sin(1/x) if x 	= 0 ,

0 if x = 0 ,
(1.49)

where ∇ϕ(0) = 0 and ∂ϕ(0) = ∂+ϕ(0) = [−1, 1].

1.3.2 Fréchet-Like ε-Subgradients and Limiting Representations

Now we consider two kinds of (Fréchet-like) ε-subdifferentials of extended-real-
valued functions that provide convenient approximating tools for the study of
our basic subdifferential constructions in Banach spaces.

Definition 1.83 (ε-subgradients). Let ϕ: X → IR be finite at a point x̄,
and let ε ≥ 0.

(i) The set

∂̂gεϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗,−1) ∈ N̂ε((x̄, ϕ(x̄)); epi ϕ)
}

is the geometric ε-subdifferential of ϕ at x̄ with elements called geo-
metric ε-subgradients of ϕ at x̄. We put ∂̂gεϕ(x̄) := ∅ if |ϕ(x̄)| = ∞.

(ii) The set

∂̂aεϕ(x̄) :=
{

x∗ ∈ X∗
∣
∣
∣ lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ −ε

}
,

also denoted by ∂̂εϕ(x̄), is the analytic ε-subdifferential of ϕ at x̄ with
elements called analytic ε-subgradients of ϕ at x̄. We put ∂̂aεϕ(x̄) := ∅ if
|ϕ(x̄)| = ∞.

One can easily see that both ε-subdifferentials are convex for an arbitrary
function ϕ: X → IR whenever ε ≥ 0. However, these sets may be empty, when
ε is sufficiently small, even for simple Lipschitzian functions on IR as, e.g.,
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ϕ(x) = −|x | at x̄ = 0. As for ε-normals in Subsect. 1.1.1, we observe that
both ε-subdifferentials are norm-closed in X∗; hence they are weakly closed if
the space X is reflexive.

Directly from the definitions we get the following descriptions of geometric
ε-subgradients of ϕ via ε-coderivatives of the epigraphical multifunction Eϕ

and analytic ε-subgradients of ϕ via minimization of an auxiliary function.

Proposition 1.84 (descriptions of ε-subgradients). For any ϕ: X → IR
finite at x̄ and any ε ≥ 0 one has:

(i) ∂̂gεϕ(x̄) = D̂∗
ε Eϕ(x̄, ϕ(x̄))(1).

(ii) x∗ ∈ ∂̂aεϕ(x̄) if and only if for every γ > 0 the function

ψ(x) := ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉 + (ε + γ )‖x − x̄‖

attains a local minimum at x̄.

This implies useful estimates for ε-subgradients as well as for horizontal
ε-normals to epigraphs of locally Lipschitzian functions.

Proposition 1.85 (ε-subgradients of locally Lipschitzian functions).
Let ϕ: X → IR be finite around x̄, and let ε ≥ 0. The following hold:

(i) ϕ is Lipschitz continuous around x̄ if and only if Eϕ is Lipschitz-like
around (x̄, ϕ(x̄)).

(ii) If ϕ is Lipschitz continuous around x̄ with modulus � ≥ 0, then there
is η > 0 such that

‖x∗‖ ≤ ε(1 + �) whenever (x∗, 0) ∈ N̂ε((x, ϕ(x)); epi ϕ), x ∈ x̄ + ηIB ,

‖x∗‖ ≤ �+ ε(1 + �) whenever x∗ ∈ ∂̂gεϕ(x), x ∈ x̄ + ηIB ,

‖x∗‖ ≤ �+ ε whenever x∗ ∈ ∂̂aεϕ(x), x ∈ x̄ + ηIB .

Proof. Assertion (i) is derived from the definitions. To justify the first two
estimates in (ii), we apply Theorem 1.43(i) for ε-coderivatives of epigraph-
ical multifunctions. The last estimate in (ii) follows directly from Proposi-
tion 1.84(ii) and the local Lipschitz continuity of ϕ around x̄ . �

One can check that for the indicator functions ϕ(x) = δ(x ;Ω) both geo-
metric and analytic ε-subdifferentials at x̄ ∈ Ω reduce to the set of ε-normals
to Ω at this point:

∂̂gεδ(x̄ ;Ω) = ∂̂aεδ(x̄ ;Ω) = N̂ε(x̄ ;Ω) for all ε ≥ 0 . (1.50)

The following theorem establishes relationships between geometric and ana-
lytic ε-subgradients in the general case of extended-real-valued functions.
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Theorem 1.86 (relationships between ε-subgradients). Let ϕ: X → IR
with |ϕ(x̄)| < ∞. Then

∂̂aεϕ(x̄) ⊂ ∂̂gεϕ(x̄) for all ε ≥ 0 .

Conversely, if x∗ ∈ ∂̂gεϕ(x̄) for some 0 ≤ ε < 1, then

x∗ ∈ ∂̂aε̃ϕ(x̄) with ε̃ := ε(1 + ‖x∗‖)/(1 − ε) .

Proof. Pick x∗ ∈ ∂̂aεϕ(x̄) and show that (x∗,−1) ∈ N̂ε((x̄, ϕ(x̄)); epi ϕ) for
each ε ≥ 0. Using Proposition 1.84(ii), for any γ > 0 we find a neighborhood
U of x̄ such that

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉 ≥ −(ε + γ )‖x − x̄‖ for all x ∈ U .

This immediately implies that

〈x∗, x − x̄〉 + ϕ(x̄) − α ≤ (ε + γ )‖(x, α) − (x̄, ϕ(x̄))‖

if x ∈ U and α ≥ ϕ(x), which means that the function

ψ(x, α) := 〈x∗, x − x̄〉 − (α − ϕ(x̄)) − (ε + γ )‖(x, α) − (x̄, ϕ(x̄))‖

attains a local maximum relative to the set Ω := epi ϕ at (x̄, ϕ(x̄)). Employing
Proposition 1.28, we conclude that x∗ ∈ ∂̂gεϕ(x̄).

To prove the converse inclusion in the theorem, fix ε ≥ 0 and assume on
the contrary that x∗ /∈ ∂̂aε̃ϕ(x̄) with the specified ε̃. Then there are γ > 0 and
a sequence xk → x̄ such that

ϕ(xk) − ϕ(x̄) − 〈x∗, xk − x̄〉 + (ε̃ + γ )‖xk − x̄‖ < 0 for all k ∈ IN .

Letting αk := ϕ(x̄)+ 〈x∗, xk − x̄〉− (ε̃+γ )‖xk − x̄‖, we observe that αk → ϕ(x̄)
as k → ∞ and that (xk, αk) ∈ epi ϕ for all k ∈ IN . This yields

〈x∗, xk − x̄〉 − (αk − ϕ(x̄))
‖(xk, αk) − (x̄, ϕ(x̄))‖ =

(ε̃ + γ )‖xk − x̄‖
‖(xk − x̄), 〈x∗, xk − x̄〉 − (ε̃ + γ )‖xk − x̄‖)‖

≥ ε̃ + γ

1 + ‖x∗‖ + (ε̃ + γ )
>

ε̃

1 + ‖x∗‖ + ε̃
= ε

for all k ∈ IN due to γ > 0 and the choice of ε̃. The latter clearly implies that
(x∗,−1) /∈ N̂ε((x̄, ϕ(x̄)); epi ϕ), which means that x∗ /∈ ∂̂gεϕ(x̄) and completes
the proof of the theorem. �

It follows from Theorem 1.86 that for ε = 0 both sets of geometric and an-
alytic subgradient in Definition 1.83 reduce to the same set of Fréchet (lower)
subgradients ∂̂ϕ(x̄) := ∂̂0ϕ(x̄) expressed (when |ϕ(x̄)| < ∞) either in the
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geometric form (x∗,−1) ∈ N̂((x̄, ϕ(x̄)); epi ϕ) via the prenormal cone N̂ or
analytically by

∂̂ϕ(x̄) =
{

x∗ ∈ X∗
∣
∣
∣ lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}
. (1.51)

This set is called the presubdifferential or Fréchet subdifferential of ϕ at x̄ .

Symmetrically to Definition 1.83 we can define the corresponding upper
constructions, which reduce for ε = 0 to the Fréchet upper subdifferential
∂̂+ϕ(x̄) := −∂̂(−ϕ)(x̄) of ϕ at x̄ with |ϕ(x̄)| < ∞ described by

∂̂+ϕ(x̄) =
{

x∗ ∈ X∗
∣
∣
∣ lim sup

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
. (1.52)

Note that the sets ∂̂ϕ(x̄) and ∂̂+ϕ(x̄) may be empty simultaneously for
continuous functions on IR, e.g., for ϕ(x) = x1/3 at x̄ = 0. Furthermore, the
following useful observation holds as a direct consequence of definitions (1.51),
(1.52), and (1.14).

Proposition 1.87 (subgradient description of Fréchet differentiabi-
lity). Let ϕ: X → IR with |ϕ(x̄)| < ∞. Then ∂̂ϕ(x̄) 	= ∅ and ∂̂+ϕ(x̄) 	= ∅ if
and only if ϕ is Fréchet differentiable at x̄, in which case ∂̂ϕ(x̄) = ∂̂+ϕ(x̄) =
{∇ϕ(x̄)}.

Therefore, when one of the sets ∂̂ϕ(x̄) and ∂̂+ϕ(x̄) is not a singleton, the
other is empty. This distinguishes the latter constructions from the basic ones
∂ϕ(x̄) and ∂+ϕ(x̄), which are nonempty simultaneously for every locally Lip-
schitzian functions on IRn (actually on any Asplund spaces). In contrast to the
symmetric subdifferential ∂0ϕ(x̄) in (1.46), the union ∂̂ϕ(x̄)∪∂̂+ϕ(x̄) always re-
duces to either ∂̂ϕ(x̄) or ∂̂+ϕ(x̄). Note that ϕ may not be Fréchet differentiable
at x̄ while ∂̂ϕ(x̄) is a singleton. A simple example is provided by the function

ϕ(x) :=






max{0, x sin(1/x)} if x 	= 0 ,

0 if x = 0 ,

where ∂̂ϕ(0) = {0} and ∂̂+ϕ(0) = ∅.

The next theorem, which is a subdifferential counterpart of Theorem 1.30,
provides important variational descriptions of Fréchet subgradients of non-
smooth functions in terms of smooth supports. The corresponding notation
and terminology are introduced at the beginning of Subsect. 1.1.4.

Theorem 1.88 (variational descriptions of Fréchet subgradients).
For every proper function ϕ: X → IR finite at x̄ the following hold:
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(i) Given x∗ ∈ X∗, we assume that there is a function s: U → IR defined
on a neighborhood of x̄ and Fréchet differentiable at x̄ such that ∇s(x̄) = x∗

and ϕ(x)−s(x) achieves a local minimum at x̄. Then x∗ ∈ ∂̂ϕ(x̄). Conversely,
for every x∗ ∈ ∂̂ϕ(x̄) there is a function s: X → IR with s(x̄) = ϕ(x̄) and
s(x) ≤ ϕ(x) whenever x ∈ X such that s(·) is Fréchet differentiable at x̄ with
∇s(x̄) = x∗.

(ii) Assume that X admits an S-smooth bump function, where S stands
for one of the classes F , LF , or LC1. Then for every x∗ ∈ ∂̂ϕ(x̄) there is a
function s: U → IR defined and S-smooth on a neighborhood of x̄ such that
∇s(x̄) = x∗ and

ϕ(x) − s(x) − ‖x − x̄‖2 ≥ ϕ(x̄) − s(x̄) for all x ∈ U , (1.53)

where s(·) can be chosen to be concave if X admits a Fréchet smooth renorm.
In the latter case we can take U = X if ϕ is bounded from below.

(iii) Let x∗ ∈ ∂̂ϕ(x̄), where ϕ is bounded from below on the space X ad-
mitting an S-smooth bump function of one the types listed above. Then there
is a bump function b: X → IR such that ∇b(x̄) = x∗ and

ϕ(x) − b(x) ≥ ϕ(x̄) − b(x̄) for all x ∈ X .

Furthermore, under the assumptions made there are S-smooth functions
s: X → IR and θ : X → [0,∞) such that ∇s(x̄) = x∗, θ(x) = 0 only for
x = 0, θ(x) ≤ ‖x‖2 for ‖x‖ ≤ 1, and

ϕ(x) − s(x) − θ(x − x̄) ≥ ϕ(x̄) − s(x̄) for all x ∈ X . (1.54)

Proof. Assertion (i) follows from Theorem 1.30(i) due to the above geometric
description of Fréchet subgradients.

To prove (ii) in the case of smooth bumps, we observe that the condition
x∗ ∈ ∂̂ϕ(x̄) implies the existence of r ∈ (0, 1) such that ϕ is bounded from
below on the ball B2r (x̄). Letting

ρ(t) := sup
{
ϕ(x̄) − ϕ(x) + 〈x∗, x − x̄〉

∣
∣ x ∈ X, ‖x − x̄‖ ≤ t

}
, t ≥ 0 ,

we observe that ρ(t) < ∞ for t ∈ [0, r ]. Then ρ̃(t) := min{ρ(t), ρ(r)} satisfies
the assumptions of Lemma 1.29 due to the definition of Fréchet subgradients.
Let τ and d be the functions built, respectively, in this lemma from ρ := ρ̃ and
in the proof of Theorem 1.30 from the given S-smooth bump on X . Putting

s(x) := −τ (d(x − x̄)) − d2(x − x̄) + ϕ(x̄) + 〈x∗, x − x̄〉 ,

one can check that it has the properties listed in (ii) with U := int Br (x̄). If X
admits a Fréchet smooth renorm ‖ · ‖, we get d(x) = ‖x‖, which implies the
concavity of s(x) and that the support inequality (1.53) holds globally if ϕ is
bounded from below on X .
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The proof of (iii) is similar to the one in the last part of Theorem 1.30;
we refer the reader to the proof of Theorem 4.6 in Fabian and Mordukhovich
[419] for more details. �

Note that estimates (1.53) and (1.54) imply that ϕ(x) − s(x) achieves its
minimum (local and global, respectively) uniquely at x̄ with the following
well-posedness property:

‖xk − x̄‖ → 0 whenever ϕ(xk) − s(xk) → ϕ(x̄) − s(x̄) as k → ∞ .

Representations of basic subgradients via ε-subgradients and Fréchet subgra-
dients of extended-real-valued functions are given by the following theorem.

Theorem 1.89 (limiting representations of basic subgradients). Let
ϕ: X → IR with |ϕ(x̄)| < ∞. Then

∂ϕ(x̄) = Lim sup
x

ϕ→x̄
ε↓0

∂̂gεϕ(x) = Lim sup
x

ϕ→x̄
ε↓0

∂̂aεϕ(x) . (1.55)

Moreover, when ϕ is l.s.c. around x̄ and dim X < ∞ one has

∂ϕ(x̄) = Lim sup
x

ϕ→x̄

∂̂ϕ(x) . (1.56)

Proof. The first representation in (1.55) follows from Definition 1.1 and 1.83.
This immediately implies the inclusion “⊃” in the second representation of
(1.55) due to ∂̂aεϕ(x) ⊂ ∂̂gεϕ(x) in Theorem 1.86. To prove the opposite in-

clusion, we pick x∗ ∈ ∂ϕ(x̄) and find εk ↓ 0, xk
ϕ→ x̄ , and x∗

k
w∗
→ x∗ with

x∗
k ∈ ∂̂gεkϕ(xk) for all k ∈ IN . It follows from the second part of Theorem 1.86

that x∗
k ∈ ∂̂aε̃kϕ(xk) with ε̃k := εk(1+‖x∗

k ‖)/(1−εk). Since the sequence {x∗
k } is

bounded in X∗, we have ε̃k ↓ 0 as k → ∞, which justifies the second represen-
tation in (1.55). Representation (1.56) follows, under the assumptions made,
from the normal cone representation (1.8) in Theorem 1.6. �

We’ll see in Subsect. 2.4.1 that the subdifferential representation (1.56)
holds in any Asplund spaces and, moreover, it characterizes this class of Ba-
nach spaces. Since Fréchet subgradients are usually easier to compute for typ-
ical nonsmooth functions, representation (1.56) is convenient for calculating
basic subgradients. For example, let us consider the function

ϕ(x) := |x1| − |x2|, x = (x1, x2) ∈ IR2 , (1.57)

which is Lipschitz continuous on IR2 and differentiable at every x ∈ IR2 with
x1x2 	= 0. One has ∇ϕ(x) ∈

{
(1, 1), (1,−1), (−1, 1), (−1,−1)

}
for any such

x . It is easy to calculate Fréchet subgradients from their analytic description
given in (1.51):
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∂̂ϕ(x) =






(1,−1) if x1 > 0, x2 > 0 ,

(−1,−1) if x1 < 0, x2 > 0 ,

(−1, 1) if x1 < 0, x2 < 0 ,

(1, 1) if x1 > 0, x2 < 0 ,

{(v,−1)| − 1 ≤ v ≤ 1} if x1 = 0, x2 > 0 ,

{(v, 1)| − 1 ≤ v ≤ 1} if x1 = 0, x2 < 0 ,

∅ if x2 = 0 .

By Theorem 1.89 we get

∂ϕ(0) =
{
(v, 1)

∣
∣ − 1 ≤ v ≤ 1

}
∪
{
(v,−1)

∣
∣ − 1 ≤ v ≤ 1

}
.

Similarly one can calculate Fréchet upper subgradients from (1.52) and, using
the upper counterpart of (1.56), compute the basic upper subdifferential as

∂+ϕ(0) =
{
(−1, v)

∣
∣ − 1 ≤ v ≤ 1

}
∪
{
(1, v)

∣
∣ − 1 ≤ v ≤ 1

}
.

Hence the symmetric subdifferential ∂0ϕ(0) = ∂ϕ(0) ∪ ∂+ϕ(0) is this case is
the boundary of the unit square in IR2.

In general Banach space setting one cannot removed ε > 0 from the sub-
differential representations (1.55), which are crucial for the validity of many
important results. To illustrate this, let us use (1.55) for establishing links
between the mixed coderivative (1.25) of single-valued mappings f : X → Y
between arbitrary Banach spaces and basic subgradients of their scalarization

〈y∗, f 〉(x) := 〈y∗, f (x)〉, y∗ ∈ Y ∗ . (1.58)

Theorem 1.90 (scalarization of the mixed coderivative). Let f : X →
Y be continuous around x̄. Then

∂〈y∗, f 〉(x̄) ⊂ D∗
M f (x̄)(y∗) for all y∗ ∈ Y ∗ .

If in addition f is Lipschitz continuous around x̄, then

D∗
M f (x̄)(y∗) = ∂〈y∗, f 〉(x̄) for all y∗ ∈ Y ∗ .

Proof. Let x∗ ∈ ∂〈y∗, f 〉(x̄). Using (1.55), we find sequences εk ↓ 0, xk → x̄ ,

and x∗
k

w∗
→ x∗ with x∗

k ∈ ∂̂aεk 〈y∗, f 〉(xk) for k ∈ IN . Due to Definition 1.83(ii)
for each k there is a neighborhood Uk of xk such that

〈y∗, f 〉(x) − 〈y∗, f 〉(xk) − 〈x∗
k , x − xk〉 ≥ −2εk‖x − xk‖ when x ∈ Uk .
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The latter implies that

lim sup
x→xk

〈x∗
k , x − xk〉 − 〈y∗, f (x) − f (xk)〉
‖(x − xk, f (x) − f (xk))‖

≤ 2εk ,

and hence (x∗
k ,−y∗) ∈ N̂2εk ((xk, f (xk)); gph f ) for each k ∈ IN . This gives

x∗ ∈ D∗
M f (x̄)(y∗) due to the coderivative definitions in (1.23) and (1.25),

which completes the proof of the theorem.
To prove the opposite inclusion, we pick x∗ ∈ D∗

M f (x̄)(y∗) and find se-

quences εk ↓ 0, xk → x̄ , x∗
k

w∗
→ x∗, and y∗k → y∗ such that (x∗

k ,−y∗k ) ∈
N̂εk ((xk, f (xk)); gph f ) for k ∈ IN . Hence

〈x∗
k , x − xk〉 − 〈y∗k , f (x) − f (xk)〉 ≤ 2εk(1 + �)‖x − xk‖ for all x ∈ xk + ηk IB

with some sequence ηk ↓ 0, where � > 0 is a Lipschitz constant of f around
x̄ . The latter yields

x∗
k ∈ ∂̂aε̃k 〈y∗, f 〉(xk) with ε̃k := 2εk(1 + �) + �‖y∗k − y∗‖ .

Since ‖y∗k − y∗‖ → 0, we have ε̃k ↓ 0 as k → ∞, and hence x∗ ∈ ∂〈y∗, f 〉(x̄)
due to (1.55). �

Example 1.35 shows that a similar scalarization formula doesn’t hold for
the normal coderivative (1.24) of Lipschitzian mappings with values in Hilbert
spaces. In Subsect. 3.1.3 we obtain such a normal scalarization under addi-
tional assumptions on Lipschitzian mappings defined on Asplund spaces.

It immediately follows from Theorem 1.89 that ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) for every
function ϕ: X → IR on a Banach space X . This inclusion is often strict, which
may happen even for Fréchet differentiable functions on IR; see, e.g., (1.49)
with ∂̂ϕ(0) = {0} and ∂ϕ(0) = [−1, 1]. The case of equality in the latter
inclusion signifies some “lower regularity” of ϕ at x̄ expressed in terms of
subdifferentials. The next definition describes two modifications of lower sub-
differential regularity for extended-real-valued functions.

Definition 1.91 (lower regularity of functions). Let ϕ: X → IR be finite
at x̄. Then:

(i) ϕ is lower regular at x̄ if ∂ϕ(x̄) = ∂̂ϕ(x̄).
(ii) ϕ is epigraphically regular at x̄ if the set epi ϕ ⊂ X × IR is

normally regular at (x̄, ϕ(x̄)).

Similarly we define upper regularity of ϕ at x̄ by ∂+ϕ(x̄) = ∂̂+ϕ(x̄) and
hypergraphical regularity of ϕ at this point via normal regularity from Defini-
tion 1.4 applied to the hypergraph of ϕ at (x̄, ϕ(x̄)). As usual, we mainly deal
with lower regularity properties that symmetrically induce the corresponding
upper ones.



1.3 Subdifferentials of Nonsmooth Functions 95

Proposition 1.92 (lower regularity relationships).
(i) Let Ω ⊂ X with x̄ ∈ Ω. Then both lower regularity and epigraphical

regularity of the indicator function δ(·;Ω) at x̄ are equivalent to the normal
regularity of Ω at this point.

(ii) Let ϕ: X → IR with |ϕ(x̄)| < ∞. Then ϕ is epigraphically regular at x̄
if and only if it is lower regular at x̄ and

∂∞ϕ(x̄) = ∂̂∞ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ N̂((x̄, ϕ(x̄)); epi ϕ)
}
.

Thus epigraphical regularity and lower regularity of ϕ at x̄ are equivalent if ϕ
is Lipschitz continuous around x̄.

Proof. Assertion (i) follows directly from the definitions, Proposition 1.79,
and formulas (1.50) as ε = 0. To prove assertion (ii), observe similarly to
Proposition 1.76 that

N̂((x̄, ϕ(x̄)); epi ϕ) =
{
λ(x∗,−1)

∣
∣ x∗ ∈ ∂̂ϕ(x̄), λ > 0

}
∪
{
(x∗, 0)

∣
∣ x∗ ∈ ∂̂∞ϕ(x̄)

}
.

This clearly implies the first part of (ii). The second part of (ii) follows from
Corollary 1.81, which ensures that ∂∞ϕ(x̄) = ∂̂∞ϕ(x̄) = {0} for locally Lip-
schitzian functions. �

Note that lower regularity of ϕ at x̄ may be less restrictive than its epi-
graphical regularity as for the function ϕ: IR → IR given by

ϕ(x) :=






−
√

x − 1/n if 1/n ≤ x < 1/n + 1/n4, n ∈ IN ,

0 otherwise .

One can check that this function is Fréchet differentiable at x̄ = 0 with
∂ϕ(0) = ∂̂ϕ(0) = ∂̂∞ϕ(0) = {0} and ∂∞ϕ(0) = (−∞, 0].

If ϕ: X → IR is convex, its epigraphical regularity follows directly from
Proposition 1.5 applied to the convex set Ω := epi ϕ. The next theorem gives
more detailed descriptions of ε-subgradients and basic (lower and upper) sub-
gradients for convex functions.

Theorem 1.93 (subgradients of convex functions). Let ϕ: X → IR be
convex and finite at x̄. Then for every ε ≥ 0 one has the following represen-
tations of the ε-subdifferentials:

∂̂gεϕ(x̄) =
{

x∗ ∈ X∗
∣
∣
∣ 〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) + ε

(
‖x − x̄‖ + |ϕ(x) − ϕ(x̄)|

)

whenever x ∈ X
}
,

∂̂aεϕ(x̄) =
{

x∗ ∈ X∗
∣
∣
∣ 〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) + ε‖x − x̄‖

whenever x ∈ X
} (1.59)
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Furthermore, ϕ is epigraphically regular at x̄ and

∂0ϕ(x̄) = ∂ϕ(x̄) =
{

x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) for all x ∈ X
}
.

Proof. The representation of geometric ε-subgradients follows from Propo-
sition 1.3 with Ω = epi ϕ and representation (1.59) of analytic ones due to
∂̂aεϕ(x̄) ⊂ ∂̂gεϕ(x̄). The inclusion “⊃” in (1.59) is obvious. To justify the
opposite inclusion, pick an arbitrary subgradient x∗ ∈ ∂̂aεϕ(x̄) and, employ-
ing the local variational description of analytic ε-subgradients from Proposi-
tion 1.84(ii), conclude that for any given η > 0 the function

ψ(x) := ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉 +
(
ε + η

)
‖x − x̄‖

attains a local minimum at x̄ . Since ψ is convex, x̄ happens to be its global
minimizer. Hence

ψ(x) = ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉 +
(
ε + η

)
‖x − x̄‖ ≥ ψ(x̄) = 0

for all x ∈ X . Taking into account that η > 0 was chosen arbitrarily, we get
(1.59). Using now (1.55) and then representation (1.59) at points xk

ϕ→ x̄ with
εk ↓ 0, we arrive at

∂ϕ(x̄) =
{

x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) whenever x ∈ X
}
.

It remains to show that ∂+ϕ(x̄) ⊂ ∂ϕ(x̄) for any convex function finite at
x̄ . To furnish this, we observe that if ∂̂+

aεϕ(x) := −∂̂aε(−ϕ)(x) 	= ∅ for some
x ∈ X and ε > 0, then ϕ is bounded from above around x . It implies, for
convex functions, that ϕ is continuous and subdifferentiable at this point in
the sense of convex analysis, which gives ∂̂ϕ(x) 	= ∅ due to (1.59). Since
∂̂+

aεϕ(x) ⊂ ∂̂ϕ(x)+ε IB∗, the inclusion ∂+ϕ(x̄) ⊂ ∂ϕ(x̄) follows now from (1.55)
and its upper counterpart. �

Note that the set on the right-hand side of (1.59) is the subdifferential of
the convex function ϕ(x)+ ε‖x − x̄‖ at x̄ . By the classical Moreau-Rockafellar
theorem this set is equal to ∂ϕ(x̄) + ε IB∗ for any proper convex function
ϕ: X → IR. Observe that for ε > 0 the latter set is different from the standard
ε-subdifferential/approximate subdifferential of convex analysis defined as the
collection of x∗ ∈ X∗ satisfying

〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) + ε for all x ∈ X ;

see, e.g., Hiriart-Urruty and Lemaréchal [575].

Symmetrically, concave functions ϕ: X → IR are hypergraphically (hence
upper) regular at every point where they are finite, and their upper subgradi-
ents satisfy an upper counterpart of Theorem 1.93. Note that the lower and
upper regularity under consideration are clearly notions of unilateral analysis.
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In particular, a locally Lipschitzian function ϕ on a finite-dimensional space
(actually on any Asplund space) cannot be simultaneously lower and upper
regular at the reference point x̄ unless it is Fréchet differentiable at x̄ . It easily
follows from Proposition 1.87 and from the fact that both ∂ϕ(x̄) and ∂+ϕ(x̄)
are nonempty in this case; see the discussion after Corollary 1.81. On the
other hand, example (1.49) shows that there are Lipschitz continuous func-
tions, which are Fréchet differentiable at x̄ but neither lower nor upper regular
at this point. Of course, it never happens for strictly differentiable functions
ϕ: X → IR that exhibit even graphical regularity in the sense of Definition 1.36
(there is no difference between N -regularity and M-regularity in this case).

Proposition 1.94 (two-sided regularity relationships). Let ϕ: X → IR
be continuous around x̄. Consider the following properties:

(a) ϕ is graphically regular at x̄;
(b) ϕ is lower regular and upper regular at x̄ simultaneously;
(c) ϕ is strictly differentiable at x̄.

Then (c)⇒(a)⇒(b). Conversely, (b)⇒(a) if ϕ is locally Lipschitzian around
x̄, and (a)⇒(c) if ϕ is locally Lipschitzian and dim X < ∞.

Proof. Implication (c)⇒(a) follows from Theorem 1.38. To get (a)⇒(b),
we first note that ∂ϕ(x̄) = D∗ϕ(x̄)(1) due to Theorem 1.80. Moreover, it
follows from the proof of this theorem that ∂̂ϕ(x̄) = D̂∗ϕ(x̄)(1). Similarly
we have ∂+ϕ(x̄) = −D∗ϕ(x̄)(−1) and ∂̂+ϕ(x̄) = −D̂∗ϕ(x̄)(−1). This gives
(a)⇒(b) for any continuous function. If ϕ is Lipschitz continuous around x̄ ,
then D∗ϕ(x̄)(0) = D̂∗ϕ(x̄)(0) = {0} due to Theorem 1.44, which yields the
converse implication (b)⇒(a). Finally, (a)⇒(c) follows from Theorem 1.46 un-
der the assumptions made. �

More results on lower regularity and related properties will be obtained in
Subsect. 1.3.4 and then in Chap. 3, where they are incorporated into subdiffer-
ential calculus. We’ll see, in particular, that lower regularity is preserved under
various unilateral operations like sums, maxima, etc. and ensures equalities in
the corresponding calculus rules. In the next subsection we consider subdif-
ferentiation and lower regularity issues for an important class of Lipschitzian
functions.

1.3.3 Subdifferentiation of Distance Functions

Given an nonempty subset Ω ⊂ X of a Banach space, we consider the distance
function dΩ : X → IR associated with the set by

dΩ(x) := dist(x ;Ω) = inf
u∈Ω

‖x − u‖ .

This class of functions plays an important role in optimization and variational
analysis. One can see that dΩ is nonsmooth and Lipschitz continuous globally
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on X with modulus � = 1. In what follows we compute subgradients and of the
distance function dΩ to at a point x̄ in terms of the corresponding generalized
normals to considering the two distinct cases: x̄ ∈ Ω and x̄ /∈ Ω. This allows
us, in particular, to establish relationships between the properties of lower
regularity for dΩ and normal regularity for Ω. We start with deriving two-
sided estimates for analytic ε-subgradients of dΩ at x̄ ∈ Ω, which induce the
corresponding estimates for geometric ε-subgradients due to Theorem 1.86.

In this subsection and in the rest of the book the notation ∂̂εϕ(x̄) stands
for the analytic ε-subdifferential of ϕ at x̄ from Definition 1.83(ii).

Proposition 1.95 (ε-subgradients of distance functions at in-set
points). Let Ω ⊂ X with x̄ ∈ Ω, and let ε ≥ 0. Then

∂̂εdΩ(x̄) ⊂
{

x∗ ∈ N̂ε(x̄ ;Ω)
∣
∣ ‖x∗‖ ≤ 1 + ε

}
,

∂̂εdΩ(x̄) ⊃
{

x∗ ∈ N̂ε/4(x̄ ;Ω)
∣
∣ ‖x∗‖ ≤ 1 + ε/4

}
.

Proof. It follows from the definitions that

x∗ ∈ ∂̂εdΩ(x̄) =⇒ x∗ ∈ N̂ε(x̄ ;Ω) and 〈x∗, x〉 ≤ (1 + ε)‖x‖ ∀x ∈ X .

The latter gives ‖x∗‖ ≤ 1+ε and justifies the first inclusion in the proposition.
To establish the second inclusion, let us pick any x∗ ∈ N̂ε/4(x̄ ;Ω) satisfying

‖x∗‖ ≤ 1 + ε/4 and, given x /∈ Ω, find u ∈ Ω with

‖x − u‖ ≤ dist(x ;Ω) + ‖x − x̄‖2 .

Taking into account that ‖u − x̄‖ ≤ 3‖x − x̄‖ for x close to x̄ , we have

lim inf
x→x̄
x /∈Ω

dΩ(x) − dΩ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ lim inf

x→x̄
x /∈Ω

(1 − ‖x∗‖)‖x − u‖ − 〈x∗, u − x̄〉
‖x − x̄‖

≥ min
{

0, 1 − ‖x∗‖ − lim sup
x→x̄
x /∈Ω

〈x∗, u − x̄〉
‖x − x̄‖

}
≥ −ε

4
− 3ε

4
= −ε .

It remains to observe that

lim inf
x→x̄
x∈Ω

dΩ(x) − dΩ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ −ε

if x∗ ∈ N̂ε/4(x̄ ;Ω). Thus x∗ ∈ ∂̂εdΩ(x̄). �

Corollary 1.96 (Fréchet subgradients of distance functions at in-set
points). For any set Ω ⊂ X with x̄ ∈ Ω one has the representations

∂̂dΩ(x̄) = N̂(x̄ ;Ω) ∩ IB∗, N̂(x̄ ;Ω) =
⋃

λ>0

λ∂̂dΩ(x̄) .
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Proof. The second representation immediately follows from the first one,
which is the case of ε = 0 in Proposition 1.95. �

Thus we have an equivalent description of the prenormal cone to a arbi-
trary set in terms of the presubdifferential of the (Lipschitzian) distance func-
tion. Let us obtain a similar description of the basic normal cone to closed
subsets of Banach spaces.

Theorem 1.97 (basic normals via subgradients of distance functions
at in-set points). Let Ω ⊂ X be nonempty and closed. Then

N(x̄ ;Ω) =
⋃

λ>0

λ∂dΩ(x̄) for any x̄ ∈ Ω .

Proof. Picking x∗ ∈ N(x̄ ;Ω) and using the definition of basic normals, we find

sequences εk ↓ 0, xk
Ω→ x̄ , and x∗

k
w∗
→ x∗ with x∗

k ∈ N̂εk (xk ;Ω) for k ∈ IN . Since
{x∗

k } is bounded, there is a bounded sequence of λk > 0 such that ‖x∗
k ‖/λk ≤

1 + εk . Then the second inclusion in Proposition 1.95 gives x∗
k ∈ λk ∂̂ε̃k dΩ(xk)

with ε̃k := 4εk . Employing representation (1.55), we get x∗ ∈ λ∂dΩ(x̄) with
some λ > 0, which justifies the inclusion “⊂” in the theorem for an arbitrary
set Ω.

Let us prove the opposite inclusion when Ω is closed. Take x∗ ∈ ∂dΩ(x̄)

and find sequences εk ↓ 0, xk → x̄ , and x∗ w∗
→ x∗ with x∗

k ∈ ∂̂εk dΩ(xk). If xk ∈ Ω
along a subsequence of k, we end the proof by passing to the limit in the first
inclusion of Proposition 1.95. Assume that xk /∈ Ω for all k ∈ IN . In this case
there are ηk ↓ 0 with

〈x∗
k , x − xk〉 ≤ 2εk‖x − xk‖ whenever x ∈ Bηk (xk) ∩Ω, k ∈ IN .

Choose ρk ↓ 0 with ρk < min
{
η2

k ,
1
k dΩ(xk)

}
and take νk ↓ 1 such that

(νk − 1)dΩ(xk) < ρ2
k . Then we pick x̃k ∈ Ω satisfying ‖x̃k − xk‖ ≤ νkdΩ(xk)

and observe that

〈x∗
k , u〉 ≤ dΩ(xk + u) − ν−1

k ‖xk − x̃k‖ + εk‖u‖

≤ dΩ(x̃k + u) + (1 − ν−1
k )‖xk − x̃k‖ + 2εk‖u‖

if ‖u‖ ≤ ηk . Then

〈x∗
k , x − x̃k〉 ≤ (1 − ν−1

k )‖xk − x̃k‖ + 2εk‖x − x̃k‖

for all x ∈ Ω ∩ Bηk (x̃k), and hence

0 ≤ ϕk(x) := −〈x∗
k , x − x̃k〉 + 2εk‖x − x̃k‖ + γ 2

k , x ∈ Ω ∩ Bηk (x̃k) ,

where γ 2
k := (1 − ν−1

k )‖xk − x̃k‖. The latter gives
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γ 2
k = ϕk(x̃k) ≤ inf

x∈Ω∩Bηk (x̃k)
ϕk(x) + γ 2

k

for each k ∈ IN , and we can apply the Ekeland variational principle (see
Theorem 2.26 in Subsect. 2.3.1) to the continuous function ϕk on the complete
metric space Ω ∩ Bηk (x̃k). According to this result, there is x̂k ∈ Ω ∩ Bηk (x̃k)
such that ‖x̂k − x̃k‖ ≤ γk and

〈−x∗
k , x̂k − x̃k〉 + 2εk‖x̂k − x̃k‖ ≤ 〈−x∗

k , x − x̃k〉 + 2εk‖x − x̃k‖ + γk‖x − x̂k‖ .

Taking into account that γ 2
k ≤ νk(1 − ν−1

k )dΩ(xk) < ρ2
k and then letting

rk := ρk − γk > 0, we get

‖x − x̂k‖ ≤ rk =⇒ ‖x − x̃k‖ ≤ ‖x − x̂k‖ + γk ≤ ρk ≤ ηk .

It follows from the above estimates that

〈x∗
k , x − x̂k〉 ≤ (2εk + γk)‖x − x̂k‖ whenever x ∈ Ω ∩ Brk (x̂k) ,

and hence x∗
k ∈ N̂2εk+γk (x̂k ;Ω) for all k ∈ IN . Passing to the limit as k → ∞

and taking into account that γk ↓ 0 and x̂k → x̄ , we finally get x∗ ∈ N(x̄ ;Ω),
which ends the proof of the theorem. �

The results obtained allow us to show that, for any point x̄ ∈ Ω, the lower
regularity of dΩ at x̄ ∈ Ω is completely determined by the normal regularity
of Ω at this point.

Corollary 1.98 (regularity of sets and distance functions at in-set
points). Let Ω ⊂ X be a closed set with x̄ ∈ Ω. Then Ω is normally regular
at x̄ if and only if the distance function dΩ is lower regular at this point.

Proof. Follows from the definitions and the normal cone representations in
Corollary 1.96 and Theorem 1.97. �

Next let us consider the case of x̄ /∈ Ω and derive the relationship between
Fréchet subgradients of the distance function dΩ(·) and Fréchet normals of
the ρ-enlargement of Ω relative to x̄ defined by

Ω(ρ) :=
{

x ∈ X
∣
∣ dΩ(x) ≤ ρ

}
with ρ := dΩ(x̄) .

Note that the ρ-enlargement of Ω is always closed for any ρ ≥ 0, even when
Ω is not. Furthermore, Ω(ρ) = Ω + ρ IB if Ω is either compact in Banach
spaces or closed in finite dimensions.

Theorem 1.99 (ε-subgradients of distance functions at out-of-set
points). For any ∅ 	= Ω ⊂ X , any x̄ /∈ Ω, and any ε ≥ 0 sufficiently small
the following inclusions hold:



1.3 Subdifferentials of Nonsmooth Functions 101

{
x∗ ∈ N̂ε/4

(
x̄ ;Ω(ρ)

)∣∣ 1 − ε/4 ≤ ‖x∗‖ ≤ 1 + ε/4
}
⊂ ∂̂εdΩ(x̄)

⊂
{

x∗ ∈ N̂ε

(
x̄ ;Ω(ρ)

)∣∣ 1 − ε ≤ ‖x∗‖ ≤ 1 + ε
}

with ρ = dΩ(x̄) .

In particular, for ε = 0 one has

∂̂dΩ(x̄) = N̂
(
x̄ ;Ω(ρ)

)
∩
{

x∗ ∈ X∗∣∣ ‖x∗‖ = 1
}
.

Proof. For simplicity we consider only the case of ε = 0; the proof for ε > 0
is similar. First let us check the representation

dΩ(ρ)(x) = dΩ(x) − ρ for any x /∈ Ω(ρ) and ρ > 0 .

To proceed, we fix x /∈ Ω(ρ) and take any u ∈ Ω(x) with dΩ(u) ≤ ρ. Then
for every ε > 0 there is uε ∈ Ω satisfying

‖u − uε‖ ≤ dΩ(u) + ε ≤ ρ + ε ,

which obviously yields

‖u − x‖ ≥ ‖uε − x‖ − ‖uε − u‖ ≥ dΩ(x) − ‖uε − u‖ ≥ dΩ(x) = ρ − ε .

Since the estimate ‖u − x‖ ≥ dΩ(x) − ρ − ε holds for all u ∈ Ω(ρ) and all
ε > 0, we get the inequality

dΩ(ρ)(x) ≥ dΩ(x) − ρ .

To prove the opposite inequality, let us fix u ∈ Ω and define the continuous
function ϕ: IR+ → IR by

ϕ(t) := dΩ(t x + (1 − t)u) .

Since ϕ(0) = 0 and ϕ(1) > ρ, there is t0 ∈ (0, 1) with ϕ(t0) = ρ by the
classical intermediate value theorem. Putting now v := t0x + (t − t0)u, we
have dΩ(v) = ρ and ‖x − u‖ = ‖x − v‖ + ‖v − u‖. Hence

‖x − u‖ ≥ ‖x − v‖ + dΩ(v) = ‖x − v‖ + ρ

by u ∈ Ω and v ∈ Ω(ρ), which implies ‖x −u‖ ≥ dΩ(ρ)(x)+ρ and the desired
equality dΩ(ρ)(x) = dΩ(x) − ρ.

Using this representation of dΩ(ρ), let us prove the equality claimed
in the theorem starting with the inclusion“⊂” therein. From now we fix
ρ = dΩ(x̄). Take any x∗ ∈ ∂̂dΩ(x̄) and fix ε > 0. Then, by the definition
of Fréchet subgradients, there is ν > 0 such that

〈x∗, x − x̄〉 ≤ dΩ(x) − dΩ(x̄) + ε‖x − x̄‖ whenever x ∈ x̄ + ν IB ,

which implies 〈x∗, x − x̄〉 ≤ ε‖x − x̄‖ for all x ∈ (x̄ + ν IB)∩Ω(ρ) by virtue of
dΩ(x) − dΩ(x̄) ≤ 0 when x ∈ Ω(ρ). The latter gives x∗ ∈ N̂(x̄ ;Ω(ρ)).
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Let us show that ‖x∗‖ = 1 whenever x∗ ∈ ∂̂dΩ(x̄). Using again the defini-
tion of Fréchet subgradients of dΩ at x̄ with ε and ν therein, we put

r := min
{

1, ε,
ν

1 + dΩ(x̄)

}

and choose xr ∈ Ω so that ‖x̄ − xr‖ ≤ dΩ(x̄) + r2. For x := x̄ + r(xr − x̄) one
obviously has the estimates

‖x − x̄‖ ≤ r‖x̄ − xr‖ ≤ rdΩ(x̄) + r2 ≤ r
(
1 + dΩ(x̄)

)
≤ ν ,

and therefore

〈x∗, x − x̄〉 ≤ ‖x − x̄‖ − ‖x̄ − xr‖ + r2 + εr‖x̄ − xr‖

= −r‖x̄ − xr‖ + r2 + εr‖x̄ − xr‖ .

Taking into account the above choice of x , we get

〈x∗, xr − x̄〉 ≤ −‖x̄ − xr‖ + ε(1 + ‖x̄ − xr‖) ,

which readily gives

〈x∗, x̄ − xr 〉
‖x̄ − xr‖

≥ 1 − ε
(
1 +

1
‖x̄ − xr‖

)
≥ 1 − ε

(
1 +

1
dΩ(x̄)

)
,

and thus ‖x∗‖ ≥ 1. Since ‖x∗‖ ≤ 1 by the Lipschitz continuity of dΩ with
modulus � = 1, we conclude that ‖x∗‖ = 1 and complete the proof of the
inclusion “⊂” in the theorem.

To justify the opposite inclusion, fix x∗ ∈ N̂(x̄ ;Ω(ρ)) with ‖x∗‖ = 1 and
take arbitrary ε > 0 and η ∈ (0, 1). By the first equality in Corollary 1.96 we
get x∗ ∈ ∂̂dΩ(ρ)(x̄), and hence there is ν1 > 0 such that

〈x∗, x − x̄〉 ≤ dΩ(ρ)(x) − dΩ(ρ)(x̄) + ε‖x − x̄‖ whenever x ∈ x̄ + ν1 IB .

It follows from the representation of dΩ(ρ) established above that

〈x∗, x − x̄〉 ≤ dΩ(x) − dΩ(x̄) + ε‖x − x̄‖ whenever x ∈
(
x̄ + ν1 IB

)
\Ω(ρ) .

On the other hand, the inclusion x∗ ∈ N̂(x̄ ;Ω(ρ)) implies the existence of
ν2 > 0 ensuring the estimate

〈x∗, x − x̄〉 ≤ (ε/2)‖x − x̄‖ for all x ∈
(
x̄ + ν2 IB

)
∩Ω(ρ) .

Since ‖x∗‖ = 1, we choose u ∈ X such that ‖u‖ = 1 and 〈x∗, u〉 ≥ 1 − η. Fix
ν3 ∈ (0, ν2/2) and x ∈ (x̄ + ν3 IB) ∩Ω(ρ) and put γx := dΩ(x̄) − dΩ(x) ≥ 0.
Then x + γx u ∈ Ω(ρ) ∩ (x̄ + ν IB) due to

dΩ(x + γx u) ≤ dΩ(x) + γx = dΩ(x̄) = ρ and
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‖x + γx u − x̄‖ ≤ ‖x − x̄‖ + γx ≤ 2‖x − x̄‖ ≤ 2ν3 ≤ ν2 ,

which implies that 〈x∗, x + γx u − x̄〉 ≤ ε‖x − x̄‖ and hence

〈x∗, x − x̄〉 = 〈x∗, x + γx u − x̄〉 − 〈x∗, γx u〉 ≤ ε‖x − x̄‖ − γx(1 − η)

≤ ε‖x − x̄‖ +
(
dΩ(x) − dΩ(x̄)

)
(1 − η) .

Since η > 0 was chosen arbitrary, one has

〈x∗, x − x̄〉 ≤ ε‖x − x̄‖ + dΩ(x) − dΩ(x̄) whenever x ∈ (x̄ + ν3 IB) ∩Ω(ρ) ,

and therefore the latter holds for all x ∈ x̄ + ν IB with ν := min{ν1, ν3}. Thus
we get x∗ ∈ ∂̂dΩ(x̄) and complete the proof of the theorem. �

Do we have analogs of the inclusions in Theorem 1.99 for basic normals and
subgradients? It happens that the answer is negative for the crucial inclusion

∂dΩ(x̄) ⊂ N
(
x̄ ;Ω(ρ)

)
∩ IB∗ with ρ = dΩ(x̄)

even in finite dimensions. A simple counterexample is provided by the set

Ω :=
{
(x1, x2) ∈ IR2

∣
∣ x2

1 + x2
2 ≥ 1

}

with x̄ = (0, 0). Indeed, in this case dΩ(x̄) = 1 and Ω(ρ) = Ω + ρ IB = IR2

for ρ = 1, hence N
(
x̄ ;Ω(ρ)

)
= {0}. On the other hand, it is easy to compute

the distance function

dΩ(x1, x2) = 1 −
√

x2
1 + x2

2

in this case, and so to see that ∂dΩ(x̄) is the unit sphere of IR2.
To derive a correct inclusion important for subsequent applications, we

need to change a bit the construction of the subdifferential ∂dΩ(·), which
seems to be appropriate for describing generalized differential properties of
distance functions at out-of-set points. The idea behind this modification is
that, in the limiting procedure from ε-subgradients, we consider only those
points xk → x̄ , where the function values are to the right of the one at x̄ . In
this way we can define other “sided” subdifferential modifications that are not
used in what follows.

Definition 1.100 (right-sided subdifferential). Given ϕ: X → IR finite
at x̄, define the right-sided subdifferential of ϕ at x̄ by

∂≥ϕ(x̄) := Lim sup
x
ϕ+→x̄
ε↓0

∂̂εϕ(x) ,

where x
ϕ+→ x̄ means that x → x̄ with ϕ(x) → ϕ(x̄) and ϕ(x) ≥ ϕ(x̄).
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We obviously have the inclusions

∂̂ϕ(x̄) ⊂ ∂≥ϕ(x̄) ⊂ ∂ϕ(x̄) ,

i.e., ∂≥ϕ(x̄) = ∂ϕ(x̄) for functions ϕ lower regular at x̄ , in particular, for
strictly differentiable and convex functions. On the other hand, the right-sided
subdifferential may be empty for Lipschitzian functions in finite dimensions
as for the one in the example above, where

∂̂ϕ(x) = ∅ whenever ϕ(x) ≥ ϕ(x̄), so ∂≥ϕ(x̄) = ∅ .

It is important to emphasize that

∂≥ϕ(x̄) = ∂ϕ(x̄), and thus 0 ∈ ∂≥ϕ(x̄)

when ϕ attains its local minimum at x̄ . In particular, one has

∂≥dΩ(x̄) = ∂dΩ(x̄) whenever x̄ ∈ Ω .

The next theorem gives the required relationships between subgradients of
the distance function at out-of set points and basic normals to the enlargement
of Ω in terms of the right-sided subdifferential from Definition 1.100. Moreover,
the latter construction allows us to derive the out-of-set counterpart of the
equality in Theorem 1.97.

Theorem 1.101 (right-sided subgradients of distance functions and
basic normals at out-of-set points). Let Ω ⊂ X be a nonempty closed
subset of a Banach space, and let x̄ /∈ Ω. The following assertions hold:

(i) One has the inclusion

∂≥dΩ(x̄) ⊂ N
(
x̄ ;Ω(ρ)

)
∩ IB∗ with ρ = dΩ(x̄) .

If in addition the latter enlargement Ω(ρ) is SNC at x̄, then

∂≥dΩ(x̄) ⊂
[
N
(
x̄ ;Ω(ρ)

)
∩ IB∗] \ {0} .

(ii) One always has the equality

N(x̄ ;Ωρ) =
⋃

λ≥0

λ∂≥dΩ(x̄) with ρ = dΩ(x̄) .

Proof. To prove the first inclusion in (i), we take any x∗ ∈ ∂≥dΩ(x̄) and find

εk ↓ 0, xk → x̄ with dΩ(xk) ≥ dΩ(x̄), and x∗
k
w∗
→ x∗ such that

x∗
k ∈ ∂̂εk dΩ(xk) for all k ∈ IN .
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It follows from Theorem 1.99 that 1 − εk ≤ ‖x∗
k ‖ ≤ 1 + εk for all k ∈ IN

sufficiently large. Denote for convenience Ω(x̄) := Ω(ρ) with ρ = dΩ(x̄) and
consider the following two cases:

(a) There is a subsequence of {xk} such that dΩ(xk) = dΩ(x̄) along this
subsequence.

(b) Otherwise. Since dΩ(xk) > dΩ(x̄), we have in this case that xk /∈ Ω(x̄)
for all k ∈ IN .

In case (a) we get from the second inclusion in Theorem 1.99 that

x∗
k ∈ N̂εk

(
xk ;Ω(x̄)

)

along the subsequence of xk under consideration. Then passing to the limit
as k → ∞ with taking into account the lower semicontinuity of the norm
functions in the weak∗ topology of X∗, we arrive at

x∗ ∈ N
(
x̄ ;Ω(x̄)

)
∩ IB∗ ,

which justifies the first inclusion from (i) in case (a). The second inclusion in
this case follows directly from the definition of the SNC property for the fixed
enlargement set Ω(x̄).

Now consider the remaining case (b) when xk /∈ Ω(x̄) for all k ∈ IN . As
established in the proof of the first part of Theorem 1.99,

dΩ(x) = dΩ(x̄) + dΩ(x̄)(x) whenever x /∈ Ω(x̄) .

Hence for every k ∈ IN one has the relations

x∗
k ∈ ∂̂εk dΩ(xk) = ∂̂εk

[
dΩ(x̄) + dΩ(x̄)

]
(xk) = ∂̂εk dΩ(x̄)(xk) .

Let ε̃k := ‖xk − x̄‖. Following the proof of Theorem 1.97 for the set Ω(x̄), with
the usage of Ekeland’s variational principle, we find x̃k ∈ Ω(x̄) such that

‖x̃k − xk‖ ≤ dΩ(x̄)(xk) + εk ≤ ε̃k + εk and x∗
k ∈ N̂

(
x̃k ;Ω(x̄)

)

whenever k ∈ IN . Since ε̃k + εk ↓ 0 as k → ∞, it gives x∗ ∈ N
(
x̄ ;Ω(x̄)

)
. The

facts that x∗ ∈ IB∗ and that x∗ 	= 0 if Ω(x̄) is SNC at x̄ are justified similarly
to case (a). Thus we complete the proof of assertion (i) of the theorem.

It follows directly from the first inclusion in (i) that
⋃

λ>≥0

λ∂≥d(x̄ ;Ω) ⊂ N
(
x̄ ;Ω(x̄)

)
.

For proving assertion (ii), it remains therefore to justify the opposite inclusion.
Take x∗ ∈ N

(
x̄ ;Ω(x̄)

)
and suppose that x∗ 	= 0; the other case is trivial. Then

there are εk ↓ 0, xk → x̄ with xk ∈ Ω(x̄), and x∗
k
w∗
→ x∗ such that
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x∗
k ∈ N̂εk

(
xk ;Ω(x̄)

)
for all k ∈ IN .

By the norm weak∗ lower semicontinuity we have

lim inf
k→∞

‖x∗
k ‖ ≥ ‖x∗‖ > 0

Thus there exist subsequences of (xk, x∗
k ), without relabeling, and a sequence

εk ↓ 0 satisfying

x∗
k

‖x∗
k ‖

∈ N̂εk/4

(
xk ;Ω(x̄)

)
, k ∈ IN .

Employing the first inclusion in Theorem 1.99, we get

x∗
k ∈ ‖x∗

k ‖∂̂εk dΩ(xk) as k → ∞ .

Note that dΩ(xk) ≤ 0 by the choice of xk ∈ Ω(x̄). At the same time the
strict inequality dΩ(xk) < 0 is not possible for k sufficiently large due to
0 	= x∗

k ∈ N̂εk

(
xk ;Ω(x̄)

)
. Selecting now a convergent subsequence of ‖x∗

k ‖ and
using Definition 1.100 of the right-sided subdifferential, we find λ > 0 such
that x∗ ∈ λ∂≥dΩ(x̄), which completes the proof of the theorem. �

Observe that we may unify the statements of Theorem 1.97 and of assertion
(ii) in Theorem 1.101, since ∂≥dΩ(x̄) = ∂dΩ(x̄) if x̄ ∈ Ω. Note also that some
sufficient conditions for the SNC property of the set enlargement Ω(ρ) =
Ω(x̄) used in Theorem 1.101(i) are given subsequently in Theorem 3.83 in the
framework of Asplund spaces.

Finally in this subsection, we derive results of the projection type that
allow us to estimate subgradients of the distance function dΩ(x̄) at out-of-set
points x̄ /∈ Ω via normals to Ω at projection or perturbed projection points
of Ω. Let us start with estimating ε-subgradients of dΩ(x̄) at x̄ /∈ Ω in the
case when the projection set

Π(x̄ ;Ω) :=
{
w ∈ Ω

∣
∣ ‖w − x̄‖ = dΩ(x̄)

}

in nonempty. In this case we get the following useful inclusion.

Proposition 1.102 (ε-subgradients of distance functions and ε-
normals at projection points). Let Ω ⊂ X be a nonempty subset of a
Banach space, let x̄ /∈ Ω, and let Π(x̄ ;Ω) 	= ∅. Then for any ε ∈ [0, 1] one
has

∂̂εdΩ(x̄ ;Ω) ⊂
⋂

w∈Π(x̄;Ω)

N̂ε(w;Ω) ∩
[
1 − ε, 1 + ε

]
S∗ .

Proof. Pick x∗ ∈ ∂̂εdΩ(x̄) and, by definition of ε-subgradients, for any γ > 0
find δ > 0 such that
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〈x∗, x − x̄〉 ≤ (ε + γ )‖x − x̄‖ + dΩ(x) − dΩ(x̄) whenever ‖x − x̄‖ ≤ δ .

Now given any projection element w ∈ Π(x̄ ;Ω) and any x ∈ x̄ + δ IB, we have

〈x∗, x − w〉 ≤ (ε + γ )‖x − w‖ + dΩ(x − w + x̄) − ‖x̄ − w‖

≤ (ε + γ )‖x − w‖ ,

and hence x∗ ∈ N̂ε(w;Ω).
It remains to show that for any x∗ ∈ ∂̂εdΩ(x̄) with x̄ /∈ Ω and ε ∈ [0, 1]

one has the estimates

1 − ε ≤ ‖x∗‖ ≤ 1 + ε .

Observe that the upper estimate above follows directly from the definition of
ε-subgradients and the Lipschitz continuity of dΩ(·) with modulus � = 1.

Taking an arbitrary x∗ ∈ ∂̂εdΩ(x̄), let us justify the lower estimate ‖x∗‖ ≥
1 − ε for it assuming that ε ∈ (0, 1) without loss of generality. By definition
of ε-subgradients, for each ν ∈ (ε, 1] there is δ > 0 such that

〈x∗, x − x̄〉 ≤ ν‖x − x̄‖ + dΩ(x) − dΩ(x̄) whenever x ∈ x̄ + δ IB .

Fixing t ∈ (0, 1), select xt ∈ Ω satisfying

‖xt − x̄‖ ≤ (1 + t2)dΩ(x̄)

and then zt ∈ (xt , x̄) := {(1 − α)xt + α x̄ | α ∈ (0, 1)} satisfying

‖x̄ − zt‖ = t‖xt − x̄‖ .

One clearly has zt ∈ x̄ + δ IB for all t sufficiently small. Thus substituting zt

into the above inequality for x∗ and taking into account that dΩ(zt) ≤ ‖xt−zt‖
by the choice of xt , we get

〈x∗, zt − x̄〉 ≤ ν‖x̄ − zt‖ + ‖xt − zt‖ − (1 + t2)−1‖xt − x̄‖ .

This gives by the choice of zt that

〈x∗, t(xt − x̄)〉 ≤ νt‖xt − x̄‖ + (1 − t)‖xt − x̄‖ − (1 + t2)−1‖xt − x̄‖ ,

which implies the estimate

〈x∗, x̄ − xt〉 ≥ (γt − ν)‖xt − x̄‖ with γt := t−1[(1 − t2)−1 + t − 1] ,

and therefore ‖x∗‖ ≥ γt − ν. Since the latter holds for any ν ↓ ε with γt → 1
as t ↑ 1, we finally get ‖x∗‖ ≥ 1 − ε and complete the proof. �

Next let us consider the case when the projection set Π(x̄ ;Ω) may be
empty and, given η > 0, define the perturbed projection set by

Πη(x̄ ;Ω) :=
{
w ∈ Ω

∣
∣ ‖w − x̄‖ ≤ dΩ(x̄) + η

}
.
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Theorem 1.103 (ε-subgradients of distance functions and ε-normals
to perturbed projections). Let Ω ⊂ X be a closed subset of a Banach
space, and let x̄ /∈ Ω. Then for every ε ∈ [0, 1] one has the upper estimate

∂̂εdΩ(x̄ ;Ω) ⊂
⋂

η>0

⋃

w∈Πη(x̄;Ω)

{
N̂ε+η(w;Ω) ∩

[
1 − ε, 1 + ε

]
S∗
}
.

Proof. Fixed x∗ ∈ ∂̂εdΩ(x̄) and η > 0, for any γ ∈ (0, η/2) find δ > 0 with

〈x∗, x − x̄〉 ≤ dΩ(x) − dΩ(x̄) + (ε + γ )‖x − x̄‖

whenever ‖x − x̄‖ ≤ δ. Take 0 < η̃ < min{γ, δ/4} and choose z ∈ Ω satisfying

‖z − x̄‖ ≤ dΩ(x̄) + η̃2 .

Then for any x ∈ Ω ∩ (z + δ IB) we have the estimates

〈x∗, x − z〉 ≤ dΩ(x − z + x̄) − ‖x̄ − z‖ + η̃2 + (ε + γ )‖x − z‖

≤ (ε + γ )‖x − z‖ + η̃2 .

Consider the real-valued function

ϕ(x) := −〈x∗, x − z〉 + (ε + γ )‖x − z‖ + η̃2 ,

which is obviously continuous on the complete metric space W := Ω∩(x̄+δ IB).
It follows from the above constructions that

ϕ(z) ≤ inf
W
ϕ(x) + η̃2 .

Employing Ekeland’s variational principle from Theorem 2.26, we find w ∈ W
satisfying ‖w − z‖ < η̃ and

−〈x∗, w − z〉 + (ε + γ )‖w − z‖ + η̃2 ≤ −〈x∗, x − z〉 + (ε + γ )‖x − z‖

+η̃2 + η̃‖w − x‖

for all x ∈ W . This implies the estimates

〈x∗, x − z〉 ≤ (ε + γ + η̃)‖x − z‖ ≤ (ε + 2γ )‖x − w‖ ≤ (ε + η)‖x − w‖

whenever x ∈ W . Furthermore, by the choice of η̃ we have w + η̃IB ⊂ z + δ IB
and therefore

〈x∗, x − w〉 ≤ (ε + η)‖x − w‖ for all x ∈ Ω ∩ (w + η̃IB) ,

which justifies the inclusion x∗ ∈ N̂ε+η(w;Ω). Note that
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‖w − x̄‖ ≤ ‖w − z‖ + ‖z − x̄‖ ≤ η̃ + dΩ(x̄) + η̃ ≤ dΩ(x̄) + η ,

and hence w ∈ Πη(x̄ ;Ω). Observe finally that the estimates

1 − ε ≤ ‖x∗‖ ≤ 1 + ε

follow from the proof of Proposition 1.102. �

The concluding results of this subsection provide upper estimates of the
whole basic subdifferential of the distance function dΩ(·) at out-of-set points
via the basic normal cone to Ω at the corresponding projections. To establish
the principal theorem in this direction, we impose a certain well-posedness of
the best approximation problem for Ω, which automatically holds under some
natural geometric assumptions; see below.

Definition 1.104 (well-posedness of best approximations). Let Ω ⊂ X
be an nonempty subset of a Banach space, and let x̄ /∈ Ω. We say that the
best approximation problem to Ω from x̄ is well posed if either one of the
following properties holds:

(a) every sequence of xk ∈ Ω satisfying xk → x̄ and

‖xk − x̄‖ → dΩ(x̄) as k → ∞

contains a convergent subsequence;
(b) for every sequence of xk → x̄ with ∂̂εk dΩ(xk) 	= ∅ as εk ↓ 0 there is a

sequence of wk ∈ Π(xk ;Ω) that contains a convergent subsequence.

Observe that the main difference between properties (a) and (b) in Def-
inition 1.104 is that instead of the compactness requirement on minimizing
sequences of in-set points xk ∈ Ω in (a), a similar compactness is imposed in
(b) on some projection sequence to xk /∈ Ω satisfying the subdifferential con-
dition ∂̂εk dΩ(xk) 	= ∅ with εk ↓ 0. Note that one can equivalently put εk = 0 in
the latter condition for locally closed subsets Ω of Asplund spaces.

Theorem 1.105 (projection formulas for basic subgradients of dis-
tance functions at out-of-set points). Let Ω ⊂ X be a closed subset of a
Banach space, and let x̄ /∈ Ω. Assume that the best approximation problem to
Ω from x̄ is well posed. Then

∂dΩ(x̄) ⊂
⋃

w∈Π(x̄;Ω)

[
N(w;Ω) ∩ IB∗] .

The stronger inclusion

∂dΩ(x̄) ⊂
⋃

w∈Π(x̄;Ω)

[
N(w;Ω) ∩ IB∗] \ {0}

holds when Ω is SNC at every projection point w ∈ Π(x̄ ;Ω). Furthermore,
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∂dΩ(x̄) ⊂
⋃

w∈Π(x̄;Ω)

[
N(w;Ω) ∩ S∗]

if the space X is finite-dimensional.

Proof. Assuming without loss of generality that ∂dΩ(x̄) 	= ∅, we take an
arbitrary subgradient x∗ ∈ ∂dΩ(x̄) and find by definition sequences εk ↓ 0,

xk → x̄ , and x∗
k
w∗
→ x∗ such that

x∗
k ∈ ∂̂εk dΩ(xk) for all k ∈ IN .

Suppose first that the well-posedness property in (b) holds and find a sequence
of wk ∈ Π(xk ;Ω) converging to some w that clearly belongs to Π(x̄ ;Ω).
Moreover, xk /∈ Ω for all large k ∈ IN . Employing Proposition 1.102, we get a
sequence of x∗

k satisfying

x∗
k ∈ N̂εk (wk ;Ω) with 1 − εk ≤ ‖x∗

k ‖ ≤ 1 + εk, k ∈ IN .

Passing to the limit as k → ∞, we arrive at x∗ ∈ N(w;Ω), which justifies
the first inclusion of the theorem in case (b). The two other inclusions easily
follow from the above constructions under the additional assumptions made.

It remains to justify the first inclusion of the theorem under the well-
posedness property in (a). Taking x∗ ∈ ∂dΩ(x̄) and having sequences
(εk, xk, x∗

k ) as above, we employ now Theorem 1.103 and get wk ∈ Ω such
that

x∗
k ∈ N̂εk (wk ;Ω), 1 − εk ≤ ‖x∗

k ‖ ≤ 1 + εk, and

dΩ(xk) ≤ ‖xk − wk‖ ≤ dΩ(xk) + 2εk .

This gives the estimates
∣
∣ ‖wk − x̄‖ − dΩ(x̄)

∣
∣ ≤

∣
∣‖wk − x̄‖ − ‖wk − xk‖

∣
∣+
∣
∣ ‖wk − xk‖ − dΩ(xk)

∣
∣

+
∣
∣dΩ(xk) − dΩ(x̄)

∣
∣ ≤ 2‖xk − x̄‖ +

∣
∣ ‖wk − xk‖ − dΩ(xk)

∣
∣→ 0 ,

which imply that ‖wk − x̄‖ → dΩ(x̄) as k → ∞. It follows from the well-
posedness property (a) that there is w ∈ Π(x̄ ;Ω) such that wk → w along
some subsequence as k → ∞. Thus x∗ ∈ N(w;Ω) with ‖x∗‖ ≤ 1. �

Observe that the well-posedness requirement of the theorem is clearly sat-
isfied, via property (b), if the projection sets Π(·;Ω) are nonempty and uni-
formly compact around x̄ . The latter assumptions are not needed under some
geometric properties of the space X and the set Ω in question. Recall again
(cf. Subsect. 1.1.2) that the norm ‖ · ‖ on a Banach space X is Kadec if the
strong and weak convergence agree on the boundary of its unit sphere. It is
well known that every locally uniformly convex space (in particular, every
reflexive space) admits an equivalent Kadec norm.
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Corollary 1.106 (basic subgradients of distance functions in spaces
with Kadec norms). Let X be a reflexive Banach space with an equivalent
Kadec norm. Given an nonempty set Ω ⊂ X and x̄ /∈ Ω, assume that:

– either Ω is weakly closed,
– or Ω is closed and ∂̂dΩ(x̄) 	= ∅.

Then the best approximation problem to Ω from x̄ is well posed. This implies
that Π(x̄ ;Ω) 	= ∅ and that the first inclusion of Theorem 1.105 holds, while
the second one is also fulfilled under the additional SNC assumption made.

Proof. Let Ω be weakly closed. To justify the well-posedness of the best
approximation problem via property (a) in Definition 1.104, take any sequence
of xk ∈ Ω with ‖xk − x̄‖ → dΩ(x̄) as k → ∞. Since X is reflexive, we may
assume without loss of generality that xk weakly converge to some w ∈ X .
Thus w ∈ Ω by the weak closedness of Ω. Observe that

‖w − x̄‖ ≤ lim inf
k→∞

‖xk − x̄‖ = dΩ(x̄) ,

which implies that w ∈ Π(x̄ ;Ω) and that ‖xk − x̄‖ → ‖w− x̄‖. Since the norm
on X is Kadec, we get ‖xk − w‖ → 0 as k → ∞. The latter justifies the well-
posedness property of Theorem 1.105 and thus the inclusions therein provided
that Ω is weakly closed. If ∂̂dΩ(x̄) 	= ∅, then the well-posedness property of
the theorem follows from Lemma 6 in Borwein and Giles [146] provided that
Ω is just closed in the norm topology of X . �

Note that the inclusions of Theorem 1.105 are generally strict even for
convex sets in finite dimensions, as in the case of Ω := epi (‖ · ‖) ⊂ IR2 with
x̄ = (−1, 0). On the other hand, both the basic subdifferential and the Fréchet
subdifferential of the distance function for any closed set Ω ⊂ IRn at x̄ /∈ Ω
can be computed via the Euclidean projector Π(·;Ω) by

∂dΩ(x̄) =
x̄ −Π(x̄ ;Ω)

dΩ(x̄)
, ∂̂dΩ(x̄) =






(x̄ − w̄)/‖x̄ − w̄‖ if Π(x̄ ;Ω) = {w̄} ,

∅ otherwise ;

cf. Mordukhovich [901, Proposition 2.7] and Rockafellar and Wets [1165, Ex-
ample 8.53]. This particularly provides an interesting observation that the
distance function dΩ is lower regular at x̄ /∈ Ω ⊂ IRn if and only if the
Euclidean projector Π(x̄ ;Ω) is a singleton. Thus we have a broad class of
Lipschitzian functions, which fail to be lower regular at intrinsic points. Note
that the above formula for computing the basic subdifferential of the distance
functions does’t hold in infinite dimensions, while the inclusion “⊂” is valid.
Indeed, the equality is violated in any Hilbert space for the orthonormal basis
Ω := {e1, e2, . . .} at x̄ = 0 /∈ Ω.

We refer the reader to the papers by Mordukhovich and Nam [935, 936]
for more details and discussions on the above material and also to extended
subdifferential results for the distance function to varying/moving sets
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ρ(x, y) := inf
v∈F(x)

‖y − v‖ = d
(

y; F(x)
)

useful in many aspects of variational analysis and optimization; see, in par-
ticular, Theorem 1.41.

1.3.4 Subdifferential Calculus in Banach Spaces

Here we present a part of subdifferential calculus for extended-real-valued
functions valid in arbitrary Banach spaces. We obtain calculus rules describing
behavior of basic and singular subgradients from Definition 1.77 (and hence
the corresponding upper subgradients) under various operations important
for applications. Some of these results follow directly from the coderivative
calculus of Subsect. 1.2.4; the others take into account specific features of
(extended) real-valued functions. We incorporate regularity statements into
calculus rules and also discuss related calculus results for “sequential normal
epi-compactness” of functions induced by those in Subsect. 1.2.5.

Dealing with functions that may take infinite values, we adopt the natural
conventions on extended arithmetic described in Sect. 1E of the book by
Rockafellar and Wets [1165]. One obviously has

∂(λϕ)(x̄) =






λ∂ϕ(x̄) if λ ≥ 0 ,

λ∂+ϕ(x̄) otherwise

and similarly for ∂∞, ∂̂, and the corresponding upper subdifferentials. The
next proposition gives subdifferential sum rules ensuring equalities with no
regularity assumptions.

Proposition 1.107 (subdifferential sum rules with equalities). Given
an arbitrary function ψ : X → IR finite at x̄, the following hold:

(i) For any ϕ: X → IR Fréchet differentiable at x̄ one has

∂̂(ϕ + ψ)(x̄) = ∇ϕ(x̄) + ∂̂ψ(x̄) .

(ii) For any ϕ: X → IR strictly differentiable at x̄ one has

∂(ϕ + ψ)(x̄) = ∇ϕ(x̄) + ∂ψ(x̄) .

Moreover, ϕ + ψ is lower (resp. epigraphically) regular at x̄ if and only if ψ
has the corresponding property at this point.

(iii) For any ϕ: X → IR Lipschitz continuous around x̄ one has

∂∞(ϕ + ψ)(x̄) = ∂∞ψ(x̄) .

Proof. Assertions (i) and (ii) follow from Theorem 1.62 and Proposition 1.92.
Let us prove the inclusion “⊂” in (iii). Given x∗ ∈ ∂∞(ϕ + ψ)(x̄), we find
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sequences εk ↓ 0, (xk, αk)
epi(ϕ+ψ)→ (x̄, (ϕ+ψ)(x̄)), x∗

k
w∗
→ x∗, νk → 0, and ηk ↓ 0

such that

〈x∗
k , x − xk〉 + νk(α − αk) ≤ 2εk(‖x − xk‖ + |α − αk |)

for all (x, α) ∈ epi (ϕ + ψ) with x ∈ xk + ηk IB and |α − αk | ≤ ηk , k ∈ IN . Let
� > 0 be a Lipschitz modulus of ϕ around x̄ , let η̃k := ηk/2(� + 1), and let

α̃k := αk − ϕ(xk). We have (xk, α̃k)
epiψ→ (x̄, ψ(x̄)) and check that

(x, α + ϕ(x)) ∈ epi (ϕ + ψ), |(α + ϕ(x)) − αk | ≤ ηk

whenever (x, α) ∈ epiψ , x ∈ xk + η̃k IB, and |α − α̃k | ≤ η̃k . Hence

〈x∗, x − xk〉+ νk(α− α̃k) ≤ ε̃k(‖x − xk‖+ |α− α̃k |) with ε̃k := 2εk(1+ �)+ |νk |�

for any (x, α) ∈ epiψ with x ∈ xk + η̃k IB and |α − α̃k | ≤ η̃k . This im-
plies (x∗

k , νk) ∈ N̂ε̃k ((xk, α̃k); epiψ) for all k ∈ IN , and hence (x∗, 0) ∈
N((x̄, ψ(x̄)); epiψ) due to ε̃k ↓ 0 as k → ∞. Thus we get the inclu-
sion “⊂” in (iii). Applying it to the sum ψ = (ψ + ϕ) + (−ϕ), one has
∂∞ψ(x̄) ⊂ ∂∞(ϕ + ψ)(x̄), which gives the equality in (iii). �

Next we consider subdifferentiation of the so-called marginal functions
generally defined by

µ(x) := inf
{
ϕ(x, y)

∣
∣ y ∈ G(x)

}
, (1.60)

where ϕ: X × Y → IR is an extended-real-valued cost function and G: X →→ Y
is a set-valued constraint mapping between Banach spaces. Marginal func-
tions (1.60) can be interpreted as value functions in parametric optimization
problems of the form

minimize ϕ(x, y) subject to y ∈ G(x) .

They play an important role in variational analysis, optimization, control the-
ory, and various applications. It is well known that marginal functions (1.60)
don’t usually admit a classical derivative even for smooth and simple initial
data ϕ and G. In what follows we calculate basic and singular subgradients of
(1.60) and present applications of the obtained results to subdifferential chain
rules and related calculus.

The next theorem gives upper estimates of the subdifferentials ∂µ(x̄) and
∂∞µ(x̄) in terms of the corresponding subdifferentials of the extended function

ϑ(x, y) := ϕ(x, y) + δ((x, y); gph G) .

The results involve the argminimum mapping M : X → Y defined by

M(x) :=
{

y ∈ G(x)
∣
∣ ϕ(x, y) = µ(x)

}

and depend on inner semicontinuous/semicompact properties of M formulated
in Definition 1.63. Recall that G is closed-graph at x̄ if ȳ ∈ G(x̄) whenever
xk → x̄ and yk → ȳ with yk ∈ G(xk) as k → ∞.
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Theorem 1.108 (subdifferentiation of marginal functions). Let the
marginal function (1.60) is finite at x̄ with M(x̄) 	= ∅. The following hold:

(i) Given ȳ ∈ M(x̄), assume that M is inner semicontinuous at (x̄, ȳ).
Then one has

∂µ(x̄) ⊂
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ ∂ϑ(x̄, ȳ)
}
,

∂∞µ(x̄) ⊂
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ ∂∞ϑ(x̄, ȳ)
}
.

(ii) Assume that M is inner semicompact at x̄, that G is closed-graph at
x̄, and that ϕ is l.s.c. on gph G when x = x̄. Then one has

∂µ(x̄) ⊂
{

x∗ ∈ X∗
∣
∣
∣ (x∗, 0) ∈

⋃

ȳ∈M(x̄)

∂ϑ(x̄, ȳ)
}
,

∂∞µ(x̄) ⊂
{

x∗ ∈ X∗
∣
∣
∣ (x∗, 0) ∈

⋃

ȳ∈M(x̄)

∂∞ϑ(x̄, ȳ)
}
.

Proof. To justify (i), we first prove the estimate for ∂µ(x̄). Picking x∗ ∈
∂µ(x̄) and using (1.55), we find sequences εk ↓ 0, xk

µ→ x̄ , and x∗
k

w∗
→ x∗ with

x∗
k ∈ ∂̂εkµ(xk) for all k ∈ IN . Hence there is ηk ↓ 0 such that

〈x∗
k , x − xk〉 ≤ µ(x) − µ(xk) + 2εk‖x − xk‖ whenever x ∈ xk + ηk IB .

By constructions of µ, ϑ , and M one has

〈(x∗
k , 0), (x, y) − (xk, yk)〉 ≤ ϑ(x, y) − ϑ(xk, yk) + 2εk(‖x − xk‖ + ‖y − yk‖)

for all yk ∈ M(xk) and (x, y) ∈ (xk, yk) + ηk IB, k ∈ IN . This gives (x∗
k , 0) ∈

∂̂ε̃kϑ(xk, yk) with ε̃k := 2εk . Since M is inner semicontinuous at (x̄, ȳ), we select
a sequence of yk ∈ M(xk) converging to ȳ. Observe that ϑ(xk, yk) → ϑ(x̄, ȳ)
due to µ(xk) → µ(x̄). Thus (x∗, 0) ∈ ∂ϑ(x̄, ȳ), which justifies the first inclusion
in (i).

To prove the second inclusion in (i), we take x∗ ∈ ∂∞µ(x̄) and get se-

quences εk ↓ 0, xk
µ→ x̄ , (x∗

k , νk)
w∗
→ (x∗, 0), and ηk ↓ 0 such that

〈x∗
k , x − xk〉 + νk(α − αk) ≤ 2εk(‖x − xk‖ + |α − αk |)

if (x, α) ∈ epiµ, x ∈ xk + ηk IB, and |α − αk | ≤ ηk for k ∈ IN . Similarly to the
proof of (i) we select yk → ȳ with yk ∈ M(xk), αk ↓ ϑ(x̄), and

(x∗
k , 0, νk) ∈ N̂2εk ((xk, yk, αk); epiϑ), k ∈ IN .

Passing to the limit as k → ∞, one has (x∗, 0) ∈ ∂∞ϑ(x̄), which completes
the proof of (i).
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Let us justify assertion (ii) of the theorem under the assumptions made.
Proceeding as in the proof of (i), we get the corresponding sequences {xk} and
{yk} satisfying

xk → x̄, µ(xk) → µ(x̄), yk ∈ G(xk), ϕ(xk, yk) = µ(xk) .

By the inner semicompactness of M at x̄ there is a subsequence of yk that
converges to some ȳ (without relabeling). It follows from the closed-graph
assumption on G that ȳ ∈ G(x̄). Similarly to the proof of (i), it remains to
show that ϕ(x̄, ȳ) = µ(x̄), which then implies both inclusions in (ii). Involving
the lower semicontinuity of ϕ on gph G and the above choice of xk and yk , one
therefore has

ϕ(x̄, ȳ) ≤ lim inf
k→∞

ϕ(xk, yk) = lim inf
k→∞

µ(xk) = µ(x̄) ,

which ends the proof of the theorem. �

When the cost function ϕ in (1.60) is strictly differentiable at points in
question, we get the following corollary of Theorem 1.108 that gives upper es-
timates of ∂µ(x̄) and ∂∞µ(x̄) in terms of partial gradients of ϕ and the normal
coderivative of G. For simplicity we consider only case (i) of the theorem.

Corollary 1.109 (marginal functions with smooth costs). Given ȳ ∈
M(x̄) in (1.60), we assume that M is inner semicontinuous at (x̄, ȳ) and that
ϕ is strictly differentiable at this point. Then

∂µ(x̄) ⊂ ∇xϕ(x̄, ȳ) + D∗
N G(x̄, ȳ)(∇yϕ(x̄, ȳ)), ∂∞µ(x̄) ⊂ D∗

N G(x̄, ȳ)(0) .

Proof. Follows from Theorem 1.108(i) by applying the sum rules of Proposi-
tion 1.107 to the function ϑ with the usage of Proposition 1.79 and represen-
tation (1.26) of the normal coderivative. �

Now let us consider a special case of (1.60) when the constraint mapping
G := g: X → Y is single-valued. Then the marginal function µ(x) reduces to
the composition

µ(x) = (ϕ ◦ g)(x) := ϕ(x, g(x)) , (1.61)

which is the standard one ϕ(g(x)) when ϕ doesn’t depend on x . The next
theorem provides the exact calculation (equalities) for the basic and singu-
lar subdifferentials of compositions (1.61) in the case of locally Lipschitzian
mappings g. Its first assertion ensures that the inclusions of Theorem 1.108
become equalities in this case. The second assertion gives precise formulas for
computing the basic subdifferential of (1.61) in terms of the mixed coderiva-
tive of g and the subdifferential of its scalarization, which improve the result of
Corollary 1.109. Both assertions also contain additional regularity statements.
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Theorem 1.110 (subdifferentiation of compositions: equalities). Let
ϕ: X ×Y → IR be finite at (x̄, ȳ) with ȳ := g(x̄), and let g: X → Y be Lipschitz
continuous around x̄. Then the following hold for composition (1.61):

(i) One has

∂(ϕ ◦ g)(x̄) =
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ ∂ϑ(x̄, g(x̄))
}
,

∂∞(ϕ ◦ g)(x̄) =
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ ∂∞ϑ(x̄, g(x̄))
}

if either g is strictly differentiable at x̄ or dim Y < ∞. In the latter case
ϕ ◦ g is lower (resp. epigraphically) regular at x̄ if ϑ := ϕ + δ(·; gph g) has the
corresponding property at (x̄, ȳ).

(ii) Assume that ϕ is strictly differentiable at (x̄, ȳ). Then

∂(ϕ ◦ g)(x̄) = ∇xϕ(x̄, ȳ) + D∗
M g(x̄)(∇yϕ(x̄, ȳ))

= ∇xϕ(x̄, ȳ) + ∂〈∇yϕ(x̄, ȳ), g〉(x̄) .

Moreover, ϕ ◦ g at x̄ is lower regular at x̄ if g is M-regular at this point.

Proof. One can check, using (1.47), that (i) is a special case of Theo-
rem 1.64(iii) with G(x) := (x, g(x)) and F := Eϕ , the epigraphical multi-
function. Then observe that both representations in (ii) are equivalent due to
Theorem 1.90 and that the regularity statement follows directly from the first
equality in (ii). It remains to prove the second representation in (ii).

Take an arbitrary sequence γ j ↓ 0 and, by the strict differentiability of ϕ
at (x̄, ȳ), find η j ↓ 0 such that

|ϕ(u, g(u)) − ϕ(x, g(x)) − 〈∇xϕ(x̄, ȳ), u − x〉 − 〈∇yϕ(x̄, ȳ), g(u) − g(x)〉|

≤ γ j (‖u − x‖ + ‖g(u) − g(x)‖) for all x, u ∈ Bη j (x̄), j ∈ IN .

Then pick x∗ ∈ ∂(ϕ ◦ g)(x̄) and get εk ↓ 0, xk → x̄ , and x∗
k

w∗
→ x∗ with

x∗
k ∈ ∂̂εk (ϕ ◦ g)(xk), k ∈ IN . This allows us to select a sequence k j → ∞ as

j → ∞ such that ‖xk j − x̄‖ ≤ η j/2 and

ϕ(x, g(x)) − ϕ(xk j , g(xk j )) − 〈x∗
k j
, x − xk j 〉 ≥ −2εk j‖x − xk j‖

for all x ∈ xk j + (η j/2)IB, j ∈ IN . Combining this with the above inequality
from strict differentiability, one gets

〈∇yϕ(x̄, ȳ), g(x) − g(xk j )〉 − 〈x∗
k j
−∇xϕ(x̄, ȳ), x − xk j 〉

≥ −
[
2εk j + γ j (�+ 1)

]
‖x − xk j‖ for x ∈ xk j + (η j/2)IB, j ∈ IN ,

where � is a Lipschitz modulus of g around x̄ . Thus
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x∗
k j
−∇xϕ(x̄, ȳ) ∈ ∂̂ε̃ j 〈∇yϕ(x̄, ȳ), g〉(xk j ) with ε̃ j := 2εk j + γ j (�+ 1) .

Passing to the limit as j → ∞, we arrive at x∗−∇xϕ(x̄, ȳ) ∈ ∂〈∇yϕ(x̄, ȳ), g〉(x̄).
To verify the opposite inclusion, we employ similar arguments starting with
a point x∗ ∈ ∂〈∇yϕ(x̄, ȳ), g〉(x̄). �

The second representation in Theorem 1.110(ii) can be treated as a subd-
ifferential chain rule for compositions with strictly differentiable outer func-
tions. It easily implies the corresponding formulas for subgradients of prod-
ucts and quotients involving Lipschitz continuous functions that generalize
the classical product and quotient rules.

Corollary 1.111 (subdifferentiation of products and quotients). Let
ϕ: X → IR, i = 1, 2, be Lipschitz continuous around x̄. The following hold:

(i) One always has

∂(ϕ1 · ϕ2)(x̄) = ∂
(
ϕ2(x̄)ϕ1 + ϕ1(x̄)ϕ2

)
(x̄) .

If in addition ϕ1 is strictly differentiable at x̄, then

∂(ϕ1 · ϕ2)(x̄) = ∇ϕ1(x̄)ϕ2(x) + ∂
(
ϕ1(x̄)ϕ2

)
(x̄) .

In the latter case ϕ1 · ϕ2 is lower regular at x̄ if and only if the function
x → ϕ1(x̄)ϕ2(x) is lower regular at this point.

(ii) Assume that ϕ2(x̄) 	= 0. Then

∂(ϕ1/ϕ2)(x̄) =
∂
(
ϕ2(x̄)ϕ1 − ϕ1(x̄)ϕ2

)
(x̄)

[ϕ2(x̄)]2
.

If in addition ϕ1 is strictly differentiable at x̄, then

∂(ϕ1/ϕ2)(x̄) =
∇ϕ1(x̄)ϕ2(x̄) + ∂

(
− ϕ1(x̄)ϕ2

)
(x̄)

[ϕ2(x̄)]2
.

In the latter case ϕ1/ϕ2 is lower regular at x̄ if and only if the function x →
ϕ1(x̄)ϕ2(x) is upper regular at this point.

(iii) Let ϕ: X → IR be Lipschitz continuous around x̄ with ϕ(x̄) 	= 0. Then

∂(1/ϕ)(x̄) = −∂+ϕ(x̄)
ϕ2(x̄)

.

Moreover, 1/ϕ is lower regular at ϕ if and only if ϕ is upper regular at this
point.

Proof. To prove (i), represent ϕ1 · ϕ2 as composition (1.61) with ϕ: IR2 → IR
and g: X → IR2 defined by

ϕ(y1, y2) := y1 · y2 and g(x) :=
(
ϕ1(x), ϕ2(x)

)
.
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Then Theorem 1.110(ii) gives the first equality in (i), which implies the second
one and the regularity statement due to Proposition 1.107(ii). The proof of
(ii) is similar with ϕ(y1, y2) := y1/y2 and the same mapping g in composition
(1.61). Assertion (iii) is a special case of (ii) with ϕ1 = 1 and ϕ2 = ϕ. �

Let us consider another important class of compositions (1.61) with strictly
differentiable inner mappings. The next proposition contains equality-type sub-
differential chain rules in the case of surjective derivatives. It follows from the
corresponding results for coderivatives based on the normal cone calculus from
Subsect. 1.1.2.

Proposition 1.112 (subdifferentiation of compositions with surjec-
tive derivatives of inner mappings). Consider composition (1.61), where
g: X → Y is strictly differentiable at x̄ with the surjective derivative ∇g(x̄)
and where ϕ(x, y) = ϕ1(x) + ϕ2(y) with ϕ2: Y → IR finite at ȳ = g(x̄). The
following assertions hold:

(i) If ϕ1 is strictly differentiable at x̄, then

∂(ϕ ◦ g)(x̄) = ∇ϕ1(x̄) + ∇g(x̄)∗∂ϕ2(ȳ) .

In this case ϕ ◦ g is lower (resp. epigraphically) regular at x̄ if and only if ϕ2

has the corresponding property at ȳ.
(ii) If ϕ1 is Lipschitz continuous around x̄, then

∂∞(ϕ ◦ g)(x̄) = ∇g(x̄)∗∂∞ϕ2(ȳ) .

Proof. The subdifferential chain rules and regularity conclusions for the com-
position ϕ2 ◦ g follow from Theorem 1.66 with F := Eϕ2 . To get the whole
statement, we then need to apply Proposition 1.107 to ϕ1 + ϕ2 ◦ g. �

Next let us consider minimum functions of the form
(
min ϕi

)
(x) := min

{
ϕi (x)

∣
∣ i = 1, . . . , n

}
,

where ϕi : X → IR and n ≥ 2. Note that such functions are nonsmooth (even
when all ϕi are smooth) and belong to the class of marginal functions (1.60).
However, its argminimum mapping

M(x) =
{

i ∈ {1, . . . , n}
∣
∣ ϕi (x) =

(
min ϕi

)
(x)
}

doesn’t satisfy the assumptions of Theorem 1.108 at nontrivial points. In
the following proposition we directly derive an efficient upper estimate of
∂
(
min ϕi

)
(x̄) in terms of basic subgradients of the involved functions ϕi .

Proposition 1.113 (subdifferentiation of minimum functions). Let ϕi

be finite at x̄ for all i = 1, . . . , n and l.s.c. at x̄ for i /∈ M(x̄). Then

∂
(
min ϕi

)
(x̄) ⊂

⋃{
∂ϕi (x̄)

∣
∣ i ∈ M(x̄)

}
.
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Proof. Consider a sequence of xk ∈ X such that xk → x̄ and ϕi (xk) →(
min ϕi

)
(x̄) for i /∈ M(x̄). Using the lower semicontinuity of ϕi at x̄ for

i /∈ M(x̄), we get M(xk) ⊂ M(x̄). It follows from the construction of ana-
lytic ε-subgradients that

∂̂ε
(
min ϕi

)
(xk) ⊂

⋃{
∂̂εϕi (xk)

∣
∣ i ∈ M(x̄)

}

for any ε ≥ 0 and k ∈ IN . The latter implies the inclusion in the proposition
due to representation (1.55) of basic subgradients. �

It is well known that one of the most fundamental principles of classi-
cal analysis is the Fermat rule (or stationary principle) discovered in 1636
for polynomials [442], according to which gradients of differentiable functions
must vanish at points of local minima and maxima. The following propo-
sition contains nonsmooth counterparts of this rule for the case of arbitrary
extended-real-valued functions in terms of their lower and upper subgradients,
which naturally distinguish between minima and maxima.

Proposition 1.114 (nonsmooth versions of Fermat’s rule). Let ϕ: X →
IR be finite at x̄. Then 0 ∈ ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) if ϕ has a local minimum at x̄, and
0 ∈ ∂̂+ϕ(x̄) ⊂ ∂+ϕ(x̄) if ϕ has a local maximum at x̄. Thus

0 ∈ ∂̂ϕ(x̄) ∪ ∂̂+ϕ(x̄) ⊂ ∂0ϕ(x̄)

if x̄ is either a local minimum or a local maximum point of ϕ.

Proof. The inclusion 0 ∈ ∂̂ϕ(x̄) at points of local minimum follows di-
rectly from the definition of Fréchet subgradients in (1.51). This implies the
other statements, since we always have ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) as well as ∂̂+ϕ(x̄) =
−∂̂(−ϕ)(x̄) ⊂ ∂+ϕ(x̄). �

As we have mentioned above, the union ∂̂ϕ(x̄)∪ ∂̂+ϕ(x̄) always reduces to
one of the sets ∂̂ϕ(x̄) and ∂̂+ϕ(x̄), while the symmetric subdifferential ∂0ϕ(x̄)
in (1.46) has an independent meaning; see, e.g., the calculation in (1.57). The
main difference between the Fréchet-like constructions ∂̂ and our basic ones
is that the latter have much better calculus, which is crucial for applications.

Following the line in standard calculus, we obtain a nonsmooth version of
the Lagrange mean value theorem in Banach spaces, which is based on the
generalized Fermat rule from Proposition 1.114.

Proposition 1.115 (mean values). Let a, b ∈ X and let ϕ: X → IR be
continuous on [a, b] :=

{
a + t(b − a)

∣
∣ 0 ≤ t ≤ 1

}
. Then there is a number

θ ∈ (0, 1) such that

ϕ(b) − ϕ(a) ∈ ∂0
t ϕ(a + θ(b − a)) ,

where the set on the right-hand side stands for the symmetric subdifferential
of the function t → ϕ(a + t(b − a)) at t = θ .
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Proof. Consider a function φ: [0, 1] → IR defined by

φ(t) := ϕ(a + t(b − a)) + t(ϕ(a) − ϕ(b)), 0 ≤ t ≤ 1 .

This function is continuous on [0, 1] with φ(0) = φ(1) = ϕ(a). Thus, by the
classical Weierstrass theorem, it attains both global minimum and maximum
on [0, 1]. Excluding the trivial case when φ is constant on [0, 1], we conclude
that there is an interior point θ ∈ (0, 1) at which φ attains either its minimal
or maximal value over [0, 1]. Employing Proposition 1.114, one has 0 ∈ ∂0φ(θ).
Observe that φ is the sum of two functions one of which is smooth. We end
the proof by using Proposition 1.107(ii). �

Note that ∂0 cannot be replaced with ∂ in Theorem 1.115 as follows from
the example of ϕ(x) = −|x | on [−1, 1]. If ϕ is strictly differentiable at every
point of the interval (a, b) ⊂ X , we can apply the chain rule to the composition

ϕ(a + t(b − a)) = (ϕ ◦ g)(t) with g(t) := a + t(b − a)

(cf. Theorem 1.110) and get the classical mean value theorem in Banach
spaces. However, the chain rules obtained above don’t allow us to proceed
in this way without the strict differentiability assumption on ϕ. Observe that
the chain rule from Proposition 1.112 is not applicable in this setting, since the
derivative of g: IR → X is not surjective. In Chap. 3 we develop more involved
calculus in Asplund spaces that contains, in particular, extended coderivative
and subdifferential chain rules with no surjectivity assumptions and also there
counterparts for nonsmooth and set-valued mappings. Such an enhanced (full)
calculus is based on the extremal principle and related variational results of
Chap. 2.

To conclude this subsection, we consider an epigraphical version of the se-
quential normal compactness (SNC) property for extended-real-valued func-
tions. This property is needed in what follows, particularly for the enhanced
subdifferential calculus in Chap. 3.

Definition 1.116 (sequential normal epi-compactness of functions).
Let ϕ: X → IR be finite at x̄. We say that ϕ is sequentially normally
epi-compact (SNEC) at x̄ if its epigraph is sequentially normally compact
at (x̄, ϕ(x̄)).

Due to relationships between subdifferentials and coderivatives of epi-
graphical multifunctions, this can be equivalently described in terms of ε-
subgradients of ϕ and their singular counterparts. In the case of Asplund
spaces, a convenient description of the SNEC property via Fréchet subgradi-
ents is given in Subsect. 2.4.2.

We need to distinguish between the SNEC and SNC properties of real-
valued functions; cf. Definition 1.67 for ϕ: X → IR. The latter is equivalent to
the SNC property of gphϕ at (x̄, ϕ(x̄)), being more restrictive than the SNEC
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one due to the decreasing relation (1.5) for ε-normals. Note that there is no
difference between the SNC and PSNC properties for real-valued functions.

It follows from Theorem 1.26 that ϕ is SNEC at x̄ if its epigraph is com-
pactly epi-Lipschitzian around (x̄, ϕ(x̄)). This happens, in particular, when
either dim X < ∞ or ϕ is directionally Lipschitzian around x̄ , which corre-
sponds to the epi-Lipschitzian property of epiϕ around (x̄, ϕ(x̄)); see Rockafel-
lar [1147] for more details on directionally Lipschitzian functions. Hence every
function ϕ Lipschitz continuous around x̄ is SNEC at this point; moreover, it
has the SNC property by Corollary 1.69(i).

For efficient applications of the SNEC property it is important to have
calculus results that ensure its preservation under various operations. Due
to Definition 1.116 such a calculus is induced by the corresponding results
for general multifunctions applied to the case of epigraphical ones. The next
proposition gives a useful necessary and sufficient condition in this direction
for arbitrary Banach spaces.

Proposition 1.117 (SNEC property under compositions with strictly
differentiable inner mappings). Let g: X → Y be strictly differentiable at
x̄ with the surjective derivative ∇g(x̄) and let ϕ: Y → IR be finite at ȳ = g(x̄).
Then ϕ ◦ g is SNEC at x̄ if and only if ϕ has this property at ȳ.

Proof. Follows from Theorem 1.74 with F = Eϕ . �

Note that other results of Subsect. 1.2.5 dealing with the SNC and PSNC
properties under additions and compositions provide sufficient conditions for
the SNEC property of real-valued functions generated in this way. In Chap. 3
we present more developed calculus for all these properties in the case of
Asplund spaces.

1.3.5 Second-Order Subdifferentials

All the previous material was related to the first-order generalized dif-
ferentiation. Now let us describe some second-order generalized differen-
tial constructions for extended-real-valued functions. We adopt the classical
“derivative-of-derivative” approach to the second-order differentiation that
regards second derivatives as first derivatives of gradient mappings. Devel-
oping such an approach to the second-order subdifferentiation of nonsmooth
functions, one faces the fact that first-order subgradient mappings are mul-
tifunctions. Therefore, to describe “second-order subgradients” of extended-
real-valued functions, certain derivative-like constructions for set-valued map-
pings should be employed. In this way we define second-order subdifferentials
of functions ϕ: X → IR on Banach spaces via coderivatives of the basic subgra-
dient mapping ∂ϕ: X →→ X∗ that provide dual-space approximations of ∂ϕ(·).
Such constructions possess a good calculus and turn out to be useful for the
study of a range of problems in optimization and variational analysis, espe-
cially those related to robust stability of variational systems; see below.
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The general scheme of defining second-order subdifferentials of ϕ at x̄
relative to ȳ ∈ ∂ϕ(x̄) is as follows:

∂2ϕ(x̄, ȳ)(u) = (D∗∂ϕ)(x̄, ȳ)(u) , (1.62)

where ∂ϕ(·) stands for some first-order subdifferential mapping and where
D∗ stands for its coderivative. Considering for definiteness only lower subdif-
ferential constructions, apply this scheme to the basic subdifferential ∂ from
Definition 1.77(i) and the two limiting coderivatives (D∗ = D∗

N and D∗ = D∗
M)

defined in (1.24) and (1.25), respectively.

Definition 1.118 (second-order subdifferentials). Let ϕ: X → IR be fi-
nite at x̄, and let ȳ ∈ ∂ϕ(x̄). Then:

(i) The mapping ∂2
Nϕ(x̄, ȳ): X∗∗ →→ X∗ with the values

∂2
Nϕ(x̄, ȳ)(u) := (D∗

N∂ϕ)(x̄, ȳ)(u), u ∈ X∗∗ ,

is the normal second-order subdifferential of ϕ at x̄ relative to ȳ.
(ii) The mapping ∂2

Mϕ(x̄, ȳ): X∗∗ →→ X∗ with the values

∂2
Mϕ(x̄, ȳ)(u) := (D∗

M∂ϕ)(x̄, ȳ)(u), u ∈ X∗∗ ,

is the mixed second-order subdifferential of ϕ at x̄ relative to ȳ.

Using the coderivatives of the first-order upper subdifferential from Defin-
ition 1.78, we can define the corresponding second-order upper subdifferentials
of ϕ at x̄ relative to ȳ ∈ ∂+ϕ(x̄), which symmetrically reduce to the second-
order lower subdifferentials of −ϕ and are not considered in what follows.

There is no difference between ∂2
Nϕ(x̄, ȳ) and ∂2

Mϕ(x̄, ȳ) if the normal and
mixed coderivatives agree for ∂ϕ at (x̄, ȳ); then we use the symbol ∂2ϕ(x̄, ȳ) in
Definition 1.118. It happens, in particular, if X is finite-dimensional and also
if ∂ϕ is N -regular at (x̄, ȳ). The latter always holds for C2 (and for slightly
more general) functions when, moreover, the values of the second-order sub-
differential mappings are singletons and coincide with images of the adjoint
operator to the classical second-order derivative.

Proposition 1.119 (second-order subdifferentials of twice differen-
tiable functions). Let ϕ ∈ C1 around x̄, and let its derivative operator
∇ϕ: X → X∗ be strictly differentiable at x̄ with the strict derivative denoted
by ∇2ϕ(x̄). Then

∂2
Nϕ(x̄)(u) = ∂2

Mϕ(x̄)(u) =
{
∇2ϕ(x̄)∗u

}
for all u ∈ X∗∗ .

Proof. If ϕ ∈ C1 around x̄ , then ∂ϕ(x) = {∇ϕ(x)} for all x near x̄ . Applying
the coderivative representation of Theorem 1.38 to the mapping f : X → X∗

with f (x) := ∇ϕ(x), we arrive at the result. �
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When ϕ ∈ C2 around x̄ and X is finite-dimensional, ∇2ϕ(x̄) reduces to the
classical Hessian matrix for which ∇2ϕ(x̄)∗ = ∇2ϕ(x̄).

In general, both ∂2
Nϕ(x̄, ȳ) and ∂2

Mϕ(x̄, ȳ) are positively homogeneous map-
pings from X∗∗ into X∗ whose calculation involves evaluations of generalized
normals to gph ∂ϕ. In finite dimensions it is convenient to use the repre-
sentations of basic normals from Theorem 1.6. For illustration we consider
ϕ(x) := |x | on IR and compute ∂2ϕ(0, 1). In this case

∂ϕ(x) =






1 if x > 0 ,

[-1,1] if x = 0 ,

−1 if x < 0;

∂2ϕ(0, 1)(u) =






0 if u > 0 ,

(−∞,∞) if u = 0 ,

(−∞, 0] if u < 0 ,

since one easily has from representation (1.8) that

N((0, 1); gph ∂ϕ) = {(v1, v2)
∣
∣ v1 ≤ 0, v2 ≥ 0}

∪{(v, 0)
∣
∣ v < 0} ∪ {(0, v)

∣
∣ v < 0} .

For another example let us consider ϕ(x) := 1
2 x2sign x that is differentiable

on IR with ∇ϕ(x) = |x |. Based on the calculation of the coderivative of |x | in
Subsect. 1.2.1 (right after Proposition 1.33), we have

∂2ϕ(0)(u) =






[−u, u] if u ≥ 0 ,

{u,−u} if u < 0 .

The function from the latter example belongs to the so-called C1,1-class
around the reference point x̄ . This class consists of functions ϕ that are con-
tinuously differentiable around x̄ with the gradient ∇ϕ locally Lipschitzian
around this point. The calculation of the mixed second-order subdifferential
for such functions can be essentially simplified due to the following represen-
tation. Similar result for the normal second-order subdifferential holds under
additional assumptions on functions ϕ and spaces X ; see Subsect. 3.1.3.

Proposition 1.120 (mixed second-order subdifferentials of C1,1 func-
tions). Let ϕ ∈ C1,1 around x̄. Then

∂2
Mϕ(x̄)(u) = ∂〈u,∇ϕ〉(x̄) for all u ∈ X∗∗ .

Proof. This follows from the scalarization formula in Theorem 1.90. �

We refer the reader to the papers by Dontchev and Rockafellar [364] and
by Mordukhovich and Outrata [939] that contain efficient computations of
the second-order subdifferentials for attractive classes of nonsmooth functions
in finite dimensions. In the first paper it is done for the class of indicator
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functions of polyhedral convex sets that naturally appear in many important
applications of variational analysis and optimization, in particular, to stability
and sensitivity issues. The second paper covers the class of so-called separable
piecewise C2 functions that are especially important for applications to math-
ematical programs with equilibrium constraints and frequently arise, e.g., in
the modeling of mechanical equilibria; see the above papers and their refer-
ences for more details. Using calculus rules, one can extend these and related
results to other classes of functions via various compositions.

Our primary goal in the second-order theory is to develop principal calculus
(sum and chain) rules for the second-order subdifferentials defined above. In
this subsection we present results obtained in general Banach spaces; other
results are given in Subsect. 3.2.5, where some spaces in question are assumed
to be Asplund.

To derive second-order sum and chain rules for ∂2
N and ∂2

M , we proceed via
Definition 1.118 applying calculus rules for the normal and mixed coderivatives
to set-valued mappings generated by the basic first-order subdifferential. In
this way we have to restrict ourselves to favorable classes of functions for which
the corresponding first-order subdifferential calculus rules hold as equalities,
since neither normal nor mixed coderivative enjoys monotonicity properties
that may allow one to use an inclusion-type subdifferential calculus. We begin
with a simple sum rule for the second-order subdifferentials.

Proposition 1.121 (equality sum rule for second-order subdifferen-
tials). Let ȳ ∈ ∂(ϕ1+ϕ2)(x̄), where ϕ1 ∈ C1 around x̄ with ∇ϕ1 strictly differ-
entiable at x̄ while ϕ2: X → IR is finite at x̄ with ȳ2 := ȳ −∇ϕ1(x̄) ∈ ∂ϕ2(x̄).
Then one has

∂2(ϕ1 + ϕ2)(x̄, ȳ)(u) = ∇2ϕ1(x̄)∗u + ∂2ϕ2(x̄, ȳ2)(u), u ∈ X∗∗ ,

for both normal (∂2 = ∂2
N ) and mixed (∂2 = ∂2

M) second-order subdifferentials.

Proof. If ϕ1 ∈ C1 around x̄ , then there is a neighborhood U of x̄ such that
the equality

∂(ϕ1 + ϕ2)(x) = ∇ϕ1(x) + ∂ϕ2(x), x ∈ U ,

holds whenever ϕ2: X → IR; see Proposition 1.107(ii). Applying to the latter
equality the coderivative sum rule from Theorem 1.62(ii) for D∗ = D∗

N and
D∗ = D∗

M , we conclude the proof of the proposition. �

Next we consider chain rules for the second-order subdifferentials of com-
positions (ϕ ◦ g)(x) := ϕ(g(x)) involving inner mappings g: X → Z between
Banach spaces and extended-real-valued outer functions ϕ: Z → IR. To obtain
the central result in this direction, we need to introduce first the following
extensibility property, which is related to but somewhat different from the
so-called Banach extensibility property (see, e.g., Diestel [333]) and plays an
essential role in proving the second-order chain rule.
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Definition 1.122 (weak∗ extensibility). Let V be a closed linear subspace
of a Banach space X . Then V is w∗-extensible in X if every sequence {v∗k } ⊂
V ∗ with v∗k

w∗
→ 0 in V ∗ as k → ∞ contains a subsequence {v∗k j

} such that each

v∗k j
can be extended to a linear bounded functional x∗

j ∈ X∗ with x∗
j
w∗
→ 0 in X∗

as j → ∞.

The w∗-extensibility property always holds in the following two broad
settings of Banach spaces.

Proposition 1.123 (sufficient conditions for weak∗ extensibility). Let
V be a closed linear subspace of a Banach space X . Then V is w∗-extensible
in X if one of the following conditions holds:

(a) V is complemented in X , i.e., there is a closed linear subspace L ⊂ X
such that V

⊕
L = X .

(b) The closed unit ball of X∗ is weak∗ sequentially compact (in particular,
if X is either Asplund or WCG).

Proof. Let V be complemented in X , and let Π : X → V be a projection
operator. Putting x∗

k := 〈v∗k ,Π(x)〉 on X , we conclude that x∗
k is an extension

of v∗k with x∗
k
w∗
→ 0, i.e., V is w∗-extensible in X in case (a).

To justify this property in case (b) for every V ⊂ X , we take an arbitrary
sequence v∗k from Definition 1.122 and observe that it is bounded in V ∗ due
to the weak∗ convergence. By the Hahn-Banach theorem we extend each v∗k
to x̃∗

k ∈ X∗ such that the sequence {x̃∗
k } is still bounded in X∗. Since IBX∗ is

assumed to be weak∗ sequentially compact, there exist x∗ ∈ X∗ and a weak∗

convergent subsequence x̃∗
k j

w∗
→ x∗ as j → ∞. Observe that x∗ = 0 on V due

to the weak∗ convergence v∗k
w∗
→ 0 in V ∗. Putting x∗

j := x̃∗
k j
− x∗, we complete

the proof of the proposition. �

Let us demonstrate that the weak∗ extensibility property may not hold
even in some classical Banach spaces.

Example 1.124 (violation of weak∗ extensibility). The subspace V = c0

is not w∗-extensible in X = �∞.

Proof. Recall that c0 is a Banach space of all real sequences converging to
zero that is endowed with the supremum norm. Let v∗k := ξ∗k ∈ c∗0, where ξ∗k
maps every vector from c0 to its k-th component. Assume that there is an
increasing sequence of k j ∈ IN such that v∗k j

can be extended to x∗
j ∈ (�∞)∗

with x∗
j
w∗
→ 0. Define a closed linear subspace of �∞ by

Z :=
{
(α1, α2, . . .) ∈ �∞

∣
∣ αk = 0 if k /∈

{
k1, k2, . . .}

}

and a linear bounded operator A: �∞ → Z by



126 1 Generalized Differentiation in Banach Spaces

A(α1, α2, . . .) := (β1, β2, . . .) for all (α1, α2, . . .) ∈ �∞ ,

where one has

βk =






αi if k = k j , j ∈ IN ,

0 otherwise .

Taking the above sequence {x∗
j }, we denote z∗j := x∗

j |Z and form a linear
bounded operator T : Z → c0 by

T (z) :=
(
〈z∗1, z〉, 〈z∗2, z〉, . . .

)
∈ c0 for all z ∈ Z .

Then the operator (T ◦ A): �∞ → c0 is bounded and its restriction (T ◦ A)|c0

is the identity operator on c0. Therefore (T ◦ A) is a projection of �∞ to c0,
which means that c0 is complemented in �∞. It is well known that the latter
is not true, and hence we get a contradiction. This proves that c0 is not w∗-
extensible in �∞. �

Next we show that linear operators with w∗-extensible ranges enjoy a
certain stability property, which is crucial for the subsequent application to
the second-order chain rule.

Proposition 1.125 (stability property for linear operators with weak∗

extensible ranges). Let A: X → Y be a linear bounded operator between Ba-
nach spaces. Assume that the range of A is closed and w∗-extensible in Y

and take x∗
k ∈ rge A∗ with x∗

k
w∗
→ x∗. Then (A∗)−1(x∗) 	= ∅, and for every

y∗ ∈ (A∗)−1(x∗) there is a sequence y∗k ∈ (A∗)−1(x∗
k ) that contains a subse-

quence weak∗ converging to y∗.

Proof. It is well known that the range A∗Y ∗ of the adjoint operator to
A is weak∗ closed in X∗ if V := AX is closed in Y . Thus x∗ ∈ A∗Y ∗,
i.e., (A∗)−1(x∗) 	= ∅. Take any y∗ ∈ (A∗)−1(x∗), arbitrarily choose ŷ∗k ∈
(A∗)−1(x∗

k ), and let v∗k := ŷ∗k |V . Then v∗k
w∗
→ y∗|V in V ∗. Since the space V is

closed and w∗-extensible in Y , we find an extension ỹ∗k of v∗k − y∗|V for each
k ∈ IN such that {ỹ∗k } contains a subsequence weak∗ converging to zero. Now
letting y∗k := y∗ + ỹ∗k , we check that A∗y∗k = x∗

k and that {y∗k } contains a
subsequence weak∗ converging to y∗. �

To establish chain rules for second-order subdifferentials, we need the fol-
lowing basic lemma giving chain rules for coderivatives of special compositions
whose structure as well as imposed assumptions correspond to the second-
order setting. These special structure and assumptions allow us to obtain
more precise results that are not implied by chain rules for general composi-
tions (except the inclusion for normal coderivatives); see below.
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Lemma 1.126 (special chain rules for coderivatives). Let G: X →→ Y
and f : X × Y → Z be mappings between Banach spaces, and let

( f ◦ G)(x) := f (x,G(x)) =
⋃{

f (x, y)
∣
∣
∣ y ∈ G(x)

}
. (1.63)

Given x̄ ∈ dom G, we assume that:
(a) f (x, ·) ∈ L(Y, Z) around x̄, i.e., it is a linear bounded operator from

Y into Z . Moreover, f (x̄, ·) is injective and its range is closed in Z .
(b) The mapping x → f (x, ·) from X into the operator space L(Y, Z) is

strictly differentiable at x̄.

Take any ȳ ∈ G(x̄) and denote z̄ := f (x̄, ȳ). Then one has

D∗
M( f ◦ G)(x̄, z̄)(z∗) = ∇x f (x̄, ȳ)∗z∗ + D∗

M G(x̄, ȳ)
(

f (x̄, ·)∗z∗
)
, (1.64)

D∗
N ( f ◦ G)(x̄, z̄)(z∗) ⊂ ∇x f (x̄, ȳ)∗z∗ + D∗

N G(x̄, ȳ)
(

f (x̄, ·)∗z∗
)

(1.65)

for all z∗ ∈ Z∗. If in addition the range of f (x̄, ·) is w∗-extensible in Z , then
(1.65) holds as equality.

Proof. Consider the mapping h(x) := f (x, ·) from X into L(Y, Z) and denote
by A: X → L(Y, Z) its strict derivative at x̄ . Let � > 0 be a Lipschitz modulus
of h around x̄ . For any y ∈ Y we define a linear operator Ay : X → Z by
Ay(x) := A(x)y and easily check that it is bounded. Moreover, the operator
y → Ay from Y into L(X, Z) is linear and bounded as well. By enlarging � if
necessary, we assume that the norm of this operator is less than �. Also it is
clear that Ay = ∇x f (x̄, y) for all y ∈ Y .

Our first step is to prove the inclusions “⊂” in (1.64) and (1.65) simultane-
ously. Proceeding by definitions of these coderivatives, we start with ε-normals

(x∗,−z∗) ∈ N̂ε((x̂, ẑ); gph ( f ◦ G)) ,

where ẑ := f (x̂, ŷ), (x̂, ŷ) ∈ gph G with ‖x̂ − x̄‖ < η for some small η > 0.
Using the definition of ε-normals and involving the rate of strict differen-

tiability rh(x̄ ; η) for the above mapping h at x̄ (see Definition 1.13), we get
the estimate

lim sup
(x,y)

gph G→ (x̂,ŷ)

〈x∗ − A∗
ȳ z∗, x − x̄〉 − 〈 f (x̄, ·)∗z∗, y − ŷ〉

‖x − x̂‖ + ‖y − ŷ‖ ≤ ε̂ ,

where ε̂ := cε+ c‖z∗‖
(
rh(x̄ ; η)+ ‖x̂ − x̄‖+ ‖ŷ − ȳ‖

)
with some constant c > 0.

Thus one has
(
x∗ − A∗

ȳ z∗,− f (x̄, ·)∗z∗
)
∈ N̂ε̂((x̂, ŷ); gph G) . (1.66)

To justify the inclusions “⊂” in (1.64) and (1.65) simultaneously, we take
x∗ ∈ D∗( f ◦ G)(x̄, z̄)(z∗) and find sequences εk ↓ 0, xk → x̄ , yk ∈ G(xk),
(x∗

k ,−z∗k ) ∈ N̂((xk, zk); gph ( f ◦ G)) with zk := f (xk, yk) such that zk → z̄,
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x∗
k

w∗
→ x∗, and that ‖z∗k − z∗‖ → 0 for D∗ = D∗

M and z∗k
w∗
→ z∗ for D∗ = D∗

N .
Then we get the inclusions in (1.64) and (1.65) by passing to the limit in
(1.66) provided that yk → ȳ. To prove the latter convergence, we observe that
the open mapping theorem and the injectivity of f (x̄, ·) ensure the existence
of a constant µ > 0 such that

‖ f (x̄, u) − f (x̄, v)‖ ≥ µ‖u − v‖ whenever u, v ∈ Y .

Therefore, involving the above Lipschitz modulus �, one has

‖zk − z̄‖ =
∥
∥[ f (x̄, yk) − f (x̄, ȳ)] + [ f (xk, yk − ȳ) − f (x̄, yk − ȳ)]

+[ f (xk, ȳ) − f (x̄, ȳ)]
∥
∥ ≥ ‖yk − ȳ‖

(
µ− �‖xk − x̄‖

)
− �‖xk − x̄‖ · ‖ȳ‖ ,

which implies that yk → ȳ as k → ∞.
Next let us show that the opposite inclusions hold in (1.64) and (1.65)

under the assumptions made; in fact, there are no additional assumptions
in the case of mixed coderivatives (1.64). To proceed simultaneously in both
cases, we take (x̂, ŷ) as above and pick arbitrary (x∗, z∗) satisfying

(
x∗,− f (x̄, ·)∗z∗

)
∈ N̂ε((x̂, ŷ); gph G) .

Thus for any given γ > 0 one has

θ := 〈x∗, x − x̂〉 − 〈 f (x̄, ·)∗z∗, y − ŷ〉 ≤ (ε + γ )
(
‖x − x̂‖ + ‖y − ŷ‖

)
(1.67)

whenever (x, y) ∈ gph G are sufficiently close to (x̂, ŷ). Let us obtain a lower
estimate for θ in (1.67) using the strict differentiability of the above mapping
h: X → L(Y, Z) at x̄ with the rate rh(x̄ ; η) and elementary transformations.
In this way we get:

θ = 〈x∗, x − x̂〉 − 〈z∗, f (x̄, y) − f (x̄, ŷ)〉

= 〈x∗ + A∗
ȳ z∗, x − x̂〉 − 〈z∗, Aȳ(x − x̂)〉 − 〈z∗, f (x̄, y) − f (x̄, ŷ)〉

≥ 〈x∗ + A∗
ȳ z∗, x − x̂〉 − 〈z∗, Ay(x − x̂)〉 − 〈z∗, f (x̂, y) − f (x̂, ŷ)〉

−�‖z∗‖ · ‖y − ȳ‖ · ‖x − x̂‖ − �‖z∗‖ · ‖x̂ − x̄‖ · ‖y − ŷ‖

≥ 〈x∗ + A∗
ȳ z∗, x − x̂〉 − 〈z∗, f (x, y) − f (x̂, y)〉 − rh(x̄ ; η)‖z∗‖ · ‖y‖ · ‖x − x̂‖

−〈z∗, f (x̂, y) − f (x̂, ŷ)〉 − �‖z∗‖
(
‖y − ȳ‖ · ‖x − x̂‖ + ‖x̂ − x̄‖ · ‖y − ŷ‖

)

= 〈x∗ + A∗
y z∗, x − x̂〉 − 〈z∗, f (x, y) − f (x̂, ŷ)〉 − rh(x̄ ; η)‖z∗‖ · ‖y‖ · ‖x − x̂‖

−�‖z∗‖
(
‖y − ȳ‖ · ‖x − x̂‖ + ‖x̂ − x̄‖ · ‖y − ŷ‖

)
.
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Now we are going to give an upper estimate of the number on the right-hand
side of (1.67). To proceed, we first observe that, by the open mapping theorem
and the injectivity of f (x̄, ·), there is µ > 0 such that

µ‖y‖ ≤ ‖ f (x̄, y)‖ for all y ∈ Y .

Then taking any T ∈ L(Y, Z), we get

‖T y‖ = ‖( f (x̄, ·) − T )y − f (x̄, y)‖ ≥ ‖ f (x̄, y)‖ − ‖( f (x̄, ·) − T )y‖

≥ (µ− ‖ f (x̄, ·) − T ‖) · ‖y‖ .

This implies the existence of a constant µ1 > 0 with the uniform estimate
µ1‖y‖ ≤ ‖T y‖ for all y ∈ Y and all T sufficiently close to f (x̄, ·). It gives
therefore that

‖ f (x, y) − f (x̂, ŷ)‖ = ‖ f (x, y) − f (x̂, y) + f (x̂, y − ŷ)‖

≥ ‖ f (x̂, y − ŷ)‖ − ‖ f (x, y) − f (x̂, y)‖ ≥ µ1‖y − ŷ‖ − L‖x − x̂‖ · ‖y‖

for (x, y) ∈ gph G close to (x̂, ŷ) while (x̂, ŷ) is close to (x̄, ȳ). Thus we obtain
the estimate

‖y − ŷ‖ ≤ µ2

(
‖x − x̂‖ + ‖ f (x, y) − f (x̂, ŷ)‖

)

for all such (x, y) and (x̂, ŷ), with some constant µ2 > 0. Putting these esti-
mates together, one has

(x∗ + A∗
ȳ z∗,−z∗) ∈ N̂ε̂((x̂, ẑ); gph ( f ◦ G)) , (1.68)

where ẑ := f (x̂, ŷ) and ε̂ is defined as above with a different constant c > 0.
To prove the opposite inclusions in (1.64) and (1.65), we need passing to

the limit in (1.68) as (x̂, ŷ) → (x̄, ȳ) along some sequence. Pick arbitrary
(x∗, z∗) with x∗ ∈ D∗G(x̄, ȳ)( f (x̄, ·)∗z∗), where D∗ stands for either mixed or
normal coderivative. Then there are sequences εk ↓ 0, (xk, yk) → (x̄, ȳ) with

(xk, yk) ∈ gph G, and x∗
k ∈ D∗

εk
G(xk, yk)(y∗k ) such that x∗

k
w∗
→ x∗ and either

‖y∗k − f (x̄, ·)∗z∗‖ → 0 when D∗ = D∗
M , or y∗k

w∗
→ f (x̄, ·)∗z∗ when D∗ = D∗

N .
Note that ε̂k ↓ 0 for the corresponding ε̂k in (1.68). To complete the proof of the
lemma, it is sufficient to show that there are z∗k ∈ Z∗ such that f (x̄, ·)∗z∗k = y∗k
for all k ∈ IN , and that either ‖z∗k − z∗‖ → 0 for D∗ = D∗

M or z∗k
w∗
→ z∗ for

D∗ = D∗
N along a subsequence. We consider the cases of mixed and normal

coderivatives separately.

(i) Let D∗ = D∗
M . Since f (x̄, ·) is injective with the closed range, it is easy

to see that the adjoint operator f (x̄, ·)∗ is surjective and hence metrically
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regular. This ensures the existence of µ > 0 and ẑ∗k ∈ ( f (x̄, ·)∗)−1(y∗k −
f (x̄, ·)∗z∗) satisfying the estimate

‖ẑ∗k ‖ ≤ µ‖y∗k − f (x̄, ·)∗z∗‖ .

Putting z∗k := ẑ∗k + z∗, we get f (x̄, ·)∗z∗k = y∗k and ‖z∗k − z∗‖ → 0 as k → ∞.

(ii) Let D∗ = D∗
N . In this case the subspace f (x̄,Y ) is assumed to be

w∗-extensible in Z . Then the existence of the desired sequence {z∗k } follows
from Proposition 1.125. �

Note that inclusion (1.65) for the normal coderivative can be derived from
the chain rule of Theorem 1.65(i) applied to (1.63) represented as the standard
composition

f (x,G(x)) = f (G̃(x)) with G̃(x) := (x,G(x)) .

Indeed, under the injectivity assumption on f (x̄, ·) the corresponding mapping
G̃ ∩ f −1 in Theorem 1.65 is single-valued and continuous. The equality in
(1.65) and the entire case (1.64) for the mixed coderivative are due to the
special setting of Lemma 1.126.

Now we are ready to derive the central result of the second-order subdif-
ferential calculus in general Banach spaces.

Theorem 1.127 (second-order chain rules with surjective deriva-
tives of inner mappings). Let ȳ ∈ ∂(ϕ◦g)(x̄) with g: X → Z and ϕ: Z → IR,
where X and Z are Banach. Assume that g ∈ C1 around x̄ with the surjective
derivative ∇g(x̄): X → Z and that the mapping ∇g: X → L(X, Z) is strictly
differentiable at x̄. Let v̄ ∈ Z∗ be a unique functional satisfying

ȳ = ∇g(x̄)∗v̄ and v̄ ∈ ∂ϕ(z̄) with z̄ := g(x̄) .

Then for all u ∈ X∗∗ one has

∂2
M(ϕ ◦ g)(x̄, ȳ)(u) = ∇2〈v̄ , g〉(x̄)∗u + ∇g(x̄)∗∂2

Mϕ(z̄, v̄)(∇g(x̄)∗∗u) ,

∂2
N (ϕ ◦ g)(x̄, ȳ)(u) ⊂ ∇2〈v̄ , g〉(x̄)∗u + ∇g(x̄)∗∂2

Nϕ(z̄, v̄)(∇g(x̄)∗∗u) .

Moreover, the latter inclusion becomes an equality if the range of ∇g(x̄)∗ is
w∗-extensible in X∗. This is true under one of the following conditions:

(a) The range of ∇g(x̄)∗ is complemented in X∗, which holds, in particu-
lar, when the kernel of ∇g(x̄) is complemented in X .

(b) The closed unit ball of X∗∗ is weak∗ sequentially compact, which holds,
in particular, when either X is reflexive or X∗ is separable.

Proof. Using the first-order subdifferential sum rule from Proposition 1.112(i),
we have the equality
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∂(ϕ ◦ g)(x) = ∇g(x)∗∂ϕ(g(x)) := ( f ◦ G)(x)

for all x around x̄ , where the mappings f : X × Z∗ → X∗ and G: X →→ Z∗ in
the latter representation are defined by

f (x, v) := ∇g(x)∗v, G(x) := ∂ϕ(g(x)) .

Thus we represent ∂(ϕ ◦ g) as composition (1.63) and apply Lemma 1.126 to
this composition. Let us check that its assumptions hold under the assump-
tions made in the theorem. Actually the only assumption needed to be checked
is the injectivity of the operator ∇g(x̄)∗: Z∗ → X∗, which follows from the
assumed surjectivity of ∇g(x̄) due to Lemma 1.18. �

Note that the normal coderivative inclusion in Theorem 1.127 may be also
obtained by applying the coderivative chain rule from Theorem 1.65 to the
standard composition

f ◦ G̃ with f (x, v) = ∇g(x)∗v and G̃(x) :=
(

x, ∂ϕ(g(x))
)

and then the coderivative chain rule from Theorem 1.66 to the composition
∂ϕ ◦ g. Moreover, this inclusion becomes an equality if ∇g(x̄) is invertible.
Indeed, in this case g−1 is locally single-valued and strictly differentiable at
z̄ by Theorem 1.60, and one gets the opposite inclusion considering the com-
position ϕ = ψ ◦ g−1 with ψ := ϕ ◦ g. Moreover, it is possible to show that
the case when ∇g(x̄) is surjective and has the complemented kernel in X can
be reduced to the one with ∇g(x̄) invertible. However, the general equality
case for normal coderivatives in Theorem 1.127 and the entire case for mixed
coderivatives don’t seem to be derivable from the results of Subsect. 1.2.4.

The last result of this subsection provides equalities for both second-order
subdifferentials of compositions ϕ ◦ g in general Banach spaces, where ϕ but
not g is assumed to be twice differentiable. Given a Lipschitz continuous
mapping g: X → Z , we define the following second-order coderivative sets for
g at (x̄, v̄, ȳ) ∈ X × Z∗ × X∗ with ȳ ∈ ∂〈v̄, g〉(x̄)

D2g(x̄, v̄, ȳ)(u) :=
(

D∗∂〈·, g〉
)
(x̄, v̄, ȳ)(u), u ∈ X∗∗ , (1.69)

used in formulations of the next theorem and related results of Chap. 3. In
(1.63), D∗ stands for either normal (D∗ = D∗

N , then D2 = D2
N ) or mixed

(D∗ = D∗
M , then D2 = D2

M) coderivative of the mapping (x, v) → ∂〈v, g〉(x).
If g is strictly differentiable at x̄ , then ∂〈v̄ , g〉(x̄) = ∇g(x̄)∗v̄ and we omit ȳ
in the arguments of D2g.

Theorem 1.128 (second-order chain rules with twice differentiable
outer mappings). Let g be strictly differentiable at x̄, let ϕ ∈ C1 around
z̄ := g(x̄) with ∇ϕ strictly differentiable at this point, and let v̄ := ∇ϕ(z̄).
Assume that the operator ∇2ϕ(z̄)∇g(x̄): X → Z∗ is surjective. Then
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∂2(ϕ ◦ g)(x̄)(u) =
⋃

(x∗,v∗)∈D2g(x̄,v̄)(u)

[
x∗ + ∇g(x̄)∗∇2ϕ(z̄)∗v∗

]

for all u ∈ X∗∗, where ∂2 and D2 stand for the corresponding normal and
mixed second-order constructions. These chain rules hold without the above
surjectivity assumption if ∇g is strictly differentiable at x̄. In the latter case

D2
N g(x̄, v̄)(u) = D2

M g(x̄, v̄)(u) =
(
∇2〈v̄, g〉(x̄)∗u,∇g(x̄)∗∗u

)
.

Proof. Since ϕ ∈ C1 and g is locally Lipschitzian, Theorem 1.110(ii) ensures
the existence of a neighborhood U of x̄ such that

∂(ϕ ◦ g)(x) = ∂〈∇ϕ(g(x)), g〉(x) := (F ◦ h)(x), x ∈ U ,

where the mappings F : X × Z∗ →→ X∗ and h: X → X × Z∗ are defined by

F(x, v) := ∂〈v, g〉(x), h(x) :=
(

x,∇ϕ(g(x))
)
.

If h is strictly differentiable at x̄ with the surjective derivative operator,
then one has by Theorem 1.66 that

D∗(F ◦ h)(x̄, ȳ)(u) = ∇h(x̄)∗D∗F(x̄, v̄, ȳ)(u), u ∈ X∗∗ ,

for both normal and mixed coderivatives, where ȳ = ∇g(x̄)∗v̄ if g is strictly
differentiable at x̄ . Note that ∇2(ϕ ◦ g)(x̄) = ∇2ϕ(z̄)∇g(x̄) in the framework
of theorem, and that the surjectivity of the latter operator implies the surjec-
tivity of ∇h(x̄). This proves the theorem under the surjectivity assumption
made. The last claim in theorem easily follows from the above procedure due
to Theorem 1.65(iii); this is actually a classical second-order chain rule for
strict derivatives. �

In Subsect. 3.2.5 we obtain second-order subdifferential sum and chain
rules in the form of inclusions under less restrictive assumptions on functions
and mappings in Asplund space settings.

1.4 Commentary to Chap. 1

1.4.1. Motivations and Early Developments in Nonsmooth Analy-
sis. Nonsmooth phenomena have been known for a long time in mathematics
and applied sciences. To deal with nonsmoothness, various kinds of general-
ized derivatives were introduced in the classical theory of real functions and
in the theory of distributions; see, e.g., Bruckner [182], Saks [1186], Schwartz
[1197], and Sobolev [1218]. However, those generalized derivatives, which “ig-
nore sets of density zero,” are of little help for optimization theory and varia-
tional analysis, where the main interest is in behavior of functions at individual
points of maxima, minima, equilibria, and other optimization-related notions.
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The concepts of generalized differentiability appropriate for applications
to optimization were defined in convex analysis: first geometrically as the
normal cone to a convex set that goes back to Minkowski [882], and then
– much later – analytically as the subdifferential of an extended-real-valued
convex function. The latter notion, inspired by the work of Fenchel [441], was
explicitly introduced by Moreau [981] and Rockafellar [1140] who emphasized
the set-valuedness of the new generalized derivative with values in dual spaces
and the decisive role of subdifferential calculus rules. The central result in
this direction, called now the Moreau-Rockafellar theorem on subdifferential
sums, is based on the separation principle for convex sets around which the
whole convex analysis actually revolves.

Convex analysis and separation theorems play a crucial role not only in
studying convex sets, functions, and convex optimization problems but also in
more general nonconvex settings via convex approximations. This idea, largely
motivated by applications to optimal control, has been much explored in non-
smooth analysis and optimization starting with the early 1960s. The initial
inspiration came from the Pontryagin maximum principle and its proof given
by Boltyanskii; see [124, 1102]. Note that a similar approach to abnormal
problems in the calculus of variation was developed by McShane [860] whose
work didn’t receive a proper attention till the formulation and proof of the
maximum principle; compare, e.g., Bliss [119] and Hestenes [565]. Roughly
speaking, the underlying idea was to construct, by using special needle-type
control variations, a convex tangent cone approximating the reachable set of
system endpoints so that the optimal endpoint lies at its boundary and thus
can be separated by a supporting hyperplane. Such a convex approximation
approach was strongly developed and applied to new classes of extremal prob-
lems by Dubovitskii and Milyutin [369, 370] (see also the book by Girsanov
[507]) and then by Gamkrelidze [496, 497], Halkin [539, 541], Hestenes [565],
Neustadt [1001, 1002], Ioffe and Tikhomirov [618], and others.

1.4.2. Tangents and Directional Derivatives. Observe that among
tangent cones to arbitrary sets successfully used in nonsmooth analysis and
optimization from the early 1960s and onwards we can find the so-called “con-
tingent cone” introduced in 1930 independently by Bouligand [167] and by
Severi [1202] in the framework of contingent equations and differential geom-
etry. It is interesting to observe that the mentioned seminal papers by Bouli-
gand and Severi were published (in French and Italian, respectively) in the
same issue (!) of Annales de la Société Polonaise de Mathématique; see also
Bouligand [168] and Verchenko and Kolmogorov [1285] for further develop-
ments at that time related to differential geometry and real analysis. Then
this cone was rediscovered and applied to optimization theory by Dubovit-
skii and Milyutin [369, 370] under the name “cone of variations admissible
by equality constraints.” The reader can find more discussions on these and
related tangential constructions in Aubin and Frankowska [54] and Ursescu
[1276].
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Analytically tangent cone approximations of sets correspond to directional
derivatives of functions, while convex subcones of tangents correspond to sub-
linear majorants of directional derivatives. It is well known that every convex
function ϕ: X → (−∞,∞] on a Banach space admits the classical directional
derivative

ϕ′(x̄ ; v) := lim
t↓0

ϕ(x̄ + tv) − ϕ(x̄)
t

(1.70)

in all direction v ∈ X at any point of its efficient domain

dom ϕ := {x ∈ X | ϕ(x) < ∞} .

Moreover, the function of directions v �→ ϕ′(x̄ ; v) is convex as well. These
properties of the existence of the directional derivative (1.70) and its convexity
with respect to directions hold not only for convex functions and, obviously,
for classical differentiable functions, but also for a broader class of functions
called locally convex by Ioffe and Tikhomirov [618] and closely related to them
quasidifferentiable functions in the sense of Pshenichnyi [1106]. The latter class
contains, in particular, maximum functions of the type

ϕ(x) := max
u∈U

ϑ(x, u)

generated by smooth functions ϑ(·, u) and compact sets U ; (cf. Danskin [307]
and Demyanov and Malozemov [319]); this class is closed under taking linear
combinations with nonnegative coefficients. In [320], Demyanov and Rubinov
extended the notion of quasidifferentiability to the class of functions for which
the classical directional derivative exists and admits a special representation
via maxima and minima over pairs of compact convex sets; see also Demyanov
and Rubinov [321, 322], Gorokhovik [515, 516], and Pallaschke and Urbański
[1041] for more references, recent developments, related geometric aspects,
and applications.

Since even simple continuous functions on real line may not be directionally
differentiable as, e.g.,

ϕ(x) :=






x sin(1/x) if x 	= 0 ,

0 if x = 0 ,

an important issue in nonsmooth analysis has been to define generalized di-
rectional derivatives that automatically exist and have some useful properties.
Among the most attractive constructions of this type appeared in the 1970s
and 1980s is

d−ϕ(x̄ ; v) := lim inf
z→v
t↓0

ϕ(x̄ + t z) − ϕ(x̄)
t

(1.71)
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called “lower semiderivative” by Penot [1064], “contingent derivative/epi-
derivative” by Aubin [48], “lower Dini (or Dini-Hadamard) directional deriva-
tive” by Ioffe [594, 607], and “subderivative” by Rockafellar and Wets [1165].
This directional derivative goes back, for the case of real functions, to the
classical (1878) “derivate numbers” by Dini [335], while in the general case
they can be equivalently described geometrically via the contingent cone from
Definition 1.8(i) by

d−ϕ(x̄ ; v) = inf
{
ν ∈ IR

∣
∣ (v, ν) ∈ T

(
(x̄, ϕ(x̄)); epi ϕ

)}
. (1.72)

Note that one can put z = v in (1.71) if ϕ is locally Lipschitzian around x̄ .
The key disadvantage of the generalized directional derivative d−ϕ(x̄ ; v)

is its nonconvexity with respect to directions v that takes place in many com-
mon situations. This nonconvexity doesn’t allow one to employ tools of convex
analysis (based on separation) and eventually leads to a poor calculus avail-
able for (1.71). A standard procedure to overcome these difficulties is to build
a positively homogeneous convex upper approximation (majorant) of (1.71)
that corresponds by (1.72) to forming a convex subcone of the contingent
cone and thus brings us back to the realm of convex analysis. We refer the
reader to [54, 52, 89, 313, 337, 464, 569, 588, 733, 763, 764, 852, 870, 871, 1002,
1040, 1072, 1109, 1264, 1265, 1266, 1311] for various constructions of this type,
which are not always uniquely and efficiently defined. Another approach to
introduce directional derivatives with good properties is to postulate the ex-
istence of some limits and thus to deal with classes of functions that satisfy
such assumptions; see, e.g., [44, 54, 1135, 1156, 1165, 1204, 1248] for construc-
tions and results in this vein particularly related to notions of epi-convergence.

1.4.3. Constructions by Clarke and Related Developments. A re-
fined generalized directional derivative of locally Lipschitzian functions that
is automatically convex in directions was introduced in the 1973 dissertation
by Clarke [243], conducted under supervision of Rockafellar, and then was
published in [244]. The crucial role of this pioneering contribution to the de-
velopment and applications of nonsmooth analysis (the term coined by Clarke)
is difficult to overstate.

It seems that the original motivation came from the intention to derive
necessary optimality conditions for variational and optimal control problems,
with no convexity assumptions on state variables, using “Rockafellar’s convex
theory [1143, 1145] as a starting point” (see [245, p. 80]). Clarke’s generalized
derivative defined by

ϕ◦(x̄ ; v) := lim sup
x→x̄
t↓0

ϕ(x + tv) − ϕ(x)
t

(1.73)

made it possible to reduce the variational problem

minimize
{

l(x(0, x(1)) +
∫ 1

0

L(t, x(t), ẋ(t)) dt
}
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with a Lipschitzian integrand L(t, ·, ·) and an extended-real-valued endpoint
function l to a convex problem of this type considered by Rockafellar, i.e.,
where both l and L(t, ·, ·) are convex functions; see [245] for all the details in
deriving the generalized Euler-Lagrange inclusion in Clarke’s terms.

Observe that the generalized directional derivative (1.73) is different not
only from the Dini-like directional derivative (1.71) but also from the classical
directional derivative (1.70). The key issue is that in (1.73), contrary to (1.70)
and (1.71), the initial point x̄ is perturbed, which provides some uniformity
(and hence robustness) with respect to the initial data. By definition, Clarke’s
directional derivative is a majorant of both lower Dini directional derivative
(1.71) and its upper counterpart

d+ϕ(x̄ ; v) := lim sup
t↓0

ϕ(x̄ + tv) − ϕ(x̄)
t

for locally Lipschitzian functions, i.e.,

d−ϕ(x̄ ; v) ≤ d+ϕ(x̄ ; v) ≤ ϕ◦(x̄ ; v) for all v ∈ X .

As mentioned, the generalized directional derivative ϕ◦(x̄ ; v) may not reduce
to the classical one ϕ′(x̄ ; v) when the latter exists, even for simple real func-
tions like ϕ(x) = −|x | at x̄ = 0. The case of

ϕ◦(x̄ ; v) = ϕ′(x̄ ; v) for all v ∈ X

postulates Clarke regularity of ϕ at x̄ , which is equivalent to

d−ϕ(x̄ ; v) = d+ϕ(x̄ ; v) = ϕ◦(x̄ ; v), v ∈ X ,

and corresponds geometrically to the equality

T (x̄ ; v) = TC(x̄ ; v) whenever v ∈ X (1.74)

between the contingent cone and Clarke’s tangent cone considered in Sub-
sect. 1.1.2; cf. Clarke [255] and Rockafellar and Wets [1165]. It is well known
that Clarke’s directional derivative is usually far from the best (and even
adequate) local approximation of a function in the absence of regularity.

Having any positively homogeneous (in directions v) function ϕ•(x̄ ; v),
which can be considered as a local approximation of ϕ: X → IR finite at x̄ (in
particular, the directional derivatives mentioned above), the corresponding
subdifferential of ϕ at x̄ is defined by the duality correspondence

∂•ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ ϕ•(x̄ ; v) for all v ∈ X
}
. (1.75)

This is a standard way to introduce subgradients via directional derivatives.
For convex functions it gives the classical subdifferential of convex analysis:

∂ϕ(x̄) =
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ ϕ′(x̄ ; v) for all v ∈ X
}

=
{

x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) for all x ∈ X
}
,
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where the second representation is due to the global nature of convexity,
while the first one defines the subdifferential of locally convex functions and
the like. Clarke’s subdifferential (or generalized gradient [243, 244]) of locally
Lipschitzian functions is defined in this way by

∂Cϕ(x̄) =
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ ϕ◦(x̄ ; v) for all v ∈ X
}
. (1.76)

In finite dimensions the generalized gradient admits the equivalent represen-
tation

∂Cϕ(x̄) = co
{

lim
xk→x̄

∇ϕ(xk)
}
, (1.77)

where the set under the convex hull in (1.77) is nonempty and compact by
the classical Rademacher theorem [1114] ensuring that a Lipschitz continuous
function on an open subset of IRn is a.e. differentiable. The latter set was
introduced by Shor [1207], under the name of the “set of almost-gradients,”
from the viewpoint of numerical optimization of nonsmooth functions. Note
that Shor also considered the convexified set in (1.77), under the name of
the “set of generalized almost-gradients,” however, no calculus rules were ob-
tained; see also [1208, 683, 1111] for more details and references. Observe
that the nonconvex set of almost-gradients in (1.77) doesn’t reduce to the
subdifferential even for simple convex functions (e.g., ϕ(x) = |x |), so the con-
vexification operation in (1.77) is crucial. Being convexified, the generalized
gradient ∂Cϕ(·) possesses a reasonably good calculus on the class of Lipschitz
continuous function; in particular, it satisfies the inclusion sum rule

∂C(ϕ1 + ϕ2)(x̄) ⊂ ∂Cϕ1(x̄) + ∂Cϕ2(x̄)

the proof of which is based on the convex separation theorem similarly to most
other results of Clarke’s nonsmooth analysis [255].

Definition 1.8(iii) of the Clarke tangent cone TC(x̄ ;Ω) is different from the
original one [243, 244] given via the generalized directional derivative (1.73)
of the (Lipschitzian) distance function dist(·;Ω); the equivalence between the
two definitions follows from the proof of [244, Proposition 3.7] and was first
observed by Thibault [1244]; see also [1248]. As discussed above, TC(x̄ ;Ω) is
a geometric counterpart of the directional derivative ϕ◦(x̄ ; v), while Clarke’s
normal cone to Ω at x̄ is a dual object defined by

NC(x̄ ;Ω) :=
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ 0 for all v ∈ TC(x̄ ;Ω)
}
. (1.78)

It can always be described via the weak∗ closure of the cone spanned on the
generalized gradient of the distance function

NC(x̄ ;Ω) = cl ∗
{ ⋃

λ≥0

λ∂Cdist(x̄ ;Ω)
}
.

This implies, by [244, Proposition 3.2] and [255, Theorem 2.5.6] established
for closed subsets Ω ⊂ IRn, the following representation:
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NC(x̄ ;Ω) = clco
{

0, lim
uk

‖uk‖

∣
∣
∣ uk ⊥ Ω at xk → x̄, uk → 0

}
, (1.79)

where the notation u ⊥ Ω at x signifies that u is a perpendicular to Ω at
x ∈ Ω, i.e., there is z such that u = z − x and x is the unique closest point to
z in Ω.

Using the route well understood in convex analysis, Clarke’s generalized
gradient of lower semicontinuous (l.s.c.) functions ϕ: X → IR was originally
defined via the normal cone to the epigraph of ϕ by

∂Cϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗,−1) ∈ NC
(
(x̄, ϕ(x̄)); epi ϕ

)}
,

and then it was equivalently described by Rockafellar [1147, 1149] in the an-
alytic duality way (1.75) via his generalized directional derivative (upper sub-
derivative) ϕ• = ϕ↑ given by

ϕ↑(x̄ ; v);= sup
γ>0

{
lim sup

x
ϕ→x̄

t↓0

[
inf

‖z−v‖≤γ

ϕ(x + t z) − ϕ(x)
t

]}
.

Rockafellar’s subderivative ϕ↑(x̄ ; v) is convex in directions, reduces to ϕ◦(x̄ ; v)
for locally Lipschitzian functions ϕ, and happens to be the support function
for the generalized gradient of arbitrary l.s.c. functions ϕ: X → IR finite at x̄ :

ϕ↑(x̄ ; v) = sup
{
〈x∗, v〉

∣
∣ x∗ ∈ ∂Cϕ(x̄)

}
.

The achieved duality relationships between ∂Cϕ(x̄) and ϕ↑(x̄ ; v) allowed Rock-
afellar [1146, 1147, 1148, 1149], based mainly on the machinery of convex
analysis, to develop calculus rules and related results for the Clarke gen-
eralized gradient of l.s.c. functions; see also Aubin [48] and Hiriart-Urruty
[570, 571, 572]. However, some important properties have been lost in the
non-Lipschitzian case; in particular, the so-called robustness property

∂Cϕ(x̄) = Lim sup
x

ϕ→x̄

∂Cϕ(x)

doesn’t hold true for l.s.c. functions, e.g., when ϕ is the indicator function of
the set

Ω :=
{
(x1, x2, x3) ∈ IR3

∣
∣ x3 = x1x2

}

with x̄ = 0 ∈ IR3; see more details on this example in Rockafellar [1147, 1149].

The full and beautiful duality between directional derivatives/tangents and
subgradients/normals achieved in the Clarke-Rockafellar theory and related
calculus rules for these constructions made the fundamental ground for many
important, breakthrough applications to optimization, calculus of variations,
optimal control, and other areas of nonlinear and variational analysis. The
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convexity of the generalized gradient and normal cone seemed to be crucial
for the theory and applications involving the eventual usage of separation the-
orems. Note to this end that any subdifferential/normal cone constructions in
dual spaces generated by polarity relations like (1.75) are automatically convex
regardless of the convexity of the generating directional derivatives and sets
of tangents.

1.4.4. Motivations to Avoid Convexity. It is well known that Clarke’s
generalized gradient of Lipschitzian functions is unimprovable (minimal in
size) among any convex-valued and robust extensions of the subdifferential of
convex analysis with some properties desired for applications. This statement
has been first proved by Lebourg [749], where the desired property is a non-
smooth version of the classical mean value theorem. Furthermore, it follows
from the results by Ioffe [599, Theorem 8.1] (cf. also Mordukhovich [901, Sec-
tion 4.6] and Mordukhovich and Shao [949, Theorem 9.7]) that ∂Cϕ(x̄) is the
smallest among any robust and convex-valued subdifferentials ∂•ϕ(x̄) satis-
fying the inclusion sum rule mentioned above and a nonsmooth counterpart
of the Fermat stationary principle: 0 ∈ ∂•ϕ(x̄) whenever x̄ provides a local
minimum to ϕ.

On the other hand, it has been well recognized that the generalized gra-
dient may be too large for many important applications, in particular, to
necessary optimality conditions. It is easy to give simple examples (as the
trivial ones: minimize −|x | over IR; also minimize |x1| − |x2| over IR2), where
0 ∈ ∂Cϕ(x̄) while x̄ is far removed from the minimum that can be directly de-
tected by other necessary conditions for minimization. Another serious draw-
back of these convex constructions concerns deficient conditions obtained in
their terms for some fundamental properties in nonlinear analysis related to
covering of nonsmooth operators, metric regularity, open mapping theorems,
Lipschitzian stability, and the like; see, e.g., the corresponding results and
discussions in Dmitruk, Milyutin and Osmolovskii [337], Warga [1320], Rock-
afellar [1154], etc. In basic calculus [255, Sect. 2.3], the weakest point concerns
chain rules that either require smoothness of some mappings in compositions
or involve unsatisfactory convexification.

But probably the most striking undesirable phenomenon arises in geomet-
ric considerations, where the normal cone (1.78) to graphical sets with non-
smooth boundaries often happens to be the whole space or at least a linear
subspace of big dimension. Consider, for instance, the graph of the simplest
nonsmooth function ϕ(x) = |x |, x ∈ IR. Then one can easily check that
NC((0, 0); gph ϕ) = IR2. The same picture comes into view at the “comple-
mentarity corner,” i.e., for the boundary of the nonnegative orthant in IRn

appearing in complementarity conditions. Indeed, we have on the plane

NC((0, 0);Ω) = IR2 for Ω :=
{
(x1, x2) ∈ IR2

∣
∣ x1x2 = 0, x1 ≥ 0, x2 ≥ 0

}
.

which of course was observed by people working on complementarity problems
and variational inequalities.
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Comprehensive results in this direction were obtained by Rockafellar [1153]
for the tangent cone TC(x̄ ;Ω) in finite dimensions; they imply by polarity the
corresponding conclusions for Clarke normals. It has been proved in [1153,
Theorem 3.2] that for every mapping f : IRn → IRm Lipschitz continuous
around x̄ , the normal cone NC((x̄, f (x̄)); gph f ) is actually a linear subspace
of dimension q ≥ m, where q = m if and only if f is strictly differentiable
at x̄ . Furthermore, this result was extended in [1153, Theorem 3.5] to the
so-called “Lipschitzian manifolds,” which are locally homeomorphic to the
graph of a locally Lipschitzian vector function. It has been shown in [1153]
that the class of Lipschitzian manifolds (called graphically Lipschitzian sets in
[1165]) includes graphs of maximal monotone set-valued mappings , in partic-
ular, graphs of subdifferential mappings for convex and saddle functions. Such
subdifferential mappings have been long recognized in variational analysis as
convenient tools for describing variational inequalities and complementarity
conditions; see Robinson [1130, 1131]. More recently, it has been proved by
Poliquin and Rockafellar [1090] that subdifferential mappings for the so-called
“prox-regular” functions, that are typically encountered in finite-dimensional
optimization, also belong to the class of graphically Lipschitzian mappings,
for which therefore Clarke’s normal cone has the mentioned subspace prop-
erty. To this end, let us refer the reader to a recent result by Dontchev and
Rockafellar [365] showing that the graphical Lipschitzian property is preserved
under “ample parameterizations” important for sensitivity analysis of varia-
tional inclusions/generalized equations and related problems.

It is worth mentioning that the set counterpart of prox-regular functions,
called “prox-regular sets” by Poliquin and Rockafellar [1090] has been already
introduced and studied by Federer [437] in geometric measure theory under

the name “sets of positive reach.” Such sets are also called “sets with property
ρ” by Plaskacz [1081] and by “proximally smooth sets” by Clarke, Stern and
Wolenski [271].

1.4.5. Basic Normals and Subgradients. Due to the unimprovabil-
ity of Clarke’s generalized differential constructions among any convex-valued
ones with reasonable properties including robustness, the only way to avoid
the drawbacks discussed above is to give up the convexity of the normal cone
and subdifferential. This inevitably presumes that one should abandon the
conventional scheme of convex and nonsmooth analysis generating normals
and subgradients via polarity correspondences from tangents and directional
derivatives that automatically yields the convexity of polar/dual objects; cf.
(1.75) and (1.78). Furthermore, the theory of such nonconvex dual-space con-
structions (optimality conditions, calculus rules, etc.) cannot make any appeal
to the traditional techniques of convex analysis based on separation theorems.

The nonconvex basic/limiting normal cone to closed sets and the cor-
responding subdifferential of l.s.c. extended-real-valued functions satisfying
these requirements were introduced by Mordukhovich in the beginning of
1975, who was not familiar with Clarke’s constructions at that time. The
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initial motivation came from the intention to derive necessary optimality con-
ditions for optimal control problems with endpoint geometric constraints by
passing to the limit from free endpoint control problems, which are much
easier to handle. This was published in [887] (first in Russian and then trans-
lated into English), where the original normal cone definition was given in
finite-dimensional spaces by

N(x̄ ;Ω) = Lim sup
x→x̄

[
cone(x −Π(x ;Ω))

]
(1.80)

via the Euclidean projector Π(·;Ω), while the basic subdifferential ∂ϕ(x̄) was
defined geometrically via the normal cone to the epigraph of ϕ; see Defin-
ition 1.77. It is written in the final version of [887], after discussions with
Ioffe, that Clarke’s normal cone is the closed convex closure of (1.80) in finite-
dimensional spaces. We see, by Theorem 1.6, that the normal cone (1.80) is
equivalent in finite dimensions to the basic normal cone used in this book.

It is worth mentioning that the basic normal cone (1.80) appeared in [887]
as a by-product of the method of metric approximations introduced in that pa-
per, which allowed us to reduce nonsmooth constrained problems to smooth
problems of unconstrained optimization; see also [889, 717, 892], where this
method was applied to general classes of extremal problems containing math-
ematical programs with equality, inequality and geometric constraints, mini-
max and vector optimization problems, optimal control problems for systems
with smooth dynamics and also for dynamical systems governed by discrete-
time and continuous-time differential inclusions. Moreover, this method di-
rectly leads to studying the general concept of local extremal points and es-
tablishing the extremal principle; see the proof of Theorem 2.8 in Chap. 2 and
Commentary to that chapter.

Note that the method of metric approximations shares some similarities
with the penalty function method, which was employed for deriving neces-
sary optimality conditions in smooth constrained problems; compare, e.g.,
McShane [864], Berkovitz [106], and Polyak [1097]. We also used a modified
penalty method for nonsmooth constrained problems of optimization and op-
timal control [893], but the results obtained in this vein impose more require-
ments on the (scalar) cost functional in comparison with the method of metric
approximations, which treats cost and constraint functions fully symmetrically
and thus allows us to cover multiobjective and equilibrium problems as well
as general extremal points of set systems.

1.4.6. Fréchet-like representations. It was realized after a while (at
the end of the 1970s) that the basic normal cone (1.80) and the corre-
sponding basic subdifferential from Definition 1.77(i) can be represented via
limits of Fréchet-like constructions in finite-dimensional spaces (which are
dual geometrically to the contingent cone T (x̄ ;Ω) and analytically to the
lower Dini directional derivative d−ϕ(x̄ ; v) in finite dimensions), while the
infinite-dimensional setting requires the usage of sequential limits of
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ε-enlargements; thus we came up to the basic definitions used in this book.
Besides the afore-mentioned papers, we refer the reader to the joint work by
Kruger and Mordukhovich [718, 719] and to Kruger’s dissertation [706] con-
ducted under supervision of Mordukhovich. It has been also realized around
the same time that the metric approximation method is useful not only for
deriving necessary optimality conditions in terms of the nonconvex general-
ized differential constructions but also for normal and subgradient calculus
rules in finite-dimensional spaces and in Banach spaces with Fréchet smooth
renorms under certain Lipschitzian assumptions.

First calculus results in the fully non-Lipschitzian setting were obtained by
Mordukhovich [894] in finite-dimensional spaces. In particular, it was proved
there by the method of metric approximations that the intersection rule for
basic normals

N(x̄ ;Ω1 ∩Ω2) ⊂ N(x̄ ;Ω1) + N(x̄ ;Ω2) (1.81)

holds provided that the sets Ωi are locally closed around x̄ ∈ Ω2 ∩ Ω2 and
that the basic qualification condition

N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
= {0} (1.82)

is satisfied. Moreover, (1.81) holds as equality if both sets Ωi are normally
regular at x̄ in the sense of [894], i.e., when

N(x̄ ;Ω) = N̂(x̄ ;Ω). (1.83)

Note that in finite-dimensional spaces the normal regularity (1.83) happens
to agree with Clarke’s tangential regularity (1.74) due to the convexity of
N̂(x̄ ;Ω) (and hence of N(x̄ ;Ω) in this case) and by the duality relations be-
tween tangents and normals in finite dimensions discussed in Subsect. 1.1.2.
It is not the case however in infinite-dimensional spaces; see Bounkhel and
Thibault [172] for a comprehensive study of various regularity notions in non-
smooth analysis and the comparison between them.

We refer the reader to the book by Mordukhovich [901] and the bibli-
ography therein for a unified theory, mostly in finite dimensions but with
full discussions of infinite-dimensional extensions, based on his generalized
differential constructions and their applications to problems of optimization,
optimal control for discrete-time and continuous-time systems, and related
topics developed up to the end of 1986.

In infinite-dimensional Banach spaces, as adopted in this book, we build
our basic normals from Definition 1.1 as sequential limits of ε-normals belong-
ing to

N̂ε(x̄ ;Ω) =
{

x∗ ∈ X∗
∣
∣
∣ lim sup

x
Ω→x̄

〈x∗, x − x̄
‖x − x̄‖ ≤ ε

}
, ε ≥ 0 .

The latter set first appeared in Kruger and Mordukhovich [718]. Note its
relationship with the local ε-support by Ekeland and Lebourg [400] defined by
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Sε(x̄ ;Ω) :=
{

x∗ ∈ X∗
∣
∣
∣ ∃ ν > 0 with 〈x∗, x − x̄〉 ≤ ε‖x − x̄‖

whenever x ∈ Ω and ‖x − x̄‖ < ν
}
, ε > 0 .

One can easily see that

N̂ε(x̄ ;Ω) =
⋃

γ>ε

Sε+γ (x̄ ;Ω) for any ε ≥ 0

and observe that the “0-support” set S0(x̄ ;Ω) carries little information even
in finite dimensions, while the cone of “0-normals” N̂0(x̄ ;Ω) = N̂(x̄ ;Ω) plays
a very important role in our considerations, in both finite-dimensional and
infinite-dimensional settings. Similar observations can be made about the ε-
subdifferentials ∂̂gεϕ(x̄) and ∂̂aεϕ(x̄) defined in Subsect. 1.3.2 following the pat-
tern of [718, 719, 706], which are functional counterparts of ε-normals. Note
that the construction ∂̂ϕ(x̄) := ∂0ϕ(x̄) from (1.51), which we call “Fréchet
subdifferential” or “presubdifferential,” is labeled as “regular subdifferential”
in Rockafellar and Wets [1165]); an equivalent construction in finite dimen-
sions appeared in Bazaraa, Goode and Nashed [89] under the name “the set
of ≥ gradients.”

Of course, Fréchet had nothing to do with such normals and subgradients;
we keep this name to emphasize parallels with the classical differentiation,
where the Fréchet derivative is the basic tool of nonlinear analysis. It is worth
mentioning that Fréchet, a student of Hadamard, introduced his derivative
[473] in infinite-dimensional spaces not being familiar with the fact that the
same definition, for functions of finitely many variables, had been already
used by Weierstrass in his lectures at the University of Berlin in the end of
the 1870s and the beginning of 1880s, which were published only in 1927 [1326]
although partly incorporated in some German and English textbooks (e.g., by
Scholtz and by Young) written in the beginning of the 20th century under the
influence of Weierstrass; see Tikhomirov [1257] and Brinkhuis and Tikhomirov
[178] for more information. We also refer the reader to the survey paper by
Averbukh and Smolyanov [68] for various classical (and neoclassical) deriva-
tives in analysis, with thorough discussions of the history and relationships
between them in the general setting of linear topological spaces.

Thus starting with the late 1970s, the Fréchet-like normals and subgra-
dients have played a prominent role in optimization and nonsmooth analy-
sis; we refer the reader to [156, 146, 157, 163, 164, 172, 329, 413, 415, 420,
419, 593, 600, 634, 654, 657, 707, 708, 713, 718, 800, 801, 802, 901, 935,
946, 949, 952, 960, 1007, 1249, 1263, 1311, 1345] for more discussions. The
Fréchet subdifferential ∂̂ϕ(x̄) is also known as “subdifferential in the sense
of viscosity solutions” and has been broadly used, starting with the 1983
paper by Crandall and Lions [297], in partial differential equations of the
Hamilton-Jacobi type with many applications to optimal control, stochas-
tic control, differential games, etc.; the reader can find more information in
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[85, 86, 215, 265, 295, 296, 330, 331, 425, 458, 471, 688, 702, 701, 721, 793, 818,
819, 869, 1230, 1231, 1240, 1241, 1359]. Note also that constructions of this
type have long traditions in the Italian school of variational inequalities and
related topics; see, e.g., the papers by Marino and Tosques [851], Degiovanni,
Marino and Tosques [313], and the references therein.

1.4.7. Approximate Subdifferentials. The other line of extensions of
Mordukhovich’s generalized differential constructions to infinite-dimensional
spaces was strongly developed by Ioffe in the series of many publications
starting from 1981. He began [589] with the subdifferential construction

∂Mϕ(x̄) := Lim sup
x

ϕ→x̄
ε↓0

∂−ε ϕ(x) , (1.84)

called him by the M-subdifferential, where Lim sup signifies the topological
counterpart of the Painlevé-Kuratowski upper limit (1.1) with sequences in
X∗ replaced by nets, and where the ε-subdifferential construction

∂−ε ϕ(x) :=
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ d−ϕ(x ; v) + ε‖v‖
}

(1.85)

is a polar/dual object generated by the “ε-shifted” lower Dini derivative
(1.71). It is not hard to check (cf. the proof of Theorem 1.10) that one has
the relationship

∂̂εϕ(x̄) ⊂ ∂−ε ϕ(x̄)

between the Fréchet ε-subdifferential ∂̂εϕ(x̄) from Definition 1.83(ii) and the
Dini one (1.85), where equality holds in finite dimensions; in the latter case
ε may be omitted in both limiting constructions of the basic subdifferential
∂ϕ(x̄) (see Theorem 1.89) and the Dini-generated M-subdifferential (1.84),
which both reduce to the original construction by Mordukhovich; cf. Kruger
and Mordukhovich [718, 719] and Ioffe [596]. In general the M-subdifferential,
which has useful properties in spaces with Gâteaux smooth renorms, may be
essentially larger than our basic one (it may be even larger than Clarke’s
generalized gradient for non-Lipschitzian function; see Treiman [1262, 1263]).

Further infinite-dimensional improvements of the M-subdifferential and
the corresponding M-normal cone reduced to (1.80) in finite dimensions, have
been developed by Ioffe [590, 591, 592, 597, 599, 607] under the common name
of “approximate normals and subdifferentials” including “analytic” (A) and
“geometric” (G) ones as well as their “nuclei”; see Subsect. 2.5.2B for more
details and discussions. Note that the adjective “approximate” indicates the
relation to the original approximation technique [887] generating and/or in-
spiring these kinds of nonconvex constructions. Indeed, Ioffe wrote in [591, p.
3]: “It all essentially arises from thinking over Mordukhovich’s approximate
approach to necessary conditions for an extremum [887]”; see also [594, p.
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518] and [596, p. 389]. Observe that the best of these constructions, the so-
called “nuclei of the G-subdifferential and the G-normal cone” may be still
larger than our basic constructions out of WCG (weakly compactly generated)
spaces, even in those admitting a Fréchet smooth renorm; see Borwein and
Fitzpatrick [141], Mordukhovich and Shao [949, Sect. 9], and Subsect. 3.2.3
of this book. On the other hand, they have essentially better (actually those
needed for the majority of applications) calculus properties than our basic
constructions in non-Asplund settings, being however significantly more com-
plicated.

1.4.8. Further Historical Remarks. Coming back to finite dimensions,
observe that the unconvexified limiting set in the braces {· · ·} in represen-
tation (1.79) of Clarke’s normal cone agrees with the basic normal cone by
Mordukhovich. To the best of our knowledge, this set was first designated
for its own sake in the Western literature, under the name of “limiting prox-
imal normal cone,” in the 1985 paper by Rockafellar [1155], where it was
used as an auxiliary tool to derive extended calculus formulas and necessary
optimality conditions in terms of Clarke’s normals and subgradients via cer-
tain perturbation techniques. Some amount of calculus, particularly related to
subdifferentiation of marginal functions and inf-convolutions, was developed
in [1155] for limiting proximal normals and associated limiting sets of “prox-
imal subgradients” introduced by Rockafellar in [1150] to recover Clarke’s
generalized gradient via the closed convex hull of such limits in finite dimen-
sions; see Treiman [1262, 1263], Borwein and Strójwas [156, 157], and Loewen
[798, 799] for infinite-dimensional extensions. However, the major calculus
results and necessary optimality conditions were obtained by employing the
convexification procedure, i.e., in terms of Clarke’s constructions. In partic-
ular, the basic intersection formula (1.81) and related calculus results were
derived by Rockafellar [1155] in Clarke’s terms with qualifications conditions
of type (1.82) expressed via Clarke’s normals and subgradients. But, as dis-
cussed above, these formulas and many other results of this type have already
been available without any convexification!

This clear gap between Western and Russian developments was definitely
due to the lack of communication and personal contacts between Eastern and
Western researchers during the Cold War. The situation has been dramatically
changed after Mordukhovich’s first talk at a scientific meeting in the West,
which happened at the International Workshop in Quantitative Analysis in
Sensitivity Analysis and Optimization organized by Clarke, Rockafellar, and
Wets and held near Montreal in February 1989, just about a month following
his immigration to the United States. Indeed, after learning Mordukhovich’s
results presented in his talk (which “. . . came as a surprise. . . ”[1157]) and
reading his book on the flight back from Montreal, Rockafellar was able to
prove the main calculus results without any convexification on the basis of
his own methods developed in [1150, 1155]. As he wrote in his letter to
Mordukhovich [1157] accompanied his note [1158] shortly after the Montreal
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meeting: “. . . Oddly, as soon as the formulas you had established. . . had sunk
in, I had no trouble at all proving them on the basis of other facts already
familiar. But it had never occurred to me to push in such a direction!”

It seems that Clarke designated and utilized the nonconvex normal cone
and subdifferential in question for the first time in his 1989 book [257], with
the reference to Mordukhovich. He used the names of “prenormal cone” and
“presubdifferential” for these nonconvex constructions reserving the terms
“normal cone” and “subdifferential” for his convexified normal cone and gen-
eralized gradient. In [257, Sect. 1.4], Clarke provided another proof of the basic
intersection rule (1.81) and related subdifferential results obtained earlier by
Mordukhovich, using for these purposes a perturbation technique similar to
that in “fuzzy calculus” developed by Ioffe [594]. Recognizing advantages of
the latter calculus results in comparison with those in terms of the convexified
objects NC(x̄ ;Ω) and ∂Cϕ(x̄), Clarke nevertheless emphasized in the discus-
sion of [257, p. 15] his preference to work in terms of NC(x̄ ;Ω) and ∂Cϕ(x̄)
for certain reasons related, first of all, to the polarity with the tangent cone
and directional derivative. At the same time he indicated, in the footnote
comments to the major necessary optimality conditions for variational and
control problems considered in [257], that transversality conditions therein
can be given in more precise terms of the “prenormal cone” and “presubdif-
ferential” referring to the original work by Mordukhovich.

It is worth mentioning to this end that even in many papers after 1989
(and of course in earlier Western publications in this direction, with proba-
bly one essential exception of Warga’s work employed his derivate containers
[1316, 1317, 1319, 1321]), transversality conditions in nonsmooth optimal con-
trol and the calculus of variations were written in terms of Clarke’s normal
cone and generalized gradient, with no comments about possible refinements;
see, e.g., [255, 256, 267, 268, 272, 273, 274, 276, 595, 666, 667, 803, 804, 808,
1178, 1291, 1292]. The recognition of the possibility of using the nonconvex
normal cone and subdifferential to obtain refined Euler-Lagrange and Hamil-
tonian conditions for optimality came to the West even later in the 1990s,
although results of this type have been developed in the Russian literature
since 1980; see Mordukhovich [892, 897, 901, 902, 908], Smirnov [1215, 1216],
and Commentary to Chap. 6 for more details and discussions.

1.4.9. Some Advantages of Nonconvexity. Eventually it has been
recognized that the nonconvexity of the basic/limiting normal cone (1.80) and
its infinite-dimensional extensions, as well as the corresponding subdifferen-
tials, is not a disadvantage but, in most cases, just the opposite: it provides an
opportunity to develop a much better calculus, to derive more precise results
in variational theory, and to enlarge essentially a spectrum of applications in
comparison with the convexified constructions. Furthermore, it allows us to
define and efficiently apply the basic coderivative construction

D∗F(x̄, ȳ)(y∗) :=
{

x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N
(
(x̄, ȳ); gph F

)}
. (1.86)
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for a set-valued mapping F : X →→ Y between Banach spaces at a graph
point (x̄, ȳ) ∈ gph F via the nonconvex normal cone (1.80) and its infinite-
dimensional extensions. It was first done in the 1980 paper of Mordukhovich
[892] motivated by applications to adjoint systems in optimal control systems
but then it happened to be useful in many fundamental aspects of varia-
tional analysis and its applications (e.g., characterizations of metric regularity
and Lipschitzian stability, sensitivity analysis for constraint and variational
systems, optimality conditions for variational and equilibrium problems with
equilibrium constraints, etc.; see numerous results, discussions, and comments
in this book). It is important to emphasize that, by Rockafellar’s theorem
[1153] discussed above, the usage of Clarke’s normal in scheme (1.86) with
graphical sets therein doesn’t lead to satisfactory constructions and results,
since the subspace property holds for the latter cone due to its convexity.

Another opportunity provided by the nonconvex normal cone (1.80) and its
infinite-dimensional generalizations is to define the second-order subdifferential
of an extended-real-valued function ϕ: X → IR at a point (x̄, ȳ) ∈ gph ∂ϕ by

∂2ϕ(x̄, ȳ)(u) := (D∗∂ϕ)(x̄, ȳ)(u), u ∈ X∗∗ , (1.87)

i.e., as the coderivative of the first-order subdifferential. It was first done in
the 1992 paper of Mordukhovich [907] motivated by applications to sensitivity
analysis for systems described via (first-order) subdifferentials or normal cones
in Robinson’s framework of generalized equations, which covers variational
inequalities, complementarity conditions, etc.; see [1130, 1131]. Again, the us-
age of Clarke’s convexified normal cone in this scheme doesn’t lead to valuable
results, particularly for the case of convex functions ϕ corresponding to the
classical variational inequalities and complementarity problems, where ϕ is
the indicator function of a convex set. Indeed, by the afore-mentioned Rock-
afellar’s results [1153], the graph of the subdifferential of a convex function is
a Lipschitzian manifold (as for any maximal monotone relation), and hence
the subspace property of Clarke’s normal cone always holds in this case; see
more discussions in Rockafellar [1154, Remark 3.13] and Mordukhovich [912,
Sect. 3]. On the other hand, the coderivative and second-order subdifferen-
tial constructions (1.86) and (1.87) enjoy rich calculi in finite-dimensional and
infinite-dimensional spaces being useful for many applications; see the corre-
sponding parts of this book, with subsequent comments and references.

1.4.10. List of Major Topics and Contributors. Great progress
has been made, particularly in recent years, in the study and applications
of the basic/limiting generalized differential constructions under consider-
ation and associated variational techniques in both finite-dimensional and
infinite-dimensional settings. Let us present a partial list of the major topics
in variational analysis and its applications, where the usage of these construc-
tions happens to be crucial while leading to essentially new results and per-
spectives. The list is accompanied by the names of the main contributors/users
and their publications (in alphabetical order), being definitely incomplete in



148 1 Generalized Differentiation in Banach Spaces

these rapidly growing areas and reflecting of course the author’s knowledge
and understanding. More comments will be made while discussing specific re-
sults later in the book. Note that the list below mostly contains publications
that employ limiting procedures involving Fréchet-like and similar normals
and subgradients (or, equivalently, proximal ones in finite-dimensional and
Hilbert space settings), with no mandatary convexification:

Calculus Rules for Nonconvex Normal Cone, First-Order Sub-
differentials, and Coderivatives: Allali and Thibault [15], Borwein and
Ioffe [147], Borwein, Mordukhovich and Shao [151], Borwein, Treiman and
Zhu [158], Borwein and Zhu [162, 163, 164], Eberhard and Nyblom [382],
Fabian and Mordukhovich [419], Geremew, Mordukhovich and Nam [503],
Ioffe [590, 590, 596, 597, 599, 600, 603, 604, 607], Ioffe and Penot [614], Ivanov
[622], Jourani [643, 644, 646], Jourani and Théra [650] Jourani and Thibault
[652, 653, 654, 657, 658, 659, 660], Kruger [706, 708, 708, 709], Kruger and
Mordukhovich [718, 719], Ledyaev and Zhu [754], Lee, Tam and Yen [755],
Minchenko [879], Mordukhovich [892, 894, 901, 907, 908, 910, 917], Mor-
dukhovich and Nam [935, 936, 934], Mordukhovich, Nam and Yen [937], Mor-
dukhovich and Shao [949, 950, 952, 953], Mordukhovich, Shao and Zhu [954],
Mordukhovich and B. Wang [963, 967, 968], Ngai, Luc and Théra [1007], Ngai
and Théra [1008], Penot [1070], Rockafellar [1155, 1158, 1160, 1161, 1162],
Rockafellar and Wets [1165], Thibault [1249, 1252], and Treiman [1267, 1269].

Second-Order Subdifferential Calculus: Dutta and Dempe [377],
Dontchev and Rockafellar [364], Eberhard, Nyblom and Ralph [383], Eberhard
and Pearce [384], Eberhard and Wenczel [387], Ioffe and Penot [615], Levy
and Mordukhovich [769], Levy, Poliquin and Rockafellar [771], Mordukhovich
[910, 912, 923], Mordukhovich and Outrata [939], Mordukhovich and B. Wang
[967, 968], Poliquin and Rockafellar [1090, 1092], Rockafellar (personal com-
munication; see [769, 923, 939]), Rockafellar and Zagrodny [1168], and Ward
[1307].

Metric Regularity, Openness/Covering at Linear Rate, and Ro-
bust Lipschitzian Properties for Nonsmooth and Set-Valued Map-
pings: Azé, Corvellec and Lucchetti [70], Borwein and Zhu [163, 164], Gal-
braith [491], Geremew, Mordukhovich and Nam [503], Glover and Ralph [510],
Ioffe [589, 596, 598, 607, 608], Jourani and Thibault [651, 655, 656, 657, 661],
Kruger [709, 711, 714, 715], Kummer [727, 728], Ledyaev and Zhu [751], Levy
and Poliquin [770], Mordukhovich [894, 901, 907, 909, 917, 924], Mordukhovich
and Shao [946, 951, 953], Mordukhovich and B. Wang [967, 968], Ngai and
Théra [1008], Penot [1068, 1071], Rockafellar and Wets [1165], Zhang and
Treiman [1363], and Zheng and Ng [1365].

Regularity Perturbation, Distance to Infeasibility, and Condi-
tioning in Variational Analysis and Optimization: Cánovas, Dontchev,
Lopez and Parra [219], Dontchev and Lewis [360], Dontchev, Lewis and
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Rockafellar [361], Dontchev and Rockafellar [366], Ioffe [609, 610], and Mor-
dukhovich [924].

Studies of Structural, Generic, and Compactness-Like Proper-
ties of Sets, Functions, and Set-Valued Mappings: Aussel, Corvel-
lec and Lassonde [61, 62], Aussel, Daniilidis and Thibault [63], Bernard
and Thibault [108, 109, 110], Borwein, Borwein and Wang [136], Borwein
and Fitzpatrick [141, 142], Borwein, Fitzpatrick and Girgensohn [144], Bor-
wein, Lucet and Mordukhovich [150], Bounkhel [170], Borwein, Moors and
Wang [152], Bounkhel and Thibault [172, 173], Clarke, Ledyaev, Stern and
Wolenski [265], Clarke, Stern and Wolenski [271], Colombo and Goncharov
[277, 278], Colombo and Marigonda [279], Cornet and Czarnecki [289], Cor-
rea, Gajardo and Thibault [291], Correa, Jofré and Thibault [292], Eberhard
[381], Edmond and Thibault [389], Fabian and Mordukhovich [422], Henrion
[555, 556], Guillaume [525], Ioffe [607], Jofré, Luc and Théra [634], Jourani
[648, 645, 649], Jourani and Thibault [661], Lewis [778], Loewen [800, 802],
Marcellin [848], Mifflin and Sagastizábal [873, 874], Mordukhovich and Shao
[949, 950, 951, 953], Mordukhovich and B. Wang [961, 964, 965, 967], Penot
[1071], Poliquin and Rockafellar [1089, 1090, 1091], Poliquin, Rockafellar and
Thibault [1093], Rockafellar and Wets [1165], and Wang [1303].

Variational Convergence, Approximation, and Regularization in
Generalized Differentiation and Related Topics: Benoist [99], Cor-
net and Czarnecki [289, 290], Czarnecki and Rifford [304], Eberhard [381],
Eberhard and Nyblom [382], Eberhard, Nyblom and Ralph [383], Eberhard,
Sivakumaran and Wenczel [386], Eberhard and Wenczel [387], Geoffroy and
Lassonde [501], Ioffe [596], Jourani [646], Kruger [705, 713], Kruger and
Mordukhovich [719], Levy, Poliquin and Thibault [772], Mordukhovich [901],
Poliquin [1088], Poliquin and Rockafellar [1090, 1091], Poliquin, Rockafellar
and Thibault [1093], Rockafellar and Wets [1165], and Rockafellar and Za-
grodny [1168].

Efficient Conditions for Error Bounds, Calmness, and Sharp
Minima: Azé and Corvellec [69], Azé and Hiriart-Urruty [71], Bosch, Jourani
and Henrion [166], Burke [189], Henrion and Jourani [559], Henrion, Jourani
and Outrata [560], Henrion and Outrata [561, 562], Jourani [647], Jourani
and Ye [662], Li and Singer [784], Mordukhovich, Nam and Yen [937], Ng and
Zheng [1005], Ngai and Théra [1010], Papi and Sbaraglia [1050, 1051], Stud-
niarski and Ward [1229], Wu and Ye [1334, 1335], Zhang [1362], and Zheng
and Ng [1365].

Computational Algorithms in Nonsmooth Analysis: Bolte, Dani-
ilidis and Lewis [122, 122], Burke, Lewis and Overton [196, 197, 199], Flegel
[454], Hare and Lewis [549], Klatte and Kummer [686, 687], Kočvara, Kružik
and Outrata [689], Kočvara and Outrata [690, 691], Kummer [726, 727, 728],
Lewis [778], Mifflin and Sagastizábal [873, 874], Outrata [1030], and Papi and
Sbaraglia [1052].
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Applications to Stability and Sensitivity Analysis for Constraint
and Variational Systems: Azé, Corvellec and Lucchetti [70], Azé and
Hiriart-Urruty [71], Bosch, Jourani and Henrion [166], Burke, Lewis and Over-
ton [195], Dontchev and Rockafellar [364], Geremew, Mordukhovich and Nam
[503], Henrion and Jourani [559], Henrion, Jourani and Outrata [560], Henrion
and Outrata [561, 562], Jeyakumar and Yen [631], Jourani [647], Jourani and
Ye [662], Klatte and Henrion [685], Klatte and Kummer [686, 687], Kummer
[725, 726, 728], Ledyaev and Zhu [751], Levy [767, 768], Lee, Tam and Yen
[755], Levy and Mordukhovich [769], Levy, Poliquin and Rockafellar [771],
Lucet and Ye [816], Mordukhovich [907, 910, 911, 912, 913, 924, 927, 929],
Mordukhovich and Nam [935, 934], Mordukhovich and Outrata [939], Mor-
dukhovich and Shao [951], Outrata [1030], Papi and Sbaraglia [1050], Poliquin
and Rockafellar [1092], Robinson [1137, 1138, 1139], Rockafellar and Wets
[1165], Rückmann [1183], Zhang [1362], Zhang and Treiman [1363], and Zheng
and Ng [1365].

First-Order Optimality/Suboptimality and Qualification Condi-
tions in Nondifferentiable Programming and Related Problems: Aru-
tyunov and Pereira [37], Bector, Chandra and Dutta [90], Bertsekas and
Ozdaglar [112, 1035], Borwein, Treiman and Zhu [158], Borwein and Zhu
[163, 164], Dutta [374, 375, 376], Glover and Craven [508], Glover, Craven
and Fl̊am [509], Ioffe [589, 596, 603, 611], Kruger [706, 705, 714, 715],
Kruger and Mordukhovich [718, 719], Lassonde [747], Ledyaev and Zhu [754],
Mordukhovich [892, 893, 897, 901, 922, 925], Mordukhovich, Nam and Yen
[937, 938], Mordukhovich and B. Wang [962], Mureşan [988], Rockafellar
[1158, 1160], Ralph [1115], Rockafellar and Wets [1165], Thibault [1250],
Treiman [1267, 1268], and Ye [1339, 1340].

Optimality Conditions for Multiobjective Problems: Amahroq and
Gadhi [16], Bellaassali and Jourani [93], Borwein and Zhu [164], Craven and
Luu [300], Eisenhart [395], Dutta [376], Dutta and Tammer [378], El Abdouni
and Thibault [402], Gadhi [489], Govil and Mehra [518], Ha [531, 532], Jahn,
Khan and Zeilinger [628], Jourani [645], Kruger and Mordukhovich [718, 719],
Mordukhovich [892, 897, 901, 926, 928], Mordukhovich, Treiman and Zhu
[958], Mordukhovich, Outrata and Červinka [940], Thibault [1250], Ye and
Zhu [1345], Ward and Lee [1312], Zheng and Ng [1364], and Zhu [1372].

Second-Order Optimality Conditions: Arutyunov and Pereira [37],
Eberhard and Pearce [384], Eberhard, Pearce and Ralph [385], Eberhard and
Wenczel [387], Jahn, Khan and Zeilinger [628], Levy, Poliquin and Rockafellar
[771], Mordukhovich [925, 926], Poliquin and Rockafellar [1092], and Ward
[1308, 1310].

Optimization and Equilibrium Problems with Equilibrium Con-
straints: Anitescu [20], Dutta and Dempe [377], Flegel [454], Flegel and Kan-
zow [455, 456], Flegel, Kanzow and Outrata [457], Hu and Ralph [584], Jiang
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and Ralph [632], Kočvara, Kružik and Outrata [689], Kočvara and Outrata
[690], Lucet and Ye [816], Mordukhovich [925, 926, 928], Mordukhovich, Out-
rata and Červinka [940], Outrata [1024, 1025, 1027, 1026, 1028, 1029, 1030],
Ralph [1116], Scheel and Scholtes [1191], Scholtes [1192], Treiman [1268],
Ye [1338, 1339, 1342], Ye and Ye [1343], Ye and Zhu [1345], and Zhang
[1360, 1361].

Eigenvalue Analysis and Optimization: Borwein and Zhu [164],
Burke, Lewis and Overton [194, 195, 198, 200], Burke and Overton [202, 203,
204], Ciligot-Travain and Traore [242], Dontchev and Lewis [360], Jourani
and Ye [662], Ledyaev and Zhu [752, 753, 754], Lewis [775, 779], Lewis and
Sendov [782, 783], and Sendov [1200]; cf. also Overton [1033] and Overton and
Womersley [1034] for earlier results in this direction concerning eigenvalues of
symmetric matrices.

Stochastic Programming and Related Topics: Dentcheva and
Römisch [324], Glover, Craven and Fl̊am [509], Henrion [557, 558], Henrion
and Outrata [562], Henrion and Römisch [563, 564], Outrata and Römisch
[1032], and Papi and Sbaraglia [1051, 1052]. Note that there are many other
problems of stochastic optimization and related areas, which are intrinsically
nonsmooth and potentially cover a large territory for applying the general-
ized differential tools of variational analysis developed in this book; see, e.g.,
Birge and Qi [115], Dentcheva and Ruszczyński [325], Pennanen [1061], Schultz
[1196], Wets [1327], and the references therein.

Necessary Conditions in the Calculus of Variations and Opti-
mal Control for Ordinary Discrete and Differential Systems: Aru-
tyunov and Aseev [33], Aseev [39, 40, 41], Bellaassali and Jourani [93], Bessis,
Ledyaev and Vinter [113], Clarke [257, 258, 260, 261], Clarke, Ledyaev, Stern
and Wolenski [264, 265], Eisenhart [395], Ferreira, Fontes and Vinter [443],
Ferreira and Vinter [444], Ginsburg and Ioffe [506], Ioffe [605], Ioffe and Rock-
afellar [616], Kruger and Mordukhovich [717], Loewen [801], Loewen and Rock-
afellar [805, 806, 807], Marcelli [845], Marcelli, Outkine and Sytchev [847],
Mordukhovich [887, 889, 893, 897, 901, 902, 904, 914, 915, 916, 921], Mor-
dukhovich and Shvartsman [955], de Pinho [1074], de Pinho, Ferreira and
Fontes [1075, 1076], de Pinho and Ilchmann [1077], de Pinho and Vinter
[1078, 1079], de Pinho, Vinter and Zheng [1080], Rampazzo and Vinter [1118],
Rockafellar [1161, 1162], Rowland and Vinter [1179], Silva and Vinter [1211],
Smirnov [1215, 1216], Vinter [1289], Vinter and Woodford [1293], Vinter and
Zheng [1294, 1295, 1296], Woodford [1331], and Zhu [1372].

Qualitative Analysis of Ordinary Control Systems, Sensitivity,
Stability, and Controllability: Borwein and Zhu [161], Clarke [261], Clarke,
Ledyaev, Stern and Wolenski [264, 265], Galbraith [491, 492], Galbraith and
Vinter [493], Ioffe [605], Jourani [647], Ledyaev and Zhu [754], Loewen and
Rockafellar [807], Mordukhovich [901, 915], Rockafellar and Wolenski [1166,
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1167], Shvartsman and Vinter [1210], Smirnov [1216], Vinter [1289], Vinter
and Wolenski [1292], and Wolenski and Zhuang [1330].

Optimal Control of Time-Delay and Functional-Differential Sys-
tems: Clarke and Wolenski [275], Ginsburg and Ioffe [506], Minchenko [878],
Minchenko and Sirotko [880], Minchenko and Volosevich [881], Mordukhovich
[921], Mordukhovich and Trubnik [959], Mordukhovich and L. Wang [973, 974,
975, 976, 977], Ortiz [1021], and Ortiz and Wolenski [1022].

Generalized Solutions to Hamilton-Jacobi Equations, Stabiliza-
tion, and Feedback Synthesis of Control Systems: Clarke, Ledyaev,
Sontag and Subbotin [263], Clarke, Ledyaev, Stern and Wolenski [264, 265],
Clarke and Stern [269], Luo and Eberhard [819], Freeman and Kokotović
[474], Galbraith [490, 491, 492], Goebel [511], Ledyaev and Zhu [754], Malisoff,
Rifford and Sontag [837], Rifford [1124], Rockafellar [1164], Rockafellar and
Wolenski [1166, 1167], Sontag [1220], and Wolenski and Zhuang [1330].

Analysis, Control, and Optimization of Evolution and Partial
Differential Systems: Bounkhel and Thibault [173], Colombo and Gon-
charov [277], Colombo and Wolenski [280], Edmond and Thibault [390],
Gavrilov and Sumin [500], Guillaume [525], Ioffe [611], Marcellin [848], Mor-
dukhovich [932], Mordukhovich and D. Wang [970, 971], Rossi and Savaré
[1176], and Sumin [1233].

Variational Analysis and Generalized Differentiation on Smooth
and Riemannian Manifolds: This area of research has been recently started
in the work by Borwein and Zhu [164], Dontchev and Lewis [360], Ledyaev
and Zhu [752, 753, 754], and Rolewicz [1172]; cf. also Chryssochoos and Vinter
[240].

Applications to the Qualitative Theory of Dynamical Systems,
Geometry of Banach Spaces, Real and Complex Analysis: Avelin
[66, 67], Benabdellah [96], Benabdellah, Castaing, Salvadori and Syam [97],
Bolte, Daniilidis and Lewis [122, 122], Bounkhel and Thibault [173], Borwein,
Borwein and Wang [136], Borwein, Fabian, Kortezov and Loewen [139], Bor-
wein, Fabian and Loewen [140], Borwein and Fitzpatrick [141, 143], Borwein,
Fitzpatrick and Girgensohn [144], Borwein and Jofré [148], Borwein, Moors
and Wang [152], Borwein, Treiman and Zhu [158], Borwein and Zhu [163, 164],
Fabian and Mordukhovich [419, 422], Ha [530, 531], Ioffe [607], Jourani [649],
Jourani and Thibault [661], Mordukhovich and Shao [949], Mordukhovich
and B. Wang [960], Rolewicz [1171, 1172], Rossi and Savaré [1176], and Wang
[1303, 1304].

Applications to Mechanical, Physical, and Engineering Prob-
lems: Anitescu [20], Benabdellah [96], Benabdellah, Castaing, Salvadori
and Syam [97], Bounkhel and Thibault [173], Burke, Lewis and Overton
[194, 195, 197], Burke and Luke [201], Luke, Burke and Lyon [817], Colombo
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and Goncharov [277], Edmond and Thibault [390], Freeman and Kokotović
[474], Kočvara, Kružik and Outrata [689], Kočvara and Outrata [690, 691],
Mordukhovich and Outrata [939], Outrata [1024, 1027, 1028, 1030], Rossi and
Savaré [1176], and Vinter [1289].

Applications to Economics and Finance: Bellaassali and Jourani
[93], Borwein and Zhu [164], Bounkhel and Jofré [171], Cornet [288], Cor-
net and Czarnecki [290], Fl̊am [452], Fl̊am and Jourani [453], Florenzano,
Gourdel and Jofré [460], Jofré [633], Jofré and Rivera [635], Habte [533], Khan
[669, 670, 671], Kočvara and Outrata [690], Malcolm and Mordukhovich [836],
Mordukhovich [920, 922, 930], Mordukhovich, Outrata and Červinka [940],
Outrata [1029, 1030], Papi and Sbaraglia [1051, 1052], Villar [1288], and Zhu
[1375].

1.4.11. Generalized Normals in Banach Spaces. Now let us comment
on the major results presented in Sect. 1.1, which is mainly devoted to the
study of our basic geometric constructions in the framework of arbitrary Ba-
nach spaces. Theorem 1.6 was first formulated in Kruger and Mordukhovich
[718] and Mordukhovich [892], where relations with tangent/contingent ap-
proximations were established as well. Complete proofs of these results were
given in [719, 901]; cf. also Ioffe [596] for an equivalent representation of the ba-
sic normal cone in finite dimensions via limits of dual vectors to the contingent
cone. Note that representation (1.8) of the basic normal cone in Theorem 1.6
was adopted by Rockafellar and Wets [1165] as the basic definition of the
(general) normal cone in finite-dimensional spaces.

Polarity relationships between tangents and normals of the type dis-
cussed in Subsect. 1.1.2 were considered in many publications; see particu-
larly [89, 156, 600, 705, 719, 1165]. Both inclusion relations involving Clarke’s
tangent cone and the contingent/weak contingent ones in Theorem 1.9 were
established by Kruger [705] in the infinite-dimensional settings of the theo-
rem; cf. also Cornet [285] and Penot [1065] for the finite-dimensional equality

TC(x̄ ;Ω) = Lim inf
x
Ω→x̄

T (x ;Ω)

that follows from Theorem 1.9. The first inclusion of this theorem was also
proved by Treiman [1262] in Banach spaces, while the second one was given by
Penot [1065] in reflexive spaces. The equality formula of Theorem 1.9 under
the additional Kadec and Fréchet smooth assumptions was established by
Borwein and Strójwas [156].

The results of Subsect. 1.1.3 are mostly based on the paper by Mor-
dukhovich and B. Wang [967]. Note that the notion of strict differentiability
largely used in this subsection was formally introduced by Leach [748], while
it was already known to Peano [1054] and was actually used by Graves [522] in
his proof of the celebrated Lyusternik-Graves theorem; see Theorem 1.57 and
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the paper by Dontchev [352]. Observe also that the uniform estimates for ε-
normals derived in Lemma 1.16 (considered here and everywhere in the book
as preliminary results versus pointwise assertions in terms of the basic/limiting
constructions) should be distinguished from “fuzzy calculus” rules initiated
by Ioffe [591, 594] in somewhat different settings, since the former provide
more precise estimates uniformly on the entire neighborhoods of the points
in question with computing the corresponding constants. A finite-dimensional
version of Theorem 1.17 with the full rank assumption on the Jacobian was
proved, in a different way, by Rockafellar and Wets [1165].

The sequential normal compactness (SNC) property of sets from Sub-
sect. 1.1.4 was introduced by Mordukhovich and Shao in [951] (preprint of
1994) and then named “SNC” in [950]. Note that arguments involving an
interplay between the weak∗ and norm convergences of normal elements to
zero in dual spaces have been often used (explicitly or implicitly) in different
aspects of infinite-dimensional variational analysis to avoid triviality conclu-
sions; see, e.g., Borwein and Strójwas [155, 156], Ginsburg and Ioffe [506],
Ioffe [595, 598, 607], Jourani and Thibault [655, 656, 661], Kruger [707, 709],
Loewen [800, 801], Mordukhovich [901, 917], Mordukhovich and Shao [949],
and Penot [1068, 1071]. Theorems 1.21 and 1.22 were established by Mor-
dukhovich and B. Wang [967].

The compactly epi-Lipschitzian (CEL) property of sets was introduced by
Borwein and Strójwas [155] as an extension of the epi-Lipschitzian property
by Rockafellar [1147]. In contrast to the epi-Lipschitzian property largely re-
lated to nonempty interiors (see Proposition 1.25 for convex sets), the CEL
property holds for every set in finite dimensions. Comprehensive characteri-
zations of the CEL property for closed and convex sets in normed spaces were
given by Borwein, Lucet and Mordukhovich [150]; see Remark 1.27(i). Fur-
ther elaborations and deep developments of these results, in the framework
of separation theorems in Hilbert spaces, were obtained by Ernst and Théra
[409]. The proof of Theorem 1.26 is based on Loewen’s arguments from [800];
cf. also Mordukhovich and Shao [949].

Complete characterizations of CEL sets in Banach spaces via the topo-
logical/net convergence of normal elements in dual spaces were obtained in
the fundamental study by Ioffe [607] with the usage of variational principles;
see Remark 1.27(ii). These characterizations show that the CEL property is
actually a proper topological counterpart of the SNC one. Comprehensive re-
lationships between the CEL and SNC properties of sets in general Banach
spaces were established by Fabian and Mordukhovich [422] and discussed in
Remark 1.27(ii).

A smooth variational description of Fréchet normals in general Banach
spaces from Theorem 1.30(i) of Subsect. 1.1.5 was observed by Mordukhovich
[925]. The much more delicate descriptions from assertions (ii) and (iii) of this
theorem under the additional geometric assumptions on the space in question
are geometric/normal counterparts of the corresponding subgradient descrip-
tions established by Fabian and Mordukhovich [419]; see Theorem 1.88 in
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Subsect. 1.3.2. Note that assertion (iii) of Theorem 1.30 for S = LF follows
from the variational description of Fréchet subgradients derived by Deville,
Godefroy and Zizler [330, 331]. It was also proved by Rockafellar and Wets
[1165] in finite-dimensional spaces. Let us emphasize that the Fréchet-like nor-
mal/subgradient structure is crucial for such smooth variational descriptions
important in many applications including those in this book.

It is worth mentioning that a generalized normal concept of the variational
type given in Theorem 1.30(iii) goes back, in finite dimensions, to Hörmander
[581, 582] who applied it to partial differential equations and complex analy-
sis; see also Avelin [66, 67]. Subdifferential concepts of this type were initiated
and strongly developed by Crandall and Lions [297], Crandall, Evans and Li-
ons [295] in the theory of viscosity solutions to Hamilton-Jacobi and related
equations, which then became one of the most active and flourishing areas
in nonlinear analysis and partial differential equations with various applica-
tions to optimal control, differential games, stochastic equations, etc.; see, e.g.,
[85, 296, 458, 1230] and the references therein. Such subdifferential concepts
have been adopted and applied to problems in nonsmooth and variational
analysis by Deville et al. [328, 329, 330, 331] and especially by Borwein and
Zhu [160, 163, 164] under the name of “viscosity” or “smooth” subdifferentials.
Note that smooth normals and subgradients of this kind are equivalent to the
Fréchet ones from Definition 1.1(i) and Subsect. 1.3.2 under some smoothness
assumptions on the space in question, which are always imposed in the afore-
mentioned publications and which are not only sufficient but also necessary for
such descriptions of Fréchet-like constructions; see Fabian and Mordukhovich
[419]. On the other hand, any smoothness restrictions can be avoided while
using the constructions adopted in this book, in both prelimiting and limiting
frameworks.

The minimality property of the basic normal cone from Proposition 1.31
observed by Mordukhovich [920] is strongly related to the corresponding sub-
differential result obtained by Mordukhovich and Shao [949]. Previous mini-
mality results in this direction, under more restrictive requirements, were first
observed by Ioffe [596] and then developed by Ioffe [599] and Mordukhovich
[894, 901].

1.4.12. Derivatives and Coderivatives of Set-Valued Mappings. In
Sect. 1.2 we start studying generalized differentiation of set-valued (in partic-
ular, single-valued) mappings employing the graphical/geometric approach to
generalized differentiation that relates derivative-like constructions for map-
pings with infinitesimal approximations of their graphs. Such a graphical ap-
proach goes back to the very beginning of classical differentiation when Fermat
(1636) defined the original derivative notion for a polynomial function at a
given point via the tangent slope to its graph. Fermat’s geometric approach
was strongly developed in the modern framework by Aubin who defined, in
his 1981 paper [48], a derivative notion for a set-valued mapping via the
contingent cone to its graph at the point in question; cf. also Pshenichnyi
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[1107, 1109] for earlier developments. Various tangentially generated deriva-
tives of this type for nonsmooth functions and mappings were introduced and
studied in many publications employing different tangential approximations
of graphs; see, e.g., [28, 29, 52, 54, 58, 60, 91, 133, 186, 465, 469, 517, 594,
630, 686, 774, 1068, 1060, 879, 1094, 1159, 1165, 1168, 1247, 1278].

The other line of the graphical approach to generalized differentiation
was developed by Mordukhovich who introduced, in his 1980 paper [892],
the coderivative notion for general set-valued mappings via the basic normal
cone (1.80) to their graphs. This is conceptually different from tangentially
generated derivatives in the line of Aubin and Pshenichnyi due to the absence
of duality between tangent and normal cones in general nonconvex settings; of
course, for smooth and convex-graph mappings the two approaches are equiv-
alent. Observe that coderivatives provide extensions of the adjoint derivative
operator to nonsmooth and set-valued mappings, while tangentially generated
derivatives extend the classical derivative concept to arbitrary mappings.

As mentioned, the first coderivative was defined in [892] by formula (1.86)
via the nonconvex normal cone (1.80) in finite dimensions. It was motivated
by applications to optimal control of differential inclusions ẋ ∈ F(x, t), and
D∗F was employed in [892] (under the name of “adjoint mapping”) to describe
the adjoint system in necessary optimality conditions of the Euler-Lagrange
type for differential inclusions; for convex-graph mappings this agrees with
“locally conjugate/adjoint” operations used by Pshenichnyi. The very ap-
propriate term “coderivative” for constructions of type (1.86) for set-valued
mappings was later suggested by Ioffe [594, 596]. The notions of graphical N -
regularity and M-regularity from Definition 1.36 appeared in Mordukhovich
[917], while in finite dimensions they both go back to his earlier publications
[892, 901].

In infinite-dimensional settings, we distinguish between two limiting coderiv-
atives that both play a basic role in our analysis: the normal coderivative
and the mixed coderivative from Definition 1.32. The normal coderivative
described by (1.26) via the basic normal cone (1.3) is not actually different
from the original definition of [892] in finite dimensions depending only on
the normal cone in question, while the mixed coderivative is a pure infinite-
dimensional construction. It first appeared in Mordukhovich [917] (see also
Mordukhovich and Shao [953]), although the idea of using a mixed convergence
on the product of dual spaces was earlier explored by Penot [1071] (preprint of
1995). However, the construction of [1071] (defined in terms of convergent nets,
not sequences) is different from the mixed coderivative of Definition 1.32(iii)
by the reserved order of mixed convergence: weak∗ in the domain variable and
strong in the image one. The main disadvantage of the latter construction is
the lack of calculus, even in the case of real-valued functions; cf. Remark 3.22.
In contrast, our limiting coderivatives from Definition 1.32, both normal and
mixed, enjoy comprehensive calculi and thus various applications being fully
independent and irreplaceable in infinite dimensions.
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The difference between the normal and mixed coderivative in Example 1.35
was demonstrated by Mordukhovich and Shao [953], while the mapping in this
example was taken from Ioffe [598]. The extremal property of convex-valued
multifunctions from Theorem 1.34 and the coderivative representations for
differentiable mappings from Theorem 1.38 go back to the early work of Mor-
dukhovich [892, 901].

1.4.13. Lipschitzian Properties. In Subsect. 1.2.2 we begin a compre-
hensive study of Lipschitzian properties for (generally) set-valued mappings,
which play a central role in many aspects of variational analysis and its appli-
cations, particularly those considered in this book. The Lipschitz continuity of
functions (introduced in the 19th century by Lipschitz [796] in the framework
of differential equations) has been well recognized in the classical analysis
(probably starting with Peano) as a linear rate counterpart of the standard
continuity that, due to its linear rate, is very convenient from both theoreti-
cal/qualitative and numerical/quantitative viewpoints. The classical Lipschitz
property plays a significant role in convex analysis, where it is actually indis-
tinguishable from the standard continuity of convex functions, and especially
in Clarke’s nonsmooth analysis that is largely revolves around locally Lip-
schitzian functions.

Set-valued mappings are of special interest in variational analysis and op-
timization due, in particular, to the necessity of analyzing the behavior of
(moving) sets of feasible and optimal solutions to constraint and variational
systems with respect to parameter perturbations. This is mainly a subject
of sensitivity and/or stability analysis, where notions of Lipschitzian stability
play a crucial role. Appropriate extensions of the Lipschitz continuity to set-
valued mappings are therefore heavily required. The standard notion of the
(Hausdorff) Lipschitz continuity for a multifunction F : X →→ Y , correspond-
ing actually to the classical Lipschitz property of a single-valued mapping
with values in the space of compact subsets of Y endowed with the Pompieu-
Hausdorff distance (see [552, 1101, 1165]), may be restrictive for the needs
of variational analysis. A significant restriction comes from the compactness
requirement (boundedness in finite dimensions) on the set values. This is not
often the case for solution maps to parametric variational inequalities and
other optimization-related problems. A simple while very important example
of unbounded sets is provided by epigraphs of real-valued functions significant
in the theory and many applications.

An appropriate version of Lipschitzian behavior for set-valued mappings,
with no compactness restriction, was discovered by Aubin [49] who was moti-
vated by applications to sensitivity analysis for convex optimization problems.
Aubin’s property is a localization of Lipschitzian behavior in a neighborhood
of a given point from the graph of F , being indeed the most natural counterpart
of the classical local Lipschitz continuity in the case of set-valued mappings.
Furthermore, Aubin’s property happens to be equivalent to the standard lo-
cal Lipschitz continuity of the corresponding (scalar) distance function due
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to Theorem 1.41 established by Rockafellar [1154]. Thus the term ”pseudo-
Lipschitz” suggested by Aubin for this property seems to be rather mislead-
ing, since “pseudo” means “false.” In [364, 1165] this property was called the
“Aubin property,” without specifying its Lipschitzian nature. Other names
for this behavior were suggested, e.g., in [686, 728]. In our opinion, the term
“Lipschitz-like” accepted in this book better reflects the nature and the sense
of Aubin’s extension of the classical Lipschitz property to set-valued map-
pings.

Observe that, in accordance with the classical local Lipschitz continuity,
both Hausdorff and Aubin local Lipschitzian properties involve the compari-
son between all pairs of points from a neighborhood of the reference point in
question. This implies the robustness of both Hausdorff and Aubin set-valued
extensions with respect to perturbations of the reference point, i.e., these Lip-
schitzian properties, as well as the classical one, are properties around the
given point. Throughout the book we distinguish such properties from those
at the given point that are usually not robust.

Other robust Lipschitzian properties for set-valued mappings, which seem
to be essentially finite-dimensional in nature, were defined and studied by
Rockafellar [1154], Loewen and Rockafellar [805], Rockafellar and Wets [1165],
and Galbraith [491]. Theorem 1.42 is an infinite-dimensional version of Rock-
afellar’s results established in [1154]. More discussions on such properties can
be found in [1165].

The study of “non-robust” properties of set-valued mappings, correspond-
ing to the fixed u = x̄ in the basic inclusion (1.28) of Definition 1.40, was
initiated by Robinson [1130] under the name of the “upper Lipschitzian”
property, where V = IRm in (1.28); note that such behavior doesn’t go
back to the classical Lipschitz continuity in the case of single-valued map-
pings. In [1132], Robinson established the upper-Lipschitzian property for
the so-called piecewise polyhedral mappings important in applications to
sensitivity analysis for some classes of optimization problems particularly
including linear programming; cf. Walkup and Wets [1299] and Robinson
[1126, 1127] for previous results in this direction. The upper Lipschitzian
property and its modifications were called later “calmness” properties by
Rockafellar and Wets [1165]. These and related Lipschitzian properties of
set-valued mappings were studied and applied in many publications; see, e.g.,
[91, 424, 482, 519, 550, 559, 560, 561, 562, 641, 768, 773, 686, 687, 1339, 1362].

One of the strongest advantages of the coderivative constructions from
Definition 1.32 is the possibility to provide in their terms complete dual char-
acterizations for robust Lipschitzian behavior of set-valued and single-valued
mappings and for the corresponding properties of metric regularity and cov-
ering. Subsection 1.2.2 contains necessary coderivative conditions for robust
Lipschitzian behavior in arbitrary Banach spaces. Theorems 1.43 and 1.44
were established in Mordukhovich [917] and Mordukhovich and Shao [953],
while in finite dimensions the results of Theorem 1.44 go back to the earlier
work by Mordukhovich: to [892, 901] for the local Lipschitzian property and to
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[907] for the Lipschitz-like one. Estimate (1.32) in general Banach spaces was
first obtained by Mordukhovich and Shao [946] for ε = 0; the given simplified
proof follows the ideas from Jourani and Thibault [661].

The concepts of graphically Lipschitzian and graphically smooth mappings
from Definition 1.45 go back to Rockafellar [1153] who introduced them un-
der the names of “Lipschitzian manifolds” and “strictly smooth sets” for
their graphs; the “graphical” terminology was first adopted by Rockafellar
and Wets [1165]. The hemi-Lipschitzian and hemismooth versions of Defini-
tion 1.45 appeared in Mordukhovich and B. Wang [965]. Due to the results by
Rockafellar [1153] in their extensions in Poliquin and Rockafellar [1090] and
Dontchev and Rockafellar [365], the graphical Lipschitzian property holds
for broad collections of greatly important mappings typically encountered
in finite-dimensional variational analysis and optimization. They particularly
include subdifferential mappings for convex, saddle, and (essentially more gen-
eral) prox-regular functions being invariant under the so-called “ample para-
metrization.”

Theorem 1.46 on the equivalence between the graphical regularity and
the graphical smooth (resp. hemismooth) properties was established by Mor-
dukhovich [912] for graphically Lipschitzian mappings and by Mordukhovich
and B. Wang [965] for graphically hemi-Lipschitzian ones based on Rockafel-
lar’s results [1153] on the subspace property of Clarke normals in finite dimen-
sions and on the normal cone (equality type) calculus from Subsect. 1.1.3. We
refer the reader to Subsect. 3.2.4 and the corresponding comments to Chap. 3
given in Sect. 3.4 for infinite-dimensional extensions of these and related re-
sults.

1.4.14. Metric Regularity and Linear Openness. Metric regularity
and covering/linear openness properties we begin to study in Subsect. 1.2.3
have been long recognized among the most fundamental in nonlinear analysis.
Their origin goes back to the classical Banach-Schauder open mapping theorem
for linear operators [76, 1190] established in the early 1930s. A celebrated
nonlinear extension of the Banach-Schauder result was obtained in 1934 by
Lyusternik [824] and independently (in a different but largely equivalent form)
in the 1950 paper by Graves [522]. This result, called now the Lyusternik-
Graves theorem, and the methods developed for its proof reproduced in the
arguments of Theorem 1.57 play a crucial role in many aspects of the classical
nonlinear analysis as well as of modern variational analysis and their numerous
applications; see, e.g., [337, 352, 355, 361, 587, 608, 676, 677, 1100, 1110, 1129]
for more results, discussions, references, and applications.

The key estimate (1.36) in the definition of metric regularity with y = ȳ =
f (x̄) for C1 functions F = f : X → Y appeared in the original Lyusternik’s
proof [824] of his result regarding the description of the tangent space to a
smooth manifold; it is worth mentioning that his theorem was motivated by
applications to Lagrange multipliers in a variational problem with the equal-
ity/operator constraint f (x) = 0 given by a smooth mapping between Banach



160 1 Generalized Differentiation in Banach Spaces

spaces. Graves established in his proof, which was actually applied to map-
pings f strictly differentiable at x̄ though the latter notion was not explicitly
defined, the covering/openness part (1.39) of the theorem; both regularity
and covering parts are now known to be equivalent. The equivalence between
these properties for Lipschitz continuous mappings was first observed proba-
bly by Dmitruk, Milyutin and Osmolovskii [337, Introduction], with no proof
given; cf. also Ioffe [589, 598]. Note that Graves’ original version of the cov-
ering/openness theorem was definitely underestimated in [337]; see more dis-
cussions in Dontchev [352].

The next step in obtaining distance estimates of type (1.36) for set-valued
mappings given by inequalities, which probably reflect the main feature of
modern (after linear programming) optimization in contrast to the classical
one, was the 1952 paper by Hoffman [579] who derived estimates for the
distance to sets of solutions given by linear equality and inequality systems
in finite dimensions. Hoffman’s type estimates, known now as error bounds,
has become an important part of modern optimization theory developed in
many publications; see, e.g., [59, 60, 71, 88, 188, 190, 191, 205, 424, 445, 639,
647, 686, 716, 692, 784, 842, 1003, 1004, 1005, 1045, 1126, 1334, 1353] and the
references therein.

Seminal contributions to the study of metric regularity and openness prop-
erties of set-valued mappings governed by nonlinear smooth equality and in-
equality systems as well as convex processes, were made by Robinson in the
series of publications in the 1970s; see [1125, 1127, 1128, 1129]. His fundamen-
tal theorem on metric regularity and covering/openness for convex processes,
discovered independently by Ursescu [1275] (cf. Theorem 4.21 in this book
and its “closed graph” version in Aubin and Ekeland [52, Theorem 3.3.1]),
has been of great importance and influence for the development and applica-
tions of variational analysis.

Early extensions of the Lyusternik-Graves theorem to nonsmooth and
nonconvex systems were obtained, for single-valued Lipschitzian mappings
f : X → Y between Banach spaces in terms of Clarke subgradients, by Ioffe
[587] and by Milyutin in [337, Sect. 5]. In fact, Ioffe considered not the full
metric regularity property as defined in (1.36) for all y around ȳ but its
weaker one-point counterpart with y = ȳ = f (x̄) in (1.36). The latter regu-
larity at a point called recently “subregularity” by Dontchev and Rockafellar
[366] is useful for certain important applications, e.g., to the theory of nec-
essary optimality and controllability conditions. Its covering counterpart was
investigated by Warga (see, e.g., [1318, 1320, 1322]), under the name of “fat
homeomorphism,” in terms of his derivate containers. However, such one-point
properties are not robust, which creates difficulties for their comprehensive
study and implementation, especially in infinite dimensions.

Milyutin was probably the first who strongly emphasized (in his talks and
personal communications, long before publishing [337]) the importance to con-
sider regularity and covering properties of operators in entire neighborhoods
(or around reference points – the terminology adopted in this book), with
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uniform estimates. He also realized from the very beginning that his sufficient
condition for covering of Lipschitzian operators in terms of Clarke subgra-
dients, as well as the related implicit function theorem by Magaril-Il’yaev
[826], were incomplete and far removed from the necessity, while the classical
Lyusternik regularity condition ∇ f (x̄)X = Y was an equivalent to covering
for smooth mappings.

The “regularity” terminology was originally employed by Lyusternik to
indicate the fulfillment of his surjectivity condition ∇ f (x̄)X = Y . In the same
sense it has been later used in most of the Russian literature; see, e.g., Ioffe
and Tikhomirov [618]. Robinson’s usage of the word “regularity” in [1128,
1129] related actually to the openness property of type (1.39), which was
called “covering” by Milyutin et al. (see, e.g., [337]). Ioffe [589, 596, 598] used
the term “surjection” for a similar property defined at a point; he reserved
“regularity” [587] for the distance estimate (1.36) with y = ȳ = f (x̄). The
term “metric regularity” for the distance estimate, which seems to be very
appropriate and is widely accepted nowadays, was first employed by Borwein
[137]. The “openness at a linear rate” terminology goes back to Dolecki [339];
Rockafellar and Wets [1165] called this property “linear openness.”

The equivalences between the local properties of metric regularity, cov-
ering/linear openness for set-valued mappings, and Lipschitzian behavior of
Aubin’s type for their inverses were proved by Borwein and Zhuang [165] and
by Penot [1066]. They didn’t however include the correspondences between
modulus/exact bounds into their theorems. The equivalence results and termi-
nology of Subsect. 1.2.3, including local and nonlocal concepts, were developed
by Mordukhovich [909].

Note that nonlocal (global, semi-local) metric regularity and related prop-
erties of set-valued and single-valued mappings happened to be important
in many applications, in particular, to optimal control (see, e.g., Dmitruk
[336]) and numerical methods in optimization and equilibria (see, e.g., Ralph
[1116]). Observe that the nonlocal properties studied in Subsect. 1.2.3 are
different from those in the recent paper by Ioffe [608] who developed the met-
ric regularity theory for mappings between metric spaces. Mordukhovich and
B. Wang [967, 968] introduced and studied the property of “restrictive met-
ric regularity” for mappings f : X → Y between Banach spaces that reduced
to the standard metric estimate of type (1.36) for the restrictive mapping
f : X → f (X) between X and the metric space f (X) ⊂ Y while taking into
account the Banach space nature of both spaces X and Y ; see Remark 1.61
for more discussions. Another notion of nonlocal directional metric regular-
ity has been recently introduced and studied by Arutyunov and Izmailov [36]
motivated by applications to sensitivity analysis in optimization.

Necessary coderivative conditions for the metric regularity and covering
properties, with the exact bound estimates, presented in Theorem 1.54 and
Corollary 1.55 follow from the corresponding Lipschitzian results of Sub-
sect. 1.2.2 due to the obtained equivalence relationships; cf. Mordukhovich
[894, 901, 917], Kruger [709], and Mordukhovich and Shao [946, 953]. These



162 1 Generalized Differentiation in Banach Spaces

necessary conditions are important in the subsequent applications, especially
to coderivative calculus rules in Chap. 3. The sufficiency of these conditions
and their applications will be discussed in Chap. 4, with full commentaries
and references given in Sect. 4.5.

Theorem 1.57 gives complete characterizations of the covering and metric
regularity properties for single-valued mappings between Banach space that
are strictly differentiable at the point in question. Its sufficiency part is the
essence of (the proof of) the classical Lyusternik-Graves theorem. As men-
tioned, Lyusternik [824] formally established the tangent space result for C1

mappings, while his proof contained in fact the metric regularity estimate
(1.36). Graves [522] obtained the covering property, actually for strictly dif-
ferentiable mappings; his arguments are exactly reproduced in the proof of
the sufficient part of Theorem 1.57. Note that both proofs by Lyusternik and
Graves were based on an iterative process, which happened to be a certain
– essential – modification of the classical Newton’s tangent method, called
“Lyusternik’s iterative process” in [337].

It seems that the necessity part of Theorem 1.57 and the precise formulas
for the exact regularity and covering bounds were first established in finite-
dimensions by Mordukhovich [894, 901, 909] as a simple corollary of general
coderivative characterizations of the metric regularity and covering properties
for set-valued mappings. It was later observed that these results for C1 (as well
as for strictly differentiable) mappings could be derived by conventional ar-
guments of functional analysis; cf. Cominetti [282], Ioffe [607], and Dontchev,
Lewis and Rockafellar [361]. Note that a rigorous proof of Theorem 1.57 re-
quires the closedness of derivative images for metrically regular mappings;
this fact presented in Lemma 1.56 was established by Mordukhovich and B.
Wang [967]. Of course, the possibility to obtain the necessity and exact bound
formulas in terms of the first-order differential constructions are due to the
linear rate in the properties under consideration; this was probably not real-
ized in the classical Lyusternik-Graves theorem. Higher-order versions of these
properties were studied, e.g., in [165, 466, 467, 469, 521, 608].

The inverse mapping results of Theorem 1.60 are established in this book
is a consequence of the covering characterization of Theorem 1.57. The suffi-
cient part of this theorem is Leach’s extension [748] of the classical (C1) inverse
function theorem to the then-new class of strictly differentiable mappings; see
also the corresponding extension of the related implicit function theorem by
Nijenhuis [1011] and the recent book by Krantz and Parks [699] on implicit
function theorems with many historical details. The necessity of the invert-
ibility assumption on ∇ f (x̄) for the existence of a locally single-valued and
strictly differentiable inverse was probably first observed by Dontchev [351]
as a consequence of his general results on the preservation of certain Lip-
schitzian and differentiability properties for solution maps to “generalized
equations” under strong approximations in the sense of Robinson [1136]. We
refer the reader to Clarke [252, 255], Dontchev [350], Dontchev and Hager
[356], Hiriart-Urruty [570], Ioffe [589], Jongen, Klatte and Tammer [639] Kum-
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mer [725, 726], Levy [767], Robinson [1136], Rockafellar and Wets [1165],
Warga [1318, 1320, 1322], and the bibliographies therein for nonsmooth ver-
sions of the implicit and inverse function theorems with various applications.

1.4.15. Coderivative Calculus in Banach Spaces. Subsection 1.2.4
contains calculus rules of the “right” inclusion and equality types for Fréchet,
normal, and mixed coderivatives in arbitrary Banach spaces, with the corre-
sponding regularity statements. The sum and chain rules from Theorems 1.62,
1.64, and 1.65 were derived by Mordukhovich and Shao [950, 953] extend-
ing the finite-dimensional results and arguments of Mordukhovich [910]. Note
that the ε-enlargements in the construction of both normal and mixed limiting
coderivatives are crucial for the validity of the sum and chain rules even in
finite dimensions, being indeed unavoidable in general Banach space settings.

The reader recognizes from Definition 1.63(i) that the notion introduced
therein is actually the classical notion of lower semicontinuity for set-valued
mappings; the appropriate name of inner semicontinuity was suggested by
Rockafellar and Wets [1165] to distinguish it from the lower semicontinuity
of real-valued functions. The property of inner/lower semicompactness from
Definition 1.63(ii) was defined by Mordukhovich and Shao [949]. The chain
rules from Theorem 1.66 were established by Mordukhovich and B. Wang
[967].

The SNC property of set-valued mappings from Definition 1.67(i) is di-
rectly induced by the SNC property of sets defined in Subsect. 1.1.4, while
the PSNC (i.e., partial SNC) property essentially takes into account the nat-
ural product structure of the graph space for set-valued mappings F : X →→ Y
exploring different convergences of sequences in X∗ and Y ∗. The latter prop-
erty was formulated by Mordukhovich and Shao [950, 951]; it versions and
modifications can be found, under various names, in Ioffe [604, 607], Jourani
and Thibault [659, 661], and Penot [1071].

The automatic PSNC property of Lipschitz-like (Aubin’s “pseudo-
Lipschitzian”) mappings in Proposition 1.68 was first observed by Mor-
dukhovich [917]; it directly follows from the necessary coderivative condition
for the Lipschitz-like behavior established in Theorem 1.43. The SNC cal-
culus results from Theorems 1.70, 1.71, 1.72, and 1.74 were established by
Mordukhovich and B. Wang [967].

The partial CEL property defined in (1.45) was introduced by Jourani and
Thibault [655] who actually established the implication in Theorem 1.75, al-
though not explicitly formulated therein.

1.4.16. Subgradients of Extended-Real-Valued Functions. In
Sect. 1.3 we start a comprehensive study of generalized differential/subdiffer-
ential properties for extended-real-valued functions on Banach spaces. The
comments on the history and genesis of generalized differential concepts were
given above in Subsects. 1.4.1–1.4.9. We pay the main attention to the ba-
sic/limiting subdifferential of Definition 1.77 introduced by Mordukhovich
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[887] via the basic normal cone (1.80) in finite dimensions. Singular subgradi-
ents were introduced by Rockafellar [1150] as “singular limiting proximal sub-
gradients” (the name and ∞-notation appeared later in [1155]) via the limits
of proximal subgradients of the type considered in Theorem 2.38 with the
replacement of Fréchet subgradients by proximal subgradients, which is possi-
ble in finite dimensions. Rockafellar’s singular subdifferential construction was
motivated by seeking an analytic representation of Clarke’s generalized gra-
dient for non-Lipschitzian functions. The equivalent (in IRn) definition of the
singular subdifferential ∂∞ϕ(x̄) via basic horizontal normals to the epigraph
of ϕ was independently given by Mordukhovich [894] motivated by establish-
ing appropriate/minimal qualification conditions for subdifferential calculus
rules involving non-Lipschitzian functions. These conditions, particularly

∂∞ϕ1(x̄) ∩
(
− ∂∞ϕ2(x̄)

)
= {0}

for the sum rule and the induced one for the chain rule, are automatic in
the Lipschitzian case. Note that Rockafellar and Wets [1165] used the terms
“subgradient” (or “general subgradient”) and “horizontal subgradient” for
elements of the sets ∂ϕ(x̄) and ∂∞ϕ(x̄), respectively.

The framework of extended (by infinite values) real-valued functions, very
convenient in variational analysis and optimization, was originated indepen-
dently in the early 1960s by Moreau [980] and Rockafellar [1140], under the in-
fluence of the 1951 lecture notes by Fenchel [441]; see Commentary to Chap. 1
in Rockafellar and Wets [1165] for more details.

Although basic and singular subgradients are defined for arbitrary extended-
real-valued functions finite at the point in question, the most useful properties
and applications of them concern lower semicontinuous functions introduced
by Baire in 1899; see [72]. The importance of l.s.c. functions (versus contin-
uous ones) has been well realized in the classical calculus of variations, first
probably by Tonelli who established the existence of minimizers for integral
functional of the calculus of variations under the convexity of integrals with
respect to derivative variables. The latter ensures the lower semicontinuity of
integral functionals in weak topologies of the Lebesgue spaces , while continu-
ity corresponds to linearity in that framework; see Tonelli [1260], Cesari [235],
and Olech [1020] for more details and references.

The upper subdifferential from Definition 1.78 and the symmetric subdif-
ferential defined in (1.42), which may be essentially different from the lower
one (in contrast to the case of Clarke’s generalized gradients) were first consid-
ered by Kruger and Mordukhovich [718, 719, 892] motivated by applications
to optimization; the symmetric subdifferential (called “generalized differen-
tial” [718, 892]) happened to be especially useful for the mean value theorems
for nonsmooth functions established in [706, 708, 894, 901, 949].

A useful result of Theorem 1.80 seems to be derived here for the first
time, while its corollaries are well known. Note that the equality for the basic
subdifferential in Theorem 1.80 doesn’t generally hold for l.s.c. functions as
claimed in [708].
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Epsilon-subgradients in Definition 1.83 were introduced and studied in the
early work by Kruger and Mordukhovich motivated by seeking convenient rep-
resentations of basic subgradients in infinite dimensions; see [706, 708, 718,
719]. Theorem 1.86 was proved by Kruger [706, 708] and then by Ioffe [600].
Smooth variational descriptions in assertions (ii) and (iii) of Theorem 1.88
were established by Fabian and Mordukhovich [419]; see also the above com-
ments in Subsect. 1.4.11 related to the corresponding descriptions of Fréchet
normals from Theorem 1.30.

The scalarization formula for the mixed coderivative in Theorem 1.90 was
obtained by Mordukhovich and Shao [953]; another proof is given in this book.
In finite dimensions, this formula goes back to Ioffe [596] and Mordukhovich
[894] following in fact from the “generalized epigraph” results established by
Kruger in his dissertation [706]; see also [707, 901].

The lower/subdifferential regularity notion from Definition 1.91(i) goes
back to Mordukhovich [894]. It is generally different from the epigraphical
regularity (ii) of that definition, which is induced by normal regularity of sets
from Definition 1.4 applied to epigraphs and hence involving also singular
subgradients. Note that lower regularity of locally Lipschitzian functions re-
duces to Clarke regularity in finite dimensions (see Subsect. 1.4.3), but it is
no longer the case in (even Hilbert) infinite-dimensional spaces; see Bounkhel
and Thibault [172] for a detailed study.

As follows from Theorem 1.93, Fréchet-like ε-subgradients of convex func-
tions in the sense of Definition 1.83, which reduce to classical subgradients
of convex analysis for ε = 0, are different for ε > 0 from conventional ε-
subgradients of convex functions introduced by Brøndsted and Rockafellar
[179] and used in a number of applications under various names including “ε-
subgradients” [683, 733, 853, 1017, 1142, 1353], “approximate subgradients”
[575, 987, 1199], “ε-enlargements” [186, 187], “ε-Fenchel subgradients” [849],
etc. We don’t consider such ε-constructions in this book.

1.4.17. Subgradients of Distance Functions. Subdifferential proper-
ties of the distance functions considered in Subsect. 1.3.3 are highly important
in many aspects of variational analysis and its applications due to a special
role played by such functions in variational principles and variational tech-
niques. We pay the main attention to studying the standard distance from a
variable point to a fixed set in Banach spaces, while most of the results ob-
tained in Subsect. 1.3.3 can also be derived in the case of the extended distance
function

ρ(x, y) = dist(y; F(x)) := inf
v∈F(x)

‖y − v‖ (1.88)

generated by set-valued mappings (or moving sets); see the comments given
below. However, there are principal differences between subdifferential results
for distance functions at in-set and out-of-set points.
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Relations for ε-subgradients of the standard distance function at set points
from Proposition 1.95 were established by Kruger [705]; Corollary 1.96 on
Fréchet subgradients can be also found in Ioffe [600]. Theorem 1.97 on com-
puting basic normals to a set via basic subgradients of the distance function
is due to Thibault [1249] who actually derived it for the extended distance
function (1.88). Theorem 1.99 on ε-subgradients of the distance function at
out-of-set points via ε-normals to set enlargement was obtained by Kruger
[705]; however, his proof didn’t contain all the necessary details. The com-
plete proof presented in the book is taken from the paper by Bounkhel and
Thibault [172].

It has been recently observed by Mordukhovich and Nam [935, 936] that
counterparts of Thibault’s relationships (as in Theorem 1.97) between basic
subgradients of distance functions at in-set points and basic normals to the
corresponding sets don’t hold at out-of-set points, even in finite dimensions.
Motivated by this observation, they introduced the new sided modifications of
the basic subdifferential (see Definition 1.100) and established Theorem 1.101
on evaluating right-sided subgradients of the standard distance function via
set enlargements, as well its analog for the extended distance function (1.88).
Note that a different sided subdifferential of the standard distance function,
involving limits of Clarke normals, was introduced by Cornet and Czar-
necki [290] motivated by applications to existence theorems for generalized
equilibria.

The afore-mentioned papers [935, 936] contain also various projection in-
clusions for ε-subgradients and basic subgradients of the distance function,
particularly those presented in Subsect. 1.3.3, while the estimates 1 − ε ≤
‖x∗‖ ≤ 1+ ε in Proposition 1.102 and Theorem 1.103 were proved by Jourani
and Thibault [657]. Previous results of the projection type were established
by Borwein, Fitzpatrick and Giles [145], Borwein and Giles [146] and Burke,
Ferris and Quian [193] via Clarke’s constructions. Other results on differen-
tiability and subdifferentiability of distance functions, with some remarkable
specifications in finite-dimensional and Hilbert space settings, can be found in
Borwein and Ioffe [147], Bounkhel [170], Clarke [255], Clarke et al. [146, 271],
Fitzpatrick [451], Ioffe [596, 599, 600], Mordukhovich [901], Mordukhovich and
Nam [935, 936], Poliquin, Rockafellar and Thibault [1093], Rockafellar [1142],
Rockafellar and Wets [1165], Thibault [1253], Wu and Ye [1336], etc.

1.4.18. Subdifferential Calculus in Banach Spaces. Most of the sub-
differential calculus rules presented in Subsect. 1.3.4 for functions on arbitrary
Banach spaces are taken from Mordukhovich and Shao [947]; see also Mor-
dukhovich [901, 907] and Rockafellar and Wets [1165] for preceding results in
finite-dimensional spaces. The subdifferential inclusions for marginal functions
from Theorem 1.108 go back to Rockafellar [1155] in finite dimensions.

Various results on subdifferentiation of the marginal functions (1.60) in
general Banach spaces have been recently obtained by Mordukhovich, Nam
and Yen [937] using both lower and upper Fréchet subgradients. It was shown,
in particular, that
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∂̂µ(x̄) ⊂
⋂

(x∗,y∗)∈̂∂+ϕ(x̄,ȳ)

[
x∗ + D̂∗G(x̄, ȳ)(y∗)

]
(1.89)

provided that ∂̂+ϕ(x̄, ȳ) 	= ∅, which is the case, e.g., for rather broad classes
of semiconcave and other upper regular functions ϕ; see more discussions in
Subsects. 5.1.1 and 5.5.4. Moreover, the upper estimate (1.89) is exact (i.e.,
holds as equality) in many important situations. The results obtained in this
way imply new calculus rules and optimality conditions involving Fréchet-like
constructions in arbitrary Banach spaces; see also another paper of the same
authors [938].

Observe that the subdifferential sum and chain rules of the equality type
presented in Subsect. 1.3.4, as well as the related product and quotient rules,
don’t require any regularity assumptions. On the other hand, the correspond-
ing calculus for both lower and epigraphical regularity notions are incorporated
into these results.

The SNEC property of extended-real-valued functions was defined by Mor-
dukhovich and Shao [950]; it is automatic when either the space in question
is finite-dimensional or the function considered is directionally Lipschitzian in
the sense of Rockafellar [1147]. The SNEC calculus result of Proposition 1.117
was derived by Mordukhovich and B. Wang [967] as a consequence of the more
general SNC calculus for sets and set-valued mappings.

1.4.19. Second-Order Generalized Differentiation. The study of
second-order generalized differential properties of real-valued functions started
with Alexandrov’s theorem [8] (1939) who, being motivated by applications to
differential geometry, established the almost everywhere twice differentiability
of convex functions in finite dimensions. Note that Alexandrov didn’t intro-
duce any generalized derivative; it came later in the framework of nonsmooth
analysis motivated mostly by applications to optimization. Observe also that
no special theory of second-order generalized differentiation had been created
in convex analysis; it is probably due to the fact that first-order necessary
optimality conditions for convex functions happen to be sufficient as well;
see Chap. 13 in Rockafellar and Wets [1165] and the subsequent paper by
Rockafellar [1163] for more discussions.

There are definitely much more possibilities to construct second-order
generalized derivatives in comparison with first-order ones. Even in classical
analysis on finite-dimensional spaces there exist at least two ways to do so,
which are not equivalent unless a function is C2: via Taylor’s expansion and
via the “derivative-of-derivative” approach. When a function is nonsmooth
(of either first or second order), one can explore a variety of different direc-
tional derivatives; this indeed has been done in many publications. We are
not going to discuss here numerous second-order generalized differential con-
structions introduced and applied in the framework of variational analysis
and beyond, referring the reader to the books by Aubin and Frankowska [54],
Bonnans and Shapiro [133], Hiriart-Urruty and Lemaréchal [575], Rockafellar
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and Wets [1165], to the survey paper by Crandall, Ishii and Lions [296], and
to many other publications, e.g., [8, 56, 102, 153, 236, 282, 283, 301, 328, 381,
384, 387, 466, 469, 502, 577, 601, 613, 615, 628, 765, 771, 772, 939, 1037, 1038,
1067, 1091, 1092, 1156, 1163, 1198, 1306, 1307, 1308, 1337, 1358].

The dual derivative-of-derivative approach to second-order generalized dif-
ferentiation was developed by Mordukhovich who introduced in [907] the
second-order subdifferential ∂2ϕ(x̄, ȳ) in form (1.87) for extended-real-valued
functions ϕ: X → IR. The original definition was given in finite dimensions be-
ing motivated by applications to sensitivity analysis for variational systems.
In this approach the set of basic subgradients ∂ϕ(x̄) ⊂ X∗ stands for a first-
order generalized derivative of ϕ at x̄ , while the coderivative D∗ plays a role
of an adjoint derivative operator for the set-valued mapping ∂ϕ: X →→ X∗ at
ȳ ∈ ∂ϕ(x̄). The distinction between the normal and mixed second-order subdif-
ferentials from Definition 1.118, depending on the coderivative type employed
via (1.87), was first made in [917].

Note that one can use of course another first-order subdifferential ∂ in
(1.87) to define the corresponding second-order construction, as it was done by
Mordukhovich and Outrata [939] with the Clarke subdifferential ∂ = ∂Cϕ(x̄)
and by Eberhard and Wenczel [387] with the proximal one ∂ = ∂Pϕ(x̄). The
type of coderivatives in (1.87), or normal cones to the graph of ∂ϕ(·), is however
much more essential. In particular, the replacement of the basic normal cone
N(·;Ω) by its Clarke counterpart for Ω = gph ∂ϕ in scheme (1.87) doesn’t lead
to an adequate second-order construction in view of the subspace property of
the Clarke normal cone to Lipschitzian manifolds, which is the case of any
reasonable first-order subdifferential operator ∂ϕ(·), already for convex func-
tions ϕ on IRn! We refer the reader to the above discussions in Subsects. 1.4.9
and 1.4.13 and to the references therein for more details.

The second-order subdifferential constructions of type (1.87) were stud-
ied and applied, sometimes under the names of “generalized Hessians” or
“coderivative Hessians,” to a large spectrum of problems in variational analy-
sis and its applications including second-order necessary and sufficient op-
timality conditions; stability of solution maps to problems in constrained
optimization, complementarity conditions, variational and hemivariational
inequalities along with their generalizations; optimization and equilibrium
problems with equilibrium constraints; optimal control of evolution systems;
various mechanical equilibria, etc. The interested reader can find the cor-
responding results and discussions in Dontchev and Rockafellar [364], Eber-
hard, Pearce and Ralph [385], Eberhard, Pearce and Sivakumaran [384], Eber-
hard and Wenczel [387], Kočvara and Outrata [690], Levy and Mordukhovich
[769], Levy, Poliquin and Rockafellar [771], Lucet and Ye [816], Mordukhovich
[907, 910, 911, 912, 913, 921, 923, 925, 926, 928], Mordukhovich and Outrata
[939], Mordukhovich and B. Wang [967], Outrata [1024, 1027, 1028, 1030],
Poliquin and Rockafellar [1092], Rockafellar and Wets [1165], Rockafellar and
Zagrodny [1168], Treiman [1268], Ye [1338, 1339], Ye and Ye [1343], Ye and
Zhu [1345], Zhang [1360, 1361, 1362], and in other publications.
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1.4.20. Second-Order Subdifferential Calculus in Banach Spaces.
Subsection 1.3.5 collects some properties and calculus results for both normal
and mixed second-order subdifferentials from Definition 1.118 that hold in
general Banach space settings. The properties presented in the beginning of
this subsection simply follow from the subdifferential definitions and the corre-
sponding coderivative properties; they demonstrate that the second-order sub-
differentials under consideration are natural extensions of the adjoint Hessian
to the case of extended-real-valued functions that are not C2. Recall that no
adjoint/transposition operation is needed for the classical Hessian matrix in
finite dimensions.

Regarding second-order calculus results, let us emphasize that they can
be developed only for those classes of functions, which enjoy the first-order
subdifferential calculus in the form of equalities. This is due to the absence of
monotonicity with respect to inclusions for either normal or mixed coderiva-
tive.

The inclusion chain rule in Theorem 1.127 was obtained by Mordukhovich
and Outrata [939] in finite dimensions and then was extended by Mor-
dukhovich [923] to arbitrary Banach spaces. Furthermore, based on the idea
suggested by Rockafellar in finite dimensions (cf. [1165, Exercises 6.7 and 10.7]
for the first-order constructions), the latter chain rule for the normal second-
order subdifferential was proved in [923] to hold as equality provided that the
subspace ker∇g(x̄) is complemented in X .

Another approach to second-order chain rules was developed by Mor-
dukhovich and B. Wang [967] based on deriving in Lemma 1.126 certain
coderivative chain rules for compositions whose specific structure is appro-
priate for applications to generalized second-order subdifferentiation. Observe
particularly that the afore-mentioned specific structure allows us to obtain
the notable chain rule (1.64), where the mixed coderivative is used for the in-
ner mapping. This is significantly different from the general coderivative chain
rules presented in Subsects. 1.2.4 and 3.1.2 in both Banach and Asplund space
settings; cf. the arguments and discussions therein.

Employing this approach, the new chain rules presented in Theorem 1.127
were established in [967] for both mixed and normal second-order
subdifferentials. It is remarkable to observe that the “mixed” chain rule of
this theorem holds as equality in arbitrary Banach spaces! The equality state-
ment in the corresponding “normal” result requires the weak∗ extensibility
property of the Banach space in question (see Definition 1.122) introduced
and studied by Mordukhovich and B. Wang [967]. The fairly general suffi-
cient conditions obtained in [968] for this property ensure the equality-type
chain rule for the normal second-order subdifferential in Theorem 1.127 that
essentially extends the previous result of [923].

The second-order coderivative (1.69) of Lipschitzian mappings was in-
troduced by Mordukhovich [923] who employed it therein to establish the
second-order chain rules of Theorem 1.128 for compositions with nonsmooth
inner mappings. Let us finally mention that efficient formulas to compute



170 1 Generalized Differentiation in Banach Spaces

the second-order constructions under consideration were derived by Dontchev
and Rockafellar [364] and Mordukhovich and Outrata [939] for rather gen-
eral classes of functions in finite-dimensional spaces, while more specific cal-
culations and applications can be found in Flegel [454], Flegel and Kan-
zow [456], Flegel, Kanzow and Outrata [457], Henrion, Jourani and Out-
rata [560], Kočvara and Outrata [690], Mordukhovich [911, 912], Outrata
[1024, 1025, 1027, 1026, 1028, 1030], Poliquin and Rockafellar [1090], Ye
[1338, 1339, 1342], Ye and Ye [1343], Zhang [1360, 1361], etc.



2

Extremal Principle in Variational Analysis

It is well known that the convex separation principle plays a fundamental role
in many aspects of nonlinear analysis, optimization, and their applications.
Actually the whole convex analysis revolves around using separation theorems
for convex sets. In problems with nonconvex data separation theorems are ap-
plied to convex approximations. This is a conventional way to derive necessary
optimality conditions in constrained optimization: first build tangential con-
vex approximations of the problem data around an optimal solution in primal
spaces and then apply convex separation theorems to get supporting elements
in dual spaces (Lagrange multipliers, adjoint arcs, prices, etc.). For problems
of nonsmooth optimization this approach inevitably leads to the usage of con-
vex sets of normals and subgradients, whose calculus is also based on convex
separation theorems.

This chapter is devoted to another principle in variational analysis, called
the extremal principle, which can be viewed as a variational counterpart of
the convex separation principle in nonconvex settings. The extremal principle
provides necessary conditions for local extremal points of set systems in terms
of generalized normals to nonconvex sets with no use of tangential approxi-
mations and convex separation. It is the base for subsequent applications in
this book to nonconvex calculus, optimization, and related topics.

We mainly consider three versions of the extremal principle in Banach
spaces formulated, respectively, in terms of ε-normals, Fréchet normals, and
basic normals from Chap. 1. It will be shown, by direct variational arguments
and the method of separable reduction, that the class of Asplund spaces is the
most suitable framework for the validity and applications of these results. We
also establish relationships between the extremal principle and other basic
results in variational analysis, obtain a number of variational characteriza-
tions of Asplund spaces in terms of the normal and subgradient constructions
studied above, and derive their simplified representations important in what
follows. Finally, we discuss some abstract versions of the extremal principle
in terms of axiomatically defined normal and subdifferential structures in ap-
propriate Banach spaces.
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2.1 Set Extremality and Nonconvex Separation

In this section we introduce a general concept of set extremality and study
its relationships with conventional notions of optimal solutions in constrained
optimization and separation of sets. We formulate three basic versions of the
extremal principle and prove the strongest one in finite-dimensional spaces.
As usual, our standard framework is Banach spaces unless otherwise stated.

2.1.1 Extremal Systems of Sets

We start with the definition of extremal systems of sets that may belong to
linear topological spaces.

Definition 2.1 (local extremality of set systems). Let Ω1, . . . ,Ωn be
nonempty subsets of a space X for n ≥ 2, and let x̄ be a common point of
these sets. We say that x̄ is a local extremal point of the set system
{Ω1, . . . ,Ω2} if there are sequences {aik} ⊂ X , i = 1, . . . , n, and a neighbor-
hood U of x̄ such that aik → 0 as k → ∞ and

n⋂

i=1

(
Ωi − aik

)
∩ U = ∅ for all large k ∈ IN .

In this case {Ω1, . . . ,Ωn, x̄} is said to be an extremal system in X .

Loosely speaking, the local extremality of sets at a common point means
that they can be locally “pushed apart” by a small perturbation (translation)
of even one of them. For n = 2 the local extremality of {Ω1,Ω2, x̄} can be
equivalently described as follows: there exists a neighborhood U of x̄ such that
for any ε > 0 there is a ∈ ε IB with (Ω1 + a) ∩ Ω2 ∩ U = ∅. Note that the
condition Ω1 ∩Ω2 = {x̄} doesn’t necessary imply that x̄ is a local extremal
point of {Ω1,Ω2}. A simple example is given by Ω1 := {(v, v)| v ∈ IR} and
Ω2 := {(v,−v)| v ∈ IR}.

It is clear that every boundary point x̄ of a closed set Ω is a local extremal
point of the pair {Ω, x̄}. In general, this geometric concept of extremality
covers conventional notions of optimal solutions to various problems of scalar
and vector optimization. In particular, let x̄ be a local solution to the following
problem of constrained optimization:

minimize ϕ(x) subject to x ∈ Ω ⊂ X .

Then one can easily check that (x̄, ϕ(x̄)) is a local extremal point of the set
system {Ω1,Ω2} in X × IR with Ω1 = epiϕ and Ω2 = Ω × {ϕ(x̄)}. Indeed,
we satisfy the requirements of Definition 2.1 with a1k = (0, νk), a2k = 0, and
U = O×IR, where νk ↑ 0 and where O is a neighborhood of the local minimizer
x̄ . In the subsequent parts of the book the reader will find many other examples
of extremal systems in problems related to optimization, variational principles,
generalized differential calculus, and applications to welfare economics.

The next simple property of extremal systems is useful in what follows.
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Proposition 2.2 (interiors of sets in extremal systems). For every ex-
tremal system {Ω1, . . . ,Ωn, x̄} in X one has

(intΩ1) ∩ . . . ∩ (intΩn−1) ∩Ωn ∩ U = ∅ , (2.1)

where U is a neighborhood of the local extremal point x̄.

Proof. Assuming the contrary, pick any point x from the intersection in (2.1)
and take arbitrary sequences aik → 0, i = 1, . . . , n, in X . Since x ∈ intΩi ∩U
for i = 1, . . . , n−1, we have x−ank ∈ U and x+aik−ank ∈ Ωi for i = 1, . . . , n−1
and k ∈ IN large enough. Thus x − ank ∈ (Ωi − aik) ∩ U for all i = 1, . . . , n
and large k, which contradicts the set extremality. �

Now we establish relationships between the concept of set extremality from
Definition 2.1 and the conventional separation property for a finite number of
sets that may be nonconvex. Recall that sets Ωi ⊂ X , i = 1, . . . , n, are said to
be separated if there exist vectors x∗

i ∈ X∗, not equal to zero simultaneously,
and numbers αi such that

〈x∗
i , x〉 ≤ αi for all x ∈ Ωi , i = 1, . . . , n ,

x∗
1 + . . .+ x∗

n = 0, α1 + . . .+ αn ≤ 0 .

Note that if the sets Ωi are separated and have a common point, then the last
condition must hold as equality.

Proposition 2.3 (extremality and separation). Let Ω1, . . . ,Ωn (n ≥ 2)
be subsets of X that have at least one common point. The following hold:

(i) If these sets are separated, then the system {Ω1, . . . ,Ωn, x̄} is extremal
for every common point x̄ of these sets.

(ii) The converse is true if all Ωi are convex and intΩi 	= ∅ for i =
1, . . . , n − 1.

Proof. Assume that Ωi are separated with x∗
n 	= 0, which doesn’t restrict the

generality. Pick any a ∈ X with 〈x∗
n , a〉 > 0 and put ak := a/k for all k ∈ IN .

Let us show that

Ω1 ∩ . . . ∩Ωn−1 ∩ (Ωn − ak) = ∅, k ∈ IN ,

which obviously implies the extremality of {Ω1, . . . ,Ωn, x̄} for every common
point x̄ . Assuming the contrary and taking any x from the latter intersection,
one has by the separation property that

〈x∗
i , x〉 ≤ αi , i = 1, . . . , n − 1, and 〈x∗

n , x + ak〉 ≤ αn, k ∈ IN .

Summing up, we arrive at α1 + . . . + αn ≥ 1
k 〈x∗

n , a〉 > 0, a contradiction.
Thus (i) holds. The converse assertion (ii) follows from Proposition 2.2 and
the separation theorem for convex sets. �
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Note that, for convex sets in finite dimensions, Proposition 2.3(ii) holds
with no interiority assumption on Ωi , i = 1, . . . , n − 1. This follows from the
extremal principle established below in Theorem 2.8. Hence for dim X < ∞
the extremality and separation of convex sets are unconditionally equivalent.
One will also see that the extremal principle allows us to relax interiority
assumptions on convex sets Ωi , i = 1, . . . , n − 1, ensuring the validity of
Proposition 2.3(ii) in infinite dimensions.

Corollary 2.4 (extremality criterion for convex sets). Let Ωi , i =
1, . . . , n, be convex sets in X having at least one point in common. Assume
that intΩi 	= ∅ for i = 1, . . . , n − 1. Then condition (2.1) with U = X is
necessary and sufficient for extremality of the system {Ω1, . . . ,Ωn, x̄}, where
x̄ is any common point of these sets.

Proof. Follows from Propositions 2.2 and 2.3(i), since condition (2.1) ensures
the separation (and hence extremality) property of n convex sets with non-
empty interiors of all but one of them. �

Note that the convexity of Ωi is essential for the extremality criterion in
Corollary 2.4. A counterexample is provided by the sets

Ω1 := IR2
+∪ IR2

−,Ω2 :=
{
(x1, x2)

∣
∣ x1 ≤ 0, x2 ≥ 0

}
∪
{
(x1, x2)

∣
∣ x1 ≥ 0, x2 ≤ 0

}
.

2.1.2 Versions of the Extremal Principle
and Supporting Properties

In this subsection we define three basic versions of the extremal principle in
Banach spaces and show that they can be treated as a kind of local separation
of nonconvex sets around extremal points. We also discuss their relationships
with supporting properties of nonconvex sets expressed in terms of generalized
normals from Definition 1.1.

Definition 2.5 (versions of the extremal principle). Let {Ω1, . . . ,Ωn, x̄}
be an extremal system in X . We say that:

(i) {Ω1, . . . ,Ωn, x̄} satisfies the ε-extremal principle if for every ε > 0
there are xi ∈ Ωi ∩ (x̄ + ε IB) and x∗

i ∈ X∗ such that

x∗
i ∈ N̂ε(xi ;Ωi ), i = 1, . . . , n , (2.2)

x∗
1 + . . .+ x∗

n = 0, ‖x∗
1‖ + . . .+ ‖x∗

n ‖ = 1 . (2.3)

(ii) {Ω1, . . . ,Ωn, x̄} satisfies the approximate extremal principle if
for every ε > 0 there are xi ∈ Ωi ∩ (x̄ + ε IB) and

x∗
i ∈ N̂(xi ;Ωi ) + ε IB∗, i = 1, . . . , n , (2.4)

such that (2.3) holds.
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(iii) {Ω1, . . . ,Ωn, x̄} satisfies the exact extremal principle if there
are basic normals

x∗
i ∈ N(x̄ ;Ωi ), i = 1, . . . , n , (2.5)

such that (2.3) holds.

We say that the corresponding version of the extremal principle holds in the
space X if it holds for every extremal system {Ω1, . . . ,Ωn, x̄} in X , where all
the sets Ωi are (locally) closed around x̄.

It is clear that the number 1 in the nontriviality condition of (2.3) can
be replaced with any other positive number, which should be independent
of ε in versions (i) and (ii). Note that ε in “ε-extremal principle” is just
a part of the notation (and not a subject to change unlike anywhere else),
which emphasizes the difference between (2.2) and (2.4). Since one always
has N̂(x ;Ω) + ε IB∗ ⊂ N̂ε(x ;Ω), the ε-extremal principle follows from the
approximate extremal principle for any extremal system in a Banach space X .
We’ll see below that these two versions of the extremal principle are actually
equivalent if they apply to every extremal system in X .

Thus the relations of the extremal principle provide necessary conditions
for local extremal points of set systems and can be viewed as generalized Euler
equations in an abstract geometric setting. They also can be treated as proper
variational counterparts of local separation for nonconvex sets. To see this, we
first consider the exact extremal principle for two sets. Then (2.3) and (2.5)
reduce to: there is x∗ ∈ X∗ with

0 	= x∗ ∈ N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
. (2.6)

When both Ω1 and Ω2 are convex, (2.6) means

〈x∗, u1〉 ≤ 〈x∗, u2〉 for all u1 ∈ Ω1 and u2 ∈ Ω2 ,

which is exactly the classical separation property for two convex sets. Simi-
larly, relations (2.3) and (2.5) for n convex sets (n > 2) give the conventional
separation property considered in the preceding subsection.

Note that, in contrast to the classical separation, the extremal principle
applies only to local extremal points of set systems. As shown in Proposi-
tion 2.3, it is always the case for every common point of sets separated in
the classical sense. Therefore, any sufficient condition for convex separation
implies set extremality. The above discussion allows us to view the extremal
principle as a local variational extension of the classical separation to non-
convex sets. It is important to emphasize that in many situations occurring
in applications, even in the case of convex sets, the local extremality of points
in question can be checked automatically from the problem statement, and
we don’t need to care about any interiority-like conditions, etc. This supports
a variational approach to such problems (which may be not of a variational
nature) based on the extremal principle; see below.
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Considering “fuzzy” versions (i) and (ii) of the extremal principle for sys-
tems of two sets, we reduce them to the following relations: for every ε > 0
there are xi ∈ Ωi ∩ (x̄ + ε IB), i = 1, 2, and x∗ ∈ X∗ with ‖x∗‖ = 1 such that,
respectively,

x∗ ∈ N̂ε(x1;Ω1) ∩
(
− N̂ε(x2;Ω2)

)
,

x∗ ∈
(

N̂(x1;Ω1) + ε IB∗) ∩
(
− N̂(x2;Ω2) + ε IB∗) .

For convex sets they coincide, due to Proposition 1.3, and provide an approx-
imate separation of Ω1 and Ω2 near x̄ . Likewise, relations (2.2)–(2.4) of the
extremal principle in the general case under consideration can be viewed as a
local variational counterpart of the approximate local separation for noncon-
vex sets.

Next let us consider a special case of extremal systems generated by bound-
ary points x̄ of locally closed sets Ω ⊂ X , i.e., extremal systems of the type{
Ω, {x̄}, x̄

}
in the notation of Definition 2.1. Then the exact extremal prin-

ciple gives the nontriviality property for the basic normal cone:

N(x̄ ;Ω) 	= {0} if and only if x̄ ∈ bdΩ . (2.7)

Note that the “only if” part follows immediately from Definition 1.1 for any
closed set Ω ⊂ X , and the “if” part is an easy consequence of the exact
extremal principle whenever it holds in X . When Ω is convex, condition (2.7)
reduces to the classical supporting hyperplane theorem; so in general (2.7) can
be viewed as a local extension of this result to nonconvex sets. Applying the
other versions of the extremal principle, we get some approximate supporting
properties of nonconvex sets in terms of ε-normals and Fréchet normals at
points near x̄ .

Proposition 2.6 (approximate supporting properties of nonconvex
sets). Given a proper closed set Ω ⊂ X and a point x̄ ∈ bdΩ, one has the
following:

(i) If the ε-extremal principle holds for
{
Ω, {x̄}, x̄

}
, then whenever ε > 0

and M > ε there is x ∈ Bε(x̄) ∩ bdΩ such that N̂ε(x ;Ω) \ M IB∗ 	= ∅.
(ii) If the approximate extremal principle holds for

{
Ω, {x̄}, x̄

}
, then for

every ε > 0 there is x ∈ Bε(x̄) ∩ bdΩ such that N̂(x ;Ω) 	= {0}.
Therefore, the validity of the approximate extremal principle (the ε-extremal
principle) in X implies, respectively, the density of the set

{
x ∈ bdΩ

∣
∣
∣ N̂(x ;Ω) 	= {0}

}
(2.8)

for every proper closed subset Ω ⊂ X , and the set
{

x ∈ bdΩ
∣
∣
∣ N̂ε(x ;Ω) \ M IB∗ 	= ∅

}
(2.9)

for every proper closed subset Ω ⊂ X , every ε > 0, and every M > ε.
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Proof. Assertion (i) for 0 < M < 1/2 follows immediately from Defini-
tion 2.5(i) with n = 2, Ω1 = Ω, and Ω2 = {x̄}. Let us prove it for any
M > ε. Fix arbitrary ε > 0 and M ≥ 1/2 and employ the relations of the
ε-extremal principle to

{
Ω, {x̄}, x̄

}
with ε̃ := ε/(2M +1). We find x ∈ Ω and

x̃∗ ∈ X∗ satisfying

‖x − x̄‖ ≤ ε̃ < ε, x̃∗ ∈ N̂ε̃(x ;Ω), and ‖x̃∗‖ = 1/2 ,

which implies that x ∈ bdΩ. Then putting x∗ := (2M + 1)x̃∗ and using the
definition of ε-normals (1.2), we get

lim sup
u
Ω→x

〈x∗, u − x〉
‖u − x‖ = (2M + 1) lim sup

u
Ω→x

〈x̃∗, u − x〉
‖u − x‖ ≤ (2M + 1)ε̃ = ε ,

i.e., x∗ ∈ N̂ε(x ;Ω) with ‖x∗‖ = (2M + 1)/2 > M . This gives (i).
To prove (ii), we use the approximate extremal principle for

{
Ω, {x̄}, x̄

}

with ε ∈ (0, 1/2). In this way we find x ∈ Bε(x)∩Ω and x∗ ∈ N̂(x ;Ω) + ε IB∗

with ‖x∗‖ = 1/2. The latter yields x ∈ bdΩ and N̂(x ;Ω) 	= {0}. �

If Ω is convex, then (2.8) describes the set of support points to Ω. Hence
the approximate extremal principle in a Banach space X implies the density
of support points to every closed convex subset of X , which is the contents of
the celebrated Bishop-Phelps theorem (see Theorem 3.18 in Phelps [1073]).

A natural question arises about the reverse implications in Proposition 2.6,
i.e., about the possibility to derive relations of the approximate extremal prin-
ciple (resp. the ε-extremal principle) from the density of sets (2.8) and (2.9)
for every proper closed subset of X . To explore this way, let us fix an extremal
system {Ω1,Ω2, x̄} and observe that the local extremality of x̄ ∈ Ω1 ∩ Ω2

implies that 0 ∈ bd (Ω1 − Ω2). Hence one can apply the mentioned density
results to the set Ω1−Ω2 around the origin if Ω1−Ω2 is assumed to be closed.
For simplicity let us consider the case of (2.8) and find xi ∈ Ωi , i = 1, 2, such
that

N̂(x1 − x2;Ω1 −Ω2) 	= {0} and ‖x1 − x2‖ ≤ ε .

Taking x∗ ∈ N̂(x1 − x2;Ω1 −Ω2) with ‖x∗‖ = 1/2, we have from (1.2) that

lim sup
u
Ω1−Ω2→ x1−x2

〈x∗, u − (x1 − x2)〉
‖u − (x1 − x2)‖

≤ 0 .

Now putting u = v − x2, v ∈ Ω1 and then u = x1 − v, v ∈ Ω2, one gets
x∗ ∈ N̂(x1 : Ω1) and −x∗ ∈ N̂(x2;Ω2). In this way we arrive at all the rela-
tions of the approximate extremal principle except that xi ∈ x̄ +ε IB∗, i = 1, 2.
Thus we cannot obtain the reverse statements in Proposition 2.6 using the
reduction of local extremal points to the boundary of Ω1 −Ω2. Moreover, the
above arguments actually provide characterizations of the supporting proper-
ties N̂ε(x ;Ω) \ M IB∗ 	= ∅ and N̂(x ;Ω) 	= {0} in terms of relations (2.2)–(2.4),
which don’t involve extremal points and their small perturbations.
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Proposition 2.7 (characterizations of supporting properties). Given
a Banach space X and numbers ε ≥ 0 and M ≥ ε, the following properties are
equivalent:

(a) For every proper closed set Ω ⊂ X there exists x ∈ bdΩ satisfying
N̂ε(x ;Ω) \ M IB∗ 	= ∅, which corresponds to N̂(x ;Ω) 	= {0} if ε = 0.

(b) Let Ω1 and Ω2 be arbitrary subsets of X such that Ω1 −Ω2 is proper
and closed around the origin. Then there are x1 ∈ Ω1 and x2 ∈ Ω2 satisfying

0 ∈
(

N̂ε(x1;Ω1) \ M IB∗)+ N̂ε(x2;Ω2) .

Proof. To establish (a)⇒(b), we take Ω := Ω1 − Ω2 in (a) and use the
above arguments for x1 − x2 ∈ Ω1 −Ω2 and x∗ ∈ N̂ε(x1 − x2;Ω1 −Ω2) with
‖x∗‖ > M > ε ≥ 0. Implication (b)⇒(a) is proved similarly to Proposition 2.6
putting Ω1 := Ω and Ω2 := {x̄}, where x̄ is a fixed boundary point of Ω. �

2.1.3 Extremal Principle in Finite Dimensions

In this subsection we give a direct proof of the exact extremal principle in
finite-dimensional spaces. The proof is based on the method of metric approx-
imations, which provides an efficient approximation of extremal set systems
by families of smooth problems of unconstrained optimization. Without loss of
generality we use the Euclidean norm on X .

Theorem 2.8 (exact extremal principle in finite dimensions). The
exact extremal principle holds in any space X with dim X < ∞.

Proof. Let x̄ be a local extremal point of the set system {Ω1, . . . ,Ωn}, where
all the sets Ωi are closed around x̄ . Take sequences {aik} and a neighborhood
U from Definition 2.1 and assume without loss of generality that U = X .
For each k = 1, 2, . . . we consider the following problem of unconstrained
minimization:

minimize dk(x) :=

[
n∑

i=1

dist2(x + aik ;Ωik)

]1/2

+ ‖x − x̄‖2, x ∈ X . (2.10)

Since the function dk is continuous and its level sets are bounded, there is an
optimal solution xk to (2.10) by the classical Weierstrass theorem. Due to the
local extremality of x̄ one has

αk :=

[
n∑

i=1

dist2(xk + aik ;Ωi )

]1/2

> 0 .

Taking into account that xk is an optimal solution to (2.10), we get
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dk(xk) = αk + ‖xk − x̄‖2 ≤
[

n∑

i=1

‖aik‖2

]1/2

↓ 0 ,

which implies that xk → x̄ and αk ↓ 0 as k → ∞.
Now let us arbitrarily pick wik ∈ Π(xk + aik ;Ωi ) for i = 1, . . . , n (the best

approximations to xk + aik in the closed set Ωi ) and consider the problem:

minimize ρk(x) :=

[
n∑

i=1

‖x + aik − wik‖2

]1/2

+ ‖x − x̄‖2 (2.11)

that obviously has the same optimal solution xk as (2.10). Since αk > 0 and
the norm ‖ · ‖ is Euclidean, ρk(x) is continuously differentiable around xk .
Thus (2.11) is a smooth problem of unconstrained minimization. Employing
the classical Fermat rule in (2.11), we get

∇ρk(xk) =
n∑

i=1

x∗
ik + 2(xk − x̄) = 0 , (2.12)

where x∗
ik = (xk + aik − wik)/αk , i = 1, . . . , n, with

‖x∗
1k‖2 + . . .+ ‖x∗

nk‖2 = 1 .

Taking into account the compactness of the unit sphere in finite dimen-
sions, we find vectors x∗

i ∈ X = X∗, i = 1, . . . , n, satisfying the normalization
condition in (2.3) and such that x∗

ik → x∗
i as k → ∞. Passing to the limit

in (2.12), one gets the first condition in (2.3) as well. It follows from rep-
resentation (1.9) of basic normals in Theorem 1.6 that x∗

i ∈ N(x̄ ;Ωi ) for
all i = 1, . . . , n. This completes the proof of the exact extremal principle in
finite-dimensional spaces. �

Corollary 2.9 (nontriviality of basic normals in finite dimensions).
Let dim X < ∞. Then the nontriviality property (2.7) holds for basic normals
to every proper closed set Ω ⊂ X .

Proof. Follows from the extremal principle as discussed above. It can also be
proved directly by using the definition of boundary points and representation
(1.9) in Theorem 1.6. �

The proof of the exact extremal principle given in Theorem 2.8 is es-
sentially based on the geometry of finite-dimensional spaces. Namely, it uses
the compactness of the closed unit ball and the unit sphere as well as varia-
tional properties of the Euclidean norm that have been also exploited above
for representation (1.9) of the basic normal cone. An important feature of
finite-dimensional spaces is that they always admit a smooth renorm (by the
Euclidean norm) differentiable away from the origin.
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In the next section we justify, based on variational arguments, all the
three versions of the extremal principle formulated above for a broad class of
infinite-dimensional spaces that possess remarkable geometric properties not
related to the Euclidean norm.

2.2 Extremal Principle in Asplund Spaces

The results of this section play a crucial role for the whole subsequent mate-
rial of the book. We start with a direct variational proof of the approximate
extremal principle in spaces admitting a Fréchet smooth renorm, which form a
special subclass of Asplund spaces. Then we develop the method of separable
reduction for Fréchet-like normals and subgradients that allows us to reduce
certain problems involving such constructions in nonseparable Banach spaces
to separable ones. This method is particularly helpful for the class of Asplund
spaces, where every separable subspace admits a Fréchet smooth renorm. In
such a way we prove the extremal principle in Asplund spaces (in both ap-
proximate and exact forms) and then establish variational characterizations
of this class of Banach spaces.

2.2.1 Approximate Extremal Principle in Smooth Banach Spaces

In this subsection we pay the main attention to the proof of the approximate
extremal principle in Banach spaces that admit Fréchet smooth renorming,
i.e., an equivalent norm Fréchet differentiable at any nonzero point. It is well
known that this class includes every reflexive Banach space; see, e.g., Diestel
[332]. Since the prenormal cone N̂ is invariant with respect to equivalent norms
on X , we don’t restrict the generality by assuming that ‖ · ‖ is such a smooth
norm on X .

Theorem 2.10 (approximate extremal principle in Fréchet smooth
spaces). The approximate extremal principle holds in any space X admitting
a Fréchet smooth renorm.

Proof. We first prove the theorem for the case of two sets and then obtain
the general statement by induction. Let x̄ ∈ Ω1∩Ω2 be a local extremal point
of some sets Ωi closed around x̄ . We have a neighborhood U of x̄ such that
for any ε > 0 there is a ∈ X with ‖a‖ ≤ ε3/2 and (Ω1 + a) ∩ Ω2 ∩ U = ∅.
Assume for simplicity that U = X and also that ε < 1/2. Then considering
the function

ϕ(z) := ‖x1 − x2 + a‖ for z = (x1, x2) ∈ X × X ,

we conclude that ϕ(z) > 0 on Ω1 ×Ω2, and hence ϕ is Fréchet differentiable
at any point z ∈ Ω1 ×Ω2. In what follows we use the product norm ‖z‖ :=
(‖x1‖2+‖x2‖2)1/2 that is obviously Fréchet differentiable away from the origin



2.2 Extremal Principle in Asplund Spaces 181

in X × X . Observe the link between the above function ϕ and the distance
function (2.10) used in the proof of the extremal principle in finite dimensions.
In contrast to the finite-dimensional proof of Theorem 2.8, now we cannot use
the compactness of the unit ball and the Weierstrass existence theorem, which
are replaced below by variational arguments based on the completeness of X
and then on the smoothness of the norm.

To proceed, we take z0 := (x̄, x̄) and form the set

W (z0) :=
{

z ∈ Ω1 ×Ω2

∣
∣ ϕ(z) + ε‖z − z0‖2/2 ≤ ϕ(z0)

}

that is nonempty and closed. Moreover, for each z ∈ W (z0) one has

‖x1 − x̄‖2 + ‖x2 − x̄‖2 ≤ 2ϕ(z0)/ε = 2‖a‖/ε ≤ ε2 ,

which implies that W (z0) ⊂ Bε(x̄) × Bε(x̄). Next let us inductively define
sequences of vectors zk ∈ Ω1 ×Ω2 and nonempty closed sets W (zk), k ∈ IN ,
as follows. Given zk and W (zk), k = 0, 1, . . ., we select zk+1 ∈ W (zk) satisfying

ϕ(zk+1) + ε

k∑

j=0

‖zk+1 − z j‖2

2 j+1
< inf

z∈W(zk)

{

ϕ(z) + ε

k∑

j=0

‖z − z j‖2

2 j+1

}

+
ε3

23k+2
.

Then we form the set

W (zk+1) :=

{

z ∈ Ω1 ×Ω2

∣
∣
∣ ϕ(z) + ε

k+1∑

j=0

‖z − z j‖2

2 j+1

≤ ϕ(zk+1) + ε

k∑

j=0

‖zk+1 − z j‖2

2 j+1

}

.

It is easy to check that {W (zk)} is a nested sequence of nonempty closed
subsets of Ω1 × Ω2. Let us show that diam W (zk) := sup

{
‖z − w‖

∣
∣ z, w ∈

W (zk)
}
→ 0 as k → ∞. Indeed, for each z ∈ W (zk+1) and k ∈ IN we have

ε‖z − zk+1‖2

2k+2
≤ ϕ(zk+1) + ε

k∑

j=0

‖zk+1 − z j‖2

2 j+1
−
(

ϕ(z) + ε

k∑

j=0

‖z − z j‖2

2 j+1

)

≤ ϕ(zk+1) + ε

k∑

j=0

‖zk+1 − z j‖2

2 j+1
− inf

z∈W(zk)

{

ϕ(z) + ε

k∑

j=0

‖z − z j‖2

2 j+1

}

<
ε3

23k+2
,

which implies that diam W (zk) ≤ ε/2k−1 → 0. Thus (due to the completeness
of X) ∩∞

k=0W (zk) =
{

z̄} with zk → z̄ = (x̄1, x̄2) ∈ Ω1 × Ω2 as k → ∞. By
z̄ ∈ W (z0) one has z̄ ∈ Bε(x̄) × Bε(x̄). Let us show that z̄ is a minimum point
of the function

φ(z) := ϕ(z) + ε

∞∑

j=0

‖z − z j‖2

2 j+1
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over the set Ω1 ×Ω2. Indeed, taking z̄ 	= z ∈ Ω1 ×Ω2 and using the construc-
tion of W (zk), we find k ∈ IN such that

ϕ(z) + ε

k∑

j=0

‖z − z j‖2

2 j+1
> ϕ(zk) + ε

k−1∑

j=0

‖zk − z j‖2

2 j+1
. (2.13)

This implies that z̄ is a minimum point of φ over Ω1 ×Ω2, since the sequence
on the right-hand side of (2.13) is nonincreasing as k → ∞. Therefore the
function ψ(z) := φ(z) + δ(z;Ω1 ×Ω2) achieves at z̄ its minimum over X × X .
Thus 0 ∈ ∂̂ψ(z̄) by the generalized Fermat rule of Proposition 1.114. Note
that φ is Fréchet differentiable at z̄ due to ϕ(z̄) 	= 0 and the smoothness of
‖ · ‖2. Now applying the sum rule of Proposition 1.107(i) and then (1.50) as
ε = 0 and the product formula of Proposition 1.2, we get

−∇φ(z̄) ∈ N̂(z̄;Ω1 ×Ω2) = N̂(x̄1;Ω1) × N̂(x̄2;Ω2) .

It follows from the construction of φ that ∇φ(z̄) = (u∗
1, u∗

2) ∈ X∗ × X∗, where

u∗
1 = x∗ + ε

∞∑

j=0

w∗
1 j
‖x̄1 − x1 j‖

2 j
, u∗

2 = −x∗ + ε

∞∑

j=0

w∗
2 j
‖x̄2 − x2 j‖

2 j

with (x1 j , x2 j ) = z j , x∗ = ∇(‖ · ‖)(x̄1 − x̄2 + a), and

w∗
i j =






∇(‖ · ‖)(x̄i − xi j ) if x̄i − xi j 	= 0 ,

0 otherwise

for j = 0, 1, . . . and i = 1, 2. One clearly has
∑∞

j=0 ‖w∗
i j‖ · ‖x̄i − xi j‖/2 j ≤ 1,

i = 1, 2, and ‖x∗‖ = 1. Thus putting xi := x̄i and x∗
i := (−1)i x∗/2 for i = 1, 2,

we arrive at relations (2.3) and (2.4) of the approximate extremal principle in
the case of two sets.

Now let us consider the general case of n sets {Ω1, . . . ,Ωn} in X and
prove the approximate extremal principle by induction when n > 2. It is easy
to see that if x̄ is a local extremal point of {Ω1, . . . ,Ωn}, then the point
z̄ = (x̄, . . . , x̄) ∈ Xn−1 is locally extremal for the system of two sets

Λ1 := Ω1 × . . .×Ωn−1 and Λ2 :=
{
(x, . . . , x) ∈ Xn−1

∣
∣ x ∈ Ωn

}
,

which are closed around z̄ if all Ωi are assumed to be closed around x̄ . It
is obvious that Xn−1 admits a Fréchet smooth renorm if X does. Hence we
can employ the previous consideration with n = 2 and get the approximate
extremal principle for {Λ1,Λ2, z̄}. In this way, taking into account Proposi-
tion 1.2 and the representation

N̂(z̄;Λ2) =
{
(x∗

1 , . . . , x∗
n−1) ∈ (X∗)n−1

∣
∣ x∗

1 + . . .+ x∗
n−1 ∈ N̂(x̄ ;Ωn)

}
,

we finish the proof of the theorem. �
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Remark 2.11 (bornologically smooth spaces). The arguments used in
the proof of Theorem 2.10 for n = 2 are now typical in the area of variational
principles; cf. Li and Shi [785] and discussions in the next section. In particu-
lar, they can be modified to prove the smooth variational principle of Borwein
and Preiss [154] in spaces admitting a smooth renorm with respect to any
given bornology on X . Recall that a bornology β on X is a family of bounded
and centrally symmetric subsets of X whose union is X , which is closed under
multiplication by positive numbers and such that the union of any two mem-
bers of β is contained in some member of β. The Fréchet bornology considered
above is the strongest one, where β consists of all bounded symmetric sub-
sets of X . The weakest one is the Gâteaux bornology, where β consists of all
finite subsets of X . It is well known that every separable Banach space admits
a Gâteaux smooth renorm. There are useful bornologies in-between; partic-
ularly the Hadamard bornology, where β consists of all compact symmetric
subsets of X .

One can check that the way of proving Theorem 2.10 allows us to justify the
approximate extremal principle (under a suitable modification of generalized
normals to nonconvex sets) in Banach spaces admitting a smooth renorm
of any kind. Actually the corresponding versions of the approximate extremal
principle and the smooth variational principle are equivalent in Banach spaces
with smooth renorms; see Borwein, Mordukhovich and Shao [151] for more
details. It will be shown in Section 2.3 that a smoothness of the space in
question is not only sufficient and but also necessary for the validity of smooth
variational principles. On the other hand, the version of the extremal principle
in Definition 2.5 will be justified in arbitrary Asplund spaces, which may
not admit even a Gâteaux smooth renorm. This is due to the possibility of
separable reduction for Fréchet-like normals and subgradients considered next.

2.2.2 Separable Reduction

In this subsection we develop the method of separable reduction that allows
us to reduce certain problems involving Fréchet-like constructions from an
arbitrary Banach space to the case of separable subspaces. The main goal is
to obtain separable reduction results valuable for applications to the extremal
principle in the approximate form of Definition 2.5(ii). A suitable assertion
for this purpose can be formulated as follows.

Given proper functions fi : X → IR, i = 1, . . . , N , a separable subspace Y0

of X , and a number M > 0, there is a closed separable subspace Y of X such
that Y0 ⊂ Y and

0 ∈
(
∂̂ f1(x1) \ M IB∗)+ ∂̂ f2(x2) + . . .+ ∂̂ fN (xN ) (2.14)

whenever x1, x2, . . . , xN ∈ Y and
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0 ∈
(
∂̂ f1|Y (x1) \ M IB∗)+ ∂̂ f2|Y (x2) + . . .+ ∂̂ fN |Y (xN ) , (2.15)

where f|Y denotes the restriction of f to Y and where IB∗ = IBX∗ .

This result, being applied to the indicator functions fi (x) := δ(x ;Ωi ),
i = 1, . . . , n, with fn+1(x) := ε‖x‖, ensures the desired separable reduction of
the approximate extremal principle for n sets from a nonseparable space X
to its separable subspace Y , provided that the initial subspace Y0 is properly
selected; see below. Note that it is crucial to have M > 0 in (2.14) and (2.15)
independently from the other data; otherwise we don’t get the nontriviality
condition in the extremal principle.

To justify the desired separable reduction, we have to overcome essential
technical difficulties in constructing a separable subspace Y0 ⊂ Y ⊂ X for the
given data. This requires working only with elements of the primal Banach
space X . However, formulations of the extremal principle and the assertion
needed for its separable reduction involve elements of the dual space X∗. Thus
an important part of the separable reduction procedure is to translate the re-
quired assertion into the language of the space X only. We’ll do it first for
convex functions, based on the fundamental duality in convex analysis, and
then apply to general extended-real-valued functions using some convexifica-
tion via infimal convolution, which is possible due to the very definition of
Fréchet subgradients.

Lemma 2.12 (primal characterization of convex subgradients). Let
ϕ: X → IR be a proper convex function with 0 ∈ dom ϕ. Then for any given
M > 0 one has

∂ϕ(0) \ M IB∗ 	= ∅ (2.16)

if and only if there are c ≥ 0, γ > 0, and a nonempty open set U ⊂ X such
that the following properties hold:

(a) ϕ(h) ≥ ϕ(0) − c‖h‖ for all h ∈ X ;
(b) ϕ(th) ≥ ϕ(0) + (M + γ )t‖h‖ whenever h ∈ U and t ∈ [0, 1].

In this case for every 0 	= h ∈ U there is x∗ ∈ ∂ϕ(0) with 〈x∗, h〉 > M‖h‖.

Proof. To prove the necessity, we pick any x∗ ∈ ∂ϕ(0) \ M IB∗ and observe
that (a) holds with c = ‖x∗‖. Then choose γ > 0 with ‖x∗‖ > M + γ and
find a nonempty open set U ⊂ X such that 〈x∗, h〉 > (M + γ )‖x∗‖ for every
h ∈ U . This implies (b).

Let us prove the sufficiency, which includes the last statement of the
lemma. Take (c, γ,U) satisfying (a) and (b) and then fix 0 	= h ∈ U . By
(b) we find nonempty open convex sets U0 ⊂ U and U1 ⊂ IR such that
0 /∈ U0, h ∈ U0, 0 /∈ U1, and

M < τ/‖u‖ < M + γ whenever (u, τ ) ∈ U0 × U1 .

Since ϕ is convex, we get from (b) that ϕ′
+(0)(u) ≥ (M + γ )‖u‖ whenever

u ∈ U0. Consider the nonempty convex sets
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C1 :=
{
(u, t) ∈ X × IR

∣
∣ ϕ(u) ≤ t}, C2 :=

⋃

λ>0

λ(U0 × U1)

and observe that C1 ∩ C2 = ∅. Indeed, if λ(u, τ ) ∈ C1 ∩ C2 for some λ > 0,
then one has

λτ ≥ ϕ(λu) ≥ ϕ′
+(0)(λu) = λϕ′

+(0)u ≥ (M + γ )λ‖u‖ > λτ

due to the choice of τ , a contradiction. Since C2 is open, we apply the classical
separation theorem and find (0, 0) 	= (x̃∗, ν̃) ∈ (X × IR)∗ = X∗ × IR such that

l := inf
〈
(x̃∗, ν̃),C1

〉
≥ sup

〈
(x̃∗, ν̃),C2

〉
=: r .

Note that l ≤ 0 due to (0, 0) ∈ C1 and that r ≥ 0 due to the structure of C2.
Thus l = r = 0, and we have

inf
{
〈x̃∗, u〉 + ν̃t

∣
∣ (u, t) ∈ X × IR, ϕ(u) ≤ ϕ(0) + t

}

= sup
{
λ〈x̃∗, u〉 + λτ ν̃

∣
∣ (u, τ ) ∈ U0 × U1, λ > 0

}
= 0 .

(2.17)

Since ν̃t = 〈x̃∗, 0〉 + ν̃t ≥ 0 for all t ≥ 0, we get ν̃ ≥ 0. To proceed, we first
assume that ν̃ > 0. Then putting t = ϕ(u) in (2.17), we have 〈−x̃∗/ν̃, u〉 ≤
ϕ(u) = ϕ(u) − ϕ(0) if u ∈ dom ϕ. This also obviously holds if ϕ(u) = ∞, and
so we conclude that −x̃∗/ν̃ ∈ ∂ϕ(0).

On the other hand, it follows from (2.17) for τ ∈ U1 and u = h that
〈x̃∗, h〉 + τ ν̃ ≤ 0, and hence

‖ − x̃∗/ν̃‖ ≥
〈
− x̃∗/ν̃, h/‖h‖

〉
≥ τ/‖h‖ > M

due to the choice of τ . Thus we obtain

〈−x̃∗/ν̃, h〉 > M‖h‖ and − x̃∗/ν̃ ∈ ∂ϕ(0) \ M IB∗ ,

which justifies (2.16) in the case of ν̃ > 0. We haven’t used (a) so far.
Next let us consider the remaining case of ν̃ = 0 in (2.17) and justify (2.16)

using (a). In this case we necessarily have x̃∗ 	= 0 and get from (2.17) that
〈x̃∗, u〉 ≥ 0 for all u ∈ dom ϕ and 〈x̃∗, u〉 ≤ 0 for all u ∈ U0. Since U0 is a
neighborhood of h, the latter yields 〈x̃∗, h〉 < 0. Form the closed convex set

C3 :=
{
(u, t) ∈ X × IR

∣
∣ t < −c‖u‖}

and observe that C1 ∩ C3 = ∅ due to (a). Employing again the separation
theorem, we find (0, 0) 	= (x̂∗, ν̂) ∈ X∗ × IR such that

l := inf
〈
(x̂∗, ν̂),C1

〉
≥ sup

〈
(x̂∗, ν̂),C3

〉
=: r .

It is easy to check that l = r = 0, and thus
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inf
{
〈x̂∗, u〉 + ν̂t

∣
∣ (u, t) ∈ X × IR, ϕ(u) ≤ ϕ(0) + t

}

= sup
{
〈x̂∗, u〉 + ν̂t

∣
∣ (u, t) ∈ X × IR, t < −c‖u‖

}
= 0 ,

(2.18)

which implies that ν̂ ≥ 0. In fact we have ν̂ > 0, since otherwise (2.18) yields
〈x̂∗, u〉 ≤ 0 whenever u ∈ X , which contradicts the nontriviality of (x̂∗, ν̂).
Thus (2.18) gives −x̂∗/ν̂ ∈ ∂ϕ(0) similarly to the case of (2.17). Now put

x∗ := −x̂∗/ν̂ − K x̃∗ with K > max

{

0, −
M‖h‖ +

〈
x̂∗/ν̂, h

〉
〈
x̃∗, h

〉

}

(2.19)

and observe that, by the definition of ∂ϕ(0) and the condition 〈x̃∗, u〉 ≥ 0 for
all u ∈ dom ϕ, we have

ϕ(u) − ϕ(0) ≥ 〈−x̂∗/ν̂, u〉 ≥ 〈x∗, u〉 if u ∈ dom ϕ;

so x∗ ∈ ∂ϕ(0). Moreover, using (2.19) and 〈x̃∗, h〉 < 0, we conclude that

〈x∗, h〉 = 〈−x̂∗/ν̂, h〉 − K 〈x̃∗, h〉 > M‖h‖ ,

which yields ‖x∗‖ > M and hence (2.16). �

The next lemma provides a primal characterization of subdifferential sums
for convex functions with a nontriviality condition crucial for subsequent ap-
plications to the extremal principle.

Lemma 2.13 (primal characterization of subdifferential sums for
convex functions). Let ϕi : X → IR, j = 1, . . . , N , be proper convex functions
with 0 ∈ dom ϕ1 ∩ . . . ∩ dom ϕN and N > 1. Given any M > 0, one has

0 ∈
(
∂ϕ1(0) \ M IB∗)+ ∂ϕ2(0) + . . .+ ∂ϕN (0) (2.20)

if and only if there are c ≥ 0, γ > 0 and a nonempty open set U ⊂ X such
that the following hold:

(a)
∑N

j=1 ϕ j (h j ) ≥
∑N

j=1 ϕ j (0)− c max
{
‖h j − h1‖

∣
∣ j = 2, . . . , N

}
for all

h1, . . . , hN ∈ X ;
(b)

∑N
j=1 ϕ j (th j ) ≥

∑N
j=1 ϕ j (0)+(M+γ )t max

{
‖h j −h1‖

∣
∣ j = 2, . . . , N

}

for all h1, . . . , hN ∈ X with h j − h1 ∈ U, j = 2, . . . , N , and for all t ∈ [0, 1].

Proof. Assume that (2.20) holds and find x∗
j ∈ ∂ϕ j (0), j = 1, . . . , N , such

that ‖x∗
1‖ > M and x∗

1 + . . .+ x∗
N = 0. Then

N∑

j=1

ϕ j (h j ) −
N∑

j=1

ϕ j (0) ≥
N∑

j=1

〈x∗
j , h j 〉 =

N∑

j=2

〈x∗
j , h j − h1〉

≥ −
N∑

j=2

‖x∗
j ‖max

{
‖h j − h1‖

∣
∣ j = 2, . . . , N

}
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for all h1, . . . , hN ∈ X , which gives (a) with c :=
∑N

j=2 ‖x∗
j ‖. To justify (b),

we take γ > 0 and an open set ∅ 	= U ⊂ X such that

N∑

j=2

〈x∗
j , h〉 = −〈x∗

1 , h〉 > (M + γ )‖h‖ for all h ∈ U .

By diminishing U if necessary, we may assume that

N∑

j=2

〈x∗
j , h j 〉 > (M + γ )max

{
‖h j‖

∣
∣ j = 2, . . . , N

}

whenever h2, . . . , hn ∈ U N−1. Then

ϕ1(th1) +
N∑

j=2

ϕ j (th j ) −
N∑

j=1

ϕ j (0) ≥ t
N∑

j=2

〈x∗
j , h j − h1〉

≥ (M + γ )t max
{
‖h j − h1‖

∣
∣ j = 2, . . . , N

}

whenever h1, . . . , hN ∈ X with h j − h1 ∈ U, j = 2, . . . , N , and t ∈ [0, 1]. This
gives (b) and proves the necessity in the lemma.

To prove the sufficiency, we assume that c, γ , and U are such that (a)
and (b) hold. Define the inf-convolution

ϕ(h2, . . . , hN ) := inf

{

ϕ1(x) +
N∑

j=2

ϕ j (x + h j )
∣
∣ x ∈ X

}

for (h2, . . . , hN ) ∈ X N−1 and observe that ϕ is a proper convex function on
X N−1 with 0 ∈ dom ϕ. It is easy to check that properties (a) and (b) of
this lemma implies that ϕ satisfies properties (a) and (b) of Lemma 2.12 on
the product space X N−1 with the norm ‖(h2, . . . , hN )‖ := max

{
‖h j‖

∣
∣ j =

2, . . . , N
}
. Thus for fixed 0 	= h ∈ U we find z∗ := (x∗

2 , . . . , x∗
N ) ∈ (X N−1)∗

such that z∗ ∈ ∂ϕ(0, . . . , 0) and 〈z∗, (h, . . . , h)〉 > M max
{
‖h‖, . . . , ‖h‖

}
, i.e.,

〈
N∑

j=2

x∗
j , h

〉

> M‖h‖ . (2.21)

Since z∗ ∈ ∂ϕ(0), the definition of ϕ gives

ϕ1(x)+
N∑

j=2

ϕ j (x +h j ) ≥
N∑

j=1

ϕ j (0)+〈z∗, (h2, . . . , hN )〉 =
N∑

j=1

ϕ j (0)+
N∑

j=2

〈x∗
j , h j 〉

for all x ∈ X and all (h2, . . . , hN ) ∈ X N−1. If we fix here one j and put
hi = x = 0 for all i 	= j , we get x∗

j ∈ ∂ϕ j (0), j = 2, . . . , N . If we put
h j = −x, j = 2, . . . , N , we get x∗ := −(x∗

2 + . . .+ x∗
N ) ∈ ∂ϕ1(0). Hence
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0 ∈ ∂ϕ1(0) + . . .+ ∂ϕN (0) and x∗ ∈ ∂ϕ1(0)\M IBX∗

due to (2.21), which completes the proof of the lemma. �

Now let us consider a general proper function f : X → IR, a point x ∈
dom f and associated with them two convex functions of the inf-convolution
type. First, given positive numbers δ and ε, we define ϕ f,x,δ,ε : X → [−∞,∞]
by

ϕ f,x,δ,ε(h) := inf

{
m∑

i=1

αi

[
f (x + hi ) + ε‖hi‖

] ∣∣
∣ m ∈ IN , hi ∈ X ,

‖hi‖ < δ, αi ≥ 0, i = 1, . . . ,m,
m∑

i=1

αi = 1,
m∑

i=1

αi hi = h

} (2.22)

if ‖h‖ < δ and ϕ f,x,δ,ε(h) := ∞ otherwise. Then, given a sequence ∆ := (δi )∞i=1

with δ1 > δ2 > · · · > 0 and δi ↓ 0, we define ϕ f,x,∆: X → IR by

ϕ f,x,∆(h) := inf

{
m∑

i=1

αiϕ f,x,δi ,1/ i (hi )
∣
∣
∣ m ∈ IN , hi ∈ X ,

αi ≥ 0, i = 1, . . . ,m,
m∑

i=1

αi = 1,
m∑

i=1

αi hi = h

}

,

(2.23)

where each ϕ f,x,δi ,1/ i , i ∈ IN , is constructed in (2.22). It follows from the
definitions that both functions (2.22) and (2.23) are convex and not greater
than f (x) at h = 0. Moreover, the Fréchet subdifferential of f at x is closely
related to the subdifferential of ϕ f,x,∆ at zero. One can easily check that if
∂̂ f (x) 	= ∅, then ϕ f,x,∆(0) = f (x) and ∂̂ f (x) ⊃ ∂ϕ f,x,∆(0) 	= ∅ for some ∆.
On the other hand, if ∂ϕ f,x,∆(0) 	= ∅ for some ∆ and ϕ f,x,∆(0) = f (x), then
∂ϕ f,x,∆(0) ⊂ ∂̂ f (x) as well.

The following corollary of Lemma 2.13 provides an equivalent translation
of the basic assertion (2.14) into the language of the primal space X .

Corollary 2.14 (primal characterization for sums of Fréchet subdif-
ferentials). Let f j : X → IR be arbitrary proper functions, let x j ∈ dom f j as
= 1, . . . , N and N > 1. Then for any given M > 0 one has (2.14) if and only
if there are c ≥ 0, γ > 0, a sequence ∆ = (δi )∞i=1 ⊂ (0,∞) with δi ↓ 0, and a
nonempty open set U ⊂ X such that the following hold:

(a)
∑N

j=1 ϕ f j ,x j ,∆(h j ) ≥
∑N

j=1 f j (x j ) − c max
{
‖h j − h1‖

∣
∣ j = 2, . . . , N

}

for all h1, . . . , hN ∈ X ;
(b)

∑N
j=1 ϕ f j ,x j ,∆(th j ) ≥

∑N
j=1 f j (x j ) + (M + γ )t max

{
‖h j − h1‖

∣
∣ j =

2, . . . , N
}

for all h1, . . . , hN ∈ X with h j − h1 ∈ U, j = 2, . . . , N , and for all
numbers t ∈ [0, 1].
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Proof. If (2.14) holds, then ∂̂ f j (x j ) 	= ∅, and hence ϕ f,x,∆(0) = f j (x j ),
j = 1, . . . , N , for some sequence ∆. Then conditions (a) and (b) of the corol-
lary immediately follow from the corresponding conditions of Lemma 2.13.
In the other direction, if conditions (a) and (b) of the corollary hold, then
ϕ f j ,x j ,∆(0) = f j (x j ) by (a), and so (2.14) follows from the sufficiency in
Lemma 2.13 for the convex functions ϕ j = ϕ f j ,x j ,∆, j = 1, . . . , N , and the
mentioned relationships between ∂̂ f (x) and ∂ϕ f,x,∆(0). �

Next we establish the basic separable reduction result for assertion (2.14)
that lies at the ground of the whole separable reduction technique for the
extremal principle.

Theorem 2.15 (basic separable reduction). Let f1, . . . , fN : X → IR,
N > 1, be proper functions bounded from below, and let Y0 be a separable sub-
space of X . Then there is a closed separable subspace Y ⊂ X such that Y0 ⊂ Y
and, given any M > 0, assertion (2.14) holds whenever x1, x2, . . . , xN ∈ Y and
one has (2.15).

Proof. Our strategy is to build Y inductively starting with Y0 and then to
derive (2.14) from (2.15) and (x1, . . . , xN ) ∈ Y N based on the primal charac-
terization of (2.14) in Corollary 2.14.

Let A be the countable set of all matrices (α j
i | i ∈ IN , j = 1, . . . N) with

rational nonnegative entries such that α j
i > 0 only for finitely many pairs

(i, j) ∈ IN × {1, . . . , N} and that
∑∞

i=1 α
j
i = 1 for all j = 1, . . . , N . Let B

be the countable set of all matrices (β j
il | i, l ∈ IN , j = 1, . . . N) with rational

nonnegative entries such that β j
il > 0 only for finitely many triples (i, l, j) ∈

IN2 × {1, . . . , N} and that
∑∞

l=1 β
j

il = 1 for all i ∈ IN and j = 1, . . . , N .
Let D be the countable set of all sequences (δi )∞i=1 with rational entries for
which 0 < δ1 ≥ δ2 ≥ · · · ≥ 0 and δi = 0 if i ∈ IN is sufficiently large. Given
j = 1, . . . , N and x ∈ dom f j , let η j (x) > 0 be such that f j is bounded from
below on the ball around x with radius η j (x).

For x := (x1, . . . , xN ) ∈ X N , for a := (α j
i ) ∈ A, for b := (β j

il) ∈ B,
for r := (r2, . . . , rN ) ∈ (0,∞)N−1, for ∆ := (δi ) ∈ D satisfying δi > 0
whenever max

{
α1

i , . . . , α
N
i

}
> 0 and δ1 < min

{
η1(x1), . . . , ηN (xN )

}
, and

for k ∈ IN we find u j
il(x, a, b, r ,∆, k) ∈ X, i, l ∈ IN , j = 1, . . . , N , such that

‖u j
il(x, a, b, r ,∆, k)‖ < δi if δi > 0 and u j

il(. . .) = 0 if δi = 0 for all i, l ∈ IN
and j = 1, . . . , N , that
∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
ilu

j
il(x, a, b, r ,∆, k)−

∞∑

i=1

α1
i

∞∑

l=1

β1
ilu

1
il(. . .)

∥
∥
∥
∥
∥
< r j , j = 2, . . . , N ,

and that
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N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + u j

il(x, a, b, r ,∆, k)) + 1
i ‖u j

il(x, a, b, r ,∆, k)‖
]

<
1
k

+
N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + h j

il) + 1
i ‖h j

il‖
]

whenever h j
il ∈ X, ‖h j

il‖ < δi if δi > 0 and h j
il = 0 if δi = 0, and

∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
il h

j
il −

∞∑

i=1

α1
i

∞∑

l=1

β1
il h

1
il

∥
∥
∥
∥
∥
< r j , j = 2, . . . , N .

Further, for x, a, b, r ,∆, k as above and for h ∈ X with ‖h‖ < δ1 we find
g j

il(x, h, a, b, r ,∆, k) ∈ X, i, l ∈ IN , j = 1, . . . , N , such that

‖g j
il(x, h, a, b, r ,∆, k)‖ < δi if δi > 0 and g j

il(. . .) = 0 if δi = 0 ,
∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
il g

j
il(x, h, a, b, r ,∆, k) −

∞∑

i=1

α1
i

∞∑

l=1

β1
il g

1
il(. . .) − h

∥
∥
∥
∥
∥
< r j

if j = 2, . . . , N , and that

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + g j

il(x, h, a, b, r ,∆, k)) + 1
i ‖g j

il(x, h, a, b, r ,∆, k)‖
]

<
1
k

+
N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + h j

il) + 1
i ‖h j

il‖
]

whenever h j
il ∈ X, ‖h j

il‖ < δi if δi > 0 and h j
il = 0 if δi = 0, and

∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
il h

j
il −

∞∑

i=1

α1
i

∞∑

l=1

β1
il h

1
il − h

∥
∥
∥
∥
∥
< r j , j = 2, . . . , N .

Now we are ready to construct the required separable subspace Y ⊂ X .
By induction we build separable subspaces Y0 ⊂ Y1 ⊂ . . . ⊂ X as follows.
If Yn was already constructed for some n ∈ IN ∪ {0} (Y0 is given), take any
countable subset Cn ⊂ Yn dense in Yn. Then let Yn+1 be the closed linear span
of Yn and the points

u j
il(x, a, b, r ,∆, k), g j

il(x, h, a, b, r ,∆, k) ,

where x = (x1, . . . , xN ) ∈ C N
n , h ∈ Cn, ‖h‖ < δ1, r ∈ (0,∞)N−1 with rational

entries, ∆ = (δi ) ∈ D with δ1 < min
{
η1(x1), . . . , ηN (xN )

}
, a ∈ A, b ∈

B, j = 1, . . . , N , and i, l, k ∈ IN . Denoting Y := cl
[⋃

{Yn

∣
∣ n ∈ IN}

]
and
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C :=
⋃
{Cn

∣
∣ n ∈ IN}, we see that cl C = Y and Y is a separable subspace of

X containing Y0.
Fix any M > 0. We need to prove that for every given x = (x1, . . . , xN ) ∈

Y N satisfying (2.15) one has (2.14). According to Corollary 2.14 the latter is
equivalent to the fulfillment of conditions (a) and (b) therein. Using (2.15), we
find x∗

j ∈ ∂̂( f j|Y )(x j ), j = 1, . . . , N , such that ‖x∗
1‖ > M and x∗

1 +. . .+x∗
N = 0.

Due to the definition of Fréchet subgradients there is a sequence of rational
numbers δ1 > δ2 > . . . > 0 with

f j (x j + h) + 1
i ‖h‖ ≥ f j (x j ) + 〈x∗

j , h〉 whenever h ∈ Y, ‖h‖ < 2δi , (2.24)

i ∈ IN , and j = 1, . . . , N . We always take δ1 < min
{
η1(x1), . . . , ηN (xN )

}

and show that conditions (a) and (b) of Corollary 2.14 hold along the chosen
sequence ∆ =

{
δ1, δ2, . . .

}
. Since x ∈ Y N , for any n ∈ IN and j = 1, . . . , N

we find x j
n ∈ Cn ⊂ Y and rational numbers γ j

n satisfying

‖x j − x j
n‖ ≤ γ j

n ≤ 2‖x j − x j
n‖ and ‖x j = x j

n‖ → 0 as n → ∞ .

First we verify condition (a) of Corollary 2.14 with c :=
∑N

j=2 ‖x∗
j ‖. Fix any

h1, . . . , hN ∈ X and assume without loss of generality that ‖h j‖ < δ1 for all
j = 1, . . . , N . Consider any a = (α j

i ) ∈ A, any b = (β j
il) ∈ B, any h j

il ∈ X with
‖h j

il‖ < δi , i, l ∈ IN , j = 1, . . . , N , such that

∞∑

i=1

α j
i

∞∑

l=1

β j
il h

j
il = h j for all j = 1, . . . , N . (2.25)

Find i0 ∈ IN so large that α j
i = 0 for all i ≥ i0 and j = 1, . . . , N . Then we put

h j
il = 0 whenever i ≥ i0. Taking any rational numbers r j > ‖h j − h1‖, j =

2, . . . , N , we observe that

‖h j
il‖ + γ j

n < δi , i < i0, l ∈ IN , j = 1, . . . , N ,

and ‖h j − h1‖ + γ j
n + γ 1

n < r j , j = 2, . . . , N
(2.26)

for all n ∈ IN sufficiently large. Denote xn := (x1
n , . . . , x N

n ), n ∈ IN , and

h j,n
il := h j

il + x j − x j
n , i, l ∈ IN , j = 1, . . . , N . (2.27)

Finally, putting ∆ := (δ1, δ2, . . . , δi0 , 0, 0, . . .) and using the u j
il-part in the

construction of Y , we get the following chain of inequalities valid for all large
numbers n ∈ IN :

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + h j

il) + 1
i ‖h j

il‖
]

=
N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j

n + h j,n
il )
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+ 1
i ‖h j

il‖
]
≥

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j

n + h j,n
il ) + 1

i ‖h j,n
il ‖
]
− 1

i

N∑

j=1

γ j
n

> −1
n
−

N∑

j=1

γ j
n +

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j

n + u j
il(xn, a, b, r ,∆, n)

+ 1
i ‖u j

il(. . .)‖
] (

as ‖h j,n
il ‖ ≤ ‖h j

il‖ + γ j
n < δi , if i ≤ i0, and

∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
il h

n, j
il −

∞∑

i=1

α1
i

∞∑

l=1

β1
il h

1,n
il

∥
∥
∥
∥
∥
≤ ‖h j − h1‖ + γ j

n + γ 1
n < r j

)

≥ −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j
(
x j + x j

n − x j

+u j
il(xn, a, b, r ,∆, n)

)
+ 1

i ‖x j
n − x j + u j

il(. . .)‖
]

≥ −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j ) +
N∑

j=1

〈
ξ j , x j

n − x j

+
∞∑

i=1

α j
i

∞∑

l=1

β j
ilu

j
il(xn, a, b, r ,∆, n)

〉

(
as x j

n − x j + u j
il(. . .) ∈ Y and ‖x j

n − x j + u j
il(. . .)‖ < γ j

n + δi < 2δi

)

= −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j ) +
N∑

j=1

〈x∗
j , x j

n − x j 〉

+
N∑

j=2

〈
x∗

j ,

∞∑

i=1

α j
i

∞∑

l=1

β j
ilu

j
il(xn, a, b, r ,∆, n) −

∞∑

i=1

α1
i

∞∑

l=1

β1
ilu

1
il(. . .)

〉

(
as x∗

1 + x∗
2 + . . .+ x∗

N = 0
)

≥ −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j ) −
N∑

j=1

‖x∗
j ‖γ j

n

−
N∑

j=2

‖x∗
j ‖
∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
ilu

j
il(xn, a, b, r ,∆, n) −

∞∑

i=1

α1
i

∞∑

l=1

β1
ilu

1
il(. . .)

∥
∥
∥
∥
∥

≥ −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j ) −
N∑

j=1

‖x∗
j ‖γ j

n −
N∑

j=2

‖x∗
j ‖r j .

Letting n → ∞, we get the estimate

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + h j

il) + 1
i ‖h j

il‖
]
≥

N∑

j=1

f j (x j ) −
N∑

j=2

‖x∗
j ‖r j .
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Then letting r j → r̃ j := ‖h j − h1‖ for j = 2, . . . , N , we arrive at

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j+h j

il)+
1
i ‖h j

il‖
]
≥

N∑

j=1

f j (x j )−c max
{

r̃ j

∣
∣ j = 2, . . . , N

}
,

which ensures condition (a) of Corollary 2.14 with c :=
∑N

j=2 ‖x∗
j ‖ due to the

definition of ϕ f j ,x j ,∆ in (2.23) along the sequence ∆ selected in (2.24).
To complete the proof of the theorem, it remains to verify condition (b)

in Corollary 2.14 along the sequence ∆, some number γ > 0, and an open set
U ⊂ X . Since ‖x∗

1‖ > M , we find y ∈ Y with ‖y‖ ≤ δ1 and γ ∈ (0, 1) so that

〈x∗
1 , y〉 > (M + 3γ )‖y‖ . (2.28)

Choose a number ζ satisfying

0 < ζ < min
{
δ1 − ‖y‖, γ ‖y‖

( N∑

j=1

‖x∗
j ‖
)−1

, γ ‖y‖
[
2(M + γ )

]−1}
(2.29)

and put U :=
{

h ∈ X
∣
∣ ‖h − y‖ < ζ

}
. Now fix any t ∈ (0, 1] and any

h1, . . . , hN ∈ X with h j − h1 ∈ U ; then ‖h j − h1‖ < δ, j = 2, . . . , N . We may
assume without loss of generality that ‖th j‖ ≤ δ1 for all j = 1, . . . , N . Since
‖h j −h1− y‖ < ζ , there is a rational number η with ‖th j − th1− t y‖ < η < tζ
for all j = 2, . . . , N . This allows us to find h0 ∈ C such that

‖th j − th1 − h0‖ < η, j = 2, . . . , N , and ‖h0 − t y‖ < tζ . (2.30)

As in the proof of the first part of the theorem, we pick any a = (α j
i ) ∈ A, any

b = (β j
il) ∈ B, and any h j

il ∈ X , with ‖h j
il‖ < δi , i, l ∈ IN , j = 1, . . . , N , and

such that (2.25) holds. Find i0 ∈ IN so large that α j
i = 0 whenever i ≥ i0 and

j = 1, . . . , N . We may choose h j
il = 0 whenever i ≥ i0. Thus we have (2.26)

for all large n ∈ IN . Take ∆ = (δ1, δ2, . . . , δi0 , 0, 0, . . .), define xn and h j,n
il as in

(2.27), and put rn := (η + γ 2
n + γ 1

n , . . . , η + γ N
n + γ 1

n ). Now using the g j
il-part

in the construction of Y , we perform the following chain of inequalities for all
n ∈ IN sufficiently large:

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + h j

il) + 1
i ‖h j

il‖
]

≥
N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j

n + h j,n
il ) + 1

i ‖h j,n
il ‖
]
− 1

i

N∑

j=1

γ j
n

> −1
n
−

N∑

j=1

γ j
n +

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j

n + g j
il(xn, h0, a, b, rn,∆, n)
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+ 1
i ‖g j

il(. . .)|
]
(

as ‖h j,n
il ‖ ≤ ‖h j

il‖ + γ j
n < δi , i ≤ i0, and

∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
il h

n, j
il

−
∞∑

i=1

α1
i

∞∑

l=1

β1
il h

1,n
il − h0

∥
∥
∥
∥
∥
≤ ‖th j − th1 − h0‖ + γ j

n + γ 1
n < η + γ j

n + γ 1
n

)

≥ −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j
(
x j + x j

n − x j

+g j
il(xn, h0, a, b, rn,∆, n)

)
+ 1

i ‖x j
n − x j + g j

il(. . .)‖
]

≥ −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j )

+
N∑

j=1

〈
x∗

j , x j
n − x j +

∞∑

i=1

α j
i

∞∑

l=1

β j
il g

j
il(xn, h0, a, b, rn,∆, n)

〉

(
as x j

n − x j + g j
il(. . .) ∈ Y and ‖x j

n − x j + g j
il(. . .)‖ < γ j

n + δi < 2δi

)

= −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j ) +
N∑

j=1

〈x∗
j , x j

n − x j 〉 − 〈x∗
1 , h0〉

+
N∑

j=2

〈
x∗

j ,

∞∑

i=1

α j
i

∞∑

l=1

β j
il g

j
il(xn, h0, a, b, rn,∆, n)

−
∞∑

i=1

α1
i

∞∑

l=1

β1
il g

1
il(. . .) − h0

〉 (
as x∗

1 + x∗
2 + . . .+ x∗

N = 0
)

≥ −1
n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j ) −
N∑

j=1

‖x∗
j ‖γ j

n − 〈x∗
1 , h0〉

−
N∑

j=2

‖x∗
j ‖
∥
∥
∥
∥
∥

∞∑

i=1

α j
i

∞∑

l=1

β j
il g

j
il(xn, h0, a, b, rn,∆, n)

−
∞∑

i=1

α1
i

∞∑

l=1

β1
il g

1
il(. . .) − h0

∥
∥
∥
∥
∥
≥ −1

n
− 2

N∑

j=1

γ j
n +

N∑

j=1

f j (x j ) −
N∑

j=1

‖x∗
j ‖γ j

n

−〈x∗
1 , h0〉 −

N∑

j=2

‖x∗
j ‖(η + γ j

n + γ 1
n ).

Letting n → ∞, we get

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + h j

il) + 1
i ‖h j

il‖
]
≥

N∑

j=1

f j (x j ) − 〈x∗
1 , h0〉 −

N∑

j=2

‖x∗
j ‖η .
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Now using (2.28)–(2.30), we finally have

N∑

j=1

∞∑

i=1

α j
i

∞∑

l=1

β j
il

[
f j (x j + h j

il) + 1
i ‖h j

il‖
]
−

N∑

j=1

f j (x j )

≥ −〈x∗
1 , h0〉 −

N∑

j=2

‖x∗
j ‖tζ ≥ −〈x∗

1 , t y〉 − ‖x∗
1‖ · ‖t y − h0‖ −

N∑

j=2

‖x∗
j ‖tζ

> (M + 3γ )‖t y‖ −
N∑

j=1

‖x∗
j ‖tζ > (M + 2γ )‖t y‖ > (M + γ )(‖h0‖ − tζ )

+γ t‖y‖ > (M + γ )(t‖h j − h1‖ − 2tζ ) + γ t‖y‖ > (M + γ )t‖h j − h1‖

for all j = 2, . . . , N and t ∈ [0, 1]. Due to the definition of ϕ f j ,x j ,∆ in (2.23)
we get condition (b) in Corollary 2.14 and end the proof of the theorem. �

Note that the boundedness from below assumption on the functions
f1, . . . , fN in Theorem 2.15 can be dropped by an additional separable re-
duction. As a consequence of Theorem 2.15, we arrive at the following result
needed for the separable reduction of the extremal principle.

Corollary 2.16 (separable reduction for the extremal principle). Let
Y0 be a separable subspace of a (nonseparable) Banach space X , and let ε > 0.
Given nonempty subsets Ω1, . . . ,Ωn of X , n ≥ 2, there is a closed separable
subspace Y ⊂ X such that Y0 ⊂ Y and, for any fixed M > 0, one has

0 ∈
(

N̂(x1;Ω1) \ M IBX∗
)

+ N̂(x2;Ω2) + . . .+ N̂(xn;Ωn) + ε IBX∗ (2.31)

whenever x1, x2, . . . , xN ∈ Y and

0 ∈
(

N̂(x1;Ω1 ∩ Y ) \ M IBX∗
)

+ N̂(x2;Ω2 ∩ Y ) + . . .+ N̂(xn;Ωn ∩ Y ) + ε IBY∗ .

Proof. This follows from Theorem 2.15 applied to n + 1 functions

fi (x) := δ(x ;Ωi ), i = 1, . . . , n, and fn+1(x) := ε‖x‖

with x1, . . . , xn ∈ Y and xn+1 = 0. �

2.2.3 Extremal Characterizations of Asplund Spaces

In this subsection we consider a general class of Banach spaces, called Asplund
spaces, which plays a prominent role in the subsequent variational analysis.
We show, based on separable reduction, that the approximate extremal prin-
ciple unconditionally holds in Asplund spaces, is equivalent to the version of
the extremal principle in terms of ε-normals, and provides a characterization
of this class of Banach spaces. Furthermore, we justify the validity of the exact
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extremal principle in Asplund spaces under the sequential normal compact-
ness condition imposed on all but one of the sets involved in the extremal
system. We also obtain related characterizations of Asplund spaces in terms
of supporting properties of Fréchet normals and ε-normals at boundary points
of closed sets.

Definition 2.17 (Asplund spaces). A Banach space X is Asplund, or it
has the Asplund property, if every convex continuous function ϕ: U → IR
defined on an open convex subset U of X is Fréchet differentiable on a dense
subset of U .

Note that Definition 2.17 is equivalent to the standard definition of As-
plund spaces, which requires the generic Fréchet differentiability of ϕ on U ,
i.e., its Fréchet differentiability on a dense Gδ subset of U . This follows from
the well-known fact that the collection of points where a convex continuous
function is Fréchet differentiable is automatically a Gδ set. For simplicity we
always put U = X in Definition 2.17 that doesn’t restrict the generality.

The class of Asplund spaces is well investigated in the geometric theory
of Banach spaces. We refer the reader to the books of Deville, Godefroy and
Zizler [331], Fabian [416], Phelps [1073], and to the survey paper of Yost
[1348] for various characterizations, classifications, properties, and examples
of Asplund spaces. Note that this class includes all Banach spaces having
Fréchet smooth bump functions (in particular, spaces with Fréchet smooth
renorms, hence every reflexive space); spaces with separable duals; spaces of
continuous functions C(K ) on a scattered compact Hausdorff space K (i.e.,
such that every subset of K has an isolated point); the classical space of
sequences c0 with the supremum norm and its generalization c0(Γ ) to an
arbitrary set Γ , etc. Although Asplund spaces are generally related to the
Fréchet type of differentiability and subdifferentiability, they may fail to have
even an equivalent norm Gâteaux differentiable off the origin.

Asplund spaces possess many useful properties some of them are employed
in what follows. Let us mention that every closed subspace of an Asplund
space is Asplund itself; moreover, every separable Asplund space admits a
Fréchet differentiable renorm, which is especially important for the method of
separable reduction. It is also important that the class of Asplund spaces is
stable under Cartesian products and linear isomorphisms. A crucial topologi-
cal property of duals to Asplund spaces is that the dual unit ball IB∗ is weak∗

sequentially compact.
There is a number of nice geometric characterizations of Asplund spaces.

One of the most striking characterizations is that X is Asplund if and
only if every separable closed subspace of X has a separable dual. In the
sequel we often use another characterization of Banach spaces not hav-
ing the Asplund property: they admit a “rough” equivalent norm nowhere
Fréchet differentiable. The exact formulation is as follows.
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Proposition 2.18 (Banach spaces with no Asplund property). Let X
be a Banach space with the norm ‖ · ‖. Then X is not Asplund if and only
if there exist a number ϑ > 0 and an equivalent norm | · | on X satisfying
| · | ≤ ‖ · ‖ and

lim sup
h→0

[
|x + h| + |x − h| − 2|x |

‖h‖

]

> ϑ for all x ∈ X . (2.32)

Proof. It is not difficult to show (cf. Proposition 1.23 in Phelps [1073])
that condition (2.32) implies that the convex function ϕ(x) = |x | is nowhere
Fréchet differentiable on X . Thus (2.32) doesn’t hold if X is Asplund.

To prove the converse statement, we recall that a weak∗ slice of Λ ⊂ X∗

is a set of the form

S(x,Λ, α) :=
{

x∗ ∈ Λ
∣
∣ 〈x∗, x〉 > σΛ(x) − α

}
,

where x ∈ X , α > 0, and σΛ(x) := sup
{
〈x∗, x〉

∣
∣ x∗ ∈ Λ

}
. Assuming that X is

not Asplund and applying Theorem 2.32 from Phelps [1073], we find a convex
symmetric subset Λ ⊂ IB∗ with nonempty interior in X∗ and a number ϑ > 0
such that Λ doesn’t admit a weak∗ slice of diameter less than 2ϑ . Observe
that |x | := σΛ(x) defines an equivalent norm on X with |·| ≤ ‖·‖. For any fixed
0 	= x ∈ X we take an arbitrary small t > 0 and select x∗

1 , x∗
2 ∈ S(x,Λ, tϑ/2)

such that ‖x∗
1−x∗

2‖ > 2ϑ . Then we find h ∈ X , ‖h‖ = 1, with 〈x∗
1−x∗

2 , h〉 > 2ϑ .
This yields the estimates

[
|x + th| + |x − th| − 2|x |

‖th‖

]

≥
[
〈x∗

1 , x + th〉 + 〈x∗
2 , x − th〉 − 2|x |

t

]

>
1
t

[

|x | − tϑ
2

+ |x | − tϑ
2

− 2|x |
]

+ 〈x∗
1 − x∗

2 , h〉 > −ϑ + 2ϑ = ϑ

and implies the required inequality (2.32). �

Based on Proposition 2.18, we now construct an important example show-
ing that in any non-Asplund space there are simple sets with pathological
behavior of normals to every boundary point.

Example 2.19 (degeneracy of normals in non-Asplund spaces). Let
X be a Banach space with no Asplund property. Then there exists a closed
epi-Lipschitzian set Ω ⊂ X for which the following hold:

(a) There is K > 1 such that

‖x∗‖ ≤ K ε for all x∗ ∈ N̂ε(x ;Ω), all x ∈ bdΩ, and all ε > 0 .

(b) Ω is normally regular at every boundary point with

N(x̄ ;Ω) = N̂(x̄ ;Ω) = {0} for all x̄ ∈ bdΩ .
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Proof. Take an arbitrary non-Asplund space X and represent it in the form
X = Z × IR with the norm ‖(z, α)‖ := ‖z‖ + |α| for (z, α) ∈ X . Then Z is
non-Asplund as well, since the opposite implies the Asplund property of X .
By Proposition 2.18 we find a number ϑ > 0 and a norm | · | on Z , which is
equivalent to the original norm ‖ · ‖, so that | · | ≤ ‖ · ‖ and one has (2.32)
with X = Z and x = z. Based on the norm | · |, we construct a set Ω ⊂ X in
the epigraphical form

Ω :=
{
(z, α) ∈ X

∣
∣ α ≥ ϕ(z)

}
with ϕ := −| · | and bdΩ = gphϕ . (2.33)

Since ϕ in (2.33) is Lipschitz continuous on X , the set Ω is epi-Lipschitzian
at every boundary point. To justify (a), we need to find a constant K > 1
providing the estimate

‖(z∗, λ)‖ ≤ K ε if (z∗, λ) ∈ N̂ε

(
(z, ϕ(z));Ω

)
, z ∈ Z , ε > 0 , (2.34)

where ‖(z∗, λ)‖ := max
{
‖z∗‖, |λ|

}
is the dual norm to ‖(z, α)‖ = ‖z‖ + |α|.

Fix arbitrary z̄ ∈ Z and (z∗, λ) ∈ N̂ε((z̄, ϕ(z̄));Ω). It follows directly from the
definition of N̂ε that

〈z∗, z − z̄〉 + λ(α − ϕ(z̄)) ≤ 2ε(‖z − z̄‖ + |α − ϕ(z̄)|)

for all (z, α) ∈ epiϕ around (z̄, ϕ(z̄)). Putting here z = z̄, one gets λ ≤ 2ε.
Since | · | ≤ ‖ · ‖ and |ϕ(z) − ϕ(z̄)| ≤ |z − z̄|, we conclude that

〈z∗, z − z̄〉 + λ(ϕ(z) − ϕ(z̄)) ≤ 4ε‖z − z̄‖

and further that

〈z∗, z − z̄〉 ≤ (4ε + |λ|)‖z − z̄‖

for all z around z̄. The latter gives

‖z∗‖ ≤ 4ε + |λ| for any (z∗, λ) ∈ N̂ε

(
(z̄, ϕ(z̄));Ω

)
. (2.35)

Let us show that (2.35) ensures (2.34) with K := max
{
6, 4 + 8/ϑ

}
. Indeed,

for λ ≥ 0 we get from (2.35) that ‖(z∗, λ)‖ ≤ 6ε and arrive at (2.34) with
K = 6. For λ < 0 we have from the above definition of N̂ε((z̄, ϕ(z̄));Ω with
ϕ = −| · | that

|z| − |z̄| −
〈 z∗

λ
, z − z̄

〉
≤ −4ε

λ
‖z − z̄‖

for all z around z̄. Putting there 2z̄ − z instead of z, we get

|2z̄ − z| − |z̄| +
〈 z∗

λ
, z − z̄

〉
≤ −4ε

λ
‖z − z̄‖ .

Adding the two previous inequalities together, we arrive at
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|z̄ + (z − z̄)| + |z̄ − (z − z̄)| − 2|z̄| ≤ −8ε
λ
‖z − z̄‖ .

The latter implies, according to Proposition 2.18 with x = z̄ and h = z − z̄,
that |λ| < 8ε/ϑ , where ϑ is the fixed positive number from (2.32). Thus (2.35)
gives ‖z∗‖ ≤ 4ε+(8ε/ϑ) for λ < 0, and we arrive at (2.34) with K = 4+8/ϑ ,
which justifies (a).

Property (b) follows from (a) due to Definitions 1.1 and 1.4 by passing to
the limit as ε ↓ 0 and x → x̄ . �

Now we are ready to establish the main result of this section ensuring that
the first two versions of the extremal principle in Definition 2.5, being applied
to every extremal system in a Banach space X , are equivalent to the Asplund
property of X .

Theorem 2.20 (extremal characterizations of Asplund spaces). Let
X be a Banach space. The following are equivalent:

(a) X is Asplund.
(b) The approximate extremal principle holds in X .
(c) The ε-extremal principle holds in X .

Proof. First we prove (a)⇒(b). Let X be an Asplund space, and let x̄ be a local
extremal point of some sets Ω1, . . . ,Ωn closed around x̄ . By Definition 2.1 we
take sequences {aik} ⊂ X , i = 1, . . . , n, and then consider a separable subspace
Y0 of X defined as

Y0 := span
{

x̄, aik

∣
∣ i = 1, . . . , n, k ∈ IN

}
.

Applying the separable reduction result of Corollary 2.16, for every fixed ε > 0
we find a closed separable subspace Y0 ⊂ Y ⊂ X that ensures the fulfillment
of (2.31) under the conditions imposed in the corollary. Observe that

{
Ω1 ∩ Y, . . . ,Ωn ∩ Y, x̄

}
(2.36)

is an extremal system in the space Y . Indeed, x̄ is obviously a common point
of the sets Ωi ∩ Y , i = 1, . . . , n, since x̄ ∈ Y0 ⊂ Y . On the other hand, these
sets shifted by the corresponding sequences aik , i = 1, . . . , n, don’t have any
common points in the neighborhood U ∩Y of x̄ in Y for all large k ∈ IN . Since
aik ∈ Y0 ⊂ Y , this means that x̄ is a local extremal point of the set system
{Ω1 ∩ Y, . . . ,Ωn ∩ Y} in the space Y .

Since Y is a separable Asplund space, it admits an equivalent Fréchet
smooth (re)norm denoted again by ‖ · ‖. Thus one can apply Theorem 2.10
ensuring the fulfillment of the approximate extremal principle for the extremal
system (2.36) in Y . Without loss of generality we assume that ε < 1/4 and
use relations (2.3) and (2.4) of the extremal principle with ε/n. In this way
we find xi ∈ Ωi ∩

(
x̄ + (ε/n)IBY

)
and

y∗i ∈ N̂(xi ;Ωi ∩ Y ) + (ε/n)IBY∗
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satisfying (2.3) for y∗i . Hence ‖y∗i ‖ > 1/2n for at least one i ∈ {1, . . . , n}; let
it hold for i = 1. Thus we have y∗i = ỹ∗i + u∗

i with ỹ∗i ∈ N̂(xi ;Ωi ∩ Y ) and
‖u∗

i ‖ ≤ ε/n for i = 1, . . . , n and with

‖ỹ∗1‖ ≥ ‖y∗1‖ −
ε

n
>

1 − 2ε
2n

>
1
4n

:= M > 0 .

This implies the relation

0 ∈
(

N̂(x1;Ω1 ∩ Y ) \ 1
4n IBX∗

)
+ N̂(x2;Ω2 ∩ Y ) + . . .+ N̂(xn;Ωn ∩ Y ) + ε IBY∗ .

Due to Corollary 2.16 we get (2.31) with M = 1/4n. The latter means that
there are x̃∗

i ∈ N̂(xi ;Ωi ), i = 1, . . . , n, and v∗ ∈ X∗ with ‖v∗‖ ≤ ε satisfying
‖x̃∗

1‖ > 1/4n and x̃∗
1 + . . . + x̃∗

n + v∗ = 0. Now denoting x∗
i := x̃∗

i for i =
1, . . . , n − 1 and x∗

n := x̃∗
n + v∗, we have all the relations in (2.3) and (2.4)

except the normalization condition ‖x∗
1‖ + . . .+ ‖x∗

n ‖ = 1. Since γ := ‖x̃∗
1‖ +

. . .+ ‖x̃∗
n ‖ > 1/4n independently of ε, we can easily obtain the normalization

condition for x∗
i /γ by adjusting ε in (2.4). This gives (a)⇒(b).

As mentioned above, (b)⇒(c) always holds. It remains to justify (c)⇒(a).
Assuming that X is not Asplund, we have the closed set Ω from Example 2.19.
Then the ε-extremal principle is not valid for

{
Ω, {x̄}, x̄

}
with any x̄ ∈ bdΩ,

since the opposite contradicts Proposition 2.6(i) with M = K ε > ε. �

As a consequence of the results obtained, we arrive at the following charac-
terizations of Asplund spaces via supporting properties of closed sets expressed
in terms of Fréchet normals and ε-normals at boundary points.

Corollary 2.21 (boundary characterizations of Asplund spaces). Let
X be a Banach space. The following are equivalent:

(a) X is Asplund.
(b) For every proper closed subset Ω of X the set of points x ∈ bdΩ with

N̂(x ;Ω) 	= {0} is dense in the boundary of Ω.
(c) For every proper closed subset Ω of X there is x ∈ bdΩ such that

N̂(x ;Ω) 	= {0}.
(d) For every proper closed subset Ω of X , every ε > 0, and every M > ε

the set of points x ∈ bdΩ with N̂ε(x ;Ω) \ M IB∗ 	= ∅ is dense in the boundary
of Ω.

(e) For every proper closed subset Ω of X , every ε > 0, and every M > ε

there is x ∈ bdΩ such that N̂ε(x ;Ω) \ M IB∗ 	= ∅.

Proof. Implication (a)⇒(b) follows from Theorem 2.20 and Proposition 2.6(ii).
Implications (b)⇒(c)⇒(e) and (b)⇒(d)⇒(e) are trivial. Implication (e)⇒(a)
follows from Example 2.19; see the end of the proof of Theorem 2.20. �

As follows from the above proof, an arbitrary number M > ε in (d) and
(e) can be equivalently replaced with K ε, K > 1. Related characterizations
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of Asplund spaces in terms of ε-normals can be written in the form: for every
proper closed subset Ω ⊂ X there is λ > 0 such that for each ε > 0 the set

{
x ∈ bdΩ

∣
∣
∣ ∃ x∗ ∈ N̂ε(x ;Ω) with ‖x∗‖ = λ

}

is dense in the boundary of Ω, or is just nonempty; see Mordukhovich and B.
Wang [960] for the proof and discussions.

We can see from the above results that the supporting properties (b)–
(e) in Corollary 2.21 applied to every closed subset of X are equivalent to
the “fuzzy” versions of the extremal principle in Theorem 2.20, since each
of them characterizes Asplund spaces. This is essentially based on properties
of Fréchet normals and ε-normals in Asplund spaces: cf. the related discus-
sions in Subsect. 2.1.2. It follows from the proofs that for the equivalencies in
Corollary 2.21 one can consider only epigraphical sets of type (2.33).

Next let us obtain conditions ensuring the fulfillment of the exact extremal
principle in Definition 2.5(iii). For this purpose we employ the sequential nor-
mal compactness (SNC) property of sets introduced in Subsect. 1.1.3.

Theorem 2.22 (exact extremal principle in Asplund spaces).
(i) Let X be an Asplund space, and let {Ω1, . . . ,Ωn, x̄} be an extremal

system in X such that all Ωi are locally closed around x̄ and all but one of
Ωi are sequentially normally compact at x̄. Then the exact extremal principle
holds for {Ω1, . . . ,Ωn, x̄}.

(ii) Conversely, let the exact extremal principle hold for every extremal
system {Ω1,Ω2, x̄} in X , where both sets Ωi are closed and one of them is
sequentially normally compact at x̄. Then X is Asplund.

Proof. To justify (i), we use the ε-extremal principle that holds in any As-
plund space by Theorem 2.20. Take a sequence of εk ↓ 0 as k → ∞ and
consider the corresponding sequence of xik and x∗

ik , i = 1, . . . , n, satisfying
(2.2) and (2.3) with ε = εk . Then xik → x̄ for all i = 1, . . . , n. Since the se-
quences {x∗

ik} are bounded in X∗ and since bounded sets in duals to Asplund

spaces are weak∗ sequentially compact, we find x∗
i ∈ X∗ such that x∗

ik
w∗
→ x∗

i
for i = 1, . . . , n. Passing to the limit in (2.2) as k → ∞ and using the defini-
tion of basic normals, we get (2.5). Also one obviously has x∗

1 + . . .+ x∗
n = 0.

It remains to show that (x∗
1 , . . . , x∗

n ) 	= 0 under the SNC assumptions of the
theorem. On the contrary, assume that x∗

i = 0 while Ωi are SNC at x̄ for
i = 1, . . . , n − 1. By Definition 1.20 the latter implies that ‖x∗

ik‖ → 0 as
k → ∞ for i = 1, . . . , n − 1. Hence

‖x∗
nk‖ ≤ ‖x∗

1k‖ + . . .+ ‖x∗
n−1k‖ → 0 as k → ∞ ,

which contradicts the nontriviality condition ‖x∗
1k‖ + . . . + ‖x∗

nk‖ = 1 for all
k ∈ IN and ends the proof of (i).

To prove (ii), we assume that X is not an Asplund space and represent
it as X = Z × IR, where Z must be non-Asplund as well. Then consider
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Ω1 := {0} × (−∞, 0] ∈ Z × IR and Ω2 := Ω defined in (2.33). One can eas-
ily check that x̄ = (0, 0) is a local extremal point of these closed sets in X .
Since Ω2 is epi-Lipschitzian at x̄ , it is SNC at this point due to Theorem 1.26.
However, the exact extremal principle doesn’t hold for {Ω1,Ω2, x̄}. Indeed,
we have N((0, 0);Ω2) = {(0, 0)} from property (b) in Example 2.19, while
N((0, 0);Ω1) = Z∗ × [0,∞). That is, N(x̄ ;Ω1) ∩

(
− N(x̄ ;Ω2)

)
= {(0, 0)},

which justifies (ii) and ends the proof of the theorem. �

Let us show that the SNC assumption in Theorem 2.22 is essential for the
fulfillment of the exact extremal principle in infinite-dimensional spaces.

Example 2.23 (violation of the exact extremal principle in the ab-
sence of SNC). Every infinite-dimensional separable Banach space contains
an extremal system {Ω1,Ω2, x̄} that doesn’t satisfy the relations of the exact
extremal principle.

Proof. Let X be a separable Banach space, and let {ek}∞1 be unit independent
vectors that densely span X . Consider the sets

Ω1 := clco
{ en

2n
, − en

2n

∣
∣
∣ n ∈ IN

}
,

and Ω2 = {0}, which are convex and compact in the norm topology of X . Note
that Ω1 and Ω2 are not SNC unless X is finite-dimensional; see Theorem 1.21.
Let us check that 0 ∈ Ω1 ∩ Ω2 is a local extremal point of the set system
{Ω1,Ω2}. Indeed, taking

a :=
∞∑

n=1

en

n2
∈ X ,

we observe that for any sequence of νk ↓ 0 one has

Ω1 ∩ (νka +Ω2) = Ω1 ∩
{
νka} = ∅ .

It follows from the structure of Ω1 that N(0;Ω1) = {0}, and thus {Ω1,Ω2, 0}
doesn’t satisfy the exact extremal principle. �

Next we consider some properties of the basic normal cone N(·;Ω) on
boundaries of closed sets. It immediately follows from Corollary 2.21 that in
Asplund spaces the sets of point x ∈ bdΩ with N(x ;Ω) 	= {0} is dense in
the boundary of any proper closed subset Ω ⊂ X . Moreover, Example 2.19
shows that even nonemptiness of this set for any Ω of type (2.33) implies that
X in Asplund. Theorem 2.22 gives conditions under which this nontriviality
property of basic normals holds at every boundary point of closed sets.

Corollary 2.24 (nontriviality of basic normals in Asplund spaces).
Let X be an Asplund space, and let Ω be a proper closed subset of X . Then
N(x̄ ;Ω) 	= {0} at every point x̄ ∈ bdΩ where the set Ω is sequentially nor-
mally compact.



2.3 Relations with Variational Principles 203

Proof. Follows from Theorem 2.22 applied to the system
{
Ω, {x̄}, x̄

}
. �

Note that the result of Corollary 2.24 gives a new condition for the sup-
porting hyperplane property even for closed convex cones in Asplund spaces,
where the SNC assumption may be strictly weaker than the CEL one; see
Remark 1.27 with its references and Example 3.6 in Subsect. 3.1.1.

In conclusion of this section we present a consequence of the results above
that characterizes Asplund spaces via the existence of basic subgradients for
every locally Lipschitzian function.

Corollary 2.25 (subdifferentiability of Lipschitzian functions on As-
plund spaces). Let X be a Banach space. Then ∂ϕ(x̄) 	= ∅ for every function
ϕ: X → IR locally Lipschitzian around x̄ if and only if X is Asplund.

Proof. Consider any function ϕ on an Asplund space X that is Lipschitz con-
tinuous around x̄ . Then N((x̄, ϕ(x̄)); epi ϕ) 	= {(0, 0)} due to Corollary 2.24.
By Corollary 1.81 we have ∂ϕ(x̄) 	= ∅. Conversely, if X is not Asplund, then
∂ϕ(x) ≡ ∅ on X for the Lipschitz continuous function ϕ in (2.33). �

2.3 Relations with Variational Principles

By variational principles, in the conventional terminology of variational analy-
sis, one means a group of results stating that for any lower semicontinuous
(l.s.c.) and bounded from below function ϕ: X → IR and a point x0 close
to its minimum there is an arbitrary small perturbation θ(·) such that the
resulting function ϕ + θ achieves its minimum at some point x̄ near x0. A
variational principle is said to be smooth when the perturbation function may
be chosen as smooth in some sense. The first general variational principle was
established by Ekeland [396, 397] in complete metric spaces. Among smooth
variational principles the most powerful are those by Borwein and Preiss [154]
in Banach spaces with smooth renorms and by Deville, Godefroy and Zizler
[331] in Banach spaces with smooth bump functions. Variational principles
play a prominent role in many aspects of nonlinear analysis, optimization,
and numerous applications.

For dim X < ∞ such principles easily follow from the classical Weierstrass
existence theorem and the compactness of the unit ball IB ⊂ X . In the case of
infinite-dimensional spaces they ensure the existence of optimal solutions to
perturbed problems and hence lead, by employing some calculus, to “almost”
minimal points of the original function ϕ that “almost” satisfy necessary op-
timality conditions in terms of corresponding subgradients of ϕ. If X admits
a smooth variational principle, such conditions can be obtained in terms of
Fréchet subgradients by using the simple rule of Proposition 1.107(i). How-
ever, as we’ll see below, smooth variational principles may be applied only
if X has some smoothness properties, while the required subgradient condi-
tions can be derived from the approximate extremal principle in any Asplund
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space. In this way we establish relationships between the extremal principle
and appropriate versions of variational principles in X and obtain variational
characterizations of Asplund spaces in terms of Fréchet subgradients and ε-
subgradients of lower semicontinuous functions.

2.3.1 Ekeland Variational Principle

Let us start with the fundamental variational principle of Ekeland that turns
out to be a characterization of complete metric spaces (X, d).

Theorem 2.26 (Ekeland’s variational principle). Let (X, d) be a metric
space. The following hold:

(i) Assume that X is complete and that ϕ: X → IR is a proper l.s.c. function
bounded from below. Let ε > 0 and x0 ∈ X be given such that ϕ(x0) ≤ inf X ϕ+
ε. Then for any λ > 0 there is x̄ ∈ X satisfying

(a) ϕ(x̄) ≤ ϕ(x0),
(b) d(x̄, x0) ≤ λ,
(c) ϕ(x) + (ε/λ)d(x, x̄) > ϕ(x̄) for all x 	= x̄.

(ii) Conversely, X is complete if for every Lipschitz continuous function
ϕ: X → IR bounded from below and every ε > 0 there is x̄ ∈ X satisfying

(a′) ϕ(x̄) ≤ inf X ϕ + ε and property (c) above with λ = 1.

Proof. Let us justify (i) observing that it is sufficient to consider the case of
ε = λ = 1. Indeed, the general case in (i) can be easily reduced to this special
case applied to the function ϕ̃(x) := ε−1ϕ(x) on the metric space (X, d̃) with
d̃(x, y) := λ−1d(x, y). Putting ε = λ = 1 in what follows, we first prove that
there always exists x̄ ∈ X satisfying (c) under the assumptions in (i). Define
a mapping T : X →→ X by

T (x) :=
{

u ∈ X
∣
∣ ϕ(u) + d(x, u) ≤ ϕ(x)

}
.

Starting with an arbitrary point x1 ∈ dom ϕ, we inductively construct a se-
quence {xk}, k ∈ IN , as follows. Assume that xk is known and select the next
iteration xk+1 so that

xk+1 ∈ T (xk) and ϕ(xk+1) < inf
x∈T (xk)

ϕ(x) +
1
k
, k ∈ IN .

Observe that all T (xk) are nonempty and closed. Moreover, T (xk+1) ⊂ T (xk)
due to the triangle inequality. This gives

d(u, xk+1) ≤ ϕ(xk+1) − ϕ(u) ≤ inf
x∈T (xk)

ϕ(x) +
1
k
− ϕ(u)

≤ inf
x∈T (xk+1)

ϕ(x) +
1
k
− ϕ(u) ≤ 1

k
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for all u ∈ T (xk+1), k ∈ IN . Therefore

diam T (xk) := sup
x,u∈T (xk)

d(x, u) → 0 as k → ∞ .

Due to the completeness of X we conclude that the sets T (xk) shrink to a
single point:

∞⋂

k=1

T (xk) =
{

x̄} for some x̄ ∈ X .

The latter implies (c) by the construction of T (xk).
Now given x0 ∈ X with ϕ(x0) ≤ inf X ϕ + 1, we consider the space

X0 :=
{

x ∈ X
∣
∣ ϕ(x) ≤ ϕ(x0) − d(x, x0)

}

with the metric induced by d. Obviously (X0, d) is complete. Applying (c) on
this space, we find x̄ ∈ X0 such that

ϕ(x) > ϕ(x̄) − d(x, x̄) for all x ∈ X0 \
{

x̄
}
.

Let us show that the point x̄ satisfies all the conditions (a)–(c) in (i) with
ε = λ = 1. Indeed, (a) and (b) follow directly from x̄ ∈ X0, i.e., from ϕ(x̄) +
d(x̄, x0) ≤ ϕ(x0) and ϕ(x0) ≤ inf X ϕ+1. It remains to prove (c) for x ∈ X \X0.
Taking x /∈ X0, one has by the above construction that

ϕ(x) > ϕ(x0) − d(x, x0) ≥ ϕ(x̄) + d(x̄, x0) − d(x, x0)

≥ ϕ(x̄) − d(x̄, x) ,

which ends the proof of (i).
To prove the converse statement (ii), let us consider an arbitrary Cauchy

sequence {xk} in X and define the function

ϕ(x) := lim
k→∞

d(xk, x) for all x ∈ X ,

where the limit exists due to

|d(xk, x) − d(xn, x)| ≤ d(xk, xn) → 0 as k, n → ∞

by the triangle inequality. This also gives

|d(xk, x) − d(xk, u)| ≤ d(x, u) for all x, u ∈ X, k ∈ IN ,

which implies the Lipschitz continuity of ϕ on X . Since {xk} is a Cauchy
sequence, for every ε > 0 we find k(ε) ∈ IN such that d(xk, xn) ≤ ε whenever
k, n ≥ k(ε). Thus

ϕ(xn) = lim
k→∞

d(xk, xn) ≤ ε if n ≥ k(ε) ,
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and hence ϕ is bounded from below with infX ϕ = 0. To prove the completeness
of X , we need to find x̄ ∈ X such that ϕ(x̄) = 0.

Choose ε ∈ (0, 1) and take x̄ ∈ X satisfying (a′) and (c) with λ = 1. Then
ϕ(x̄) ≤ ε due to (a′) and inf X ϕ = 0. Now pick an arbitrary small γ > 0 and
put x = xn in (c) with n ∈ IN . From the definition of ϕ and the fact that {xk}
is a Cauchy sequence, we get d(xn, x̄) ≤ ε + γ when n is sufficiently large.
This gives ϕ(x̄) ≤ ε2 by passing to the limit in (c) with x = xn as n → ∞ and
γ ↓ 0. Repeating this procedure m times, one has ϕ(x̄) ≤ εm for any m ∈ N .
Thus ϕ(x̄) = 0, which justifies the completeness of X . �

Condition (c) in Theorem 2.26 means that the perturbed function ϕ(x) +
(ε/λ)d(x, x̄) achieves at x̄ its strict global minimum over X . It has many
important consequences. Let us present one, which is of special interest for
subsequent discussions.

Corollary 2.27 (ε-stationary condition). Let ϕ: X → IR be a proper l.s.c.
function bounded from below on a Banach space X . Given ε, λ > 0 and x0 ∈ X
with ϕ(x0) ≤ inf X ϕ + ε, we assume that ϕ is Fréchet differentiable on a
neighborhood U of x0 containing Bλ(x0). Then there is x̄ ∈ X with ‖x̄−x0‖ ≤ λ
such that ϕ(x̄) ≤ ϕ(x0) and ‖∇ϕ(x̄)‖ ≤ ε/λ.

Proof. Since x̄ is a minimum point of the sum ϕ(x) + ψ(x) with ψ(x) :=
(ε/λ)‖x − x̄‖, we have 0 ∈ ∂̂(ϕ + ψ)(x̄) by Proposition 1.114. Now applying
Proposition 1.107(i) and taking into account that ∂̂

(
‖ · −x̄‖

)
(x̄) = IB∗ for the

norm function in Banach spaces, we get all the conclusions of the corollary
from Theorem 2.26(i). �

Note that, since the initial ε-optimal point x0 always exists, Corollary 2.27
ensures that every Fréchet differentiable and bounded from below function ϕ
on a Banach space X admits an ε-optimal point x̄ satisfying the ε-stationary
condition ‖∇ϕ(x̄)‖ ≤ ε for an arbitrary small ε > 0. As shown in the orig-
inal paper of Ekeland [397], this result holds also for Gâteaux differentiable
functions, which is a direct consequence of his variational principle.

What happens when ϕ is nonsmooth? This is considered next.

2.3.2 Subdifferential Variational Principles

In this subsection we first obtain a lower subdifferential counterpart of the
ε-stationary result of Corollary 2.27 to the case of arbitrary l.s.c. func-
tions bounded from below. We’ll see that such an extension derived by us-
ing the extremal principle turns out to be a characterization of Asplund
spaces. It actually plays a role of a (local) variational principle in Asplund
spaces and has many important consequences, including density results for
Fréchet subgradients as well as conventional forms of smooth variational prin-
ciples under appropriate smoothness assumptions on Banach spaces. Finally,
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we derive an upper version of the subdifferential variational principle that
holds in general Banach spaces and involves every upper Fréchet subgradient
(provided that they exist) instead of some lower subgradient as in the previous
lower subdifferential counterpart.

Theorem 2.28 (lower subdifferential variational principle). Let X be
a Banach space. The following are equivalent:

(a) The approximate extremal principle holds in X .
(b) For every proper l.s.c. function ϕ: X → IR bounded from below, every

ε > 0, λ > 0, and x0 ∈ X with ϕ(x0) < inf X ϕ + ε there are x̄ ∈ X and
x∗ ∈ ∂̂ϕ(x̄) such that ‖x̄ − x0‖ < λ, ϕ(x̄) < inf X ϕ + ε, and ‖x∗‖ < ε/λ.

(c) X is Asplund.

Proof. Implication (c)⇒(a) is established in Theorem 2.20. Let us justify the
other implications. We begin with (b)⇒(c) and then derive (a)⇒(b), which is
the main part of the theorem.

(b)⇒(c). Take an arbitrary convex continuous function ϕ: X → IR. Then
∂̂ϕ(x) agrees with the subdifferential of convex analysis and is nonempty at
every x ∈ X . To establish the Asplund property of X , it is sufficient to show
that there is a dense subset S ⊂ X such that ∂̂(−ϕ)(x) 	= ∅ for every x ∈ S.
Indeed, in this case ϕ is Fréchet differentiable on S due to Proposition 1.87.

Fix x0 ∈ X and ε > 0. Since ψ(x) := −ϕ(x) is continuous, there is a
positive number ν < ε such that ψ(x) > ψ(x0) − ε for all x ∈ x0 + ν IB. Thus
we have φ(x0) < inf X φ + 2ε, where the function

φ(x) := ψ(x) + δ(x ; x0 + ν IB), x ∈ X ,

is obviously lower semicontinuous on X . Applying (b) to the latter function,
we find x̄ ∈ X with ‖x̄ − x0‖ < ν such that ∂̂φ(x̄) 	= ∅. This clearly implies
that ∂̂ψ(x̄) 	= ∅, i.e., the set of points x ∈ X with ∂̂(−ϕ)(x) 	= ∅ is dense in X .
Hence X must be Asplund.

(a)⇒(b). First let us choose 0 < ε̃ < ε with ϕ(x0) < inf X ϕ + (ε − ε̃)
and put λ̃ := (2ε)−1(2ε − ε̃)λ < λ. Applying Theorem 2.26(i), we find x̃ ∈ X
satisfying ‖x̃ − x0‖ ≤ λ̃, ϕ(x̃) ≤ inf X ϕ + (ε − ε̃), and

ϕ(x̃) < ϕ(x) + λ̃−1(ε − ε̃)‖x − x̃‖ for all x ∈ X\{x̃} . (2.37)

Define two closed subsets of X × IR by

Ω1 := epiϕ, Ω2 :=
{
(x, α) ∈ X × IR

∣
∣ α ≤ ϕ(x̃) − λ̃−1(ε − ε̃)‖x − x̃‖

}
.

It is easy to conclude from (2.37) that (x̃, ϕ(x̃)) is a local extremal point of the
set system {Ω1,Ω2}; so we can use the extremal principle.

Consider the norm ‖(x, α)‖ := ‖x‖+ |α| on X × IR with the corresponding
dual norm ‖(x∗, ξ)‖ = max{‖x∗‖, |ξ |} on X∗ × IR. Applying the approximate
extremal principle to the above system, for any ε̂ > 0 we find (xi , αi ) ∈ Ωi

and (x∗
i , ξi ) ∈ N̂((xi , αi );Ωi ), i = 1, 2, satisfying
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‖xi − x̃‖ + |αi − ϕ(x̃)| < ε̂ ,

1
2 − ε̂ < max

{
‖x∗

i ‖, |ξi |
}
< 1

2 + ε̂ ,

max
{
‖x∗

1 + x∗
2‖, |ξ1 + ξ2|} < ε̂ .

(2.38)

Observe that (x∗
2 , ξ2) 	= 0 when ε̂ is sufficiently small. It follows from the

structure of Ω2 that α2 = ϕ(x̃)− λ̃−1(ε− ε̃)‖x2 − x̃‖, which yields ξ2 > 0 and
thus implies

x∗
2/ξ2 ∈ ∂̂

(
λ̃−1(ε − ε̃)‖ · −x̃‖

)
(x2) and ‖x∗

2‖/ξ2 ≤ λ̃−1(ε − ε̃) .

Taking (2.38) into account, the latter gives the estimate

ξ2 ≥ min
{

(1 − 2ε̂)λ̃
2(ε − ε̃)

,
1
2
− ε̂

}
, (2.39)

which ensures by (2.38) that ξ1 < 0 when ε̂ is sufficiently small. This allows
us to show that α1 = ϕ(x1), since the opposite implies ξ1 = 0 due to (x∗

1 , ξ1) ∈
N̂((x1, α1); epi ϕ) and the definition of N̂ . Consequently −x∗

1/ξ1 ∈ ∂̂ϕ(x1).
It follows from (2.39) that ε̂/ξ2 → 0 as ε̂ ↓ 0. Putting all the above together,

we have
‖x∗

1‖
|ξ1|

<
‖x∗

2‖ + ε̂

ξ2 − ε̂
=
(‖x∗

2‖
ξ2

+
ε̂

ξ2

)/(
1 − ε̂

ξ2

)
<

ε

λ

when ε̂ is sufficiently small. On the other hand, it follows from (2.38) and the
choice of λ̃ that

‖x1 − x0‖ < λ̃+ ε̂ and ϕ(x1) = α1 < inf
X
ϕ + ε − ε̃ + ε̂ .

Finally, letting x̄ := x1 and x∗ := −x∗
1/ξ1, we arrive at all the conclusions in

(b) and finish the proof of the theorem. �

One can see that the major difference between the results of Theo-
rem 2.26(i) and Theorem 2.28(b) is that, instead of the minimization condition
(c) in the first theorem, we have the “almost stationary” lower subdifferential
condition in the second one with the same type of estimates. The latter subd-
ifferential condition carries essential information for local variational analysis
and applications, which allows us to treat assertion (b) of Theorem 2.28 as
a proper variational principle in Asplund spaces and call it the (lower) sub-
differential variational principle. Moreover, we’ll see in the next subsection
that this result implies smooth variational principles in the conventional min-
imization/support form under additional smoothness assumptions on Asplund
spaces that are necessary for the fulfillment of smooth variational principles
but are not needed in Theorem 2.28.

The subdifferential variational principle of Theorem 2.28 easily implies
the dense Fréchet subdifferentiability and related properties of l.s.c. functions
that also turn out to be characterizations of Asplund spaces.
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Corollary 2.29 (Fréchet subdiffentiability of l.s.c. functions). Let A
be a class of all proper l.s.c. functions ϕ: X → IR on a Banach space X . The
following properties are equivalent:

(a) X is Asplund.
(b) For every ϕ ∈ A the set of points

{(
x, ϕ(x)

)
∈ X × IR

∣
∣ ∂̂ϕ(x) 	= ∅

}
is

dense in the graph of ϕ.
(c) For every ϕ ∈ A there is x ∈ dom ϕ with ∂̂ϕ(x) 	= ∅.
(d) For every ϕ ∈ A and every ε > 0 there is x ∈ dom ϕ with ∂̂gεϕ(x) 	= ∅.
(e) For every ϕ ∈ A and every ε > 0 there is x ∈ dom ϕ with ∂̂aεϕ(x) 	= ∅.

Proof. By Theorem 2.28 the smooth variational principle holds in any As-
plund space. Take arbitrary ϕ ∈ A, x0 ∈ dom ϕ, and ε > 0. Following the
proof of (b)⇒(c) in the above theorem, we find x̄ ∈ X such that ‖x̄ − x0‖ < ε,
|ϕ(x̄) − ϕ(x0)| < 2ε, and ∂̂ϕ(x̄) 	= ∅. This justifies (a)⇒(b) in the corollary.
Implications (b)⇒(c)⇒(d) are obvious, and (d)⇒(e) easily follows from The-
orem 1.86. To justify the concluding implication (e)⇒(a), it is sufficient to
observe that the concave continuous function ϕ := −| · | from Proposition 2.18
violates (e) for every ε < ϑ/2. �

It follows from the proof of Corollary 2.29 that all the equivalences therein
keep holding if the class A is replaced by more narrow classes of l.s.c. functions.
In particular, one can consider only concave continuous functions ϕ: X → IR,
or proper l.s.c. functions ϕ: X → IR bounded from below. The latter follows
from the fact that implication (e)⇒(a) can be verified for the function ϕ =
1/| · |, where | · | is taken from Proposition 2.18. Note also that the list of
equivalences in Corollary 2.29 can be supplemented by counterparts of (b)
and (c) in terms of basic subgradients. It immediately follows from the limiting
representations (1.55) in Theorem 1.89.

Finally in this subsection, we establish another version of the subdiffer-
ential variational principle whose difference from that in Theorem 2.28 con-
sists of using upper Fréchet subgradients instead of lower ones as above. The
new version, which holds in arbitrary Banach spaces, involves every upper
subgradient of the function in question, while it generally doesn’t guarantee
the existence of such subgradients. However, this result has certain essen-
tial advantages in comparison with its lower subdifferential counterpart being
useful in some applications (particularly for deriving suboptimality conditions
in constrained minimization) for important classes of functions that admit
nonempty Fréchet upper subdifferential at reference points; see Chap. 5 for
various results, discussions, and references.

Theorem 2.30 (upper subdifferential variational principle). Let X be
a Banach space, and let ϕ: X → IR be a l.s.c. function bounded from below.
Then for every ε > 0, λ > 0, and x0 ∈ X with ϕ(x0) < inf X ϕ + ε there is
x̄ ∈ X with ‖x̄ − x0‖ < λ and ϕ(x̄) < inf X ϕ + ε such that

‖x∗‖ < ε/λ whenever x∗ ∈ ∂̂+ϕ(x̄) .
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Proof. Given arbitrary numbers ε > 0 and λ > 0 and applying Ekeland’s
variational principle to the function ϕ and the point x0 under consideration,
we find x̄ ∈ X satisfying ‖x0 − x̄‖ < λ, ϕ(x̄) < inf X ϕ(x) + ε, and

ϕ(x̄) ≤ ϕ(x) +
ε

λ
‖x − x̄‖ for all x ∈ X .

Taking now any x∗ ∈ ∂̂+ϕ(x̄) = −∂̂(−ϕ)(x̄) and using the smooth variational
description of Fréchet subgradients from Theorem 1.88(i) held in arbitrary
Banach spaces, we find a function s: X → IR Fréchet differentiable at x̄ and
such that

s(x̄) = ϕ(x̄), ∇s(x̄) = x∗ and s(x) ≥ ϕ(x) whenever x ∈ X .

Combining this with the above global minimization property for the perturba-
tion of ϕ at x̄ , conclude that the function φ(x) := s(x) + (ε/λ)‖x − x̄‖ attains
its global minimum at x̄ . Then it follows from the generalized Fermat rule of
Proposition 1.114, the sum rule of Proposition 1.107(i), and subdifferentiating
the norm function at zero that

0 ∈ ∂̂φ(x̄) = ∇s(x̄) + ∂̂
( ε
λ
‖ · −x̄‖

)
(x̄) ⊂ x∗ +

ε

λ
IB∗ .

This gives ‖x∗‖ < ε/λ and completes the proof of the theorem. �

2.3.3 Smooth Variational Principles

The crucial condition (c) in Theorem 2.26 can be interpreted as follows: for
every proper l.s.c. function ϕ: X → IR bounded from below (i.e., such that
inf ϕ > −∞) there exist a point x̄ ∈ dom ϕ and a function s: X → IR satisfying

ϕ(x̄) = s(x̄) and ϕ(x) ≥ s(x) for all x ∈ X . (2.40)

The latter means that s(·) “supports ϕ from below.” Such a function s(·)
is usually called a supporting function belonging to some class S. In these
words condition(2.40), with s(·) ∈ S for every l.s.c. function ϕ bounded from
below, postulates that the S-variational principle holds in X . Thus Ekeland’s
theorem ensures that, for the class of

S :=
{
− ε‖ · −x̄‖ + c

∣
∣ ε > 0, c ∈ IR

}

with arbitrary small positive numbers ε, the S-variational principle holds in
any Banach space. A notable limitation on applications of this result is that
the supporting functions are not smooth.

If all s(·) ∈ S are required to be smooth (in some sense), we speak about a
smooth variational principle in a Banach space X . An S-variational principle
is called concave if S consists of concave functions. The afore-mentioned result
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of Borwein and Preiss establishes a concave smooth variational principle pro-
vided that X admits a smooth renorm with respect to some bornology. The
corresponding result of Deville, Godefroy and Zizler ensures a smooth (but
not concave) variational principle when the smooth renorming assumption is
weaken to the existence of a smooth Lipschitzian bump function on X .

In the following theorem we consider variational principles for the three
classes of S-smooth functions on X : Fréchet differentiable (S = F), Lip-
schitzian and Fréchet differentiable (S = LF), and Lipschitzian and con-
tinuously differentiable (S = LC1). Applying the lower subdifferential vari-
ational principle of Theorem 2.28 and then the variational descriptions of
Fréchet subgradients established above, we derive S-smooth variational prin-
ciples in some enhanced forms under the corresponding smoothness assump-
tions on the Banach space in question, which inevitably imply the Asplund
property of this space. Moreover, we show that the smoothness assumptions
on X are not only sufficient but also necessary for the fulfillment of these
smooth (resp. concave and smooth) variational principles in Asplund spaces.

Theorem 2.31 (smooth variational principles in Asplund spaces).
Let X be a Banach space, and let A stand for the class of all proper l.s.c.
functions ϕ: X → IR bounded from below. Given arbitrary ε > 0 and λ > 0,
one has the following assertions:

(i) If X admits a Fréchet smooth renorm, then for every ϕ ∈ A and x0 ∈ X
with ϕ(x0) < inf X ϕ + ε there exist x̄ ∈ X and a concave Fréchet differentiable
function s: X → IR such that

‖x̄ − x0‖ < λ, ϕ(x̄) < inf
X
ϕ + ε , (2.41)

‖∇s(x̄)‖ < ε/λ, and

ϕ(x̄) = s(x̄), ϕ(x) ≥ s(x) + ‖x − x̄‖2 for all x ∈ X .

(ii) Let X admit an S-smooth bump function, where S stands for either F ,
LF , or LC1. Then for every ϕ ∈ A and x0 ∈ X with ϕ(x0) < inf X ϕ + ε there
exist x̄ ∈ X satisfying (2.41), an S-smooth bump b: X → IR, and a constant
c ∈ IR such that ‖∇b(x̄)‖ < ε/λ and

ϕ(x̄) = b(x̄) + c, ϕ(x) ≥ b(x) + c for all x ∈ X .

Moreover, in this case we can find S-smooth functions s: X → IR and θ : X →
[0,∞) such that ‖∇s(x̄)‖ < ε/λ, θ(x) = 0 only for x = 0, θ(x) ≤ ‖x‖2 if
x ∈ IB, and

ϕ(x̄) = s(x̄), ϕ(x) ≥ s(x) + θ(x − x̄) for all x ∈ X .

(iii) Conversely, the concave F-smooth variational principle holds in X
only if X admits a Fréchet smooth renorm, and the S-smooth variational
principle holds in X only if X admits an S-smooth bump function for the
corresponding classes S listed above.
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Proof. Assertions (i) and (ii) follow directly from the lower subdifferential
variational principle in Theorem 2.28(b) due to the variational descriptions of
Fréchet subgradients in Theorem 1.88. Let us justify the converse statements
formulated in (iii).

First we prove that the concave F-smooth variational principle in X implies
that X admits a Fréchet smooth renorm. Applying (2.40) to the function
ϕ(x) := 1/‖x‖, we find 0 	= v ∈ X and a concave Fréchet differentiable
function s: X → IR such that

s(x) ≤ ϕ(x) = 1/‖x‖ < 1/(2‖v‖) if ‖x‖ > 2‖v‖ ,

with s(v) = 1/‖v‖. Putting

p(x) := −s(x + v) + 1/‖v‖, x ∈ X ,

we conclude that p is convex and Fréchet differentiable on X due to the
corresponding properties of s. Thus p is C1-smooth on X . Moreover, one has
p(0) = 0 and

p(x) > −1/(2‖v‖) + 1/‖v‖ = 1/(2‖v‖) if ‖x‖ > 3‖v‖ ,

since ‖x + v‖ > 2‖v‖. Now let us consider the Minkowski gauge functional

g(x) := inf
{
λ > 0

∣
∣ x ∈ λΩ

}
, x ∈ X ,

of the set Ω :=
{

x ∈ X
∣
∣ p(x) ≤ 1/(2‖v‖)

}
. It is easy to see that Ω is

convex, closed, and bounded with 0 ∈ int Ω. In this case the Minkowski
gauge is a continuous sublinear functional with g(x) > 0 for all x 	= 0 and
Ω = {x ∈ X | g(x) ≤ 1}. This ensures the existence of M > 0 such that

‖x‖/(3‖v‖) ≤ g(x) ≤ M‖x‖ for all x ∈ X .

Now considering the function

n(x) := g(x) + g(−x), x ∈ X ,

we conclude that it defines a norm on X equivalent to the original one ‖ · ‖.
To complete the proof of the first statement in (iii), it remains to justify that
g is Fréchet differentiable on X \ {0}. The crucial step for this is to show the
Gâteaux differentiability of g at every nonzero point of X . Since g is convex,
the latter is equivalent to the fact that its subdifferential ∂g(x) is a singleton
for each x ∈ X \ {0}.

To proceed, we fix an arbitrary x ∈ X with g(x) = 1 and pick x∗ ∈ ∂g(x).
It can be easily derived from the definitions that

p(x) = 1/(2‖v‖) and 〈x∗, x〉 = g(x) .

Now taking any t > 0 and h ∈ X with 〈x∗, h〉 = 0, one has
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g(x + th) ≥ g(x) + 〈x∗, th〉 = 1, g(α(x + th)) = αg(x + th) > 1 if α > 1 ,

and hence α(x + th) /∈ Ω. Thus p(α(x + th)) > 1/(2‖v‖) for all α > 1 and all
t > 0. Passing to the limit as α ↓ 1, we get p(x + th) ≥ 1/(2‖v‖) (= p(x)) for
all t > 0. Since p is Gâteaux differentiable at x with the derivative p′(x), this
implies that

〈p′(x), h〉 = lim
t↓0

p(x + th) − p(x)
t

≥ 0 for all h ∈ X with 〈x∗, h〉 = 0 .

The latter gives 〈p′(x), h〉 = 0 for all such h, and so x∗ = λp′(x) for some
λ ∈ IR. Therefore

1 = g(x) = 〈x∗, x〉 = λ〈p′(x), x〉 ,

which uniquely determines x∗ ∈ ∂g(x) as x∗ = p′(x)/〈p′(x), x〉. This means
that g is Gâteaux differentiable at x and g′(x) = x∗ when g(x) = 1. Consid-
ering an arbitrary nonzero x ∈ X and taking into account that g is positively
homogeneous and g(x) 	= 0, we get the following formula for the Gâteaux
derivative of g at x :

g′(x) =
〈

p′
( x

g(x)

)
,

x
g(x)

〉−1

p′
( x

g(x)

)
.

Since p is C1-smooth, this formula implies that g′ is norm-to-norm continuous.
Thus g is Fréchet differentiable at every nonzero point of X , which justifies
the first part of (iii).

Next we prove the second part of (iii) simultaneously for each listed S.
Again pick the function ϕ = 1/‖ · ‖ and apply to it the supporting condition
(2.40) with some v = x̄ and S-smooth function s : X → IR. Then consider an
arbitrary C2-smooth function τ : IR → [0, 1] satisfying

τ (t) = 1 if t ≥ 1/‖v‖ and τ (t) = 0 if t ≤ 1/(2‖v‖) .

One can easily check that b := τ ◦ s is an S-smooth bump function on X ,
which justifies (iii). �

Note that the supporting conditions in assertions (i) and (ii) of Theo-
rem 2.31 carry more information in comparison with the basic supporting
condition (2.40) used in the proof of assertion (iii). Observe also that the
proof of Theorem 2.31(iii) holds true when the Fréchet smoothness is replaced
by the Gâteaux smoothness or, generally, by any β-smoothness with respect
to an arbitrary bornology β on X ; cf. Remark 2.11. This implies that any
smooth (resp. concave smooth) variational principle with the supporting con-
dition (2.40) necessarily requires the corresponding smooth renorming/bump
function assumption on the underlying Banach space X .
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2.4 Representations and Characterizations
in Asplund Spaces

In this section we apply the above extremal and variational principles to obtain
efficient representations of the generalized differential constructions of Chap. 1
in the case of Asplund spaces. Most of these representations turn out to be
characterizations of Asplund spaces. We begin with a subgradient description
of the approximate extremal principle, which plays an essential role in the
subsequent material. Then we derive characterizations of Asplund spaces in
terms of special subdifferential sum rules involving Lipschitzian functions.
This leads to simplified representations of basic subgradients, normals, and
coderivatives in Asplund spaces similar to those in finite dimensions. In the
last subsection we derive convenient representations of singular subgradients of
extended-real-valued l.s.c. functions and related results for horizontal normals
to graphs of continuous functions on Asplund spaces.

2.4.1 Subgradients, Normals, and Coderivatives in Asplund Spaces

Let SL(x̄) denote the class of pairs (ϕ1, ϕ2) with proper functions ϕi : X → IR
such that ϕ1 is Lipschitz continuous around x̄ ∈ dom ϕ1 ∩ dom ϕ2 and ϕ2

is l.s.c. around this point. For brevity we say that the sum ϕ1 + ϕ2 is semi-
Lipschitzian at x̄ if (ϕ1, ϕ2) ∈ SL(x̄). The next result provides an equivalent
description of the approximate extremal principle in terms of a “fuzzy” sub-
gradient condition for minimum points of semi-Lipschitzian sums.

Lemma 2.32 (subgradient description of the extremal principle).
Given a Banach space X , one has the following:

(i) Let the approximate extremal principle hold for every extremal system
of two closed sets in X × IR. Assume that (ϕ1, ϕ2) ∈ SL(x̄) with ϕi : X → IR
and that the sum ϕ1 + ϕ2 attains a local minimum at x̄. Then for any η > 0
there are xi ∈ x̄ + ηIB with |ϕi (xi ) − ϕi (x̄)| ≤ η, i = 1, 2, such that

0 ∈ ∂̂ϕ1(x1) + ∂̂ϕ2(x2) + ηIB∗ . (2.42)

(ii) Conversely, let for any (ϕ1, ϕ2) ∈ SL(x̄) with ϕi : X2 → IR and for any
η > 0 there exist xi ∈ x̄ + ηIB with |ϕi (xi ) − ϕi (x̄)| ≤ η, i = 1, 2, such that
(2.42) is fulfilled provided that ϕ1 +ϕ2 attains a local minimum at x̄. Then the
approximate extremal principle holds for every extremal system of two closed
sets in X .

Proof. To justify (i), we consider (ϕ1, ϕ2) ∈ SL(x̄) and assume without loss
of generality that x̄ = 0 ∈ X is a local minimizer for ϕ1 + ϕ2 with ϕ1(0) =
ϕ2(0) = 0, that ϕ1 is Lipschitz continuous on ηIB with modulus � > 0, and
that ϕ2 is l.s.c. on ηIB for the fixed η > 0. Consider the sets

Ω1 := epi ϕ1 and Ω2 :=
{
(x, α) ∈ X × IR

∣
∣ ϕ2(x) ≤ −α

}
,
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which are obviously closed around (0, 0) ∈ X × IR. It is easy to check that
(0, 0) is a local extremal point of the sets {Ω1,Ω2}, since x̄ = 0 is a local
minimizer for ϕ1 + ϕ2. Applying the approximate extremal principle to the
system

{
Ω1,Ω2, (0, 0)

}
, for any ε > 0 we find (xi , αi ) ∈ Ωi and (x∗

i , λi ) ∈
X∗ × IR, i = 1, 2, such that

(x∗
1 ,−λ1) ∈ N̂((x1, α1);Ω1), (−x∗

2 , λ2) ∈ N̂((x2, α2);Ω2) , (2.43)

‖(xi , αi )‖ ≤ ε, 1
2 − ε ≤ ‖(x∗

i , λi )‖ ≤ 1
2 + ε, i = 1, 2 , (2.44)

‖(x∗
1 ,−λ1) + (−x∗

2 , λ2)‖ ≤ ε . (2.45)

It follows from (2.43) that λi ≥ 0 for i = 1, 2. Our goal is to show that choosing
ε to be sufficiently small, we get λi > 0 and can equivalently transformed
(2.43) to subgradient relations with the required estimates. For these purposes
it is convenient to define the corresponding norms on X × IR and X∗ × IR by

‖(x, α)‖ := max
{
‖x‖, |α|

}
and ‖(x∗, λ)‖ := ‖x∗‖ + |λ| .

Then choose ε in (2.43)–(2.45) satisfying

0 < ε < min
{ 1

4(2 + �)
,

η

4(1 + �)2
}
.

Since ϕ1 is Lipschitz continuous on ηIB, we get from (x∗
1 ,−λ1)∈ N̂((x1, α1);Ω1)

with max{‖x1‖, |α1|} ≤ ε < η that ‖x∗
1‖ ≤ �λ1; see Proposition 1.85(ii). It

gives by (2.44) and (2.45) that

λ1 ≥ 1
2(1 + �)

− ε

1 + �
> 0 and λ2 ≥ 1

2(1 + �)
− ε
(2 + �

1 + �

)
>

1
4(1 + �)

by the choice of ε. This implies by (2.43) that α1 = ϕ1(x1), α2 = −ϕ2(x2),
and hence

x̃∗
1 := x∗

1/λ1 ∈ ∂̂ϕ1(x1), x̃∗
2 := −x∗

2/λ2 ∈ ∂̂ϕ2(x2) .

By (2.44) we have

‖xi‖ ≤ ε < η and |ϕi (xi )| = |αi | ≤ ε < η, i = 1, 2 .

To justify (2.42), it remains to show that ‖x̃∗
1 + x̃∗

2‖ ≤ η. This follows from

∥
∥
∥

x∗
1

λ1
− x∗

2

λ2

∥
∥
∥ =

∥
∥
∥

x∗
1 (λ2 − λ1)
λ1λ2

+
x∗
1 − x∗

2

λ2

∥
∥
∥ ≤ ‖x∗

1‖
λ1

( |λ2 − λ1|
λ2

)
+

‖x∗
1 − x∗

2‖
λ2

≤ �
ε

λ2
+

ε

λ2
=

ε

λ2

(
1 + �

)
< 4ε(1 + �)2 < η

due to the choice of ε and the estimates above.
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Next let us prove the converse assertion (ii). Take an extremal system
{Ω1,Ω2, x̄} in X and find a neighborhood U of x̄ such that, given an arbitrary
ε > 0, there is a ∈ X with ‖a‖ < ε2/2 and (Ω1 + a)∩Ω2 ∩U = ∅. Put U = X
for simplicity and define the function ϕ: X × X → IR by

ϕ(u, v) := 1
2‖u − v + a‖, (u, v) ∈ X2 . (2.46)

It follows from the local extremality of x̄ that ϕ(x̄, x̄) < (ε/2)2 and that
ϕ(u, v) > 0 for all u ∈ Ω1 and v ∈ Ω2.

Now we apply Ekeland’s variational principle in Theorem 2.26(i) to the
function ϕ on the complete metric space Ω1 ×Ω2 whose metric is induced by
the norm ‖(u, v)‖ := ‖u‖ + ‖v‖ on X2. This gives points (ū, v̄) ∈ Ω1 × Ω2

such that ‖ū − x̄‖ ≤ ε/2, ‖v̄ − x̄‖ ≤ ε/2, and

ϕ(ū, v̄) ≤ ϕ(u, v) +
ε

2

(
‖u − ū‖ + ‖v − v̄‖

)
for all (u, v) ∈ Ω1 ×Ω2 .

The latter means that the sum of the functions

ϕ1(u, v) := ϕ(u, v)+
ε

2

(
‖u− ū‖+‖v− v̄‖

)
and ϕ2(u, v) := δ((u, v);Ω1×Ω2)

attains at (ū, v̄) its minimum over X2. Observe that ϕ1 is Lipschitz continuous
and convex and that ϕ2 is proper and l.s.c. on X2. By the assumptions in (ii)
we find (y1, y2) ∈ X2 and (x1, x2) ∈ Ω1 × Ω2 such that ‖x1 − ū‖ ≤ ε/2,
‖x2 − v̄‖ ≤ ε/2, ϕ(y1, y2) > 0, and

0 ∈ ∂̂ϕ1(y1, y2) + ∂̂ϕ2(x1, x2) +
ε

2

(
IB∗ × IB∗

)
.

Note that ∂̂ϕ2(x1, x2) = N̂((x1, x2);Ω1 × Ω2) = N̂(x1;Ω1) × N̂(x2;Ω2) due
to Proposition 1.2. Now using the well-known subdifferential formula for the
norm function (2.46) at nonzero points, we conclude that

∂̂ϕ1(y1, y2) =
1
2

(
x∗,−x∗

)
+
ε

2

(
IB∗ × IB∗

)

with some x∗ ∈ X∗ of the unit norm. Finally, putting x∗
1 := −x∗/2 and

x∗
2 := x∗/2, we get x∗

i ∈ N̂(xi ;Ωi )+ε IB∗ with x∗
1 +x∗

2 = 0 and ‖x∗
1‖+‖x∗

2‖ = 1,
which justifies (ii). �

Next we obtain two subdifferential sum rules in the semi-Lipschitzian case:
the fuzzy rule for Fréchet subgradients and ε-subgradients and the exact one
for basic subgradients. Each of these rules applied to all semi-Lipschitzian
sums is proved to be a characterization of Asplund spaces.

Theorem 2.33 (semi-Lipschitzian sum rules). Let X be a Banach space
with x̄ ∈ X . The following properties are equivalent:

(a) X is Asplund.
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(b) For any (ϕ1, ϕ2) ∈ SL(x̄), for any ε ≥ 0, and for any γ > 0 one has

∂̂ε(ϕ1 + ϕ2)(x̄) ⊂
⋃{

∂̂ϕ1(x1) + ∂̂ϕ2(x2)
∣
∣
∣ xi ∈ x̄ + γ IB ,

|ϕi (xi ) − ϕi (x̄)| ≤ γ, i = 1, 2
}

+ (ε + γ )IB∗ .

(c) For any (ϕ1, ϕ2) ∈ SL(x̄) one has

∂(ϕ1 + ϕ2)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄) .

Proof. First we prove (a)⇒(b). Observe that if X is Asplund, then X × IR is
Asplund as well. By Theorem 2.20 the approximate extremal principle holds in
X×IR. Hence we have property (2.42) in Lemma 2.32 for any (ϕ1, ϕ2) ∈ SL(x̄).
Let us derive (b) from this property and from the variational description
of analytic ε-subgradients in Proposition 1.84. Fix (ε, γ ) in (b) and find η
satisfying the relations

0 < η < min
{
γ /4, η̄

}
, where η̄2 + (2 + ε)η̄ − γ = 0 .

Then pick an arbitrary x∗ ∈ ∂̂ε(ϕ1 + ϕ2)(x̄) and conclude by Proposi-
tion 1.84(ii) that the sum

(
ϕ1(x) − 〈x∗, x − x̄〉 + (ε + η)‖x − x̄‖

)
+ ϕ2(x)

attains a local minimum at x̄ . Applying (2.42) with the chosen η to the above
sum and then using the elementary sum rule in Proposition 1.107(i), we find
xi ∈ x̄ + ηIB and x∗

i ∈ X∗, i = 1, 2, such that
∣
∣
∣ϕ1(x1) + (ε + η)‖x1 − x̄‖ − ϕ1(x̄)

∣
∣
∣ ≤ η, |ϕ2(x2) − ϕ2(x̄)| ≤ η ,

x∗
1 ∈ ∂̂

(
ϕ1 + (ε + η)‖ · −x̄‖

)
(x1), x∗

2 ∈ ∂̂ϕ2(x2) ,

and x∗ − x∗
1 − x∗

2 ∈ ηIB∗. This implies that

|ϕ1(x1) − ϕ1(x̄)| ≤ η(ε + η + 1) .

Now employing Proposition 1.84(ii) in the case of the Fréchet subgradient x∗
1 ,

we conclude that the sum ϕ1 + ψ with

ψ(x) := (ε + η)‖x − x̄‖ − 〈x∗
1 , x − x1〉 + η‖x − x1‖

attains a local minimum at x1. Observe that ψ is convex and continuous on
X with ∂ψ(x) ⊂ −x∗

1 + (ε+ 2η)IB∗ for any x ∈ X . Applying (2.42) to ϕ1 +ψ ,
we find x̃1 ∈ x1 + ηIB such that

|ϕ1(x̃1) − ϕ1(x1)| ≤ η and x∗
1 ∈ ∂̂ϕ1(x̃1) +

(
ε + 3η)IB∗ .
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We finally have

x∗ ∈ ∂̂ϕ1(x̃1) + ∂̂ϕ2(x2) + (ε + 4η)IB∗

with ‖x̃1 − x̄‖ ≤ 2η and |ϕ1(x̃1)− ϕ1(x̄)| ≤ η(ε+ η+ 2). This gives (b) by the
choice of η.

Next let us prove that (b) and the Asplund property of X implies (c). Take
an arbitrary x∗ ∈ ∂(ϕ1 +ϕ2)(x̄) and by representation (1.55) in Theorem 1.89
find sequences εk ↓ 0, xk → x̄ with ϕ1(xk) + ϕ2(xk) → ϕ1(x̄) + ϕ2(x̄), and

x∗
k
w∗
→ x∗ such that x∗

k ∈ ∂̂εk (ϕ1 + ϕ2)(xk) as k → ∞. Then employing (b) with
γk = εk , we get sequences xik → x̄ with ϕi (xik) → ϕi (x̄) and x∗

ik ∈ ∂̂ϕi (xik),
i = 1, 2, such that

‖x∗
k − x∗

1k − x∗
2k‖ ≤ 2εk for all k ∈ IN . (2.47)

Since x∗
k → x∗, this sequence is bounded in X∗ due to the uniform bounded-

ness principle. The sequence {x∗
1k} is also bounded by modulus � due to the

Lipschitz continuity of ϕ1 around x̄ ; see Proposition 1.85(ii). Hence {x∗
2k} is

bounded as well. Using the weak∗ sequential compactness of bounded sets in
duals to Asplund spaces, we find x∗

i ∈ X∗ such that x∗
ik

w∗
→ x∗

i , i = 1, 2, along
a subsequence of k → ∞. Again employing Theorem 1.89, we get x∗

i ∈ ∂ϕi (x̄)
for i = 1, 2. Moreover, (2.47) implies that x∗ = x∗

1 + x∗
2 , which gives (c).

It remains to show that each of the properties (b) and (c) implies that X
is Asplund. Indeed, according to Proposition 2.18 and Example 2.19 for any
non-Asplund space X there is an equivalent norm | · | on X such that

∂̂ϕ(x) = ∂ϕ(x) = ∅ whenever x ∈ X

for ϕ := −| · |. Now we can see that both properties (b) and (c) are violated
for the sum ϕ1 + ϕ2 with ϕ1 := | · | and ϕ2 := −| · |. �

The next theorem contains subdifferential characterizations of Asplund
spaces via a simplified limiting representation of basic subgradients (like in
finite-dimensions) and a related expansion formula for the so-called limiting
ε-subdifferential of ϕ: X → IR at x̄ ∈ X with |ϕ(x̄)| < ∞ defined by

∂εϕ(x̄) := Lim sup
x

ϕ→x̄

∂̂εϕ(x) . (2.48)

Theorem 2.34 (subdifferential representations in Asplund spaces).
Let X be a Banach space, x̄ ∈ X , and A(x̄) be the class of proper functions
ϕ: X → IR l.s.c. around x̄ ∈ dom ϕ. The following properties are equivalent:

(a) X is Asplund.
(b) For every x̄ ∈ X and every ϕ ∈ A(x̄) one has

∂ϕ(x̄) = Lim sup
x

ϕ→x̄

∂̂ϕ(x) .



2.4 Representations and Characterizations in Asplund Spaces 219

(c) For every x̄ ∈ X , every ϕ ∈ A(x̄), and every ε > 0 one has

∂εϕ(x̄) = ∂ϕ(x̄) + ε IB∗ .

Proof. To justify (a)⇒(b), we use the fuzzy sum rule in Theorem 2.33(b)
with ϕ1 = 0 and ϕ2 = ϕ. This gives

∂̂εϕ(x̄) ⊂
⋃{

∂̂ϕ(x)
∣
∣
∣ x ∈ x̄ + γ IB, |ϕ(x) − ϕ(x̄)| ≤ γ

}
+ (ε + γ )IB∗ (2.49)

for any ε ≥ 0 and γ > 0. Passing there to the limit as ε = γ ↓ 0, we arrive at
the subdifferential representation (b).

To prove (a)⇒(c), observe that the inclusion “⊃” in (c) is trivial, and
we need to show that the opposite inclusion holds in Asplund spaces. Pick
x∗ ∈ ∂εϕ(x̄) and find by (2.48) sequences xk

ϕ→ x̄ and x∗
k

w∗
→ x∗ such that

x∗
k ∈ ∂̂εϕ(xk) for all k ∈ IN . Taking any γk ↓ 0 and using (2.49) with γ = γk ,

one gets uk ∈ xk + γk IB satisfying |ϕ(uk) − ϕ(xk)| ≤ γk and

x∗
k ∈ ∂̂ϕ(uk) + (ε + γk)IB∗, k ∈ IN .

This allows us to find u∗
k ∈ ∂̂ϕ(uk) and v∗k ∈ (ε+γk)IB∗ such that x∗

k = u∗
k +v∗k

for all k ∈ IN . By the weak∗ sequential compactness of IB∗ and the weak∗

lower semicontinuity of ‖ · ‖ on X∗ we have v∗ ∈ X∗ satisfying

v∗k
w∗
→ v∗ as k → ∞ with ‖v∗‖ ≤ lim inf

k→∞
‖v∗k ‖ ≤ ε

along a subsequence of {k}. This implies the existence of u∗ ∈ ∂ϕ(x̄) such that

u∗
k
w∗
→ u∗ and hence x∗ = u∗ + v∗ ∈ ∂ϕ(x̄) + ε IB∗, which gives (c).
To justify the opposite inclusion (c)⇒(a), one has to show that for any

non-Asplund space X there are x̄ ∈ X , ϕ ∈ A(x̄), and ε̄ > 0 such that the
representation in (c) doesn’t hold. Taking the equivalent norm | · | on X and
the number ϑ > 0 in Proposition 2.18, let us show that this representation is
violated for ϕ = −|·|, x̄ = 0, and ε̄ = 1. Indeed, it follows from Proposition 2.18
and Definition 1.83(ii) that

∂̂εϕ(x) = ∅ for all x ∈ X if 0 ≤ ε < min
{
1, ϑ/2

}
,

which gives ∂ϕ(0) = ∅. On the other hand, one can easily check that ∂̂1ϕ(0) ⊃
{0} 	= ∅. Hence ∂1ϕ(0) 	= ∅ by (2.48), and thus (c) doesn’t hold. Note that
our proof actually shows more: if X is not Asplund, then for any given ε > 0
there is a function ϕ ∈ A(0) such that the representation in (c) is violated.
Indeed, consider the function ϕ := −ε| · | in the above arguments.

To finish the proof of the theorem, it remains to justify (b)⇒(a), i.e., to
show that the representation in (b) is violated for some x̄ ∈ X and some
ϕ ∈ A(x̄) in any non-Asplund space. Assuming that X is not Asplund, we
take the equivalent norm | · | in Proposition 2.18, x̄ = 0, and let
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ϕ(x) := −|x |2 + min
{
〈u∗, x〉, 〈v∗, x〉

}
, x ∈ X , (2.50)

where u∗, v∗ ∈ X∗ with u∗ 	= v∗. Consider a sequence {xk} ⊂ X such that
xk → 0 and 〈u∗, xk〉 < 〈v∗, xk〉 for all k ∈ IN . Denote ψ(x) := −|x |2 and
observe that

ϕ(x) = ψ(x) + 〈u∗, x〉 whenever x ∈ Uk and k ∈ IN

for some neighborhood Uk of xk . Since | · | ≤ ‖ · ‖, we have

|ψ(u) − ψ(v)| =
(
|u| + |v|

)
·
∣
∣(|u| − |v|)

∣
∣ ≤ 3|xk | · |u − v|

for all u, v ∈ xk +
(
‖xk‖/2

)
IB. This means that the function ψ is Lipschitzian

around xk with modulus 3|xk | for any fixed k ∈ IN . It easily follows from the
definitions that

u∗ ∈ ∂̂3|xk |ϕ(xk) for all k ∈ IN ,

where the analytic ε-subdifferential is taken with respect to the norm | · |.
Passing to the limit as k → ∞ and taking into account that representation
(1.55) is invariant with respect to equivalent norms on X , we get u∗ ∈ ∂ϕ(0).

Let us show that ∂̂ϕ(x) = ∅ for all x near the origin, which violates (b) in
the case of ϕ in (2.50) and x̄ = 0. First check that ∂̂ϕ(0) = ∅. Assuming the
contrary, we get x∗ ∈ ∂̂ϕ(0) satisfying

lim inf
h→0

1
‖h‖

[
− |h|2 + min

{
〈u∗, h〉, 〈v∗, h〉

}
− 〈x∗, h〉

]
≥ 0 .

Since the norms | · | and ‖ · ‖ are equivalent on X , we conclude that
limh→0 |h|2/‖h‖ = 0 and hence

lim inf
h→0

1
‖h‖〈u

∗ − x∗, h〉 ≥ 0, lim inf
h→0

1
‖h‖〈v

∗ − x∗, h〉 ≥ 0 .

The latter is possible only when u∗ = x∗ = v∗, which contradicts the initial
assumption that u∗ 	= v∗; thus ∂̂ϕ(0) = ∅.

Let us finally show that ∂̂ϕ(x) = ∅ for any x 	= 0. If it is not the case, we
take x∗ ∈ ∂̂ϕ(x) and get from (2.50) that

lim inf
h→0

1
‖h‖

[
− |x + h|2 + |x |2 + min

{
〈u∗, x + h〉, 〈v∗, x + h〉

}

−min
{
〈u∗, x〉, 〈v∗, x〉

}
− 〈x∗, h〉

]
≥ 0 .

Assume first that 〈u∗, x〉 ≤ 〈v∗, x〉. Then

lim inf
h→0

1
‖h‖

[
− |x + h|2 + |x |2 + 〈u∗ − x∗, h〉

]
≥ 0 ,
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which means that ∂̂
(
− | · |2

)
(x) 	= ∅. Since | · |2 is convex and continuous, one

always has ∂̂(| · |2)(x) 	= ∅. By Proposition 1.87 the function | · |2 is Fréchet
differentiable at x , which implies the Fréchet differentiability of | · | at x 	= 0.
The latter contradicts Proposition 2.18. The case of 〈u∗, x〉 > 〈v∗, x〉 can be
considered similarly. Thus ∂̂ϕ(x) = ∅ for any x ∈ X , which justifies (b)⇒(a)
and completes the proof of the theorem. �

The next result related to Theorem 2.34 gives an efficient representation
of basic normals to closed sets via weak∗ sequential limits of Fréchet normals
at points nearby. It also happens to be a characterization of Asplund spaces.

Theorem 2.35 (basic normals in Asplund spaces). Let X be a Banach
space. The following properties are equivalent:

(a) X is Asplund.
(b) For every closed set Ω ⊂ X and every x̄ ∈ Ω one has the limiting

representation
N(x̄ ;Ω) = Lim sup

x→x̄
N̂(x ;Ω) .

Proof. Implication (a)⇒(b) follows from (a)⇒(b) in Theorem 2.34 for the
case of set indicator functions ϕ(x) = δ(x ;Ω). It remains to prove that if X is
not Asplund, representation (b) of basic normals doesn’t hold for some closed
set Ω ⊂ X and x̄ ∈ Ω.

Put X = Z× IR, where Z must be non-Asplund as well. Taking two distinct
elements u∗ and v∗ of Z∗, define a Lipschitz function ϕ: Z → IR by (2.50),
where | · | is the equivalent norm on Z from Proposition 2.18. We proved
in Theorem 2.34 that ∂̂ϕ(z) = ∅ for every z ∈ Z . Now let us consider the
epigraphical set Ω := epi ϕ ⊂ X generated by this function and show that
N̂(x ;Ω) = {0} for every x ∈ Ω.

It suffices to prove that N̂((z, ϕ(z));Ω) = {(0, 0)} for all z ∈ Z . Assuming
the contrary and taking into account that ϕ is Lipschitzian, we find

(z∗, λ) ∈ N̂((z, ϕ(z));Ω) with λ < 0

due to Proposition 1.85(ii) as ε = 0, which gives (−z∗/λ) ∈ ∂̂ϕ(z). This
contradicts the fact that ∂̂ϕ(z) = ∅ proved in Theorem 2.34. Therefore

Lim sup
x→x̄

N̂(x ;Ω) = {0} whenever x̄ ∈ Ω

for the set Ω under consideration. On the other hand, from the proof of
(b)⇒(a) in Theorem 2.34 we have zk ∈ Z and εk > 0 such that

u∗ ∈ ∂̂εkϕ(zk) with εk ↓ 0 and zk → 0 as k → ∞ .

It implies that (u∗,−1) ∈ N̂εk ((zk, ϕ(zk));Ω) due to Theorem 1.86 and hence
(u∗,−1) ∈ N((0, 0);Ω) by definition (1.3). Thus the basic normal representa-
tion in (b) is violated for the above set Ω at the point x̄ = 0. �
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Note that, for any Asplund space X , the subdifferential representation in
Theorem 2.34(b) follows from the normal cone representation of Theorem 2.35
applied to epigraphical sets in the Asplund space X × IR. The latter one is
implied by the formula

N̂ε(x̄ ;Ω) ⊂
⋃{

N̂(x ;Ω)
∣
∣
∣ x ∈ Ω ∩ (x̄ + γ IB)

}
+ (ε + γ )IB∗ (2.51)

held for every ε ≥ 0, γ > 0, x̄ ∈ Ω, and every closed subset Ω ⊂ X of
an Asplund space. Formula (2.51) immediately follows from (2.49) with ϕ =
δ(·;Ω) and, given any x∗ ∈ N̂ε(x̄ ;Ω), it can also be obtained by the direct
application of the approximate extremal principle to the system of two closed
sets

Ω1 :=
{
(x, α) ∈ X × IR

∣
∣ x ∈ Ω, α ≥ 0

}
,

Ω2 :=
{
(x, α) ∈ X × IR

∣
∣ x ∈ X, α ≤ 〈x∗, x − x̄〉 − (ε + γ )‖x − x̄‖

}

for which (x̄, 0) is a local extremal point.
As a consequence of Theorem 2.35, we have the following simplified repre-

sentations (with ε = 0 in Definition 1.32) of both normal and mixed coderiv-
atives for closed-graph multifunctions between Asplund spaces.

Corollary 2.36 (coderivatives of mappings between Asplund spaces).
Let F : X →→ Y be a multifunction between Asplund spaces whose graph is closed
around (x̄, ȳ) ∈ gph F. Then

D∗
N F(x̄, ȳ)(ȳ∗) = Lim sup

(x,y)→(x̄,ȳ)

y∗
w∗→ȳ∗

D̂∗F(x, y)(y∗), ȳ∗ ∈ Y ∗ ,

D∗
M F(x̄, ȳ)(ȳ∗) = Lim sup

(x,y)→(x̄,ȳ)
y∗→ȳ∗

D̂∗F(x, y)(y∗), ȳ∗ ∈ Y ∗ .

Proof. Since both X and Y are Asplund, its product X × Y is Asplund
as well. Hence the representation for D∗

N F(x̄, ȳ) follows immediately from
(1.26) and the normal cone representation of Theorem 2.35 applied to Ω =
gph F ⊂ X × Y . To prove the mixed coderivative representation, we pick
any x̄∗ ∈ D∗

M F(x̄, ȳ)(ȳ∗) and find, by Definition 1.32(iii), sequences εk ↓ 0,

(xk, yk, y∗k ) → (x̄, ȳ, ȳ∗), and x∗
k
w∗
→ x̄∗ with (xk, yk) ∈ gph F and

(x∗
k ,−y∗k ) ∈ N̂εk ((xk, yk); gph F) for all k ∈ IN .

Now using formula (2.51) with ε = γ := εk and Ω = gph F , we get sequences
(x̃k, ỹk) ∈ gph F and (x̃∗

k ,−ỹ∗k ) ∈ N̂((x̃k, ỹk); gph F) such that

‖(x̃k, ỹk) − (xk, yk)‖ ≤ εk and ‖(x̃∗
k , ỹ∗k ) − (x∗

k , y∗k )‖ ≤ 2εk .

This implies that x̃∗
k

w∗
→ x̄∗ and that (x̃k, ỹk, ỹ∗k ) → (x̄, ȳ, ȳ∗) in the norm

topology of X × Y × Y ∗, which justifies the representation for D∗
M F(x̄, ȳ). �
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2.4.2 Representations of Singular Subgradients
and Horizontal Normals to Graphs and Epigraphs

In Subsect. 1.3.1 we defined singular subgradients of extended-real-valued
functions through horizontal normals to their epigraphs. For a number of
applications of singular subgradients it is important to obtain their efficient
representations via some limits of Fréchet subgradients and ε-subgradients at
points nearby, similar to those available for basic subgradients. This issue is
related to the possibility of approximating horizontal normals by sequences
of sloping (non-horizontal) normals to epigraphs. In this subsection we con-
sider these questions (and related ones for the case of graphs of continuous
functions) in the framework of Asplund spaces.

Let us start with the basic lemma ensuring a strong approximation of
horizontal Fréchet normals to epigraphs of l.s.c. functions on Asplund spaces
by sequences of Fréchet subgradients.

Lemma 2.37 (horizontal Fréchet normals to epigraphs). Let X be As-
plund, and let ϕ: X → IR be a proper function l.s.c. around x̄ ∈ dom ϕ.
Then for every x∗ ∈ X∗ with (x∗, 0) ∈ N̂((x̄, ϕ(x̄)); epi ϕ) there are sequences
xk

ϕ→ x̄, λk ↓ 0, and x∗
k ∈ λk ∂̂ϕ(xk) such that ‖x∗

k − x∗‖ → 0 as k → ∞.

Proof. Fix x∗ ∈ X∗ satisfying (x∗, 0) ∈ N̂ ((x̄, ϕ(x̄)); epi ϕ) and assume with-
out loss of generality that x̄ = 0, ϕ(x̄) = 0, and ‖x∗‖ = 1. Take an arbitrary
ε ∈ (0, 1) and choose η = η(ε) ↓ 0 as ε ↓ 0 such that

ϕ(x) ≥ −ε on ηIB and

〈x∗, x〉 < ε
(
‖x‖ + |ϕ(x)|

)
whenever x ∈ (ηIB) \ {0} . (2.52)

Form the closed convex set

Ωε :=
{

x ∈ X
∣
∣ 〈x∗, x〉 ≥ ε‖x‖

}

and observe that

ϕ(x) ≥ 0 for all x ∈ Ωε ∩ ηIB .

Indeed, otherwise one has (x, 0) ∈ epi ϕ, and hence (2.52) implies that
〈x∗, x〉 < ε‖x‖, which contradicts the fact of x ∈ Ωε. Next we show that

dist(x ;Ω2ε) ≥
ε

1 + 2ε
for any x ∈ Ωε . (2.53)

Assuming the opposite, we find x̃ ∈ Ω2ε satisfying

‖x − x̃‖ < ε

1 + 2ε
.

The latter inequality implies that
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〈x∗, x̃〉 = 〈x∗, x̃ − x〉 + 〈x∗, x〉 ≤ ‖x∗‖ · ‖x̃ − x‖ + 〈x∗, x〉

< ‖x̃ − x‖ + ε‖x‖ < ε

1 + 2ε
+ ε‖x‖

≤ 2ε
[
‖x‖ − ε

1 + 2ε
‖x‖
]
≤ 2ε

[
‖x‖ − ‖x − x̃‖

]
≤ 2ε‖x̃‖ ,

which contradicts the fact of x̃ ∈ Ω2ε. Now given an arbitrary number k ∈ IN ,
define the function

ψk,ε(x) = εϕ(x) + k dist(x ;Ω2ε) − 〈x∗, x〉 + 2ε‖x‖

that is l.s.c. and bounded from below on ηIB. Taking uk,ε ∈ ηIB with

ψk,ε(uk,ε) ≤ inf
x∈ηIB

ψk,ε(x) + 1
k

and applying the Ekeland variational principle (Theorem 2.26) to the function
ψk,ε on the metric space ηIB, we find ūk,ε ∈ ηIB satisfying

ψk,ε(ūk,ε) ≤ ψk,ε(x) + 1
k ‖x − ūk,ε‖ whenever x ∈ ηIB .

Putting x = 0, we arrive at the useful upper estimate

ψk,ε(ūk,ε) ≤ 1
k ‖ūk,ε‖ ,

which means, by the construction of ψk,ε, that

εϕ(ūk,ε) + k dist(ūk,ε;Ω2ε) = 〈x∗, ūk,ε〉 + 2ε‖ūk,ε‖ ≤ 1
k ‖ūk,ε‖ .

The latter clearly yields dist(ūk,ε;Ω2ε) → 0 as k → ∞.
Now we show that one can always find k = k(ε) ∈ IN satisfying ūk,ε ∈

int (ηIB) whenever ε > 0; note that η = η(ε) also depends on ε but we skip
this in notation for simplicity. Assume first that ūk,ε ∈ Ωε, i.e.,

〈x∗, ūk,ε〉 ≥ ε ‖ūk,ε‖ .

Employing (2.52), we have

εϕ(ūk,ε) + ε ‖uk,ε‖ − 〈x∗, uk,ε〉 ≥ 0

with uk,ε chosen above, and hence

ψk,ε(ūk,ε) ≥ ε ‖ūk,ε‖ + k dist(ūk,ε;Ω2ε) ≥ ε ‖ūk,ε‖ .

Combining this with the preceding upper estimate for ψ(ūk,ε), one gets

ε ‖ūk,ε‖ ≤ 1
k ‖ūk,ε‖, and thus ūk,ε = 0

for all k ∈ IN sufficiently large. If ūkε /∈ Ωε, then (2.53) gives
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ε

1 + 2ε
‖ūk,ε‖ ≤ dist(ūk,ε;Ω2ε) → 0 ,

i.e., ūk,ε → 0 as k → ∞. Thus there is a sequence of k = kε → ∞ as ε ↓ 0 for
which ‖ūk,ε‖ ≤ η = η(ε). Taking this into account and the fact that ūε := ūkε,ε

is a minimizer to the function ψk,ε + 1
kε
‖x − ūε‖ on ηIB, one has

0 ∈ ∂̂
(
εϕ + ϕε

)
(ūε)

by the generalized Fermat rule, where

ϕε(x) := kεdist(x ;Ω2ε) − 〈x∗, x〉 + 2ε ‖x‖ +
1
kε
‖x − ūε‖ . (2.54)

Applying the subgradient description of Lemma 2.32 to the above sum, we
find elements vε, wε, v∗ε , and w∗

ε satisfying

‖vε − ūε‖ ≤ η, ‖wε − ūε‖ ≤ η ,

v∗ε ∈ ∂̂ϕ(vε), w∗
ε ∈ ∂̂ϕε(wε) ,

‖εv∗ε + w∗
ε ‖ ≤ ε for all ε > 0 .

It follows from the structure of the convex continuous function ϕε in (2.54),
by basic convex analysis, that

w∗
ε ∈ kε∂dist(wε;Ω2ε) − x∗ +

(
2ε +

1
kε

)
IB∗ .

Hence there is w̄∗
ε ∈ ∂dist(wε;Ω2ε) such that

‖ε v∗ε + kεw̄
∗
ε − x∗‖ ≤ 2ε +

1
kε

. (2.55)

To proceed, we consider the following two cases.

Case 1. Let wε ∈ Ω2ε. Then, as well known from convex analysis,

∂dist(wε;Ω2ε) = N(wε;Ω2ε) ∩ IB∗ = cone
{
− x∗ + 2ε IB∗} ∩ IB∗

due to the structure of the set Ω2ε; cf. Corollary 1.96. Hence

w̄∗
ε = αε(−x∗ + 2εe∗ε ) with ‖w̄∗

ε ‖ ≤ 1 and ‖e∗ε ‖ ≤ 1 ,

where αε ≥ 0 are uniformly bounded due to ‖x∗‖ = 1. By (2.55) one has

∥
∥εv∗ε + kε

(
αε(−x∗ + 2εe∗ε )

)
− x∗∥∥ ≤ 2ε +

1
kε

,

which implies the estimate
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‖εv∗ε − (kεαε + 1)x∗‖ ≤ 2εkεαε + 2ε +
1
kε

.

Let λ̃ε := kεαε + 1 and observe that
∥
∥
∥
ε

λ̃ε
v∗ε − x∗

∥
∥
∥ ≤ 1

kεαε + 1

(
2εkεαε + 2ε +

1
kε

)
→ 0 as ε ↓ 0 .

Finally putting λε := ε/λ̃ε, we get

‖λεv∗ε − x∗‖ → 0 with v∗ε ∈ ∂̂ϕ(wε) and wε → 0

as ε ↓ 0, which justifies the lemma in Case 1 considered.

Case 2. Let wε /∈ Ω2ε. First note that Theorem 1.99 implies the inclusion

∂̂dist(x̄ ;Ω) ⊂
⋂

ν>0

⋃[
N̂(x ;Ω) + ν IB∗

∣
∣
∣ ‖x − x̄‖ ≤ dist(x̄ ;Ω) + ν

]

for any set Ω ⊂ X in a Banach space and any out-of-set point x̄ /∈ Ω. Putting
x̄ := wε and ν := 1/kε therein, we find w̃ε ∈ Ω2ε and w̃∗

ε ∈ N̂(w̃ε;Ω2ε) =
N(w̃ε;Ω2ε) such that

‖w̃∗
ε − w̄∗

ε ‖ ≤ 1
kε

and

‖w̃ε − wε‖ ≤ dist(wε;Ω2ε) +
1
kε

≤ ‖wε‖ +
1
kε

→ 0

as ε ↓ 0. Then we have the representation

w̃∗
ε = αε(−x∗ + 2εe∗ε ) with e∗ε ∈ IB∗ ,

where αε are uniformly bounded. Thus

‖εv∗ε + kεw̄∗
ε − x∗‖ ≤ 2ε +

1
kε

=⇒ ‖εv∗ε + kεw̃∗
ε − x∗‖ ≤ 1

kε
+ 2ε +

1
kε

≤ 2
kε

+ 2ε

=⇒ ‖εv∗ε + kε(−αε) (−x∗ + 2εe∗ε ) − x∗‖ ≤ 2
kε

+ 2ε

=⇒ ‖εv∗ε − (kεαε + 1)x∗‖ ≤ 2kεαεε +
2
kε

+ 2ε

=⇒
∥
∥
∥

ε

kεαε + 1
v∗ε − x∗

∥
∥
∥ ≤ 2

kεαε + 1

[
kεαεε +

1
kε

+ ε
]
→ 0 as ε ↓ 0 .
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Finally, letting

λε :=
ε

kεαε + 1

as in Case 1, we justify the required relationships in Case 2 and thus complete
the proof of the lemma. �

Theorem 2.38 (singular subgradients in Asplund spaces). Let X be an
Asplund space. Assume that ϕ: X → IR is a proper function l.s.c. around some
point x̄ ∈ dom ϕ. Then the singular subdifferential of ϕ admits the following
limiting representations:

∂∞ϕ(x̄) = Lim sup
x

ϕ→x̄
λ↓0

λ∂̂ϕ(x) = Lim sup
x

ϕ→x̄
ε,λ↓0

λ∂̂εϕ(x) .

Proof. The equality

Lim sup
x

ϕ→x̄
λ↓0

λ∂̂ϕ(x) = Lim sup
x

ϕ→x̄
ε,λ↓0

λ∂̂εϕ(x)

for any l.s.c. function on Asplund spaces follows from formula (2.49) justified
above. It remains to prove the inclusion

∂∞ϕ(x̄) ⊂ Lim sup
x

ϕ→x̄
λ↓0

λ∂̂ϕ(x) ,

since the opposite one is easily implied by the definitions. To proceed, we take
an arbitrary x∗ ∈ ∂∞ϕ(x̄) for which (x∗, 0) ∈ N((x̄, ϕ(x)); epi ϕ) by Defini-
tion 1.77(ii). Employing Theorem 2.35, we find sequences (xk, αk) → (x̄, ϕ(x̄))

and (x∗
k , νk)

w∗
→ (x∗, 0) such that αk ≥ ϕ(xk) and (x∗

k ,−νk) ∈ N̂((xk, αk); epi ϕ),
k ∈ IN . The latter implies that νk ≥ 0 for all k. Thus one has two possibilities
for the sequence

{
(x∗

k , νk)
}
: either

(a) there is a subsequence of {νk} consisting of positive numbers, or

(b) νk = 0 for all k sufficiently large.

In case (a) we assume without loss of generality that νk > 0 for all k ∈ IN ,
which implies that αk = ϕ(xk) and x∗

k /νk ∈ ∂̂ϕ(xk), k ∈ IN . Letting λk := νk

and x̃∗
k := x∗

k /νk , we get λk x̃∗
k
w∗
→ x∗ and λk ↓ 0 as k → ∞.

In case (b) one has (x∗
k , 0) ∈ N̂((xk, ϕ(xk)); epi ϕ) if x∗

k 	= 0, which we
may always assume. Now employing Lemma 2.37 and the standard diagonal
process, we get sequences x̃k

ϕ→ x̄ , λk ↓ 0, and x̃∗
k
w∗
→ x∗ such that x̃∗

k ∈ λk ∂̂ϕ(x̃k)
for large k. This completes the proof. �



228 2 Extremal Principle in Variational Analysis

Note that analytic ε-subgradients in the second representation of Theo-
rem 2.38 can be replaced with ε-geometric subgradients due to Theorem 1.86.

We’ll see further in the book many applications of both Lemma 2.37 and
Theorem 2.38 to various aspects of analysis and optimization in Asplund
spaces. Right now let us present a consequence of Lemma 2.37 providing a
convenient subdifferential description of the SNEC property for extended-real-
valued functions on Asplund spaces; cf. Definition 1.116.

Corollary 2.39 (subdifferential description of sequential normal epi-
compactness). Let X be Asplund, and let ϕ: X → IR be a proper function
l.s.c. around x̄ ∈ dom ϕ. Then ϕ is SNEC at x̄ if and only if for any sequences
xk

ϕ→ x̄, λk ↓ 0, and x∗
k ∈ λk ∂̂ϕ(xk) one has

[
x∗

k
w∗
→ 0

]
=⇒ ‖x∗

k ‖ → 0 as k → ∞ .

Proof. Assume that ϕ is SNEC at x̄ . Take any sequences xk
ϕ→ x̄ , λk ↓ 0, and

x∗
k ∈ λk ∂̂ϕ(xk) with x∗

k
w∗
→ 0 as k → ∞. Then

(x∗
k ,−λk) ∈ N̂

(
(xk, ϕ(xk)); epi ϕ

)
for all k ∈ IN ,

and the SNEC property of ϕ at x̄ implies that ‖x∗
k ‖ → 0 as k → ∞.

To prove the converse application, pick arbitrary sequences

(xk, αk) ∈ epi ϕ and (x∗
k ,−λk) ∈ N̂

(
(xk, αk); epi ϕ

)

with (xk, αk) → (x̄, ϕ(x̄)), λk → 0, and x∗
k
w∗
→ 0. We need to show ‖x∗

k ‖ → 0 as
k → ∞; in fact it is sufficient to justify the latter holds along a subsequence.

Since λk > 0 for all k ∈ IN , there are the following two cases to consider:

(a) λk > 0 along a subsequence of k ∈ IN ;

(b) λk = 0 for all large k ∈ IN .

Case (a) is simple. Indeed, we easily have αk = ϕ(xk), and hence
( x∗

k

λk
,−1

)
∈ N̂

(
(xk, ϕ(xk)); epi ϕ

)
, i.e., x∗

k ∈ λk ∂̂ϕ(xk) .

Then ‖x∗
k ‖ → 0 by the assumption made, which yields that ϕ is SNEC at x̄ .

Case (b) is more involved requiring the usage of Lemma 2.37. To proceed,
we suppose without lost of generality that λk = 0 and αk = ϕ(xk) for all
k ∈ IN . Thus (x∗

k , 0) ∈ N̂
(
(xk, ϕ(xk)); epi ϕ

)
. Applying Lemma 2.37 for each k,

we select subsequences λnk , x̃nk , and x̃∗
nk

so that

0 < λnk <
1
k
, ‖x̃nk − xk‖ ≤ 1

k
, |ϕ(x̃nk ) − ϕ(xk)| ≤

1
k
,

‖x̃∗
nk
− x∗

k ‖ ≤ 1
k
, and x̃∗

nk
∈ λnk ∂̂ϕ(x̃nk ) .
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One clearly has x̃∗
nk

w∗
→ 0 due to the construction of x̃∗

nk
and the assumption

on x∗
k

w∗
→ 0. Then ‖x̃∗

nk
‖ → 0 and hence ‖x∗

nk
‖ → 0, which implies the SNEC

property and completes the proof of the corollary. �

The concluding result of this section gives an efficient representation of hor-
izontal Fréchet normals to graphs of continuous functions in Asplund spaces
and provides a refinement of coderivative-subdifferential relations considered
in Theorem 1.80.

Theorem 2.40 (horizontal normals to graphs of continuous func-
tions). Let X be an Asplund space, and let ϕ: X → IR be finite and continuous
around some point x ∈ X . The following hold:

(i) If (x∗, 0) ∈ N̂((x̄, ϕ(x̄)); gph ϕ), then there exist sequences xk → x̄,
λk ↓ 0, and x∗

k → x∗ such that

x∗
k ∈ ∂̂

(
λkϕ
)
(xk) ∪ ∂̂

(
− λkϕ

)
(xk) for all k ∈ IN .

(ii) D∗ϕ(x̄)(0) = ∂∞ϕ(x̄) ∪ ∂∞(−ϕ)(x̄).

Proof. To justify (i), we proceed similarly to the proof of Lemma 2.37 with
a certain modification in constructions and estimates due to the continuity of
ϕ, which makes it possible to derive two-sided formulas. For brevity we skip
some details using slightly different notation.

Assume that x̄ = 0, ϕ(x̄) = 0 and pick an arbitrary x∗ ∈ B∗ ⊂ X∗ with
(x∗, 0) ∈ N̂((0, 0); gph ϕ). For each ε > 0 we find η = η(ε) ↓ 0 as ε ↓ 0 such
that ϕ is bounded on ηIB and

〈x∗, x〉 < ε
(
‖x‖ + |ϕ(x)|

)
for all x ∈ ηIB \ {0} . (2.56)

Form the set Ωε as in the proof of Lemma 2.37 and observe that either

(a) ϕ(x) ≥ 0 for all x ∈ Ωε ∩ (ηIB), or

(b) ϕ(x) ≤ 0 for all x ∈ Ωε ∩ (ηIB).

Indeed, if there are x1, x2 ∈ Ωε ∩ (ηIB) with ϕ(x1) > 0 and ϕ(x2) < 0,
then both x1 and x2 are nonzero and, by the continuity of ϕ, there is x :=
αx1 + (1 − α)x2 ∈ Ωε ∩ (ηIB) \ {0} with α ∈ (0, 1) and ϕ(x) = 0. This clearly
contradicts (2.56).

For each k ∈ IN define the function

ψk,ε(x) :=






εϕ(x) + k dist(x ;Ω2ε) − 〈x∗, x〉 + 2ε‖x‖ if (a) holds ,

−εϕ(x) + k dist(x ;Ω2ε) − 〈x∗, x〉 + 2ε‖x‖ if (b) holds

and apply the Ekeland variational principle to this function on the metric
space ηIB. In this way we find xk,ε ∈ ηIB that minimizes the function ψk,ε(x)+
1
k ‖x − xk,ε‖ on ηIB. In particular,
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ψk,ε(xk,ε) ≤ ψk,ε(0) = 1
k ‖xk,ε‖ and dist(xk,ε;Ω2ε) → 0 (2.57)

as k → ∞. Let us further choose kε → ∞ as ε ↓ 0 similarly to the proof of
Lemma 2.37. If xk,ε ∈ Ωε, then it follows from (2.56) and (2.57) that xk,ε = 0
for k > 1/ε. If xk,ε /∈ Ωε, then ‖xk,ε‖ → 0 as k → ∞ by (2.55) and (2.57).
Thus for every ε > 0 there are k = kε and xε := xkε,ε such that kε → ∞ as
ε ↓ 0, that ‖xε‖ < η/2, and that

0 ∈ ∂̂
(
ψε +

1
k
‖ · −xε‖

)
(xε) ,

where ψε(x) := ψkε,ε(x). Applying Lemma 2.32 and taking into account the
structure of ψε, we find uε ∈ ηIB, vε ∈ ηIB, u∗

ε ∈ ∂̂ϕ(uε) ∪ ∂̂(−ϕ)(uε), and
v∗ε ∈ ∂dist(vε;Ω2ε) with

‖v∗ε ‖ ≤ 1 and ‖εu∗
ε + kv∗ε − x∗‖ ≤ 2(ε + 1/k) . (2.58)

Consider again the two possible cases: vε ∈ Ω2ε and vε /∈ Ω2ε. In the first
case we employ the representation of ∂dist(vε;Ω2ε) from convex analysis and
get αε > 0 and e∗ ∈ IB∗ such that v∗ε + αεx∗ = 2εαεe∗. This implies that the
sequence

{
αε
}

is bounded as ε ↓ 0. From (2.58) one has the estimates

‖εu∗
ε − (kαε + 1)x∗‖ ≤ ‖εu∗

ε + kv∗ε − x∗‖ + k‖v∗ε + αεx
∗‖

≤ 2(ε + 1/k) + 2kαεε .

Dividing this by kαε +1 and denoting λε := ε/(kαε +1), x∗
ε := λεu∗

ε , we obtain
x∗
ε ∈ ∂̂

(
λεϕ
)
(uε) ∪ ∂̂

(
− λεϕ

)
(uε) with ‖x∗

ε − x∗‖ → 0 and λε ↓ 0 as ε ↓ 0. In
the case of vε /∈ Ω2ε we proceed similarly to the proof of Lemma 2.37 based
on the upper estimate of ∂̂dist(x̄ ;Ω) with x̄ /∈ Ω from Theorem 1.99. This
completes the proof of assertion (i) in the theorem.

To justify the inclusion “⊂” in (ii), we argue as in the proof of Theo-
rem 2.38. The opposite inclusion follows from Theorem 1.80. �

2.5 Versions of Extremal Principle in Banach Spaces

We have shown in the previous section that the above versions of the ex-
tremal principle and most of the related results are not only valid in Asplund
spaces but happen to provide characterizations for this general class of Ba-
nach spaces. To cover other classes of Banach spaces, one therefore needs to
employ different constructions of generalized normals involving in formula-
tions of the extremal principle. In this section we detect those properties of
axiomatically defined normal and subgradient structures that allow us to de-
rive approximate and exact versions of the abstract extremal principle valid
in appropriate classes of Banach spaces.
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2.5.1 Axiomatic Normal and Subdifferential Structures

First we define an abstract prenormal structure on a Banach space that sup-
ports an approximate version of the extremal principle.

Definition 2.41 (prenormal structures). Let X be a Banach space. We
say that N̂ defines a prenormal structure on X if it associates, with
every nonempty set Ω ⊂ X , a set-valued mapping N̂ (·;Ω): X →→ X∗ such that
N̂ (x ;Ω) = ∅ for x /∈ Ω, N̂ (x ;Ω) = N̂ (x ; Ω̃) when Ω and Ω̃ are the same
near x ∈ Ω, and the following property holds:

(H) Given any small ε > 0, a ∈ X with ‖a‖ ≤ ε, and closed sets Ω1,Ω2 ⊂
X , assume that (x̄1, x̄2) ∈ Ω1 ×Ω2 is a local minimizer for the function

ψ(x1, x2) := ‖x1 − x2 + a‖ + ε
(
‖x1 − x̄1‖ + ‖x2 − x̄2‖

)
(2.59)

relative to the set Ω1 ×Ω2 with x̄1 − x̄2 + a 	= 0. Then there are x̃i ∈ x̄i + ε IB,
i = 1, 2, and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

(−x∗, x∗) ∈ N̂ (x̃1;Ω1) × N̂ (x̃2;Ω2) + γ
(

IB∗ × IB∗) for all γ > ε . (2.60)

We can easily check by the results above that property (H) holds for
the prenormal (Fréchet normal) cone N̂ in Asplund spaces; cf. the proof of
Lemma 2.32(ii). In general this property postulates the ability of the prenor-
mal structure N̂ to describe first-order necessary optimality conditions for
minimizing functions of the norm type (2.59) over arbitrary sets. Note that
(2.60) provides a “fuzzy” optimality condition, since it involves points (x̃1, x̃2)
close to the given minimizer with γ > ε in (2.60).

Let us show that property (H) always holds for subdifferentially generated
prenormal cones under a minimal amount of natural requirements in the cor-
responding Banach spaces. Given a Banach space X , we say that D̂ defines
an (abstract) presubdifferential on X × X if it associates, with every proper
function ϕ: X × X → IR, a set-valued mapping D̂ϕ: X × X →→ X∗ × X∗ such
that D̂ϕ(z) = ∅ for z /∈ dom ϕ, D̂ϕ(z) = D̂φ(z) if ϕ and φ coincide around z,
and one has the following:

(S1) Suppose that z̄ provides a local minimum for the sum ϕ1 + ϕ2 of two
functions finite at z̄, where ϕ1 is a convex continuous function of type (2.59)
and where ϕ2 is a l.s.c. function of the set indicator type. Then for any η > 0
there are u, v ∈ z̄ + ηIB such that ϕ2(v) ≤ ϕ2(z̄) + η and

0 ∈ D̂ϕ1(u) + D̂ϕ2(v) + η
(

IB∗ × IB∗) .

(S2) D̂ϕ(z) is contained in the subdifferential of convex analysis for convex
continuous function of type (2.59).

(S3) If ϕ(x1, x2) = ϕ1(x1) + ϕ2(x2), then D̂ϕ(x̄1, x̄2) ⊂ D̂ϕ1(x̄1)× D̂ϕ2(x̄2)
for any x̄i ∈ dom ϕi , i = 1, 2.
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Proposition 2.42 (prenormal cones from presubdifferentials). Given
a Banach space X , let D̂ be an arbitrary presubdifferential on X × X . Then
N̂ (x ;Ω) := D̂δ(x ;Ω) is a cone for any closed set Ω ⊂ X × X and any x ∈ Ω,
and N̂ defines a prenormal structure on X .

Proof. The set N̂ (x ;Ω) is a cone, since αδ(x ;Ω) = δ(x ;Ω) for every α > 0.
Obviously N̂ (x ;Ω) = ∅ if x /∈ Ω. We need to show that N̂ satisfies property
(H) in Definition 2.41. To proceed, take z̄ = (x̄1, x̄2) ∈ Ω1 ×Ω2 that provides
a local minimum for ψ in (2.59) relative to Ω1 × Ω2 with given ε > 0 and
x̄1 − x̄2 + a 	= 0. Observe that z̄ is a local minimizer for the function

ϕ(x1, x2) := ψ(x1, x2) + δ((x1, x2);Ω1 ×Ω2), (x1, x2) ∈ X × X ,

with no additional constraints. Pick any γ > ε and put

η := γ − ε with η ≤ min
{
ε, ν/2

}
, ν := ‖x̄1 − x̄2 + a‖. (2.61)

Applying (S1) with ϕ1 = ψ and ϕ2 = δ(·;Ω1×Ω2) and using the construction
of N̂ , we find u = (x ′

1, x ′
2) ∈ X2 and v = (x̃1, x̃2) ∈ Ω1 ×Ω2 such that

max
{
‖x ′

1 − x̄1‖, ‖x ′
2 − x̄2‖, ‖x̃1 − x̄1‖, ‖x̃2 − x̄2‖

}
≤ η ≤ ε , (2.62)

0 ∈ D̂ψ(x ′
1, x ′

2) + N̂ ((x̃1, x̃2);Ω1 ×Ω2) + η
(

IB∗ × IB∗) .

Due to (2.61) and (2.62) we get

‖x ′
1 − x ′

2‖ ≥ ‖x̄1 − x̄2 + a‖ −
(
‖x ′

1 − x̄1‖ + ‖x ′
2 − x̄2‖

)
= ν − 2η > 0 .

Observe also that (S3) yields

N̂ ((x̄1, x̄2);Ω1 ×Ω2) ⊂ N̂ (x̄1;Ω1) × N̂ (x̄2;Ω2) .

By (S2) and the subdifferential formulas of convex analysis for function (2.59)
one has the inclusion

D̂ψ(x ′
1, x ′

2) ⊂
(
x∗,−x∗)+ ε

(
IB∗ × IB∗) with ‖x∗‖ = 1 . (2.63)

Putting the above together and taking into account that γ = ε+ η, we arrive
at (2.60) and finish the proof. �

The result obtained describes an important class of prenormal structures
given by subdifferentially generated conic sets. Observe that condition (2.60)
with ‖x∗‖ = 1 doesn’t necessarily require that N̂ (x ;Ω) are cones or even
unbounded sets. Note also that a prenormal structure N̂ doesn’t need to be
subdifferentially generated.

Let us describe another class of prenormal structures on X involving
bounded sets N̂ (x ;Ω) associated with presubdifferentials of distance functions
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under minimal requirements. Fix an arbitrary number � > 0 and consider the
class of Lipschitz continuous functions ϕ: X × X → IR with modulus �. We
say that D̂ϕ(·) defines an �-presubdifferential on this class of functions if it
satisfies the above presubdifferential assumptions, where (S1) and (S3) are
required to hold, respectively, for functions ϕ2 and ϕi , i = 1, 2, of this class.
Then we define N̂ on X by

N̂ (x ;Ω) :=






D̂
(
�dist(x ;Ω)

)
if x ∈ Ω ,

∅ otherwise
(2.64)

for every closed set Ω ⊂ X , where D̂
(
�dist(x ;Ω)

)
:= D̂

(
�dist(·;Ω)

)
(x).

Proposition 2.43 (prenormal structures from �-presubdifferentials).
Let D̂ be an �-presubdifferential with some � > 1. Then (2.64) defines a prenor-
mal structure on a Banach space X .

Proof. Let us prove that property (H) holds for (2.64) if ε > 0 is sufficiently
small. Fix � > 1 and take 0 < ε ≤ (�−1)/2. Since (x̄1, x̄2) is a local minimizer
of the function ψ in (2.59) over the set Ω1×Ω2, we find neighborhoods U1 of x̄1

and U2 of x̄2 such that ψ attains its global minimum over (Ω1∩U1)×(Ω2∩U2)
at (x̄1, x̄2). One can easily see that ψ is Lipschitz continuous on X2 with
modulus 1 + 2ε ≤ �. It is well known that the function

ϕ(x1, x2) := ψ(x1, x2) + �dist
(
(x1, x2); (Ω1 ∩ U1) × (Ω2 ∩ U2)

)
(2.65)

attains its minimum over the whole space X2 at (x̄1, x̄2); see Proposition 2.4.3
from Clarke [255]. Observe that

dist
(
(x1, x2); (Ω1 ∩ U1) × (Ω2 ∩ U2)

)
= dist(x1;Ω1 ∩ U1) + dist(x2;Ω2 ∩ U2)

due to ‖(x1, x2)‖ = ‖x1‖ + ‖x2‖. Similarly to the proof of Proposition 2.42
we pick γ > 0 and take positive numbers η and ν satisfying (2.61). By the
above property (S1) for the �-presubdifferential D̂ of the sum in (2.65) we find
points u = (x ′

1, x ′
2) ∈ X2 and v = (x̃1, x̃2) ∈ X2 satisfying (2.62) so that

0 ∈ D̂ψ(x ′
1, x ′

2) + D̂
(
�dist(x̃1;Ω1 ∩ U1) + �dist(x̃2;Ω2 ∩ U2)

)
+ η
(

IB∗ × IB∗).

If ε is sufficiently small, one has

dist(x ;Ωi ∩ Ui ) = dist(x ;Ωi ), i = 1, 2 ,

for all x in some neighborhoods of x̃1 and x̃2, respectively. Thus

0 ∈ D̂ψ(x ′
1, x ′

2) + N̂ (x̃1;Ω1) × N̂(x̃2;Ω2) + (γ − ε)
(

IB∗ × IB∗)

by (2.64) and (S3). Using (S2) and (2.63), we arrive at (2.60). �
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As we mentioned above, the basic property (H) of prenormal structures
reflects the ability of N̂ to describe “fuzzy” necessary optimality conditions in
constrained optimization. To get “exact” conditions corresponding to x̃i = x̄i ,
i = 1, 2, and γ = ε in (2.60), one needs to employ more robust normal con-
structions. The latter can be obtained by using limiting procedures based on
prenormals. Let us consider two kinds of such limiting constructions involv-
ing the sequential Painlevé-Kuratowski upper limit described in (1.1) and its
topological closure.

Definition 2.44 (sequential and topological normal structures). Let
N̂ be an arbitrary prenormal structure on a Banach space X . We say that N
defines a sequential normal structure on X generated by N̂ if

N (x̄ ;Ω) = Lim sup
x→x̄

N̂ (x ;Ω) (2.66)

for any nonempty set Ω ⊂ X and any x̄ ∈ X . If (2.66) is replaced with

N (x̄ ;Ω) = cl∗
{

Lim sup
x→x̄

N̂ (x ;Ω)
}
, (2.67)

then N defines the corresponding topological normal structure on X .

It immediately follows from the definitions that N (x̄ ;Ω) = N (x̄ ;Ω) = ∅
for x̄ /∈ Ω and, moreover, one may consider only x ∈ Ω in (2.66) and (2.67).
Obviously N (x̄ ;Ω) ⊂ N (x̄ ;Ω). However, sequential normal structures are
mostly useful in Banach spaces X whose unit dual balls IB∗ ⊂ X∗ are weak∗

sequentially compact, while topological normal structures don’t need such an
assumption; see, e.g., Subsect. 2.5.3.

Similarly we can define sequential and topological subdifferential construc-
tions generated by presubdifferentials. It follows from Proposition 1.31 that
our basic normal cone (1.3) is smaller than any other sequential (and hence
topological) normal structure in Banach spaces under natural requirements.
The next proposition gives a counterpart of this minimality result for the basic
subdifferential in Definition 1.77(i).

Proposition 2.45 (minimality of the basic subdifferential). Let X be
a Banach space, and let D̂ϕ: X →→ X∗ satisfy the following properties on the
class of proper l.s.c. functions ϕ: X → IR:

(M1) D̂φ(u) = D̂ϕ(x + u) for φ(u) := ϕ(x + u) and x, u ∈ X .
(M2) D̂ϕ(x) is contained in the subdifferential of convex analysis for con-

vex continuous functions in the form

ϕ(x) := 〈x∗, x〉 + ε‖x‖, x∗ ∈ X∗, ε > 0 . (2.68)

(M3) For any η > 0 and any functions ϕi , i = 1, 2, such that ϕ1 is convex
of type (2.68) and the sum ϕ1 +ϕ2 attains a local minimum at x = 0 there are
x1, x2 ∈ ηIB with |ϕ2(x2) − ϕ2(0)| ≤ η and
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0 ∈ D̂ϕ1(x1) + D̂ϕ2(x2) + ηIB∗ .

Then for every x̄ ∈ dom ϕ one has the inclusion

∂ϕ(x̄) ⊂ Lim sup
x

ϕ→x̄

D̂ϕ(x) .

Proof. Take x∗ ∈ ∂ϕ(x̄) and by Theorem 1.89 find εk ↓ 0, xk
ϕ→ x̄ , and

x∗
k
w∗
→ x∗ satisfying x∗

k ∈ ∂̂εkϕ(xk) for all k ∈ IN . Thus there are neighborhoods
Uk of xk such that

ϕ(x) − ϕ(xk) − 〈x∗
k , x − xk〉 ≥ −2εk‖x − xk‖ for all x ∈ Uk, k ∈ IN .

The latter means that for any fixed k the function

ψk(x) := ϕ(xk + x) − 〈x∗
k , x〉 + 2εk‖x‖

attains a local minimum at x = 0. Denoting ϕ1(x) := ϕ(xk + x) and ϕ2(x) :=
−〈x∗

k , x〉+ 2εk‖x‖, we represent ψk as the sum of two functions satisfying the
assumptions in (M3). Employ (M3) with η = εk and then (M1) and (M2).
This gives uk ∈ X such that ‖uk‖ ≤ εk , |ϕ(xk + uk) − ϕ(xk)| ≤ εk , and

x∗
k ∈ D̂ϕ(xk + uk) + 3IB∗, k ∈ IN .

Passing to the limit as k → ∞, we arrive at the desired conclusion. �

It follows from the above proof that D̂ may be an �-presubdifferential on
the class of Lipschitz continuous function ϕ: X → IR with modulus � > 0 if
property (M3) is required to hold only for such functions. When ϕ = δ(·;Ω),
the minimality property in Proposition 2.45 corresponds to the result of
Proposition 1.31 for the case of subdifferentially generated normal structures,
while the latter result ensures the minimality of the basic normal cone without
such an assumption.

2.5.2 Specific Normal and Subdifferential Structures

As proved in Subsect. 2.4.1, our basic normal cone and subdifferential provide
a constructively defined class of sequential normal and subdifferential struc-
tures generated by Fréchet normals and subgradients in arbitrary Asplund
spaces. Let us discuss some other remarkable classes of generalized normals
and subgradients that satisfy the above requirements to abstract (pre)normal
and (pre)subdifferential structures on appropriate Banach space.

A. Convex-Valued Constructions by Clarke. We start with Clarke’s
constructions of generalized normals to sets and subgradients of extended-real-
valued functions that produce topological normal and subdifferential structures
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on arbitrary Banach spaces by the following four-step procedure; see Clarke
[255] for more details and proofs. First let ϕ be Lipschitz continuous around
x̄ ∈ X with modulus �. The generalized directional derivative of ϕ at x̄ in the
direction h is

ϕ◦(x̄ ; v) := lim sup
x→x̄
t↓0

ϕ(x + tv) − ϕ(x)
t

. (2.69)

The function ϕ◦(x̄ ; ·): X → IR happens to be convex for any Lipschitzian ϕ;
moreover, (2.69) is upper semicontinuous in both variables with ϕ◦(x̄ ;−v) =
(−ϕ)◦(x̄ ; v) and |ϕ◦(x̄ ; v)| ≤ �‖v‖ for all v ∈ X . Then the generalized gradient
of a locally Lipschitzian function is defined by

∂Cϕ(x̄) :=
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ ϕ◦(x̄ ; v) for any v ∈ X
}
. (2.70)

It follows from (2.70) and the properties of ϕ◦ that ∂Cϕ(x̄) is a nonempty,
weak∗ compact, convex subset of X∗ with ‖x∗‖ ≤ � for all x∗ ∈ ∂Cϕ(x̄) and
the classical plus-minus symmetry

∂C(−ϕ)(x̄) = −∂Cϕ(x̄) for Lipschitzian ϕ . (2.71)

The next step is to define the Clarke normal cone to Ω ⊂ X by

NC(x̄ ;Ω) := cl∗
{ ⋃

λ>0

λ∂Cdist(x̄ ;Ω)
}
, x̄ ∈ Ω , (2.72)

through the generalized gradient of the Lipschitzian distance function, with
NC(x̄ ;Ω) := ∅ for x̄ /∈ Ω. Finally, the Clarke subdifferential of a function
ϕ: X → IR is defined by

∂Cϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗,−1) ∈ NC((x̄, ϕ(x̄)); epi ϕ)
}

(2.73)

if |ϕ(x̄)| < ∞ and ∂Cϕ(x̄) := ∅ if |ϕ(x̄)| = ∞. Clearly the sets (2.72) and (2.73)
are convex and weak∗ closed in X∗. The two basic facts ensuring that (2.72)
defines a topological normal structure on X generated by

⋃
λ>0 λ∂Cdist(x̄ ;Ω)

are the following: the sum rule

∂C
(
ϕ1 + ϕ2

)
(x̄) ⊂ ∂Cϕ1(x̄) + ∂Cϕ2(x̄) (2.74)

if ϕ1 is locally Lipschitzian and ϕ2 is l.s.c. around x̄ , and that the graph
of ∂Cϕ(·) is closed in the norm×weak∗ topology of X × X∗ if ϕ is Lipschitz
continuous. Moreover, these facts imply by Proposition 2.43 that for any fixed
λ > 0 the sets λ∂Cdist(x̄ ;Ω) define a topological normal structure on X . Note
however that there are generally strict inclusions

NC(x̄ ;Ω) ⊂ Lim sup
x→x̄

NC(x ;Ω) ⊂ cl∗
{

Lim sup
x→x̄

NC(x ;Ω)
}
,

where the first one may be strict even in finite dimensions unless Ω is epi-
Lipschitzian at x̄ ; see Rockafellar [1146]. Note also that the Clarke normal
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cone may be too large, especially for graphs of Lipschitzian functions when it
is actually a linear subspace; see the proof of Theorem 1.46 and its infinite-
dimensional generalizations in Subsect. 3.2.4. In particular, for Ω = gph |x | ⊂
IR2 one has

NC(0;Ω) = IR2, while N(0;Ω) =
{
(v1, v2)

∣
∣ v2 ≤ −|v1|

}
∪
{
(v1, v2)

∣
∣ v2 = v1

}

for the basic normal cone N . It follows from Proposition 2.45 that

∂ϕ(x̄) ⊂ ∂Cϕ(x̄) and N(x̄ ;Ω) ⊂ NC(x̄ ;Ω)

in general Banach spaces. More precise relationships between these objects
will be obtained in Subsect. 3.2.3 in the Asplund space setting.

B. Approximate Normals and Subgradients. Another type of topo-
logical normal and subdifferential structures was developed by Ioffe, under
the name of “approximate normals and subgradients,” as an extension of
Mordukhovich’s construction to arbitrary Banach spaces; see remarks and
references in Subsect. 1.4.7 and the corresponding results of Subsect. 3.2.3 on
close connections with our basic constructions in the Asplund space setting.
It doesn’t seem that the adjective “approximate” reflects the essence of these
constructions, while its usage in this context clearly contradicts the regular
use of this word in the book; see Subsect. 1.4.7 and also remarks in Rock-
afellar and Wets [1165, p. 347] for motivations of the word “approximate”
appearing in this setting. On the other hand, it has been widely spread in
nonsmooth analysis. In what follows we put quotation marks when referring
to “approximate” normals and subdifferentials in this context.

Let us describe the multistep procedure for these constructions from the
paper of Ioffe [599], where the reader can find proofs, more discussions, and
references. Given ϕ: X → IR finite at x̄ , the constructions

d−ϕ(x̄ ; v) := lim inf
z→v
t↓0

ϕ(x̄ + t z) − ϕ(x̄)
t

,

∂−ε ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ d−ϕ(x̄ ; v) + ε‖v‖
}

are called the lower Dini (or Dini-Hadamard) directional derivative and the
Dini ε-subdifferential of ϕ at x̄ , respectively. As usual, we put ∂−ϕ(x̄) := ∅
if |ϕ(x̄)| = ∞. Note that the sets ∂−ε ϕ(x̄) are always convex, while the
function d−ϕ(x̄ ; ·) is not. One can check that ∂−ε ϕ(x̄) reduces to the ana-
lytic ε-subdifferential from Definition 1.83(ii) if dim X < ∞. In general, the
A-subdifferential of ϕ at x̄ is defined via topological limits involving finite-
dimensional reductions of ε-subgradients as

∂Aϕ(x̄) :=
⋂

L∈L
ε>0

Lim sup
x

ϕ→x̄

∂−ε
(
ϕ + δ(·; L)

)
(x) (2.75)
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where L is the collection of all finite-dimensional subspaces of X and where
Lim sup stands for the topological counterpart of the Painlevé-Kuratowski up-
per limit (1.1) with sequences replaced by nets. Further, the G-normal cone
NG and its nucleus ÑG to Ω at x̄ ∈ Ω are defined by

NG(x̄ ;Ω) := cl∗ ÑG(x̄ ;Ω) and ÑG(x̄ ;Ω) :=
⋃

λ>0

λ∂Adist(x̄ ;Ω) , (2.76)

respectively, with NG(x̄ ;Ω) = ÑG(x̄ ;Ω) = ∅ if x̄ /∈ Ω. Finally, the G-
subdifferential of ϕ at x̄ is defined geometrically as

∂Gϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗,−1) ∈ NG((x̄, ϕ(x̄)); epi ϕ)
}
, (2.77)

while its G-nucleus ∂̃Gϕ(x̄) corresponds to (2.77) with NG replaced by ÑG .
One always has

∂̃Gϕ(x̄) ⊂ ∂Gϕ(x̄) ⊂ ∂Aϕ(x̄) ,

where equalities hold if ϕ is locally Lipschitzian around x̄ . For closed sets
Ω the graph of NG(·;Ω) is closed in the norm×weak∗ topology of X × X∗.
Moreover, both ∂Gϕ and ∂̃Gϕ satisfy the sum rule in form (2.74) if ϕ1 is
locally Lipschitzian and ϕ2 is l.s.c. around x̄ . Hence NG(·;Ω) and λ∂Adist(·;Ω)
provide topological normal structures on X and

∂ϕ(x̄) ⊂ ∂̃Gϕ(x̄), N(x̄ ;Ω) ⊂ ÑG(x̄ ;Ω)

by Proposition 2.45. Note that the latter inclusions may be strict, even in the
case of Lipschitz continuous functions on spaces with Fréchet smooth renorms;
see Example 3.61. In Subsect. 3.2.3 we obtain more precise relationships be-
tween these constructions in the general case of Asplund spaces.

C. Viscosity Subdifferentials. Next we consider normal and subgradi-
ent constructions related to the so-called viscosity subdifferentials that gener-
ally make sense in smooth Banach spaces admitting smooth renorms (or bump
functions) with respect to some bornology; see Remark 2.11. The following
description is based on the paper by Borwein, Mordukhovich and Shao [151],
where one can find more details and references on the genesis and applications
of such constructions; see also the book by Borwein and Zhu [164].

Given a bornology β on a Banach space X , we denote by X∗
β the dual

space X∗ endowed with the topology of uniform convergence on β-sets. The
latter convergence agrees with the norm convergence in X∗ when β is the
(strongest) Fréchet bornology, and with the weak∗ convergence in X∗ when β
is the (weakest) Gâteaux bornology. A function θ : X → IR is β-differentiable
at x̄ with β-derivative ∇βθ(x̄) ∈ X∗ provided that

t−1
(
θ(x̄ + tv) − θ(x̄) − t〈∇βθ(x̄), v〉

)
→ 0

as t → 0 uniformly in v ∈ V for every V ∈ β. This function is said to be
β-smooth around x̄ if it is β-differentiable at each point of a neighborhood U
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of x̄ and ∇βθ : X → X∗
β is continuous on U . The latter requirement is essential;

in the case of β = F , the Fréchet bornology on X , it means that ∇θ : X → X∗

is norm-to-norm continuous around x̄ . Note that in the Fréchet case the β-
smoothness of θ implies its Lipschitz continuity around x̄ , which may not
happen for weaker bornologies β < F .

Now, given ϕ: X → IR finite at x̄ , its viscosity β-subdifferential of rank
λ > 0 at x̄ is the set ∂λβϕ(x̄) of all x∗ ∈ X∗ with the following properties: there
are a neighborhood U of x̄ and a β-smooth function θ : U → IR such that θ is
Lipschitz continuous on U with modulus λ, ∇βθ(x̄) = x∗, and ϕ − θ attains a
local minimum at x̄ . The corresponding set of β-normals of rank λ to Ω ⊂ X
at x̄ ∈ Ω is defined by N λ

β (x̄ ;Ω) := ∂λβδ(x̄ ;Ω). The unions

∂βϕ(x̄) :=
⋃

λ>0

∂λβϕ(x̄), Nβ(x̄ ;Ω) :=
⋃

λ>0

N λ
β (x̄ ;Ω) (2.78)

are called the viscosity β-subdifferential of ϕ at x̄ and the viscosity β-normal
cone of Ω at x̄ , respectively. Note that θ(·) in the above definition can be
equivalently chosen to be concave if X admits a β-smooth renorm.

Employing the variational descriptions of Fréchet normals and subgradi-
ents in Theorems 1.30 and 1.88, we conclude that

∂Fϕ(x̄) = ∂̂ϕ(x̄) and NF (x̄) = N̂(x̄ ;Ω)

if X admits an F-smooth bump function. These constructions may be different
in more general settings of Banach and Asplund spaces. Note that, in contrast
to ∂̂ϕ(·) and N̂(·;Ω), the viscosity constructions (2.78) don’t reveal useful
properties without smoothness assumptions on the space in question.

It follows from the results of the afore-mentioned paper [151] that ∂λβϕ(·)
defines a presubdifferential structure on a β-smooth space X for any λ > 1.
Hence N λ

β (·;Ω) defines the corresponding prenormal structure under these
conditions. By Proposition 2.45 we have

∂ϕ(x̄) ⊂ Lim sup
x

ϕ→x̄

∂βϕ(x), N(x̄ ;Ω) ⊂ Lim sup
x
Ω→x̄

Nβ(x ;Ω)) (2.79)

in β-smooth spaces. It doesn’t seem to be true that viscosity subdifferentials
(2.78) and their sequential limits in (2.79) enjoy the semi-Lipschitzian sum
rules of the corresponding types (b) and (c) in Proposition 2.33 on β-smooth
spaces with β < F . On the other hand,

∂̃Gϕ(x̄) =
⋃

λ>0

cl∗
{

lim sup
x

ϕ→x̄

∂λβϕ
}
, ∂Aϕ(x̄) = Lim sup

x
ϕ→x̄

∂βϕ(x)

for the nucleus of the G-subdifferential (2.77) and for the A-subdifferential
(2.75) of any l.s.c. function on an arbitrary β-smooth Banach space; cf. Bor-
wein and Ioffe [147, Theorem 2] and Mordukhovich, Shao and Zhu [954, The-
orem 6.1], respectively.
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D. Proximal Constructions. Let us consider the Hilbert space setting
that is the closest to finite dimensions and allows one to construct prenormal
and presubdifferential structures defined through the Euclidean metric. Given
a closed subset Ω ⊂ X of a Hilbert space and the Euclidean projector Π(·;Ω),
the conic set

NP(x̄ ;Ω) := cone
[
Π−1(x̄ ;Ω) − x̄

]
(2.80)

is the proximal normal cone to Ω at x̄ ∈ Ω. It follows from the Euclidean
norm properties (cf. the proof of Theorem 1.6 above) that x∗ ∈ NP(x̄ ;Ω) if
and only if there is α > 0 such that

〈x∗, x − x̄〉 ≤ α‖x − x̄‖2 for all x ∈ Ω .

This obviously implies that NP(x̄ ;Ω) is a convex subcone of N̂(x̄ ;Ω). In con-
trast to the latter one, NP(x̄ ;Ω) may not be closed even in finite dimensions;
moreover, its closure may be different from N̂(x̄ ;Ω). A simple example is
provided by the epigraph of a smooth function:

Ω = epi ϕ ⊂ IR2 with ϕ(x) = −|x |3/2 at x̄ = (0, 0) ,

where NP(x̄ ;Ω) =
{
(0, 0)

}
and N̂(x̄ ;Ω) =

{
(v1, v2)| v1 = 0, v2 ≤ 0

}
.

A functional counterpart of the proximal normal cone (2.70) is the proximal
subdifferential of a proper l.s.c. function ϕ: X → IR at x̄ ∈ dom ϕ defined as

∂Pϕ(x̄) :=
{

x∗ ∈ X∗
∣
∣
∣ lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖2

> −∞
}
, (2.81)

which is a convex subset of the Fréchet subdifferential ∂̂ϕ(x̄) and can be equiv-
alently described by (x∗,−1) ∈ NP((x̄, ϕ(x̄)); epi ϕ). Note that the proximal
subdifferential may be empty even for smooth functions as in the above ex-
ample, where ∂Pϕ(0) = ∅ while ∂̂ϕ(0) = {0}. Nevertheless, for every proper
l.s.c. function ϕ finite at x̄ the following holds: given any x∗ ∈ ∂̂ϕ(x̄), there
are sequences xk

ϕ→ x̄ and x∗
k ∈ ∂Pϕ(xk) such that ‖x∗

k − x∗‖ → 0 as k → ∞;
see Loewen [802, Theorem 5.5]. Therefore

∂ϕ(x̄) = Lim sup
x

ϕ→x̄

∂Pϕ(x) and N(x̄ ;Ω) = Lim sup
x
Ω→x̄

NP(x ;Ω) .

A crucial fact ensuring that (2.81) defines a presubdifferential structure on
a Hilbert space X (hence NP(·;Ω) defines the corresponding prenormal struc-
ture) follows from the fuzzy sum rule for ∂Pϕ(·) proved in Ioffe and Rockafellar
[616, Theorem 2] and in Clarke et al. [265, Theorem 1.8.3].

E. Derivate Sets. In conclusion of this subsection we compare our subd-
ifferential constructions with generalized derivatives based on the idea of uni-
formly approximating nonsmooth functions by smooth (finitely differentiable)
functions. Recall that a mapping f : X → Y between Banach spaces is finitely
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differentiable at x̄ with the derivative ∇ f (x̄) if for every finite-dimensional
subspace X ⊂ X the mappingz → f (x + z): Z → Y is differentiable at the
origin and its derivative agrees with the restriction of ∇ f (x̄) to Z .

Given ϕ: X → IR on a Banach space X and a point x̄ ∈ X with |ϕ(x̄)| < ∞,
we denote by Aϕ(x̄) a subset of X∗ with the following properties: for any
ε, α > 0 there are γ ∈ (0, α] and a continuously finitely differentiable function
ψ : X → IR such that

|ϕ(x) − ψ(x)| ≤ εγ and ∇ψ(x) ∈ Aϕ(x̄) for all x ∈ x̄ + γ IB .

The derivate set Aϕ(x̄) is a derivative-like object, which is not uniquely
defined. If ϕ is continuous around x̄ and can be represented as the uniform
limit of a sequence of continuously finitely differentiable functions ϕi , i ∈ IN ,
then for any γ > 0 and j ∈ IN one can take

Aϕ(x̄) =
⋃

‖x−x̄‖≤γ
i≥ j

{
∇ϕi (x)

}
.

The following result shows that for every function ϕ the Fréchet subdiffer-
ential of ϕ at x̄ is contained in the norm closure of any derivate set Aϕ(x̄)
obtained via a uniform approximation by finitely smooth functions.

Theorem 2.46 (derivate sets and Fréchet subgradients). Let X be a
Banach space, and let Aϕ(x̄) be a derivate set of ϕ: X → IR finite at x̄. Then

∂̂ϕ(x̄) ⊂ clAϕ(x̄) if Aϕ(x̄) 	= ∅ .

Proof. Let x̄∗ /∈ clAϕ(x̄). Then there is η > 0 such that

‖x̄∗ − x∗‖ > η for all x∗ ∈ Aϕ(x̄) . (2.82)

Put ε̄ := η/4 and for each k ∈ IN select a number γk and a function ψk

according to the definition of the derivate set Aϕ(x̄) with ε = ε̄/4 and α = 1/k.
Next we define, for some positive integer Nk , a finite set of points xi ∈ X ,

i = 0, 1, . . . , Nk , from the following conditions:

(a) x0 = x̄, xi+1 = xi + hzi , i = 0, 1, . . . , Nk − 1;

(b) ‖zi‖ = 1, i = 0, 1, . . . , Nk − 1;

(c) h = γk/(2Nk);

(d) 〈x̄∗ −∇ψk(xi ), zi 〉 > η, i = 0, 1, . . . , Nk − 1.

Note that it is possible to find zi satisfying (d) because ψ is finitely dif-
ferentiable at xi with ∇ = ψ(xi ) ∈ Aϕ(x̄), (2.82) holds, and

‖xi − x̄‖ ≤ Nkh = γk/2 for i = 1, . . . , Nk (2.83)

due to (a), (b), and (c). When Nk is sufficiently large, one has
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ψk(xNk ) − ψk(x̄) − 〈x̄∗, xNK − x̄〉

=
Nk−1∑

i=0

(∫ h

0

〈
∇ψk(xi + t zi ), zi

〉
dt − h

〈
x̄∗, zi

〉)

≤ h
Nk∑

i=0

〈
ψk(xi ) − x̄∗, zi

〉
+
ηγk

4
.

This implies, by (d) and (c), that

ψk(xNk ) − ψk(x̄) − 〈x̄∗, xNk − x̄〉 < −ηγk/2 = ε̄γk . (2.84)

Now recall that ψk approximates the original function ϕ by

|ϕ(x) − ψk(x)| ≤ ε̄γk/4 whenever x ∈ x̄ + γk IB .

Combining this with (2.83) and (2.84), we finally get

ϕ(xNk − ϕ(x̄) − 〈x̄∗, xNk − x̄〉 ≤ ε̄γk/2 ≤ −ε̄‖xNk − x̄‖ .

Since xNk → x̄ as k → ∞, the latter means that x̄∗ /∈ ∂̂ϕ(x̄), which ends the
proof of the theorem. �

Theorem 2.46 concerns relationships between Fréchet subgradients and
derivate sets of real-valued functions that can be approximated by smooth
functions near the point under consideration. It easily implies correspond-
ing results for mappings f : X → Y involving their scalarization. In par-
ticular, we deduce from Theorem 2.46 the following relationship between
Fréchet subgradients and screens introduced by Halkin [544] for mappings
between finite-dimensional spaces.

Recall that, given f : U → IRm defined on an open subset U ⊂ IRn, a
nonempty set U ⊂ IRmn is called a screen of f at x̄ ∈ U if for every ε, α > 0
there exist γ > 0 and a C1 mapping g: Bn

γ (x̄) → IRm such that Bn
γ (x̄) ⊂ U ,

‖ f (x) − g(x)‖ ≤ εγ, and ∇g(x) ∈ U + ε IBmn for all x ∈ Bn
γ (x̄) ,

where Bn
γ (x̄) := x̄ + γ IBIRn and IBmn stands for the closed unit ball in IRmn.

Corollary 2.47 (relationship between Fréchet subgradients and
screens). Let U ⊂ IRmn be a screen of a mapping f : U → IRm at x̄ ∈ U ⊂ IRn.
Then

∂̂〈y∗, f 〉(x̄) ⊂ cl {A∗y∗
∣
∣ A ∈ U

}
for all y∗ ∈ IRm .

Proof. Given y∗ ∈ IRm and a screen U of f at x̄ , it is not hard to check that
the set {A∗y∗| A ∈ U} satisfies all the above properties of the derivate set
Aϕ(x̄) for the scalarized function ϕ(x) := 〈y∗, f 〉(x) at x̄ . �
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A screen of a mapping is not uniquely defined. Particular examples of
screens are given by derivate containers of Warga [1316], which include
Clarke’s generalized Jacobian for locally Lipschitzian mappings between finite-
dimensional spaces. Warga [1319] also introduced the concept of directional
derivate containers for mappings between infinite-dimensional spaces. Theo-
rem 2.46 allows us to obtain the following relationships between the latter
construction for mappings (see the afore-mentioned papers by Warga for the
exact definition) and Fréchet subgradients of their scalarizations.

Corollary 2.48 (relationship between Fréchet subgradients and deri-
vate containers). Consider a directional derivate container {Λε f (x̄)| ε > 0}
of a mapping f :Ω → Y at x̄ ∈ intΩ, where Ω ⊂ X is a convex compact set,
and where the spaces X and Y are Banach. Then for any y∗ ∈ Y ∗, ε > 0, and
η > 0 there is γ > 0 such that

∂̂〈y∗, f 〉(x) ⊂
{

A∗y∗
∣
∣ A ∈ Λε f (x̄)

}
+ ηIB∗ whenever x ∈ x̄ + γ IB .

Note that the assumption x̄ ∈ intΩ is essential for the validity of the
latter result. Indeed, for the function f : [0, 1] → IR with f ≡ 0 extended by
∞ outside of [0, 1], we clearly have ∂̂ f (1) = [0,∞), while the singleton {0} is
a directional derivate container of f at x̄ = 1.

Observe that the derivative-like constructions in Theorem 2.46 and Corol-
laries 2.47 and 2.48 are generally related to presubdifferential structures, which
lead to robust subdifferentials and corresponding generalized derivatives of
mappings via some regularization procedure. To this end let us recall the de-
finition of the minimal derivate container by Warga

Λ0 f (x̄) : = Lim sup
x→x̄

k→∞

{
∇ fk(x)

}

=
∞⋂

j=1

⋂

γ>0

cl
⋃

‖x−x̄‖≤γ
i≥ j

{
∇ fi (x)

}

for a continuous mapping f : X → Y between finite-dimensional spaces that
admits a uniform approximation by a sequence of C1 mappings fk . It follows
from the results obtained that

∂〈y∗, f 〉(x̄) ⊂
{

A∗y∗
∣
∣ A ∈ Λ0 f (x̄)

}
for all y∗ ∈ Y ∗ ,

which gives the inclusion

∂0ϕ(x̄) := ∂ϕ(x̄) ∪ ∂+ϕ(x̄) ⊂ Λ0ϕ(x̄) (2.85)

for the two-sided/symmetric generalized differential (1.46) of a real-valued
function ϕ continuous around x̄ . The following example illustrates (2.85) and
other relationships between various subgradients studied above.
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Example 2.49 (computing subgradients of Lipschitzian functions).
Consider the function

ϕ(x) :=
∣
∣ |x1| + x2

∣
∣, x = (x1, x2) ∈ IR2 ,

which is Lipschitz continuous on IR2. Based on representation (1.51), we com-
pute Fréchet subgradients of ϕ at every point x ∈ IR2 as follows:

∂̂ϕ(x) =






(1, 1) if x1 > 0, x1 + x2 > 0 ,

(−1,−1) if x1 < 0, x1 + x2 < 0 ,

(−1, 1) if x1 < 0, x1 − x2 < 0 ,

(1,−1) if x1 < 0, x1 − x2 > 0 ,

{(v, 1)| − 1 ≤ v ≤ 1} if x1 = 0, x2 > 0 ,

{(v1, v2)| − 1 ≤ v ≤ 1} if x1 > 0, x1 + x2 = 0 ,

{(v1,−v2)| − 1 ≤ v ≤ 1} if x1, 0, x1 − x2 = 0 ,

{(v1, v2)| |v1| ≤ v2 ≤ 1} if x1 = 0, x2 = 0 ,

∅ if x1 = 0, x2 < 0 .

Similarly, based on representation (1.52), we compute Fréchet upper subgra-
dients of the above function by

∂̂+ϕ(x) =






(1, 1) if x1 > 0, x1 + x2 > 0 ,

(−1,−1) if x1 < 0, x1 + x2 < 0 ,

(−1, 1) if x1 < 0, x1 − x2 < 0 ,

(1,−1) if x1 < 0, x1 − x2 > 0 ,

{(v,−1)| − 1 ≤ v ≤ 1} if x1 = 0, x1 − x2 < 0 ,

∅ otherwise .

Now using the limiting representation (1.56) of the basic subdifferential in
Theorem 1.89 and the symmetric representation of upper subgradients, we
arrive at the subgradient sets
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∂ϕ(0) =
{
(v1, v2)

∣
∣ |v1| ≤ v2 ≤ 1

}
∪
{
(v1, v2)

∣
∣ v2 = −|v1|, −1 ≤ v1 ≤ 1

}
,

∂+ϕ(0) =
{
(v,−1)

∣
∣ − 1 ≤ v ≤ 1

}
∪
{
(1,−1), (1, 1)

}
,

∂0ϕ(0) = ∂ϕ(0) ∪
{
(v,−1)

∣
∣ − 1 ≤ v ≤ 1

}
.

Warga’s minimal derivate container for this function is the nonconvex set

Λ0ϕ(0) =
{
α(v, 1)

∣
∣ α, v ∈ [−1, 1]

}
,

which is the union of two triangles with vertices at (0,0), (1,1), (−1, 1) and
(0,0), (1,−1), (−1, 1), respectively. Clarke’s generalized gradient is the whole
unit squire [−1, 1] × [−1, 1].

2.5.3 Abstract Versions of Extremal Principle

In the conclusion of this section we establish approximate and exact versions
of the extremal principle valid, respectively, for abstract prenormal and nor-
mal structures considered in Subsect. 2.5.1. They hold, in particular, for the
specific classes of generalized normals in appropriate Banach spaces described
in Subsect. 2.5.2.

We’ll see that an approximate version of the extremal principle doesn’t im-
pose any requirements on abstract prenormal structures in addition to those
formulated in Definition 2.41. In contrast to Theorem 2.22, we obtain the
exact extremal principle in Banach spaces in two limiting forms–sequential
and topological–involving sequential and topological normal structures, re-
spectively. Note that both limiting forms hold under the following sequen-
tial normal compactness condition formulated in terms of the corresponding
prenormal structure similarly to Definition 1.20.

Definition 2.50 (abstract sequential normal compactness). Let N̂ de-
fine a prenormal structure on a Banach space X . We say that Ω ⊂ X
is N̂ -sequentially normally compact at x̄ ∈ Ω if for any sequence
(xk, x∗

k ) ∈ X × X∗ satisfying

x∗
k ∈ N̂ (xk ;Ω), xk → x̄, x∗

k
w∗
→ 0

one has ‖x∗
k ‖ → 0 as k → ∞.

This property obviously holds in finite-dimensional spaces for any prenor-
mal structure N̂ . When N̂ = N̂ , the prenormal cone of Definition 1.1(i), we
studied the SNC property and its modification in Subsect. 1.1.3 for arbitrary
Banach spaces. In particular, we established the relationships with the com-
pactly epi-Lipschitzian (CEL) property of sets. In addition to Remark 1.27, let
us mention that, for any closed set Ω in a Banach space X , the CEL property
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is equivalent to the topological counterpart of the SNC property in Defini-
tion 2.50, where sequences (xk, x∗

k ) are replaced with bounded nets and the
prenormal structure N̂ is given by the nucleus of the G-normal cone in (2.76).
It is proved by Ioffe [607, Theorem 3] and holds also for prenormal structures
defined by the viscosity β-normal cones (2.78) on Banach spaces admitting
a Lipschitzian β-smooth bump function. Let us call the net counterpart of
the SNC property in Definition 2.50 by the topological normal compactness
(TNC) of Ω at x̄ with respect to N̂ and observe that CEL	⇒TNC for the case
of Clarke’s normal cone (2.72), as follows from Example 4.1 in Borwein [138]
for X = �∞.

Obviously TNC⇒SNC for any N̂ . It is proved by Fabian and Mor-
dukhovich [422] that these properties coincide on Banach spaces X that are
weakly compactly generated (WCG), i.e., X = cl (span K ) for some weakly
compact set K ⊂ X . This class includes all reflexive spaces as well as all sep-
arable Banach spaces. On the other hand, the SNC property may be strictly
weaker than its TNC counterpart in general Banach (and Asplund) space
settings, even for the case of convex sets; see examples in [422].

Theorem 2.51 (abstract versions of the extremal principle). Let
{Ω1,Ω2, x̄} be an extremal system of closed sets in a Banach space X , and
let N̂ define a prenormal structure on X . The following hold:

(i) For every ε > 0 there are xi ∈ Ωi ∩ (x̄ + ε IB), i = 1, 2, and x∗ ∈ X∗

with ‖x∗‖ = 1 such that

x∗ ∈
(
N̂ (x1;Ω1) + ε IB∗) ∩

(
− N̂ (x2;Ω2) + ε IB∗) . (2.86)

(ii) Assume that one of the sets Ωi , i = 1, 2, is N̂ -sequentially normally
compact at x̄. Then there is x∗ ∈ IB∗ \ {0} such that

x∗ ∈ N (x̄ ;Ω1) ∩
(
−N (x̄ ;Ω2)

)
, (2.87)

where N stands for the topological normal structure (2.67) generated by N̂ . If
in addition the dual ball IB∗ ⊂ X∗ is weak∗ sequentially compact, then

x∗ ∈ N (x̄ ;Ω1) ∩
(
−N (x̄ ;Ω2)

)
(2.88)

for some x∗ ∈ IB∗\{0}, where N stands the sequential normal structure (2.66)
generated by N̂ .

Proof. First justify (i) following basically the procedure in the proof of
Lemma 2.32(ii). Fix an arbitrary ε > 0. Given a local extremal point x̄ of
the set system {Ω1,Ω2}, we find a neighborhood U of x̄ and a ∈ X such that
‖a‖ ≤ ε := ε/2 and (Ω1 + a) ∩ Ω2 ∩ U = ∅. One can always assume that
x̄ + ε IB ⊂ U . Form the function

ϕ(x1, x2) := ‖x1 − x2 + a‖ for (x1, x2) ∈ X2
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and observe that ϕ(x̄, x̄) = ‖a‖ ≤ ε and

ϕ(x1, x2) > 0 if (x1, x2) ∈ Z :=
[
Ω1 ∩ (x̄ + ε IB)

]
×
[
Ω2 ∩ (x̄ + ε IB)

]
.

We see that Z is a complete metric space with the metric induced by the sum
norm on X2, and that ϕ is continuous on Z . Applying Ekeland’s variational
principle in Theorem 2.26(i) to ϕ on Z , we find (x̄1, x̄2) ∈ Z such that

ϕ(x̄1, x̄2) ≤ ϕ(x1, x2) + ε
(
‖x1 − x̄1‖ + ‖x2 − x̄2‖

)
for all (x1, x2) ∈ Z .

The latter implies that (x̄1, x̄2) ∈ Ω1 ×Ω2 is a local minimizer of the function

ψ(x1, x2) := ‖x1 − x2 + a‖ + ε
(
‖x1 − x̄1‖ + ‖x2 − x̄2‖

)

relative to the set Ω1 × Ω2 with x̄1 − x̄2 + a 	= 0. Now applying property
(H) of the prenormal structure N̂ in Definition 2.41 with γ := ε > ε, we find
x̃i ∈ x̄ + ε IB, i = 1, 2, and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

(−x∗, x∗) ∈ N̂ (x̃1;Ω1) × N̂ (x̃2;Ω2) + ε
(

IB∗ × IB∗) .

It follows from the constructions above that (x̃1, x̃2) ∈ Ω1 × Ω2 and x̃i ∈
x̄ + ε IB, i = 1, 2. Thus we get all the relationships of the approximate extremal
principle in (i).

To prove (ii), we need to pass to the limit in (i) as ε ↓ 0. Let us first justify
the sequential version of the exact extremal principle in (ii) assuming that the
dual ball IB∗ ⊂ X∗ is weak∗ sequentially compact. Take a sequence εk ↓ 0 and
consider the corresponding sequences (x1k, x2k, x∗

k ) satisfying the conclusions
of (i). We have x1k → x̄ and x2k → x̄ as k → ∞. Since IB∗ is weak∗ sequentially
compact, we select a subsequence of {x∗

k } (without relabeling) that converges
weak∗ to some x∗ ∈ IB∗. By (2.86) there are x∗

ik ∈ N̂ (xik ;Ωi ) and b∗
ik ∈ IB∗,

i = 1, 2, such that

x∗
k = x∗

1k + εkb∗
1k, x∗

k = −x∗
2k + εkb∗

2k for all k ∈ IN . (2.89)

This implies that x∗
ik

w∗
→ x∗ and x∗

2k
w∗
→ −x∗ as k → ∞. The latter gives, due

to definition (2.66), that x∗ satisfies (2.88).
To justify (ii) in the sequential case, it remains to show that x∗ 	= 0 under

the SNC assumption imposed. On the contrary, assume that x∗ = 0, which
gives x∗

ik
w∗
→ 0 for the sequences x∗

ik ∈ N̂ (xik ;Ωi ), i = 1, 2. Since one of the sets
Ωi (say Ω1) is N̂ -sequentially normally compact at x̄ , we get ‖x∗

1k‖ → 0. This
clearly implies that ‖x∗

k ‖ → 0, which contradicts the condition ‖x∗
k ‖ = 1 for

all k ∈ IN and ends the proof of (ii) in the sequential case.
Let us finally consider the case of general Banach spaces and justify the

topological version (2.87) of the exact extremal principle under the sequen-
tial normal compactness condition imposed. We follow the procedure in the
sequential case but now don’t assume anymore that IB∗ is weak∗ sequentially
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compact, using instead the well-known fact that IB∗ is (topologically) weak∗

compact in arbitrary Banach spaces. This allows us to conclude that the above
sequence {x∗

k } has a weak∗ cluster point x∗ ∈ cl∗{x∗
k | k ∈ IN}∩ IB∗. It follows

from representation (2.89) with x∗
ik ∈ N̂ (xik ;Ωi ), i = 1, 2, and from definition

(2.67) that x∗ satisfies (2.87), where N is the topological normal structure
generated by N̂ . This holds for any cluster point x∗ ∈ cl ∗{x∗

k | k ∈ IN}.
It remains to show that x∗ 	= 0 for some x∗ ∈ cl∗{x∗

k | k ∈ IN} if one of
the sets Ωi , i = 1, 2, is N̂ -sequentially normally compact at x̄ . Indeed, the
opposite means the x∗ = 0 is the only weak∗ cluster point of {x∗

k }. The latter
yields that the whole sequence {x∗

k } converges weak∗ to zero. Then it follows

from (2.89) that x∗
ik

w∗
→ 0, i = 1, 2, as k → ∞. Hence ‖x∗

ik‖ → 0 for either i = 1
or i = 2, which is impossible due to ‖x∗

k ‖ = 1. This contradiction completes
the proof of the theorem. �

As an immediate corollary of Theorem 2.51 we derive the following gener-
alized versions of the Bishop-Phelps and supporting hyperplane theorems in
terms of abstract prenormal and normal structures on Banach spaces.

Corollary 2.52 (prenormal and normal structures at boun-
dary points). Let Ω be a proper closed subset of a Banach space X , and
let x̄ be a boundary point of Ω. Consider an arbitrary prenormal structure
N̂ on X and the corresponding sequential normal structure N and topological
normal structure N generated by N̂ . Then one has:

(i) Given any ε > 0, there is x ∈ Ω ∩ (x̄ + ε IB) such that N̂ (x ;Ω) 	= {0}.
(ii) Assume that the set Ω is N̂ -sequentially normally compact at x̄. Then

N (x̄ ;Ω) 	= {0}. If in addition the dual ball IB∗ is weak∗ sequentially compact,
then N (x̄ ;Ω) 	= {0}.

Proof. Follows from Theorem 2.51 with Ω1 := Ω and Ω2 := {x̄}. �

By the results of Subsect. 2.5.1 the abstract versions of the extremal prin-
ciple in Theorem 2.51 and their corollaries hold for subdifferentially gener-
ated prenormal and normal structures under the mild requirements (S1)–(S3)
on the corresponding presubdifferentials. These requirements are used in the
proof of Lemma 2.32(ii) for the case of Fréchet normals and subgradients. As
follows from the proof of the other statement (i) in Lemma 2.32, it holds for
any presubdifferential D̂ϕ(·) on the class of proper l.s.c. functions ϕ: X → IR
generated by a prenormal cone N̂ on X × IR as

D̂ϕ(x) :=
{

x∗ ∈ X∗∣∣ (x∗,−1) ∈ N̂ ((x, ϕ(x)); epi ϕ)
}
, x ∈ dom ϕ ,

provided that N̂ (z;Ω) ⊂ {0} if z ∈ intΩ and that ‖x∗‖ ≤ � for all x∗ ∈ D̂ϕ(x)
if ϕ is locally Lipschitzian around x with modulus �. Thus both statements
in Lemma 2.32 are valid for general classes of normals and subgradients. It is
not the case for Theorem 2.33 and most of the other material in this chapter,
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where the specific structure of Fréchet-like subdifferential constructions and
geometric properties of Asplund spaces are essentially exploited. Note also
that the structural properties of our basic constructions are utilized in Chap. 1
to build the generalized differential theory in Banach spaces.

In the subsequent chapters of this book we apply basic principles and
results of the first two chapters to develop a comprehensive generalized differ-
ential calculus in Asplund spaces and give its applications to important prob-
lems in nonlinear analysis, optimization, and economics. Most of the results
are formulated in terms of Fréchet-like normals/subgradients/coderivatives
and their sequential limits, which is essential in the statements and proofs.
As follows from the proofs (and will be explicitly mentioned in some cases),
a part of the results obtained holds also for other normal and subgradient
structures by the above discussions.

2.6 Commentary to Chap. 2

2.6.1. The Origin of the Extremal Principle. The chapter col-
lects the fundamental material that is crucial for the subsequent parts of the
book, in both aspects of basic theory and applications of variational analysis.
Roughly speaking, all the essentials of variational analysis developed in this
book largely revolve around the extremal principle comprehensively studied in
Chap. 2. The extremal principle can be viewed as a local variational counter-
part of the classical separation in the case of nonconvex sets; it actually plays
the same role in variational analysis as separation theorems do in the presence
of convexity, i.e., in the framework of convex analysis and its applications.

The term “extremal principle” was coined by Mordukhovich [910], while its
first versions (in both approximate/fuzzy and exact/limiting forms of Defini-
tion 2.5) were established by Kruger and Mordukhovich [718] under the name
of “generalized Euler equations” for local extremal points of finitely many sets
in Fréchet smooth spaces. The essence of the exact extremal principle can be
traced to the early paper by Mordukhovich [887], where the key method of
metric approximations has been initiated in the framework of optimal control.

The properties of extremal systems and their connection with separation
properties of convex and nonconvex sets presented in Subsect. 2.1.1 can be
found in Kruger and Mordukhovich [719] and Mordukhovich [901]. The rela-
tionships between extremality and supporting properties from Subsect. 2.1.2
were fully investigated by Fabian and Mordukhovich [421]. To this end we
mention a remarkable study of boundary points for sums of sets undertaken
by Borwein and Jofré [148]. The latter boundary property of a set sum is
actually equivalent to the local extremality of another set system; see also the
recent paper by Kruger [715] for more details.

In Subsect. 2.1.3 we give a self-contained proof of the exact extremal prin-
ciple in finite-dimensional spaces based on the method of metric approxima-
tions. As mentioned, this method was originated by Mordukhovich [887] and
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then developed in [889, 892, 719, 901, 907] in several finite-dimensional set-
tings; see also the comments below for its infinite-dimensional counterparts
with significantly more involved variational arguments. Note that the method
of metric approximations contains a constructive procedure to study local ex-
tremal points of set systems (in particular, local solutions to various problems
of constrained optimization and equilibria) based on their symmetric approx-
imation by sequences of smooth problems of unconstrained minimization. The
realization of this procedure as in the proof of Theorem 2.8 has actually led
us to constructing the basic/limiting normal cone in order to describe the
(exact) generalized Euler equation. Observe that the latter appeared in the
process of passing to the limit after applying the classical Fermat station-
ary rule in the sequence of approximating problems; cf. [887]. All this indi-
cates close relationships between classical and modern tools and concepts of
variational analysis: the novelty comes from applying appropriate approxima-
tion/perturbation techniques.

2.6.2. The Extremal Principle in Fréchet Smooth Spaces and
Separable Reduction. Although there are no crucial differences between
finite-dimensional and infinite-dimensional settings from conceptional view-
points, infinite-dimensional extensions of the above approach to the extremal
principle are technically much more involved requiring the usage of refined
variational arguments and delicate geometric properties of Banach spaces.
There are the following three most crucial features of finite dimensionality
significantly exploited in the construction and realization of the metric ap-
proximation method employed to prove the exact extremal principle in Sub-
sect. 2.1.3:

(a) intrinsic variational properties of the Euclidean norm;

(b) the equivalence of any norm in finite dimensions to the Euclidean
norm, which is smooth away from the origin;

(c) compactness of the closed unit ball (as well as the unit sphere ), which
is a characterization of finite-dimensional spaces.

Appropriate counterparts of these properties in infinite dimensions, which
have nothing to do with the Euclidean norm, are among the key ingredients in
deriving both approximate and exact versions of the extremal principle in the
general framework of Asplund spaces presented in Sect. 2.2. To establish the
approximate extremal principle in Asplund spaces, we develop a two-step pro-
cedure therein: first giving a direct proof of the extremal principle in Banach
spaces admitting an equivalent Fréchet smooth norm (away from the origin),
and then “rising up” the result from Fréchet smooth spaces to the general
Asplund space setting by using the method of separable reduction.

The variational arguments employed in Subsect. 2.2.1 to justify the approx-
imate extremal principle in Banach spaces with smooth Fréchet renorms were
first developed, to the best of our knowledge, by Li and Shi [785] (preprint of
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1990) in their proof of variational principles of the Ekeland and Borwein-Preiss
types and then used, e.g., in [159, 265, 266, 688, 809] in parallel variational
settings. We combine these arguments with the device in Mordukhovich and
Shao [948] and with the subsequent induction. As mentioned in Remark 2.11,
a similar device can be employed to establish the approximate extremal prin-
ciple in Banach spaces admitting smooth renorms of any kind, with respect to
natural bornologies. We refer the reader to the survey paper by Averbukh and
Smolyanov [68] and to the book by Phelps [1073] for more information about
bornologies. Appropriate versions of the approximate extremal principle in
other (non-Fréchet) bornologically smooth spaces can be found in the paper
by Borwein, Mordukhovich and Shao [151].

The method of separable reduction developed in Subsect. 2.2.2 in order to
apply it to deriving the approximate extremal principle is probably the most
difficult device given in this book. It is taken from the paper by Fabian and
Mordukhovich [421], while its origin goes back to Preiss [1103] in the theory
of Fréchet differentiability. Then versions of separable reduction were used by
Fabian and Zhivkov [423], Fabian [413, 415], and Fabian and Mordukhovich
[420, 421] in applications to various aspects of nonlinear analysis and general-
ized differentiability. It seems that the Fréchet-type differentiability and sub-
differentiability is very essential in the theory and applications of this method.

2.6.3. Asplund spaces. The Asplund property of Banach spaces formu-
lated in Subsect. 2.2.3 plays a crucial role in the theory and applications of
variational analysis developed in this book. Although a number of impor-
tant results and applications presented in the book hold in arbitrary Banach
spaces, the most comprehensive theory of generalized differentiation, at the
same level of perfection as in finite dimensions, is given in the Asplund space
setting.

The remarkable class of Banach spaces, now called Asplund spaces, was in-
troduced by Asplund in his 1968 paper [43] as “strong differentiability spaces.”
The name “Asplund spaces” was coined by Namioka and Phelps [992] soon
after Asplund’s death (1974). The original Asplund definition was the same
one presented in Subsect. 2.2.3 with the only difference that the dense set of
Fréchet differentiability points was postulated to be Gδ. The latter require-
ment can be equivalently omitted due to the fact that Fréchet differentiability
points always form a Gδ set; see, e.g., Phelps [1073]. It is worth mentioning
that, although the main contents of the original Asplund’s paper [43] con-
cerned the geometric theory of Banach spaces, there were nice variational
applications therein establishing generic existence and unique theorems for
optimal solutions to some linearly perturbed variational problems particularly
related to Moreau’s proximal mappings in Hilbert spaces [982].

Asplund spaces, which include all reflexive and many other remarkable
Banach spaces, have been comprehensively investigated in the geometric the-
ory of Banach spaces and its applications, with discovering a great number of
impressive characterizations and properties; the reader may find a partial list
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of them in the beginning of Subsect. 2.2.3 and in the references therein. Al-
though the Asplund property is generally related to Fréchet differentiability,
there are Asplund spaces that fail to have even a Gâteaux smooth renorm; see
striking examples in Haydon [553] and in Deville, Godefroy and Zizler [331].
Note that, in contrast to the class of Asplund spaces that is one of the most
beautiful objects in analysis and probably in all mathematics, weak Asplund
spaces similarly defined in [43] with the replacement of Fréchet differentiability
by Gâteaux differentiability are too far from being beautiful admitting only
a modest number of satisfactory results; see the book by Fabian [416]. There
is an intermediate class of Asplund generated spaces, known also in the litera-
ture as Grothendieck-Šmulian generated spaces, which particularly include all
weakly compactly generated (hence all separable) spaces, strongly studied geo-
metrically in the afore-mentioned Fabian’s book. An on-going research project
by Fabian, Loewen and Mordukhovich [418] is devoted to certain aspects of
generalized differentiation and variational analysis in the framework of As-
plund generated spaces; see Remark 3.103 for some results and discussions.

2.6.4. The Extremal Principle in Asplund Spaces. The extremal
characterizations of Asplund spaces in Theorem 2.20 via the two (equiva-
lent) versions of the approximate extremal principle were established by Mor-
dukhovich and Shao [948], while the presented proof is taken from the later
papers by Fabian and Mordukhovich: from [421] for the sufficiency of the As-
plund property to ensure the extremal principle via separable reduction and
from [420], via Example 2.19 reproduced in Subsect. 2.2.3, for the necessity of
this property to have the extremal principle. Yet another proof (actually the
first one) of the validity of the approximate extremal principle in general As-
plund spaces can be found in Mordukhovich and Shao [949] via a coderivative
criterion for the covering property established in their previous paper [946].

The boundary characterizations of Asplund spaces from Corollary 2.21
were obtained by Fabian and Mordukhovich [420] via separable reduction,
with no appeal to the extremal principle. On the other hand, assertion (c)
of this corollary, which is a far-going nonconvex extension of the celebrated
Bishop-Phelps theorem [116] in the framework of Asplund spaces, was first
deduced by Mordukhovich and Shao [948] from the extremal principle; cf.
also Borwein and Strójwas [156, 157] for other counterparts of the Bishop-
Phelps theorem in nonconvex settings with other proofs. In the paper by
Mordukhovich and B. Wang [960] the reader can find more variational char-
acterizations of Asplund spaces via Fréchet normals and ε-normals, as well
as different proofs of those mentioned above. Various subdifferential charac-
terizations of Asplund spaces will be discussed below in the commentary to
this chapter. We also refer the reader to the recent paper by Wang [1304] who
derived some analogs of the afore-mentioned results and characterizations of
the reflexivity of locally uniformly convex Banach spaces with Fréchet differ-
entiable renorms via the approximate extremal principle involving proximal
normals and subgradients.
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The validity of the exact extremal principle in Asplund spaces under the
sequential normal compactness conditions of Theorem 2.22 was established
by Mordukhovich and Shao [949] extending the result of Kruger and Mor-
dukhovich [718] obtained under the epi-Lipschitzian assumptions in Fréchet
smooth spaces; see also the subsequent publications [707, 901]. The converse
assertion of Theorem 2.22 was proved by Fabian and Mordukhovich [419].
Example 2.23 on the failure of the exact extremal principle in the absence
of normal compactness is taken from Borwein and Zhu [162]. The nontrivial-
ity results on basic normals and subgradients from Corollaries 2.24 and 2.25,
which immediately follow from the exact extremal principle, were first ob-
served by Mordukhovich and Shao [949].

2.6.5. The Ekeland Variational Principle. According to the conven-
tional terminology of modern nonlinear analysis, the expression “variational
principle” stands for an assertion ensuring that, given a lower semicontinuous
and bounded from below function ϕ and its arbitrary ε-minimal point x0, there
is a small perturbation of ϕ such that the perturbed function attains its exact
minimum at some point close to x0. The first variational principle in this sense
was discovered by Ekeland in 1972 (see [396, 397, 399]) in general complete
metric spaces. The exact statement of Ekeland’s variational principle is pre-
sented in Theorem 2.26(i). Note that the original Ekeland’s proof [396, 397]
was rather complicated involving transfinite induction arguments via Zorn’s
lemma. It was largely similar to the proof of the Bishop-Phelps theorem [116]
mentioned above, which was called by Ekeland [399] “the grandfather of it
all.” The much simplified proof presented in Theorem 2.26 follows the lines of
Crandall’s arguments reproduced in Ekeland [399] as a personal communica-
tion. The converse statement of Theorem 2.26(ii) ensuring that the Ekeland
principle is actually a characterization of the completeness property of metric
spaces is due to Sullivan [1232]. There are so many applications of Ekeland’s
variational principle to various areas in mathematics and related disciplines
that it doesn’t seem to be possible of even mentioning a great part of them
in this book. The reader can find a partial list of the most important early
applications with their detailed analysis in the excellent survey by Ekeland
[399] of 1979.

It is worth emphasizing that among the main motivations for the Ekeland
original study was the result of Corollary 2.27, which ensures the fulfillment
of the “almost stationary” condition for “almost optimal” (suboptimal in our
terminology) solutions to a smooth unconstrained minimization problem. Re-
sults of this kind are especially important for optimization problems in infinite
dimensions, where optimal solutions may often not exist. Thus the principal
issue of both theoretical and practical importance is to derive necessary con-
ditions for suboptimal solutions, of about the same type as for optimal solu-
tions, that eventually lead to numerical algorithms for solving optimization
problems. From this viewpoint, necessary suboptimality conditions applied
to solutions that always exist are not worse than those for exact optimality,
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which may not be reachable. We pay a strong attention to this topic through-
out the book; see particularly Chaps. 5 and 6.

2.6.6. Subdifferential Variational Principles. The main result of
Subsect. 2.3.2 called the lower subdifferential variational principle (Theo-
rem 2.28) is a far-going development of Ekeland’s ε-stationary condition in
Corollary 2.27 from smooth functions to extended-real-valued l.s.c. functions;
it can be applied therefore to problems of constrained optimization. This result
established by Mordukhovich and B. Wang [962] is different from conventional
variational principles in only one aspect: instead of a perturbed minimization
condition, it contains a (lower) subdifferential condition of the ε-stationary
type, which is actually a necessary condition for suboptimal solutions. The
first result of this type for nonsmooth functions was obtained by Rockafellar
[1147] via Clarke subgradients in Banach spaces, while for convex functions
it actually goes back to the early work by Brøndsted and Rockafellar [179]
that preceded Ekeland’s variational principle; cf. also [154, 186, 501, 1165] for
related results and discussions. As proved in the afore-mentioned paper [962],
the subdifferential variational principle of Theorem 2.28 occurred to be an
equivalent analytic counterpart of the approximate extremal principle giving
hence yet another variational characterization of Asplund spaces.

The variational results of Theorem 2.28 easily imply the subdifferential
characterizations of Asplund spaces listed in Corollary 2.29. These character-
izations were first established via different devices by: Fabian [415] for (b),
Fabian and Mordukhovich [419] for (c), and Fabian and Zhivkov [423] for (e);
characterizations (d) follows from (e) due to Theorem 1.86. Note also that
implication (e)⇒(a) was proved earlier by Ioffe [593], while the related fact
that the density of the set x ∈ dom ϕ with ∂̂aεϕ(x) 	= ∅ for any l.s.c. func-
tion ϕ: X → IR yields the Asplund property of X goes back to Ekeland and
Lebourg [400].

The upper subdifferential variational principle of Theorem 2.30 taken from
the paper by Mordukhovich, Nam and Yen [938] is substantially different from
the lower one being generally less powerful, since it applies only to special
classes of functions that admit upper Fréchet subgradients at the points in
question. However, for such classes of functions (which have been well recog-
nized and investigated in nonsmooth analysis; see Chap. 5) the upper ver-
sion involving every upper subgradient, has certain significant advantages in
comparison with its lower counterpart from Theorem 2.28. It is particularly
useful in developing necessary suboptimality conditions for various classes of
constrained minimization problems; see Subsect. 5.1.4 for some results in this
direction.

2.6.7. Smooth Variational Principles. Concerning the conventional
line in developing variational principles, observe that the minimization con-
dition in Ekeland’s variational principle of Theorem 2.26 can be interpreted
as follows: for every l.s.c. function ϕ: X → IR with inf ϕ > −∞ there exists a
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function s: X → IR that supports ϕ from below at some point x̄ ∈ dom ϕ, i.e.,

ϕ(x̄) = s(x̄) and ϕ(x) ≥ s(x) whenever x ∈ X .

Then Ekeland’s principle ensures, in the framework of arbitrary Banach
spaces, that the support s(·) can be chosen as a small perturbation by func-
tions of the norm type. A clear disadvantage of this results is the intrinsic
nonsmoothness of such perturbations, and so a natural question arises about
conditions ensuring smooth perturbations, i.e., about smooth variational prin-
ciples.

The first result of this type was obtained by Stegall in his 1978 paper [1224]
who showed that, for any l.s.c. function satisfying some growth condition as
‖x‖ → ∞ on a Banach space with the Radon-Nikodým property (in particular,
on a reflexive space), a supporting function s(·) could be chosen as a linear
functional with an arbitrarily small norm.

A more powerful smooth variational principle, in essentially more gen-
eral settings, was established in the 1987 paper by Borwein and Preiss [154]
who proved, assuming the existence of a bornologically smooth renorm on
the Banach space in question, that supporting functions could be chosen
as concave and smooth with respect to the same bornology. The Borwein-
Preiss smooth variational principle was extended in some directions by Dev-
ille, Godefroy and Zizler [330, 331] who showed, in particular, that supporting
functions could be chosen as bornologically smooth (but not concave any-
more) under the more general assumption on the existence of a smooth Lip-
schitzian bump function with respect to some bornology. We refer the reader
to [45, 70, 164, 265, 417, 419, 530, 531, 547, 619, 620, 785, 790, 809, 1243, 1356]
among other publications for additional information about variational princi-
ples, their recent developments, and applications.

The results of Subsect. 2.3.3 are taken from the paper by Fabian and
Mordukhovich [419]. Assertions (i) and (ii) of Theorem 2.31 establish enhanced
versions of the Borwein-Preiss and Deville-Godefroy-Zizler smooth variational
principles, respectively, with more information about supporting functions in
comparison with the original versions in [154, 330]. Observe that the proof
given in Theorem 2.31(i,ii) is essentially different from those of [154, 330]; it is
based on the lower subdifferential variational principle from Theorem 2.28 and
smooth variational descriptions of Fréchet subgradients from Theorem 1.88.

The converse assertion (iii) is indeed remarkable: it shows that the smooth
norm and smooth bump assumptions in smooth variational principles of the
Borwein-Preiss and Deville-Godefroy-Zizler types, respectively, are not only
sufficient but also necessary for the validity of such results. As discussed at
the end of Subsect. 2.3.3, the Fréchet smoothness is not essential for these
conclusions, which hold true for any bornology. Observe again in this respect
that no smoothness assumption is necessary for the fulfillment of the extremal
principle and of the lower subdifferential variational principle. Furthermore,
as proved in Borwein, Mordukhovich and Shao [151] (resp. in Mordukhovich
[919]), the approximate extremal principle is equivalent to certain localized
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versions of the Borwein-Preiss and Deville-Godefroy-Zizler variational prin-
ciples provided that the Banach space in question admits a Fréchet smooth
renorm (resp. a Fréchet smooth and Lipschitzian bump function).

2.6.8. Limiting Normal and Subgradient Representations in As-
plund Spaces. It has been mentioned above that the main results of varia-
tional analysis and its applications developed in this book are derived from
the extremal principle. Section 2.4 contains the first set of results in this di-
rection showing, in particular, that the usage of the approximate extremal
principle and its subgradient descriptions in Asplund spaces allows us to jus-
tify simplified and convenient representations of basic normals, subgradients,
and coderivatives in the general Asplund setting similar to those established
in finite dimensions on the base of specific properties of the Euclidean norm.
The power of the extremal principal and its equivalents make it possible to
replace the previous arguments without any appeal to either finite dimen-
sionality, or to the Euclidean norm, or even to smooth renorming. Moreover,
the Asplund space setting happens to be also necessary for such representa-
tions provided that they are required for all sets, functions, and set-valued
mappings belonging to reasonably broad families.

The subdifferential description of the approximate extremal principle given
in Lemma 2.32 plays a crucial role in establishing the main results of Sect. 4.
This lemma was established by Mordukhovich and Shao [948], while the
essence of assertion (i) can be traced to Ioffe [600]; cf. the proof of Step 2
in Lemma 2 therein.

Results of form (2.42) known as fuzzy sum rules (or “zero fuzzy sum rules,”
or “fuzzy principles”) were initiated by Ioffe [593, 594] for ε-subdifferentials
(ε > 0) of both Fréchet and Dini types. For the case of Fréchet subgradients
(ε = 0) on Asplund spaces, the semi-Lipschitzian result (2.42) was first estab-
lished by Fabian [415] based on the Borwein-Preiss smooth variational prin-
ciple and on separable reduction; cf. Ioffe [599] for Fréchet smooth spaces.
There are several modifications of such fuzzy rules; all of them happens to
be equivalent. The latter was first proved by Zhu [1371] for the so-called β-
subdifferentials that are valuable on bornologically smooth spaces and then
by Ioffe [606] and Lassonde [747] in more general settings; see also the recent
book by Borwein and Zhu [164].

The full (not “zero”) semi-Lipschitzian fuzzy sum rule of Theorem 2.33(b)
was derived by Fabian first in [413] for ε > 0 and then in [415] for ε =
0 in the general Asplund space setting. Note that the structure of Fréchet
subgradients seems to be very essential for this full fuzzy rule, in contrast to
its zero counterpart (2.42). Some topological modifications of the full fuzzy sum
rule (with a weak∗ neighborhood of the origin in X∗ instead of a small dual
ball) were earlier considered by Ioffe [593] who introduced Banach spaces with
such properties as “trustworthy spaces” and proved that any space admitting a
Fréchet smooth bump function fell into the trustworthy category. Implication
(b)⇒(a) in Theorem 2.33 can be also deduced from [593]. We refer the reader
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to the afore-mentioned publications and also to [147, 151, 158, 160, 163, 164,
257, 265, 329, 413, 414, 607, 614, 616, 622, 802, 952] for more results, equivalent
statements, and discussions in this direction.

The exact/limiting semi-Lipschitzian sum rule of Theorem 2.33(c) as well
as the representations of basic subgradients and normals from Theorems 2.34
and 2.35 in Asplund spaces were established by Mordukhovich and Shao [949],
while the converse assertions therein are due to Fabian and Mordukhovich
[419]. Extended sum rules based on the extremal principle are presented in
Chap. 3, where the reader can find comprehensive calculus results with more
discussions.

The limiting ε-subdifferential ∂εϕ(x̄) in (2.48) for ε > 0 was defined by
Jofré, Luc and Théra [634] (preprint of 1995) motivated by applications to
ε-monotonicity and related issues. As observed by Mordukhovich and Shao
[949, Proposition 2.11], this construction happened to be an ε-enlargement of
our basic subdifferential (see Theorem 2.34) for any l.s.c. function on Asplund
spaces; moreover, such an enlargement representation of ∂εϕ(x̄) characterizes
the class of Asplund spaces as proved by Fabian and Mordukhovich [419].

The singular subdifferential limiting representation

∂∞ϕ(x̄) = Lim sup
x

ϕ→x̄
λ↓0

λ∂̂ϕ(x) (2.90)

from Theorem 2.38 was first obtained by Rockafellar [1150] in finite dimen-
sions, with the proximal subdifferential ∂Pϕ(x) of (2.81) replacing ∂̂ϕ(x) in
(2.90). The latter representation was actually accepted in [1150] as the defi-
nition of ∂∞ϕ(x̄). Representation (2.90) was proved by Ioffe [600] for Fréchet
smooth Banach spaces, and then the full statement of Theorem 2.38 in As-
plund spaces was given by Mordukhovich and Shao [949] following the ap-
proach of [600]. The proof of the preceding Lemma 2.37 presented in the book
is a clarification of Ioffe’s proof in [600, Theorem 4] being different from it in
several significant aspects.

Assertion (i) of Theorem 2.40 on horizontal normals to graphs and the
inclusion

D∗ϕ(x)(0) ⊂ ∂∞ϕ(x̄) ∪ ∂∞(−ϕ)(x̄)

for continuous functions on Asplund spaces was established by Ngai and Théra
[1008]. The opposite inclusion to the latter one and hence the equality in the
coderivative representation of Theorem 2.40(ii) follow from Theorem 1.80. We
refer the reader to the recent papers by Zhu [1373] and Ivanov [622] (see also
the book by Borwein and Zhu [164]) for other proofs of the above results and
their counterparts involving β-subdifferentials in bornologically smooth Ba-
nach spaces.

2.6.9. Other Subdifferential Structures and Abstract Versions of
the Extremal Principle. Abstract normal and subdifferential structures of
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Subsect. 2.5.1 were defined and studied by Mordukhovich [920] motivated by
recognizing minimal normal and subdifferential properties needed for deriving
the extremal principle in general Banach spaces. Various axiomatic construc-
tions of this type, with generally different properties and applications, were
considered by Aussel, Corvellec and Lassonde [61], Correa, Jofré and Thibault
[292], Ioffe [599, 606, 607], Ioffe and Penot [614], Lassonde [747], Mordukhovich
[901], Mordukhovich and Shao [949], Thibault and Zagrodny [1254], etc. The
minimality result for the basic subdifferential from Proposition 2.45 was ob-
served by Mordukhovich and Shao [949], while the essence of such theorems
(under less general assumptions) should be traced to the early work by Ioffe
[596, 599] and Mordukhovich [894, 901]; see more discussions in [949, Sect. 9].
Note that Ioffe’s minimality result [599] doesn’t imply, as mistakenly stated in
[599, Proposition 8.2], that the nucleus ∂̃Gϕ(x̄) of his G-subdifferential belongs
to our basic subdifferential ∂ϕ(x̄) for l.s.c. functions on Fréchet smooth spaces.
The point is that the mapping ∂ϕ(·) may not be of closed-graph for Lipschitz
continuous functions as claimed in [599]. In fact, the opposite inclusion

∂ϕ(x̄) ⊂ ∂̃Gϕ(x̄) (2.91)

is fulfilled for any l.s.c. function defined on an Asplund space, where equal-
ity holds for locally Lipschitzian functions provided that the space X is
weakly compactly generated (and hence automatically Fréchet smooth); see
Subsect. 3.2.3 below and comments to it in Subsect. 3.4.7. Moreover, it follows
from examples by Borwein and Fitzpatrick [141] that the inclusion in (2.91)
may be strict even for concave Lipschitz continuous functions defined on some
special spaces admitting C∞-smooth renorms but not being weakly compactly
generated; cf. Example 3.61 below.

Subsection 2.5.2 presents an overview of some remarkable normal and sub-
differential structures important in the theory and applications of variational
analysis via generalized differentiation. The main attention is paid to gener-
alized normals and subgradients related to the basic constructions adopted
in this book. The descriptions in Subsect. 2.5.2 are self-contained with the
corresponding references to publications, where the reader can find more de-
tails and discussions; see also Commentary to Chap. 1. We just make some
comments to (the last) part E of this subsection regarding the concepts and
results formulated and proved therein.

The generalized differential construction Aϕ(x̄) labeled here as the “derivate
set” of ϕ at x̄ is inspired by Warga’s derivate containers introduced in [1316]
and then developed in many publications; see, e.g., [1317, 1318, 1319, 1320,
1321, 1370] and the more recent papers by Ermoliev, Norkin and Wets [408]
and by Sussmann [1236, 1237, 1238] with the references and discussions
therein. Theorem 2.46 in the form presented in this book was established
by Kruger [713], while its essence and proof go back to the early work by
Kruger and Mordukhovich [719] showing that the Fréchet subdifferential (and
hence both lower and upper basic subdifferentials) is smaller than any Warga’s
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derivate container for continuous functions on finite-dimensional spaces; see
also [99, 304, 596, 646, 705, 901] for modifications, extensions, and applications
of the latter result and its variants.

Subsection 2.5.3 is based on the paper by Mordukhovich [920], where the
approximate and exact versions of the abstract extremal principle were de-
rived. Previous results on the fulfillment of the approximate extremal prin-
ciple in non-Asplund (but mostly in bornologically smooth) spaces and on
its equivalence to some other basic rules of generalized differentiation were
obtained by Borwein, Mordukhovich and Shao [151], Borwein, Treiman and
Zhu [159], Ioffe [606], and Zhu [1371]; see also Borwein and Zhu [163, 164] for
more discussions.

Regarding the exact version of the abstract extremal principle, observe
that both its sequential and topological modifications were established in [920]
under an abstract version of the sequential normal compactness condition. A
similar observation that just a sequential compactness property is sufficient
to deal with a limiting topological structure was made by Ioffe [607] in the
context of metric regularity.



3

Full Calculus in Asplund Spaces

This chapter is devoted to developing a comprehensive calculus for our basic
generalized differential constructions: normals to sets, coderivatives of set-
valued and single-valued mappings, and subgradients of extended-real-valued
functions. A useful part of the generalized differential calculus has been pre-
sented in Chap. 1 in the setting of arbitrary Banach spaces. However, a
number of important results therein impose differentiability assumptions on
some mappings involved in compositions. In this chapter we don’t require any
smoothness and/or convexity of sets and mappings under consideration de-
veloping a full calculus in the framework of Asplund spaces at the same level
of perfection as in finite dimensions. The main impact to this development
comes from the results of Chap. 2 on the extremal principle and variational
properties of Fréchet-like constructions in Asplund spaces. In this way we ob-
tain general calculus rules for our basic objects using a geometric approach,
i.e., starting with calculus rules for normal cones and then deriving from them
sum and chain rules as well as other results for coderivatives and subdiffer-
entials. It happens that the calculus rules obtained involve sequential normal
compactness (SNC) assumptions on sets and mappings that are automatic
in finite dimensions and reveal one of the most principal differences between
finite-dimensional and infinite-dimensional variational theories. For the com-
pleteness and efficient applications of variational analysis in infinite dimen-
sions one needs to develop an SNC calculus ensuring that the SNC properties
are preserved under various operations with sets and mappings. We conclude
this chapter with such a calculus in a fairly general setting. Throughout this
chapter, all the spaces are Asplund unless otherwise stated.

3.1 Calculus Rules for Normals and Coderivatives

In this section we obtain general calculus rules for normal cones to nonconvex
sets and coderivatives of nonsmooth set-valued and single-valued mappings
under natural and verifiable assumptions. We begin with calculus of normal
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cones and first prove a “fuzzy rule” for Fréchet normals to set intersections
by using the extremal principle. Then we establish a key calculus result on
representing basic normals to set intersections under appropriate qualifica-
tion and sequential normal compactness conditions. Employing the normal
cone calculus, we derive sum and chain rules for normal and mixed coderiv-
atives as well as other related formulas. In the last subsection we establish
relationships between normal coderivatives of Lipschitzian single-valued map-
pings and subgradients of the corresponding scalarized functions important
for subdifferential calculus and various applications.

3.1.1 Calculus of Normal Cones

The following lemma gives a fuzzy relationship between Fréchet normals to
sets and their intersections in Asplund spaces without any assumptions on the
sets in question besides their local closedness. It is implied by the approximate
extremal principle and plays a major technical role in further developments.

Lemma 3.1 (a fuzzy intersection rule from the extremal principle).
Let Ω1,Ω2 ⊂ X be arbitrary sets locally closed around x̄ ∈ Ω1 ∩Ω2, and let
x∗ ∈ N̂ (x̄ ;Ω1 ∩Ω2). Then for any ε > 0 there are λ ≥ 0, xi ∈ Ωi ∩ (x̄ + ε IB),
and x∗

i ∈ N̂(xi ;Ωi ) + ε IB∗, i = 1, 2, such that

λx∗ = x∗
1 + x∗

2 , max
{
λ, ‖x∗

1‖
}

= 1 . (3.1)

Proof. Due to Definition 1.1(i) of Fréchet normals, for any given x∗ ∈
N̂(x̄ ;Ω1 ∩Ω2) and ε > 0 we find a neighborhood U of x̄ such that

〈x∗, x − x̄〉 − ε‖x − x̄‖ ≤ 0 whenever x ∈ Ω1 ∩Ω2 ∩ U . (3.2)

Define subsets of X × IR by

Λ1 :=
{
(x, α) ∈ X × IR

∣
∣ x ∈ Ω1, α ≥ 0

}
and

Λ2 :=
{
(x, α) ∈ X × IR

∣
∣ x ∈ Ω2, α ≤ 〈x∗, x − x̄〉 − ε‖x − x̄‖

}
.

Observe that (x̄, 0) ∈ Λ1 ∩Λ2 and that the sets Λi are locally closed around
(x̄, 0). Moreover, one can easily check that

Λ1 ∩
(
Λ2 − (0, ν)

)
∩
(
U × IR

)
= ∅ for all ν > 0

due to (3.2) and the structure of Λi . Thus (x̄, 0) is a local extremal point of
the set system

{
Λ1,Λ2

}
. Applying to this system the approximate extremal

principle from Theorem 2.20 in the Asplund space X × IR with the norm
‖(x, α)‖ := ‖x‖ + |α|, we find (xi , αi ) ∈ Λi and (x∗

i , λi ) ∈ N̂((xi , αi );Λi ),
i = 1, 2, such that
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max
{
‖x∗

1 + x∗
2‖, |λ1 + λ2|} < ε ,

1
2 − ε < max

{
‖x∗

i ‖, |λi |
}
< 1

2 + ε ,

‖xi − x̄‖ + |αi | < ε

(3.3)

for both i = 1, 2. One easily has λ1 ≤ 0, x∗
1 ∈ N̂(x1;Ω1), and

lim sup
(x,α)

Λ2→(x2,α2)

〈x∗
2 , x − x2〉 + λ2(α − α2)
‖x − x2‖ + |α − α2|

≤ 0 (3.4)

by the definition of Fréchet normals. It follows from the structure of Λ2 that
λ2 ≥ 0 and

α2 ≤ 〈x∗, x2 − x̄〉 − ε‖x2 − x̄‖ . (3.5)

If inequality (3.5) is strict, then (3.4) yields λ2 = 0 and x∗
2 ∈ N̂(x2;Ω2). In

this case we get (3.1) with λ = 0 by using (3.3).
It remains to consider the case of equality in (3.5). Then we take vectors

(x, α) ∈ Λ2 with

α = 〈x∗, x − x̄〉 − ε‖x − x̄‖, x ∈ Ω2 \ {x2}

and substitute them into (3.4). This implies that there is a neighborhood V
of x2 such that

〈x∗
2 , x − x2〉 + λ2(α − α2) ≤ ε

(
‖x − x2‖ + |α − α2|

)
(3.6)

for all x ∈ Ω2 ∩ V and the corresponding α satisfying

α − α2 = 〈x∗, x − x2〉 + ε
(
‖x2 − x̄‖ − ‖x − x̄‖

)
.

By the triangle inequality one has

|α − α2| ≤
(
‖x∗‖ + ε

)
‖x − x2‖ .

Observe that the left-hand side ϑ in (3.6) can be represented as follows:

ϑ = 〈x∗
2 + λ2x∗, x − x2〉 + ελ2

(
‖x2 − x̄‖ − ‖x − x̄‖

)
.

Thus (3.6) implies the estimate

〈x∗
2 + λ2x∗, x − x2〉 ≤ ε

(
1 + ‖x∗‖ + λ2 + ε

)
‖x − x2‖

for all x ∈ Ω2 ∩ V . This gives, due to Definition 1.1(i) of ε-normals, that

x∗
2 + λ2x∗ ∈ N̂cε(x2;Ω2) with c := 1 + ‖x∗‖ + λ2 + ε . (3.7)

Note that 1+‖x∗‖ < c < 2+‖x∗‖ for all ε sufficiently small, i.e., the constant
c in (3.7) is always positive and may be chosen depending only on the given
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x∗. Now using representation (2.51) of ε-normals in Asplund spaces, we find
v ∈ Ω2 ∩ (x2 + ε IB) such that

x∗
2 + λ2x∗ ∈ N̂(v;Ω2) + 2cε IB∗ .

Denoting η := max{λ2, ‖x∗
2‖}, we get 1

2 − ε < η < 1
2 + ε by (3.3), with

1
4 < η < 3

4 when ε is small. Put

λ := λ2/η, u∗ := −x∗
2/η, v∗ := (x∗

2 + λ2x∗)/η .

One clearly has λ ≥ 0, max{λ, ‖u∗‖} = 1, and λx∗ = u∗ + v∗. Moreover,
v∗ ∈ N̂(v;Ω2) + 8cε IB∗ and

u∗ = x∗
1/η − (x∗

1 + x∗
2 )/η ∈ N̂(x1;Ω1) + 4ε IB∗

due to (3.3). Since c > 0 depends only on the given x∗ and since ε was chosen
arbitrarily, this justifies the conclusions of the lemma. �

From the proof of Lemma 3.1 we can get conditions ensuring that λ 	= 0
in (3.1) and hence

N̂(x̄ ;Ω1 ∩Ω2) ⊂ N̂(x1;Ω1) + N̂(x2;Ω2) + ε IB∗ (3.8)

with some xi ∈ Ωi ∩ (x̄ + ε IB), i = 1, 2, for all small ε > 0. It happens, in
particular, when the sets Ωi satisfy the so-called fuzzy qualification condition:
there is γ > 0 such that

(
N̂(x1;Ω1) + γ IB∗) ∩

(
− N̂(x2;Ω2) + γ IB∗) ∩ IB∗ ⊂ 1

2 IB∗ (3.9)

for all xi ∈ Ωi ∩ (x̄ + γ IB), i = 1, 2. Note that under condition (3.9) we
get more information in comparison with the intersection rule (3.8). Namely,
(3.9) ensures in addition to (3.8) the following uniform boundedness estimate
on x∗

i : for any given x∗ ∈ N̂(x̄ ;Ω1 ∩ Ω2), ε > 0, and γ from (3.9) there are
xi ∈ Ωi ∩ (x̄ + ε IB) and η = η(x∗, ε, γ ) > 0 such that

‖x∗ − (x∗
1 + x∗

2 )‖ ≤ ε for some x∗
i ∈ N̂(xi ;Ωi ) ∩ (ηIB∗), i = 1, 2 .

Our primary goal in this subsection is to obtain an intersection rule for
basic normals in Asplund spaces under appropriate conditions formulated at
a reference point of the set intersection. To achieve this goal, we are going to
employ two kinds of “pointbased” conditions unified under the names of:

(a) qualification conditions and

(b) sequential normal compactness conditions.

Let us start with qualification conditions for sets that are basic for subsequent
developments and applications in this book.
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Definition 3.2 (basic qualification conditions for sets). Given two sub-
sets Ω1,Ω2 of a Banach space X and a point x̄ ∈ Ω1 ∩Ω2, we say that:

(i) The set system {Ω1,Ω2} satisfies the normal qualification con-
dition at x̄ if

N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
= {0} . (3.10)

(ii) {Ω1,Ω2} satisfies the limiting qualification condition at x̄ if for

any sequences εk ↓ 0, xik
Ωi→ x̄, and x∗

ik
w∗
→ x∗

i with x∗
ik ∈ N̂εk (xik ;Ωi ), i = 1, 2,

and k → ∞ one has

‖x∗
1k + x∗

2k‖ → 0 =⇒ x∗
1 = x∗

2 = 0 .

The normal qualification condition (3.10) is formulated in terms of basic
normals to both sets Ωi at the given point x̄ and, as we’ll see below, is a proper
counterpart in the general set setting of the classical constraint qualification
conditions in problems of constrained optimization. By (2.51) one can equiv-
alently put εk = 0 in Definition 3.2(ii) if X is Asplund and both sets Ω1, Ω2

are closed around x̄ . Taking into account the representation of basic normals
in Asplund spaces from Theorem 2.35, we observe that (3.10) is equivalent to

say, for locally closed sets, that for any sequences xik
Ωi→ x̄ and x∗

ik
w∗
→ x∗

i with
x∗

ik ∈ N̂(xik ;Ωi ), i = 1, 2, and k → ∞ one has

x∗
1k + x∗

2k
w∗
→ 0 =⇒ x∗

1 = x∗
2 = 0 .

This immediately implies that conditions (i) and (ii) in Definition 3.2 are
equivalent in finite dimensions, but the latter condition may be substantially
weaker in infinite-dimensional spaces. In particular, for the case of sets gener-
ated by graphs of mappings, condition (ii) can be expressed in terms of mixed
coderivatives at reference points while (i) corresponds to normal coderivatives;
see the next subsection.

In contrast to the qualification conditions in Definition 3.2, the sequen-
tial normal compactness conditions we are going to discuss next are infinite-
dimensional in nature and develop the line of the SNC and PSNC properties
introduced, respectively, in Subsects. 1.1.3 and 1.2.5 for sets and mappings
in Banach spaces. Here we explore the product structure of spaces and sets
under consideration. The latter makes it possible to use partial SNC condi-
tions in the general intersection rule for basic normals and then to apply them
to coderivative and subdifferential calculi. To establish the general intersec-
tion rule in product spaces, we need to introduce one more type of PSNC
properties called “strong partial sequential normal compactness”.

Definition 3.3 (PSNC properties in product spaces). Let Ω belong to
the product

∏m
j=1 X j of Banach spaces, let x̄ ∈ Ω, and let J ⊂ {1, . . . ,m}.

We say that:
(i) Ω is partially sequentially normally compact (PSNC) at x̄

with respect to {X j | j ∈ J} (i.e., with respect to
∏

j∈J X j , or just to J ) if for
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any sequences εk ↓ 0, xk
Ω→ x̄, and x∗

k = (x∗
1k, . . . , x∗

mk) ∈ N̂εk (xk ;Ω) one has
[
x∗

jk
w∗
→ 0, j ∈ J & ‖x∗

jk‖ → 0, j ∈ {1, . . . ,m} \ J
]

=⇒ ‖x∗
jk‖ → 0, j ∈ J .

(ii) Ω is strongly PSNC at x̄ with respect to {X j | j ∈ J} if for any
sequences εk ↓ 0, xk

Ω→ x̄, and (x∗
1k, . . . , x∗

mk) ∈ N̂εk (xk ;Ω) one has
[
x∗

jk
w∗
→ 0, j = 1, . . . ,m

]
=⇒ ‖x∗

jk‖ → 0, j ∈ J .

Let us mention the two extreme cases: (a) J = ∅ when any set Ω satisfies
both properties in (i) and (ii), and (b) J = {1, . . . ,m} when both properties (i)
and (ii) don’t depend on the product structure and reduce to the SNC property
of Definition 1.20. Note also that the PSNC property of a mapping F : X →→ Y
in Definition 1.67 is equivalent to the above PSNC property of gph F ⊂ X ×Y
with respect to X . One can equivalently put εk = 0 in Definition 3.3 if all X j

are Asplund and Ω is locally closed around x̄ .
As seen in Subsects. 1.1.3 and 1.2.5, the SNC property of sets and the

PSNC property of mappings automatically hold under certain Lipschitz-type
assumptions. Observe that Theorem 1.75 asserts, in the terminology of De-
finition 3.3, that if a mapping F : X →→ Y between Banach spaces is partially
CEL around (x̄, ȳ) ∈ gph F , then its graph is strongly PSNC at this point
with respect to X . Let us emphasize a crucial fact in the theory and applica-
tions of the SNC properties under consideration: they enjoy a rich calculus, in
the sense of their preservation under natural operations with sets and map-
pings; see Sect. 3.3 for developments in Asplund spaces in addition to those
in arbitrary Banach spaces presented in Subsects. 1.1.3 and 1.2.5.

Now we are ready to establish the main intersection rule for basic normals
to arbitrary sets in products of Asplund spaces.

Theorem 3.4 (basic normals to set intersections in product spaces).
Let the sets Ω1,Ω2 ⊂

∏m
j=1 X j be locally closed around x̄ ∈ Ω1 ∩ Ω2, and

let J1, J2 ⊂ {1, . . . ,m} be such that J1 ∪ J2 = {1, . . . ,m}. Assume that Ω1 is
PSNC at x̄ with respect to J1, that Ω2 is strongly PSNC at x̄ with respect to
J2, and that the system {Ω1,Ω2} satisfies the limiting qualification condition
at x̄. Then one has the inclusion

N(x̄ ;Ω1 ∩Ω2) ⊂ N(x̄ ;Ω1) + N(x̄ ;Ω2) . (3.11)

If in addition both Ω1 and Ω2 are normally regular at x̄, then Ω1 ∩Ω2 is also
normally regular at this point and (3.11) holds as equality.

Proof. To justify (3.11), we pick x∗ ∈ N(x̄ ;Ω1 ∩ Ω2) and by Theorem 2.35

find sequences xk → x̄ and x∗
k
w∗
→ x∗ such that

xk ∈ Ω1 ∩Ω2 and x∗
k ∈ N̂(xk ;Ω1 ∩Ω2), k ∈ IN . (3.12)
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Take a sequence εk ↓ 0 as k → ∞ and employ Lemma 3.1 in (3.12) along this
sequence for any fixed k ∈ IN . This gives us

(uk, vk) ∈ Ω1 ×Ω2, λk ≥ 0, u∗
k ∈ N̂(uk ;Ω1), v∗k ∈ N̂(vk ;Ω2)

such that ‖uk − xk‖ ≤ εk , ‖vk − xk‖ ≤ εk , and

‖u∗
k + v∗k − λk x∗

k ‖ ≤ 2εk, 1 − εk ≤ max
{
λk, ‖u∗

k‖
}
≤ 1 + εk . (3.13)

Since the sequence {x∗
k } weak∗ converges, it is bounded in X∗ by the uniform

boundedness principle, and so are {u∗
k} and {v∗k } due to (3.13). Invoking the

weak∗ sequential compactness of bounded sets in duals to Asplund spaces,
one has u∗, v∗ ∈ X∗ and λ ≥ 0 such that u∗

k
w∗
→ u∗, v∗k

w∗
→ v∗, and λk → λ

along a subsequence of k ∈ IN . Passing to the limit in (3.13) as k → ∞, we
conclude that u∗ ∈ N(x̄ ;Ω1), v∗ ∈ N(x̄ ;Ω2), and λx∗ = u∗ + v∗.

To justify (3.11), it remains to show that λ 	= 0 under the assumptions
made. If it is not the case, we get ‖u∗

k + v∗k ‖ → 0 from (3.13) and hence
u∗ = v∗ = 0 due to the limiting qualification condition. This implies

u∗
k = (u∗

1k, . . . , u∗
mk)

w∗
→ 0, v∗k = (v∗1k, . . . , v

∗
mk)

w∗
→ 0 as k → ∞ . (3.14)

Taking into account that Ω2 is strongly PSNC at x̄ with respect to J2, we
get from (3.14) that ‖v∗jk‖ → 0 for j ∈ J2. This gives, due to (3.13) and
J1 ∪ J2 = {1, . . . ,m}, that

‖u∗
jk‖ → 0 for j ∈ {1, . . . ,m} \ J1 as k → 0 .

Using (3.14) and the PSNC property of Ω1 with respect to J1, we conclude
that ‖u∗

jk‖ → 0 for j ∈ J1. Thus ‖u∗
k‖ → 0 as k → ∞, which contradicts the

second relation in (3.13) and justifies the required inclusion (3.11).
Finally, let us prove the regularity/equality assertion of the theorem. It

follows directly from the definition of Fréchet normals that they always satisfy
the inclusion

N̂(x̄ ;Ω1 ∩Ω2) ⊃ N̂(x̄ ;Ω1) + N̂(x̄ ;Ω2)

opposite to (3.11). Combining this with (3.11) and assuming the normal reg-
ularity of Ω1 and Ω2 at x̄ , we get

N(x̄ ;Ω1 ∩Ω2) ⊂ N̂(x̄ ;Ω1 ∩Ω2) ,

which implies the equality in (3.11) and the normal regularity of the intersec-
tion Ω1 ∩Ω2 at x̄ . �

In what follows we obtain a number of important consequences of Theo-
rem 3.4 that take into account the product structure of the space in question
allowing us to use the PSNC properties and refined qualification conditions.
Now let us present an immediate corollary of the theorem in spaces with no
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product structure imposed. In this case we may use just the (full) SNC prop-
erty, which is required for only one among two sets. We don’t include the
equality/regularity statement in this corollary, which is not different from the
one given in the theorem.

Corollary 3.5 (intersection rule under the SNC condition). Assume
that Ω1,Ω2 ⊂ X are locally closed around x̄ ∈ Ω1 ∩ Ω2 and that either Ω1

or Ω2 is SNC at this point. Then the intersection rule (3.11) holds provided
that {Ω1,Ω2} satisfies the limiting qualification condition at x̄, in particular,
when one has (3.10).

Proof. This is a special case of the theorem with m = 1 and J1 = {1}. �

Observe that the SNC assumption in Corollary 3.5 is essential for the
fulfillment of the intersection rule (3.11) even for convex and norm-compact
sets in infinite-dimensional spaces. Indeed, in the framework of Example 2.23
we consider the set Ω1 ⊂ X defined therein and the set Ω2 given by

Ω2 :=
{

ta
∣
∣ t ∈ [−1, 1]

}
with a :=

∞∑

n=1

en

n2
∈ X .

One can easily check that Ω1 ∩Ω2 = {0}, a ∈ cl spanΩ1,

N(0;Ω1) ∩ (−N(0,Ω2)) = (spanΩ1)⊥ ∩ (spanΩ2)⊥ = {0}, and

X∗ = N(0;Ω1 ∩Ω2) 	⊂ N(0;Ω1) + N(0;Ω2) = (spanΩ1)⊥ .

Thus all but SNC assumptions of Corollary 3.5 are fulfilled, while the inter-
section rule (3.11) is violated.

On the other hand, the following example shows that the replacement of
the SNC assumption by the CEL one in Corollary 3.5 may be too restrictive
for the intersection rule to hold, even in the case of closed convex cones in
spaces with C∞-smooth renorms.

Example 3.6 (intersection rule with no CEL assumption). There are
a nonseparable space X with a C∞-smooth renorm and two closed convex sub-
cones Ω1 and Ω2 of X such that both Ωi are SNC at x̄ but not CEL around this
point and that the pair {Ω1,Ω2} satisfies the limiting qualification condition
(3.10), and hence the intersection rule (3.11) holds as equality.

Proof. Consider the space X = C0[0, ω1] of all functions ϕ: [0, ω1] → IR
continuous on the “long” interval [0, ω1] with ϕ(ω1) = 0, where ω1 means
the first uncountable ordinal. The norm ‖ · ‖ on X is the supremum norm. It
is well known that X is an Asplund space; moreover, it admits an equivalent
C∞-smooth norm; see [331, Chap. VII] for proofs and discussions. It is easy
to check that for every ϕ ∈ X there is α < ω1 such that ϕ(β) = 0 whenever
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α ≤ β ≤ ω1. We further clarify what is the dual space C0[0, ω1]∗ to X . Given
a set S ⊂ [0, ω1), by

χS(s) :=






1 if s ∈ S ,

0 otherwise

we denote the indicatrix (characteristic function) of S. Define the mapping
ξ ∈ X∗ �→ (aα)α<ω1 by

aα :=






〈ξ, χ{α}〉 if α < ω1 is a nonlimit ordinal ,

limβ↑α〈ξ, χ[β,α]〉 if α < ω1 is a limit ordinal .

One can check that this assignment maps X∗ isometrically onto the space
�1([0, ω1)) and that

〈ξ, ϕ〉 =
∑

α<ω1

ϕ(α)aα for every ϕ ∈ X .

Consider the closed convex subcone of X defined by

Ω :=
{
ϕ ∈ C0[0, ω1]

∣
∣
∣ ϕ ≤ 0

}

and show that it is SNC at x̄ = 0 but not CEL around this point. First we
justify the following description of the normal cone to Ω.

Claim. For any x̄ ∈ Ω and any x∗ = (aα)α<ω1 ∈ N(x̄ ;Ω) one has aα ≥ 0
whenever α ∈ [0, ω1).

Indeed, take any x̄ ∈ Ω and any 0 ≤ β ≤ α < ω1. Then x := x̄ − tχ[β,α] ∈ Ω
for all t > 0, and hence

0 ≥ 〈x∗, x − x̄〉 = 〈x∗,−χ[β,α]〉 = −
∑

β≤γ≤α

aγ (≥ −‖x∗‖ > −∞) .

From these relationships and the representation

N(x̄ ;Ω) = N̂(x̄ ;Ω) =
{

x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ 0 for all x ∈ Ω
}

we subsequently get that aα ≥ 0 whenever α < ω1.
Now we are ready to show that the set Ω is SNC at x̄ = 0. Take xk ∈ Ω

and x∗
k ∈ N(xk ;Ω), k ∈ IN , such that ‖xk‖ → 0 and x∗

k
w∗
→ 0 as k → ∞. Let us

prove that ‖x∗
k ‖ → 0. Using the isometry between X∗ and �1([0, ω1)), write

x∗
k = (ak

α)α<ω1 , k ∈ IN . The above claim says that ak
α ≥ 0 for every α < ω1

and every k ∈ IN . Find β < ω1 so large that ak
α = 0 whenever β < α < ω1 and

k ∈ IN ; this can be done as we work in �1([0, ω1)). Again, using the claim,
we get ‖x∗

k ‖ =
∑

α≤β ak
α = x∗

k

(
χ[0,β]

)
→ 0 as k → ∞, which justifies the SNC

property of Ω at x̄ = 0.
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Let us check that Ω is not CEL around x̄ = 0. To proceed, we use
the net description of the CEL property in Asplund spaces discussed in Re-
mark 1.27(ii). Note that whenever (sα)α<ω1 is a net of real numbers converging
to 0 as α ↑ ω1, one necessarily has sα = 0 for all α < ω1 sufficiently large.
Taking this into account, we put xα := 0 and x∗

α := δα for every α < ω1,
where δα is the Dirac measure at α, i.e., the point mass measure at α. Since
δα

w∗
→ 0 as α ↑ ω1, the net ((xα, x∗

α ))α<ω1 in X × X∗ satisfies the bounded net
counterpart of Definition 1.20. Yet ‖x∗

α‖ = 1 for all α < ω1, which proves that
Ω is not CEL around the point x̄ = 0.

Note that we can also conclude that Ω is not CEL directly from the
characterization of the CEL property for closed convex sets discussed in Re-
mark 1.27(i). Observe first that the span of Ω is the whole space C0[0, ω1].
Indeed, for any ϕ ∈ C0[0, ω1] there is α < ω1 such that the support of ϕ
belongs to [0, α]. Then ϕ =

(
ϕ − ‖ϕ‖χ[0,α]

)
+ ‖ϕ‖χ[0,α]. In order to check

that intΩ = ∅, we take any ϕ ∈ Ω and find α for which ϕ(α) = 0. Then
ψk := ϕ + 1

k χ{α} /∈ Ω and ‖ψk − ϕ‖ = 1
k → 0.

Finally, put Ω1 = Ω2 := Ω and check that the system {Ω1,Ω2} satisfies
the limiting qualification condition (3.10), which reduces in this case to

N(0;Ω) ∩
(
− N(0;Ω)

)
= {0} .

The latter immediately follows from the claim proved above. �

In this chapter we derive many calculus results for normal cones, coderiv-
atives, and subdifferentials that are based on the above intersection rules and
hence on the extremal principle. The first consequence gives useful rules for
representing Fréchet and basic normals to sums of sets. It is interesting to
observe that in both fuzzy and exact sum rules below don’t involve any quali-
fication and/or SNC conditions, which in fact hold automatically. Recall that
the notions of inner semicontinuity and inner semicompactness of set-valued
mappings are formulated in Definition 1.63.

Theorem 3.7 (sum rules for generalized normals). Let Ω1,Ω2 be closed
subsets of X , and let x̄ ∈ Ω1 +Ω2. Define a mapping S: X →→ X2 by

S(x) :=
{
(x1, x2) ∈ X × X

∣
∣ x1 + x2 = x, x1 ∈ Ω1, x2 ∈ Ω2

}
.

The following assertions hold:
(i) Given ε > 0, one has the inclusion

N̂(x̄ ;Ω1 +Ω2) ⊂
⋃

(x1,x2)∈S(x̄)+ε IB

(
N̂(x1;Ω1) + ε IB∗) ∩

(
N̂(x2;Ω2) + ε IB∗) .

(ii) Assume that S is inner semicompact at x̄. Then

N(x̄ ;Ω1 +Ω2) ⊂
⋃

(x1,x2)∈S(x̄)

N(x1;Ω1) ∩ N(x2;Ω2) .
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Furthermore, if for some (x̄1, x̄2) ∈ S(x̄) the mapping S is inner semicontin-
uous at (x̄, x̄1, x̄2), then

N(x̄ ;Ω1 +Ω2) ⊂ N(x̄1;Ω1) ∩ N(x̄2;Ω2) .

Proof. To prove (i), let us take x∗ ∈ N̂(x̄ ;Ω1 +Ω2) and observe that

(x∗, x∗) ∈ N̂
(
(x̄1, x̄2); Ω̃1 × Ω̃2

)
whenever (x̄1, x̄2) ∈ S(x̄) ,

where Ω̃1 := Ω1 × X and Ω̃2 := X ×Ω2. Now we apply the fuzzy intersection
rule from Lemma 3.1 to the closed sets Ω̃1 and Ω̃2 noting that it holds in
the “normal” form (3.8), i.e., with λ = 1 in (3.1), since the fuzzy qualification
condition (3.9) is obviously fulfilled. Taking into account the specific structure
of the above sets Ω̃1 and Ω̃2, we find xi ∈ Ωi and x∗

i ∈ N̂(xi ;Ωi ) such that
‖xi − x̄i‖ ≤ ε and ‖x∗

i − x∗‖ ≤ ε for i = 1, 2. This proves assertion (i).
To justify assertion (ii), we proceed only with the first formula; the second

one can be proved similarly. Taking x∗ ∈ N(x̄ ;Ω1 +Ω2) and using the defini-
tion of basic normals, we find sequences εk ↓ 0, xk → x̄ with xk ∈ Ω1+Ω2, and
x∗

k
w∗
→ x∗ with x∗

k ∈ N̂εk (xk ;Ω1 + Ω2). Note that, although X is Asplund, one
cannot put εk = 0 above, since the sum Ω1 +Ω2 may not be closed under the
assumptions made. By the inner semicompactness of S there is a sequence of
(x1k, x2k) that contains a subsequence converging to some (x̄1, x̄2). Since Ω1

and Ω2 are closed, we have (x̄1, x̄2) ∈ S(x̄). Defining the sets Ω̃1 and Ω̃2 as
above, it is easy to see that

(x∗
k , x∗

k ) ∈ N̂εk

(
(x1k, x2k); Ω̃1 ∩ Ω̃2

)
for all k ∈ IN ,

and hence (x∗, x∗) ∈ N
(
(x̄1, x̄2); Ω̃1 ∩ Ω̃2

)
. To employ the intersection rule

of Theorem 3.4, note that the qualification and SNC assumptions therein
hold for the underlying sets Ω̃1 and Ω̃2. Thus there exist x∗

1 and x∗
2 from X∗

satisfying the relations

(x∗
1 , 0) ∈ N

(
(x̄1, x̄2); Ω̃1

)
, (0, x∗

2 ) ∈ N
(
(x̄1, x̄2); Ω̃2

)
,

(x∗, x∗) = (x∗
1 , 0) + (0, x∗

2 ) .

The latter gives x∗
1 = x∗

2 = x∗. Observing that x∗
i ∈ N(x̄i ;Ωi ) for i = 1, 2, we

get x∗ ∈ N(x̄1;Ω1) ∩ N(x̄2;Ω2) and complete the proof of the theorem. �

Next let us consider subsets Ω ⊂ X given in the form of inverse images

F−1(Θ) :=
{

x ∈ X
∣
∣ F(x) ∩Θ 	= ∅

}

of some sets Θ ⊂ Y under set-valued mappings F : X →→ Y between Asplund
spaces. Our goal is to represent basic normals to F−1(Θ) in terms of F and Θ.
We have dealt with this topic in Subsect. 1.1.2 in the case of single-valued and
strictly differentiable mappings F = f : X → Y between Banach spaces. Now
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we are going to study the case of general set-valued mappings F and obtain
an efficient representation formula for basic normals to F−1(Θ) employing
Theorem 3.4. In the following result we use the normal coderivative D∗

N F from
(1.24) for the representation formula and the “reversed mixed coderivative”
D̃∗

M F from (1.40) for the point qualification condition imposed on the initial
system {F,Θ}.

Theorem 3.8 (basic normals to inverse images). Let x̄ ∈ F−1(Θ),
where F : X →→ Y is a closed-graph mapping and where Θ ⊂ Y is a closed
set. Assume that the set-valued mapping x → F(x)∩Θ is inner semicompact
at x̄ and that for every ȳ ∈ F(x̄) ∩Θ the following hold:

(a) Either F−1 is PSNC at (ȳ, x̄) or Θ is SNC at ȳ.
(b) {F,Θ} satisfies the qualification condition

N(ȳ;Θ) ∩ ker D̃∗
M F(x̄, ȳ) = {0} .

Then one has

N(x̄ ; F−1(Θ)) ⊂
⋃[

D∗
N F(x̄, ȳ)(y∗)

∣
∣
∣ y∗ ∈ N(ȳ;Θ), ȳ ∈ F(x̄) ∩Θ

]
. (3.15)

Proof. Fix x∗ ∈ N(x̄ ; F−1(Θ)) and take sequences εk ↓ 0, xk → x̄ with

xk ∈ F−1(Θ), and x∗
k

w∗
→ x∗ with x∗

k ∈ N̂εk (xk ; F−1(Θ)) for all k ∈ IN ; note
that F−1(Θ) may not be closed. Using the inner semicompactness of F(·)∩Θ
at x̄ , one select a subsequence of yk ∈ F(xk) ∩ Θ converging to some ȳ. The
closedness assumptions on gph F and Θ ensure that ȳ ∈ F(x̄)∩Θ. Construct
the closed subsets

Ω1 := gph F, Ω2 := X ×Θ

of the Asplund space X ×Y and observe that (xk, yk) ∈ Ω1∩Ω2 for all k ∈ IN .
It is easy to verify that

(x∗
k , 0) ∈ N̂εk ((xk, yk);Ω1 ∩Ω2), k ∈ IN ,

and therefore (x∗, 0) ∈ N((x̄, ȳ);Ω1 ∩ Ω2). To apply the intersection rule of
Theorem 3.4 to the sets Ω1,Ω2, we need to check that its assumptions hold
under the imposed conditions (a) and (b).

The set Ω2 = X × Θ is obviously SNC at (x̄, ȳ) if Θ is SNC at ȳ. It
is also clear that the PSNC property of the mapping F−1: Y →→ X at (ȳ, x̄)
in the sense of Definition 1.67(ii) is the same as the PSNC property of the
set Ω1 = gph F ⊂ X × Y at (x̄, ȳ) with respect to Y . It remains to show
that the qualification condition (b) implies that the constructed set system
{Ω1,Ω2} satisfies the limiting qualification condition at (x̄, ȳ) in the sense
of Definition 3.2(ii). Indeed, by (1.40) and Theorem 2.35, condition (b) gives
that for (x∗

k , y∗1k) ∈ N̂((xk, y1k); gph F) and y∗2k ∈ N̂(y2k ;Θ) with xk → x̄ ,

yik → ȳ, i = 1, 2, and by y∗2k
w∗
→ y∗ one has



3.1 Calculus Rules for Normals and Coderivatives 273

[
‖x∗

k ‖ → 0, y∗1k + y∗2k
w∗
→ 0

]
=⇒ y∗ = 0 .

On the other hand, the limiting qualification condition in this situation re-
quires only that

[
‖x∗

k ‖ → 0, ‖y∗1k + y∗2k‖ → 0
]

=⇒ y∗ = 0 , (3.16)

i.e., it is definitely implied by (b) but not vice versa. Thus one can use
Theorem 3.4, which ensures the existence of (x∗

1 , y∗1 ) ∈ N((x̄, ȳ); gph F) and
y∗2 ∈ N(ȳ;Θ) such that

(x∗, 0) = (x∗
1 , y∗1 ) + (0, y∗2 ) ⇐⇒ x∗ = x∗

1 , y∗2 = −y∗1 .

Taking into account description (1.26) of the normal coderivative, we get
x∗
1 ∈ D∗

N F(x̄, ȳ)(y∗2 ) and arrive at (3.15). �

It follows from the proof of Theorem 3.8 that condition (b) can be re-
placed with the weaker limiting qualification condition in (3.16). However,
(b) is more convenient for applications, since it involves only the given points
(x̄, ȳ) and allows us to use an efficient calculus available for basic normals and
coderivatives. Note that the usage of the normal qualification condition (3.10)
in the proof of Theorem 3.8 leads us to the point qualification condition in
terms of the normal coderivative

N(ȳ;Θ) ∩ ker D∗
N F(x̄, ȳ) = {0} ,

which is more restrictive than (b).
The principal advantage of using mixed vs. normal coderivatives in The-

orem 3.8 and subsequent results is as follows: in this way we can justify the
validity of the main assumptions in calculus rules for important classes of
multifunctions with Lipschitzian and/or metric regularity properties. This is
due to coderivative results of Sect. 1.2 ensuring that the corresponding qual-
ification and PSNC conditions automatically hold for such multifunctions. In
what follows we mostly use local metric regularity and Lipschitz-like proper-
ties around points of graphs omitting the word “local” with no confusion.

Corollary 3.9 (inverse images under metrically regular mappings).
Let x̄ ∈ F−1(Θ), where Θ ⊂ Y and gph F ⊂ X × Y are closed and where
F(·) ∩ Θ is inner semicompact at x̄. Assume that F is metrically regular
around (x̄, ȳ) for every ȳ ∈ F(x̄) ∩Θ. Then (3.15) holds.

Proof. If F is metrically regular around (x̄, ȳ), then F−1 is Lipschitz-like
around (ȳ, x̄) due to Theorem 1.49(i), and hence F−1 is PSNC at this point
by Proposition 1.68. Moreover, ker D̃∗

M F(x̄, ȳ) = {0} by Theorem 1.54(ii), i.e.,
(b) holds. Thus we have (3.15). �
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The result obtained in Corollary 3.9 can be compared with that in Theo-
rem 1.17 justifying the equality

N
(
x̄ ; f −1(Θ)

)
= ∇ f (x̄)∗N(ȳ;Θ) with ȳ = f (x̄) (3.17)

in the case of single-valued mappings f : X → Y between Banach spaces,
provided that f is strictly differentiable at x̄ and that the operator ∇ f (x̄) is
surjective. The latter ensures that f is metrically regular around x̄ due to the
Lyusternik-Graves theorem; see Theorem 1.57. Since

D∗
N f (x̄)(y∗) = {∇ f (x̄)∗y∗} whenever y∗ ∈ Y ∗

by Theorem 1.38, the result of Corollary 3.9 corresponds to the key inclu-
sion “⊂” in (3.17) proved for closed sets Θ and Asplund spaces X , Y . Note,
however, that the proof of Theorem 1.17 is heavily based on the strict differen-
tiability of f , while Theorem 3.8 and Corollary 3.9 concern general nonsmooth
and set-valued mappings.

3.1.2 Calculus of Coderivatives

In this section we develop the basic calculus for normal and mixed coderiv-
atives of set-valued mappings between Asplund spaces. The main attention
is paid to sum and chain rules for coderivatives that are fundamental for the
theory and applications. Let us start with sum rules representing coderiva-
tives of the sum F1 + F2 in terms of the corresponding coderivatives of F1 and
F2. Given Fi : X →→ Y , i = 1, 2, we define a multifunction S: X × Y →→ Y 2 by

S(x, y) :=
{
(y1, y2) ∈ Y 2

∣
∣ y1 ∈ F1(x), y2 ∈ F2(x), y1 + y2 = y

}
. (3.18)

The following two versions of the sum rule for coderivatives depend on the
inner semicontinuity and inner semicompactness assumptions imposed on this
multifunction; see Definition 1.63.

Theorem 3.10 (sum rules for coderivatives). Let Fi : X →→ Y , i = 1, 2,
with (x̄, ȳ) ∈ gph (F1+F2), and let D∗ stand either for the normal coderivative
(1.24) or for the mixed coderivative (1.25). The following assertions hold:

(i) Fix (ȳ1, ȳ2) ∈ S(x̄, ȳ) in (3.18) and let S be inner semicontinuous at
(x̄, ȳ, ȳ1, ȳ2). Assume that the graphs of F1 and F2 are locally closed around
(x̄, ȳ1) and (x̄, ȳ2), respectively, that either F1 is PSNC at (x̄, ȳ1) or F2 is
PSNC at (x̄, ȳ2), and that {F1, F2} satisfies the qualification condition

D∗
M F1(x̄, ȳ1)(0) ∩

(
− D∗

M F2(x̄, ȳ2)(0)
)

= {0} (3.19)

in terms of the mixed coderivative. Then for all y∗ ∈ Y ∗ one has

D∗(F1 + F2)(x̄, ȳ)(y∗) ⊂ D∗F1(x̄, ȳ1)(y∗) + D∗F2(x̄, ȳ2)(y∗) . (3.20)
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(ii) Assume that S is inner semicompact at (x̄, ȳ), that F1 and F2 are
closed-graph whenever x is near x̄, and that (3.19) holds for every (ȳ1, ȳ2) ∈
S(x̄, ȳ). Then for all y∗ ∈ Y ∗ one has

D∗(F1 + F2)(x̄, ȳ)(y∗) ⊂
⋃

(ȳ1,ȳ2)∈S(x̄,ȳ)

[
D∗F1(x̄, ȳ1)(y∗) + D∗F2(x̄, ȳ2)(y∗)

]

provided that either F1 is PSNC at (x̄, ȳ1) or F2 is PSNC at (x̄, ȳ2) for every
(ȳ1, ȳ2) ∈ S(x̄, ȳ).

Proof. First we prove assertion (i). Take any (x∗, y∗) with x∗ ∈ D∗(F1 +
F2)(x̄, ȳ)(y∗) and find sequences εk ↓ 0, (xk, yk) ∈ gph (F1 + F2), and

(x∗
k ,−y∗k ) ∈ N̂εk ((xk, yk); gph (F1 + F2)) such that (xk, yk) → (x̄, ȳ), x∗

k
w∗
→ x∗,

and either y∗k
w∗
→ y∗ if D∗ = D∗

N , or y∗k → y∗ if D∗ = D∗
M . Due to the inner

semicontinuity of S at (x̄, ȳ, ȳ1, ȳ2) there is a sequence (y1k, y2k) → (ȳ1, ȳ2)
with (y1k, y2k) ∈ S(xk, yk) for all k ∈ IN . Define the sets

Ωi :=
{
(x, y1, y2) ∈ X × Y × Y

∣
∣ (x, yi ) ∈ gph Fi

}
for i = 1, 2 ,

which are locally closed around (x̄, ȳ1, ȳ2), since the graphs of Fi are assumed
to be locally closed around (x̄, ȳi ), i = 1, 2. We have (xk, y1k, y2k) ∈ Ω1 ∩Ω2

and can easily check that

(x∗
k ,−y∗k ,−y∗k ) ∈ N̂εk ((xk, y1k, y2k);Ω1 ∩Ω2) for all k ∈ IN . (3.21)

This gives, by passing to the limit as k → ∞, that

(x∗,−y∗,−y∗) ∈ N((x̄, ȳ1, ȳ2);Ω1 ∩Ω2) . (3.22)

Now we apply Theorem 3.4 to the set intersection in (3.22). Observe similarly
to the proof of Theorem 3.8 that (3.19) implies that the above set system
{Ω1,Ω2} satisfies the limiting qualification condition at (x̄, ȳ1, ȳ2). Then as-
suming for definiteness that F1 is PSNC at (x̄, ȳ1), we get that Ω1 ⊂ X×Y ×Y
is PSNC at (x̄, ȳ1, ȳ2) with respect to X × Y , where Y is the third space in
the product X × Y × Y , and that Ω2 is obviously strongly PSNC at this point
with respect to the remaining space Y in this product. Thus there are

(x∗
1 ,−y∗1 ) ∈ N((x̄, ȳ1); gph F1) and (x∗

2 ,−y∗2 ) ∈ N((x̄, ȳ2); gph F2)

such that (x∗,−y∗,−y∗) = (x∗
1 ,−y∗1 , 0)+(x∗

2 , 0,−y∗2 ) by Theorem 3.4 and the
structure of the sets Ωi . This gives x∗ = x∗

1 + x∗
2 with x∗

i ∈ D∗
N Fi (x̄, ȳi )(y∗),

i = 1, 2, and justifies (3.20) in the case of D∗ = D∗
N .

To prove (3.20) in the case of D∗ = D∗
M , we apply the fuzzy rule of

Lemma 3.1 to the set intersection in (3.21) along some sequence εk ↓ 0 as k →
∞. This gives λk ≥ 0, (x̃ik, ỹik) ∈ gph Fi , and (x∗

ik,−y∗ik) ∈ N̂((x̃ik, ỹik); gph Fi )
such that ‖(x̃ik, ỹik) − (xk, yik)‖ ≤ εk , i = 1, 2, and
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‖(x∗
1k + x∗

2k,−y∗1k,−y∗2k) − λk(x∗
k ,−y∗k ,−y∗k )‖ ≤ 2εk (3.23)

with 1 − εk ≤ max
{
λk, ‖(x∗

1k, y∗1k)‖
}
≤ 1 + εk . Similarly to the proof of The-

orem 3.4 we show that λk ≥ λ0 > 0 for large k ∈ IN under the qualification
and PSNC assumptions imposed, and hence one may put λk = 1 without loss
of generality. Taking into account that x∗

k
w∗
→ x∗ and ‖y∗k − y∗‖ → 0, we get

from (3.23) that ‖y∗ik − y∗‖ → 0 and x∗
ik

w∗
→ x∗

i ∈ D∗
M Fi (x̄, ȳi )(y∗), i = 1, 2, for

some x∗
i with x∗

1 + x∗
2 = x∗. This justifies (3.20) for D∗ = D∗

M .
To establish (ii), we proceed as in the proof of (i) observing that if

(y1k, y2k) ∈ S(xk, yk) converges to some ( ȳ1, ȳ2), then (ȳ1, ȳ2) must belong to
S(x̄, ȳ) due to the closedness and lower semicompactness assumptions made
in (ii). This completes the proof of the theorem. �

Observe, as in the proof of Theorem 3.8, that condition (3.19) of the
above theorem can be replaced by the following more general but less con-
venient qualification condition: for any (xik, yik) ∈ gph Fi and (x∗

ik, y∗ik) ∈
N̂((xik, yik); gph Fi ) with (xik, yik) → (x̄, ȳi ), x∗

ik
w∗
→ x∗

i , and ‖y∗ik‖ → 0 (i = 1, 2
as k → ∞) one has

‖x∗
1k + x∗

2k‖ → 0 =⇒ x∗
1 = x∗

2 = 0 .

Note that the usage of the normal qualification condition (3.10) in the
proof of Theorem 3.10 leads us to the replacement of (3.19) by the more
restrictive qualification condition

D∗
N F1(x̄, ȳ1)(0) ∩

(
− D∗

N F2(x̄, ȳ2)(0)
)

= {0}

in terms of the normal coderivative, which does not generally imply the fol-
lowing important corollary ensured by (3.19). For simplicity we formulated
this corollary only for the case of assertion (i).

Corollary 3.11 (coderivative sum rule for Lipschitz-like multifunc-
tions). Fix (x̄, ȳ) ∈ gph (F1+ F2) and (ȳ1, ȳ2) ∈ S(x̄, ȳ) in (3.18) and suppose
that the graphs of Fi are locally closed around (x̄, ȳi ) for i = 1, 2. Assume that
either F1 is Lipschitz-like around (x̄, ȳ1) or F2 is Lipschitz-like around (x̄, ȳ2)
and that S is inner semicontinuous at (x̄, ȳ, ȳ1, ȳ2). Then one has the sum
rule (3.20) for both normal and mixed coderivatives.

Proof. Assuming for definiteness that F1 is Lipschitz-like around (x̄, ȳ1), we
conclude that D∗

M F1(x̄, ȳ1)(0) = {0} by Theorem 1.44 and that F1 is PSNC
at (x̄, ȳ1) by Proposition 1.68. Thus we meet all the requirements of assertion
(i) in the theorem. �

Next we compute coderivatives of special sums of multifunctions between
Asplund spaces given in the form

Φ(x) := F(x) +∆(x ;Ω), x ∈ X , (3.24)
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where F : X →→ Y and where the indicator mapping ∆(·;Ω) of Ω ⊂ X relative
to Y is defined by ∆(x ;Ω) := 0 ∈ Y if x ∈ Ω and ∆(x ;Ω) := ∅ otherwise.
Multifunctions of form (3.24) play an important role in the proof of chain rules
for coderivatives of compositions considered below. To proceed, we need the
following version of coderivative sum rules for mappings (3.24) that contains
both inclusion and equality assertions.

Proposition 3.12 (coderivatives of special sums). Let Ω ⊂ X and the
graph of F : X →→ Y be closed around x̄ ∈ Ω and (x̄, ȳ) ∈ gph F, respectively.
Assume that for any sequences x∗

1k ∈ D̂∗F(x1k, yk)(y∗k ) and x∗
2k ∈ N̂(x2k ;Ω)

such that (x1k, yk) → (x̄, ȳ), x2k → x̄, and {x∗
1k, x∗

2k} are bounded one has
[
‖y∗k ‖ → 0, ‖x∗

1k + x∗
2k‖ → 0

]
=⇒ ‖x∗

1k‖ + ‖x∗
2k‖ → 0 as k → ∞ . (3.25)

Then the inclusion

D∗(F +∆(·;Ω)
)
(x̄, ȳ)(y∗) ⊂ D∗F(x̄, ȳ)(y∗) + N(x̄ ;Ω), y∗ ∈ Y ∗ , (3.26)

holds for both coderivatives D∗ = D∗
N and D∗ = D∗

M . Moreover, (3.26) holds
as equality and F + ∆(·;Ω) is N -regular (resp. M-regular) at (x̄, ȳ) if F has
the corresponding regularity property at (x̄, ȳ) and if Ω is normally regular
at x̄.

Proof. To justify (3.26), we follow the proof of Theorem 3.10 with F1 := F
and F2 := ∆(·;Ω) observing that condition (3.25) ensures in this setting that
the fuzzy intersection rule holds in (3.21) with λk ≥ λ0 > 0 for large k ∈ IN .
This implies (3.26) as in the proof above.

To justify the equality and regularity statement, we first observe that one
always has

D̂∗(F +∆(·;Ω)
)
(x̄, ȳ)(y∗) ⊃ D̂∗F(x̄, ȳ)(y∗) + N̂(x̄ ;Ω), y∗ ∈ Y ∗ ,

which follows directly from the definitions and elementary calculations of the
Fréchet-like constructions under consideration. Therefore

D∗F(x̄, ȳ)(y∗) + N(x̄ ;Ω) = D̂∗F(x̄, ȳ)(y∗) + N̂(x̄ ;Ω) ⊂ D∗(F +∆(·;Ω)
)
(y∗)

for both cases D∗ = D∗
N and D∗ = D∗

M under the corresponding regularity
assumptions of the proposition. �

Note that condition (3.25) certainly holds if

D∗
M F(x̄, ȳ)(0) ∩

(
− N(x̄ ;Ω)

)
= {0}

and either F is PSNC at (x̄, ȳ) or Ω is SNC at x̄ . In this case the inclusion
part of Proposition 3.12 follows directly from Theorem 3.10(i). However, we
need the full statement of Proposition 3.12 under the more precise assumption
(3.25) to get the general chain rules for coderivatives considered next.
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Now we are going to express normal and mixed coderivatives of compo-
sitions F ◦ G of set-valued mappings between Asplund spaces via the corre-
sponding coderivatives of F and G, i.e., to derive chain rules for coderivatives.
The following theorem is based on Proposition 3.12 and composition results
obtained in Subsect. 1.2.4.

Theorem 3.13 (chain rules for coderivatives). Let G: X →→ Y , F : Y →→ Z ,
z̄ ∈ (F ◦ G)(x̄), and

S(x, z) := G(x) ∩ F−1(z) =
{

y ∈ G(x)
∣
∣ z ∈ F(y)

}
.

The following assertions hold for both coderivatives D∗ = D∗
N and D∗ = D∗

M
for all z∗ ∈ Z∗:

(i) Given ȳ ∈ S(x̄, z̄), assume that S is inner semicontinuous at (x̄, z̄, ȳ),
that the graphs of F and G are locally closed around the points (ȳ, z̄) and
(x̄, ȳ), respectively, that either F is PSNC at (ȳ, z̄) or G−1 is PSNC at (ȳ, x̄),
and that the mixed qualification condition

D∗
M F(ȳ, z̄)(0) ∩

(
− D∗

M G−1(ȳ, x̄)(0)
)

= {0} (3.27)

is fulfilled. Then one has

D∗(F ◦ G)(x̄, z̄)(z∗) ⊂ D∗
N G(x̄, ȳ) ◦ D∗F(ȳ, z̄)(z∗) . (3.28)

(ii) Assume that S is inner semicompact at (x̄, z̄), that G and F−1 are
closed-graph whenever x is near x̄ and z is near z̄, respectively, and that (3.27)
holds for every ȳ ∈ S(x̄, z̄). Then

D∗(F ◦ G)(x̄, z̄)(z∗) ⊂
⋃

ȳ∈S(x̄,z̄)

[
D∗

N G(x̄, ȳ) ◦ D∗F(ȳ, z̄)(z∗)
]

provided that either F is PSNC at (ȳ, z̄) or G−1 is PSNC at (ȳ, x̄) for every
point ȳ ∈ S(x̄, z̄).

(iii) Let G = g be single-valued and Lipschitz continuous around x̄, which
automatically implies that S is inner semicompact at (x̄, z̄). In addition to (ii)
assume that F is N -regular (resp. M-regular) at (ȳ, z̄) with ȳ = g(x̄) and that
either g is N -regular at x̄ while dim Y < ∞, or g is strictly differentiable at
x̄. Then F ◦ g is N -regular (resp. M-regular) at (x̄, z̄), and one has

D∗(F ◦ g)(x̄, z̄)(z∗) = D∗
N g(x̄) ◦ D∗F(ȳ, z̄)(z∗) .

Proof. Let us justify assertion (i); the proof of assertion (ii) is similar. Con-
sidering the multifunction

Φ(x, y) := F(y) +∆((x, y); gph G)

of type (3.24), we have
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D∗(F ◦ G)(x̄, z̄)(z∗) ⊂
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ D∗Φ(x̄, ȳ, z̄)(z∗)
}

(3.29)

by Theorem 1.64(i). Then we use inclusion (3.26) of Proposition 3.12 for Φ in
(3.29) observing that the qualification (3.27) and PSNC conditions of the theo-
rem ensure the fulfillment of assumption (3.25) of the proposition. Thus (3.29)
and (3.26) imply (3.28). To prove (iii), we combine the equality/regularity
statements in Theorem 1.64(iii) and Proposition 3.12. �

Note that the inclusion chain rules in Theorem 3.13 may be derived directly
by applying the results on basic normals to the set intersection for

Ω1 := gph G × Z and Ω2 := X × gph F

in the way of proving Theorem 3.10. However, in this way we cannot obtain
the equality and regularity assertions in (iii). Another case of the equality
chain rule for coderivatives is contained in Theorem 1.66 in the framework of
arbitrary Banach spaces. Note also that, due to Corollary 3.69 established be-
low in Subsect. 3.2.4, the N -regularity of g: X → IRm at x̄ in Theorem 3.13(iii)
is equivalent to its simultaneous Fréchet differentiability and strict Hadamard
differentiability at x̄ , but not to the strict Fréchet differentiability of g at this
point alternatively assumed in the above theorem in infinite dimensions.

It is worth observing that we use the mixed coderivative qualification con-
dition (3.27) in the chain rules for both normal and mixed coderivatives. On
the other hand, the normal coderivative of G is involved in the chain rule
(3.28) and its counterpart in assertion (ii) of Theorem 3.13 in both cases of
normal and mixed coderivatives.

The next result shows that if one concerns only with y∗ = 0 in the chain
rule (3.28) for D∗ = D∗

M and its counterparts in (ii) and if F is Lipschitz-like
around (x̄, ȳ), then the mixed coderivative of G can be employed in such a
special zero chain rule for mixed coderivatives, which has particularly useful
applications to results of Chap. 4 ensuring the preservation of Lipschitzian
and metric regularity properties under compositions of set-valued mappings.

Theorem 3.14 (zero chain rule for mixed coderivatives). Let G, F,
and S be as in Theorem 3.13, and let z̄ ∈ (F ◦ G)(x̄). The following hold:

(i) Given ȳ ∈ S(x̄, z̄), assume that S is inner semicontinuous at (x̄, z̄, ȳ),
that the graphs of F and G are locally closed around the points (ȳ, z̄) and
(x̄, ȳ), respectively, and that F is Lipschitz-like around (ȳ, z̄). Then

D∗
M(F ◦ G)(x̄, z̄)(0) ⊂

{
x∗ ∈ X∗∣∣ x∗ ∈ D∗

M G(x̄, ȳ)(0)
}
.

(ii) Assume that S is inner semicompact at (x̄, z̄), that G and F−1 are
closed-graph whenever x is near x̄ and z is near z̄, respectively, and that F is
Lipschitz-like around (ȳ, z̄) for every ȳ ∈ S(x̄, z̄). Then

D∗
M(F ◦ G)(x̄, z̄)(0) ⊂

⋃

ȳ∈S(x̄,z̄)

{
x∗ ∈ X∗∣∣ x∗ ∈ D∗

M G(x̄, ȳ)(0)
}
.
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Proof. Prove only (i), since the proof of (ii) is similar as above. Taking
arbitrary x∗ ∈ D∗

M(F ◦ G)(x̄, z̄)(0), find by definition sequences εk ↓ 0,

(xk, zk)
gph(F◦G)−→ (x̄, z̄), x∗

k
w∗
→ x∗, and z∗k → 0 (by norm) satisfying

(x∗
k ,−z∗k ) ∈ N̂εk

(
(xk, zk); gph (F ◦ G)

)
for all k ∈ IN .

Since S is inner semicontinuous at (x̄, z̄, ȳ), there are yk ∈ S(xk, zk) such that
yk → ȳ along a subsequence, with no relabeling. It is easy to see that

(x∗
k , 0) ∈ D̂∗

εk

[
F +∆(·; gph G)

]
(xk, yk, zk)(z∗k ), k ∈ IN .

Now we apply to the above sum the following coderivative “fuzzy sum rule” en-
suring that, given closed-graph mappings Fi : X →→ Y between Asplund spaces
and given x∗ ∈ D̂∗

ε (F1 + F2)(x̄, ȳ)(y∗) with ȳ ∈ (F1 + F2)(x̄), for any η > 0
there are (xi , yi ) ∈ gph Fi ∩ [(x̄, ȳi )+ηIB] and x∗

i ∈ D̂∗Fi (xi , yi )(y∗i ) as i = 1, 2
such that the norm estimates

‖y∗i − y∗‖ ≤ ε + η for i = 1, 2 and ‖x∗ − x∗
1 − x∗

2‖ ≤ ε + η

hold provided that at least one of the mappings Fi is Lipschitz-like around
the point (x̄, ȳi ), respectively. This results follows from the fuzzy intersection
rule of Lemma 3.1 being actually equivalent to the latter. Applying this result
to the above sum F +∆(·) at the given points as k → ∞, we take ηk ↓ 0 and
find sequences (x1k, y1k) ∈ gph F , (x2k, y2k) ∈ gph G,

y∗1k ∈ D̂∗F(y1k, z1k)(z∗1k), and (x∗
2k, y∗2k) ∈ N̂

(
(x2k, y2k); gph G

)

satisfying the norm estimates:

‖(y1k, z1k) − (yk, zk)‖ ≤ ηk, ‖(x2k, y2k) − (xk, yk)‖ ≤ ηk ,

‖(x∗
k , 0) − (0, y∗1k) − (x∗

2k, y∗2k)‖ ≤ εk + ηk, and ‖z∗1k − z∗k ‖ ≤ εk + ηk .

Since ‖z∗k ‖ → 0 and ‖z∗1k − z∗k ‖ ≤ εk + ηk , one has ‖z∗1k‖ → 0 as k → ∞. The
assumed Lipschitz-like property of F ensures that F is PSNC at (ȳ, z̄), which
implies that ‖y∗1k‖ → 0. Combining this with

‖x∗
k − x∗

2k‖ ≤ εk + ηk, ‖y∗1k + y∗2k‖ ≤ εk + ηk, and x∗
k
w∗
→ 0 ,

we conclude that ‖x∗
2k‖ → 0 and ‖y∗2k‖ → 0 as k → ∞. Thus one has

x∗ ∈ D∗
M G(x̄, ȳ)(0), which completes the proof of the theorem. �

Note that if D∗
M G is replaced by D∗

N G in Theorem 3.14, then the results
obtained therein are special cases of Theorem 3.13 as z∗ = 0, since the qual-
ification and PSNC conditions are automatic while D∗

M F(ȳ, z̄)(0) = {0} due
to the Lipschitz-like property of F . The following corollary of Theorem 3.13
explores the latter observation providing effective conditions for the fulfill-
ment of the general coderivative chain rules in that theorem. For simplicity
we present this corollary only for assertion (i).
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Corollary 3.15 (coderivative chain rules for Lipschitz-like and met-
rically regular mappings). Fix z̄ ∈ (F ◦ G)(x̄) and ȳ ∈ G(x̄) ∩ F−1(z̄)
and suppose that the graphs of F and G are locally closed around (ȳ, z̄) and
(x̄, ȳ), respectively, and that the mapping (x, z) → G(x) ∩ F−1(z) is inner
semicontinuous at (x̄, z̄, ȳ). Then the chain rule (3.28) holds for both nor-
mal and mixed coderivatives if either F is Lipschitz-like around (ȳ, z̄) or G is
metrically regular around (x̄, ȳ).

Proof. It follows from Theorem 1.44, Proposition 1.68, and Theorem 1.49(i)
that the qualification (3.27) and PSNC assumptions of Theorem 3.13(i) au-
tomatically hold for either Lipschitz-like mappings F or metrically regular
mappings G. Thus we have (3.28). �

The next corollary of Theorem 3.13 concerns the case of strictly differen-
tiable inner mappings with no surjectivity assumption on their derivatives as
in Theorem 1.66.

Corollary 3.16 (coderivative chain rules with strictly differentiable
inner mappings). Let g: X → Y be strictly differentiable at x̄, and let z̄ ∈
(F ◦ g)(x̄), where F : Y →→ Z is closed-graph around (ȳ, z̄) with ȳ = g(x̄).
Assume that F is PSNC at (ȳ, z̄) and that

D∗
M F(ȳ, z̄)(0) ∩

(
ker∇g(x̄)∗

)
= {0} ;

the latter two conditions automatically hold if F is Lipschitz-like around (ȳ, z̄).
Then one has the inclusion

D∗(F ◦ g)(x̄, z̄)(z∗) ⊂ ∇g(x̄)∗D∗F(ȳ, z̄)(z∗), z∗ ∈ Z∗ ,

for both coderivatives D∗ = D∗
N , D∗

M . If in addition F is N -regular (resp.
M-regular) at (ȳ, z̄), then one has equality

D∗(F ◦ g)(x̄, z̄)(z∗) = ∇g(x̄)∗D∗F(ȳ, z̄)(z∗), z∗ ∈ Z∗ ,

and F ◦ g enjoys the corresponding regularity property at (x̄, z̄).

Proof. This follows directly from Theorem 3.13 and Corollary 3.15 due to
the coderivative representations for strictly differentiable functions. �

The chain rules obtained in Corollary 3.16 allow us to establish relation-
ships between full and partial coderivatives for set-valued mappings of two
(and many) variables. Considering a multifunction F : X ×Y →→ Z of two vari-
ables (x, y) ∈ X ×Y , we denote by D∗

x F(x̄, ȳ, z̄) its partial coderivative (either
normal or mixed) with respect to x at the point (x̄, ȳ, z̄) ∈ gph F that is
the corresponding coderivative of the “partial” multifunction F(·, ȳ) at (x̄, z̄).
Let proj x D∗F(x̄, ȳ, z̄)(z∗) denote the projection of the set D∗F(x̄, ȳ, z̄)(z∗) ⊂
X∗ × Y ∗ on the space X∗. The following result gives a relationship between
the full coderivative D∗F and its partial counterpart D∗

x with respect to x ;
the same is valid of course for the second variable y.
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Corollary 3.17 (partial coderivatives). Let F : X × Y →→ Z , and let the
graph of F be closed around (x̄, ȳ, z̄) ∈ gph F. Assume that F is PSNC at
(x̄, ȳ, z̄) and that

(0, y∗) ∈ D∗
M F(x̄, ȳ, z̄)(0) =⇒ y∗ = 0 ;

these conditions automatically hold when F is Lipschitz-like around (x̄, ȳ, z̄).
Then one has the inclusion

D∗
x F(x̄, ȳ, z̄)(z∗) ⊂ proj x D∗F(x̄, ȳ, z̄)(z∗), z∗ ∈ Z∗ ,

for both normal and mixed coderivatives D∗ = D∗
N , D∗

M , where the equality
holds if F is N -regular (resp. M-regular) at (x̄, ȳ, z̄). Moreover, in the lat-
ter case the partial multifunction F(·, ȳ) enjoys the corresponding regularity
property at (x̄, z̄).

Proof. This follows from Corollary 3.16 applied to the composition F(·, ȳ) =
F ◦ g with g: X → X × Y defined by g(x) := (x, ȳ). �

Next let us consider the so-called h-composition

(F1
h� F2)(x) :=

⋃{
h(y1, y2)

∣
∣ y1 ∈ F1(x), y2 ∈ F2(x)

}

of arbitrary multifunctions Fi : X →→ Yi , i = 1, 2, where the single-valued map-
ping h: Y1 × Y2 → Z represents various operations on multifunctions (in par-
ticular, different kinds of product, quotient, maximum, minimum, etc.). Based
on the sum and chain rules of Theorems 3.10 and 3.13, we derive general for-
mulas for representing coderivatives of h-compositions in the case of mappings
between Asplund spaces, which imply other calculus results involving special
choices of the operation h. The following result is formulated and proved only
in the case when the corresponding mapping S is inner semicontinuous at
the given point; the case of its inner semicompactness is similar to that in
Theorems 3.10 and 3.13.

Theorem 3.18 (coderivatives of h-compositions). Let Fi : X →→ Yi with

i = 1, 2, let h: X × Z → Y1 × Y2, and let z̄ ∈ (F1
h� F2)(x̄). Define the

multifunction S: Y1 × Y2 →→ Z by

S(x, z) :=
{
(y1, y2) ∈ Y1 × Y2

∣
∣ yi ∈ Fi (x), z = h(y1, y2)

}

and suppose that it is inner semicontinuous at (x̄, z̄, ȳ) ∈ gph S for a given
ȳ = (ȳ1, ȳ2) and that the graph of Fi is locally closed around (x̄, ȳi ) for i = 1, 2.
Assume also that either F1 is PSNC at (x̄, ȳ1) or F2 is PSNC at (x̄, ȳ2) and
that the qualification condition (3.19) is fulfilled. The following assertions hold
for all z∗ ∈ Z∗:

(i) Let h be locally Lipschitzian around ȳ. Then
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D∗(F1
h� F2)(x̄, z̄)(z∗) ⊂

⋃

y∗∈D∗h(ȳ)(z∗)

[
D∗

N F1(x̄, ȳ1)(y∗1 ) + D∗
N F2(x̄, ȳ2)(y∗2 )

]
,

where y∗ = (y∗1 , y∗2 ) and where D∗ stands either for the normal coderivative

of F1
h� F2 and h or for the mixed coderivative of these mappings.

(ii) Let h be strictly differentiable at ȳ. Then

D∗
M(F1

h� F2)(x̄, z̄)(z∗) ⊂ D∗
M F1(x̄, ȳ1)(y∗1 ) + D∗

M F2(x̄, ȳ2)(y∗2 ) ,

where y∗i = ∇i h(ȳ)∗z∗, i = 1, 2, in terms of the partial derivatives of h(y1, y2)
in the first and second variable, respectively.

Proof. Define F : X →→ Y1 × Y2 by F(x) :=
(

F1(x), F2(x)
)

and observe that

D∗F(x̄, ȳ)(y∗) ⊂ D∗F1(x̄, ȳ1)(y∗1 ) + D∗F2(x̄, ȳ2)(y∗2 ) (3.30)

for both coderivatives D∗ = D∗
N and D∗ = D∗

M under the assumptions made
in (i). To justify (3.30), we apply Theorem 3.10 to the sum F = F̃1 + F̃2,
where F̃1(x) := (F1(x), 0) and F̃2(x) := (0, F2(x)). Since obviously

(F1
h� F2)(x) = (h ◦ F)(x) (3.31)

and h is locally Lipschitzian around ȳ, we can apply the chain rule in Corol-
lary 3.15 to the composition h ◦ F . Taking (3.30) into account, we arrive at
the conclusion in (i).

Let us prove assertion (ii). Note that its normal coderivative counterpart
follows directly from (i) by Theorem 1.38, while (i) gives a bigger upper esti-

mate of D∗
M(F1

h◦ F2)(x̄, z̄)(z∗) in comparison with (ii). This is due to using the
chain rule (3.28) for h ◦ F , which inevitably involves the normal coderivative
of inner mappings. We justify the better estimate in (ii) by using the fuzzy
intersection rule of Lemma 3.1 as in the proof of Theorem 3.10 for D∗ = D∗

M .

Fix x∗ ∈ D∗
M(F1

h� F2)(x̄, z̄)(z∗) and, by Corollary 2.36, find sequences

(xk, zk) ∈ gph (F1
h� F2) and x∗

k ∈ D̂∗(F1
h� F2)(xk, zk)(z∗k ) satisfying (xk, zk) →

(x̄, z̄), x∗
k

w∗
→ x∗, and z∗k → z∗ as k → ∞. Taking the usual composition form

(3.31) with h strictly differentiable at ȳ and employing our standard arguments
based on the strict differentiability of h (as in the proof of Theorem 1.72)
and then on representation (2.51) in Asplund spaces, we get subsequences

(x̃k, ỹk, z̃k) → (x̄, ȳ, z̄), x̃∗
k

w∗
→ x∗, and z̃∗k → z∗ such that ỹk ∈ F(x̃k) ∩ h−1(z̃k)

and
x̃∗

k ∈ D̂∗F(x̃k, ỹk)(ỹ∗k ) with ỹ∗k :=
(
∇h(ȳ)

)∗
z̃∗k . (3.32)

Now taking into account that F(x) = (F1(x), 0) + (0, F2(x)) in (3.32) and
following the proof of Theorem 3.10 in the case of D∗ = D∗

M , we select subse-

quences (xik, yik) → (x̄, ȳi ), x∗
ik

w∗
→ x∗

i , and y∗ik →
(
∇i h(ȳ)

)∗
z∗ with
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x∗
ik ∈ D̂∗Fi (xik, yik)(y∗ik), i = 1, 2, and x∗

1k + x∗
2k

w∗
→ x∗ as k → ∞ .

Thus x∗ ∈ D∗
M F1(x̄, ȳ1)(y∗1 )+ D∗

M F2(x̄, ȳ2)(y∗2 ), where (y∗1 , y∗2 ) =
(
∇h(ȳ)

)∗
z∗.

This justifies (ii) and completes the proof of the theorem. �

Note that we may always put D∗
M h(ȳ)(z∗) = ∂〈z∗, h〉(ȳ) in the framework

of Theorem 3.18(i) due to the scalarization formula for the mixed coderivative
obtained in Theorem 1.90.

To illustrate the application of Theorem 3.18, we consider the inner product

〈F1, F2〉(x) :=
{
〈y1, y2〉

∣
∣ yi ∈ Fi (x), i = 1, 2

}

of multifunctions Fi : X →→ Y with the values in a Hilbert space Y . Since
〈F1, F2〉: X →→ IR, there is no difference between the normal and mixed coderiv-
atives of this mapping denoted by D∗〈F1, F2〉. The next result gives an upper
estimate of the latter coderivative in terms of D∗

M Fi , i = 1, 2.

Corollary 3.19 (inner product rule for coderivatives). Given ᾱ ∈
〈F1, F2〉(x̄) and ȳi ∈ Fi (x̄) with ᾱ = 〈ȳ1, ȳ2〉, suppose that the graph of Fi

is locally closed around (x̄, ȳi ) for i = 1, 2 and that the multifunction

(x, α) →
{
(y1, y2) ∈ Y 2

∣
∣ yi ∈ Fi (x), α = 〈y1, y2〉

}

is inner semicontinuous at (x̄, ᾱ, ȳ1, ȳ2). Assume also that either F1 is PSNC
at (x̄, ȳ1) or F2 is PSNC at (x̄, ȳ2) and that the qualification condition (3.19)
holds. Then for all λ ∈ IR one has

D∗〈F1, F2〉(x̄, ᾱ)(λ) ⊂ D∗
M F1(x̄, ȳ1)(λȳ2) + D∗

M F2(x̄, ȳ2)(λȳ1) .

Proof. Follows from Theorem 3.18(ii) for h(y1, y2) = 〈y1, y2〉. �

Note that Theorem 3.18 allows us to derive general product and quotient
rules with respect to multiplication and division defined in a Banach algebra;
cf. Mordukhovich and Shao [950]. It also covers coderivative calculus rules
for maximum and minimum of multifunctions obtained via nonsmooth h-
compositions as in Mordukhovich [910].

The last result of this subsection gives a useful representation of the normal
coderivative for intersections

(F1 ∩ F2)(x) := F1(x) ∩ F2(x)

of set-valued mappings that follows directly from the intersection rule for
basic normals in Theorem 3.4. For simplicity we use the normal qualification
condition (3.10) in the latter theorem, which is important for applications to
the subdifferentiation of maximum functions in Subsect. 3.2.1.
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Proposition 3.20 (coderivative intersection rule). Let Fi : X →→ Y , i =
1, 2, be locally closed around (x̄, ȳ). Assume that

N((x̄, ȳ); gph F1) ∩
(
− N((x̄, ȳ); gph F2)

)
= {0}

and that one of Fi is SNC at (x̄, ȳ). Then

D∗(F1 ∩ F2)(x̄, ȳ)(y∗) ⊂
⋃

y∗1+y∗2=y∗

[
D∗F1(x̄, ȳ)(y∗1 ) + D∗F2(x̄, ȳ)(y∗2 )

]
(3.33)

for all y∗ ∈ Y ∗, where D∗ stands for the normal coderivative. Moreover, (3.33)
holds as equality and F1 ∩ F2 is N -regular at (x̄, ȳ) if both Fi are N -regular at
this point.

Proof. Apply Corollary 3.5 to Ωi = gph Fi , i = 1, 2, with the qualification
condition (3.10). The equality/regularity assertion follows from the last part
of Theorem 3.4. �

We conclude this subsection with several remarks on other results related
to coderivative calculus for set-valued mappings.

Remark 3.21 (fuzzy coderivative calculus). Based on the fuzzy inter-
section rule for Fréchet normals in Lemma 3.1 (i.e., actually on the extremal
principle), one can develop a rich fuzzy calculus of ε-coderivatives D̂∗

ε from
(1.23) for set-valued mappings between Asplund spaces, where the crucial case
is that of ε = 0. It can be done in the way of proving the exact calculus results
for D∗

N and D∗
M in this subsection without passing to the limit. Note that we

don’t need any SNC conditions and can relax qualification conditions to get
fuzzy calculus rules. However, results of this type are not pointbased and may
be considered as a preliminary tool for the exact calculus of the limiting con-
structions that are the main objects in this book. More details on the fuzzy
calculus for D̂∗

ε and related subgradients can be found in Mordukhovich and
Shao [952], where the extremal principle is directly used to derive the so-
called “quantitative fuzzy sum rule” (with efficient estimates) on which other
calculus results are based. Note that the fuzzy intersection rule of Lemma 3.1
is in fact equivalent to the Asplund property of X , which has been recently
observed by Bingwu Wang (personal communication).

Remark 3.22 (calculus rules for the reversed mixed coderivative).
Besides the normal and mixed coderivatives, we actively use in this book the
construction D̃∗

M defined in (1.40) and called there the reversed mixed coderiva-
tive, since it can be obtained by reversing the convergence order in comparison
with our basic mixed coderivative; cf. Penot [1071]. Although D̃∗

M is directly
related to the mixed coderivative of the inverse mapping, it doesn’t enjoy
a comprehensive calculus similar to D∗

M and D∗
N due to the fact the many

important operations and properties for mappings are not invariant/stable
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with respect to taking their inverses. As a striking example, mention sum-
mation rules that cannot be satisfactorily established for the reversed mixed
coderivative even in its subdifferential specification for real-valued functions
ϕ: X → IR, since the unit ball IB∗ doesn’t have any compactness properties
with respect to the norm topology of X∗ in infinite dimensions. Nevertheless,
some useful calculus results can be established for D̃∗

M in Asplund spaces
as shown in Mordukhovich and B. Wang [963]. In particular, it follows from
Theorem 3.13 and elementary transformations involving inverse mappings and
their coderivatives that the chain rule

D̃∗
M(F ◦ G)(x̄, z̄) ⊂

⋃

ȳ∈G(x̄)∩F−1(z̄)

D̃∗
M G(x̄, ȳ) ◦ D∗

N F(ȳ, z̄)

holds for reversed mixed coderivatives of general compositions at every point
(x̄, z̄) ∈ gph (F◦G) under exactly the same assumptions as in Theorem 3.13(ii).
Note that the qualification condition (3.27) can be equivalently written as

(
ker D̃∗

M G(x̄, ȳ)
)
∩
(
− D∗

M F(ȳ, z̄)(0)
)

= {0} .

The latter easily implies the inclusion

ker D̃∗
M(F ◦ G)(z̄, x̄) ⊂

⋃

ȳ∈G(x̄)∩F−1(z̄)

ker D∗
N F(ȳ, z̄)

provided that G is metrically regular around (x̄, ȳ) for every ȳ ∈ G(x̄)∩F−1(z̄).
Moreover, applying in this setting the zero chain rule of Theorem 3.14 to the
inverse mappings, we arrive at the refined inclusion

ker D̃∗
M(F ◦ G)((x̄, z̄) ⊂

⋃

ȳ∈G(x̄)∩F−1(x̄)

ker D̃∗
M F(ȳ, z̄)

involving the kernels of only the reversed mixed coderivatives; see Mor-
dukhovich and Nam [934] for more details.

Remark 3.23 (limiting normals and coderivatives with respect to
general topologies). Some of the calculus results above can be unified and
generalized by considering limiting constructions with respect to an arbitrary
topology τ on X∗ that is compatible with the linear structure and satisfies
w∗ ≤ τ ≤ τ‖·‖, i.e., it is equal to or weaker than the norm topology on X∗

and is equal to or stronger than the weak∗ topology on X∗. Besides τ =
w∗ and τ = τ‖·‖, valuable choices of such a topology on X∗ are the weak
topology, the topology generated by the convergence of bounded nets in X∗,
polar topologies generated by various bornological structures in X , etc.; see
the books by Holmes [580] and Phelps [1073] with their references.

Given a topology τ on X∗, we define the τ -limiting normal cone to Ω ⊂ X
at x̄ ∈ Ω by
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Nτ (x̄ ;Ω) :=
{

x∗ ∈ X∗
∣
∣
∣ ∃εk ↓ 0, xk

Ω→ x̄, x∗
k

τ∗→ x∗ with x∗
k ∈ N̂εk (xk ;Ω)

}
,

where εk may be omitted if Ω is locally closed around x̄ and X is Asplund.
It is clear that the stronger τ is, the smaller Nτ (x̄ ;Ω) is, and that Nτ (x̄ ;Ω)
reduces to the basic normal cone (1.3) for τ = w∗. We put τ = τX∗ × τY∗ for
the product space X × Y , where τX∗ and τY∗ are generally of different types,
and define the τ -limiting coderivative of F : X →→ Y at (x̄, ȳ) ∈ gph F by

D∗
τ F(x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ Nτ ((x̄, ȳ); gph F)

}
,

which agrees with the normal coderivative (1.24) for τ = w∗ × w∗, with the
mixed coderivative (1.25) for τ = w∗ × τ‖·‖, and with the reversed mixed
coderivative (1.40) for τ = τ‖·‖ × w∗.

Following the above geometric approach, we can develop the exact calculus
of τ -limiting coderivatives based on the intersection rule for the normal cone
Nτ generalizing that of Theorem 3.4. In particular, this way leads to the
symmetric coderivative chain rule

D∗
τX∗×τZ∗

(F ◦ G)(x̄, z̄) ⊂ D∗
τX∗×τY∗ G(x̄, ȳ) ◦ D∗

τY∗×τZ∗
F(ȳ, z̄)

for compositions of G: X →→ Y and F : Y →→ Z under certain conditions devel-
oped by Mordukhovich and B. Wang [963], where the reader can find more
results and discussions in this direction.

Remark 3.24 (coderivative calculus in bornologically smooth
spaces). Another line of developing the coderivative calculus presented above
is to consider appropriate coderivative constructions in Banach spaces ad-
mitting Lipschitzian bump functions that are smooth with respect to a
given bornology β; see Remark 2.11. Some results in this direction, based
on smooth variational principles, are obtained by Mordukhovich, Shao and
Zhu [954] for viscosity β-coderivatives generated by the corresponding normal
cone (2.78) and their topological limits. An essential difference between the
Fréchet bornology β = F and all the other bornologies on X is that the cor-
responding topology on X∗ generated by β agrees with the norm topology of
X∗ for β = F . This allows us to establish in this case exact calculus results
for sequential limiting constructions, in contrast to topological ones in other
bornological cases.

3.1.3 Strictly Lipschitzian Behavior
and Coderivative Scalarization

In Theorem 1.90 we established the scalarization formula

D∗
M f (x̄)(y∗) = ∂〈y∗, f 〉(x̄), y∗ ∈ Y ∗ ,

for the mixed coderivative of locally Lipschitzian mappings f : X → Y be-
tween arbitrary Banach spaces. As Example 1.35 shows, an analog of this for-
mula doesn’t hold for the normal coderivative of arbitrary locally Lipschitzian
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mappings without additional assumptions. In this subsection we develop con-
ditions that ensure the normal coderivative scalarization, which is important
for various applications including those to subdifferential chain rules and to
necessary optimality conditions of the Lagrangian type; see below. First we
define subclasses of locally Lipschitzian mappings used for these purposes and
establish relationships between them.

Definition 3.25 (strictly Lipschitzian mappings). Let f : X → Y be a
single-valued mapping between Banach spaces. Assume that f is Lipschitz
continuous around x̄. Then:

(i) f is strictly Lipschitzian at x̄ if there is a neighborhood V of the
origin in X such that the sequence

yk :=
f (xk + tkv) − f (xk)

tk
, k ∈ IN ,

contains a norm convergent subsequence whenever v ∈ V , xk → x̄, and tk ↓ 0.
(ii) f is w∗-strictly Lipschitzian at x̄ if there is a neighborhood V of

the origin in X such that for any v ∈ X and any sequences xk → x̄, tk ↓ 0,
and y∗k

w∗
→ 0 one has 〈y∗k , yk〉 → 0 as k → ∞, where yk are defined in (i).

If Y is finite-dimensional, the properties in (i) and (ii) obviously hold,
so both classes in Definition 3.25 reduce to the class of locally Lipschitzian
mappings f : X → IRn. It is not the case for dim Y = ∞, as the mapping from
Example 1.35 illustrates. One can check that both classes in Definition 3.25
are closed with respect to compositions and form linear spaces. Every mapping
strictly differentiable at x̄ is strictly Lipschitzian at this point. Moreover, the
latter class includes Fredholm integral operators with Lipschitzian kernels,
which are particularly important in applications to optimal control.

Proposition 3.26 (relations for strictly Lipschitzian mappings).Every
f : X → Y strictly Lipschitzian at x̄ is w∗-strictly Lipschitzian at this point.
The opposite holds if IBY∗ is weak∗ sequentially compact.

Proof. Property (i) in Definition 3.25 obviously implies (ii) for any Banach
spaces. It remains to show that (ii)=⇒(i) when IBY∗ is sequentially compact
in the weak∗ topology on Y ∗. Let us prove that under this assumption the
convergence property in (i) follows from the one in (ii).

First we observe that the convergence property in (ii) implies the bounded-
ness of {yk}. On the contrary, suppose that ‖yk‖ → ∞ along some subsequence
of k → ∞ (suppose that for all k ∈ IN) and find, by the Hahn-Banach theo-
rem, such y∗k ∈ Y ∗ that 〈y∗k , yk〉 =

√
‖yk‖ and ‖y∗k ‖ = ‖yk‖−1/2, k ∈ IN . Then

‖y∗k ‖ → 0 but 〈y∗k , yk〉 	→ 0 as k → ∞, which contradicts (ii). Using this, let us
show that {yk} is actually totally bounded, i.e., for every ε > 0 this set can be
covered by a finite number of balls with radii less than ε. It is all we need to
prove, since the total boundedness of a subset in a metric space is known to
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be equivalent to its sequential compactness; see, e.g., Dunford and Schwartz
[371, p. 22].

On the contrary, assume that {yk} is not totally bounded. Using its bound-
edness, it is easy to show that there is α > 0 such that {yk} 	⊂ Z +α IBY for any
finite-dimensional subspace Z ⊂ Y . This allows us to construct a subsequence
{zn} of {yk} with zn+1 /∈ span{z1, . . . , zn} + α IBY for all n ∈ IN . Then we can
choose y∗n ∈ IBY∗ such that

span{z1, . . . , zn} ⊂ ker y∗n and 〈y∗n , zn+1〉 ≥ α, n ∈ IN .

By the assumption of the proposition, {y∗n } contains a subsequence {y∗nm
} that

converges weak∗ to some y∗ ∈ Y ∗. We have 〈y∗, zn〉 = 0 for all n ∈ IN by the
construction. Hence

〈y∗nm
− y∗, znm+1〉 = 〈y∗nm

, znm+1〉 ≥ α > 0, m ∈ IN ,

which contradicts (ii) and finishes the proof. �

In the next lemma we derive an important property of w∗-strictly Lip-
schitzian mappings in terms of their Fréchet coderivatives, which is crucial
for the proof of the scalarization formula given below. Moreover, this property
completely characterizes such mappings under additional assumptions on the
Banach spaces in question.

Lemma 3.27 (coderivative characterization of strictly Lipschitzian
mappings). Let f : X → Y be a mapping between Banach spaces that is locally
Lipschitzian around x̄. The following assertions hold:

(i) If f is w∗-strictly Lipschitzian at x̄, then for any sequences εk ↓ 0,
xk → x̄, and (x∗

k , y∗k ) ∈ X∗ × Y ∗ with x∗
k ∈ D̂∗

εk
f (xk)(y∗k ), k ∈ IN , one has

y∗k
w∗
→ 0 =⇒ x∗

k
w∗
→ 0 as k → ∞ .

(ii) If X is Asplund and Y is reflexive, then the coderivative property in
(i) implies that f is strictly Lipschitzian at x̄.

Proof. To prove (i), we take sequences x∗
k ∈ D̂∗

εk
f (xk)(y∗k ) and observe from

the definitions that for any γk ↓ 0 there are neighborhoods Uk of xk with

〈x∗
k , x − xk〉 − 〈y∗k , f (x) − f (xk)〉 ≤ (γk + εk)(‖x − xk‖ + ‖ f (x) − f (xk)‖)

whenever x ∈ Uk and k ∈ IN . By the Lipschitz continuity of f with modulus
� around x̄ we get

〈x∗
k , x − xk〉 − 〈y∗k , f (x) − f (xk)〉 ≤ (γk + εk)(1 + �)‖x − xk‖ (3.34)

for all x ∈ Uk and k ∈ IN . Now pick any v from the neighborhood V of
the origin in Definition 3.25(ii) and choose a sequence of tk ↓ 0 such that
xk + tkv ∈ Uk for all k ∈ IN . Then (3.34) implies that
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〈x∗
k , v〉 −

〈
y∗k ,

f (xk + tkv) − f (xk)
tk

〉
≤ (γk + εk)(1 + �)‖v‖ . (3.35)

Since f is locally Lipschitzian around x̄ and {y∗k } is bounded, {x∗
k } is bounded

as well due to Theorem 1.43. Hence the latter sequence is (topologically) weak∗

compact in X∗. Taking any x∗ ∈ cl∗{x∗
k }, we get from (3.35) and the w∗-strict

Lipschitzian property of f that 〈x∗, v〉 ≤ 0 for each v ∈ V . Thus x∗ = 0 for

every weak∗ cluster point of {x∗
k }, which implies that x∗

k
w∗
→ 0 as k → ∞ and

justifies (i).
Let us prove the converse statement assuming that X is Asplund and

Y is reflexive. Note that in this case the strictly Lipschitzian and w∗-strictly
Lipschitzian properties of f at x̄ are equivalent due to Proposition 3.26. More-
over, one can equivalently put εk = 0 in (i). Take {yk} from Definition 3.25
and show that it has a norm convergent subsequence. Since {yk} is bounded
and Y is reflexive, we may assume that it weakly converges to some point
ȳ ∈ Y as k → ∞. The Hahn-Banach theorem ensures the existence of y∗k ∈ Y ∗

satisfying the relations

〈y∗k , yk − ȳ〉 = ‖yk − ȳ‖, ‖y∗k ‖ = 1 for all k ∈ IN .

Suppose without loss of generality that y∗k
w∗
→ ȳ∗ as k → ∞ for some ȳ∗ ∈ Y ∗.

Now our goal is to estimate 〈y∗k − ȳ∗, yk〉. To proceed, we use the mean value
inequality (3.52) from Theorem 3.49. This gives us vk → x̄ and v∗k ∈ ∂̂〈y∗k −
ȳ∗, f 〉(vk) satisfying

〈y∗k − ȳ∗, yk〉 ≤ 〈v∗k , v〉 + k−1 for all k ∈ IN , (3.36)

where yk and v are related via Definition 3.25. One can easily check that

∂̂〈y∗, f 〉(x) = D̂∗ f (x)(y∗) for all y∗ ∈ Y ∗ (3.37)

if f is locally Lipschitzian around x . Hence v∗k ∈ D̂∗ f (vk)(y∗k − ȳ∗) and

v∗k
w∗
→ 0 as k → ∞ due to the assumption made in (ii). By (3.36) this gives

lim supk→∞〈y∗k − ȳ∗, yk〉 ≤ 0. To finish the proof, we observe that

‖yk − ȳ‖ = 〈y∗k , yk − ȳ〉 = 〈y∗k − ȳ∗, yk〉 − 〈y∗k − ȳ∗, ȳ〉 + 〈ȳ∗, yk − ȳ〉 ,

which implies the norm convergence of yk along the chosen subsequence. �

Now we are ready to establish the required representation of the normal
coderivative in terms of the basic subdifferential of the scalarized function.

Theorem 3.28 (scalarization of the normal coderivative). Consider
a mapping f : X → Y between an Asplund space X and a Banach space Y .
Assume that f is w∗-strictly Lipschitzian at x̄. Then one has

D∗
N f (x̄)(y∗) = ∂〈y∗, f 〉(x̄) 	= ∅ for all y∗ ∈ Y ∗ .

Moreover, D∗
M f (x̄) = D∗

N f (x̄) under the assumptions made.
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Proof. We need to show that D∗
N f (x̄)(y∗) ⊂ ∂〈y∗, f 〉(x̄). The other con-

clusions of the theorem easily follow from Corollary 2.25 and Theorem 1.90.
Pick x∗ ∈ D∗

N f (x̄)(y∗) and find, by definitions of the normal coderivative and

ε-normals, sequences εk ↓ 0, xk → x̄ , and (x∗
k , y∗k ) w∗

→ (x∗, y∗) satisfying

(x∗
k ,−y∗k ) ∈ N̂εk

(
(xk, f (xk)

)
; gph f ) for all k ∈ IN .

From the proof of Lemma 3.27 we get estimate (3.34) along an arbitrary
sequence γk ↓ 0. This gives

x∗
k ∈ ∂̂ε̃k 〈y∗k , f 〉(xk) = ∂̂ε̃k

[
〈y∗, f 〉 + 〈y∗k − y∗, f 〉

]
(xk)

with ε̃k := (γk + εk)(1 + �) ↓ 0 as k → ∞. Applying the fuzzy sum rule from
Theorem 2.33(b), we find sequences uk → x̄ , vk → x̄ ,

u∗
k ∈ ∂̂〈y∗, f 〉(uk), and v∗k ∈ ∂̂〈y∗k − y∗, f 〉(vk)

such that ‖x∗
k − u∗

k − v∗k ‖ ≤ 2ε̃k for all k. It follows from (3.37) and

Lemma 3.27(i) that v∗k
w∗
→ 0 as k → ∞. Hence u∗

k
w∗
→ x∗ ∈ ∂〈y∗, f 〉(x̄), which

completes the proof of the theorem. �

Let us present two useful consequences of Lemma 3.27 and Theorem 3.28.
The first corollary gives a convenient representation of the normal second-
order subdifferential for an important subclass of C1,1 functions, while the
second one proves a characterization of the SNC property for strictly Lip-
schitzian mappings.

Corollary 3.29 (normal second-order subdifferentials of C1,1 func-
tions). Let X be Asplund, and let ϕ: X → IR be C1 around x̄ with the derivative
∇ϕ that is w∗-strictly Lipschitzian at this point. Then

∂2
Nϕ(x̄)(u) = ∂〈u,∇ϕ〉(x̄) 	= ∅ for all u ∈ X∗∗

and ∂2
Mϕ(x̄) = ∂2

Nϕ(x̄).

Proof. This follows directly from Theorem 3.28 with f := ∇ϕ: X → X∗. �

Corollary 3.30 (characterization of the SNC property for strictly
Lipschitzian mappings). Let f : X → Y be a mapping between Banach
spaces. Assume that f is w∗-strictly Lipschitzian at x̄ and that X is Asplund.
Then f is SNC at x̄ if and only if dim Y < ∞.

Proof. The “if” part follows from Corollary 1.69. To prove the “only if”
part in the case of Asplund spaces X , we need to show that for every w∗-
strictly Lipschitzian mapping f : X → Y at x̄ and for every infinite-dimensional
Banach space Y there are sequences xk → x̄ and (x∗

k , y∗k ) w∗
→ (0, 0) satisfying

x∗
k ∈ D̂∗ f (xk)(y∗k ) with ‖(x∗

k , y∗k )‖ 	→ 0 as k → ∞ .
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Indeed, given a Banach space Y with dim Y = ∞ and applying the funda-
mental Josefson-Nissenzweig theorem (cf. the proof of Theorem 1.21), we find

a sequence of y∗k ∈ Y ∗ with ‖y∗k ‖ = 1 and y∗k
w∗
→ 0. By scalarization (3.37)

for Lipschitzian mappings and by the density of Fréchet subgradients in As-
plund spaces due to Corollary 2.29, there are sequences (xk, x∗

k ) ∈ X × X∗

with xk → x̄ and x∗
k ∈ D̂∗ f (xk)(y∗k ) for all k ∈ IN . Due to Lemma 3.27(i) one

has x∗
k
w∗
→ 0 as k → ∞. Thus f doesn’t have the SNC property at x̄ . �

Note that the strict Lipschitz continuity of f is not necessary for the
equivalence in Corollary 3.30. In particular, Y must be finite-dimensional for
every mapping f : X → Y between Banach spaces that is SNC at (x̄, f (x̄))
and Fréchet differentiable at x̄ ; it may not be either strictly differentiable at
x̄ or even Lipschitzian around this point. On the other hand, the above proof
shows that, due to Lemma 3.27(ii), the strict Lipschitzian requirement on f
is not avoidable in Corollary 3.30 if Y is assumed to be reflexive while

y∗k
w∗
→ 0 =⇒ x∗

k
w∗
→ 0 whenever x∗

k ∈ D̂∗ f (xk)(y∗k ) and xk → x̄ .

Remark 3.31 (scalarization results with respect to general topolo-
gies). One can observe from the proofs of Theorems 1.90 and 3.28 that the
scalarization formulas obtained there for the mixed and normal coderivatives
admit extensions to the limiting constructions with respect to general topolo-
gies described in Remark 3.23. The corresponding τ -limiting subdifferential of
ϕ: X → IR at x̄ with |ϕ(x̄)| < ∞ is defined, equivalently, by

∂τϕ(x̄) := D∗
τ Eϕ(x̄, ϕ(x̄))(1) = Lim sup

x
ϕ→x̄

ε↓0

∂̂εϕ(x) ,

where one may put ε = 0 provided that ϕ is proper and l.s.c. around x̄ and
that X and Asplund. Given a mapping f : X → Y between Banach spaces and
an arbitrary linear topology τ = τX∗ × τY∗ on X∗ × Y ∗, we get from the proof
of Theorem 1.90 that

∂τX∗ 〈y∗, f 〉(x̄) ⊂ D∗
τ f (x̄)(y∗), y∗ ∈ Y ∗ ,

if f is continuous around x̄ , and that

D∗
τX∗×τ‖·‖

f (x̄)(y∗) = ∂τX∗ 〈y∗, f 〉(x̄), y∗ ∈ Y ∗ ,

if f is Lipschitz continuous around x̄ . This covers the case of the mixed
coderivative in Theorem 1.90 when τX∗ = w∗. Then we observe from the
proof of Theorem 3.28 that

D∗
w∗×τY∗ f (x̄)(y∗) = ∂〈y∗, f 〉(x̄), y∗ ∈ Y ∗ ,

if X is Asplund and f is τY∗ -strictly Lipschitzian at x̄ , which means that f is
Lipschitz continuous around this point and satisfies the convergence condition
from Definition 3.25(ii) with w∗ replaced by τY∗ .
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In conclusion of this section we consider a remarkable subclass of strictly
Lipschitzian mappings that is related to the PSNC property of multifunctions
in the sense of Definition 1.67.

Definition 3.32 (compactly strictly Lipschitzian mappings). A single-
valued mapping f : X → Y between Banach spaces is compactly strictly
Lipschitzian at x̄ if for each sequences xk → x̄ and hk → 0 ∈ X with hk 	= 0
the sequence

f (xk + hk) − f (xk)
‖hk‖

, k ∈ IN ,

has the norm convergent subsequence.

It is obvious that a compactly strictly Lipschitzian mapping is strictly Lip-
schitzian in the sense of Definition 3.25(i), and hence it is locally Lipschitzian
around x̄ . Moreover, for dim Y < ∞ the above strictly Lipschitzian notions
agree and reduce to the standard local Lipschitz continuity. It is not the case
when Y is infinite-dimensional, particularly Asplund. Indeed, the mapping
f : c0 → c0 given by

f (x) :=
{

sin xk} for x :=
{

xk
}

is strictly Lipschitzian but not compactly strictly Lipschitzian at the origin.
It is easy to check that f is compactly strictly Lipschitzian at x̄ if it is strictly
Fréchet differentiable at x with the compact derivative operator, or more
generally: if f is a composition f = g ◦ f0, where g is strictly differentiable
with the compact derivative while f0 is locally Lipschitzian. Furthermore, the
class of compactly strictly Lipschitzian mappings contains those f : X → Y
that are uniformly directionally compact around x̄ , in the sense that there is
a norm compact set Q ⊂ Y for which

f (x + th) ∈ f (x) + t‖h‖Q + tη
(
‖x − x̄‖, t

)
IB

whenever h ∈ X with ‖h‖ ≤ 1 and x close to x̄ , where η(ε, t) → 0 as ε ↓ 0 and
t ↓ 0. Note that the class of compactly strictly Lipschitzian mappings forms
a linear space being also closed with respect to compositions involving local
Lipschitzian mappings.

It is interesting to observe that compactly strictly Lipschitzian mappings
admit a coderivative characterization similar to Lemma 3.27 for strictly Lip-
schitzian mappings but different in one aspect, which is crucial in what follows.

Lemma 3.33 (coderivative characterization of compactly strictly
Lipschitzian mappings). Let f : X → Y be a mapping between Banach
spaces that is locally Lipschitzian around x̄. The following assertions hold:

(i) If f is compactly strictly Lipschitzian at x̄, then for any sequences
εk ↓ 0, xk → x̄, and (x∗

k , y∗k ) ∈ X∗ × Y ∗ with x∗
k ∈ D̂∗

εk
f (xk)(y∗k ) one has
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y∗k
w∗
→ 0 =⇒ ‖x∗

k ‖ → 0 as k → ∞ .

(ii) If X is Asplund and Y is reflexive, then the coderivative property in
(i) implies that f is compactly strictly Lipschitzian at x̄.

Proof. To prove (i), we take x∗
k ∈ D̂∗

εk
f (xk)(y∗k ) with y∗k

w∗
→ 0 and, by definition

of the εk-coderivative, for any γk ↓ 0 find νk ↓ 0 such that

〈x∗
k , x − xk〉 − 〈y∗k , f (x) − f (xk)〉 ≤ (γk + εk)

(
‖x − xk‖ + ‖ f (x) − f (xk)‖

)

whenever x = xk + νkhk . Dividing this by νk > 0, one has

〈x∗
k , hk〉 −

〈

y∗k ,
f (xk + νkhk) − f (xk)

νk

〉

≤ ηk

(

1 +

∥
∥
∥
∥
∥

f (xk + νkhk) − f (xk)
νk

∥
∥
∥
∥
∥

)

with ηk := γk + εk . Since f is compactly strictly Lipschitzian at x̄ , we may
assume that the sequence

{(
f (xk + νkhk) − f (xk)

)
/νk
}
, k ∈ IN , is norm con-

vergent. Now passing to the limit as k → ∞ and taking into account that
y∗k

w∗
→ 0, we get 〈x∗

k , hk〉 → 0, which implies that ‖x∗
k ‖ → 0 and completes the

proof of assertion (i).
To justify the converse assertion (ii) of the theorem when X is Asplund

and Y is reflexive, we proceed similarly to the proof of Lemma 3.27(ii) with
εk = 0 in the convergence property of (i). Define

yk :=
f (xk + hk) − f (xk)

‖hk‖
, k ∈ N ,

and assume that yk
w→ ȳ to some ȳ ∈ Y without loss of generality due to

the Lipschitz continuity of f . Invoking the Hahn-Banach theorem, we find
y∗k ∈ Y ∗ such that

〈y∗k , yk − ȳ〉 = ‖yk − ȳ‖2, ‖y∗k ‖ = ‖yk − ȳ‖, and y∗k
w∗
→ ȳ∗

for some ȳ∗ ∈ Y ∗. Then using the mean value inequality (3.52) from The-
orem 3.49 and taking into account the scalarization formula (3.37) for the
Fréchet coderivative, one has vk → x̄ and

v∗k ∈ ∂̂〈y∗k − ȳ∗, f 〉(vk) = D̂∗ f (vk)(y∗k − ȳ∗)

satisfying the estimate

〈y∗k − ȳ∗〉 ≤ 1
k

+

〈

v∗ + k,
hk

‖hk‖

〉

.

Since ‖v∗k ‖ → 0 by the requirement in (ii), we get lim supk→∞〈y∗k − ȳ∗, yk〉 ≤ 0.
This yields yk → ȳ as in Lemma 3.27(ii) and completes the proof. �

Finally, let us use the coderivative characterization of Lemma 3.33 to es-
tablish the PSNC property of the following class of mappings important in
various applications.
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Definition 3.34 (generalized Fredholm mappings). A single-valued
mapping f : X → Y between Banach spaces is generalized Fredholm at
x̄ if there is a mapping g: X → Y , which is compactly strictly Lipschitzian at
x̄ and such that the difference f − g is a linear bounded operator whose image
is a closed subspace of finite codimension in Y .

This definition extends various notions of Fredholm-like behavior of map-
pings that naturally arise in applications to optimization problems with oper-
ator constraints in infinite dimensions and particularly to problems of optimal
control for dynamic systems governed by nonsmooth differential equations and
inclusions; see more discussions and details in Ioffe [595, 604] and in Ginsburg
and Ioffe [506] as well as in Subsects. 5.1.2 and 6.1.4 below. The principal
property of generalized Fredholm mappings crucial for their applications is
given in the next theorem.

Theorem 3.35 (PSNC property of generalized Fredholm mappings).
Let f : X → Y be a mapping between Banach spaces, let Ω ⊂ X , and let

fΩ(x) :=






f (x) if x ∈ Ω ,

∅ if x /∈ Ω

be the restriction of f to Ω. Assume that f is generalized Fredholm at x̄ ∈ Ω
and that:

(a) either Ω = X , or
(b) X and Y are Asplund, Ω is SNC at x̄ and closed around this point.

Then the inverse mapping f −1
Ω is PSNC at ( f (x̄), x̄).

Proof. Take sequences εk ↓ 0, xk
Ω→ x̄ , x∗

k → 0, and y∗k
w∗
→ 0 such that

x∗
k ∈ D̂∗

εk

(
f +∆(·;Ω)

)
(xk)(y∗k ) for all k ∈ IN ,

where ∆(·;Ω) is the indicator mapping of the set Ω. To justify the PSNC
property of f −1

Ω at ( f (x̄), x̄), we need to show, according to Definition 1.67,
that ‖y∗k ‖ → 0 as k → ∞.

Consider first the case of Ω = X in the general Banach space setting
and denote by A := f − g the linear bounded operator from X to Y whose
image/range Y0 := AX is a closed subspace of finite codimension. Thus there
is a closed subspace Y1 ⊂ Y with Y = Y0

⊕
Y1 and codim Y1 < ∞. Due to

the elementary adaptation of the sum rule from Theorem 1.62(i) to the case
of ε-coderivatives (cf. the proof of Theorem 1.38), our aim is to show that

‖y∗k ‖ → as k → ∞ whenever y∗k
w∗
→ 0, εk ↓ 0, and ‖x∗

k ‖ → 0 provided that

x∗
k − A∗y∗k ∈ D̂∗

εk
g(xk)(y∗k ), k ∈ IN .

The latter inclusion implies by Lemma 3.33(i) that ‖x∗
k −A∗y∗k ‖ → 0 and hence

‖A∗y∗k ‖ → 0. On the other hand, each y∗k is represented as y∗k = y∗0k + y∗1k with
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y∗ik ∈ Y ∗
i , i = 1, 2, and A∗y∗k = A∗y∗0k . Since Y ∗

1 is finite-dimensional and since
A maps X onto Y0, we get ‖y∗1k‖ → 0 and also ‖A∗y∗0k‖ ≥ µ‖y∗0k‖ with some
µ > 0 by the open mapping theorem (cf. Lemma 1.18). Thus ‖y∗0k‖ → 0,
which completes the proof in case (a).

Consider now case (b) with Ω 	= X . Then we have

x∗
k ∈ D̂∗(A + g +∆(·;Ω)

)
(xk)(y∗k ) .

Proceeding as in the proof of Theorem 3.10 in Asplund spaces, we find x̂k → x̄ ,
uk → x̄ , x̃∗

k → 0, ỹ∗k
w∗
→ 0, ŷ∗k

w∗
→ 0, and x̂∗

k ∈ D̂∗g(x̂k)(ŷ∗k ) such that

x̃∗
k − A∗ ỹ∗k − x̂∗

k ∈ N̂(uk ;Ω) and ‖ỹ∗k − y∗k ‖ → 0 .

It follows from Lemma 3.33(i) that ‖x̂∗
k ‖ → 0. Furthermore, one has

‖x̃∗
k − A∗ ỹ∗k − x̂∗

k ‖ → 0 as k → ∞

due to the assumed SNC property of Ω at x̄ . Thus ‖A∗ ỹ∗k ‖ → 0. By the above
arguments in case (a) we conclude that ‖ỹ∗k ‖ → 0 and hence ‖y∗k ‖ → 0, which
completes the proof of the theorem. �

3.2 Subdifferential Calculus and Related Topics

This section is devoted to subdifferential calculus for extended-real-valued
functions and some of its direct applications. First we develop calculus rules
for basic and singular subgradients that mainly follow from the corresponding
results for normal cones and coderivatives. Then we present an Asplund space
version of the approximate mean value theorem that has many important ap-
plications, some of which are given in this section. Calculus results allow us
to establish close relationships between graphical regularity and differentia-
bility of Lipschitzian mappings. In the final subsection we derive an extended
calculus for second-order subdifferentials in the framework of Asplund spaces.

3.2.1 Calculus Rules for Basic and Singular Subgradients

Unless otherwise stated, extended-real-valued functions under consideration
are assumed to be proper and finite at references points. In this subsection we
present principal calculus rules for basic and singular subgradients in fairly
general settings. The results obtained include calculus for lower/epigraphical
regularity of functions in the sense of Definition 1.91.

We start with a fundamental result of the first-order subdifferential cal-
culus containing general sum rules for basic and singular subgradients of
extended-real-valued functions.
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Theorem 3.36 (sum rules for basic and singular subgradients). Let
ϕi : X → IR, i = 1, . . . , n ≥ 2, be l.s.c. around x̄, and let all but one of these
functions be sequentially normally epi-compact (SNEC) at x̄. Assume that

[
x∗
1 + . . .+ x∗

n = 0, x∗
i ∈ ∂∞ϕi (x̄)

]
=⇒ x∗

i = 0, i = 1, . . . , n . (3.38)

Then one has the inclusions

∂(ϕ1 + . . .+ ϕn)(x̄) ⊂ ∂ϕ1(x̄) + . . .+ ∂ϕn(x̄) , (3.39)

∂∞(ϕ1 + . . .+ ϕn)(x̄) ⊂ ∂∞ϕ1(x̄) + . . .+ ∂∞ϕn(x̄) . (3.40)

If in addition each ϕi is lower regular at x̄, then the sum ϕ1 + . . .+ϕn is lower
regular at this point and (3.39) holds as equality. The equality also holds in
(3.40) and ϕ1+. . .+ϕn is epigraphically regular at x̄ if each ϕi is epigraphically
regular at this point.

Proof. First consider the case of n = 2. In this case the qualification condition
(3.38) reduces to

∂∞ϕ1(x̄) ∩
(
− ∂∞ϕ2(x̄)

)
= {0} ,

and inclusions (3.39) and (3.40) follow directly from the coderivative sum rule
of Theorem 3.10 applied to the epigraphical multifunctions Eϕi with Eϕ1+ϕ2 =
Eϕ1 + Eϕ2 . To prove the equality/regularity statements in the theorem, we
observe that

∂̂(ϕ1 + ϕ2)(x̄) ⊃ ∂̂ϕ1(x̄) + ∂̂ϕ2(x̄) . (3.41)

due to representation (1.51) of Fréchet subgradients. This implies the equality
in (3.39) and the lower regularity of ϕ1 + ϕ2 at x̄ when both ϕi are lower
regular at this point. By Proposition 1.92(ii) the epigraphical regularity of
any ϕ: X → IR requires, in addition to its lower regularity, that

∂̂∞ϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ N̂(x̄, ϕ(x̄)); epi ϕ)
}

= ∂∞ϕ(x̄) .

This allows us to derive the last conclusion of the theorem for the case of two
functions from the inclusion

∂̂∞(ϕ1 + ϕ2)(x̄) ⊃ ∂̂∞ϕ1(x̄) + ∂̂∞ϕ2(x̄) ,

which follows from (3.41) and Lemma 2.37. For n > 2 we prove the theorem
by induction, where the qualification condition (3.38) at the current step is
justified by using (3.40) at the previous step. �

When all but one of ϕi are locally Lipschitzian around x̄ , the qualification
and SNEC assumptions of the theorem are automatically satisfied due to
Theorem 1.26 and Corollary 1.81. Hence we always have (3.39) in this case,
which also follows from Theorem 2.33. Another special case of Theorem 3.36
concerns intersections of finitely many closed sets.
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Corollary 3.37 (basic normals to finite set intersections). Let
Ω1, . . . ,Ωn be subsets of X locally closed around their common point x̄. As-
sume that all but one of Ωi are SNC at x̄ and that the qualification condition

[
x∗
1 + . . .+ x∗

n = 0, x∗
i ∈ N(x̄ ;Ωi )

]
=⇒ x∗

i = 0, i = 1, . . . , n ,

is satisfied. Then one has the inclusion

N(x̄ ;Ω1 ∩ . . . ∩Ωn) ⊂ N(x̄ ;Ω1) + . . .+ N(x̄ ;Ωn) ,

where the equality holds and Ω1 ∩ . . .∩Ωn is normally regular at x̄ if each Ωi

is normally regular at this point.

Proof. Follows from Theorem 3.36 with ϕi = δ(·;Ωi ) due to Proposition 1.79.
It can also be derived by induction from Corollary 3.5 under the normal qual-
ification condition (3.10). �

Our next topic is subdifferentiation of the marginal functions

µ(x) := inf
{
ϕ(x, y)

∣
∣ y ∈ G(x)

}
with ϕ: X × Y → IR, G: X →→ Y

studied in Subsect. 1.3.4 in the framework of general Banach spaces. Here, con-
sidering the case of Asplund spaces, we obtain refined formulas for estimating
∂µ and ∂∞µ in terms of related constructions for ϕ and G under general as-
sumptions on these mappings. In this way we derive efficient chain rules for
basic and singular subgradients of compositions ϕ ◦ g involving nonsmooth
mappings. The next theorem provides general results in this direction. As in
Subsect. 1.3.4, we consider independent cases in (i,ii) corresponding to inner
semicontinuity and inner semicompactness of the argminimum mapping M(·).
Besides this, assertions (i,ii) are essentially different from those in (iii) and (iv)
in both assumptions and conclusions. In particular, (iii) requires milder PSNC
and qualification conditions in comparison with (i,ii) but for ϕ = ϕ(y), while
(iv) gives more precise inclusions (involving the mixed coderivative of G) for
singular subgradients of the marginal function when ϕ is locally Lipschitzian.

Theorem 3.38 (basic and singular subgradients of marginal func-
tions). Let

M(x) :=
{

y ∈ G(x)
∣
∣ ϕ(x, y) = µ(x)

}

define the argminimum mapping for the marginal function µ generated by ϕ
and G. The following hold:

(i) Given ȳ ∈ M(x̄), assume that M is inner semicontinuous at (x̄, ȳ),
that ϕ is l.s.c. around (x̄, ȳ), and that the graph of G is closed around this
point. Suppose also that either ϕ is SNEC at (x̄, ȳ) or G is SNC at (ȳ, x̄) and
that the qualification condition

(x∗, y∗) ∈ ∂∞ϕ(x̄, ȳ) ∩
(
− N((x̄, ȳ); gph G)

)
= {0}
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is satisfied. Then one has the inclusions

∂µ(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

[
x∗ + D∗

N G(x̄, ȳ)(y∗)
]
, (3.42)

∂∞µ(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

[
x∗ + D∗

N G(x̄, ȳ)(y∗)
]
. (3.43)

(ii) Assume that M is inner semicompact at x̄, that G is closed-graph and
ϕ is l.s.c. on gph G whenever x is near x̄, and that the other assumptions of
(i) are satisfied for every ȳ ∈ M(x̄). Then one has analogs of inclusions (3.42)
and (3.43), where the sets on the right-hand sides are replaced by their unions
over ȳ ∈ M(x̄).

(iii) Let ϕ = ϕ(y). Assume that G−1 is PSNC at (ȳ, x̄) and that the
qualification condition

∂∞ϕ(ȳ) ∩ D∗
M G−1(ȳ, x̄)(0) = {0}

is satisfied, instead of the SNC condition on G and the qualification condition
in (i) and (ii). Then one has the inclusions

∂µ(x̄) ⊂
⋃

y∗∈∂ϕ(ȳ)

D∗
N G(x̄, ȳ)(y∗), ∂∞µ(x̄) ⊂

⋃

y∗∈∂∞ϕ(ȳ)

D∗
N G(x̄, ȳ)(y∗) ;

∂µ(x̄) ⊂
⋃

y∗∈∂ϕ(ȳ)
ȳ∈M(x̄)

D∗
N G(x̄, ȳ)(y∗), ∂∞µ(x̄) ⊂

⋃

y∗∈∂∞ϕ(ȳ)
ȳ∈M(x̄)

D∗
N G(x̄, ȳ)(y∗)

under the remaining assumptions in (i) and (ii), respectively.
(iv) Given ȳ ∈ M(x̄) assume that ϕ = ϕ(x, y) is locally Lipschitzian

around (x̄, ȳ) and that M is inner semicontinuous around this point. Then

∂∞µ(x̄) ⊂ D∗
M G(x̄, ȳ)(0) .

If M is assumed to be inner semicompact around x̄ while ϕ is locally Lip-
schitzian around (x̄, ȳ) for every ȳ ∈ M(x̄), then one has

∂∞µ(x̄) ⊂
⋃

ȳ∈M(x̄)

D∗
M G(x̄, ȳ)(0) .

Proof. To justify (i) and (ii), apply first Theorem 1.108(i,ii) from Chap. 1 to
get the inclusion

∂µ(x̄) ⊂
{

x∗ ∈ X∗∣∣ (x∗, 0) ∈ ∂
[
ϕ + δ(·; gph G)](x̄, ȳ)

}

and its counterpart for ∂∞µ(x̄) with no qualification and SNC conditions
in general Banach spaces. Then applying the subdifferential sum rule from
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Theorem 3.36 to the sum ϕ(x, y) + δ
(
(x, y); gph G

)
, we arrive at (3.42) and

(3.43) under the assumptions made in (i) and (ii).
To justify (iii), we again use the Banach space results of Theorem 1.108

but then argue similarly to the proof of Proposition 3.12 and Theorem 3.13
replacing coderivatives by subdifferentials.

It remains to prove (iv). We justify only the first inclusion therein under the
inner semicontinuity assumption on the argminimum mapping M ; the proof
of the second one is similar under the inner semicompactness assumption
imposed on M . Observe that the marginal function µ is l.s.c. around x̄ under
the assumptions made.

To proceed, fix x∗ ∈ ∂∞µ(x̄) and find, by Theorem 2.38 in Asplund spaces,
sequences xk

µ→ x̄ , λk ↓ 0, and x∗
k ∈ ∂̂µ(xk) satisfying

λk x∗
k
w∗
→ x∗ as k → ∞ .

By the inner semicontinuity of M at (x̄, ȳ), there is a sequence of yk ∈ M(xk)
converging to ȳ; note that it is sufficient to impose such a requirement only
along of xk → x̄ with ∂̂µ(xk) 	= ∅. Fix k ∈ IN and rewrite the condition
x∗ ∈ ∂̂µ(xk) as follows: for every ε > 0 there is η > 0 such that

〈x∗
k , x − xk〉 ≤ µ(x) − µ(xk) + ε‖x − xk‖ whenever x ∈ xk + ηIB .

Invoking the function

ϑ(x, y) := ϕ(x, y) + δ
(
(x, y); gph G

)
,

we easily have the inequality
〈
(x∗

k , 0), (x − xk, y − yk)
〉
≤ ϑ(x, y) − ϑ(xk, yk) + ε

(
‖x − xk‖ + ‖y − yk‖

)

whenever (x, y) ∈ (xk, yk) + ηIB. This gives (x∗
k , 0) ∈ ∂̂ϑ(xk, yk). Now

taking into account the Lipschitz continuity of ϕ and applying the semi-
Lipschitzian fuzzy sum rule from Theorem 2.33(b) to the function ϑ along

some sequence εk ↓ 0, we find (x1k, y1k) → (x̄, ȳ), (x2k, y2k)
gph G→ (x̄, ȳ),

(x∗
1k, y∗1k) ∈ ∂̂ϕ(x1k, y1k), and (x∗

2k, y∗2k) ∈ N̂
(
(x2k, y2k); gph G

)
such that

‖x∗
k − x∗

1k − x∗
2k‖ ≤ εk and ‖y∗1k + y∗2k‖ ≤ εk for all k ∈ IN .

Invoking again the Lipschitz continuity of ϕ around (x̄, ȳ) with some modulus
�, we get ‖(x∗

1k, y∗1k)‖ ≤ �, and hence

λk

∥
∥(x∗

1k, y∗1k)
∥
∥→ 0 as k → ∞ .

This implies, by the above estimates, that

λk x∗
2k

w∗
→ x∗ and λk‖y∗2k‖ → 0 as k → ∞ .

Taking into account that λk(x∗
2k, y∗2k) ∈ N̂

(
(x2k, y2k); gph G

)
, we finally get

x∗ ∈ D∗
M G(x̄, ȳ)(0) by the construction of the mixed coderivative. This com-

pletes the proof of (iv) and of the whole theorem. �
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Remark 3.39 (singular subgradients of extended marginal and dis-
tance functions). The results obtained in Theorem 3.38 can be easily ex-
tended to marginal functions of two variables defined by

µ(x, y) := inf
{
ϕ(y, v)

∣
∣ v ∈ G(x)

}
.

Indeed, such functions are directly reduced to the standard form considered
above with respect to the new variable z := (x, y). Thus all the results of
Theorem 3.38 can be reformulated for µ(x, y). In particular, the counterpart
of the second inclusion in (iv) is written as

∂∞µ(x̄, ȳ) ⊂
⋃

v̄∈M(x̄,ȳ)

{
(x∗, 0)

∣
∣ x∗ ∈ D∗

M G(x̄, v̄)(0)
}

provided that the argminimum mapping

M(x, y) :=
{
v ∈ G(x)

∣
∣ ϕ(y, v) = µ(x, y)

}

is inner semicompact at (x̄, ȳ) and that ϕ is locally Lipschitzian around (ȳ, v̄)
for all v̄ ∈ M(x̄, ȳ). For the distance function

ρ(x, y) := dist
(

y; G(x)
)

to moving sets, which is a special case of the above marginal function with
ϕ(y, v) := ‖y − v‖, this gives the inclusion

∂∞ρ(x̄, ȳ) ⊂
{
(x∗, 0)

∣
∣ x∗ ∈ D∗

M G(x̄, ȳ)(0)
}

whenever ȳ ∈ G(x̄). Moreover, the latter inclusion holds as equality if ρ is
continuous around (x̄, ȳ). We refer the reader to the papers by Mordukhovich
and Nam [935, 936] for more results, proofs, and discussions.

Let us now present efficient conditions under which the main assumptions
of Theorem 3.38 automatically hold due to their characteristics in Chap. 1.
For simplicity we formulate this corollary only for assertion (i).

Corollary 3.40 (marginal functions with Lipschitzian or metrically
regular data). Given ȳ ∈ M(x̄), we assume that M is inner semicontinuous
at (x̄, ȳ). Then inclusions (3.42) and (3.43) and their counterparts in (iii) hold
if one of the following conditions is satisfied:

(a) either ϕ is Lipschitz continuous and the graph of G is closed around
(x̄, ȳ), or

(b) ϕ = ϕ(y) is l.s.c. around ȳ and G is metrically regular around (x̄, ȳ).

Proof. If ϕ is locally Lipschitzian around x̄ , then the SNEC and qualifica-
tion conditions of the theorem hold due to Theorem 1.26 and Corollary 1.81.
Note that inclusion (3.43) reduces in this case to ∂∞µ(x̄) ⊂ D∗

N G(x̄, ȳ)(0).
Assuming (b), we immediately have x∗ = 0 in the qualification condition of
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the theorem, and then y∗ = 0 due to the condition D∗
M G−1(ȳ, x̄)(0) = {0}

for the metric regularity in Theorem 1.54. Moreover, the metric regularity
of G around (x̄, ȳ) implies the PSNC property of G−1 at this point due to
Proposition 1.68 and Theorem 1.49. �

When G = g: X → Y is single-valued, the above marginal function reduces
to the composition ϕ(x, g(x)) := (ϕ ◦ g)(x). In this case we have the following
sharpening of Theorem 3.38 that contains subdifferential chain rules with
additional regularity and equality statements.

Theorem 3.41 (subdifferentiation of general compositions). Let
g: X → Y be Lipschitz continuous around x̄, and let ϕ: X × Y → IR be l.s.c.
around (x̄, ȳ) with ȳ := g(x̄). Then one has the following assertions:

(i) Assume that either ϕ is SNEC at (x̄, ȳ) or g is SNC at (ȳ, x̄) and
that the qualification condition of Theorem 3.38(i) holds with G = g. Then
the basic and singular subdifferentials of the composition µ = ϕ ◦ g satisfy
inclusions (3.42) and (3.43), which reduce to

∂(ϕ ◦ g)(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

[
x∗ + ∂〈y∗, g〉(x̄)

]
, (3.44)

∂∞(ϕ ◦ g)(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

[
x∗ + ∂〈y∗, g〉(x̄)

]
(3.45)

if g is strictly Lipschitzian around x̄.
(ii) Assume in addition to (i) that ϕ is lower regular at (x̄, ȳ) and that

either g is strictly differentiable at x̄ or it is N -regular at this point with
dim Y < ∞. Then the equality holds in (3.44) and ϕ ◦ g is lower regular at x̄.
If in addition ϕ is epigraphically regular at x̄, then the equality holds also in
(3.45) and ϕ ◦ g is epigraphically regular at x̄.

(iii) Let ϕ = ϕ(y). Assume that either ϕ is SNEC at ȳ or g−1 is PSNC
at (ȳ, x̄) and that the qualification condition of Theorem 3.38(iii) holds with
G = g. Then one has the inclusions

∂(ϕ ◦ g)(x̄) ⊂
⋃

y∗∈∂ϕ(ȳ)

D∗
N g(x̄)(y∗) ,

∂∞(ϕ ◦ g)(x̄) ⊂
⋃

y∗∈∂∞ϕ(ȳ)

D∗
N g(x̄)(y∗) ,

where the equalities hold under the additional assumptions of (ii).

Proof. Assertion (i) follows directly from Theorem 3.38(i) and the scalariza-
tion formula in Theorem 3.28. Note that since Y is Asplund, the strict and
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w∗-strict Lipschitzian conditions for g: X → Y are the same due to Propo-
sition 3.26. To prove assertion(ii), we combine the equality and regularity
statements in Theorems 1.110(i) and 3.36 taking into account that g is strictly
Lipschitzian around x̄ under the assumptions made in (ii). The proof of (iii)
is similar based on Theorem 3.38(iii). �

Observe that the qualification condition of Theorem 3.41(iii) reduces to

∂∞ϕ(ȳ) ∩ ker D̃∗
M g(x̄) = {0} ,

where the “reversed mixed coderivative” D̃∗
M is defined in (1.40). Since one

always has D̃∗
M g(x̄)(y∗) ⊂ D∗

N g(x̄)(y∗), the latter qualification condition is
implied by

∂∞ϕ(ȳ) ∩ ker D∗
N g(x̄) = {0} . (3.46)

As a corollary of Theorem 3.41, we obtain nonsmooth extensions, in the
framework of Asplund spaces, of the equality formula in Theorem 1.17 for
representing basic normals to inverse images.

Corollary 3.42 (inverse images under Lipschitzian mappings). Let
g: X → Y be Lipschitz continuous around x̄, and let Θ ⊂ Y be closed around
ȳ = g(x̄). Assume that either Θ is SNC at ȳ or g−1 is PSNC at (ȳ, x̄) and
that the qualification condition

N(ȳ;Θ) ∩ ker D̃∗
M g(x̄) = {0} .

is satisfied; these hold when g is metrically regular around x̄. Then

N(x̄ ; g−1(Θ)) ⊂
⋃[

D∗
N g(x̄)(y∗)

∣
∣
∣ y∗ ∈ N(ȳ;Θ)

]
,

where the equality is valid and g−1(Θ) is normally regular at x̄ if either g is
strictly differentiable at x̄ or it is N -regular at this point with dim Y < ∞.

Proof. Putting ϕ = ϕ(y) := δ(y;Θ), we immediately get these results from
Theorem 3.41 due to the relationships of Proposition 1.79. The inclusion for-
mula follows also from Theorem 3.4. �

The next corollary of Theorem 3.41 gives efficient chain rules for basic
and singular subgradients involving only subdifferential (but not coderivative)
constructions. Equality and regularity conditions are not formulated below,
since they are not different from those in Theorem 3.41.

Corollary 3.43 (chain rules for basic and singular subgradients). Let
g: X → Y be strictly Lipschitzian at x̄, let ϕ: Y → IR be l.s.c. around ȳ = g(x̄)
and SNEC at this point, and let the qualification condition

∂∞ϕ(ȳ) ∩ ker ∂〈·, g〉(x̄) = {0}
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be satisfied. Then one has

∂(ϕ ◦ g)(x̄) ⊂
⋃

y∗∈∂ϕ(ȳ)

∂〈y∗, g〉(x̄) ,

∂∞(ϕ ◦ g)(x̄) ⊂
⋃

y∗∈∂∞ϕ(ȳ)

∂〈y∗, g〉(x̄) .

Proof. It follows from Theorem 3.41(iii) and the scalarization formula of
Theorem 3.28 for representing the qualification condition (3.46) in the given
subdifferential form. It can be also derived directly from the coderivative
chain rule in Theorem 3.13 with the use of scalarization. �

The chain rules obtained easily imply relationships between “full” and
“partial” subgradients for functions of many variables. Given ϕ: X × Y → IR,
we denote by ∂xϕ(x̄, ȳ) and ∂∞x ϕ(x̄, ȳ), respectively, its basic partial subdif-
ferential and singular partial subdifferential in x at this point, i.e., the corre-
sponding subdifferentials of the function ϕ(·, ȳ) at x̄ .

Corollary 3.44 (partial subgradients). Let ϕ: X ×Y → IR be l.s.c. around
(x̄, ȳ) and SNEC at this point, and let the qualification condition

[
(0, y∗) ∈ ∂∞ϕ(x̄, ȳ)

]
=⇒ y∗ = 0

holds. Then one has the inclusions

∂xϕ(x̄, ȳ) ⊂
{

x∗ ∈ X∗∣∣ ∃y∗ ∈ Y ∗ with (x∗, y∗) ∈ ∂ϕ(x̄, ȳ)
}
, (3.47)

∂∞x ϕ(x̄, ȳ) ⊂
{

x∗ ∈ X∗∣∣ ∃y∗ ∈ Y ∗ with (x∗, y∗) ∈ ∂∞ϕ(x̄, ȳ)
}
. (3.48)

Moreover, ϕ(·, ȳ) is lower regular at x̄ and the equality holds in (3.47) if ϕ
is lower regular at (x̄, ȳ). If in addition ϕ is epigraphically regular at (x̄, ȳ),
then the equality holds also in (3.48) and ϕ(·, ȳ) is epigraphically regular at x̄.

Proof. We obviously have ϕ(x, ȳ) = (ϕ ◦ g)(x), where g: X → X × Y is a
smooth mapping given by g(x) := (x, ȳ). Then all the results follow directly
from Theorem 3.41. �

In Subsect. 1.3.4 we obtained product and quotient rules for subgradients
of locally Lipschitzian functions on Banach spaces as corollaries of a chain
rule.

Proposition 3.45 (refined product and quotient rules for basic sub-
gradients). Let ϕi : X → IR, i = 1, 2, be Lipschitz continuous around x̄. The
following hold:

(i) One always has
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∂(ϕ1 · ϕ2)(x̄) ⊂ ∂
(
ϕ2(x̄)ϕ1

)
(x̄) + ∂

(
ϕ1(x̄)ϕ2

)
(x̄) ,

where the equality holds and ϕ1 · ϕ2 is lower regular at x̄ if both functions
ϕ2(x̄)ϕ1 and ϕ1(x̄)ϕ2 are lower regular at this point.

(ii) Assume that ϕ2(x̄) 	= 0. Then

∂(ϕ1/ϕ2)(x̄) ⊂
∂
(
ϕ2(x̄)ϕ1

)
(x̄) − ∂

(
ϕ1(x̄)ϕ2

)
(x̄)

[ϕ2(x̄)]2
,

where the equality holds and ϕ1/ϕ2 is lower regular at x̄ if both functions
ϕ2(x̄)ϕ1 and −ϕ1(x̄)ϕ2 are lower regular at this point.

Proof. To prove (i), we apply the Lipschitzian sum rule from Theorem 3.36
to the equality

∂(ϕ1 · ϕ2)(x̄) = ∂
(
ϕ2(x̄)ϕ1 + ϕ1(x̄)ϕ2

)
(x̄)

obtained in Corollary 1.111(i). The proof of (ii) is similar involving the quo-
tient rule of Corollary 1.111(ii). �

Next we consider maximum functions of the form
(
max ϕi

)
(x) := max

{
ϕi (x)

∣
∣ i = 1, . . . , n

}
,

where ϕi : X → IR. Functions of this class are nonsmooth, and their subd-
ifferential properties are essentially different from those for functions of the
minimum type considered in Subsect. 1.3.4. In Proposition 1.113 we obtained
a formula for basic subgradients of the minimum of finitely many functions in
general Banach spaces. Its singular counterpart

∂∞
(
min ϕi

)
(x̄) ⊂

⋃{
∂∞ϕi (x̄)

∣
∣ i ∈ M(x̄)

}

is valid if X is Asplund; the proof is similar to the one in Proposition 1.113
with the use of Lemma 2.37.

The following theorem contains results for computing basic and singular
subgradients of maximum functions in Asplund spaces. One can see the dif-
ference between them and the corresponding results for minimum functions.
Given x̄ ∈ X , we define the sets

I (x̄) :=
{

i ∈ {1, . . . , n}
∣
∣ ϕi (x̄) =

(
max ϕi

)
(x̄)
}
,

Λ(x̄) :=
{
(λ1, . . . , λn)

∣
∣ λi ≥ 0,

n∑

i=1

λi = 1, λi
(
ϕi (x̄) −

(
max ϕi

)
(x̄)
)

= 0
}
.

Theorem 3.46 (subdifferentiation of maximum functions). Let ϕi be
l.s.c. around x̄ for i ∈ I (x̄) and be upper semicontinuous at x̄ for i /∈ I (x̄).
The following hold:
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(i) Assume that the functions ϕi are SNEC at x̄ for all but one i ∈ I (x̄)
and that the qualification condition (3.38) considered for i ∈ I (x̄) is satisfied.
Then one has

∂
(
max ϕi

)
(x̄) ⊂

⋃{ ∑

i∈I(x̄)

λi ◦ ∂ϕi (x̄)
∣
∣
∣ (λ1, . . . , λn) ∈ Λ(x̄)

}
,

∂∞
(
max ϕi

)
(x̄) ⊂

∑

i∈I(x̄)

∂∞ϕi (x̄) ,

where λ ◦ ∂ϕ(x̄) is defined as λ∂ϕ(x̄) when λ > 0 and as ∂∞ϕ(x̄) when λ =
0. Moreover, the maximum function is epigraphically regular at x̄ and both
inclusions above hold as equalities if each ϕi , i ∈ I (x̄), is epigraphically regular
at this point.

(ii) Assume that each ϕi is Lipschitz continuous around x̄. Then

∂
(
max ϕi

)
(x̄) ⊂

⋃{
∂
( ∑

i∈I(x̄)

λiϕi

)
(x̄)
∣
∣
∣ (λ1, . . . , λn) ∈ Λ(x̄)

}
,

where the equality holds and the maximum functions is lower regular at x̄ if
each ϕi is lower regular at this point.

Proof. Denote ᾱ :=
(
max ϕi

)
(x̄) and observe that (x̄, ᾱ) is an interior point

of the set epi ϕi for any i /∈ I (x̄) due to the upper semicontinuity assumption.
Then for n = 2 assertion (i) follows from Proposition 3.20 applied to the
epigraphical multifunctions Fi := Eϕi , i = 1, 2, and for n > 2 is proved by
induction. It can also be derived directly from Corollary 3.37.

To prove (ii), we observe that the maximum function is represented as the
composition ϕ ◦ g with

ϕ(y1, . . . , yn) := max
{

y1, . . . , yn
}
, g(x) :=

(
ϕ1(x), . . . , ϕn(x)

)
.

Applying Corollary 3.43 to this composition and taking into account the well-
known formula for subdifferentiation of the convex function g, which immedi-
ately follows from the equality in (i), we arrive at the refined inclusion in (ii).
Note that

∑

i∈I(x̄)

∂
(
λiϕi

)
(x̄) ⊂

∑

i∈I(x̄)

λi∂ϕi (x̄)

due to Theorem 3.36 in the Lipschitz case. Since the lower regularity of a lo-
cally Lipschitzian function agrees with its epigraphical regularity, the equal-
ity/regularity statement in (ii) now follows from the one in (i). �

In conclusion of this subsection we obtain a proper extension of the clas-
sical mean value theorem in a general nonsmooth setting. For its formulation



3.2 Subdifferential Calculus and Related Topics 307

we involve the two-sided symmetric subdifferential constructions defined in
(1.46). Given vectors a, b ∈ X , let us define

(b − a)⊥ :=
{

x∗ ∈ X∗∣∣ 〈x∗, b − a〉 = 0
}

and recall that [a, b] :=
{

a + t(b − a)
∣
∣ 0 ≤ t ≤ 1

}
with [a, b], [a, b), and (a, b]

defined accordingly.

Theorem 3.47 (mean values, extended). Let ϕ: X → IR be continuous
on an open set containing [a, b]. Assume that for every x ∈ (a, b) both ϕ and
−ϕ are SNEC at x (in particular, ϕ is SNC at this point) and that

∂∞,0ϕ(x) ∩ (b − a)⊥ = {0} .

Then one has the mean value inclusion

ϕ(b) − ϕ(a) ∈ 〈∂0ϕ(c), b − a〉 for some c ∈ (a, b) . (3.49)

Proof. It is proved in Proposition 1.115 that, for any function ϕ continuous
on [a, b], one has

ϕ(b) − ϕ(a) ∈ ∂0
t ϕ(a + θ(b − a)) with some θ ∈ (0, 1) ,

where the set on the right-hand side stands for the symmetric subdifferential
of the real function t → ϕ(a + t(b − a)) at t = θ . The latter function is
represented as the composition

ϕ(a + t(b − a)) = (ϕ ◦ g)(t), 0 ≤ t ≤ 1 ,

with a smooth mapping g: [0, 1] → X defined by g(t) := a + t(b − a). It
is easy to check that the SNEC and qualification conditions imposed in the
theorem ensure that all the assumptions of Corollary 3.43 are satisfied for
both ϕ and −ϕ in the composition. Applying the subdifferential chain rule
from this corollary and its upper subdifferential counterpart, we arrive at the
mean value inclusion (3.49) with c := a + θ(b − a). �

Finally, let us present a consequence of the above generalized mean value
theorem for the case of Lipschitzian functions. In this case all the assumptions
of the theorem are satisfied; moreover, we strengthen the mean value inclusion
for the class of lower regular functions.

Corollary 3.48 (mean value theorem for Lipschitzian functions). Let
ϕ be Lipschitz continuous on an open set containing [a, b]. Then (3.49) holds.
If in addition ϕ is lower regular on (a, b), then

ϕ(b) − ϕ(a) ∈ 〈∂ϕ(c), b − a〉 for some c ∈ (a, b) . (3.50)
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Proof. As mentioned before, the SNEC and qualification conditions au-
tomatically hold for Lipschitz continuous functions due to the results of
Sect. 1.3. It remains to justify the refined mean value inclusion (3.50) un-
der the lower regularity assumption. First we note that, by Theorem 3.41(ii),
the lower regularity of ϕ at c = a + θ(b − a) implies the lower regularity of
t → ϕ(a + t(b−a)) = (ϕ ◦g)(t) at θ . Since ∂(ϕ ◦g)(θ) 	= ∅ due to the Lipschitz
continuity of this function, its lower regularity gives ∂̂(ϕ ◦ h)(θ) 	= ∅. Hence
∂̂+(ϕ ◦h)(θ) ⊂ ∂̂(ϕ ◦h)(θ) by Proposition 1.87. In this case it follows from the
proof of Proposition 1.115 that

ϕ(b) − ϕ(a) ∈ ∂̂(ϕ ◦ g)(θ) ⊂ ∂(ϕ ◦ h)(θ) ,

which implies (3.50) by Corollary 3.43. �

Note that (3.49) cannot be generally superseded by (3.50). A simple coun-
terexample is provided by ϕ(x) = −|x | on [a, b] = [−1, 1] with ∂ϕ(0) = {−1, 1}
and ∂0ϕ(0) = [−1, 1].

3.2.2 Approximate Mean Value Theorem with Some Applications

This subsection is concerned with mean value results of a new type that are
grouped around the so-called approximate mean value theorem for lower semi-
continuous functions, which doesn’t have direct analogs in the classical calcu-
lus. Based on variational arguments, we obtain an Asplund space version of the
approximate mean value theorem in terms of Fréchet subgradients and derive
its corollaries important for various applications, some of which are presented
in this subsection. They include: characterizations of Lipschitzian behavior
of l.s.c. functions in terms of Fréchet subgradients and basic subgradients,
characterizations of strict Hadamard differentiability via these subgradients,
subdifferential characterizations of monotonicity and constancy properties for
l.s.c. functions, and relationships between the convexity of a given l.s.c. func-
tion and the monotonicity of its subdifferential mappings.

The main version of the approximate mean value theorem in Asplund
spaces is as follows.

Theorem 3.49 (approximate mean values for l.s.c. functions). Let
ϕ: X → IR be a proper l.s.c. function finite at two given points a 	= b. Consider
any point c ∈ [a, b) at which the function

ψ(x) := ϕ(x) − ϕ(b) − ϕ(a)
‖b − a‖ ‖x − a‖

attains its minimum on [a, b]; such a point always exists. Then there are
sequences xk

ϕ→ c and x∗
k ∈ ∂̂ϕ(xk) satisfying

lim inf
k→∞

〈x∗
k , b − xk〉 ≥

ϕ(b) − ϕ(a)
‖b − a‖ ‖b − c‖ , (3.51)
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lim inf
k→∞

〈x∗
k , b − a〉 ≥ ϕ(b) − ϕ(a) . (3.52)

Moreover, when c 	= a one has

lim
k→∞

〈x∗
k , b − a〉 = ϕ(b) − ϕ(a) .

Proof. The function ψ defined in the theorem is l.s.c., and hence ψ attains
its minimum over [a, b] at some point c. Since ψ(a) = ψ(b), one can always
take c ∈ [a, b). Without loss of generality we suppose that ϕ(a) = ϕ(b), i.e.,
ψ(x) = ϕ(x) for all x ∈ [a, b]. It is easy to check that the lower semicontinuity
of ϕ implies the existence of r > 0 such that ϕ is bounded from below over
the set Θ := [a, b] + r IB by some γ ∈ IR. Using the indicator function δ(·;Θ),
we define ϑ(x) := ϕ(x)+δ(x ;Θ), which is obviously l.s.c. on X . Then for each
k ∈ IN we take a real number rk ∈ (0, r) such that

ϕ(x) ≥ ϕ(c) − k−2 for all x ∈ [a, b] + rk IB

and choose tk ≥ k satisfying γ + tkrk ≥ ϕ(c) − k−2. Thus one has

ϕ(c) ≤ inf
X
ϑk + k−2, where ϑk(x) := ϑ(x) + tkdist(x ; [a, b])

is obviously l.s.c. on X . Applying the Ekeland variational principle from The-
orem 2.26(i) to this function, with the parameters ε = k−2 and λ = k−1, we
find xk ∈ X such that

‖xk − c‖ ≤ k−1, ϑk(xk) ≤ ϑk(c) = ϕ(c), and

ϑk(xk) ≤ ϑk(x) + k−1‖x − xk‖ for all x ∈ X .

The latter means that the function ϑk(x) + k−1‖x − xk‖ attains its minimum
at x = xk . Applying now Lemma 2.32(i) to this function with η = ηk ↓ 0 and
taking into account that xk ∈ intΘ for large k, we find sequences uk

ϕ→ c,
vk → c, u∗

k ∈ ∂̂ϕ(uk), v∗k ∈ ∂dist(vk ; [a, b]), and e∗k ∈ IB∗ such that

‖u∗
k + tkv

∗
k + k−1e∗k ‖ ≤ ηk, k ∈ IN . (3.53)

Note that ‖v∗k ‖ ≤ 1 and that

〈v∗k , b − vk〉 ≤ dist(b; [a, b]) − dist(vk ; [a, b]) ≤ 0, k ∈ IN .

Now we need to choose wk ∈ [a, b] having the same properties as vk . Picking
a projection wk ∈ Π(vk ; [a, b]), we get

〈v∗k , b − wk〉 = 〈v∗k , b − vk〉 + 〈v∗k , vk − wk〉 ≤ dist(b; [a, b]) − dist(vk ; [a, b])

+ ‖v∗k ‖ · ‖vk − wk‖ ≤ −dist(vk ; [a, b]) + dist(vk ; [a, b]) = 0 .
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The latter yields 〈v∗k , b − a〉 ≤ 0 for large k ∈ N , since wk → c 	= b and
(x − b)‖y − b‖ = (y − b)‖x − b‖ whenever x, y ∈ [a, b]. Now using (3.53), we
arrive at

lim inf
k→∞

〈u∗
k , b − uk〉 ≥ 0, lim inf

k→∞
〈u∗

k , b − a〉 ≥ 0 ,

which gives (3.51) and (3.52). Finally, let us assume that c 	= a. Then vk 	= a
for large k ∈ IN , and hence 〈v∗k , b − c〉 = 0. This implies 〈u∗

k , b − a〉 → 0 by
the above arguments and completes the proof of the theorem. �

It is worth mentioning that the mean value inequality (3.52) holds even in
the case of ϕ(b) = ∞. This directly implies a useful estimate of the increment
of a given function in terms of its Fréchet subgradients.

Corollary 3.50 (mean value inequality for l.s.c. functions). Let ϕ: X →
IR be a proper l.s.c. function finite at some point a ∈ X . Then the following
assertions hold:

(i) For any b ∈ X there are c ∈ [a, b] and a pair of sequences xk → c and
x∗

k ∈ ∂̂ϕ(xk) satisfying the mean value inequality (3.52).
(ii) For any b ∈ X and ε > 0 one has the estimate

|ϕ(b) − ϕ(a)| ≤ ‖b − a‖ sup
{
‖x∗‖

∣
∣
∣ x∗ ∈ ∂̂ϕ(c), c ∈ [a, b] + ε IB

}
.

Proof. To get (i), it remains to prove (3.52) when ϕ(b) = ∞. This follows
from Theorem 3.49 applied for each n ∈ IN to the sequence of functions

φn(x) :=






ϕ(x) if x 	= b ,

ϕ(a) + n if x = b .

The estimate in (ii) follows directly from (i). �

When ϕ is Lipschitz continuous, we can pass to the limit in (3.52) and
obtain the mean value inequality in terms of basic subgradients.

Corollary 3.51 (mean value inequality for Lipschitzian functions).
Let ϕ be Lipschitz continuous on an open set containing [a, b]. Then one has

〈x∗, b − a〉 ≥ ϕ(b) − ϕ(a) for some x∗ ∈ ∂ϕ(c), c ∈ [a, b) .

Proof. By Theorem 3.49 we have a point c ∈ [a, b) and sequences xk → c,
x∗

k ∈ ∂̂ϕ(xk) satisfying (3.52). Since f is locally Lipschitzian, the sequence {x∗
k }

is bounded due to Proposition 1.85(ii). Remembering that X is Asplund, we
select a subsequence of {x∗

k } that converges weak∗ to some x∗ ∈ ∂ϕ(c). Then
the result follows by passing to the limit in (3.52). �
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Let us present some important applications of the approximate mean value
theorem. The first application gives characterizations of the local Lipschitzian
property of a l.s.c. function on Asplund spaces in terms of its Fréchet subgra-
dients and basic subgradients.

Theorem 3.52 (subdifferential characterizations of Lipschitzian
functions). Let ϕ: X → IR be a proper l.s.c. function finite at some point
x̄. Then the properties (a)–(c) involving a constant � ≥ 0 are equivalent:

(a) There is γ > 0 such that

∂̂ϕ(x) ⊂ �IB∗ whenever ‖x − x̄‖ < γ, |ϕ(x) − ϕ(x̄)| < γ .

(b) There is a neighborhood U of x̄ such that ∂̂ϕ(x) ⊂ �IB∗ for all x ∈ U .
(c) ϕ is Lipschitz continuous around x̄ with modulus �.

Moreover, the local Lipschitz continuity of ϕ around x̄ with some modulus
� ≥ 0 is equivalent to the following:

(d) ϕ is SNEC at x̄ with ∂∞ϕ(x̄) = {0}.

Proof. Without loss of generality we assume for simplicity that x̄ = 0 and
ϕ(0) = 0. First prove that (a)⇒(b). To establish (b) with U := η(int IB), it is
suffices to show that there is η > 0 such that |ϕ(x)| < γ whenever ‖x‖ < η.
It immediately follows from the lower semicontinuity of ϕ at x̄ = 0 that
there is ν > 0 so small that ϕ(x) > −γ if ‖x‖ < ν. To justify (b) with η :=
min{ν, γ, γ /�}, we need to prove that ϕ(x) < γ whenever ‖x‖ < min{γ, γ /�}.

Suppose that the latter is not true, i.e., there is b ∈ X satisfying ‖b‖ <
min{γ, γ /�} and ϕ(b) ≥ γ . Consider the l.s.c. function φ: X → IR defined by

φ(x) := min{ϕ(x), γ } with φ(0) = 0, φ(b) = γ .

Applying to this function the mean value inequality (3.52) from Theorem 3.49

on the interval [0, b], we find a point c ∈ [0, b) and a pair of sequences xk
φ→ c,

x∗
k ∈ ∂̂φ(xk) satisfying

lim inf
k→∞

〈x∗
k , b〉 ≥ φ(b) − φ(0) = γ, hence lim inf

k→∞
‖x∗

k ‖ ≥ γ /‖b‖ > � .

Recall that the chosen point c in Theorem 3.49 minimizes the function

ψ(x) := φ(x) − ‖b‖−1‖x‖
(
φ(b) − φ(0)

)
over [0, b] ,

which implies that φ(c) ≤ γ ‖b‖−1‖c‖ < γ . Thus φ(xk) < γ along the sequence

xk
φ→ c, and one has φ(xk) = ϕ(xk) for all k sufficiently large. It easily follows

from the definitions that

∂̂φ(xk) ⊂ ∂̂ϕ(xk) due to φ(x) ≤ ϕ(x), x ∈ X .

and hence x∗
k ∈ ∂̂ϕ(xk) for large k. Since ‖x∗

k ‖ > �, this contradicts (a) and
thus proves (a)⇒(b).
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Implication (b)⇒(c) follows from the estimate in Corollary 3.50(ii), impli-
cation (c)⇒(b) is established in Proposition 1.85(ii), and implication (b)⇒(a)
is trivial. It remains to prove that the local Lipschitz continuity of ϕ around x̄
is equivalent to (d). In fact, we know from Chap. 1 that the local Lipschitzian
property of ϕ implies both conditions in (d) in any Banach spaces; see Theo-
rem 1.26 and Corollary 1.81. Now let us prove the converse implication in the
Asplund space setting.

Let (d) hold. Due to the equivalence (a)⇔(c), it suffices to show that (a)
is satisfied with some positive numbers � and γ . Assuming the contrary, we
find sequences xk

ϕ→ x̄ and x∗
k ∈ ∂̂ϕ(xk) with ‖x∗

k ‖ → ∞ as k → ∞. Then

( x∗
k

‖x∗
k ‖
,− 1

‖x∗
k ‖

)
∈ N̂((xk, ϕ(xk)); epi ϕ), k ∈ IN .

Putting x̃∗
k := x∗

k /‖x∗
k ‖ and taking into account that X is Asplund, we se-

lect a subsequence of {x̃∗
k } that converges weak∗ to some x∗ with (x∗, 0) ∈

N((x̄, ϕ(x̄)); epi ϕ). Thus x∗ ∈ ∂∞ϕ(x̄), and one gets x∗ = 0 due to the second
property in (d). Now the SNEC property of ϕ at x̄ implies that ‖x̃∗

k ‖ → 0, a
contradiction. This shows that ϕ must be locally Lipschitzian around x̄ with
some modulus �, which completes the proof of the theorem. �

The result obtained easily implies the following generalization of the fun-
damental fact in classical analysis ensuring that a function whose derivative
is always zero must be constant. Recall that this fact is a direct corollary of
the classical mean value theorem and bridges the gap between differentiation
and integration.

Corollary 3.53 (subgradient characterization of constancy for l.s.c.
functions). Let ϕ: X → IR be a proper l.s.c. function, and let U ⊂ X be open.
Then ϕ is locally constant on U if and only if

x∗ ∈ ∂̂ϕ(x) =⇒ x∗ = 0 for all x ∈ U .

The latter is equivalent to ϕ being constant on U if U is connected.

Proof. This follows from Theorem 3.52 for � = 0. �

As the next application of the approximate mean value theorem, we char-
acterize the notion of strict differentiability in the sense of Hadamard for
real-valued functions on Asplund spaces. The following characterizations in-
volve Fréchet and basic subgradients showing, in particular, that the class of
functions strictly Hadamard differentiable at a given point corresponds to the
class of locally Lipschitzian functions whose basic subdifferential is a singleton.

Recall that a function ϕ: X → IR is strictly Hadamard differentiable at
x̄ , with the strict Hadamard derivative x∗ denoted by ∇ϕ(x̄) if there is no
confusion, provided that
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lim
x→x̄
t↓0

[
sup
v∈C

∣
∣
∣
ϕ(x + tv) − ϕ(x)

t
− 〈x∗, v〉

∣
∣
∣
]

= 0 (3.54)

for any compact subset C ⊂ X . Clearly, every function strictly differentiable
at x̄ in the Fréchet sense (i.e., in the sense of Definition 1.13) is strictly
Hadamard differentiable at x̄ , but not vice versa. In finite dimensions these
notions obviously coincide.

Theorem 3.54 (subgradient characterizations of strict Hadamard
differentiability). Let ϕ: X → IR be finite at x̄. The following properties
involving a functional ξ ∈ X∗ are equivalent:

(a) ϕ is Lipschitz continuous around x̄, and for every sequences xk → x̄

and x∗
k ∈ ∂̂ϕ(xk) one has x∗

k
w∗
→ ξ .

(b) ϕ is Lipschitz continuous around x̄ with ∂ϕ(x̄) = {ξ}.
(c) ϕ is strictly Hadamard differentiable at x̄ with ∇ϕ(x̄) = ξ .

Proof. Without loss of generality we consider the case of x̄ = 0, ϕ(0) = 0,
and ξ = 0 in the theorem. To prove (a)⇒(b), we pick an arbitrary x∗ ∈ ∂ϕ(0)

and by Theorem 2.34 find sequences xk → 0 and x∗
k ∈ ∂̂ϕ(xk) with x∗

k
w∗
→ x∗ as

k → ∞. By (a) one has x∗ = 0, i.e., ∂ϕ(0) = {0} and (b) holds.
Let us prove (b)⇒(c) arguing by contradiction. Assume that there is a

compact subset C ⊂ X for which the limit in (3.54) either doesn’t exist or is
different from zero. In both cases we can select subsequences (without rela-
beling) of xk → 0, tk ↓ 0, and vk ∈ C for which

lim
k→∞

ϕ(xk + tkvk) − ϕ(xk)
tk

:= α > 0 ;

this takes into account that the above ratio is bounded due to the Lipschitz
continuity of ϕ. Now using Corollary 3.50(i), we find sequences ck ∈ X and
x∗

k ∈ ∂̂ϕ(ck) satisfying

dist(ck ; [xk, xk + tkvk ]) ≤ k−1, 〈x∗
k , tkvk〉 ≥ ϕ(xk + tkvk) − ϕ(xk) − tkk−1 .

The first of the above relations implies that ck → 0. Since C is compact,
there is a subsequence of {vk} converging to some v ∈ C . Also we have a
subsequence of {x∗

k } that converges weak∗ to some x∗ ∈ ∂ϕ(0); this is due to
boundedness of x∗

k ∈ ∂̂ϕ(ck) and the Asplund property of X . Passing to the
limit along these subsequences in the above relations, one has

‖x∗‖ · ‖v‖ ≥ 〈x∗, v〉 = lim
k→∞

〈x∗
k , vk〉

≥ lim
k→∞

ϕ(xk + tkvk) − ϕ(xk)
tk

:= α > 0 ,

which yields x∗ 	= 0 and contradicts (b).
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It remains to show that (c)⇒(a). Let U ⊂ X∗ be an arbitrary weak∗

neighborhood of ξ = 0. By shrinking U if necessary we may assume that it
has the form U = {x∗ ∈ X∗| 〈x∗, v j 〉 < 1, j = 1, . . . , n} for some finite subset
v1, . . . , vn of X with r := max{‖v1‖, . . . , ‖vn‖}. Using property (c), we find
η > 0 so small that

[
ϕ(x + tv j ) − ϕ(x)

]
/t < 1/2 for all j = 1, . . . , n

whenever x ∈ ηIB and 0 < t < η. Now picking any x∗ ∈ ∂̂ϕ(x) with some
x ∈ ηIB, we get from (1.51) that

〈x∗, u − x〉 ≤ ϕ(u) − ϕ(x) + ‖u − x‖/(2r) for all u near x .

Putting there u = x + tv j , j = 1, . . . , n, one has

〈x∗, v j 〉 ≤
ϕ(x + tv j ) − ϕ(x) + t‖v j‖/(2r)

t
<

1
2

+
r
2r

= 1

for all t > 0 sufficiently small. Thus x∗ ∈ U and ∂̂ϕ(x) ⊂ U for all x sufficiently
close to the origin. This implies, by Theorem 3.52, the Lipschitz continuity of
ϕ around x̄ = 0 and also the sequential condition in (a). �

Next we consider an application of the approximate mean value theorem
to a subgradient generalization of the classical fact that a function whose
derivative is nonpositive must itself be nonincreasing.

Theorem 3.55 (subgradient characterization of monotonicity for
l.s.c. functions). Let U ⊂ X be an open convex set on which a proper l.s.c.
function ϕ is defined, and let K ⊂ X be a cone with the dual/polar cone
K ∗ := {x∗ ∈ X∗| 〈x∗, x〉 ≤ 0}. The following properties are equivalent:

(a) The function ϕ is K -nonincreasing, i.e.,

x, u ∈ U, u − x ∈ K =⇒ ϕ(u) ≤ ϕ(x) .

(b) For every x ∈ U one has ∂̂ϕ(x) ⊂ K ∗.

Proof. To prove (a)⇒(b), we take any x ∈ U and any x∗ ∈ ∂̂ϕ(x). Then for
any γ > we find η > 0 such that

〈x∗, u − x〉 ≤ ϕ(u) − ϕ(x) + γ ‖u − x‖ whenever u ∈ x + ηIB .

Fix v ∈ K and put u = x + tv with t > 0 in this inequality. The monotonicity
property in (a) implies that

〈x∗, v〉 ≤ ϕ(x + tv) − ϕ(x)
t

+ γ − ‖v‖ ≤ 0 ,

which therefore justifies (b).
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To prove the opposite implication (b)⇒(a), we suppose the contrary and
thus find two points x, u ∈ U satisfying u−x ∈ K with ϕ(u) > ϕ(x). Applying
Corollary 3.50(i), one gets a point c ∈ [x, u] and a pair of sequences xk → c
and x∗

k ∈ ∂̂ϕ(xk) satisfying

lim inf
k→∞

〈x∗
k , u − x〉 ≥ ϕ(u) − ϕ(x) > 0 .

Thus for large k we have 〈x∗
k , u − x〉 > 0, which contradicts (b). �

Taking K = X in Theorem 3.55, we arrive at the subgradient characteri-
zation of constancy obtained above in Corollary 3.53.

Our last application in this subsection establishes the equivalence between
the convexity of a l.s.c. function on an Asplund space and the monotonicity
of its subdifferential mappings generated by both Fréchet and basic subgra-
dients. Recall that a set-valued mapping F : X →→ X∗ between a Banach space
and its dual in monotone if

〈x∗ − u∗, x − u〉 ≥ 0 for any x, u ∈ X and x∗ ∈ F(x), u∗ ∈ F(u) .

Theorem 3.56 (subdifferential monotonicity and convexity of l.s.c.
functions). Let ϕ: X → IR be proper and l.s.c. on X . Then each of the subd-
ifferential mappings ∂̂ϕ: X →→ X∗ and ∂ϕ: X →→ X∗ is monotone if and only if
ϕ is convex.

Proof. If ϕ is convex, then both subdifferential mappings ∂̂ϕ and ∂ϕ reduce
to the subdifferential mapping of convex analysis, which is well known to be
monotone. Also, it follows from the representation of ∂ϕ in Theorem 2.34
that the monotonicity of ∂̂ϕ in Asplund spaces implies the monotonicity of
∂ϕ. Thus it remains to prove that if ∂̂ϕ is monotone, then ϕ must be convex.

First let us show that

∂̂ϕ(x) =
{

x∗ ∈ X∗∣∣ 〈x∗, u − x〉 ≤ ϕ(u) − ϕ(x) for all u ∈ X
}

(3.55)

if ∂̂ϕ is monotone and x, u ∈ dom ϕ. The inclusion “⊃” in (3.55) is obvious.
To prove the opposite inclusion, we consider x, u ∈ dom ϕ, x∗ ∈ ∂̂ϕ(x) and
use inequality (3.51) from Theorem 3.49. It gives sequences xk → c ∈ [u, x)
and x∗

k ∈ ∂̂ϕ(xk) such that

ϕ(x) − ϕ(u) ≤ ‖x − u‖
‖x − c‖ lim inf

k→∞
〈x∗

k , x − xk〉 .

Then the monotonicity of the subdifferential mapping ∂̂ϕ and the equality
‖x − u‖(x − c) = (x − u)‖x − c‖ imply that

ϕ(x) − ϕ(u) ≤ ‖x − u‖
‖x − c‖ lim inf

k→∞
〈x∗, x − xk〉 = 〈x∗, x − u〉 ,

which justifies the inclusion “⊂” in (3.55) and hence the equality therein.



316 3 Full Calculus in Asplund Spaces

Now using (3.55), we prove that ϕ is convex. Take arbitrary u, x ∈ dom ϕ
and consider its convex combination v := λu + (1 − λ)x with 0 < λ < 1. By
Theorem 2.29 the domain of ∂̂ϕ is dense in the graph of ϕ. Hence there is a
sequence uk

ϕ→ u with ∂̂ϕ(uk) 	= ∅. Without loss of generality we suppose that
0 ∈ ∂̂ϕ(uk). Put vk := λuk + (1 − λ)x and show that vk ∈ dom ϕ for any fixed
k. Assuming the contrary, we take α > ϕ(x) and define the function

ψ(z) :=






ϕ(z) if z 	= vk ,

α if z = vk .

Applying Theorem 3.49 to this function, we get c ∈ [x, vk) and a pair of
sequences zn → c and z∗n ∈ ∂̂ψ(zn) such that

lim inf
n→∞

〈z∗n , vk − zn〉 ≥
‖vk − c‖
‖vk − x‖

(
α − ϕ(x)

)
> 0,

lim inf
n→∞

〈z∗n , vk − x〉 ≥ α − ϕ(x) .

It follows from the monotonicity of ∂̂ϕ and the choice of 0 ∈ ∂̂ϕ(uk) that

0 ≥ lim inf
n→∞

〈z∗n , uk − zn〉 ≥ lim inf
n→∞

〈z∗n , vk − zn〉 + lim inf
n→∞

〈z∗n , uk − vk〉

= lim inf
n→∞

〈z∗n , vk − zn〉 + λ−1(1 − λ) lim inf
n→∞

〈z∗n , vk − x〉

≥ λ−1(1 − λ)
(
α − ϕ(x)

)
,

which contradicts α > ϕ(x). Thus vk ∈ dom ϕ for all k ∈ IN . To justify the
convexity of ϕ, we consider the following two cases:

(i) Assume that vk is not a local minimizer for ϕ. Then choose ṽk so that
‖ṽk − vk‖ < k−1 and ϕ(ṽk) < ϕ(vk). Fix k and apply Theorem 3.49 to the
function ϕ on the interval [ṽk, vk ]. In this way we find ck ∈ [ṽk, vk) and a pair
of sequences zn → ck as n → ∞ and z∗n ∈ ∂̂ϕ(zn) satisfying

lim inf
n→∞

〈z∗n , vk − zn〉 ≥
‖vk − ck‖
‖vk − ṽk‖

(
ϕ(vk) − ϕ(ṽk)

)
> 0, n ∈ IN .

This implies by (3.55) that

ϕ(x) − ϕ(zn) ≥ 〈z∗n , x − zn〉, ϕ(uk) − ϕ(zn) ≥ 〈z∗n , uk − zn〉 .

Involving the lower semicontinuity of ϕ, we therefore have

λϕ(uk) + (1 − λ)ϕ(x) ≥ lim inf
n→∞

[
ϕ(zn) + 〈z∗n , vk − zn〉

]
≥ ϕ(ck)

for all k ∈ IN . Passing to the limit as k → ∞, one has
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λϕ(u) + (1 − λ)ϕ(x) ≥ ϕ(v) = ϕ(λu + (1 − λ)x) . (3.56)

(ii) Let now vk be a local minimizer for ϕ. Then 0 ∈ ∂̂ϕ(vk), and by (3.55)
we get ϕ(x) ≥ ϕ(vk) and ϕ(uk) ≥ ϕ(vk), which implies λϕ(uk) + (1− λ)ϕ(x) ≥
ϕ(vk). Passing to the limit as k → ∞ in this case, we again arrive at (3.56)
and complete the proof of the theorem. �

3.2.3 Connections with Other Subdifferentials

In Subsect. 2.5.2A we described the constructions of Clarke’s generalized gra-
dient/subdifferential and normal cone as well as various modifications of Ioffe’s
“approximate” normals and subgradients in arbitrary Banach spaces. Now we
establish precise relationships between them and our basic normal and sub-
gradient constructions in the framework of Asplund spaces. Let us start with
the Clarke normal cone NC(x̄ ;Ω) and subdifferential ∂Cϕ(x̄) defined in (2.72)
and (2.73), respectively. Recall that the space X in question is supposed to be
Asplund unless otherwise stated, and that cl∗ stands for the weak∗ topological
closure of a set in X∗.

Theorem 3.57 (relationships with Clarke normals and subgradi-
ents). The following assertions hold:

(i) Let Ω ⊂ X be locally closed around x̄ ∈ Ω. Then

NC(x̄ ;Ω) = cl∗co N(x̄ ;Ω) .

(ii) Let ϕ: X → IR be proper and l.s.c. around x̄ ∈ dom ϕ. Then

∂Cϕ(x̄) = cl∗
[
co ∂ϕ(x̄) + co ∂∞ϕ(x̄)

]
= cl∗co

[
∂ϕ(x̄) + ∂∞ϕ(x̄)

]
. (3.57)

If, in particular, ϕ is Lipschitz continuous around x̄, then

∂Cϕ(x̄) = cl∗co ∂ϕ(x̄) . (3.58)

Proof. According to the four-step procedure in the definition of Clarke’s
constructions described in Subsect. 2.5.2A, we begin with proving (3.58) and
first establish the representations

ϕ◦(x̄ ; h) = max
{
〈x∗, h〉

∣
∣ x∗ ∈ cl∗∂ϕ(x̄)

}

= sup
{
〈x∗, h〉

∣
∣ x∗ ∈ ∂ϕ(x̄)

} (3.59)

for the generalized directional derivative (2.69) of a locally Lipschitzian func-
tion. Indeed, by definition of ϕ◦(x̄ ; h) for each h ∈ X one has sequences xk → x̄
and tk ↓ 0 such that

ϕ(xk + tkh) − ϕ(xk)
tk

→ ϕ◦(x̄ ; h) as k → ∞ .
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Applying Theorem 3.49 to ϕ on the interval [xk, xk + tkh] for each k, we find
vn → ck ∈ [xk, xk + tkh) as n → ∞ and v∗n ∈ ∂̂ϕ(vn) with

ϕ(xk + tkh) − ϕ(xk) ≤ tk lim inf
n→∞

〈v∗n , h〉, k ∈ IN .

Passing to the limit first as n → ∞ and then as k → ∞, we get (3.59), which
implies (3.58) due to definition (2.70) of Clarke’s generalized gradient for
locally Lipschitzian functions. Next we apply (3.58) to the distance function
dist(·;Ω) for a closed set Ω ⊂ X and obtain
⋃

λ>0

λ∂Cdist(x̄ ;Ω) =
⋃

λ>0

λ
[
cl∗co ∂dist(x̄ ;Ω)

]
⊂ cl∗co

[ ⋃

λ>0

λ∂dist(x̄ ;Ω)
]
.

This gives NC(x̄ ;Ω) ⊂ cl∗co N(x̄ ;Ω) due to definition (2.72) of the Clarke
normal cone and Theorem 1.97 on calculating basic normals via basic sub-
gradients of the distance function. The opposite inclusion in (i) follows from
N(x̄ ;Ω) ⊂ NC(x̄ ;Ω) and the fact that Clarke’s normal cone is convex and
closed in the weak∗ topology of X∗; see Subsect. 2.5.2A.

It remains to prove representation (3.57) for l.s.c. functions. Since ∂∞ϕ(x̄)
is a cone, one always has

co
[
∂ϕ(x̄) + ∂∞ϕ(x̄)

]

= co ∂ϕ(x̄) + co ∂∞ϕ(x̄) ;

thus it sufficient to justify the first equality in (3.57). Picking an arbitrary
subgradient x∗ ∈ ∂Cϕ(x̄) and using its definition (2.73) together with the

above representation (i) of the Clarke normal cone, we find a net x∗
ν

w∗
→ x∗

satisfying (x∗
ν ,−1) ∈ co N((x̄, ϕ(x̄)); epi ϕ) for all ν. Fix ν and find p(ν) ∈ IN ,

α jν ≥ 0, x∗
jν ∈ X∗, and λ jν ∈ IR, j = 1, . . . , p(ν), such that

(x∗
ν ,−1) =

p(ν)∑

j=1

α jν(x∗
jν,−λ jν),

(x∗
jν,−λ jν) ∈ N((x̄, ϕ(x̄)); epi ϕ),

p(ν)∑

j=1

α jν = 1 .

By Proposition 1.76 one has λ jν ≥ 0; so

x∗
jν ∈






λ jν∂ϕ(x̄) if λ jν > 0 ,

∂∞ϕ(x̄) if λ jν = 0 .

This provides the representation x∗
jν = λ jνv

∗
jν + u∗

jν with v∗jν ∈ ∂ϕ(x̄) and

u∗
jν ∈ ∂∞ϕ(x̄), where u∗

jν = 0 if λ jν > 0. Observing that
∑p(ν)

j=1 α jνλ jν = 1 for
each ν, we get
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x∗
ν =

p(ν)∑

j=1

α jν
(
λ jνv

∗
jν + u∗

jν

)
⊂ co ∂ϕ(x̄) + co ∂∞ϕ(x̄) ,

which proves the inclusion “⊂” in (3.57) by passing to the limit with respect
to ν. To prove the opposite inclusion, take any x∗ ∈ cl∗

[
co ∂ϕ(x̄)+co ∂∞ϕ(x̄)

]

and find a bet x∗
ν
w∗
→ x∗ satisfying

x∗
ν =

p(ν)∑

j=1

α jνv
∗
jν +

q(ν)∑

j=1

β jνu∗
jν with

p(ν)∑

j=1

α jν = 1,
q(ν)∑

j=1

β jν = 1 ,

p(ν), q(ν) ∈ IN , α jν ≥ 0, β jν ≥ 0, v∗jν ∈ ∂ϕ(x̄), and u∗
jν ∈ ∂∞ϕ(x̄) for all ν.

Due to the convexity of NC we have

(x∗
ν ,−1) =

p(ν)∑

j=1

α jν(v∗jν,−1) +
q(ν)∑

j=1

β jν(u∗
jν, 0) ∈ NC((x̄, ϕ(x̄)); epi ϕ) .

By (2.73) this yields x∗ ∈ ∂Cϕ(x̄), since NC is weak∗ closed. �

Next let us establish relationships between our basic normals and sub-
gradients and the corresponding “approximate” constructions described in
Subsect. 2.5.2B. First observe that due to the fuzzy sum rule from Theo-
rem 2.33 every Asplund space is a “weakly trustworthy” space in the sense
of Ioffe [593]. Hence the A-subdifferential (2.75) of any l.s.c. function on an
Asplund space admits the simplified representation

∂Aϕ(x̄) = Lim sup
x

ϕ→x̄
ε↓0

∂−ε ϕ(x) (3.60)

in terms of the topological Painlevé-Kuratowski upper limit of ε-Dini sub-
gradients defined in Subsect. 2.5.2B. Along with (3.60) and the associated G-
normal cone NG , the G-subdifferential ∂G , and their nuclei Ñ and ∂̃G described
in (2.76) and (2.77), we consider the corresponding sequential constructions
defined by

∂σAϕ(x̄) := Lim sup
x

ϕ→x̄
ε↓0

∂−ε ϕ(x), Ñ σ
G(x̄ ;Ω) :=

⋃

λ>0

λ∂σAdist(x̄ ;Ω) ,

∂̃σGϕ(x̄) :=
{

x∗ ∈ X∗∣∣ (x∗,−1) ∈ Ñ σ
G((x̄, ϕ(x̄)); epi ϕ)

}
.

In what follows we establish relationships between all these constructions and
our basic (sequential) normal cone N and subdifferential ∂ in Asplund spaces.

Recall that a Banach space X is weakly compactly generated (WCG) if
there is a weakly compact set K ⊂ X such that X = cl (span K ). Canonical
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examples of WCG spaces are reflexive spaces that are weakly compactly gen-
erated by their balls. Every separable Banach space is also WCG, even norm
compactly generated: take K :=

{
k−1xk, k ∈ IN

}
∪{0}, where {xk} is a dense

sequence in the unit sphere of X . On the other hand, there are many Banach
and Asplund spaces that are not WCG. We refer the reader to the books by
Diestel [332] and Fabian [416] for various results, examples, and discussions
on WCG spaces. Let us mention the following fundamental characterization
of WCG spaces known in the literature as an interpolation theorem (see, e.g.,
[416, Theorem 1.2.3] with a nice and relatively simple proof): a Banach space
X is WCG if and only if there is a reflexive space Y and an injective contin-
uous linear operator A: Y → X with the dense range. Note that subspaces of
WCG Banach spaces may not be themselves WCG, which is not however the
case for WCG Asplund spaces. Moreover, the WCG property substantially
narrows the class of Asplund spaces; it implies, in particular, the existence of
a Fréchet differentiable renorm.

The next lemma describes connections between weak∗ topological and se-
quential limits that are important for establishing relationships between the
normal cones and subdifferentials under consideration.

Lemma 3.58 (weak∗ topological and sequential limits). Let X be a
Banach space, and let {Sk} be a sequence of bounded subset of X∗ with Sk+1 ⊂
Sk for each k ∈ IN . The following assertions hold:

(i) If the closed unit ball of X∗ is weak∗ sequentially compact, then

∞⋂

k=1

cl∗Sk = cl∗
{

lim
k→∞

x∗
k

∣
∣
∣ x∗

k ∈ Sk for all k ∈ IN
}
.

(ii) If X is a subspace of a WCG Banach space, then

∞⋂

k=1

cl∗Sk =
{

lim
k→∞

x∗
k

∣
∣
∣ x∗

k ∈ Sk for all k ∈ IN
}
.

Proof. To justify (i), we prove the inclusion “⊂” therein; the opposite one
is obvious. Let x∗ belong to the left-hand set in (i), and let W be the weak∗

closure of a weak∗ neighborhood of x∗. Then one can find x∗
k ∈ W ∩Sk for each

k ∈ IN . Since IBX∗ is weak∗ sequentially compact and the sets Sk are uniformly
bounded, there is a subsequence x∗

k j
, j ∈ IN , that converges weak∗ to some

z∗ ∈ W . Let z∗k := x∗
k j

for k j−1 < k ≤ k j . Then z∗k ∈ Sk for all k ∈ IN , and the
sequence {z∗k } converges weak∗ to z∗. Thus z∗ belongs to the right-hand set
in (i), which proves this assertion.

The proof of (ii) is more involved. First recall a deep and well-known fact
that IBX∗ is weak∗ sequentially compact if X is a subset of a WCG space; see,
e.g., the afore-mentioned books [332, 416]. Hence the WCG assumption of (ii)
ensures the equality in (i), and it remains to prove furthermore that “cl∗” can
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be omitted on the right-hand side. To furnish this, we invoke the following
two fundamental results of functional analysis:

(a) the mentioned interpolation theorem that allows us to reduce, in a
sense, WCG spaces to reflexive ones, and

(b) the so-called Whitney’s construction ensuring that every point from
the weak closure of a bounded subset S of a normed space can be realized as
the weak limit of a sequence from S; see Holmes [580, pp. 147–149], where this
construction is used in the proof of the classical Eberlein-Šmulian theorem on
the equivalence between weak compactness and weak sequential compactness
in Banach spaces.

Let X be a subspace of a WCG Banach space Z . By the above interpolation
theorem there is a reflexive space Y and an injective linear continuous operator
A: Y → Z whose range is dense in Z . Let R denote the restriction mapping
from Z∗ onto X∗ constructed via the Hahn-Banach theorem. Without loss of
generality we suppose that S1 ⊂ IBX∗ and put

Hk := R−1(Sk) ∩ IBZ∗, K :=
∞⋂

k=1

cl w A∗Hk ,

where clw stands for the weak closurein the reflexive space Y ∗. Since the set
K is bounded, it is weakly compact in Y ∗. Picking an arbitrary x∗ from the
left-hand side set in (ii), we observe that the sets Vk := R−1x∗∩cl∗Hk , k ∈ IN ,
are nonempty, weak∗ compact, and nested in Z∗. Thus there is z∗ ∈ ∩∞

k=1Vk .
By Whitney’s construction discussed in (b) we choose a sequence z∗k, j ∈ Hk

such that A∗z∗k, j converges weakly to A∗z∗ as j → ∞ for each k ∈ IN . Since the
set {(A∗z∗, A∗z∗k, j )| j, k ∈ IN} is weakly compact and separable, it is weakly
metrizable. Hence there are jk ∈ IN such that the sequence A∗z∗k, jk converges
weakly to A∗z∗ as k → ∞. Taking into account that A∗ is weak∗-to-weak
homeomorphism on IBZ∗ , one has that z∗k, jk converges weak∗ to z∗, and so
Rz∗k, jk converges weak∗ ro Rz∗ = x∗. Since Rz∗k, jk ∈ Sk for all k, it follows that
x∗ belongs to the left-hand set in (ii). �

The following theorem establishes relationships between our basic con-
structions and the various modifications of Ioffe’s “approximate” normals and
subgradients in Asplund spaces. It consists of three assertions involving rela-
tionships with A-subgradients, G-normals, and G-subgradients, respectively,
in the sequence of their definition.

Theorem 3.59 (relationships with “approximate” normals and sub-
gradients). The following assertions hold:

(i) Let ϕ: X → IR be l.s.c. around x̄ ∈ dom ϕ. Then

∂ϕ(x̄) ⊂ ∂σAϕ(x̄) ⊂ ∂Aϕ(x̄) .

If in addition ϕ is Lipschitz continuous around x̄, then
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cl∗∂ϕ(x̄) = cl∗∂σAϕ(x̄) = ∂Aϕ(x̄) . (3.61)

If in the latter case X is WCG, then the sets ∂ϕ(x̄) and ∂σAϕ(x̄) are weak∗

closed, and one has

∂ϕ(x̄) = ∂σAϕ(x̄) = ∂Aϕ(x̄) . (3.62)

(ii) Let Ω ⊂ X be closed around x̄ ∈ Ω. Then

N(x̄ ;Ω) ⊂ Ñ σ
G(x̄ ;Ω) ⊂ ÑG(x̄ ;Ω) ⊂ NG(x̄ ;Ω) = cl∗N(x̄ ;Ω) .

If in addition X is a WCG space, then

N(x̄ ;Ω) = Ñ σ
G(x̄ ;Ω) = ÑG(x̄ ;Ω) .

(iii) If ϕ be l.s.c. around x̄, then

∂ϕ(x̄) ⊂ ∂̃σGϕ(x̄) ⊂ ∂̃Gϕ(x̄) ⊂ ∂Gϕ(x̄) = cl∗∂ϕ(x̄) .

If in addition ϕ is Lipschitz continuous around x̄ and X is WCG, then

∂ϕ(x̄) = ∂̃σGϕ(x̄) = ∂̃Gϕ(x̄) = ∂Gϕ(x̄) . (3.63)

Proof. It is easy to check that ∂̂ϕ(x) ⊂ ∂−ε ϕ(x) for every x ∈ dom ϕ and every
ε ≥ 0. Hence the inclusions in (i) follow from Theorem 2.34 and the definitions.
To prove (3.61) when ϕ is Lipschitz continuous around x̄ , we observe based
on the definitions that

∂Aϕ(x̄) =
∞⋂

k=1

cl∗Sk, ∂σAϕ(x̄) =
∞⋂

k=1

{
lim

k→∞
x∗

k ∈ Sk for all k ∈ IN
}
,

where Sk :=
⋃{

∂−1/kϕ(x)
∣
∣ ‖x − x̄‖ ≤ 1/k

}
. Obviously Sk+1 ⊂ Sk for each

k ∈ IN . Moreover, all the sets Sk are bounded in X∗ due to the Lipschitz
continuity of ϕ around x̄ . Hence ∂Aϕ(x̄) = cl∗∂σAϕ(x̄), and it remains to justify
∂σAϕ(x̄) ⊂ cl∗∂ϕ(x̄) in (3.61), which means that

∂σAϕ(x̄) ⊂ ∂ϕ(x̄) + V

for any weak∗ neighborhood V of the origin in X∗. To verify the latter in-
clusion, we observe that for every neighborhood V under consideration there
are a finite-dimensional subspace L ⊂ X and a number r > 0 such that
L⊥ + 3r IB∗ ⊂ V with the annihilator L⊥ of L. x∗ ∈ ∂σAϕ(x̄) and find se-

quences εk ↓ 0, xk → x̄ , and x∗
k

w∗
→ x∗ with x∗

k ∈ ∂−εk
ϕ(xk). Let k to be so large

that 0 ≤ εk ≤ r and 1/k ≤ r . Using the definition of Dini ε-subgradients from
Subsect. 2.5.2B, one can easily conclude that for every k ∈ IN , r > 0, and
finite-dimensional subspace L ⊂ X the function

ψk(x) := ϕ(x) − 〈x∗
k , x − xk〉 + 2r‖x − xk‖ + δ(x − xk ; L)
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attains a local minimum at xk ; thus 0 ∈ ∂̂ψ(xk). Theorem 2.33 implies due to
the structure of ψk that

x∗
k ∈ ∂̂ϕ(uk) + 3r IB∗ + L⊥ ⊂ ∂̂ϕ(uk) + V with some uk ∈ xk + 1

k IB .

Passing there to the limit as k → ∞ and taking into account that all the
sets ∂̂ϕ(uk) belong to a weak∗ sequential compact ball in X∗, we complete the
proof of (3.61). If in addition X is WCG, the same procedure gives (3.62) due
to Lemma 3.58(ii).

The normal cone relationships in (ii) follow from the corresponding rela-
tionships in (i) due to the definitions of the G-normal constructions under
consideration and Theorem 1.97.

To establish (iii), we only need checking that ∂Gϕ(x̄) = cl∗∂ϕ(x̄) if ϕ is
l.s.c. around x̄ ; the other statements immediately follow from (i), (ii), and the
definitions. Observe that

L ∩ cl∗N((x̄, ϕ(x̄)); epi ϕ) = cl∗
(

L ∩ N((x̄, ϕ(x̄)); epi ϕ)
)

with L := X∗ × {−1}. This implies the mentioned equality in (iii) due to
NG(x̄ ;Ω) = cl∗N(x̄ ;Ω) in (ii) and completes the proof of the theorem. �

It follows from Example 1.7 and Theorem 3.59(ii) that there is a closed
subset Ω of the Hilbert space �2 for which the basic normal cone N(0;Ω) is
strictly smaller than the G-normal cone NG(0;Ω). Indeed, in that example
N(0;Ω) is not norm closed (and hence not weak closed) in �2, so N(0;Ω) 	=
NG(0;Ω) = clwN(0,Ω). On the other hand, the basic subdifferential ∂ϕ(x̄)
is weak∗ closed for every locally Lipschitzian function on an arbitrary WCG
Banach space. This follows directly from assertion (iii) of Theorem 3.59 when
X is additionally assumed to be Asplund. To establish this fact in the general
case of Banach spaces, one needs to use representation (1.55) of the basic
subdifferential and proceed similarly to the proof of the corresponding part of
Theorem 3.59(i).

We actually have the following more general fact on robustness/graph-
closeness of the basic normal cone and subdifferential under SNC/CEL as-
sumptions. We present this fact in the Asplund space setting; see the discus-
sion after the proof on its counterpart in the case of Banach spaces.

Theorem 3.60 (robustness of basic normals). Let X be a WCG Asplund
space, and let Ω ⊂ X be its closed subset that is SNC at x̄. Then the graph of
N(·;Ω) is closed near x̄, i.e., there is γ > 0 such that the set

(
gph N(·;Ω)

)
∩
(
(x̄ + γ IB) × X∗)

is closed in the norm×weak∗ topology of X × X∗.

Proof. The first step is to show that, for any given η > 0 and a compact set
C ⊂ X , the cone



324 3 Full Calculus in Asplund Spaces

K (η; C) :=
{

x∗ ∈ X∗∣∣ η ‖x∗‖ ≤ max
c∈C

〈x∗, c〉
}

is both weak∗ closed and weak∗ locally bounded in X∗. The latter means that
every point of K (η; C) lies in a weak∗ open set U ⊂ X∗ such U ∩ K (η; C) is
norm bounded in X∗.

The following observation will be used twice: if ν ∈ (0, η) is given, then
there is a finite collection c1, . . . , cn in C such that

K (η; C) ⊂ K (ν; c1, . . . , cn) .

To prove this, consider an open covering given by {c + (η − ν)IB| c ∈ C}.
Extracting a finite subcover by the compactness of C , we find points c1, . . . , cn

in C that ensure the inclusion

C ⊂
n⋃

i=1

(
ck + (η − ν)IB

)
.

One therefore has

η ‖x∗‖ ≤ max
c∈C

〈x∗, x〉 ≤ max
i=1,...,n

〈x∗, ck〉 + (η − ν)‖x∗‖

whenever x∗ ∈ K (η; C). Thus we arrive at the required inequality

η ‖x∗‖ ≤ max
i=1,...,n

〈x∗, ck〉 for all x∗ ∈ K (η; C) .

Let us prove that the cone K (η; C) is weak∗ closed. When C = {c} is
a singleton, it follows directly from the lower semicontinuity of the norm
function ‖ · ‖ and the continuity of the linear function 〈·, c〉 in the weak∗

topology of X∗. Thus K (η; C) is weak∗ closed whenever C = {c1, . . . , cn} is a
finite set, since in this case K (η; C) is just a finite union of weak∗ closed sets.
To prove the weak∗ closedness of K (η; C) in the general case of a compact set
C , suppose that x∗ /∈ K (η; C) and then show that x∗ /∈ cl ∗K (η; C). Assume
without loss of generality that ‖x∗‖ = 1 and denote ρ := maxc∈C〈x∗, c〉;
this gives ρ < η by assumption. Choose a number σ ∈ (0, η) so small that
ρ+σ < η. Applying the above observation, we find a finite collection of points
c1, . . . , cn in C such that

K (η; C) ⊂ K (η − σ ; c1, . . . , cn) .

Since K (η − σ ; c1, . . . , cn) is proved to be weak∗ closed, it must contain
cl ∗K (η; C). On the other hand,

max
i∈1,...,n

〈x∗, ci 〉 ≤ max
c∈C

〈x∗, c〉 = ρ < η − σ = (η − σ )‖x∗‖ ,

and so x∗ /∈ K (η − σ ; c1, . . . , cn). Thus x∗ /∈ cl ∗K (η; C), which justifies the
weak∗ closedness of K (η; C).
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Let us next show that K (η; C) is weak∗ locally bounded. Fix x̂∗ ∈ K (η; C)
and select a finite number of points in C such that

K (η; C) ⊂ K (η/2; c1, . . . , cn) .

The given point x̂∗ certainly belongs to the set

U :=
{

x∗ ∈ X∗∣∣ 〈x∗, ci 〉 < 1 + 〈x̂∗, ci 〉, i = 1, . . . , n
}
,

which is weak∗ open in X∗. Furthermore, every point

x∗ ∈ U ∩ K (η; C) ⊂ U ∩ K (η/2; c1, . . . , cn)

satisfies the inequalities

(η/2)‖x∗‖ ≤ max
i∈1,...,n

〈x∗, ci 〉 < 1 + max
i∈1,...,n

〈x̂∗, ci 〉 .

This obviously yields the weak∗ local boundedness of K (η; C).
It is proved in Theorem 1.26, assuming that C is CEL around x̄ , that there

exist a compact set C ⊂ X and positive constants η, ν such that

N̂(x ;Ω) ⊂ K (η; C) whenever x ∈ Ω ∩ (x̄ + ν IB) ;

see (1.20) with ε = 0. As discussed in Remark 1.27(ii), the SNC and CEL
properties are equivalent in the framework of WCG Asplund spaces. To com-
plete the proof of the theorem, it therefore remains to establish the following
statement with (M, d) =

(
Ω ∩ (x̄ + γ IB), ‖ · ‖X

)
and F(·) = N̂(·;Ω) in the

notation above.

Claim. Let F : M →→ X∗ be a set-valued mapping between a metric space (M, d)
and the topological dual space to a WCG Banach space X . Equip M × X∗ with
the d×weak∗ topology and assume that there is a weak∗ closed and weak∗

locally bounded set K ⊂ X∗ such that

F(x) ⊂ K for all x ∈ M .

Then (x̄, x∗) ∈ cl gph F if and only if x∗ = limk→∞ x∗
k for some sequence

x∗
k ∈ F(xk) with xk → x̄ as k → ∞.

To justify this claim, we consider a net {(xα, x∗
α )}α∈A ⊂ M × X∗ such that

xα → x̄ and x∗
α

w∗
→ x∗ with x∗

α ∈ F(xα) for all α ∈ A. The weak∗ closedness
of K and the assumption F(x) ⊂ K ensures that x∗ ∈ K . Now taking into
account the weak∗ boundedness of K , we find a natural number m and a subnet
{(xβ, x∗

β )}β∈B, B ⊂ A, of {(xα, x∗
α )} such that ‖x∗

α‖ ≤ m for all β ∈ B. It is
easy to deduce from Lemma 3.58(ii) by the boundedness of weak∗ convergent
sequences that for any sequence of subsets Sk ⊂ X∗ with Sk+1 ⊂ Sk in the
dual space to a WCG Banach space X one has
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∞⋃

m=1

∞⋂

k=1

cl ∗
(

Sk ∩ m IB∗) =
{

lim
k→∞

x∗
k

∣
∣
∣ x∗ ∈ Sk for all k ∈ IN

}
,

where lim x∗
k is taken in the weak∗ topology of X∗. Now considering the se-

quence of sets

Sk :=
⋃{

F(x)
∣
∣ d(x, x̄) ≤ 1/k

}
, k ∈ IN ,

observe that x∗ belongs to the left-hand side of the latter equality. Thus we
conclude that x∗ lies in the set on the right-hand side therein. This completes
the proof of the claim and of the whole theorem. �

It follows from the proof of Theorem 3.60 that the robustness property
of the basic normal cone N(·;Ω) holds true for locally closed sets Ω in any
WCG Banach space provided that Ω is CEL around x̄ . To see this, we appeal
to the definition of basic normals as sequential limits of ε-counterparts and
to formula (1.20) for ε-normals to CEL sets valid in arbitrary Banach spaces.
Note that one cannot generally replace the CEL property by the weaker SNC
property of closed sets in the case of non-Asplund WCG spaces.

Combining the results in Theorems 3.59 and 3.60, we have the equalities

N(x̄ ;Ω) = NG(x̄ ;Ω)
(

= Ñ σ
G(x̄ ;Ω) = ÑG(x̄ ;Ω)

)

for SNC sets if X is a WCG Asplund space. Note that the CEL and SNC
properties of Ω are not necessary for the local closedness of gph N(·;Ω). This
graph-closedness holds, in particular, when Ω ⊂ X is a singleton, which is
never SNC unless X is finite-dimensional; see Theorem 1.21.

Observe further that the mentioned graph-closedness of N(·;Ω) near x̄
automatically implies the local graph-closedness of the basic subdifferential ∂ϕ
in the norm×weak∗ topology of X × X∗ provided that ϕ is continuous around
x̄ (or, more generally, subdifferentially continuous in the sense of Rockafellar
and Wets [1165, Definition 13.28]). However, the graph-closedness of ∂ϕ in
this topology may be violated even for proper lower semicontinuous convex
functions on separable Hilbert spaces as demonstrated in Borwein, Fitzpatrick
and Girgensohn [144].

The next example shows that the WCG requirement imposed in Theo-
rem 3.59 is essential for the weak∗ closedness of ∂ϕ(x̄) and the validity of

∂ϕ(x̄) = ∂Gϕ(x̄)
(

= ∂̃Gϕ(x̄) = ∂Aϕ(x̄)
)

even in the case of locally Lipschitzian functions on Asplund spaces admitting
an equivalent C∞-smooth norm.

Example 3.61 (nonclosedness of the basic subdifferential for Lip-
schitz continuous functions). There are an Asplund space X admitting a
C∞-smooth renorm, a concave continuous function ϕ: X → IR, and a point
x̄ ∈ X such that ∂ϕ(x̄) is not weak∗ closed in X∗, and one has
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∂ϕ(x̄) 	= ∂Gϕ(x̄) = ∂̃Gϕ(x̄) = ∂Aϕ(x̄) .

Proof. Consider the space X := C[0, ω1] of all functions ϕ continuous on the
“long” interval [0, ω1], where ω1 is the first uncountable ordinal. The norm ‖·‖
on X is the supremum/maximum norm. It is well known that X is an Asplund
space admitting an equivalent C∞-smooth norm; see [331, Chap. VII] for more
details and references. Define ϕ(x) := −‖x‖ for x ∈ C[0, ω1] and observe that
this function is concave and continuous (hence Lipschitzian) on X . Involving
Theorem 2.34 and Proposition 1.87, we conclude that

∂ϕ(x̄) = Lim sup
x→x̄

{
∇ϕ(x)

}
, ∂Gϕ(x̄) = ∂̃Gϕ(x̄) = ∂Aϕ(x̄) = Lim sup

x→x̄

{
∇ϕ(x)

}

in terms of Fréchet derivatives. According to Example I.1.6(b) of the men-
tioned book of Deville et al., the norm ‖ · ‖ is Fréchet differentiable at
x ∈ C[0, ω1] if and only if there is an isolated point ω ∈ [0, ω1] (i.e., not
a limit ordinal) such that |x(ω)| > |x(t)| whenever t 	= ω. In this case the
derivative of ‖ · ‖ at x is µω, the point mass (Dirac measure) at ω. Take x̄ ≡ 1
and consider the perturbed functions

xων (t) :=






1 + ν if t = ω ,

1 otherwise ,

where ν → 0 and where ω is any nonlimit ordinal. One clearly has xων ∈ C[0, ω1]
and ‖xων − x̄‖ → 0 as ν → 0. Therefore

∂ϕ(x̄) =
{
− µω

∣
∣ ω < ω1

}
	= ∂Gϕ(x̄) =

{
− µω

∣
∣ ω ∈ [0, ω1]

}
,

because ω1 is not the limit of a sequence of countable ordinals while other
ω ∈ [0, ω1] are limits of sequences of nonlimit ordinals. �

Let us emphasize that our sequential variational analysis and its applica-
tions in this book do not generally require robustness/closedness properties of
the basic normal cone and subdifferential.

3.2.4 Graphical Regularity of Lipschitzian Mappings

This subsection contains applications of some results on subdifferential calcu-
lus and coderivative scalarization to the study of normal vectors to graphical
sets and graphical regularity of Lipschitzian mappings. We prove, in partic-
ular, the subspace property of Clarke’s normal cone to Lipschitzian graphs
in infinite dimensions and establish relationships between graphical regular-
ity and special kinds of differentiability for Lipschitzian mappings. The new
notions of “weak differentiability” and “strict-weak differentiability” defined
below may be weaker than even the classical Gâteaux differentiability for
mappings into infinite-dimensional spaces.
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Let us start with the subspace property of the convexified normal cone.
Given Ω ⊂ X in a Banach space, we consider the basic normal cone N(x̄ ;Ω)
to Ω at x̄ and define its w∗-closed convexification by

N(x̄ ;Ω) := cl∗co N(x̄ ;Ω), x̄ ∈ Ω . (3.64)

By Theorem 3.57 the convexified normal cone (3.64) reduces to the Clarke
normal cone (2.72) if Ω is locally closed around x̄ and X is Asplund. The
next theorem establishes the equivalence between the subspace property of
N(·;Ω) to graphs of strictly Lipschitzian mappings f : X → Y and the Asplund
property of the domain space X .

Theorem 3.62 (subspace property of the convexified normal cone).
Let X and Y be Banach spaces. The following properties are equivalent:

(a) The convexified normal cone N((x̄, f (x̄)); gph f ) is a linear subspace
of X∗ × Y ∗ for every mapping f : X → Y that is w∗-strictly Lipschitzian at
some point x̄ ∈ X .

(b) The space X is Asplund.

Proof. Let us first justify (b)⇒(a) using the scalarization formula of Theo-
rem 3.28, relationship (3.58) between basic and Clarke subgradients of locally
Lipschitzian functions, and the symmetric property (2.71) of the latter con-
struction. In this way we take any (x∗,−y∗) ∈ N((x̄, f (x̄)); gph f ) and get

x∗ ∈ D∗
N f (x̄)(y∗) ⊂ ∂〈y∗, f 〉(x̄) ⊂ ∂C〈y∗, f 〉(x̄) = −∂C〈−y∗, f 〉(x̄)

= −cl∗co ∂〈−y∗, f 〉(x̄) ⊂ −cl∗co D∗
N f (x̄)(y∗) .

This therefore gives

−N((x̄, f (x̄)); gph f ) ⊂ cl∗co N((x̄, f (x̄)); gph f )

and shows that the convexified cone N((x̄, f (x̄)); gph f ) is actually a linear
subspace of X∗ × Y ∗.

To prove (a)⇒(b), let us consider an arbitrary convex function ψ on X
continuous around x̄ ∈ X . Given Y , we represent it as Y = IR × Y1, where
Y1 is a subspace of Y , and define a Lipschitzian mapping f : X → Y by
f (x) := (ψ(x), 0). Then f is obviously strictly Lipschitzian at x̄ , and hence
N((x̄, f (x̄)); gph f ) is a linear subspace of X∗ × Y ∗. Since

gph f = gphψ × {0} and N((x̄, f (x̄)); gph f ) = N((x̄, ψ(x̄)); gphψ) × Y ∗
1 ,

it follows that N((x̄, ψ(x̄)); gphψ) is a subspace of X∗ × IR. Due to the con-
vexity and continuity of ψ we have ∂ψ(x̄) 	= ∅ and

N((x̄, ψ(x̄)); gphψ) =
{
(x∗,−λ)

∣
∣ x∗ ∈ ∂(λψ)(x̄), λ ∈ IR

}
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(the latter holds for any locally Lipschitzian function). Thus ∂(−ψ)(x̄) 	= ∅;
otherwise we get a contradiction with the subspace property of N((x̄, ψ(x̄));
gphψ). Since ψ was chosen arbitrary, one has ∂ϕ(x̄) 	= ∅ for any concave
continuous function ϕ at every x̄ . Due to the limiting representation (1.55)
of the basic subdifferential this ensures that the set {x ∈ X | ∂̂εϕ(x) 	= ∅} is
dense in X , which implies the Asplund property of X by Proposition 2.18. �

Next we are going to establish relationships between graphical regularity
and differentiability of Lipschitzian mappings acting in Banach spaces. Aside
from finite dimensions, this requires new notions of differentiability that may
be different from the classical differentiability and strict differentiability of
mappings relative to some bornology. To proceed, we first define these no-
tions with respect to an arbitrary bornology β discussed in Remark 2.11; ac-
tually the three main bornologies are used in what follows: Fréchet (β = F),
Hadamard (β = H), and Gâteaux (β = G).

Given a bornology β on X , we recall that a mapping f : X → Y is strictly
β-differentiable at x̄ if there is a bounded linear operator A: X → Y such that

lim
x→x̄
t↓0

∥
∥
∥

f (x + tv) − f (x)
t

− Av
∥
∥
∥ = 0 for all v ∈ X , (3.65)

where the convergence is uniform relatively to v in each set belonging to β.
When x = x̄ in (3.65), f is said to be β-differentiable at x̄ . Prior in this book
we mostly consider differentiability and strict differentiability in the sense of
Fréchet; see nevertheless Theorem 3.54 involving strict differentiability in the
sense of Hadamard. To simplify notation, we use the same symbol ∇ f (x̄) := A
for all the derivatives under consideration if no confusion arises.

Definition 3.63 (weak and strict-weak differentiability). Let f : X → Y
be a mapping between Banach spaces, and let β be a bornology on X . Then:

(i) f is strictly-weakly β-differentiable (abbr. swβ-differentiable)
at x̄ if the scalarized function 〈y∗, f 〉 is strictly β-differentiable at x̄ for all
y∗ ∈ Y ∗. We say that f admits an swβ-derivative at x̄ if there is a bounded
linear operator A: X → Y such that

lim
x→x̄
t↓0

〈
y∗,

f (x + tv) − f (x)
t

− Av
〉

= 0 for all v ∈ X, y∗ ∈ Y ∗ , (3.66)

where the convergence is uniform relatively to v in each set belonging to β.
(ii) f is weakly β-differentiable at x̄ (abbr. wβ-differentiable) at x̄

if 〈y∗, f 〉 is β-differentiable at x̄ for all y∗ ∈ Y ∗. If (3.66) holds with x = x̄,
the operator A is called the wβ-derivative of f at x̄.

The terminology comes from the fact that the weak convergence on Y
is used in (3.66) instead of the norm convergence in (3.65). Observe that
wβ-derivatives and swβ-derivatives are unique when exist, but that the wβ-
differentiability and swβ-differentiability of f at x̄ don’t automatically imply
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the existence of the corresponding derivatives. One can check directly from
the definitions that there is surely no gap between the above differentiability
and the existence of derivatives in the following two cases:

(a) Y is reflexive and f is Lipschitz continuous at x̄ .

(b) f is weakly directionally differentiable at x̄ , i.e., the limit

lim
t↓0

〈
y∗,

f (x̄ + tv) − f (x̄)
t

〉

exists for all y∗ ∈ Y ∗, v ∈ X ; in particular, f is Gâteaux differentiable at x̄ .

The corresponding differentiability notions in (3.65) and Definition 3.63
obviously agree if dim Y < ∞. The following example shows that it is no
longer the case in infinite dimensions: a Lipschitzian mapping may be strictly-
weakly differentiable with respect to the strongest Fréchet bornology but not
even Gâteaux differentiable!

Example 3.64 (weak Fréchet differentiability versus Gâteaux differ-
entiability). There is a Lipschitz continuous mapping f : IR → �2 that is
strictly weakly Fréchet differentiable at x̄ = 0 but doesn’t admit the classical
Gâteaux derivative at this point.

Proof. Let ϕ: IR → IR be a C∞-smooth function such that ϕ 	= const , suppϕ ⊂
(0, 1), and both ϕ and ∇ϕ are bounded by some α > 0. Consider a complete
orthonormal basis {e1, e2, . . .} in the Hilbert space �2 and define the function

f (x) :=
∞∑

k=1

ϕk(x)ek with ϕk(x) :=
ϕ(2k x − 1)

2k
, x ∈ IR .

For each k, j ∈ IN with k 	= j one has (suppϕk)∩(suppϕ j ) = ∅. Thus for every
x ∈ IR we get ϕk(x) 	= 0 for at most one k ∈ IN . This implies the Lipschitz
continuity of f on IR. Define now

ψ(x) := 〈y∗, f 〉(x) =
∞∑

k=1

ykϕk(x), y∗ ∈ �2 ,

where yk ∈ IR are uniquely determined by the representation y∗ =
∑

ykek .
Then one has the relations

|ψ(x1) − ψ(x2)| = |yk1ϕk1(x1) − yk2ϕk2(x2)| ≤
(
|yk1 | + |yk2 |

)
α|x1 − x2| ,

where ki ≥ log2 η
−1 if |xi | < η, i = 1, 2. This yields ψ(x1)−ψ(x2) = o(|x1−x2|)

as x1, x2 → 0, which proves the strict weak Fréchet differentiability of f at
x̄ = 0. If we assume that f isGâteaux differentiable at this point, then clearly
∇ f (0) = 0 for the Gâteaux derivative. Since ϕ 	= const , we find x0 ∈ (0, 1)
with ϕ(x0) 	= 0 and put xk := 2−k x0 + 2−k . Then xk → 0 as k → ∞ and
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‖ f (xk) − f (0)‖
xk

=
‖ϕk(xk)ek‖

xk
=

|ϕ(x0)|
x0 + 1

for all k ∈ IN ,

which contradicts the Gâteaux differentiability of f at x̄ = 0. �

Although the differentiability properties from Definition 3.63 may be
weaker than the classical notions in (3.65), they still imply a linear rate of
continuity (Lipschitzian behavior) of mappings in the case of Hadamard and
stronger bornologies.

Proposition 3.65 (Lipschitzian properties of weakly differentiable
mappings). The following hold for β ≥ H:

(i) If f is wβ-differentiable at x̄, then there are a neighborhood U of x̄
and a constant � > 0 such that ‖ f (x) − f (x̄)‖ ≤ �‖x − x̄‖ for all x ∈ U .

(ii) If f is strictly wβ-differentiable at x̄, then it is Lipschitz continuous
around x̄.

Proof. It is sufficient to justify (i) for β = H; the proof of (ii) is similar.
Assume that the conclusion of (i) doesn’t hold. Then there are xk such that

‖xk − x̄‖ ≤ k−1 and ‖ f (xk) − f (x̄)‖ > k‖xk − x̄‖ for all k ∈ IN .

Putting tk :=
√

k‖xk − x̄‖ and vk := (xk − x̄)/tk , one has ‖vk‖ = 1/
√

k, xk = x̄ +
tkvk , and tk ↓ 0 as k → ∞. Now consider a compact set V := {vk | k ∈ IN}∪{0}
and employ the wH-differentiability property of f at x̄ . For every y∗ ∈ Y ∗,
ε > 0, and k ∈ IN sufficiently large we have

∣
∣
∣
〈

y∗,
f (x̄ + tkv) − f (x̄)

tk

〉
−
[
∇〈y∗, f 〉(x̄)

]
v
∣
∣
∣ ≤ ε for all v ∈ V ,

where ∇〈y∗, f 〉 stands for the Hadamard derivative. This implies

∣
∣
∣
〈

y∗,
f (x̄ + tkvk) − f (x̄)

tk

〉∣∣
∣ ≤

∥
∥∇〈y∗, f 〉(x̄)

∥
∥ · ‖vk‖ + ε .

Therefore the sequence
{
( f (x̄ + tkvk) − f (x̄))/tk

}
weakly converges to 0

and hence bounded by the uniform bounded principle. On the other hand,∥
∥( f (x̄ + tkvk) − f (x̄))/tk

∥
∥ ≥

√
k → ∞ as k → ∞, a contradiction. �

Next we establish close relationships between the single-valuedness of the
mixed and normal coderivatives for Lipschitzian mappings on Asplund spaces
and their strict wH-differentiability.

Theorem 3.66 (coderivative single-valuedness and strict-weak dif-
ferentiability). Let f : X → Y , where X is Asplund and Y is Banach. The
following hold:

(i) If f is strictly wH-differentiable at x̄, then D∗
M f (x̄) is a single-valued

bounded linear operator satisfying
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D∗
M f (x̄)(y∗) =

{
∇〈y∗, f 〉(x̄)

}
, y∗ ∈ Y ∗ , (3.67)

where ∇ stands for the strict Hadamard derivative. If in addition f obeys the
sequential convergence condition from Definition 3.25(ii), then D∗

N f (x̄) is also
a single-valued bounded linear operator satisfying (3.67).

(ii) Conversely, if f is Lipschitz continuous around x̄ and D∗
M f (x̄) is

single-valued, then f is strictly wH-differentiable at x̄ and (3.67) holds. The
same is true for the case of D∗

N f (x̄).

Proof. Let us prove (i) for the case of D∗
M f (x̄). First observe that f is Lip-

schitz continuous around x̄ due to Proposition 3.65(ii). Hence D∗
M f (x̄)(y∗) =

∂〈y∗, f 〉(x̄) for all y∗ ∈ Y ∗ by Theorem 1.90. Employing Theorem 3.54, we
conclude that ∂〈y∗, f 〉(x̄) =

{
∇〈y∗, f 〉(x̄)

}
if 〈y∗, f 〉 is strictly Hadamard

differentiable and X is Asplund. This implies (3.67). It is easy to see that the
operator in the right-hand side of (3.67) is linear and bounded due to the Lip-
schitz continuity of f . Thus (i) holds for the case of D∗

M f (x̄). If in addition f
satisfies the mentioned sequential convergence condition, then f is w∗-strictly
Lipschitzian in the sense of Definition 3.25(ii). Thus D∗

N f (x̄) = D∗
M f (x̄) by

Theorem 3.28, which completes the proof of (i).
To prove (ii) for the case of D∗

M f (x̄), we observe that ∂〈y∗, f 〉(x̄) is a
singleton under the assumptions made due to the scalarization formula for the
mixed coderivative; see Theorem 1.90. Involving again Theorem 3.54 (in the
other direction), we conclude that 〈y∗, f 〉 is strictly Hadamard differentiable
at x̄ . Hence f is strictly wH-differentiable at this point, and (3.67) follows
from the above.

Finally, assume that D∗
N f (x̄) is single-valued. Then

D∗
N f (x̄)(y∗) = D∗

M f (x̄)(y∗) 	= ∅ for all y∗ ∈ Y ∗ ,

since X is Asplund. Thus we get back to the case of D∗
M f (x̄) and complete

the proof of the theorem. �

Note that the sequential convergence condition in Theorem 3.66(i) holds
automatically if f is strictly Gâteaux differentiable at x̄ . However, in general
the strict wH-differentiability (and even strict wF-differentiability) of f at
x̄ doesn’t imply this convergence condition, and hence it doesn’t imply the
w∗-strict Lipschitzian property of f around x̄ . For illustration let us consider
the function f : IR → �2 from Example 3.64. Taking tk := 2−k and v := x0 + 1
with ϕ(x0) 	= 0, we have yk :=

[
f (0 + tkv) − f (0)

]
/tk = ϕk(x0)ek . Hence

〈ek, yk〉 = ϕ(x0) 	→ 0 while ek
w→ 0 as k → ∞.

Corollary 3.67 (subspace property and strict Hadamard differentia-
bility). Let X be Asplund, and let f : X → IRm be Lipschitz continuous around
x̄. The following properties are equivalent:

(a) Clarke’s normal cone to gph f at (x̄, f (x̄)) is a linear subspace of
dimension m.
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(b) The basic normal cone N((x̄, f (x̄)); gph f ) is a linear subspace of di-
mension m.

(c) f is strictly Hadamard differentiable at x̄.

Proof. Equivalence (b)⇔(c) follows from Theorem 3.66 due to the fact that
the graph of any bounded linear operator is isomorphic to the domain space.
Equivalence (a)⇔(b) follows from Theorem 3.57. �

Now we are ready to establish relationships between the graphical regu-
larity of Lipschitzian mappings from Definition 1.36 and the weak differentia-
bility properties introduced above.

Theorem 3.68 (relationships between graphical regularity and weak
differentiability). Let f : X → Y , where X is Asplund and Y is Banach. The
following hold:

(i) Assume that f is both wF-differentiable and strictly wH-differentiable
at x̄. Then f is M-regular at this point. If in addition f obeys the sequential
convergence condition from Definition 3.25(ii), then f is also N -regular at x̄.

(ii) Conversely, the M-regularity (and hence N -regularity) of f at x̄ im-
plies its wF-differentiability and strict wH-differentiability at this point pro-
vided that f is Lipschitz continuous around x̄.

Proof. To justify (i), it is sufficient to do it for M-regularity. This im-
plies the case of N -regularity, since D∗

N f (x̄) = D∗
M f (x̄) under the addi-

tional assumption made; see the proof of Theorem 3.66. If f is strictly
wH-differentiable at x̄ , then it is Lipschitz continuous around x̄ and (3.67)
holds by Theorem 3.66(i), where ∇ stands for the strict Hadamard deriva-
tive of 〈y∗, f 〉 at x̄ . It agrees with the Fréchet derivative of 〈y∗, f 〉 at x̄ un-
der the wF-differentiability assumption of the theorem. On the other hand,
∂̂〈y∗, f 〉(x̄) = {∇〈y∗, f 〉(x̄)

}
when f is wF-differentiable at x̄ . Involving the

scalarization formula for the mixed coderivative from Theorem 1.90 and the
easy one (3.37) for the Fréchet coderivative, we get

D∗
M f (x̄)(y∗) = ∂〈y∗, f 〉(x̄) = ∂̂〈y∗, f 〉(x̄) = D̂∗ f (x̄)(y∗) for all y∗ ∈ Y ∗ ,

which justifies the M-regularity of f at x̄ .
To prove (ii), we first observe that ∂〈y∗, f 〉(x̄) 	= ∅ for all y∗ ∈ Y ∗,

since f is locally Lipschitzian and X is Asplund; see Corollary 2.25. Let
x∗ ∈ ∂〈y∗, f 〉(x̄). Then x∗ ∈ D∗

M f (x̄)(y∗) and hence (x∗,−y∗) ∈ N̂((x̄, f (x̄));
gph f ) due to the assumed M-regularity. Involving the above scalarization,
we have

∂̂〈y∗, f 〉(x̄) = ∂〈y∗, f 〉(x̄) 	= ∅ for all y∗ ∈ Y ∗ ,

which implies the Fréchet differentiability of 〈y∗, f 〉 at x̄ by Proposition 1.87.
Thus ∂〈y∗, f 〉(x̄) is a singleton and 〈y∗, f 〉 is strictly Hadamard differentiable
at x̄ by Theorem 3.54. This justifies the wH-differentiability of f at x̄ and
completes the proof of the theorem. �
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Corollary 3.69 (graphical regularity of Lipschitzian mappings into
finite-dimensional spaces). Let X be Asplund, and let f : X → IRm be Lip-
schitz continuous around x̄. Then the following are equivalent:

(a) f is graphically regular at x̄.
(b) f is simultaneously Fréchet differentiable and strictly Hadamard dif-

ferentiable at x̄.

Proof. When Y = IRm , we have only one notion of graphical regularity in
Definition 1.36, and the weak differentiability notions under consideration re-
duce to the standard ones. Hence the desired equivalence (a)⇔(b) in this case
follows directly from Theorem 3.68. �

If X is finite-dimensional, there is no difference between Fréchet differen-
tiability and Hadamard differentiability. In this case Corollary 3.69 goes back
to the claim used in the proof of Theorem 1.46.

Remark 3.70 (subspace and graphical regularity properties with re-
spect to general topologies). One can see that the scalarization formulas
for the mixed and normal coderivatives play a crucial role in the proofs of
Theorems 3.62, 3.66, and 3.68. These theorems can be extended to the case
of an arbitrary topology w∗ ≤ τ ≤ τ‖·‖ based on the generalized scalariza-
tion results described in Remark 3.31. The corresponding extensions of the
properties in Theorems 3.62(a), 3.66(i), and Theorem 3.68(i) for mappings
f : X → Y require the τY∗ -counterpart of the sequential convergence condition
from Definition 3.25(ii) with w∗ replaced by τY∗ . This τY∗ -convergence condi-
tion is automatic for τY∗ = τ‖·‖ while reduces to the sequential convergence
condition used in the above theorems for τY∗ = w∗; see Mordukhovich and
B. Wang [965] for more details.

Although the results of this subsection concern single-valued mappings,
they can be used for the study of sets and set-valued mappings generated
by graphs of single-valued Lipschitzian mappings via smooth transformations.
Some definitions, discussions, and results in this direction were presented at
the end of Subsect. 1.2.2 with the proofs based on finite-dimensional consider-
ations. Now we derive infinite-dimensional analogs of these results in the case
of hemi-Lipschitzian sets, which are applied to graphs of set-valued mappings
as in Definition 1.45.

Definition 3.71 (hemi-Lipschitzian and hemismooth sets). Let Ω be a
subset of a Banach space Z , and let B stand for some differentiability concept
(e.g., B = β,wβ, swβ). Then:

(i) Ω is hemi-Lipschitzian around z̄ ∈ Ω if there are single-valued
mappings f : X → Y and g: Z → X × Y between Banach spaces such that
g(z̄) = (x̄, f (x̄)), that g is strictly Fréchet differentiable at z̄ with the surjec-
tive derivative, that f is Lipschitz continuous around x̄, and that

Ω ∩ U = g−1(V ∩ gph f )
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for some neighborhoods U of z̄ and V of g(z̄). We say that Ω is strictly
hemi-Lipschitzian at z̄ if f is additionally assumed to be w∗-strictly Lip-
schitzian at x̄.

(ii) Ω is B-hemismooth at z̄ if it is hemi-Lipschitzian around this point
and f can be chosen as B-differentiable at x̄.

When ∇g(z̄) is invertible in Definition 3.71(i), then Ω is Lipschitzian
around x̄ . This corresponds to the notion of “Lipschitzian manifolds” in the
sense of Rockafellar [1153], where g is assumed to be locally C1 with the non-
singular Jacobian matrix in finite dimensions. The notion of B-smooth sets is
defined in a similar way provided that ∇g(z̄) is invertible.

Theorem 3.72 (properties of hemi-Lipschitzian sets). Let Ω ⊂ Z be
strictly hemi-Lipschitzian at z̄, where the space X in Definition 3.71(i) can be
chosen as Asplund. Then the following hold:

(i) The convexified normal cone (3.64) to Ω at z̄ (in particular, the Clarke
normal cone when Ω is locally closed around z̄ and Z is Asplund) is a linear
subspace of the dual space Z∗.

(ii) Ω is normally regular at z̄ if and only if it is simultaneously wF-
smooth and strictly wH-smooth at z̄, i.e., f in Definition 3.71(ii) has both of
these properties at x̄.

Proof. By Theorem 1.17 we have

N(z̄;Ω) = ∇g(z̄)∗N((x̄, f (x̄)); gph f )

provided that g is strictly Fréchet differentiable at z̄ with the surjective deriv-
ative. This justifies (i) due to Theorem 3.62. To prove (ii), we observe that
the normal regularity of Ω at z̄ is equivalent to the N -normal regularity of f
at x̄ by Theorem 1.19. Then (ii) follows from Theorem 3.68. �

In the case of finite dimensions the simultaneous wF-differentiability and
strict wH-differentiability of f at x̄ reduces to the strict Fréchet differentiability
of f at this point. Hence Theorem 3.71(ii) provides an infinite-dimensional
extension of the set counterpart of Theorem 1.46(i) whose proof is different
from the one given above (including the proof of Theorem 3.68). Similarly we
can obtain infinite-dimensional extensions of Theorem 1.46(ii) involving re-
lationships between normal regularity and B-smoothness of Lipschitzian sets
and graphically Lipschitzian mappings.

3.2.5 Second-Order Subdifferential Calculus

In this subsection we continue developing the second-order subdifferential cal-
culus started in Subsect. 1.3.5 in the framework of general Banach spaces. Here
we follow the same scheme that leads us to second-order subdifferential sum
and chain rules by using coderivative calculus applied to equality-type sum and
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chain rules for first-order subgradients. In contrast to the previous consider-
ation, we assume in this subsection that some of the spaces in question are
Asplund. This allows us to employ extended first-order calculus rules obtained
above in the framework of Asplund spaces. Note that the norm-closedness of
gph ∂ϕ for some functions ϕ: X → IR considered below is required in the
norm×norm topology of X × X∗. This is an essentially weaker assumption
than the graph-closedness of ∂ϕ in the norm×weak∗ topology of X × X∗ pre-
sented in Subsect. 3.2.3; see Theorem 3.60 and the discussion after its proof.
It is easy to see that the norm×norm graph-closedness of ∂ϕ is similar to the
one in finite dimensions and, besides continuous functions, always holds for
proper convex l.s.c. functions ϕ and their compositions ϕ ◦ f with smooth
mappings f : X → Y , in particular, for the important class of amenable func-
tions; see below. Note also that smoothness and strict differentiability in what
follows are understood in the sense of Fréchet.

Most results of this subsection require the Asplund property of both the
space in question and its dual. The major source of such spaces are reflexive
Banach spaces. On the other hand, there are interesting examples of even
separable spaces X , which are nonreflexive but Asplund together with X∗.
Let us mention the famous long James space whose natural embedding in
the second dual is of codimension one but which is nevertheless isometrically
isomorphic to its second dual. Other examples, discussions, and references can
be found, e.g., in the book by Bourgin [169].

We start as usual with sum rules and obtain the following three versions for
extended-real-valued functions defined on spaces that are Asplund together
with their duals. Recall that all the functions under consideration are assumed
to be proper and finite at reference points.

Theorem 3.73 (second-order subdifferential sum rules). Let ϕi : X →
IR, i = 1, 2, with ȳ ∈ ∂(ϕ1 + ϕ2)(x̄), and let X and X∗ be Asplund. The
following assertions hold for both normal (∂2 = ∂2

N ) and mixed (∂2 = ∂2
M)

second-order subdifferentials:
(i) Assume that ϕ1 ∈ C1 with ȳ1 := ∇ϕ1(x̄) and that the graph of ∂ϕ2

is norm-closed around (x̄, ȳ2) with ȳ2 := ȳ − ȳ1. Suppose also that either
ϕ1 ∈ C1,1 around x̄, or ∂ϕ2 is PSNC at (x̄, ȳ2) and

∂2
Mϕ1(x̄, ȳ1)(0) ∩

(
− ∂2

Mϕ2(x̄, ȳ2)(0)
)

= {0} . (3.68)

Then for all u ∈ X∗∗ one has

∂2(ϕ1 + ϕ2)(x̄, ȳ)(u) ⊂ ∂2ϕ1(x̄, ȳ1)(u) + ∂2ϕ2(x̄, ȳ2)(u) . (3.69)

(ii) Let both ϕi be l.s.c. around x̄, and let S: X × X∗ →→ X∗ × X∗ with

S(x, y) :=
{

(y1, y2) ∈ X∗ × X∗
∣
∣
∣ y1 ∈ ∂ϕ1(x), y2 ∈ ∂ϕ2(x), y1 + y2 = y

}

be inner semicontinuous at (x̄, ȳ, ȳ1, ȳ2) for a given (ȳ1, ȳ2) ∈ S(x̄, ȳ). Suppose
that the graph of each ∂ϕi is norm-closed around (x̄, ȳi ), that one of ∂ϕi is
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PSNC at (x̄, ȳi ), and that the qualification condition (3.68) is fulfilled. Assume
also that there is a neighborhood U of x̄ such that

∂∞ϕ1(x) ∩
(
− ∂∞ϕ2(x)

)
= {0} for all x ∈ U ,

that one of ϕi is SNEC at every x ∈ U (both assumptions are fulfilled when
one of ϕi is Lipschitz continuous around x̄), and that each ϕi is lower regular
at every x ∈ U . Then the sum rule (3.69) holds for all u ∈ X∗∗.

(iii) Assume that the above set-valued mapping S be inner semicompact at
(x̄, ȳ), that the graph of ∂ϕi is norm-closed whenever x is near x̄, and that the
other assumptions in (ii) are fulfilled for any (ȳ1, ȳ2) ∈ S(x̄, ȳ). Then for all
u ∈ X∗∗ one has

∂2(ϕ1 + ϕ2)(x̄, ȳ)(u) ⊂
⋃

(ȳ1,ȳ2)∈S(x̄,ȳ)

[
∂2ϕ1(x̄, ȳ1)(u) + ∂2ϕ2(x̄, ȳ2)(u)

]
.

Proof. To prove (i), we use the first-order equality

∂(ϕ1 + ϕ2)(x) = ∇ϕ1(x) + ∂ϕ2(x) for all x ∈ U

valid in some neighborhood U of x̄ due to Proposition 1.107(ii). Since both X
and X∗ are Asplund, we apply to this equality the coderivative sum rule from
Theorem 3.10(i) with F1 := ∇ϕ1 and F2 := ∂ϕ2. This yields the second-order
sum rule in (i). In the same way we justify the second-order sum rules in (ii)
and (iii) applying Theorem 3.10(i,ii) to the first-order subdifferential equality

∂(ϕ1 + ϕ2)(x) = ∂ϕ1(x) + ∂ϕ2(x), x ∈ U ,

valid due to Theorem 3.36 under the assumptions made. �

Next we derive second-order subdifferential chain rules for compositions
(ϕ ◦ g)(x) = ϕ(g(x)) in the Asplund space framework. In contrast to The-
orem 1.127, the following theorem doesn’t require the surjectivity of ∇g(x̄)
while imposing more assumptions on the outer function ϕ under first-order
and second-order qualification conditions.

Theorem 3.74 (second-order chain rules with smooth inner map-
pings). Consider the composition ϕ◦g of a function ϕ: Z → IR and a mapping
g: X → Z , where the spaces Z , Z∗, and X are Asplund. Assume that g ∈ C1

around some x̄ with the derivative ∇g strictly differentiable at this point, that
ϕ is l.s.c. and lower regular around z̄ := g(x̄), and that the inverse mapping
g−1 is PSNC at (z̄, x̄). Suppose also that ϕ is SNEC around z̄ and that the
first-order qualification condition

∂∞ϕ(g(x)) ∩ ker∇g(x)∗ = {0} (3.70)

is satisfied around x̄ (the last two conditions are automatic when ϕ is locally
Lipschitzian around x̄). Then the following assertions hold for both second-
order subdifferentials ∂2 = ∂2

N and ∂2 = ∂2
M :
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(i) Given ȳ ∈ ∂(ϕ ◦ g)(x̄), we assume that the mapping S: X × X∗ →→ Z∗

with the values

S(x, y) :=
{
v ∈ Z∗∣∣ v ∈ ∂ϕ(g(x)), ∇g(x)∗v = y

}

is inner semicontinuous at (x̄, ȳ, v̄) for some fixed v̄ ∈ S(x̄, ȳ), that the graph
of the subdifferential mapping ∂ϕ is norm-closed around (z̄, v̄), and that the
mixed second-order qualification condition

∂2
Mϕ(z̄, v̄)(0) ∩ ker∇g(x̄)∗ = {0}

is satisfied. Then for all u ∈ X∗∗ one has

∂2(ϕ ◦ g)(x̄, ȳ)(u) ⊂ ∇2〈v̄ , g〉(x̄)∗u + ∇g(x̄)∗∂2
Nϕ(z̄, v̄)(∇g(x̄)∗∗u) .

(ii) Given ȳ ∈ ∂(ϕ ◦ g)(x̄), we suppose that the above mapping S is inner
semicompact at (x̄, ȳ), that the graph of ∂ϕ is norm-closed whenever z is near
z̄, and that the mixed second-order qualification condition in (i) is satisfied for
every v̄ ∈ S(x̄, ȳ). Then for all u ∈ X∗∗ one has

∂2(ϕ ◦ g)(x̄, ȳ)(u) ⊂
⋃

v̄∈S(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄)∗u + ∇g(x̄)∗∂2

Nϕ(z̄, v̄)(∇g(x̄)∗∗u)
]
.

Proof. It suffices to justify (i) for ∂2 = ∂2
N , which implies the other statements

of the theorem due to the definitions. It follows from the first-order subdiffer-
ential chain rule in Theorem 3.41(ii) that the assumptions made ensure the
existence of a neighborhood U of x̄ on which ∂(ϕ ◦ g) admits the composite
representation

∂(ϕ ◦ g)(x) = ( f ◦ G)(x), x ∈ U ,

where f (x, v) = ∇g(x)∗v and G(x) =
(
x, ∂ϕ(g(x))

)
. Since f is smooth and

one always has

D∗
N G(x̄, x̄, v̄)(x∗, v∗) = x∗ + D∗

N (∂ϕ ◦ g)(x̄, v̄)(v∗), x∗ ∈ X∗, v∗ ∈ Z∗∗ ,

we conclude by Theorem 1.66(i) that

∂2
N (ϕ ◦ g)(x̄, ȳ)(u) ⊂ ∇2〈v̄ , g〉(x̄)∗(u) + D∗

N (∂ϕ ◦ g)(x̄, v̄)(∇g(x̄)∗∗u)

for all u ∈ X∗∗. It remains to compute the normal coderivative of the com-
position ∂ϕ ◦ g. To furnish this, we use Theorem 3.13(i) that provides the
coderivative chain rule

D∗
N (∂ϕ ◦ g)(x̄, v̄)(v∗) ⊂ ∇g(x̄)∗ ◦ (D∗

N∂ϕ)(z̄, v̄)(v∗), v∗ ∈ Z∗∗ ,

under the PSNC assumption on g−1 and the mixed qualification condition

(D∗
M∂ϕ)(z̄, v̄)(0) ∩ ker∇g(x̄)∗ = {0} ,
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which reduces to the second-order qualification condition of the theorem.
Combining these representations, we arrive at the desired second-order subd-
ifferential chain rule in (i). �

When Z is finite-dimensional (X may be not), some of the assumptions of
Theorem 3.74 either are satisfied automatically or can be essentially simplified.
In this way we get the following result, where ∂2ϕ stands for the common
second-order subdifferential of ϕ: IRm → IR while ∂2(ϕ ◦ g) is the same as in
the above theorem.

Corollary 3.75 (second-order chain rule for compositions with finite-
dimensional intermediate spaces). Let ȳ ∈ ∂(ϕ ◦g)(x̄), where ϕ: IRm → IR
and g: X → IRm with an Asplund space X . Assume that g ∈ C1 around x̄ with
the derivative strictly differentiable at x̄ and that ϕ is l.s.c. and lower regular
around z̄ = g(x̄) with closed graphs of ∂ϕ and ∂∞ϕ near z̄. Suppose also that
the first-order qualification condition (3.70) is satisfied at the point x = x̄ and
that one has the second-order qualification condition in the form

∂2ϕ(z̄, v̄)(0) ∩ ker∇g(x̄)∗ = {0} if v̄ ∈ ∂ϕ(z̄) with ∇g(x̄)∗v̄ = ȳ . (3.71)

Then the second-order chain rule of Theorem 3.74(ii) holds for all u ∈ X∗∗.

Proof. The SNEC property of ϕ and the PSNC property of g−1 are automatic
when dim Z < ∞. Further, one can easily check that if (3.70) holds at x̄ while
Z is finite-dimensional, it also holds in a neighborhood of x̄ . Indeed, assuming
the contrary and taking into account that ∂∞ϕ(·) is a cone, we get sequences
of xk → x̄ and z∗k ∈ ∂∞ϕ(g(xk)) with ∇g(xk)∗z∗k = 0 and ‖z∗k ‖ = 1 for all
k ∈ IN . Then z∗ ∈ ∂∞ϕ(z̄) with ∇g(x̄)∗z∗ = 0 and ‖z∗‖ = 1 for a cluster point
z∗ of {z∗k } due to the graph-closedness of ∂∞ϕ near z̄; this contradicts (3.70)
at x̄ . Similarly we check that the mapping S: X × X∗ →→ IRm in Theorem 3.74
is always inner semicompact at (x̄, ȳ) when the qualification condition (3.70)
is satisfied at x̄ . Thus we get the second-order chain rule from assertion (ii)
of Theorem 3.74. �

The next corollary justifies the second-order chain for an important class of
functions that automatically satisfy all the first-order assumptions in Corol-
lary 3.75. Recall that a function ψ : X → IR is amenable at x̄ if there is a
neighborhood U of x̄ on which ψ can be represented in the composition form
ψ = ϕ ◦ g with a C1 mapping g: U → IRm and a proper l.s.c. convex func-
tion ϕ: IRm → IR such that the qualification condition (3.70) holds at x̄ . This
function ψ is strongly amenable at x̄ if such a representation exists with g
not just C1 but C2. Amenable functions play a major role in the second-order
variational theory in finite dimensions; see the book by Rockafellar and Wets
[1165] and the references therein.

Corollary 3.76 (second-order chain rule for amenable functions). Let
ψ : X → IR be strongly amenable at x̄, and let ϕ: IRm → IR and g: X → IRm
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be mappings from its composite representation. Assume that X is Asplund
and that the second-order qualification condition (3.71) holds. Then for each
ȳ ∈ ∂ψ(x̄) and all u ∈ X∗∗ one has the inclusion

∂2ψ(x̄, ȳ)(u) ⊂
⋃

v̄∈S(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄)∗u + ∇g(x̄)∗∂2ϕ(z̄, v̄)(∇g(x̄)∗∗u)

]
,

where ∂2ψ stands for either ∂2
Nψ or ∂2

Mψ and where the point z̄ and the map-
ping S are defined in Theorem 3.74.

Proof. Since ϕ is convex, it is lower regular on its domain, and the graphs of
∂ϕ and ∂∞ϕ are closed. Hence the result follows from Corollary 3.75. �

Finally, let us consider a second-order chain rule for compositions ϕ ◦ g
involving C1,1 functions ϕ and Lipschitzian mappings g. In the next theorem
we use the second-order coderivatives (normal and mixed) of Lipschitzian
mappings defined in (1.63).

Theorem 3.77 (second-order chain rule with Lipschitzian inner map-
pings). Let ȳ ∈ ∂(ϕ ◦ g)(x̄), where g: X → Z is Lipschitz continuous around
x̄, where ϕ: Z → IR is C1,1 around z̄ := g(x̄) with v̄ := ∇ϕ(z̄), and where the
spaces X , X∗, Z , and Z∗ are Asplund. Assume that the graph of the set-valued
mapping (x, v) → ∂〈v, h〉(x) is norm-closed in X × Z∗ × X∗ whenever (x, v)
are near (x̄, v̄). Then one has the second-order chain rule

∂2(ϕ ◦ g)(x̄, ȳ)(u) ⊂
⋃

(x∗,v∗)∈D2g(x̄,v̄,ȳ)(u)

[
x∗ + D∗

N g(x̄) ◦ ∂2
Nϕ(z̄)(v∗)

]

for all u ∈ X∗∗, where ∂2 and D2 stand for the corresponding normal and
mixed second-order constructions. Moreover, this second-order inclusion holds
for an arbitrary Banach space Z if ∇ϕ is strictly differentiable at z̄.

Proof. Following the proof of Theorem 1.128, we have the representation

∂(ϕ ◦ g)(x) = (F ◦ h)(x) for all x ∈ U ,

in some neighborhood U of x̄ , where the mappings F : X × Z∗ →→ X∗ and
h: X → X × Z∗ are defined by

F(x, v) := ∂〈v, g〉(x), h(x) :=
(

x,∇ϕ(g(x))
)
, x ∈ U .

Let us apply to this composition the coderivative chain rule from Theo-
rem 3.13. This gives

D∗(F ◦ h)(x̄, ȳ)(u) ⊂ D∗
N h(x̄) ◦ D∗F(x̄, v̄, ȳ)(u), u ∈ X∗∗ ,

for both normal and mixed coderivatives under the assumptions made, except
that Z may be an arbitrary Banach space. If in addition Z is Asplund, one
has the inclusion
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D∗
N (∇ϕ ◦ g)(x̄)(v∗) ⊂ D∗

N g(x̄) ◦ ∂2
Nϕ(z̄)(v∗) (3.72)

from the same Theorem 3.13. Combining these two inclusions, we arrive at
the second-order chain rule in the theorem when all the spaces are Asplund.

Finally, let ∇ϕ be strictly differentiable at z̄. Then (3.72) holds in any Ba-
nach spaces, which follows from Theorem 1.65. This justifies the last statement
of the theorem and completes the proof. �

3.3 SNC Calculus for Sets and Mappings

In this section we continue studying the sequential normal compactness prop-
erties of sets and mappings started in Chap. 1. These properties are crucial
for the generalized differential calculus and its applications involving limit-
ing normals to sets, coderivatives of set-valued mappings, and subgradients
of extended-real-valued functions in infinite dimensions; see the results above
and also in the subsequent chapters. It is important therefore to investigate
how these properties behave under various operations performed on sets, func-
tions, and set-valued mappings. This means that we need to develop an SNC
calculus that provides efficient conditions ensuring the preservation of these
properties under basic operations. We have addressed such questions in Sub-
sects. 1.1.3 and 1.2.5, where some results have been obtained for sets and
mappings in arbitrary Banach spaces. In this section we present a more devel-
oped SNC calculus in the framework of Asplund spaces, which is our standing
assumption for this chapter.

As usual in this book, our approach is geometric dealing first with sets and
then with functions and multifunctions. Based on the extremal principle, we
obtain in Subsect. 3.3.1 efficient conditions ensuring the preservation of the
SNC (and related PSNC and strong PSNC) properties for sets intersections
and inverse images under nonsmooth and set-valued mappings. Subsect. 3.3.2
contains results in this direction for sums and intersections of set-valued map-
pings that imply the corresponding results for sums and maxima/minima
of extended-real-valued functions. The final Subsect. 3.3.3 concerns general
compositions of set-valued mappings and some of their specific realizations
including product and quotient operations.

3.3.1 Sequential Normal Compactness of Set Intersections
and Inverse Images

The basic result of this section deals with intersections of sets in products
of Asplund spaces (that are also Asplund) and provides conditions ensuring
the PSNC property in the sense of Definition 3.3. The product structure in
this result is essential for subsequent applications to set-valued mappings. Of
course, the initial SNC property of sets from Definition 1.20 is a special case
of the PSNC property studied in Theorem 3.79. To formulate this result, we
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first introduce the following mixed qualification condition for set systems in
products of arbitrary Banach spaces. It is clearly sufficient to consider the
product of two spaces.

Definition 3.78 (mixed qualification condition for set systems). Let
Ω1 and Ω2 be subsets of the product X × Y of two Banach spaces, and let
(x̄, ȳ) ∈ Ω1∩Ω2. We say that the system {Ω1,Ω2} satisfies the mixed qual-
ification condition at (x̄, ȳ) with respect to Y if for any sequences εk ↓ 0,

(xik, yik)
Ωi→ (x̄, ȳ), and (x∗

ik, y∗ik)
w∗
→ (x∗

i , y∗i ) with (x∗
ik, y∗ik) ∈ N̂εk ((xik, yik);Ωi ),

i = 1, 2, and k → ∞ one has
[
x∗
1k + x∗

2k
w∗
→ 0, ‖y∗1k + y∗2k‖ → 0

]
=⇒ (x∗

1 , y∗1 ) = (x∗
2 , y∗2 ) = 0 .

As usual, we may omit εk in the above definition if both X and Y are
Asplund and Ωi are locally closed around (x̄, ȳ). The mixed qualification
condition clearly holds under the normal qualification condition

N((x̄, ȳ);Ω1) ∩
(
− N((x̄, ȳ);Ω2)

)
= {(0, 0)} , (3.73)

which reduces to (3.10) from Definition 3.2(i) if there is no Y . Note that
the limiting qualification condition for {Ω1,Ω2} in the space X × Y from
Definition 3.2(ii) is less restrictive than the mixed one, however, it is not
sufficient for the SNC calculus.

The following principal result of the SNC calculus makes use of both PSNC
and strong PSNC properties from Definition 3.3. The case of m = 3 (but not
of m = 2) is of the main interest for applications to set-valued mappings; see
the next two subsections.

Theorem 3.79 (PSNC property of set intersections). Let the subsets
Ω1,Ω2 ⊂

∏m
j=1 X j be locally closed around x̄ ∈ Ω1 ∩ Ω2, and let the index

sets J1, J2 ⊂ {1, . . . ,m} be such that J1 ∪ J2 = {1, . . . ,m}. Assume that the
following hold:

(a) For each i = 1, 2 the set Ωi is PSNC at x̄ with respect to {X j | j ∈ Ji}.
(b) Either Ω1 is strongly PSNC at x̄ with respect to {X j | j ∈ J1 \ J2} or

Ω2 is strongly PSNC at x̄ with respect to {X j | j ∈ J2 \ J1}.
(c) {Ω1,Ω2} satisfies the mixed qualification condition at x̄ with respect

to {X j | j ∈ (J1 \ J2) ∪ (J2 \ J1)}.
Then Ω1 ∩Ω2 is PSNC at x̄ with respect to {X j | j ∈ J1 ∩ J2}.

Proof. First observe that it is sufficient to prove the theorem in the case of
m = 3 with J1 = {1, 2} and J2 = {1, 3}. Indeed, the general case can be
reduced to this one by reordering X j and letting

X :=
∏

j∈J1∩J2

X j , Y :=
∏

j∈J1\J2

X j , Z :=
∏

j∈J2\J1

X j .
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In what follows we use the notation X , Y , Z for X j , j ∈ {1, 2, 3}, and (x, y, z)
for the corresponding points. To justify the PSNC property in the conclusion
of the theorem, one needs to show that for any sequences

(xk, yk, zk) ∈ Ω1 ∩Ω2, (x∗
k , y∗k , z∗k ) ∈ N̂((xk, yk, zk);Ω1 ∩Ω2), k ∈ IN ,

the convergence

(xk, yk, zk) → (x̄, ȳ, z̄), x∗
k
w∗
→ 0, ‖y∗k ‖ → 0, ‖z∗k ‖ → 0

implies that ‖x∗
k ‖ → 0 as k → ∞. Since we are dealing with arbitrary se-

quences satisfying the above convergence properties, it is sufficient to show
that ‖x∗

k ‖ → 0 along a subsequence. By (b), assume without loss of generality
that Ω1 is strongly PSNC at (x̄, ȳ, z̄) with respect to Y .

Given (x∗
k , y∗k , z∗k ) ∈ N̂((xk, yk, zk);Ω1 ∩Ω2), we fix a sequence εk ↓ 0 and

apply Lemma 3.1 for each k ∈ IN . In this way we find sequences

(xik, yik, zik) ∈ Ωi , (x∗
ik, y∗ik, z∗ik) ∈ N̂((xik, yik, zik);Ωi ), i = 1, 2 ,

and λk ≥ 0 such that ‖(xik, yik, zik) − (xk, yk, zk)‖ ≤ εk for i = 1, 2,

‖(x∗
1k, y∗1k, z∗1k) + (x∗

2k, y∗2k, z∗2k) − λk(x∗
k , y∗k , z∗k )‖ ≤ 2εk , (3.74)

and 1 − εk ≤ max{λk, ‖x∗
1k‖, ‖y∗1k‖, ‖z∗1k‖} ≤ 1 + εk . Since the sequence

(x∗
k , y∗k , z∗k ) weak∗ converges, it is bounded, and hence the sequences x∗

ik , y∗ik ,
z∗ik , i = 1, 2, and λk are bounded as well. Taking into account that the spaces
X , Y , and Z are Asplund, we may suppose that (x∗

ik, y∗ik, z∗ik) weak∗ converge
to some (x∗

i , y∗i , z∗i ) for i = 1, 2, and that λk → λ ≥ 0 as k → ∞. This implies,
by (3.74) and by the choice of (x∗

k , y∗k , z∗k ), that

x∗
1k + x∗

2k
w∗
→ 0, ‖y∗1k + y∗2k‖ → 0, and ‖z∗1k + z∗2k‖ → 0 .

Therefore x∗
i = y∗i = z∗i = 0 for i = 1, 2 due to assumption (c) of the theorem.

On the other hand, since Ω1 is strongly PSNC at (x̄, ȳ, z̄) with respect to Y ,
it follows that ‖y∗1k‖ → 0, and hence ‖y∗2k‖ → 0 as k → ∞. By (a) the set
Ω2 is PSNC at (x̄, ȳ, z̄) with respect to {X, Z}, which gives ‖x∗

2k‖ → 0 and
‖z∗2k‖ → 0. This yields ‖z∗1k‖ → 0 by (3.74). Using the PSNC property of Ω1 at
(x̄, ȳ, z̄) with respect to {X, Y}, we similarly obtain ‖x∗

1k‖ → 0. Thus λ 	= 0 by
the relations above. Combining this with (3.74), we conclude that ‖x∗

k ‖ → 0,
which completes the proof of the theorem. �

It is easy to see that assumptions (a) and (c) of Theorem 3.79 are essential
for its conclusion. Let us show that the assumptions J1 ∪ J2 = {1, . . . ,m} and
(b) cannot be dropped as well. To demonstrate this for the first one, we take
an arbitrary Asplund space X and consider the two closed subsets

Ω1 := X × {0}, Ω2 :=
{
(x, x)

∣
∣ x ∈ X

}
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of the product X1 × X2 with X1 = X2 = X . Then both Ωi are clearly PSNC
at (0, 0) with respect to X1, and assumptions (a)–(c) of Theorem 3.79 hold.
However, the set Ω1 ∩Ω2 = {(0, 0)} is not PSNC at (0, 0) with respect to X1

unless X is finite-dimensional.
In the case of (b) we take X1 = X2 = X3 := X for an Asplund space X

and consider the sets

Ω1 :=
{
(x1, x2, x3) ∈ X3

∣
∣ x2 + x3 = 0

}
,

Ω2 :=
{
(x1, x2, x3) ∈ X3

∣
∣ x1 + x2 + x3 = 0

}
.

It is easy to check that Ω1 and Ω2 are PSNC at (0, 0, 0)) with respect to
{X1, X2} and {X1, X3}, respectively. Moreover, all the other assumptions but
(b) of Theorem 3.79 hold. Nevertheless

Ω1 ∩Ω2 =
{
(0, x2, x3)

∣
∣ x2 + x3 = 0

}

is not PSNC at (0, 0, 0) with respect to X1 in infinite dimensions.
Now we present two important corollaries of Theorem 3.79. The first one

concerns subsets in products of two Asplund spaces.

Corollary 3.80 (PSNC sets in product of two spaces). Let Ω1 and Ω2

be subsets of X × Y that are locally closed around (x̄, ȳ) ∈ Ω1 ∩Ω2. Assume
that one of the sets Ωi is SNC at (x̄, ȳ), that the other one is PSNC at this
point with respect to X , and that {Ω1,Ω2} satisfies the mixed qualification
condition at (x̄, ȳ) with respect to Y . Then Ω1 ∩ Ω2 is PSNC at (x̄, ȳ) with
respect to X .

Proof. Suppose that Ω1 is SNC at (x̄, ȳ). Then letting X1 := X , X2 := Y ,
J1 := {1, 2}, and J2 := {1}, we apply Theorem 3.79. �

The next corollary doesn’t assume any product structure on a given As-
plund space X and thus provides an intersection rule for the SNC property,
which is presented in the case of a finitely many sets under the normal quali-
fication condition. Note that, in contrast to the assumptions of Corollary 3.37
ensuring the intersection formula for basic normals, the SNC property is now
required for all sets involved in the intersection.

Corollary 3.81 (SNC property of set intersections). Let Ω1, . . . ,Ωn ⊂
X , n ≥ 2, be locally closed around their common point x̄. Assume that each
Ωi is SNC at x̄ and that

[
x∗
1 + . . .+ x∗

n = 0, x∗
i ∈ N(x̄ ;Ωi )

]
=⇒ x∗

i = 0, i = 1, . . . , n .

Then the intersection Ω1 ∩ . . . ∩Ωn is SNC at x̄.
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Proof. For n = 2 this follows from Corollary 3.80 by putting Y = {0}. In the
general case we derive the result by induction. �

Intersection rules for the strong PSNC property in product spaces can
be obtained similarly to the above. In particular, let us present a result for
products of two Asplund spaces.

Theorem 3.82 (strong PSNC property of set intersections). Let Ω1

and Ω2 be subsets of X × Y that are locally closed around (x̄, ȳ) ∈ Ω1 ∩Ω2.
Assume that Ω1 is SNC at (x̄, ȳ), that Ω2 is strongly PSNC at this point with
respect to X , and that the normal qualification condition (3.73) holds. Then
the intersection Ω1 ∩Ω2 is strongly PSNC at (x̄, ȳ) with respect to X .

Proof. It is similar to the proofs of Theorem 3.79 and Corollary 3.80. �

Many applications deal with sum of sets, and hence it is important to
clarify conditions ensuring the preservation of SNC properties under sum ad-
ditions. Such conditions follow in fact from those for set intersections. The
following theorem concerns the basic SNC property for sums of two sets in
Asplund spaces; the corresponding results for the PSNC and strong PSNC
properties can be derived similarly. Note that to derive efficient conditions
for the SNC property of sums, we apply the ones for the PSNC property of
intersections.

Theorem 3.83 (SNC property under set additions). Let Ω1,Ω2 ⊂ X
be closed sets, let x̄ ∈ Ω1 +Ω2, and let

S(x) :=
{
(x1, x2) ∈ X × X

∣
∣ x1 + x2 = x, x1 ∈ Ω1, x2 ∈ Ω2

}
.

Then the set Ω1 +Ω2 is SNC at x̄ if either
(a) S is inner semicompact at x̄, and for each (x1, x2) ∈ S(x̄) one of the

sets Ω1,Ω2 is SNC at x1 and x2, respectively; or
(b) S is inner semicontinuous at (x̄1, x̄2, x̄) with some (x̄1, x̄2) ∈ S(x̄), and

one of the sets Ω1,Ω2 is SNC at x̄1 and x̄2, respectively.

Proof. Take a sequence of (εk, xk, x∗
k ) ∈ IR+ × X × X∗ with

εk ↓ 0, xk → x̄, x∗
k ∈ N̂εk (xk ;Ω1 +Ω2), and x∗

k
w∗
→ 0 .

Considering case (a) with the inner semicompactness (the proof in case (b) is
similar), we find (uk, vk) ∈ S(xk) that contains a subsequence converging to
some (x̄1, x̄2), which belongs to S(x̄) to the closedness of Ω1 and Ω2. Define
the product sets

Ω̃1 := Ω1 × X and Ω̃2 := X ×Ω2 ,

which are closed subsets of the Asplund space X2. It is easy to see that
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(x∗
k , x∗

k ) ∈ N̂εk

(
(uk, vk); Ω̃1 ∩ Ω̃2

)
for all k ∈ IN .

Suppose for definiteness that Ω is SNC at x̄1. Then Ω̃1 is SNC at (x̄1, x̄2) and
Ω̃2 is PSNC at this point with respect to the second component. Note that
the mixed qualification condition from Definition 3.78 is obviously fulfilled for
{Ω̃1, Ω̃2}. Applying Corollary 3.80, we conclude that Ω̃1 ∩ Ω̃2 is PSNC at
(x̄1, x̄2) with respect to the first component. Thus ‖x∗

k ‖ → 0 as k → ∞, which
completes the proof of the theorem. �

Next let us obtain conditions ensuring the SNC property of inverse images

F−1(Θ) =
{

x ∈ X
∣
∣ F(x) ∩Θ 	= ∅

}

of sets under set-valued mappings between Asplund spaces.

Theorem 3.84 (SNC property of inverse images). Let x̄ ∈ F−1(Θ),
where F : X →→ Y is a closed-graph mapping (near x̄) and where Θ is a closed
subset of Y . Assume that the set-valued mapping F(·)∩Θ is inner semicompact
at x̄ and that for every ȳ ∈ F(x̄) ∩Θ the following hold:

(a) Either F is PSNC at (x̄, ȳ) and Θ is SNC at ȳ, or F is SNC at (x̄, ȳ).
(b) {F,Θ} satisfies the qualification condition

N(ȳ;Θ) ∩ ker D∗
N F(x̄, ȳ) = {0} .

Then the inverse image F−1(Θ) is SNC at x̄.

Proof. Take {εk, xk, x∗
k } with

εk ↓ 0, xk → x̄, x∗
k ∈ N̂εk (xk ; F−1(Θ)), and x∗

k
w∗
→ 0 .

Using the inner semicompactness and closedness assumptions made, we select
a subsequence of yk ∈ F(xk) ∩Θ that converges (without relabeling) to some
ȳ ∈ F(x̄) ∩Θ. One can easily check that

(x∗
k , 0) ∈ N̂εk ((xk, yk);Ω1 ∩Ω2) with Ω1 := gph F, Ω2 := X ×Θ . (3.75)

Let us apply Corollary 3.80 to the set intersection in (3.75). Observe that Ω2

is always PSNC at (x̄, ȳ) with respect to X , and it is SNC at this point if and
only if Θ is SNC at ȳ. Hence the assumptions in (a) ensure the fulfillment of
the corresponding assumptions in Corollary 3.80. Further, due to the special
structure of the sets Ω1 and Ω2 in (3.75), the mixed qualification condition
in Corollary 3.80 is clearly equivalent in the Asplund space setting to the
following: for any (xk, y1k, y2k, x∗

k , y∗1k, y∗2k) with

(xk, yik) → (x̄, ȳ), (xk, y1k) ∈ gph F, y2k ∈ Θ ,

x∗
k ∈ D̂∗F(xk, y1k)(y∗1k), and y∗2k ∈ N̂(y2k ;Θ)
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one has the relation
[
x∗

k
w∗
→ 0, y∗2k

w∗
→ y∗, ‖y∗2k − y∗1k‖ → 0

]
=⇒ y∗ = 0 ,

which is implied by the qualification condition (b) of the theorem. Thus the
set Ω1 ∩ Ω2 is PSNC at (x̄, ȳ) with respect to X by Corollary 3.80. It now
follows from (3.75) that ‖x∗

k ‖ → 0, i.e., the set F−1(Θ) is SNC at x̄ . �

Theorem 3.84 implies efficient subdifferential conditions ensuring the SNC
property of level sets for l.s.c. functions and solution sets for equations given
by real-valued continuous functions.

Corollary 3.85 (SNC property for level and solution sets). Let the
function ϕ: X → IR be proper with ϕ(x̄) = 0 for some x̄. The following asser-
tions hold:

(i) Assume that ϕ is l.s.c. around x̄ and that it is SNEC at this point.
Then the level set

Ω :=
{

x ∈ X
∣
∣ ϕ(x) ≤ 0

}

is SNC at x̄ provided that 0 /∈ ∂ϕ(x̄).
(ii) Assume that ϕ is continuous around x̄ and SNC at this point. Then

the solution set

Ω :=
{

x ∈ X
∣
∣ ϕ(x) = 0

}

is SNC at x̄ provided that 0 /∈ ∂ϕ(x̄) ∪ ∂(−ϕ)(x̄).

Proof. Assertion (i) follows from Theorem 3.84 applied to F := Eϕ and
Θ := (−∞, 0]. Assertion (ii) follows from Theorem 3.84 with Θ := {0} via
the coderivative-subdifferential relation of Theorem 1.80. �

Note that the SNEC and SNC properties of ϕ in Corollary 3.85 automati-
cally hold for locally Lipschitzian functions. Another proof of these results in
the Lipschitz case is given by Mordukhovich and B. Wang [962] based on the
direct application of the extremal principle.

It is easy to see that the subdifferential conditions are essential for the
SNC properties in both assertions of Corollary 3.85, even for smooth func-
tions ϕ. A simple example is provided by ϕ(x) = ‖x‖2 at x̄ = 0 in any
infinite-dimensional space. Note also that the condition 0 /∈ ∂ϕ(0), in contrast
to its Clarke’s counterpart 0 /∈ ∂Cϕ(x̄), doesn’t ensure the epi-Lipschitzian
property of the level set {x ∈ X | ϕ(x) ≤ 0} for Lipschitzian functions. A
counterexample is given by the function ϕ: IR2 → IR defined by (1.57), whose
basic subdifferential is computed in Subsect. 1.3.2. For this function we have
(0, 0) /∈ ∂ϕ(0, 0), while the level set

{
x ∈ IR2

∣
∣ ϕ(x) ≤ 0

}
=
{
(x1, x2) ∈ IR2

∣
∣ |x1| ≤ |x2|

}
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is obviously not epi-Lipschitzian at (0, 0).
The next result provides subdifferential conditions ensuring the SNC prop-

erty for the class of constraint sets important in applications to optimization
problems; see, e.g., Chap. 5.

Theorem 3.86 (SNC property of constraint sets). Let ϕi : X → IR with
ϕi (x̄) = 0 for i = 1, . . . ,m + r . Assume that ϕi are l.s.c. around x̄ and SNEC
at this point for i = 1, . . . ,m, and that ϕi are continuous around x̄ and SNC at
this point for i = m + 1, . . . ,m + r . Suppose also that the following constraint
qualification conditions hold:

(a) 0 /∈ ∂ϕi (x̄) for i = 1, . . . ,m, and 0 /∈ ∂ϕi (x̄) ∪ ∂(−ϕi )(x̄) for i =
m + 1, . . . ,m + r .

(b) one has
[
x∗
1 + . . .+ x∗

m+r = 0
]

=⇒ x∗
i = 0, i = 1, . . . ,m + r ,

for every x∗
i ∈ IR+∂ϕi (x̄) ∪ ∂∞ϕi (x̄), i = 1, . . . ,m, and every

x∗
i ∈ IR+

[
∂ϕi (x̄) ∪ ∂(−ϕi )(x̄)

]
∪ ∂∞ϕi (x̄) ∪ ∂∞(−ϕi )(x̄),

i = m + 1, . . . ,m + r ,

where IR+V := {λv| λ ≥ 0, v ∈ V }. Consider the sets

Ωi :=
{

x ∈ X
∣
∣ ϕi (x) ≤ 0

}
, i = 1, . . . ,m ,

Ωi :=
{

x ∈ X
∣
∣ ϕi (x) = 0

}
, i = m + 1, . . . ,m + r .

Then their intersection Ω1 ∩ . . . ∩Ωm+r is SNC at x̄.

Proof. Let us show that under the assumptions in (a) one has the inclusions

N(x̄ ;Ωi ) ⊂ IR+∂ϕi (x̄) ∪ ∂∞ϕi (x̄) for i = 1, . . . ,m ; (3.76)

N(x̄ ;Ωi ) ⊂ IR+
[
∂ϕi (x̄) ∪ ∂(−ϕi )(x̄)

]
∪ ∂∞ϕi (x̄) ∪ ∂∞(−ϕi )(x̄) (3.77)

for i = m + 1, . . . ,m + r . To establish (3.76), we observe that
{

x ∈ X
∣
∣ ϕ(x) ≤ 0

}
× {0} = (epi ϕ) ∩ S

with S := {(x, α) ∈ X × IR| α = 0}. The assumption 0 /∈ ∂ϕ(x̄) ensures
that the pair {epi ϕ, S} satisfies the normal qualification condition (3.10).
Applying Corollary 3.5 to this intersection, we obtain inclusion (3.76) for
each i = 1, . . . ,m. To justify (3.77) for each i = m + 1, . . . ,m + r , we apply
the same procedure to the intersection

{
x ∈ X

∣
∣ ϕ(x) = 0

}
× {0} = (gphϕ) ∩ S
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while taking into account Theorem 2.40. Note that all the sets Ωi , i =
1, . . . ,m + r are SNC at x̄ by Corollary 3.85. To complete the proof of the
theorem, it remains to apply to the intersection Ω1 ∩ . . . ∩ Ωm+p the result
of Corollary 3.81 whose qualification condition is fulfilled under the above as-
sumption (b) due to (3.76) and (3.77). �

Note that for Lipschitzian functions ϕi the SNC and SNEC assumptions of
Theorem 3.86 are fulfilled, and the qualification condition (b) is simplified by
∂∞ϕi (x̄) = ∂∞(−ϕi )(x̄) = {0}. If each ϕi is strictly differentiable at x̄ , then the
qualification conditions of the theorem reduce to the classical Mangasarian-
Fromovitz constraint qualification.

Corollary 3.87 (SNC property under the Mangasarian-Fromovitz
constraint qualification). Let x̄ ∈ Ω1 ∩ . . . ∩ Ωm+r , where Ωi are given
in Theorem 3.86 with the functions ϕi strictly differentiable at x̄. Put

I (x̄) :=
{

i = 1, . . . ,m + r
∣
∣ ϕi (x̄) = 0

}

and assume that:
(a) ∇ϕm+1(x̄), . . . ,∇ϕm+r (x̄) are linearly independent;
(b) there is u ∈ X satisfying

〈∇ϕi (x̄), u〉 < 0, i ∈ {1, . . . ,m} ∩ I (x̄) ,

〈∇ϕi (x̄), u〉 = 0, i = m + 1, . . . ,m + r .

Then the set
⋂

i∈I(x̄) Ωi is SNC at x̄.

Proof. Assume without loss of generality that I (x̄) = {1, . . . ,m + r}. Then
the result follows directly from Theorem 3.86 due to ∂ϕ(x̄) = {∇ϕ(x̄)} for
strictly differentiable functions. �

3.3.2 Sequential Normal Compactness for Sums
and Related Operations with Maps

The main results of this subsection concern the preservation of the PSNC and
SNC properties under summations of set-valued mappings between Asplund
spaces. The sum operation has certain specific features that distinguish it
from other compositions and allow us to obtain more delicate results in this
case than those in Subsect. 3.3.3. We also present here some consequences
for summations, maxima, and minima of extended-real-valued functions. All
the proofs are based on the SNC calculus for set intersections developed in
Subsect. 3.3.1.

The first theorem ensures the preservation of the PSNC property for sums
of multifunctions under the mixed coderivative qualification condition. Its as-
sumptions are parallel to those in Theorem 3.10 on the coderivative sum rules,



350 3 Full Calculus in Asplund Spaces

with the only difference that now the PSNC property is required for both map-
pings involved in summation.

Theorem 3.88 (PSNC property for sums of set-valued mappings).
Let (x̄, ȳ) ∈ gph (F1 + F2), where both Fi are closed-graph whenever x is near
x̄. Suppose that the mapping

S(x, y) :=
{
(y1, y2) ∈ Y 2

∣
∣ y1 ∈ F1(x), y2 ∈ F2(x), y1 + y2 = y

}

is inner semicompact at (x̄, ȳ) and that for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) the fol-
lowing assumptions hold:

(a) Each Fi is PSNC at (x̄, ȳi ), respectively.
(b) {F1, F2} satisfies the mixed coderivative qualification condition

D∗
M F1(x̄, ȳ1)(0) ∩

(
− D∗

M F2(x̄, ȳ2)(0)
)

= {0} .

Then F1 + F2 is PSNC at (x̄, ȳ).

Proof. Take arbitrary sequences εk ↓ 0, (xk, yk) ∈ gph (F1 + F2), and

(x∗
k , y∗k ) ∈ N̂εk ((xk, yk); gph (F1 + F2)), k ∈ IN , (3.78)

satisfying (xk, yk) → (x̄, ȳ), x∗
k

w∗
→ 0, and ‖y∗k ‖ → 0 as k → ∞. To

justify the PSNC property of F1 + F2 at (x̄, ȳ), it suffices to show that
‖x∗

k ‖ → 0 along a subsequence of k ∈ IN . Using the inner semicompactness
of S and the closed-graph assumptions of the theorem, we select a subse-
quence of (y1k, y2k) ∈ S(xk, yk) that converges (without relabeling) to some
(ȳ1, ȳ2) ∈ S(x̄, ȳ). Consider the two sets

Ωi :=
{
(x, y1, y2) ∈ X × Y × Y

∣
∣ (x, yi ) ∈ gph Fi

}
, i = 1, 2 ,

which are locally closed around (x̄, ȳ1, ȳ2). By (a) we observe that the set
Ω1 is PSNC at (x̄, ȳ1, ȳ2) with respect to the first and third components,
while Ω2 is PSNC at (x̄, ȳ1, ȳ2) with respect to the first two components and
strongly PSNC at this point with respect to the second component. Using
the special structure of Ωi , one can directly check that (b) implies the mixed
qualification condition for {Ω1,Ω2} at (x̄, ȳ1, ȳ2) with respect to Y × Y . Now
the main Theorem 3.79 ensures, for m = 3, that Ω1∩Ω2 is PSNC at (x̄, ȳ1, ȳ2)
with respect to X . Since

(x∗
k , y∗k , y∗k ) ∈ N̂εk ((xk, y1k, y2k);Ω1 ∩Ω2) ,

by (3.78), we conclude from here that ‖x∗
k ‖ → 0, which completes the proof

of the theorem. �

Note that both assumptions (a) and (b) of Theorem 3.88 automatically
hold if, for every (ȳ1, ȳ2) ∈ S(x̄, ȳ), one of Fi is Lipschitz-like around (x̄, ȳi ) and
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the other is PSNC at (x̄, ȳi ), respectively. Also, it easily follows from the proof
of Theorem 3.88 that assumptions (a) and (b) therein can be imposed only
at a given point (ȳ1, ȳ2) ∈ S(x̄, ȳ) if S is assumed to be inner semicontinuous
at (x̄, ȳ, ȳ1, ȳ2).

The following corollary provides efficient conditions ensuring the preser-
vation of the sequential normal epi-compact (SNEC) property for sums of
extended-real-valued functions.

Corollary 3.89 (SNEC property for sums of l.s.c. functions). Let
ϕi : X → IR, i = 1, 2, be proper and l.s.c. around some point x̄ ∈ (dom ϕ1) ∩
(dom ϕ2). Assume that each ϕi is SNEC at x̄ and that

∂∞ϕ1(x̄) ∩
(
− ∂∞ϕ2(x̄)

)
= {0} . (3.79)

Then ϕ1 + ϕ2 is SNEC at x̄.

Proof. It follows from Theorem 3.88 applied to the epigraphical multifunc-
tions Fi := Eϕi : X → IR for which F1 + F2 = Eϕ1+ϕ2 . Indeed, it is clear that
Fi is PSNC at (x̄, ϕi (x̄)) if and only if ϕi is SNEC at x̄ for each i = 1, 2.
Moreover, the qualification condition (b) of Theorem 3.88 obviously reduces
to (3.79). Based on the lower semicontinuity of ϕi , one can directly check that
the corresponding mapping S from Theorem 3.88 is inner semicompact at
(x̄, ϕ1(x̄) + ϕ2(x̄)). Hence Eϕ1 + Eϕ2 is PSNC (i.e., SNC in this case) at the
point (x̄, ϕ1(x̄) + ϕ2(x̄)), which means that ϕ1 + ϕ2 is SNEC at x̄ . �

Next we obtain results on the preservation of the full SNC (not partial
SNC) property for sums of set-valued mappings and real-valued functions.
These results are similar to the case of PSNC with imposing more restrictive
qualification conditions.

Theorem 3.90 (SNC property for sums of set-valued mappings). Let
(x̄, ȳ) ∈ gph (F1 + F2), where both Fi are closed-graph whenever x is near x̄.
Assume that the mapping S from Theorem 3.88 is inner semicompact at (x̄, ȳ)
and that for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) the following hold:

(a) Each Fi is SNC at (x̄, ȳi ), respectively.
(b) {F1, F2} satisfies the normal coderivative qualification condition

D∗
N F1(x̄, ȳ1)(0) ∩

(
− D∗

N F2(x̄, ȳ2)(0)
)

= {0} .

Then F1 + F2 is SNC at (x̄, ȳ).

Proof. One can get this following the line in the proof of Theorem 3.88 with
the use of Corollary 3.81 instead of Theorem 3.79. �

As a consequence of the latter result, we have a singular subdifferential
condition ensuring the preservation of the SNC property for linear combina-
tions of real-valued continuous functions.
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Corollary 3.91 (SNC property for linear combinations of continuous
functions). Let ϕi : X → IR, i = 1, 2, be continuous around x̄ and SNC at this
point. Assume the qualification condition
[
∂∞ϕ1(x̄) ∪ ∂∞(−ϕ1)(x̄)

]
∩
[
−
(
∂∞ϕ2(x̄) ∪ ∂∞(−ϕ2)(x̄)

)]
= {0} . (3.80)

Then α1ϕ1 + α2ϕ2 is SNC at x̄ for any α1, α2 ∈ IR.

Proof. It follows from the above theorem due to Theorem 2.40(ii). �

Our next goal is to study the SNEC and SNC properties of maximum
functions in the form

max{ϕ1, ϕ2}(x) := max{ϕ1(x), ϕ2(x)}

with ϕi : X → IR, i = 1, 2. It happens that the SNEC property of such functions
is closely related to the SNC property for intersections of sets and set-valued
mappings. The equivalence result below provides, in particular, a singular sub-
differential condition ensuring the preservation of the SNEC property under
the maximum operation over l.s.c. functions in Asplund spaces.

Proposition 3.92 (SNEC property of maximum functions). Let X be
a collection of Banach spaces that is closed under finite products and contains
finite-dimensional spaces. Then the following assertions are equivalent:

(i) Take arbitrary X ∈ X and proper functions ϕi : X → IR, i = 1, 2, which
are l.s.c. around some x̄ ∈ (dom ϕ1) ∩ (dom ϕ2) satisfying ϕ1(x̄) = ϕ2(x̄) and
the qualification condition (3.79). Then max{ϕ1, ϕ2} is SNEC at x̄ if each ϕi

is SNEC at this point.
(ii) Take arbitrary X,Y ∈ X and mappings (x̄, ȳ) ∈ (gph F1) ∩ (gph F2)

and satisfy the qualification condition

N((x̄, ȳ); gph F1) ∩
(
− N((x̄, ȳ); gph F2)

)
= {(0, 0)}

Then F1 ∩ F2 is SNC at (x̄, ȳ) if each Fi is SNC at this point.
(iii) Take arbitrary X ∈ X and sets Ωi , i = 1, 2, which are closed around

some x̄ ∈ Ω1 ∩Ω2 and satisfy the qualification condition

N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
= {0} .

Then Ω1 ∩Ω2 is SNC at x̄ if each Ωi is SNC at this point.

In particular, the above assertions hold if X is the collection of Asplund spaces.

Proof. Let us show that (i)⇒(iii)⇒(ii)⇒(i). In fact, (iii)⇒(ii) is obvious.
To justify (ii)⇒(i), we use (ii) for Fi := Eϕi , i = 1, 2, at (x̄, ȳ) with
ȳ := ϕ1(x̄) = ϕ2(x̄). Observe that each Eϕi is SNC at (x̄, ȳ) and that the
qualification condition in (ii) reduces to (3.79). Hence Eϕ1 ∩ Eϕ2 is SNC at
(x̄, ȳ). Taking into account that
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gph (Eϕ1 ∩ Eϕ2) = epi
(
max{ϕ1, ϕ2}

)
,

we derive (i) from (ii).
To prove (i)⇒(iii), we apply (i) to the indicator functions ϕi (x) = δ(x ;Ωi ),

i = 1, 2. Then each δ(·;Ωi ) is obviously SNEC at x̄ , and (3.79) reduces to the
qualification condition in (iii). Since

max
{
δ(x ;Ω1), δ(x ;Ω2)

}
= δ(x ;Ω1 ∩Ω2) ,

the function δ(·;Ω1 ∩Ω2) is SNEC at x̄ , which is equivalent to the SNC prop-
erty of Ω1 ∩Ω2 at this point. The last conclusion of the proposition follows
from Corollary 3.81. �

The result obtained allows us to derive subgradient conditions ensuring the
preservation of the SNC for continuous maximum (and minimum) functions
due the following observation that holds in Asplund spaces.

Proposition 3.93 (relationship between SNEC and SNC properties
of real-valued continuous functions). Let ϕ: X → IR be continuous around
x̄. Then ϕ is SNC at x̄ if and only if both functions ϕ and −ϕ are SNEC at
this point.

Proof. This easily follows from Theorem 2.40(i) held in Asplund spaces and
the proof of Theorem 1.80 that gives relationships between Fréchet normals
to graphs and epigraphs of continuous functions. �

Corollary 3.94 (SNC property of maximum and minimum func-
tions). Let ϕi : X → IR, i = 1, 2, be continuous around x̄, and let ϕ1(x̄) =
ϕ2(x̄). Assume that each ϕi is SNC at x̄. Then:

(i) max{ϕ1, ϕ2} is SNC at x̄ provided that the qualification condition (3.79)
holds.

(ii) min{ϕ1, ϕ2} is SNC at x̄ provided that

∂∞(−ϕ1)(x̄) ∩
(
− ∂∞(−ϕ2)(x̄)

)
= {0} .

Proof. It follows from Proposition 3.92 that max{ϕ1, ϕ2} is SNEC at x̄ . By
Proposition 3.93 it remains to show that −max{ϕ1, ϕ2} is SNEC at this point.
Observe that

epi
(
− max{ϕ1, ϕ2}

)
= epi (−ϕ1) ∪ epi (−ϕ2) .

Using Proposition 3.93 again, we conclude that the sets epi (−ϕ1) and epi (−ϕ2)
are SNC at the point (x̄, ϕ1(x̄)) = (x̄, ϕ2(x̄)). It easily follows from the defin-
ition of SNC sets and the decreasing property (1.5) of the sets of ε-normals
that epi (−ϕ1) ∪ epi (−ϕ2) is also SNC at this point, which implies the SNEC
property of −max{ϕ1, ϕ2}. Assertion (ii) follows from (i) due to
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min{ϕ1(x), ϕ2(x)} = −max{−ϕ1(x),−ϕ2(x)} ,

which completes the proof. �

Note that, in contrast to the sum operation in Corollary 3.91, the SNC
property of maximum functions is ensured by the same qualification condition
(3.79) as the SNEC property of such functions. Note also that the qualifica-
tion conditions (3.79) and (3.80) automatically hold if one of ϕi is Lipschitz
continuous around x̄ .

3.3.3 Sequential Normal Compactness for Compositions of Maps

In the final subsection of this section (and of the whole chapter) we study
the PSNC and SNC properties for compositions F ◦G of set-valued mappings
between Asplund spaces and consider some special cases of such compositions.
Based on geometric results of Subsect. 3.3.1, we obtain efficient qualification
conditions for the preservation of these and related properties under various
compositions. Similarly to Subsect. 3.3.2 such conditions are expressed in
terms of the mixed and normal coderivatives of set-valued mappings and the
singular subdifferentials of extended-real-valued functions.

The first theorem provides conditions for the preservation of the PSNC
property of set-valued mappings under their general composition. Note that
the qualification condition in this theorem, involving a combination of the
mixed and normal coderivatives of the components, is more restrictive than
the corresponding qualification condition sufficient for the coderivative chain
rules derived in Theorem 3.13.

Theorem 3.95 (PSNC property of compositions). Consider the compo-
sition F◦G with G: X →→ Y and F : Y →→ Z , and let z̄ ∈ (F◦G)(x̄). Assume that
G and F−1 are closed-graph near x̄ and z̄, respectively, and that the set-valued
mapping

S(x, z) := G(x) ∩ F−1(z) =
{

y ∈ G(x)
∣
∣ z ∈ F(y)

}

is inner semicompact at (x̄, z̄). Assume also that for every ȳ ∈ S(x̄, z̄) the
following hold:

(a) Either G is PSNC at (x̄, ȳ) and F is PSNC at (ȳ, z̄), or G satisfies
the SNC property at (x̄, ȳ).

(b) {F,G} satisfies the qualification condition

D∗
M F(ȳ, z̄)(0) ∩ ker D∗

N G(x̄, ȳ) = {0} .

Then the composition F ◦ G is PSNC at (x̄, z̄).

Proof. Take sequences εk ↓ 0, (xk, zk) → (x̄, z̄), x∗
k

w∗
→ 0, and ‖z∗k ‖ → 0 as

k → ∞ satisfying
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zk ∈ (F ◦ G)(xk) and x∗
k ∈ D̂∗

εk
(F ◦ G)(xk, zk)(z∗k ), k ∈ IN . (3.81)

To justify the PSNC property of F ◦ G at (x̄, z̄), we need to show by Defi-
nition 1.67 that ‖x∗

k ‖ → 0 along some subsequence. From the first inclusion
in (3.81) one has yk ∈ S(xk, zk) for all k ∈ IN . Using the inner semicompact-
ness of S and the closed-graph assumptions made, we select a subsequence of
yk that converges (without relabeling) to some ȳ ∈ G(x̄) ∩ F−1(z̄). Consider
subsets Ω1,Ω2 ⊂ X × Y × Z defined by

Ω1 := gph G × Z , Ω2 := X × gph F ,

which are locally closed around (x̄, ȳ, z̄) ∈ Ω1 ∩Ω2. It easily follows from the
second inclusion in (3.81) that

(x∗
k , 0,−z∗k ) ∈ N̂εk ((xk, yk, zk);Ω1 ∩Ω2), k ∈ IN . (3.82)

One can check that all the assumptions of Theorem 3.79 hold for the above
sets Ω1 and Ω2 with m = 3 and with either J1 = {1, 3} and J2 = {1, 2}, or
with J1 = {1, 2, 3} and J2 = {1} depending on the alternative in (a). Apply-
ing Theorem 3.79, we conclude that the set Ω1 ∩Ω2 is PSNC at (x̄, ȳ, z̄) with
respect to X . This gives by (3.82) that ‖x∗

k ‖ → 0, which completes the proof
of the theorem. �

Observe that Theorem 3.84 can be derived from Theorem 3.95 with
F(y) = δ(y;Θ); this is not the case however for Theorem 3.88. Note also that
assumptions (a) and (b) of Theorem 3.95 may be imposed only at a given
point (x̄, ȳ, z̄) if the mapping S therein is assumed to be inner semicontinuous
at this point.

Corollary 3.96 (PSNC property for compositions with Lipschitzian
outer mappings). Let z̄ ∈ (F ◦ G)(x̄), where G: X →→ Y and F−1: Z →→ Y
are closed-graph near x̄ and z̄, respectively. Assume that the mapping G ∩
F−1 is inner semicompact at (x̄, z̄) and, for every ȳ ∈ G(x̄) ∩ F−1(z̄), G
is PSNC at (x̄, ȳ) and F is Lipschitz-like around (x̄, ȳ) (in particular, F is
locally Lipschitzian around x̄). Then F ◦ G is PSNC at (x̄, z̄).

Proof. By Theorem 1.44 and Proposition 1.68 the main assumptions (a) and
(b) of Theorem 3.95 automatically hold for Lipschitz-like mappings. �

Note that, in contrast to Corollary 3.15, the metric regularity of G at (x̄, ȳ)
doesn’t ensure the fulfillment of assumptions (a) and (b) of Theorem 3.95
(even for dim Y < ∞ when (b) automatically holds), since G may not be
PSNC at (x̄, ȳ) in this case.

Theorem 3.95 implies the following result on the SNEC property of compo-
sitions involving extended-real-valued outer functions and single-valued inner
mappings between Asplund spaces.
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Corollary 3.97 (SNEC property of compositions). Let g: X → Y be
continuous around x̄, and let ϕ: Y → IR be proper and l.s.c. around ȳ := g(x̄).
Assume that either g is PSNC at x̄ and ϕ is SNEC at ȳ, or g is SNC at x̄.
Then ϕ ◦ g is SNEC at x̄ provided that

∂∞ϕ(ȳ) ∩ ker D∗
N g(x̄) = {0} .

In particular, ϕ ◦ g is SNEC at x̄ if ϕ is locally Lipschitzian around ȳ, and if
g is continuous around x̄ and PSNC at this point.

Proof. Follows from Theorem 3.95 and Corollary 3.96 by simply putting
F := Eϕ and G := g. �

Next we obtain conditions ensuring the preservation of the SNC property
under compositions of set-valued mappings between Asplund spaces.

Theorem 3.98 (SNC property of compositions). Let z̄ ∈ (F ◦ G)(x̄),
where G: X →→ Y and F−1: Z →→ Y are closed-graph near x̄ and z̄, respectively.
Assume that G ∩ F−1 is inner semicompact at (x̄, z̄) and that for every ȳ ∈
G(x̄) ∩ F−1(z̄) the following hold:

(a) Either G is PSNC at (x̄, ȳ) and F is SNC at (ȳ, z̄), or G is SNC at
(x̄, ȳ) and F−1 is PSNC at (z̄, ȳ); this happens, in particular, when both G
and F are SNC at the corresponding points.

(b) {F,G} satisfies the qualification condition

D∗
N F(ȳ, z̄)(0) ∩ ker D∗

N G(x̄, ȳ) = {0} .

Then the composition F ◦ G is SNC at (x̄, z̄).

Proof. To justify the SNC property of F ◦ G at (x̄, z̄), we need to show that
for any sequences εk ↓ 0, (xk, zk) → (x̄, z̄) with (xk, zk) ∈ gph (F ◦ G), and

(x∗
k , z∗k ) ∈ N̂εk ((xk, zk); gph (F ◦ G)) with (x∗

k , z∗k ) w∗
→ (0, 0)

one has ‖(x∗
k , z∗k )‖ → 0 along some subsequence. Following the proof of The-

orem 3.95, we consider the sets Ω1 and Ω2 defined there and observe that

(x∗
k , 0, z∗k ) ∈ N̂εk ((xk, yk, zk);Ω1 ∩Ω2), k ∈ IN ,

with yk → ȳ ∈ G(x̄) ∩ F−1(z̄) selected by the inner semicompactness prop-
erty of G ∩ F−1. Using the structure of the sets Ω1 and Ω2, one can check
that all the assumptions of Theorem 3.79 hold with either J1 = {1, 3} and
J2 = {1, 2, 3}, or with J1 = {1, 2, 3} and J2 = {1, 3} depending on the alter-
native in (a). Hence Theorem 3.79 ensures that Ω1 ∩Ω2 is PSNC at (x̄, ȳ, z̄)
with respect to {X, Z}, which implies that ‖(x∗

k , z∗k )‖ → 0 and completes the
proof of the theorem. �
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Combining Theorems 3.88, 3.90, 3.95, 3.98 and their corollaries, one can
obtain results on PSNC and SNC properties of various compositions includ-
ing, in particular, h-compositions considered in Subsect. 3.1.2. For example,
we present below some results concerning binary operations over real-valued
continuous functions that include, in particular, their products and quotients.
To proceed, we first establish the following relationship between the SNC
property for continuous functions ϕi : X → IR and their aggregate mapping
(ϕ1, ϕ2): X → IR2 in Asplund spaces.

Proposition 3.99 (SNC property of aggregate mappings). Let ϕi : X →
IR, i = 1, 2, be continuous around x̄ and satisfy the qualification condition
(3.80). Then both ϕi are SNC at x̄ if and only if the aggregate mapping
(ϕ1, ϕ2): X → IR2 is SNC at this point.

Proof. Let ϕ1 and ϕ2 be SNC at x̄ . Then the mappings fi : X → IR2 with
fi (x) = (ϕi (x), 0), i = 1, 2, are clearly SNC at this point. It follows from
Theorem 2.40 that

D∗ fi (x̄)(0) ⊂ ∂∞ϕi (x̄) ∪ ∂∞(−ϕi )(x̄), i = 1, 2 .

Since (ϕ1, ϕ2) = f1 + f2, we conclude that the mapping (ϕ1, ϕ2) is SNC at x̄
due to Theorem 3.90.

Conversely, assume that (ϕ1, ϕ2) is SNC at x̄ . Then we derive the SNC
property of each ϕi by applying Theorem 3.98 to Fi ◦ G with, respectively,
G(x) := (ϕ1(x), ϕ2(x)) and Fi (y1, y2) := yi , i = 1, 2. �

Now combining Proposition 3.99 with the above results on the SNEC and
SNC properties of compositions, we derive conditions ensuring these proper-
ties for an abstract binary operation defined by some function υ: IR2 → IR.

Corollary 3.100 (SNEC and SNC properties for binary operations).
Let ϕi : X → IR, i = 1, 2, be continuous around x̄, and let υ: IR2 → IR be l.s.c.
around ȳ := (ϕ1(x̄), ϕ2(x̄)). Assume that each ϕi is SNC at x̄ and that {ϕ1, ϕ2}
satisfies the qualification condition (3.80). Then the following hold:

(i) υ(ϕ1, ϕ2) is SNEC at x̄ provided that ∂∞υ(ȳ) = {0}.
(ii) υ(ϕ1, ϕ2) is SNC at x̄ provided that υ is continuous around ȳ and that

∂∞υ(ȳ) ∪ ∂∞(−υ)(ȳ) = {0} .

Proof. Assertion (i) follows from Proposition 3.99 and Corollary 3.97 ap-
plied to the composition υ ◦ f with f (x) := (ϕ1(x), ϕ2(x)). Assertion (ii)
follows from Proposition 3.99 and Theorem 3.98 applied to the composi-
tion υ ◦ f , where the qualification condition (b) holds due to D∗υ(ȳ)(0) =
∂∞υ(ȳ) ∪ ∂∞(−υ)(ȳ) by Theorem 2.40(ii). �

Note that Corollary 3.100 implies Corollary 3.91 but not Corollaries 3.89
and 3.94, where the qualification conditions are less restrictive due to specific
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features of the unilateral operations under consideration. Let us finally present
direct consequences of Corollary 3.100 in the cases of product and quotient
operations.

Corollary 3.101 (SNC property of products and quotients). Let ϕi ,
i = 1, 2, be continuous around x̄ and SNC at this point. Assume that the
qualification condition (3.80) holds. Then the product ϕ1 · ϕ2 is SNC at x̄. If
in addition ϕ2(x̄) 	= 0, then the quotient ϕ1/ϕ2 is also SNC at this point.

Proof. The product and quotient results follow from Corollary 3.100(ii) with
υ(y1, y2) := y1 · y2 and υ(y1, y2) := y1/y2, respectively. �

Remark 3.102 (calculus for CEL property of sets and mappings). As
mentioned in Remark 1.27(ii), the compactly epi-Lipschitzian (CEL) property
of closed sets in Asplund spaces admits a complete characterization in the form
similar to the SNC property with the only difference that the weak∗ conver-
gence of sequences of Fréchet normals is replaced by the same convergence
of bounded nets. Involving now the results from Fabian and Mordukhovich
[422], we conclude that the SNC and CEL property agree in weakly compactly
generated Asplund spaces (in particular, in either reflexive Banach spaces or
separable Asplund spaces), while they may be different in the nonsepara-

ble setting. Thus the above results concerning the SNC property of sets and
mappings provide the corresponding CEL calculus in WCG Asplund spaces.

Furthermore, it is proved by Ioffe [607] that such a weak∗ topological
(bounded net) description of closed CEL sets holds true in arbitrary Banach
spaces if the Fréchet normal cone is replaced by the nucleus of the G-normal
cone defined in (2.76). Using this description and the procedure developed
above, we can get results on the preservation of the CEL property under
various operations on sets and mappings in Banach spaces similar to those
obtained for the SNC property in Asplund spaces. The principal difference be-
tween these results is that in arbitrary Banach spaces we need to use (instead
of our basic normals, subgradients, and normal coderivatives) nuclei of the
G-normal cone and the associated coderivative and subdifferential construc-
tions for mappings and functions in formulations of the corresponding nor-
mal qualification conditions. The latter relates to the fact that the G-normal
cone provides a topological normal structure in general Banach spaces; see
Sect. 2.5. In this way we get, in particular, analogs of Corollary 3.81, Theo-
rem 3.84, Theorem 3.86 (for inequality and Lipschitzian equality constraints),
Proposition 3.92, and Theorems 3.90 and 3.98 (with net counterparts of inner
semicompactness) ensuring the preservation of the CEL property under gen-
eral operations in arbitrary Banach spaces. Similar results in this direction
related to Corollary 3.81 and to a special case of Theorem 3.98 can be found
in Jourani [648] with a different proof.

Finally, note that one doesn’t need any SNC calculus in finite dimensions,
since every set there is automatically SNC. Hence the qualification condi-
tions obtained in this section for SNC calculus exclusively relate to variational
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analysis in infinite-dimensional spaces. However, in finite dimensions they re-
duce to qualification conditions that are needed for calculus rules involving
basic normals, subgradients, and coderivatives crucial for any applications of
generalized differentiation. Thus the development of the SNC calculus, which
is one of the most fundamental ingredients of infinite-dimensional variational
analysis, leads us to a unified theory efficient in applications to various prob-
lems in both finite-dimensional and infinite-dimensional settings; see the sub-
sequent chapters of this book.

Remark 3.103 (subdifferential calculus and related topics in As-
plund generated spaces). Most of the results presented in this chapter
involving Fréchet-like generalized differential constructions and their sequen-
tial limits require the Asplund structure of the Banach space in question. Our
approach is mainly based on the extremal principle of variational analysis and
its equivalent descriptions, for the validity of which the Asplund property
is necessary as long as one deals with Fréchet-like differentiability and sub-
differentiability. The Fréchet-like constructions involved and their sequential
regularizations seem to be strong and natural from the viewpoints of both clas-
sical and generalized differentiation, and many crucial results and techniques
developed in this book essentially employ these structures. There are other
generalized differential constructions successfully used in nonsmooth analysis
along with those studied in this book being, however, either essentially larger,
or more complicated (involving particularly topological/net weak∗ limits), or
restrictive to narrow classes of Banach spaces; see the results and discussions
in Sect. 2.5 and Subsect. 3.2.3 with related comments and references.

It is interesting to clarify the possibility of extending the approach based
on Fréchet-like constructions and their sequential limits to a larger class of
Banach spaces that includes all separable spaces, which are probably the most
important for applications. This work has been started by Fabian, Loewen and
Mordukhovich [418] in the so-called Asplund generated spaces (AGS) that
form a common roof for Asplund spaces and for weakly compactly generated
spaces containing, in particular, all separable Banach spaces. A Banach space
(X, ‖ · ‖X ) is Asplund generated if there exist an Asplund space (Y, ‖ · ‖Y ) and
a linear bounded operator A: Y → X such that its range AY is dense in X ; see
Fabian’s book [416]. Besides Asplund spaces themselves, the class of Asplund
generated spaces include the following:

1. The Lebesgue space X = L1(Ω,Σ,µ, Z) is Asplund generated provided
that (Ω,Σ,µ) is a fine measure space and Z is AGS. In this case one has
Y = L2(Ω,Σ,µ, Z) and ‖ · ‖Y = ‖ · ‖L2 .

2. The space C(K ) of continuous functions defined on a compact space K
is Asplund generated if and only if K is homeomorphic to a weak∗ compact
subset of Z∗ for some Asplund space Z . Here the construction of Y is much
more involved in comparison with the preceding example; see Theorem 1.2.4
in the afore-mentioned book by Fabian [416].
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3. Every separable Banach space X is Asplund generated. Indeed, every
such X contains the dense linear image of the Hilbert space �2. To see this,
fix some countable set {xk | k ∈ IN} dense in the unit ball of X and define the
mapping A: �2 → X by

A(z) :=
∞∑

k=1

2−k zk xk whenever z = (z1, z2, . . .) ∈ �2 .

Clearly A is a linear bounded operator of dense range.

4. Every weakly compactly generated (WCG) Banach space X is Asplund
generated. Since every separable space is WCG, this class of AGS is a gener-
alization of the one in Item 3. However, the choice of Y in this case is much
more difficult although the proof is constructive: in fact, Y may be chosen
as a reflexive space as shown [416, Theorem 1.2.3]. Note to this end that, as
proved in Theorem 1.2.4 of the latter book, C(K ) is WCG if and only if K is
an Eberlein compact; cf. Item 2.

If X is an AGS with Y ⊂ X and with A = I: Y → X being the injec-
tive/inclusion operator, the quadruple (X, ‖ · ‖X ,Y, ‖ · ‖Y ) is called an Asplund
embedding scheme. Note that every Asplund generated spaces can be realized
as an Asplund generated scheme, and vice versa. It is more convenient to deal
with Asplund generated scheme defining normals and subgradients in what
follows. Given Ω ⊂ X and x̄ ∈ Ω ∩ Y in such a scheme, we let

NY (x̄ ;Ω) := I∗−1
(

N(x̄ ;Ω ∩ Y
)
,

where the basic normal cone on the right is calculated in the Asplund space
Y . Similarly, given a proper function ϕ: X → IR with x̄ ∈ dom ϕ ∩ Y , define

∂Yϕ(x̄) := I∗−1
(
∂(ϕ|Y )(x̄)

)
and ∂∞Y ϕ(x̄) := I∗−1

(
∂∞(ϕ|Y )(x̄)

)
.

The idea behind these definitions is to carry out the appropriate normal and
subgradient computations in the Asplund space Y , thereby obtaining subsets
of Y ∗, and then to truncate those subsets to the space X∗ by considering their
inverse images under I∗. It is shown in the afore-mentioned paper by Fabian,
Loewen and Mordukhovich that for locally Lipschitzian functions ϕ one has

I∗(∂Yϕ(x̄)
)

= ∂(ϕ|Y )(x̄) 	= ∅ and I∗(∂∞Y ϕ(x̄)
)

= ∂∞(ϕ|Y )(x̄) = {0} .

Furthermore, there are calculus rules

NY (x̄ ;Ω1 ∩Ω2) ⊂ NY (x̄ ;Ω1) + NY (x̄ ;Ω2) ,

∂Y (ϕ1 + ϕ2)(x̄) ⊂ ∂Yϕ1(x̄) + ∂Yϕ2(x̄) ,

∂∞Y (ϕ1 + ϕ2)(x̄) ⊂ ∂∞Y ϕ1(x̄) + ∂∞Y ϕ2(x̄)
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for normals to closed sets and subgradients of l.s.c. functions, respectively,
provided the qualification conditions

NY (x̄ ;Ω1) ∩
(
− NY (x̄ ;Ω2)

)
= {0}, ∂∞Y ϕ1(x̄) ∩

(
− ∂∞Y ϕ2(x̄)

)
= {0} ,

the Y -SNC conditions on one of the sets/functions naturally defined by re-
striction to the Asplund space Y , and the following properness conditions

I∗(NY (x̄);Ωi )
)

= N(x̄ ;Ωi ∩ Y ) for some i ∈ {1, 2} ,

I∗(∂Yϕi (x̄)
)

= ∂(ϕi |Y )(x̄), I∗(∂∞Y ϕi (x̄)
)

= ∂∞(ϕi |Y )(x̄)

for some i ∈ {1, 2}. Note that the qualification and properness conditions are
automatic when, respectively, one of the functions ϕi is locally Lipschitzian
and one of the sets Ωi is epi-Lipschitzian around the reference points. The
presented calculus results provide the ground for deriving other calculus rules
of generalized differentiation in Asplund generated spaces similarly to those
developed in this chapter in the Asplund space setting.

3.4 Commentary to Chap. 3

3.4.1. The Key Role of Calculus Rules. Results of this chapter
make a bridge between generalized differentiation and the majority of its ap-
plications to variational problems, particularly those considered in the book.
Indeed, any constructions and properties introduced are of a potential use
only if they enjoy satisfactory calculus rules, i.e., can be computed, efficiently
estimated, and/or preserved under various operations. The great success of
the classical differential theory with its numerous applications is mainly due
to the comprehensive calculus enjoyed (almost for granted) by the classical
derivatives. The same can be said about subgradients of convex analysis, where
calculus rules are far to be trivial though: their proofs are strongly based on
convex separation.

As seen in Chap. 1, a number of useful calculus rules are available for our
basic generalized differential constructions in arbitrary Banach spaces. How-
ever, most of them are restricted by, e.g., smoothness requirements on some of
the mappings involved in compositions. In this chapter we show based mainly
on the extremal principle developed in Chap. 2 that none of such restrictions is
needed in the framework of Asplund spaces, where our basic normal, coderiva-
tive, and subdifferential (of first and second order) constructions indeed enjoy
fairly rich/full calculi that are the key for subsequent applications.

It should be added that, in infinite-dimensional spaces, SNC calculus rules
(i.e., efficient conditions ensuring the preservation of such normal compact-
ness properties under various operations) are also of fundamental importance
for both the theory and applications. This is mainly due to the fact that SNC
requirements are critical for the fulfillment of calculus rules for generalized
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differentiation in infinite dimensions; so one cannot proceed with applications
of generalized differential calculus without ensuring the preservation of SNC
properties under the corresponding operations. Such a SNC calculus has been
quite recently developed (see below); it is presented in this chapter and plays
a fundamental role in all the subsequent applications given in the book. This
calculus is also based on the extremal principle of variational analysis devel-
oped in Chap. 2.

3.4.2. Dual-Space Geometric Approach to Generalized Differen-
tial Calculus. The approach to calculus presented in this book is mainly geo-
metric (in dual spaces), i.e., we first establish calculus rules for generalized nor-
mals to arbitrary closed sets and then successively apply them to coderivatives
of set-valued mappings and subgradients of extended-real-valued functions.
This approach was initiated and developed by Mordukhovich [894, 901, 910]
in the finite-dimensional framework, with using the (exact) extremal principle
as the key tool to derive an intersection rule for basic normals that occurs to
be the central result of all the nonconvex calculus.

Subsection 3.1.1 is mostly devoted to calculus rules for basic normals in
the framework of Asplund spaces. From this viewpoint, Lemma 3.1 on a fuzzy
intersection rule for Fréchet normals is a preliminary result, which however
plays a major technical role in what follows. It was derived by Mordukhovich
and B. Wang [963] from the approximate extremal principle. Note that, al-
though calculus issues don’t have an optimization/variational nature as given,
the structure of Fréchet normals allows us to form a special extremal system of
closed sets and then to apply the extremal principle. Observe also some simi-
larities between employing the extremal principle in such a general nonconvex
setting and the usage of the classical separation theorem in the corresponding
framework of convex analysis (see, e.g., the “alternative” geometric proof of
Theorem 23.8 in Rockafellar [1142]); note however that there is no need to
form an extremal system of sets in the convex setting.

While the assertion of Lemma 3.1 doesn’t require any qualification con-
ditions (and it doesn’t actually provide a rule to estimate Fréchet normal of
Ω1∩Ω2 when λ = 0), such conditions are unavoidable to derive a “real” inter-
section rule for basic normals. The basic normal qualification condition (3.10)
from Definition 3.2(i) was introduced by Mordukhovich [894] to establish the
intersection rule for basic normals from Theorem 3.4 in finite dimensions.
Ioffe [596] independently obtained this intersection rule, by using a penalty
function method, under the more restrictive tangential qualification condition

TC(x̄ ;Ω1) − TC(x̄ ;Ω2) = IRn

involving the Clarke tangent cone. Rockafellar [1155] (independently as well)
used a counterpart of the qualification condition (3.10) formulated however in
terms of the Clarke normal cone to derive an analog of the intersection rule
(3.11) for Clarke normals in finite-dimensional spaces.
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The limiting qualification condition from Definition 3.2(ii) was introduced
by Mordukhovich and B. Wang [963]. It is equivalent to the normal condition
(3.10) in finite-dimensional spaces being generally weaker in infinite dimen-
sions as discussed in Subsect. 3.1.1. One of the strongest advantages of this
limiting qualification condition in comparison with the normal one (3.10) is
that it leads to significantly better results in applications to coderivative cal-
culus for set-valued mappings between infinite-dimensional spaces; see Sub-
sect. 3.1.2.

3.4.3. Normal Compactness Conditions in Infinite Dimensions.
It has been well recognized starting with convex analysis that, besides qual-
ification conditions needed in both finite and infinite dimensions, conditions
of another nature are required to ensure the fulfillment of calculus rules in
infinite-dimensional spaces; for the case of (two) convex set intersections the
latter conditions usually involve the nonempty interior assumption imposed on
one of the sets. The partial sequential normal compactness properties formu-
lated in Definition 3.3 are probably the weakest conditions of the latter type;
even for convex sets they significantly improve the standard assumptions in-
volving nonempty interiors. For the general case of sets in product spaces these
conditions were defined in the afore-mentioned paper [963], while the PSNC
property for graphs of mappings was studied earlier; see Subsect. 1.2.5 and the
corresponding comments to Chap. 1 given in Subsect. 1.4.15. It seems that the
strong PSNC property haven’t been explicitly recognized before Mordukhovich
and B. Wang [963], although for the case of mappings it follows from the par-
tial CEL property by Jourani and Thibault [655]; cf. Theorem 1.75. Note that
for subsets of spaces with no product structures both PSNC properties of
Definition 3.3 reduce to the basic SNC property studied in Subsect. 1.1.3; see
also the comments in Subsect. 1.4.11.

3.4.4. Calculus Rules for Basic Normals. The full statement of Theo-
rem 3.4 is due to Mordukhovich and B. Wang [963]; its important Corollary 3.5
in spaces with no product structure was derived earlier by Mordukhovich and
Shao [949] under the normal qualification condition (3.10). The example pre-
sented after this corollary, which shows that the SNC assumption is essential
for the validity of the intersection rule even for convex subsets of any infinite-
dimensional space, is taken from Borwein and Zhu [162]. The more involved
Example 3.6 showing that the SNC assumption in Corollary 3.5 is strictly
weaker than the CEL one even for convex subcones in smooth spaces is built
upon the construction from Fabian and Mordukhovich [422].

In the case of Banach spaces with Fréchet smooth renorms the intersection
rule (3.11) was established in the paper by Kruger [708], which is largely
based on his dissertation [706], under the epi-Lipschitzian assumption on one
of the sets and an significantly more restrictive, in comparison with the normal
one (3.10), tangential qualification condition formulated in terms of Clarke’s
tangent cone. Similar results with the same epi-Lipschitzian and tangential
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qualification conditions were obtained by Ioffe [597, 599] for his analytic and
geometric “approximate” normal cones in more general spaces. Note that
both latter cones may be bigger than our basic normal cone even for epi-
Lipschitzian subsets of Fréchet smooth spaces; see Subsect. 2.5.2B and the
subsequent discussions presented in Subsect. 3.2.3. Further extensions of the
afore-mentioned results to the case of CEL subsets in Banach spaces were
developed by Jourani and Thibault [658].

To best of our knowledge, the sum rule for basic normals from Theo-
rem 3.7(ii) in finite-dimensional spaces was first formulated in Rockafellar
and Wets [1165, Exercise 6.44], although it was actually proved earlier by
Rockafellar [1155, Corollary 6.2.1] with Clarke normals replacing basic nor-
mals in the right-hand side (but not in the left-hand side) of the inclusion
in Theorem 3.7(ii). The full statement of the latter result is due to another
paper by Mordukhovich and B. Wang [966]. It is interesting to observe that,
in contrast to the intersection rule of Theorem 3.4, we don’t need to impose
for the sum rule either qualification and SNC conditions in infinite dimen-
sions; in fact they hold automatically in this setting as shown in the proof of
Theorem 3.7.

Computing and estimating generalized normals to inverse image/preimage
sets are very useful in applications, especially to optimization problems; see,
e.g., Borwein and Zhu [164], Mordukhovich [901], Rockafellar and Wets [1165]
with the references therein, and the subsequent material of this book. Theo-
rem 3.8 on basic normals to inverse images of sets under set-valued mappings
was derived by Mordukhovich and B. Wang [963] (as an extension of the pre-
vious results obtained Mordukhovich [908] and by Mordukhovich and Shao
[950]) from the main intersection rule of Theorem 3.4. Note that all the re-
sults in [963] have been established with respect to any reliable topology τ
used in the constructions of τ -limiting normals, subgradients, and coderiva-
tives as well as in the definitions of the corresponding τ -SNC properties; see
[963] and Remark 3.23 in this book for more details and discussions. Choos-
ing an appropriate topology, we can get better results in comparison with the
standard limiting constructions that don’t take into account available product
structures of the spaces and (graphical) sets in question. Observe, in partic-
ular, a remarkable role of the reversed mixed coderivative D̃∗

M F(x̄, ȳ) in the
qualification condition (b) of Theorem 3.8, which corresponds to the mixed
topology τ = ‖ · ‖×w∗ on the product space X∗ × Y ∗ and allows us to ensure
the fulfillment of the inverse image rule (3.15) for metrically regular mappings
due to the respective coderivative results of Chap. 1; see Corollary 3.9 and its
proof. Note also that inverse image rules can be considered as specifications
of coderivative chain rules for set-valued mappings and their subdifferential
counterparts in the case of single-valued ones; see below.

3.4.5. Full Coderivative Calculus. The coderivative calculus rules pre-
sented in Subsect. 3.1.2 were first established by Mordukhovich [910] for set-
valued mappings between finite-dimensional spaces, while the sum rule of
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Theorem 3.10(ii) appeared a bit earlier in [908] with a somewhat different
proof based directly on the method of metric approximations. We also re-
fer the reader to the book by Rockafellar and Wets [1165] that reproduced
the major coderivative rules of [910] in finite-dimensional spaces. Observe the
pivoting role of summation results in our approach to coderivative and subd-
ifferential calculi, while the approach of [1165] started with chain rules.

The first version of Theorem 3.10 in infinite dimensions (Asplund spaces)
was obtained by Mordukhovich and Shao [950] for the case of D∗ = D∗

N
with the more demanded qualification condition in form (3.19) formulated via
the normal coderivative. The latter condition was improved in Mordukhovich
[917] and in Mordukhovich and Shao [953] to that of (3.19) formulated via the
mixed coderivative D∗ = D∗

M , which was found to be sufficient for ensuring
the coderivative chain rules of Theorem 3.10 in both cases of D∗ = D∗

N and
D∗ = D∗

M . The proofs given in all these papers were largely similar to the
one in [910], with using first the approximate extremal principle in infinite-
dimensional settings (instead of the exact extremal principle as in [910] for
finite dimensions) in the coderivative framework and then passing to the limit;
cf. also the subsequent paper by Mordukhovich and Shao [952] for “fuzzy”
coderivative versions based on this approach.

The proof presented in the book was given by Mordukhovich and B.
Wang [963] applying the normal cone intersection rules from Theorem 3.4
and Lemma 3.1, which are also based on the extremal principle while follow-
ing a more direct and unified geometric approach. Note that we need to use
the case of m = 3 in the product structure of Theorem 3.4 and the limiting (not
normal) qualification condition therein to arrive at the strongest coderivative
sum rules established in Theorem 3.10 with all the pointbased assumptions,
i.e., those expressed at the reference points but not in their neighborhoods.
One of the most essential advantages of using the mixed – in contrast to nor-
mal – coderivative in the qualification condition (3.19) and the partial SNC
property in Theorem 3.10 is the automatic validity of both these assumptions
for Lipschitz-like mappings due to the necessary coderivative conditions for
Lipschitzian behavior established in Chap. 1; see Corollary 3.11.

The chain rules of Theorem 3.13 were established by Mordukhovich and
Shao [917, 953] in full generality; the previous versions were given in the afore-
mentioned [910, 950, 952]. Observe again that all the assumptions of this the-
orem are pointbased and that the mixed qualification condition is imposed
in (3.27) to ensure the chain rules for both normal and mixed coderivatives,
while the normal coderivative of the inner (but not of the outer) mapping is
present in both – normal and mixed – coderivative chain rules. Note also that
the equality assertion (iii) of Theorem 3.13 provides various useful conditions
for preserving the normal and mixed regularity of mappings under composi-
tions.

The chain rules of the inclusion type from Theorem 3.13 for the normal
coderivatives generated by our basic normal cone in Asplund spaces and also
by the nucleus of Ioffe’s G-normal cone from Subsect. 2.5.2B in arbitrary
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Banach spaces under the normal qualification condition and its G-normal
counterpart, respectively, were proved by Ioffe and Penot [614] and by Jourani
and Thibault [659, 660] using somewhat similar methods involving Ekeland’s
variational principle; see these papers for more information and discussions.
Sum rules for the normal coderivatives under normal qualification conditions
were deduced in [614, 659, 660] from the corresponding chain rules. We also
refer the reader to the paper by Mordukhovich, Shao and Zhu [954], where
sum and chain rules similar to Theorems 3.10 and 3.13 were derived for topo-
logical/net viscosity counterparts of our normal and mixed coderivatives under
mixed qualification conditions in Banach spaces admitting smooth bump func-
tions with respect to an arbitrary given bornology.

The so-called zero chain rule for mixed coderivatives was established by
Mordukhovich and Nam [934]. Its main differences from the general chain
rules of Theorem 3.13 are as follows:

(a) it concerns mixed coderivatives of compositions F ◦ G with Lipschitz-
like inner mappings G and applies only to the zero coderivative argument
(z∗ = 0);

(b) it provided an upper estimate for the mixed coderivative of F ◦ G via
the mixed coderivative of G vs. its normal coderivative as in Theorem 3.13.

This modification of the general coderivative chain rules happens to be useful
for many applications; see, e.g., Chap. 4.

The usage of the mixed vs. normal coderivatives in the afore-mentioned
chain rules allows us to automatically ensure the validity of these crucial re-
sults of coderivative calculus for Lipschitz-like outer mappings and metrically
regular inner mappings in compositions in both cases of finite-dimensional and
infinite-dimensional spaces. The corresponding Corollary 3.15 was first estab-
lished by Mordukhovich [910] in finite dimensions and then by Mordukhovich
and Shao [952] in Asplund spaces; see also Jourani and Thibault [660] for
another proof of the latter result and its (not full) analog for “approximate”
G-coderivatives required the finite-dimensionality of some spaces involved.
An “approximate” coderivative chain rule for compositions f ◦ g of single-
valued and Lipschitz continuous mappings was earlier derived by Ioffe [599]
in the general Banach space setting directly from the corresponding results
of subdifferential calculus. The results on h-compositions from Theorem 3.18
were derived by Mordukhovich and B. Wang [963] in full generality; previous
calculus rules in this direction were obtained in the afore-mentioned papers
[910, 950, 952].

We refer the reader to Borwein and Zhu [163, 164], Ioffe and Penot [614],
Mordukhovich [917], Mordukhovich and Shao [952], and Mordukhovich, Shao
and Zhu [954] concerning various versions of fuzzy calculus rules for coderiv-
atives that are not considered in this book; see however some discussions in
Remark 3.21.
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3.4.6. Strictly Lipschitzian Behavior of Mappings in Infinite Di-
mensions. Strictly Lipschitzian properties considered in Subsect. 3.1.3 specif-
ically concern single-valued mappings f : X → Y with infinite-dimensional
range spaces; these properties obviously reduce to the classical local Lip-
schitzian behavior of f when the dimension of Y is finite. The main strictly
Lipschitzian property from Definition 3.25(i) was first formulated by Mor-
dukhovich and Shao [949], while it occurred to be equivalent to the basic ver-
sion of “compactly Lipschitzian” behavior introduced and investigated much
earlier by Thibault [1245, 1246] in connection with subdifferential calculus for
vector-valued functions; see Thibault’s paper [1252] for proving this equiva-
lence and the joint papers by Jourani and Thibault [654, 656, 657, 658] for
the study and applications of its “strongly compactly Lipschitzian” variant.
The latter property is related to the existence of “strict prederivatives” in the
sense of Ioffe [589] with norm compact values; see Ioffe’s papers [595, 604] and
his joint publication by Ginsburg [506]. It follows from the afore-mentioned
papers that the collection of strictly/compactly Lipschitzian mappings in-
cludes, besides strictly differentiable ones, various classes of nonsmooth oper-
ators important for many applications; in particular, the so-called Fredholm
and Fredholm-like operators arising in applications to problems of optimal
control.

The w∗-strictly Lipschitzian property of single-valued mappings from Defi-
nition 3.25(ii) appeared in Mordukhovich and B. Wang [965], where the reader
could find Proposition 3.26 on the equivalence of this modification to the basic
strictly Lipschitzian property from Definition 3.25(i) for mappings with val-
ues in Banach spaces whose dual unit balls are weak∗ sequentially compact.
The same paper [965] contains assertion (i) of Lemma 3.27 and the scalar-
ization formula of Theorem 3.28 for the normal coderivative of w∗-strictly
Lipschitzian mappings, while the proofs of these results were actually given
by Mordukhovich and Shao [949] for strictly Lipschitzian mappings defined
on Asplund spaces. The converse assertion (ii) of Lemma 3.27 for mappings
with values in reflexive spaces follows from the proof given by Ngai, Luc and
Théra [1007].

The scalarization formula of Theorem 3.28 taken from [949, 965] estab-
lishes an precise relationship between the normal coderivative of w∗-strictly
Lipschitzian mappings f : X → Y and the basic subdifferential of their scalar-
ization, which plays a crucial role in many subsequent applications presented
in this book. When the range space Y is finite-dimensional, it agrees with the
scalarization result of Theorem 1.90 for the mixed coderivative of locally Lip-
schitzian mappings; see the references and discussions in Subsect. 1.4.16. A
counterpart of Theorem 3.28 involving “nuclei of G-coderivatives” (see Sub-
sect. 2.5.2B) was obtained by Ioffe [599] for Lipschitz continuous mappings
between Banach spaces admitting strict prederivatives with norm compact
values; cf. also the more recent paper by Ioffe [604] for further developments
and modifications of the latter result under the corresponding “directional
compactness” assumptions.
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The notion of compactly strictly Lipschitzian mappings from Definition 3.32
was introduced by Ngai, Luc and Théra [1007] who established the coderiv-
ative characterization of this property presented in Lemma 3.33. We use the
latter notion to formulate the generalized Fredholm property of Definition 3.34,
which extends the “semi-Fredholm” notion by Ioffe [604] corresponding to
Definition 3.34 with g: X → Y satisfying the “uniform directional compact-
ness” property formulated after that definition. The PSNC result of The-
orem 3.35 is new, while it has its “codirectional compact” counterpart es-
tablished by Ioffe [604] for semi-Fredholm mappings f and compactly epi-
Lipschitzian sets Ω in the general Banach space framework of case (b).

3.4.7. Full Subdifferential Calculus. Subsection 3.2.1 contains the
main calculus rules for our basic and singular subgradients of extended-real-
valued functions in the Asplund space setting. Some of these subdifferential
calculus rules follow directly from the corresponding calculus results for basic
normals and coderivatives of general sets and mappings, while the others take
into account specific features of extended-real-valued functions.

The summation rules from Theorem 3.36 were established by Mordukhovich
and Shao [949] with the SNEC assumption replaced by somewhat more re-
strictive “normal compactness” property of functions corresponding in fact to
the CEL property of their epigraphs; the proof given in [949] holds true nev-
ertheless under the SNEC assumption. When dim X < ∞, the sum rule (3.39)
for basic subgradients under the qualification condition (3.38) goes back to
Mordukhovich [894], while the singular subdifferential result (3.40) was first
observed by Rockafellar in his privately circulated notes [1158]; see also Mor-
dukhovich [907] and Rockafellar and Wets [1165]. The Lipschitzian as well
as directionally Lipschitzian cases in (3.39) correspond to the sum rules ob-
tained by Kruger [706, 708] for basic subgradients of functions defined on
Fréchet smooth spaces and by Ioffe [590, 592, 599] for “approximate” subgra-
dients in the general Banach space setting. The latter result was extended
by Jourani and Thibault [658] under the more general CEL property of l.s.c.
functions.

The first upper estimates for the basic and singular subdifferentials of the
marginal functions

µ(x) = inf
{
ϕ(x, y)

∣
∣ y ∈ G(x)

}
(3.83)

considered in Theorem 3.38 were obtained by Rockafellar [1150] in finite di-
mensions with no constraints y ∈ G(x) in (3.83). The constrained finite-
dimensional case of (3.83) with ϕ = ϕ(y) was fully studied by Mordukhovich
[894, 901]. Some upper estimates of ∂µ(x̄) and ∂∞µ(x̄) in Fréchet smooth
spaces were derived by Thibault [1249], while the general statements of Theo-
rem 3.38(i,ii) in the Asplund space setting mainly correspond to Mordukhovich
and Shao [949]. The subdifferential estimates in assertion (iii) of this theorem
under the mixed qualification condition appear here for the first time; the re-
sults of Theorem 3.38(iv) estimating ∂∞µ(x̄) via the mixed coderivative of
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the constraint mapping G are taken from Mordukhovich and Nam [934]. We
also refer the reader to the recent paper by Mordukhovich, Nam and Yen
[937] for applications of Theorem 3.38 to subdifferentiation of value functions
in various constrained optimization problems in infinite-dimensional spaces
including nonlinear and nondifferentiable programs as well as mathematical
programs with equilibrium constraints considered in Sect. 5.2.

Theorem 3.41(i,ii) on the general subdifferential chain rules and the sub-
sequent results of Subsect. 3.2.1, which are more or less consequences of the
chain rules, were mainly derived in Mordukhovich and Shao [949]. The chain
rules from assertion (iii) of Theorem 3.41 under the refined qualification and
PSNC conditions have never been published. Partial results and modifications
of those presented in Subsect. 3.2.1 were developed by Allali and Thibault
[15], Borwein and Zhu [163, 164], Clarke et al. [265], Ioffe [590, 592, 596, 599],
Ioffe and Penot [614], Jourani and Thibault [651, 652, 654, 657, 658], Kruger
[706, 708, 709], Loewen [801], Mordukhovich [894, 901, 910], Mordukhovich
and B. Wang [963], Ngai and Théra [1008], Rockafellar [1155, 1158], Rockafel-
lar and Wets [1165], Thibault [1249, 1252], and Vinter [1289]; see also [949]
for more comments and discussions.

3.4.8. Mean Value Theorems. The fundamental Lagrange mean value
theorem plays an exceptionally important role in the classical mathemati-
cal analysis and its applications. It provides an exact relationship between
a function and its derivative, thus being the basis for many crucial results
of differential and integral calculus, monotonicity and convexity criteria for
smooth functions, etc.

The first mean value theorem for nonsmooth Lipschitzian functions ϕ: X →
IR was established by Lebourg [749] via Clarke’s generalized gradient in the
arbitrary Banach space setting. Furthermore, it has been proved in [749] that
the Clarke construction is the smallest among any reasonable convex-valued
subdifferentials Dϕ(·) of Lipschitz continuous functions ϕ in which terms one
can obtain a natural subgradient extension

ϕ(b) − ϕ(a) ∈
〈
Dϕ(c), b − a

〉
for some c ∈ (a, b) (3.84)

of the classical mean value theorem. The result of Theorem 3.47, which ori-
gin goes back to Kruger and Mordukhovich [706, 708, 894, 901], is a signif-
icant improvement of Lebourg’s mean value theorem in the Asplund space
setting, since the symmetric subdifferential ∂0ϕ(c) is usually nonconvex be-
ing much smaller than Clarke’s generalized gradient ∂Cϕ(c) even for simple
Lipschitzian functions ϕ defined on X = IR2; see the exact calculations for
the function ϕ(x1, x2) = |x1| − |x2| in Subsect. 1.3.2 and for the function
ϕ(x1, x2) = | |x1| + x2| in Example 2.49. Due to these simple examples, it is
worth mentioning an interesting result by Borwein and Fitzpatrick [142] who
proved that ∂0ϕ(c) = ∂Cϕ(c) for every Lipschitz continuous function on the
real line X = IR. Note also that an extended mean value theorem in form
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(3.84) inevitably requires a two-sided/symmetric generalized differential con-
struction like Clarke’s generalized gradient for Lipschitzian functions and the
symmetric subdifferential ∂0ϕ(·) as in Theorem 3.47; cf. the result of Corol-
lary 3.48 for lower regular functions and the counterexample given after it.

Approximate mean value theorems of the new type considered in Sub-
sect. 3.2.2 are substantially different from the form of (3.84) and don’t have
any analogs in the classical differential calculus. The first result of this new
type given in Theorem 3.49 was obtain by Zagrodny [1352] in terms of Clarke
subgradients for l.s.c. extended-real-valued functions defined on general Ba-
nach spaces. As observed by Thibault [1251] (see also Thibault and Zagrodny
[1254]), the main ideas developed in [1352] lead to appropriate versions of the
approximate mean value theorem formulated via broad classes of subgradi-
ents satisfying natural requirements on suitable Banach spaces. Theorem 3.49
and its corollaries in terms of Fréchet subgradients were derived by Loewen
[802] for l.s.c. functions on Fréchet smooth spaces; the mean value inequality
from Corollary 3.50 was obtained by Borwein and Preiss [154] for Lipschitzian
functions. The full statements of Theorem 3.49 and its corollaries in Asplund
spaces were presented in Mordukhovich and Shao [949] with the variational
proof of the main assertions, which is different at some essential points from
those given in [154, 802, 1352]. Mean value inequalities of another (“multi-
dimensional”) type were established by Clarke and Ledyaev [262]; see also
[61, 62, 163, 164, 265, 1371].

The neighborhood subgradient characterizations (a) and (b) of the local
Lipschitzian property from Theorem 3.52 were established by Loewen [802]
in Fréchet smooth spaces and then by Mordukhovich and Shao [949] in the
general Asplund space setting. The pointbased criterion (d) of Theorem 3.52
via singular subgradients goes back to Rockafellar [1150] and Mordukhovich
[894, 901] in finite-dimensional spaces. The general infinite-dimensional char-
acterization of the local Lipschitz continuity from Theorem 3.52(d), involving
the SNEC property of l.s.c. functions, appears here for the first time while
partial results under stronger normal compactness conditions were obtained
earlier by Loewen [802] and by Mordukhovich and Shao [949]. A subdifferen-
tial characterization of constancy similar to Corollary 3.53 but formulated via
proximal subgradients was first established by Clarke [259] in finite dimensions
and then by Clarke, Stern and Wolenski [270] in Hilbert spaces.

The subdifferential characterizations of strict Hadamard differentiability in
Theorem 3.54 and of function monotonicity in Theorem 3.55 were derived by
Loewen [802] based on the approximate mean value theorem for l.s.c. functions
on Fréchet smooth spaces. The same proofs based on Theorem 3.49 work in the
Asplund space setting as observed by Mordukhovich and Shao [949]. Another
proof of the equivalency (b)⇔(c) in Theorem 3.54 with ∂Cϕ(·) in (b) was given
by Clarke [255] in arbitrary Banach spaces. A proximal subdifferential version
of Theorem 3.55 was established by Clarke, Stern and Wolenski [270] in the
Hilbert space setting.
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One of the most fundamental results of convex analysis is Rockafellar’s
theorem on maximal monotonicity of the subdifferential mapping ∂ϕ(·) asso-
ciated with a proper l.s.c. convex function ϕ on a Banach space; see [1141] and
also [1073, 1142, 1213] for more discussions, applications, and references. An
important question on the possibility to extend the monotonicity property for
subdifferential mappings associated with nonconvex functions was (negatively)
solved by Correa, Jofré and Thibault [292] for a large class of axiomatically
defined subdifferentials satisfying certain natural properties; the preceding re-
sult in this direction was obtained by Poliquin [1088] for Clarke subgradients
of l.s.c. functions on finite-dimensional spaces. Although Fréchet subgradients
considered in Theorem 3.56 don’t satisfy some of these properties, the given
proof of Theorem 3.56 follow the procedure in [292] based on the application
of the approximate mean value theorem.

3.4.9. Connections with Other Normals and Subgradients. Theo-
rem 3.57 gives the exact representations of Clarke’s normal and subgradient
constructions, defined by polarity relations from tangential/directional deriv-
ative approximations in arbitrary Banach spaces (see Subsect. 2.5.2A), via
our basic (“limiting Fréchet”) normals and subgradients in the Asplund space
setting. All the assertions of this theorem were derived in full generality by
Mordukhovich and Shao [949]. In finite dimensions, these results go back to
Kruger and Mordukhovich [718, 719]; cf. also Ioffe [592, 596] and the refer-
ences in Subsect. 1.4.8 for equivalent representations via other (non-Fréchet
type) normals and subgradients. Analogs of Theorem 3.57 in terms of Fréchet-
like ε-normals and ε-subgradients were established by Treiman [1262, 1263]
in Fréchet smooth spaces and then by Borwein and Strójwas [156, 157] with
ε = 0 in reflexive spaces. Assertion (iii) of this theorem was derived by Bor-
wein and Preiss [154] in Fréchet smooth spaces, while (i) and (ii) were given
by Ioffe [600] in the same setting. It is worth mentioning that Preiss [1104]
established a profound refinement of formula (3.58) for locally Lipschitzian
functions ϕ on Asplund spaces with the replacement of Fréchet subgradients
of ϕ in (3.58) by the classical Fréchet derivatives, which were proved to exist
on a dense set.

The subsequent material of Subsect. 3.2.3 revolves around relationships be-
tween sequential and net/topological weak∗ limits of Fréchet-like and Dini-like
subgradients in topological spaces dual to Banach spaces. The main motiva-
tion comes from seeking relationships between our basic generalized differ-
ential constructions involving sequential weak∗ limits of Fréchet-like normal
and subgradients and the corresponding “approximate” constructions by Ioffe
related to topological weak∗ limits of Dini-like subgradients described in
Subsect. 2.5.2B; see also the discussion and references therein regarding the
terminology used.

Observe that formula (3.60) for the A-subdifferential is different from its
definition in (2.75); in fact, the “topological limiting Dini” construction (3.60)
was defined by Ioffe [589] under the name of “M-subdifferential.” The equiva-
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lence between (2.75) and (3.60) in Asplund spaces follows from combining the
results by Ioffe [597], who proved this equivalence in any “weakly trustworthy”
space in his sense [593], and by Fabian [413] that implies the trustworthiness
property of every Asplund space.

Lemma 3.58 on the relationships between weak∗ sequential and topologi-
cal limits in dual spaces was derived by Borwein and Fitzpatrick [141], where
the proof of the main assertion (ii) in weakly compactly generated spaces was
based on the fundamental Whitney’s construction presented in Holmes [580,
pp. 147–149]. This lemma is used in the proof of the major Theorem 3.59
established by Mordukhovich and Shao [949], which fully describes connec-
tions between our basic normal and subdifferential constructions and various
modifications of “approximate” normals and subgradients. Note that the basic
normal cone N(x̄ ;Ω) may not be norm-closed (and hence not weak∗ closed)
even in the simplest infinite-dimensional (Hilbert) spaces; see Example 1.7
constructed by Fitzpatrick for the author’s request. Thus it is strictly smaller
than the G-normal cone NG(x̄ ;Ω). Moreover, the basic subdifferential ∂ϕ(x̄)
may be strictly smaller than the G-subdifferential ∂Gϕ(x̄) not only for l.s.c.
functions on Hilbert spaces but even for Lipschitz continuous function on
(rather exotic) spaces with C∞-smooth renorms as in Example 3.61 given by
Borwein and Fitzpatrick [141]. The equalities

NG(x̄ ;Ω) = cl ∗N(x̄ ;Ω) and ∂Gϕ(x̄) = cl ∗∂ϕ(x̄)

in Theorem 3.59 follow also from the proofs by Ioffe [600] in the case of Fréchet
smooth spaces. Actually the stronger results

N(x̄ ;Ω) = ÑG(x̄ ;Ω) and ∂ϕ(x̄) = ∂̃Gϕ(x̄) ,

were formulated in [600], which however happened to be incorrect for non-
WCG spaces due to Example 3.61.

The robustness property of basic normals in Theorem 3.60 was justified by
Mordukhovich and Shao [951], although the formulation (but not the proof)
in [951] involved a generally more restrictive normal compactness property,
which in fact happened to be equivalent to the SNC property in the WCG
Asplund setting. Previously this result was established by Loewen [800] in re-
flexive spaces, with the essential use of reflexivity in some points of his proof.
On the other hand, the proof of Theorem 3.60 given in the book strongly
follows the ideas of Loewen combined with the application of Lemma 3.58.

3.4.10. Graphical Regularity and Differentiability of Lipschitzian
Mappings. The material of Subsect. 3.2.4 is mostly based on the paper by
Mordukhovich and B. Wang [965]. The main motivation came from seeking
appropriate dual infinite-dimensional counterparts of the following fundamen-
tal result by Rockafellar [1153]: for every mapping f : IRn → IRm locally Lip-
schitzian around x̄ the Clarke tangent cone to the graph of f at (x̄, f (x̄)) is
a linear subspace of dimension d ≤ n in IRn × IRm , where d = n if and only if
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f is strictly differentiable at x̄ . This implies, in particular, the important fact
observed by Mordukhovich [912]: a nonsmooth Lipschitzian mappings between
finite-dimensional spaces cannot exhibit graphical regularity, i.e., the Clarke
normal cone to its graph never agrees with the Bouligand-Severi contingent
cone at reference points (this description of graphical regularity reduces to
those in Definition 1.36 in finite dimensions); cf. Claim in the proof of The-
orem 1.46 in Chap. 1. Note that Rockafellar’s proof in [1153] is very much
involved being heavily finite-dimensional; it doesn’t seem to be extendable to
an infinite-dimensional setting.

We develop a new scheme to study the above questions in the dual frame-
work that provides not only comprehensive and fully understood infinite-
dimensional counterparts of the afore-mentioned results but also gives a sim-
plified proof of Rockafellar’s finite-dimensional theorem that is completely
different from the original one given in [1153]. Our approach is mainly based
on the normal coderivative scalarization, which implies in a straight way the
subspace property of the convexified normal cone via the two-sided symmetry
of Clarke’s generalized gradient for Lipschitzian functions and its relationship
with our nonconvex limiting subdifferential; see the proof of Theorem 3.62 for
more details.

The above scalarization scheme is the key ingredient to derive the afore-
mentioned results in finite dimensions; more is required however in infinite-
dimensional spaces. There are two major issues on differentiability that distin-
guish the infinite-dimensional setting from the finite-dimensional one in order
to establish an equivalence between graphical regularity and some smoothness
of Lipschitzian mappings:

(a) we need to use simultaneously different bornologies (namely, Fréchet
and Hadamard) to characterize graphical regularity via bornological smooth-
ness;

(b) we need to introduce new notions of differentiability of functions
on infinite-dimensional spaces (called conditionally weak differentiability and
strict-weak differentiability) to appropriately described the equivalence we are
looking for.

It surprisingly happens that these “weak” and ”strict-weak” differentia-
bility notions, classical in nature, can be dramatically different from the con-
ventional differentiability concepts even for simple functions with values in
Hilbert spaces. In particular, Example 3.64 shows that there exist Lipschitzian
functions, which are strictly-weakly differentiable with respect to the strongest
Fréchet bornology while not being differentiable in the classical Gâteaux sense.

Following the pattern suggested by Rockafellar [1153] who used smooth
nonsingular transformations (actually the change of coordinates) in finite-
dimensional spaces, the above results for single-valued Lipschitzian mappings
were extended to “hemi-Lipschitzian” sets and set-valued mappings in Mor-
dukhovich and B. Wang [965]; see Definition 3.71 and Theorem 3.72. The main
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difference between hemi-Lipschitzian (resp. hemismooth) manifolds in [965]
and their Lipschitzian (resp. smooth) analogs from [1153] consists of using
smooth (actually strictly differentiable) graph transformations with surjective
derivatives instead of invertible/nonsingular ones as in [1153]. Then the corre-
sponding equality-type calculus of basic and Fréchet normals available in both
finite and infinite dimensions allows us to reduce the set-valued case to the
single-valued one.

3.4.11. Second-Order Subdifferential Calculus in Asplund Spaces.
Subsection 3.2.5 is mainly based on the paper by Mordukhovich [923]. Con-
sidering the Asplund space framework, we derive significantly more developed
second-order subdifferential calculus in comparison with the general Banach
space setting of Subsect. 1.3.5. Note that the results presented in Subsect. 3.2.5
are different and generally independent, even in the case of finite-dimensional
case, from those presented in Subsect. 1.3.5, where mostly equality relations
were obtained under certain second-order smoothness and surjectivity require-
ments on some components of compositions. Now we develop an inclusion-type
calculus with no second-order smoothness and surjectivity assumptions in-
volved.

The second-order subdifferential sum rules of Theorem 3.73 were first ob-
tained by Mordukhovich [910] in finite dimensions. Amenable functions used
in the second-order chain rule of Corollary 3.76 were introduced in Poliquin
and Rockafellar [1089] and were thoroughly studied in Rockafellar and Wets
[1165]; see also the references therein. Another proof of the second-order sub-
differential chain rule involving such functions in Corollary 3.76 was indepen-
dently developed by Rockafellar (personal communication) by using quadratic
penalties in the case of dim X < ∞. A modification of this result for the
so-called “amenable functions with compatible parametrization” was given
in Levy and Mordukhovich [769]. Some special second-order chain rules for
finite-dimensional compositions with Lipschitzian inner mappings, different
from Theorem 3.77 and not presented here, were derived in the paper by
Mordukhovich and Outrata [939], where the reader can find applications of
these results to stability issues and mechanical equilibria.

3.4.12. SNC Calculus for Sets and Mappings in Asplund Spaces.
Section 3.3 contains basic calculus of sequential normal compactness for sets,
set-valued mappings, and extended-real-valued functions in the framework
of Asplund spaces. As mentioned, by SNC calculus we understand efficient
conditions ensuring the preservation of SNC/PSNC properties under various
operations performed on sets and mappings. Since such properties are au-
tomatic in finite dimensions and for Lipschitzian real-valued functions, SNC
calculus is not needed in these cases. However, in more general settings, SNC
and related normal compactness properties are unavoidably involved in ma-
jor results concerning limiting generalized differential constructions and their
applications in infinite-dimensional spaces; thus it is difficult to overestimate
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the importance of such calculus from the viewpoint of both theory and appli-
cations. The absence of SNC calculus till the recent work by Mordukhovich
and B. Wang [961, 964], on which the material of Sect. 3.3 is mainly based,
has been indeed a serious obstacle for broad applications of generalized dif-
ferentiation in infinite dimensions.

The extremal principle plays the major role in deriving results of the SNC
calculus presented in Sect. 3.3. Observe the difference as well as similarity
between the qualification conditions ensuring the rules of generalized differen-
tiation developed above and the corresponding SNC calculus relations derived
in this section. Usually conditions required for SNC calculus are stronger than
those for rules of generalized differentiation. Let us mention a rather surprising
result of Corollary 3.87 concerning the standard smooth constraint systems in
nonlinear programming. It happens, as a simple consequence of significantly
more general relations, that the classical Mangasarian-Fromovitz constraint
qualification, designed for completely different reasons, ensures the fulfillment
of the SNC property for the most conventional set of feasible solutions in con-
strained optimization! This seems indeed to be of undoubted interest even in
the simplest case of linear constraints.



4

Characterizations of Well-Posedness
and Sensitivity Analysis

The primary goal of this chapter is to show that the basic principles and tools
of variational analysis developed above allow us to provide complete character-
izations and efficient applications of fundamental properties in nonlinear stud-
ies related to Lipschitzian stability, metric regularity, and covering/openness
at a linear rate. These properties indicate a certain well-posedness (i.e., “good
behavior”) of set-valued mappings and play a principal role in many aspects
of nonlinear analysis, particularly those concerning optimization and sensi-
tivity. We have considered these properties in Chap. 1 in the framework of
arbitrary Banach spaces, where necessary conditions for their fulfillment were
obtained via coderivatives of set-valued mappings. These conditions were ef-
ficiently used in Chaps. 1 and 3 for developing the generalized differential
calculus and related issues. In this chapter we show, based on variational
arguments, that the conditions obtained are not only necessary but also suffi-
cient for the validity of the mentioned properties in the framework of Asplund
spaces. Moreover, we compute the exact bounds of the corresponding moduli
in terms of coderivatives and subdifferentials. Two kinds of dual character-
izations are derived in this way: neighborhood criteria involving generalized
differential constructions around reference points, and pointbased criteria ex-
pressed only at the points under consideration. Then we apply the obtained
characterizations for Lipschitzian behavior of set-valued mappings and com-
prehensive calculus rules of generalized differentiation to sensitivity analysis
for parametric constraint and variational systems including those described
by implicit multifunctions, by the so-called generalized equations/variational
conditions that arise in numerous optimization and equilibrium models, by
variational and hemivariational inequalities, etc. Let us emphasize that sen-
sitivity/stability analysis is of particular importance from both qualitative
and numerical viewpoints. The latter involves the justification of successful
numerical solution by treating perturbations as errors typically occurring in
computations, and also as a tool of determining a convergence rate of solution
algorithms; here estimations of Lipschitzian moduli play a crucial role.
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4.1 Neighborhood Criteria and Exact Bounds

In this section we obtain neighborhood dual characterizations of covering,
metric regularity, and Lipschitzian properties of closed-graph multifunctions
between Asplund spaces. The conditions obtained are expressed in terms of
Fréchet coderivatives of set-valued mappings considered in neighborhoods of
reference points. We also derive coderivative formulas for computing the exact
bounds of the corresponding covering, regularity, and Lipschitzian moduli.

The fundamental properties under consideration have been defined in
Sect. 1.3, where we established relationships between them and obtained nec-
essary coderivative conditions for their validity in arbitrary Banach spaces.
Now we show the necessary conditions obtained happen to be sufficient and
the one-sided estimates for the exact bounds become equalities in the frame-
work of Asplund spaces.

We begin with studying the covering properties from Definition 1.51 and
consider their local and semi-local versions, which are generally independent.
Then we derive the corresponding results for the metric regularity and Lip-
schitzian properties of set-valued mappings taking into account the equivalen-
cies established in Sect. 1.3.

4.1.1 Neighborhood Characterizations of Covering

First we consider the local covering property of a set-valued mapping F : X →→ Y
around (x̄, ȳ) ∈ gph F , which means, according to Definition 1.51(ii), that
there are a neighborhood U of x̄ , a neighborhood V of ȳ, and a number
(modulus) κ > 0 satisfying

F(x) ∩ V + κr IB ⊂ F(x + r IB) whenever x + r IB ⊂ U as r > 0 . (4.1)

The supremum of all moduli {κ} satisfying (4.1) with some neighborhoods
U and V is called the exact covering bound of F around (x̄, ȳ) and is de-
noted by cov F(x̄, ȳ). Let us emphasize that the modulus κ gives a rate of the
uniform linear dependence between the F-image of the ball x + r IB and the
corresponding ball around F(x) ∩ V covered by F(x + r IB).

To obtain the main neighborhood characterization of the local covering,
we define the constant

â(F, x̄, ȳ) := sup
η>0

inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̂∗F(x, y)(y∗), x ∈ Bη(x̄) ,

y ∈ F(x) ∩ Bη(ȳ), ‖y∗‖ = 1
} (4.2)

computed via the Fréchet coderivative of F at neighboring points to (x̄, ȳ).

Theorem 4.1 (neighborhood characterization of local covering). Let
F : X →→ Y be a set-valued mapping between Asplund spaces. Assume that F is
closed-graph around (x̄, ȳ) ∈ gph F. Then the following are equivalent:



4.1 Neighborhood Criteria and Exact Bounds 379

(a) F enjoys the local covering property around (x̄, ȳ).
(b) One has â(F, x̄, ȳ) > 0 for the constant â(F, x̄, ȳ) defined in (4.2).

Moreover, the exact covering bound of F around (x̄, ȳ) is computed by

cov F(x̄, ȳ) = â(F, x̄, ȳ) .

Proof. If F enjoys the local covering property around (x̄, ȳ), then one has

â(F, x̄, ȳ) ≥ cov F(x̄, ȳ) > 0

due to Theorem 1.54(i) valid in Banach spaces. It remains to show that
â(F, x̄, ȳ) ≤ cov F(x̄, ȳ) if both X and Y are Asplund and if F is closed-graph
around (x̄, ȳ). The latter surely implies that (b)⇒(a).

To proceed, we pick any number 0 < κ < â(F, x̄, ȳ) and show that it is
a covering modulus for F around (x̄, ȳ). Suppose that it is not true for some
fixed positive number κ < â(F, x̄, ȳ). Then using (4.1), we find sequences
xk → x̄ , yk → ȳ, rk ↓ 0, and zk ∈ Y such that

yk ∈ F(xk), ‖zk − yk‖ ≤ κrk, and zk /∈ F(x) for all x ∈ Brk (xk) . (4.3)

Fix an arbitrary number ν > κ, choose some α ∈ (κ/ν, 1), and pick a sequence
γk ↓ 0 satisfying

0 < γk < min
{

rk,
1

2(να + 1)
,

ν(1 − α)
1 + ν(να + 1)

}
, k ∈ IN . (4.4)

For any fixed k ∈ IN we define the norm

‖(x, y)‖γk := ‖x‖ + γk‖y‖

on the product space X × Y , which is clearly equivalent to the standard sum
norm ‖x‖ + ‖y‖. Since both X and Y are Asplund, their product endowing
with the norm ‖(·, ·)‖γk is Asplund as well. Note that Fréchet normals on X×Y
used below don’t depend on the choice of equivalent norms.

Consider the closed subset Ek ⊂ X × Y defined by

Ek := (gph F) ∩
(
(xk, yk) + γk IBX×Y

)

and view it as a complete metric space with the metric induced by ‖(·, ·)‖γk

for every fixed k ∈ IN . Let

ϕk(x, y) := ‖y − zk‖ for (x, y) ∈ Ek, k ∈ IN .

Since ϕk : Ek → IR is a nonnegative l.s.c. function on a complete metric space,
we apply to it the Ekeland variational principle (Theorem 2.26) at the point
(xk, yk) with εk := κrk and λk := κrk/να for each k. Noting that ϕk(xk, yk) ≤ εk

due to (4.3), we find a point (x̃k, ỹk) ∈ Ek satisfying
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0 < ρk := ‖ỹk − zk‖ ≤ ‖yk − zk‖ ≤ κrk, ‖(x̃k, ỹk) − (xk, yk)‖γk ≤ λk < rk ,

‖ỹk − zk‖ ≤ ‖y − zk‖ + να‖(x, y) − (x̃k, ỹk)‖γk for all (x, y) ∈ Ek .

The latter implies that the sum ψk(x, y) + δ((x, y); gph F) with

ψk(x, y) := ‖y − zk‖ + να‖(x, y) − (x̃k, ỹk)‖γk

attains its unconditional local minimum on X × Y at the point (x̃k, ỹk).
Note that ψk is a convex continuous function whose Fréchet subdifferential
agrees with the subdifferential ∂ of convex analysis. Since the space X × Y
is Asplund, we apply the subgradient description of the extremal princi-
ple from Lemma 2.32 to the semi-Lipschitzian sum ψk + δ(·; gph F) tak-
ing there η = min{γk, ρkγk/2}. This gives points (x1k, y1k) ∈ X × Y and
(x2k, y2k) ∈ gph F such that

‖(xik, yik) − (x̃k, ỹk)‖ ≤ ρkγk/2 with yik 	= zk for i = 1, 2, and

0 ∈ ∂
[
‖ · −zk‖ + να‖(·, ·) − (x̃k, ỹk)‖γk

]
(x1k, y1k)

+ N̂((x2k, y2k); gph F) + γk(IBX∗ × IBY∗) .

Now using standard convex analysis and taking into account that yik 	= zk , we
get elements u∗

k ∈ X∗, v∗k ∈ Y ∗, w∗
k ∈ Y ∗, z∗k ∈ X∗, p∗

k ∈ Y ∗, and (x∗
k ,−y∗k ) ∈

N̂((x2k, y2k); gph F) such that

‖u∗
k‖ ≤ γk, ‖v∗k ‖ ≤ γk, ‖w∗

k ‖ = 1, ‖z∗k ‖ ≤ 1, ‖p∗
k ‖ = 1, and

(u∗
k , v

∗
k ) = (0, w∗

k ) + να(z∗k , 0) + ναγk(0, p∗
k ) + (x∗

k ,−y∗k ) .

Therefore one has

‖x∗
k ‖ ≤ να + γk and ‖w∗

k − y∗k ‖ ≤ γk(να + 1) ,

which implies, due to the choice of γk in (4.4), that

‖y∗k ‖ ≥ ‖w∗
k ‖ − γk(να + 1) = 1 − γk(να + 1) > 1/2 .

Denoting x̃∗
k := x∗

k /‖y∗k ‖, ỹ∗k := y∗k /‖y∗k ‖ and using (4.4) again, we get

x̃∗
k ∈ D̂∗F(x2k, y2k)(ỹ∗k ), ‖ỹ∗k ‖ = 1, and ‖x̃∗

k ‖ ≤ να + γk

1 − γk(να + 1)
< ν .

Now passing to the limit as k → ∞ and taking into account definition (4.2)
of the constant â(F, x̄, ȳ), one has â(F, x̄, ȳ) ≤ ν. Since ν > κ was chosen
arbitrary, we finally obtain â(F, x̄, ȳ) ≤ κ. This contradiction completes the
proof of the theorem. �

If the graph of F is convex, we have an explicit formula for computing the
Fréchet coderivative that implies the following corollary.
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Corollary 4.2 (neighborhood characterization of local covering for
convex-graph multifunctions). Suppose that F is convex-graph under the
assumptions of Theorem 4.1. Then the conclusions of this theorem hold with
the covering constant â(F, x̄, ȳ) computed by

â(F, x̄, ȳ) := sup
η>0

inf
{
‖x∗‖

∣
∣
∣ 〈x∗, x〉 − 〈y∗, y〉 = sup

(u,v)∈gph F

[
〈x∗, u〉 − 〈y∗, v〉

]
,

x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ), ‖y∗‖ = 1
}
.

Proof. It follows from Theorem 4.1 due to Proposition 1.37. �

In the case of single-valued and locally Lipschitzian mappings the covering
constant (4.2) is expressed in terms of Fréchet subgradients.

Corollary 4.3 (neighborhood covering criterion for single-valued
mappings). Let f : X → Y be a single-valued mapping between Asplund
spaces. Assume that f is Lipschitz continuous around some point x̄. Then
the conclusions of Theorem 4.1 hold with the covering constant â( f, x̄) com-
puted by

â( f, x̄) = sup
η>0

inf
{
‖x∗‖

∣
∣ x∗ ∈ ∂̂〈y∗, f 〉(x), x ∈ Bη(x̄), ‖y∗‖ = 1

}
.

Proof. Since f is Lipschitz continuous on Bη(x̄) for small η > 0, one has the
scalarization formula

D̂∗ f (x)(y∗) = ∂̂〈y∗, f 〉(x) for all x ∈ Bη(x̄) and y∗ ∈ Y ∗ ,

which easily follows from the definitions. Thus (4.2) reduces to the form pre-
sented in the corollary. �

Next let us consider the semi-local covering property of F : X →→ Y around
x̄ ∈ dom F in the sense of Definition 1.51(iii), which corresponds to (4.1) with
V = Y . The exact covering bound is denoted by cov F(x̄) in this case. If F
is closed-graph and locally compact around x̄ , then Theorem 4.1 immediately
implies the corresponding characterization of the semi-local covering property
due to the relationships of Corollary 1.53. The following theorem justifies this
characterization with no local compactness assumption.

Theorem 4.4 (neighborhood characterization of semi-local cover-
ing). Let F : X →→ Y be a set-valued mapping between Asplund spaces. Assume
that F is closed-graph near x̄ ∈ dom F. Then the following are equivalent:

(a) F enjoys the semi-local covering property around x̄.
(b) One has â(F, x̄) > 0 for the constant â(F, x̄) defined by
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â(F, x̄) := sup
η>0

inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̂∗F(x, y)(y∗), x ∈ Bη(x̄) ,

y ∈ F(x), ‖y∗‖ = 1
}
.

Moreover, â(F, x̄) is the exact covering bound cov F(x̄) of F around x̄.

Proof. If F has the semi-local covering property around x̄ , then

â(F, x̄) ≥ cov F(x̄) > 0

due to Corollary 1.55 valid in any Banach spaces. To prove the opposite esti-
mate for closed-graph mappings between Asplund spaces, we suppose on the
contrary that there is a positive number κ < â(F, x̄), which is not a mod-
ulus of semi-local covering. Involving the definition of this property, we find
sequences xk → x̄ , rk ↓ 0, and (yk, zk) ∈ Y × Y such that relations (4.3) hold.
In contrast to the local covering property in the proof of Theorem 4.1, we
don’t specify the convergence of yk , which is actually not needed to establish
the required estimate due to the definition of the semi-local covering constant
â(F, x̄). Now proceeding similarly to the proof of Theorem 4.1, we arrive at
the contradiction â(F, x̄) ≤ κ. �

4.1.2 Neighborhood Characterizations of Metric Regularity
and Lipschitzian Behavior

The above characterizations of covering properties and relationships of
Sect. 1.3 allow us to derive neighborhood criteria and exact bound formu-
las for metric regularity and Lipschitzian properties of set-valued mappings
between Asplund spaces.

We start with the metric regularity properties of F : X →→ Y and consider
first its local version from Definition 1.47(ii), where reg F(x̄, ȳ) denotes the
exact regularity bound of F around (x̄, ȳ).

Theorem 4.5 (neighborhood characterization of local metric regu-
larity). Let F : X →→ Y be a set-valued mapping between Asplund spaces. As-
sume that F is closed-graph around (x̄, ȳ) ∈ gph F. Then the following asser-
tions are equivalent:

(a) F is locally metrically regular around (x̄, ȳ).
(b) One has b̂(F, x̄, ȳ) < ∞, where

b̂(F, x̄, ȳ) := inf
η>0

inf
{
µ > 0

∣
∣
∣ ‖y∗‖ ≤ µ‖x∗‖, x∗ ∈ D̂∗F(x, y)(y∗) ,

x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)
}
.

Moreover, the exact regularity bound of F around (x̄, ȳ) is computed by
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reg F(x̄, ȳ) = b̂(F, x̄, ȳ)

= inf
η>0

sup
{
‖D̂∗F(x, y)−1‖

∣
∣
∣ x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)

}
.

Proof. If F is locally metrically regular around (x̄, ȳ), then

b̂(F, x̄, ȳ) ≤ reg F(x̄, ȳ) < ∞ ,

which follows directly from estimate (1.41) in Theorem 1.54. To justify the
opposite inequality b̂(F, x̄, ȳ) ≥ reg F(x̄, ȳ) under the assumptions made, we
observe that

µ > b̂(F, x̄, ȳ) =⇒ µ−1 < â(F, x̄, ȳ) ,

which easily follows from the definitions of these constants and the fact
that D̂∗F(x̄, ȳ)(·) is positively homogeneous. Thus assuming b̂(F, x̄, ȳ) <
reg F(x̄, ȳ), we find 0 < µ < reg F(x̄, ȳ) such that µ−1 < â(F, x̄, ȳ). The-
orem 4.1 allows us to conclude that µ−1 is a covering modulus for F around
(x̄, ȳ). Then Theorem 1.52(ii) ensures that µ is a modulus of local metric reg-
ularity for F around this point, which is impossible due to µ < reg (F, x̄, ȳ).
We therefore arrive at a contradiction that justifies the equality

reg F(x̄, ȳ) = b̂(F, x̄, ȳ) .

To establish the second representation for reg F(x̄, ȳ), observe that the in-
equality “≥” is proved in Theorem 1.54(i). The opposite one follows directly
from the comparison of b̂(F, x̄, ȳ) and last constant of the theorem. �

Involving Proposition 1.50 about relationships between local and semi-
local metric regularity, Theorem 4.5 immediately implies criteria and exact
bound formulas for both semi-local metric regularity properties of F : X →→ Y
with respect to domain and range spaces from Definition 1.47(iii) assuming the
local compactness of F around x̄ and of F−1 around ȳ, respectively. The next
result provides a complete characterization of the semi-local metric regularity
of F around x̄ ∈ dom F with no local compactness assumption.

Theorem 4.6 (neighborhood characterization of semi-local metric
regularity). Let F : X →→ Y be a set-valued mapping between Asplund spaces.
Assume that F is closed-graph near x̄ ∈ dom F. Then the following assertions
are equivalent:

(a) F is semi-locally metrically regular around x̄ ∈ dom F.
(b) One has b̂(F, x̄) < ∞, where

b̂(F, x̄) := inf
η>0

inf
{
µ > 0

∣
∣
∣ ‖y∗‖ ≤ µ‖x∗‖, x∗ ∈ D̂∗F(x, y)(y∗) ,

x ∈ Bη(x̄), y ∈ F(x)
}
.
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Moreover, the exact regularity bound of F around x̄ is computed by

reg F(x̄) = b̂(F, x̄) = inf
η>0

sup
{
‖D̂∗F(x, y)−1‖

∣
∣
∣ x ∈ Bη(x̄), y ∈ F(x)

}
.

Proof. It is similar to the proof of Theorem 4.5 with the use of relationships
between the semi-local covering and metric regularity properties from Theo-
rem 1.52(i) and the characterization of semi-local covering in Theorem 4.4. �

In conclusion of this subsection let us obtain neighborhood characteriza-
tions of Lipschitzian properties of set-valued mappings from Definition 1.40.
We present results for the (local) Lipschitz-like property of F around (x̄, ȳ) ∈
gph F , which are the most useful for subsequent applications. Due to rela-
tionships of Theorem 1.42, the results obtained below immediately imply the
corresponding characterizations of the classical local Lipschitzian property of
F around x̄ for locally compact multifunctions.

Theorem 4.7 (neighborhood characterization of Lipschitz-like mul-
tifunctions). Let F : X →→ Y be a set-valued mapping between Asplund spaces.
Assume that F is closed-graph around (x̄, ȳ) ∈ gph F. Then the following
properties are equivalent:

(a) F is Lipschitz-like around (x̄, ȳ).
(b) There are positive numbers � and η such that

sup
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̂∗F(x, y)(y∗)

}
≤ �‖y∗‖

whenever x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ), and y∗ ∈ Y ∗.

Moreover, the exact Lipschitzian bound of F around (x̄, ȳ) is computed by

lip F(x̄, ȳ) = inf
η>0

sup
{
‖D̂∗F(x, y)‖

∣
∣
∣ x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)

}
.

Proof. Property (b) of Lipschitz-like mappings and the lower estimate of the
exact Lipschitzian modulus are proved in Theorem 1.43(i) for general Banach
spaces. We know from Theorem 1.49(i) that the Lipschitz-like property of F
around (x̄, ȳ) is equivalent to the local metric regularity of F−1 around (ȳ, x̄)
with the same exact bounds. Taking into account the norm definition (1.22)
for positively homogeneous mappings and the equality

‖D̂∗F−1(y, x)‖ = ‖D̂∗F(x, y)−1‖ for any (x, y) ∈ gph F ,

we deduce this theorem from Theorem 4.5. �

4.2 Pointbased Characterizations

It is more convenient for applications to get pointbased criteria for covering,
metric regularity, and Lipschitzian properties of multifunctions considered
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above. This means that one needs results expressed in terms of derivative-
like constructions at the references points (x̄, ȳ) alone (but not at all points of
their neighborhoods). To derive such conditions, we have to impose additional
assumptions on the mappings under consideration. A fundamental result of
this type is given in Theorem 1.57, which shows that the classical Lyusternik-
Graves surjectivity condition is necessary and sufficient for the metric regu-
larity and covering around a given point x̄ of strictly differentiable mappings
f : X → Y between Banach spaces; moreover, the corresponding exact bounds
are expressed in terms of the strict derivative of f at x̄ . Section 1.3 also
contains some necessary pointbased conditions for the mentioned properties
and one-sided modulus estimates expressed in terms of mixed coderivatives at
references points for set-valued mappings between Banach spaces.

In this section we show that the conditions obtained are also sufficient for
the validity of these fundamental properties for set-valued mappings F : X →→ Y
between Asplund spaces, provided that partial sequential normal compactness
assumptions on F are imposed. Moreover, the latter PSNC conditions happen
to be also necessary for the fulfillment of the properties under consideration.

For computing the exact bounds of the corresponding moduli, we need to
involve not only mixed coderivatives but also normal coderivatives at given
points to furnish estimates in the opposite direction. In this way we obtain
precise formulas to express the exact bounds for rather broad classes of set-
valued mappings, where the norms of mixed and normal coderivatives agree
at reference points. The final subsection of this section contains applications
of the results obtained to computing the so-called radius of metric regularity
that gives a measure of the extent to which a set-valued mapping can be
perturbed before metric regularity is lost.

4.2.1 Lipschitzian Properties via Normal
and Mixed Coderivatives

We start with pointbased characterizations of Lipschitzian properties for set-
valued mappings between Asplund spaces. The main result of this section,
Theorem 4.10, gives necessary and sufficient conditions for the Lipschitz-like
property of F around (x̄, ȳ) in terms of the mixed coderivative D∗

M F(x̄, ȳ) and
the PSNC property of F at (x̄, ȳ), while the principal upper estimate of the
exact Lipschitzian bound lip F(x̄, ȳ) is expressed via the normal coderivative
D∗

N F(x̄, ȳ). This implies the precise formula for computing the exact bound
lip F(x̄, ȳ) for set-valued mappings satisfying the following requirement.

Definition 4.8 (coderivatively normal mappings). Let F : X →→ Y be a
set-valued mapping between Banach spaces, and let (x̄, ȳ) ∈ gph F. Then:

(i) F is coderivatively normal at (x̄, ȳ) if

‖D∗
M F(x̄, ȳ)‖ = ‖D∗

N F(x̄, ȳ)‖ .

(ii) F is strongly coderivatively normal at (x̄, ȳ) if
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D∗
M F(x̄, ȳ) = D∗

N F(x̄, ȳ) := D∗F(x̄, ȳ) .

Example 1.35 shows that coderivative normality may not always hold even
for M-regular mappings f : X → �2, which happen to be Lipschitz continuous
around x̄ = 0 and strictly-weakly Fréchet differentiable at this point (in the
sense of Definition 3.63). Indeed, for the mapping f from Example 1.35 one
has ‖D∗

M f (0)‖ = 0 while ‖D∗
N f (0)‖ = ∞. The next proposition lists some

important classes of mappings that are strongly coderivatively normal (and
hence coderivatively normal) at reference points.

Proposition 4.9 (classes of strongly coderivatively normal mappings).
A set-valued mapping F : X →→ Y between Banach spaces is strongly coderiva-
tively normal at (x̄, ȳ) ∈ gph F if it satisfies one of the following conditions:

(a) Y is finite-dimensional.
(b) F is the indicator mapping of a set Ω ⊂ X relative to Y .
(c) F is N -regular at (x̄, ȳ); in particular, either it is strictly differentiable

at x̄ or its graph is convex around (x̄, ȳ).
(d) F is single-valued and w∗-strictly Lipschitzian at x̄, and X is Asplund.
(e) F = f ◦ g, where g: X → IRn is Lipschitz continuous around x̄ and

f : IRn → Y is strictly differentiable at g(x̄).
(f) F = f + F1, where f : X → Y is strictly differentiable at x̄ and

F1: X →→ Y is strongly coderivatively normal at (x̄, ȳ − f (x̄)).
(g) F = F1 ◦ g, where g: X → Z is strictly differentiable at x̄ with the

surjective derivative and where F1: Z →→ Y is strongly coderivatively normal at
(g(x̄), ȳ).

(h) F = f ◦ G, where f (x, ·) is a bounded linear operator from Z into Y
for every x around x̄ such that x → f (x, ·) is strictly differentiable at x̄ while
f (x̄, ·) is injective with the w∗-extensible range in Y , and where G: X →→ Z is
strongly coderivatively normal at (x̄, z̄) with ȳ = f (x̄, z̄).

(i) F = ∂(ϕ◦g), where ϕ: Z → IR and g ∈ C2 with the surjective derivative
∇g(x̄) such that the range of ∇g(x̄)∗ is w∗-extensible in X∗, and where ∂ϕ is
strongly coderivatively normal at (z̄, v̄) with z̄ := g(x̄) and v̄ uniquely defined
by the relations

ȳ = ∇g(x̄)∗v̄ and v̄ ∈ ∂ϕ(z̄) .

Proof. Assertions (a) and (c) are obvious; the specifications of (c) for convex-
graph and for strictly differentiable mappings follow from Propositions 1.37
and 1.38, respectively. Assertion (b) is taken from Proposition 1.33. Asser-
tion (d) is a part of Theorem 3.28, while (e) is proved in Theorem 1.65(iii).
Assertions (f)–(i) follow from the calculus rules for the normal and mixed
coderivatives established in Theorems 1.62(ii), 1.66, Lemma 1.126, and The-
orem 1.127, respectively. �

Note that further sufficient conditions for strong coderivative normality
follows from calculus rules for N -regularity of set-valued mappings between
Asplund spaces; see Subsect. 3.1.2.
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Theorem 4.10 (pointbased characterizations of Lipschitz-like prop-
erty). Let F : X →→ Y be a set-valued mapping between Asplund spaces that is
assumed to be closed-graph around (x̄, ȳ) ∈ gph F. Then the following proper-
ties are equivalent:

(a) F is Lipschitz-like around (x̄, ȳ).
(b) F is PSNC at (x̄, ȳ) and ‖D∗

M F(x̄, ȳ)‖ < ∞.
(c) F is PSNC at (x̄, ȳ) and D∗

M F(x̄, ȳ)(0) = {0}.
Moreover, in this case one has the estimates

‖D∗
M F(x̄, ȳ)‖ ≤ lip F(x̄, ȳ) ≤ ‖D∗

N F(x̄, ȳ)‖ (4.5)

for the exact Lipschitzian bound of F around (x̄, ȳ), where the upper estimate
holds if dim X < ∞. If in addition F is coderivatively normal at (x̄, ȳ), then

lip F(x̄, ȳ) = ‖D∗
M F(x̄, ȳ)‖ = ‖D∗

N F(x̄, ȳ)‖ . (4.6)

Proof. The necessity of the PSNC and coderivative conditions in (b) and
(c) for the Lipschitz-like property of F follows from Proposition 1.68 and
Theorem 1.44(i), where the latter result implies also the lower bound estimate
in (4.5) for any Banach spaces. Since

‖D∗
M F(x̄, ȳ)‖ < ∞ =⇒ D∗

M F(x̄, ȳ)(0) = {0} ,

it remains to show that (c)⇒(a) in the Asplund space setting, and that the
upper bound estimate holds in (4.5) if in addition X is finite-dimensional.

To prove (c)⇒(a) by contradiction, we suppose that F is not Lipschitz-
like around (x̄, ȳ). Then the neighborhood criterion from Theorem 4.7(b)
doesn’t hold. Hence there are sequences (xk, yk) ∈ gph F and (x∗

k ,−y∗k ) ∈
N̂((xk, yk); gph F) with (xk, yk) → (x̄, ȳ) and

‖x∗
k ‖ > k‖y∗k ‖ for all k ∈ IN .

Letting x̃∗
k := x∗

k /‖x∗
k ‖ and ỹ∗k := y∗k /‖y∗k ‖, we have

x̃∗
k ∈ D̂∗F(xk, yk)(ỹ∗k ), ‖x̃∗

k ‖ = 1, and ‖ỹ∗k ‖ ≤ 1
k → 0 as k → ∞ . (4.7)

Since X is Asplund, there is a subsequence of {x̃∗
k } that weak∗ converges to

some x∗ ∈ X∗. Passing to the limit in (4.7) and using the definition of the
mixed coderivative, we arrive at x∗ ∈ D∗

M F(x̄, ȳ)(0). Hence x∗ = 0 due to the
condition D∗

M F(x̄, ȳ)(0) = {0} in (c). Employing further the PSNC property
of F imposed in (c), we conclude that ‖x̃∗

k ‖ → 0 along a subsequence. This
contradicts the condition ‖x̃∗

k ‖ = 1 in (4.7) and completes the proof of the
equivalencies in (a)–(c).

Let us finally justify the upper estimate in (4.5) assuming that X is finite-
dimensional. To furnish this, we use the neighborhood formula for computing
the exact Lipschitzian bound of F around (x̄, ȳ) from Theorem 4.7. According
to this formula and the norm definition (1.22) in the case of D̂∗F(x, y), pick
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any ν > 0 and find sequences (xk, yk) → (x̄, ȳ) and (x∗
k , y∗k ) ∈ X∗ × Y ∗ such

that (xk, yk) ∈ gph F , {x∗
k } is bounded, and

lip F(x̄, ȳ) < ‖x∗
k ‖ + ν, x∗

k ∈ D̂∗F(xk, yk)(y∗k ), ‖y∗k ‖ ≤ 1 (4.8)

whenever k ∈ IN . Since X is finite-dimensional and Y is Asplund, there is a
pair (x∗, y∗) ∈ X∗ × Y ∗ for which x∗

k → x∗ and y∗k
w∗
→ y∗ along a subsequence

of {k}. Then ‖x∗
k ‖ → ‖x∗‖ along this subsequence and

‖y∗‖ ≤ lim inf
k→∞

‖y∗k ‖ ≤ 1

due to the continuity of the norm function in finite dimensions and its lower
semicontinuity in the weak∗ topology of Y ∗. Passing to the limit in (4.8) as
k → ∞ and taking into account the definition of the normal coderivative, we
conclude that

lip F(x̄, ȳ) ≤ ‖x∗‖ + ν with x∗ ∈ D∗
N F(x̄, ȳ)(y∗), ‖y∗‖ ≤ 1 .

Since ν > 0 was chosen arbitrary, the latter implies the upper estimate in
(4.5) under the assumptions made. Equalities (4.6) for the exact Lipschitzian
bound immediately follow from estimates (4.5) provided that F is coderiva-
tively normal at the reference point (x̄, ȳ). �

The results obtained allow us to establish pointbased characterizations of
the classical local Lipschitzian property of set-valued mappings formulated in
Definition 1.40(iii).

Corollary 4.11 (pointbased characterizations of local Lipschitzian
property). Let F : X →→ Y be a set-valued mapping between Asplund spaces
whose graph is closed near some point x̄ ∈ dom F. Assume that F is locally
compact around x̄. Then the following are equivalent:

(a) F is locally Lipschitzian around x̄.
(b) For every ȳ ∈ F(x̄), F is PSNC at (x̄, ȳ) and ‖D∗

M F(x̄, ȳ)‖ < ∞.
(c) For every ȳ ∈ F(x̄), F is PSNC at (x̄, ȳ) and D∗

M F(x̄, ȳ)(0) = {0}.
Moreover, in this case one has the estimates

sup
ȳ∈F(x̄)

‖D∗
M F(x̄, ȳ)‖ ≤ lip F(x̄) ≤ sup

ȳ∈F(x̄)
‖D∗

N F(x̄, ȳ)‖ ,

for the exact Lipschitzian bound of F around x̄, where the upper estimate
holds if dim X < ∞. If in addition F is coderivatively normal at (x̄, ȳ) for all
ȳ ∈ F(x̄), then

lip F(x̄) = sup
ȳ∈F(x̄)

‖D∗
M F(x̄, ȳ)‖ = sup

ȳ∈F(x̄)
‖D∗

N F(x̄, ȳ)‖ .
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Proof. This is implied by Theorem 4.10 due to the relationships between the
local Lipschitzian and Lipschitz-like properties of locally compact multifunc-
tions established in Theorem 1.42. �

In what follows we mostly consider applications of the criteria obtained
in Theorem 4.10 for the Lipschitz-like property; one has similar results for
the classical Lipschitzian property of locally compact multifunctions due to
Corollary 4.11. Note that the criteria obtained above are simplified when
dim X < ∞, since F is automatically PSNC in this case. If both X and Y are
finite-dimensional, then we have the unified characterization

D∗F(x̄, ȳ)(0) = {0} with lip F(x̄, ȳ) = ‖D∗F(x̄, ȳ)‖ (4.9)

of the Lipschitz-like property for set-valued mappings in terms of the common
coderivative D∗F(x̄, ȳ).

Another important situation when the conditions of Theorem 4.10 can be
essentially simplified and efficiently specified concerns set-valued mappings
with closed and convex graphs. In contrast to (4.9), the next result is not
a straightforward corollary of Theorem 4.10, although its proof is primarily
based on the above coderivative criteria specified for convex-graph mappings.

Theorem 4.12 (Lipschitz-like property of convex-graph multifunc-
tions). Let F : X →→ Y be a convex-graph multifunction between Asplund
spaces. Given x̄ ∈ dom F, assume that the graph of F is closed near x̄. Then
the following are equivalent:

(a) There is ȳ ∈ F(x̄) such that F is Lipschitz-like around (x̄, ȳ).
(b) The range of F−1 is SNC at x̄ and N(x̄ ; rge F−1) = {0}.
(c) x̄ is an interior point of the range of F−1.
(d) F is Lipschitz-like at (x̄, ȳ) for every ȳ ∈ F(x̄).

If in addition dim X < ∞, then one has

lip F(x̄, ȳ) = sup
‖y∗‖≤1

{
‖x∗‖

∣
∣
∣ 〈x∗, x − x̄〉 ≤ 〈y∗, y − ȳ〉 for all (x, y) ∈ gph F

}

whenever ȳ ∈ F(x̄).

Proof. Implication (a)⇒(b) (actually the equivalence between these proper-
ties) follows from (a)=⇒(c) in Theorem 4.10 due to the coderivative repre-
sentation for convex-graph mappings in Proposition 1.37. Note that in this
setting int(rge F−1) 	= ∅, which can be easily observed from the local covering
property of F−1 that is equivalent to the Lipschitz-like property of F . Thus
intΩ = int (clΩ) for the convex set Ω = rge F−1, which is well known from
convex analysis. By this we may assume without loss of generality that the
range of F−1 is locally closed around x̄ . Then implication (b)⇒(c) follows
directly from the normal characterization of boundary points for closed SNC
sets in Corollary 2.24. To prove (c)⇒(d), we first observe that, due to the
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convexity of the sets gph F and rge F−1, the SNC property of rge F−1 at x̄ is
equivalent to the PSNC property of F at (x̄, ȳ) for every ȳ ∈ F(x̄). Since (c)
implies that rge F−1 is SNC at x̄ by Proposition 1.25 and Theorem 1.26, and
since one obviously has

(c) =⇒ D∗F(x̄, ȳ)(0) = {0} for every ȳ ∈ F(x̄) ,

then (c)⇒(d) follows from Theorem 4.10. Implication (d)⇒(a) is trivial, and
the exact bound formula in the theorem is a direct consequence of (4.6),
Proposition 1.37, and the norm definition (1.22). �

Note that implication (c)⇒(d) of Theorem 4.12 follows also from the in-
verse version of the classical Robinson-Ursescu theorem on metric regularity
of closed- and convex-graph mappings between arbitrary Banach spaces; cf.
Theorem 4.21 stated below.

Remark 4.13 (Lipschitzian properties via Clarke normals). Theo-
rem 4.10 immediately implies a sufficient condition for the Lipschitz-like prop-
erty of F : X →→ Y around (x̄, ȳ), where D∗

M F(x̄, ȳ)(0) = {0} in (c) is replaced
by its counterpart in terms of Clarke normals:

[
(x∗, 0) ∈ NC((x̄, ȳ); gph F)

]
=⇒ x∗ = 0 . (4.10)

Recall that the latter cone agrees in Asplund spaces with the convexified cone
cl∗co N due to Theorem 3.57. Note that there is no difference between (4.10)
and the basic condition D∗

M F(x̄, ȳ)(0) = {0} for convex-graph mappings, while
these conditions may be essentially different in nonconvex settings.

Indeed, it follows from Theorems 3.62 and 3.72(i), that the Clarke normal
cone in (4.10) is actually a linear subspace if F is single-valued and w∗-strictly
Lipschitzian at x̄ or, more general, if the graph of F : X →→ Y is strictly hemi-
Lipschitzian at (x̄, ȳ). This means that condition (4.10) is far removed from
necessity for such mappings F to be Lipschitz-like around (x̄, ȳ), even in finite-
dimensional spaces.

To demonstrate this, we consider a mapping f : IRn → IRm locally Lip-
schitzian around x̄ . Then it follows from the proof of Theorem 1.46 that con-
dition (4.10) holds if and only if this mapping is strictly differentiable at x̄ ; so
it is never fulfilled for nonsmooth Lipschitzian mappings. In contrast, condi-
tion (4.9) via basic normals completely characterizes Lipschitz-like mappings
between finite-dimensional spaces.

It is crucial for applications of Theorem 4.10 that the PSNC property
and both coderivatives used in its formulation enjoy the fairly rich calculi
developed above. Due to these calculi, the obtained characterizations can be
efficiently employed in typical situations when mappings F are given in special
forms arising in applications. Some of such applications will be considered in
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Sect. 4.3, where we study Lipschitzian stability of parametric constrained and
variational systems related to optimization and equilibrium models.

Now let us show that the dual characterizations of Theorem 4.10 and the
mentioned coderivative and PSNC calculi allow us to derive efficient condi-
tions ensuring the preservation of Lipschitz continuity under various opera-
tions performed on set-valued mappings. To obtain results in this direction,
we essentially use the fact that Theorem 4.10 provides necessary and sufficient
conditions for Lipschitz continuity.

The first theorem deals with general compositions of set-valued mappings
between Asplund spaces. As usual, we present results for the Lipschitz-like
property, which automatically imply similar conditions for the preservation of
classical Lipschitz continuity of locally compact multifunctions.

Theorem 4.14 (Lipschitz-like property under compositions). Con-
sider z̄ ∈ (F ◦ G)(x̄), where G: X →→ Y and F : Y →→ Z are set-valued mappings
between Asplund spaces such that the graphs of G and F−1 are locally closed
near x̄ and z̄, respectively. Assume that:

(a) The set-valued mapping (x, z) → G(x)∩ F−1(z) is inner semicompact
around (x̄, z̄).

(b) For every ȳ ∈ G(x̄)∩F−1(z̄) both mappings G and F are Lipschitz-like
around (x̄, ȳ) and (ȳ, z̄), respectively.

Then F ◦ G is Lipschitz-like around (x̄, z̄). If in addition dim X < ∞ and for
every ȳ ∈ G(x̄)∩ F−1(z̄) both F and G are coderivatively normal at the points
(ȳ, z̄) and (x̄, ȳ), respectively, then one has

lip (F ◦ G)(x̄, z̄) ≤ max
ȳ∈G(x̄)∩F−1(z̄)

lip G(x̄, ȳ) · lip F(ȳ, z̄) . (4.11)

Proof. Due to assumption (b) of the theorem and implication (a)⇒(c) of
Theorem 4.10, we have that for every ȳ ∈ G(x̄)∩ F−1(z̄) the mappings G and
F are PSNC at (x̄, ȳ) and (ȳ, z̄), respectively, with

D∗
M G(x̄, ȳ)(0) = {0} and D∗

M F(ȳ, z̄)(0) = {0} . (4.12)

Then by the zero chain rule of Theorem 3.14 we have that

D∗
M(F ◦ G)(x̄, z̄)(0) = {0} .

Furthermore, Corollary 3.96 ensures the PSNC property of F◦G at (x̄, z̄). Em-
ploying now the opposite implication (c)⇒(a) of Theorem 4.10, we conclude
that F ◦ G is Lipschitz-like around (x̄, z̄).

It remains to justify the bound inequality (4.11). By Theorem 3.13(ii) we
have the chain rule

D∗(F ◦ G)(x̄, z̄)(z∗) ⊂
⋃

ȳ∈G(x̄)∩F−1(z̄)

D∗
N G(x̄, ȳ) ◦ D∗F(ȳ, z̄)(z∗) (4.13)
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for both coderivatives D∗ = D∗
M and D∗ = D∗

N . Using (4.13) and taking
into account that ‖H1 ◦ H2‖ ≤ ‖H1‖ · ‖H2‖ for any positively homogeneous
multifunctions, and also that both F and G are coderivatively normal, we get
from (4.5) the following relations when dim X < ∞:

lip (F ◦ G)(x̄, z̄) ≤ sup
ȳ∈G(x̄)∩F−1(z̄)

‖D∗
N G(x̄, ȳ)‖ · ‖D∗

N F(ȳ, z̄)‖

= sup
ȳ∈G(x̄)∩F−1(z̄)

‖D∗
M G(x̄, ȳ)‖ · ‖D∗

M F(ȳ, z̄)‖

≤ max
ȳ∈G(x̄)∩F−1(z̄)

lip G(x̄, ȳ) · lip F(ȳ, z̄) ,

which implies (4.11). Note that we use “max” in the latter inequality and in
(4.11), since the set G(x̄)∩ F−1(z̄) is compact under assumption (a) and since
the function (x, y) → lip S(x, y) is upper semicontinuous on the graph of any
Lipschitz-like multifunction S. �

Observe that if the mapping G ∩ F−1 is inner semicontinuous vs. inner
semicompact at (x̄, z̄, ȳ) for some ȳ ∈ G(x̄)∩ F−1(z̄) and if the graph of F ◦G
is locally closed around (x̄, z̄), then all the other assumptions and conclusions
in Theorem 4.14 (and similarly in the subsequent results) are applied to this
particular point ȳ. Let us specify the assumptions of Theorem 4.14 in the
situation when the inner mapping G = g is single-valued.

Corollary 4.15 (compositions with single-valued inner mappings).
Take z̄ ∈ (F ◦ g)(x̄), where g: X → Y and F : Y →→ Z are mappings between
Asplund spaces. Assume that g is Lipschitz continuous around x̄ and that F
is closed-graph around (g(x̄), z̄). Then F ◦ g is Lipschitz-like around (x̄, z̄)
provided that F is Lipschitz-like around (g(x̄), z̄). Moreover,

lip (F ◦ g)(x̄, z̄) ≤ lip g(x̄) · lip F(g(x̄), z̄)

if dim X < ∞ and if both F and g are coderivatively normal at the points
(g(x̄), z̄) and x̄, respectively.

Proof. Under the assumptions made the mapping (g ∩ F−1)(x, z) = {g(x)}
is obviously inner semicompact around (x̄, z̄), and so we have a direct speci-
fication of Theorem 4.14. �

The next result presents conditions ensuring the preservation of the
Lipschitz-like property for sums of set-valued mappings, with relationships
between the exact Lipschitzian bounds. It is sufficient to consider the sum
of two multifunctions, which implies the general summation case by induc-
tion. For brevity we formulate this result only under the corresponding inner
semicompactness assumption.
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Theorem 4.16 (Lipschitz-like property under summation). Consider
two mappings Fi : X →→ Y between Asplund spaces whose graphs are locally
closed near some point x̄ ∈ (dom F1)∩ (dom F2). Take ȳ ∈ F1(x̄) + F2(x̄) and
assume that the mapping S: X × Y →→ Y 2 defined by

S(x, y) :=
{
(y1, y2) ∈ Y 2

∣
∣ y1 ∈ F1(x), y2 ∈ F2(x), y1 + y2 = y

}

is inner semicompact around (x̄, ȳ). Then the sum F1 + F2 is Lipschitz-like
around (x̄, ȳ) provided that for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) each Fi is Lipschitz-like
around (x̄, ȳ1) and (x̄, ȳ2), respectively. Moreover,

lip (F1 + F2)(x̄, ȳ) ≤ max
(ȳ1,ȳ2)∈S(x̄,ȳ)

{
lip F1(x̄, ȳ1) + lip F2(x̄, ȳ2)

}

if dim X < ∞ and Fi is coderivatively normal at (x̄, ȳi ) for both i = 1, 2 and
for all vectors (ȳ1, ȳ2) ∈ S(x̄, ȳ).

Proof. It follows from Theorem 3.10 that the sum rule

D∗(F1 + F2)(x̄, ȳ)(y∗) ⊂
⋃

(y1,y2)∈S(x̄,ȳ)

[
D∗F1(x̄, ȳ1)(y∗) + D∗F2(x̄, ȳ2)(y∗)

]

holds for both coderivatives D∗ = D∗
N , D∗

M under the assumptions made.
Putting y∗ = 0 in this coderivative sum rule for the case of D∗ = D∗

M , we get
by Theorem 1.44 that

D∗
M(F1 + F2)(x̄, ȳ)(0) = {0} .

Furthermore, the PSNC property of the sum F1 + F2 follows from the PSNC
calculus result of Theorem 3.88. Invoking the coderivative criterion for the
Lipschitz-like property from Theorem 4.10, we conclude that F1 + F2 is
Lipschitz-like at (x̄, ȳ). Finally, using the above some rule for both coderiva-
tives D∗ = D∗

N , D∗
M and the obvious inequality

‖H1 + H2‖ ≤ ‖H1‖ + ‖H2‖

for the norms of positively homogeneous multifunctions, we arrive at the exact
bound formula of the theorem similarly to the proof of Theorem 4.14. �

The next consequence of Theorems 4.14 and 4.16 concerns h-compositions
F1

h� F2 of set-valued mappings that cover many various operations on multi-
functions; see Subsect. 3.1.2.

Corollary 4.17 (Lipschitz-like property under h-compositions). Take

z̄ ∈ (F1
h� F2)(x̄) with Fi : X →→ Yi , i = 1, 2, and h: X × Z → Y1 × Y2 in the

Asplund space setting. Define the multifunction S: Y1 × Y2 →→ Z by

S(x, z) :=
{
(y1, y2) ∈ Y1 × Y2

∣
∣ yi ∈ Fi (x), z = h(y1, y2)

}
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and suppose that it is inner semicompact at (x̄, z̄). Assume also that for
every ȳ = (ȳ1, ȳ2) ∈ S(x̄, z̄) the mappings Fi are closed-graph and Lipschitz-
like around (x̄, ȳ1) and (x̄, ȳ2), respectively, and that h is locally Lipschitzian

around (x̄, ȳ). Then F1
h� F2 is Lipschitz-like around (x̄, z̄).

Proof. Define F : X →→ Y1 × Y2 by F(x) :=
(

F1(x), F2(x)
)

and observe that
F = F̃1 + F̃2, where F̃1(x) :=

(
F1(x), 0

)
and F̃2(x) :=

(
0, F2(x)

)
. It follows

from Corollary 4.16 that F is Lipschitz-like around (x̄, ȳ) for all ȳ = (ȳ1, ȳ2) ∈
S(x̄, z̄). Since clearly

(F1
h� F2)(x) = (h ◦ F)(x)

and since h is locally Lipschitzian, we apply now Theorem 4.14 to the latter
composition and thus complete the proof of the corollary. �

4.2.2 Pointbased Characterizations of Covering
and Metric Regularity

In this subsection we obtain pointbased characterizations of the covering and
metric regularity properties of multifunctions between Asplund spaces, with
formulas for estimating and computing the corresponding exact bounds. We
also present results on the preservation of the mentioned properties under
general compositions. The results obtained are derived from the above char-
acterizations of the Lipschitzian properties due to relationships between all
these properties established in Subsect. 1.2.3. We start with pointbased cri-
teria and exact bound formulas for local covering and metric regularity. For
these characterizations it is convenient to use, together with the mixed and
normal coderivatives, the reversed mixed coderivative defined by

D̃∗
M F(x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗| y∗ ∈ −D∗

M F−1(ȳ, x̄)(−x∗)
}
.

Theorem 4.18 (pointbased characterizations of local covering and
metric regularity). Let F : X →→ Y be a set-valued mapping between Asplund
spaces that is assumed to be closed-graph around (x̄, ȳ) ∈ gph F. Then the
following are equivalent:

(a) F is locally metrically regular around (x̄, ȳ).
(b) F enjoys the local covering property around (x̄, ȳ).
(c) F−1 is PSNC at (ȳ, x̄) with the equivalent conditions

D∗
M F−1(ȳ, x̄)(0) = {0} ⇐⇒ ker D̃∗

M F(x̄, ȳ) = {0} .

(d) F−1 is PSNC at (ȳ, x̄) and

‖D∗
M F−1(ȳ, x̄)‖ = ‖D̃∗

M F(x̄, ȳ)−1‖ < ∞ .

(e) F−1 is PSNC at (ȳ, x̄) and
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inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D̃∗

M F(x̄, ȳ)(y∗), ‖y∗‖ = 1
}
> 0 .

Moreover, one has the estimates

reg F(x̄, ȳ) ≤ ‖D∗
N F−1(ȳ, x̄)‖ = ‖D∗

N F(x̄, ȳ)−1‖ , (4.14)

cov F(x̄, ȳ) ≥ inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D∗

N F(x̄, ȳ)(y∗), ‖y∗‖ = 1
}

(4.15)

when dim Y < ∞. If in addition F−1 is coderivatively normal at (ȳ, x̄), then

reg F(x̄, ȳ) = ‖D∗F−1(ȳ, x̄)‖ = ‖D∗F(x̄, ȳ)−1‖ , (4.16)

cov F(x̄, ȳ) = inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D∗F(x̄, ȳ)(y∗), ‖y∗‖ = 1

}
, (4.17)

where D∗ stands for either D∗
N , or D∗

M , or D̃∗
M .

Proof. Equivalence (a)⇔(b) is proved in Theorem 1.52(i) for any Banach
spaces. Equivalences (a)⇔(c) and (a)⇔(d) follow from the relationships be-
tween the metric regularity and Lipschitz-like property of Theorem 1.49(i)
and the characterizations of the latter property from Theorem 4.10. Equiva-
lence (a)⇔(d) implies the one of (b)⇔(e) due to Theorem 1.52(i) by taking
into account the relationship

1
/
‖H−1‖ = inf

{
‖y‖

∣
∣
∣ y ∈ H(x), ‖x‖ = 1

}
(4.18)

valid for any positively homogeneous multifunction. Estimates (4.14) and
(4.15) follow then from the upper estimate in (4.5) applied to the inverse map-
ping F−1 and from formula (4.18) applied to the coderivative H = D∗

N F(x̄, ȳ).
Employing (4.14) and the opposite inequality

reg F(x̄, ȳ) ≥ ‖D∗
M F−1(ȳ, x̄)‖

established in Theorem 1.54(ii) in arbitrary Banach spaces, we get equality
(4.16) for the case of D∗ = D∗

N when F−1 is coderivatively normal at (ȳ, x̄).
Note that the latter is clearly equivalent to ‖D̃∗

M F(x̄, ȳ)‖ = ‖D∗
N F(x̄, ȳ)‖.

Moreover, D∗
M F(x̄, ȳ) = D∗

N F(x̄, ȳ) when Y is finite-dimensional. Thus (4.16)
holds also for D∗ = D∗

M and D∗ = D̃∗
M under the assumptions made. Finally,

(4.16) is equivalent to (4.17) in this case due to (4.18). �

The following example shows that the PSNC condition is essential for
the point characterizations of the covering and metric regularity properties of
multifunctions between infinite-dimensional spaces in Theorem 4.18 (and for
the equivalent characterizations of Lipschitzian stability in Theorem 4.10).
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Example 4.19 (violation of covering and metric regularity in the
absence of PSNC). For any separable Banach space X there is a convex-
valued mapping F : X →→ X that doesn’t have covering and metric regularity
properties around (x̄, ȳ) ∈ gph F while ker D∗

N F(x̄, ȳ) = {0}.

Proof. Let X be an arbitrary separable Banach space, and let {en}∞n=1 be unit
independent vectors that densely span X . Form the convex sets

Ω1 := clco
{ en

2n
, − en

2n

}
and Ω2 :=

{
ta
∣
∣
∣ t ∈ [−1, 1]

}
with a :=

∞∑

n=1

en

n2
∈ X

that are obviously norm-compact and satisfies Ω1 ∩ Ω2 = {0}. Define the
set-valued mapping F : X →→ X by

F(x) :=






x +Ω1 if x ∈ Ω2 ,

∅ otherwise

for which (0, 0) ∈ gph F . Since spanΩ1 is dense in X , we have

N((0, 0); gph F) ⊂
[
{0} ×Ω1

]⊥ = X∗ × {0} ,

and hence ker D∗
N F(0, 0) = {0}. It remains to check that F doesn’t have the

local covering property around (0, 0). It is sufficient to show that for any r > 0
the image set

F(r IB) =
⋃

α∈[0,r/‖a‖]

[
αa +Ω1

]

doesn’t contain an open ball around the origin. Indeed, taking b :=
∑∞

n=1
en
n3

and an arbitrarily small number β > 0, we observe that βb − αa ∈ Ω1 for
some α ∈ [0, r/‖a‖], which can only happen if βb − αa = 0. �

Theorem 4.18 and the relationships between local and semi-local properties
established in Subsect. 1.2.3 imply pointbased characterizations of semi-local
covering and two kinds of metric regularity for locally compact multifunctions
acting in Asplund spaces.

Corollary 4.20 (pointbased characterizations of semi-local covering
and metric regularity). Let F : X →→ Y be a set-valued mapping between
Asplund spaces. The following assertions hold:

(i) Given x̄ ∈ dom F, we assume that F is locally compact around x̄ and
that its graph is closed whenever x is near this point. Then F enjoys the semi-
local covering property around x̄ if and only if each of the equivalent conditions
(c)–(e) of Theorem 4.18 is fulfilled for every vector ȳ ∈ F(x̄). If in addition
dim Y < ∞, then
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cov F(x̄) ≥ inf
{
‖x∗‖

∣
∣
∣ x∗ ∈ D∗

N F(x̄, ȳ)(y∗), ȳ ∈ F(x̄), ‖y∗‖ = 1
}
.

The latter estimate holds as equality (with D∗
N = D∗

M = D̃∗
M) if F−1 is coderiv-

atively normal at (ȳ, x̄) for all ȳ ∈ F(x̄).
(ii) Under the corresponding assumptions of (i), F is semi-locally metri-

cally regular around x̄ ∈ dom F if and only if each of the equivalent conditions
(c)–(e) of Theorem 4.18 is fulfilled for every vector ȳ ∈ F(x̄). Moreover, one
has the estimate

reg F(x̄) ≤ max
ȳ∈F(x̄)

‖D∗
N F−1(ȳ, x̄)‖ = max

ȳ∈F(x̄)
‖D∗

N F(x̄, ȳ)−1‖ ,

which holds as equality (with D∗
N = D∗

M = D̃∗
M) if F−1 is coderivatively normal

at (ȳ, x̄) for all ȳ ∈ F(x̄).
(iii) Given ȳ ∈ rge F, we assume that F−1 is locally compact around ȳ

and its graph is closed whenever y is near this point. Then F is semi-locally
metrically regular around ȳ if and only if, for all ȳ ∈ F−1(x̄), F−1 is PSNC
at (ȳ, x̄) and each of the following equivalent conditions holds:

D∗
M F−1(ȳ, x̄)(0) = {0}, ker D̃∗

M F(x̄, ȳ) = {0} ,

‖D∗
M F−1(ȳ, x̄)‖ = ‖D̃∗

M F(x̄, ȳ)−1‖ < ∞ .

When dim Y < ∞, one has the estimate

reg F(ȳ) ≤ max
x̄∈F−1(ȳ)

‖D∗
N F−1(ȳ, x̄)‖ = max

x̄∈F−1(ȳ)
‖D∗

N F(x̄, ȳ)−1‖ ,

which holds as equality (with D∗
N = D∗

M = D̃∗
M) if F−1 is coderivatively normal

at (ȳ, x̄) for all x̄ ∈ F−1(ȳ).

Proof. All the conclusions follow from the corresponding results of Theo-
rem 4.18 due to the equivalence between the local and semi-local properties
established in Proposition 1.50 and Corollary 1.53. �

In the rest of this subsection we consider various results related to the local
metric regularity and covering properties, which imply similar results for the
semi-local counterparts due to Corollary 4.20.

Observe that for single-valued mappings F = f : X → Y strictly differen-
tiable at x̄ , Theorem 4.18 goes back to the characterizations of Theorem 1.57
the sufficient part of which (Lyusternik-Graves’ theorem) is proved there for
general Banach spaces.

The next result can be derived from Theorem 4.18 similarly to the proof
of Theorem 4.12; it is actually a direct corollary of Theorem 4.12 applied
to the inverse mapping. Note that implication (c)⇒(d) below is the main
contents of the Robinson-Ursescu closed graph/metric regularity theorem valid
in arbitrary Banach spaces; see, e.g., Theorem 3.3.1 in Aubin and Ekeland [52].
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Theorem 4.21 (metric regularity and covering of convex-graph map-
pings). Let F : X →→ Y be a convex-graph multifunction between Asplund
spaces. Given ȳ ∈ rge F, we assume that the graph of F is closed near ȳ.
Then the following are equivalent:

(a) There is x̄ ∈ F−1(ȳ) such that F is locally metrically regular (that is,
it enjoys the local covering property) around (x̄, ȳ).

(b) The convex set rge F is SNC at ȳ and N(ȳ; rge F) = {0}.
(c) ȳ is an interior point of the range of F.
(d) F is locally metrically regular (that is, it enjoys the local covering

property) around (x̄, ȳ) for every x̄ ∈ F−1(ȳ).

If in addition dim Y < ∞, then one has

reg F(x̄, ȳ) = sup
‖x∗‖≤1

{
‖y∗‖

∣
∣
∣ 〈x∗, x − x̄〉 ≤ y∗, y − ȳ〉 for all (x, y) ∈ gph F

}
,

cov F(x̄, ȳ) = inf
‖y∗‖=1

{
‖x∗‖

∣
∣
∣ 〈x∗, x − x̄〉 ≤ y∗, y − ȳ〉 for all (x, y) ∈ gph F

}

whenever ȳ ∈ F(x̄).

Proof. It is the inverse version of Theorem 4.12 applied to F−1, which is
Lipschitz-like around (ȳ, x̄) in this setting. The precise formulas for the reg-
ularity and covering bounds follow directly from (4.16) and (4.17) due to
Proposition 1.37 for convex-graph multifunctions. �

As in the case of Lipschitz continuity in Subsect. 4.2.1, the obtained char-
acterizations imply efficient conditions ensuring the preservation of the metric
regularity and covering properties under general compositions.

Theorem 4.22 (metric regularity and covering under compositions).
Let z̄ ∈ (F ◦ G)(x̄), where G: X →→ Y and F : Y →→ Z are set-valued mappings
between Asplund spaces. Assume that the graphs of G and F−1 are locally
closed near x̄ and z̄, respectively, and that the following conditions hold:

(a) The set-valued mapping (x, z) → G(x)∩ F−1(z) is inner semicompact
around (x̄, z̄).

(b) For every ȳ ∈ G(x̄) ∩ F−1(z̄) both mappings G and F are locally
metrically regular (have the local covering property) around (x̄, ȳ) and (ȳ, z̄),
respectively.

Then F◦G is locally metrically regular (has the local covering property) around
(x̄, z̄). If in addition dim Z < ∞ and for every ȳ ∈ G(x̄) ∩ F−1(z̄) both map-
pings F−1 and G−1 are coderivatively normal at (z̄, ȳ) and (ȳ, x̄), respectively,
then one has

reg (F ◦ G)(x̄, z̄) ≤ max
ȳ∈G(x̄)∩F−1(z̄)

reg G(x̄, ȳ) · reg F(ȳ, z̄) ,
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cov (F ◦ G)(x̄, z̄) ≥ min
ȳ∈G(x̄)∩F−1(z̄)

cov G(x̄, ȳ) · cov F(ȳ, z̄) .

Proof. We derive this result from Theorem 4.14. Indeed, it is easy to check
that for any set-valued mappings one has

(F ◦ G)−1 = G−1 ◦ F−1 .

Therefore, Theorem 4.14 applied to the composition G−1◦F−1 gives the listed
conditions for the preservation of the metric regularity and covering proper-
ties under the composition F ◦ G. The exact bound inequalities for metric
regularity and covering follow directly from (4.11) and the relationships be-
tween the exact bounds of all three properties under consideration established
in Subsect. 1.2.3. �

4.2.3 Metric Regularity under Perturbations

An important issue in numerical work concerns the study of how large a
perturbation can be before good behavior of a solution map breaks down.
This relates to the classical Eckart-Young theorem in numerical analysis and
to the so-called distance to infeasibility and the condition number theorems in
mathematical programming.

Metric regularity and equivalent Lipschitzian and openness notions are key
properties of “good behavior” in variational analysis. The following constant
measures the extent to which a set-valued mapping can be perturbed by the
addition of a linear mapping without destroying the metric regularity.

Definition 4.23 (radius of metric regularity). Let F : X →→ Y be a set-
valued mapping between Banach spaces, and let (x̄, ȳ) ∈ gph F. The radius
of metric regularity of F around (x̄, ȳ) is

rad F(x̄, ȳ) := inf
g∈L(X,Y )

{
‖g‖

∣
∣
∣ metric regularity fails for F + g

}
,

where L(X,Y ) stands for the space of linear bounded operators from X into Y
and where the metric regularity of F + g is considered around (x̄, ȳ + g(x̄)).

The radius value in Definition 4.23 could equally well be called the distance
to irregularity, with respect to adding a linear mapping to F . Our main goal
in what follows is to relate this value to the exact regularity bound reg F(x̄, ȳ)
introduced in Definition 1.47(ii).

First we obtain a generalization of the Eckart-Young theorem for positively
homogeneous multifunctions. Recall that the norm of a positively homoge-
neous multifunction is defined in (1.22). It is easy to observe that the inverse
mapping F−1 is positively homogeneous if and only if F has this property.

Theorem 4.24 (extended Eckart-Young). Let F : X →→ Y be a positively
homogeneous multifunction between Banach spaces. Then
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inf
g∈L(X,Y )

{
‖g‖

∣
∣
∣ F + g with ‖(F + g)−1‖ = ∞

}
= 1/‖F−1‖ ,

where the infimum is the same if restricted to mappings g ∈ L(X, Y ) of rank
one. If moreover X is a dual space to some Banach space Z , the additional
restriction can be made that g is weak∗-to-norm continuous.

Proof. First note that if ‖F−1‖ = ∞, then the equality in the theorem holds
with 0 in both sides; so we can assume that ‖F−1‖ < ∞. Furthermore, we can
always assume that ‖F−1‖ > 0, since the opposite corresponds to dom F =
{0}, which implies that dom (g + F) = {0} and hence ‖(F + g)−1‖ = 0. In
this case the equality in the theorem holds with ∞ in both sides.

Taking now any g ∈ L(X,Y ) with ‖(F + g)−1‖ = ∞, we find by definition
a sequence (xk, yk) ∈ gph (F + g) with ‖yk‖ ≤ 1 and 0 < ‖xk‖ → ∞ as
k → ∞. It follows from yk ∈ (F + g)(xk) that xk ∈ F−1(yk − g(xk)), hence
‖xk‖ ≤ ‖F−1‖ · ‖yk − g(xk)‖ and consequently

1/‖F−1‖ ≤
(
‖yk‖ + ‖g(xk)‖

)
/‖xk‖ ≤ (1/‖xk‖) + ‖g‖ .

Passing to the limit as k → ∞, we get 1/‖F−1‖ ≤ ‖g‖ and hence justify the
inequality “≥” in the theorem. It remains to prove the opposite inequality.

Take any finite number γ > 1/‖F−1‖ and find, by definition of the norm
(1.22), a pair (x̂, ŷ) ∈ gph F with ‖ŷ‖ = 1 and ‖x̂‖ > 1/γ . Then there is
x̂∗ ∈ X∗ such that 〈x̂, x̂∗〉 = ‖x̂‖ and ‖x̂∗‖ = 1. Now define the rank-one
mapping ĝ ∈ L(X, Y ) by ĝ(x) := −‖x̂‖−1〈x, x̂∗〉ŷ. Then

ĝ(x̂) = −ŷ and 0 ∈ F(x̂) − ŷ = F(x̂) + ĝ(x̂) = (F + ĝ)(x̂) .

Hence x̂ ∈ (F + ĝ)−1(0), which implies that ‖(F + ĝ)−1‖ = ∞. On the other
hand, ‖ĝ‖ = ‖ŷ‖/‖x̂‖ = 1/‖x̂‖ < γ . By the choice of γ we arrive at the in-
equality “≤” in the theorem. Finally, for X = Z∗ the latter argument can be
refined by taking x̂∗ ∈ IBZ with 〈x̂, x̂∗〉 > 1− δ for small δ > 0, and the proof
goes much as before. �

Note that the classical Eckart-Young theorem (that measures the extent
to which a nonsingular n × n matrix can be perturbed by the addition of
an n × n matrix without destroying the nonsingularity) corresponds to Theo-
rem 4.24 with a linear operator F : IRn → IRn. In this case Theorem 4.24 can
be obviously reformulated in terms of quadratic matrices, where the condition
‖(F + g)−1‖ = ∞ corresponds to the matrix singularity.

We are going to apply Theorem 4.24 to coderivatives as positively ho-
mogeneous multifunctions and, combining this with the precise coderivative
formula (4.16) for the regularity bound reg F(x̄, ȳ) as well as with the coderiv-
ative calculus, to establish relationships between reg F(x̄, ȳ) and the radius
of metric regularity from Definition 4.23. To proceed, we also need the fol-
lowing estimate of the exact regularity bound under the addition of single-
valued Lipschitzian perturbations. The proof of this result is based on the
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Lyusternik-Graves iterative procedure similar to the one used in the proof of
Theorem 1.57. It is easy to see that, for single-valued mappings g: X → Y , the
exact Lipschitzian bound from Definition 1.40 is computed by

lip g(x̄) = lim sup
x→x̄
u→x̄

‖g(x) − g(u)‖
‖x − u‖ .

Theorem 4.25 (metric regularity under Lipschitzian perturbations).
Let F : X →→ Y be a set-valued mapping between Banach spaces the graph of
which is locally closed around (x̄, ȳ) ∈ gph F. Consider also a single-valued
mapping g: X → Y and positive constants µ, � with reg F(x̄, ȳ) < µ < ∞ and
lip g(x̄) < � < µ−1. Then

reg (F + g)
(
x̄, ȳ + g(x̄)

)
< (µ−1 − �)−1 =

µ

1 − �µ
.

Proof. Recall that Bα(x̄) := x̄ + α IBX and Bα(ȳ) := x̄ + α IBY , and with this
notation take α > 0 so small that gph F is closed relative to Bα(x̄)× Bα(ȳ), g
is Lipschitz continuous on Bα(x̄) with constant �, and

dist(x ; F−1(y)) ≤ µdist(y; F(x)) for all (x, y) ∈ Bα(x̄) × Bα(ȳ)

due to the metric regularity of F around (x̄, ȳ). This implies that

dist(x̄ ; F−1(y)) ≤ µ‖y − ȳ‖ whenever y ∈ Bα(ȳ)

and hence F−1(y) 	= ∅ for all these y. Choose ν such that

0 < ν < 1
4α(1 − µ�)min

{
1, µ

}

and take x ∈ Bν/4(x̄) and y ∈ Bν/4µ(ȳ). Then

‖y − g(x) + g(x̄) − ȳ‖ ≤ �‖x − x̄‖ + ‖y − ȳ‖ ≤ (�ν/4) + (ν/4µ) ≤ α .

Now selecting ε from

0 < ε < 1
4α(1 − µ�)min

{
1; 1/�

}
,

we find z1 ∈ F−1(y − g(x) + g(x̄)) satisfying

‖z1 − x‖ ≤ dist
(
x ; F−1(y − g(x) + g(x̄))

)
+ ε .

It follows from the metric regularity of F around (x̄, ȳ) that

‖z1 − x‖ ≤ ‖x − x̄‖ + dist
(
x̄ ; F−1(y − g(x) + g(x̄))

)
+ ε

≤ ‖x − x̄‖ + µdist
(

y − g(x) + g(x̄); F(x̄)
)

+ ε

≤ ‖x − x̄‖ + µ‖y − ȳ‖ + µ�‖x − x̄‖ + ε

≤ (ν/4) + (µν/4µ) + (µ�ν/4) + ε ≤ (3ν/4) + ε ,
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which consequently implies that

‖z1 − x̄‖ ≤ ‖z1 − x‖ + ‖x − x̄‖ ≤ (3ν/4) + ε + (ν/4) ≤ ν + ε ≤ α .

This procedure allows us to construct by induction a sequence of elements
z j ∈ X , j = 1, 2, . . ., satisfying

z j+1 ∈ F−1(y − g(z j ) + g(x̄)) and ‖z j+1 − z j‖ ≤ (µ�) j‖z1 − x̄‖ .

Indeed, suppose that we have generated such z2, . . . , zk from z1. Then

‖z j − x̄‖ ≤
j−1∑

i=1

‖zi+1 − zi‖ + ‖z1 − x̄‖ ≤
j−1∑

i=0

(µ�)i‖z1 − x‖ + ‖z1 − x̄‖

≤ 1
1 − µ�

‖z1 − x‖ + ‖z1 − x̄‖ ≤ 1
1 − µ�

(3ν/4 + ε) + ν + ε ≤ α

for j = 1, . . . , k due to the above choice of the constants ν and ε. Also

‖y − g(z j ) + g(x̄) − ȳ‖ ≤ ν

4µ
+

�

1 − µ�
(3ν/4 + ε) + �(ν + ε) ≤ α .

By the metric regularity of F around x̄ we find

zk+1 ∈ F−1(y − g(zk) + g(x̄)) with
‖zk+1 − zk‖ ≤ µdist

(
y − g(zk) + g(x̄); F(zk)

)
.

Since zk ∈ F−1(y − g(zk−1) + g(x̄)), the latter implies that

‖zk+1 − zk‖ ≤ µ‖g(zk) − g(zk−1)‖ ≤ µ�‖zk − zk−1‖

and completes the induction procedure.
It is easy to see that {z1, z2, . . .} is a Cauchy sequence, hence it converges

to some z from the graph of F due to its local closedness. Moreover, z ∈
F−1(y − g(z) + g(x̄)), which means that z ∈ (F + g)−1(y + g(x̄)) and that

dist(x ; (F + g)−1(y + g(x̄)) ≤ ‖z − x‖ ≤ lim
k→∞

k∑

i=1

‖zi+1 − zi‖ + ‖z1 − x̄‖

≤ lim
k→∞

k∑

i=0

(µ�)i‖z1 − x‖ ≤ 1
1 − µ�

‖z1 − x‖

≤ µ

1 − µ�

[
dist
(

y + g(x̄); (F + g)−1(x)
)

+ ε
]
.

Since the left-hand side above doesn’t depend on ε, which can be arbitrary
small, the latter justifies the metric regularity of F + g around (x̄ ; ȳ + g(x̄))
with modulus µ(1 − �µ)−1. �
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Corollary 4.26 (lower estimate for Lipschitzian perturbations). Let
F : X →→ Y be locally closed graph around (x̄, ȳ), and let g: X → Y be Lipschitz
continuous around x̄. Then

lip g(x̄) ≥ 1/reg F(x̄, ȳ)

for every g(·) such that F + g is not metrically regular around (x̄, ȳ + g(x̄)).

Proof. If lip g(x̄) < 1/reg F(x̄, ȳ), then there are constants � > lip g(x̄) and
µ > reg F(x̄, ȳ) with � < 1/µ. Thus F + g must be metrically regular around
(x̄, ȳ + g(x̄)) by Theorem 4.25. �

Now we are ready to establish the main result of this subsection that gives
relationships between the radius of metric regularity and the exact regularity
bound for set-valued mappings. Note that efficient conditions and calculus
rules ensuring the coderivative normality property in the following theorem
are listed in Proposition 4.9.

Theorem 4.27 (relationships between the radius and exact bound of
metric regularity). Let F : X →→ Y be a set-valued mapping between Banach
spaces, and let (x̄, ȳ) ∈ gph F be a point around which the graph of F is locally
closed. Then one has

rad F(x̄, ȳ) ≥ 1/reg F(x̄, ȳ) .

If in addition X is Asplund, dim Y < ∞, and F−1 is coderivatively normal at
(ȳ, x̄), then the equality holds:

rad F(x̄, ȳ) = 1/reg F(x̄, ȳ) .

Furthermore, in this case the infimum in the definition of rad F(x̄, ȳ) is un-
changed if taken with respect to g ∈ L(X,Y ) of rank one, but also is unchanged
when the space of perturbations g is enlarged from linear bounded operators to
locally Lipschitzian mappings:

rad F(x̄, ȳ) = inf
g:X→Y

{
lip g(x̄)

∣
∣
∣ metric regularity fails for F + g

}
.

Proof. The inequality rad F(x̄, ȳ) ≥ 1/reg F(x̄, ȳ) follows directly from
Corollary 4.26 and the definitions. Moreover, Corollary 4.26 ensures, since
lip g(x̄) = ‖g‖ for linear continuous mappings g, that the second equality
in the theorem follows from the first one. Thus it remains to show that
rad F(x̄, ȳ) = 1/reg F(x̄, ȳ) under the assumptions made, along with veri-
fying that the infimum in the definition of rad F(x̄, ȳ) is unchanged when
restricted to linear operators g ∈ L(X, Y ) of rank one. We are going to prove
it by using the pointbased coderivative characterization of metric regularity in
Theorem 4.18 together with simple rules of coderivative calculus.



404 4 Characterizations of Well-Posedness and Sensitivity Analysis

Applying Theorem 4.18 to the mapping (F + g): X →→ Y , we first observe
that (F + g)−1: Y →→ X is automatically PSNC at (ȳ + g(x̄), x̄) by dim Y < ∞.
Thus, by the equivalence (a)⇔(d) in Theorem 4.18, we conclude that F + g
is not metrically regular around (x̄, ȳ + g(x̄)) if and only if

‖D∗
M(F + g)−1(ȳ + g(x̄), x̄)‖ = ‖D̃∗

M(F + g)(x̄, ȳ + g(x̄))−1‖ = ∞ .

Let us show that

D̃∗
M(F + g)(x̄, ȳ + g(x̄))(y∗) = D̃∗

M F(x̄, ȳ)(y∗) + g∗(y∗), g ∈ L(X, Y ) ,

provided that the space Y is finite-dimensional; the latter actually holds for
any g: X → Y strictly differentiable at x̄ with the replacement of the adjoint
operator to g by the one to ∇g(x̄).

Indeed, taking x∗ ∈ D̃∗
M(F + g)(x̄, ȳ + g(x̄))(y∗) and using the represen-

tation of D̃∗
M in Asplund spaces (see Corollary 2.36) as well as dim Y < ∞,

we find sequences xk → x̄ , yk → ȳ with yk ∈ F(xk), and (x∗
k , y∗k ) → (x∗, y∗)

such that x∗
k ∈ D̂∗(F + g)(xk, yk + g(xk))(y∗k ) for all k ∈ IN . It follows from

Proposition 1.62(i) that

D̂∗(F + g)(xk, yk + g(xk))(y∗k ) = D̂∗F(xk, yk)(y∗k ) + g∗(y∗k ) ,

which gives x∗
k − g∗(y∗k ) ∈ D̂∗F(xk, yk)(y∗k ). Since x∗

k − g∗(y∗k ) → x∗ − g∗(y∗),
the latter ensures by passing to the limit as k → ∞ that x∗ ∈ D̃∗

M F(x̄, ȳ)(y∗)+
g∗(y∗). This justifies the inclusion “⊂” for D̃∗

M(F +g)(x̄, ȳ+g(x̄)) in the above
formula. The opposite inclusion follows from

D̃∗
M

[
(F + g) + (−g)

]
(x̄, ȳ)(y∗) ⊂ D̃∗

M(F + g)(x̄, ȳ + g(x̄))(y∗) − g∗(y∗) .

Thus F + g is not metrically regular around (x̄, ȳ + g(x̄)) if and only if

‖(D̃∗
M F(x̄, ȳ) + g∗)−1‖ = ∞, g ∈ L(X,Y ) .

Now we apply the exact bound formula (4.16) of Theorem 4.18 to the
mapping F−1 that is assumed to be coderivatively normal at (x̄, ȳ). Taking into
account that ‖g∗‖ = ‖g‖ for g ∈ L(X,Y ), the targeted equality rad F(x̄, ȳ) =
1/reg F(x̄, ȳ) can be identified with

inf
g∈L(X,Y )

{
‖g∗‖

∣
∣
∣ ‖D̃∗

M F(x̄, ȳ) + g∗‖ = ∞
}

= 1
/
‖D̃∗

M F(x̄, ȳ)−1‖ .

Observe that every h ∈ L(Y ∗, X∗) is represented as the adjoint operator
g∗: Y ∗ → X∗ for some g ∈ L(X, Y ) provided that Y is reflexive (in our case
dim Y < ∞). Indeed, since X ⊂ X∗∗ and Y ∗∗ = Y , we construct g ∈ L(X,Y )
as the restriction on X of h∗: X∗∗ → Y ∗∗. Finally applying Theorem 4.24 to
the positively homogeneous mapping D̃∗

M F(x̄, ȳ): Y ∗ →→ X∗, we complete the
proof of the theorem. �

Theorem 4.27 also gives information on what happens to the radius of
metric regularity under perturbations.
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Corollary 4.28 (perturbed radius of metric regularity). Let F : X →→ Y
and g: X → Y . Assume that X is Asplund and dim Y < ∞, that the graph of F
is locally closed around (x̄, ȳ) ∈ gph F, and that F−1 is coderivatively normal
at (ȳ, x̄). Then

rad (F + g)(x̄, ȳ + g(x̄)) ≥ rad F(x̄, ȳ) − lip g(x̄) if lip g(x̄) < rad F(x̄, ȳ) .

Proof. Consider a mapping h: X → Y with lip h(x̄) < rad F(x̄, ȳ) − lip g(x̄).
Then we conclude that (F + g)+ h is metrically regular around (x̄, ȳ + g(x̄)+
h(x̄)). Indeed, this is the same as the metric regularity of F + g̃ around
(x̄, ȳ + g̃(x̄)) with g̃ := g + h, and the latter is true due to the last equality in
Theorem 4.27, since lip g̃(x̄) ≤ lip g(x̄) + lip h(x̄) < rad F(x̄, ȳ). �

Another conclusion can be drawn from Theorem 4.27. Recall that a map-
ping G: X →→ Y is said to give a first-order approximation to a mapping
F : X →→ Y around (x̄, ȳ) if on some neighborhood U of x̄ there is a map-
ping g: U → Y such that

G = F + g, g(x̄) = 0, and lip g(x̄) = 0 .

Corollary 4.29 (radius of metric regularity under first-order ap-
proximations). Let F : X →→ Y satisfy the assumptions of Corollary 4.28,
and let G: X →→ Y furnish a first-order approximation to F around (x̄, ȳ).
Then one has the equality

rad F(x̄, ȳ) = rad G(x̄, ȳ) .

Proof. Consider g: U → Y from the definition of first-order approximation
and extend it in any way to a mapping from X to Y . Since g(x̄) = 0 and F +g
agrees with G around x̄ , we have rad G(x̄, ȳ) = rad (F +g)(x̄, ȳ). On the other
hand, rad (F + g)(x̄, ȳ) ≥ rad F(x̄, ȳ) by Corollary 4.28, since lip g(x̄) = 0.
Thus rad G(x̄, ȳ) ≥ rad F(x̄, ȳ). The opposite inequality follows from the fact
that F also gives a first-order approximation to G; the relationship is sym-
metric with −g replacing g. �

An example of a first-order approximation to which Corollary 4.28 can be
applied is seen when

F(x) = F0(x) + f (x) with F0: X →→ Y ,

where f : X → Y is strictly differentiable at x̄ . In this case a first-order ap-
proximation to F is given by G(x) = F0(x) + g(x), where

g(x) := f (x̄) + 〈∇ f (x̄), x − x̄〉 .

A partial parametric version of such a first-order approximation will be used
below in Subsect. 4.4.3.
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Remark 4.30 (computing and estimating the radius of metric reg-
ularity via coderivative calculus). The results obtained above relate the
radius of metric regularity of general mappings to computing the exact regu-
larity bound, which has been characterized or estimated via the corresponding
coderivatives. In this way, given a specific constraint and/or variational system
and employing coderivative and SNC calculi, we can derive efficient results for
computing/estimating the regularity radius in terms of the initial data of the
given system. In what follows we present such coderivative calculations for a
number of constraint and variational systems typically arising in applications.
These results are then used to study Lipschitzian stability of constraint and
variational systems. Based on the relationships between the Lipschitzian and
regularity bounds, one may utilize the results obtained to compute or estimate
the radius of metric regularity in concrete settings.

4.3 Sensitivity Analysis for Constraint Systems

In this section we present efficient applications of the above pointbased char-
acterizations and calculus rules of generalized differentiation to local sensi-
tivity analysis for general classes of constraint systems depending on parame-
ters. Such systems cover, in particular, parametric sets of feasible solutions
for problems of mathematical programming. Our primary interest is robust
Lipschitzian stability of multivalued solution maps with respect to parame-
ter perturbations. The main attention is paid to results on the Lipschitz-like
property of solution maps to constraint systems that easily imply the cor-
responding results for classical local Lipschitzian behavior. Note that both
Lipschitz-like and classical local Lipschitzian properties are robust (stable)
with respect to perturbations of initial data, which is of great significance
for sensitivity analysis. Coderivative characterizations of robust Lipschitzian
behavior and efficient calculus rules for the basic generalized differential con-
structions and the corresponding sequential normal compactness allow us to
derive effective sufficient (as well as necessary and sufficient) conditions for
Lipschitzian stability with evaluating the exact Lipschitzian bounds.

To conduct such a local sensitivity analysis, we first express coderivatives
of general parametric constraint systems and their important specifications
in terms of the initial data. This is certainly of independent interest while
playing a crucial role (along with the SNC calculus in infinite dimensions) for
the subsequent study of Lipschitzian stability via the pointbased coderivative
criteria of the preceding section.

4.3.1 Coderivatives of Parametric Constraint Systems

Let us consider a class of multifunctions F : X →→ Y given in the form

F(x) :=
{

y ∈ Y
∣
∣ g(x, y) ∈ Θ, (x, y) ∈ Ω

}
, (4.19)
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where g: X × Y → Z is a single-valued mapping between Banach spaces, and
where Θ and Ω are subsets of the spaces Z and X × Y , respectively. Such
set-valued mappings describe constraint systems depending on a parameter
x ∈ X . One can view the parametric system (4.19) as a natural generalization
of the feasible solution sets to perturbed problems in nonlinear programming
with inequality and equality constraints given by

F(x) :=
{

y ∈ Y
∣
∣
∣ ϕi (x, y) ≤ 0, i = 1, . . . ,m;

ϕi (x, y) = 0, i = m + 1, . . . ,m + r
}
,

(4.20)

where ϕi are real-valued functions on X × Y . Clearly (4.20) is a special case
of (4.19) with g = (ϕ1, . . . , ϕm+r ), Ω = X × Y , Z = IRm+r , and

Θ :=
{

(α1, . . . , αm+r )
∣
∣
∣ αi ≤ 0 for i = 1, . . . ,m and

αi = 0 for i = m + 1, . . . ,m + r
}
.

(4.21)

Another special case of (4.19) with Θ = {0} and Ω = X × Y is addressed
by the classical implicit function theorem when the mapping

F(x) :=
{

y ∈ Y
∣
∣ g(x, y) = 0

}
(4.22)

is single-valued and smooth. In general we have implicit multifunctions in
(4.22) and are interested in properties of their Lipschitz continuity. More
examples of parametric systems that can be reduced to form (4.19) are given
in the next section.

In this subsection we express the normal and mixed coderivatives of set-
valued mappings defined by (4.19), (4.20), and (4.22) in terms of the ini-
tial data {g,Θ,Ω}, which is an important part of the subsequent sensitivity
analysis. The next theorem provides precise formulas (equalities) for comput-
ing these coderivatives in general Banach space and Asplund space settings.
The proofs of this theorem as well as other results given below are based on
the generalized differential and SNC calculi developed in Chaps. 1 and 3.

Theorem 4.31 (computing coderivatives of constraint systems). Let
F : X ×Y →→ Z be given in (4.19) with g: X ×Y → Z , Θ ⊂ Z , and Ω ⊂ X ×Y .
Take (x̄, ȳ) ∈ gph F and put z̄ := g(x̄, ȳ) ∈ Θ. The following assertions hold:

(i) Assume that X,Y, Z are Banach spaces, that Ω = X × Y , and that g
is strictly differentiable at (x̄, ȳ) with the surjective derivative ∇g(x̄, ȳ). Then
for all y∗ ∈ Y ∗ one has

D∗
N F(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ ∇g(x̄, ȳ)∗N(z̄;Θ)

}
. (4.23)

If moreover dim Z < ∞, then representation (4.23) holds also the mixed
coderivative D∗

M F(x̄, ȳ), i.e., F is strongly coderivatively normal at (x̄, ȳ).
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(ii) Let X,Y, Z be Asplund, and let g be Lipschitz continuous around (x̄, ȳ).
Assume that

(
D∗

N g(x̄, ȳ) ◦ N(z̄;Θ)
)
∩
(
− N((x̄, ȳ);Ω)

)
= {0} , (4.24)

that either g is N -regular at (x̄, ȳ) with dim Z < ∞ or g is strictly differen-
tiable at (x̄, ȳ), and that the sets Ω and Θ are locally closed around (x̄, ȳ) and
z̄ and normally regular at these points, respectively. Then one has

D∗F(x̄, ȳ)(y∗) =
{

x∗ ∈ X∗
∣
∣
∣ (x∗,−y∗) ∈ D∗g(x̄, ȳ) ◦ N(z̄;Θ)

+N((x̄, ȳ);Ω)
}
, y∗ ∈ Y ∗ ,

(4.25)

for both coderivatives D∗ = D∗
N , D∗

M provided that

N(z̄;Θ) ∩ ker D∗
N g(x̄, ȳ) = {0} (4.26)

and that either Ω is SNC at (x̄, ȳ) while g−1 is PSNC at (z̄, x̄, ȳ), or Θ is
SNC at z̄. Under the assumptions made F is N -regular at (x̄, ȳ), and hence
it is strongly coderivatively normal at this point.

Proof. To justify (i), observe that

gph F = g−1(Θ) when Ω = X × Y

for the mapping F in (4.19). Thus representation (4.23) follows directly from
Theorem 1.17. Let us prove that (4.23) holds true for the mixed coderivative
D∗

M F(x̄, ȳ) provided that the space Z is finite-dimensional. It is sufficient to
observe in this case that

Nw∗×‖·‖((x̄, ȳ); g−1(Θ)) = ∇g(x̄, ȳ)∗N(x̄ ;Θ) ,

where Nw∗×‖·‖(·;Ω) stands for the limiting normal cone to a set Ω ⊂ X × Y
defined in Remark 3.23 with respect to the weak∗ topology on X∗ and the norm
topology on Y ∗. The latter easily follows from the proof of Theorem 1.17.

Now we show that, under the assumptions made in (ii), representation
(4.25) holds for D∗ = D∗

N and also that F is N -regular at (x̄, ȳ). Note that in
general one has the representation

gph F = g−1(Θ) ∩Ω (4.27)

for the mapping F in (4.19). To prove (4.25) and the N -regularity of F at
(x̄, ȳ), we start with the case when Ω is SNC at (x̄, ȳ). Taking into account
that g−1(Θ) is normally regular at (x̄, ȳ) due to Theorem 3.13(iii) and apply-
ing the equality/regularity statement of Theorem 3.4, we conclude that

N((x̄, ȳ); gph F) = N((x̄, ȳ); g−1(Θ)) + N((x̄, ȳ);Ω) (4.28)
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and the graph of F is normally regular at (x̄, ȳ) provided that

N((x̄, ȳ); g−1(Θ)) ∩
(
− N((x̄, ȳ);Ω)

)
= {0} . (4.29)

Using the chain rule of Theorem 3.13(iii) when the outer mapping is the
indicator of Θ, one has

N((x̄, ȳ); g−1(Θ)) = D∗
N g(x̄, ȳ) ◦ N(z̄;Θ)

provided that the qualification condition (4.26) holds and that eitherΘ is SNC
at z̄ or g−1 is PSNC at (z̄, x̄, ȳ). Substituting the latter equality into (4.28)
and (4.29), we justify representation (4.25) for D∗ = D∗

N and the N -regularity
of F at (x̄, ȳ) under the assumptions made.

When Ω is not assumed to be SNC at (x̄, ȳ), we still get equality (4.28)
and the N -regularity of F at (x̄, ȳ) by Theorem 3.4 under condition (4.29) if
the set g−1(Θ) is SNC at (x̄, ȳ). Let us show that the latter holds under the
assumptions imposed on g and Θ. To furnish this, we apply the SNC calculus
rule of Theorem 3.98 when the outer mapping is the indicator function δ(·;Θ).
Observing that the inner mapping g is PSNC at (x̄, ȳ) due to Proposition 1.68
and that the SNC property of δ(·;Θ) and Θ are equivalent, we conclude that
g−1(Θ) is SNC at (x̄, ȳ) if either g is SNC at (x̄, ȳ) or Θ is SNC at z̄ under
the qualification condition (4.26). When g is strictly differentiable at (x̄, ȳ),
the SNC property of g implies, by Corollary 3.30 that Z is finite dimensional,
i.e., Θ is automatically SNC at z̄. Combining all the above, we complete the
proof of the theorem. �

If the mapping g is assumed to be strictly Lipschitzian in Theorem 4.31(ii),
then one has, by the scalarization results of Theorem 3.28, that

D∗g(x̄, ȳ)(z∗) = ∂〈z∗, g〉(x̄, ȳ), z∗ ∈ Z∗ ,

D∗g(x̄, ȳ) ◦ N(z̄;Θ) =
⋃{

∂〈z∗, g〉(x̄, ȳ)(z∗)
∣
∣
∣ z∗ ∈ N(z̄;Θ)

}

for both coderivatives D∗ = D∗
N , D∗

M . Moreover, by Corollary 3.69 we con-
clude that the N -regularity assumption on g at (x̄, ȳ) and dim Z < ∞ in The-
orem 4.31(ii) imply that g is strictly Hadamard differentiable at this point.
Thus Theorem 3.66(i) ensures that D∗g(x̄, ȳ) in (4.25) is actually a (single-
valued) bounded linear operator.

The next theorem gives upper estimates for the normal and mixed coderiv-
atives of F under less restrictive assumptions on the initial data in comparison
with Theorem 4.31(ii). For simplicity we present identical upper estimates of
both coderivatives; see also Remark 4.33 formulated after the theorem.

Theorem 4.32 (upper estimates for coderivatives of constraint sys-
tems). Let g: X × Y → Z be a mapping between Asplund spaces continuous
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around (x̄, ȳ) ∈ gph F for the constraint system F defined in (4.19), where
Ω ⊂ X × Y and Θ ⊂ Z are locally closed around (x̄, ȳ) and z̄ = g(x̄, ȳ), re-
spectively. Assume that {g,Θ,Ω} satisfies (4.24) and that one of the following
conditions holds:

(a) Ω is SNC at (x̄, ȳ), Θ is SNC at z̄, and {g,Θ} satisfies

N(z̄;Θ) ∩ ker D̃∗
M g(x̄, ȳ) = {0} . (4.30)

(b) Ω is SNC at (x̄, ȳ), g−1 is PSNC at (z̄, x̄, ȳ), and {g,Θ} satisfies the
constraint qualification (4.30).

(c) g is SNC at (x̄, ȳ), and {g,Θ} satisfies (4.26).
(d) g is PSNC at (x̄, ȳ), Θ is SNC at z̄, and {g,Θ} satisfies (4.26).

Then for all y∗ ∈ Y ∗ one has the inclusion

D∗F(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ (x∗,−y∗) ∈ D∗

N g(x̄, ȳ) ◦ N(z̄;Θ)

+N((x̄, ȳ);Ω)
} (4.31)

for both coderivatives D∗ = D∗
N , D∗

M of F at (x̄, ȳ).

Proof. It is sufficient to justify (4.31) for D∗ = D∗
N . Applying Corollary 3.5

to the set intersection in (4.27), we get the inclusion

N((x̄, ȳ); gph F) ⊂ N((x̄, ȳ); g−1(Θ)) + N((x̄, ȳ);Ω) (4.32)

under the qualification condition (4.29) provided that either Ω is SNC at
(x̄, ȳ) or g−1(Θ) is SNC at (x̄, ȳ). Then we have

N((x̄, ȳ); g−1(Θ)) ⊂ D∗
N g(x̄, ȳ) ◦ N(z̄;Θ) (4.33)

from Theorem 3.8 under the qualification condition (4.30) if either g−1 is
PSNC at (z̄, x̄, ȳ) or Θ is SNC at z̄.

Further, recall the conditions ensuring that g−1(Θ) is SNC at (x̄, ȳ), which
are needed if Ω is not assumed to be SNC at (x̄, ȳ). By Theorem 3.84 on the
SNC property of inverse images one has that g−1(Θ) is SNC at (x̄, ȳ) when
{g,Θ} satisfies (4.26) and either g is SNC at (x̄, ȳ), or Θ is SNC at z̄ while
g is PSNC at (x̄, ȳ) (in particular, when g is locally Lipschitzian around this
point). Combining all these conditions and substituting (4.33) into (4.29) and
(4.32), we complete the proof of the theorem. �

Remark 4.33 (refined estimates for mixed coderivatives of con-
straint systems). Following the proof of Theorem 4.32, we can obtain more
subtle upper estimates of the mixed coderivative D∗

M F(x̄, ȳ) for the constraint
system (4.19) in terms of a modified coderivative construction for the mapping
g: X×Y → Z . As observed in Remark 3.23, the mixed coderivative D∗

M F(x̄, ȳ)
admits the geometric representation
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D∗
M F(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ Nτ ((x̄, ȳ); gph F)

}
(4.34)

via the τ -limiting normal cone Nτ defined and discussed in Remark 3.23. In
(4.34), τ = w∗ ×‖ · ‖ is the weak∗×norm topology on X∗ × Y ∗. It is proved in
Mordukhovich and B. Wang [963] that τ -limiting normals and related coderiv-
ative and subgradient constructions enjoy rich calculi for general topologies
τ satisfying appropriate conditions. In particular, we have the corresponding
τ -analogs of the intersection and inverse image formulas (4.32) and (4.33). For
τ = w∗ × ‖ · ‖, the latter τ -analog is given by

Nτ ((x̄, ȳ); g−1(Θ)) ⊂ D∗
τ×w∗g(x̄, ȳ) ◦ N(z̄;Θ) ,

where D∗
τ×w∗g(x̄, ȳ): Z∗ →→ X∗ × Y ∗ is defined similarly to the mixed coderiv-

ative (1.25) by using the w∗×‖·‖×w∗-topology on X∗×Y ∗× Z∗. In this way
one can get refined estimates of D∗

M F(x̄, ȳ) in (4.19) via D∗
τ×w∗g(x̄, ȳ) with

τ = w∗ × ‖ · ‖. The reader may develop such estimates in more details based
on the techniques from the afore-mentioned paper [963].

Next let us present a consequence of Theorems 4.31 and 4.32 concerning
coderivatives of set-valued mappings given in the classical implicit function
form (4.22) without imposing the classical assumptions.

Corollary 4.34 (coderivatives of implicit multifunctions). Let

F(x) :=
{

y ∈ Y
∣
∣ g(x, y) = 0

}
,

where g: X × Y → Z with g(x̄, ȳ) = 0. The following assertions hold for both
coderivatives D∗ = D∗

N , D∗
M :

(i) Assume that X,Y, Z are Banach spaces and that g is strictly differen-
tiable at (x̄, ȳ) with the surjective derivative ∇g(x̄, ȳ). Then

D∗
N F(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗∣∣ (x∗,−y∗) = ∇g(x̄, ȳ)∗z∗ for some z∗ ∈ Z∗} .

If moreover dim Z < ∞, the latter representation holds also the mixed coderiv-
ative D∗

M F(x̄, ȳ).
(ii) Let X and Y be Asplund, and let dim Z < ∞. Assume that g is Lip-

schitz continuous around (x̄, ȳ), N -regular at this point, and satisfies the sub-
differential condition

ker ∂〈·, g〉(x̄, ȳ) = {0} .

Then F is N -regular at (x̄, ȳ) with

D∗F(x̄, ȳ)(y∗) =
{

x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ ∂〈z∗, g〉(x̄, ȳ) for some z∗ ∈ Z∗} .

(iii) Let X,Y, Z be Asplund. Assume that g−1 is PSNC at (z̄, x̄, ȳ) and

ker D̃∗
M g(x̄, ȳ) = {0} .

Then for all y∗ ∈ Y ∗ one has the inclusion

D∗F(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ rge D∗
N g(x̄, ȳ)

}
.
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Proof. Assertion (i) follows immediately from Theorem 4.31(i) with Θ = {0}.
Assertion (ii) is a direct consequence of Theorem 4.31(ii) and the coderivative
scalarization. Note that, in this setting, the strict differentiability assumption
on g reduces (ii) to (i) in Theorem 4.31, since the condition ker∇g(x̄, ȳ)∗ =
{0} is equivalent to the surjectivity of ∇g(x̄, ȳ).

To prove (iii), we use Theorem 4.32 and observe that conditions (b) there
are the most general among (a)–(d) ensuring inclusion (4.31) in the setting
under consideration when Ω = X × Y is always SNC while Θ = {0} is never
SNC unless Z is finite-dimensional; see Theorem 1.21. Note that in the latter
case g−1 is always PSNC at (z̄, x̄, ȳ). �

Next let us consider consequences of Theorems 4.31 and 4.32 for para-
metric constraint systems given in form (4.20), which describe sets of feasible
solutions to perturbed problems of mathematical programming in infinite-
dimensional spaces. We present two results for such constraint systems. The
first corollary concerns classical constraint systems in (smooth) nonlinear pro-
gramming with equality and inequality constraints given by strictly differen-
tiable functions. In this framework we obtain an exact formula for comput-
ing coderivatives of feasible solution maps under a parametric version of the
Mangasarian-Fromovitz constraint qualification.

Corollary 4.35 (coderivatives of constraint systems in nonlinear
programming). Let F : X →→ Y be a multifunction between Asplund spaces
given in form (4.20), where all ϕi : X × Y → IR, i = 1, . . . ,m + r , are strictly
differentiable at (x̄, ȳ) ∈ gph F. Denote z̄ :=

(
ϕ1(x̄, ȳ), . . . , ϕm+r (x̄, ȳ)

)
,

I (x̄, ȳ) :=
{

i ∈ {1, . . . ,m + r}
∣
∣ ϕi (x̄, ȳ) = 0

}

and assume that:
(a) ∇ϕm+1(x̄, ȳ), . . . ,∇ϕm+r (x̄, ȳ) are linearly independent;
(b) there is u ∈ X × Y satisfying

〈∇ϕi (x̄, ȳ), u〉 < 0, i ∈ {1, . . . ,m} ∩ I (x̄, ȳ) ,

〈∇ϕi (x̄, ȳ), u〉 = 0, i = m + 1, . . . ,m + r .

Then F is N -regular at (x̄, ȳ), and one has

D∗F(x̄, ȳ)(y∗) =
{

x∗ ∈ X∗
∣
∣
∣ (x∗,−y∗) =

∑

i∈I(x̄,ȳ)

λi∇ϕi (x̄, ȳ) ,

λi ≥ 0 if i ∈ {1, . . . ,m} ∩ I (x̄, ȳ)
}

(4.35)

with arbitrary λi ∈ IR for i = m + 1, . . . ,m + r .
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Proof. Use Theorem 4.31(ii) with g = (ϕ1, . . . , ϕm+r ), Ω = X × Y , and Θ
given in (4.21). The set Θ is convex (thus normally regular at every point),
and one has

N(z̄;Θ) =
{
(λ1, . . . , λm+r ) ∈ IRm+r

∣
∣ λi ≥ 0, λiϕi (x̄, ȳ) = 0 if i = 1, . . . ,m

}
.

In this case the qualification condition (4.26) is equivalent to the fulfillment
of (a) and (b) in the corollary, and (4.25) reduces to (4.35). �

In the nonparametric case (ϕi (x, y) = ϕi (y)), conditions (a) and (b) of
Theorem 4.35 reduce to the classical Mangasarian-Fromovitz constraint qual-
ification; see Corollary 3.87. Note that these conditions automatically hold
if the full gradients ∇ϕi (x̄, ȳ) therein are replaced by the partial ones with
respect to y.

The following corollary of Theorem 4.32 gives upper estimates for both
coderivatives of feasible solution maps in parametric problems of nondiffer-
entiable programming with equality and inequality constraints described by
Lipschitz continuous functions on Asplund spaces.

Corollary 4.36 (coderivatives of constraint systems in nondifferen-
tiable programming). Let F : X →→ Y be a multifunction between Asplund
spaces given in (4.20), let (x̄, ȳ) ∈ gph F, and let z̄ and I (x̄, ȳ) be defined in
Corollary 4.35. Assume that all ϕi , i = 1, . . . ,m + r , are Lipschitz continuous
around (x̄, ȳ) and that

[ ∑

i∈I(x̄,ȳ)

λi x
∗
i = 0

]
=⇒

[
λi = 0, i ∈ I (x̄, ȳ)

]
(4.36)

whenever λi ≥ 0 for i ∈ I (x̄, ȳ), x∗
i ∈ ∂ϕi (x̄, ȳ) for i ∈ {1, . . . ,m} ∩ I (x̄, ȳ),

and x∗
i ∈ ∂ϕi (x̄, ȳ) ∪ ∂(−ϕi )(x̄, ȳ) for i = m + 1, . . . ,m + r . Then one has the

inclusion

D∗F(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ (x∗,−y∗) ∈

∑

i∈{1,...,m}∩I(x̄,ȳ)

λi∂ϕi (x̄, ȳ)

+
m+r∑

i=m+1

λi

(
∂ϕi (x̄, ȳ) ∪ ∂(−ϕi )(x̄, ȳ)

)
, λi ≥ 0 as i ∈ I (x̄, ȳ)

}

for both coderivatives D∗ = D∗
N , D∗

M .

Proof. Use Theorem 4.32 in case (d), where g is automatically PSNC at
(x̄, ȳ), and where Θ ⊂ IRm+r is SNC at every point. Due to the scalariza-
tion formula for D∗

N g(x̄, ȳ) with g = (ϕ1, . . . , ϕm+r ) from Theorem 3.28 (or
from Theorem 1.90 in this case) and due to the subdifferential sum rule from
Theorem 2.33(c), one has
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D∗
N g(x̄, ȳ)(z∗) = ∂

( m+r∑

i=1

λiϕi

)
(x̄, ȳ) ⊂

m∑

i=1

λiϕi (x̄, ȳ) + ∂
( m+r∑

m+1

λiϕi

)
(x̄, ȳ)

for z∗ = (λ1, . . . , λm+r ) ∈ IRm+r provided that λi ≥ 0 as i = 1, . . . ,m. Taking
into account the above expression for N(z̄;Θ), we derive the coderivative
inclusion of the corollary under the qualification condition (4.36) from the
corresponding relations (4.26) and (4.31) of Theorem 4.32. �

4.3.2 Lipschitzian Stability of Constraint Systems

Now we are ready to derive efficient conditions for robust Lipschitzian sta-
bility of constraint systems based on the coderivative characterizations of the
Lipschitz-like property in Theorem 4.10 and the coderivative representations
for parametric constraint systems obtained in the previous subsection. Let us
first consider constraint systems under regularity assumptions, which allow
us to obtain necessary and sufficient conditions for Lipschitzian stability in
terms of the initial data. The proofs of the next theorem and subsequent re-
sults require applications of the SNC calculus in infinite dimensions together
with the coderivative characterizations and representations mentioned above.

Theorem 4.37 (Lipschitzian stability of regular constraint systems).
Let F : X →→ Y be a set-valued mapping between Asplund spaces defined by the
constraint system (4.19), let z̄ := g(x̄, ȳ) with (x̄, ȳ) ∈ gph F, and let Θ be
locally closed around z̄ and SNC at this point. The following assertions hold:

(i) Assume that Z is Banach, that Ω = X ×Y , and that g is strictly differ-
entiable at (x̄, ȳ) with the surjective derivatives ∇g(x̄, ȳ). Then the condition

(x∗, 0) ∈ ∇g(x̄, ȳ)∗N(z̄;Θ) =⇒ x∗ = 0 (4.37)

is sufficient for the Lipschitz-like property of F around (x̄, ȳ) being necessary
and sufficient for this property if F is strongly coderivatively normal at (x̄, ȳ)
(in particular, when Y is finite-dimensional). If in addition dim X < ∞, then

lip F(x̄, ȳ) = sup
{
‖x∗‖

∣
∣
∣(x∗,−y∗) ∈ ∇g(x̄, ȳ)∗N(z̄;Θ), ‖y∗‖ ≤ 1

}
, (4.38)

where the maximum is attained provided that the graph of N(·;Θ) is locally
closed near z̄ in the norm×weak∗ topology of Z × Z∗.

(ii) Assume that Z is Asplund; that Θ is normally regular at z̄; that Ω
is locally closed around (x̄, ȳ), normally regular at (x̄, ȳ), and PSNC at this
point with respect to X ; and that g is either strictly differentiable at (x̄, ȳ) or
N -regular at this point with dim Z < ∞. Suppose also that both qualification
conditions (4.24) and (4.26) are fulfilled. Then the implication

(x∗, 0) ∈ D∗g(x̄, ȳ) ◦ N(z̄;Θ) + N((x̄, ȳ);Ω) =⇒ x∗ = 0 (4.39)

is necessary and sufficient for the Lipschitz-like property of F around (x̄, ȳ).
If in addition dim X < ∞, then
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lip F(x̄, ȳ) = sup
{
‖x∗‖

∣
∣
∣ (x∗,−y∗) ∈ D∗g(x̄, ȳ) ◦ N(z̄;Θ)

+N((x̄, ȳ);Ω), ‖y∗‖ ≤ 1
}
.

Proof. We use characterization (c) and the exact bound formula (4.6) from
Theorem 4.10 for the Lipschitz-like property of general closed-graph multi-
functions between Asplund spaces. To justify (i), observe first that F is SNC
at (x̄, ȳ) under the assumptions made due to gph F = g−1(Θ) and Theo-
rem 1.22. Then using (4.23), we get characterization (4.37) from the condition
D∗

M F(x̄, ȳ)(0) = {0} and the exact bound formula (4.38) from the one in (4.6).
When the graph of N(·;Θ) is locally closed near z̄, it is possible to put “max”
instead of “sup” in (4.38) due to ‖D∗F(x̄, ȳ)‖ < ∞ and the surjectivity of
∇g(x̄, ȳ) involving Lemma 1.18.

To prove (ii), we represent the graph of F in the intersection form (4.27)
and deduce from Corollary 3.80 that F is PSNC at (x̄, ȳ) if the qualification
condition (4.29) is fulfilled and if Ω is PSNC at (x̄, ȳ) with respect to X while
g−1(Θ) is SNC at this point. By Theorem 3.84 the latter property holds if
Θ is SNC at z̄ under the qualification condition (4.26). Moreover, these as-
sumptions ensure that the qualification conditions (4.24) and (4.26) imply
(4.29) due to the inclusion for N((x̄, ȳ); g−1(Θ)) from Theorem 3.8. Involv-
ing the other assumptions in (ii), we get equality (4.25) for both normal and
mixed coderivatives of F at (x̄, ȳ) by Theorem 4.31(ii). Thus the condition
D∗F(x̄, ȳ)(0) = {0} is equivalent to (4.39), and the exact bound formula of
the theorem reduces to (4.6) in Theorem 4.10. �

Note that the graph of N(·;Θ) is indeed locally closed near z̄ in the
norm×weak∗ topology of Z × Z∗ if Z is a weakly compactly generated Ba-
nach space while Θ is its closed subset having the CEL property at z̄ (the
latter agrees with the SNC property of Θ when Z is WCG and Asplund; see
Remark 1.27 and Theorem 3.60). On the other hand, the graph of N(·;Θ) is
obviously closed for Θ = {0}, which is the case of the next corollary.

Corollary 4.38 (Lipschitzian implicit multifunctions defined by reg-
ular mappings). Let F : X →→ Y be an “implicit multifunction” defined in
(4.22) by the mapping g: X × Y → Z with g(x̄, ȳ) = 0. The following hold:

(i) Assume that dim Z < ∞ while X and Y are Asplund and that g is
strictly differentiable at (x̄, ȳ) with the surjective derivative ∇g(x̄, ȳ). Then
the condition

[
∇y g(x̄, ȳ)∗z∗ = 0

]
=⇒

[
∇x g(x̄, ȳ)∗z∗ = 0

]
for any z∗ ∈ Z∗

is necessary and sufficient for the Lipschitz-like property of F around (x̄, ȳ).
If in addition dim X < ∞, then one has

lip F(x̄, ȳ) = max
{
‖∇x g(x̄, ȳ)∗z∗‖

∣
∣
∣ ‖∇y g(x̄, ȳ)∗z∗‖ ≤ 1

}
.
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(ii) Let X and Y be Asplund, and let Z be finite-dimensional. Assume that
g is Lipschitz continuous around (x̄, ȳ) and N -regular at this point and that
ker ∂〈·, g〉(x̄, ȳ) = {0}. Then the condition

(x∗, 0) ∈ ∂〈z∗, g〉(x̄, ȳ) =⇒ x∗ = 0 for any z∗ ∈ Z∗ (4.40)

is necessary and sufficient for the Lipschitz-like property of F around (x̄, ȳ).
If in addition dim X < ∞, then

lip F(x̄, ȳ) = sup
{
‖x∗‖

∣
∣
∣ ∃z∗ ∈ Z∗ with (x∗,−y∗) ∈ ∂〈z∗, g〉(x̄, ȳ), ‖y∗‖ ≤ 1

}
.

Moreover, (4.40) holds when

0 ∈ ∂y〈z∗, g〉(x̄, ȳ) =⇒ ∂x〈z∗, g〉(x̄, ȳ) = {0} whenever z∗ ∈ Z∗; (4.41)

also one has the upper bound estimate

lip F(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ ∃z∗ ∈ Z∗ with x∗ ∈ ∂x〈z∗, g〉(x̄, ȳ) ,

−y∗ ∈ ∂y〈z∗, g〉(ȳ, x̄), ‖y∗‖ ≤ 1
}

when X is finite-dimensional.

Proof. Assertion (i) follows from Theorem 4.37(i) with Θ = {0} and the
strong coderivative normality of F in this case. The first part of assertion (ii),
with characterization (4.40) and the equality for the exact Lipschitzian bound,
follows from Theorem 4.37(ii). Now employing the relationship between full
and partial coderivatives of N -regular mappings from Corollary 3.17 and the
coderivative scalarization, we conclude that (4.41) implies (4.40), and that the
upper bound estimate holds. �

The next corollary characterizes Lipschitzian stability of the classical fea-
sible solution sets in parametric nonlinear programming.

Corollary 4.39 (Lipschitzian stability of constraint systems in non-
linear programming). Let F : X →→ Y be a constraint system given in (4.20),
where X and Y are Asplund and where ϕi : X×Y → IR are strictly differentiable
at (x̄, ȳ) ∈ gph F for all i = 1, . . . ,m + r . Denote z̄ and I (x̄, ȳ) as in Corol-
lary 4.35 and assume that the parametric Mangasarian-Fromovitz constraint
qualification imposed therein holds. Then the condition

[ ∑

i∈I(x̄,ȳ)

λi∇yϕi (x̄, ȳ) = 0
]

=⇒
[ ∑

i∈I(x̄,ȳ)

λi∇xϕi (x̄, ȳ) = 0
]

for any λi ∈ IR with λi ≥ 0 if i ∈ {1, . . . ,m} ∩ I (x̄, ȳ)
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is necessary and sufficient for the Lipschitz-like property of F around (x̄, ȳ).
If in addition dim X < ∞, then

lip F(x̄, ȳ) = max
{∥∥
∥
∑

i∈I(x̄,ȳ)

λi∇xϕi (x̄, ȳ)
∥
∥
∥ subject to λi ∈ IR ,

∥
∥
∥
∑

i∈I(x̄,ȳ)

λi∇yϕi (x̄, ȳ)
∥
∥
∥ ≤ 1, and λi ≥ 0 if i ∈ {1, . . . ,m} ∩ I (x̄, ȳ)

}
.

(4.42)

Proof. The necessary and sufficient condition of the corollary and the exact
bound formula (4.42) with “sup” instead of “max” follow directly from The-
orem 4.37(ii) with Ω = X × Y , g = (ϕ1, . . . , ϕm+r ), and Θ defined in (4.21).
The only thing we need to prove is that the maximum is attained in (4.42).
Assuming the contrary, find sequences λik ∈ IR, with i ∈ I (x̄, ȳ) and k ∈ IN ,
satisfying the relations

λik ≥ 0 for i ∈ {1, . . . ,m} ∩ I (x̄, ȳ), λk :=
∑

i∈I(x̄,ȳ)

∣
∣
∣λik

∣
∣
∣→ ∞ as k → ∞ ,

lim
k→∞

∥
∥
∥
∑

i∈I(x̄,ȳ)

λik∇xϕi (x̄, ȳ)
∥
∥
∥ = �, lim sup

k→∞

∥
∥
∥
∑

i∈I(x̄,ȳ)

λik∇yϕi (x̄, ȳ)
∥
∥
∥ ≤ 1

with � := lip F(x̄, ȳ) < ∞. Consider the numbers

λ̃ik :=
λik

λk
, i ∈ I (x̄, ȳ), k ∈ IN , with

∑

i∈I(x̄,ȳ)

∣
∣
∣λ̃ik

∣
∣
∣ = 1

and find subsequences (without relabeling) such that λ̃ik → λ̃i as k → ∞ for
i ∈ I (x̄, ȳ). Then λ̃i are not equal to zero simultaneously for i ∈ I (x̄, ȳ), and
one has λ̃i ≥ 0 for i ∈ {1, . . . ,m} ∩ I (x̄, ȳ),

∑

i∈I(x̄,ȳ)

λ̃i∇xϕi (x̄, ȳ) = 0,
∑

i∈I(x̄,ȳ)

λ̃i∇yϕi (x̄, ȳ) = 0 .

The latter contradicts the assumed Mangasarian-Fromovitz constraint quali-
fication and thus proves that the maximum is attained in (4.42). �

Now we obtain sufficient conditions for Lipschitzian stability of the general
constraint systems (4.19) and their special cases with no regularity assump-
tions on the initial data.

Theorem 4.40 (Lipschitzian stability of general constraint systems).
Let F : X →→ Y be a set-valued mapping defined by the constraint system (4.19),
and let (x̄, ȳ) ∈ gph F. Suppose that g: X×Y → Z is continuous around (x̄, ȳ),
that the spaces X,Y, Z are Asplund, and that the sets Ω and Θ are locally
closed around (x̄, ȳ) and z̄ = g(x̄, ȳ), respectively. Assume also that:
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(a) Ω is PSNC at (x̄, ȳ) with respect to X .
(b) Either g is PSNC at (x̄, ȳ) and Θ is SNC at z̄, or g is SNC at (x̄, ȳ).
(c) One has the qualification conditions (4.24), (4.26), and

[
(x∗, 0) ∈ D∗

N g(x̄, ȳ) ◦ N(z̄;Θ) + N((x̄, ȳ);Ω)
]

=⇒ x∗ = 0 . (4.43)

Then F is Lipschitz-like around (x̄, ȳ). If in addition dim X < ∞, then

lip F(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ (x∗,−y∗) ∈ D∗

N g(x̄, ȳ) ◦ N(z̄;Θ)

+N((x̄, ȳ);Ω), ‖y∗‖ ≤ 1
}
.

Proof. To establish the Lipschitz-like property of the constraint system (4.19)
and the exact bound estimate, we employ the pointbased characterization (c)
with the upper estimate (4.5) from Theorem 4.10 and the corresponding cal-
culus rules of Sects. 3.1 and 3.3. Let us first check that the assumptions made
ensure that F is PSNC at (x̄, ȳ). Following the proof of Theorem 4.37 and
using the SNC calculus rules from Corollary 3.80 and Theorem 3.84 as well
as the representation of N((x̄, ȳ); g−1(Θ)) from Theorem 3.8, we conclude
that F is PSNC at (x̄, ȳ) under assumptions (a), (b) of the theorem and the
qualification conditions (4.24) and (4.26). Observe that these assumptions en-
sure the fulfillment of the coderivative inclusion (4.31) from Theorem 4.32.
Thus D∗

M F(x̄, ȳ)(0) = {0} if the qualification condition (4.43) also holds. If
in addition X is finite-dimensional, we derive the exact bound estimate in the
theorem from (4.5) and (4.31) with D∗ = D∗

N . �

The next corollary shows that all three qualification conditions in Theo-
rem 4.40(c) can be equivalently unified into one provided that g is strictly
Lipschitzian around (x̄, ȳ).

Corollary 4.41 (constraint systems generated by strictly Lipschit-
zian mappings). Let F : X →→ Y be given in (4.19), where g: X × Y → Z is a
mapping between Asplund spaces that is assumed to be strictly Lipschitzian at
(x̄, ȳ) ∈ gph F. Then conditions (4.24), (4.26), and (4.43) are fulfilled simul-
taneously if and only if

[
(x∗, 0) ∈ ∂〈z∗, g〉(x̄, ȳ) + N((x̄, ȳ);Ω), z∗ ∈ N(z̄;Θ)

]

=⇒ z∗ = 0 and x∗ = 0 .
(4.44)

If in this setting Ω and Θ are locally closed around (x̄, ȳ) and z̄ = g(x̄, ȳ),
respectively, then condition (4.44) is sufficient for the Lipschitz-like property
of F around (x̄, ȳ) provided that Ω is PSNC at (x̄, ȳ) with respect to X and
that Θ is SNC at z̄. If in addition dim X < ∞, then
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lip F(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ (x∗,−y∗) ∈ ∂〈z∗, g〉(x̄, ȳ) + N((x̄, ȳ;Ω) ,

z∗ ∈ N(z̄;Θ), ‖y∗‖ ≤ 1
}
.

Proof. By Theorem 3.28 we have

D∗
N g(x̄, ȳ)(z∗) = ∂〈z∗, g〉(x̄, ȳ) for all z∗ ∈ Z∗

when g: X×Y → Z is a strictly Lipschitzian mapping between Asplund spaces.
Corollary 3.30 implies in this case that the SNC assumption on g in Theo-
rem 4.40(b) is redundant in comparison with the SNC property of Θ. Hence
the only thing we need to prove is that (4.44) is equivalent to the simultaneous
fulfillment of (4.24), (4.26), and (4.43).

Let (4.44) hold. It obviously contains (4.43). To justify (4.24), we take any
(x∗, y∗) ∈ ∂〈z∗, g〉(x̄, ȳ) satisfying the inclusions (−x∗,−y∗) ∈ N((x̄, ȳ);Ω)
and z∗ ∈ N(z̄;Θ). Then one has

(0, 0) ∈ ∂〈z∗, g〉(x̄, ȳ) + N((x̄, ȳ);Ω), z∗ ∈ N(z̄;Θ) ,

and hence z∗ = 0 due to (4.44). Thus (x∗, y∗) = (0, 0), which gives (4.24).
Similarly, if z∗ belongs to the intersection in (4.26), then

(0, 0) ∈ ∂〈z∗, g〉(x̄, ȳ), z∗ ∈ N(z̄;Θ) , (4.45)

and hence z∗ = 0 by (4.44), i.e., (4.26) holds.
Now let us justify the opposite implication, that is, (4.44) is implied by

(4.24), (4.26), and (4.43). Taking (x∗, z∗) from the set on the left-hand side of
(4.44), we immediately have x∗ = 0 by (4.43). It remains to show that z∗ = 0
is the only solution to system (4.45). Indeed, if z∗ satisfies (4.45), then there
is (x∗, y∗) ∈ ∂〈z∗, g〉(x̄, ȳ) with (−x∗,−y∗) ∈ N((x̄, ȳ);Ω). By (4.24) one has
(x∗, y∗) = (0, 0), and thus

z∗ ∈ N(z̄;Θ) ∩ ker ∂〈·, g〉(x̄, ȳ) .

Hence z∗ = 0 due to (4.26), which completes the proof of the corollary. �

It is easy to see from the above arguments that for Ω = X×Y the condition
[
(x∗, 0) ∈ D∗

N g(x̄, ȳ)(z∗), z∗ ∈ N(z̄; θ)
]

=⇒ z∗ = 0, x∗ = 0 (4.46)

is equivalent to the simultaneous fulfillments of (4.26) and (4.43) even without
the strict Lipschitzian assumption on g. If in this case g is strictly Lipschitzian
at (x̄, ȳ), then one can only require that z∗ = 0 in (4.44) and (4.46), which
obviously implies that x∗ = 0.

We conclude this subsection with two corollaries of Theorem 4.40 that
give efficient conditions for Lipschitzian stability of two remarkable constraint
systems: implicit multifunctions defined by general/irregular mappings and
feasible solution maps in problems of nondifferentiable programming.
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Corollary 4.42 (Lipschitzian implicit multifunctions defined by ir-
regular mappings). Let g: X×Y → Z be a mapping between Asplund spaces,
and let g(x̄, ȳ) = 0. Assume that g is SNC at (x̄, ȳ), which is automatic if g
is Lipschitz continuous around (x̄, ȳ) and dim Z < ∞. Then the condition

(x∗, 0) ∈ D∗
N g(x̄, ȳ)(z∗) =⇒ z∗ = 0, x∗ = 0

is sufficient for the Lipschitz-like property of the implicit multifunction

F(x) :=
{

y ∈ Y
∣
∣ g(x, y) = 0

}

around (x̄, ȳ). If in addition dim X < ∞, then

lip F(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ (x∗,−y∗) ∈ rge D∗

N g(x̄, ȳ), ‖y∗‖ ≤ 1
}
.

Proof. This is a special case of Theorem 4.40 with Θ = {0} and Ω = X × Y .
Note that in this case the alternative assumption in Theorem 4.40(c) holds
only when Z is finite-dimensional, and hence the PSNC property of g reduces
to the SNC one. �

Corollary 4.43 (Lipschitzian stability of constraint systems in non-
differentiable programming). Let F : X →→ Y be a multifunction between
Asplund spaces given in (4.20), let (x̄, ȳ) ∈ gph F, and let z̄ and I (x̄, ȳ) be
defined in Corollary 4.35. Assume that all ϕi , i = 1, . . . ,m + r , are Lipschitz
continuous around (x̄, ȳ) and that the constraint qualification (4.36) holds.
Then the condition

[
(x∗, 0) ∈

∑

i∈{1,...,m}∩I(x̄,ȳ)

λi∂ϕi (x̄, ȳ) +
m+r∑

i=m+1

λi

(
∂ϕi (x̄, ȳ) ∪ ∂(−ϕi )(x̄, ȳ)

)
,

λi ≥ 0 for i ∈ I (x̄, ȳ)
]

=⇒ x∗ = 0

is sufficient for the Lipschitz-like property of F around (x̄, ȳ). If in addition
dim X < ∞, then one has the upper estimate

lip F(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ (x∗,−y∗) ∈

∑

i∈{1,...,m}∩I(x̄,ȳ)

λi∂ϕi (x̄, ȳ)

+
m+r∑

i=m+1

λi

(
∂ϕi (x̄, ȳ) ∪ ∂(−ϕi )(x̄, ȳ)

)
, λi ≥ 0 for i ∈ I (x̄, ȳ), ‖y∗‖ ≤ 1

}
.

Proof. This follows from Theorem 4.40 with g = (ϕ1, . . . , ϕm+r ): X × Y →
IRm+r , Ω = X ×Y , and Θ defined in (4.21) due to the coderivative formula of
Corollary 4.36. Note that g is automatically SNC at (x̄, ȳ), since it is locally
Lipschitzian and its range space is finite-dimensional. �
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4.4 Sensitivity Analysis for Variational Systems

In this section we consider the so-called generalized equations given by

0 ∈ f (y) + Q(y) , (4.47)

where f is a single-valued mapping while Q is a set-valued mapping between
Banach spaces. For convenience we use the terms base and field referring to
the single-valued and set-valued part of (4.47), respectively.

Generalized equations were introduced by Robinson [1130] as an exten-
sion of standard equations with no multivalued part. It has been well recog-
nized that this model provide a convenient framework for the unified study
of optimal solutions in many optimization-related areas including mathemat-
ical programming, complementarity, variational inequalities, optimal control,
mathematical economics, equilibria, game theory, etc. In particular, general-
ized equations (4.47) reduce to the classical variational inequalities:

find y ∈ Ω with
〈

f (y), v − y
〉
≥ 0 for all v ∈ Ω (4.48)

when Q(y) = N(y;Ω) is the normal cone mapping generated by a convex
set Ω. The classical complementarity problem corresponds to (4.48) when
Ω is the nonnegative orthant in IRn. It is well known that the latter form
covers sets of optimal solutions with the corresponding Lagrange multipliers,
or sets of KKT (Karush-Kuhn-Tucker) vectors, satisfying first-order necessary
optimality conditions in problems of nonlinear programming.

Observe that the variational inequality (4.48) can be written in form (4.47)
with the subdifferential mapping Q(y) = ∂ϕ(y) for ϕ(y) = δ(y;Ω). Thus
the generalized equation model (4.47) covers also natural generalizations of
variational inequalities when ϕ is not an indicator function and may even be
nonconvex; the latter case relates to the so-called hemivariational inequalities.

The primary goal of this section is to conduct sensitivity analysis for gen-
eralized equations (4.47) and their specifications under perturbations of the
initial data. For these purposes we consider a parametric version of (4.47)
given in the form

0 ∈ f (x, y) + Q(x, y) (4.49)

with a perturbation parameter x , where y is usually called the decision vari-
able. Following the terminology of the previous section, we label (4.49) as
parametric variational systems, since this model is suitable to describe sets of
optimal solutions to parameter-dependent variational and related problems.
The central question of local sensitivity analysis for (4.49) is to clarify how
the following solution map

S(x) :=
{

y ∈ Y
∣
∣ 0 ∈ f (x, y) + Q(x, y)

}
(4.50)
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depends on the parameter x while (x, y) vary around the reference point
(x̄, ȳ) ∈ gph S. As before, we are mostly concerned with robust Lipschitzian
stability of solution maps paying the main attention to establishing efficient
conditions for the Lipschitz-like property of multifunction (4.50) around (x̄, ȳ).
Based on the above coderivative characterizations of the Lipschitz-like prop-
erty, we start sensitivity analysis for variational systems with evaluating
coderivatives of the solution map (4.50) and its specifications.

4.4.1 Coderivatives of Parametric Variational Systems

First we obtain conditions that ensure precise formulas for computing the
normal and mixed coderivatives of the solution map (4.50). These conditions
require a smoothness (strict differentiability) assumption on the base f in the
generalized equation (4.49). Given f : X × Y → Z strictly differentiable at the
reference point (x̄, ȳ) satisfying (4.49), define the adjoint generalized equation

0 ∈ ∇ f (x̄, ȳ)∗z∗ + D∗
N Q(x̄, ȳ, z̄)(z∗) , (4.51)

where z̄ := − f (x̄, ȳ) ∈ Q(x̄, ȳ).

Theorem 4.44 (computing coderivatives for regular variational sys-
tems). Let f : X ×Y → Z be strictly differentiable at (x̄, ȳ), let Q: X ×Y →→ Z
with z̄ = − f (x̄, ȳ) ∈ Q(x̄, ȳ), and let S: X →→ Y be the solution map (4.50).
The following assertions hold:

(i) Assume that X,Y, Z are Banach, that ∇x f (x̄, ȳ) is surjective, and that
Q doesn’t depend on x. Then

D∗
N S(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗

∣
∣
∣ ∃z∗ ∈ Z∗ with x∗ = ∇x f (x̄, ȳ)∗z∗ ,

−y∗ ∈ ∇y f (x̄, ȳ)∗z∗ + D∗
N Q(ȳ, z̄)(z∗)

}
.

Moreover, S−1 is strongly coderivatively normal at (ȳ, x̄) if Q is strongly
coderivatively normal at (ȳ, z̄).

(ii) Assume that X,Y, Z are Asplund and that Q is locally closed-graph
around (x̄, ȳ, z̄) and N -regular at this point. Suppose also that either Z is
finite-dimensional or Q is SNC at (x̄, ȳ, z̄). Then S is N -regular at (x̄, ȳ) and

D∗S(x̄, ȳ)(y∗) =
{

x∗ ∈ X∗
∣
∣
∣ ∃z∗ ∈ Z∗ with

(
x∗ −∇x f (x̄, ȳ)∗z∗ ,

−y∗ −∇y f (x̄, ȳ)∗z∗
)
∈ D∗

N Q(x̄, ȳ, z̄)(z∗)
}

provided that the adjoint generalized equation (4.51) admits only the trivial
solution z∗ = 0.
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Proof. We prove assertions (i) and (ii) in a parallel way using the correspond-
ing assertions of Theorem 4.31. Observe that the graph of the solution map
S in (4.50) is represented as

gph S =
{
(x, y) ∈ X × Y

∣
∣ g(x, y) ∈ Θ

}
with Θ := gph Q , (4.52)

where g is defined by

g(x, y) :=
(

y,− f (x, y)
)

if Q = Q(y) and by (4.53)

g(x, y) :=
(
x, y,− f (x, y)

)
if Q = Q(x, y) . (4.54)

In case (4.53), apply Theorem 4.31(i) and observe that ∇g(x̄, ȳ) is surjective
if and only if ∇x f (x̄, ȳ) is surjective. Then we arrive at the representation
of D∗

N S(x̄, ȳ) in this case by computing ∇g(x̄, ȳ) from (4.53) via representa-
tion (1.26) of the normal coderivative D∗

N Q(ȳ, z̄) and elementary calculations.
Furthermore, it is easy to check that

D̃∗
M S(x̄, ȳ)(y∗) ⊃

{
x∗ ∈ X∗

∣
∣
∣ ∃z∗ ∈ Z∗ with x∗ = ∇x f (x̄, ȳ)∗z∗ ,

−y∗ ∈ ∇y f (x̄, ȳ)∗z∗ + D∗
M Q(ȳ, z̄)(z∗)

}

under the assumptions made in (i). To furnish this, we follow the above proofs
for the case of D∗

N while using the definitions of D∗
M and D̃∗

M and taking into
account that Fréchet-like normals and coderivatives enjoy required calculus
rules under the imposed smoothness and surjectivity assumptions on the map-
pings involved; cf. Lemma 1.16 and Theorem 1.62. The latter inclusion and
the above representation for D∗S(x̄, ȳ) imply that

D̃∗
M S(x̄, ȳ)(y∗) = D∗

N S(x̄, ȳ)(y∗) for all y∗ ∈ Y ∗

provided that D∗
M Q(ȳ, z̄) = D∗

N Q(ȳ, z̄). Thus S−1 is strongly coderivatively
normal at (ȳ, x̄).

To prove (ii), we cannot use assertion (i) of Theorem 4.31, since ∇g(x̄, ȳ) is
never surjective in case (4.54). Let us apply assertion (ii) of that theorem. First
observe that there is no alternative assumption to the strict differentiability
in Theorem 4.31(ii), since dim(X × Y × Z) < ∞ in (4.54), and since the N -
regularity of g at (x̄, ȳ) implies the strict differentiability of g (and hence of f )
at this point due to Theorem 1.46(ii). Then applying Theorem 4.31(ii) in this
case, we check that the qualification condition (4.26) is equivalent to the fact
that the adjoint generalized equation (4.51) has only the trivial solution. Thus
S is N -regular at (x̄, ȳ), and we derive the stated representation of D∗S(x̄, ȳ)
from the one in (4.25) provided that either Q is SNC at (x̄, ȳ, z̄), or g−1 is
PSNC at (w̄, x̄, ȳ) with w̄ := (x̄, ȳ, z̄).

To complete the proof of the theorem, it remains to show that the latter
assumption is equivalent to dim Z < ∞. Indeed, due to Theorem 1.38 and
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the definition of strict derivative we conclude that the PSNC property of g−1

at (w̄, x̄, ȳ) is equivalent to the fact that for any sequences (xk, yk) → (x̄, ȳ),

(u∗
k , v

∗
k , z∗k ) w∗

→ (0, 0, 0), and

(x∗
k , y∗k ) = (u∗

k , v
∗
k ) −∇ f (x̄, ȳ)∗z∗k with ‖(x∗

k , y∗k )‖ → 0 (4.55)

one has ‖(u∗
k , v

∗
k , z∗k )‖ → 0 as k → ∞. It immediately follows from (4.55) that

this property is fulfilled if Z is finite-dimensional. On the other hand, for any
space Z of infinite dimension we find (by the Josefson-Nissenzweig theorem)
a sequence of unit vectors z∗k ∈ Z∗ that converges weak∗ to zero. Then taking
an arbitrary sequence (x∗

k , y∗k ) with ‖(x∗
k , y∗k )‖ → 0, we define the sequence

(u∗
k , v

∗
k ) by (4.55) and observe that (u∗

k , v
∗
k ) w∗

→ (0, 0). Since ‖(u∗
k , v

∗
k , z∗k )‖ 	→ 0,

this contradicts the PSNC property of g−1 at (w̄, x̄, ȳ). �

When Q = Q(y) and f is strictly differentiable at (x̄, ȳ), it is convenient
to consider the following partial adjoint generalized equation

0 ∈ ∇y f (x̄, ȳ)∗z∗ + D∗
N Q(ȳ, z̄)(z∗) (4.56)

with z̄ = − f (x̄, ȳ) ∈ Q(ȳ). In this setting z∗ is a solution to the (full) adjoint
generalized equation (4.51) if and only if it satisfies the partial one (4.56)
together with z∗ ∈ ker∇x f (x̄, ȳ)∗, where the latter requirement is redun-
dant when ∇x f (x̄, ȳ) is surjective. Thus the qualification condition of The-
orem 4.44(ii) on the triviality of solutions to (4.51) reduces for Q = Q(y)
to the triviality of those solutions to (4.56), which belong to the kernel of
∇x f (x̄, ȳ)∗. This observation is useful in what follows.

One can get various consequences of Theorem 4.44 when the field Q of
the generalized equation (4.49) is given in special forms allowing us to evalu-
ate/estimate the normal coderivative D∗

N Q. We may employ for these purposes
calculus rules for coderivatives as well as specific formulas obtained, e.g., in
Subsect. 4.3.1. Let us present efficient results for the case of convex-graph
multifunctions Q.

Given Q: X × Y →→ Z and f : X × Y → Z strictly differentiable at (x̄, ȳ),
we consider the linearized set-valued operator L: X × Y →→ Z with

L(x, y) : = f (x̄, ȳ) + ∇x f (x̄, ȳ)(x − x̄)

+∇y f (x̄, ȳ)(y − ȳ) + Q(x, y)
(4.57)

as well as, in the case of Q = Q(y), the partial linearized operator L̃: Y →→ Z
defined by

L̃(y) := f (x̄, ȳ) + ∇y f (x̄, ȳ)(y − ȳ) + Q(y) . (4.58)
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Corollary 4.45 (coderivatives of solution maps to generalized equa-
tions with convex-graph fields). Let (x̄, ȳ) satisfy the generalized equation
(4.49), where f : X × Y → Z is strictly differentiable at (x̄, ȳ) and where the
graph of Q: X × Y →→ Z is convex. The following hold for the coderivatives of
the solution map (4.50):

(i) Assume that X,Y, Z are Banach, that ∇x f (x̄, ȳ) is surjective, and that
Q doesn’t depend on x. Then S is N -regular at (x̄, ȳ) and one has

D∗S(x̄, ȳ)(y∗) =
{
∇x f (x̄, ȳ)∗z∗

∣
∣
∣ − (y∗, z∗) ∈ N((0, 0); rge M̃)

}
,

where M̃ : Y →→ Y × Z is defined by

M̃(y) :=
(

y − ȳ, L̃(y)
)
.

(ii) Assume that X, Y, Z are Asplund and that Q is locally closed-graph
around (x̄, ȳ, z̄) with z̄ = − f (x̄, ȳ). Suppose also that either Z is finite-
dimensional or Q is SNC at (x̄, ȳ, z̄), and that

N(0; rge L) = {0} , (4.59)

where the mapping L is given in (4.57). Then S is N -regular at (x̄, ȳ) and

D∗S(x̄, ȳ)(y∗) =
{

x∗ ∈ X∗
∣
∣
∣ ∃z∗ ∈ Z∗ with

(x∗,−y∗,−z∗) ∈ N((0, 0, 0); rge M)
}
,

where M : X × Y →→ X × Y × Z is defined by

M(x, y) :=
(
x − x̄, y − ȳ, L(x, y)

)
.

Proof. We prove both assertions (i) and (ii) simultaneously based on the
corresponding results of Theorem 4.44. Let us first check that the triviality of
solutions to the adjoint equation (4.51) can be formulated as the qualification
condition (4.59) in this case.

To proceed, employ the coderivative representation for convex-graph map-
pings from Proposition 1.37 and rewrite (4.51) as
〈
∇ f (x̄, ȳ)∗z∗, (x, y) − (x̄, ȳ)

〉
+
〈
z∗, f (x̄, ȳ) + z

〉
≥ 0 for (x, y, z) ∈ gph Q .

This is equivalent to
〈
z∗, L(x, y) + z

〉
≥ 0 whenever (x, y, z) ∈ gph Q (4.60)

with L defined in (4.57). The latter means that w̄ = 0 is an optimal solution
to the convex minimization problem:

minimize 〈z∗, w〉 subject to w ∈ Ω := rge L .
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Employing the generalized Fermat rule 0 ∈ ∂ϕ(w̄) as a necessary and sufficient
condition for minimization of the convex function ϕ(w) := 〈z∗, w〉 + δ(w;Ω)
and then using the subdifferential sum rule from Proposition 1.107, we con-
clude that (4.60) is equivalent to −z∗ ∈ N(0; rge L). Thus the adjoint general-
ized equation (4.51) has only the trivial solution if and only if the qualification
condition (4.59) holds.

To justify the coderivative representations in (i) and (ii) under the as-
sumptions made, we involve similar arguments applied to the corresponding
representations of Theorem 4.44. Since convex-graph mappings are N -regular
at every point of their graph, we conclude that the solution map (4.50) is
N -regular at (x̄, ȳ) under the assumptions of this corollary. �

The qualification condition (4.59) obviously holds if 0 ∈ int(rge L), which
is actually equivalent to (4.59) if the range of L is locally closed around w̄ = 0
and SNC at this point. Note that, due to convexity, the SNC property of the
sets rge L and gph Q can be characterized via their finite codimensionality by
Theorem 1.21. Observe also that for Q = Q(y) the qualification condition
(4.59) is clearly equivalent to

ker∇x f (x̄, ȳ)∗ ∩ N(0; rge L̃) = {0} , (4.61)

where L̃ is defined in (4.58).
Let us mention a special case of (4.49) when Q is given by

Q(x, y) :=






E if (x, y) ∈ Ω ,

∅ otherwise ,
(4.62)

where E ⊂ Z and Ω ⊂ X×Y are closed convex sets. In this case the interiority
condition 0 ∈ int(rge L) reduces to

0 ∈ int
{

f (x̄, ȳ) + ∇ f (x̄, ȳ)
(
Ω − (x̄, ȳ)

)
+ E

}

When Q = Q(y) in (4.62), the corresponding qualification (4.61) automati-
cally holds under the Robinson qualification condition

0 ∈ int
{

f (x̄, ȳ) + ∇y f (x̄, ȳ)
(
Ω − ȳ

)
+ E

}
.

In case (4.62) the coderivative formulas from Corollary 4.45 can be modified
accordingly.

Next we obtain efficient conditions under which the equalities in Theo-
rem 4.44 turn into upper estimates for coderivatives of solution maps (4.50)
with no surjectivity and/or normal regularity assumptions made above. More-
over, we consider general cases of nonsmooth bases f in (4.49).
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Theorem 4.46 (coderivative estimates for general variational sys-
tems). Let (x̄, ȳ) satisfy (4.49), where X,Y, Z are Asplund, f : X × Y → Z is
continuous around (x̄, ȳ), and the graph of Q is closed around (x̄, ȳ, z̄) with
z̄ = − f (x̄, ȳ). Then

D∗S(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ ∃z∗ ∈ Z∗ with

(x∗,−y∗) ∈ D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗)
} (4.63)

for both coderivatives D∗ = D∗
N , D∗

M of the solution map (4.50) at (x̄, ȳ) pro-
vided that either one of the following conditions holds:

(a) Q is SNC at (x̄, ȳ, z̄), and (x∗, y∗, z∗) = (0, 0, 0) is the only triple
satisfying the inclusion

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(z∗) ∩

(
− D∗

N Q(x̄, ȳ, z̄)(z∗)
)
; (4.64)

the latter is equivalent to
[
0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + D∗

N Q(x̄, ȳ, z̄)(z∗)
]

=⇒ z∗ = 0 (4.65)

if f is strictly Lipschitzian at (x̄, ȳ).
(b) f is Lipschitz continuous around (x̄, ȳ), dim Z < ∞, and the triviality

condition (4.65) is satisfied.

Proof. First prove (4.63) under conditions (a) and (b) in a parallel way based
on Theorem 4.32 and the graph representation (4.52) for the mapping S in
(4.50) with g and Θ defined in (4.54). Applying Theorem 4.32, we use those
assumptions therein that include the qualification condition (4.26), but not
the ones with (4.30). The reason is that the latter condition involves the
“reversed” coderivative D̃∗

M g, which doesn’t possess a satisfactory calculus
allowing us to deal efficiently with functions g of type (4.54). Employing the
normal coderivative D∗

N g and taking into account that

g(x, y) =
(
x, y, 0

)
+
(
0, 0,− f (x, y)

)

for g in (4.54) and that D∗
N (− f )(x̄, ȳ)(z∗) = D∗

N f (x̄, ȳ)(−z∗), we get

D∗
N g(x̄, ȳ)(x∗, y∗, z∗) = (x∗, y∗) + D∗

N f (x̄, ȳ)(−z∗)

by Theorem 1.62(ii). Then it is easy to check that the qualification condition
(4.26) for g and Θ from (4.54) is equivalent to (x∗, y∗, z∗) = (0, 0, 0) for every
triple satisfying (4.64). The latter reduces to (4.65) for strictly Lipschitzian
mappings f due to Theorem 3.28 and Proposition 3.26. Similarly we can check
that the coderivative inclusion (4.31) in Theorem 4.32 reduces to (4.63) if the
above triviality condition for (4.64) holds and if either Q is SNC at (x̄, ȳ, z̄)
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or g−1 from (4.54) is PSNC at (w̄, x̄, ȳ) with w̄ := (x̄, ȳ, z̄). This justifies the
conclusion of the theorem under the assumptions in (a).

To prove the theorem under the assumptions in (b), it remains to show
that the PSNC property of g−1 holds if f is Lipschitz continuous around
(x̄, ȳ) while Z is finite-dimensional. By the structure of g in (4.54) and by the
easy scalarization formula for the Fréchet coderivative of locally Lipschitzian
mappings we conclude that the PSNC property of g−1 at (w̄, x̄, ȳ) means in

this setting that for every sequences (xk, yk) → (x̄, ȳ), (u∗
k , v

∗
k ) w∗

→ (0, 0), and

(x∗
k , y∗k ) − (u∗

k , v
∗
k ) ∈ ∂̂〈−z∗k , f 〉(xk, yk) with ‖(x∗

k , y∗k , z∗k )‖ → 0

one has ‖(u∗
k , v

∗
k )‖ → 0 as k → ∞. This directly follows from the above inclu-

sion due to the definition of Fréchet subgradients. �

Let us formulate a specification of Theorem 4.46 in the case of parametric
generalized equations with smooth (strictly differentiable) bases; this case is
of particular importance for applications.

Corollary 4.47 (coderivative estimates for generalized equations
with smooth bases). Let f : X × Y → Z be a mapping between Asplund
spaces that is strictly differentiable at a point (x̄, ȳ) satisfying the generalized
equation (4.49), and let Q: X × Y →→ Z be locally closed-graph around (x̄, ȳ, z̄)
with z̄ = − f (x̄, ȳ). Then

D∗S(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ ∃z∗ ∈ Z∗ with

(
x∗ −∇x f (x̄, ȳ)∗z∗ ,

−y∗ −∇y f (x̄, ȳ)∗z∗
)
∈ D∗

N Q(x̄, ȳ, z̄)(z∗)
}

for both coderivatives D∗ = D∗
N , D∗

M of the solution map (4.50) if the adjoint
generalized equation (4.51) has only the trivial solution and if either Q is SNC
at (x̄, ȳ, z̄) or dim Z < ∞.

Proof. This follows directly from Theorem 4.46 due to the coderivative rep-
resentation for strictly differentiable mappings. �

The next corollary that concerns generalized equations with parameter-
independent fields. For simplicity we formulate results only in the case when
bases of generalized equations are smooth.

Corollary 4.48 (coderivatives of solution maps to HVIs with smooth
bases). Let (x̄, ȳ) satisfy (4.49), where X,Y, Z are Asplund, where f : X×Y →
Z is strictly differentiable at (x̄, ȳ), and where Q: Y →→ Z is closed-graph
around (ȳ, z̄) with z̄ = − f (x̄, ȳ). Assume that the partial adjoint generalized
equation (4.56) has only the trivial solution on ker∇x f (x̄, ȳ)∗ and that either
Q is SNC at (ȳ, z̄) or dim Z < ∞. Then one has the inclusion
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D∗S(x̄, ȳ)(y∗) ⊂
{
∇x f (x̄, ȳ)∗z∗

∣
∣
∣ − y∗ ∈ ∇y f (x̄, ȳ)∗z∗ + D∗

N Q(ȳ, z̄)(z∗)
}

for both coderivatives D∗ = D∗
N , D∗

M of the solution map (4.50), where equality
holds if either ∇x f (x̄, ȳ) is surjective or Q is N -regular at (ȳ, z̄).

Proof. The coderivative inclusion in this corollary follows directly from Corol-
lary 4.47 when the field Q doesn’t depend on x . The equality cases are con-
tained in Theorem 4.44. �

Recall two simple and useful settings when Q is automatically SNC at
every point of its graph: if either X, Y, Z are finite-dimensional or Q is convex-
graph with nonempty interior. More general sufficient conditions for the SNC
property of Q can be extracted from the results of Subsect. 1.2.5 and the
SNC calculus developed in Sect. 3.3. Comprehensive coderivative calculus in
Asplund spaces allows us to apply the above results to derive efficient coderiv-
ative estimates for fields Q and thus for solution maps (4.50) to parametric
variational systems.

Many important applications of variational systems (4.49) relate to the
case when Q = ∂ϕ is a subdifferential operator generated by a l.s.c. function
ϕ. In this case we have D∗

N Q(x̄, ȳ) = ∂2
Nϕ(x̄, ȳ) by Definition 1.118(i) of the

normal second-order subdifferential, and hence one can use advantages of the
second-order subdifferential calculus developed in Subsects. 1.3.5 and 3.2.5.
Borrowing mechanical terminology, we label ϕ as potential.

As mentioned in the beginning of this section, potentials ϕ are convex
and parameter-independent in the classical settings of variational inequali-
ties and complementarity problems. In the case of nonconvex and parameter-
independent potentials the corresponding generalized equations relate to the
so-called hemivariational inequalities (HVIs), which are conventionally consid-
ered in terms of Clarke subgradients for Lipschitz continuous functions. For
convenience we use this terminology also in the case of our basic subgradients
for l.s.c. parameter-independent potentials.

The main attention is paid in what follows to general classes of (4.49),
where the parameter-dependent field Q = Q(x, y) is given in two composite
forms involving the basic first-order subdifferential. For convenience we call
such generalized equations with subdifferential fields by generalized variational
inequalities (GVIs).

The first class of GVIs under consideration concerns fields with composite
potentials of the type ϕ ◦g, where g: X ×Y → W and ϕ: W → IR are mappings
between Banach spaces. On the other words, we’ll study solutions maps given
in the composite form

S(x) :=
{

y ∈ Y
∣
∣
∣ 0 ∈ f (x, y) + ∂(ϕ ◦ g)(x, y)

}
. (4.66)

Note that the range space for f and Q = ∂(ϕ ◦ g) in (4.66) is either X∗ × Y ∗

when g = g(x, y), or Y ∗ when g = g(y).
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The second class of GVIs considered below involves composite fields of the
form Q(x, y) = ∂ϕ ◦ g with g: X × Y → W and ϕ: W → IR. Solution maps for
such GVIs are given by

S(x) :=
{

y ∈ Y
∣
∣
∣ 0 ∈ f (x, y) + (∂ϕ ◦ g)(x, y)

}
, (4.67)

where f : X × Y → W ∗. By definition of the basic subdifferential we have that
∂(ϕ ◦ g)(x, y) = ∅ in both (4.66) and (4.67) if g(x, y) /∈ dom ϕ.

Besides the classical variational inequalities and related systems mentioned
above, models (4.66) and (4.67) cover a broad range of parametric variational
systems important in applications. In particular, framework (4.66) is con-
venient for describing stationary point maps and stationary point-multiplier
maps in problems of composite optimization with parameter-dependent con-
straints. Form (4.67) includes perturbed implicit complementarity problems
of the type: find y ∈ Y satisfying

f (x, y) ≥ 0, y − g(x, y) ≥ 0,
〈

f (x, y), y − g(x, y)
〉

= 0 ,

where the inequalities are understood in the sense of some order on Y (in
particular, component-wisely in finite-dimensions). Problems of this kind fre-
quently arise in a large spectrum of mathematical models involving various
types of economic and mechanical equilibria; see Commentary to this chapter
for more references and discussions.

Our objective is to derive efficient coderivative representations/estimates
for the solution maps (4.66) and (4.67) in terms of their initial data. We
start with model (4.66) and first obtain conditions ensuring an upper esti-
mate and an exact formula for computing coderivatives of (4.67) in general
Banach spaces. These conditions apply to the case of parameter-independent
potentials, i.e., they concern solution maps to parametric hemivariational in-
equalities (in our terminology) with potentials given in a composite form.

Theorem 4.49 (computing coderivatives of solution maps to HVIs
with composite potentials). Let X,Y , and W be Banach spaces, and let
(x̄, ȳ) ∈ gph S for S defined in (4.66) with g: Y → W and ϕ: W → IR. Put
q̄ := − f (x̄, ȳ) ∈ ∂(ϕ ◦ g)(ȳ) and assume the following:

(a) f : X × Y → Y ∗ is strictly differentiable at (x̄, ȳ) with the surjective
partial derivative ∇x f (x̄, ȳ): X → Y ∗.

(b) g ∈ C1 around ȳ with the surjective derivative ∇g(ȳ): Y → W , and the
mapping ∇g: Y → L(Y,W ) is strictly differentiable at ȳ.

Let v̄ ∈ W ∗ be a unique functional satisfying the relations

q̄ = ∇g(ȳ)∗v̄ and v̄ ∈ ∂ϕ(w̄) with w̄ := g(ȳ) .

Then one has the inclusion

D∗
N S(x̄, ȳ)(y∗) ⊂

{
x∗ ∈ X∗

∣
∣
∣ ∃u ∈ Y ∗∗ with x∗ = ∇x f (x̄, ȳ)∗u ,

−y∗ ∈ ∇y f (x̄, ȳ)∗u + ∇2〈v̄ , g〉(ȳ)∗u + ∇g(ȳ)∗∂2
Nϕ(w̄, v̄)

(
∇g(ȳ)∗∗u

)}
,

(4.68)
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which holds as equality if the range of ∇g(ȳ)∗ is w∗-extensible in Y ∗, in par-
ticular, when either this subspace is complemented in Y ∗ or the closed unit
ball of Y ∗∗ is weak∗ sequentially compact. If in addition the subdifferential
mapping ∂ϕ: W →→ W ∗ is strongly coderivatively normal at (w̄, v̄), then S−1 is
strongly coderivatively normal at (ȳ, x̄).

Proof. Using first Theorem 4.44(i) and the definition of ∂2
N (ϕ ◦ g), we get

D∗
N S(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗

∣
∣
∣ ∃u ∈ Y ∗∗ with x∗ = ∇x f (x̄, ȳ)∗u ,

−y∗ ∈ ∇y f (x̄, ȳ)∗u + ∂2
N (ϕ ◦ g)(ȳ, q̄)(u)

}

under assumption (a). Next applying the second-order subdifferential chain
rule for ∂2

N (ϕ ◦g) in the inclusion form of Theorem 1.127, we arrive at (4.68) if
both (a) and (b) are assumed. The equality case for in (4.68) follows from the
one in Theorem 1.127. Finally, assuming that the first-order subdifferential
mapping ∂ϕ is strongly coderivatively normal at (w̄, v̄) and applying equality
chain rules for both ∂2

N (ϕ ◦ g) and ∂2
M(ϕ ◦ g) in Theorem 1.127, we have

∂2
M(ϕ ◦ g)(ȳ, q̄)(u) = ∂2

N (ϕ ◦ g)(ȳ, q̄)(u), u ∈ Y ∗∗ .

This implies the strong coderivative normality of the inverse mapping S−1 at
(ȳ, x̄) by Theorem 4.44(i). �

Note that we didn’t present an application of the equality case in Theo-
rem 4.44(ii) to the solution map (4.66). The reason is that the N -regularity
assumption on the field Q in Theorem 4.44(ii) is not realistic for subdifferen-
tial mappings. Indeed, even in the case of convex (as well as of more general)
potentials ϕ in finite dimensions, ∂ϕ is graphically Lipschitzian, and hence its
regularity is equivalent to its smoothness, which actually excludes variational
inequalities from consideration; see Definition 1.45, Theorem 1.46, and related
discussions in Subsect. 1.2.2.

Next we obtain upper coderivative estimates for solution maps to GVIs
with composite potentials (4.66) depending on the parameter x under signif-
icantly less restrictive assumptions on the mappings f and g in comparison
with those in Theorem 4.49. To proceed, one may combine the upper coderiv-
ative estimates for general variational systems from Theorem 4.46 with the
second-order chain rules for ∂2(ϕ ◦ g) from Theorem 3.74. We are not going
to present here the most general case in this direction, confining for simplicity
our consideration to finite-dimensional spaces.

Theorem 4.50 (coderivative estimates for solution maps to GVIs
with composite potentials). Let (x̄, ȳ) ∈ gph S with S defined in (4.66),
where X, Y,W are finite-dimensional, g: X × Y → W is C2 around (x̄, ȳ),
f : X × Y → X∗ × Y ∗ is continuous around (x̄, ȳ), and ϕ: W → IR is l.s.c.
around w̄ := g(x̄, ȳ). Denote q̄ := − f (x̄, ȳ) ∈ ∂(ϕ ◦ g)(x̄, ȳ) and
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M(x̄, ȳ) :=
{
v̄ ∈ W ∗∣∣ v̄ ∈ ∂ϕ(w̄), ∇g(x̄, ȳ)∗v̄ = q̄

}

and assume that:
(a) The graphs of ∂ϕ and ∂∞ϕ are closed when w is near w̄ (in particular,

ϕ is either locally continuous or convex), and ϕ is lower regular around w̄.
(b) The qualification conditions

∂∞ϕ(w̄) ∩ ker∇g(x̄, ȳ)∗ = {0} , (4.69)

∂2ϕ(w̄, v̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} (4.70)

are fulfilled whenever v̄ ∈ M(x̄, ȳ) in (4.70).
(c) The relation

(x∗, y∗) ∈
⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)u + ∇g(x̄, ȳ)∗∂2ϕ(w̄, v̄)

(
∇g(x̄, ȳ)u

)]

⋂[
− D∗ f (x̄, ȳ)(u)

]

holds only for the trivial triple (x∗, y∗, u) = (0, 0, 0) in X∗ × Y ∗ × (X × Y ).

Then one has the inclusion

D∗S(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ ∃u ∈ X × Y with (x∗,−y∗) ∈ D∗ f (x̄, ȳ)(u)

+
⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u) + ∇g(x̄, ȳ)∗∂2ϕ(w̄, v̄)

(
∇g(x̄, ȳ)u

)]} (4.71)

for the basic coderivative of the solution map (4.66).

Proof. Applying Theorem 4.46 with Q(x, y) = ∂(ϕ ◦g), we have the inclusion

D∗S(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ ∃u ∈ X × Y with

(x∗,−y∗) ∈ D∗ f (x̄, ȳ)(u) + ∂2(ϕ ◦ g)(x̄, ȳ, q̄)(u)
}

for S from (4.66) under the assumptions of that theorem with D∗
N Q replaced

by ∂2(ϕ ◦g), which is automatically SNC in finite dimensions. Now we employ
the second-order chain rule from Theorem 3.74(ii) to get an upper estimate
for ∂2(ϕ ◦ g)(x̄, ȳ, q̄). Using this result (actually Corollary 3.75 under the
assumptions made) and taking into account the symmetry of the classical
Hessian matrix in finite dimensions, we arrive at the conclusion of the theo-
rem. �

An efficient consequence of the latter result concerns the case when the
potential in (4.66) is a strongly amenable function; see the definition in Sub-
sect. 3.2.5. In this case, which is especially important in applications to para-
metric optimization, assumption (a) of Theorem 4.50 and the first-order qual-
ification condition (4.69) are automatically fulfilled.
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Corollary 4.51 (coderivatives of solution maps to GVIs with
amenable potentials). Let S be the GVI solution map (4.66) whose po-
tential ψ = ϕ ◦ g is strongly amenable at (x̄, ȳ) ∈ gph S in finite dimensions.
Assume that, in the notation of Theorem 4.50, f is continuous around (x̄, ȳ),
and that (c) and the second-order qualification condition (4.70) are fulfilled.
Then the coderivative estimate (4.71) holds.

Proof. It follows from Theorem 4.50 due to the definition of strongly amenable
functions; it can be also derived from Theorem 4.46 and Corollary 3.76. �

The next corollary gives simplifications of the results in Theorem 4.50 and
Corollary 4.51 under the strict differentiability assumption on the base f .

Corollary 4.52 (coderivatives of solution maps to GVIs with com-
posite potentials and smooth bases). Let f be strictly differentiable at
(x̄, ȳ) under the other assumptions of Theorem 4.50 and Corollary 4.51. Then
condition (c) in Theorem 4.50 is equivalent to

[
0 ∈ ∇ f (x̄, ȳ)∗u + ∇2〈v̄ , g〉(x̄, ȳ)u + ∇g(x̄, ȳ)∗∂2ϕ(w̄, v̄)

(
∇g(x̄, ȳ)u

)]

=⇒ u = 0 ,

and one has the upper coderivative estimate

D∗S(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ ∃u ∈ X × Y with

(
x∗ −∇x f (x̄, ȳ)∗u,−y∗

−∇y f (x̄, ȳ)∗u
)
∈

⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u) + ∇g(x̄, ȳ)∗∂2ϕ(w̄, v̄)

(
∇g(x̄, ȳ)u

)]}
.

Proof. This follows directly from the coderivative representation for strictly
differentiable mappings. �

Note that for g = g(y) we get back to the coderivative inclusion (4.68),
which is proved in Theorem 4.49 as equality in finite dimensions under the
surjectivity assumptions on ∇x f (x̄, ȳ) and ∇g(ȳ). Here an upper estimate is
proved in the same form with no surjectivity assumptions.

In the conclusion of this subsection we evaluate coderivatives of solution
maps to GVIs with composite fields (4.67). First present an exact formula for
computing the normal coderivative of (4.67) with g = g(y) under surjectivity
assumptions in arbitrary Banach spaces.

Proposition 4.53 (computing coderivatives of solution maps to HVIs
with composite fields). Let X,Y,W be Banach, and let (x̄, ȳ) ∈ gph S
for S defined in (4.67) with g: Y → W and ϕ: W → IR. Denote w̄ := g(ȳ),
q̄ := − f (x̄, ȳ) ∈ ∂ϕ(w̄) and assume that:
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(a) f : X × Y → W ∗ is strictly differentiable at (x̄, ȳ) with the surjective
partial derivative ∇x f (x̄, ȳ).

(b) g is strictly differentiable at ȳ with the surjective derivative ∇g(ȳ).

Then one has the normal coderivative representation

D∗
N S(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗

∣
∣
∣ ∃u ∈ W ∗∗ with x∗ = ∇x f (x̄, ȳ)∗u ,

−y∗ ∈ ∇y f (x̄, ȳ)∗u + ∇g(ȳ)∗∂2
Nϕ(w̄, q̄)(u)

}

for the solution map S in (4.67). Moreover, S−1 is strongly coderivatively
normal at (x̄, ȳ) if ∂ϕ is strongly coderivatively normal at (w̄, q̄).

Proof. First we use Theorem 4.44(i) and get the equality

D∗
N S(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗

∣
∣
∣ ∃u ∈ W ∗∗ with x∗ = ∇x f (x̄, ȳ)∗u ,

−y∗ ∈ ∇y f (x̄, ȳ)∗u + D∗
N (∂ϕ ◦ g)(ȳ, q̄)(u)

}

provided that ∇x f (x̄, ȳ) is surjective. If in addition ∂ϕ ◦ g is strongly coderiv-
atively normal at (ȳ, q̄), than S−1 has this property at (x̄, ȳ). Now we apply
the coderivative chain rules (for D∗ = D∗

N and D∗ = D∗
M) from Theorem 1.66

to the composition ∂ϕ ◦ g with ∇g(x̄, ȳ) surjective and arrive in this way at
both conclusions of the proposition. �

Next we obtain an upper estimate for the coderivatives of (4.67) in general
parameter-dependent settings of g = g(x, y) employing coderivative chain
rules and the SNC calculus in Asplund spaces.

Theorem 4.54 (coderivative estimates for solution maps to GVIs
with composite fields). Let X, Y,W be Asplund spaces, and let the dual
space W ∗ be Asplund as well. Take (x̄, ȳ) ∈ gph S for S defined in (4.67) with
q̄ = − f (x̄, ȳ) ∈ ∂ϕ(w̄) and w̄ = g(x̄, ȳ). Assume that g: X × Y → W and
f : X × Y → W ∗ are continuous around (x̄, ȳ), that the graph of ∂ϕ: W →→ W ∗

is norm-closed around (w̄, q̄), and that

∂2
Nϕ(w̄, q̄)(0) ∩ ker D∗

N g(x̄, ȳ) = {0} . (4.72)

Suppose also that one of the conditions (a) and (b) is satisfied:
(a) The implication

[
(x∗, y∗) ∈ D∗

N f (x̄, ȳ)(u) ∩
(
− D∗

N g(x̄, ȳ) ◦ ∂2
Nϕ(w̄, q̄)(u)

)]

=⇒ (x∗, y∗, u) = (0, 0, 0) ,
(4.73)

is fulfilled, and either g is PSNC at (x̄, ȳ) and ∂ϕ is SNC at (w̄, q̄), or g is
SNC at (x̄, ȳ) and ∂ϕ−1 is PSNC at (q̄, w̄).



4.4 Sensitivity Analysis for Variational Systems 435

(b) f is Lipschitz continuous around (x̄, ȳ), W is finite-dimensional, and
the constraint qualification (4.73) holds.

Then the inclusion

D∗S(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ ∃u ∈ W ∗∗ with

(x∗,−y∗) ∈ D∗
N f (x̄, ȳ)(u) + D∗

N g(x̄, ȳ) ◦ ∂2
Nϕ(w̄, q̄)(u)

} (4.74)

is valid for both coderivatives D∗ = D∗
N , D∗

M of the solution map (4.67).

Proof. Applying Theorem 4.46 to (4.67), we get the inclusion

D∗S(x̄, ȳ)(y∗) ⊂
{

x∗ ∈ X∗
∣
∣
∣ ∃u ∈ W ∗∗ with

(x∗,−y∗) ∈ D∗
N f (x̄, ȳ)(u) + D∗

N (∂ϕ ◦ g)(x̄, ȳ, q̄)(u)
}

for both coderivatives D∗ = D∗
N , D∗

M under the assumptions of that theorem
with Q = ∂ϕ ◦ g. To pass from the latter inclusion to (4.74) and to efficiently
express the assumptions of Theorem 4.46 for such Q in terms of the initial
data of (4.67), we need to employ chain rules for D∗

N (∂ϕ ◦ g) and SNC cal-
culus results for this composition. An appropriate chain rule for this setting
is obtained in Theorem 3.13(i), and the corresponding SNC calculus rule is
given in Theorem 3.98. Applying these results to ∂ϕ ◦ g, one can check that
the assumptions made in the theorem ensure the fulfillment of those in The-
orem 4.46. In this way we complete the proof. �

The final result of this subsection unifies and simplifies the assumptions
of the latter theorem when W is finite-dimensional.

Corollary 4.55 (coderivatives for GVIs with composite fields of
finite-dimensional range). Let (x̄, ȳ) ∈ gph S with S defined in (4.67),
where X and Y are Asplund, and where g: X × Y → IRm and f : X × Y → IRm

are continuous around (x̄, ȳ). Using the notation of Theorem 4.54, we assume
that the graph of ∂ϕ: IRm →→ IRm is closed around (w̄, q̄) (which is automatic
for continuous and for amenable functions), that (4.72) and (4.73) hold, and
that f is Lipschitz continuous around (x̄, ȳ), and that either g is Lipschitz
continuous around this point or X and Y are finite-dimensional. Then the
coderivative estimate (4.74) is satisfied for the solution map (4.67).

Proof. It follows from the observation that, if W is finite-dimensional and
either g is locally Lipschitzian or X and Y are finite-dimensional, the SNC
assumptions of g and ∂ϕ are automatic in Theorem 4.54(a). �
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4.4.2 Coderivative Analysis of Lipschitzian Stability

This subsection is devoted to coderivative analysis of Lipschitzian stability
for parametric variational systems considered above. We mainly focus on the
Lipschitz-like property of solution maps to variational systems providing suf-
ficient (as well as necessary and sufficient) conditions for its fulfillment with
evaluating the exact Lipschitzian bound. Our basic tool for this analysis is the
pointbased criteria and exact bound formulas established in Theorem 4.10 and
its corollaries. To conduct such an analysis, we need to use the coderivative
representations and estimates for solution maps from the preceding subsection
as well as efficient results of the SNC calculus.

Let us start with characterizations of Lipschitzian stability for variational
systems described by generalized equations under regularity conditions.

Theorem 4.56 (characterizations of Lipschitzian stability for reg-
ular generalized equations). Let S be the solution map (4.50), where
f : X × Y → Z is strictly differentiable at (x̄, ȳ) ∈ gph S, whereQ: X × Y →→ Z
is locally closed-graph around (x̄, ȳ, z̄) with z̄ := − f (x̄, ȳ) and SNC at this
point, and where the spaces X, Y are Asplund. The following hold:

(i) Assume that Z is Banach, that ∇x f (x̄, ȳ) is surjective, and that Q
doesn’t depend on x. Then S is Lipschitz-like around (x̄, ȳ) if the partial adjoint
generalized equation (4.56) has only the trivial solution. This condition is also
necessary for the Lipschitz-like property of S around (x̄, ȳ) if S is strongly
coderivatively normal at (x̄, ȳ), in particular, when Y is finite-dimensional. If
in addition the space X is finite-dimensional, then

lip S(x̄, ȳ) = sup
{
‖∇x f (x̄, ȳ)∗z∗‖

∣
∣
∣ ∃y∗ ∈ D∗

N Q(ȳ, z̄)(z∗) with

‖∇y f (x̄, ȳ)∗z∗ + y∗‖ ≤ 1
}
,

where the maximum is attained provided that the graph of the set-valued map-
ping (y, z, z∗) → D∗

N Q(y, z)(z∗) is locally closed near (ȳ, z̄) in the norm×weak∗

topology of (Y × Z) × (Y ∗ × Z∗).
(ii) Assume that Z is Asplund and that Q is N -regular at (x̄, ȳ, z̄). Then

S is N -regular at (x̄, ȳ), and the condition
[
(x∗, 0) ∈ ∇ f (x̄, ȳ)∗z∗ + D∗Q(x̄, ȳ, z̄)(z∗)

]
=⇒ x∗ = z∗ = 0 (4.75)

is sufficient for the Lipschitz-like property of S around (x̄, ȳ). This condition
is also necessary for the Lipschitz-like property of S provided that the adjoint
generalized equation (4.51) has only the trivial solution. If in addition the
space X is finite-dimensional, then

lip S(x̄, ȳ) = sup
{
‖x∗‖

∣
∣
∣ ∃z∗ ∈ Z∗ with

(
x∗ −∇x f (x̄, ȳ)∗z∗ ,

−y∗ −∇y f (x̄, ȳ)∗z∗
)
∈ D∗Q(x̄, ȳ, z̄)(z∗), ‖y∗‖ ≤ 1

}
.
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In particular, for Q = Q(y) the solution map S is Lipschitz-like around (x̄, ȳ)
if the partial adjoint generalized equation (4.56) has only the trivial solution.
This condition is also necessary for the Lipschitz-like property of S provided
that (4.56) admits only the trivial solution on ker∇x f (x̄, ȳ)∗. If in addition
dim X < ∞, then lip S(x̄, ȳ) is computed by the formula from (i).

Proof. As before, we are based on criteria (c) and the exact bound formula
(4.6) from Theorem 4.10 characterizing the Lipschitz-like property of general
closed-graph multifunctions between Asplund spaces. To proceed in this way
for the solution map (4.50), we need to employ the coderivative formulas from
Theorem 4.44 together with appropriate results of the SNC calculus.

Let us first prove assertion (i). By Theorem 4.44(i) we have

D∗
N S(x̄, ȳ)(0) =

{
∇x f (x̄, ȳ)∗z∗ with z∗ ∈ Z∗ satisfying (4.56)

}
, (4.76)

from which and the surjectivity of ∇x f (x̄, ȳ) we conclude that D∗
N S(x̄, ȳ) =

{0} if and only if the partial adjoint generalized equation (4.56) has only the
trivial solution. Further, the representation

gph S =
{
(x, y) ∈ X × Y

∣
∣ g(x, y) ∈ gph Q

}
with g(x, y) =

(
y,− f (x, y)

)

and Theorem 1.22 imply, in any Banach spaces, that S is SNC at (x̄, ȳ) if
and only if Q is SNC at (ȳ, z̄) provided that ∇g(x̄, ȳ) is surjective. Since
the latter condition is equivalent to the surjectivity of ∇x f (x̄, ȳ) and since
D∗

M S(x̄, ȳ)(y∗) ⊂ D∗
N S(x̄, ȳ)(y∗) with the equality for strongly coderivatively

normal mappings, we arrive at the conclusions of (i) on the Lipschitz-like
property of S with the exact bound formula. It remains to observe that the
local closedness property of D∗

N Q assumed in the last part of (i) is clearly
equivalent to the one for N(·; gph Q), and hence the maximum is attained
in the formula for lip S(x̄, ȳ) in (i) due to the corresponding conclusion of
Theorem 4.37(i); see also the discussion after that theorem.

To justify (ii), observe that condition (4.75) implies that the (full) ad-
joint generalized equation (4.51) has only the trivial solution. Then Theo-
rem 4.44(ii) ensures that S is N -regular at (x̄, ȳ) and that D∗S(x̄, ȳ) is com-
puted by the formula therein. Thus

D∗S(x̄, ȳ)(0) =
{

x∗ ∈ X∗
∣
∣
∣ ∃z∗ ∈ Z∗ with

(
x∗ −∇x f (x̄, ȳ)∗z∗ ,

−∇y f (x̄, ȳ)∗z∗
)
∈ D∗Q(x̄, ȳ, z̄)(z∗

}
.

Hence condition (4.75) implies that D∗S(x̄, ȳ)(0) = {0}. Furthermore, by
Theorem 3.98 and representation (4.52) with g defined in (4.54), we conclude
that S is SNC at (x̄, ȳ) under the assumptions made. Now Theorem 4.10
ensures the Lipschitz-like property of S around (x̄, ȳ) and the exact bound
formula in (ii). It follows from the above arguments that condition (4.75) is
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also necessary for the Lipschitz-like property of S provided that (4.51) has
only the trivial solution.

It remains to justify the last conclusion of the theorem for Q = Q(y). In
this case the equation (4.51) has only the trivial solution if and only if

ker∇x f (x̄, ȳ)∗ ∩
{

z∗ ∈ Z∗ satisfying (4.56)
}

= {0} .

Using this together with (4.76), we complete the proof of the theorem. �

Corollary 4.57 (Lipschitzian stability for generalized equations with
convex-graph fields). Let S be the solution map (4.50) under the common
assumptions of Theorem 4.56, let the graph of Q be convex, and let the map-
pings M, M̃, L be defined in Corollary 4.45. The following assertions hold:

(i) Assume that Z is Banach, that ∇x f (x̄, ȳ) is surjective, and that Q
doesn’t depend on x. Then the condition

(0, z∗) ∈ N((0, 0); rge M̃) =⇒ z∗ = 0

is necessary and sufficient for the Lipschitz-like property of S around (x̄, ȳ).
Moreover, in this case

lip S(x̄, ȳ) = sup
{
‖∇x f (x̄, ȳ)∗z∗‖

∣
∣
∣ − (y∗, z∗) ∈ N((0, 0); rge M̃), ‖y∗‖ ≤ 1

}

if X is finite-dimensional.
(ii) Assume that Z is Asplund. Then the condition

(x∗, 0, z∗) ∈ N((0, 0, 0); rge M) =⇒ x∗ = z∗ = 0

is sufficient for the Lipschitz-like property of S around (x̄, ȳ) being also nec-
essary for this property if N(0; rge L) = {0}. In this case

lip S(x̄, ȳ) = sup
{
‖x∗‖

∣
∣
∣ ∃(y∗, z∗) ∈ Y ∗ × Z∗ with

(x∗,−y∗,−z∗) ∈ N((0, 0, 0); rge M), ‖y∗‖ ≤ 1
}

if X is finite-dimensional.

Proof. If follows from Theorem 4.56 due to the coderivative representation for
convex-graph mappings from Proposition 1.37; cf. the proof of Corollary 4.45.
It can be also derived directly from Theorem 4.10 and Corollary 4.45 similarly
to the proof of Theorem 4.56. �

Remark 4.58 (basic normals versus Clarke normals in Lipschitzian
stability). Observe that Theorem 4.56(ii) doesn’t distinguish between the
usage of basic and Clarke normals to the graph of Q provided that the basic
normal cone N((x̄, ȳ, z̄); gph Q) is weak∗ closed (this is the case, in particular,
when either X, Y, Z are finite-dimensional or the graph of Q is convex as in
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Corollary 4.57). On the contrary, Theorem 4.56(i) strikingly does. Indeed, a
counterpart of Theorem 4.56(i) with D∗

N Q(ȳ, z̄)(z∗) replaced by the cone
{
(y∗, z∗) ∈ Y ∗ × Z∗∣∣ (y∗,−z∗) ∈ NC((ȳ, z̄); gph Q)

}

obviously provides a sufficient condition for the Lipschitz-like property of the
solution map (4.50) at (x̄, ȳ). However, the latter condition is far removed
from necessity and actually doesn’t hold at all for a large class of set-valued
mappings Q. Let us present two examples demonstrating this phenomenon.

First consider the parametric generalized equation

0 ∈ x + [−y, y] with x, y ∈ IR .

In this case Q(y) = [−y, y], and one may directly check that

N((0, 0); gph Q) =
{
(v, u) ∈ IR2

∣
∣ |u| = |v|

}
and NC((0, 0); gph Q) = IR2 .

Hence D∗Q(0, 0)(u) = {−u, u} and the condition D∗Q(0, 0)(0) = {0} is obvi-
ously fulfilled characterizing Lipschitzian stability of (4.50), while its Clarke
counterpart

[(
−∇y f (x̄, ȳ)z∗,−z∗

)
∈ NC((ȳ, z̄); gph Q)

]
=⇒ z∗ = 0 (4.77)

doesn’t hold although the solution map S(x) = {y ∈ IR
∣
∣ − x ∈ [−y, y]

}
is

clearly Lipschitz-like around (0, 0).
The second example concerns the classical framework of perturbed varia-

tional inequalities/complementarity problems:

find y ≥ 0 with (ay + x)(v − y) ≥ 0 for all v ≥ 0 , (4.78)

where a ∈ IR is a given number and x ∈ IR is a perturbation parameter. This
example can be written in the generalized equation form (4.49) with

f (x, y) := ay + x and Q(y) :=






0 if y > 0 ,

IR− if y = 0 ,

∅ if y < 0 .

It is easy to see that Q(y) = N(y;Ω) = ∂δ(y;Ω) for Ω := IR+, and therefore
Q has the nonconvex graph

gph Q = {(y, z) ∈ IR2
∣
∣ y ≥ 0, z ≤ 0, yz = 0

}
.

Invoking Theorem 1.6, we compute the basic normal cone to this graph

N((0, 0); gph Q) =
{
(v, u) ∈ IR2

∣
∣ v ≤ 0, u ≥ 0} ,
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which gives the coderivative expression

D∗Q(0, 0)(u) =






0 if u > 0 ,

IR if u = 0 ,

IR− if u < 0 .

This allows us to conclude by Theorem 4.56(i) that the solution map to (4.78)
is Lipschitz-like around (0, 0) if and only if a > 0. On the other hand, one has
NC((0, 0); gph Q) = IR2 for the Clarke normal cone, and hence the sufficient
condition (4.77) carries no information about Lipschitzian stability of the
perturbed variational inequality (4.78).

It turns out that the situation in the above examples is typical for a
sufficiently broad class of variational systems including the classical varia-
tional inequalities. Considering the case when Q: IRn →→ IRn is a graphically
Lipschitzian mapping of dimension n around (ȳ, z̄) (this includes maximal
monotone relations, particularly subdifferential mappings Q = ∂ϕ for convex
and other nice functions; see the discussion after Definition 1.45), we conclude
from the proof of Theorem 1.46 that NC((ȳ, z̄); gph Q) is a subspace of IR2n

having dimension at least n. It is easy to check that in this setting the sufficient
condition (4.77) implies that the dimension of the subspace NC((ȳ, z̄); gph Q)
is exactly n, and hence the set gph Q is graphically smooth at (ȳ, z̄); see Theo-
rem 1.46(ii). Moreover, if Q = ∂ϕ with a proper l.s.c. convex function on IRn,
then the latter property corresponds to some second-order differentiability of
ϕ, which is very close to the classical contents; see Rockafellar [1153]. Hence
condition (4.77) involving Clarke normals cannot actually cover standard set-
tings of variational inequalities and complementarity problems in finite di-
mensions, where ϕ is the indicator function of a convex set. In contrast to
this, we present here characterizations and efficient sufficient conditions for
Lipschitzian stability of such and more general variational systems in terms
of our basic normals and second-order subdifferentials.

Next we consider variational systems (4.50) with no regularity assumptions
on the initial data in a general nonsmooth setting. The following theorem
gives sufficient conditions for their Lipschitzian stability in terms of normal
coderivatives of both bases and fields.

Theorem 4.59 (Lipschitzian stability for irregular generalized equa-
tions). Let S be the solution map (4.50), where f : X × Y → Z is continuous
around (x̄, ȳ) ∈ gph S, where Q: X × Y →→ Z is locally closed-graph around
(x̄, ȳ, z̄) with z̄ = − f (x̄, ȳ) and SNC at this point, and where the spaces X,Y, Z
are Asplund. Assume further that f is PSNC at (x̄, ȳ) and that one has the
qualification conditions
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[
(x∗, 0) ∈ D∗

N f (x̄, ȳ)(z∗) + D∗
N Q(x̄, ȳ, z̄)(z∗)

]
=⇒ x∗ = 0 ,

[
(x∗, y∗) ∈ D∗

N f (x̄, ȳ)(z∗) ∩
(
− D∗

N Q(x̄, ȳ, z̄)(z∗)
)]

=⇒ x∗ = y∗ = z∗ = 0 .

Then S is Lipschitz-like around (x̄, ȳ). If in addition dim X < ∞, then

lip S(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ ∃z∗ ∈ Z∗ with

(x∗,−y∗) ∈ D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗), ‖y∗‖ ≤ 1
}
.

Proof. Observe that the assumptions made in this theorem imply the fulfill-
ment of all the assumptions in Theorem 4.46. Hence the coderivative inclusion
(4.63) holds, and thus the first qualification condition of the theorem ensures
that D∗

M S(x̄, ȳ)(0) = {0}. By Theorem 4.10 it remains to show that S is PSNC
at (x̄, ȳ).

Let us prove that S is actually SNC at (x̄, ȳ) if f is assumed to be PSNC at
this point in addition to the second qualification condition of the theorem and
the SNC property of Q at (x̄, ȳ, z̄). To furnish this, we apply Theorem 3.84
to the inverse image

gph S = g−1(gph Q) with g(x, y) =
(
x, y,− f (x, y)

)
.

The only thing one needs to check is that g is PSNC at (x̄, ȳ) if f is PSNC
at this point. Indeed, taking sequences (x∗

k , y∗k ) ∈ D̂∗g(xk, yk)(u∗
k , v

∗
k , z∗k ) with

(x∗
k , y∗k ) w∗

→ (0, 0) and ‖(u∗
k , v

∗
k , z∗k )‖ → 0, we get

(x∗
k , y∗k ) = (u∗

k , v
∗
k ) + (x̂∗

k , ŷ∗k ) with (x̂∗
k , ŷ∗k ) ∈ D̂∗ f (xk, yk)(−z∗k )

due to the representation

g(x, y) = (x, y, 0) + (0, 0,− f (x, y))

and the sum rule of Theorem 1.62(i). This implies that (x̂∗
k , ŷ∗k ) w∗

→ (0, 0), and
hence ‖(x̂∗

k , ŷ∗k )‖ → 0 by the PSNC property of f . Thus ‖(x∗
k , y∗k )‖ → 0 as

well, i.e., g is PSNC at (x̄, ȳ). �

When f is strictly Lipschitzian around (x̄, ȳ), the two qualification condi-
tions in Theorem 4.59 can be unified, and the above result admits the following
simplified formulation.

Corollary 4.60 (stability for generalized equations with strictly Lip-
schitzian bases). Let f be strictly Lipschitzian at (x̄, ȳ) in the framework
of Theorem 4.59, and let Q be closed-graph and SNC at (x̄, ȳ, z̄). Then the
solution map (4.50) is Lipschitz-like around (x̄, ȳ) provided that
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[
(x∗, 0) ∈ ∂〈z∗, f 〉(x̄, ȳ) + D∗

N Q(x̄, ȳ, z̄)(z∗)
]

=⇒ x∗ = z∗ = 0 , (4.79)

which reduces to (4.75) with D∗ = D∗
N when f is strictly differentiable at

(x̄, ȳ). If in addition dim X < ∞, then

lip S(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ ∃z∗ ∈ Z∗ with (x∗,−y∗) ∈ ∂〈z∗, f 〉(x̄, ȳ)

+D∗
N Q(x̄, ȳ, z̄)(z∗), ‖y∗‖ ≤ 1

}
.

Proof. If f is strictly Lipschitzian at (x̄, ȳ), then the second qualification
condition in Theorem 4.59 is equivalent to (4.65) by the scalarization formula
of Theorem 3.28. Finally, it is easy to check that the unified qualification con-
dition (4.79) is equivalent to the simultaneous fulfillment of (4.65) and the
first qualification condition in Theorem 4.59. �

The following corollary concerns Lipschitzian stability of solution maps to
perturbed generalized equations with parameter-independent fields Q = Q(y).

Corollary 4.61 (stability of solution maps to general HVIs). Let Q =
Q(y) be closed-graph and SNC at (ȳ, z̄) in the framework of Theorem 4.59.
Then the solution map (4.50) is Lipschitz-like around (x̄, ȳ) if
[
(x∗, y∗) ∈ D∗

N f (x̄, ȳ)(z∗), −y∗ ∈ D∗
N Q(ȳ, z̄)(z∗)

]
=⇒ x∗ = y∗ = z∗ = 0 ,

which is equivalent to
[
∅ 	= proj y∂〈z∗, f 〉(x̄, ȳ) ∩

(
− D∗

N Q(ȳ, z̄)(z∗)
)]

=⇒ z∗ = 0 (4.80)

(proj y stands here for the projection on Y ∗) when f is strictly Lipschitzian
at the reference point (x̄, ȳ).

Proof. It is easy to see that for Q = Q(y) the two qualification conditions of
Theorem 4.59 hold simultaneously if and only if the qualification conditions
of this corollary is fulfilled. This reduces to

[
(x∗, y∗) ∈ ∂〈z∗, f 〉(x̄, ȳ), −y∗ ∈ D∗

N Q(ȳ, z̄)(z∗)
]

=⇒ z∗ = 0

by the coderivative scalarization for strictly Lipschitzian mappings. The latter
is obviously equivalent to (4.80). �

Next we study the Lipschitz-like property of solution maps (4.66) to gen-
eralized variational inequalities (GVIs) with composite potentials. The follow-
ing theorem gives sufficient conditions, as well as characterizations, for Lip-
schitzian stability of such systems in terms of their initial data. For simplicity
we consider only Lipschitz continuous bases in assertion (ii).
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Theorem 4.62 (Lipschitzian stability for GVIs with composite po-
tentials). Let (x̄, ȳ) ∈ gph S for S defined in (4.66), where f : X×Y → X∗×Y ∗

with q̄ := − f (x̄, ȳ), where g: X × Y → W with w̄ := g(x̄, ȳ), and where
ϕ: W → IR. The following assertions hold:

(i) Suppose that W is Banach, X is Asplund while Y = IRm, that g = g(y),
and that assumptions (a) and (b) of Theorem 4.49 are fulfilled with v̄ defined
therein. Then S is Lipschitz-like around (x̄, ȳ) if and only if u = 0 ∈ IRm is
the only vector satisfying

0 ∈ ∇y f (x̄, ȳ)∗u + ∇2〈v̄ , g〉(ȳ)∗u + ∇g(ȳ)∗∂2
Nϕ(w̄, v̄)

(
∇g(ȳ)u

)
.

In in addition X is finite-dimensional, then one has

lip S(x̄, ȳ) = sup
{
‖∇x f (x̄, ȳ)∗u‖ with − y∗ ∈ ∇y f (x̄, ȳ)∗u

+∇2〈v̄ , g〉(ȳ)∗u + ∇g(ȳ)∗∂2
Nϕ(w̄, v̄)

(
∇g(ȳ)u

)
, ‖y∗‖ ≤ 1

}
,

where the maximum is attained when, in particular, W is finite-dimensional.
(ii) Suppose that all three spaces X ,Y,W are finite-dimensional, that g ∈

C2 and f is Lipschitz continuous around (x̄, ȳ), that ϕ is l.s.c. around w̄,
and that assumptions (a) and (b) of Theorem 4.50 are fulfilled with M(x̄, ȳ)
defined therein. Then the condition

[
(x∗, 0) ∈ ∂〈u, f 〉(x̄, ȳ) +

⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u)

+∇g(x̄, ȳ)∗∂2ϕ(w̄, v̄)
(
∇g(x̄, ȳ)u

)]]
=⇒ x∗ = u = 0

(4.81)

is sufficient for the Lipschitz-like property of S, and one has

lip S(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ ∃u ∈ X × Y with (x∗,−y∗) ∈ ∂〈u, f 〉(x̄, ȳ)

+
⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u) + ∇g(x̄, ȳ)∗∂2ϕ(w̄, v̄)

(
∇g(x̄, ȳ)u

)]
, ‖y∗‖ ≤ 1

}
.

Proof. To prove (i), we use the coderivative representation (4.68) in The-
orem 4.49 for D∗

N S(x̄, ȳ) = D∗
M S(x̄, ȳ) , which holds as equality due to the

finite dimensionality of Y . Moreover, the graph of S is SNC at (x̄, ȳ), since
it is the inverse image of gph Q under a strictly differentiable mapping with
the surjective derivative, where Q = ∂(ϕ ◦ g): Y →→ Y ∗ is automatically SNC;
cf. the proof of Theorem 4.56(i). Thus the condition D∗

M S(x̄, ȳ)(0) = {0} re-
duces to the one assumed in (i), which is therefore necessary and sufficient for
the Lipschitz-like property of S by Theorem 4.10. This also implies the exact
bound formula in (i), where the maximum is attained in finite dimensions due
to Theorem 4.56(i).
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To justify (ii), we employ the coderivative upper estimate (4.71) from
Theorem 4.50, where the qualification condition in (c) is fulfilled due to (4.81).
Moreover, the latter assumption ensures that D∗S(x̄, ȳ)(0) = {0} by (4.71),
and hence S is Lipschitz-like around (x̄, ȳ) with the exact bound estimate in
(ii) due to Theorem 4.10. �

Corollary 4.63 (Lipschitzian stability of GVIs with amenable po-
tentials). Let S be the GVIs solution map (4.66) whose potential ψ = ϕ ◦ g
is strongly amenable at (x̄, ȳ) ∈ gph S in finite dimensions. Assume that f
is locally Lipschitzian around (x̄, ȳ) and that conditions (4.70) and (4.81) are
fulfilled. Then S is Lipschitz-like around (x̄, ȳ) with the exact bound estimate
from Theorem 4.62(ii).

Proof. This follows from Theorem 4.62(ii) due to the definition and proper-
ties of strongly amenable functions discussed in Subsect. 3.2.5. �

The next corollary concerns variational systems (4.66) with smooth poten-
tials, in which case

S(x) =
{

y ∈ Y
∣
∣
∣ 0 ∈ f (x, y) + ∇(ϕ ◦ g)(x, y)

}

describes solutions to perturbed gradient equations. Note that ϕ may be non-
smooth in the second-order, in particular, ϕ ∈ C1,1. In the latter case one gets
the following efficient conditions ensuring Lipschitzian stability for gradient
equations. For brevity we formulate this result only in finite dimensions uni-
fying both assertions of Theorem 4.62 and omitting formulas for the exact
Lipschitzian bound.

Corollary 4.64 (Lipschitzian stability for gradient equations). Let S
be the solution map (4.66) in finite dimensions with ϕ ∈ C1,1 around w̄. As-
sume that g ∈ C2 and f is Lipschitz continuous around (x̄, ȳ). Then condition
(4.81) is sufficient for the Lipschitz-like property of S around (x̄, ȳ). Moreover,
it is also necessary for this property if g = g(y) with the surjective deriva-
tive ∇g(ȳ) and f is strictly differentiable at (x̄, ȳ) with the surjective partial
derivative ∇x f (x̄, ȳ).

Proof. One just needs to observe that all the assumptions in (a) and (b) of
Theorem 4.50 automatically hold provided that ϕ ∈ C1,1 around w̄. �

To illustrate the application of Corollary 4.64, we consider the parameter-
ized gradient equation

0 = f (x, y) + ∇ϕ(y) with ϕ(y) = 1
2 sign(y), f (x, y) = ay + x ,

where x, y ∈ IR and a > 1. Here ϕ ∈ C1,1 with the nonsmooth derivative
∇ϕ(y) = |y|. One easily has
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N((0, 0); gph∇ϕ)=
{
(v, u)

∣
∣ u ≤ |v| for u ≤ 0

}
∩
{
(v, u)

∣
∣ u = |v| for u > 0

}
,

which implies that

∂2ϕ(0)(u) = [−u, u] if u ≥ 0 and ∂2ϕ(0(u)) = {u,−u} if u < 0 .

According to Corollary 4.64, the solution map to the gradient equation under
consideration is Lipschitz-like around (0, 0) if and only if the inclusion

0 ∈






[a − 1)u, (a + 1)u] if u ≥ 0 ,

{(a − 1)u, (a + 1)u} if u < 0

is fulfilled only for u = 0. This is definitely true when a > 1. Note that the
sufficient condition (4.77) in terms of Clarke normals doesn’t hold in this ex-
ample, since NC((0, 0); gph∇ϕ) = IR2.

The final results in this subsection concern Lipschitzian stability of solution
maps (4.67) to GVIs with composite fields. For simplicity we consider only
strictly Lipschitzian bases in assertion (ii).

Theorem 4.65 (Lipschitzian stability for GVIs with composite
fields). Let S be defined in (4.67) with g: X × Y → W , ϕ: W → IR, and
f : X × Y → W ∗. Given (x̄, ȳ) ∈ gph S, we denote w̄ := g(x̄, ȳ) and
q̄ := − f (x̄, ȳ). The following assertions hold:

(i) Assume that X, Y are Asplund while W is Banach, that g = g(y) is
strictly differentiable at ȳ with the surjective derivative ∇g(ȳ), and that f is
strictly differentiable at (x̄, ȳ) with the surjective partial derivative ∇x f (x̄, ȳ).
Then the condition

[
0 ∈ ∇y f (x̄, ȳ)∗u + ∇g(ȳ)∗∂2

Nϕ(w̄, q̄)(u)
]

=⇒ u = 0 .

is sufficient for the Lipschitz-like property of S around (x̄, ȳ) being also nec-
essary for this property if S is strongly coderivatively normal at (x̄, ȳ) (in
particular, when dim Y < ∞). If in addition dim X < ∞, then one has

lip S(x̄, ȳ) = sup
{
‖∇x f (x̄, ȳ)∗u‖

∣
∣
∣ ∃z∗ ∈ ∂2

Nϕ(w̄, q̄)(u) with

‖∇y f (x̄, ȳ)∗u + ∇g(ȳ)∗z∗‖ ≤ 1
}

provided that ∂ϕ is SNC at (w̄, q̄).
(ii) Assume that X,Y,W,W ∗ are Asplund, that g is continuous around

(x̄, ȳ) while f is strictly Lipschitzian at this point, that the graph of ∂ϕ is
norm-closed around (w̄, q̄), and that the qualification condition (4.72) is ful-
filled. Then the implication
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[
(x∗, 0) ∈ ∂〈u, f 〉(x̄, ȳ) + D∗

N g(x̄, ȳ) ◦ ∂2
Nϕ(w̄, q̄)(u)

]
=⇒ x∗ = u = 0

is sufficient for the Lipschitz-like property of S around (x̄, ȳ) provided that
either g is PSNC at (x̄, ȳ) and ∂ϕ is SNC at (w̄, q̄), or g is SNC at (x̄, ȳ) and
∂ϕ−1 is PSNC at (q̄, w̄). If in addition dim X < ∞, then one has the exact
bound estimate

lip S(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ ∃u ∈ W ∗∗ with

(x∗,−y∗) ∈ ∂〈u, f 〉(x̄, ȳ) + D∗
N g(x̄, ȳ) ◦ ∂2

Nϕ(w̄, q̄)(u), ‖y∗‖ ≤ 1
}
.

Proof. To prove (i), we use the coderivative representation from Proposi-
tion 4.53 and then apply Theorem 4.10 observing that the SNC property of
∂ϕ at (w̄, q̄) yields the one for S at (x̄, ȳ) due to

gph S = {(x, u) ∈ X × Y
∣
∣ g(x, y) ∈ gph (∂ϕ ◦ g)

}

and Theorems 1.22, 3.98. This assertion can be also derived from Theo-
rem 4.56(i) using the coderivative chain from Theorem 1.66 and the mentioned
results of the SNC calculus.

To prove (ii), we apply the coderivative inclusion from Theorem 4.54(a)
and the basic characterization of Theorem 4.10. Note that, when f is strictly
Lipschitzian at (x̄, ȳ), both conditions (4.73) and D∗

M S(x̄, ȳ)(0) = {0} in (4.74)
are satisfied if the implication in (ii) holds; cf. the proof of Corollary 4.60. It
remains to observe that, as shown in the proof of Theorem 4.54, the composi-
tion ∂ϕ ◦ g is SNC at (x̄, ȳ, q̄) under the assumptions made. Hence S is SNC
at (x̄, ȳ), which completes the proof of the theorem. �

Note that g is automatically PSNC at (x̄, ȳ) if it is Lipschitz continuous
around this point, and that ∂ϕ is SNC if W is finite-dimensional. In the latter
case one has (4.72) if g is metrically regular around (x̄, ȳ). Let us present
an efficient corollary of Theorem 4.65(ii) when both f and g are strictly
differentiable at (x̄, ȳ). For simplicity we formulate it in the case of W = IRm .

Corollary 4.66 (GVIs with composite fields under smoothness as-
sumptions). Let (x̄, ȳ) ∈ gph S with S defined in (4.67), where X and Y are
Asplund, and where g: X × Y → IRm and f : X × Y → IRm are strictly differ-
entiable at (x̄, ȳ). Assume that the graph of ∂ϕ is closed around (w̄, q̄) (which
holds, in particular, for continuous and for amenable functions), that

∂2ϕ(w̄, q̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} ,

∂2ϕ(w̄, q̄)(0) ⊂ ker∇x g(x̄, ȳ)∗ ,
(4.82)

and that one has
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[
0 ∈ ∇y f (x̄, ȳ)∗u + ∇y g(x̄, ȳ)∗∂2ϕ(w̄, q̄)(u)

]
=⇒ u = 0 . (4.83)

Then S is Lipschitz-like around (x̄, ȳ). If in addition dim X < ∞, then

lip S(x̄, ȳ) ≤ sup
{
‖x∗‖

∣
∣
∣ ∃u ∈ IRm, y∗ ∈ ∇y g(x̄, ȳ)∗∂2ϕ(w̄, q̄)(u) with

x∗ −∇x f (x̄, ȳ)∗u ∈ ∇x g(x̄, ȳ)∗∂2ϕ(w̄, q̄)(u), ‖∇y f (x̄, ȳ)∗u + y∗‖ ≤ 1
}
.

Proof. We use Theorem 4.65(ii) with W = IRm and observe that (4.72) re-
duces under the strict differentiability assumptions to the first condition in
(4.82), while (4.83) and the second condition in (4.82) clearly imply (actually
are equivalent to) the qualification condition of Theorem 4.65(ii). �

We conclude this subsection with an example of applications of the results
obtained to a practical problem of continuum mechanics. We refer the reader
to the paper of Mordukhovich and Outrata [939] for more details, illustrations,
and other applications.

Example 4.67 (Lipschitzian stability for a contact problem with
nonmonotone friction). The underlying mechanical problem is taken from
the book by Haslinger, Miettinen and Panagiotopoulos [551] and can be de-
scribed as follows.

There is an elastic body Ω supported from below by a rigid obstacle and
exposed to external forces that represent our perturbation vector x . Vectors
yt , yn represent, respectively, tangential and normal displacements of the dis-
cretization nodes lying on the contact boundary Γc. In many situations it is
possible to replace the “nonpenetrability condition” yn ≥ 0 with the equality
yn = 0. Then we put y := yt ∈ IRm and describe the equilibrium in this me-
chanical problem by the following hemivariational inequality with a composite
filed of type (4.67):

0 ∈ Ay + p(x) + ∂ϕ(By) , (4.84)

where m is the number of nodes on Γc, n is the dimension of external forces
x ∈ IRn, A is an m × m positively definite “stiffness” matrix, p : IRn → IRm is
a continuously differentiable mapping related to external forces, and B is an
m × m nonsingular matrix defined by a quadrature formula that is used for
the boundary integral along Γc. The function ϕ in (4.84) is given in the form

ϕ(z) =
m∑

i=1

ϕi (zi ) with z = (z1, . . . , zm) ∈ IRm , (4.85)

where ϕi : IR → IR represents the nonmonotone friction law described by
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ϕi (zi ) :=






(−k1 + k2z0) zi + k2
2 (z0)2 if zi < −z0 ,

−k1zi − k2
2 (zi )2 if zi ∈ [−z0, 0) ,

k1zi − k2
2 (zi )2 if zi ∈ [0, z0) ,

(k1 − k2z0) zi + k2
2 (z0)2 if zi ≥ z0

(4.86)

with the given parameters z0 > 0, k1 > 0, and k2 > 0. Functions ϕ: IRm → IR
of type (4.85), (4.86) belong to the class of separable piecewise C2 functions
for which the second-order subdifferential ∂2ϕ is efficiently computed in Mor-
dukhovich and Outrata [939]. Here we present calculations in the case given
(4.84)–(4.86) to be able to check efficiently the conditions of Theorem 4.65
on Lipschitzian stability of the solution map S: IRn → IRm to the hemivaria-
tional inequality (4.84). Given a point (x̄, ȳ) ∈ gph S, we associate with it the
following index sets:

I1(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i < −z0

}
,

I2(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i = −z0

}
,

I3(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i ∈ (−z0, 0)

}
,

I4(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i = 0, (−Aȳ − p(x̄))i = −k1

}
,

I5(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i = 0, (−Aȳ − p(x̄))i ∈ (−k1, k1)

}
,

I6(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i = 0, (−Aȳ − p(x̄))i = k1

}
,

I7(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i ∈ (0, z0)

}
,

I8(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i = z0

}
,

I9(x̄, ȳ) :=
{

i ∈ {1, . . . ,m}
∣
∣ (B ȳ)i > z0

}
.

These sets completely describe the position of the point
(

B ȳ,−Aȳ − p(x̄)
)

on the graph of ∂ϕ; their union is exactly the whole index set {1, . . . ,m}.
Now we compute the basic normal cones to the graph of ∂ϕi at the points(
(B ȳ)i , (−Aȳ − p(x̄))i

)
associated with the above index sets. To simplify the

notation, we give (as a subscript) only the number of the index set to which
the corresponding component of (B ȳ,−Aȳ − p(x̄)) belongs:



4.4 Sensitivity Analysis for Variational Systems 449

N1 = N9 = {0} × IR ,

N2 = N1 ∪
{

(w, u) ∈ IR2
∣
∣ u = 1

k2
w
}
∪
{
(w, u) ∈ IR2

∣
∣ 0 ≤ w ≤ k2u

}
,

N3 = N7 =
{

(w, u) ∈ IR2
∣
∣ u = 1

k2
w
}
,

N4 = N3 ∪
{
(w, u) ∈ IR2

∣
∣ u = 0

}
∪
{
(w, u) ∈ IR2

∣
∣ w − k2u ≥ 0, u ≤ 0

}
,

N5 =
{
(w, u) ∈ IR2

∣
∣ u = 0

}
,

N6 = N3 ∪ N5 ∪
{
(w, u) ∈ IR2

∣
∣ w − k2u ≤ 0, u ≥ 0

}
,

N8 = N1 ∪ N3 ∪
{
(w, u) ∈ IR2

∣
∣ k2u ≤ w ≤ 0

}
.

To formulate verifiable conditions for Lipschitzian stability of the solution
set to the hemivariational inequality (4.84) with the potential ϕ defined in
(4.85) and (4.86), we consider the following generalized equation

0 ∈ A∗u +Ξ(x̄, ȳ, u) (4.87)

with the field Ξ given by

Ξ(x̄, ȳ, u) =
m∏

i=1

Ξi (x̄, ȳ, ui ) for Ξi (x̄, ȳ, ui ) :=
{
wi ∈ IR

∣
∣ (wi ,−ui ) ∈ N j

}
,

where the cones N j are computed above and where j is a uniquely determined
index from {1, . . . ,m} for which i ∈ I j (x̄, ȳ). According to Theorem 4.65 and
its concretization in Corollary 4.66 the solution map to (4.84) is Lipschitz-like
around (x̄, ȳ) if the adjoint generalized equation (4.87) has only the trivial
solution. Moreover, the latter condition is also necessary for this stability
property if the Jacobian matrix ∇p(x̄) has full rank.

Finally, we consider a two-dimensional hemivariational inequality of type
(4.84) and check the above conditions for Lipschitzian stability of its solution
map. Let n = m = 2, p(x) = x , A =

[
5 4
4 5

]
, B =

[
1 0
0 1

]
in (4.84), and let ϕ is

given by (4.85) and (4.86) with k1 = 1, k2 = 1
2 , z0 = 1. Taking the reference

point (x̄1, x̄2, ȳ1, ȳ2) =
(
3, 13

4 , 0,−
1
2

)
, we get from the above formulas that

I3(x̄, ȳ) = {2}, I4(x̄, ȳ) = {1}, and all the other index sets are empty. The
adjoint equation in (4.83) attains the form

0 ∈ 5u1 + 4u2 +
{
w1 ∈ IR

∣
∣ (w1,−u1) ∈ N4

}
,

0 ∈ 4u1 + 5u2 +
{
w2 ∈ IR

∣
∣ u2 = −2w2

}
(4.88)
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with the cone N4 computed above. In this case Theorem 4.65(i) ensures that
the solution map to (4.84) with the given data is Lipschitz-like around (x̄, ȳ)
if and only the adjoint generalized equation (4.88) admits only the trivial
solution. Let us check that it holds true. Indeed, from the second relation in
(4.88) we have u2 = − 8

9 u1. By inserting this into the first relation in (4.88),
one gets the inclusion

0 ∈ 13
9

u1 +
{
w1 ∈ IR

∣
∣ (w1,−u1) ∈ N4

}

that is fulfilled only when u1 = 0 due to the above expression for N4. Hence
u2 = 0 as well, which justifies the Lipschitz-like property of the solution map
in the example under consideration.

4.4.3 Lipschitzian Stability under Canonical Perturbations

In this subsection we consider parametric variational systems obtained via the
so-called canonical perturbations of generalized equations (4.47). Such systems
are given in the form

Σ(x, q) :=
{

y ∈ Y
∣
∣ q ∈ f (x, y) + Q(x, y)

}
, (4.89)

where f : X ×Y → Z and Q: X ×Y →→ Z are mappings between Banach spaces.
In contrast to the solution map S from (4.50), there is a pair of parameters
p := (x, q) in (4.89), where the canonical parameters q correspond to the
perturbation of the left-hand side in (4.47). One clearly has S(x) = Σ(x, 0)
for the solution map (4.50). On the other hand, (4.89) can be viewed as a
special case of (4.50) with respect to the parameter pair p = (x, q). Therefore
the results of Subsect. 4.4.2 readily induce the corresponding conditions for
Lipschitzian stability of variational systems under canonical perturbations.

In this subsection we explore another approach to the study of robust
Lipschitzian stability of canonically perturbed systems (4.89) that allows us
to get more subtle results for such systems by taking into account a spe-
cific parametric structure of (4.89). Unlike the one developed in the previous
subsection, this approach in not based on the direct application of character-
izations of Theorem 4.10 via coderivative formulas from Subsect. 4.4.1, but
involves a preliminary first-order approximation of the original system. In such
a way, establishing relationships between Lipschitzian stability of the original
and approximating systems and applying the results of Subsect. 4.4.2 to the
latter one, we derive characterizations as well as sufficient conditions for Lip-
schitzian stability of canonically perturbed variational systems. The sufficient
conditions obtained for Σ clearly ensure the Lipschitz-like property of the
solution map S from (4.50) being generally independent of those obtained in
Subsect. 4.4.2 even in finite dimensions.

Let us start with an appropriate concept of first-order approximation,
which is a natural generalization of the classical linearization idea.
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Definition 4.68 (strong approximation). Let f : X×Y → Z be a mapping
between Banach spaces. The mapping h: Y → Z strongly approximates f
in y at (x̄, ȳ) if h(ȳ) = f (x̄, ȳ) and for each ε > 0 there are neighborhoods U
of x̄ and V of ȳ such that

∥
∥[ f (x, y1) − h(y1)] − [ f (x, y2) − h(y2)]

∥
∥ ≤ ε

∥
∥y1 − y2

∥
∥

whenever x ∈ U and y1, y2 ∈ V .

This definition actually means that, although both f and h may not be
differentiable in any sense, its difference g(x, y) := f (x, y) − h(y) is strictly
differentiable in y at (x̄, ȳ) in the sense of

lim
y,v→ȳ
x→x̄

[g(x, y) − g(x, v) −∇y g(x̄, ȳ)(y − v)
‖y − v‖

]
= 0 (4.90)

with ∇y g(x̄, ȳ) = 0. Observe that (4.90) holds, in particular, when g is
(Fréchet) differentiable in y around (x̄, ȳ) and ∇y g is continuous with respect
to x and y at this point.

Note that any mapping f in the separated form

f (x, y) = f1(x) + f2(y)

admits an obvious strong approximation in y given by f2. If f itself is strictly
differentiable in y at (x̄, ȳ) in the sense of (4.90), its efficient strong approxi-
mation can be obtained by the linearization

h(y) := f (x̄, ȳ) + ∇y f (x̄, ȳ)(y − ȳ) . (4.91)

Also one can check that the composite mapping p(x, y) = f (x, s(y)) admits a
strong approximation in y at (x̄, ȳ) if f (x, z) is strictly differentiable in z at
(x̄, z̄) with z̄ := s(ȳ) while s is Lipschitz continuous around ȳ.

Let h: Y → Z strongly approximate f in y at the point (x̄, ȳ) in the sense
of Definition 4.68. Along with (4.89) we consider the approximating system

Ξ(x, q) :=
{

y ∈ Y
∣
∣ q ∈ h(y) + Q(x, y)

}
. (4.92)

The following lemma shows that the Lipschitz-like property is preserved un-
der such a first-order approximation. Recall that f : X × Y → Z is locally
Lipschitzian in x uniformly in y around (x̄, ȳ) if there are neighborhoods U
of x̄ and V of ȳ and a number � ≥ 0 such that

‖ f (x1, y) − f (x2, y)‖ ≤ �‖x1 − x2‖

whenever x1, x2 ∈ U and y ∈ V .

Lemma 4.69 (Lipschitz-like property under strong approximation).
Let X,Y, Z be Banach, let Σ and Ξ be given in (4.89) and (4.92), and let
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ȳ ∈ Σ( p̄) with p̄ := (x̄, q̄). Assume that both Σ and Ξ are closed-valued
around p̄, that f is locally Lipschitzian in x uniformly in y around (x̄, ȳ),
and that h strongly approximates f in y at this point. Then the following are
equivalent:

(a) Ξ is Lipschitz-like around ( p̄, ȳ).
(b) Σ is Lipschitz-like around ( p̄, ȳ).

Proof. We show that (a)⇒(b) employing on the Lyusternik-Graves iterative
procedure used in the proofs of Theorems 1.57 and 4.25. By the Lipschitz-like
property of Ξ around ( p̄, ȳ) there are positive numbers µ, ν, η for which

Ξ(w̃) ∩ Bν(ȳ) ⊂ Ξ(ŵ) + µ‖w̃ − ŵ‖IBY whenever w̃, ŵ ∈ Bη( p̄) .

Let ε be taken from Definition 4.68, and let � be the Lipschitzian modulus of
f in y given above. Choose α > 0 and β > 0 such that

α < min
{
ν, η/ε

}
, β ≤ min

{α(1 − εµ)
4µ(1 + �)

,
η − εα

1 + �

}
,

and that for all ỹ, ŷ ∈ Bα(ȳ) and x ∈ Bβ(x̄) one has

‖ f (x, ỹ) − h(ỹ) − f (x, ŷ) + h(ŷ)‖ ≤ ε‖ỹ − ŷ‖ .

Fix p̃, p̂ ∈ Bβ( p̄) with p̃ = (x̃, q̃) and p̂ = (x̂, q̂), and let ỹ ∈ Σ( p̃)∩ Bα/2(ȳ).
Observe that ỹ ∈ Ξ(w̃) ∩ Bα/2(ȳ) for w̃ :=

(
x̃, q̃ + h(ỹ) − f (x̃, ỹ)

)
. It follows

from the above constructions and the choice of β that

‖w̃ − p̄‖ ≤ ‖ p̃ − p̄‖ + ε‖ỹ − ȳ‖ + �‖x̃ − x̄‖ ≤ β(1 + �) + εα/2 ≤ η ,

i.e., w̃ ∈ Bη( p̄). Similarly we have ŵ ∈ Bη( p̄) for ŵ :=
(
x̂, q̂ + h(ŷ)− f (x̂, ŷ)

)
.

Now denote y1 := ỹ and by the Lipschitz-like property of Ξ find y2 such that
q̂ + h(ỹ) − f (x̂, y1) ∈ h(y2) + Q(x̂, y2) and

‖y2 − y1‖ ≤ µ‖w̃ − ŵ‖ ≤ µ(�+ 1)‖ p̃ − p̂‖ .

Proceeding by induction, suppose that there are y2, . . . , yn−1 with the follow-
ing properties:

q̂ + h(yi−1) − f (x̂, yi−1) ∈ h(yi ) + Q(x̂, yi ) ,

‖yi − yi−1‖ ≤ µ(�+ 1)‖ p̃ − p̂‖(µε)i−2

for i = 2, . . . , n − 1. By the above choice of β one has

‖yi − ȳ‖ ≤ ‖y1 − ȳ‖ +
i∑

j=2

‖y j − y j−1‖ ≤ α/2 + µ(�+ 1)‖ p̃ − p̂‖
i∑

j=2

(µε) j−2

≤ α/2 +
µ(�+ 1)
1 − µε

‖ p̃ − p̂‖ ≤ α/2 +
2µβ(�+ 1)

1 − µε
≤ α .
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Similarly to the first step of induction we find, using the Lipschitz-like property
of Ξ , a point yn ∈ Bα(ȳ) satisfying

q̂ + h(yn−1) − f (x̂, yn−1) ∈ h(yn) + Q(x̂, yn) ,

‖yn − yn−1‖ ≤ µ
(
‖q̃ − q̂‖ + �‖x̃ − x̂‖

)
(µε)n−2 .

Thus we get ‖yn − yn−1‖ → 0 as n → ∞ and, moreover, {yn} is a Cauchy
sequence converging to some ŷ0 ∈ Bα(ȳ). Let us show that ŷ0 ∈ Σ( p̂) and
obtain the estimate of ‖ỹ− ŷ0‖ with p̂ chosen above, which allow us to justify
the Lipschitz-like property of Σ around ( p̄, ȳ).

Putting ŵ0 :=
(
x̂, q̂ + h(ŷ0) − f (x̂, ŷ0)

)
, one easily has

‖ŵ0 − p̄‖ ≤ (1 + �)β + εα ≤ η .

Furthermore, by the construction of yn and the Lipschitz-like property of Ξ
around ( p̄, ȳ) we get

dist(yn;Ξ(ŵ0)) ≤ µε‖yn−1 − ŷ0‖ → 0 as n → ∞ ,

which gives ŷ0 ∈ Ξ(ŵ0) due to the closed-valuedness of Ξ . This implies that
ŷ0 ∈ Σ( p̂). Moreover,

‖yn − ỹ‖ ≤
n∑

i=2

‖yi − yi−1‖≤µ(�+ 1)‖ p̃ − p̂‖
n∑

i=2

(µε)i−2 ≤ µ(�+ 1)
1 − µε

‖ p̃ − p̂‖,

and hence one has the desired estimate

‖ŷ0 − ỹ‖ ≤ µ(�+ 1)
1 − µε

‖ p̃ − p̂‖

by passing to the limit as n → ∞. This ends the proof of (a)⇒(b).
To prove the opposite implication (b)⇒(a), we denote G(x, y) := f (x, y)+

Q(x, y) and observe that Σ(x, q) = {y ∈ Y | q ∈ G(x, y)} and

Ξ(x, q) =
{

y ∈ Y
∣
∣ q ∈ h(y) − f (x, y) + G(x, y)

}
.

Since g(y) := 0 strongly approximates h − f in y, we derive the Lipschitz-like
property of Ξ from the one for Σ due to (a)⇒(b) proved above. �

The established relationship between the Lipschitz-like property of Σ and
Ξ allows us to derive efficient coderivative conditions for Lipschitzian stabil-
ity of the solution map (4.89) from those for the (apparently more simple)
approximating system (4.92) using the results of Subsect. 4.4.2. Let us first
present a counterpart of Theorem 4.56 in the case of canonical perturbations
with refined necessary and sufficient conditions obtained in this way.
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Theorem 4.70 (characterizations of Lipschitzian stability for canon-
ically perturbed systems). Let ȳ ∈ Σ(x̄, q̄) for Σ : X × Z →→ Y given in
(4.89), where the spaces X,Y, Z are Asplund. Suppose that f : X × Y → Z is
strictly differentiable in y at (x̄, ȳ) and locally Lipschitzian in x uniformly in y
around this point, and that Q: X ×Y →→ Z is closed-graph and SNC at (x̄, ȳ, s̄)
with s̄ := q̄ − f (x̄, ȳ). The following hold:

(i) Assume that Q = Q(y). Then Σ is Lipschitz-like around (x̄, q̄, ȳ) if
the partial adjoint generalized equation (4.56) with z̄ = s̄ has only the trivial
solution. This condition is also necessary for the Lipschitz-like property of Σ
when either dim Y < ∞ or Q is N -regular at (ȳ, s̄).

(ii) Assume that Q = Q(x, y) is N -regular at (x̄, ȳ, s̄). Then the condition
(
x∗,−∇y f (x̄, ȳ)∗z∗

)
∈ D∗Q(x̄, ȳ, s̄)(z∗) =⇒ x∗ = z∗ = 0 (4.93)

is necessary and sufficient for the Lipschitz-like property of Σ around (x̄, q̄, ȳ).

Proof. As mentioned above, if f is strictly differentiable in y at (x̄, ȳ), then its
linearization h(y) defined in (4.91) strongly approximates f in y at (x̄, ȳ). Note
that ∇h(ȳ) = ∇y f (x̄, ȳ). We conclude from Lemma 4.69 that the Lipschitz-
like property of Σ around (x̄, q̄) is equivalent to this property of Ξ in (4.92)
with h defined by (4.91). Let us apply Theorem 4.56 to Ξ : P →→ Y with
p = (x, q) ∈ P := X × Z written in the standard form

Ξ(p) =
{

y ∈ Y
∣
∣ 0 ∈ h̃(p, y) + Q̃(p, y)

}
, (4.94)

where h̃(p, y) := h(y)−q and Q̃(p, y) := Q(x, y). Clearly the strict derivative
of h̃ at ( p̄, ȳ) is surjective and

∇h̃( p̄, ȳ)∗z∗ = (0,−z∗,∇y f (x̄, ȳ)∗z∗) for all z∗ ∈ Z∗ .

If Q = Q(y), we apply Theorem 4.56(i) to (4.94) and conclude that the trivi-
ality of solutions to the partial adjoint generalize equation (4.56) is necessary
and sufficient for the Lipschitz-like property of Ξ (and hence of Σ) around
( p̄, ȳ) provided that Y is finite-dimensional. The remaining part of (i) un-
der the regularity assumption immediately follows from assertion (ii) when Q
doesn’t depend on x .

Let us show that (ii) holds in the general case of Q = Q(x, y) by applying
Theorem 4.56(ii) to the solution map (4.94). Indeed, one can easily check that
the adjoint generalized equation (4.51) to (4.94) admits only the trivial solu-
tion in the case under consideration. Furthermore, criterion (4.75) applied to
the above h̃ and Q̃ clearly reduces to (4.93). �

Note that Theorem 4.70 can be derived directly from Theorem 4.56 in
the case of canonical parameters provided that f is strictly differentiable at
(x̄, ȳ) with respect to both variables x and y, while the preliminary strong
approximation allows us to justify this result when f is strictly differentiable
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only in y. On the other hand, Theorem 4.56 gives criteria of Lipschitzian
stability not only for canonical perturbations. Similarly to Corollary 4.57 one
can get efficient specifications of Theorem 4.70 in the case of convex-graph
mappings Q in (4.89).

Next we obtain sufficient conditions for Lipschitzian stability of canonically
perturbed variational systems (4.89) with nonsmooth and irregular data. In
the rest of this subsection D∗F stands for the normal coderivative of F =
F(x, y), while D∗

y F is its partial normal coderivative with respect to y.

Theorem 4.71 (Lipschitzian stability of irregular systems under
canonical perturbations). Let ȳ ∈ Σ(x̄, q̄) for Σ given in (4.89) with
s̄ = q̄ − f (x̄, ȳ). Assume that X,Y, Z are Asplund, that f admits a strong
approximation in y at (x̄, ȳ), and that the following hold:

(a) f is continuous in (x, y) and locally Lipschitzian in x uniformly in y
around (x̄, ȳ). Moreover, f (x̄, ·) is PSNC at ȳ, which is automatic if f (x̄, ·)
is Lipschitz continuous around ȳ.

(b) Q is closed-graph around (x̄, ȳ, s̄) and SNC at this point.

Then Σ is Lipschitz-like around (x̄, q̄, ȳ) provided the qualification condition
[

y∗ ∈ D∗
y f (x̄, ȳ)(z∗), (x∗,−y∗) ∈ D∗Q(x̄, ȳ, s̄)(z∗)

]
=⇒ x∗ = y∗ = z∗ = 0 ,

which is equivalent to
[

y∗ ∈ ∂y〈z∗, f 〉(x̄, ȳ), (x∗,−y∗) ∈ D∗Q(x̄, ȳ, s̄)(z∗)
]

=⇒ x∗ = z∗ = 0

if f (x̄, ·) is strictly Lipschitzian at ȳ.

Proof. By Lemma 4.69 it is equivalent to consider the Lipschitz-like property
of the solution mapΞ defined in (4.94), where h: Y → Z strongly approximates
f in y at (x̄, ȳ). Applying Theorem 4.59 to (4.94), we need to check that
the assumptions made imply (actually are equivalent to) the assumptions of
Theorem 4.59 for the data of (4.94). Since h strongly approximates f , the
mapping g(y) := f (x̄, y)− h(y) is strictly differentiable at ȳ with ∇g(ȳ) = 0.
This implies, by Theorems 1.62(ii) and 1.70, that

D∗h(ȳ)(z∗) = D∗
y f (x̄, ȳ)(z∗) for all z∗ ∈ Z∗

and that h is PSNC at ȳ if and only if f (x̄, ·) is PSNC at this point. Further-
more, it follows from the structure of h̃ and Q̃ in (4.94) that the qualification
conditions of Theorem 4.59 are simultaneously fulfilled for these mappings
if and only if one has the general qualification condition formulated in the
theorem. When f (x̄, ·) is strictly Lipschitzian at ȳ, the latter is equivalent to
the second qualification condition of the theorem due to the scalarization for-
mula of Theorem 3.28. This justifies the Lipschitz-like property of Σ around
(x̄, q̄, ȳ) and completes the proof of theorem. �
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Let us present some corollaries of Theorem 4.71. The first one concerns
the case of parameter-independent fields in (4.89).

Corollary 4.72 (canonical perturbations with parameter-indepen-
dent fields). Let Q = Q(y) under the assumptions of Theorem 4.71. Then
Σ is Lipschitz-like around (x̄, q̄, ȳ) provided that

[
0 ∈ D∗

y f (x̄, ȳ)(z∗) + D∗Q(ȳ, s̄)(z∗)
]

=⇒ z∗ = 0

and that one has

D∗
y f (x̄, ȳ)(0) ∩

(
− D∗Q(ȳ, s̄)(0)

)
= {0} .

The latter condition is automatic when either f (x̄, ·) is strictly Lipschitzian
at ȳ, or Q is Lipschitz-like around (ȳ, s̄) and strongly coderivatively normal
at this point.

Proof. It is easy to see that for Q = Q(y) the qualification condition of The-
orem 4.71 is equivalent to the simultaneous fulfillment of both conditions of
the corollary. The last statement follows from the coderivative scalarization
and from the necessity of D∗

M Q(ȳ, s̄)(0) = {0} for Lipschitz-like mappings due
to Theorem 1.44. �

The next corollary gives sufficient conditions for Lipschitzian stability of
solutions maps to canonically perturbed generalized equations with smooth
bases. They are in the same form as in Theorem 4.70(ii) without imposing
the regularity assumption on Q.

Corollary 4.73 (canonical perturbations of generalized equations
with smooth bases). In addition to the common assumptions of Theo-
rem 4.70 suppose that the qualification condition (4.93) holds. Then Σ is
Lipschitz-like around (x̄, q̄, ȳ).

Proof. Follows from Theorem 4.71 and the fact that the base mapping f
smooth in y always admits a strong approximation of form (4.93). �

Observe that for Q = Q(y) condition (4.93) reduces to the triviality of
solutions to the partial adjoint generalized equation (4.56) with z̄ = s̄, the
sufficiency of which for the Lipschitz-like property of Σ has been established
in Theorem 4.70(i). Note also that, since S(x) = Σ(x, 0), Corollary 4.73 un-
reservedly improves the sufficient conditions for the Lipschitz-like property of
the standard solution map S from (4.50) in the case of smooth mappings f as-
suming the strict differentiability of f only in y but not in (x, y). In general the
sufficient conditions for Lipschitzian stability of S obtained in Theorems 4.59
and 4.71 are independent. Indeed, one can check involving Corollary 3.44 that
the second qualification condition in Theorem 4.71 always implies (4.79). How-
ever, Theorem 4.59 and its corollaries don’t require the strong approximation
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of f as in Theorem 4.71. Furthermore, Theorem 4.71 requires the Lipschitz
continuity of f in x , which is not assumed in Theorem 4.59.

Let us give applications of the results obtained to Lipschitzian stability
of solution maps to canonically perturbed generalized variational inequalities
(GVIs) with composite potentials:

Σ(x, q) :=
{

y ∈ Y
∣
∣
∣ q ∈ f (x, y) + ∂(ϕ ◦ g)(x, y)

}
, (4.95)

where g: X × Y → W , ϕ: W → IR, and f : X × Y → X∗ × Y ∗. Mappings
(4.95) are a special case of those in (4.89) with subdifferential fields given by
Q = ∂(ϕ ◦ g). Thus one can derive efficient conditions for the Lipschitz-like
property of (4.95) from the corresponding conditions for (4.89) by using the
second-order subdifferential calculus; cf. Subsect. 4.4.2. In the next corollary
we formulate some results in this direction considering for simplicity only the
case of strongly amenable functions in assertion (ii).

Corollary 4.74 (canonical perturbations of GVIs with composite
potentials). Let ȳ ∈ Σ(x̄, q̄) for Σ defined in (4.95), where Y = IRm,
X and W are Asplund, and g is C2 around (x̄, ȳ). The following hold with
s̄ := q̄ − f (x̄, ȳ) and w̄ := g(x̄, ȳ).

(i) Assume that g = g(y) with the surjective derivative ∇g(ȳ), and that f
is strictly differentiable in y at (x̄, ȳ) and locally Lipschitzian in x uniformly in
y around this point. Let v̄ ∈ W ∗ be a unique functional satisfying the relations

s̄ = ∇g(ȳ)∗v̄, v̄ ∈ ∂ϕ(w̄) .

Then Σ is Lipschitz-like around (x̄, q̄, ȳ) if and only if u = 0 ∈ IRm is the
only vector satisfying

0 ∈ ∇y f (x̄, ȳ)∗u + ∇2〈v̄ , g〉(ȳ)u + ∇g(ȳ)∗∂2ϕ(w̄, v̄)
(
∇g(ȳ)u

)
,

where ∂2ϕ stands for the normal second-order subdifferential.
(ii) Assume that X and Y are finite-dimensional, that f is Lipschitz con-

tinuous around (x̄, ȳ) and admits a strong approximation in y at this point,
and that the potential ψ := ϕ ◦ g is strongly amenable at (x̄, ȳ). Denoting

M(x̄, ȳ) :=
{
v̄ ∈ W ∗∣∣ v̄ ∈ ∂ϕ(w̄), ∇g(x̄, ȳ)∗v̄ = s̄

}
,

we assume also the qualification conditions

∂2ϕ(w̄, v̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} for all v̄ ∈ M(x̄, ȳ) ,

[
y∗ ∈ ∂y〈u, f 〉(x̄, ȳ), (x∗,−y∗) ∈

⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u)

+∇g(x̄, ȳ)∗∂2ϕ(w̄, v̄)
(
∇g(x̄, ȳ)u

)]]
=⇒ x∗ = u = 0 ,
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where the latter reduces to
[
0 ∈ ∂y〈u, f 〉(x̄, ȳ) +

⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(ȳ)(u)

+∇g(ȳ)∗∂2ϕ(w̄, v̄)
(
∇g(ȳ)u

)]]
=⇒ u = 0

if g = g(y). Then Σ is Lipschitz-like around (x̄, q̄, ȳ).

Proof. To justify (i), we use Theorem 4.70(i) and then the second-order chain
rule from Theorem 1.127. Assertion (ii) follows from Theorem 4.71 and Corol-
lary 4.72 due to the second-order chain rule in Corollary 3.76 for strongly
amenable functions. �

The last corollary concerns Lipschitzian stability of solutions maps to
canonically perturbed generalized variational inequalities with composite fields:

Σ(x, q) :=
{

y ∈ Y
∣
∣
∣ 0 ∈ f (x, y) + (∂ϕ ◦ g)(x, y)

}
, (4.96)

where g: X × Y → W , ϕ: W → IR, and f : X × Y → W ∗.

Corollary 4.75 (canonical perturbations of GVIs with composite
fields). Let ȳ ∈ Σ(x̄, q̄) with s̄ := q̄ − f (x̄, ȳ) and w̄ := g(x̄, ȳ) for Σ given
in (4.96, where X, Y,W are Asplund and where the first-order subdifferential
mapping ∂ϕ is SNC at (w̄, s̄). The following hold with ∂2ϕ standing for the
normal second-order subdifferential of ϕ.

(i) Assume that g = g(y) is strictly differentiable at ȳ with the surjective
derivative ∇g(ȳ), and that f is strictly differentiable in y at (x̄, ȳ) and locally
Lipschitzian in x uniformly in y around this point. Then the condition

[
0 ∈ ∇y f (x̄, ȳ)∗u + ∇g(ȳ)∗∂2ϕ(w̄, s̄)(u)

]
=⇒ u = 0

is necessary and sufficient for the Lipschitz-like property of Σ around (x̄, z̄)
provided that dim Y < ∞.

(ii) Assume that W ∗ is Asplund, that g is continuous around (x̄, ȳ) and
PSNC at this point, that the graph of ∂ϕ is norm-closed around (w̄, s̄), and
that f is strictly Lipschitzian around (x̄, ȳ) and admits a strong approximation
in y at this point. Assume also the qualification conditions

∂2ϕ(w̄, s̄)(0) ∩ ker D∗g(x̄, ȳ) = {0} ,
[

y∗ ∈ ∂y〈u, f 〉(x̄, ȳ), (x∗,−y∗) ∈ D∗g(x̄, ȳ) ◦ ∂2ϕ(w̄, s̄)(u)
]

=⇒ x∗ = u = 0 ,

where the latter reduces to
[
0 ∈ ∂y〈u, f 〉(x̄, ȳ) + D∗g(x̄, ȳ) ◦ ∂2ϕ(w̄, s̄)(u)

]
=⇒ u = 0

when g = g(y). Then Σ is Lipschitz-like around (x̄, q̄, ȳ).
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Proof. To prove (i), we use Theorem 4.70(i) and then employ the chain rule of
Theorem 1.66 and the SNC calculus rule of Theorem 1.74 to the composition
∂ϕ ◦ g. Assertion (ii) follows from Theorem 4.71 and Corollary 4.72 due to
the coderivative chain rule of Theorem 3.13(ii) and the SNC calculus rule of
Theorem 3.98 applied to the composition ∂ϕ ◦ g. �

It is easy to see that, if f is strictly differentiable in y at (x̄, ȳ) and g
is strictly differentiable in both variables at this point, the last qualification
condition in Corollary 4.75(ii) is equivalent to

[
0 ∈ ∇y f (x̄, ȳ)∗u + ∇y g(x̄, ȳ)∗∂2ϕ(w̄, s̄)(u)

]
=⇒ u = 0

and ∂2ϕ(w̄, s̄)(0) ⊂ ker∇x g(x̄, ȳ)∗.

Remark 4.76 (Robinson strong regularity). The property of solution
maps to parametric generalized equations to be single-valued and Lipschitz
continuous around a reference point relates to Robinson strong regularity.
Actually this property was defined by Robinson for solution maps to lin-
earized generalized equations and then was shown to imply the same property
for the original system; see [1131]. The results presented above allow us to
obtain sufficient as well as necessary and sufficient conditions for Robinson
strong regularity in the case of monotone fields Q = Q(y) in the original
generalized equation (4.47), which particularly covers subdifferential opera-
tors Q = ∂ϕ with a proper convex function ϕ (e.g., the classical variational
inequalities and complementarity problems). This relates to the well-known
fact that a monotone map has to be single-valued and continuous wherever it is
lower/inner semicontinuous. Thus the above conditions for the Lipschitz-like
property of solution maps to the variational systems under consideration en-
sure actually their strong regularity provided monotonicity. Such a monotonic-
ity of solution maps follows from the monotonicity of Q and the corresponding
monotonicity of a strong approximation to f in the sense of Definition 4.68; cf.
Mordukhovich [912, Sect. 7] for more discussions and coderivative conditions
for strong regularity obtained in this way for generalized equations in finite
dimensions. Note that in the case when the base f is strictly differentiable
in y the monotonicity of strong approximations corresponds to the positive
semidefiniteness of ∇y f (x̄, ȳ).

If Q = δ(y;Ω) is the indicator function of a convex polyhedronΩ ⊂ IRn and
f is smooth in y, efficient characterizations of strong regularity for canonically
perturbed variational inequalities are obtained by Dontchev and Rockafellar
[364] with no positive semidefiniteness assumption on ∇y f (x̄, ȳ). Their main
result establishes the equivalence between strong regularity of the original
generalized equation and the Lipschitz-like property of the solution map to
its linearization, for which a verifiable “critical face” condition is derived on
the base of the coderivative criterion from Theorem 4.70(i). In that frame-
work new characterizations of strong regularity are obtained for nonlinear
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complementarity problems and for variational inequalities associated with the
Karush-Kuhn-Tucker conditions in standard problems of nonlinear program-
ming with twice differentiable data under canonical perturbations.

Remark 4.77 (Lipschitzian stability of solution maps in parametric
optimization). The above coderivative analysis is useful for studying Lip-
schitzian stability of solution maps in parameterized minimization problems
given in the form:

minimize ϕ0(x, y) + ϕ(x, y) , (4.97)

where ϕ0 is a cost function depending on the parameter x and the decision vari-
able y, and where ϕ(x, y) is a l.s.c. extended-real-valued constraint function
incorporating parameter-dependent constraints in the problem under consid-
eration. In particular, model (4.97) covers parameterized problems of non-
linear programming, where the focus is on sensitivity analysis of stationary
point multifunctions and stationary point-multiplier multifunctions involving
Karush-Kuhn-Tucker (KKT) vectors associated with first-order necessary op-
timality conditions. Such an analysis is conducted in the paper by Levy and
Mordukhovich [769] in the case of C2 cost functions ϕ0 defined on IRn × IRm .
The stationary point multifunction for the optimization problem (4.97) is
given as a solution map to the parameter-dependent generalized equation

S(x) :=
{

y ∈ IRm
∣
∣
∣ 0 ∈ ∇ϕ0(x, y) + ∂yϕ(x, y)

}
, (4.98)

where ∂yϕ(x, y) stands for the set of partial basic subgradients of the constraint
functions with respect to the decision variable. The results of Sect. 4.4 allow
us to compute/estimate the coderivative of the stationary point multifunction
(4.98) and to derive conditions for the Lipschitz-like property of (4.98) around
the reference point (x̄, ȳ) ∈ gph S via the partial second-order subdifferential
defined by

∂2
y ϕ(x̄, ȳ, z̄) := D∗(∂yϕ)(x̄, ȳ, z̄)

of the constraint function ϕ at (x̄, ȳ, z̄) with z̄ := −∇ϕ0(x̄, ȳ). Further analysis
taking into account specific features of (4.97) and (4.98) leads to enhanced
conditions for Lipschitzian stability of (4.98) in terms of the “full” second-
order subdifferential ∂2ϕ(x̄, ȳ, z̄), which enjoys a rich calculus developed in
Subsects. 1.3.5 and 3.2.5. More efficient results based on second-order chain
rules are obtained for parameterized problems involving constraint functions
ϕ(x, y) that are strongly amenable in y with compatible parameterization in
x , especially in the case of canonical perturbations. Similar conditions hold
for stationary point-multiplier multifunctions involving KKT vectors together
with stationary points associated with (4.97). We also refer the reader to
the recent paper by Dutta and Dempe [377] for further developments of this
approach and its applications to bilevel programming.
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Remark 4.78 (coderivative analysis of metric regularity). In Sects. 4.3
and 4.4 wee paid the main attention to applications of the pointbased coderiv-
ative criteria from Sect. 4.2 to Lipschitzian stability of parametric constraint
and variational systems. These results may be applied to the study of metric
regularity of such systems due to the known equivalence between the metric
regularity of a mapping and the Lipschitz-like property of its inverse.

On the other hand, in this way we can derive efficient coderivative con-
ditions for metric regularity of constraint and variational systems by using
the characterizations from Theorem 4.18 and refined formulas for comput-
ing/estimating the reversed mixed coderivative of the corresponding solution
maps; see Geremew, Mordukhovich and Nam [503] for more details. In par-
ticular, we have the representation

D̃∗
M F(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ ∇g(x̄, ȳ)∗N(z̄;Θ)

}

with z̄ := g(x̄, ȳ)

for the Banach space constraint system

F(x) :=
{

y ∈ Y | g(x, y) ∈ Θ
}
,

where g is strictly differentiable at (x̄, ȳ) with the surjective derivative, and
where Θ is reliable at z̄ in the sense that the basic normal cone at this point
agrees with the collection of norm sequential limits of z∗k ∈ N̂εk (zk ;Θ) as
εk ↓ 0 and zk → z̄. The latter reliability clearly includes any subsets of finite-
dimensional spaces and any sets that are normally regular at z̄. This imme-
diately implies representation (4.35) for the reversed mixed coderivative of
the classical constraint systems in Corollary 4.35, which in turn gives efficient
(Mangasarian-Fromovitz type) conditions for their metric regularity.

Concerning solutions maps to parametric variational systems of the type

S(x) :=
{

y ∈ Y
∣
∣ 0 ∈ f (x, y) + Q(y)

}

we have, under the assumptions of Theorem 4.44(i), that

D̃∗
M S(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗

∣
∣
∣ ∃z∗ ∈ Z∗ with x∗ = ∇x f (x̄, ȳ)∗z∗,

−y∗ ∈ ∇y f (x̄, ȳ)∗z∗ + D∗
M Q(ȳ, z̄)(z∗)

}

and, moreover,

ker D̃∗
M S(x̄, ȳ) = −D∗

M Q(ȳ, z̄)(0) .

Due to the equality chain rule for the mixed second-order subdifferential
from Theorem 1.127, the latter implies the corresponding representations of
D̃∗

M S(x̄, ȳ) and its kernel for composite subdifferential systems

S(x) =
{

y ∈ Y
∣
∣
∣ 0 ∈ f (x, y) + ∂(ϕ ◦ g)(y)

}

with the corresponding conditions for metric regularity.
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4.5 Commentary to Chap. 4

4.5.1. Variational Approach to Metric Regularity and Related
Properties. The notions of metric regularity, linear openness/covering, and
robust Lipschitzian behavior of set-valued and single-valued mappings are
among the most fundamental concepts in nonlinear analysis and its applica-
tions, especially to optimization and related problems. We have discussed
these and close to them properties, with their history and interrelations,
in Chap. 1 and the corresponding comments to it. Recall that the results
of Sect. 1.2 establish necessary coderivative conditions for the fulfillment of
these properties in general Banach spaces. Furthermore, the realizations of
the coderivative conditions in the case of strictly differentiable single-valued
mappings give the classical Lyusternik-Graves regularity assumptions, which
are proved to provide full criteria for the equivalent properties of metric reg-
ularity and covering of mappings as well as for the Lipschitz-like property of
their (generally set-valued) inverses.

The primary goal of this chapter is to show that the above coderivative con-
ditions happen to be necessary and sufficient for the fulfillment of the afore-
mentioned properties in the framework of Asplund spaces; moreover, they
induce precise formulas for computing the exact bounds of the Lipschitzian,
metric regularity, and covering moduli. Invoking the coderivative and related
calculus established in Chap. 3, these results allow us to develop an efficient
sensitivity analysis for parametric constraint and variational systems.

The approach adopted in this chapter to derive sufficient conditions for
the fundamental properties under consideration is significantly different from
the Lyusternik-Graves iterative procedure used in Chap. 1; see also the corre-
sponding comments therein on further developments and modifications of the
above procedure. The main difference is in using the Ekeland variational prin-
ciple that leads to a sequence of nonsmooth minimization problems requiring
the application of appropriate results of generalized differential calculus. This
approach was initiated by Ioffe [587] in the context of studying a one-point
(metric) regularity property of single-valued Lipschitzian mappings relative to
sets; cf. Definition 5.15 of “weakened metric regularity.” First sufficient con-
ditions for the latter property were obtained in [587] via Clarke’s subgradient
and tangential constructions defined in a neighborhood of the point in question.
These results were improved in Ioffe’s subsequent papers [589, 594, 598], by
using more advanced generalized differential constructions, to derive neighbor-
hood sufficient conditions for the related surjection property close to one-point
counterparts of the covering/openness at a linear rate. Furthermore, papers
[589, 598] contain lower estimates for the “constant of surjection” related to
the covering/regularity bounds considered in this book.

Note that, although Ioffe originally dealt with regularity and surjection
properties at reference points, his approach based on Ekeland’s variational
principle and subdifferential calculus leads in fact to sufficient conditions for
stronger properties around the point in question, the importance of which
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was first emphasized by Milyutin; see the corresponding comments in Sub-
sect. 1.4.14 and also in Ioffe’s recent papers [607, 608]. This approach to
deriving sufficient conditions for metric regularity and related properties was
later developed in many publications, e.g., [49, 52, 53, 57, 69, 70, 71, 88, 137,
164, 165, 166, 282, 339, 506, 647, 651, 652, 655, 656, 657, 661, 563, 686, 709,
727, 728, 751, 901, 909, 946, 951, 1008, 1066, 1068, 1070, 1071].

4.5.2. First Characterizations of Covering and Metric Regular-
ity. It seems that the first necessary and sufficient condition for the cov-
ering/linear openness property with a precise/equality formula for the exact
bound was established by Mordukhovich [894] for set-valued mappings between
finite-dimensional spaces; a complete proof of these coderivative results, cor-
responding to the pointbased criterion (e) and formula (4.17) of Theorem 4.18,
appeared in Mordukhovich’s book [901]. Note that the necessity part of this
criterion and the upper estimate for the exact bound were significantly based
on the “around ” covering property under consideration and on the usage of
our basic “limiting Fréchet” constructions.

The results obtained in [894, 901] implied, in particular, that the assump-
tions of the classical smooth Lyusternik-Graves and convex-graph Robinson-
Ursescu theorems happened to be not only sufficient but also necessary in
the settings under consideration. Moreover, these results provided for the first
time the exact bound formulas of the equality type in the smooth and convex
setting, which had never been an issue in the classical framework. To the best
of our knowledge, the previous literature didn’t pay attention to the neces-
sity of the classical regularity/openness conditions, except mentioning without
proof in (written by Milyutin) Sect. 5 of [337] that “Lyusternik’s condition
is necessary and sufficient for covering in the class of smooth operators.” We
also refer the reader to the discussion in Subsect. 1.4.14 and to the subsequent
paper by Cominetti [282] containing a full (necessary and sufficient) treatment
of the classical smooth and convex-graph settings in arbitrary Banach spaces,
with no however exact bound considerations.

4.5.3. Neighborhood Dual and Primal Criteria. Neighborhood crite-
ria for the covering property in infinite dimensions were first obtained by
Kruger [709] for set-valued mappings between Fréchet smooth spaces. His
results of the dual nature were formulated in terms of neighborhood con-
stants defined via two-parametric constructions of the ε-coderivative type. All
the neighborhood characterizations and the exact bound formulas given in
Sect. 4.1 were established by Mordukhovich and Shao [946] in the framework
of Asplund spaces. Some partial analogs of such neighborhood criteria via
other subdifferentials in appropriate Banach spaces were later derived by Ioffe
[607] under certain tangentially formulated additional assumptions.

Among primal-space developments, we mention the results by Kummer
[727, 728] (see also the book by Klatte and Kummer [686]) who obtained
primal neighborhood criteria for metric regularity via the so-called “Ekeland
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points” following the approach by Aubin and Ekeland [52]. Other primal cri-
teria for metric regularity of set-valued mappings between complete metric
spaces were developed be Ioffe [608] by using the notion of strong slope in-
troduced by De Giorgi, Marino and Tosques [312] in the theory of evolution
equations and first applied to the study of metric regularity and related top-
ics by Azé, Corvellec and Lucchetti [70]; see also their paper [69] and the
references therein. Very recent results in the primal direction with various
applications were established by Dontchev, Quincampoix and Zlateva [363].

4.5.4. Pointbased Coderivative Characterizations of Robust Lip-
schitzian Behavior. Section 4.2 is devoted to pointbased characterizations of
Lipschitzian, metric regularity, and covering/openness properties. Pointbased
conditions for these properties, which are expressed via generalized differen-
tial constructions defined at the reference point alone, seem to be significantly
more attractive and convenient for applications in comparison with the corre-
sponding neighborhood conditions that invoke all points of a neighborhood.
One of the major advantages of the pointbased conditions given in Sect. 4.2
is that they characterize the above fundamental properties via robust general-
ized differential constructions enjoying full calculi. This makes them suitable
for applications to structured constraint and variational systems defined in
specific ways via various compositions.

The main result of Sect. 4.2 is the complete pointbased characterizations of
the Lipschitz-like property in Theorem 4.10 taken from Mordukhovich [924].
For set-valued mappings F between finite-dimensional spaces with (x̄, ȳ) ∈
gph F , these characterizations reduce to the elegant coderivative criterion with
the precise formula for the exact Lipschitzian bound

D∗F(x̄, ȳ)(0) = {0} and lip F(x̄, ȳ) = ‖D∗F(x̄, ȳ)‖ (4.99)

established earlier by Mordukhovich [907]. Actually both results in (4.99)
follow from the pointbased characterizations [894, 901] for the covering prop-
erty of F around (x̄, ȳ) (see Subsect. 4.5.2) due to the equivalence between
the covering/metric regularity of set-valued mappings and the Lipschitz-like
property of their inverses, but at that time the author was not familiar with
this equivalence. Taking into account such an equivalence, the sufficiency part
of the coderivative condition in (4.99) could be also derived from Ioffe’s results
[596] on the surjection property. Comprehensive treatments of these and re-
lated topics in finite-dimensional spaces were given in the subsequent paper by
Mordukhovich [909], where the reader can find various extensions and further
developments. Another proof of the coderivative criterion for the Lipschitz-
like (Aubin) property and the modulus formula in (4.99) was developed by
Rockafellar and Wets [1165], whose book strongly demonstrated a fundamen-
tal role of these results in the basic theory of finite-dimensional variational
analysis and its applications to optimization-related problems.
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Note that the coderivative criterion in (4.99) strikingly illustrates a major
difference between our basic normals and Clarke normals regarding appli-
cations to Lipschitzian stability/metric regularity/covering issues. Indeed, a
counterpart of the criterion D∗F(x̄, ȳ)(0) = {0} expressed in terms of Clarke
normals, being of course sufficient for the Lipschitz-like property of F around
(x̄, ȳ) as was first shown by Aubin [49] (cf. also Rockafellar [1154]), is never
fulfilled for nonsmooth Lipschitzian single-valued mappings as well as their
set-valued graphically Lipschitzian extensions; see more discussions in [909]
and in Remark 4.13 of this book.

4.5.5. Pointbased Criteria in Infinite Dimensions Involving Par-
tial Normal Compactness. In infinite-dimensional settings (what really
matters is infinite dimensionality of the range space in the case of metric
regularity/covering and infinite dimensionality of the domain space in the
case of Lipschitzian properties) pointbased generalized differential conditions
alone are not sufficient for the validity of these fundamental properties. Some
additional amount of compactness (of a non-conventional type) is required.
In the classical frameworks of the Lyusternik-Graves and Robinson-Ursescu
theorems for, respectively, smooth and convex-graph mappings such a com-
pactness is (hiddenly) ensured by the surjectivity and interiority conditions
therein; cf. Theorems 1.57 and 4.21.

For nonsmooth single-valued mappings defined on closed sets, the first
condition of this type was introduced by Ioffe [595] under the name “finite
codimension condition” formulated in terms of Clarke’s generalized differential
constructions. The original motivation came from the development of a non-
smooth analog of the abstract “principle of Lagrange” suggested by Ioffe and
Tikhomirov [618] for extremal problems with mixed smooth-convex structure
involving operator constraints, where the finite codimension requirement on
the derivative range for the operator constraint mapping played a crucial role.
Modifications and extensions of the finite codimension condition formulated
via “approximate” normals and subgradients were given by Ioffe in [598] and
in his joint paper with Ginsburg [506]. It has been shown in [506, 595, 604, 618]
that the versions of the finite codimension property under consideration are
fulfilled for various classes of infinite-dimensional operators, in particular, for
those of “Fredholm type” important for applications in optimal control.

Further progress in this direction was achieved by Ioffe [607], Jourani
and Thibault [655, 661], Mordukhovich and Shao [950, 951], and Penot
[1068, 1071]. The weakest property of this kind was defined in [950] under
the name of partial sequential normal compactness – it is the same PSNC
property we have strongly used in the previous chapters to establish calculus
rules for generalized differentiation. Other names for this property and its net
counterparts formulated via various normals and subgradients are “sequen-
tial codirectional compactness” in [607], “partial coderivative compactness”
in [661], and “coderivative compactness” in [1071].
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Theorem 4.10 that provides complete pointbased characterizations of Lip-
schitzian behavior for set-valued mappings between Asplund spaces was given
by Mordukhovich [917], except that the notions of coderivative normality from
Definition 4.8 with the efficient conditions of Proposition 4.9 needed for the
exact bound formula (4.6) were taken from his subsequent paper [924]. A
complete proof of criteria (b) and (c) of the theorem with the lower bound es-
timate in (4.5) appeared in paper [953] by Mordukhovich and Shao, while the
upper bound estimate therein was derived earlier in their paper [951]; one can
also find therein previous sufficient conditions for Lipschitzian stability/metric
regularity/covering expressed via the normal coderivative D∗

N F(x̄, ȳ) of set-
valued mappings between Asplund spaces.

Theorem 4.18 is a metric regularity/covering counterpart of the Lip-
schitzian characterizations from Theorem 4.10. An analog of criterion (c) from
this theorem via topological/net limiting constructions was derived by Penot
[1071] with no bound estimates. Sufficient conditions of this type for metric
regularity of set-valued mappings between appropriate “trustworthy” Ba-
nach spaces were obtained by Ioffe [607] and by Jourani and Thibault [661]
via corresponding analogs of the normal coderivative; see also [598, 655] for
previous results in this direction in terms of “approximate” subdifferentials
and coderivatives in arbitrary Banach spaces. Furthermore, in [607, 661] there
were some pointwise necessary coderivative conditions for F : X →→ Y to be met-
rically regular provided that the domain space X is finite-dimensional. Exam-
ple 4.19 illustrating the significance of normal compactness conditions for met-
ric regularity and related properties of mappings between infinite-dimensional
spaces is taken from Borwein and Zhu [162].

Among numerous applications of subdifferential/coderivative conditions
for covering and metric regularity (some of them are considered in this book)
we mention the usage of such conditions for deriving various rules of general-
ized differential calculus. It seems that this approach was initiated by Kruger
[709] and then was strongly developed by Jourani and Thibault [651, 652, 656]
and by Ioffe [607, 608].

4.5.6. Preservation of Lipschitzian Behavior and of Metric Regu-
larity Under Compositions. Due to a fundamental role played by Lipschitz-
like, metric regularity, and covering/openness properties in nonlinear analy-
sis and applications, it is important to find efficient conditions ensuring the
preservation of these properties under various operations. Concerning the
Lipschitz-like (“pseudo-Lipschitzian”) property of set-valued mappings be-
tween finite-dimensional spaces, such issues were first studied by Rockafel-
lar [1154] who established various results in this direction with rather in-
volved proofs based mainly on definitions and finite-dimensional geometry.
The achieved pointbased coderivative characterizations of Lipschitzian and
related properties allow us to use coderivative calculus for these purposes,
which leads in addition to establishing relationships between exact bounds
under compositions.
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In this way Rockafellar and Wets [1165] derived, based on characterizations
(4.99), verifiable conditions ensuring the preservation of robust Lipschitzian
stability with the corresponding bound estimates under various operations
performed on set-valued mappings between finite-dimensional spaces. Theo-
rems 4.14, 4.16 and their corollaries established in Subsect. 4.2.1 in infinite
dimensions are taken from Mordukhovich and Nam [934]. The related preser-
vation results for metric regularity and covering from Theorem 4.22 have
never been published.

4.5.7. Good Behavior under Perturbations. The study of well-
posedness (i.e., “good behavior”) under perturbations is a major topic in
sensitivity analysis important from both theoretical and numerical view-
points. It seems that quantitative aspects of these issues on measuring the
exact bounds of perturbations that don’t violate well-posedness (i.e., don’t
cause irregular/ill-posed behavior) were first addressed in the classical Eckart-
Young theorem on nonsingular matrix perturbations [388] that was motivated
by applications to numerical analysis. The Eckart-Young theorem identifies
the minimal norm of n × n matrices, the addition of which to a given nonsin-
gular matrix A breaks down its nonsingularity, with the reciprocal of ‖A−1‖.
Results of this type, called often “distance to ill-posedness theorems” and also
“condition number theorems,” play a prominent role in various problems of
numerical analysis; see, e.g., Demmel [315] and the references therein.

In optimization theory and its applications, results of this type were first
developed in the thorough study by Renegar [1122, 1123] who introduced a
concept of the distance to infeasibility for constraint systems in conic linear
programming and who related this concept to the complexity of solving as-
sociated linear and semidefinite programs. Renegar’s characterizations of the
distance to infeasibility can be treated as appropriate extensions of the Eckart-
Young theorem to conic linear systems, although his motivation mainly came
from complexity analysis of interior point methods developed by Nesterov and
Nemirovsky [999].

Most on the subsequent research on conditioning in optimization was built
on (or was strongly influenced by) Renegar’s seminal work; see, e.g., [219,
361, 366, 405, 475, 776, 777, 780, 996, 1055, 1056, 1057, 1058, 1061, 1206,
1376, 1377, 1332] and the references therein. We particularly mention the
work by Peña [1055, 1056, 1057, 1058, 1059] who introduced and developed
the technique of rank-one perturbations, which is fundamental for the theory
of the distance to ill-posedness, and the work by Lewis [776, 777, 780] who
extended Renegar’s results to set-valued convex processes (in the sense of
Rockafellar [1142]) bringing to the area of conditioning the elegant language
and constructions of convex analysis.

A crucial contribution to this subject was made by Dontchev, Lewis and
Rockafellar [361] who introduced the radius of metric regularity from De-
finition 4.23 and related it to the reciprocal of the exact bound for regu-
larity moduli. Furthermore, involving a homogenization procedure and the
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Robinson-Ursescu theorem, they established a link between the radius of met-
ric regularity and Renegar’s distance to infeasibility for conic constraint sys-
tems (actually for convex-graph multifunctions), which thus paves the way for
extensive applications of modern variational analysis and advanced tools of
generalized differentiation to conditioning in optimization.

Theorem 4.24 extending the classical Eckart-Young result to positively
homogeneous set-valued mappings between Banach spaces was proved in [361],
while its preceding version for sublinear mappings (i.e., for closed convex
processes) was established by Lewis [775]. Theorem 4.25 providing an upper
estimate of the exact regularity bound under Lipschitzian perturbations goes
back to Milyutin (see [337]) who proved it for single-valued mappings by
using the Lyusternik-Graves iterative process; the full version presented above
was given in [361]; cf. also Ioffe [598, 608]. This fact easily implies the lower
estimate

rad F(x̄, ȳ) ≥ 1
reg F(x̄, ȳ)

(4.100)

of the metric regularity radius in Theorem 4.27, while the main result on the
equality in (4.100), and also the statement that the infimum in the definition
of rad F(x̄, ȳ) is unchanged if taken with respect to linear perturbations of
rank one, was established by Dontchev, Lewis and Rockafellar [361] in the
case of general set-valued mappings between finite-dimensional spaces.

It is worth mentioning that the proof in [361] was heavily based on the
finite-dimensional coderivative characterization (4.99) of Lipschitzian stabil-
ity/metric regularity, where both coderivative criterion and the exact bound
formula are important, and also on the homogenization of the original mapping
via its coderivative. We refer the reader to the paper by Dontchev and Rock-
afellar [366] for more recent results concerning related properties of “strong
metric regularity” and “strong metric subregularity.” A generalization of the
radius theorem from [361] to set-valued mappings defined on Riemannian
manifolds (associated with finite-dimensional spaces) has been recently ob-
tained by Dontchev and Lewis [360].

In [924], Mordukhovich extended the approach of [361] to set-valued map-
pings acting from Asplund to finite-dimensional spaces and established Theo-
rem 4.27 in full generality based on the coderivative characterization of metric
regularity for infinite-dimensional multifunctions from Theorem 4.18 and on
some amount of coderivative calculus. Subsequently Ioffe showed [609] that
the inequality in (4.100) may be strict for a Lipschitz continuous single-valued
mapping, even with good weak differentiability properties, from a Hilbert space
into itself. Furthermore, Ioffe proved in [610] that an analog of (4.100) held
as equality for single-valued mappings between general infinite-dimensional
spaces if the infimum in the definition of the radius of metric regularity was
computed over all the Lipschitzian perturbations but not over linear ones as
in Definition 4.23 and therefore not over those of rank one as justified in
Theorem 4.27 under the assumptions made therein.
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Finally, we mention the recent paper by Cánovas, Dontchev, López and
Parra [219] who established a counterpart of the Eckart-Young theorem in
the equality form of (4.100) for a special class of set-valued mappings acting
from a finite-dimensional space to the Banach space of continuous functions
over a compact Hausdorff space. Such mappings were defined by the so-called
linear semi-infinite systems of equalities and inequalities (with a compact
index set) and described feasible constraints in semi-infinite programming.
Based on the Lyusternik-Graves theorem, the authors also extended their
results to nonlinear semi-infinite constraint systems.

4.5.8. Sensitivity Analysis of Parametric Constraint Systems via
Generalized Differentiation. Sections 4.3 and 4.4 are devoted to sensi-
tivity analysis of constraints and variational systems by means of set-valued
differentiation. There are a great many developments on sensitivity analy-
sis for optimization-related problems based on various approaches; see, e.g.,
[45, 46, 47, 54, 56, 57, 60, 70, 133, 134, 137, 164, 255, 348, 355, 356, 367, 424,
448, 447, 469, 519, 523, 562, 563, 584, 623, 639, 640, 641, 681, 685, 686, 692,
697, 698, 727, 729, 734, 751, 763, 766, 768, 773, 797, 816, 820, 832, 834, 907,
911, 912, 929, 939, 1030, 1031, 1043, 1044, 1047, 1128, 1131, 1136, 1138, 1154,
1183, 1191, 1196, 1203, 1205, 1225, 1378] and the references therein. In this
book we mainly concern robust Lipschitzian stability of parametric systems
and develop an approach based on applying pointbased coderivative character-
izations of this stability via available generalized differential and SNC calculi.

General parametric constraint systems of form (4.19) considered in Sect. 4.3
were introduced by Rockafellar [1154] as extensions of the standard constraint
systems (4.20) in nonlinear programming. The primal motivation to study
parametric systems of type (4.19) and (4.20) is to conduct a local sensitiv-
ity analysis of feasible solutions under perturbations. On the other hand, the
general constraint form (4.19) is convenient to describe implicit multifunc-
tions (4.22) providing a natural formalism to extend the classical implicit and
inverse function theorems.

Rockafellar’s study [1154] was devoted to Lipschitzian stability of con-
straint systems of type (4.19) in finite dimensions and their specifications. He
obtained sufficient conditions for the Lipschitz-like (“pseudo-Lipschitzian”)
and related properties of multifunctions in terms Clarke generalized normals
and subgradients. In fact, sufficient conditions for Lipschitzian properties of
set-valued mappings were derived in [1154] via scalarization of the Lipschitz-
like property (see Theorem 1.41 established in [1154]) and applying subdiffer-
ential calculus rules for constructions of Clarke. This approach was developed
in Mordukhovich [907, 911], by applying our basic/nonconvex generalized dif-
ferential constructions and their calculus instead of Clarke ones. In the way
more delicate sufficient conditions for Lipschitzian stability of constraint sys-
tems were derived in [907, 911]; moreover, these conditions happened to be
also necessary in some settings including the classical framework of (4.20)
under the Mangasarian-Fromovitz constraint qualification.
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Coderivatives of parametric constraint systems (4.19) and their specifica-
tions (4.20) and (4.22) in finite-dimensional spaces were computed/estimated
in Mordukhovich’s papers [910, 913] based on coderivative calculus. By the
coderivative characterizations in (4.100), these results allowed us not only
to derive efficient conditions for Lipschitzian stability but also to com-
pute/estimate the exact Lipschitzian bounds for the corresponding constraint
systems; see [913]. Various developments in this direction for specific classes
of constraint systems arising in applications were given by Avelin [66, 67],
Dontchev, Lewis and Rockafellar [361], Dontchev and Rockafellar [364, 366],
Dutta and Dempe [377], Flegel, Kanzow and Outrata [457], Henrion [557, 558],
Henrion and Outrata [561, 562], Henrion and Römisch [563, 564], Jourani
[647], Kočvara, Kružik and Outrata [689], Kočvara and Outrata [690], Lee,
Tam, and Yen [755], Levy [768], Levy and Mordukhovich [769], Levy and
Poliquin [770], Lucet and Ye [816], Mordukhovich and Outrata [939], Outrata
[1024, 1025, 1027, 1030], Ye [1338, 1339], Ye and Ye [1343], Ye and Zhu [1345],
etc. Some partial infinite-dimensional extensions of those in [910, 911, 913]
were derived by Mordukhovich and Shao [951] in the framework of Asplund
spaces, while Ledyaev and Zhu [751] conducted a thorough study of Lip-
schitzian and related properties for implicit multifunctions in Fréchet smooth
spaces, with computing and estimating the corresponding Fréchet and normal
coderivatives.

Among many other publications on sensitivity analysis via set-valued dif-
ferentiation, we mention the research by Aubin [49], Aubin and Frankowska
[53, 54], Dontchev and Rockafellar [365], Frankowska [467, 469], Fusek, Klatte
and Kummer [482], King and Rockafellar [681], Klatte and Kummer [686, 687],
Kummer [725, 726, 728], Levy [766, 767], Levy and Rockafellar [773, 774],
Rockafellar and Wets [1165], and Zhang [1360] that particularly contain ex-
act formulas and upper estimates for various graphical derivatives (in primal
spaces) and their applications to the study of Lipschitzian properties of vari-
ous constraint systems.

Most of the results presented in Sect. 4.3 in infinite-dimensional (largely
Asplund) spaces are taken from Mordukhovich [927]; in fact, they are ex-
tensions of the corresponding finite-dimensional results of [910, 911, 913]. In
contrast to the finite-dimensional framework, the SNC conditions and their
calculus play a prominent role in infinite-dimensional settings.

4.5.9. Generalized Equations and Variational Conditions. The
framework of generalized equations (4.47) and their parameter perturbations
(4.49) was introduced by Robinson [1130]. It seems that his primal motiva-
tion was to include variational inequalities (4.48) and its complementarity
specification into the “equation” setting (4.47), which indeed reduces to the
standard equations f (x) = 0 when the set-valued part Q disappears. Such a
“generalized equation” viewpoint happened to be very convenient to develop
qualitative and numerical results for variational inequalities and complemen-
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tarity problems by analogy with those known for standard equations (e.g., the
corresponding versions of Newton-type methods).

Although generalized equations (4.47) are well defined in infinite-dimensional
spaces, they were originally introduced and studied in finite dimensions, since
motivations and applications were related at that time to finite-dimensional
optimization, particularly to nonlinear programming and complementarity
problems; see the surveys in [294, 424, 550, 1134]. On the other hand, vari-
ational inequalities of type (4.48) in infinite-dimensional (mostly in Hilbert)
spaces have been studied in connection with nonlinear partial differential equa-
tions and their mechanical applications starting with Stampacchia’s work in
the early 1960s; see, e.g., [1223, 680, 795], the recent book by Giannessi [504],
and the references therein.

The variational inequality (4.48) obviously reduces to the generalized equa-
tion (4.47) for the normal cone mapping Q(y) = N(y;Ω) corresponding to
a convex set Ω. Variational inequalities of the other (“second”) classical type
correspond to the generalized equation model (4.47) with Q(y) = ∂ϕ(y),
where ϕ is a convex continuous function. An extension of the latter model to
Q(y) = ∂Cϕ(y), where ϕ is a Lipschitz continuous function and where ∂Cϕ
stands for its Clarke generalized gradient, was introduced by Panagiotopoulos
(see [1042] and also [551, 994]) under the name of hemivariational inequal-
ities. In [911], Mordukhovich first studied more general variational systems
in form (4.47) with Q(y) = ∂ϕ(y), where ∂ϕ stands for the basic/limiting
subdifferential of an arbitrary l.s.c. function ϕ; such systems were called vari-
ational conditions by Rockafellar and Wets [1165]; see also the recent papers
by Robinson [1137, 1138, 1139].

It has been well recognized starting with Robinson’s seminal work [1130,
1131, 1132, 1133] that generalized equations provide a convenient model for
sensitivity analysis of optimal solution and associated maps under parameter
perturbations. In particular, they describe perturbed sets of stationary and
Karush-Kuhn-Tucker (KKT) points in problems of nonlinear programming.

4.5.10. Robust Lipschitzian Stability of Generalized Equations
and Variational Inequalities. Robinson’s original efforts and many sub-
sequent publications mostly aimed to derive efficient conditions ensuring the
local single-valuedness and Lipschitz continuity of solution maps; this prop-
erty closely relates to Robinson strong regularity defined via linearization; see
more discussions in Remark 4.76 as well comments given in Subsect. 4.5.11
below. On the other hand, Robinson was the first to recognize the upper Lip-
schitzian property of set-valued mappings (now often used under the name of
“calmness”) and to establish its validity for polyhedral multifunctions and for
the corresponding solution maps to generalized equations. The reader can find
more information on these and related developments in the afore-mentioned
publications, particularly in the recent book by Facchinei and Pang [424] with
the comprehensive bibliography therein.
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It seems to be a disadvantage of the upper Lipschitzian property that is
not robust with respect to perturbations of the initial data; it is even doesn’t
go back to the classical local Lipschitz continuity for single-valued mappings.
A new robust Lipschitzian property of multifunction was introduced by Aubin
[49] under the “pseudo-Lipschitzian” name; we broadly use it in this book as
the “Lipschitz-like” property, since it is the most natural extension – actually
just the graphical localization – of the classical Lipschitz continuity. In [49],
Aubin derived sufficient conditions for this robust Lipschitzian behavior of
set-valued solution maps to perturbed convex optimization problems in terms
of generalized differential constructions by Clarke.

Soon after that, Rockafellar [1154] considered the perturbed generalized
equation

0 ∈ f (x, y) + Q(y) (4.101)

with a locally Lipschitzian mapping f : IRn × IRm → IRd and derived sufficient
conditions for the Lipschitz-like property of the solution map to (4.101) via
Clarke’s constructions of the generalized Jacobian to f and the normal cone
to the graph of Q. Rockafellar clearly realized that the results obtained were
significantly restrictive, especially in the most interesting cases of subdifferen-
tial mappings Q = ∂ϕ generated by convex functions ϕ, and that they were
far removed from Robinson’s conditions obtained for some special cases of
(4.101). This is due to the subspace property of Clarke’s normal cone (never
employed by Robinson), which happens to have a fundamental drawback for
applications to this type of subdifferential variational systems; see examples
and discussions in Remark 4.58. However, no alternative constructions of non-
smooth analysis were suggested to use in [1154].

Adequate sufficient conditions, and also necessary and sufficient condi-
tions in some settings, for the Lipschitz-like property of solution maps to the
perturbed generalized equation (4.101) in finite-dimensional spaces were es-
tablished by Mordukhovich [911] via the nonconvex generalized differential
constructions of this book. In the case of smooth (strictly differentiable) map-
pings f , the conditions obtained were formulated as the requirement that the
adjoint generalized equation

0 ∈ ∇y f (x̄, ȳ)∗z∗ + D∗Q
(

ȳ,− f (x̄, ȳ)
)
(z∗)

has only the trivial solution z∗ = 0. This form, reminding us the Fredholm
alternative in the theory of integral equations, reflects deep relationships be-
tween “good behavior” of primal systems and the triviality of solutions to
their adjoint/dual ones.

Most of the material presented Subsects. 4.4.1 and 4.4.2 is based on the
recent papers by Mordukhovich [924, 931, 933], where new results were estab-
lished in both finite and infinite dimensions; some of their finite-dimensional
analogs can be found in [911] for the case of (4.101). Note that our analysis
concerns solution maps to the perturbed generalized equations
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0 ∈ f (x, y) + Q(x, y) ,

where both single-valued and set-valued parts depend on the parameter x .
Such systems are extensions of (4.101) and happen to be essentially more
complicated. They particularly cover the so-called quasivariational inequalities
when the set Ω in (4.48) is moving, i.e., also depends on parameters. Let us
also mention results by Mordukhovich and Outrata [939] related to parametric
variational systems of the special composite subdifferential structure

Q(x, y) = ∂ϕ
(
g(x, y)

)

with a smooth mapping g between finite-dimensional spaces; see Theorem 4.65
and Corollary 4.66 for generalizations.

Another approach to sensitivity analysis of perturbed variational systems

0 ∈ f (x, y) + N
(

y;Ω(x)
)

with a moving and generally nonconvex set Ω(x) in finite dimensions has
been recently developed by Robinson [1137, 1138, 1139]; see also the refer-
ences therein. Example 4.67 on applications to Lipschitzian stability for some
practical problems of continuum mechanics is taken from Mordukhovich and
Outrata [939], where the reader can find more results and applications in this
direction.

4.5.11. Strong Approximation and Canonical Perturbations. Sub-
section 4.4.3 concerns developments on robust Lipschitzian stability of varia-
tional systems under perturbations that are significantly different from those
presented in Subsect. 4.4.2. Indeed, the approach to sensitivity analysis de-
veloped in Subsect. 4.4.2 is based on reducing parametric variational systems
of the general type (4.49) to a special kind of constraint systems studied in
Sect. 4.3. Then powerful calculus results for the basic generalized differential
constructions of this book allowed us to compute coderivatives for solution
maps to parametric variational systems and thus to derive efficient condi-
tions for their Lipschitzian stability (with calculation/estimation of the exact
Lipschitzian bounds) based on the pointbased coderivative characterizations
established in Subsect. 4.2.1.

The approach of Subsect. 4.4.3 invokes other ideas that are in fact a contin-
uation of a long tradition coming from the classical inverse and implicit func-
tion theorems, while they have been championed and strongly developed by
Robinson in the framework of optimization and variational analysis. Roughly
speaking, they revolve around the fundamental idea of linearization (or, more
generally, of an appropriate approximation) of the original system in such
a way that the approximating system is easily to analyze, but at the same
time the required properties of the original system follow from those for the
approximating one.

Implementing this procedure, Robinson introduced in [1131] the property
of strong regularity as the local single-valuedness and Lipschitz continuity
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of solution maps to the linearized generalized equation of type (4.101) with a
smooth base function f and showed that such a regular behavior is inherent in
the original nonlinear system. Developing the approximating idea in the case
of nonsmooth bases in the implicit function and generalized equation frame-
works, Robinson originated the concept of strong approximation considered
in Subsect. 4.4.3. These ideas have been significantly developed and applied
to various optimization and equilibrium problems in many publications; see,
e.g., [133, 348, 350, 351, 352, 355, 356, 364, 365, 424, 686, 639, 640, 641, 692,
767, 768, 797, 820, 912, 929, 1043, 1044, 1047, 1092, 1133, 1134, 1205] and the
references therein.

In Mordukhovich [912], we employed Robinson’s linearization/strong ap-
proximation ideas, combined with our advanced tools of generalized differenti-
ation, to the study of robust Lipschitzian stability for parametric generalized
equations of type (4.101) in finite-dimensional spaces. Using this procedure, in
contrast to the approach developed in Subsects. 4.4.1 and 4.4.2, we applied the
coderivative criterion (4.100) not directly to the original generalized equation
but to the approximating one, while taking into account that the Lipschitz-like
property of the approximating system implies this property for the original
solution map due to Dontchev and Hager [356]. The results obtained in this
way are generally independent of those derived in [911]; see more discussions
in Subsect. 4.4.3.

It seems that the linearlization/strong approximation approach happens to
be the most efficient for canonically perturbed systems of type (4.49). Although
it has been realized for a long time that the structure of perturbations should
be “rich enough” to ensure better results in sensitivity analysis, the main em-
phasis of “canonical” perturbations and the very terminology probably first
appeared in Rockafellar’s work [1160]. This structure was strongly exploited in
the excellent paper by Dontchev and Rockafellar [364] devoted to canonically
perturbed variational inequalities over polyhedral convex sets in finite dimen-
sions. They established the equivalence between Robinson strong regularity
and the Lipschitz-like/Aubin property of solution maps for such variational
systems and, based on the coderivative criterion (4.100), derived a “critical
face” characterization of these properties. As an application of their critical
face characterization, they obtained verifiable necessary and sufficient condi-
tions for strong regularity of the general nonlinear complementarity problem
with canonical perturbations and finally applied these results to character-
izing strong regularity of the KKT systems in nonlinear programming with
twice differentiable data. In this way they solved a long-standing problem
about the necessity of the so-called “strong second-order sufficient condition”
for strong regularity; the sufficiency of the latter condition for strong regu-
larity was established in Robinson’s landmark paper [1131]. We also refer the
reader to the papers by Bonnans and Sulem [134], Jongen et al. [640], and
Kojima [692] for related developments that didn’t employ tools of nonsmooth
analysis.
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Canonical perturbations play a strong role in the concept of tilt-stable local
minimum introduced by Poliquin and Rockafellar [1092] from the viewpoint
of sensitivity analysis. As established in [1092], the positive definiteness of the
second-order subdifferential from [907] (see Subsect. 1.3.5) is a characterization
of a tilt-stable minimum. Further strong developments in this direction can
be found in the subsequent paper by Levy, Poliquin and Rockafellar [771].

The material of Subsect. 4.4.3 is mostly based on Mordukhovich’s paper
[929]. Lemma 4.69 on the equivalence between Lipschitzian stability of canon-
ically perturbed generalized equations and their strong approximations was
proved by Dontchev [350] by applying the Lyusternik-Graves iterative process.
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148. J. M. Borwein and A. Jofré (1998), A nonconvex separation property in
Banach spaces, Math. Meth. Oper. Res. 48, 169–179.

149. J. M. Borwein and A. S. Lewis (2000), Convex Analysis and Nonlinear
Optimization: Theory and Examples, Springer, New York.

150. J. M. Borwein, Y. Lucet and B. S. Mordukhovich (2000), Compactly
epi-Lipschitzian convex sets and functions in normed spaces, J. Convex Anal.
7, 375–393.

151. J. M. Borwein, B. S. Mordukhovich and Y. Shao (1999), On the equiv-
alence of some basic principles of variational analysis, J. Math. Anal. Appl.
229, 228–257.

152. J. M. Borwein, W. B. Moors and X. Wang (2001), Generalized sub-
differentials: A Baire categorical approach, Trans. Amer. Math. Soc. 353,
3875–3893.

153. J. M. Borwein and D. Noll (1994), Second order differentiability of convex
functions in Banach spaces, Trans. Amer. Math. Soc. 342, 43–81.

154. J. M. Borwein and D. Preiss (1987), A smooth variational principle with
applications to subdifferentiability and differentiability of convex functions,
Trans. Amer. Math. Soc. 303, 517–527.
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flächen in sich, Math. Ann. 69, 176–180.



486 References

181. D. J. Brown (1991), Equilibrium analysis with nonconvex technologies, in
Handbook of Mathematical Economics, Vol. 4, edited by W. Hildenbrand and
H. Sonnenschein, North-Holland, Amsterdam, The Netherlands.

182. A. Bruckner (1994), Differentiation of Real Functions, American Mathe-
matical Society, Providence, Rhode Island.

183. F. Bucci (1992), A Dirichlet boundary control problem for the strongly
damped wave equation, SIAM J. Control Optim. 30, 1092–1100.

184. B. M. Budak, E. M. Berkovich and E. N. Solovieva (1969), Difference
approximations in optimal control problems, SIAM J. Control 7, 18–31.

185. B. M. Budak and F. P. Vasiliev (1975), Some Computational Aspects of
Optimal Control Problems, Moscow University Press, Moscow.

186. R. S. Burachik and A. N. Iusem (2006), Set-Valued Mappings and Enlarge-
ments of Monotone Operators, SIAM Publications, Philadelphia, Pennsylva-
nia.

187. R. S. Burachik, A. N. Iusem and B. F. Svaiter (1997), Enlargement of
monotone operators with applications to variational inequalities, Set-Valued
Anal. 5, 159–180.

188. J. V. Burke (1991), Calmness and exact penalization, SIAM J. Control
Optim. 29, 493–497.

189. J. V. Burke (1991), An exact penalization viewpoint of constrained opti-
mization, SIAM J. Control Optim. 29, 968–998.

190. J. V. Burke and S. Deng (2002), Weak sharp minima revisted, I: Basic
theory, Control Cybernet. 31, 439–469.

191. J. V. Burke and S. Deng (2005), Weak sharp minima revisted, II: Appli-
cation to linear regularity and error bounds, Math. Progr., to appear.

192. J. V. Burke and M. C. Ferris (1993), Weak sharp minima in mathematical
programming, SIAM J. Control Optim. 31, 1340–1359.

193. J. V. Burke, M. C. Ferris and M. Quian (1992), J. Math. Anal. Appl.
166, 199–213.

194. J. V. Burke, A. S. Lewis and M. L. Overton (2000), Optimizing matrix
stability, Proc. Amer. Math. Soc. 129, 1635–1642.

195. J. V. Burke, A. S. Lewis and M. L. Overton (2001), Optimal stability
and eigenvalue multiplicity, Found. Comput. Math. 1, 205–225.

196. J. V. Burke, A. S. Lewis and M. L. Overton (2002), Approximating
subdifferentials by random sampling of gradients, Math. Oper. Res. 27, 567–
584.

197. J. V. Burke, A. S. Lewis and M. L. Overton (2003), Robust stability
and a criss-cross algorithm for pseudospectra, IMA J. Numerical Anal. 23,
1–17.

198. J. V. Burke, A. S. Lewis and M. L. Overton (2004), Variational analy-
sis of the abscissa mapping for polynomials via the Gauss-Lucas theorem,
J. Global Optim. 28, 259–268.

199. J. V. Burke, A. S. Lewis and M. L. Overton (2004), A robust gradient
sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim.
15, 751–779.

200. J. V. Burke, A. S. Lewis and M. L. Overton (2005), Variational analysis
of functions of the roots of polynomials, Math. Progr., to appear.

201. J. V. Burke and D. R. Luke (2003), Variational analysis applied to the
problem of optical phase retrieval, SIAM J. Control Optim. 42, 576–595.



References 487

202. J. V. Burke and M. L. Overton (1992), in Nonsmooth Optimization Meth-
ods and Applications, edited by F. Giannessi, pp. 19–29, Gordon and Breach,
Philadelphia, Pennsylvania.

203. J. V. Burke and M. L. Overton (2000), Variational analysis of the abscissa
mapping for polynomials, SIAM J. Control Optim. 39, 1651–1676.

204. J. V. Burke and M. L. Overton (2001), Variational analysis of non-
Lipschitz spectral functions, Math. Progr. 90, 317–351.

205. J. V. Burke and P. Tseng (1996), A unified analysis of Hoffman’s bound
via Fenchel duality, SIAM J. Optim. 6, 265–282.

206. J. A. Burns (2003), Nonlinear distributed parameter control systems with
non-normal linearizations: Applications and approximations, Front. Appl.
Math. 27, 17–53.

207. M. Bustos (1994), Epsilon gradients pour functions localements Lipschitzi-
ennes et applications, Numer. Funct. Anal. Optim. 15, 435–453.

208. A. G. Butkovsky (1963), Necessary and sufficient optimality conditions for
impulse control systems, Autom. Remote Control 24, 1056–1064.

209. A. G. Butkovsky (1969), Distributed Control Systems, Elsevier, New York.
210. A. G. Butkovsky, A. I. Egorov and K. A. Lurie (1968), Optimal control

of distributed systems (a survey of Soviet publications), SIAM J. Control 6,
437–476.

211. A. G. Butkovsky and A. J. Lerner (1960), Optimal control systems with
distributed parameters, Autom. Remote Control 21, 472–477.

212. G. Buttazzo and G. Dal Maso (1982), Γ -convergence and optimal control
problems, J. Optim. Theory Appl. 38, 385–407.

213. G. Buttazzo, M. Giaquinta and S. Hildebrandt (1998), One-
Dimensional Variational Problems: An Introduction, Oxford University Press,
New York.

214. F. Camilli and M. Falcone (1996), Approximation of optimal control prob-
lems with state constraints: Estimates and applications, in Nonsmooth Analy-
sis and Geometric Methos in Deterministic Optimal Control, edited by B. S.
Mordukhovich and H. J. Sussmann, pp. 23–58, Springer, New York.

215. P.-M. Cannarsa and G. Da Prato (1991), Second-order Hamilton-Jacobi
equations in infinite dimensions, SIAM J. Control Optim. 29, 474–492.

216. P.-M. Cannarsa and H. Frankowska (1991), Some characterizations of
optimal trajectories in control theory, SIAM J. Control Optim. 29, 1322–1347.

217. P.-M. Cannarsa and C. Sinestrari (2004), Semiconvex Functions,
Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser, Boston, Mas-
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perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc.
224, 193–216.

401. I. Ekeland and R. Temam (1976), Convex Analysis and Variational Prob-
lems, North-Holland, Amsterdam, The Netherlands.

402. B. El Abdouni and L. Thibault (1992), Lagrange multipliers for Pareto
nonsmooth programming problems in Banach spaces, Optimization 26, 277–
285.
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in Optimization and Nonlinear Analysis, edited by A. Ioffe, L. Marcus and
S. Reich, Pitman Research Notes Math. Ser. 244, pp. 178–188, Longman,
Harlow, Essex, UK.

801. P. D. Loewen, Optimal Control via Nonsmooth Analysis (1993), American
Mathematical Society, Providence, Rhode Island.

802. P. D. Loewen (1994), A mean value theorem for Fréchet subgradients, Non-
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D’évolution Non Convexes, Ph.D. dissertation, Department of Mathematics,
University of Montpellier II, Montpellier, France.

849. S. Marcellin and L. Thibault (2005), Integration of ε-Fenchel subdiffer-
entials and maximal cyclic monotonicity, J. Global Optim. 32, 83–91.

850. A. Marchaud (1934), Sur les champs de demi-cônes et les équations
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Linéaire 2, 167–184.

1154. R. T. Rockafellar (1985), Lipschitzian properties of multifunctions, Non-
linear Anal. 9, 867–885.

1155. R. T. Rockafellar (1985), Extensions of subgradient calculus with appli-
cations to optimization, Nonlinear Anal. 9, 665–698.

1156. R. T. Rockafellar (1988), First- and second-order epi-differentiability in
nonlinear programming, Trans. Amer. Math. Soc. 307, 75–108.

1157. R. T. Rockafellar (1989), Letter to B. S. Mordukhovich of March 6, 1989,
Seattle, Washington.

1158. R. T. Rockafellar (1989), Derivation of some improved formulas in subd-
ifferential calculus, privately circulated note.

1159. R. T. Rockafellar (1989), Proto-differentiability of set-valued mappings
and its applications in optimization, in Analyse Non Linéaire, edited by H.
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1241. A. Świech (1996), Sub- and superoptimality principles of dynamic program-
ming revisited, Nonlinear Anal. 26, 1429–1436.

1242. T. Tadumadze and L. Alkhazishvili (2003), Formulas of variations of so-
lutions for nonlinear controlled delay differential equations with discontinuous
initial conditions, Mem. Diff. Eq. Math. Phys. 29, 125–150.

1243. W. Takahashi (2000), Nonlinear Functional Analysis, Yokohama Publishers,
Yokohama, Japan.
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2.15 Theorem: Basic separable reduction
2.16 Corollary: Separable reduction for the extremal principle
2.17 Definition: Asplund spaces
2.18 Proposition: Banach spaces with no Asplund property
2.19 Example: Degeneracy of normals in non-Asplund spaces
2.20 Theorem: Extremal characterizations of Asplund spaces
2.21 Corollary: Boundary characterizations of Asplund spaces
2.22 Theorem: Exact extremal principle in Asplund spaces
2.23 Example: Violation of the exact extremal principle in the absence of

SNC
2.24 Corollary: Nontriviality of basic normals in Asplund spaces
2.25 Corollary: Subdifferentiability of Lipschitzian functions on Asplund

spaces
2.26 Theorem: Ekeland’s variational principle
2.27 Corollary: ε-Stationary condition
2.28 Theorem: Lower subdifferential variational principle
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upper subgradients
6.39 Remark: Control problems with intermediate state constraints
6.40 Remark: Maximum principle in time-delay control systems
6.41 Remark: Functional-differential control systems of neutral type
6.42 Lemma: Increment formula for the cost functional
6.43 Lemma: Increment of trajectories under needle variations
6.44 Lemma: Hidden convexity and primal optimality condition
6.45 Lemma: Endpoint variations under equality constraints
6.46 Example: Failure of the discrete maximum principle
6.47 Definition: Uniform upper subdifferentiability
6.48 Proposition: Relationships between Fréchet subgradients and Dini
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Glossary of Notation

Operations and Symbols

:= and =: equal by definition
≡ identically equal
∗ indication of some dual/adjoint/polar operation
〈·, ·〉 canonical pairing between space X and its

topological dual X∗

x → x̄ x converges to x̄ strongly (by norm)

x
w→ x̄ x converges to x̄ weakly (in weak topology)

x
w∗
→ x̄ x converges to x̄ weak∗ (in weak∗ topology)

x
Ω→ x̄ x converges to x̄ with x ∈ Ω

lim inf lower limit for real numbers
lim sup upper limit for real numbers
Lim inf lower/inner limit for set-valued mappings
Lim sup upper/outer limit for set-valued mappings
dim X and codim X dimension and codimension of X , respectively
≺ preference relation
‖ · ‖ or | · | or ||| · ||| norms
haus(Ω1,Ω2) Pompieu-Hausdorff distance between sets
lip F(x̄, ȳ) exact Lipschitzian bound of F around (x̄, ȳ)
reg F(x̄, ȳ) exact metric regularity bound of F around (x̄, ȳ)
cov F(x̄, ȳ) exact covering/linear openness bound of F

around (x̄, ȳ)
rad F(x̄, ȳ) radius of metric regularity of F around (x̄, ȳ)
� end of proof

Spaces

IR := (−∞,∞) real line

IR := [−∞,∞] extended real line
IRn n-dimensional Euclidean space
IRn

+ and IRn
− nonnegative and nonpositive orthant of IRn ,

respectively
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C([a, b]; X) space of X-valued continuous mappings with
the supremum norm on [a, b]

C(K ) space of continuous functions on the
compact set K

C[0, ω1] continuous functions on [0, ω1], where ω1 is the
first uncountable ordinal

C0 continuous functions with compact supports
Ck , 1 ≤ k ≤ ∞, k times differentiable functions with all

continuous derivatives
C1,1 continuously differentiable functions with

Lipschitzian derivatives
L p([a, b]; X), 1 ≤ p ≤ ∞, standard Lebesgue spaces of X-valued mappings
W 1,p and H p standard Sobolev spaces
M and Mb measure spaces (dual to spaces of continuous

functions)
BV functions of bounded variation
c space of real number sequences with the

supremum norm
c0 subspace of c with sequences converging to zero
�p, 1 ≤ p ≤ ∞, sequences of real numbers with standard p–norms

Sets

∅ empty set
IN set of natural numbers
Br (x) ball centered at x with radius r
IBX closed unit ball of space X
IB and IB∗ closed unit balls of the space and duals

space in question
S and S∗ unit spheres of the space and dual

space in question
intΩ and riΩ interior and relative interior, respectively
clΩ and cl∗Ω closure and weak∗ topological closure,

respectively
bdΩ or ∂Ω set boundary
coΩ and clcoΩ convex hull and closed convex hull, respectively
coneΩ conic hull

affΩ and aff Ω affine hull and closed affine hull, respectively
mesΩ or Ln(Ω) Lebesgue (n-dimensional) measure
Π(x ;Ω) projection of x to Ω
T (x̄ ;Ω) contingent cone to Ω at x̄
TW (x̄ ;Ω) weak contingent cone to Ω at x̄
TC(x̄ ;Ω) Clarke tangent cone to Ω at x̄
N(x̄ ;Ω) basic/limiting normal cone to Ω at x̄
N+(x̄ ;Ω(ȳ)) extended limiting normal cone to Ω(ȳ) at x̄
N̂(x̄ ;Ω) prenormal cone or Fréchet normal cone to Ω at x̄
NC(x̄ ;Ω) Clarke normal cone to Ω at x̄
NG(x̄ ;Ω) and ÑG(x̄ ;Ω) approximate G-normal cone and its

nucleus to Ω at x̄
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NP(x̄ ;Ω) proximal normal cone to Ω at x̄
N̂ε(x̄ ;Ω) sets of ε-normals to Ω at x̄
Sε(x̄ ;Ω) ε-support to Ω at x̄

Functions

δ(·;Ω) set indicator function
dist(·;Ω) or dΩ(·) distance function
ρ(x, y) := dist(y; F(x)) extended distance function

dom ϕ domain of ϕ: X → IR
epi ϕ, hypo ϕ, and gph ϕ epigraph, hypergraph, and graph of ϕ,

respectively

x
ϕ→ x̄ x → x̄ with ϕ(x) → ϕ(x̄)

H Hamiltonian function in optimal control
H Hamilton-Pontryagin function in optimal control
L Lagrangian function in optimization
LΩ essential Lagrangian relative to Ω
τ (F ; h) averaged modulus of continuity
ϕ′(x̄) or ∇ϕ(x̄) Fréchet derivative/gradient of ϕ at x̄
ϕ′
β(x̄) or ∇βϕ(x̄) derivative/gradient of ϕ at x̄ with respect

to some bornology
|∇ϕ|(x̄) (strong) slope of ϕ at x̄
ϕ′(x̄ ; v) classical directional derivative of ϕ at x̄

in direction v

ϕ◦(x̄ ; v) and ϕ↑(x̄ ; v) generalized directional derivative
and subderivative of ϕ

d−ϕ(x̄ ; v) and d+ϕ(x̄ ; v) Dini-Hadamard lower and upper
directional derivative of ϕ

∂ϕ(x̄) basic/limiting subdifferential of ϕ at x̄
∂+ϕ(x̄) upper subdifferential of ϕ at x̄
∂0ϕ(x̄) symmetric subdifferential of ϕ at x̄
∂≥ϕ(x̄) right-sided subdifferential of ϕ at x̄
∂∞ϕ(x̄) singular subdifferential of ϕ at x̄
∂̂ϕ(x̄) and ∂̂+ϕ(x̄) Fréchet subdifferential and upper subdifferential

of ϕ at x̄ , respectively
∂Aϕ(x̄) and ∂Gϕ(x̄) approximate A-subdifferential and

G-subdifferential of ϕ at x̄
∂Cϕ(x̄) Clarke subdifferential/generalized gradient

of ϕ at x̄
∂βϕ(x̄) viscosity (bornological) β-subdifferential of ϕ at x̄
∂Pϕ(x̄) proximal subdifferential of ϕ

at x̄
∂̂εϕ(x̄), ∂̂aεϕ(x̄), and ∂̂gεϕ(x̄) Fréchet-type ε-subdifferentials of ϕ at x̄
∂−ε ϕ(x̄) Dini ε-subdifferential of ϕ at x̄
∇2ϕ(x̄) classical Hessian (matrix of second derivatives

if in IRn) of ϕ at x̄
∂2ϕ, ∂2

Nϕ, and ∂2
Mϕ second-order subdifferentials (generalized

Hessians) of ϕ
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Mappings

f : X → Y single-valued mappings from X to Y
F : X →→ Y set-valued mappings from X to Y
dom F domain of F
rge F range of F
gph F graph of F
ker F kernel of F
F−1: Y →→ X inverse mapping to F : X →→ Y
F(Ω) and F−1(Ω) image and inverse image/preimage of Ω under F
F ◦ G composition of mappings

F
h◦ G h-composition of mappings

∆(·;Ω) set indicator mapping
Ωρ set enlargement mapping
Eϕ epigraphical mapping
E( f, Θ) generalized epigraph of f : X → Y

with respect to Θ ⊂ Y
DF(x̄, ȳ) graphical/contingent derivative of

F at (x̄, ȳ) ∈ gph F
D∗F(x̄, ȳ) (basic) coderivative of F at (x̄, ȳ) ∈ gph F
D∗

N F(x̄, ȳ) normal coderivative of F at (x̄, ȳ) ∈ gph F
D∗

M F(x̄, ȳ) and D̃∗
M F(x̄, ȳ) mixed and reversed mixed coderivative

of F at (x̄, ȳ), respectively

D̂∗F(x̄, ȳ) and D̂∗
ε F(x̄, ȳ) Fréchet coderivative and ε-coderivative

of F at (x̄, ȳ), respectively
J f (x̄) generalized Jacobian of f at x̄
Λ f (x̄) derivate container of f at x̄
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ε-normals 4–6, 8, 10, 16, 25, 27, 30,
33, 43, 80, 81, 87, 88, 98, 100, 108,
141, 171, 174, 176, 197, 198, 200,
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proximal normals 10, 145, 179, 240,
252
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topological 144, 234, 238, 319
upper/outer 3, 10, 13, 144, 234, 319
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247, 248
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projections 106, 107, 109–111, 125,
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Euclidean 8–10, 111, 141
inverse 10

projector see projections
proper subsets 4, 176, 178, 179, 200,

202, 248
properness conditions

in Asplund generated spaces 361
proximally smooth sets see prox-

regular sets
pseudo-Lipschitzian property see
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150
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462

of convergence 377
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251, 252, 255, 289, 290, 292, 294,
320, 321, 330, 336, 358, 360, 367,
371, 372, 404
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regular subgradients see Fréchet
subgradients

regular tangent cone see Clarke
tangent cone

regularity of functions 7

calculus 7, 97, 112, 167, 297, 302,
304–306

Clarke regularity 136, 165

epigraphical regularity 94, 95, 112,
165, 296, 297, 302, 304, 306
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285, 333, 335, 365, 386, 408, 409,
411–414, 416, 422, 423, 425, 426,
429, 431, 436, 437, 454

calculus 46, 47, 71, 72, 75, 163, 277,
278, 281, 282, 285

graphical regularity 44, 45, 47, 56,
97, 159, 296, 327, 329, 333–335,
372, 373

uniform prox-regularity 149

regularity of sets 7, 414

calculus 7, 26, 27, 266–268, 298

Clarke regularity 142, 373
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473, 474
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397, 463, 465, 468

robust behavior 158, 160, 406, 414,
422, 450, 462, 467–469, 472–474
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of normals 10, 11, 138, 140, 323, 326,
327, 336, 372, 415, 464

of subgradients 138, 258, 323, 326,
327, 336, 464

scalarization 48

for general topologies 292, 334

of Fréchet coderivatives 290, 292,
294, 333, 381, 428

of mixed coderivatives 93, 115, 123,
165, 284, 332, 333, 409, 413, 456

of normal coderivatives 94, 287, 289,
302, 304, 328, 367, 373, 409, 413,
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469

screens 242, 243

second welfare theorem 153
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336–340, 374, 433
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469–471, 473–475
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separable spaces 32, 130, 180, 183,
184, 189–191, 195, 196, 199, 202,
246, 252, 268, 320, 321, 326, 336,
358–360, 396
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approximate 176
convex 66, 133, 135, 137, 139, 140,

154, 171, 173–175, 185, 203, 361,
362

nonconvex 171, 173–175, 249, 362
sequential normal compactness 27, 70,

149, 154, 261, 372
calculus 29, 30, 77–79, 121, 149, 167,

261, 341–359, 361, 362, 374, 375,
391, 406, 407, 409, 414, 434–437,
459, 469

for mappings 75–79, 163, 285, 291,
298, 302, 307, 350–358, 365, 374,
410, 415, 418, 420, 422, 423, 425,
427–429, 434–438, 440–443, 445,
446, 454, 455, 458, 459

for sets 27, 29–32, 104–106, 109, 111,
154, 201, 202, 245–248, 265, 266,
268, 271, 272, 295, 296, 298, 303,
323, 326, 342, 344–349, 352, 363,
364, 374, 389, 398, 408–410, 414,
418

under convexity 28, 32, 203, 268,
363, 389, 398, 425, 426

sequential normal epi-compactness
120, 121, 167, 228, 229, 297, 298,
301–304, 306–308, 311, 312,
337–339, 347–349, 351–357, 368,
370

set algebra 3
set enlargements 10, 100, 104, 141,

163, 166
set-valued mappings 3, 13, 39, 44, 47,

54, 56, 61, 70, 75, 76, 79, 80, 121,
140, 155–157, 163, 165, 168, 378,
407

h-compositions 282, 284, 357, 393
closed-valued 39
compositions 71, 77, 278, 279, 286,

354, 356, 357, 391, 398
convex-valued 39, 42, 157, 396
derivatives 155
domain 39
graph 39
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inner semicompact 71–74, 114,
115, 270–275, 278, 279, 282, 298–
301, 337–339, 345, 346, 350, 351,
354–356, 358, 391–394, 398

inner semicontinuous 42, 71, 72,
74, 78, 79, 113–115, 271, 274, 276,
278–282, 284, 298, 299, 301, 337,
345, 351, 355, 392, 459

intersections 284, 352
kernel 39
locally compact 50, 60, 383, 389,

391, 396
of closed graph 11, 160, 274, 382,

384–386, 389–391, 394, 398, 403,
463, 464, 466–469

of convex graph 45, 160, 380, 386,
389, 390, 397, 398, 424–426, 429,
438, 455, 463, 465

positively homogeneous 40, 384,
392, 393, 468

range 39
sums 70, 277, 349, 351, 392

sets of positive reach see prox-regular
sets

sharp minima 149
singularity 400, 467
slopes 464
smooth manifolds 152, 159
smooth renorms see smooth spaces
smooth spaces 14, 35, 90, 153, 155, 180,

183, 196, 199, 211, 213, 238, 239,
246, 250, 251, 253, 255, 257–259,
287, 320, 326, 363, 368, 370–373

smooth variational descriptions 35
of normals 35, 154
of subgradients 90, 155, 165, 210,

211, 255
smooth variational principles 183, 203,

206, 208–212, 255, 256, 287
Borwein-Preiss 183, 203, 211, 251,

255, 256
Deville-Godefroy-Zizler 203, 211,

255, 256
Stegall 255

SNC see sequential normal compact-
ness

SNEC see sequential normal
epi-compactness

spheres 3, 14, 103, 110, 179, 250, 320

stationarity 430, 460, 471
strict Fréchet differentiability see

differentiability, strict
strict Lipschitz continuity see

Lipschitz continuity, strict
strictly smooth sets see graphically

smooth mappings
strong approximations 162, 450–457,

473, 474
subderivatives see directional

derivatives
subdifferential regularity see lower

regularity
subdifferential variational principles

206
lower 206–208, 211, 212, 254, 255
upper 207, 209, 254

subdifferentials see subgradients
subgradients 3, 81

M-subgradients see basic subgradi-
ents

ε-subgradients 87, 88, 96, 98, 100,
106, 107, 120, 143, 144, 165, 166,
216, 219, 228, 254, 256, 371

abstract subgradients 139, 256, 258
approximate subgradients 144,

237–239, 258, 319, 321, 323, 326,
358, 368, 371, 372, 465

basic subgradients 82, 84, 86, 92,
99, 109, 111, 121, 130, 131, 140,
144–146, 155, 163–166, 168, 169,
203, 209, 216, 218, 234, 243, 244,
256–259, 290–292, 297, 302, 304,
308, 311, 313, 315, 317, 319, 321,
323, 326, 327, 333, 334, 336–340,
347, 348, 360, 367–373, 386, 409,
413, 416, 417, 419, 420, 427, 429–
432, 434, 435, 441–447, 455, 457,
458, 460, 471, 473

Clarke subgradients 137, 139, 145,
146, 164, 166, 168, 236, 254, 317,
347, 369, 370, 429, 471

for convex functions 95, 96, 133,
165, 184, 186, 234, 254, 315, 326,
371, 380

Fréchet subgradients 90, 98, 101,
143, 164, 166, 182, 188, 190, 207–
209, 211, 214–216, 219, 227, 228,
230, 241, 243, 244, 254, 256, 258,
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309–312, 314, 315, 333, 359, 370,
371, 380, 381

limiting ε-subgradients 218, 219,
257

other subgradients 136, 144, 237,
319, 322, 371

proximal subgradients 145, 164, 168,
240, 252, 257

sided subgradients 103–105, 166
singular subgradients 82, 84, 86,

164, 227, 229, 257, 297, 302, 304,
317, 351, 352, 357, 358, 361, 432

symmetric subgradients 83, 119,
164, 243, 245, 259, 307, 308, 370

upper subgradients 81, 83, 90, 96,
164, 166, 209, 244, 254, 259, 307

viscosity β-subgradients 155, 238,
239, 256, 257, 259

suboptimality conditions 150, 206, 253
subregularity 160, 468
supergradients see upper subgradients
support points see supporting

properties
supporting functions see supports
supporting properties 176, 177, 179,

201, 203, 252
supports 33, 142, 270
ε-supports 142

surjection property 161, 462–464
surjective derivatives 20, 23, 25, 66,

75, 79, 118, 412, 415, 423, 424, 444,
457, 458

surjectivity 20, 21, 30

tangent cones 13
Clarke 14, 17, 136, 140, 153, 362,

363, 462
contingent 13, 133, 135, 136, 153,

155, 373
of interior displacements, Dubovitskii-

Milyutin 133
paratingent 69
weak contingent 13, 153

tangential approximations see tangent
cones

tangents see tangent cones
Taylor expansions 167
tilt stability 475

TNC see topological normal compact-
ness

transversality conditions 146, 151
trustworthy spaces 256, 319, 372, 466

u.s.c. see upper semicontinuous
functions

value functions 113, 369
variational conditions see generalized

equations
variational inequalities 139, 140, 147,

168, 421, 429–431, 439, 440, 442,
459, 460, 470, 471

generalized 429–431, 433–435,
443–446, 457, 458

variational systems 150, 436, 437, 440,
459, 461, 462, 473

regular 422, 425, 426, 428, 431, 436,
437, 453

viscosity solutions to PDEs 155

WCG spaces see weakly compactly
generated spaces

weak Asplund spaces 252
weak Fréchet differentiability see

differentiability, weak
weak∗ extensibility property 70, 125,

169
weak∗ limits 371

net/topological 248, 290, 320, 324,
325, 358, 359, 371, 372

sequential 221, 248, 320, 324, 358,
371, 372

weak∗ sequential compactness 32,
70, 125, 130, 201, 218, 219, 234,
246–248, 267, 288, 320, 321, 367,
431

weak∗ slice 197
weakly compactly generated spaces

32, 145, 258, 319, 321–323, 325,
326, 358–360, 372, 415

Weierstrass existence theorem 120,
178, 181, 203

welfare economics 153
well-posed minimum 92
well-posedness 109, 377, 467

of best approximations 109–111
Whitney construction 321, 372
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